Loughborough University
Browse

The spline approach to the numerical solution of parabolic partial differential equations

Download (12.96 MB)
thesis
posted on 2010-10-18, 08:57 authored by Nashat Ibrahim Kadhum
This thesis is concerned with the Numerical Solution of Partial Differential Equations. Initially some definitions and mathematical background are given, accompanied by the basic theories of solving linear systems and other related topics. Also, an introduction to splines, particularly cubic splines and their identities are presented. The methods used to solve parabolic partial differential equations are surveyed and classified into explicit or implicit (direct and iterative) methods. We concentrate on the Alternating Direction Implicit (ADI), the Group Explicit (GE) and the Crank-Nicolson (C-N) methods. A new method, the Splines Group Explicit Iterative Method is derived, and a theoretical analysis is given. An optimum single parameter is found for a special case. Two criteria for the acceleration parameters are considered; they are the Peaceman-Rachford and the Wachspress criteria. The method is tested for different numbers of both parameters. The method is also tested using single parameters, i. e. when used as a direct method. The numerical results and the computational complexity analysis are compared with other methods, and are shown to be competitive. The method is shown to have good stability property and achieves high accuracy in the numerical results. Another direct explicit method is developed from cubic splines; the splines Group Explicit Method which includes a parameter that can be chosen to give optimum results. Some analysis and the computational complexity of the method is given, with some numerical results shown to confirm the efficiency and compatibility of the method. Extensions to two dimensional parabolic problems are given in a further chapter. In this thesis the Dirichlet, the Neumann and the periodic boundary conditions for linear parabolic partial differential equations are considered. The thesis concludes with some conclusions and suggestions for further work.

History

School

  • Science

Department

  • Computer Science

Publisher

© Nashat Ibrahim Kadhum

Publication date

1988

Notes

A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID

uk.bl.ethos.235119

Language

  • en

Usage metrics

    Computer Science Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC