Thesis-1994-Gupta.pdf (10.25 MB)
Download file

Transportation of ferromagnetic powder using linear motor devices

Download (10.25 MB)
thesis
posted on 15.12.2011, 09:51 authored by D.K. Gupta
The travelling magnetic wave of a linear induction motor induces eddy currents in a secondary circuit (usually a sheet consisting at least partly of a non-magnetic metal, often aluminium), which cause the unrestrained member to move linearly in the direction of the travelling wave. A linear motor can also transport ferromagnetic powder, although this travels in the opposite direction to the travelling magnetic field. The motion is therefore due to a mechanism other than the eddy currents flowing in the sheet secondary. Expressions for the forces acting on an iron particle due to a travelling magnetic field are derived in the thesis. Preliminary experiments support the assumptions made in the derivations of the force expressions and lead to the formation of an hypothesis. This is shown to be capable of predicting both linear and rotational particle speeds and, with greater accuracy, the distance travelled and the rotation experienced by the particles. Experiments conducted on tubular and transverse flux motors have enabled different linear motors to be identified as suitable for a number of powder transportation applications. The results obtained show also the importance of large flux density values, the tangential to normal flux density ratio and large pole-pitch winding arrangements, with the latter lending support to the original hypothesis. The results of a finite element investigation of the tubular motor did not closely agree with the results from the experimental motor although similar trends were evident. Flux density values within particles were found to be considerably greater than those outside, as assumed in the hypothesis.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Publisher

© D.K.Gupta

Publication date

1994

Notes

A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID

uk.bl.ethos.261246

Language

en