Thesis-2018-Duffus.pdf (9.72 MB)
0/0

Open quantum systems, effective Hamiltonians and device characterisation

Download (9.72 MB)
thesis
posted on 03.07.2018 by Stephen N.A. Duffus
We investigate the some of the many subtleties in taking a microscopic approach to modelling the decoherence of an Open Quantum System. We use the RF-SQUID, which will be referred to as a simply a SQUID throughout this paper, as a non-linear example and consider different levels of approximation, with varied coupling, to show the potential consequences that may arise when characterising devices such as superconducting qubits in this manner. We first consider a SQUID inductively coupled to an Ohmic bath and derive a Lindblad master equation, to first and second order in the Baker-Campbell-Hausdorff expansion of the correlation-time-dependent flux operator. We then consider a SQUID both inductively and capacitively coupled to an Ohmic bath and derive a Lindblad master equation to better understand the effect of parasitic capacitance whilst shedding more light on the additions, cancellations and renormalisations that are attributed to a microscopic approach.

History

School

  • Science

Department

  • Physics

Publisher

© Stephen Neil Alexander Duffus

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2018

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

Language

en

Exports

Logo branding

Exports