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ABSTRACT

Three mathematical models were developed in order to calculate stresses
which occur in custom-made HERAMED prostheses during mechanical testing
according to DIN 58840. Two of the models performed a three~dimensional
stress analysis by using either the houndary element method or the
finite element method. The third model was called the simple model and
relied on a mixture of the simple bending theory, the beam-on-elastic-
foundation theory and the finite element method. Results from the mathe-
matical models were compared with results from three-dimensional photo-
elasticity by stress freezing. The use of three-dimensional scattered-
light photoelasticity was also evaluated. On the basis of the theoreti-
cal and experimental results, it was found that stresses in the prosthe-
ses can satisfactorily be calculated with the simple model. The simple
nodel was also much less expensive in terms of computer resources than

both the boundary and finite element methods.

The high-cycle fatigue strength of the material of the prostheses: Ti-
5415-2.5Fe, was investigated in three point bending tests in conditions,
which approximated that of the human body. The material was perfectly
notch sensitive in respect to mild notches. The fatigue strength can be
improved by appropriate heat treatment and surface finish. Two different
microstructures of the material were investigated using light micro-
scopy, X-ray diffraction and transmission electron microscopy. They were
described in detail. Dislocation structures introduced by the fatigue
process into the material were also investigated. The majority of dis-
locations had a screw character and their Burgers vector was equal to
[1120]. A simple explanation of the high-cycle fatigue strength was

proposed on the basis of dislocation pile~up theory.

The application of the simple model together with the results obtained
from the fatigue tests of the material enables the fatigue performance
of the prostheses to bhe predicted and points out the possibilities of

its improvement.
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1. INTRODUCTION

It is estimated that 250,000 total hip joint replacement operations are
being performed in Western Europe and the United States every year [%,
2, 4]. In the majority of these operations, a prosthetic stem is fixed
in the thigh bone (femur) of a patient by means eof a bone cement, poly-
methylmethacrylate (PMMA). In the years following the hip replacement
about 1¢ percent of the patients will need a revision operation because
of a malfunction of the initial implant [1). The bone cement is often
blamed for this high rate of failure. The main problem of the cemented
total hip arthroplasty is the so-called loosening of the implant due to
an aseptic separation at the bone-cement interface [2, 6]. A loosened
prosthesis is painful for a patient and can break out of the femur, or
even fracture in extreme cases {3]. A revision of a cemented inplant is
difficult and it often leads to damage to the bone substance of the
femur [2, 5]. The failure rate of a reoperation is estimated to be as

high as 30 percent [1, 5].

It is well accepfed in the literature that the failure rate of cemented
total hip replacements increases with the time in service. The relation-
ship is exponential, i.e. more and more failures are recorded with tinme
(2. This fact is very unsatisfactory in cases where young patients nead
a hip joint replacement. If one assumes an average life of a prosthesis
being say, fifteen years, it becomes clear that with a life expectancy
of more than seventy years a tvwenty year old patient will need at least
two revision operations. This situation combined with the poor results
of the revision total hip arthroplasties has stimulated considerable
activity among surgeons to develop cementless artificial hip joint pros-

theses.

One of the new designs in the field of cementless hip joint prostheses
is the subject of this work. The HERAMED® CAT cementless, prosthetic hip

stem was developed by Priv.-Doz. G. Aldinger! in close collaboration

1Priv.-Dez. G.M,D. Aldinger, Orthopddische Universitdtsklinik und
Poliklinik Tibingen, Tibingen, West Germany
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with W. C. Heraeus GmbH?. The prosthesis is a custom-made one, which in
this case peans that the shape of the prosthesis is determined by the
shape of the marrow cavity of a patient’s femur. The prosthesis is de-
signed on the basis of a series of pictures obtained with X-ray computer
tomography and manufactured by means of computer aided technology (CAT).
The design process is carried out semi-automatically on a computer. A
qualifiéd and experienced person initiates and oversees each step of the
design; The final product of the design process is a set of digital data
which is then passed on to a computer-controlled machine where the pros-
theses are manufactured. Each prosthesis has a unique and rather compli-
cated shape. Not until the manufacturing of a prosthesis is completed,
can the entire shape of the prosthesis be visualized. It sometimes ap-
pears that the finished prosthesis is thin and this leads to fears that
such a prosthesis could break soon after it has been implanted into a
patient. In cases when such a prosthesis is encountered, a second, dummy
prosthesis is manufactured which is destined for mechanical fatigue
testing under simulated working conditions of a severely loosened pros-
thesis [7). If the dummy prosthesis breaks during the mechanical test-
ing, there are several ways of changing the design in order to reduce

stresses.

3 redesigned prosthesis is then once more subjected te the mechanical
fatigue testing. The redesign procedure c¢an be repeated several times
until a satisfactory product is achieved. Only if the dummy prosthesis
withstands the fatigue testing, is the prosthesis given the 'go ahead'

for implantation {81.

The assurance that a prosthesis would not break after implantation is
very important from the point of view of the manufacturer. A broken

prosthesis can easily injure the patient. If the failure of the pros-
thesis can be related to a mistake in the design or in the manufactur-—

ing, the manufacturer could be made liable for any damage caused by the

2W, C. Heraeus GmbH, Produktbereich Material-Technik, Hanau, West

Germany
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failure [9, 106]1. All the manufactured prostheses must therefore be de-
signed and manufactured under state-of-the-art quality assurance con-

trols.

A second important point for the manufacturer of the prostheses is the
cost of production. If prostheses had to be continuously fatigue tested
and redesigned, the price {of the prostheses) would have to bhe very
high. The combined situation of product liability and the production
costs has led, on the side of the manufacturer, to the desire to be able
to estimate the fatigue performance of a prosthesis in advance of the

manufacturing process.

The task of developing & method for predicting the fatigue performance
of the HERAMED custom-made prostheses was the object of this work. The
objective was to develop a mathematical model of the prostheses in the
form of a computer programme which could be included as a new step in
the design process. The computer program should perform a numerical
stress analysis of the design of a prosthesis. The results of the anal-
ysis would then be compared with the appropriate fatigue data of the
material from which the prostheses are manufactured; The comparison
would then enable a decision to be made regarding whether or not the

particular design is safe enough to be manufactured.

Closely related to the object of the work, was an investigation of the
material of the prostheses. The HERAMED prostheses are manufactured in a
recently-developed titanium alloy, Ti-5&1-2.5Fe. In particular, high
cycle fatigue data for this alloy, in the form which is reguired for the
application of the computer programme for predicting the fatigue per-
formance of the prostheses, is not available from previcus investiga-

tions.




2. MODELLING OF PROSTHESES

2.1. Introduction

With the introduction of new designs, materials and testing methods, a
{fatigue) fracture of common prosthetic stems is regarded as a problenm
which could be dealt with without any particular difficulties, Provided
that the prostheses have been properly manufactured, a fracture can only
occur in case of severe loosening of the stem. It is the responsibility
of the surgeons to ensure that lcosened prostheses are removed before a
dangerous situation can develop. The HERAMED prostheses differ from the
standard ones in that their design is determined by the geometry of the
hip joint and the shape of the femoral canal of each individual patient.

In this sense, each HERAMED prosthesis is unique.

The recently~proposed mechanical testing method for prostheses was de-
veloped with serially manufactured prostheses of the same design in
view. The HERAMED prostheses are tested according to the same method
despite the fact that each prosthesis has a different shape. A method of
comparing the results of different tests is therefore needed. The method
will enable an evaluation of the results from mechanical testing and
provide a feed-back into the prosthesis design process. It can also be
used for an a priori estimation of the fatigue performance of the pros-

thesis.

An obvious choice for such a method is to develop a computer-based,
mathematical model which simulates the conditions of the mechanical
tests. In developing such a model, several options were investigated.
The use of the Boundary Element Method and the Finite Element Method was
evaluated with commercially available software. A simple model based on
the Simple Bending Theory was written 'in house'. Experimentally, the
mechanical tests were simulated with the help of three-dimensional pho-
toelasticity. The use of three-dimensional scattered light photoelas-
ticity was also investigated. The experimental and theoratical results

have been compared and discussed.




2.2, LITERATURE REVIEW

2.2.1. The HERAMED Prosthesis

As has already been mentioned in Chapter 1, the HERAMED prosthetic stems
were developed by Priv.-Doz. G. Aldinger in collaboration with W. C.
Heraeus GmbH. Aldinger had initially investigated the possibility of
designing standardized, cementless prostheses. He advocated the opinion
that the omission of cement demands high conformity of the implant to
the femoral cavity, since, without cement, only bone was capable of
stabilizing the stem., With X-ray computer tomography, he measured 50
healthy hip joints and tried to estimate how many types of prostheses
would be needed in order to reconstruct the hip joints. He found that
4000 different prostheses would be necessary if the prostheses were
manufactured with tolerances of 5 mm for the position of the head of the
prostheses and 4 mm for their diameter in the femur shaft. He concluded
that if anatomical and/or therapeutical aspects of hip joint replace-
ments were taken into consideration, only prostheses manufactured indi-

vidually for each patient would be satisfactory [3].

The HERAMED prostheses were developed with the view of satisfying the
demand for cementless prostheses. This development focused on a design
which would reflect the state-of-art knowledge on cementless prosthetic
systems [2, 3, 11]. The HERAMED-CAT prostheses (Fig. 1) are manufactured
for each patient individually to closely fit into the bony cavity. Com-
puter Aided Technology (CAT) enablegs a precise design, production and
control of the manufacturing of the prostheses. The femur, including
the cavity, the curvatures, the neck shaft angle, and the angle of
femoral torsion® [(the antetorsion) of the coxal femoral end, is recon-
structed three~dimensionally on the basis of a series of computer tomo-
graphic section images. The position of the joint head determines the
biomechanics of the joint. The HERAMED prostheses make it possible fof
the surgecn to freely select the position of the head, the antetorsion

and neck length as required by anatomical or therapeutical considera-

3See Figure 2 for explanation of some of the medical terms.
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tions. The conformity of the stem ensures a stable long-lasting fixation
and that the loazd is uniformly introduced into the bearing bone. The
fixation and the load transfer are enhanced by the stepped, tapered
shape of the prostheses. The steps enlarge the fixation area and promote
the transfer of favourable pressure forces. Harmful shear and radial
forces are reduced. The taper enables the "self-~press-fit" fixzation. The
taper alsoc ensures that if regquired, the prostheses can be removed with-

out further harm to the bone.

The feasibility of implantation is assured by a computer simulation. The
highest possible resection level of the femur is determined in order to

preserve as much of the bone sﬁbstance as possible. The broach, the tool
for preparing the femoral cavity, is shaped according to the correspond-

ing stem, and is manufactured in parallel with the stem.

3 schematic flow chart of the activities connected with the design, man-
ufacture and implantation of HERAMED prostheses is shown in Figure 3.

The area concerned with this work is outlined in the chart.

More than 200 HERAMED prosthesis have been implanted up to date. The
results of clinical meonitoring of the operations are good. Neo copplica-~
tions connected with the prostheses such as fracture of the femoral
shaft or shaft perferation have been reported {8, 12]. In their short
history, the HERAMED prostheses have had some very eancouraging results.
Some surgeons see the HERAMED prostheses as the last resource of pro-
viding a total hip replacement for patients with thin or unorthodox
shaped femora. These patients were refused an operation because no
standard cemented prostheses could be found to satisfy preoperative
requirements. Using the HERAMED technology, however, some of the pa-
tients were successfully supplied with prostheses. In one casge, a woman
had both hips operated on, and was able to walk without severe pain for

the first time in her lifes.

4Private comnunication
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2.2.2 Mechanical Testing of HERAMED Prostheses

The major problem in the cemented prosthetic systems is the loosgening of
the stem. The loosening usually starts at the proximal end and pro-
gresses towards the distal end of the implant. In areas where there is
no contact between the implant and the bone, the load is carried en-
tirely by the prosthetic stem. The stems are subjected to severe over-
stressing under conditions of cyclic bending and torsion. The cement
often cracks exposing the material of the prostheses to the corrosive
body fluids. The stability of the fixation is severely affected by the
loosening. Patients experience considerable pain so that eventuwally, a

loosened prosthesis has to be removed.

It is good practice to remove a lcosened stem as soon as possible.
Firstly, the patients are spared the pain and secondly, a possible
fracture of the overstressed stem is avoided. It is generally accepted
that it is much more difficult to remove a loosened femoral prosthesis
with a fatigue-fractured stem than a loosened implant with an intact
stem. There could, however, be several months before a re-operation
takes place. Thus, the prostheses have to be designed in such a way that
they are able to withstand several million cycles of fatigue loading in

a loosened condition.

In order to prevent stem breakage in the event of loosening of the
femoral stem, elaborate criteria for fracture-proof prosthesis stenms
have been proposed [13). The German DIN Standardization Group adopted
the International Organisation for Standardization Draft Proposal
{ISQ/DP 7206/3) 'Implants for surgery — Partial and total hip joint
prostheses - Part 3: Method for determination of the endurance proper-
ties of stemmed femoral components without application of torgue', and
issued its own corresponding standard proposal, DIN 58 84¢ 'Hip joint
prostheses; method for determination of the endurance properties of
metallic stemmed femoral components’ {14]. The major concept behind the
proposals is that the endurance properties of hip joint prostheses
should be determ{gi: in fatigue tests simulating conditions of a severe
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loosening. According to the DIN proposald, a prosthesis is embedded
prior to testing in a specimen holder by means of bone cement in such a
way that 50 mm of the upper part of the stem remains uncemented (Fig.
4). This absence of the cement simulates the loosened condition. The
embedding angle, i.e. the angle between the axis of the prosthesis and
the vertical (the loading axis) is 10°. The embedding angle represents
the so~called neutral position of the prosthesis in the femur. The pros-
thesis is loaded by a pulsating load at a frequency between 1 and 1 Hz.
The loading acts in such a way that the prosthesis remains under load
during the whole duration of the testing procedure. The minimum load is
at least 300 N, whereas the maximum load is suggested to be at least
three times the average body weight, i.e. about 2.3 kN. The load is
applied through the centre of the head of the prosthesis, parallel to
the to the vertical direction by means of a loy-friction loading me-
chanism that minimizes loads not parallel to the loading axis. During
the testing, the embedded prosthesis is submerged in an aerated, phys-
iological fluid medium, Ringer's solution (see Chapter 3.3.2}, which is
kept at 37+1°C and which has a pH value between 7.0 and 7.4. The test is
conducted under these conditions until a fracture of the prosthesis oc-

curs or until a specified number ( usually several million} cycles is

conpleted.

It is pointed out that the above described method was designed for
cemented prosthetic stems. There is no generally approved method for
mechanicai testing of cementless prostheses. Although the HERAMED pros-
theses are cementless, the manufacturer decided however to test the
prostheses according to DIN 58 840. This decision was taken after a
careful consideration of the concept of the HERAMED prostheses. This
concept states that by modelling the exact contour of the femoral
cavity, the load transfer takes place already in the proximal part of
the bone, the calcar. Therefore, the proximal part of the prostheses
carries the load, whereas the distal part has the mere function of sta-

bilizing the stem. Although long term result are not yet available,

5The related BSI Draft Proposal DD 91:1986 differs in some aspects
from the ISO approach [15].




preliminary findings show that the bone indeed responds positively to
the HERAMED prostheses: it remodels and adapts itself to the steps of
the prostheses in the calcar [12]. However, if the bone resorbs from the
prosthesis in the proximal region, the distal end will have to carry
the entire load. At this stage, the patient would feellincreasingly

greater pain. The prosthesis is ready for revision.

The scenario described here for the HERAMED prostheses is very similar
to the case of loosened cemented prostheses, so that the application of
DIN 58 849 for the determination of the endurance properties of the
prostheses is justified. However, the important condition that the load
transfer takes place primarily in the calcar region, has to be yet con-
firmed by long term medical trials. In the meantime, the HERAMED pros-
theses are tested according to the DIN proposal. The starting maximum
load is 3.1 kN and the frequency of fatigue cycling is 10 Hz. If the
prostheses sustain 3*10% cycles, the load is raised to 4.6 kN and the
testing continues for next 1¢¢ cycles. In the last stage of the testing,
the load is increased to 6.2 kN and the test carried out for the final
10® cycles. If the prostheses survive this very tough testing procedure
without failure, they are allowed to be implanted. Initially every manu-
factured prosthesis was subjected to the testing. With growing exper-
ience and confidence, the number of tests could be reduced to about 10

percent of the total number of prostheses [8].

2.2.3. Experimental and Mathematical Modelling of Prostheses

The continuous, large demand for total hip joint replacements has led to
considerable efforts aimed at a hetter understanding of the complex pro-
blems associated with them. These efforts which combine researchers from
the fields of medicine, engineering and material science are already
bearing fruit in designing better, longer-lasting and safer prostheses.
Many investigations concentrated on the problem of bio-mechanical inter-

action between implant and bone.

In the first instance, the forces which act on the femur have to be cal-
culated. On the basis of movement studies and simple mechanistic models

it is estimated that during walking, the femur is exposed to static and
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dynanic forces which can reach between three and four times the body
weight [16, p. 76). It is peointed out that similar values are suggested
for the minipum force in the fatigue testing of prostheses. There are
research programs under way which will eventually enable a telemetric,
in~vivo monitoring of forces acting on an implanted prosthesis. The
prostheses are equipped with miniature, encapsulated measuring devices

which send signals related to their stress levels [17].

The mechanical properties of the bone substance have been investigated
[18). It is found that the bone consists roughly of two types of bone
substance., The cancellous bone which is present inside the femur is
spongious and therefore mechanically very weak. The cancellous bone is
regarded as not suited for transfering any loads and is therefore re-
noved from the femoral cavity before the implantation of a prosthesis.
In contrast, the cortical bone is compact and capable of carrying major
loads., The mechanical properties of the cortical bone are anisotropic.
This means, for example, that the tensile strength and the elasticity
modulus changes with different directions. The density of the cortical
bone which is closely correlated with the mechanical properties also

varies from place to place [16, p. 299]

The stress distribution in loaded femora has been modelled experinen-
tally with photoelasticity ([16] and numerically with finite elements
{19)}. Measurements of the stress distribution were carried out by in-
strumenting the femora with strain gauges {19, 20]. The bone is a
living structure and there is a strong indication that the spatial dis-
tribution of the density of the bone is related to the stress distribu-
tion [16]. Mathematical models investigating this finding predict a
density distribution similar to the one found in real bones [21].

Investigations show that the stress distribution of an intact femur is
gignificantly altered by inserting a prosthesis [19, 20, 22]. The bone
can react to the new situation by adopting its shape or density to the
changed stress distribution. This process is called the adaptive bone
remodelling. Losses of bone substance are sometimes observed in the cal-
car region. This is explained by the so-called 'stress shielding' of the
bone by the prosthesis. The stress shielding cccurs when a load, nor-

mally carried by the bone alone, is shared with the implant. As a re-
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sult, the bone stresses are subnormal and the bone loses mass [23]. The

opposite situation can occur at the distal tip of the prostheses, If

the stresses there are, for some reason, too high, the bone can increase

the cortical diameter by building up its mass.

One obvious method of ensuring that the stress distribution after im-~
plantation will change as little as possible is to make sure that the
geometry of the hip joint is accurately reconstructed by the operatibn.
The direction of loads in this case will change little giving less

stimulus for the bone to remodel.

The stress—shielding effect is only one of several, essentially mechani-
cal problems encountered in total hip replacements. These problems in-
clude plastic deformation and {fatigue) fracture of prostheses, break-
down of the cement, loosening at the houndaries between different mater-
ial (interfaces) and stress-related bone resorption. A1l the problems
are interdependent and thus, they can be regarded as one problem of

artificial hip joint design and fixation.

Models show that the flexural rigidity of the prosthetic stem plays an
important role. A stiff stem tends to carry a larger proportion of the
load along its length than a less stiff one {24]. The bone is therefore
stress shielded to a larger extent in the case of a stiff stem, The ri-~
gidity of a stem depends on its cross sectional area and the elasticity
modulus of the material of the stem. The value of the cross sectional
areas can be adjusted only in certain limits set by stability and
strength requirements. Prostheses made of a strong material with elas-
ticity modulus closer to the elasticity modulus of the bone are there-
fore desirable. Many prostheses are currently manufactured of high qual-
ity stainless steels with the modulus of elasticity nearly 15 to 30
times greater than that of the bone. However, the stainless steels are
being gradually replaced by recently developed titanium alloys. Apart
from similar strength, the titanium alloys have only half the modulus of
elasticity, better biocompatibility, and, better corrosion registance
than stainiess steels {26]. There are numerous efforts to develop new
prosthetic materials with even better properties than titanium alloys
[22, 26].
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The length of a prosthetic stem also influences the stress distribution.
Surgically, an implantation of a short prosthesis is much easier than of
a long one. A sharp increase of stresses was measured when a extremely
short stem (40 nm) had been implanted into a cadaver femur [25]. The
stresses were nmuch lower for a stem with length of 100 mm. There was
little change in stresses, however, when the length of the stem was
further increased. These results can be understood with the help of the
results presented in [27]. On the basis of a simple, beam-on-elastic-
foundation model it was shown that in general, the load transfer from
the prosthesis to the bone takes place in three different regions along
the implant. In the first transition region at the proximal end; the
stresses in the stem decrease sharply. They have constant valuef in the
niddle region where no load is transferred, and finally, drop to zero in
the second transition region at the distal end. In the case of a 'long'
stem, the transition regions are not significantly changed; only the
middle region is extended. In the case of a 'short' stem, the load is
transferred linearly from the stem to bone, and the stem hehaves rigidly
relative to the bone, Ideally, a prosthetic stem should therefore be
long enough to enable the two transition regions to be present with

little or no middle region.

It is pointed out that in practice, the ideal length of a (standardized)
stem is very difficult or nearly impossible to calculate. The type of
stem, whether long or short, depends sensitively on the rigidities of
the stem, bone and cement, and of the properties of the interfaces be-
tween them, e.g. continuous or loose. The rigidities depend on the ge-
ometry, the modulus of elasticity and the interface conditions of the

components. They vary therefore from patient to patient.

Many cemented hip stems have some kind of collar near the neck. The
collar is designed in order to transmit the axial components of load

into the resected neck of the femur. The collar is a logical angwer to

6In the case of constant cross sections and loading by a pure bending

noment.
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the demand of loading the femur directly, the stem plays only a sta-
bilizing role in this case, and therefore avoids the stress shielding
effect. Mathematical models indicate that theoretically, the idea of a
collar is correct. Loads are indeed transmitted directly from the collar
to the femur, and stresses in the stem and the cement are reduced.
Medical experience, however, shows that the bone often resorbs around
collared stems. In practice, it is often difficult to assure a uniform
contact between the resection area of the femur and and the collar which

is essential for the degired load transfer mechanism [28].

The cement has received much attention in the modelling of hip joint
prostheses. Interestingly, mathematical models predict that stresses in
the cement increase with increasing flexibility of the stem. It ap—'
pears, however, that in any case of a well-performed hip joint replace-
ment, the cement would not fail under a typical loading. The results
indicate that a poor operational technique is often to be blamed for a
failure of the hip replacements. This is confirmed by clinical exper-

ience [31].

Cementless prosthetic stems rely on a different mechanism of fixation
than the cemented ones. It is believed that the long-term performance of
the cementless stems is greatly influenced by the amount of micromove-
ments between the bone and the implant. Medical trials show that ex-
cessive micromovements can lead to a development of a mechanically
worthless, scft fibrous tissue at the bone/implant interface. The fi-
brous tissue obviously builds up as a reaction of the bone to accom-
modate the mismatch of the relative bone/implant movements™ [32]1. In
order to reduce the amount of micromovements, the cementless prostheses
rely on the so-called 'press-fit' fixation or/and on porous surface
coating enabling the fixgation by an ingrowth of bone tissue. A mathe-
matical model of porous and smooth interface conditions has been inves-
tigated [33). The model showed that the main difference between the two

surface conditions was the site and the amount of load transmission from

“This situation is also valid in the case of loosened cemented

prostheses [33]
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the stem to the bone. The micromovements were chiefly influenced by the
rigidity of the stem., Intriguingly, flexible stems showed much larger
relative movements than stiff stems. It was concluded that in view of

the relative movements between a prosthesis and the bone, flexible stem

designs are disadvantageous.

It can be seen from this literature review that the problems connected
with the hip joint replacements are very complex. These problems have
been investigated experimentally by means of mechanical testing, photo-
elasticity and strain gauging. In addition to the experiments, mathema-
tical calculations, ranging from simple mechanistic to complex three-
dimensional finite element models, have been developed., In particular,
the finite element models have found wide application in calculating
stress-related problems of artificial hip joint fixation {20]. It is
pointed out that however complex the models, they can only give an ap-
proximate, idealized picture of the problems. There are proncunced dif-
ficulties in correctly modelling the geometry, the material properties
and the interface conditions. As these factors change with every pa-
tient, the models have to be regarded as very useful and powerful tools
for developing and verifying ideas and concepts. The ultinmate test can

only be provided by clinical experience.
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2.3. MATHEMATICAL: MODELS

2.3.1. Input Data

At the end of the design process of the HERAMED prosthesis, which is
carried out with the help of a computer, a set of digital data is cre-
ated which is the basis for the manufacturing of the prostheses on a
computer numerically controlled (cnc) milling machine. A part of this
set describes the geometry of the prosthesis, and was therefore required

as the input data for the mathematical model.

The design process is performed on a Hewlett Packard (HP) computer with
the help of a computer program written in the HP BASIC programming lan-
guage. The program writes the final set of data in a format which can
only be read by the cnc-machine. In order to provide the geometrical
data of the prosthesis for this work, the computer program, therefore,
had to be extended. A subroutine was included in the program in such a
way that on request, it became possible to output the geometrical data
of the prosthesis in the form of a file written in the ASCII® format.
This file could then be transferred on to a VAX computer, and recorded
on a magnetic tape. It was possible to read this tape on a PRIME com-
puter at the Loughborough University Computer Centre.

The file which was stored on the magnetic tape consisted of a series of
records. Each record had the length of 80 ASCII symbols. The contents of

each record were as follows:

1st record: designation of the prosthesis; four characters,

2nd record: not used in the mathematical model; integer number,
3rd record: not used in the mathematical model; integer number,
4th record: not used in the mathematical model; integer number,
5th record: the number of the basis-scan; integer number,

6th record: the last 8mm step; integer number

7th record: total number of steps; integer number,

8American Standard Code for Information Interchange
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2th record: number of points per step; integer number,

9th record: neck angle; integer number,

1@th record: not used in mathematical model; integer number,

11th record: not used in mathematical model; integer number,

12th record: not used in mathematical model; integer number,

13th record: x~coordinate of the first point of the first step;
real number,

14th record: y-coordinate of the first point of the first step;
real number,

15¢th record: z-coordinate of the first point of the first step;

real number,

. N records containing the (x,y,z)-coordinates of the
. points describing the contours of the steps;

. real numpers:

. N={number of points per step}*{number of steps),

{N+1) record: y-coordinate of the centre point of the head of
the prosthesis; real number,

(N+2) record: z-coordinate of the centre point of the head of
the preosthesis; real number,

{N+3) record: z-coordinate of the centre point of the head of

the prosthesis; real number.

The reaning of the contents of each record is explained with the help of
Figures § and 6. Figure 5 shows a schematic drawing of a prosthesis., It
can be seen that there are two values of the step height. Stafting from
the distal end, the steps are 8 mm apart and after the last 8 mm step,
the step height changes to 4 mwm. Very important information is provided
by the number of the so-called basis-scan (or basis-step}. This number
defines the last step, the contour of which is manufactured to the con-
tour of the bone. Above this step, the shapes of the contours are affec-
ted by the manufacture of the neck of the prosthesis. The basis-step is
therefore the step from which the 50 mm are measured in order to define
the embedding level for the DIN-tests (see Chapter 2.2.2}. The shapes of
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the contours of each step are defined by series of (x,y.z)-coordinates
of points lying along the contours. The point coordinates are given in
respect to a Cartesian coordinate system, as shown in Figure 5. The num-
ber of points per contour is constant for each each step. Figure 6 shows
a schematic drawing of how the points are arranged along the contours.
The points are defined in such a way that the angles between the vec-
tors, from the centre point to two adjacent points on the contour, are
equal, It should be noted that the coordinates of the last point de-
scribing each contour are the same as these of the first point.

The data which is contained in the records 2-4 and 1¢-12 is not used in
the mathematical model. These records give information on how the posi-
tion of the z-axis of the coordinate system has been defined, and on the

shape of the neck of the prosthesis respectively.

The last three records contain the coordinates of the centre point of
the head of the prosthesis (see Figure 5). These records define there-
fore the coordinates of the point to which the lcading force is attached
during the DIN-tests.

it has to be mentioned that in a healthy fenur, there is an offset be-
tween the position of the axis of the neck and the axis of the bone (seae
Figure 7). Because of the fact that the HERAMED prosthesis reconstructs
the coxal femur, there also is an offset between the neck and the axis?
of the prosthesis. This offset is given indirectly in the data file, by
the way in which all the point coordinates are defined. The position of
the Cartesian coordinate system is chosen in such a way that the nreck
axis is parallel to the x-axis of the coordinate system. The y-coordi-
nate of the centre point of the head gives, therefore, the value of the

offset (see Figure 7).

?Because of the complex shape, the axis of a prosthesis is not to be
understood as an axis of symmetry. The axis of the prosthesis is de-
fined as that passing through the centroids of two cross sections of

the bone (records 3 and 4 in the geometry file).
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One important item of information is not included in the data file. This
is the value of the transition radius in the steps, which is introduced
during the manufacturing of the prostheses. This value is important for
two reasons. Firstly, the smaller the radius, the better is the con-
formity of the prosthesis with the bony cavity. Secoﬁdly, the smaller
the radius, the higher are the stress increases (stress concentration

factors} due to changes in in the geometry of the prosthetic stems.

In current designs of the prosthesis, the transition radii are not
standardized. They can have values ranging from 1 mm to 2 mm, but once
chosen, the value of the transition radius remains constant for each

prosthesis,

An example of the input data for one of the prostheses investigated is
shown in Appendix 1. The format of the data in Appendix 1, however, is
different from that described above. This was done in order to save
space. The average size of the files written in the formwat which was
described in this chapter is approximately 70 kB1®, and, if such a file
was printed, the text would reqguire approximately 6,100 lines. A graph-
ical example of the complex shapes of the contours is shown in Figure 8.

2.3.2. Finite Element Model

2.3.2.1. Concept of the Finite Element Method

The Finite Element Method (FEM) is probably the most popular numerical
method for solving differential equations which represent problems en-
countered in engineering practice. In this chapter, a very brief des-

cription of this method is provided in order to provide a basis for

understanding the ideas and terms used in the following chapters. The,

LeThe unit for describing the sizes of files on a computer is called
the Byte. One Byte (1 B} is necessary in order to describe one ASCII

character. 1 kB is equal to 1460 B.
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following sections are not original, as they rely heavily on the 1it-
erature, in particular on [35]). A detailed description of the Finite
Flement Method is given in the literature, e.g. in [36, 37].

Basic definitions

Assume that a differential equation which describes a physical problenm,

is represented by an operator L such that:
L{u)=b in Q. (1)

The operator L is defined as a process which when applied to the func-
tion u produces an another function b. Q represents the spatial domain,

usually represented by coordinates xg¢ {i=1,2,3).
The homogeneous version of (1} is:

L{u)=0 in Q. (2)
An inner product of two functions can be defined as:

[ Liwywda = 0.
Q

such products are some times represented by a bracket expression

<{L{u),w>. The inner product can be integrated by parts until all deri-
vatives in u have been eliminated. This leads to the ‘transposed' form
of the inner product and, as a result of integrating by parts, produces

a series of boundary terms. In general, it can be written:

[ L(uywde=J uL* (w)da+S [§* ()G (u)-G* (w) S (u)}dF. (4)
Q Q r

' is the exterior surface of the domain @ and § and G are differential
operators arising from the integration by parts. By definition, §*(w)
contains the w terms resulting from the ipnitial phase of integration,

and S{u) contains the corresponding u terms.
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The operator L* is called the adjoint of L. If L*=L, L is said to be
seif—adjoint. In this case also G=G*and S5=S*. Self-adjointness of an
operator is analogous to symmetry of a matrix. In addition to determin-
ing if the operator is self-adjoint, the integration by parts also gen-
erates two different types of boundary conditions. The set S{u) pres-
cribed are called the essential houndary conditions and G6{u) prescribed
are the natural boundary conditionstt*, The essential boundary conditions
muist be enforced at some point of the surface I in order for the solu-
tion to be unique. Letting I't and I's represent complementary positions
of the total surface T', one can state the boundary conditions for the

self-adjoint problenm as
G{u) prescribed on Iz,
S{u} prescribed on Fi,
F=l14lz. : {5}

A self adjoint operator is positive definite if

f Luwudq 2 0 (6)
Q

1:1f the order of the differential operator is 2m, there can be a total
of 2m boundary conditions. These 2m terms form m pairs of conjugated
boundary terms. Under regular conditions of two such terms, one ternm
is prescribed and the other is unknown. (Two boundary terms are con-—

jugated if the sum of their indices is 2m-1.) The lower terms
jeu, &lu,..., &u-in,

are the essential boundary conditions (displacements), and the higher

terms
say, dmtiy,..., d2m-iy,

are the natural boundary conditions (forces).




_21'_

for all u, and only equal to zero for the case u=0. Positive definite-
ness is an extremely valuable property in establishing solution sclemes.

Approximate solution

Most engineering problems which are expressed in a differential form can
only be solved in an approximate manner due to their complexity. In FEM,
the infinite degrees of freedom of a continuous system are reduced to a
finite set which can then be solved numerically (on a computer}. This is
done by dividing the dowain and the boundary of the system in a series
of regions called elements { the process is called discretization).
These elements are considered to be interconnected at discrete points on
their boundaries joints called nodes or nodal points, at which the va-
lues of the unknowns are to be approximated. The discrete version of the
differential eguation or its inner product version is satisfied in an
average sense over the elements. To understand this, the following egua-

tions are considered:
L{u)=b in Q {7
with boundary conditions

S{uo)J=s on T1,
G{us)=g on Tz. {8)

o represents the exact solution of the problem which is usually impos-
sible to find. The function ue can be approximated by a set of func~
tions gx (x) such that

n

U=l Okgk+0o. (9)

k=1
The 0o coefficient is included to satisfy the nonhomogeneous part of the
boundary conditions. ax are undetermined parameters and ¢y are linearly
independent functions taken from a complete sequence of functions such

as

¢l(x)f¢2(X)r--Ol¢n(X): {10)
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% represents the spatial coordinates in the Q domain.

These functions are usnally chosen to satisfy certain given conditions,
called admissibility conditions, relating to the boundary conditicns and

the degree of continuity.

L sequence of functions such as these in {1¢) is said to be linearly

independent if
a1g1tazgzt. ..t gn=0 _ (11)
is true only when all ax are zero.

A sequence of linearly independent functions is said to be complete if a
number n of terms and a corresponding set of constants ok can be found
in a certain way. Given an admissible but otherwise arbitrary function
%o, this is achieved if the square root of the inner product of the dif-
ference between 4o and its approximation u can bhe made as small as one

requires, i.e.:
Ti(uo~u)zaxjt/2<g,
where § is a small positive gquantity.
Assuming that the approximate functions satisfy all the boundary con-
ditions of the problem given by Equation (7}, and have the necessary

degree of continuity to make the left-hand side of Equation (7) dif-

ferent from zero (i.e., Li{u)#0).

Substituting the approximation for uw. into Equation (7) produces a

'residual' or 'error' function R such that
R=L(u}-h#¢. {12)

If the function u does not satisfy all boundary conditions one may have

two types of errvor, or residual functions:
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- ervor in the essential boundary conditions

Ri=S{u}-s#0 on I¢;
-error in the natural conditions

Rz =G (1) —g+0 on 2. {13)
These errors can be forced to zero in certain average sense, and this

can be done in different ways. This leads to the method of weighted

residuals.,

Weighted Regiduals

In this method, a set of linearly independent functions 6éx such as

81 {x),821{%),....8a(x) {14}

is defined. A set of arbitrary coefficients Bx 1s then defined which

combined with the functions Ox leads to the expression for a function w:
w101 +P2824. .. ... .. {15)

If it is assumed that the approximate function u identically satisfies
all the boundary conditions, the residuwal functions Ri1 and Rz are equal
to zero. The residual R can now be distributed in Q@ by multiplying it by

the function w which is now called the weighting function, i.e.,

(R,w>=fwRd0=0. (16)
0

This ensures that the error R is distributed according with the function

in w. As the fu coefficients are arbitrary, Equation {16} implies that

f rRexan=0 for k=1,2,...m. (17
Q
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Several approximate techniques are in use, which apply different weight-
ing functions. These methods are: the point collacation, sub-domain col-
location, least squares, least squares collocation, variational methods
and the Galerkin method. The majority of FEM appli;ations use the last

technique.

Galerkin Method

The Galerkin method is a particular weighted residual method for which
the weighting functions belong to the same set as the approximating

functions. Given the system
L{go)=b in 0 {18)

with homogenous boundary conditiong, an approximate function which
satisfies theses conditions can be proposed such that
n

Uo 2u=L Okgk. (19)
k=1

The approximation produces a residual

R=L{u}-b=0 (28}

which in Galerkin method is then orthogonalized with respect to the same

functions ¢x used in the approxigation, i.e.,

J Rwan=0, (21)
Q

where
w=Pi1g1tpagat.... (22)

For a linear operator L{), Equation (21) produces a linear system of

algebraic equations from which the Bx coefficients can be calculated.
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As the same functions are used for u and w and the B's are arbitrary it

is common to write the w function as a variation of u, i.e.,
W=6u.=5a1 ¢.[ +60-2¢2 +. - ey (23)

where Sax=fx. These variations can be associated with virtual quantities

such as virtual displacements or velocities,

The property of having the same functions for the weighting and approxi-

mating functions is important as it produces symmetrical coefficients in

many cases.

Weak Fornmulation

The weighted residual method can be used for solving problems by appro-
ximate functions, identically satisfying the boundary conditions. This
is called the strong formulation of the problem. The weighted residual
method can also be used in such a way that the boundary conditions are
approximately satisfied. This enables the use of approximate functions
which have relaxzed continuity requirements, and leads to the so-called

weak formulation.

In practice, it is often encountered that different orders of continuity
of functions u and ¥ are required. The continuity of a function can be
clagsified as follows. It is assumed that a function § is discontinuous
as discrete points but finite throughout the region. If its norm

satisfies the condition
Jf2dx < =, (24)

the function f is said to be square integrable. The function f is said
to be a first derivative square integrable if the the function and its

first derivative satisfy the condition
Jifz+(df/dz)zidx < w. (25)

This definition of continuity can be easily extended to higher deriva-

tives,
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The order of continuity becomes important in cases where the solution of
a particular problem is sought by the method of reducing the order of
derivatives of the function u by integrating by parts. The integration
by parts introduces new differential operators which are prescribed on
the boundary of the problem. One can now lock for a solution which ap-
proximately satisfies the problem in the domain Q and the natural bound-

ary conditions.

In general, two residual, or error functions can be defined:

R =L({u}-b in Q,
Rz=G(u)-g on the I'z part of the boundary. {26}

Both residuals can now be weighted by the function w,

J (L(u)-b)wdQ = [ (G(u)-g)wdr. (27
Q T2

The operator L{} in Equation {27) can be integrated by parts.

If the operator is self-adjoint, it will produce two equal operators of

reduced order which can be called D{), i.e.,

{ D(u)D(wid@ + [ bwdQ = [ gwdr. (28)
Q Q Tz

The natural boundary conditions g, in Equation {(28), have to be replaced

by their known values q.

The weak formulation is often used in solving problems with the Finite

Element Method.

A nore explicit formulation of FEM

It is assumed that the function u represents a physical quantity,the

field variable, which varies subject to a differential eguation L{u)=b
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in the domain Q, and to boundary conditions G(u)=q on the boundary T.
The form taken by L(u) and G{u} is determined by the physical problen

under investigation.

The solution for a continuum involves an infipite number of points and
hence an infinite nunber of values of the variables. This number is re-
duced by dividing the domain O into numbers of finite elements. In FEM
it is assumed that the values of u vary withiﬁ an element according to a
sinple law. The values of u are defined only at special points called
nodes, such as the variation of u within an element can be approximated
by the equation:

n

u=f Nyuk, (29)

k=1
where n is the number of nodes of the element, and ux is the value of u
at node k. The variables M1 ,Nz,...,Na are functions of x, y and z, and

are called shape functions. The shape functions have the following

property:
Nk=1 at node k,
Nk=0 at all other nodes. {38)

Equation (29) can be written in matrix notation as:

u=[N] {u}e {(31)

where {ul® is a vector containing all the nodal values of u for the

element, and [N} is a row matrix of all shape functions,i.e.,

[N]=[Nl szf"'FNn]f

{ule=[u1 ,...,U.n]T,

faor the case of one field variable u.

In general, there has to be continuity of the field variable u from
element to element. This continuity is assured by choosing suitable
elements and shape functions. In FEM, the shape functions are usually

chosen as a polynomial, i.e,




_28 -
N=ae +a1 x+azx2+.... {32)
for a one-dimensional case.
The weighted residual can be written as:

f (twiL{IN]) fu})e-{w}b)do={0) (33)
Q

where

{8} is a null vector,
{w} is a vector of weighting functions.

Equation {33) can be expressed in matrix form:
[k] tu)e-{vi=1{0) (34)
where

(kl1={ {wiL{[N]}dQ,
0

tvi=f wlbda. (35)
Q

In the Galerkin method, the weighting functions are chosen in such a way

that {wi=[N]T. Equation (33} can now he written as:

[ NTL(IN])dofule - [ [NIThdQ = (0} (36)
Q Q

The first term in Equation (36) is often integrated by parts in order to
reduce the the order of derivatives in L{u). The integration by parts
introduces contour integrals which can be dealt with in terms of known
boundary conditions. The integration by parts leads alsc to the weak
formulation of the problem, which means that the approximate solution
will satisfy the initial differential equation and a part of the bound-

ary conditions {(natural boundary conditions) in an average sense.
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Equation (34) gives a general form of the equations {(matrices) describ-
ing one finite element. In practice, the domain Q is divided into many
finite elements. The {(local) wmatrices for each element, therefore, have
to be assembled in order to form a (global) matrix describing the whole
domain. The assembly process is nothing else but a summation over the
entire domain for all elements. The summation process leads to a matrix

equation for the whole domain Q
fkal{ulo-{val={0}. (37)

At this stage, the coefficient matrix [kel is singular. It is made non-
singular by inserting known (essential) boundary conditions. The system
of simultaneous equations represented by Equation {37) can then be
solved, In many engineering problems, such as e.g. linear stress anal-
ysis, the matrix {kel] is symmetric and has the so-called 'banded’ form.
A matrix is said to be symmetric if the coefficients satisfy the rela-

tion:
kis= k;1, (38)
where

i,3=1,2,..../m
m=number of rows and columns in the matrix.

A matrix is said to be banded if all coefficients which are different

from zero, are grouped along the diagonal of the matrix.
Powerful methods have been developed in order to solve systems of equa-

tions which are represented by symmetric and banded matrices on the con-

puter,

Procedure in FEM

In the preceding sections, a introduction into the concept of the finite

element method has been presented. From this introduction, it can be re-
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cognized that in order to solve a problem by FEM, the following steps

are carried out:

1. The spatial domain of the problem is gdivided into suitable
elements.

2. Element matrices are constructed for each element.

The element matrixes are assembled into a global matrix.

4. Constrains for boundary conditions are inserted. _

The system of equations is solved for all nodal values of

the field variable u.

6. Post-processing, such as graphical representation of the

solution is carried out,

2.3.2.2. PEH-qodel of Prosthesis

In Chapter 2.2.3, it was shown that the fipite element method had been
successfully applied for modelling problems associated with artificial
hip joint prostheses. The finite element method was therefore an obvious
choice of the method for modelling the HERAMED prostheses. It was de-
cided that the FE-analysis should be conducted with the help of a com-
mercially-~available finite element system. A good reason for this deci-
sion was that it could be expected that a commercial finite element
progran, with a good record in the literature, would provide reliable
results of the analysis. Such a system was provided at Loughborough
University in the form of PAFEC!? (Program for Automatic Finite Element
Calculations) and PIGS!12 (PAFEC Interactive Graphic Suite; pre- and post-
processor for PAFEC). The use of the PAFEC package reduced the tasﬁ‘of
this work to the writing of a computer program which would provide the
first step of the finite element analysis, i.e., it would define the
nodes and the elements needed. Such a program is called, in the FEM-lan-
guage, the mesh generator. Because of the complex, three~dimehsiona1
shape of the prosthesis, it was decided that only a three-dimensional
FE-analysis would lead to the desired results. It was also decided that

12pafec Ltd., Nottingham, FEngland
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the FE-analysis would be conducted as a linear elastic analysis, due to
the fact that the leocading of the prosthesis in the the DIN-test does not

lead to any plastic deformation of the prostheses.

The whole procedure which was envisaged for analysing the stresses in a
prosthesis subjected to the DIN-test with FEM can now be described as

consisting of the following steps:

1. Design process: File containing the geometrical data of

~ the prosthesis.

2. Mesh generator: File containing the geometrical input
data for FE-analysis with PAFEC.

3. PAFEC: File containing the results of the analysis.

4. PIGS: Graphical representation of the results.

5. Design process: Evaluation of the results.

The complex shape of the prosthesis made it necessary to develop two
mesh generators. The first program, called PROEM, generates geometrical
data for FE-analysis in the case of embedded prosthesis with a 'smooth’
shape. The term smooth means that the shape of the prosthesis is simpli-
fied by omitting the steps. The second program, called COSCF, generates
data which enables the estimation of the stress concentration factors
along the contour of one chosen step. Both the programs are written in
the FORTRAN 77 programming language. Listings of these programs are
given in Appendix 2. The mesh generators produce input files which are
destined for the FE-analysis with PAFEC. These files are therefore writ-
ten in a format which is specific for PAFEC, and cannot be directly used
with other FE-packages. However, the principal idea behind the mesh gen-
eration is common for the majority of the FE-packages, so that the pro-
grams which have been develeoped in this work, can easily be changed in
order to suit these packages. The format of the input files, and the ex-
pressions which have to be included in these files in order to conduct
the FE-analysis with PAFEC, are given in the PAFEC reference manuals
[38, 39].

As has heen previously mentioned, the program PROEM generates a mesh for
the case of embedded prosthesis with smooth shape. This is done in the

following way (see Appendix 2):
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In the first step, the main program calls the subroutine READAT. This
subroutine reads the input file which contains the geometrical data of

- the prosthesis. In the second step, the subroutine SECT is called. This
subroutine calculates a 'centre' point and redefines the coordinates of
the points for each section (each contour). The effect of the subroutine

SECT is illustrated in Figures 9 and 14@.

The convergence, and thus the accuracy of the results of a FE-analysis
over a domain, depends on the number of elements and on the way in which
the elements are defined. The accuracy is increased by increasing the
number of elements, but attention must be paid to fact that the elements
should be evenly distributed over the domain, and that the shapes of the
elements should not be too distorted. In Figure 9, a schematic drawing

of a contour is shown, The z-axis intersects the plane of the contour in

the point O. The points which describe the contour are defined in such a
way so that all the angles between the vectors from the point O to two
adjacent points on the contour are equal {see Chapter 2.3.1). If the
point 0 lies near the contour, the points are unevenly distributed along
the contour. The points near.to 0 are denser, and the points far fron O
are leaner distributed {see Figure 9}. The subroutine SECT attempts to
change this distribution of points along the contour zo as to be more
even. Firstly, SECT calculates a new centre point of the contour which
is on average equally distant from the edges of the contour. This is
done using the formula:

n

e={x1m ) /(T x1},
i=1

ye={yiw1 }/(Z vyi),

i=14

where

Xc.Ye~ coordinates of the centre point,

n - number of points per contour,

Xi,yt -~ coordinates of point i; i=1,2,...,n,

w1~ weighting factor equal to the half of the distance

between the point i and its two neighbours.
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secondly, SECT calculates new points of the contour around the centre
point in such a way that the x-coordinate of the first point is equal to

‘zero, and the y-coordinate of this point is positive, Starting from this

point, new points which are apart by the same angle around the centre

point are calculated. This is shown schematicélly in Figure 19.

In the next step of the main program, a file called PROEM.DAT is cre-
ated. A1l the information needed for PAFEC will be written into this
file. The file PROEM.DAT is therefore the input file for PAFEC. The file
begins with the TITLE!® for the PAFEC job. This is followed by the so-
called CONTROL module. The CONTROL module states that PAFEC will conduct
a linear elastic FE-analysis, at the end of which, STRESSes will be cal-
culated. The analysis will be carried out invoking the PHASEs 1, 2, 4,
6, 7 and 9 of PAFEC. In PHASE 1, the input data are read. In PHASE 2,
the so-calied PAFBLOCKS are replaced by a full nodal coordinate and
topological description of the complete mesh of elements. PAFBLOCKS is a
facility in PAFEC which enables an automatic subdivision of an element
into a series of elements of the same type according to a given set of
parameters. These parameters define in how many (sub-) elements the ele-
ment under consideration will be divided. If these parameters are all
set to one, PAFBLOCKS are equivalent to ELEMENT definition which defines
only one element. The PAFBLOCKS-facility enables a mesh refinement, and
it is therefore used through the program PROEM. In PHASE 4 the con-
straints are considered and a nunbering system for the degrees of free-
dom is derived. The stiffness matrices of all elements are found and
assenbled in a2 global watrix in PHASE 6. In PHASE 7, the system of egua-
tions is solved, which, in the case of stress analysis, means that the
displacements in the nodes are calculated. From these displacements,

stresses are calculated in PHASE 9.

The CONTROL module is followed by the definition of NODES. The nodes are
defined by specifving the NODE.NUMBER and the X,Y,Z-coordinates. The
nodes are found in subroutines DEFSTEM, DEFTOP and DEFEMBE. It has to be

13In the following description, the terms in capitals are PAFEC program

terms unless otherwise stated.
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born in mind that the definition of nodes has to be carried out in a way
vhich is suitable for the definition of elements. Two types of elements

are used in the analysis:

The twenty-noded, isoparametric brick element for three di-
mensional stress analysis (PAFEC TYPE 37119), is a generally
shaped brick type element with six curvilinear faces and
twelve edges. The nodes are positioned in the corners and in
the centres of each of the edges (see Figure 11). Reasonable
distortion (from the basic cubical shape} of the element is
permitted, but PAFEC aborts the analysis if the element is
too distorted'4. The element has three translatory degrees of
freedonm {displacements in x,y and z-direction) at each node.
Principal stresses are g¢given at each of the nodes and also at

the centre of the faces and at the centre of the element.

The fifteen-noded, triangular prism (wedge) element for three
dimensional stress analysis (PAFEC TYPE 37218}, is a gen-
erally shaped prism elewent with five curvilinear faces and
nine edges. The nodes are positioned in the corners and in
the centres of each of the edges (see Figure 12). Otherwise,
the prism element is similar to the brick element described

above.

DEFSTEM defines the nodes of the prosthesis up to the level of the

bagsic~step. This is domne in the following way:

t4The element is too distorted if the radius of curvature of any of the
edges 1s too small, or, if the angles between neighbouring faces are
too small or too large, or, if the proportion of the element, given
by the relation of the shortest to the longest edge, is too large.

The geometrical validation of the input data is performed in PHASE 2.
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In the first step, the nodes with the z-coordinate equal to zero are
defined, In the input file which contains the geometry of the prosthe-
sis, the points describing the contour of the first section have the z-
coordinate equal to 8 mm {(see Figure 5). It has to be noted that,
strictly speaking, these points describe each contour with the z-coor-
dinate between Zero and 8 mnm less the value of the transition radius. In
this way, the points which are given in the input file for the second
section, describe the contours with the z-coordinate between 8 and 16 mn
less the value of the transition radius, and so on. In order to define
nedes with z=0, the coordinates of the points of .the first section of
the prosthesis are therefore taken. Figure 13 shows a schematic drawing
of the definition of nodes. The first node has the X,y-coordinates equal
to the first point of the contour. The second node has the x,y-coordi-
nate of the point of the contour, the number of which is determined form
the number of elements into which the contour is being divided and the

nunber of points per contour.

In the exanmple shown in Figure 13, it can be seen that eight brick ele-
ments {along the boundary), and eight wedge elements (inside the con-
tour) will be used. If the number of points per contour is seventeen
(the coordinates of the last point and the first point are the same},
the xz,y-coordinates of the second node would be equal to that of the
second point. If the number of points per contour is thirty three how-
ever, the coordinates of the second node would be equal to that of the

third point.

Apart from the boundary, nodes have to be defined inside the contour.
The coordinates of these nodes are calculated as the coordinates of the
centres of the distances between the nodes on the boundary and the cen-
tre point of the contour (coordinates of which were calculated in SECT).
The last node which is defined for the contour has the coordinates of

the centre point.

In Figures 11 and 12, the topologies of the brick and the wedge elements
are shown. These topologies are given by the shape of the elements, and
by the local numbering schemes of the nodes. By comparing Figures 11 and
13, it can be seen that one face of the brick element defined (locally)

by e.g. the nodes 1, 2, 3 and 4, can be made equivalent to the face de-
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fined in Figure 13 by e.g. the nodes 1, 3, 17 and 19 respectively. From
Figure 11, it can be seen that apart from the corner nodes, a face of
~ the brick element is also defined by nodes on the midpoints of the
edges, i.e. by nodes 9, 19, 11 and 12. Nodes 2 and 18 in Figure 13 can
be set equivalent to nodes 9 and 12, but no nodes have been defined
which could be set equivalent to the nodes 10 and 11 of the brick ele-
ment. The reason for this is that if an entry for a midside node is
omitted, PAFEC automatically caleulates the coordinates of such a node
from the coordinates of the corner nodes. The definition of the coordi-

nates of all midside nodes is therefore not necessary in PAFEC.

In the second step of the subroutine DEFSTEM, the nodes with the z-coor-
dinate equal to 4 mm are defined. Continuing the example which was given
above, nodes equivalent to the midside nodes 13, 14, 15, 16 and 17 of
the brick element have to be defined. For the whole contour, this is
simply done by taking the x,y-coordinates of the previously defined
nodes and increasing the value of the z-coordinate to 4 mm. Because of
the fact that less nodes are needed for the definition of the midside
nodes, the nodes equivalent to the nodes 2, 4,..., 16, 18,..., 32 and 33

in Figure 13 are omitted.

In the third step, the nodes with the z-coordinates equal to 8 mm are
defined. The procedure is exactly the same as in the case of the defini-
tion of the nodes at the level z=0 mm. The nodes are defined on the
basis of the point coordinates which describe the contour of the first

section of the prosthesis.

In the fourth step, the nodes with the z-coordinate equal to 12 mm are
defined. The procedure is the same as described for the second step. The
X.y-coordinates of the nodes are taken from the points describing the

first section of the prosthesis.

In the next steps of the definition of the nodes, the procedure, similar
to that described in the steps three and four, is followed. From the
point where the sections in the prosthesis are 4 mm apart, points of
every second section are used in the manner described in step three. The
points of the remaining sections are used in order to define nodes at
the midsides of the elements according to step four. If the number of

basis-section less the number of the sections which are & mm apart is
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even, the points of the basis-section are included inte the definition
of nodes. In the opposite case, these points are not included, and the
shape of the prosthesis is modelled up to the section with the number of

one less than the number of the basis-sgection.

From the description of the definition of the nodes by the subroutine
DEFSTEM, it can be seen that the nodes define a smooth prosthesis, as
the transition radii between the sections have been ignored. The shapes
of the sections, however, are defined as accurately as possible. The
nodes are defined in such a way that they model a smooth presthesis, the
shape of which lies inside the shape of the real, stepped prosthesis. It
has to be mentioned that the number of points per contour in the file
containing the geometry of the prosthesis is, in current designs, equal
to seventy three. The program PROEM, as it is shown in Appendix 2, is
preset to this value of the number of the points. The program is also
preset to model each section of the prosthesis with twelve brick and
twelve wedge elements. Thése preset values can easily be changed if

required.

The next subroutine which defines nodes, is called DEFTOP. This sub-
routine defines nodes of the neck of the prosthesis in a very simplified
fashion. DEFTOP calculates nodes around the centre of the head of the
prosthesis for an assumed circular shape of the section in a manner

similar to that shown in Figure 13.

In the subroutine DEFEMBE, the nodes of the embedding are defined. The
first steps in DEFEMBE are equivalent to the steps one, two and three in
the subroutine DEFSTEM. The z-coordinate of the nodes starts, however,
with the value of -8 mm. This value was arbitrarily chosen for the
thickness of the embedding under the distal end of the prosthesis. In
addition to the nodes which are defined gimilarly to these in DEFSTEMN,
new nodes are defined which are 20 mm distant from the z-axis of the
coordinate system. This is shown schematically in Figure 14. It can be
seen that the embedding is modeélled in the shape of a cylinder around
the prosthesis. The value of 20 mm for the radius of the cylinder was
chosen arbitrarily. The definition of the nodes of the embedding pro-
ceeds further in similar fashion to the definition of the nodes of the

stem. The nodes are defined in layers along the z-axis in steps of 4 mm.
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The nodes of the inner surface of the embedding {close to the stem) are
defined using the points describing the contours of the prosthesis. The
nodes of the outer surface of the embedding {(surface of the cylinder)
are defiped 20 nm from the z-axis. The subroutine stops after the last
nodes, with the Z-coordinate equal to the z-coordinate of the basic~

section less 50+2 mm, have been defined.

Two points are to be noted in the definition of the nodes of the embed-
ding. Firstly, the coordinates of the nodes on the inner surface of the
embedding are equal to these of the surface of the stem. If nothing élse
is specified, PAFEC will assume that these nodes are in fact the sane.
In this case, continuity will be automatically assumed for the interface
condition between the embedding and the stem. By having two different
numbers for nodes with the sane coordinates, it is possible to introduce
different interface conditions than the continuity condition. PAFEC en-
ables the use of the so-called GAPS interface elements. The effect of
these elements is such that if there is pressure between two facing ele-
ments, the interface condition is assumed to be continucus, but if there
is tension, the elements are assumed to be separated from each other.
Thus, GAPS enable the modelling of a separation of the stem from the
embedding. Secondly, it should be noted in the definition of the enbed-
ding nodes that the embedding level can he 48 mm or 52 mm helow the
basis-section. This is dictated by the way in which the nodes are being
defined. The embedding level will be 48 mm below the basis-section if
the nunber of the basis-section, less the number cof the sections which
are & mm apart, is even. In the opposite case, the embedding level will

be 52 mm below the basis-~section.

After the definition of the nodes, the program PROEM defines the ele-~
ments by calling the subroutines PROTE and EMBE. PROTE defines the ele-
ments of the prosthesis, and EMBE defines the elements of the embedding.
The elements are defined by using the PAFBLOCKS facility in both the
subroutines. PAFBLOCKS are defined by specifying BLOCK.NUMBER, TYPE,
ELEMENT.TYPE, PROPERTIES, N1, N2, N5, and the TOPOLOGY. BLOCK.NUMBER
defines the number of the PAFBLOCK to be defined. TYPE refers to the
type of the PAFBLOCK, i.e, it specifies the way in which the PAFBLOCK
will be divided into elements. ELEMENT.TYPE gives the type of element to
be used in the PAFBLOCK, i.e., brick or wedge element. PROPERTIES refers
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to the properties of the MATERIAL, i.e., the modulus of elasticity and
the Poisson's ratio, to be used with the elements. N1, N2 and N5 refer
to a list of factors which define in how many elements the PAFBLOCK will
be divided. This list is given by defining the so-called MESH, REFERENCE
and SPACING.LIST. It is to be noted that NI, N2 and N5 do not give the
numbers of division of the PAFBLOCKS, but refer to a number in REFERENCE.
The number of the divisions is given in SPACING.LIST. TOPOLOGY specifies
the node numbers which define the PAFBLOCK according to the ELEMENT.TYPE.
The subroutines PROTE and EMBE write the PAFBLOCKS into the PROEM.DAT

- putput file in such a way that the local numbering schemes of the nodes

of the elements {see Figures 11 and 12) are replaced by the appropriate
node numbers which were defined in the subroutines DEFSTEM, DEFTOP and

DEFENM.

In the last part of the program PROEM, the constraints and the loads are
defined. The constraints are defined in the subroutine BOND. This sub-
routine imposes RESTRAINTS on all nodes on the cuter and on the bottom
surface of the embedding in such a way that all degrees of freedom of
these nodes are set to zero. Loads are defined in the subroutine DEFLOAD.
They are attached to the NODE.NUMBER which has the coordinates of the
centre of the head of the prosthesis. Two loads are specified: the first
gne acts in the DIRECTION parallel to the z-axis, and the second, paral-
lel to the x-axis of the coordinate system. The VALUEsS.OF.LOADs are cal-
culated according to the fact that the axis of the prosthesis during the
DIN-tests is tilted by 10° from the vertical which, in turn, is the di-~
rection of the load applied during the tests. In order to calculate the
loads for the FEM-model, this applied load has to, therefore, be resolved
into the directions parallel to the axis of the {local) coordinate sys-

tem of the prosthesis.

An example of the output file from the program PROEM is not shown. The
reason for this is the large size of such a file of approximately 200
kB. If these 200 kB of data were printed, the text would occupy approxi-
mately 60 pages. Figure 15 shows a graphical representation of the mesh
which is generated by PAFEC con the basis of the data provided by the
program PROEM. The mesh shown in Figure 15 consists of 3,670 nodes, and
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735 brick and wedge elements, and it has round 9,300 degrees of freedon
(i.e., unknowns). The calculation of stresses for this particular model
needed 100 MB of storage space and 80,000 cpul? seconds on an Apolilo

200¢ computer.

The program PROEM defines the mesh for the case of an eabedded prosthe-
sis with smooth shape. However, in reality, there are transition radii
between the sections of the prosthesis. These transition radii cause an
.increase in stresses due to the changes in the geometry. In engineering
practice, these increases in stresses are dealt with by defining the so-
called geometrical (or theoretical) stress concentration factor (Kr}.

‘ The stress concentration factor is defined as the ratio of the maximum
stress in-a structure with a geometrical discontinuity to the stress in
a similar structure with no discontinuwity. In the case, e.g. of a circu-
lar round bar with a fillet subjected to pure bending (Figure 16}, the
maxinum stress is found in the root of the transition radius. The stress
concentration factor for this case is defined as the ratio of this wmaxi-
mum stress to the stress in that part of the bar with the smaller dia-
meter. In general, the stress concentration factor depends on the type
of loading, the cross sectional geometry, the value of the transitien
radius, and the value of the height of the shoulder of the fillet.

In order to calculate the stress concentration factors for the case of
the HERAMED prosthesis, the program COSCF was developed (see Appendix
2). The stress concentration factors cannot be calculated directly with
COSCF. The program is similar to the program PROEM in that it generates
a mesh for the FE-analysis with PAFEC. The resulf{s of the analysis have

13The abbreviation cpu stands for Central Processing Unit. The c¢pu time
gives therefore the time during which the processor of the computer
was occupied by the calculation. The cpu time is not the total time
which was needed for caleculation as it does not include the time
which was needed in order to write and read data on the hard disc

{the so-called Input/Output time).
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to be processed further, in order to calculate the stress concentration
factors. COSCF enables the stress concentration factors to be calculated
for only one section at time. The number of the section to be modelled
is specified interactively during the execution of the program. It has
to be pointed out that in FEM, it is not possible to define a mesh which
would describe a general form of a section of the prosthesis with the
transition radius (form of the step). The major difficulty is that be-
cause of the irregular shape of the adjacent contours, the height of the
step varies along the transition zone between the two contours. It is
even possible that in some places, the transition radius will disappear
gltogether. It is obvious that the task of developing a mesh generater
which would be able to model the general form of the stem is equivalent
to a task of developing an automatic mesh generator for any three-
dimensional shape. This is simply too difficult. With the program COSCF,
a way around the problem of varying step height is proposed. For-input
data, COSCF uses the same file containing the geometrical data of the
prosthesis as the program PROEM. After the number of the section which
is to be modelled has been chosen, COSCF produces four files: COSFO.DAT,
COSF1.DAT, COSF2.DAT and COSF3.DAT, for the FE-analysis with PAFEC.
These files define the meshes for the section of the prosthesis with
constant step heights along the contour. In the first file, a smooth
structure, i.e. without the transition radius, is defined. - In the con-
secutive files, structures, in which 1/a, 2/3 and the whole transition
radius is modelled, are defined. All the structures are loaded with a
bending moment of the same value. From the results of the FE~analysis,
the stress concentration factors can be calculated at each position
along the transition zone and for the given step height. These stress
concentration factors can be presented graphically as a set of curves
{one curve for each position along the transition zone} which show the
dependence of the value of the stress concentration factors on the step
height. From the f£ile which contains the geometrical data of the pros-
thegsis, the step heights along the transition zone of the modelled sec-
tion can be calculated. Using these values for the step heights and the
set of curves found from the results of the FE-analysis, the gtress con-

centration factors for the section under consideration can be estimated.

A detailed description of the program COSCF is not presented. As the
program COSCF uses the same technique as the program PROEM in order to
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define the meshes, it is assumed that the listing of COSCF ({see Appendix
2), can be understood on the basis of the detailed description of PROEH,
which was previously presented. Graphical representatioﬁs of the meshes
generated on the basis of the output files form COSF are shown in Fig-
ures 17, 18, 19 and 20. Figure 17 shows the structure defined in the
file COSFO.DAT, and which consists of 120 elements and 563 nodes with
1,542 degrees of freedonm. Figure 18 shows the structure defined in the
file COSF1.DAT, which consists of 264 elements and 1,151 nodes with
1,306 degrees of freedom. Figure 19 shows the structure defined in the
file COSF2.DAT, which consists of 408 elements and 1,812 nodes with 5870
degrees of freedom. Finally, the structure defined in the file COSF3.DAT
is shown in Figure 20. This structure consists of 516 elements and 2,306
nodes with 6,480 degrees of freedom. In order to calculate stresses in
the case of the last model, 45 MB of storage space and round 23,008 cpu

seconds were needed on PRIME C computer.

2.3.3. Boundary Element Model

2.3.3.1. Concept of Boundary Element Method

The Boundary Element Method (BEM) has been developed in recent years as
an alternative to FEM. Similar to FEM, BEM is also a technique for solv-
ing complex physical problems numerically. The way in which this is
done, however, is different. The method has some advantages over FEHN,
in particular, when a linear elastic stress analysis of a three-dimen-
sional body with a complex shape is to be performed. This is the reason
why BEM was used in order to model the HERAMED prostheses. The mathemat-
ics involved in the exact formulation of BEM are difficult and can be
found in the literature [35, 41]. Here, an attempt is made to present
the hasi;ridea behind BEM and to show the major differences between
praétidai épplications of BEM and FEM.

Basic idea

In Chapter 2.3.2.1, the concept of FEM was presented., It is pointed out
that the majority of what has been said in that chapter also applies to
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BEM. In Chapter 2.3.2.1, it was stated that by integrating by parts the
differential operator L(}, a set of differential operaters G() and §(},

which are associated with boundary conditions of the problem described

| by L{), is generated (see Chapter 2.3.2.1, Eguation {(4)). If the solu-
tion of the differential equation given by L{) is found in the form of a
function u, which does not exactly satisfy the governing equation and
the boundary conditions, a set of residual, or error functions can be
defined, as shown below (see Chapter 2.3.2.1, Eguations 12 and 13}:

R= L{u)-b residual in Q,
| Ri=S{u)~s residual on the I's part of the boundary, (1}
} Rz=G{u)~g residual on the Tz part of the boundary.
|
|
1 where

|

I

: L{) - differential operator describing the problen,

i S(} - differential 6perator resulting from the integration
by parts and associated with the essential boundary
conditions, ,

G(}) - differential operator resulting from integration
by parts and associated with the natural houndary
conditions,

~ approximating function,

b - function which together with L{} describes the
| problem (see Chapter 2.3.2.1, Equation (1)},
i s - @gsential boundary condition on the I't part of the
houndary,
g - natural boundary conditions prescribed on the Tz part

of the boundary,
0 - domain in which the problem is defined,
r - boundary of Q; =li+lz.

These residuals can be weighted with a weighting function w, and a

general equation of the residuals can be formulated such that

J RwdQ = [ Rewdl - f Rywdr, . {2}
Q i I't
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If the approximating function u (the approximate solution) identically
satisfies the boundary conditions and is approximate in the domain, the

residuals Ry and Rz are equal to zero. Equation (2) can now be written

as:

f ruda = o, (3)
Q

This equation is also the starting point for the Finite Difference

Method.

If the function u satisfies the essential, but not the natural boundary
conditions and is approximate in the domain, the eguation of the resid-

uals can be written as:

J rRwdQ = [ Rzwdl, (4)
Q ‘Tz

Equation (4) is the starting point for the weak formulation of the

Finite Element Method.
If the function u is chosen in such a way that it identically satisfies

the governing equation, the integral over the domain Q in Equation {2}

is forced to zero and the equation of the residuals can be written in

the following form:

¢ = f Rewdr - § Riwdr, (5)
Tz It

This is the basic concept of the Boundary Element Method.

Inverse formulation

It has to be pointed out that from this point, a discussion of BEM in

general terms becomes difficult without referring to examples of par-

ticular forms of the differential operator L{(). Excellent illustrations
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of the concept of BEM are given in the literature [35). In practice, one
often starts with the initial formulation of the residual of the problem
(see Chapter 2.3.2.1, Equation {16}) in the form:

JL(u)-b)wda = @. (6)
Q

Equation {6) is then integrated by parts until all orders of L{} dis-
appear in u., This leads to an equation similar to Equation (4) in Chap-

ter 2.3.2.1, i.e,

J ul*(w)da + f [boundary terms]dr = @, - (7}
Q r

where
L1*{} - the adjoint operator of L{().

It can be seen that L*{} has the same order as L{), but it acts on the
weighting function w and not on the approximating function u. In order
to apply the concept of BEM, i.e., to force the domain integral to zervo,
not u but the function w has to satisfy the equation given by the ad-
joint operator L*{}. (If L{) is self-adjoint, the function w also satis-
fies L{)). This formulation is called the inverse formulation and is

used in practical applications of BEM.

Fundamental solution

In BEM, the weighting function v is chosen in such a way that this
function is the so-called fundamental solution of L*{). This function
will be indicated by an asterisk, i.e., w*, to show its special charac-

ter. The fundamental solution w* has the following property:
L* (w* ) =81, | (8)

vhere &t indicates the Dirac delta function which is different from zero

at the point i but zero everywhere else.
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The domain integral in Equation (7} can now be written as:

fr*(w)udo = § 8:ud0 = us, (9)
Q Q

It can be seen that the domain integral has been replaced by the value
of the function at the point i where the Dirac delta function is

applied. Thus, a general form of Equation (7) can be written in the

form:

{constant value) + [ (boundary terms) d4I' =0. 0 {19)
r

This is the general form of equations used in BEM.

It is pointed out that the use of functions which identically satisfy
the governing equation (or its adjoint form) has a very important prac-
tical consequence. Because of the fact that the domain integrals have
been eliminated, in order to solve an eguation of the type (10) numer-
ically, only the division of the boundary, not the domain of the prob-
lem, into elements is reqguired. This is the main advantage of BEM over
FEM. It is much easier to define nodes on the surface of e.g. a three—
dimensional body than to define nodes on the surface and in the interior
of such a body. The definition of a mesh in BEM is therefore much sin-
pler than in FEM. Also because of the fact that nodes in BEM need to be
specified on the surface, fewer nodes have to be defined. This leads to
a reduction in the number of unknowns and thus to a reduction of the
size of the prohlem which is to be solved. As the weighting functions
are the fundamental solutions of the governing equations, the results of
BE-analysis tend to bhe more accurate than that of FE-analysis. Thisz is
in particular, if one is interested in the values of the unknowns on the

boundary (surface} of a problen.

BEM in elastostatics

The basis of BEM in elastostatics is the constraint egquation which
relates the values of the surface displacements w1 to the surface

traction t: [35, 42]. given by
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u (P)/2 + § Tis(Q,PYus(Q)AT(Q) = f Uiy (Q,Phty (Q)dr(g), (11}
r r

P and Q are points on the boundary I' of the bedy 0Q; Tiy and Uiy are
second order tensors, singular at P=Q, which correspond to the tracticns
and displacements for the problem of three orthogonal unit loads in an
infinite elastic bodyi®. The tensors Tiy and Uiy are reported in the
literature, e.g. in [35), and are functions of the distance between the

boundary points P, Q given by

r{P.Q) = {{[x(Q)-x1 {P)][x1{Q}-xt (P} 11, (12)
where

x1 {Q), x1 (P) - the coordinates of the points P, Q,

and functions of the derivatives of r({P,Q}. The tensors Tiy and Uiy are

the fundamental solutions in the case of slastostatics. Equation (11) is

solved numerically by carrying out the following steps:

1

1. The boundary T is discretized into a series of elements
over which digsplacements and tractions are chosen to be
piecewise interpolated between the nodal points:
2. Equation (11} is applied in discretized form to each
nodal point P of the boundary I' and the integrals are
computed over each element. A system of M linear algebraic
equations involving the set of M nodal tractions and M nodal
displacements is therefore obtained;

3. Boundary conditions are imposed and consequently M nodal

values (tractions or displacements in each direction per

16 The coefficients of the tensors Tiy and Uiy are the tractions and

displacements in the j direction due to a unit force at the point

under consideration, acting in the i direction,
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node) are prescribed. The system of M equations can there-
fore be solved by standard methods to obtain the remaining

boundary data.

For the discretization of Equation (11), the boundary I' is approximated
by using a series of elements. Boundary displacements and tractions over
each element are expressed in terms of interpolation (shape) functions
and their nodal values. The boundary variables can be approximated as,
e.d., piecewise constant. The continuous boundary can be replaced by N
piecewise flat segments and the tensors Tij and Uiy integrated for each
segment. The result for Equatidn (11} is given as [42]:

N
Wi {(Pw)/2 + & ATij{Qu,Puluy(Qn) =

n=1
N .
E AUi§{Qn,Pn}ti{Qa). {13}

n=1

The new tensors ATiy and aUiy are computed using the geometric descrip-
tions of the N segments and the elastic properties of the body. It is to
be noted that Equation (13) is valid for a load point on the boundary at

Pn. This equation can be written in a matrix form as
/2 + fherhiz oo hit, e hand it Ue,eee Wit eeea MINIT =
{911,912, 00 Gttt oo gin) it b2, oot oe., tall, (14)
where w; and t; are unknowns at nodes j. hiy and ¢gi3 are interaction

coefficients which relate the node i with all the nodes on the surface

of the bodyl?. Equations, such as (14}, can bé written for each of the

17Tn the case whers the interpolation functions are not constant, i.e.,
they are linear or quadratic, the form of the matrices [hiey] and
fai13} will not change, but more than one element will contribute to

the coefficients of these matrices.
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nodes. In three dimensions, the number of equations is 3N, so that the
number of unknowns is alsc 3N. These equations can be written as one

matrix equation:
[H] fu} = [G){t]. (15)

The known boundary conditions are now applied in the system of equations
{(15). These houndary conditions can be of two types: wt on I'y and t; on
rs. If the displacements are known, the tractions can be found and vice
versat?®. The systen of equations (15} can be rewritten in such a way
that all the unknowns are written on the left-hand side in a vector Y
and all the knowns on the right-hand side in a vector X. The final

result can be written as:
{a1iYi = [BI{ZX}. ' (16)

The system of equations given by (16} can be solved by standard methods.
It has to be mentioned, that the solution of the system of equations
produces values for the unknown displacements and tractions on the sur~
face of the body. In BEM, it is also possible to compute stresses and
displacements at any point inside the body. This is done after the sys-
tem of equations (16) has been solved by using the so-called Somigliana
identity [J5, 42). The fact that the stresses {(or the displacements)} can
be calculated at any point inside the body, after solving the system of
equations, means that the internal points can be arranged in an arbi-
trary fashion and that the number of the internal points can theoreti-
cally be unlimited. This feature of BEM has found its application in the

computation of stresses around cracks in bodies ({42, 43].

I8ote that at the surface of a body, there have to be at least one
¥ind of boundary condition prescribed on each part of the surface. On
a free surface, the tractions are equal tb zero and the displacements
are unknown. On a loaded surface, the tractions are known but not the
displacements. However, displacements have to be prescribed for sone
elemnents in order to eliminate any rigid-body displacenent in any one

direction.
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2.3.3.2 BEM-model of Prosthesis

The advantages of BEM over FEM, and in particular the ease with which a
mesh of nodes can be defined for complex shapes in three dimensions, led
to an attempt to model the HERAMED prosthesis with BEM. The overall pro-
cedure in the developing of this model was exactly the same as in the
developing of the model for FEM. Two computer programs were written
which used the same file for the input data as described in Chapter
2.3.1. These programs generated files which then could be used for BE-
analysis with the commercial BEM package BEASY:?., (The version 3.1 of
BEASY [44] was available in the Department of Mechanical Engineering at
Loughborough University on a PRIME C computer and in the University of
Manchester Regional Computer Centre on a CDC CYBER 285 super-computer.)
The first program generated data for the case of smooth prosthesis. The
enbedding was modelled with the help of 'linear-spring' elements. The
second program generated data for BE-analysis of one step of the pros-~
thesis. It is pointed out that by using BEM, it was possible to generate
a mesh which described a step of the prosthesis with varying step height
in a fully automatic way. This was not possible using FEM (see Chapter
2.3.2.2).

For reasons which will be given later in the discussion, the listings of
the mesh generators for BEASY are not presented. The mesh for the case
of smooth prosthegis is shown in Figure 21. The model consists of 164
quadrilateral elements, which in the BEM language are called patches,
and 635 nodes. Figure 22 shows the mesh of one step. Round 13@ patches
and 500 nodes were needed in order to define the mesh shown in Figure
22. BEASY did not give the number of degrees of freedom (number of un-
knowns} for the meshes shown in Figures 21 and 22. However, this number
can be estimated from the knowledge of how many unknowns there can be
per element. For a three~dimensional analysis, the so~called discontin-~
uous elements wefe used (default in BEASY). The term discontinuous means

that the values of unknowns are not calculated in the points with coor-~

L9BEASY, the boundary element analysis system, Computational Mechanics,

Southanpton, U.K.
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dinates equal to that of the nodes which describe the geometry of the
elements, but in points inside the element. In the case of a doubly-
curved quadrilateral element, this means that there are nine such points
inside the element [44]. Each of these points is associated with three
values of displacements and three values of tractions. In order for the
solution to be unique, three of these values must be prescribed. This
means that each element can be associated with with the number of 3*9=27
unknowns. Thus, the number of unknowns for the structure shown in ngure
21 can be estimated to be equal to 164*27=4,428 and for the structure
shown in Figure 22, to be equal to 130*27=3,510. The model of the pros-
thesis required 2,709 cpu seconds and occupied 100 MB of storage space

on CYBER 205 supercomputer.

2.3.4. Simple Model

In Chapters 2.3.2 and 2.3.3, the FEM-model and the BEM-model were des-
cribed. In both the models, large equation systems {(matrices) with
several thousands of unknowns have to be solved in order to calculate
stresses in the prosthesis. These models, therefore, require long com-
puting time and large computer storage space2®. In order to provide a
model which would be less 'expensive', a simple model for calculating
the stresses was developed. This simple model uses a mixture of the sim-
ple bending theary [45), finite elements [46] and beam on elastic foun-
dation theory [47]}. Several assumptions had to be made in developing the
simple model. The majof assumption is that the stresses in the prosthe-
sis can be calculated with formulas which are valid for the case of a
straight beam with constant cross section. Thus, the simple model pro-
vides approximate results for stresses in the prosthesis. The closer the
prosthesis resembles a straight beam, the more accurate are the results.
The simple model was written in FORTRAN 77 programming language and is

shown in Appendix 3.

The main program is called PRCCO. This progrém uses the same file for

the input of the geometrical data of the prosthesis asg the FEM and BEM

29 3¢e Discussion for details.
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models (see Chapters 2.3.1, 2.3.2 and 2.3.3). The geometrical data is
read in the subroutine READAT. READAT also reads data from a second file
called SCFDAT which contains tables of stress concentration factors.
These tables are used in the later stage of the program PROCO. The sub-
routine READAT is followed by the subroutine SECT. SECT performs a simi-
lar task as the subroutine SECT in the program PROEM (see FEM~model,
Chapter 2.3.2.2). In the first step, SECT calculates approximate centre.
points of each of the contours and then calculates new coordinates of
points of the contours around these centre points (see Chapter 2.3.2.2).
In this way, the new positions of the points are more evenly distributed
along the contours than the old ones. However, the old positions are
stored in separate arrays. In the second step, SECT performs a series
of transformation of coordinates. The coordinates of points of each con-
tour and the coordinates of the centre of the head of the prosthesis are
translated in such a way that the origins of the {local} coordinate sys-
tems lie in the centre points. The coordinate systems are then rotated
until the y-coordinate of the first point of each contour is equal to
zero. The aim of the subroutine SECT is to facilitate an accurate calcu-
lation of geometrical properties of the contours, such as the cross sec-
tional areas, the coordinates of the centroids and the second moments of
area of each section. The geonetrical properties of the sections are
calculated in the subroutine CENTRO. This is done in the following way:

1. Each part of the section which lies in one of the quadrants of
the coordinate system is divided in a series of strips (Figure
23}.

2. The areas, the products of inertia, the first and the second
moments of area about the x—- and y-axis of the coordinate
system of each of of the strips are calculated:

A=H*B,
AX=A*Y,

AY=RA*X, {1}

IX=(B*H3}/3,
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IV={H*B2) /12 + A*XZ,
IXY=RA*X*Y,
where

A - area of one strip,

H - height of the strip,

B - width of the strip ,

AX~ first moment of area about x-axis,

AY~ first moment of area ahout y-axis,

IX- second moment of area about X-axis,

IY~ second moment of area about y-axis,
IXY¥-product of inertia,

X - x-coordinate of the centre point of the strip,

Y - y-coordinate of the centre point of the strip.

Because of the fact that the shape of the section cannot be
closely approximated using rectangular strips {(trapezoids
would be needed), the properties of two strips, one with a too
large area and second with a too small area, are calculated

(see Figure 23).

. The properties of each strip are summed over each guadrant and
added together.

. The averages of the results of the summation for the 'too

large' and the 'too small' strips are calculated:

Ac = (A1 + As)/2,
AXt = {AX: + AXs)/2,
AY: = (AY: + AVs)/2,
{2)
IXXe = (IXX1 + IXXs)/2,
IYYe = (IYY: + IYYs)/2,
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IXYXYe= (IXYXY:1 + IXYXYs)/2,
where

A - area.,

AX,AY - first moments of area,

IXX,IYY - second moments of area; IXX=CLIX; IYY=ELIY,
IXYXY - product of inertia; IXYXY=LIXY,

t,1,s - subscripts denoting the average, ‘too large’ and

'too small' properties respectively.

5. Coordinates of the centroid of the section are calculated:

XBAR = AXt/A¢,
(3}
YBAR = AVt /A,
where

¥BAR - x-coordinate of the centroid,
YBAR - y-coordinate of the centroid.

6. The nominal moments of area, i.e., moments about axes which
are parallel to the axes of the coordinate system but pass
through the centroid, are calculated:

INAX = IXX:+ - At*YBARZ,

1!

INAY = I¥YY: - At *XBARZ, ' (4)

INAXY = IXYXY:. - A:*XBAR*YBAR,

where

INAX ~ nominal second moment of area of the section about an
axis which is parallel to the x-axis of the coordinate

system and which passes through the centroid,
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INAY - nominal second moment of area of the section about an
axig which is parallel to the y-axis of the coordinate
system and which passes through the centroid,

INAXY - product of inertia.

7. Finally, the coordinate system of each section is translated

in such a way that its origin coincides with the centroid.

The subroutine CENTRO is followed by the subroutine MPROT. MPROT cal-
culates moments which act on each section due to the applied force in
the centre of the head of the prosthesis. In general, there are three
moments acting on each section. The first two moments are bending mo-
ments and the third one is a torsion moment. The torsion moment is not
calculated in MPROT and it will be dealt with later. The first of the
bending moments acts about the x-axis and the second, about the y-axis
of the coordinate system. Each of the moments is a sun of a pure bending
moment and a moment due to the shear force resulting from the fact that
the axis of the prosthesis is tilted in respect to the axis of the
applied force (see Figure 24). The general form of the equation for
calculating the moments is as follows:

MX = ~P*YL*COS{BETA) * P*ZL*SIN(BETA)*COS(ANG},

I}

(5)
MY

P*XL*COS(BETA} * P*ZL*SIN(BETA) *SIN{ANG),

MX ~ moment about x~axis,
MY
P - ahsolute value of the applied force,

XL,YL - coordinates of the centre of the head in the local

i

!

moment about y-axis,

coordinate system of the section,

2L ~ distance along the z-axis of the prosthesis between the
z~coordinate of the cenrtre of the head and the z-
coordinate of the section,

BETA - tilt angle of the prosthesis,

ANG - angle batween the neck axis and the x-axis of the

local coordinate system,
+ - (+) if XL is positive and (-) if XL is negative.
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The moments MX and MY cannot be directly used for calculation of stres-
ses as they act about the axis of the coordinate system which, in gen-
eral, are not the principal axis of the section?!. In order to calculate
values of moments which can be used for the calculation of stresses,
MPROT uses the so-called method of effective moments [45]. The effective

moments are calculated in the following way:

M1 (MX + INAXY*MY/INAY}/{1 ~ INAXY?/INAX/INAY},

(6)
M2 = (MY + INAXY*MX/INYX)/{(1 -~ INAXYZ/INAX/INRAY),

where

Mi - effective moment about the x-axis of the coordinate

systenm,
M2 - effective moment about the y-axis of the coordinate

system.

It has to be mentioned that the subroutine MPROT calculates the effec-
tive moments for each section of the prosthesis and that in doing this,
the influence of the embedding is not considered. The program PROCO,
however, enables an estimation of the influence of the embedding on the
value of the moments acting on embedded sections. If a value different
from zero for the number of the last embedded section (LEVEL) is enter-
ed, the program exeéutes,the subroutine MPROEM. In the first step,

MPROEM calculates the shear stresses acting on the last embedded section

{Figure 24):

SX = tP*SIN(BETA)*COS (ANGLEV) ,
(7}

SY = +P*SIN(BETA)*SIN{(ANGLEV},

21vhe axes of the coordinate system are the principal axes of the sec-—

tion if the product of inertia for these axes is equal to zero.
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where

3X ~ shear force acting along v-axis,

SY - shear force acting along x-axis,

ANGLEV -~ angle between the neck axis and the x-axis of the
local coordinate system of the last embedded section.

- {+) if XL is positive; (~) if XL is negative,

In the second step, MPRQEM passes the shear forces 8X and SY, and the
moments M1 and M2 for the last embedded section to the subroutine
ELBEAM. ELBEAM executes a series of subroutines which calculate the
approximate reduction of the moments M1 and M2 along the embedding. The
enbedding is modelled as a series of linear springs which are attached
to the prosthesis in distances 2 mm apart. The calculation is performed
using the finite difference method [47}. It is assumed that the reduc-
tions in the values of both the moments M1 and M2 are independent from
each other. The calculation is, therefore, carried out separately for
each 6f the moments. The first subroutine in the series which is exe-~
cuted by ELBEAM is called PARAM. This subroutine calculates the stif-
fness of each of the linear springs using the following formula:

KN = 1.9*EC*gi {vc)}*{0.24 + DS/ {1-DS}}, {8}

where

KN - stiffness of the Nth spring,

EC - modulus of elasticity of the embedding,

ve - Poisson's ratic of the embedding,

g1 - function shown in Figure 25,

DS - ratio of the '‘diameter’ of the section to the diameter

of the enbedding.

This formula was derived on the basis of analytical considerations com-
bined with FEM calculations in [24,48}. The étiffnesses of the linear
springs, calculated with the formula, approximate the stiffnesses of
circular rings subjected to a transverse loading as shown in Figure 26.
The formula is valid in the case of loose interface condition between

the stem and the embedding, and in the case where there is no friction
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in the interface??, The results of the calculation of the stiffnesses

are the more accurate, the smaller is the value of DS.

It has to be noted that the term: diameter of the section {(used in the

calculation of DS), cannot be exactly defined because of the irregular

shape of each section. For the diameter of the section, PARAM calculates
the distance between two opposite, in respect to the centroid, points on
the contour. For calculation of the reduction of the moment M1, the dis-
tance between points with y-coordinates equal to zero is taken, and for
the calculation of the reduction of the moment M2, the distance between

points with the x-coordinate equal to zero is taken.

The next subroutine executed from ELBEM is called MATRIX. This subrou-
tine assembles a system of eguations {matrix), which, if solved, enables
the calculation of the moments along the embedding. The starting point
of the assembly is the finite difference formulation of the moment egua-

tion of a beam:

d2y/d?x = M/EI, (9)
where

y - direction of displacements of the bean,

X - axis of the beam,

¥ - bending moment,

E -~ modulus of elasticity of the bean,

I - second moment of area of the beam section.

The differential on the left hand side of the above equation is replaced

by the central difference operator:

d2y/d2x = (8y~1 ~ 281 + B1+1)/hZ, {18)

22¥n the case where the continuity between the embedding and the stem
is assumed, the factor 1.9 and the function g¢g: have to be replaced by

the factor 5.3 and the function gr, (Figure 25}, respectively.
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where

51 - displacement at point i,
h - step width, i.e., distance hetween two adjacent points.

In Figure 27, the case of a beam on elastic foundation considered in the
subroutine MATRIX is shown. The elastic foundation (the embedding) is
approximated by a series of linear springs with stiffnesses k. On both
the ends of the beam, it is assumed that the stiffnesses has the value
of % k. The beam is loaded on the right hand side with a bending moment
M and a shear force S. This'loading produces reaction forces in the
springs which are equal to k*h*3, where h denotes the step width and 3,
the displacements in the springs. Using Equations (9} and(1@), and
moving from the left-hand side of the beam in Figure 27, the following

equilibrium equations of moments can be written:

Point 2: {(1+%k1 h4/ET1) 81 -282+33=0,
Point 3: (Ykehd fET; Y28, +(1+4kzhd fEI2 ) 82 -283+84=0,
Point 4: {(¥kiht/EI1 )36 +(k2h*/ETl2)282+{14ksh?/Elz) 623-284+52=0,
(11)
Point (n-1): {(¥k1h?/EL; ) {(n-2)8:+{k2h? /EI2) (n-3)B2+....00nn..
..... +{1+kn-2h?/EBln-2)0n-2-28u-1+50=0,
where

¥y ~ stiffness of spring i,
h - step width,
E - modulus of elasticity of the bean,
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I+ - second moment of area of section i,
51 ~ displacement in point i,
i=1,2,....,n0,

n - number of points.

Equations (11}, constitute a system of n-2 equations with n unknowns.
The unknowns are the displacements & of each spring. Two more equations
can be written in order to be able to solve the system. The first egua-
tion is delivered from the equilibrium condition that the sum of all

shear forces must be equal to zero:
¥kih&y+kzhde+. .. . tka~1 hon -1 +¥%kn dn~5=0, (12)
where

5 - external shear force.

The second equation is delivered from the equilibrium of moments for

point n if moving from the right-hand side of the beam:
Sa-2-28p~1+8n {1+%knh4 /EIn )}~ (Mh245h3} /EIa =0, (13)

where
M - external bending moment.

Thus, Equations (11),(12) and (13) represent a system of n equations
with n unknowns. It is to be noted, that although the equations are
valid for a straight beam, the changes in the second moments of areas
and changes in the stiffnesses of the embedding are modelled. The sub-
routine MATRIX calculates the coefficients of the system of equations
according to Bguations (11}, (12) and {13), and writes them in the form

of a matrix.

The next subroutines which are executed from ELBEAM are ralled FACTOR

and SUBST. These subroutines solve the system of equations which was
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assembled in the subroutine Matrix using the Gauss elimination procedure

{49]. The results of the solution are the displacements & in the

springs.

Finally, in order to calculate bending moments along the embedding, the
subroutine ELBEBM executes the subroutine MOMENT. MOMENT calculates the
bending moments at each of the sections of the prosthesis from the

finite difference form of Egquation {1¢), i.e.:

My = EBIL;i (81~1-281+81+1})/h?, {14)

vhere

Mi- moment at point i which is equivalent to the
z-coordinate of a section,

E - modulus of elasticity of the stem,

I:~ second monent of area,

§1- displacement at point i.

The bending moments which are calculated in MOMENT are taken into con-

sideration in subsequent calculation of stresses in the prosthesis.

After the calculation of moments in the embedding, the main program
PROCO invokes the subroutine COSTRE. COSTRE calculates stresses in each
point of the contours on the surface of the prosthesis. If the torsion
moment is omitted, the loading of the prosthesis can be regarded as
combined biaxial bending and axial loading due to an eccentric force.
This is best visualized by refering to Figure 24. The prosthesis is
loaded by a force P which does not act parallel to the axis of the pros-
thesis. This axis is tilted to the direction of the applied load by the
angle BETA. The force P, therefore, has to be resolved into directions
which are parallel to the axis of the coordinate system of the prosthe-
sis. This produces two forces: the first one, &, is a shear force which
acts perpendicular to the axis of the prosthesis and the second one, F,
is an axial force which acts parallel to the z-axis. Because of the fact
that F does not act on the z-axis, apart from axial loading, this force
will produce two pure bending moments (about the x- and y-axis) which
act on each of the sections of the prosthesis. The force S also produces
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two bending moments on each of the sections. The value of these moments
increases with the increase in the distance between the line of action
of the force S and the position of the section. The stresses at each

point of the section can be calculated from the following equations

(451:
SSUM = 51 + 52 + 8L,

51 = M1*Y/INAX,
(15)

i

82 = M2*X/INAY,

SL, = -P*COS (BETA} /A,

where

SSUM - stress at the point,

S1 - stress due to the effective moment M1,

S§2 - stress due to the effective moment M2,

SL - stress due to the axial force F=-P*COS(BETA),

M1,M2 - effective moments,

INAX,INAY ~ nominal second moments of area,

X,Y - coordinates of the point,

P - absolute value of the load on the centre of the head
of the prosthesis,

BETA - tilt angle,

A ~ area of the section.

Two further things have to be menticned in order to explain the way in
which the stresses are calculated by the subroutine COSTRE. Firstly,
COSTRE calculates stresses for all points on the perimeter of the sec-
tion. The points are chosen in such z way, that their positions are
equivalent to those of the points in the original file which contains
the geometrical data of the prosthes:is (not the positions of the points
which were calculated in the subrout:ine SECT). In this way, a direct
reference to the geometry of the prcsthesis is provided. Secondly, if
stresses are calculated in the embedding, the last equation in (15} is

not used. This means that it is assuzed that the axial force is squal to
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Zero in the embedding. Because of the fact that the axial force is nega-
tive, this assumption means that the values of tensile stresses due to

the bending moments in the embedding will be overestimated.

The subroutine COSTRE is followed by the subroutine CONCTR. In the first
step, CONCNTR estimates the stress concentration factors at each point

of the section. This is done in the following way:

1. The distance (DMIN} between the centroid of the section and

the point under consideration is calculated,
2. The distance {DMAX) between the same centroid and the equiva-
lent point to that which was considered above of the next

section is calculated.

3, The following ratios are calculated:

RAT1 = DMAX/DMIN,
{16)
RAT2 = RAD/DMIN,
where

RAD - value of the trangition radius between the sections.

4. The values of the ratios RAT]1 and RAT2 are then passed to
subroutine SCFINT which returns the approximate value of the

stress concentration factor.

According to the values of RAT! and RATZ, the subroutine SCFINT inter-
polates between the values of stress concentration factors which were
read in the subroutine READAT in the form of a table from the file
SCFDAT. The file SCFDAT is shown in Appendix 3. It contains values of

the stress concentration factors which were obtained from the literature
[49] for the case of pure bending of a rectangular bar with a fillet
{Figure 28). Instead of the values of the stress concentration factor

for the case of rectangular bar, the file SCFDAT could have contained

the values of the factors for the case of circular bar with a fillet
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subiected to pure bending (Figure 29). However, because of the the ir-
regular shapes of the sections of the prosthesis, it was decided that
the factors for rectangular bars should be used. The values of these
factors are slightly higher than the values of the factors for the case
of circular bars. SCFINT, therefore, will overestimate the stress con-

. centration factors.

In the second and final step of the subroutine CONCTR, the values of
stresses which were calculated in the subroutine COSTRE are multiplied

by the appropriate stress concentration factors:
FSUM = SSUM*K, (17
where

Fsym - factored stresses,
S8UM - stresses at each point of the contours,

K - stress concentration factor.

It has to be mentioned beforehand, that in this form, Equation (17)
already includes a factor for the behaviour of the material of the pros-
thesis under fatigue loading. In the investigation of the material (see
Chapter 3), it was found that under fatigue loading, the material be-
haves as a perfectly notch sensitive material. This means that Equation
{17} does not have to be multiplied by an another factor (the so-called
fatigue strength reduction factor) in order to compare the results of
the calculation of stresses with the fatigue data of the prosthesis from

the DIN-tests.

The subroutine CONCNTR is followed by the subroutine SSORT. SSORT has
the task of finding the maximum and minimum stresses, and factored
stresses along each contour. After SSORT, the values of the maximum and
minimum stresses are writtén into the output file of the program PROCO,
which is called STRESS. The file STRESS containg the maximum (tensile)
and the minimum (compressive} stresses for each section. The numbers of
points where the stresses were calculated are also included. An example

of the file STRESS is shown in Appendix 3.
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Apart from the stresses due to the bending moments, with the progranm
PROCO it is also possible to estimate the étresses in the sections due
to the torsion moments. The torsion nmoments arise due to the fact that
the line of action of the force § (or their components SX and SY) does
not pass through the centroids of the sections (see Figure 24). In the
calculation of the stresses due to torsion, it is assumed that these
stresses can be calculated with a method which is valid for the case of
a straight bar with uniform noncircular shape of the cross-section. It
is further assumed that no embedding is present around the prosthesis.
The calculation is carried out using the finite element method as

presented in [46].

The governing equation of the torsion of a noncircular bar is as

follows:

OTyz fOx + Btleby”é‘ﬂ, (18)
where

Tyz, Tzx - shear stresses in the cross-section.
The shear stresses tyz and Tzx are given as:

aG(dg/dy + x),

1]

Tyz

(19}

G-G(bﬁlax = y)r

Tzx

where

o - constant,
G ~ shear modulus of the material,
¢ - the so-called warping function of the section.

The applied torsion moment, the torque, on the cross-section can be

calculated from:

T = IT (xtyz - Yrzx)dxdy, (20}
A
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where

T - applied torque,
A - area of the section,

The starting equation for the finite element formulations is the so-

called virtual work balance equation:

J {utx + vty)ds = 1/6 * [ (1yz2 + T2x2)dV, (21)
S v

where

u,v - displacements in x- and y- direction,
tx,.ty — tractions at the surface T,

§ - surface of the section,

G - shear modulus of the naterial,

V - volume.

The left-hand side of Equation (21} denotes the virtual work Tal done by
the applied torque T trough the angle of twist al. By taking Equation
(20) for T and expressing the shear forces in this equation according to

Equation (19), the left-hand side of (21) can be written as:

TalL = a2LG [ (xd4/dy - ydg/dx + x% + y2)dxdy, (22)
A ,

Using Equations (19}, the right-hand side of (21) can be expressed as:

1/6* [ (ty22+12¢2)dV = 216G I 1(34/dy+x)2+(dg/dx-y) 2 | dxdy,
v A
{23)

Equating the letf- and right-hand sides of the virtual work balance

defined in (22) and (23) respectively, it can be written:

§J (-xdg/dy + yog/dx)dxdy = J§ [(d8/3x)2 + (d¢/0y)2}axdy,

A A
(24)
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Fquation {24) defines the problem of torsion of the bhar completely in
terns of variation of the warping function #. Once the variation ¢f this
function is defined over the cross section, the stresses ty: and tax,

and the applied torque which causes these stresses can be calculated.

In the program PROCO, the subroutine TORO is invoked which, in turn,
invokes a series of subroutines in order to solve Equation {24) for each
of the sections of the prosthesis using finite element method. The
first of the subroutines invoked by TORQO is called SPEC., In this sub-
routine, the section under consideration is divided into 96 triangular
elements using 61 nodes (Figure 38}. Each node is specified by defining
the node number and its coordinates. The nodes possess one degree of
freedom. As Equation (24} is independent from any material properties,
no properties are specified. IN order to eliminate rigid body displace-
ments, the value of the warping function ¢ is set to zero in the node in

the centre of the section.

The subroutine SPEC is followed by the subroutine ACTIVE. According to
the number of nodes, the number of degrees of freedom per node and the
number of prescribed boundary conditions, this subroutine calculates the
number of active equations in the system. This number is passed to the
next subroutine which is called called BWIDTH. BWIDTH calculates the
semi-band width of the system of equations. This subroutine is followed
by the subroutine ASSEM. The subroutine ASSEM assenbles the system of
equations which describe the problem in a special form which takes into
account the number of active equations and the semi-band width. In this
way, the system matrix does not contain unnecessary large number of
coefficients which are equél to zero. However, by doing this, the number
of nodes are being assigned new node numbers according toe their posi-
tions in the system matrix. In assembling the system matrix, ASSEM in-
vokes the subroutine ELEMNT. This subroutine calculates the stiffness

matrices and nodal point forces for each element. This is done in the

following way:

The finite elements used in the division of each section is shown in
Figure 31. The element is a triangular element which possesses three
nodes i, j and k. Within the element e the warping function is approxi-

mated in terms of its nodal point values [&8¢]=[¢1.95.8x]T by



¢ = [N} {3°], (25}

where

[N]={Ni,Ns,Ne] - shape functions.

Linear shape functions are used, such that

Ny = 1/2A%{a; + bi1xi + ciyi},
Ny = 1/2A*(ay + byxs + csys), (26)
N = 1/2h%(ax + bexx + ckyk),

Ni ,Nj,Ne - shape functions,

A - area of the element:

1 x1i 11 _
A= Ydet | 1 x1 vi = ¥{as + ay + ax)., (21

where
1 %k ¥r
a,b,c - constants:
a1=XjYk—XkYs, b1=¥3~¥k, Ct=Xk~Xj,
a3=Xk¥i—X1¥k, bs=Y:-¥1, CJ=X1-Xk, {28) ‘
AK=X1 ¥ —XI¥t, bDe=Vi-¥s, Ck=Xs-Xi,
| X,y - coordinates of nodes 1i,j.k.

After substituting Equation (25) into Equation (24), the following

equation for one element can be written:

| (Fe] = [K=][32], (29)
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[Fe] - matrix of nodal point forces,
[Ke] - element stiffness matrix.

The nodal point forces are defined by

(Fe] = [ (-x[dN/dx1T +y[dN/dx]}dS, (30)
Se

and the stiffness matrix is

[Ke] = [ ([ON/dx]1T [dN/dx] + [dN/dy]T [dN/Jy])ds, (31}
Se

Differentiating the shape functions (26) leads to

[dN/3x) = 1/2A * [bi,by, bx],

(32)

[aN/dy] 1/23 * [c1,c49,c0x].

With Equation (32), the stiffness matrix (31) and the nodal point forces

(33) can be written as:

b12+c1?2 bibjstcicy bibrktcick

{Ke] = 1/4A (bibjy+cicy byZ+cy®  Dbybrtcyck|, (33)
bibk+cick bybktcick bu2+ck?
—XcCi+ch1

[Fe] = 1/2A |-Zccytychs|, (34)
~Xe¢ Ck+yc bk

where

{Xc,yc) - coordinates of the centroid of the element:

i

1/3 % (x1 + X3 + xu),

173 % (y1 + ¥5 + yx). {35)

Xc

et
)
i
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In the final step of the assembly of the system matrix, the subroutine
ASSEM imposes the displacement boundary condition, i.e, the value of

zero for the warping function in the centre of the section.

The system matrix is solved by the subroutine SOLVE. This is done by
Gauss elimination procedure for banded symmetric sfstem of eguations
[36, 46, 49]1. Also in the subroutine SOLVE, the original numbers,.as
specified in SPEC, are assigned to the nodes. This is done by the sub-

routie RENUM.

Having calculated the values of the warping function ¢ at each node {by
solving the system matrix), the subroutine STRESS is executed. This sub-
routine calculates stresses in the centroids of each of the elements

using the finite element formulation of Equations (19), i.e,

]

Tiyz aG/2h * {(cigi + Cy@gy + Cxek) T Xc,
{36)

aG/2h * (bigs + bygy + brgr) + ¥e,

il

Tzx
where
#1,3,k - values of the warping function at nodes i,j,k.
The applied torque on the section is also calculated in STRESS. The
value of this torque is approximated using the finite element formula-

tion of Equation (22) by sunming over the system of n elements repre-

senting the section:
T=aG L (Ie + Je), (37}
vhere

I (xds/dy - ydg4/dx)dA

1

Ie

I

§ (x(ON/dY] (8¢ - y[dM/dx] [82])dA

Y(XeCt-Ycbi ) #t +4{xcCcy~Ye by ) gy +¥{Xc ck ~yc bi)

4

and
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Je = [ (%2 + y2)dA

A/o*(x12+xy2+xk2+y1 24y 2+yR2+X1 Xy +X5 Xk +XK Xy

+y1ystysyktyeys ).

The last subroutine which is invoked from the subroutine TORQ is called
OUTPUT. This subroutine calculates the maximum shear stresses in the
elements which are located at the boundary of the section. These maximum

shear stresses are calculated from:

TMAX = (Tyz? + Tzx2)%, . {38)
where

TMAX - maximum shear stress.

TMAX is then divided by the value of the torque T which was calculated
from Equation (37). In this way, the values of TMAX represent the values
of the maximum shear stresses in the section due to a unit torque. The
value of the highest maximum shear stress and the corresponding point
number in the section are subsequently calculated. These values are

returned to the main program PROCO.

After the calculation of the maximum shear stresses in each of the sec-
tions has been completed, the main program PROCO approximately calcu-
lates the values of the torsion moments which act on each section due to
the force 5 {see Figure 24). These values are calculated by multiplying
the value of S by the distance from the line of action of § to the cen-
tre of each of the sections. (The offset between the line of action of §
and the centroid of the section is calculated; see Figure 24.) The maxi-
mum values of the shear stresses in each section is derived form the
multiplication of the appropriaté values TMAX {maximum shear stresses
due to unit torque) with the values of the torsion moments. PROCO writes
the results of the torsion calculation into the output file STRESS. The
section number, the number of the point and the maximum shear stress at

the same point are given (see example of file STRESS in Appendix 3).
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In the final part of the program PROCO, it is possible, on request, to
estimate the influence of simple redesign measures on the magnitude of
stresses in the prosthesis. Two such redesign measures are provided:
firstly, the length of the neck of the prosthesis can be shortened, and
secondly, the neck angle can be increased. If one of these measures is
requested, the program PROCO calculates new values of the stresses ac-
cording to the changed parameter. The results of the new calculation is
also written to the output file STRESS.
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2.4, EXPERIMENTAL WORK

2.4.1. 3D Photoelasticity

In order to verify the mathematical models, an alternative method for
calculating the stresses in the prosthesis was needed. In the litera-
ture, results from calculations with mathematical models are often com-—
pared with experimental results from strain gauge measurements (see
Chapter 2.2.3). In the case of the HERAMED prosthesis, however, this
method was not suitable. The strain gauges available on the market need
a relatively large space in order to be attached to the component under
investigation. (For the smallest strain gauges, the space needed is
approximately 4 mm X 2 mm.) This space is, in general, not available
neither between the steps nor in the transition radii on the surface of
the prosthesis??®. Thusg, it was decided to investigate the stresses in

the prosthesis with the technique of three-~dimensional photoelasticity

by stress freezing.

Three-dimensional photoelasticity by stress freezing is a well-estab-
lished and well-documented technique for stress analysis of three-di-
mensional components [51, 52]. In this technique, a scale model of the
component under investigation is made from a photoelastic material. The
rodel is then subjected to a heat treatment cycle under load. The mater-
ial properties are such that on cooling, the stresses are effectively
'frozen' into the model. Thin slices in the areas of interest are cut
from the model and they are subsequently investigated by two-dimensional
photoelasticity. As a result of the investigation, the magnitudes of
principal stresses and the directions of principal stresses can be

obtained at each point of the slices.

237pn fact, one prosthesis was investigated with the help of strain
gauges {53]. The results showed that the measurement was strongly
influenced by the stress concentrations in the fransition radii and
by the embedding. Thus, the interpretation of these result was diffi-

cult.
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In the cagse of the prosthesis, the model was produced by casting. The

mould which was used in the casting was prepared in the following way:

. The prosthesis with connecting pipes and alignment pins were

placed in a wooden box.

Plaster of Paris was poured into the box until approximately

half of the prosthesis f{along its axis) was covered.

After the plaster of Paris had hardened, silicone rubber?¢ was

poured into the box until the prosthesis was entirely covered.

The box was placed in an oven where the rubber was allowed to

harden (to cure} for two days at 7¢°C.

The plaster of paris was removed and the surface of the pros-
thegsis and the silicone rubber cleaned. The cleaned surfaces

were then sprayed with silicon mould release agent.

. The silicone rubber was poured over the second half or the

prosthesis,

. The rubber was cured as in 4.

The prosthesis was then removed. The adjacent surfaces of the
two halves of the mould were covered with silica gel and con-
necting pipes., 15 mm in diameter, were attached in such a way
that they enabled an ascending casting (Figures 32 and 33).
The mould was subsequently clamped together and sealed with

silicone sealing paste.

The photoelastic material used in the castings was Araldite CT200 with

HT907 hardener?5. This material has the property that above a certain

24 STLASTIC, J RTV silicone rubber, Dow Corning, Senefee, Belgium

28 Sharples, Stress Engineers, Ltd., Preston, U.K.
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critical temperature (approximately 135°C), it changes its structure
from glass-like to rubber-like. I1f the material ig loaded in its
rubber-like state and then cooled slowly until room temperature is
reached, the strain induced by the loading does not vanish even if the
loading is removed and the model cut into slices. The material also has
the property that if stressed, it exhibits different refractive indices
in each of the principal stress directions. Thus, when viewed in polar-
ised light, fringe patterns can be seen, from which, using well-estab-

1ished techniques, the principal stress values can be obtained.

Prior to casting, 300 grammes of Araldite CT200 was melted at 140°C. 249
grammes of melted hardener HT987 at 100°C was then added through a fine
sieve to the Araldite. The nixture was then mixed thoroughly and poured
into the mould which had been preheated to 108°C. At the same time as
the model of the prosthesis, a sheet of the material, 3 mm in thickness,
was also cast. The mould for the prosthesis and for the sheet were then
kept in an oven at 180°9C for four days. After this, the oven temperature
was reduced slowly at the rate of 2°C per hour to approximately 75°C.
The castings were removed from the moulds and were finally cured at
139°C for one day in a Glycerine bath. The tenperature was then reduced

slowly to room temperature.

A hole, 1.5 mm in diameter, was drilled through the neck of the model of
the prosthesis. This hole was used for attaching the load during the
heat treatment cycle. The model was then embedded in Araldite in such a
way that the axis of the model was tilted by 10° from the vertical and
the embedding level was approximately 50 mm below the basic-step (Figure
34). Prior to the embedding, the model of the prosthesis was covered
with a thin layer of silica gel in order to prevent malting of the model
by the hot Araldite during the casting of the embedding. R disc, 3¢ mn
in diameter was cut from the sheet of material which had been cast in
parallel with the model of the prosthesis. This disc was placed in a rig
which enabled compressive loading of the disc along its diameter (Fig-
ure 35}. The model of the embedded prosthesis and the rig with the disc
were placed in an oven. The temperature in the oven was then raised to
135°C. After one hour, the model and disc were loaded. After approxi-
mately thirty minutes more, the reduction of the temperature at the rate

of 2°C per hour to room temperature was begun. From the model of the
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prosthesis, a thin slice (approximately 2.7 mm in thickness), along the
axis of the prosthesis and parallel to the axis of the neck was care-
fully machined. After machining, the surfaces of the slice were polished
by hand in order to remove any machining marks. The slice and the disc

were then ready for the photoelastic investigation.

The apparatus used in the photoelastic investigation was the so-called
transmission polariscope (Figure 36). In this polariscope, a slice from
the model under investigation is placed between two polarcids. The first
polaroid is called the polarizer and the second, the analyser. White or
monochromatic light is passed through the polaroids and the slice. The
glice is observed behind the analyser with the help of a travelling
microscope. If the polariscope consists only of the polaroids, it is
called a3 plane polariscope. 1f, in addition to the polaroids, also
gquarter-wave plates are placed between the polaroids, it is called a
circular polariscope. The plane polariscope works in the so-called dark-~
field mode if the optical axis of the polaroids are crossed (are perpen-
dicular to each other). The circular polariscope works in the dark-field
mode if the axis of the polaroids are crossed and the axis of the quar-

ter-wave plates are crossed and at 45° to those of the polaroids.

Two types of fringes, i.e. line patterns in a stressed slice, can be
observed in a polariscope. The fringes of the first type are called iso-
chromatics. Isochromatics are lines of constant principal stress d4if-
ference. If white light is used, these lines are coloured with the ex-
ception of the fringes of the so-called order zerc, which are black. The
second type of fringes are called isoclinics. These are black lines at
which the directions of the principal axes of stresses are parallel to
the axes of crossed polaroids. If the polaroids are rotated, the iso-
clinicg pattern also rotates. The isochromatics, however, remain un~
chkanged. From the pattern of isoclinics, the so-called stress trajec-
tories can be drawn. Stress trajectories are lines drawn such that their
direction at any point coincides with that of one of the principal
stresses at the point. In the plane polariscope, the isochromatics and
the isoclinics can be observed simultaneously. In the circular polar-
iscope, only isochromatics can be seen. In the dark-field mode, the iso-
chromatics are assigned fringe orders which are whole numbers starting

from fringes with the fringe order zerc. In the circular polariscope, it
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is also possible to determine fractional fringe orders at any point of
the slice. The method of doing this is called the Tardy compensation
method. In this method, the axis of the polaroids are set parallel to
the axes of principal stresses in the model at the point under obhserva-
tion. This is done by rotating the crossed polaroids with the quarter-
wave plates removed, until an isoclinics passes through the point. The
quarter-wave plates are then inserted with their axis crossed and at 45°
from those of the polarcids. The analyser is then rotated until an iso-
chromatics of known (whole) fringe order passes through the point under
observation. The angle by which the analyser has to be rotated is called
the angle of compensation. The value of this angle when divided by n
gives the fractional fringe order which has to be added or subtracted
from the fringe order of the fringe which was brought to the point under

observation,

Equation which relates the fringe orders with the stresses in the slice

ig the so-called stress-optic law:
o1 - g2 = nxf/d,
vhere

g1 - oz - difference between the principal stresses in the
plane of the slice,
f - constant depending on the material and the wavelength of
the light used. f is called the material fringe value or
the fringe-stress coefficient [N/mm].
n - fringe order,
d - thickness of the slice.

At a free surface of, i.e., at the contour of the slice, one of the
principal stresses (perpendicular to the surface) is equal to zero.
Therefore, it can be seen that by measuring the fringe orders at a point
on the surface leads directly to the value of the principal stregs at
this point, providing that the fringe-stress coefficient of the photo-

elastic material is known.

In the case of the model of the prosthesis, the fringe-stress coef-
ficient of the material was established from measuring the fringe order
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in the centre of the disc, which was cast and heat treated in parallel
with the model. From the theory of elasticity, the magnitudes of the
principal stresses in the centre of a disc subjected to a compressive
force which acts along the diameter of the disc are as follows:

2p/{nbd),

n

451

Oz GP/(nDd,r

where

P - value of the force,
D - diameter of the disc,
d - thickness of the disc.

Substituting these expressions for the principal stresses into the
stresg-optic law leads to the following expression for the fringe-stress

coefficient:
f = (gy-v2)d/n = 8P/ (nDn},

where

n - fringe order in the centre of the disc.

The value of the fringe-stress coefficient for the disc was used in cal-
culating the stresses with the stress optic law along the surface of the
slice which was machined from the model of the prosthesis. Fringe orders
were measured at points on the surface of the slice. The points lay in
the roots of the transition radii and in spaces between them. The fringe
orders were measured using monochromatic light from a mercury vapour
bulb, While measuring the fringe order at one point, the following

procedure was used:

1. The cross-hair of the travelling microscope was positioned on

the point under investigation.
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2. The value of the fringe order was measured with the Tardy
methed and while doing this the analyser was rotated until a

given fringe just disappeared at the surface of the slice.

3. The analyser was then rotated back until the fringe just

emerged at the surface.

4. The average of the values of the fringe orders obtained in

steps 2 and 3 was taken.

This procedure was conducted several times at the same point. The final
value of the fringe order at one point was obtained by averaging the

results of all the measurements at this point.

In this work, the total of three different prosthesis were investigated

with the technigque of 3D photoelasticity by stress freezing.

2.4.2. Scattered-light Photoelasticity

Scattered-light photoelasticity is a photoelastic methed which enables
an experimental stress analysis of a three-dimensional component without
the need for the stresses to be frozen and without the slicing of the
model [54]. The use of this method, therefore, seemed to be appropriate
for the case of the prosthesis. The applicability of the scattered-light
method was evaluated on a problem related to the estimation of the
stress concentration factors in the transition radii between the steps
of the prosthesis. In Chapter 2.3.2.2, it was stated that the calcula-
tion of the stress concentration factors for a generally shaped step of
the prosthesis is not possible with the finite element method. In the
sinple mathematical model of the prosthesis {(Chapter 2.3.4), the magni-
tude of the stress concentration factors is estimated on the basis of
charts from the literature. These charts, however, do not take into
account that the shapes of the sections of the prosthesis are highly
irregular and that the sections are not 'symmetric’ in respect to each
other. They are not 'symmetric' in the sense that their centroids do not
lie on a straight line, in other words, there is an offset or 'eccen-

tricity' between the centroids. In the literature, there is no indica-
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tion if such an eccentricity can influence the value of the stress con-
centration factors. Thus, it was decided to investigate this problem
with the scattered~light photoelasticity. The problem was simplified,
i.e, it was attempted to measure the stress concentration factors in
round bars with a fillet and an eccentricity subjected to pure bending.
In this way, the results of the investigation could be compared with the
results from the literature for the case of concentric round bars with a

fillet subjected to pure bending (Figure 29).

The theory and the methodology of scattered-light photoelasticity are
well-described in the literature [54, 55, 56, 57, 58, 59]. The technique
uses preferably a low power laser as the source of monochromatic light.
The light is passed through a model of the component under investigation
which is made of a photoelastic material, i.e, a material which is

transparent and which if stressed, it exhibits different refractive

indices in the directions of principal stresses. In order to reduce any
disturbing scatter or reflection of the light at the surface, the model
is usually submerged in an immersion fluid. In an ideal situation, the
refractive index of the immersion fluid matches that of the photoelastic
material. On its way through the model, the light is scattered on small
inclusions which are always present in the model. The scattered-light is
plane polarized and propagates in directions perpendicular to the direc-
tion of the incident light. If scattered-light from a stressed model is
observed , its intensity iz a minimum and maximum along the path of
incident light. In this way, a fringe pattern is observed. From such
fringe patterns, it is possible to calculate the magnitude of principal

stresses at each point of the path of the incident light in the nodel.
The stress-optic law in scattered-light photoelasticity is as follows:
o1 - gz = {dn/ds)*f,
where
g1,2 - principal stresses at point of interest,
n - fringe order at point of interest,
s - distance from the entry point of incident light to point

of interest,

£ - fringé—stress coefficient.




This equation is valid for the case where the direction of the incident
light is parallel to the direction of the third principal stress2?s, oa,
and where the directions of the principal stresses o and ¢z do not
rotate along the path of the incident light [55]. If these conditions

are satisfied, the difference between two of the principal stresses at
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any point along the path of the incident light can be obtained as

follows:

1.

The light is passed through the model in the direction
parallel to that of the third principal stress??.

Starting from the entry point of the light into the model, the
fringes are assigned appropriate fringe orders, i.e., whole

numbers.

Along the direction of propagation, the distances from the
entry point of the light to the fringes and up to the point of

interest are measured.

A curve which expresses the dependence of an from as is drawn,
where an denotes the difference in fringe orders of two
fringes and as, the difference in the distance between these

fringes.

A tangent is then drawn at the point of interest. The slope of
this tangent is directly proportional to the principal stress

difference at the point.

26 The stress—-optic law is also valid in the case where the direction of

27The directions of the principal stresses can be found either from

the light propagation is not parallel to the direction of one of the
principal stresses, In this case, the difference between two stresses
with directions perpendicular to that of the light propagation is

measured. These stresses, however, are not the principal stresses.

theoretical considerations or experimentally [54, 59].
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In scattered-light photoelasticity, the incident light is usually plane
or circular polarized. If the light is plane polarized, the maximum
contrast of the fringe pattern is achieved if the plane of polarization
is inclined 45° to the directions of principal stresses ¢: and o2, and
if the the fringe pattern is observed perpendicular to the direction of
light propagation in the direction perpendicular or parallel to the
plane of polarization [59]. If circular polarized light is used, the
maximum contrast of the fringe pattern is observed perpendicular to the
direction of light propagation and at 45° {or 135°) to the directions
of the principal stresses [56]. In the case of plane polarized light,
the first fringe from the entry point of the incident light into the
model has an order equal to one or one half. In the case of circular
polarized light, the first fringe has an order equal to one quarter or
threequarters [58]. In any practical case, the value of the fringe order
of the first fringe can be easily determined. This is done simply by

comparing the fringe patterns observed from different directions.

It has already been mentioned that the scattered-light method was used
for estimating the influence of an eccentricity on the value of the
stress concentration factor. An attempt was made to measure this influ-
ence on round bars with a fillet which were subjected to pure bending.
The preparation of specimens for investigation was conducted in the
following way. Firstly a number of round bars with uniform diameter were
cast from Araldite CT20¢. The method of the casting was equivalent to
that for casting the models of the prosthesis ({see Chapter 2.4.1). These
bars were then machined to the desired shape. A& schematic drawing of the
shape of the specimens is shown in Figure 37. The specimens consisted of
two sections which had the shape of round bars. The diameter of one sec-
tion was equal to 20 mm and the diameter of the second section was equal
to 30 mm. There was a transition radius between the sections. The speci-
mensg were machined in such a way that in some specimens, the sections
were concentric and in others, eccentric. The eccentricity of the speci=-
mens was defined as the distance between the centres of the sections.

The total of 13 specimens was produced. They were as follows:

1. Concentrie with 5 mm fillet radius,

2. Concentric with 3 mm fillet radius,
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Concentric with 1 mm fillet radius,
mm eccentric with 4 mm fillet radius,

mm eccentric with 3 mm fillet radius,

mm eccentric with 2 mm fillet radius,

nm eccentric with 1 mm fillet radius,

0~ Y N s W
. e e N

nm eccentric with 3 mm fillet radius,

10. 2 nm eccentriec with 1 mm fillet radius,

11.
12.
13.

mm eccentric with 2 mm fillet radius,

mm fillet radius,

1 4
1 3
1 2
1 1
2 3
9. 2 mm eccentric with 2 mm fillet radius,
2 1
3 2
3 mm eccentric with 1
4 1

nm eccentric with 1 nm fillet radius.

After the wmachining of the specimens, their surfaces were polished in
order to remove any machining marks. The specimens were then subjected
to a heat treatment cycle which was aimed at removing any stresses which
could have been introduced into the specimens during the machining
process. During this heat treatment cycle, the specimens were placed in
a glycerine bath, kept for two hours at 140°C and then slowly cooled

{2°C/1 hour) to room temperature,

The stress relieved specimens were then piaced in a loading rig. This
loading rig enabled the loading of one specimen at time in the four
point bending mode (Figure 38). Thus, away from the supporting pins, the

loaded specimen was subjected to a pure bending moment.

The experimental set-up which was used in this work is shown in Figure
39. As the light source, a helium-neon gas laser was used2®. This laser
had the output power of 20 oW and produced a continuous beam of plane
polarized light. The laser was mounted on an adjustable support which
enabled it to bhe rotated about its axis. The light from the laser was
passed through a set of apertures onto an adjustable mirror. Optionally,
a quarter-wave plate could be placed between the apertures. After having
been reflected from the mirror, the light entered an immersion tank. The

immersion tank was a rectangular glass container and it was filled with

28Helium-neon laser model 106-1, SPECTRA-PHYSICS Inc., Eugene, Oregon,
U.S.A.
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olive 0il as the immersion fluid. The refractive index of the olive oil
of approximately 1.56 does not exactly match the refractive index of the
Araldite which is approximately 1.6. An exact match between the refrac-
tive indices of the immersion fluid and the Araldite would have been
possible if a mixture of a-bromonaphtalene and liquid paraffin was used.
The a-bromonaphtalene, however, can cause dermatitis and may be carcino-
genic. Therefore, on the grounds of safety, olive oil was used. A video
camera was positioned?® perpendicular to the direction of propagation of

the light in the immersion tank. This camera was connected to a video

monitorse,

During measurements, the loading rig with the specimen was placed in the
immersion tank. Two positions of the rig were possible in the tank. In
the first position, the specimen lay horizontally. This position was
designed to measure stresses in the specimen away from the fillet. In
the second position, the specimen was at 45° to the horizontal. This
position was designed to measure stresses in the root of the fillet
radius. The laser, the apertures and the mirror were adjusted until the
light from the laser in the form of a beam was perpendicular to the
surface of the specimen. Thus, the positions of the specimen with res-
pect to the direction of the laser beam ensured that the beam entered
the specimen in the direction parallel to that of one of the principal
stresses at the surface (Figure 48). {(The direction of the principal
stresses are readily obtained by considering the bending theory.) The
video camera was positioned in such a way that the direction of observa-
tion of the scattered-light was perpendicular to the direction of propa-
gation of the laser beam and at 45° to the directions of the principal
stresses in the specimen{ Figure 41). Thus, a magnified picture of the
scattered-light fringe pattern could be observed on the video monitor.
The laser was then rotated along its axis until the fringe pattern
showed a maximum contrast. In this position, the polarization plane of

the laser light was at 459 to the directions of the principal stresses.

29Video camera model AVC-3250CE, SOWY, Japan

3¢Y¥ideo monitor model VM 9QO0E/K, Hitachi, Japan
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A quarter-wave plate was inserted between the apertures in such a way
that one of its axes was parallel to the polarization plane of the light
(Figure 41). By rotating the laser in steps of 45° about its axis, it
was thus possible to make the light circular or plane polarized. (In the
initial position of the laser, the light entering the specimen was plane
polarized. After rotating the laser by 45°, the light was circularly
polarized. By rotating the laser by further 459, the light became once
more plane polarized, but the direction of polarization was perpendicu-
lar to that in the initial position. After the laser was rotated by
further 45°, the light was circularly polarized, but the direction of
rotation of the light vector was opposite to that in the previous circu-
larly polarized light (see Figure 42).) Also by rotating the laser, it
was possible to establish the value of the fringe order of the first
fringe in the pattern. In the case of plane polarized light, the first
fringe was assigned the value of one half for the position of the laser
in which the fringe was nearer to the entry point of the laser beam into
the specimen, i.e., nearer to the surface of the specimen. Otherwise,
the first fringe had the order equal to one. In the case of circularly
polarized light, the first fringe was assigned the value of one quarter
for the position of the laser, in which the fringe was nearer to the
surface. Otherwise, the fringe had the order equal to three quarters. It
has to be noted that by rotating the laser, the position of the fringe
pattern is changed. This process is similar to the Tardy method of
compensation and was used for determining fractional fringe orders at

points along the light propagation in the specimen ([59].

Two measurements were conducted on each of the specimens. The first
measurement was carried out with the light entering the specimens away
from the fillet and the second, with the light entering the specimens at
the root of the fillet. During each of the measurements, the laser was
positioned in such a way that the first fringe had a value of fringe
order equal to cone. The distances of the fringes in the fringe pattern
from the surface of-the specimen under investigation were measured on
the video monitor. The laser was then rotated until a change in the
position of the fringe patterns could be observed. In practice, this
meant that the laser had to be rotated by 306°, or the laser was rotated
by 45°. The distances of the fringes from the surface were once nrore

measured. The procedure of rotating the laser and measuring the dis-
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tances of the fringes was repeated until the laser was rotated to its
initial position. A graph of fringe order against fringe distances from
the surface was produced. A curve was drawn through the points of the
graph. A tangent at the point of this curve which represented the sur-
face of the specimen was than drawn and its slope calculated. In calcu-
lating the stress concentration factors it was assumed, in accordance
with bending theory, that at the surface, the value of the principal
stress o1 was much larger than that of the stress ¢z2. The value of the
principal stress oz, in the direction perpendicular to the surface, was
equal to zero as the surface was not loaded externally. Taking into
congideration the stress-optic law, the slope of the tangent was, there-
fore, directly proportional to the value of the slope of the tangent,
the proportionality factor being the fringe-stress coefficient. The
stress concentration factor is defined as the ratioc of the maximum
stress in the root of the fillet radius to the maximum stress away from
the fillet {see Chapter 2.3.2.2). Thus, the stress.concentration factor
vas calculated by dividing the value of the slope of the tangent ob-
tained from measurement in the fillet, by that obtained from measurement
away from the fillet. In doing this, the value for the fringe-stress
coefficient was cancelled out. Therefore, there was no need to establisgh
its valye. This also npeant, that the value of the bending moment did not
have to be known, provided that the bending moment was not changed

during the measurements on one specimen.
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2.5. RESULTS

. 2.5.1, FEM-model

. The finite element model was used for calculating stresses in three
prostheses. These prostheses had the designations F063, F®76 and G035.
These prostheses were also investigated with three-dimensional photo-
elasticity by stress freezing. Calculations with the finite elément

model, using the program PROEM (see Chapter 2.3.2.2}, were carried out

for the following cases:.

1. Stresses were calculated for éach of the prostheses without the
embedding. This case was aimed at comparing the results of the
FE-analysis with the results from the simple model and with
those from the photoelastic experiments. The models were loaded
at points, coordinates of which were calculated for the point
where the load was attached to the photoelastic model. The
value of the load was equal to that used during the photoelas-

tic experiments.

2. Stresses were calculated for embedded prostheses. As this case
was ained at comparing the results with the results from the
photoelastic experiments, the material constants of the pros-
theses and of the embedding were set equal to those of Aral-
dite at the stress freezing temperature, i.e., the elasticity
modulus E was set equal to 15 N/mm? and the Poisson's ratio v
set equal to 0.43% {51]. The coordinates of the loading point

and the value of the load were equal to these in the case ore,

31The Poisson's ratio of Araldite above the critical temperature is
equal to 0.48. This value, however, could not be used in the finite
element model as in this case, the system matrix is ill conditioned.
The value of 0.4 for the Poisson's ratio is therefore an approxima-

tion.
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3. Finally, stresses were calculated for emhedded prostheses. The
load was applied in the centre of the head of the prostheses.
For simplicity, the value of the load was assumed to be equal
to IN. The material constants were set equal to these of the
material of the prostheses, i.e., Ti-5A1-2.5Fe alloy, and of
the embedding, i.e., PMMA. These values were £ = 112GPa and v
= $.32 for Ti-5A1-2.5Fe, and, E = 3.5GPa and v = 0.33 for
PMMA [24)1. This case was aimed at showing the influence of
different material properties of the prostheses and the embed-
ding on the stresses in the embedded part of the prostheses ,
and at estimating the stresses in the prostheses during DIN-

tests.

The results of the finite element analysis were evaluated with the help
of the PIGS package (see Chapter 2.3.2.2). Direct and von Mises stres-
ses?2 yere plotted along cross sections of the finite element models,
The maximum {positive) and the minimum (negative} stresses were identi-
fied on each of these plots. The values of these stresses were then

plotted along the z-axeg of the prostheses.

Typical examples of plots of stresses along a cross section of the model

of the prosthesis F@76 are shown in Figures 43 and 44. Figure 43 shows ‘
the values of the stresses for a cross section above thé embedding level

and Figure 44, for a section at the embedding level. In both the fig-

ures, the values of the direct stresses: ox, oy and ¢z, and, the wvon

Mises stress are shown against the node numbers.

32Direct stresses are stresses along the axes of the coordinate system,
i.e, the stresses ox, oy and oz. The von Mises stress is an effective
stress which is calculated form the following formula:
ge = /2 {{ox—0ay)2+loy~0z)2+{gz-0x)2%}%,

where

ge - the von Mises stress.
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Plots of maximum (tensile} and nminimum (compressive) stresses along the
z-axes of embedded prostheses (analysis according to the case 2} are
shown in Figures 45-56. Figures 45 and 47 show the maximum and minimum
direct stresses, and, Figures 46 and 48, the respective von Mises
stresses along the z-axis of the prosthesis F@63. The same types of
plots for the prostheses F076 and G835 are shown in Figures 49-52 and
53-56 respectively. o

Figures 57-60 show the maximum and mininum direct stresses and the von
Mises stresses for the prosthesis F@76, which were calculated according
to the case 3. The values of these stresses are plotted along the z-axis

of the prosthesis.

The plots for the maxXimum and minimum von Mises stresses {Figures 46,
43, 50, %2, 54 and 56) and similar plots for prostheses without the em-
bedding (acording to the case 1) served as the basis for comparing the
result of the finite element analysis with the results from photoelastic
experiments. The values of these von Mises stresses are shown in the
tables below. By definition, the von Mises stresses are always positive.
However, in order to be able to distinguish between the stresses which
were calculated for positive direct stresses and these which were cal-
culated for negative direct stresses, the values of the von Mises
stresses were regarded as positive for positive direct stresses and
negative for negative direct stresses. Table 2.5.1.1, Table 2.5.1.2 and
Table 2.5.1.3 show the values of the von Mises stresses for the pros-
theses F063, F0T76 and G035 respectively. A graphic representation of
theses values can be found in Figures 79, 80, 81, 85, 86 and 87.



Table 2.5.1.1. FEM-model of prosthesis F063. Values of von Mises

stresses for comparison with the results from photoelasic experi-

nents.

~z-coordinate

without embedding

with embedding

mm] 0e x1000 [N/mm2] 0ex1000 [N/mm2]
max. min. max. min.
8 400 -444 - -
16 - 346 -356 - -
24 331 -350 - -
32 314 -327 - -
49 306 -320 - -
48 329 -334 3 -0.8
56 267 ~-336 3 -3.4
64 251 -273 8 ~-13.7
72 203 -235 53 -60
80 151 -197 120 -144
84 - - 142 -18¢0
88 111 -133 116 -142
96 17 -101 19 -100
104 49 -56 40 -81
112 20 -49 26 -67
120 - - 19 -46




Table 2.5.1.2. FEM-model of prosthesis F076. Values of von Mises

stresses for comparison with the results from photoelasic experi-

ments.

z-coordinate

without embedding

with embedding

{mm] 0ex1000 [N/mm2] Oex1000 [N/mm?]
max. min. max. min.
8 418 ~446 - -
16 372 -420 - -
24 341 -372 - -
32 307 -349 - -
40 287 -327 3 -1
48 281 -318 3 -4
56 261 -318 12 -24
64 224 -236 55 ~67
72 205 -259 163 ~197
76 - - 194 ~234
80 182 2017 182 -~215
83 162 =241 156 ~234
96 139 =159 142 ~165
100 - - 101 ~148
104 97 -151 16 ~124
112 28 ~137 12 112
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Table 2.5.1.3. FEM~model of prosthesis G035. Values of von Mises

stresses for comparison with the results from photoelasic experi-

ments.

z-coordinate

without embedding

with embedding

{nm) Oe x1000 [N/mm?] Ce x1000 [N/mm?]
max. min. max. rin.

8 28 ~-116 - -

16 72 ~162 - -

24 108 -192 - -

32 146 ~-214 - -

40 152 -238 2 -1.8

48 166 -224 4 -2.6

56 166 ~232 6 ~-6.4

64 172 ~238 8 -18

72 190 -254 44 =70

30 194 -252 154 -206

88 206 -250 204 -258

96 160 -206 160 -222

104 118 ~-164 124 ~-160

112 48 -108 70 -88

120 - - 24 -96

As descfibed in Chapter 2.3.2.2, a finite element model was developed

{program COSCF) which enablend an estimation of stress concentration

factors along the transition zone between two sections of the prosthe-

sis. An exanple of such estimation is shown for the section 12 of the

prosthesis FB76 with the value of the transition radius equal to 2 mm.

The geometry of this section is shown in Figure 61. Plots of maximum

direct and von Mises stresses along the transition zone for the models

representing the section of the prosthesis with no transition radius,
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with one third of the transition radius, with two thirds of the transi-
tion radius and the whole transition radius (see Figures 17-20) are
shown in Figures 62-69 respectively. The plots showing the von Mises
stresses were used for calculating the stress concentration factors. The
values of these stresses and the values of the stress concentration

factors are shown in Tables 2.5.1.4 and 2.5.1.5 respectively.

Table 2.5.1.4. Values of von Mises stresses along the transition zone

for model of section 12 of prosthesis F@76.

Number no radius one third two thirds  whole radius
Ce X 10-3 e x 10-3 oge X 10-83 ge x 1073
_ [N/mm?] [N/mm? ] [N/nm? ] [N/mm2 ]
1 4,01 4.490 5.64 5.73
2 3.02 3.24 4.03 4.1%
3 1.41 1.41 1.M 1,95
4 0.19 0.42 0.517 0.61
5 1.94 2.03 2.55 2.89
6 3.38 3.72 4.53 4.84
7 3.91 4.13 5.09 5.35
8 3.06 3.38 4.903 4.41
9 1.178 1.84 2.67 2.69
10 0.33 0.47 0.60 0.62
11 1.65 1.67 2.12 2.24

[y
b

2.87 3.14 3.82 3.85
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Table 2.5.1.5. Values of stress concentracion factors calculated from

Table 2.5.1.4.

Number no radius one third two thirds whole radius
1 1 1.10 1.41 1.43
2 1 1.97 1.33 1.39
3 1 1.00 1.26 1.40
4 1 z.21 3.60 3.21
5 1 1.05 1.31 1.49
6 1 1.19 1.34 1.42
7 1 1.06 1,39 1.37
3 1 1.10 1,32 1.44
9 1 1.83 1.50 1.51

10 1 1.42 1.82 1.85

11 1 1.01 1.28 1.36

12 1 1.09 1.33 1.34

In the literature, the valuas of stress concentration factors are usu-

ally presented in the form of graphs (see Figures 28 and 29). In such

graphs, the stress concentration factors are shown against two factors.

radius (r} to the value of the smaller diameter of the section {d). The
second factor is equal to the ratio of the value of the larger diameter
{D) to that of the smaller diameter (3). Table 2.5.1.6 shows the values

The first factor is equal to the ratio of the value of the transition

of the diameters for each of the point on the transition zone for each

of the models. These diamenters were calculated as described in Chapter

the centre of the section plus a value which represents the height of

|
|
2.3.2.2, i.e, they are the values for the distances from the points to |
|
|

the transition zone (see Figure 61). The height of the transition zone

for the model with one third of the transition radius was calculated

from the formula:
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h = r*{l-cos3¢®),

and the height of the transition zone for the modes with two thirds of

the transition radius, from the formula:
h = r*(1-cos60°)
where

h - height of the transition zone,
r - value of the transition radius; r=2 mm.

The height of the transition zone for the model with the whole transi-
tion radius was equal to the value of the transition radius, i.e, h = 2

mh.

Table 2.5.1.6. Values of the diameters for each of the points in

the transition zone of section 12 of prosthesis F976.

Nunber no radius one third two thirds whole radius
¥d [mn] ¥D [mm] ¥n [mm] ¥D [mm]
1 7.71 7.98 8.7 9.71
2 7.34 7.61 8.34 9.34
3 7.02 7.29 8.02 9.02
4 17.07 7.34 8.07 9.07
5 7.80 8.07 8.8¢ 9.80
6 6.98 7.25 7.98 8.98
7 6.24 6.51 7.24 8.24
8 6.52 6.79 7.52 8.52
9 8.08 8.35 9.08 10.08
10 7.21 7.48 8.21 9.21
11 6.24 6.51 7.24 8.24

6.52 6.79 7.52 8.52

[
b
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Table 2.5.1.7 shows the values of ratios between the diameters from

Table 2.5.1.6.

Table 2.5.1.7. Values of ratios r/d and D/d for section 12 of
prosthesis F@76.

Number ' one third two thirds whole radius
r/d D/d D/d D/d
1 0.13 1.04 1.13 1.26
2 0.14 1.04 1.14 1.27
3 0.14 1.04 1.14 1.28
4 0.14 1.04 1.14 1.28
5 0.13 1.03 1.13 1.26
6 0.14 1.04 1.14 1.29
7 9.16 1.04 1.16 1.32
8 0.15 1.04 1.15 1.31
9 9.12 1.03 1.12 1.25 .
10 0.14 1.04 1.14 1.28
11 0.16 1.04 1.16 1.32
12 ¢.15 1.04 1.15 1.31

Using the values of stress concentration factors from Table 2.5.1.5 and |
the values of the ratio D/d from Table 2.5.1.7, a series of graphs can

be plotted, which show the stress concentration factors against the

values of the ratios for each point in the transition zone. An example

of one such graph is shown in Figure 70 for the point number 1 from

Tables 2.5.1.5 and 2.5.1.7. From the geometrical data of the prosthesis,
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and in this particular case, from the coordinates of points of sections
12 and 13, the value of D/d for point 1 can now be calculated®®. (For
the purpose of argument, this value in Figure 70 is assumed to be equal
to 1.20.) Having calculated the value of D/d, the respective value of
the stress concentration factor can be obtained from Figure 70. (For

D/d=1.20, the stress concentration factor is found to be equal to 1.42.)

Using the values from Tables 2.5.1.5 and 2.1.5.7, the stress concentra-
tion factors can be compared with those from the literature. Table
2.2.5.8 shows values of stress concentration factors obtained from the
chart in Pigure 28 using the values of r/d and D/d from the Table
2.1.5.7. Figure 28 contains values of stress concentration factors from
the literature for the case of a rectangular bar with a fillet, which is
subjected to pure bending. The values in Table 2.1.5.8, therefore, show
the valués of the stress concentration which would be found by the
simple model of the prosthesis (see Chapter 2.3.4). The stress concen-
tration factors in Figure 28 are shown as a set of curves agains the
values of r/d. Each of the curves is valid for one specific value of
b/d. Because of the fact that the values of D/d in Figure 28 are not
continuous, the values of the stress concentration factors for the
values of D/d from Table 2.5.1.7 cannot be exactly calculated. Table
2.5.1.8 shows, therefore, a range of values of the stress concentration
factors for each value of D/d from Table 2.5.1.7. {In the simple model,
it is always the highest value in the range that is taken as the value

of the stress concentration factor.)

33Tt is to be noted that the value of the ratio r/d will not change.



Table 2.5.1.8. Stress concentration factors from literature for

values of D/d4 and r/d from Table 2.5.1.7.

Number one third two thirds whole radius
Kr Kt ' Kr*

1 1.30-1.41 1.52-1.60 1.64-1.70
2 1.30-1.40 1.50-1.58 1.62-1.66 )

3 1.30-1.40 1.50-1.58 1.62-1.66

4 1.30-1.40 1.50-1.58 1.62-1.66

5 1.30-1.41 1.52-1.60 1.64-1.70

6 1.30-1.40 1.50-1.58 1.62-1.66

7 1.28-1.38 1.48-1.52 1.56-1.60

| 8 1.28-1,40 1.48-1.55 1.58~1.64

‘ 9 1.32-1.44 1.56-1.62 1.68-1.74

‘ 16 1.30-1.40 1.50-1,58 1.62-1.66

11 1.28-1.38 1.48-1.52 1.56-1.60

1.28-1.40 1.48-1.55 1.58-1.64

[y
b

‘ * gr - gtress concentration factor

Figure 29 shows values of stress concentration factors for the case of a
. -

round bar with a fillet subjected to pure bending. If, instead of Figure

28, Figure 29 was used for obtaining the values of the stress concentra-

tion factors, the values in Table 2.5.1.8 would be up to 0.1 smaller.

2.5.2. BEM-podel

1 With the boundary element model, stresses for only one of the investi-
gated prostheses, F076, were calculated. The analysis was aimed at com~
paring the results from the boundary element model with these from the
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finite element model and from the photoelasic experiments. The material
properties of the prosthesis and the elastic constants of the linear
springs modelling the enbedding (see Figure 21) were set to equal these
of Araldite at stress freezing temperature (according to the case 2 of
the finite element models). Direct stresses along a section of the pros-
thesis above the embedding level and a section at the embedding level
are shown in Figures 71 and 72 respectively. In Figures 73, 74, 75 and
76, direct and von Mises stresses along the z-axis of the prosthesis are
shown. The values of the von Mises stresses for comparison with the re~
sults from the finite element analysis and from the photoelastic experi-
ments were obtained from Figures 74 and 76. They are shown in Table
2.5.2.1. The corresponding values of the direct stresses are also shown
in the same table. & graphic representation of the von Mises stresses

can be found in Figure 89.

Table 2.5.2.1. BEM-model of prosthegsis F@76. Values of von Mises
stresses for comparison with the results from finite element analysis

and from photoelastic experiments.

z-coordinate von Mises direct
{mm] gex1000 [N/mm2] 0:x1000 [N/mm2]

max. min. ) max. min.




2.5.3. Sinple Model

Tables 2.5.3.1, 2.5.3.2 and 2.5.3.3 show values of stresses, as calcu-
lated with the simple model, along the z-axes of the prostheses FD63,
F076 and G35 respectively. These values were cvalcuilated in such a way
that they can be directly compared with the results from the photoelas-
tic experiments. The embedding was not considered in the calculation.
The value of the transition radius for the prostheses F063 and F0T76 was
equal to 1 mm, and that for the prosthesis G035 was equal to 2 mm. A
graphic representation of the values in Tables 2.5.3.1, 2,5.3.2 and
2.5.3.3 can be found in Figures 79, 80, 81, 85, 86, and 87.



son with the results from photoelasic experiments.

Table 2.5.3.1. Simple model of prosthesis F063. Stresses for compari-

z-coordinate tension 7 compression
[mm] : Oz oz *Kr* Oz oz *Kr
1000 {N/mm?) x1000 [N/mm?)

8 391 602 -420 -602
16 286 375 =392 -396
24 229 332 ~246 -353
32 220 319 -238 -345
40 224 329 -231 -345
48 250 309 -257 -409
56 208 306 ~-229 -365
64 213 347 -241 -361
72 186 324 -214 -371
80 169 225 ~198 -339
84 123 205 -147 ~-252
88 101 173 -127 -248
92 86 148 -113 -201
96 17 123 ~103 -132
100 69 122 -95 -195
104 58 107 -82 -182
108 54 111 -81 -140

*Kr - stress concentration factor
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Table 2.5.3.2. Simple model of prosthesis FOA76. Stresses for compari-

son with the results from photoslasic experiments.

z-coordinate tension compression
[mm] o2 gz *Ky Oz Oz *K7
x1000 [N/mm?] : 21000 [N/mm?}
8 437 627 -438 -698
16 381 553 ~409 -629
24 345 452 -389 -481
32 3N 443 -328 -514
40 289 411 -318 -467
48 280 411 ~-319 -469
56 259 451 -287 ~483
64 226 343 ~-252 -421
72 208 348 -249 -416
80 179 223 -221 ~379
88 165 259 -215 -383
92 159 273 -215 -382
96 141 17 ~194 ~309
100 114 195 -168 -311
104 ' 193 183 -146 -301
108 91 188 -136 ~266

112 91 187 -127 ~279




Pable 2.5.3.3. Simple model of prosthesis 6035, Stresses for compari-

son with the results of photoslasic experiments.

z-coordinate tension compression
[mm] Oz gz *Kr dJz gz *Kr
x1000 {M/mn2] x100¢ [N/mm?]
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In Tables 2.5.3.4 and 2.5.3.5, values of maximum stresses along the z-
axis of the prosthesis F076 are shown. These values were calculated for
the case of embedded prosthesis which was loaded in the centfe of the
head with the load equal to IN. In order to show the influence of dif-
ferent values of transition radius, the stresses in Table 2.5.3.4 were
calculated for a transition radius of 1 mm and the stresses in Table
2.5.3.5, for a transition radius of 2 mm. Also, the value of the elas-
ticity modulus of the embedding was varied. Table 2.5.3.4 shows the re-
sults of the calculation in the case of the elasticity modulus of the
embedding being equal to that of the prosthesis. Table 2.5.3.5 shows the
results of the calculation in the case of the elesticity modulus of the
embedding 32 times lower than that of the prosthesis. Table 2.5.3.6
shows values of stresses along the z-axis of the prosthesis F076 which
were calculated with the FEM-model using the values of the elasticity
modulus of the embedding as in the case of Tables 2.5.3.4 and 2.5.3.5.
The values from Tables 2.5.3.4, 2.5.3.5 and 2.5.3.6 are shown in Figure
88.



Table 2.5.3.4. Simple model of prosthesis F@76. Elasticity modulus of

embedding equal to that of prosthesis

z-coordinate tension compression Torsion
[mm] oF3 gz *Kr gz gz *Kr Tmax X103
x10090 [M/mm?] %1000 [N/mn?] [N/mm2]
8 -1.6 2.2 1.6 2.5 1¢.8
16 -0.6 ~0.8 0.6 1.1 9
24 9. 0. 0. 0. 7.7
32 0. 0. 0. 0. 5.3
49 8. 0. 0. 0. 4.3
48 0.2 9.2 -0.2 -0.3 4.4
56 8.2 0.2 -0.2 -0.3 3.4
64 -1.6  -2. 1.7 2.9 3
72 -4.9 -5.3 5.4 19 2.6
89 4.8 7.6 -5.5 -9 2.4
88 53 66 -63 ~-113 2.4
92 83 135 -118 =230 2.9
96 70 120 -104 -172 3.4
100 62 114 -95 -176 3.3
104 51 94 -79 -147 2.6
108 44 96 -69 -134 2.4
112 35 78 -56 -123 2.7
116 25 55 -39 92 2.1
120 19 37 -31 -74 1.9

Stress concentration factor Kr for radius

equal to 1 mm.
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" Table 2.5.3.5. Simple model of prosthesis F§76. Elasticity modulus of

embedding 32 times lower than that of prosthesis.

z-coordinate tensicn compression Torsion
[mm] Oz oz *Kr oz oz *Kr Tmax X103
x1000 [N/mm?] X100 {N/mm2)} [N/mm?]

8 -4 ~5 4 5.6 19.8

16 -5.9 -7.1 5.8 8.4 ]

24 -6 -7.4 6.4 9.3 7.7

32 -5.4 -6.5 5.8 8 5.3

40 -6.3 7.7 6.5 9.2 4.3

48 -5.9 -7.2 6.2 8.7 4.4
56 -1.9 -2.4 1.8 2.7 3.4
64 9.8 12 -19.7 -15.8 3

72 33 41 -37 =57 2.6

86 56 75 -64 -94 2.4
88 81 99 -98 -149 2.4
92 83 118 -118 -191 2.9
96 10 102 ~104 -159 3.4
109 62 93 ~95 -151 3.3
104 51 77 ~179 -125 2.6
103 44 75 ~69 -112 2.4
112 35 61 ~56 ~1¢0 2.1
116 25 42 -39 -72 2.1
120 19 29 -31 -61 1.9

Stress concentration factor Kr for radius equal to 2 mm.




Table 2.5.3.6. FEM-podel of prosthesis F076. Elasticity modulus of

the embedding equal, and also 32 times lower, than that of the pros-

thesis.

z-coordinate Equal E E 32xlower
[mm] cz ten. ¢z compl. oz ten. | Oz CORPpr.
x1000 [}/mnz) x1000 [N/mn?)
8 0. 0 -2 2.2
16 0. 0. -1. 0.8
24 0. 0. -1.5 1.2
32 0. Q. ~-2.3 0.8
40 8. ¢ -3.8 0.4
48 8. ] -4.8 8.0¢5
56 0.5 0 -2 -1.5
64 1 -1 19 -8.5
72 2.2 -4 26 -18
80 10 -15 56 -46
88 49 -83 11 -118
92 84 -127 84 -129
a6 76 -90 75 -87
100 69 -88 69 -838
104 52 -81 52 -85 =
108 51 -78 51 -85
112 22 -67 20 -66
116 13 =72 13 -11
120 8 -50 19 -54
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2.5.4. Photoelastic Experiments

A typical exapmle of an isochromatic pattern in a slice from an Aral-
dite model of prosthesis is shown in Figure 77. In Figure 78, a schema-
tic drawing of the isochromatics, isoclinics and stress trajectories in
a typical slice is shown. Tables 2.5.4.1, 2.5.4.2 and 2.5.4.3 contain
the values of stresses as measured at the surface of the slices from the
prosthesis F063, F076 and G035 respectively. These values are also shown

in Figures 79, 80 and 31.

Table 2.5.4.1. Photoelastic results for the prosthesis F@63.

z-coordinate tension compression
[mm} 02 Cz

x1000 {N/mm?] 21000 [N/mm?]
72 13 -8
76 41 -25
80 71 -46
82 91 -63
84 97 -63
86 103 -176
88 117 -117
90 107 -117
92 125 -119
94 94 -108
96 1¢8 -97
98 67 -87

100 96 -78




Table 2.5.4.2. Photoelastic results for the prosthesis FOT76.

z—coordinate tension compression
frm] gz Tz

x1000 [N/mm2] x1000 [N/mm?]
70 36 ~36
14 13 ~58
78 192 -138
82 - -218
84 202 ~229
86 216 -248
as 189 -234
S0 198 -218
92 156 -206
94 171 -184
96 109 -167
98 134 -156
160 116 -139
102 165 -131




Table 2.5.4.3. Photoelastic results for the prosthesis G@35. ‘

z-coordinate tension compression
[rom] Uz Oz ‘
x1000 [N/mn2] x1000 [N/mn2] |
\
76 111 -94
80 171 -128
84 214 -171 |
88 229 -233 3
92 227 ~214 |
94 218 -195
96 197 -195
98 174 -188
100 170 -171
102 129 -147
104 133 -141
106 113 -126
108 116 -103

2.5.5 Scattered-light Photoelasticity

Figure 82 shows an example of the stattered-light pattern in one of the
specimens under investigation. A typical set of result of measurment is

shown in Figure 83. Table 2.5.5.1 shows values of stress concentration

cludes the stress concentratio factors from the literature (Figure 29),
A graphical representation of the values from Table 2.5.5.1 is shown in

factors determined with scattered-light photoelasticity. It alseo in-
Figure 84.



Table 2.5.5.1. Stress concentration factors obtained with scattered-

light photoelasticity.

Specimen
r I'I‘d D/d Kexp Kit
[me]
.concentric
5 0.25 1.5 1.37 1.86 - 1.38
3 0.15 1.5 1.7 2.31 - 1.54
1 0.05 1.% 2.0 2.84 2.32 2.14
imm eccentric
4 p.2 1.6 1.88 1.91 - 1.46
3 .15 1.6 2.12 2.60 1.67 1.56
2 0.1 1.6 2.03 3.31 - 1.76
1 .05 1.6 1.80 3.71 - 2.26
2mm eccentric
2 9.1 1.7 1.93 - - 1.76
1 0.05 1.7 1.77 1.98 1.98 2.26
3mm eccentric
2 0.1 1.8 1.96 1.91 - 1.78
i ¢.05 1.2 3.53 3.41 2.85 2.26
4mm eccentric
1 9.05% 1.9 3.14 3.60 2.70 2.26
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2.6. DISCUSSION

2.6.1. 3D Photoelasticity by Stress Freezing

The results from the 3D photoelasticity by stress freezing serve as the
experimental check of the results from the mathematical models. There-.

fore, it is appropriate to discuss them first.

The major problem during the casting of the photoelasfic models of the
prostheses (see Chapter 2.4.1} was the possibility of air bubbles being
trapped in the models, It is obvious that models with air bubbles could
not be used in stress freezing experiments. The problem could be, to a
large extent, eliminated by very carefully sealing off the mould and
strictly observing the casting temperatures, i.e., the temperatures of
the mould and Araldite. Prior to casting, it was found to be advanta-
geous to keep the Araldite for approximately 10 minutes at casting tem-
perature after mixing with the hardensr. This enables the air bubbles
introduced by the nixing procedure to escape. No problems were encoun-
tered with the scale of the photoelastic models. After casting, the
largest dimensions of each section of the models were measured with cal-
lipers. These dimensions were then compared with that measured on the
original prostheses. It was found that these dimensions did not vary by
more than +9.02 mm. Thus, it c¢an be concluded that the photoelastic mo-

dels were true to the scale of the prostheses.

One of the major problems of the photoelastic experiments was the posi-
tioning of the models. The models had to be positioned according to the
position of the prostheses in the DIN-tests (see Chapter 2.2.2), i.e.,
the axis of the models had to be tilted by 16° from the vertical. During
the positioning, the models were held in a clamp which enabled the mod-
els to be smoothly rotated and moved in a horizontal and vertical direc~
tion. A specially machined cap, which fitted smoothly on the neck of the
moedels and which had a 20¢ mm long, straight pointer, was then tightly
attached to the necks of the models. The position of the pointer was
such that it was parallel to the neck axes of the modesls. The neck an-
gles, i.e. the angles of the neck axes and the axes of the prostheses

were known from the geometrical data of the prostheses (see Chapter
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2.3.1). Using the position of the pointer relative to the vertical di-
rection, the models cold be rotated to the required position. By repeat-
ing the positioning of the models several times, it was estimated that

the maximum error in the tilt angle of the axis of the models from the

vertical was *1°.

While casting the embedding around the photoelastic models, it was gen-
erally difficult to ensure that the embedding level was exactly 50 mm
below the basis sections of the prostheses. This problem was caused by
difficulties in estimating the change between the volume of as-cast, hot
Araldite and Araldite after the entire curing procedure. It seems that
this change in volume depends on the casting temperature and on the
amount of air present in hot Araldite. During curing, the air escapes
causing a reduction of the volume of the finished casting. Because of
the fact that the results from the photoelastic experiments were used
only for the purpose of comparison with the results obtained from the
mgthematical models {and not for the purpose of finding the values of
stresses in the prostheses during the DIN-tests), the problem of not
having the models embadded exactly 50 mm below the basis sections was
not regarded as a major one. This is because the comparison of the expe-
rimental results with the results from the mathematical models does not

depend on the embedding level,

The second major problem during the photoelastic experiments was the
value of the load with which the models were loaded during the stress
freezing procedure. This vglue of the load should be high encugh to
produce a2 sufficient number of fringes but it should not lead to an ex-
cegsive plastic deformation of the models. Initially, a predecessor of
the simple model for predicting the stresses in the prostheses {see
Chapter 2.3.4) was used in order to estimate the load required in the
stress freezing experiments. However, one or two models had usually been
destroyed before a satisfactory value of the load was found. It is
important to note that the models used in the stress freezing experi-
ments were always deformed. This deformation consisted of plastic and
frozen elastic deformations. The plastic deformation is undesirable but
it cannot be avoided. Because of the fact that the maximum stregses in
the models of the prostheses were found at the embedding level (the
proximal part of the prostheses and the neck were thicker than the sec~
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tions of the models at the embedding level}, it can be assumed that the
major proportion of the plastic deformation occurred at the embedding
level. If it is assumed that the whole deformation was plastic and that
it occurred at the embedding level, the result of such deformation can
be seen as leading to the parts of the models above the émhedding to be
rotated about an axis lying in the embedding level. This rotation causes
a reduction in the tilt angle of the models and a change in the position
of the point where the load was attached during the experiments. Thus,
it also causes the stresses in the model to rise on the tension side and
to decrease on the compression side. This,' worst case', scenario leads
to the conclusion that the values of the stresses as obtained from the
photoelastic experiments can be overestimated in the case of tensile

and underestimated in the case of compressive stresses.

The 'worst case' scenarioc is useful in order to estimate the errors in
the results from the photoelastic experiments, which could have been
caused by plastic deformation of the models. Using the positioning pro-
cedure of the models it was found that the tilt angles changed by less
than 2° during the stress freezing procedure. The errors were estimated
using the simple model of the prostheses, i.e., the program PROCO (see
Chapter 2.3.4), by calculating the stresses for the tilt angles equal to
10° and 8°. The comparison between the results of the calculation led to
the conclusion that the value of the stresses depended strongly on the
value of the tilt anhgle. The relative difference between the values of
stresses along the z-axes calculated with the tilt angle of 10° and
these with the tilt angle of 8° increased along the z-axes in the direc-
tion towards the distal end of the models. The relative difference at
the embedding level was as high as %30 percent. This results means that
under the assumption that the deformation of the models was caused
entirely by plastic deformation, the values of the stresses as measured
in the photoelastic experiments can be overestimated by 30 percent on
the tensile side and underestimated by 30 percent on the compression

side.

A second class of errors in the photoelastic experiments were causad by
the accuracy with which the models were positioned and the accuracy with
which the coordinates of the loading point could be determined. In order

to estimate these errors, the simple model was used. A series of calcu-
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lations was carried out, during which the value of the tilt angle and
the coordinates of the loading point were varied by #1° and #1 nm res-
pectively. These calculations led to the conclusion that the results
from the photoelastic experiments have a maximum relative error of *2¢
percent for both the tensile and compressive stresses at the embedding
level. This result is not only important in view of the photoelastic
experiments but also in view of the application of the mathematical mo-
dels for the purpose of predicting the stresses in HERAMED prostheses
subjected to the DIN-tests. Because of the fact that the accuracy of
positioning of the prostheses in the'DIN-tests is similar to that of the
models in the photoelastic experiments, it can be seen that any calcﬁla-
tion can predict the value of the stresses with an accuracy in the range
of +20 percent. It is to be noted that that this range can be larger or
smaller than 20 percent for each individual prosthesis as it depends on
the coordinates of the point of load application relative fo the embed-

ding level.

The last class of errors in the results from the photoelastic experi-
ments is connected to measurements errors, i.e, with the accuracy with
which the fringe orders could be measured. These errors can be estimated
by using the stress-optic law (see Chapter 2.4.1). The relative errors

can be calculated from the following equation:

ac/o = af/f + an/n + ad/d (1)
where

¢ - stress,

f - fringe-stress coefficient,

n - fringe order,

d - thickness of slice,

A - denotes the absolute accuracy for each value.

in Eguation (1) the value Af/f can be regarded as equal to the value of
an/n as the fringe-stress coefficient f was obtained experimentally by
measuring fringe orders in the centre of a disk subjected to a compres-
sive loading {see Chapter 2.4.1). During the measurements of the fringe
orders, their value could be easily determined with an accuracy of
+3.82. The values of fringe orders in the slices taken from the models
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of the prostheses and in the centres of the discs were in the range of 1
to approximately 3.5. Taking as the 'worst case' the value of 1 for the
fringe orders, the relative error an/n can be calculated as equal to *2
percent. The thicknesses of the slices were approximately equal to 2.7
mm and they were measured with an accuracy of +0.01 mm. Thus, the rela-
tive error ad/d was equal to +0.4 percent. Substituting the values of
the errors an/n and Ad/d into Equation (1) leads to the value for the
relative error of the results for the stresses ac/o as equal to #4.4

percent.

If the plastic deformation is regarded as having a negligible effect on

" the accuracy of the results from the photoelastic experiments, the total

error of these results can be calculated by adding the measurement er-
rors to the errors connected with the positioning of the models. Thus,

the total error of the results is estimated to be approximately +25 per-

cent.

In Figure 78, a schematic drawing of isochromatics, isoclinics and
stress trajectories is shown, which was observed in slices machined from
the photoelastic models. The isochromatics pattern above the embedding
level is typical for bending, i.e., the fringe with the order equal to
zero lies in the centre of the slice and the remaining fringes are
parallel to this fringe. The isoclinics and the stress trajectories also
confirm the fact that above the embedding, the models were subjected to
bending. An increase in fringe orders can be noticed in the proximity

of transition radii. This increase is directly related to the stress
concentrations in the radii. Starting with the embedding level, the
situation becomes complicated. The isoclinics pattern at the embedding
level resembles that of a bar subjected to three-point bending below the
loading point (compare Figure 89 [52]). In the embedding, the fringe
orders decline rapidly, but it seems that a broad resemblance with the

pattern above the enbedding is maintained.

Stresses along the edges of the slices taken from the models of the
three prostheses under investigation were obtained by measuring the
fringe orders. These stresses are shown in Figures 79, 8% and 81. It can
be seen from these figures that the maximum stresses, on both the com-

pression and the tension side, were always found at the embedding level.
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The stresses were smaller above, and rapidly declined, in the embedding.
Especially on the tensile side, the curves representing the stress dis-
tributions, have a zig-zag shape. This shape is obviously cased by the

presence of stress concentrations at the transition radii.

2.6.2. FEM—model

It was mentioned in Chapter 2.5.1 that the FEM~-model was used for calcu-
lating stresses in the prostheses with and without embedding. The first
case was used for comparing the results from the FE-analysis with the
results from tﬁe photoelastic experiments. The second case served as a
comparison for the simple model. This second case was also used in order
to estimate the accuracy of the FEM-model. This was done principally by
using the geometrical data of the prosthesis F076. The accuracy of a FE-
analysis depends on the number of elements which are used in the anal-
ysis and on the degree of distortion of these elements (see Chapter
2.3.2). The larger is the number of elements and the less these elements
are distorted, the more accurate are the results of the analysis. It is
to be noted that little can be done in order to reduce the distortions
of the elements while modelling such complex geometries as these of the
HERAMED prostheses. One can only hope that the elements will not be toco
distorted. The way in which the mesh generator for the FE-analysis was
written, i.e., the program PROEM, enabled an easy way of increasing or
reducing the number of elements. Several FE-analyses were carried out,
during which the number of elements were varied along the axis and in
the sections of the models. These analyses led to the result that in the
case of the prosthesis F#76, the stresses were calculated correctly if
each section was modelled by at least twelve brick and twelve wedge ele-
ments, and if each of the sections was 8 nm high. Any attempt to reduce
the number of elements by either reducing the number of elements in each
of the sections or by increasing the heights of the sections to 16 mm,
led to inconsistent results. On the other hand, if the number of ele-
ments were increased either by increasing the number of elements in the
sections or by reducing the height of the sections to 4 mm, the results
of these analyses showed little change. Thus, the program PROEM was pre-
set in such a way that by default, it generated a mesh in which each of

the sections was modelled by 12 brick and 12 wedge elements and in which
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the height of the sections was equal to 8 mm. However, if these values
were used for the prostheses F063 and G035, the FE-analyses showed
inconsistent results. These results showed that the models were appar-
ently buckling. However, no buckling effects can be calculated with
linear elastic FE-analysis. Thus, the 'buckling' resulted from errors in
the FE-analyses and disappeared when the number of elements was doubled
by reducing the height of the sections to 4 mm. While carrying out the
FE-analyses of the prostheses F063 and G035, problems related fo distor-
tions of elements were also encountered. The FE-analyses of these two
prostheses could not be conducted without changing the coordinates of
gome of the nodes in the FEM-models. This had to be done by entering the
output file from the program PROEM and changing the coordinates by hand.
It is to be noted that the height of the sections was egqual to 4 mm onliy
during the analyses of the prostheses without the embedding. Because of
the very large number of nodes needed in the analyses with the embed-
ding, the height of the sections had to be increased to 8 mm. Thus,
while full confidence can be placed in the results of the FE-analysis
for the prosthesis F@74, the results for the prostheses F063 and G¢35

can he much less accurate.

Figtre 43 shows a plot of direct stresses: ox, oy and ¢z, along a sec-
tion of the prosthesis FP76. Such plots were typical for sections of

the FEM-models above the embedding level and for all sections of the
FEM-model without the embedding. It can be seen that the stress oz is
much larger than the two other stresses. The shape of the curve for the
stress ¢z confirms that the section was subjected predominantly to bend-
ing. No effects which could be related to torsion can be recognized in

Figure 43.

Figure 44 shows a plot of direct stresses along a section at the embed-

ding level. It can be seen that the stresses ox and oy are larger com-

pared to that in Figure 43. This increase is caused by the interaction

of the prosthesis with the embedding. The stress oz, however, is still
the dominant stress in Figure 44. This shows that also in the embedding

the prostheses are subjected chiefly to bending.

In Figures 79-81, the results from the FEM-analysis and from the photo-
elastic results are compared. In Figures 79 and 80, it can be seen that
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the embedding level in the photoelastic experiments differed from that
in the FEM-analysis. This was caused by difficulties in ensuring that
the photoelastic models were embedded exactly 50 mm below the basis-
sections (see Chapter 2.6.1}. However, the difference in the embeddiné
levels does not influence the comparison of the results. This can be
seen from Figures 79-21 which also show the results from the FE-analysis
without the embedding. By comparing the results from the FE-analysis
with and without the embedding, it can be seen that the embedding level
simply defines a level from which the stresses start to decrease. Above
the embedding level, the stresses from the FE-analysis with and without
the embedding are virtually the same. It can, therefore, be concluded

that the embedding influences stresses only in the embedding but not

ahove.

It can be seen from Figures 79-81 that the FE—analysis produced results
well within the range of the results from the photoelastic experiments.
The rate of decrease of stresses in the embedding as calculated by the
FEM-models appears to be very similar to that obtained from the photo-
elastic experiments. Comparing the results above the embedding level, it
can be said that the results from the photoelastic experiments are larg-
er on the tension side and that they tend to be smaller on the compres-—
sion side compared to the results from the FEM-analysis. Because of the
fact that the FEM-analysis was carried out for ‘smooth' models, i.e.,
the influence of the transition radii was omitted (see Chapter 2.3.2.2),
the results from this analysis can be seen as a lower limit for the va-
lues of the stresses obtained from the photoelastic experiments. This
seems to be confirmed on the tension side, but contradicted on the com-
pression side. However, in the discussion of the photoelastic experi-
ments in Chapter 2.6.1 it was shown that if the photoelastic models
deformed plastically, the tensile stresses would have increased and the
compressive stresses, decreased. This seems to explain why the results
from the photoelastic experiments are smaller than that from the FE-

analysis on the compression side.

In Chapter 2.5.1, the results of an attempt to calculate stress concen-
tration factors due to the presence of a transition radius in a section
of the prosthesis F076 were presented. Figures 62, 64, 66 and 68 show
the direct stresses along the section with no radius, with one third,
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two thirds and the whole transition radius respectively. It can be seen
that the higher is the proportion of the radius, the higher are the
stresses, It is interesting to note that compared to the case with no
radius, the stresses ox and Oy increase with the portion of the transi-
tion radius. Because of the fact that in the case with no radius, the
stresses ox and oy are much smaller than the stress og:, the state of
stress can be, with good accuracy, approximated by the stress o: only.
This situation changes if a transition radius is introduced. In this
case, if the state of stress is approximated only by the stress 62, an
error is introduced. It is interesting to estimate how the calculation
of stress concentration factors is influenced by the use of the von
Mises stress and by use of the stress oz only. The von Mises stress is

calculated from the following formula:
Ge = L/d2{(ox—Oy)2+{ay—0z)2+(Fz~0x)2}1/2 (1)
where

Ge — von Mises stress,

Ox,y,z — direct stresses.

In the case with no transition radius, the von Mises stress can be, with
good accuracy, approximated by the stress oz. In the case of a transi-
tion radius, it is important to note that the stresses ox and gy have
the same sign as the stress oz at each point along the section (see,
e.g., Figure 68). If, for simplicity, it is assumed that the values of
the stresses ox and oy are equal to each other, by substituting such
values inte Equation {1}, it can be seen that the von Mises stress will
be smaller than the stress ¢z. This finding is interesting from the
point of view of experimentally measuring the stress concentration fac-
tors. In such experiments, not all of the stress components in the tran-
sition radius are usually measured. Thus, the experimentally obtained
values of the stress concentration factors are slightly larger than that

obtained from a FE-analysis by using the von Mises stresses.

The values of the stress concentration factors calculated with the FEM-
nodel are shown in Chapter 2.5.1 in Table 2.5%.1.5. It can be seen from

Table 2.5.1.5 that the highest stress concentration factors were found
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for the points 4 and 10. It should be noted that these points were near
the neutral plane of bending. The stresses calculated for this points
had the lowest value of all the points of the section. This means that
the values of stress concentration factors for the points 4 and 1¢ con-
tain a large error. The maximum stresses were calculated for points 1
and 7. The stress concentration factors calculated at these points were
equal to 1.43 and 1.37 respectively for the case of the whole transition
radius. In Table 2.5.1.8 in Chapter 2.5.1, stress concentration factors
from the literature were shown. For the case of the whole radius, Table
2.5.1.8 gives the maximum stress concentration factors for points 1 and
7 as equal to 1.7 and 1.6 respectively. By comparing the values from'the
Table 2.5.1.5 with that from Table 2.5.1.8, it can be seen that the
stress concentration factors from the literature are on'average 25 per-
cent higher. On the basis of this comparison, it is difficult to decide
which values of the stress concentration factors should he used for
estimating the stresses in the prostheses. The FE-analysis indicates
that the stress concentration factors are lower than that from the lit-
erature. However, this analysis is very expensive in terms of computing
resources, Due to this, no efort was made to increase the number of ele-
ments in the FE-analysis in order to see if the difference between the
results from such an analysis and the values from the literature would
disappear. Such an analysis would be needed in order to confirm {or con-
tradict) the finding that lower than that in the literature, stress con-
centration factors could be used in the estimation of stresses in the
prostheses. As the values of the stress concentration factors fron the
literature were found to be larger than that obtained from the FE-anal-
ysis, it is concluded that on the grounds of safety, the former ones

should be used in the estimation of the stresses in the HERAMED prosthe-

ses.

Several conclusions can be drawn from the experience with the FEM-

models, They are as follows:

1. The finite element methed can be used for calculating stresses
in prostheses subjected to a DIN-tests. The results form the

FE-analysis compared well with the results from the photoelas-
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tic experiments. The calculation of stress concentration fac-
tors is possible with FEM, but it is advisable to use stress

concentration factors from the literature instead.

The FE-analysis requires large computer resources. It needs a
sophisticated software and a fast computer. A full analysis of
an embedded prosthesis takes approximately three days and
requires 15¢ MBytes storage space. In some cases, the anal-
ysis cannot be conducted automatically. If the elements are
too distorted, they have to be changed by hand. Thus, highly

qualified person is needed in order to carry out the analysis.

The FE-analysis is advantageous in the sense that it enables
an estimation of the influence of different parameters. These
parameters can be, for example, different modulus of elasti-
city, interface, or even different, non-linear behaviour of
the materials of the embedding and the prostheses. It has fto
be mentioned that during all the FE-analyses presented in this
work, a rigidly connected interface between the embedding and
the prostheses was assumed. In practice, this does not need to
be the case. The prostheses can separate from the embedding. A
FE-analysis was in fact conducted, in which the interface was
modelled by non-linear elements, the so-called GAPS (see Chap-~
ter 2.3.1.2). This analysis took several times longer compu-
ting time, but unfortunately the solution did not converge,
and wag therefore interrupted. It is obvious that more effort
is needed in order to calculate the influence of non-linear
interface condition. The possibility of using non-linear ma-
terial characteristic in the FE-analysis 1s pointed out be-
cause it seems that such analysis could lead to interesting
results. It is commonly found in the DIN-tests that the pros-
theses break 3 mnm below the embedding level [1]. This could
not be confirmed either by the photoelastic experiments of by
the FE-analysis. The maximum stress, and therefore the most
likely place for the prostheses to break, was always found to
be at the embedding level. The fact that the prostheses used

to break 3 mm below the embedding level can be caused by a
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separation of the embedding from the prostheses, or by a non-
linear behaviour of the material of the embedding. This can
indeed be the case, as PMMA has a much lower modulus of the
elasticity and strength than titanium. The low modulus of
elasticity means that under a loading, displacements in the
embedding are much larger than in the prostheses. The relative
difference in these displacements can cause problems during a
FE—~analysis. Because of the fact, that the stresses are calcu-
lated from the displacements, they can have large errors. This
problem can, in theory, be avoided if the so-called large dis-
placement FE-analysis is conducted. It is needless to say that
such an analysis would require even more resources and spe-
cialized software. It seems, however, that it is worth consi-

dering in the future.

2.6.3. BEM—-model

It was expected initially that the use of the boundary element method
would lead to a reduction in modelling efforts and in computational
resources f{(see Chapter 2.3.3.2). Indeed, the modelling effort, i.e., the
writing of a computer program for mesh generation was found to be nuch
less than in the case of the finite element method. As it has already
been mentioned in Chapter 2.3.3.2, this program is not shown in this
work. The reason for this is that it was found that, contrary to the

expectations, the computational resources needed for a BE-analysis were

found to be greater than for a FE-analysis. The BE-analysis of the pros- =

thesis F076, during which the embedding was (rather unsatisfactorily)
modelled by a set of linear springs, needed approximately 100 MBytes of
computing space. Some results of this analysis are presented in Figures
71-76. In Figure T1, direct stresses along a section above, and in
Figure 72, direct stresses along a section at the embedding level are
shown. If the curves representing the direct stresses are compared with
that from the finite element analysis (see Figures 43 and 45), it can he
geen that their shapes are similar. In both the figures, the stress o:z
is larger than the stresses ox and oy. Above the embedding level, the
stresses ox and Oy are virtually egual to zero. Due to the interaction
of the embedding with the prosthesis, these stresses rise at the embed-
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ding level. The shape of the curves in Figure 71 does not show any ef-
fects which could be related to large torsional stresses. Therefore, the
BE-analysis leads to the same conclusion as the FE-analysis (see.Chapter
2.6.2) that the loading of the prostheses can be deseribed primarely as

bending.

Figures 73 and 75 show the maximum tensile and compressive direct stres-
ses along the z-axis of the prosthesis F076 respectively. By comparihg
Figures 73 and 75 with the results from the FE-analysis (Figures 49 and
51}, it can be seen that the shapes of the curves in the respective fig-
ures are similar. However, two major differences can be recognized.
Firstly, the values of the direct stresses obtained from the BEM~model
are néarly two times higher than these, from the FPEM-model {compare also
Tables 2.5.1.2 and 2.5.2.1). Secondly, the rate in which the stresses
decrease in the embedding is higher in the case of the BEM-model. The
second difference can be explained by difficulties in modelling the em-
bedding with a set of linear springs. It is genmerally very difficult to
calculate the elasticity constants of such springs in such a way that
they would represent a three dimensional body (the embeding) correctly.
The comparison of the Figures 73 and 75 with Figures 49 and 51 shows
that in this particular case, the springs were too stiff. The first
difference can be explained by comparing the values of the direct stres-
ses from Figures 73 and 75 with the respective values of the von Mises
stresses (Figures 74 and 76). It can be seen that the results of the BE-
analysis are inconsistent. Apparent is the 'wavy' shape of the curves in
Figures 74 and 76 and the large difference between the direct stress o:
and the von Mises stresses (see also Table 2.5.2.1, Chapter 2.5.2). This
means that the mesh used in the BEM-model was too coarse. Because of the
fact that the BE-analysis has already taken a large computing space
(comparable with the FEM-model), a refinement of the mesh was not car-
ried out, The literature on the boundary element method indicates that
the advantages of this method, as regarding the computational effort,
can digappear if thin, long structures are modelled. This is obviously
the case with the modelling of the prostheses. Thus, it was decided to

abandon the BEM-model in the further course of this work.
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2.6.4. Simple MNodel

The simple model was initially designed as a rough help for estimating
the load needed in photoelastic experiments. By comparing the results
from this model with the results from the FE-analysis, it soon became
apparent that the simple model can be used instead of the expensive FEM-
model. This is illustrated in Figures 79-81 and 85-88. In Figures 79-81,
the regults from the simple model are compared with the results from the
photoelastic experiments and from the FE-analysis. The simple model was
used in these cases without the embedding. This was done because the FE-
analysis showed that the embedding influences only the stresses in the
embedding but not above (see Chapter 2.6.2). In Figures 79-81 stresses,
and stresses multiplied by appropriate stress concentration factors (see
description of the simple model in Chapter 2.3.4}, are shown. It can be
seen that the results from the simple model without the stress concen-
tration factors are very well in accordance {(up to the embedding level)
with the results from the FE-analysis. The factored stresses are always
above the measured stresses from photoelastic experiments. Thus, it
seens that.the factored stresses lie on the 'safe' side. In Figures 85-
87, the results from the simple model are compared with the results from
FE-analysis without the embedding. It can be seen that in the case of
the prosthesis F076 (Figure 86), an excellent agreement between the
results from the simple model and from the FE-analysis is found. In the
case of the prostheses F0#63 and G035 (Figures 85 and 87 respectively),
the results from the simple model are swmaller the that from the FE-apal-
ysis at the distal ends of the prostheses (on the graphs, at the dis-
tance near to O mm). It was previously mentioned that there were pro-
blems with the FE-analysis of the prostheses F063 and G035. The distal
ends of these prostheses were quite thin. This led to the results of the
FE-analysis to show a 'buckling' effect (see Chapter 2.6.2}. However,
there were no such problems with the FE-analysis of the prosthesis

FP76. It is therefore concluded that the difference between the results
from the simple model and from the FE-analysis for the prostheses F063
and G035 were caused by the errors in the FE-calculations. (This 1s
strengthened by the fact that although thin, the prostheses F063 and
G035 were straight. The more straight the prostheses, the more accurate

are the results from the simple model (see Chapter 2.3.4)).
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An interesting observation can be made by comparing the shape of the
curves in Figures 85-87 with each other. In Figures 85 and 86, the
stresses fall starting from the distal end (at the distance equal to §
nm) towards the proximal end. In Figure 87, however, the maximum stress
is found in the middle between the distal and proximal epds. The shape
of the curves in Figure 87 is caused by the fact that the neck of the
photoelastic model of the prosthesis G035 was relatively short. Thus,
when the model was tilted and loaded, the direction of the load passéd
near the geometrical centre of the section at the distal end. In this
way, the bending moment induced by the load decreased quiékly along the
z-axis of the model and was small.at the distal end. This small valué of
the bending moment is the reason for the small values of stresses which
were calculated for the‘distal end of the prosthesis GP35.

Generally, it can be said that the shape of the curves, such as in Fig-
ures 85-87, is determined by two competing effects: the taper of the
shape of fhe prostheses and the rate of decrease of the bending moment
{wvhich, in turn, depends on the position of the centre of the head of
the prostheses). If the rate with which the thickness of the prostheses
decrease is greated than that of the bending moment, the shapes of the
curves will be such as in Figures 85 and 86. Otherwise, the shape will
be similar to that in Figure 87. It has to be pointed out that in real
prostheses, the shape of the cutrves should not resemble that in Figure
87. Such a shape indicates that the neck of the particular prosthesis is
too short or the neck angle is too large. The load (the weight of the
patient) will not be introduced ito the femur in an advantageous,

physiclegical way.

In Figure 88, results from the simple model with different modulus of
elasticity of the embedding are compared with results from FE-analysis
for the prosthesis F076. It can be seen that despite the many assump-
tions, the simple model correctly predicts the influence of the embed-
ding on the stresses there. The simple model does this in a fraction of
the time needed for the FE-analysis, and on a home computer. It has to
be menticoned that both the analyses, with the simple model and with the
PEM-model, showed that the actual values of the modulus of elasticity of

the prosthesis and the embedding do not influence the values of the
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stresses. What is important, however, is how many times the modulus of
elasticity of the embedding is lower than that of the prosthesis. The
lower is this modulus, the higher afe the stresses in the embedding.
From the analysis of the prosthesis F076 with the modulus of elasticity
32 times lower that that of the prosthesis, it can be seen that the
stresses in the embedding decrease rapidly. Thus, the maximum stress is
found at the embedding level. If this was the case for all prostheses,
the calculation of the stresses in the embedding could be removed from
the model. Thislcoul& have been done if the prostheses had a unifornm
shape. However, the prostheses have a tapered shape; The taper can
change from prosthesis to prosthesis. If the increase in stresses dué to
the taper along the axes of the prostheses is not conpensated by the
rate of the decrease of stresses due to the enbedding, stresses in the
embedding could be larger than that at the embedding level. It is there-
fore concluded that the calculation of the stresses in the embedding is

an important part of the nodel.

It was shown in Chapter 2.3.4, that the simple model enables an esti-
mation of stresses due to torsion. In this gstimation, the influence of
the embedding is not considered. In Table 2.5.3.4, the maximum torsional
stresses for the prosthesis F076 are shown. It can be seen, that these
stresses are much lower than the bending stresses. In calculations for
the prostheses F@63 and G835, the torsional stresses did not exceed 5
percent of the bending stresses. Also, the FE-analysis showed no effects
which could have been related to large torsional stresses (see Chapter
2.6.2). Thus, it is concluded that the calculation of the stresses due

to torsion can be removed from the simple model.

From the discussion of the simple model, it can be seen that it provides
a valuable alternative to the finite element model. The comparison of
the results showed that the simple model is as accurate as the FE-anal-
ysis. It also requires fewer computing resources. No specialized soft-~
ware and therefore, no specially qualified pérson is required in order
to use this model. In particular, the short time needed for the calcu-
lation of stresses (a few seconds if the calculation of the torsiomal
stresses is omitted), enables the simple model to be used as an 'on-
line' facility in the design process of the HERAMED prostheses. Thus,
several calculations can be carried out and simple redesign measures

checked in a reasonably short time.
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2.6.5. Scattered-light Photocelasticity

The results from the scattered-light photoelasticity, i.e, stress con-
centration factors for eccentrie, circular bars (see Chapter 2.4.2), are
summarized in Table 2.5.5.1 in Chapter 2.5.5. The last column in this
table contains the maximum stress concentration factors from the litera-
ture. These values were obtained from Figure 29 by using the values for
r/¢ and D/d shown in the second and third column of Table 2.5.5.1. It is
interesting to note, that the stress concentration factors from the lit-
erature vary by a very little amount with the increase in eccentricify.
This can be seen in the best way by comparing the factors for the value
of the transition radius equal to 1 mm. This leads to the conclusiqn
that an eccentricity has little influence on the values of the stress
concentration factors. This observation is important because it justi-
fies the use of the stress concentration factors from the literature in

the sinple model without any alternation.

The averaged experimental values, and these from the literature, of the
stress concentration factors are shown against the values of r/d in Fig-
ure 84. It can bee seen that the experimental values are, on average,
significantly higher than the values from the literature. This seems to
indicate that an eccentricity has a large impact on the values of stress
concentration factors. However, Figure 84 shows also that the experimen-
tal results are inconsistent. The stress concentration factors in the
case of the eccentricity equal to 2 mm, for example, are lower than that
from the literature. It was mentioned in Chapter 2.4.2 that the laser
had to be rotated by approximately 38° in order to observe a change in
the scattered-light fringe patterns. This was caused by the fact that
the fringe patterns were usually very faint and lacking contrast (see
Figure 82). This means that the accuracy with which the fringe order
could be measured with the scattered-light method was equal to 0.3 of
fringe order. In the experiments, the stress concentration factors were
calculated as the ratio between two values. These values were the'slopes
of the curves representing the dependence of the value of fringe order
on distance at the surface of the specimens (see Figure 83). According
to the stress optic law, they were directly proportional to the stresses

at the surface (see Chapter 2.4.2)}. One slope was measured away from the




- 129 -

fillet, and the second, at the root of the fillet radius. The value of
the stress concentration factors can he expresses by the following egqua-

tion:

Kexp = [lim (dn/ds)ie) / [lim {dAn/dS)away] {1)

8«30 s—r @

where

Kexp - stress concentration factor,
lim {dn/ds)in - slope at the surface {s—0)} in fillet,
linm {dn/ds)away - slope at surface (s—0) away from fillet.

In practice, Equation (1) is replaced is replaced by:

Kexp = [an/aslin / [An/Aas]avay - (2)

If one assumes that the error in measuring the distance as is small com-
pared to that in the fringe order &n, and by further assuming that the
value of the fringe order an is eqgual to one, with the accuracy of the
measurenent of the fringe order equal to +0.3, the maximum error obtain-
ed for Egquation (2) is as high as +6@ percent. It is obviousg, that this
error will increase with the decrease in the measured value of the
fringe order34, It can be seen from this simple estimation of errors,
that the results from the scattered-light photoelasticity are quite
inaccurate. Therefore, the statement that an eccentricity can signifi-
cantly increase the values of stress concentration factors is not per-
mitted on the hasis of these results. The major problem identified in
the scattered-light experiments is the accuracy with which the value of
the fringe order could be measured. This accuracy can be increased if
larger photoelastic models are used. For the purpose of this work, it
would mean that new models would have to be cast and a new loading rig,
produced, It was mentioned in Chapter 2.4.2 that with the scattered-

34Theoretically, the maximum error, exctly at the surface, is infinite.
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light experiments, not only the stress concentration factors were sup- ‘
posed to be measured, but also the possibility evaluated weather the
scattered~light method could be used for measuring stersses in nodels of
proshteses. As the experiments showed that large photoelastic models !
would be needed in order to measure the stresses in these models, the |
scattered-light method was not further pursued. This was because a nanu-
facture of large scale photoelastic models of prostheses would be much

more time consuming than an investigation of the stresses by 3D photb- ‘

elasticity by stess freezing.



3. MATERIAL TNVESTIGATION

3.1 Introduction

The material investigation had three objectives. The first and the major
objective was to establish the fatigue strength of the material used
in the HERAMED prostheses, the Ti-5A1-2.5Fe alloy, at 107 cycles in or-
der to provide data for the application of the mathematical model. The
second, was to give a detailed description of the microstructure of the
material, as this has not previously bheen done. The fatigue strength in
titanium alloys depends on their microstructure. Finally, in view of re-
cently developed ideas on the role of dislocations in fatigue of met-
als, the dislocation structure in Ti-5A1-2.5Fe induced by the fatiéue

process was to be described.

Before presenting the experiments, methods and results, the relevant

literature on titanium and titanium alloys has been reviewed.



3.2. LITERATURE REVIEW

3.2.1. Some Properties of Titanium {59]

Titanium belongs to the fourth group of the table of elements. It has
the atomic number of 22, the atomic mass of 47.9 and the specific weight
of 4.51 g/cm3. Titanium has two allotropic forms: a low temperature
form, Tie, which is stable up to 882.5°C and a high temperature form,
Tis, which is stable up to the nelting point of pure titanium at
16685°C.

The alpha phase crystallizes in the hexagonal close-packed structure
(hep), type A3 (space group P6s/mmnc). The unit cell parameters areﬁ an=
$.2950 nm, ca= 0.4683 nm and c/fa= 1.5873. The beta phase possesses the
body-centred cubic (bec) structure, type A2 (space group Im3m) with the
lattice parameter ap= 9.3283 nm. The lattice parameters of both the
phases are influenced by the amount of alloying elements. In general,
the lattice parameters of the alpha phase increase with the increase in
the concentration of impurities or alloying elements. For example, this
is true in the case of oxygen, which occupies the octahedral spaces be-
tween the titanium atoms in the hcp structure, and of alumipium, which
forms an substitutional solid solution with titanium. The lattice param-
eter of the beta phase decreases with the increase in the concentration

of elements such as vanadium or iron.

Polycrystalline titanium has a Young's modulus E of 112 GPa, a shear
modulus G of 41 GPa and the Poisson ratio p of 9.32. At room tempera-

ture, titanium is paramagnetic.

3.2.2. Alloying of Titanium

The aim of the alloying of the titanium is to improve the mechanical
properties of the material according to its application. A wide variety

of microstructures, containing of a-phase, a- and B-phase mixtures or B-
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phase only, can-be achieved. As can be seen from the examples shown in

Table 3.2.2.1, alloying! improves the tensile strength of the materiazl.

Table 3.2.2.1. Typical tensile strength of titanium and titanium
alloys [60].

Material Tensile strength (MPa)
CP titanium annealed 6380
cold worked 300
g Ti6Al12NblTallo 910
o/p Ti6AR14V 970
a/p TiBAlFe2.5 1600
8 Till.5Mo6Zr4.58n 1200

Broadly speaking. the alloying of titanium is dominated by the ability
of elements to stabilize either of the alpha- or beta-~phases. The most
important alpha stabilizers are oxygen and aluminium, In engineering
practice, however, oxygen is regarded as an impurity. On the other
hand, aluminium is seen to be as important for titanium as carbon is for
iron. It is to be noted that the concentration of aluminium is restric-
ted in binary alloys to about 8% Al. Above this concentration the or-
dered phase az (TisAl) is formed, causing embrittlement of these alloys.
In multi-component alloys, this critical amount could be moved to lower
concentrations of Al [62]. The group of the beta stabilizers includes
iron and vanadium, the latter being the component of the commonly used
Ti-6Al-4V alloy. Figures 99, 91 and 92 show the phase diagrams of Ti-Al,
Ti-V and Ti-Fe.

11n order to achieve the best properties, the alloys often have to be
thermo-mechanically processed. The difficulty being that the proces-
sing parameters, like temperature and deformation rate, have to be

strictly observed.
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3.2.3. Phase Transformations in Titanium and its Alloys

The basic transformation in titapium is the allotropic transformation

" Tia{=>Tip. On cooling from the p-field, at about 882°C in the case of
high purity titanium, the cubic B~phase transforms into the hexagcnal a-
phase. In pure titanium the entire P~phase is transformed into the a-
phase, so that no untransformed 8§ is found at room temperature, On slow
cooling, a cellular microstructure is formed due to the diffusion con-
trolled nucleation of the a-phase at the grain boundaries of B and their
subsequent, fast growth. At higher cooling speeds the Tip~>Tia transfor-
mation has a martensitic character and a needle-like microstructure is

formed.

During the transformation Tia<=>Tip there is a relationship between the
crystallographic orientations of the initial and transformed phases.

This orientation relationship is found to be:

(0001)a [ 1(110)p, [1120]«f[[111]p

where (0001)« and (110)p denotes the planes and [1120]« and [111]s the
directions which are parallel to each other in the hexagonal (a) and
cubic (B) lattices during the transformation (Fig. 93). The above rela-
tionship is called the Burgers orientation relationship after W. C.

Burgers who was the first to describe it [63].

The phase transformations in titanium are strongly influenced by the
presence of alloying elements and impurities. In alloys with sufficient
concentration of § stabilizing elements it is pogsible to retain the §
phase at room temperature. The amount of the retained f~phase depends on
the temperature of the transformation $->a+p and the concentration of
the alloying elements. Also, a number of intermediate, metastable phases
can be formed during the transformation of the B- into the a-phase. The
intermediate phases can form on cooling or on heating the alloys. Cer-

tain characteristics of some of the metastable phases are given bheloy:
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The martensitic phase a'

The martensitic phase o' has a hexagonal structure. It represents a su-
persaturated solid solution of elements in Ti« and is formed as a result
of quenching from the temperature in the range of the stability of the
B-phase or during annealing of the retained, metastable p [60]. The
nicrostructure of a' consists of colonies of parallel plates or laths in
more dilute alloys. The laths are separated by thin layers of the B
phase which is enriched in p-~stabilizing solute elements. With increa-
sing solute content, these colonies decreass in size and may degenerate
into individual plates which are randomly oriented [64, 651, The o;ién—
tation relationship of the f-phase and a' martensite obeys the Burgets
relation. In martensitic transformations in titanium alloys only a small

strengthening effect is achieved as compared to iron alloys [60].

The martensitic phase a'’

The martensite a'' is reported to have an orthorhombic structure and its
lattice parameters are a=0.301 nm, b=0.490 nn, ¢=4.63 nmn [66]. Formation
of o'’ is strongly composition dependent, i.e. it is present in alloys
with only some solute elements. The a'' martensite can be formed on
quenching, annealing or during plastic deformation. In the latter case
the martensite is called the athermal or stress induced, and in the
former, the isothermal martensite. The a'' phase has gained in impor-
tance in recent years as its formation is associated with remarkable
strengthening in p alloys, and it is thought to play an important role
in shape memory effects [67].

Other martensites

Two other martensites have been reported in the literature. A face-
centred cubic martensite was found at grain boundaries between alpha and
beta phases. This martensite forms very fine, needle like structures.
These structures are called the interface phase. They are caused by
spontaneous transformation during electropolishing of specimens for
electron microscope studies due to an uptake of hydrogen [65, 114]. A
face-centred orthorhombic martensite, termed as a''' or Bp', can be
formed in some alloys with high concentration of P stabilizing elements
e.g. Ti-12v [68].
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The omega phase ©

The omega phase can be formed in certaip titanium alloys on quenching or
during isothermal aging at temperatures in the range of 106-500°C. These
two forms of the omega phase have been named the athermal and isothermal
omega respectively. The athermal omega phase manifests itself in elec-
tron diffraction patterns by extensive diffuse streaking effects. The
isothermal omega produces well defined diffraction spots. The omega
phase forms rapidly as homogeneously nucleated, coherent precipitates
vhich can have a cuboidal or ellipsoidal shape. The beta to athermai
onega transformation has been described as a fully reversible, displace-
ment controlled transformation [71]. The exact tranformation mechanism
has not yet been entirely clarified but it is thought that it is very
similar for the both omega phases [69, 70]. The ideal (isothermal) omega
structure can be viewed as having a hexagonal unit cell with the param-—
eters a=0.460 nm, ¢=0.282 nm, ¢/a=0.613. The orientation relationship of
the beta and omega phases is [72]:

(11115 § { (0001w, (110}s{{(1120).

The formation of high volume fraction of the omega phase is associated
with enbrittlement of the alloys. The formation of the omega phase can
he suppressed by an increased oxygen content or by the addition of at
least 3% aluminium; for example, omega iz formed in binary Ti-V alloys,
but is absent in the important ternary alloy Ti-6A1-4V [69, 64].

3.2.4. Fatigue Properties
In this chapter, only some aspects of the fatigue properties of titanium

and its alloys are presented. The emphasis is put on the high cycle fa-
tigue (HCF) strength? of a+f alloys as most relevant for this study. The

“Here, the high cycle fatigue strength is understood to be the maximum
stress level at which test samples of the material endure a large
nunber (more than 18%) of cycles without failure.
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majority of the results presented here are obtained from the literature

on Ti-6A1-4V.

It is generally accepted that the high cycle fatigue properties are
strongly influenced by the microstructure, surface treatment and the

environment.

The geometrical arrangement of the a and P phases can be influenced to a
great extent in a/B-alloys by heat treatment (Fig. 94). Slow cooling from
the B field produces a coarse lamellar arrangement of the a and f
phases. Quenching from the p field causes the B-phase to transform mar-
tensitically and a subsequent annealing leads to a fine lamellar struc-
ture. The lamellar structure can be then deformed and after a recrystal-
lization annealing, an equiaxed structure can be generated. The equiaxed
structure consists of primary «¢ and untransformed § grains. The grain
size can be controlled by the degree of deformation, the annealing tem~

perature and the annealing time.

The next type of structure is achieved when the equiaxed microstructure
is annealed in the two phase field, quenched and subsequently annealed.
This, so-called bi-modal, microstructure contains primary a grains sur-
rounded by a fine lamellar microstructure of # and transformed f. The
content of the primary @ is varied by the annealing temperature in the
a/p field ([T77].

It is found that the bi-modal microstructure exhibits a superior HCF
strength as compared to the equiaxed and lamellar microstructures {Fig.
95), Also, the HCF strength incréases with decreasing grain size (Fig.
96) [73, 74].
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Reports in the literature point out that the Ti-6A1-4V alloy exhibits an
abnormal dependence of the HCF strength on the mean stress. This depen-
dence is usually judged according to the Goodman rule®, which expresses
a simple linear relationship between the fatigue strength at different
mean stress levels [94]. It has been found that the application of the
Goodman rule to the Ti-6A1-4V alloy leads to an overestimation of the
HCF strength at low positive mean stress levels for the equiaxed and bi-
rodal microstructures. The lamellar microstructures show a normal depen-
dence of the HCF strength on the mean stress [93].

The equiaxed and the bi-modal microstructures have sharp texturest as a
result of the mechanical deformation and subsequent recrystallization.
Test samples which are used to find the HCF strength can therefore show
different values of the HCF strength according to the direction in which
they are cut from the bulk material ([74].

Figure 97 shows the influence of various mechanical surface treatments
on the HCF strength. It is important to observe that the HCF strength is
affected to a greater extent by the surface treatment than by micro-

structural changes [73, 78].

3Goodman rule: Ca=0Ofat (1-On/Cts)

where o, ~ fatigue strength in terms of stress amplitude,
where om is not equal zero
On ~ Mean stress |
ofat ~ fatigue strength in terms of stress amplitude,
where om=0

ots - tensile strength

1Texture in this context means a distribution of crystallographic
orientations of the grains relative to the geometry of the piece of
the material. In deformed or recrystallized, polycrystalline mater-
ials some orientations of the grains relative to a reference system,
which could be connected to the geometry of the sample of the mater-
ial, are found to be more common then other. If the majority of the
grains assume this special orientation, one speaks of a sharp texture.
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The environment in which the HCF tests are carried out can significantly
alter the results {79]. Materials tested in vacuum show higher HCF
strength as compared to tests conducted in air ér in various corrosive
liquid solutions (Fig. 95). As the environment can have different ef-
fects on the HCF strength of different microstructures, it is important
to test the material in an environment as similar as possible to that in

which the material is going to be applied.

3.2.5. The Ti-5A1-2.5Fe Alloy

Commercial purity (CP) titanium has long been used as an inplant mater-
ial, e.g. in the heart surgery, because of its outstanding bio-compati-
bility [86). The yield strength of CP titanium is about 65¢ N/mm? which
makes it unsuitable for implants which have to withstand high stresses,
such as hip joint prostheses. In these cases titanium alloys have to be
used. The most commonly used is the Ti-6A1-4V alloy, but it contains the
element vanadium which is classified as toxic {38]. As long term in-
plants {e.g. hip joint prostheses), have to remain in the patient for
many years, there is a fear among surgeons that the corrosion products
of the implant material can adversely effect the health of the patient,
or cause an allergic reaction of the tissue surrounding the implant
whick, in turn, would make a revision operation necesgsary®. The Ti-BAl-
2.5Fe titanium alloy was developed in order to provide an alloy with
_similar mechanical properties to the Ti-6A1-4V alloy but without the
inclusion of the poisonous element wanadium [80].

Figure 98 shows the phase diagram Ti-Fe at 5 wt.% Al [80], from which it
could be recognized that there is an eutecteoid transformation at around

650¢°C in the system {compare also the phase diagram Fe-Ti in Fig. 92 and

5Minds are divided on this subject: recent analysis by Zitter [91]
shows, that there is no proof that the corrosion products of Ti-6Al-~
4V would affect the patient.
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the diagram Ti-V in Fig. 91). As a result of this reaction, the iron rich
alpha phase can, on c¢ooling, transform into alpha and the intermetallic
phase TiFe. The TiFe phase has a body centred, Az type (CsCl} structure
with unit cell vector a=0.297 nm (113]. The eutectoid reaction, however,
is very sluggish [6@] and has no practical effect on the microstructure
of the alloy. As the tipme-~temperature-transformation (TTT} diagram in
Figure 99 shows, the reaction can be initiated only by long annealing

times near the eutectoid temperature [92].

The Ti~5A1-2.5Fe alloy can be processed in exactly the same ways as the
Ti~-6A1-4V alloy and its formability in elevated temperatures is even
better than that of Ti~6A1-4V. It is usually hot worked at approximately
850°C, solution treated in the sub-transus temperature'rande and subse~
quently annealed (900°C/1 h/water quench + 700°C/2 h/air cooled). The
above treatment produces material with equiaxed a+p microstructure with
grain size of less than 10 um. If the alloy is hot worked at approxi-
mately 1¢00°C, the resulting nicrostructure is lamellar. The influence
of different Ti-5Al-2.5Fe microstructures on the mechanical properties
of the alloy is compared in the Figure 100, which shows'thaf‘the'fihe
equiaxed microstructure has better mechanical properties than the lamel-

lar microstructure.

The Ti-5A1-2.5Fe alloy is available commercially as semi-finished

products manufactured by forging, rolling or extrusion [89].

Table 3.2.5.1 summarises the results of fatigue tests performed on Ti-
5A1-2.5Fe alloy from the literature. It can be seen from the table that
the fatigue strength of Ti-5A1-2.5Fe in the wrought condition, as found
in rotating bending tests, lies around 550 N/mm? in the case of smooth
specimens, and falls down to about 300 N/mm? for specimens with a stress
concentration factor of 3.6. These values compare favourably with the
fatigue strength of Ti-6A1-4V which lies in the range 500-600 N/mm2
[83].
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Table 3.2.5.1. Fatigue strength of Ti-5A1-2.5Fe.

Condition Method SCF* Fatigue strength**
kot rolled = rotating bending 1 © 55¢ N/mm2  [80]
" 3.3 309 N/nn? "
hot rolled tension-tension 1 825 N/um2 "
in 6.9% NaCl 3.3 45¢ N/mm?2 "
wrought annealed tension-tension 1 725 N/mm32 [89]

in air and RT

wrought solution " 3.6 300 N/mm2 "
treated annealed

cast, hot isosta- " 1 450 N/mm2 "
tically pressed 3.6 300 N/nm? "
forged solution rotating bending 1 550 N/mmn? [81]
treated annealed " 1 580 N/mm?  [90]

* Stress concentration factor is equal to 1 for smooth specimens

** at more than 1¢7 cycles

In tension-tension tests the fatigue strength of the alloy can be as
high as 725 N/mm2. This result is surprising, as one would expect that
the fatigue strength found in the tension-tension tests would be lower
than that found in the rotating bending tests. The tension-tension
loading is regarded as more severe than the rotating bending loading .
One of the differences between these two types of loading is that the
mean stress in the tension-tension loading is higher than that in the
case of rotating bending. According to the Goodman rule, the higher the
mean stress the lower is the fatigue limit [94]. Presumably, the higher
than expected values of the fatigue strength in tension-tension loading

have arisen through different surface treatment of the test specimens.

Apart from mechanical testing, the Ti-5A1-2.5-Fe has been submitted to
various corrosion, abrasion and biocompatibility tests [81-84, 86, 88].
The results show that the electrochemical properties of the material are

virtually the same as in case of the Ti-6Al1-4V alloy.
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Because of its good mechanical and electrochemical, properties the Ti-
5A1-2.5Fe titanium alloy has been applied as an implant material since
198@, In 1987, it was proposed to include this alloy in ISO Specifica-
tion 5832 [81].

3.2.6. Pislocation Structures in Fatigued Metals

In recenf vears, a phenomenological understanding of the developmént of
dislocation structures during cyclic deformation of metals seems to be
emerging [95, 96, 97]. In carefully designed experiments on fco matér-
ials, copper and aluminium in particular, the researchers were able to
describe the fatigue process in terms of changes in the dislocation
structures, It must be pointed out that these investigations shed light
on the microstructural changes in the material due to the fatigue pro-~
cess up to the point of crack initiation. They are, therefore, very in-
teresting from the point of view of the high cycle fatigue, where the
majority of the specimen life is occupied by the crack initiation and

not by the crack propagation process.

It is accepted by many researchers that the fatigue process of fcc me-
tals is dominated by the formation of distinctive dislecation structu-
res, the so-called persistent slip bands (PSBg), in the bulk of the ma~
terial. The PSBs are easily recognizable in the electron microscope as
they consist of regular, ladder like arrangements of dislocations (Fig.
161). The PSBs appear to form above a particular, well defined threshold
stress amplitude. Cracks originate and propagate along the PSBs. If a
material is fatigued below the threshold stress amplitude, no P$Bs and
also no cracks are formed. The material can endure an infinite number of
cycles. This threshold stress amplitude, below which no PSBs are formed,

can be therefore regarded as the fatigue limit of the material.

The behaviour of bcc metals differs from that of the fcc metals [95,
99]. The form of dislocation structures in bcc metals is thought to be
dominated by different relative velocities of edge and screw disloca-
tions. The most commonly observed dislocation structure in fatigued bec
metals is a cell structure. Cracks originate at the surface of the ma-
terial in ill defined slip bands. It is stil) being discussed if bec me-



- 143 -

tals possess a fatigue limit. There is experimental evidence that there
is a region in which the plastic deformation induced by the fatigue
process is accommodated by a to-and-fro gliding of dislocations in quasi

reversible fashion. This region can be asscciated with the fatigue limit
[99].

The literature search revealed that the dislocation structures ir fa-
tigued titanium, which has a hcp structure, has not so far been investi-
gated in detail. Fatigue studies on pure titanium show that cracks ini-
tiate an the surface in narrow slip bands or along twin boundaries [108,
1¢1]. In Ti-6A1-4V cracks were found to form in narrow slip bands in
alpha grains [74] or at grain boundaries between alpha and beta phases
[75). It was suggested in [102] that the fatigue damage in Ti-6Al-4V
accumulates preferentially in a 25 nm deep surface layer. However,’a
localized damage in the bulk of the material was not excluded. It was
also shown in the same reference that beta grains did not contain any
dislocations after fatiguing. The conclusion was that the beta phase
could be regarded as hard inclusion in softer alpha matrix. The exis-
tence of the fatigue limit has not yet been decided for titanium and its

alloys.



3.3. EXPERIMENTS AND METHODS

3.3.1. Material

Material investigated in this study, the Ti-5A1-2.5Fe titanium alloy,
material number.3.7110 according to DIN 17851, was supplied by W. C.
Herasus GmbH, Hanau, West Germany. The material was delivered in the
forn of a forged and dnnealed rectangular bar with section dimensions of
49 mm x 9¢ mm., The composition and mechanical properties as given by the

manufacturer are shown in the table 3.3.1.1.

Table 3.3.1.3. Composition and mechanical properties of Ti-5Al-

2.5Fe,
Al (%) 4.9
Fe (%) 2.6
C (ppm) < 190
0 (ppm) 1350
N (ppm) ¢ 190
B (ppm) < 30
Orb?* {N/mm3) > 575
Ra {N/mm32) 995
Rp o.2 (N/mm2) 815
A (%) 15
Av3o 300

* grp denotes the endurance limit found in rotating bending tests

at more than 107 cycles

The supplied material is used directly in the manufacturing of the HERA-
MED hip joint prostheses. The microstructure of this material is equi-
axed. In Chapter 3.2.4, it was shown that in the case of Ti-6A1-4V the
bi-modal microstructure exhibits better fatigue properties than the
equiaxed microstructure. In order to establish if this findirg is also
valid in the case of Ti-5A1-2.5Fe alloy, part of the delivered material
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was, therefore, subjected to a heat treatment aimed at creating of a bi-
modal microstructure. The heat treatment consisted of annealing at 900°C
in air for 1h and subseguent water quenching followed by aging at 520°C
and furnace cooling down to the reoom temperature.

In the following sections, the 'as delivered' material, the material
after water quenching and the material after the entire heat treatment
will be referred to respectively as: as-delivered, quenched and heat-
treated material.

3.3.2. Investigation of Mechanical Properties

Before the material is admitted to the manufacturing of the prosthéses,
it has to undergo a series of mechanical tests which ensure its quality,
and during which it has to fulfil set minimum requirements [10¢4]. The
test programee consist of monotonic tensile and of rotating bending
tests. During the tensile test the tensile strength (Rm}, the yield
strength {Rpe.z) and elongation (A) satisfy the requirements if their
values are found to be greater than 86¢ N/mm?, 780 N/mm? and 8% respec-
tivelys. In the rotating bending test which is carried out up to 147
cycles, the fatigue strength should exceed 525 N/mm2, The test is con-
ducted in air on smooth specimens with a mirror-like surface finish.

The hip joint prostheses are manufactured from the initial bar of the
material by milling, in such a way that their axes are parallel to the
long axis of the bar. The cutter of the milling machine moves perpen-
dicular to the axis of the prostheses. A characteristic feature of the
final products is their stepped shape with unsymmetric sectional geome-

tries. Between the adjoining sections (or steps), there is a transition

6The yield strength Rp o.2 is defined as the stress value at 0.2 %
strain offset, the tensile strength Rm as the maximum load divided by
the initial cross—sectional area and the elongation at rupture A as
the percentage increase in the length of the test specimen (see, for
example, ASTM Standard E 8-69).
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radius, which in current designs can have the value between 1 mm and

2 mm. The transition radii represent places where there will be an in-
crease in stresses due to change in geometry when the prostheses are
loaded. After the machining, the surface roughness values Ra and Rt have
to lie below 9.6 nm and 63 um respectively? [105]; The surface finish
remains further unchanged, starting from the distal end up to a point
above the level where maximum stresses are expected during subsequent
endurance tests. The surface roughness of the proximal end is delibera-
tely increased to about Ra= 20 pm by shot peening in order to enable im-
plant fixation by bone ingrowth, The endurance of the prostheses under
cyclic loading is tested according to DIN 58840 [106] (see Chapter 2.2.2).
During these tests the prostheses are embedded partially in acrylic bone
cement with their axes approximately 10° from the vertical direction and
loaded at their heads by a puléating, negative force. The prostheses are
subrmerged in a Ringer's solution at 37°C in order to simulate the envi-
ronment of the human body. The composition of the Ringer's solution as
given by DIN 58848 is shown in the table 3.3.2.1.

Table 3.3.2.1. Composition of physiological,lainger‘s solution.

NaCl 9.01 g/}
NaHCOz 0.084 g/}
KC1 $.298 g/l

CaClz x 6H20 ¢.548 ¢/1
destilled water rest

In the research programme presented here, a mathematical model of the
prostheses was developed with the aim of estimating the stresses which

?The surface parameters are described in BS1134:1972 as follows:
Ra - arithmetical mean deviation or centre line average

height,
Rt - maximum peak to valley height in the sample.
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occur in the prostheses during the DIN-test. This model can further be

- used for predicting the endurance performance'of the prostheses provided
that appropriate material data, in particular the high cycle fatigue
strength, is available. The reliability of the prediction depends
strongly on the quality of the data. From the information presented in
this chapter, on initial test