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Abstract 

The in-cylinder combustion dynamics of spark-ignition (SI) engines involves a complex 
interaction of physical and chemical processes. Despite significant progress In the 

numerical simulation of these phenomena with computational fluid dynamics (CFD), 

there is a need for generalised models to describe the emission, absorption and scattering 

of thermal radiation within the 'participating' combustion gases. Therefore, the present 

work advances the predictive capability of nurnerical methods for radiation transport in 

participating media for inclusion into an established finite-volume CFD code. 

The research focuses on three radiation methods: discrete transfer, YIX and a pathlength- 
based Monte Carlo algorithm. The three-dimensional formulation and coding of each 

method combines the best available knowledge from heat transfer, statistical and graphics 
literature. In particular, the tracing and searching of complex arbitrary geometries utilises 

an efficient ray-triangle intersection algorithm in a novel way to handle cell face distortion 

and edge intersections with minimum computation. A new general weighted-sum-of- 

gray-gases model (WSGG) is implernented in order to first resolve the spectral (nongray) 

dependence of high-temperature gas radiative properties prior to solution by one of the 

three radiation methods. 

The present methods are first verified against published benchmark solutions for radiating 

media in the absence of other modes of heat transfer. Subsequently, the discrete transfer- 
WSGG model is coupled with the engine-specific CFD code KIVA-11 for studies of the 
flow field, flame propagation and infrared emission in pancake and pentroof SI engines. 
Here, the Favre-averaged Navier-Stokes, energy and radiation conservation equations are 

solved over a nonorthogonal, curvilinear mesh of arbitrary hexahedrons, body-fitted to the 

combustion chamber geometry. Flexible algebraic and elliptic mesh generation tools are 
developed for this purpose. Additional k-F- turbulence terms for variable density flows, 

the EDC model for mixing-controlled combustion, the Shell model for auto-ignition and 
the capability to simulate ports and valves with wave action are new features added to 
KIVA-11 to ensure a good description of the turbulent, chemically reacting flow field as a 
basis for the radiation studies. Comparisons with experimental measurements from optical 
engine studies are presented. 
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Chapter 
1 

1.1 Motivation for this Research 

Introduction 

Numerical models of engine cornbustion have improved dramatically in recent years from 

the combined efforts of the fluid dynamics and combustion modelling communities. This 

has resulted in the development of simulation software for the calculation of transient 

turbulent chemically reacting flows in complex port/cylinder geometries. Three notable 

examples are the engine-specific codes FIRE (Tatschl et al. 1996), VECTIS (Bensler and 

Oppermann 1996) and, to be used in the present study, KIVA (see Chapter 3), although 

more general-purpose computational fluid dynamics (CFD) packages such as STAR-CD, 

CFX and FLUENT amongst others also offer this capability. These can all describe key 

phenomena such as turbulence, mixing, ignition, chemical reaction and heat transfer (by 

conduction and convection). Often a wel I-establ i shed selection of models are available 

with different orders of computation and accuracy providing the analyst with multiple 

solver choices. 

However, one important exception is the lack of generalised models to describe emission, 

absorption and scattering of thermal radiation within the 'participating' combustion gases. 

To date calculations have largely relied on empirical relations (Heywood 1988, Sec. 12.5), 

but this situation is no longer acceptable: as overall modelling fidelity improves new work 

is showing that turbulence, chernistry and radiation are all intimately related (Chan 1998). 

It is the aim of this study to thoroughly address this problem with an end to developing 

contemporary techniques for radiatively participating media which lead thernselves to a 

coupled solution with the equations for turbulent flow and the other heat transfer niodes. 
Attention is to be given to important difficulties narnely, complex geometries, anisotropy, 

nonuniform properties and spectrally dependent effects. A novel study will then be made 

of how the detailed geometry and gas composition influence flame radiation in spark- 

ignition engines. 

1 



Chapter I Introduction 

1.2 A'Grand Challenge' Problem 

The simulation of thermal radiation in complex participating media with other modes of 
heat transfer was deemed as a 'grand challenge' problem and stimulated the most interest 

of attendees at a 1994 U. S. National Science Foundation (NSF) workshop (Gritzo et aL 
1995). This provided a forum for experts in radiative heat transfer and high-performance 

computing to identify highly challenging, nationally important problems (i. e. research 
thrusts) of mutual interest. Several key difficulties are identified for complex/combined- 

mode problems (Gritzo et aL 1995, p. 16): 

'The ability to address 3D complex geometries was cited as being imperative to 

applying this capacity to practical applications. Inhomogeneous (both spatially 

and temporally) media, anisotropic scattering, and spectral dependence should 

also be included. The ability to address the interaction of radiative heat transfer 

with chemically reacting flows, turbulent flows, conditions which include phase 

change and mass transfer, and environments which include the production and 
destruction of species were also presented as essentialfeatures of this capability. ' 

Relevant applications included modelling gas turbines, coal furnaces, fuel fires and with 

particular relevance here - internal combustion engines. It is also noteworthy that these 

comments were reiterated in more recent open forum sessions at the ASME 31 st National 

Heat Transfer Conference (Houston, Texas, 1996) and at the ICHMT 2nd International 

Symposium on Radiative Transfer (Kusadasi, Turkey, 1997). 

1.3 Objectives of this Research 

This section defines key objectives in order to form a framework from which a complete 

numerical solution to the posed problem can be developed. It was decided early on that 

any radiation software arising from this research should have the dual capability to be 

used as a stand-alone code or to be interfaced with a finite-volume-based computational 
fluid dynamics (CFD) solver. The CFD solver KIVA-II (Amsden et aL 1989) was chosen 
to demonstrate coupled mode operation. Other codes were considered but either their 

source versions were unavailable, or they were too large to execute, e. g. the smallest 
version of FIRE was for problem sizes up to 50,000 elements: twice the capacity of the 

modest machines available for this work at that time. 



Chapter 1 Introduction 

It was also intended that the flow-radiation solver should be suitable for simulations of 
two Ricardo spark-ignition research engines within the institute (to enable validation of 
numerical results by experimental methods in later studies). The relevance of this was 
that the more complex (geometrically speaking) of these engines -a Ricardo Hydra - has 

a modem four-valve pentroof head, well beyond the basic axisymmetric meshing 
capabilities of KIVA-H. Moreover, the rather general boundary options in KIVA-H did 

not provide for a description of the valves and open ports. Finally, some aspects of the 

physical submodels fell short of the state-of-the-art. Consequently, improving the CFD 

solver was also a significant requirement of this work, in addition to the development of 
radiation software. This is reflected the objectives set out below. 

1.3.1 Objective 1: To develop a suite of numerical mesh generation tools for 
the body-fitted description of complex combustion chambers. 

Finite element (FE) preprocessors were well developed at the start of this research and the 

possibility of using these for meshing complex engine geometries was considered. Trials 

were made with the preprocessor in the FE software FEMSYS. It was found that the 

meshing constraints imposed for the FE solver were too relaxed and failed to meet the 

criteria of the KIVA-II finite volume solver. Others have been more successful: Taghavi 

and Dupont (1989) used the preprocessors GIBI and SUPERTAB to describe a port/ 

cylinder assembly for KIVA solution. However, even here intermediate re-numbering of 
the cells and vertices was necessary. Furthermore, new grid handling procedures had to 
be written to smooth the mesh as it distorted in a concertina-like manner with the piston 

and valve movement. Consequently, Buchou (1994) chose to eliminate this redundancy 

with dedicated KIVA-II routines for both mesh generation and smoothing. Likewise, this 
is the approach preferred here. 

1.3.2 Objective 2: To improve and extend the physical models for flow and 
combustion in KIVA-11. 

Modelling technology in thermofluids has moved on somewhat since the public release of 
KIVAJI in 1989. Since the physical processes governing flow, combustion and radiative 
heat transfer are all intimately linked, these developments can not be ignored. Advantage 

should be taken of recent improvements to the KIVA-11 numerical schemes and physical 
models; and of new submodels for mixing-controlled combustion, autoignition and wave 
action developed in-house. 

3 



Chapter 1 Introduction 

1.3.3 Objective 3: To develop radiation solvers for gray participating media. 

Reference to recent texts or review papers (see Sec. 4.2 refs. ) on the numerical solution of 
radiative heat transfer reveals a bewildering variety of methods but very little comment as 
to their comparative performance. Until recently researchers have tended to separately 
investigate a single method, compartmentalising the research, and making criticism of 

other techniques difficult (and possibly unpopular). While this may protect new methods 
from being abandoned prematurely, it also hinders a natural selection of the best methods 

and is certainly an inhibiting factor in the transfer of technology to industry -a problem 

noted at the ICHMT 2nd International Symposium on Radiative Transfer (Turkey, 1997). 

Benchmarking is seen as the best way to address this issue: a well-defined problem is 

posed for which a verified 'benchmark' solution can be found by either analytical means 

or massive computation (e. g. Monte Carlo solution). This is then used for the verification 

of other methods. To date most benchmarking studies have involved the collaboration of 

research groups running their own codes on their own machines, e. g. Tong and Skocypec 

(1992). Consequently, a fair assessment of methods is still difficult. Therefore, there is a 

clear need to identify, implement and compare some of the most promising techniques 

under conditions without bias, (i. e. using state-of-the-art algorithms, similarities in 

coding, identical compiler options and the same platform). 

1.3.4 Objective 4: To find efficient means of modelling spectral dependence. 

Modelling nongray, or spectral dependent, behaviour in gaseous media is one of the most 

challenging aspects of participating radiation and an essential requirement if models are to 

be applicable to problems of technical interest. Severe difficulties are encountered in 

combusting systems where there rapid, even discontinuous, spectral and spatial variations 
in properties, e. g. sudden transitions from opaque-to-transparent transfer characteristics 

across flame fronts. 

A sliding scale of gas property models has evolved for various trade-offs between 

accuracy and economy. Their diversity is so great that the treatment of nongray media 

may be considered as a distinct research field in its own right. The object here is to find 

and/or develop a generalised model for gas mixtures (of combustion products) with high 

accuracy but a low-to-moderate computational requirement. This method should also be 

compatible with the radiation solvers developed under objective 3. 

4 
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1.3.5 Objective 5: To verify and validate the present numerical models and 
identify areas requiring further work. 

Here, 'verification' is used to mean a check on the numerical aspects of a model by, for 

example, comparison with analytical or benchmark solutions of contrived, often idealised 

problems, whereas 'validation' is a check against actual experimental data. The former 

process enables coding errors to be systematically eliminated, and distinguishing strengths 

and weaknesses to be identified. Then, validation is concerned with how well a verified 

code simulates reality and indicates where theoretical improvements should be made. 

1.4 Outline of the Thesis 

Chapters 2-5 are largely theoretical and respond respectively to objectives 1-4. Each 

focuses on a different research area, namely, mesh generation, turbulent combustion, gray 

radiation and nongray radiation. A substantial portion of this work is either new or not 

well documented elsewhere. Chapters 6 and 7 respond to objective 5. 

Chapter 2 summarises algebraic and elliptic mesh generation techniques used herein to 

mesh a 4-valve pentroof combustion chamber. Emphasis is placed on the approach used 

to transform the mesh generation equations into forms suitable for numerical solution. 

Chapter 3 deals with all aspects of the turbulent combustion model with the exception of 

radiation. The governing equations are presented in Cartesian tensor notation. Stress is 

placed on the assumptions, limitations and aspects less often documented. Both gradient 
transport and second-order closure assumptions for the Reynolds stresses are discussed. 

A hybrid kinetic/mixing-controlled (EDC) combustion model is developed. Models for 

ignition, autoignition (knock) and the boundary layer are also described. Finally, the 

numerical solution scheme is summarised together with advice on troubleshooting. 

Chapter 4 introduces the fundamental equations for radiative transport in participating 

media and then reviews contemporary solution techniques. These are for the solution of 
gray systems. A detailed formulation of the Monte Carlo, YIX and discrete transfer 

models is then given based on the best available knowledge from heat transfer, statistical 
and graphics literature. Consequently, several aspects of the theory and/or coding of each 
models implemented here are completely novel. 

5 
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Chapter 5 is concerned with treatment of nongray media. Various gas property models 

are reviewed leading to the implementation of a generalised WSGG model. Treatment of 

nonisothermal and/or nonhomogeneous media is also considered. Finally, it is explained 
how the turbulent combustion and radiation models are coupled together for a combined 

mode analysis. (N. B. The overall solution procedure is summarised in Fig. 5.7 (p. 173) 

and the reader is encouraged to refer to this figure regularly while reading theory chapters 
3,4 and 5. ) 

All numerical solutions are collected together in Chapter 6. It is divided into two parts: 
Part A is concerned with verification of the radiation model. Calculations with the 

present Monte Carlo, YIX and discrete transfer models are made for a series of 
benchmark problems of increasing complexity. This study is unique in that virtually bias- 

free comparisons are made of both their accuracy and computational efficiency. Part B 

demonstrates calculations of radiative heat transfer in two spark-ignition engines. 

Chapter 7 presents the conclusions and limitations of this research, and suggestions for 

further work. 

Also note: 

Figures and tables are included within the text, except in Chapter 6, where they have been 

collected together at the end of each main section. A short summary is provided at the 

end of Chapters 2-5 and at the end of Part A and Part B in Chapter 6. 



Chapter 

2 
Numerical Mesh Generation 

A key issue in the numerical simulation of fluid dynamics and heat transfer is the 

approach used to discretise the problem geometry into a collection of elemental volumes 
termed cells. These cells constitute a mesh of the physical region. The governing 
transport equations are then approximated over this mesh as a system of algebraic 

equations and solved to determine the temporal and spatial variation of the physical 

properties within the region. The quality of this solution is related to how accurately the 

computational mesh conforms to the physical boundaries of the problem geometry. In 

particular, the study of the turbulent reacting flow field in spark-ignition engines requires 

meshing tools able to represent the highly contoured interior surfaces of the combustion 

chamber. Furthermore, these should efficiently control the vertex spacing and rnesh 
deformation due to piston and valve movement to provide the necessary fidelity in results. 

To obtain this flexibility, several techniques have been employed to mesh an arbitrary 

geometry using a curvilinear coordinate system with coordinate lines coincident with the 

physical boundaries (i. e. body-fitted). These are discussed in detail in the sections below. 

Emphasis has been placed on the approach used to transform the mesh generation 

equations into forms suitable for numerical solution in three-dimensions, because this 

area is not well documented in the mesh generation literature. Procedures for controlling 
the distribution of coordinate lines such they can be concentrated as desired are also 
described. 

Finally, to demonstrate how the techniques are applied to a real problem, the stages in 

meshing a 4-valve pentroof combustion charnber are described. (This is the problern 
geometry simulated later in Sec. 6.4. ) 

7 



Chapter 2 Numerical Mesh Generation 

2.1 Mapping Techniques 

To describe an arbitrary problem geometry its physical Cartesian coordinates (x, y, z) are 
transformed to curvilinear coordinates (ý, il, ý) in a regular computational domain. A 

unique correspondence between the Cartesian and curvilinear coordinates must be found, 

such that every point in the physical region maps on to one, and only one, point in the 

computational (or transformed) region. The simplest three-dimensional mappings require 
that a region bounded by six generally curved sides is transformed to a cubic domain, 

where one of the curvilinear coordinates is constant, and the others vary monotonically, 

over each surface of the cube. (N. B. More sophisticated multi-block structures are not 

considered here, since these are not appropriate for the numerical scheme in Chapter 3. ) 

The problem geometry is then defined with a cubic array of position vectors: 

ijk (i = 1,2,..., 1; j 1,2,..., J; k 1,2,..., K) 

such that the computational mesh is composed of a single block of cells, indexed by the 
integers (i, j, k) corresponding to the three curvilinear coordinate directions (4,71, ý) 

respectively. The vector x is a three-vector giving the values of the x, y and z Cartesian 

coordinates of a mesh point. 

Following the almost universally adopted practice of Thompson et al. (1985), the 

generation of a computational mesh can then expressed, with respect to the computational 

region, as the following boundary value problem. Given all x on boundary D91 (Fig. 2.1) 

deten-nine x, y and z as functions of 4, il and ý in the interior R 

(I, J, K) 

Physical region: 4'(x, y, z) 

4 
boundary 

D91 

Computational region: x, (4, il, ý) 

Figure 2.1 Mesh generation as a boundary value problem in the computational domain. 

8 
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Numerically this problem is implemented in three stages: first (1) point distributions are 

specified along appropriate boundary contours of the problem geometry, then (2) the 

entire boundary point distribution is defined by generating surface meshes between these 

contours, and finally (3), the interior mesh is generated from the Cartesian coordinates of 

these boundary points. Each of these tasks are accomplished with algebraic mapping 

techniques and/or by the solution of suitable partial differential equations as described in 

the following sections. A key requirement is that the generated mesh is well-conditioned: 

smoothly varying, close to orthogonal and with local grid aspect ratios close to unity. 

2.2 Algebraic Mesh Generation 

Algebraic mapping techniques interpolate between boundaries to generate the interior 

mesh. The placement of mesh points along these boundaries is by one-dimensional 
interpolation, with stretching functions to provide concentrations of points at one or both 

ends, or in the centre, as desired. This control is very important since the distribution of 

mesh points in the interior is mainly governed by the boundary description, irrespective of 

whether an algebraic mapping technique (Sec. 2.2.2) or solution of a system of partial 

differential equations (Sec. 2.3) is used to generate the mesh. 

2.2.1 One-Dimensional Interpolation and Stretching Functions 

Several types of one-dimensional interpolation are available: Lagrangian, Hermite, 

Bezier, splines (Thompson et al. 1985, pp. 279-294). These are used to interpolate in one 

curvilinear direction only between points lying on a boundary (and perhaps interior) curve 

or surface. The shape of the interpolating curve, its slope continuity, and the degree of 

local refinement possible, depend on the interpolation method. Lagrangian and Hermite 

interpolation functions fit a single polynomial between boundary end points, matching 

specified interior control points (or coordinates) and perhaps derivatives of the point 

spacing. Attempting to match more interior points and/or higher-order derivatives, 

requires that the order of the interpolating polynomial is increased, such that it becomes 

susceptible to oscillations. Therefore, an alternative approach is to fit low-order 

polynomials between each of the specified interior points, at which the continuity of the 

slope, and higher derivatives, is enforced. The interpolation function is then a piecewise- 

continuous polynomial called a spline. There are several types of spline function, but by 

far the most popular are B-splines which have the important feature of being non-zero 
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only over four intervals and yet have continuous second derivatives everywhere (see 

Dierckx 1993; Rogers & Adams 1990). This allows highly localised adjustments to the 
interpolation without affecting other parts of the spline. In particular, a development of 
these, called nonuniform rational B-splines (NURBS), are now used as a standard 
descriptor in several commercial mesh generation packages. 

At present single polynomials are used for interpolations in a Lagrangian form. A 

NURBS definition would be preferred for its increased flexibility, but considerable work 
is required to enable these to be generated on a three-dimensional surface, and 

subsequently implemented in the interior mesh generation procedures. Consider an 
ý- coordinate line from 4, to 4, as shown in Fig. 2.2. A normalised coordinate s may be 

defined as: 

S= 
4-41 

so 0: 9 S:! g 1 as :! 9 41 (2.2) 
41 -ýl 

Then Lagrangian interpolation along a physical boundary is given by the general formula: 

X(4) = 
lo"(S)xn (2.3) 

where 0,, are polynomials defined over the entire interval 4,: 5 4: 5 4, such that they are 

zero everywhere except at the corresponding control points (or coordinates) x,, . The 

simplest application of Eq. (2.3) is with no interior control points, such that the 

interpolation is just between the end points x, and X2 (i. e. n= 2). i. e. Specifying the 

functions, 0, (s) =I-s and 02 (S) =SI then: 

X(t)-"-- (1-3)XI +SX2 (2.4) 

Xn 

xi 

X2 

42 

41 =I 

Figure 2.2 Interpolation along an 4- coordinate line with n control coordinates. 

10 
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To define a nonlinear spacing of the mesh points the normalised coordinate s is replaced 
by an appropriate stretching (or blending) function, f(s). A simple form for f(s) 

suggested by Thompson (1988, p. 918) is: 

f(s) = (e-' - 1)1(e' - 1) (2.5) 

where cc is a parameter to control the point spacing. However, the following hyperbolic 

tangent stretching function from Fletcher (199 1, p. 105) is preferred in the present study: 

f(s)=ccs+(I-a 1- tanh[p (I - s)] 
tanh P 

(2.6) 

where two parameters, a and 0, are used to control the point spacing. a effectively 

provides the slope of the distribution, i. e. f(s) - as, close to s=0.0 is a damping 

factor since it controls the departure from a linear f(s) versus s behaviour. Large values 

of 0 result in large departures from linearity, e. g. see typical distributions in Fig. 2.3. For 

a>1.0 it is possible to cluster points close to the right-hand end, but this requirement is 

better handled by using a reverse mapping over the interval and keeping a<1.0. 

Alternative hyperbolic tangent forms to Eq. (2.6) are given by Vinokur (1983). The two 

parameters cc and P are defined in terms of the spacing, As, at each end of interval s=0 

and s=I, enabling multiple contiguous stretching functions to be used along a boundary 

with continuity in the point spacing at the function interfaces. Other expressions use only 

one spacing increment, As, at any position on the interval to define the point distribution. 

In all cases a nonlinear equation must be solved prior to calculating the point distribution 

f (s) from an expression similar to Eq. (2.6). 

0.9,1.0 

0.1,1.0 

0.1,2.0 

11111111 
11 111111111 
11111 111111 

S=O As = 0.1 S=1 

Figure 2.3 Example point distributions f(s) for various parameter values in Eq. (2.6). 

tanh P 

11 
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2.2.2 Transfinite Interpolation 

Transfinite interpolation is a procedure for interpolating in multi-dimensions such that the 

interior coordinate lines follow the contours of the boundaries. A three-dimensional 

scheme can be built up from a combination of one-dimensional interpolation steps or 

projections in each curvilinear coordinate direction as follows. For convenience the 

(i, j, k) indexing notation described in Sec. 2.1 will be used to define mesh points in 

terms of the position vector, xijk* Therefore, the six logical surfaces bounding a three- 

dimensional physical region are defined by the vectors, XIik I XIik I Xilk I XiJk 9xijl andXijK* 

Consider first a one-dimensional Lagrangian interpolation between two physical 
boundaries on which the coordinate i is constant. Eq. (2.4) is re-expressed as: 

Xijk 'ý 
(1 - 

fi) Xljk + fi Xljk (2.7) 

where the generalised blending function fi has been substituted for s, such that it varies 

monotonically from f, =0 to f, =I for i=1,2, ---, I. Analogous forms apply for 

interpolations in the j and k directions. These interpolation operations are defined as the 

projectors, P(l), P(J) and p(k). i. e. 

Xijk -": 
P(i) ý-- (1 - 

fi) Xljk + fi Xljk (2.8) 

Then two- and three-dimensional transfinite interpolation schemes are generated by 

combining these projectors using Boolean sums. A detailed discussion of the theory, with 

additional references, is provided by Thompson et al. (1985, pp. 310-326). Therefore, 

only the final forms will be stated here. Two-dimensional transfinite interpolation over a 

surface on which k is constant is given by the projector: 

X ijk = PM + p(j) - PMPW 

where 

(2.9) 

p MPM =-f- gJ)X"k + figjXlJk (2.10) -f -gJ)Xllk+(l ')gJX'jk + f(1 (I 
')(I 

and g, varies monotonically from g, =0 to g. =I for j=1,2, ---, J. Analogous forms 

apply over surfaces on which i or j are constant. These interpolations are called 
'transfinite' since all the possible infinity of points are matched on the boundary curves, 

12 
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as compared to other forms which interpolate to afinite number of points, e. g. the product 

projector, P")P(J), matches at only the four comers of the boundary given by the vectors 
XIIkI XIAI XllkandXlJk* Transfinite interpolation in three-dimensions is accomplished by 

the projector: 

Xijk = p(i) + p(j) + p(k) _ p(i)p(j) _ p(J)p(j) _ p(k)p(i) + p(i)p(J)p(k) 

where 

p(i)p(j)p(k) 
-"ý 

(1 - 
fl)(1 - 9j)(1 

-k)Xlll+('-fi)('-gj)kXIIK 
* (1-fi)gj(l-hk)xljl +fi(l-gj)(1-hk)xlll 

* (1 - 
fi)gjhkXIJK + fi (1 - 9JAXIIK + figi (1 

-k)XIJI 
* figjkxlJK 

and the function k varies monotonically from k=0 to hK=I for k=1,2, ---, K. 

(2.11) 

(2.12) 

Numerically, Eqs. (2.11) and (2.12) are implemented such that the each successive step in 

the i, j and k (when appropriate) sequence of one-dimensional interpolations utilises the 

result of interpolations from the preceding i or j-step. Therefore a two-dimensional 

transfinite interpolation proceeds by: (1) interpolating in the i-direction, (2) calculating 

the discrepancy between the boundary and this result on the j-coordinate lines that are to 

be used in the j-interpolation, (3) interpolating this discrepancy in the j-direction, and (4) 

adding the result of this j-interpolation to that of the i-interpolation. An additional step is 

incorporated in an analogous manner to interpolate in the k-direction for three- 
dimensional problems (see Thompson et al. 1985, p. 326). This substitution procedure 

considerably reduces the amount of calculation such that a full mesh is generated 

extremely quickly. 

The complete three-dimensional scheme was coded in the short FORTRAN routine Trans 

(Appendix B. I'), using the linear Lagrangian blending functions f, g and h synonymous 

with fl, gj and k in Eq. (2.12). Transfinite interpolation in two-dimensions is given by 

zeroing the x3 array in the final summation, and in one-dimensional by taking solely the 

mesh coordinate positions given by the x1 array (i. e. zeroing the x2 and x3 arrays in 

summation). Therefore, a more versatile version of this routine was written to interpolate 

from either a one, two or three-dimensional boundary depending on the value of the 

calling arguments. 

13 
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Although a Lagrangian interpolation was used in each curvilinear coordinate direction, it 

is noteworthy that another type (or a mixture of types) of one-directional interpolation can 
be used to define the projectors, Eq. (2.8). For example a transfinite mesh can be 

generated using Hermite interpolation polynomials or splines (see Sec. 2.2.1). In fact, 

spline-blended forms give the smoothest mesh with continuous second derivatives 

(Thompson et al. 1985, p. 315). These alternate forms might help to mitigate a weakness 

of algebraic mesh generation systems in that they tend to propagate boundary slope 

discontinuities into the interior (Thompson 1984). (Multi-surface interpolation methods 

may also be used to alleviate this problem - see Thompson 1988, p. 920. ) However, in 

the present study, all transfinite structures were subsequently smoothed using an elliptic 

mesh generator. Hence, simple functions were adequate for the transfinite interpolation. 

2.3 Elliptic Mesh Generation 

The field values of a function may be obtained for a given set of boundary values by 

solving a suitable system of partial differential equations. This is the principle of all 

elliptic mesh generators whereby all the interior mesh points are obtained for a specified 

point distribution on the boundary. Alternatively, the slope of coordinate lines 

intersecting the boundary can be specified, and it is even possible to devise generation 

systems with the capability to achieve both: i. e. Dirichlet, von Neumann or mixed (Robin) 

boundary conditions are all possible. Moreover, elliptic operators can generate smoother 

meshes, without the overlapping problems that often occur with algebraic meshing 

techniques (see Sec. 2.2) when the boundary has a complex shape. In fact, it can be 

shown by the calculus of variations that a mesh generated as the solution of Laplace 

equations is the smoothest possible (Thompson et aL 1985, p. 191). i. e. 

V'4' = 0, i=1,2,3 (2.13) 

where V is the Laplacian operator and 4' represents the three coordinates (4, TI, ý) of an 

arbitrary coordinate system. A one-to-one mapping is guaranteed by this generation 

system because it satisfies the extremurn principles: i. e. the maximum and minimum 

values of 4, il and ý must occur on the region boundary (Thompson et al. 1985, p. 189). 

The interior coordinate lines will tend to be equally spaced in the absence of boundary 

curvature because of the inherent smoothing effect of the Laplacian, but more closely 
spaced over convex boundaries, and less so over concave boundaries. 

14 
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Explicit control over the coordinate line spacing and orientation in the generated mesh is 

obtained by generalising Eq. (2.13) to the following system of Poisson equations: 

V241 = pi, i=1,2,3 (2.14) 

in which PI are appropriate functions fashioned to achieve the desired effect. These 

control functions may be either specified externally or determined automatically from the 
boundary-point distribution. The later approach is particularly useful when orthogonality 

of the mesh lines at the boundaries is required (see Thompson et al. 1985, pp. 226-237). 
However, in the present study, non-zero values for these control functions were specified 
directly in specific regions of the mesh to remove unacceptable cell distortions (Sec. 2.4). 

2.3.1 General Equation 

Computations are performed with respect to a cubic transformed region, as discussed in 

Sec. 2.1, where the curvilinear coordinates (4, ij, ý) are the independent variables, with 
the Cartesian coordinates (x, y, z) as the dependent variables. The Cartesian coordinate 

system is taken to satisfy a Laplace system (i. e. V'x =0) in the physical region. The 

transformation relation, Eq. (A. 20) in Appendix A, is then used to express this system 

with respect to the computational region. i. e. Replacing the tensor A with x gives: 

333 
+I (V24k) X V'x 0XV4,4 =O 

i=l j=l k=l 
(2.15) 

where the subscripts of position vector x indicate partial differentiation with respect to 

the curvilinear coordinates, 41, and gJ are the elements of the contravariant metric tensor 
(Table A. 1, Appendix A). Note that the summation indices i, j and k used here should not 
be confused with the indices (i, j, k) associated with the curvilinear coordinates (4,11, 
in Sec. 2.1. 

When the Laplace system is transformed to the computational region, it is found that the 

new coordinate system is the solution of a Poisson system, Eq. (2.14). An exact form can 
be derived for the control functions, P' (see Thompson et aL 1985, Eq. (5), p. 197), but a 
simplification involving only three functions is used presently given by: 

V241 
= giipi, i=1,2,3 (2.16) 

15 
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Suitable expressions for the control functions P, are given in Sec. 2.3.4. Each represents 

a one-dimensional stretching in the 4' curvilinear coordinate direction. Thus, 

substituting for V24i in Eq. (2.15) gives: 

333 
lzgijx4V +E gilp, XV =0 (2.17) 
i=l j=l k=l 

This system of partial differential equations must be solved to generate the interior mesh 
for a specified boundary point distribution. In order to construct a finite-difference 

approximation to Eq. (2.17), it is first expanded for 0 equal to either x, y or z as follows: 

ýLO+PLO 
+g 

12 
a 2ý 

+9 13 
a 2ý 

9 
Dý2 1 

31 
D2 

32 33 
(a 20 0 0L 

+9 +g 
1ý+g 

+ P3 0 
ap4 5ýaan 5ý 

) 

21 
D20 

22 
(D20 0 

23 
a 20 

+9 
2L +9 +p 

0 
+9 

uaqaý' 
(iW 

Ohl 

) 

DTA (2.18) 

where elements of the contravariant metric tensor are calculated from those of the 

covariant metric tensor using Eqs. (A. 15) and (A. 19) in Appendix A. i. e. 

Fg' 19 21 
9 

311 

9 
12 

9 
22 

9 
32 1 

g 

_g2 
F922933 

23 932913 - 933912 912923 - 913922 

2 
923931 - 921933 933911 -913 

Ig 13 9 23 9 33 1 

913921 - 911923 

_g2 
j 

921932 - 922931 931912 - 932911 911922 12 

(2.19) 

_g2 g= detl 9,, 1= 911 (922933 
23) 

+ 912(923931 - 921933) + 913(921932 - 931922) (2.20) 

2.3.2 Finite-difference Form 

The coordinate system described by Eq. (2.18) is discretised over the regular mesh of the 

computational region using Taylor series expansions to approximate the derivative terms 
(see Pletcher et al. 1988, Sec. 1.7.2, p. 55). Difference expressions are written in terms of 
the general mesh point P and its neighbouring points W, E, N, S, T and B arranged as 
shown in Fig. 2.4. 
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Symbol 

p 

E 

w 
N 

S 

T 

B 

Curvilinear 
indices 

i, j, k 

i+1, j, k 

i-l, j, k 

i, j+l, k 

i, j-l, k 

i, j, k+I 

i, j, k-I 

Figure 2.4 Differencing notation used to discretise Eq. (2.18) about a mesh point P in 
the three-dimensional computational region. 

The spacing between successive mesh planes is then defined as: 

A4.4p - 4w, All, =lip -Ils Aý6 =ýP-ýB 
A4e 4E 

- 
4P 

0 
Alln ='IN -11P '&ýt =ýT -ýP 

(2.21) 

These intervals are often identical. However, to obtain more control over the spacing of 
mesh planes in the physical region, it is advantageous to develop finite difference 

expressions for nonuniformly spaced coordinate planes in the computational domain. 

This flexibility proved extremely useful for the pentroof combustion chamber meshing 
problem described in Sec. 2.4. 

Consider a control volume enclosing point P with distances between opposite faces of. 

'&k = 72ME -401 '&'1 =-2'('IN -'lS)9 '4 =72L (ý 
T-ý 8) (2.22) 
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Then the difference representation of Eq. (2.18) at P is taken as: 

Of -OP OP -ow ON -op OP -os 
(OT 

-OP 
)_(OP 

-OB 
) 

9 
11 

( 

Aý, 

)-( 

+9 22 
ATI. 

)-( 

ATI, 

) 

+9 33 b +S=O 
A4 All 

(2.23) 

where the source term S is defined as: 

S= gllp +9 
12 

a 20 
+9 13 

a 20 

.1 YýO--, n 545C 
+p 21 

D20 
, 22 n4,23 

a 20 

(2.24) a -_-i 04 -_ 0 "-i- -t- 9 r-2 -7, --"t- -9 
0110; aq dTldý 

31 
a2o 

32 
a 20 

+ 822p 
aO 

-+8 3 +9 
ap4 1 aý 

Central difference approximations are used to calculate the derivative terms in S. 

order partial derivatives are differenced at P as: 

g 
ýE -ýP 

ow-op 

2A4 

All, 
ON-op 

-Alin 
os-op ( 

All 
")( 

A71, 

) 

'a, n 2ATI 

Aýb 
OT -OP g, 

OB -OP 
Do 

( 

Aý, 

)( 

Aýb 

Dý 2Aý 

First- 

(2.25) 

(2.26) 

(2.27) 

These expressions are then used to obtain approximations for the mixed derivatives by 

replacing 0 in each equation with its first-order derivatives. 

2 
For example is found by substituting Eq. (2.26) into Eq. (2.25) as follows: 
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in, E Tl'p 

(OTI, 

w - oln, p 

F Lil 
(o 

NE -OE) 
(0 

SE-OE)-2A7jLo 4AýAlj A4, [ Ail,. All, an PI 

(2.28) 

A4e [TAI,, 
(0 

jvw -0 w) - 
All" (Osw -0 w) - 2Ail 

Do 
I. hip] A4. All, 0 

where ao IDT1 at P, etc. Analogous fonns apply for the other five mixed derivatives 
in Eq. (2.24). 

Multiplying throughout Eq. (2.23) by the volume, AV = AtAIJAý, of the control volume 

about point P and rearranging gives the final discretised form: 

a,. O, = aEOE+ a,, O,, + aNON + aOs + aTOT+ a,, O,, +S- AV 

where the coefficient: 
a. = 

ja. 

a 

(2.29) 

(2.30) 

and the summation is taken over all n neighbours of the mesh point P with coefficients: 

aE = g, aw = g" 

aN = g22 
AW 

9 as =g 
22 

ATI 
n 

ATA 

A4. 

gg 
Ails 

g33 a. =g 
33 

AtAll 

T Aýb 

The source term S is as defined previously in Eq. (2.24). 

(2.31) 

The FORTRAN computer code Metric (Appendix B. 2) implements Eqs. (2.24) - (2.3 1) to 
determine the coefficients a,, and source term S. 
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1,2,3,..., K 
I 

B-T transverse 

T 

W-E 
transverse 

Figure 2.5 ý- coordinate line in a three-dimensional mesh together with the traverse 
directions in the line-by-line iterative solver. 

2.3.3 Solution of Discretised Equation with TDMA-ADI Procedure 

The discretised equation, Eq. (2.29), for the Cartesian coordinates ý (i. e. x, y or z) is 

solved with the boundary point values using a line-by-line iterative procedure to obtain 
the distribution of 0. First consider the ý -coordinate line shown in Fig. 2.5 on which the 

mesh points have a curvilinear index k=1,2,3,..., K. Then Eq. (2.29) is written as: 

Akýk : '-Bkýk+l + Ckýk-l +Dk 
I (2.32) 

with the translations that ýk stands for 0 p, Ak = ap, Ok. 
1 =OT, Bk=aT, etc. The 

remaining terms are collected in Dk given by: 

Dk=aEOE+awýw +aNOv + asos + S. AV (2.33) 

Rearranging Eq. (2.32) gives a set of equations with a tridiagonal matrix of coefficients as 
follows: 

_C201 +A202-B203 = 
D2 

C302 +A303-B304 =D3 
C403 +A404-B405 =D4 

... ... ... ... 

- Cko 
k-I + Ako 

k- 
Bko 

k+j 

S-N 
transverse 

E 

(a) 
(b) 
(C) 

= Dk (2.34) 
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These equations are now in a suitable form for solution by an efficient procedure known 

as the Thomas algorithm or the tridiagonal matrix algorithm (TDMA). The values of ý, 

and ýK are the known boundary coordinates. Therefore, by eliminating ý2 from (b), 03 

from (c) and so on, a general formula for 0. is: 

ýk --.,: a, o, 
+, + Ok (2.35) 

where: 

(Xk = 
Bk 

ßk = 

ßk-ICk +A 

Ak 
- (y k-ICk 

' Ak - (y k-1 
ck (2.36) 

At the k=I boundary: cc I=0 and 01=01. Given the values of the coefficients At, B, 

Ct and Dt in Eq. (2.32), the full TDMA procedure is then as follows: 

1. Calculateak and0k for k=2,3,..., K-I from the recurrence relations in Eq. (2.3 6). 

2. Obtain newOK-19 OK-22 
-42 by successive back-substitution in Eq. (2.35) fromOK* 

An analogous procedure is used to solve along 4 and il -coordinate lines. After TDMA 

is used to solve Eq. (2.35) for each coordinate line, the newly calculated values can be 

relaxed before the calculation is advanced to the next line. i. e. 

relaxed =o old +w (o new -o old) 
pppp (2.37) 

where 0< co <I for under-relaxation and I< co <2 for over-relaxation. When the latter 

is employed the complete scheme is known as successive line over-relaxation (SLOR) for 

which relations can be derived to enable optimal values of (o to be selected (e. g. see 
Hirsch 1988, pp. 471-478). It was found that the convergence time was reduced by 75% 

with optimal over-relaxation compared with an unrelaxed solution for the meshing 

problem described in Sec. 2.4. In this trial TDMA was applied along successive 

coordinate lines only. 

To enable the boundary values to exert a greater influence on the solution in each iterative 

pass, and thus improve convergence rates, TDMA is applied to all families of coordinate 
lines (i. e. 4, q and ý) in an alternating direction implicit (ADI) procedure as follows: 
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1. Traverse W-E along successive 4 -coordinate lines, sweeping first S-N and then B-T. 

2. Traverse S-N along successive il -coordinate lines, sweeping first W-E and then B-T. 

3. Traverse B-T along successive ý -coordinate lines, sweeping first W-E and then S-N. 

The ADI scheme with over-relaxation was found to be susceptible to oscillatory 
behaviour such that it was generally better to use values of CO :51, particularly as the 

control functions increase in magnitude. However, despite this limitation, convergence 

rates where comparable or better to those obtained with optimal relaxation in only one 

coordinate direction (i. e. without ADI). Furthermore, the convergence rates in trial 

studies using ADI and over-relaxation (i. e. (o > 1) showed little improvement as co was 
increased (also see comparison in Table 6.3 by Fletcher 1991, p. 195). 

The FORTRAN computer code Lisolv (Appendix B. 3) implements this line-by-line 

TDMA solver using ADI. Note that Eq. (2.37) is not solved as a separate step but as part 

of the TDMA solution by introducing the relaxation parameter co into the coefficients A 

and D of Eq. (2.32) prior to calling Lisolv. Their new form is obtained by substituting Eq. 

(2.37) into Eq. (2.32) as: 

(0 
A(I- old D<--D+ p (2.38) 

where '<--' means 'is replaced by' and the subscript k has been omitted to emphasise that 

Eq. (2.32) is applied in all three coordinate directions (ij, k) in the ADI procedure. 

The value of the coefficient D is calculated using guessed values for 0 (x, y or z) initially 

and the most recently computed values thereafter. Since the original Poisson generation 

system of Eq. (2.17) is quasi-linear, convergence depends on the quality of the initial 

guess. A reliable initial field for 0 may be efficiently generated from the boundary point 
distribution using transfinite interpolation (Sec. 2.2.2). Thompson et al. (1985, p. 252) 

notes this method is better than say a field generated by one-dimensional interpolation 

(Sec. 2.2.1) because of the reduced skewness in the former. Smoothing of the mesh with 
the elliptic solver then progresses until the movement of any mesh point between 

successive iterations is several orders of magnitude smaller than a characteristic 
dimension of the geometry. 
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This corresponds to a total residual 91, equal to the sum of the R residuals from Eq. (2.29) 
for x, y and z at all mesh points, i. e., 

91 =I , 
(apop a,, O. -S. AV) (2.39) 

R I, 

being less than a specified tolerance. For example, qj., ý 10-3 in the meshing problem 
described in Sec. 2.4. 

The solution may be converged with fixed interior mesh points or coordinate lines if 

required. All stationary vertices are flagged on input to the solver and on each iteration 

the values ap and source term in Eq. (2.29) are reset at each of these as follows: 

= (X, S., AV = ()tý ftred (2.40) 

where a is a very large number (e. g. 1030) and 0 fi"d is the x, y or z-coordinate of the fixed p 
vertex. 

Finally, the following procedure was used to smooth two-dimensional algebraic meshes 

with the three-dimensional elliptic solver, thus avoiding the need for coding a separate 

routine. A three-plane sandwich is defined with the two-dimensional geometry positioned 
between two auxiliary plane, parallel boundaries in the physical region. These planes are 

arranged to be perpendicular to one of the coordinate directions x, y or z. Assuming that 

the z-coordinate direction is chosen, then the x and y coordinate positions of each mesh 

point on the two outer boundary planes are updated, after each complete iteration of the 

solver, equal to the x and y coordinates of their corresponding interior mesh point. All 

three planes then have an identical mesh point distribution. The solution is then 

effectively two-dimensional in nature, even though a three-dimensional solver is being 

employed. 

Allowing points to 'float' over the geometry surfaces is also useful in three-dimensional 

problems as a simple method of generating meshes which are orthogonal at boundaries 

where there is freedom to vary the boundary point spacing (see Sec. 2.4.4). Alternatively, 

suitable control functions can be iteratively determined at boundaries in the solution 
procedure to achieve local orthogonality with a specified point distribution. (See 
discussion at the end of the next section. ) 
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P<O 
I 4j, j*i Figure 2.6 

The influence of the control functions 
P, on mesh line spacing. If 4' is a 
boundary coordinate line on which the 
point spacing is fixed, then the control 
functions affect the intersection angle of 
the mesh lines with the boundary. decreasing 

2.3.4 Control Functions 

The control functions Y in the elliptic system given by Eq. (2.14) are used to increase or 
decrease the mesh line density in specific areas of the physical region. This enables 
improved resolution and the numerical accuracy in the subsequent flow and combustion 
analysis. As a general rule, negative values of the control functions P' cause the mesh 
lines on which the coordinate 4' is constant to move in the direction in which the 

coordinate decreases (Fig. 2.6). Positive values of the control functions result in an 
opposite effect. This behaviour is also followed by the functions P, in the present elliptic 
system, after the substitution P' = g"Pi, since the diagonal contravariant metric tensor 

elements g" > 0. 

The functions P, are free to be constructed in any manner in order to obtain the desired 

mesh line spacing. Popular forms use a summation of several exponential or hyperbolic 

terms. For example, attraction of 4-coordinate lines to other lines 41 (Fig. 2.7) can be 

achieved with the following expression for PI: 

-R 
-bjJ4 -4i I 

PI(4)= Yaj! sign(4-4j)- I-e 
i=l 

II 

where ai and b, are appropriate amplitude and decay factors. 

(2.41) 

Notes: 

The subscript i on 4 identifies particular 4-lines and should not be confused with the 
superscript i used to refer to curvilinear coordinates in general. 
A negative amplitude, a,, results in a repulsive (rather than attractive) effect. 

i=l 

I 

41 
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" The sign changing function ensures attraction occurs on both sides of 4, -lines, 
otherwise attraction occurs only on the side towards increasing 4, with repulsion 

occurring on the other side. 

" In three-dimensions these 4, 'lines' correspond to ijý-planes. 

" Analogous expressions can be formed for the control functions P2 and P3 to cause the 

attraction (or repulsion) of il and ý-coordinate lines, respectively. 

Equation (2.41) may be extended to achieve attraction to a point (4j, 71) in two- 

dimensions or to an ý-coordinate line in a three-dimensions by modifying the decay term 

to include a TI-distance as follows: 

Pj(4,1j)=-Ecj-sign(4-4j) I-e -djý(4-4jy+(ij-ijjy (2.42) 

where q and d, are appropriate amplitude and decay factors. The attraction is now 
limited to short portions of the 4-lines, rather than the entire coordinate line as before. 

Again, analogous expressions can be formed for the control functions P2 and P3. 

I 11 

i 

0 

j 

99 K4 km 

/4 TV 
III 

Figure 2.7 Figure 2.8 

Attraction of 4-coordinate lines to Attraction of 4-coordinate lines to 
other lines 4, (in this example just the point (41, %), or corresponding 
the centre line). line in three dimensions. 
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Combining Eqs. (2.41) and (2.42) results in a control function capable of generating 
highly localised attraction (or repulsion) about a point in two-dimensions, or a coordinate 
line in three-dimensions. Separately the values for the amplitude (a, or ci) in each 

equation must be limited, otherwise overlapping mesh lines result in the physical region, 
i. e. the extremurn principles of the Laplacian having been completely lost in the Poisson 

system. However, these limits can be increased by combining two opposing effects, such 
that one equation causes repulsion of the grid lines, and the other attraction. This is 

achieved by setting a negative value for the amplitude ai and a positive value for the 

other amplitude ci, or vice versa. The strong distortion of 4-coordinate lines with such a 

control function is shown in Fig. 2.8. 

For a three-dimensional mesh, an ý-distance can also be included in the decay term of 
Eq. (2.42) to achieve attraction about a point &Oiiqýj)- However, in actual application 
this has not been very practical and the control function given by Eq. (2.41) was adequate 
for the meshing problems encountered in the present study. 

It is also noteworthy that the attraction lines and/or points can be arbitrarily specified in 

the computational region. Thus they can be independent of the curvilinear generation 

system. Moreover, it is also possible to take the control functions to be functions of the 
Cartesian coordinates (x, y, z) instead of the logical coordinates to achieve 

attraction to fixed lines and/or points in the physical region. However, this case is much 

more complex since the control functions contain derivatives of the dependent variables 
in the transformation. Care also has to be taken to ensure that the coordinate lines from 

different families are not attracted parallel to themselves, thus collapsing the physical 

coordinate system in the transformation. However, control functions evaluated from the 
boundary point distribution in the physical region can provide a large degree of automatic 

control over the interior mesh line spacing, and are worthy of the extra computational 

effort. First, from the given surface coordinates of a three-dimensional geometry, control 
functions are constructed for all the logical boundary points. These functions are then 
interpolated to obtain the control functions at every interior point using transfinite 
interpolation (see Sec. 2.2.2). Finally, Eq. (2.18) is solved to generate the mesh in the 

physical region. If necessary the control functions on the boundary can then be adjusted 
and the procedure repeated in an iterative fashion until the desired coordinate system is 

generated (e. g. Shieh 1984). It is possible to specify both the coordinate line slope at the 
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boundary, together with the spacing of the first interior coordinate surface from the 
boundary using this procedure (Fig. 2.9). The ability to iteratively determine control 
functions is not available in the present elliptic mesh generator, since it was not essential 
for the present study. However, suitable expressions and details are given by Thompson 

et al. (1985, pp. 228-237). Taghavi and Dupont (1989) also present a interesting grid 
preconditioning scheme as an alternative to solving an elliptic system. 

Figure 2.9 

A specified boundary point distribution, 
line slope and spacing of the first interior 
surface can be obtained with iterative 
adjustment of the control functions in the 
general system of Eq. (2.18). 

slope 

2.4 Meshing Application: 
Pentroof Combustion Chamber Geometry 

This section details the stages in generating a mesh of the pentroof combustion chamber 

studied later in Sec. 6.4. Algebraic and elliptic techniques are combined to generate a 

smoothly varying mesh of the geometry with direct control over the interior line spacing. 
The computational mesh is required to satisfy the following criteria. These are imposed 

by the numerical scheme in Chapter 3 for the calculation of turbulent, reacting flow. 

The mesh must be a single block of cells encompassing the entire physical region. 
These are organised in a structured arrangement such that each interior mesh vertex is 

surrounded by eight cells and the cell faces always coincide between neighbouring 
cells (i. e. there are no partial cell faces or sliding interfaces). Each cell is indexed by 
its three curvilinear indices (i, j, k) as described in Sec. 2.1. To define a smaller 
structure projecting from the main region of interest, it is embedded in additional 
layers of cells in which most cells lie outside of the computational domain and are 
deactivated. Minimising the number of these 'dead cells' is a priority, since their 
indexing, checking and storage imposes a significant performance penalty. 
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All mesh cells must be hexahedral, but their vertex positions may be arbitrarily 
specified in order to fit the boundaries, as long as reasonable aspect ratios are 

maintained (i. e. typically < 10) and the cell face distortion is minimal (i. e. typically a 
few degrees). 

The included angle between coordinate lines should be in the range 45'-135*. Local 

excessive mesh skewness can be tolerated by the numerical scheme, but trials have 

shown that an included angle of 33" is a absolute minimum for converged, accurate 

simulations. Below this limit large cross-derivative terms in the discretised flow 

equations destabilise the solution and the boundary layer treatment deteriorates 

unacceptably. 

Mesh lines should smoothly vary around abrupt geometries, with local refinement in 

regions of large flow gradients, and the coordinate lines closely aligned with the 

streamlines to reduce numerical diffusion. 

Generally a compromise is made between meeting these requirements and including all of 
the detail in a complex geometry. 

2.4.1 Physical Geometry 

Figure 2.10 shows a wireframe drawing of the engine combustion chamber with the 

piston near top dead centre. The profiled interior surface of the cylinder head may be 

subdivided into several smaller patches. Two of these are planar and inclined at 20" to 

the horizontal about an axis of rotation slightly offset from the cylinder axis. These form 

the pentroof while the sides of the cylinder head are patched together from several smooth 

concave surfaces. Four small areas of squish are created where these side walls meet the 

top of the cylinder body. Small cylinders have been drawn to represent the position and 
lift of the inlet and exhaust poppet valves in the cylinder head. These are seated in pairs 
perpendicular to the planar surfaces of the pentroof with the two larger inlet valves shown 
on the near-side in Fig. 2.10. Finally, a single spark plug is positioned on the cylinder 
axis between the four valve ports (not shown). The entire chamber geometry has half- 

symmetry about the vertical plane through A-A. 
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Figure 2.10 Scaled wireframe model of 4-valve pentroof combustion chamber geometry 
for Ricardo Hydra engine studied in Sec. 6.4. Bore diameter is 80.065 mm. 

2.4.2 Selection of Mapping Type 

It is necessary to first decide on the type of mapping which will be used to transform 
between the regular computational domain and the physical region for this geometry. The 

complex shape of the combustion chamber may be characterised by a cylindrical form for 

which two possible mappings are depicted in Fig. 2.11. In mapping A the computational 
domain is wrapped around its left boundary such that the front and derriere plane faces 

become coincident re-entrant boundaries. Each horizontal k-plane is effectively a 0-type 

grid in standard mapping terminology. The left boundary is then shrunk onto the cylinder 

axis to complete the transformation. Therefore, special treatment is required in the 

numerical scheme at the left boundary, and also for the conditions on the front and 
derriere boundaries (see Sec. 3.4.4). This type of mapping is a natural choice for 

axisymmetric (engine) geometries, or ones that can be treated as such, e. g. see generation 
of offset piston bowl and domed head configurations by Amsden et al. (1989, pp. 69-76). 
Usually the mesh can be easily generated by rotation of a suitable two-dimensional radial 
plane about a central axis. However, representation of the valve ports and surface detail 

of the pentroof head in the present engine geometry is not practical with this type of 
mapping. 
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Conceptually mapping B is much simpler in that the six faces of the computational 
domain are stretched to fit six surface patches enclosing the physical region. Thus with 

respect to the generalised combustion chamber form in Fig. 2.11, the left, right, front and 
derriere logical faces each cover a 90' sector of the cylinder wall. No special numerical 
treatment is required at boundaries in contrast to the pseudo-polar meshes generated by 

mapping A. Moreover, it is possible to define the four valve ports and more accurately 

represent the cylinder head shape since the distribution of mesh points is better. 

Therefore, mapping B is the most appropriate choice for the pentroof combustion chamber 

geometry. 

mapping A 

left face v transfinite 
is axis interpolation 

on top surface 

front and 
derriere 
faces are 
coincident 

mapping B 

Figure 2.11 Mapping types between the regular computational region and a generalised 
cylindrical form in the physical region. 
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2.4.3 Surface Definition 

To set up the configuration in mapping B, a correspondence must be established between 

the eight logical comers of the computational region and eight arbitrary points on the 

physical boundary. Point distributions are then specified as desired along boundary 

curves connecting these comer vertices to generate a wireframe description of the 

problem geometry. Subsequently, extra line segments are added or interpolated, to define 

the point distribution over the entire boundary surface. 

At least two configurations were initially considered for the present combustion chamber 

geometry. However, it was found that the mapping is best accomplished by representing 
the entire pentroof cylinder head by the top face of the computational region, the piston 
surface by its bottom face and the cylinder walls by its four side faces. The physical 
geometry is orientated with respect to the computational region such that the valve ports 
lie on the comer diagonals of the logical mesh. Computation limitations restrict the mesh 

size to 34x34 cells in the i and j logical directions, and 7 cells in the k-direction when the 

piston is at or very near top dead centre. Additional k-planes are inserted or removed 
according to the piston movement as discussed in Sec. 2.4.4. The surface topology is 

generated in two stages as shown by Figs. 2.12 and 2.13. 

Stage 1: The main boundary segments (including the valve port outlines) are constructed 
from straight lines and circular arcs on an xy-plane in physical space. These lines and 

arcs are read from an ASCII input data file into the mesh generator, thus providing some 
degree of generality if modifications to the mesh size or geometry are required. Mirroring 

about the axis of symmetry, transfinite interpolation and elliptic smoothing operations 

complete the two-dimensional point distribution. 

Stage 2: Rotation and translation of mesh points is used to create the three-dimensional 
form. The concave boundary surfaces are generated by interpolation along parabolic arcs 
constructed between upper and lower boundary curves on the cylinder head. Stretching 
functions (Sec. 2.2.1) are used to control the point spacing along these arcs and thereby 
the distribution of coordinate lines over the concave surfaces. Ensuring acceptable 
included angles between the surface mesh lines (i. e. >33') in the comer regions is 

particularly problematic. After optimisation of the spacing parameters in both the 
circurnferencial and diagonal directions, the minimum angle is 33.5'. 
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ASCII datafile input (steps 2& 3): 

Logical & physical coordinates of end 

points, arc radii (set equal to zero for 

straight lines). 

4. Mirroring of vertex positions about 

the axis of symmetry at i= 18, 

transfinite interpolation and elliptic 

smoothing operations complete the 

definition of the top surface point 
distribution. 

ASCII datafile input: 

Logical i, j-coordinates defining 

regions for transfinite interpolation 

and the coordinates of fixed points 
during the subsequent smoothing 

operation. 

Figure 2.12 Stage 1: Initial two-dimensional definition of pentroof surface. 
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5. Mesh points enclosed by the 
boundary segments defining the 

planar surfaces of the pentroof 

are elevated and rotated by 20' 

about the logical plane i= 18. 

z (k) 

-""ý 

The squish region is defined by 

translating the original two- 
dimensional boundary point x 

and y-coordinates to planes 

normal to the cylinder axis at 

successive locations along the 

axis. 

6. The smooth concave interior 

surfaces of the cylinder head are 

generated by placing vertices 

along parabolic arcs constructed 
between boundary segments on 

the squish and planar pentroof 

surfaces. 

/ 
IZ--75ýý i 

7-: Oý 

7. Definition of comer regions 

with several interpolation steps. 
The region boundaries are first 

defined using one-dimensional 
interpolation with stretching. 

Transfinite interpolation is then 

used to generate the interior. 

Figure 2.13 Stage 2- Transformation to three-dimensional surface. 
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Finally, the squish region below the cylinder head is generated by projecting the x and y 
coordinates from the top surface onto successive xy-planes evenly spaced along the 

cylinder axis. It should be noted that only the point distributions generated on the 

cylinder walls is of importance in this last operation, since other vertices (i. e. those in the 
interior and on the bottom boundary) are to be repositioned later. 

2.4.4 Generation of the Interior Mesh 

The complex boundary shape of the present geometry is almost certain to result in a 

poorly conditioned mesh if its interior is generated with an algebraic system. 
Nevertheless, all the interior coordinates are first found by transfinite interpolation of the 

boundaries (Sec. 2.2.2). This can save considerable work in cases were the mesh is found 

to be acceptable, otherwise as noted earlier, the transfinite solution serves as a reliable 
initial guess for an elliptic generation system. 

In the present case, elliptic smoothing of the transfinite solution is required to improve the 

mesh orthogonality and spacing, particularly in the concave comer regions of the 

combustion chamber where the surface curvature is large. Therefore, the interior mesh 

coordinates are regenerated to optimise these properties by solving a system of elliptic 

partial differential equations as described in Sec. 2.3. Strict orthogonality is desired at the 
bottom boundary to allow rezoning and chopping operations (see Sec. 2.4.5). As the 

coordinate system on this surface is planar, its point distribution can be released from the 
fixed condition imposed at other boundaries. Then, after each iteration of the elliptic 

solver, the x and y coordinates of points on the bottom surface are replaced with the x and 

y coordinates of their neighbours generated on the first interior plane (i. e. at k= 2). Thus, 

all ý- coordinate lines intersect the bottom boundary orthogonally. 

Suitable values must be found for the control functions (Sec. 2.3.4) at each mesh point but 

as a first solution these are all set to zero, i. e. a Laplacian generation system. Figure 2.14 

shows the edge of aj-plane from the mesh obtained by solving such a system. Although 

the degree of orthogonality and smoothness is good at points in the interior, the line slope 
and cell aspect ratios are unacceptable near the concave boundary. Control functions can 
be assigned to attract ý -coordinate lines towards the cylinder axis as shown. 
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However, this problem is also observed on all the other vertical coordinate planes 
(including i-planes), since the concave surface extends around all sides of the pentroof 
cylinder head. Hence, the job of allocating appropriate spacing parameters for the control 
functions on each plane is lengthy, unless an automatic procedure is adopted. 

By noting that the line spacing in the physical mesh is a function of the spacings At, Ail 

and Aý in computational domain, a more novel remedy is possible. Prescribing At and 
ATI with the nonuniform spacing shown in Fig. 2.15 achieves the desired correction to 

the line slopes near the concave boundaries without the need to use control functions. 

The logical spacing is made larger near the side boundaries, such that transformation to 

the physical region results in the ý -coordinate lines being attracted towards the cylinder 

axis as required. A few non-zero control functions are then selectively applied to 
individual mesh points until the entire mesh is well-conditioned. 

Figure 2.16 shows an interior 4TI -plane demonstrating the characteristic smoothness 

obtained from an elliptic generation system. The solver required 16 iterations to converge 
taking only 15 seconds on a Hewlett Packard HP9000n5O machine (see Table 2.1). 

z (k) 

y (j) 

Angles unacceptable Attraction of ý -coordinate lines 
(i. e. <330). 

V/ 
tnwnrclq rvlinrlerm towards cylinder axis. 

Figure 2.14 Effect of applying control functions to adjust the Y-spacing of coordinate 
lines on the j=II plane in the mesh. 
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Figure 2.15 Computational region with nonuniform spacing for Aý and ATI 
A 17x I 7x6 mesh has been shown for clarity. 

Figure 2.16 Pentroof combustion chamber: first interior 471 -plane below the top 
boundary surface generated with a Poisson system. A 34X34X7 mesh with 
nonunifrom spacing similar to that in Fig. 2.15 was specified in the 

computational region. The minimum included angle between coordinate 
lines is 51.5'. 
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Ricardo Hydra 4-Valve Pentroof Geometry 

Calculation Monitoring Information 
I ------------------------------------ 

monitored location is at 5,5,4 

Iter I- Global Absolute Residual -I I- Values At Monitored Location -1 
No. xyzxyz 

1 1.029E-01 1.253E-01 9.587E-02 -2.649E+01 -2.905E+01 4.788E+01 
2 9.944E-02 1.247E-01 1.173E-01 -2.621E+01 -2.862E+01 4.769E+01 
3 5.177E-02 4.868E-02 3.849E-02 -2.601E+01 -2.834E+01 4.754E+01 
4 2.821E-02 2.359E-02 1.468E-02 -2.583E+01 -2.814E+01 4.747E+01 
5 1.772E-02 1.460E-02 5.645E-03 -2.570E+01 -2.803E+01 4.747E+01 
6 1.214E-02 9.996E-03 3.485E-03 -2.563E+01 -2.796E+01 4.749E+01 
7 8.521E-03 7.176E-03 2.710E-03 -2.559E+01 -2.793E+01 4.752E+01 
8 6.139E-03 5.349E-03 2.146E-03 -2.557E+01 -2.791E+01 4.756E+01 
9 4.559E-03 4.111E-03 1.671E-03 -2.556E+01 -2.789E+01 4.759E+01 

10 3.472E-03 3.241E-03 1.282E-03 -2.555E+01 -2.788E+01 4.761E+01 
11 2.710E-03 2.604E-03 9.785E-04 -2.554E+01 -2.787E+01 4.763E+01 
12 2.154E-03 2.112E-03 7.488E-04 -2.554E+01 -2.786E+01 4.764E+01 
13 1.730E-03 1.725E-03 5.767E-04 -2.554E+01 -2.786E+01 4.765E+01 
14 1.403E-03 1.421E-03 4.480E-04 -2.553E+01 -2.785E+01 4.766E+01 
15 1.148E-03 1.178E-03 3.522E-04 -2.553E+01 -2.785E+01 4.767E+01 
16 9.429E-04 9.815E-04 2.794E-04 -2.553E+01 -2.785E+01 4.767E+01 

Convergence: maximum residual source < 1.000E-03 Time: 15 s 

Table 2.1 Residual history during convergence of the solution. 

2.4.5 Rezoning and Chopping: Piston and Valve Simulation 

Simulation of the piston and valve motions requires that the mesh is adaptive in the sense 

of following a boundary or some internal demarcation. One option is to regenerate the 

entire mesh for each new crank position; almost certainly requiring a fully automated 

solver. However, a much similar and more economical approach has been adopted in the 

present study. Consider the mesh developed in preceding sections in which the bottom 

boundary represents the piston surface at or near top dead centre. As the piston descends, 

the bottom cell layer becomes extended in the z-direction. Therefore, to prevent large 

aspect ratios plane layers of cells are inserted above the piston on the intake or expansion 
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strokes and stripped out on the exhaust and compression strokes. An auxiliary routine 
referred to as the 'chopper' (see Amsden et aL 1989, p. 94) is called by the numerical 

solution scheme to rezone the flow field each time a plane is added or removed. Thus, 

piston motion is accommodated by only rezoning in the squish region between the piston 

surface and base of the cylinder head. At bottom dead centre 16 logical k-planes are used 

corresponding to a mesh of (34x34x 15 =) 17340 cells. 

The poppet valves move in a direction perpendicular to the planar pentroof surfaces, 

crossing several interior k-planes in the cylinder head. Aligning these planes parallel to 

the top surface in the vicinity of the valve ports, enables each valve head to be defined by 

'snapping' mesh vertices from successive k-planes on to its surface as it passes (see 

Fig. 2.17). Conditions at these vertices are set as those of a solid boundary in the 

numerical scheme (Sec. 3.4.3). A similar technique is also used to define valve stems by 

deactivating the vertices along an appropriate z-coordinate lines between each valve head 

and port. Then, in theory, an elliptic system can be solved with fixed interior values (i. e. 

the valve bodies) to regenerate the mesh at each new valve position. 

However, in practice a serious problem arises. It is found that the vertices defining the 

valve bodies severely restrict the coordinate line spacing in the densely packed comer 

regions of the pentroof geometry. Convergence of the elliptic solver ends prematurely 

and the mesh is not well-conditioned. A review of the situation indicates that it is 

impossible to define both the valve motion and the complex pentroof boundary surface of 
the combustion chamber, given the limitations of a structured mesh and a restricted 

number of cells. Hence, a simpler mesh design is used for the cylinder head during the 

valve open period, which only approximates the concave surface shape of the pentroof. 
This mesh is rapidly regenerated at each crank position using transfinite interpolation. 

Subsequently, at inlet valve closure, the flow field is rezoned on to a 'firing' mesh which 

accurate models the surface detail. Since the valve description is not of interest during the 

closed period, the port outlines are removed from the surface definition. However, a 
concentric region is added in order to better define the spark-ignition. Both meshes are 
identical in the squish region and it is only the head description that is modified as shown 
in Fig. 2.18. This unconventional approach proved extremely effective and was easy to 
incorporate into the numerical scheme. 
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Figure 2.17 Description of open poppet valves (solid outline) and ports (dashed outline) 
by deactivating specific vertices on appropriate 411 -planes and along 

coordinate lines. Shown during valve overlap period. 

lu 

Transfinite mesh: 
Valve open period 

Elliptic mesh: 
Combustion period 

Squish region 
(common to both). 

Figure 2.18 Two mesh solution: the squish region between the piston face and the base 
of the cylinder head (i. e. at the gasket plane) is identical in both meshes 
during the rezoning period at inlet valve closure. 
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2.5 Summary 

1. Techniques for numerical mesh generation enable an arbitrary-shaped geometry to be 
described by using transformation relations to map its physical coordinates (x, y, z) on 
to corresponding curvilinear coordinates (4, il, ý) in a regular computational domain. 

2. Algebraic mapping techniques are relatively easy to code and computationally efficient. 
A transfinite solver for interpolation in one, two and three-dimensions is detailed. This 
is the preferred choice for meshing a geometry with moderate boundary curvature. 

3. Elliptic mesh generators are superior for complex boundary shapes: discontinuities on 
the boundary are not transmitted into the interior and explicit control of the coordinate 
line spacing and orientation may be achieved with appropriate control functions. An 

elliptic solver employing line-by-line TDMA with ADI is fully described. 

4. Application of the algebraic and elliptic mesh generation techniques is demonstrated for 

a pentroof combustion chamber geometry. This example features the use of control 
functions, nonuniform spacing in the computational domain, fixed interior vertices and 

enforced orthogonality of grid lines at a specified boundary. 
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3 
Turbulent Combustion 

The in-cylinder dynamics of advanced spark-ignition cornbustion engines involves a 

complex interaction of physical and chemical processes. The turbulent flow field is 

characterised by continuous fluctuations in velocity that arise frorn three-dimensional 

vortex elements (eddies) generated by shear within the fluid. This vorticity then leads to 

fluctuations in the scalar properties such as density, temperature and mixture cornposition. 
Consequently, the complexity of chemically reacting turbulent flow is such that it is a 

specialised research area (see review by Jones and Whitelaw, 1982). The sections below 

present the salient features of the turbulent cornbustion model developed in the present 

study. Alternative mathematical models are discussed where these might provide a more 

accurate description of the reacting flow, but usually with a significant increase in the 

computational requirement. 

The present approach is implemented within the CFD code KIVA-11, developed primarily 
for modelling chernically reactive flows and sprays in internal combustion engines 
(Amsden et al. 1989). KIVA-11 evolved from a series of multidimensional codes 
developed over a twelve year period at Los Alamos National Laboratory in New Mexico, 

under the sponsorship of the US Department of Energy. It is noteworthy that this code 
has undergone two upgrades during the present research period: KIVA-3 (Arnsden 1993) 

and KIVA-3V (Amsden 1997). Distribution ofKIVA-3 was restricted after its release for 

some years. It principally extends the single-block meshing methodology of' KIVA-11 

(Sec. 2.1) to support a multi-block structured niesh. KIVA-3V further includes a valve 

model and several other new features. Importantly, numerous methodology changes and 

additions to KIVA-11 macle here parallel those frorn Los Alamos, with the exception of 
the multi-block structured analysis. Consequently, the present study is not seriously 
disadvantaged though transfer of the novel technology developed here to a newer KIVA 

version is suggested for a future work. 
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3.1 Averaged Transport Equations 

The state of a turbulent reacting flow is completely specified when its velocity u,, 
temperature T, pressure p, density p and mass fraction Y,, for each chemical species s, 
are known at all points in both space and time. The spatial and temporal variation of 
these properties can be modelled from a mathematical description of the governing 

physical processes: convection, molecular transport, chemical reaction and radiation. The 

conservation laws of mass, momentum and energy are applied to these processes to derive 

a coupled system of partial differential equations. The complete set of equations are now 

commonly referred to as the Navier-Stokes equations for Newtonian fluids and may be 

represented in Cartesian form for each conserved quantity 0 (x,, t) by the general transport 

equation: 

Do aa 
+SO, 1, uj, I, Y, Tt +T (p UM = ý- ,jx ax, DXJ 

where t is time, x, is the spatial coordinate, u, (xj, t) is the velocity vector field and the 

other quantities are as defined above. The four terms from left-to-right represent, 

respectively, the time rate of change of 0, the convective transport of 0 by the flow, the 
diffusion of 0 due to molecular transport and the net generation of 0 within the reacting 
flow. 170 denote the diffusivities and So the volumetric sources of each conserved 

quantity. A detailed derivation of Navier-Stokes equations can be found in any basic text 

on fluid or continuum mechanics (see books by Anderson et al. 1984; Kuo 1986; Fletcher 

199 1). For now it is only important to know that they are represented by Eqs. (3.1). The 

following sections will demonstrate how the averaged equation set for a turbulent reacting 
flow can be developed from Eqs. (3.1) and specify in full all their constituent terms. 

3.1.1 Averaging Procedures 

The random, chaotic nature of turbulent flow involves a wide spectrum of length and time 

scales. This spectrum is so wide that direct numerical simulation (DNS) of turbulence, 

where all the relevant scales are resolved with extremely fine spatial and temporal 
discretisation, and large eddy simulation (LES), where the smallest length scales are 
modelled, has only been achieved in a few limited cases with supercomputing capability. 
Therefore, for the practical engineering analysis of turbulence it is natural to seek 
equations describing the mean flow properties. These may be developed from the Navier- 
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Stokes equations (3.1) using a statistical analysis. The vector and scalar properties of a 
fluid are represented by a normalised probability density function (PDF), P, given at a 

spatial location, xi, by the expression: 

P (P, U, V, W, Yl, ..., YN, p, T; x, ) dp du dv dw dY, ... dYN dp dT (3.2) 

If this PDF is known at a position, x,, then the mean value of a flow property 0 is given 

by multiplying its instantaneous value by the PDF and integrating for all the properties. 

i. e. 

e P(P, ..., T; x, ) dp ... dT (3.3) 

This is ensemble-averaging. However, the large dimensionality of the PDF inhibits this 

approach and two alternative averaging techniques are adopted: classical Reynolds- 

averaging and density-weighted (or Favre) averaging. In the former procedure, a time- 

averaged mean quantity is defined as: 

e (Xi) = lim fý (x� t) dt' (3.4) 
&-. +- A1 

It is assumed that the time At is larger than the characteristic turbulence time but smaller 

than the characteristic time of the mean flow. The average quantities are then statistically 

stationary and equal to their ensemble average. However, these conditions may not be 

satisfied in internal combustion engines where the time scales of the energy-containing 

eddies are of the same order of magnitude as the time scales of the mean flow, and cycle 

times are short compared to relaxation times for important flow-adjustment phenomena 
(Ramos 1989, p. 37). Nevertheless, Eq. (3.4) is used to split the instantaneous flow 

variables into mean and fluctuating components as: 

ý (xv 0= ý(Xi) + Cxj, t) (3.5) 

where 0' is the turbulent fluctuation such that 0'=O. Expression (3.5) may be 

substituted for all the state variables in Eqs. (3.1) then each term time-averaged, to obtain 
the Reynolds-averaged Navier-Stokes equations for turbulent flow. However, large 
density variations are typical for chemically reacting mixtures and it is convenient to 
define a density-weighted mean value, namely the Favre-average, as follows: 
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PO I t+& 

where (x, ) = lim -fp0 (xi, t) dt (3.6) 
&- At 

I 

All the instantaneous flow properties, except density and pressure, are then split by Favre- 

averaging according to the relation: 

(xi, 0 (xi) +0 "(xj, t) (3.7) 

where the time-average of the density x Favre fluctuation po" =0 but 0" # 0. 

Substituting into Eqs. (3.1) and time-averaging then gives the Favre-averaged Navier- 

Stokes equations. These have a simpler and more compact form, with fewer turbulent 

correlations than the corresponding Reynolds-averaged equations (see comparison by 

Warnatz et A 1996, p. 163) and for incompressible flow, the two formulations become 
identical. Furthermore, experimentally measured values from sample problems more 
closely approximate density-weighted concentrations rather than time-averaged 

concentrations (Kuo 1986, p. 419). 

The Favre-averaged Navier-Stokes equations solved in the present study are stated below 

in their conservative form using Cartesian vector and tensor notation. These govern the 

transport of chemical species, mass, momentum and internal energy in a three- 

dimensional turbulent reacting flow. Important assumptions and special terms have been 

highlighted were relevant. 

3.1.2 Species Mass Conservation 

If Y, denotes the mass fraction of the chemical species s in a reacting mixture, then the 
turbulent species conservation equation has the following form: 

it DX, DXI DX, DX, 
ý� s=1,2, ... ,N (3.8) 

where Fick's law diffusion is assumed, with a single diffusion coefficient, D, for all 

species. This law expresses the tendency of each species to diffuse in the direction of 
decreasing mass fraction, thus smoothing out concentration gradients in the flow. Three 

other diffusion mechanisms are neglected in the combustion process. These describe the 

species transport arising from thermal diffusion (the Soret effect), pressure-gradients and 
body forces per unit mass on molecules of different species (Kuo 1986, pp. 206-209). 
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Fluctuations in species diffusivity are also neglected. The two turbulence correlations in 
Eq. (3.8) are introduced from Favre-averaging the convection and diffusion terms. 
Gradients in mass fraction fluctuation are expected to be small, such that the diffusive 
fluctuating term can be neglected. Closure of Eq. (3.8) then requires expressions for the 

convective turbulence correlation pu, "Y, " and the chemical source term, 0, - 

3.1.3 Total Mass Continuity 

The continuity equation is obtained by summing Eq. (3.8) over all species, since mass is 

conserved in the chemical reactions, as: 

rp +a at Dxj 

3.1.4 Momentum Conservation 

The vector equation for momentum transport is given by: 

aa orp a- 
') +T Tij (a7ij ýU, 

ý-Uj 
axi axi 

(3.9) 

(3.10) 

where p is the fluid pressure, aj is the viscous stress tensor, and gij represents a constant 

specific body force (e. g. gravitational force). The fluid is assumed Newtonian such that 

the Favre-averaged viscous stress tensor, Ujjj neglecting viscosity fluctuations, is given 
by: 

aii ( au, - Duj' Lp liii 
+j+ 

2ýk 
+++ 

Uk 
(-äx-j 

axi 

) 

axk 
(axj 

axi 
) 

axk 

where g and X are the first and second coefficients of dynamic viscosity, respectively, and 
8, j is the Kronecker delta function. The two coefficients of viscosity are related to the 

coefficient of bulk viscosity, ic , by the expression (Anderson et aL 1984, Eq. 5-13): 

ic =jg+, % 

In combustion processes, it is a common practice to adopt Stokes hypothesis and assume 
that ic = 0, since it is only significant in shock waves or in the absorption and attenuation 
of acoustic waves (Anderson et aL 1984, p. 185). The second coefficient of viscosity can 
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then be replaced by -2-g. Furthermore, the viscous terms involving the Favre- 3 

fluctuations are assumed to be small and neglected on the basis of order of magnitude 

arguments, such that Uij becomes: 

+ 
ax, 

j 
[( 

Tx5ji 3 ij aXk (3.13) 

If body forces are neglected (i. e. gij = 0), then closure of equation (3.10) only requires an 

expression for the turbulence correlations pu, "*u,! arising from Favre-averaging the non- 
linear convection term. These are known as the Reynolds stresses. 

3.1.5 Internal Energy Conservation 

From the first law of thermodynamics, the conservation equation for specific internal 

energy, I, is given by: 

aa. Dii Du" - Dii. Du" D 
-pýI +aij ýI + CY ii 

ýi + 77- + ahem 
axi DX, axi axi axi 

mean increase in 
internal energy 

(3.14) 

where qj is the heat flux vector andahem is the rate of chemical heat release. The heat 

flux is composed of four contributions: heat conduction, enthalpy diffusion, the Dufour 

effect and, radiative heat flux, q, due to radiatively participating gases within the reacting 
flow. The Dufour effect (Warnatz et A 1996, p. 152) is a process where concentration 

gradients in the reacting mixture produce a heat flux in a reciprocal action to the Soret 

effect (see Sec. 3.1.2). Its contribution can be assumed negligible in combustion 

processes, such that the Favre-averaged heat flux vector, ; 7j, is be taken as: 

DT DY 
i7j=-KT-pDjh, (T) ' +; 7ý. j 6, xi s 

axi 
(3.15) 

where K and D represent the thermal conductivity and mass diffusivity of the reacting 
mixture, respectively, and h, is specific enthalpy of species s. Fluctuations in these 
quantities are neglected. Furthermore, time-averaged terms involving gradients of 
fluctuating quantities in Eq. (3.15) have been neglected, since these are assumed small in 

now dissipation by heat turbulent chemical 
work viscous stress influx convection heat 
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comparison to the other terms. Extending this argument to Eq. (3.14) also removes the 
two pressure and viscous terms involving Favre-fluctuations. Therefore, substituting for 

crij from Eq. (3.13), the Favre-averaged viscous dissipation terrn can be represented by 

the following function: 

22 (Dlr 
V 

)2 

if 
ýul' 

= 9[2(Lu +2 
aý 

+2 v+ 
(ail 

+ 
a- 

ii 
v 

axi ax 

(ay) 

raz ýTy 

2ax 

2 DO- 
+ 

aii)2 a 0- )2] 
v+w+ L 

'(Dij -T 3 T+T+ az Dy ax zxy az 

(3.16) 

Closure of Eq. (3.14) then requires suitable expressions for the turbulence correlation 
pu, "I", the chemical source term and the radiative heat flux q, 

Note: In addition to q, the conservation equations should strictly include terms for 

radiation pressure and radiative energy storage due to transients, but these effects are so 

small that they have been ignored (Modest 1993, p. 316). 

3.1.6 State Relations 

The state relationships between the thermodynamic variables are assumed to be those of 

an ideal gas mixture. The partial specific enthalpies, h, for each species s in the reacting 

mixture are taken from JANAF tables (Stull and Prophet 1974) at lOOK temperature 
intervals from absolute zero to 5000K. These tabulated enthalpies are then converted to 

values of specific internal energy, I, at the temperature datum points with the 

relationship: 

1, (T) = h, R. T 1W, (3.17) 

where R. is the universal gas constant and W, is the molecular weight of species s. The 

total specific internal energy, 1, for a specific mixture composition is then given by the 

summation: 

I(T) YI, (T) (3.18) 

Values of total internal energy satisfying the energy conservation equation (3.14) are then 
used to interpolate the mixture temperature field, T(x, ), from the datum internal energies. 
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Furthen-nore, these datum values are used to determine the constant volume specific heat, 

cv 9 over the I OOK temperature intervals from the approximation: 

cv (T) = dIldT = 0.0 1 (12 - I, ) (3.19) 

where 12 and 1, are the upper and lower tabulated internal energies for the interval. The 

mixture pressure, j;, and ratio of specific heats, are then obtained from the 

relationships: 

ATI: 
I 

W, 

Y=Lp-=I+ T 
CV TCVT 

where cp is the specific heat at constant pressure. 

3.2 Turbulence Model 

(3.20) 

(3.21) 

A turbulence model is required to evaluate the three second-moment statistical 

correlations arising in the Favre-averaged Navier-Stokes equations above, namely the 
Reynolds stresses, pu, "uj" together with the two turbulent scalar fluxes: pu, "Y, " and 

p UIýj Tf 
. 

The KIVA-II code incorporates a standard version of the k-e turbulence model, modified 
to include volumetric expansion effects. For the present combustion studies in variable 
density flows, this model was further modified to incorporate pressure-density-interaction 

effects. In this its final form, the model then arguably gives a reasonable approximation 

of the turbulence behaviour. To justify this statement and appreciate how the k-F- model 
fits into the overall framework of turbulence modelling, this section will present the exact 
transport equations for the turbulent correlations, and demonstrate how these are reduced 
to the form of the present model. In addition to highlighting the underlying assumptions 
and limitations of the present approach, the following discussion also forms a basis for 

any further work requiring the introduction of more sophisticated turbulence models. 
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3.2.1 Second-Moment Closure (Reynolds Stress Model) 

An exact Favre-averaged transport equation for the Reynolds stresses can be derived from 

Eqs. (3.9) and (3.10) as follows (cf. panel 11/2 1, Jones 1982): 

d dw. - d 
+ o5 "Uk Tu 

itUk u (P j 
-ýý+, 2'15ijP* 

kk) I- -L- U, 'ýJ""k) Puý ulfýý j3 
at C7xk u4k U4 k (J4 k 

v 
mean increase in'ýeynolds stresses-, producdon diffusion 

OP ,, d, 
U"OP' + 216ij " -" a -" a 

lw 
kx 

Ui -ý-- ui--Uj- 

uj didj dxj 
pressure redistribution production/destruction by 

mean pressure gradient 

-Uki--Ukj-ý-r 
dx. 

jjýPP 
-. 30 

01 
elp 

_p . ou 2A 1 -. * i. 

* 
SY 

viscous fluctuation pressure 
dissipation x velocity dilation 

-AA 

(3.22) 

Equation (3.22) represents a highly nonlinear system of six partial differential equations: 

one for each of the six independent Reynolds stresses. The left-hand side expresses the 

total rate of increase of the Reynolds stresses which arises from an imbalance of the terms 

on the right. Here the terms have been grouped, following well established practice, to 

allow a physical interpretation of the processes. Evaluation of these terms, containing 

even higher-order unknown correlations, requires numerous modelling assumptions. 

Second-moment closure or Reynolds stress turbulence models thus solve a modelled form 

of Eq. (3.22). The first pair of terms on the right-hand side describes the production of 

the Reynolds stresses from the effects of mean strain. These terms are exactly 

representable since they involve only second-moment correlations and mean velocity 

gradients. Terms in the second grouping are diffusive in character and describe the spatial 

redistribution of the Reynolds stresses by (a) velocity and (b) pressure fluctuations. 

Additional terms can also be included to describe represent transport due to molecular 

action, but over all or nearly all the flow their effect is negligible (Launder 1983, p. 6). 

Correlations between fluctuating velocity and derivatives of fluctuating pressure in the 

third grouping physically represent the redistribution of energy amongst the normal 
Reynolds stresses ij) so as to make them more isotropic and to reduce the Reynolds 

shear stresses (ij Pressure terms in fourth and sixth groupings are only present 

where density variations are significant. Finally, terms with viscous stress fluctuation 
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(fifth grouping) describe the rate of dissipation of the Reynolds stresses due to viscous 
action. Molecular viscosity converts their energy into internal heat by the acting on the 

small-scale, high-frequency motions. Launder (1983, Sec. 1.5) demonstrates that if these 

motions are assumed to be isotropic (in high Reynolds number flows) then these terms 

can be modelled by a scalar quantity, e, representing the rate of viscous dissipation of 
turbulent kinetic energy (see definition in Sec. 3.2.3) as follows: 

cr, 
lui, 

, au, - 
ki DXk 

+ (T ki Dxk . 18 TE 3 ij (3.23) 

e. g. Jones and Whitelaw (1982) states a reduced form of Eq. (3.22) which includes this 

approximation for the viscous dissipation terms. An additional scalar transport equation 
is then solved for F, or an associated scalar quantity (see Sec. 3.2.3). Therefore, to 

approximate the Reynolds stresses, a system of seven partial differential equations must 
be solved, representing a considerable computational effort. The production of the 
Reynolds stresses is the only term obtained directly, and closure approximations for the 

other terms introduces a number (eight) of empirical coefficients. A present, a unique set 

of coefficients that are generally applicable to a wide range of flow has not been 

established. Furthermore, to complete the second-moment closure, additional transport 

equations are required for the turbulent energy flux and species fluxes. These have a 

similar structure to the Reynolds stress equation, Eq. (3.22) and their solution necessitates 
fitting additional model constants. Hence, lack of sufficient validation and the large 

computational costs necessitate rejecting a second-moment closure model for the present 

study, in favour of a more economic and more widely tested simplified form. 

3.2.2 Algebraic Stress Model 

An order-of-magnitude analysis of the transport processes in the Reynolds stress and 

scalar flux equations indicates that the broad characteristics of the turbulence arise from 

the production terms. However, the main computational effort in second-moment closure 
methods is caused by the Reynolds stress or scalar flux gradients that appear in the 

convective and diffusive terms of the modelled form of Eq. (3.22). An algebraic stress 
model (ASM) is a simplification in which the convective and diffusive processes are 
removed or modelled without these gradients, thereby reducing the system of partial - 
differential equations to a set of algebraic equations (Launder 1983). The Reynolds 

stresses and scalar fluxes can then be obtained by simultaneous solutions using matrix 
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inversion or iterative techniques. The loss in accuracy associated with this approximation 
is mitigated to some extent by the fact that the production terms are still retained in their 

exact form, while the task of numerical solution is greatly simplified. However, for 

multidimensional in-cylinder engine flows, the benefits of adopting an algebraic stress 
model, compared to models at the next level of simplification, have not been clearly 

established. This is an area for further work. 

3.2.3 Standard k-e Turbulence Model 

The k-e model is the most widely applied and validated turbulence model. It represents 
the highest level of sophistication in a hierarchy of methods in which a first-order closure 
is used to evaluate the Reynolds stresses as a function of the flow velocity gradients and 

geometry alone. The numerical advantages arising from this approximation are 

considerable, since there is now no need to store the stress field or, indeed, to evaluate it 

explicitly. The simplest case is to assume a linear relationship between the turbulent 

stresses and mean rates of strain (Jones and Launder 1972): 

ax, aXk (3.24) 

where the coefficient of proportionally, g, , defines the turbulent (or eddy) viscosity and k 

is the turbulent kinetic energy (as defined later). In parallel with the turbulent viscosity 

concept for momentum transport, a gradient-diffusion model is adopted for the scalar 
fluxes: 

- ýui 
c0 axi 

0= 11, Q (3.25) 

where the turbulent Prandtl/Schmidt number, a, , is an appropriate scaling function for ý, 

usually taken as a constant near unity. The turbulent viscosity is then defined at each 
point in the flow field by the relation: 

c,, ýk 2/e (3.26) 

where k and e, are extra variables introduced to represent the velocity and length scales 

of the turbulence motions, respectively, and c. is a model constant. An additional partial 
differential equation is solved for each of these new variables. The turbulent kinetic 

energy, k, measures the fluctuation intensity according to k= -2L us . 4i -'- 
* 
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Therefore, contraction of Eq. (3.22) by setting i=j produces an equation for the 
transport of (twice) the turbulent kinetic energy. Substituting the c-approximation in Eq. 

(3.23) for the viscous dissipation terms, dividing throughout by two and rearranging then 

gives: 

aaaI----- -- 0 ap - -,, " aii. 
- (Tk) +ý (-p 5jk) =- (-LTujl4jl4j' )- 0=- - pui uj ý ýJ - pc at xj axi 21 ax 

i 
axi 

increase in diffusion of work due to production of viscous 
turbulent k. e. fluctuation energy turbulence turbulent k. e. dissipation 

(3.27) 

It should be noted that the pressure redistribution and pressure fluctuation terms of Eq. 

(3.22) vanish during the contraction process. Hence, the transport equation for k has 

discarded much of the information concerning pressure-flow interactions, resulting in a 
loss in accuracy where these effects are important. Closure of Eq. (3.27) then requires 

modelled approximations for the diffusion, work and production terms. The diffusion of 
fluctuation energy described by the triple correlation term, is modelled with the following 

gradient transport approximation: 

a 
(I 

Dý Rff Dk 
- ýX-j ýXj 

(y k 
DXJ (3.28) 

where cr, is an equivalent turbulent Prandtl/Schmidt number for k and gff is the 

effective viscosity defined as the sum of the laminar and turbulent viscosities: 

9, ff =9 flit (3.29) 

The production term P. is obtained by substituting Eq. (3.24) for the Reynolds stresses 
in: 

pk = -puju axi (3.30) 

Finally, the pressure-work term is usually neglected, giving the following closed form for 

the turbulent kinetic energy equation: 

a 
(-ýk) +a («ýiijk) = --L Iff 

ýk 
+ Pk (3.31) jt wj DXJ cr k 

DXJ. 
) 
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An exact transport equation for the rate of dissipation of turbulent kinetic energy, C, may 

also be obtained from the averaged Navier-Stokes equations. However, the derivation of 

this equation for compressible flow is forbiddingly complex and involves many unknown 

terms, none of which are amenable to direct measurement (Launder 1983, p. 60). 

Therefore, as a basis for developing a modelled equation for C it is of little practical value 

and thus omitted here. Rather, a model form of the c-equation has been devised more 
from dimensional analysis, intuition and analogy such that it is expected to contain similar 

terms to the k-equation, Eq. (3.31). Thus, the turbulent dissipation rate is found from the 

following transport equation for c in the standard k-F, model: 

aa- 
C) =a -LC 

)cp 

(TC) + (p iij Txj a. axj +k (ce 
Ik -cc 2TC) at TXJ -ýe-ff (3.32) 

where cr, is an equivalent turbulent Prandtl/Schmidt number for e and c,,, and C. 2 are 

additional model constants in the production and dissipation terms, respectively. In terms 

of physical processes, Eq. (3.32) represents a balance between the rate of transport of C 
by the mean flow and the rates of its diffusion by the turbulence fluctuations, its 

generation by vortex stretching and, finally, its destruction by the action of viscosity. 
Extensive computations reported in the literature with this standard k-C turbulence 

model have mainly used a single set of coefficients given in Table 3.1 (p. 59). A wide 

variety of thin shear layer and recirculating flows have been successfully simulated with 
these values. Furthermore, recent interest in developing statistical mechanical descriptions 

of turbulence using Renormalisation Group (RNG) theory have been able to obtain all of 
their values independently and also provided a more theoretical basis for the modelled C- 

equation (Smimoff, 1995). 

However, despite notable successes the standard k-e model has serious limitations. 

These can largely be attributed to two major weakness in the model: 

1. Inadequacy of Eq. (3.24) to describe the complex, non-linear, stress-strain interactions 

in flows driven by large anisotropy in the stress field, or in swirling flows, with large, 

rapid, extra strains. 

2. Failure of the e-equation to provide a universally valid description for the way c 

evolves in some experimentally measured flows (Launder 1983, Sec. 3). 
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Since swirl and tumbling motion are prevalent in modem in-cylinder engine flows, the 
first shortcoming is of particular concern in the present study. Several modifications have 

been proposed in the literature to account for these effects in the k-c model, usually by 

introducing corrections to the eddy viscosity (Eq. 3.26) or additions to the source term of 
the e-equation. However, the success of these modifications is debatable and difficult to 

ascertain for a general problem. A better solution might be to adopt one of the more 

sophisticated models discussed in the previous sections. Unfortunately, this does not 

remove the second problem, since the e-equation (Eq. 3.32), albeit with a modified 
diffusive term, is usually also adopted within the framework of a full second-moment 

closure (Sec. 3.2.1) or an algebraic stress model (Sec. 3.2.2). Therefore, errors arising 
from using an approximate form for the scale-determining equation are common to all 
three types of turbulence model discussed here. In this respect, the more sophisticated 
turbulence models gain no advantage over the standard k-e approach. 

3.2.4 Model Selection 

The k-e turbulence model has been selected for the present study for the following main 

reasons: 

1. Numerous multi-dimensional studies of turbulent in-cylinder engine flows have shown 

good agreement with experimental observations, and where deficiencies occur, these 

have been well documented. 

2. The existing k-e submodel available in the KIVA-II code can be easily modified for 

the present study (see below). Whereas, a substantial amount of work would be 

involved in the implementation and verification of a more sophisticated model. 
Furthermore, the extra computational effort does not justify the expected improvement 

in accuracy, in the light of other approximations employed in the combustion and 

radiation submodels. 

3. The k-e model employed in the present study provides an appropriate basis from 

which to assess the performance of the more sophisticated turbulence submodels in a 
the further work. 
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3.2.5 Modification For Variable Density Flow 

During the combustion phase, when the radiative heat transfer is dominant, significant 

nonhomogenities in density will result from the heat release. The standard k-C model 
discussed in Section 3.2.3 is essentially concerned only with shear generated turbulence in 

uniform density non-reactive flow. In reactive flow, there is also the additional 

generation and depression of turbulence associated with the effect of density variations, 

velocity dilatation (volumetric effects) and pressure gradients caused by the flame 

evolution. 

It is assumed that fluctuations in density are properly modelled in terms of the Favre 

averaged quantities, and that the model constants in Table 3.1, determined for density 

unweighted equations, are equally applicable to the density-weighted form. This 

assumption has been made by Jones and Whitelaw (1982) and other researchers, since its 

validity appears to be generally supported by present experimental evidence. 

The effects due to dilatation or velocity divergence are already incorporated in the KIVA- 

H k-F, submodel by Amsden et A (1989). This results in the appearance of an extra 

source term in the Fequation, Eq. 3.3 1. The modified form accommodating compression 

and expansion effects is then: 

+k-C, 2TO - C, 3Te (3.33) (Te) + (TWjC) 
DF 

'(Clp 

at axi axj a, axj k aXk 

where the model constant, C. 3 is taken as unity. This final form is identical to that 

derived by Grismo (199 1, p. 75) except that his model constant is taken as 1/3. However, 

all simulations in the present study use C. 3 = 1.0 as recommended by Amsden et A 

(1989). The negative sign of the dilatation term can be reasoned from an understanding 

of the rotational nature of the turbulence: compression of the flow corresponds to an 
increase in vorticity and kinetic energy, and visa versa. Angular momentum is conserved, 

such that the product of the turbulence velocity scale, k 1/2 
, and length scale (k 1/2/e ) is 

constant: i. e. k2/C= constant. Hence, this constraint requires that the turbulent 

dissipation and kinetic energy both decrease during fluid compression, DW, / Dxk < 0, and 
increase in an expanding flow, W. I Dx, > 0. These changes in eddy dissipation rate are 

thus correctly predicted by the negative source term in Eq. (3.33). 
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In the exact form of the turbulent kinetic energy equation, Eq. 3.27, arises a correlation 
between velocity fluctuation and pressure gradient. In variable density, reacting flow, 

significant inaccuracies may arise from neglecting this term, as is usually the case in the 

standard form of the k-F- model for uniform density steady flow (see Section 3.2.3). It 

seems particularly inconsistent that dilatation effects have been included in the existing 
KIVA-11 k-e submodel, but this pressure work term is neglected, even though its affect 
is of similar importance. Therefore, this deficiency has been corrected in the present 

study by introducing a modified production term, P, '. , following the procedure outlined in 

Grismo (1991, p. 76). The pressure correlation can be expanded as follows: 

--m "ap Apop 

aF-, au, " 
ui-= u. -+'7 p axi axi xi 

(ui 
axi 

i 
(3.34) 

The second term of the right-hand side describes a diffusive processes arising from 

pressure fluctuations (c. f. diffusion term Eq. (3.22)) and is thus considered to be 

accommodated by the gradient-diffusion approximation of Eq. (3.28). The third term is 

considered to have a negligible effect since the fluctuation velocity gradients are largest 

for the smallest eddies at the so-called Kolmogorov microscales. At these scales, 

production and dissipation are assumed to be in equilibrium, so the contribution of this 

term to the small scale turbulence motion is immediately dissipated by viscous action. 
Therefore, only the first term involving the mean pressure gradient requires attention. 
Applying an identity for the Favre velocity fluctuation, this term can be reexpressed as: 

Ui p ui. 
ax, 

ax, 
(3.35) 

then in a similar manner to the gradient-transport approximation of Eq. (3.25) for Favre- 

averaged quantities, the time-averaged fluctuating term in Eq. (3.35) is replaced by: 

"ap 4, ap DT Ui -a xi 
ý2 c; 

p 
ax, ax, (3.36) 

where the turbulent Prantdl/Schmidt number, (T P=0.8, as in previous studies. The 

standard k-e model production term of Eq. (3.3 1) is then modified for variable density 
flow as: 

P* =p14, 
a-P ap- 

T2 Gp ax, ax, (3.37) 
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Note that in making this modification to the source term of k-equation, it is also assumed 
to be applicable to the source term of the modelled c-equation. This is conveniently 
justified with the argument that the generation of e by pressure-density-interactions is 

comparable to its generation by viscous stresses, and hence can be proportioned to the 

corresponding production of turbulent energy by the same factor, q, = 1.44. 

3.2.6 Turbulence Closure 

Turbulence closure of the Favre-averaged equations in Section 3.1 can now be obtained 

with the gradient-transport approximations for the Reynolds stresses and turbulent scalar 
fluxes in Eqs. (3.24) and (3.25) respectively. Then, the laminar transport coefficients (i. e. 

viscosity, species diffusivity and thermal conductivity) are simply replaced with effective 

turbulent values as follows: 

-k 
2 

++c7 
A2 +T ý'p F, 

D, ff =g eff 
TSC 

V= Re cp 
"eff - Pr 

(3.38) 

(3.39) 

(3.40) 

where the constants A, = 1.457 x 10-5 g/ (cm s Ki), A2= 110.33 K and Pr = Sc = 0.9. 

Note: Pr and Sc are the Prandtl and Schmidt numbers for the turbulent reacting mixture, 

respectively. 

The additional contribution arising from the turbulent fluctuations in each of these 

expressions results in the effective transport coefficients being much larger than their 
laminar counterparts. Eq. (3.38) is the final form of Eq. (3.29), with Sutherland's 

formulae for air to calculate the laminar viscosity and Eq. (3.26) substituted for the 

turbulent viscosity. Replacing the laminar viscosity by this effective viscosity in the 

vector equation for momentum transport, Eq. (3.10) then incorporates the laminar-like 

part of the Reynolds stresses [Eq. (3.24)], but not the turbulent kinetic energy term. 
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Therefore, the k-term is accommodated by modifying the mean pressure in Eq. (3.10) as 
follows: 

15* =T- jTk 

The turbulent momentum equation is then closed. 

(3.41) 

The effective species diffusivity of Eq. (3.39) replaces the laminar diffusivity in both the 

species mass and internal energy conservation equations, Eqs. (3.8) and (3.14) 

respectively. This modified coefficient then includes the additional species transport 

arising from fluctuations in concentration gradients which, in turn, are associated with 
fluctuating heat flux gradients in the internal energy equation. 

Finally, the internal energy flux arising from turbulent convection in Eq. (3.14) is 

modelled as part of the heat flux term using the effective thermal conductivity given by 

Eq. (3.40). A gradient-transport approximation [Eq. (3.25)] would ordinarily assume that 

the energy flux is proportional to the internal energy gradient, instead of the temperature 

gradient, as here. However, these two gradients are proportional for ideal gases, provided 
that gradients in specific heat are neglected (cf. Eq. 3.19). Ideal gas behaviour for the 

reacting mixture has already been assumed in the state relations of Section 3.1.6. 

Thus, suitable approximations have been found for all of the unknown turbulence 

correlations. However, analysis of the internal energy and turbulent kinetic energy 
transport equations in their present form indicates that they both contain source 
contributions from turbulent viscous dissipation. This inconsistency is avoided by 

removing the viscous dissipation term, T, from the internal energy equation, Eq. (3.14), 

and replacing it by the rate of turbulent energy decay, pe . Therefore, the turbulent 

viscous stresses are considered to create turbulent kinetic energy, which later decays to 
thermal energy, by the action of the decay term, pe . 

Summarised in Eqs. (3.42-51) are the final forms of the Favre-averaged Navier Stokes 

equations, together with the two transport equations of the k-c model. Expressions for 

the state relations and effective transport coefficients have also been re-stated for 

completeness, together with the values used for all the model constants. 
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with effective transport coefficients given by Eqs. (3.38-40): 

9 eff =. 
A TI 

+C -k 
2 

Deff =9 eff Keff = 
gff cp 

A2+ T ý, P 
C, TSC , Pr 

Table 3.1 Extended k-c turbulence model constants. 

CIL Ce I CC2 CE3 ak at ap Pr Sc 

0.09 1.44 1.92 1.0 1.0 1.3 0.8 0.9 0.9 

(3.48) 

(3.49) 

(3.50) 

(3.51) 
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3.3 Combustion and Ignition Models 

Turbulent combustion in engines is characterised by a complex multi-step reaction 

process involving several hundred intermediate species. The exact nature of the coupling 
between the turbulence and chemistry is not well understood, and the problem is further 

compounded by uncertainties in relation to the fuel chemistry and reaction mechanisms of 

practical fuel hydrocarbon blends. Accordingly, a simplified reaction scheme is adopted 
in the KIVA-II code which uses a limited set of chemical reactions symbolised by: 

2: a�, x, -- -Z- 2: b�, x, (3.52) 

where x, represents one mole of species s and a,,,. and b, are integral stoichiometric 

coefficients for species appearing as reactants and products respectively, for reaction r. 
The chemical species formation rates in the conservation equation for species mass 
fraction, Eq. (3.42), are then given by: 

a,,, ) co* 

and the chemical heat source in the internal energy equation, Eq. (3.45), by: 

r 

where (br is the reaction rate, Q,. is the negative heat of reaction at absolute zero, 

Q, =Z (a, - b,,, )(Ah; ), 
s 

and (Ah; ), is the heat of formation of species s at absolute zero. 

(3.53) 

(3.54) 

(3.55) 

The problem is then reduced to finding appropriate expressions for the reaction rates, 6J.. 

In KIVA-11 the reactions are subdivided into two classes: those that proceed kinetically 

and those that are assumed to be in chemical equilibrium. The reactions used in the 

present study are classified as shown in Table 3.2. For each type of mechanism an 
appropriate procedure is used to evaluate the reaction rate. Sections 3.3.1 and 3.3.2 
describe, respectively, the chemical equilibrium and kinetic submodels in KIVA-H. 
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In the discussion accompanying the kinetic model, important weaknesses are noted in the 

approach which question its ability to adequately simulate the complex turbulence- 

chemistry combustion interactions. Hence, subsequent sections focus on the development 

of a hybrid model based on the existing kinetic model and the eddy dissipation concept of 
Magnussen and Hjertager (1976). An empirical expression is then obtained for the mean 

reaction rate which includes the effects of both chemical kinetics and turbulent mixing. A 

discussion of alternative modelling approaches, including methods based on PDF 

formulations (i. e. Eq. (33)), can be found in Jones and Whitelaw (1982,1984), Ramos 

(1989) and Warnatz et aL (1996). For brevity these have not been include here. Finally, 

details of the approach used to simulate spark ignition are given, together with a model 
for end-gas autoignition. 

Table 3.2 Classification of chemical reactions 

Fuel oxidation: kineticlmixing-controlled modela 

C3H8 + 02 3CO2 + 4H20 (a) 
2C8HI8 + 2502 16CO2 + 18H20 (b) 

Extended Zeldovich mechanism: kinetic model 
02 + 2N2 2NO + 2N 
N2 + 202 2NO + 20 
N2 + 20H 2NO + 2H 

Chemical equilibrium: 
H2 

02 

N2 

20H 

40H 

2CO2 

2H 

20 

2N 
02 + H2 

02 + 2H20 
02 + 2CO 

'Fuel oxidation for: (a) propane and (b) iso-octane. 
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3.3.1 Equilibrium Reactions 

The equilibrium rates are implicitly determined by the constraint conditions: 

5 

where the mean molar concentration, F, for each species, s, is given by: 

- _Y C =p_L. 3 

(3.56) 

(3.57) 

and K, " is the concentration equilibrium constant for reaction r obtained from a curve fit 

to experimental data. These constraint conditions then constitute a coupled nonlinear 

system of equations which is solved by an iterative procedure. The details of this iteration 

scheme, which includes the effects of heat release from the equilibrium reactions on K, ", 

may be found in Appendix J of Amsden et al. (1989, pp. 129-134), together with 

additional references. A set of six independent equilibrium reactions for CO, C02, H207 

H29 02, N2, H, 0, N and OH are modelled in the present study as shown in Table 3.2. 

Convergence was quick and the scheme was stable for all the problems considered. 

3.3.2 Kinetic Reactions 

The progress rates for the kinetic chemical reactions are expressed in terms of 
instantaneous molar concentrations, c, for each species s by: 

kf kb,, (3.58) 

where kf,,, kb,, are the forward and backward rate coefficients, respectively. These are 

assumed to be of a general Arrhenius form: 

kf� = Af�7'4f"exp(-Ef� / &T) 

kb, 
r= 

Ab, 
r7-", ' exp(-Eb, rl 

R. T) 
(3.59) 

where Af,, , A,,, are the pre-exponential factors; ý f, r 9ý,, are the temperature exponents, 

and Ef,,., Eb, are the activation energies, of the forward and backward reactions, 
respectively. Note that in Eq. (3.58) the reaction orders a, *.,. and b, *,, are not necessarily 
equal to a, and b, in Eq. (3.52) 
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3.3.3 KIVA-11 Kinetic Model 

Substituting the Eqs. (3.58) into the turbulent Reynolds mass-averaged transport 

equations results in a mean rate with a series expansion for the exponential terms in Eq. 

(3.59). This introduces a rapidly expanding hierarchy of turbulent temperature-mass 
fraction-density correlations around the mean temperature (see Ahmadi-Befrui et aL 
198 1). Truncation of the high-order terms in this series is only valid if the fluctuations are 

small; a condition rarely satisfied in premixed turbulent chemically reacting flow. 

Furthermore, the task of determining the remaining terms is made even more formidable 

by the multiplicity of species and reaction mechanisms which characterise the combustion 

of practical hydrocarbon fuels. The reaction rates are in general stiff, that is, their time 

scales differ by many orders of magnitude from each other (Ramos 1989, p. 47). 

Therefore, in KIVA-11, the fuel oxidation is characterised by simplified reaction 

mechanism involving a single irreversible one-step reaction of the form: 

Ilkg fuel (F)l + fs oxidiser kg (0)1 ki ý {(l + s) kg produet (P)l (3.60) 

The global reaction rate is then expressed following Westbrook and Dryer (198 1) as: 

6 
kinetic-, ' -AT 

n 
exp(-E. /RT)ZFFZFob 

where A is the forward pre-exponential factor, n is the temperature exponent, E, is an 

effective activation energy and a, b are concentration exponents for the fuel and oxidiser, 

respectively. Setting n=0, Westbrook and Dryer tuned the remaining modelling 

parameters to the rich and lean flammability limits, as well as the dependence of flame 

speed on pressure and equivalence ratio. Their values for the two fuels propane (C3H8) 

and iso-octane (C8HI8) are shown in Table 3.3. These are used in the present study, but 

with moderate scaling of the pre-exponential factor A, by a factor CA, to fit experimental 
data (see Secs. 6.3.2 and 6.4.3). This is not unreasonable since the model is derived for 

laminar conditions and requires case-by-case tuning of the reaction rate in different 

turbulent regimes. Diwakar (1984) showed that the pre-exponential factor correlates with 
the equivalence ratio and the residual mass fraction in combustion studies of a 
homogeneous-charge engine. Present calculations have found that the value of A is 

extremely sensitive to the mesh type and resolution in the numerical model. Too high a 
value results in an excessive heat release and abrupt rise in pressure, whereas with too low 

a value the combustion is not sustained. 
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Table 3.3 Single-step reaction rate parameters (Westbrook and Dryer 1987). 

Fuel A Eý ab 
C3H8 8.6 x 1011 30.0 0.10 1.65 
C8HI8 4.6 x 1011 30.0 0.25 1.50 

Amsden (1993, p. 38) suggests installing a turbulent mixing-controlled model which 

mitigates this sensitivity, such that the tabular values for A require less adjustment. 

3.3.4 Eddy Break-Up Models: The Eddy Dissipation Concept 

Spalding (1971,1976) proposed that if the chemical kinetics is fast (i. e. a fast-chemistry 

assumption), then turbulent-mixing is the rate limiting process and, in particular, the rate 

of small-scale reactant mixing characterised by the turbulent kinetic energy, k, and its rate 

of dissipation, c. i. e. Regions of unburned fluid are successively broken down by 

turbulence into smaller structures until the reactants are sufficiently mixed at a fine scale 
for heat conduction and chemical reaction. This concept resulted in the development of 
the so-called eddy-break-up (EBU) model for turbulent combustion, based on an intuitive 

argument that the combustion rate is proportional to the inverse of the turbulent time 

scale, kle. The mean fuel consumption rate is modelled as: 

,21-c OF 
": '-CEBU Y; F_ 

k 
(3.62) 

where CEBu is a model constant and YF" is the mean squared fluctuation of fuel mass 
fraction. 

The eddy dissipation concept (EDC) proposed by Magnussen and Hjertager (1976), and 
later extended by Magnussen (1980,1989), is closely related to the EBU model. EDC 

gives an empirical expression for the mean reaction rate based on the assumption that 

chemical reaction occurs in regions only where both fuel and oxidiser coexist, and mix at 
a sufficiently high temperature. Magnussen (1989) states that these regions consist offine 
structures, which occupy only a small fraction of the flow. Kinetic energy is transferred 
from the mean flow to these fine structures through a cascade of turbulent interactions at 
intermediate scales. This is the basis of an analysis which enables expressions for the fine 

structure state to be developed. 
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EDC assumes that the fluid state is determined by the fine structure state, the surrounding 

state and the fraction of fine structures. For brevity only the final expressions given by 

Gran (1994) are presented here, since full details of their development can be found in the 

above references. In these expressions, superscripts * and " refer to the fine structures and 

surrounding fluid respectively. The turbulent fine structures are assumed to be 

concentrated in fine-structure regions, the mass fraction of the flow occupied by such 

regions is expressed as: 
1/4 V4 (2CD2 )- *F 

ý4CD21 ) 
(1k 

(3.63) 

where C,, = 0.134 andCD2= 0.5 are model constants. Then the mass fraction occupied 
by the fine structures is modelled as f 3. On the basis of simple geometrical 

considerations the time scale for the mass transfer rate between the fine/ structures and 

the surroundings is estimated as: 

, ro=(f 

112(! *)V2=(L 
D2 D D2 

33 
(3.64) 

where r, is the Kolmogorov time scale of the smallest scale motions. Hence, 'Y'/, r* 

would seem an appropriate expression for the rate of mass exchange between the fine 

structures and surroundings. However, Magnussen (1989) found that this tended to under 

predict the mass exchange rate, since it fails to consider the higher rate of entrainment of 

unreacted fluid concentrated in the fine structure regions enclosing the fine structures. 
Therefore, the mass exchange rate is modelled as: 

=, 
y2= 3c 
Ir * 2CDI k 

Then the mean species reaction rate is given by: 

P, 

= pth x(Y, * - Y, 

(3.65) 

(3.66) 

where X is the fraction of fine structures where reaction occurs, defined later. The Favre- 

averaged mass fractions for each chemical species, s, are related to their fine structure and 

surroundings values by: 

F, 
=-I lxy, * +(1-71X)Y, * (3.67) 
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An expression for the mean fuel consumption rate can now be developed from Eqs. (3.62- 
67). It is assumed that the fuel combustion is suitably represented by the same single 
irreversible one-step reaction as used for the KIVA-II kinetic model in Eq. (3.61). It is 

further assumed that this reaction progresses at an infinite-rate, such that the reacting fine 

structures achieve chemical equilibrium: i. e. the fast-chemistry limit. Then, the mass 
fraction of the reactant with the lowest availability in the fine structures is instantly 

consumed, such that the reaction rate is determined by its supply from the surroundings. 
Hence, the mass fraction of this reactant is expected to be very small in the fine structures 
(i. e. Y, .= 0), such that combination of Eqs. (3.66) and (3.67) enables the rate of fuel 

consumption to be described in terms of the Favre-averaged species mass fraction as: 

mx 
- 

P3 PF 'I-, y x 
YH 

where the following set of scaled mass fractions apply: 

(3.68) 

= 
Y- Lo yp 

min[Y., Y,, ], Y Y, 
Isp I+s 

(3.69) 

Here PF, PO and Pp are the local fuel, oxygen and products averaged mass fractions 

respectively, and s is the stoichiometric oxygen requirement to bum I kg of fuel. 

Magnussen (1989) suggests the following model for X (also see Gran 1994, p. 43): 

XýXCX2*X39 

where XI is a correlation factor for non-premixedness of the reactants: 

X1 
(fnin + 

PP) 2 

(YF + YP)(YO + YP) 

0: 5 X: 51 (3.70) 

(3.71) 

X2 expresses the degree of heating from hot products, since not all the fine structures are 
sufficiently heated to react: 

X2= min[a, 11 
yp 

7 (yp + Y, ýü. ý) 
(3.72) 

andX3 limits the reaction rate due to lack of reactants: 

(YP + Y. i") X3 = min[ 0,1] (3.73) Kin 
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Scenarios (for more details of this analysis, see Gran 1990, pp. 29-35): 

1. Regions of high product concentration: X2 = 1. Where reactants coexist equally 7.3 

otherwise if one (or both) reactants are unavailable, X3=1' 

2. Regions of low product concentration: X2= a. Always assumed that X3 ý-P such that 
fraction of hot products is rate limiting. 

The mean fuel consumption rate, Eq. (3.65), can then be expressed in the compact form: 

PF ý-P- 
3 X1 

. +Y)y] (3.74) 
2CDI (1-y 3 X) kP 

Ki P 

Note that the factor I/ (I _, j 3X) is generally very close to unity and has been omitted in 

some studies (e. g. Gran 1994). The strong appeal of the EDC model over the original 

eddy-breakup expression of Spalding is that it does not require prediction of the 

fluctuation in species mass fraction. Consequently, there is no need to solve additional 

equations for the concentration fluctuations as in a PDF approach. Gran (1994) 

demonstrated that EDC can give essentially similar results to those from a more complex, 

yet less general, laminar flamelet combustion model. Gran also concludes in this study 

that finite-rate kinetics should be incorporated into the EDC approach to ensure good 

agreement with experimental results. 

3.3.5 Hybrid Kinetic/EDC Model 

The KIVA-II kinetic combustion model has been adapted to account for both turbulent 

mixing and chemical kinetics. The new hybrid approach seeks to introduce the turbulent 
intermittency of the reacting species considered by the EDC model and retain the 

phenomena governed by chemical kinetics: ignition, pollutant formation, extinction, etc. 
First, a mean EDC progress rate, COEDC 9 for the fuel combustion reaction is obtained by 

substituting Eq. (3.74) for the fuel consumption rate into Eq. (3.53) and rearranging. 
Then, its harmonic average is taken with the original kinetic reaction rate of Eq. (3.61), to 

give the combined expression: 

C EDC kinetic 
hybrid -' B 

(1) EDC 
+ (')kinetic 

CB is an adjustable constant for tuning the harmonic rate (see Secs. 6.3.2 and 6.4.3). 

(3.75) 

/ 
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The original kinetic rate expression of Eq. (3.61) is then replaced directly by Eq. (3.75) in 

the KIVA-H numerical scheme. This integration method defines a constrained rate 

expression which prevents the density of any species from being driven negative 

regardless of the time step size (see Amsden et al. 1989, p. 128). The form of Eq. (3.75) 

enables the mean reaction rate of the new hybrid combustion model to be incorporated 

into this scheme without further code modifications being required. 

Finally, it is usual to assume that the turbulent mixing and chemical kinetic behaviour in 

spark-ignition combustion closely follows that of a premixed flame, as distinct from 

nonpremixed reaction. However, the present hybrid kinetic/EDC model is applicable to 

both regimes, such that simulations of Diesel engine combustion would also be viable in a 

subsequent study. 

3.3.6 Spark Ignition 

Ideally, an exact simulation of spark ignition requires that the processes present in the 

breakdown and arc phases of the ignition discharge are accurately resolved. See 

Heywood (1988, Sec. 9.5, p. 427) for a detailed description of these. Notably, it is during 

the arc phase that the exothermic reactions which lead to a self-propagating flame kernel 

develop. However, the heat transfer characteristics and reactions mechanisms involved 

are so complex that a vastly simplified model must be adopted in a multidimensional 

code. 

Therefore, ignition is simulated by adding internal energy at a uniform rate to 

computational cells in the spark plug region until the local temperature is raised to a cut- 

off input value (e. g. 1600 K). This rate is tuned to the minimum required for a self- 

propagating flame kernel to be established (see Amsden et aL 1989, p. 81). Rather than 

supplying energy directly to the charge mixture, it can be provided indirectly as the 

exothermic heat of reaction in Eq. (3.60). Ignition is then modelled by converting the fuel 

to products in a few computational cells. However, this approach ignores processes such 

as evaporation and premixing that occur prior to mixing. Ramos (1989, p. 346) suggests a 
more sophisticated approach to simulating the heat addition rate, yet admits that this still 
represents a highly idealised approximation. Assessment of this and other methods 
requires further work. 

68 



Chapter 3 Turbulent Combustion 

3.3.7 Autoignition & Knock 

A model to simulate end-gas autoignition in spark-ignition engines has been incorporated 

into the KIVA-II code according to Blunsdon (1994a), based on the popular Shell model 
(Halstead et al. 1975,1977; Hirst and Kirsch 1980). This enabled several investigations 

to be conducted in the present study in which autoignition is induced in an iso-octane/air 

mixture. 

Experimental studies of high pressure autoignition, using a wide variety of hydrocarbon 

fuels, have shown the following principal features (Halstead et A 1975,1977): 

1. A sharp, well-defined two-stage ignition, i. e. slightly exothermic reactions in a cool 
flame leading to autoignition, followed by rapid high-temperature reactions in a. hot 

flame. 

2. Transition from two-stage ignition to single-stage ignition with increasing temperature. 

3. A limited temperature rise (< 200 K) in the cool flame period, due to reaction 

quenching, followed by a rapid rise in temperature after autoignition, typically about 

107 K/s. 

4. A pronounced region of 'negative temperature coefficient' in which the total ignition 

delay increases with increasing temperature (see Halstead et al. 1975, p524 for detail). 

The Shell model was proposed as a generahsed kinetic model capable of simulating this 

autoignition behaviour with only a very small number of characteristic reactions. Rather 

than pursuing the details of oxidation chemistry, this model is designed only to predict the 

overall ignition behaviour. Several more recent models have been proposed which 

attempt to provide more information concerning the preignition heat release and evolution 

of key chemical species (e. g. Li et al. 1996, Moses et al. 1995). These include the 
formation of the oxidation product carbon monoxide, CO and other species classes. As 

CO has a strong infrared radiative signature this would be a interesting model for a 
dedicated knock/radiation investigation. However, the more detailed kinetic schemes 
employed in these newer models are not as amenable to inclusion in the present numerical 
scheme. Accordingly, the reduced Shell model is preferred for the present study, which is 
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primarily concerned with the correct prediction of the ignition delay, prior to the onset of 

the hot flame reactions, in which the radiative combustion products are largely formed. 

The following degenerate chain-branching reaction mechanism is employed in Shell 

model (Halstead et aL 1977): 

k RH+02 2R 

k 
P )R+P+heat 

f1k 
P )R+B 

f2k, 
- R+Q- )R+B 

R out 

R+Q 
k, 

4 out 27R 

B k' 
4 2K 

primarily initiation 

propagation cycle 

propagation forming B 

propagation forming B 

linear termination 

propagation forming Q 

quadratic termination 

degenerate branching 

(3.76) 

(3.77) 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

(3.83) 

This scheme involves the hydrocarbon fuel (RH), oxygen, radicals (R) formed from the 

fuel, products (P), degenerate-branching agent (B) and an autocatalytic product (Q), 

introduced to ensure a rapid chain acceleration at the second stage of ignition. R, B and Q 

are generic chemical entities, such that Eqs. (3.76-83) express a set of generalised 

reactions. In particular, species R represents the cumulative behaviour of all the 

propagation-chain radicals in local equilibrium (as signified by an overbar). For each 

reaction the rate parameters are fitted so that the measured ignition delays are correctly 

predicted. These all have an Arrhenius form, except for the global propagation rate, kP, 

which is given by: 

kp = llkh[021+'lkh + 11 kp, [RH] 
(3.84) 

where kp, (i=1,2,3) are Arrhenius expressions describing the rate-determining 
propagation steps and the brackets [] denote the mean molar concentration of the 

enclosed chemical species (c. f. Eq. (3.57)). 

I 
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The coefficients fj introduce extra flexibility when fitting the rates and are given by: 

fj == f; 
[0 

2 lxj[RH]"J, j=1,2,3,4 (X, = yi = 0) (3.85) 

where f; are also expressed in Arrhenius fonn. 

To implement the Shell model into a multidimensional code, several modifications to the 

reaction set in Eqs. (3.76-83) are required to ensure mass conservation is not violated. 
(Originally the model was developed for computations only up to the second stage of 
ignition. ) Following the procedure of Schdpert6ns and Lee (1985), the consumption of 
fuel and oxygen per propagation cycle is increased to balance the production of B and Q 

in Eqs. (3.78) and (3.81) which violate mass conservation. Assuming that the fuel 

structure is C,, H2m9 and given that two hydrogen atoms are abstracted each propagation 

cycle, then Eq. (3.77) is replaced by: 

-R+(I+cc) I RH+002 K+P+fB+f4Q + heat (3.86) 
IM 

p=n (Y - 1)C02 + -ly CO + H20 

where the coefficients a, 0 and y are given by: 

(3.87) 

fl WB + f4 WQ 

ß= n(2 -y) +m, 7= CO/CO2 ratio (3.88) 
WRH/M+ßW02' 2m 

The species R, B and Q molecular weights are related by: WB = WQ = 2WR = Wm + Woý 

Finally, to ensure mass conservation throughout the system, ScUpert6ns and Lee (1985) 

convert the radicals to inert nitrogen in the terminating reactions expressed by Eqs. (3.80) 

and (3.82). 

R- 
f3kp 

)BN2 2K k' 
ý25N2 where 8=_! 

LR 

(3.89) WN 
2 

An alternative (and perhaps more realistic scheme) is to covert the radicals to products, 
particularly in light of the fact that species R, B and Q are locally removed as products 
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when the hot flame reactions are established: this modification should be considered in a 
future work. From the present reaction scheme, nine rate equations for the concentration 

of each species are constructed as follows: 

d[RH] 
dt 

d[021 

dt 

d[R] 
dt 

d[B] 
dt 

d[Q] 
dt 

4001 
dt 

d[C021 

-kq 
lp'H1021- +I 

kp[Ifl 
m 

-kq[RHI[021-(a+l)pkp[R] 

2kq[RHI[021+2k, [B]-4k, [q2 
- f3kp[R] 

flkp[! Z]+f2kp[Q][-R]-kB[B] 

f4kp[R]- f2kp[Q][R] 

n 
m 

ykp 

dt 
n (I - y)kp 
m 

d[H201 
= kp[R] 

dt 

(3.90) 

(3.91) 

(3.92) 

(3.93) 

(3.94) 

(3.95) 

(3.96) 

(3.97) 

d[N21 8f3kp [R] + 45 kt[R]2 (3.98) 
dt 

This system of coupled ordinary differential equations (ODEs) is then integrated to 
determine the time dependence of the species concentrations. These concentrations decay 

(or grow) from their initial values at widely varying rates such that the system exhibits 

stiff behaviour. Hence, a solver for systems of stiff ODEs is required. Kuo (1986, p. 156) 

lists standard packages, but the present solver combines several short canned routines 
from Press et aL (1992). These employ a Kaps-Rentrop algorithm to implicitly integrate 

the eight ODEs with automatic adjustment of the time stepsize to ensure numerical 
stability. 
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The autoignition model is arranged to coexist alongside the high temperature reaction 
scheme in KIVA-111. Initial values for the chemical species concentrations are passed to 

the submodel, which then subcycles the ODE solver to integrate the rate equations over 
the time step imposed by the KIVA-II numerical scheme. The species concentrations are 

updated and heat source in Eq. (3.54) is incremented to account for the cool flame heat 

release by: 

A6chem 
=q (cc + 1) kp [R] (3.99) 

where q is the negative heat of reaction or exothermicity of the reaction in Eq. (3.86) 

when Ilm moles of fuel are abstracted per propagation cycle. The high temperature 

combustion model is then called to determine the progress of the hot flame reactions. If 

the low and high temperature reactions are allowed unrestricted competition, diffusion 

and convection of heat ahead of the flame front causes immediate autoignition in 

circumstances where normal flame propagation would be expected. To avoid this 

problem Schapert6ns and Lee (1985) suggest using the Q-concentration as an indicator to 

the progress of the cool flame reactions. Fig. 3.1 shows typical traces measured for the 

species concentrations of R, B and Q during two-stage autoignition. Maxima in the 

curves for R and B correspond to the development and subsequent quenching of the cool 
flame reactions, in which the Q-concentration rapidly builds to about 0.1 Mol/m 3 and the 

temperature to 900 K. Thus, the autoignition model is skipped in computational cells 

above 900 K in which the Q-concentration is lower than 0.1 Mol/m 3. Schdpertbns and 
Lee (1985) impose several other constraints to control the low temperature reactions and 

attain a smooth interface with the high temperature model. These have been largely 

adopted in the present implementation which operates according to Fig. 3.2. This 

procedure is repeated for each computational cell (ij, k), since there is no direct 

chemical coupling between different cells. Then, the KIVA-II equilibrium solver is called 
to solve for the constraint conditions in Eq. (3.56) over the entire domain. A very similar 

scheme to that presented here has been shown to perform well in two spark-ignition 
engine studies (Blunsdon et al. 1993; 1994b) and also in Diesel engine combustion 
(Blunsdon et al. 1992; 1994c). 
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Figure 3.1 Experimental simulation of end-gas temperature and composition during 
two-stage autoignition in a spark-ignition engine. R, B and Q defined in the 
text. Reference: Halstead et al. (1977). 
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3.4 Boundary Conditions 

The following sections discuss several types of boundary condition for both two- and 
three-dimensional simulations of flow and combustion in spark-ignition engines. 
Specification of radiative properties at boundaries is discussed separately in Sec. 4.1.1. 

3.4.1 Turbulent Wall Functions 

Near-wall boundary layers are characterised by steep gradients in the flow properties for 

which numerical solution of the complete turbulent transport equations (see Sec. 3.2) is 

impractical due to massive spatial discretisation required to adequately resolve the detail. 

Therefore, for economy and convenience, conditions in the turbulent boundary layer are 

modelled with wall functions: one-dimensional analytic solutions to simplified forms of 
Eqs. (3.42-51). For brevity the analysis described by Amsden et al. (1989, pp. 98-106) is 

surnmarised here. The boundary layer flow is assumed to be a quasi-steady, one- 
dimensional Couette flow with constant shear stress and heat flux. Then, it is convenient 

to define a wall Reynolds number, ý, at a perpendicular distance, y, from the surface as: 

r-u (3.100) 
9 

where u* is a characteristic velocity, called the shear speed and is related to the wall shear 

stress, a,, by the expression: 

a. = 

For notational convenience, the Favre-tildes and time-averaging overbars denoting mean- 
flow variables have been omitted in these equations. Unless otherwise stated, all state 

variables in the following expressions are for the mean flow. 

The wall layer is modelled as two zones: the viscous sublayer, ý<R, and the inertial 

sublayer, ý>R,, where the boundary between these two regions occurs at a critical 
Reynolds number, R,, = 114. For the zone adjacent to the wall, the flow is taken to be 

purely laminar, while in the outer zone it is assumed to be fully turbulent. Then the 

velocity component parallel to the wall, u, is determined by matching to the following 
logarithmic profile: 
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uý 
1/2 ý :5 Rc 

u* 

11 

/ic ln(Cjwý 7/8) 
+Bý> Rc 

(3.102) 

where the constants ic = 0.4327, B=5.5 (for smooth walls) and c,,, = 0.15. The normal 

gas velocity is set equal to the normal wall velocity. An analogous temperature wall 
function is used to obtain the wall heat flux, J, for fixed temperature walls with the 
formula: 

u*cp (T - T,, ) 
J. 

u 
Pr, 

1/2 Pr, 
u 

U, 

U- 
Rc 

( 
Pr - 

1)] 

ý: 5 R, 

ý>R, 
(3.103) 

where T,, is the specified wall temperature and Pr, is the Prandtl number of the laminar 

fluid. Frictional dissipation at the wall by the shear stress, a", causes fluid momentum to 
be converted to a heat. This is added to the internal energy of the wall layer, together with 
the source or sink associated with the wall heat flux, J, 

Boundary conditions are also required for the k-e turbulence model. It is assumed that 

very close to the surface in the near-wall boundary layer that 'history' effects (i. e. 

convective and diffusive transport) can be neglected. Then the local rate of turbulence 

production is balanced by the viscous dissipation rate. In this local equilibrium, the wall 
functions for k and e at a normal distance, y, are derived as: 

k=c 1/2 aw 

11 p 

c 
3/4 

k 3/2 
A- 

ic y 

(3.104) 

(3.105) 

where the turbulence model constant, c,,, is given in Table 3.1. The k-boundary 

condition of Eq. (3.104) is modified from original KIVA-II which satisfied Vk - ii = 0. It 

was found that a zero gradient boundary condition for k leads to short turbulent mixing 
times (i. e. kle ) in the boundary layer and this gives rise to unrealistically fast (mixing- 

controlled) combustion along the chamber walls. This modification was suggested by 
Kuo and Reitz (1989). Grimsmo (1991, p. 108) also noted this problem, but chose 
instead to impose at limitation on the length scale y in the e -boundary condition. 
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A key assumption in the numerical implementation of the wall functions in Eqs. (3.100- 
105) is that the finite difference mesh point nearest the wall falls within the two-zone 
boundary layer. Typically, this will be true if ý 1/2 < 400 at the mesh point. Furthermore, 

the log-law relations are essentially based on the characteristics of a steady flow past a flat 

plate. However, the flow inside the engine combustion chamber is irregular, highly 

rotational and may have several moving stagnation points. Moreover, the chamber walls 

almost consist entirely of curves and comers. The apparent flatness of the wall can be 

increased by moving the near-wall mesh point closer to the boundary such that the radius 

y Ir is smaller, where r is the radius of curvature, but in general the validity of the log- 

law wall functions is highly questionable. In particular, the boundary layer flow can be 

expected to show a significant departure from the flat plate model during combustion 

when wall quenching reactions are present. Another point to note is that, although the 

mixing-length formulation for c given by Eq. (3.105) is used in both zones of the 
boundary layer, it is strictly only applicable in the inertial sublayer. Despite these 

problems, log-law wall functions are almost universally employed in multi-dimensional 

engine calculations for lack of a better alternative (Heywood 1988, p. 803). 

3.4.2 Open Boundaries: Intake and Exhaust Ports 

In three-dimensional Cartesian geometries of the engine combustion chamber, annular 

orifices are opened and closed in the cylinder head according to the valve timing to 

simulate intake and exhaust ports. Existing code for the definition of inflow and outflow 
boundaries in KIVA-II has been extensively adapted for this purpose. The gas exchange 

process can then be modelled in which the exhaust products are expelled from the 

cylinder and replaced by the induction of fresh charge. A good description of the in- 

cylinder conditions prior to the combustion phase is obtained. This is a significant 
c advantage over Lenng-ine combustion studies in which computations are started at inlet valve 

closure, using assumed distributions for the flow variables within the combustion 

chambeqe. g. Kuo and Reitz 1989). 

Since the intake and exhaust manifolds are not modelled, approximate conditions must be 

specified at the open port boundaries. In the present implementation, the treatment used 
at both intake and exhaust ports is identical. Each port is considered to be connected to a 
large plenum at a constant pressure, p.,,,,, which acts at a distance x outside the 
boundary. 

78 



Chapter 3 Turbulent Combustion 

The pressure on the boundary is then interpolated as (cI Amsden et al. 1989, p. 86): 

Pboundary """ 
P.. b 'Y+ P'X 

X+y 
(3.106) 

where p is the pressure value in the first interior computational cell at a distance y inside. 

Setting x=0 gives the true specified pressure condition, but is not advised since this 

results in the perfect reflection of acoustic waves and can affect the upstream flow in 

subsonic calculations with outflow boundaries. Taking x to be a characteristic dimension 

of the computational region is suggested to reduce this problem. Therefore, x is set equal 

to the engine cylinder radius and p,,,,, b is adjusted to obtain a desired port mass flow. 

In the present study, afixed intake pressure was specified to simulate naturally aspirated 

charging of the engine cylinder, but the exhaust pressure was varied to include wave- 

action effects in the exhaust. Following the procedure of Das (1996) the method of 

characteristics is used to calculate the response of a one-dimensional, unsteady, 
homentropic flow in the exhaust pipe. A wave action model by Benson (1982) was 

coupled to the KIVA-H for this purpose. The present implementation is relatively 

rudimentary, but it provides a good basis from which to develop more sophisticated 

analysis of gas flow in both the exhaust and intake manifolds. The simulation of exhaust 
blow down and displacement is demonstrated by the engine prediction in Sec. 6.4. (More 

discussion of the coupling between the wave action model and exhaust boundary is also 

given in Sec. 6.4.2. ) 

A non-homentropic analysis including effects such as temperature gradients, heat transfer, 
friction and chemical reaction should be considered in any future improvements. Pearson 

and Winterbone (1996) also discuss the recent popularity of finite-difference schemes 

over the method of characteristics. 

In addition to the above pressure specification, the boundary flow velocities are arbitrarily 
set equal to those at corresponding mesh points on the first interior mesh plane. These 

two conditions are then sufficient for an outflow. However, for gas entering the cylinder 
through the intake ports, or when a backflow occurs through the exhaust ports, the 

chemical species densities, entropy, turbulent kinetic energy and turbulent length scale of 
the incoming fluid must also be specified. Reference incoming species densities, Ps, amb 9 
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are given at pressure, p.,,, b. Then the values imposed at the inflow boundary are 
isentropically scaled with the relation (Amsden et al. 1989, p. 85): 

P3 -2 Pv, amb '(P lPamb)llye»b (3.107) 

where p is the pressure calculated in the first interior computational cell and 'Y ab 
is the 

ratio of specific heats of the inflow mixture. The inlet turbulence quantities af& 

prescribed as: 
ki,, = 0.10 Wj. ' (3.108) 

.LI Yin =2 Zmax (3.109) 

where Wi,, is the mean inflow velocity and z. ' is the maximum valve lift. The turbulent 
length scale, y,., is then substituted into Eq. (3.105) to find the viscous dissipation rate. 
The turbulent kinetic energy, and its dissipation, are both assumed to be uniformly 
distributed at port boundaries. The sensitivity of the predicted combustion flow field to 

error in the estimated inlet turbulence is expected to be largely mitigated by the swamping 

effect of turbulence generation and dissipation during compression after inlet valve 
closure. However, this has not been assessed. 

3.4.3 Moving Boundaries: Piston and Poppet Valve Simulation 

Moving boundaries are used to simulate the piston motion, and in three-dimensional 
Cartesian geometries, the opening and closing of poppet valves in the cylinder head. In 

both cases, the boundary layer treatment is identical to that described for rigid walls 

above, and the only added complication is specification of the boundary position and 
velocity. 

The instantaneous piston position and velocity are given by (Heywood 1988, Sec. 2.2): 

zp = a(l + COSO) + (12 
-a2 sin 

2 0)1/2 
_1 

yj = -nm 4zi nA 11 a cosO (3.111) (12 
-a 

2 
sin 

2())1/2 

where (o is the angular velocity of the crankshaft, 0 is the crank angle and I and a are 

resPectively the connecting rod length and crank radius as shown in Figure 3.3. 
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Figure 3.3 

Parameters defining piston assembly 
and poppet valve geometry in pentroof 
combustion chamber. 
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Numerically, Eq. (3.111) is implemented by specifying a velocity for all mesh points on 
the piston surface equal to the mean instantaneous piston velocity over each small 
timestep in the KIVA-II numerical scheme. Note that the piston velocity was inaccurately 

specified in the original code, but newer releases of KIVA (version 03/27/92 or later) use 
the same formulation as the present study. 

Poppet valves are crudely modelled as an infinitesimally thin disk and stem as described 

in Sec. 2.4.5, thus avoiding the large computational requirement associated with an 

accurate description of the valve geometry (e. g. Chen et aL 1996). No valve cam data 

was available for the engines modelled in the present study, so the valve action was 

simulated from timing and maximum lift data, together with a specified acceleration ratio, 

r, = a. la. ýn = -20. Then, the valve accelerates briefly at the start and end of its motion, 

with an extended period of constant deceleration in between. A typical lift curve is 

obtained as shown in Fig. 3.4 (c. f. Heywood 1988, p. 223), where z. ' is the maximum 

valve lift. This is described by the following equations of motion: 

0�,: 50: goi: z=-La y2 max 
«) 0m )' 

p (o- 
m)2+ZP 

0 <0<0 : z, = -L a,. i� 0 (3.112) 122 max 

02 : 5() : 5()vc: z` =ýa. (0 _0 ")2 y 

where 

0= 72kom +0�), 0l =(O -r. 0.0)1(1- rv)p 02 = 20�, -01 (3.113) 

and 0,,, and OVC are the valve opening and closing crank angles. The corresponding open 

area profile is also shown in Fig. 3.4. Since the valve head and stem are assumed to be 

infinitesimally thin, the plateau region corresponds to the lift exceeding one quarter of the 
head diameter. (Note that a more realistic valve and seat geometry would give a much 

smoother variation in open area as shown by Heywood 1988, p. 233. ) 

The poppet valve velocities are so small that for convenience, the valve heads are 

numerically implemented as stationary walls. Their position is then updated at each 
timestep of the KIVA-II numerical scheme according to the each valve's lift curve and 
orientation. To ensure numerical stability during computations a minimum initial valve 
lift of 2 mm was specified resulting in a truncated lift profile as shown by the dotted lines 
in Fig. 3.4. 

82 



Chapter 3 Turbulent Combustion 

3.4.4 Periodic Boundaries 

Periodic boundaries have been used in the two-dimensional engine simulations. The flow 

field is assumed to have n-fold periodicity about the cylinder axis. A pseudo-polar 

computational mesh is defined in Cartesian co-ordinates such that the z-axis is aligned 

with the cylinder axis. Then the computational region is composed of points in the pie- 

shaped sector 0 :90:! ý 21c In such that the periodic boundaries are those for which 0=0 

and 0= 27c In. The conditions imposed on these boundaries for scalar and vector 

quantities are, respectively, 

Scalars: 0 (r, 0+ 21r/n, z) =0 (r, 0, z) 

Vectors: u(r, 0 +2n/n, z) = R. u(r, 0, z) 

(3.114) 

(3.115) 

where r= (X2 +. Y2)1/2' 0= tan-'(xlX) and R is a rotation matrix about the z-axis for an 

angle of 21c/n degrees, i. e. the left-hand matrix in Eq. 4.31 with angle IV = 21c/n. . Two- 

dimensional calculations are made in a single 0.5' slice assuming 720-fold periodicity in 

the above relations. 

3.5 KIVA-11 Numerical Scheme 

The KIVA-Il numerical scheme employees a finite-volume method to difference the 

governing transport equations presented in Sec. 3.2 in both space and time. The extensive 
historical development of this scheme has resulted in its documentation being spread over 

many articles. Five key references are the reports by Amsden et A (1985a, 1985b, 1989) 

and O'Rourke et aL (1986,1989) at the Los Alamos National Laboratory, New Mexico 

where the KIVA family of codes was written. Further references on particular aspects of 
the solution scheme can then be sourced from these. 

Only a brief overview of the numerical scheme is given below: the detail is not repeated 
here in the interests of brevity. Several important methodology changes to the code are 
then discussed, together with troubleshooting techniques used to improve its numerical 
stability and efficiency. 
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3.5.1 Temporal and Spatial Differencing 

Finite-differencing is based on a finite volume approach called the ALE (arbitrary 
Lagrangian-Eulerian) method which is largely a conservative and first order accurate 
scheme. Spatial differences are formed over a curvilinear mesh of hexahedral cells (see 
Sec. 2.4), whose vertex locations may be arbitrary specified as functions of time, such that 
the cells are arbitrary hexahedrons. This flexibility enables the computational mesh to 
follow changes in the combustion chamber geometry that arise from the piston and valve 

motion in spark ignition engines. The governing conservation equations are discretised in 

their integral form, with the volume of a typical mesh cell used as the control volume, and 
with gradient or divergence terms transformed to surface integrals by applying the 
divergence theorem. It is usually assumed that the integrands are uniform within cells or 

on cell faces when a volume or surface area integral is determined. 

Temporal differencing is performed with respect to a sequence of discrete times t" 
(n = 0,1,2, ... ) such that the solution is marched forwards in time through a series of 
finite time steps, Atn = tn+1 _ tn' where the integer n is the cycle number. Each 

computational cycle is divided into two stages: a Lagrangian phase followed by a rezone 
(or Eulerian) phase. In the Lagrangian phase the vertices of the computational mesh move 
with the fluid velocity, and the control volumes deform with the fluid such that there is no 
convection across cell boundaries. In the rezone phase, the flow field is frozen and the 

vertices are moved to new user-specified positions. The flow field is then remapped or 
rezoned onto the new computational mesh by convecting material across the cell 
boundaries, which are regarded as fixed in space in a Eulerian description of the fluid 

movement. 

3.5.2 Solution Procedure 

The Lagrangian calculation is subdivided into two phases, A and B, in the numerical 
scheme. Phase A calculates the mass and energy source terms due to chemical reactions 
(see Sec. 3.3). In the present implementation, the Phase A internal energy sources also 
includes changes due to radiative heat transfer from the combustion products (see Sec. 
5.5). Phase B then solves for the diffusion terms in the governing equations, together 
with those associated with acoustic waves, namely the pressure gradient term and velocity 
dilatation terms. Previously, these terms have been solved explicitly with a time step 
satisfying the Courant sound speed restriction, Cs=cAt1Ax: Mf, where c is the 
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isentropic speed of sound and the factor f 2t 1. In low Mach number problems, this is 
inefficient because the flow features of interest usually vary on a time scale much longer 

than the Courant time step required to resolve the acoustic mode. 

Therefore, to avoid this restriction, coupled implicit differencing of the diffusion and 

acoustic mode terms is used to stabilise the finite-difference approximations when the 
Courant condition is violated. These implicit equations are then solved together in Phase 

B using a modified SIMPLE algorithm (Patankar 1980), with individual equations being 

solved by the conjugate residual method (O'Rourke et al. 1986). The KIVA-H code 

authors selected the conjugate residual method for its rapid convergence properties, low 

storage requirements and its amenability to vectorisation for faster calculations (x5) with 

compilers offering that option. (Unfortunately, this last feature was not available on the 
HP and SUN machines used in the present study. ) Despite these attractive properties, 
implicit solvers by their iterative nature can be very expensive. Therefore, to improve 

computational efficiency, a partially-implicit solution scheme is used where the amount of 
implicitness is varied to maintain numerical stability. A weighting factor, (D. . for the 

pressure terms is based on the sound speed Courant number, and an analogous parameter, 
(DD t is used to difference diffusion terms based on a local diffusion Courant number, 
C =VAt/AX2, D where v is the diffusivity. The forms of these variable implicitness 

parameters are given in Appendix H by Arnsden et al. (1989). A fully implicit solution is 

only used in the limit of an infinitely large time step. The remaining source terms in the 
k-F, turbulence equations are also calculated in Phase B. 

The convective transport terms are then determined in the rezone phase, or Phase C, such 
that each complete cycle in the KIVA-II numerical scheme is composed of three phases 
A, B and C. Two alternative convection schemes are available: quasi-second-order 
upwind (QSOU) differencing and partial donor cell (PDC) differencing. Amsden et aL 
(1989) fully describes these algorithms and presents the results of a comparison study 
with other convection schemes. Both QSOU and donor cell are monotone, explicit 
schemes. Monotonicity is a desired property to avoid computational oscillations in 

regions of steep gradients. However, their explicit formulation requires a calculation time 
step, At,, that satisfies the Courant stability condition, u,. AtIAX < 1, based on the fluid 

velocity u, relative to the computational mesh. In the discussion of the Lagrangian 

calculation above, the advantage of removing this limitation by using a implicit scheme 
were strongly advocated. However, although trial calculations with two implicit schemes 
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(i. e. QUICK and fully-implicit donor cell) where found to be unconditionally stable at 
time steps, 25 x At,, they were much less accurate than those using explicit methods 
(O'Rourke et al. 1989, p. 6). Therefore, the code authors considered it more favourable to 

choose an explicit scheme and subcycle the convection calculation AtlAt, times, where 
At is the overall computational time. 

Subcycling the convection calculation and using implicit differencing for the remaining 

terms in the governing equations then removes any stability restrictions on the overall 

time step, At. Its size is then more loosely constrained by accuracy criteria associated 

with fluid accelerations and cell distortions during the Lagrangian phase, and with the 

turbulence-chemistry coupling (see Amsden et al. p. 52-56). 

Scalar variable are stored at cell centres, while the Cartesian velocity components are 

stored at cell vertices. The mesh vertex motion is then obtained directly from the velocity 
field during the Lagrangian phase of the ALE calculation, without the need for 

interpolation. However, this arrangement has a major drawback. Pressure waves are 

encouraged to propagate along cell diagonals, rather than via adjacent cells, creating a 
'checkerboarding' effect in the numerical pressure field and associated irregularities in the 

velocity field. In KIVA-II, this difficulty is alleviated by introducing velocities centred on 

cell faces for temporary use during the acoustic subcycling and in the advective fluxing of 

cell-centred quantities. In addition, these parasitic velocity modes can be numerically 
damped using an alternate node coupler: this auxiliary procedure is fully described in 

Appendix L by Amsden et al. (1989). It is worth note that a scheme has been tested based 

on the exclusive use of face-centred velocities (Amsden et al. 1985b, p. 3). Dramatic 

improvements in the numerical behaviour were observed, but the method was judged too 

unwieldy due to the extra storage and indexing requirements. 

3.5.3 Methodology Changes 

The second release of KIVA-II (dated 05/31/90) was adapted for the present study. 
Several important methodology changes have been made to improve accuracy, remove 
inconsistencies and to accommodate the new submodels detailed in previous sections. 
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The centrifugal terms were rewritten to improve angular momentum conservation and the 

pressure gradient treatment at open boundaries and solid walls were modified to ensure 

numerical consistency with other parts of the code. Both of these changes are described 

by Amsden (1993, pp. 39-40), but were originally made on the basis of corrections 

provided with a later KIVA-II release (dated 03/27/92) and from a private communication 

with A. Amsden (Los Alamos National Laboratory). 

New mesh generation software has been written to improve the meshing capabilities of 

the original code (Chapter 2). A more general routine was then required to setup the 

velocity boundary conditions on the arbitrary-shaped nonorthogonal. computational 

meshes generated. Therefore, a new algorithm has been developed to handle the sharp, 

acute and obtuse edges and comers that arise on the boundary surfaces. The most 

complex section of the logic concerns zeroing normal velocity components on solid walls 

where the orientation of the surface normal must be calculated. This requires looking in 

all six logical directions from a vertex and selecting the neighbouring vertices (up to four) 

that lie on the same surface. Then, the cross-products of vectors, defined between the 

vertex and its neighbours, are averaged to find the required normal orientation. These 

vertex non-nals are calculated initially and stored. Recalculation is then only required 

when mesh planes are removed or replaced by the chopper (see Sec. 2.4.5). 

The inclusion of pressure-density-interaction effects into the turbulence production term 
(see Sec. 3.2.4), has required modification of the original difference approximations given 
by Amsden et al. (1989, p. 41). A new formulation has been successfully implemented in 

which new terms are differenced in an analogous manner to original ones. In particular, 
their prescription is chosen to avoid the appearance of negative computed values for k 

and e. The differencing procedure is fully detailed in Appendix C using the notation of 
Amsden et al. (1989). The differencing methodology of Amsden should be studied 
beforehand, since it is too lengthy to be repeated here. 

Finally, it was necessary to impose additional constraints on the overall computational 
time step, At, as follows: 

Spark ignition (Sec. 3.3.6): It was found necessary to cut the value of At at the time of 
ignition to prevent code failure due to the sudden heat release and obtain better 

temporal resolution of the initial flame propagation. A cut factor of 0.1 was used. 

87 



Chapter 3 Turbulent Combustion 

Autoignition model (Sec. 3.3.7): When autoignition occurs in a computational cell, At 

is constrained such that the total chemical heat release does not exceed a specified 

fraction of the total internal energy in the cell. This is analogous with the constraint in 

Eq. (136) by Amsden et al. (1989). 

Opening of valve ports (Sec. 3.4.2): Engine simulations with valve ports require that 

At is cut when the ports open, due to the large fluid accelerations and strain rates that 

result, particularly at exhaust blowdown. A cut factor of 0.1 was used (c. f. Amsden 

1993, p. 30). 

Wave action submodel: The pressure wave oscillation in the exhaust is solved by the 

method of characteristics using a time step set by stability criteria. At is constrained by 

the submodel. time step during exhaust open period, but usually accuracy criteria in the 

KIVA-II numerical scheme are more restrictive. 

3.5.4 Program Structure 

The entire solution procedure is represented in Fig. 3.5. Alongside each box in the flow 

diagram appears the primary and supporting subroutines called for the associated task. A 

comparison with the original KIVA-II program structure (Amsden et al. 1989, pp. 58-59) 

reveals extensive modifications. All routines concerned with spray modelling for Diesel 

engine combustion have been (temporarily) removed to reduce compilation time. New 

subroutines for the autoignition, wave action and radiation have been incorporated into 

the scheme, while preserving the highly modular nature of the original coding. Pre- and 

post-processing facilities in the original program have been largely replaced by dedicated 

and separate software. 

Both original and new subroutines are almost exclusively programmed in FORTRAN 77 

(and its extensions), with the exception of some C system routines. During development 

a library of linkable binaries was maintained to minimise compilation times. Numerous 

minor coding modifications have been made to improve accuracy, flexibility, robustness 

and portability. The original Cray code has been adapted to run on both HP and SUN 

workstations. Only four of the subroutines are platform dependent. 
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Chapter 3 Turbulent Combustion 

3.5.5 Troubleshooting 

In engine simulations of the gas exchange process it was found that the sudden changes in 

acceleration and strain rate when the valve ports first open, together with the large'cell 

distortions arising from rezoning the valve motion, often caused the code to fail. Limiting 

the maximum time step to a small value (i. e. 0.1" crank angle) improved the solution 

stability, but convergence problems still arose at a few specific points in the calculation. 

These problems were found to occur during the SIMPLE iteration in the Lagrangian phase 

of the numerical scheme. Essentially, this procedure involves predicting the pressure 
field and then implicitly solving for the diffusion terms in the velocity and temperature 
fields. These, in turn, are then used to solve for a corrected pressure field using equations 
that difference the pressure terms implicitly. This procedure is then repeated until the 

predicted and corrected pressures agree within a specified tolerance. Within this outer 
'big' iteration, the implicit solution of each flow quantity (velocities, temperature and 

pressure) is also iterative. All these inner iteration loops in KIVA-11 are terminated after 
500 iterations, if convergence is not achieved. This has been modified, however, for the 

pressure iteration in the present study. After 50 pressure iterations control is returned to 

the outer loop, and the big iteration is then repeated up to 50 times. The velocity and 
temperature fields are thus updated more frequently in response to changes in the pressure 

solution, enhancing the robustness of the scheme. 

To further improve the stability, a fully implicit Lagrangian (Phase B) calculation is used 
to bypass trouble spots. This has been achieved by overriding the automatic control of the 

variable implicitness parameter, Op (Sec. 3.5.2), in the valve open period and globally 

setting it equal to unity. A moderate increase in the solution time must be forfeited. 

Special treatment was also necessary when the combustion mesh was rezoned on to the 

mesh used during the valve open period in the engine prediction of Sec. 2.4. 
Unacceptably large changes in the shape and orientation of computational cells in the 

pentroof region of the combustion chamber would normally cause the convective 
transport calculation to fail. However, by enforcing a very small time step, At,, for the 

explicit calculation it was possible to stabilise the scheme when the mesh was swopped. 
Then the convective time step was allowed gradually return to its original value, 
satisfying the Courant stability condition. 
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3.6 Summary 

1. The turbulent combustion model solves the Favre-averaged Navier-Stokes equations for 

chemical species, mass, momentum and internal energy. The Favre-averaging results in 

unclosed terms, namely the Reynolds stresses, two turbulent scalar fluxes and the mean 

chemical reaction rate (and mean radiative heat flux). 

2. Closure of the Reynolds stresses and scalar fluxes is by a first-order gradient-diffusion 

model based on a turbulent viscosity. The turbulent viscosity is evaluated from the 

k-c turbulence model with extra terms to account for velocity dilatation and pressure- 
density effects. Higher-order models are also discussed. 

3. Fuel oxidation is characterised by a simplified reaction mechanism involving a single 
irreversible one-step reaction. The mean reaction rate is found with a hybrid expression 

combining a kinetic model and the eddy dissipation concept (EDC) model for mixing- 

controlled combustion. Case-by-case tuning of this model is required. Other reactions 

are considered to proceed either kinetically or to be in chemical equilibrium. 

4. Submodels are included for spark ignition, two-stage autoignition (i. e. the Shell model) 

and one-dimensional wave action in the exhaust pipe. Improvements are suggested. 

5. A 'log-law' boundary layer model is used. The ability to model canted valves (as an 
infinitesimally thin disk and stem) for engine simulations has been added. The valve 
heads are treated in the numerical scheme as pseudo-stationary solid walls. 

6. The numerical scheme is based on an ALE (arbitrary Lagrangian-Eulerian) calculation. 
Diffusion, pressure and dilatation terms are evaluated in a SIMPLE procedure: 
individual (implicit) equations are solved by the conjugate residual method. A 

subcycled, explicit calculation is used for convective terms. 

7. There are concerns as to the validity of the numerical scheme for in-cylinder engine 
flows: Favre-averaged terms may not be appropriate; the k-c turbulence model is 

unable to describe large anisotropy in the stress field associated with swirl and tumble; 
the general validity of the modelled c-equation is suspect and several assumptions of 
the boundary-layer model are violated. 
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Development of Radiative 
Heat Transfer Methods 

The governing equations for radiation transport in complex media are stated and methods 

for their numerical solution are reviewed and classified. The Monte Carlo, YIX and 

discrete transfer methods are selected for implementation. An entire section is devoted to 

each method which fully detail their theory, coding, modifications and extensions. 

An assumption used throughout this chapter is that the media under analysis are gray, that 

is, all optical properties are wavelength independent. However, the present methods are 

extended for nongray (spectrally dependent) media in Chapter 5. 

4.1 Equations for Radiation Transport in Participating Media 

The gaseous mixture in a spark-ignition engine combustion chamber at any instant in time 

may be considered as an enclosed participating medium absorbing, emitting and scattering 

radiative energy. The highly complex nature of the radiative heat transfer between the 

chamber walls and the medium requires that several assumptions are made to simplify the 

analysis to a manageable level. The system is assumed to be in local thermal equilibrium 

such that the time dependence of radiative intensity may be neglected and the Planck 

spectral distribution can be applied to describe the radiative emission. This is normal 

practice for most engineering problems. Furthermore, the medium refractive index n is 

taken as constant and equal to unity since for the radiating combustion products n-1. 
As the bending of electromagnetic waves is caused by a varying refractive index, it 

follows from this later assumption that the radiant energy in the present system will travel 

along straight line paths or rays. Finally, the combustion chamber walls will be taken as 

opaque, gray surfaces which diffusely emit, absorb and reflect radiation, i. e. there is no 
transmission of radiation and the surface optical properties are independent of both the 

wavelength and the direction of the incident or outgoing radiation. In practice, this is a 

reasonable approximation for the radiative properties of the soot layer which tends to 
form on the combustion chamber walls. 
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origin of 
ray (on 
surface S) 

Figure 4.1 Geometry for the derivation of the equations for participating radiation. 

4.1.1 Integro-Differential Formulation 

The integro-differential equation of radiative transport is given by (Modest 1993, p. 304): 

di(r, 9) 1 (4.1) i- Vi(r, + ic i, (r) +f i(g) (I)(si, g) M, (r) 
ds 41c 4x 

where i(r, g) is the radiation intensity at a given location r, in the direction g, within an 
infinitesimal beam of energy travelling through a participating medium. 

The first term on the right-hand side describes the total attenuation of the radiative energy 
by absorption along the beam path and by scattering away from the direction of travel, i. e. 

out-scattering. Both phenomena are directly proportional to the magnitude of the incident 

energy and are written in terms of a absorption coefficient ic and a scattering coefficient 

cis , respectively. Absorbed energy is converted into internal energy, while scattered 

energy is redirected and appears as augmentation along another direction (see below). 

93 



Chapter 4 Development of Radiative Heat Transfer Methods 

The combined process is known as extinction and accordingly the combined constant of 
proportionality: 

0= Ic + cr, (4.2) 

is called the extinction coefficient. Note that in a nonhornogeneous medium 1C, CF. and 
P are functions of the spatial location r, but this has not been explicitly indicated in this 

and the following equations, to simply notation. 

As the beam loses energy by extinction, it is also gains energy by emission from the 

medium and by scattering from other directions ii into the direction of travel S^, i. e. in- 

scattering. At thermal equilibrium the emitted intensity in the medium is proportional to 

the local blackbody intensity ib(r) and the proportionality constant for emission equals 
that for absorption, namely ic. Hence, radiative emission along the beam path is 

described by the term ici,,. The integral term in Eq. (4.1) then represents the radiative 

energy contribution by in-scattering from the 4n solid angle K2(r) surrounding the 
location r (including the direction i). 0(g,, g) is the scattering phase function and 
describes the probability that a ray from one direction ii will be scattered into a certain 

other direction i. Mie theory will be used to model scattering in all particulate media 

considered in the present study (see Modest 1993, Chap. 10). 

A common approximation for the Mie scattering phase function is then given by the series 

expansion (Chu and Churchill 1955): 

a,, P', 
n=O 

(4.3) 

where a. (n = 0,1, ..., N) are constants and P,, (ij - g) are Legendre polynomials in terms 

of the cosine of the scattering angle, g, -i. The addition theorem for Legrendre functions 

(Yanovitskij 1997; Gradshteyn and Ryzhik 1994, p. 1033) is used to replace Eq. (4.3) by: 

m 
(D(gi f 

g) css N(N + 2) k k(OSAO) 
m 

k=O 
(4.4) 

q. are constants and Sk are functions of the form P. (cosO)cosmý or P. (cosO)sinmý. 
(Here 0 and 0 are the polar and azimuthal angles for the direction S^, written in spherical 
coordinates, and P,, ' are spherical functions of the first kind. ) 
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The phase function expressed in Eq. (4.4) is normally truncated after the fourth term (i. e. 
M= 3), otherwise the analysis becomes too involved. This corresponds to a linear 

anisotropic scattering, i. e. co = 1, c, = c2 = c3= g and So = 1, (S 
I 'S 2 'S 3 

)T =j such that: 

(D(gjqg)= I+ g g-gi (4.5) 

where the asymmetry factor, g, describes the directional behaviour of the scattering. 
When g=0 equal amounts of energy are scattered into all directions and 0=1. This is 

isotropic scattering. Retaining Eq. (4.4) in its most general form for the present, 

substituting into (4.1) and dividing throughout by P yields: 

di(r, g) (0 m 
- 

i(r, g) + (j)) ib (r) +I ck Sk (i) w. (r) (4.6) 
dt 4n 

k=O 

where the single scattering albedo, co, the optical thickness, 'T and the functions wk are: 

defined as follows: 

CO =as /p, I-co =lc /P (4.7) 

,c=fP ds (4.8) 

(r) f Sk (g) i(r, g) dQ(r) (4.9) 
47c 

These wk's have an important physical significance. For example, wo is irradiation from 

all solid angles on a point r in the medium and W, 0 W2, w3 are the three Cartesian 

components of the radiation flux vector, % at r, i. e. 

=f i(r, g) M(r), (WI, W2, W3)T = q, (r) fi i(r, g) ffi(r) (4.10) 
4x 41c 

An important relation is obtained between these two quantities by integrating Eq. (4.6) 

over all solid angles from 0 --ý 4n giving (Modest 1993, pp. 313-314): 

V. q, (r)=lc [4nib(r) - w. (r)] 

where V-q, is the divergence of radiative heat flux at the point r in the medium, i. e. the 

net loss or gain in radiative energy per unit volume. Equation (4.11) is also written in 

terms of the gas blackbody emissive power, e., using the substitution e9= 7C 'b - 
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q1 

qi 

4' 
r' 

q 

Figure 4.2 Radiative energy balance at the boundary surface. 

Medium V 

F- CY T', 

Surface S 

A companion expression can be found for the radiative heat flux on the boundary surface. 

Consider a point r' as shown in Fig. 4.2. Integrating the incoming intensity over the 

entire 21r hemispherical solid angle above the surface, and dividing by the surface area, 

defines the incident heat flux as: 

qi qj f i(r', s^) 
27c 

where fi' is the unit normal to the surface at r'. Since the boundary is taken as opaque, 

gray and diffuse, the emitted heat flux is given by: 

q� =q� =(1 -F-) tli +ce, (4.13) 

where F- is the surface emissivity and e, is the surface emissive power. All quantities are 

only functions of surface position r. (The outgoing intensity i,, is independent of tile 

direction s^ for a diffuse surface. ) The net surface heat flux at r' is then: 

q, - qi 

Finally, given a local temperature, T, on the boundary surface, or T in the inedlurn, the 

corresponding blackbody emissive powers are, respectively: 

e =i4 

where cy is the Stefan-Boltzmann constant. 

(YT 9 (4.15) 
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4.1.2 Integral Formulation 

Defining the source function, S(r, i), for radiative intensity as: 

S(r, g) = (I - co) ib(r) + (0 f i(i)(D(ii, g) dfli(r) (4.16) 
4n 4z 

allows the radiative transport equation (4.1) to be written as: 

di(r, i) 
+i(r, S(r, S^) dt 

(4.17) 

Consider a small optical distance c from the point r' to the point r along the ray path 9 

over which the extinction coefficient is assumed to be constant (for the present) such that 
Eq. (4.8) gives r=PIr- r"I . Then by integrating Eq. (4.17) over this path segment the 

equation of radiative heat transfer is expressed in its integral form as: 

lr-r'l 

i(r, g)=i(r', g)e-Plr-r'l+ fS(r,, i)e-O'Pdt (4.18) 
0 

were it can be seen that the position vector r, =r-it denotes all points between r' and r 
if it is noted that i= (r - r') /Ir- r'*I. The first term on the right-hand side of Eq. (4.18) 

describes the exponential decay of the initial intensity i(r', g) due to extinction over the 

optical distance r=PIr-0 to the point r. There, the local intensity i(r, g) is also 
augmented by emission from all points r, along the path segment. This process is 

expressed by the second integral term, where the integrand represents the energy 
contribution from the local emission at r, attenuated exponentially by self-extinction 
over the optical distance between r, andr. 

Now expanding for the source function in Eq. (4.18) and replacing the solid angle integral 
by the series expansion in Eq. (4.6) gives: 

Ir-r ,I 

e-P lr-r'l + e-Pl Ck SkMWk(r, ) dt (4.19) 
0 

[(1 

1 
47c k=O 

The point r' is taken to be on the boundary surface, which is diffuse, so the initial 
intensity i(r', g) can be replaced by the outgoing intensity i,, (r'). An expression for w, 
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wl, w2, etc. is then obtained by multiplying Eq. (4.19) by Sj(g) (i = 1,2,..., M) and 
integrating over all solid angles from 0 ---) 4n [cI Eq. (4.9)]. i. e. 

e-P Ir-el 
w, (r) = ff T-- i,, (r') S, (g) i- ii'dA(r') 

r s 

+ (I ib(r, ) Si (g) dV(r, ) 
112 

fff 

r- r, 
v 

i 
c. 

fff(Oß 
+-2: Si(i) S, (i) w. (r, ) dV(r, ) i=0, l,..., M; rEV 

41r 
k=O v 

Ir- 12 

(4.20) 

Similarly, an expression for q, is found by taking reS in Eq. (4.19), multiplying it by 
g. fi, and integrating it over all solid angles from 0 --> 27c [cI Eq. (4.12)]. i. e. 

-P Ir-r'l 

,. 2 
ff 

--= -i - fi) i- fi'dA 
s 

Ir-r I 

+ 
fff (1 _ (») ß e-ß """ 

i. (r, ) (-i - fi) dV(r, ) 
Ir- r, 12 

m -A lr-rf 
+y Ckfff 0) e wk (r, ) Sk(g) (-9 - fi) dV(r, ) rE S 

4 k=O Vr-r, 
I' 

(4.21) 

The subscript i here is for 'incident' heat flux and should not be confused with that of w 
in Eq. (4.20) which refers to the different values of S, (g). Substituting Eqs. (4.11), (4.13) 

and (4.14) into Eqs. (4.20) and (4.21) and rearranging then gives the final fonn for the 
integral equations of radiative heat transfer as (c. f. Tan 1989): 

fff ß K(r, r, ) [Fg (r, ) + F. (r, )] dV(r, ) 
v 
ff K(r, r') F, (r') g- Ü'dA (r**) 
S 

fff ß K(ir, r, ) [F, (r, ) + F�(r, )] Si (i) dV(r, ) 
v 

+ ff K(r, r') F, (r') Si (9) g- ii'dA (r') 
s 

f, (r) =fff ßK(r, r, )[F, (r, )+F. (r, )1(-i-fi)dV(r, ) 
V 

ff K(r, r') F, (r') (-i - fi) g- Ü'dA (r') 

(4.22) 

r: V (4.23) 

rES (4.24) 
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where 

fg (r) = 4eg (r) -I-V-q, (r) 
(I-CO)p 

f,, (r)=wi(r), i=1,2,..., M 

e, (r) - q, (r) 

F (r) =e (r) - 
Co V-q, (r) 994 (1 - co)ß 

Co m 
F. (ir) = 

2: 
Ck St (ý) Wk (1r) (4.25) 

4 k=I 

F, (ir) = e, (r) - q, (r) 

and K denotes the exponential kemel function defined as: 

lr-r'l 

K(r, r') = exp[- f0 (r - it)dtlIn Ir-r /12 (4.26) 
0 

or with r, replacing r' in K(r, r, ). Observe here that the integral term becomes PIr-0 

if the extinction coefficient P is constant over the path segment r' to r, as assumed 

previously in the derivation of Eqs. (4.20) and (4.21). However, with the kernel in its 

most general form, it is emphasised that Eqs. (4.22-26) are also applicable to media with 
spatially dependent optical properties such that P=P (r) , co = co (r) and e=c (r). 

In later sections it is shown how several numerical methods are developed from these 
integral equations. 

4.1.3 Closure Conditions: Surface Heat Flux & Divergence of Radiative Flux 

For a general radiative problem there are two unknowns in the medium, i. e. eg and V-q, , 
and two unknowns on the boundary, i. e. e, and q,, provided that all optical properties are 
known or specified as functions of these. One of each pair must be given in order to solve 
for the other. The most common closure conditions are as follows: 

On the boundary: 

(a) q, is specified. This corresponds to a von Neumann boundary condition. 

(b) e, or the equivalent surface temperature, T, is specified -a Dirichlet condition. 

(c) A mixed (Robin) boundary condition is applied. 
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In the medium: 

(a) V-q, is specified. A special case is radiative equilibrium, V-q, = 0. i. e. steady 

state conditions without significant heat conduction, convection, viscous 
dissipation, or internal heat sources. 

(b) eg , or the equivalent gas temperature, Tg is specified. 

Condition (b) in the medium also includes combined mode heat transfer problems in 

which the gas temperature distribution is obtained by solving the conservation equations, 
Eqs. (3.42-51). The radiation transport equation is coupled to these equations primarily 
through the radiation flux vector q, (written as q,,, ) in Eq. (3.49). Substituting back into 

the internal energy equation, Eq. (3.45) and expanding out the radiation term gives the 
divergence of radiative heat flux V-% as the unknown. 

A combined mode solution then proceeds briefly as follows. An initial guess is made for 

the flux divergence V-q, and the conservation equations are solved to obtain Tg. These 

temperatures are then fed back into the radiation calculation in order to update the flux 
divergence field. The entire process is repeated until a convergence criterion is met. A 

coupled flow-radiation solver is described later in Sec. 5.5. 

4.2 Numerical Methods for Participating Media: A Review 

The integro-differential nature of the radiation transport equation, which arises from the 

spatial and direction dependence of radiative intensity, makes the analysis of radiating 

participating media inherently complex. Exact analytical solution is only feasible for 
highly idealised situations, and as a result, a great diversity of approximate numerical 

methods have been proposed in the latter part of this century. Some methods have 

received much attention, while others that appeared promising in the past have now fallen 

out of favour. This is largely a result of. (t) the analyses of more difficult problems 
involving multidimensions, variable properties, scattering anisotropy and/or spectral 
effects, and (ii) the development of new computational hardware and software. Thus, the 
following discussion focuses only on the survivors, or new methods, that show the 
greatest promise for sustained development. The texts of Modest (1993), and Siegel and 
Howell (1992), together with two general review papers by Chan (1987) and Howell 
(1988) provide additional (albeit dated) information. 
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II 
deterministic stochastic 

in nature 

II 
integral-differential integral 

form of RTE fonn of RTE 
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discrete finite zonal discrete YIX Monte 
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Figure 4.3 Classification of solution methods for the radiation transport equation (RTE). 

To understand how different numerical methods relate to each other it is useful to develop 

a framework into which the techniques can be placed. Figure 4.3 shows a possible 

classification system where distinctions have been based on key aspects of methods' 
formulations. The stochastic nature of Monte Carlo methods immediately sets them apart 
from all other numerical techniques which use a deterministic approach. Subdivision of 

the deterministic methods is then possible depending on whether their formulation is 

based on the integro-differential or integral form of the radiation transport equation. 
Discrete ordinate methods are an example of the former while the zonal, discrete transfer, 

YIX and finite element methods are all developed from the exact integral forin. 

Computationally, this distinction has important consequences. The integro-differential 

formulation generally leads to much sparser matrices than the integral form and thus 

solvers require much less computational effort for a given number of unknowns. 
However, the integro-differential equation is defined in a high-dimensional space (r, g), 

so the number of unknowns is usually large. This is in contrast to the integral 

formulation, where only the three space coordinates appear resulting in fewer unknowns 
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when a numerical method is applied. Another advantage of the integral formulation is 

that the divergence of radiation flux in space is solved for directly. Tan (1991) argues that 

in cases of combined mode heat transfer the coupling is stronger between the radiation 

transport equation and the energy equation than when the integro-differential formulation 

is used. Hence, the convergence of iterative schemes is faster. 

Monte Carlo Methods. A general solution method for participating radiative heat 

transfer, able in principle to exactly simulate all important physical processes, was 

presented as early as 1964: it is the Monte Carlo method of Howell and Perlmutter 

(1964a, b). In essence this method stochastically models the exchange of radiative energy 
by ray tracing a random sample of photons, or energy bundles, from their points of 

emission to their points of absorption. Ironically, it is the inherent modelling flexibility 

offered by this stochastic approach that is also responsible for the two principal 

shortcomings of all Monte Carlo methods. The first of these is the non-analytical, 'non- 

appealing' statistical nature of their results which always have some level of uncertainty. 
The second is the often extensive computational run times required to obtain an 

acceptable level of precision and accuracy in these results. Thus, historically, Monte 

Carlo methods have been used either as a means of verifying faster deterministic 

techniques, as in the present work, or where there is no other convenient method 

available. However, the competitive advantage of other methods is expected to shrink as 

problem complexity increases and computational hardware improves. A good, but dated, 

account of Monte Carlo methods for all modes of heat transfer is that of Haji-Sheikh 

(1988). Recently, the excellent doctoral thesis of Farmer (1995) reviews several Monte 

Carlo algorithms for radiative heat transfer and considers some of the more difficult 

aspects of realistic media. The 'pathlength' based Monte Carlo approach described in 

Sec. 4.4 is developed largely from this work. 

Discrete Ordinate Methods. These techniques were first used to solve the neutron 
transport equation of integro-differential form (see Tan 1991, p. 18). Since this equation 
is almost identical to that for radiation transport, discrete ordinate methods have also been 

optimised for radiative heat transfer problems (Fiveland 1984; 1988). Essentially, these 

methods transform the integro-differential fori-nulation given by Eq. (4.1) into a set of n 
simultaneous partial differential equations, each describing the direction variation of 
radiative intensity, i(r, ii) ,i=1,2 , ..., N. These N discrete directions are selected using 
S,, quadrature (Fiveland 199 1) of the total solid angle of 47r, where N= n(n + 2). 
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Arbitrary anisotropic scattering phase functions can be treated using approximations 

similar to those shown in Eqs. (4.34.5). An efficient sparse matrix solver is then used to 

determine the intensity field, from which the radiative heat flux, on a surface or inside a 

medium, is readily calculated. 

However, discrete ordinate methods are not without their shortcomings. Inaccuracies 

arise from ray effects and false scattering (Chai et al. 1993a). Ray effect refers to the error 
incurred by approximating the continuously varying angular nature of intensity into a 
finite set of discrete directions. It is a fundamental problem of all methodologies that use 

comparable angular discretisation schemes for the intensity. Chai et al. (1993a) refers to 

some possible remedies used by the neutron transport community. False scattering, on 

the other hand, is a problem associated specifically with discrete ordinate solvers, 

whereby an artificial scattering effect is introduced by the spatial differencing scheme. 
Consequently, genuine discontinuities in the intensity field appear smeared in solutions. 
(This phenomena can be considered analogous to numerical diffusion in fluid dynamics. ) 

Negative intensities may also result from the spatial differencing, causing numerical 

oscillations and instabilities. Chai et al. (1993b) investigated the diamond, step (upwind), 

positive and variable-weight differencing schemes and found that only the step 

approximation is unconditionally stable. Finally, a major disadvantage of all conventional 
discrete ordinate schemes is that they lack sufficient generality to permit analysis of 
irregular, three-dimensional geometries. 

Therefore, new angular and spatial discretisation practices are being developed. These 

employ sophisticated finite volume (Raithby and Chui 1990; Chui and Raithby 1992; 

1993; Chai et al. 1993c) or finite element (Fiveland and Jessee 1993; 1994; Hoover et al. 
1996) based discrete ordinate formulations. Testing of these methods for complex 

geometries and various element shapes is ongoing, but perhaps most encouraging of all is 

a new algorithm by Sakami et al. (1997). It uses an integral equation for radiation 
transport in place of classical spatial differencing schemes. In fact, the new approach 
could be considered as a discrete ordinate - discrete transfer hybrid, since the 

characteristic equation used is that which forms the basis of the latter method. This 
feature results in a general and accurate formulation with only a moderate increase in the 
level of complexity. The algorithm does not generate negative intensities and the authors 
believe that false scattering errors are minimal. At present the method is applicable to a 
tetrahedral mesh, but extension to arbitrary hexahedral element shapes is expected. 
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Zonal Methods. Hottel and Cohen (1958) pioneered the first analytical treatment of 

radiative heat transfer in participating media using a zoning approach. In their method a 

nonisothermal radiating system is subdivided into a finite number of isothermal volume 

and surface area zones. An energy balance is then written for the radiative heat exchange 
between any two zones. This leads to a set of simultaneous algebraic equations for the 

unknown temperatures or heat fluxes, the coefficients of which embody the 

opticogeometric properties of the system. These coefficients are referred to as the 
'exchange areas' and must be computed. Larsen and Howell (1985) later expressed the 

energy balance in terms of 'exchange factors', which are physically measurable quantities 

and showed their mathematical relation to exchange areas. In a computational sense both 

methods are equivalent. More recently other zonal formulations have been proposed (e. g. 
Naraghi et al. 1988; Yuen et al. 1992) which improve accuracy or extend applicability to 

more difficult media. However, in spite of these efforts, zonal methods do not perform 

well in complex physical situations involving nonhomogeneous and nongray media. 
Furthermore, zonal methods are equivalent to a Galerkin finite element solution to the 
integral equations that uses a piecewise-constant interpolating function across elements 
(Tan 1991, p. 22). Therefore, it is likely that more accurate finite element methods 

employing higher-order approximations will eventually supersede zonal calculations. 
Though, at present, zonal exchange area relations are useful in hybrid formulations with 
the Monte Carlo and YIX methods (see Secs. 4.4.4 and 4.5.3). 

Discrete Transfer Method. This method (Shah 1979; Lockwood and Shah 1981) is a 
hybrid of Monte Carlo, zonal and discrete ordinate methods. It is particularly well suited 
for the analysis of complex geometries, since is combines the ray tracing basis of Monte 

Carlo algorithms with the faster deterministic nature of the later two methods. Other 

important attributes include: good economy, ease of application and a conceptually simple 

methodology which strongly retains in evidence the physics of the problem. This last 

quality should not be undervalued, and has certainly helped -to maintain the method's 
appeal even as newer, more general, but also more complex, methods have been 
developed. 

Discrete transfer calculations of combustors by Abbas et aL (1984), and of compartment 
fires by LA)ckwood and Malalasekera (1988), both demonstrate the method's general 
applicability to practical problems of combined mode heat transfer. However, it is not 
possible to resolve the error associated with the radiation treatment from that of the 
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turbulent combustion modelling in these studies. Hence, several more recent publications 
have focused on verifying the discrete transfer method in isolation. Carvalho et al. (199 1) 

compared discrete transfer solutions with those from several other methods for absorbing, 

emitting and isotropically scattering media. Murthy and Choudhury (1992) and Meng et 

al. (1993) both verified calculations on irregular grids, the latter study using an 

unstructured triangular mesh. These studies were largely two-dimensional. Haidekker et 

al. (1994) compared Monte Carlo and discrete transfer solutions for absorbing and 

emitting media contained within three-dimensional arbitrary geometries discretised with a 

curvilinear mesh. Further cases have also been presented by Malalasekera and James 

(1995) with verification against exact solutions and those of other methods. An efficient 

ray tracing methodology, developed for the present study (Sec. 4.3.2), is also outlined in 

this latter paper. However, despite some criticism of the discrete transfer method in these 

studies (e. g. Meng et al. 1993), none significantly add to the original formulation of 
Lockwood and Shah (1981). In view of this, Cumber (1995) has suggested possible 

modifications to improve accuracy or computational performance. Notably, some new 

quadrature formulae are proposed, but the calculations to demonstrate the advantage of 

these are not particularly convincing. A discrete ordinate S, quadrature has also been 

considered in the present study and its attributes are described later in Sec. 4.6.2. Cumber 

further modifies the original discrete transfer formulation to obtain a more accurate 

representation of the temperature field, though the improvement in accuracy does not 

seem to merit the added complexity, particularly in multi-dimensional problems. 
However, there is no discussion by Cumber or others of the method's restriction to diffuse 

boundaries and isotropically scattering media. Furthermore, there has been no formal 

verification of the method for several important aspects of realistic media that are relevant 
to this study, i. e. complex curvilinear geometries, nonhomogeneous and nongray 

properties. Therefore, these points need to be examined. 

YIX Method. Tan (1989) perceived that a more efficient numerical method to solve the 

exact integral equations for radiative heat transfer might be obtained with specialised 
mathematical techniques. This work culminated in the development of the YIX method 
(Tan and Howell 1990a, b; Tan 1991). The integral equations are first transformed to a 
distance-angular form, then the distance integrals are constructed and pre-stored such that 

all subsequent integrations may be rapidly computed as simple sums. This approach 
eliminates the time consuming evaluation of the kernels (i. e. Eq. 4.26) of the distance 
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integrals. Tan (1991, p. 68) states that the computing time is proportional to the number 
of unknowns, N, whereas for analogous methods (e. g. zonal method, finite element 

method) it is proportional to Ný Moreover, the formulation is very flexible: anisotropic 

scattering and nonhornogeneous, nongray media can be treated efficiently in three- 
dimensions (Hsu et al. 1993; Hsu and Farmer 1995; Hsu and Tan 1996). A benchmark 

conduction-radiation problem has also been solved (Hsu and Tan 1996) to demonstrate 

the method's application to combined mode heat transfer. 

However, in spite of its success, the YIX method has not made as significant an impact on 
the heat transfer community as one might expect. Undoubtedly this is partly due to its 

novelty, but may also result from the fact that details of the three-dimensional formulation 

have as yet not been published and the complex mathematics is discouraging. The 

changes required to extend one- and two-dimensions schemes are not obvious since the 
form of the kernel function varies for each dimension, i. e. they are exponential functions 

in one-dimension and Bickley functions in two-dimensions (Tan and Howell 1990a). In 

addition, more work is required to develop an efficient ray tracing algorithm in order to 

treat irregular geometries. 

Finite Element Methods. The widespread use of finite element methods for conductive 

and convective transport has stimulated interest in extending their application to radiative 

media. Most early works adopt a traditional Galerkin method of weighted residuals to 

solve for the integral equations of radiative heat transfer (Razzaque et al. 1983,1984; 

Chung 1988). This approach is then directly compatible with established Galerkin 

methods for the other modes of heat transfer, and by choosing high-order interpolation or 

shape functions to describe radiative property variations across finite elements, it offers 

the possibility of high accuracy. However, usually linear or quadratic shape functions are 

specified since computation of higher-orders quickly becomes prohibitive. Furthermore, 

great complexity and computational expense is added to the traditional finite element 

method by the radiation terms involving fourth powers of temperature. This can be 

avoided by using the Swartz-Wendroff approximation in which the fourth power of 
temperature is expanded directly as a separate function, albeit one closely related to the 

temperature itself. Bums et al. (1994; 1985a) assessed its performance for sample 

conduction/radiation problems. Although there was a marginal loss of accuracy it was 
found that the Swartz-Wendroff approximation provided a significant speed-up and 
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improved numerical stability. Bums et al. (1995a, b) also analysed problems with 
nonhomogeneous and nongray radiative properties. Their formulation is restricted to 
diffusely reflecting boundaries and isotropically scattering media, but it is expected that 
these limitations can be removed with further work. Rather, it is the large computational 
requirements of finite element methods that remains their main disadvantage, even after 
the improvements of Bums and others. 

Present Research Activity. The comment accompanying each of the methods reviewed 

above is based on the consensus of opinion in the heat transfer community at the time of 

writing. However, the situation was very different at the start of this research. The ray 

tracing methodology of discrete transfer and Monte Carlo methods seemed much more 

adaptable to complex geometries than the discretisation practices of contemporary finite 

element or discrete ordinate schemes. Hence, early work focused on the former methods: 

the discrete transfer formulation of Lockwood and Shah (1981) was implemented (with 

modifications to improve both generality and performance) together with several Monte 

Carlo algorithms from various sources in the literature. Shortly thereafter, the results of 
three-dimensional benchmark studies using the YIX method (Hsu et aL 1993) were so 

encouraging that it was also considered important to investigate this approach. Moreover, 

like the Monte Carlo and discrete transfer methods, the YIX formulation is built around a 

ray tracing methodology, such that all three methods may naturally be categorised as 'ray- 

tracing-based' techniques. A general three-dimensional YDC algorithm was developed on 
the basis of published one- and two-dimensional schemes (Tan 1991). Finally, the earlier 
Monte Carlo algorithms were updated to the present state-of-the-art from Farmer (1995). 

Clearly, even in this short period there has been much activity in the field of participating 

radiative heat transfer and a continuous effort is required to stay abreast of new 
developments. In the formulation and coding of the present Monte Carlo, YIX and 
discrete transfer methods care has been taken to incorporate the best available knowledge 
from heat transfer, statistical and graphics literature. This work is detailed in following 

sections. 
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4.3 Geometric Modelling and Ray Tracing 

A key feature of the radiation treatment in this study is that, irrespective of whether the 

user chooses to use a Monte Carlo, YIX or discrete transfer approach, all three methods 

embody the same geometric representation scheme and ray tracing procedures. This 

arrangement offered the following advantages: 

1. Easier coding and development: a shared library of graphics routines could be used to 

code the geometric and ray tracing aspects in all three methods, such that only the 

unique part of each numerical scheme had to be implemented separately. 

2. Bias-free numerical comparisons: variations in coding and optimisati6n strategies, 

particularly with respect to the graphics procedures, are minimal such that performance 

comparisons between the present methods will be more genuine than those compiled 

with data taken from independent studies (e. g. Tong and Skocypec 1992). 

The efficiency of the procedures used in the graphics library is of critical importance to 

the overall performance of each method. For example, substantial speed-ups were 

obtained by careful optimisation of the ray tracing search strategy. Thus, considerable 

time and effort was invested in developing an efficient and robust geometric scheme, yet 

with sufficient generality to enable integration into existing finite volume or finite 

element software packages with only minor modification. Among its principal features 

are: the ability to accommodate irregular geometries, an efficient ray tracing algorithm 

which takes advantage of the element connectivity, the flexibility to describe 

nonhomogeneous property distributions, and direct data transfer, without interpolation, 

when the radiation transport is solved alongside other modes of heat transfer. These 

features are all discussed in the sections below. 

4.3.1 Spatial Discretisation and Element Properties 

In order that the radiation methods are compatible with the turbulent combustion model 
(Chapter 3), for a multi-moded heat transfer analysis of spark-ignition engines, they are 

specifically designed for the spatial discretisation described in Chapter 2. Here the 

radiation space is subdivided into hexahedral control volumes of arbitrary size and shape. 
Since finite element modellers use tetrahedral elements for greater flexibility, this would 
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appear to be a major limitation. However, for the purposes of the radiation analysis, 
hexahedral cells are effectively reduced into their tetrahedral primitives and cell faces are 

treated as two triangular elements. Consequently, only superficial changes are required to 

adapt the present geometric scheme to an unstructured tetrahedral mesh or one which has 

mixed element shapes. These changes are largely concerned with modifying the element 
indexing procedures. 

For the structured hexahedral meshes considered in this study, two basic geometric 

properties must be determined: the cell face areas (coincident with boundaries) and the 

cell volumes. Consider the face ABCD of the arbitrary hexahedral volurne in Fig. 4.4. Its 

area is obtained as the sum of the surface area vectors of the two triangles ABC and CDA, 

i. e. 

L (VAC X VBI)) AABCD "I-2L[(VABXVBC)+(V('DXVDA)l -2 (4.27) 

which reduces to the vector product of the two diagonals AC and BD as shown. Here VAB 
for example, represents the Cartesian vector frorn vertex A to B. 

The cell volumes are obtained by subdividing each hexahedral element into tetrahedra and 

then summing the volumes of each tetrahedron. The volume of the tetrahedron ABDE, 

for example, is found from the vector expression: 

IV VARDE 
--ý 6 AE '(VAB X VAD) 

II Ic 
------ ----------- ----- ------ 

(a) (b) 

(4.28) 

it 

Figure 4.4 Two subdivisions of an arbitrary hexahedral element into five tetrahedra. 
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If the decomposition is made about a single vertex then six tetrahedra always result. 
However, only five tetrahedra are obtained using the arrangement shown in Fig. 4.4(a), 

i. e. 
VHEX = VEABD + VEBFG + VEDGH + VERGD + VCBDG (4.29) 

In this special decomposition four tetrahedra have E as their summit and one tetrahedron 

originates in point C, opposite to E. For the same two vertices C and E, there is a unique 

second decomposition into five tetrahedra as shown in Fig. 4.4(b), i. e. 

V "": V 
CADH 

+v CAHF 
+ VEAFH 

HEX " CAFB 
+v CFHG +v (4.30) 

Where the four comer points on any of the cell faces are not coplanar, Eqs. (4.29) and 
(4.30) do not give identical values for the volume, and thus the average is always taken. 

Hirsch (1988, p. 260) observes that the volumes of hexahedral cells can also be evaluated 

with a 2x2x2 Gaussian point integration formulae. However, this is found to give an 

equivalent result to the average of Eqs. (4.29) and (4.30). 

4.3.2 Ray Tracing and Search Strategies 

The major computational effort in all the present numerical methods is spent in tracing 

either the ray or bundle paths through the hexahedral volumes in the discretised radiation 

space. The information that must be returned by the ray tracing algorithm to the 

numerical routines differs slightly depending on the method: discrete transfer and Monte 

Carlo both require the path segment lengths in each cell cut by a ray, while = needs to 

know in which cells specific integration points along a ray path lie. However, the same 

tracing and search strategies may be used for all three methods with minor modifications 
to tailor the path length information to individual requirements. 

Rays are traced from the boundary (and interior) along directions prescribed by the type of 

angular discretisation used in formulation of each method. This usually involves a fixed 

set of angular directions with Cartesian vector components (x', y', z'), written with 

respect to a local coordinate system on each element where the local z-axis is aligned 

with the surface normal fi. These local components are then converted to global 
components by transforming from the local coordinate system to the global Cartesian 

system. 
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Figure 4.5 Definition of the polar and azimuthal angles (p and xV for transforming from 
the global Cartesian coordinate system to a local system on the boundary 
surface. 

Each local vector direction (X. -, Y. - , Z. -)T is rotated through an angle xV about the z-axis, 

and an angle (p about the y-axis, such that its new direction i becomes: 

(cosy -sinNf 01 COS(P 0 sin(p ' x" 
siny cosy 0010yp (4.31) 

00 1), -sin(p 0 COS(Pý, ý, Z'., 

where (p and xV are the polar and azimuthal angles with respect to the global axes when 
ii is written in spherical coordinates (see Fig. 4.5). The surface normals are conveniently 

calculated and pre-stored at the same time as the area calculation in Eq. (4.27), with the 

expression ii =A/ I Al. 

If the position vector r' denotes the launch location or origin of the ray, travelling in the 
direction g, then its parametric representation is: 

r(t) = r'+ i t, (t = scalar) (4.32) 
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The ray-cell boundary intersections must be found along this path. A robust approach is 
desired, able to handle both distortion in the hexahedral cell faces, and the precision 
problems (i. e., see Haines 1989) that can arise from floating-point errors, particularly 
when the ray strikes an edge. The first difficulty is overcome by pre-processing cell faces 
into two triangles prior to the intersection calculation. Thus, the six quadrilateral faces of 
each hexahedral volume are divided into twelve triangular elements. Care has to be taken 
to ensure that the same diagonal is chosen for a face common to two neighbouring cells, 

otherwise void spaces could result in the mesh. (This pre-processing stage would be 

skipped with tetrahedral spatial discretisation schemes. ) 

The problem is then reduced to recursively finding the nearest triangular element 
intersected by the ray, until a boundary surface is struck, or as in the case of the present 
Monte Carlo method (Sec. 4.4), when its associated radiative energy is fully depleted. 

Since millions of intersection calculations may be required for a complete radiation 

simulation, optimisation of the tracing algorithm is paramount. 

Ray tracing methodology is an extensive area of research in computer graphics literature 

for the rendering of three-dimensional images. Some of the newest ideas are debated in 

Internet discussion groups and a special ray tracing FAQ (frequently asked questions) 

compiled by Haines (1992) provides excellent reviews of several ray-polygon intersection 

techniques. 

A comparison of their speed for randomly generated n-sided polygons (n = 3,4, etc. ) 

found that an algorithm by Badouel (1990) is the fastest for ray-triangle intersections (i. e. 

n= 3). Run times were an order of magnitude smaller than for the least efficient method, 
namely an 'angle test' approach which is often found in older ray tracing literature. 

Furthermore, Badouel not only determines the global coordinates of the intersection point, 
but also the interpolation parameters (i. e. the barycentric coordinates), to localise this 

point with respect to the triangle's vertices. In the present implementation, these 

parameters are used in a novel way to simplify the tracing logic and eliminate problems 
from floating-point imprecision: the second difficulty noted above. 
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ro 

Figure 4.6 Parametric representation of the point intersection point rp. 

Consider the triangle shown in Fig. 4.6 which has vertices, r, (i = 0,1,2) with Cartesian 

coordinates (xi, yi, zi). The algorithm first determines if the ray defined in Eq. (4.32) 

intersects the plane on which the triangle lies and then tests if this intersection point is 

inside the triangle. 

Stage 1: Intersects Embedding Plane? The normal, n, of the plane containing the 

triangle is first calculated from the cross product: 

n= ror, x ror2 (4.33) 

where ro r, = r, - ro, etc. For each point rp in the plane, the dot product rp -n is a 

constant. This constant is equal and opposite to the value: 

d =-ro -n (4.34) 

since the triangle vertex ro lies in the plane. Then the plane can be represented by the 

general vector expression: 

rp n+d=0 (4.35) 

Substituting the parametric equation for the ray, Eq. (4.32) into (4.35), gives the value of 
the scalar parameter t corresponding to an intersection as: 

d+n. r' (4.36) 
n-i 

113 



Chapter 4 Development of Radiative Heat Transfer Methods 

The intersection is rejected if the plane and ray are parallel (i. e. n-g=O), or the 
intersection is behind the ray origin (i. e. t:! ýO), otherwise the coordinates of the 
intersection point rp are obtained by substituting t back into Eq. (4.32). 

Stage 2: Intersects Triangle? The ray-plane intersection point rp is expressed in terms 

of the barycentric coordinates (a, P, y) of the triangle as follows: 

FP =7 rO +"r, +P F2 (4.37) 

If the point lies inside the triangle: cc +P +y = 1. Eliminating y gives: 

ro rp =a ro r, +P ro r2 (4.38) 

where ro rp = rp - ro, etc. and rp is inside the triangle if-. 

(x; ->O, 
02: 0 and (x+P: 51. (4.39) 

Equation (4.38) is a system of three simultaneous linear equations for cc and P, i. e. 

XP - XO = (X (XI - XO) +P (X2 - XO) 

YP - YO CC (YI - YO) + (Y2 YO) 
ZP - ZO CC (ZI - ZO) + (Z2 ZO) 

(4.40) 

A solution may be obtained by solving any two equations. This is equivalent to projecting 
the triangle onto one of the principal Cartesian planes, either xy, xz or yz. If the triangle is 

perpendicular to one of these planes, its projection onto the plane will be a line segment 

and a unique solution for a and P cannot be found. Hence, it is important to ensure that 
the chosen plane gives the largest projected area. This is taken as the plane perpendicular 
to the dominant axis of the normal vector, n, previously calculated in Stage 1. The 
following simple rule is used: 

if I nx I then solve with y and z 
Find MAX[ In. 1, Inyl, In. 1 if Inyl then solve with x and z 

if In. I then solve with x and y 

Then if cc and 0 satisfy the conditions in Eq. (4.39), the ray intersects the triangle at rp. 
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The overall speedup obtained by optimising the ray intersection calculation is only fully 

realised if it is used in harmony with an effective search strategy that minimises the 

number of triangular elements that must be checked for an intersection. It is here that 

some of the most novel ideas have been implemented into the present tracing 

methodology. If a ray strikes the edge of a cell or a comer vertex, it may pass into one of 
three or seven possible neighbouring cells, respectively. Indexing and searching each of 
these cells for the next intersection is expensive and floating-point imprecision can cause 
the calculation to fail. However, the present strategy elegantly overcomes this problem by 

automatically detecting an edge/vertex strike, and repositioning the intersection point 

away from the boundary, such that the ray can only ever pass into one neighbouring cell. 
No loss of accuracy is incurred since the distance moved is a few magnitudes larger than 

the calculation precision. The parameters, a and P, a by-product of the intersection 

calculation, are used for both the detection and repositioning operations, such that the 

extra computation is minimal. A flow chart of the procedure is shown in Fig. 4.7. 

As a ray traverses successive cells, its origin is updated to the position of the last 

intersection in the previous cell. For each hexahedral cell crossed, all twelve of its 

bounding triangular elements must be checked for an intersection, excluding that 

containing the new origin. This is because three intersections, rather than one, may be 

found in concave cells as illustrated in Fig. 4.8. Then the intersection closest to the ray 

origin is the true exit position. However, if the present tracing algorithm is adapted 

specifically for tetrahedral or orthogonal hexahedral structures, searching can be 

terminated as soon as the first intersection is found, since then there is always only one! 

r(t) = r'+it 

Figure 4.8 

Concave face results in search algorithm 
finding three intersections with boundary 
faces for ray r (t) : that closest to origin 
r' is accepted, i. e. (1). 

Note: Fig. 4.7 on following page. 
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Sta ý) 

Ray not near edge/vertex 
No action necessary 

Figure 4.7 Ray repositioning logic in the event of a edge/vertex intersection. 

e= small tolerance a few magnitudes larger than machine precision. 
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4.3.3 Finite Element Parametric Mapping: Nonhomogeneous Properties 

An important function of the geometric model is the mapping of the radiative properties 

onto the surface and volume elements of the discretised radiation space. Given that the 

elements are homogeneous (an assumption of the numerical methods in Secs. 4.4-4.6), the 

simplest and fastest approach, is to evaluate each property 0 (r) at the element 'centre' x, 
defined by: 

N 

Xc 
YlXn 

n=l 

(4.41) 

where x. refers to either the surface or volume nodal Cartesian coordinates (see x 

notation of Sec. 2.1). This single-point value ý (r = x, ) is then taken as constant over the 

entire element. 

Table 4.1 Shape functions for quadrilateral and hexahedral element shapes. 

Quadrilateral 
Element 

4 

Hexahedral 
Element 

2ý 

I 

W, =W-11) 
W2 =411 

V3= (1 - 4A 

W4 = (1 -Ul -11) 

Oý(, q)ýl 

v1=40-11)(1-7) 
W2 411 (1 -Y ) 

W3 -Y) 

0 -TOY 

V6 4117 

W7 = (1-4)11Y 

V8 = (I -4 XI -11 )y 

0: 5 
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However, a better approximation is obtained using a finite element parametric mapping 
technique to average the property distribution 0 (r) over each element (Hirsch 1988, Sec. 
5.4; Farmer 1995, Chap. 2). The value Oi (r) at any location r inside the element is 

obtained from: 

= 

R=l 

(4.42) 

where ý. (r = x,, ) is the value of 0 (r) at the node n and xV. is the shape or basis function 

corresponding to node n. The shape functions are locally defined polynomials within 

each element and zero outside the considered element. Suitable bilinear forms for 

quadrilateral and hexahedral elements are given in Table 4.1. (Similar expressions are 

available for triangular and tetrahedral elements. ) 

Equation (4.42) represents a mapping of the physical element in Cartesian (x, y, z) space 

onto a master element in a computational space. This transformation is 

analogous to that described in Sec. 2.1, except that now the whole physical space is 

mapped on an element-by-element basis, rather than in a single global action. 
Computations are performed for the master element and then adjusted for the element in 

physical space according to: 

f dV =1 Af dv 
V V 

(4.43) 

where V and v are the volumes (or areas) of the physical and master elements, respectively 

and IJI is the determinant of the Jacobian matrix (i. e. the Jacobian) of the transformation 
(see below). Therefore, the volume average of 0 (r) over the physical element may be 
found by numerically integrating 0, (r) over the master element, transforming and 
dividing by V. Using Gaussian quadrature for the numerical integration this is: 

NI I )VI N 
I ýjwjljlj 

0 v 
i=l n=l 

rr= (4.44) 

where there are NI integration points each with a weighting w,. The volume (or area) 
averaged radiative property ý(r) is then taken as constant over the entire element. 
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It is important to note that Eq. (4.44) also facilitates the transfer of data from the radiation 
schemes to finite element codes for other modes of heat transfer, since it links the 

averaged property value ý(r E V) over each element to its nodal values 0. (r = x. ) . 
Furthermore, if 0 represents a Cartesian coordinate (i. e. x, y or z), then Eq. (4.42) can be 

used to map a point (4jj, ý) in the master element to its corresponding point (x, y, z) in 

the physical element. This feature is used by the present Monte Carlo algorithms to map 
the starting (emission) locations of energy bundles onto irregular physical elements and 
ensure the correct distribution of radiant energy (see Sec. 4.4.1. ) 

Evaluation of the Jacoblan. The Jacobian, IJI, is required in the transformation of 
Eq. (4.43). The components of the Jacobian matrix are found directly via the parametric 

mapping function in Eq. (4.42) as follows: 

J= 

ax ax ax 

DY DY DY 

az az az A an 5ý i 

ýNfn Z,,. ýXvn E,,, ýIva a4 
N ch, NK 

2N-1-L 2: ty:. zjNf. Im. -, Y. aan N 
ag 

Z 

Z. Z,. ýv - 1'. ýNf - 
-N4 

ohl 

e. g. For a hexahedral element, with the linear shape functions in Table 4.1, these are: 

Do 

D4 
=+ P5-08)(1-'1)+06-07)'1X 

Do 
+ 1(02-00(1-0+06-00ý14 

O)q 

=108-04)(1-4)+05-00410-11) + 107-03)(1-4)+06-02AIll 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

Hence, the Jacobian of the point (4, ij, ý) is obtained by substituting Eqs. (4.46-48) for 

equal to x, y and z for the matrix components of (4.45) and taking the determinant, i. e. 

ax 'y az Dy az 
+ 

LY az ax az ax 
+ 

LZ ax ay ax ay 
(4.49) D4 

(5ý 
Dý aý d-hl 

) 
D4 

( 

o-"n Dý Dý on 

) 
a4 

(olq 
Dý Dý on 

(Note: the Jacobian =- -Fg is also evaluated with metric tensor components in Chapter 2. ) 
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4.4 Path length-Based Monte Carlo 

Pathlength-based Monte Carlo is one of a generic family of Monte Carlo methods for 

radiative heat transfer that has proven to be particularly efficient for the type of 

participating media modelled in this study. The present algorithm was developed after 
several iterations and much of its final form is credited to Farmer (1995). However, some 

unique efficiency improvements have been added, including the ray tracing algorithm 
described in Sec. 4.3.2. The key features of its pathlength-based simulation methodology 

are described below, but for brevity, details of other Monte Carlo approaches have been 

omitted. For this the reader is referred to Farmer (1995), which also includes some 
interesting performance comparisons between methods. 

4.4.1 Probability Distributions 

The radiation transport in a participating medium is simulated by tracing a statistically 
large number of photons, or energy bundles, from their emission to their eventual 

absorption. What happens to each bundle is dependent on the radiative characteristics of 
the medium. These are described by a set of cumulative distribution functions (CDF's). 

Specifically, in the present pathlength-based Monte Carlo formulation, a CDF is used to 
determine direction and location of each bundle's emission, whether it is scattered and the 
direction of scatter in the medium or reflection at the boundary. For example, the 
derivation of a CDF for the scattering mean free path is as follows. Consider a purely 

scattering medium with a uniform scattering coefficient, (;,. The number of energy 
bundles N(s) travelling a distance s in a given direction before a scattering interaction 

can be approximated by: 

N(s) = N(O) exp(--cr, s) (4.50) 

where N(O) is the number of bundles travelling in the given direction at s=0. 
Therefore, probability that a bundle travels a distance s± As is given by the probability 
density function: 

P(s) = N(sl 
j 

N(s) ds =a. exp(-a, s) (4.51) 
0 
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The required CDF is then obtained by integrating from s' =0 and s' = s, i. e. 

(S) =i P(s') ds' =I- exp(--c;, s) 0: 9 1 (4.52) 
0 

This CDF is then used to map the probable distance s, that a energy bundle will travel 
before scattering, onto a uniform random number R,, ranging from 0 to I (i. e. Eq. 4.57). 
Analogous procedures are used to construct CDF's for the other phenomena, e. g., see 
Modest (1993, Chap. 13). The resulting random number relations are summarised below. 

(All random numbers are uniformly distributed between 0 and 1. ) 

Emission Location. Special treatment is required to select the bundle emission points 

within the arbitrary hexahedral elements used to discretise the radiation space. The finite 

element parametric mapping technique described in Sec. 4.3.3 is used to map points 

selected in a square or cubic master , element to the corresponding physical subregion. 
First, random numbers (R.,, R,, R, ) are chosen for each coordinate direction 

corresponding to the localised curvilinear coordinates Only two coordinates 
(4, Tl) are required for planar elements. These are then used to derive bilinear shape 
functions, appropriate for the master element shape (see Table 4.1). Finally, 

the coordinates x, of the emission location are interpolated from the physical subregion's 

nodal coordinates x. . using Eq. 4.43, leading to: 

N 

Xe = 

n=l 

(4.53) 

Caution is required when Eq. (4.53) is used to map onto irregular physical regions since 
the emission locations are not uniformly distributed. Then the power associated with each 
energy bundle must be adjusted to compensate for the transformation. This is discussed 
later in Sec. 4.4.2. 

Direction of Emission. Two random numbers (4, )ý) are chosen to find the polar and 

azimuthal angles, 0 and ý respectively, of the emission direction i relative to the global 

physical axes. For volume elements: 

ý= 21rlý, cos-(1 - 21ý) (4.54) 
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These angles are global angles and the direction cosines of i are obtained immediately 
from: 

(cos 0 sin 0 

sinosinO 
cose 

For surface elements which are assumed to diffusely emit radiation: 

0= 21cRý 

0= sin-'-IP-., 

(4.55) 

(4.56) 

These angles now refer to a local Cartesian coordinate system on the element where the 
local z-coordinate axis is aligned with the surface normal fi (see Fig. 4.2). The direction 

cosines relative to the local element axes are first calculated from an expression similar to 
Eq. (4.55). The local direction cosines are then converted to the global direction cosines 
of i via the transformation given by Eq. (4.3 1). 

Scattering Mean Free Path. The probable distance s an energy bundle travels in a 
medium with uniform scattering coefficient a, before being scattered is found with a 
single random number A, as: 

I 
s=-- n 

as 
(4.57) 

The process of finding this expression has been outlined above: it is obtained directly 
from Eq. (4.52) by rearranging and replacing the difference I-k by k since this does 

not alter the distribution of the mapping. In nonhomogeneous media the scattering 
coefficient varies along the bundle path, though its value is presumed constant over each 
volume element. Therefore, a summation is taken over the pathlength segments 8s. for 

each cell n through which the bundle travels until Eq. (4.57) is satisfied at which time a 
scattering collision is considered to take place, i. e. 

Y, cy 
snbsn 

> -In 
n 

(4.58) 
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Direction of Scatter. Two random numbers (4, ]ý) are chosen to find the polar and 

azimuthal scattering angles, 0, and ý, respectively, from the relations: 

0x 
Ro =f (D(ii, 9) sinO Af (D(gj, g)sinOdO 

0/0 
and 

00/00 

(4.59) 

(4.60) 

where (D(sps) is the scattering phase function describing the probability that an energy 
bundle travelling in the direction 9, will be scattered into the direction i (see Sec. 4.1.1). 

The polar angle 0, is measured from an axis pointing in the ii, and the azimuthal angle 
ý, is measured in a plane normal to ii as shown in Fig. 4.9. For linear anisotropic 

scattering, from Eq. (4.5): 

(D(gjqg)=I+gg-gj =1+9COSO, 

Hence substituting into Eqs. (4.59) and (4.60): 

21c it 
f (D(ii, i) sinO dO dO ff (D(gj, g)sinOdO do 

00/00 

Re =I I-cosO, +Isin 20 (4.62) 
2( 2 1) 

For isotropic scattering these relations reduce to those for emission, i. e. Eq. (4.54). 

Once 0. and 0, have been computed, the scattered direction i is found by introducing a 
local Cartesian coordinate system at the point of scattering (Fig. 4.9). The local Z-axis is 

aligned with ii and the local x and y-directions are defined by the unit vectors Z, and ZY: 

vxsi 

x lvxiii ey =sj xex (4.63) 

and v is any arbitrary vector (e. g. the unit vector aligned with the global x-axis). The first 

expression ensures that Z,, is perpendicular to g,, and the second makes the local 

coordinate system right-handed. The scattered direction S^ is then given by: 

i =(cosoi,, +sino, iy)sinO, +cosOs, (4.64) 

If the scattering is isotropic then Eq. (4.55) may be used directly. 

123 



Chapter 4 Development of Radiative Heat Transfer Methods 

ii 

scattered 
path 

z Figure 4.9 

Definition of the polar and 
azimuthal scattering angles 
0. and ý,. 

Direction of Reflection. Given that it is assumed that the boundaries reflect diffusely, 

then the same random number relations are obtained as those for diffuse emission, i. e. Eq. 

(4.56). These are then used to find the global direction cosines of the reflected direction 

in an identical procedure to that for the direction of emission. 

In some of the benchmark solutions presented later considerable computation was saved 
by simulating symmetry planes as specular miffors. For a purely specular reflectors the 

polar and azimuthal angles of reflection, 0, and ý, respectively, follow from the laws of 

optics (without need for simulation) as: 

ý, = 01 +IC , Or -: 01 (4.65) 

where 0, and ý, are the corresponding polar and azimuthal incident angles with respect 
to a local coordinate system on the symmetry plane. If fi is the plane normal, then the 
direction of specular reflection, s, of an energy bundle is determined from its incident 
direction, s, . via the vector expression: 

s. =si +219i. 1hilh (4.66) 

(This approach is also used to 'reflect' ray paths at symmetry planes for problems solved 
with the present discrete transfer and YIX methods. ) 
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4.4.2 Simulation Procedure 

The radiation space is discretised into a mesh of homogeneous surface and volume 

elements as described in Sec. 4.3.1. With nonhomogeneous participating media the 

radiative properties are volume (or area) averaged over each element using appropriate 

expressions from Sec. 4.3.3. Then a large statistical sample of N energy bundles are 
traced one at a time from each element according to the procedure shown in Fig. 4.10. 

The following supplementary points should be noted. 

Power/Energy Bundle. The radiative emission P, from each volume element is 4ic eg V, 

and from each surface element, F, e, A. (Here the notation of Sec. 4.1 is used. ) Hence, if 

N energy bundles are launched from points unifonnly distributed over each element, each 
bundle will carry an equal portion of the total emitted energy equal to P, 1N. However, a 

problem noted earlier is that the mapping of launch locations via Eq. (4.53) is nonuniform 

when the physical region is irregular, as illustrated for a surface element in Fig. 4.8. This 

causes erroneous transport predictions if the energy bundles are assigned the same amount 

of power, since more energy is emitted from regions were the launch locations are 

concentrated compared with where they are dispersed by the mapping. Therefore, a 

correction is introduced to ensure that the emission is uniform. This requires the Jacobian 

associated with the transformation of each launch location from the master element to the 

corresponding physical element (see Sec. 4.3.3). First the volume v (or area a) of the 

master element is divided by the number of energy bundles to be launched, N. Then, for 

each energy bundle, the determinant of the Jacobian, I A, is calculated for the localised 

coordinates (ý, Tl, ý) of its launch location in the master element via Eqs. (4.45-49). (Only 

two coordinates are required for surface elements). Finally, the emission per unit volume 
(or area) from the physical element is weighted by these factors to obtain the power 

carried by each bundle as: 

Volumes: P=IJ4-r V, Surfaces: P =1 JIP, a (4.67) 
NVNA 

If the physical element is regular in shape, the determinant of the Jacobian is a constant 
and equal to the volume (or area) ratio of the physical and master elements. Then, as 
expected, each bundle carries the same amount of energy, P, IN, irrespective of its launch 
location. 

125 



Chapter 4 Development of Radiative Heat Transfer Methods 

Jacobian IA correction 
for irregular elements 

Select number of energy bundles N for element 

Compute power/bundle, P=41cVe, 1NoreAe, 1N 

Select origin r' & direction i of path r(t) = r'+ 9t 

Compute mean scattering beam length, sla, 
I 

Determine distance x to exit current control volume 

/ RAY 
TRACER 

true: scattering event 

'false: absorption event 

ý-N 

Random nos. R's 

=f (Rý,, Ry, R, ) 
f (RO, 1ý) 

s -In 1% 

Total path length: Bs = 8s +x 
Increment cell energy Qg by: 

Pb, = P(I - e' 8') ; Plej =P-P. b, 

Total path length: 8s = 8s +s 
Compute new s= -Ink 

I 
Update origin r' a distance s 
along path to scattering point 

Calculated new direction i 

after scattering, i=f (]ý, Rý) 

Reduce scattering length, s=s-a, 

Update r' to cell intersection 
false 

GOTO NEXT CELL 

Increment surface energy Q, by: 
Pabs 

-" 
p P' ; Pleft 

- ': 
p- Pabs 

<1 

NEXT 
BUNDLE 

-P. 
LSet 5s -- 

Update r' to intersection on 
surface and calculate the new 
direction i after reflection, 

sf (RO, 

-10ý 

Terminate ray: add the remaining 
power, P,,,,, to the cell energy, Qg l< 

Figure 4.10 Pathlength-based Monte Carlo algorithm: repeated for every element. 
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Figure 4.11 Nonuniform mapping of launch locations for surface. 

Energy Partitioning. The power content of each energy bundle is continuously 

attenuated as it travels through the participating medium. It is envisaged that each energy 
bundle is equivalent to a large collection of photons emitted in roughly the same direction 

and from the same general location in the medium. Then as a bundle travels through the 

medium its initial photon population is continuously depleted by collisions with absorbing 

molecules or particles until its eventual extinction. The amount of power reduction 
depends directly on the optical pathlength travelled by the bundle: hence the approach 
being termed 'pathlength-based' Monte Carlo. Thus, if a bundle travels a distance 8s,, 

across a homogeneous medium element with absorption coefficient ic. the fraction of the 

initial bundle power absorbed by the volume is: 

P 
,, =I- exp(-ic. 8 s,, ) (4.68) a 

Therefore, the power content of each bundle is partitioned into successive volume 

elements along its path until the remaining energy falls below some preset cutoff level. 

This approach is in distinct contrast to the classical collision-based model of Howell and 
Perlmutter (1964a, b). Here each bundle travels undisturbed over a mean free path until its 

total absorption at a single location. The path length until absorption is determined from 

an additional random number in an analogous manner to that for the scattering mean free 

path in Eq. (4.58) except that the absorption coefficient 1c. is used in place of cr.. 
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Consequently, a pathlength-based solution avoids this extra random number generation 
but requires the calculation of an exponential, at least once, for every cell along the path 

of the bundle. These extra exponentials are expensive and can be numerous in optically 
thin media. However, the statistical uncertainty is generally much lower in pathlength- 
based solutions for a fixed number of energy bundles resulting in a net advantage in 

accuracy versus run time over collision-based methods. See Farmer (1995) and (Modest 

1993, p. 699) for numerical comparisons and more discussion. 

Path Accumulation. If the scattering mean free path, s is shorter than the distance to exit 

the current volume element, x then a scattering collision occurs. In fact, multiple 

scattering events may take place within a single cell if the medium region is very optically 

thick. A significant speed-up results if the total path length is accumulated, such that the 

expensive exponential absorption calculation of Eq. (4.68) is performed only once, when 

x<s, rather than after each scattering collision. (This saving is embodied in the logic of 

the procedure in Fig. 4.10. ) 

Surface Absorption. Energy partitioning is used to model surface absorption in a 

similar manner to that for medium absorption. When a surface is struck by an energy 

bundle, its power is split into the fraction E, which is absorbed, and the fraction (I - E) , 
which is reflected, where E is the gray surface emissivity. This generally gives improved 

performance over classical schemes (Howell and Perlmutter 1964a) which draw a random 

number to decide if an energy bundle is either fully absorbed or fully reflected. 

Energy Bundle Termination. The tracking of each energy bundle continues until its 

power content falls below a 'cutoff' criterion set at the start of the simulation and then the 

remaining energy is considered absorbed by the last medium element crossed by the 

bundle. Farmer (1995, p. 67) considers cutoff values ranging from 10% to 0.01% of a 
bundle's initial power. Trial solutions suggest that a cutoff level of 0.1% or lower gives 

acceptable accuracy, but this criterion is problem dependent. Optically thick media 

generally require more stringent cutoff levels than thinner media. Intuitively, it might be 

expected that reducing the cutoff level to a very low value would result in the tracking 

process continuing indefinitely driving up the computation run time. However, some trial 

solutions perfon-ned in this study confirm earlier observations by Fanner and Howell 

(1994) that its value has only a moderate effect on the run time. This most likely results 
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from the optical depths'of individual volume elements being too large to observe any 
major sensitivity: the extra power available in the 'long-life' bundles was being absorbed 
in distances comparable with the cell sizes. Consequently, the number of intersection 

calculations, and thus the problem run time, is not significantly increased. A cutoff level 

of 0.1% was used for all problems in this study. 

If a bundle's power falls below the cutoff criterion at a surface absorption/reflection 

event, Fanner and Howell (1992) choose to add the remaining energy to that already 

absorbed by the surface element. However, in the present implementation the remaining 

energy is absorbed into the volume element with its face coincident with the surface. This 

modification may be reasoned if one considers an optically thick participating layer over a 

gray surface. The 'cutoff energy' from many histories would result in a sizeable non- 

physical heat flux to the surface if the former approach is adopted, whereas in reality this 

energy is reflected back into, and absorbed by, the medium layer. 

4.4.3 Solution Values and Statistical Uncertainty 

The total power absorbed by each volume and surface element, Qb, I is tallied during the 

simulation procedure. When the simulation is complete, the net radiative heat flow Q, on 

each of the N surface elements is given by the energy balance: 

c, A. e� - 
Qbs, 

i 9 i=1,2,..., N (4.69) 

and a similar energy balance over each of the K volume elements gives their net radiative 
heat source Qg as: 

Q8i = 4ic I Vi e,, i - Q,, b,,,, i=1,2,..., K (4.70) 

Then the required surface heat flux or divergence of radiative heat flux solution values are 
obtained directly for the surface and volume elements, respectively, from the expressions: 

q, = Q, 1A, V. q, =Q, IV (4.71) 

Each radiative solution value is in fact an estimate of the exact result obtained after 
sampling infinitely many energy bundles. A second simulation can be expected to give a 
slightly different set of solution values. Hence, by performing several independent 

simulations, the size of the variability in the results can be quantified in terms of the 
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statistical uncertainty or variance. If each of n simulations gives an estimated result x (i. e. 

the surface heat flux or flux divergence), then the best estimate of the true or exact 

solution value is their arithmetic mean 3F. The accuracy of this estimate, and hence the 

solution accuracy, is called the standard error. This in turn may also be estimated. 
Applying the central limit theorem, the estimated standard error, S,, is given by Barford 

(1985, Chap. 2) as: 

S" (1) =snW1 
ýl (xi - Y)2 (4.72) V-n yný(n- 1) 

where s,, is the best estimate for the standard deviation of the sample distribution of x. 

As would be expected, the solution uncertainty (measured by S. ) is reduced, eventually to 

zero, by increasing the number of simulations n, but the quantity s. tends towards a fixed 

non-zero quantity which embodies the intrinsic accuracy of each sample result x. 
Consequently, since S. decreases only as 114n- (as seen in the intermediate expression), 

the extra computational effort is often better spent improving the intrinsic accuracy of 

each sample result, by using more energy bundles per simulation, rather than more 

simulations with a smaller number of histories. Furthermore it is important to use these 

bundles efficiently by releasing more in regions with a higher radiative emission. Hence, 

in the present Monte Carlo implementation the number of energy bundles launched from 

each element is directly proportional to its emission P,, as defined in Sec. 4.4.2. A final 

point is that the independence of the Monte Carlo simulations relies on the randomness of 

the numerical sampling technique (Modest 1993, p. 673). Therefore, advantage was taken 

of a state-of-the-art random number generator algorithm by Marsaglia (1994), which can 

rapidly produce random 32-bit sequences with very large periods (i. e. 2 250). 

The estimated standard error S,, is quoted with all Monte Carlo solutions in this study to 

allow confidence limits to be determined. For example, with 68% confidence the exact 

solution value should lie within the limits X±S., or with 99% confidence within 
5E± 2.58S.. Typically n= 10 or 30 simulations were performed, and the number of 
bundle histories traced in each of these simulations was arbitrarily increased until the 

solution uncertainty fell to an acceptable level (or computational limitations were 

exceeded). 
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4.4.4 Hybrid Monte Carlo/Zonal Solution 

The pathlength-based procedure discussed to this point cannot be applied to problems 

were the participating medium is subject to an applied source condition (e. g. radiative 

equilibrium). However, this limitation is easily removed and some other benefits are 

gained by adopting a hybrid Monte Carlo/zonal formulation. Here the simulation 

procedure is almost identical to that in Sec. 4.3.2, except that a record is kept of the 

element index releasing each energy bundle. Then as bundles are traced through the 

discretised radiation space, the total exchange areas between surface and volume elements 

are automatically determined and stored as follows: 

Surface-to-surface: 
Surface-to-volurne: 
Volurne-to-surface: 
Volume-to-volume: 

SiSj = ejA-ýjj 
SjGj = ejAýjj 
Gi Sj = 4ic I Vi 0 ij 
GiGj = 41c i Vioij 

(4.73) 

where Oj is the fraction of the total energy released by element i that is absorbed by 

elementj, both directly and indirectly, after scattering interactions along the bundle paths 

and reflection at the surface elements. The Monte Carlo phase of the calculation is then 

complete and the analysis continues via a zonal matrix formulation. The total exchange 

areas are multiplied by either the surface or gas blackbody emissive powers, e, and e., as 

appropriate to obtain the following energy balance for each of the N surface elements: 

NK 

Q'i = eiA. ei - 13, -Sjej - ESjGjegk 2,..., N (4.74) 
j=l k=l 

where Q, is the net radiative heat flow. Similarly, an energy balance for each of the K 

subvolumes gives their net radiative heat source Qg as: 

NK 

.., i Sj ej -G Qgi = 4ic 
I 
Vi e.. i -EU, i=1,2,..., K (4.75) 

J=l k=l 

A detailed derivation of these zonal relations is provided by Modest (1993, Chap. 18). A 

comparison with their counterparts, Eqs. (4.69) and (4.70), for a direct Monte Carlo 

solution, shows that the advantage gained from this zonal formulation is that the emissive 

powers are separated from the absorption terms. Consequently, for an applied source 

condition, the algebraic system resulting from Eqs. (4.74) and (4.75) may be solved using 
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an iterative scheme, matrix inversion, or some other matrix solution technique, to 
determine the gas emissive powers. The present implementation employs a successive 

overrelaxation (SOR) iterative solver (see Hirsch 1988, pp. 471-473) to speed-up 

computation, particularly when the exchange area matrices are large. 

The storage of the exchange area matrices can require excessive amounts of memory and 

extra processing time is required to build and solve the matrix equations. Therefore, for 

media where it is required to evaluate the radiative fluxes from known emissive powers, 

direct Monte Carlo solution would seem more efficient. However, some special 

properties of the total exchange areas may be utilised in order to reduce the uncertainty in 

solutions, such that there is sometimes a net benefit in using a hybrid approach, even for 

temperature prescribed problems. Setting all the emissive powers equal in Eqs. (4.74) and 

(4.75) gives the relations: 

NK 

(4.76) 1'9, -Sj +1 SGk=ciA. 1,2,..., N 
j=l k=l 

NK 

, 
Sj +I GGk=4iciVi, i=1,2,..., K (4.77) 

j=l k=l 

since the heat fluxes are zero everywhere; and the reciprocity of total exchange areas 
(except in anisotropically scattering media) gives (Modest 1993, p. 649): 

SS =SS GkSj = SjGk, GkGi = GjGk (4.78) ijj ig 

These relations can then be used in creative ways to first smooth the statistical scatter in 

the exchange area matrices prior to the matrix solution (e. g. Larsen and Howell 1986). 

Smoothing of trial benchmarking problems in this study did not always show a favourable 

adjustment so it was not used. After the total exchange areas have been determined by the 
Monte Carlo simulation, they can be used repeatedly to quickly calculate new solutions 
for various temperature or heat source conditions, depending on the problem type. The 

optical properties (i. e. gas extinction coefficient, surface emissivity) must be temperature 
independent, but there are no restrictions on the optical thickness or isotropy of scattering. 
This virtue proved particularly beneficial in this study for rapidly verifying discrete 

transfer and YIX solutions. A new Monte Carlo simulation is then only required when 
the geometry or optical properties are modified. 
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4.5 YIX Method 

A three-dimensional YIX formulation has been developed to solve the exact integral 

equations of radiative heat transfer, i. e. Eqs. (4.22-26). It was derived and implemented 

on the basis of one and two-dimensional schemes by Tan and Howell (1990a), though 

several aspects of the present methodology are unique to three-dimensions. Moreover, 

greater flexibility in handling arbitrary complex geometries has been afforded by 

incorporating the geometric modelling and ray tracing approach described in Sec. 4.3, 

compared to the ad hoc searching procedures used by Hsu and Tan (1996). 

4.5.1 Angular-Distance Form of the Integral Radiation Equations 

The integral equations (4.22-26) were previously derived in their most general form for a 
Mie anisotropically scattering medium. This introduces many terms if a high order 

scattering phase function is to be modelled as a result of the Mie series summation in 

F,, (r), Eq. (4.25). However, the linear phase function of Eq. (4.5) is adequate for the 

analysis of scattering media in this study. Introducing this approximation in Eq. (4.25) 

gives: 

mT 
ckSk(i)wk(r)=ý2-g-[Slwl+S2w2+S3w3]=cogsw(1r)9 M=3 (4.79) 

4 
k=I 

4 

where g=c, = c2 = c3 ,i= 
(SI, S2, S3)T and w (r) = (w,, w2, w3)T. Then Eqs. (4.22-26) 

may be rearranged into the compact matrix form: 

f, (r) 99 gw gs F, (r, ) 
fw (r) = wg ww ws F� (r, ) 

(r) sg sw ss F 
(4.80) 

where f,, and F,, in Eq. (4.25) are redefined as: 

fg (r) = 4eg (r) -IV-q, (r) 
(I - (O)p 

(r) = e. (r) - 4(I-co)ß 

fw (r) =w (r) 
cogw(r) 

4 

(r) e, (r) - q, (r) F, (r) = e, (r) - q, (r) 

(4.81) 
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such that the matrix elements gg, gw, etc. are defined by: 

99 9w gs <1> < 
wg ww ws <i> <g i'> ji g-iv) (4.82) 

sg sw ss- s-><- si - n^ s^'> j- si - n^ si - 

Here <*> F(r, ) and I* IF(r) denote the volume and surface integrals: 

F(r, ) 
xp, -Ir-ri (r -i t) dt I dV(r, ) *> F(r, ) a 

fff 
7dr-r, 12 

0ef 

v0 
(4.83) 

ff F(rP) (* lr-r'l 
F(r") =- 

iclr-r t12 exp [- fP (r -9 t) dt ] dA(r') (4.84) 
s0 

after substitution of the exponential kernel function K from Eq. (4.26). In angular- 
distance form Eqs. (4.83) and (4.84) become: 

If Ir-r'l t 

> F(r, ) =- f oexp[-fp(r-it')dt'IF(r, )(*)dtdfI (4.85) 
7c 4x 00 

1 (4.86) F(r') =- f exp[- fP (r -i t) dt ] F(r') df2 
7C 2x 0 

where r, =r-it. To clarify the vector notation here: r is the origin of a ray travelling in 

the direction 4, through a solid angle LI and striking the boundary at r'; all points on 
this path are represented by r, and the total ray path length is Ir-0. These vectors are 

also shown in Fig. 4.1. 

4.5.2 Angular and Distance Integration: YIX Quadrature 

In order to demonstrate how the YIX method is formulated, consider an emitting, 

absorbing and nonscattering medium enclosed by a black boundary. The absorption 
coefficient of the medium may vary with position but no heat source or sink is present. 
Then from Eqs. (4.80-86), the radiation transport integral equation for the medium 
emissive power is reduced to: 
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I 
Lt 

4e, (r) IffP exp[-f P(r-gt')dt']e, (r-gt)dtdQ 
Ic 4x 00 

L 

+1 fexpt-f P(r-9t)dt]e, (r-gL)gs-fi'dfl 
7c 2x 0 

(4.87) 

where the distance L=Ir-0 is the length of the ray emitted from r in the direction -9 
and striking the nearest boundary at r'. Note that the substitutions r, =r-it and 

r' =r-iL have been made in Eq. (4.87). 

Angular Quadrature. The angular integrations are approximated using S. discrete 

ordinate quadrature (Lathrop and Carlson 1965), as follows: 

Ný Lk t 

4eg(r) = 
Jwk fP 

exp [-f P (r -k t")dt" I eg (r -k 
Odt 

k=l 00 

Nw12 

+-I exp[-l 
P(r- gk t) dt ] e, (r- 

k4) k. nk Wk 
n k=l 0 

(4.88) 

Here N,, is the number of ordinate directions, which depends on the order of the discrete 

ordinate set S., according to N,, =n (n + 2). These angular quadrature sets and weights 

were constructed so as to be fully symmetric (i. e. invariant after any rotation of 90") and 

to also satisfy the zeroth, first and second moment integrations of intensity over a unit 

sphere: 

IV. N. 'v 
f gid! Q 1w wk -k PQ=41c=jwj, fidQ=O=jwkgA 

,3si, (4.89) 
4x k=l 4x k=l 41t A-1 

and the first moment over a unit hemisphere: 

(4.90) 
21t k=l 

where 8 is the unit tensor (c. f. Modest 1993, p. 512,545). These moment conditions 
should be satisfied in order that the quadrature properly integrates, respectively, the 
incident energy, radiative heat flux and diffusion limit in the media and the heat flux at a 
surface. Discrete ordinate S. sets satisfying these conditions for n=6 and 8 (plus special 
sets for n= 12 and 16) are tabulated in Appendix D. (Note: Eq. (4.90) is only satisfied for 

orientations of the surface normal that are aligned with the principal Cartesian axes. ) 
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Hsu et al. (1993) observe that a lower order S,, -approximation is justified at higher optical 
thicknesses, since in very thick media, the radiation is essentially an isotropic diffusion 

process. Therefore, only the distance variation is important. Conversely, at low optical 
thicknesses a high order discrete ordinate set, such as S12 or S16, must be used to reduce 

ray effect (see discussion of this problem in Chai et al. 1993a). With nonhomogeneous 

media it is feasible to adjust the discrete ordinate set to suit the optical conditions at 
different locations, i. e. there is no requirement to use a consistent set over the entire 

problem domain as in conventional discrete ordinate methods. Incidentally, Tan (1991) 

named this method YIX for the rather ambiguous reason that the letters Y, I and X are 
formed by the integration point distributions with 3,2 and 4 ordinate directions in a two- 

dimensional solution. 

Distance Quadrature. The distance integral with respect to t in Eq. (4.88) is then 

evaluated with a nonuniform numerical quadrature as follows. Applying the 

substitutions: 

tL 

f P(r-gt) dt, rf P(r- it) dt 
00 

the distance integral (in a certain ordinate direction) is reduced to the fonn: 

I=L r f e-" eg (r -i t) dt af ef(, r) dt (4.92) 
00 

Here r=r when t=L (i. e. r is the optical distance corresponding to the ray length L). 

The integral is then subdivided as follows: 

I 
e-"f (T) dr (4.93) e-lf(T) dr +f 

where 0 =, ro <TI<... < T, :5 17 and r, are optical abscissas to be decided. 

Applying a two-point approximation to I in each subregion gives: 

ef(, c) dr - aif(, r j-1) + bif(, r 1) (4.94) 
Ti-I 
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Then the following conditions are used in order to find a, and b, in order that the integral 
Ii is approximated to first order accuracy: 

f(c -I) = Ar i) =I 
Tj 

ai + bi f e-'dr = e-", --l - e-" 
T, I (ld a r%) 

AT 1-1) = f(, r j) =T air i-I + biT, = 
ý, 

r e-'dT (c + e-" ýr + 
Ti-I 

Solving for a, and b, : 

ai = e-"-, - D(r j) bi = D(, r 1) - e-"I where D(, r j) = (4.96) 
TI -Ti-I 

Substituting Eqs. (4.96) into Eq. (4.93) yields: 

[I - D(, rl)]f(O) + 

+ [D(T. )-D(r)if(, r,, ) + [D(r)-e-r]f(]F) 

Setting: 

(4.97) 

[D(, ri)-D(, ri.,, )] aX= constant (4.98) 

allows the contribution of ffr j) at each integration point rI>0 to the integral to be the 

same. This is desirable because it reduces the number of integrations as the distance 
increases because the contribution of further points decreases exponentially. The 

contribution of f(O) is chosen to be X/2 in Eq. (4.98), otherwise applying the 

approximation in opposite ordinate directions would result in f(O) being counted twice. 
The value of r, (or X) is set by the user, then X (or rI) and 'r I (i = 2,3, ..., N) are 
computed recursively by solving Eq. (4.98) until r, is so large that D(, r D(oo) < %, for 

which, zj=-, r, v. Here Eq. (4.98) is written as: 

F(r) ==0 (4.99) 

and the roots of F(, r), that is the required integration points -T I. are found by a fast and 
robust false position method (Pearson 1986, pp. 4-8). In Table 4.1 values of N' 'r N and X 

are listed for various orders of r,. The accuracy of the integration, but also the 

computation, increases as TI (or X) are decreased. 
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Table 4.2 Characteristic parameters of integration points for 
the three-dimensional exponential kernel function. 

T, rN 1% 

. 001 1000 7.70360 . 00100 

. 002 500 7.01070 . 00200 

. 005 200 6.09527 . 00499 

. 01 100 5.40356 . 00997 

. 02 50 4.71331 . 01987 

. 05 20 3.80592 . 04918 

.1 10 3.12807 . 09675 

.252.45353 . 18731 

Substituting Eq. (4.98) into (4.97) then gives: 

M-1 
-r]f(r) (4.100) X [-Lf(O) +j: fCrj)1 + [DCU. )-D(1F)lf(T. ) + [D(r)-e 2 

Finally, to completely eliminate all exponential kernel evaluations during the ray tracing 

stage, the following first-order-accurate linear extrapolation is applied: 

IF -'r " 
'Cn+l 

-Ic f 
e'f(-T) dt fe f(r) dt 

Tn+l -Tn 1, 

[e-T, -e-"4+l Tn :9r: 9, r +1 :9TN 

(4.101) 

In the case that r. +, does not exist, this integral is set to zero. Finally, substituting Eq. 
(4.101) into (4.100) gives: 

M-1 
X [ff(O) +I: f(Ti)] + [PI. 

11 +IFQ. Illf(TI. ) 
i=l 

where 

D(T 

(4.102) 

(4.103) 

P, = DCr 1-1) - e-TI-I -T j-, Q. (4.104) 
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Hence, the distance integral in Eq. (4.92) is approximated as: 

t=L R-I 

2 eg (r -i+ [P..,, + ra,., ] e. (r -it,, ) (4.105) f 
e-T e, (r-it)dr -X [-Le, (r) +E 

0 

Thus, for a specified value r, (or X), all of the constants %,, ri, Q, Pj are computed and 

stored in advance. Subsequently, in the computations of many integrals of the form of Eq. 

(4.105) the evaluation is replaced by a simple summation of ffr j) . 

This distance quadrature is then combined with the discrete ordinate angular quadrature to 

yield the fully discretised form of the integral transport equation (4.90) as: 

N. 

, 
(X[-Leg(r) +leg(r-ý, t, )] + [p -r 

k=l 
2 R+l k 

Qn+l ] eg (Ir tj ) w. 4e, (r) =-I 

N. 12 
1: e-k ejr-k4)k'k k 7C k=l 

(4.106) 

where n satisfies r. :5r: 5, r,, +, . and t, are the geometric abscissas corresponding to the 

pre-calculated optical abscissas r I. These are found recursively from the relation: 

ti+ 1+1 1t0 =To 
(r -k ti) 

(4.107) 

Hence, the distribution of the integration points in space varies according to the extinction 

coefficient distribution along each discrete ordinate direction S^k' They are more 

concentrated in optically thicker regions as illustrated in Fig. 4.12. for representative 

ordinate directions on a coordinate plane. A schematic of the YIX double integration is 

also shown on Fig. 4.13. 

The preceding example has demonstrated the YIX integration of the gg and gs matrix 

elements of Eq. (4.82). The other integral elements are calculated in an analogous 

manner. It is important to notice that elements on the second row are simply a multiple i 

of those on the first row. i. e. f., (r) (r). Thus, the integrations in wg, ww and ws 

can be avoided, saving considerable computation. 
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optically thin 

optically thick 

Figure 4.12 A typical distribution of integration points along ordinate directions in one 
coordinate plane. The YIX distance integration results in the points being 

more concentrated in optically thicker regions were (lie radiative emission is 

greater. 

Figure 4.13 Schematic of YIX integration at a node. A levei symmetric S, discrete 

ordinate quadrature is shown for one octant: total 48 rays, 6/oclant. The 
distance integration points are also shown along one ofthe ordinaics. 
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4.5.3 Solution Procedure 

Given that the radiation space is discretised into homogeneous surface and volume 

elements, as described in Sec. 4.3.1, the solution points are taken to be the element 

geometric centres. Thus, if there are N points r, . r2,..., r. on the boundary and K points 

r,, r2, ..., rK in the medium, Eq. (4.80) represents a system of N+ 4K simultaneous 

equations. These are solved with a successive overrelaxation (SOR) iterative solver (see 

Hirsch 1988, pp. 471-473). The main steps in the algorithm are as follows: 

1. Give an initial guess for the surface flux q, (r, ), i=N, the flux divergence 

V-q, (r, ), i=I,, K and the flux Cartesian components w(r), i=K, assuming 

that the surface and medium emissive powers e, (r) and e.. (r, ) are known. 

2. Calculate the optical properties 0, co and e at the solution points. 

3. Calculate the terms Fg , F,, and F, of Eq. (4.8 1) at the solution points. 

4. Calculate the integrals of Eq. (4.80) using YIX quadrature: 

2,..., K fg (ri) (r- gg Fg + gw Fw + gs F, 

f, (ri) e- wg F, + ww Fw + ws F, i=1,2,..., K 

f, (ri) <-- Fg + SW Fw + ss F, s9 i=1,2,..., N 

5. Calculate the new solution values q, (r) and V-q, (r. ). 

6. If the solution is not converged; update the terms F. , F, 
" and F, with the most 

immediate values of f., f. and f. , applying relaxation as necessary, and return to (4). 

Convergence is considered to have been achieved when the maximum change in any 

solution value, between successive iterations, is lower than a user specified tolerance (e. g. 
10-6). In problems with prescribed values for q, (r) and V-q, (r, ), the emissive powers 
become the unknowns in steps (1) and (5). A SOR solution procedure similar to that 

above is used, except that the optical properties are also updated each iteration if they are 
temperature dependent. The YIX quadrature in step (4) requires the position of the 
integration points r- it, in the discretised radiation space and the total optical distance r 

corresponding to the length of each ray. Since constant properties are assumed in each 

volume elements, the first problem reduces to finding in which element each integration 
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point lies. Thus, for all the integration points along a given ordinate direction, the ray 
tracing procedure in Fig. 4.14 is used to determine the element indices in which they lie. 

The required value IF is also accumulated during this tracing operation. These values are 

used to compute the matrix elements gg, gw, etc. of the integrals (4.83) and then stored 
for subsequent iterations of the solution procedure. Each volume element along a ray path 

may contain several integration points (see Fig. 4.12). Thus, the storage space is 

minimised by saving the element indices and the number of points in each (i. e. the point 
frequency), rather than by storing each point individually. Furthermore, as the distance 

quadrature is refined by reducing rI (or X), the point frequencies increase but the number 

of stored values remains about the same. 

The matrix elements gg, gs, sg and ss in Eq. (4.80) have an important physical 

significance: they are the direct exchange factors between the surface and volume 

elements, i. e. the fraction of total radiative energy released by one element and directly 

absorbed by another, without scattering or reflection. They may be directly related to the 

total exchange areas defined by Eq. (4.73), and consequently, analogous relations to those 

of Eqs. (4.76) and (4.77) can be derived as follows: 

K- 

-sisi + 2: sjgA 
k=l 

NK I -gisj +I gigk=4, 
J=l k=l 

i=1,2,..., K 

(4.108) 

(4.109) 

An built-in check is used in the present solution procedure to test if the computed 

exchange factors satisfy these expressions. Failure to do so implies that the YIX 

quadrature is too coarse, and the user should choose a higher order discrete ordinate set 
S. and/or reduce the distance to the first integration point, T 1. If this is not practical, then 

the error can be used to introduce a 'correction' to the solution values. Note here that the 
YIX matrix equations resemble those of a zonal formulation because homogeneous 

elements are used in the spatial discretisation. A YIX formulation could also be 

developed for nonhomogeneous elements, using equations similar to Eq. (4.42) to 
describe variable property distributions across elements. Then the YIX equations would 

more closely resemble those of Galerkin finite element methods, though the improvement 

in accuracy may not merit the extra computation required by the more complex elements. 
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Set T, (or, %), then compute and pre-store 
the distance quadrature constants X (or r 
Ti, P, and Qj as described in Sec. 4.5.2. 

1 

Select solution point r (i. e. usually element centres) 

Select order of S,, quadrature for element (i. e. n=6,8, ... ) 

Find global cosines of an ordinate direction i (Sec. 4.4.1) 

Define parametric ray path, r, (t) =r +it (t = scalar) 

Determine distance, x to exit current control volume 

Accumulate total optical path length, r=r+P (r, ) x 

false: r, too distant from r 

true: r receives radiant 
energy from r, 

false 

T 

Count number of integration 
points in homogeneous cell: 

npts = npts +1 

Check next optical abscissa 
i=i+l (i: 5N) 

Store cell index together 
with npts : reset npts =0 

Update ray origin a distance 
x along path to intersection 

false 

MOVE TO NEXT 
ORDINATE DIRECTION 

Store index of wall element 
struck by ray path at r' 

GOTO 
NEXT 
CELL 

Figure 4.14 Procedure used to determine the ray path information in YIX quadrature: 
repeated for every solution point r. 

/ RAY / 

TRA! ýýRj 
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4.6 Discrete Transfer Method 

The discrete transfer method (Shah 1979; Lockwood and Shah 198 1) has been revised and 
extended for the complex radiating media analysed in this study. The geometric 
modelling and ray tracing approach detailed in Sec. 4.3 have been incorporated into the 

original methodology, together with various other modifications to improve either 
generality or performance. These are discussed later below. 

4.6.1 Original Formulation 

First, the radiation space is subdivided into a collection of homogeneous surface and 

volume elements using the spatial discretisation described in Sec. 4.3.1. Next, the 

geometric centre of each surface element, say P, is determined and the 27C hemispherical 

solid angle above P is discretised into N,, finite solid angles M. Shah (1979) chose to 
divide the hemisphere into N. equal polar angles and N, equal azimuthal angles such 
that N. = No - N, and: 

50 
= -. E-, 50 =" 2 No No 

(4.110) 

An emission direction, g, is then defined by the polar and azimuthal angles, 0 and ý, 

through the centre of each subdivision (Fig. 4.15). The local direction cosines of i are 
first determined from Eq. (4.55) with respect to a local Cartesian coordinate system at P, 

where the local z-coordinate axis is aligned with the surface normal fi, and then 

converted to global direction cosines via the transformation given by Eq. (4.3 1). A ray is 

traced in each direction i through the radiation space until it strikes another surface, say 
at Q. Then, starting from Q, the ray is followed back to its origin (point P), while solving 
for the intensity distribution along its path with the recurrence relation: 

i. +, (r, 
i) = i,, (r', g) e-P Jr-r'l +S(I-e-P jr-r'l) (4.111) 

where, n and n+I designate successive cell face locations, separated by the distance 
I r-0, as the ray passes through each volume element from Q to P (Fig. 4.15). This 

expression is obtained directly from Eq. (4.18) by taking the extinction coefficient P and 
the radiative source function S(r, g) to be constant over the interval Ir-0. 
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struck 
surface 
element 

Solidangle 

A2 = slnO A do 

0! ý 0! ý 21r 

O! A 5702 

Figure 4.15 Definition of the solid angle M thl-OLIgh Which tile Irradiation ray travelling 
in the direction -ý arrives at P. This ray is traced thl-OLIgh tile arbitrary 
volurne elements of the discretised radiation space from 11 to Q. 
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The intensities calculated from Eq. (4.111) are assumed to be constant over each finite 

solid angle 8Q, such that the incident radiative heat flux at P is obtained by substituting 
into Eq. (4.12) as: 

N f ii M 
804 

Na 
1: i(r, 'k) COSO k sinoksin(8004k 
k=l 

reSt (4.112) 

where the substitutions i- ii = cos 0 and dK2 = sin 0A do are made prior to integration. 

This incident flux, together the temperature and surface emissivity, are assumed to be 

constant over the entire element S, Then the outgoing intensity is everywhere i', = q. /IC , 
where the emitted flux, q,, has been defined in Eq. (4.13) as: 

q� =(1-E)q, +se, 

Hence, for those rays originating from other surface elements that strike S,, an initial 

intensity i. is used in the recurrence relation (4.114). Since q. depends on the value of 

q,, an iterative solution is required, unless all the surfaces are black. The net surface heat 

flux over each of the surface elements is then found from Eq. (4.14), i. e. restating the 

equation: 

q, =q. -qi (4.114) 

An expression is also required for the divergence of radiative heat flux V-q, in each 

volume element. Lockwood and Shah (1981) considered each ray as a beam of radiative 

energy, such that the heat source associated with its passage through a volume n, from the 
definition of intensity, is: 

SQg =f (i,,,, -Q 8A i- ii dfl 
80 

= Q., j - i,, ) 8A cosO sin 0 sin(50) 
(4.115) 

where 5A is the area of the surface element from which the ray was emitted and it is 

again assumed that the intensity is constant over the finite solid angle 80. When the 
beam of energy associated with a ray only partially intersects a volume the actual source is 

a fraction of that in Eq. (4.115). However, complex source sharing calculations are 
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avoided by simply lumping all of the energy BQg into only those volume elements cut by 

the central ray path g, saving considerable computational effort, without a significant loss 

in accuracy. Summing the individual source contributions from all the N rays passing 

through a volume element, and then dividing this value by its volume, SV, gives the 

divergence of radiative heat flux as: 

N 

V-q, EsQg, 
i (4.116) 

Note here that the flux divergence is assumed to be constant over each volume element as 

are the other radiative properties. 

Finally, solution of equation (4.114) requires a value for the source function S defined by 

Eq. (4.16). Lockwood and Shah (198 1) approximated the term as follows: 

(1 - c» i, + -2- 
f i(ii) (D(ii, g) df2i 

47r 41c 

N 
0_CO) ib +ILY 

4n j=I 

(4.117) 

where the averaged intensity is taken as the arithmetic mean of the entering i. and leaving 

i. +, radiant intensities for each ray passing through the subvolume within the finite solid 

angle 592,. This finite solid angle was evaluated for each 80 5ý angular subdivision as 
(c. f. Siegel and Howell 1992, Sec. 2-5.5, p. 21): 

501 =ff sinO A do =2 sinO sin(50/2) 80 (4.118) 
460 

The summation of Eq. (4.117) is then readily evaluated for an isotropically scattering 

medium by setting 0(k, g) =I (e. g. Meng et al. 1993). However, the author is not aware 

of any attempt to solve problems with anisotropically scattering media (see further 
discussion in next section). 

The discrete transfer solution procedure is surnmarised in Fig. 4.16. 
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Start 

4 
Select solution point r at surface element geometric centre 

Select type and order of angular quadrature (Shah or DO) 

Find global cosines of an ordinate direction i (Sec. 4.4.1) 
I 

Define parametric ray path, r, (t) =r +it (t = scalar) 
I 

Trace ray until it strikes another surface element, e 
Store: (a) indices of traversed volume elements 

(b) path segment length Ir- r'I in each element 
(c) index of struck surface element 

I 
Set initial intensity i,, (n = 0) from Eq. (4.116) at e 

Solve for i,,., from recurrence relation Eq. (4.114) 
I 

Calculate the source function S in current volume element 
from Eq. (4.120) with i,,, 

g =I (i. + i,, +, 
) 

lalse 
Set i. = i.,, 

Accumulate incident flux qi(r) in summation of Eq. (4.15) 
I 

MOVE TO NEXT ORDINATE DIRECTION 

RAY 
TRACER 

Figure 4.16 Discrete transfer solution procedure: repeated for each surface element and 
then globally until the radiative heat flux values are converged. 
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4.6.2 Modifications/Extensions 

Several modifications or extensions to the original formulation have been considered. 
These are as follows: 

Angular Quadrature. The discretisation of the hemispherical solid angle above each 

surface element by Shah (1979) uses a uniform distribution of rays in the spherical 

coordinates (0,0) and this practice has been adopted almost exclusively by others. A 

notable exception is the work of Cumber (1994) who suggests a new angular quadrature 

analogous to a Newton Cotes formula for numerical integration. This shows some 
improvement in solution accuracy over Shah's original quadrature, but the test problems 

are simplistic, and a rigorous analysis of the effect of arbitrary orientated surface elements 
is not shown. Interestingly, Cumber (1994) also considers a low-order Gaussian type 

quadrature, but later abandons it on practical grounds, because it is restricted to two 

directions in the polar plane and thus 80 can not be refined to reduce the discretisation 

error. However, this Gaussian quadrature is superior to the Newton Cotes quadrature for 

the same level of angular discretisation, and is in fact, an (nonsymmetric) S4 type 

quadrature. Consequently, the discrete ordinate S. quadrature sets constructed by 

Lanthrop and Carlson (1965) may offer a better alternative to Shah's original quadrature. 
As discussed in Sec. 4.5.2., these quadrature formulae satisfy certain order of moment 
integrations of intensity over a unit sphere and hemisphere. If Shah's quadrature weights 

are substituted into these expressions it is found that they are largely satisfied, except for 

the second moment when the angular discretisation is very coarse (e. g. 12 rays). Hence, if 

a low-order quadrature is used, an S. set may be advantageous, but with finer 

discretisation both quadrature schemes are comparable in this respect. A second attribute 

of the S,, sets is that they are symmetric, preventing directional biases. In contrast, Shah's 

quadrature is non-symmetric, with more rays (ordinate directions) at smaller polar angles, 
0. This may result in an accuracy loss from biasing problems, but there may also be an 

accuracy gain due to the cosO dependence of the incident intensity at a surface. Finally, it 

is noteworthy that Shah's quadrature weights can be easily generated up to any order. 
Therefore, taking all these points into consideration, Shah's original angular quadrature is 

the author's preferred choice. 
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In-scattered Radiation. A more conservative approximation for the in-scattering term of 
Eq. (4.117) is obtained if the summation is weighted by the solid angle as follows: 

41rl i(ii)., 
g (D(gjqg)5flj f i(gj)(D(ij, g)df2j 

4z 

(4.119) 

Here, for each volume element, the summation extends over all the crossing ray paths. In 

the special case of isotropic scattering, this approximation can be avoided altogether by 

recognising that the integral reduces to the irradiation, wo as defined by Eq. (4.10). Then, 

the irradiation is expressed directly in terms of the divergence of radiative flux by (c. f. 

Modest 1993, p. 314): 

f i(ii) di21 = wo = 4e, -V- /ic 
41c 

Thus, the source function S of Eq. (4.117) reduces to: 

ir 

( 

41c 

(4.120) 

(4.121) 

for isotropically scattering media. Since the source function in each volume cell depends 

on the solution value V. q,, an iterative solution is required, unless the medium is 

nonscattering. Consideration of anisotropically scattering media with the discrete transfer 

approach is very problematic and the author is not aware of any successful strategies in 

the literature. However, for completeness, an effort was made in this study to extend the 

methodology for the linear anisotropic scattering (LAS) phase function of Eq. (4.5), i. e. 

(D(919 i) =I+g9-9,. The in-scattering contribution into the path i of a ray, in every 

volume element, was accumulated by evaluating the dot product i-i, with every other ray 

path 9, passing through the volume. Using 0 and ý to represent the global polar and 

azimuthal angles of each ray direction, respectively, this dot product is expressed as 
(Siegel and Howell 1992, p. 586): 

s-s, =cosOcosO, +sin 0 sinO, cos(0-0) (4.122) 

Trial calculations with this LAS formulation for gray, planar media between black parallel 

plates were found to agree with exact solutions by Dayan and Tien (1975). In these 

simple one-dimensional problems, the, rays cross the volume elements (taken as 

iso 



Chapter 4 Development of Radiative Heat Transfer Methods 

isothermal gas layers between the plates) in a conservative manner. However, in three- 
dimensional media, the distribution of rays crossing volume elements becomes highly 

asymmetric resulting in poor predictions with this approach. Perhaps this numerical 

asymmetry could be removed by fixing the ray ordinate directions relative to the global 
axes (irrespective of the surface element orientations) or by using some sort of averaging 

of the scattered energy over 'angular bins' in each volume element (e. g. see Drake 1996). 

Though, even if an accurate scheme can be developed, it is likely that the extra run-time 

and storage required to evaluate the phase function for each ray will rapidly become 

prohibitive, even for moderate problem sizes. Thus the present discrete transfer 
formulation is restricted to isotropic scattering media. 

Media with a Prescribed Heat Source. For a uniform heat generation 6' in each 

volume element, V-q, is replaced by 6' in Eq. (4.120) for the irradiation, wo. An 

iterative discrete transfer solution is then required, where the medium emissive power in 

each volume element is updated every iteration according to: 

(e. )�, = (e. )� +1 (Ü' -V-q, ) 
ld 41c 

This expression is obtained from Eq. (4.120). 

(4.123) 

Ensuring Energy Conservation. The total net surface heat flow through the boundary 

of an enclosed participating medium must equal the total volumetric heat source 

generated per unit time within the medium: a statement of the conservation of energy. For 

a purely radiating medium this condition requires that: 

NK 
qj 

Qg. 
j 

J=l 
(4.124) 

where the summations are taken over all N surface elements and all K volume elements of 
the discretised radiation space. However, this overall radiant heat balance is not 
guaranteed in discrete transfer solutions unless the spatial and angular discretisation is 

sufficiently fine. For example, a situation where the energy imbalance is likely to be 

severe is shown in Fig. 4.17. The pronounced curvature of the convex surface, 
compounded here by the coarse spatial and angular discretisation, is such that the view 
factor of the outer concave surface to itself is not computed accurately. Given thatfour 
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rays are traced per surface element, it is found that only three rays strike the concave 

surface j from those emitted by all other surface zones. This results in a lack of strict 

reciprocity between the surfaces and the discrete transfer solution is nonconservative. A 

mathematical proof of this is provided by Coelho and Carvalho (1997). They also derive 

a global correction factor, C, such that an initial intensity i. = Cq,, /n is used in the 

recurrence relation (4.111) to ensure overall conservation. However, the value of this 

'fix' is questionable: the solution accuracy is not necessarily improved and may even be 

reduced. Thus, it has not been used in the present discrete transfer implementation where 
it is felt better to tolerate a small (often tiny) energy imbalance, rather than to arbitrarily 

scale values. 

Storage of Ray Path Information. The indices of the volume elements traversed, the 

distance travelled across each element, and the surface element struck by each ray, are 

traced and stored during the first iteration of the solution procedure. Then, for subsequent 
iterations this stored geometric information is used rather than recalculated. This results 
in a significant speed-up, especially if the data is read directly from memory or, when the 

memory capacity is exceeded, by using buffered input from a disk file. 

surface elementj 

Figure 4.17 A two-dimensional geometry were care has to be taken to ensure an overall 
heat balance. The irradiation rays that arrive at (solid lines) or start from 
(dashed lines) the surface element j have been shown for a very coarse 
angular quadrature. 
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4.7 Summary 

1. A governing equation for participating radiative heat transfer may be written in either 
integro-differential or integral form. Monte Carlo methods solve for the terms in the 

transport equation in a probabilistic manner; other methods are based on deterministic 

approximation. 

2. Radiative heat flux and/or temperature conditions are specified in the medium and on 

the boundary. For combined mode problems only the divergence of radiative heat flux 

V-q, appears in both the energy and radiation transport equations, so only V-% and 

not q, (the radiative surface heat flux), needs to be treated as a primitive variable. This 

is obtained directly by methods that solve the transport equation in integral form. 

3. Pathlength-based Monte Carlo algorithms offer superior performance over classical 
forrns (for optically thin-to-moderately thick media) as statistical uncertainty is reduced. 

An efficient scheme is implemented with other speed-ups. A hybrid Monte Carlo/zonal 

formulation extends applicability of pathlength-based solvers to problems with an 

applied heat source condition and gains other benefits. 

4. A YIX formulation for complex geometries is developed whereby the integral radiation 

equations are cast in angular-distance form. Angular integrations use discrete ordinate 

quadrature and distance integrals along ray paths use a nonuniform quadrature based on 

optically spaced coordinates (mapped onto the spatial discretisation). 

5. The discrete transfer method is implemented largely in its original form. Alternative 

angular quadrature schemes are debated. The in-scattering analysis is restricted to an 
isotropic phase function: treatment of anisotropy is feasible but only at the expense of 

the conceptually simple methodology and computational efficiency. Likewise fixes to 

ensure energy conservation increase complexity and are of questionable benefit. 

6. The Monte Carlo, YIX and discrete transfer methods all embody the same geometric 

representation scheme, tracing and search strategies for complex arbitrary geometries. 
The ray-tracer utilises an efficient ray-triangle intersection algorithm in a novel way to 
handle cell face distortion and edge intersections with minimum work. Finite element 

parametric mapping techniques are used to describe the properties of irregular elements. 
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Chapter 

5 
Generalised WSGG Model for 

Nonhomogeneous, Nongray Media 

The radiative properties of gaseous participating media are a complex function of 

wavelength, temperature, pressure, composition and path length. Consequently, the 

grayness assumption of the previous chapter, where these dependencies were ignored, is 

unrealistic in all but a few limited situations (e. g. very sooty environments). However, 

orders of magnitude increases in the computation time are introduced by a nongray 

analysis; so it was a primary requirement of this study to develop an extrernely efficient 

approach. This resulted in the development of a generalised weighted-suni-of-gray-gases 
(WSGG) model that can economically capture the spectral nature of an arbitrary gas 

mixture with good accuracy. Furthermore, the model can be incorporated directly into tile 

Monte Carlo, YIX or discrete transfer gray solvers developed in the last chapter without 

any need for their reformulation. In fact, it is suitable for use with any gray solution 

method of the radiative transport equation, Eq. (4.1 ). 

5.1 Gas Property Models: A Review 

Gases emit and absorb electromagnetic radiation only at I'l-C(ILIC[ICICS Whel-C the 

corresponding photon energies match the quantum changes in the energy of the gas 

molecules. This gives rise to many thousands of narrow lilies in the absorption spectra, 

each of which cover a tiny but finite range of wavenunibers (i. e. 110 Spectral line Is truly 

monochromatic). A concise quantum mechanical explanation for this, together with a 
discussion of the phenomena which effect the shape and broadening of lilies, is provided 
Modest (1993, Chap. 9). However, of more importance here is the fact that it hierarchy of 

gas property models of these absorption spectra have evolved corresponchno to several 

wavenumber scales. Each scale represents a different trade-off between accuracy (i. e. the 
degree to which the line structure is resolved) and computational economy. 
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Line-By-Line Models. These offer the highest accuracy by using high-resolution 

spectroscopic data to generate integrated line intensities and spectral absorptivities. 
Typically the radiative heat transfer calculations are carried out at wavenumber intervals 

ranging from 0.0002 to 0.02 cm-1: one-fifth the width of one broadened absorption line. 

Todate line-by-line methods have only be used to generate benchmark predictions for the 

simplest problems due to the intensive calculation required. 

Band Models. At the next scales the absorption coefficient is spectrally averaged over 

either narrow bands of 5 to 50 cnf 1 (Goody 1964; Ludwig et al. 1973), or over wider 
bands, typically ranging from 100 to 1000 cm"' (Edwards 1976). This approach greatly 

reduces the amount of computation but results in another problem: Beer's law does not 
hold for an absorption coefficient spectrally averaged over many lines (see Edwards 1976, 

p. 132). Therefore, band models are based on a spectrally averaged band transmissivity 

(or absorptivity or emissivity) for a given path length. The radiation transport equation is 

then expressed in terms of a transmissivitY differentiated with respect to distance along a 
line of sight. Forms based on the discrete transfer method (Docherty and Fairweather 

1988; Bressloff et al. 1996) and on an S. discrete ordinates formulation (Kim et al. 1990; 

1991) have been developed for purely absorbing media and demonstrated in relatively 

simple geometries. 

When seeking solutions to the radiative transport equation averaged over a wavenumber 
interval special attention must be paid to the spectral correlation between terms. Several 

studies (e. g. Taine 1983; Miranda and Sacadura 1996) have investigated the effect of 

solving for correlated and noncorrelated transmittance in nonhomogeneous media. 
Correlated transmittances are found by averaging values for the line/band parameters 
along the entire path length of the radiation. Narrow-band Curtis-Godson or wide-band 

scaling techniques are used, depending on the type of band model, to effectively replace a 

nonuniform gas along the line of sight by an 'equivalent' uniform gas (see Edwards 1976, 

Sec. V). In contrast, a nonhomogeneous path may be discretised into several shorter 
isothermal lengths and the combined transmittance obtained by multiplying together the 
transmittances of the separate segments: this is the noncorrelated transmittance. Though 

noncorrelated transmittances are cheaper to evaluate, Taine (1983) found significant 
errors in heat transfer calculations if a correlated value is not used. This seems to be 

contradicted by Miranda and Sacadura (1996) who report fair accuracy using a 
noncorrelated approach. 
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The term 'correlation' is also used to refer, rather confusingly, to the spectral averaging of 
the transmittance-intensity product that appears in the radiative transport equation (with 

narrow-band models). Although it is simpler to independently average the transmittance 

and intensity over each band, before finding their product, Kim et al. (1990; 1991) 

showed that large errors may result. Hence, to correctly account for the spectral 

correlation it is necessary to average the transmittance-intensity product as a unit, but only 

at the expense of much computation, i. e. see CPU times in Table 2 of Kim et al. (1990). 

Consequently, a fully correlated band model solution would require supercomputing 
facilities for the problems of interest to this study. Moreover, band models are 
incompatible with the numerical solution methods of Chapter 4 in which the absorption 

coefficient is specified locally as the fundamental radiative property. 

Total Property Models. A number of gas property models employ curve fitting 

strategies to spectrally calculated total properties for the entire wavenumber range, thus 

avoiding the need to treat the spectral variation of absorptivity explicitly. Notable 

amongst these are the total emissivity-absorptivity models of Leckner (1972) and Modak 

(1978), the latter of which was used to generate property data for the total transmittance 

nonhomogeneous model (TTNH) of Grosshandler (1979). This TTNH has generated 

solutions within 10 percent of narrow-band calculations in a variety of combustion 

systems, yet it is at least two orders of magnitude faster (Grosshandler 1980; 1985). 

However, the model is not applicable to the general radiative heat transfer equation that 

assumes spatially independent absorption coefficients and does not cover the full range of 

temperature/pressure conditions in spark-ignition combustion systems. 

Weighted-Sum-of-Gray-Gases (WSGG) Models. Classically, these comprised curve 
fits to total emissivity data, enabling a real gas to be modelled as a number of fictitious 

gray gases (e. g. Truelove 1976; Smith et al. 1982). Therefore, the distinct advantage of 
WSGG models over band property models is that they are directly compatible with the 

best available solution methods for radiative heat transfer in gray media. Furthermore, 

they are extremely economical and new variants of the WSGG approach allow the fitting 

of arbitrary spectra via the construction of a detailed histogram representation (Denison 

and Webb 1993; 1995). 
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5.2 Nongray Model Selection 

A WSGG nongray analysis based largely on the approach of Denison and Webb (1993; 

1995) was selected principally for its economy, generality and compatibility with gray gas 

solvers. Another advantage is that the number of gray gases used in an analysis can be 

scaled giving some freedom to choose a desired level of solution accuracy for a given 
level of computation. 

An important point implicit in the discussion above is that WSGG solutions are 

essentially models of the other property models (used to generate the emissivity or 

absorptivity data). For example, the WSGG model of Denison and Webb (1993; 1995) is 

constructed with line-by-line spectral data from the high-resolution transmission 

molecular absorption (HITRAN) data base (Rothman et al. 1987; 1992; 1998). However, 

although HITRAN is extensive, all its data were assembled at room temperature such that 

application to high temperature and pressure problems requires extrapolation. The best 

available measurement of thermal radiation from nonhomogeneous masses of hot gases 

and flames are the data tables in the NASA Handbook of Infrared Radiation (Ludwig et 

al. 1973). The narrow-band code RADCAL (Grosshandler, 1979) uses this information 

in order to generate spectra for various mixtures of water vapour (1120). carbon dioxide 

(COA carbon monoxide (CO), nitrogen (ND and oxygen (02) mixtures for a given path 
length. The path length dependence of this data must first be removed before it can be 

utilised in the WSGG approach. As discussed by Denison and Webb (1993) this involves 

finding a single absorption spectrum that brackets the range of path lengths for the 

required problem. They describe a rather complex optimisation procedure for this 

purpose, but there was insufficient time to implement this approach. 

The next best alternative was to use a correlation by Li et al. (1995) for computing the 

spectral absorption coefficient of H20, C029 CO and other gases. In this model the 

spectral absorption coefficient is calculated solely as a function of the temperature, total 

pressure and partial pressure of the gases, i. e. the optimisation for path length has already 
been perfon-ned. Moreover, a number of important nongray benchmark problems have 

utilised absorption spectra generated by this model. Thus, a verification of the present 
nongray radiative analysis was possible (see Sec. 6.2). Li et al. 's (1995) model is 
described first and then the WSGG analysis is developed. 
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5.3 Computation of the Spectral Absorption Coefficient 

Li et al. (1995) use a combined narrow- and wide-band formulation for computing the 

spectral variation in absorption coefficient. Individual spectral lines are considered to be 

of slowly varying intensity and to have nearly uniform spacing within narrow 

wavenumber bands: this is a good assumption for diatomic molecules and linear 

polyatomic molecules. Then the Elsasser narrow-band models gives the spectral 

absorption coefficient as (Siegel and Howell 1992, p. 555): 

ps 
sinh(7c 0/2) 

5 cosh(iup/2)-cos[2ic(ij-ij, )/8] 
(5.1) 

where il is the wavenumber for the band centred at %, p is the partial density of the 

radiating gas, 5 is the line spacing, S is the mean line strength and is a parameter to 

allow for the pressure broadening of the absorption lines. For large at high pressures 

the lines are broad compared to their spacing and the line structure is lost as the lines 

strongly overlap. Thus, P is referred to as the line overlap parameter. 

Li et al. (1985) argue that since the band shape prescribed by the Elsasser narrow-band 

model is arbitrary, there is no need to preserve it: only the integrated band absorptance is 

of importance. Therefore, they choose to take the mean strength-to-spacing ratio, SIB , 
and the line overlap, P, as those specified in Edwards exponential wide-band model 
(Edwards 1976). The line spacing parameter, 8, is then adjusted in order to correlate 

experimental data for band absorptances, A, expressed as: 

exp(-lc,, L)] dý 
III 

(5.2) 

where il , and 112 are the lower and upper wavenumber limits for the absorption band 

under consideration, and L brackets the experimental range of path lengths. Any loss of 

accuracy from this approximation over an entire wide band, and certainly over the entire 
thermal radiation spectrum, is expected to be small. Here 'small' should be interpreted in 
light of the fact that Edwards wide-band model correlates experimental absorptance data 

with an average error of about ±20% and maximum errors as high as 80% (Modest 1993, 

p. 349). 
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Figure 5.1 Band shapes for Edwards exponential wide-band model. 

-1ý 

Quantum mechanics describes an exponential decrease in line intensity in tile blind wings 
far frorn the centre, so Edwards assumed that S18 has the following profile: 

exp(-aill (5.3) 

where a=I for asymmetric hands and 2 for symmetric bands (Fig. 5.1); u and (t) are 

wide hand strength and width parameters. Rcferring to Fig. 5.1, a represents the area 

under the exponential spikes and o) the width at I/e of' the maximum. In the literature, 

u and co have also been labelled as C, and C, , respectively. Further, the line overlap 

parameter was specified as: 

p= Q21ý /(4 C, C, ) (5.4) 

and 
[p/p,, +(b- 1)p,, /p(j', p(, =I atill (5.5) 

where p, is the partial pressure of the radiating gas, 1) is the total preSSUre 01' the gas 

mixture, and C, ,b and n are correlation parameters. 

area under 
spike = ot 
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In summary, given a set of conditions (T, p and composition), the model parameters 

C1, C2, C3 ,b and n are taken as those in Edwards exponential wide-band model (i. e. 

Table 12-4 of Siegel and Howell 1992). Then, equations (5.1-5.5) are solved in order to 

obtain 5. Table 5.1 shows a complete set of parameters for the gases H20, C02, CO and 

nitric oxide (NO). It should be noted that surprisingly Li et al. (1995) chose parameters 

from Edwards original model, rather than those from later versions (Edwards 1976). In 

order to use the newer wide-band model parameters, the absorptance fitting procedure 

would have to be repeated and the likely improvement in accuracy was not considered to 

merit the extra work in this study. 

Figure 5.2 shows the computed spectral absorption coefficient for a C02: H20 ratio of 8: 9 

(i. e. equal to the stoichiometric combustion of n-octane). 

5.4 Weighted-Sum-of-Gray-Gases Model 

The analysis of nongray media was initially performed using a 'bandwise' modelling 

approach similar to that described by Farmer (1995, Sec. 4.3.3, p. 126). Though not 
formally stated as such, his method is essentially a weighted-sum-of-gray-gases (WSGG) 

approximation, albeit an inefficient one. Subsequently, on the basis of work by Denison 

and Webb (1993; 1995), this bandwise model was revised in order to improve its 

performance and to extend its applicability to nonisothermal, nonhomogeneous media. 
The full development process is detailed below, since the initial bandwise model is a 

useful aid in understanding and verifying the final WSGG model. 

5.4.1 Bandwise Solution 

Consider, as an example, the absorption spectrum of Fig. 5.2. The essence of the 

bandwise dpproach is to construct its histogram representation. The actual spectrum is 

subdivided into many small wavenumber intervals, or bands, and the absorption 

coefficient is averaged across each interval as: 

ici =I icl d7l (5.6) 
112 -111 71, 

where ill and712 are the lower and upper wavenumber limits of the interval 
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Table 5.1 Correlation parameters for H20, C029 CO and NO (Li et al. 1995). 

Gas 

H 2ob 

Band Pressure 
Band centre parameter C, C? C32 

gm 11 , crrf bn CM, I/(g M-2) cnf '/[(gin2)il/2 cm*l CM'l 

6.3 1600 5.0 1.0 41.2 44 52(TITo)0*5 250 

2.7 3750 5.0 1.0 23.3 39 65(T/TO)0'5 100 

1.87 5350 5.0 1.0 3.0(poll(7) 6. OCIO, 5 46(TITo)0'5 5 

1.38 7250 5.0 1.0 2.59, ol(7) 8 oc, 0.5 46(TITo)o*s 200 

C02c 15 667 1.3 0.7 19 6.9(T/To)0*5 12.9(T/To f*5 100 

10.4 960 1.3 0.8 0.76y, (7) 1.6(TITo)0'5 C10*5 12.4(T/Tof, 5 20 

9.4 1060 1.3 0.8 0.7691(7) 1.6(TITo P*5C, 0,5 12.4(T/To)0'5 30 

4.3 2350 1.3 0.8 110 31 (TITof, 5 11.5(TITo)o" 30 

2.7 3715 1.3 0.65 4-OT2(7) 8.6(p3(7) 24(T/To)0'5 1000 

Cod 4.67 2143 1.1 0.8 20.9 (PAD 22(T/To)0*5 10 

2.35 4260 1.0 0.8 0.14 0.08(ps(l) 22(T/Tofs 150 

NO 5.35 1870 1.0 0.65 125(273/7) 51.5-7.5(T/300) 45(TI300P, 5 1.7 

a T =100K 0 
For H20: 

hc'ý 33 
exp( 

I-- Lo 
(PVIVZV3 Y-V, 11, ri I-exp( 

kcTn kTji. t 

I 

i-I 

I 

III where 71, = 3652 cm- , T12 = 1595 cm" and 113 = 3756 cm' 

For C02: 

exp[_ 
he 

(713 -Tld exp 
hol, 

_I exp 
2hcll, 

kT 

]I[ 

kT 

)2 

kT 

I-exp 
hc7l, 

I-exp(_hcil3 
kT kT 

92= I-exp 
Lc 

I- exp 
L-) 

kT 
(111 +113 

I I- 

kT kT 
I- exp 

93 = 
[1+0.053(TT 3/2] 

0) 

II where Tj 1351 cm" and TI 3= 2396 cm' 

For CO: 

15.15 + 0.22 
3/2 ][1 

- exp(- 
hoil (TTO-) 

kT 

I where il = 2143 cm' 
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Figure 5.2 (a) Linear, and (b) logarithmic plots of the model absorption spectrum of a 
C02/1120 mixture [conditions shown in (a)] computed via Eq. (5.1). The 
blackbody emissive power spectrum at the mixture temperature of 1500 K is 
also plotted in (a). 
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The spectral integration of Eq. (5.6) is evaluated using numerical quadrature. A value for 

the blackbody emissive power is found for each band interval j from the expression: 

T1 

ej = 
ýebl, 

dil = If 
(T12 IT) -f (11, IT)IG T4 (5.7) 

Th 

where f is the fraction of the total blackbody emissive power, aT4, between zero and 

il / T. Blackbody fractions are found from the series relationship (Chang and Rhee 1984): 

f(il I T) 15 r exp(-ng) 3+ 3 ; 2+ Lq 
+±_ ý- ý7 L- -n 

(; 
2 3)]l q=C2711T (5.8) 

where C2= 1.4388 cm -K is a constant in Planck's spectral power distribution. Here, the 

size of each successive term in the summation rapidly diminishes with increasing n such 
that only a small number of terms must be computed to determine f to a required 

accuracy. Then, the absorption and emissive power values from Eqs. (5.6) and (5.7) are 

used in a gray radiative transport analysis for each band. Subsequently, the band results 

are summed together in order to obtain the total transport results. (Here an isothermal, 

homogeneous medium is assumed such that the spectrum in Fig. 5.2 applies over the 

entire problem domain. ) 

It is noteworthy that since an independent analysis is performed for every band, any 

numerical procedure which solves the general radiative heat transfer equation may be 

applied, or even a combination of techniques. This flexibility is an important advantage 

when treating wavenumber intervals with a very large absorptivity, i. e. those at the centres 

of the C02 and H20 exponential absorption spikes in Fig. 5.2. At these wavenumbers 

emitted radiation travels only a short distance before complete absorption (or scattering) 

such that the local intensity is a function of the local property gradients only. The 

radiative energy transfer can then be modelled as a simple diffusion process, i. e. the 
Rosseland diffusion approximation (Siegel and Howell 1992, Sec. 15-3.4). In practice, a 
numerical solution method for optically thin-to-moderate conditions is either coupled with 
the diffusion approximation (e. g. Farmer and Howell 1994; Bums et al. 1995) or its 
formulation is modified. A good example of the latter is the YIX method (Sec. 4.5) 

where a lower order S. angular quadrature may be used for optically thick bands (Hsu et 
al. 1993). A cell optical thickness above 5 is the threshold condition often chosen for 

applying the diffusion approximation. 
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As each band requires a separate solution it is clearly essential to rmnimise their number, 

while retaining enough bands to resolve the spectral variation in absorption with sufficient 

fidelity: herein lies the most difficult aspect of the bandwise approach. As a general rule, 

more bands are required around the gas absorption spikes, with fewer, wider bands in the 

window regions between them. However, developing an automated procedure to 

optimally insert a given number of bands for an arbitrary absorption profile is a 

challenging problem. The following satisfactory, though imperfect, strategy was adopted 

in this study. A narrow band is first placed at the centre, ij, _ of each gas absorption 

spike: this is only a few wavenumbers wide. The large wavenumber ranges in between 

are then recursively subdivided into bands until the specified number of bands has been 

inserted. Each new band is inserted by dividing an existing interval in two, though not 

necessarily symmetrically, but rather so as to minimise the error between the stepped and 

actual absorption profile. Additional complication arises from the fact that the absorption 

coefficient varies over several others of magnitude. A simple searching and fitting 

algorithm was devised in order to find at which wavenumber to make the division. Figure 

5.3 shows the resulting spectral discretisation of the profile in Fig. 5.2. 
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Figure 5.3 WSGG histogram model for the CO, /H-, O specti-Lini of Fig. 5.2. 
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It can be seen that the algorithm had difficulty in capturing the fine line structure of the 
1.87 gm H20 band. Further, the number of bands required is large (80+) even after 
optimisation. The reason for this is that each absorption spike is resolved separately. It is 

observed that many bands have identical, or similar, levels of absorption such that 

conceptually they may be treated as a single unit, with a combined blackbody emissive 
power equal to the summation of their individual blackbody powers. This greatly reduces 
the level of computation and is the basis of a more efficient method using absorption 

cross-sections. 

5.4.2 Banded Solution using Absorption Cross-Sections 

An absorption cross-section, C,, selects wavenumbers; with absorption less than or equal 
to Ck from a complete spectrum (Fig. 5.4). Thus, a pair of absorption cross-sections Ck 

and Ck,., will segregate out all the wavenumber intervals, or bands, for which the spectral 

absorption coefficient is in the range C, :5 ic n :ý Ck,.,. These bands are characterised as a 

single gray gas with a representative absorption coefficient, lck and combined blackbody 

emissive power e., (Fig. 5.5). Additional cross-sections are then added in order to 
discretise the entire absorption domain into N discrete levels of absorptiong xk* with 

associated blackbody powers, eg, (k = 1,2,..., N). The result is a histogram 

representation of the actual spectrum, analogous to the bandwise model of Sec. 5.4.1, but 

with a mutual rather than individual treatment of the bands from different absorption 

spikes. This is a weighted-sum-of-gray-gases solution with N gray gases. 

Consideration is now given to how best to determine the values of ic, and eg,. Denison 

and Webb (1993) describe an optimisation procedure to find ic, for a small number of 

gray gases (N < 10). However, if the absorption cross-sections, C,, are logarithmically 

spaced and of sufficient number, the representative absorption coefficient in each interval 

may be taken as the logarithmic mean (Dension and Webb 1995): 

ick = exp 
Fln(Ck)+In(Ck. 

1) (5.9) L21 

This second approach was preferred in the present study given the little time available to 
implement an optimisation technique, though more gray gases may be required for a given 
level of accuracy. 
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The blackbody power for the gray gas with absorption ic , is: 

eg, = [F(Ck.,,, Tb, T, p, Y, ) - F(Cl, Tb, T, p, Y, )Ia Tb4 (5.10) 

where F is the blackbody distribution function defined as (c. f. Denison and Webb 1995): 

F(Ck, T., T, p, Y, ) =1e. (il, Tb) dil, (05 F: 5 1) (5.11) -T4 Yl 
fä, 

1j (Ck, T, p, Y, ) 
bi 

Here the summation is taken over all j wavenumber intervals All, for which the spectral 

absorption coefficient ic T, 
is less than the value Ct. The integral term of Eq. (5.11) is 

evaluated from Eq. (5.7). The dependence of Ail, is a consequence of the absorption 

spectrum varying with temperature T, total pressure p and species mole fraction Y,. The 

function F further depends on a blackbody source temperature, Tb, in order to allow for 

nonisothermal media, as discussed shortly. 

However, if the medium is isothermal and homogeneous, a single model spectrum will 

apply over the entire domain for the conditions T, p and Y, (Tb= T). An independent 

analysis is performed for each of the k gray gases with the fitted values of ic, and e,,, 

after which the individual results are summed to obtain the total radiative heat transfer 

solution. In this last stage the solution proceeds in an identical manner to the bandwise 

approach (Sec. 5.4.1), but a significant reduction computation results from the application 

of absorption cross-sections. This is demonstrated with benchmark problems in Sec. 6.2. 

The problem complexity is markedly increased for nonisothermal and/or 

nonhomogeneous media. The height and width of the gas absorption spikes vary with 

position. Therefore, the model histogram of the gas spectrum must also accommodate 

this variation, but in a manner that provides for the histogram boundaries, given by A71j, 

to remain fixed over the entire spatial domain. This is achieved by making the 

representative absorption coefficients ic . implicitly dependent on the local gas state. The 

following procedure is used: 

1. A reference state is determined as the spatial average of the temperature, total pressure 

and species mole fraction over the entire participating medium, and the variation in 

spectral absorption coefficient icn (T,, f , p,, f , Y,,,, f ) is evaluated from Eq. (5.1). 

167 



Chapter 5 Generalised WSGG Model for Nonhomogeneous, Nongray Media 

2. The computed range of absorption coefficients is discretised Into a number of 
increments by inserting absorption cross-sections, Cj,,,, f, and a reference absorption 

coefficient, lC k, ref I 
is obtained for each increment from Eq. (5.9). 

3. At each spatial location the local variation in absorption coefficient 1C (TI. pl. Y 

is evaluated from Eq. (5.1). 

4. The local gray gas absorption coefficients 'Ck are found as those which satisfy the 
following condition: 

F[Cl =iC,; Tb = T,,, f ;T= Tl,,,; p= pw; Y, = Y, 
,, ý 

I 

= F[Ck= ic 
,,, f 

; Tb= T,, f ;T=T,, f ;p=p,,, f ; Y, = Y,,,., f 
(5.12) 

This arranges that the blackbody distribution functions are equivalent at the reference 

and the local states, i. e. it fixes the model histogram boundaries over the spatial 
domain as desired. The source temperature is set equal to the reference temperature for 

this purpose. Therefore, as discussed by Denison and Webb (1995), Eq. (5.12) is 

approximate in predicting the emission as a local phenomenon. 

5. The gas blackbody weights are determined for each gray gas from Eq. (5.10) with the 

source temperature equal to the local temperature, i. e. 

e, k= [F(Ck,,, Tb= Tl,,,, T=T,, f, p=pf, Y, = Y,,,, f) 

-F(Ck, Tb=T,,, 
c, 

T=T,, f, p=p, ef, 
y=y )]CFT4 b 

(5.13) 

Setting T, p and Y, equal to the reference condition here ensures that ATIj are fixed. A 

similar expression is used to evaluate the blackbody weights at a surface, i. e. 

e, k =[ F(Ck. 1, Tb= T,,,, 11, T= Tef ,p= pef , Y, = Y,,, 
ef 

) 

-F(Ck, Tb = T,,.,,, T= T,, f, p= p,, f, Y, = Y,,,,, f)] C; Tb4 

where the wall temperature T,,.,, is taken as the source temperature. 

(5.14) 

6. The surface heat flux and divergence of radiative heat flux are determined for each 
gray gas k with the fitted values ic, . eg, and e,,. These results are summed to obtain 
the total heat transfer solution. 

168 



Chapter 5 Generalised WSGG Model for Nonhomogeneous, Nongray Media 

Some points should be noted regarding the implementation of this algorithm. The limits 

of the intervals Ail, lie at wavenumbers where the absorption line Ck intersects the 

graphic of ic,,, as detailed above. Thus each limit corresponds to a root of the function: 

1C(11)-C=O (5.15) 

Numerous roots will exist if the spectral absorption coefficient has a fine line structure so 
it is important to choose an efficient root finding technique. This study uses a fast and 

robust false position method (Pearson 1986, pp. 4-8) and the convergence was assumed 

with a tolerance of 10-6 cm7l. Furthermore, since Eq. (5.12) is implicit, a false position 

method is also used to deten-nine the local 'Ck I though the procedure is somewhat 

modified in order to allow for the logarithmic variation in absorption coefficient over the 

entire absorption domain. A solution to: 

F[Ck =ick; Tb= T,, f; T= Tl,,,; p= pjý,; Y, = Y,,,,,, I-F,, f =0 (5.16) 

is found where F,,, f =F[Ck ='Ck,,,, f; Tb =T,., f; 
T=T,, 

f; p=p,,, f; 
Y, =Y,, f]. 

Here, each trial 

for 'Ck requires that its blackbody distribution function F is determined, which in turn, 

requires that a full solution of Eq. (5.15). Consequently, in the gray gas fitting calculation 

the spectral absorption icT, must be evaluated a vast number of times due to this 

hierarchical dependence and a significant speedup is achieved by generating lookup tables 

for ic,, (at step 3). Lookup tables for blackbody fractions may also be used to speed up 

evaluation of the gas blackbody weights. The complete fitting procedure is summarised 

in Fig. 5.6. 
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Create lookup table of blackbody fractions f(ij IT) 
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Evaluate the gas and surface blackbody weights egk and ek from Eqs. (5.15) 

and (5.26) for the reference wavenumber intervals Aijj(Ck, Tef, pef, Y,,, 
ef). 

Figure 5.6 Procedure to determine a set of k gray gas absorption coefficients and 
blackbody weights in a WSGG model of a nonisothermal, nonhomogeneous 
medium. 
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5.5 Combined Mode Heat Transfer: Radiation Coupling 

The theory detailed in preceding sections and chapters constitute all the essential elements 
for a radiative transport analysis of turbulent reacting flow. Figure 5.7 clarifies how the 

various models fit into an overall solution procedure. Bold type shows the relevant 

chapter or section of the thesis. 

Models concerned with the radiation simulation are collected together in a separate 

program unit RAD. This is called from the main driver routine of the KIVA-Il CFD code 
(Fig. 3.5) to determine the total radiative heat flux at surface elements, q,, and the total 

divergence of radiative heat flux in volume elements, V-q, . For problems concerned 

solely with radiation, RAD doubles as a stand-alone code and a short input module is 

added to provide geometric and radiative property information. 

Coupling of the radiation and flow fields is via the divergence of radiative heat flux term, 

V-q, , of the internal energy equation (see Sec. 4.1.3). In practice, the specific internal 

energy I of each computational cell is adjusted as follows: 

(V q) 
At 

" 
T 

(5.17) 

where the T is the total density within the cell and At. is the n th time step of the KIVA-11 

temporal differencing scheme (see Sec. 3.5.1). A negative sign is required in Eq. (5.17) 

since a positive value for the radiative source represents an energy sink. Furthermore, 

KIVA-II requires that all input is in CGS units such that the dimensions of V-q, are 

ergs/(cm 3 s)-I [I Cý ergs =I Joule]. 

The radiation evaluation is much slower than the conduction/convection calculation, 

typically taking one-to-two orders of magnitude more time to compute, though this 
depends on many factors (i. e. mesh size, number of gray gases used in WSGG model, 

solution method, etc. ). Thus in order to ease the computational overhead the radiation 

calculation is often performed on a coarser mesh than that used by the flow solver (e. g. 
Abbas et al. 1984). One possible technique is to merge several neighbouring fluid 

elements into a single radiation zone and pass volume averaged flame temperatures, 

pressures and species concentrations to the radiation model. Then on completion of the 

radiation simulation a reverse procedure is used to map the radiation sources back on to 
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the flow mesh. More specifically in regard to engine simulations, it is important to 

restrict the radiation calculation to those parts of the engine cycle where the cylinder gases 

are strongly radiating. Therefore, calculations are first carried out in the absence of 

radiation until the onset of combustion. Even then it is not always essential to update the 

radiative sources on every KIVA-II time step; the computation can be made less costly by 

updating them periodically. 

Finally, it is noted that the KIVA-II numerical scheme uses Favre-averaged quantities 
(Sec. 3.1.1) and the affect of turbulent fluctuations on the predicted radiative fluxes is 

ignored. This will invariably cause underprediction of the emission from a hot medium, 

though the magnitude of this error is difficult to quantify as the interaction between 

radiation and turbulence is still poorly understood (Modest 1993, Sec. 20.7, p. 743). This 

issue is discussed further in Sec. 7.2.2. 
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Figure 5.7 Coupling of the radiation and CFD codes via the radiative source term Qrad 
in the internal energy conservation equation. Relevant thesis chapters and 
sections are indicated. tConditions to determine when radiation model is 
called are discussed in Sec. 5.5. 
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5.6 Summary 

1. Radiative properties of realistic gaseous participating media are a complex function of 

wavelength, temperature, pressure, composition and radiation path length. A hierarchy 

of gas property models have evolved to describe this dependence for differing levels of 

spectral resolution and computation. 

2. Classical (band) models return a spectrally averaged band transmissivity for a specified 

path length. The radiative transport equation must then be cast in a form in which the 

gas transmissivity is the fundamental radiative property. 

3. A new generalised weighted-sum-of-gray-gases (WSGG) model is used in this work in 

which the local absorption coefficient is specified as the basic radiative property. Then 

an arbitrary solution method for radiation transport in complex participating media can 
be used directly. 

4. The generalised WSGG model effectively replaces a spectral integration over wave- 

number with an integration over absorption coefficient. The entire absorption domain 

is discretised into N discrete levels of absorption coefficient, ic k, with associated 
blackbody emissive powers, e., (k = 1,2,..., N). These values vary spatially about a 

reference state according to local temperature, pressure and gas composition. A 

limitation of the model is that scattering properties must be taken as constant (gray) 

over the wavenumber range of interest. 

5. A combined narrow- and wide-band model is used to compute the spectral variation in 

absorption coefficient as input to the WSGG model. (Line-by-line models of high- 

temperature, high-resolution spectral measurements may be used for greater accuracy. ) 

Thus, the simulation of radiation in combustion systems (i. e. engines) requires three 
levels of delineation to (a) compute the spectral absorption; (b) rationalise it into gray 
gases and (c) find a global coupled flow-radiation solution (with the radiation model 
combining the radiation transport from independent gray gas solutions). 

174 



Chapter 

6 
Results and Discussion 

The radiative heat transfer models described in Chapters 4 and 5 are first verified in 

isolation from other modes of heat transfer. These Studies are presented in Part A. 

Problems involving purely radiating media were chosen in order to identify strengths and 

weaknesses in each of the present methods. Subsequently, In Part B, the corlibined Illode 

heat transfer in SI engine geometries is simulated by coupling the CFD solver described in 

Chapter 3 with the discrete transfer radiation model. Where possible past and present 

data is used to validate these engine predictions, but were no data was avallable, 

numerical results are presented for demonstration and comparison only. 

PART A: PURE RADIATIVE HEAT TRANSFER STUDIES 

The radiation models are applied to a series of benchmarks and new problems of' 

increasing complexity. Here, the 'complexity' is measured by the number of' difficult 

aspects (from a modelling perspective) present in a given problem. Table 6.1 

demonstrates how several important benchmarks may be rationallsed on this basis. The 

ability of a radiation method to handle each of' these difficulties provides a good basis 

frorn which to assess its performance. 

Twenty case studies are presented below (Cases A-E9). Perl'Ormance data 1'01, each of' 

these is surnmarised in Tables 6.2 and 6.14. The comparative perf'ormance of' methods is 

of more importance here than the actual solution itself', and since solution differences are 

usually too small to be resolved graphically a tabular format is often used. The estimated 

JT) is quoted with present Monte Carlo Solutions IIS dChn Cl i Sec. 4.4.3. error SC In 

Discrete transfer calculations used 400 rays/subsurface, and YIX calcu lilt lolls used an S1, 

angular quadrature and first integration point of -c, =0.00i, except where otherwise 

stated. Finally, the surface flux values q, in all tables, except Tables 6.10-12, Should 

strictly be negative (to indicate an outgoing net I'lux) but to simplify presentation positive 

numbers are shown. 
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Table 6.1 Important Benchmarking Studies Of Participating Media. 

Reference: 1234 5t 6t 7t 8t 9* 10* 
Nonorthogonal geometry (or mesh) -v/ 
Nonuniform absorption: 1C = Ax, Y, Z) v V" V., 
Nonuniform temperature: eg = f(x, y, z) 
Isotropic scattering: as *0 g=O 
Anisotropic scattering: Cy,:;, -O gv-LO 
Hot boundaries: e, #0 
Nonblack boundaries: C<I V. - 
Nongray properties: IC = f (71) 

Radiation combined with conduction 
tProblems taken from 1992 ASME Symposium benchmarks. 
*New L-shaped problems proposed informally at 1996 ASME Symposium. 

1. Selcuk, N. and Kayakol, N. (1997). Evaluation of Discrete Ordinates Method for Radiative 
Transfer in Rectangular Furnaces. International Journal of Heat and Mass Transfer, vol. 40, 
no. 2, pp. 213-222. (Includes discrete transfer solutions. ) 

2. Chui, E. H., Hughes, P. M. and Raithby (1993). Implementation of the Finite Volume 
Method for Calculating Radiative Transfer in a Pulverized Fuel Flame. Combustion Science 
and Technology, vol. 92, pp. 225-242. 

3. Malalasekera, W. M. G. and James, E. H. (1995). Calculation of Radiative Heat Transfer in 
Three-Dimensional Complex Geometries. In 1995 National Heat Transfer Conference - Vol. 
13, HTD-vol. 315, ASME, pp. 53-61. 

4. Hsu, P. and Fanner, J. T. (1995). Benchmark Solutions of Radiative Heat Transfer within 
Nonhomogeneous Participating Media using the Monte Carlo and YIX Methods. In 1995 
National Heat Transfer Conference - Vol. 13, HTD-vol. 315, ASME, pp. 29-36. 
Revised (condensed) version: Journal of Heat Transfer, vol. 119, pp. 185-188,1997. 

5. Bums, S. P., Howell, J. R. and Klein, D. E. (1995). Finite Element Solution for Radiative 
Heat Transfer with Nongray, Nonhomogeneous Radiative Properties. In 1995 National Heat 
Transfer Conference - Vol. 13, HTD-vol. 315, ASME, pp. 3- 10. 

6. Hsu, P., Tan, Z. and Howell, J. R. (1993). Radiative Transfer by the YIX Method in 
Nonhomogeneous, Scattering and Nongray Media. Journal of Thermophysics and Heat 
Transfer, vol. 7, no. 3, pp. 487-495. 

7. Farmer, J. T. and Howell, J. R. (1994). Monte Carlo Prediction of Radiative Heat Transfer in 
Inhomogeneous, Anisotropic, Nongray Media. Journal of Thermophysics and Heat Transfer, 
vol. 8, no. 1, pp. 133-139. 

8. Maltby, J. D. (1994). Evaluation of Property-Induced Uncertainty in a Monte Carlo 
Simulation of Radiative Heat Transfer in a Participating Medium. In Radiative Heat 
Transfer. - Current Research, HTD-vol. 276, ASME, pp. 161-170. 

9. Hsu, P. and Tan, Z. (1996). The Radiative and Combined Mode Heat Transfer within the L- 
Shaped Nonhomogeneous and Nongray Participating Media. In National Heat Transfer 
Conference - Vol. 3, HTD-vol. 325, ASME, pp. 13-24. 

10. Hoover, R. L., Li, W., Benmalek, A. and Tong, T. W. (1996). S', Solutions for Radiative Heat 
Transfer in an L-Shaped Participating Medium. In National Heat Transfer Conference, Vol. 
3, HTD-vol. 325, ASME, pp. I -11. (Corrected solutions available. ) 
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6.1 Nonhomogeneous Scattering Gray Media 

6.1.1 Case A: Axially Fired Furnace of Rectangular Cross-Section 

Problem Description. Selquk (1985) proposed a benchmarking problem based on data 

taken in a large-scale experimental furnace. The physical situation was idealised as a 

rectangular box-shaped black walled enclosure filled with a nonscattering gray medium 

with uniform absorption/emission. However, some degree of realism was preserved by 

curve-fitting the actual experimental gas temperature distribution and by taking different 

surface temperatures for the refractory burner and back end walls, and the water-cooled 

side walls. The geometry and all necessary data for the problem is summarised in 

Fig. 6.1. The model parameters were chosen by normalising the experimental data with 

respect to a reference length of 0.48 m and a reference temperature of 1673 K. Given that 

there was no swirl in the experimental furnace Selquk (1985) arranged that the gas 

temperature varied symmetrically about the burner axis and modelled 1/4 of the geometry 

with a 2x2x24 spatial discretisation. An analytical solution was then obtained with 
Gauss-Legendre numerical integration. Values were evaluated for both the volumetric 
heat source at the geometric centre of each cubic medium element and for the surface heat 

flux at the centre of each element face coincident with the furnace side walls. Recently, 

Selquk and Kayakol (1997) published additional solutions using the discrete transfer 

method and an S4 discrete ordinate approximation as part of an on going benchmarking 

exercise. Their S4 approximation was found to require three orders of magnitude less 

computational time than a discrete transfer calculation with 64 rays per subsurface. Both 

methods showed inaccuracies but on the basis of computational efficiency it was 

concluded that the S4 approximation is a better alternative. 

Solution Comparisons. Discrete transfer, YIX and Monte Carlo solutions from the 

present methods are tabulated alongside the analytical solution of Selquk (1985) in Tables 

6.3 and 6.4. The discrete transfer and analytical results are also plotted in Fig. 6.2. 

The variation in radiative heat flux, both in the medium and on the furnace side walls, is 

characterised by the nonuniform gas temperature distribution. As the axial gas 
temperature rises steeply from the burner wall (at z= -6), peaks, and then decreases 

smoothly towards the exhaust plane, so does the radiative flux. The only exception being 
in the comer regions where the gas temperature, and consequently the flux divergence, is 

almost uniform, i. e. the values at (0.75,0.75, z) where T, * (x, y, z) = T*. 90 
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A more interesting result is that the agreement between the discrete transfer and analytical 

solutions is much closer than that found by Selquk and Kayakol (1997). An obvious 

explanation for this might be the finer angular discretisation used here, i. e. 400 rays per 

subsurface as opposed to 64. However, measures of deviation between the discrete 

transfer and analytical solutions did not significantly increase when a second calculation 

was made using only 64 angular divisions. Thus, it would seem that the poor 

performance demonstrated by Selquk and Kayakol (1997) must be attributed to some 

other factor. It was noticed during the development of the present discrete transfer 

methodology that a biasing of the solution can arise if the rays traced in a particular 
(azimuthal) ordinate direction strike a boundary where the radiative properties are 
discontinuous (e. g. at a comer); essentially a severe case of ray effect. Ironically this 

situation tended only to manifest itself in benchmark problems where a regularly shaped 

geometry is specified with (unnaturally) discontinuous boundary conditions (e. g. hot/cold 

walls). Thus, a simple but effective remedy was introduced into the present code that re- 

orientates the solid angle hemisphere above a subsurface so that rays are never traced at 

azimuthal angles such as ±45' and ±135" which often result in comer intersections, 

particularly when the spatial discretisation results in cubic volume elements (as in the 

present case). Confirmation of this was obtained by removing this safeguard from the ray 
firing procedure: then the discrete transfer solution matched that found by Selquk and 
Kayakol (1997). 

Comparisons between the three present solution methods show good agreement: the 

average relative difference measures of the discrete transfer and YIX solutions with the 

Monte Carlo solution all falling within 2% (Table 6.2). It would be unrealistic to expect a 

closer level of agreement between the different formulations given the relatively coarse 

spatial discretisation. Though it is noteworthy that the discrete transfer and YIX methods 

give identical values for surface heat flux if the same angular quadrature scheme is used 
in both methods. This could be observed by interchanging the uniform angular 
discretisation of Shah (1979) with an Sn discrete ordinate set, or visa versa, in the 

appropriate method. However, the methodology used to evaluate the medium heat 

sources is fundamentally different such that the source values will always differ to some 
degree between the two deterministic methods for practical levels of discretisation. 
Consequently, in scattering media the surface heat flux values will also differ (even with 
identical angular quadrature schemes) due to their dependence on the medium heat 

sources. 
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Selquk (1985) also evaluated the total rate of removal of radiative energy through the 
furnace walls and the total rate of generation of radiative energy within the enclosed 

medium using the analytical point values for the surface heat flux and medium heat 

source respectively. The rates of generation and removal correctly balanced at a 

normalised value of 1.424. Table 6.5 compares this analytical value against that obtained 
from the discrete transfer and S4 solutions of Selquk and Kayakol (1997) and the three 

present solutions. Encouragingly, the Monte Carlo result shows excellent agreement 

given that it is used to verify the deterministic methods in later benchmark problems. 
Small discrepancies between values for the discrete transfer and M results can be 

attributed to the coarse spatial discretisation used. This is confirmed by a reduction in 

both the energy imbalance, and deviation from the analytical result, for both methods after 
doubling the number of cells in each coordinate direction. However, the S4 prediction 

would seem to provide the best performance of the three deterministic methods, though 

the formulation presented by Selquk and Kayakol (1997) is limited to orthogonal 

geometries. In fact it is important to note that in spite of the rather elaborate expressions 
for calculation of the gas temperature distribution, this benchmark is very forgiving in all 

other respects, i. e. the problem geometry is nicely regular and a coarse spatial 
discretisation is used, the medium is gray and nonscattering and there are no other modes 

of heat transfer other than radiation. Thus, these more difficult aspects are examined in 

following benchmarks. 

6.1.2 Case B: Nonorthogonal Cylindrical Geometry 

Problem Description. A cylindrical benchmark by Chui et al. (1993) is used to verify 

the present methods in a nonorthogonal geometry. The geometry is 6m long and 2m in 

diameter with black walls at 500 K. The medium is absorbing, emitting and nonscattering 

with a nonuniform absorption coefficient, ic. The medium temperature varies axially 

along the enclosure as shown in Fig. 6.3. Thus in many respects this benchmark closely 

resembles that in Case A, but with two added complications: (1) a nonorthogonal 

curvilinear mesh is used to discretise the circular cross-section, and (2) optically thin to 

thick conditions are considered by solving for three values of absorption coefficient, 

namely x=0.1,1 and 10 m" (Cases B I, B2 and B3). For each absorption level Chui et 
al. (1993, Fig. 3) solved for the radiative flux at discrete locations along the lateral wall of 
the cylinder by direct numerical integration. This analytical solution was then used to 

verify a new finite volume formulation. It also serves as a good benchmark here. 
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Solution Comparisons. Discrete transfer, YIX and Monte Carlo solutions for the net 

surface flux along the lateral wall of the cylinder are tabulated in Table 6.6. (These values 

and the analytical ones of Chui et A (1993) are practically indistinguishable when 

plotted. ) Fig. 6.4 also plots the axial variation in flux divergence for the present methods 

at a medium location near the cylinder wall. A 5x5xl8 spatial discretisation was used: 
body-fitted to the cross-section (as shown in Fig. 6.4) and uniform in the axial direction. 

The surface heat flux values calculated by each method are in close agreement for all 
three values of absorption coefficient. This is further confirmed by the relative difference 

measures listed in Table 6.2 where deviations are typically less than 2%. However, the 

flux divergence solutions are of more concern. Though the agreement is good for the 

optically thin and moderately thick problems (i. e. ic = 0.1 and I m7l), large discrepancies 

are observed in the optically thick limit (i. e. ic = 10 m"). In fact the maximum deviations 

between the Monte Carlo and deterministic solutions are in excess of 70% (Table 6.2). 

Closer examination of the results found that this poor result was in part due to very small 
divergence values. These occur in the central region where the medium is so optically 
thick that it effectively acts as a good radiative insulation. Then the statistical uncertainty 
in the Monte Carlo result often exceeds the magnitude of the deterministic value such that 

the relative difference measures for flux divergence do not give a fair indication of the 
level of agreement which is generally much better. This problem is further compounded 
by the large statistical uncertainties that arise in Monte Carlo simulations of optically 
thick media where massive, and often prohibitive levels, of computation are required to 

drive down the uncertainty sufficiently for valid comparisons. However, the divergence 

of radiative flux is very large at the boundaries as a result of the temperature jump from 

the hot medium to the relatively cold cylinder walls. A point-to-point comparison of 
these values finds that the discrete transfer prediction always exceeds that of the YIX 

method, with the Monte Carlo solution tending to fall between the two. This result cannot 
be generalised as applying to all points in the medium, but what is important here is that 

the discrete transfer divergence solution is consistently higher than the YIX solution in the 

medium elements next to the boundary. This is indicative of fundamental differences in 

the source calculation of the two deterministic methods. Further evidence of this is 

provided by the overall heat balance, as tabulated for each method at the bottom of Table 
6.6. - This shows that while all three methods agree to within 1% for the net heat loss 

through the walls, the M methods predicts a markedly lower value for the total medium 
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heat source Qg giving rise to a heat imbalance of 57%. In contrast, the radiative heat 

balance is correct for the discrete transfer and Monte Carlo methods, so it would seem 

reasonable to suppose that the YIX source calculation is in error. However, the following 

example demonstrates that this is not necessarily true and explains the discrepancies 

observed above. 

Consider the discrete transfer and YIX methods applied to a single cubic region enclosing 

a nonscattering optically thick participating medium with radiative properties ic = 10 and 

eg = 1.0 (Fig. 6.5). The region has a side length of Im and it is arbitrary assumed to be 

enclosed by cold and black walls; though these could also be interfaces with other gas 

regions without significantly affecting the following argument. Simplification of the 

integral formulations in Sections 4.5 and 4.6 gives the incident (and net) surface heat flux 

at the centre of each face for both methods as: 

q, =y 
I 

, 
(I-e-")cos0sin0sin(50)4=0.9983 (6.1) 

29 7C 

and the divergence of radiative heat flux at the centre of the region as: 

DT: V- qr = ff q, dA =6xq, = 5.9898 (6.2) 
s 

YIX: V-q, = 10[4- 1 (1 - e')sinO sin(80)8ý1 = 0.1188 (6.3) 
4x 7C 

(a) (b) 

Figure 6.5 Representative ray paths in the discrete transfer and YIX solutions showing 
(a) integration at a face centre [Eq. (6.1)] and (b) integration at the region 
centre [Eq. (6.3)]. 
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where an S, 6 discrete ordinate angular quadrature is used in both formulations. As 

observed with the optically thick cylindrical benchmark problem, the discrete transfer 

method gives a energy balance over the volume (6 x 0.9983 = 5.9898 x 1), but the net 

generation of radiative energy (=0.1188) predicted by the YIX source calculation is 

much lower. However, solving Eq. (6.1) at locations other than the face centre gives: 

Edge midpoint: q, (-0.5,0, - 0.4995) = 0.5090 

Comer: q, (-0.5, - 0.4995, - 0.4995) = 0.2622 

with the region centred on the coordinate origin. Thus, the value of 0.9983 at the face 

centre is in fact a maximum and a more representative value for the surface flux on each 
face lies somewhere between 0.9983 and the comer minimum of 0.2622. Integrating over 

a million surface elements gives this value as 0.9179. Similarly, solving Eq. (6.3) in the 

medium at various locations gives: 

Near face centre: V-q,. (-0.4995,0,0) = 19.71 

Near edge midpoint: V-q, (-0.4995, - 0.4995,0) = 29.59 

Near comer: V-q, (-0.4995, - 0.4995, - 0.4995) = 34.59 

such that the YIX value at the region centre is in fact a minimum and a more 

representative value for the flux divergence over the entire region lies somewhere 
between 0.1188 and 34.59. Integrating over several million volume elements gives this 

value as 5.497. This gives a correct energy balances as 6x0.9179 - 5.497 x 1. The 

following conclusions can drawn: 

The YIX method gives an accurate point solution for the divergence of radiative heat 

flux in the medium, but this value does not satisfy a total energy balance when applied 

over an element where the local radiative properties give rise to steep gradients in the 
divergence. In contrast, the discrete transfer method makes an energy balance over the 

medium element but the cell divergence value (found by back-calculation) may differ 

significantly from the point solution at the element centre. 

The discrete transfer and YIX methods both under- or over-predicted the surface heat 
flux through a boundary element by a margin that depends on the magnitude and 
direction of the local flux gradients across the surface. 
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Consequently, in the optically thick benchmark where the cell optical depths are as high 

as 4, neither method gives a truly accurate solution for the radiative heat flux (at the 

cylinder walls). The Monte Carlo method is the only method of the present three capable 

of this since it statistically averages conditions over the entire medium. Though it can be 

argued that the deterministic solutions should ultimately converge to that of the Monte 

Carlo method if the element size, and hence cell optical depths are reduced, it is often 
found that computational limitations do not allow this. Then some accuracy must be 

compromised. Given that the main objective here is to include the radiation method into 

a flow finite volume code, the discrete transfer method gives, on balance, a closer 

approximation. However, other aspects of complex media are still to be considered. 

6.1.3 Case C: Cubic Benchmarking Media with Nonhomogeneous 

Extinction, a Hot Emitting Wall and Anisotropic Scattering 

Problem Description. Hsu and Farmer (1995,1997) posed and solved a series of 

benchmark problems using the Monte Carlo and YIX methods. Further numerical 

comparisons with a finite element formulation have also been published by Bums et al. 
(1995). The geometry in all problems is a unit cube with black and diffuse walls. This 

encloses various participating media for which the extinction coefficient varies according 

to the relation: 

0 (x, y, z) =a (1-21x[) (I -2lyl)(1-21z I)+ b [1/ml (6.4) 

where the coordinate origin lies at the cube centre and -0.5: 5 (x, y, z) --ý 0.5 is the 

domain of computation. The optical thickness distribution is varied with parameters a 

and b, such that the extinction decreases linearly from a to b between the centre and the 

walls. Nonscattering and scattering media are considered: the latter including the effects 

of anisotropy. These problems are fully specified in Fig. 6.6. In cases Cl and C2 the 

medium has unity blackbody emissive power and results are sought for the surface heat 

flux and divergence of radiative heat flux. Whereas, cases C3, C4 and C5 are solved for 

radiative equilibrium (i. e. zero flux divergence) such that the medium emissive power 
distribution is then the unknown, together with the surface flux. Case Cl is primarily 
intended to assess the accuracy in modelling the nonhomogeneous radiative property 
distribution: the medium is purely absorbing. The problem complexity is then 
incrementally increased by introducing first isotropic (case C2) and then linear 

anisotropically scattering conditions. In the latter cases both forward (g = 1) and 
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backward (g = -1) scattering phase functions are considered, and an asymmetry in the 
boundary conditions (one hot wall) is used to enhance their effect. For all scattering 

media a large single scattefing albedo of o) = 0.9 is chosen. Finally, the optical thickness 
is increased in case C5, via the extinction parameters a and b, in order to assess its effect 

on performance. 

Solutions were obtained by discretising the geometry into a 9x9x9 orthogonal mesh of 

cubic volume elements, each with a side length of 1/9. The element centres are located 

symmetrically about the coordinate axes at (x, y, z) = (0, ± 1/9, ± 2 /9, ± 3 /9, ± 4 /9). The 

only exception is case C5 where the YIX computation uses a finer 27x27x27 cubic mesh 

and a first integration point of 0.01 (as opposed to 0.001) in the distance quadrature. 
These changes were made to ensure compatibility with the E7 YIX solution obtained by 

Hsu and Farmer (1995). Finally, additional discrete transfer and YIX solutions were 

obtained for case CI using the 27x27x27 mesh in order to assess grid dependency effects. 
For each problem the extinction coefficient was evaluated from Eq. (6.4) at the centre of 

each medium element and presumed constant over the surrounding volume. 

Solution Comparisons. Tables 6.7 to 6.12 compare results from the three present 

methods with published solutions (Hsu and Farmer 1995; Bums et al. 1995). The zonal 
Monte Carlo algorithm was used for all problems. There are no discrete transfer solutions 
for cases C3, C4 and C5 since the method is unable to handle scattering anisotropy. 

The present results for cases CI and C2 are in excellent agreement with each other - 
average deviations are less than 1% in both surface flux and flux divergence (Table 6.2) - 
and with the published YIX and Monte Carlo solutions. Deviations between the finite 

element results and those from the three other methods (present and published) are 

slightly larger. In contrast to the discrete transfer, YIX and Monte Carlo methods which 

all approximate the extinction distribution in a stepwise manner, shape functions in the 
finite element method afford a much better description. Therefore, solutions from the 

present methods would be expected to converge towards the finite element result with a 
finer spatial discretisation. This was verified by computing a second set of discrete 

transfer and YIX solutions over a 27x27x27 mesh. The new surface heat flux and flux 
divergence solutions showed, on the whole, much closer agreement to the finite element 
result. Table 6.8 records the improvement in surface flux. 
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The present YIX and Monte Carlo solutions to cases C3, C4 and C5 are in good 

agreement with the benchmark values obtained by Hsu and Farmer (1995). Moreover, 

their finding that average differences for both surface heat flux and emissive power are 

around 6% in cases C3 and C4, but smaller in case C5, is also observed here (Table 6.2). 

This is perhaps of more importance than the solutions themselves, since it confinns that 

the coding complexities associated with the scattering anisotropy and asymmetric 
boundary conditions are working correctly. Nevertheless, it is important to establish why 
deviations between the YIX and Monte Carlo solutions are larger here as compared with 

cases CI and C2. A contour plot of the emissive power distribution reveals irregularities 

in the YIX solution in medium elements distant from the hot wall at x= -0.5 (Figs. 6.7 

and 6.8). These occur irrespective of the scattering direction. When the medium 

extinction is increased in case C5 a smoother emissive power distribution results (Fig. 

6.9). Hsu and Fanner (1995) concluded, as here, that this can be attributed to ray effect in 

the YIX method arising from the asymmetric hot/cold boundary conditions. Accuracy can 

only be improved by using a higher order S. angular quadrature. The increased medium 

extinction in case C5 prevents radiation from the hot wall propagating deep into the 

interior and as a result the ray effect is mitigated. 

6.1.4 Case D: Nonorthogonal, Nonhomogeneous L-shaped Geometry 

Problem Description. Two new benchmarking media are considered which seek to 

combine several aspects studied so far in isolation: a nonorthogonal mesh, a 

nonhomogeneous property distribution and particle scattering. An L-shaped geometry 

was chosen as shown in Fig. 6.10. The regular grid on the side walls enables surface flux 

comparisons without interpolation and the shadowing effect of the bend poses a more 
interesting problem. The extinction coefficient varies according to: 

x: 5-y: D(x, y, z)=0.9(l. 5+x)(1-2lyl)(1-21zl)/(1.5-y)+O. I [1/m] 

x>-y: D(x, y, z)=0.9(1-21xl)(2.5-y)(1-21zl)/(2.5+x)+O. I [1/ml (6.5) 

where the coordinate origin lies at the centre of the comer diagonal. The walls are black 

and diffuse. Case D1 has a blackbody emissive power of 0.25 on the surface and unity in 

the medium. Results are sought for the surface heat flux and divergence of radiative heat 

flux when the scattering albedo is (o = 0.9. In contrast, case D2 has a prescribed 
volumetric heat source such that the variation in medium emissive power and surface flux 
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is required. The L-shape is divided into two volumes by a z-plane through the comer 
diagonal (i. e. at x= -y). There is a uniform radiative heat source (divergence) of I W/m 3 

in the smaller volume and 0.5 W/m3 in the larger volume. The walls are cold and the 

scattering albedo is arbitrary chosen as (o = 0.5. It is worth noting that this choice affects 

only the emissive power distribution, since the surface heat flux is independent of the 

albedo value in isotropically scattering media. Half the geometry is discretised with a 
20x7x4 body-fitted mesh: a symmetry plane is at z=0. The extinction coefficient was 

evaluated from Eq. (6.5) at the centre of each medium element and presumed constant 

over the surrounding volume. 

Solution Comparisons. Table 6.13 compares sample surface heat flux values for each 

of the three present methods along the face centrelines (-1.5, y, 0) and (-0.5, y, 0). 

Contours at z=0 for the flux divergence in DI and the emissive power in D2 are also 

plotted in Fig. 6.11. Only one set of plots is reproduced from the three methods since 
differences between values are indistinguishable when displayed graphically. Typically 

deviations of only 0.5% occur in the media (Table 6.2). The contour plots clearly reveal 

the strong influence of the extinction distribution. Fig. 6.11 (a) has a high radiative source 
in the optically thick central region which then decreases towards the walls as the medium 
becomes thinner. The gradients are reversed in Fig. 6.11(b) with a cold dense central 

region surrounded by hotter gas near the walls. In addition, the contours are strongly 

asymmetric as a result of the abrupt discontinuity in source values across the comer 
diagonal. All the methods capture this feature reasonably well in spite of the rather coarse 

spatial discretisation. Finally, note that the wiggles in the contours arise from the 

graphical interpolation and are not present in the numerical solutions. 

6.1.5 Run Times and Memory Requirements 

The preceding discussion has largely focused on solution accuracy but greater disparity is 

seen between the methods when assessed in terms of their computational economy. A 

trade-off invariably exists between the computing time and memory requirements: here 

$memory' is taken to include both information held in RAM and any temporary data files 

stored on disk. The discrete transfer, YIX and (zonal) Monte Carlo methods can store 

path length/exchange area data so as to avoid re-tracing a geometry when an iterative 

solution is required. Disk storage must be used if a machine does not have sufficient 

capacity to hold all of this information in RAM, for a given method and problem size. 
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Then the additional overhead resulting from the disk writing/reading operations may 
considerably extend the total solution time = processor time + communication time. Disk 

swapping operations associated with virtual RAM can also greatly increase total solution 
times, though usually to a lesser degree. 

The problem run times are reported in Table 6.2. The discrete transfer, YIX and Monte 

Carlo methods were all executed on HP9000n5O workstations running HP-UX 9.01. 

Identical FORTRAN/9000 compiler options (f77 +03) were used. With these options the 
HP9000n5O has a LINPACK benchmark rating of 22 Mflops in double-precision 

operations on lOOxlOO matrices. (The LINPACK benchmarks are a standard suite of 

programs devised to determine a computer's numerical computing capacity, measured in 

millions of floating-point operations per second (Mflops), see Dongarra (1998) for more 
information. ) Each workstations had 64 Mbytes of RAM. This was sufficient for all the 

problems, except for the YIX solution of case C5 which required 470 Mbytes of space. 
Though disk storage could have been used on the HP9000n5O, it was more convenient 
for timing purposes to solve the entire problem in memory on a Sun Ultra Enterprise Il 

workstation with 512 Mbytes of RAM. The Sun time was then factored by 111.5 to obtain 
the equivalent HP 750 processing time in Table 6.2, i. e. the Sun was approximately 1.5 

times faster. It should also be noted that the Monte Carlo times in Table 6.2 represent the 

total solution time required to obtain the quoted uncertainties in the results. Therefore, 

the time of each independent simulation is IIN of this value, where N is the number of 

simulations. 

The times reported for each solution arise from a combination of factors. These are: 

Discretisation Level. Consideration is first given to the two deterministic methods. 
It is of note that while the discrete transfer and YIX times for cases A and BI are 

comparable, the YIX method takes 1.6 times longer for case C 1, despite all three media 
having similar radiative properties and the solutions being non-iterative. Evaluating 

the number of rays that must be traced for each solution finds that this arises from the 

effect of the spatial (and angular) discretisation on the tracing times in each method. 
The discrete transfer solutions use 400 rays/surface hemi-spherical solid angle (and 

none from volume elements), whereas the S1. YIX angular quadrature gives 144 

rays/surface and 288 rays/volume. Case A has 104 active surface elements (i. e. 

excluding those on symmetry boundaries) and 96 volume elements. Therefore, the 
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discrete transfer and YIX methods trace 41600 and 42624 rays, respectively. This ratio 
is close to unity, as is the problem time ratio (i. e. 6: 7), given that the times are scaled to 
the nearest second. A similar result follows for case B 1. However, the cubic geometry 

of Cl has 486 surface elements and 729 volume elements. Consequently, 194400 rays 
are traced in the discrete transfer solution compared with 279936 rays in the M 

solution and the run times scale accordingly. Thus, in general it is found that M run 
times increase at a significantly greater rate than those of the discrete transfer method 

with increased mesh size. This rate depends on the efficiency of the ray tracing 

algorithm, and varies as the ratio of volume elements to surface elements. 

The Monte Carlo run times vary in direct proportion to the total number of bundles 

traced. This value is analogous to the number of rays in deterministic solutions; i. e. it 

embodies both the spatial and angular discretisation. Though, it is worth emphasising 
that the times depend only indirectly on the level of spatial discretisation for a given 

problem. This is because the number of bundles launched from each element is 

determined from its surface or energy density and is thus independent of its physical 

size (Sec. 4.4.2). However, the solution uncertainty increases when the mesh is refined 
because fewer bundles contribute to each solution result. Consequently, more bundles 

must be launched per unit of radiative energy density in order to maintain the same 
level of precision. 

Optical Thickness. Cases Bl, B2 and B3 demonstrate the influence of increasing 

optical thickness (in nonscattering media). The discrete transfer run times are largely 

unaffected since the methodology is based on a spatial, rather than an optical, 

approximation. In contrast, the M solution times increase with optical thickness, as 

more integration points are required in the numerical evaluation of each distance 

integral (Sec 4.5.2). -However, a coarser angular discretisation, particularly at the M 

medium points, might have sufficed in the optically thicker media, though this was not 
assessed. 

The performance of the Monte Carlo method deteriorates rapidly with optical 
thickness. As the medium absorption increases the energy bundles travel over shorter 
distances and contribute to fewer results. Therefore, almost 10 times as many bundles 
had to be traced for case B3 compared to that of BI in order to drive down the solution 
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uncertainties, though the corresponding increase in run time is somewhat less (i. e. 

about 5.5 times longer) due to the shorter life of each bundle. Farmer (1995, Sec. 

5.1.1) discusses two possible hybrids of the present approach to improve performance 
in optically thick media. 

Isotropic Scattering. Case CI is a purely absorbing and emitting medium. The effect 

of imposing a non-zero scattering albedo in C2 is to increase both the discrete transfer 

and YIX solution times since then several iterations are required to establish the 

incident radiation wo from in-scattering. However, it is noticed that the discrete 

transfer method takes significantly longer than the YIX method to converge after the 

initial tracing period. This is largely attributed to economies afforded by the YIX 

distance quadrature which not only eliminates the numerous exponential kernel 

evaluations on each iteration but also has a much smaller memory requirement. All the 

path information is stored entirely in 2 byte integer form for the YIX quadrature, 

whereas that of the discrete transfer method uses an 8 byte real representation. The end 

result of this is that the present YIX solutions take about half the storage space of 
discrete transfer solutions, e. g. for C2 the requirements were 10.98 Mbytes and 22.07 

Mbytes respectively. This is likely to be a critical factor when the problem size 

exceeds the machine capacity. Then the read/write time associated with the path 
information is expected to give the YIX method a significant performance advantage. 
In addition, more time is likely to be spent in the iterative phase than in the initial 

tracing phase, as larger problems generally take more iterations to converge. 

In marked contrast, Monte Carlo solution times decrease with increased scattering 

albedo because scattering tends to spread out the bundle paths improving uniformity 

and reducing the statistical uncertainty. Another effect of setting the scattering albedo 

equal to 0.9 in C2 is to lower the medium absorption coefficients by an order of 

magnitude from that in Cl, as both media have the same extinction distribution. This 

in turn extends the life and distance travelled by the energy bundles such that they pass 
through more volume elements and contribute to more results, again reducing the 

uncertainty. Consequently, an order of magnitude less bundles are required in C2 

compared with Cl, though the drop in run time is not quite as great due to the 

extended bundle life. 
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Anisotropic Scattering. Cases C3 and C4 have the same medium extinction 
distribution and scattering albedo as C2, but with strong forward and backward linear 

anisotropically scattering phase functions, respectively. However, this additional 
complexity adds only 14% to the M run time: the extra integrals associated with the 

anisotropy are obtained directly from those for the irradiation (Sec. 4.5.2). Conversely, 

the Monte Carlo run time is increased dramatically as more bundles are required to 

capture the scattering anisotropy. However, two factors complicate the time 

comparison with C2. First, the solution in case C2 was found directly for the 

prescribed emissive power without iteration, whereas C3 and C4 are solved for 

radiative equilibrium. Hence, it was necessary to use a hybrid Monte Carlo/zonal 

approach (Sec. 4.4.4) to iteratively satisfy this condition, though the iterative phase 

represented only a small part of the total solution time. Second, energy bundles were 
launched from all the walls during the exchange area computation, despite surface flux 

values being compared for only the hot wall. 

Symmetry. All three methods simulate planes of symmetry as adiabatic specularly 
mirrored surfaces. Advantage is taken of the symmetry in cases A and D to reduce the 

solution times by a quarter and a half, respectively. (N. B. This option was unavailable 

at the time cases B and C were solved though these also contain symmetry planes. ) 

Particular care should be exercised with the YIX method for anisotropically scattering 

media. The surface flux and flux divergence solutions for cases C3, C4 and C5 have 

symmetry about the planes y=0 and z=0 so it would seem viable to simulate them 

as mirrored surfaces. However, the linear anisotropic scattering phase function 

requires the calculation of the flux components w, [see Eq. 4.23] and it is found that 

one component differs in sign across each plane, i. e. W2 across y=0 and W3 across 

z=0. Therefore, symmetry cannot be used unless some means is devised to record 
the sign of wi each time a ray is reflected. 

In light of the above comments it is possible to predict the run time and storage 
requirements of most problems by allowing for the different factors involved. 
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Chapter 6 Part A: Pure Radiative Heat Transfer Studies 

y 

2x2x 24 cells 

z 

Gas temperature distribution: T, *(x, y, z)=[a(z')-T, 'If(rlR)+T, - 

where the axial variation for z' =z /Lz is: 

0 Z+z, ', 
ax a(z')=1+(1-T, )ý - 1: 9 Z' < -zlmx 

1- [d, (1 + zL) +3 (1 - T, *)] 
(Z lp + Z. L. 

ý, -+Z.,. 
) 

( 
Z" + Z. '.,. 

[d, (1 + z. ) +2 (1 - T, *)] ý l+7. -) , 

and the cross-sectional variation is: 
:5 zp: 5 1 max 

(r1R) = 1- 3 (rlR)2 +2 (rlR)3 r (X2 + Y2)1/2 
R L,, = Ly 

x 

Dimensions of the furnace -L: -1 L: =6 dimensionless E. - Y_ 
Optical thickness 1/6 
Wall black-body intensities = 0.0574; 1* d. = 0.0020; 0.0167 b, bumer b'31 lb, exit 

Gas temperatures Ti*=0.1775; T, 0=0.6222 ; T,:. =I 
Position of peak temperature z" = 0.8 nm 

Slope of gas temperature at exit d, = -0.220 

Reference values used to make the experimental data dimensionless: 
LO = 0.48 m, To = 1673 K, ibo 

= 1.4139 X 105 W M, 
2 

sr"'. 

Figure 6.1 Case A: Axially fired furnace of square cross-section (Selquk 1985). 
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Figure 6.2 Case A: Comparison of the present discrete transfer prediction with an 
analytical solution by Selquk (1985) for (a) the net radiative heat flux along the furnace 
side wall and (b) the radiative heat source distribution in the medium. (All values are 
normalised with respect to LO = 0.48 m, ebO= 4.4419 x 105 W/M2). 

193 



N 
0 

trý 

u 

E- 
Z 

N 

c4l 

U 

E- 
Z 

4Z 

4. 

kn en in tn kill 1.0 11 en N cn IC VI) en en it) 

HCHUSHHH 
. HHHHu 

.......... 
-* -1 -- --2 -1 -1 -* -* -1 -.: 

.. 6d c5 6 c5 (=5 (=5 c5 
(111 cn (111 00 00 ri 
r1q IZ C) clý clý c9 
V') tn "0 \. 0 \O ýo 
CD C) CD CD C0 
d c5 c5 c5 ö (: 5 

0 CD CD CD CD wwwi;; j r; 2 1. i ý_i ý_i 4.. o ý_w %. ý 

It (11 00 r- 80 cn 00 r- C4, - CN a) 

CN "o en ('4 C\ ý 110 9 C14 0 ON , 1- 0 

%lo \D VI) in te) WI) kn tr) 8888mm en en 
00000000 Cý Cý qq 
6 c; 6 c; d6 c3c5c5cidd6c; Coco 

W) tn tl- W) 00 00 I'D --4 %. D 
, tt r- 0 ý- 0 CN 00 r- til 

%0 tn III wl tr) 
00 C) C) 0 

C; C; C; C; C; C5 C; 6666 
%. 0 - V'l r- tý r- -4 Cý ýo C, 1 ýC 
le r- - r9 (lý cq rý 0 cý 00 -0 
vli tA "0 110 ýIM "0 "0 110 V) in vi 
0 (D CD CD CD C0 CD CD CD 0 
cý (:: 5 cý c5 d cý cý cý cý dd 

(D v) en %A e- ýo CD 
tf) rn rn (111 -4 CD 00 r- 

V') (n "0 "0 \o "0 \M 110 "0 vi vi 
0 CD CD CD CD CD CD CD CD Q0 
cý cý c5 cý cý c; (:: 5 cý cý cý cý 

cli V) kn %M rn r- V) 9 rn 110 

Iý -ý %-ý llý -. ý ýý I-i 1-1: 11: -1: llý -1; -. -- -- -. -. -. -. -.... 
00000 C) 0000000000000000C0 

00 C) 00 C., r- 00 C) tn CN N -Rt -4 't qRt en N -4 00 I'D cf) 

r- 00 00 00 00 00 00 tý 
C00 C) 00o80 

660 C5 

"0 C (111 (111 \O ;Z r- (D C\ N ýo 
00 le "0 t- le rn CD 00 V') 
r- 00 00 00 00 00 00 00 

CD C0 CD C CD C) CD CD 
o CD (D 0 CD ci c5 cý cý cý c5 

,, I* CN "t C) 0 00 VII t- 00 C14 r- 
Cf) W) cn tn 110 't m- CN r- it 
110 r- 00 00 00 00 00 00 r- r- r- 
00000000000 
66C; 66666 C5 6 C5 
Nm le C vi 00 le ýo in 

V) CIA vl le) le M- 0% 
;Z t- 00 00 00 00 00 00 t- r- ý 
CD cý cý c:: ý cý 00C00 
0 CD CD (D CD cý cý cý cý 

-4 V) aN en 00 en 00 "t 0 tn - 
, It "0 ON r- 10 9 en C14 o C, 
tnlr)w)s8a gagmenen 
0000C0 
C5 66d6 C5 66 C5 6666 

Cý C14 W) 00 -0 Zý CS Clf) 10 C14 00 
't en ON 00 cn 00 I'D eq 
in it') 88898 1") en 1=4" 
coo 00 () 

(6 66 C5 6 C; C5 (6 66C; 66 

cn ýo 00 8m1.0 C) N: r 00 C14 tn C14 C14 
W) M- 00 ý-o tri en - C) 00 I'D eq 
kn WI) tn tn 

0008888888c') 
2: 

) 0 

ci C5 6666666C; 666 

c9 r- le --, 
. --4 00 V) cl 

8 vi CD -m VI 1,0 V) (> 
00 V) m- 00 110 m "0 

"0 110 IZ vi V-b V-b vi m 

rý (> --4 rq le r- 0 V) -4 V» (1q le vl, 
r-i all t- ;Z- 00 \M m -4 00 \. 0 m 00 
r- \lo \M % \M in tn kn vi aaa rn 
(D C) C (D 0 C) C0 C) 

c; c; d ci c5 cý cý cý cý 
ýo CD r4 r- N cý VI --9 M %0 
m- 00 vi M0 00 \M M r- 
10 %M vi in vi vi aa ;5 rn 
0 C) 0 CD 00 CD 
cý cý cý cý cý ci cý c5 cý cý 

cý - en 1,0 (> rn r- m (Z r- rn en 00 
1,0 rn 0 00 kn rn - 00 IV m r- 
"0 110 ýo vi V) vi V) aaa rn 

cý cý cý CD CD 000 CD 0 
0 CD 0 cý cý cý ci cý cý cý cý 

W*j W) W-) VII tn tn tn W) V') tn W) W) tn tf) tn in tn tn V) W) tn tf) W) kn 
r- C14 r- N r- N r- C14 r- C14 tý C14 C14 r- C14 r- C4 r- C-4 r-ý r. ý Ci r.. - 

eli cl; Cýl Cý -4 -14 66 -4 4 Cý C-i cfi cn tn I 

ll'ý C4 

E 
: 3: 

x 

(A 



U 

E- 
Z 

I 

0 

F--4 
Z 

C. ) 

u 

6666c; 66 C5 666 C5 66C; 66 C5 66 

C) In e r- r- ýo cý N r- r4 00 1,0 rA r- tn - 00 t- \C en cýI - -4 
't Kt rn (11 c"i rn M le vi "0 e r- 00 00 cý C) CD - r4 rn nt 
t- r- r- t r- t- r- r- r- ý3 r- r- 00 00 00 00 00 00 

CD 0000 CD 0 
2; 

0 CD (D CD 00C CD 0 CD C) 

cý cý cý cý cý d c5 c5 cý C: 5 c; d c5 ci c5 cý cý cý ci cý 

- 1,0 rn N t- 00 00 0 tA 0 V) 0 \. 0 - r- rn 00 e CD kn 8ý r' r- 
rn rn cq rý r9 (114 rn rn le it in in ýo ýo r- r- 00 GN CN --4 (11 

t r- r- 00 
42; 

r- r- t- ý3 r- 2; 00 00 00 r- r- r- r 
C'> C'D CD CD 00C (Z CD CC CD (D C) (D CD 

c; cý ci cý cý cý cý cý c; cý 

vi CD 00 m r- mt r- CD vi 00 V) mC t-- e C) ýo oo m en 00 
t- ýo le Izt CI'ý rn en r- 00 c> CD - r, ý fn le VI C> 

s r- r- r- rG t- r- 00 00 00 00 00 r- ý3 r- t 00 00 00 
cý CD 0 CD C: ) CD CD (Z CD CD CD CD (D (D 0 CD C) CD CD 

0 c5 cý c5 d cý ci cý c5 c5 c5 cý cý cý cý ci c; cý cý cý cý cý cý cý 

,e-- vi e Kt 1,0 CD xt (> v) CD r- en 0% ýo N 00 tn - ýý ýt rn et 
rn nt m rq C, 4 ell rq rn m rn le vi V) ýo ýo r- 00 00 (> C-N cn 
r- r- r- ýý r- r- r- r- r- r- 00 00 00 00 -- l'- l'- 00 

CC CD 00 (D C (Z 00 CD CD CD 
ý3 ICD ý3 

0 
IC) 

CD CD 
ý; i3 

c5 cý d cý c5 cý 

--4 -4 -0 1" 

6 C5 C5 dd6666 C5 C5 C3 
6dddd6dd6d6 

0 le C 00 ýo 0 \. 0 rn Cý e Cý ri vi r- C --4 1,0 ýo 00 - ;ý C) et IZVI) 
ýt en tn C, 4 (9 M VI rn rn rn rq C, 4 0 cý 00 00 r- \ 

ýo O\ all (2»% (: c*N cý oý ON cý ON Cl% 00 00 00 00 00 00 00 00 00 00 00 00 
(Z CD CD CD CD Q CD CD CD CD CD CD CD C: ) CD CD C CD CD CD C) C) C CD 

cý cý cý cý cý c5 c; cý cý cý cý d cý c; cý c; cý C: 5 c5 c; cý cý cý cý 

00 In :4 r- v) - 1,0 CD \o (D n r- CD C, 1 e 1,0 00 cý - rn V) 00 ýo 
(Ilý rn rn M ri rq --C (> all 00 r- ýo vi le e rn r9 - 
O\ CN cý 0', 0', Ch 0', cý Cý (> WWWW 00 W 00 W 00 00 WWW 
C CD C CD C0 CD CD CD C0Q CD C CD CD CD C CD CD CD C CD 
(5 cý cý cý ci cý c5 cý (ý cý cý cý cý cý cý cý cý cý cý c; d cý cý 

00 V) rn kn r- cq 00 e 0% M IV \. 0 00 C cli (111 m vi C) m (> N 
00 -t \M kn ýt nt m «) rý r9 - cý 00 00 r- ýlo vi le le m clq in 
�o C% C% cý (> cý cý oý Cý Q% cý cý Qý 00 00 00 00 00 00 00 00 00 00 00 
CD C CD (D CD CQ CD CD CD CD C) CD CD C: ) CD CD C: ) CD CD C) CD CD CD 

cý c; cý cý ci c5 c; d cý c5 d cý cý cý cý cý cý c; cý c; d cý ci cý 

r- C 00 C\ m cý in CD vi CD 00 CD m %M r- cý C cq le ýo CD ýo 00 
\C n rn rn cýI c9 rl --a cý cý 00 rý \M VI tr) ýt rn rq rq -- 
ýlo (> 0, % cý cý cý cý (> (> all 00 00 00 00 00 00 00 00 00 00 00 00 00 
(Z C) CD C (D 0 CD CD C (Z C) CD CD 0 C) C) CD CCC C) CD C CD 

cý ci cý cý cý c; c; cý cý ci cý cý cý cý cý cý cý dd cý cý cý ci cý 

c; ci cý cý cý cý cý cý cý 0 
w rn rn vi w vi w 

v) W �o r- C\ ýo e (N 0eW "0 W 
0e vi m cý r- C> - (lý le IZ ON mwe "ý w c, rg 

8 00 00 % "0 vi le M- 00 "0 V) M -0 0, % r- ýo le en N8 a- 
rn 

. ei Ci Ci Ci ei tn M 
CD 00000 cý dd cý cý d cc; cý d cý cý c:::; cý 

ON 00 9t cý CI-1 C 00 CD vi "0 alý 0 00 ýo --4 rq - (D 0 
cý - ý- r- ý- cq CD r- -e IZ 0, % CD C, 1 VI 00 rq t- rn (D 00 00 C% 

1%0 kn vi le en -C 00 "0 rn - C\ t- ýo et en C, 4 0 00 00 a ýCI ri ei fi ci en en (n C-ý rq 9 C-1 N----- so C 

cý c000 CD cý cý c:; 
v-, m \o ýlo rn -, cq r- -M 1-t en IZ 00 r- m r- --4 CD cý -4 0% 
CD o' oo rn r- oo ýo rq r- 0 r, ý e kri 1,0 00 - (> kn -0 (z\ ,Z 

4t rn r-ý V-) V-1 e en (N CD cý (ý V') en -4 Cý 00 , 
0m en rn m en m rn (n (9 cq C, 1 cq tq - -4 ýý ýý .. 1 -4 -4 CD 

cý cý c3 cý c5 cý d c5 cý d c; cý cý cý cý cý cý c3 c; cý cý cý 

cý (X) 
Q0 

rn vi t- ýo r- (14 "0 cq IZ CD C) 00 00 Nm (9 --m r- m rn Mt 
C, -0C: ) -0 IZ - le t- C> 0 C, 1 VI W r-1 r- m0MW C\ N 

-, ýo V) V) 't ti -0 00 %D nt en -14 (: t- %0 le rn cli CD 8 00 00 
C-n m (n en M en en cn clq cli c9 r4 cli -14 -ý _A ... ý ... CD C 

c; ci c; c5 cý c; cý ci cý cý d cý ci c; cý cý cý cý cý cý cý cý cý 

tn tri 11) V-) 11) tn III in in kn til kn tn W) tn kn kn tn in V) ttl VI) it) tn 
r- C-4 r- C-4 r- N r-: C-i rý " r-: C-i C-4 r- C-4 r- C'4 r- N r- N r- Cq r- 
vi vi vi cfi c ii N c; vi C; 44 vi tfi 

x 
0 Rt tn N 
Cý 

10 4. ) 

0 r. 

00 



Chapter 6 Part A: Pure Radiative Heat Transfer Studies 

Table 6.5 Case A: Comparison of global radiative energy generation/removal. 

Method 
Total energy Total energy % error % error % energy 

generation Qg removal Q, in Qg in Q, imbalance 

Analytical a 1.424 1.424 000 
DT (64)b 1.361 1.394 -2.34 -2.12 2.37 
DOM (S 4 )b 1.428 1.428 0.29 0.29 0 
DT (400) 1.441 1.442 1.19 1.26 0.07 
YIX 1.413 1.448 -0.77 1.69 2.48 
MC 1.423 1.423 -0.07 -0.07 0 

'Analytical benchmark result by Selquk (1985). 
b Discrete transfer and S4 solutions of Selquk and Kayakol (1997). 
(Energy values are normalised w. r. t. ebo -4=1.0234 x 10' W for 1/4 of the geometry. ) 

r 
Medium temperature distribution, Tg 

/ 
A 

I, - 

ýIý 
-ý -ý -ý -ý -ý -ý -ý -ý -ý -ý -ý, 

7-- 
0 

(m I (n I 4n InI c) I C) In I CD I C)I c)I (=)I(=) eieleielc->lcblc>ICD c> c> CD (Z) 
-e vi ýo r- oo c> CD 0», oo t- 
-4 -4 . -4 -4 P. -4 

6 

---- 

Medium: nonscattering (co = 0) with uniform absorption coefficient, ic. 
Surface: black (e = 1) at a constant temperature of 500 K. 

Figure 6.3 Case B: Nonorthogonal cylindrical enclosure (Chui et al. 1993). 
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YIX Method 
MC Method 

L --11- ic = 0.1 

I 

10 

-e- Ic = 

012345 
Axial position z, m 

Figure 6.4 Case B: Axial variation in flux divergence near boundary. 

(Note: Figure 6.5 is in main body of text. ) 

* Unit cube centred at coordinate origin. 

-0.5: 5 (x, y, z) :50.5 
All surfaces are diffuse and black (c = 1). 

Medium scattering phase function 

(D(ij t 
i) =I+gi- ii 

and nonhomogeneous extinction coefficient: 

0 (x, y, z) =a (I - 21 A) (I - 21 yl)(I - 21 zI) +b 

Scattering LAS coeff. In P (x, y, z) 

6 

Medium Boundary 
Case albedo co gin (D(g,, g) abe. V-q, conditionst 
Ci 0. n/a 0.9 0.1 1. ?6 cold walls 
C2 0.9 0.0.9 0.1 1. ?6 cold walls 
C3 0.9 1.0.9 0.1 ? 0.1 hot/5 cold 
C4 0.9 -1.0.9 0.1 ? 0.1 hot/5 cold 
C5 0.9 1.0.5 0.5 ? 0.1 hot/5 cold 
tCold walls: e, = 0, hot walls: e, = 1. Radiative surface heat flux and 7 is unknown. 

Figure 6.6 Case C: Cubic benchmarking media with nonhomogeneous extinction, a 
hot emitting wall and anisotropic scattering. 
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Table 6.7 Results for Case C I: Nonscattering (co = 0). 

qI (__0.5,0, Z) W/M2 

Z MCa YIX DT MCC jüd 

±4/9 0.10857 0.10795 0.10967 0.10959 0.10872 0.10743 
±3/9 0.14012 0.14094 0.14107 0.14125 0.14171 0.13759 
±2/9 0.16566 0.16545 0.16645 0.16729 0.16619 0.16255 
±I/9 0.18468 0.18492 0.18543 0.18552 0.18569 0.18049 

0 0.19239 0.19220 0.19286 0.19260 0.19291 0.18760 

V-q, (x, 0,0) W/m' 

x ATE DT MC, YIX, FE YIX 
±4/9 0.72336 0.72302 0.72860 0.72910 0.72219 0.72502 
±3/9 1.37701 1.37419 1.38099 1.38739 1.37209 1.38007 
±2/9 1.96893 1.95985 1.96458 1.98360 1.95658 1.97318 
±1/9 2.51700 2.50114 2.52182 2.53635 2.49628 2.52438 

0 3.07462 3.04339 3.08144 3.09813 3.03664 3.08571 

'Standard error Sjl) < 0.00008 for all MC values on surface. 
bStandard error S,, (1) < 0.0000 1 for all MC values on plane. 
'Hsu and Farmer (1995). dBurns et aL (1995). 

Table 6.8 Surface heat fluxes q, (-0.5,0, z) for Case CI with 
discrete transfer and YIX methods for a finer spatial discretisation. 

9x9x9 27x27x27 
z FE a YIX DT YIX DT 

: t4/9 0.10743 0.10795 0.10967 0.10594 0.10798 
(0.48%)b (2.09%) (-1.39%) (0.51%) 

: t3/9 0.13759 0.14094 0.14107 0.13945 0.13821 
(2.43%) (2.53%) (1.35%) (0.45%) 

: t2/9 0.16255 0.16545 0.16645 0.16299 0.16327 
(1.78%) (2.40%) (0.27%) (0.44%) 

: 0/9 0.18049 0.18492 0.18543 0.18169 0.18136 
(2.45%) (2.74%) (0.66%) (0.48%) 

0 0.18760 0.19220 0.19286 0.18862 0.18848 
(2.45%) (2.80%) (0.54%) (0.47%) 

'Bums et aL (1995). Units: W/rn 2 
b Deviation of value as % of FE value. 
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Table 6.9 Results for Case C2: Isotropic scattering ((o = 0.9, g= 0). 

q, (-0.5,0, z) W/m' 

z MCa YIX DT MCC Imc FEd 
±4/9 0.01213 0.01205 0.01217 0.01219 0.01214 0.01193 
+1/9 0.01573 0.01579 0.01574 0.01564 0.01589 0.01536 
±2/9 0.01867 0.01867 0.01870 0.01892 0.01877 0.01826 
±1/9 0.02104 0.02097 0.02094 0.02103 0.02107 0.02037 

0 0.02176 0.02182 0.02182 0.02202 0.02192 0.02120 

V-q, (x, 0,0) W/m' 

x YIX DT MC, YIX, FE 
±4/9 0.07914 0.07913 0.07921 0.07974 0.07912 0.07916 
±3/9 0.15748 0.15742 0.15751 0.15866 0.15739 0.15750 
±2/9 0.23496 0.23487 0.23495 0.23673 0.23482 0.23506 
±1/9 0.31191 0.31170 0.31202 0.31433 0.31163 0.31205 

0 0.38894 0.38852 0.38911 0.39192 0.38842 0.38916 

'Standard error S,, (! ) < 0.00008 for all MC values on surface. 
bStandard error S. (1) < 0.0000 1 for all MC values on plane. 
'Hsu and Farmer (1995). dBums et aL (1995). 

Table 6.10 Results for Case C3: Forward scattering (CO = 0.9, g= 1). 

(--0.5,0, z) W/M2 

z YIX mc S. (Y) YDO mc. S. (3E)- 

±4/9 0.98597 0.98543 0.00024 0.98586 0.98490 0.00016 
±3/9 0.98120 0.98116 0.00027 0.98112 0.98010 0.00024 
±2/9 0.97715 0.97742 0.00025 0.97706 0.97620 0.00025 
±1/9 0.97373 0.97416 0.00038 0.97360 0.97310 0.00036 

0 0.97180 0.97305 0.00029 0.97170 0.97170 0.00027 

e9 (X, 0,0) W/M2 

x YIX Mc S"(1) YDV MCa S. (I)a 

-4/9 0.50694 0.46372 0.00269 0.50679 0.46100 0.00053 

-3/9 0.36277 0.36549 0.00075 0.36282 0.36640 0.00038 

-2/9 0.28163 0.28371 0.00075 0.28177 0.28420 0.00042 

-1/9 0.22108 0.21861 0.00071 0.22135 0.21830 0.00047 
0 0.16661 0.16611 0.00108 0.17049 0.16650 0.00042 

1/9 0.11934 0.12638 0.00095 0.11959 0.12580 0.00024 
2/9 0.09529 0.09532 0.00081 0.09547 0.09642 0.00027 
3/9 0.06816 0.07490 0.00084 0.06832 0.07516 0.00020 
4/9 0.06405 0.06105 0.00150 0.06417 0.05986 0.00020. 

a Hsu and Farmer (1995). Hot wall at x= -0.5. 
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Table 6.11 Results for Case C4: Backward scattering (co = 0.9, g= -1). 

q, (--0.5,0, Z) W/, n2 

z YIX mc S. (Y) 

±4/9 0.96702 0.96669 0.00025 
±3/9 0.95235 0.95137 0.00060 
±2/9 0.93963 0.94005 0.00024 
±1/9 0.92974 0.93045 0.00051 

0 0.92489 0.92653 0.00045 

YDC- mc. S,, gy 
0.96680 0.96560 0.00039 
0.95218 0.95100 0.00037 
0.93944 0.93870 0.00043 
0.92947 0.92950 0.00038 
0.92465 0.92530 0.00058 

e9 (x, 0,0) W/M2 

x YIX mc s"(30 

-4/9 0.52310 0.47480 0.00378 

-3/9 0.37704 0.38089 0.00125 

-2/9 0.29248 0.29663 0.00085 

-1/9 0.22703 0.22395 0.00090 
0 0.16661 0.16630 0.00067 
1/9 0.11485 0.12154 0.00074 
2/9 0.08901 0.09026 0.00094 
3/9 0.06147 0.06832 0.00069 
4/9 0.05786 0.05228 0.00091 

yDCa MCa S. (X)a 

0.52294 0.47660 0.00045 
0.37710 0.37990 0.00051 
0.29267 0.29450 0.00060 
0.22730 0.22430 0.00046 
0.17050 0.16640 0.00029 
0.11505 0.12120 0.00026 
0.08914 0.08987 0.00023 
0.06159 0.06820 0.00021 
0.05795 0.05326 0.00021 

'Hsu and Farmer (1995). Hot wall at x= -0-5. 

Table 6.12 Results for Case C5: Forward scattering in an optically 
thick medium (a = 5.0, b=5.0). YIX solutions on 27X27X27 mesh. 

q, (--0.5,0, z) W/M2 

Ca MCa S (I)a z YIX mc S. (y) YD 

±4/9 0.72737 0.73347 0.00044 0.72862 0.73260 0-00076 
±3/9 0.62298 0.62625 0.00042 0.62774 0.62550 0.00071 
±2/9 0.56706 0.56772 0.00025 0.57357 0.56670 0.00101 
±1/9 0.53538 0.53513 0.00032 0.54266 0.53450 0.00063 

0 0.52370 0.52355 0.00027 0.53151 0.52340 0.00110 

e9 
(X, 0,0) W/M2 

x YIX mc 

-4/9 0.64629 0.64485 

-3/9 0.48180 0.48266 

-2/9 0.35127 0.35149 

-1/9 0.24775 0.24759 
0 0.16616 0.16656 

1/9 0.10549 0.10774 
2/9 0.06682 0.06876 
3/9 0.04146 0.04312 
4/9 0.02391 0.02477 

s (5E) Ma MCa S. (j)a 

0.00036 0.64099 0.64420 0.0 
0.00034 0.47755 0.48220 0.00060 
0.00029 0.34883 0.35100 0.00042 
0.00022 0.24702 0.24700 0.00030 
0.00020 0.16740 0.16640 0.00021 
0.00011 0.10854 0.10760 0.00015 
0.00009 0.06940 0.06878 0.00014 
0.00014 0.04358 0.04310 0.00010 
0.00009 0.02548 0.02484 0.00006 

'Hsu and Farmer (1995). Hot wall at x= -0-5. 
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(a) 

(b) 

Units: W/M 

Units: W/m 2 

Figure 6.7 Case Cl (a) Surface heat flux q, (-0.5, y, z) on hot wall. 
(b) Blackbody emissive power eg (x, y, 0). 

Solid line = Monte Carlo solution. 
Dot-dash line = YIX solution. 

Compare with Fig. 3 by Hsu and Farmer (1995). 
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(a) 

(b) 

Units: W/m2 

Units: W/M2 

Figure 6.8 Case C4: (a) Surface heat flux q, (-0.5, y, z) on hot wall. 
(b) Blackbody emissive power eg (x, y, 0). 

Solid line = Monte Carlo solution. 
Dot-dash line = YIX solution. 

Compare with Fig. 4 by Hsu and Farmer (1995). 
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3/9 4/9 
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Figure 6.9 Case C5: (a) Surface heat flux q, (-0-5, Y, Z) on hot wall. 
(b) Blackbody emissive power eg (x, y, 0). 

Solid line = Monte Carlo solution. 
Dot-dash line = YIX solution. 

-3/9 --ý 

Compare with Fig. 5 by Hsu and Farmer (1995). 

I 
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" L-shape composing 4 unit cubes with the coordinate origin at the centre of the corner 

diagonal. 

" All surfaces are diffuse and black (c = 1). 

" Medium is isotropically scattering with nonhomogeneous extinction coefficient: 

F7 (1.5-v) 

2.5 ý 

2.11 -ý 

+0.1 

(X > 
0.9(1 - 21 xl)(2.5 -. v)(1 - 21z1) 

+ 0.1 
(2.5 + x) 

Sample values are shown at (x, Y, 0) above. 

Scattering Medium Boundary 

rn 

m 

Case albedo (o e. V q, e, q, Type of problem 
DI 0.9 1.0 1? 0.25. ? 
D2 0.5 1? xt 0.1? 

Temperature prescribed. 
Source prescribed. 

ýV-q, (x! ý-y)=J, V. q,. (x>-. v)=0.5. ?= unknown. 

Figure 6.10 Case D: Nonorthogonal, nonhoi-nogencous, L-shaped geometry. 
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Table 6.13 Surface heat flux for cases DI& D2: L-shaped isotropically 
scattering medium. Values at q, (-1.5, yl, 0) & q, (-0.5, y2, O) W/M2. 

Case D I: Temperature Prescribed 

Yl DT YIX mc a 

-3n 0.01001 0.00985 0.00996 

-2n 0.01201 0.01194 0.01199 

-in 0.01351 0.01353 0.01354 
0 0.01406 0.01434 0.01404 

in 0.01370 0.01372 0.01384 
2n 0.01230 0.01266 0.01198 
3n 0.01014 0.00974 0.00987 
Y2 

Case D2: Source Prescribed 

DT YIX MCb 
0.18298 0.18215 0.18368 
0.21650 0.21951 0.21637 
0.23312 0.23277 0.23138 
0.23453 0.23648 0.23492 
0.23153 0.22885 0.22913 
0.21388 0.21720 0.21329 
0.17886 0.17765 0.17754 

7/12 0.02419 0.02384 0.02408 
9/12 0.02292 0.02252 0.02262 

11/12 0.02166 0.02124 0.02120 
13/12 0.02031 0.01988 0.01976 
15/12 0.01888 0.01852 0.01866 
17/12 0.01742 0.01710 0.01732 
19/12 0.01592 0.01562 0.01573 
21/12 0.01440 0.01413 0.01423 
23/12 0.01280 0.01262 0.01269 
25/12 0.01114 0.01097 0.01100 
27/12 0.00932 0.00913 0.00940 
29/12 0.00714 0.00699 0.00719 

0.14891 0.14835 0.14914 
0.14321 0.14116 0.14118 
0.14047 0.13791 0.13819 
0.13830 0.13547 0.13610 
0.13580 0.13382 0.13404 
0.13334 0.13222 0.13252 
0.13069 0.13019 0.13019 
0.12773 0.12742 0.12665 
0.12309 0.12336 0.12290 
0.11656 0.11719 0.11627 
0.10585 0.10679 0.10632 
0.08650 0.08815 0.08637 

'Standard error S. (1) < 0.00020 for all MC values on surface (Case D I). 
bStandard error S,. (1) < 0.00060 for all MC values on surface (Case 132). 
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Figure 6.11 (a) Case D 1: Divergence of radiative heat flux V-q,. (x,. Il, 0). 
(b) Case D2: Blackbody ernissive power e, (x, v, 0). 

2 Units: W/m 
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6.2 Homogeneous Scattering NonGray Media 

Several wavelength dependent problems are solved to verify the weighted-sum-of-gray- 
gases (WSGG) model described in Sec. 5.4. These require the prediction of the radiative 
heat transfer in an absorbing gaseous mixture seeded with various concentrations of 
carbon particles. Numerical benchmark solutions for these problems have been taken 
from several principal publications to verify the present methods. Tong and Skocypec 
(1992) summarise the original results presented at a symposium on the comparison of 
solution methods for predicting radiative heat transfer in complex media. These were 
contributed by researchers using a variety of techniques including the zonal, discrete 

exchange factor (Naraghi and Litkouhi, 1989), YIX and Monte Carlo methods. 
Subsequently, Hsu et al. (1993) and Farmer and Howell (1994) updated their original 
solutions for the YIX and Monte Carlo methods, respectively. Bums et al. (1995) has 

also made some comparisons with a finite element formulation. Recently, new solutions 
have been determined by Hoover et al. (1996) with the discrete ordinates (S,, ) method 

and by Hsu and Tan (1996) with the YIX method for an extended set of problems. The 

most ambitious of these considers combined radiation-conduction in a nonhomogeneous 
medium. However, the mixture thermal conductivity was assigned an extremely low 

value of 0.06 W/m K. As a result the heat transfer is so heavily radiation dominated that 
Hsu and Tan (1996) and Maltby (1996) found it impossible to obtain a converged 
temperature field. The remaining problems comprise purely radiative media with both 
homogeneous and nonhomogeneous properties. Poor agreement is observed between 

published solutions for the latter, so the present comparisons are limited to the 
homogeneous benchmarks which are nonetheless quite complex. 

Problem Description. The problem geometry as shown in Fig. 6.12 is a three- 
dimensional L-shaped enclosure filled with a homogeneous mixture of suspended carbon 

particles, C02 and N2 at 1000 K and I atni total pressure. The walls of the enclosure are 

cold and black and there is no emission or reflection from the boundaries. The enclosure 

width, W, height, H, and length, L, are 2 in, 3 in and 5 in respectively. The extension 
depth, b, is 2 in and the geometry is modelled with three extension heights, a, of 0,1 and 
2 in. The case of zero extension height serves as a baseline as it corresponds to a simple 
rectangular box geometry. The spectral variation in absorption coefficient of the C02 gas 
is found from the combined Elsasser narrow-band/ Edwards wide-band model described 
in Sec. 5.3. 
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All parameters are as stated previously with the single exception of the line spacing, 3, 

which is found from the relation: 

3=30C3 (6.6) 

where the model parameter C3 is evaluated at a temperature of 100 K. The partial gas 
density, p required in Eq. (5.1) is determined from the ideal gas equation using a 
specifiedCO2mole fraction of 21%. Spherical carbon particles with a diameter d= 30 

/Im are selected for the analysis. Their spectral scattering and extinction efficiencies, Q,,,,, 

and Q,,,, , are found from applying Mie theory to soot data reported by Foster and Howarth 
(1968). These are listed in Table 6.15 (Tong and Skocypec 1992). Then for N, particles 
per unit volume the soot absorption and scattering coefficients are (Modest 1993, p. 393): 

7rd 
2 N, 

(a., 4 

7rd 
2N 

ýý ýw3 
4 

(6.7) 

(6.8) 

Three carbon particle concentrations are considered: 2X 107 2x 108 and 2xlO9 particles/m 3 

to assess the effect of optical thickness on the solution. Fig. 6.13 shows the variation in 

total absorption coefficient with wavelength for the particle/gas mixture, where the total 

absorption is equal to the sum of the absorption due to the gaseous C02 and that due to 
3 the carbon particles. The carbon particle concentration in this case is 2xlO9 particles/m . 

The carbon particles have a scattering phase function approximated by a gray 
3-Eddington formulation given as (Tong and Skocypec 1992): 

(D(E)) = 2f 8(l - cos E)) + (I - f)(I +3 g'cos 0) (6.9) 

Here E) = cos-'(g - i) represents the scatter angle and the specified parameters f=0.111 

and g'= 0.215 customise the biased shape of the phase function to closely approximate 
its exact form. The 6 is the Dirac-delta function defined by: 

3(x) = lim 
0, lxl> e 

C-011/c, lxl<£: 

such that it adds a forward 'spike' to the phase function for zero scattering angles. 

lxl> e (6.10) 
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The combination of three extension heights and three soot concentrations totals nine cases 
(EI-E9), as summarised in Table 6.14. For each problem the heat flux through the 

enclosure walls and the divergence of radiative flux within the media are sought at 

specific locations. 

Solution Strategies. The above problem statement requires special consideration of 

how best to model: (a) the &-Eddington scattering phase function, and (b) the spectral 

dependence of absorption and scattering, in each of the present methodologies. In regard 

to the first issue, it is common practice to model the Dirac-delta portion of the phase 

function as unscattered radiation by scaling the scattering coefficient, a, with a factor 

(I - f) = 0.889. The reduced phase function (i. e. the last bracketed term) is then in the 

linear anisotropic form of Eq. (4.5), where the asymmetry parameter, g is replaced by 3g', 

i. e. g is set equal to 0.645 in the Monte Carlo random number relation Eq. (4.62) and in 

the M expression Eq. (4.79). However, an isotropic approximation must be used with 

the discrete transfer method by setting g' = 0, since linear anisotropic scattering cannot 

be simulated, though cr, is scaled as before to account for the Dirac-delta forward 

scattering 'spike'. (The affect of this approximation is discussed later. ) 

Sec. 5.4 presented two methods for representing the absorption spectrum: a bandwise 

solution and a more efficient variation using the concept of absorption cross-sections. 
Either method will discretise the total absorption spectrum of the particle/gas mixture into 

a number of gray gases, but the latter requires far fewer gases to characterise the 

absorption (i. e. the advantage gained from using absorption cross-sections is that 

wavenumber intervals with similar levels of absorption are combined and solved 

simultaneously. ) However, an added difficulty here is that a scattering coefficient must be 

found for each gray gas representative of the scattering in its constituent wavenumber 
intervals. If these intervals are widely dispersed over the entire spectrum, such that cr, 

varies significantly from interval-to-interval, taking some mean value is likely to be 

extremely erroneous. In contrast, the bandwise approach suffers no such disadvantage 

because the solutions for different wavenumber intervals are independent of each other 

and, in principle at least, the interval widths can be progressively reduced in order to 

capture localised spectral variations in both the absorption and scattering coefficient. 
Therefore, the bandwise method is a better choice here if accuracy is the main concern: it 
is also the method used in all the previous studies cited above. Though having said this, it 
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is found that the spectral variation in scattering coefficient is in fact very small, such that 

absorption cross-sections should still give a good approximation for much less 

computation. Thus, solutions using both methods for the spectral discretisation are 

presented below. 

Bandwise Solutions. A complete set of nongray solutions was generated for the discrete 

transfer, YIX and Monte Carlo methods with the bandwise WSGG model. These are 
tabulated in Tables 6.16 to 6.21. Measures of relative difference and run times for each of 

the deterministic solutions are given in Table 6.14. Monte Carlo times were typically an 
0(102) times longer than those of the deterministic solutions. For each of the cases El- 

E9 choices had to be made regarding the spatial, angular and spectral discretisation. 

The box geometry is modelled with a 9x9x9 and the L-shaped geometry with a 9X II X14 

mesh (see Fig. 6.12). An orthogonal mesh structure is used for both enclosures in order 

that the results are found at the solution points without interpolation. The L-shape is 

described by deactivating a 6x5 block of cells. The discrete transfer and Monte Carlo 

solution times may be dramatically reduced by taking advantage of the problem 

symmetry. Then, only one-eighth of the box geometry (x, y, z all; -> 0) and one-half of the 

L-shaped geometry (x ý! 0) need to be considered. However, symmetry cannot be used 

with the present M method where there is scattering anisotropy (see last section). 
Discrete transfer solutions used 400 rays per surface element. YIX solutions were 

obtained with S, 6 angular quadrature and a first integration point of 'r I=0.00 1. Pilot 

studies indicates that these results are unlikely to change by more 0.5% with finer spatial 

or angular discretisation, particularly given the nicely homogeneous radiative properties 

and cold boundary conditions. However, the solution accuracy is highly sensitive to the 
fidelity of the gray gas approximation. Since this stems from the bandwise WSGG 

model, the effect on the discrete transfer, M or Monte Carlo solutions is the same. It is 

found that with too few wavenumber intervals the strong C02 absorption spikes are not 

accurately resolved and large errors result. Moreover, it is important to fit a given number 

of intervals efficiently so as to resolve the most detail (see Sec. 5.4.1). Figure 6.14 shows 
how the total surface flux for case E4 converges as the number of intervals is increased. 

The flux is within 0.1% of its converged value with 80 intervals and so this number was 
taken for all the present solutions. 
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Trends observed in the surface heat flux and divergence of radiative heat flux solutions 
are explained as follows. The positive values of flux divergence correspond to the heat 

source required to maintain the homogeneous media at 1000 K by balancing heat losses at 
the boundaries. As would be expected the maximum divergence in all cases is predicted 
in the comer regions where the gas is in close proximity with three cold walls. As the 

particle concentration is increased from 2x 107 to 2xlO9 particleS/M3, the surface heat flux 

and divergence also increase as a result of increased radiative heat transfer from the 

particles. It is also observed that the flux gradients in the media become more 

pronounced. At the highest particle concentration the medium is so optically thick that it 

behaves as a good radiative insulation and consequently, the flux divergence in the central 

region falls. However, heat losses through the boundaries are greater such that the 
divergence there rises. The net effect is a greater disparity between flux divergence 

values at the centre and those at the boundaries as the particle concentration is increased. 

Varying the extension height a has much less influence on the heat transfer characteristics 

of the media compared to the particle concentration. Increasing a tends to reduce the flux 

divergence, particularly at locations which become more removed from the new extension 
boundaries. This is most noticeable in the optically thick media (i. e. E7, E8 and 139) due 

to the insulating effect of the intervening media. However, the surface heat flux increases 

slightly with a since the surface-to-volume ratio is lowered and a larger volume is 

radiating to a smaller surface area. Analysis of the surface heat flux values in the z- 
direction at x=0, y= IJ2 also reveal the shading effects that arise in the L-shape 

geometries when a>0. The flux remains relatively constant from the centre of the 

surface towards the edge until 0.25 to 0.5 rn from the top of the extension when it 

decreases rapidly as the view factor to the main body of hot gas is reduced. This shading 

effect is most pronounced in the optically thinner media (i. e. E I, E2 and E3). 

A second set of Monte Carlo solutions were found for a scattering asymmetry factor 

g. - =0 in order to assess the effect of this approximation in the discrete transfer solutions. 
In all cases removing the forward scattering bias reduces both the surface heat flux and 
flux divergence. The solutions change typically by less than 1% for cases El-E6, but for 

the optically thick media (i. e. E7, E8 and 139) the effect is more pronounced: the surface 
heat flux falls on average by about 6% corresponding to a 10% drop in flux divergence. 

This error is excluded from the difference measures in Table 6.14 by comparing solutions 
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on a like-with-like basis, i. e. the discrete transfer results are compared with Monte Carlo 

values found with g'= 0 and YIX results with the exact Monte Carlo values for which 

g'= 0.215. Thus, any deviation arises from differences between the methods rather than 
the problem description. 

Each nongray bandwise solution is essentially a combination of 80 individual gray 
solutions spanning a wide optical range. Those solutions in optically thin (or thinner) 
intervals between the C02 absorption spikes show the closest agreement, but for several 
intervals at and around the spike centres the absorption is very large, and this tends to 

exaggerate differences in the way each method resolves the radiative property gradients in 

an manner similar to case B3 in Sec. 6.1. In particular, for reasons stated previously, the 
YIX and Monte Carlo flux divergence values at medium points may differ by several tens 

of per cent in these thick intervals such that overall maximum deviations are as large as 
50%. Moreover, it is observed that the solution disparity is noticeably larger for cases E7, 

E8 and E9, where the minimum spectral absorption exceeds I m" due to the high carbon 

particle concentration. Better agreement could be achieved by coupling each method with 

a diffusion solver for the thick intervals (see p. 163). However, the solution disparity is 

expected to be far less severe, in the engine combustion studies (Part B) where the 

characteristic dimensions (and therefore optical lengths) of the combustion chambers are 

much smaller than those here. 

Table 6.22 compares surface heat flux and flux divergence values from the present 

solutions with results from several other methods (or implementations). For brevity, 

sample results are only shown for the box enclosure with 2x 108 particleS/M 3 (case E4) and 

a more extensive comparison can be made by referring directly to the indicated 

publications. (The discrete transfer and finite element solutions both include errors 

associated with the scattering phase function approximation. ) Relatively poor agreement 
is observed with solutions from the discrete exchange factor and discrete ordinate (S. ) 

methods, particularly between divergence values. However, the other results agree to 

within 5% of the present Monte Carlo value. 

Performance comparisons for the gray problems in Sec. 6.1 found that discrete transfer 

run times were shorter than those of the YIX method where the majority of the time is 
taken in tracing the geometry, but the faster convergence of YIX solutions helped to 
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somewhat re-address the balance. One effect of the nongray analysis here is to shift the 

emphasis further from tracing to iterating in the overall solution procedure. Both 

deterministic methods trace the geometry only once and the path length information is 

stored. This data is then used recursively to solve for each gray gas in the spectral 
discretisation. These individual solutions take typically between 3 to 15 iterations so that 

an entire problem involves several hundred iterations and only one tracing step. 
Therefore, the discrete transfer and M run times are comparable for cases E 1, E2 and E3 

(if the problem symmetry is not exploited) - see Table 6.14. However, there is another 

more overriding factor impairing the M performance, which only becomes evident as 

the particle concentration is increased. Between reading the pathlength data and building 

the matrix equations the YIX solver must re-locate and store a new set of optical 
integration points. This procedure takes more time for spectral intervals with high 

absorptivity since more points must be found. At any given spectral position the 

absorptivity increases with the number of carbon particles such that the M solution of 

the problems with the highest concentration take twice the time of a discrete transfer 

solution. The YIX solver also requires more storage space, about 1.5 times that of the 
discrete transfer method, since in a nongray calculation both optical and spatial pathlength 
information must be retained. Thus, the discrete transfer method is faster and has a lower 

memory requirement. 

Solutions using Absorption Cross-Sections. A WSGG model based on absorption 

cross-sections was initially verified against solutions presented by Denison and Webb 

(1993,1995) that had accompanied their original model development. These considered a 

broad range of one-dimensional nonisothermal and/or nonhomogeneous purely gaseous 

media in which H20 vapour is the radiating gas. It was found that the present model 

generally predicted the correct variations in one-dimensional flux, but values deviated by 

up to 20% in magnitude. This was attributed in part to the lack of a formal optimisation 

technique for fitting the gray gases, but mostly due to the underlying method used to 

compute the spectral absorption coefficient (prior to the spectral subdivision). The 

present correlation is based on wide-band absorptance measurements, whereas Denison 

and Webb use high-resolution line-by-line H20 spectra (see Secs. 5.2 & 5.3). It is 

therefore not unreasonable to expect some discrepancies. Additional one-dimensional 

comparisons were made with RADCAL (Grosshandler 1979) solutions for total incident 

flux. Agreement with the narrow-band results was good for C02 media, but poorer when 
H20 was the radiating gas. 
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The model was incorporated into the three-dimensional discrete transfer solver and 
applied to cases El-E9. Table 6.23 compares performance with the corresponding 
bandwise solutions. Here any errors arise solely from the spectral subdivision. 
Impressively, the present model is 6-8 times faster and its surface flux and flux 
divergence solutions differ, on average, by less than 2% with the bandwise results in 
Tables 6.16 and 6.17. With optimisation of the model even better agreement is expected. 
A logarithmic subdivision of the absorption domain was used as described in Sec. 5.4.2. 
Additional cross-sections were used to resolve the variation in particle absorption, since 
by its continuous nature even small errors in the discretisation are significant, shifting the 

total flux solution up or down by a few percent. Seven, nine and eight-gray-gases are 

solved for the media with 2xlCý, 2x 108 and 2XI09 carbon particleS/M3 , respectively. In 

each case, three or four represented the particle absorption. 

Since EI-E9 are all homogeneous media only one set of conditions needed to be 

considered. Typically, to generate the model spectrum and fit the gray gases took 0.5 s 

which is less than I% of the total run time in each case. 

For nonisothermal/nonhomogeneous media the pre-processing time scales linearly with 
the level of spatial discretisation such that for large meshes it may become a sizeable 

overhead. Then further approximations may be necessary. Solutions have been found for 

nonisothermal/nonhomogeneous media with good results by Denison and Webb (1995) 

and also in this study with the discrete transfer-WSGG solver. These trials are incomplete 

(and omitted here), but sufficiently encouraging, that some preliminary studies of spark 
ignition engine combustion seems justified. 
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z 

Special case: a=0 
Rectangular box geometry. 

Figure 6.12 L-shaped enclosure. W, H and L and b are fixed lengths: a is a variable 
extension height in the problem statement. Note: A different Y-spacing is 
used for box mesh when a=0. 

Table 6.15 Radiative properties of 30 gm diameter carbon particles. 
X Scattering Extinction X Scattering Extinction 

(RM) efficiency efficiency (RM) efficiency efficiency 

2.0 1.17680 2.14549 7.5 1.23875 2.34059 
2.5 1.18157 2.16843 8.0 1.23015 2.35180 
3.0 1.18368 2.18941 8.5 1.27949 2.37534 
3.5 1.18698 2.20853 9.0 1.30680 2.39128 
4.0 1.18751 2.22588 9.5 1.31753 2.40501 
4.5 1.19100 2.24290 10.0 1.32398 2.42856 
5.0 1.18874 2.26063 10.5 1.32844 2.43151 
5.5 1.18296 2.28103 11.0 1.33279 2.44393 
6.0 1.18687 2.29533 11.5 1.33577 2.45601 
6.5 1.21067 2.30932 12.0 1.33871 2.46775 
7.0 1.21895 2.32287 
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1000 F--ý-l I 

spectral blackbody 
emissive power, 
10'W/m'/micron 

100" 

10+ 7 

I loll II milli 1 11 1111 

2468 10 20 
Wavelength, micron 

Figure 6.13 Total spectral absorption coefficient for mixture with 2.109 particleS/M 3 
The dotted curve shows the spectral blackbody emissive power variation 
over the same wavelength interval and the short vertical lines indicate the 
(80) band centres used in the spectral integration. 
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Figure 6.14 Convergence of total surface heat flux for case E4 as the number of intervals 
is increased in spectral integration. 
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Table 6.16 Nongray discrete transfer solutions for surface heat flux (W/m 2). 

2x107 particleS/m 3 2x108 particles/m3 2x109 particles/m3 
EI E2 E3 E4 E5 E6 E7 E8 E9 

xyZ a=O a=l a=2 a=O a=l a=2 a=O a=I a=2 
0 10535 10536 10539 22618 22693 22729 48658 48860 48867 

W/8 0 H/2 10463 10463 10466 22356 22426 22460 48236 48419 48426 
W/4 10191 10190 10192 21455 21541 21544 46720 46866 46877 
3W/8 9552 9550 9552 19546 19589 19613 42628 42708 42718 

0 10389 10532 10575 21897 22435 22592 48926 49032 49040 
H/8 10352 10595 10652 21742 22653 22868 48830 49204 49218 
11/4 10100 10538 10636 20891 22456 22828 48106 49134 49214 

0 U2 311/8 9523 10409 10582 19068 21996 22651 45148 49008 49294 
11/2+a/4 - 9968 10293 - 20473 21611 - 48075 48983 
H/2+a/2 - 9633 9992 - 19380 20573 - 46615 48568 
H/2+3a/4 - 8955 9460 - 17371 18795 - 42410 46356 

0 10652 10728 10748 23197 23471 23549 49116 49116 49120 
W/2 0 W8 10578 10699 10735 22929 23364 23494 48944 48995 49020 

H/4 10313 10440 10465 21991 22459 22558 48119 48256 48264 
M/8 9729 9853 9856 20057 20510 20550 44975 45153 45174 

0 10652 10728 10748 23197 23471 23549 49116 49116 49120 
W/2 L/8 0 10608 10722 10763 23019 23477 23617 49057 49197 49179 

1-14 10431 10564 10608 22350 22848 23007 48819 48890 48881 
31J8 9929 10065 10114 20581 21084 21253 47232 47317 47314 

0 10431 10564 10608 22350 22848 23007 48819 48890 48881 
IM 10365 10594 10662 22106 22953 23207 48620 48890 48972 
IV4 10125 10534 10638 21261 22717 23104 47837 48780 48858 

W/2 U4 311/8 9531 10398 10558 19339 22211 22804 44760 48594 48658 
I-1/2+a/4 - 9846 10081 - 20252 21064 - 47182 47800 
W2+a/2 - 9410 9781 - 18807 19995 - 45487 47369 
H12+3a/4 - 8847 9243 - 17116 18192 - 41467 45240 
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Table 6.17 Nongray discrete transfer solutions for flux divergence (W/M 3). 

2X1Ö7 particleS/m 3 2x108 particleS/m 3 2XIO) partiCleS/M3 
EI E2 E3 E4 E5 E6 E7 E8 E9 

xyZ a=O a=l a=2 a=O a=I a=2 a=O a=I a=2 
0 7565 7519 7498 25219 25057 24983 13605 13444 13432 

W/8 00 7843 7816 7806 25734 25619 25569 17218 17093 17093 
WA 8688 8703 8685 27073 27051 26983 30720 30690 30698 
3W/8 11637 11712 11700 31022 31107 31053 67379 67498 67510 

0 7565 7519 7498 25219 25057 24983 13605 13444 13432 
00 IV8 7736 7625 7602 25585 25276 25192 15273 14735 14713 

1-1/4 8227 8085 8063 26493 26144 26061 22862 21589 21534 
311/8 10279 10144 10081 29619 29319 29154 51051 48716 48645 

0 7565 7519 7498 25219 25057 24983 13605 13444 13432 
0 L18 0 7615 7531 7506 25352 25089 24994 13912 13312 13194 

L/4 7853 7738 7674 25920 25588 25393 16295 15645 15568 
M/8 8969 8846 8796 27933 27594 27436 32013 31357 31321 

0 9244 9162 9142 28127 27906 27831 38670 37709 37618 
W/4 IJ8 IN 9289 8671 8597 28245 26905 26686 38962 33400 33128 

IA 9488 8911 8812 28717 27555 27271 40913 33132 32788 
3L/8 10557 9929 9830 30644 29375 29094 54407 46808 46463 

0 8688 8703 8685 27073 27051 26983 30720 30690 30698 
W/4 0 FV8 8782 8747 8718 27264 27133 27036 32071 31709 31651 

IV4 9244 9162 9142 28127 27906 27831 38670 37709 37618 
3H/8 11202 11138 11082 31091 30928 30790 64533 62734 62517 

0 7853 7738 7674 25920 25588 25393 16295 15645 15568 
H/8 8034 7756 7685 26305 25631 25413 17994 15493 15374 
11/4 8516 7845 7729 27189 25833 25502 25384 16404 16093 

0 U4 311/8 10540 8063 7889 30235 26297 25843 53127 18936 17960 
W2+a/4 - 9083 8632 - 28281 27412 - 32121 26416 
11/2+a/2 - 9965 9062 - 29725 28368 - 45594 31047 
lIV2+3a/4 - 13035 10449 - 34024 30670 - 79962 50287 

0 8969 8846 8796 27933 27594 27436 32013 31357 31321 
H/8 9134 8908 8827 28264 27716 27478 33743 31480 31287 
11/4 9595 8932 8809 29114 27785 27449 40254 31595 31196 

0 3U8 31V8 11506 9008 8857 31951 27975 27569 65519 32296 31474 
H/2+a/4 - 9595 9088 - 29136 28167 - 40231 33476 
IV2+a/2 - 10526 9411 - 30712 28910 - 52600 36962 
H/2+3a/4 - 13456 10787 - 34638 31161 - 85888 55826 
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Table 6.18 Nongray YIX solutions for surface heat flux (W/m 2). 

2x 1 Ö7 particles/m3 2x108 particleS/m 3 2X1C particleS/M3 

EI E2 E3 E4 E5 E6 E7 E8 E9 
xyZ a=O a=I a=2 a=O a=I a=2 a=O a=I a=2 

0 10505 10507 10508 22607 22687 22701 50283 50513 50516 
W/8 0 IV2 10459 10461 10462 22428 22506 22520 49891 50113 50116 
W/4 10276 10278 10279 21797 21870 21883 48363 48560 48563 
3W/8 9539 9541 9542 19619 19682 19694 44182 44337 44340 

0 10411 10547 10591 22071 22582 22744 50870 50960 50962 
11/8 10362 10600 10662 21873 22743 22978 50707 51015 51026 
H/4 10176 10611 10705 21178 22714 23070 49914 50997 51035 

0 L/2 311/8 9579 10440 10600 19353 22191 22786 46875 50895 51025 
11/2+a/4 - 10107 10289 - 20916 21684 - 49856 50891 
11/2+a/2 - 9608 10013 - 19385 20721 - 48262 50497 
H/2+3a/4 - 9110 9469 - 17894 18934 - 44111 48409 

0 10635 10706 10728 23174 23441 23520 50651 50672 50672 
W/2 0 H/8 10563 10671 10700 22911 23309 23415 50470 50529 50531 

W4 10296 10440 10466 21983 22509 22606 49636 49776 49779 
31V8 9777 9896 9901 20288 20736 20776 46560 46808 46811 

0 10635 10706 10728 23174 23441 23520 50651 50672 50672 
W/2 L/8 0 10598 10705 10741 23024 23426 23559 50627 50680 50681 

1-14 10423 10560 10607 22378 22895 23063 50424 50510 50512 
3L/8 9913 10053 10103 20621 21136 21313 48983 49065 49067 

0 10423 10560 10607 22378 22895 23063 50424 50510 50512 
W8 10351 10580 10651 22122 22971 23225 50249 50544 50554 
11/4 10110 10529 10629 21286 22770 23142 49438 50453 50488 

W/2 L/4 311/8 9579 10413 10574 19580 22329 22923 46399 50194 50316 
I-1/2+a/4 - 9810 10089 - 20228 21196 - 48718 49544 
H/2+a/2 - 9428 9794 - 18968 20142 - 47097 49074 
IV2+3a/4 - 8860 9276 - 17277 18421 - 43047 47110 
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Table 6.19 Nongray YIX solutions for flux divergence (W/M 3). 

2xICý particles/m3 2x108 particleS/M3 2X1Ö9 particles/rn3 

EI E2 E3 E4 E5 E6 E7 E8 E9 
xyZ a=O a=l a=2 a=O a=I a=2 a=O a=I a=2 
0 8398 8333 8317 26213 26013 25948 15153 14966 14961 

W/8 00 8609 8543 8527 26572 26369 26303 18529 18350 18345 
W/4 9399 9330 9313 27798 27587 27523 31198 31037 31033 
3W/8 11907 11857 11845 31230 31071 31021 64159 64034 64031 

0 8398 8333 8317 26213 26013 25948 15153 14966 14961 
00 IV8 8517 8415 8402 26455 26172 26116 16643 16155 16143 

W4 9007 8851 8837 27365 26976 26919 23488 22361 22337 
3W8 10725 10528 10524 29987 29555 29530 47961 45904 45872 

0 8398 8333 8317 26213 26013 25948 15153 37478 14961 
0 IJ8 0 8446 8344 8320 26342 26050 25955 15367 33998 14900 

L/4 8655 8520 8488 26834 26457 26341 17066 32598 16310 
3L/8 9589 9455 9422 28555 28185 28064 28794 42355 28078 

0 9934 9787 9768 28807 28438 28369 38450 31037 37458 
W/4 L/8 1-1/4 9970 9555 9483 28903 28027 27809 38609 32058 33846 

U4 10144 9536 9446 29312 28078 27809 39893 37478 32332 
M/8 10925 10339 10245 30751 29559 29284 49345 58666 42096 

WA 0 
0 9399 9329 9312 27798 27588 27523 31198 16333 31033 

1-1/8 9497 9400 9382 27998 27725 27655 32472 16044 32049 
1-1/4 9934 9787 9768 28807 28438 28369 38450 16788 37458 
311/8 11494 11319 11313 31156 30768 30739 60444 18963 58639 

0 8655 8520 8488 26833 26457 26341 17066 16333 16310 
W8 8770 8488 8438 27064 26389 26222 18500 16044 15961 
11/4 9236 8560 8473 27913 26547 26285 25164 16788 16480 

0 IA 311/8 10944 8757 8584 30513 26972 26521 49308 18963 17935 
H/2+a/4 - 9716 9257 - 28851 27990 - 31002 24313 
fU2+a/2 - 10653 9646 - 30437 28852 - 44143 28162 
IV2+3a/4 - 13169 10801 - 33885 30795 - 75559 43975 

0 9589 9455 9422 28555 28185 28064 28794 28100 28078 
11/8 9688 9414 9363 28752 28093 27922 30041 27695 27614 
W4 10092 9441 9350 29476 28160 27890 35912 27887 27587 

0 31J8 311/8 11666 9536 9368 31835 28392 27951 58091 28771 27773 
11/2+a/4 - 10200 9594 - 29731 28534 - 36770 29149 
11/2+a/2 - 10953 9917 - 30919 29264 - 48407 32206 
I-V2+3a/4 - 13392 11024 - 94236 31110 - 78653 47399 
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Table 6.20 Nongray Monte Carlo solutions for surface heat flux (W/m 2). 

2x 107 particles/m3 

xyz 
0 

W/8 
W/4 
3W/8 

2x108 partieleS/m 3 2XI09 particleS/M 3 

EI E2 E3 E4 E5 E6 E7 E8 E9 
a=O a=l a=2 a=O a=I a=2 a=O a=I a=2 

10477 10527 10526 22515 22665 22700 50942 51357 
0 IY2 10411 10435 10470 22411 22338 22344 50544 50789 

10084 10177 10134 21436 21549 21520 48929 49039 
9530 9539 9488 19562 19585 19654 44051 44350 

0 10452 10561 10577 
11/8 10382 10499 10568 
11/4 10049 10494 10590 

0 IJ2 311/8 9441 10392 10502 
H/2+a/4 - 9962 10193 
11/2+a/2 - 9480 9944 
H/2+3a/4 - 8879 9359 

21945 22539 22696 
21708 22627 22924 
20984 22468 22813 
19101 21948 22706 

- 20623 21563 
- 19401 20581 
- 17469 18625 

50533 50955 
50328 50993 
49612 51092 
45749 50824 

- 49523 
- 47983 
- 43342 

0 10627 10732 10680 23050 23281 23394 52135 52092 
W/2 -0 11/8 10569 10587 10697 22807 23175 23242 51867 51954 

11/4 10275 10401 10420 21857 22410 22475 50717 50983 
31-Y8 9602 9807 9817 19952 20471 20458 46866 47320 

0 
W/2 L/8 

L/4 
M/8 

10627 10732 10680 23050 23281 23394 52135 52092 
0 10536 10653 10749 22855 23249 23414 52041 52082 

10409 10492 10550 22185 22690 22908 51616 51852 
9917 10017 10053 20454 20917 21052 49426 49635 

0 10409 10492 10550 
11/8 10323 10538 10636 
W4 10078 10480 10579 

W/2 1-14 311/8 9484 10335 10499 
IV2+a/4 - 9765 10020 
IY2+a/2 - 9359 9728 
W2+3a/4 - 8726 9179 

22185 22690 22908 
21974 22760 23009 
ý1131 22544 22968 
19253 22119 22653 

- 20113 21041 
- 18751 19889 
- 16827 18162 

51616 51852 
51432 51860 
50354 51688 
46515 51348 

- 49339 
- 47405 
- 42849 
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Table 6.21 Nongray Monte Carlo solutions for flux divergence (W/m 3). 

2x 107 panicles/m 
3 

xy 
0 

W/8 0 
W/4 
3W/8 

2x 108 particleS/m 3 2x I Cý particleS/M3 
EI E2 E3 E4 E5 E6 E7 E8 E9 

a=O a=I a=2 a=O a=I a=2 a=O a=I a=2 

7869 7401 7434 25654 25279 25506 19436 19130 
0 7859 7722 7709 26042 25664 25559 22863 22591 

8668 8463 8496 26929 27064 26961 36222 35907 
11666 11560 11578 31104 30927 30755 70697 70529 

0 
IV8 
1-1/4 
311/8 

0 
0 IJ8 

U4 
3U8 

0 
W/4 U8 

IA 
3U8 

7869 7401 7434 25654 25279 25506 19436 19130 
7418 7573 7519 26030 25507 25312 21079 20386 
8037 7975 8032 26642 26397 26227 28726 27557 
10378 10007 9985 29554 29136 28992 57140 53472 

7869 7401 7434 25654 25279 25506 19436 19130 
0 7467 7234 7410 25819 25276 25203 19437 18520 

7725 7658 7644 26233 25832 25615 22007 21231 
8963 8845 8829 27965 27754 27601 38216 38044 

9147 8946 8912 28185 27746 27823 44899 43276 
W4 9312 8652 8729 28273 27523 27109 45367 39438 

9488 8719 8770 28621 27460 27161 47119 38425 
10333 9614 9593 30451 29087 28771 60686 52170 

0 
W/4 0 H/8 

11/4 
311/8 

8668 8463 8496 26929 27064 26961 36222 35907 
8752 8659 8544 27445 27127 27012 37867 37086 
9147 8946 8912 28185 27746 27823 44899 43276 
10995 10787 10741 30804 30385 40336 70118 67313 

0 7725 7658 7644 
IY8 7912 7701 7660 
IY4 8518 7646 7720 

0 IA 31V8 10469 8063 7825 
H/2+a/4 - 8875 8515 
11/2+a/2 - 9907 9097 
H/2+3a/4 - 12709 10223 

0 8963 8845 8829 
H/8 9113 8876 8758 
H14 9566 8780 8715 

0 3U8 311/8 11480 8925 8718 
I-1/2+a/4 - 9510 8977 
H/2+a/2 - 10288 9316 
I-U2+3a/4 - 13264 10531 

26233 25832 25615 
26346 25796 25559 
27256 25937 25706 
30118 26222 25960 

- 28381 27389 
- 29844 28425 
- 33853 30532 

27965 27754 27601 
28374 27721 27528 
29036 27612 27529 
31593 28039 27543 

- 29294 28067 
- 30533 28854 
- 34125 30983 

22007 21231 
23946 20610 
31675 22134 
58274 24896 

- 39857 
- 53746 
- 86226 

38216 38044 
40268 37246 
47094 37729 
71299 39085 

- 47655 
60143 
90757 
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Table 6.22 Case E4 solution comparisons for surface radiative heat flux (kW/M2) 
and flux divergence (W/m3) at sample point locations. 

q., 0, H/ 2) 

mc YIX DT sn a mb FEc DEFd MC 
0 22.5 22.6 22.6 25.0 

(0.4%)f (0.4%) (0.1%) 
W/8 22.4 22.4 22.4 24.5 

(0.0%) (0.0%) (9.4%) 
W/4 21.4 21.8 21.5 23.0 

(1.9%) (0.5%) (7.5%) 
3W/8 19.6 19.6 19.5 19.7 

(0.0%) (-0.5%) (0.5%) 

(x, 0,0) 

23.5 22.3 22.6 23.0 
(4.4%) (-0.9%) (0.4%) (2.2%) 
23.3 22.0 21.5 22.4 

(4.0%) (-1.8%) (-4.0%) (0.0%) 
22.5 21.0 20.3 21.5 

(5.1%) (-1.9%) (-5.1%) (0.5%) 
20.1 19.1 18.6 19.8 

(2.6%) (-2.6%) (-5.1%) (1.0%) 

mc YIX DT 

0 25.7 26.0 25.2 26.3 26.0 
(1.2%)f (-1.9%) (2.3%) (1.2%) 

W/8 26.0 26.4 25.7 27.1 26.3 
(1.5%) (-1.2%) (4.2%) (1.2%) 

W/4 26.9 27.7 27.0 30.5 27.5 
(3.0%) (0.4%) (13.4%) (2.2%) 

3W/8 31.1 31.1 31.0 37.7 32.5 
(0.0%) (-0.3%) (21.2%) (4.5%) 

FE' DEFd Mc, 
26.4 26.8 25.1 

(2.7%) (4.3%) (-2.3%) 
26.7 29.6 26.1 

(2.7%) (13.8%) (0.4%) 
28.0 32.4 26.1 

(4.1%) (20.4%) (-3.0%) 
31.3 35.0 31.6 

(0.6%) (12.5%) (1.6%) 

'Hoover et al. (1996). fDeviation of value as % of present MC value. 
b Hsu et al. (1994). N. B. g' =0 in DT & FE solutions (see Sec. 6.2). 

'Bums et al. (1995). 
dNaraghi and Litkouhi (1989). 
e Farmer and Howell (1994). 
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Table 6.23 Comparison of weighted-sum-of-gray-gases (WSGG) models. 
MI= Bandwise (80 intervals). M2 = Banded solution using absorption cross-sections. 
(N. B. Gray gases in the spectral subdivision solved via the discrete transfer method. ) 

Gray CPU run time on Speed- Average relative Max. relative 
gases HP-9000n5O [s] up' difference b [%] difference'[%] 

Case M2 MI M2 x q, V-q, q, V-q, 

EI 7 2082 252 8.3 0.48 1.29 1.73 4.41 
E2 7 3312 395 8.4 0.49 1.24 1.84 5.06 
E3 7 3256 385 8.5 0.50 1.22 1.87 5.69 
E4 9 2111 350 6.0 0.29 1.34 0.85 2.71 
E5 9 3360 550 6.1 0.32 1.33 1.00 2.71 
E6 9 3350 544 6.2 0.29 1.32 0.89 2.71 
E7 8 2959 410 7.2 0.21 0.51 0.71 1.17 
E8 8 4707 580 8.1 0.30 0.58 0.94 2.01 
E9 8 4696 571 8.2 0.29 0.56 0.91 1.99 

'Speed-up = CPU time M I/CPUtime M2. 
bAverage relative difference: ARD = l1nj J(M2 -M 1)/M 11 for all n values. 
"Maximum relative difference: MRD = MAX J(M2 -M 1)/M 11 
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Part A: Summary 

1. The present Monte Carlo, YIX and discrete transfer solutions very closely agree with 
benchmark results for radiatively participating media. Difficulties considered include 

nonorthogonal geometries, nonhomogeneous properties, optically thin and thick limits, 

scattering anisotropy, hot/cold boundary conditions and nongray behaviour. 

2. Solutions are in excellent agreement for optically thin-to-moderately thick (gray) media 
(i. e. r< 1), but discrepancies arise in thicker media. Pathlength-based Monte Carlo 

solutions suffer increasing statistical uncertainty for a given level of computation since 

the energy bundles travel short distances and contribute to fewer results. The YIX and 

discrete transfer methods fail to capture radiative property gradients adequately and 
differences in their methodologies for the calculation of medium heat sources are 

exacerbated. On balance, discrete transfer values are more representative of the 

volume averaged heat sources in optically thick elements, but errors can be high. 

3. Ray effect leads to irregularities or biasing in discrete transfer and YIX solutions: a 
finer angular discretisation can lessen this problem. 

4. The discrete transfer method is restricted to isotropic scattering. YIX can handle linear 

anisotropic scattering with little additional effort. 

5. Monte Carlo run times are of the order 102 times those of the deterministic methods. 
YIX calculations are more expensive than discrete transfer ones due to time required to 

(i) trace additional rays in the medium integration and to (ii) post-process path length 

information into optical coordinates. Here, the first factor scales with mesh size and 

the second with optical thickness. This time disadvantage is mitigated somewhat in 

iterative solutions where the YIX distance integration avoids the expensive exponential 

calculations of the discrete transfer method. 

6. Nongray solutions are highly sensitive to the fidelity of the gray gas approximation in a 
WSGG analysis. These solutions are essentially a combination of independent gray 

gas solutions for optically thick wavenumber intervals at gas band centres and for thin 
(or thinner) intervals in between. Therefore, discrepancies found between the methods 
for optically thick gray problems are also evident in their nongray solutions. 
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PART B: SI ENGINE SIMULATIONS 

6.3 Parametric Studies and Comparisons: Ricardo E6 Engine 

Radiative heat flux predictions from a parametric study of a Ricardo E6 engine by 
Blunsdon et A (1993) were found to corroborate several experimentally measured trends. 
The effect of variations in engine speed, ignition timing, air/fuel ratio and percent exhaust 
gas recirculation (EGR) were simulated with the mixed gray gas model of Truelove 
(1976). However, peak heat fluxes due to the gas radiation of 0.4-0.5 MW/m 2 were 
predicted, whereas measurements are of the order 0.2-0.3 MW/m 2 (e. g. Baker and 
Laserson 1951). The Truelove correlation also has limited applicability, motivating the 
development of the present generalised weighted-sum-of-gray-gases (WSGG) model. In 

order to assess the expected improvements in its predictive ability the study of Blunsdon 

et al. (1993) is repeated here with the new model. 

6.3.1 Experimental Observations 

The experimental trends modelled by Blunsdon et aL (1993) are largely based on those 

reported by Remboski et aL (1989). Radiation measurements were made in the near- 
infrared at 927.7 ± 20 nm: a H20 absorption band. This wavelength was chosen since it 

almost coincided with the peak spectral response of an inexpensive silicon photodiode 
and was not prone to strong blackbody emission from the combustion chamber walls. For 
brevity the reader is referred to the reference for details of the instrumentation and data 

acquisition system. (Also see Nutton and Pinnock 1990. ) Key observations made by 
Remboski et aL (1989) are as follows: 

1. The luminosity signal L (i. e. intensity) in the near-infrared is negligible during 

compression until the mass-bum fraction is 1%, except for a weak impulse at the start 
of ignition. The intensity peaks about 10* after the peak heat-release rate dQ. and 
about 2" after the peak cylinder pressure P. at the baseline engine operating 
condition (Fig. 6.15). 

2. Retarding the ignition timing or the addition of EGR both reduces the peak pressure 
and intensity (Fig. 6.16). The former event is also accompanied by an increase in the 
lag between the pressure and intensity maxima from about 2- 4* as the timing is 

retarded. 
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3. Maximum intensities coincide with maximum IMEP and peak cylinder pressure at a 

mixture strength slightly rich of stoichiometric (i. e. 0-1.1). The intensity decreases 

with the peak pressure in richer mixtures, due to poorer combustion efficiency, and in 

leaner mixtures due to the diluent effect of excess air (Fig 6.17). 

These findings are supported by several other studies and, in addition, it is noted that: 

4. The principal emitters are C02 and H20, but CO emission is also important in fuel rich 

conditions. The continuous radiation from soot (i. e. carbon aggregates) is negligible 

under normal operating conditions and nearly all the radiant energy is emitted in the 

infrared spectrum between 1-10 gm (Marvin et al. 1934). See Fig. 6.18: here the 

banded emission of a spark ignition engine contrasts markedly with that of combusting 
diesel where there is the added presence of a radiative continuum from incandescent 

soot. 

5. For a given engine/optical sensor setup a certain mass-bum fraction (in the order of 
90%) can be correlated with the position of the peak intensity. Its actual value depends 

upon the view angle of the sensor and the geometry of the combustion chamber 
(Nutton and Pinnock 1990). 

6. Knocking combustion is characterised by an abrupt increase in the radiative intensity 

and coincident phasing with the average pressure rise (c. f. no. 2). Moreover, a sudden 

change in the intensity signal (due to changes in the combustion chemistry) can 
indicate that knock is on the threshold of occurring (i. e. borderline knock) when there 

is no oscillation in the pressure waveform (Nutton and Pinnock 1990). Knock results 
in a shorter reaction period and lower intensities at the point of exhaust valve opening 
(evo) compared with normal operation (McComiskey et al. 1993). 

6.3.2 Present Predictions 

Details of the Ricardo E6 engine studied by Blunsdon et A (1993) are given in Table 

6.24. To reduce the amount of computation the pancake combustion chamber was 

modelled as a two-dimensional axisymmetric 0.5* slice with central-ignition as for the 

original study (Fig. 6.19). Fortunately, strongly non-axisymmetric charge motions cannot 
be generated by the engine's simple port/ head design. Calculations were started during 

compression (-144') with uniform distributions of the state variables within the 

combustion chamber. The initial gas temperature, pressure and species densities were 
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determined from the ideal gas equation using experimental pressure data and air/fuel flow 

rates. The burnt gas composition was estimated from the mole fractions defined in Table 

4.3 of Heywood (1988) for a 3% residual gas fraction. The initial turbulent kinetic 

energy, k was set equal to 3% of the kinetic energy based on the mean piston speed. The 

dissipation rate was then evaluated from k via Eq. (3.105) with a length scale, y equal to 

the distance to the nearest solid boundary. Finally, the flow field was initialised with zero 

radial u and tangential v velocity components and an axial w component varying linearly 

with z from between up at the piston face and zero at the cylinder head. Here up is the 

piston velocity as defined by Eq. (3.111). The wall temperature was fixed at 450 K. A 

maximum calculation timestep of 0.5" crank angle was specified. 

Sensitivity to Model Parameters. The sensitivity of predictions to variations in model 

parameters (e. g. mesh size, model constants, etc. ) was assessed in order to gain some feel 

for how these factors affect the solution and where attention should be focused in future 

studies. 

Mesh Size. Several analysts have tried to assess the effects of the grid resolution and type 

on the properties of KIVA numerical schemes (e. g. Amato and Petrillo 1992), but the 
inherent complexity of in-cylinder fluid dynamics, even in grossly simplified engine 

models, limits their ability to define any general guidelines. Attention was focused on the 

combustion phase in the present study since this showed a marked sensitivity to the grid 

resolution. For example, with a radial and axial grid spacing at TDC of 2.54 and 2.40 

mm, respectively (i. e. comparable to that of the original study), the peak pressure was 

about 10% lower than with spacings of 1.27 and 1.44 mm, respectively (Fig. 6.20). One 

possible explanation is that small differences in the modelled heat release at ignition 

affect the flame kernel development and its subsequent propagation. This problem is 

unavoidable since the calculation timestep, chopper action and dimensions of the spark 

region all differ to some extent as the mesh size is altered. It was also evident from other 

predictions that the mesh size may modify the combustion calculation via the boundary 
layer treatment; i. e. the kinetic rate via the wall heat transfer model, and the mixing- 
controlled rate via the wall k-e model. Further analysis of this is required. Fortunately, 
it was found that further refinement of the grid had a diminished effect. Consequently, 

the present predictions used the 1.27 x 1.44 mm grid corresponding to 30 cells in the 

radial direction and a minimum of 10 cells in the axial direction, at or near TDC, 
increasing to 23 cells as the piston descends. (The axisymmetric slice is I cell thick. ) 
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Combustion Model Constants. Following the recommendations of previous studies the 

turbulence model constants were assigned the values given in Sec. 3.2.5. The combustion 

model constants CA and C., which scale the kinetic and overall reaction rates, 

respectively, were then adjusted to obtain reasonable agreement with measured pressure 
data. It was found that conditions at the start of ignition, particularly the gas temperature, 

strongly affected the choice of CA and C,,. In addition, it was possible to reoptimise the 

constants for a different set of conditions and still obtain good agreement with measured 
data. For example, a± 25 K (i. e. about 7%) variation in the absolute gas temperature at 
ignition is easily accommodated. However, put another way, this means that specific 

quantities can be predicted with sizeable error even when the overall level of agreement is 

'good'. 

Initially, some predictions were made without radiation. CA and C. were assigned 

values of 3.0 and 2.8, respectively. The effect of radiation is to enhance heat losses to the 

combustion chamber walls leading to lower gas temperatures, slower combustion, and 

ultimately, a slight underprediction of the peak pressure. This was compensated for by 

increasing CB from 2.8 to 3.0 (Fig. 6.21). It is noteworthy that the values of CA and C. 

are somewhat interdependent such that CA might have been increased instead. In 

hindsight, this would have made better sense from a theoretical standpoint, since only the 

kinetic reaction rate is affected by the gas temperature, but in practice it makes little 

difference which constant is modified. With further work the combined rate expression 
(i. e. Eq. 3.75) could be better formulated. 

Wall Boundary Conditions. Two important parameters in the wall boundary layer 

model are the larninar Prandtl number, Pr, and surface emissivity, C. The Prandtl 

number appears in the temperature wall function, Eq. (3.103), for the convective wall heat 

flux and is set to 0.74 (the standard value for air) by default. However, in previous 

studies it has been used more as an arbitrary constant in order to improve agreement with 

measured heat flux. For example, Kuo and Reitz (1989) note better predictions using a 
Prandtl number of 0.6 but at specific locations their model still underpredicted 
experimental data by as much as 40%. Measurements by Alkidas (1979) indicate peak 
heat fluxes ranging from 1.5 -3 MW/M 2 on the cylinder head. With Pr,. = 0.74, peak heat 
flux values computed in the present study were under I MW/rn 2 supporting the previous 
findings that suggest using a laminar Prandtl number of 0.6, or lower. Though one 
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obvious limitation of both the past and present numerical models is their reliance on a 
fixed wall temperature. A more realistic description which allows for both temporal and 

spatial variation should form the basis of future work. 

Fortunately, the radiative heat flux prediction is much less sensitive to inaccuracies in the 

wall temperature description as most emission is from the high temperature burned gases 
(due to the T4 dependence). It is very sensitive, however, to the estimated surface 

emissivity (via Eq. 4.13). Measurements of emissivity range widely and depend on the 

material type, surface temperature, surface finish, the presence of deposits, radiation 

wavelength, etc. For example, the total emissivity of polished aluminium alloy is about 
0.1 but with carbon deposits the surface becomes almost black (i. e. e= 1). Given the 

numerous factors involved it is doubtful whether the limited emissivity data presently 

available is applicable. Rather it is proposed that a representative value is taken for the 

emissivity and this is modified within limits in order that predictions match experimental 

measurements of radiative flux in much the same way that a modified Prandtl number has 

been used with the (convective) heat flux model. Empirical calculations for radiative flux 

in diesel engines have used values ranging from 0.75 to 0.9 (Williams 1976). 

Accordingly, the gray surface emissivity in the present model was nominally taken 

as c=0.8. 

Numerical Results. A baseline operating condition was modelled with a spark timing of 
20' BTDC, an engine speed of 1500 rpm and near stoichiometric air-fuel ratio of 15.5. 

Around 500 timesteps where required and nearly 0.5 Mbytes of data is generated on each, 

all of which cannot be presented here, so the following discussion attempts to highlight 

the most salient features. Typically, the CFD portion of each timestep required only a few 

seconds while the radiation calculation took between I and 4 minutes. Computations 

were performed on the Sun workstation discussed in Sec. 6.1. 

The calculated pressure and fuel mass fraction burned curves at the baseline condition are 

plotted in Fig. 6.22, and the sequence of vector/contour plots in Fig. 6.23 shows the gas 

motion and temperature from 2' crank angle after the spark. Initially the enflamed region 
is hemispherical and grows in volume uniformly. Compression between the piston and 
the flame front induces a resultant charge motion upwards and radially outwards. This 

structure tends to preferentially convect the flame along the cylinder head somewhat 
distorting its hemispherical shape. 
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At 5' BTDC the enflamed region impinges on the piston and its axial growth is 

constrained. The remaining radial front sweeps towards the cylinder walls inducing a 

clockwise vortex ahead of the flame and an anticlockwise vortex behind. Eventually, the 
former disappears, as the unburnt charge is totally engulfed, and the later develops into a 
bulk downwards movement during expansion (i. e. from about 13.5' ATDQ. 

Experimental comparisons may be made with schlieren images of an engine flame by 

Gatowski et aL (1984) - Fig. 6.24. It is seen that the growth of the enflamed region 

closely resembles that of the present simulation, though the initial flame 'ball' is more 

spherical and it retains its shape for much longer close to the cylinder head. This points to 

deficiencies in the present ignition and boundary layer models which do not adequately 
describe the detailed physics (i. e. laminar kinetics, wall quenching, etc. ). The modelled 
temporal and spatial variation in heat release shows more evidence of this problem. 
Burning is more fierce in regions of the flame front closest to the cylinder head but this is 

not observed experimentally. It is also noteworthy that with the original KIVA-II zero- 

gradient boundary condition for k (see Sec. 3.4.1) combustion along the wall is so severe 

as to result in a concave (forwards-facing) edge to the modelled flame front. Thus, the 

present k boundary condition is an improvement, though as noted earlier, further work is 

still required. 

It is also interesting to compare mass fraction burned curves (c. f. Figs. 6.22 and 6.24). 

The overall burning angle (i. e. 0 to 90% bumt) for the engine in the schlieren study is 

about 65' crank angle whereas it is only 38* in the present prediction. This is in fact a 

good result. The field of view in the schlieren images covers the entire width of the 

combustion chamber such that the spark plug is close to the cylinder wall. Therefore, the 

centrally located plug in the present geometry would be expected to give approximately 
twice the flame area of a side plug geometry for a given flame radius and consequently 
bum about twice as fast, as is the case. 

Figure 6.25 shows the variation of net radiative surface heat flux with pressure and heat 

release. Flux values are for the cylinder wall location shown in Fig. 6.19. Predictions 
from the present WSGG model are compared with those of the Truelove (1976) mixed 
gray gas model. (The present numerical scheme allows either gas submodel to be called 
as desired by the user. ) It is observed that the radiative flux computed with the Truelove 

correlation is comparable to that of Blunsdon et A (1993) and peaks at 0.48 MW/m 2. 

However, predictions with the present WSGG model are 50% (or more) smaller, and in 
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much better agreement with measurements, peaking at around 0.23 MW/M2 . This is very 

encouraging but the wide disparity between the two results is at first surprising, since in 

its present form, the WSGG model embodies data with comparable levels of error to the 

wide band correlation data used by Truelove. A likely explanation is that this disparity 

arises from model extrapolation error, since the Truelove correlation is empirical and 

primarily for conditions encountered in oil or gas fired combustors. Specifically, an 

average COA120 partial pressure ratio of 1: 1 (or 1: 2) and a total pressure of I atm. This 

is not to say that the present WSGG prediction is free from extrapolation error, 

undoubtedly there is some, but its severity is much reduced as, in effect, a separate 

correlation is made for every condition (of T, p and composition) in the flow field. 

Accordingly the model is able to accommodate much more detail concerning the localised 

property variations across the flame front. For example, the C02/H20 molar 

concentration ratio increases from about 1: 1.15 in the coolest flame regions (- 800 K) to 

about 1: 1.65 in the hottest flame regions (- 2800 K). 

Though the radiation models show poor agreement with regard to the strength of the flux, 

the predicted growth and decline of the flux throughout the combustion is remarkably 

similar and indicates that, for this aspect at least, the detail of the combustion model has a 

much greater influence than that of the radiation model. The relative timing of the flux 

history with the heat release and pressure follows experimental trends: the radiative flux 

is negligible until the fuel mass-bum fraction is about 1-2% (c. f. Fig. 6.22 with Fig. 6.25) 

and then it rises to a peak value some 6' after the peak in heat release rate and 2" after the 

peak pressure. This point corresponds to a time at the tail end of combustion, when the 

gas temperature is just starting to fall and the product mass fraction is nearing its 

maximum (Fig. 6.26). The fuel mass-bum fraction is about 95%. Subsequently, the 

radiative flux falls away during the expansion stroke mainly due to its T4 dependence on 

the gas temperature. 

The relative importance of emission from the C02 and H20 combustion products is 

shown in Fig. 6.27. (This information was obtained by performing an auxiliary radiation 

calculation with only one radiating product in the WSGG analyses, prior to a full 

calculation to ensure that the radiative source terms were unaltered. ) Radiation from the 

water vapour amounts to about 2/3 of the total combined C02/1-120 radiative heat transfer. 

This result is explained by referring back to the model absorption spectrum of Fig. 5.2. It 

is seen that the four H20 bands cover a much wider range of wavenumbers than the four 
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C02 bands and have comparable levels of absorption. Some preliminary calculations 

were also made with the 4.67 and 2.35 gm CO bands and 5.35 gm NO band included in 

the WSGG analysis. The results indicated that these products contribute only a few 

percent of the total radiative heat transfer at the baseline operating condition. However, a 

more thorough analysis with CO and NO, including testing of their correlation parameters 
in Table 5.1, is left for a future work. 

The optical investigations referenced in Sec. 6.3.1 all used a single sensor at a fixed 

location. An important advantage of the numerical model is that it is able to map the 

radiative heat flux over the entire chamber surface. For the present axisymmetric 

geometry this may be shown on two-dimensional plots - Fig. 6.28. Radial flux profiles 

on the cylinder head and piston top, and axial profiles along the cylinder wall, are plotted 
in 5" crank angle steps upto the time of (or near) maximum flux. As the flame propagates 

across the combustion chamber it radiates more strongly to all surfaces such that there is 

no significant difference in the phasing of the peak radiative flux at different wall 
locations. However, in the early stages of combustion, the flux magnitude does vary 

strongly with position, most notably on the cylinder head. Ahead of the flame front it 

falls away sharply with increasing radius since emission from the flame volume strikes 

the surface more obliquely. At the end of combustion the burnt gas radiates more 

uniformly to the walls, but the peak flux is still some 10% lower on the cylinder wall 

compared with that on the cylinder head. This result is of practical importance if 

optoelectronics are used as an engine diagnostic and/or control signal. For maximum 

signal output it would seem best to site an optical sensor as close as possible to the spark 

plug, or even integrate it into the plug itself, avoiding the need for additional access holes 

(see Nutton and Pinnock 1990). Deposit build-up is also discouraged if the probe tip 

extends well beyond the combustion chamber wall into the combustion space. 

Figure 6.29 shows two more predictions with the spark timing retarded and advanced, but 

all other parameters, including the model parameters, unchanged. As before the Truelove 

(1976) correlation is believed to substantially overpredict the radiative heat flux and more 

confidence is placed with the present WSGG model result. (See discussion above. ) With 

the spark at 14' BTDC the combustion extends later into the expansion stroke and the 

peak pressure (and temperature) are delayed and reduced in magnitude. Consequently, the 

peak radiative flux is also delayed, and about 12% lower (than the baseline value), but it 
does not fall-off so rapidly. 
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Advancing the spark timing has a reverse effect. With the spark at 26" BTDC the engine 
is knocking and this behaviour is captured well by the autoignition model. Rapid burning 

of the end-gas results in an abrupt rise in the (averaged and localised) pressure, 
temperature and product concentration. Consequently, the peak radiative flux is greater 
(by about 16%) and almost coincident with the peak average cylinder pressure. These 

trends are confirmed by experimental observations. 

Further calculations were made with a parametric variation of the spark timing (14'1: 9 0: 9 
26* BTDQ and of the air-fuel ratio (0.8 :50 :ý1.1) in an attempt to reproduce the 

experimental correlations found by Remoboski et aL (1989) in Figs. 6.16 and 6.17. The 

present results are plotted in Fig. 6.30. The peak radiative flux at each condition is 

normalised by the peak flux at the baseline condition. The expected correlation is 

obtained between the modelled peak flux and peak cylinder pressure for the variation in 

spark timing, and arguably, for the variation in air-fuel ratio in spite of differences in the 

position of the 'rich' mixture point. Here, it must be remembered that the latter study is 

based on afixed spark timing (i. e. 20" BTDQ, whereas the experimental results are at 
MBT timing. Thus, maximum quantities are predicted (correctly) at the baseline 

operating condition (0 - 1) where the fixed timing coincides most closely with MBT. At 

richer and leaner conditions the MBT spark advance increases. 
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Figure 6.15 

Comparison of pressure, beat 
release rate and luminosity for 
a baseline operating condition 
(i. e. 2400 rpm, WOT, MBT & 
an air-fuel ratio of 14.6). 

Reference: 
Remboski et aL (1989). 

Figure 6.16 

Correlation of normalised 
peak luminosity with peak 
pressure for speed and air- 
fuel ratio variations at WOT. 

Reference: 
Remboski et aL (1989). 

Figure 6.17 

Correlation of normalised 
peak luminosity and peak 
pressure for intake manifold 
pressure and air-fuel ratio 
variations at 2400 rpm. 

Reference: 
Remboski et aL (1989). 
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Figure 6.18 Sample infrared spectrometer recordings of combusting (a) gasoline and 
(b) diesel. Reference: Ohmstede and Hentschel (1995). 

Table 6.24 Design and operating parameters for engines studied. 

Ricardo W 
Bore 76.20 mm 
Stroke 111.1 mm 
Connecting rod length 241.3 mm 
Swept volume 506.7 cc 
Compression ratio (geometric) 8.70 
Inlet valves (poppet type) I 

Exhaust valves (poppet type) 
Inlet valve diameter/maximum lift 
Exhaust valve diameter/maximum lift 
Inlet valve opens 
Inlet valve closes 
Exhaust valve opens 
Exhaust valve closes 
Engine speed 1500 rpm 
Fuel iso-octane C8HIS 
Equivalence ratio (air/fuel ratio) 0.97(15.5) 
Ignition timing(s) BTDC 14*, 20*, 26" 

"See Blunsdon et al. (1993). 

iDOO ISW 2000 25W 3000 3500 4000 4500 5000 SSW 

Wavelength Inm] 

Ricardo Hydra 
80.065 mm 
79.35 mm. 
132.0 mm 
399.5 cc 
9.22 
2 (identical) 
2 (identical) 
25.5/8.53 mm 
22.5/9.79 mm 

-372* ATDCb 

- 124* ATDC 

-596'ATDC 
-348* ATDC 
1500 rpm 
propane C3H is 
0.88(17.8) 
150 
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Figure 6.24 Sequence of stills from a square cross-section combustion chamber of' a 
single-cylinder engine with quartz viewing windows, and corresponding 
pressure and mass fi-action burned curves ( 1400 rpin). Copied fron) Fig. 9- 
14, Heywood (1988). Original data by Gatowski et al. (1984). 
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6.4 Full Cycle Simulation of a Four Valve Pentroof Combustion 
Chamber: Ricardo Hydra Engine 

An ultimate goal of the automotive community is to be able to predict the turbulent 

reacting flow field in modem multi-valve engine geometries over a full cycle. Most 

predictions to date considered the combustion phase in isolation, by starting computations 
from inlet valve closure (ivc) with an assumed flow field (e. g. Kuo and Reitz 1989). 

However, for motored conditions, several authors have been able to obtain reasonable 

predictions of the flow field over a full cycle (e. g. Le Coz et al. 1990; Jones and Junday 

1995, Das and Dent 1995) and experimental verification was obtained with laser doppler 

or particle image velocimetry techniques. A natural next step is the visualisation and 

numerical modelling forfiring cycles. 

Therefore, to demonstrate the feasibility of the present numerical methods for this purpose 
the multidimensional premixed combustion in a Ricardo Hydra pentroof spark ignition 

engine is simulated for a full 720' four-stroke cycle. Moreover, at selected crank angle 

positions the radiation from the combustion products C02 and H20 is calculated with the 

present generalised weighted-sum-of-gray-gases model. Cylinder pressure data was used 
to tune the combustion model but at present there are no measurements of the flow field 

and radiative heat flux. Thus, the following analysis is largely qualitative, but 

nevertheless demonstrates the possibility to include detailed nongray radiation 

calculations in complex combustors. 

6.4.1 Engine Test Conditions and Cylinder Pressure Measurement 

The engine is a single-cylinder, water cooled, four-stroke Ricardo Hydra fitted with a 
four-valve pentroof head and twin overhead cams (Fig. 6.31). A single spark-plug is 

located centrally between the valve ports on the cylinder head and the piston is flat- 

topped. Geometric and operating details are summarised in Table 6.24. (It is believed 

that the bore and stroke are non-standard as a result of earlier modifications. ) The fuel 

system was adapted to accommodate a basic venturi gas carburettor for fuelling with 
propane gas. Manual adjustment of the fuel line pressure was necessary in order to obtain 
specific operating points. 

The cylinder pressure variation was measured with an air cooled Kistler series 600A 

pressure transducer integrated with an in-house modified spark plug. Consequently, 
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modifications to the cylinder head could be avoided. However, this arrangement has 

some limitations, notably the problem of datum referencing due to thermal drift, and the 
damping effect of the connecting passage of the spark plug adapter (see Randolph 1990a, 
b). A Kistler 5007 charge amplifier was used to interface the sensor to the data 

acquisition system. It was initially found that spark noise and earth currents severely 
affected the pressure signal. The earth current problem was particularly severe as a result 
of a poor test bed design with power cables looping around the engine block. Earth leads 

and additional insulation were used to suppress this interference to an acceptable level. 

The pressure signal was sampled at 2' crank angle intervals with a Data Translations 

DT2805 analogue-to-digital data acquisition card. A slotted disc encoder on the engine 

crankshaft provided the required sampling and reference trigger signals to synchronise 
digital scanning of the pressure signal with crank angle. Pressure signals were averaged 

over 50 consecutive cycles and scaled such that the absolute pressure at bottom-dead- 

centre (BDQ after the intake stroke equalled the mean intake manifold absolute pressure. 
It was found that the expansion line on pressure-volume (p-vý plots curved sharply near 
BDC and the gas exchange process showed a crossover in pressures: commonly called the 
'bow tie effect' - Fig. 6.32(b). This thermal effect could not be complete avoided and is 

even observed in pressure measurements made by Ricardo for a similar engine (Jackson 

and Stokes 1984). 

6.4.2 Computational Model: Mesh Definition and Boundary Conditions 

Details of the approach used to mesh the pentroof combustion chamber are given in Sec. 

2.4. An unusual feature is the use of different meshes for the valve open and combustion 

periods as shown in Fig. 2.15: the valve motion and complex boundary surface detail 

could not be described with a single structure (see Sec. 2.4.5). The grid resolution is also 

quite coarse, but is considered sufficient for demonstrating the coupling of the radiation 
and chemical-kinetics. 

Calculations were started at -6000 ATDC (i. e. just before exhaust valve opens). 
Treatment of the gas exchange processes and valve action is largely as detailed in Secs. 
3.4.2 and 3.4.3. i. e. A constant pressure condition was used at both the intake and 
exhaust port open boundaries, specified as a plenum pressure, p.,,, b, acting at a distance x 
outside the boundary. However, in practice the calculated boundary fluxes were often 
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quite different from those expected due to the interpolation (via Eq. 3.106) used to 

calculate the actual boundary pressure. Notably, at the exhaust port boundary this resulted 
in a mis-match between the mass flux calculated in KIVA with that calculated by the one- 
dimensional wave action analyses of the exhaust pipe (see Sec. 3.4.2), when both codes 
are coupled through the pressure condition at the cylinder boundary. Moreover, the mass 
flux varied strongly with the value chosen for x. Therefore, a modified approach was 
developed whereby the value of p,,,,, b (for an arbitrary fixed value of x) is factored on each 
timestep so that the computed KIVA exhaust port mass flux follows that of the wave 
action code. A simple control algorithm was written for this purpose using the difference 

in mass flux on the previous timestep as an input error signal. This refinement resulted in 

much better agreement between simulated and measured cylinder pressures during 

exhaust blowdown. At the intake boundary Pamb was initially set equal to the measured 
averaged inlet manifold pressure and then adjusted iteratively until the inducted air/ fuel 

mass closely matched experimental measurements. The reference incoming species 
densities for propane, oxygen and nitrogen (i. e. taking zero EGR) were determined for the 

specified air/fuel ratio at the pressure pa b. The corresponding values imposed at the 
intake boundary were then scaled according to Eq. (3.107). The turbulent kinetic energy, 
k, was taken as 10% of the averaged inflow velocity squared, and its dissipation rate, E, 

was evaluated from a length scale equal to half the maximum lift of the intake valve, i. e. 

refer to Eqs. (3.108) and (3.109), respectively. 

Mean temperatures on the combustion chamber surfaces were estimated on the basis of 
thermal maps obtained by Zhao et A (1991,1994) for a similar sized engine and 

compression ratio. The cylinder walls were assumed to be coolest at 450 K, with the 

piston surface somewhat hotter at 490 K and the highest temperatures on the cylinder 
head. Here, the temperature was varied smoothly over the head from 450 K at the 

cylinder wall boundary to 480 K near the central spark plug. Local maxima of 505 K and 
585 K were also introduced at surface elements coinciding with the centres of the intake 

and exhaust valve faces. Given that the temperatures depend on many factors (i. e. 
materials, cooling design, engine speed, spark timing, etc. ) actual values may differ by 
20% or more. However, as noted in Sec. 6.3.2 this error has only a minor effect on the 

radiative heat flux prediction which depends largely on the quality of the burned gas 
temperature prediction. The surface emissivity was assumed to be gray and equal to 
F- = 0.8. 
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Initially, the calculation was started using assumed distributions of the flow variables 

within the combustion chamber. These initial conditions were used only as a first guess. 
The calculation was then run until there was a 1% difference in global values between 

consecutive cycles. This required three 720* cycles. A maximum calculation timestep of 
I degree crank angle was used. Several thousand timesteps were required for a full cycle 
taking some 120 hours, with an additional 1.75 to 7 hours per instantaneous radiation 

calculation (at a specific crank position). Computations were performed on the Sun 

workstation described in Sec. 6.1. 

6.4.3 Flow Characteristics over a Full Cycle 

The calculated full cycle pressure-time and pressure-volume curves are plotted with 

measured pressure data in Fig. 6.32. Firing TDC is at 0* crank angle. The combustion 

model constants CA= 2.0 and CB= 1.9 were optimised to reproduce the measured peak 

cylinder pressure of 47 bar, but the close agreement observed elsewhere can be attributed 

solely to the predictive ability of the model. The largest discrepancies are observed in the 
later stages of the expansion stroke where computed pressures are I bar (i. e. 20%) higher 

than measurements at exhaust blowdown. This in turn results in some over-prediction in 

the amplitude of the pressure oscillations during the exhaust stroke, but even so the 
blowdown/displacement simulation is remarkably good given that there are numerous 

uncertainties in the exhaust manifold boundary conditions and the large pressure gradients 

across the open ports. 

The computed instantaneous mass flow rates through the exhaust and intake ports are 

shown in Fig. 6.33. (Negative values represent outflow from the cylinder. ) The intake 

mass flow is relatively smooth in comparison to the large oscillation observed during 

exhaust blowdown and displacement. This merely results from the different boundary 

models: in reality small oscillations in the intake mass flow would also be expected, but 

the present constant pressure boundary condition cannot capture this. A wave action 
analysis of the intake manifold could be used if this feature is considered important. It 

should also be noted that the 'spikes' observed in the exhaust mass flow and step changes 
in the intake mass flow arise erroneously from numerical instabilities in the solution at 
moments when rezoning shifts a valve head to a new k-plane (see Sec. 2.4.5). They have 

no physical significance. A finer spatial discretisation or smoothing algorithm should be 

employed in a future study to correct this problem. 
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Consider Figs. 6.34-38. Velocity vector plots of planes i= 12 and 24, and j= 12 give 

some insight into how the flow field develops during the gas exchange strokes (-540" to - 
90* ATDC). These planes were chosen since they intersect the valve centres where the 

largest flow gradients occur. Further plots of the central planes at i= 18 and j= 18 then 

show a cross-section of the motion during the compression and combustion (-45* to 67.5" 

ATDC). Unfortunately, the strongly three-dimensional nature of the flow can only be 

fully appreciated with a dynamic multi-plane visualisation, but the most important 

features are highlighted in the discussion below. 

At -540' (BDQ the exhaust blowdown is nearly complete and the exhaust mass flow is 

starting to fall from its peak value of 65 g/s. Note the velocity gradient from almost zero 

at the (instantaneously stationary) piston face to a maximum of 260 m/s at the exhaust 

ports. Back pressure in the exhaust pipe then results in a backflow wave into the cylinder. 

By -450' the pressure gradient has reversed again and an outflow has re-established. 
However, now there is a bulk upwards gas motion quite different from that observed 
during blowdown. This is characteristic of the displacement phase of the exhaust stroke. 
The streamline curvature also nicely demonstrates the blocking effect of the valve heads. 

The intake valves open at -372" ATDC and there then follows a period of valve overlap 

until the exhaust valves close at -348* ATDC. The slant of the pentroof results in the 

upper edges of the ports being in close proximity and consequently there is a significant 

amount of short circuiting of the intake flow directly into the exhaust (e. g. see j-plane at 

360'). Otherwise the inflow is deflected by the curvature of the cylinder walls and 

circulates below the valve heads to the exhaust. This structure efficiently removes the 

remaining burnt gas as the calculated residual gas fraction is only 5.6%. 

During induction the most complex flow patterns arise within the cylinder volume. Gas 

issues from each intake valve opening as a conical jet at about 40 m1s, i. e. 10 times the 

mean piston speed. Separation of the jet from the valve seat and lip produces shear layers 

around each intake valve periphery with large velocity gradients. These interact with the 

cylinder walls and the moving piston to set up several tumbling regions of recirculation. 
Consider the j-plane at -315*. Two centres of rotation may be discerned, immediately 

below, and to the left and right of the intake valve lip. What is seen is in fact a cross- 

sectional view of an inclined torus-like vortex extending all around the valve head. The 
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character and movement of this vortex varies greatly with circumferential position. The 

right centre of rotation (as viewed) remains stationary throughout the intake stroke while 
the left follows the piston's descent. A second vortex extends around the other intake 

valve such that four centres of rotation are visible in the i-plane passing through both 
intake valves. Figure 6.39 plots the velocities in selected k-planes at BDC. This reveals 
strong swirling rotations, particularly close to the piston top. A three-dimensional 
interpretation of this combined tumbling-swirling motion is also sketched alongside. 

At -124c' ATDC the intake valves close removing the energy source driving the vortex 
field. Then shearing forces quickly deplete the vortex energy and the whole flow 

structure breaks down to be replaced by a more ordered upwards movement during 

compression. As the piston moves towards TDC it tends to 'roll-up' the boundary layer 

and new regions of recirculation form. These convect the gas towards the cylinder axis 
following the curvature of the side walls and the ridge of the pentroof (e. g. see the central 
i-plane at -45" ATDC). This motion is further enhanced by the burnt gases expanding 

away from the central spark plug after ignition at -15"ATDC. Unburnt gas ahead of the 
flame front is squeezed into the squish regions where it swirls around the cylinder wall to 
join the fluid recirculating along the pentroof ridge. Eventually it develops into an 

ordered downwards movement some way into the expansion stroke. 

To conclude, the flow description presented here is quite plausible but supporting 

evidence is difficult to find. Previous studies have often involved special porting or 

shrouded valves in order to enhance tumble during induction and compression. 
Consequently, comparisons can not be made as the flow patterns are profoundly different. 

One exception is a basic four valve pentroof geometry (labelled 'A') investigated by 

Le Coz et aL (1990). Here, a computational analysis predicted two inclined counter- 

rotating tumbling motions during induction similar to the present simulation. 

6.4.4 Flame Development and Radiative Heat Flux 

The flame front may be characterised by a rapid transition in local temperature from 

typically 800 K at the leading edge to in excess of 2200 K at the trailing edge (e. g. Fig. 
6.23). Thus, by plotting iso-surfaces through all points at some intermediate temperature, 
it is possible to visualise the flame front shape and how it develops in time. Figure 6.40 

shows a sequence of iso-surfaces at 2000 K from -5" to 20* ATDC. The turbulent flow 
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field has a marked influence on the flame geometry. Initially, the burned gas volume is 

quite spherical except where it impinges on the cylinder head and piston top. However, 

its shape then becomes increasingly distorted. Consider first the flame development close 
to the cylinder head. In the symmetry plane, the flame expands freely down the inclined 

sides of the pentroof, but fluid recirculating along the ridge of the pentroof impedes its 

growth in a perpendicular direction. Consequently, the flame front intersects the cylinder 
head with an hourglass-shaped profile. 

Now consider the flame propagation on the piston surface. Initially it expands uniformly 
in all radial directions. However, unbumt gas ahead of the flame is compressed into the 

squish region such that an opposing pressure gradient is set up. This gradually shapes the 

flame front to the inner profile of the squish region as it sweeps towards the cylinder wall. 
An extremely contorted flame surface results from these quite different profiles on the 

cylinder head and, piston top. The squish and the comer regions at either end of the 

pentroof ridge are the last volumes of gas to be engulfed by the flame. Thereafter, all 

combustion is of unbumt gas entrained into the enflamed region. The cylinder pressure 

peaks at 18.5" ATDC when the flame front makes contact with the cylinder wall. 

Figures 6.41 and 6.42 plot the variation in radiative heat flux on the cylinder head and 

walls from -5 to 115* ATDC (shortly after which the exhaust valves open). At the centre 

of the head, in close proximity to the spark plug, the flux rises to a local peak of 207 

kW/M2 at 20' ATDC before falling away later in the expansion stroke. Locations furthest 

from the spark, or with no direct line of sight to the enflamed region receive the least 

radiation. For example, on the surfaces immediately above the squish regions the 

radiative flux never exceeds 80 kW/M2. 

However, the most remarkable aspect of these results is just how closely the radiative heat 

flux contours follow the flame front, recording both its shape and passage in time (c. f. 

Fig. 6.40). Consider the plot at 15* ATDC when almost the entire gas volume is 

enflamed. Here the hottest contour traces an early profile of the flame front and then each 
cooler contour corresponds to a progressively more recent position of the front. After this 
time mixing in the postflame gases gradually evens out thermal and species concentration 
gradients, and a more uniform radiative emission to the surface results, i. e. by 115* 
ATDC there is only a 30 kW/M2 difference between the flux minima and maxima. 
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Part B: Summary 

1. Previous predictions of spark ignition engines largely considered the combustion phase 
in isolation, by starting computations from inlet valve closure. Radiative heat transfer 

is either neglected, or estimated using empirical correlations for the nongray radiative 

properties of the combustion products. 

2. Experimental investigations find that nearly all radiant energy is emitted in the infrared 

principally from C02 and H20- Peak radiative surface heat fluxes are of the order 0.2- 

0.3 MW/m2: about 10% of the peak convective heat fluxes. The phasing and strength 

of the intensity signal from an infrared sensor can be used as a combustion diagnostic. 

3. Fully-coupled flow-radiation calculations are made for the combustion phase in a two- 

dimensional axisymmetric model of the pancake combustion chamber of a Ricardo E6 

engine. About 2/3 of the total C02/H20 radiant flux is from the water vapour and a 

peak flux of 0.23 MW/M2 is predicted close to the spark where products are hottest and 

concentrated. Radiant heat losses have an appreciable effect on the reaction rate. 

4. The flow field inside the four valve pentroof combustion chamber of a Ricardo Hydra 

engine is simulated over a full four-stroke cycle. The radiant flux is found at specific 

crank positions during combustion in an uncoupled calculation. (Computational limits 

precluded a fully-coupled combined mode solution. ) These results provide remarkable 
insight into how the detailed geometry effects the flow motion, flame propagation and 

radiative surface heat flux. 

5. In both predictions turbulence is accounted for with the k-F, model: additional terms 

are added for variable density flow. The hybrid kinetic/EDC combustion model is to 

account for kinetics-controlled and mixing-controlled combustion. Tuning of model 

constants in the mean reaction rate expression is via experimental pressure data. The 

radiation transport is simulated with the discrete transfer-WSGG model. Calculations 

are largely demonstrational due to numerous uncertainties in boundary conditions for 

temperature, emissivity, etc. and unavoidable discretisation errors. 

6. The radiation-turbulence-chemistry is intimately linked, but this relation is grossly 

simplified in the present analysis in order that calculations are tractable. 
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Chapter 

7 
Conclusions and 

Recommendations 

A numerical scheme for the coupled solution of' turbulent combustion with participainig, 

radiative heat transfer has been developed and applicd ill Studies of' spark ignition Cligilles. 
Here, the ability to handle complex geornetry, nonhoniogeneous properties (spatial aiid 

temporal) and the strong spectral dependence of the radiation transport in a tractable, yet 

accurate, manner has been the principal achievement ofthis work. 

Section 7.1 lists the present contribution. The concluding remarks of Sec. 7.2 then I'ollow 
11 

the general outline of the thesis highlighting the main aspects oi- I indings pertainim, to the 

objectives of the research (Sec. 1.3). Limitations are identified in the present approach 

and this forms the basis of suggestions for further work in Sec. 7.3. 

7.1 Present Contribution 

The following achievements comprise the Illitill COMI-IbUtiOll OfthiS I-CSCM-Ch. 

Numerical mesh generation techniques for the body-fitted representation of' complex 

geometries with arbitrary hexahedral elements have been developed and Implemented. 

The KIVA-11 engine-specific CFD code has heen extensively modified to cilable the 

S11111.11.1tion of open ports and moving vaIVeS, all(' """'e aClioll CI'I'CL't. S 

in the exhaust. Furthermore, new k-v turbulence terms for variable density flows, the 
EDC model For mixing-controlled combustion and (lie Shell Illodd for end-gas 

autoignition have also been added to improve predict lolls, if) addition to provision for 

coupled flow-radiation calculations. 

The Monte Carlo, YIX and discrete transfer radiation Illodels, fol. complex parlicipa(ing, 

inedia have been implemented frorn Te hem available knowledge. A systemalic 

assessment ofth& performance is shown l7or a variety ol"henclunark problems. 
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A general WSGG model has been implemented to provide a gray-gas approximation of 

nongray, nonisothermal radiating combustion products. A hybrid narrow- and wide- 
band model is used to compute the spectral variation in absorption coefficient as input 

to the WSGG model. It is shown that predictions from the overall procedure are in 

good agreement with nongray benchmark solutions for C02 radiating media. 

Two-dimensional axisymmetric flow-radiation predictions of combustion in a pancake 

engine have reproduced experimental correlations of peak radiative intensity with peak 

cylinder pressure. Calculations reveal temporal/spatial variations in the instantaneous 

radiative flux at the cylinder walls, the effect of changing engine operating parameters, 

and the relative importance of emission from different combustion products. 

A three-dimensional simulation has demonstrated how the complex geometry of a 

pentroof combustion chamber affects the flow structure, the flame front evolution and 

the radiation over a four-stroke engine cycle. 

7.2 Concluding Remarks 

There is a need for models able to describe participating radiative heat transfer in coupled 
CFD heat transfer calculations. Engine combustion is a particularly demanding problem 
being characterised by complex geometry, transient conditions, property discontinuities 

and spectral effects: methods versatile enough to handle all these difficulties should also 
be generally applicable to a wide variety of fire and combustion systems 

7.2.1 Spatial Discretisation 

The first effort in this research was concerned with developing flexible numerical mesh 

generation tools to enable the body-fitted description of complex geometries with a single 
block of arbitrary hexahedral elements suitable for the finite-volume CFD code KIVA-II. 

Transfinite interpolation is fast, inexpensive and conceptually simple in that a multi- 
directional interpolation of boundary surfaces is built-up by effectively interpolating in 

each coordinate direction and combining the results. However, boundary discontinuities 

propagate into the interior since there is no inherent smoothing mechanism. A transfinite 

mesh may be smoothed by solving an elliptic system of partial differential equations for 
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the mesh coordinates. Then, constraints on the mesh line distribution may also be 

introduced via control functions and by fixing interior nodes. The elliptic mesh 

generation of the complex pentroof engine geometry in Sec. 2.4 required all of these 

techniques and would not have been possible with simpler algebraic methods. 

To achieve the greatest modelling flexibility it was desired that the radiation model 

should incorporate a geometric scheme for arbitrary hexahedral and/or tetrahedral 

elements. This capability is realised by preprocessing elements into triangles, prior to ray- 

tracing, and by representing property distributions with finite element parametric mapping 

techniques. At present the scheme is designed for direct incorporation into KIVA-II and 

search strategies take advantage of the structured ijk cell indexing of the CFD code. 
However, application to unstructured meshes simply requires modification of the search 

algorithms to utilise their nodal connectivity. Then it should be compatible with most 

commercial mesh generators. From a numerical point of view this geometric 

representation avoids errors associated with interpolating radiation sources in coupled 
flow-radiation calculations and elements can be arbitrarily defined so as to resolve the 

strong gradients in reactive flows. 

7.2.2 Description of Turbulence and Combustion 

Considerable time was invested in an effort to improve the original KIVA-II CFD models 

of turbulence and combustion: these are the foundation on which the flow-radiation solver 
is developed. 

The computation of multi-species turbulent flow involving chemical reaction is based on 

a finite-volume scheme which solves the Favre-averaged momentum and scalar equations 
in an arbitrary Lagrangian-Eulerian (ALE) calculation. Closure for the Reynolds stresses 

and scalar fluxes is obtained via the k-c turbulence model using a linear eddy viscosity 

gradient-diffusion approximation. Extra source terms were added to the standard k and c- 

equations to account for volumetric and pressure-density effects in variable density flow. 

Unclosed terms in the scalar equations due to chemical reaction are calculated by making 

assumptions about the time-scale of reaction and the nature of the reaction. In the original 
KIVA-II scheme all reactions were assumed to proceed either kinetically or be in 

chemical equilibrium: no allowance was made for reactant mixing (and heating) times. 
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Thus, the eddy dissipation concept (EDC) was introduced into the existing scheme to 

attempt to account for both kinetics- and mixing-controlled processes: here mean reaction 

rates from each mechanism are combined by taking their harmonic average. Case-by-case 

tuning of the reaction rate with experimental data is required. Additional submodels are 

used for ignition, and autoignition during knocking combustion. The reduced Shell model 
has been incorporated into the code for the latter purpose. This model simulates the cool 
flame reactions leading to autoignition with a simplified reaction mechanism. Classical 

'log-law' relations are used to model conditions in near-wall boundary layers: the original 
KIVA-II treatment for turbulence kinetic energy had to be modified in order to avoid 

unrealistically fast mixing-controlled combustion along walls when the EDC model is 

active. Finally, wave action effects at the exhaust boundary are simulated with a one- 
dimensional gas dynamics model based on the method of characteristics. 

Calculations of the in-cylinder combustion in two- and three-dimensional studies of spark 
ignition engines demonstrate good flow and heat release predictions. The complex flow 

motions during induction, particularly the vortex field at intake BDC, and the flame front 

evolution in the three-dimensional Ricardo Hydra study are notable results. Visualisation 

data was not available, but previous experimental (and computational) studies for similar 

engine geometries are cited to support the present predictions. Here, it is observed that as 

the flow complexity increases experimental measurements involve more uncertainty and 

visualisation data is open to more interpretation. Consequently, the quality of predictions, 
including those in the present study, becomes more difficult to justify. 

Strengths and weaknesses with regard to the different models used in the present scheme 
have been discussed, but taking precedence over all of these is a general feeling of 
dissatisfaction with the combustion treatment. The introduction of the EDC approach 

certainly provides for a greater degree of control, reducing stability problems suffered 

with the original kinetic scheme, but the prediction of reaction rate still depends crucially 

on the specified initial conditions and choice of model constants. Optimising the model 
for any given engine operating condition can be extremely time consuming and is moving 
the emphasis away from prediction and more towards correlation. In the presence of 
radiation, another shortcoming of the turbulence-combustion treatment is its inability to 

provide the fluctuation in temperature and species concentration to enable an accurate 
assessment of the turbulence-radiation interaction (TRI). Lower flame temperatures can 
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be expected when TRI is included but by how much is still a matter of conjecture. This 

has focused interest in probability density function (PDF) methods. These represent the 

mean reaction rate term exactly, such that the empirical EDC-like models are avoided, 

and in addition, they allow the accurate determination of scalar fluctuations. At present 

there is interest in developing PDF schemes for the calculation of the reactive sources and 

the turbulence-radiation interactions, which are then fed into a finite volume solver for the 

transport of momentum and averaged scalars. Modest and Collins (1989) details 

difficulties that must first be overcome. 

7.2.3 Radiation Model 

The review, selection and development of radiation methods suitable for the analysis of 

complex participating media has been the main focus of this study. 

The integro-differential and integral forms of the governing equation for participating 

radiation transport are first presented. These provide an interesting basis from which to 

review and classify solution methods, e. g. discrete ordinate techniques solve the primitive 
integro-differential form in (r, g) space, in contrast to integral-based formulations such as 

YIX and discrete transfer in which only the three space coordinates appear. These latter 

two methods also seemed more conducive to the analysis of nonorthogonal geometries, 

when this research was started, and consequently, were selected for further study. Much 

work was required in order to develop a three-dimensional YIX solver. In addition, an 

efficient pathlength-based Monte Carlo algorithm was implemented: here 'efficient' refers 

to a speed-up compared with classical Monte Carlo. Calculations are longer by two 

orders of magnitude (or more) compared with deterministic methods; but advantage is 

taken of the ability of the stochastic approach to provide accurate solutions, together with 

a measure of their uncertainty for verifying other methods. 

Additional models are required in order to treat the nongray (spectrally dependent) nature 

of radiative transfer in high temperature gases. A weighted-sum-of-gray-gases (WSGG) 

model has been implemented from a very new scheme reported in the literature. This 

approach is conceptually quite different from classical WSGG correlations in that it 

provides for a numerical treatment of nonisothermal and nonhomogeneous arbitrary gas 

mixtures. The model parameters may be generated from line-by-line or band model data. 

The former option provides for high accuracy but presupposes that line-by-line spectral 
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data for radiating species at high temperature and pressure is readily available. As yet this 
is not the case and given limited time a more approximate narrow- and wide-band model 
is used to generate the required input data for the WSGG model. The end result of this 

nongray treatment is a set of local gray absorption coefficients that can be used directly in 

the present Monte Carlo, YIX or discrete transfer methods, or for that matter any solution 

method where the absorption coefficient is specified as the basic radiative property (as 

opposed to transmissivity). 

The solution of both gray and nongray benchmarking media demonstrate that the present 
Monte Carlo, YIX and discrete transfer methods yield almost identical solutions when cell 

optical thicknesses r<1. However, if this limit is exceeded solution discrepancies are 

noticeable due to the different manner in which each method approximates property 

gradients across medium elements. This is of concern in the WSGG analysis of nongray 

media due to the disproportionate error that arises from the solution of optically thick gray 

gas intervals at gas band centres compared to optically thin intervals in the discretised 

absorption spectrum. It is envisaged that the present techniques could be combined with 

specialised methods which solve separately for the radiative transport in the optically 

thick intervals in order to improve accuracy. Another consequence of the strong variation 
in spectral absorption is that small differences in the gray gas approximation significantly 

effect the total radiative heat transfer solution: a problem noted in efforts to benchmark 

nongray media. 

The discrete transfer method is found to be fast, economic and reasonably accurate: on 
balance it provides a better approximation for radiation sources in optically thick medium 

elements than YIX Scattering anisotropy and non-diffuse boundaries cannot be solved. 
It is felt that attempts to make the method more flexible or accurate (i. e. 'conservative' 

schemes) may be misguided since these always add computation and complexity, and the 
YIX method or another technique provides in all respects a better alternative. At first 

sight the M methodology appears quite different from that of discrete transfer being 

mathematically rigorous. However, in application it shares many similarities, particularly 
with regard to the integration of the incident radiative flux at surface points. In fact, it is 

arguably an extension of the discrete transfer approach with improved modelling fidelity 
in medium elements, although it has never been acknowledged as such in the literature. It 
differs in two important respects. 
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First, YIX integrates the intensities along rays traced from points both within the medium 

and on the enclosing boundaries, whereas discrete transfer traces rays solely from the 

boundary. This facilitates the treatment of scattering anisotropy and gives accurate point 

values for the irradiation at points within the medium, but a downside is that substantially 

more computation is required. Here, it is not difficult to conceive an analogous discrete 

transfer scheme. Then discrete transfer solutions for scattering anisotropy would be 

feasible and the level of accuracy should be comparable for both methods. However, YIX 

would still be superior because of its other chief distinction, i. e. the distance quadrature. 

A performance advantage is attained by YIX via the elimination of exponential kernel 

evaluations. Therefore, the 'extended' discrete transfer scheme would always be less 

efficient; but in simpler problems (i. e. without scattering anisotropy) the classical discrete 

transfer method is much faster as the advantage of tracing far fewer rays more than offsets 

the penalty associated with the exponential calculation. Consequently, it is recommended 

that YIX is reserved for more complex anisotropic media where discrete transfer fails. 

Monte Carlo methods offer unprecedented flexibility and coding simplicity. They have 

proved an invaluable tool for verification purposes in the present study, but their massive 

computational requirement precluded their application for coupled, transient calculations 

of engine combustion. However, it is possible to foresee a scenario where these methods 

may be the preferred choice even for these problems. If PDF methods based on a Monte 

Carlo simulation of turbulent reacting flow become popular (for the reasons noted above) 

then all modes of heat transfer, including radiation, are based on a stochastic scheme. The 

benefits of this are likely to be fully realised in parallel computations, were inefficiencies 

resulting from discord between different schemes for heat and mass transport are avoided, 

and were the inherent parallelism of Monte Carlo may be exploited. 

The discrete transfer-WSGG radiation calculations in the engine combustion studies are 

an excellent demonstration of the ability to cope with complex geometry and very strong 

property gradients. Radiant losses to the cylinder walls result in a small, but appreciable 
lowering of flame temperatures during combustion. The predictions reproduce important 

experimental trends and provide additional insight into how the flame front propagation 
influences the instantaneous radiative heat flux on the cylinder walls. The ability to 

perform accurate quantitative calculations requires experimental measurement of surface 

emissivities and high temperature spectra in order to validate the model parameters. 
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7.3 Recommendations for Further Work 

Several areas that would benefit from further work were noted in the preceding chapters. 
The recommendations here focus on the most interesting emerging developments. 

1. A Reynolds stress model should be implemented in place of the k-e turbulence model 
following the approach of Lebr&e and Dillies (1996), or as a cheaper alternative, the 

cubic eddy-viscosity model of Craft et al. (1996) could be investigated. This provides 

for the description of turbulence anisotropy in complex engine flows. 

2. The kinetic/EDC combustion model should be improved by eliminating redundancy in 

the model constants and by considering a better representation of the chemical kinetics, 

e. g. see comparisons of detailed and reduced ILDM schemes with EDC by Gran 

(1994). Premixed laminar flamelet (e. g. Bray, Libby and Moss 1985) or PDF transport 

models (Mazumder and Modest (1997a, b) in place of EDC should be assessed. A new 

wrinkled-flame (Weller) combustion model is also worth consideration: its application 

to SI engine simulation is demonstrated by Heel et al. (1998). In addition, this work 
includes reference to a detailed ignition model. 

3. New discrete ordinate schemes for nonorthogonal geometries should be evaluated: the 

algorithm by Sakami et A (1997) (see discussion of Sec. 4.2) is a notable example. In 

parallel computations the efficiency of algorithms for frequency, angular and critically, 

spatial domain-based 
' 
decomposition is important (see Bums and Christon 1996): these 

additional criteria should be included in the assessment of radiation methodologies. 

4. An optimisation technique should be implemented to minimise discretisation errors in 

the WSGG model spectrum (Sec. 5.4.2): a conjugate gradient method is employed by 

Derision and Webb (1993). Advantage should also be taken of high temperature line. 

by-line spectral data under compilation in the HITEMP database (Rothman 1998). 

5. Further tests of the present models against experimental data are required. Engine flow 

visualisations need to be combined with detailed in-cylinder measurements of pressure, 
temperature, velocity and radiation intensity at multiple sites and over a wide range of 
operating conditions in order to achieve the greatest benefit for model validation. 
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Transformation Relations 

A. 1 Basic Relations 

A physical domain is represented by Cartesian coordinates x, (=- x, y, z), i=1,2,3 and 
its transformation in the computational domain by curvilinear coordinates 4, (_= 4,11, ý), 

i=1,2,3. Then the one-to-one mapping between the two may be expressed as: 

x= x(, T), y= y(, r) 

A.,, J, ýj (4j) 
Xi 

1,2,3 
j=l 

and 

and by implication 4= 4(z, y, z), etc. Given these relationships first derivatives w. r. t. 4, TI 

and ý for a function A are given by: 

3 

or, equivalently, 

(A. 1) 

(A. 2) 

Aýi =1A. � 
(xj)ý, i=1,2,3 (A. 3) 

j=I 

where the subscripts denote partial differentiation, i. e. expanding Eq. (A-2):: 

DA (LA L! ) 
+(LA 

(LTI 
+(DA) 

(ag) 
j=I, -)L! 

) 
aý ý) ax = aý a all) ax ) ax 

(a 

i=2, 

i= 3, 

DA= DA (Lý)+(LA (LT1 
+(DA)(Dý) 

ay 

ý4) 
Dy all) Dy) aý)ýay) 

DA=(LA (Lý)+(LA (LTI 
+(LA 

(Dý) 

Dz all 
) 

az 
) 

äý 
) 
ýý-z) 

(A. 4) 

(A. 5) 

(A. 6) 

The coefficients of the derivatives w-r. t. 4, il and ý are the metrics, i. e. etc. 
Either fon-nulation may be used to relate the Cartesian derivatives to the curvilinear 
derivatives for function A. However, different transformation derivatives must be found 
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in each case, i. e. the vectors V41 (i = 1,2,3) are required for Eq. (A. 2) and the vectors re 
(i = 1,2,3) are required for Eq. (A. 3). e. g. 

aý i: 'L4-+14 Tv av i az 
ax, 

+ 
ýyj+ az 

and similarlY for il and ý in place of 4 in Eqs. (A. 7) and (A. 8). 

A. 2 Covariant and Contravarlant Base Vectors 

(A. 7) 

(A. 8) 

Consider a co-ordinate line along which only the coordinate 4 varies. A tangent vector to 

this line is given by r,, Eq. (A. 8): the set of tangent vectors to the 4,11 and ý -coordinate 
lines are the three covariant base vectors, namely, 

ai = r, i= 1,2,3 
4 

(A. 9) 

A normal vector to the co-ordinate surface on which the coordinate 4 is constant is given 

by V4, Eq. (A. 7): the set of normal vectors to the three coordinate surfaces on which 4, il 

and ý are constant are the three contravariant base vectors, namely, 

V4' i= 1,2,3 (A. 10) 

Both sets of vectors are shown in Fig. A. I. It should be noted that in orthogonal systems 

the covariant and contravariant base vectors are parallel and the three base vectors of each 

type are mutually perpendicular. 

Figure A. 1 Covariant and contravariant base vectors w. r. t. curvilinear element. 
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A. 3 Covariant and Contravariant Metric Tensors 

The covariant metric tensor (Table A. 1) has nine components formed from dot products 

of the covariant base vectors. i. e. 

gij = ai - aj = gji i=1,2,3 andj=1,2,3 (A. 11) 

Similarly, the components of the contravariant metric tensor (Table A. 1) are dot products 

of the contravariant base vectors. i. e. 

9'j = a'. aJ =9 ii i=1,2,3 andj=1,2,3 (A. 12) 

AA Tensor Relations for the Jacoblan 

The Jacobian defined in Eq. (4.49) may be written in terms of the covariant base vectors: 

I JI= a, - (a2x a3) (A. 13) 

Expanding for I j12 using vector identities gives: 

[a, - (a2 X'a3 )]2 (a, - a, ) [(a2 x a3)'(a2 x a3)] - [a, x (a2 x a3 )]2 

(a, - a, ) [(a2 - a2)(a3 - a3) - (a2 - a3 )2 ] 
-[(a,. a3)a2 -(a, - a2)a3 ]2 

Here the last term may be expanded as: 

[(a, - a3)a2- (a, -a2)a3 
]2 

= (a, a3 )2 (a2 a2)+(a, -a2 )2 (a3 -a3) 

-2(al -aXa, -a, ) (a2 -a3) 

Then replacing the dot products according to Eq. (A. 11) gives: 

(A. 14) 

)]2 g223) _ 02 
2 [a, - (a2 x a3 911 (9229 

33- 13922 - 912933 - 
2913912923 

g2 911(922933- 23)-912(912933-913923)+913(912923-913922) (A. 15) 
detlgij I= g 

i. e. the Jacobian of the transformation is equal to the square root of the determinant of the 

covariant metric tensor, -, 
Ig-. 
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A. 5 The Laplacian 

For brevity relations presented here are quoted from Thompson et aL (1985, Sec. III). All 

expressions for derivative operators (i. e. gradient, divergence, curl and Laplacian) may be 
derived by applying the Divergence Theorem to a volume element bounded by coordinate 
surfaces (e. g.. Fig. A. 1). i. e., 

3 
fff V-A jg 4 dil dý ff A- (aj x a, ) 4J d4" (A. 16) 
vV 

where dV = jg A dil dý and ii dS = (a, x a. ) 4J dýk are made. Replacing A with the 

scalar A and taking the limit as the element volume shrinks to zero gives the gradient as: 

133 
VA=T (aj x a, )A,, 

g 
[(aj x at)A],, =7 

g g g 

conservative form nonconservative form 

3 

where the identity 1 
4, =0 has been used. Then substituting A= 41: 

., 
(aj x a. ) 

i=l 

Here the summation disappears as I=i is the only nonzero term. Eq. (A. 18) enables the 

contravariant and covariant metric tensor components to be related, i. e. 

9" = a' x a'= 
I (aj x ak)* 

I 

(a, x a. ) =1 (gj gk,, - gj,, gk. 
. vFg 

F9 9 

i=1,2,3 1=1,2,3 

(i, j, k) cyclic (1, m, n) cyclic 

I131 
g 

V41 a =7=E (a, x a,, ) (A. 18) 
g g g 

(A. 17) 

(A. 19) 

Finally, the Laplacian operator is obtained by replacing A with VA in Eq. (A. 17) as: 

Laplacian: V2 A=±±g lj, ý 
14j 

+±(V24 k)At, 

i--l J--l k=l 
(A. 20) 

33 

where V241 
= -E E gJal - 'ev 1,2,3 (A. 2 1) 

i=l J=l 
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FORTRAN Mesh 
Generation Routines 

Three FORTRAN routines are presented in this Appendix to supplement the numerical 

mesh generation theory in Chapter 2. These apply to a mesh with NIxNJxNK vertices in 

the Cartesian directions x, y and z respectively. 

B. 1 Subroutine Trans 

Transfinite, interpolation of the boundary surfaces of a three-dimensional region. 

B. 2 Subroutine Metric 
Calculated the metrics (e. g. il,, , etc. ) to build the coefficients and source 

term in the discretised equation for x, y or z) , Eq. (2.29). 

B. 3 Subroutine Lisolv 
Line-by-line Tri-Diagonal Matrix Algorithm (TDMA) with alternate direction 

implicit (ADI) sweeping to solve the general discretised equation for ý, Eq. (2.29). 
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B. 1 Subroutine Trans region in which interpolation is made 

subroutine trans(x, y, z, imin, jmin, kmin, imax, jmax, kmax) 

------------------------------------------------------------------ 
Desc: 3-dimensional transfinite interpolation. 

------------------------------------------------------------------ 
integer i, j, k, imin, jmin, kmin, imax, jmax, kmax 

parameter(nn=50) 
real*8 x(nn, nn, nn), y(nn, nn, nn), z(nn, nn, nn), 

xi(nn, nn, nn), x2(nn, nn, nn), x3(nn, nn, nn), 
yl(nn, nn, nn), y2(nn, nn, nn), y3(nn, nn, nn), 
zl(nn, nn, nn), z2(nn, nn, nn), z3(nn, nn, nn), 
f, g, h 

do i=imin, imax 
do j=jmin, jmax 

do k=kmin, kmax 
f=dble(imax-i)/dble(imax-imin) 
xl(i, j, k)=f*x(imin, j, k)+(l. dO-f)*x(imax, j, k) 

yl(i, j, k)=f*y(imin, j, k)+(l. dO-f)*y(imax, j, k) 

zl(i, j, k)=f*z(imin, j, k)+(l. dO-f)*z(imax, j, k) 

enddo 
enddo 

enddo 

do i=imin, imax 
do j=jmin, jmax 

do k=kmin, kmax 
g=dble(jmax-j)/dble(jmax-jmin) 
x2(i, j, k)= g *(x(i, jmin, k)-xl(i, jmin, k))+ 

(l. dO-g)*(x(i, imax, k)-xl(i, imax, k)) 

y2(i, j, k)= g *(y(i, imin, k)-yl(i, jmin, k))+ 
(l. dO-g)*(y(i, imax, k)-yl(i, imax, k)) 

z2(i, j, k)= g *(z(i, jmin, k)-zl(i, jmin, k))+ 
(l. dO-g)*(z(i, jmax, k)-zl(i, jmax, k)) 

enddo 
enddo 

enddo 

do i=imin, imax 
do j=jmin, jmax 

do k=kmin, kmax 

Sec. 2.2.2, p. 12 

Stage 1: 

ID Lagrangian 
interpolation in 
the i-direction, 
Eq. (2.7) 

Stage 2: 

ID Lagrangian 
interpolation in 
thejm-direction. 

Ll--, 

Stage 3: 

ID Lagrangian 
interpolation in 
the k-direction. 

h=dble(kmax-k)/dble(kmax-kmin) 
x3(i, j, k)= h *(x(i, j, kmin)-xl(i, j, kmin)-x2(i, j, kmin))+ 

(l. dO-h)*(x(i, j, kmax)-xl(i, j, kmax)-x2(i, j, kmax)) 

y3(i, j, k)= h *(y(i, j, kmin)-yl(i, j, kmin)-y2(i, j, kmin))+ 
(l. dO-h)*(y(i, j, kmax)-yl(i, j, kmax)-y2(i, j, kmax)) 

z3(i, j, k)= h *(z(i, j, kmin)-zl(i, j, kmin)-z2(i, j, kmin))+ 
(l. dO-h)*(z(i, j, kmax)-zl(i, j, kmax)-z2(i, j, kmax)) 

enddo 
enddo 

enddo 

do i=imin, imax 
do j=jmin, jmax 

do k=kmin, kmax 
x(i, j, k)=xl(i, j, k)+x2(i, j, k)+x3(i, j, k) 
y(i, j, k)=yl(i, j, k)+y2(i, j, k)+y3(i, j, k) 
z(i, j, k)=zl(i, j, k)+z2(i, j, k)+z3(i, j, k) 

enddo 
enddo 

enddo 
return 
end 

Stage 4: 

Ax, Ay, Az are 
combined from 
all three stages, 
Eq. (2.11) 

x, y and z are 
replaced with 
new interpolated 
values. 
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C 
C 

C 

B. 2 Subroutine Metric mesh spacings defined in Fig. 2.2, p. 17 

subroutine metric(ni, ni, nk, x, y, z, dae, daw, dbn, dbs, dct, dcb, 

pl, p2, p3, nvar, phi) 
------------------------------------------------------------------ 
Desc: Calculates metrics to form coefficients and source 

term in discretised equation for phi. 
------------------------------------------------------------------ 
integer i, j, k, ni, nj, nk, nn 

parameter(nn=50) 
real*8 x(nn, =, =), y(=, nn, nn), z(nn, nn, rm), pl(nn), p2(nn), p3(nn), 

dae(nn), daw(nn), dbn(nn), dbs(nn), dct(nn), dcb(nn), 

ae(nn, nn, nn), aw(nn, nn, nn), an(nn, nn, nn), as(nn, nn, nn)t 
at(nn, nn, nn), ab(nn, nn, nn), su(nn, nn, nn), Phi(nn, nn, nn), 
dxda, dxdb, dxdc, dyda, dydb, dydc, dzda, dzdb, dzdc, dab, dac, dba, 
dbc, dca, dcbl, g, gnil, gnl2, gnl3, gn22, gn23, gn33, gvll, gvl2, 
gvl3, gv22, gv23, gv33, sfl, sf2, sf3, wfew, wfns, wftb 

calculate coefficients 

do i=2, ni-I 
do j=2, nj-1 

do k=2, nk-I 

wfew=dae(i)/daw(i) 
wfns=dbn(j)/dbs(i) 
wftb=dct(k)/dcb(k) 
dxda=((x(i+l, j, k)-x(i, j, k))/wfew 

-(x(i-l, j, k)-x(i, j, k))*wfew)/(dae(i)+daw(i)) 
dxdb=((x(i, j+l, k)-x(i, j, k))/wfns 

-(x(i, j-l, k)-x(i, j, k))*wfns)/(dbn(j)+dbs(i)) 
dxdc=((x(i, j, k+l)-x(i, j, k))/wftb 

-(x(i, j, k-l)-x(i, j, k))*wftb)/(dct(k)+dcb(k)) 

dyda=((y(i+l, j, k)-y(i, j, k))/wfew 

-(y(i-l, j, k)-y(i, j, k))*wfew)/(dae(i)+daw(i)) 
dydb=((y(i, j+l, k)-y(i, j, k))/wfns 

-(y(i, j-l, k)-y(i, j, k))*wfns)/(dbn(j)+dbs(i)) 
dydc=((y(i, j, k+l)-y(i, j, k))/wftb 

-(y(i, j, k-l)-Y(i, j, k))*wftb)/(dct(k)+dcb(k)) 

dzda=((z(i+l, j, k)-z(i, j, k))/wfew 

-(z(i-l, j, k)-z(i, j, k))*wfew)/(dae(i)+daw(i)) 
dzdb=((z(i, j+l, k)-z(i, j, k))/wfns 

-(z(i, j-l, k)-z(i, j, k))*wfns)/(dbn(j)+dbs(i)) 
dzdc=((z(i, j, k+l)-z(i, j, k))/wftb 

-(z(i, j, k-l)-z(i, j, k))*wftb)/(dct(k)+dcb(k)) 

Sec. 2.3.2, p. 16 

A4, /A4w 
ý Ail,, IAlls 

AýtlAýb 

ax ax ax 

ay ay ay 

az az az 

calculate mixed derivatives for phi 
Approximating 
Eq. (2.28): 

AM T 

a4all 
-phi(i-l, j-l, k)+phi(i-l, j, k))*wfns)*dc(k)/2. dO J 

dab=((phi(i+l, j+l, k)-phi(i+l, j, k) 

-phi(i-l, j+l, k)+phi(i-l, j, k))/wfns 

-(Phi(i+l, j-l, k)-phi(i+l, j, k) 

dac=((phi(i+l, j, k+l)-phi(i+l, j, k ) 

-phi(i-l, j, k+l)+phi(i-l, j, k))/wftb 
-(phi(i+l, j, k-l)-phi(i+l, j, k) 

L A7 
r- Li y 

-phi(i-l, j, k-l)+phi(i-l, j, k))*wftb)*db(j)/2. dO 

dba=((phi(i+l, j+l, k)-phi(i, j+l, k) 
-phi(i+l, j-l, k)+phi(i, j-l, k))/wfew 

-(phi(i-l, j+l, k)-phi(i, j+l, k) 
-phi(i-l, j-l, k)+phi(i, j-l, k))*wfew)*dc(k)/2. dO 

continues on next page 

a4aý 

AV 
D02 

CDMD4 
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dbc=((phi(i, j+l, k+l)-phi(i, j+l, k) 
-phi(i, j-l, k+l)+phi(i, j-l, k))/wftb 

-(phi(i, j+l, k-l)-phi(i, j+l, k ) 
-phi(i, j-l, k-l)+phi(i, j-l, k))*wftb)*da(i)/2. dO 

dca=((phi(i+l, j, k+l)-phi(i, j, k+1) 
-phi(i+l, j, k-l)+phi(i, j, k-1))/wfew 

-(phi(i-l, j, k+l)-phi(i, j, k+l ) 
-phi(i-l, j, k-l)+phi(i, j, k-1))*wfew)*db(j)/2. dO 

dcbl=((phi(i, j+l, k+l)-phi(i, j, k+1 ) 
-phi(i, j+l, k-l)+phi(i, j, k-1))/wfns 

-(phi(i, j-l, k+l)-phi(i, j, k+l) 
-phi(i, j-l, k-l)+phi(i, j, k-1))*wfns)*da(i)/2. dO 

components of covariant metric tensor 

gvll=dxda*dxda+dyda*dyda+dzda*dzda 
gvl2=dxda*dxdb+dyda*dydb+dzda*dzdb 
gvl3=dxda*dxdc+dyda*dydc+dzda*dzdc 
gv22=dxdb*dxdb+dydb*dydb+dzdb*dzdb 
gv23=dxdb*dxdc+dydb*dydc+dzdb*dzdc 
gv33=dxdc*dxdc+dydc*dydc+dzdc*dzdc 

components of contravariant metric tensor and g 
note: sqrt(g) = Jacobian of transformation 

gnll=gv22*gv33-gv23*gv23 
gnl2=gv23*gvl3-gvl2*gv33 
gnl3=gvl2*gv23-gv22*gvl3 

g=gvll*gnll+gvl2*gnl2+gvl3*gnl3 

gnll=gnll/g 
gnl2=gnl2/g 
gnl3=gnl3/g 
gn22=(gv33*gvll-gvl3*gvl3)/g 
gn23=(gvl3*gvl2-gv23*gvll)/g 
gn33=(gvll*gv22-gvl2*gvl2)/g 

assemble coefficients 

an(i, j, k)=gn22*da(i)*dc(k)/dbn(j) 
as(i, j, k)=gn22*da(i)*dc(k)/dbs(i) 
ae(i, j, k)=gnll*db(j)*dc(k)/dae(i) 
aw(i, j, k)=gnll*db(j)*dc(k)/daw(i) 
at(i, j, k)=gn33*da(i)*db(j)/dct(k) 
ab(i, j, k)=gn33*da(i)*db(j)/dcb(k) 

calculate stretching terms 

sfl=gnll*db(j)*dc(k)*pl(i) 
sf2=gn22*da(i)*dc(k)*p2(j) 
sf3=gn33*da(i)*db(j)*p3(k) 

if(nvar. eq. 1) su(i, j, k)=sfl*dxda+sf2*dxdb+sf3*dxdc 
if(nvar. eq. 2) su(i, j, k)=sfl*dyda+sf2*dydb+sf3*dydc 
if(nvar. eq. 3) su(i, j, k)=sfl*dzda+sf2*dzdb+sf3*dzdc 

su(i, j, k)=su(i, j, k)+gnl2*(dab+dba)+gnl3*(dac+dca) 
+gn23*(dbc+dcbl) 

enddo 
enddo 

enddo 
return 
end 

AV 
ao 

UDIIK 

AV 
Do 

ap4 

AV 
Dý2 

gu 

Note: g, = gji 

I g, Eq. (2.20) 

g'J, Eq. (2.19) 

Note: g'J = gJ' 

aN 

as 
a. 
aw9 Eq. (2.3 1) 
aT 

a. 

phi nvar 
x1 
y2 
z3 

Source term 
S- AV with 
the control 
functions P, 

S is defined 
in Eq. (2.24). 
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B. 3 Subroutine Llsolv coefficients of the discretised equation for phi 

subroutine lisolv(ni, ni, nk, ae, aw, an, as, at, ab, su, ap, phi, nsw) 
------------------------------------------------------------------ 
Desc: Applies a Line-by-Line Tri-Diagonal Matrix Algorithm (TDMA) 

using an alternating direction implicit (ADI) sweeping 
strategy to solve the general discretised equation for phi. 

------------------------------------------------------------------ 

integer i, j, k, ii, ii, kk, istart, istart, kstart, istml, jstml, kstml, 
itsw, nn, nsw 

parameter(nn=50) 
real*8 ae(nn, nn, nn), aw(nn, nn, nn), an(nn, nn, nn), as(nn, nn, nn), 

at(nn, nn, nn), ab(nn, nn, nn), su(nn, nn, nn), ap(nn, nn, nn), 
aa(nn), bb(nn), cc(nn), dd(nn), phi(nn, nn, nn), term 

istart=2 
jstart=2 
kstart=2 
istml=istart - 
jstml=jstart - 
kstml=kstart - 

do itsw=l, nsw 

commence W-E traverse 

See. 2.3.3, p. 20 
(Note: notation 
differs here from 
that in theory. ) 

number of global 
sweeps of solver 

aa(istml)=O. OdO 
do k=kstart, nk 

do j=jstart, nj 
cc(istml)=phi(istml, j, k) 
do i=istart, ni 

assemble TDMA coefficients 

aa(i)=ae(i, j, k) 
bb(i)=aw(i, j, k) 
cc(i)=an(i, j, k)*phi(i, j+l, k)+as(i, j, k)*phi(i, j-l, k) 

+at(i, j, k)*phi(i, j, k+l)+ab(i, j, k)*phi(i, j, k-1) 

+su(i, j, k) 
dd(i)=ap(i, j, k) 

calculate coefficients of recurrence formula 

term=l. dO/(dd(i)-bb(i)*aa(i-1)) 
aa(i)=aa(i)*term 
cc(i)=(cc(i)+bb(i)*cc(i-1))*term 

enddo 

obtain new phi 
do ii=istart, ni 

i=ni+istart-ii 
phi(i, j, k)=aa(i)*phi(i+l, j, k)+cc(i) 

enddo 
enddo 

enddo 

continues on next page 

S'Weep 4-lines 

(Xl = 

Pi = ol 

(Xi 
Pi 

ýl = (1A+1 +P1 
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Appendix B FORTRAN Mesh Generation Routines 

commence S-N traverse 

aa(istml)=O. OdO 
do k=kstart, nk 

do i=istart, ni 
cc(jstml)=phi(i, jstml, k) 
do j=jstart, ni 

assemble TDMA coefficients 

aa(j)=an(i, j, k) 
bb(j)=as(i, j, k) 
cc(j)=ae(i, j, k)*phi(i+l, j, k)+aw(i, j, k)*phi(i-l, j, k) 

+at(i, j, k)*phi(i, j, k+l)+ab(i, j, k)*phi(i, j, k-1) 
+su(i, j, k) 

dd(j) =ap (i, j, k) 

calculate coefficients of recurrence formula 

term=l. dO/(dd(j)-bb(j)*aa(j-1)) 
aa(j)=aa(j)*term 
cc(j)=(cc(j)+bb(j)*cc(j-1))*term 

enddo 

obtain new phi's 

do jj=jstart, ni 
j=nj+jstart-ii 
phi(i, j, k)=aa(j)*phi(i, j+l, k)+cc(i) 

enddo 
enddo 

enddo 

Sweep il-lines 
()(, =0 

ol =ý, 

(Xi 

pi 

0i 
-,: (XJOJ+l + 0i 

commence B-T traverse Sweep ý-Iines 

aa(kstml)=O. OdO 
do j=jstart, nj 

do i=istart, ni 
cc(kstml)=phi(i, j, kstml) 
do k=kstart, nk 

assemble tdma coefficients 

aa(k)=at(i, j, k) 
bb(k)=ab(i, j, k) 
cc(k)=ae(i, j, k)*phi(i+l, j, k)+aw(i, j, k)*phi(i-l, j, k) 

+an(i, j, k)*phi(i, j+l, k)+as(i, j, k)*phi(i, j-l, k) 

+su(i, j, k) 
dd(k)=ap(i, j, k) 

calculate coefficients of recurrence formula 

term=l. dO/(dd(k)-bb(k)*aa(k-1)) 
aa(k)=aa(k)*term 
cc(k)=(cc(k)+bb(k)*cc(k-1))*term 

enddo 

obtain new phi 
do kk=kstart, nk 

k=nk+kstart-kk 
phi(i, j, k)=aa(k)*phi(i, j, k+l)+cc(k) 

enddo 
enddo 

enddo 

enddo 
return 
end 

a, =O 

pi = ol 

ak 

Pk Eq. (2.36) 

ýk = (X A+i + ßk 

Eq. (2.35) 

Loop back and 
re-sweep 4-lines 
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Appendix Differencing of Pressure-density 
Term in KIVA-11 Numerical Scheme 

The following model expression results In the CIOSLII-C Ol'tlIC VCIOCIty I'lliCtuatiOn-preSS111-C 

gradient correlation in the k-F- equations for variable density I'low (see Sec. 3.2.5): 

P, aý aTý 
(31 axi ax, i= 1,2,3 (13.1) 

This term is differenced in ail analogous manner to other terms in tile Lagrangian phase of' 11 t, 
the KIVA-11 numerical scherne, i. e. Arnsden et al. ( 1989, pp. 34-43 & Appendix K). First 

the density and pressure gradients are written as the following identity 

ao 
axi (13.2) 

where is the mean density or preSSLH-e and ý, is the unit vector in tile ill' p 
Cartesian coordinate direction. Then, integrating Eq. (13.2) OVCl- a col"JILItatlOnal CCII and 11 
applying the Divergence Theorem to the right-hand side gives: I- 

f r)o Le/V=fO, 
-dA ). V, S 

(11.3) 

where V is the cell volume and S the cell SUrface area. Finally, the area inteoral over the 

cell surface is approximated by a summation over the six cell faces such that a diff'crencM 

form for Eq. (13.3) is obtained as: 

ý )o 
-V (11.4) 

where 0, is the interpolated density or pressure on face a, and A, is Ilic outward area 

projection vector offace a. Eq. (B. I) is therefore differenced over a cell ýjk ; is: 

I P, a-ý aT) 
a, t., ax, 

jA 

= [p2v2 J1A 

. A) >(' . i) (I 1.5) 

287 



Appendix C Differencing of the Pressure-Density Term in Numerical Scheme 

Here, it is stressed that the notation of Eq. (B. 5) represents the summation of three terms, 

one for each Cartesian direction i, when i=1,2,3. Each term contains the product of 
the density and pressure gradients in the associated direction. 

This differenced expression for pressure-density interactions is now incorporated into the 

original difference approximations to the turbulent kinetic energy, k and eddy dissipation, 

P_ equations, i. e. see Amsden et al. (1989, p. 4 1). 

k-equation. The differenced turbulent kinetic energy equation is modified to: 

MBB_ Mijn nk B 
iA kkij 

Vijpk InB kijzk 
B, - 1-ilk ivk 

-. 
z 

-v 
R' - fijk)kik k 

At 3 Pijk 
At 

+ fijk 
ivk 1+ (VD)ijk 

At_ 9 nijk 3 

"ýj 
kjLýk 

(T '1 )2 
11 (P: ýi - A. ) (p. - A. )] I(' - f2jjk + f2. 

ijk ku"k 
9 

(PinVkVijk 
iýl 

[aa 

n 
+(I 

f Llik 

(IýD AMB lik 8 )k -A. - kij'k + 
La-V[(D'kB 

k 
]a 

UA 
a Prk kijk (B. 6) 

where the new term is the second line on the right-hand side. The quantity f2, ut is zero or 

unity depending on the sign of the pressure-density tenn, say denoted by T, such that: 

A2Jjk 
=fl 

if T<O implicit solution 
0 otherwise explicit solution 

C-equation. Similarly, the differenced dissipation rate equation is modified to: 

BB"nBn nDn C 
ijk - Mijk C ijk B 

Vii 
k- 

vii 
-kCk IB 

Lk 

At 
(-'3- C,, - Cl, P ijk At 

I(' - 
fUk)Ciijk + fijkCUk] + CC 

I ku"k 
(VD)uk 

(B. 7) 

At 11 injk I ýl BI 
1 [1: 

(p' Zi - A,, ) 1: (p,, "e -Ac Uk Uk (pn n)2 
[(I-f2. 

Uk)cn +f2, 
UkC 

(Ft 
lijk 

V ku"k 
ijk i=l aa 

n 

_(DD)FA 
B aV[(DDCB+(l ]a - Aa - Ct3M; ak 

kn 
CUk 

a 
Pr, 

Uk 
(B. 8) 

Note: This prescription for f2, ijk is chosen to prevent negative computed values of k and C. 
The form is analogous to the prescription of f4k in the velocity dilation terms of Eqs. 

(B. 7) and (B. 8), c. f. Amsden et aL (1989, p. 4 1, Eq. (98)). 
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Appendix 

D 
Discrete Ordinate Sets 

Table D. 1 Discrete ordinates sets Sý, for angular integrations in YIX method (1). 135). 

Direction cosines of ý Weights 

11 it, 

0.2958759 0.2958759 0.9082483 0.5235989 
S4 0,2958759 0.9082493 0.2958759 0.5235989 

0.9082483 0.2958759 0.2958759 0.5235989 

0.1838670 0.1838670 0.9656013 0.1609516 
0.1838670 0.6950514 0.6950514 0.3626469 

S6 0.1838670 0.9656013 0.1838670 0.1609516 
0.6950514 0.1838670 0.6950514 0.3626469 
0.6950514 0.6950514 0.1838670 0.3626469 
0.9656013 0.1838670 0.1838670 0.1609516 

0.1422555 0.1422555 0.9795543 0.1712360 
0.1422555 0.5773503 0.8040087 0,0992285 
0.1422555 0.8040087 0.5773503 0.0992285 
0.1422555 0.9795543 0.1422555 0.1712360 

Sx 0.5773503 0.1422555 0.8040087 0.0992285 
0.5773503 0.5773503 0.5773503 0.4617180 
0.5773503 0.8040087 0.1422555 0,0992285 
0.8040087 0.1422555 0.5773503 0.0992285 
0.8040087 0.5773503 0.1422555 0.0992285 
0.9795543 0.1422555 0.1422555 0.1712360 

S12 

0.1596536 0.1596536 0.9741773 0.1227207 
0.1596536 0.4584710 0.8742511 0.0811106 
0.1596536 0.6284124 0.7613202 0.0674176 
0.1596536 0.7613202 0.6284 124 0.0674176 
0.1596536 0.8742511 0.4584710 0.0811106 
0.1596536 0.9741773 0.1596536 0.1227207 
0.4584710 0.1596536 0.8742511 0.0811106 
0.4584710 0.4584710 0.7613203 0.0552766 
0.4584710 0.6284124 0.6284124 0.0485448 
0.4584710 0.7613203 0.4584710 0.0552766 
0.4594710 0.874251 1 0.1596536 0.0811106 
0.6284124 0.1596536 0.7613203 0.0674176 
0.6294124 0.4584710 0.6284124 0.0485448 
0.6284124 0.6284124 0.4584710 0.0485448 
0.6284124 0.7613203 0.1596536 0.0674176 
0.7613203 0.1596536 0.6284124 0.0674176 
0.7613203 0.4584710 0.4584710 0.0552766 
0.7613203 0.6294124 0.1596536 0.0674176 
0.8742511 0.1596536 0.4584710 0.0811106 
0.8742511 0.4584710 0.1596536 0.0811106 
0.9741773 0.1596536 0.1596536 0.1227207 

Direction cosincs Of ý 

Sib 

11 

0.1364305 0.1364305 
0.1364305 0.3917822 
0.1364305 0.5370040 
0.1364305 0.6505792 
0.1364305 0.7470832 
0.1364305 0.8324742 
0.1364305 0.9098865 
0.1364305 0.9812102 
0.3917822 0.1364305 
0.3917822 0.3917822 
0.3917822 0.5370040 
0.3917822 0.6505792 
0.3917822 0.7470832 
0.3917822 0.8324742 
0.3917822 0.9098865 
0.5370040 0.1364305 
0.5370040 0.3917822 
0.5370040 0.5370040 
0.5370040 0.6505792 
0.5370040 0.7470832 
0.5370040 0.8324742 
0.6505792 0.1364305 
0.6505792 0.31)17822 
0.6505792 0.5370040 
0.6505792 0.6505792 
0.6505792 0.7470832 
0.7470832 0.1364305 
0.7470832 0.3917822 
0.7470832 0.53700-10 
0.7470832 0.6505792 
0.8324742 0.130-1305 
0.8324742 0.3917822 
0.8324742 0.5370040 
0.1)01)8805 0.1.364.305 
0.9098865 0.31)17822 
0.9812102 0.1.; 64305 

Weights 

0.9812102 0.0888367 
0.9098805 0.0567956 
0.8324742 0.0448808 
0.7470832 0.0412208 
0.6505792 0.0-412208 
0.5370040 0.0448868 
0.3817822 0.0567956 
0.1 36-1305 0.0888-307 
0.9098965 0.0567956 
0.8324742 0.0368034 
0.7470832 0.0296818 
0.6505792 0.0281066 
0.53700-10 0.02968 18 
0.3917822 0.0.36803-1 
0.1364305 0.0567956 
0.8324742 0.0.1-18868 
0.7-470832 0.02968 18 
0.6505792 0.0246508 
0.5370040 0.0246508 
0.39 17822 O. ()2()0'�'l 8 
0.1364305 0.0-148868 
0.7470832 0.0.112208 
0.6505792 0.0281000 
0.5.370040 0.0240508 
0.31)17822 0.028looo 
0.136-1305 0.0.112208 
0.6505792 0.0.1122m 
0.5.3700-10 0. ()2()0', -, ' l's 
0-3917822 0.0296S18 
0.136-1,305 0.0.112208 
0.5.3700.10 0.0.1. M08 
0.; 917822 
0.136-1 ; 05 0.0.1.18869 
03917822 0.0567956 
0.1.; 64.; 05 0.05671A6 
0.1364305 00888367 

Refewnce: I Isu el al. ( 1992). 
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Nomenclature 

Latin letters 
A 

a 

a 

a 
A, A/, A, 

A,, A, 

A 

a 

a 

a, 

a,, 

B 

b 
CI)l 

I 
CI)2 

CE'l? II 
CA 
CB 

Ck 

Cl 
I 

C2, (ý 

c 

cl, 

cv 

cel , C, ,, (-,. I 
C, m 

Cht, 

D 

D 

il 
E 

EI, Ei, 

area (or physical surface element) I m2l 

area of master surface element 

band symmetry factor in Edwards wide hand model =I or 2 

extension height of L-shaped enclosure in Case F benchmarks (Fig. 6.12) linj 

pre-exponential factors in Arrhennis Eqs. (3.59) and (3.61) 

model constants in Sutherland formula for scc Eq. (3.38) 

area vector (pointing inwards) [in 21 

crank radius in Eqs. (3.109) and (3.110) [m] 

acceleration in Eq. (3.111) [rn/s2l 

coefficients of discretised equation, Eq. (2.29) 

scattering phase function coefficients, I'Ll. (4.3) 

constant for smooth walls in log-law wall function, Eq. (3.101 

pressure correlation parameter in Edwards wide hand model (Table 5.1 

model constants in eddy-dissipation concept (EDO, Eq. (3.6.3) 

constant In eddy-break-Up (EBU) combustion model, Fq. (3.62) 

adjustable factor to scale kinetic reaction rate 

adjustable factor to scale harmonic reaction rate, Eq. (3.75) 

absorption cross-section Icin-'] 

correlation parameters III Edwards wide hand model (Table 5.1 

rnolar concentration, Eq. (3.57) 1 niol/ni'l 

scattering phase function coefficients, Fq. (4.4) 

specific heat at constant pressure 1.1/kg KI 

specific heat at constant volume JJ/kg KI 

model constants in the C-equation, H. q. 0.47) 

model constant in definifion ofturbulent viscosity, F(J. (3.26) 

model constant III lOg-laW wall function, ["Ll. (3.101 

function in YIX distance quadrature, Eq. (4.90) 

species mass diffusivity [ni2/sl 

spherical carbon particle diameter [pinj 

effective activation energy, F. q. (3,61 ) 1.1/niol I 

activation energies in forward and backward wactions, F. q. (3.50) 
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Nomenclature 

e, eg surface, gas blackbody emissive power, Eq. (4.15) [W/M 2] 

e., ey, e. local Cartesian unit vectors, Eq. (4.63) 

F blackbody distribution function in WSGG model, Eq. (5.13) 

terms on left-hand side of integral radiation equations, Eq. (4.25) Fg, F, F 

f blackbody fraction, Eq. (5.8) 

f constant parameter in 8-Eddington scattering phase function, Eq. (6.9) 

f (also g, h) stretching (blending) function, Eqs. (2.5) and (2.6) 

f, Arrhenius rate coefficients in Shell autoignition model [s"] 

fi blending function in t -coordinate direction (index i), Eq. (2.7) 

fg, f"' f, terms on right-hand side of integral radiation equations, Eq. (4.25) 

GiSj, GjGj total exchange areas, Eq. (4.73) [M3] 

9s, 99 direct exchange factors, Eq. (4.82) 

g determinant of covariant tensor -= Jacobian 2, Eq. (2.20) 

g asymmetry factor -= average cosine of scattering angle 

9 JI constant parameter in S-Eddington scattering phase function, Eq. (6.9) 

gii covariant metric tensor elements 

9Y contravariant metric tensor elements 

gj blending function in il-coordinate direction (index j), Eq. (2.10) 

H height of L-shaped enclosure in Case E benchmark problem (Fig. 6.12) [m] 

h specific enthalpy [J/kgl 

hi blending function in ý-coordinate direction (index k), Eq. (2.12) 

I distance integral (YIX distance quadrature), Eq. (4.92) 

I specific internal energy [J/kg] 

i radiation intensity [W/M2 sr] 

ij, blackbody intensity [W/m2 sr] 

i, j, k curvilinear indices 

J Jacobian matrix, Eq. (4.45) 

J" convective wall heat flux in log-law function, Eq. (3.102) [W/m 2 

K exponential kernel function in integral radiation equations, Eq. (4.26) 

K thermal conductivity [W/m KI 

K, equilibrium constant, Eq. (3.56) 

k turbulent kinetic energy [M2/S2] 

kp , k,,, k, k, Arrhenius rate coefficients in Shell autoignition model [s"] 

kf , kb Arrhenius forward and backward rate coefficients, Eq. (3.59) [s*'] 
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Nomenclature 

L length of ray path i from r to r' on boundary surface [in] 

L length of L-shaped enclosure in Case E benchmark problem (Fig. 6.12) [in] 

I connecting rod length [in] 

M moles of H2 in fuel RH: Shell autoignition model 

N number of energy bundles, sample population size (Monte Carlo methods) 

N, carbon particles per unit volume in gas/particulate mixture [M*3] 

" pressure correlation parameter in Edwards wide band model (Table 5.1) 

" moles of C in fuel RH: Shell autoignition model 
fi, fil unit surface normal (pointing into the medium) 

P power [W] 

P probability density function 
PW P (i); p(k) projectors in 4,11 and ý -coordinate directions, respectively. 

P; P, control functions in elliptic mesh generation systems, i 1,2 or 3 

P, function in YIX distance quadrature, Eq. (4.104) 

Pk production rate of turbulent kinetic energy [W] 

P. Legrendre functions 

P"' spherical functions of the first kind 

Pr Prandtl number, Eq. (3.40) 

P pressure [N/M2] 

R uniformly distributed random number from 0 to I 

R. universal gas constant = 8.3143 [J/mol K] 

Q heat rate [W] 
6' heat production per unit volume [W/M3] 

Q, function in YIX distance quadrature, Eq. (4.103) 
ahem 

chemical heat source [W/m 31 

Qew extinction efficiency 
Q. 

"" scattering efficiency 

q exothermicity from oxidising Ilm moles of fuel RH: Shell model [J/MO12] 

q, total heat flux vector, unclosed: Eq. (3.15); closed: Eq. (3.49) [W/M2 

q, net radiative surface heat flux, Eq. (4.14) [W/m 21 

q,, q, radiative heat flux, radiative heat flux vector [W/M2] 

R, critical Reynolds number = 114 in boundary layer model 

r, ratio of maximum to minimum accelerations of valve 

r" position vector in medium, position vector at point (usually) on surface 
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Nomenclature 

r, position vector of all points on path i between r' and r 
S source term of discretised equation, Eq. (2.24) 
S radiative source function, Eq. (4.16) [W/M2 sr] 

S line strength -= line-integrated absorption coefficient [cm"/(kg m"2)] 
Si functions of form P, '(cosO) cos mo or P,, (cosO) sin mo i 1,2 or 3 

S, S,, SGj total exchange areas, Eq. (4.73) [M2j 

S" best estimate of standard error, Eq. (4.72) 

Sc Schmidt number, Eq. (3.39) 

S distance in direction i [m] 

S normalised coordinate, Eq. (2.2) 

Sn best estimate of standard deviation (precision), Eq. (4.72) 

SS' Sg direct exchange factors, Eq. (4.82) 

unit vector in a given direction 

unit vector in direction of in-scattered radiation 
T temperature [K] 

t constant parameter or time [s] 

Ui Cartesian velocity components: u, v, w 

Xj Cartesian coordinates: x, y, z 
7 mean of sample values x 

X Cartesian position vector 
V volume (of physical element) [m 31 

V volume of master element 
W width of L-shaped enclosure in Case E benchmark problem (Fig. 6.12) [in] 

W, molecular weight of species s [kglmoll 

WO incident radiation (or irradiation) a direction-integrated intensity [W/ml] 

W, Cartesian components of radiative heat flux vector: w,, w2, w3 [W/ml] 

W, quadrature weights 

W (WI 
I W21 WOT 

Y, mass fraction of chemical species s 

Y perpendicular distance from wall in boundary layer model [in] 
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Nomenclature 

Greek symbols 
(X band strength parameter _= band-integrated absorption coeff. [cm-'/(kg m'2)] 

a, barycentric coordinates, Eq. (4.37) 

extinction coefficient, Eq. (4.2) [m"] 

pressure broadening (or line overlap) parameter in band model, Eq. (5.4) 

'Y ratio of specific heats, Eq. (3.21) 

7 mass fraction of turbulent fine-structure regions: EDC model, Eq. (3.63) 

At overall computational timestep [s] 

Aý' A71, Aý spacings between 4, il and ý -coordinate lines, respectively, Eq. (2.22) 

5 absorption line spacing in band model [cm-1] 

5 Dirac-delta function (in &-Eddington scattering phase function), Eq. (6.10) 

5S pathlength segment on ray path [in] 

8 
ii Kronecker delta function 

F, surface emissivity 

C rate of turbulence kinetic energy (or eddy) dissipation [M2/S3] 

wall Reynolds number in boundary layer model, Eq. (3.99) 

temperature exponents of forward and backward reactions, Eq. (3.59) 

11 wavenumber [cm-1] 

E) scatter angle in &-Eddington scattering phase function, Eq. (6.9) 

0 (and 9) polar angle in spherical coordinate system [rad] 

0 crank angle [rad or deg] 

IC absorption coefficient [in"'] 

IC bulk viscosity, Eq. (3.12) [kg/m s] 

IC derived von Karman constant in log-law wall function 0.4327 

constant in YIX distance quadrature, Eq. (4.98) 

second coefficient of dynamic viscosity [kg/m s] 

first coefficient of dynamic viscosity [kg/m s] 

curvilinear coordinates, i=1,2 or 3. 

P density [kg/M3] 

CY Stefan-Boltzmann constant = 5.6696 X 10' W/M2 K4 

CY Prandtl/Schmidt number 

CY S scattering coefficient [m7l] 

Cr W wall shear stress in boundary layer model, Eq. (3.100) [N1m 21 

0 ii viscous stress tensor, unclosed: Eq. (3.11); closed: Eq. (3.46) [Nlmll 

I' equivalent optical distance (or thickness) of path length L 

294 



Nomenclature 

T optical coordinate, optical thickness, Eq. (4.8) 

T characteristic time scale in EDC model [s] 

Ir 11 
Kolmogorov time scale of smallest motions [s] 

V kinematic viscosity [m2/sl 

(D scattering phase function, Eq. (4.3) [sr"] 

(D viscous dissipation term, unclosed: Eq. (3.16); closed: Eq. (3.5 1) [W/M 3] 

(and Nf ) azimuthal angle in spherical coordinate system [rad] 

dependent variable 

polynomials, Eq. (2.3) 

X fraction of fine structures reacting: EDC model, Eq. (3.70) 

XI I X21 X3 correlation factors in EDC model, Eqs. (3.71-73) 

V bilinear shape (or basis) functions in FE parametric mapping 
Q solid angle [sr] 

CO relaxation factor, Eq. (2.37) 

CO single scattering albedo, Eq. (4.7) 

CO bandwidth parameter in band model, Eq. (4.7) [cnf 1] 

CO chemical reaction rate [MOUM3S] 

(1) angular velocity of crank shaft [rad/sl 

Subscripts and Superscripts 
b blackbody 

e element 

eff effective -= laminar + turbulent 
F fuel 

g gas 
i incident or incoming 

0 oxidiser 

0 outgoing 
P product 
P piston 
I laminar 

r reaction or reflection 
S chemical species or surface 
t turbulent 

W wall 
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Nomenclature 

Diacritical marks 

[] 

time-averaged mean quantity ý, Eq. (3.4) 

Favre-averaged mean quantity 0, Eq. (3.6) 

turbulent fluctuation of after time-averaging, Eq. (3.5) 

turbulent fluctuation of after Favre-averaging, Eq. (3.7) 

modified, characteristic or EDC model fine structure quantity 

quantity 0 in fluid surrounding fine structures in EDC model 

mean molar concentration of 0 [MOI/M3] 

Abbreviations 
ADI alternate direction implicit IVO 

ASM algebraic stress model MBT 

ATDC after top-dead-centre NIC 

BDC bottom-dead-centre NURBS 

BTDC before top-dead-centre ODE 

CDF cumulative distribution function PDC 

CFD computational fluid dynamics PDF 

DEF discrete exchange factor QSOU 

DOM discrete ordinates method RSM 

DT discrete transfer SI 

EDC eddy dissipation concept SIMPLE 

EVO exhaust valve opens SLOR 

EVC exhaust valve closes SOR 

FE finite element TDC 

ILDM intrinsic low-dimensional TDMA 

manifold TRI 

IVC inlet valve closes WSGG 

inlet valve opens 

maximum brake torque 
Monte Carlo 

nonuniform rational B-splines 

ordinary differential equation 

partial donar cell 

probability density function 

quasi-second-order upwind 
Reynolds stress model 

spark ignition 

semi-implicit pressure linked eqs. 

successive line overrelaxation 

successive overrelaxation 
top-dead-centre 

tri-diagonal matrix algorithm 
turbulence-radiation interactions 

weighted-sum-of-gray-gases 

Note: (a) YIX is not an abbreviation (see p. 136). 

(b) 'divergence of radiative heat flux' is often abbreviated as 'flux divergence'. 
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