Loughborough University
Thesis-2006-Shukla.pdf (29.49 MB)
Download file

Three-dimensional computational investigations of flow mechanisms in compound meandering channels

Download (29.49 MB)
posted on 2011-05-23, 08:22 authored by Deepak R. Shukla
Flow mechanisms of compound meandering channels are recognised to be far more complicated than compound straight channels. The compound meandering channels are mainly characterised by the continuous variation of mean and turbulent flow parameters along a meander wavelength; the existence of horizontal shear layer at the bankfull level and the presence of strong helical secondary flow circulations in the streamwise direction. The secondary flow circulations are very important as they govern the advection of flow momentum, distort isovels, and influence bed shear stress, thus producing a complicated and fully three-dimensional turbulent flow structures. A great deal of experiments has been conducted in the past, which explains flow mechanisms, mixing patterns and the behaviour of secondary flow circulations. However, a complete understanding of secondary flow structures still remains far from conclusive mainly because the secondary flow structures are influenced by the host of geometrical and flow parameters, which are yet to be investigated in detail. The three-dimensional Reynolds-averaged Navier-Stokes and continuity equations were solved using a standard Computational Fluid Dynamics solver to predict mean velocity, secondary flow and turbulent kinetic energy. Five different flow cases of various model scales and relative depths were considered. Detailed analyses of the measured and predicted flow variables were carried out to understand mean flow mechanisms and turbulent secondary flow structures in compound meandering channels. The streamwise vorticity equation was used to quantify the complex and three-dimensional behaviour of secondary flow circulations in terms of their generation, development and decay along the half-meander wavelength. The turbulent kinetic energy equation was used to understand energy expense mechanisms of secondary flow circulations. The strengths of secondary flow circulations were calculated and compared for different flow cases considered. The main findings from this research are as follows. The shearing of the main channel flow as the floodplain flow plunges into and over the main channel influences the mean and turbulent flow structures particularly in the crossover region. The horizontal shear layer at the inner bankfull level generates secondary flow circulations. As the depth of flow increases, the point of generation of secondary flow circulations moves downstream. The secondary shear stress significantly contributes towards the generation of streamwise vorticity and the production of turbulent kinetic energy. The rate of turbulence kinetic energy production was found to be higher than the rate of its dissipation in the crossover region, which demonstrates that the turbulence extracts more energy from the mean flu\\' than what is actually dissipated. This also implies that, in the crossover region, the turbulence is always advected downstream by the mean and secondary flows, The strength of geometry induced secondary flow circulation increases with the increase in the relative depth.



  • Architecture, Building and Civil Engineering


© Deepak R. Shukla

Publication date



A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID



  • en