posted on 2013-01-28, 11:19authored byNoori S.J. Al-Maliky
Polymers are increasingly used in structures that have to withstand impact
conditions. This thesis describes an investigation of strain rate properties at
room temperature of four engineering polymers; polyethylene (high density,
HDPE and ultra high molecular weight, UHMWPE), nylatron and
polyetheretherketone (PEEK 150g).
A split Hopkinson pressure bar (SHPB) system was used to study the
response of these polymers in compression tests at high strain rates up to
10' S-1. Stress equilibrium in SHPB samples was studied theoretically by
examining multiple reflection effects during the initial elastic loading of the
polymers; this study proved very useful in the analysis of SHPB tests. To cover
a wide range of strain rate, compression studies were also made at low strain
rates (10-3 _10-2 S-1) using a Hounsfield screw machine. Viscoelastic models
have been applied to these results. These models fit quite well with the
experimental results of HDPE, UHMWPE, and nylatron, but not to the PEEK due
to the yield drop in the stress - strain curves, especially at high strain rates.
An exploding wire technique was used as an axial impulsive loading system
for hollow cylindrical samples. An image converter camera at framing intervals
of 21ls or 10 Ils recorded the radial expansion of the cylinder. The expanding
cylinder was used as a driving system for a new technique called the freely
expanding ring method, which was used to obtain the stress - strain behaviour of
polymeric thin rings placed as a sliding fit on the cylinder. This method
produced very high tensile strain rates up to fracture (> 10' S-1).
Comparisons have been made between results obtained from the quasi-static,
SHPB, and expanding ring tests. The freely expanding ring and SHPB results
were in good agreement indicating similar tensile and compressive high strain
rate behaviour.
The mechanical properties of the above polymers are strongly dependent on
strain rate. The Young's modulus and the flow stress increase with increasing
strain rate. Nylatron showed high strain rate strain softening at high strain, this
was due to the high temperature rise during loading, when the transition
temperature (Tg) of the material (50 QC) was exceeded. However, the other
materials showed continuous hardening behaviour. Plots of the flow stress at
5% and 10% strain vs log strain rate showed a linear increase up to a strain rate
of about 103 S-1. Above 103 s-1, the stress rose more rapidly, but then showed
significant drops for nylatron and PEEK. These drops in stress are probably due
to both micro crack initiation in the sample and also high temperatures around
the crack tips.