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Abstract: Risk and safety assessments performed on potentially hazardous industrial systems
commonly utilize fault tree analysis (FTA) to forecast the probability of system failure. The type
of logic for the top event is usually limited to AND and OR gates, which leads to a coherent fault
tree structure. In non-coherent fault trees, the working states of components as well as their
failures contribute to the failure of the system. The qualitative and quantitative analyses of
non-coherent fault trees can introduce further difficulties over and above those seen in the
coherent case. It is shown that the binary decision diagram (BDD) method can be used for
this type of assessment. The BDD approach can improve the accuracy and efficiency of the
quantitative analysis of non-coherent fault trees. This article demonstrates the value of the tern-
ary decision diagram (TDD) method for the qualitative analysis of non-coherent fault trees.
Such analysis can be used to provide information to a decision-making process for future
actions of an autonomous system, and therefore it must be performed in real time. In these cir-
cumstances, fast processing and small storage requirements are very important. The TDD
method provides a fast processing capability, and small storage is achieved when a single struc-
ture is used for both qualitative and quantitative analyses. The efficiency of the TDD method is
discussed and compared with the performance of the established methods for analysis of non-
coherent fault trees.

Keywords: fault tree analysis, binary decision diagrams, non-coherent fault trees, ternary
decision diagrams

1 INTRODUCTION

Fault tree analysis (FTA) was first introduced in the
1960s and is commonly used for the reliability assess-
ment of complex industrial systems. Causes of sys-
tem failure are analysed by performing qualitative
and quantitative analyses. A large number of combi-
nations of events that can cause system failure may
be produced for real systems (minimal cut sets/
prime implicant sets), and the calculation of these
failure combinations can be time consuming. Also,
the determination of the exact top event probability
requires lengthy calculations. For real systems, this
demand may exceed the capability of the available
computers, introducing approximations into the ana-
lysis with a resulting loss of accuracy.

The binary decision diagram (BDD) method [1]
provides a more concise form for the logic function
of a fault tree. It overcomes some disadvantages
of conventional FTA techniques and provides an
efficient and exact analysis of coherent and non-
coherent fault trees. The BDD method is efficient
for quantifying the likelihood of system failure occur-
rence because it does not require system failure
modes as an intermediate step. It is also more ac-
curate, as approximations used in the traditional
approach of kinetic tree theory [2] are not applied.
Previous work on the efficiency and accuracy of the
BDD method is presented in references [3] and [4].

Instead of analysing the fault tree directly, the BDD
method first converts the fault tree into a binary deci-
sion diagram, which encodes the Boolean equation
for the top event. The resulting structure function
BDD (SFBDD) can be used in the quantitative analy-
sis to calculate the top event probability or frequency.
An SFBDD is not in the correct form for qualitative
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analysis, and further processing is required. In the
coherent case, a list of minimal cut sets is obtained
by using the minimization technique [1]. In the
non-coherent case, a full set of prime implicants is
determined by applying the consensus theorem [5]
to pairs of prime implicant sets involving a normal
and negated literal. There are several methods for
the calculation of prime implicant sets proposed in
the literature. A meta-products BDDmethod, the first
approach to this problem, was presented in reference
[6] and further developed in reference [7]. It was fol-
lowed by a zero-suppressed BDD method (ZBDD),
presented in reference [8]. The third alternative
method was developed in reference [9] and uses a
labelled binary decision diagram (L-BDD). These
methods produce prime implicant sets and have their
advantages and disadvantages in the conversion and
representation techniques.

A new alternative method for performing the quali-
tative analysis of non-coherent fault trees is proposed
in this paper. In this approach, a fault tree is converted
into a ternary decision diagram (TDD). The main
concept of a TDD was addressed in reference [10];
this is expanded into an implementation methodol-
ogy for fault tree analysis in the present paper. Every
node in a TDD has three branches: the 1-branch,
which represents the failure relevance of the compo-
nent; the 0-branch, which represents the repair rele-
vance of the component (so far this is a conventional
BDD presentation); and the consensus branch, which
represents the irrelevance of the component to the
system failure. A TDD encodes all prime implicant
sets, because the consensus branch for a node is cal-
culated by applying the consensus theorem, which
gives all ‘hidden’ prime implicant sets. However, the
TDD can be non-minimal, and thus the minimization
process is performed to remove non-minimal paths
from the 1- and 0-branches. The obtained TDD can
be used for quantitative analysis as well as qualitative
analysis.

2 NON-COHERENT FAULT TREES

Fault trees are classified according to their logic func-
tion. If during fault tree construction only AND gates
and OR gates are used, the resulting fault tree is
defined as coherent. If NOT logic is used or directly
implied, the resulting fault tree can be non-coherent.

Introduce each component in the system by an
indicator xi to show the status of the component

xi ¼ 1 if component i has failed;
0 if component i is working

�
ð1Þ

where i¼ 1,2,. . .,n, and n is the number of compo-
nents in the system.

The logic structure of the fault tree can be ex-
pressed by a structure function f

f ¼ 1 if system has failed;
0 if system is working

�
ð2Þ

f¼f(x), where x¼ (x1, x2, . . . , xn).
According to the requirements of coherency [5],

a structure function f(x) is coherent if (1) each com-
ponent i is relevant to the system, i.e.

fð1i; xÞ 6¼ fð0i; xÞ for some x 8i ð3Þ
and (2) f(x) is increasing (non-decreasing) for each
xi, i.e.

fð1i; xÞ>fð0i; xÞ 8i ð4Þ
where

fð1i; xÞ ¼ fðx1; . . . ; xi�1; 1; xiþ1; . . . ; xnÞ ð5Þ

fð0i; xÞ ¼ fðx1; . . . ; xi�1; 0; xiþ1; . . . ; xnÞ ð6Þ
The second condition means that the system condi-
tion does not change or deteriorate as the component
deteriorates. If the system is non-coherent for com-
ponent i, then for a particular state of the remaining
components the system is in the failed condition
when component i is working, and when component
i fails the system is restored to the non-failed con-
dition. As a consequence of this property, system
failure might occur due to the repair of a failed com-
ponent, or for a failed system the failure of an addi-
tional component may give a successful outcome of
system performance. The fault tree becomes coher-
ent if the NOT logic can be eliminated from the fault
tree structure.

Consider a simple example in Fig. 1. Cars A and B
are approaching a junction with lights on red, and
should stop. Car C has the right of way and should

Red

A

B

C

Fig. 1 Traffic light system
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proceed through the junction. Three basic events are
considered.

1. Event A – car A fails to stop.
2. Event B – car B fails to stop.
3. Event C – car C fails to continue.

A collision at the crossroads can happen in two ways:

1. Car A fails to stop and hits car C which is moving.
2. Car A stops but car B drives into the back of it.

A fault tree representing causes of failure of the colli-
sion is shown in Fig. 2. Working in a bottom-up way,
the following logic expression is obtained

Top ¼ A :C þ A :B

where ‘þ’ is OR and ‘.’ is AND.
Therefore, fA;Cg and fA;Bg are prime implicants,

as combinations of component conditions (working
or failed) that are necessary and sufficient to cause
system failure. This list is incomplete because there
is one more failure mode for the system

fB;Cg

i.e. if B fails to stop and C continues across the lights,
it does not matter what A does – there will be a
collision.

Therefore, the full logic expression for the Top
event is

Top ¼ A :C þ A :Bþ B :C

which can be obtained by applying the consensus law

A :X þ A :Y ¼ A :X þ A :Y þ X :Y

3 FAULT TREE CONVERSION INTO A BINARY
DECISION DIAGRAM

For the fault tree to be converted into a BDD, it first
needs to be prepared so that in the non-coherent
case the NOT logic is pushed down to the level of
basic events by using De Morgan’s laws, i.e.

A :B ¼ Aþ B ð7Þ

Aþ B ¼ A :B ð8Þ
Each node in an SFBDD is defined by an ite (if-then-
else) structure. The ite structure ite (x, f1, f0) means
that, if x fails, then consider function f1, else consider
function f0. Thus, f1 lies on the 1-branch of x and
f0 lies on the 0-branch in the diagram.

Before the conversion process takes place, basic
events in the fault tree are ordered. SFBDD construc-
tion then moves through the fault tree in a bottom-up
manner applying the variable ordering in the conver-
sion process.

Each basic event in the system is assigned an ite
structure

a ¼ iteða; 1; 0Þ ð9Þ
Alternatively, a basic event a is assigned an ite
structure

a ¼ iteða; 0; 1Þ ð10Þ
For gateswhose inputs have already beendefined as an
ite structure, the main rule of the conversion process
is applied, i.e. if J¼ ite(x, f1, f0) and H¼ ite(y, g1, g0)
represent two inputs to a gate of logic type�, then

J�H ¼ iteðx; f1�H ; f0�HÞ if x<y intheordering;
iteðx; f1�g1; f0�g0Þ if x¼ y intheordering

�

ð11Þ
For small examples the variable ordering is largely
irrelevant. Variable ordering schemes are discussed
in references [11] and [12]. For the fault tree example
in Fig. 2, consider the variable ordering scheme A <
B < C. Applying conversion rules (9) to (11) to the
fault tree results in the SFBDD presented in Fig. 3.

Collision at
crossroads

A C BA

Car A and car C
collide

Car A and car B
collide

Fig. 2 Collision fault tree
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B

1

1 0

0

F1

F3C

1

0 1

0

F2

Fig. 3 SFBDD for the fault tree in Fig. 2

Analysis of non-coherent fault trees using ternary decision diagrams 129

JRR154 � IMechE 2008 Proc. IMechE Vol. 222 Part O: J. Risk and Reliability



4 CALCULATION OF PRIME IMPLICANT SETS

Knowledge of prime implicant sets can be valuable
in gaining an understanding of the system and the
causes of system failure. It can help to develop a
repair schedule for failed components if a system
cannot be taken off line for repair. For systems whose
state has all the failed components in any prime
implicant, care should be taken to ensure that the
repair of other components does not then cause the
remaining functioning events in the prime implicant.
The SFBDD, which encodes the structure function,
cannot be used directly to produce the complete list
of prime implicant sets of a non-coherent fault tree,
and a conversion process is usually performed to pro-
duce a different form of BDD that encodes only the
prime implicants.

Consider a general component x in a non-coherent
system. In a prime implicant set, component x can
appear in a failed or working state, or can be excluded
from the failure mode. In the first two situations, x is
said to be relevant, but in the third case it is irrelevant
to the system state. Component x can be either fail-
ure relevant (the prime implicant set contains x) or
repair relevant (the prime implicant set contains x).
A general node in the SFBDD representing compo-
nent x has two branches. The 1-branch corresponds
to the failure of x; therefore, x is either failure relevant
or irrelevant. Similarly, the 0-branch corresponds to
the functioning of x, and so x is either repair relevant
or irrelevant. Hence, it is impossible to distinguish
between the two cases for each branch, and the
prime implicant sets cannot be identified directly
from the BDD. Therefore, additional methods for
encoding prime implicant sets are required.

5 TDD METHOD

An approach to build a ternary decision diagram
(TDD) for the analysis of non-coherent fault trees is
proposed in this section. It employs the consensus
theorem and creates, in addition to the two branches
of the BDD, a third branch for every node, called
the consensus branch. This third branch encodes
the ‘hidden’ prime implicant sets. The minimization
algorithm [1] is applied to remove non-minimal
paths and obtain prime implicant sets only.

5.1 Conversion

Every node in the TDD has three exit branches. A new
ifre structure is defined which separates relevant
and irrelevant components and also distinguishes
between the type of relevancy, i.e. failure relevant
and repair relevant. The ifre structure for a node
x is given in Fig. 4. Thus, if

f ¼ ifreðx; f1; f0; f2Þ ð12Þ

then

f ¼ xf1 þ x f0 þ f2 ð13Þ
where

f2 ¼ f1 : f0 ð14Þ
The 1-branch encodes prime implicant sets for which
component x is failure relevant, the 0-branch
encodes prime implicant sets for which component
x is repair relevant, and the consensus C-branch
encodes prime implicant sets for which component
x is irrelevant. The ifre structure shown in Fig. 4 can
be interpreted as follows

If x is failure relevant
then consider f1
else if x is repair relevant
then consider f0
else consider f2

end if

Function f2 encodes prime implicant sets for which
x is irrelevant, but this branch is not important for
all components. For components that are only failure
or repair relevant but, not both, this branch can be
kept ‘empty’. The present method assigns f2¼NIL
if the conjunction of the two branches f1 . f0 is
not required. While operating the new symbol in
the Boolean algebra, it is defined that NIL�A¼NIL.
Symbol NIL is used to identify cases where the
C-branch is not required and no Boolean operations
that involve this branch are needed.

x

f
1

f
2f

0

1 C0

Fig. 4 ifre structure

The conversion technique to compute the TDD
from the non-coherent fault tree is an extension of
the method used to develop the conventional BDD.
First of all, basic events of the fault tree must be
ordered. Then the following process is presented.

1. By the application of De Morgan’s laws, push
NOT logic down through the fault tree until the
basic event level is reached.

2. Each basic event is assigned an ifre structure:
(a) if a is only failure or repair relevant

a ¼ ifreða; 1; 0;NILÞ ð15Þ
a ¼ ifreða; 0; 1;NILÞ ð16Þ
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(b) if a is failure and repair relevant

a ¼ ifreða; 1; 0; 0Þ ð17Þ

a ¼ ifreða; 0; 1; 0Þ ð18Þ
3. Traversing the fault tree in a bottom-up manner

and considering gates whose inputs have been
expressed in an ifre format gives

If J ¼ ifreðx; f1; f0; f2Þ and H ¼ ifreðy; g1; g0; g2Þ;

then J �H ¼

ifreðx;K1;K0;K1 :K0Þ
if x< y in the ordering;

ifreðx;L1;L0;L1 :L0Þ
if x ¼ y in the ordering

8>>><
>>>:

ð19Þ
here K1¼f1�H ;K0¼f0�H;L1¼f1�g1;L0¼f0�g0;
K1 :K0 is the consensus of K1 and K0, and L1 .L0
is the consensus of L1 and L0.

If component x is failure or repair relevant, K1 .K0¼
NIL and L1 . L0¼NIL in equation (19).

Within each ifre calculation, an additional consen-
sus calculation is performed to ensure all the ‘hidden’
prime implicant sets are encoded in the TDD. It cal-
culates the conjunction of the 1- and the 0-branch
of every node and thus identifies the consensus of
each node. If a node in the TDD encodes a compo-
nent that is only failure or repair relevant, the con-
junction of the 1- and 0-branch for the node is not
required, because there are no ‘hidden’ prime impli-
cant sets associated with this component. This prop-
erty makes the TDD method an efficient technique
for performing the qualitative analysis of non-
coherent fault trees.

Consider the fault tree in Fig. 2. Introducing the
ordering of basic events A < B < C and applying
the rules described in equations (15) to (19) gives
the TDD in Fig. 5. It can be seen that the TDD in
Fig. 5 is different from the SFBDD in Fig. 3 only in

its C-branch, which represents the intersection of
the 1- and 0-branches. Only for node F1 there is a
new structure F4 created as the C-branch. The other
nodes have the C-branch leading to value NIL, as
they encode variables that only appear as failure or
repair relevant. To obtain prime implicant sets, non-
minimal combinations from every path need to be
removed.

5.2 Minimization

Once a fault tree is converted to a TDD there is no
guarantee that the resulting structure will be minimal
and give exact prime implicant sets. In order to per-
form the qualitative analysis, a minimization proce-
dure needs to be implemented.

The algorithm developed by Rauzy for minimizing
the BDD [1] was extended to create a minimal TDD.
Consider a general node in the TDD which is repre-
sented by the function F, where

F ¼ ifreðx;G;H ;K Þ ð20Þ
The process of minimization is described in three
cases.

1. Component x is failure and repair relevant.
2. Component x is failure relevant.
3. Component x is repair relevant.

In case 1, the set of all minimal solutions of F com-
prises minimal solutions of G and H (Gmin and
Hmin) that are not minimal solutions of K, and also
all minimal solutions of K (Kmin). Then, if d is a set
of minimal solutions of G that are not minimal solu-
tions of K, then the intersection of d and x (d^ x)
will comprise minimal solutions of F. Similarly, let
g be a set of minimal solutions of H that are not mini-
mal solutions of K, then the intersection of g and
x ðg ^ xÞ will comprise minimal solutions of F.

The set of all minimal solutions of F (solmin(F)) will
also include the minimal solutions of K, so

solminðFÞ ¼ ðd ^ xÞ _ ðg ^ xÞ _ Kmin ð21Þ

1

A

0

B

1

1 0

0

F1

F3C

1

0 1

0

F2 1

B

0

F4

C

1

0 1

0

F5 0

NIL

C

NIL

C

NIL

C NIL

C

C

Fig. 5 TDD for the fault tree shown in Fig. 2

Analysis of non-coherent fault trees using ternary decision diagrams 131

JRR154 � IMechE 2008 Proc. IMechE Vol. 222 Part O: J. Risk and Reliability



The set solmin(F) represents the minimal solutions of
F by removing any minimal solutions of G and H
that are also minimal solutions of K.

In case 2, where x is failure relevant, K¼NIL
and the calculation of prime implicant sets is equiva-
lent to the BDD case where the C-branch does not
exist, i.e.

solminðFÞ ¼ ðd ^ xÞ _Hmin ð22Þ

The set solmin(F) represents the minimal solutions of
F by removing any minimal solutions of G that are
also minimal solutions of H.

In case 3, where x is repair relevant, K¼NIL and
the calculation of prime implicant sets is defined as

solminðFÞ ¼ ðg ^ xÞ _ Gmin ð23Þ

The set solmin(F) represents the minimal solutions of
F by removing any minimal solutions of H that are
also minimal solutions of G.

5.3 Obtaining prime implicant sets

Traversing the TDD in Fig. 5, which is already in its
minimal form, from the root vertex to terminal-1
vertices gives all three prime implicant sets. Again,
the algorithm depends on the relevance of the node
variable and the value of the C-branch.

1. If K 6¼NIL, traversing the 1-branch of node x
results in a failed state of a component in a parti-
cular failure mode. Traversing the 0-branch of
node x results in a working state of a component
in a particular failure mode. Finally, traversing
the C-branch of node x does not include that
component in a particular failure mode at all.

2. If K¼NIL and x is failure relevant, traversing the
1-branch of node x results in a failed state of a
component in a particular failure mode. Traver-
sing the 0-branch of node x does not include
that component in a particular failure mode.

3. If K¼NIL and x is repair relevant, traversing the
0-branch of node x results in a repaired state of
a component in a particular failure mode. Tra-
versing the 1-branch of node x does not include
that component in a particular failure mode.

The three paths obtained give the three prime impli-
cant sets

F1�F2 fA;Cg

F1�F3 fA;Bg

F1�F4�F5 fB;Cg
This method provides an advanced technique for
encoding prime implicant sets.

5.4 Established methods for qualitative analysis

This section presents the existing methods for con-
verting non-coherent fault trees into BDDs and
obtaining prime implicant sets. In the later sections,
the efficiency of all methods, including the TDD
method, will be investigated and compared using
some example fault trees.

5.4.1 Meta-products BDD method

This method converts an SFBDD into a meta-
products BDD that produces all prime implicant
sets. The meta-products BDD obtained is in minimal
form. The method was developed in references [6]
and [7] where two variables are associated with every
component x. The first variable, Px, denotes rele-
vancy, and the second variable, Sx, denotes the type
of relevancy, i.e. failure or repair relevant. A meta-
product, MP(p), is the intersection of all the system
components according to their relevancy to the sys-
tem state, and p represents the prime implicant set
encoded in meta-product MP(p)

MPðpÞ ¼
Px ^ Sx if x 2 p;

Px ^ Sx if x 2 p;

Px if neither x nor x belongs to p

8><
>:

ð24Þ
Consider node F in an SFBDD,where F¼ ite(x, F1, F0).
The meta-products BDD that describes prime impli-
cant sets using equation (20) is expressed as

PIðFÞ ¼ ite
�
Px; iteðSx;P1;P0Þ;P2

�
ð25Þ

where

P2 ¼ PIðF1 :F0Þ ð26Þ

P1 ¼ PIðF1Þ :P2 ð27Þ

P0 ¼ PIðF0Þ :P2 ð28Þ
x is the first element in the variable ordering, PI(F)
represents the structure of the meta-products BDD,
PI is used to denote the prime implicants, P2 encodes
the prime implicants for which x is irrelevant, P1
encodes the prime implicants for which x is failure
relevant, and P0 encodes the prime implicants for
which x is repair relevant.

The SFBDD in Fig. 3 has been converted into a
meta-products BDD, shown in Fig. 6. Now it is pos-
sible to obtain the meta-products and identify the
prime implicant sets. Every path from root node to
terminal-1 node gives a prime implicant set

PA ^ SA ^ PB ^ PC ^ SC ¼ fA;Cg

PA ^ SA ^ PB ^ SB ^ PC ¼ fA;Bg

PA ^ PB ^ SB ^ PC ^ SC ¼ fB;Cg
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The number of nodes in a meta-products BDD
increases greatly, as every basic event x is presented
by two nodes, Px and Sx. The process can be time
consuming.

5.4.2 ZBDD method

An alternative method presented by Rauzy [8] uses
the idea of zero-suppressed BDDs (ZBDDs). This
method requires the labelling of nodes with failed
and/or working states of basic events and the de-
composition of prime implicant sets according to
the presence of a given state of a basic event. Zero-
suppressed BDDs are BDDs based on a reduction
rule. This data structure provides a unique and com-
pact representation that is more efficient and simpler
than the usual BDDs when manipulating sets in com-
binatorial problems.

The principle of this algorithm is to traverse the
SFBDD that encodes structure function f in a
depth-first way and to build a ZBDD that encodes
the prime implicant sets of f in a bottom-up way.
The conversion rule is divided into four cases. Con-
sider node F in an SFBDD, where F ¼ ite(x, F1, F0).

Case 1. If basic event x appears in its failed and
working states, then

PIðFÞ ¼ xP1þ xP0þ P2 ð29Þ
where

P2 ¼ PIðF1 :F0Þ ð30Þ

P1 ¼ PIðF1Þ\P2 ð31Þ

P0 ¼ PIðF0Þ\P2 ð32Þ
Here ‘\’ is the ‘without’ operator [1] which is used to
minimize conventional BDDs.

Case 2. If basic event x appears in its failed state
only, then

PIðFÞ ¼ xP1þ P0 ð33Þ

where

P0 ¼ PIðF0Þ ð34Þ

P1 ¼ PIðF1Þ\P0 ð35Þ
Case 3. If basic event x appears in its working state
only, then it is considered in a similar way to case 2.

Case 4. If basic event x does not appear in the sys-
tem, then

PIðFÞ ¼ PIðF1þ F0Þ ð36Þ
Applying this method to the SFBDD in Fig. 3 gives the
ZBDD in Fig. 7.

Every path from root vertex to terminal-1 vertex
presents a prime implicant set. Therefore, this
ZBDD contains three prime implicant sets

A ^ C ¼ fA;Cg

A ^ B ¼ fA;Bg

B ^ C ¼ fB;Cg
The ZBDD is an efficient technique where all prime
implicant sets are described by a compact and easy-
to-handle structure.
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Fig. 6 Meta-products BDD for the SFBDD shown in Fig. 3
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Fig. 7 ZBDD for the SFBDD shown in Fig. 3
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5.4.3 Labelled variable method

The labelled variable method [9] provides another
alternative method for constructing BDDs for non-
coherent fault trees. BDDs constructed using this
approach consist of variables that are labelled ac-
cording to their type. They are called labelled binary
decision diagrams (L-BDDs). The structure function
f(x) of a non-coherent fault tree may contain three
different types of basic event. For example, the func-
tion fðxÞ ¼ a :bþ a : c þ b : c contains a double-form
(DF) variable a that appears in both states, a single-
form positive (SFP) variable b, and a single-form
negative (SFN) variable c. In the further presentation,
the SFP variable x will be simply presented by x, the
SFN variable x will be labelled as $x, and the DF
variable x will be labelled as &x.

The conversion process for computing the L-BDD
from the non-coherent fault tree is an extension to
the method used to develop the SFBDD. Considering
the ordering &x < x < $x implements the additional
equations

If J ¼ ite ðx; f1; f0Þ and H ¼ iteð$x; g1; g0Þ;
then J �H ¼ iteð&x; f1 � g0; f0 � g1Þ ð37Þ

If J ¼ iteð&x; f1; f0Þ and H ¼ ite ðx; g1; g0Þ;
then J �H ¼ ite ð&x; f1 � g1; f0 � g0Þ ð38Þ

If J ¼ iteð&x; f1; f0Þ and H ¼ ite ð$x; g1; g0Þ;
then J �H ¼ iteð&x; f1 � g0; f0 � g1Þ ð39Þ

Applying the conversion rules to the fault tree in
Fig. 2 results in the L-BDD presented in Fig. 8 (the
top BDD). The L-BDD does not provide all the infor-
mation for the qualitative analysis, and therefore
some additional calculations are performed in order
to get all prime implicant sets.

Visiting the L-BDD in the bottom-up way, the pro-
cedure to be applied to the node F ¼ ite(x, F1, F0) to
determine the prime implicants is as follows.

If x has the label ‘&’, then

PIðFÞ ¼ xP1þ $xP0þ P2 ð40Þ
where

P2 ¼ F1 :F0; P1 ¼ F1\P2; P0 ¼ F0\P2 ð41Þ
Else

PIðFÞ ¼ a :P1þ F0 ð42Þ
where

a ¼ x or $x; P1 ¼ F1\F0 ð43Þ
Here ‘\’ is the ‘without’ operator proposed by Rauzy
[1]. Some extra rules are applied in the cases with
labelled variables.

The heaviest operation is the intersection P2 ¼
F1 ^ F0, shown in Fig. 8, the bottom BDD. The three
prime implicant sets are obtained, tracing all paths
from root vertex to terminal-1 vertex and taking into
account the results of intersection

&A ^ $C ¼ fA;Cg

&A ^ B ¼ fA;Bg

B ^ $C ¼ fB;Cg
The L-BDD method uses the prior information about
the type of every variable, but the labelling introduces
some additional variables and increases the size of
the structure.

The three established methods for the calculation
of prime implicant sets will be considered for the effi-
ciency test of the TDD method.

5.5 Quantitative analysis using TDDs

In order to perform the quantitative analysis for non-
coherent fault trees using the BDD method, a non-
coherent fault tree is converted into an SFBDD that
represents the structure function of the fault tree. In
the TDD method, the non-coherent fault tree is con-
verted into a TDD that has three branches from each
node. The third branch is created to encode all prime
implicants of the system. However, the TDD can be
used not only for qualitative analysis but also for
quantitative analysis.

5.5.1 Top event probability

Consider node F in the TDD, F ¼ ifre(x, f1, f0, f1 f0).
The structure function f(x) was expressed in equa-
tion (12), i.e. fðxÞ ¼ xf1 þ xf0 þ f1f0. Using the pivotal
decomposition to the structure function of order n, it

1

&A

0

B

1

1 0

0

$C

1

1 0

0

1

B

0

0$C

1

1 0

0

LBDD:

Fig. 8 The L-BDD for the fault tree shown in Fig. 2
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is possible to express it in terms of structure func-
tions that are of order n�1. Pivoting f(x) about vari-
able x and applying the absorption law gives

fðxÞ ¼ xfð1i; xÞ þ xfð0i; xÞ
¼ xðf1 þ f1f0Þ þ xðf0 þ f1f0Þ ¼ xf1 þ xf0 ð44Þ

Then, the expectation of f(x) is obtained and the top
event probability is calculated

QSYS ¼ E
�
fðxÞ

�
¼ qxQðf1Þ þ ð1�qxÞQðf0Þ ð45Þ

where qx is the failure probability of component x.
Therefore, the probability of the top event, QSYS, is

the sum of the probabilities of the disjoint paths
through the TDD. The disjoint paths taken into
account can be found by tracing all paths from the
root vertex via the 1- and 0-branches to terminal-1
vertices. The disjoint paths via the C-branch are not
included in the quantification process.

If f1 f0 ¼ NIL, then fðxÞ ¼ xf1 þ xf0, which makes it
possible to calculate QSYS in the same way.

5.5.2 Birnbaum’s measure of importance

The probability that component i is critical to system
failure can be expressed as the probability that com-
ponent i is failure critical, GF

i ðqÞ, or the probability
that component i is repair critical, GR

i ðqÞ [13]
GiðqÞ ¼ GF

i ðqÞ þ GR
i ðqÞ ð46Þ

Beeson and Andrews [14] showed how to define
Birnbaum’s measure of component failure impor-
tance as the probability that component i is failure
relevant to the system state given by

GF
i ðqÞ ¼ E½fi¼1��E½fi¼‘�’� ð47Þ

where E½fi¼1� is the probability that component i
is either failure relevant or irrelevant to the state of
the system, and E½fi¼‘�’� is the probability that com-
ponent i is irrelevant to the state of the system.
Birnbaum’s measure of component repair impor-
tance is defined similarly

GR
i ðqÞ ¼ E½fi¼0��E½fi¼‘�’� ð48Þ

where E½fi¼0� is the probability that component i is
repair failure relevant or irrelevant to the state of
the system.

It is possible to calculate E½fi¼1�;E½fi¼1�;andE½fi¼1�
from the ternary decision diagram. The procedure for
calculating the failure and repair criticality of compo-
nent i is outlined below

E½fi¼1� ¼
X
xi

prxiðqÞpo1;Cxi
ðqÞ ð49Þ

E½fi¼0� ¼
X
xi

prxiðqÞpo0;Cxi
ðqÞ ð50Þ

E½fi¼‘�’� ¼
X
xi

prxiðqÞpoCxiðqÞ ð51Þ

where

prxiðqÞ ¼ probability of the path section from the
root vertex to node xi

po1;Cxi ðqÞ ¼ probability of the path section from the
1-branch of node xi to a terminal-1 ver-
tex via 1- or 0-branches of non-terminal
nodes

po0;Cxi ðqÞ ¼ probability of the path section from the
0-branch of node xi to a terminal-1 ver-
tex via 1- or 0-branches of non-terminal
nodes

poCxiðqÞ ¼ probability of the path section from the
C-branch of node xi to a terminal-1 ver-
tex via 1- or 0-branches of non-terminal
nodes

Therefore, the failure and repair criticalities of com-
ponent i using the TDD are expressed as

GF
i ðqÞ ¼

X
xi

prxiðqÞ
�
po1;Cxi

ðqÞ�poCxiðqÞ
�

ð52Þ

GR
i ðqÞ ¼

X
xi

prxiðqÞ
�
po0;Cxi

ðqÞ�poCxiðqÞ
�

ð53Þ

These expressions are true for every component i that
is failure and repair relevant [15].

For the other two cases, i.e. when component i
is either failure or repair relevant and the C-branch
is ‘empty’, Birnbaum’s measure of importance is
expressed in the following equations. If component
i is only failure relevant, then

GF
i ðqÞ ¼

X
xi

prxiðqÞ
�
po1;Cxi

ðqÞ�po0;Cxi
ðqÞ

�
ð54Þ

GR
i ðqÞ ¼ 0 ð55Þ

If component i is only repair critical, then

GF
i ðqÞ ¼ 0 ð56Þ

GR
i ðqÞ ¼

X
xi

prxiðqÞ
�
po0;Cxi

ðqÞ�po1;Cxi
ðqÞ

�
ð57Þ

Using the TDD in Fig. 5 and applying the above equa-
tions. Birnbaum’s measure of importance can be cal-
culated for all components in the system.

For component A

GF
AðqÞ¼pC�qBpC¼pBpC

GR
AðqÞ¼qB�qBpC¼qBqC

For component B

GF
BðqÞ ¼ pA GR

BðqÞ ¼ 0
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For component C

GF
CðqÞ ¼ 0; GR

CðqÞ ¼ qA

Summarizing, if the quantitative analysis is required
as well as the qualitative analysis, the TDD before
the minimization can be used for the quantifica-
tion process. Additional calculations for obtaining
the SFBDD are not required as they are required in
some of the established methods. This property
makes the TDD method an efficient approach for
full analysis of non-coherent fault trees.

5.6 Efficiency comparison between the TDD
method and the established methods

The efficiencies of the TDD method and the estab-
lished methods for calculating prime implicant sets
were investigated and compared using a benchmark
set of medium-sized fault trees for engineering sys-
tems from several industries. The performance over
16 example fault trees was obtained, as each method
may perform well on some fault trees, depending
upon the fault tree structure. The performance of
each method over a range of test cases is monitored.
The complexity of the 16 fault trees is indicated in
columns 2 to 4 of Table 1, representing the number
of gates, the number of events, and the number of
prime implicant sets in their solution. Example fault
trees were simplified prior to the conversion process,
using the reduction [16] and modularization [17]
techniques. The number of complex and modular
events are shown in columns 5 and 6.

The number of nodes using the TDD method, the
meta-products BDD method, the ZBDD method,
and the L-BDD method are presented in columns 7
to 10. The number of nodes in the TDD method
describes the sum of the number of nodes in the
TDD before the minimization (which is also used
for the quantitative analysis) and the number of
nodes in the TDD after the minimization. The num-
ber of nodes for the second method covers the num-
ber of nodes in the SFBDD and the meta-products
BDD. For the ZBDD method the sum of the number
of nodes in the SFBDD and the number of nodes in
the ZBDD is presented. The number of nodes in the
L-BDD method contains the sum of the number of
nodes in the L-BDD before applying the minimiza-
tion, the number of nodes of the additional structures
after applying the conjunction, and the number of
nodes in the minimized L-BDD. Similarly, the pro-
cessing time in seconds covers the time taken to con-
vert example fault trees to BDDs and to perform the
qualitative analysis. Results of processing time are
shown in columns 11 to 14 of Table 1 for the four
methods respectively. The total number of nodes
and the processing time for the four methods are
shown in Table 2.

As shown in Table 2, the TDD method performed
as well as the ZBDD method. Both methods out-
performed the meta-products and L-BDD methods,
resulting in the smallest final BDDs in the shortest
calculation time. The L-BDD method gave the
second-worst result, and the meta-products BDD
method required the longest processing time, as the
size of the problem increased greatly.

These results show that the TDD method provides
an efficient way to represent prime implicant sets,
where ‘hidden’ sets are obtained by applying the con-
junction of the two branches. It also has the cap-
ability to do so only if it is required, avoiding the
generation of a structure that is not needed. This is
achieved using the information about the failure/
repair relevance of the component which determines
whether the conjunction of the two branches is per-
formed or not. The final advantage of this technique
is the fact that the quantitative analysis can also be
performed using the TDD before the minimization.

6 CONCLUSIONS

This paper presents a new technique that has been
developed for application to finding prime implicant
sets of non-coherent fault trees. As the introduction
of NOT logic to the logic function expands the calcu-
lation time and increases the size of the problem, the
BDD method can be used for efficient qualitative
and quantitative analyses of non-coherent fault trees.
This paper proposes a new alternative technique that
produces a ternary decision diagram, which allows
the calculation of all prime implicants directly. Its
efficiency is analysed and compared with that
of established methods – the conventional algo-
rithm producing a meta-products BDD, the zero-
suppressed BDD method, and the labelled BDD
method – using some example fault trees. Efficiency
analysis indicates that the new proposed TDD
method provides as good a representation of prime
implicant sets as other methods and has the advan-
tage of being suitable for both qualitative and quanti-
tative analyses of non-coherent fault trees.

Table 2 Total number of nodes and the processing time
for the four methods in seconds

TDD
method

Meta-
products
BDD
method

ZBDD
method

L-BDD
method

Total
number
of nodes

5183 11 521 3496 10 439

Total
processing
time

1.41 395.78 1.61 14.93
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APPENDIX

Notation

f0 logic function on the 0-branch of a node
f1 logic function on the 1-branch of a node
f2 conjunction of logic functions f1 and f0
G BDD structure on the 1-branch of a node
GF

i ðqÞ Birnbaum’s measure of component i fail-
ure criticality

GR
i ðqÞ Birnbaum’s measure of component i repair

criticality
H BDD structure on the 0-branch of a node
ifre if-failure-repair relevant-else structure
ite if-then-else structure
K BDD structure on the C-branch of a node
MP(p) meta-product of p
n number of components in the system
NIL no logic function present on the C-branch
poCxiðqÞ probability of the path from the C-branch

of node xi to a terminal-1 vertex via 1- or
0-branches of non-terminal nodes

po0;Cxi ðqÞ probability of the path from the 0-branch
of node xi to a terminal-1 vertex via 1- or
0-branches of non-terminal nodes

po1;Cxi ðqÞ probability of the path from the 1-branch
of node xi to a terminal-1 vertex via 1- or
0-branches of non-terminal nodes

prxiðqÞ probability of the path from root vertex to
node xi

PI(F ) prime implicant sets of F
Px relevancy variable of x
QSYS system failure probability
Sx type of relevancy variable of x
xi binary indicator

g minimal solutions of H without minimal
solutions of K

d minimal solutions of G without minimal
solutions of K

f system structure function
� logical operation between two gates or

events
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