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Abstract i

Abstract

With the evolution of content demand characteristics and the emergence of

crowdsourced streaming services, Internet video traffic including on-demand and

live videos has grown explosively. This leads to new challenges for video stream-

ing systems in terms of controlling the core network congestion and meeting the

quality of service (QoS) requirements of users. To solve these problems, leveraging

edge computing and storage resources has become a promising solution to enable

content caching and transcoding. For on-demand videos, by caching popular con-

tents at the network edge, the user requests for those contents will not be transmitted

to the core network and hence can be served with less delay. Thus, the backhaul link

load and the network congestion can be alleviated. However, how to determine the

optimal caching placement under content popularity dynamics aiming to maximize

the caching efficiency remains to be an open issue. On the other hand, to ensure the

adaptive streaming of live videos, various formatting and quality versions need to

be transcoded concurrently. Utilizing the abundant computational resources at the

user end (UE) is a promising solution to provide adaptive streaming and meet the

stringent latency requirements of those services. The goal of this thesis is to study

reinforcement learning (RL) to solve online decision-making problems in content

caching and video transcoding systems at the network edge leveraging the contex-

tual information.

First, we study how to dynamically update the content placement at the edge

server assuming the unknown and time-varying content popularity profile. The

caching decision problem is modelled as a non-stationary Markov decision pro-

cess (MDP) with varying states and transition probabilities. A context-aware pop-
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ularity learning algorithm is designed to learn the time-varying file popularities via

incremental clustering scheme. With the assistance of the learned knowledge, an

RL-based content caching scheme is designed via state-action-reward-state-action

(SARSA) and linear function approximation. Next, enlightened by the RL-based

caching scheme, a reactive caching algorithm is proposed to reduce the computa-

tional complexity by directly comparing the popularities between the requested file

and the cached files for cache replacement decision.

Secondly, an edge-assisted transcoding system is proposed for crowdsourced

live streaming services, and a new quality of experience metric is defined which

considers the influences from both the quality and the genre of the received live

video. The transcoding task assignment and viewer association problem is formu-

lated as a non-convex integer optimization problem aiming to maximize the network

utility of the transcoding system, which is then solved by the computationally at-

tractive complementary geometric programming (CGP).

Thirdly, a more complex edge transcoding system is studied taking into ac-

count the delay requirements of the viewers. To identify the risk of choosing highly

unstable transcoders while learning the transcoding capabilities of transcoders, we

first study to solve a risk-aware multi-armed bandit (MAB) problem with refined

upper confidence bounds (UCBs) of the arms’ variances. Based on the UCBs, a

risk-aware contextual learning algorithm is designed to decide which transcoders

are more stable and more efficient. In addition, an epoch-based transcoding task

assignment and viewer association algorithm is proposed to maximize the network

utility and maintain low transcoding task switching cost.

Finally, a structured bandit problem is studied to solve the transcoder selection

problem from a different perspective. Here, assuming that there are performance

correlations among multiple transcoders but the context information used to build

the correlations is not available. To tackle the structured bandit problem which

assumes the arm rewards are functions of globally shared parameters, an enhanced

Thompson sampling (TS)-based algorithm is designed to sequentially select fog

transcoders while handling the exploration-exploitation (EE) dilemma.
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Chapter 1

Introduction

1.1 Motivation: Video Streaming Systems

Over the last few years, with the advance of machine-type communications

and explosive user demands for video sharing, online video services including the

video content sharing platforms (such as YouTube, TikTok, Facebook, etc.) and

the crowdsourced live video platforms (such as Twitch, Periscope, Huya, etc.) have

become enormously popular. Using these platforms, professional content providers

(CP) and independent users have been releasing the sheer amount of videos. More-

over, most videos in these services need to be offered with different quality versions.

This further enlarges the increasing trend of video traffic. According to [3], Inter-

net video traffic is expected to account for 82 percent of all business Internet traffic

by 2022. This tendency enforces the network operators to upgrade video stream-

ing system with adaptive bit rates (ABRs) by carefully allocating and scheduling

computing, storage, and transmission resources.

There are mainly two types of videos in the video streaming systems. The

first type is the on-demand video and the second type is the live video. There are

several differences between the two types of videos. First, on-demand videos are

relatively more delay-tolerant compared with live videos and can maintain popular

in a period of time. Besides, only a part of files is frequently requested by the

viewers. For instance, only one percent of the popular Facebook videos represents

83 percent of the total watch time [4]. Therefore, studying content popularity plays
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an important role in on-demand video streaming. Furthermore, caching some on-

demand contents in the network to serve the requests without directly querying the

CPs can greatly improve the video streaming by serving requests with less delay

and relieving the congestion of the core network.

However, for live video viewers, the delay requirement has become more strin-

gent because the former live video chunks of a broadcaster can be outdated very

soon and the viewers usually care much more about the latest video chunks. In

addition, recent live streaming services have also enabled real-time chatting among

viewers and broadcasters, which needs the live video to be streamed with very low

latency for seamless chatting experience. Moreover, given the specific live video

characteristics and requirements, caching the videos at network and servers is not

a viable solution for live video streaming, which may bring extra delay and energy

cost. In fact, due to the latency requirement of the live video streaming, providing

viewers with multiple quality versions for a large number of live videos simultane-

ously becomes even more challenging than on-demand videos.

To solve the network congestion problems in the late 1990s and 2000s, content

delivery network (CDN) was proposed as a highly distributed platforms of servers

to serve the end users with the replications of contents cached in those servers and

reduce the streaming delays experienced at the UEs. With the help of the CDN,

user requests can be transmitted through the domain name servers of the CDN to

the nearest CDN servers with the requested content [5]. The decision on which

server is selected for replications storage is based on the constant monitoring and

load balancing on data traffic in the network [6]. In the existing CDNs, in order to

maintain a session for video streaming, the user should have the Internet protocol

(IP) address of the CP. Another drawback of CDN is that most of the communica-

tion features such as mobility, security, and management are not built-in [7], while

incorporating new services and features to existing video streaming system relies

on complex protocol design which may fail at time.

To ensure the quality of experience (QoE) of users, traditional CDN faces var-

ious challenges. The problem emerges since many users can request for the same
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content and make a large number of repetitive data streams being transmitted in the

core network. This leads to the network congestion issue. Besides, to serve a large

number of requests, the energy and bandwidth cost for the CP cannot be ignored.

Moreover, since most users can be far from the CP, the resulting content delivery

latency can drastically affect the users’ QoE.

In recent years, with the proliferation of video sharing systems and social net-

works, end users are enabled to publish their own video contents and share them

globally, which leads to new challenges such as congestion problems. Under this

situation, the performance and scalability of the traditional CDN could not meet

the requirement of the content demand evolution and thus, CDN faces challenges

such as large network delay, heavy core network load, and huge network energy

consumption. To solve the emerging challenges, the communication network is

now shifting towards the information-centric networking (ICN) paradigm [8]. The

main idea of ICN is to evolve the communication functions from the IP-based fash-

ion to a content-based fashion. More specifically, the current Internet infrastructure

which is a host-centric paradigm based on perpetual connectivity and the end-to-end

principle can be replaced with a novel network architecture that focuses on ‘named

information’ such as contents or files. Based on ICN, an instantiation called content-

centric networking (CCN) [9] is designed to make content addressable and routable.

Besides, the content-based security is adopted that secures the content rather than

the communication channel. Therefore, the CCN architecture can make use of the

storage of network nodes to achieve in-network caching thus improving the network

performance, which is referred to as content caching. In Figure 1.1, a cache-enabled

network architecture is presented.

Given all the advancements, there are still challenges in video streaming sys-

tems as follows:

• The content placement problem studying which contents to cache in network

nodes are still challenging especially with popularity dynamics. This is be-

cause the content popularities can be unknown and highly dynamic in real-

world scenarios. Besides, to reduce the experienced delays at the UE, recent
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Figure 1.1: Architecture of a cache-enabled wired network

works study to proactively cache some contents to serve the user requests

rather than serving the user requests reactively [10], which also needs accu-

rate knowledge of the popularity dynamics.

• Due to the heterogeneity in the user network conditions such as user habits,

the ABR service has played a significant role. By providing ABR service,

multiple quality versions of the same video will be generated for various user

preferences and network conditions to achieve adaptive streaming. However,

implementing ABR service under the gigantic video contents requires mas-

sive computing resources, especially for live videos, which leads to high com-

putational costs for the platforms.

• Finally, recent developments in edge computing have brought the additional

possibility of improving the video streaming systems by shortening the dis-

tance and reducing the network delay between the CP and the users. For in-

stance, we can utilize cache-enabled edge nodes to serve content requests.

Besides, the computational resources of edge nodes can be applied to do

transcoding, which can relieve the pressure of the core network and reduce

the streaming delay. How to efficiently utilize the edge caching and comput-

ing has become a crucial challenge.
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1.1.1 Content Caching

Content caching has been widely studied for the fifth generation (5G) com-

munication networks in the past few years [11–13]. Content caching is the key

technology of CCN architecture and enables nodes in the network to cache some

popular content files to serve user requests. By utilizing this technology, nodes with

caching capability can greatly reduce the delay experienced by the users since a

large proportion of requests can be served locally without being fetched from the

CPs. Besides, content caching will also reduce network traffic since much fewer

repetitive files will be transmitted in the backhaul link thus alleviating the overall

traffic load and reducing the power consumption.

In the on-demand video streaming system, content caching problems have been

studied in the following directions. First, introduced by [14], the server placement

problem has been investigated to study where to deploy the cache-enabled servers.

Normally this problem is solved by minimizing either the users’ latency, or the total

bandwidth consumption, or an overall cost function. Similarly, there are also stud-

ies on the cache allocation problem that focus on determining how much caching

capacity should be allocated to each cache-enabled server [15]. Finally, in recent

works, with the knowledge of content popularity profile, the cache placement prob-

lem is discussed to decide which files should be cached at each server (e.g., [16]).

With the advances in wireless communications and the edge computing, con-

tent caching techniques at the network edge have become an interesting research

topic [17]. For example, as presented in Figure 1.2, content caching at the base sta-

tion (BS) and the user devices are potentially good choices to reduce the backhaul

load of the network and the playback latency experienced by the users. However,

caching at the network edge is fundamentally different from in-network caching

and has raised new challenges. First, since the storage resources at the edge are

highly limited as compared to the cloud data centres, how to efficiently utilize the

cache capacity becomes a crucial issue. Second, at the network edge, the volume

of requests for contents and files are much smaller and the request patterns and

content popularity profiles are highly dynamic over time and location. These fea-



1.1. Motivation: Video Streaming Systems 6

Figure 1.2: Architecture of a cache-enabled cellular network

tures, together with the inherent volatility of the wireless channels, make it highly

challenging to identify the variation of the popular files and to optimize the cache

placement scheme.

Classical content placement schemes such as least frequent used (LFU) and

least recently used (LRU) are widely applied in current content caching systems

and there are still some studies based on them (e.g., [18]) or use them as the bench-

marks (e.g., [1], [2]). Applying LRU scheme requires to keep the request sequence

number of each cached content, the node always tries to update its cache by replac-

ing the least recently requested content (which has the smallest request sequence

number) with the newly requested content. In the LFU scheme, the node always

caches the most frequently requested content. However, the caching performance

might drop drastically if the content popularity changes. The LFU can be treated as

optimal under an independent reference model (IRM) which is described in Section

2.1.4.1. On the other hand, the LRU reaches the optimal competitive ratio when the

requests are made adversarially. However, both schemes have limitations to handle

non-stationary popularity profiles, as it is the case in practical caching networks. In

addition, although it is possible to estimate the global popularity in systems such

as the on-demand video streaming, the global popularity may not match the local

popularity because the servers locating at the network edge can only serve a small
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geographical area with limited requests, and the variation tendency of the global

popularity and the local popularity can be totally different. These challenges moti-

vate us to study the content caching scheme of an edge server under non-stationary

and time-varying popularity profiles without any global information.

There are two types of study for content popularities. First, a large proportion

of works employ the IRM to track the content popularities and synthesize the user

request pattern assuming the user requests are made in an independent and identi-

cally distributed (i.i.d.) fashion from a predefined distribution [11]. On the other

hand, there are many works discussing about learning the content popularity profiles

and then optimizing the caching system. The social networks and the user mobility

information are considered to learn the content popularities and various types of

machine learning (ML) schemes are utilized. However, most of works either as-

sume that the prior knowledge of the content popularities is known for the caching

placement or alternatively, requires training sessions to learn the file popularities.

These schemes need considerable time for learning and could incur an economic

cost to acquire the data for popularity learning, otherwise, it can be outdated and

deem to be invalid with non-stationary content popularity.

1.1.2 Edge Computing and Video Transcoding

The revolution of the mobile Internet driven by the powerful mobile devices

and social networks has greatly enriched the sources of video platforms. As an

outcome of the revolution, crowdsourced live streaming platforms (CLSP) such as

Twitch, Huya, and Periscope have emerged as a new type of video platforms, that

not only serve tremendous viewers all over the world but also receive live videos

from various sources in the crowd [19]. Different from on-demand video sharing

platforms, CLSPs have been allowing a growing number of people to broadcast their

live videos over the Internet. Meanwhile, each viewer can directly discuss with the

broadcasters and the other viewers via real-time chatting.

However, due to the heterogeneity of broadcasters’ devices, different quality

versions of live videos need to be created and uploaded to the CLSP [20]. As a re-

sult, there is a strong need to transcode the original live videos into several industrial
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standard representations and to serve viewers with a set of proper versions of repre-

sentations. To provide the ABR service, there are massive computational demands

due to real-time processing requirements which need to be met. For instance, in

2020, there are about 3.84 million monthly broadcasters which are active on Twitch,

and in average 56,000 of these broadcasters will broadcast concurrently [21]. In ad-

dition, according to the previous study [22], the number of online users may change

dramatically over time. Therefore, instead of building private data centres to facil-

itate ABR, cloud computing has become a natural solution to perform transcoding

because of its powerful computing ability and the ‘pay as you go’ feature. Fur-

thermore, the emergence of cloud computing releases CLSP from building large,

expensive private data centres. In Figure 1.3, a cloud computing-based live stream-

ing system is illustrated. In such a system, the CLSP controller will decide the

number of representations that need to be transcoded for each broadcaster based

on parameters such as viewer capacity, playback delay, bandwidth consumption

etc. The original live videos will be directly transmitted to the cloud data centre

for transcoding. When multiple versions are generated in the cloud, CDNs will be

utilized to deliver proper versions of live videos to the corresponding viewers.

On the downside, in current CLSPs, the cloud transcoding is not able to pro-

vide the ABR service to most of the broadcasters. For instance, in Twitch.TV, only

the premium broadcasters have access to the ABR service, and for the rest of the

broadcasters, only the original versions are available for their viewers [19]. The

reason behind this is that a general cloud instance can only deal with at most two

transcoding tasks simultaneously. Therefore, an enormous cost will be incurred

when a large number of original live videos are planned for transcoding. Moreover,

in cloud transcoding systems, the cloud data centre can be far from the viewers

or the broadcasters. This will cause high latency. In addition, most of CLSPs

support the broadcasters and viewers with interactive chat service. Under such a

scenario, the latency problem has become even more significant than the traditional

live streaming platforms.

The development of edge computing has brought a potential transcoding solu-
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Figure 1.3: Architecture of a cloud transcoding assisted CLSP

tion for CLSP. Since edge computing [23] is more suitable for real-time processing

and low-latency applications, it can be treated as a viable replacement (e.g., [24,25])

to address the weakness of the cloud transcoding. In [24], a case study is presented

for Twitch.TV. This case demonstrates that with the advance of personal computing

devices, a significant fraction of CLSP viewers potentially has appropriate comput-

ing resources for stable real-time transcoding. In addition, the viewers have already

expressed the willingness to support the broadcasters and the CLSPs in terms of

donation and subscription [26]. Thus, the cost by involving them into transcoding

can be much lower. Moreover, edge-assisted transcoding can lead to lower latency

and avoid the network traffic traversing through the core network since different

versions of videos will be created at the network edge.
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1.2 Edge Computing Resource Management and Re-

inforcement Learning
The development of edge computing has migrated data computation and stor-

age to the network edge closer to the UEs [27], which can provide considerable

computational and storage resources for delay-sensitive applications such as video

transcoding and streaming.

However, efficient utilization of the resources at the network edge remains to

be highly challenging since in problems such as cache replacement and transcod-

ing task assignment, decisions need to be made in an online fashion with minimum

prior information and latency. Although large-scale convex optimization [28] has

provided powerful tools for edge resource management, in most of practical video

streaming systems, there are parameters such as the file popularity [1] and com-

putational stability [24] which are unknown before decision-making. Therefore,

directly solving optimization problems is infeasible and extra learning processes

are necessary to facilitate the large-scale optimization.

To enhance the decision-making process in edge-assisted video streaming

system, online decision-making models and RL have been studied and applied.

The challenge of solving the decision-making problem is how to balance the EE

dilemma. If the agent only exploits the knowledge learned so far to make decisions,

the opportunity of reaching better performance will be missed, however, if the agent

keeps exploring the unknown environment to gain knowledge, obviously some poor

decisions can be made, which can cause performance loss.

There are two well-known decision-making models which are MDP and multi-

armed bandit (MAB). MDP is a discrete-time stochastic control process. It offers

a framework which can model decision-making problems in situations where out-

comes are partly random and partly under the control of a decision agent. The

standard MDP is a 4-tuple (A,S,Pa(s,s′),ra) where

• S is the state space which is a set of process states.

• A is the set of possible actions a decision agent can take.
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Figure 1.4: The agent–environment interaction in RL

• Pa(s,s′) is the transition probability that the state moves from s to s′, given

action a is taken.

• ra is the immediate reward when action a is taken.

In Figure 1.4, in a specific state, the agent will take an action based on a selection

policy, after that, a reward will be returned from the environment and the process

will move to the next state with a transition probability. Based on the MDP, RL can

be applied to train a policy to take optimal actions within an environment to max-

imize the returned cumulative reward. Particularly, the MDP is assumed to follow

the Markov property which means that the future state transition is independent of

the past states given the current state.

In some decision-making problems, the state of the decision process will not

change with the taken actions. In this case, MDP is not suitable any more, there-

fore, MAB is proposed to model this type of problems. In an MAB problem, a

machine (which is referred to as an arm) can instantly generate a random reward

if it is pulled and an agent aims to maximize the received cumulative reward by

sequentially pulling a number of arms. MAB can be applied into a wide range of

applications including cognitive radio networks [29], reconfigurable antennas [30],

crowdsourcing system [31], online recommendation [32], and dynamic hybrid net-
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works [33] etc. In a standard stochastic MAB problem, a random reward of an arm

can be observed when it is played by an agent and the reward of each arm is as-

sumed to be independent of each other. The objective is to select a number of arms

to play to maximize the cumulative rewards in a certain amount of rounds.

The objective of the standard MAB implies that the arm with the highest ex-

pected reward is always treated as the optimal choice. However, in reality, there are

many applications for which not only the expected rewards but also the uncertainty

of the rewards imposed by the variations are key when making online decisions.

This is because an arm with a large variation may generate very low reward which

can lead to unaffordable failure. For instance, in clinical trials, instead of directly

taking a treatment which reaches the best average therapeutic result but may lead

to an unacceptable poor result, a treatment that works consistently well for every

patient is more reliable and hence more desirable. Therefore, for such applications,

the tradeoff between the means and the variances of arms should be considered by

studying the risk-aware MAB framework.

In the classical MAB problem, it is assumed that the reward of an arm follows

an independent probability distribution. Therefore, the reward observed from one

arm cannot reveal the reward information of other arms. This type of MAB can

be categorized as the non-informative bandit problem and many algorithms are de-

signed to solve this problem including UCB [34], TS [35] and ε-greedy [36] (The

standard MAB algorithms are discussed in Section 2.3.1). However, this assump-

tion does not hold in many applications. For example, in a news recommendation

system, a company needs to decide which news to present to the users to maxi-

mize the click-through rate [37]. If we assume this model is non-informative, then

the correlation among different users will be ignored. However, users with similar

ages, occupations or levels of education may have similar news preference, which

should also be considered to help solve the bandit problem. Therefore, the correla-

tion among different arms should be taken into account in order to solve the MAB

problem in a faster and more accurate way.
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1.3 Technical Challenges

In content caching networks, understanding and predicting the dynamic time-

varying popularity profile can greatly affect the performance of the caching system.

There are many recent papers focusing on learning the popularity profile. Specifi-

cally, some works look at how a file’s trending evolves [16] or utilizing social net-

works to predict the popularity profile [38]. More recently, ML technologies (such

as bandit scheme [39], Q-learning [40] and transfer learning [41]) have also been

utilized to learn the popularity profile. However, due to the non-stationarity of the

popularity profile, it is still challenging to explicitly model the popularity dynam-

ics for caching algorithm design. Besides, there are still requirements for accurate

non-stationary file requests model, which can be beneficial for large scale analysis

and evaluation.

For the emerging crowdsourced live streaming systems, given the explosive

amount of independent broadcasters, how to ensure reliable ABR service while

satisfying the cost and delay requirements is still in its infancy. In [24], the com-

putational capability of viewer devices at the network edge has been tested and the

results demonstrated that viewer devices are capable to complete real-time transcod-

ing task. Thus, involving these abundant computational resources into transcoding

may greatly relieve the burden of the CLSP in terms of delay and cost. However,

the transcoding performance of these devices is unknown and can be highly dy-

namic. Thus, online learning schemes which identify the proper fog transcoders and

the risk during exploration of the transcoders’ performance should be considered.

Moreover, although we can find that fog devices which show similar computational

abilities and are from users with similar patterns may yield close transcoding per-

formance, how to accurately measure and utilize the correlation to assist learning

are worth studying. Besides, it is also challenging to design appropriate auction

and rewarding methods to incentivize and recruit capable viewer devices for edge

transcoding [26, 42].
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1.4 Thesis Contributions and Organization

The remainder of this thesis is organized as follows. Chapter 2 presents a

review of the related works in on-demand video caching and live video transcod-

ing. We mainly discuss several aspects, such as RL-based content caching models,

context-aware popularity-based caching schemes, cloud and edge-assisted transcod-

ing system, and some recent works in decision-making problem, which considers

the risk-sensitivity and correlated arm structure.

Chapter 3 studies the cache replacement problem at the network edge. We first

propose a context-aware popularity learning algorithm to learn the time-varying

file popularity profiles. Particularly, an incremental clustering algorithm is applied

to requests with varying context information. This helps to obtain the similarities

among requests, which enhances the learning rate and accuracy. After that, the

caching decision problem is modelled as a non-stationary MDP. By invoking a lin-

ear function approximation, an RL-based content caching scheme is designed via

SARSA. By incorporating the knowledge learned from the context-aware popularity

learning algorithm, the RL is accelerated and the caching decisions are improved.

Next, enlightened by the RL-based caching, a reactive caching algorithm is pro-

posed to reduce the computational complexity. A rigorous theoretical analysis on

the popularity learning performance is provided and the sublinear learning error

over time is demonstrated. We prove that the proposed reactive caching scheme

converges to the optimal caching scheme with an increasing number of requests

and given true file popularity. Moreover, the time complexities of the proposed

algorithms are shown to be competitively low, which enhances the scope of the al-

gorithms for practical applications. Finally, multiple settings of time-varying pop-

ularity profiles are designed for performance evaluation, by simulating both the

independent and temporal correlated file request processes. Numerical results con-

firm that both algorithms provide a more robust caching performance as compared

to several solutions when the file popularities are unknown and time-varying.

Chapter 4 studies a joint transcoding task assignment and viewer association

problem with edge computing. In this chapter, the transcoding success rates of the
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fog devices are introduced and a new QoE metric is defined for the edge-assisted

transcoding system by considering the effects of both the quality of the received

video but also the genre of the video. Next, an optimization algorithm based on

CGP is designed to solve the resultant non-convex integer programming. Finally,

trace-driven simulations demonstrate that the proposed algorithm outperforms ex-

isting benchmark schemes and can dynamically decide the transcoding schedule

over time.

Chapter 5 formulates an extended edge-assisted crowdsourced live video

transcoding problem where the transcoding capabilities of the fog transcoders are

unknown and dynamic. To learn the risk of choosing highly unstable transcoders

while making decisions, given the risk-sensitivity of the studied problem, two risk-

aware bandit algorithms are designed to balance the mean-variance tradeoff with

refined UCB of the arms’ variances. Based on the studies, a risk-aware contex-

tual learning scheme is applied to estimate the transcoding capabilities of the fog

devices. Combining the context awareness and risk sensitivity, a novel transcod-

ing task assignment and viewer association algorithm is proposed. Moreover, to

further reduce the switching cost which is incurred by assigning the same transcod-

ing task to different transcoders, an epoch-based assignment strategy is designed.

Finally, numerical results demonstrate that the proposed algorithm reaches a com-

petitive network utility and significantly reduces the switching cost, as compared to

the benchmark scheme.

Chapter 6 studies a different version of the fog transcoder selection prob-

lem. By considering the correlations of transcoding stability among different fog

transcoders, a structured bandit problem is formulated by assuming that some pa-

rameters in the arm reward functions are shared by all the arms. To solve the formu-

lated decision-making problem, we first build a confidence set which is a set of pa-

rameters whose expected reward is close to the empirical mean rewards of all arms,

and then a novel technique is designed to estimate the true value of the unknown

parameter based on the established confidence set. Moreover, a novel TS-based

algorithm is proposed to handle the EE dilemma. Simulation results demonstrate
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that the proposed globally-informative Thompson sampling (GI-TS) algorithm can

solve the transcoder selection problem with a noteworthy improvement of the learn-

ing regret compared with the existing benchmarks.

Finally, chapter 7 concludes the thesis and discusses potential future research.
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Chapter 2

Literature Review

Edge computing is a distributed computing paradigm that brings storage and

computational resources to where it is needed, utilizing the collaborative multitude

of end-user or near-user devices [43]. With the development of both on-demand

and live video streaming services, the deployment of caching and transcoding at the

network edge has become a cost-efficient and low-latency solution for video stream-

ing. In this chapter, we provide a state-of-the-art review of the most relevant works

in the field of content caching, video transcoding, and online decision-making in

edge-assisted video streaming systems.

2.1 Content Caching
The caching placement problems have been investigated in wired networks,

with applications such as CDNs, peer-to-peer networks, ICNs and IP-based tele-

vision networks [44]. Given the NP-hard nature of the general form of caching

placement optimization problems, previous works focused on designing heuristic

or approximation algorithms for caching placement [45–47]. Nowadays, content

caching at the network edge has attracted considerable attention and many works

have been conducted on new caching frameworks and algorithms. In this section,

first, a review of edge caching frameworks is provided. After that, we discuss the

content caching strategies and ML-based edge caching schemes. Then we focus

on research of edge caching exploring the case with dynamic popularities. This

remains to be an open issue and we present the research problems under this chal-
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lenging area.

2.1.1 Edge Caching Scenarios

Internet-based online video sharing services have gradually replaced the tradi-

tional video services and led to the user request revolution. The novel video speci-

fications such as UHD and 4K have become more and more popular and hence sig-

nificantly increased the bandwidth consumption per request. Moreover, normally

multiple quality versions and encoding formats of the same video are generated.

This has further raised the need for caching capacity in networks [11]. In addition,

new challenges have arisen as novel types of services [48] (e.g., augmented reality

(AR) and virtual reality (VR)). As a result, how to utilize the edge storage resources

for content caching has become a crucial problem.

Edge-assisted caching is mainly studied in two scenarios, i.e., wireless cellu-

lar networks and device-to-device (D2D) networks. In wireless cellular networks,

edge-assisted caching enables BSs to cache a number of files to serve the user re-

quests. By involving BSs, some content requests can be served at the BSs without

being transmitted to the core network or the content provider. Thus, the network

congestion in the highly throughput-limited backlinks can be alleviated and the ex-

perienced service delay can be greatly reduced. Furthermore, with multi-BS co-

operation, a BS can retrieve contents from its neighbour BSs thus improving the

BS’s ability to serve user requests in cellular networks. Wireless cellular networks

caching are studied in both macro-cellular networks and heterogeneous networks

(HetNets). For instance, in [49], a content placement method was designed to min-

imize the average download delay and in [50], user mobility was considered to

design a content placement strategies for hitting probability maximization at BSs.

In [51], a HetNet caching problem was studied. In this work, a group of users is

served by a small base station (SBS) which is connected with a macro base sta-

tion (MBS) and the MBS has access to the core network. Considering both the

pre-download gain and the caching gain, a continuous optimization problem was

formulated to minimize the energy cost of the system and to determine the optimal

transmission and caching policies. In [52], the caching problem was studied in a
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cluster-centric small cell network where SBSs are clustered into different hexago-

nal grids and SBSs from the same cluster can cooperatively serve users inside the

cluster. The authors proposed a caching scheme in which a part of the cache is

reserved for caching the most popular contents and the remaining part is used for

cooperatively caching a fraction of less popular files to reach the largest content

diversity.

In addition to caching at the BSs, caching files at the user devices to leverage

D2D networks is also a potential solution for content delivery. In D2D networks,

each user device is able to serve requests from its neighbours thus reducing the

network delay. Besides, cache-enabled D2D networks can improve the area spec-

tral efficiency while providing low backhaul cost. In this scenario, normally the

total cache of devices is much larger than the library of files but each device can

only cache very limited number of files. As a result, both caching decision and file

delivery strategies should be considered when applying content caching in D2D net-

works. In [53], a spatial content placement method for D2D network was proposed

considering the location information in content replacement. In this work, the dis-

tribution of device locations was modelled by Poisson point process (PPP) and each

device can cache one file to serve a range of close users. The authors formulated

an optimization problem aiming to maximize the density of successful reception

by optimizing a file caching distribution. In [54], to maximize the data offloading

ratio, the user mobility pattern was considered to design a mobility-aware caching

placement scheme. This research demonstrated that user devices with a very low

or high moving speed should cache the more popular files, while the rest of devices

should cache less popular files to avoid duplication.

2.1.2 Content Caching Strategies

There are many studies about investigating content caching strategies in edge

computing including deterministic, probabilistic and coded caching. In light of the

partial knowledge of network and contents, deterministic caching schemes aim to

deterministically design content placement strategies by solving cache placement

optimization problems. The objective is to optimize some performance metrics



2.1. Content Caching 20

including cache hit rate (CHR), area spectral efficiency, backhaul link cost, system

throughput and outage probability [55,56]. Deterministic caching can optimally de-

termine which specific contents should be cached. In [57], a deterministic caching

problem in a small-cell caching system was studied to maximize the localized sys-

tem throughput. In this work, it is assumed that file f ∈ F = {1,2, . . . ,F} where F

is the file library with the size of F . The file library contains all the files that the

users may request. Moreover, it is defined that user m ∈M, whereM is the user

set. Subsequently, the deterministic caching problem is formulated as

max
b f

∑
f∈F

∑
m∈M

pm
f ×
(
b f c1,m +(1−b f )c0,m

)
, (2.1a)

s.t. ∑
f∈F

b f ≤ QSBS, (2.1b)

b f ∈ {0,1}, (2.1c)

where b f indicates whether the content f has been cached by the SBS, pm
f denotes

the request probability of user m for f , and QSBS represents the storage capacity

of the SBS. Moreover, c1,m denotes the channel capacity between the SBS and the

user m and c0,m denotes the channel capacity between the MBS and the user m. In

this work, it has been proved that the formulated optimization problem (2.1) is NP-

hard. Given the NP-hardness of the problem [57], a deterministic caching algorithm

based on RL was proposed to maximize the system throughput by optimizing the

content placement in SBSs.

Probabilistic caching studies stochastically caching contents according to the

content popularities (e.g., [58, 59]), assuming that each cache-enabled node has a

probability mass function (PMF) for caching different content files. At each caching

decision round, rather than deterministically caching the popular files, the nodes

will fetch some contents from the CP according to the PMF, which could optimize

a performance metric such as cache hit probability and successful download proba-

bility. Probabilistic caching can be used in random wireless networks with spatially

distributed network nodes. Besides, probabilistic caching can serve user requests in
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a proactive way, which means the network nodes can prefetch some contents before

the arrival of user requests. In [60], a probabilistic caching placement in wireless

D2D caching networks was studied. Define Phit as the cache hit probability. Assum-

ing that the locations of mobile user devices are modelled by a homogeneous PPP

with intensity λu. In this system, each user has the probability ρ ∈ [0,1] to make an

active request for a file and the “inactive” devices will serve as potential D2D trans-

mitters. Therefore, the distributions of receivers and potential transmitters (within

the distance d) follow homogeneous PPPs with intensity ρλu and (1−ρ)λu, respec-

tively. The probabilistic caching problem in a D2D network can be formulated as

max
qqq

Phit = 1− ∑
f∈F

p f (1−q f )e−π(1−ρ)λuq f d2
, (2.2a)

s.t. 0≤ q f ≤ 1 f = 1, · · ·F, (2.2b)

∑
f∈F

q f ≤ S, (2.2c)

where qqq = [q1, · · · ,qF ] represents the caching probabilities of file f and the second

inequality reflects the caching storage limit. This formulated optimization problem

was solved by applying the Karush-Kuhn-Tucker conditions to maximize the cache

hit probability.

Noting the dichotomy of network traffic amount between peak and off-peak

periods, coded caching (e.g., [61–63]) is another caching strategy which can be ap-

plied into the edge-assisted caching systems. In coded caching, during the off-peak

traffic period, a central server carefully puts some contents in the user caches with-

out the knowledge of users’ future demands. Then, during the peak period, each

content is partitioned into several coded fragments and then processed by certain

coding methods (e.g., Raptor codes [64] or fountain codes [65]). To serve the users,

coded caching utilizes the coding techniques where contents are first aggregated

(encoding) and then forwarded to multiple users. At the UE, the aggregate message

is decoded into different contents for specific users. This technique can increase net-

work throughput and reduce delays by reducing the number of transmissions [66].
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In addition, coded caching provides a novel method to mitigate network congestion

during peak traffic hours by creating and exploiting coded multicasting opportuni-

ties across users [67].

2.1.3 Machine Learning Solutions for Content Caching

In the conventional caching scheme designs, optimizing the cache placement

relies on prior knowledge such as content popularities and user mobility features.

However, practically this information might not be fully and perfectly available and

hence needs to be learned. Therefore, combining learning and content caching has

become a promising research orientation since learning algorithms can be used to

predict file popularities and user request patterns especially with the help of some

extra side information. Both supervised and unsupervised learning have been stud-

ied in content caching algorithm design. Supervised learning algorithms such as

linear regression (LR), neural network (NN), and deep learning have been used

to predict the traffic levels and the content demand given some labelled data [68].

Unsupervised learning schemes such as clustering are used to group UEs into dif-

ferent sets based on the side information. Hence, the network nodes can predict the

request patterns based on the entire set of UEs and cache the contents that serve

the most UEs in the set. Besides, technologies such as transfer learning [69] and

RL [70] have also been studied to estimate the content popularity and design cache

placement schemes.

There have been many works focusing on offline learning in content caching.

In [71], the NN was used for content popularity prediction by utilizing the learned

popularity to decide which files should be cached at each BS. Authors in [18] col-

lected not only the real request information from wireless access points and BSs

but also the user mobility information and location information to design a geo-

collaborative caching strategy, then, user request pattern is predicted through LR.

In [72], DL was used to train an ML model to determine cache placement and

viewer association instead of directly applying optimization in real-time caching or

scheduling. However, the main drawback of these learning algorithms is that they

work in an offline manner and hence need to collect data first before training a model
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using ML algorithms. Since the data for offline learning is static, it could become

outdated over time and the performance based on such offline learning schemes

could be unpredictable.

Different from offline learning, online learning algorithms such as incremen-

tal clustering and RL have been utilized in caching algorithm design since online

learning is more responsive to the dynamic content popularity. Besides LRU and

LFU, there are many content replacement algorithms proposed in the literature to

study how to efficiently update the cache online without offline training. For ex-

ample, LFU with dynamic aging (LFUDA) [73] adds dynamic age to accommodate

shifts of content popularities and punishes the access frequencies of older contents.

Moreover, least frequent recently used (LFRU) [74] divides the cache into two parts

and combines the benefits of LRU and LFU schemes. For schemes such as LFUDA

and LFRU, although they can achieve competitive caching performance, the context

information is not considered during the cache update. In addition, the parameters

of the schemes need fine tuning to achieve good performance.

On the other hand, context-aware online learning schemes have been explored

as a new strategy to enhance content caching algorithm design. In such schemes,

context information of requests which is the side information reflecting the system

conditions and features, is collected incrementally to help learning. In [75], each

content request with context information was mapped to a point in a context space,

and, by grouping different points via a grid-based clustering method, videos with

similar context information maintain an average value for content popularity fore-

cast in the future. Moreover, in [76], a probabilistic caching scheme is designed

for D2D networks that utilizes context information of the user’s request history,

user similarity, and social ties to achieve reasonably well-optimized caching per-

formance. Furthermore, [1] and [2] utilized context information by designing a

grid-based partitioning method to group requests into different hypercubes incre-

mentally. Then each received request with context information can be grouped into

a unique hypercube and the average forecast popularity can be calculated for each

hypercube based on the revealed real popularity of requests points in the hypercube
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Figure 2.1: The context space partitioning method used in [1, 2]

(Figure 2.1 illustrates the adaptive partition process). When a file request arrives,

the estimated file popularities of the requested file and the least popular file that has

been cached will be compared, and the more popular file will be cached. The main

drawback of this approach is that the partitioning method is not sufficiently flexible.

Besides, these schemes do not consider the long-term effect of caching decisions.

To improve the clustering process and to learn file popularities better, we propose

a context-aware popularity learning scheme to group points into adaptive clusters

based on the Euclidean distance via incremental clustering.

In addition, RL has been considered as an appropriate tool for caching al-

gorithm designs due to its ability to solve online decision-making problems in an

interactive environment rather than using only a fixed dataset. In [77], a Q-learning

based caching policy was proposed to dynamically cache files at SBSs aiming at

maximizing the CHR. The work in [78] leveraged RL to perceive the file populari-

ties and to solve a proactive caching problem in wireless networks to minimize the

average energy cost. In [79], a model-free RL algorithm was proposed to solve the

caching problem for energy harvesting access point. In [80], a D2D caching scheme
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was designed using multi-agent RL without the knowledge of content popularity

profile. In [81], deep reinforcement learning (DRL) is utilized to dynamically de-

cide D2D content delivery with the goal of minimizing the content delivery energy

consumption and latency. In [70], an MAB problem was formulated to learn the

file popularities and to maximize the caching reward. Moreover, in [82] and [83],

caching decision problem was modelled as a contextual multi-arm bandit problem

and RL-based algorithms were proposed to choose the file that should be cached.

2.1.4 Content Caching considering Popularity Dynamics

The file popularity profile plays an essential role in the content caching frame-

work and algorithm designs since it can directly affect the cache placement and fur-

ther influence other communication-related decisions in cache-enabled networks.

The state-of-the-art studies in content caching mainly focus on the stationary file

popularity profile which assumes the file popularity distribution is fixed over time.

However, the practical popularity profile is always time-varying and highly dy-

namic. For instance, the requests for Wikipedia pages show a day-to-day variation

in popularities, for instance, half of the top 25 articles change in only one day [84].

Therefore, understanding, tracking, and predicting the file popularity profile are es-

sential for caching algorithm design and need further studying.

2.1.4.1 Independent Reference Model

There are two types of frameworks studying how to model the content requests

in the real world. The first and the best-known model is the IRM [85]. IRM as-

sumes that file requests are made in an i.i.d. fashion from a pre-defined distribution

and the most commonly used distribution in content caching literature is the Zipf

distribution [53, 86, 87]. The PMF of the Zipf distribution can be written as

Pf =
f−α

∑
F
f=1 f−α

, (2.3)

where Pf is the popularity of content f . F is the file library size, and α is the

skewness factor (α ≥ 0). A larger α means the popular file becomes more popular.

When α = 0, the Zipf distribution will be converted to a uniform distribution. The
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Figure 2.2: PMF of Zipf distribution when F = 10

PMF of Zipf distribution when F = 10 is presented in Figure 2.2 for different α

values.

On the downside, although IRM can provide a tractable file request model and

can accurately model the file popularity profile in a short time period assuming the

profile is fixed, it cannot characterize the non-stationarity of the file popularity in

a long time. Moreover, the so-called spatial locality and temporal locality among

requests cannot be captured by the IRM [88].

There are some extensions to add non-stationarity and temporal correlation

file requests into IRM. In [89], an evolution law of time-varying content popularity

was proposed based on the Ornstein-Uhlenbeck process [90]. Moreover, in [86],

the IRM was extended to make an effort to capture the correlations among requests.

Two request models were proposed as Bernoulli and Poisson request models. These

models assume the requests of users are first generated according to Bernoulli or

Poisson distribution, then the file of the request will still follow Zipf distribution.

The authors demonstrated that these models can generate requested files which fol-

low a non-stationary dependent random process. Besides, in [86], to model the

time-varying file popularity, a popularity permuting mechanism was introduced to

change the popularity profile periodically.

2.1.4.2 Shot Noise Model

In [91], a new file request model was proposed as a viable substitute of IRM

to capture macroscopic factors related to content popularity dynamics. Instead of
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modelling the independent request, the shot noise model (SNM) represents the over-

all request process as the superposition of many independent processes (shots), each

referring to an individual content. The request process for a given content f can be

described by an inhomogeneous Poisson process, with the instantaneous rate φt at

time t as

φt =Vf h f (t− τ f ), (2.4)

where Vf denotes the average number of requests for content f and τ f is the time in-

stant at which the content becomes available in the caching system. Moreover, h f (t)

is the request profile which describes how the request rate for content f evolves over

time. There are also refined SNM models which are discussed in [92, 93].

In addition to the discussed methods, there are some other works about simulat-

ing the popularity dynamics. In [40], the global popularity profile is modelled using

a two-state Markov chain where the states are drawn from Zipf distributions with

different skewness factors. In this work, the popularity profile is non-stationary and

can change following the Markov rule. In [94], the correlations between the users

and contents are explicitly modelled by kernel functions, so that the requests for the

same content from different users are correlated.

2.2 Video Transcoding

With the revolution of the Internet which is driven by social networks and pow-

erful devices, a new type of video platform called CLSPs such as Twitch, Huya, and

Periscope has emerged. There has been a tendency that more and more people start

to join such platforms and broadcast their live videos. However, because of the

heterogeneity of broadcasters’ source contents, to ensure the QoE of viewers, the

original live videos need to be transcoded into several industrial standard represen-

tations before they are consumed by the viewers [20]. In this section, we review the

works in both cloud and edge-based live video transcoding systems and discuss the

challenges in designing the edge-based transcoding.
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2.2.1 Cloud Transcoding

Due to the powerful computing ability and the ‘pay as you go’ feature of cloud

computing, previous works tended to implement the transcoding system with the

help of the cloud computing resources and designed various QoE metrics for cloud

transcoding systems. For instance, [95] collected data from Twitch.TV including

some information about the broadcasters. By analysing the data, they found that

both the broadcasters and the viewers are heterogeneous across network conditions

and regions. Therefore, a cloud-based scheme was designed to transcode crowd-

sourced video contents. In this scheme, the comprehensive cost (which was de-

fined as the cost minuses the viewer QoE) was minimized. This QoE is a function

of the bit rate of the received live stream and the broadcaster’s popularity. [96]

proposed a cloud-based transcoding scheme considering delay constraints. In this

work, the QoE and the cost of the whole system were optimized with the con-

straint of transcoding and transmission delays. In addition, the defined QoE was a

non-decreasing concave function of the received bit rate. [97] designed a multi-view

crowdsourced live streaming framework that consists of multiple video streams cap-

tured simultaneously from different visual angles. In this work, a cloud transcoding

scheme was proposed, and the QoE was related to the viewer’s network condition

and the received quality of each live video. In [98], a new crowdsourced live stream-

ing framework was designed to minimize the content delivery delay with cloud

transcoding. [99] proposed a cloud transcoding scheme for both delay-tolerant and

delay-sensitive videos with different priorities. In order to minimize the cost of the

transcoding system, a neural network was trained to predict the arrival rate of each

video. In [100], a multi-content delivery network-based cloud transcoding frame-

work is designed which enhances the CLSP’s capacity and reduces the operational

cost.

2.2.2 Edge Transcoding

Due to the abundance of concurrent live broadcasters and the heterogeneity of

source contents, a substantial amount of transcoding tasks are generated which are

delay-sensitive and computationally intense. As a result, even cloud transcoding
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cannot meet these requirements with affordable cost [26]. Therefore, edge com-

puting has been considered as a viable replacement for cloud transcoding because

of the fast processing and quick application response time [101]. However, it is

highly challenging to achieve optimal transcoding task assignment and viewer as-

sociation due to the massive heterogeneous video contents and diversified QoE de-

mands [102].

In [103], a collaborative joint caching and transcoding scheme was proposed

to reduce the backhaul link usage and the viewer perceived delay. In [104], an

RL-based scheme was designed to solve the edge transcoding decision and wireless

spectrum resources allocation problems. To better schedule edge transcoding un-

der large state space, DRL was used to explicitly accommodate personalized QoE

optimization for crowdcast services with edge transcoding [102]. In addition, [26]

combined both the cloud and the edge resources to collaboratively transcode live

videos from multiple broadcasters. In this thesis, we propose an edge transcoding

and content delivery algorithm for the CLSP that aims to optimize the tradeoff be-

tween the QoE of viewers and the cost incurred to edge nodes for video transcoding.

In the discussed works, although the system dynamics were considered in de-

signing transcoding schemes, the performance uncertainties of transcoders are ig-

nored, assuming that the fog device can complete the assigned transcoding task

deterministically.

However, in real-world applications, the transcoder’s performance may be un-

known and unstable. For example, in [24], a case study was presented based on

Twitch.TV demonstrating that a significant fraction of CLSP viewers have potential

computing resources for real-time transcoding and since they are very close to the

viewers, the latency can be greatly reduced. However, the viewer devices can be of-

fline or leave the CLSP since they are not professional workers and this will lead to

transcoding failures. To solve this problem, [25] found that the transcoding stabili-

ties of viewers are proportional to their existing online durations. Thus, solving an

optimization problem that maximizes the mathematical expectation of serving time

of the viewer device, an optimal waiting threshold was acquired to select stable
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viewer devices for transcoding. In this work, the authors only considered the online

stability of viewer devices which is one of the factors that can affect the transcod-

ing performance. However, there exist other factors that will have an impact on the

performance, such as the available computational resources and the RAM usage.

Moreover, in [25], the transcoder selection relies on the prior data collection and

processing, which may become inaccurate over time. Therefore, a novel strategy

which can do transcoder selection in an online form by considering multiple factors

is highly desirable.

These studies demonstrate the potential of incentivizing the viewer devices to

do transcoding. However, since the viewer devices are not professional devices and

can be highly heterogeneous, an optimal decision-making strategy is needed to learn

devices’ performance and select devices which are more capable for transcoding.

Such an edge-assisted transcoding system is similar with the crowdsourcing system

which exploits the collective intelligence of crowd, provides an effective paradigm

for large-scale data acquisition and distributed computing [105, 106]. In the edge-

assisted transcoding system, the viewer devices assigned with transcoding tasks

can be treated as the crowd workers for distributed computing. The crowdsourc-

ing system has been introduced into many areas such as text translation, consumer

research, and hiring workers to develop complex software.

There have been extensive works on task assignment problems in the crowd-

soucing systems [107]. As a classical decision-making model, MAB have been used

to model this type of problems, and bandit algorithms are used to solve the task as-

signment problems. For instance [108] proposed a UCB-based task assignment

algorithm with a limited budget for crowdsensing. In [109], a spatial crowdsourc-

ing system was considered and a contextual UCB-based algorithm was designed

to maximize the number of assigned tasks. [31] modelled the crowdsourcing sys-

tem as an MAB and proposed a bounded ε-first algorithm (which is a budget-aware

greedy based algorithm) to maximize the overall utility of completing a number

of tasks. [110] proposed a budget-limited UCB-based greedy approach to learn the

worker performance of a crowdsourcing system and to select workers with high per-
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formance to maximize the long-term utility. In [83], a hierarchical context-aware

learning algorithm is proposed to learn and estimate the worker’s context-specific

performance in mobile crowdsourcing.

Overall, although the task assignment problem in crowdsourced systems has

been studied in recent years, several technical problems have not been addressed.

First, the context information of the transcoders has not been efficiently utilized.

This can help to accelerate the learning of performance knowledge by explicitly

building the relationship between the context information and the performance. In

addition, the studied task assignment decision-making model in crowdsourcing sys-

tem is not practical enough since the tasks are assumed to arrive sequentially so that

standard MAB algorithms can solve the problem. Although some papers studied to

assign multiple tasks at the same time, the number of tasks per time slot are fixed

(which can be solved by combinatorial MAB algorithms). Moreover, in studied task

assignment problems, most works only focus on identifying the arm with the high-

est mean reward. However, problems such as the risk of selecting poor arms with

high performance variation and the switching cost of assigning a task to different

arms have not been considered yet.

2.3 Online Decision-Making Problems

In this section, we describe some of the RL approaches such as MAB-based

schemes. Moreover, we also discuss the state-of-the-art works in extended MAB

models that consider the arm correlation and risk sensitivity.

There are works in edge-assisted online decision-making systems that employ

standard MAB framework to model the decision-making problem in which each

arm can be the decision for edge device selection (e.g., [31, 108]). Most of these

works assume that different arms are independent with each other, hence, to learn

the reward information of a specific arm, the agent has to play that arm. How-

ever, this assumption cannot capture the possible correlation among arms, since

arms with similar context information can perform similarly. For example, in edge-

assisted transcoding task assignment problem, different viewer devices with similar
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hardware configurations might show close transcoding delays. By capturing the cor-

relation among arms, the performance of the under-explored arms can be estimated

given learned knowledge and the decision-making process can be improved.

Besides, to identify the best arm, standard MAB algorithms only take the

mean reward into account. Other factors such as the risk and performance varia-

tions are ignored. In the edge-assisted transcoder selection problem, choosing a fog

transcoder which performs averagely well may not be enough, since its performance

can be highly unstable. Assigning transcoding task to such devices cannot provide

viewers with stable QoE and will lead to frequent task reassignments.

2.3.1 Standard MAB

In a standard MAB problem, assume there are K arms, i.e., K = {1,2, . . . ,K}.

In each round, an arm is played by an agent and a random reward is returned. The

reward of an arm i at round t is sampled from an independent distribution with the

mean reward defined as µi. The objective of the agent is to maximize the cumula-

tive reward in a number of rounds. Define the number of rounds that arm i has been

played during the T rounds as ni(T ), the learning regret which is the expected cu-

mulative reward difference between the designed algorithm and the optimal policy

can be defined as

Reg(T ) = µi∗T −
K

∑
j=1

µ jE
[
n j(T )

]
, (2.5)

where i∗ is the optimal arm that can be defined as

i∗ = argmax
i∈K

µi. (2.6)

To maximize the cumulative reward, different bandit algorithms have been pro-

posed which can be categorized into two types. The first type is the index-based

schemes, and the most classical scheme is the UCB scheme [111]. In this scheme,

at the beginning of round t, according to the reward history, an index Ii(t) will be
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assigned to arm i as

Ii(t) = µ̄i +

√
2ln t
ni(t)

, (2.7)

where µ̄i represents the empirical reward of the arm i. After assigning the index,

the arm with the highest index will be played in this round. In the index, the first

term is simply the current average reward which can be treated as the exploitation

of the existing knowledge. The second term relates to the size of the confidence

interval for the average reward, which can be treated as the exploration of the arm’s

uncertainty, combining the two terms, a UCB of the mean reward can be derived

as the most optimistic estimation of the possible reward, which balances the EE

tradeoff.

The second type of bandit algorithms is Bayesian algorithms such as TS [35].

Compared with UCB, TS is a randomized Bayesian algorithm that chooses an action

with the same probability that the action is optimal. In TS, a prior distribution of

the reward is placed for each arm. Before the arm selection, instead of assigning

an index to an arm, a random sample is drawn from the corresponding distribution

for each arm, and the arm with the highest sample will be played. After that, the

prior distribution of the played arm will be updated according to the returned reward

and the Bayes’ theorem. In TS, the EE tradeoff is balanced implicitly. The mean

value of the distribution is maintained from the historical rewards, which can be

treated as exploitation. However, since the samples are drawn from the distribution,

randomness is introduced for exploration.

Both UCB and TS are near-optimal in statistical MAB problems. UCB is more

popular since strong theoretical guarantees on the learning regret are proved and the

computational complexity is competitively low. The extensive experimental eval-

uation carried out in [112] revealed that TS is a very effective and can outperform

UCB in some settings. However, to maintain and sample from a posterior distribu-

tion over models, TS is more computationally onerous [113].
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2.3.2 Risk-aware MAB

As compared to the standard MAB, the risk-aware MAB considers the per-

formance variance while playing arms. There are multiple approaches to measure

the reward uncertainty in a risk-aware MAB. One of the mainstream measures to

balance the tradeoff between maximizing the expected reward and minimizing the

uncertainty of the reward is the mean-variance (MV), which is proposed in [114].

This paradigm considers a linear combination of the mean and the variance of the

reward when determining the optimal arm. The MV metric can be presented as

ηi = σ
2
i −ρµi, (2.8)

where µi represents the mean and σ2
i denotes the variance of the reward of arm i.

In (2.8), ρ ≥ 0 is a risk-tolerance factor which is introduced to balance the tradeoff

between high reward and low risk. As ρ → ∞, the risk-aware MAB problem de-

generates to a standard risk-neutral MAB problem, and when ρ = 0, the problem

becomes a risk-only MAB which aims to find the arm with the lowest variance.

In [115], an algorithm was designed based on the MV paradigm to minimize

the cumulative learning regret by deriving a lower confidence bound of the MV. The

proposed mean-variance lower confidence bound (MV-LCB) algorithm achieves a

O(log2 T ) learning regret which is worse than the learning regret of the classical

risk-neutral MAB algorithms. In [116–118], finer analyses of the theoretical perfor-

mance of MV-LCB were presented, and a new definition of the cumulative learning

regret was derived for the MV measurement. By extending the MV-LCB, a new

algorithm called mean-variance upper confidence bound (MV-UCB) was designed

and proved to reach a O(log(T )) learning regret. However, the regret bound only

holds for a limited class of reward distributions.

Another way to measure the risk is to use conditional value at risk (CVaR). To

be more specific, instead of using all the returned rewards to estimate the variance

of each arm, CVaR only focuses on the poor rewards and uses these rewards to

estimate the uncertainty of each arm. In [119], the arm quality is set to its CVaR

which equals to the average of a number of the lowest rewards, and the arm with the
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maximum CVaR will be played. CVaR has also been studied in [120–122]. Besides,

the risk-averse MAB is also studied in the non-stochastic MAB framework [123]

and explore-then-commit MAB [124].

2.3.3 Structured MAB

In the structured MAB [125], instead of assuming the reward distributions of

arms are independent of each other and estimating the performance of each arm

only based on the arm’s own reward history, the potential correlation among arms

are taken into account to solve the MAB problem in a faster and more accurate way.

Contextual multi-armed bandit (CMAB) can be categorized as a type of struc-

tured MAB problem and it is a promising model to handle the correlation of arms

because by playing one arm, the reward information of the arms with similar context

information can also be learned. In [126], a CMAB problem was proposed which

assumes the expected reward of an arm is a linear function of the arm’s contextual

information and a set of unknown parameters. Then, an algorithm called LinUCB

was designed to solve the problem by learning the unknown parameter vector of the

reward function. In [127], a TS-based algorithm was proposed to solve the CMAB

problem with the same assumption that the expected reward function is a linear

combination of parameters and context information. In [128], instead of explic-

itly assuming the mapping from the context to the reward to be a linear function,

a scheme called GP-UCB was proposed to use Gaussian process to model the re-

lationship between the context and the reward. Moreover, in [129], the arms were

clustered into different groups based on context information, and each group of

arms share the same parameter of the reward function.

Under some circumstances, due to the privacy problem, the context informa-

tion cannot be collected by the agent for arm selection but the reward mappings as

a function of this hidden context are known [130]. In this case, the expected reward

of each arm can be assumed as a function of one or multiple common unknown pa-

rameters, and a different type of structured bandit problem is studied. For example,

in a dynamic pricing problem, an agent sequentially selects a price (arm) from a

finite set of prices to maximize the cumulative revenue without the information of
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the market size (unknown parameter). In this problem, the expected revenue is a

function of the selected price and the market size. The forms of the reward func-

tions are typically known [131] but the market size which is shared by all the arms

are unknown. Therefore, each time a price is selected, and the resulting reward

is observed, the market size can be estimated for future price selection. In [132]

and [133], the globally-informative bandit problem was studied, which assumes the

forms of the expected reward functions are known and the unknown parameter is

shared by all the arms. In these works, the unknown parameter is estimated by

directly solving the reward function with empirical mean reward. However, the

proposed algorithm in [132] was limited to only one unknown parameter and [133]

only considered monotonic reward functions. In [134], a regional bandit problem

was modelled which assumes different groups share different parameters. In [135],

a unified approach was designed to translate classical bandit algorithms such as

UCB and TS to the structured bandit setting.
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Chapter 3

Contextual Learning for Content

Caching with Unknown

Time-Varying Popularity Profiles

3.1 Introduction
The problems identified in both the classical and novel caching schemes reem-

phasize a practical need for a robust online caching scheme to provide stable

caching performance under time-varying content popularity profile. In this chap-

ter1, we model a realistic caching decision problem in an edge server as an MDP

and strictly demonstrate how to learn the popularities of contents online and use the

learning results to improve cache management (caching decision).

We first design a context-aware popularity learning algorithm to track the time-

varying file popularity which is then used in RL to solve the MDP for dynamically

updating cached contents in edge servers. Moreover, a reactive caching algorithm is

studied to reduce the complexity of the RL-based caching scheme. Our algorithms

require neither any prior knowledge about the users and their content requests nor

any training sessions, which may be inaccurate, outdated, and expensive to obtain.

The theoretical analysis proves that the learning error of the context-aware popu-

larity learning scheme only grows sublinearly with the increasing of file requests.

1Part of Chapter 3 has been published in the IEEE Transactions on Communications [136].
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Moreover, by utilizing the popularity learning scheme, the CHR of the reactive

caching scheme is proved to converge to the optimal CHR as compared to the opti-

mal cache scheme with full knowledge of popularity profile.

To simulate the time-varying popularity profile, we build various types of sim-

ulation. First, the IRM is utilized to generate the file request. To add the popu-

larity dynamics, the file library and the popularities of a part of files are randomly

changed periodically. Furthermore, to simulate the temporal locality of file requests,

the SNM is utilized. The simulations with varying settings demonstrate the perfor-

mance and robustness of the proposed algorithms.

The rest of this chapter is organized as follows. Section 3.2 describes the sys-

tem model. The context-aware popularity learning algorithm is presented in Section

3.3. The detailed RL-based caching algorithm and the reactive caching algorithm

are described in Section 3.4, followed by their theoretical performance in Section

3.5. The simulation setup and results are presented in Section 3.6, and the conclu-

sions are drawn in Section 3.7.

3.2 System Model

We consider a content delivery network where a CP has a library of files, i.e.,

F = {1,2, . . . ,F}. The number of files F may be very large and caching is a viable

solution to improve quality of service. We assume a cache-enabled server at the net-

work edge, the caching capacity of which is M representing the maximum number

of contents that can be locally stored. We focus on caching decision problem for a

single server to design a decentralized caching scheme and to maximize the CHR

of each node independently. Without loss of generality and for the sake of simplic-

ity, we assume the file sizes are identical. Consider reqn as the nth content request

made by the users, where n ∈ N = {1,2, ...,N}. Each request is represented by a

3-tuple as reqn =< fn, tn,νn>, where fn ∈F is the file being requested, tn is the time

that the request was made, and νn is the context vector associated with the request.

Generally, the context data is a d-dimensional vector and each element represents

one context information.
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In this section, we model the caching decision process as a non-stationary

MDP, which is an appropriate mathematical framework to model sequential de-

cision making considering the random dynamics of the system under study [137].

MDP formulation is useful to model and study the long-term effect of each caching

decision on the CHR. In this problem, the server is an agent who decides whether

and how to cache the requested file to maximize the long-term CHR. In particular,

at each time step n ∈ {1,2, ...}, the server picks a caching action an from the action

spaceA given the current state of the system gn ∈ G, which is the state space. Given

the current action and state pair (gn,an), the server moves to some state g′ with the

probability of Pr(g′|gn,an) and receives a reward rn(gn,an) [138]. In the following,

the action space, states, transition probabilities, and reward function are defined in

detail.

3.2.1 Action Space

When a request arrives, the server checks whether it can be served locally. No

change is required if the file is available in the cache. Otherwise, the requested

file will be retrieved from CP, and the server decides whether and how to update

its cache taking into account the possibility of future requests. Since we assume a

time-varying popularity profile in this work, replacing the least popular file in the

cache with the requested file is not always optimal. In such a case, it is imperative to

take precautions and explore all caching possibilities to some extent to balance the

exploitation-exploration trade-off and track time-varying popularity profile. There-

fore, the server should be able to cache the requested file by replacing any of the

files currently in the cache. Given M is the cache capacity, this implies that the

action space of the server has M + 2 possible actions as A = {α1,α2, . . . ,αM+2}

where

• α1: The server caches the requested file by replacing the 1st popular file in the

cache.
...

• αM: The server caches the requested file by replacing the Mth popular file in

the cache.
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• αM+1: The requested file is retrieved from CP but not cached.

• αM+2: The server serves the requested file locally without changing its cache.

The server chooses between the first M + 1 actions if the requested file is not

cached currently. Otherwise, if the requested file is locally available, the last action

αM+2 is invoked.

3.2.2 State Space and Transition Probability

The state of the process is determined by the currently cached files and

the requested file. In particular, the state at time-step n is defined as gn =<

Sn, fn >, where Sn represents the set of cached files and fn represents the re-

quested file at time-step n. More specifically, suppose the set of cached files is

Sn = {s1
n,s

2
n, · · · ,sM

n }, in which the cached files are indexed in a decreasing order

of the file popularities and S ′ as the subsequent cache state after taking an action.

Moreover, define f ′ ∈ F as the next requested file.

Let us define the transition probability from state gn to state g′. When an action

is taken, the cache state transfers from Sn to S ′ deterministically. Therefore, the

transition probability depends solely on the file popularity of the next requested file

f ′ at time step n, which is defined as Pf ′(tn).

If the requested file fn /∈ Sn (i.e., cannot be locally served) and αm ∈

{α1,α2, · · · ,αM}, the transition probability can be written as

Pr(g′|gn,an = αm) =

Pf ′(tn), if g′ =< s1
n, ...,s

m−1
n , fn,sm+1

n , ...,sM
n , f ′ >,

0, otherwise.
(3.1)

If the requested file fn /∈ Sn and action αM+1 is taken, the requested file will be

served by the CP without replacing the cached files, namely S ′ = Sn. In this case,

the transition probability is

Pr(g′|gn,an = αM+1) =

Pf ′(tn), if g′ =<s1
n, ...,s

M
n , f ′>,

0, otherwise.
(3.2)
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Otherwise, if fn ∈ Sn, the requested file can be served locally and αM+2 will be

taken. In this case, the cached files will not be replaced and action and the transition

probability is

Pr(g′|gn,an = αM+2) =

Pf ′(tn), if g′ =<s1
n, ...,s

M
n , f ′>,

0, otherwise.
(3.3)

The sizes of the state space and the transition probability matrix depend on the

file library size and the cache size of the server. In this regard, the size of the state

space is F×
(F

M

)
and the size of the transition probability matrix is F2×

(F
M

)
×
(F

M

)
.

3.2.3 Reward Function

In MDP, the reward is the return of the process after transferring from one

state to another under a taken action. The CHR is an appropriate metric to evaluate

the performance of content caching schemes. The CHR H can be calculated as

H = NL/NTotal, where NL is the number of locally served requests and NTotal is the

total number of received requests.

Caching relatively popular files can increase the CHR by locally serving more

requests. Therefore, we consider the file popularity when defining the reward. To

prioritize caching relatively popular files, the reward function is defined as

rn(gn,an) =


Pfn(tn)−Psm

n (tn), if an = αm, ∀m ∈ {1,2, · · · ,M}

0, if an = αM+1

Pfn(tn), if an = αM+2,

(3.4)

where Pfn(tn) represents the popularity of the requested file and Psm
n (tn) represents

the popularity of the replaced file. If a cached file is replaced by the requested file,

the reward reflects the change of the file popularity as Pfn(tn)−Psm
n (tn). It should

be noticed that in this case, the reward can be negative if the requested file is less

popular than the replaced file. In addition, if the action αM+1 is taken, the cache

remains unchanged and hence the reward is set to zero since the requested file is
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not locally served. Finally, if a requested file is locally served, which refers to the

action αM+2, the popularity of the requested file is used as the reward.

3.2.4 Action-Value Function

The action-value function is used to quantify how beneficial it is for the agent

to perform a given action in a given state under a specific policy. Define πn(g) = a

as the policy of choosing the action a under the state g at decision time step n. The

action-value function of taking action a in state g at time t under a policy πn can be

defined as

Qπ
n (g,a) = Eπ

[
∑

N
i=n γ

i−nri(gi,πn(gi))|gn = g,an = a
]
, (3.5)

where γ is the discount factor showing the importance of the long-term reward com-

pared to the current reward.

3.3 Context-Aware Popularity Learning
In the formulated MDP in the previous section, the reward function and tran-

sition probabilities depend on file popularities. Therefore, first, we need to learn

and track popularities in order to solve the MDP. To learn the popularity of files,

a simple and effective way is to calculate the frequency of the files that are being

requested based on the request history. However, this method faces several prob-

lems. First, since the server is located at the network edge, the number of requests

is limited in the early stage, thus calculating the frequency might be inaccurate es-

pecially when the file popularities are non-stationary and time-varying. In addition,

the similarity between files are not considered while multiple files with similar con-

text information may tend to yield close popularities. Therefore, in this section,

we propose a context-aware popularity learning algorithm to track the time-varying

content popularities.

3.3.1 Context Information Management

Context information represents the feature of the content and captures the sit-

uation under which the request is made. File request history can be treated as the
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context information [2]. For example, the context information may include the re-

quest counts of a file in the last hour, the last day or the last week. With context

information, each request reqn is associated with a multi-dimensional context vector

νn (depends on how many types of context information are available), which can be

mapped as a request point in the context space V , where each context information

is treated as one axis.

In order to overcome the two deficiencies of popularity learning which were

mentioned above, we apply clustering algorithm to the request points to group them

into multiple sets. After the clustering process, the request points with the simi-

lar context information will be expected to be in the same set. Hence, instead of

learning the popularity of each file, we learn the popularity of each set. By utilizing

this context information, we will have much more points to accurately estimate the

time-varying popularities, which will greatly enhance the accuracy and the learning

rate of the popularity estimation.

However, the key challenge is the efficient and dynamic clustering of different

request points with a similar context information. K-means clustering is a classic

scheme that is able to partition N request points into K clusters. However, K-means

is designed only for a fixed number of points, however, in our problem, the number

of request points is increasing over time. To solve this problem, inspired by and

advancing [139], we propose an incremental clustering-assisted learning algorithm

which is suitable for learning the time-varying file popularities by processing the

context information incrementally.

Figure 3.1 illustrates an example of clustering in a two-dimensional context

space V . The red points demonstrate various requests received in the course of

time, which has been grouped into four clusters. By doing this, the request points

with similar context information are grouped into the same cluster and treated to

have the same popularity. Since the instant frequency of a requested file can be

easily gathered, we consider the average instant frequencies of the request points in

a cluster as the popularity of that cluster.
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Figure 3.1: Context space

3.3.2 Incremental Clustering-assisted Popularity Learning

Define ck as the centre of cluster k ∈ {1, ...,Kn}, where Kn represents the total

number of clusters created till tn. The clustering and learning process is divided into

three steps as follows.

In the first step, once a new request arrives, if Kn is smaller than a certain

threshold κ , the server will calculate the Euclidean distances between νn (the con-

text point of reqn) and each existing cluster centre. Let us define Dmin
n as the distance

between νn and the closest cluster centre. If Dmin
n is larger than the initial clustering

distance threshold δ (which is a predefined parameter), this new context point will

be selected as a new cluster centre, otherwise, it will be grouped into the closest

cluster. The logic behind this step is to create a number of clusters which are not

too close to each other for future clustering.

Once a request point is clustered into the existing cluster k, the average popu-

larity P̄k of cluster k is used as the estimated popularity of this requested file. P̄k is

updated as follows

P̄k = Σk/Θk, (3.6)

where Σk is the sum of the estimated popularity of the points in cluster k and Θk is
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the number of points in cluster k. When a new point is added into cluster k, Σk and

Θk are updated as

Σk = Σk +qn,

Θk = Θk +1, (3.7)

where qn is the real popularity of fn that can be calculated as the received number

of requests for file fn so far divided by the total number of requests.

In the second step, when Kn is equal to κ , the server calculates distances be-

tween any two centres. The set of these distances can be represented as L. Define

dx ∈ L as the xth smallest distance between any two centres. Then, the sum of the z

smallest distances is defined as

∆1 = ∑
z
x=1 dx, (3.8)

where ∆1 is the clustering distance threshold in phase 1, which will be used to decide

whether a new cluster should be created or not once a new request point arrives.

As the number of clusters increases, the clustering distance threshold ∆r should

increase to control the growing rate of the cluster quantity. Specifically, the clus-

tering distance threshold is updated in different phases. Let us define ∆r as the

clustering distance threshold in phase r. Each phase includes the creation of κ

clusters. Define lr as the number of clusters created in phase r. When lr is larger

than κ , it means a sufficient number of clusters has been created based on the cur-

rent threshold ∆r. Therefore, ∆r+1 will be scaled up to ξ ∆r and lr will be reset

to zero. It should be ensured that ξ > 1 so that the clustering distance threshold

is non-decreasing. By doing this, we can avoid the algorithm from creating too

many clusters in a relatively small area in the context space or it may cause clusters

overlapping with each other.

In the third step, when Kn becomes larger than κ , the proposed algorithm

searches for the closest cluster centre for an arrived request point and calculates

Dmin
n . Depending on how large Dmin

n is compared to the clustering distance threshold
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∆r, the algorithm would decide to map the newly arrived point to the closest cluster

or to select it as a new cluster centre. This mechanism is implemented stochastically

with the probability defined as

ρn,r = min
(

Dmin
n /∆r,1

)
. (3.9)

More specifically, this new point will be selected as a new cluster centre with

probability ρn,r, otherwise, it will join the closest cluster with probability 1−ρn,r.

Accordingly, if the distance between the new point and the closest cluster centre

(i.e., Dmin
n ) is much smaller than ∆r, it is more likely that this point will be added to

the closest existing cluster. On the other hand, if Dmin
n is comparable with ∆r, this

point would create a new cluster with a higher probability. In particular, if ρn,r is

larger than 1, it means this new point is quite far from existing cluster centres and

it will definitely be selected as a new cluster centre. The complete context-aware

popularity learning algorithm is depicted in Algorithm 3.1.

3.4 Caching Update Algorithms
We modeled the caching decision process as an MDP in Section 3.2 and pro-

posed a learning algorithm to track content popularities in Section 3.3. To solve the

caching management MDP, since the transition probabilities are uncertain due to

time-varying content popularities, in this section, one of the model-free temporal-

difference (TD) learning schemes, namely the SARSA, is utilized to design an opti-

mal caching algorithm [36] without having the dynamics of the environment (tran-

sition probabilities).

3.4.1 RL-based Caching

In SARSA [140], an agent interacts with the environment and updates the pol-

icy based on the taken actions. In particular, SARSA consists of taking an action

on a state, noting the reward of the action and the next state, then choosing the next

action on the following state, and updating the Q value. The update of the state-

action value (i.e., the Q-value) only depends on the previous Q-value, the reward,
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Algorithm 3.1 Context-Aware Popularity Learning
Require: lr← 0, Kn← 0, k← 1, r← 1

for n← 1 to N do
if Kn < κ then

Calculate Dmin
n

if Dmin > δ then
ck← νn, Kn← Kn−1 +1, k← k+1

else
Update Σk , Θk and P̄k based on (3.6) and (3.7)

end if
end if
if Kn = κ then

Calculate ∆1
end if
if Kn ≥ κ then

Calculate Dmin
n

Generate a Bernoulli binary variable xn,r with ρn,r = min(Dmin
n /∆r,1)

if xn,r = 1 then
ck← νn, Kn← Kn−1 +1, lr← lr +1, k← k+1

else
Update Σk , Θk and P̄k based on (3.6) and (3.7)

end if
if lr > κ then

∆r← ξ ∆r−1, lr← 0,r← r+1
end if

end if
end for

and the Q-value of the next state-action; The dynamics of the environment is not

needed. After updating the Q-value, the agent moves to the next state and executes

the action which has been chosen earlier. The Q-value for a state-action is updated

by

Qπ
n+1(g,a) = Qπ

n (g,a)+ω[rn(g,a)+ γQπ
n (g
′,πn(g′))−Qπ

n (g,πn(g))], (3.10)

where ω represents the learning rate which determines to what extent the Q-value

is updated based on the newly acquired information and γ is the discount factor.

To decide which action to choose on the current state, the ε-greedy policy is

introduced with 0 < ε < 1. According to this policy, the agent either chooses the

action which maximizes the Q-function at time step n given the current state with
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probability 1− ε or randomly chooses an action with probability ε . The ε-greedy

action selection method can be described as

Pr
(

πn(g) = argmax
a∈A

Qπ
n (g,a)

)
= 1− ε,

Pr(πn(g) = randi(A)) = ε. (3.11)

In the TD algorithms such as SARSA, a table is maintained to save all the Q-values

of different state-action pairs as the basis of the Q-value update and action selec-

tion. However, the size of the state space in our model is very large especially when

a large file library and a large cache size are considered, thus directly applying

the standard SARSA causes extremely huge memory cost [141]. In addition, this

tabular method ignores the correlation between different Q-values,which makes it

inefficient to learn the Q-value of each state-action individually, which shows poor

generalization quality [142]. As a result, the standard SARSA is difficult and in-

efficient to be implemented. Therefore, a linear function approximation is utilized

to reduce the storage cost and to accelerate the learning due to the fact that the

algorithm can generalize its earlier experiences to previously unseen states. The

Q-function is represented by a linear combination of a number of features which

are able to appropriately reflect the inherent characteristics of the caching system.

Therefore, the Q-function can be approximated as

Qπ
n (g,a)≈ Q̃π

n (g,a,θn) = ηn(g,a)>θn, (3.12)

where ηn(g,a)> is the feature vector and θn is the parameter vector at n. η(g,a)>n

is defined as

ηn(g,a)> =[1, Ireq
n (1)P1(tn), · · · , Ireq

n (F)PF(tn), Icache
n (1)P1(tn), · · · , Icache

n (F)PF(tn),

Iaction
n (1), · · · , Iaction

n (M+2)], (3.13)

where Ireq, Icache, and Iaction are binary indicators denoting which file is requested,

which M files are cached, and which action is taken. Based on the definition, the
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features of different states and actions are distinguishable, which helps to accurately

update the value of the Q-function. To depict the contribution of each feature, the

parameter vector θn ∈ R2F+M+3 is introduced as the weight of each feature. To

minimize the function approximation error [143], the gradient descent is applied to

update the parameter vector as

θn+1 =θn +ω[rn(g,a)+ γQ̃π
n (g
′,a′,θn)− Q̃π

n (g,a,θn)]∇θ Q̃π
n (g,a,θn),

=θn +ω[rn(g,a)+ γQ̃π
n (g
′,a′,θn)− Q̃π

n (g,a,θn)]ηn(g,a), (3.14)

where the second equation holds since linear approximation is used.

In the RL-based caching, each time a request is received, Algorithm 3.1 is

called to do the clustering and to estimate the file popularity. In the beginning,

the cache of the server is assumed to be empty so it always caches the requested

files. When the cache is full, the initial state g0 is observed and the action a0 is

selected based on (3.11). It is noted that we add a hint to exclude αM+2 from the

action selection process, thus the server always checks if a request can be locally

served to make sure αM+2 is always taken if it is possible. After executing the

selected action, the algorithm moves to a new state gn+1, and an immediate reward

is received. Then the parameter vector is updated by selecting the next action an+1

and following (3.14). The detailed RL-based caching is described in Algorithm 3.2.

3.4.2 Reactive Caching

Due to the requirement of the real-time processing, the caching decision should

be made with the least delay to improve CHR. For the proposed RL-based caching

scheme, the computing load still cannot be ignored when a large size of the file li-

brary is considered. In addition, in the proposed scheme, there are three parameters

that need to be adjusted to reach the optimal performance, which is time-consuming

and can cause a generalization problem.

In the RL-based caching scheme, the objective is to maximize the Q-function

which is a function of the discounted summation of the file popularities. Solving this

problem ensures high CHR since the algorithm tends to cache those popular files.
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Algorithm 3.2 RL-based caching
Require: γ , ω , ε , randomly initialize θ , observe g0

if the request can be locally served then
a0← αM+2

else
Select action ao based on (3.11)

end if
an← a0, gn← g0
while n≤ N do

Play action an, and receive a request reqn
Call Algorithm 3.1
Observe rn and the next state gn+1
if fn is cached then

an+1← αM+2
else

Select the next action an+1 based on (3.11)
end if
Update θ based on (3.14), gn← gn+1, an← an+1, n← n+1

end while

Enlightened by this setting, a reactive caching scheme is designed to overcome the

above mentioned problems of the RL-based caching scheme. In particular, in this

scheme, the server will definitely cache the more popular requested file if it cannot

be locally served, and drop the least popular file without considering the long-term

effect. It should be noted that the reactive caching also can explore the dynamic

popularity profiles. The exploration is done by calling the Algorithm 3.1 which

utilizes the context information to track the time-varying file popularity.

To ensure the reactive caching scheme works, the server maintains an extra

record of the popularity of the cached files. Each time a request arrives, Algorithm

3.1 is called to group it into a cluster and estimate the popularity of the requested

file, which is defined as P̃fn(tn). If the cache is not full, the server caches the re-

quested file to improve the CHR. Otherwise, for each coming request, the server

checks if it can be locally served or not. If this requested file can be locally served,

the corresponding popularity of it can be updated by the latest estimated popularity

P̃fn(tn). If the requested file cannot be locally served, the popularity of the cached

least popular file fleast and the requested file fn are compared, and the server de-
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Algorithm 3.3 Reactive caching
for n← 1 to N do

Receive a request reqn←< fn, tn,νn >
Call Algorithm 3.1, gets P̃fn
if The cache is not full then
Mn←Mn∪ fn

else
if fn ∈Mn then

Pfn(tn)← P̃fn(tn)
else

Find fleast
if P̃fn(tn)> Pfleast(tn) then
Mn←{Mn\ fleast}∪ fn
Pfn(tn)← P̃fn(tn)

end if
end if

end if
end for

termines to cache the more popular file. The detailed reactive caching scheme is

described in Algorithm 3.3.

3.5 Performance Analysis
In this section, we first bound the learning regret of the file popularity and then

utilize it to derive the bound of the CHR of the proposed reactive caching scheme.

3.5.1 Learning Regret of File Popularity

There is a widely applied assumption [144] that the expected popularity of files

with similar context information is similar. This assumption can be mathematically

formulated as follows.

Assumption 3.1. (Uniform Lipschitz continuity) There exists a real number β > 0

such that for any two requests, the popularity difference between the requested files

can be bounded as

E
[
|qn−qn′|

]
≤ β ||νn−νn′||, (3.15)

where || · || represents the Euclidean norm.
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Based on this assumption, we can bound popularity difference of files by the

Euclidean norm of the corresponding context points in the context space V . As a

result, to bound the learning regret of file popularity, the worst case of the regret

should be defined as the largest Euclidean norm between the new point and the

farthest point in the same cluster. Before we estimate the total forecast popularity

error brought by the first N requests, we prove the following lemma.

Lemma 3.1. Let us assume a sequence of N independent experiments denoted

by x1,x2, · · · ,xN, where each experiment succeeds with a probability of pn =

min{An
B ,1} where B ≥ 0 and An ≥ 0 for n = 1,2, · · ·N. If u denotes the random

number of consecutive unsuccessful experiments, then with µ < 1, we have

E
[
∑

u
i=1

(
Ai−

Ai
2

B

)]
≤ Bµ , (3.16)

Proof: Let u′ be the maximal index for which pi < 1 for all i≤ u′. Therefore,

we have

E
[
∑

u
i=1

(
Ai−

Ai
2

B

)]
= ∑

u′

i=1

[
(Ai−

Ai
2

B
)∑

u′

i′=i

[Ai′+1

B ∏
i′

j=1(1−
A j

B
)
]]
.

(3.17)

By utilizing mathematical induction, we can rewrite (3.17) (see Appendix A

for the proof) as

E
[
∑

u
i=1

(
Ai−

Ai
2

B

)]
≤∑

u′

i=1(Ai−
Ai

2

B
)∏

i
j=1(1−

A j

B
)

≤∑
u′

i=1(Ai−
Ai

2

B
)∏

i−1
j=1(1−

A j

B
). (3.18)

Let us divide the right-hand side of (3.18) into two parts and write as

∑
u′

i=1

(
Ai ∏

i−1
j=1(1−

A j

B
)− Ai

2

B ∏
i−1
j=1(1−

A j

B
)

)
=B∑

u′

i=1
Ai

B ∏
i−1
j=1(1−

A j

B
)−∑

u′

i=1
Ai

2

B ∏
i−1
j=1(1−

A j

B
). (3.19)
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Define qi = Ai/B < 1 for i ≤ u′ as the probabilities of different events to be

successful, then (3.19) can be represented as

B∑
u′

i=1 qi ∏
i−1
j=1(1−q j)−∑

u′

i=1 Aiqi ∏
i−1
j=1(1−q j). (3.20)

It is obvious that qi ∏
i−1
j=1(1−q j) is the probability that i is the first successful

event. Since these events (when i takes different values) are mutually exclusive,

∑
u′
i=1 qi ∏

i−1
j=1(1−q j)≤ 1. Therefore, (3.20) can be upper bounded as

E
[
∑

u
i=1

(
Ai−

Ai
2

B

)]
≤ B−∑

u′

i=1 Ai pi ∏
i−1
j=1(1− p j). (3.21)

In (3.21), ∑
u′
i=1 Ai pi ∏

i−1
j=1(1− p j) can be treated as the expected value of Ai cor-

responding to the first successful experiment xi (i.e., E[Ai|xi is the first successful e-

xperiment]). Obviously, this value is larger than the expected value of Ai no matter

xi succeeds or not. Intuitively, this can be explained as the first succeeding experi-

ment has a larger Ai on average than the average value of Ai. Therefore, the upper

bound can be written as

E
[
∑

u
i=1

(
Ai−Ai

2/B
)]
≤ B−E[Ai] = Bµ . (3.22)

Therefore, it can be concluded that there exists an upper bound which is smaller

than B (since E[Ai]> 0) and this can be further represented as Bµ with µ < 1.

Lemma 3.2. The number of clusters created while serving the first N requests can

be upper bounded by O(κ logξ (υN)) where υ ≥ 1 is defined as the dataset aspect

ratio of the maximum distance to the minimum distance between any two points in

the context space.

Proof: Based on Theorem 3 in [139], consider the phase r′ of our algorithm

where, for the first time, ∆r′ ≥ W
κ logn where n represents the nth point and W is

defined as the summation of all distances between each point and its cluster centre

in the optimal solution. The total number of clusters created in our algorithm before

r′ can be upper bounded by O(κ logξ (υn)). In addition, during and after phase r′
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can be upper bounded by O(logξ n). Combining both bounds we can conclude that

the number of clusters after N requests is the order of O(κ logξ (υN)).

Proposition 3.1. The expected total popularity learning error of the first N requests

can be upper bounded by O (Nµ) for some µ < 1.

Proof: In the first step of the proposed scheme, when a point is chosen as a

cluster centre (which means it is the first point in that cluster), it will not cause any

error. This is because the caching decision is made only based on the instant request

frequency of that file. In the third step, for each coming point, there is a probability

ρn,r for it to be selected as a new cluster centre and a probability 1−ρn,r for it to

be grouped into an existing cluster. In the first case of the third step, obviously the

forecast popularity error is zero. In the second case, the largest distance (which is

the worst-case error) can be defined as λnDmin
n where λn is a factor to scale Dmin

n to

the worst case (largest distance). Therefore, the expectation of forecast popularity

error of one point can be expressed as

E[|q̃n−qn|]≤ λnDmin
n (1−ρn,r)≤ λ

supDmin
n

(
1− Dmin

n
∆r

)
, (3.23)

where q̃n represents the learned popularity of fn, qn represents the file popularity in

the optimal scheme, and λ sup is the upper bound of λn.

In the phase r, κ clusters are created and this can be interpreted as having

κ sequences of unsuccessful experiments if we define a success as creation of

a new cluster. For each of these sequences, considering that the upper bound

of error for each experiment is given by (3.23) and success probability is ρn,r =

min
(
Dmin

n /∆r,1
)
, the expected error can be upper bounded by λ sup(∆r)

µ according

to Lemma 3.1. Consequently, the expected value of the sum of forecast popularity

errors in phase r can be upper bounded by κλ sup(∆r)
µ . Mathematically,

E
[
∑

nr

n=1 |q̃n−qn|
]
≤ κλ

sup(∆r)
µ , (3.24)

where nr is the number of requests received in phase r. Therefore, the expected total
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forecast popularity error of the first N requests is at most

E
[
∑

N
n=1 |q̃n−qn|

]
≤∑

R
r=1 κλ

sup(∆r)
µ , (3.25)

where R is the total number of phases corresponding to N requests. Considering

that ∆r = ξ r−1∆1, (3.25) can be further represented as

E
[
∑

N
n=1 |q̃n−qn|

]
≤∑

R
r=1 κλ

sup(ξ r−1
∆1)

µ . (3.26)

Since (3.26) can be treated as the summation of a geometric progression with

a common ratio of ξ µ , the expected total forecast popularity error can be upper

bounded by

E
[
∑

N
n=1 |q̃n−qn|

]
≤

κλ sup∆
µ

1
(
(ξ µ)R−1

)
ξ µ −1

. (3.27)

Based on Lemma 3.2, the number of clusters created while serving the first N

requests can be upper bounded by O(κ logξ (υN)). Therefore, the total number of

phases R corresponding to N requests can be upper bounded by

R =O
(

κ logξ (υN)
)
/κ =O

(
logξ (υN)

)
, (3.28)

Since the algorithm will step into a new phase when κ cluster centres are cre-

ated. Consequently, based on (3.28), (3.27) can be written as

E
[
∑

N
n=1 |q̃n−qn|

]
≤

κλ sup∆
µ

1

(
(ξ µ)logξ (υN)−1

)
ξ µ −1

=O
(
(ξ µ)logξ (υN)

)
=O (Nµ) (3.29)

3.5.2 Learning Regret of Cache Hit Rate
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Similar to [1], let us divide time into periods with each of them containing φ

requests. Based on the proposed caching scheme, the server will always cache the

M-most popular files. In addition, define Qsort as the sorted vector of the populari-

ties of all files in a time period s. For each requested file, assume that the popularity

error of file f satisfies

|Qsort
r ( f )−Qsort

e ( f )| ≤ ∆Q, f ∈ F (3.30)

where Qsort
e ( f ) represents the estimated popularities of file f learned by the pro-

posed algorithm and Qsort
r ( f ) represents its corresponding real popularity. Based

on Proposition 2 from [1], the CHR of the proposed algorithm in time period s can

be lower bounded as

H̃s ≥ Q(M)− 2M
φ
− M ·∆Qs

∑ f∈F Qsort
r ( f )

, (3.31)

where Q(M) =
∑

M
f=1 Qsort

r ( f )

∑
F
f=1 Qsort

r ( f )
represents the normalized total popularity of the M

most popular files. This lower bound can be divided into two parts. The first part

(Q(M)−2M/φ) depends on the caching capacity M and the file popularity distri-

bution (related to Q(M)). On the other hand, H̃s also depends on the total learning

error of file popularities in s (which is denoted as ∆Qs = ∑
φ

n=1 ∆Qn), since a larger

error will lead to a lower CHR. For the optimal scheme, since the full knowledge

of file popularity is known, ∆Qs is set to 0, and the CHR in s is therefore defined as

Hs ≥ Q(M)−2M/φ .

Theorem 3.1. The CHR of the reactive caching converges to the optimal CHR,

namely E[H̃] = E[H].

Proof: First, we consider the CHR difference between the optimal scheme and

the proposed scheme in time period s. The difference can be represented as

Hs− H̃s ≤
M ·∆Qs

∑ f∈F Qsort
r ( f )

≤ M ·∆Qs

Qin f , (3.32)

where Qin f is defined as the lower bound of ∑ f∈F Qsort
r ( f ).
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After that, we wish to calculate the expected difference over all time periods.

Therefore, the expected CHR difference can be represented as

E[H− H̃]≤ lim
N→∞

∑

N
φ

s=1(Hs− H̃s)
N
φ

,

= lim
N→∞

∑

N
φ

s=1
M·∆Qs

Qin f

N
φ

,

=
M

Qin f lim
N→∞

φ

N ∑
N
φ

s=1 ∆Qs, (3.33)

where H and H̃ are the final CHRs of the optimal and the proposed caching scheme

after receiving N requests. To derive a bound for the mean CHR difference from

the first time period to the last, the forecast popularity error can be summed from

the first request to the last. Therefore, by considering Proposition 3.1, the expected

difference can be represented as

E[H− H̃]≤ M
Qin f lim

N→∞

φ

N ∑
N
n=1 |q̃n−qn|,

≤ Mφ

Qin f lim
N→∞

O (Nµ)

N
= 0. (3.34)

According to (3.34), the expected CHR difference between the proposed algorithm

and the optimal algorithm is zero, and our algorithm converges to the optimal

scheme. Besides, it should be noted that the conclusion holds for any number of

file library size.

3.5.3 Time Complexity

For the proposed RL-based caching scheme, each time a request arrives, Al-

gorithm 3.1 is called to estimate the popularity of the requested file, followed by

the SARSA algorithm to make a decision with the knowledge of the learned file

popularity. In Algorithm 3.1, we need to find the nearest cluster centre of the newly

requested file. According to Lemma 3.2, the number of clusters created while serv-

ing n requests can be upper bounded by O(κ logξ (υn)). Therefore, the time com-

plexity of finding the nearest cluster centre can be represented as O(logξ (υn)). In
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SARSA, before deciding a action to take, matrix multiplication is needed to calcu-

late the Q-value of each action. Recall that M denotes the cache size and F denotes

the file library size. Since the size of feature vector is (M+2,2F +M+3) and the

size of the parameter vector is (2F +M +3,1), the time complexity of calculating

the multiplication of the matrices is O(MF). Therefore, the time complexity of the

proposed RL-based caching is O(logξ (υn)+MF).

For the proposed reactive caching scheme, it does not use matrix multiplication

but only calls Algorithm 3.1 and sorts the cached files in a decreasing order of pop-

ularities. Therefore, the time complexity can be represented as O(logξ (υn)+M).

Comparing both algorithms, we can find that both algorithms reach low time com-

plexity. However, in practice, there is always a limited cache size but a potentially

large file library. In this case, RL-based caching leads to higher time complexity,

which highlights the significance of designing the reactive caching scheme.

3.6 Simulation Results
In this section, the performance of the proposed caching schemes is evaluated

and compared with other existing algorithms. The effect of parameters used in the

context-aware popularity learning scheme is also investigated.

3.6.1 Simulation Setup

The file popularities are modelled using a Zipf distribution which is widely

used in content caching literature [52, 53, 86]. In addition, the request arrival is

assumed to follow a Poisson process which implies the time interval between the

two consecutive requests follows an exponential distribution with a rate parameter

ζ which increases for more frequent requests.

The simulation lasts for 72000 time slots. The duration of each time slot is one

minute and F = 100. To evaluate the robustness of the proposed algorithms against

time-varying popularity profiles, a deterministic variation is introduced to the file

popularity distribution by randomly permuting all the files at every 12000 time slots.

The learning rate, the discount factor and the ε-greedy factor are set to 0.1,0.05 and

0.1, respectively. All the results are generated by running the simulation for five
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Figure 3.2: CHR over time

times and calculating the average CHR. In addition, the request history is chosen to

be the context information in the simulation. Specifically, we use the total number

of requests for a file in the past week and the past day as the context information in

the simulation.

As a benchmark, we simulate LRU, LFU, LFRU, and a popularity-driven

caching (POP) [1] algorithm. For the LRU scheme, the node always tries to up-

date its cache by replacing the least recently requested file with the newly requested

file. Besides, LRU is suitable for the case that the popularity of file changes over

time because it does not consider the request history when making a decision. In

LFU scheme, the node always cache the most frequently requested file. However,

the caching performance might drop drastically if the file popularity changes. In

addition, LFRU combines benefits of both LRU and LFU by partitioning the cache

into two parts. It is a well known scheme for content caching network. Finally,

POP caching is also simulated which is a context-aware caching algorithm with the

ability to handle the time-varying file popularity.

3.6.2 Numerical Results

Figure 3.2 illustrates the CHR of different caching algorithms over time. The

caching capacity is set to 10 files and ψ is set to 1. The proposed algorithms can

identify the changes of the popularity profiles. In addition, the RL-based caching

scheme reaches the highest CHR and competitive robustness among all six schemes

because it introduces a reasonable amount of exploration to deal with the variability
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Figure 3.3: CHR over time

of the popularity profiles thus caching the more popular files when the popularity

profiles change. Moreover, the reactive caching reaches a competitive CHR and

robustness as well. Note that before the variation happens, this scheme performs

well because the proposed online learning algorithm is able to quickly learn the

popularity profiles and the incremental clustering is more efficient than the grid-

based clustering scheme utilized in the POP caching scheme. Finally, for the rest

benchmark schemes, it is obvious that LFU can perform well before any variations

but its robustness is very poor. LRU is very robust but cannot reach a good CHR

when the storage resource is limited. As a combination of LRU and LFU, LFRU

performs much better, however, there is an obvious gap because LFRU does not

consider the context information. Besides, this scheme is quite heuristic which

means it needs tuning to reach a better performance.

Figure 3.3 shows the caching performance over time when the period of the

popularity variation decreases from 12000 to 6000 time slots. Therefore, the vari-

ation happens more frequently and the RL-based caching scheme can reach the

highest CHR. In addition, due to the more frequent variations, the gap between the

RL-based caching and the reactive caching becomes larger, which further demon-

strates the robustness of the proposed RL-based caching scheme. Moreover, the

reactive caching scheme still reaches a higher CHR as compared to the benchmark

schemes.

Figure 3.4 depicts the caching performance versus the capacity which ranges
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Figure 3.4: CHR versus caching capacity
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Figure 3.5: CHR versus ζ

from 3 to 20 (files). The CHRs are collected at the end of the simulation with ψ = 1.

Obviously, the proposed RL-based caching scheme outperforms other benchmark

schemes for different cache capacities. Furthermore, the reactive caching scheme

reaches a competitive CHR as well which proves that the proposed schemes are

suitable and robust for the cache-limited scenario.

In Figure 3.5, the effect of the request arrival rate is studied by changing the

rate parameter ζ of the exponential distribution. The caching capacity here is set

to 10 files and ψ is set to 1. The performance of the proposed caching schemes is

robust against ζ because according to the figure, the choice of the length of context

information is not sensitive to the request arrival rate. To further study the effect

of the file library size on the CHR, we simulate a new scenario with 1000 files in

the file library and the cache size is set to 20. As we observe in Figure 3.6, the
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Figure 3.6: CHR over time
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Figure 3.7: CHR versus popularity variation percentage

proposed RL-based caching algorithm reaches the highest CHR and it is very ro-

bust against the frequent changes of the file popularity profiles. In addition, the

reactive caching scheme also reaches a competitive performance as compared to

other benchmark schemes. Finally, the running times of both the proposed caching

schemes are measured under this setting. Both the designed algorithms were run

on an i5 desktop computer by MATLAB. In order to accurately measure the run-

ning time, both schemes are executed for 1000 time slots. The running times for

RL-based caching and reactive caching are 1159 seconds and 642 seconds, respec-

tively. According to the measurements, reactive caching runs faster than RL-based

caching, which demonstrates that the former scheme requires a lower computational

complexity.

In the previous results, the change of the popularity profile is assumed to be
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Figure 3.8: CHR versus file variation percentage

independent over time and the popularities of all the files are changed at each vari-

ation. Inspired by [86], we further test the caching performance of the proposed

algorithms with correlated file popularity, which means only a part of file popular-

ities are changed, so the popularity profile is dependent over time and correlated

with previous profile. In Figure 3.7, the variation percentage of popularity profiles

ranges from 60% to 100%. According to the results, with the variation percentage

increasing, the CHRs of the proposed schemes drop because the popularity profiles

are more dynamic. However, the RL-based caching scheme still reaches the best

performance and the performance gap between it and the reactive caching becomes

larger when the popularities of more files vary. In order to further evaluate the

caching performance, a new scenario is simulated. For each variation of popularity

profiles, a subset of the files are removed from the file library and a number of new

files are included. Besides, a part of the file popularities are still changed periodi-

cally. Figure 3.8 presents the caching performance for this dynamic scenario. The

RL-based scheme reaches the highest CHR, which demonstrates the robustness of

it under a correlated time-varying popularity profiles.

3.6.3 Correlated File Request Process

In this section, we designed two new settings to extend the simulation results,

which capture the temporal correlation of file requests in varying ways. The first

one is based on the Bernoulli model [86] and the second is based on the SNM [91].

To implement the time-varying popularity profile, a part of the popularity profile is
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Figure 3.9: CHR over time-Bernoulli request model

0 1 2 3 4 5 6

Time 10
4

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
v
e
ra

g
e
 C

a
c
h
e
 H

it
 R

a
te

RL-based caching

Reactive caching

LFU

LRU

POP caching

LFRU

Figure 3.10: CHR over time-SNM

changed periodically consistent with previous results. In Figure 3.9, we study the

Bernoulli request model which can capture the request correlation. Assume there

are 10 users and each user can make a file request with the probability of 0.1 in

each time slot and the file library size is 1000. The result reflects that the proposed

algorithms perform well in this new setting and the correlated requests will not

affect the caching performance as compared to the results of independent request

model (Figure 3.6).

In addition, we also simulate the SNM which is able to capture the popularity

evolution and explicitly account for the temporal locality of file requests. Following

the setting in [145], the requests for the contents in a window of time slots are gen-

erated based on the SNM using the exponential shape [91]. The average number of

requests for each content in the considered time window follows the Zipf distribu-
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Figure 3.11: CHR versus δ

tion. The result is presented in Figure 3.10. According to the results, we conclude

that both the proposed caching schemes outperform all the benchmarks.

3.6.4 Parameter Determination

Here, we investigate the effect of parameters of the proposed context-aware

popularity learning algorithm. The popularity profiles are assumed to be unchanged.

The optimal caching scheme which is assumed to know the true file popularity is

also simulated. For the optimal caching, the server caches the most popular files

without any updates.

Figure 3.11 depicts the CHR and the number of clusters versus δ . When δ is

relatively small, the CHR gap between the optimal scheme and the reactive caching

scheme is very small. However, when δ ≥ 100, the gap starts to increase which

means the popularity learning scheme gradually loses its learning accuracy. The

reason is that when δ is too large, only very few clusters will be created so that

the request points with different popularity levels can be grouped into the same

cluster. Therefore, there is a high probability that the algorithm cannot identify

the difference between the two requests. Moreover, even when δ = 100 and only

16 clusters are created, the reactive caching still performs comparably well, which

means our algorithm is not very sensitive to this parameter. In the simulation, to

avoid creating too few clusters, δ is set to 5.

Figure 3.12 demonstrates the caching performance versus κ . It is observed that

as κ increases, the CHR difference between the optimal scheme and the reactive
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Figure 3.12: CHR versus κ

scheme first increases and then remains stable. This means that creating too many

clusters cannot necessarily help to improve the learning accuracy but may lead to

confusion of popularity learning. However, we should notice that even the largest

performance difference is only about 0.5%, which means the proposed algorithm is

reliable with the change of κ . In our simulations, to avoid the algorithm creating

too few clusters and thus reducing the CHR, κ is set to 20. We also investigate the

effect of ξ and z. The results show that these parameters do not affect the caching

performance severely but only affect the speed of creating clusters. Therefore, ξ

and z are chosen as 10 and 15 respectively.

3.7 Conclusion
In this chapter, we study a caching decision problem in the network edge server

under a dynamic and time-varying file popularity profile. We first design a context-

aware popularity learning algorithm to improve the accuracy and speed of track-

ing the file popularity. With the assistance of this algorithm, an RL-based caching

scheme is proposed to make proper caching decisions and to improve the CHR.

Furthermore, a reactive caching algorithm is designed to reduce the computational

complexity for real time processing. Via the theoretical analysis, we demonstrate

the superiority and the efficacy of the proposed algorithms. Finally, through nu-

merical results, we demonstrate that the proposed algorithms are able to achieve

a competitive and robust caching performance as compared to various benchmark

schemes.
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Chapter 4

Edge-Assisted Crowdsourced Live

Streaming: Joint Transcoding Task

Assignment and Association Control

4.1 Introduction
The rapid development of content delivery networks and cloud computing has

facilitated CLSPs that enable people to broadcast live videos which can be watched

online by a growing number of viewers. However, to ensure reliable viewer expe-

rience, it is important that the viewers should be provided with multiple standard

video versions. To achieve this goal, edge-assisted transcoding has become a pop-

ular solution to meet the growing demand of computational resources and delay-

sensitive services. In [24], the viewers’ potential transcoding capabilities and the

willingness to help the broadcaster have been demonstrated, and the authors con-

cluded that utilizing the computational resources of the viewer devices can greatly

relieve the burden of the CLSP and provide better transcoding service.

However, it is a challenge to dynamically assign transcoding tasks to stable

and efficient fog devices since they are not dedicated for transcoding and they could

even be offline during transcoding [25]. Therefore, in this chapter1 we design a

edge-assisted transcoding and viewer association algorithm which aims to assign

1Part of Chapter 4 has been published in the IEEE Communications Letters [146].
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the transcoding tasks to suitable fog devices and optimize the tradeoff between the

QoE of viewers and the CLSP’s cost for transcoding. More specifically, we first

introduce the transcoding success rate of the fog device and define a new QoE

metric for the edge-assisted transcoding system. Then, a joint transcoding task

assignment and viewer association optimization problem is formulated. The resul-

tant non-convex integer programming is solved by using CGP. Finally, based on

trace-driven simulations and by comparing the proposed algorithm with existing

benchmark schemes, it is shown that the proposed algorithm outperforms the cur-

rent cloud transcoding system and can dynamically decide the transcoding schedule.

The rest of this chapter is organized as follows. Section 4.2 describes the sys-

tem model. The non-convex optimization which aims to maximize the network

utility is formulated in Section 4.3 and the proposed joint edge transcoding and

viewer association scheme is presented as well. The simulation setup and results

are presented in Section 4.4, and the conclusions are drawn in Section 4.5.

4.2 System Model

Assume there is a set of broadcasters, i.e., I = {1,2, · · · , I} in the network as

illustrated in Figure 4.1. We consider a time-slotted system. The bit rate of the

original live video of broadcaster i ∈ I in time slot t is defined as Bt
i. Moreover,

consider there are Jt viewers in time slot t and Vt
i, j is a binary parameter indicating

whether viewer j ∈ J t = {1,2, · · · ,Jt} chooses to watch broadcaster i’s live stream

in time slot t or not. Denote y ∈ Y = {1,2, · · · ,Y} as a video representation which

is one of Y possible standard quality levels of a transcoded video. The bit rate of

representation y is defined as by.

When an original live video is uploaded by a broadcaster i to the regional data

centers, the CLSP scheduler will decide which representation should be transcoded

by which fog device based on the viewer requirements. Then, all the original live

videos will be transmitted to the selected fog devices through those regional data

centers for transcoding. After the transcoding process, all the standard transcoded

live videos will be transmitted from the fog devices to the associated viewers. Let us
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F

Figure 4.1: System model

assume F represents the set of all available fog devices. It is assumed that each fog

device f ∈ F = {1,2, · · · ,F} is able to transcode one broadcaster’s live video into

only one standard video version because of the limited computational capability of

fog devices.

To describe the transcoding task assignment and viewer association problem,

two binary variables are defined as It
i,y, f and Wt

j, f . It
i,y, f takes 1 when the fog device

f is selected to transcode the original video from broadcaster i into representation

y in time slot t and 0 otherwise. In addition, Wt
j, f takes 1 if viewer j is associated

with fog device f in time slot t to watch the transcoded live video and 0 otherwise.

4.2.1 Cost Model

To incentivize a fog device to participate in transcoding, CLSP will pay a re-

ward to a fog device if the assigned transcoding task is successfully accomplished.

The cost for the task of transcoding broadcaster i video into representation y by fog

node f is defined as

ct
i,y, f = It

i,y, f ·Φ(y) ·α f , (4.1)

where φ(y) is a non-decreasing concave function of y to model the fact that

transcoding the same live video to a higher version of representation consumes

more computing resources thus causes higher costs. The reward is paid for the
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transcoding task only once regardless of how many viewers are watching the same

video representation from a broadcaster. Moreover, α f is defined as the transcod-

ing success rate of device f which reflects the online transcoding stability of f . A

higher value of α f means the probability of being offline during the transcoding is

smaller. The total cost related to broadcaster i is defined as

ct
i = ∑

y∈Y
∑
f∈F

ct
i,y, f . (4.2)

4.2.2 QoE Model

From the perspective of a viewer, the quality of the received video, namely,

the received bit rate can greatly determine the viewer’s experience [96]. Therefore,

we use the term QoE to denote the how good the received video is. The QoE is

determined by two factors. First, the acceptable quality levels of the received live

videos of different broadcasters vary in terms of their genres (e.g., card game, pixel

art game, first shooter game, etc). By categorizing the live videos into a set of

genres denoted by G = {1,2, . . . ,K} and defining gt
i ∈ G as the genre of video from

broadcaster i in time slot t, we can define sgt
i

as the basic bit rate that a broadcaster

i is suggested to set for the live video in time slot t. Second, it is vital to consider

the network capacity of each viewer. Let ut
j be the highest bit rate that viewer j

can receive, which varies due to the viewer network condition. Therefore, the QoE

model can be expressed as

qt
i, j,y = log

(
by

ut
j
+

by

sgt
i

)
. (4.3)

In (4.3), the QoE model is a non-decreasing concave function of two ratios.

The first ratio quantifies the effect of the network condition of viewer j. The higher

this ratio is, the better QoE can be achieved. However, this ratio should not ex-

ceed one, and a constraint is added to the optimization problem; Otherwise, the

viewer capacity is smaller than the bit rate of the transcoded representation and

this transcoded representation cannot be smoothly played at the viewer end. The
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second ratio quantifies how better the received video quality is compared with the

basic genre rate of broadcaster i considering the fact that same representation from

different genres of broadcasters can lead to different quality of experience levels.

Next, the QoE for a viewer j watching a transcoded video from broadcaster i can

be calculated as

Qt
i, j = ∑

y∈Y
∑
f∈F

Vt
i, jI

t
i,y, f Wt

j, f α f qt
i, j,y. (4.4)

4.2.3 Network Utility

There is a tradeoff between the viewer QoE and the cost imposed on CLSP. On

one hand, CLSP prefers to incentivize more fog devices to participate in transcoding

and provide ABR service to more viewers. On the other hand, better service will

incur more cost. To better express this tradeoff, we define a weighted-difference

between the QoE and the cost as

U t
i = ∑

j∈J t
Qt

i, j−λ · ct
i, (4.5)

where Ui denotes the network utility in which the parameter λ is used to tune the

tradeoff between the two components.

4.3 Edge Transcoding and Viewer Association

4.3.1 Problem Formulation

In this work, we aim to jointly optimize the transcoding task assignment and

viewer association by maximizing the total network utility in each time slot over the
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whole transcoding system. We therefore, formulate an optimization problem as

(PPP) max
It

i,y, f ,W
t
j, f

∑
i∈I

U t
i , (4.6a)

s.t. C1 : Vt
i, jI

t
i,y, f Wt

j, f by ≤min{ut
j,B

t
i} , (4.6b)

C2 : ∑
y∈Y

∑
i∈I

It
i,y, f ≤ 1 ∀ f ∈ F , (4.6c)

C3 : ∑
f∈F

It
i,y, f ≤ 1 ∀i ∈ I,∀y ∈ Y, (4.6d)

C4 : ∑
f∈F

Wt
j, f = 1 ∀ j ∈ J t , (4.6e)

C5 : It
i,y, f ∈ {0,1} ∀y ∈ Y,∀i ∈ I,∀ f ∈ F , (4.6f)

C6 : Wt
j, f ∈ {0,1} ∀ j ∈ J t ,∀ f ∈ F , (4.6g)

where C1 ensures the received bit rate is lower than both the original video bit rate

and the viewer capacity. C2 ensures that each fog device can at most transcode

one specific original live video into one representation. C3 guarantees that each

transcoding task can only be assigned to one fog device. C4 makes sure that each

viewer only receives one video representation in one time slot. C5 and C6 guarantee

that variable It
i,y, f and Wt

j, f are binary.

PPP is a non-convex integer programming which is inherently complex to solve.

We transform PPP by first relaxing the binary variables It
i,y, f and Wt

j, f to continuous

variables and then introducing an auxiliary variable b such that

b≤∑
i∈I

U t
i . (4.7)

According to (4.1)-(4.5), the formulated objective function is non-convex and

maximizing it is challenging. Therefore, we try to maximize b which is the lower

bound of the objective function. Additionally, the constraint (4.7) can be rewritten

as

b≤ ∑
j∈J t

Qt
i, j−λ · ct

i, (4.8)
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According to the definition of the cost and QoE function in (4.4) and (4.2), we have

b+λ ∑i∈I ∑y∈Y ∑ f∈F ct
i,y, f

∑i∈I ∑ j∈J t ∑y∈Y ∑ f∈F qt
i, j,y, f

≤ 1, (4.9)

Consequently, with the auxiliary variable b and the new constraint in (4.9), the

original problem will be transformed and expressed as

(P̃̃P̃P) max
It

i,y, f ,W
t
j, f ,b

b, (4.10a)

s.t. C1 : Vt
i, jI

t
i,y, f Wt

j, f by ≤min{ut
j,B

t
i}, (4.10b)

C2 : ∑
y∈Y

∑
i∈I

It
i,y, f ≤ 1 ∀ f ∈ F , (4.10c)

C3 : ∑
f∈F

It
i,y, f ≤ 1 ∀i ∈ I,∀y ∈ Y, (4.10d)

C4 : ∑
f∈F

Wt
j, f = 1 ∀ j ∈ J t , (4.10e)

C̃5 : It
i,y, f ∈ [0,1] ∀y ∈ Y,∀i ∈ I,∀ f ∈ F , (4.10f)

C̃6 : Wt
j, f ∈ [0,1] ∀ j ∈ J t ,∀ f ∈ F , (4.10g)

C7 : b > 0, (4.10h)

C8 :
b+λ ∑i∈I ∑y∈Y ∑ f∈F ct

i,y, f

∑i∈I ∑ j∈J t ∑y∈Y ∑ f∈F qt
i, j,y, f

≤ 1, (4.10i)

where qt
i, j,y, f = α f qt

i, j,yVt
i, jI

t
i,y, f Wt

j, f . The problem P̃̃P̃P belongs to the category of

CGP since the non-convex constraint of C8 is in the form of a ratio between two

posynomials.

In order to solve this problem, we use successive convex approximation

method and monomial approximations [147] to transform the problem into a se-

ries of GP problems. Applying monomial approximations, the problem can be ex-
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pressed as

(P̂̂P̂P) max
It

i,y, f ,W
t
j, f ,b

b, s.t. C1−C4, C̃5, C̃6 & C7,

b+λ ∑i∈I ∑y∈Y ∑ f∈F ct
i,y, f

∏i∈I ∏ j∈J t ∏y∈Y ∏ f∈F

(
qt

i, j,y, f
χi, j,y, f (n)

)χi, j,y, f (n)
≤ 1,

where the parameter χi, j,y, f (n) can be obtained by computing

χi, j,y, f (n) =
qi, j,y, f (n−1)

∑i∈I ∑ j∈J t ∑y∈Y ∑ f∈F qi, j,y, f (n−1)
,

∀i ∈ I, j ∈ J t ,y ∈ Y,∀ f ∈ F . (4.12)

The problem P̂̂P̂P can be solved efficiently using CVX [148].

4.3.2 Proposed Algorithm

The proposed algorithm starts with initial values for I0 and W0. By solving

P̂̂P̂P iteratively, we can update I and W till all of them converge. Once we have

converged values of I and W, we need to round them into binary values according

to the formulated constraints C2,C3, and C4.

4.3.3 Overhead Analysis

In the current CLSPs, real time messaging protocol (RTMP) has been widely

used to pull the live stream from the broadcaster and push it to the viewers. RTMP

works on top of Transmission Control Protocol, in which the message is divided

into small chunks. The required information for the proposed algorithm can be

piggybacked within the chunks using RTMP. Such information is only needed at

most once in each time slot, which can be expressed with a few bits. Therefore,

the communication overhead is trivial compared with the large amount of live video

data.

4.4 Numerical Results

4.4.1 Exhaustive Search
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Figure 4.2: Network utility versus λ

To evaluate our algorithm, we first compare the performance of the proposed

algorithm with the exhaustive search scheme by setting I = 2, Y = 2, F = 3, and

Jt = 3. The performance of the proposed scheme for various λ values is collected by

running the simulation 10 times and taking the average value of the results. Figure

4.2 depicts the network utility achieved by both schemes versus λ , and confirms

that the proposed algorithm closely approaches the globally optimal solution of

transcoding task allocation and viewer association.

4.4.2 Trace-Driven Simulation

4.4.2.1 Simulation Setup

In this section, a new simulation is built based on the real-world data of Twitch

broadcaster information including the broadcaster IDs, the viewer counts and the

original video resolutions [25]. According to the data set, we pick three broadcasters

who are consistently online for one hour on 02/01/2015 and dynamically update the

viewer counts per five minutes (which is the length of a time slot). In addition, we

also find a data set containing the join and leave information of more than 7000

viewers from a chat log online [149]. For each viewer, we calculate the online time

duration and estimate the online stability by normalization. Then this information

is utilized as the transcoding success rate of each fog device (α f ). 23 viewers are

picked to be the fog transcoders with α f ∈ [0.35,0.63]. For the representation and

the genre rate, we refer to the twitch broadcaster settings [150]. As a result, Y = 4
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Figure 4.3: Network utility versus viewer counts

and the specific bit rates of the four representations are set to be 400kbps (240P),

1500kbps (480P), 2500kbps (720P), and 5000kbps (1080P). Moreover, we define

six viewer categories with the capacity set as S={500kbps, 1000kbps, 2000kbps,

3000kbps, 4500kbps, 6000kbps} and add a bias capacity γ to each viewer capacity

s ∈ S to explore the effect of the viewer capacities. In addition, we define the

function φ(y) as a logarithmic function of a representation’s index, namely φ(y) =

log(y). Finally, we simulate Top-N which is a currently-running cloud transcoding

scheme in Twitch.TV. Top-N offers N premium broadcasters with the ABR service

but only the original live video for the rest of broadcasters. To appropriately denote

the cost of cloud transcoding, a constant coefficient θ is multiplied to adjust the unit

cost of one transcoding task.

4.4.2.2 Performance Evaluation

The results of this trace-driven, data-based simulation are presented in this

section. In Figure 4.3, the performance of the proposed scheme is plotted against

the viewer counts of each broadcaster with λ = 0.1. We can find that with the

number of viewers increasing, the network utility summed over all broadcasters

increases. This is because the cost is paid only for each transcoding task but not for

each new viewer. Therefore, when the number of viewers with multiple capacities

exceeds a certain threshold, all the representations will be transcoded and the cost

will stop increasing.

Figure 4.4 depicts the total cost and QoE values versus λ with different viewer
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Figure 4.5: Network utility versus λ

capacities. The results demonstrate that with the decrease of λ , both the QoE and

the cost tend to increase. Because decreasing λ means that the cost has less impact

on network utility thus more representations will be transcoded for the viewers (see

Figure 4.5). In addition, the higher viewer capacity will result in better QoE.

In Figs. 4.5 and 4.6, the network utility and the number of transcoded repre-

sentations are plotted against λ with different viewer capacities. It is evident that

both values increase with decreasing λ . The results are consistent with Figure 4.4

and highlight the significance of providing the ABR service to improve the viewer

QoE. In addition, Figure 4.5 demonstrates that the proposed algorithm outperforms

the Top-N by reaching higher network utility versus λ .

Figure 4.7 describes the relationship between the number of transcoded video

representations and the viewer counts. It is shown that with the increase of the
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Figure 4.6: Number of representations versus λ
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Figure 4.8: Number changes in viewers’ rates

viewer counts, the number of representations also increases for each broadcaster,

which proves that the proposed algorithm is able to provide viewers with multiple

choices of video quality versions according to the viewer capacity.
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Figure 4.8 depicts the number of changes in viewers’ rates when more viewers

join (from 35 to 39, 39 to 40, and 40 to 43). With such changes, around 15 per-

cent of viewers’ experienced changes in representations on average. Although new

viewers can affect the tradeoff between QoE and cost, most of the viewers receive

unchanged representations, which demonstrates the proposed algorithm is able to

provide the viewers with robust ABR service.

4.5 Conclusion
In this chapter, a joint edge-assisted transcoding and viewer association algo-

rithm is proposed for the CLSP. In order to maximize the network utility of the

system, a non-convex integer problem is formulated and then solved by applying

continuous relaxation and monomial approximations. Simulation results demon-

strate that the proposed algorithm is able to find the near-optimal solution and is

able to provide ABR service to the viewers.
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Chapter 5

Risk-Aware Contextual Learning for

Edge-Assisted Crowdsourced Live

Streaming

5.1 Introduction

In Chapter 4, an edge transcoding system is proposed to leverage the com-

putational resources at the user end. The proposed algorithm relies on solving a

non-convex optimization problem in the presence of perfect knowledge of transcod-

ing success rates of viewer devices. However, acquiring such knowledge might

not be practically feasible in the live streaming systems. Besides, the notion of

the transcoding success rate only involves the effect of the device’s online stability

which reflects if the fog device can maintain online for transcoding or not. More-

over, the proposed algorithm does not consider the risk of assigning a transcoding

task to a device with highly unstable transcoding performance. In this chapter1, the

idea of transcoding success rate is extended by considering both the online stability

and the transcoding ability of the fog transcoder, which means we not only consider

if the fog device can complete a transcoding task but also consider the performance

of the transcoding. Moreover, we also account for the transcoding performance

variation during the transcoder selection. In addition, we extend the system model

1Part of Chapter 5 has been published in the IEEE Signal Processing Letters [151].
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in Section 4.2 by taking the latency experienced by the viewers into account.

To accurately estimate the performance variation of the transcoders, first, we

generally study a risk-aware MAB problem based on the MV paradigm. Focus-

ing on the MABs with continuous reward distributions, we first build a finer UCB

of the MV with a Gaussian reward assumption and design a Gaussian risk aware-

upper confidence bound (GRA-UCB) algorithm to solve the risk-aware MAB prob-

lem. We prove that GRA-UCB can reach an O(log(T )) regret. Next, utilizing the

asymptotic distribution of the empirical variance and by extending the GRA-UCB

algorithm, a novel asymptotic risk aware-upper confidence bound (ARA-UCB) al-

gorithm is generally designed for sub-Gaussian reward distributions and also proved

to achieve O(log(T )) learning regret. Both proposed algorithms perform numeri-

cally well.

Employing the refined confidence bounds and with the aid of the transcoders’

context information, a risk-aware contextual learning scheme is designed to learn

the transcoding capabilities of fog devices online. Based on the learnt capabilities,

a novel joint transcoding task assignment and viewer association algorithm is pro-

posed. The proposed concept of transcoding capability can explicitly reflect the im-

pacts of both the transcoding quality and the performance variation of a transcoder,

thus this scheme can determine transcoding task assignment with risk-awareness

and avoid assigning transcoding tasks to the transcoders which only perform av-

eragely well. Furthermore, an epoch-based strategy is designed to greatly reduce

the switching cost of transcoding task assignments. Numerical results demonstrate

that the proposed algorithm achieves significant network utility improvement while

keeping the switching cost of task assignment competitively low.

The remainder of this chapter is organized as follows. Section 5.2 describes

the system model of the extended edge transcoding system. In Section 5.3, an

optimization is formulated to maximize the network utility. In Section 5.4, the risk-

aware MAB problem is studied and the proposed algorithms are presented. The

designed transcoding task assignment and viewer association algorithm is described

in Section 5.5, followed by the simulation results in Section 5.6. The conclusions
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are drawn in Section 5.7.

5.2 System Model

Assume there is a set of broadcasters, i.e., I = {1,2, · · · , I} in the network as

illustrated in Figure 5.1. We consider a time-slotted system. The bit rate of the

original live video of broadcaster i ∈ I in time slot t is defined as Bt
i. Moreover,

consider there are Jt viewers in time slot t and V t
i, j is a binary parameter indicating

whether viewer j ∈ J t = {1,2, · · · ,Jt} chooses to watch broadcaster i’s live stream

in time slot t or not. In addition, denote y ∈ Y = {1,2, · · · ,Y} as a video represen-

tation which is one of Y possible standard quality levels of a transcoded video and

the bit rate of representation y is defined as by.

Similar to the system model in Section 4.2, the scheduler of CLSP will decide

which representation should be transcoded by which fog device based on viewer

requirements, the performance of the fog devices, and system constraints such as the

experienced delay by users and the cost for transcoding. In the transcoding process,

each fog device f ∈ F = {1,2, · · · ,F} is able to transcode the broadcasters’ live

videos into standard video versions where F represents the set of all available fog

devices. After the transcoding process, all of the standard transcoded live videos

will be transmitted from the fog devices to the associated viewers.

To describe the transcoding task assignment and the viewer association, a bi-

nary variables is defined as It
i,y, f , j which takes 1 when fog device f is selected to

transcode the original video from broadcaster i requested by viewer j into represen-

tation y in time slot t and 0 otherwise.

5.2.1 Cost and QoE Model

To incentivize a fog device to participate in transcoding, similar to the system

model in Chapter 4, we define the cost of transcoding one live video from broad-

caster i to representation y at fog device f , which is paid by the CLSP for the fog
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Figure 5.1: System model

device, as ct
i,y, f , which is written as

ct
i,y, f = ∑

j∈J
It
i,y, f , j ·Φy ·ω t

f (5.1)

where Φy is a non-decreasing concave function of representation y and ω t
f is defined

as the transcoding capability of device f .

In (5.1), ω t
f represents the transcoding capability of device f in time slot t. A

higher value of ω t
f means the fog device is more reliable and it can transcode a live

stream with higher quality and less delay. To encourage fog devices with higher

transcoding capability to join the transcoding candidate pool, ct
i,y, f is linearly in-

creasing with ω t
f . In this chapter, transcoding capability plays an important role

which is not only related to the transcoding quality but also the transcoding per-

formance uncertainty. In a nut shell, a fog device with relatively higher average

performance and lower performance fluctuation is more capable for transcoding.

The exact definition of transcoding capability will be presented in Section 5.5.

Based on the definition of ct
i,y, f , the total cost related to broadcaster i (denoted
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by ct
i) can be defined as

ct
i = ∑

y∈Y
∑
f∈F

ct
i,y, f . (5.2)

Similar to the definition of the QoE in Chapter 4, we still define the QoE as

a function of the representation rate by, the source video’s genre rate sgt
i
, and the

viewer network capacity ut
j, which quantifies both the effect of the viewer’s network

condition and how much better the received video quality is compared with the

basic genre rate of broadcaster. Define the QoE of viewer j watching representation

y from broadcaster i as qt
i, j,y, which can be written as

qt
i, j,y = log

(
by

ut
j
+

by

sgt
i

)
. (5.3)

The QoE for a viewer j watching a transcoded video from broadcaster i can be

calculated as

Qt
i, j = ∑

y∈Y
∑
f∈F

It
i,y, f , jω

t
f qt

i, j,y. (5.4)

5.2.2 Delay Model

The latency experienced by the viewers can be categorized into three types,

namely, transmission delay, transcoding delay and playout delay. The transmission

delay is referred to as the round trip time, including the broadcaster-transcoder delay

and the transcoder-viewer delay. In the traditional cloud transcoding system, both

the broadcasters and the viewers can be far from the cloud data center, which brings

non-negligible latency. The transcoding delay is the processing delay of transcoding

a live video to a different quality version. Normally, the transcoding delay can be

calculated as the time difference between the input of original video and the output

of the transcoded representation. The playout delay is determined by the viewer

devices and decoding time, thus it is not involved in this paper. Define ξ t
j and δ t

j as

the transmission delay and the transcoding delay experienced by viewer j in time



5.3. Optimization Problem: Edge Transcoding and Viewer Association 85

slot t, respectively. The transmission delay can be expressed as

ξ
t
j = ∑

i∈I
∑

y∈Y
∑
f∈F

τ̃
t
i, f , jI

t
i,y, f , jV

t
i, j, (5.5)

where τ̃ t
i, f , j denotes the network delay from broadcaster i to viewer j via fog device

f . Next, the transcoding delay can be represented as

δ
t
j = ∑

i∈I
∑

y∈Y
∑
f∈F

δ̃i,y, f It
i,y, f , jV

t
i, j, (5.6)

where δ̃i,y, f represents the transcoding delay for fog device f to transcode an origi-

nal live video with bit rate Bt
i to a representation with bit rate by.

Therefore, the overall latency in the proposed transcoding system in time slot

t experienced by the viewer j can be represented as

Dt
j = ξ

t
j +δ

t
j . (5.7)

5.3 Optimization Problem: Edge Transcoding and

Viewer Association
According to the system model formulated in the previous section, there is a

tradeoff between the viewer QoE and the cost imposed on CLSP. On one hand,

CLSP prefers to incentivize more fog devices to participate in transcoding and pro-

vide ABR service to more viewers. On the other hand, better service will incur more

cost. To formalize such a tradeoff, we define the weighted-difference between the

QoE and cost (which is referred to as the network utility) related to a broadcaster as

U t
i = ∑

j∈J t
V t

i, jQ
t
i, j−λ · ct

i, (5.8)

where the parameter λ is used to tune the tradeoff between the two components.

Aiming to jointly optimize the transcoding task assignment and viewer asso-
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ciation by maximizing the total network utility in each time slot over the whole

transcoding system. We therefore, formulate an optimization problem as

(PPP) max
It
i,y, f , j

∑
i∈I

U t
i , (5.9a)

s.t. C1 : V t
i, jI

t
i,y, f , jby ≤min{ut

j,B
t
i} , (5.9b)

C2 : ∑
y∈Y

∑
f∈F

It
i,y, f , j ≤ 1,∀i ∈ I,∀ j ∈ J t , (5.9c)

C3 : ∑
y∈Y

∑
i∈I

∑
j∈J t

It
i,y, f , j ≤M,∀ f ∈ F , (5.9d)

C4 : It
i,y, f , j ∈ {0,1},∀y ∈ Y,∀i ∈ I,∀ f ∈ F ,∀ j ∈ J t , (5.9e)

C5 : Dt
j ≤ Dth,∀ j ∈ J (5.9f)

where C1 makes sure the received bit rate is lower than both the original video

bit rate (Bt
i) and the viewer capacity. C2 ensures that a viewer can only play one

representation from one broadcaster. C3 guarantees that each transcoder can only

serve M viewers at most due to the limited bandwidth resource. C4 guarantees that

variable It
i,y, f , j is binary. C5 ensures that for every viewer, the experienced delay of

each viewer is lower than a predefined threshold Dth.

The formulated problem is a linear integer programming that can be efficiently

solved by an optimization toolbox called Mosek [152]. Particularly, the transcoding

capabilities of transcoders are required to solve PPP , which is unknown in real live

streaming systems. Therefore, an online learning scheme is highly demanded.

5.4 Risk-Aware Learning Algorithm for MABs
In the previous section, to calculate the network utility and to solve the for-

mulated optimization problem, the knowledge of the transcoding capability is in-

dispensable, which needs to be learned online. According to the modelled edge

transcoding system, the CLSP controller aims to maximize the cumulative net-

work utility observed in a number of time slots by properly assigning transcoding

tasks to multiple transcoders without the prior knowledge of transcoding capability.

This decision-making problem can be modelled as an MAB problem, in which the
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arms are the transcoders and the agent refers to the CLSP controller. In addition,

the unknown transcoding capabilities of fog devices not only reflect the average

transcoding performance but also the variation of the performance, so that assign-

ing transcoding tasks to fog devices with large performance variations can be risky.

Therefore, in this section, we generally study the risk-aware MAB problem and in-

troduce refined confidence intervals of the variance of arm’s reward, which will be

used in the following sections to learn the transcoding capability.

5.4.1 Risk-aware MAB Formulation

Consider a risk-aware MAB problem with K arms, i.e., K = {1,2, . . . ,K}.

Playing each of the arms yields a continuous random reward sampled from an inde-

pendent distribution. In risk-aware MABs, the risk of receiving a very low reward

is considered and the agent prefers playing the arm with a higher mean and lower

uncertainty. To measure the risk, in [115], the MV of an arm a is defined as

ηa = σ
2
a −ρµa, (5.10)

where µa and σ2
a are the mean and variance of the reward of arm a respectively. In

(5.10), ρ ≥ 0 is a risk-tolerance factor introduced to balance reward-risk tradeoff.

As ρ → ∞, the risk-aware MAB problem degenerates to a risk-neutral MAB, and

when ρ = 0, the problem aims to find the arm with the lowest risk. Defining the

arm played at t following the arm-selection policy π as πt , the observed reward is

denoted as rt
πt . After playing arms for T rounds, the cumulative MV following the

policy π can be calculated as

η
T
π = E

[ T

∑
t=1

((rt
πt −

1
T

T

∑
t=1

rt
πt )2−ρrt

πt )

]
, (5.11)

The objective of the risk-aware MAB problem is to minimize ηT
π under the given

risk-tolerance factor ρ .

In order to demonstrate the performance of an arm-selection policy, the opti-

mal policy π∗ which has the full knowledge of arms is used as the benchmark to
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calculate the performance gap between the optimal policy and a proposed policy π .

The performance gap is referred to as the learning regret defined as

RegT
π = η

T
π −η

T
π∗. (5.12)

In risk-aware MAB, as proved in [118], simply playing the arm with the lowest

MV may not be the optimal policy but only a proxy of the optimal policy, that is in

general intractable. Therefore, we measure the learning regret by using an approx-

imated policy π̃∗ which keeps playing the arm with the smallest MV. Let us define

some notations used in the proposed algorithms. Denoting rt
a as the received reward

by playing arm a at round t, the empirical mean µ̄ t
a and the empirical variance (st

a)
2

of arm a until round t are defined as

µ̄
t
a =

1
τ t

a

τt
a

∑
d=1

rta(d)
a , (5.13)

(
st

a
)2

=
1

τ t
a−1

τt
a

∑
d=1

(
rta(d)

a − µ̄
t
a

)2
, (5.14)

where ta(d) represents the round when the dth reward of arm a is observed by the

agent and τ t
a denotes the number of times arm a has been played till round t. Ac-

cordingly, the empirical MV can be calculated as

η̄a =
(
st

a
)2−ρµ̄

t
a. (5.15)

We design two risk-aware bandit algorithms, depending on whether the reward

distribution knowledge is available or not. Both algorithms are index-based policies

which assign different indexes to each arm. The indexes represent the estimation

of the UCB of the MV based on the historical observations, and the arm with the

lowest index is played. The key difference is that for GRA-UCB, the reward is

assumed to follow Gaussian distribution so the UCB is specifically derived for this

case. However, in ARA-UCB, an asymptotic UCB of the variance is derived in the

absence of the reward distributions knowledge.
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5.4.2 Gaussian Risk aware-Upper Confidence Bound

Suppose that the rewards of arms follow a Gaussian distribution with different

means and variances. We utilize the following facts to design an arm-selection

algorithm.

Fact 5.1. (Hoeffding inequality) Let (X − µ) be a sub-Gaussian random variable.

Define the empirical mean over n samples as µ̄n and µ = E[X ], then

Pr{µ̄n ≥ µ +κ} ≤ e−2nκ2
, Pr{µ̄n ≤ µ−κ} ≤ e−2nκ2

. (5.16)

Fact 5.1 states that the deviation κ of the empirical mean from the true mean

after n samples is bounded by e−2nκ2
. Here, setting κ =

√
log t
τt

a
, then we have

Pr

{
µ̄n ≥ µ +

√
log t
τ t

a

}
≤ 1

t2 , Pr

{
µ̄n ≤ µ−

√
log t
τ t

a

}
≤ 1

t2 . (5.17)

Fact 5.2. Let X be a Gaussian random variable with variance σ2. Define the em-

pirical variance over n samples as s2
n, based on [153] we have

Pr

{
σ

2 ≤ (n−1)s2
n

χ2
1−α,n−1

}
= 1−α, (5.18)

where χ2
1−α,n−1 is the upper 100α percentage points of the chi-square distribution

with (n−1) degrees of freedom.

Fact 5.2 gives a definition of the confidence interval of the variance of a random

variable when the variable follows the Gaussian distribution. It implies that there is

a probability of 100(1−α)% that the constructed confidence interval based on the

sample variance will contain the true value of σ2.

In GRA-UCB algorithm, each arm is assigned with an index which is the UCB

of the MV. Based on Facts 5.1 and 5.2, the index of arm a is defined as

Ht
a =

(τ t
a−1)(st

a)
2

χ2
1−α,τt

a−1
−ρ

(
µ̄

t
a +

√
log t
τ t

a

)
, (5.19)
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where the first and second terms represent the UCBs of the variance and the mean

based on (5.18) and (5.17), respectively. In each round, after calculating indexes,

the arm with the lowest Ht
a will be played and the number of plays of this arm are

updated as τa(t + 1) = τ t
a + 1. Subsequently, the empirical mean and variance are

updated based on (5.13) and (5.14).

We derive the learning regret bound of the GRA-UCB algorithm in the follow-

ing theorem.

Theorem 5.1. The learning regret of the GRA-UCB algorithm can be upper

bounded as

RegT
π ≤

K

∑
a=1

((
4ρ2

∆2
a,a∗

+C

)
logT +3

)(
∆a,a∗+Γ

2
a,a∗
)
+σ

2
a∗+σ

2
max

(
K

∑
a6=a∗

Γ2
a,a∗

∆a,a∗
+1

)
.

(5.20)

Proof: See Appendix B.

5.4.3 Asymptotic Risk aware-Upper Confidence Bound

GRA-UCB is designed under the assumption that the reward follows an inde-

pendent Gaussian distribution. However, when the reward distribution is unknown,

the confidence interval presented in (5.18) is not pertinent. Following the idea of

GRA-UCB, and in this section, we utilize the asymptotic distribution of the em-

pirical variance to drive a confidence interval without any prior assumption of the

reward distribution.

Fact 5.3. Let X be a continuous random variable with mean µ , variance σ2, and

µ4 =E
[
(X−µ)4]. According to [154], the asymptotic distribution of the empirical

variance is

√
n
(
s2

n−σ
2)→N (0,µ4−σ

4) . (5.21)

Based on Fact 5.3, in the following lemma, we develop an asymptotic UCB on

the variance.
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Lemma 5.1. Applying Fact 5.3, for a sufficiently large n, an asymptotic confidence

interval of the variance can be derived as

Pr
{

σ
2 ≥ vupper

n
}
≤ α, (5.22)

where vupper
n =

ns2
n+
√

nχ2
α,1(µ4−s4

n)+(χ2
α,1)

2
µ4

n+χ2
α,1

and s4
n is the empirical estimate of σ4.

Proof: See Appendix C.

Since µ4 is unknown, an estimate of µ4 is required. We use µ̃4 =
1
n ∑

n
a=1(Xa−

µ̄)4 in the asymptotic UCB provided in Lemma 5.1 to define a refined bound of the

MV compared with the GRA-UCB policy. Therefore, an alternative index will be

assigned to each arm to determine arm-selection. The index of arm a is defined as

Nt
a = v′

τt
a
−ρ

(
µ̄

t
a +

√
log t
τ t

a

)
, (5.23)

where v′
τt

a
=

ns2
τt
a
+

√
τt

aχ2
α,1

(
µ̃4−s4

τt
a

)
+(χ2

α,1)
2
µ̃4

τt
a+χ2

α,1
. Similar to GRA-UCB algorithm, the

agent chooses the arm with the smallest index to play. We derive the learning regret

bound of the ARA-UCB algorithm in the following theorem.

Theorem 5.2. The learning regret of ARA-UCB algorithm for sub-Gaussian re-

wards can be upper bounded as

RegT
π ≤

K

∑
a=1

(
(

4ρ2

∆2
a,a∗

+C) logT +β logLa +3
)(

∆a,a∗+Γ
2
a,a∗
)
+σ

2
a∗

+σ
2
max(

K

∑
a6=a∗

Γ
2
a,a∗/∆a,a∗+1). (5.24)

Proof: See Appendix D.

5.4.4 Numerical Results for Risk-aware MABs

In this section, we numerically evaluate the performance of the proposed al-

gorithms and compare them with several benchmarks. We simulate two cases by

setting two different reward distributions. In the first simulation, the reward is sam-
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Figure 5.2: The mean and variance of ten arms
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Figure 5.3: The learning regret with Gaussian reward

pled from a Gaussian distribution. The number of arms is set to be K = 10 and the

risk tolerance ρ = 1. The ten pairs of means and variances are uniformly generated

(which are illustrated in Figure 5.2). In the second case, the reward is sampled from

a truncated Gamma distribution in the range [0,10]. The number of arms is set to

be K = 10 and the risk tolerance ρ = 2.5. The means and variances in the second

case are presented in Figure 5.4. Since different reward distributions with different

parameters are considered, different risk tolerance factors are used to ensure the

optimal arm is risk sensitive with relatively high mean and low variance.

To evaluate the performance of GRA-UCB and ARA-UCB in comparison with

the existing schemes, we simulate three algorithms, namely, MV-LCB [115], MV-

UCB [118], and CVaR [119]. Finally, we calculate the learning regret by running

each simulation for 100 times and taking the average results.

In Figure 5.3, we observe that both proposed algorithms reach low cumulative
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Figure 5.4: The mean and variance of ten arms
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Figure 5.5: The learning regret with truncated Gamma reward

learning regret, because GRA-UCB is designed for the Gaussian reward and ARA-

UCB is model agnostic. In addition, although MV-UCB performs relatively well,

the performance is sensitive to its parameter b which needs to be adjusted for better

performance and no clear hint is discussed in the literature. Moreover, our proposed

schemes outperform the MV-LCB because the confidence bound used in MV-LCB

is not tight enough.

In Figure 5.5, benefiting from the asymptotic upper confidence bound, ARA-

UCB reaches the lowest learning regret. Additionally, we should also note that,

because truncated Gamma distribution is used to generate reward while MV-UCB

is based on an assumption of symmetric reward distribution, the derived confidence

bound of MV-UCB is inaccurate.
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5.5 Risk-Aware Contextual Learning for Edge Transcod-

ing
In light of the proposed system model in Section 5.2 and the UCBs of the re-

ward variance in Section 5.4, in this section, a novel risk-aware learning algorithm is

designed to learn the transcoding capability ω t
f online leveraging context informa-

tion. Then, a novel transcoding task assignment and viewer association algorithm

is designed to maximize the network utility of the transcoding system.

Since the aim of the edge-assisted transcoding system is to select a number of

fog transcoders per time slot to maximize the network utility, this problem can be

modelled as a risk-aware MAB problem, where the arms are the fog devices and the

rewards are the transcoding outcomes of selected fog devices. More specifically,

we learn the transcoding capabilities of each fog transcoder proposing an index-

based MAB algorithm and use the optimization problem formulated in Section 5.3

to determine the transcoder selection while satisfying the constraints.

5.5.1 Transcoding Capability Learning

To solve the optimization problem (5.9), the transcoding capability should be

learned since in an edge-assisted transcoding system, transcoders can be the candi-

date viewer devices whose transcoding capabilities are unknown [25]. Defining a

random variable rt
f as the transcoding outcome when a transcoding task is assigned

to transcoder f in time slot t. To describe the average performance of transcod-

ing for a fog device, we define γ f as the transcoding quality, which is the mean of

the transcoding outcome rt
f of the fog device f . Intuitively, a transcoder with high

transcoding quality can still perform poorly if the variation of its transcoding quality

is large, which is unaffordable and risky. For instance, choosing a transcoder with

high uncertainty can lead to unacceptable transcoding delay and severely deteriorate

the viewer experience. Besides, choosing a more risky transcoder can lead to fre-

quent transcoder switches, which means the same transcoding task will be assigned

to different fog transcoders and result in high communication overhead and play-

back latency. These problems reflect the importance of considering the uncertainty
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of transcoders. To quantify the variation of the transcoding outcome, we define the

variance of the transcoding outcome as σ2
f .

Based on above definitions and motived by the mean-variance metric [114], to

consider both the mean and the variance of the transcoding performance of a fog

device, we formally define the transcoding capability ω t
f as the linear combination

of the transcoding quality and the variance of the transcoding outcome, which can

be written as

ω f = ργ f −σ
2
f . (5.25)

where ρ > 0 is the risk-tolerance factor introduced to balance the treadoff between

a high reward and a low risk.

Since the transcoding capability is assumed to be unknown, an online decision-

making scheme is required to learn the transcoding capability while choosing the

reliable transcoders. In the following sections, we propose to learn the transcoding

quality and the variance of the transcoding outcome.

5.5.1.1 Contextual Learning of Transcoding Quality

In the proposed edge-assisted transcoding system, transcoding results can be

determined by some side information (context information). For example, the

viewer devices are not specially implemented for video transcoding, and can switch

offline during transcoding [24], which will affect how many transcoded videos are

available for the viewers. Besides, the computational power and network condition

of a fog device can also affect the transcoding outcome by incurring varying la-

tency which can be experienced at the viewer end. However, in the CLSP transcod-

ing system, the instantaneous context information may not accurately reflect the

transcoding quality since the transcoding will be executed for some time. There-

fore, we choose context information such as average available central processing

unit (CPU) cycles and online stability which can reflect the average transcoding

performance. Since the transcoding outcome depends on the context information

of the transcoder such as available computational resources and transcoder online
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stability, the transcoding quality obviously depends on the context information as

well. Therefore, by assuming the transcoding quality of a transcoder is the linear

combination of its context information and a vector of unknown coefficients θ ∗, the

transcoding quality can be represented as

γ f = E
[
rt

f |x f

]
= x>f θ

∗, (5.26)

where x f represents the z-dimensional context information of fog transcoder f ,

and θ ∗ denotes the z-dimensional unknown coefficients which can be treated as

the weight of each context information. In addition, the number of the context in-

formation types is defined as z.

In order to learn the unknown coefficients θ ∗, we realize that given some sam-

ples of the transcoding quality and the context information, learning the coefficients

belong to a LR problem which can be solved by ridge regression, since ridge regres-

sion is a suitable technique to solve linear regression when the number of samples

is highly limited.

Define Rt as the set of transcoding outcomes till time slot t, with the number of

transcoding outcomes as mt . Let W t be a design matrix of dimension mt × z whose

row corresponds to the mt observations till time slot t and column corresponds to the

z types of the context information. According to [155], we can acquire the estimated

coefficients θ̃ t by ridge regression as

θ̃
t = (W t>W t + Iz)

−1W t>Rt , (5.27)

where Iz is the z-dimensional identity matrix. Define the estimated transcoding

quality as γ̃ t
f . Based on the learned knowledge of the unknown coefficients, we can

update the estimated transcoding quality using the context information as

γ̃
t
f = x>f θ̃

t . (5.28)
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5.5.1.2 Risk-aware MAB for Transcoding Capability Learning

Since the overall network utility needs to be maximized over time and given

unknown transcoding capabilities, the EE dilemma is significant and challenging,

which must be carefully addressed in the online decision-making problems. This

dilemma means if keep selecting different fog transcoders to do transcoding, we can

explore their transcoding capability but this can lead to network utility loss since

some transcoders may have poor transcoding capability. However, if we avoid ex-

ploring the fog transcoders and only exploit the known knowledge, we may lose the

chance of further improving the network utility. Therefore, motivated by the MAB

framework [111, 118], to assign transcoding tasks online, we model the transcoder

selection problem as a risk-aware MAB problem. According to this model, we

study to estimate the UCB of transcoding capability by the learnt knowledge of

the transcoding outcome, to solve the EE dilemma. Therefore, the UCBs of both

the mean and the variance of the transcoding outcomes of each fog transcoder are

derived.

For the UCB of the transcoding quality (γ f ), according to [156], for any κ > 0,

with probability at least 1−κ/T , the deviation between the estimated transcoding

quality and the real transcoding quality can be upper bounded as

|x>f θ̃
t−x>f θ

∗| ≤ (φ +1)
√

x>f At−1x f , (5.29)

where At = Iz+W t>W t and φ =
√

1
2 ln 2T F

κ
. This UCB can help to estimate the real

transcoding quality of each transcoder, which holds with a high probability.

In order to estimate the UCB of the transcoding outcome’s variance, we first

define the empirical transcoding outcome till t as r̄t
f , the empirical variance (st

f )
2 of

the transcoding outcomes until time slot t can be defined as

(st
f )

2 =
1

τ t
f −1

τt
f

∑
d=1

(
r

t f (d)
f − r̄t

f

)2
, (5.30)

where t f (d) represents the time slot when the dth transcoding outcome of transcoder
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f is observed and τ t
f denotes the number of times that transcoder f has been chosen

till t.

Next, according to Fact 5.2 in Section 5.3, a UCB of the variance of a random

variable is proposed when the variable follows the Gaussian distribution. Given

the UCBs of both the mean and the variance of the transcoding outcomes based on

(5.29) and (5.18), the transcoding capability of the fog transcoder f can be written

as

ω̃
t
f = ρ

(
γ̃

t
f +(φ +1)

√
x>f At−1x f

)
−

(τ t
f −1)(st

f )
2

χ2
1−a,τt

f−1

, (5.31)

where the first term in the RHS of (5.31) represents the UCB of the transcod-

ing quality and the second term reflects the variance of the transcoding outcome.

In (5.31), τ t
f represents the number of transcoding tasks which is assigned to

transcoder f till time slot t and st
f
2 denotes the empirical variance of the transcoding

outcome of transcoder f at time slot t.

Similarly, when the reward distribution information is unknown, according to

Lemma 5.1, we can build a new transcoding capability estimation, which can be

written as

ω̃
t
f = ρ

(
γ̃

t
f +(φ +1)

√
x>f At−1x f

)
− v′

τt
f
, (5.32)

5.5.2 Switching Cost

Based on the developed learning algorithm for transcoding capability, we can

assign the transcoding tasks to the fog transcoders which are supposed to return

relatively high reward and are less risky. However, in order to learn the transcod-

ing capability, simply assigning one transcoding task to different fog transcoders in

different time slots is not efficient, because assigning a transcoding task to differ-

ent transcoders frequently can lead to unaffordable task-switching costs and further

increase the communication overheads.

To deal with this problem, according to (5.27), we noticed that whichever
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transcoder is selected can contribute in collecting information about the coefficients

θ ∗, thus can further guide the learning process of the transcoding capability. There-

fore, instead of determining the task assignment and viewer association in each time

slot, we investigate an epoch-based sampling strategy which means a transcoding is

consistently assigned to the same fog device for a finite number of time slots (which

is referred as an epoch) and the task reassignments are only proceeded once at the

beginning of each epoch. With this strategy, we can greatly reduce the switching

cost while keep learning the transcoding capability.

The effectiveness of the epoch-based sampling depends on a well-designed

epoch length [157], which is supposed to increase as time continues. Given τ t
f as

the task assignment counter of a fog device f , let F t =
{

f : τ t
f ≥ tζ log t

}
be the

set of fog devices whose assigned task numbers are more than tζ log t till time slot t

and assume ζ > 0. Define the smallest counter as

τ
t
min = min

f∈Ft
τ

t
f , (5.33)

the length of an epoch till time slot t can be calculated as

Et = d(1+ ε)τt
mine, (5.34)

where ε > 0.

5.5.3 Transcoder Selection Algorithm

With the learnt transcoding capability of each fog transcoder, we can exploit

the learned knowledge to solve the optimization problem PPP in (5.9) and update

the estimations based on the observed transcoding outcomes. Since the time slots

have been divided into epochs, we only need to solve the optimization problem per

epoch. Thus, the computational cost can be greatly reduced.

In addition, according to the optimization problem PPP , multiple transcoding

tasks can be assigned to the same transcoder. However, the computational resources

of the transcoders are limited and performing excessive transcoding tasks on one

transcoder simultaneously can lead to soaring transcoding delay and exhaust the
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Algorithm 5.1 Risk-aware contextual transcoding task assignment and viewer as-
sociation algorithm

Require: γ , ζ , ρ , xt
f , φ

for t← 1 to T do
if Current epoch ends then

Update τ t
f and τ t

min
Calculate the epoch length Et based on (5.34)
for f ← 1 to F do

Calculate the estimated transcoding capability ω̃ t
f based on (5.31) or

(5.32)
end for
Solve optimization problemPPP to get It

i,y, f , j
Execute self-inspection and modify It

i,y, f , j accordingly
else

Maintain the same assignment, It
i,y, f , j← It−1

i,y, f , j
end if
Observe the transcoding outcomes
Update θ̃ t based on (5.27)

end for

bandwidth resource. Therefore, to avoid overwhelming the transcoders, every time

the optimization variable It
i,y, f , j is calculated, a self-inspection is executed at every

selected transcoder and any transcoder assigned with excessive tasks will offload

these tasks to the cloud data center for transcoding.

The detailed risk-aware contextual transcoding task assignment and viewer as-

sociation algorithm is described in Algorithm 5.1.

5.6 Simulation Results

5.6.1 Simulation Setup

We test the proposed algorithm with a synthetic dataset, which is based on the

real-world setting. We assume a live stream transcoding system with 4 broadcast-

ers, 50 viewers, 15 fog devices and 4 representations. The viewer count of each

broadcaster live stream is decided by its popularity. The popularity is modelled

by Zipf distribution which is normally used for video content popularity modelling

(e.g., [52]).

We set the original live video rate and the representation rates according to the
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twitch broadcaster settings [150]. The original rates for four broadcasters are set

as 4000kbps, 2500kbps, 1500kbps and 500kbps. The specific bit rates of the four

representations are set to be 400kbps (240P), 1200kbps (480P), 2000kbps (720P),

and 3500kbps (1080P). Moreover, we randomly set the viewer capacity in the range

of [500,4000] kbps.

Based on the system model, a transcoding task can be assigned to multiple

fog devices to serve different viewers. Since the transcoders are at network edge

which is close to the viewers, the fog devices and the viewers are assumed to be

distributed in a region of one square kilometre, and their locations are randomly

determined following a uniform distribution.

According to [24], the transcoding capability can be affected by transcoder’s

computational power. Besides, since the candidate viewers can also undertake

transcoding tasks and the viewers with low stability can be offline during transcod-

ing, the online stability of the transcoders should be considered as a factor of

transcoding capability. Based on [25], the online stability is generated by sampling

the Pareto distribution. As a result, we choose the CPU mark, the average CPU

usage, the average RAM usage and the online stability as the context information

of fog transcoders.

As discussed in [104], the transcoding delay is calculated based on the required

computational resources of a task and the available CPU cycles (determined by the

CPU mark and usage) of the transcoder. For the transmission delay, it can be di-

vided into two parts as discussed in Section 5.2.2. The broadcaster-transcoder delay

is randomly set in the range of [200,300] ms according to [96], and the transcoder-

viewer delay is set in the range of [0,100] ms depending on the distance between

a viewer and a fog device. To demonstrate the risk-awareness of the designed al-

gorithm, the variance of an fog transcoder follows a uniform distribution with the

range of [0,0.8].

Finally, to test the performance of the designed algorithm, both Gaussian and

Gamma distributions are simulated to generate the transcoding outcomes. The pa-

rameters are uniformly selected. The LinUCB algorithm [126] which utilizes the
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Risk sensitivity Context awareness
Proposed scheme Yes Yes

LinUCB No Yes
MV-UCB Yes No

Table 5.1: Comparison with benchmarks on risk sensitivity and context awareness
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Figure 5.6: The Gaussian reward case
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Figure 5.7: The Gaussian reward case

context information to estimate the reward is simulated as the benchmark. In addi-

tion, the MV-UCB algorithm [118] which is a risk-aware MAB is also simulated for

comparison. Table 5.1 describes the comparison between the proposed algorithm

and the benchmarks.

5.6.2 Numerical Results

To demonstrate the performance of the proposed scheme, we first present the

transcoding performances with and without the knowledge of the transcoding capa-
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Figure 5.8: The Gaussian reward case

bilities of edge transcoders. In Figures 5.6 and 5.7, the cumulative network utilities

and the cumulative switching costs are presented using the Gaussian reward distri-

bution, respectively. According to the figures, we can find that the proposed scheme

can learn the transcoding capability quickly and achieve a highly competitively net-

work utility as compared to the case when the transcoding capability is known. Ad-

ditionally, without the transcoding capability knowledge, Solving the optimization

problem (5.9) certainly will cause higher switching costs. This is due to the fact that

different estimated values of transcoding capabilities will be passed to the problem

and can lead to different solutions. Furthermore, it should be noted that given the

full knowledge of the transcoding capabilities, there are still switching costs. This

is because we are assuming a time-varying CPU usage which will affect the delay

performance and further affect the optimization problem due to the constraint C5 in

(5.9).

We first evaluate the proposed algorithm under the Gaussian distribution sce-

nario. In Figure 5.8, the network utilities per time slot achieved by all three algo-

rithms are presented. It is shown that the proposed algorithm outperforms the Lin-

UCB and MV-UCB because it not only utilizes the context information to learn the

transcoding quality but also considers the uncertainty of the transcoding outcome.

In addition, the cumulative network utilities are depicted in Figure 5.9. Moreover,

in Figure 5.10, the cumulative switching costs are presented and the proposed algo-

rithm reaches the lowest cumulative switching cost. This is because the proposed
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Figure 5.9: The Gaussian reward case
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Figure 5.10: The Gaussian reward case

algorithm does not solve the optimization problem PPP per time slot so that the task

assignment and viewer association will not change frequently.

In Figures 5.11, 5.12, and 5.13, Gamma distribution is used to generate the

transcoding outcome. The results demonstrate that the proposed algorithm achieves

a higher network utility while maintaining low switching cost. The experienced

average latencies per viewer are presented in Table 5.2. According to the results, we

can find that the average delays of the proposed algorithm are higher in both sce-

narios. This is because the proposed algorithm can better quantify the transcoding

capabilities of the transcoders and utilize cloud computing in a more efficient way

to ensure high network utility. Moreover, the delay thresholds in both simulations

are set to 1.3 seconds, which further demonstrates that the proposed algorithm can

improve the network utility of the transcoding system while satisfying the delay
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Figure 5.11: The Gaussian reward case
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Figure 5.12: The Gaussian reward case
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Figure 5.13: The Gaussian reward case

constraint.



5.7. Conclusion 106

Gaussian distribution case Gamma distribution case
Proposed algorithm 1.09 1.24

LinUCB 0.46 0.50
MV-UCB 0.44 0.56

Table 5.2: Averaged delay

5.7 Conclusion
In this chapter, a more challenging transcoding task assignment and viewer

association problem is formulated, which assumes the transcoding capability of

the transcoder is unknown and considers the risk of choosing highly unstable

transcoders. To solve the problem, we first design two risk-aware MAB algorithms

to minimize the cumulative MV with refined UCBs of the mean and the variance.

In light of the UCBs and context information, a risk-aware contextual online learn-

ing algorithm is designed to learn the transcoding capability. Moreover, an epoch-

based task assignment strategy is designed to reduce the task-switching cost. As a

result, a transcoding task assignment and viewer association algorithm is designed.

Numerical results demonstrate that the proposed algorithm achieves a significant

improvement in the network utility while reducing the switching cost as compared

to the benchmarks.
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Chapter 6

Transcoder Selection Problem:

Structured Bandits

6.1 Introduction
In Chapter 5, we study the transcoding task assignment problem which is mod-

elled as a risk-aware contextual MAB problem. To capture the transcoding perfor-

mance correlation among different fog transcoders, context information of the fog

transcoder is collected to estimate the transcoding capability. In this chapter 1, we

still focus on solving the transcoding task assignment but consider a different sce-

nario when the context information cannot be shared with the central controller of

the CLSP due to reasons such as possible large communication overhead and pri-

vacy concern from the viewers [83]. To solve the transcoding task assignment prob-

lem under this circumstance, we study the structured MAB to model the correlation

among transcoders and determine transcoder selection online. In this problem, the

expected reward function of an arm is a function of some parameters which are

shared by all the arms.

As compared to the existing structured bandit problem, an extended model is

considered in this chapter, which removes the restrictions on the properties of the

reward function and the number of unknown parameters. In order to solve the struc-

tured bandit problem, we first build a confidence set which is a set of parameters

1Part of Chapter 6 has been published in the 2021 International Conference on AI in Information
and Communication (ICAIIC) [158].
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whose expected reward is close to the empirical mean rewards of each arm, and

then a novel technique is designed to estimate the true value of the unknown param-

eter based on the established confidence set. On top of that, an enhanced TS-based

algorithm is designed to sequentially select fog transcoders while handling the EE

dilemma.

Simulation results demonstrate that the proposed GI-TS algorithm can solve

the structured bandit problem with a noteworthy improvement of the learning re-

gret compared with the existing benchmarks. In addition, the proposed algorithm

is applied to solve the fog transcoder selection problem in live video transcoding

system. The results proved that the proposed algorithm can solve this problem with

a performance improvement as compared to the benchmark schemes.

The remainder of this chapter is organized as follows. Section 6.2 describes

the system model of the structured bandit problem. The proposed GI-TS algorithm

is described in Section 6.3. The simulation results are presented in Section 6.4,

followed by the conclusions drawn in Section 6.5.

6.2 System Model
Consider a structured bandit problem with K arms, i.e., arm k ∈ K =

{1,2, . . . ,K}. At each round, one of the K arms must be selected by an agent to

play, and the reward of the played arm can be observed. Define the arm played at

round t as kt where kt ∈ K, the observed reward of playing arm kt can be defined as

Rkt , which is a random variable following an unknown probability distribution. As

a structured bandit problem, the expectation of Rkt can be defined as

µk(θθθ
∗) = E [Rkt | θθθ

∗] , (6.1)

where θθθ
∗ = [θ1,θ2, · · ·θN ] is a fixed but unknown parameter vector, which belongs

to a parameter set Θ and is shared by all the arms. In addition, the expected reward

function of each arm which is known by the agent can be of any form. The observed

rewards are assumed to be sub-Gaussian with variance proxy σ2, which is known

to the agent. This assumption is common in MAB [125].
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The goal of the agent is to select arm kt at each round t to maximize the total re-

ward in any T rounds. Assume there is an oracle policy that knows the true value of

θθθ
∗ and always selects the optimal arm which is defined as k∗ = argmaxk∈K µk(θθθ

∗).

The cumulative reward following this policy can be represented as ∑
T
t=1 µk∗(θθθ

∗).

If the agent misses choosing the optimal arm at round t, a reward loss is incurred,

which is defined as µk∗(θθθ
∗)−µkt (θθθ

∗). Therefore, the expected cumulative learning

regret can be defined as

Reg(T ) := E

[
T

∑
t=1

µk∗(θθθ
∗)−µkt (θθθ

∗)

]
. (6.2)

It is noticed that minimizing the cumulative learning regret equals to maximiz-

ing the cumulative reward.

6.3 Proposed Algorithm
In structured bandit, the agent knows the forms of reward functions which

are functions of θθθ
∗. Therefore, if the unknown parameter vector can be accurately

estimated, the optimal arm can be determined surely. Moreover, since all arms share

θθθ
∗, no matter which arm is played, the observed reward can be used to refine the

estimation of θθθ
∗. In this regard, enlightened by [125], a TS-based algorithm called

GI-TS is designed to utilize the feature of the setting to solve the structured bandit

problem.

6.3.1 Confidence Set Construction

Define the empirical mean reward of arm k at round t as µ̄k(t) and define the

number of times that arm k has been played till round t as nk(t). GI-TS starts to

estimate the unknown parameter vector by constructing a confidence set based on

the following fact:

Fact 6.1. (Hoeffding inequality) Let Z be a random variable which follows a σ2-

Gaussian distribution with mean µ(θθθ ∗), then

Pr(|µ(θθθ ∗)− µ̄| ≥ δ )≤ 2exp
(
−δ 2n

2σ2

)
, (6.3)
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where µ̄ represents the empirical mean of Z, and n denotes the number of

samples. When δ =

√
2ασ2 log t

n , Hoeffding inequality can be bounded as

Pr

(
|µ(θθθ ∗)− µ̄| ≥

√
2ασ2 log t

n

)
≤ 2t−α , (6.4)

which implies that the gap between the empirical mean and the real mean being

larger than a threshold is increasing unlikely to happen with t increasing. α is

introduced to control the variation rate of the bound.

According to Fact 6.1, corresponding to each arm, define a set of parameters

as

Ak(θθθ) =

{
θθθ : |µk(θθθ)− µ̄k(t)|<

√
2ασ2 log t

nk(t)

}
. (6.5)

The confidence set Θ̃t can be calculated as the intersection of Ak(θθθ)’s of all the

arms, which can be written as

Θ̃t =
⋂

k∈K
Ak(θθθ). (6.6)

An example of confidence set construction is illustrated in Figure 6.1. The marked

curves represent the reward functions of the two arms. For each arm, a set of pa-

rameters can be found, so the gap between µ̄k and µk(θθθ) is smaller than
√

2ασ2 log t
nk(t)

.

By taking the intersection of the two sets, the confidence set is established. In this

case, we can find that θθθ
∗ falls into the confidence set.

Based on (6.5), define AC
k (θθθ) as the complement of Ak(θθθ). Subsequently, the

probability that θθθ
∗ does not belong to the confidence set at round t+1 can be written
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Figure 6.1: Confidence set construction

as

Pr
(
θθθ
∗ /∈ Θ̃t

)
=Pr

(⋃
k∈K

AC
k (θθθ)

)
,

≤
K

∑
k=1

Pr

(
|µk(θθθ

∗)− µ̄k(t)| ≥

√
2ασ2 log t

nk(t)

)
,

≤
K

∑
k=1

t

∑
nk(t)=1

Pr

(
|µk(θθθ

∗)− µ̄k(t)| ≥

√
2ασ2 log t

nk(t)

)
,

≤K
t

∑
nk(t)=1

2t−α = 2Kt1−α . (6.7)

Therefore, Pr
(
θθθ
∗ ∈ Θ̃t

)
≥ 1−2Kt1−α , which means as t increases, the probability

of θθθ
∗ falling into the confidence set Θ̃t superlinearly converges to 1 with α > 2.

6.3.2 Unknown Parameter Estimation

After establishing the confidence set, we need to estimate the unknown param-

eter vector θθθ
∗. Since the confidence set maintains a group of parameters whose

corresponding expected rewards are close to the empirical mean rewards of each

arm, the confidence set can be used to estimate θθθ
∗. This is because the more times

an agent plays, the higher is the probability that the true value of θθθ
∗ falls into this

set as it is presented in (6.7). Moreover, in order to utilize the knowledge of the
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reward functions, we do not simply estimate θθθ
∗ by directly solving the equation

µ̄k(t) = µk(θθθ), which can incur high computation complexity and hardly guarantee

a sufficiently accurate solution. Because the reward function can be non-monotonic

in our problem, solving the equation may lead to multiple solutions.

In GI-TS, define a parameter in the confidence set as θθθ nnn. To estimate θθθ
∗, θθθ nnn is

uniformly selected within the confidence set. Then, inspired by [130], the estimated

parameter θ̂θθ t can be calculated as

θ̂θθ t = ∑
θθθ nnn∈Θ̃t

θθθ nnnwθθθ nnn(t), (6.8)

where wθθθ nnn(t) represents the weight of θθθ nnn at round t. The weight can be calculate as

wθθθ nnn(t) =
Gθθθ nnn(t)

−1

∑θθθ nnn∈Θ̃t
Gθθθ nnn(t)

−1 , (6.9)

where Gθθθ nnn(t) = ∑k∈K |µk(θθθ nnn)− µ̄k(t)|. The logic behind is that, instead of calcu-

lating the mean value of the confidence set, the parameter whose expected reward is

closer to the empirical mean reward has a greater impact on the estimated unknown

parameter vector. Therefore, the estimation of θθθ
∗ is accomplished by calculating

the weighted summation of the parameters inside the confidence set.

6.3.3 Arm Selection

After calculating θ̂θθ t , we need to utilize it for arm selection to minimize the

learning regret. However, we still need to balance the tradeoff between exploring

the reward of each arm and exploiting the learned knowledge to play the best arm,

because the empirical mean reward can be inaccurate especially at the early stage.

Therefore, a Thompson sampling-based scheme namely GI-TS is designed to solve

the EE dilemma.

Consider (6.5), (6.6), and (6.8), if θθθ
∗ ∈ Θ̃t , given θ̂θθ t ∈ Θ̃t , for each arm, it

can be inferred that |µk(θθθ
∗)−µk(θ̂θθ t)| ≤

√
2ασ2 log t

nk(t)
. Since the confidence set is the

intersection among Ak(θθθ) of different arms, the worst case occurs if nk(t) = t/K,

which leads to the possibility of having the largest gaps between µk(θθθ
∗) and µk(θ̂θθ t).
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Algorithm 6.1 GI-TS

Require: Reward functions {µ1,µ2, · · · ,µk}, nk← 0, th
for t← 1 to T do

if t < th then
Randomly play an arm kt ∈ K
Observe Rkt

nkt (t) = nkt (t−1)+1

µ̄kt (t) =
µ̄kt (t−1)·nkt (t−1)+Rkt

nkt (t)
else

Construct confidence set Θ̃t based on (6.5) and (6.6)
Calculate θ̂θθ t based on (6.8), and (6.9)
for k ∈ K do

Sample R̃k(t)∼N
(

µk(θ̂θθ t),
σ2

t

)
end for
Play arm kt = argmaxk∈K R̃k, observe Rkt

nkt (t) = nkt (t−1)+1

µ̄kt (t) =
µ̄kt (t−1)·nkt (t−1)+Rkt

nkt (t)
end if

end for

Therefore, in the worst case, the gap between µk(θ̂θθ t) and µk(θθθ
∗) can be upper

bounded as

|µk(θθθ
∗)−µk(θ̂θθ t)| ≤

√
2Kασ2 log t

t
, (6.10)

which means the estimated reward µk(θ̂θθ t) will converge to its real reward as t in-

creases.

Assuming that the likelihood of the reward is given by the probability density

function of Gaussian distribution. we propose an improvement to compute the pos-

terior distribution for structured bandits considering that any play is informative for

all arms and thus will reduce the variance as σ2/t. Therefore, we will generate an

independent sample R̃k(t) from the distribution N
(

µk(θ̂θθ t),
σ2

t

)
for each arm. The

agent will then play the arm with the highest R̃k(t). The pseudocode of GI-TS is

presented in Algorithm 6.1.
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Number of arms Length of θθθ
∗

First scenario 3 1
Second scenario 10 1
Third scenario 3 2

Table 6.1: Simulation setting

6.4 Simulation Results

6.4.1 Simulation Setup

In this section, the performance of the GI-TS is evaluated. We first generate a

range of different reward functions to demonstrate the robustness and performance

of the proposed algorithm, and three scenarios are set by changing the number of

arms and the length of the unknown parameter vector. The settings are depicted in

Table 6.1. In addition, we study a transcoder selection problem in live streaming

transcoding application which can be modelled as a structured bandit problem.

In the simulations, α is set to be 3. We choose the variance of each arm in all

simulations as σ2 = 4, and Rk is drawn fromN (µk(θθθ
∗),4). th is set to be 10, which

is the number of initialization rounds for arm selection. In addition, the simulations

run for 10000 rounds each time and the learning regret is presented as the average

of 100 independent experiments.

6.4.2 Benchmarks

Several existing algorithms are simulated as benchmarks. First, the classical

scheme UCB and TS are simulated. In addition, we also simulate the UCBc and TSc

schemes which are specially designed for the structured bandit problem [159]. In

these two schemes, first a confidence set of parameters is built with the knowledge

of reward functions, and some of the arms are identified to be the competitive arms

with the help of the confidence set. After that, either UCB or TS is applied to select

only one of the competitive arms.



6.4. Simulation Results 115

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1

2

3

4

5

6

(
)

arm 1

arm 2

arm 3

Figure 6.2: Reward function versus θθθ

6.4.3 Numerical Results

6.4.3.1 First Scenario

In Figure 6.2, the reward functions of arms versus θθθ are presented. We can

find that arm 1 is optimal when θθθ
∗ ∈ [2.5,5], arm 2 is optimal when θθθ

∗ ∈ [0,1], and

arm 3 is optimal when θθθ
∗ ∈ [1,2.5].

With this setting, we test the proposed algorithm and the benchmarks with

varying θ ∗. In Figure 6.3, it is apparent that GI-TS and TSc outperform classical

schemes by considering the correlation among the arms so that the learning regret

is greatly reduced. This is because no matter which arm is played, the observed

reward can help to find the shared unknown parameter θ ∗ by refining the confidence

set each round and improve the learning speed. In addition, our proposed GI-TS

algorithm reaches the lowest regret compared with all the benchmarks. This is

because GI-TS directly estimates the value of θ ∗ to find the optimal arm with the

help of reward function information. Noted that when θ ∗ = 4.8, TSc also performs

well as compared to GI-TS because when the unknown parameter locates at the

edge of Θ, taking the weighted summation of the confidence cannot estimate the

unknown parameter very accurately. However, the results are still comparable and

GI-TS is more robust with varying θ ∗.
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Figure 6.3: Cumulative regret versus θθθ
∗

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T

10
1

10
2

10
3

C
u

m
u

la
ti
v
e

 R
e

g
re

t

TS

UCB

GI-TS

TSc

UCBc

Figure 6.4: Cumulative regret when θθθ
∗ = 1.5

6.4.3.2 Second Scenario

In this section, we further test the proposed algorithm in a more complex set-

ting with ten arms whose reward functions are similar to the functions in the first

scenario.

From Figures 6.4, 6.5, 6.6, and 6.7, we can find that GI-TS outperforms all the

benchmarks under different values of θ ∗. When θ ∗ = 3.8 or 4.4, the learning regret

of GI-TS is only one fifth of the regret incurred by the TSc scheme. Compared with

the first scenario, GI-TS scales well when more arms are added into the system.

This is because, instead of using the number of plays for one arm to estimate the

variation of the reward distribution of that arm, which is used in the normal TS

scheme, the total number of rounds is utilized based on the fact that the confidence

set is updated in each round no matter which arm is played. This novel method
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Figure 6.5: Cumulative regret when θθθ
∗ = 2.7
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Figure 6.6: Cumulative regret when θθθ
∗ = 3.8
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Figure 6.7: Cumulative regret when θθθ
∗ = 4.4

improves the convergence rate and helps to reach a competitive learning regret.
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Figure 6.8: Reward function versus θ1 and θ2

6.4.3.3 Third Scenario

In this section, we test the proposed algorithm when the unknown parameter

θθθ
∗ is a 2-dimensional vector. Noted that this setting cannot be considered when

linear or generalized linear models are used. The reward functions of the three arms

are µ1(θθθ) = θ1 +θ2, µ2(θθθ) = θ1
2−θ2 + 0.5, and µ3(θθθ) = 0.5max{θ1,θ2}+ 0.1,

which are presented in Figure 6.8.

In Figures 6.9, Figure 6.10, and Figure 6.11, we choose three different pairs

of θ1 and θ2, so that arm 1, arm 2, and arm 3 are optimal in each case. The results

demonstrate that the proposed algorithm scales well when one more parameter is

added compared with the results in the first scenario, and GI-TS still outperforms

all the benchmarks by reaching a higher learning speed compared with TSc and

UCBc.

6.4.4 Transcoder Selection Problem

In this section, we focus on solving a decision-making problem of transcoder

selection for crowdsourced live streaming platforms by GI-TS, which can be mod-

elled as a structured bandit problem.

In crowdsourced live streaming platforms, the central controller needs to meet

the massive transcoding demands of thousands of broadcasters. In order to provide

sufficient computational resource, [24] proposed to take the advantage of edge com-

puting by incentivizing end viewers’ devices to be candidate transcoders. However,
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Figure 6.9: Cumulative regret when θ1 = 0.8 and θ2 = 0.8
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Figure 6.10: Cumulative regret when θ1 = 0.8 and θ2 = 0.4
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Figure 6.11: Cumulative regret when θ1 =−0.9 and θ2 =−0.2

the candidates can be offline during transcoding which can severely deteriorate the

transcoding performance, so the stable devices are preferred to be selected. Accord-

ing to [160], the distribution of online durations of candidate transcoders follows the
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Figure 6.12: Cumulative regret when θθθ
∗ = 22.5

Pareto distribution, which implies that the longer a device is online, the more likely

this device will continue to be online. The cumulative probability function of a

Pareto random variable X with parameters β and xm is

FX(x) =


1−
(xm

x

)β

. x≥ xm

0, x < xm

(6.11)

For simplicity, assume x ≥ xm always holds, define S f (xm) = 1−
(

xm
x f

)β f
as

the transcoding stability of fog device f to show the probability that the transcoder

will be online after the selection. In addition, x f and β f are predefined parameters

which vary due to the heterogeneity of transcoders. Based on the setting, each fog

device can be regarded as an arm, and the expected reward function of arm f can

be written as µ f = S f (xm). Moreover, the form of each reward function is known

with θθθ
∗ = xm, which is shared by all the arms. Therefore, this transcoder selection

problem can be modelled as a structured bandit problem, which can be solved by the

proposed GI-TS algorithm. We perform a simulation with 10 fog transcoders. The

result is depicted in Figure 6.12. We can find that the proposed GI-TS algorithm

outperforms all the benchmarks.
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6.5 Conclusions
In this chapter, a new type of MAB problem called structured bandit is stud-

ied which assumes the arms are correlated by sharing the same unknown parameter

in their reward functions. In order to maximize the cumulative reward in this new

bandit problem, we design an algorithm which can estimate the true value of the

unknown parameter with the knowledge of the reward functions and the historical

observation of rewards. Simulation results demonstrate that the proposed GI-TS

algorithm outperforms all the existing benchmarks and achieves the lowest cumula-

tive learning regret in transcoder selection problem and other simulation scenarios.

The GI-TS algorithm is robust and scales well when more arms are added or multi-

dimensional unknown parameter is considered in the structured bandit problem.
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Chapter 7

Conclusions

7.1 Summary of the Thesis

With the evolution of content demand characteristics and video sharing sys-

tems, Internet-based video sharing systems have gradually superseded the tradi-

tional television-based systems. Moreover, emerging video representations (QHD,

4K, 5K, etc.) have increased the bandwidth consumption per user request. Be-

sides, the requirements of the ABR services for both on-demand video and live

video streaming systems have further increased the burden of the bandwidth con-

sumption. These challenges stress the importance of providing efficient caching and

transcoding services. Moreover, new services such as crowdsourced live streaming,

AR, and VR have come to the fore with even more stringent latency and computing

requirement than traditional video streaming system. These services aim to provide

the users with extensive personalized sensory experience and hologram depictions

in real-time, and hence have to rely on edge caching and computing. In addition, the

proliferation of social networks and social media is enabling the users to be content

publisher thus disrupting the traditional server-client content delivery model. This

trend makes the network traffic and user request to become highly dynamic.

In this thesis, we study RL to solve online decision-making problems in content

caching and video transcoding systems at the network edge leveraging the context

information. The main contributions and novelties are summarized as follows.

In Chapter 3, we study the caching replacement problems at an edge server,
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assuming the unknown and time-varying content popularity profile. The caching

decision problem is modelled as a non-stationary MDP with varying states and

transition probabilities. In the formulated problem, since the immediate reward

is a function of the file popularity which is unknown, a context-aware popularity

learning algorithm is designed to learn the time-varying file popularities. Specifi-

cally, an incremental clustering scheme is leveraged to cluster requests into different

groups according to their context information. This helps to extract the similarities

among requests, which enhances the popularity learning rate and accuracy. With the

learned knowledge, an RL-based content caching scheme is designed via SARSA

and linear function approximation. A specific caching decision will be made based

on the proposed scheme each time a request is received. Next, illuminated by the

RL-based caching scheme, a reactive caching algorithm is proposed to reduce the

computational complexity by directly comparing the popularities between the re-

quested file and the cached files for cache replacement decision.

Both the theoretical analyses and the numerical results are performed to

demonstrate the effectiveness of this work. The theoretical analysis proves that

the popularity learning error achieved by the proposed popularity learning scheme

only grows sublinearly with the increasing of requests, and the reactive caching

scheme converges to the optimal caching scheme which is fed with true file pop-

ularity knowledge. Additionally, the computational complexities of both proposed

algorithms are proved to be competitively low, which enhances the feasibilities of

the algorithms for real-world applications. Extensive numerical results driven by

different file requests models and varying system parameters have illustrated the

superiority of the proposed algorithms. As compared to multiple benchmarks, the

proposed algorithms can better track the variation of the time-varying popularity

profiles and achieve robust caching performance.

In Chapter 4, an edge-assisted transcoding system is proposed for crowd-

sourced live streaming service, and a new QoE metric is defined which considers

the influences from both the quality and the genre of the received live video. The

transcoding task assignment and viewer association problem is formulated as a non-
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convex integer optimization problem, which is then solved by the computationally

attractive CGP. Trace-driven simulations demonstrate that the proposed CGP-based

scheme reaches close performance as compared to the exhaustive search scheme

and outperforms existing cloud-based transcoding schemes in terms of overall net-

work utility.

In Chapter 5, a more practical edge transcoding system is proposed consider-

ing both the network delay and transcoding delay experienced at the UE, together

with the network utility. The main purpose is to learn the transcoding capability

which can be unknown in practical transcoding system. To identify the risk of

choosing highly unstable transcoders while learning, given the risk-sensitivity of

this formulated online decision-making problem, two risk-aware bandit algorithms

are designed to balance the mean-variance tradeoff with refined UCB of the arms’

variances. Based on the UCBs, a risk-aware contextual learning algorithm is de-

signed to decide which transcoders are more stable and more efficient. In addi-

tion, an epoch-based transcoding task assignment and viewer association algorithm

is proposed to maximize the network utility and maintain low switching costs of

transcoding tasks.

Theoretical analyses of the proposed risk-aware bandit algorithms are pre-

sented which prove that both schemes achieve logarithmic learning regrets. Numer-

ical results demonstrate that the proposed transcoding task assignment and viewer

algorithm achieves a significant improvement in the network utility while reducing

the switching cost as compared to the benchmarks.

In Chapter 6, a structured bandit problem is studied to solve the transcoding

task assignment from a different perspective. Here, we assume that there are perfor-

mance correlations among multiple transcoders but the context information which

used to build the correlations is not available for some reason. In order to solve the

structured bandit problem which assumes the arm rewards are functions of glob-

ally shared parameters, we first build a confidence set which is a set of parameters

whose expected reward is close to the empirical mean rewards of each arm, and

then a novel technique is designed to estimate the true value of the unknown pa-
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rameter according to the built confidence set. With the estimation, an enhanced TS-

based algorithm is designed to sequentially select edge transcoders while handling

the exploration-exploitation dilemma. Comprehensive simulation results demon-

strate that the proposed GI-TS scheme can achieve a noteworthy improvement of

the learning regret compared with the existing benchmarks.

7.2 Future Work

At present, the video sharing system is still in the path of rapid development

and thus the edge caching and computing still facing many challenges. We notice

that efficient utilization of the context information to build temporal and spatial

locality has the potential to improve existing video streaming systems. In addition,

more practical system models which involve the system dynamics and the spatial-

temporal correlations should be considered in the algorithm design. In this section,

we provide recommendations for future work, based upon the current works in this

thesis.

Above all, there are some immediate works. The proposed caching algorithms

can be applied to the scenario where multiple cache-enabled edge servers are avail-

able, by exchanging the learned popularity knowledge for caching decision. Be-

sides, it is worth studying the cooperation between edge servers, which has the

potential to further unblock the bottleneck of popularity learning rate at the network

edges. In the live video transcoding system, our work can be further extended to

consider the asynchronous nature of the transcoding task arrivals, which can help to

reduce the time complexity of large-scale optimization.

We also identify some related fundamental research topics in the long run:

First, the catalogue of the contents is also time-varying and hence should be

taken into account when designing caching algorithms. In addition, since multiple

versions of the same content are generated for varying user requests with different

popularities, this difference can also be involved which we believe will provide finer

granularity in the caching scheme design and improve the caching efficiency.

Second, in the edge-assisted transcoding systems, it is necessary to include the
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massive broadcasters and transcoders in the optimization problem which, however,

can be quite challenging to solve given the large scale of the problem. Hence, a less

complex transcoding scheduling scheme is worth studying. Moreover, to cope with

the stringent latency requirement of the emerging live AR and VR streaming sys-

tems, we suggest that through learning from historical traces of both the broadcaster

and viewers, the service provider may predict the patterns and assign computational

resources in a proactive way, which can improve the streaming process accordingly.

Finally, in edge caching and transcoding systems, we realize that the effects of

the uncertainty and risk during online decision-making have not been well explored

hence requires further investigation. Besides the risk-aware MAB, other safe RL-

based schemes may also be worth exploring to solve the risk-aware decision-making

problems in content caching and video crowdsourcing applications.
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Appendix A

Mathematical Induction

In order to verify the transition from (3.17) to (3.18), we need to prove the

following equation

E
[
∑

u
i=1

(
Ai−

Ai
2

B

)]
= ∑

u′

i=1

[
(Ai−

Ai
2

B
)∑

u′

i′=i

[Ai′+1

B ∏
i′

j=1(1−
A j

B
)
]]
,

≤∑
u′

i=1(Ai−
Ai

2

B
)∏

i
j=1(1−

A j

B
). (A.1)

This can be proved via the mathematical induction. First, let us rewrite (A.1) and

prove,

∑
u′

i′=i

[Ai′+1

B ∏
i′

j=1(1−
A j

B
)
]
≤∏

i
j=1(1−

A j

B
). (A.2)

For i = 1, (A.2) is equal to

∑
u′

i′=1

[Ai′+1

B ∏
i′

j=1(1−
A j

B
)
]
≤ (1− A1

B
). (A.3)

For i = X , we assume the following equation holds,

∑
u′

i′=X

[Ai′+1

B ∏
i′
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B
)
]
≤∏

X
j=1(1−

A j

B
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Then, when i = X +1, we need to prove that

∑
u′

i′=X+1

[Ai′+1

B ∏
i′

j=1(1−
A j

B
)
]
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X+1
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B
). (A.5)
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The left-hand side of (A.5) can be written as

∑
u′

i′=X+1

[Ai′+1
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According to the assumption in (A.5) and (A.6), we have

∑
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A j

B
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Therefore, we complete the proof of the transition from (3.17) to (3.18).
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Appendix B

Proof of Theorem 5.1

Lemma B.1. (Lemma 2 of [118]) The learning regret of a policy π with respect to

the approximated policy π̃∗ is bounded as

R̃eg
T
π ≤

K

∑
a=1

E [τa]
(
∆a,a∗+Γ

2
a,a∗
)
+σ

2
a∗,

where a∗ = argmina ηa, ∆a,a∗ = ηa−ηa∗ and Γa,a∗ = µa−µa∗ .

Lemma B.2. (Theorem 1 of [118]) With σ2
max = maxa∈K σ2

a , the learning regret

difference can be bounded as

RegT
π − R̃eg

T
π ≤ σ

2
max

(
K

∑
a6=a∗

Γ2
a,a∗

∆a,a∗
+1

)
, (B.1)

Lemma B.3. The expected number of plays of any suboptimal arm a 6= a∗ in GRA-

UCB can be upper bounded by

E
[
τ

T
a
]
≤

(
4ρ2

∆2
a,a∗

+C

)
logT +3. (B.2)

Proof: First, we upper bound τT
a as

τ
T
a =

T

∑
t=1

{
It = a

}
= la +

T

∑
t=la+1

{
It = a,τ t

a ≥ la
}

(B.3)

where It represents the index of the arm played at round t, {A} is an indicator
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function which is equal one if A is true and zero otherwise, and la is an arbitrary

positive integer. Thus,

τ
T
a ≤ la +

T

∑
t=la+1

{Ht
a−Ht

a∗ ≤ 0,τ t
a ≥ la}. (B.4)

Based on (5.19), we can write Ht
a−Ht

a∗ as

Ht
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a∗ = (ŝ2
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a
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2
a −ρ(µ̄ t
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t,τt

a∗
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2
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where ct =
√

log t
τt

a
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∗ =

√
log t
τt

a∗
, and ŝ2

t,τt
a
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(τt
a−1)(st

a)
2

χ1−α,τt
a−1

.

For τ t
a ≥ la =

⌈
(4ρ2 logT)

∆2
a,a∗

⌉
, the last term of (B.5) will be always positive since

∆a,a∗ − 2ρct ≥ 0. Consequently, to ensure Ht
a−Ht

a∗ ≤ 0, the first term of (B.5)

needs to be negative and the second term of (B.5) needs to be positive. Therefore,

continuing from (B.4) and (B.5), we have

τ
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T
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2
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Applying Facts 5.1 and 5.2, E[τT
a ] can be written as

E[τT
a ]≤ la +

T

∑
t=la+1

α +2
T

∑
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t−2

≤ 4ρ2 logT
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By setting α = C
t , C > 0, E[τT

a ] is upped bounded as

E[τT
a ]≤

4ρ2 logT
∆2

a,a∗
+1+ClogT +2l−1

a

≤

(
4ρ2

∆2
a,a∗

+C

)
logT +3, (B.8)

which completes the proof.

Combining Lemmas B.1, B.2, and B.3, the proof of Theorem 5.1 can be com-

pleted.
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Appendix C

Proof of Lemma 5.1

The distribution presented in Fact 5.3 can be reformulated as a standard Gaus-

sian distribution as

√
n
(
s2

n−σ2)√
µ4−σ4

→N (0,1) . (C.1)

Therefore we have
n(s2

n−σ2)
2

µ4−σ4 → χ2
1 . Consequently, the one-sided confidence interval

is defined as

Pr{
n
(
s2

n−σ2)2

µ4−σ4 ≤ χ
2
α,1}= 1−α. (C.2)

Consequently, the (1−α) asymptotic confidence interval of the variance σ2 is es-

tablished as

Pr
{
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n ≤ σ

2 ≤ vupper
n

}
= 1−α, (C.3)

where vlower
n =
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√
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2
µ4
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. From (C.3), obviously we have

Pr
{

σ2 ≥ vupper
n

}
≤ α , which completes the proof.
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Appendix D

Proof of Theorem 5.2

In ARA-UCB, similar to the analysis of GRA-UCB, we need to bound the

number of plays for sub-optimal arms. The following lemma provides an upper

bound on E
[
τT

a
]
.

Lemma D.1. The expected number of plays of any suboptimal arm a 6= a∗ in ARA-

UCB for sub-Gaussian rewards can be upper bounded by

E
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T
a
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≤
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+C

)
logT +β logLa +3. (D.1)

Proof: According to (5.23) and (B.4), we have
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⌉
, ∆a,a∗−2ρct ≥ 0, and hence, the last term of (D.2) will

always be positive.

To ensure Nt
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a∗ ≤ 0, we need the first term of (D.2) to be negative and the

second term of (D.2) to be positive. Consequently, continuing from (D.2), we have
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According to Lemma 5.1, we can conclude that

Pr{v′
τt

a
≤ σ

2
a} ≤ βα, (D.4)

where β > 1 is a scalar. Given a sufficiently large number of samples (La) of arm

a, Lemma 5.1 holds when β = 1. However, when τ t
a < La which means τ t

a is not

sufficiently large, the actual confidence bound in (C.3) is smaller than the expected

bound. Since the reward is sub-Gaussian, β cannot go to infinity and will decrease

when more samples are collected.

Applying Fact 5.1 and (D.4), by setting α = Ct−1 with C > 0, the expected

value of τT
a in (D.3) can be written as

E
[
τ

T
a
]
≤ la +

La

∑
t=la+1

(β −1)α +
T

∑
t=la+1

α +2
T

∑
t=la+1

t−2,

≤
⌈4ρ2 logT

∆2
a,i∗

⌉
+
∫ La

la
β

C
t

dt +
∫ T

la
β

C
t

dt +2
∫ T

la
t−2dt,

≤

(
4ρ2

∆2
i,i∗

+C

)
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which completes the proof.

Combining Lemmas B.1, B.2, and D.1, the proof of Theorem 5.2 can be com-

pleted.
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[130] S. Gupta, G. Joshi, and O. Yağan. Correlated multi-armed bandits with a

latent random source. In ICASSP 2020 - 2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 3572–3576,

2020.



Bibliography 150

[131] J. Huang. Demand functions in decision modeling: A comprehensive survey

and research directions. Decision Sciences, 44(3):557–609, 2013.

[132] O. Atan, C. Tekin, and M. van der Schaar. Global bandits. IEEE Transactions

on Neural Networks and Learning Systems, 29(12):5798–5811, 2018.

[133] C. Shen, R. Zhou, C. Tekin, and M. van der Schaar. Generalized global

bandit and its application in cellular coverage optimization. IEEE Journal of

Selected Topics in Signal Processing, 12(1):218–232, 2018.

[134] Z. Wang, R. Zhou, and C. Shen. Regional multi-armed bandits with partial in-

formativeness. IEEE Transactions on Signal Processing, 66(21):5705–5717,

2018.

[135] S. Gupta, S. Chaudhari, S. Mukherjee, G. Joshi, and O. Yağan. A unified ap-
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