Loughborough University
Browse

Parallel applications and solutions in artificial intelligence and expert systems

Download (5.99 MB)
thesis
posted on 2013-11-27, 13:14 authored by Kifah Raafat Tout
The work presented in this thesis focuses on the design and implementation of parallel algorithms for problem solving tasks principally in Rule-based Expert Systems and Artificial Intelligence (AI). Rule-based Expert Systems are widely used in AI. Their use covers a wide variety of application areas. However, in most cases, these systems are computation intensive and run slowly. This increases the need for high performance and real-time response. Because of the convergence of parallelism in computer design and the wide spread use of expert system in industry, the design of Parallel Expert System has become of increasing importance. Parallel computation may prove useful in shortening the processing time of the expert systems. Expert systems are being designed for both distributed (loosely-coupled) and shared-memory (tightly-coupled) multiprocessor machines. The work presented here is an attempt to focus on the issues involved in designing a rule-based expert system for a shared memory "multiprocessor system (the Sequent Balance 8000). Eight parallel Forward Chaining models and two parallel Backward Chaining models are implemented. These models are presented in Chapter 5 and 6, together with a study of their efficiency.

History

School

  • Science

Department

  • Computer Science

Publisher

© K. R. Tout

Publication date

1991

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID

uk.bl.ethos.333497

Language

  • en

Usage metrics

    Computer Science Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC