Thesis-2020-Luo.pdf (908.21 kB)
Download fileRandom periodic paths through random attractors, synchronizations and Lyapunov exponents
thesis
posted on 2021-03-29, 08:41 authored by Yan LuoIn this thesis, we discuss the existence of random periodic paths through studying random periodic attractors and synchronization of stochastic periodic semi-flows. We define a random periodic attractor as an invariant set attracting all trajectories when time goes to infinity. We prove the existence of random periodic attractors for stochastic periodic semi-flows and give conditions to enable a random periodic attractor to be a singleton which means that stochastic periodic semi-flows become synchronized. Then synchronization of stochastic periodic semi-flows can imply the existence of random periodic path. We also apply our results in Benzi–Parisi–Sutera–Vulpiani’s stochastic differential equation and use some numerical methods to compute Lyapunov exponents. Finally with the help of the idea of random attractors and Lyapunov exponents, we find the existence of the random periodic path of this equation.
History
School
- Science
Department
- Mathematical Sciences
Publisher
Loughborough UniversityRights holder
© Yan LuoPublication date
2020Notes
A thesis submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of Loughborough University.Language
- en
Supervisor(s)
Huaizhong Zhao ; Chunrong FengQualification name
- PhD
Qualification level
- Doctoral
This submission includes a signed certificate in addition to the thesis file(s)
- I have submitted a signed certificate