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L earni

ing disability (LD) in the UK

There are about 1.5 million people with an
LD in the UK, including over 1.1 million
adults aged >18 years [1]

About 9 in 10 adults with LD are likely to
develop multiple long-term health
conditions (MLTCs)[2].

Introduction
What is the challenge?

Accurately predicting the length of stay (LOS) for
patients with LD and MLTCs using machine learning
(ML) is essential for improving patient care and
optimizing medical resource allocation. Despite its
potential, research on the application of ML models to

this specific patient population remains limited.
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Research Aim

This study employs ML models to predict an LOS of
Z 24 days for Welsh patients with LD and MLTCs
using clinical, lifestyle, and demographic variables.
It also addresses prediction fairness across ethnic
groups by implementing two bias mitigation
techniques. This highlights the potential of EHR

data to support equitable healthcare predictions.

Data Extraction & Machine Learning Framework
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Results

Initial Results ML Models performance Bias Mitigation Across Ethnic Groups

(FPR) and True Positive Rates (TPR) for (a) male
and (b) female cohorts. Models with lower FPR and
higher AUC/TPR are optimal;, RF was selected as the
best model.

ethnic groups) for the unmitigated RF model and bias-mitigated RF models
(threshold optimizer and exponentiated gradient reduction), for males and females.
A lower performance range indicates reduced discrepancies across ethnic
groups.

Distribution of patients with long hospital LOS = 129 days. (a) The 4 most
common conditions and (b) age distribution of patients with and without
mental iliness.
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Conclusions

This study develops ML models to predict hospital LOS
for patients with LD and MLTCs while addressing fairness
across ethnic groups. The RF model outperformed
others, achieving an AUC of 0.759 (males) and 0.756
(females), with balanced accuracy of 0.690 and 0.689,
respectively. Bias mitigation reduced disparities, with
the threshold optimizer showing the most significant
Improvements.
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Prolonged hospital stays and premature

discharge increase patient risks such as

.., Infections, falls, cognitive and physical

-ﬁ‘ decline, and emergency readmissions.

I::_ﬂ'.' Accurate LOS prediction is essential for

optimizing resource allocation and
preventing these adverse outcomes.

The findings highlight the potential for
equitable healthcare predictions using EHR
data, paving the way for improved clinical
decision-making and resource management.
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