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1 INTRODUCTION  
 
Flexible rectangular box structures, often called box-like structures, are used widely in a large 
number of engineering applications, e.g. as elements of railway carriages, heavy goods vehicles, 
buildings, civil-engineering constructions, etc. Although all-flexible rectangular boxes represent one 
of the geometrically simple types of engineering structures, the analysis of their structural-acoustic 
properties is rather difficult, and it can not be performed in terms of closed form solutions. 
Apparently, the first work in this area has been published by Dickinson and Warburton1 who have 
obtained approximate analytical expressions for natural frequencies of uncoupled vibrations of all-
flexible box structures. These authors also performed experimental measurements of the natural 
frequencies for a box structure. Later, Hooker and O’Brien2 have calculated first natural frequencies 
for a box of the same dimensions using finite element (FE) method and compared them with the 
approximate analytical and experimental results of Dickinson and Warburton1. More recently, 
authors of Reference 3 used FE calculations to carry out vibration analysis of a thin-plate box, 
considering only in-plane motion. Later on they extended their study, analyzing flexural vibrations of 
the same model using a combination of FE and analytical approaches4. Vibrations of rectangular 
box-like structures have been also investigated analytically using some simple approximations, e.g. 
taking into account only in-plane waves transmitted to the adjacent walls under the impact of the 
initially flexural waves5,6. Some authors utilized rectangular box models to verify different 
optimization procedures for noise reduction7-10.  
 
In spite of the extensive use of the above-mentioned all-flexible rectangular box structures, their 
coupled structural-acoustic behavior was not analyzed. The aim of this paper is to carry out a 
comprehensive numerical investigation of structural-acoustic properties of all-flexible rectangular 
boxes. In the first part of the paper, the attention will be paid to understanding the uncoupled 
structural and acoustic properties of flexible rectangular boxes. This part largely re-visits the results 
obtained in the pioneering papers1,2. A comparison will be made, where possible, of the results 
obtained in the present paper with the results of References 1,2. In the second part of the paper, 
the coupled structural-acoustic properties of all-flexible rectangular boxes will be studied.  
 
 
2 STRUCTURAL AND ACOUSTIC ANALYSIS OF THE 

UNCOUPLED MODEL  
 
The basic model under consideration represents an all-flexible rectangular box made of steel (with 
the values of Young’s modulus E = 2 1011 N/m2, Poisson ratio σ = 0.31 and mass density ρ = 7950 
kg/m3), and all the walls of the box structure have the same thickness. The only boundary 
conditions imposed on the model are applied at the corners of the bottom plate, which simulates 
fixing the box at four points to a rigid foundation. The model dimensions are as follows:  x = 2.4 m 
(length),  y = 1.4 m (height) and z = 1.5 m (width).  The wall thickness of the model was chosen to 
be 8 mm, which corresponds to a fundamental structural vibration frequency of about 15–20 Hz.  
 

Vol. 29. Pt.5 2007 Page 50



Proceedings of the Institute of Acoustics  

Using finite element software, MSC.Nastran and MSC.Patran, the uncoupled normal vibration 
modes and the corresponding natural frequencies of the all-flexible box structure under 
consideration have been analyzed. Note that ‘free’ boundary conditions were adopted everywhere 
in the uncoupled analysis, whereas in the coupled analysis the model was considered as being 
placed on a certain foundation. In other words, the boundary conditions utilized in the coupled 
analysis simulated an attaching mechanism, which restricts the structural behavior of the model. In 
the uncoupled analysis, a refined finite element mesh was used consisting of 7248 CQUAD finite 
elements - for the structural sub-system, and 5040 CHEXA finite elements - for the acoustic sub-
system.  
 

a)               b) 

c) d) 

e) f) 

 
 

Figure 1.  Some structural modes of a rectangular box, at: a) 13.692 Hz, b) 22.069 
Hz, c) 34.730 Hz, d) 42.138 Hz, e) 43.541 Hz and f) 90.904 Hz. 

 
 
Figure 1 shows some structural vibration modes calculated for the uncoupled rectangular box 
model. As the box structure under consideration is fully symmetrical in respect of the three 
orthogonal coordinate planes, a number of symmetric and anti-symmetric structural modes occur 
(see also Reference 2). In the 3-D picture (Fig. 1), the symmetric and anti-symmetric normal modes 
can not be seen clearly. This is why in Figure 2 the same normal modes are presented in XY 
(vertical) plane, where symmetric and anti-symmetric modes are clearly seen.  
 
Note that, in addition to the existence of symmetric and anti-symmetric modes, all-flexible 
rectangular box structures exhibit another interesting phenomenon well known from the general 
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symmetry considerations, namely the presence of repeated frequencies associated with degenerate 
modes. This phenomenon occurs in rectangular boxes of higher symmetry. To illustrate it 
numerically, some additional calculations (not shown here for brevity) have been conducted in the 
present work for a cubic box model with the dimensions (1, 1, 1) m and for a rectangular box model 
with the dimensions (2.4, 1.5, 1.5) m respectively along the coordinates x, y and z.  
 
 

e)

c)

a)              b)

d)

f)e)

c)

a)              b)

d)

f)

 
 

Figure 2.  Symmetric and anti-symmetric normal modes at: a) 13.692 Hz, b) 22.069 
Hz, c) 34.730 Hz, d) 42.138 Hz, e) 43.541 Hz and f) 90.904 Hz. 

 
 
In Table 1, Columns 3, 4 and 5, the first ten analytically calculated natural frequencies of the 
separate plate components satisfying simply supported boundary conditions are presented. One 
can see that resonant frequencies of these plates are noticeably different from the FE results for the 
resonant frequencies of the full box structure (columns 1 and 2 in Table 1). This reflects the lack of 
the possibility to approximate rectangular box resonant frequencies by resonant frequencies of its 
separate plate components.  
 
Note that the natural frequencies of the full box structure presented in Table 1 have been calculated 
for the two cases: with ‘free’ boundary conditions (column 1) and with simply supported boundary 
conditions imposed on the all edges of the model (column 2). Despite some discrepancies between 
these sets of frequencies, their closeness, at least for the first eight modes, is indicative. In this 
frequency range, the structure under both sets of boundary conditions has high modal density. This 
is why under ‘free’ boundary conditions there are 312 resonance peaks in this range (excluding the 
first six rigid-body natural frequencies) and the last one occurs at 498.90 Hz, whereas under simply 
supported boundary conditions the result is 311 peaks with the last natural frequency at 499.99 Hz.  
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Box structure, 

natural 
frequencies, Hz 

Plate 
component 

1, 
natural 

frequencies, 
Hz 

Plate 
component 

2, 
natural 

frequencies, 
Hz 

Plate 
component 

3,  
natural 

frequencies, 
Hz 

Acoustic, FE 
calculated, 

natural 
frequencies, 

Hz 

Acoustic, 
exact, 

 natural 
frequencies, 

Hz 
№ 

1 2 3 4 5 6 7 

1 13.692 13.693 11.805 (1, 1) 13.061 (1, 1) 18.209 (1, 1) 69.07 (1, 0, 0) 69.02 (1, 0, 0) 

2 19.306 17.019 21.726 (2, 1) 22.974 (2, 1) 43.609 (2, 1) 110.6 (0, 0, 1) 110.4 (0, 0, 1) 

3 20.749 18.506 37.282 (1, 2) 39.514 (3, 1) 47.387 (1, 2) 118.5 (0, 1, 0) 118.3 (0, 1, 0) 

4 22.069 22.074 38.275 (3, 1) 42.307 (1, 2) 72.463 (2, 2) 130.4 (1, 0, 1) 130.2 (1, 0, 1) 

5 24.821 23.834 47.090 (2, 2) 52.094 (2, 2) 85.958 (3, 1) 137.2 (1, 1, 0) 137.0 (1, 1, 0) 

6 26.290 25.876 61.448 (4, 1) 62.675 (4, 1) 96.024 (1, 3) 138.4 (2, 0, 0) 138.0 (2, 0, 0) 

7 28.509 26.652 63.458 (3, 2) 68.427 (3, 2) 114.33 (3, 2) 162.2 (0, 1, 1) 161.9 (0, 1, 1) 

8 29.983 27.250 79.735 (1, 3) 91.038 (1, 3) 120.62 (2, 3) 176.2 (1, 1, 1) 175.9 (1, 1, 1) 

9 34.730 28.773 86.394 (4, 2) 91.317 (4, 2) 145.23 (4, 1) 177.2 (2, 0, 1) 176.8 (2, 0, 1) 

10 42.138 34.276 89.381 (2, 3) 92.450 (5, 1) 161.70 (3, 3) 182.2 (2, 1, 0) 181.8 (2, 1, 0) 

 
 

Table 1.  Structural and acoustic natural frequencies of an uncoupled box model. 

 
 

d) c) 

b) a) 

 
 

Figure 3.  First four uncoupled acoustic modes of a rectangular box enclosure, 
at: a) 69.07 Hz, b) 110.64 Hz, c) 118.57 Hz and d) 130.43 Hz. 
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Figure 3 and Table 1 show some of the normal modes and natural frequencies of the uncoupled 
acoustic sub-system. The comparison between the analytically calculated natural frequencies 
(Table 1, Column 7), which are determined very easily for the acoustic rectangular sub-system, and 
those calculated using finite element techniques (Table 1, Column 6) shows a good agreement 
between them and thus validates the chosen mesh size.  
 
It is interesting to compare the results of the present numerical approach with the results obtained 
experimentally and theoretically by the earlier authors. For that purpose, a box structure with the 
dimensions  x = 0.36576, y = 0.3048 and z = 0.24384, m  has been calculated, i.e. the same one 
that has been used by Dickinson and Warburton [1] and by Hooker and O’Brien [2].  
 
 

№ 
Theoretical 
frequencies, Hz, 
(Dickinson and 
Warburton 1967) 

Experimental 
frequencies, Hz, 
(Dickinson and 
Warburton 1967) 

FE frequencies, 
Hz,  
(Present  work) 

FE frequencies, 
Hz,  
(Hooker and 
O’Brien 1974) 

1 2 3 4 5 

1 179 178 178.53 184 

2 203 228 230.36 206 

3 258 264 270.88 262 

4 272 282 281.87 279 

5 283 297 301.85 291 

6 333 328 331.54 336 

7 384 395 397.82 394 

8 397 399 399.16 409 

9 437 451 449.87 452 

10 455 479 473.91 465 

11 486 495 485.43 497 

12 499 497 499.29 512 

13 570 571 565.08 588 

14 577 580 575.10 595 

15 624 634 625.15 669 

16 648 642 640.51 671 

 
 

Table 2.  Measured and calculated natural frequencies of vibration for 
Dickinson and Warburton’s box model. 

 
In Table 2, the natural frequencies of the model under consideration obtained by different authors 
are presented. The approximate analytical results of Dickinson and Warburton1 are shown in 
Column 2, whereas Column 3 presents their experimental results. In Column 4, the numerical 
results of the present paper are shown. In Column 5, a set of numerical data obtained by Hooker 
and O’Brien2 can be seen. As one can see, there is a good agreement between the experimental 
measurements (Column 3) and the numerical results of the present paper (Column 4).  Comparing 
the FE results of the present work and of the work of Hooker and O’Brien2 with the experimental 
results, one can see a noticeable improvement in accuracy of numerically calculated natural 
frequencies in the present paper as compared to those calculated by Hooker and O’Brien2. 
Comparing the present FE results with the approximate analytical calculations of Dickinson and 
Warburton1, one can see that the precision of the latter is generally not as good as that of the 
present work, but it is better than the precision achieved by Hooker and O’Brien2.  
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3 STRUCTURAL-ACOUSTIC ANALYSIS OF THE FULLY 
COUPLED MODEL  

 
In this section, fully coupled structural-acoustic modes are investigated, and a set of structural-
acoustic frequency response functions (FRF’s) at specific acoustic nodes are discussed and 
compared. As was mentioned above, simply supported boundary conditions at the corner nodes of 
the bottom plate were imposed to simulate an attaching mechanism. In the coupled model, 1812 
CQUAD structural finite elements and 5040 CHEXA acoustic finite elements were used. Energy 
losses in the structure were modeled using 3 % damping factor. As far as air acoustic losses are 
concerned, a simple damping coefficient of 1 % was used for the sake of simplicity.  
 

f) e) 

d) c) 

b) a) 

 
Figure 4.  Normal modes of a coupled box model: a,b) at 68.352 Hz;  c,d) at 

71.848 Hz;  and  e, f) at 111.72 Hz. 
 
 
In Figure 4, some of the normal modes of the fully coupled model, that are influenced by the first 
and second uncoupled acoustic modes, are presented. As it is well known11, the coupling depends 
on the spatial similarity and frequency closeness between the uncoupled structural and acoustic 
normal modes. Therefore, some of the structural modes can couple better with certain acoustic 
mode, in contrast to others. The three normal modes shown in Figure 4, at about 68, 71 and 111 
Hz, are not much affected by the coupling effects and are very similar to the corresponding 
uncoupled modes.  
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In Figure 5, the structural-acoustic pressure FRF’s calculated in the center of the box interior (at 
node 4826) are shown for the driving force with the amplitude of 200 N applied in the center and in 
the vicinity of a corner of the bottom plate. In Figure 6, the FRF’s are plotted at node 4826 (at the 
centre of the box) and at node 6825 (away from the centre) for a driving force applied close to a 
corner of the bottom plate.  
 

 

 
 

Figure 5.  Structural-acoustic FRF’s calculated at node 4826 for a driving force applied close 
to a corner (solid curve) and in the centre of the bottom plate (dash-dotted curve). 

 

 

 
Figure 6.  Structural-acoustic FRF’s calculated at node 4826 (solid curve) and at node 6825 

(dash-dotted curve) for a driving force applied close to a corner of the bottom plate. 
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Taking into account the value of the first uncoupled acoustic natural frequency of the model, which 
is about 69 Hz, the graphs presented in Figures 5 and 6 can be regarded as consisting of two parts. 
The first part, bellow 69 Hz, represents the area where FRF’s are induced by structural vibrations of 
the model defined by the location of the driving force. The second part, above 69 Hz, is the area 
where FRF’s are formed by a complex interaction of the structural and fluid vibrations. In this area, 
above 69 Hz in Figures 5 and 6, the FRF’s demonstrate more complex behaviour depending on the 
positions of both the driving force and the receiver. If a driving force acts close to a nodal line of a 
structural model, then the force can not excite many of the structural normal modes and the 
pressure response inside the model will be much lower in a certain frequency range. In practice, a 
complex geometry of the structure and a high density of the normal modes make it quite difficult to 
find the appropriate nodal lines. However, in the case of success, a noticeable noise reduction can 
be achieved.  
 
 

4 CONCLUSIONS  
 
A comprehensive finite element analysis of structural, acoustic, and coupled structural-acoustic 
properties of all-flexible rectangular boxes has been carried out. The initial attention has been paid 
to the uncoupled structural behaviour of the model, where the results of the pioneering papers1,2 
have been revisited and their accuracy improved. In the second part of the paper, a fully coupled 
structural-acoustic analysis has been undertaken for the first time. A number of coupled structural-
acoustic modes and a set of structural-acoustic frequency response functions have been calculated 
and analysed for different positions of a driving force and a receiver.  
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