Loughborough University
Browse
- No file added yet -

Organically-modified layered silicates as reinforcing fillers for natural and synthetic rubbers

Download (19.15 MB)
thesis
posted on 2018-07-02, 10:41 authored by Jirachai Mingbunjerdsuk
This research is concerned with the characterisation and properties of natural rubber (NR), styrene-butadiene rubber (SBR) and acrylonitrile-butadiene rubber (NBR) nanocomposites. The fillers used were unmodified sodium montmorillonite clay, three organically-modified clays with different types and concentrations of modifiers, and, for comparison, a carbon black. The clays were characterized by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and x-ray diffraction (XRD). The composites were prepared via melt compounding and sulphur curing in an internal mixer. Better dispersion was found for the organoclays rather than for the unmodified clay as was seen by scanning electron microscopy (SEM). Intercalation and some exfoliation of certain organoclays in rubbers were achieved as revealed by XRD and transmission electron microscopy (TEM). The most polar rubber proved more effective in nanocomposite formation. The incorporation of organoclays affected torque and curing time as measured using a Monsanto rheometer. The organoclays can accelerate the vulcanization process, but the effect was reduced with increasing clay loading. The crosslink density decreased with increasing organoclay content. The static and dynamic mechanical properties of the rubber-layered silicate composites such as tensile properties, modulus, tear strength, fatigue life and dynamic visco-elastic properties are discussed. There was a significant improvement in modulus, tensile strength and elongation at break as compared to the composites prepared with the untreated clay. Dynamic mechanical analysis shows an increase in the storage and loss modulus for the nanocomposites. Overall, the content of clay and the type of modifier both affect the curing and mechanical properties. Rubber-organoclay nanocomposites show a good reinforcing effect which is comparable to that achieved with carbon black. In particular, the tear and fatigue properties of the organoclay-rubber nanocomposites exceeded those of the rubbers reinforced with carbon black.

Funding

Thailand, Government.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Materials

Publisher

© Jirachai Mingbunjerdsuk

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2005

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy at Loughborough University.

Language

  • en

Usage metrics

    Materials Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC