Braided textile reinforced composites become increasingly attractive as protection materials in sports (e.g. hockey sticks, helmets and shin guard) due to their high structural stability and excellent damage tolerance. There are requirements to develop an effective way to enhance product optimisation, test and design; however, the mechanical behaviours and energy dissipation mechanisms of braided composites have not been fully understood. There are no numerical modelling paradigms which are widely accepted due to the sheer complexity of the problem. Therefore, the aim of this thesis is to build a robust multi-scale modelling framework which will account for damage in the composite under static and dynamic loading states. Validated with corresponding experiments, the modelling capability should finally allow us to design braided composite structures for targeted performance before they are manufactured. [Continues.]
Funding
Nanyang Technological University (Singapore), Institute for Sports Research.
History
School
Mechanical, Electrical and Manufacturing Engineering
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2018
Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Joint Degree of Doctor of Philosophy of Loughborough University and Nanyang Technological University.