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Abstract 

 

Fluorinated arenes are considered valuable in organic chemistry. They display different types 

of reactivity and physicochemical properties compared to their hydrogen analogues. In this 

project, our medicinal chemistry programme focused on developing rapidly accessible and 

modifiable heterocyclic scaffolds. Different classes of fluorinated heteroatom-containing 

organic compounds including benzothiophenes, (aza)phenoxazines and benzaldehyde 

phenylhydrazones were synthesised from highly fluorinated aromatic compounds with a 

diverse range of functional groups appropriate for medicinal chemistry development.  

 

Mechanistic studies for heterocyclic scaffold synthesis were discussed in the project. The 

mechanisms of the ring-forming reactions were elaborated in detail in each chapter. A range 

of substituents were introduced flexibly into the aromatic heterocycles, which were designed 

to meet the requirements for biological screening programmes. New compounds were 

characterized by 
1
H, 

19
F and 

13
C NMR spectroscopy, mass spectrometry and elemental 

analysis. The X-ray crystal structures of a fluorinated benzothiophene and two 

benzopyridooxazine derivatives were obtained confirming the structure and substitution 

pattern. 

 

From the heterocyclic scaffolds prepared, 6-benzimidazol-1-yl-benzothiophene derivatives 

(91), 3-imidazol-1-yl-pyridobenzoxazine derivatives (130) and 4-1-methylpiperazinyl-

benzaldehyde phenylhydrazone derivatives (195) acted as hit compounds and demonstrated 

significant trypanocidal activities. SAR studies were employed in structural modifications on 

these samples to search for the best activities with highest selectivity. 
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Background 

 

Fluorine is by no means a rare element, being 13
th

 in order of abundance of the elements in 

the Earth’s crust.
[1] 

However, among
 
countless natural products, only a handful of fluorinated 

organic compounds have been discovered and most of these are metabolites in tropical plants, 

which shows Nature has a limited ability to generate organofluorine compounds.
[2]

 Since the 

late 1940s, the number of methods available for incorporating fluorine into organic 

compounds has increased through numerous chemists’ efforts.
[3]

 Organofluorine compounds 

nowadays are widespread in nearly all parts of our daily life.
[4]

  

 

Fluorine is the element of extremes. Fluorine substituents can contribute to a subtle change in 

molecular conformation or reactivity. Organofluorine compounds often demonstrate 

unexpected properties and behaviours in comparison with their non-fluorinated parent 

compounds.
[5]

 In drug design, incorporating fluorine in a molecule can improve metabolic 

stability due to the significant strength of the carbon-fluorine bond (ca.480 kJmol
-1

).
[ 6 ]

 

Organofluorine chemistry now is a hot and attractive topic to chemists in a variety of fields. 

 

 

1.1 Fluorine-Substituent Effects on the Properties of Fluorinated 

Aromatic Compounds  

 

1.1.1 Electronic effect on fluorinated aromatic compounds 

 

The fluorine atom possesses the strongest attraction to the electron among all elements. 

Fluorine is recognised as the most electronegative element in the Periodic Table (4.0 on the 

Pauling Scale),
[5]

 since electronegativity describes the tendency of an atom to attract electrons 

and sequences the electron-withdrawing ability of an atom.
[7]

 The presence of fluorine in a 

compound usually contributes to a significant change in the molecule’s electron density, and 

it therefore affects the chemical reactivity of an organic molecule.  
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In general, fluorine in a perfluoroalkyl or aryl group usually shifts electrons from adjacent 

atoms to the fluorine atom.
[8]

 The electron density of the molecule is concentrated around the 

fluorine atom, which makes the neighbouring atom, or atoms, relatively electron-poor. It is 

caused by this inductive effect. For fluorinated arenes, the strongly electron-withdrawing 

inductive effect caused by fluorine activates nucleophilic reactions on the reaction centre in 

fluoroarenes.
[9]

 This is different to the common electrophilic substitution observed on the 

analogous hydrogen-containing aromatic rings (Scheme 1). 

  

 

Scheme 1: Reaction of electrophilic aromatic substitution and nucleophilic aromatic 

substitution.
[9][10]

 

 

On the other hand, for arenes, which consist of a conjugated planar ring system, although 

introduction of fluorine onto an aromatic compound renders the molecule electron-deficient 

as the π electron density is withdrawn by the fluorine atoms, the lone pair electrons in a p-

orbital on a fluorine substituent also conjugate with the π electron cloud on the aromatic ring, 

which shifts electron density back into aromatic ring. Thus, there are always both inductively 

electron-withdrawing and π-electron-donating resonance effects occurring on fluorinated 

aromatic compounds to consider (Scheme 2).
[9] 
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Scheme 2: Transmission of electronic effect to the reaction centre by fluorine.
[9] 

 

 

1.1.2 Acidity of fluorinated arenes 

 

With its strong ability to withdraw electron density, fluorine has very strong effect on the 

acidity and basicity of adjacent functional groups. It has been reported
 
that the acid strengths 

of perfluoro derivatives of aromatic and heterocyclic compounds are normally enhanced 

compared with their parent compounds.
[8]

 For instance, the pKa value for phenol is 9.8 while 

the value for its fluorinated analogue compound it is 5.5. Perfluorination of phenol 

contributes to around a 4.5 pKa units’ reduction compared with its parent compound.
[11] 

 

In terms of medicinal chemistry, the perturbation of pKa usually has a significant impact on 

the pharmacokinetics properties of a molecule and its binding affinity. In a series of 

piperidinyl indoles investigated by van Niel et al.,
 [12]

 it was found that with sequential 

fluorine incorporation, the pKa values of the ammonium form of compounds were reduced 

through decreasing the basicity of the amine. This reduction of basicity, with concomitant 

weakening of the affinity to the receptor (5-HT1D), had a strong beneficial effect on oral 

absorption.  

 

The non-fluorinated parent compound 1 is a potent receptor ligand, but has a low 

bioavailability (Table 1). When one fluorine atom was introduced, the mono-fluorinated 

compound 2 shows a lower pKa that is still compatible with the requirements for receptor 
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binding, but now results in a compound of considerably increased bioavailability. Through 

further introduction of fluorine, the pKa value for the difluoro compound 3 fell to 6.7. 

However, this compound is no longer basic enough to achieve high binding affinity for the 

5HT1D receptor.
[ 13 ]

 Although generally beneficial in a series of structurally related 

compounds, the effect of fluorine substitution on oral bioavailability cannot always be 

accurately predicted.
[14]

 

 

Table 1: Basicity and bioavailability in a series of piperidinyl indoles.
[12] 

Structure IC50 pKa Bioavailability 

 

0.3 nM 9.7 poor 

 

0.9 nM 8.7 medium 

 

78 nM 6.7 - 

 

 

1.1.3 Lipophilic effect of fluorine-containing groups  

 

Lipophilicity is usually related to the ability of chemical compounds to dissolve in non-polar 

solvents, and it demonstrates an important chemical character, particularly in medicinal 

chemistry.
[7]

 For the design of medicines, lipophilicity controls many parameters such as 

absorption, biological barrier passage and interaction with the macromolecular target.
[15] 

http://www.thesaurus.com/browse/considerably
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Generally, the presence of fluorine or a fluorinated group is considered to enhance the 

lipophilicity of an organic compound.
[11]

 Fluorinated arenes are indeed more lipophilic than 

their non-fluorinated counterparts as perfluorination, polyfluorination and fluorination 

adjacent to atoms with π-bonds (except for some α-fluorinated carbonyl compounds) increase 

the lipophilicity on fluorinated aromatic compounds.
[16]

 The excellent overlap between the 

fluorine 2s or 2p orbitals with the corresponding orbitals on carbon renders the carbon-

fluorine bond highly non-polarisable. The lower polarisability of the C–F bond consequently 

is regarded to result in increasing lipophilicity on aromatic compounds.
[14]

  

 

An example showing the increase in the lipophilicity for aromatic compounds is the 

comparison between fluorobenzene and benzene. Fluorobenzene is known to be more 

lipophilic than benzene, with the log P value in the octanol/water system for fluorobenzene 

being 2.46 while that for benzene is 2.29.
[17]

 There is a slight increase in lipophilicity as 

further fluorine atoms are introduced into a molecule. In a similar manner, 4-

trifluoromethylphenol is more lipophilic than its corresponding non-fluorinated compound, 4-

methylphenol (Table 2).
[17]

  

 

Table 2: The effect of fluorine substitution on lipophilicity (log PNalk) of arenes.
[17]

 

Compounds Log P 

Fluorobenzene 2.46 

Benzene 2.29 

4-Trifluoromethylphenol -0.15 

4-Methylphenol -0.19 

 

However, the introduction of fluorine atoms into an aliphatic molecule sometimes provokes a 

decrease in the lipophilicity. This was postulated to be due to the strongly electron-

withdrawing capabilities of the fluorine.
[18]

 For instance, in aliphatic systems, ethanol (log P 

= -0.32) is less lipophilic than trifluoroethanol (log P = 0.36). The strong electron-

withdrawing effect of trifluoromethyl moiety significantly decreases the basicity of the 

hydroxyl group. But, this strong inductive effect by the trifluoromethyl group extends up to 

three CH2 moieties inserted and there is an obvious difference when the number is beyond 

four as the inductive effect does not affect the basicity of hydroxyl group (Table 3).
[11]

 It is 
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revealed by the fact that the log P (octanol–water partition) value for 1-pentanol is 1.40, 

while that for 5,5,5-trifluoropentan-1-ol is 1.15.
[18]  

 

Table 3: log P values of straight-chain alkanols.
[11]

 

Alcohol Log P (X=H) Log P (X=F) 

CX3CH2OH -0.32 0.36 

CX3(CH2)2OH 0.34 0.39 

CX3(CH2)3OH 0.88 0.90 

CX3(CH2)4OH 1.40 1.15 

CX3(CH2)5OH 2.03 1.14 

 

 

1.1.4 Steric effects of fluorine and fluorine-containing groups  

   

Frequently, fluorine is introduced as an isostere of hydrogen in biomolecules. The size of 

fluorine also plays an important role in the changes of the molecular conformation besides the 

electronegativity of fluorine. In terms of size, the van der Waals radius for fluorine is 1.47 Å, 

which lies between that of hydrogen (1.20 Å) and oxygen (1.57 Å).
[16]

 Despite the slight 

difference in size, the C-F bond can often replace and mimic the C-H bond with minimal 

steric consequences.
[19]

  

 

In practice, fluorine substitution always increases the steric size of alkyl groups. For instance, 

the steric volume of a trifluoromethyl group is larger than that of a methyl group, and is at 

least as bulky as an ethyl 
[20]

 or isopropyl group.
[8]

 Thus, the effect of fluorine substitution on 

molecular conformation is quite subtle and sometimes difficult to predict. Methoxybenzenes, 

for example, usually favour a planar conformation. However, Böhm et al.
[13]

 investigated the 

structure of trifluoromethoxybenzenes searched from the Cambridge Structural Database 

(CSD) and found the trifluoromethoxyl group lies out of the plane of the phenyl ring. It is due 

to the steric hindrance effect by the trifluoromethoxyl group. 
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The nature of the transition state for a chemical or physical process is also affected by steric 

effects during the reaction. Although the steric size of fluorine is small, it sometimes controls 

the stereo- and regiochemistries in reactions. Examples of fluorine steric effects can occur in 

a chemical reaction with two different dynamic processes. Endo-trifluoronobornene 4 

provides a cis-dibromide 5 as the sole product on photolysis with bromine. The first and 

second bromines approach endo-trifluoronorbornene 4 from the less hindered direction, 

although trans-addition of bromine to norbornene is a normal radical reaction pathway. 

However, in contrast, exo-trifluoronorbornene 6 gives a mixture of stereoisomers, the cis-

dibromide 7 and the trans-bromide 8 (Scheme 3).
[9]

 The configurations of the final products 

from the reaction obviously are controlled by the influence of the fluorine.  

 

 

Scheme 3: Different outcome from the photochemical dibromination of 

trifluoronorbornene.
[9]
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1.2 Nucleophilic Substitution Reactions 

 

1.2.1 Mechanism of Reactions Induced by Fluorine on Aromatic Rings 

 

Due to its specific electronic characteristics, fluorine allows nucleophilic attack on the 

aromatic ring, which is hard to effect on hydrogen-based aromatic rings. Thus, fluorinated 

arenes provide new approaches to the synthesis of novel compounds using nucleophilic 

substitution.
[3]

 

 

The mechanisms of the nucleophilic substitution reactions on aromatic compounds are 

assumed to proceed via a tandem two-step addition-elimination process in the replacement of 

fluorine from the highly fluorinated aromatic system. Such compounds are firstly susceptible 

to add nucleophilic reagents on the nucleus of the highly fluorinated aromatic ring and form 

an intermediate complex on the reaction path. A resonance-stabilized carbanion with a new 

carbon–nucleophile bond in the intermediate complex called a Meisenheimer complex is 

formed. Then aromatisation takes place by elimination, as a fluoride ion leaves from the 

nucleus of the ring in a second step (Scheme 4).
[21][22] 

 

 

Scheme 4: Mechanism of the nucleophilc aromatic substitution reaction.
[22]

 

 

Usually, the formation of the resonance-stabilised Meisenheimer complex is quite slow. This 

is because the complex usually has a higher energy state than the aromatic reactant. However, 

the loss of the leaving group is generally very fast, since the complex tends to revert to the 

aromatic form.
[22]
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1.2.2 Orientation of Reactions Induced by Fluorine on Perfluorinated Six-

Membered Arenes 

 

There is a significant difference in the proportions of ortho-, meta- and para- substitution of 

fluorine by nucleophiles in the nucleus of polyfluoro-aromatic compounds. Rationalisation of 

the observed selectivity can be based on several considerations and substitution reactions for 

fluorinated arenes usually take place in the para-position to the first substituent added.
[23]

  

 

During the process of the nucleophilic aromatic substitution reaction in perfluorinated six-

membered aromatic heterocycles, the negative charge of the intermediate adduct is formed 

and needs to be stabilised. This stabilisation occurs mostly as a result of the combined 

inductive effects of the fluorine atoms. This inductive effect should cover the concomitant 

strongly destabilising p–π repulsion of the sp
2
-bound fluorine and which is most significant in 

the position ortho- and para- to the site of nucleophilic attack. Thus, for a six-membered 

arene, it is considered that fluorine in the ortho-position is most effective for overall 

stabilisation of the negatively charged intermediate, while meta-fluorine is less effective and 

para-fluorine is the least effective.
[23]

 Hence, nucleophilic attack usually takes place at the 

para-position in fluorinated arenes.  

 

A good example illustrates nucleophilic substitution occurring in pentafluorobenzaldehyde (9) 

with 4-methylphenol (10) at the para-position (Scheme 5). 4-Methylphenol acted as 

nucleophile to attack pentafluorobenzaldehyde at the position para to aldehyde group, which 

provided the sole product 11 with a yield of 60% after crystallisation.
[24]
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Scheme 5: Reaction of pentafluorobenzaldehdye and 4-methylphenol with para-

substitution.
[24] 

 

Although the major substitution product from the vast number of fluorinated six-membered 

arenes reacting with nucleophiles is the para-isomer irrespective of whether the first 

substituent is electron-withdrawing or electron-donating, there are some notable exceptions 

where ortho-substitution predominates in the reaction caused by a specific interaction 

between the substituent in the fluorinated arene and the attacking nucleophile. Brooke et al.
[25]

 

first reported the predominant ortho-regioselectivity in the reaction of 

pentafluoronitrobenzene (12) with ammonia in ether in 1961 (Scheme 6). ortho-

Regioselection is considered to be due to hydrogen bonding between the nucleophile and 

substituent in a cyclic transition state.   

 

 

Scheme 6: Reaction of pentafluoronitrobenzene with ammonia.
[25]
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Many further examples of the enhanced substitution of ortho-fluorine in compounds C6F5X 

were subsequently observed.
[ 26 ]

 For ortho-substitution, it usually requires a specific 

coordinating substituent in the reactant and the highest yields of ortho-isomers obtained are 

expected in non-polar solvents with metals cations possessing the highest complexing ability 

when the nucleophile is an anion. An example illustrating a reaction of this type is that of 

pentafluorobenzoic acid (15) with a magnesium amide, which generally undergoes ortho-

substitution (Scheme 7).
[27]

 

 

 

Scheme 7: Reaction of pentafluorobenzoic acid and a magnesium amide via ortho-

substitution.
[27]

 

 

From the reaction, a cyclic transition state is formed involving the magnesium cation and the 

ortho-fluorine is substituted by the amide anion. Preservation of the carbonyl-containing 

group seems to be caused by its low reactivity due to the steric influence of ortho-fluorine 

atoms, and that it will exist as the carboxylate salt in the reaction mixture. In fact, this 

reaction is considered as the best method of preparation of otherwise difficult to access o-

alkyl- and o-aryltetrafluorobenzoic acids from pentafluorobenzoic acid.
[26] 

 

Substitution at the meta-Position on fluorinated arenes is the least common but sometimes 

occurs in a reaction under vigorous conditions with a powerful electron-donating group like 
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hydroxyl group on the aromatic ring.
[28] 

The strongly electron-donating group provides an 

electronic effect on the nucleus of the aromatic ring due to conjugation of the π-electrons on 

the substituent. It was considered as the reason that meta-substitution can take place 

exclusively on the aromatic ring. Thus, certain substituents are usually required with a special 

interaction to form meta-substituted compounds. 

 

For instance, the reaction of pentafluorophenol (19) with potassium hydroxide takes place 

with meta-substitution as shown in Scheme 8.
[29]

 The hydroxyl group is an electron-donating 

group and will be ionised under basic conditions. The oxy-anion substituent on the aromatic 

ring renders the fluorine substituents at the meta-positions less deactivated during the 

substitution compared with the ortho- and para- positions. It leads to meta-substitution as the 

predominant process.
[27][28]  

 

 

Scheme 8: Reaction of pentafluorophenol and potassium hydroxide via meta-substitution.
[29]

 

 

Budron et al.
[28]

 has investigated nucleophilic substitution reactions of pentafluorotoluene, 

pentafluoroanisole and pentafluorophenol in order of increasing electron donor capacity of 

the substituent in the fluorinated arenes with the same nucleophiles (Scheme 9).  

 

 

Scheme 9: The increasing propensity to give meta-substitution.
[28]
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From this study, it illustrated that for pentafluorotoluene, the methyl group is not a 

sufficiently powerful electron donor to overcome the para-directing effect of the five fluorine 

atoms and only para-replacement was observed in the reaction, although it does obviously 

slow the rate of the reaction. Much more strongly electron-donating groups like methoxyl and 

hydroxyl groups as the substituents overcome the para-effect partly or completely on the per-

fluorinated arene. Reaction of pentafluoroanisole and sodium methoxide or methyllithium 

gives a meta/para replacement ratio of 7:12, while pentafluorophenol provides the meta-

isomer as the sole product. After investigation, the authors concluded that the much more 

powerful electron-donating group like O
–
 group overcomes the para effect well, and is the 

most exclusively meta-directing substituent in the polyfluoro-aromatic field.
[28]

      

 

 

1.2.3 Poly-substitution on perfluorinated six-membered arenes 

 

For perfluorinated arenes, more than one substitution is usually possible. However, as most 

groups introduced via nucleophilic substitution are generally electron-donating, the first 

substituent added to the fluorinated aromatic ring deactivates the ring towards further attack, 

the next nucleophilic attack is usually more difficult compared with the first.
[21]

  

 

In most examples of poly-substitution, the nucleophile usually attacks the ortho-site after the 

para-position has been substituted, as the ortho-position is more susceptible to attack 

compared with the meta-position due to the electronic effect on the perfluorinated arene.
[21][23] 

A good example is the trisubstitution on pentafluorobenzaldehyde illustrated in Scheme 10.
[30]

 

The structure of trisubstituted derivative of pentafluorobenzaldehyde with pentafluorophenol 

shows the sequence of the substitutions. Both ortho-position substitutions take place after the 

para-position has been attacked. The reaction used 18-crown-6 together with potassium 

carbonate to generate a more powerful nucleophile as the 18-crown-6 complexes to the K
+
 

cation which increases the nucleophilicity of the phenoxide. The reaction required heating in 

refluxing THF for 3 days, which confirmed the second and third nucleophilic attacks are 

more difficult than the first one even though the aldehyde carbonyl group provides further 

stabilisation to the Meisenheimer intermediate. 
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Scheme 10: Reaction of pentafluorobenzaldehyde and pentafluorophenol.
[30]

 

 

Polysubstitution substitution is very important in organofluorine chemistry, for the 

introduction of different functional groups into perfluorinated arenes. Especially, 

polysubstitution provides a large source of heterocyclic scaffolds, and different types of 

reaction are also possible on the resulting fluorinated hetero-cycles.  

 

 

1.2.4 Synthesis of perfluorinated arenes 

 

Perfluorination describes the exhaustive replacement of all hydrogen atoms in an organic 

system by fluorine.
[31]

 It is usually not possible to synthesise perfluoroarenes directly from 

arenes.  

 

The standard route for the synthesis of perfluorinated heteroaromatic compounds most 

commonly proceeds via halogen exchange of the corresponding perchlorinated system 

utilising molten alkali metal-fluoride at very high temperature in an autoclave and in the 

absence of solvent (Scheme 11).
[32]

 This method was first developed by Russian workers 

(Vorozhtsov et al.) in 1963 to synthesise hexafluorobenzene (25) as reported by Brooke.
[27]

 

The synthetic route is generally via the reaction of potassium fluoride with 

hexachlorobenzene at around 400-450 °C. The approach provides a good yield compared 
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with other methods attempted before, especially for nitrogen-containing 

perfluoroheteroaromatic systems.
 [27][32]  

 

 

Scheme 11: Synthesis of hexafluorobenzene from hexachlorobenzene.
[27] 

 

For example, pentafluoropyridine (29) is a widely used nitrogen-containing perfluorinated 

aromatic compound and is readily prepared from pyridine (27) using this method. 

Pentachloropyridine (28) is first formed from reacting pyridine with PCl5 and then gives a 

high yield of pentafluoropyridine on reaction with potassium fluoride at 480 °C in the 

absence of solvent using the aforementioned methodology (Scheme 12).
[32]

 The temperature 

of the reaction is suggested to affect the number of halogens exchanged on the aromatic ring, 

which is the reason why procedures require such a high temperature to ensure complete 

substitution.  

 

 

Scheme 12: Synthesis of pentafluoropyridine from pyridine.
[32] 
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1.3 Applications of fluorinated aromatic compounds to pharma-

ceuticals 

 

Fluorinated arenes currently have widespread use in different fields of industry. The small 

atomic radius, high electronegativity, and low polarisability of the C-F bond are among the 

special properties that render fluorine so attractive. These atomic properties translate 

extensively into equally appealing attributes of fluoroorganic compounds. The introduction of 

fluorine-containing substituents in structures of known activity has been an important 

strategy for optimising the properties of pharmaceutical products.
[33]

 Associated with the 

replacement of a C-H or C-O bond with a C-F bond, some of the properties in biologically 

active compounds are improved such as higher metabolic stability, increased binding to target 

molecules, and increased lipophilicity and membrane permeability.
[34]

 Nowadays, about 20-

25% of pharmaceuticals used for medical treatment contain a fluorine atom.
[33]

 These 

statistics make fluorine the ―second-favourite heteroatom‖ after nitrogen in drug design.
[34]

 

 

 

1.3.1 Anti-cancer agents containing fluorine 

 

Around the world, tremendous resources are being invested in the prevention, diagnosis, and 

treatment of cancer. Cancer is currently the second leading cause of death in Europe and 

North America, thus the discovery and development of anticancer agents has become the key 

focus of several pharmaceutical companies as well as non-profit government organisations.
[35] 

 

 

1.3.1.1 Chemotherapy and 5-Fluorouracil  

 

Fluorinated anti-cancer agents have been developed as good therapies for targeting cancer. 

Many fluorinated anti-tumour agents are currently coming onto market. 5-Fluorouracil (30), 

an anticancer drug, was one of the first and is one of the most important examples in 
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medicinal chemistry.
[ 36 ]

 In 1957, Heidelberger et al.
[36]

 succeeded in synthesising 5-

fluorouracil as an antimetabolite (Figure 1). Currently, 5-fluorouracil is used in the treatment 

of skin cancer and some solid tumours like breast and gastric cancer.
[37]

 It has been listed on 

the World Health Organisation's List of Essential Medicines.
[38] 

 

 

Figure 1: Structures of 5-fluorouracil and uracil.
[36]

 

 

5-Fluorouracil is a suicide inhibitor which acts through irreversible inhibition of thymidylate 

synthase (TS) using competitive binding.
[39]

 Thymidylate synthase (TS) is an enzyme which 

catalyses the conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine 

monophosphate (dTMP) using 5,10-methylene tetrahydrofolate (CH2THF) as the methyl 

donor.
[40]

 The fluorouracil skeleton remains covalently and irreversibly bond to the active site 

in thymidylate synthase, which finally results in the termination for the synthesis of 

thymidine (Scheme 13).
[41] 

 

 

Scheme 13: Use of 5-fluorouracil as a prodrug for a suicide substrate.
[41] 
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Since dTMP is one of the crucial nucleotides for the early stages of DNA biosynthesis, DNA 

damage results when the activity of thymidylate synthase is inhibited, and replication and cell 

division are consequently blocked.
[39]

 Thus, thymidylate synthase inhibitors are important 

targets for the development of cytotoxic agents. Administration of 5-fluorouracil results in a 

shortage of dTMP, which leads to cancerous cells suffering apoptosis because of thymineless 

death (Scheme 14).
[42]

  

 

 

Scheme 14: Mechanism of inhibition of thymidylate synthase (TS) by FdUMP.
[42]

 

 

 

1.3.1.2 Protein kinase inhibitors 

 

Chemotherapy such as the administration of 5-fluorouracil currently refers to a major 

category of cancer treatments that have been used in the last few decades.
[43]

 However, 

conventional chemotherapy, although directed toward certain macromolecules or enzymes, 

typically does not discriminate effectively between tumour cells and rapidly dividing normal 

cells such as those in bone marrow and the gastrointestinal tract (stem cells). It can therefore 

lead to several serious toxic side effects.
[ 44 ]

 Since tumour responses from cytotoxic 

chemotherapy are usually unpredictable, targeted therapies are of more interest these days. 

Targeted therapies focus on the interference with molecular targets which have a critical role 

in tumour growth or progression. There are multiple types of targeted therapies available, but 

protein kinase inhibitors have become a key focus of development for new therapies.
[45]
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Protein kinases are enzymes that modify other proteins through supplying phosphate groups 

chemically (phosphorylation) to serine, threonine or tyrosine residues. The human genome 

contains about 500 protein kinase genes and up to 30% of all human proteins may be 

modified by protein kinases.
[46]

 Protein kinases are mediate the majority of cellular pathways, 

especially those involved in signal transduction during cell and tissue development.
[ 47 ]

 

Cancerous cells usually develop robust anti-apoptotic signals to avoid stresses and escape the 

immune system via aberrant signal transduction.
[45]

 In the 1980s, protein tyrosine kinases 

(PTK) were identified as major players in cancer and nowadays protein kinase inhibitors have 

been the focus of therapeutic agents for cancer.
[45][48]

 One of the first targeted therapies as a 

protein kinase inhibitor for cancer treatment was Imatinib (Figure 2). During the therapy, 

only cancerous cells are expected to be killed during the drug's action.
[49]

 Imatinib (38) is 

known as a tyrosine kinase inhibitor with anti-tumour effects in patients with gastrointestinal 

stromal tumour (GIST) and chronic myelogenous leukemia (CML).
[49][50]

  

 

Gefitinib (39), developed and launched by Astra-Zeneca, is an oral epidermal growth factor 

receptor (EGFR) inhibitor used for the treatment of certain breast, lung, and other cancers 

(Figure 2).
[51]

 EGFR signal transduction pathways have been implicated in the regulation of 

various neoplastic processes, including cell-cycle progression, inhibition of apoptosis, 

tumour-cell motility, invasion, and metastasis. Binding of a specific set of ligands to the 

receptor promotes EGFR dimerisation and the autophosphorylation of the receptors on 

tyrosine residues. Several signal transduction pathways downstream of EGFR then become 

activated, after autophosphorylation upon the receptor (Scheme 15).
[44]

 From Wikstrand’s 

reports, it is revealed that continuous activation or amplification and overexpression of EGFR 

proteins caused by mutations are observed in many human tumours.
[52]

 These mutations 

eventually result in tumour aggressiveness. 
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Scheme 15: Mechanism of action of Gefitinib.
[53]

 

 

Gefitinib interrupts signalling through the EGFR in target cells. It is selectively inhibits 

EGFR tyrosine kinase by binding to the adenosine triphosphate (ATP)-binding site of the 

enzyme, which subsequently inhibits the function of the EGFR tyrosine kinase and 

deactivates the anti-apoptotic signal transduction cascade (Scheme 15).
[ 54 ]

 Structurally, 

Gefitinib contains a 3-chloro-4-fluoroaniline moiety linked to a quinazoline core. From X-ray 

studies, it has been shown that the 3-chloro-4-fluoroaniline moiety fits better than less 

fluorinated aromatic rings, into the hydrophobic pocket in the back of the ATP binding cleft 

of EGFR. Especially, from direct binding measurements, Gefitinib binds 20-fold more tightly 

to the L858R mutant than to the wild-type enzyme.
[55 ]

 This is difference related to the 

fluorine substituent in the para position on the aniline that extends toward the side chains of 

Leu-788, Met-766 and Glu-762 and the high affinity between fluorine and the binding site of 

the enzyme.
[44]

    

 

Afatinib (40) is another irreversible covalent inhibitor of the EGFR family of tyrosine kinases 

and used as the first-line treatment for patients with different types of metastatic non-small 

cell lung carcinoma (NSCLC) in many countries.
[56]

 From the molecular structure, Afatinib 

keeps the quinazoline ring attached to the 3-chloro-4-fluoroaniline substituent as in Gefitinb 

(Figure 2), but bears acrylamide and tetrahydrofuranoxy substituents on the benzene ring of 

the quinazoline. Afatinib is considered not only active against EGFR mutations targeted by 

Gefitinib, but also against T790M point mutations in the kinase domain of EGFR which is 

resistant to these standard therapies.
[57]
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Figure 2: Structures of Imatinib (38), Gefitinib (39) and Afatinib (40).
[50][51][56] 

 

 

1.3.2 Antibiotic agents  

 

Antibiotics revolutionised medicine in the 20th century and are probably one of the most 

successful forms of chemotherapy in history.
[58]

 Currently, improvement of antibiotic ability 

and conquering the drug-resistance are crucial challenges in the development of novel 

strategies in the search for new antimicrobials.
[59]

 

 

 

1.3.2.1 Erythromycin and its fluorinated derivative 

 

For pharmaceutical products, fluorinated analogues of natural products can modulate or 

improve their precursors’ properties. Erythromycin (41) is a macrolide antibiotic which is 
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safe and effective against a wide range of gram-positive bacteria and is also used to treat an 

array of infections caused by gram-negative agents including Bronchitis and Legionnaire’s 

disease. It is especially important for the treatment of patients with penicillin allergies.
[60]

 The 

structure of erythromycin consists of a 14-membered macrocyclic lactone ring with a sugar 

and an amino sugar attached. Erythromycin acts by binding to 50S subunit of bacterial 

ribosomes to inhibit translocation (Scheme 16).
[61]

 

 

 

Scheme 16: Mechanism of macrolides in blocking translation during bacterial protein 

synthesis.
[62]

 

 

However, erythromycin unfortunately is unsuitable for the treatment of the Helicobacter 

pylori infection, which causes gastritis and leads to peptic ulcers. This is because 

Erythromycin is easily decomposed under the acidic conditions of the stomach.
[14]

 The 

presence of a ketone and two alcohol groups are set up for the acid catalysed intramolecular 

formation of a ketal, which results in the acid sensitivity of erythromycin (Scheme 17).
[61]

 

 

 

Scheme 17: Intramolecular ketal formation in erythromycin.
[61]
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Flurithromycin (42), a fluorinated derivative of erythromycin, was developed in 1997 by 

Pharmacia with the aim of inhibiting the decomposition of erythromycin under acid 

conditions (Figure 3).
 [14]

 Flurithromycin has a similar activity spectrum to Erythromycin. 

Differently, it is more stable than its precursor under low pH conditions. Presence of fluorine 

at α-position of the carbonyl group decreases electron density around oxygen atom, which 

makes the carbonyl group hard to be protonated. Additionally, introduction of fluorine into 

the molecule renders the agent a longer biological half-life, better bioavailability and allows it 

to reach higher tissue concentrations than Erythromycin in vivo, especially for the treatment 

of H. pylori infections.
[63]

   

 

                   

Figure 3: Structures of Erythromycin (41) and Flurithromycin (42).
[14]

 

 

 

1.3.2.2 Fluoroquinolones 

 

The discovery of the fluoroquinolones as antibacterials is another striking example of the 

strong effect of fluorine atoms on molecular properties. The quinolones are a family of 

synthetic broad-spectrum antibiotic drugs and usually exert their antibacterial potency by 

inhibiting topoisomerase IV or DNA gyrase involved in bacterial DNA synthesis.
[64]

 Both of 

these enzymes are lacking in human cells but essential for bacterial DNA replication, which 

thereby enable these agents to be both specific and bactericidal.
[65]

 Quinolones originally 

were derived from quinine and can also act as natural antimicrobials.
[66]

 However, first-
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generation quinolones, exemplified by nalidixic acid, were limited by their rather narrow-

spectrum antibacterial activities.
[13]

 

 

Since the first-generation synthetic fluoroquinolone, Norfloxacin, was developed in 1979, 

further fluoroquinolones have been developed, and currently are the majority of quinolones in 

clinical use for anti-bacterial agents (Figure 4).
[64][67]

 Fluoroquinolones are active against a 

wide range of gram-negative organisms and several gram-positive aerobes such as 

Escherichia coli and Salmonella.
[66]

 Introduction of fluorine in the 6-position led to an 

improvement of hundreds-fold in the minimum inhibitory concentration (MIC) for common 

gram-negative bacteria (Table 4).
[19]

 It is recognised that fluorination at the 6-position is 

essential for the fluoroquinolone structure, which is involved in controlling gyrase and 

bacterial potency.
[66]

 

 

Table 4: Potency of selected quinolones against Gram-negative bacteria.
[66]

 

 MIC90 (mg/L) 

Quinolone E. coli 
Klebsiella 

spp. 

Enterobacter

/ Citrobacter 

spp. 

Serratia 

spp. 

Haemophilus 

influenzae 

Nalidixic acid 8 16 >64 >64 2 

Norfloxacin 0.12 0.5 0.25 2 0.06 

Ciprofloxacin 0.03 0.25 0.12 0.5 0.03 

Clinafloxacin 0.01 0.03 0.12 0.25 0.01 

 

Domagala et al.
[68]

 investigated the role of the fluorine atom in the fluoroquinolone structure 

in detail. A comparison of several fluoroquinolones and their non-fluorinated parent 

compounds revealed the 6-fluorine improves both gyrase-complex binding affinity by 2-17 

fold and cell penetration by 1-70 fold.
[68]

 This could be because of the increased lipophilicity 

of the molecule when fluorine is introduced.
[69] 
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Figure 4: Selected quinolones of historical or commercial significance.
[70] 

 

Nowadays, novel fluoroquinolones are being developed to obtain better anti-bacterial activity 

and to tackle the problem of drug-resistance. JNJ-Q2 (47), developed by Furiex 

Pharmaceuticals (formerly Janssen Pharmaceutica), shows broad-spectrum bactericidal 

potency against Gram-positive and Gram-negative pathogens (Figure 5).
[71]

 It is also found 

to be active against methicillin-resistant Staphylococcus aureus (MRSA) infections.
[ 72 ]

 

Another new fluoroquinolone antibiotic, Delafloxcain (48), has been announced to begin 

Phase-III clinical trials in community-acquired pneumonia in the USA.
[73] 

 

                

Figure 5: Structures of JNJ-Q2 (47) and Delafloxacin (48).
[71][73] 
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1.3.3 Anti-protozoal agents 

 

Parasitic infections are still a big problem in tropical and subtropical regions of the world.
[74]

 

The Global Burden of Disease Study 2013 studied 240 causes of death world-wide via 

systematic analysis and reported that parasitic diseases caused more than one million deaths 

in the year 2013.
[75]

 

 

 

1.3.3.1 Antimalarial medication 

 

Malaria continues to be one of the most important infectious diseases in the world and is by 

far the major parasitic disease killer.
[75]

 In 2013, it was reported there were over 850,000 

deaths caused by malaria and Plasmodium falciparum is the protozoan overwhelmingly 

responsible for severe clinical malaria and death.
[75][76]

  

 

Artemisinin (49), isolated from the plant, Artemisia annua L., was found to be a desirable 

antimalarial, and quickly become the recommended medicine of choice. Artemisinin is a 

sesquiterpene lactone that contains an endoperoxide bridge, as a part of a 1,2,4-trioxane core 

(Figure 6). This very unusual functional group in medicinal chemistry is an absolute 

requirement for the molecule’s antimalarial activity.
[77]

  

 

 

Figure 6: Structure of Artemisinin.
[78]
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Artemisinin works through a reduction of the endoperoxide group in the presence of ferrous 

ions in infected haemoglobin and subsequently two possible radical species are formed. 

Further reactions such as a 1,5-H shift will generate a series of other cytotoxic free radicals 

which alkylate biomolecules within the parasite and result in cell death (Scheme 18).
[79] 

 

 

Scheme 18: Activation of artemisinin by ferrous ions.
[79]

 

 

Although artemisinin displays its remarkable efficacy, the therapeutic value of artemisinin is 

still limited by its low solubility in solvents and short half-life in the body, as well as 

developing resistance.
[76][80]

 The development of chemically and metabolically more stable 

artemisinins will bring improvement in malaria therapy. Fenozan B07 (50) is a novel, second-

generation antimalarial 1,2,4-trioxane endoperoxide with potent blood schizontocidal activity 

against drug-sensitive and drug-resistant rodent malaria parasites. Fenozan B07 like other 

artemisinins is a potent gametocytocide, but has wider activity towards the malaria parasite 

life cycle in humans (Figure 7).
[81]

 Magueur et al. have explored the possibility of adding a 

C-10-trifluoromethyl group into artemether to improve the hydrolytic stability of the acetal 

functionality. The C-10 trifluoromethyl-substituted derivative (51) impressively was 33 times 

more stable than artemether in simulated stomach acid and displayed 2-fold higher anti-

Plasmodium berghei in vivo activity (Figure 7).
[82]
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Figure 7: Structure of Fenozan B07 (50) and C-10 trifluoromethyl-substituted artemether 

(51).
[81][82] 

 

 

1.3.3.2 Antitrypanosomal agents 

 

Trypanosomiasis is the name of several diseases in vertebrates caused by parasitic protozoan 

trypanosomes of the genus Trypanosoma. Trypanosomes infect a variety of hosts and cause 

various diseases, including fatal human diseases like sleeping sickness, caused by 

Trypanosoma brucei (T. b. gambiense and T. b. rhodesiense), and Chagas disease, caused by 

Trypanosoma cruzi.
[83]

 Both of these diseases cause approximately 18,000 deaths annually in 

sub-Saharan Africa and Latin America.
[75]

 Current anti-trypanosome agents for sleeping 

sickness and Chagas disease are most effective early in the course of infection, but they are 

limited in their application with unsatisfactory toxicities as well as their incapacity to 

completely eliminate the protozoan from the body, especially in chronically infected patients.  

 

For treatment at the second stage of sleeping sickness (chronic infection), Eflornithine (52), a 

rationally designed ornithine decarboxylase inhibitor with additional difluoromethyl group in 

comparison to ornithine, appears to be more effective and results in fewer side effects, since 

it came into medical use in 1990 (Figure 8).
[84]

 Eflornithine currently has been a first-line 

treatment in many regions against T. b. gambiense.
[85]

 However, it is expensive and not 

effective against of T. b. rhodesiense due to the parasite's low sensitivity to the drug and the 

current treatment for second-stage T. b. rhodesiense infection is Melarsoprol (53) only, even 

though it causes death in up to 5% of people who take it.
[86]

 This situation highlights the need 

for the development of safer drugs for treating sleeping sickness caused by T. b. rhodesiense. 
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Figure 8: Structures of Eflornithine (52) and Melarsoprol (53).
[85][86]

 

 

Many efforts have been made to discover new therapies towards infections caused by T. b. 

rhodesiense and recent literature findings have included the development of N-(2-

aminoethyl)-N-benzyloxyphenyl benzamides (54) with a trifluoromethyl group exhibiting 

significant in vivo activity against T. brucei parasites as well as a series of fluorinated sterols 

(55), which act as suicide inhibitors to block ergosterol biosynthesis demonstrating activities 

against Trypanosoma brucei (Figure 9).
[87][88]

  

 

            

Figure 9: Structures of Potential Anti-Trypanosoma brucei agents.
[87][88]

 

 

In addition, some work has also focused on the treatment of Chagas disease. De Vita et al.
[89]

 

reported the development of 2-(1H-imidazol-1-yl)-1-phenylethanol derivatives (56) and 

found fluorine-substituted compounds exhibited appreciable in vitro activity against T. cruzi 

parasites and no toxicity towards mammalian cells.
 
Fluorinated thiosemicarbazones (57), 

investigated by Santos’s group, have recently been tested with success against T. cruzi. The 

group concluded the hydrophobicity is an important property for anti-T. cruzi activity 

(Figure 10).
[90].
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Figure 10: Structures of Potential Anti-Trypanosome cruzi agents.
[89][90] 
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2.1 Introduction 

 

Human African Trypanosomiasis, also known as sleeping sickness is caused by infection 

with Trypanosoma brucei rhodesiense (T.b.r) or Trypanosoma brucei gambiense (T.b.g) 

parasites. There are two stages of sleeping sickness: the haemolymphatic phase and the 

neurological phase.
[91]

 During the haemolymphatic phase, trypomastigotes circulate within 

the blood and lymphatic system. If not treated properly effectively, the neurological phase 

ensues as parasites penetrate the blood brain barrier thus infecting the central nervous system 

from which patient recovery is unlikely.
[92]

 Generally, the symptoms of the disease show up 

as poor coordination, changes of behaviour and sensory disturbances. The disease is therefore 

given its name by the important feature of disordering the sleep cycle.
[91]

 

 

The current treatment for T.b.r infection is out-dated and potentially harmful consisting of 

Suramin for the haemolymphatic phase (Figure 11) and arsenic-based melarsoprol for the 

neurological phase. These treatments require complicated dosing methods and assocaited 

side-effects such as reactive encephalopathy have proven fatal in about 9% of patients.
[93]

 

Clinical advancements in antitrypanosomal drug development have been limited and 

increasing resistance urgently requires the development of new drugs to replace existing 

therapies. 

 

 

Figure 11: Structure of Suramin.  

 

Benzothiophene is an important class of heterocycle, consisting of benzene fused to a 

thiophene ring. It is widespread in pharmaceuticals like leukotriene synthesis inhibitors 
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(Zileuton), and antifungals (Sertaconazole).
[94][95]

 Different substitution patterns around the 

benzothiophene scaffold provide good opportunities for drug discovery and synthesis of 

bioactive structures.
[96]

 

 

 

Figure 12: Structure of Benzothiophene. 

 

There have been many efforts on drug discovery using benzothiophene as a scaffold against 

neglected tropical diseases. Moreno-Viguri et al. for example, reported preparation of a series 

of arylaminoketone derivatives and some containing a benzothiophene sub-structure were 

tested with success against T .cruzi (Figure 13).
[97]

 They concluded after in vitro and in vivo 

experiments that both compounds demonstrated improved trypanocidal properties and higher 

activity for treating Chagas disease during acute phase. They also suggested that the T. cruzi 

Fe-SOD Enzyme is a potential target for the candidates. 

 

Figure 13: Structures of benzothiophene based arylaminoketone derivatives.
[97]

 

 

Two 3-nitrotriazole-based benzothiophene-amides, investigated by Papadopoulou’s group, 

were reported to be effective against both T. b. rhodesiense and T. cruzi in their study 

(Figure 14).
 [98]

  They also found that Type I nitroreductase played an important role in the 
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activation of benzothiopheneamides as parasites which overexpresses this enzyme (in the 

presence of tetracycline) were more susceptible to these test candidates. 

 

 

Figure 14: Structures of 3-nitrotriazole-based benzothiopheneamides.
[98]

 

 

Many researches have illustrated that the benzothiophene structure is a promising and 

privileged scaffold for discovering potential anti-protozoal agents. It is therefore worthwhile 

to study the preparation of benzothiophene structures from fluorinated building blocks and to 

test such fluorinated benzothiophenes for anti-T.brucei activity in our research. 

 

 

2.2 Aims 

 

The investigations described in this chapter were aimed at preparing diversely substituted 

fluorinated benzothiophene scaffolds using nucleophilic aromatic substitution reactions 

(SNAr) of perfluorinated building blocks (Scheme 19). Thematic of our medicinal chemistry 

programme is also to develop rapidly accessible fluorinated heterocyclic scaffolds with 

potential for anti-Trypanosoma brucei rhodesiense activity. 
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Scheme 19: Retrosynthesis of the target fully substituted core. 

 

 

2.3 Results and Discussion 

 

2.3.1 para-Substitution on pentafluorobenzaldehyde 

 

Research began by first aiming towards para-substitution of pentafluorobenzaldehyde with a 

range of nitrogen nucleophiles. Pentafluorobenzaldehyde was reacted with three nitrogen-

atom containing nucleophiles, namely imidazole, benzimidazole and 1-methylpiperazine. 

Two molar equivalents of each nucleophile were reacted with pentafluorobenzaldehyde 

separately at room temperature using THF as solvent (Table 5). The method was based on 

that reported by Fujii’s group in 1989.
[99]
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Table 5: Reaction of pentafluorobenzaldehyde and imidazole or benzimidazole. 

 

Nucleophiles Product Yield 

 
 

68% 

 
 

62% 

 

 

80% 

 

Reaction of pentafluorobenzaldehyde with imidazole mainly provided the known imidazolyl 

67 as a red oil, in 68% yield, slightly less than the 84% reported.
[99]

 Substitution with 1-

methylpiperazine under the same conditions provided the piperazinyl 69 in good yield (80%). 

Similarly, reaction of pentafluorobenzaldehyde and benzimidazole was conducted under 

similar experimental conditions as imidazolyl 67. A small modification of the reaction time 

for the synthesis of benzimidazolyl 68 was made, and the reaction duration for benzimidazole 

was increased to 10 hours longer than imidazole for the reaction to go to completion. In the 

experiment, two molar equivalents of the nucleophile were used so one could function as an 

acid scavenger to neutralise the HF generated in the reaction. 

 

Pentafluorobenzaldehyde was then reacted with selected sulfur- and oxygen-atom containing 

nucleophiles, including 2-bromothiophenol and 2-bromophenol, to effect substitution at the 
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para-position. The 2-bromo analogues (74 and 75) have potential for further ring forming 

reaction by activation at the bromine centre by butyllithium exchange and cyclisation onto 

the meta-position.
[100]

 The t-butyl analogue 73 was easy to handle and a less unpleasant thiol. 

The approach started by studying the synthetic route outlined in Table 6 using 

pentafluorobenzaldehyde and the nucleophiles in the presence of two molar equivalent of 

triethylamine in dry THF at room temperature. 

 

Table 6: Reaction of pentafluorobenzaldehyde and selected nucleophiles. 

 

Nucleophiles Product Yield 

 
 

73% 

  

62% 

 
 

35% 

 

Three 4-substituted tetrafluorobenzaldehydes (73, 74 and 75) were prepared from the reaction. 

However, the yield of the diaryl ether 75 was too low to scale up to the large quantities 

required for further synthesis, and so required reaction optimisation. After a number of 

investigations of different reaction conditions, the best results were obtained by performing 
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the reaction without solvent in the presence of five equivalents of triethylamine as base 

(Table 7).  

 

Table 7: The yield of diaryl ether 75 with different amounts of triethylamine. 

 

Solvent Amount of Et3N Yield 

THF 2 eq. 35% 

THF 4 eq. 45% 

THF 5 eq. 47% 

None 5 eq. 62% 

 

The structures of the six 4-substituted tetrafluorobenzaldehydes (67, 68, 69, 73, 74 and 75) 

obtained were confirmed by NMR spectroscopy. Singlet signals standing for aldehyde mostly 

appeared around 10.30 ppm in the 
1
H NMR spectra. Also, there were two peaks found in the 

19
F NMR spectra, which indicated the AA’BB’ pattern of the tetrafluorobenzaldehyde system.  

 

 

2.3.2 Preparation of α-mercaptocarbonyl compounds 

 

Continuing our interest in preparing condensed sulfur-containing heterocycles from 

perfluoroarene precursors, alkanethiols bearing an α-activating group were required before 

the study. Methyl mercaptoacetate was firstly selected as the next reactant and it was 

available commercially. 2-Mercapto-1-phenylethanone was chosen as another reactant, which 

allows synthesis of compounds containing a phenyl ketone substituent instead of an ester as 

formed with methyl mercaptoacetate. Both were needed to construct the benzothiophene 
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derivatives via an SNAr reaction followed by ring-closure reactions with carbonyl group of 

the range of 4-substituted pentafluorobenzaldehydes.
[92]

 

 

The preparation of 2-mercapto-1-phenylethanone followed the method described by Dehmel 

et al. who reported the synthesis of 2-mercapto-1-(4-methoxyphenyl)ethanone.
[ 101 ]

 The 

reaction was conducted at 40 °C at first with potassium thioacetate and 2-bromoacetophenone 

76 as starting materials in THF (Scheme 20). Thioacetate was expected to effect an SN2 

reaction on the highly reactive α-bromoketone through the more nucleophilic sulfur atom. 

 

 

Scheme 20: Reaction of potassium thioacetate and 2-bromoacetophenone. 

 

After 24 hours, there was only one product observable from the reaction via TLC. The known 

thioester 77 was isolated in 79% yield as a light yellow liquid after purification with silica 

column chromatography.
[102]

  

 

The next step was to remove the acetyl group from the thioester 77 to form the target thiol 78. 

The reaction was conducted at room temperature for 16 hours using methanol as solvent. 

Sodium hydroxide was employed as a base (Scheme 21). 

 

 

Scheme 21: Synthesis of thiol 78 from known thioester 77. 
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Thiol 78 was isolated as colourless liquid in 36% yield after purification via column 

chromatography. Another component, disulfide 79, was obtained as a colourless liquid in 5%. 

It was suggested that thiol 78 was oxidised to form the corresponding disulfide 79. Thiol 78 

was not stable, and can form disulfide 79 spontaneously in air unless stored under nitrogen at 

low temperature.  

 

 

2.3.3 Synthesis of poly-fluorobenzo[b]thiophene derivatives 

 

The α-Mercaptocarbonyl compounds prepared were next used to effect a nucleophilic 

substitution reaction ortho- to the aldehyde group in the fluorobenzaldehydes already 

prepared. It was thought that subsequent condensation of the active methylene group with the 

adjacent aldehyde would form a fused thiophene ring, since thieno[2,3-c]pyridines have been 

prepared by a related method involving cyclisation onto a nitrile.
[103]

 

 

Substituted benzaldehyde derivatives (67-69 and 73-75) were reacted with the two different 

α-mercaptocarbonyl compounds, 78 and 80. The reactions were conducted at room 

temperature in THF with 2.5 molar equivalents of triethylamine for 16 hours. Various 

polyfluorobenzo[b]thiophene derivatives were synthesised as summarised in Table 8. 

 

Table 8: Different substituents on the poly-fluorobenzo[b]thiophene derivatives. 
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R
1
 R

2
 Product Yield 

 

-OMe 

 

60% 

 

-OMe 

 

57% 

 

-OMe 

 

66% 

 

-OMe 

 

78% 

 

-OMe 

 

76% 

 

-OMe 

 

51% 

 

Phenyl- 

 

49% 
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R
1
 R

2
 Product Yield 

 

Phenyl- 

 

49% 

 

Phenyl- 

 

48% 

 

Phenyl- 

 

46% 

 

Phenyl- 

 

51% 

 

The method led to the successful synthesis of poly-fluorobenzo[b]thiophene derivatives (81-

91) in reasonable yields. From a mechanistic perspective, the synthesis was thought to 

involve SNAr reaction at position ortho to the aldehyde, followed by aldol-type cyclisation, 

and an intermediate enolate was formed under base catalysis. Addition to the aldehyde group 

then occurs followed by loss of water (Scheme 22). 

 

 

Scheme 22: Synthesis route for the synthesis of benzothiophene derivatives. 
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All of the benzothiophene derivatives were identified using NMR spectroscopy and mass 

spectrometry. For example, in the 
1
H NMR spectrum of benzimidazolyl benzothiophene 91, 

the signal representing the aldehyde group is not present, and a doublet at 8.03 ppm (1H, d, J 

= 3.2 Hz), in contrast, was observed which indicated the proton in the thiophene ring. Three 

signals were detected in the 
19

F NMR spectrum, which suggested one fluorine atom in the 

precursor had undergone substitution. 

 

Benzimidazolyl benzothiophene 91 was further characterised by X-ray crystallography 

(Figure 15), and the structure (and subsequent structures) were determined by Dr Mark 

Elsegood in the department. Two torsion centres were found in the molecule. The twist angle 

between the benzimidazole ring and the benzothiophene ring is 54.29, while the angle 

between the benzothiophene and benzene rings is 54.57. 

 

                

Figure 15: Crystal structure of benzimidazolyl benzothiophene 91. 

 

With the successful synthesis of benzothiophene derivatives from 4-substituted pentafluoro-

benzaldehydes, it appeared attractive to prepare this class of compounds using the 

benzaldehyde directly. To this end, pentafluorobenzaldehyde 9 was treated with two 

equivalents of each thiol, 78 and 80, in the presence of two and half equivalents of base to 

form the benzothiophene in a one-pot procedure without isolating the intermediate 4-sulfanyl 

benzaldehydes (Scheme 23). 
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Scheme 23: Reaction of two molar equivalents of thiols and pentafluorobenzaldehyde. 

 

Benzothiophene 92 and 93 were prepared successfully from this reaction and were isolated in 

yields of 62% and 21%, respectively. Disulfide 79 was also observed from the reaction by 

NMR spectroscopy, which accounted for the reduction in yield of compound 93. For both 

benzothiophene 92 and 93, a singlet representing the methylene group (3.65 ppm and 4.36 

ppm) and doublet (8.09 ppm and 7.93 ppm) on the thiophene ring were found in the 
1
H NMR 

spectra, respectively. The presence of three signals in the 
19

F NMR spectra also supported the 

formation of benzothiophenes. Since benzothiophene scaffolds were prepared from this 

approach, it was suggested that the thiols most likely added consecutively to the 4- and 2-

positions of the aldehyde starting material. Subsequently, the intramolecular reaction of the 2-

substituent occurred with the adjacent aldehyde group to form the benzothiophene scaffold.  

 

 

2.3.4 Biological testing against T. b. rhodesiense with benzothiophenes  

 

The benzothiophene derivatives prepared were evaluated by our collaborators for possible 

anti-Trypanosoma brucei activity and screened for cytotoxicity against MCF7 cells using a 

cell-based assay (Table 9). Anti-trypanosomal activity assays (carried out by Vanessa 

Yardley and Hollie Burrell-Saward at the London School of Hygiene and Tropical Medicine), 

were performed in 96-well microtiter plates and T. b. rhodesiense STIB 900 was used in vitro 

screening. Each well containing 100 μl of parasite culture (1 x 10
3
 bloodstream forms) was 

treated with serial drug dilutions at 37 °C for 72 hours in 5% CO2. Alamar Blue was added 

into each well after the incubation period and the plates were read under a fluorimeter, and 

IC50 values were determined. Cytotoxicity studies were conducted by Vladimir Krystof at 

Palacky University, CZ. 
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Table 9: Anti-Trypanosoma b. rhodesiense and cytotoxicity (MCF7 cell line) screening for 

benzothiophenes 81-93. 

Compound 
T. b. rhodesiense 

IC50 [µM] 

MCF7 

IC50 [µM] 

81 129.9 >100 

82 0.6 >12 

83 11.9 >25 

84 30.0 >25 

92 >10.0 >25 

85 67.2 >50 

86 - - 

87 33.0 >60 

88 31.4 >25 

89 15.9 >25 

90 9.8 >25 

91 0.5 >25 

93 16.0 >50 

Melarsoprol 0.05 - 

Roscovitine  11 

 

Among the benzothiophene derivatives, 83, synthesised bearing a 6-(2-bromophenylsufanyl) 

group demonstrated moderate trypanocidal activity with an IC50 value of 11.9 µM, while 84 

containing a 6-(2-bromophenoxy) group gave an IC50 value of 30 µM. 6-Imidazolyl-

substituted analogue, 81, did not show anti-T. b. rhodesiense activity, nor did the 6-(4-tert-

butylphenylsulfanyl) derivative 85. However, the 6-benzimidazolyl analogue 82 interestingly 

demonstrated respectable anti-T. b. rhodesiense activity with an IC50 value of 0.60 µM, which 

is the best results of the benzothiophene-2-carboxylate derivatives that were screened. 

 

In the ketone series, 91, the 2-benzoylbenzothiophene with a bromophenyl sulfanyl 

substituent showed comparable antiparasitic and cytotoxic activity to its ester analogue 83 

with an IC50 value of 9.8 µM. Similarly, the imidazolyl-substituted compound 87 showed an 

increase in trypanocidal activity with an IC50 value of 33.0 µM in relation to its carboxylate 

analogue 81. Likewise for the t-butyl pair 88/85 the ketone, 88 showed two-fold better 
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antiparasitic activity than the corresponding ester, while for compounds 93/92 comparable 

trypanocidal activity was observed in the region of 10 µM. Significantly, the benzimidazole-

containing compound 91 showed a trypanocidal IC50 value of 0.53 µM, comparable to its 2-

carboxylate analogue 82. 

 

The ketone series demonstrated remarkably higher anti-parasitic activity than the 2-

carboxylate analogues evaluated. It revealed that a phenyl ketone group increased the activity 

compared to the methyl ester substituent. In terms of functionality on the fluorobenzene ring, 

the benzimidazole-containing compounds demonstrated the greatest anti-parasitic activity, 

and these were classified as hit compounds. Further investigations were then undertaken on 

the benzimidazole-substituted compounds to enhance their anti-Trypanosoma brucei activity 

by making modifications to the thiophene ring.  

 

 

2.3.5 Formation of benzimidazole-substituted benzothiophenes from 

different fluorinated arenes 

 

Modification firstly aimed towards substitution on the benzothiophene at the 3-position with 

different functional groups, in order to investigate the effect of hydrogen-bond donor 

substituent at C-3 position for its trypanocidal activity. The reaction was therefore developed 

starting from different fluorinated arenes containing ester or nitrile groups which have the 

potential to undergo condensation reactions similar to the tetrafluorobenzaldehyde derivatives. 

These starting materials were expected to lead to benzothiophenes by a similar mechanism.  

 

Benzimidazole was therefore reacted separately with pentafluorobenzonitrile and ethyl 

pentafluorobenzoate. The method for the reaction was the same as that used for the synthesis 

of aldehyde 68. Following this procedure, ester 96 and nitrile 97 were prepared successfully, 

and formed as white solids in yields of 66% and 95%, respectively. From the 
19

F NMR 

spectra, both showed the same AA’BB’ pattern as was observed for aldehyde 68. In addition, 

the structure of products confirmed by mass spectrometry as [M+H
+
] found at m/z 339.0749 

for ester 96 and m/z 292.0492 for nitrile 97. 
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Scheme 24: Reaction of benzimidazole with pentafluorobenzonitrile 95 and ethyl 

pentafluorobenzoate 94. 

 

Although the ketone series showed a lower activity than the 2-carboxylate series, methyl 

mercaptoacetate is available commercially. This contributed to the easier preparation of the 

2-carboxylate series. Therefore, ester 96 and nitrile 97 were reacted with methyl 

mercaptoacetate in the next step using the same method as 82 (Scheme 24). After the 

reactions, alcohol 98 and amine 99 were obtained in yields of 41% and 34%, respectively. 

Both compounds represent good candidates to investigate the effect of introducting hydrogen 

bond donors on the biological activities.  

 

 

2.3.6 Modification on the ester group of methyl 6-(1H-benzo[d]imidazol-1-

yl)-4,5,7-trifluorobenzo[b]thiophene-2-carboxylate 

 

As phenyl ketone 91 showed slightly greater anti-parasitic activity than ester 82, other 

modifications were proposed to the ester group in ester 68 in an effort to generate analogues 

with enhanced activity. 
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2.3.6.1 Hydrolysis of methyl 6-(1H-benzo[d]imidazol-1-yl)-4,5,7-trifluoro-

benzo[b]thiophene-2-carboxylate 

 

The investigation began with hydrolysis of ester 82. The approach followed the method 

released by Hendrix et al. who reported the synthesis of benzo[b]thiophene-2-carboxylic 

acid.
[104]

 Thus, ester 82 was treated with KOH in THF at room temperature for 6 hours and 

subsequently acidified with hydrochloric acid to pH 2-3 (Scheme 25). 

 

 

Scheme 25: Hydrolysis of ester 82 using KOH. 

 

A white solid shown to be the carboxylic acid 100 was isolated from the reaction in a yield of 

80% without purification. Both the absence of the methoxy group signal and the presence of a 

carboxylic acid group signal at 14.34 (1H, br) ppm in the 
1
H HMR spectrum confirmed the 

successful saponification of ester 82. The carboxyl group on acid 100 was an attractive site 

for further substitution. 

 

 

2.3.6.2 Substitutions on 6-(1H-benzo[d]imidazol-1-yl)-4,5,7-trifluorobenzo-

[b]thiophene-2-carboxylic acid 

 

To activate the carboxylic acid towards different substitutions, acid 100 was firstly converted 

to the corresponding acyl chloride. The attempt began with the reaction of acid 100 and 

oxalyl chloride as reported by Courtney et al.
[105]

 Excess oxalyl chloride was used as the 

reagent in the reaction which was conducted at ambient temperature (Scheme 26). Several 
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drops of DMF were added to the reaction as catalyst. DMF is easily converted into an 

imidoyl chloride with oxalyl chloride, which is the active chlorinating agent. 

 

The reaction was stopped after 16 hours as starting material acid 100 disappeared from TLC. 

The solution was concentrated and a white solid was obtained. Since the acyl chloride was 

reactive and unstable, the residue was utilised directly for further substitution without 

purification.   

 

 

Scheme 26: Substitutions on acid 100. 

 

Selected amines were reacted with the acyl chloride 104 in the THF without catalyst. The 

reactions were conducted at room temperature overnight (Scheme 26). 

 

 

 

 

 

 



57 

 

Table 10: Substitutions on acyl chloride 104. 

Nucleophiles Product Yield 

 

 

59% 

 

 

55% 

 
 

56% 

 

Amides substituted 105, 106 and 107 were prepared successfully in a moderate yield from 

these reactions (Table 10). Signals indicative of the methylpiperazine, ethanolamine and 

morpholine moieties were observed in the 
1
H NMR spectra and mass spectrometry also 

confirmed the structure of the products as [M+H
+
] peaks were observed at m/z 431.1151 for 

105, m/z 392.0676 for 106, m/z 418.0831 for 107, respectively. 

 

 

2.3.7 Attempted reaction to form partially fluorinated benzofuran 

 

To extend the scope of fused benzene ring preparation, further study was attempted to form 

fluorinated benzofuran following the same method used to synthesise partially fluorinated 

benzothiophene derivatives.  
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Benzimidazole 68 and methyl glycolate were firstly employed in an attempt to form 

analogous benzofurans. Two molar equivalents of sodium hydride were used which were 

expected to both deprotonate the methyl glycolate and base-catalyse the ring-closure process.  

The whole reaction was run at room temperature with THF as solvent. The synthesis strategy 

is illustrated in the Scheme 27.  

 

 

Scheme 27. Reaction of benzimidazole 68 and methyl glycolate. 

 

After leaving the reaction mixture stirring overnight, a white solid was obtained. However, 

there was no evidence of any cyclisation taking place, which was confirmed with GC-MS and 

NMR spectroscopy. Two peaks found in the 
19

F NMR spectrum still indicated an AA’BB’ 

pattern in the tetrafluorobenzene system and GC-MS gave a peak at m/z 266.1 suggesting the 

corresponding molecular formula as C13H6F4N2. Both NMR spectroscopy and GC-MS 

suggested that the product was the tetrafluorophenyl benzimidazole 110. It appeared that the 

aldehyde group had been lost and replaced by a hydrogen atom and no evidence for the 

expected formate by-product was obtained. 

 

To investigate this unexpected reaction, imidazolyl substituted aldehyde 67 was exposed to 

the same reaction conditions. Considering sodium hydride is a strong base (pKa = 23), 

triethylamine (pKa = 8) was also investigated in a second reaction to screen the influence of 

base. From TLC monitoring, the reaction with sodium hydride showed one main spot, while 

the other reaction with triethylamine was not completed as starting materials still remained in 

the reaction mixture (Table 11).  
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Table 11. Different conditions for the reaction of aldehyde 67 and methyl glycolate. 

Entry Condition Yield 

1 2 eq. NaH in THF, r.t. 58% 

2 2 eq. Et3N in THF, r.t. 24% and starting materials 

 

Both reactions provided the same compound as a yellow solid. The product 111 isolated 

showed again a similar situation had occurred and that the aldehyde group had been cleaved, 

as confirmed by LC-MS and NMR spectroscopy (Scheme 28).  

 

 

Scheme 28. Reaction of imidazole 67 and methyl glycolate. 

 

The reactions described above, showed that it was difficult to form the analogous 

benzofurans by the SNAr-condensation strategy that had been successful for accessing 

benzothiophenes; the reaction instead led to substitution of the aldehyde group for a hydrogen 

atom. A possible explanation is that the partially cationic carbonyl carbon of the aldehyde 

was the more favourable reaction site towards the harder alkoxide nucleophile compared with 

the 2-position in the aromatic ring which appears to be the preferred site of attack by the 

softer sulfur-based nucleophile.  
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Scheme 29: Proposed mechanism for the synthesis of compound 4-sbustituted 

tetrafluorobenzene. 

 

A possible mechanism (Scheme 29) could involve hydride ion transfer from the derived 

hemi-acetal anion formed after alkoxide addition to the aldehyde group, to the aromatic ring 

at the ipso site. Rearomatisation could then occur by loss carbon monoxide and methyl 

glycolate anion, finally producing the 4-substituted tetrafluorobenzene. Further work on the 

selectivity using other types of nucleophile would be of interest to study competition between 

attack at the aldehyde or the C-2 position.  

 

 

2.4 Conclusions 

 

The work outlined in this chapter has shown the development of a benzo[b]thiophene 

scaffold from pentafluorobenzaldehyde and a number of nucleophiles, using nucleophilic 

aromatic substitution as a key step. The benzo[b]thiophene derivatives prepared were tested 

against Trypanosoma brucei rhodesiense parasites and the benzimidazole-substituted 

benzo[b]thio-phenes demonstrated appreciable anti-T. b. rhodesiense activity.  
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4-Substituted-tetrafluorobenzaldehydes (67-69 and 73-75) were firstly synthesised from 

pentafluorobenzaldehyde with a range of nucleophiles including two diazoles, a piperazine, a 

phenol and two thiols. The reactions provided good yields of product from 62 to 80%.  

 

Treatment of the aldehydes with α-mercaptocarbonyl compounds (78 and 80) in the presence 

of weak base at room temperature led to substitution and condensation of the active 

methylene group with the adjacent aldehyde to form a fused thiophene ring. A variety of 

benzo[b]thiophene derivatives were prepared using the same reaction conditions in poor to 

good yield (22-78%). Two benzimidazole-substituted benzo[b]thiophenes, 91 (IC50 = 0.53 

µM) and 82 (IC50 = 0.60 µM), showed moderate inhibition against Trypanosoma brucei 

rhodesiense parasites after biological screening. X-ray diffraction analysis confirmed the 

structure of ester 91 as well.  

 

Based on the structure-activity relationship study, another six benzimidazole-substituted 

benzo[b]thiophene derivatives were prepared. Alcohol 98 and amine 99 were obtained in 

yields of 41% and 34% respectively through the use of pentafluorobenzoate and 

pentafluorobenzonitrile as starting materials for the first step. Acid 100 was also prepared by 

hydrolysis of ester 82 allowing the synthesis of piperazinyl 105, ethanolamine 106, 

morpholinyl 107 amides. 

 

Formation of a benzofuran unfortunately failed using the same conditions as were used in the 

preparation of benzothiophene ring. The aldehyde group was surprisingly cleaved from the 4-

substituted tetrafluorobenzaldehydes and eventually tetrafluorobenzenes 110 and 111 were 

obtained. 
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Phenoxazines and Assessment of Their 
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3.1 Introduction 

 

Chagas disease affects about 6 to 7 million people worldwide, mostly in Latin America, and 

is spreading also in Europe and North America. It is caused by the protozoan parasite 

Trypanosoma cruzi.
[106]

 Chagas disease presents itself in two phases: an acute phase and a 

chronic phase. During the acute phase, Trypanosoma cruzi infection is curable if treatment is 

initiated soon after infection when a high number of parasites circulate in the blood. However, 

persons with long-standing T. cruzi infection sometimes develop serious gastrointestinal and 

cardiac problems. This is because the parasites are hidden usually in the heart and digestive 

muscles, which typically lead to cardiac disorders and enlargement of the oesophagus or 

colon.
[106][107]

 

 

Currently, nifurtimox and benznidazole are the only drugs approved for the treatment of 

Chagas disease (Figure 16). Although they work well in the acute phase of the disease, 

clinical efficacy in patients with the chronic illness is limited.
[108][109]

 In spite of the social and 

economic importance of Chagas disease, efforts directed toward the discovery of new drugs 

against the disease remain underdeveloped. Therefore, there is an urgent need for the 

discovery of new therapeutics displaying anti-Trypanosomal cruzi activities. 

                 

 

Figure 16: Structure of nifurtimox and benznidazole.
[110]

 

 

Phenoxazine derivatives consist of two benzene rings fused to a central oxazine structure 

(Figure 17). They are an important class of heterocycles and occur as the central core of 

some natural products like litmus and dactinomycin.
[111][112]

 Phenoxazine-based analogues 

also span a wide spectrum of pharmaceutical properties, such as anti-tumour,
[ 113 ]

 anti-

inflammatory,
[114]

 and anti-neurodegenerative activities.
[115]
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Figure 17: Structure of phenoxazine. 

 

There have also been some significant efforts in early stage drug discovery based on 

phenoxazine derivatives as antitrypanosomal agents. Marcu et al. 
[ 116 ]

 reported they 

developed a groups of phenoxazine-derived chloroacetamides which showed inhibitory effect 

on Leishmania major growth. They also found Trypanothione Reductase is a target of 

chloroacetamides with tricyclic systems. Trypanothione Reductase is common to all parasites 

of the Trypanosomatidae family such as T. cruzi and L. donovani.
[116]

 Their study provided 

opportunities to discover further potential antitrypanosomal agents based on phenoxazine 

scaffold. 

 

 

Figure 18: Structure of phenoxazine-derived chloroacetamides. 

 

Several scientific publications have reported the formation of phenoxazine rings via 

nucleophilic substitution reactions of highly fluorinated compounds. In 1986 Kolchina et 

al.
[117] 

first described the formation of the ether 118 by SNAr substitution of pentafluoro-

benzene and its rearrangement and cyclisation to form a phenoxazine ring (Scheme 30). The 

Smiles rearrangement is the intramolecular nucleophilic aromatic substitution reaction 

incorporating a heteroatom as the nucleophilic component.
[118]

 Kolchina investigated the 

mechanism of the Smiles rearrangement occurring during the reaction on highly fluorinated 

arenes in the presence of base.
[119]

 A temperature of over 70 
o
C is needed to activate the 
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migrating aromatic ring, and the presence of four electron-withdrawing fluorine atoms 

simultaneously provides activation.
[117] 

 

 

Scheme 30: Substitution and rearrangement of pentafluoropyridine by Kolchina.
[117]

 

 

Sandford and co-workers 
[ 120 ]

 recently also reported a method to prepare pyrido[2,3-b] 

[1,4]benzoxazine system. In Sandford’s work, formation of the phenoxazine began with the 

para-phenylsulfonyl-substituted pyridine 120 and ring closure across the ortho- and meta-

positions occurred to form pyridobenzoxazine 122 (Scheme 31). They also unambiguously 

confirmed the structure by X-ray crystallography. 

 

 

Scheme 31: Preparation of pyrido[2,3-b][1,4]benzoxazine system.
[120] 
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3.2 Aims 

 

The aim of the research outlined in this chapter was to synthesise an (aza-)phenoxazine 

pharmacophore starting from polyfluoro-aromatic compounds (Scheme 32). An exploratory 

study to understand possible anti-Trypanosoma cruzi activity was then to be conducted, with 

the hope of discovering structure-activity relationships based on a series of (aza-)phenoxazine 

scaffold structures. 

 

Scheme 32: Proposed synthesis routes to substituted-(aza-)phenoxazines. 

 

 

3.3 Results and Discussion 

 

3.3.1 Formation of Azaphenoxazine Scaffold 

 

Our research started by studying the synthetic route outlined in Scheme 33 using 2-

(methylamino)phenol and pentafluoropyridine in the presence of triethylamine in dry THF at 

room temperature. An excess of pentafluoropyridine was used, and was expected to help 

drive the reaction forward smoothly to completion.  
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Scheme 33: Reaction of 2-(methylamino) phenol and pentafluoropyridine. 

 

Surprisingly, however, di-pyridine 124 was obtained from the reaction in a yield of 56%. 

Four peaks were observed in the 
19
F NMR spectrum as two AA’BB’ patterns for each 

tetrafluoropyridine system, instead of the three peaks expected had cyclisation occurred to 

form the fluorinated azaphenoxazine. In addition, GC-MS gave a signal at m/z 421.1, which 

also matched the molecular weight of di-pyridine 124.  

 

The formation of di-pyridine 124 appears counter-intuitive in that addition of a second 

pyridine is faster than intramolecular ring closure. Assuming the more nucleophilic 

phenoxide adds first, the lone pair on the nitrogen must then be inclined to attack another 

molecule intermolecularly at the para-position, rather than at the meta-position in the same 

molecule during an intramolecular process. This suggests the electrophilicity of the para-

carbon is the dominant controlling factor.  

 

Modification of this reaction appeared attractive to explore a possible preparation of fused 

oxazine compounds. Pentafluoropyridine was therefore reacted with the same 2-

(methylamino)phenol in a 1:1 ratio in the presence of four equivalents of triethylamine under 

reflux in acetonitrile. The strategy is illustrated in Scheme 34.  
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Scheme 34: Formation of a fluorinated benzo[b]pyrido[4,3-e][1,4]oxazine using 2-

(methylamino)phenol and pentafluoropyridine. 

 

Benzopyridooxazine was successfully isolated from the reaction and obtained as a white solid 

in good yield (61%). Hydrogen and fluorine atoms were easily assigned by 
1
H- and 

19
F NMR 

spectroscopy.  Three peaks were observed in the 
19

F NMR spectra, which suggested there 

were two substitutions occurring in the pentafluoropyridine. However, no obvious signal was 

obtained regarding the relative positions of the nitrogen and oxygen atoms as two 

nucleophilic substitutions had occurred. From the structure of 2-methylaminophenol, the 

hydroxyl group should be deprotonated in the presence of triethylamine and it was expected 

the negatively charged phenoxide would attack first at the 4-position of 

pentafluoropyridine.
[ 121 ]

 The product was further characterised by X-ray crystallography. 

However, the X-ray crystal structure analysis confirmed the product to be 1,3,4-trifluoro-5-

methyl-5H-benzo[b]pyrido[4,3-e][1,4]oxazine 125 in which the methylamino group was 

located para to the pyridine nitrogen (Figure 19). 

                              

Figure 19: Crystal structure of benzo[b]pyrido[4,3-e][1,4]oxazine 125. 

 

From the results of the X-ray diffraction study, four molecules were observed in the 

asymmetric unit (Figure 20). All of the molecules are slightly folded about the N-O crease 

with different angles, as O(1)/N(1)= 13.12(3)°, O(1A)/N(1A)= 13.31(4)°, O(1B)/N(1B)= 12.84(3)°, 

O(1C)/N(1C)= 9.42(3)° respectively. The crease was suggested to be caused by the flexible 
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single C-O or C-N bonds. In addition, there are obvious weak (Ar)C–H···F interactions 

between molecules as the distance between of F(3)-H(6A) is 2.51 Å.  

 

 

Figure 20: Four molecules in the asymmetric unit. 

 

Formation of the benzo[b]pyrido[4,3-e][1,4]oxazine 125 is ascribed to initial attack by the 

phenoxide ion, followed by rearrangement in agreement with previous work by Kolchina’s 

group. They investigated the reaction of 2-aminophenol with fluoroarenes and determined 

that a smiles rearrangement can occur and is controlled by temperature: the rearrangement is 

hard to take place in the presence of base at 20 
o
C or below, but at higher temperature the 

rearrangement proceeds easily.
[119]

  

 

Benzopyridooxazine 125 was also characterised by ultraviolet–visible spectroscopy. In the 

observed spectrum, oxazine 125 showed a maximum UV absorption λmax at 333 nm with 

shoulders at 312 nm and 366 nm (Figure 21). The preparation of the fused polycyclic 

oxazine 125 by flow chemistry was also studied, and the reaction monitored by UV-Vis 

spectroscopy in collaboration with the Christie group in the department. The formation of 

benzopyridooxazine 125 was successfully monitored in a bespoke microfluidic device 

constructed by additive manufacturing which incorporated in-line HPLC and UV-Vis 

analysis.
[122] 
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Figure 21: UV-Vis spectrum for oxazine 125. 

 

 

3.3.2 Substitutions on benzo[b]pyrido[4,3-e][1,4]oxazine system 

 

To develop a set of compounds for biological screening based on the structure prepared 

above, six amine and aza-heterocyclic nucleophiles were investigated as reaction partners for 

oxazine 125 for further SNAr substitution of fluorine. A screen of reaction conditions showed 

that use of NaH as base at 120 
o
C in DMF for 48 hours was the best method for the reaction 

(Table 12). Lower temperatures or shorter reaction times led to incomplete reaction as 

observed by TLC monitoring.  

 

Table 12: Substitution reaction of oxazine 44a with different nucleophiles.  

 

 

 

 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

280 330 380 430 480

A
b

so
rp

ti
o

n
  

(A
.U

.)
 

Wavelength (nm) 

0.009 mg/ml

0.018 mg/ml

0.027 mg/ml

0.036 mg/ml

0.045 mg/ml



71 

 

Nucleophiles Product Yield 

 

 

59% 

 

 

62% 

 

 

58% 

 

 

52% 

 

 

50% 

 

 

25% 

 

24% 
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Seven 3-substituted benzo[b]pyrido[4,3-e][1,4]oxazines (129-135) were obtained 

successfully from the reactions with six nucleophiles. The compounds were formed in 

moderate to good yield and characterised by appearance of proton peaks due to the 

substituent moieties from the 
1
H NMR spectra, as well as the loss of one fluorine signal from 

the 
19

F NMR spectra.  

 

To determine the position of substitution on the oxazines, the solid-state structure of 

imidazolyl 130 was characterised via X-ray diffraction. From the X-ray crystal structure 

analysis, it confirmed the imidazolyl 130 to be 1,4-difluoro-3-(1H-imidazol-1-yl)-5-methyl-

5H-benzo[b] pyrido[4,3-e][1,4]oxazine which shows the imidazole moiety attacked C-3, the 

position opposite to the oxazine oxygen (Figure 22). The fold angle was 7.94° along the 

vector of benzo[b]pyrido[4,3-e][1,4]oxazine (oxazine ring), while twist angle between the 

imidazole ring and benzopyridooxazine was found to be 29.51°. 

 

                           

 

 

Figure 22: Crystal structure of imidazolyl benzopyrooxazine 130. 

 

Interestingly, triazoles 134 and 135 were prepared from the reaction of oxazine 125 and 

1,2,3-triazole. Due to the annular tautomerism of 1,2,3-triazole, two tautomers, 2H-1,2,3-

triazole and 1H-1,2,3-triazole can exist (Scheme 35), and could react with oxazine 125 

through N-2 or N-1 affording the different isomers.
[123]

 The difference between triazoles 134 
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and 135 was identified from the 
1
H NMR spectra. Two different NMR signals at 8.14 (1H, s) 

and 7.81 (1H, s) indicated the 1H-1,2,3-triazol-1-yl moiety, while the single peak found at 

7.89 (2H, s) represents the equivalents protons in the 2H-1,2,3-triazol-2-yl substituted 

compound.  

 

 

Scheme 35: Tautomerism of 1,2,3-triazole.
[124]

 

 

 

3.3.3 Biological testing against Trypanosoma cruzi with benzopyrido-

oxazines  

 

The analogues prepared were then evaluated for their anti-Trypanosoma cruzi activity and 

toxicity testing using a cell-based assay by collaborators at the Laboratório de Protozoologia 

in Brazil (Table 13). Intracellular amastigotes of T. cruzi (Tulahuen strain) were used for 

anti-Trypanosoma cruzi activity screening and THP-1 cell line was employed for cytotoxicity 

assay. Two of the analogues, imidazolyl 130 and piperidinyl 131, show much stronger 

inhibition of T. cruzi growth in vitro than does the reference compound benznidazol. The 

imidazolyl 130 displayed better activity and selectivity than the piperidinyl 131. The novel 

130 thus represents a new hit compound in the design of inhibitors of Trypanosoma cruzi and 

has potential for the treatment of Chagas disease.  

 

 

 

 

 

 



74 

 

Table 13: Anti-Trypanosoma cruzi activity data of benzopyridooxazines 129-135. 

Compound 
T. cruzi 

IC50 [µM] 

THP-1 

CC50 [µM] 
Selectivity 

129 - - - 

130 5.76 (±1.38) 102.4 (±33.46) 17.77 

131 6.35 (±2.12) 25.28 (±4.49) 3.98 

132 - - - 

133 - - - 

134 - - - 

135 - - - 

Benznidazol 20 µM 10.18 (±0.30) >500 >49.11 

 

 

3.3.4 Synthesis of N-substituted 2-aminophenol derivatives 

 

Due to the promising activity shown by the imidazolyl benzopyrooxazine 130, it was decided 

to synthesis further benzopyridooxazine analogues substituted with an imidazole ring at the 

C-3 position. Further development of imidazolyl 130 was therefore investigated to generate 

compounds with different substitution patterns on the (aza-)phenoxazine ring. Several N-

substituted 2-aminophenol derivatives were thus employed as precursors for the further 

formation of benzopyridooxazines and phenoxazines as the approach allowed for the 

introduction of substituent diversity. The study of the imidazolyl 130 derivatives also aimed 

to discover improved biological activity and lower toxicity based on the introduction or 

modification of various functional groups. 

 

The investigation began with the methylation of 2-aminophenol derivatives on the amino 

group based on conditions reported by Matralis et al.
[125]

 2-Aminophenol derivatives were 

treated with iodomethane in the presence of sodium bicarbonate. Methanol was used as 

solvent instead of the DMF reported to improve the solubility of sodium bicarbonate (Table 

14). Synthesis of N-substituted 2-aminophenol derivatives was to form imidazolyl (aza-) 

phenoxazine derivatives and to study the effect of electron-donating or electron-withdrawing 

substituent at different position on the phenoxazine system for its trypanocidal activity. 
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Table 14: Preparation of N-substituted 2-aminophenol derivatives.  

 

R
1
 R

2
 Product Yield 

H CH3 

 

61% 

CH3 H 

 

26% 

H Cl 

 

60% 

Cl H 

 

32% 

 

Methylation of the 2-aminophenol derivatives was achieved and four analogues were 

prepared using methyl- and chloride-substituted aminophenols. The yields of the two 4-

substituted-2-(methylamino)phenols 140 and 142 from the reactions were reproducibly 

around 60%, while another two 5-substituted-2-(methylamino)phenols 141 and 143, were 

obtained in poor yield between 26-32%. It is not clear if there is any reason for the lower 

yield with the 5-substituted compounds. 

 

Another group of precursors based on N-acetylated 2-aminophenols were also prepared. N-

substituted (hydroxyphenyl)acetamides were synthesised according to the method reported by 

Hartmann et al.
[126]

 The reactions were conducted between 2-aminophenol derivatives and 

acetic anhydride in methanol (Table 15).  
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Table 15: Preparation of N-(substituted hydroxyphenyl)acetamides. 

 

R
1
 R

2
 Product Yield 

H H 

 

91% 

H CH3 

 

93% 

CH3 H 

 

82% 

H Cl 

 

87% 

Cl H 

 

80% 

H NO2 

 

98% 

NO2 H 

 

90% 
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The analogues (146-152) were obtained in high yield without the need for further purification. 

Their structures were confirmed by the absence of one proton signal from the starting amino 

compound and the presence of the acetyl methyl signal around 2.06 ppm in the 
1
H NMR 

spectra. Also the C=O signals were observed around 170 ppm in the 
13

C NMR spectra. 

 

 

3.3.5 Formation of 3-substituted benzopyridooxazine derivatives 

 

With the two different sets of N-substituted 2-aminophenol derivatives in hand, experiments 

were next investigated to form the corresponding benzopyridooxazines. The N-(substituted 

hydroxyphenyl)acetamides (146-152)  were first treated with pentafluoropyridine following 

the methods used successfully to prepare oxazine 125. The reaction method is outlined in 

Table 16.  

 

Table 16: Formation of benzopyridooxazine using (2-hydroxyphenyl)acetamides and 

pentafluoropyridine. 

 

R
1
 R

2
 Product Yield 

H H 

 

60% 
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R
1
 R

2
 Product Yield 

H CH3 

 

34% 

CH3 H 

 

30% 

H Cl 

 

56% 

Cl H 

 

45% 

H NO2 

 

51% 

NO2 H 

 

48% 

 

Heating the acetamides with pentafluoropyridine in the presence of triethylamine led to 

formation of 1,3,4-trifluoro-5H-benzo[b]pyrido[4,3-e][1,4]oxazines. This was shown by the 

presence of three signals in the 
19

F NMR spectra similar to those in benzopyridooxazine 125, 

which suggested the same scaffold structure. However, the expected target compounds were 

unfortunately not obtained, and in all cases the acetyl group was lost as the signal for the 

methyl group at approximately 2.10 ppm were not present in the 
1
H NMR spectra. In contrast, 
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a singlet peak near 10.00 ppm was observed indicating the presence of a N-H in the molecule. 

The reason that acyl group was cleaved in the reaction is possibly due to the presence of 

triethylamine at high temperature.
[127] 

Although the products were not prepared as expected, 

they still represented good scaffold structures for further synthetic modification.  

 

The group of N-methyl-substituted-2-aminophenol derivatives (140-143) were also reacted 

with pentafluorobenzene and pentafluorobenzaldehyde using the same conditions for the 

formation of fused oxazine 125. This set of reactions involving different functional groups on 

both the N-substituted-2-aminophenol derivative and the fluorinated compounds, was 

expected to provide further examples for screening and modification. The synthetic route is 

illustrated in Table 17. Pentafluorobenzaldehyde was also chosen as a reactive electron-

deficient arene in which the aldehyde group would act as a useful site for further functional 

group interconversion. 

 

Table 17: Reaction of N-substituted-2-aminophenols and highly fluorinated arenes. 

 

R
1
 R

2
 R

3
 Product Yield 

H H H 

 

45% 

H H CHO 

 

63% 
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R
1
 R

2
 R

3
 Product Yield 

H CH3 CHO 

 

74% 

CH3 H CHO 

 

50% 

H Cl CHO 

 

59% 

Cl H CHO 

 

59% 

 

Six substituted benzopyridooxazines (161-166) were prepared in moderate to good yield from 

45% to 74%. Three fluorine signals were observed in the 
19

F NMR spectra, which suggested 

two substitutions took place on the starting materials. All of the products exhibited analytical 

and spectroscopic data fully in accord with their structures.  

 

 

3.3.6 Synthesis of further derivatives of the imidazolyl benzopyridooxazine  

 

Further reactions introduced the imidazole moiety to each of the thirteen new 

benzopyidooxazine 125 analogues prepared through SNAr substitution as in the preparation 

of imidazolyl 130. Imidazolyl benzopyidooxazine 130 was used as hit compound in this study 

as the imidazolyl 130 displayed better activity and lower toxicity than the piperidinyl 
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derivative 131. The synthetic route employed sodium hydride as base in presence of DMF as 

solvent at 120 
o
C (Table 18). 

 

Table 18: Synthesis of further derivatives of imidazolyl benzopyridooxazine 130. 

 

R1 R2 R3 R4 Product Yield 

H H H N 

 

62% 

H H CH3 C-H 

 

45% 

H CH3 H N 

 

55% 

CH3 H H N 

 

50% 

H Cl H N 

 

66% 
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R1 R2 R3 R4 Product Yield 

Cl H H N 

 

49% 

H NO2 H N 

 

54% 

NO2 H H N 

 

47% 

 

Eight derivatives (167-174) were obtained successfully from the reactions in moderate yield 

from 45% to 66%. The imidazolyl moiety signal was observed clearly in the 
1
H NMR spectra 

and two doublet peaks were found in the 
19

F NMR spectra as well. The NMR spectroscopy 

thus confirmed the occurrence of substitution in the benzopyridooxazine systems. 

 

Aldehyde 162 and its analogues were also treated with the aforementioned conditions. 

Unfortunately, the expected aldehyde product was not obtained from the reaction (Scheme 

36). Instead, compound 168 was identified as the final product by NMR spectroscopy, when 

aldehyde 162 was reacted with imidazole. It revealed that the aldehyde group was 

surprisingly cleaved from the scaffold structure during the reaction.  
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Scheme 36: Reaction of imidazole and aldehyde 162 using sodium hydride. 

 

This reaction showed a similar result to the attempted formation of partially fluorinated 

benzofuran in Chapter 2. Imidazole was deprotonated by sodium hydride and presumably 

acted as a hard nucleophile, which preferred to react with the partially cationic carbonyl 

carbon of the aldehyde. Hydride transfer from the alkoxide with aldehyde adduct to C-4 of 

the fluoroarene ring was possibly involved in the reaction (Scheme 37). 

 

 

Scheme 37: Proposed mechanism for the synthesis of compound 186 from 162. 

 

Hence, the reaction conditions were modified to discover the possibility to prepare the 

desired aldehyde products. Sodium hydride was replaced by the less basic triethylamine and 

the reaction temperature was also decreased from 120 
o
C to 90 

o
C as the boiling point of 
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triethylamine was 89 
o
C. After 60 hours heating, traces of starting materials were observed by 

TLC monitoring, which indicated the reaction was nearly complete. The approach is 

illustrated in the Table 19. 

 

Table 19: Synthesis of 2-imidazolyl phenoxazine-3-carboxaldehydes.  

 

R
1
 R

2
 Product Yield 

H H 

 

54% 

H CH3 

 

54% 

CH3 H 

 

53% 

H Cl 

 

49% 

Cl H 

 

43% 
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Under these modified conditions, aldehyde 175 and its derivatives were successfully prepared 

in a yield between 43-54%. A singlet around 9.59 ppm in the 
1
H NMR spectra indicated the 

aldehyde group was retained in the phenoxazine scaffold. There was an obvious difference in 

reaction outcome depending on whether triethylamine or sodium hydride, when they were 

used as base in the reaction. Triethylamine was not strong enough to deprotonate imidazole to 

form a hard nucleophile, and the reaction then preferred to take place substitution of fluorine 

at 2-position (Scheme 38). 

 

 

Scheme 38: Proposed mechanism for the synthesis of aldehyde 175 and its derivatives. 

 

 

3.3.7 SAR study on the trypanocidal activity of further derivatives of the 

imidazolyl benzopyridooxazine  

 

Imidazolyl benzopyridooxazine 130 and its analogues were then screened in vitro against T. 

cruzi (Tulahuen strain) and their cytotoxicity against THP-1 cell line was also evaluated in 

order to calculate the selectivity index of the compounds (Table 20).  
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Table 20: Anti-Trypanosoma cruzi activity data of imidazolyl benzopyridooxazine 130 and 

its derivatives. 

Compounds 
T. cruzi 

IC50 [µM] 

THP-1 

CC50 [µM] 
Selectivity 

130 5.76 (±1.38) 102.4 (±33.46) 17.77 

167 37.46 (±2.54) >500 >13.35 

168 12.70 (±0.67) >500 >39.37 

175 2.62 (±0.27) >500 >190.83 

169 - - - 

170 - - - 

171 - - - 

172 - - - 

173 - - - 

174 - - - 

176 1.93 (±0.26) >500 >259.06 

177 - >500  

178 1.51(±0.21) 124.2 (±7.90) 82.25 

179 33.60 (±3.47) >500 14.88 

Benznidazol 20 µM 10.18 (±0.30) >500 >49.11 

 

The introduction of an aldehyde group or a hydrogen atom into the 3-position of the 

phenoxazine ring affected the activity significantly. Aldehyde 175 exhibited increased anti-

T.cruzi activity by 2-fold compared with its precursor 130 whereas compound 168 containing 

a CH instead of a nitrogen atom at the 3-position led to decreased activity by 2-fold. 

Although the aldehyde group is an undesirable functional group because of off-target toxicity 

in medicinal chemistry, it indicated that introduction of a similar electron-withdrawing group 

to C-3 might increase the effect of T. cruzi growth inhibition. The aldehyde can also be 

converted readily into other functionality to allow further screening and structure activity 

studies to be undertaken. 

 

Interestingly, among all of these candidates, the most active was 8-substituted aldehyde 

analogues (178 and 176), which had 7-/5-fold better anti-T. cruzi activity, as well as 2-/5-fold 

higher selectivity in comparison to the reference drug benznidazol, respectively. Comparing 
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178 and 176, the chloro-substituted 178 displayed a slight increase in potency over the 

methyl-substituted derivative 176. On the other hand, 7-substituted aldehyde analogues were 

a different story. The methyl-substituted 177 unfortunately showed no activity, while the 

chloride-substituted analogue 179 was 13-fold less active than its precursor 175. These 

results suggested 7-substitution on aldehyde 175 analogues had a negative impact on activity.  

 

Methylation at N-10 also affected the activity for phenoxazine derivatives significantly as 

compound 167 showed a 6-fold decrease in the anti-T. cruzi effect compared to compound 

130. Also the combination of 7-/8-substitution and replacement of the methyl group from N-

10 atom by H atom resulted in a loss of activity for compound 169-174. This revealed that 

loss of the methyl group attached to N-10 is not tolerated and leads to a loss of activity. 

 

 

3.4 Conclusion 

 

The work outlined in this chapter has shown the development of (aza-)phenoxazine scaffold 

structures from highly fluorinated arene precursors with a number of bis-nucleophilic 

aminophenol derivatives, using nucleophilic aromatic substitution (SNAr). The fluorinated 

heterocycles prepared were tested against Trypanosoma cruzi parasites and imidazole-

substituted derivatives demonstrated appreciable anti-T. cruzi activity.  

 

Two different sets of N-substituted 2-aminophenol precursors were synthesised from 2-

aminophenols with iodomethane and acetic anhydride separately. N-Methyl-substituted 2-

aminophenols (140-143) were isolated in poor to moderate yields (26-61%), while N-

(substituted hydroxyphenyl)acetamides (146-152) were geneated with good yields (80-98%). 

  

A variety of fused oxazines (125, 153-159, 161-166) were synthesised successfully by a 

nucleophilic aromatic substitution ring-closing process involving Smiles rearrangement of the 

initial adduct formed by reaction with the N-substituted 2-aminophenols. The cyclisation 

products were obtained in a low to good yield (30-74%). X-ray diffraction analysis confirmed 
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the structure of benzopyridooxazine 125 and indicated rearrangement of the initially formed 

diaryl ether had occurred. 

 

Different substituents were further introduced into the benzopyridooxazine ring at the 3-

position via substitution in the presence of sodium hydride at 120 
o
C. Impressively, 

imidazole-substituted benzopyridooxazine 130 (IC50 = 5.76 µM) and methylpiperazine 

substituted benzopyridooxazine 131 (IC50 = 6.35 µM) demonstrated good inhibition against 

Trypanosoma cruzi parasites. A variety of imidazole-substituted benzopyridooxazines and 

phenoxazines (167-179) were obtained in moderate yield (43-66%). Among these imidazole- 

substituted compounds, 176 (IC50 = 1.93 µM) and 178 (IC50 = 1.51 µM) showed 5-/7-fold 

better anti-Trypanosoma cruzi activities than the current drug benznidazol as reference.  
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Chapter 4: Formation of 4-Substituted 

Tetrafluorobenzaldehyde Hydrazones 

and Their Anti-Trypanosoma. brucei. 

rhodesiense Activity 
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4.1 Introduction  

 

Hydrazones and their derivatives play a significant role in organic chemistry. The functional 

diversity of the azomethine group provides a range of different chemistries and applications 

(Figure 23).
[ 128 ]

 From the triatomic structure C=N–N, there is a nucleophilic imine, an 

amino-type (more reactive) nitrogen, and an imine carbon that has both electrophilic and 

nucleophilic character. In addition, an acidic N–H proton sometimes provides opportunities 

for H-bonding. All of these features give the hydrazone group its wide range of chemical 

properties. Also the intrinsic nature of the C=N double bond renders the molecule switchable 

resulting in configurational isomerism.  

 

 

Figure 23. The structural and functional diversity of the hydrazone group.
[128]

 

 

Hydrazones are easily formed by the replacement of oxygen in ketones or aldehydes with the 

hydrazine functional group (Scheme 39). The reaction usually occurs without catalysis. 

Hydrazines are classed as α-nucleophiles and have high reactivity due to their elevated 

HOMO level. 

  

 

Scheme 39. Mechanism of hydrazone formations. 
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In recent years, hydrazones have attracted significant attention because of their proposed use 

in interesting biological and medicinal applications. Compounds containing the hydrazone 

structure are of importance for drug design and discovery.
[ 129 ]

 The synthesis of various 

benzaldehyde phenylhydrazones has been reported in the literature recently and the 

compounds found to be active as antimicrobials (Figure 24).
[130][131][132][133]

 These researches 

display good examples for the rational drug design as anti-trypanosomal candidate using the 

scaffold of benzaldehyde phenylhydrazone. 

 

                       

 

                     

Figure 24. Structures of biologically active hydrazones. 

 

 

4.2 Aims 

 

The aim of the project focused in this chapter was to further study the scope of the fluorinated 

benzaldehyde derivatives in hand to prepare benzaldehyde phenylhydrazones (Scheme 40) 

and test these for biological activity as well as exploring the formation of other possible 

scaffold structures such as benzisoxazoles and quinazolinones by ring-closing reactions of the 

ortho-fluoroaldehyde functionality.  
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Scheme 40: Retrosynthesis of the target fully substituted core. 

 

 

4.3 Results and Discussion 

 

4.3.1 para-Substitution on pentafluorobenzaldehyde  

 

Following the previous study in Chapter 2, pentafluorobenzaldehyde was reacted with two 

equivalents of morpholine in THF at room temperature, effecting nucleophilic substitution at 

the 4-position. The morpholine ring is a widespread structural motif in drug discovery and 

some compounds containing a morpholine moiety displayed good anti-T.brucei activity.
[134]

 

Thus, morpholine was employed here with rational design. The yield of aldehyde 184 

however was quite low at 36% and starting material was mostly recovered. To improve the 

yield of the product, the conditions were optimised (Table 21). 

 

Table 21: Various reaction conditions tested to synthesise aldehyde 184.  
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Entry Conditions Yield 

1 2 eq. morpholine, THF 36% 

2 1 eq. morpholine and 2 eq. Et3N, DMF 44% 

3 2 eq. morpholine, DMF 71% 

 

After screening a number of different conditions, DMF was found to be the best solvent with 

two equivalents of morpholine employed in the reaction (one functions as a base to neutralise 

the HF generated). Under these conditions, the yield of compound 184 was improved to 71%, 

which represents a good yield for the substitution at room temperature.  

 

 

4.3.2 Synthesis of fluorinated aldehyde phenylhydrazones  

 

Four 4-substituted compounds (67, 68, 69 and 184) obtained with different function groups 

were selected in the study as all possess an aldehyde group. It was of interest to convert these 

compounds to hydrazone structures. Different hydrazine salts were utilized in the reactions 

and it was planned to prepare a set of hydrazone compounds for biological testing. 

Hydrazines are generally stored as stable crystalline salts, which are easy to handle. However, 

the free base must be generated in the reaction mixture to allow the hydrazine to function as a 

nucleophile. One equivalent of triethylamine was thus required to generate the free base from 

the hydrazine hydrochloride salt. The reactions were conducted at room temperature in 

dichloromethane for 2 hours and a sole product was observed from TLC analysis. The 

synthetic route is shown in Table 22. 
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Table 22: Four fluorinated compounds reacted with different hydrazine salts. 

 

R
1
 R

2
 R

3
 Product Yield 

 

CH3- H- 

 

77% 

Cl- H- 

 

75% 

H- Cl- 

 

80% 

 

CH3- H- 

 

81% 

Cl- H- 

 

85% 
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R
1
 R

2
 R

3
 Product Yield 

 H- Cl- 

 

79% 

 

CH3- H- 

 

63% 

Cl- H- 

 

67% 

H- Cl- 

 

69% 

 

CH3- H- 

 

76% 

Cl- H- 

 

77% 

H- Cl- 

 

74% 
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A dozen phenylhydrazone derivatives were obtained in good to excellent yields and were 

generally easy to purify by silica column chromatography. However, the piperazinyl-

substituted hydrazone 194 could not be isolated pure when it was subjected to silica column 

chromatography. The mixture formed suggested the compound was easily decomposed by 

silica, but it was eventually purified by recrystallisation in moderate yield. Piperazinyl 

substituted analogues 195 and 196 were separated via by column chromatography on silica 

gel, although they also did not provide as a good yield as other substituted hydrazones. 

Possibly the more polar tertiary amine group in the piperazine ring is binding strongly to 

silica surface. Piperazinyl 195 and 196 tend to remain in the flash column and be difficult to 

be washed out. 

 

In this part of the research, it was attractive to investigate hydrazine salts with either an 

electron-withdrawing or electron-donating group at the same position or different positions 

on the benzene ring. Different hydrazines were employed in the study to discover the effect 

when different groups were added to the phenol ring to modify electronic or steric properties. 

A weakly electron-donating group (CH3-) and a weakly electron-withdrawing group (Cl-) 

were employed in the study. From the reactions above, there was no obvious difference in the 

yields when methyl group or choride atom was introduced into the benzene ring. Also for all 

the cases, only one product was obtained from the reaction and it indicated one isomer was 

formed. Thus, the stereo-structure of the aldehyde phenylhydrazones was of interest.  

 

From the 
1
H NMR spectra, proton resonance representing the NH group appeared around 

10.0 ppm for all of the phenylhydrazones. There is no obvious evidence to recognize the 

configuration as E-isomer or Z-isomer from the proton NMR spectra. Further X-ray 

diffraction analysis identified the E-isomer by confirming the morpholinyl 198 to be (E)-4-(4-

((2-(2-chlorophenyl)hydrazono)methyl)-2,3,5,6-tetrafluoro-phenyl)morpholine (Figure 25).  
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Figure 25: Crystal structure of morpholinyl 198. 

 

From the results of the X-ray diffraction study, morpholinyl 198 was the asymmetric unit. 

The molecule interestingly is detected to be curved as banana-shaped rather than twisted with 

a dihedral angle between rings C(1) > C(6) and C(12) > C17) = 10.40(3)°. A strong H-bond 

N(3)–H(3)∙∙∙O(1’) gives rise to zig-zag chains parallel to weaker C–H∙∙∙F/Cl/O interactions, 

which give an overall 3D network of weak and strong H-bonds (Figure 26).  

 

Figure 26: Three molecules in the asymmetric unit. 
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4.3.3 Biological testing of benzaldehyde phenylhydrazones against T. b. 

rhodesiense  

 

As benzaldehyde phenylhydrazones have previously demonstrated good antimicrobial 

activity,
[130][131][132][133]

 the derivatives 188-199 prepared were also evaluated for anti-

Trypanosoma brucei activity and toxicity in vitro using a cell-based assay carried out by our 

collaborating partner (Table 23). T. b. rhodesiense (STIB 900) were used for anti-

Trypanosoma brucei activity screening and L6 rat skeletal muscle myoblasts were employed 

for cytotoxicity assay.
 

 

Table 23: Evaluation of benzaldehyde phenylhydrazones against T. b. rhodesiense.  

Compound 
T. b. rhodesiense 

IC50 [µM] 

Cytotox L6 

IC50 [µM] 
Selectivity 

188 24.92 206.12 8.27 

189 112.48 299.15 2.66 

190 9.84 136.82 13.90 

191 15.12 43.96 2.91 

192 16.89 57.55 3.41 

193 14.51 30.34 2.09 

194 4.85 8.27 1.70 

195 1.63 15.40 9.42 

196 4.30 19.31 4.49 

197 12.64 96.56 7.64 

198 33.84 131.24 3.88 

199 14.33 109.47 7.64 

Melarsoprol 0.01   

Podophyllotoxin  0.02  

 

Most candidates showed activity against T. b. rhodesiense, which indicated that benzaldehyde 

phenylhydrazone is good scaffold structure for synthesisins anti-Trypanosoma brucei agents. 

Compound 190 with an imidazolyl group displayed moderate trypanocidal activity with an 

IC50 value of 9.84 µM. However, its imidazolyl analogues, 2-methyl-substituted 188 and 2-
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chloro-substituted 189, in contrast, displayed a decrease in potency by 3-fold and 11-fold, 

respectively. Benzimidazolyl analogues also showed moderate anti-Trypanosoma brucei 

activity. Surprisingly, there is no obvious difference in activity among the three analogues 

(191, 192 and 193), which suggests alteration of the functional groups and positions on the 

benzene ring did not have an obvious effect on their trypanocidal activities for 

benzimidazolyl analogues. Morpholinyl analogues also demonstrated similar anti-

Trypanosoma brucei activities to the benzimidazolyl analogues, although the 2-chloro- 

substituted analogue 198 was 3-fold less active than the other two morpholinyl analogues 197 

and 199. 

 

Interestingly, compound 195, prepared bearing a 1-methyl-piperazinyl moiety demonstrated 

respectable trypanocidal activity with an IC50 value of 1.63 µM and moderate selectivity after 

cytotoxicity assay. The other two 1-methyl-piperazinyl analogues, 194 and 196 also showed 

good activity against T. b. rhodesiense. It is worth mentioning that compound 194 gave IC50 

value of 8.27 µM against the normal cell line, indicating its moderate cytotoxicity.  

 

 

4.3.4 Formation of partially fluorinated quinazoline  

 

Quinazolines are noteworthy in medicinal chemistry, because of their wide spectrum of 

biological properties.
[ 135 ]

 There are several approved drugs containing the quinazoline 

structure on the market such as gefitinib and prazosin.
[51][135]

 To further study the scope of the 

fluorinated benzaldehyde derivatives prepared, quinazoline scaffolds were next considered 

possible targets. 

 

Preparation was attempted from aldehyde 68 as the starting material. The reaction was 

investigated between aldehyde 68 and S-methylisothiouronium sulfate. It was hoped that the 

urea group in S-methylisothiouronium sulfate would both condense with the carbonyl group 

and effect SNAr reaction on the neighbouring carbon. The proposed synthetic route is 

illustrated in (Table 24).  
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Table 24: Reaction of compound 68 and S-methylisothiouronium sulfate. 

 

Entry Solvent Conditions Results 

1 EtOH NaH, reflux, 24 h 
11% compound 201 and other 

impurities 

2 DMF NaH, 80 °C , 24 h 
13% compound 201 and other 

impurities 

3 DMF K2CO3, 80 °C, 24 h 
14% uncyclised compound 202 

and other impurities 

 

From the Table 24, Entry 1 and 2 showed 201 was obtained from the reaction, though the 

yield was quite low (about 13%). There were three signals observed in the 
19

F NMR spectrum 

and the product was also supported by the presence of an [M+H] ion at m/z 347.0556 in the 

mass spectrum. Several components were also separated from the reaction mixture, but they 

showed a complicated mixture by 
1
H NMR spectroscopy. Sodium hydride was necessary for 

the approach, as potassium carbonate was not strong enough to form the quinazoline ring as 

shown in Entry 3. Otherwise, there was no obvious influence of the solvent from aprotic 

solvent-DMF to protic solvent EtOH from Entry 1 and Entry 2.  

 

 

4.3.5 Attempted reaction to prepare partially fluorinated benzisoxazole 

derivatives 

 

The success of ring-forming reactions using substituted fluorinated benzaldehydes prompted 

us to investigate analogous reactions using fluoronitrobenzene derivatives in which the nitro 
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group could be used to form novel ring structures. The benzisoxazole scaffold was next 

attempted from the fluorinated arene. The first successful synthesis of a benzisoxazole using 

an ortho-nitro group reaction was reported by Grob et al. in 1961.
[ 136 ]

 They prepared 

benzisoxazole 204 formed by thermolysis of 2-(2-nitrophenyl) malonate 203 derivative 

(Scheme 41).  

 

 

Scheme 41: Synthesis of benzisoxazole by Grob.
[136] 

 

In 1999, Tennant et al. extended this reaction to heterocyclic systems. He also provided the 

proposed mechanism for the transformation on their own study for preparing imidazo[4,5-

c]isoxazole ring system. A reactive ketene intermediate was thought to be generated from 

elimination of ethanol and underwent cyclisation by attack of the adjacent nitro group to form 

an intermediate oxoimidazo[4,5-c]-1,2-oxazin-N-oxide. After loss of CO2 from the 

intermediate, a nitroso carbene was generated which underwent final electrocyclic ring 

closure to form the isoxazole ring (Scheme 42).
 [137] 
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Scheme 42: Proposed mechanism for the transformation in Tennant’s work.
[137]

 

 

To form a benzisoxazole scaffold from pentafluoronitrobenzene, a suitable nucleophile is 

required adjacent to the nitro group, which can enable the cyclisation reaction. Since a 

substituent first needed to be introduced at C-4 to direct the key nucleophile to C-2 adjacent 

to the nitro group, a suitable 4-substituted nitrobenzene needed to be prepared first. The 

method for the synthesis was envisaged as below (Scheme 43).  

 

 

Scheme 43: Proposed synthesis routes to benzisoxazole. 
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Two equivalents of morpholine were employed as a nucleophile with 

pentafluoronitrobenzene to prepare a 4-amino substituted tetrafluoronitrobenzene. The 

reaction was conducted at room temperature in the presence of sodium hydride (Scheme 44). 

The 4-substituted compound 211 was obtained as a yellow solid from the reaction mixture 

and was isolated in a yield of 73%. 

 

 

Scheme 44: Reaction of pentafluoronitrobenzene and benzimidazole. 

 

The enolate of diethyl malonate was then used as the next nucleophile and was designed to 

attack the ortho-site of the benzene ring in compound 211 in the next step. Two equivalents 

of sodium hydride were utilised as base to generate the enolate and to deprotonate the product 

which was expected to be more acidic than the starting malonate. The reaction was conducted 

at room temperature in THF overnight (Scheme 45).  Compound 212 was obtained after 

silica column chromatography in a good yield of 75%. 

 

 

Scheme 45: Reaction of compound 211 and diethyl malonate. 
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Thermolysis of compound 212 was conducted next to investigate the conversion to the novel 

fluorinated benzisoxazole. Related compounds most likely react by loss of ethanol and CO2 

leading to formation of the isoxazole ring. The compounds was heated under reflux in toluene 

for 48 hours following the method reported by Tennant et al.
 
(Scheme 46).

[137]
 However, 

there was no new component formed during the reaction as shown by TLC analysis.  

 

 

Scheme 46: Proposed thermolysis of 212 to prepare benzisoxazole 213. 

 

More forcing reactions were then attempted with different solvents including o-xylene and 

DMF, expected to increase the temperature of the reaction. However, there was no effect on 

the outcome of the reaction. The results from these attempts suggested that the fluoronitroaryl 

malonate is resistant to thermal ring closure although it is not obvious what effect fluorine 

substitution is having on the process. 

 

 

4.4 Conclusions 

 

The work outlined in this chapter has shown the developments of fluoroarene-derived 

scaffold structures from substituted benzaldehyde derivatives. A number of compounds were 

prepared from the reactions with different conditions.  

 

Quinazoline 201 was obtained successfully from benzimidazole 68, despite in a poor yield of 

13%. 
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Synthesis of a fluorinated benzisoxazole was also attempted from morpholine-substituted 

benzaldehyde 211. But the thermal ring closure was not observed and there was no effect on 

the outcome of the reaction after many forcing reactions.  

 

A dozen aldehyde phenylhydrazone derivatives (188-199) were obtained easily from the 

reaction of four tetrafluorobenzaldehydes (67, 68, 69 and 184) with different hydrazines 

(185-187). Among these aldehyde phenylhydrazones, 195 with a 1-methyl-piperazinyl 

moiety demonstrated significant trypanocidal activity with an IC50 value of 1.63 µM.  
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Chapter 5: Overall Conclusions 

 

The work described in this thesis has demonstrated the formation of three scaffold structures 

and their respectable trypanocidal activities with specific substituents. These scaffold 

structures were readily synthesised through nucleophilic aromatic substitution from highly 

fluorinated arenes as starting materials. 

 

Nucleophilic substitution of a diverse range of nucleophiles with pentafluorobenzoaldehyde 

gave highly fluorinated aromatic compounds. Subsequent reactions of the compounds with 

thiols provided a series of poly-fluorobenzo[b]thiophene derivatives with various amine and 

heterocyclic substituents. 6-Benzimidazol-1-ylbenzothiophene derivatives (91 and 82) 

demonstrated significant antitrypanosomal activities (IC50 = 0.53 and 0.60 µM) against T. b. 

rhodesiense and no toxicity towards MCF7 cell line. Further modifications on 6-

benzimidazol-1-ylbenzothiophene derivatives were designed and synthesised to find 

compounds with better activities and selectivity. 

 

An (aza-)phenoxazine scaffold was successfully prepared from the reaction of fluoroarenes 

with ortho-amino phenols through substitution, rearrangement and cyclisation. Further 

substitution at the ortho-position to electron-withdrawing group with different nucleophiles 

gave a series of (aza-)phenoxazine derivatives and 3-imidazol-1-yl-pyridobenzoxazine 

derivatives (130) which showed good activity (IC50 = 5.76 µM) against T. cruzi as well as 

high selectivity over THP-1 cell line. SAR studies on these samples were employed to 

identify important functional groups and found aldehyde derivatives 176 and 178 

demonstrating improved activity (IC50 = 1.93 and 1.51 µM). 

 

A fluorinated quinazoline scaffold was also successfully synthesised from the 

fluorobenzaldehydes, but attempts to prepare benzisoxazole structures from ortho-substituted 

fluoronitrobenzenes failed after several attempts. 
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A dozen novel fluorinated aldehyde phenylhydrazones were obtained from the 

tetrafluorobenzaldehydes on reaction with different hydrazines. 1-Methyl-piperazinyl 

derivatives (195 and 194) demonstrated great anti-T. b. rhodesiense activities (IC50 = 1.63 

and 4.30 µM) and moderate selectivity from rat L6 cell.  
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Chapter 6: Future work 

 

The strategy to the synthesis of fused heterocyclic compounds was successful and represents 

an interesting approach to heterocyclic synthesis using perfluorinated arenes as building 

blocks. For further work, the research could still focus on the preparation of more various 

novel scaffold structures such as phenothiazines and quinolines. More privileged structures 

could also be taken into account for judicious structural modifications. Another potential area 

of the research is to synthesise natural product-containing heterocycles from highly 

fluorinated aromatic compounds. Substitutions on the scaffold structure could also be a 

strategy to prepare natural products like prenylterphenyllins.   
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Chapter 7: Experimental 

 

General  

 

Reagents and solvents were used as received from commercial suppliers apart from THF 

which was distilled from sodium / benzophenone ketyl radical under a nitrogen atmosphere. 

All reactions were run under anhydrous conditions in oven-dried glassware (or flame-dried 

under nitrogen) unless otherwise stated. Organic extracts were dried over magnesium sulfate. 

Sodium hydride was dispersed in mineral oil as 60% w/w. 40-60 Micron silica gel was 

employed in flash column chromatography. The yields reported in this thesis are isolated 

yields. Aluminium backed silica gel was used for TLC analysis and plates were viewed under 

UV radiation at 254 nm wavelength.  

 

NMR spectra were recorded in CDCl3 or DMSO-d6 at 400 MHz (
1
H NMR), 376 MHz (

19
F 

NMR), or 100 MHz (
13

C NMR) on Bruker Advance 400 or Joel JNM-ECS400 instruments. 

Chemical shifts are given in parts per million (p.p.m) and coupling constants, J, were 

recorded in hertz (Hz). TMS (tetramethylsilane) is used as the internal reference for 
1
H NMR 

and 
19

F NMR chemical shifts are referenced to hexafluorobenzene, (δF = 0). 

 

Mass spectra were recorded on a ThermoFisher Exactive (orbitrap) instrument with an ion 

max source and ESI probe fitted with an Advion Triversa Nanomate to obtain high resolution 

mass spectra, or were recorded at the EPSRC National Mass Spectrometry Facility in 

Swansea.  

 

IR spectra were recorded using a PerkinElmer Spectrum 65 FT-IR Spectrometer using KBr 

discs and FT-IR 8400S with GS10800-X Quest ATR diamond accessory. Elemental analysis 

was determined using a CE-440 Elemental Analyzer. Melting points were determined using 

an Electrothermal-IA 9100 instrument. 
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2,3,5,6-Tetrafluoro-4-(1H-imidazol-1-yl)benzaldehyde (67) 

 

A solution of pentafluorobenzoaldehyde (0.39 g, 2.00 mmol) in THF (3 ml) was added to a 

solution of imidazole (0.27 g, 4.00 mmol) in THF (3 ml). The solution was stirred at room 

temperature for 16 hours. The reaction mixture was poured into deionised water (10 ml) and 

was extracted with ethyl acetate (15 ml x 3). The extracts were combined, washed with brine 

(approx. 15 ml), and dried over sodium sulfate. The solution was concentrated under reduced 

pressure and the residue was purified by chromatography over silica gel (elution with light 

petroleum/ ethyl acetate = 1.1:1). The appropriate fractions were combined and evaporated 

under reduced pressure to give the known compound 67 (0.33 g, 68%) as a red oil.
[99] 

 

NMR δH (400 MHz, CDCl3), 10.31 (1H, s, CHO), 7.88 (1H, s, H-2’), 7.32 (1H, s, H-4’/H-5’), 

7.29 (1H, s, H-4’/H-5’). 

NMR δF (376 MHz, CDCl3), 19.4-19.2 (2F, m, F-3, F-5), 14.9-15.0 (2F, m, F-2, F-6). 

NMR δc (100 MHz, CDCl3), 181.5 (CHO), 147.4 (ddd, J = 260, 11, 4 Hz, C-2, C-6), 140.7 

(ddd, J = 255, 12, 5 Hz, C-3, C-5), 137.5 (C-2’), 130.5 (C-4’), 122.0 (t, J = 12 Hz, C-4), 

119.7 (C-5’), 113.6 (t, J = 10 Hz, C-1). 

Data were in agreement with those reported in the literature. 

IR, νmax /cm
-1

 1712 (CHO). 

MS, m/z found 245.0332, C10H5F4N2O, (M+H
+
) requires 245.0333.  
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4-(1H-Benzimidazol-1-yl)-2,3,5,6-tetrafluorobenzaldehyde (68) 

 

A solution of pentafluorobenzoaldehyde (0.39 g, 2.00 mmol) in THF (3 ml) was added a 

solution of benzimidazole (0.47 g, 4.00 mmol) in THF (3 ml). The solution was stirred at 

room temperature for 26 hours. The reaction mixture was poured into deionised water (10 ml) 

and was extracted with ethyl acetate (15 ml x 3). The extracts were combined, washed with 

brine (approx. 15 ml) and then dried over sodium sulfate. The solution was concentrated 

under reduced pressure and the residue was purified by chromatography over silica gel 

(elution with light petroleum/ ethyl acetate = 8: 5). The combined elution fractions were 

evaporated under reduced pressure to give compound 68 (0.37 g, 62%) as a yellow solid, m.p. 

160-162 °C. 

NMR δH (400 MHz, CDCl3), 10.42 (1H, s, CHO), 8.09 (1H, t, J = 1.8 Hz, H-2’), 7.96-7.92 

(1H, m, H-7’), 7.47-7.42 (2H, m, H-5’, H-6’), 7.33-7.29 (1H, m, H-4’). 

NMR δF (376 MHz, CDCl3), 19.5-19.4 (2F, m, F-3, F-5), 18.2-18.1 (2F, m, F-2, F-6). 

NMR δc (100 MHz, CDCl3), 181.6 (CHO), 147.3 (ddd, J = 260, 12, 5 Hz, C-2, C-6), 143.2, 

142.0 (ddd, J = 250, 14, 6 Hz, C-3, C-5), 141.9 (C-2’), 132.7, 125.0 (C-5’/C-6’), 124.1(C-

5’/C-6’), 121.0, 120.8 (d, J = 10 Hz, C-4), 114.6 (d, J = 10 Hz, C-1), 110.7 (t, J = 3 Hz). 

IR, νmax /cm
-1

 1705 (CHO). 

MS, m/z found 295.0488, C14H7F4N2O, (M+H
+
) requires 295.0489. 

Elemental analysis, C14H6F4N2O requires: C, 57.15; H, 2.06; N, 9.52; found: C, 57.19; H, 

2.16; N, 9.37.  
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2,3,5,6-Tetrafluoro-4-(4-methylpiperazin-1-yl)benzaldehyde (69) 

 

A solution of pentafluorobenzoaldehyde (1.96 g, 10.00 mmol) in THF (10 ml) was added a 

solution of 1-methylpiperazine (2.00 g, 20.00 mmol) in DMF (10 ml). The solution was 

stirred at room temperature for 26 hours. The reaction mixture was poured into deionised 

water (30 ml) and was extracted with ethyl acetate (30 ml x 3). The extracts were combined, 

washed with brine (approx. 30 ml) and then dried over sodium sulfate. The solution was 

concentrated under reduced pressure and the residue was purified by chromatography over 

silica gel (elution with light petroleum/ ethyl acetate = 1: 20). The combined elution fractions 

were evaporated under reduced pressure to give compound 69 (2.21 g, 80%) as a yellow solid. 

m.p. 65-67 °C. 

NMR δH (400 MHz, CDCl3), 10.09 (1H, d, J= 0.8 Hz, CHO), 3.42 (4H, d, J= 4 Hz, H-2’, H-

6’), 2.50 (4H, t, J=4.4 Hz, H-3’, H-5’), 2.30 (3H, s, CH3) 

NMR δF (376 MHz, CDCl3), 15.2 (2F, dd, J=20, 9 Hz, F-3, F-5), 9.5 (2F, dd, J=18, 7 Hz, F-2, 

F-6). 

NMR δC (100 MHz, CDCl3), 182.1 (C=O), 148.1 (dd, J=256, 14 Hz, C-2, C-6/C-3, C-5), 

140.1 (dd, J =245, 14 Hz, C-2, C-6/C-3, C-5), 135.9 (C-4), 106.7 (t, J=10 Hz, C-1), 55.2 (C-

2‖), 50.6 (t, J= 5 Hz, C-1‖), 46.2 (C-3‖). 

IR, νmax /cm
-1

 1682 (CHO), 1628 and 1558 (benzene). 

MS, m/z found 277.0953, C12H13F4N2O, (M+H
+
) requires 277.0959.    
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4-[(4-tert-Butylphenyl)sulfanyl]-2,3,5,6-tetrafluorobenzaldehyde (73) 

 

Pentafluorobenzaldehyde (0.39 g, 2.00 mmol) was added to a solution of Et3N (0.40 g, 4.00 

mmol) in THF (5 ml). 4-tert-Butylbenzenethiol (0.33 g, 2.00 mmol) was added into the 

reaction dropwise with ice cooling. The mixture was stirred at room temperature for 16 hours. 

The reaction mixture was poured into deionised water (10 ml) and was extracted with ethyl 

acetate (15 ml x 3). The combined extracts were washed sequentially with 0.2 M HCl (aq.) 

solution (10 ml) and deionised water (approx. 15 ml) and dried over sodium sulfate. The 

solution was concentrated under reduced pressure and the residue was purified by silica 

column chromatography (elution with light petroleum/ ethyl acetate = 50:1) to give sulfide 73 

(0.50 g, 73%) as a yellow solid, m.p. 42-44 °C. 

NMR δH (400 MHz, CDCl3), 10.30 (1H, s, CHO), 7.44-7.36 (4H, m, H-2’, H-3’, H-5’, H-6’), 

1.34 (9H, s, CH3) 

NMR δF (376 MHz, CDCl3), 29.2 (2F, J = 23, 11 Hz, F-3, F-5), 16.9 (2F, J = 23, 11 Hz, F-2, 

F-6). 

NMR δc (100 MHz, CDCl3), 182.3 (CHO), 152.6 (C-4’), 146.6 (dd, J = 260, 16 Hz, C-2, C-6), 

146.1 (dd, J = 260, 10 Hz, C-3, C-5), 132.3 (C-2’, C-6’), 127.2 (C-1’), 126.7 (C-3’, C-5’), 

123.4 (t, J = 18 Hz, C-4), 114.4 (t, J = 10 Hz, C-1), 34.7 (C-(CH3)3), 31.2(CH3). 

IR, νmax /cm
-1

 1705 (CHO).  

MS, m/z found 343.0778, C17H15F4OS, (M+H
+
) requires 343.0774. 

Elemental analysis, C17H14F4OS requires: C, 59.64; H, 4.12; found: C, 59.61; H, 4.06. 
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4-[(2-Bromophenyl)sulfanyl]-2,3,5,6-tetrafluorobenzaldehyde (74) 

 

Following the general method outlined for sulfide 73, pentafluorobenzaldehyde (0.39 g, 2.00 

mmol) was reacted with 2-bromothiophenol (0.38 g, 2.00 mmol) in THF (2 ml) at room 

temperature for 16 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 30:1) afforded 

compound 74 (0.45 g, 62%) as a white solid. m.p 88-90 °C. 

NMR δH (400 MHz, CDCl3), 10.33 (1H, s, CHO), 7.65 (1H, dd, J = 8.0, 1.2 Hz, H-3’), 7.38 

(1H, d, J = 7.6 Hz, H-6’), 7.30 (1H, td, J = 7.6, 1.2 Hz, H-5’), 7.23 (1H, td, J = 7.6, 1.6 Hz, 

H-4’). 

NMR δF (376 MHz, CDCl3), 29.7-29.6 (2F, m, F-3, F-5), 17.4-17.3 (2F, m, F-2, F-6). 

NMR δc (100 MHz, CDCl3), 182.2 (CHO), 146.4 (dd, J = 260, 13 Hz, C-2, C-6), 146.1 (dd, J 

= 260, 11 Hz, C-3/C-5), 133.8 (C-3’), 132.7 (C-6’), 132.0 (C-1’), 130.1 (C-4’), 128.3 (C-5’), 

125.9 (C-2’), 125.5 (t, J = 18 Hz, C-4), 114.7 (t, J = 11 Hz, C-1). 

IR, νmax /cm
-1

 1705 (CHO). 

MS, m/z found 364.9251, C13H6
79

BrF4OS, (M+H
+
) requires 364.9253. 

Elemental analysis, C13H5BrF4OS requires: C, 42.76; H, 1.38; found: C, 42.73; H, 1.35 
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4-(2-Bromophenoxy)-2,3,5,6-tetrafluorobenzaldehyde (75) 

 

Pentafluorobenzaldehyde (0.39 g, 2.00 mmol) was added to 1.4 ml Et3N (1.00 g, 10.00 

mmol). 2-Bromophenol (0.35 g, 2.00 mmol) was added to the reaction dropwise with ice 

cooling. The mixture was stirred at room temperature for 16 hours. The reaction mixture was 

poured into deionised water (10 ml) and was extracted with ethyl acetate (15 ml x 3). The 

combined extracts were washed with 0.2 M (aq.) HCl solution (30 ml) and deionised water 

(approx. 15 ml) successively and dried over sodium sulfate. The solution was concentrated 

under reduced pressure and the residue was purified by using silica column chromatography 

(elution with light petroleum/ ethyl acetate = 30:1) to afford compound 75 (0.42 g, 62%) as a 

white solid, m.p. 48-50 °C. 

NMR δH (400 MHz, CDCl3), 10.31 (1H, s, CHO), 7.67 (1H, dd, J = 8.0, 1.6 Hz, H-3’), 7.31 

(1H, td, J = 8.0, 1.6 Hz, H-5’), 7.11 (1H, td, J = 8.0, 1.2 Hz, H-4’), 6.94 (1H, d, J = 8.0 Hz, 

H-6’). 

NMR δF (376 MHz, CDCl3), 17.1-17.0 (2F, m, F-3, F-5), 8.4-8.3 (2F, m, F-4, F-6). 

NMR δc (100 MHz, CDCl3), 182.0 (CHO), 153.0 (C-1’), 147.6 (ddd, J = 260, 17, 6 Hz, C-2, 

C-6), 140.6 (dd, J = 250, 12 Hz, C-3, C-5), 134.2 (C-3’), 128.8 (C-5’), 126.3 (C-4’), 125.9 

(C-4), 117.3 (C-6’), 112.6 (C-2’), 111.1 (t, J = 10 Hz, C-1). 

IR, νmax /cm
-1

 1705 (CHO). 

MS, m/z found 348.9478, C13H6
79

Br F4O2, (M+H
+
) requires 348.9482. 

Elemental analysis, C13H5BrF4O2 requires: C, 44.85; H, 1.16; found: C, 44.73; H, 1.16. 
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4-(1H-Benzo[d]imidazol-1-yl)-2,3,5,6-tetrafluorobenzonitrile (97) 

 

Following the general method outlined for compound 68, pentafluorobenzonitrile (0.19 g, 

1.00 mmol) was reacted with benzimidazole (0.24 g, 2.00 mmol) in THF (2 ml) at room 

temperature for 16 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 8:5) afforded 

compound 97 (0.28 g, 95%) as a white solid. m.p. 180-182 °C. 

NMR δH (400 MHz, CDCl3), 8.06 (1H, s, H-2’), 7.93-7.89 (1H, m, H-7’), 7.46-7.39 (2H, m, 

H-5’, H-6’), 7.28-7.23 (1H, m, H-4’). 

NMR δF (376 MHz, CDCl3), 32.6-32.4 (2F, m, F-3, F-5), 20.3-20.1 (2F, m, F-2, F-6). 

NMR δc (100 MHz, CDCl3), 148.1 (ddt, J = 264, 13, 4 Hz, C-2, C-6), 142.1 (dd, J = 257, 13 

Hz, C-3, C-5), 143.1, 141.6 (C-2’), 132.6, 125.3, 124.4, 121.4 (t, J = 13 Hz, C-4), 121.3, 

110.5, 106.7, 94.4 (t, J = 17 Hz, C-1). 

IR, νmax /cm
-1

 2245 (CN), 1651 and 1495 (benzene ring). 

MS, m/z found 292.0492, C14H6N3F4, (M+H
+
) requires 292.0492. 
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Ethyl 4-(1H-benzo[d]imidazol-1-yl)-2,3,5,6-tetrafluorobenzoate (96) 

 

Following the general method outlined for compound 68, pentafluorobenzoate (0.24 g, 1.00 

mmol) was reacted with benzimidazole (0.24 g, 2.00 mmol) in THF (1.5 ml) at room 

temperature for 16 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 8:5) afforded 

compound 96 (0.22 g, 66%) as a white solid, m.p. 90-92 °C. 

NMR δH (400 MHz, CDCl3), 8.07 (1H, s, H-2’), 7.92-7.90 (1H, m, H-7’), 7.43-7.38 (2H, m, 

H-5’, H-6’), 7.27-7.25 (1H, m, H-4’), 4.50 (2H, q, J = 7.6 Hz, CH2), 1.44 (3H, t, J = 7.2 Hz, 

CH3). 

NMR δF (376 MHz, CDCl3), 24.9-24.7 (2F, m, F-3, F-5), 17.7-17.5 (2F, m, F-2, F-6). 

NMR δc (100 MHz, CDCl3), 158.8 (C=O), 145.3 (dd, J = 257, 13 Hz, C-2, C-6), 142.9, 142.3 

(dd, J = 256, 14 Hz, C-3, C-5), 142.0 (C-2’), 133.0, 124.9, 124.0, 120.9, 118.0 (t, J = 16 Hz, 

C-4), 113.4 (t, J = 16Hz, C-1), 110.6, 63.4 (CH2), 14.2 (d, J = 10 Hz, CH3). 

IR, νmax /cm
-1

 1728 (C=O), 1651 and 1489 (benzene ring), 1273 (C-O). 

MS, m/z found 339.0749, C16H11F4N2O2, (M+H
+
) requires 339.0751. 
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Methyl-4,5,7-trifluoro-6-[(2-methoxy-2-oxoethyl)sulfanyl]-1-benzo[b]thiophene-2-

carboxylate (92) 

 

Methyl mercaptoacetate (0.42 g, 4.00 mmol) was added dropwise to a solution of 

pentafluorobenzaldehyde (0.39 g, 2.00 mmol) and Et3N (0.51 g, 5.00 mmol) in THF (5 ml) 

with ice cooling. The mixture was stirred at room temperature for 16 hours. The reaction 

mixture was poured into deionised water (15 ml) and was extracted with ethyl acetate (15 ml 

x 3). The combined extracts were washed with 0.2 M HCl (aq.) solution (20 ml) and 

deionised water (approx. 20 ml) successively and dried over sodium sulfate. The solution was 

concentrated under reduced pressure. Compound 92 was isolated (0.44 g, 62%) after 

purification by silica column chromatography (elution with light petroleum/ethyl acetate = 

20:1) as a white solid, m.p. 118-120 °C. 

NMR δH (400 MHz, CDCl3), 8.09 (1H, d, J = 3.2 Hz, H-3), 3.98 (3H, s, H-2’), 3.69 (3H, s, 

H-3‖), 3.65 (2H, s, H-1‖). 

NMR δF (376 MHz, CDCl3), 52.4 (1F, dd, J = 18, 3 Hz), 28.5 (1F, d, J = 21 Hz), 18.3 (1F, dd, 

J = 21, 18 Hz). 

NMR δc (100 MHz, CDCl3), 169.2 (C-2‖), 161.9 (C-1’), 153.1 (d, J = 246 Hz, C-7), 147.3 

(ddd, J = 242, 15, 4 Hz, C-4/ C-5),  142.4 (ddd, J = 253, 14, 4 Hz, C-4/C-5), 137.6 (C-2), 

130.4 (ddd, J = 15, 7, 4 Hz, C-3a/ C-7a), 125.6-125.2 (m, C-3), 125.5 (d, J = 7 Hz, C-3a/ C-

7a), 110.1 (t, J = 22 Hz, C-6), 53.1 (C-3‖), 52.8 (C-2’), 36.1 (C-1‖). 

IR, νmax /cm
-1

 1728 (C=O), 1273 (C-O). 

MS, m/z found 350.9969, C13H10F3O4S2, (M+H
+
) requires 350.9967. 

Elemental analysis, C13H9F3O4S2 requires: C, 44.57; H, 2.59; found: C, 44.40; H, 2.53. 
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Methyl-4,5,7-trifluoro-6-(1H-imidazol-1-yl)benzo[b]thiophene-2-carboxylate (81) 

 

Methyl mercaptoacetate (0.21 g, 2.00 mmol) was added dropwise to a solution of aldehyde 

67 (0.49 g, 2.00 mmol) and Et3N (0.51 g, 5.00 mmol) in THF (5 ml) with ice cooling. The 

mixture was stirred at room temperature for 16 hours. The reaction mixture was poured into 

deionised water (15 ml) and was extracted with ethyl acetate (15 ml x 3). The combined 

extracts were washed with 0.2 M HCl (aq.) solution (20 ml) and deionised water (approx. 20 

ml) successively and dried over sodium sulfate. Compound 81 (0.44 g, 70%) was purified by 

silica column chromatography (elution with light petroleum/ethyl acetate = 5:3) as a white 

solid, m.p. 146-148 °C. 

NMR δH (400 MHz, CDCl3), 8.17 (1H, d, J = 3.2 Hz, H-3), 7.81 (1H, s, H-2’), 7.29 (1H, s, 

H-5’), 7.28 (1H, s, H-4’), 3.99 (3H, s, CH3). 

NMR δF (376 MHz, CDCl3), 36.2 (1F, d, J = 19 Hz), 19.8 (1F, t, J = 19 Hz), 14.6 (1F, d, J = 

20 Hz). 

NMR δC (100 MHz, CDCl3), 161.5 (C=O), 146.3 (ddd, J = 248, 4, 3 Hz, C-7), 143.5 (ddd, J 

= 251, 13, 4 Hz, C-4/C-5), 141.8 (ddd, J = 245, 15, 3 Hz, C-4/C-5), 137.9 (C-2), 130.0 (C-4’), 

128.6  (ddd, J = 18, 6, 3 Hz, C-3a/ C-7a), 125.6 (ddd, J = 21, 6, 3 Hz, C-3a/ C-7a), 125.1 (d, J 

= 6 Hz, C-3), 120.4 (C-5’), 114.6 (t, J = 16 Hz, C-6), 53.2 (CH3). 

IR, νmax /cm
-1

 1728 (C=O), 1265 (C-O). 

MS, m/z found 313.0264, C13H7F3N2OS, (M+H
+
) requires 313.0253. 

Elemental analysis, C13H7F3N2O2S requires: C, 50.00; H, 2.26; N, 8.97; found: C, 49.91; H, 

2.19; N, 8.88. 
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Methyl-6-(1H-benzo[d]imidazol-1-yl)-4,5,7-trifluorobenzo[b]thiophene-2-carboxylate 

(82) 

 

Following the general method outlined for compound 81, aldehyde 68 (0.59 g, 2.00 mmol) 

was reacted with methyl mecaptoacetate (0.21 g, 2.00 mmol) in THF (4 ml) at room 

temperature for 16 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 3:1) afforded 

compound 82 (0.41 g, 57%) as a white solid. m.p. 178-179 °C. 

NMR δH (400 MHz, CDCl3), 8.26 (1H, d, J = 3.2 Hz, H-3), 8.10 (1H, s, H-2‖), 7.92 (1H, d, J 

= 7.6 Hz, H-7‖), 7.42-7.37 (2H, m, H-5‖, H-6‖), 7.30 (1H, d, J = 8.0 Hz, H-4‖), 4.02 (3H, s, 

CH3). 

NMR δF (376 MHz, CDCl3), 38.9 (1F, d, J = 19 Hz), 20.2 (1F, t, J = 19 Hz), 16.8 (1F, d, J = 

19 Hz). 

NMR δc (100 MHz, CDCl3), 161.5 (C=O), 147.6 (dt, J = 251, 4 Hz C-7), 143.1, 142.8 (C-2’), 

142.7 (dt, J = 249, 5 Hz, C-4/C-5) , 142.5 (dt, J = 251, 5 Hz, C-4/C-5), 138.2 (C-2), 133.8, 

129.5 (ddd, J = 19, 7, 2 Hz, C-3a/ C-7a), 125.8 (ddd, J = 17, 5, 2 Hz, C-3a/ C-7a), 125.3 (d, J 

= 5 Hz, C-3), 124.4, 123.5, 120.8, 112.9 (t, J = 6 Hz, C-6), 110.4, 53.2 (CH3). 

IR, νmax /cm
-1

 1720 (C=O), 1249 (C-O). 

MS, m/z found 363.0402, C17H9F3N2O2S, (M+H
+
) requires 363.0410. 

Elemental analysis, C17H9F3N2O2S requires: C, 56.51; H, 2.21; N, 7.75; found: C, 56.36; H, 

2.56; N, 7.62. 
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Methyl 6-((4-(tert-butyl)phenyl)thio)-4,5,7-trifluorobenzo[b]thiophene-2-carboxylate (85) 

 

Following the general method outlined for compound 81, aldehyde 73 (0.68 g, 2.00 mmol) 

was reacted with methyl mecaptoacetate (0.21 g, 2.00 mmol) in THF (4 ml) at room 

temperature for 16 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 50:1) afforded 

compound 85 (0.62 g, 76%) as a light yellow solid. m.p. 127-129 °C. 

NMR δH (400 MHz, CDCl3), 8.15 (1H, d, J = 3.2 Hz, H-3), 7.37-7.31 (4H, m, H-2’, H-3’, H-

5’, H-6’), 4.00 (3H, s, OCH3), 1.31 (9H, s, CH3). 

NMR δF (376 MHz, CDCl3), 52.6 (1F, d, J = 17 Hz), 29.3 (1F, d, J = 23 Hz), 18.2 (1F, t, J = 

20 Hz). 

NMR δc (100 MHz, CDCl3), 161.9 (C=O), 152.9 (dt, J = 248, 5Hz, C-7), 151.1 (C-4’), 147.0 

(ddd, J = 245, 13, 4 Hz, C-4/ C-5), 142.5 (ddd, J = 253, 18, 4 Hz, C-4/C-5), 137.4 (C-2), 

130.5 (C-2’, C-6’), 130.2 (ddd, J = 22, 9, 4 Hz, C-3a/C-7a), 130.0 (C-1’), 126.4 (C-3’, C-5’), 

125.3 (d, J = 5 Hz, C-3a/C-7a), 125.3 (C-3), 111.8 (t, J = 22 Hz, C-6), 53.0 (OCH3), 34.6 (C 

(CH3)3), 31.2 (CH3). 

IR, νmax /cm
-1

 1712 (C=O), 1249 (C-O). 

MS, m/z found 411.0696, C20H18 F3O2S2, (M+H
+
) requires 411.0695. 

Elemental analysis, C20H17F3O2S2 requires: C, 58.52; H, 4.17; found: C, 58.40; H, 4.12. 
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Methyl 6-((2-bromophenyl)thio)-4,5,7-trifluorobenzo[b]thiophene-2-carboxylate (83) 

 

Following the general method outlined for compound 81, aldehyde 74 (0.73 g, 2.00 mmol) 

was reacted with methyl mecaptoacetate (0.21 g, 2.00 mmol) in THF (4 ml) at room 

temperature for 16 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 30:1) afforded 

compound 83 (0.57 g, 66%) as a white solid. m.p. 143-145 °C.  

NMR δH (400 MHz, CDCl3), 8.20 (1H, d, J = 3.2 Hz, H-3), 7.60 (1H, dd, J = 8.0, 1.2 Hz, H-

3’), 7.20 (1H, td, J = 7.2, 1.2 Hz, H-5’), 7.10 (1H, td, J = 7.2, 1.2 Hz, H-4’), 6.94 (1H, d, J = 

7.6 Hz, H-6’), 4.02 (1H, s, CH3) 

NMR δF (376 MHz, CDCl3), 53.7 (1F, dd, J = 17, 3 Hz), 29.7 (1F, d, J = 21 Hz), 18.9 (1F, t, 

J = 20 Hz). 

NMR δC (100 MHz, CDCl3), 161.9 (C=O), 153.2 (C-7, d, J = 248 Hz), 147.0 (ddd, J = 250, 

16, 5 Hz, C-4/C-5), 142.6 (ddd, J = 245, 21, 10 Hz, C-4/C-5), 138.0 (C-2), 135.4 (C-1’), 

133.4 (C-3’), 130.5 (dd, J = 17, 7 Hz, C-3a/C-7a), 128.9 (C-6’), 128.0 (C-4’), 128.0 (d, J = 7 

Hz), 125.7, 125.4 (d, J = 5 Hz, C-3), 122.7 (C-2’), 109.2 (t, J = 21 Hz, C-6), 53.2 (CH3). 

IR, νmax /cm
-1

 1720 (C=O), 1265 (C-O). 

MS, m/z found 432.9129, C16H9
79

BrF3O2S2, (M+H
+
) requires 432.9174.  

Elemental analysis, C16H8BrF3O2S2 requires: C, 44.35; H, 1.86; found: C, 44.18; H, 1.74. 
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Methyl 6-(2-bromophenoxy)-4,5,7-trifluorobenzo[b]thiophene-2-carboxylate (84) 

 

Following the general method outlined for compound 81, aldehyde 75 (0.70 g, 2.00 mmol) 

was reacted with methyl mecaptoacetate (0.21 g, 2.00 mmol) in THF (4 ml) at room 

temperature for 16 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 30:1) afforded 

compound 84 (0.65 g, 78%) as a white solid. m.p. 126-128 °C. 

NMR δH (400 MHz, CDCl3), 8.19 (1H, d, J = 3.2 Hz, H-3), 7.67 (1H, dd, J = 8.0, 1.6 Hz, H-

3’), 7.24 (1H, td, J = 7.6 Hz, 1.6 Hz, H-5’), 7.03 (1H, td, J = 7.6, 1.6 Hz, H-4’), 6.78 (1H, dd, 

J = 7.6, 0.8 Hz, H-6’), 4.01 (3H, s, CH3) 

NMR δF (376 MHz, CDCl3), 29.9 (1F, dd, J = 17, 3 Hz), 19.4 (1F, dd, J = 19, 17 Hz), 10.3 

(1F, d, J = 19 Hz). 

NMR δC (100 MHz, CDCl3), 161.9 (C=O), 154.1 (C-1’), 146.0 (dt, J = 248, 4 Hz, C-7), 142.8 

(ddd, J = 254, 12, 4 Hz, C-4/C-5), 141.8 (ddd, J = 248, 13, 3 Hz, C-4/C-5), 136.3 (C-2), 

134.1 (C-3’), 131.5 (t, J = 14 Hz, C-6), 128.7 (C-5’), 125.9 (dd, J = 18, 4 Hz, C-3a/C-7a), 

125.6 (dd, J = 19, 4 Hz, C-3a/C-7a), 125.3 (d, J = 6 Hz, C-3), 125.0 (C-4’), 115.5 (C-6’), 

111.9 (C-2’), 53.1 (CH3). 

IR, νmax /cm
-1

 1720 (C=O), 1257 (C-O). 

MS, m/z found 416.9400, C16H9
79

BrF3O3S, (M+H
+
) requires 416.9402. 

Elemental analysis, C16H8BrF3O3S requires: C, 46.06; H, 1.93; found: C, 46.07; H, 1.93.  
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Methyl 4,5,7-trifluoro-6-(4-methylpiperazin-1-yl)benzo[b]thiophene-2-carboxylate (86) 

 

Following the general method outlined for compound 81, aldehyde 69 (0.28 g, 1.00 mmol) 

was reacted with methyl mecaptoacetate (0.11 g, 1.00 mmol) in THF (2 ml) at room 

temperature for 16 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 3:1) afforded 

compound 86 (0.19 g, 51%) as a yellow solid. m.p. 88-90 °C. 

NMR δH (400 MHz, CDCl3), 8.04 (1H, d, J = 3.6 Hz, H-3), 3.93 (3H, s, OCH3), 3.37 (4H, s, 

H-2’, H-6’), 2.59 (4H, s, H-3’, H-5’), 2.38 (3H, s, CH3). 

NMR δF (376 MHz, CDCl3), 34.2 (1F, d, J = 16 Hz), 17.0 (1F, t, J = 18 Hz), 14.6 (1F, d, J = 

19 Hz). 

NMR δC (100 MHz, CDCl3), 162.4 (C=O), 147.0 (d, J = 243 Hz, C-7), 144.1 (dd, J = 244, 19 

Hz, C-4/C-5), 143.0 (dd, J = 247, 14 Hz, C-4/C-5), 134.0 (C-2), 128.5 (t, J = 12 Hz, C-3a/C-

7a), 126.1 (dd, J = 20, 4 Hz, C-3a/C-7a), 125.6 (d, J = 6 Hz, C-3), 123.7 (dd, J =17, 4 Hz, C-

6), 55.6 (C-3’, C-5’), 52.9 (OCH3), 51.0 (C-2’, C-6’), 46.3 (CH3). 

IR, νmax /cm
-1

 1712 (C=O), 1627 and 1519 (benzene ring), 1234 (C-O). 

MS, m/z found 345.0881, C15H16F3N2O2S, (M+H
+
) requires 345.0879. 
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2-Mercapto-1-phenylethanone (78) 

 

2-Bromoacetophenone (0.40 g, 2.00 mmol) was added to a solution of potassium thioacetate 

(0.23 g, 2.00 mmol) in THF (5 ml). The reaction mixture was stirred at 40 °C for 24 hours. 

The mixture was poured into deionised water (10 ml) and was extracted with ethyl acetate 

(15 ml x 3). The combined extracts were dried over sodium sulphate and concentrated under 

reduced pressure. The residue (0.30 g, 1.96 mmol) was then treated with 1 M NaOH (aq.) (2 

ml) in methanol (4 ml). The reaction mixture was stirred at room temperature for 14 hours. 

The mixture was poured into deionised water (10 ml) and neutralised with 1 M HCl (aq.) (2 

ml). The neutralised mixture was extracted with ethyl acetate (15 ml x 3). The combined 

extracts were dried with sodium sulfate and concentrated under reduced pressure. The residue 

was purified by using silica column (elution with light petroleum/ ethyl acetate = 2:1) to give 

the known thiol 78 (0.11 g, 37%) as a light yellow liquid. 

NMR δH (400 MHz, CDCl3), 8.01-7.98 (2H, m, H-2, H-6), 7.63 (1H, tt, J = 7.6, 1.2 Hz, H-4), 

7.52 (2H, t, J = 8 Hz, H-3, H-5), 4.00 (2H, d, J = 7.6 Hz, CH2), 2.16 (1H, t, J = 7.6 Hz, SH). 

The data was identical to the literature values.
[138]

 

MS, m/z found 153.0363, C8H9OS, (M+H
+
) requires 153.0369. 

 

2,2'-Disulfanediylbis(1-phenylethan-1-one) (79) 

 

Further elution afforded the known disulfide 79 as a colourless liquid in 5% (0.01 g) yield.  

NMR δH (400 MHz, CDCl3), 7.92 (4H, d, J = 8.0 Hz), 7. 58 (2H, t, J = 8.0 Hz), 7.45 (4H, t, J 

= 8.0 Hz), 4.18 (4H, s, CH2). Data was identical with the literature values.
[138] 
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Phenyl(4,5,7-trifluoro-6-(1H-imidazol-1-yl)benzo[b]thiophen-2-yl)methanone (87) 

 

Following the general method outlined for compound 81, aldehyde 67 (0.49 g, 2.00 mmol) 

was reacted with thiol 78 (0.30 g, 2.00 mmol) in THF (4 ml) at room temperature for 16 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 3:1) afforded compound 87 (0.35 g, 49%) as a 

cream solid. m.p. 132-134 °C. 

NMR δH (400 MHz, CDCl3), 7.98 (1H, d, J = 2.8 Hz, H-3), 7.92 (2H, d, J = 8.0 Hz, H-2’, H-

6’), 7.86 (1H, s, H-2‖), 7.67 (1H, t, J = 7.6 Hz, H-4’), 7.57 (2H, t, J = 7.6 Hz, H-3’, H-5’), 

7.28 (2H, d, J = 12.4 Hz, H-4‖, H-5‖). 

NMR δF (376 MHz, CDCl3), 36.6 (1F, d, J = 19 Hz), 20.2 (1F, t, J = 17 Hz), 14.7 (1F, d, J = 

17 Hz). 

NMR δC (100 MHz, CDCl3), 188.1 (C=O), 147.6 (C-2), 146.5 (d, J = 255 Hz, C-7), 143.1 

(ddd, J = 255, 16, 5 Hz, C-4/ C-5), 141.8 (dd, J = 250, 14 Hz, C-4/C-5), 138.0 (C-2‖), 136.6 

(C-1’), 133.6, 129.9 (C-4‖), 129.4 (C-2’, C-6’), 129.2 (dd, J = 19, 7 Hz, C-3a/C-7a), 129.0 

(C-3’, C-5’), 126.2 (dd, J = 19, 7 Hz, C-3a/C-7a), 125.6 (d, J = 5 Hz, C-3), 120.5 (C-5‖), 

114.8 (t, J = 15 Hz, C-6). 

IR, νmax /cm
-1

 1643 (C=O). 

MS, m/z found 359.0454, C18H10F3N2OS, (M+H
+
) requires 359.0460. 

Elemental analysis, C18H9F3N2OS requires: C, 60.33; H, 2.53; N, 7.82; found: C, 60.08; H, 

2.60; N, 7.68.  
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 (6-(1H-Benzo[d]imidazol-1-yl)-4,5,7-trifluorobenzo[b]thiophen-2-yl)(phenyl)methanone 

(91)   

 

Following the general method outlined for compound 81, aldehyde 68 (0.59 g, 2.00 mmol) 

was reacted with thiol 78 (0.30 g, 2.00 mmol) in THF (4 ml) at room temperature for 16 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 3:1) afforded compound 91 (0.42 g, 51%) as an 

orange solid. m.p. 140-142 °C. 

NMR δH (400 MHz, CDCl3), 8.09 (1H, s, H-2‖), 8.04 (1H, d, J = 3.2 Hz, H-3), 7.96-7.90 (3H, 

m, H-7‖,  H-2’, H-6’) 7.70 (1H, t, J = 7.2 Hz, H-4’), 7.59 (2H, t, J = 7.6 Hz, H-3’, H-5’), 

7.41-7.34 (2H, m, H-5‖,H-6‖), 7.30 (1H, d, J = 5.6 Hz, H-4‖). 

NMR δF (376 MHz, CDCl3), 39.34 (1F, d, J = 17 Hz), 20.6 (1F, t, J = 20 Hz), 16.9 (1F, d, J = 

20 Hz).  

NMR δc (100 MHz, CDCl3), 188.2 (C=O), 147.8 (d, J = 251 Hz, C-7), 147.7 (C-2), 143.2, 

143.1 (ddd, J = 254, 13, 4 Hz, C-4/ C-5), 142.8 (C-2‖), 142.7 (dd, J = 249, 14 Hz, C-4/ C-5), 

136.6 (C-1’), 133.8, 133.6 (C-4’), 129.9 (dd, J = 17, 4 Hz, C-3a/C-7a), 129.5 (C-2’, C-6’), 

129.0 (C-3’, C-5’), 126.2 (ddd, J = 18, 4, 3 Hz, C-3a/C-7a), 125.7 (d, J = 6 Hz, C-3), 124.6 

(C-5‖/C-6‖), 123.6 (C-5‖/C-6‖), 120.9 (C-7‖), 113.3 (t, J = 16 Hz, C-6), 110.5 (C-4‖). 

IR, νmax /cm
-1

 1643 (C=O). 

MS, m/z found 409.0608, C22H12F3N2OS, (M+H
+
) requires 409.0617. 

Element analysis, C22H11F3N2OS: C, 64.70; H, 2.69; N, 6.86; Found: C, 64.47; H, 2.70; N, 

6.96. 

 

 

 

 

 



128 

 

 (6-((4-(tert-Butyl)phenyl)thio)-4,5,7-trifluorobenzo[b]thiophen-2-yl)(phenyl)methanone 

(88) 

 

Following the general method outlined for compound 81, aldehyde 73 (0.68 g, 2.00 mmol) 

was reacted with thiol 78 (0.30 g, 2.00 mmol) in THF (4 ml) at room temperature for 16 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 50:1) afforded compound 88 (0.45 g, 49%) as a red 

oil.  

NMR δH (400 MHz, CDCl3), 7.91 (2H, d, J = 2.0 Hz, H-2’, H-6’), 7.90 (1H, s, H-3), 7.66 (1H, 

t, J = 7.6 Hz, H-4’). 7.55 (2H, t, J = 7.6 Hz, H-3’, H-5’), 7.31 (4H, AA’BB’, m, H-2‖, H-3‖, 

H-5‖, H-6‖), 1.25 (9H, s, CH3). 

NMR δF (376 MHz, CDCl3), 53.0 (1F, d, J = 17 Hz), 29.4 (1F, d, J = 23 Hz), 18.3 (1F, t, J = 

21 Hz). 

NMR δC (100 MHz, CDCl3), 188.6 (C=O), 152.2 (C-7), 151.2, 147.0 (d, J = 250 Hz, C-4/C-

5), 146.9 (C-2), 142.7 (d, J = 250 Hz, C-4/C-5), 136.9 (C-1’), 133.4 (C-4’), 130.7 (C-2‖, C-

6‖), 130.5 (C-3a/C-7a), 130.0, 129.4 (C-2’, C-6’), 128.9 (C-3’, C-5’), 126.7 (C-3a/C-7a), 

126.5 (C-3‖, C-5‖), 126.1 (d, J = 9 Hz, C-3), 112.3 (t, J = 19 Hz, C-6), 34.6 (C(CH3)3), 29.8 

(CH3). 

IR, νmax /cm
-1

 1646 (C=O). 

MS, m/z found 457.0895, C25H20F3OS2, (M+H
+
) requires 457.0902. 

Elemental analysis, C25H19F3OS2 requires: C, 65.77; H, 4.19; found: C, 65.73; H, 4.46. 
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(6-((2-Bromophenyl)thio)-4,5,7-trifluorobenzo[b]thiophen-2-yl)(phenyl)methanone (90)   

 

Following the general method outlined for compound 81, aldehyde 74 (0.73 g, 2.00 mmol) 

was reacted with thiol 78 (0.30 g, 2.00 mmol) in THF (4 ml) at room temperature for 16 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 30:1) afforded compound 90 (0.46 g, 46%) as a 

brown solid. m.p. 118-120 °C. 

NMR δH (400 MHz, CDCl3), 7.96 (1H, d, J = 3.2 Hz, H-3), 7.92 (2H, d, J = 7.2 Hz, H-2’, H-

6’), 7.68 (1H, t, J = 8.0 Hz, H-4’). 7.58 (1H, d, J = 1.6 Hz, H-3‖), 7.56 (2H, t, J = 7.6 Hz, H-

3’, H-5’), 7.17 (1H, t, J = 7.2 Hz, H-5‖), 7.08 (1H, t, J = 7.2 Hz, H-4‖), 6.94 (1H, d, J = 7.6 

Hz, H-6‖).  

NMR δF (376 MHz, CDCl3), 54.0 (1F, d, J = 23 Hz), 29.8 (1F, d, J = 17 Hz), 19.1 (1F, t, J = 

17 Hz).  

NMR δC (100 MHz, CDCl3), 188.5 (C=O), 153.2 (d, J = 249 Hz, C-7), 147.4 (C-2), 146.9 (dd, 

J = 249, 17 Hz, C-4/C-5), 142.9 (dd, J = 256, 12 Hz, C-4/C-5), 136.7 (C-1’), 135.3, 133.5 (C-

4’), 133.4 (C-3‖), 131.2 (ddd, J = 18, 8, 4 Hz, C-3a/C-7a), 129.4 (C-2’, C-6’), 129.1 (C-6‖), 

129.0 (C-3’, C-5’), 128.2 (C-4‖), 128.1 (C-5‖), 126.0 (C-3), 125.9 (C-3a/C-7a), 122.9 (C-2‖), 

109.8 (t, J = 22 Hz, C-6). 

IR, νmax /cm
-1

 1635 (C=O). 

MS, m/z found 478.9370, C21H11
79

BrF3OS2, (M+H
+
) requires 478.9381.  

Elemental analysis, C21H10BrF3OS2 requires: C, 52.62; H, 2.10; found: C, 52.45; H, 1.92. 
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 (6-(2-Bromophenoxy)-4,5,7-trifluorobenzo[b]thiophen-2-yl)(phenyl)methanone (89)  

 

Following the general method outlined for compound 81, aldehyde 75 (0.70 g, 2.00 mmol) 

was reacted with thiol 78 (0.30 g, 2.00 mmol) in THF (4 ml) at room temperature for 16 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 30:1) afforded compound 89 (0.44 g, 48%) as a 

dark yellow solid. m.p. 110-112 °C. 

NMR δH (400 MHz, CDCl3), 7.83 (1H, s, H-3), 7.80 (2H, d, J = 7.6 Hz, H-2’, H-6’), 7.58-

7.52 (2H, m, H-4’, H-3‖), 7.45 (2H, t, J = 7.6 Hz, H-3’, H-5’), 7.10 (1H, t, J = 7.6 Hz, H-5‖), 

6.90 (1H, t, J = 7.2 Hz, H-4‖), 6.65 (1H, d, J = 8.4 Hz, H-6‖). 

NMR δF (376 MHz, CDCl3), 30.3 (1F, d, J = 15 Hz), 19.6 (1F, t, J = 20 Hz), 10.5 (1F, d, J = 

20 Hz).  

NMR δC (100 MHz, CDCl3), 188.4 (C=O), 154.1 (C-1‖), 146.1 (dd,  J = 249, 4 Hz, C-7), 

146.0 (C-2), 143.2 (ddd,  J = 251, 14, 3 Hz, C-4/C-5), 142.1 (ddd,  J = 251, 14, 4 Hz, C-4/C-

5), 136.9, 134.1 (C-3‖), 133.3 (C-4’), 131.9 (t, J = 14 Hz, C-6), 129.4 (C-2’, C-6’), 128.9 (C-

3’, C-5’), 128.7 (C-5‖), 126.4 (dd , J = 17, 4 Hz, C-3a/C-7a), 126.3-125.8 (m, C-3, C-3a/C-

7a), 125.1 (C-4‖), 115.6 (C-6‖), 112.0 (C-2‖). 

IR, νmax /cm
-1

 1643 (C=O). 

MS, m/z found 462.9601, C21H11
79

BrF3O2S, (M+H
+
) requires 462.9610.  

Elemental analysis, C21H10BrF3O2S requires: C, 54.44; H, 2.18; found: C, 54.37; H, 2.04.  
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2-((2-Benzoyl-4,5,7-trifluorobenzo[b]thiophen-6-yl)thio)-1-phenylethanone (93)  

 

Following the general method outlined for compound 92, pentafluorobenzaldehyde (0.39 g, 

2.00 mmol) was reacted with thiol 78 (0.61 g, 4.00 mmol) in THF (6 ml) at room temperature 

for 16 hours. Work-up as previously described and purification by chromatography on silica 

gel (elution with petrol ether / ethyl acetate = 20:1) afforded compound 93 (0.19 g, 21%) as 

an orange solid. m.p. 138-139 °C. 

NMR δH (400 MHz, CDCl3), 7.93-7.89 (5H, m, H-3, H-2’, H-6’, H-2‖, H-6‖), 7.67 (1H, t, J = 

7.2 Hz, H-4’), 7.61-7.53 (3H, m, H-3’, H-5’, H-4‖), 7.46 (2H, t, J = 7.8 Hz, H-5‖, H-3‖), 4.36 

(2H, s, CH2). 

NMR δF (376 MHz, CDCl3), 53.0 (1F, d, J = 20 Hz), 28.8 (1F, d, J = 20 Hz), 18.2 (1F, t, J = 

19 Hz, H-5).  

NMR δC (100 MHz, CDCl3), 193.2 (C=O), 188.6 (C=O), 153.1 (d, J = 246 Hz, C-7), 147.3 

(ddd, J = 240, 16, 4 Hz, C-4/C-5), 146.9 (C-2), 142.5 (ddd, J = 252, 18, 4 Hz, C-4/C-5), 

136.8 (C-1’), 135.1 (C-1‖), 133.9 (C-4‖), 133.4 (C-4’), 130.7 (C-3a/C-7a), 129.4 (C-2’, C-6’), 

128.9 (C-3’, C-5’), 128.8 (C-5‖, C-3‖), 128.6 (C-6‖, C-2‖), 126.0 (d, J = 6 Hz, C-3), 125.7 

(dd, J = 23, 6 Hz, C-3a/C-7a), 110.7 (t, J = 22 Hz, C-6), 40.6 (CH2). 

IR, νmax /cm
-1

 1666 (C=O), 1635 (C=O). 

MS, m/z found 443.0374, C23H14F3O2S2, (M+H
+
) requires 443.0382. 

Elemental analysis, C23H13F3O2S2.0.5H2O requires: C, 61.19; H, 3.12; found: C, 61.50; H, 

2.83.  
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Methyl 3-amino-6-(1H-benzo[d]imidazol-1-yl)-4,5,7-trifluorobenzo[b]thiophene-2-

carboxylate (99) 

 

Following the general method outlined for compound 82, nitrile 97 (0.29 g, 1.00 mmol) was 

reacted with methyl mercaptoacetate (0.11 g, 1.00 mmol) in THF (4 ml) at room temperature 

for 16 hours. Work-up as previously described and purification by chromatography on silica 

gel (elution with petrol ether / ethyl acetate = 3:1) afforded compound 99 (0.13 g, 34%) as a 

yellow solid. m.p. 216-218 °C. 

NMR δH (400 MHz, CDCl3), 8.09 (1H, s, H-2’), 7.92 (1H, s, H-7’), 7.39-7.34 (2H, m, H-5’, 

H-6’), 7.28 (1H, s, H-4’), 6.32 (2H, s, NH2), 3.91 (3H, s, CH3). 

NMR δF (376 MHz, CDCl3), 37.9 (1F, d, J = 17 Hz), 15.0 (1F, d, J = 19 Hz), 16.8 (1F, t, J = 

19 Hz, F-5). 

NMR δc (100 MHz, CDCl3), 164.8 (C=O), 147.9 (d, J = 251 Hz, C-7), 147.1, 144.0 (dd, J = 

255, 13 Hz, C-4/C-5), 143.1 (C-2’), 142.0 (dd, J = 252, 13 Hz, C-4/C-5), 133.7 (d, J = 13 Hz, 

C-3a/C-7a), 124.6 (C-7’), 123.9 (d, J = 15 Hz, C-3a/C-7a), 123.6 (C-5’), 121.5 (d, J = 12, 7 

Hz), 120.9 (C-6’), 113.5 (t, J = 16 Hz, C-6), 110.6 (C-4’), 100.7, 52.1 (CH3). 

IR, νmax /cm
-1

 3456 (NH), 1655 (C=O), 1607 and 1512 (benzene ring), 1273 (C-O). 

MS, m/z found 378.0521, C17H11F3N3O2S, (M+H
+
) requires 378.0519. 
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Methyl 6-(1H-benzo[d]imidazol-1-yl)-4,5,7-trifluoro-3-hydroxybenzo[b]thiophene-2-

carboxylate (98) 

 

Following the general method outlined for compound 82, ester 96 (0.34 g, 1.00 mmol) was 

reacted with methyl mercaptoacetate (0.11 g, 1.00 mmol) in THF (4 ml) at room temperature 

for 16 hours. Work-up as previously described and purification by chromatography on silica 

gel (elution with petrol ether / ethyl acetate = 3:1) afforded compound 98 (0.16 g, 41%) as a 

yellow solid. m.p. 238-240 °C. 

NMR δH (400 MHz, CDCl3), 10.30 (1H, br, OH), 8.12 (1H, s, H-2’), 7.95 (1H, d, J = 7.2 Hz, 

H-7’), 7.45-7.39 (2H, m, H-5’, H-6’), 7.32 (1H, s, H-4’), 4.05 (3H, s, CH3). 

NMR δF (376 MHz, CDCl3), 36.7 (1F, d, J = 17 Hz), 18.1 (1F, J =19 Hz), 16.8 (1F, t, J = 19 

Hz, F-5). 

NMR δc (100 MHz, CDCl3), 166.5 (C=O), 157.8, 148.8, 146.3, 144.6, 142.7, 124.7, 123.7, 

122.5, 120.8, 110.6, 105.1, 52.9 (CH3). 

IR, νmax /cm
-1

 1697 (C=O), 1612 and 1512 (benzene ring). 

MS, m/z found 379.0361, C17H10F3N2O3S, (M+H
+
) requires 379.0359. 
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6-(1H-Benzo[d]imidazol-1-yl)-4,5,7-trifluorobenzo[b]thiophene-2-carboxylic acid (100) 

 

A solution of compound 82 (0.36 g, 1.00 mmol) in THF (3 ml) was added a solution of 

potassium hydroxide (0.14 g, 2.50 mmol) in deionised water (2 ml). The solution was stirred 

at room temperature for 6 hours. The reaction mixture then was acidified by 1 M HCl (aq.) to 

pH 2-3. The residues was filtered and washed by deionised water (approx. 10 ml). Pure acid 

100 (0.28 g, 80%) was prepared as a white solid, m.p. 295-297 °C. 

NMR δH (400 MHz, DMSO-d6), 14.34 (1H, br, OH), 8.57 (1H, s, H-2’), 8.30 (1H, d, J = 3.2 

Hz, H-3), 7.82-7.78 (1H, m, H-7’), 7.48-7.45 (1H, m, H-4’), 7.35-7.30 (2H, m, H-5’, H-6’). 

NMR δF (376 MHz, DMSO-d6), 37.6 (1F, d, J = 17 Hz), 19.1 (1F, dd, J = 21, 17 Hz), 15.6 

(1F, d, J = 21 Hz). 

NMR δc (100 MHz, DMSO-d6), 162.6 (C=O), 148.2 (d, J = 251 Hz, C-7), 144.6 (C-2’), 143.2 

(dd, J = 259, 15 Hz, C-4/C-5), 143.2, 142.5 (dd, J = 254, 13 Hz, C-4/C-5), 140.5, 134.3, 

129.8 (d, J = 12 Hz, C-3a/C-7a), 125.3 (C-3), 125.2 (t, J = 20 Hz, C-3a/C-7a), 124.6 (C-6’), 

123.6 (C-5’), 120.5 (C-7’), 113.2 (t, J = 16 Hz, C-6), 111.4 (C-4’). 

IR, νmax /cm
-1

 2365 (b), 1735 (C=O). 

MS, m/z found 349.0253, C16H8F3N2O2S, (M+H
+
) requires 349.0253. 
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(6-(1H-Benzo[d]imidazol-1-yl)-4,5,7-trifluorobenzo[b]thiophen-2-yl)(4-methylpiperazin-

1-yl)methanone (105) 

 

Acid 100 (0.17 g, 0.50 mmol) was suspended in dry THF (1 ml), and oxalyl chloride (0.13 g, 

1.00 mmol) was added along with one drop of DMF as a catalyst. The reaction mixture was 

stirred at room temperature for 16 hours. The residue then was concentrated under reduced 

pressure and was added into a solution of 1-methylpiperazine (0.05 g, 1.00 mmol) in THF (3 

ml). The reaction mixture was stirred at room temperature for 16 hours. The reaction mixture 

was poured into deionised water (5 ml) and was extracted with ethyl acetate (10 ml x 3). The 

combined extracts were washed with deionised water (approx. 10 ml) and dried over sodium 

sulfate. The solution was concentrated under reduced pressure and the residue was purified 

by using silica column chromatography (elution with light petroleum/ ethyl acetate = 2:1) to 

give compound 105 (0.13 g, 59%) as a white solid, m.p. 193-195 °C. 

NMR δH (400 MHz, CDCl3), 8.06 (1H, s, H-2‖), 7.92-7.89 (1H, m, H-7‖), 7.66 (1H, d, J = 

3.2 Hz, H-3), 7.41-7.33 (2H, m, H-6‖, H-5‖), 7.26-7.23 (1H, m, H-4‖), 3.81 (4H, s, H-2’, H-

6’), 2.52 (4H, H-3’, H-5’), 2.36 (3H, s, CH3). 

NMR δF (376 MHz, CDCl3), 38.6 (1F, d, J = 17 Hz), 18.8 (1F, dd, J = 20, 17 Hz, F-5), 16.6 

(1F, d, J = 20 Hz). 

NMR δc (100 MHz, CDCl3), 161.6 (C=O), 147.7 (d, J = 252 Hz, C-7), 143.2, 142.9 (C-2‖), 

142.8 (dd, J = 237, 13 Hz, C-4/ C-5), 142.2 (dd, J = 237, 12 Hz, C-4/C-5), 141.9, 133.9, 

129.6 (d, J = 22 Hz, C-3a/C-7a), 124.5 (C-6‖), 124.0 (d, J = 24 Hz, C-3a/C-7a), 123.5 (C-5‖), 

120.9 (C-7‖), 119.9 (d, J = 5 Hz, C-3), 111.9 (t, J = 15 Hz, C-6), 110.4 (C-4‖), 54.9 (C-3’, C-

5’), 45.8 (C-2’, C-6’), 45.9 (CH3). 

IR, νmax /cm
-1

 1627 (C=O), 1512 and 1489 (benzene ring). 

MS, m/z found 431.1151, C21H18F3N4OS, (M+H
+
) requires 431.1148. 
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6-(1H-Benzo[d]imidazol-1-yl)-4,5,7-trifluoro-N-(2-hydroxyethyl)benzo[b]thiophene-2-

carboxamide (106) 

 

Following the general method outlined for compound 105, acid 100 (0.35 g, 1.00 mmol) was 

reacted with ethanolamine (0.06 g, 1.00 mmol) in THF (2 ml) for 16 hours. Work-up as 

previously described and purification by chromatography on silica gel (elution with petrol 

ether / ethyl acetate = 2:1) afforded compound 106 (0.21 g, 55%) as a light yellow solid. m.p. 

83-85 °C. 

NMR δH (400 MHz, CDCl3), 8.06 (1H, s, H-2‖), 7.94 (1H, d, J = 2.8 Hz, H-3), 7.90 (1H, d, J 

= 6.4, 2.4 Hz, H-7‖),  7.40-7.33 (2H, m, H-5‖, H-6‖), 7.28-7.23 (2H, H-4‖), 6.97 (1H, t, J = 

5.6 Hz, NH), 3.91 (2H, t, J = 4.8 Hz, H-4’), 3.69 (2H, dt, J = 4.4, 5.6 Hz, H-3’), 2.63 (1H, br, 

OH). 

NMR δF (376 MHz, CDCl3), 38.8 (1F, d, J = 17.7 Hz), 19.3 (1F, dd, J = 20, 18 Hz), 16.7 (1F, 

dd, J = 20, 2 Hz).  

NMR δC (100 MHz, CDCl3), 161.1 (C=O), 147.7 (dt, J = 251, 3 Hz, C-7), 144.1 (C-2), 143.0, 

142.8 (C-2‖), 142.7 (ddd, J = 230, 16, 3 Hz, C-4/C-5), 142.3 (ddd, J= 243, 14, 5 Hz, C-4/C-5), 

133.8, 130.0 (dd, J = 16, 10 Hz, C-3a/C-7a), 124.7 (dd, J =19, 3 Hz, C-3a/C-4a), 124.5 (C-

5‖/C-6‖), 123.5 (C-5‖/C-6‖), 120.7 (C-7‖), 119.3 (d, J = 5 Hz, C-3), 112.2 (t, J = 16 Hz, C-6), 

110.4 (C-4‖), 61.5 (C-4’), 42.7 (C-3’). 

IR, νmax /cm
-1

 3278 (b), 3086 (b), 1635 (C=O), 1550 and 1504 (benzene ring). 

MS, m/z found 392.0676, C18H13F3N3O2S, (M+H
+
) requires 392.0675. 
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(6-(1H-Benzo[d]imidazol-1-yl)-4,5,7-trifluorobenzo[b]thiophen-2-yl)(morpholino) 

methanone (107) 

 

Following the general method outlined for compound 105, acid 100 (0.35 g, 1.00 mmol) was 

reacted with morpholine (0.09 g, 1.00 mmol) in THF (2 ml). Work-up as previously 

described and purification by chromatography on silica gel (elution with petrol ether / ethyl 

acetate = 2:1) afforded compound 107 (0.23 g, 56%) as a white solid. m.p. 201-203 °C. 

NMR δH (400 MHz, CDCl3), 8.08 (1H, s, H-2‖), 7.90 (1H, dd, J = 7.2, 2.0 Hz, H-3), 7.67 (1H, 

d, J = 3.2 Hz, H-7‖),  7.40-7.33 (2H, m, H-5‖, H-6‖), 7.26-7.23 (1H, H-4‖), 3.79 (8H, s, H-2’, 

H-3’, H-5’, H-6’). 

NMR δF (376 MHz, CDCl3), 38.7 (1F, dd, J = 18, 2 Hz), 18.9 (1F, dd, J = 20, 18 Hz), 16.8 

(1F, t, J = 20, 2 Hz).  

NMR δC (100 MHz, CDCl3), 161.7 (C=O), 147.7 (dt, J = 201, 3 Hz, C-7), 143.2, 142.8 (dd, J 

= 201, 2 Hz, C-4/C-5), 142.8, 142.3 (dd, J = 203, 3 Hz, C-4/C-5), 141.5, 133, 129.5 (dd, J = 

16, 4 Hz, C-3a/C-7a), 124.4, 124.0 (dd, J = 15, 3 Hz, C-3a/C-7a), 123.4, 120.9, 120.0 (dd, J = 

4 Hz, C-3), 112.0 (t, J = 13 Hz, C-6), 110.3, 66.8 (C-2’, C-3’, C-5’, C-6’). 

IR, νmax /cm
-1

 2846 (C-H), 1620 (C=O), 1509 and 1481 (benzene ring), 1257 (C-O). 

MS, m/z found 418.0831, C20H15F3N3O2S, (M+H
+
) requires 418.0832. 

 

 

 

 

 

 

 

 



138 

 

1-(2,3,5,6-Tetrafluorophenyl)-1H-benzo[d]imidazole (110) 

 

A solution of compound 68 (0.59 g, 2.00 mmol) in THF (4 ml) was added to NaH (0.20 g, 

4.00 mmol). Methyl glycolate (0.18 g, 2.00 mmol) was then added into the reaction dropwise 

and the solution was stirred at room temperature for 16 hours. The reaction mixture was 

poured into deionised water (10 ml) and was extracted with ethyl acetate (15 ml x 3). The 

extracts were combined and washed with brine (approx. 10 ml), and then dried over sodium 

sulfate. The solution was concentrated under reduced pressure and the residue was subjected 

to a silica column chromatography (elution with light petroleum/ ethyl acetate = 2:1). The 

combined elution solutions were evaporated to give the compound 110 (0.19 g, 35%) as a 

white solid. m.p. 77-79 °C 

NMR δH (400 MHz, CDCl3), 8.03 (1H, s, H-2’), 7.91-9.88 (1H, m, H-7’), 7.41-7.32 (2H, m, 

H-5’, H-6’), 7.30-7.23 (2H, m, H-4’, H-1). 

NMR δF (376 MHz, CDCl3), 25.7-25.6 (2F, m, F-3, F-5), 16.5-16.4 (2F, m, F-2, F-6). 

NMR δC (100 MHz, CDCl3), 146.5 (dtd, J = 248, 12.4, 3.8 Hz, C-2, C-6), 143.1, 142.4 (C-2’), 

142.3 (dd, J = 253, 13.3 Hz, C-3, C-5), 133.4, 124.6 (C-6’), 123.7 (C-5’), 120.9 (C-7’), 116.3 

(t, J = 13.4 Hz, C-4), 110.5 (C-4’), 106.5 (t, J = 22 Hz, C-1) 

IR, νmax /cm
-1

 3039 (Ar-H), 1612 and 1504 (benzene). 

MS, m/z found 267.0534, C13H7F4N2, (M+H
+
) requires 267.0540. 
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1-(2,3,5,6-Tetrafluorophenyl)-1H-imidazole (111) 

 

Following the general method outlined for compound 110, aldehyde 67 (0.49 g, 2.00 mmol) 

was reacted with methyl glycolate (0.18 g, 2.00 mmol) in THF (4 ml). Work-up as previously 

described and purification by chromatography on silica gel (elution with petrol ether / ethyl 

acetate = 2.5:1) afforded compound 111 (0.25 g, 58%) as a light yellow solid. m.p. 93-95 °C. 

NMR δH (400 MHz, CDCl3), 7.76 (1H, s, H-2’), 7.25-7.11 (3H, m, H-1, H-4’, H-5’) 

NMR δF (376 MHz, CDCl3), 25.7-25.6 (2F, m, F-3, F-5), 16.5-16.4 (2F, m, F-2, F-6). 

NMR δC (100 MHz, CDCl3), 146.3 (dtd, J = 244, 12.4, 3.8 Hz, C-2, C-6), 141.6 (dd, J = 250, 

19.1 Hz, C-3, C-5), 137.7 (C-2’), 130.2 (C-5’), 120.1 (C-4’), 117.9 (t, J = 13.3 Hz, C-4), 

105.4 (t, J = 21.9 Hz, C-1) 

IR, νmax /cm
-1

 3009 (Ar-H), 1651 and 1504 (benzene). 

MS, m/z found 217.0379, C9H5F4N2, (M+H
+
) requires 217.0383. 
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2-Acetamidophenol (146) 

 

2-Aminophenol (0.16 g, 1.50 mmol) was added to a solution of acetic anhydride (0.15 g, 1.50 

mmol) in methanol (2 ml). The reaction mixture was stirred at room temperature for 5 hours. 

The mixture was poured into deionised water (10 ml) and extracted with ethyl acetate (15 ml 

x 3). The combined extracts were dried over sodium sulfate. The solution was concentrated 

under reduced pressure and the products were purified by recrystallisation (hexane and 

dichloromethane) and known compound 146 (0.21 g, 91%) was obtained as a white solid. 

m.p. 206-208 °C. (Literature m.p. 208-210 °C)
[139]

 

NMR δH (400 MHz, DMSO-d6), 9.70 (1H, s), 9.27 (1H, s), 7.63 (1H, dd, J = 8.0, 1.2 Hz, H-

3), 6.88 (1H, td, J = 7.6, 1.2 Hz, H-5), 6.80 (1H, dd, J = 7.6, 1.2 Hz, H-6), 6.71 (1H, td, J = 

8.0, 1.6 Hz, H-4), 2.05 (3H, s, CH3). 

NMR δc (100 MHz, DMSO-d6), 169.5 (C=O), 148.4, 126.9, 125.1 (C-5), 122.9 (C-3), 119.5 

(C-4), 116.4 (C-6), 24.1 (CH3). 

IR, νmax /cm
-1

 3402 (NH), 3032 (OH), 1651 (C=O), 1589 and 1527 (benzene). 

MS, m/z found 152.0709, C8H10NO2, (M+H
+
) requires 152.0706.  

 

 

 

 

 

 

 

 

 

 



141 

 

N-(2-Hydroxy-5-methylphenyl)acetamide (147) 

 

Following the general method outlined for compound 146, 2-amino-4-methylphenol (0.18 g, 

1.50 mmol) and acetic anhydride (0.15 g, 1.50 mmol) was reacted in methanol (4 ml) at room 

temperature for 5 hours. Work-up as previously described and purification by 

recrystallisation (hexane and dichloromethane) afforded known compound 147 (0.23 g, 93%) 

as a white solid. m.p. 158-160 °C. (Literature m.p. 156-157 °C)
[140]

 

NMR δH (400 MHz, DMSO-d6), 9.44 (1H, s), 9.23 (1H, s), 7.44 (1H, s, H-6), 6.69 (2H, s, H-

4, H-3), 2.13 (3H, s, CH3), 2.04 (3H, s, Ar-CH3). 

NMR δc (100 MHz, DMSO-d6), 169.5 (C=O), 146.1, 127.9, 126.6, 125.5 (C-3/C-4), 123.3 

(C-6), 116.3 (C-3/C-4), 24.1 (Ar-CH3), 20.9 (CH3). 

Data were in agreement with those reported in the literature.
[140] 

 

IR, νmax /cm
-1

 3263 (NH), 3094 (OH), 1628 (C=O), 1589 and 1550 (benzene). 

MS, m/z found 166.0865, C9H12NO2, (M+H
+
) requires 166.0863.  

 

 

 

 

 

 

 

 

 

 

 

 



142 

 

N-(2-Hydroxy-4-methylphenyl)acetamide (148) 

 

Following the general method outlined for compound 146, 2-amino-5-methylphenol (0.18 g, 

1.50 mmol) and acetic anhydride (0.15 g, 1.50 mmol) was reacted in methanol (4 ml) at room 

temperature for 5 hours. Work-up as previously described and purification by 

recrystallisation (hexane and dichloromethane) afforded known compound 148 (0.20 g, 82%) 

as a white solid. m.p. 168-170 °C. (Literature m.p. 169-170 °C)
[141]

 

NMR δH (400 MHz, DMSO-d6), 9.59 (1H, s), 9.26 (1H, s), 7.43 (1H, d, J = 8 Hz, H-6), 6.62 

(1H, s, H-3), 6.52 (1H, d, J = 8 Hz, H-5), 2.14 (3H, s, CH3), 2.02 (3H, s, Ar-CH3). 

NMR δc (100 MHz, DMSO-d6), 169.4 (C=O), 148.4, 134.5, 124.3, 122.9 (C-6), 120.0 (C-5), 

117.1 (C-3), 24.0 (Ar-CH3), 21.1 (CH3). 

Data were in agreement with those reported in the literature.
[141]

  

IR, νmax /cm
-1

 3263 (NH), 3070 (OH), 1635 (C=O), 1589 and 1543 (benzene). 

MS, m/z found 166.0865, C10H5F4N2O, (M+H
+
) requires 166.0863. 

 

 

 

 

 

 

 

 

 

 

 

 



143 

 

N-(2-Hydroxy-5-chlorophenyl)acetamide (149) 

 

Following the general method outlined for compound 146, 2-amino-4-chlorophenol (0.22 g, 

1.50 mmol) and acetic anhydride (0.15 g, 1.50 mmol) was reacted in methanol (4 ml) at room 

temperature for 5 hours. Work-up as previously described and purification by 

recrystallisation (hexane and dichloromethane) afforded known compound 149 (0.24 g, 87%) 

as a grey solid. m.p. 182-184 °C. (Literature m.p. 183-184 °C)
[142]

 

NMR δH (400 MHz, DMSO-d6), 10.09 (1H, s), 9.24 (1H, s), 7.91 (1H, d, J = 2.4 Hz, H-6), 

6.89 (1H, dd, J = 8.4, 2.4 Hz, H-4), 6.80 (1H, dd, J = 8.8 Hz, H-3), 2.06 (3H, s, CH3). 

NMR δc (100 MHz, DMSO-d6), 169.6 (C=O), 146.7, 128.3, 123.9 (C-4), 122.6, 121.5 (C-6), 

116.8 (C-3), 24.3 (CH3). 

Data were in agreement with those reported in the literature.
[142]

  

IR, νmax /cm
-1

 3387 (NH), 3032 (OH), 1659 (C=O), 1589 and 1535 (benzene). 

MS, m/z found 186.0320, C8H9
35

ClNO2, (M+H
+
) requires 186.0316.  

 

 

 

 

 

 

 

 

 

 

 



144 

 

N-(2-Hydroxy-4-chlorophenyl)acetamide (150) 

 

Following the general method outlined for compound 146, 2-amino-5-chlorophenol (0.22 g, 

1.50 mmol) and acetic anhydride (0.15 g, 1.50 mmol) was dissolved in methanol (4 ml) at 

room temperature for 5 hours. Work-up as previously described and purification by 

recrystallisation (hexane and dichloromethane) afforded known compound 150 (0.22 g, 80%) 

as a black solid. m.p. 190-192 °C. (Literature m.p. 186 °C)
[143]

 

NMR δH (400 MHz, DMSO-d6), 10.27 (1H, s), 9.24 (1H, s), 7.73 (1H, d, J = 8.8 Hz, H-6), 

6.82 (1H, d, J = 1.6 Hz, H-3), 6.75 (1H, dd, J = 8.4, 2.0 Hz, H-5), 2.04 (3H, s, CH3). 

NMR δc (100 MHz, DMSO-d6), 169.4 (C=O), 149.3, 128.1, 126.2, 123.8 (C-6), 119.1 (C-5), 

115.7 (C-3), 24.1 (CH3). 

Data were in agreement with those reported in the literature.
[143] 

 

IR, νmax /cm
-1

 3232 (NH), 3047 (OH), 1623 (C=O), 1581 and 1527 (benzene). 

MS, m/z found 186.0320, C8H9
35

ClNO2, (M+H
+
) requires 186.0316.  

  

 

 

 

 

 

 

 

 

 

 

 



145 

 

N-(2-Hydroxy-5-nitrophenyl)acetamide (151) 

 

Following the general method outlined for compound 146, 2-amino-4-nitrophenol (0.23 g, 

1.50 mmol) and acetic anhydride (0.15 g, 1.50 mmol) was dissolved in methanol (4 ml) at 

room temperature for 5 hours. Work-up as previously described and purification by 

recrystallisation (hexane and dichloromethane) afforded known compound 151 (0.29 g, 98%) 

as a yellow solid. m.p. 274-276°C. 

NMR δH (400 MHz, DMSO-d6), 11.6 (1H, s), 9.47 (1H, s), 8.94 (1H, d, J = 2.4 Hz, H-6), 

7.89 (1H, dd, J = 9.2, 2.8 Hz, H-4), 7.02 (1H, d, J = 9.2 Hz, H-3), 2.15 (3H, s, CH3). 

NMR δc (100 MHz, DMSO-d6), 169.8 (C=O), 154.2, 139.6, 127.4, 120.9 (C-4), 117.0 (C-6), 

115.1 (C-3), 24.3 (CH3). 

IR, νmax /cm
-1

 3379 (NH), 1659 (C=O), 1589 and 1497 (benzene), 1527 and 1335 (NO2). 

MS, m/z found 197.0560, C8H9N2O4, (M+H
+
) requires 197.0557. 

 

 

 

 

 

 

 

 

 

 

 

 



146 

 

N-(2-Hydroxy-4-nitrophenyl)acetamide (152) 

 

Following the general method outlined for compound 146, 2-amino-5-nitrophenol (0.23 g, 

1.50 mmol) and acetic anhydride (0.15 g, 1.50 mmol) was dissolved in methanol (4 ml) at 

room temperature for 5 hours. Work-up as previously described and purification by 

recrystallisation (hexane and dichloromethane) afforded known compound 152 (0.27 g, 90%) 

as a white solid. m.p. 261-263 °C. (Literature m.p. 264 °C)
[144]

 

NMR δH (400 MHz, DMSO-d6), 10.95 (1H, s), 9.48 (1H, s), 8.23 (1H, dd, J = 9.2, 1.2 Hz, H-

6), 7.65 (1H, dd, J = 9.2, 2.0 Hz, H-5), 7.62 (1H, d, J = 1.6 Hz, H-3), 2.12 (3H, s, CH3). 

NMR δc (100 MHz, DMSO-d6), 170.1 (C=O), 147.3, 142.8, 134.1, 120.2 (C-6), 115.7 (C-5), 

109.6 (C-3), 24.6 (CH3). 

Data were in agreement with those reported in the literature.
[144]

 

IR, νmax /cm
-1

 3371 (NH), 1666 (C=O), 1589 and 1419 (benzene), 1512 and 1327 (NO2). 

MS, m/z found 197.0560, C8H9N2O4, (M+H
+
) requires 197.0557. 

 

 

 

 

 

 

 

 

 

 

 

 



147 

 

4-Methyl-2-(methylamino)phenol (140) 

 

Iodomethane (0.24 g, 1.70 mmol) was added to a solution of 2-amino-4-methylphenol (0.18 g, 

1.50 mmol) in DMF (2 ml). Sodium bicarbonate (0.13 g, 1.60 mmol) was added. The reaction 

mixture was stirred at room temperature for 5 hours. The mixture was poured into 10 ml 

deionised water and extracted with ethyl acetate (15 ml x 3). The extracts were combined and 

washed with brine (approx. 10 ml), and then dried over sodium sulfate. The solution was 

concentrated under reduced pressure and the residue was purified by column chromatography 

on silica gel (elution with light petroleum/ ethyl acetate = 5:1). The combined elution 

solutions were evaporated to give compound 140 (0.12 g, 61%) as a pale pink solid. m.p. 

103-105 °C.  

NMR δH (400 MHz, DMSO-d6), 8.82 (1H, s), 6.46 (1H, d, J = 7.6 Hz, H-6), 6.19 (1H, s, H-3), 

6.26 (1H, dd, J = 7.6, 1.2 Hz, H-5), 4.59 (1H, d, J = 4.4 Hz), 2.64 (3H, d, J = 4.8 Hz, HN-

CH3), 2.11 (3H, s, Ar-CH3). 

NMR δc (100 MHz, DMSO-d6), 142.3, 139.0, 128.6, 116.0 (C-5), 113.4 (C-6), 110.5 (C-3), 

30.5 (HN-CH3), 21.5 (Ar-CH3). 

IR, νmax /cm
-1

 3325 (NH), 1597 and 1473 (benzene). 

MS, m/z found 138.0916, C8H12NO, (M+H
+
) requires 138.0913.  

 

 

 

 

 

 

 

 

 



148 

 

5-Methyl-2-(methylamino)phenol (141) 

 

Following the general method outlined for compound 140, 2-amino-5-methylphenol (0.18 g, 

1.50 mmol) and iodomethane (0.24 g, 1.70 mmol) was dissolved in methanol (4 ml) with 

sodium bicarbonate (0.13 g, 1.60 mmol) at room temperature for 5 hours. Work-up as 

previously described and purification by chromatography on silica gel (elution with petrol 

ether / ethyl acetate = 5:1) afforded compound 141 (0.05 g, 26%) as a yellow solid. m.p. 159-

161 °C.  

NMR δH (400 MHz, DMSO-d6), 9.00 (1H, s), 6.42 (1H, s, H-6), 6.40 (1H, s, H-3), 6.26 (1H, 

d, J = 7.2 Hz, H-4), 4.46 (1H, s), 2.62 (3H, s, HN-CH3), 2.06 (3H, s, Ar-CH3). 

NMR δc (100 MHz, DMSO-d6), 144.5, 136.9, 124.5, 120.3 (C-3), 114.7 (C-6), 109.6 (C-4), 

30.7 (HN-CH3), 20.9 (Ar-CH3). 

IR, νmax /cm
-1

 3317 (NH), 1589 and 1527 (benzene). 

MS, m/z found 138.0915, C8H12NO, (M+H
+
) requires 138.0913.   

 

 

 

 

 

 

 

 

 

 

 

 



149 

 

4-Chloro-2-(methylamino)phenol (142) 

 

Following the general method outlined for compound 140, 2-amino-4-chlorophenol (0.22 g, 

1.50 mmol) and iodomethane (0.24 g, 1.70 mmol) was dissolved in methanol (4 ml) with 

sodium bicarbonate (0.13 g, 1.60 mmol) at room temperature for 5 hours. Work-up as 

previously described and purification by chromatography on silica gel (elution with petrol 

ether / ethyl acetate = 5:1) afforded compound 142 (0.14 g, 60%) as a black oil.  

NMR δH (400 MHz, DMSO-d6), 9.44 (1H, s), 6.54 (1H, d, J = 8.0 Hz, H-6), 6.34 (1H, dd, J = 

8.0, 2.4 Hz, H-5), 6.30 (1H, d, J = 2.4 Hz, H-3), 5.08 (1H, s), 2.63 (3H, s, HN-CH3). 

NMR δc (100 MHz, DMSO-d6), 143.4, 140.6, 124.0, 114.6 (C-5), 114.1 (C-6), 108.7 (C-3), 

30.1 (HN-CH3). 

IR, νmax /cm
-1

 3170 (b), 1604 and 1512 (benzene). 

MS, m/z found 158.0369, C7H9
35

ClNO, (M+H
+
) requires 158.0367.  

  

 

 

 

 

 

 

 

 

 

 

 



150 

 

5-Chloro-2-(methylamino)phenol (143) 

 

Following the general method outlined for compound 140, 2-amino-5-chlorophenol (0.22 g, 

1.50 mmol) and iodomethane (0.24 g, 1.70 mmol) was dissolved in methanol (4 ml) with 

sodium bicarbonate (0.13 g, 1.60 mmol) at room temperature for 5 hours. Work-up as 

previously described and purification by chromatography on silica gel (elution with petrol 

ether / ethyl acetate = 5:1) afforded compound 143 (0.08 g, 32%) as a black solid. m.p. 110-

112 °C.  

NMR δH (400 MHz, DMSO-d6), 9.67 (1H, s), 6.63 (1H, dd, J = 8.0, 2.4 Hz, H-4), 6.59 (1H, d, 

J = 2.4, 2.4 Hz, H-6), 6.33 (1H, d, J = 8.0 Hz, H-3), 4.87 (1H, s), 2.63 (3H, s, HN-CH3). 

NMR δc (100 MHz, DMSO-d6), 145.4, 138.4, 119.5 (C-4), 118.7, 113.3 (C-6), 109.9 (C-3), 

30.1 (HN-CH3). 

IR, νmax /cm
-1

 3317 (NH), 1589 and 1473 (benzene). 

MS, m/z found 158.0370, C7H9
35

ClNO, (M+H
+
) requires 158.0367.  

  

 

 

 

 

 

 

 

 

 

 

 



151 

 

2,3,5,6-Tetrafluoro-N-methyl-N-(2-((perfluoropyridin-4-yl)oxy)phenyl)pyridin-4-amine 

(124) 

 

A solution of pentafluoropyridine (0.68 g, 4.00 mmol) in THF (1 ml) was added a solution of 

2-methylaminophenol (0.25 g, 2.00 mmol) in THF (1 ml). Triethylamine (0.70 ml, 5.00 mmol) 

was added into the reaction. The solution was stirred at room temperature for 16 hours. The 

reaction mixture was poured into deionised water (10 ml) and was extracted with ethyl 

acetate (15 ml x 3). The extracts were combined and washed with brine (approx. 10 ml), and 

then dried with sodium sulfate. The solution was concentrated under reduced pressure and the 

residue was purified by column chromatography on silica gel (elution with light petroleum/ 

ethyl acetate = 20:1). The combined elution solutions were evaporated under reduced 

pressure to give compound 124 (0.47 g, 56%) as a white solid. m.p. 74-76 °C.  

NMR δH (400 MHz, CDCl3), 7.35 (1H, dd, J = 8.0, 2.0 Hz, H-3’), 7.28-7.20 (2H, m, H-4’, H-

5’), 6.89 (1H, d, J = 7.6 Hz, H-6’), 3.56 (3H, t, J = 2.0 Hz, CH3). 

NMR δF (376 MHz, CDCl3), 74.0-73.8 (2F, m), 69.4-69.2 (2F, m), 8.9-8.7 (2F, m), 6.8-6.6 

(2F, m). 

NMR δC (100 MHz, CDCl3), 149.8, 144.6 (dt, J = 243, 16 Hz), 144.1 (dt, J = 243, 15 Hz), 

143.6-143.5 (m), 138.6-138.3 (m), 137.3-136.7 (m), 136.5, 134.6-133.9 (m), 127.3, 126.2, 

126.1, 116.7, 42.3 (t, J = 5 Hz, CH3). 

IR, νmax/cm
-1 

1635 and 1466 (benzene ring).  

MS, m/z found 422.0530, C17H8F8N3O, (M+H
+
) requires 422.0545. 

 

 

 

 

 

 



152 

 

1,3,4-Trifluoro-5-methyl-5H-benzo[b]pyrido[3,4-b][1,4]oxazine (125) 

 

A solution of pentafluoropyridine (0.85 g, 5.00 mmol) in MeCN (4 ml) was added to a 

solution of 2-methylaminophenol (0.62 g, 5.00 mmol) in MeCN (4 ml). Triethylamine (2.80 

ml, 20.00 mmol) was then added. The solution was heated at reflux for 16 hours. The reaction 

mixture was poured into deionised water (25 ml) and was extracted with ethyl acetate (25 ml 

x 3). The extracts were combined and washed with brine (approx. 20 ml), and then dried over 

sodium sulfate. The solution was concentrated under reduced pressure and the residue was 

purified by column chromatography on silica gel (elution with light petroleum/ ethyl acetate 

= 20:1). The combined elution solutions were evaporated under reduced pressure to give 

compound 125 (0.77 g, 61%) as a white solid. m.p. 150-152 °C.  

NMR δH (400 MHz, CDCl3), 6.94 (1H, td, J = 8.0, 1.6 Hz, C-7), 6.85 (1H, td, J = 8.0, 1.6 Hz, 

C-8), 6.77 (1H, dd, J = 8.0, 1.6 Hz, C-9), 6.67 (1H, dd, J = 7.6, 1.2 Hz, C-6), 3.37 (3H, d, J = 

4.4 Hz). 

NMR δF (376 MHz, CDCl3), 68.8 (1F, dd, J = 22, 15 Hz), 66.7 (1F, dd, J = 22, 15 Hz), -0.2 

(1F, tq, J = 22, 5 Hz). 

NMR δC (100 MHz, CDCl3), 145.6(dt, J = 235, 17 Hz), 145.3, 142.9 (dd, J = 235, 15 Hz), 

136.5 (dt, J = 6, 2 Hz, C-4a/C-10a), 132.4, 130.6 (dd, J = 247, 6 Hz), 126.39 (dd, J = 28, 5 

Hz, C-4a/C-10a), 124.9 (C-7), 124.1 (C-8), 116.2 (C-9), 113.5 (C-6), 35.6 (d, J = 12.4 Hz, 

CH3). 

IR, νmax/cm
-1 

1643 and 1496 (benzene ring)  

MS, m/z found 253.0581, C12H8F3N2O, (M+H
+
) requires 253.0594. 

 

 

 

 

 



153 

 

1,2,4-Trifluoro-10-methyl-10H-phenoxazine-3-carbaldehyde (162) 

 

Following the general method outlined for compound 125, pentafluorobenzaldehyde (0.29 g, 

1.50 mmol) and 2-methylaminophenol (0.18 g, 1.50 mmol) was dissolved in MeCN (4 ml). 

To this mixture, triethylamine (0.84 ml, 6.00 mmol) was added as base and the reaction was 

heated at reflux overnight. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 20:1) afforded 

compound 162 (0.26 g, 63%) as a yellow solid. m.p. 145-147 °C.  

NMR δH (400 MHz, CDCl3), 10.04 (1H, d, J = 1.2 Hz, CHO), 6.94 (1H, td, J = 8.0, 1.2 Hz, 

H-8), 6.86 (1H, td, J = 8.0, 1.2 Hz, H-7), 6.79 (1H, dd, J = 6.6, 1.2 Hz, H-6), 6.68 (1H, dd, J 

= 8.0, 1.2 Hz, H-9), 3.39 (3H, d, J = 5.6 Hz, CH3). 

NMR δF (376 MHz, CDCl3), 15.3 (1F, dd, J = 9, 4 Hz), 15.2 (1F, dd, J = 19, 4 Hz), 2.4-2.2 

(1F, m). 

NMR δc (100 MHz, CDCl3), 182.2 (t, J = 3 Hz, CHO), 149.0 (ddd, J = 257, 14, 8 Hz), 145.8 

(ddd, J = 255, 7, 2 Hz), 145.2, 135.3 (ddd, J = 241, 16, 3 Hz), 132.9, 132.4-132.2 (m, C-4a/C-

10a), 131.3 (dt, J = 14, 3 Hz, C-4a/C-10a), 124.9 (C-8), 124.1 (C-7), 116.0 (C-6), 113.8 (C-9), 

107.2 (t, J = 10 Hz, C-3), 36.7 (d, J = 12 Hz, CH3) 

IR, νmax /cm
-1

 1681 (CHO), 1643 and 1473(benzene ring). 

MS, m/z found 280.0577, C14H9F3NO2, (M+H
+
) requires 280.0580.  

 

 

 

 

 

 

 

 



154 

 

1,2,4-Trifluoro-10-methyl-10H-phenoxazine (161) 

 

Following the general method outlined for compound 125, pentafluorobenzene (0.25 g, 1.50 

mmol) and 2-methylaminophenol (0.18 g, 1.50 mmol) was dissolved in MeCN (4 ml). To this 

mixture, triethylamine (0.84 ml, 6.00 mmol) was added as base and the reaction was heated at 

reflux overnight. Work-up as previously described and purification by chromatography on 

silica gel (elution with petrol ether / ethyl acetate = 20:1) afforded compound 161 (0.14 g, 

45%) as a white solid. m.p. 118-120 °C. 

NMR δH (400 MHz, CDCl3), 6.95-6.89 (1H, m, H-8), 6.82-6.77 (2H, m, H-7, H-6), 6.64 (1H, 

td, J = 8.4 Hz, H-9), 6.45-6.38 (1H, m, H-3), 3.35 (3H, d, J = 4.8 Hz, CH3). 

NMR δF (376 MHz, CDCl3), 21.9 (1F, t, J = 10 Hz), 20.0 (1F, dd, J = 21, 10 Hz), 2.9-2.8 (1F, 

m). 

NMR δc (100 MHz, CDCl3), 147.0 ( dt, J = 194, 11 Hz), 145.9, 145.2 ( ddd, J = 194, 10, 2 

Hz), 136.5 (ddd, J = 191, 13, 3 Hz), 134.8, 132.0 (dt, J = 12, 3 Hz, C-4a/C-10a), 126.9-126.7 

(m, C-4a/C-10a), 124.5 (C-8), 122.6 (C-7), 115.7 (C-6), 113.8 (C-9), 97.0 (dd, J = 19, 18 Hz, 

C-3), 37.4 (d, J = 9 Hz, CH3) 

IR, νmax /cm
-1

 1651 and 1481 (benzene ring). 

MS, m/z found 252.0585, C10H5F4N2O, (M+H
+
) requires 252.0631.  

 

 

 

 

 

 

 

 



155 

 

1,3,4-Trifluoro-5H-benzo[b]pyrido[3,4-b][1,4]oxazine (153) 

 

Following the general method outlined for compound 125, pentafluoropyridine (0.25 g, 1.50 

mmol) and 2-acetamidophenol (0.23 g, 1.50 mmol) was dissolved in MeCN (4 ml). To this 

mixture, triethylamine (0.84 ml, 6.00 mmol) was added as base and the reaction was heated at 

reflux overnight. Work-up as previously described and purification by chromatography on 

silica gel (elution with petrol ether / ethyl acetate = 20:1) afforded compound 153 (0.22 g, 

60%) as a white solid. m.p. 225-227 °C. 

NMR δH (400 MHz, CDCl3), 6.87-6.76 (3H, m, H-7, H-8, H-9), 6.53 (1H, dd, J = 6.8, 1.6 Hz, 

H-6), 5.88 (1H, s, NH). 

NMR δF (376 MHz, CDCl3), 68.8-68.4 (2F, m, F-1, F-3), -5.7 (1F, t, J = 23 Hz, F-4). 

NMR δc (100 MHz, CDCl3), 143.3 (ddd, J = 182, 12, 10 Hz), 142.6, 142.5 (ddd, J = 189, 11, 

5 Hz), 133.7 (dt, J = 11, 4 Hz, C-4a/C-10a), 129.4 (ddd, J = 198, 26, 5 Hz), 126.6, 124.9 (C-

7), 124.4 (C-8), 123.8 (dd, J = 24, 5 Hz, C-4a/C-10a), 116.8 (C-9), 114.8 (C-6). 

IR, νmax /cm
-1

 3348 (NH), 1651 and 1535 (benzene ring). 

MS, m/z found 239.0426, C11H6F3N2O, (M+H
+
) requires 239.0427.  

 

 

 

 

 

 

 

 

 

 



156 

 

1,3,4-Trifluoro-7-methyl-5H-pyrido[3,4-b][1,4]benzoxazine (154) 

 

Following the general method outlined for compound 125, pentafluoropyridine (0.25 g, 1.50 

mmol) and N-(2-hydroxy-5-methylphenyl)acetamide (0.25 g, 1.50 mmol) was dissolved in 

MeCN (4 ml). To this mixture, triethylamine (0.84 ml, 6.00 mmol) was added as base and the 

reaction was heated at reflux overnight. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 20:1) afforded 

compound 154 (0.12 g, 34%) as a white solid. m.p. 208-210 °C.  

NMR δH (400 MHz, DMSO-d6), 9.62 (1H, NH), 6.59 (1H, d, J = 7.6 Hz, H-6), 6.52(1H, s, H-

9), 6.50 (1H, s, H-8), 2.07 (3H, s, CH3). 

NMR δF (376 MHz, DMSO-d6), 66.0 (1F, dd, J = 23, 14 Hz), 65.5 (1F, dd, J = 21, 14 Hz), -

3.6 (1F, t, J = 23 Hz). 

NMR δc (100 MHz, DMSO-d6), 143.4 (ddd, J = 230, 23, 6 Hz), 142.2 (dd, J = 230, 15 Hz), 

140.3, 135.6-135.3 (m, C-4a/C-10a), 134.7, 129.6 (ddd, J = 245, 32, 4 Hz), 127.7, 124.1 (C-

9), 123.7 (d, J = 5 Hz, C-4a/C-10a), 116.4 (C-8), 116.1 (C-6), 20.8 (CH3). 

IR, νmax /cm
-1

 3410 (NH), 1651 and 1512 (benzene ring). 

MS, m/z found 253.0588, C12H8F3N2O, (M+H
+
) requires 253.0583.  

  

 

 

 

 

 

 

 

 



157 

 

1,3,4-Trifluoro-8-methyl-5H-pyrido[3,4-b][1,4]benzoxazine (155) 

 

Following the general method outlined for compound 125, pentafluoropyridine (0.25 g, 1.50 

mmol) and N-(2-hydroxy-4-methylphenyl)acetamide (0.25 g, 1.50 mmol) was dissolved in 

MeCN (4 ml). To this mixture, triethylamine (0.84 ml, 6.00 mmol) was added as base and the 

reaction was under reflux overnight. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 20:1) afforded 

compound 155 (0.10 g, 30%) as a white solid. m.p. 218-220 °C.  

NMR δH (400 MHz, DMSO-d6), 9.58 (1H, NH), 6.64-6.56 (2H, m, H-6, H-7), 6.54(1H, s, H-

9), 2.06 (3H, s, CH3). 

NMR δF (376 MHz, DMSO-d6), 65.7 (1F, dd, J = 24, 15 Hz), 65.2 (1F, dd, J = 22, 14 Hz), -

4.2 (1F, t, J = 23 Hz). 

NMR δc (100 MHz, DMSO-d6), 143.4 (ddd, J = 183, 13, 10 Hz), 142.2 (dd, J = 185, 12 Hz), 

142.1, 135.5 (dt, J = 11, 4 Hz, C-4a/ C-10a), 133.5, 129.4 (ddd, J = 196, 25, 4 Hz), 125.5 (C-

6), 125.4, 123.6 (dd, J = 23, 4 Hz, C-4a/ C-10a), 116.8 (C-9), 115.6 (C-7), 22.6 (CH3). 

IR, νmax /cm
-1

 3263 (NH), 1651 and 1474 (benzene ring). 

MS, m/z found 253.0588, C12H8 F3N2O, (M+H
+
) requires 253.0583.  
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7-Chloro-1,3,4-trifluoro-5H-pyrido[3,4-b][1,4]benzoxazine (156) 

 

Following the general method outlined for compound 125, pentafluoropyridine (0.25 g, 1.50 

mmol) and N-(2-hydroxy-5-chlorophenyl)acetamide (0.28 g, 1.50 mmol) was dissolved in 

MeCN (4 ml). To this mixture, triethylamine (0.84 ml, 6.00 mmol) was added as base and the 

reaction was under reflux overnight. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 20:1) afforded 

compound 156 (0.23 g, 56%) as a cream solid. m.p. 257-259 °C.  

NMR δH (400 MHz, DMSO-d6), 9.82 (1H, NH), 6.75-6.69 (2H, m, H-9, H-8), 6.66(1H, d, J = 

1.2 Hz, H-6). 

NMR δF (376 MHz, DMSO-d6), 66.5 (1F, dd, J = 23, 14 Hz), 65.7 (1F, dd, J = 23, 14 Hz), -

3.4 (1F, t, J = 23 Hz). 

NMR δc (100 MHz, DMSO-d6), 143.5 (ddd, J = 231, 16, 13 Hz), 142.1 (ddd, J = 231, 14, 2 

Hz), 141.4, 134.7 (dt, J = 13, 6 Hz, C-4a/C-10a), 129.7, 129.6 (ddd, J = 230, 32, 5 Hz), 128.8, 

123.7 (dd, J = 30, 5 Hz, C-4a/C-10a), 123.2 (C-9), 117.7 (C-8), 115.3 (C-6).  

IR, νmax /cm
-1

 3402 (NH), 1651 and 1527 (benzene ring). 

MS, m/z found 273.0041, C11H5
35

ClF3N2O, (M+H
+
) requires 273.0037.  
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8-Chloro-1,3,4-trifluoro-5H-pyrido[3,4-b][1,4]benzoxazine (157) 

 

Following the general method outlined for compound 125, pentafluoropyridine (0.25 g, 1.50 

mmol) and N-(2-hydroxy-4-chlorophenyl)acetamide (0.28 g, 1.50 mmol) was dissolved in 

MeCN (4 ml). To this mixture, triethylamine (0.84 ml, 6.00 mmol) was added as base and the 

reaction was under reflux overnight. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 20:1) afforded 

compound 157 (0.19 g, 45%) as a cream solid. m.p. 194-196 °C.  

NMR δH (400 MHz, DMSO-d6), 9.81 (1H, NH), 6.88-6.83 (2H, m, H-6, H-7), 6.67(1H, d, J = 

8.8 Hz, H-9). 

NMR δF (376 MHz, DMSO-d6), 66.6 (1F, dd, J = 23, 14 Hz), 65.8 (1F, dd, J = 23, 14 Hz), -

3.6 (1F, t, J = 23 Hz). 

NMR δc (100 MHz, DMSO-d6), 143.7 (ddd, J = 231, 16, 13 Hz), 143.2, 142.2 (dd, J = 232, 

16 Hz), 135.2 (dt, J = 13, 6 Hz, C-4a/C-10a), 129.6 (ddd, J = 246, 32, 4 Hz), 127.5, 127.0, 

125.2 (C-6), 123.5 (dd, J = 30, 5 Hz, C-4a/C-10a),116.8 (C-9), 116.5 (C-7).  

IR, νmax /cm
-1

 3255 (NH), 1651 and 1527 (benzene ring). 

MS, m/z found 273.0041, C11H5
35

ClF3N2O, (M+H
+
) requires 273.0037.  
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1,3,4-Trifluoro-7-nitro-5H-pyrido[3,4-b][1,4]benzoxazine (158) 

 

Following the general method outlined for compound 125, pentafluoropyridine (0.25 g, 1.50 

mmol) and N-(2-hydroxy-5-nitrophenyl)acetamide (0.29 g, 1.50 mmol) was dissolved in 

MeCN (4 ml). To this mixture, triethylamine (0.84 ml, 6.00 mmol) was added as base and the 

reaction was under reflux overnight. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 20:1) afforded 

compound 158 (0.22 g, 51%) as an orange solid. m.p. 267-269 °C.  

NMR δH (400 MHz, DMSO-d6), 10.11 (1H, NH), 7.57 (1H, dd, J = 8.8, 2.8 Hz, H-8), 7.41 

(1H, d, J = 2.4 Hz, H-6), 6.89 (1H, d, J = 8.8 Hz, H-9). 

NMR δF (376 MHz, DMSO-d6), 67.6 (1F, dd, J = 23, 14 Hz), 66.3 (1F, dd, J = 23, 14 Hz), -

3.2 (1F, t, J = 23 Hz). 

NMR δc (100 MHz, DMSO-d6), 147.9, 144.5, 144.0 (ddd, J = 232, 16, 13 Hz), 142.2 (dd, J = 

231, 17 Hz), 134.5 (dt, J = 13, 6 Hz, C-4a/C-10a), 129.7 (ddd, J = 247, 32, 5 Hz), 129.5, 

123.4 ( dd, J = 30, 5 Hz, C-4a/C-10a), 120.1 (C-8), 116.8 (C-9), 110.2(C-6). 

IR, νmax /cm
-1

 3309 (NH), 1659 and 1489 (benzene ring), 1612 and 1396 (NO2). 

MS, m/z found 284.0283, C11H5F3N3O3, (M+H
+
) requires 284.0278.  
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1,3,4-Trifluoro-8-nitro-5H-pyrido[3,4-b][1,4]benzoxazine (159) 

 

Following the general method outlined for compound 125, pentafluoropyridine (0.25 g, 1.50 

mmol) and N-(2-hydroxy-4-nitrophenyl)acetamide (0.29 g, 1.50 mmol) was dissolved in 

MeCN (4 ml). To this mixture, triethylamine (0.84 ml, 6.00 mmol) was added as base and the 

reaction was under reflux overnight. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 20:1) afforded 

compound 159 (0.20 g, 48%) as a yellow solid. m.p. 211-213 °C. 

NMR δH (400 MHz, DMSO-d6), 10.48 (1H, NH), 7.76 (1H, dd, J = 8.8, 2.0 Hz, H-7), 7.47 

(1H, d, J = 2.0 Hz, H-9), 6.81 (1H, d, J = 9.2 Hz, H-6). 

NMR δF (376 MHz, DMSO-d6), 67.4 (1F, dd, J = 23, 14 Hz), 66.3 (1F, dd, J = 23, 14 Hz), -

2.1 (1F, t, J = 23 Hz). 

NMR δc (100 MHz, DMSO-d6), 143.6 (ddd, J = 232, 16, 14 Hz), 142.7, 142.5, 142.0 (dd, J = 

232, 16 Hz), 135.5, 134.0 (dt, J = 13, 6 Hz, C-4a/C-10a), 130.0 (ddd, J = 243, 32, 5 Hz), 

123.8 (dd, J = 30, 5 Hz, C-4a/C-10a), 122.5 (C-7), 115.4 (C-6), 111.6 (C-9). 

IR, νmax /cm
-1

 3279 (NH), 1658 and 1512 (benzene ring), 1589 and 1334 (NO2). 

MS, m/z found 284.0282, C11H5F3N3O3, (M+H
+
) requires 284.0278.  
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1,2,4-Trifluoro-8,10-dimethyl-10H-phenoxazine-3-carbaldehyde (163) 

 

Following the general method outlined for compound 125, pentafluorobenzaldehyde (0.29 g, 

1.50 mmol) and 4-methyl-2-(methylamino)phenol (0.21 g, 1.50 mmol) was dissolved in 

MeCN (4 ml). To this mixture, triethylamine (0.84 ml, 6.00 mmol) was added as base and the 

reaction was under reflux overnight. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 20:1) afforded 

compound 163 (0.31 g, 74%) as a yellow solid. m.p. 141-143 °C.  

NMR δH (400 MHz, CDCl3), 10.09 (1H, d, J = 0.8 Hz, CHO), 6.74-6.68 (2H, m, H-6, H-9), 

6.53 (1H, dd, J = 1.2 Hz, H-7), 3.43 (3H, d, J = 4.0 Hz, N-CH3), 2.28 (3H, s, CH3). 

NMR δF (376 MHz, CDCl3), 15.1 (1F, dd, J = 8, 4 Hz), 14.8 (1F, dd, J = 15, 4 Hz), 2.2-2.1 

(1F, m). 

NMR δc (100 MHz, CDCl3), 177.4 (CHO), 144.1 (ddd, J = 205, 11, 6 Hz), 141.0 (ddd, J = 

203, 6, 2 Hz), 140.0 (q, J = 3 Hz), 130.7 (ddd, J = 193, 13, 2 Hz), 129.9, 127.9, 127.7-127.5 

(m, C-4a/C-10a), 126.7 (dt, J = 12, 2 Hz, C-4a/C-10a), 119.4 (C-6), 110.9 (C-9), 109.8 (C-7), 

102.5 (t, J = 8 Hz, C-3), 32.0 (d, J = 9 Hz, N-CH3), 16.3 (CH3). 

IR, νmax /cm
-1

 1689 (CHO), 1643 and 1473 (benzene ring). 

MS, m/z found 294.0738, C15H11F3NO2, (M+H
+
) requires 294.0736.  
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1,2,4-Trifluoro-7,10-dimethyl-10H-phenoxazine-3-carbaldehyde (164) 

 

Following the general method outlined for compound 125, pentafluorobenzaldehyde (0.29 g, 

1.50 mmol) and 5-methyl-2-(methylamino)phenol (0.21 g, 1.50 mmol) was dissolved in 

MeCN (4 ml). To this mixture, triethylamine (0.84 ml, 6.00 mmol) was added as base and the 

reaction was under reflux overnight. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 20:1) afforded 

compound 164 (0.21 g, 50%) as a yellow solid. m.p. 158-160 °C.   

NMR δH (400 MHz, CDCl3), 10.08 (1H, d, J = 0.4 Hz, CHO), 6.77 (1H, dd, J = 6.4, 0.8 Hz, 

H-8), 6.68 (1H, d, J = 1.2 Hz, H-6), 6.61 (1H, d, J = 6.4 Hz, H-9), 3.42 (3H, d, J = 4.0 Hz, N-

CH3), 2.25 (3H, s, CH3). 

NMR δF (376 MHz, CDCl3), 15.1 (1F, dd, J = 8, 4 Hz), 14.9 (1F, dd, J = 15, 4 Hz), 2.0-1.8 

(1F, m). 

NMR δc (100 MHz, CDCl3), 182.1 (CHO), 149.0 (ddd, J = 257, 14, 8 Hz), 145.8 (ddd, J = 

256, 7, 3 Hz), 144.9, 135.3 (ddd, J = 241, 16, 3 Hz), 134.2, 132.6-132.4 (m, C-4a/C-10a), 

131.2 (dt, J = 14, 4 Hz, C-4a/C-10a), 130.3, 125.0 (C-8), 116.7 (C-6), 113.5 (C-9), 107.0 (t, J 

= 10 Hz, C-3), 36.7 (d, J = 12 Hz, N-CH3), 20.5 (Ar-CH3). 

IR, νmax /cm
-1

 1689 (CHO), 1643 and 1473(benzene ring). 

MS, m/z found 294.0738, C15H11F3NO2, (M+H
+
) requires 294.0736.  
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8-Chloro-1,2,4-trifluoro-10-methyl-10H-phenoxazine-3-carbaldehyde (165) 

 

Following the general method outlined for compound 125, pentafluorobenzaldehyde (0.29 g, 

1.50 mmol) and 4-chloro-2-(methylamino)phenol (0.24 g, 1.50 mmol) was dissolved in 

MeCN (4 ml). To this mixture, triethylamine (0.84 ml, 6.00 mmol) was added as base and the 

reaction was under reflux overnight. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 20:1) afforded 

compound 165 (0.27 g, 59%) as a yellow solid. m.p. 187-189 °C.  

NMR δH (400 MHz, CDCl3), 10.12 (1H, d, J = 0.8 Hz, CHO), 6.87 (1H, dd, J = 6.8, 1.6 Hz, 

H-7), 6.78 (1H, d, J = 6.8 Hz, H-6), 6.70 (1H, d, J = 2.0 Hz, H-9), 3.43 (3H, d, J = 4.0 Hz, N-

CH3). 

NMR δF (376 MHz, CDCl3), 15.8 (1F, dd, J = 8, 4 Hz), 15.7 (1F, dd, J = 15, 4 Hz), 3.0-2.9 

(1F, m). 

NMR δc (100 MHz, CDCl3), 182.1 (q, J = 3 Hz, CHO), 149.0 (ddd, J = 258, 14, 7 Hz), 145.8 

(ddd, J = 256, 7, 2 Hz), 143.8, 135.6 (ddd, J = 243, 16, 3 Hz), 134.2, 131.4 (m, C-4a/C-10a), 

131.2 (dt, J = 3 Hz, C-4a/C-10a), 130.0, 123.5, 116.8, 114.1, 107.9 (t, J = 10 Hz, C-3), 36.9 

(d, J = 12 Hz, CH3) 

IR, νmax /cm
-1

 1681 (CHO), 1643 and 1465 (benzene ring). 

MS, m/z found 314.0191, C14H8
35

ClF3N O2, (M+H
+
) requires 314.0190.  
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7-Chloro-1,2,4-trifluoro-10-methyl-10H-phenoxazine-3-carbaldehyde (166) 

 

Following the general method outlined for compound 125, pentafluorobenzaldehyde (0.29 g, 

1.50 mmol) and 5-chloro-2-(methylamino)phenol (0.24 g, 1.50 mmol) was dissolved in 

MeCN (4 ml). To this mixture, triethylamine (0.84 ml, 6.00 mmol) was added as base and the 

reaction was under reflux overnight. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 20:1) afforded 

compound 166 (0.27 g, 59%) as a yellow solid. m.p. 160-162 °C.   

NMR δH (400 MHz, CDCl3), 10.11 (1H, d, J = 0.8 Hz, CHO), 6.96 (1H, dd, J = 6.8, 1.6 Hz, 

H-8), 6.87 (1H, d, J = 1.6 Hz, H-6), 6.63 (1H, d, J = 6.8 Hz, H-9), 3.43 (3H, d, J = 3.6 Hz, N-

CH3). 

NMR δF (376 MHz, CDCl3), 15.9-15.8 (2F, m, F-4, F-2), 2.8-2.7 (1F, m, F-1). 

NMR δc (100 MHz, CDCl3), 182.1 (dd, J = 7, 4 Hz, CHO), 149.1 (ddd, J = 258, 14, 8 Hz), 

145.9 (dd, J = 254, 5 Hz), 145.6, 135.4 (dd, J = 239, 16 Hz), 131.8, 131.8-131.7 (m, C-4a/C-

10a), 130.9-130.8 (m, C-4a/C-10a), 128.8, 124.6 (C-8), 116.6 (C-6), 114.4 (C-9), 107.6 (t, J = 

10 Hz, C-3), 36.9 (d, J = 12 Hz, CH3). 

IR, νmax /cm
-1

 1689 (CHO), 1635 and 1473 (benzene ring). 

MS, m/z found 314.0195, C14H8
35

ClF3NO2, (M+H
+
) requires 314.0190.  
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1,4-Difluoro-3-(1H-imidazol-1-yl)-5-methyl-5H-pyrido[3,4-b][1,4]benzoxazine (130) 

 

A solution of compound 125 (0.25 g, 1.00 mmol) in DMF (1 ml) was added a solution of 

imidazole (0.07 g, 1.00 mmol) in DMF (1 ml) with sodium hydride (0.08 g, 2.00 mmol). The 

solution was stirred at 120 °C for 48 hours. The reaction mixture was poured into deionised 

water (10 ml) and was extracted with ethyl acetate (15 ml x 3). The extracts were combined 

and washed with brine (approx. 10 ml), and then dried over sodium sulfate. The solution was 

concentrated under reduced pressure and the residue was purified by using column 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 2:1). The combined 

elution solutions were evaporated under reduced pressure to give compound 130 (0.18 g, 

62%) as a white solid. m.p. 156-158 °C.  

NMR δH (400 MHz, CDCl3), 8.18 (1H, s, H-2’), 7.58 (1H, s, H-5’), 7.19 (1H, s, H-4’), 6.99 

(1H, td, J = 7.6, 1.6 Hz, C-7), 6.90 (1H, td, J = 7.6, 1.6 Hz, C-8), 6.83 (1H, dd, J = 8.0, 1.2 

Hz, C-9), 6.73 (1H, dd, J = 8.0, 1.2 Hz, C-6), 3.46 (3H, d, J = 5.2 Hz, CH3). 

NMR δF (376 MHz, CDCl3), 70.6 (1F, d, J = 23 Hz), 12.1-11.9 (1F, m). 

NMR δC (100 MHz, CDCl3), 145.5, 145.4 (d, J = 232 Hz, C-4/C-1), 136.3-136.1 (m, C-2’, C-

3), 135.7 (dd, J = 249, 3 Hz, C-4/C-1), 132.9, 130.2 (dd, J = 16, 14 Hz), 129.6 (d, J = 2 Hz), 

127.7 (d, J = 31 Hz), 125.1 (C-7), 124.2 (C-8), 117.7 (C-5’), 116.2 (C-9), 114.0 (C-6), 36.4 (d, 

J = 12 Hz). 

IR, νmax /cm
-1

 1589 and 1481 (benzene ring). 

MS, m/z found 301.0881, C10H5F4N2O, (M+H
+
) requires 301.0895. 

 

 

 

 

 

 



167 

 

1,4-Difluoro-5-methyl-3-(1H-1,2,4-triazol-1-yl)-5H-pyrido[3,4-b][1,4]benzoxazine (133) 

 

Following the general method outlined for compound 130, compound 125 (0.25 g, 1.00 mmol) 

and 1,2,4-triazole (0.07 g, 1.00 mmol) was dissolved in DMF (2 ml). To this mixture, sodium 

hydride (0.08 g, 2 mmol) was added as base and the reaction was heated at 120 
o
C for 48 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 2:1) afforded compound 133 (0.14 g, 50%) as a 

light yellow solid. m.p. 231-233 °C.  

NMR δH (400 MHz, CDCl3), 8.70 (1H, s, H-2’), 8.12 (1H, s, H-4’), 6.97 (1H, td, J = 8.0, 1.6 

Hz, H-7), 6.87 (1H, td, J = 8.0, 1.2 Hz, H-8), 6.80 (1H, dd, J = 7.6, 1.6 Hz, H-9), 6.70 (1H, 

dd, J = 7.6, 1.2 Hz, H-6), 3.43 (d, J = 5.2 Hz, CH3).  

NMR δF (376 MHz, CDCl3), 70.6 (1F, d, J = 23 Hz), 14.1 (1F, dq, J = 23, 5 Hz). 

NMR δC (100 MHz, CDCl3), 152.9 (C-4’), 145.5, 145.4 (d, J = 235 Hz, C-4/C-1), 143.6 (C-

2’), 136.7 (t, J = 7 Hz), 136.4 (dd, J = 254, 4 Hz, C-4/C-1), 132.8, 129.7 (t, J = 16 Hz), 129.4 

(d, J = 32 Hz), 125.4 (C-7), 124.4 (C-8), 116.4 (C-9), 114.1 (C-6), 36.4 (d, J = 12 Hz, CH3). 

IR, νmax /cm
-1

 1635 and 1481 (benzene ring). 

MS, m/z found 302.0845, C14H10F2N5O, (M+H
+
) requires 302.0848. 
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1,4-Difluoro-5-methyl-3-(2H-1,2,3-triazol-2-yl)-5H-pyrido[3,4-b][1,4]benzoxazine (134) 

 

Following the general method outlined for compound 130, compound 125 (0.25 g, 1.00 mmol) 

and 1,2,3-triazole (0.07 g, 1.00 mmol) was dissolved in DMF (2 ml). To this mixture, sodium 

hydride (0.08 g, 2.00 mmol) was added as base and the reaction was heated at 120 
o
C for 48 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 2:1) afforded compound 134 (0.08 g, 25%) as a 

white solid. m.p. 224-226 °C. 

NMR δH (400 MHz, CDCl3), 7.89 (2H, s, H-3’, H-4’), 6.96 (1H, td, J = 8.0, 1.6 Hz, H-7), 

6.87 (1H, td, J = 8.0, 1.2 Hz, H-8), 6.80 (1H, dd, J = 7.6, 1.6 Hz, H-9), 6.69 (1H, dd, J = 8.0, 

1.2 Hz, H-6), 3.43 (3H, d, J = 5.2 Hz, CH3). 

NMR δF (376 MHz, CDCl3), 70.9 (1F, d, J = 23 Hz), 14.5 (1F, dq, J = 23, 5 Hz). 

NMR δC (100 MHz, CDCl3), 145.6, 145.5 (d, J = 235 Hz, C-4/C-1), 137.5 (d, J = 254, 4 Hz, 

C-4/C-1), 136.5-136.3 (C-3’, C-4’), 133.0, 131.9 (dd, J = 15, 12 Hz), 129.8 (d, J = 30 Hz), 

125.3 (C-7), 124.3 (C-8), 116.4 (C-9), 114.0 (C-6), 36.4 (d, J = 12 Hz, CH3). 

IR, νmax /cm
-1

 1635 and 1481 (benzene ring). 

MS, m/z found 302.0845, C14H10F2N5O, (M+H
+
) requires 302.0848. 
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1,4-Difluoro-5-methyl-3-(1H-1,2,3-triazol-1-yl)-5H-pyrido[3,4-b][1,4]benzoxazine (135) 

 

Another component obtained during the synthesis of compound 134. The yield of compound 

135 was 24% (0.08 g) as a yellow solid. m.p. 199-201 °C. 

NMR δH (400 MHz, CDCl3), 8.14 (1H, s, H-5’), 7.81 (1H, s, H-4’), 6.97 (t, J = 7.6 Hz, H-7), 

6.88 (1H, t, J = 8.0 Hz, H-8), 6.80 (1H, d, J = 8.4 Hz, H-9), 6.71 (1H, d, J = 8.4 Hz, H-6), 

3.44 (1H, d, J = 4.8 Hz, CH3). 

NMR δF (376 MHz, CDCl3), 70.3 (1F, d, J = 22 Hz), 15.4 (1F, dq, J = 23, 5 Hz). 

NMR δC (100 MHz, CDCl3), 145.5, 145.4 (d, J = 235 Hz, C-4/C-1), 137.3 (dd, J = 257, 3 Hz, 

C-4/C-1), 136.8 (t, J = 8 Hz), 133.4 (C-4’), 132.9, 129.8 (d, J = 12 Hz), 129.5 (d, J = 12 Hz), 

125.4 (C-7), 124.4 (C-8), 123.6 (C-5’), 116.4 (C-9), 114.1 (C-6), 36.4 (d, J = 12 Hz, CH3). 

IR, νmax /cm
-1

 1635 and 1481 (benzene ring). 

MS, m/z found 302.0845, C14H10F2N5O, (M+H
+
) requires 302.0848. 
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1,4-Difluoro-5-methyl-3-morpholino-5H-pyrido[3,4-b][1,4]benzoxazine (129) 

 

Following the general method outlined for compound 130, compound 125 (0.25 g, 1.00 mmol) 

and morpholine (0.09 g, 1.00 mmol) was dissolved in DMF (2 ml). To this mixture, sodium 

hydride (0.08 g, 2 mmol) was added as base and the reaction was heated at 120 
o
C for 48 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 2:1) afforded compound 129 (0.18 g, 59%) as a 

white solid. m.p. 131-133 °C. 

NMR δH (400 MHz, CDCl3), 6.95 (1H, td, J = 7.6, 2.0 Hz, H-7), 6.86 (1H, td, J = 7.6, 1.6 Hz, 

H-8), 6.81 (1H, dd, J = 7.6, 1.6 Hz, H-9), 6.70 (1H, dd, J = 8.0, 1.2 Hz, H-6), 3.82 (4H, t, J = 

4.4 Hz, H-3, H-5), 3.39 (3H, d, J = 5.2 Hz, CH3), 3.30 (4H, t, J = 4.4 Hz, H-2, H-6). 

NMR δF (376 MHz, CDCl3), 67.3 (1F, d, J = 24 Hz), 11.5 (1F, dq, J = 24, 5 Hz). 

NMR δC (100 MHz, CDCl3), 145.9, 144.7 (dd, J = 227, 2 Hz, C-1/ C-4), 143.4 (dd, J = 16, 11 

Hz), 135.3 (dd, J = 245, 5 Hz, C-1/C-4), 134.9-134.6 (m), 133.6, 124.3 (C-7), 123.2 (C-8), 

122.8, 116.0 (C-9), 113.7 (C-6), 66.7 (C-3, C-5), 48.5 (d, J= 5 Hz, C-2, C-6), 36.6 (d, J = 12 

Hz, CH3). 

IR, νmax/cm
-1

 2824 (C-H), 1635 and 1581 (benzene ring). 

MS, m/z found 320.1190, C16H16F2N3O2, (M+H
+
) requires 320.1205. 
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1,4-Difluoro-5-methyl-3-(4-methylpiperazin-1-yl)-5H-pyrido[3,4-b][1,4]benzoxazine 

(131) 

 

Following the general method outlined for compound 130, compound 125 (0.25 g, 1.00 mmol) 

and 1-methylpiperazine (0.10 g, 1.00 mmol) was dissolved in DMF (2 ml). To this mixture, 

sodium hydride (0.08 g, 2.00 mmol) was added as base and the reaction was heated at 120 
o
C 

for 48 hours. Work-up as previously described and purification by chromatography on silica 

gel (elution with petrol ether / ethyl acetate = 2:1) afforded compound 131 (0.19 g, 58%) as a 

white solid. m.p. 131-133 °C. 

NMR δH (400 MHz, CDCl3), 6.94 (1H, td, J = 8.0, 2.0 Hz, H-7), 6.85-6.80 (2H, m, H-8, H-9), 

6.69 (1H, dd, J = 8.0, 1.2 Hz, H-6), 3.39 (4H, d, J = 5.2 Hz, CH3), 3.36 (3H, t, J = 4.4 Hz, H-

2’, H-6’), 2.55 (4H, t, J = 4.8 Hz, H-3’, H-5’), 2.36 (3H, s, piperazine- CH3). 

NMR δF (376 MHz, CDCl3), 67.3 (1F, d, J = 24 Hz), 12.0 (1F, dq, J = 24, 5 Hz). 

NMR δC (100 MHz, CDCl3), 146.0, 144.7 (d, J = 225 Hz, C-4/C-1), 143.5 (dd, J = 15, 10 Hz), 

135.2 (dd, J = 244, 5 Hz, C-4/C-1), 134.6 (dd, J = 15, 6 Hz), 133.7, 124.2 (C-7), 123.1 (C-8), 

122.6 (d, J = 32 Hz), 115.9 (C-9), 113.7 (C-6), 54.9 (C-3’, C-5’), 47.8 (d, J = 5 Hz, C-2’, C-

6’), 46.1 (piperazine-CH3), 36.6 (d, J = 12 Hz, CH3). 

IR, νmax/cm
-1 

2939 (C-H), 1643 and 1450 (benzene ring).  

MS, m/z found 333.1503, C17H19F2N4O, (M+H
+
) requires 333.1521. 
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3-(1H-Benzo[d]imidazol-1-yl)-1,4-difluoro-5-methyl-5H-pyrido[3,4-b][1,4]benzoxazine 

(132) 

 

Following the general method outlined for compound 130, compound 125 (0.25 g, 1.00 mmol) 

and benzimidazole (0.12 g, 1.00 mmol) was dissolved in DMF (2 ml). To this mixture, 

sodium hydride (0.08 g, 2.00 mmol) was added as base and the reaction was heated at 120 
o
C 

for 48 hours. Work-up as previously described and purification by chromatography on silica 

gel (elution with petrol ether / ethyl acetate = 2:1) afforded compound 132 (0.18 g, 52%) as a 

white solid. m.p. 178-180 °C. 

NMR δH (400 MHz, CDCl3), 8.33 (1H, d, J = 2.4 Hz, H-2’), 7.90-7.81 (2H, m, H-7’, H-4’), 

7.43-7.35 (2H, m, H-6’, H-5’), 7.02 (1H, td, J = 7.6, 1.6 Hz, H-7), 6.93 (1H, td, J = 7.6, 1.6 

Hz, H-8), 6.87 (1H, dd, J = 7.6, 1.6 Hz, H-9), 6.76 (1H, dd, J = 8.0, 1.6 Hz, H-6), 3.49 (3H, d, 

J = 4.8 Hz, CH3). 

NMR δF (376 MHz, CDCl3), 70.9 (1F, d, J = 23 Hz), 14.1-14.0 (1F, m). 

NMR δC (100 MHz, CDCl3), 145.8 (d, J = 234 Hz, C-4/C-1), 145.6, 143.4, 141.7 (d, J = 10 

Hz, C-2’), 137.0 (d, J = 247 Hz, C-4/C-1), 136.3 (t, J = 7 Hz), 132.9, 132.6, 130.5 (t, J = 16 

Hz), 128.4 (d, J = 32 Hz, C-3), 125.2 (C-7), 124.3 (C-6’, C-8), 123.5 (C-5’), 120.5 (C-7’), 

116.4 (C-9), 114.0 (C-6), 112.6 (C-4’), 36.4 (d, J = 12 Hz, CH3). 

IR, νmax/cm
-1 

1636 and 1481 (benzene ring).  

MS, m/z found 351.1035, C19H13F2N4O, (M+H
+
) requires 351.1052. 
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1,4-Difluoro-2-(1H-imidazol-1-yl)-10-methyl-10H-phenoxazine (168) 

 

Following the general method outlined for compound 130, compound 161 (0.25 g, 1.00 mmol) 

and imidazole (0.07 g, 1.00 mmol) was dissolved in DMF (2 ml). To this mixture, sodium 

hydride (0.08 g, 2 mmol) was added as base and the reaction was heated at 120 
o
C for 48 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 2:1) afforded compound 168 (0.14 g, 45%) as a 

white solid. m.p. 118-120 °C. 

NMR δH (400 MHz, CDCl3), 7.69 (1H, s, H-2’), 7.18 (1H, s, H-5’), 7.13 (1H, s, H-4’), 6.98-

6.92 (1H, m, H-8), 6.85-6.80 (2H, m, H-7, H-6), 6.67 (1H,d, J = 8.4 Hz, H-9), 6.59 (1H, dd, J 

= 10.0, 6.4 Hz, H-3), 3.36 (3H, d, J = 5.6 Hz, CH3). 

NMR δF (376 MHz, CDCl3), 22.5 (1F, dd, J = 12, 10 Hz), 17.4-17.2 (1F, m). 

NMR δc (100 MHz, CDCl3), 146.2 (dd, J = 243, 3 Hz, C-1/C-4), 145.8, 140.7 (d, J = 244 H, 

C-1/C-4), 137.23 (C-2’), 136.0 (dd, J = 14, 5 Hz), 135.0, 129.8 (C-5’), 127.1 (dd, J = 10, 4 

Hz), 125.0 (C-8), 122.9 (C-7), 121.4 (t, J = 11 Hz), 119.9 (C-4’), 115.9 (C-6), 114.4 (C-9), 

104.9 (d, J = 23 Hz, C-3), 38.1 (d, J = 10 Hz, CH3).  

IR, νmax /cm
-1

 1635 and 1481 (benzene ring). 

MS, m/z found 300.0946, C16H12F2N3O, (M+H
+
) requires 300.0943. 
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1,4-Difluoro-2-(1H-imidazol-1-yl)-10-methyl-10H-phenoxazine-3-carbaldehyde (175) 

 

A solution of compound 162 (0.28 g, 1.00 mmol) in DMF (1 ml) was added a solution of 

imidazole (0.07 g, 1.00 mmol) in DMF (1 ml) with triethylamine (0.35 ml, 2.50 mmol). The 

solution was heated at 90 °C for 60 hours. The reaction mixture was poured into deionised 

water (10 ml) and was extracted with ethyl acetate (15 ml x 3). The extracts were combined 

and washed with brine (approx. 15 ml), and then dried over sodium sulfate. The solution was 

concentrated under reduced pressure and the residue was purified by column chromatography 

on silica gel (elution with light petroleum/ ethyl acetate = 2:1). The combined elution 

solutions were evaporated under reduced pressure to give compound 175 (0.18 g, 54%) as a 

yellow solid. m.p. 196-198 °C.  

NMR δH (400 MHz, CDCl3), 9.58 (1H, s, CHO), 7.54 (1H, s, H-2’), 7.24 (1H, s, H-5’), 7.01 

(1H, s, H-4’), 6.97 (1H, td, J = 7.6, 1.6 Hz, H-8), 6.89 (1H, td, J = 7.6, 1.6 Hz, H-7), 6.83 (1H, 

dd, J = 7.6, 1.6 Hz, H-6), 6.69 (1H, dd, J = 7.6, 1.6 Hz, H-9), 3.38 (3H, d, J = 5.2 Hz, CH3).   

NMR δF (376 MHz, CDCl3), 19.0 (1F, m), 16.9 (1F, J = 11 Hz). 

NMR δc (100 MHz, CDCl3), 183.3 (CHO), 147.2 (d, J = 258 Hz, C-4/C-1), 145.2, 141.5 (d, J 

= 242 Hz, C-4/C-1), 138.5 (C-2’), 136.3 (dd, J = 14, 5 Hz), 133.3, 131.7 (dd, J = 10, 4 Hz), 

130.0 (C-5’), 125.4 (C-8), 124.3 (C-7), 123.0 (dd, J = 15, 5 Hz), 121.5 (C-4’), 116.2(C-6), 

114.2 (C-9), 113.8 (d, J = 8 Hz, C-3), 37.1 (d, J = 12 Hz, CH3).  

IR, νmax /cm
-1

 1672 (CHO), 1628 and 1481 (benzene ring). 

MS, m/z found 328.0894, C17H12F2N3O2, (M+H
+
) requires 328.0892. 
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1,4-Difluoro-3-(1H-imidazol-1-yl)-5H-pyrido[3,4-b][1,4]benzoxazine (167) 

 

Following the general method outlined for compound 130, compound 153 (0.24 g, 1.00 mmol) 

and imidazole (0.07 g, 1.00 mmol) was dissolved in DMF (2 ml). To this mixture, sodium 

hydride (0.08 g, 2.00 mmol) was added as base and the reaction was heated at 120 
o
C for 48 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 2:1) afforded compound 167 (0.18 g, 62%) as a 

white solid. m.p. 282-284 °C.  

NMR δH (400 MHz, DMSO-d6), 9.59 (1H, s, NH), 8.11 (1H, s, H-2’), 7.57 (1H, s, H-5’), 7.07 

(1H, s, H-4’), 6.84-6.79 (1H, m, H-7), 6.74-6.71 (3H, m). 

NMR δF (376 MHz, DMSO-d6), 68.4 (1F, d, J = 23 Hz), 8.6 (1F, d, J = 23 Hz). 

NMR δc (100 MHz, DMSO-d6), 144.7 (d, J = 182 Hz, C-4/C-1), 142.6, 136.4 (d, J = 6 Hz, C-

2’), 135.1 (dd, J = 199, 3 Hz, C-4/C-1), 134.6 (dd, J = 13, 6 Hz), 129.8 (C-4’), 128.9 (dd, J = 

13, 8 Hz), 128.5, 125.6(C-7), 124.6 (dd, J = 25, 2 Hz), 123.9 (C-8), 118.4 (d, J = 3 Hz, C-5’), 

116.3 (C-6/C-9), 116.0 (C-6/C-9). 

IR, νmax /cm
-1

 3171 (NH), 1589 and 1473 (benzene ring). 

MS, m/z found 287.0736, C14H9F2N4O, (M+H
+
) requires 287.0739. 
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1,4-Difluoro-3-(1H-imidazol-1-yl)-7-methyl-5H-pyrido[3,4-b][1,4]benzoxazine (169) 

 

Following the general method outlined for compound 130, compound 154 (0.25 g, 1.00 mmol) 

and imidazole (0.07 g, 1.00 mmol) was dissolved in DMF (2 ml). To this mixture, sodium 

hydride (0.08 g, 2.00 mmol) was added as base and the reaction was heated at 120 
o
C for 48 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 2:1) afforded compound 169 (0.17 g, 55%) as a 

white solid. m.p. 296-298 °C.  

NMR δH (400 MHz, DMSO-d6), 9.58 (1H, s, NH), 8.16 (1H, s, H-2’), 7.62 (1H, d, J = 1.2 Hz, 

H-5’), 7.126 (1H, t, J = 1.2 Hz, H-4’), 6.66 (1H, d, J = 8.0 Hz, H-8), 6.58 (1H, s, H-6), 6.56 

(1H, s, H-9), 2.13 (3H, s, CH3). 

NMR δF (376 MHz, DMSO-d6), 68.4 (1F, d, J = 23 Hz), 8.7 (1F, d, J = 23 Hz). 

NMR δc (100 MHz, DMSO-d6), 144.8 (d, J = 227 Hz, C-4/C-1), 140.4, 136.5 (d, J = 7 Hz, C-

2’), 135.2 (dd, J = 248, 4 Hz, C-4/C-1), 134.8, 134.6 (dd, J = 16, 7 Hz), 129.8 (C-4’), 128.8 

(dd, J = 17, 10 Hz), 128.1, 124.5(dd, J = 31, 2 Hz), 124.0 (C-9), 118.4 (d, J = 4 Hz, C-5’), 

116.5 (C-6), 116.1 (C-8), 20.8 (CH3). 

IR, νmax /cm
-1

 1590 and 1481 (benzene ring). 

MS, m/z found 301.0900, C15H11F2N4O, (M+H
+
) requires 301.0895. 

 

 

 

 

 

 

 

 



177 

 

1,4-Difluoro-3-(1H-imidazol-1-yl)-8-methyl-5H-pyrido[3,4-b][1,4]benzoxazine (170) 

 

Following the general method outlined for compound 130, compound 155 (0.25 g, 1.00 mmol) 

and imidazole (0.07 g, 1.00 mmol) was dissolved in DMF (2 ml). To this mixture, sodium 

hydride (0.08 g, 2.00 mmol) was added as base and the reaction was heated at 120 
o
C for 48 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 2:1) afforded compound 170 (0.15 g, 50%) as a 

light yellow solid. m.p. 267-269 °C.  

NMR δH (400 MHz, DMSO-d6), 9.50 (1H, s, NH), 8.10 (1H, s, H-2’), 7.56 (1H, d, J = 1.2 Hz, 

H-5’), 7.07 (1H, d, J = 1.2 Hz, H-4’), 6.61 (2H, s, H-6, H-9), 6.56 (1H, s, H-7), 2.07 (3H, s, 

CH3). 

NMR δF (376 MHz, DMSO-d6), 68.4 (1F, d, J = 23 Hz), 8.4 (1F, d, J = 23 Hz). 

NMR δc (100 MHz, DMSO-d6), 144.9 (d, J = 227 Hz, C-4/C-1), 142.3, 136.5 (d, J = 8 Hz, C-

2’), 135.1 (dd, J = 248, 3 Hz, C-4/C-1), 134.9-134.8 (m), 133.5, 129.8 (C-4’), 128.8 (dd, J = 

28, 11 Hz), 125.8, 125.7 (C-6), 124.5 (dd, J = 31, 14 Hz), 118.5 (d, J = 5 Hz, C-5’), 117.0 (C-

7), 115.8 (C-9), 20.7 (CH3). 

IR, νmax /cm
-1

 3224 (NH), 1597 and 1481 (benzene ring). 

MS, m/z found 301.0901, C15H11F2N4O, (M+H
+
) requires 301.0895. 
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7-Chloro-1,4-difluoro-3-(1H-imidazol-1-yl)-5H-pyrido[3,4-b][1,4]benzoxazine (171) 

 

Following the general method outlined for compound 130, compound 156 (0.27 g, 1.00 mmol) 

and imidazole (0.07 g, 1.00 mmol) was dissolved in DMF (2 ml). To this mixture, sodium 

hydride (0.08 g, 2.00 mmol) was added as base and the reaction was heated at 120 
o
C for 48 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 2:1) afforded compound 171 (0.21 g, 66%) as a 

white solid. m.p. 262-264 °C. 

NMR δH (400 MHz, DMSO-d6), 9.73 (1H, s, NH), 8.12 (1H, s, H-2’), 7.58 (1H, d, J = 1.2 Hz, 

H-5’), 7.08 (1H, s, H-4’), 6.74 (3H, dd, J = 12.4, 1.2 Hz, H-9, H-6, H-8). 

NMR δF (376 MHz, DMSO-d6), 68.9 (1F, d, J = 24 Hz), 9.0 (1F, d, J = 24 Hz). 

NMR δc (100 MHz, DMSO-d6), 144.7 (d, J = 228 Hz, C-4/C-1), 141.7, 136.5 (d, J = 8 Hz, C-

2’), 134.1-133.9 (m), 130.2, 129.9 (C-4’), 129.3-129.1 (m), 128.9, 124.6 (d, J = 30 Hz), 123.2 

(C-9), 118.4 (d, J = 5 Hz, C-5’), 117.8 (C-6), 115.5 (C-8). 

IR, νmax /cm
-1

 3155 (NH), 1643 and 1543 (benzene ring). 

MS, m/z found 321.0353, C14H8
35

ClF2N4O, (M+H
+
) requires 321.0349. 
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8-Chloro-1,4-difluoro-3-(1H-imidazol-1-yl)-5H-pyrido[3,4-b][1,4]benzoxazine (172) 

 

Following the general method outlined for compound 130, compound 156 (0.27 g, 1.00 mmol) 

and imidazole (0.07 g, 1.00 mmol) was dissolved in DMF (2 ml). To this mixture, sodium 

hydride (0.08 g, 2.00 mmol) was added as base and the reaction was heated at 120 
o
C for 48 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 2:1) afforded compound 172 (0.16 g, 49%) as a 

light yellow solid. m.p. 293-295 °C.  

NMR δH (400 MHz, DMSO-d6), 9.74 (1H, s, NH), 8.12 (1H, s, H-2’), 7.57 (1H, d, J = 1.2 Hz, 

H-5’), 7.08 (1H, H-4’), 6.89-6.87 (2H, m, H-6, H-9), 6.70 (1H, J = 6.8 Hz, 2.0 Hz, H-7). 

NMR δF (376 MHz, DMSO-d6), 68.9 (1F, d, J = 23 Hz), 8.8 (1F, d, J = 23 Hz). 

NMR δc (100 MHz, DMSO-d6), 144.7 (d. J = 228 Hz, C-4/C-1), 143.3, 136.5 (d, J = 8 Hz, C-

2’), 135.2 (d, J = 249 Hz, C-4/C-1), 134.4 (dd, J = 16, 7 Hz), 129.9 (C-4’), 129.2 (dd, J = 16, 

11 Hz), 127.9, 126.9, 125.3 (C-6), 124.2 (d, J = 30 Hz, C-3), 118.4 (d, J = 4 Hz, C-5’), 116.9 

(C-7), 116.6 (C-9).  

IR, νmax /cm
-1

 3155 (NH), 1643 and 1481 (benzene ring). 

MS, m/z found 321.0354, C14H8
35

ClF2N4O, (M+H
+
) requires 321.0349. 
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1,4-Difluoro-3-(1H-imidazol-1-yl)-8-nitro-5H-pyrido[3,4-b][1,4]benzoxazine (173) 

 

Following the general method outlined for compound 130, compound 159 (0.28 g, 1.00 mmol) 

and imidazole (0.07 g, 1.00 mmol) was dissolved in DMF (2 ml). To this mixture, sodium 

hydride (0.08 g, 2.00 mmol) was added as base and the reaction was heated at 120 
o
C for 48 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 2:1) afforded compound 173 (0.18 g, 54%) as an 

orange solid. m.p. 275-277 °C.  

NMR δH (400 MHz, DMSO-d6), 10.40 (1H, s, NH), 8.15 (1H, s, H-2’), 7.77 (1H, dd, J = 8.4, 

2.4 Hz, H-7), 7.60 (1H, s, H-5’), 7.50 (1H, d, J = 2.4 Hz, H-9), 7.09 (1H, s, H-4’), 6.84 (1H, d, 

J = 8.8 Hz, H-6). 

NMR δF (376 MHz, DMSO-d6), 69.4-69.2 (1F, m), 10.1 (1F, d, J = 23 Hz). 

NMR δc (100 MHz, DMSO-d6), 144.6 (d, J = 184 Hz, C-4/C-1), 142.7 , 142.5, 136.5 (d, J = 7 

Hz, C-2’), 136.0, 135.3 (dd, J = Hz, C-4/C-1), 133.2 (dd, J = 12, 5 Hz), 130.0 (C-4’), 129.5 

(dd, J = 14, 8 Hz), 124.5 (d, J = 27 Hz), 122.5 (C-7), 118.3 (d, J = 4 Hz, C-5’), 115.5 (C-6), 

111.6 (C-9).   

IR, νmax /cm
-1

 3155 (NH), 1643 and 1481 (benzene ring), 1581 and 1327 (NO2). 

MS, m/z found 332.0592, C14H8F2N5O3, (M+H
+
) requires 332.0590. 
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1,4-Difluoro-3-(1H-imidazol-1-yl)-7-nitro-5H-pyrido[3,4-b][1,4]benzoxazine (174) 

 

Following the general method outlined for compound 130, compound 158 (0.28 g, 1.00 mmol) 

and imidazole (0.07 g, 1.00 mmol) was dissolved in DMF (2 ml). To this mixture, sodium 

hydride (0.08 g, 2.00 mmol) was added as base and the reaction was heated at 120 
o
C for 48 

hours. Work-up as previously described and purification by chromatography on silica gel 

(elution with petrol ether / ethyl acetate = 2:1) afforded compound 174 (0.16 g, 47%) as a 

white solid. m.p. >330 °C.  

NMR δH (400 MHz, DMSO-d6), 10.07 (1H, s, NH), 8.20 (1H, s), 7.68-7.64 (2H, m), 7.55 (1H, 

d, J = 2.4 Hz), 7.15-7.14 (1H, m), 7.00 (1H, d, J = 7.2 Hz). 

NMR δF (376 MHz, DMSO-d6), 69.0 (1F, J = 9 Hz), 9.0 (1F, d, J = 21 Hz). 

NMR δc (100 MHz, DMSO-d6), 148.2, 144.7, 144.6 (d, J = 182 Hz, C-4/C-1), 136.5 (d, J = 6 

Hz), 135.2 (dd, J = 200, 3 Hz, C-4/C-1), 130.4 (dd, J = 3, 2 Hz), 129.9, 129.7 (dd, J = 24, 8 

Hz), 124.2 (dd, J = 25, 2 Hz), 119.9, 118.4 (d, J = 3 Hz), 116.8, 110.4, 100.0. 

IR, νmax /cm
-1

 3155 (NH), 1651 and 1481 (benzene ring), 1535 and 1342 (NO2). 

MS, m/z found 332.0592, C14H8F2N5O3, (M+H
+
) requires 332.0590. 
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1,4-Difluoro-2-(1H-imidazol-1-yl)-8,10-dimethyl-10H-phenoxazine-3-carbaldehyde (176) 

 

Following the general method outlined for compound 175, compound 163 (0.37 g, 1.30 mmol) 

and imidazole (0.09 g, 1.30 mmol) was dissolved in DMF (2 ml). To this mixture, 

triethylamine (0.35 ml, 2.50 mmol) was added as base and the reaction was heated at 90 
o
C 

for 60 hours. Work-up as previously described and purification by chromatography on silica 

gel (elution with petrol ether / ethyl acetate = 2:1) afforded compound 176 (0.24 g, 54%) as a 

yellow solid. m.p. 184-186 °C.  

NMR δH (400 MHz, CDCl3), 9.59 (1H, s, CHO), 7.54 (1H, s, H-2’), 7.24 (1H, s, H-5’), 7.01 

(1H, s, H-4’), 6.74-6.66 (2H, m, H-6, H-7), 6.50 (1H, s, H-9), 3.37 (3H, d, J = 5.6 Hz, N-

CH3), 2.25 (3H, s, Ar-CH3).   

NMR δF (376 MHz, CDCl3), 19.0 (1F, m), 16.8 (1F, J = 11 Hz). 

NMR δc (100 MHz, CDCl3), 183.4 (CHO), 147.2 (d, J = 256 Hz, C-4/C-1), 143.0, 141.5 (d, J 

= 243 Hz, C-4/C-1), 138.5 (C-2’), 136.5 (dd, J = 14, 5 Hz), 135.1, 132.9, 131.9 (dd, J = 11, 5 

Hz), 130.1 (C-5’), 124.4 (C-7), 122.8 (dd, J = 14, 5 Hz), 121.5 (C-4’), 115.9 (C-6), 115.0 (C-

9), 113.8 (d, J = 9 Hz), 37.2 (d, J = 12 Hz, N-CH3), 21.3 (Ar-CH3).  

IR, νmax /cm
-1

 1689 (CHO), 1635 and 1489 (benzene ring). 

MS, m/z found 342.1053, C18H14F2N3O2, (M+H
+
) requires 342.1049. 

 

 

 

 

 

 

 

 



183 

 

1,4-Difluoro-2-(1H-imidazol-1-yl)-7,10-dimethyl-10H-phenoxazine-3-carbaldehyde (177) 

 

Following the general method outlined for compound 175, compound 164 (0.34 g, 1.20 mmol) 

and imidazole (0.08 g, 1.20 mmol) was dissolved in DMF (2 ml). To this mixture, 

triethylamine (0.35 ml, 2.50 mmol) was added as base and the reaction was heated at 90 
o
C 

for 60 hours. Work-up as previously described and purification by chromatography on silica 

gel (elution with petrol ether / ethyl acetate = 2:1) afforded compound 177 (0.22 g, 53%) as a 

brown solid. m.p. 211-213 °C.  

NMR δH (400 MHz, CDCl3), 9.56 (1H, s, CHO), 7.54 (1H, s, H-2’), 7.23 (1H, s, H-5’), 7.01 

(1H, s, H-4’), 6.75 (1H, dd, J = 7.6, 0.8 Hz, H-8), 6.67 (1H, d, J = 1.6 Hz, H-6), 6.57 (1H, d, 

J = 8.4 Hz, H-9), 3.36 (3H, d, J = 5.2 Hz, N-CH3), 2.22 (3H, s, Ar-CH3).   

NMR δF (376 MHz, CDCl3), 18.9 (1F, m), 16.8 (1F, J = 11 Hz). 

NMR δc (100 MHz, CDCl3), 183.3 (CHO), 147.2 (d, J = 257 Hz, C-4/C-1), 144.9, 141.4 (d, J 

= 245 Hz, C-4/C-1), 138.5 (C-2’), 136.1(dd, J = 14, 6 Hz), 134.5, 131.9 (dd, J = 11, 5 Hz), 

130.6, 130.0 (C-5’), 125.5 (C-8), 123.0 (dd, J = 15, 6 Hz), 121.5 (C-4’), 116.9 (C-6), 114.0 

(C-9), 113.5 (d, J = 8 Hz), 37.2 (d, J = 12 Hz, N-CH3), 20.6 (Ar-CH3).  

IR, νmax /cm
-1

 1682 (CHO), 1635 and 1489 (benzene ring). 

MS, m/z found 342.1054, C18H14F2N3O2, (M+H
+
) requires 342.1049. 

 

 

 

 

 

 

 

 



184 

 

8-Chloro-1,4-difluoro-2-(1H-imidazol-1-yl)-10-methyl-10H-phenoxazine-3-carbaldehyde 

(178) 

 

Following the general method outlined for compound 175, compound 165 (0.30 g, 1.00 mmol) 

and imidazole (0.07 g, 1.00 mmol) was dissolved in DMF (2 ml). To this mixture, 

triethylamine (0.35 ml, 2.50 mmol) was added as base and the reaction was heated at 90 
o
C 

for 60 hours. Work-up as previously described and purification by chromatography on silica 

gel (elution with petrol ether / ethyl acetate = 2:1) afforded compound 178 (0.18 g, 49%) as a 

yellow solid. m.p. 181-183 °C.  

NMR δH (400 MHz, CDCl3), 9.60 (1H, s, CHO), 7.55 (1H, s, H-2’), 7.24 (1H, s, H-5’), 7.01 

(1H, d, J = 0.8 Hz, H-4’), 6.85 (1H, dd, J = 8.8, 2.4 Hz, H-7), 6.77 (1H, d, J = 8.4 Hz, H-6), 

6.66 (1H, d, J = 2.0 Hz, H-9), 3.37 (3H, d, J = 6.0 Hz, N-CH3).   

NMR δF (376 MHz, CDCl3), 19.7 (1F, m), 17.4 (1F, J = 11 Hz). 

NMR δc (100 MHz, CDCl3), 183.2 (CHO), 147.2 (d, J = 257 Hz, C-4/C-1), 143.8, 141.6 (d, J 

= 245 Hz, C-4/C-1), 138.5 (C-2’), 136.2 (dd, J = 14, 5 Hz), 134.5, 130.9 (dd, J = 11, 5 Hz), 

130.5, 130.1 (C-5’), 123.7 (C-7), 123.2 (dd, J = 14, 6 Hz), 121.5 (C-4’), 117.0 (C-6), 114.5 

(C-9), 114.4 (d, J = 9 Hz), 37.3 (d, J = 12 Hz, N-CH3),  

IR, νmax /cm
-1

 1689 (CHO), 1635 and 1481 (benzene ring). 

MS, m/z found 362.0507, C17H11
35

ClF2N3O2, (M+H
+
) requires 362.0502. 

  

 

 

 

 

 

 



185 

 

7-Chloro-1,4-difluoro-2-(1H-imidazol-1-yl)-10-methyl-10H-phenoxazine-3-carbaldehyde 

(179) 

 

Following the general method outlined for compound 175, compound 166 (0.36 g, 1.20 mmol) 

and imidazole (0.08 g, 1.20 mmol) was dissolved in DMF (2 ml). To this mixture, 

triethylamine (0.35 ml, 2.50 mmol) was added as base and the reaction was heated at 90 
o
C 

for 60 hours. Work-up as previously described and purification by chromatography on silica 

gel (elution with petrol ether / ethyl acetate = 2:1) afforded compound 179 (0.19 g, 43%) as a 

brown solid. m.p. 201-203 °C.  

NMR δH (400 MHz, CDCl3), 9.59 (1H, s, CHO), 7.54 (1H, s, H-2’), 7.24 (1H, s, H-5’), 7.01 

(1H, d, J = 1.2 Hz, H-4’), 6.94 (1H, dd, J = 8.8, 2.4 Hz, H-8), 6.86 (1H, d, J = 2.4 Hz, H-6), 

6.60 (1H, d, J = 8.8 Hz, H-9), 3.37 (3H, d, J = 5.2 Hz, N-CH3).   

NMR δF (376 MHz, CDCl3), 19.5 (1F, m), 17.5 (1F, J = 11 Hz). 

NMR δc (100 MHz, CDCl3), 183.2 (CHO), 147.2 (d, J = 258 Hz, C-4/C-1), 145.6, 141.5 (d, J 

= 247 Hz, C-4/C-1), 138.5 (C-2’), 135.8 (dd, J = 13, 4 Hz), 132.2, 131.2 (dd, J = 10, 5 Hz), 

130.2 (C-5’), 129.1, 125.1 (C-8), 123.3 (dd, J = 15, 5 Hz), 121.5 (C-4’), 116.8 (C-6), 114.8 

(C-9), 114.1 (d, J = 9 Hz), 37.3 (d, J = 12 Hz, N-CH3).  

IR, νmax /cm
-1

 1682 (CHO), 1627 and 1481 (benzene ring). 

MS, m/z found 362.0509, C17H11
35

ClF2N3O2, (M+H
+
) requires 362.0502. 

 

 

 

 

 

 

 



186 

 

2,3,5,6-Tetrafluoro-4-(morpholin-4-yl)benzaldehyde (184) 

 

A solution of pentafluorobenzoaldehyde (1.96 g, 10.00 mmol) in DMF (5 ml) was added to a 

solution of morpholine (1.74 g, 20.00 mmol) in DMF (5 ml). The resulting solution was 

stirred at room temperature for 16 hours. The reaction mixture was poured into deionised 

water (20 ml) and was extracted with ethyl acetate (30 ml x 3). The extracts were combined 

and washed with brine (approx. 20 ml), and then dried over sodium sulfate. The solution was 

concentrated under reduced pressure and the residue was subjected to a silica column (elution 

with light petroleum/ ethyl acetate = 10:1). The combined elution fractions were evaporated 

to give aldehyde 184 (2.33 g, 88%) as a light yellow solid. m.p. 87-89 °C  

NMR δH (400 MHz, CDCl3), 10.13 (1H, s, CHO), 3.42 (4H, t, J = 4.4 Hz, H-3’, H-5’), 3.41 

(4H, t, J = 4.4 Hz, H-2’, H-6’). 

NMR δF (376 MHz, CDCl3), 15.5 (2F, dd, J = 20, 9 Hz, F-3, F-5), 9.6 (2F, dd, J = 19, 7 Hz, 

F-2, F-6). 

NMR δC (100 MHz, CDCl3), 182.2 (C=O), 148.1 (ddt, J = 255, 13, 4 Hz, C-2, C-6/C-3, C-5), 

140.3 ( d, J = 245, 13 Hz, C-2, C-6/C-3, C-5), 135.5 (d, J = 10 Hz, C-4), 107.3 (t, J = 10 Hz, 

C-1), 67.1 (C-3’, C-5’), 51.0 (t, J= 5 Hz, C-2’, C-6’). 

IR, νmax /cm
-1

 1689 (CHO), 1628 and 1566 (benzene). 

MS, m/z found 264.0636, C11H10 F4NO2, (M+H
+
) requires 264.0642. 

 

 

 

 

 

 



187 

 

4-(2,3,5,6-Tetrafluoro-4-nitrophenyl)morpholine (211) 

 

A solution of pentafluoronitrobenzene (0.21 g, 1.00 mmol) in DMF (2 ml) was added to NaH 

(0.08 g, 2.00 mmol). Morpholine (0.09 g, 1.00 mmol) was then added and the solution was 

stirred at room temperature for 16 hours. The reaction mixture was poured into deionised 

water (5 ml) and was extracted with ethyl acetate (15 ml x 3). The extracts were combined 

and washed with brine (approx. 10 ml), and then dried over sodium sulfate. The solution was 

concentrated under reduced pressure and the residue was subjected to a silica column (elution 

with light petroleum/ ethyl acetate = 20:1). The combined elution solutions were evaporated 

under reduced pressure to give compound 211 (0.20 g, 73%) as a yellow solid. m.p. 85-87 °C. 

NMR δH (400 MHz, CDCl3), 3.81 (4H, t, J = 4.4 Hz, H-3’, H-5’), 3.41 (4H, dt, J = 7.6, 2.4 

Hz, H-2’, H-6’). 

NMR δF (376 MHz, CDCl3), 15.2-15.0 (2F, m, F-3, F-5), 11.9-11.7 (2F, m, F-2, F-6). 

NMR δC (100 MHz, CDCl3), 142.4 (ddt, J = 157, 11, 4 Hz, C-2, C-6/C-3, C-5), 140.3 (ddd, J 

= 147, 11, 5 Hz, C-2, C-6/C-3, C-5), 134.1 (tt, J = 8, 2 Hz, C-4), 123.1-122.9 (m, C-1), 67.0 

(C-3’, C-5’), 51.0 (t, J = 3 Hz, C-2’, C-6’). 

IR, νmax /cm
-1

 1627 and 1527 (benzene), 1527 and 1327 (NO2). 

MS, m/z found 281.0550, C10H9F4N2O3, (M+H
+
) requires 281.0544. 

 

 

 

 

 

 

 



188 

 

4-(2,3,5,6-Tetrafluoro-4-((E)-(2-(2-methylphenyl)hydrazinylidene)methyl)phenyl)-

morpholine (197) 

 

A solution of aldehyde 184 (0.26 g, 1.00 mmol) in DCM (1 ml) was added to a solution of o-

tolylhydrazine hydrochloride (0.16 g, 1.00 mmol) in DCM (1 ml). The solution was stirred at 

room temperature for 2 hours. The reaction mixture was poured into deionised water (5 ml) 

and was extracted with ethyl acetate (15 ml x 3). The extracts were combined and washed 

with brine (approx. 10 ml), and then dried over sodium sulfate. The solution was 

concentrated under reduced pressure and the residue was subjected to a silica column (elution 

with light petroleum/ ethyl acetate = 10:1). The combined elution solutions were evaporated 

to give the compound 197 (0.28 g, 76%) as orange solid. m.p. 157-159 °C  

NMR δH (400 MHz, DMSO-d6), 9.95 (1H, s, NH), 8.13 (1H, s, CHN), 7.28 (1H, d, J = 7.6 Hz, 

H-3’), 7.06 (1H, t, J = 7.6 Hz, H-4’), 7.02 (1H, d, J = 7.6 Hz, H-6’), 6.69 (1H, t, J = 7.6 Hz, 

H-5’), 3.65 (4H, s, H-3‖, H-5‖), 3.18 (4H, s, H-2‖, H-6‖), 2.18 (3H, s, CH3). 

NMR δF (376 MHz, DMSO-d6), 15.8 (2F, dd, J = 20, 7 Hz, F-3, F-5), 9.7 (2F, dd, J = 20, 7 

Hz, F-2, F-6). 

NMR δC (100 MHz, DMSO-d6), 144.5 (dt, J = 247, 12 Hz, C-2, C-6/C-3, C-5), 142.9, 142.5 

(dd, J = 237, 16 Hz, C-2, C-6/C-3, C-5), 130.9 (C-6’), 128.5 (t, J = 11 Hz, C-4), 127.3 (C-4’), 

126.5 (CHN), 121.4, 120.1 (C-5’), 112.6 (C-3’), 109.1 (t, J = 12 Hz, C-1), 66.9 (d, J = 15 Hz, 

C-3‖, C-5‖), 51.4 (C-2‖, C-6‖), 17.9 (CH3). 

IR, νmax /cm
-1

 3271 (NH), 1650 (C=N), 1589 and 1540 (benzene). 

MS, m/z found 368.1374, C18H18F4N3O, (M+H
+
) requires 368.1381. 

 

 



189 

 

1-(2,3,5,6-Tetrafluoro-4-((E)-(2-(2-methylphenyl)hydrazinylidene)methyl)phenyl)-1H-

benzimidazole (191) 

 

Following the general method outlined for compound 197, aldehyde 68 (0.29 g, 1.00 mmol) 

was reacted with o-tolylhydrazine hydrochloride (0.16 g, 1.00 mmol) in DCM (2 ml) at room 

temperature for 2 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 3:1) afforded 

compound 191 (0.32 g, 81%) as a yellow solid. m.p. 169-171 °C. 

NMR δH (400 MHz, DMSO-d6), 10.36 (1H, s, NH), 8.52 (1H, s,H-2‖), 8.30 (1H, s, CHN), 

7.80-7.77 (1H, m, H-7‖), 7.48 (1H, d, J = 6.8 Hz, H-4‖), 7.35-7.32 (3H, m, H-3’, H-6‖, H-5‖), 

7.11 (1H, t, J = 7.6 Hz, H-4’), 7.07 (1H, d, J = 7.6 Hz, H-6’), 6.77 (1H, t, J = 7.6 Hz, H-5’), 

2.24 (3H, s, CH3). 

NMR δF (376 MHz, DMSO-d6), 17.8 (2F, dd, J = 21, 9 Hz, F-3, F-5), 13.6 (2F, dd, J = 22, 9 

Hz, F-2, F-6). 

NMR δC (100 MHz, DMSO-d6), 144.3 (C-2‖), 144.1 (dd, J = 254, 13 Hz, C-2, C-6/C-3, C-5), 

143.2, 142.8, 143.0 (dd, J = 248, 15 Hz, C-2, C-6/C-3, C-5), 133.9, 131.1 (C-6’), 127.4 (C-

4’), 125.4 (CHN), 124.7 (C-6‖), 123.7 (C-5‖), 121.9, 120.9 (C-5’), 120.5 (C-7‖), 116.5 (t, J = 

11 Hz, C-4), 113.0 (t, J = 14 Hz, C-1), 112.9 (C-3’), 111.4 (C-4‖), 17.9 (CH3). 

IR, νmax /cm
-1

 3279 (NH), 1599 and 1512 (benzene). 

MS, m/z found 399.1219, C21H15F4N4, (M+H
+
) requires 399.1227. 

 

 

 



190 

 

1-(2,3,5,6-Tetrafluoro-4-((E)-(2-(2-methylphenyl)hydrazinylidene)methyl)phenyl)-1H-

imidazole (188) 

 

Following the general method outlined for compound 197, aldehyde 67 (0.24 g, 1.00 mmol) 

was reacted with o-tolylhydrazine hydrochloride (0.16 g, 1.00 mmol) in DCM (2 ml) at room 

temperature for 2 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 2.25:1) afforded 

compound 188 (0.27 g, 77%) as a yellow solid. m.p. 223-225 °C. 

NMR δH (400 MHz, DMSO-d6), 10.29 (1H, s, NH), 8.24 (1H, s, CHN), 8.00 (1H, s, H-2‖), 

7.53 (1H, s, H-5‖), 7.33 (1H, d, J = 8.0 Hz, H-3’), 7.17 (1H, s, H-4‖), 7.11 (1H, t, J = 7.2 Hz, 

H-4’), 7.06 (1H, d, J = 7.6 Hz, H-6’), 6.76 (1H, t, J = 7.6 Hz, H-5’), 2.22 (3H, s, CH3). 

NMR δF (376 MHz, DMSO-d6), 17.4 (2F, dd, J = 21, 9 Hz, F-3, F-5), 11.6 (2F, dd, J = 21, 9 

Hz, F-2, F-6). 

NMR δC (100 MHz, DMSO-d6), 143.9 (dd, J = 248, 8 Hz, C-2, C-6/C-3, C-5), 142.5, 142.1 

(dd, J = 245, 15 Hz, C-2, C-6/C-3, C-5 ), 138.8 (C-2‖), 131.1 (C-6’), 129.9 (C-4‖), 127.4 (C-

4’), 125.4 (CHN), 121.9, 121.5 (C-5‖), 120.9 (C-5’), 115.6 (t, J = 11 Hz, C-4), 115.0 (t, J = 

12 Hz, C-1), 113.0 (C-3’), 17.9 (CH3). 

IR, νmax /cm
-1

 3248 (NH), 1589 and 1520 (benzene). 

MS, m/z found 349.1062, C17H13F4N4, (M+H
+
) requires 349.1071. 

 

 

 

 

 



191 

 

1-Methyl-4-(2,3,5,6-tetrafluoro-4-((E)-(2-(2-methylphenyl)hydrazinylidene)methyl)-

phenyl)piperazine (194) 

 

A solution of compound 69 (0.28 g, 1.00 mmol) in DCM (1 ml) was added a solution of o-

tolylhydrazine hydrochloride (0.16 g, 1.00 mmol) in DCM (1 ml). The solution was stirred at 

room temperature for 2 hours. The reaction mixture was poured into deionised water (5 ml) 

and was extracted with ethyl acetate (20 ml x 3). The extracts were combined and washed 

with brine (approx. 15 ml), and then dried over sodium sulfate. The solution was 

concentrated under reduced pressure to give the residue. It was washed with solution of 

hexane and dichloromethane three times and pure compound 194 (0.36 g, 63%) was collected 

as a yellow solid. m.p.132-134 °C. 

NMR δH (400 MHz, DMSO-d6), 9.97 (1H, s, NH), 8.14 (1H, s, CHN), 7.28 (1H, d, J = 7.2 Hz, 

H-3’), 7.07 (1H, t, J = 7.2 Hz, H-4’), 7.02 (1H, d, J = 7.2 Hz, H-6’), 6.70 (1H, t, J = 7.2 Hz, 

H-5’), 3.23 (4H, s, H-2‖, H-6‖), 2.51 (4H, s, H-3‖, H-5‖), 2.26 (3H, s, N- CH3), 2.18 (3H, s, 

Ar-CH3). 

NMR δF (376 MHz, DMSO-d6), 15.7 (2F, dd, J = 20, 8 Hz, F-3, F-5), 9.8 (2F, dd, J = 21, 7 

Hz, F-2, F-6). 

NMR δC (100 MHz, DMSO-d6), 144.5 (dd, J = 238, 14 Hz, C-2, C-6/C-3, C-5), 142.9, 142.4 

(dd, J = 240, 11 Hz, C-2, C-6/C-3, C-5), 131.0 (C-6’), 128.6 (t, J = 11 Hz, C-4), 127.3 (C-4’), 

126.6 (CHN), 121.4, 120.1 (C-5’), 112.6 (C-3’), 108.9 (t, J = 11 Hz, C-1), 55.2 (C-3‖, C-5‖), 

50.5 (C-2‖, C-6‖), 45.9 (N-CH3), 17.9 (Ar-CH3). 

IR, νmax /cm
-1

 3217 (NH), 1643 (C=N), 1589 and 1500 (benzene). 

MS, m/z found 381.1689, C19H21F4N4, (M+H
+
) requires 381.1697. 

 



192 

 

4-(4-((E)-(2-(2-Chlorophenyl)hydrazinylidene)methyl)-2,3,5,6-tetrafluorophenyl)-

morpholine (198) 

 

Following the general method outlined for compound 197, aldehyde 184 (0.26 g, 1.00 mmol) 

was reacted with 2-chlorophenylhydrazine hydrochloride (0.18 g, 1.00 mmol) in DCM (2 ml) 

at room temperature for 2 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 10:1) afforded 

compound 198 (0.30 g, 77%) as a white solid. m.p. 199-201 °C. 

NMR δH (400 MHz, DMSO-d6), 10.30 (1H, s, NH), 8.30 (1H, s, CHN), 7.39 (1H, dd, J = 8.0, 

1.2 Hz, H-3’), 7.29 (1H, dd, J = 8.0, 1.2 Hz, H-6’), 7.21 (1H, td, J = 8.0, 0.8 Hz, H-4’), 6.78 

(1H, td, J = 8.0, 1.2 Hz, H-5’), 3.65 (4H, t, J = 4.4 Hz, H-3‖, H-5‖), 3.19 (4H, s, H-2‖, H-6‖). 

NMR δF (376 MHz, DMSO-d6), 16.3 (2F, dd, J = 20, 8 Hz, F-3, F-5), 9.8 (2F, dd, J = 21, 8 

Hz, F-2, F-6). 

NMR δC (100 MHz, DMSO-d6), 144.8 (dt, J = 247, 13 Hz, C-2, C-6/C-3, C-5), 141.2, 142.3 

(dd, J = 248, 12 Hz, C-2, C-6/C-3, C-5), 129.9 (C-6’), 129.2 (CHN), 129.1 (t, J = 11 Hz, C-4), 

128.6 (C-4’), 120.9 (C-5’), 116.9, 114.5 (C-3’), 108.4 (t, J = 12 Hz, C-1), 67.0 (C-3‖, C-5‖), 

51.3 (C-2‖, C-6‖). 

IR, νmax /cm
-1

 3271 (NH), 1643 (C=N), 1589 and 1481 (benzene). 

MS, m/z found 388.0827, C17H15
35

ClF4N3O, (M+H
+
) requires 388.0834. 

 

 

 

 



193 

 

1-(4-((E)-(2-(2-Chlorophenyl)hydrazinylidene)methyl)-2,3,5,6-tetrafluorophenyl)-1H-

benzimidazole (192) 

 

Following the general method outlined for compound 197, aldehyde 68 (0.29 g, 1.00 mmol) 

was reacted with 2-chlorophenylhydrazine hydrochloride (0.18 g, 1.00 mmol) in DCM (2 ml) 

at room temperature for 2 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 2:1) afforded 

compound 192 (0.36 g, 85%) as a yellow solid. m.p. 197-199 °C. 

NMR δH (400 MHz, DMSO-d6), 10.68 (1H, s, NH), 8.53 (1H, s, H-2‖), 8.49 (1H, s, CHN), 

7.80-7.77 (1H, m, H-7‖), 7.50-7.47 (2H, m, H-4‖, H-3’), 7.37-7.31 (3H, m, H-5‖, H-6‖, H-6’), 

7.27 (1H, t, J = 8.0 Hz, H-4’), 6.86 (1H, td, J = 8.0, 1.2 Hz, H-5’). 

NMR δF (376 MHz, DMSO-d6), 18.4 (2F, dd, J = 20, 9 Hz, F-3, F-5), 13.9 (2F, dd, J = 21, 10 

Hz, F-2, F-6). 

NMR δC (100 MHz, DMSO-d6), 144.4 (m, C-2, C-6/C-3, C-5), 144.3 (C-2‖), 143.2, 143.0 

(dd, J = 248, 14 Hz, C-2, C-6/C-3, C-5), 140.9, 133.9, 130.1 (C-6’), 128.8 (C-4’), 128.2 

(CHN), 124.7 (C-6‖), 123.8 (C-5‖), 121.7 (C-5’), 120.6 (C-7‖), 117.4, 116.0 (t, J = 11 Hz, C-

4), 114.9 (C-3’), 113.8 (t, J = 14 Hz, C-1), 111.5 (C-4‖). 

IR, νmax /cm
-1

 3317 (NH), 1597 and 1512 (benzene). 

MS, m/z found 419.0676, C20H12
35

ClF4N4, (M+H
+
) requires 419.0681. 

 

 

 



194 

 

1-(4-((E)-(2-(2-Chlorophenyl)hydrazinylidene)methyl)-2,3,5,6-tetrafluorophenyl)-1H-

imidazole (189) 

 

Following the general method outlined for compound 197, aldehyde 67 (0.24 g, 1.00 mmol) 

was reacted with 2-chlorophenylhydrazine hydrochloride (0.18 g, 1.00 mmol) in DCM (2 ml) 

at room temperature for 2 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 1:1) afforded 

compound 189 (0.28 g, 75%) as a yellow solid. m.p. 242-244 °C. 

NMR δH (400 MHz, DMSO-d6), 10.63 (1H, s, NH), 8.42 (1H, s, H-2‖), 8.02 (1H, s, CHN), 

7.54 (1H, s, H-5‖), 7.45 (1H, d, J = 8.4 Hz, C-3’), 7.34 (1H, d, J = 7.2 Hz, C-6’), 7.26 (1H, t, 

J = 8.0 Hz, C-4’), 7.17 (1H, s, H-4‖), 6.85 (1H, td, J = 7.2, 1.2 Hz, C-5’). 

NMR δF (376 MHz, DMSO-d6), 17.9 (2F, dd, J = 22, 9 Hz, F-3, F-5), 11.8 (2F, dd, J = 22, 9 

Hz, F-2, F-6). 

NMR δC (100 MHz, DMSO-d6), 144.3 (m, C-2, C-6/C-3, C-5), 142.0 (m, C-2, C-6/C-3, C-5), 

140.9, 138.8(C-2‖), 130.1 (C-6’), 129.9 (C-4‖), 128.8 (C-4’), 128.1 (CHN), 121.7 (C-5’), 

121.5(C-5‖), 117.3, 115.7 (t, J = 11 Hz, C-4), 115.1 (C-1), 114.8 (C-3’). 

IR, νmax /cm
-1

 3237 (NH), 1597 and 1512 (benzene). 

MS, m/z found 369.0523, C16H10
35

ClF4N4, (M+H
+
) requires 369.0525. 
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1-(4-((E)-(2-(2-Chlorophenyl)hydrazinylidene)methyl)-2,3,5,6-tetrafluorophenyl)-4-

methylpiperazine (195) 

 

Following the general method outlined for compound 197, compound 69 (0.28 g, 1.00 mmol) 

was reacted with 2-chlorophenylhydrazine hydrochloride (0.18 g, 1.00 mmol) in DCM (2 ml) 

at room temperature for 2 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 1:20) afforded 

compound 195 (0.27 g, 67%) as a white solid. m.p. 155-157 °C. 

NMR δH (400 MHz, DMSO-d6), 10.26 (1H, s, NH), 8.28 (1H, s, CHN), 7.38 (1H, dd, J = 7.6, 

1.2 Hz, H-3’), 7.27 (1H, dd, J = 7.6, 0.8 Hz, H-6’), 7.20 (1H, t, J = 7.2 Hz, H-4’), 6.77 (1H, 

td, J = 7.6, 1.2 Hz, H-5’), 3.17 (4H, s, H-2‖, H-6‖), 2.36 (4H, s, H-3‖, H-5‖), 2.16 (3H, s, 

CH3). 

NMR δF (376 MHz, DMSO-d6), 16.2 (2F, dd, J = 20, 8 Hz, F-3, F-5), 9.7 (2F, dd, J = 20, 8 

Hz, F-2, F-6). 

NMR δC (100 MHz, DMSO-d6), 144.8 (dd, J = 235, 12 Hz, C-2, C-6/C-3, C-5), 142.3 (dd, J 

= 257, 13 Hz, C-2, C-6/C-3, C-5), 141.3, 129.9 (C-6’), 129.4 (t, J = 11 Hz, C-4), 129.3 

(CHN), 128.5 (C-4’), 120.8 (C-5’), 116.9, 114.5 (C-3’), 108.0 (t, J = 12 Hz, C-1), 55.5 (C-3‖, 

C-5‖), 50.8 (C-2‖, C-6‖), 46.4 (CH3). 

IR, νmax /cm
-1

 3333 (NH), 1643 (C=N), 1589 and 1500 (benzene). 

MS, m/z found 398.0905, C18H15
35

ClF4N4, (M+H
+
) requires 398.0916. 
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4-(4-((E)-(2-(3-Chlorophenyl)hydrazinylidene)methyl)-2,3,5,6-tetrafluorophenyl)-

morpholine (199) 

 

Following the general method outlined for compound 197, compound 184 (0.26 g, 1.00 mmol) 

was reacted with 3-chlorophenylhydrazine hydrochloride (0.18 g, 1.00 mmol) in DCM (2 ml) 

at room temperature for 2 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 10:1) afforded 

compound 199 (0.29 g, 74%) as an orange solid. m.p. 187-189 °C. 

NMR δH (400 MHz, DMSO-d6), 10.85 (1H, s, NH), 7.80 (1H, s, CHN), 7.20 (1H, t, J = 8.0 

Hz, H-5’), 6.98 (1H, s, H-2’), 6.86 (1H, d, J = 7.6 Hz, H-6’), 6.76 (1H, dd, J = 8.0, 1.2 Hz, H-

4’), 3.65 (4H, t, J = 4.4 Hz, H-3‖, H-5‖), 3.18 (4H, s, H-2‖, H-6‖). 

NMR δF (376 MHz, DMSO-d6), 16.0 (2F, dd, J = 22, 7 Hz, F-3, F-5), 9.8 (2F, dd, J = 20, 6 

Hz, F-2, F-6). 

NMR δC (100 MHz, DMSO-d6), 146.4, 144.5 (m, C-2, C-6/C-3, C-5), 142.2 (dd, J = 225, 12 

Hz, C-2, C-6/C-3, C-5), 134.4, 131.4 (C-5’), 128.9 (t, J = 11 Hz, C-4), 126.5 (CHN), 119.5 

(C-4’), 111.9 (C-2’), 111.4 (C-6’), 108.4 (t, J = 12 Hz, C-1), 67.0 (C-3‖, C-5‖), 51.3 (C-2‖, 

C-6‖). 

IR, νmax /cm
-1

 3248 (NH), 1589 and 1535 (benzene). 

MS, m/z found 388.0831, C17H15
35

ClF4N3O, (M+H
+
) requires 388.0834. 
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1-(4-((E)-(2-(3-Chlorophenyl)hydrazinylidene)methyl)-2,3,5,6-tetrafluorophenyl)-1H-

benzimidazole (193) 

 

Following the general method outlined for compound 197, compound 68 (0.29 g, 1.00 mmol) 

was reacted with 3-chlorophenylhydrazine hydrochloride (0.18 g, 1.00 mmol) in DCM (2 ml) 

at room temperature for 2 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 3:1) afforded 

compound 193 (0.29 g, 79%) as a yellow solid.  m.p. 235-237°C. 

NMR δH (400 MHz, DMSO-d6), 11.23 (1H, s, NH), 8.52 (1H, s, H-2‖), 7.96 (1H, s, CHN), 

7.80-7.76 (1H, m, H-7‖), 7.47 (1H, d, J = 7.2 Hz, H-4‖), 7.37-7.30 (2H, m, H-5‖, H-6‖), 7.25 

(1H, t, J = 8.0 Hz, H-5’), 7.08 (1H, s, H-2’), 6.96 (1H, d, J = 8.4 Hz, H-6’), 6.84 (1H, dd, J = 

8.4, 0.8 Hz, H-4’). 

NMR δF (376 MHz, DMSO-d6), 18.2 (2F, dd, J = 22, 9 Hz, F-3, F-5), 13.8 (2F, dd, J = 20, 9 

Hz, F-2, F-6). 

NMR δC (100 MHz, DMSO-d6), 146.0, 144.2 (dd, J = 243, 15 Hz, C-2, C-6/C-3, C-5), 144.3 

(C-2‖), 143.2, 142.9 (dd, J = 248, 15 Hz, C-2, C-6/C-3, C-5), 134.5, 133.9, 131.5 (C-5’), 

125.5 (CHN), 124.7 (C-6‖), 123.7 (C-5‖), 120.6 (C-7‖), 120.3 (C-4’), 116.0 (t, J = 11 Hz, C-

4), 113.5 (t, J = 14 Hz, C-1), 112.3 (C-2’), 111.8 (C-6’), 111.5 (C-4‖). 

IR, νmax /cm
-1

 3217 (NH), 1597 and 1512 (benzene). 

MS, m/z found 419.0677, C20H12
35

ClF4N4, (M+H
+
) requires 419.0681. 
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1-(4-((E)-(2-(3-Chlorophenyl)hydrazinylidene)methyl)-2,3,5,6-tetrafluorophenyl)-1H-

imidazole (190) 

 

Following the general method outlined for compound 197, compound 67 (0.24 g, 1.00 mmol) 

was reacted with 3-chlorophenylhydrazine hydrochloride (0.18 g, 1.00 mmol) in DCM (2 ml) 

at room temperature for 2 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 1.1:1) afforded 

compound 190 (0.30 g, 80%) as a yellow solid.  m.p. 245-247 °C. 

NMR δH (400 MHz, DMSO-d6), 11.17 (1H, s, NH), 8.01 (1H, s, H-2‖), 7.90 (1H, s, CHN), 

7.53 (1H, s, H-5‖), 7.24 (1H, t, J = 8.0 Hz, H-5’), 7.17 (1H, s, H-4‖), 7.04 (1H, s, H-2’), 6.93 

(1H, d, J = 8.4 Hz, H-6’), 6.83 (1H, dd, J = 8.0, 1.2 Hz, H-4’). 

NMR δF (376 MHz, DMSO-d6), 17.6 (2F, dd, J = 22, 9 Hz, F-3, F-5), 11.8 (2F, dd, J = 22, 9 

Hz, F-2, F-6). 

NMR δC (100 MHz, DMSO-d6), 146.0, 144.1 (d, J = 256 Hz, C-2, C-6/C-3, C-5), 142.0 (dd, 

J = 247, 15 Hz, C-2, C-6/C-3, C-5), 138.8 (C-2‖), 134.5 (C-3’), 131.5 (C-5’), 129.9 (C-4‖), 

125.5 (CHN), 121.5 (C-5‖), 120.3 (C-4’), 115.5 (t, J = 12 Hz, C-4), 115.1 (t, J = 11 Hz, C-1), 

112.3 (C-2’), 111.7 (C-6’). 

IR, νmax /cm
-1

 3227 (NH), 1597 and 1528 (benzene). 

MS, m/z found 369.0526, C16H10
35

ClF4N4, (M+H
+
) requires 369.0525. 
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1-(4-((E)-(2-(3-Chlorophenyl)hydrazinylidene)methyl)-2,3,5,6-tetrafluorophenyl)-4-

methylpiperazine (196) 

 

Following the general method outlined for compound 197, compound 69 (0.28 g, 1.00 mmol) 

was reacted with 3-chlorophenylhydrazine hydrochloride (0.18 g, 1.00 mmol) in DCM (2 ml) 

at room temperature for 2 hours. Work-up as previously described and purification by 

chromatography on silica gel (elution with petrol ether / ethyl acetate = 1:20) afforded 

compound 196 (0.27 g, 69%) as a white solid.  m.p. 155-157 °C. 

NMR δH (400 MHz, DMSO-d6), 10.84 (1H, s, NH), 7.80 (1H, s, CHN), 7.20 (1H, t, J = 8.4 

Hz, H-5’), 6.98 (1H, t, J = 1.6 Hz, H-2’), 6.86 (1H, dd, J = 8.0, 1.2 Hz, H-6’), 6.76 (1H, dd, J 

= 8.0, 1.2 Hz, H-4’), 3.10 (4H, s, H-2‖, H-6‖), 2.38 (4H, s, H-2‖, H-6‖), 2.17 (3H, s, CH3). 

NMR δF (376 MHz, DMSO-d6), 15.9 (2F, dd, J = 20, 7Hz, F-3, F-5), 9.7 (2F, dd, J = 20, 7 

Hz, F-2, F-6). 

NMR δC (100 MHz, DMSO-d6), 146.5, 144.7 (dd, J = 248, 14 Hz, C-2, C-6/C-3, C-5), 142.3 

(dd, J = 242, 15 Hz, C-2, C-6/C-3, C-5), 134.4, 131.4 (C-5’), 129.3 (t, J = 11 Hz, C-4), 126.7 

(CHN), 119.5 (C-4’), 111.9 (C-2’), 111.4 (C-6’), 108.0 (t, J = 12 Hz, C-1), 55.5 (C-3‖, C-5‖), 

50.9 (C-2‖, C-6‖), 46.4 (CH3). 

IR, νmax /cm
-1

 3356 (NH), 1643 (C=N), 1589 and 1473 (benzene). 

MS, m/z found 398.0911, C18H15
35

ClF4N4, (M+H
+
) requires 398.0916. 
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Diethyl 2-(2,4,5-trifluoro-3-morpholino-6-nitrophenyl)malonate (212) 

 

A solution of compound 211 (0.14 g, 0.50 mmol) in THF (1 ml) was added to NaH (0.04 g, 

2.00 mmol). Diethyl malonate (0.08 g, 0.50 mmol) was then added and the solution was 

stirred at room temperature for 16 hours. The reaction mixture was poured into deionised 

water (10 ml) and was extracted with ethyl acetate (10 ml x 3). The extracts were combined 

and washed with brine (approx. 10 ml), and then dried over sodium sulfate. The solution was 

concentrated under reduced pressure and the residue was subjected to a silica column (elution 

with light petroleum/ ethyl acetate = 2:1). The combined elution solutions were evaporated 

under reduced pressure to give the compound 212 (0.16 g, 75%) as a red oil. 

NMR δH (400 MHz, CDCl3), 4.87 (1H, s, CH), 4.26 (4H, q, J = 7.6 Hz, CH2), 3.79 (4H, t, J = 

4.4 Hz, H-3’, H-5’), 3.35 (4H, s, H-2’, H-6’), 1.28 (6H, t, J = 7.2 Hz, CH3). 

NMR δF (376 MHz, CDCl3), 39.4 (1F, t, J = 9 Hz), 19.6 (1F, dd, J = 21, 9 Hz), 15.6 (1F, dd, 

J = 21, 9 Hz). 

NMR δC (100 MHz, CDCl3), 165.7 (C=O), 150.1 (dd, J = 195, 2 Hz), 144.6 (ddd, J = 200, 11, 

7 Hz), 142.8 (ddd, J = 207, 13, 3 Hz), 133.1 (dd, J = 12, 7 Hz), 132.3 (td, J = 5, 3 Hz, C-4), 

113.6 (dd, J = 16, 3 Hz, C-1), 67.1 (C-3’, C-5’), 62.6 (CH2), 50.9 (t, J = 3 Hz, C-2’, C-6’), 

49.2 (CH), 14.0 (CH3). 

IR, νmax /cm
-1

 1743 (C=O), 1612 and 1527 (benzene), 1527 and 1342 (NO2). 

MS, m/z found 421.1227, C17H20 F3N2O7, (M+H
+
) requires 421.1217. 
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7-(1’H-Benzo[d]imidazol-1’-yl)-5,6,8-trifluoro-2-(methylsulfanyl)quinazoline (201) 

 

A mixture of compound 68 (0.44 g, 1.50 mmol), S-methylisothiouronium sulfate (0.21 g, 

1.50 mmol) and sodium hydride (0.18 g, 4.50 mmol) was added into a 25 ml round-bottom 

flask with DMF (4 ml). The reaction was conducted at 80 °C for 24 hours. The reaction 

mixture was poured into deionised water (10 ml) and was extracted with ethyl acetate (15 ml 

x 3). The extracts were combined and washed with brine (approx. 15 ml), and then dried over 

sodium sulfate. The solution was concentrated under reduced pressure and the residue was 

separated by using column chromatography on silica gel (elution with light petroleum/ ethyl 

acetate = 2:1). The combined elution solutions were evaporated under reduced pressure to 

give the compound 201 (0.06 g, 13%) as an orange solid. m.p. 162-164 °C  

NMR δH (400 MHz, CDCl3), 7.97 (1H, s, H-2’), 7.88 (1H, dd, J = 7.2, 1.6 Hz, H-7’), 7.37-

7.29 (2H, m, H-5’, H-6’), 7.23-7.16 (1H, m, H-4), 7.11 (1H, d, J = 7.2 Hz, H-4’), 2.14(3H, s, 

CH3). 

NMR δF (376 MHz, CDCl3), 57.1-56.9 (1F, m), 31.2 (1F, ddd, J = 22, 10, 5 Hz), 16.9-16.8 

(1F, m).  

NMR δC (100 MHz, CDCl3), 171.2 (C-2), 158.4 (dd, J = 249, 11 Hz), 150.2 (dt, J = 253, 13 

Hz), 144.0 (ddd, J = 253, 13, 5 Hz), 143.0, 142.9, 134.1, 127.4 (d, J = 10 Hz, C-4a/C-8a), 

124.3 (C-5’), 123.5 (d, J = 98 Hz, C-7), 123.3 (C-6’), 120.9 (d, J = 41 Hz, C-4a/C-8a), 120.8 

(C-7’), 110.1 (C-4’), 106.9 (dd, J = 30, 20 Hz, C-4), 14.2 (CH3). 

IR, νmax/cm
-1 

1635 and 1581 (benzene ring).  

MS, m/z found 347.0556, C16H10F3N4S, (M+H
+
) requires 347.0573. 
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