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Abstract: The way that many systems are utilized can be expressed in terms of missions which
are split into a sequence of contiguous phases. Mission success is only achieved if each of the
phases is successful, and each phase is required to achieve a different objective and use differ-
ent elements of the system. The reliability analysis of a phased mission system will produce the
probability of failure during each of the phases, together with the overall mission failure likeli-
hood. In the event that the system performance does not meet with the acceptance require-
ment, weaknesses in the design are identified and improvements made to rectify the
deficiencies. In conventional system assessments, importance measures can be predicted
which provide a numerical indicator of the significance of the role that each component plays
in the system failure. Through the development of appropriate importance measures, this
paper provides ways of identifying the contribution made by each component failure to each
phase failure and the overall mission failure. In addition, a means is given to update the sys-
tem performance prediction as phases of the mission are successfully completed. The causes
of phase failure are expressed as fault trees. The binary decision diagram (BDD) concept is
extended to produce ternary decision diagrams (TDDs) to facilitate fast calculation of the
importance measures.

Keywords: phased mission analysis, importance measures, binary decision diagrams, ternary
decision diagrams, fault tree analysis

1 INTRODUCTION

A phased mission is used to describe the situation
where the system functional requirements change
throughout the period of operation. The periods of
operation between the transition points, where the
system functional requirements change, are referred
to as phases, all of which need to be completed
successfully for the mission success. Many systems
can be seen to operate in this way; typical examples
are aircraft, satellites, and spacecraft.

The unreliability assessment of phased mission
systems produces the likelihood of failure during
each of the individual phases and also the overall
mission failure probability. For some systems it may
be possible for maintenance to be performed during
the mission to rectify faults that have occurred. The
categorization of a mission to be non-repairable
or repairable influences the reliability modelling

techniques that can be used. Fault tree approaches
are appropriate for non-repairable phased missions
[1–3], and Markov methods when some degree of
repair is possible [4–6]. This paper focuses on non-
repairable missions.

Recent work has extended the basic mission
unreliability modelling methods to indicate the
contribution that individual components can make
to the mission failure [7, 8]. The development of
these importance measures has extended the con-
cepts of the classical Birnbaum measure of impor-
tance and the criticality measure of importance [9,
10]. The contributions made to each phase failure
are calculated with account taken of the fact that fail-
ure in a phase can only occur providing all previous
phases have successfully completed. The phase
failure contributions are then combined to give an
indication of the contribution that each component
failure makes when considering the entire mission.
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As the mission progresses and each phase is suc-
cessfully completed, the predictions for the phase
and mission failure probability can be updated. The
method to perform the revised predictions is given.

For a non-repairable mission, the causes of phase
failure can be expressed as a fault tree. It has been
shown that binary decision diagram (BDD) methods
[11–13] can offer an efficient and accurate solution
to these problems even in a phased mission context
[3]. However, to calculate the importance contri-
butions, these need to be extended to the ternary
decision diagram (TDD).

2 PHASED MISSION DEFINITION

In the modelling presented in this paper, the follow-
ing assumptions are made for the phased mission.

1. A mission is defined in terms of phases carried
out consecutively.

2. Each phase accomplishes a specified task. It has
different functional requirements and therefore
the failure criteria are different for each phase.

3. For mission success, each phase must be com-
pleted successfully.

4. The time duration for each phase is known.
5. The mission is non-repairable and component

failures will exist for the remainder of the mission
once they occur.

6. All components are in the working state at the
start of the mission.

3 PHASED MISSION UNRELIABILITY
QUANTIFICATION

The phased mission is represented as a series of fault
trees, each one expressing the conditions that will
lead to the failure of a specific phase. The duration
of each phase is also provided in terms of the times,
following the mission initiation, at which each phase
is entered. A method to calculate the failure likelihood
of such a phasedmission, the phasedmission unrelia-
bility Qsys, is presented in reference [3]. It provides
both qualitative and quantitative information regard-
ing phase and mission failure. The method presented
in this paper breaks down the phase failure modes to
identify where the significant contributions occur.

Component failures are considered as separate,
dependent events in each phase. The notation used
is as follows: Ai represents the failure of component
A during phase i, and Ai,j represents the component
failing at some point between the start of phase i
and the end of phase j. Therefore, the event that the
component exists in the failed state at the end of
phase i is

A1;i ¼ A1 þ A2 þ ···þ Ai ð1Þ

In all logic equations, ‘þ’ is used to represent OR and
‘.’ is used to represent AND.

The first stage of themethod is to establish the phase
failure modes. These are the prime implicants –
minimal combinations of the component states (work-
ing or failed) that will result in a particular phase
failure and account for the successful completion of
all previous phases. Considering each phase in turn,
the method constructs the phase failure fault tree as
shown in Fig. 1. Boolean reduction of the fault trees
constructed in this way determines the phase failure
modes. In performing the reduction for a phased mis-
sion fault tree, it is possible to take advantage of the
non-repairable nature of the component failures. A
special phase algebra has been developed that uses
the fact that, once failed, a component remains that
way for the rest of the mission. The algebra uses the
following rules

Ai :Aj ¼ 0
Ai :Ai ¼ Ai

Ai :Ai;j ¼ Ai

Ai : �Ai ¼ 0
�Ai :Ai;j ¼ Aiþ1;j

Ai : �Aj ¼ 0 if i < j ð2Þ

In a phased mission there are two ways that a phase
can experience a failure.

1. The failure can occur during the phase as a result
of a component failure that occurs during
the phase, the occurrence of which then fulfils
the conditions for phase and therefore mission
failure.

2. Alternatively, the system can be in a state that
already satisfies the conditions for phase failure
before the phase is entered. Phase failure will
then result as soon as the transition into the
phase takes place. In this latter case the compo-
nent failure events in the phase failure mode
have all occurred in a previous phase but have
not satisfied a previous phase failure condition.

The phase failure modes can be split into the causes
of these two categories: in-phase failure and phase
transition failure.

The likelihood of the component failure events that
appear in the prime implicants obtained for each
phase fault tree can be determined by integrating
their failure time density function over the appropri-
ate time period

qAi;j
¼

Ztj
ti�1

fAðtÞdt ð3Þ

From the component failure probabilities, together
with the prime implicant sets, the inclusion–exclusion
expansion (equation (4)) can be used to determine
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the phase j unreliabilities (conditional on all previous
phase success) QP

j and QT
j , the in-phase and phase

transition failure probabilities respectively

Q
P=T
j ¼

XNp

i¼1

PðCiÞ�
XNp

i¼1

Xi�1

k¼1

PðCi \ CkÞ . . .

þ ð�1ÞNp�1PðC1 \ C2 \ . . . \ CNp
Þ

ð4Þ

where Ci is prime implicant i.
The phase unreliability is then obtained from

Qj ¼ QT
j þ QP

j ð5Þ

As will be discussed in later sections, to evaluate the
component importance contributions, a particular
formulation of equation (4) [14, 15] offers some
advantages. While the form of the equation is unim-
portant for phase failure likelihood quantification,
the form that will be used later in the importance
calculations will be described, and all expressions
used in the examples will be formed this way. Prime
implicant terms, Ci, will be of a form that can contain
components failing and functioning through particu-
lar phases. This form will also describe the combina-
tions of the prime implicants whose likelihood is to
be determined in equation (4). The terms of the
inclusion–exclusion expansion are formed using two
independent variables for the likelihood that any
component i works, pi, and that it fails, qi. The rela-
tionship piþ qi ¼ 1 is not used to express the whole
equation in terms of either one of these variables.

For example, if it is required to evaluate the probability
of the combination of component failure events
A3:B3:C2, then the form for its probability would be
qA3

pB3
qC2

. Clearly, the Boolean reduction carried out
will prevent situations where the same component
exists in both its working and failed state.

Summing the phase unreliabilities yields the mis-
sion unreliability

Qmiss ¼
X
all

phases

j

Qj ð6Þ

The phase and mission quantification is illustrated
using a simple example system provided in the next
section. This example will be used throughout the
paper and will demonstrate the computation of
the component importance measures developed in
the later sections.

4 EXAMPLE SYSTEM ANALYSIS

An example four-phased mission system is illustrated
in Fig. 2. The failure conditions for each of the four
phases, in terms of the four components A, B, C,
and D on which this mission depends, are repre-
sented by fault trees. The time durations in each
phase j are (tj�1, tj).

In the system analysis that follows, Aj represents
the functioning of component A throughout phase j,

Fig. 1 Fault tree for mission failure during phase i
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and, extending this across several phases, Ai;j repre-
sents the functioning of component A throughout
phases i to j inclusive.

Prior to obtaining the phase failure probabilities Qj,
the in-phase failure probability Qj

P and the phase
transition failure probability Qj

T must be quantified.
This requires the phase failure modes for each of
these events.

Reduction of the fault tree shown in Fig. 1 will yield
all causes of phase failure, which will include both
in-phase and phase transition causes combined in
the phase failure modes. The approach taken in this
paper determines the in-phase and phase transition
failure modes separately. First, the combined failure
modes are produced by applying Boolean reduction
to the fault tree of the form shown in Fig. 1. Then
the phase transition failure modes are developed.
Then removing the phase transition causes from the
combined phase causes will provide the in-phase
failure modes.

4.1 Combined failure modes

4.1.1 Phase 1

There are no previous phases and so this phase can be
treated as a normal non-phased mission system. The
logic expression for the causes of failure in phase 1,
Ph1, and the likelihood of this event, Q1, are given by

Ph1 ¼ A1 þ B1

Q1 ¼ qA1
þ qB1

�qA1
qB1

ð7Þ

4.1.2 Phase 2

In constructing the fault tree for mission failure during
phase 2, it will combine the causes of success in
phase 1, (A1 þ B1 ¼ A1 :B1), and the failure conditions

for phase 2 being met in phase 2, (A1;2:B1;2 þD1;2).
The failure logic expression and failure likelihood dur-
ing phase 2 are

Ph2 ¼ A1:B1:½A1;2:B1;2 þD1;2�
¼ A2:B2 þ A1:B1:D1;2

Q2 ¼ qA2
qB2

þ pA1
pB1

qD1;2
�qA2

qB2
qD1;2 ð8Þ

4.1.3 Phase 3

The logic expression for phase 3 is constructed using
the causes of successful completion of phase 1 and
successful completion of phase 2 and the failure con-
ditions of phase 3 being met in phase 3

Ph3¼A1:B1:ðA1;2:B1;2þD1;2Þ:½B1;3:C1;3�
¼A1;2:B2;3:C1;3:D1;2þA1B3C1;3D1;2

¼A1;2:B3:C1;3:D1;2þA1;2:B2:C1;3:D1;2þA1B3C1;3D1;2

¼A1;2:B2:C1;3:D1;2þA1B3C1;3D1;2

Q3 ¼pA1;2
qB2

qC1;3
pD1;2

þpA1
qB3

qC1;3
pD1;2

ð9Þ

The logic expressions for the phase failure causes are
most efficiently dealt with if they are reduced to their
minimal form. This involves removing from the
expression any replicated or non-minimal terms of
the base failure conditions. As an example of this pro-
cess, consider the expression for Ph3 in equation (9)
(this is the first phase that is not in its minimal form
on initial expansion). Expanding out terms from the
original expression gives the second line of equation
(9). The first term could be expanded out in terms
of either B2,3¼B2þB3 or C1,3¼C1þC2þC3. Selecting
to expand about B gives the third line. Comparing
the first and third terms of line 3 shows that the first
term can be deleted, as the conditions on A function-
ing into phase 2 are not necessary. The minimization
gives the final logic expression, line 4.

Fig. 2 Example system phased mission fault trees
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4.1.4 Phase 4

Repeating the procedure for phase 4 gives, for com-
pleteness, the results

Ph4¼A1;2:B1:C1;3:D3;4þA1:B1;3:D3;4þA1:B1;2:C1;3:D3;4

Q4¼pA1;2
pB1

pC1;3
qD3;4

þpA1
pB1;3

qD3;4
þpA1

pB1;2
pC1;3

qD3;4

�pA1;2
pB1;2

pC1;3
qD3;4

�pA1
pB1;3

pC1;3
qD3;4

ð10Þ

4.2 Phase transition failure modes and
probabilities

The phase transition failure modes can be obtained
by modifying the top event in the fault tree struc-
ture shown in Fig. 1. Failure on transition to phase j
requires success in the previous phases (as in the
original structure) AND the failure conditions for phase
j are met prior to phase j. This latter input branch to
the top event fault tree is formed in the same way as
before, except component failures are only expanded
up to the previous phase, i.e. A1þA2þ . . .þAj�1.

The phase transition failure modes PhT
j and proba-

bilities QT
j for the simple example system shown in

Fig. 2 are as follows

Phase 2 transition failure

PhT
2 ¼ A1:B1:ðA1:B1 þD1Þ ¼ A1:B1:D1

QT
2 ¼ pA1

pB1
qD1

ð11Þ

Phase 3 transition failure

PhT
3 ¼ A1:B1:ðA1;2 þ B1;2Þ:D1;2:½B1;2:C1;2�
¼ A1;2:B2:C1;2:D1;2

QT
3 ¼ pA1;2

qB2
qC1;2

pD1;2

ð12Þ

Phase 4 transition failure

PhT
4 ¼A1;2:B1:C1;3:D3þA1:B1;3:D3þA1:B1;2:C1;3:D3

QT
4 ¼pA1;2

pB1
pC1;3

qD3
þpA1

pB1;3
qD3

þpA1
pB1;2

pC1;3
qD3

�pA1;2
pB1;2

pC1;3
qD3

�pA1
pB1;3

pC1;3
qD3

ð13Þ

4.3 In-phase failure modes and probabilities

For each phase, the in-phase failuremodes are obtained
by removing the phase transition failure modes from
the combined failure modes. These are given below,
together with the associated probabilities

PhP
2¼ ðA2:B2 þ A1:B1:D1;2Þ�A1:B1:D1

¼ A2:B2 þ A1:B1:D2
ð14Þ

QP
2 ¼ qA2

qB2
þ pA1

pB1
qD2

�qA2
qB2

qD2
ð15Þ

PhP
3 ¼ A1;2:B2:C1;3:D1;2 þ A1:B3:C1;3:D1;2

�A1;2:B2:C1;2:D1;2

¼ A1;2:B2:C3:D1;2 þ A1:B3:C1;3:D1;2 ð16Þ

QP
3 ¼ pA1;2

:qB2
:qC3

:pD1;2
þ pA1

:qB3
:qC1;3

:pD1;2
ð17Þ

PhP
4 ¼

½A1;2:B1:C1;3:D3;4 þ A1:B1;3:D3;4 þ A1:B1;2:C1;3:D3;4�
�½A1;2:B1:C1;3:D3 þ A1:B1;3:D3 þ A1:B1;2:C1;3:D3�

¼ A1;2:B1:C1;3:D4 þ A1:B1;3:D4 þ A1:B1;2:C1;3:D4

ð18Þ

QP
4 ¼ pA1;2

pB1
pC1;3

qD4
þ pA1

pB1;3
qD4

þ pA1
pB1;2

pC1;3
qD4

�pA1;2
pB1;2

pC1;3
qD4

�pA1
pB1;3

pC1;3
qD4

ð19Þ
In equations (14) and (18) the algebra required for the
failure mode subtraction is obvious. In equation (16)
the process is not as transparent, and each term is
first expanded to its fundamental failure modes
expressed in terms of single phase variables prior to
performing the subtraction.

5 COMPONENT IMPORTANCE MEASURES

The criticality measure of importance identifies the
contribution that each component makes to the sys-
tem failure. This concept will be extended to the
phased mission context to produce the importance
measures for components for both phase and mis-
sion failure. In order to calculate the criticality mea-
sure, the likelihood of the system being critical for
each component needs to calculated (Birbaum’s
measure of importance). This needs the concept of
a critical system state, which for non-phased mis-
sions is defined as follows: A critical system state for
component i is a state of the remaining components
in the system such that the failure of component i
will cause the system to make a transition from the
working state to the failed state.

The probability that the system is in a critical sys-
tem state for any component is Birnbaum’s measure
of importance, Gi, and can be calculated from

Gi ¼ @Qsys

@qi
ð20Þ

From this, the criticality measure of importance can
be determined. It is the probability that the system
is in a critical state for component i and that compo-
nent i has failed. This is normalized by dividing by
the system failure probability. This calculates the
likelihood that component i has caused the system
failure. The criticality measure of importance for
component i is given by

Ii ¼ Giqi

Qsys
ð21Þ
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6 CRITICAL PHASE STATES

6.1 In-phase failure

For multiphased missions the possible component
states in any phase are dependent upon which fail-
ures have occurred during all the preceding phases
up to and including phase j.

A critical phase state for component i in phase j is a
state of the remaining components through the pre-
vious and current phases such that the system is
working on entry to phase j, and failure of compo-
nent i during phase j will cause the phase (and mis-
sion) failure.

For this to happen:

(a) all phases up to phase j must have been com-
pleted successfully;

(b) component i must be in the working state on
entry to phase j.

As an example, consider the critical phase states for
component A in phase 2 for the simple example system
shown in Fig. 2. In phase 2 the system state is deter-
mined by the state of components A, B, and D. In eval-
uating the critical phase states for A, consideration
must be given to the states of components B and D
through phase 2 and the preceding phase 1. There are
three options for each of the components: they can
fail in phase 1, fail in phase 2, or work throughout
both phases. For the two components, this gives nine
states to consider, which are listed in the first column
of Table 1. Any combination of states that includes B
failed in phase 1 will result in phase 1 failure and does
not need to be considered in phase 2. In phase 2, if D
has failed then phase 2 fails regardless of the state of
component A, and so these combinations are not criti-
cal for A. It is only whenD is working and B has already
failed that it is critical for A, which is just the one com-
bination in the last row. The probability of this combi-
nation is the criticality for component A, in phase 2, i.e.

GA;2 ¼ qB2
pD1;2

ð22Þ
where Gi,j denotes the criticality function of compo-
nent i in phase j.

As the number of components and the number of
phases increases, this tabular approach soon be-
comes impractical and another derivation of the criti-
cality function is required.

Gi; j ¼ Pðsystem is critical for component

i in phase j and the system has

survived to phase j and

component i is workingÞ
¼ Pðsystem has failed in phase j

with component i failing in phase j

and the system surviving to phase jÞ
� Pðsystem has failed in phase j

with component i working

throughout phase j and the

system surviving to phase jÞ
¼ Qjðq;qij ¼ 1Þ�Qjðq;qij ¼ 0Þ
¼ @Qj

@qij

ð23Þ
The last step above is true, as Qj is a linear function of
qij . Note that the expression for Qj derived from the
combined phase failure modes is used. This is
needed in order to account correctly for the failure
not occurring on entry to the phase. For example

@Q2

@qA2

¼ qB2
�qB2

qD1;2
¼ qB2

ð1�qD1;2
Þ ¼ qB2

pD1;2
ð24Þ

This agrees with the expression derived from Table 1.
All derivatives that give the criticality for each com-

ponent i in each phase j are given in Table 2.

6.2 Phase transition failure

The phase transition function is the likelihood of
failure on transition to each phase, QT

j . For each
component i that contributes to this phase transition
failure there will be a criticality function, GT

i;j;k,
expressing the probability that the system is in a
critical condition such that the failure of component

Table 1 Criticality of component A in phase 2

Other component
states

Fails in
phase 1?

Critical for
component
A in phase 2? Probability

B1;2 :D1 No No —
B1;2 :D2 No No —
B1;2 :D1;2 No No —
B1:D1 Yes — —
B1:D2 Yes — —
B1:D1;2 Yes — —
B2:D1 No No —
B2:D2 No No —
B2:D1;2 No Yes qB2

pD1;2
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i in phase k prior to phase j will cause phase transi-
tion failure. This is given by

GT
i;j;k ¼ @QT

j

@qik

ð25Þ

The transition criticality function (equation (25)) for
each component in the simple phased mission ex-
ample presented in Fig. 2 for each of the four phases
is given in Table 3.

7 PHASE IMPORTANCE MEASURES

7.1 In-phase importance

Equation (20) gives the criticality measure of impor-
tance for component i in a non-phased mission.
Extending this to give the importance contribution
to the failure of component i in phase j yields

IPi;j ¼
Gi;jqij

Qj
ð26Þ

This in-phase importance measure provides the contri-
bution that the failure of component i makes to caus-
ing a failure of the mission during phase j. The phase
failure can also occur owing to a failure on transition
to the phase. Both in-phase and transition failures will
contribute to Qj. The two importance contributions
can, however, be considered individually.

7.2 Phase transition failure

Phase transition failure requires that the failure con-
ditions for phase j have occurred in some phase k
prior to phase j and that these conditions do not
result in any previous phase failure. The transition
importance measure, ITi;j, is the failure contribution

that component i makes to the transition failure in
phase j as a proportion of the total phase failure.
The contribution of component i is summed over all
the preceding phases to phase j, i.e.

ITi;j ¼
Pj�1

k¼1 G
T
i;j;kqik

Qj
¼

Pj�1
k¼1ð@QT

j =@qik Þqik

Qj

ð27Þ

The total importance contribution of component i to
the phase j failure is

Ii;j ¼ IPi;j þ ITi;j ð28Þ

8 MISSION IMPORTANCE MEASURES

When a system does not reach the required level of
performance over a mission, decisions need to be
made as to how the system can be improved in order
to achieve a better performance. Weak aspects of the
system design need to be identified and rectified.
Importance measures can aid in the process of
identifying the most significant contributions to the
system failure. For a phased mission system it is
necessary to identify the contribution to failure
made by the components with regard to the entire
mission, not just any signal phase. The criticality
measure over the mission for each component i is
given by the proportion of mission failures to which
component i contributes

IMi ¼ Pn
j¼1

(
ð@Qj=@qijÞqij þ

�Pj�1
k¼1ð@QT

j =@qik Þqik

�)

Qmiss

ð29Þ
where n is the number of phases.

Table 2 Birnbaum’s measure of importance for each component in each phase

A B C D

Phase 1 pB1
pA1

0 0
Phase 2 qB2

pD1;2
qA2

pD1;2
0 pA1

pB1
�qA2

qB2

Phase 3 0 pA1
qC1;3

pD1;2
pA1;2

qB2
pD1;2

þ pA1
qB3

pD1;2
0

Phase 4 0 0 0

pA1;2
pB1

pC1;3
þ pA1

pB1;3

þpA1
pB1;2

pC1;3
�pA1;2

pB1;2
pC1;3

�pA1
pB1;3

pC1;3

Table 3 Transition criticality function for the phase j failure for component i in phase k

i

j Phase of component failure k A B C D

Phase 2 1 0 0 0 pA1
pB1

Phase 3 1 0 0 pA1;2
qB2

qD1;2
0

2 0 pA1;2
qC1;2

pD1;2
pA1;2

qB2
pD1;2

0
Phase 4 1 0 0 0 0

2 0 0 0 0
3 0 0 0 pA1;2

pB1
pC1;3

þ pA1
pB1;3

þpA1
pB1;2

pC1;3
�pA1;2

pB1;2
pC1;3

�pA1
pB1;3

pC1;3
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9 MISSION PROGRESSION

For some systems it is possible to track the progress
of the mission, for example a satellite mission. As
the mission successfully completes its sequence of
phases, the mission or phase failure likelihoods can
be updated, conditional on the successful comple-
tion of each phase.

If the mission has progressed successfully to the
end of phase k, then the probability of failure, Qj

during phases 16 j6 k is known to be zero. For
predictions of phase j failure probability (conditional
on having successfully completed phases 1,. . .,k),
Q

jjk , we have

Q
jjk ¼ Pðsystem failure in phase j;

given successful completion of phase kÞ

¼ Pð PhjjPh1. . .PhkÞ

¼ PðPhj \ Ph1 \ . . . \ PhkÞ
PðPh1 \ . . . \ PhkÞ

¼ PðPhjÞ
PðPh1 \ . . . \ PhkÞ

¼ Qj

1�Pk
i¼1 Qi

ð30Þ

In the same way, the probability of failure on transi-
tion to phase j and the probability of in-phase failure
in phase j, conditional on the successful completion
of the first k phases, are

QT

jjk ¼ QT
j

1�Pk
i¼1 Qi

; QP

jjk ¼ QP
j

1�Pk
i¼1 Qi

ð31Þ

The updated mission failure probability is then

Qmiss ¼
Xn
j¼kþ1

Q
jjk ð32Þ

10 SYSTEM EXAMPLE

Considering the example phased mission system illu-
strated in Fig. 2 and the component phase failure
probabilities given in Table 4, the phase failure prob-
abilities are Q1¼ 0.28, Q2¼ 0.112 75, Q3¼ 0.011 05,
and Q4¼ 0.2106. These are made up of in-phase
and phase transition contributions: QP

1¼ 0:28, QP
2 ¼

0:040 75, QT
2 ¼ 0:072, QP

3 ¼ 5:631·10�3, QT
3 ¼ 5:419·

10�3, QP
4 ¼ 0:1404, and QT

4 ¼ 0:0702. This gives an
overall mission failure probability of Qmiss¼ 0:6144.

Using equations (26), (27), and (29), the compo-
nent importance measures throughout the phased
mission are given in Table 5.

As the mission successfully completes phases, equa-
tions (30) and (32) provide the phase and overall
mission failure probabilities which are given in Table 6.

11 BINARY DECISION DIAGRAMS–MISSION
QUANTIFICATION

Using the fault tree analysis approach reported above
provides a systematic way of analysing the phased
mission and obtaining the component importance
contributions. However, as the complexity of the mis-
sion fault trees increases and the number of phases
increases, the calculations become difficult to per-
form in a realistic time. There are two reasons for
this: first, the computational effort to determine the
phase failure modes (prime implicants) can be high
for large problems; second, then using the prime
implicants to calculate the phase failure probability
from equation (4) can also be computationally inten-
sive. Since the fault trees are non-coherent, many
terms in the series expansion may need to be evalu-
ated to obtain convergence, and approximations
used for coherent fault trees may not be appropriate.
A practical method needs to be established in order
to enable the analysis of real systems.

Table 4 Component phase failure probabilities

A B C D

Phase 1 0.1 0.2 0.025 0.1
Phase 2 0.05 0.1 0.05 0.05
Phase 3 0.2 0.05 0.025 0.1
Phase 4 0.025 0.1 0.05 0.2

Table 5 Mission importance contributions

Component
In-phase 1
import

Transition to
phase 2 import

In-phase 2
import

Transition to
phase 3 import

In-phase 3
import

Transition to
phase 4 import

In-phase 4
import

Total mission
import

A 0.2857 0 0.0377 0 0 0 0 0.1371
B 0.6429 0 0.0377 0.4904 0.3462 0 0 0.3149
C 0 0 0 0.049 04 0.25 0 0 0.1799
D 0 0.6386 0.3171 0 0 0.3333 0.6667 0.5181

Table 6 Phase progression failure probabilities

Q1 Q2 Q3 Q4 Qmiss

0 0.28 0.11275 0.011 05 0.2106 0.6144
1 — 0.1566 0.015 35 0.2925 0.4645
2 — — 0.018 20 0.3468 0.3650
3 — — — 0.3532 0.3532
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For conventional systems analysis, the use of bin-
ary decision diagrams (BDDs) [11–13] offers a fast,
efficient, and accurate means of analysing fault trees,
coherent or non-coherent. BDDs were used in the
context of a phased mission analysis in reference [3].

The fault trees for each phase failure of the exam-
ple mission are given in Fig. 2. The causes of failure
in each phase accounting for the survival of previous
phases are obtained using the fault tree shown in
Fig. 1. Converting these formulations to BDDs gives
the BDDs for the failure of phases 2 to 4 in Figs 3(a)
to (c) respectively (the phase 1 failure fault tree and
BDD are trivial). They have been constructed assum-
ing all component failures in each of the phases are
independent. The construction process has been
performed using a component ordering of A1<A2<A3

<A4<B1<B2<. . .<D3<D4 and the conversion rules
given in reference [11] which produce the BDDs in
an ite (if-then-else) structure.

By convention, all left branches leaving each
node are 1-branches, and all right branches are

0-branches. The BDDs give the causes of each phase
failure in a disjoint (mutually exclusive) form for
causes of both in-phase and phase transition failure.
To calculate the in-phase failure probability, the
causes of phase transition failure are removed from
the causes of failure obtained from the BDD, and
the probability of the remaining causes (paths)
summed. To obtain the phase failure causes from
the BDD, each path to a terminal-1 node is consid-
ered and all component conditions (working and
failed) are listed. Considering the BDD for phase 2
(Fig. 3(a)) gives

A2B2

A2B1;2D1;2

A1;2B1D1;2

ð33Þ
Expanding the second and third causes in the list
to separate those causes with D failing in phase
1 (and causing phase transition failure) and those

A1

A2
0

B1

B2

D1

D2

1

0

B1

1

1

0

0

A1

A2
0

B1

B2

B3
0

0

B1
0

0

C2

C3

C1

0D1

D2
0

0 1

B2

B3

0

(a) (b)

Fig. 3 (a) BDD for phase 2 failure; (b) BDD for phase 3 failure; ((c) overleaf)
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with D failing in phase 2 (and causing in-phase
failure) gives

A2B2

A2B1;2D1 · ðtransition failureÞ
A2B1;2D2

A1;2B1D1 · ðtransition failureÞ
A1;2B1D2

ð34Þ
The second and fourth terms are removed, as they
cause phase transition failure. Those that are left
not only cause an in-phase failure but also are in a
disjoint form, so QP

2 is obtained by summing the
path probabilities, giving 0.040 75.

The phase transition fault trees, whose causes are
given in equations (11) to (13) are converted to the
BDDs shown in Figs 4(a) to (c) for phases 2 to 4
respectively using the same variable ordering.

From Fig. 4(a) the single cause of failure on transi-
tion to phase 2 is A1B1D1, the probability of which is
0.072, which gives QT

2 . The likelihood of failure in

phase 2 is therefore 0.112 75, as obtained using the
previous fault tree method by summing QP

2þQT
2 .

For phases 3 and 4, the phase failure BDDs given in
Figs 3(b) and (c) produce the failure causes shown
below:

Phase 3 failure

A2B3C1;3D1;2 A2B3C1;3D1;2

A1;2B2;3C1;3D1;2 ) A1;2B2C1;2D1;2

· ðtransition failureÞ
A1;2B2C3D1;2

A1;2B3C1;3D1;2 ð35Þ
Phase 4 failure

A2B3C1;3 D3;4 A2B3C1;3 D3

· ðtransition failureÞ
A2B1;3D3;4 ) A2B3C1;3D4

A1;2B2;3C1;3D3;4 A2B1;3D3

· ðtransition failureÞ
A1;2B1;3D3;4 A2B1;3D4

A1;2B2;3C1;3D3 · ðtransition failureÞ
A1;2B2;3C1;3D4

A1;2B1;3D3 · ðtransition failureÞ
A1;2B1;3D4 ð36Þ

Summing the probabilities of the disjoint paths left
after the transition failure causes have been removed
gives QP

3 and QP
4 .

The phase transition failure BDDs given in Figs 4
(b) and (c) produce the causes shown below.

Phase 3 transition failure

A1;2B2C1;2D1;2 ð37Þ
Phase 4 transition failure

A2B3C1;3 D3

A2B1;3D3

A1;2B2;3C1;3D3

A1;2B1;3D3 ð38Þ
Summing the likelihood of these paths gives QT

3 and
QT

4 .

12 TERNARY DECISION DIAGRAMS–
BIRNBAUM’S IMPORTANCE
QUANTIFICATION

While the BDDs can be used to calculate the phase
failure probabilities, they do not enable the calcula-
tion of the component importance measures. All
of the component importance measures developed
in this paper are based on Birnbaum’s measure
of importance, either in-phase, @Qj=@qij , or phase
transition, @QT

j =@qik . For these derivatives to yield
the correct importance measures, Qj and QT

j need to
be expressed in Henley and Inagaki’s formulation.

A1

A2
0

B1

B2

B3
0

0

B1

0

C2

C3

C1

0

D3

D41

1 0

B2

B3

0

0

(c)

Fig. 3 (c) BDD for phase 4 failure
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The negated success terms in the phase failure
modes occur purely to ensure the conditions for the
successful completion of the previous phases. As suc-
cess events enable progression to the phase, they do
not cause phase failure. As such, for variable xi they
are assigned a variable pxi and failure events qxi;
which are assumed to be independent in order for
the derivatives to give the correct contribution.
When the BDDs are constructed, the process effec-
tively converts all pxi terms to 1�qxi , and so the de-
rivatives no longer deliver Birnbaum’s measure of
importance.

Using the Henley and Inagaki formulation, Qj can
be expressed as

Qj ¼ qijQA þ pijQB þ QC ð39Þ
The three terms represent those products involving
the failure of component i in phase j, the functioning
of component i in phase j, and those terms for which
i is irrelevant in phase j

Gij ¼
@Qj

@qij

¼ QA ð40Þ

which is the Birnbaum importance measure that
needs to be calculated.

Fig. 4 (a) BDD for phase 2 transition failure; (b) BDD for phase 3 transition failure; (c) BDD for phase 4
transition failure
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From equation (39) the BDD probability function
below the 1-branch of node ij is

Qjðqij ¼ 1Þ ¼ QA þ QC ð41Þ
Thus, it is necessary to be able to calculate QC to
subtract from this to obtain Gij (equation (40)).
Considering now the logic form of the BDD, there is
(for first variable ij)

Phj ¼ ijPhA þ ijPhB ð42Þ

By consensus

Phj ¼ ijPhA þ ijPhB þ PhAPhB ð43Þ
so that

QC ¼ P½PhAPhB� ð44Þ
For the quantification of Birnbaum’s measure of
‘failure importance’ for non-coherent systems [15],
the system structure needs to be expressed as a tern-
ary decision diagram (TDD).

The TDD structure shown in Fig. 5 is where the
consensus branch is obtained from equation (43). In
this form of diagram, a third ‘consensus’ branch
from each BDD node is introduced which develops
the causes of failure for which the variable ij is irre-
levant. It is constructed by forming the conjunction
of the logic functions on the 1-branch AND 0-branch
of the nodes. Adding the consensus branch to the
BDDs in Figs 3(a) to (c) results in the TDDs in Figs 6(a)
to (c). The convention used for all the TDDs is that
the left node is the 1-branch, the centre node is
the 0-branch, and the right branch is the consensus
C-branch.

PhA PhB PhC=
PhA PhB

ij

1
0

C

Fig. 5 Ternary decision diagram

A1

A20

B1

B2

D1

D2

1

0

B1

1

1

0

0

0

00

0

A1

A20

B1

B2

B3
0

0

B1

0

0

C2

C3

C1

0D1

D2
0

0 1

B2

B3

0

0

0

0

0

0

0

0

(a) (b)

Fig. 6 (a) TDD for phase 2 failure; (b) TDD for phase 3 failure
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12.1 Birnbaum’s phase criticality measure

Birnbaum’s phase criticality measure for component
i in phase j is calculated from the TDD using

Gi;j ¼ PðPhAÞ�PðPhBÞ
¼ Qjðij ¼ 1;qÞ�Qjðij ¼ ‘�’;qÞ ð45Þ

Considering the structure of the TDD

Qjðij ¼ 1;qÞ ¼
X
all

nodes

ij

ðprijðqÞ:po1ijðqÞÞ þ ZðqÞ ð46Þ

Qjðij ¼ ‘�’;qÞ ¼
X
all

nodes

ij

ðprijðqÞ:poCij ðqÞÞ þ ZðqÞ

ð47Þ

giving

Gi;j ¼
X
all

nodes

ij

prijðqÞ½po1ijðqÞ�poCij ðqÞ� ð48Þ

where

1. prijðqÞ¼ probability of the path section from the
root node to node ij

2. po1ijðqÞ¼ probability of the path section from the 1-
branch of node ij to a terminal-1 node

3. poCij ðqÞ¼ probability of the path section from the
consensus branch of node ij to a terminal-1 node

4. Z(q)¼ probability of paths from the root node to a
terminal-1 node not passing through a node of
variable ij

As an example, consider the calculation of GC,3

using the TDD in Fig. 6(b).
The failure of component C in phase 3, causing

phase 3 failure, is of interest. Therefore, C cannot
fail in phases 1 or 2, so C1 ¼ C2 ¼ 0 in the TDD.

The component conditions from the root node to
node C3 are

A2B3 þ A1;2B2;3

giving

prC3
¼ qA2

qB3
þ pA1;2

qB2;3

po1C3
¼ pD1;2

poCC3
¼ 0

so that

@Q3

@qC3

¼ ðqA2
qB3

þ pA1;2
qB2;3

ÞpD1;2

¼ ðpA1;2
qB2

þ pA1;2
qB3

þ qA2
qB3

ÞpD1;2

¼ ðpA1;2
qB2

þ pA1
qB3

ÞpD1;2

which agrees with the entry in Table 2.
The TDDs are quantified by the above process,

which only considers the 1-branches and 0-branches
leaving any node. The consensus C-branch is only
considered to evaluate poCij ðqÞ.

12.2 Birnbaum’s phase transition criticality
measure

Birnbaum’s measure of phase transition criticality,
GT

i;j;k, due to the failure of component i in phase k
causing failure in phase j was derived from equation
(25). Adding the consensus branch to the phase
transition BDDs shown in Figs 4(a) to (c) gives the
TDDs shown in Figs 7(a) to (c) for phases 2 to 4
respectively.
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Fig. 6 (c) TDD for phase 4 failure
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Equation (48) can be applied to these TDDs to
yield GT

i;j;k. For example, consider GT
B;3;2. The TDD

for QT
3 is shown in Fig. 7(b). There is only one node

for B2 on the TDD, and, as it is the failure of B in
phase 2 causing transition failure to phase 3 that is

of interest, it is assumed that this component will
function throughout any other phases. Therefore,
B1 ¼ 0.

The path from the root node to node B2 requires
A1;2. Therefore, prB2

¼ pA1;2
:
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Fig. 7 (a) Phase 2 transition importance measures; (b) phase 3 transition importance measures; (c) phase
4 transition importance measures
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From the 1-branch from B2 to a terminal requires
C1;2D1;2

po1B2
¼ qC1;2

pD1;2

poCB2
¼ 0

GT
B;3;2 ¼ pA1;2

qC1;2
pD1;2

As the TDDs are just an extension of the BDDs, they
can, of course, be used for phase failure quantifica-
tion in addition to calculating Birnbaum’s measure
of importance. To calculate the phase failure prob-
ability from the TDDs, the consensus branches are
totally ignored. The quantities required to perform a
phased mission reliability analysis, including Birn-
baum and criticality measures of component impor-
tance, can all be calculated from the TDDs formed
from the fault tree structures representing phase
failure and phase transition failure.

13 CONCLUSIONS

A phased mission modelling approach has been pre-
sented. A means to evaluate the contribution made
by each component to phase and mission failure
has been developed. The method enables the phase
and mission failure likelihood predictions to be
updated as phases of the mission are successfully
completed.

In order for the quantities required to be calculated
in a reasonable time, a ternary decision diagram
(TDD) representation and quantification process
has been developed.
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