Thesis-2014-Aliyu.pdf (4.04 MB)

Product stewardship as a novel sustainability pathway for the UK precast concrete industry

Download (4.04 MB)
thesis
posted on 10.10.2014, 10:53 by Abdullahi A. Aliyu
Over the last two decades, sustainability has matured to become a societal imperative and is at the forefront of UK government policy and industry strategy. For example, the Strategy for Sustainable Construction (BERR, 2008) and Low Carbon Construction (BIS, 2012) reports have focused on encouraging more sustainable construction through reductions in energy, water and resource use. In response to such demands, the UK precast concrete industry developed a sector sustainability strategy and subsequently chose to continue activities in this area through an Engineering Doctorate (EngD) research project. The project focused on the scope for applying the principles of product stewardship (PS) as a means to mitigate environmental impacts associated with precast products, throughout the entire life-cycle of their use. Numerous PS schemes have been adopted in other industrial sectors, such as chemicals, electronics and product manufacture. One of the distinguishing features of PS is that multiple stakeholders need to take responsibility for their ‘share’ of environmental impacts, and that life-cycle thinking should pervade the value chain. Hence, through PS, the precast industry might be able to address not only the impacts within cradle-to-gate phases, but also develop a framework to positively act on broader, cradle-to-grave impacts. The aim of this research was to develop a framework for embedding the principles of PS more deeply into the precast industry, creating a novel pathway towards more sustainable construction. The research commenced with a literature review to understand the key sustainability issues affecting the industry, followed by an analysis and synthesis of industry key performance indicator (KPI) data from 2006–2012. Industry participation in the research was facilitated through a questionnaire survey and interviews with senior staff within UK precast businesses. Evidence of PS practices was found to exist within the industry through responsible sourcing schemes, implementation of Environmental Management Systems and through the mitigation of various specific impacts. However, the coordinated communication of such initiatives was found to be lacking and with the advent of new European standards around Environmental Product Declarations (EPD) for construction, it was decided that the precast industry would benefit from a sector-specific EPD framework to capture and communicate its PS credentials. An EPD framework and tool was therefore developed and validated through a focus group, to establish whether an EPD can be used successfully to deliver environmental information and refine an approach such that it would accord with the principles of PS. Further research and development arising from this research could focus on implementation and evaluation of the industry-specific EPD scheme, a mechanism to communicate and share life-cycle information amongst upstream and downstream stakeholders and a means through which stakeholder responsibility can be attributed and managed effectively. The key findings of this research have been presented in four peer–reviewed papers (one of which is in draft) which are presented in the Appendices.

Funding

The Engineering and Physical Sciences Research Council; The British Precast Concrete Federation; The Centre for Innovative and Collaborative Engineering at Loughborough University

History

School

  • Architecture, Building and Civil Engineering

Research Unit

  • Centre for Innovative and Collaborative Engineering (CICE)

Publisher

© Abdullahi Adamu Aliyu

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2014

Notes

A dissertation thesis submitted in partial fulfilment of the requirements for the award of the Engineering Doctorate (EngD) degree at Loughborough University.

Language

en

Qualification name

EngD

Qualification level

Doctoral