Routing in highly dynamic wireless networks such as Vehicular Ad-hoc Networks
(VANETs) is a challenging task due to frequent topology changes. Sustaining
a transmission path between peers in such network environment is difficult. In
this thesis, Previous Hop Routing (PHR) is poposed; an opportunistic forwarding
protocol exploiting previous hop information and distance to destination to
make the forwarding decision on a packet-by-packet basis. It is intended for use in
highly dynamic network where the life time of a hop-by-hop path between source
and destination nodes is short. Exploiting the broadcast nature of wireless communication
avoids the need to copy packets, and enables redundant paths to be
formed. To save network resources, especially under high network loads, PHR
employs probabilistic forwarding. The forwarding probability is calculated based
on the perceived network load as measured by the arrival rate at the network
interface. We evaluate PHR in an urban VANET environment using NS2 (for
network traffic) and SUMO (for vehicular movement) simulators, with scenarios
configured to re
ect real-world conditions. The simulation scenarios are configured
to use two velocity profiles i.e. Low and high velocity. The results show that the
PHR networks able to achieve best performance as measured by Packet Delivery
Ratio (PDR) and Drop Burst Length (DBL) compared to conventional routing
protocols in high velocity scenarios.
Funding
Iraq, Ministry of Higher Education and Scientific Research.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2018
Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.