Loughborough
University

v

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the
following Creative Commons Licence conditions.

@creative
commons

C O M O N §

Attribution-NonCommercial-NoDerivs 2.5

You are free:

e to copy, distribute, display, and perform the worlk

Under the following conditions:

Attribution. vou must attribute the worl: in the manner specified by
the author or licensar,

Moncommercial. ¥ou may not use this work for commercial purposes,

Mo Derivative Works. vou may not alter, transform, or build upan
this waorl:,

« For any reuse or distribution, vou must make clear to others the license terms of
this worls:,

o Anvy of these conditions can be waived if yvou get permission from the copyright
holder,

Your fair use and other rights are in no way affected by the above.

This 15 a human-readable summary of the Legal Code (the full license].

DisclaimerI:l._'I

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/




Volume 2



Appendix A

THE DEFINITIONS OF THE PROLOG OPERATORS

308




op(4l,xfx,@).
op(240,xfx, :).
op(230,xfx, then).
op(220,fx,1if).

op (44 ,xfy,or).
op(42,xfy,and).
op(18,fx,rule).
op(l8,xfx, ;).
op(l8,xfx,is caused by).

op(l8,xfx,is indicated by).

op(18,xfx,exhibits states).

op(1l8,xfx,has units).
op(l4,xfx,scan previous).
op(l/,xftx,fails).
op(l/,xfx,does not fail).
op(l/,xf,working).
op(l/,xftx,=>).

op(l4 ,xfx,~).
op(l7,xfx,=/=>).
op(l/,xfx,reads).

op(l5,fx,local indication).

op(l4,fx,device).
op(l4,fx,control loop).
op(l4,ftx,trip loop).
op(l4,fx,pressure).
op(l4,fx,flow).
op(l4,fx, temperature).
op(l4,£fx,level).
op(l4,fx,signal).

op(l4,fx,indication).

309



Appendix B

SIMULATING THE REACTOR CHARGING SYSTEM

The simulated section of process plant is purely hypothetical,
but is based on similar examples in the literature, [20,57,30]. Figure
B.1 is a schematic diagram of the modelled plant. Pure ethanoic acid
is pumped from a storage tank down a 40m pipeline into an elevated
buffer tank (tank 2). From this tank the acid flows under gravity into
the reactor rl which 1s maintained at a pressure of 0.3 bar gauge. The

function of the buffer tank is to provide the reactor with a constant
head of fluid in an attempt to decouple it from the pipeline process
noise. To achieve this, the level 1is controlled by manipulating the

inlet flow, wusing level sensor 1ls 2, controller c¢cnt 1 and control

valve cv;l.

The tank drain valves v> and v/ are closed during the normal

operation of the process and the remaining isolation valves are fully
open. Valve v6 is a manual control valve which 1is 1initially adjusted

to throttle the flow out of tank 2. Pipes 2, 3 ,4 and 5 are sized at
25mm ID and are 4m, 40m, 1m and 5.7m in length respectively. Pipe 5

connects the flow sensor to the elevated tank and therefore includes a

net vertical section of 4m and 3 90° bends.

The normal level of tank 2 is 0.5m which gives it an effective
head of 3.5m above the reactor inlet. The control 1loop has

proportional and 1integral action with a deadband of +/- 1 cm around

the setpoint.

310



Figure B.]1l The Modelled Process Plant

NIV Ol

/N
|
) ddld L ddld 8 dATVA
|
_ LOVAY | NIVad Ol
|
m AATVA m ~
o -
o
HEnE I Sd :
- RIOSNUS m
| MO rEE -J.
m %@ _ -g >U L I MNV.L
L AATVA
G I i HOELNOD /\
N HEn
MNVL | 574 6
|
i v

-".\

A

O@/ -

311




Because the flow out of tank 2 is due to gravity and distances are
short, pipes 6 and 7 are sized at 50mm ID. Pipe 6 has a 3m vertical

section, a 90° elbow and a lm horizontal section and pipe 7 is simply

a lm horizontal pipe.

The dynamic simulation conveniently breaks down into four parts,
modelling the flow into the tank, the flow out of the tank, the tank
level and the response of the control loop. To simplify the modelling
task the process dynamics are approximated as second order. The first
differential term is due to the acceleration or deceleration of the
fluid in the pipes and the second is because of the accumulation of

ethanoic acid in buffer tank 2.

Unfortunately the simulation is further complicated because it 1is
necessary to introduce faults into the system. Four basic types of

taults have been considered:

1 The first class are pipe and tank leakages. Tank leaks are easily
incorporated since this simply 1involves modifying the tank
accumulation differential equation to include the extra term. For

example the level in tank 2 is now defined by Equation B.1l:

Qout "~ 1eak ~ A.dl (B.1)

where q 1s the flowrate at the tank inlet, outlet or at the leak

A 1s the tank cross sectional area
] is the tank level

t 1is the time

Pipe leaks are modelled by dividing the pipe section 1nto two
equal parts and removing the leaking fluid from the intermediate

point. Figure B.Z2 1llustrates the model:

312



- W e s O e s s e s W e B B B O = s W = O & a0 = == O m O i B . s .

The steady state pressure drop is given in Equation B.?2

dp = R(q2; + q2_,+) (B.2)
where
9in = Yout T 91leak

For the reactor charging system leaks, can be introduced in any ot

the pipe sections, at the pump inlet and at the control wvalve

outlet.

The second type of fault is a blockage, either due to a pipes
increased resistance, the process +fluid freezing or the
inadvertent closing of an isolation valve. Within the simulation,
a pipe blockage can be introduced in both the buffer tank inlet
and outlet pipelines. Additionally the isolation valves v2, v3, v4

and v8 can be closed.

The indication faults are the third class. These can be of two
types, either the sensor fails invariant or it spontaneously fails
giving a false reading. All the monitored indications can be
affected in this way. The control valve stem position can also be

made to fail invariant, high or low.

Finally the fourth type of fault is a centrifugal pump failure,
resulting in the loss of discharge pressure. In this circumstance
the impeller speed 1s assumed to decay exponentially. Given that
the pressure delivery 1is a function of the rotational speed

squared, [62] the pressure decay is modelled by Equation B. 3.

313



pump discharge pressure = p; 17..97’~‘e'0"0166.:':::t - 2610*q2 (B.3)

where p., ~ is the pump inlet pressure

t 1s the time since failure in seconds

q 1is the flowrate through the pump

The simulation program runs as a detached process on the
MicroVax. Once every 10s the task copies the fault data from the
process variable database into 1its 1local wvariable storage. The

program then performs two iterations and writes the resulting

values back into the database.

For each iteration the rate of change of flowrate in and out
of tank 2 1is calculated and using Euler's method, the new flows
are estimated. From these flows the rate of change of level and

therefore the actual level can be determined. The last step in the

process 1s to calculate the new controller output value given the

new level sensor signal.

314



Appendix C

THE KBS CONTROL PROGRAM

When the KBS 1is not responding to user commands, the control
program (described_in Chapter 6) continually cycles through a number
of tasks. These include reading input from the terminal, checking the
database for new alarms, updating the time and date on the terminal

screen and retrieving process variable and alarm information from the

database.

The function of the four tasks 1is described in more detail in

Sections C.]1 to C.4.

C.1 Reading Input From The Users Terminal

Once every cycle of the control program loop, the terminal’s
input buffer is checked for new characters. Because some of the other
control program tasks update the terminal screen, when a terminal key
is depressed its associated character must not be automatically echoed
to the screen. Otherwlise the keyboard characters could be written in
amongst those of the other tasks. For this reason the POPll raw
character input butfer is used. When a character is detected in this
buffer, it is read, added to a list of input characters and written to
the screen when all other tasks have completed. If the character is a

carriage return, the list of previous characters is passed back to the

operator interface for parsing.

315



The function keys on the VT241 terminal are used in the operator
interface to perform specific functions. When these keys are depressed
the terminal generates an escape sequence. Therefore when an escape
character is read from the input buffer, the succeeding characters are

also read and passed back to the operator interface.

C.2 Checking The Process Variable Database For New Alarms

Unlike the input scanning task, the check for new alarm messages
is not performed every cycle of the program control loop. Instead the
check 1s made once every 500 cycles, which equates to about once every

l.5s at the normal MicroVax system loading.

The database is first interrogated to determine the latest alarm
message number. If this number is unchanged from the previous alarm
message check, then the task terminates; When new unaccepted alarm
messages are detected, the current operator interface screen 1s
updated with a summary of the first outstanding alarm message. The
remaining outstanding alarm messages, if any, are also displayed

singularly after subsequent alarm message checks.

Before the alarm message summaries are written to the screen, the
current position of the cursor on the command input line 1s saved.
Fortunately with the VT241 terminal this simply involves sending an
escape character followed by a '7’'. When the screen has been updated

the sequence of escape '8’ restores the cursor to 1its original

position.

C.3 Updating The Current Time And Date

The current time and date is updated on the operator intertace
screen once every 500 cycles of the control program loop. The value of
the time and date is obtained using a POPll system procedure, and the

cursor position is saved and restored as described in the previous

section.

316



C.4 Retrieving Process Variable Information From The Database

As described in Section 6.1.1, the process wvariable information
is only kept in the database for 30 scan intervals. Whilst this is
adequate for most purposes, if an alarm diagnosis is requested 30 scan
intervals after it was detected, the diagnosis cannot be performed. To
overcome this potential problem, when a new alarm is detected the
control program ensures that the information required for its

diagnosis is copied into the PROLOG database.

When a rulebase is compiled, the database information required
for the diagnosis of every considered wvariable deviation 1is
determined. This information is then stored within the compiled
rulebase. Following the detection of a new alarm, the rulebase is

interrogated to ascertain the process variable data that is required
for its diagnosis. The PROLOG database is then checked to determine if
the same information has already been accessed for a previous alarm.

It this is not the case a data request is queued. The alarm message

checking task performs this function.

Once every 500 cycles of the control program the oldest data
request, 1f one exists, 1s retracted from the PROLOG database. The
information, in terms of a specific wvariable and scan number, 1is

accessed from the process variable database and stored back into the

PROLOG database.

A time history of all the process alarms 1s also managed in a

similar way.

317



Appendix D

THE INFORMATION SPECIFIED TO THE RULEBASE COMPILER

The rulebase used by the fault diagnosis system is compiled from
an ASCII file generated by the user. This appendix briefly describes

the information that needs to be specified prior to compilation.

D.1 The Process Variable Description

For each process variable that 1is modelled within the rulebase,

up to three attributes need to be defined:

1 All the possible fuzzy state names must be specified. This 1is

achieved using the ’'exhibits states’ clause as illustrated below:

Variable X exhibits states [low,normal,high,null,null,null]

The operator 'exhibits states’' is infix, with a higher precedence

than the variable operators ’'level’, ’'pressure’, 'ftlow’ etc.

A maximum of six fuzzy states can be speciftied, but if any
are undefined, the atom ’'null’ must be substituted in the list.
The order of the ranges must also be the same as in the process
variable database. This information could be obtained directly
from the process variable database, thus avoiding the necessity to

specify it twice, but the rulebase compiler was not developed to

that level of sophistication.

318



2 The relationships between process variables and their indications

are defined using the 'is indicated by’ infix operator. For

example, the clause:

flow fl1 is indicated by [buf acd fl 1,buf acd fl 2]

states that flow wvariable fl is monitored by the two indications
named ‘buf acd fl 1’ and 'buf acd fl 2’. The 1list structure

enables any number of indications to be assigned to the process

variable.

3 If a process wvariable is monitored by more than one indication,
the maximum permissible error between the indications needs to be
stated, as discussed in Chapter 5. The more conventional PROLOG

clause structure is used for this purpose, as illustrated below:

maximum error(flow £1,0.03)

In addition to the three predicates which define the process
variable attributes, two other clauses must also be specified,
detailing information about the indications. The first relates the

indication names to their indices in the process variable database, as

follows:
indication index(buf acd fl 1,2)

The second predicate specifies the units associated with each

indication for display purposes. For example:
indication fl il has units 'm3/s’

The 'has units’ operator is again infix with a higher precedence than

the 'indication’ prefix operator.

319



D.2 Causal And Indication Rules

Three different types of rules can be specified in the source

code to the compiler. These are the causal rules, the subsystem rules

and the indication rules.

The causal rules describe the potential causes ot process
variable deviations in terms of other process wvariable deviations,

basic unit failures or subsystem failures. The subsystem failure rules
describe the causes of a subsystem fault such as a control loop

tfailing high, in exactly the same way. The syntax of these rules 1is

discussed in more detail in Section 3.2.

The indication rules detail all the possible explanations for an
indication outputting its signal value. These include both the working
and failure modes of the instrument equipment. These are described 1in

Section 5.4.

D.3 Basic Event Definitions
The information required by the inference engine about the

failure rates of individual process units is discussed in Section 5.1l.

To recap, four items of data must be specified:

1 The name of the fault, in the form 'X fails Y'.

2 The failure frequency in terms of events per Yyear.

3 The type of fault, either an enabling or an initiating fault. The

two mnemonics ’'init’ and ’'enab’ are used 1n this conteXxt.

4 The fault detection and repair time.

The information about each potential fault 1s specitfied

separately 1n 'basic event' predicates. Two example predicates are

illustrated overleaft:

320



basic_event(pipe 1 fails large leakage, 0.1, init, 10)

basic_event(fs 1 fails normal, 0.5, enab, 2016)

321



Appendix E

THE USER GRAPHIC SCREENS SUPPORTED BY THE KBS

All the KBS displays have been designed for a VT241 colour
graphic terminal wusing the REGIS graphics protocol. This appendix

describes the major features of the four displays in Sections E.1 to

E.4.

E.1 The Unaccepted Alarm Message Display

The unaccepted alarm message list is represented in tabular form,
using six tables, each containing seventeen alarm messages. For each
alarm the indication name, deviation state, alarm status (set or

cleared) and diagnosed status 1s displayed.

The top line of every page 1is reserved for unaccepted alarm
messages, which are displayed for a period of about two seconds it
other outstanding messages exist. Only the indication name, deviation
state and alarm status is displayed in this area. On the second line

the current time and page number are shown.

The middle twenty lines of each screen is allocated for the alarm
message table, which leaves the bottom two lines as a user entry and
message window. To mlnimise the input key strokes, extensive use has
been made of the function keys available on the VT24]1 terminal. By

depressing the HELP key a summary of the available commands and their

function keys is shown. ’

322



E.2 The Accepted Alarm Message Display

This display is identical to the unaccepted alarm message screen

except that only three pages are required to accommodate the 50

potential messages.

E.3 The Facia Panel Mimic Screen

The alarm status of each indication can be reviewed at a glance
using a mimic ot the traditional facia panel displays. Up to twenty

mimic alarm facias can be configured on each display screen.

Under normal conditions the text describing the alarm is written
in white characters on a black background. However, when an alarm 1s

active, the background colour of the relevant box changes to ftlashing
red until the alarm is accepted. If the alarm 1is still active on

acceptance, the background remains constant red wuntil the alarm

clears.

As with the alarm message screens, the top two lines are reserved
for new unaccepted alarm messages and the current time. The bottom two
lines are allocated for user entry and displaying messages. A help

screen is also associated with this display.

E.4 The Alarm Diagnosis Display

A typical alarm diagnosis display is pictured in Flgure E.1. Like
the other three screens, the main diagnosis display 1is split into a
number of separate windows, four in total. The top two and bottom two

lines are again reserved for unaccepted alarms, the current time, user
input and the display of KBS messages. The middle twenty lines are

further divided into two windows of eight and twelve lines.

The larger of the two windows, in the lower half of the screen,
is permanently designated to displaying the explanations of the most

recently diagnosed alarm. These are listed in descending order of

323



likelihood from the top of the window. To the right of the first line
of each explanation, the likelihood of the cutset is printed next to a
small bar graph of the likelihood. The graphical representation of the

likelihood is intended to enable the user to assess the relative

importance of each explanation with greater ease.

To prevent the user focusing too much attention on one very
likely fault, or ignoring the less probable explanations outright, all
the likelihoods are displayed as numbers between 99.9% and 0.1%.

Similarly, the likelihoods are portrayed graphically between 1% and
99%.

Given that the alarm explanations can involve multiple device
failures and expected boundary conditions, it is generally not
possible to display more than three or four explanations at any one
time. A paging facility is therefore provided to enable the user to
examine all the cutsets. This is achieved by depressing the terminals

page forward and page back keys.

The upper window 1is more dynamic and allows the user to examine

additional information which will help to confirm or reject the
proposed alarm explanations. When an alarm 1s tfirst diagnosed, the
window is used to display a brief explanation of the reasons why or
why not the current alarm is being diagnosed in conjunction with other

alarm(s).

324



B <
Y31y swsere Risnotunds Z-[4 poe—jnq UOTHEITPUT
W Y3ty swseie Risnotunds §-[j poe—jng UOTILITPUT (G

uTyion ST [0 doo[~[ousu00 gV Y3TY <= 2§ MOLS (P
ysry sgre; §1o doo~joJjuod (f
UTHIOR ST J19 dOO]~[OJ3U0D GNY MO[-RuaA ¢= 2] (3] (2

SUTHOR ST F10 dOO[~[OJUOD GNY MO] <= 2] [3A3] (§
~ (NND4 SNOLINOS £

S0URQUNSTP Mau @ se pajeaJ) Sut
n_amgzli_-!_;lrloag-ﬂoag:_o!g!

b 4 ' 18
A W R | A i. R

Figure E.1 The Alarm Diagnosis Graphic

325



Appendix F

THE FUNCTIONALITY OF THE RULEBASE COMPILER

This appendix describes the functionality of the rulebase

compiler used to pre-process the natural language fault propagation

rules.
F.1 Parsing The Rulebase

The principal function of the rule parser 1is to check
exhaustively every rule for syntactic correctness. Since the three

rule types have the same basic structure the same procedure is used to

validate them all.

The parsing of the rules is driven by a PROLOG fail loop. The top

level predicates are listed below:

$ failure driven loop to check the syntax of the rules
rule parser -

X Y,

check x syntax(X),

check y syntax(Y),

fail.

¢ end of the loop

rule parser.

326



The first ‘rule parser’ clause contains the actual loop, the second

clause enables the predicate to succeed when all the rules have been

examined.

The failure loop works as follows. Firstly the uninstantiated

rule template 'X:Y' causes the PROLOG interpreter to search its

database for either a causal, subsystem or indication rule. If a rule
is found, then the variables X and Y become instantiated to the rule

head and body. For example, if the first rule in the PROLOG database

is:

rule 1.1 : 1f

device pump 1 fails stopped

then

pressure pl => very low.

then X 1s instantiated to ‘rule 1.1’ and Y to 'if device pump 1 fails

stopped then pressure pl => very low’.

The X and Y rule parts are now checked for syntactic correctness
using the two predicates ’'check x syntax’ and 'check y syntax'. These
clauses are discussed later. Finally, the ’'tail’ function forces the
PROLOG predicate to fail. This causes the interpreter to backtrack and
try and re-satisfy the previous clauses. The two syntax checking
clauses cannot be re-satistied so the PROLOG interpreter searches the
rulebase for another predicate which matches the 'X:Y' template. 1If
another is found, then the process continues, otherwlse the second
'rule parser’ clause terminates the execution of the loop. Using this

mechanism, every rule in the rulebase source code 1s sequentially

accessed and examined.

The ’'check x syntax' clause simply warns the user if the rule
head is not of the form ‘rule X’'. Checking the rule body 1s a little
more complex. Firstly the rule body is divided into an 'if’ part and a
‘then’ part. If this 1is not possible, the user 1s again notified of

the syntax error.

327



The rule 'then’ part is analysed first. If a causal rule is being
considered, the principle process wvariable deviation 1is first
separated from any boundary condition states. The source code to the
compiler is then searched for the predicates which define the
attributes of the process wvariables in the 'then’ part, namely the
'exhibits states’ and 'is indicated by’ clauses discussed in Appendix
D. Similarly, if an indication rule is being processed, the
'indication index’ and the ’'has units’ predicates are sought. If these
are not found, the user is informed of the omissions. In the case of

the subsystem rules no additional checks are performed.

The structure of the rule 'if’ part, in terms of the ’'and’' and
‘or' operators, 1s checked automatically by the PROLOG interpreter
when the clauses are loaded into the database. The rule parser ensures
that the individual rule fragments have the correct syntax and that
any assoclated data 1is also specified in the source code. In addition

to these functions, the first stage of the rulebase compilation 1is

performed.

The causal and subsystem rules are structured so that if the rule
'then’ part is known, the prerequisite conditions or antecedents can
be determined. The knowledge has been structured in this form
principally because the inference mechanism attempts to diagnose the
causes of given variable deviations. Predicting the consequences of a
particular fault is therefore difficult since it would involve
searching every rule’s ’'if’ part for a match. As described in Chapter
4, this type of information is useful for both detecting common mode

faults and in deciding which alarm diagnoses should be combined.

To overcome this limitation of the knowledge representation, the
potential consequences of basic faults, variable deviations and
subsystem failures are identified as each rule fragment 1s parsed.
When a basic fault is encountered, the parser checks that the
appropriate failure rate and maintenance or repalr time has been
specified. If the basic fault has not been present 1n any previously
parsed rule, then the basic fault definition clause 1s moditied. This
involves retracting the predicate and storing it back into the PROLOG

database with an extra argument. The new fifth argument contains the

328



current rules ‘then’ part in a list structure. When the basic fault is

detected in another parsed rule, that rules ’then’ part is also added

to the list.

Process variable deviations are treated in exactly the same way.
The parser first checks the source code for the associated
'exhibits_states’ and 'is_indicated by' predicates and warns the user
if they are not present. The potential consequences of the process
variable deviation, i.e. the rules ’‘then’' part, are stored in a list
structure within the 'common param ' predicate. For example, if the
low flow of stream fl into a tank causes the upstream pressure pl to
become high and the tank level 11 to become low, then the resulting

‘common_param’ predicate will take the form:

common_param(flow fl => low, [level 11 => low,

pressure pl => high]).

The same information is also specified separately within the two

'grab_info'’ predicates as follows:

grab info(level 11 => low, flow fl, X).
grab info(pressure pl => low, flow fl, X).

These clauses are used at a later stage to identify what process

variable information 1s required from the FORTRAN database when

either the level low or high pressure alarms occur.

Finally, when a subsystem failure is encountered the rule which
defines the subsystem failure mode is searched for and the user is
informed if it cannot be detected. The consequences of a subsystem
failure are asserted into the ’'sub system info' clause in exactly the

same format as the 'common param’ clause.

329



F.2 Compiling The Rulebase Information

As discussed in Appendix C, when an alarm is detected, the KBS
control program attempts to capture the information required for its
diagnosis from the process variable database. The rule parser task
crudely ascertains what information is required for each alarm from

the causal and subsystem rules. This is then temporarily stored within

'grab_info' predicates.

The first task of the rulebase compiler involves gathering into
lists the ‘grab info’ data which pertains to the individual process

varliable deviations. The 1ndication names within the lists are then
converted into their corresponding numerical indices within the

process variable database. Finally, the results are stored within the

compiled rulebase in the form:
param required(l,2,[l:n, 2:n, 5:n, 3:nj).

The first argument is the index of the alarmable 1indication
within the process variable database and the second argument 1is the
deviation index. The symbol 'n’' is bound to the indices of the
required indications in the list, to signify that the latest scan data

should be requested.

The second step of the rulebase compilation simply 1involves
gathering together the causal rules which describe the same process
variable deviation into a single list. Firstly, a long list is made of
all the possible deviation states of every process variable defined

within the rulebase source code. Each of the potential faults 1s then

passed to the old inference mechanism which searches the PROLOG

database for matching causal rules. When a match is found, the textual
format of the rules is modified and the result is appended to a list

of other possible causes. The modified rule format 1s described 1n

more detail in Chapter 4.

After all the matching causal rules have been identified for the
particular process variable deviation, the resulting ’'super’ rule 1is

asserted into the PROLOG database in the form shown overleatf: |

330



causes(Index, Var => State, Result, No, , ).

The first argument 1s a unique index for the process variable
deviation and the second describes the fault in a textual format. The
'Result’ argument is a list of all the modified causal rules described
previously and the ftourth argument is the number of elements in that
list. The last two arguments are undefined, but become instantiated at

a later stage of the compilation.

Once the causal rules have been pre-processed, the subsystem and
indication rules are treated in a similar fashion. Although there
should only be a single rule which defines each failure mode of a
subsystem or 1indication, both the rule structures usually contailn

'and’ and 'or’' 1logic. The compiler therefore accesses each rule,

converts the basic rule framework into a list structure and then re-
asserts the modified information back into the PROLOG database. For

example, consider the indication rule shown below:

rule 24:
if
device fs 2 does not fail high

and

flow £2 reads high

or

device fs 2 fails high

then

indication reac acid fl reads high.

This information is processed into the form:

indic causes(Index, indication reac_acid_fl reads high,

[[device fs 2 does not_fail high, flow fl reads high],
[device fs 2 fails high]]).

331



and similarly the subsystem rule:

rule 17:
if
device cv_ 1 fails high
or
device cnt 1 fails high
or
device ls 1 fails low
and
signal 1lsl fails low

then

control loop cll fails high.
1s converted into the form:

sub_causes(Index, control loop cll fails low,

| l[device cv_1 fails high @ ~ ],
[device cnt_1 fails high @ -~ ],
[device 1ls 1 fails low @ -~
signal 1s 1 => low @ ~ ]}, ).
The first argument specifies the unique rule index and the second
argument, the original rule ’'then’ part. The third argument contains

the rules antecedents and in the case of the subsystem rule, the last

argument 1is 1nstantiated at a later stage of the rulebase compilation.

As described 1in Section F.l, when the rules are parsed, the
consequences of each antecedent are temporarily stored within the
PROLOG database. Once the causal, subsystem and indication rules have
been processed and assigned a unique index, the consequence

information 1is then retrieved and stored within the new rule

structures.

The basic fault descriptions are processed first. For each basic
event the rule ’'then’ parts, potentially caused by the fault, are
converted into a more compact format. If the basic fault causes a

process variable deviation, this information is converted into the

332



form ‘par : X'. The 'par’ atom specifies the type of consequence and X
1s instantiated to the index of the rule which lists all the causes of
the process variable deviation. Similarly if the basic fault causes a

subsystem or indication failure, this is converted into the form ’sub

X" or 'ind : X'. As before the index which is bound to the 'sub’ or

'Ind' atoms corresponds to the appropriate subsystem or indication

rules. The new resulting list of consequences is then checked to

remove duplicated elements.

The consequences of each subsystem failure and process variable
deviation are processed in exactly the same way as the basic fault
consequences. The compact list of consequences is then substituted as

the fifth argument of the ’'causes’ predicate or the fourth argument of

the ’'sub causes'’ predicate, where appropriate.

The fourth phase of the rulebase compilation involves identifying
the common cause faults which affect more than one process variable
deviation. The causes o0of each process wvariable deviation are
individually examined to determine how many other variable deviations
are caused by the same fault. When the fault being scrutinised causes
a subsystem failure, the effects of the subsystem failure are

propagated until variable deviations are reached.

If a process variable deviation 1is caused by another process
variable deviation, then this causal link is also noted. The results
are then stored in a list and any duplicated elements removed. The
format of the information is similar to the consequence data except

/

that two different mnemonics are used. A list element of the form 'cc
X' specifies that the process variable deviation with index X can be
caused by some of the same faults that cause the current wvariable

' ¥

deviation. Similarly the list element 'in : X ' states that the

deviation of index X is a cause of the current variable deviation.

The list which describes the common cause relationships between
process variable deviations is asserted as the sixth argument of the
relevant ’'causes’ predicate. Examples of the inputs and outputs of the

rulebase compiler are included in Appendices I,J and K.

333



Appendix G

THE FAULTFINDER UNIT MODELS

334



1) MODEL NUMBER NAME
6 DUMMY HEAD

NO. OF ENG. ASSUMPTIONS/DESCRIPTIONS: 1
NO. OF PROPAGATION EQUATIONS: 1
NO. OF EVENT STATEMENTS: 3

NO. OF DECISION TABLES: O
NO. OF FAILURE MODES: 1

2) ENGINEERING ASSUMPTIONS AND DESCRIPTIONS
UNIT THAT ACTS AS A SOURCE FOR MATERIALS.

3) PROPAGATION EQUATIONS

Q1OUT=F(G1OUT)

4) EVENT STATEMENTS

F OTH-CAUS:Q10UT LO,QlOUT HI,QlOUT NONE,QlOUT SOME,QlOUT REV
F OTH-CAUS:P10UT NONE,P1OUT SOME,P1OU<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>