In this thesis, new wavelet-based techniques have been developed for the
extraction of features from speech signals for the purpose of automatic speech
recognition (ASR). One of the advantages of the wavelet transform over the short
time Fourier transform (STFT) is its capability to process non-stationary signals.
Since speech signals are not strictly stationary the wavelet transform is a better
choice for time-frequency transformation of these signals. In addition it has
compactly supported basis functions, thereby reducing the amount of
computation as opposed to STFT where an overlapping window is needed. [Continues.]
Funding
Great Britain, Commonwealth Commission.
History
School
Mechanical, Electrical and Manufacturing Engineering
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2002
Notes
A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy at Loughborough University.