posted on 2018-11-20, 16:04authored bySyed M.R. Naqvi
The enhancement of the performance of frequency domain convolutive
blind source separation (FDCBSS) techniques when applied to the
problem of separating audio sources recorded in a room environment
is the focus of this thesis. This challenging application is termed the
cocktail party problem and the ultimate aim would be to build a machine
which matches the ability of a human being to solve this task.
Human beings exploit both their eyes and their ears in solving this task
and hence they adopt a multimodal approach, i.e. they exploit both
audio and video modalities. New multimodal methods for blind source
separation of audio sources are therefore proposed in this work as a
step towards realizing such a machine.
The geometry of the room environment is initially exploited to improve
the separation performance of a FDCBSS algorithm. The positions
of the human speakers are monitored by video cameras and this
information is incorporated within the FDCBSS algorithm in the form
of constraints added to the underlying cross-power spectral density
matrix-based cost function which measures separation performance. [Continues.]
History
School
Mechanical, Electrical and Manufacturing Engineering
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2009
Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy at Loughborough University.