For medium and large gas turbine engines, the lean combustion technology has been recognised as one of the effective solutions for emission reduction. However, such systems are often susceptible to thermo-acoustic instability. As an essential component of the combustion system, the fuel injector plays a critical role in the feedback loop that leads to this instability. This thesis presents a study on the unsteady aerodynamic response of generic lean burn injector passages to incident acoustic waves. Single and two passage injector configurations were considered which consist of many of the representative features comprising a modern lean burn fuel injector. [Continues.]
Funding
Rolls-Royce/EPSRC industrial CASE studentship
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2017
Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.