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1 INTRODUCTION
Vehicle interior noise is a very important issue for automotive industry.1-4  The tendency to lighten
up a car body structure leads to the reduction of its natural frequencies of vibration and to the rise of
interior noise levels. On the other hand, passengers� comfort and market demands stimulate any
annoying noise inside the vehicle compartment to be suppressed. These two contradictory trends
encourage researchers to develop new efficient methods of analysis of vehicle interior noise that
could be used on a design stage. As has been mentioned in Reference 2, the main sources of
vehicle interior noise are engine and transmission system, road excitation, and aerodynamic
excitation. The resultant noise is dependent not only on the exciting forces, but also on vibration
characteristics of the car body structure and on acoustic properties of the passenger compartment
which acts as an amplifier for the disturbances which characteristic frequencies are close to
compartment�s resonant frequencies.

Because of the energy exchange between the air and the structure in a vehicle compartment, the
dynamic behavior of each of these sub-systems is influenced by the other. In other words, the
interaction or coupling between air and structure alters their dynamic characteristics, and this
determines the complexity of vehicle interior noise analysis. Fluid-structure interaction has always
been a major research topic in acoustics.5-9  The existing analytical solutions for cavities with simple
geometries provide a great opportunity for an explicit physical interpretation and understanding of
fluid-structure interaction. However, analysis of irregular cavities, such as car compartments, still
challenges researchers and requires new investigations. In this case the inability of deriving
analytical solutions leads to alternative, either experimental or numerical approaches in treatment of
the problem. In this regard, finite element analysis combined with experimental validation
represents a very powerful tool.1,10-12  Studying fluid-structure interaction by finite element analysis
enables many engineering problems to be solved. In the same time it reveals areas for further
examination of the subject. In the low-frequency range the finite element method (FEM) operates
with a reliable precision, and it is widely used in the structural-acoustic analysis of vehicle
compartments.1  Modern finite element programs perform structural-acoustic analysis and provide
the acoustic pressure response at any point in the considered acoustic domain. Although the ability
to take structural-acoustic coupling into account is a great advantage of FEM, the effects of
complicated structural part of the system may cause significant distortions of the results of
structural-acoustic analysis. In this case a simplification of the structural model may be a suitable
option before performing finite element calculations.

The use of simplified and reduced scale vehicle models for theoretical and experimental
investigations of structure-borne interior noise has been described in References 3,4. Such models
are useful for understanding the physics of the problem and for simulation of the main features of
roal vehicles. In particular, the QAUSICAR (QUArter Scale Interior Cavity Acoustic Rig) has been
designed in Loughborough University to replicate a 1/4 scale massively simplified model of a
passenger car compartment and to verify the analytical approach developed in Reference 3.
Investigations in Reference 4 included separate experimental measurements of acoustic, structural,
and structural-acoustic responses due to an external dynamic force imitating the effect of road
irregularities.
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The aim of the present paper is to present the results of finite element analysis of structural-acoustic
phenomena in the above-mentioned reduced-scale model (QUASICAR) and its modifications and to
compare the obtained numerical results with the analytical and experimental ones. The analysis
reported in the present paper has been carried out using a new code MSC.NASTRAN-Acoustic that
has been developed in Patran Command Language (PCL) specifically for the purposes of this
research.

2 STRUCTURAL MODES
The first stage of the investigation included finite-element analysis of the basic structural element of
QUASICAR which represents a single curved
steel plate of 1.2 mm thickness simulating
vehicle compartment (Fig.1). The above-
mentioned curved plate was attached to
massive wooden side walls of QUASICAR
(not shown on Fig.1) implementing simply
supported boundary conditions. For more
detailed information see Reference 4.

The numerical structural analysis of
QUASICAR included determination of the
spatial patterns and natural frequencies of
free vibrations of the structure.  The
governing equation of motion can be written
in the form

                   [ ]{ } [ ]{ } 0uKuM ss =+&& ,       (1)

where [Ks] and [Ms] are respectively the stiffness and mass matrices, {u}  is the vector of the nodal
displacements. Assuming a time-harmonic solution

    )tcos(u ii ωφ= ,             (2)

one can arrive to the linear eugen value problem

          [ ]{ } 0M - K i
s2

i
s =φω    i=1,2,�             (3)

where {Φ}i is vector of the normal modes. Further details about FEM can be found in Reference 12.
As a result of structural symmetry of the curved plate under consideration, all normal modes are
divided into two groups: symmetric and anti-symmetric modes.

Fig. 2  Symmetric and anti-symmetric modes of the structure

Fig. 1  Structural model.
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The FEM analysis of normal modes has been performed for the first 30 natural frequencies of the
above-mentioned curved plate. For validation purposes, FEM calculations have been carried out
also for a simply supported rectangular plate for which analytical theory is available.  The FE model
of the curved plate had in total 68101 nodes and 67500 isomesh QUAD4 surface elements, and the
FE model of the rectangular plate consisted of 12221 nodes and 12000 isomesh QUAD4 surface
elements.

3 ACOUSTIC MODES
The acoustic modal characteristics of an
arbitrary cavity can be obtained by solving
Helmholtz equation:

         0p
c

p
2

2 =




 ω+∇ ,               (4)

where p is acoustic pressure within the cavity,
ω  is frequency of vibration, and c is the
speed of sound. It is well known that normal
modes of simple cavities, such as rectangular
or cylindrical enclosures, can be derived
analytically. However, for arbitrary cavities the
only way of solving Helmholtz equation is by
using numerical methods. In the FEM, a normal mode analysis of this problem can employ equation
(3) as well. However, in this case mass and stiffness matrices are denoted as acoustic mass matrix
[Ma] and acoustic stiffness matrix [Ka]. More details are available in the book 12. It is interesting to
make a comparison between numerically derived natural frequencies of the irregular cavity and
natural frequencies calculated using the well-known analytical formulae for a rectangular enclosure
having the same volume and close linear dimensions: Lx, Ly, Lz (see Reference 4).

Fig. 3  Acoustic model.

Fig. 4  QUASICAR’s first acoustic modes.
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In the acoustic analysis of the QUASICAR cavity 1970 HEXA acoustic elements and 2464 nodes
were used, with pressure as a degree of freedom. The cavity was modelled as a solid with zero
shear modulus and with other characteristics being physical parameters of the air (ρ=1.2 kgm-3 and
c=343 ms-1). The mesh size was consistent with the wavelength λ=c/fi,j,k=0.343 m at the highest
frequency of interest. We recall that QUASICAR is 1/4 reduced scale model. This is why 1000 Hz
was the maximum natural frequency of interest, which corresponds to 250 Hz for a real car.

4 COMPARISON BETWEEN NUMERICAL, ANALYTICAL AND
EXPERIMENTAL RESULTS

The experiments have been carried out in the Noise and Vibration Laboratory at the Department of
Aeronautical and Automotive Engineering at Loughborough University. The measurement data
were recorded using a HP 3566 FFT analyzer. For structural tests, the excitation signal was
provided by an electromagnetic shaker, and for acoustic tests - by a miniature loudspeaker.4

Fig. 5  Structural modes of QUASICAR (left) and of a rectangular plate (right).
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4.1 Discussion of the results of structural investigation.

QUASICAR structure can be considered as a combination of simple structures: plates A and shells
B and C (see Fig. 1). Table 1 shows natural frequencies of the simply supported rectangular plate
(Columns 1, 2) and of the QUASICAR model (Columns 4, 5).  The corresponding spatial patterns
are shown on Fig. 5.  The two plates A of the QUASICAR have the lowest stiffness and
consequently the lowest fundamental frequency in this combination. The analysis of the individual
sections shows that the first resonance peak of the two plates A is at 67.035 Hz (67.039 Hz� for
anti-symmetric mode), the half of a circular shell B -  906.04 Hz, and the two quarters of a circular
shell C � 1271.40 Hz. Bearing in mind the low-frequency range of interest for this research (up to
1000 Hz - corresponding to 250 Hz for a real vehicle) and noticing that resonant frequencies of
curved parts are above 900 Hz, it is reasonable to approximate the normal modes of QUASICAR by
the normal modes of a simply supported rectangular plate having the dimensions of the QUASICAR
flat sides (see Fig. 5).

Simply supported plate,
natural freq., Hz

FE
struct.
natural

freq., Hz

Exp.
struct.
natural

freq., Hz

Acoust. natural freq. of
a  rectang., Hz

FE
acoust.
natural

freq., Hz

Exp.
acoust.
natural

freq., Hz

1 2

№

Analytical FE
3 4 5 6 7

1. (1,1) 59.04 59.18 67.035 - (1,0,0) 345.88 338.26 360.00
2. - - - 67.039 - (0,1,0) 571.86 574.02 582.00
3. (1,2) 140.54 140.89 146.22 - (1,1,0) 668.32 666.27 -
4. - - - 146.23 - (0,0,1) 686.23 668.84 685.00
5. (2,1) 154.68 155.10 157.67 - (2,0,0) 691.76 718.96 -
6. - - - 157.67 - (1,0,1) 768.47 839.64 -
7. (2,2) 236.18 236.62 239.15 231.00 (0,1,1) 893.27 881.39 894.00
8. - - - 239.15 - (2,1,0) 897.53 920.00 -
9. (1,3) 276.36 277.12 264.51 265.00 (1,1,1) 957.90 985.49 -
10. - - - 264.52 270.00 (2,0,1) 974.39 1017.10 980.00
11. (3,1) 314.08 314.99 315.33 281.00 (3,0,0) 1037.64 1054.90 -
12. - - - 315.33 297.00 (2,1,1) 1129.81 1140.50 -
13. (2,3) 372.00 372.62 364.40 342.00 (0,2,0) 1143.71 1162.20 1147.00
14. - - - 364.40 - (3,1,0) 1184.79 1200.90 -
15. (3,2) 395.58 396.29 394.69 385.00 (3,0,1) 1244.03 1210.40 1207.00
16. - - - 394.69 - (0,2,1) 1333.79 1280.40 -
17. (1,4) 466.51 467.81 415.13 451.00 (3,1,1) 1369.17 1318.20 -
18. - - - 415.13 - (0,0,2) 1372.46 1340.90 -
19. (3,3) 531.40 531.95 521.45 523.00 (1,2,1) 1377.91 1366.60 -
20. - - - 521.45 - (4,0,0) 1383.53 1403.20 1407.00
21. (4,1) 537.25 538.77 529.53 545.00 (4,1,0) 1497.05 1432.80 -
22. - - - 529.54 - (1,1,2) 1526.53 1433.80 1521.00
23. (2,4) 562.15 563.07 538.04 - (4,0,1) 1544.36 1437.70 -
24. - - - 538.04 - (4,1,1) 1646.84 1486.00 1645.00
25. (4,2) 618.74 619.85 601.92 - (0,3,0) 1715.57 1523.80 -
26. - - - 601.93 - (5,0,0) 1729.41 1543.50 1750.00
27. (1,5) 710.98 712.91 615.62 652.00 (5,1,0) 1821.50 1569.60 -
28. - - - 615.62 - (0,3,1) 1847.73 1593.00 1847.00
29. (3,4) 721.55 721.99 691.67 700.00 (5,0,1) 1860.58 1593.30 -
30. - - - 691.68 - (1,3,1) 1879.82 1626.10 1872.00

Table 1.  Natural frequencies of QUASICAR and of a rectangular plate
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Resonance frequencies of the curved plate (a coupled structure) and of the uncoupled flat plates A
agree well in the frequency range considered. The results show that the natural frequencies of the
coupled model are higher for the first four normal modes and lower for the rest of the modes, as
compared to the resonance peaks of the uncoupled simply supported plate. In the first case the
influence of the shells B and C on the plates A can be likened to attached masses, which increase
the natural frequencies in comparison with a simply supported plate. In the second case their
influence can be likened to attached springs which decrease the natural frequencies. The above
results demonstrate that in the frequency range below 900 Hz, the predominant influence of the flat
plates A makes it possible to approximate the modal characteristics of QUASICAR by those for a
simply supported flat plate.

The analysis of the experimental data (Table 1, Column 4) shows some disagreement with the
numerical results (Table 1, Column 3). First of all, it was difficult to excite all natural frequencies.
The experimental tests covered a frequency spectrum from 231 to 700 Hz. In the low-frequency
range, between 230 and 350 Hz, it can be noticed that there is a large number of natural
frequencies that do not correspond to those obtained from the numerical and analytical calculations.
This can be explained by the presence of symmetric and anti-symmetric natural modes which
correspond to different but relatively close natural frequencies. Note that these normal modes were
excited by an anti-symmetric load (one shaker acting on the bottom plate of QUASICAR). In this
way the experimental tests could not simulate the symmetric and anti-symmetric modes in a proper
way. In the region between 350 and 700 Hz the measured natural frequencies correspond to one of
the groups: symmetric or anti-symmetric natural modes. As a reason for disagreement between
experimental and numerical data in the whole range of frequencies one can point out also the
differences between the FE model and the real test rig, e.g. the unaccounted influence of masses of
the accelerometers, imperfections in the boundary conditions, etc.  In spite of these disagreements,
the experimental analysis validates to some extent the numerical and analytical results and brings
new ideas for further improvements of the experimental tests.

4.2 Discussion of the results of the acoustic investigation.

The analysis of the acoustic data (Table 1, Columns 5, 6, 7) shows a good agreement between
analytical, numerical and experimental results in the range up to 1000 Hz. This implies that the use
of the well known analytical formulae for a rectangular enclosure is the easiest way for a quick
verification of numerical or experimental results. Above 1000 Hz the precision of the numerically
determined natural frequencies is deteriorated, which is due to a smaller number of finite elements
per wavelength. The differences between measured and numerically calculated acoustic natural
frequencies may be partly explained by the unaccounted rectangular gap in the left curved part of
QUASICAR.

5 MODIFIED MODELS OF QUASICAR
The initial QUASICAR model has been designed as a massively simplified model of a road vehicle.
One of the reasons for such a simplification was the possibility to estimate the interior sound
pressure in QUASICAR by approximate analytical formulae. Keeping in mind the above-mentioned
discrepancies between numerical and experimental results, the modified models of QUASICAR
have been developed and analysed by means of numerical techniques to eliminate some
weaknesses of the original model and to simulate more accurately the main characteristics of road
vehicles. Two modified models have been considered: the first (model M1) has a different thickness
of the bottom plate, and the second (model M2) employs different boundary conditions.
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5.1 Modified model M1 - different thickness of the bottom plate.

The geometry and the boundary conditions of the model M1 are the same as those shown in Fig. 1.
The only difference is the dimensions of the bottom plate that was modeled as having 6.0 mm
thickness. In this way the symmetry in respect of the bottom and top parts of QUASICAR has been
broken, which corresponds more realistically to the case of real road vehicles.  In the FEM a normal
mode analysis was performed for the first 20 normal modes, and the FE model employed in total
10,287 nodes and 10,000 isomesh QUAD4 surface elements.

Comparing the normal modes (Fig.6) and natural frequencies (Table 2, Column 1 and 3) of the
modified model M1 with those of QUASICAR, one can notice some interesting facts. First of all, the
predominant normal modes belong to one of the main parts of the model: the bottom plate, the top
plate or the curved part, and only in certain modes, in the considered frequency range from 0 to
1000 Hz, all three panels are involved. The distinct normal modes are associated with the different
stiffness of the panels, while their geometrical forms remain the same. Thereby the simplification of
complex structures is possible on the base of the material and geometrical characteristics of their
main parts. Secondly, in spite of the change of the model (increase in weight), the fundamental
natural frequencies remain the same. They are defined by the top plate, which has the lowest
stiffness and was unchanged after the modification.  Except for the first three natural frequencies,
the other frequencies do not match well and go down compared with QUASICAR natural
frequencies. The difference between both sets of natural frequencies, of course, was expected and
reflects the influence of the additional weight and stiffness of the bottom plate. Suppressing the
participation of the bottom plate in the formation of normal modes is another important feature
demonstrated here. In the frequency range between 0 to 1000 Hz the bottom plate takes part only
in the five normal modes: at 224.37 Hz, 391.51 Hz, 653.34 Hz, 682.27 Hz, and 844.27 Hz, whereas
in QUASICAR model the bottom plate plays the same role as the top one. The Modified model M1,
which is closer to real road vehicles, demonstrates some useful ideas for controlling the vibration
behavior of the panels and in the same time keeps the calculations simple.

Fig. 6  Structural modes of the modified model  M1 .
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5.2 Modified model M2 – different boundary conditions.

The changes incorporated into the model M2
have been determined with a view of a proper
representation of a typical car body
construction. The simply supported boundary
conditions of QUASICAR model were
replaced by beams with a circular cross
section of radius 10R =  mm. The bottom
plate was stiffened by means of two beams in
transverse and longitudinal directions, which
represents the platform of a car. The only
boundary conditions were imposed at the
ends of the longitudinal beams: the
constraints in X, Y and Z directions were
applied at the relevant nodes. These
simulated higher stiffness of the bottom part
and of the edges of a car body, as well as a
fully stiff suspension. In the FEM a normal mode analysis was performed for the first 20 normal
modes and frequencies, and the FE model employed 1584 isomesh QUAD4 surface finite
elements, 340 BAR beam finite elements and 1735 nodes.

Fig. 7  Structure of simplified model M2

Fig. 8  Structural modes of the modified model M2
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The results of the normal modes analysis are shown in Fig. 8 and Table 2, Column 2. The first four
natural frequencies correspond to displacements of the modified model which are due to
longitudinal beams (the lowest stiffness in the model). The first normal mode, which corresponds to
the fundamental frequency of QUASICAR model, appears at a higher frequency, 93.019 Hz. This
was expected due to the increase of stiffness characteristics as a result of adding beam elements.
The analysis of this model outlines the complexity of structural simplification of a car body. From
Fig. 8 it can be seen that the spatial patterns of vibrations are a mixture of spatial patterns due to a
simply supported rectangular plate and spatial patterns caused by a greater degree of freedom of
the model. However, the main location of structural vibrations remains the same - the panel with the
lowest stiffness, namely the top plate of the modified model M2.

Model M1,
structural natural
frequencies, Hz

Model M2,
structural natural
frequencies, Hz

QUASICAR,
structural natural
frequencies, Hz

Structural-acoustic
interaction model,

natural frequencies
Hz

QUASICAR,
acoustic natural
frequencies, Hz№

1 2 3 4 5

1. 67.242 15.310 67.035
67.039

67.909
76.488

2. 146.74 42.903 146.22
146.23

148.61
148.97

3. 157.69 63.063 157.67
157.67

156.47
156.59

4. 224.37 81.342 239.15
239.15

237.71
237.77

5. 239.17 93.019 264.51
264.52

270.03
270.44

6. 265.50 138.92 315.33
315.33

311.98
312.25

7. 315.10 146.59 338.59 (1,0,0) 338.26

8. 364.37 166.56 364.40
364.40

362.63
362.70

9. 391.51 174.53 394.69
394.69

386.57
386.83

10. 393.81 192.33 415.13
415.13

421.29
421.90

11. 416.25 240.51 521.45
521.45

505.64
505.67

12. 519.43 273.76 529.53
529.54

527.01
527.13

13. 529.20 283.64 538.04
538.04

532.27
532.93

14. 537.51 338.82 575.89 (0,1,0) 574.02

15. 603.27 372.81 601.92
601.93

602.78
602.96

16. 613.52 378.62 615.62
615.62

608.83
608.90

17. 653.34 396.35 691.67
691.68

666.55
666.57

18. 682.27 400.00 667.06 (1,1,0) 666.27
19. 688.00 414.94 669.41 (0,0,1) 668.84

20. 731.36 421.26 732.53
732.55

711.94
711.97
Table 2  Numerical results for modified models and structural-acoustic interaction in
QUASICAR
. 26. Pt.2 2004
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6 STRUCTURAL-ACOUSTIC COUPLING IN QUASICAR MODEL.
Interaction or coupling between an enclosed fluid (air) and a structure means their mutual influence
on the dynamic behavior of each other. The fluid acts via its pressure on the structural surface, and
in the same time it is influenced by the normal displacements of the structure.13,14 Thus, fluid
pressure on the surface is considered as a disturbing force in the governing equations of motion of
the structure and the normal accelerations of the structural surface enter into the Helmholtz
equation via �flexible wall� boundary conditions. Coupling of these equations leads to a single
governing matrix equation for the whole system structure-fluid. In the FEM a normal mode analysis
has been performed for the first 20 natural frequencies. The structural-acoustic model had in total
2170 acoustic HEXA and 540 structural QUAD4 finite elements. The total number of nodes was
3311 of which 605 were on the interface.

6.1 Theoretical background – finite element formulation.

The discretisation of the acoustic field in finite elements leads to the following equations for sound
pressure in matrix form1:

[ ]{ } [ ]{ } {}IpKpM aa =+&& .                        (5)

Here {p} is vector of the m nodal sound pressure at each fluid point; [Ma] and [Ka] are the mxm
acoustic mass and stiffness matrices, and {I} is the vector of generalized forces applied to the fluid
over the element surface Si.  The structural equation of motion in the case of structural-acoustic
interaction can be written in matrix form as follows:

          [ ]{ } [ ]{ } [ ]{ },pSuKuM bss =+&&           (6)

where {u} is vector of the n structural displacements, [Ms] and [Ks] are the nxn structural mass and
stiffness matrices, {pb}  is vector of sound pressures at the boundary grid points, and [S] is a sparse
nxm structural-acoustic coupling matrix which elements are determined from the surface area Sij for
the boundary grid point corresponding to the structural displacement ui and the associated sound
pressure at that point pj.

For the purpose of free vibration analysis, the governing equations of the acoustic and structural
part, respectively Eqs. (5) and (6), are derived with the damping matrix and the vector of the
external sources of disturbance being ignored. Then the governing equations of the structural-
acoustic coupling model can be written in the following form:

   [ ] [ ]
[ ] [ ]

{ }
{ }

[ ] [ ]
[ ] [ ]

{ }
{ } 0
p
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




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







+


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


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





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


&&

&&
,     (7)

where [Mas]=ρc2[S]T and [Ksa]= - [S].

6.2 Results and discussion.

In the structural-acoustic coupling analysis we consider in detail the coupling of the first rigid-wall
acoustic mode at 338.26 Hz with different structural modes �in vacuo�. The natural frequencies of a
coupled model are generally different from the individual uncoupled parts. The vibration energy of
the coupled mode is divided between structural and fluid vibrations and is equal to the sum of the
vibration energies of the uncoupled modes. Thus, some of the coupled modes can be determined
as �acoustic� or �structural�, which means that most of the total energy in this mode is associated
respectively with fluid or structural vibration. In this respect, from the results shown in Tabl.2,
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Column 3, 4, and 5, one can distinguish �acoustic� and �structural� modes of the coupled model. For
weakly coupled systems the natural frequencies of such modes are quite close to those of the
individual fluid and structural parts. Usually the coupling between acoustic and structural modes
depends on their spatial similarity and frequency closeness. The spatial patterns of QUASICAR
structure are two-dimensional; this means that structural modes will correspond best to the acoustic
modes in the area of the relevant two-dimensional acoustic spatial patterns. Fig.9 shows the normal
modes of the coupled model affected by the first rigid-wall acoustic mode. The acoustic uncoupled
mode at 338.26 Hz and with (1,0,0) spatial pattern influences some structural modes with spatial
patterns (2,3) at 394.69 Hz, and (4,1) at 415.33 Hz.  Comparing the coupled modes at 386.83 Hz
and at 421.90 Hz, one can notice that the better matching of the structural and acoustic spatial
patterns in the latter mode, in spite of its remoteness from the rigid-wall frequency, leads to a more
distinctive picture of the coupling rather than for the previous normal mode. In respect of the
individual modal characteristics, a structural mode will couple more efficiently to acoustic modes
which have resonance frequencies close to the structural resonances. QUASICAR has relatively
distant acoustic and structural resonances. For example, the closest structural resonance peaks to
the first acoustic resonance at 338.26 Hz are 315.33 Hz and 364.40 Hz, which determines a
relatively weakly coupled system with natural frequencies close to the uncoupled resonance
frequencies.

Another interesting point is a great alteration of the fundamental frequency of the coupled model. As
was pointed out in Reference 14, this phenomenon is due to a strong coupling of the first structural
mode with the zero-order acoustic mode (0,0,0) having zero natural frequency. Usually, the first
cavity resonance frequency is above the fundamental structural frequency and coupling effects
occur at frequencies above the first acoustic resonance, except for this case when the coupling
occurs at frequency lower than the first acoustic peak. In this connection, we recall that QUASICAR
has two groups of natural frequencies: symmetric and anti-symmetric. Finite element analysis
shows that only symmetric modes can couple efficiently with the acoustic modes. This is because in
anti-symmetric structural modes the fluid inside the cavity moves as a rigid body and does not

Fig. 9  Structural-acoustic coupling in QUASICAR model.
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exhibit vibration behavior. The influence of fluid on structural vibrations in anti-symmetric modes is
also less pronounced than in the case of symmetric modes. This is why natural frequencies of
symmetric and anti-symmetric structural modes in a coupled model have greater differences than in
the case of the same structural modes in an uncoupled model, particularly for the fundamental
modes.

7 CONCLUSIONS
In the present paper we have reported the results of the FEM structural-acoustic analysis of a
simplified vehicle model QUASICAR. Initially, the structural and acoustic calculations were carried
out separately, and then a fully coupled model was studied. In the uncoupled model, the normal
modes of the structure and acoustic modes of the enclosure were calculated. It was found that in
the low frequency range structural vibrations of QUASICAR can be approximated by those of simply
supported plates corresponding to the flat parts of the structure. The proposed modified models of
QUASICAR gave an additional point of view on understanding the complex structural behaviour of
the car body. In the coupled model of QUASICAR the interaction between structure and air has
been studied. It was found that QUASICAR can be considered as a weakly coupled model because
of the significant differences between structural and acoustic natural frequencies. It was pointed out
that spatial similarity between structural and acoustic normal modes is a prerequisite for a better
coupling even if the structural and acoustic natural frequencies do not match well.
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