

This item was submitted to Loughborough's Institutional Repository by the author and is made available under the following Creative Commons Licence conditions.

COMMONS DEED
Attribution-NonCommercial-NoDerivs 2.5
You are free:
 to copy, distribute, display, and perform the work
Under the following conditions:
Attribution . You must attribute the work in the manner specified by the author or licensor.
Noncommercial. You may not use this work for commercial purposes.
No Derivative Works. You may not alter, transform, or build upon this work.
 For any reuse or distribution, you must make clear to others the license terms of this work
 Any of these conditions can be waived if you get permission from the copyright holder.
Your fair use and other rights are in no way affected by the above.
This is a human-readable summary of the Legal Code (the full license).
Disclaimer 모

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/

Loughborough

University

Emma M Kelly & Lisa M Bartlett

Department of Aeronautical & Automotive Engineering, Loughborough University, UK.

Overview

Loughborough

- Fault diagnosis is an important facet of engineering applications.
- Introduce the application of the digraph method to determine the likely causes leading to a system malfunction.
- A description of digraphs and their application in fault diagnostics is provided.
- A simple example is used for demonstration purposes.

Introduction to Digraphs

- Qualitative causal model which illustrates the cause and effect behaviour in a system.
- Digraphs comprise:
 - i. Set of nodes, representing system process variables.
 - ii. Nodes are connected by edges (lines) illustrating the inter-relationships which exist between process variables.

Introduction to Digraphs

- Examples of process variables include:
 - Mass flow.
 - Pressure.
 - Signals from sensors.
 - Temperature.
- Process variable deviations are represented through one of five discrete values:
 - +10/-10: large high / large low.
 - +1/-1: moderate high / moderate low.
 - 0: normal.

An Example of a Simple Digraph

- M1: mass flow at location 1 independent variable.
- M2: mass flow at location 2 dependent variable.
- Two arcs:
 - +1' signed normal.
 - '0: V1 closed' signed conditional.

Digraph Development

Loughborough

- 1) Define system to be analysed.
- 2) Compile list of system component failures.
- 3) Separate system into sub-units.
- 4) Identify control loops, if present.
- 5) Generate digraph models for the sub-units.
- 6) Form system digraph by connecting any common variables from the sub-unit models.

The Water Tank System

- Three valves: V1, V2, V3.
- Two level sensors: S1, S2.
- Two control units: C1, C2.
- Six pipe sections: P1, P2, P6, P7, P8, P9.

The Water Tank System

- System information obtained from the flow sensors, VF1-3 and tray sensor, SP1.
- Flow sensors detect flow or no flow.
- Tray sensor detects presence or absence of water.
- Two operating modes are specified.

Operating Mode	VF1	VF2	VF3	SP1	
ACTIVE	Flow	Flow	No Flow	No Water	
DORMANT	No Flow	No Flow	No Flow	No Water	

System Scenarios

Loughborough University

 Sixteen scenarios developed from the potential sensor readings.

Scenario	VF1	VF2	VF3	SP1	Scenario	VF1	VF2	VF3	SP1
1	F	F	F	W	9	F	NF	F	W
2	F	F	F	NW	10	F	NF	F	NW
3	NF	F	F	VV	11	F	F	NF	W
4	NF	F	F	NW	12	F	F	NF	NW
5	NF	NF	F	W	13	NF	F	NF	W
6	NF	NF	F	NW	14	NF	F	NF	NW
7	NF	NF	NF	W	15	F	NF	NF	W
8	NF	NF	NF	NW	16	F	NF	NF	NW

Component Failure Modes

Code	Component Failure	Code	Component Failure
PiB(1-2, 3-4, 5-6)	Pipe Pi is blocked	PiR(1-2, 3-4, 5-6)	Pipe Pi is ruptured
ViFC(1≤ i ≥3)	Valve Vi fails closed	ViFO(1≤ i ≥3)	Valve Vi fails open
CiFH (1≤ i ≥2)	Controller Ci fails high	CiFL (1≤ i ≥2)	Controller Ci fails low
SiFH (1≤ i ≥2)	Sensor Si fails high	SiFL (1≤ i ≥2)	Sensor Si fails low
TR	Water tank ruptured	TL	Water tank leaks
NMWS	No mains water supply	WOST	Water in overspill-tray

Water Tank System Digraph Development

- Three assumptions:
 - i. Given a pipe rupture, flow sensor registers no flow.
 - ii. Tank rupture volume loss >> tank leakage.
 - iii. System is in steady state.
- Unit digraph models developed for the three water tank valves.
- Each unit digraph considers:
 - Component functions.
 - Effects of failure modes.

Water Tank System Unit Digraphs

Water Tank System Digraph

Digraphs in Fault Diagnostics

Loughborough

- Diagnostics is based on comparing retrieved sensor readings with those expected.
- Given the presence of a deviation, diagnosis involves:
 - Noting the location of the given deviation.
 - Determine the component failure modes which may have contributed to the deviation.
- Fault diagnosis is conducted through a process of back-tracing.

Digraphs in Fault Diagnostics: Back-tracing

- Deviation noted after valve. Expect flow, no flow registered.
- Commence back-tracing from noted large, negative disturbance:
 - M2(-10) → P2B.
 - M2(-10) \rightarrow M1(-10) \rightarrow P1B.

Water Tank System Diagnostics

Two methods considered:

- 1) Analyst is required to fully back-trace through the digraph until a point is reached where no further back-tracing can be conducted.
- 2) Non-deviating sections are flagged. Backtracing from a deviating node ceases once a flagged section is reached.

Diagnostics of a Faulty Scenario

- Example used to demonstrate diagnostic capability of water tank system digraph.
- Water tank assumed to be in the ACTIVE mode.
- Sensor readings retrieved reveal scenario 'FS16'.

Operating Mode	VF1	VF2	VF3	SP1	
ACTIVE	Flow	Flow	No Flow	No Water	
'FS16'	Flow	No Flow	No Flow	No Water	

Fault Diagnostics of 'FS16'

- Deviation only noted by VF2, flag sections of system digraph incorporating:
 - V1 and control loop one.
 - V3 and control loop two.
 - Overspill tray.

Fault Diagnostics of 'FS16'

- Node M7 addressed represents status of mass flow exiting V2.
- M7 is 'marked' on the system digraph.
- Determine the failure modes leading to large negative disturbance i.e. -10.
- -10 represents registered 'no flow' status.
- Back-tracing commences from M7(-10); reveals five component failure modes.

Fault Diagnostics of 'FS16'

- M7(-10) → V2FC, P7B, P7R.
- M7(-10) \rightarrow M6(-10) \rightarrow P6B, P6R.
- M7(-10) \rightarrow M6(-10) \rightarrow L4(-10), back-tracing ceases.
- Five component failure mode results: Valve 2 failed closed, Pipe 7 blocked or ruptured, Pipe 6 blocked or ruptured.

or ruptured.

Conclusions

- Component failure mode results are consistent with recorded sensor readings.
- Flagging of non-deviating sections removes conflicting results, also reduces number of determined fault combinations.
- Method 2 advised method since results displaying inconsistencies between sensor readings are removed.
- Digraph suitable method for steady state analysis.

Future Research

Loughborough

- Implications for dynamic behaviour preliminary results are positive.
- Investigation into computational optimisation of back-tracing enabling real-time analysis.
- Scalability it is necessary to apply method to larger, more complex, system to ensure industrial validity.

Summary

Loughborough

- Digraphs clearly illustrate the information flow in a cause-effect relationship.
- Closely reflect the physical structure of the system under investigation.
- Conduct diagnostics through back-tracing from a known deviation → introduce flagging of non-deviating sections.
- Valid diagnostic results determined for steady state.

Thank you for your attention.

Contact: Emma Kelly: <u>E.M.Kelly@lboro.ac.uk</u> Dr. L. Bartlett: <u>L.M.Bartlett@lboro.ac.uk</u>