posted on 2011-06-22, 11:54authored byYanning Yang
This thesis is concerned with the problem of processing data from Wireless Sensor Networks (WSNs) to meet the requirements of emergency responders (e.g. Fire and Rescue Services). A WSN typically consists of spatially distributed sensor nodes to cooperatively monitor the physical or environmental conditions. Sensor data about the physical or environmental conditions can then be used as part of the input to predict, detect, and monitor emergencies. Although WSNs have demonstrated their great potential in facilitating Emergency Response, sensor data cannot be interpreted directly due to its large volume, noise, and redundancy. In addition, emergency responders are not interested in raw data, they are interested in the meaning it conveys. This thesis presents research on processing and combining data from multiple types of sensors, and combining sensor data with other relevant data, for the purpose of obtaining data of greater quality and information of greater relevance to emergency responders.
The current theory and practice in Emergency Response and the existing technology aids were reviewed to identify the requirements from both application and technology perspectives (Chapter 2). The detailed process of information extraction from sensor data and sensor data fusion techniques were reviewed to identify what constitutes suitable sensor data fusion techniques and challenges presented in sensor data processing (Chapter 3). A study of Incident Commanders’ requirements utilised a goal-driven task analysis method to identify gaps in current means of obtaining relevant information during response to fire emergencies and a list of opportunities for WSN technology to fill those gaps (Chapter 4). A high-level Emergency Information Management System Architecture was proposed, including the main components that are needed, the interaction between components, and system function specification at different incident stages (Chapter 5). A set of state-awareness rules was proposed, and integrated with Kalman Filter to improve the performance of filtering. The proposed data pre-processing approach achieved both improved outlier removal and quick detection of real events (Chapter 6). A data storage mechanism was proposed to support timely response to queries regardless of the increase in volume of data (Chapter 7). What can be considered as “meaning” (e.g. events) for emergency responders were identified and a generic emergency event detection model was proposed to identify patterns presenting in sensor data and associate patterns with events (Chapter 8). In conclusion, the added benefits that the technical work can provide to the current Emergency Response is discussed and specific contributions and future work are highlighted (Chapter 9).