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A APPENDIX

The aim of this appendix is to complete the thesis. Novel and original work
that was presented in the previous chapters is complemented by the appendix.
Additionally, well known essential theories, such as the beam’s and
plate’s partial differential equations, are also p.resented herein to enable a fast
understanding when deriving vibrational energy flow (VEF) of these
structures. In particul_ar the derivation of the internal forces and moments of a
transversally vibrating beam and plate was included, in order to gain a better
understanding when deriving the VEF expressions of beams and plates. 7
Further, results obtained on the theoretical and practical computation

of VEF in beam and plate structures are presented using tables and figures.

437



e Loughboraugh
Elniveysity

Pilkinglon Litrary

Date 2'1’{ ?-—-[ o9

Class —T—‘

Acc

No. O brf “Fb’ll




Appendix

Appendix Al
Partial Differential Beam Equation

The partial differential beam equation is derived using classical Euler-
Bernoulli theory. The beam is assumed to be homogenous and isotropic. The

displacement is considered to be small, thus tan(e) = a. As shown in

_———— dF,
l dr | F;-}— 9z -dz

Figure Al.1 Infinitesimal small beam element under bending,.

Figure Al.1, the infinitesimal small increase in angle (6f/0z)dz at the right-

hand side due to flexural wave motion of the small beam element is given as:
lir=-Z%, (A1.1)
z

Here, u is the lateral displacement, which is a function of space and time.
Vibration behaviour iz derived from the linear elastic stress-strain-

displacement relations. Inserting the strain-displacement relation, g = z/dz,
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where &, is the normal strain in the z direction, into equation (Al.1), the

normal tensile strain on the small beam element is defined as:

(A1.2)

Applying Hooke’s law for a linear elastic medium, the normal linear stress

distribution of the small beam element is given by:
o, =—Ez—. (A1.3)

The material dependent constant F is known as Young’s modulus. Multiplying
the normal stress g, by a moment arm z that is perpendicular to the cross-
sectional area A and integrating this product over the beam’s cross-sectional

area, the bending moment M, can be found to be:

2z, | 0*u(z,t

M, = [ozdA=— wafdA S CACICA) BN
y Oz g Oz

The material geometry dependent factor I is the second moment of area. By

taking moment equilibrium on the small beam element (positive sign in

clockwise direction):

oM
-M, —I—[My-r— 8; d:?:]—l-F;dx:O, (A1.5)

one can find the shear force F, to be:

M 3
P __oM, =EI6 u(z,t)

’ Oz az® (A1.6)
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It can be seen that the shear force is the spatial derivative of the bending
moment. The partial differential equation of motion may be derived by
applying Newton’s second law of motion on the infinitesimal small beam

element as:

-6F Fu
F —|F +—%dz|= pAde—. Al.7

The relation given in equation (Al.7) is the internal reaction to external load
application. Substituting equation (Al1.6) into equation (Al.7), the general
inhomogeneous partial differential equation of a transversally excited beam

forced by a general load is given by:

4 2
9'u(z,t) —i—pAa u(z,t) _

EI
ozt at?

p(z,t), (A1.8)

where p(z,t) is the load applied per unit length. In the case of a point force

excitation, the applied load term can be written as:
p(z,t) = Fb(z—z,)e’™. (A1.9)

Here, F, is the applied force amplitude, j = V-1, ®/2n is the excitation
frequency applied at excitation location z, and J represents Dirac’s delta
function. The Euler-Bernoulli theo'ry neglects shear deformation and rotary
inertia effects. The upper frequency limit is given by A < 6{, where 4 is the
wavelength and, ¢ is the beam’s thickness. Linear hysteretic damping can be
introduced to the beam’s partial differential equation straight forwardly by

employing a loss factor 7 in the normal stress equation (A1.3) as [114]:

N
7, ~_——E(1+Jﬂ)za—;:. (A1.10)
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Appendix A2
Time-Averaging of Complex Instantaneous Quantities

The time-averaged vibrational energy flow in a beam under sinusoidal load

variation is given by:
(% T
(P@), =~ [ Fodt— [ Mywpt|. (A2.1)
0 0

If one assumes the shear force Fy as a real quantity, the following can be

written as:
Fy = F cos(wt). (A2.2)

The respective translational velocity component v, which is also real, is given
by:

vg = g, cos(wt — ). | (A2.3)

Herein, @ is the phase difference between force and velocity. Analogously, the

bending moment My is:
Mp = My cos(wt), (A2.4)
and the angular velocity oy is given by:

wy = wy, cos{wt — ). (A2.5)
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By substituting the above defined force and moment terms as well as its
appropriate velocity components  into equation (A2.1), the time-averaged

energy flow of these real quantities is:

cos
P = 2(90) (FSUUS.] —Mﬂowﬂu). (A2.6)

Analogously, when using pure imaginary force, moments, and velocities,
defined by the sine function, the time-averaged energy flow of imaginary

quantities is given by:

p = Sn) (B v, — My wp ). (A2.7)

However, in this work the shear force, translational velocity, bending moment
and angular velocity are employed as complex quantities and, thus,
F, = Fsoe"“’t, Vg = Usnej(“’t'”) , My = MBDej“" and w; = wBﬂej(“’t_‘o). Neglecting the

time independent amplitudes, it can be shown that:

j cos (wt) cos(wt — p)dt =% R [j e (ej(“’““’) )*dt] : (A2.8)

0 0

The asterisk * denotes conjugate complex of the velocity term and, R denotes
the real part of the complex energy flow expression. By solving the integral on
the right-hand side of equation (A2.8), time-averaging of complex products

can be written as:

lg}g jem (e-"(“’*‘*"))*dt = lg,g {ejwt (ej(wt—w) )} = léR {(ijs ) e:‘(wtkw)} (A2.9)
2 2 2 T

0
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Thus, in g.eneral it can be written [102]:
1 a1 .
(R{A}R{BY), :-2-§R{AB }=§§R{A B}. (A2.10)

Here,. () denotes the time-averaging of two complex quantities, A and B.

Similarly, when the time-averaged product of the imaginary part is of interest:

(S{A}s{B}), = %E}{AB*} = %%{A*B}, (A2.11)
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Appendix A3
Partial Differential Plate Eqﬁation

The derivation of the plate’s differential equation is similar to the beam case.

Also here, classical Euler-Bernoulli theory is employed. The plate is considered

Y

Vi

)

7
]

7
a
I 2. ////é%/?

7
%

Figure A3.1 Deflection and rotation of the plate element under lateral load.

to be homogeneous and isotropic. Thin plates are considered only. Thus,
h< L, and R L, where L, is the plate’s length, L, is the plate’s width and,
is the plate’s thickness. Further, it is assumed that the normal of the middle
plane before bending is deformed into the normal of the middle plane after
bending. The stress in direction of the plate’s thickness ¢, is neglected. Finally,
the middle plane remains unstrained after bending [136]. In contrast to the
beam, the infinitesimal small plate element experiences deformation in
longitudinal and lateral direction. By assuming linear elastic deformations,
longitudinal strain, lateral strain, and shear strain components occur.

Figure A3.1 displays the deformation of a plate part under lateral
loading. When loading the plate, the plate element experiences a deflection, w.

If one assumes small deflections, the respective deformation angle @ is then
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approximated by tan(e@) = & ~ dw/dz. If one considers the motion u of a point
in the element and the strain is the partial derivative of this small point

motion, i.e. &, = Ou/dz, then the strain-deflection relation is given as:

0w
£ =—2

_ - (A3.1)

Similarly, the motion of a small point v into the y direction can be defined as:
£, = —2—. (A3.2)

It can be shown that the sum of Ou/dy + Ov/Bz can be identified as shear

strain g, and, thus, it follows that:

2
— _9y 0w

X A3.3
Ea Ozdy ( )

Using Hooke’s law, the stress-strain relations of all three strain components

are given by:

1
€ = E(Gm — V(J'w), (A3.4)
1
£y = E(aw - varm), (A3.5)
Epy = i-’r . | (A3.6)
SR

Herein, v is Poisson’s ratio, F is Young’s modulus, G = E/2(1+v) is the
shear modulus and, 7,, is the shear stress. Using equations (A3.1) to (A3.3)
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and equations (A3.4) to (A3.6), the following stress-deflection relations can be
obtained [136]:

Ez (0*w 8w
= - . A3.7
O'm: 1—1/2[8272+V8y2] ( )
Ez (8*w 8w
O'yy:—l_y2[ay2 +U6x2]. (A38)
Bz 8w (A3.9)

Ty "1+u3$3y'

To obtain moments, occurring in a thin plate under lateral load, the above

defined stresses are integrated over the plate’s thickness. Thus [108]:

" Fw  Ow
M, = dz = —-D|—+v—|, A3.10
oz ‘!;2012:4 2 [83:2 vay2] ( )
b2 2 2
0w O“w
M = z2dz =—-D +v—=—/|, A3.11
w ﬁ{zayy Z [ayz V@mz] ( )
" 8w
My =M, =— hf/ 2Txyzdz =D =v) g, (A3.12)
with D being the flexural rigidity of the plate given as:
3
p=—"" _ (A3.13)
12(1 - %)
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The negative sign in front of the integral expression in equation (A3.12) is due

ouw
ou o
0z z
p dxdy
Y
, Q.
M
l [\
, M, + d
f!dy aM W O z
oM, M,, +—"dy
)

Figure A3.2 Forces and moments on small plate element.

to equilibrium with the shear force, according to the sign conventions
displayed in Figure A3.2. Figure A3.2 also displays all the moments and forces
acting on an infinitesimal small plate element. To obtain the shear forces, <')ne
\may take moment equilibrium about the sr';-axis and yaxis. By taking the

moment equilibrium about the z-axis:

oM aM
= dzdy — a—m’dydz +Qdzdy =0, (A3.14)
T Y

as well as about the y-axis:

oM
—E dydz + oM, drdy — Q. dydz = 0, (A3.15)
oy Oz
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the shear forces ), and @, per unit length are given as:

(8w BH*w

o= [T+ 57 (A316)
8 (0w B

Qy =—D6—y 6y2 +@- . (A3.17)

It can be seen from equations (A3.16) and (A3.17) that the direction of the
shear forces, as shown in Figure A3.2, is in opposite direction. From Figure
A3.2'it can also be seen that the infinitesimal increment of the shear forces,
bending moments, and twisting moments needs to be taken into account only.

Applyihg Newton’s second law of motion to the small plate element yields to:

8Q aQ 8w
Z%s gady + 2 dydz + pdedy = phdzd .
Ba:my By yar +— paray Pmyatg

(A3.18)

Substituting equations (A3.16) and (A3.17) into (A3.18), the inhomogeneous

partial differential equation of a plate, loaded laterally, may be written as:

8w 0w 8w 8w
2 h
oz* + 00y’ * oy’ te ot?

=p. (A3.19)

By applying the biharmonic of the two-dimensional Laplace operator as:

: . R R 84 64 84
Vi=V. V2 =—+2 +—, A3.20
oz* az*oyt oyt ( )
equation (A3.19) in its final form can be written as:
2
DV*u(a3,8) + ph T2 = ). (A3.21)
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Appendix A4

Numerical Differentiation Using Finite Differences

The most common technique to obtain derivatives from tabulated data is the
use of finite differences. A finite difference is the algebraic difference between
data points of the function f(z) separated by the spacing Az. The so-called
forward difference is given by [137]:

Af @) = f(z + Az)— f@. (A4.1)

A is known as the forward difference operator. Analogously, the backward

difference is defined as:
Vi@ = f@)~ f(z— Az). , (A4.2)

 Herein, V is the backward difference operator. It can be seen that forward
differences employ points upwards the point of interest and backward
differences use points downwards the point of interest. The third type of

differences is the so-called central differences 8. Its first order form is given by
[138]:

6f @) = f[a:-}-%A:c)— f[m—%Aa:]. (A4.3)

Central differences employ points upwards and downwards the point of
interest. Finite differences can be of different order n. Forward differences of

different order are related to each other as [137):

Af@ =Ala @) (A4.4)
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Analogously, equation {A4.4) can alsc be applied to backward and central
differences. It can be shown that the so-called difference quotient [137] is

related to the infinitesimal calculus of order = as [139]:

n . AN

Here, D, is the differentiation operator of order n, An is the forward difference
operator of order n and Az is the spacing between two adjacent points of the
function f{z). The same relationship holds true for the backward and central
differences. When differentiating tabulated data numerically, the limit cannot
be applied (unless the point ensemble is approximated, e.g. by an interpolation
method). Thus, numerical differentiation using finite differences is an
approximation to the true derivative value. The error made can be found
using the Taylor expansion. Consider the two Taylor expansions of the two-

dimensional function u(z,y) as [140}:

2
u(z,y) + 245 ;m’ v, %hz Sulzy) z;(:i’ v
u(z +h,y) = ’ ’ ’ ; (A4.6)
3
1) |
3! oz*
2
u(z,y) - 2B p? Guzy)
u(z — hyy) = Oz 2 oz (A4.7)
3
ih3 5u(zy) + ...
31 Oz®

~ Herein, Az = h is the constant spacing between adjacent points. The first
partial derivative of u(z,y), where u(z,y) is the point of interest, can be
obtained in different ways. By truncating the Taylor series at the second term
and rearranging equations (A4.6) and (A4.7), respectively, one may obtain the
first partial derivative containing the forward A and backward V difference, as
given below [140]:
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Ou(r,y) _u(z+hy)—ulry) 1, . _
Ou(oy)_ wlmy)-ul—hy) 1,
o4 . +Shf (8. (A4.9)

It can be realised that the second term of equations (A4.8) and (A4.9) is the
error made due to the truncation of the Taylor series. It can also be seen that

this error is a function of the spacing h. The algebraic difference of equations
(A4.6) and (A4.7) yields to [140]:

auéz’y) = u[m + %h,y};u[m — %h,y] —%hg fm ©. (A4.10)

It can be noticed that the error that is made when using the central difference
is proportional to A’ Thus, this expression is more accurate than the forward
or backward difference approximation. Forward and backward differences are

related to the central difference by employing a so-called shifting operator
Eu(z) = u(z + h) as [141):

§"f )y = B, *Af (@) = EXVf (). (A4.11)

Every further derivation can be found by employing equation {(A4.4) and the
right-hand side of equation (A4.5) to compute the respective forward and
- backward difference quotients of order n. Equation (A4.11) is employed to
determine the central differences. Thus, the second order forward difference

quotient is:

O*u(z,y) N AlAu(z,y)] _ u(z + 2h,9) ~ 2u(z + h,y) + u(z,y)
oz’ (Az) K

. (A4.12)
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‘The second order backward difference can be found to be:

82”(3"’3}) ~ V[Vu(a:,y)] — u(m,y)—2u(m—h,y)+u(m—Qh,y)

. (A4.13
9z’ (Az) h (44.13)

Finally, the second order central difference becomes to:
Qu(z,y)  EN BV’  u(z+hy)—2u(zy)+u(z—hy) (A4.14)

8z (Az)  (Az) h?

The third order difference quotients can be found analogously, as

demonstrated above, The third order forward difference quotient is given by:

A[Azu(m,y)]_ _ u(z+3hy) —3u(z +2hy) + 3u(z +hy)—u(zy) _

A4.15
(Az)s h’ ( )
The third order backward difference can be found to be:
V[V’u(w,y)] _u(zy)—3ulz—hy)+ 3u(z —2hy) — u(z — 3h,y) (A4.16)
(A$)3 n? '
Finally, the third order central difference becomes to:
3 1 1 3
3 w|lz+=hyl|-3ulz+=hy|+3u|lz—=hy|—ulz—=hy
Ou 2 2 2 2 (A4.17)

oz* h3

Also here, the error due to truncation is either proportional to h or A,
depending on the use of the forward, backward or central differences. Thus,
when using central differences and decreasing the point distance h by half, the
error can by reduced by factor 4. However, the spacing between two adjacent

points can not be decreased endlessly, since the error due to rounding of a
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computer increases its influence with decreasing h. It follows that A 2 e,
whereas & is the rounding error. The above shown equations are the
approximation of the partial derivates with respect to z only. To obtain
partial derivatives with respect to g, the variable z needs to be substituted by

y. For beam derivatives, the variable y needs to be set to zero.
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Appendix A5

Spatial Derivatives of General Four-Wave Equation

The right-hand side beam displacement is given by:
u, (z,t) = (4,e™ + B,e™ + B.e™ + Ae") ™. (A5.1)

The spatial derivatives can be found to be:

__‘9“% (;’t) = (kA" — jkB,e7" + jkB.e™ + kA7) M, (A5.2)
2
; | | _
a ug_qff’ ) - (k2A+e_kt - k2B+e_ka - k2B"eka + k2A_gh) EJM, (A53)
3
° uz;m(‘?—’ I (—k*A,e™ + K°B,e ™ — jK°Be™ + K'Ae”) . (A5.A4)

The left-hand side beam displacement is given by:
u_(z,t) = (C.e" + De™ + D, + C,e™™) ™. (A5.5)

Its spatial derivatives can be found to be:

__.._3”—6 @0) _ (k0.c* + kD.e* — kD, —kC.e™) &, (A5.6)
xr
2
6_%@ = (KCe* —KD.e™ —KD,e ™ +12C,e™) e,  (A5.7)
xr
3
u (1) % @8) _ (190 e — KD.e* + 4D, —KC,e™) e, (A5S)
xr
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A complete wave field of a beam is given as:

Ae™ +Be®™ +Be™ + A+

. . e, A5.9
Ce® +De™ 4D Jrf:"""kr +C +e“*‘”’ ( )

u(z,t) =

and its spatial derivatives are:

du(z,t) |~HAE — kB + kB e + kAT +)
— = | | | ¢, (A5.10
oz kC €< + jkD_e"'“ — jkDJre‘J“' -kC +e““"‘ ( )
O%u(x,t) FAe™ —kKBe ™ —kBe™ +kAe" +) t
— = : : e, (A5.11
8372 k2c_eh: _ k2D_eJLmr _ k2D+e—JAm + k20+e—l.a; ( )
O%u(z,t) —k*A, e + j&*B. e — jK°B ™ + k' Ae” +] t
FyCaa ' - | e (A5.12
awa ksc_en‘w _ jkaD_eJAm + jk3D+e—JL-: _ k30+e—kxc ( )
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Appendix AG

Four-Wave Vibrational Energy Flow Equation

By substituting equation (5.1) into equation (3.33), under consideration of
the derivatives given in Appendix A5 and omitting the temporal term &',
one may obtain the complex, time-averaged shear force energy transmission

as:

B, B_: - Bf + B, Bf_ o M-y _ B B: M)
j(f—’_u (A+A: — A_A:) + (A+A:e-2kt _ A_Aiezk(zw) )) n
e B A + je M IAD -

| | + | e
2 ejk(z_L)B_A:_ + jeJkrA_l_B,:

EIL?
(R"S )4W = =

*

e_th+A_ _ je—jk(z—-L)A_Bi _
ek(z—L)

ejk(I—L)B_Ai _ JeJIm:A_BT

Analogously, the complex, time-averaged bending moment energy flow can be

found as:

B +B: - B_'_( ~ B, Bje—jk(u—L) +B B: M2z 1) n
5(E (AL = AR )+ (AL — 4, Ae™) +
Elw| . |767"B A + e VA B +

— —kr _
('PIEB )4W — 9 € jefk(m*L)BiA: B eJhTAFB: . (A62)

je*.'kaB+Aj _ e—]k(a:fL.)AiBj i
7€ PB A" 4+ ™A B,

ek(:ch)

The total, complex, time-averaged net energy, flowing through a rectangular

beam section, is simply the sum of equation (A6.1) and equation (A6.2), i.e.
('Pt)zﬂ-v = (P:rq )4W + (R:” )4W and, thus:

456



Appendix

BB, —B.B" +je " (A,A" — AA})+

D) ( DR AT ety B:) . (A6.3)

[1 + J] E_h (e_jLT.B+A:_ + e—jk(x_L)A+B:) -
2

(P )y = Bl
T o
2 )| e-n ( e MDA B* 4D +Ai)

/

Equation (A6.3) displays the total, complex net energy flow within a beam.
The real part of (A6.3) is the active energy transmission. The imaginary part
of equation (A6.3) is reactive VEF. Equation (A6.3) does not reveal real and
active VEF directly and, thus, will be simplified further. If one takes the

following relations into account:

®{AB'} =®{A'B}, (A6.4)
3{4B"} =-3{4'B}, (AB.5)
AB'+ A'B=2R{AB'}, (A6.6)
AB —A'B =2j<:f{AB*}, (A6.7)

where A and B are arbitrary complex numbers, the simplified time-averaged

active energy flow within a beam can be written as:

To

(R.),, = E6*w(B,B, — B B" —2:3{4,4}). (A6.8)
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The simplified time-averaged reactive VEF of equation (A6.3) can be found
to be:

cos (k(z — L)) S{4,B"} +
cos(kz)S {B, 4, } -

sin (k(z — L))R{4,B8"} -
sin (kz)R {B, 4, }

cos (k)3 {4 B;} +
o |cosk@-D)S{BA}+
“ sin (kz)R{A.B} } + i
sin(k(z — L) R{B A"}
cos(k(z— L) R{A,B"} +
cos (kz) R{B, 4; } +
sin(k(z — L))S${A4,B} +
sin (kz) S {B, 4] }
cos(kr)R {4 B, } +
cos(b(c—L)R{B A}-| || (AG9)
sin (kz)S {4 B; } -

sin (k(z — L)) {B_4"}

P ) = jEIKw
(P oy =1

-tz

oMl
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Appendix A7
Forced Vibration of an Infinite Beam due to Point Force Excitation

The transverse displacement of the infinite beam is given to either side as:
u, (z,t), =(A,e™ + B, )e™ for 220, (A7.1)
u_(z,t), = (C‘_e“’“ + D_ej“)ej“’t for z < 0. (A7.2)

Substituting equations (A7.1) and (A7.2) into the appropriate spatial
derivatives, as given in Appendix A5, the boundary conditions of an infinite

beam at the excitation location are:
u, (O)Fﬂ° =u_(O)Fm = A +B —-C_~D_=0, (AT7.3)

du, (), _ Ou_ (0)g,
Oz Oz

= —A, —jB,—C.-jD_=0, (A7.4)

8%u. (0 8*u_(0 |
prl% Qs 5 0w O A, -B. —-C_+D_ =0, (A7.5)

or* Oz*
8%u, (0), 9w (0), R F
B am _ = = — ——A i3 ——C D = g ‘ ATG
o7 o E o A tIB O D =gpe (ATH)

Note, here the sign conventions of Figure 5.2 are employed in combination

with the excitation force direction and wave components, as shown in Figure
5.3.
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From equations (A7.3) to (A7.6) a matrix system according to [C]{A} = {F}

can be constructed as:

11 -1 =14 [ 9]
-1~ -1 —3(|B,{ 0
1 -1 -1 1|l ° (AT.7)
-1 j -1 jl|iD Fy
\EIE* ]

Here, [C] is the 4x4 wave amplitude coefficient matrix, {A} is the 4x1 wave
amplitude vector, and {F} is the load vector. Solving this simple matrix
system to obtain the desired wave amplitudes, the inverse of the [C] matrix
has to be determined. The equatibn system can be solved simply as

{A} = [CT " {F} and, thus, the wave amplitudes are given by:

| K
J

(4, 4EIk
B __ IR
+ AEIR?

ic1=1 "5 o (A7.8)

D _43})15“

) _ IR
| 4EIk* ]

The transverse displacement in dependency upon the excitation force
magnitude F, can be found simply by substituting the wave amplitudes into

equation (A7.1) and (A7.2), respectively, and thus:

u, (:c,t)Fm, = _E;lcT(G_M + jeh"“)e"“" for z2 0, (A7.9)
£y = ——2 (" 4 je™)e™ for ¢ <0 A7.10
u_(2,t)5 ——m(e + je )e or x < 0. (A7.10)
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Appendix A8

Forced Vibration of an Infinite Beam due to Moment Excitation

" The general transverse displacement of the infinite beam is given by:
u, (,t) = (A,e™ + B,e™™)e™ for 220, (A7.1)
u_(z,t), = (C_e""“" + D_ej‘“)ej“’t for < 0. (A7.2)

Applying the boundary conditions at the excitation location by substituting
the general displacement equations (A7.1) and (A7.2) into the appropriate
spatial derivate equations, as given in Appendix A5, one can write the

boundary condition equations as:
“+(0)M,,, zu_(O)Mm = A, +B. -C_ —-D =0, (A8.1)

du, (U)Mm' . Ou_ (O)MM

= —A,—jB,—C_—3jD.=0, (A8.2)

Oz oz
8'u, (0)y 8u_(0); M, M
- = => A, —B —-C_ +D ==, A8.3
33:2 ’63}3 EI + + - + - E'Ik2 ( )
9™, (0) 8*u_(0) _
Bl—— = = Bl Y Pe = — A, +jB,—C_+jD_=0. (A84)

Also here, the defined sign conventions of Figure 5.2 are used in combination
with the direction of the excitation moment and wave components, as shown

in Figure 5.3.
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The vibrational matrix equation is given as:

P
J—t
I
—
I
—
o

-
;

o O

(A8.5)

|
|
o
I
=

EIX’

|
[y

LCY

|
o
.
o

=

By solving equation (A8.5), the wave amplitudes are found to be:

3 Mn
AETIK
MU

| 4ER?
[ — | 3 A8.6
M, (A8.6)
AEIK*
MO

| 4EIEK® |

SRS

& o

Analogously, substituting equation (A8.6) into equation (A7.1) and (A7.2),
respectively, one can find the transverse displacement of an infinite beam,

loaded by a harmonically varying moment as:

M

u, (2,t), = IET#(G—M - e’j""’)ej"’” for 20, (A8.7)
u_(z,t), = —%(eJch - ej“)ej"’t for £ <0. (A8.8)
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Appendix A9
Forced Vibration of a Simply Supported Beam due to Point Force Excitation

The beam displacement of a simply supported beam is composed of the
infinite beam response and the reflection of the infinite wave travelling on the
beam’s ends. Hysteretic damping is included here, simply by employing a
complex Young'’s modulus E = E(l + Jn) and, thus, a complex wavenumber

as:
ke k{172 = k(- 7). (A9.1)
With equation (A9.1.) the transverse finite Beam displa.cgment is given by:
u(z,t) = (u (@)oo + B ™D 4 A D 4 D e 4 Ce™ ) ™. (A9.2)

It can be seen from equation (A7.8) that the respective right-hand side and
left-hand side wave components are identical. It is more convenient to apply
the infinite beam response in a finite beam analysis by a summation

expression as:
2
u(T)p, = ZKne'&"]x"_Il : (A9.3)
=1

Herein, k, =k and k, = jk and K, is the wave amplitude of the nearfield for
n = 1 and of the farfield for n = 2. If one distinguishes between a right-hand
side and left-hand side displacement of the excitation location, the infinite

beam response can be written as:

u, (z,t) = (Ake_j‘"'(t-x") + B&‘jﬂr"z"))e’w, for 22 z,, (A9.4)
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u,, (z,8) = (C’_e"’!(m"_r) + D_e’&(“"’fx))e"‘“ ,for £ . (A9.5)

To derive boundary conditions, equations (A9.3) and (A9.4) are used. To
plot the beam’s response, equation (A9.2) is used instead. To find the eight
unknown wave coefficients, eight boundary condition equations are required.
Four of them are related to the conditions at the excitation location. These
are identical to the boundary equations given by equations (A7.3} to (A7.6)

as:
Yoo ($0)1>J:0 = U (wﬂ)xcco ‘ = A+ +B—_C— -D =0’ - (A96) :

Ou 0
20 (:L-U)I>.’L'n _ U ($0)1-<:rn = _A+ — JB+ — C_ —_ JD_ = 0, (A97)

Sz Oz
*ulz 0%u_(x,
Bl ;;2)»1-1, = EI a(xz)zmn = A4, -B,—-C.+D =0, (A9.8)
aauoo (mﬂ )a:>a:,,
oz® Fy ; ] F
=0 = —A B, —-C D =—2_,(A99
6311,00 (.’EO).’E(-T() Er + T 95 - T EI]_QS ( )
or’

The remaining boundary conditions can be found at the location z = 0 and z
== L of the beam, simply by assuming zero transverse displacement and zero

bending moment there as:

Be ' 4 At 4
u(0), =0 = _ =0, A9.10
O Ce*™ +De’™ +D +C, ( )
2 —Be i 4 A et 4
E[.au_(?)w =0 e =0, (A9.11)
Ox Ce™ —De’™ —D +C,
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. A_'_E_E(L—%) + B+e"-'fﬂ(L'$ﬂ) +
u(L), =0 = » L1=0, (A9.12)
B +A +De™+Ce™
2 A e‘E(L—To) -B g TML-m) _
e o o |™ - =0 (A9.13)
oz B +A -De™ +(Ce™

As shown in Appendix A7 and Appendix A8 a matrix system [C]{A}= {F}
can be formed from equations (A9.6) to (A9.13), whereas the coefficient

matrix {C] is given as:

1 1 0 0 -1 -1 0 0
-1 —J 0 0 -1 —J 0 0
1 -1 0 0] -1 1 0 0
-1 i 0 0 -1 i 0 0
[C] = 0 0 A A 1 1 (A9.14)
0 0 —e JkL e—&L e—b., _e—jkro 1 1
B—E(L—xo) —Fh(L—#y) 1 1 0 0 e LIRS -/
—k(L-70) ___—jh(E-m,) 1 1 0 0 e Bl
The force vector is given by:
7 T
{F} ={0 0 O g 3 0 0 0 0. (A9.15)
Elk

As demonstrated in Appendix A7 and Appendix A8, the inverse of the [C]

matrix must be determined and the equation system can be solved as

{4y =ler {F}.
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With this procedure, one may find the exponential wave amplitudes as:

(A9.16)

Equation (A9.16) may be expressed by sinusoidal and hyperbolical functions

as:

MEEENEEEEES

=

~ 4EIR

| ~-1
—; |
j(cos(lc(L——xO))—cos( L+:c0)))
(1 — cos (2kL)

)
(cosh(k( —mU)—cosh( (L + =, )) '

(1— cosh (2kL))
-1
—J
i (cos (Emo) — cos (E (2L — T )))
(1 — cos (2kL))
(cosh (kz,) ~ cosh (k(2L — =, )))

(1 - cosh (2kL))
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If one neglects material damping by settiné; the loss factor equal to zero

(77 = 0), expression (A9.17) can be reduced to:

-1
. —J
A sin (kz,)
B, T sin(kL)
B_ sinh (kz,)
A _F sinh (kL)
.|~ 4ER®] ~1
D. —J
D, sin(k(L - z,))
LC+ j sin (kL)
sinh (k (L — z,))
sinh (kL)

(A9.18)

Unfortunately, if one includes hysteretic damping, equation (A9.17) cannot

be simplified further. Substituting equation (A9.16)} into equation (A9.2) and

using equation (A9.3), the exponential transverse displacement of a point

force excited simply supported beam can be written as:

otz + je—jﬂlﬂ"h'xl -
j (ekj&(L*—%) — ekjE(L—IU)) ejk(ﬂi—fa) —
(6—2jl_cL _ 1)
_ R I S _
4EI.]§3 (672@ — 1) €
j e—ﬂ_v(u—zu) — o k% .
( o )e ke _
™ -1
( o HeL-m) _ e‘i—"”o) -
(e-m _ 1)
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Appendix A10
Forced Vibration of a Simply Supported Beam due to Moment Excitation

The derivation of the transverse displacement of a simply supported beam
excited by a moment is similar to the procedure demonstrated in Appendix
A9. The general transverse displacement of a finite beam excited by a

moment is given by:
u(z,t) = (u(m)m + B ™D L AP LD e L 0™ ) e, (A9.2)

The infinite beam response due to an applied moment, as shown in Appendix

A8, may be written in the following form:
2
u@n, =9 (=1)"" sig(z ~ 2, ) Fye &, (A10.1)
n=1

Herein, sig(z—z,) is a function similar to the well known signum function,

sgn(z). However, in this work sig(z—x) is defined as:

1 forz >z,

sig(z — 5) = -1 forz <z,

(A10.2)

In equation (A10.1) F, is the nearfield wave amplitude for n = 1 and the
farfield amplitude for n = 2. Furthermore, k, =& and &, = jk. The sig
function is required because the respective left-hand side wave amplitudes
and right-hand side wave amplitudes are identical in magnitude but different
in sign. The infinite beam response in dependency upon a positive and

negative spatial position is given by:

u, (z,t) = (A,*e_ﬂ(z_x“) + Bi_e_ﬂ(x_r“))em, for z 2 z, (A9.4)
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u (z,t) = (C,eki(rrx) + D_e"'k("”°_”))ej“’ , for z <z,

(A9.5)

The four boundary conditions at the excitation location can be written as:

Uy, (wﬁ)x>xn = uﬂo( U)x<1:ﬂ =>‘A+ + B— - C— o D‘ = 0, (Agﬁ)
Ou, (z, Ou, (z
( D)I>% — ( U)::<rﬂ = __A+ _— ]B+ — C_ — J_D_ = 0, (A97)
Oz Oz
Ou,, (x,) N 8u, (z,) M M '
o0 L o0 F<T 0. A — B _C D = 0 3 Ai0.3
oz’ oz’ Bl T e EIX ( )

= — A, +jB, —C_+jD_=0. (A104)

The four boundary conditions at z = 0 and, z = L are identical to the point

force excited case and are given by:

Be ¥ g et 4
* Ce*™ +De™ +D +C,

B g A
z Ce* —De’™ D +C,

At 4 oM |

u(L .
&) B +A_+De™ +Ce*

=0 =

a8

A+e-£(L—zn) - B+e—:r'£(1r—xa) -

2
or

B +A -De™4Cet
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The above given boundary equations may be combined into a matrix system,

e [C]{A4} = {M}. Thus, the coefficient matrix [C] is found to be:

[€]

0
0
e_I_.-(L—:r-.,]

e—k(L-xo)

e-j’_c{L—zo)

_e—ji‘(L—Tﬂ)

The moment vector is given as:

{M}z{o 0

[ S -1 0
0 -1 —j 0
0 -1 1 0
0 -1 j 0
G—EL e—..‘LTn e“jii'-u 1
e—-ri»L e‘&?’o _.e-j’!-’ﬂu — 1
1 0 0 gk
1 0 0 e
T

M.
0 0 0 0 Of .

Elk

B = I I == R e |

By solving {A} =[C]"' {M}, the wave amplitudes are given by:

+tm +"kl

th IQ A |bl Im

-

1 ]
-1
(e—jE(L-i-rn) + e—iE(L—“’u))
=

(e—’—“(“ ) 4 e—f_v(L—In))
( o2 _ 1)
-1
1
(e—iE(2L—-’fo) + e‘jj—‘"’:ﬂ )
(6'2’ B 1)
(efﬁ(zl"""ﬂ)_{_ e—i'«Tn )
(efzy“ - 1)
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Expression (A10.7) can be written in sinusoidal and hyperbolic terms as:

CEEN

+

vy

H

\Q . ‘h:.
=

T

™

-+

Q

+
\

1
-1

j(sin(k —wo)-l-sm( (L + z, ))

(1 — cos(2kL))
(sinh (k( -z, ) + sinh (& + 2z, ))
(1 — cosh (2kL))
-1
1
j (sin (kz, ) + sin (lg (2L — =, )))
(1—cos (2&[;))
B (sinh (_lgmu) + sinh (E (2L - :1:0)))

(1— cosh (2kL))

(A10.8)

If no material damping is considered (7 =0) equation (A10.8) can be

reduced to:

!

-+

&y

o

T

o

+

s

+

-

-+

T 4RI | -1

QA

[ 1
-1
. COS (kmﬂ )
I e (kL)
B cosh (kz,)
M, sinh (kL)

1
_cos (k (L -z, ))
sin (kL)
cosh (k (L — =, ))
sinh (kL)
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By substituting the wave amplitudes of equation (A10.7) into equation

(A9.2) and taking equation (A10.1) into account, one can write the

transverse beam response due to an excitation moment as:

*Elfﬂ 'I| .

sig (7, — ) (e
(e—ﬂ_-(uru) + e—jk(r-—ru))
B
(e~f@(u-=vo) ¥ e—m)
™)
(e-£(5+za) + e-—l_»-(Hu))
™ =1)
(e—g(u—zo) + e""-“"f’)
e

eJﬁ(z_ L) +

e_.?im +

b0 _

iy

€
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Appendix All

Force Point Mobility of a Simply Supported Beam

Point mobility at the excitation location z, due to a harmonic point force

excitation is defined as:

Bu(:ro,t)F

Yw)r = -
! OtFe™"

(A11.1)

The transverse velocity response at the excitation location is simply given by:

Ou(z,t

du(mt)y _ jwu (1), . (A11.2)
0t _

Using relation (A11.2) to obtain the temporal derivative of equation (A9.19)

and substituting this expression in equation (A11.1), the exponential form of

the force point mobility is given as:

' (9p2kE _ g2ikll-m) _ ,=2ikFo
1- J= —23kL 1 +
W € —
Y, =—7 (A11.3)
ABIE'| - (g7 _ g tlin) _ otk
? e —1

Equation (A11.3) can be simplified further. If the exponential travelling and
exponential decaying fractions of equation (A11.3) are extended complex
conjugate and the following two well known exponential identities are taken

into account:
+

" = cos(z) £ jsin(@), (A11.4)

e'™ = cosh () = sinh (), (A11.3)
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one can rewrite equation (A11.3) by using sinusoidal and hyperbolic functions

as,

sin (2kx, ) + sin (2{::_([; -z, )) — sin (2kL)
1— cos(2kL)
4EIE |(sinh (2kz, ) + sinh (2k (L — z,)) — sinh (2kL)
1 — cosh (2kL)

(A11.6)

If one neglects internal damping within the beam (7 = 0), equation (A11.6)

can be reduced to:

sin (kz, ) sin (k(L — , ))] _
Vg, =22 [l ()
2EIE’ |(sinh (kz, )sinh (k (L -z, ))
sinh (kL)
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Appendix A12

Moment Point Mobility of a Simply Supported Beam

Moment point mobility at excitation location z, is defined as:

O*u(z,,t
M&. (A12.1)
OrdiM, ¢

Yy =
The rotational velocity response at the excitation location can be found by
substituting =z = :q, into the first temporal and first spatial derivative of
equation (A10.10). Note, the signum function is omitted, since one side of the
infinite waves at the excitation location is used only. Substituting this
expression in equation (A12.1), the exponential form of the moment point

mobility is:

) 26—2]‘&!; + e"'?oﬂ_C(L‘Tﬂ) _|_ e_zj"_mi]
y —1—J+[ R 7 +
Yy, = m - ose) - . (A12.2)
Lol 267 7RI 4 o7
J[ R | ]

Analogously, to the procedure as described in the previous appendix,
equation (A12.2) is presented in terms of sinusoidal and hyperbolic functions.
By applying relations (A11.4) and (A11.5), one can write equation (A12.2)

as:

sin (2kz, ) + sin (2k (L — z,)) + sin (2kL)

jw 1— cos(2kL)
— . (A12.3)
AEIk |(sinh (2k,) + sinh (2 (L — z,)) + sinh (2kL) |

1—cosh (2kL)

It

Y(w)MM
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If one assumes that 77 = 0, then equation (A12.3) simplifies to:

Y, =

2EIk

sin (kL)

cos (kz, ) cos (k (L~ 2 ))] -

cosh (kz, ) cosh (k (L -, ))

sinh (kL)
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Appendix Al13

Four-Wave Vibrational Energy Flow Equation Including Damping

Within the derived four-wave energy flow expressions, given in Appendix A6,
damping was neglected. However, when dealing with finite structures,
damping needs to be included. Using the complex wavenumber, as given in

(A9.1), the spatially damped general beam displacement is given by:
u(z,t) = (f-Lreng + B,e" + Be™ + A ). (A13.1)

Here, the simplification £ =(z— L) is used. If one substitutes equation
(A13.1) into equation (3.33) under consideration of the derivatives given in
Appendix A5 and omits the temporal term €*', one may obtain the

hysteretically damped, complex and time-averaged shear force energy flow as:

B,Bje * — B B’ +
B B - kij(z— xe—Jk(Hi) ——-B B*efkﬁ‘r(x—i)eﬂiﬂi) 4+
je- k(z-%) (AFA_ejﬁ:zT;ejk:cn A A —jkz7 111'"?) +
i(A, A e — A Ale™ )+
B, Aje e g 4
EIK (1— j7)’ w A, Ble e e —
(—frs )4W = ) B A" etk +
- {,

. * 1 — ,— 3 7
JA, B e’ e KT

* ke —keTjkEH
B A e e "™ —
A B e Mgkt _

B A eJLJ: L:I:T,v kg

kE

JA_B e e .(A13.2)
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Analogously, the hysteretically damped, complex, time-averaged bending

moment energy flow is given as:

1?+J'5‘,':e_Mﬂqﬁ - BvBie%"‘”_' —
B B*e-kﬁ(z—i':)evjk(a:-}i') +B B"g—k?}(zf:'c)ejk(:cli) +
jeHe-D (A AT TR _ A A fﬂ-:r?rejkir‘:)_i_
J(AATEH — A M)+
iB +A_:e’j*‘”e"“'”_’.'3"3“Iﬁ +
* _iki kEG_ kT
( ) _Efks(l—jﬁ)zw e_hABeje ﬂ63q+
=-rp aw 2(l_l_-?ﬁ)-l jB A eﬂm an ke

ke —Re gha
A+B+e'1 e et

jB+AjegjL"ce—kfxﬁejki'ﬁ _
A Ble e ey
iB A * kT kT

A Ble’e e (A13.3)

Under use of relations (A6.4) to (A6.7) and the following simplifications:

D;, =R{BA}+S{B,4}, (A13.4)
D}, =R%{AB}+3{4,B'}, (A13.5)
D;  =%{B, A} +3{B.A’}, (A13.6)
D}, =R{AB'}£3{4B'}, (A13.7)
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the  total, complex, time-averaged energy  transmission, ie.

(.Bx)w = (Ezs)w +(£z,, )4w of four waves present and including hysteretic

damping may be written as:

(1 + J77) (BJrB:_evZkrﬁ _ B_Bje%ir‘;) +
cos(k(z +2))3{B,B} -

27 + 5t e F=D)
('f? J??_ )e sin(k(z + Z)}R {B_,Bﬁ}

cos (ka77) 3 {A4,4"} +
sin (kz7) R { AA }
cos (kam) S {4, A7} +
sin (ko7) R {4, 4"}
(7 + 7)) (A, Aje™ — 4 4™+

2(1+ j7) e oog (kzm) [

2(7 — 7)e P sin (k:‘&ﬁ)[

(Bm )4w = Cu )
Dy 5, 4, COS (k‘:c 1 +7

_hﬂ( _1) )
— DBA+Sln(k:c(1+n)
(7? - J)e ] . +
K7 (=1 Dj p_sin(k(Z - o7)) -
e (?7 + ) . (s
D . con (3 - )
e )| cos{b(z ~2m)+
e
(- ) k2 ! Dz; 4 SIn (k (22 - :L‘n)) (A13.8)
n—2J)¢€
o 5 _ 1) Dy . cos(kZ(1+7)) +
e —_
! D, sin (ki: (1+ ﬁ))
Herein, C,;, is given by:
EI*w(1
W an (A13.9)
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Appendix Al4

Coupled Transmitted Vibrational Energy

The general finite beam displacement is given by the summation of infinite

waves beam response u(Z). and reflection waves beam response u(z), as:
u(z,t) = (¥ (@) —!—u'(:t:),) e, ‘ (A14.1)
The infinite beam displacement is given as:
U@ = Cie ¥ + Cpe™F. (Al4.2)

Herein, the simplification z = |:1:D - ml is used. Further, C, and C, are defined
as the nearfield and farfield wave amplitudes. The complex wavenumber is

denoted as k. The reflection waves beam displacement u(z), is given as:
u(), = D,e™ +C,e¥ + B ¥ + Ae”. - (A14.3)

Here, £ =(z — L) is used. It is apparent from equation (A14.2) that the
derivatives of the infinite waves beam response due to the absolute argument

of the exponential function follow the rule:

Fu(®t),)] _ _ ?M] n=135.. (A14.4)
oz T, oz" ot ’ ,, ’ ’

O"u(z,t) _ "u(z,t), n=9246.. .. (A14.5)
az" <z ox" z>%, ’ S ,

where n is the n® order of the respective spatial derivative. This means that

odd-numbered derivatives of the infinite waves beam response are equal in
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magnitude, but different in sign in dependency upon the location to the left
or the right of the excitation location z,. Thus, the sig function, as defined in

(A10.2), is employed for odd-numbered functions as:

0 u(:c,t)m — sig(ﬁ:) M& ,n=135.... (A14.6)
oz" oz" T,

Herein, the simplification Z = z — z, is employed. From equations (5.45) and
(5.46), two coupled vibrational energy flow terms can be identified. One term
arises due to the complex product of internal shear force and bending
moment of the reflection waves and the appropriate infinite wave velocity

components. This term can be written as:

EI
2

ou(s,t), [6“(;';”’“] L Fut), [5 u(-'f’t)m] . (A14.7)

P) =
(7. )‘"°° oz’ oz’ Ozot

Vice versa, from (5.45) and (5.46), the coupled VEF term due to the complex
product of internal shear force and bending moment of the infinite waves and’

the appropriate reflection waves velocity components can be found to be:

EI
BP) ==
( ﬁ)oo,r 2

(A14.8)

u(z,t)_ [du(z,t), *+a2u(x,t)m u(z,t),)
oz’ ot oz’ ozdt ||

If one substitutes equations (A14.2) and (14.3) into the shear force term of

A(14.7), one can find time-averaged vibrational shear force energy flow as:

D e-k(ﬂjz)e—kﬁ(xuﬂ - B e—k(f—ji}ekﬁ(j_ﬁ) 4
o | _
C
EIK 1 j(C e MEHgmIRIGE) _ 4 e-k(i—i)e—jkﬁ(zm) +
w + _
ba)u =75 . (A14.9
(-—rcs )r,oo 2 D, HME-RgHIE D) _ p (HEE HREE) | ( )
C*
2 j(c - k(:r-ﬁ)efk'ﬁ(ivj:c) —A ek(.iﬂf)e_.t,-,-,(m ﬁ))
+ .
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In case of 7 = 0, equation (A14.9) reduces to:

D e HEH®) _ g gHEd 4
S -
o C, j(C’ eMEH _ g e—k(z—::-.))
k 4 -
(p,) ==~ - - (A14.10)
§ Jr,o0 2 D+ejk(:l:—-‘.t) _ Bve]k(:c-i I) +
C, _ L
j(C_I_e-k(zﬁn‘) _ A_ek(:nJr]Jr))
Analogously, the bending moment VEF can be written as:
D e~ ME+E) kT +iT) +
.+.
B o MF- 1) fa-33) _
JC C*_ o~ HEHD) g -T2} _ +
~M(F-F) —kTHFTHE)
Elkwsig (3 A e
(p,) === 2(2)Q | . (A14.11)
B /10 o 2 D+e_;k(fwa:)8-—ku(z+:c) + 3
B oHEE)~hIEE) _
% C+e-k(rﬂf)e~ KTH(Z-jr)
A FEH ) KiHT )

Herein, @ = (1+ 57)/(1— jn) is regarded. In the undamped case of 7 =0,

equation (14.11) can be simplified as:

. D+e—k(f+ iz} + B_e—k(f—ji') _
J Ol e KE+D) _ A MER) +

(P ) _ Elk’wsig(Z) ¢, - (A14.12)
25 [ oo 9 D M9 4 p oHE _ ' '
N gl -
C.

2 C+e—k(z—ﬁ) -4 ek(i+j‘i‘)
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The summation of shear force and bending moment energy flow gives:

( + j Slg x)Q)D J:'+3:g;) -k{z+4T) +
|(Gsig(£)Q — 1) B e -t 4|
C, (1 —sig(£)Q)C e F 1P #1E ) _ +
' 3 | (1 + Slg ’L‘) Q)A kT~ 1’) —kT(Z+ &)

(1+ sig(£) Q) D, e e ) 4
(sig($)Q-1)B

(J"Slg(m‘ Q)C o HE=m) T (E- 1) _
(sig(2)Q + 7) A M+ 7+

(T 1 —k7i(
e.i'.l'u: n$3)+

‘o

(A14.14)

The second type of coupled transmitted vibrational energy due to the
internal shear force and bending moment of the infinite waves and the
appropriate reflection waves velocity components can be found by
substituting equations (A14.2) and (A14.3) into equation (A14.8). By taking
out the shear force component, one may find the time-averaged shear force
VEF as:
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D:e—k(f—jar) o~ Hilz=1%) +
B:e—k(EHi) M EIT) 4
J Ol G’_:e“k(ﬂr)ejkﬁ(i_x) + T
_ ElPwsig(s)] (AT

(2..),., ;

D‘e—jk(f—mle—kﬁ(ﬂ-‘r) +
+
B o MEH D RE-2)

O:-e—k(z+ﬁ) e~ kIE+ 1) +

Al ) g=k(E-12)

For 7 = 0, equation (A14.15) simplifies to:

jC
(P )mr = EIk3w2sig (:i')
Gy

The bending moment VEF term can

(2.,) _ BIFwQ

Zo1p

1

D’ e~ MF-Dp~kiE+s) _ B o~ E+ -kiE-E)
+
j( O e Mt Flg-Fila+in) _ p* k(3= e—kﬁ(&-j:‘p))
+ —
2 D*e_k(f-jx)e—kﬁ(m—ji) _ B*e—k(f+ji}ek‘ﬁ(i+j§) _
+ -

j (O' e HEHD GITE—2) _ A* e—k(i—i)eih'r(3+i))
+ '

D:e—k(f—jm) + .B: g~ HE+) +

C e HE) 4 Al HE-)
+ —

D’ e P 4 B’ omE+a) o
+ -—

O:-efk(z+ﬁ) +A:ek(£—j?)

be found to be:

In case of =0, equation (A14.17) reduces to:

D e #G-5 _ B omkE+ 4
+ _

j(O:e_k(c"'ﬁ) _ A"ek(i—ﬁ))

D"‘ e—k(f*jz) _ B‘ e—k(f+ﬁ‘.) _
+ _

j (C»: pmk@E+a) _ A"e—k(i-f))
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The coupled transmitted energy due to the internal infinite waves shear force
and bending moment and the appropriate reflection waves velocity

components can be found to be:

(p.).., = 2L e (A14.19)
2 (Sig (j) + Q) D+e—.?k(1'_x)e_k7f($+-”-') +
(Sig (m) _ Q) Bie—jk(i+i)e-kﬁ(i-—i) +
C I
’ (sig(£) + Q) CLe H 1P 0+ 4.
(sig(£) — Q) Ale e~ Hie=12)
Equation (A14.19) reduces for 7 =0 to:
(4sig(#) — 1) Dl +
(jsig(g) + 1) Ble ™=+ 4
C . +
j (sig (%) — l) C Jrfz"‘(I 2 4
3 j(sig{) +1) A e ™9
) =Zkw o (A14.20)
2 (sig (£) + 1) Dl 4
(Sig (£) - 1) Bl #T+) 4
CZ * . _
(Slg(ﬁ) + ‘7) O+e—.k(n:+3:r) +
(sig (£) — j) Ale" )

The total coupled transmitted energy due to coupling of infinite waves and

reflection waves is given by the sum of both energy flow term as:
(P), =(P),. +(P)_, (A14.21)

Substituting equations (A14.13) and (A14.19) into (A14.21), one may obtain:
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(1+ e 7o)

(1+ mpee

(1+ jm)e™e+?

—k(z+27)

(7-)e

—k(z-27)

(7~ 7)e

_k[r+;7_J)

(m—13)e

" |(sig(@) - 1)[

(1+ jm)e 7

cos(k(z —7))R {C;D+} +
sin(k(z — %)) {C’;D+ }

7(sig (&) - 1)[

(sig(®) +1)

cos(k(z ~2)3{C;D, } -
sin(k(z - 2))®{C, D, }
cos(k (3 + 2)R{C;B.} -
sin(k(Z + £))${0; B}
cos (k(T +2))S{C;B.} +
sin(k(Z + 2))R{C; B}

7(sig(2) + 1)[

o [eostrE +R)R{cTA} +
7(sie () 1)[Sin(kﬁ(z+i))%{CIA-}
cos (KT +2))S{C]A.} -

(sie(®)+1)| (k7 (z +2)R{C A}

sin(k7j(z — 7)) ¢ {C/C, }
cos (k7i(z — D)3 {CC. } +
sin(k7 (= — 2))R{C[C, }
cos (k(z + F)R{CID, } +
sin (k (= +77))3{C] D, }
cos(k(z + 7)) 3{C/ D, } -
sin(k(z +Z0)) R {C D, }

n(sig()+ 1)[

(1-sig(2)

St

(7 —sig(3)

(1-sig(2) ﬁ)[

cos(k(z — 7)) R{C]B.} -
sin(k(z — 7)) S {CB_}
cos(k (% —Z7))S{CB_} +
sin k(2 - 77)) R {0 B_}

(sig (z)+7

—

(sig(2)7 +1

cos(k(Z + 27))R{C;C, } -
sin(k(z +27)) ${C;C, }
cos(k(Z +27))${C;C, } +
sin (k(Z + 27)) R {C;C. }

—r

(sig(%)ﬁ -1

(77— sig (57))[

cos(k(z ~ Fm)R{C;A.} -
sin (k(Z - 7)) S {C; 4}
cos(k (T - £7)) S {C; AL} +
sink (z - £7)) R {034}

(sig(&)7 +1)
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Usually, the real part (active VEF) and imaginary part (reactive VEF) of the
complex, transmitted energy is presented. However, for the damped case the
total energy transmission definition is very complicate and, thus, only the
total, complex flow is presenfed. In the case of 77 =0, the real part (active

energy flow) of equation (A14.22) can be written as:

R{C,D, }cos(k(z — ) +
x{C;D, }sin (k(z — 7))
R{C,B_}cos(k(z +F)) -
${C;B_}sin(k(z + 7)) ]
e (1+sig (i) S {CTA_} -
e (1-sig())3{c,C, }

(sig(£) +1)

(P,), = EIk’w|(sig(2) — 1)

(A14.23)

—kT

Also, in the case of 77 = 0, the reactive part of the total coupled VEF is given
by:

?R{ :D+}(Slg( ) cos (kz) — sin (kz)} +
. S}‘{ D+}(cos(k z) + sig (£)sin (kz)) +
e . +
%{CIB_}(sig( )cos (kZ) — sin ( ))
. & {C;Bﬁ}(cos (k%) + sig(£)sin (ka:))
(P), = jEIKw . ~ (A14.24)
\ - 8%{020+}(cos (kT ) — sig(%)sin ( )) ~
S‘{C’ C’+}(51g (£)cos (kT ) + sin (kT))

{C A } cos (kT ) + sig(2 )sm(ka:))—i—
{02 A_} sig (£) cos (KT) — sin (kf))
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Appendix A15

Transmitted Vibrational Energy in a Simply Supported Beam due to Point

Force Excitation Excluding Structural Damping

Infinite wave energy flow in a simply supported point force excited beam can
be found by substituting the complex, infinite wave amplitudes given in
(A9.18) into the general 4-wave energy flow equation by setting A- and B-
equal to zero. Thus, using (A9.18) and (A6.8), the active VEF is given by:

2
Fuw

P = sig(Z . A15.1
(B);, = i@ 1o (A15.1)
The reactive VEF can by found from equations (A9.18) and (A6.9) as:
P ig(Z —-—jﬁgwekﬁ kz kz Al15.2
= + sin(kz)). .
( ” )Fm sig(Z) e (cos (KT} + sin(kT)) ( )

The above shown expressions are identical to the infinite beam VEF
equations given in section 5.3.3.1. However, to relate these definitions to a
beam of finite length, the sig function is employed and z has been substituted
by z = l:co — :c| to account for energy transport to either side of the beam.

If one substitutes the complex, reflection wave amplitudes A_, B_, C,
and D,, as given in (A9.18), into equation (A6.8), where A, = C, and B, =
D_, one may obtain the transmitted energy in a simply supported beam due

to the reflection waves as:

(R, )F Flw sin’ (k (L — z,) — sin” (k.q:o)) (A15.3)

- 16EIK sin? (kL)

488



Appendix

The reactive part from equations (A9.18) and (A6.9) is given by:

. . cos (kz) +
- sin(k (L ~ z, )) sinh (k(L — z,)) [sin ) |

cos(k(z — L)) +
sin(k(z — L))

sin (kz, )sinh (k (L — =, ))[

k(o — 1) , (Al5.4)
cos{k(z —L))—
sin (kx, }sinh (kz, -
ek(x;L) (k) ( )[Sin (k{z — L))

cos{kz )} —
sin (kz)

sin (k (L — =, )) sinh (ka:o)[

with the constant Cp. being defined as:

C. — jFyw
& " 16EIk* sin(kL)sinh (kL)

(A15.5)

It can be seen that the undamped enérgy flow due to the reflection waves is
divided by the function sin(kL), which is the characteristic equation of a
simply supported beam. Thus, at resonant wavenumber k, = nn/L, the
undamped vibrational energy flow tends towards infinity, which is certainly
not true for real structures.

The coupléd transmitted energy of a simply supported beam can be
found by substituting the complex wave amplitudes, as giveﬁ by equation
(A9.18), into equation (A14.23) and (A14.24), respectively, using the
amplitude substitutions C; = A, and C;, = B,. Thus: |

( ) 3 Flw (sig(2) + 1) sin(k(L — z,)) cos(k(z — Z)) +

) —_ i B . (A15.6)
< /F, 16 E1k’ sin (kL) |(sig (2) — 1) sin (kz, ) cos (k (T + Z))

489



Appendix

From equations (A9.18) and (A14.24), the reactive energy transmission due

to wave coupling can be found to be:

cos (kz) +

sin((L = m))sinh (D)) oo 2 in ()|~

-kz

cos (k%) +
sig (%) sin (kZ)

sin (kz, )sinh (kL)[

A15.7
sig(%)}cos (kz) + ( :

sin (k%)
sig(Z) cos (kz) —
sin (k)

e * sin (kL)sinh (k (L — =, ))[

¢** sin (kL)sinh (kz,) [

Herein, the constant C} is defined as:

JFw
C},‘; - — 3 . N .
16 EI%” sin (kL) sinh (kL)

(A15.8)
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Appendix A16

Transmitted Vibrational Energy in a Simply Supported Beam due to

Moment Excitation Excluding Structural Damping

Analogously to the procedure given in Appendix A15, the infinite wave
energy flow in a simply supported moment excited beam can be found by
substituting the complex, infinite wave amplitudes given in (A10.9) into the
general 4-wave VEF equation by setting A- and B- equal to zero. Thus, using
equations (A10.9) and (A6.8), the active moment induced VEF is given by:

Miw
(P}, =i5®) gy

(A16.1)
The reactive moment induced VEF can be written from equations (A10.9)
and (A6.9) as: |

iMwe™
(B ), = sie@) =g

sin (kT) — cos (k7)) . (A16.2)
Also here, the above given definitions are identical to the transmitted
moment energy given in section 5.3.3.2. Finite beam conditions have been
accounted by using the sig function and by substituting z by = = |st:0 - xl

If one substitutes the complex, reflection wave amplitudes A_, B_, C,
and D,, as given in equation (A10.9) into equation (A6.8) and accounts for
A, = C, and B, = D,, one may obtain the transmitted reflection waves

energy due to moment excitation in a simply supported beam as:

(P ) _ Mjw cos’ (k (L - .’BO) — cos’ (k;:L'O))
=M, 16EIk sin® (kL)

(A16.3)
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The reactive VEF flow from equations (A10.9) and (A6.9) is given as:

cos(k(z— L
cos (ke yeosh (k (L — z,)) Lin ((k ((m ] L)))) *,

cos (k (L — %)) cosh (k (L -z, )) [::((Z)) _
S - . (A16.4)
r M,- r COS (km) -
KoL) €05 (k(L = 2,))cosh (k%)[Sin (kz) ’

cos(k(z — L)) —

cos (kz, ) cosh (kz, ) sin(k(z — L))

Here, the constant C,, is defined as:

0. — iMyw
¥ = 16EIksin (kL)sinh (kL)

(A16.5)

The coupléd transmitted energy can be determined by substituting the wave
amplitudes given in (A10.9) into equation (A14;23) and (A14.24),
respectively and using the amplitude substitutions C) =sig(Z)A4, and
C, =sig(2)B,. With the above given amplitude substitutions, the active

reflected waves VEF can be written as:

(p ) _ Miw (1 + Sig(fﬁ)) cos (Ic(L - 230)) sin(k(z — 7)) +
M, IGEIk sin (kL) (1 — sig (:'E)) cos(kz, )sin (k(T + T))

. (A16.6)
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From equations (A10.9) and (A14.24), the reactive VEF due to wave

coupling can be found to be:

sig(Z)cos (kz) +
k(L - inh (kL
Kz COS( ( ?0))5m ( )Lin (kz)
e’ ‘ -
sig (z)cos (k%) +
cos (kz, )sinh (kL) ( ).,
sin (k%)
(R), =0y . (A16.7)
"M, " sig(Z)cos (kZ) —
e ™ sin(kL)cosh (k (L —=,)) cin (k) -
) sig(Z)cos (kT) +
¢** sin (kL) cosh (k&co)[ . ( )_
sin (kT)
Here, the constant C), is defined as:
M w
C. = I , Al16.8)
¥ " 16EIksin (kL)sinh (kL) ( )
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Appendix A17

Unconstrained Layer Damping of Beams

Attaching a damping layer to a beam shifts the neutral axis of bending away
from the middle axis of the beam, as shown in Figure 5.13. It is well known
that the bending stresses are zero at the neutral axis location. Thus, by
taking moment of the products EA about the neutral axis, where the relation

f EzdA = 0 holds true, one may obtain [1];
EpAzzy — EpApz, =0. (A17.1)

Note, the subscript B denotes beam properties, the subscript D' denotes
damping layer properties and the under-bar denotes complex quantities. A
uniform damping layer distribution is assumed over the beam length. In
equation (Al17.1) £ is the complex Young’s modulus, 4 is the cross-sectional
area and z is the distance of the respective middle line to the neutral fibre of
the beam-damping layer structure. Herein, the complex Young’s modulus of

the beam and damping layer are given as:
E,=E;(1+ jng), (A17.2)
Ep=E, (1 + j"?D)' (A17.3)

Here, n is the respective linear hysteretic loss factor. Substituting equations
(A17.2) and (A17.3) into equation (A17.1) and using the relationship z, =

zp + 25, the distance z; can be found to be (see Figure 5.13):

Cp (1 +773’?D)+ Ch (1 + Tﬁ)) +3Cs (770 - 7?3)
(Cs +Cy )2 +(Comz + Cpmp )2

(A17.4)

zp = 25,0
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Herein, the abbreviation Cy and Cj, are defined as:
Cp =FE,4;, (A17.5)
Cp, = Ep4,. (A17.6)

The sum of the complex beam and bending layer stiffness, i.e.

(El),, = Epl; + Epl, can be written as:

np|l— Eplp +
Eplp + Eplp
(ﬂ)an = (EBlB + EDiD) 1+ (A17'7)
1_ EBIB
L

In equation (A17.7) the complex second moment of inertia I = f 2%dA of the

respective structure is given by using the parallel axis theorem as:

3
Iy =22+ 4z, (A178)
thg 2 A
Ip =1_2‘|‘AD (o0 —25) (A17.9)

Note, the second moment of area is complex because the offset z; is complex.
However, for small values of .(771) —?73)2 €1, it can be shown that
R{I}> S{I} and, hence, the imaginary part of equations (A17.8) and
(A17.9) can be ignored. Thus, the bending stiffness of the beam-damping

layer structure is given by:

(BI)z, = (EI)y, (1 + jnm}) ’ (A17.10)
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where the combined bending stiffness (EI),, is defined as:

D

(ED),, = (EpI, + Eplp). (A17.11)

The linear hysteretic loss factor of the beam-damping layer structure 7, can

be written from equation (A17.7) as:

YRR gL S A p— L O AT)
E,l, + E,I, E I, +E,I,
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Appendix A18
Signal-To-Noise Ratio

A measured displacement signal may be seen as a superposition of pure
displacement signal and pure noise signal. Assume that the uncontaminated
spatial displacement signal varies sinusoidal with beam distance. In contrast,
the noise signal is distributed randomly over the beam distance. Thus, an
averaged quantity is needed, which contains information of both spatially
varying deflections. Hence, the signal-to-noise ratio (SNR) for signals of finite
length is defined in this work as the uncontaminated mean squared

displacement signal and the mean squared noise signal. This is given by:

1
b.—a

I &

1
b, —a,

bI
f lu (@)s['dz
SNR = -

(A18.1)

by '
f [ (@)x [ da

Herein, u(z), is the displacement signal that is not contaminated by noise and
u(z)y is the randomly distributed noise signal. In practice, the spatial
functions u(z); and u(z)y are not easy accessible. However, its spectral
components can be retrieved from the wavenumber spectrum of the
superimposed signal. If one applies Parseval’s theorem (energy theorem),
which provides a useful relation between the average power of the spatial
signal and the averaged power of the spectral signal, it can be shown that the
squared spectral magnitude of the displacement signal and noise signal can be

used instead to approximate the SNR as [142]:

a; o
SNR = 4 . (A18.2)
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Herein, |U(k)s® is the wavenumber power spectrum of the uncontaminated
displacement signal and |U(k),|* is the wavenumber power spectrum of the
noise. Note, the factor in front of both integral expressions can be cancelled.
However, it is kept to remind the reader of the mean squared value origin.
The advantage of this method is that these spectral data are easily accessible
from applying a fast Fourier transform (FFT) to the recorded data. Thus, for
single frequency excitation the squared magnitude spectra, |U(k)s* and
| U{k)yf* can be extracted from the wavenumber domain by simple spectrum
manipulation. To solve the integral expression for a complex, single-frequency
signal, as shown in the numerator in equation (A18.1), the mean squared
amplitude of the uncontaminated, complex displacement signal can be

written as:

b,

27
b, i a f Jut@)sfdz = % jﬁ' | Az

fer “:

"dy = A2 (A18.3)

Here, Ag is the peak amplitude of the complex beam displacement that can
be obtained from the spectrum. Taking the above given uncontaminated

displacement definition into account, equation (A18.1) can be rewritten as:

A

SNR = 7 .
f|u (m)NIde

1 (A18.4)

bI —-aI

When integrating the noise in the wavenumber spectrum, as shown in the
denominator of equation (A18.4), the mean squared noise amplitude can be
found. By taking the square root of this value, the root-mean-squared (RMS)

noise amplitude may be determined.
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Appendix A19

Tables of Predicted Cut-Off Points and Relative Mean Square Error of
Three Differently Damped Simply Supported Beam Structures Using
Extracted ESPI Noise and Measured Force Magnitude

n 6 8 9 11
£ 838.3 Hz 1490.3 Hz 1886.1 Hz 2817.5 Hz
(% of [B,]).y [%] 2 3.4 8.8 6.8
R(101og, (7))  3.61 -2.84 8.58 5.15
(% of |B,|)ime, [%] 3.6 3.4 6 6.8
3(10-log,, (/7))  49.51 43.14 90.69 20.60

Table A19.1 Optimum ideal filtered non-layer damped beam cut-off points and
relative MSE using the VEFESPI method.

n 6 8 9 11
£ 818.2 Hz 1454.5 Hz 1840.8 Hz 2749.9 Hz
(% of |B,|),eu [%] 3.8 3 5.8 3.6
© R(10-log,,(17)) 1.75 -3.46 -4.66 -3.70
(% of | B,y [%] 5 4 3.8 4
3(10-log,, (/7)) . 73.61 41.98 61.15 26.26

Table A19.2 Optimum ideal filtered single-layer damped beam cut-off points and
relative MSE using the VEFESPI method.
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n 6 8 9 11
£ 799.9 Hz 1422 Hz 1799.7 Hz 2688.4 Hz
(% of |B,)),n %] 6.6 9.4 10 7.2
R(101og,, (7))  -559  -5.45 11.87 5.94
(% of B, )ine, %] 6.4 9.4 10 7.4
3(10dog,(I7)) 6428 3776 48.18 23.37

Table A19.3 Optimum ideal filtered double-layer damped beam cut-off points and
relative MSE using the VEFESPI method.

n 6 8 9 11
£ 838.3 Hz 1490.3 Hz 1886.1 Hz 2817.5 Hz
(k)yeu [rad/m] 115k 104 1.0-k, 1.02-%,
R(10-log,(IT))  2.63 -6.91 3.74 3.08
(K)o [rad/m] 1154k 1Ok 2025k 146k
- 3(10-logy(77)) . 62.1 41.81 65.68 28.54

Table A19.4 Optimum Butterworth filtered non-layer damped beam cut-off
frequencies and relative MSE using the VEFESPI method.

n 6 8 9 11

£ 818.2 Hz 1454.5 Hz 1840.8 Hz 2749.9 Hz
(k),u [rad/m] 115k 1.3k 1.2:k, 1.04-k,
R(10log,o(T))  2.24 -3.90 2.75 -3.25
(k.)iney [rad/m]  2.05-k, 20k 1275k 102k
3(10log,, (7))  52.57 48.01 62.26 35.14

Table A19.5 Optimum Butterworth filtered single-layer damped beam cut-off
frequencies and relative MSE using the VEFESPI method.
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n 6 8 9 11
£, 799.9 Hz 1422 Hz 1799.7 Hz 2688.4 Hz
(k. )rew [rad/m]  1.45-k, 1033k 1.0k 1.02-k,
R(10-log,,(I7)) -6.16  -8.04 3.84 -3.23
(k.)mao [rad/m]  1.0-K,  1.0-k, 1.0k 1.3k
3(10dog, (/7)) 7724 3670  51.92 27.21

Table A19.6 Optimum Butterworth filtered double-layer damped beam cut-off
frequencies and relative MSE using the VEFESPI method.

n 6 8 9 11
£ 838.3 Hz 1490.3 Hz 1886.1 Hz 2817.5 Hz
(% of |B,]).ua [%] 3.6 7.0 8.3 4.2
R(10log,, (/7))  -38.90  -38.25 3862 - -38.79
(% of | B, )i, %] 4.2 7 8.8 10
3(10dog, (/7))  15.10 8.43 49.94 37.58

Table A19.7 Optimum ideal filtered non-layer damped beam cut-off points and
relative MSE using the IEDI method.

n 6 8 9 11
£ 818.2 Hz 1454.5 Hz 1840.8 Hz 2749.9 Hz
(% of |B|),u [%] 66 5.2 6 4.4
R(10og,, (/7))  -39.81  -38.74 -38.90 -38.46
(% of |B,)ines [%] 6.6 5.2 6 44
3(10dog,, (/7))  46.07 9.44 37.28 7.13

Table A19.8 Optimum ideal filtered single-layer damped beam cut-off points and
relative MSE using the IEDI method.
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6 8 9 11

n
£ 799.9 Hz 1422 Hz 1799.7 Hz 2688.4 Hz
(% of |B.|), [%] 3.6 9.2 10 3.4
R(10loge(IT))  -42.07  -31.43  -32.23 -31.61
(% of | B,)imey (%) 838 8 7.2 5.6
3(10dog, (/7)) 4436  49.95 58.14 41.08

Table A19.9 Optimum ideal filtered double-layer damped beam cut-off points and
relative MSE using the IEDI method.

n 6 8 9 11

f, 838.3 Hz 1490.3 Hz 1886.1 Hz 2817.5 Hz
(k) [rad/m] 13-k 1.233k 1175k  1.22.k
R(10-log,(7)) -37.32  -34.13 -38.04  -42.05
(k. )iy [rad/m] 1.0k, 1.0k, 1.5k, 1.26-k,
3(10log, (/7))  64.28 51.80 74.25 46.57

Table A19.10 Optimum Butterworth filtered non-layer damped beam cut-off
frequencies and relative MSE using the IEDI method.

n 6 8 9 11

£ 818.2 Hz 1454.5 Hz 1840.8 Hz 2749.9 Haz
(k)rew [rad/m] 145k 1233k 1175k 122k
R(10-log,,(77)) -36.00  -32.91 -33.80 -37.21
(k. imy rad/m)  1.75:% 1033k 124k - 1.02:k
3(10log,o(17))  69.28 59.29 71.66 46.37

Table A19.11 Optimum Butterworth filtered single-layer damped beam cut-off
frequencies and relative MSE using the IEDI method.
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n 6 8 9 11
£ 799.9 Hz 1422 Hz 1799.7 Hz 2688.4 Hz
(kv [rad/m] 145k 1.2k 1175k  1.22:k
R(10-log,,(I7)) -36.39  -30.82  -32.01 -33.71
(k)i [rad/m]  1.0-k 1.0k,  1.275:k  1.02:k,
3(10log (/7)) 83.05 4540  61.34 31.24

Table A19.12 Optimum Butterworth filtered double-layer damped beam cut-off
frequencies and relative MSE using the IEDI method.
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Appendix A20

Figures of Truncated ESPI Displacement and ESPI Measured Vibrational

Energy Flow of “Infinite” Beam

! (c)
x 10

Re(u(x.y)) [m]
Re(u(x)) \m|

Im(u(x,y)) [m]
Im(u(x)) |m|

Figure A20.1 ESPI image of the measured beam displacement at 801 Hz: (a) 2D real

part, (b) 2D imaginary part, (¢) 1D real part, (d) 1D imaginary part.

4
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I |
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1 Ideal filter
= 4=
3.5 Butterworth filter
3
0 0.1 0.2 0.3 4 0.5 0.6

3 [m]“'

Figure A20.2 Comparison of measured input power (R")I,,”. measured corrected

transmitted energy (P,,,.J) and measured ESPI based energy flow at 801 Hz.
or
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(a) - (¢)

|

Re(u(x)) m

Re(u(x,y)) |

0 0.2 0.4
x [m]

s (d)

0 0.2 0.4
x [m]

Figure A20.3 ESPI image of the measured beam displacement at 1112 Hz: (a) 2D

real part, (b) 2D imaginary part, (¢) 1D real part, (d) 1D imaginary part.
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Figure A20.4 Comparison of measured input power (R”)H. measured corrected

transmitted energy (P,ﬂ)) and measured ESPI based energy flow at 1112 Hz.
cr
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(c)
]
|
0.2 04
X [m]
(d)
02 04
x [m]

Figure A20.5 ESPI image of the measured beam displacement at 1146 Hz: (a) 2D

real part, (b) 2D imaginary part, (¢) 1D real part, (d) 1D imaginary part.
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Figure A20.6 Comparison of measured input power (P )F", measured corrected

transmitted energy (P:“)) ~ and measured ESPI based energy flow at 1146 Hz.

Here, z is the beam length and y is the beam width.
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Appendix A21

Transducer Measured Vibrational Input Power, Measured Four-
Accelerometer and Two-Accelerometer Transmitted Energy of the Simply

Supported Beam

Below, n is mode number, f, is the resonant excitation frequency, (Pm)m is

the measured VIP, (R,.’) is the four-accelerometer measured transmitted

energy, and (P ) is the two-accelerometer measured transmitted energy to

tr,

the left and to the right of the excitation location.

n 6 8 9 11

fi 857Hz  14675Hz 1874 Hz 2772 Hz
),, 1.8449.10" 3.7349-10" 1.3127-10"  2.5009-10"

(B,) ~— -4.6487-10" -2.1928:10" -2.7560-10" -4.1243-10"

(P,) =~ 1.1438:10" 9.9085-10" 1.619610° 1.1088-10"
t Irigh

Z(P) 5.7925-10" 3.1837-10* 2.9180-10* 5.2330-10™

itry

Table A21.1 Transducer measured input power and measured transmitted energy of

the non-layer damped beam (all power values given in units of Watts).

n 6 8 9 14

% 833.5 Hz 1441 Hz  1830.5 Hz 2745 Mz
(P.),, 9.0819-10" 2.4778:10" 2.0965-10" 1.9544-10°
(P,),, -1.740410° -5.5333-10"" -3.9034-10" -6.5469-10"

i
(P'lr1 )r'l_uhf
Z(P’n) 5713910  8.2122-10"  1.0156-10" 1.2476-10"

5.5399-10°  8.2122:10°  6.2524-10°  5.9291-10"

Table A21.2 Transducer measured input power and measured transmitted energy of

the single-layer damped beam (all power values given in units of Watts).
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n 6 8 9 11

1 821 Hz 1426 Hz 1797 Hz 2682 Hz
(P,), 2.8646:10" 1.6653-10" 1.8977-10" 2.6488-10"
(R"=)w -5.5720-10° -1.4471-10" -9.8116-10" -3.7872-10°
(B, )whr 2.2064-10"  4.4348-10" 1.8676-10° 2.2237-10"

Z(P”_) 2.7636-10"  1.8906-10" 1.1679-10"  6.0109-10"

Table A21.3 Transducer measured input power and measured transmitted energy of

the double-layer damped beam (all power values given in units of Watts).

n 6 8 9 11

# 857 Hz  1467.5Hz 1874 Hz 2772 Hz
(P,),,  1.8449.10" 3.7349-10" 1.3127-10" 2.5009-10"
(B ). 84475107 -7.7153-10" -1.0221-10" -1.7385-10"

(P,), .. 1337910" 2.149610" 5.0500-10° 12318-10"

Y(P,) 2182610 2921110 1.5271-10%  2.9702-10"

Table A21.4 Transducer measured input power and measured transmitted energy of

the non-layer damped beam (all power values given in units of Watts).

n 6 8 9 11
3o 833.5 Hz 1441 Hz 1830.5 Hz 2745 Hz
,,)F‘, 9.0819-10° 2.4778-10" 2.0965-10* 1.9544-10*

(P
(P), ,, -1.738810° -8.9068-10° -5.1867-10° -8.2533-10"

(P,), .. 5908610° 1.662310" 9.0806-10° 7.9381-10"

2(P,)  7.647410° 1.751310" 1.4267-10° 1.619210°

Table A21.5 Transducer measured input power and measured transmitted energy of

the single-layer damped beam (all power values given in units of Watts).
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n 6 8 9 11
1 821 Hz 1426 Hz 1797 Hz 2682 Hz
(P" )H 2.8646-10" 1.6653-10" 1.8977-10" 2.6488-10*

(P,), ., -4.732310° -4.0214-10° -5.4364-10° -2.5024-10°

(P,), ., 17195:10% 1.0172:10* 9.3876-10° 1.6037-10°

¥(P,)  2192810* 1.419310% 1.4824-10% 4.1961.10°

or

Table A21.6 Transducer measured input power and measured transmitted energy of

the double-layer damped beam (all power values given in units of Watts).
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Appendix A22

ESPI Measured Vibrational Energy Flow of Experimental Simply Supported
Beams Using the VEFESPI Method

5 (a) ; (a)
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x 10 Jx 10
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= 2 =
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.:.; 0 ldeal :H o Ideal
= 2 Butterworth = Butterworth
-4 -H
0.4 0.6, 0.8 0.2 0.4 0.6 0.8
x [m] x [m]

Figure A22.1 6" mode — no damping Figure A22.2 8" mode - no damping
layer: (a) active VEF, (b) reactive VEF. layer: (a) active VEF, (b) reactive VEF.
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Figure A22.3 9" mode - no damping Figure A22.4 11" mode - no damping

layer: (a) active VEF, (b) reactive VEF. layer: (a) active VEF, (b) reactive VEF.
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() : (a)
x 10 x 10
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Figure A22.5 6" mode - single damping Figure A22.6 8" mode — single damping
layer: (a) active VEF, (b) reactive VEF, layer: (a) active VEF, (b) reactive VEF.
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Figure A22.7 9" mode - single damping Figure A22.8 11" mode - single damping
layer: (a) active VEF, (b) reactive VEF. layer: (a) active VEF, (b) reactive VEF.
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Figure A22.9 6" mode — double damping
layer: (a) active VEF, (b) reactive VEF.
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Figure A22.11 9"
damping layer:

reactive VEF.

In the above shown figures, the quantity shown on the z-axis is

length z.
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Appendix A23

ESPI Measured Vibrational Energy Flow of Experimental Simply Supported
Beams Using the Incremental Energy Density Integration Method
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Figure A23.1 6" mode — no damping Figure A23.2 8" mode - no damping
layer: (a) active VEF, (b) reactive VEF. layer: (a) active VEF, (b) reactive VEF.

5 (a) " (a)
x 10 x 10
_ 2 = B
= =
E 0 Ideal :.: 0 Ideal
&H Butterworth '?: Butterworth
> 8 =5
A
002 04 ps 08
0.2 0.4 0.6 0.8 i o 0O 3
% [m] : X 1“'1
‘ (b) . (b)
x 10 x 10
_— e |
Z Z
= i) ldeal — Ideal
ﬁz | &z
By Butterworth =4 Butterworth

)

3]
¥

-]

0.2 0.4 0.6 0.8 0.2 0.4 .6 0.8
x [m] X ["‘I

Figure A23.3 9" mode — no damping Figure A23.4 11" mode — no damping

layer: (a) active VEF, (b) reactive VEF. layer: (a) active VEF, (b) reactive VEF.
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Figure A23.5 6" mode — single damping Figure A23.6 8" mode - single damping
layer: (a) active VEF, (b) reactive VEF. layer: (a) active VEF, (b) reactive VEF.
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Figure A23.7 9" mode — single damping Figure A23.8 11" mode — single damping
layer: (a) active VEF, (b) reactive VEF. layer: (a) active VEF, (b) reactive VEF.
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Figure A23.9 6" mode — double damping
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Appendix A24
Forced Vibration of an Infinite Plate due to Point Force Excitation

It is assumed herein that the solution of the plate’s homogenous partial

differential equation of motion is in general form of [18]:
w(r,0,t) = R(W, e ). (A24.1)

Here, r is the radial distance from the point of excitation, # is the angle
between radius and the positive z-axis, w(r,0,t) is the polar and temporal
plate displacement, ¢ is the variable time and n is any integer number. If one
substitutes equation (A24.1) into the homogenous part of the thin plate’s
differential equation, as shown in (A3.21), and employs the two-dimensional
Laplacian operator V* in polar form, as given by equation (3.62), one can
divide the 4™ order differential equation into two 2" order differential

equations as [109]:

w1 0w

or'  r or

n’ : =i
?_—z:tkz]W=0. (A24.2)

It can be noticed that the above displayed differential equation is equivalent
to Bessel’s differential equation. The general solution of Bessel’s differential
equation is the Bessel function of the second kind [143]. Taking into account
the Sommerfeld radiation condition and the following boundary condition at

the excitation location [103]:

M =) (A24.3)
or

one can find the solution to the point force excited infinite plate as a

combination of two Bessel functions of the third kind. Using a complex
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solution, the Hankel function of second kind and zero order can be used to

form the infinite plate displacement response as [103]:
w(r,0,t) = W, (H (kr) — H (—jkr)) ™" . (A24.4)

Here, W, is the displacement amplitude at the excitation location and
H” (kr) is the Hankel function of second kind and zero order (n = 0). This
part physically represents the farfield of the vibrating plate. H\” (—jkr) also
denotes a Hankel function of second kind and zero order however, represents
a decaying nearfield around the excitation location. The unknown
displacement amplitude W, can be determined from applying the following

boundary condition as given by [103]:

jQ(v;,)dB =7, (A24.5)

0

Equation (A24.5) states that the integrated radial shear force ((r;,) around a
small circle of radius 7, is equal to the excitation force F = Fe™. The
diameter of the circle should be smaller than the wavelength of the flexural
wave, generated at the excitation location however, large enough to avoid the
singularity of the Hankel function at r, = 0. Solving (A24.5) and taking the
cirecumference 2nr, into account. the displacement of a point force excited

infinite plate is given by [103];

F, o B dniid .
w(r,0,t) = jS—D']?(Hf,Z’ (kr)— HP (—_7kr)) il (A24.6)

Here, D is the plate’s flexural rigidity as defined by equation (A3.13).
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Appendix A25
Transmitted Vibrational Energy in an Infinite Plate Using Polar Coordinates

The infinite plate displacement based on the truncated asymptotic expansion

for large values of |kr| is given by [103]:

kr——
0,t) ~ 1+-3) je ¥ |e™ . 10.6
wir, 18DL,2\} m[ —e ],, L5

The first exponential term in equation (10.6) represents a travelling wave and
the second exponential term in equation (10.6) represents an evanescent
wave. If one substitutes the exponential decaying part of equation (10.6) into
equation (3.68) (all spatial derivatives in equation (3.69) will be zero), the
time-averaged polar shear force VEF due to the evanescent waves can be

written as:

wite™ ™ 5 2 4 8
P = j— — + —— + ——+ —|. A25.1
( -“'"‘"")F\ J 512D7 \k°r* K B B ( )

Analogously, the time-averaged polar bending moment VEF due to

evanescent waves can be found to be:

g W, 13,8
wF'Z(? 2hr A:f.rf_.l k‘l T_:l k.’l'r'l k?r

= . g 95 -
(Rﬂrrﬂu )Fx i ] 512Dﬂ' 2 8 8 B (Az) 2)

As mentioned before, due to zero angular displacement variation, the angular

twisting moment and, thus, the angular energy transmission is zero.
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The total time-averaged polar VEF within the infinite plate due to

evan

evanescent waves. i.e. (P ) = (R ) - (P,, ) , can be defined as:
] Fuo S evan J F B evan Fw

— wEFZe™ [1 +v [ 1 1 ]
P = g 4{r—1 + —] . A25.3
( revan )Foo J 256D7T k57‘4 + (V ) k4r3 ksrz ( )

VEF due to travelling wave can be found analogously. If one substitutes the
exponential travelling part of equation (10.6) into equation (3.68), the time-
averaged polar shear force VEF due to the travelling waves may be written

as!

Fu (8 2 5 4
P =20 —_— ' - ) A25.4
( s "“")Foo 512Dx [k2r kir® + [k5r4 krt ]] ( )

Analogously, the time-averaged polar bending moment VEF due to the

travelling waves may be found as:

(P ) _ F;,zw[ 8 2 (3—2v 4-8v
TBirav /g

— _° <V . (A255
STy w e e ] L ]] (A25.5)

The total time-averaged polar VEF due to the travelling waves, i.e.

(Eﬂmﬂ)pm = (P—Tbtrav)pm B (P'”B trav ) o Is given by:

— Flw (16 4 .[1+V 4(v —-1)
P =0 - 2 - . A25.6
( rLrav)Fm 512D71' [k27‘ k‘lrz] + J k51‘4 + kdr2 ( )

519
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Appendix A26

Transmitfed Vibrational Energy in an Infinite Plate Using Cartesian

Coordinates

The polar infinite plate displacement can be transformed into a Cartesian
coordinate based infinite plate displacement by employing the relation
r? =22 +4°. If one substitutes this relation into equation (10.6), the
Cartesian coordinate based infinite plate displacement of the infinite plate

may be written as:

k(:l:"" +y’)% —E]

' -3 o 22 9% .
w(z,y,t) ~ Hho|L 2 e U g g (10.12)

2

By substituting the evanescent part of equation (10.12) into equation (3.49),
the time-averaged shear force VEF due to the evanescent waves of the

infinite plate in the z direction can be found to be:
L
|5z + 2ke (s + o) +
enzk(mzwz)’

(P n)y, =7 £ 4Kz (2" + o) + . (A26.1)
© 512Dkm (s’ + 4 )2

3
8k*z (:z:2 + y2)2
Analogously, the twisting moment VEF can be found as:

5zy’

2 .2
, —(:r:2 +y2) +20k°zy” +
2 4 o
(P ey, =~ fulw=De * " | 18ky . (A26.2)
- 512Dk"m (2* + 3* 2 |(2® +¢°)2
8k*zy® (2 + y2)%

520



Appendix

The bending moment VEF due to the evanescent waves may be written as:

(P

%8 evan )Foe

4k
(=" +v")
—4k$—1($2—y2—y(:g2-—y2))+
(=" +o):
_—z
(=" +v')
—§fg3$—1($4+$2y2+u(m2y2+y4))+
(=* + ')
8k’ (:r:2 -y — jv(z2 - yg)) +
2 (@ (3-2)+y (3v-2)
(= +9")

(:1:" + 2%y + v (m2y2 + y4)) +

(a:2 B-2v)+y*(Bv— 2)) +

with the constant C, being defined as:

1
—2 42
Flwe &)

Cp = ——1

512Dk (z* + yz)% |

(A26.3)

(A26.4)

It can be realised from equation (A26.1) that equation (A26.1) is equal to
equation (A25.1). Equation (A25.1) can be obtained, if one substitutes

r=(:c2+y2

)}6

and z =cos(f)r with 6 =0, into equation (A25.1). The

same procedure holds true for the remaining VEF expressions due to bending

moment and twisting moment. The total time-averaged Cartesian coordinate

based VEF in the z direction due to evanescent waves, which simply is the

difference

of

all three VEF parts,

(Eeuun )Fw = (E:mn)},-w - (P_ﬁ,mn)}; - (me )Fm , is given by:
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-,2k(z"+y“)% 4k? (3:2 n yZ)E (y — 1) + .
' win | (A2.5)

(=" +y')

= . Flwre
P, = j—1
(Prew), =1 256Dk w (2 + 47 ) |4k (v — 1)+

If one substitutes the travelling part of equation (10.12) into equation (3.49),

the Cartesian coordinate based time-averaged shear force VEF can be written

" as:

5jx — 2kz (m2 + yz)% -

(7)) =—BY s +y)+ | (a2.6)
™ 512DKr (2* + 47 -

a4 )

The bending moment VEF the z direction may be written as:

32 ’
ﬁk—%($4+$2y2+v($2y2 +y4))+
—-ém—l(xz—y2—v(m2—y2))+
(a*+¢')

(;ET.J:_{T(:BZ (2!/ - 3) + y2 (2 — 3!/)) +
(‘Pxﬂ tmu)pm = —OB 3y ’ (A26.7)
—8*"”—1(1:4 + 2ty +v(a:2y2 + y4))_
(:r2 + y?)E
85k’ (m2 —y® - l/(.’l?z — yz)) +
— 2 (v -3)+ @ -3)
(@ +y')
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with the constant Cj being defined as:

_ Fw(Dk'r)

(A26.8)

5= 5
512(z* + o*)?
The twisting moment in the z direction can be found to be:
5j$y2 2 2
v + 125k%zy" +
(m +y )
_ Rw(D¥r) (v-1 ’
(Br). =—— (D¥'7) b N . (A26.9)
trav ) g

5122 + 972 (s + yz)é

8k’ry’ (:1:2 + yz)%

Shear force, bending moment and twisting moment VEF expression in the y
direction can be found'analogously, simply by interchanging x and y in the

above given equations. The total time-averaged transmitted VEF, i.e.

i)y, = (Pr)y, ~ (P

(P )
%8 trov ) F, ( T trav/F,

, is given by:

8k* (2 ~+—y"’)2 —2k(z* + 7 )+
(v+1)+
4K° (1/—1)(:82 —I—yz)

9 5 \-1
(7, = 2elDFn) 2 1

= A26.10
o 256(582—1—,7;2)3 j($2+y2)2 ( )
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Appendix A27
Transmitted Vibrational Energy in a Simply Supported Plate

The derivation of VEF in a simply supported plate is based on the
eigenfunction expansion theorem applied to define the simply supported

rectangular plate displacement as given by:

mrr| . |nrT MTIL, N7,
jwt oo oo Sl L st st L
TU(acs yat) = —"—4}’-:)8] - 2 Ly . Lﬂ - : (1025)
phLl.Ly m=1 n=1 wmn (]' + Jn) -

If one substitutes equation (10.25) into equation (3.49), one may obtain the
time-averaged VEF of the shear force, bending moment and twisting moment
component in z the direction separately. The shear force VEF term in the z

direction is then given by:

»3 Cn,Cl cos(C,,z)sin (C,y) X
—_ wD02 Zzw 1+.777) 2 (Cs +C C’z) %
R i . S (A27.1)
;;wm ; %Jn"s = sin (C’mﬂ:) sin (Cﬂy)

In eQuation (A27.1) and the following presented VEF expressions, the below

listed simplifications are employed:

C= ;_f’L, (A27.2)
phL,L,
C = ”;“ , (A27.3)
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c =1 A27.4
=T (A27.4)
c, = Sin[mg%], (A27.5)

nmw
C, = sin[ Ly"]. - (A27.6)
¥

Analogously, the bending moment VEF in the z direction can be found to be:

f: i C,.Ch. sin (C,,)sin (C,y) X 1 '
X
. 2 2 2 2
(RIB )F — jwj.g)c m=1 n:l (1 + 37?) w (Cm + Ucﬂ) (A277)
" 0o 00 Cmﬂcno
. C, cos(C, z)sin(C.y
;;wim(l—m)—wz (Cuz)sin(Cu)
The twisting moment VEF in the z direction can be obtained as:
5o 0o O’mcﬂo (1 _ V) CmC’n x
jwDC? ;Z;w (1+ 1) — o |c08(C,uz)cos(C,)|
(77, =~ L2 it e HEEI) | )
—C, sin(C,z)eos (C,y
gﬂz—l wmn (1 jn) ( ( ) ¥,

The transmitted energy in the y direction can be determined due to
symmetry properties simply by interchanging z and y as well as m and n in
equations (A27.1), (A27.7) and A(27.8). Thus, VEF in the simply supported

rectangular plate due to the shear force component in y direction is:

sin (C,,z) cos (C,y) X
(c2+c.00)

(7, _ jwDC" ;Z_;w 1+J??) w’
s /F, 2 0o oo
> 2=

m=1 n=1 wmn (]‘ Jn)

(A27.9)

sin (C,x)sin(C,y)
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Similarly, the bending moment VEF in the y direction is given by:

oo oo c C sin (C,,z)sin (C,y) X
N D30 D vyl PRSI x
(B,). = JwDC® |3 o Wy, (14 1) =" {(C + vC) (A27.10)
¥p F, 2 !
o0 00 CROC%
. C sin(C,x) cos(C,y
;'12:1 ﬂlﬂ (1 Jn) ( ) ( )

VEF due to the twisting moment component in the y direction may be

written as:

C C x

m n

ii c,C.,.1-v)

1 n= lwmn(]'-'_.?n)_w

0 o C C
> —————C, cos(C,x)sin (Cy)

n=1 n=1 wmn (1 JT}) W

cos(C,,z)cos(C,y) X

(A27.11)

-

The total VEF due to shear force, bending moment, and twisting moment
components can be found by summing up the shear force, bending moment,

and twisting moment VEE term, i.e. (E)F = (P—zg)F -(P_%)F —(}Z)F.

A a8

Thus, the total VEF in the z direction can be found to be:

— ijC'2 e R C,C.C.C, ‘

P ped

B = R L T T - ek (=) =)
cos(C,,z)sin(C,y)sin (C,z)sin (Cy)(C3 + C,C?) -
sin(C,,z)sin (C,y) cos (C,z)sin (Cy) C, (6’2 +u02) . {(A27.12)

(1 —v)cos(C,z)cos(C,y)sin(C,z)cos(Cy)C,C.C;

In equation (A27.12) the rule of a product of two double series:

[.9]

iiflmﬁ’n XiiEmKn = iii A BEK,  (A27.13)

m=1 n=1 m=1 n=1 m=1 n=1 k=1 i
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as well as the sum rule of two double series:

ii/’mﬁ if:iEmKn = ii(AmB,, +E,K,), (A27.14)

m=1 n=1 m=1 n=1 m=1 n=1

were taken into account in order to form a fourfold series expression.
Analogously, the total VEF in the y direction can be found simply by

interchanging z and y, m and n as well as k and ¢ and, thus:

C,.C,C,C,

A (U ) — ) (wis (1 - ) = o)
sin (C,,z) cos (C,y)sin (Cr)sin (Ciy)(C? + C,C2) —
sin(C,z)sin (C,y)sin (Ciz) cos (C.y)C, (C2 +vCL) +| . (A27.15)
(1 - v)cos(C, z)cos(C,y)cos(Ciz)sin (Cy) C,C,C,

X

Equations (A27.12) and (A27.15) display the total VEF within a simply
supported plate in the z and y direction, respectively. These expressions can
be simplified further, by using the cotangent function. If one takes into
account that cot(x) = cos(z)/sin(z), equation (A27.12) can also be written

as:

— ](JJDcz = e e CmnCnnC C

7). =

() =5 Zzzz(w,ﬁn(h“m) P = gm =)
sin (C,,2)sin(C,y)sin (C,z)sin (C,y) x

cot(C,z)(C + C,,C?) - cot (C,x)C, (C2 +vC?) +
. (A27.16)
1 —v)eot(C,z)eot{C,y)cot (Cy)C,C,C,

m-nTt
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By interchanging z and ¥, m and n as well as & and ¢, the VEF within a

simply supported rectangular plate in the y direction can be defined as:

%0 C,,Cr.Ci,C,,
m=1 n=1 k=1 =] (wsm (1 + -Tq) - wz)(w:l (1 - .777) —w
sin (C,z)sin (C,y)sin (C,z)sin (Cy) x
cot(C ) (C° + C C2) — cot{Cy)C, (C? + vC: )+
(Ca)(E2 +C.02) —eor(Ca)CL(CEHoC) 4]
1 - v)cot(C,x)cot(C,y) cot (Cyz) C,.C,C,

m=n

2)><

Note, the constants C, and C_ as well as €, and C; can be found by
substituting the integer variable k and 7 into equations (A27.3) to (A27.6)

accordingly.
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Appendix A28
Unconstrained Layer Damping of Plates

The attachment of a damping layer, as shown in Figure 10.2, canses a shift of
the neutral axis of bending away from the plate’s middle plane towards the
attached layer. Due to the layer attachment, the original flexural rigidity of
the plate changes. If one considers that the resultant normal force on the
transfe’rse cross-section due to the bending stress o, must be zero, i.e.

f o.dz =0, the following definition may be formulated as:

Zy {hpt2x)
o, dz+ [ o,dz=0. (A28.1)
—{hp—zx) N

Herein, the subscript P denotes plate properties and the subscript D dehotes
damping layer properties. If one substitutes the plate and damping layer
bending stress in the z direction, as given by equation (A3.7), into equation

(A28.1), one may find the shifting distance zy to be:

L __Ephp —Ephy T (- eDPHéP)_ (A28.2)
f Q(Ephp + Ephp) 2(1 +eDPHDP)

Here, h, is the plate’s thickness, h, is the damping layer thickness,
enp = E,/Ep and Hpp = hy /hy. The under-bar denotes complex quantities.
As it can be seen in equation (A28.2), a complex Young’s modulus is
‘employed to take structural damping into account. The respective complex

Young’s modulus is given as:
B, = B, (L+ ny), (A%

Ep = Ey(1+ jnp), - (A17.3)
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where 7 is the respective linear hysteretic loss factor. To simplify the
definition of the neutral axis offset zy, it was assumed in equation (A28.2)
that Poisson’s ratio of both materia,ls is approximately the same thus,
vp & vy, The complex, combined, flexural rigidity, D,p, = Dp + Dp, in

general obtained using equations (3.7) and (3.10), may be given by:

z (hp+zy)
D,, = 2 f Pdz +—=L. f Pdz (A28.4)
= PD 2 ! !

2
—(hp—2y)

1 -1y <

It can be seen from equation (A28.4) that the combined flexural rigidity is
the sum of the plate’s and damping layer rigidity. However, in equation
(A28.4) the offset of the neutral axis of bending is taken into account. If one
substitutes equation (A28.2) into (A28.4), the plate rigidity due to neutral

axis offset can be defined as:

Dr =

Eph} [4 eDP(3H;P+6Hf)P)—3ePD_6HDP

. (A28.5
12(1— 1) 2H ), + epp + eppHip ] ( )

Analogously, the damping layer flexural rigidity due to neutral axis offset

may be written as:

. (A28.6)

=D

— Ephp 4 Erp (3H iD + 6H PD) — 3eDP‘HEP —6Hpp
12(1 h V%) 2Br}.‘u’ + €rp + erHf)p

Herein epp =(em,)-1 and Hp, =(HDP)_1. It can be seen from equations
(A28.5) and (A28.6) that both definitions are complex fractions. If one
substitutes equations (A28.3) and (A17.3) into equation (A28.5), the

complex, flexural plate rigidity can be found to be:

__ER

Dp = m (A28.7)

)

CPD
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Herein A,, Bp and Cp are defined as:

EppFp (6Hyp +12H3, — 6Hpp ) = 12E,p FoHpp +
A, =|E}, (F} + K})(3H, + 6H,p ) — 3, (Fy + Kp)+|,  (A28.8)
(FoFp + KoK, )(3H,, + 6Hyp — 3H}, ) — 12H7,

EppKp (6H}p +12Hy, +6H) o ) +
(KpFp — KDFP)(?’H;P +6H}, + SHEP)

P:

, (A28.9)

2 2
Crp = (2Hpp + EppFy + EppFoHYL Y + (EppKp + Epp K Hy,) . (A28.10)

In the above shown expressions, the following abbreviations were used:

F, =1t | (A28.11)
1+
F, =12 (A28.12)
1+
o — e
K,=To =" A28.13
P 1+"7§ ) ( )
e —Tp
K, =——* A28.14

Similarly, the flexural rigidity of the attached layer can be written as:

E R . Ay + jB
D,=—"22 _(1+ 4422 20D A28.15
Lp 12(1—1/129)( .7771))[ CPD ( )
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Herein, A, and B, are defined as:

—12Epp FoHp + EppFyy (6H,pp +12 — 6H 0 ) +
Ay =B}y (F + K3 (3H?, +6Hypp ) — 3E7.Hyp (FE + K72)+|, (A28.16)
(FoFp + KpK ) (3 +6H,, — 3H}, ) —12H),

Ep Ky (6Hpp +12+ 6H,p) +

_ ) . (A28.17)
(KpFp — KpFp)(3Hpp + 3 + 6H ,p)

D

It can be seen from equations (A28.7) and (A28.15) that in both expressions
the respective Poisson ratio is employed. Adding both terms will yield to a
rather extensive expression. However, if one assumes again that v, ~ v, the

combined flexural rigidity D, can be written as:

A B
Dpp = = 1+ 72, A28.18
Lpp IQCPD(1~1/2)[ +JAPD] ( )

It can be noticed from equation (A28.18) that this expression is in form of
Dpp = Dpp(1+34mpp), where 1, is the combined loss factor. Here, App, Bpp

and Cpp are given as:

By, (A, + Ezby + Ephy) +
|20 (B3R Ephy, + EShSEphy ) +
By (An + 2B2hE — Boh2By, ) +
3oty (A, + 2E305 — Eph3By,)

, (A28.19)
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fﬂinDEPhP (AE]: + Eph;EDhD) + W

5 np (Bphp (Ap, — EphyEphyp) — E2hs (Ephy — 2By,)) + (A28.20)
PD = ’ :

o (EPhP (AEh - EPh’gEDhD) - Ef)h; (EDhD —2Bp, )) +

ﬁp"?f)EDhD (AEI.: + Eﬂh’gEPhP) + W;Egh; +mpEphy

Cpp = B:Jh + (Ephpnp + EDthD)z' (A28.21)

In equations (A28.19), (A28.20) and (A28.21) the following abbreviations are

used:
Ap, = 2EphEphy, (207 + 2k} + 3hohy) (A28.22)
Bg, = Exhp +Ephy,. (A28.23)

Using equations (A28.19), (A28.20), (A28.22) and (A28.23), the hysteretic

loss factor 1y = Bpp/App of the plate-layer compound is given by:

Wi%EPhP (AE.& + EPh}::EDhD) +

Tp (EDhD (AEh - Eth)Ephp) ~ Ezhyp (Ephp — 2B, )) +

o (Ephp (AE.‘:. - Epthth) — Ephy (Ephy — 2By, )) +
1ensEphy (g, + Eph3Ephy ) + nyEShS + 3Bk

By (As + Ephy + Ephp )+

ey (ERRAEphy + EphpEphy ) +

M Ephp (AEh +2E¢hp ~ EpthEh) +
TLZDEDh’D (AEh + 2E12)h; - EDthE'h)

(A28.24)

Nep =
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Appendix A29

Tables of Predicted Cut-Off Points and Relative Mean Square Error of

Three Differently Damped Simply Supported Plate Structures Using
Extracted ESPI Noise and Measured Force Magnitude

Due to brevity reasons the following abbreviations are employed in the

columns in the tables below:

A % of max |Amplitude|, of real displacement

B 10log,(R(/D)

C % of max |Amplitude]|, of real displacement

D 10-log,(R(JL))

E % of max |Amplitude|, of imaginary displacement

F o 109og,(S(/T)

G % of max |Amplitude|, of imaginary displacement

H  10log(3(/7))
mode f,,[Hz] A% B C[% D E% F G[% H
(3,3) 4287 68 099 44 1575 64 854 58 19.86
(5,3) 7116 6.2 663 62 0.87 72 13.74 3.6 7.16
(1,5) 766.7 62 -144 3.8 -11.41 1.6 -11.78 8.2 43.99
(7,1) 896.2 62 2843 62 -146 76 3336 22 -11.89
(5,5) 11%0.9 46 033 78 -729 72 300 78 1871
(9,1) 1461.9 2.8 -6.57 3.2 1048 4.8 2883 56 -8.32
(7,5) 16152 48 132 60 1969 56 549 96 24.72
(9.5) 21809 74 -272 6.8 1009 66 467 82 -098

Table A29.1 Optimum, ideal filtered, non-layer damped plate cut-off points and

relative MSE using the VEFESPI method.
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mode f,[Hz] A[%] B C[% D E% F G% H
33) 3981 68 1915 68 660 42 78 6 19.87
(5,3) 660.7 68 683 68 -333 68 160 54 1212
(r,1) 8321 34 1068 92 627 68 2041 66 -4.33
(5,5) 11057 46 619 48 -7.78 78 120 40 32.74
9,1) 13573 48 -21.20 3.8 246 6.6 1623 48 -10.17
(75) 14996 88 -685 50 280 40 952 88 -0.67
(5,7) 17733 52 =727 56 -19.98 74 -296 74 13.18
(11,1) 20138 48 -945 7.0 -8.03 46 534 52 1098

Table A29.2 Optimum, ideal filtered, single-layer damped plate cut-off pointé and
relative MSE using the VEFESPI method. '

mode f.,[Hz] A{%] B C[% D E% F G[% H
33) 4121 74 225 74 299 38 441 36 1735
(5,3) 6840 64 669 64 -173 72 1423 46 9.85
(7,1) 8614 34 2088 82 -1.72 82 2332 64 -6.02
(55) 11447 32 208 42 -78 7.2 301 94 2241
(9,1) 14052 48 -11.77 48 2250 9.8 2615 58 -5.66
(7,5) 15526 9  -7.30 46 007 7.0 11.0 9.0 -0.84
(5,7) 18359 48 -7.90 46 -1832 74 -001 72 9.03
(9,5) 20963 46 -189 58 -558 34 1745 96 -0.08

Table A29.3 Optimum, ideal filtered, checkerboard-layer damped plate cut-off points
and relative MSE using the VEFESPI method. '

335



Appendix

mode f,,[Hz] A[%] B C[% D E% F G[% H
(33) 4287 30 505 30 6194 20 -2479 1.0 -16.06
(53) 7116 2.2 342 34 376 14 -1965 1  -9.53
(1,5) 766.7 - - - - - - - -
(7,1)  896.2 - - - - - - - .
(55) 11909 26 2095 22 -13.98 1.6 -11.57 14 195
(9,1) 14619 - - - - - ] - ]
(7,5) 16152 14 1832 56 762 44 20.14 34 -3.91
(9.5) 2180.9 903 88 46 62 897 66 526

6.2

Table A29.4 Optimum, ideal filtered, non-layer damped plate cut-off points and

relative MSE of integer-wave truncated simply supported plate displacement using
the VEFESPI method.

mode f,.[Hz] A[%] B C[% D E% F G% H
(3,3) 398.1 28 -296 2.2 38.03 40 -2637 4.0 -23.40
(5,3) 660.7 24 -48 38 -767 44 -2004 5.2 -17.98
71) 8321 - i ) . - i ]
(5,5) 1105.7 1.4 2.54 24 -1504 14 -344 22 6.08
(91) 13573 - - - - - -
(7,5) 1499.6 30 -13.70 22 658 40 -1.84 16 -1.80
(5,7) 1773.3 1.8 -1283 34 -1963 18 -138 24 -142
(11,1) 20138 - i i ) - i _

Table A29.5 Optimum, ideal filtered, single-layer damped plate cut-off points and

relative MSE of integer-wave truncated simply supported plate displacement using
the VEFESPI method.
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mode f,.[Hz] A[%] B C[% D E% F G% H
(33) 4121 26 -7.12 20 3625 3.2 -1651 7.0 -22.44
(53) 6840 20 -940 18 -1.00 24 -539 10 -6.36
(7,1) 8614 - - - - - - - -
(5,5) 11447 3.0 3883 28 -14.13 80 -27.03 80 16.64
(9,1) 14052 - - - - - - - -
(7,5) 15526 7.6 -14.38 44 153 16 294 26 -6.36
(5,7) 18359 3.2 -849 28 2128 28 -1253 24 022
(9,5) 20963 42 -1336 6.6 2685 6.6 -1068 4.0 -4.54

Table A29.6 Optimum, ideal filtered, checkerboard-layer damped plate cut-off points

and relative MSE of integer-wave truncated simply supported plate displacement
using the VEFESPI method.

I (& k)

I (K [k e

K (%, /% )i

L (K, /%, Ying
mode f,, [Hz] I B J D K F L H
(3,3) 428.7 26492 3.95 2.7134 1242 3.6681 4.02 3.6527 22.14
(5,3) 7116 22099 -9.04 2.1018 16.23 2.052 16.63 2.9102 13.10
(1,5) 766.7 2.0505 -4.27 1.5402 -14.74 2.0505 -9.73 1.2602 24.18
(7,1) 8962 23107 9.01 1.3017 -5.56 12709 2249 1.8934 -10.4
(5,5) 11909 1.5284 -6.73 2.0664 -7.13 2.0175 3.99 2.0038 7.83
(9,1) 14619 18340 -14.8 25047 29.0 12227 25.12 2.4003 -10.2
(7,5) 16152 13950 -4.59 1.9581 24.12 1.7051 1.62 1.6935 -0.05
(9.5) 2180.9 1.5049 -12.5 1.6335 -4.52 2.0505 7.09 2.0069 14.78

Table A29.7 Optimum, Butterworth filtered, non-layer damped plate cut-off points
and relative MSE using the VEFESPI method.
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mode  f,, [Hz] I B J D K F L H

(3,3) 398.1 27511 2.18 2.7178 12.77 3.6681 4.64 3.8614 16.18
(5,3) 660.7 2.2888 -9.18 2.1018 15.79 2.1310 16.40 2.9910 8.39
(7,1) 8321 1.7330 7.21 26034 -6.30 1.2709 38.80 2.4850 -4.44
(6,5) 1105.7 2.3843 -8.04 2.0038 -8.21 2.0175 2.59 2.0038 9.90
(9,1) 13573 1.7322 -19.5 24003 -3.61 1.4265 14.99 1.8785 -10.3
(7,5) 14996 1.9634 -6.04 1.4289 -7.74 2.0667 16.22 2.0110 32.78
(5,7) 17733 2.1184 -13.1 1.5347 -7.88 1.7567 -1.92 2.0110 6.50
(11,1) 2013.8 1.6590 -10.4 2.7376 -16.4 2.6728 28.45 2.3600 9.44

Table A29.8 Optimum, Butterworth filtered, single-layer damped plate cut-off points
and relative MSE using the VEFESPI method.

mode f,,[Hz] 1 B J D K F L H
(3,3) 4121 27511 2.97 19829 8.20 3.6681 4.00 3.7570 17.61
(5,3) 684.0 22888 -8.74 21018 13.58 1.9731 14.10 2.9910 12.30
(7,1) 8614 1.7330 10.95 1.7750 -6.73 1.1553 13.36 2.6034 -6.59
(5,5) 1144.7 15284 -6.72 2.0664 -7.03 1.9563 3.27 1.6280 0.81
(9,1) 1405.2 16303 -11.5 2.1916 37.8 1.4265 319 1.7742 -12.1
(7,5) 1552.6 1.3950 -5.65 1.4289 -7.31 1.7051 22.89 1.5347 30.17
(5,7) 18359 20667 -134 1.5347 -7.68 1.8084 -0.66 1.6935 0.56
(9,5)  2096.3 -185 1.6335 -10.8 1.8227 5.68 1.5869 11.04

1.4126

Table A29.9 Optimum, Butterworth filtered, checkerboard-layer damped plate cut-
off points and relative MSE using the VEFESPI method.
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mode f,, [He] I B J D K F L H
(3,3) 4287 21614 -9.18 2.1174 46.32 2.1614 -25.29 3.1055 -16.3
(5,3) 7116 1.8348 7.67 1.8488 -8.35 1.6513 -20.58 3.9151 -15.0
(1,5) 766.7 - - - - - - - -
(7,1) 896.2 - - - - - - - -
(5,5) 11909 2.1684 7.34 19563 -12.8 1.8793 -19.6 3.1441 -6.05
(9,1) 1461.9 - - - - - - - -
(7,5) 16152 1.5004 13.19 1.5741 -2.12 1.5004 -2.28 2.0404 -6.84
(9.5) 21809 1.4433 -9.89 1.4691 -2.59 1.6839 -2.52 1.9098 -4.20

Table A29.10 Optimum, Butterworth filtered, non-layer damped plate cut-off points

and relative MSE of integer-wave truncated simply supported plate displacement
using the VEFESPI method.

mode f,, [Hz] I B R} D K F L H
(33) 3981 24199 -12.63 24128 45.19 22775 -285 1.5612 -21.1
(53) 660.7 17431 -10.56 1.8588 -6.0 1.6513 -20.7 1.5308 -18.0
(7,1)  832.1 - - - - - - . -
(55) 11057 2.6207 -4.62 19651 -15.0 2.5499 -10.4 2.1756 6.75
(9,1) 13573 - - - - A _ ] _
(7,5) 14996 16217 -12.6 22153 -551 1.6776 -1.61 2.7400 -1.05
(57) 17733 2.3625 -16.33 1.8289 -19.2 2.3035 -0.32 1.8844 -0.61
(11,1) 20138 - - - - - - -

Table A29.11 Optimum, Butterworth filtered, single-layer damped plate cut-off

points and relative MSE of integer-wave truncated simply supported plate

displacement using the VEFESPI method,
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mode f,, [Hz] I B J D K F L H
(3,3) 4121 2.2596 -6.09 2.1289 12.01 1.5535 -16.61 1.7031 -21.9
(5,3) 684.0 1.6402 -9.0 1.8394 -5.28 1.6402 -10.0 3.2461 -2.58
(7,1) 86L.4 - - - ] . . - -
(5,5) 1144.7 19318 16.0 19563 -13.8 1.6456 -25.8 3.0742 -2.51
©9,1) 14052 - i ] i ] - - ]
(7,5) 1552.6 1.6418 -13.0 1.5806 -5.16 1.6418 4.48 2.1661 -6.24
(5,7) 1835.9 1.6107 -8.50 1.6557 -20.8 2.0879 -15.46 24284 -4.95
(9,5) 20963 1.4870 -149 15095 12.48 2.3984 -7.31 2.0127 -7.25

Table A29.12 Optimum, Butterworth filtered, checkerboard-layer damped plate cut-

off points and relative MSE of integer-wave truncated simply supported plate
displacement using the VEFESPI method.
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Appendix A30

Figures of Truncated ESPI Displacement and ESPI Measured Vibrational
Energy Flow of “Infinite” Plate

This section presents the ESPI amplitude and ESPI phase plots recorded
during the experimental “infinite” plate experiment for all five excitation
frequencies. Furthermore, the truncated displacements and its top view
images are shown. Also, the filtered active and reactive energy flow maps
determined from the prior displayed and truncated ESPI plate displacements
are presented. In addition, the total transmitted vibrational energy (T'TVE)
through a numerous number of square contours about the excitation location
is shown in comparison to the vibrational input power (VIP) injected into the
plate. Finally, the relative difference between the TTVE and the VIP in

percent is displayed.

data points in v
data points in y

100 200 300, 400 500 100 200 300, 400 500
data points In X data points 1n x
@S _
2
H : ST 2 [rad]
x 10 [m]

Figure A30.1 ESPI image of the measured “infinite” plate displacement at 569.7 Hz:

(a) amplitude, (b) phase.
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Figure A30.2 ESPI image of the measured and truncated “infinite” plate
displacement at 569.7 Hz: (a) 2D real part, (b) 2D imaginary part, (¢) real part

image, (d) imaginary part image.
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Figure A30.3 Filtered VEF maps from the “infinite” plate displacement at 569.7 Hz:
(a) active VEF - ideal filter, (b) reactive VEF - ideal filter, (¢) active VEF —
Butterworth filter, (d) reactive VEF — Butterworth filter.
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Figure A30.4 Comparison of ESPI measured active TTVE and transducer measured
VIP at 569.7 Hz.
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Figure A30.5 Relative difference in percent between ESPI measured active TTVE

and transducer measured VIP at 569.7 Hz.
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Figure A30.6 ESPI image of the measured “infinite” plate displacement at 605.6 Hz:

(a) amplitude, (b) phase.

Figure A30.7 ESPI image of the measured and truncated “infinite” plate
displacement at 605.6 Hz: (a) 2D real part, (b) 2D imaginary part, (c) real part

image, (d) imaginary part image.,
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Figure A30.8 Filtered VEF maps from the “infinite” plate displacement at 605.6 Hz:
(a) active VEF - ideal filter, (b) reactive VEF - ideal filter, (¢) active VEF -
Butterworth filter, (d) reactive VEF —~ Butterworth filter.
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Figure A30.9 Comparison of ESPI measured active TTVE and transducer measured

VIP at 605.6 Hz.
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Figure A30.10 Relative difference in percent between ESPI measured active TTVE

and transducer measured VIP at 605.6 Hz.
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Figure A30.11 ESPI image of the measured “infinite” plate displacement at 899.5

Hz: (a) amplitude, (b) phase.
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Figure A30.12 ESPI image of the measured and truncated “infinite” plate

displacement at 899.5 Hz: (a) 2D real part, (b) 2D imaginary part, (¢) real part

image, (d) imaginary part image.
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Figure A30.13 Filtered VEF maps from the “infinite” plate displacement at 899.5
Hz: (a) active VEF — ideal filter, (b) reactive VEF - ideal filter, (¢) active VEF -
Butterworth filter, (d) reactive VEF — Butterworth filter.
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Figure A30.14 Comparison of ESPI measured active TTVE and transducer

measured VIP at 899.5 Hz.
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Figure A30.15 Relative difference in percent between ESPI measured active TTVE

and transducer measured VIP at 899.5 Hz.
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Figure A30.16 ESPI image of the measured “infinite” plate displacement at 1194.4

Hz: (a) amplitude, (b) phase.
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Figure A30.17 ESPI image of the measured and truncated “infinite” plate
displacement at 1194.4 Hz: (a) 2D real part, (b) 2D imaginary part, (¢) real part

image, (d) imaginary part image.
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Figure A30.18 Filtered VEF maps from the “infinite” plate displacement at 1194.4
Hz: (a) active VEF — ideal filter, (b) reactive VEF - ideal filter, (c) active VEF -
Butterworth filter, (d) reactive VEF — Butterworth filter.
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Figure A30.19 Comparison of ESPI measured active TTVE and transducer
measured VIP at 1194.4 Hz.
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Figure A30.20 Relative difference in percent between ESPI measured active TTVE

and transducer measured VIP at 1194.4 Hz.
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Figure A30.21 ESPI image of the measured “infinite” plate displacement at 1503.2

Hz: (a) amplitude, (b) phase.
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Figure A30.22 ESPI image of the measured and truncated “infinite” plate
displacement at 1503.2 Hz: (a) 2D real part, (b) 2D imaginary part, (¢) real part

image, (d) imaginary part image.
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Figure A30.23 Filtered VEF maps from the “infinite” plate displacement at 1503.2
Hz: (a) active VEF - ideal filter, (b) reactive VEF — ideal filter, (¢) active VEF -

Butterworth filter, (d) reactive VEF — Butterworth filter.
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Figure A30.24 Comparison of ESPI measured active TTVE and transducer
measured VIP at 1503.2 Hz.
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Figure A30.25 Relative difference in percent between ESPI measured active TTVE

and transducer measured VIP at 1503.2 Hz.
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Appendix A31

Measured Vibrational Input Power of the Experimental Simply Supported

Plates

mode (P, )M (W]

(3.3)  1.3930-10°

5,3) 4.7663-107
s9) 0

-1 | =
i

)

9.3091-10”

(
(
(7,
(

ot

o
—r

(W1

1.3710-10"

1.9988-10™

4.3866-10™"

(9.1)
(7.5)
(9.5)

9.2169-10"

Table A31.1 Transducer measured vibrational input

layer damped simply supported plate.

mode (B,),, [W]
(3,3) 1.0766-10"
(5.3) 1.8218-10"
(7.1) 3.4381-10"
(5,5) 7.7383-10"
(9,1) 8.6997-10"
(7,5) 17.9213-10"
(

5,7)

1.4015-10"

(11,1)

1.8334-10*

power of the experimental non-

Table A31.2 Transducer measured vibrational input power of the experimental

single-layer damped simply supported plate.
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mode (P, ) e W]
(3,3) 4.8013-10°
(5,3) 1.6354-10"
(7,1)  7.0699-10°
(5,5) 2.9489-10"
(9.1)  2.028510°
( 7.5562-10"
(5.7) 4.589910"
(9,5) 1.7498-10°

1
|
)

|

on
=]

?

)
)
)
)

<o
3,

Table A31.3 Transducer measured vibrational input power of the experimental

checkerboard pattern layer-damped simply supported plate.
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Appendix A32

Measured Vibrational Energy Flow Maps of the Experimental Simply

Supported Plates Using the VEFESPI Method

The VEF maps shown in this section were computed from the periodically

plates displacements.

supported

simply

measured

ESPI

Further, in the figures shown below z is the plate length and y is the plate

truncated and
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Figure A32.1 Filtered VEF maps of the experimental, non-layer damped, simply

supported plate at 422.5 Hz & mode (3,3): (a) active ideal filtered, (b) reactive ideal

filtered, (c) active Butterworth filtered, (d) reactive Butterworth filtered.
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Figure A32.3 Filtered VEF maps of the experimental, non
supported plate at 1139 Hz & mode (5,5): (a) active
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Figure A32.4 Filtered VEF maps of the experimental non-layer damped, simply
supported plate at 1536 Hz & mode (7,5): (a) active ideal filtered, (b) reactive ideal

filtered, (c) active Butterworth filtered, (d) reactive Butterworth filtered.
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Figure A32.5 Filtered VEF maps of the experimental, non-layer damped, simply
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Appendix A33

Analytical Vibrational Energy Flow Maps of Simply Supported Plate
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Figure A33.6 Analytical VEF maps of the simply supported plate excited at mode

(9,5): (a) active VEF, (b) reactive VEF.






