ST Zere D66/ 8¢

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY
LIBRARY

AUTHOR/FILING TITLE
HoC wi G‘ G

ACCESSION/COPY NO.

VOL NO. CLASS MARK

] Lefs O~/

-1 JuL 1994
30 JUN1995

013 7367 02

WIIIIUIMH)NIHHWIWIHW Ll

A COMPUTER BASED ALARM HANDLING SYSTEM

FOR_PROCESS_PLANT

by

GARY HOENIG

for IT

APPENDICES

Lovg ouah University | -
of Tochnalr 4 wi& ¥y
e = v aomagd
e & T

Class

ree 137367 fo2
f ¢

APPENDIX A

INTRODUCTION TO THE
OLDMAN ON-LINE CRT DISPLAY PACKAGE

214

APPENDIX A

TABLE OF CORTENTS

Section

A.l Introduction

A.2 Hardware

A.3 System Description

A.4 References

215

216

216

217

218

A.l. INTRODUCTION

Recently the author in conjunction with the Department
of Industry undertook a research and development program to
study and perfect cathode ray tube (CRT) based display
techniques used for displaying process information to plant
operating staff. Surveys by the Department of Industry have
shown that all the major manufacturers of process control
equipment supply CRT's with standard display formats as the
primary interface between the process and the process
operator. Since the range of display formats provided by
nmost instrument manufacturers is limited, operators are
unable to investigate alternative ways of displaying plant
information. The project endevoured to develop a display
facility whereby operating staff could specify and assess a
variety of display formats while the system was on-line.

Although the intention of the exercise was to provide
information of the types of display formats preferred by
operators, the implementation of the project yielded a
variety of technical difficulties primarily related to real
time microprocessor applications.

A.2. HARDWARE

Due to limited resources the most suitable equipment
available for implementing the system consisted of:

1) Intecolor 8001 VDU with BASIC programing support
fbr the 8080 mléroprocessor wlth & maximum capaclty Or
24K Bytes for display and software implementation. A
dual drive floppy disc storége system used for program
and data storage was interfaced to the Intecolor.

2) Solartron Compact Logger for sampling,

conditioning, and logging plant data from up to 30
analogue inputs.

3) A purpose built dedicated touch control operator’s
kéyboard for display selection.

A.3 . SYSTEM DESCRIPTION

The on-line display management package, referred to as
OLDMAN, is intended to be a self-contained system which can
be attached to an existing process plant. Process variables
are measured directly from the existing plant instrument
sensors and control system using the data logger. Data is
sent to the Intecolor display via an RS-232 communication
link. The Intecolor converts the data into a displayable
form. See Figure A.l. Individual picture formats are
stored on the floppy disc. The operator selects the
appropriate display using the custom built touch control
keyboard. The system then locates the correct picture
overlay stored on disc. As incoming data from the data
logger is received, the system stores a limited amount of
data for historical type display formats such as trend type
displays. All relevent data is then displayed on the VDU in
a format described in the picture format which is stored on
disc.

Figure A.2 shows the OLDMAN display system in use by an
operator. The touch keyboard located in front of the
display is adequately sensitive to be used even with heavy
gloves. The keyboard construction is also resistant to
environmental abuse.

The display system proviGes a means of specifving both
the variant and invariant information content of a display.
The design procedure is to draw the invariant parts of the

217

PLANT

EXISTING
CONTROL
SYSTEM
I
it B e A B
. <& db ,
| |
| DATA !
I LOGGER I |
1 OLDMAN !
| |
| | |
| : |
| | f
i |
I FLOPPY INTECOLOR I
: DISC vDUu i
I }
i |
| |
b mr e e e e e e e e e = = —— e — = e —— i}

FIG.Al. OLDMAN Information Display Package

612

Figure A-2

The OLDMAN Display

Package

in Use

display overlay such as titles, legends, or mimics using
special graphic and semigraphic characters. Then how and
where the variable information is to be displayed is
specified. The two step procedure generates a 'picture
blank', the invariant picture content, and the ‘'activated
picture'. The ‘factivated picture' is the ‘'picture blank'
with variant display locations inserted. All of this data
is stored on the floppy disc medium. The display can be
comprised of an invariant picture and variant process
information in the form of alphanumerics, analogue
representation, or graphical plots, Figures A.3 through A.7
illustrate some of the display formats which can be built.

The on-line display management package consiste of two
major sections:

1) On-Line Mode where displays containing real time
information are accessable to the operator on demand.

2) Off-Line Mode where, using the same hardware,

oberators and/or designers can build display formats as
required.

Formats are developed, editted, and stored in the off-
line mode.

In the on-line mode the system operates in real time,
collecting process data and displaying the information
acccording to one of the operated selected formats developed
cff-line. The two operaticonal modes can not both be running
simultaneously. Further details of the OLDMAN display
package are described in reference [Al]. Some operational

difficulties of the system are discussed by the author in
reference [AZ].

220

Figure A.3 Horizontal Loop Display Format

Figure A.4 Vertical Loop Display Format

22l

Figure A.5 Historical Trend Display x 2

Figure A.6 Historical Trend Display x 4

222

Figure A.7

Example Mimic Display Format

223

A.4 REFERENCES

Al. Umbers, I.G., Mark, S.J., and Hoenig, G., 1981, "A
User's Guide for an On-Line Display Management Package",
PRC2(CON), Department of Industry, Warren Spring Laboratory,
Stevénage, England.

A2, Hoenig, G., 1981, "Real-Time Design Considerations for
an On-Line Display Package", internal report, Department of
Industry, Warren Spring Laboratory, Stevenage, England,
June, 1981,

APPENDIX B

USER'S GUIDE FOR THE
OFF-LINE COMPONENT OF THE
ALARM HANDLING SYSTEM

224

APPENDIX B

TABLE OF CONTENTS

Section

B.l. SYSTEM SPECIFICATION

B.l.l1 Introduction

B.1.2 Egquipment Available

B.l.3 System Requirements

B.l.4 Organisation of the Report

B.2. USER'S GUIDE

B.2.1 Introduction to OFLAD

B.2.2 Conventions

B.2.3 Start-Up Procedure

B.2.4 OFf-Line Alarm Data System Monitor
{(OFLAD)

B.2.4.1 Functions Available
B.2.4.2 Housekeeping Functions
B.2.4.3 File Manipulation and

Data Entry

225

227

227

227

228

229

230

230

230

232

233

233

234

236

B.2.4.4 Editing and Listing

B.2.5 Compile Alarm Data Base (COMP)

B.2.5.1 1Introduction

B.2.5.2 Use of COMP

B.2.6 Transfering Alarm Data Base
(TRANSFER)

B.2.6.1 Introduction

B.2.6.2 Use of TRANSFER

B.3. INITIALISING DISKS

B.4. REFERENCES

TABLE B-l. ANALOGUE CONVERSION ALGORITHMS

255

257

257

258

262

262

263

266

267

268

B.l. SYSTEM SPECIFICATION

B.l.1 TIntroduction

Computer based process control systems are becoming
common place in the process industry. With the switch to
automated processing many features of process computer
control have not been adequately examined. The alarm
subsystem is such a feature. A recent survey and reportl
has shown that all major manufacturers of process control
equipment supply inadequate alarm handling facilities. The
system described in this report has been designed as a
generalized alarm handling package with & high degree of
system flexibility. The handling package is intended to be
an add on feature to existing process control systems. An
exercise of this nature will provide information on the
types of alarm requirements preferred by operators and
designers and will also provide an insight into how adequate
alarm handling facilities should be incorporated in existing
process control systems.

B.l.2 Eguipment Description

It is usually the best policy when designing a computer
based system to concentrate on the functional specification
before considering the implementation of the system. 1In
this way the design approach is not limited by the physical
entities which are available, but instead, is directed
towards satisfying the overall system objectives. However,
where resources are limited some account must be taken of
the hardware that can be provided by the available

227

resources.

Prototype research and development often requires
changes to be made in the overall system objectives. The
possible changes in system requirements necessitates the
choice of hardware which not only meets preliminary
requirements, but which is also capable of serving future
needs. The most suitable equipment available for
implementing the off-line component of the alarm handling
system considered here is outlined below.

The off-line computer used for prototype development of
the alarm handling system is the Chromatics CG 1999 Colour
Graphics Computer. This 2-80 processor based unit contains
32K of memory, a high resolution colour graphics display,
and a single 8 inch, 250K single sided, single density
floppy disk drive. A Teletype T43 printing terminal is
available for connection to the Chromatics via an RS-232
serial port. The printer is used for obtaining listings of
the loaded data. The serial line is also used as the down
line link to the on-line computer for transfering the alarm
data base to the on-line system. The Chromatics contains
Micro Soft BASIC Ver 3.0 langquage which operates in
conjunction with a Chromatics operating system and disk
operating system.

B.l.3 System Reguirements

The off-line alarm handling system is an independent,
stand-alone computer system which is used to build an alarm
handling data base for subsequent use in the on-line alarm
handling system. The off-line system allows the designer to
loqd alarm and other alarm related information into the
system at his leisure. This raw input data is stored in
files for future use. File storage of the raw data also

228

allows the designer to review and make changes to the raw
data with relative ease. Once the raw data is stored, the
off-line system retrieves the raw data from the storage
files, examines the data, and converts the data into a
condensed numerically coded data base. This alarm data base
contains all of the information in the raw data files plus
other information required by the on-line computer system.
Converting the raw data into a data base structure ensures
that the on-line computer program can run at maximum
efficiency and speed. The alarm data base is stored by the
off-line system ready for future transfer to the on-line
system.

B.l.4 Organisation of the Report

The remainder of the report presents a user's guide to

the facilities provided by the off-line alarm handling
system package. A second report describes and documents the
OFLAD software.

B.2. USER'S GUIDE

B.2.1 Introduction toc OQFLAD

The OFf-Line Alarm Data (OFLAD) program structure is
restricted by the available memory in the off-line computer,
i.e., the Chromatics CG 1999. The resulting structure is
comprised of three separate BASIC programs which interact
without operator intervention. This approach maximizes the
memory space available for data handling. The three program
modules are: '

1} System Monitor and Data Input Routine {(OFLAD)
2) The Data Compiler (COMP)
3? The Data Base Loader (TRANSFER}
Bach of the three modules are linked via common data
files stored on the disk unit. The System Monitor provides

the necessary coding for loading and running the other
modules as appropriate.

B.2.2 Conventions

Certain conventions are observed in operating the
system:

a) The type of response required to questions asked by
the software are as far as possible self-explanatory.
The response to a question requiring a yes or no reply

is either "¥" or "N". Occasionally special response
formats are required by the software. In these
instances special instructions are given in the user's

-

guide and the reference is given in the software
prompt.

b) Where more than one item is required by a question
the items supplied must be separated by a space.

¢} User responses are entered by a carriage return.
d) There are four types of files used by the system:

i) DA Files: Data Acquisition Files contain
coded ASCII information required when building an
alarm data base.

ii) EP Files: Event Processor Files contain
coded ASCII information required when building an
alarm data base.

iii)} AG Files: Alarm Generation Files contain
coded ASCII information required when building an
alarm data base.

iv) ADB Files: Alarm Data Base Files contain an

. image of an alarm data base as generated by the
COMP module. The ADB is transferred to the on-
line computer by the TRANSFER module.

e) The permitted ranges of file identifiers are as
follows:

File Type Range
Da 1 - 25
EP 26 - 50
AG 51 - 75
ADE 76 - 1060

231

B.2.3 Start-Up Procedure

1. Ensure that the T43 printer is connected to port SIO-0
on the Chromatics.

2, Switch on the Chromatics, disk drive unit, and T43
printer.

13

3. Insert a suitably initialised[floppy disk into the disk
drive unit (check that the label is uppermost and nearest to
the drive door.)

4, On the Chromatics keyboard: (see Note: 1)

i} Press the and the ((BOOT) keys.

ii) Press the key.

iii) The Chromatics will respond with a request for
memory size:

MEMORY SIZE?

5. Type: «hB0OO

6. Type: DOS"LOAD OFLAD"
7. Type: RUN

OFLAD will now be loaded from the floppy disk and will
commence to run.

Note 1: The CD around a letter or a series of letters
indicates that this is one key on the keyboard.

232

B.2.4 OFf-Line Alarm Data System Monitor

The OFLAD Alarm Data System Monitor comprises an
operating system and alarm data input routines. The
operating system recognizes commands used to evoke the
various functions available in the software package. The
data input routines are essentially data file editors which
allow the user to perform editing functions on any of three
data base file areas called working files. These working
files correspond to the three major operational sections of
the Alarm Handling Syétem: Data Acquisition, Event
Processing and Alarm Generation. Data files may be built,
examined, and stored. Similarly previously developed data
files can be examined, modified, deleted, etc. Once files
are completed the Compiler is used to build a coded Alarm
Data Base which can be interpreted by the on-line Alarm
Handling System. Compilation checks the validity of the
Data Acquistion (DA), Event Processor (EP) and Alarm
Generation (2G) files, building them into a numerically
coded Alarm Data Base (ADB). Finally, the data base can be
transferred tc the on-line Alarm Handling System,

B.2.4.1 Functions Available

OFLAD provides facilities for activating Data
Acquisition, Event Processor and Alarm Generation files.
(Activate refers to the procedures used to arrange for
dynamic information to be used for alarm data base
compilation.}) In addition, facilities are provided for
housekeeping tasks such as deleting DA, EP, and AG files and
listing disk directory.

233

When OFLAD has been loaded and is waiting for a command
it will prompt the user by printing:

COMMAND:

The user responds by typing a command shown in the 1list
below. If the user does not know the command tec use then a
list of commands and functions can be displayed by entering
an incorrect command or the command BElp. Only the first
two letters of the command need be entered.

Command Function

DIrectory List disk directory

LOad Load data files into working file space
STore Store or kill working files

COmp Goto COMP module (Module 2)

Flles List working files loaded

ENter Enter data in working file

CHange Edit a working file

LIst List a working file

DElete Delete a disk file

TRansfer Goto to TRANSFER module (Module 3)
HElp List commands

B.2.4.2 Housekeeping Functions

List Disk Directory - DI. The contents of the disk
currently loaded in the disk drive unit are listed with the
fellowing example format:

FILE NO. - KO. OF ELEMENTS

DA

234

; 1 -10 5 -~ 20 retc,
EP
30 - 10 retc,
AG
60 - 10 retc.
ADB
100 - 250 ,etc.
The first number displayed is the file reference number

followed by the number of elements in the file., The number
of elements is directly proportional to the file size.

Delete Files - DE. This command allows unwanted DA,
EP, AG and ADB files to be removed from the currently loaded
disk. The command format is as follows:

INPUT FILE NUMBER:

The required file identifier number is obtained from
the directory listing. This value is entered. The program
now asks

SURE?

which requires confirmation of the deletion (*Y" or "N").

Go to COMP Module - CO. This command is entered when

all the currently requiréd activation or file maintenance

operations have been performed. It loads and starts the
second program {Module 2: COMP), which is described
elsewhere. 1In brief the COMP Module is used to compile and
build an alarm data base from activated DA, EP and AG files.

% WARNING *** All working files must be secured by
using the STore command, otherwise the information in the
working files is lost.

Go to TRANSFER Module - TR. This command is entered
when all the currently required activation or file
maintenance operations have been performed. It loads and
starts the third program (Module 3: TRANSFER), which is
described elsewhere. 1In brief the TRANSFER module is used
to transfer a compiled alarm data base to the on-line alarm
handling computer,.

*** WARNING *** All working files must be secured by
using the STore command, otherwise the information in the
working files is lost.

BElp HE. This command lists the available system

commands. No response with a (RETURN) is equivalent to the
HElp command.

B.2.4.3 File Manipulation and Data Entry
The OFLAD program module contains three working file
areas allocated to the DA, EP and AG secticns respectively.

There are two modes of operating the working files.

1) The werking files can be 'loaded' with files of the
same type from the floppy disk drive unit. Once loaded

236

using the LOad command, the data in the respective working
file may be altered using the CHange command. New data is
added to the file by using the ENter command. Data is
deleted from the working file through the use of the CHange
command and inputing a space in place of the first data
string in the data group (see CHange command). A working
file can be listed at any time using the LIst command. The
file is then stored on disk using the STore command.

2) Data can be immediately entered into a working file
which has not been loaded from the disk. A new working file
space is loaded by using the LOad command and responding
with a file identifier number which does not exist on the
currently loaded disk. The CHange, ENter, LIst, and STore
commands function in the same manner as described above.
When the loaded files are STored, the currently loaded file
identifier number is used to store the file on disk unless
instructed otherwise.

Either method may be used. The FIle command will list
the working files currently present in the system. Note:
The working files are not stored until a STore command is
issued. If other program modules are entered, the current
working files are lost.

Load Working Files - LO. This command allows the user
to copy the contents of files stored on the currently loaded
floppy disk into the appropriate working file space. The
command also allows the creation of a new file. There are
three working files; DA, EP and AG respectively.

The program responds:

DA FILE KUMBER:

237

The number (1 = 25) of the DA file to be loaded is
entered. Next the program asks:

EP FILE NUMBER:

The number (26 - 50) of the EP file to be loaded is
entered. Next the program asks:

AG FILE NUMBER:

The number (51 -~ 75) of the AG file to be loaded is
entered.

If a file is not present on the currently loaded disk,
the program responds

NEW FILE

If no file is to be loaded then press RETURN .

List the Loaded Working Files — FI. This command lists
the file identifier numbers of the files which have been
loaded into the respective working files. If a working file
has not been loaded, no response will be given for that
particular working file.

Store or Kill Working FPiles — ST. This command allows
the user to delete a working file or store the file on the
currently loaded disk with either the same file identifier
number or a new one. The STore command is the same for any
of the three working files. The user is then asked whether
or not each individual working file is to be stored, etc.
If 2 file is loaded in the working file the program asks:

238

STORE DA (file number)?

STORE EP (file numnber)?

STORE AG (file number)?

In each case the response to the prompt is as follows:

RETURN = Do not store, leave status quo
"y = Store, no change in file number
and delete working file
"NF" = Store with new file number
and delete working file
"K" = Kill working file

If the response is "NF" the program then asks:
ENTER NEW RUMBER?
The new file identifier number can be any legal file

number for the respective working file, :

Enter New Data - EN. This command allows new data to
be added to a loaded working file. The working file is
specified by the prompt:

ITEM:

The acceptable responses to the ITEM: prompt are:

Da =~ Data Acquisition working file

Ep =~ Event Processor working file

Ag - Alarm Generation working file

Help - Help, list ITEM commands

Only the first letter D, E, A, or H respectively need

be entered. No response to the ITEM: prompt, i.e., (RETURN
only, exits the ENter command.

DA Unit - D. If the response to the ITEM: prompt is
"D" then the program responds:

INPUT DATA ACQUISITION INFORMATION

This indicates that the program is entering the routine
for inputing information relating to data acquisition. This
is the first working file. Each measured variable used by
the alarm handling system must be assigned in order that the
system knows where and how to obtain process information
about the variable. Each question must be answered to
ensure proper compilation of the alarm data base. However,
a with no response leaves the item unchanged. This
is useful when using the CHange command.

The program responds:
PLANT CODE {1:
This is the identifying code for the measured variable.
Whenever the particular measured variable is referenced the
Plant Code must be used. Any alphanumeric code is

acceptable,

Next the program asks:

240

NAME [1:

This is the English description of the Plant Code. It
is recommended that the name be as brief as possible. The
maximum length should not be more than 10 characters. |

The program continues:

INPUT DEVICE [1:

The input device for the measured variable is now
assigned. The device assignment is the device from which
data is acquired on the on-line computer system. The
acceptable devices are:

0 - Device #0 Media Plant I/0

1 - Device #1 TT3: Host Link

2 - Device #2 TT1l: T43 Terminal

3 - Device #3 Not Assigned

4 - Device #4 Not Assigned

M - Memory location when using DMA
equipment.

If "M" is entered the program asks:

ADDRESS []:

Any decimal address is acceptable.

The program next asks:

241

DATA TYPE []):

The data type is either Analogue or Binary, so enter
either "A" or "B". The data type is analogue if the
measured variable is represented by a continuous parameter.
The data type is binary if the measured variable has only

two states, i.e., ON-OFF or 0-1l. If the response is "A" the
program asks:

CONVERSION ALGORITHM #I[1:

There are five conversion algorithms available on the
on—line computer. The conversion number identifies how the
measured variable is to be converted into values used by the
event processor. Enter a value 1 to 5. (See Table B-1l.)

If the measured variable is a binary type then the
program asks if data inversion is required.

DATA INVERSION (Y/N):

A "Y" response indicates that the binary value is
changed or inverted from eithera 0 toaloral toa
before it is stored in the DA on-line data base.

The program continues:

RANGE {]:

Enter the minimum and maximum values that the measured
variable will reach. These values must be in units
identical to those seen by the on-line alarm handling sytemn.
The format of the response is:

value min value max RETURN

242

These values are not engineering units, they are in the
measured parameter units. The program can not deal with
engineering values.

The program next asks for the significant change:
SIGNIFICANT CHANGE [1:

Enter in measured parameter units the minimum change during
one scan period which will initiate event processing. Data
value changes that occur during the data acquisition scan
period are compared with the significant change. No action
is taken if the data value change is less,

The next question asked is:
SCAN RATE I]:
The Scan Rate is the time between data acquisition

samplings. The Alarm Handling System has four levels of
scanning,

Scan Rate Time Interval
1 1 Second
2 5 Seconds
3 15 Seconds
4 1 Minute

Enter the number 1, 2, 3, or 4 and . The
program now asks:

243

SCAN PRIORITY []:

Within each scan group the measured variables are
sampled one after another in the order of their priority.
Any integer number 1 - 100 can be entered with 1 being the
highest (first up) priority. If more than one variable has
the same priority in a scan group then the variables with
the same priority are sampled in alphanumeric order of the
Plant Code. With a large number of variables in a scan
group, in some cases, the time between sampling may not
always be consistent for low priority variables.

The program responds

END OF DA INPUT

and returns to the COMMAND prompt, ready for further
instructions,

Event Processor List - E. With the response to the
ITEM: prompt "E"™ the program prints:

INPUT EVENT STATUS INFORMATION

This indicates that the program is entering the routine
for inputing information relating to event status
assignments. This is the second working file. The event
processor in the on-line computer retrieves processed
measured variable information from the DA on-line data base.
These values are compared with the conditions assigned in
the event list corresponding to each Plant Code. The event
processor sets a flag in the event status image if the
conditions for the event are true. Each question must be
answered to ensure proper compilation of the alarm handling
system data base. However, if no response is reguired or

244

the question does not apply, then press . This
results in no change to the data in the working file and is
useful when using the CHange command.

The program asks:
PLANT CODE [1:

The alphanumeric response to this question must be
identical to the plant code given._in the DA unit section in
order to assign the correct event status conditions. If any
Plant Codes are entered which are not in the DA file, the
alarm data base will fail to compile., Any number of events
can be assigned to a Piant Code, however each must have a
unique event name.

Next the program asks:
EVENT NAME [1]:

This is the English description of the event. It is
highly recommended that the name be as brief as possible.
JThe maximum recommended length should be not more than 10
characters. Spaces should also be avoided since the event
name is entered in the alarm file which has difficulties

dealing with spaces. Spaces are permitted, but special
formats when using spaces are required in the alarm file.

Now the program continues:
EVENT TYPE [1]:

The event type describes the class of event as follows:

ZLO

LO
HI
XHI

TREND {(Change in DA)/(Scan Interval)
ON

OFF

DEVI

TDEVI

The event type determines how the alarm handling system
examines the DA data before deciding if an event has
occurred. For example, if an event is named TANKHI then a
possible event type would be HI, i.e., the variable is then
examined in this context. If the type is TREND then the
variable is examined on the basis of rate of change and so
on. The limits are entered which represent the limits
for the selected event type. These event condition
parameters are entered next. Analogue event types require
limits of the alarm band. For analogue event types the
response must be a numeric value in units related to those
generated by the DA processor. In other words if the values
are modified by the DA processor conversion algorithms, the
limit values are applied to the converted values. Analogue
bands can also implement hysteresis on the band limits.

ON/OFF binary events do not require event conditioning.
If the event corresponds to a binary variable press (RETUR

The program continues:

246

ENTER PARAMETERS

[1:
[1:
(1:
[1:

= W N -

Referring to the figure below the shaded areas
represent the plant data value range after conversion in
which an event will be considered to have occurred, i.e.
TRUE. The limits of these ranges are represented by the
parameters 1, 2, 3 and 4. Parameters 1 and 2 describe the
lower limit of the range while 3 and 4, the upper limit.
There are two parameters for each range limit to accommodate

hysteresis,
LIMIT
PARAMETERS
4 LiMIT 3)
s PARAMETERS + v

- 4'
N 7/,,,,,,4,1/,@ o s
S

t—>

Y

t—»
la Applies to most l1b Applies to DEVI and
event types TDEVI only

Figure B.l. Analogue Range Parameters

Note that Pigure B.la illustrates the event range for XLO,
LO, HI, XHI, and TREND events. Figure B.lb shows the event
range for DEVI (deviation) and TDEVI {(trend deviation)
events. XLO, LO, HI, and XHI event labels are used for the
user's convienence. There is no difference in the way that
the event range limits are used to detect events. The
parameter values are entered in the same fashion for all
event types. All parameters must be entered and in the
value order 1<=2<3<=4. To implement event types so that
only one limit is used refer to the Figure B.2.

The deviation events inverse the event range so that
all values outside the band are considered to represent TRUE
events.

Hysteresis causes a lag in response when variables are
close to limit parameters. This is implemented by shifting
the event range limit from one parameter value to the other
depending upon the direction of approach of the measured
variable. The limit parameters 1,2 and 3,4 are used to set
the upper and lower hysteresis values for each band limit.

»~ Referring to Figure B.3, the lower limit 1 is the
lovest value of the value band in which the event status
condition is true. If the measured plant value makes a
positive going excursion across the lower limit, the event
is not true until the value crosses the lower limit 2. The

reverse is true when the measured value makes a negative
going excursion across the band limits., The same hysteresis
shift occurs on the high limit. If no hysteresis is
required then set the low limit 1 equal to the low limit 2
and the high limit 3 equal to the high limit 4.

MY

A
;

v

iy
SET OUTSIDE
_74 OPERATING RANGE

LO EVENT WITH SINGLE LIMIT

SET QUTSIDE

[—

Hi EVENT WITH SINGLE LIMIT

MY

Z 7 - SET BOTH WITHIN
va

V//////////Z / /:/ 7, tOPEnA'rme RANGE - -

LO OR HI EVENT WITH DUAL LIMITS

MV

Eg.; Measured Plant Value Change = MV

Low Limit 1 = 10
Low Limit 2 = 12

Hi Limit3 =20
Hi Limit 4 = 22

MV = 8 to 1l1; Event = False
MV = 9 to 12; Event = True
MV = 23 to 21; Event = False
MV = 21 to 19; Event = True

RANGE LIMIT

4

3

/\ / ‘]
/ _/ Y]

t —

Fig B.3. Diagram of Limit

The program next prints

Hysteresis Response

END OF EVENT PROCESSOR INPUT

and returns to the COMMAND prompt, ready for further
instructions.

Alarm Generation - A. With this response to the ITEM:
prompt the program responds:

INPUT ALARM CONDITION IﬁFORMATION

This indicates that the program is entering the routine
for inputing information relating to alarm conditions and
alarm output assignments, This is the third working file.
The alarm processor in the on-line computer inspects the
event status image generated by the event processor. The
alarm processor compares the event image with the conditions
for alarm ON and alarm OFF. If these conditions are met,
the alarm processor informs the alarm display unit of the
change in the alarm status imaqe. Each question must be
answered to ensure proper compilation of the alarm handling
system data base, However, if no response is required or
the question does not apply then press . This
results in no change to the data in the working f£ile and is
useful when using the CHange command.

The program asks:

ALARM NAME [1:

This is the English description of the alarm. Any
alphanumeric response may be entered. It is recommended
that the alarm name be as brief as possible. The maximum
length should be not more than 20 characters.

Next the program asks:
OUTPUT CODE {]:
This code is the alarm reference code which is sent to
the display unit when a change in alarm condition occurs.
This code must be recognizable by the display unit otherwise

the on-line alarm handling system will not function
correctly. Any alphanumeric response may be entered.

The program continues:
CONDITION ON [1l:
A Boolean expression containing the event names which
must be true is entered. The allowable Boolean operators
are:

NOT

OR

XOR

(Pseudo operator
) Pseudo operator
SEQ TIL

VOT

The format of the expression must be as follows:

252

1) Space between operators and operands.

2} No spaces can exist in the event name. If there
are spaces in the event name substitute the space with “.

3) Parentheses must be entered with a space as

= except if preceeded by a (

). except if succeeded by a)}
Examples:
) LEGAL 1) FLOW"TANK AND LEVEL1
INPUTS
2) NOT (LEVEL2 OR NOT (LEVEL1))
ILLEGAL 1) LEVELIAND FLOW TANK
INPUTS

2) NOT(LEVEL20ORNOT(LEVEL1))

Most errors are detected during compilation, however,

great care should be taken to ensure correct functioning of
the on-line alarm handling system.

Simple sequences can also be used as condition
statements. The operator SEQ indicates that the time of
occurance of the succeeding events must be in chronological
order. The operator TIL is used to set a time limilt on the
detection. This time limit in seconds represents the time
from the occurance of the first event in the sequence. All
events must have occurred with this time limit for the
sequence to be valid.

Example:
SEQ LEVELl LEVEL2 LEVEL3 TIL 30

The condition statement requires that event LEVELl must
occur before LEVEL2. Also LEVEL2 must occur before LEVEL3.
The time difference between LEVEL3 and LEVELL must be less
than 30 seconds.

Note: No logical operators are allowed in a SEQ TIL
statement.

A similar operation is the VOT operator. This operator
examines the succeeding events and takes a majority vote.
If the majority of events in the statement have occurred
than the condition statement is satisfied.

Example:

VOT LEVEL1l HIFLOW TEMP

The program now asks:
CONDITION OFF []:

Again, a Boolean expression containing the event names
which must be true is entered. In the on-line system the
alarm output code is sent to the display unit with a data
packet indicating that either the CONDITION ON expression is
true or that the CONDITION OFF expression is true.

The program continues:

PERSISTENCY [1:

The persistency value indicates the display
characteristics of the alarm with respect to acceptance and
reset. See the display unit document for further details.
Acceptable values are 1 to 5.

The program responds
END OF ALARM CONDITION INPUT

and returns to the COMMAND prompt, ready for further
instructions. i

B.2.4.4 Editing Files

Change or Edit a Working File - CH. This command
allows elements in the working files to be changed or
deleted. Any of the three working files may be edited.

The program responds:

ITEM:

The working £file is now entered in the same manner as
when the ENter command is used.

Type:
D for DA
E for EP
A for AG

The program now asks which group of file entries are to

be changed or deleted.
For the DA unit working file the program responds:
ENTER PLANT CODE TO BE CHANGED:
For the EP working file the program responds:
ENTER EVENT NAME TO BE CHANGED:
For the AG working file the ﬁrogram responds:
ENTER ALARM NAME TO BE CHANGED:

In each case the exact Plant Code, Event Name, or Alarm
Name respectively must be entered. If the entered request
does not match any Plant Code, Event Name, or Alarm Name in
the respective working file, the program responds with

CAN NOT FIND

and returns to the command prompt. If the response is found
then the edit mode is entered allowing changes to be made to
any of the questions in the group. The current contents of
the file elements are shown in the brackets such as

PLANT CODE [F2011:

Enter the new data or press for no change. To
delete a group of data in a working file, enter a space and

in response to

PLANT CODE | sz

EVENT NAME [1:

ALARM NAME [___ }:

Although the data group will’'still exist in the working
file, when the working file is STored, the data group will
be deleted.

List a Working File - LI. This command lists the
contents of a loaded working file with a description header.
The program responds:

-

WHICH ONE?

Enter D, E, or A for the DA, EP, or AG file
respectively. The program continues:

HARD COPY?

If a printed copy of the working file contents is
required, enter "¥". The output will then be transferred to
the T43 Printer. Otherwise with an "N" response the listing

is sent to the Chromatics VDU display.

Note: The T43 Printer must be connected to port SIO~0 with
parity off, full duplex, and 300 BAUD.

When complete the program returns to the COMMAND
prompt, ready for further instructions.

B.2.5 Compile Alarm Data Base

B.2.5.1 Introduction to COMP

The second program module in the off-line software is
the COMP or compilation module. This program retrieves DA,

EP and AG files stored on the currently loaded floppy disk,
processes the data, and finally builds and stores an
activated alarm data base (ADB) file on the loaded disk.
The compiler performs the following functions:

1) Inspects the DA, EP and AG files for obvious syntax
errors.

2) Sorts the DA, EP and AG file information into a
systematic order required for the alarm data base.

3) Cross correlates the DA, EP and AG files,
_ inspecting for missing, duplicate, or mismatched data.

4) Provides a listing of the data immediately prior to
data conversion.

5) Builds and stores an alarm data base ready for
transfer to the on-line system.

Any errors in the data text are noted by an "*" before
‘the incorrect element. Compilation errors are also noted
"with an error message for each error occurrance.
Compilation will not succeed if there are any compilation
errors. If errors do occur, the user must edit the
appropriate file using the OFLAD module which is
automatically loaded and run upon completion of the COMP
module,

B.2.5.2 Use of COMP

Compile an Alarm Data Base - CO. This command allows
the user to enter the COMP program module and compile and

, build an alarm data base. The alarm data base is stored on
the disk unit.

258

The program responds:

DA FILE NO.?
Enter the DA file to be used in the compilation.
Next the program asks:

EP FILE NO.?
Enter the EP file to be used in the compilation,
The program continues:

AG FILE NO.?

Enter the AG file to be used in the compilation. The
files entered to the above questions must exist on the
currently loaded disk directory. The data in the files must
be consistent with one another to ensure successful
compilation, The files on the disk are not destroyed during

"compilation. The file contents are copied in the program
module.

The program now asks:
ADB NO.?

Enter the file identifier number of the Alarm Data Base
to be generated by the compilation. If the ADB number
already exists on the currently loaded disk, the current Avb
file will be overwritten by the ADB generated during
compilation. The program will respond:

%* WARNING - ADB FILE — ALREADY EXISTS ¥#

ARE YOU SURE?

Any response other than "Y" results in another 'ADB
NO.?' request.

The program continues:
HARD COPY?

If a printed copy of the compilation listings are
required, enter "Y". The output will then be transferred to
the T43 Printer. Otherwise with an "N" response the
listings are sent to the Chromatics VDU display.

Note: The T43 Printer must be connected to port SIO-0 with
parity off, full duplex, and 300 BAUD.

The program will now load the requested DA file. The
file is sorted and an alphanumeric Plant Code listing is
produced. Any errors will be noted with a "*", A response

DA TYPE ERROR

-

indicates that a non-existent data type is present. The
total DA errors are noted in the trailing error statement.

*x% () ERRORS **%

A second listing will be produced of the DA file which
is in Scan Group and Scan Priority order.

The program now loads the requested EP file. The file
is sorted and an alphanumeric Event Name listing is
produqed. Any errors will be noted with a "*". A response

EP TYPE ERROR

indicates that a non-existent event type is present. The
total EP errors are noted in the trailing error statement.

%% () ERRORS ***

The program now loads the AG file. The file is sorted
and an alphanumeric Alarm Name listing is produced. Any
errors will be noted with a "*", Carefully examine the
Boolean expressions for errors. fhese expressions have been
_converted into Reverse Polish notation. The alarm listing
format is:

ALARM NAME: alarm name {output code)

CONDITION ON: reverse polish expression

CONDITION OFF: reverse polish expression

PERSISTENCY: number

The total AG errors are noted in the trailing error
statement.

% (0 ERRORS *%*

If no errors have occurred during compilation, the
program responds:

**% TOTAL ERRORS = 0 **%

PASS 1 OK

#%x% COMPILATION OK ***

The program now builds the alarm data base, stores it
on disk, and returns to the OFLAD module. The COMMAND:
prompt indicates that compilation has completed and ready
for further instructions.

If errors occurred during compilation the program
responds:

*%% TOTAL ERRORS = __ ***
**%* COMPILATION FAILED %%
The program aborts and returns to the OFLAD module.

The COMMAND: prompt indicates that the system is ready for
further instructions.

The compilation time is proportional to the size of the
files used. Compilation time grows rapidly with the total
number of file elements.

B.2.6 Transfering the Alarm Data Base (TRANSPER)
B.2.6.1 1Introduction to TRANSFER

The third program module in the off-line software is
the TRANSFER module. This program retrieves ADB files
stored on the currently loaded floppy disk and installs the
compiled alarm data base in the on-~line alarm handling
computer. The transfer routine performs the following
functions:

1) Enquires the user for the alarm data base (ADR)
file to be transferred.

2) Establishes communication with the on-line

computer.

3) Transfers the data base to the on-line computer
performing some error checking for link and transfer errors.

Any errors generated during the transfer task are most
likely due to difficulties with the communication link to
the on-~line computer., If errors do occur the routine will
abort, returning to the OFLAD module. The user should check
all link lines and repeat the transfer command.

B.2.6.2 Use of TRANSFER

Transfer an Alarm Data Base -~ TR. This command allows
the user to enter the TRANSFER program module and transfer
an alarm data base file to the on-line alarm handling
computer. The program starts:

ALARM DATA BASE TRANSFER ROUTINE

THE CHROMATICS MUST BE CONNECTED TO THE PDP11/03.
THE ALARM HANDLING SYSTEM MUST BE INSTALLED AND RUNNING
BEFORE PROCEEDING.

A link error will occur if the setup is not correct,
thus aborting the transfer.

The program responds with a directory list of the alarm
data base files available on the currently loaded floppy
disk. The format is the same as for the List Directory
command DI in OFLAD.

AVAILABLE ALARM DATA BASES

ADB

ADB No.?

Enter the appropriate alarm data base number to be
transferred. The program continues:

ARE YOU SURE?

-

A "N reponse will abort the transfer routine and the
system returns t¢ the OFLAD program module. The prompt:

COMMAND:
indicates that the system is ready for further instructions.
A "Y" reponse to the 'ARE YOU SURE?' prompt will
initiate the transfer of the alarm data base down line to
the PDP11/03. When completed, the program will return to

the OFLAD program module ready for further instructions.

There are three forms of error messages which may be
encountered during the transfer of the data base.

1) Type Error in Element
2) Link Error

3) Xfer Error

Type errors occur when the transfer routine has found
an invalid element in the alarm data base. The element
number in error is noted in the error message. This
indicates that the alarm data base may be corrupted.
Transfer will continue however the alarm data base in the

on~line computer will not be fully functicnal. If this
error is encountered, execute the transfer again. If still
persistent, re-compile the alarm data base.

Link errors occur when the transfer routine can not
establish communication with the on-line alarm handling
system. The transfer routine is aborted and program control
is returned to OFLAD. Ensure that the on-line system is
functional and that all communication lines are secured in
the correct place. Try the transfer again. No data will
have been transferred to the on-line system.

Xfer errors occur when communication checks on the link
line show that there is a possibility that a corrupted data
transfer has occured. The alarm data base in the on~-line
system will have been corrupted as well. Restart the
transfer procedure after ensuring that the on-line system
has also been reset. Program control will have been
returned to the OFLAD program module.

265

B.3.0 INITIALISING DISKS

New floppy disks must be processed by the Chromatics CG
1999 File Control System program 'FORMAT'. This program
formats the disk. The otherwise blank disk should be at
hand before continuing. Obtain a copy of the off-line Alarm
Handling System master disk which contains the system
programs

OFLAD.BAS
LOADOFLAD.SRC
COMP. BAS
LOADCOMP, SRC
DISKINI.BAS

The procedure essentially consists of transfering all
of the Chromatics System Files and the off-line Alarm
Handling System programs to the new disk. The procedure is
identical to that outlined in the Chromatics Disk Operating
Manual4,

1) Press the (DISK 0S

2} Insert the Master disk
3) Type: DUPE *.* (RETURN
4) Follow the instructions on the Chromatics display

5) When finished store Master disk in a safe place.

266

B.4.0 REFERENCES

1) Hoenig, G., 1980, "A Survey of Alarms and Alarm Systems
in the Process Industries" + Warren Spring Laboratory,
Department of Industry, Stevenage, England.

2) Singleton, W.T., 1974, "Man-Machine Systems™, Penguin,
London.

3) Fitter, M.J., 1979, "Dialogues for Users™, Proc. Infotech
State of the Art Conference on User-Friendly Systems, pp
5.1-5.21, 28-30 March 1979.

4) Chromatics Incorporated, 1978, "Disk Software Reference
Manual®, CG Series, Atlanta, pé 2.9-2.10.

5) Chromatics Incorporated, 1978, *Operators Manual', CG
Serxes, Altanta.

267

TABLE B-1

ANALOGUE CONVERSION ALGORITHMS

User defined. See on-line software documentation.

268

APPENDIX C

USER'S GUIDE FOR THE
ON~LINE COMPONENT OF THE
ALARM HANDLING SYSTEM

APPENDIX C

TABLE OF CONTENTS

Sectiocon

C.1.0 System Specification

C.l.1 Introduction

C.1l.2 Equipment Available
C.1l.3 System Requirements
C.1.4 Organisation of Appendix

C.2.0 On-Line User's Guide

C.2.1 Introduction to the Alarm
Handling System

C.2.2 Startup

C.2.3 Shutdown

C.2.4 Use of COMAH

C.2.5 Activation of the Alarm
Handling System

Ce2.6.,0 Use of EDIT
C.2.6.1 EDIT Sub-commands
C.2.6.2 Errors

270

271

271
271
272
272

273

273
273
276
277

278
280
281
283

C.l1.0 SYSTEM SPECIFICATION
C.l.1 Introduction

The on-line portion of the alarm handling system is
capable of interpreting and implementing alarm data base
structures as developed in the off-line component. Since
the on-line system is a target machine for the data base,
the operation of the on-line system has been greatly
simplified. In normal operation the user must insure that
the alarm data base has been installed correctly, otherwise
the operation is fully automatic. The alarm handling system
presented here is in prototype form, so obviously the user
may find peculiarities with operation of the system contrary
this document. However the greatest care has been taken to
foresee such difficulties.

C.1.2 Equipment Available

As discussed in previous appendices it is usually the
best policy when designing a computer based system to
concentrate on the functional specification before
considering the implementation of the system. 1In this way
the design approach is not limited by -the physical entities
which are available, but instead is directed towards
satisfying the overall system objectives. However, where
resources are limited some account must be taken of the
hardware that can be provided by the available resources.

Prototype design and development often requires changes
to be made to the overall system objectives. The possible
changes in system requirements necessitates the choice of
hardware which not only meets preliminary requirements but
which is also capable of servicing future needs. The most
suitable equipment available for implementing the on-line
component of the alarm bandling system considered here is

271

discussed in the hardware documentation.
C.l.3 System Requirements

The on-line alarm handling system is an independent
stand-alone computer system which is used to collect process
data, process this data, generate alarm and display
information as defined by the installed alarm data base.
The user having developed such a data base off-line can
install the alarm data base which defines the alarm
functions to be performed by the on-line system in a
specific application. Once installed the user need only
start the on-line system and the operation is fully
automatic. Alarms and alarm information will be generated
as instructed in the alarm data base.

C.1.4 Organisation of the Appendix
The remainder of this appendix report presents a user's
guide to the operation of the on-line alarm handling systenm.

Other documentation is available describing details and
configuration of the software and hardware systems.

272

C.2.0 On=-Line USER'S GUIDE

C.2.1 Introduction

The on-line portion of the Alarm Handling System (AHS)
is straight forward and easy to operate. It is recommended
that a system manager be assigned to perform the startup and
shutdown procedures in order to aveoid difficulties with
equipment and software. Once the system is secured no
further attention should be required.

Described here are the basic procedures for startup and
shutdown. If further details are required, a detailed
descripion, listings and flowcharts can be found in the on-
line software documentation.

C.2.2 Startup

The following steps must be executed to startup the
alarm handling system:

1) Ensure all connections to the PDP 11/03 alarm
handling computer are correct and secure. These include:

a) TTO0: Console Terminal

b) TTl: Printer

c) TT2: Chromatics Link Line

d) TT3: Host Computer Link Line (if present)
e) DD0:/DDl: TUS8 Tape Drive

Refer to the hardware document for more details.

2} Power up the Chromatics and PDP 11/03 computers.
Also power up all peripherals.

3) Place the switches on the front panel of the PDP

273

11/03 in the following positions:

DC CN on
ENABLE on
LTC off

The Media Active power bin must be switched OFF.

4) Insert Alarm Handling System cassette tape into
tape drive DDIl:

5) Make certain that the consocle terminal is in the
On-line mode. An '@' symbol should be present indicating
that the computer is in ODT (On-line Debugging Tool). Enter
173000G, the boot strap address. The alarm system will now
boot off the tape drive DD1:

6} Once the boot is complete the program will respond:

Restart 00:00
DAY =

Before continuing switch the LTC switch located on the front
panel of the PDP 11/03 to the ON position., Also switch all
Media Plant interface equipment ON. This is essential since
the alarm system accesses the Media interface at startup.

If the Media interface is OFF the system will crash. 1In
this situation the user must return to step 3 and try again.
(If there is no Media Interface in your system consult the
system manager to modify the POW powerup task.)

Once all equipment is switched ON, enter the day of the
month. The program will continue:

MONTH
YEAR =

HOURS
MINS

Enter the day 1-31, month 1-12, year e.g. 82, hours 0-23,
and minutes 0-59.

7) Now enter the following into the console terminal:

<cntrl>C
S5LOG <return>

This protects the system from tampering. If the system
manager requires to enter the system there are two user
names suitable for this purpose. These names and passwords
should be issued only with the system manager's approval.

User Password Protection

GOD SSD Top priority- should be used
for software development,
access is given to all
job slots.

TOP WSL General access to AHS jobs
required to operate
system. Protection
is provided to vital
software.

It is recommended that for all operations in this document

that the TOP user be entered to protect software task in the

case of a miss-entry.

8) Next startup the Chromatics alarm display system.
First insert the appropriate alarm display disk in the
Chromatics floppy disk drive.

275

9) On the Chromatics keyboard enter:

Memory Size = &HBOOO
DOS "LOAD DISPLAY"

RUN

10) Remove the AHS tape from the TUS58 tape drive for
security.

11) The alarm handling and display system is now
installed and running. Refer to the COMAH task commands

discussed later in this document for further details of how
to activate the alarm handling functions.

C.2.3 Shutdown

1) Remove all tapes and floppy disks from the systen
drives. '

2) Turn all power points off.

276

C.2.4 Use of COMMAH

The COMAH task allows the system manéger to evoke
engineering funcions with the system. A summary of the
operations available are presented here. For more details
refer to the on-line software documentation.

Via the console terminél TT0: the system manager nust
use the SWEPSPEED utility $ACT14 to activate the COMAH job
slot. Once started the prompt '##' will indicate that the
task is ready for input. All inputs consist of up to 2
character strings followed by a carriage return,

ED Enter EDIT mode. Overlay storage tape must be in
DDO:

TI Print time and date to console.

RE Restart alarm handling system from scratch.

ST Stop the alarm handling system except for the
watchdog task WD.

RU Run or 'warm start' the alarm handling system.
Useful during fault finding after using the ST
command.

b4 Exit COMAH task.

An error message may be encountered when entering the EDIT
mode if the overlay tape is not inserted in drive DDO:.

271

C.2.5 Activating the Alarm Handling System

With the alarm handling system software installed and
running in both the alarm handling computer and the display
computer, the user can activate the alarm handling system
functions as follows:

1) Install appropriate Alarm Data Base for application
at hand from the off-line alarm handling system into the on-
line alarm handling computer. Refer to the Off-Line User's
Guide for details describing the procedure.

2) With the Alarm Data Base installed the system is
ready to be activated. Ensure that the on-line alarm
display package is installed and running in the display
computer.

3) Log into the high security user name TOP with the
passwora WSL,

4) Activate job slot 14, the COMAH task.

5) Wait for the '##' prompt.

6) Insert 'RU'. The alarm handling system functions
are now running. Data Acquisition has now started. The
user must wait 15 minutes to ensure that all data
acquisition units are initialized after which time the alarm
handling system is primed. Alarms can now be generated in

accordance with the event and alarm definitionsg in the alarm
data base.

7) Insert 'X' to exit the COMAH task.

8) Most Important: Log out to maintain security of
the system. Enter:

<centrl> C
SLOG <return>

Note that the alarm display package provided with the
system contains a display personality module for a simple
paging display format. Sample alarm message texts are
provided for demonstration purposes. If the user requires
other forms of display, display personality modules must be
written. Software hooks are provided for this purpose. See
the On-Line Software Documentation for further details.

C.2.6.0 Use of EDIT

The EDIT command allows the system manager to make
simple modifications on-line to the alarm data base. Use
this program with care. A good understanding of the
structure of the alarm data base is required. Incorrect
entries will cause malfunction of the alarm handling system.
It is recommended that the user read the on-line document
concerning the EDIT task and the Alarm Data Base before
proceeding.

1) Make certain that the overlay tape AHS OVERLAY is
inserted in tape drive DDO: and stop any display or off-line
tasks in the attached Chromatics.

2) Activate alarm handling command task COMAH.
3) Enter 'ED' after the ## prompt.

4) Wait until the overlay file is retrieved from the
tape drive and installed in the system.
: 5) The editor prompt > indicates that the system is
ready for edit mode sub-~commands described below.

6) When editing is complete, enter the sub~command
'X!, Wait until the overlay is complete. The system will
be returned to the COMAH task.

7) The system must be restarted after a modification
to the alarm data base has been made. The array sizes in
the SETUP task may need adjusting.

280

C.2.6.1 Edit Sub-Commands

P Print alarm data base to the T43 Printer on device
TTl-.

L List alarm data base to console.

I Insert a new element into the data base. This

function is followed by:
ELEMENT NUMBER:

The user must enter and element number at which the
insertion is to be made. The element number is the alarm
data base array subscipt. The present contents of the
element entered will be shifted to the next higher element
number. The same occurs for any elements above the
insertion point.

The program will display the present contents of the
element. If a new entry is to be made the user enters an
.'=', The program will respond with an '=' prompt awaiting
input. Any numeric values are acceptable. A carrage return
completes the entry. To exit the insert mode enter a)
RETURN, The insert sub~command readjusts the data base size
in element one.

Example:
>1
ELEMENT NUMBER = 25
25> [old contents]l =
= [new entryl
26> [old contents]
R Replace a data base element. This function is

281

followed by: |

>R
ELEMENT NUMBER = [number]

The user must enter an element number at which a
modification may be made. The contents of the element
entered will be displayed as follows:

25> 321.0 N
[new entryl

25> [new entryl

By entering a '+' the program steps to the next data
base element, a '-' decrements the data base pointer and a

(RETURN) terminates the function.

25> 321.0 +
26> 432.0 -
25> 321.0
>
D Delete a data base element. This function removes

an element from the alarm data base. The remaining elements
are shifted downwards to take up the space in the data base.
The data base size in element one is also decremented. The
program responds:

>D
ELEMENT NUMBER = 25
25> 321,0 Y

25> 432,0
>

Any response other than 'Y' aborts the function.

282

X Exit the alarm data base editor, remove the
overlay, restart necessary program tasks and return toc the
alarm handling command task COMAH.

C.2.6.2 Errors

Error messages may be encountered when entering the
edit mode. The error message will be generated by the
SWEPSPEED system indicating an overlay error., The principal
causes of this error are:

1} Alarm Handling Overlay files not inserted correctly
in tape drive DDO:

2) Tape drive not properly connected to the system or
not powered up.

3) The Display package in the Chromatics computer was
transferring data to the alarm handling system at the time
of calling the Edit command.

Correct difficulty, enter the COMAH task again and repeat
" procedure,

If errors occur when exiting the EDIT mode consult the
system manager or re-boot the alarm handling software.
Sorry about that!

During editing the only error message generated by the
program is the following:

RE~-SIZE ADB
This message is generated when an attempt is made to insert

an element into an alarm data base which has £illed all
available space in the %A() alarm data base array. No

283

further entries may be made. This size may be increased by
nodifying the SETUP task in job slot 16. Consult the system |
manager.

284

APPENDIX D

SOFTWARE DESCRIPTION
FOR THE OFF-LINE COMPONENT
OF THE ALARM HANDLING SYSTEM

285

APPENDIX D

TABLE OF CONTENTS

Section

D.1l.0 Introduction
D.2.0 OFLAD

D.2.1 Setup

D.2.2 Command Monitor
D.2.3 Load Sub

D.2.4 Q% Sub

D.2.5 Files Loaded Sub
D.2.6 Conmpile Sub
D.2.7 Help Sub

D.2.8 Change Sub
D.2.9 List Sub

D.2.10 Item Sub
D.2.11 Help Item Sub
D.2.12 Store Sub
D.2.13 Delete Sub
D.2.14 Dir Sub
D.2.15 Transfer Sub
D.2.16 Data Entry

D.3.0 COMP

D.3.1 Introduction
D.3.2 Setup
D.3.3 Input
D.3.4 DA Processing

D.3.5 Event Processing

288
288

289
289
289
290
290
290
290
290
291
291
291
291
292
292
292
292

293

293
293
293
294
295

D.3.6
D.3.7
D.3.8
D.3.9

Process Alarms

Build Data Base Header
Comp Fail Check

Build Data Base

D.4.0 TRANSFER

D.4.1
D.4.2
D.4.3
D.4.4
D.4.5
D.4.6
D.4.7
D.4.8
D.4.9

Introduction
Setup

Ask for Overlay
Start Transfer
Close Down

Prod

Float Check

ERR Link

ERR Comm

D.5.0 LISTINGS

296
299
299
299

300

300
300
300
301
301
302
302
302
302

303

OFF-LINE SOFTWARE DESCRIPTION

D.1.0 INTRODUCTION

As described in the user's guide for the off-line
component of the alarm handling system, there are three
BASIC programs which comprise the software. The alarm data
base generator OFLAD functions as the command program
calling up all functions in the off-line system. It also
performs as the editor for the raw data files which later
are compiled by the COMP program into a coded alarm data
base. The third program is the XFER or transfer program
which loads the compiled data base into the on-line alarm
handling computer.

Presented here is an explanation of the structure of
these three programs and how they interact with each other.
The programs are written entirely in Microsoft BASIC and are
intended for use in the Chromatics CG 1999 intelligent
colour graphics terminal. Pecularities in program
statements will be due to Chromatic's specific instructions.
The reader should refer to the Chromatic’s user's manuals
provided by the manufacture for more details of these
statements.

D.2.0 OFLAD

The Off-Line Alarm Data base generator (OFLAD) is the
core program in the off~line system. The program provides a
system command structure and raw data file management and
editing facilities. The program is best explained by
walking through the flowchart. Because of the highly
interactive nature of this program the off-line user's guide
is also a software description. As a result, only

288

additional information is presented here which will clarify
the program listings.

D.2.1 Setup 100"199

The setup section is executed each time the program is
run. The screen colours and windows are set. The baud rate
is set match the T-43 printer on port SI0-0. As much string
space as possible is cleared to make maximum room for data
files in the form of string arrays. These file string
arrays are also dimensioned here. The variable D is used to
set the mazimum data file or array size. The arrays are as
follows:

R$ (D, 8) Data Aquisition data
S$(D,8) Event Definition data
A$(D,5) Alarm Definition data
CO$(11) Command ref file
DI(100) Disk directory

Finally a directory listing of the contents of the currently
loaded floppy disk is generated on the display.

-

D.2.2 Command Monitor 200-259

The command monitor prompts the user for an instruction
entry. The entry is checked and the program control is
temporarily transfered to the appropriate subroutine. A
listing of the available commands can be found in the off-~
line user's guide.

There are three 'working files' in the program
represented by the arrays R$., S$, and A$. 1In order for the
user to use these work areas, the file must be loaded, i.e.,

289

Wy

identified with a raw data file number. The load command
makes this assignment. If the file number already exists on
the floppy disk directory listing, the file is loaded into
the appropriate working file area. Thus the arrays R$. S§,
or AfS arefilled with raw data information. Once the files
are loaded, subsequent additions or editing may be performed
as required. Examination of the program listing will
clarify this explanation. It should be noted that the
variables FR, FS, and FA are used as flags to indicate that
the working files are loaded (1= loaded, 0= empty). The
variables NR, NS, and NA are used to store the total number
of entries made in the working files.

D.2.4 QS Sub 360-369

This internal service routine is used to convert a
string response given by the user in Q0% intc a number value
returned in Q.

D.2.5 Files Loaded Sub 370-379

The command routine lists the numbers of the working
files which are currently loaded in the system.

D.2.6 Compile Sub 380-385

Turns off the screen window and executes a SUBMIT file
to load in the COMP program. kKerer to Cnromatics manuals
for SUBMIT command.
D.2.7 Help Sub 400-460

Lists available QFLAD commands.

D.2.8 Change Sub 450-460

290

The edit flag FC is set to 1 and the program control is
temporarily transfered to the Item Sub. The edit flag FC is
set to zero and program control returned to the Monitor
section.

D.2.9 List Sub 470-499

Depending upon the user's reponse to "WHICH ONE2?", the
routine branches to the appropriate subroutine. These
routines print headers describing working file contents and
then prints out the file contents.

D.2.10 Item Sub 500-620

The command allows a particular working file entry if
the change flag is set or places the working file pointer
to the next available entry point in the file for data
insertion. When the change flag is set the routine asks for
the name or first section of a particular file entry. The
program scans the working file to find the entry. If no
entry can be found, the program reports this. With the
working file pointer set the program control is temporarily
transfered to the appropriate data entry routine,

D.2.11 Help Item Sub 630-660
Lists available subcommands in the Item Sub.

D.2.12 Store Sub 700-790

Via several subcommands, this routine provides options
for storing the contents of working files onto the floppy
disk store. The working tiles can be deleted, stored,
stored with number change or the working file can be
cleared. The routine branches to the appropriate subroutine
which provide the appropriate file name and number to the

291

disk operating system and then the directory is updated.
D.2.13 Delete Sub 791-799

This command allows existing files on a currently
loaded floppy disk to be deleted. The file number is
converted into a file name for the disk operating system.
The directory is updated and the floppy disk is compressed.

This routine evokes the directory listing routine
located in the Setup section.

D.2.15 Transfer Sub 820-830

This command turns off the display window and SUBMITs
the file LOADXFER which subsequently loads the XFER program
into the system.

D.2.16 Data Entry

The remainder of the program is commited to data entry
routines for the various working files. The working files
as mentioned are in the form of string arrays. Each array
is two dimensional. The first dimension is the entry number
and the second is the section within the entry. The program
prints the description of the section, then the current
contents and finally asks for input. An examination of the
program listing clearly shows the content of each of the
entry section elements in the working file arrays. The data
entry routines line numbers are as follows:

Data Acquisition 1000 -~ 1230

Event Definitions 2000 ~ 2110
Alarm Definitions 4000 - 4090

292

D.3.0 COMP

D.3.1 Introduction

The COMP or compiler program is the most complex of the
three off-line programs. The program is loaded into the
computer via a submit file as evoked by the OFLAD program
module. The purpose of the COMP program is to convert the
data stored in the Data Acquisition, Event, and Alarm files
into a coded Alarm Data Base suitable for loading into the
on-line alarm handling system. File entries are checked and
cross checked to insure that all data syntax was valid and
correct. As with the OFLAD program description it is best
to describe the program details by walking through the
flowchart and listing. Many aspects of the OFLAD and COMP
are similar since the data files generated in the OFLAD
program are used by the COMP program. Variables used for
specific functions are similar if not the same as in OFLAD,

This section sets the baud rate for port SIO-0 to 300
for the T-43 printer. The screen window is set, arrays
dimensioned and a file directory is printed to the screen of
the contents of the currently loaded floppy disk.

D.3.3 Input 150-175

This program section issues prompts to the user for the
data files to be used to build an alarm data base. The
following file numbers must be specified: DA, EP, AG and the
destination ADB file. The file numbers are checked for
validity and and their existence on the currently loaded
floppy disk. The user is also asked if a hard copy print

out is required. If so the logic output device A is set to
the display screen as well as I/0 port SIO-0.

D.3.4 DA Processing 180-590

This program section represents the Data Acquisition
file processing. The section is comprised of a variety of
routines which convert the DA file data into alarm data base
coded information. The program records the number of
compilation errors that occur in Yariable ER. First the
program reconstructs the raw data files from the files on
disk in string array R$(,). This file is printed verbatim
to the screen. N is the number of entries in the DA file.

The program next sorts the file according to the plant
code alphanumeric order [R$(N,1)]. Next. a check is made to
see if there is any duplicatioﬁ of plant codes. Any error
is marked by a '*' next to the duplicate plant code. An
intermediate listing is made of the file. An examination of
the scan rates [R$(N,7)] is made and a sort is made to place
the list of entries in scan order. Next the list is sorted
according to priorities within each scan rate group.

Another listing is made of the file. DA related elements in
the Alarm Data Base header are now calculated and placed in
the temporary header array. Refer to the alarm data base

documentation for more details regarding the alarm data base
contents.

Errors which do not appear on the listings as '*' are
recorded in EO and an error message is issued. A good
example for this case is in the next section of the compiler
where data type and range evaluations are performed. Here
the descriptions of data type are converted to a numeric
code representing the data type as follows:

o
|

Binary

= Inverted Binary

= Analogue Conversion 0
Analogue Conversion 1
= and so on

W
L]

This section combines information in array elements R$(N,4)
and R$(N,5) into the above code placed in R$(N,4). Raﬂge -
information if present is located in R$(N,6) as a combined
low/high text string. The string is seéarated into its
numeric values. The low value is- then placed in R$(N,5) and
the high value in R$(N,6), ‘

Next the input device number in R$(N,3) is examined to
see if it is valid. The value is decremented by 1 and
replaced in R$(N,3).

The significant change value remains in R$(N,9). After
compilation R$(N,2) contains the DA data storageoloéation
and is not presently used. ¥o further processing is done on
the DA file until the alarm data base is built later.

.D.3.5 Event Processing 600-865

The program next compiles the event data. The event
data file is retrieved form the floppy disk. NS contains
the total number of eﬁtries and is used to dimension the
event array S$(,). As with the DA files, the raw event data
file is printed to the screen. Errors are summed for this
section in variable ES and errors are marked on the listing
with the "*' as well,

The file entries are sorted according to the
alphanumeric order of event names. The file entries are
next sorted according to event types. Duplicate event names
generate an error and are marked on the listing. Next the
plant codes are checked against plant codes in the DA file

295

R$(N,1). If a plant code does not exist, the plant code is
error marked. A listing is now made to the display screen.

Finally the event type in S$(I,3) is checked for
validity and converted to codes as follows:

= ON

= OFF

= XLO

= Lo

HI

= XHI

= TREND

= DEVIATION

TREND DEVIATION

W 0 -~ & N W N M~
1}

An error message is made if an illegal event type is
detected. No more processing is performed until the alarm
data base is built.

D.3.6 Process Alarms 870-1240

Alarm definitions are next compiled. The alarm data
file is retrieved from the floppy disk. NA contains the
total number of entries and is used to dimension the alarm
array A$(,}. The raw data contained in this file is printed
to the screen. Errors are summed for this program section

in variable EA. Errors are marked on the listing with a
1%

The file entries are sorted according to the
alphanumeric order of' alarm names. Duplicate alarm names
generate an error and are marked on the listing.

Next the Boolean expressions representing the ON
condition and OFF condition statements are translated into

Reverse Polish Notation (RPN). During the translation

aspects of the validity of the Boolean expression are also
checked.

The Boolean processor performs the conversion to RPN.
There are two passes made of the Boolean expression through
the processor. The first is used to check the validity of
the Boolean expressions. Both the construction of the
expression and the existence to the events used in the
expression are checked. Later, when the alarm data base is
built, the second pass is made. During this pass the
Boolean operators and events are coded.

The Boolean processor actually converts algebraric
Boolean notation into RPN. The expressions for the ON or
OFF alarm condition expressions are examined character by
character. A temporary stack B$(M) is used to store
operators temporarily. The resulting expression is placed
in stack AA$(J). The stack pointers M and J indicate the
next available stack location. Referring to figure below

the process operates as follows:

FIFO

EVENTS)
ALGE BRAIC —— RESULT STACK

BOOLEAN
EXPRESSION (AAR (9)

NOT

OR
AND

XOR

1

FILO

8§ (M)
TEMPORARY
STACK

Figure: Using a Stack to convert expression to RPN

297

Individual characters are taken from the condition
expression string and are stored in X$. If the contents of
X% does not appear to be an operator or an event name
(identified by a leading and following space character) then
X% is added to T$ until the contents of T$ is either a
recognizable operator and if not it is an event. Operators
are stored consecutively in the temporary stack $B(M).
Event are placed directly in the result stack AAS$(J). When
all elements in the condition statement are processed the
operators are transferred from the temporary stack to the
result stack in FILO (first in last out) fashion. The
result in the stack AA$(J) is now in RPN with the first
entry as the left hand compenent of the expression.

Unfortunately nesting by using brackets causes
additional complications. Expressions within brackets are
intermediate results so when a left hand bracket is
encountered it is passed directly to stack B$(M). When a
right hand bracket is encountered it is passed directly to
the result stack AAS$(J). Operators are then retrieved off
the B$(M) stack until a left hand bracket is encountered
after which the next component in the original expression is
evaluated.

The operator NOT is alsc not really a true Boolean
operator. As a result any time an event or nested
expression is passed on to the result stack, the B$(M) stack
must be examined to see if there is a NOT on the top of the
stack.

The RPN result of the Boolean expressions are printed
to the screen along with the alarm definition information.

D.3.7 Build Data Base Header 1300-1330

At this point the alarm data base header is built. The
appropriate values are inserted in the data base array.
Refer to the Alarm Data Base documentation for further
details.

D.3.8 Comp Fail Check 1340-1355

This section generates a status report to the user. Up
to this point in the compilation is referred to as the first
pass. If errors have occured, the second pass is aborted
and the program restarts the OFLAD program module.

D.3.9 Build Data Base 1360-1500

Elements of the alarm data base are now orxdered and
sent to an opened floppy disk file. Elements are printed
to the open £ile in the order in which the elements appear
in the final data base. Refer to the Alarm Data Base
documentation for further details. The data is sent as
follows:

1) Data Base Header from DB%()

2) Data Acquisition Definitions from R$(,)

3? Event Definitions from S$$¢(,)

4) Alarm Definitions from A$(,) after condition
expressions are reprocessed with operators coded and event

names substituted with event locations in the event status
inage.

If all goes well the alarm data base file ADB_.DAT is
closed on the floppy disk. A message is printed stating

299

that the compilation is OK. The directory is updated, the
hardcopy output is turned off, and the OFLAD program module
is re~installed.

D.4.0 _TRANSFER

D.4.1 Introduction

TRANSFER, the third program module in the off-line
system transfers an alarm data base, as compiled by the COMP
program, to the on-line system in the PDP 11/03 alarm
handling computer. The program complements the alarm
handling on-line task LOAD. Refer to the documentation for
this task for further details. 1In order for the program to
function correctly, the Chromatics computer must be properly
installed, that is, port SI0O-0 must be connected to port
TT2: on the PDP 11/03 and the alarm handling scoftware must
be up and running. 'The TRANSFER program is entered via an
OFLAD command and a LOADXFER submit file.

D.4.2 Setup 50-165

This program section informs the user of the conditions
of use of the program. the program also questions the user
about which alarm data base stored on the currently loaded
floppy disk is to be transfered to the on-line system. A
listing of the available alarm data base files is also
given.

D.4.3 Ask for Overlay 200-250

First the program requests the LOAD overlay task to be
installed in the on-line system. This is done by issuing an
'L' to the on-line system. Remember that in normal running
mode the alarm handling system computer uses device TT2: as

300

an output line for display commands to the Chromatics in the
on-line mode. This means that when issuing an 'L' that the
data packet is received by the CHROM link task and passed on
to the DISPlay task where it is recognized as a request for
the LOAD task. The CHROM link task is shut down and the
LOAD task is installed over the DISPlay task.

A timeout error is set in the event that the on-line
system does not respond. TRANSFER will try up to 5 times to
establish contact. If stil no response indicating that the
LOAD task is installed is received, a link error occurs and
the program is aborted.

D.4.4 Start Transfer 300-410

With communication established, recognized by a '*!
response from the LOAD task, the timeout time for a response
is decreased and 'READY' is sent down line. Next several
null data packets are sent to clear the line. the first
data sent is the alarm data base size, the first element in
the alarm data base. This allows the on-line system to see
_1f there is enough room for the incoming alarm data base.
The size is also used to set the number of data transfers to
be made in the TRANSFER program.)

Any data packet which is not equal to "0" received from
the on—-line system is interpretted as a transfer error and
the program aborts., Also if a data packet is sent and no
response is received, a transfer error is initiated.

D.4.5 Close Down 450-470
Once all data has been transfered, the program returns

to the OFLAD program module. Several additional null data
packets are sent to clear the link line.

301

D.4.6 Prod 500~550

This routine is called each time data is to be received
fom the PDP 11/03. the program turns off the output section
of the port SI1I0-0 to prevent any echo down line from an
input statement. Once input is received the output port is
turned back on.,

D.4.7 Float Check 600-750

This routine is called each time an alarm data base
entry is sent to the on-line system. The alarm data base is
stored in a real array in the on-line system. Also the LOAD
task is only capable of dealing with real values. The float
check routine examines the numeric data in the alarm data
base files and converts it if necessary to a floating point
format acceptable to the on~line system. When data is
stored in .DAT files on the floppy disk, often extra space
characters are present in the data file entries, The CLR
SPC subroutine removes these spaces before the float check
is performed. ’

'D.4.8 ERR Link 1000-1020

If alink error occurs this error routine will print an
error message, ring the bell, and send program control to
the Close Down routine. This occurs after 5 attempts are
made to establish the link with the on-line system.

D.4.9 ERR Comm 2000-2020

If a communication or transfer error occurs this error
routine will print an error message. ring the bell, and send
program control to the Close Down routine. This occurs
after 5 attempts are made to re-establish the transfer
communication protocol.

302

D.5.0 LISTINGS

303

10 < ---- OFF-LINE ALARN HANDLING DATA BASE GENERATOR

20 ¢ ~=--- VER. 3.1

30 © --~- By G. Hoeniq, LUT, FEB. 1982

40 7

100 PRINTCHRS$(12)3*~C2"

162 CLEAR 2000:FRINTCHR$(27):"0A0"

103 PRINT CHR${27)}:"RO4™ ¢---SET BAUD 300

104 CLEAR (FRE(X)-4000)

105 =50 -

110 DINR$(D,%),54(D,8),A%(D,5),004(11),01(100)

115 DOS"ARYLOAD DI,DI”

120 PRINT"---~ FILE DIRECTORY --—-":;FRINT"FILE NUMBER - NO, OF ELEMENT
SI

125 PRINT:PRINT"DA":FORY=1T025:G0SUB140INEXTI

127 PRINT:PRINT®EP":FORI=24T050:G0SUBT40¢NEXT]

129 PRINT:PRINT®AG™:FORI=51T075:605UBT40:NEXT]

130 PRINT:FRINT*ADB":FORI=74T0100:00SUB140:NEXTI+PRINT s IFX=1THENRETURR
ELSE200 ; -

140 IFDICI)<>OTHENPRINTI;®~";BI¢I), :RETURNELSERETURN

200 4

210 7 =--- CONMAND MONITOR

220 ¢

225 PRINT:CO$C1)="EN":C0$(2}="CH":CO${3)="DI":CO${4)="LI":CO${5)="HE"?
COS(5)="L0":CO$(7)="ST":CO$(B)="FI":C0$(?)="CO":CO$(10}="DE":CO%(11)="
TR

230 LINEINPUT""C4COMMAND:“C3*;CS$:PRINT""C2*:C4=LEFT$(C%,2):1=0

235 IFC$=CO$(9)THENIBO

240 1=1+1

230 IFI<12THENIFC$=C0$(I)THENCNIGDSUBS00,450,800,470,400,260,700,370,3
80,791,820:G0TD2I0ELSE240

252 IFCS<>""THENPRINT““C4Syntax error“C2";CHR$({7)

25% PRINT:60TD230

250 ¢ --=~ LDAD SUB

270 IFFR=1THENPRINT"DA FILE™;DR;"LOADED,";60T0Q300

275 O$="":LINEINPUT“DA FILE NUMBER: ";0$:G0SUBJ&Q:IFQ$=""0RQ4$="+"THENI
00

285 IFO<TIORA>2STHEN27S

290 FR=1:DR=0:IFGI(Q)Y=0THENPRINT“NEU FILE":G0T0300

295 DOS"OFEN 5 R DA"+0$+™.DAT":NR=DI(M)

296 FORI=1TONR:FORJ=1TO9:LINEINPUTHSRS$(I,J) sNEXTJ:REXTI:DOS*CLOSE 3"

300 IFFS=1THENPRINT"EP FILE™;DS;"LOADED.":GOTD330

J05 Q$=""sLINEINPUT*EP FILE NUMEER: ";Q4%:GOSUR3S0:IFQ$=""CRO$="+"THEN]
30

J15 IFO4£240R0O>SOTHENSOS

320 FS=1:DS=0:IFDI(R)=OTHENPRINT“NEW FILE*:60T0330
v 325 DOS"OPEN 5 R EP“+0$+".DAT":NS=DI(D)
326 FORI=1TONS:FORJ=1T07:LINEINPUTHS 59T,) tNEXTJ2NEXTI:DOS CLOSE 5"
| 330 IFFA=ITHENPRINT*AG FILE":DA;“LOADED.":60T0358 i

N 335 Q¢="":LINEINPUT"AG FILE NUNBER: “;0$:GOSUR3S0:IFQ$=""ORO$="+"THENS
- a8
340 IFO<S1DRE>73THEN3IS
N 345 FA=1:DA=0:IFDI{Q)=0THENFRINT"NEY FILE*:6070358

- Tt 330 DOS“OPEN 5 R AG"+@%+~,DAT":NA=DI{D)

335 FORI=1TONA:FORJ=1TOS:LINEINPUTHS;A$(I,) :NEXTJeNEXTI :DOS“CLOSE 5"
358 PRINT:RETURN

360 “--0% SUR

342 IFQ$=""THENO=0;RETURN

364 ¥=0:FORI=1T0100:1F0$=STR$(I)THENN=1:1=100

3465 NEXTI:IFNC>OTHEN@S="+":RETURN

366 Q=VAL(Q$):RETURN

370 7 ~--- FILES LOADED SUB

372 IFFR=1THENPRINT"DA FILE":DR
373 IFFS=1THENPRINT™EVENT PROCESSOR FILE“:DS
374 IFFA=1THENPRINT“ALARM FILE“;DA

375 IFFR+FS+FA=O0THENPRINTND FILES LOADED.™
376 PRINT:RETURN .

380 7 ---- COMPILE SUB

- e . ——

-

385 PRINTCHR$(27);"0AF*:DOS"SUBMIT LOABCONP":END
400 7 ---- HELP COMMAND SUR

410 PRINT"*C3EN"C2TER":PRINT"~C3CHC2ANGE" :PRINT"~C3DI“C2RECTORY®
420 PRINT"“C3LI“C2ST":PRINT"~C3L0O"C2AB":PRINT"~LIST~C20RE" :PRINT"~C3IHE
~“CaLP*
425 PRINT*”CIFIC2LES LOADED*:PRINT"~C3CO-C2HPILE" :PRINT*~CIDE~C2LETE"
sPRINT*~C3TR"C2ANSFER®
430 PRINT:RETURN
- 450 # --—- CHANGE SUB
- 460 FC=1:60SUBS00:FC=0sRETURN
* 470 ¢ ---- LIST SUB
L 471 PRINT:LINEINPUT**CSWRICH ONET*C2"308:Q8=LEFT$(Q$,1) s IFQ$="D"THENGO
v SUB480 .
. 472 IFQ$=“E“THENGOSURA90
{ 473 IFQ$="A"THENGOSUB494
' 474 RETURN
480 IFFR=0THENAYELSEPRINT:PRINT"PLANT CODE®,*NANE™,,"I/F DEV™,"TYPE",
“ALG NO.*,"RANGE",*SCAN*,"PRIORITY"
‘ 481 PRINT:FORI=170D:IFR$(I,1)=""THENRETURNELSEFORJ=1T08:PRINT R$(I,J),
SO, :IFJ=2ANDLEN (R$(1,J))<TATHENPRINT""®,
a . 4B2 NEXTJ:PRINT:PRINTTAB(85);™("3R$(I,9)3")" sNEXTI:RETURN
490 IFFS=O0THENA9IELSEPRINT:PRINT*PLANT CODE™,"EVENT NAME®,,“TYPE™,"L.
LINIT®, L. HYS." 8, LINIT*,"U. HYS,®
L 491 PRINT:FORI=170D:IFS$(I,1)="*THENRETURNELSEFORJ=1TO7tPRINTSS (1,J), 2
IFJ=2ANDLENCSS (I,)) <1 4THENPRINT™™,
492 NEXTJ:PRINT:HEXTI:RETURN
494 IFFA=OTHENA99
495 FORI=1T0D:IFAS$(I,1)=""THENRETURNELSEPRINT"ALARN NAME: “;A$(I,1)

305

\

320 FS=1:DS=R:IFDI(Q)=OTHENPRINT"NEW FILE":60T0330

325 DOS"OFEN 5 R EP"+0$+" ,DAT":NS=DI(D)

326 FORI=1TONS:FORJ=1T07:LINEINPUTHS;59(1,J) :NEXTJsNEXT1:DOS"CLOSE 5"
330 IFFA=1THENPRINT"AG FILE":DA;“LOADED,.":G0T0358

333 Q$="":LINEINPUT"AG FILE NUMBER: ";0%:GOSUR340:IFQ$=""ORQ$="4+"THENI
3B

340 IFGSSTORE>ZITHENIIS

J45 FA=1:DA=0:IFDI(@)=0THENPRINT™NEV FILE" G0TH3IS8

350 DOS"OPEN S5 R AG"+0$+".DAT":NA=DI{Q)

335 FORI=1TONA:FORJ=1TOS:LINEINPUTAS;A$(Y,J) sNEXTJSNEXTI:DOS CLOSE 5*
358 PRINT:RETURN

360 “-~0% SUB

362 IFQ$=""THENQG=0:RETURN

364 M=0:FORI=1T0100:IFQ$=5TRS$(I)THENN=12]=100

363 NEXTI:IFHCOOTHENQS="#"3:RETURN .

J&& G=VAL{Q$):RETURN

370 4 ---- FILES LOADER SUR

372 IFFR=1THENPRINT"DA FILE";DR

373 IFFS=1THENPRINT“EVENT PROCESSOR FILE":DS

374 IFFA=1THENPRINT"ALARMN FILE";DA

373 IFFR#FS+FA=0THENPRINT“NO FILES LCADED."

376 PRINT:RETURN

380 ¢ ---~ CONWPILE SUB
385 PRINTCHRS${27)5"0AF":DOS"SUBMIT LOADCOMP":END
400 7 ---- HELP CDHHAHD SUB

410 PRINT"“C3IEN"C2TER" :PRINT"“CICH"C2ANGE" :PRINT"“C3DI“C2RECTORY®
420 PRINT""CILI“C28T":PRINT"“C3LO~C2AD" :PRINT"~C3IST*C20RE" :PRINT"~C3IHE
~caLp®

25 PRINT*“C3FI“C2LES LOADED“:PRINT“~CICO“C2MPILE":PRINT"“C3IDE“C2LLTE"
sPRINT““CITR*C2ANSFER"
430 PRINT:RETURN

430 7 ~--- CHANGE SUB
460 FC=1:G05UB500:FC=0:RETURN
470 4 ~--- LIST SUB :

471 PRINT:LINEINPUT"“CSMHICH BHE'”CZ“'D$'QS'LEFT$(0$,1) IFR$="D"THENGO
5UB480

472 IF0$="E"THENGOSUB4%0

473 IFO$="A"THENGOSUB474

474 RETURN

4B0 IFFR=0OTHEN49FELSEPRINT:PRINT“PLANT CODE™,"NAME",,"I1/P DEV","TYPE",
"4LG NO.","“RANGE™,“SCAN","PRIORITY"

481 PRINT:FORI=1TOD:IFR$(I,1)=""THENRETURNELSEFORJ=1TOB:PRINT R$(I,J),
tIFJ=2ANDLEN(R$(1,J) }<1ATHENPRINT"",

482 NEXTJ:PRINT:PRINTTAB(BI);"(";R$(I,9);")":NEXTIsRETURN

490 IFFS=OTHENAYFELSEPRINT:PRINT“PLANT CODE*,"EVENT NAME",,"TYPE","L,
LIKIT","L. HYS.","U. LINIT","U. HYS.®

491 PRINT:FORI=1TOD:IFS$(1,1)=""THENRETURNELSEFORJ=1TDZ:PRINTS$(I,J),:
TFJ=2ANBLEN(S$(I,J)){1ATHENPRINT ",

492 NEXTJ:PRINT:NEXTI:RETURN

494 IFFA=O0THENA9Y

495 FORI=1TOD:IFAS(I,1)=""THENRETURNELSEPRINT"ALARM NAME: "iA%(I,1)

306

PN (MAS(I,2)3%)

496 PRINT"CONDITION ON: “;A$(I,3):PRINT"CONDITION OFF: “;A$(1,4):FRIN
T*PERSISTENCY: *;A${I,5):PRINT:NEXTI:PRINT:RETURN

499 PRINT:PRINT“NO FILE LOADED.*:PRINT:RETURN

500 ¢4 ---- ITEN SUR

510 LINEINPUT"“CAITEN:z CI":C$:Ce=LEFTS(CS,1)

915 IFFC=1THENGDTOS530

520 IFCs="ALL"THENGOSUR1000:GOSUB2000:G05UR4000:60T0230

530 IFC$="D"THENN=QELSES&D

535 IFFC=T1THENFRINT:LINEINPUT"“CAPLANT CODE TO RE CHANGED:~C3I“;CC$
340 N=N+1sIFN=D+1ANDFC=1THENPRINT"“C4ACan‘t Find":RETURNELSEIFN=D+1THEN
PRINT"“C4Array Full":GDT0620

345 IFFC=1THENIFCC$=R$(N,1)THENGOSURI1000:RETURNZELSES40

S50 IFRS(N,1)=""ORLEFTS$(R$(N,1),1)=" “"THENGOSUR1000:G0T0D200:ELSES40
340 IFC$="E"THENN=0ELSESS20

562 IFFC=YTHENPRINT:LINEINFUT"~CAEVENT NAME TO RE CHANGED:“CI®:CC$

564 N=N+1:IFN=D+1ANDFC={THENPRINT""CACan’t Find":RETURNELSEIFN=Ti+1THEN
PRINT"“C4Array Full®:6070420

266 IFFC=1THENIFCCS$=5S$(N,2)THENGDSUR2000RETURNIELSESSA

368 IFSE(N,1)=""ORLEFT$(S$(N,t),1)=" “THENGDSUR2000;G0TOZ00ELSESE4
980 IFC$="A"THENN=0ELSES00

382 IFFC=1THENPRINT:LINEINPUT*~CEALARM NAME TO BE CHANGED:~C3";CC$

SB4 N=N+1:IFN=D+IANDFC=1THENPRINT"“C4Can’t Find" :RETURNELSEIFN=D+1THEN
PRINT""CAArray Full":G0TD42D

586 IFFC=1THERIFCCS=AS{N,1}THENGOSURA000:RETURNELSESSS

GBB IFAS(N,1)=""ORLEFT$(A%$(N,1),1)=* "THENGOSUBR4000:G0TO200ELSES34

400 IFC$="H"THENGOSUBA30:G0T0500

610 IFCS<O""THENPRINTzPRINT"~C4Syntax error”C2":CHRS(7)

420 PRINT:FC=0:60T0200

430 7 ---- HELP ITEM SUB

440 PRINT:IFFC=0THENPRINT“~C3ALL"

450 PRINT*~C3ID"C2ATA ACO“:PRINT™~CIE“C2VENT PROCESSOR®

840 PRINT"“CIA“C2LARN™:PRINT*“CIH“C2ELP":PRINT:RETURN

700 © ---- STORE SUB

705 PRINT:PRINT"RETURN = STORE ND CHANGE IN FILE NUMBER.*

710 PRINT"“N/ DD ROT STORE."

713 PRINT"’NF’ STORE BITH NEW FILE NUMBER."

720 PRINT“/K~ KILL WORKING FILE,":PRINT

725 IFFR=1THENPRINT"STORE DA™ ;DR;:LINEINPUT®?";S5%$:ELSE733

727 IFSS$=""THENN=0:DOS“OPEN S W +*.DOS"ELSE?31

728 FORI=TTOD:FORJ=1TOF:IFLEFTS(RS LI, 1),1){>" “ANDRS(I, 1)<> " "THENN=NH1
tPRINTBS;R$(1,J);CHRS$(13);

729 NEXTJ:NEXTI:IFH<>OTHENDOS"CLOSE 5 DA"+KID$(STR$(DR),2,2)+", DAT"ELS
EIOS*CLOSE S™

730 DI{DR}=INT(H/9):DOS"ARYSAVE DI,DI":DOS"CONPRESS":G0T0733

731 IFSS54="NF"THENINPUT"ENTER NEU NUMBER“:;0:IFO<{26ANPQYOTHENIR=INT(Q):
§5%="":GOTO727ELSE?33

732 IFSS$="K"THENERASER$:DINRS$(D,9):FR=0

733 TFFS=1THENPRINT"STORE EP"3DSs:LINEINPUT"?":58%:ELSE7S0

735 IFSS$=""THENM=0:DOS"OPEN 5 W =.LDS"ELSE743

737 FORI=1TOD:FORJ=1T07:IFLEFTS(S${T,13,1350" "ANDSSH(T, 1) G " THENN=M+1

307

tPRINTES:S$(1.J);CHRS$(13);

739 NEXTJ:NEXTI:IFN<>OTHENDOS"CLOSE 5 EP"+NIDS(STR$(DS),2,2)+".DAT"ELS
EDOS”CLOSE 5*

741 DI(DS)=INT(N/7):DOS*ARYSAVE DI,DI*:DOS*COKPRESS":GOTO750

743 IFSS5$="NF"THENINPUT"ENTER NEU NUNRER";0:IFG<S51ANDR>25THENDS=INT(Q)
:554="";GOTO735ELSE?50

745 IFSS$="K"THENERASESS:BINS$(D,8) :FS=0

750 IFFA=1THENPRINT“STORE AG":;DA;:LINEINPUT"?":SS$:ELSE790

752 IFSS$=""THENN=0:DOS"OPEN 5 W +.DOS*ELSE?40

754 FORI=1TOD:FORJ=1TOS:IFLEFTS(ASCI,1),1) " "ANDAS(I, 1) > " "THENN=NH
:PRINT#5:A$(I,J);CHR$(13);

756 NEXTJ:NEXTI:IFNCO>OTHENROSCLOSE 5 AG“+MIDS(STR${DA),2,2)+" DAT ELS
ENOS*CLOSE 5*)

758 DI(DA)=INT(M/5):DOS“ARYSAVE BI,DI":DOS"CONPRESS":60T0790

760 IFSS$="NF"THENINPUT*ENTER NEY NUMBER";Q:IFQ<76ANDR>SOTHENDA=INT(D)
:55$="*:60T0752ELSE790

765 IFSS$="K*THENERASEA$:DINA$(D,5):FA=0

790 RETURN

791 7 ---- DELETE SUB)

792 X=1:60SUB120:X=0:0=0: INPUT"DELETE FILE NUNBER {1-100)";0:0=INT(Q):
IF<10RA> 100 THENRETURN

793 IFBICQ)=0THENPRINT*NO FILE®:PRINT:RETURN

754 GOSUB?95:DDS"KILL "+F$+MID$(STRS(0).2,2)+", BAT":605UB797 : RETURN
795 IFOC26THENF$="DA:RETURN

796 IFOCST1THENF$="EP*:RETURN

797 1FR<76THENF$="AG*sRETURN

798 F$="ADB"sRETURN

799 DI1(0)=0:DOS"ARYSAVE DI,DI*:DOS"CONPRESS" :RETURN

800 - ---- DIR SUB

810 X=1:G0SUB120:X=0:PRINT:RETURN

820 ~ ---- TRANSFER .

830 PRINTCHR$(27);™0AF":DDS"SUBNIT LCADXFER" :END

1000)

1010 * ~---- DA UNIT - ROUTINE FOR ENTERING DATA AQUISITION INFORMATION
1020

10625 IFFR=0THEN4%?

1030 PRINT:PRINT:PRINT""C7INPUT DATA ACGUISTION INFORMATION™C2"

1040 PRINT:PRINT"“CAPLANT CODE C";R${N,1);:LINEINFUT*]:"C2"R$:IFR$H®
“THENR$(N,1)}=R$

1050 PRINT:PRINT"“CANANE ["3R${N,2);sLINEINPUT"1:"C2";R$:IFR$-CH""THENR
$(N,2)=Rks

1050 PRINT:PRINT"~CEINPUT DEVICE [*j;R$(N,3);:LINEINPUT"]:7C2"iR$:ITRS=
“"THEN1090

1070 IFR$="M"ORR$="0"DRR$="1"0RR$="2"0ORR$="3"THENRS (N,3)=R$ELSET040
1080 IFR$="M"THENFRINTsLINEINPUT"“CSADDRESS:"C2";R$:R${N,I1=R$(N,3I+R$
1090 PRINT:PRINT"“C4DATA TYPE ["IR$(N,4);:LINEINPUT"]:"C2"iR$

1100 IFR$=""ANDR${N,4)="A"THENPRINT:GOTO1130ELSEIFR$=""THEN11%0

1110 R$=LEFT$(R$,1):IFR${DO"A"ANDRSCO "B " THEN1 0FOELSEPRINT : IFR$="E"THEN1
170

1120 R$(N,4)=R$
1130 PRINT""CSCONVERSION ALGORITHM # ["}R$(N,5);:LINCINPUT"]:"C2" kS

1140 IFR${>™"THENRS(N,5)=R$
1150 PRINT:PRINT"“CARANGE [“;R$(N,48) 7 :LINEINFUT"1:"C2";R$:IFR$ O""THEN
R$(N,6)=R$
1155 PRINT:PRINT""C4SIGNIFICANT ARSOLUTE CHANGE L"jR$(N,9);:LINEINPUT"
J:"C2" R$:TFRS*THENRS (N, ?)=R$
1160 GOTD1150 .
1170 LINEINPUT""CADATA INVERSION (Y/N):*C2"IR$
1180 R$=LEFTS$ (RS, 1) sIFR$LO"Y ANDRS > ™N"THENT170ELSERS (N, 4)=R$
1190 PRINT:PRINT*~CASCAN RATE C[";RS$(N,7);:LINEINFUT"I:"L2"IR$:IFREM®
THENRS{N,7)=R$
1200 PRINT:PRINT""C4SCAN FRIORITY E£";R$(N,B);:LINEINPUT"]:™C2" RS
1210 IFR$CO""THENRS(N,B)=R$
1220 PRINT:FRINT™"C7END OF DA UNIT INFUT®:PRINT
1230 PRINT:RETURN -
2000 -
2010 # ---- STATUS - ROUTINE FOR CNTERING EVENT PROCESSOR INFORMATICN
2020
2025 IFFS=0THENA%?
2030 PRINT:PRINT:PRINT"~C7INPUT ANALODG EVENT PROCESSOR INFORMATION"C2"
2040 PRINT:PRINT""CAPLANT CODE [“;54(N,1);:LINEINPUT"2:7C2";S4: IFS$
"THENSS$(N,1)=5%
2045 PRINT:PRINT*~CAEVENT NAME [*;S$(N,2);:LINEINPUT"]:"C2" 591 IFS$C>"
"THENS${N,2)=5¢

2050 PRINT:PRINT"*CAEVENT TYPE [*;5$(N,3);:LINEINPUT"I:"C2":58:IFS$"
© “THENS#(N,3)=5%
2060 FRINT:PRINT"“CALOUER LINIT ["iS$(N,4)5:LINEINFUT"]:"L2" 551 1F54<5
"YTHENS$(N,4)=E¢
2070 PRINT:PRINT"~CALOWER HYSTERESIS C[™;S$(N,5); :LINEINPUT"IX:"C2";5%:
IFS$>""THENSS (N,5)=5¢
2080 PRINT:PRINT*~CAUPPER LIMIT [";S$(N,8)5:LINEINPUT"]s"C2% 358 IF5%<>
""THENS$(N,8)=5%
2090 PRINT:PRINT"“CAUPPER HYSTERESIS [";S$(N,7);:LINEINFUT"IZ:"C2" ;54
IFS$<{>""THENS$ (N,7)=5%
2100 PRINTsPRINT*“C7END OF ANALOG EVENT PROCESSOR INFUT™:PRINT
2110 PRINT:RETURN -
4000 -
4010 # ~---- ALARM - ROUTINE FOR ENTERING ALARM GENERATION INFORMATION
4020 <
4025 IFFA=0THEN49?
4030 PRINT:PRINT:PRINT"“C7INPUT ALARN CONDITION INFORMATION™C2"
4040 PRINT:PRINT®~CAALARN NAKE [";A${N,1);sLINEINFUT"I:"C2";AS:IFASC"
"THENAS(N,1)=A%
4045 PRINT:PRINT"~CAOUTPUT COBE L jAS(N,2);:LINEINPUT"]:"C2"A%:IFASO
"MTHENAS(N,2) =A%
4050 FRINT:PRINT"~CACONDITION ON C“;A$(N,3)3:LINEINPUT"]:"C2°7AS:1FASS
PUUTHENASCN,3) =A%
4060 PRINT:PRINT*~CACONDITION OFF ["jA$(N,4);:LINEINPUT"I:"C2";AS:IFAS
{3""THENAS(N,4) =R
4070 PRINT:PRINT“~CSPERSISTENCY [7A$(N,5) sLINEINPUT"]:"C2" A% IFASL>
YUTHENARS(N,3) =4S
4080 PRINT:PRINT"“C7END OF ALARM CONDITION INPUT":PRINT
4090 PRINT:RETURN
=C2R0k

308

10 7-=-~ OFF-LINE ALARM DATA BASE COMPILER ~==vc-=--

20 “=--- VER 2.1

30 ¢---- G, HOENIG, LUT, FER 1982

40

30 PRINTCHR$(27);"R0O4" 7=-8ET PORT BAUD 300

40 CLEAR2000:FRINTCHRS$(27);"0DA0";CHR$({12)

70 DIM DIC100),V$(2),H(D)

80 DDS"ARYLOAD DI,DI®

90 PRINT"~~-- FILE DIRECTORY ~--~":PRINT"FILE NUNBER - NO. OF ELEMENTS
100 PRINT:PRINT"DA":FORI=1T025:G0SUB140:NEXTI

110 PRINT:PRINT"EP":FORI=267050:605UR140:NEXTI

120 PRINT:PRINT"AG®:FORI=51T075:G0SUR140:NEXT]

130 PRINT:PRINT"ADB":FORI=746T0100:60SUB140:NEXTI:FRINT:6070130

140 IFDICIY<XOTHENPRINTIZ"-";DBI(I), :RETURNELSERETURN

150 IFX=1THENRETURNELSEPRINT:R=0:INPUT"DA FILE NO.";R:R=INT(R):IFR=0TH
EN1SOOELSEIFR>250RR<1THEN150

191 N=R:GOSUB140:N=DI(R)

152 S=0:PRINT:INFUTEP FILE NO."35:5=INT(S):IFS=0THEN1S0OELSEIFS>G00RS
{26THEN132

153 H=5:605UB160:NS=DI(5)

154 A=0:PRINT:INPUT"AG FILE NO.";AzA=INT(A):IFA=0THEN1SOQELSEIFAS7S0RA
<H1THEN1S4ELSE1S6

155 H=R:GOSUB1&0:NA=DI(A)

156 DBE=0:PRINT:INPUT"ADB NO.";DB:DB=INT(DB):IFUB=0THENISOOELSEIFDER>100
ORDB{Z6THEN1SS

137 IFDI(DB)<>OTHENPRINT"#+ WARMING #+ ALARMN DATA BASE ADER";DB;"™ ALR
EADY EXISTSI™

158 PRINT"ARE YOU SURE? “;:LINEINPUY Q$:IFLEFTS${(0$,1)<>"Y"THENISOELSEY
70 .

160 IFDI(H)=QTHENPRINT“FILE NOT FOUND":ENDELSERETURN

170 DIN R$(N,?)

175 Q$="";INPUT"HARD COPY (Y/N)“;0$:1F09="Y"THENPRINTCHR$(27};"0a4"
180 DOS"OPEN 5 R DA™+MID$(STR$(R),2,2)+",.DAT"

190 FORI=1TON:FORJS=1TOP:LINEINPUTESIRS(I,) sNEXTINEXTI:BOS"CLOSE 5"
200 FORI=1TON:PRINT:FORJ=1TO9:PRINTR$(I,J);* " :NEXTJsNEXTI:PRINT

210 ER=0:FORK=2TON:J=K

220 TFR$(J,1)<R$(J-1,1)THEN2I0ELSE240

230 FORM=TTO9:VS(M)=R$(JI-1,H)sRE(J-1,H)=RS LI M) sRE(I, H)=VS (M) NEXTNII=
J-1:6070220

240 MEXTK

250 FORI=2TON:IFR$(I,1)=R$(I-1,1)THENER=ER+1:R${I~-1,1)="2"+R${I-1,1):N
EXTIELSENEXTI

240 PRINT

310

@ n o o pa———

270 PRINT"PLANT CODE",“NAME",,"I/F DEV","TYPE","ALG NO.","RANGE","SCAN
", "PRICRITY"

280 PRINT:FORI=TTON:FORJ=1TO8:PRINTRS(I,J},:IFJ=2ANDLEN(R$(1,J)){14THE
NFRINT®",

285 NEXTJ:PRINT:PRINTTAB(83);"("IR$(I,T);")"

290 PRINT:NEXTI

300 FRINT:IFER=1TTHENPRINT“*s2s+ 1 ERROR *+#s+"ELSEPRINT" e+t “;ER;" ER
RORS #*xs3”

310 PRINT:IFX=1THENX=0:RETURN

330 “--SORT SCAN RATES

340 FORK=2TON:J=K

350 IFRS$(J,7)<{R$(J-1,7)TRENISOELSEIZO

360 FORMN=1TOP:VS(H)=R$(J-1,M):R3(J-1,M)=R3(J,M)eR$(J,M)=VS(H) :NEXTH:J=
J-1:60T0350

370 MEXTK

380 “X=1:G0SUR240 -

390 “--SO0RT PRIOR

400 FORK=2TON:J=K

410 IFVAL(RS(J,8))<VAL(R$(J-1,B))ANDRS(J,7)=RS{J-1,7) THEN4ZOELSE43D
420 FORM=1TOP:VS$(M)=R${I-1, M) :RECI-1,)=RECI M) RS (I, M) =V (M) s NEXTH: J=
J-1:60T0410

430 NEXTK

431 7--CK SIG CHG

440 X=1:G605UB240

450 “--DA HEADER

460 DIKRR(B):FORI=1TONsFORJI=1TD4sIFVAL(RS(I,7))=JTHENRH{J+1)=RH({J+1)+1
470 NEXTJsNEXTI:RH(1)=N

480 “-~-TYPE AND RANGE

490 FORI=ITON:X$=R$(I1,4):TFX$="A"THENR$(I,4)=STR$(1+VAL(R$(I,5)))

300 IFX$="Y"THENRS$(I,4)=5TRS(1)ELSEIFX$="N"THENR$(I,4}=5TR${0)

310 IFX$CO N ANDXSCI Y ANDX$<>“ATHENPRINT DA TYPE ERROR ";R${I,4):ED
=E0+1

320 P=INSTR(2,R$(I,68)," "):IF(P=00RP=LEN(R$(I,4)))ANDX$="A"THENFRINT"R
ANGE ERROR “jR$(I1,4):EQ=E0+1:G0TD540

930 R${I1,0)=LEFTS(R$(1,6),PI2R${1,4)=RIGHTS$(RS$(I,4),LENIRS$(I,8))-P)
40 NEXTI

350 7--PROCESS I/P

960 FORT=3TON:J=VAL(R${I,3)}:IFJ<=00RJ>ATHENS7OELSERS (T, 3)=8TR${J-1):N
EXTI:GOTOSBO

370 EO=EO+1:PRINT"I/P ERROR ";R$(I,3):NEXTI

380 7--SET DA ADDRESS OFFSET

390 FORI=1TON:R$(I,2)=STR${1):NEXTI

400 7--PROCESS EP

610 “PRINT:X=1:605UB90:X=0:PRINT:INPUT"EP FILE NO.":S:S=INT(S):IFS>500
RE{26THENS1O

620 NS=DI(S)

430 DIN S$(NS5,8)

640 DOS"OPEN 5 R EP"+MIDS(STR$(5),.2,2)+", DAT"

450 FORI=1TONS:FORJ=1T07:LINEINPUTH#5;S4(1,J) sNEXTJsNEXTI:DOS"CLOSE 5

460 FORI=1TONS:PRINT:FORJ=1TOZ7:PRINTSS$(I,J};" ";sNEXTJ:NEXTI:FRINT
670 ES=0:FDRK=2TONSsJ=K

311

-

480 IFS$(J3,2)<5¢¢0~1,2)THENAROELSEY 0D .

490 FORM=1T07:VU${N}=5¢{J-1,M) 258 (J=1,M)=58(J,N) 253(J,H)=US (M) :NEXTN:)=

J-1560T0480

700 NEXTK

710 FORR=2TONS:J=K

720 IFS${S,3)<544J~1,3)ANDS$(J,2)=5¢{J-1,2)THER7IOELSE? 4D

730 FORM=1TO7:VS${H)=5${J=~1,H)28$(J=-1,M)=8{J, M) s53CJ . N)=VUS (M) :NEXTN:J=

J-1:507T0720

740 NEXTK

750 FORI=2TONS:IFS${I1,2)=54(1-1,2)THENES=ES+1:5¢(1~1,2)="¢F"+5¢{1-1,2):

NEXTIELSENEXTI

760 FORI=1TONS:M=0:FORJ=1TON2IFS${I,1)=R$(J, 1) THENN=N+1

770 NEXTJ:IFM=0THENSS$(I,1)="%"45${1,1):ES=ES+1:NEXTIELSENEXTI

780 PRINT

790 FRINT"EVENT CODE",“EVENT NAHE",,"PLANT CODE","TYFE™,"L. LINIT","L.
HYS.",*U. LIKIT®,"U. HYS."

800 FORI=T1TONS

810 PRINT USING "E++BE“;I,:PRINT"",S%(I,2),:zIFLENIS${I,2)) {14THENFRINT

¥

820 PRINTS${I,1),:FORJ=3TO?:PRINTSS$(I,)) sNEXTJPRINT:REXT]

830 PRINT:IFES=1THENPRINT"#%++ 1 ERROR #+*x"ELSEPRINT"##t+ “JES;™ ER

RORS sxxs™

840 PRINT

830 VS(1)="0N"2V$(2)="0FF":V$(3)="LD LO":VUS(4)="LO":V${5)="HI":V3(4)="

HI HI™:V$(7)="TREND"

860 FORI=TTONS:N=0:FORJ=1TO7:IFS$(1.32=V$(2ITHENSS{I,3)}=8TR3{S) s J=7: K=
1

865 NEXTJ:IFM=0THENEO=EO+1:FRINT"EP TYPE ERROR ";5$(I1,3):NEXTIELSENEX

T1

846 FORI=ITONS:FORJ=4TO7 :H{J-4)=VAL(S$(I,J)):NEXTJI:N=0

867 IFH(OI>H(1)THENBSBELSEFORI=0TO2: IFH{J+1)>H{J) THENNEX TS :GOTOBSFELSE

N=1:NEXTJ:60T0869

8568 FORJ=0TOZ:IFH(J+1)<H(JITHENNEXTJELSEN=1:NEXTJ

8697 IFHCOOTHENEG=EO+1:PRINT"LINIT ERRDR ";S${I,1)sNEXTIELSENEXTI

870 “--PROCESS AL -

880 “PRINT:X=1:GOSUBP0:X=0:PRINT:INPUT"AG FILE NO."3A:A=INT(A):IFA>750

RA<SITHENBIO

890 NA=DI(A)

900 DIN AS(NA+1,7):TN=0:8N=D

910 DOS"OFEN 5 R AG“+HMIDS(STR${A),2,2)+".DAT"

920 FORI=1TONA:FORJ=1TDS:LINEINPUTES;AS(T, 1) sNEXTINEXTI 1 D0S "CLOSE 5"
930 FORI=1TONA:PRINT:FORJ=1TOS:PRINTAS(I,J)3* "3 eNEXTJ:NEXTI:PRINT
940 X=0:EA=0:FORK=2TONA:zJ=K

950 IFA$(J,1)<A$(J~1,1)THENPSOELSER70

760 FORM=1TDG VS (M)=A$(J-1,H)248(J-1,H)=A8(J,N) A% (S, H)I=V$ (M) :NEXTN:J=
J-1:G0TD?50

970 NEXTK

780 FORI=ITONAZIFA$(I,1)=A%(I-1,1)THENEA=EA+1A$(I~t,1)="¢"+A4{I~1,1):
NEXTIELSENEXTI

990 “--BOOLEAN PROCESS

1000 A1$="HOT":A2¢="0R":AJ$="ANDI":A4$="%0R"

- — - e o o

1010 FORI=1TONA:PRINT:PRINT"ALARN NAME: “IAS(I, 105" (“3A%(1,2);")"
tFORL=3TO4

1020 DIMAAS(50),B$(50)

1030 J=0:M=0:T8="":X$=""sFORK=1TOLENCASCI,L))+1:X3=MIDS(AS(I,L) K, 1)
1040 IFX$="("THENM=N+1:B$(H)="(":60T01130

1050 IFX$=")"THENTFT$<>" "THENJS=J+1:4A8(J)=T3:T$="":605UR1510:60TO1150E
LSE1150

1040 IFX$<O™ "ANDXSSO“"THENTS$=T$+X$:60T01130

1070 IFT$="NOT*THENN=M+1:B$(N)=A1$:T$="":50T0O1130

1080 IFT$="OR"THENN=H+1:B$(M)=A2¢:T$=""2:G0T01130

1090 IFT$="AND“THENM=N+1:R$(N)=A3$:T4=""2:60TD1130

1100 IFT$="XOR"THENN=N+1:B$(N)=A48:T$="":60701130

1110 IFX$=""THENIFTS<O""THENJ=J+1:AA%(S)=T$:608UB1510:G0TO11B0ELSE1180
1120 IFX$=* "THENIFT$=""THEN1140ELSEJ=J+1:AAS(J)=T$:T$="*:60SUR1510:50
T01140 ~

1130 NEXTK

1140 IFBS(NI=A1$THENI=J+1:AA${J)=A18:H=H-1260T01 140ELSET130

1150 IFR$(HICO"("ANDBS (NI ""THENJ=J+1:AA% (1) =R$ (H):N=K~1:60T01150
1160 IFBS{N)="(*THENN=M-1:X$=" ":60T01120

1170 IFB$=""THENX$=" ":60701120

1180 IFMMOTHENJ=J+1:AA$(J)=R8 (M) :h=N-1:60701180

1185 IFX=1THENRETURN

1190 IFL=3THENPRINT"CONDITION ON: "3:A${1.5)=STR${JIELSEPRINT"CONDIT
10N OFF: "3:A$(I,7)=STR$(J)

1200 TA=TA+JeFORK=1TOJeIFAASCK)="(“ORAAS(K)=")"THENAAS (K)=" " +AAS(K)E
A=EA+1

1205 PRINTAASCK) ™, ";:NEXTK:PRINT

1210 ERASE AAS,BS$

1220 MEXTL:PRINT"PERSISTANCY: “1A$(1,5) NEXTI

1230 FRINT:IFEA=1THENPRINT #s%* 1 ERROR #r+4"ELSEPRINT"¢eer “JEA" E
REORS +#is*

1240 PRINT

1250 “--ASSIGN AG AD OFFSET

1260 FORI=1TONA:AS(I,1)=C8TR${N+NS+I)eNEXT]

1270 “--ASSIGN DA & EP AD OFFSET T0 EP

1280 FORI=1TONS:FORJ=1TON:zIFS$(1,1)=R${J,1)THENSS$(T,1)=R$(J,2}s)=N
1290 NEXTJ:54(1,8)=8$(I,2):58(1,2)=5TR$(I-1):NEXT]

1295 TS=0:FORI=1TONS:VS=VAL(S$(I,3)):IFVS>1ANDIVS {BTHENVS=7ELSEVS=3
1296 S$(1,1)=STR$(V5):TS=VS+TS:NEXTY

1300 “--DATA BASE HEADER .

1310 DINDRI(IY)

1320 DBX{3)=TA+NASA+TS+N#&+11:DBX(2)=N+41DBX(3)=RH{2):DBX(4)=RH(3):IBX
{5)=RH(4)

1330 DBZ(4)=RH(S):DBI{7)=11+N+5+1:DBX(B)=11+H*s+TS+1 : DBE(F)=N:DBX(10)=
NS:DBZ(11)=NA

1340 “--COMP FAIL

1350 IFER+ES+EA4ED{DOTHENPRINT +#%2 CONPILATION FAILED s¢et";PRINT:P
RINT"#+++ TOTAL ERRORS =";ER+ES+EA+ED;" 2¢++":G0T01500

1155 PRINT“#+%s PASS 1 DK ssas®

1360 “--DB BUILDER

1400 ROS"OPEN § U s.D0S"

[P

1410 FORI=1TO1:PRINTES:DBX(I);CHRS (135 :NEXTI

1420 FORI=1TONsPRINTHS;R$CI,1);CHR$(13);:FORJI=3TO&:PRINTHS ;VAL(R${I,)
J;CHRS$(13) 5 eNEXTJI:PRINTHS;R${I,9);CHR$(13);INEXT]

1430 FORI=1TONS:V5S=VAL(S$(1,1)):PRINTHISVAL{S$(I,1)):CHRS(13);:FRINTHS
sVAL(S$(I,VS+1))+1;CHRS(13);eFORJ=3TOVSsPRINTHS;VAL(S$¢1,J)) ;CHRS$ (13)}
sHEXTJ:NEXTI

1440 A1$="-1"2A24="=-2"2AT4="-T 2 48="-4"

1450 X=1;FORI=1TONAzPRINTESIVALC(AS(I,2));CHR$ {13 IVAL(AS(T,5)) ;CHRS13
1

14560 FORL=3TO04:G0SURI1020:IFL=3THENPRINTES:VAL(AS{I,48))sCHR$(13) :ELSEFR
INTHSIVALCAS(I,?));CHRS(13);

1470 FORK=1TOJ:FORN=1TONS:IFAAS{R)=5%{N,B) THENAAS(K)=S$(X,2) 1 K=NS

1480 NEXTM:PRINTHI;VALCAASCK))3CHRS(13); :NEXTY :ERASEAAS, RS s NEXTLNEXTI
tX=0

1490 DOS"CLOSE S ADR"+MIDS{STR$(DR).2,3)+" . DAT"

1495 DI(DR)=DBX(1):DOS"ARYSAVE DI,DI%:DOS"COMPRESS"

1496 FRINT"s++x CONPILATICHN DK #x#s®

1500 PRINTCHRS€27)3"0aF";CHR$(27) ;" 0AF":DOS"SUENIT LOADOFLAD"IEND

1510 “--EVENT C/K SUB

1530 F=0:RB$="":FORG=1TOLEN(AAS(D)) s IFNIDS{AAS(S),G,1)="""THENERS=RE$+
" YELSERB$=RE$+HIDS(AAS(S),6.1)

1540 NEXTG:AA$(J)=RBS$:IFX={ THENRETURN

1545 FORH=OTONS:IFBR$=S${H,2) THENF=F+1:H=NS

1550 NEXTHzIFF{ITHENAAS(J)="+"+AA%(J) tEA=EA+1:F=D

1540 RETURN

=C2R0k

314

10 “=—-- TRANSFER LINK TD 11703

20 7~--- VER 1.0

30 7-==-~ 6. HOENIG, LUT FER 1982

40

50 FRINTCHR$(27);"ROC" 7--SET PORT BAUTI 300

60 CLEAR2000:PRINTCHRS(27);"0A0"ICHRS(12)

70 DIM DI(100),V$(8)

80 DOS"ARYLOAD DI,DI"

85 PRINT"ALARM DATA BASE TRANSFER ROUTINE“:PRINT:PRINT:PRINT“THE CHROM

ATICS MUST BE CONNECTED TO THE PDP 11/03.%

86 PRINT:PRINT“THE ALARM HANDLING SYSTEM MUST BE INSTALLED AND RUNNING
BEFORE PROCEERING.*

87 PRINT:PRINT™A LINK ERROR WILL OCCUR IF THE SET UF IS NOT CORRECT, T

HUS ABORTING THE TRANSFER."

90 PRINT:PRINT:PRINT"---- AVAILABLE ALARM DATA BASES ---"

100 PRINT:PRINT"ADB":FORI=74T0100:505UB140:NEXTI:PRINT:60T0150

140 IFDICI)<>OTHENPRINTI;“-"3DI(1), sRETURNELSERETURN

150 DE=0:PRINT:INPUT"ADB NO.";DB:DB=INT (DB):zIFDB=0THENASSELSEIFDB.100D

ROBL76THENTSO

155 IFDI(DB)=0THENPRINT"ADB DOES NOT EXIST'™:PRINT“ENTER O TO EXIT":G0

T0150

150 PRINT:LINEINPUT"ARE YOU SURE? “;0$:IFLEFT$(0$,1)<>"Y"THEN4SS

165 DOS"OPEN 5 R ADB"+MIDS$(STR$(DB),2,2)4" . DAT"

200 7 -~ ASK FOR OVERLAY

210 ONERRCRGOTD1000

220 TINEOUT375:T=0

230 PRINTH1

240 PRINTHIS L™

250 GDSUBSOO:IFN$=""THENPRINT®1;"L":50T0250

300 4 -- START XFER

310 ONERRORGDT02000

320 TIXEOUT200

330 IFNSCO"+"THENPRINTH1 ;"L":GOSUBS00:60T0330

340 PRINTH1;"READY"

350 GOSUBS00

360 IFNSCO"0"THENFORI=1T03:60SUBS00:NEXTI:60T0330

365 INPUTHS;5:54=5TR$(5):G0SUB&00

370 FORI=1T0S

JB0 GOSUBSOO:zPRINTH1;SS

390 GOSUBSOD

400 IFN$<>"O"THENPRINT"XFER ERROR™:60TD450

405 LINEINPUTH#S;S$

410 NEXTI

450 7 -~ CLOSE DOUN

435
460
465
470
300
310
520
330
3540
550
600
405
410
620
430
450
460
870
480
590
700
70%
710
720
725
730
740

FORI=1TO1Q:PRINTHI :NEXTI

DOS"CLOSE 5*

ONERRORGDTCO

FRINTCHRS${(27);"0AF":DOS“SUENIT LOADOFLA":END

¢ == PROD

PRINTCHR$(27);"“0BF"

T1=0:N§=""

LINEINFUTRIGNS

PRINTCHR$(2?):"0R4"

RETURN

REN"CK FLOAT"

GOSUE?0D

L=LEN(S$)-1

P=INSTR(S$,”."):P1=INSTR(SS,"E")
GOSYB&S0:GOSUB700:GOCSUB730:RETURN
IFF=0ANDPI=0THENS$=54+" 0" :RETURN
IFP=0THENSS=LEFT$(S$,P1-1)+" OE"+RIGHT${S¢,L-F1):RETURN
IFP=1THENS$="0"+5$:RETURN
IFF=2THENS$="-0"+LEFT$(5%,L)

RETURN

REK"CLR SPC™

L=LEN(S$)

P=INSTR(S5¢," *)

IFP>OTHERS$=LEFT${5%,P-1) +RIGHT$(S3,L-P) :GOTO705
RETURN

X=ASCI(Ss)

IFX<ABORX>S7THENIFX<>45THENPRINT"TYPE ERROR IN ELEMENT";I:5$="99799

L7990

730

RETURN

1000 < -~ ERR LINK

1010 IFERR=2STHENT=T+1:IFT>STHENPRINT"LINK ERROR - ABORT";CHR$(7):RESU
NE450

1020 IFERR=25THENRESUMES40ELSEONERRORGOTOO

2000 ¢ -~ ERR COMM

2010 IFERR=25STHENT1=T1+1:IFT1>5THENPRINT"XFER ERROR — ABORT";CHR$(7):R
ESUNE4SO

2020 IFERR=25THENRESUMESIOELSEONERRORGOTOO

=C2R0k

20
30
40
30 DIM DIC100)
40 FORI=1T0100:DI{I)=0:NEXT
70 INFUT"FILE NO.“;F:IFF=0THEN1OO
80 INFUT"NUNMBER OF ELEMENTS®N
90 DI(F)=N:60T070
100 DOS"ARYSAVE BI,DI*
110 DOS"CONPRESS®
- 120 END
=C2ROk

LOADXFER.SRC FILE LISTING
VER 1.0

G. HOENIG, FEB. 1982, LUT

NEW
pOS"L0AD XFER" -
RUN

LOAIOFLALSRC FILE LISTING
VER 1.0
G. HOEN1G, FEB. 1982, LUT

NEW
DOS"LOAD OFLAD"
RUN

318

LOADRCONP.SRC FILE LISTING
VER 1.9
G. HOENIG, FEB. 1982, LUT

NEM
[0S"LOAR CONP"
RUN

APPENDIX E

SOFTWARE DESCRIPTION FOR
THE ON~LINE COMPONENT OF
THE ALARM HANDLING SYSTEM

Section

APPENDIX E

TABLE OF CONTENTS

E.1.0 Alarm Handling System Overview

E.1l.1
E.1.2
E.1l.3
E.1.4
E.1.5

E.2.0 The

E.2.1
B.2.2
E.2.3
E.2.4
E.2.5
E.2.6

Introduction

The On-Line System

The Date Base

The Software Languages

Program Task Software Organisation

Queue Manager

Introduction
Operation Summary
Communication Structure and Protocol
Job Priority
Errors
Software Functional Description
E.2.6.1 The Queue
E.2.6.2 QMAN
E.2.6.3 INQ
E.2.6.4 O0OUTQ

E.3.0 Powerup Task

E.3.1
E.3.2
E.3.3

Introduction
Operation Summary
Software Description

Page

328

328
328
336
337
338

342

342
344
345
346
346
347
351
353
354
354

356
356

356
357

E.4.0 Setup Task

E.4.1 Introduction
E.4.2 Software Description

E.5.0 Command Task COMAH

E.5.1 Introduction
E.5.2 Operation Summary
E.5.3 Software Description _

E.6.0 Watchdog

E.6.1 Introduction
E.6.2 Operation Summary
E.6.3 Software Description

E.7.0 The Communication Link Tasks

E.7.1 Introduction
E.7.2.0 TALK
E.7.2.1 Operation Summary
E.7.2.2 Software Description
E.7.3.0 LISN
E.7.3.1 Operation Summary
E.7.3.2 Software Description
E.7.4.0 CHROM
E.7.4.1 Operation Summary
E.7.4.2 Software Description

E.8.0 Keyboard Driver

E.8.1 Introduction
E.8.2 Operation Summary

E.8.3
F.8.4

Communication Structure and Protocol
Support Task Priority Assignments

322

358

358
358

361

361
361
362

363

363
363
363

365

365
365
366
366
366
367
367
367
368
369

370

370
370
371
372

E.8.5 Errors 372

E.B.6 Software Functional Description 373
E.8.7 Detailed Software Description 374
E.8.7.1 Setup 374
E.8.7.2 Scan Keys 375
E.8.7.3 Check In Q 376
E.8.7.4 Poll Lapse 377
E.8.7.5 Which Key 377
E.8.7.6 Key Control 377

| E.8.7.7 Check Mask . 378
E.8.7.8 Functions 378
E.8.7.9 Queues 383

E.8.8 Special Operator Keyboard Assignments 384

E.9.0 Media Driver Module 386

E.9.1 Introduction 386
E.9.2 Operation Summary 386
E.9.3 Communication,Structure and Protocol 388
E.9.4 Job Priority 390
’ E.9.5 Driver-Job Handshaking 390
E.9.6 Communication Link Priority 390
E.9.7 Errors . 391
E.%.8.0 Media I/0 Device Data 391
E.9.8.1 AOV & AOI 391
E.9.8,2 AI 392
E.9.8.3 DO 392
E.9.8.4 DIM . 392
-E.9.8.5 DIF 393
E.9.8.6 WD 393
E.9.9.0 Sample Programs 394
"~ E.9.9.1 Analogue Output 394
E.9.9.2 Digital Output 394
E.9.9.3 Analogue Input 394
E.9.9.4 Digital Input 395

E.9.10.0 Software Description 396

E.9.10.1 Setup "

E.9.10.2 Communications

E.9.10.3 Channel Selection

E.9.10.4.0 Service Routines
E.9.10.4.1 AI Routine
E.9.10.4.2 AOV & AOI Routines
E.9.10.4.3 DIF Routine
E.9.10.4.4 DIM Routine
E.9.10.4.5 DO Routine
E.9.10.4.6 WD Routine

TABLE E.9-1 Media I/0 Device Nomenclature
TABLE E.9-2 I/0 Device Channel Allocations
TABLE E.9-3 Media Technical Information
E.10.0 Data Acquisition
E.10.1 Introduction
E.10.2 Operation Summary
E.10.3 Software Description
E.10.3.1 Setup
E.10.3.2 Run
E.11.0 Data Acquisition Controller
E.1ll.1 1Introduction
E.1l.2 Software Description
E.11.2,1 Setup
F.}11.2.2 Run
E.12.0 Event Processor
E.12.1 Introduction

E.12.2 Operation Summary

324

396
396
397
398
398
399
400
400
401
401

402
403
408
410
410
410
410
410
411
412
412
413
413
413

414

414
414

E.12.3 Software Description
E.12.3.1 Setup
E.12.3.2 Find Change
FE.12.3.3 Change
BE.12.3.4 Hysteresis

F.l1l3.0 Alarm Generator

E.13.1 Introduction
E.13.2 Operation Summary
E.13.3 Software Description
© E.13.3.1 Setup
E.13.3.2 Run
E.13.3.3 Check for ON or OFF
E.13.3.4 Check Result

-

E.14.0 Display Task

E.14.1 Introduction
E.14.2 Operation Summary
E.14.3 Communication Structure and Protocol
E.l14.4 Support Task Priority Assignments
E.14.5 Errors
E.14.6 Software Description
E.14.6.1 Private Software Links
E.14.6.2 Setup \
F.14.6.3 Run
E.1l4.6.4 Function Select

E.15.0 Overlay Tasks

E.15.1 Introduction
E.15.2.0 EDIT
E.15.2.1 Operation Summary
E.15.2.2 Software Description
E.15.3.0 LOAD

325

415
415
415
415
416

419

419
419
419
420
420
420
421

422

422
422
422
423
425
425
425
426
426
427

428

428
428
429
430
430

E.15.3.1 Operation Summary 431

E.15.3.2 Software Description 431
E.16.0 Alarm Display Package 433
E.16.1 Introduction 433
E.16.2 Hardware 433
E.16.3 Operation Summary 434
E.16.4 Communication Structure and Protocol 435
E.16.5 Data Packet Structure 436
E.16.6 Function Codes 437
E.16.7 Errors 437
E.16.8 Software Functional Description 438
E.16.9 Software Detailed Description 439
" E.16.9.1 Setup 440
E.16.9.2 Alarm List Initialisation 441
E.16.9.3 Alarm List Status 441
E.16.9.4 Run Control 442
E.16.9.5 1I/0 Routines 443 ! |
E.16.9.6 Decode 444 \
E.16.9.7 Alarm List Processing Funct. 445 ‘
E.16.10 Display Personality Modules 446
E.16.10.1 Alarm Paging Display 447

E.16.10.1.1 Screen Initialisation 448
E.16.10.1.2 Screen Up and Down 448
E.16.10.1.3 Print/Add and Remove 448

E.16.10.1.4 Update 449

E.l17.0 The Alarm Data Base 450
E.17.1 Introduction 450
E.17.2 Data Base Header 451
E.17.3 Data Acquistion 452
E.17.4 Event Definition 453

E.17.5 Alarm Definition 455

E.18.0 An Introduction to SWEPSPEED II 457

E.18.1 Intreduction 457
E.18.2 Conventions 457
E.18.3 Log In and Log Out 457
Ef18.4 Overview of Program Development 458
"~ E.18.4.1 Preparation of Job Source 459
F.18.4.2 Compilation of Job 459
E.18.4.3 Activation of Job 460
E.18.5 File Storage and Listing 460
E.18.6 Job Monitoring 461
E.18.7 Global Variables and Real-Time Oper. 461
E.18.8 Hardware Configuration 463
E.18.10 SWEPSPEED SYSGEN Configuration 465
E.19.0 Hardware Configuration 469
]
E.19.1 PDP 11/03 Parts 469
E.19.2 LSI Periperal Configurations 470
E.19.3 Highland Ann. Media Ch. No. 471
E.20. Listings and Important Flowcharts 472

327

E.1.0 ALARM HANDLING SYSTEM OVERVIEW

E.1.1 INTRODUCTION

The purpose of this section is to give an overview of
the alarm handling system operator, documentation, software
and hardware. The alarm handling system is a stand-alone
device intended for process plant applications where there
may be a need to improve process alarm data generation and
presentation. The device is passive in nature, that is, the
system collects and processes plant data, manipulating the
data, generating alarm information, and finally displaying
the information without performing process control
functions. The system acquired process data, manipulates
the data, generates alarm and other status information and
displays this information to the plant operator.

A combination of microprocessor based equipment is
implemented in the alarm handling system. A PDP 11/03
computer forms the basis of the system. The accompanying
display package runs on a Chromatics CG-1999 intelligent
colour graphics terminal.

E.1.2 THE ON-LINE SYSTEM

Software for the alarm system is comprised of two major
sections; l.) the alarm handling software and 2.) the alarm
display software. The alarm handling software written
entirely in SWEPSPEED II runs in the PDP 11/03 computer.
Alarm display sortware written principally in sicrosofc
BASIC runs in the Chromatics graphics computer. An
additional software section will be resident in the host
computer if present. Described here is a summary of the
software organisation of the alarm handling system. The
primary intention is to give an overview of the alarm
handling systems functional structure and task inter-

328

relationships. Details of the individual program tasks are
described in subseguent sections. The reader should be
familiar wth SWEPSPEED II and Microsoft BASIC before
proceeding. An introducton to SWEPSPEED II can be found
elsewhere in the documentation.

Since the alarm handling system software is comprised
of many tasks running independently in a real-time
environment, coordination of tasks requires an overall or
global program structure capable of performing housekeeping
functions such as inter—task communication, system startups
and other program task supervisions. The software
communication structure for the entire on-~line alarm
handling system (AHS) is shown in Fig E.l.l. The alarm
system is comprised of 20 SWEPSPEED program tasks resident
in the PDP11/03, or Microsoft BASIC display task in the
Chromatics and interface tasks in the host computer if
present. All program sections must be installed and running
for the alarm handling system to function correctly.
Communication.tasks between the computers are driven by
software drivers which detect the absence of a link line.
Software resident in the PDP11/03 computer constitutes the
core of the alarm handling system, Program tasks coordinate
all the functions of the system. The SWEPSPEED tasks can be
classified according to their‘functions as follows:

l. Supervision tasks

2. Link drivers

3. Device drivers

4. Alarm handling tasks
5. Auxillary tasks

BASIC programs located in the Chromatics are used to
implement a variety of colour VDU based alrm displays. Note

0ce

HOST LINK

T3 || TALK LISN be—— T73
h b
1F| [0;
KB STORE 1 : Wt DA_STQRE
$Fe(} v 20 I e 7 -y oApel) Main
t - T g
- - Yoo} Historic ot
$Te{} * 20 K Y N 13, DA
BORIV L8 QMA 3; Py ——
r ¥ Di*(} Change
= - ! - ol
T 7
]]
(L
A DACON e
ALARM T - \
MEDIA gz AL ARM .
DISPLAY DATA \\\\
BASE
11 ne= ¢ | ey
Yonr) -
T
. L T
''''' " il o [a ,’
CHROM || jmeree || DISP = -[’
e . e } _EVENT _STORE
S A4 o] gt GV b
- . — EI®{) Hystaresip
! I T s em e s = o s e - = = AG -
_OVERLAY . FoEst) Time
Rade ! - Y%E] EA) Event Stotus
SETUP EOIT POW wD ALaRM
\
A
LOAD o)
COMAH
Figure E.l.I. Alarm Handling Sysiem

TA SK

STORE

QUELUE

PRIVATE LINK
MEDIA LINK

FLAG

DATA FLOW
JoB START

o
=

B

o — -

that this document refers to the on-line duties of the
Chromatics. Off-line alarm data base building and transfer
routines are executed only when the Chromatics is in the
off-line mode. These off-line programs are discussed
elsevhere.

When the alarm handling system is used with a host
computer, program tasks resident in the host are used for:

1. Link with alarm handling computer.

2 Data acquisition routines for returning process
data from the host data base.

3. Other application specific functions.

The language used for the host task is dependent on the
application.

The system overhead tasks in the alarm handling
computer are as follows:

Task Name Section Function

Q-MAN E.2.0 Supervise gueue
comnmunication system.

POW E.3.0 Coordinate alarm system
startups.
SETUP E.4.0 Contains alarm handling

system array dimensions.
Must be adjusted to meet
specifications of alarm

data base.

331

COMAH E.5.0 Engineering command task,
allows system manager to
evoke data base editor,
restart or stop the
system, etc.

WD E.6.0 Controls the system
hardware monitor watchdog
and other time related

- overhead functions.

The inter-computer link drivers are as follow:
Task Name Section Function

LISTEN E.7.2 Retrieve data packets
from the host computer
link and place them in
the system queue.

TALK E.7.3 Send data packets as
obtained from the system
gueue down the host
computer Yink.

CHROM E.7.4 Manager data packet swap
routine with the
Chromatics computer.
Used as a interface
between the alarm
handling DISPLAY tasks
and the Chromatics
display package.

The Device Driver tasks in the alarm handling computer
are as follows:

332

Task Name Section Function

KBDRIV E.8.0 Software task which
supervises all special
operator keyboard
functions.

MEDIA E.9.0 Normalises and supervises
. all I/0 through the Media
Plant Interface hardware.

DISPLAY E.14.0 Although not specifically
) a device driver this task
coordinates data flow out
to peripheral display
devices.

The software tasks which perform the alarm handling
functions are as follows: These tasks all use the alarm
data base %A%#{() as reference.

Task Name Section Function

DA E.10.0 Data Acquisition
supervision. Initiates
data acquisition,
converts process data
into engineering values.

DACON E.11.0 Controls the data
acquisition sampling
rates.

EP E.1l2.0 Event Processor.

Examines the data

AG E.13.0

DISPLAY E.14.0

retrieved and processed
by the DA tasks,
generating a binary event
status image based upon
event definitions in the
alarm data base.

Alarm Generator.

Examines the event status
image and based upon
Boolean expressions coded
in the alarm data base,
generate alarm output
codes.

Alarm output codes are
received from the AG task
and passed on to the
appropriate display
output device. This task
also has access to the
system queue.

Due to memory space restrictions several program tasks
are overlayed into job slot 2 where the DISPLAY tasks
normally resides. These tasks are service routines required
for on-line data base editing and loading. Alarm handling
system is automatically stopped whenever tasks are overlayed
over the DISPLAY tasks. Overlayed tasks are stored on the
magnetic tape cassette which should be located in drive
DDO:. _Any time an overlay task is executed the system

message must restart the system.
follows:

334

The overlay tasks are as

Task Name

EDIT

LOAD

DISPLAY

Section

E.15.2

E.15.3

E.14.0

Function

Evoked through COMAH.
Allows the system manager
to make simple changes to
the alarm data base
currently residing in the
alarm handling system.

Evoked by the off-line
Chromatics program XFER
via the SWEPSPEED task
DISPLAY. This task
supervises the transfer
of an alarm data base
from the Chromatics
computer when in the off-
line mode.

See previous description.
This task is alsco an
overlay since both of the
above tasks overlay into
the DISPLAY task job
slot. When the above
overlays are complete, _
the DISPLAY task overlays
back into its original
job slot.

Alarm handling computer resident tasks are described in
brief here in order to give the reader an idea of the
organization of the sysem and the inter—relationship between

program tasks.

335

E.1.3 THE DATA BASE

The alarm handling system is a generalised device. The
basic alarm system is not capable of performing any
functions without first being programmed. The alarm
handling system may be thought of as an operating system
ready to be programmed for a specific user application. The
alarm data base is the 'program® which defines how and what
duties, the alarm system will perform. In the case of the
prototype system., this data base is constructed by the user
in an off-line development computer. Application specific
information concerning data acquisition alarm generation and
display is condensed by the off-line computer into a compact
coding. Compression of the application data into this data
base minimizes the amount of memory space required by the
on-line computer to store the alarm system definition.
Additionally, the data base is organised in such a manner as
to maximize the speed of execution of the data base program.

When the on-line alarm handling system is running, the
data base is constantly referenced by the tasks that
comprise the system. The data base remains unchanged by the
on~line system since any modifications the data base would
result in an alteration of the alarm system operator.

Following is a brief summary of the system definitions
coded in the alarm data base:

Overhead Information: Sizes required for data base,
arrays, lists, etc.

Data Acquisition: Plant addresses, range, conversion,
data type and scan rates.

Event Definitions: Type of event and parameters,

336

Alarm Definitions: Coded expressions describing
combinations of events required for an alarm.

Display Data: Alarm output codes, etc.
More details of the data base structure are described in
Section E.17.0. The off-line documentation gives a detailed
description of the information stored in the alarm data base

and how the data base is built. .

E.1.4 THE SOFTWARE LANGUAGE

SWEPSPEED Il was found to be a convenient language for
the Alarm Handling software. The real-time multi-tasking
capablities of SWEPSPEED are suitable to build the system
from a collection of well defined and structured program
tasks. Although SWEPSPEED itself is not particularly a
structured language, care has been taken to insure that all
program tasks are uniformally organized and formatted. This
~approach for example results in consistent allocations of
program line numbers. For example, all program tasks
contains a 'Setup' module located at line 20, program queue
communications are at lines 900 and 950, and so forth. The
user will find that a clear understanding of the program
organization of any one task is directly applicable to any
other program task. Details of program organization
convention are shown in Section E.l.5. In addition care has
been taken to ensure that in general variables in one task
will have the same or similar function in other tasks.

337

E.1.5 PROGRAM TASK

SOFTWARE ORGANISATION

Program Line Number

10

20

100

200

300+

Typical Function
Task title with version number.

Setup - Variables assigned here are
dependent upon the location of
supporting tasks and upon the location
of the task within the system'’s
communicaton structure. Busy flags and
other housekeeping duties relating to
globally interacting software functions
are also found in this section.

Run - This represents the starting point
of the main body of the program.
Generally, this section is used as a
program control module which supervises
function within the task via GOSUB
commands. Branching to subroutines adds
structure to the program making it
easier to follow and fault £ind a
program. The Run secfion also includes
all the task shutdown housekeeping
functions.

Function Selection - This section
generally is used for decoding task
input commands and selects progranm
routines as dictated by the task command
messages.

Flexible and dependent on task.

338

800

900

8950

Errors - This program line is always
reserved for error trapping routines.
Initial error vectoring is performed in
the Setup section.

INQ - The INQ subroutines are
exclusively assigned to lines 900-950.
Queue assignments are made in the Setup
section,

OUTQ - The OU&Q subroutines are
exclusively assigned to lines 950-970.
Any program task requiring access to the
alarm handling queue communication
system must have either or both the INQ
and OUTQ routines. These routines are
identical in all tasks.

339

Local variable assignments are usually consistent as
illustrated by the first example for inter-task
communication shown in Figure E.l.2a. In the case of the
inter-task queue structure all tasks requiring access to the
queue use identical service subroutine software. Other
variables which do not have such globally related functions
also follow a similar convention. For example, the list of
variables shown in Pigure E.l.2b generally perform the same
functions throughout the alarm system., Global variable
assignments are dependent upon the task to which they
pertain, Figure E.l.2c illustrates some of these
assignments.

340

FPigure E.l.2a

$N = Incoming data packets.

$M = Outgoing data packets.

Ql = In queue number.

Q2 = Out queue number.

Q = Queue Manager job slot location.

Figure E.l.2b

I = Index or array pointer.

D, D1, D2, etc. = Alarm data base pointers.
F = Function number.

V = Measured process variable value,

L = List location or pointer.

Figure E.l.2c
$A#() = Alarm data base,
?Fl%#, ?2F2#, etc. = Busy flag for an individual
task.
tD# (), D¥(), etc. Data acquisition data store,
$E#(), E#(), etc. Event processor data store.

G#() = Alarm generation data store.

-

Examples of a typical variable assignment conventions.

Figure E.l.2

341

E.2.0 THE QUEUE MANAGER

E.2.1 INTRODUCTION

Real time multi-tasking software systems have an inherent
difficulty with intertask communication. Since tasks are being
executed at differing priority levels and require varing
execution times, synchronous communication between tasks can
significantly decrease the response time of the entire
software system. When a task requires intertask
communication, both tasks must wait for each other to
complete the necessary handshaking protocol. The 'waiting'
process can consume large amounts of processor time and hold
up the execution of other tasks. Ideally tasks in a
multitasking environment should be able to communicate with
other tasks at any time as required.

A common method for implementing such a communication
structure is a system queue. As tasks require intertask
communication, output messages from tasks are stored up in a
queue or stack until the receiving task has time to deal
with the incoming message. The sending task is not held up
waiting for the receiving task to accept the message. The
receiving task can retrieve the message packet at a
convenient time. With all tasks communicating via a queue
structure the system is not held up by intertask
communication.

Each task requiring communication will have an output
queue and an input queue. Messages are transferred from
output queues to input queues. The queue system is
supervised by a task called the Queue Manager. This task
examines all queues which contain output messages. If
any messages are in the output queues of any task, the Q
Manager examines a data header contained within the message
to determine the destination queue and makes the transfer.

The header is stripped off and the message is placed in the
appropriate input queue corresponding to the receiving task.

An added feature of this system is that any task has
access to any other task which contains input/output (I/0)
queues. By placing the appropriate header code on the
message, a message can be transferred by the Q Manager to
any task with queueing facilities.

A queue (Q) is simply a means-of emulating a cyclic
file which allows data packets to be entered in sequential
order and removed in a first in, first out (FIFO) order. An
input pointer I# is used to indicate the next available
location in the Q. Similarily an output pointer o# is used
to indicate the last message location in the Q. The Q is
empty when O# and I# are equal. An array is used for the Q.
The pointers are incremented to the maximum number of
available array elements and then reset to the beginning of
the array to start over again, i.e. a cyclic file. As
messages are entered into the Q the I# pointer is
incremented accordingly. If the next available element
(I#+1) is full, that is the O# pointer is pointing to the
same location, the Q is full. No further entries may be
made until the Q is serviced by the Q Manager.

The Q Manager removes messages from the Q by
incrementing the output pointer O¢# and removing the message
packet, until the pointers O# and I# are equal. The Q is
now full.

The pointers are 'rotated’ around the Q as shown in
Fig. E.2.1 making the Q appear continuous. The size of the
Q or rather array defines how many message packets can be
backlogged before the Q is full. Tasks which intérmittently
produce large amounts of data for slower tasks are ideal
candidates for such a communication structure.

(0)
(1) ~- Ozt

(2)
(3)
{4)
(5)
(6)
{(7)

i

Y

Figure E.2.1 Queue array structure and pointers

E.2.2 OPERATION SUMMARY

This section describes in brief the operation of the
Queue Manager. More deatils are given in the subsequent
sections. The Queue Manager is always accessed via other
tasks in the system so its operation is transparent to the

operation of the alarm handling system and the operator.

1) The Q Manager software must be loaded into a
SWEPSPEED job slot. This job slot must be assigned a higher
priority than any job requiring gueue servicing.

2) There are 10 queues available, 5 input types and 5
output types, comprised of reserved global array variables

S1%, T#(10), O#(10), and $Q#(70)=20.

3) Each job requiring queue servicing must contain the
appropriate IN queue and/or OUT queue software routines.

4) Message packets which are to be sent by a task to
another task must contain a data header containing the code

344

of the destination queue. (Refer to SectionEb.0).

5) The calling job places its outgoing message packets
in its OUT Q.

6) The calling job must start the queue manager using
interactive statements (included in Q software routines).

7) The receiving job is started by the Q Manager if
necessary. The receiving job then removes the data packet
which has been stripped of the header from its IN Q.

8) The reserved global variables I#() and 0#() should
be cleared at system startup. The queue manager task should
also be the first job started at power up.

E.2.3 COMMUNICATION STRUCTURE AND PROTOCOL

Generally the operation of the Q Manager is transparent
to the operation of the system, thus the importance of
understanding the Q Manager's operation is non-essential,
,However, when the user wishes to add or modify jobs which
require intertask communication,.the system designer should
be aware of the functions and operation of the Q Manager.
This is necessary to avoid possible conflict with other jobs
using the Q system.

The Q Manager transfers message packets from one job's
OUT Q to another job's IN Q.

'1&;_ Iu{m)

QMAN A
0{N) E—

S
[T S
-
o>
z
0

Oz({M)

Figure E.2.2 Q Manager Transfer Task

The above figure illustrates the typical information flow
through the queue system. Job A is sending message packets
to job B via job A's OUT Q through the Q Manager and on to
job B's IN Q. The header placed on the message packet by

_job A indentifies the destination Q in which the message is

to be inserted,

E.2.4 JOB PRIORITY

The only restriction on job priority assignment made to
the Q Manager is that any task requiring gqueue servicing
must have a job priority assignment lower than that of the Q
Manager. If a calling job has a higher priority than the Q

Manager, it may be possible that Q pointers are corrupted or
confused.,

E.2.5 ERRORS

Error messages are generated when any sub-queue within

346

the system becomes full. The error message
Q-n WAITING n= Q number

is generated by the Q Manager whenever the Q Manager is

waiting for space in a task IN Q. In other words queue n is
full.

OUT Q@ routines located in the sending tasks can
generate a similar error message.- For example;

KB Q WAITING

DISP Q WAITING

These mesaages are generated whenever the corresponding OUT
Q is full and waiting service from the Q Manager.

IN Q@ routines do not generate error messages. If
WAITING error messages are persistent, the system manager
should consider reassignment of job slot priorities and/or
_increase the sub-queue size (S1#).

In the event that the Q Manager detects an invalid
header in a message packet, the message packet is dumped and
no further action is taken on the packet. No error message
is generated.

E.2.6 SOFTWARE FUNCTIONAL DESCRIPTION

As previously described the Q Manager transfers message
packets for OUT Q's to IN Q's to and from various tasks. 1In
order to accomplish this function without intertask
conflict, the tasks subscribing to the Q system also must
contain certain software routines to service their
individual Q's. A functional sketch of the system is

347

illustrated in Figure E.2.3.

[
[=
-
s

ouUT Q '
ROUTINE

\

1]

OTHER Q's

/
- N\\

BoR()

=
o

AN

Pigure E.2.3 Q Service Routine Information Flow

The OUT Q and IN Q routines are the same for each
individual task and are described in the next section.
Variables which identify Q numbers assigned to the task are
specified in the 'Setup' section at the beginning of the
task requiring queue services. These variables are used by
the OUT ¢ and IN Q routines.

Q1 = output Q number [5-9]
Q2 = input Q number [0-4]
Q = Q Manager job slot [7]

The Q is comprised of a string array so therefore all

message contents must be in string form not exceeding 20
characters. By convention

$N
$M

Input data
Output data

When outputing a message to another task in the Q
system, the message text must contain a 'header' to identify
the IN Q to which the message packet is directed., The
header by convention consists of the first two characters of
the message text. The characters are the string

representation of the IN Q number to which the message is
directed. Queue number assignments are preselected in the Q
Manager software and are summarized below:

Q Number Q Type Task Job Slot
00 OUT Q LISN 12
01 oUT Q KBDRIV 4
02 OUT Q DISP 2
03 OUT Q DA 8 -
04 ouT @ PCPDAT 17
05 IN Q TALK 3
06 IN Q KBDRIV 4
07 IN Q DISP 2
08 IN Q DA 8
09 IN Q PCPDAT 17

By example, if the Keyboard Driver KBDRIV is required
to send a message to the DISPlay task, the message outputed
through OUT Q 01 would read:

$M = 07MESSAGE

Once the keybecard driver has defined $M as above, the OUT Q
routine within the keyboard driver is called. The routine
places the message in the next available queue location and
requests the Q Manager to start.

The Q Manager detects the presence of a message in the
OUT Q 01 by checking the I#(1) and O#(l) queue pointers.
The message is removed form the queue. The Q Manager
examines the first two characters of the string and decodes
which IN Q the message, stripped of the header, should be
placed. The Q Manager having sent the message to IN Q 07,
starts the task, if necessary, which contains the specified
IN Q. In this case job 4 is started.

349

Finally, the receiving task must check its own INQ
occasionally to see if there are any entries. This is
accomplished by calling the standard IN Q routine which is
the same for all jobs nevertheless unique due to the Setup
variables. The message text is returned to the job through
the variable $N which should now read

$N = MESSAGE

Summarizing, the sending job places outgqoing messages
in $M with a header identifying the destination Q number.
The OUT Q routine is called, The message is placed in the
job's‘OUT Q. The Q Manager transfers the message to the
correct IN Q by examining and stripping off the header.
Finally, the receiving task. after checking its IN Q by
calling the standard IN Q routine removes messages from the
Q and are available in the local variable $N.

In the prototype alarm handling system, the IN Q
assignment numbers contained in the message packet header is
complicated by the fact that the alarm handling system is

"linked to the PDP 11/34 host computer. As described
elsewhere, the PDP 11/34 contains the PCP software package
which is also comprised of a large number of separate tasks
in the same manner as the alarm handling system.
Figuratively. these tasks also contain IN and OUT Q's., The
structure and operation of this system is described
elsewhere in the PDP 11/34 Link documentation.

Nevertheless, IN Q number assignments in the PDP 11/34 start
at 10 as follows:

Q Number Q Type Task

10 IN Q GETDAT
11 IN Q ocp
12 IN Q PCPMC

350

When the Q Manager encounters any of the above headers, the
header is not stripped off. The entire message packet is
placed in the Link task TALK's IN Q. The TALK task send the
complete message packet to the 11/34 for further processing.
Data returning from the 11/34 does not have any labeling

difficulties since all destinations are within the Alarm
Handling Systen.

E.2.6.1 The Queue -

The system queue and pointers are comprised of the
following reserved global variables:

$Q(70)=20 Main Q

I#(10) Input pointers on sub-queues

0#(10) Output pointers on sub-queues

Sl# Sub~queue size defined in Q Manager

Setup section
4
The main Q is a string array with a maximum of 20 characters

, per element. The main Q is divided into 10 sub-queues as
follows:

— _$ou0)
Qo| |I——
ouT 1
os || Y =——=
B
IN —
Q's :
09[

Figure E.2.4 Main Q with sub-queues

351

The Q input/output pointer are located in the reserved
global array variables I#(n) and O#(n) where the subsript
indicates the Q number 0 - 9. The location is stored in a
relative form. i.e., the first location in the sub-queue is
zero. The absolute location in the main gueune is calculated
a follows:

Li
Lo

I#(QL)+S1#*Ql (1)
0% (Q2) +51&*Q2 (2)

In the above equations

L = absolute location in the main queue.

0%(Q2) or I#(Ql) = relative sub-queue location.
S1l# = the sub-queue size (currently set at 7).
Q1 = out sub-queue number.]
02 = in sub-queue number.

The Q-Manager has preassigned OUT queues as Q0 - Q4.
Similarly the IN queues are Q5 - Q9. This means that the Q
Manager will transfer from the Out-Queue to the In Queues
_where OUT queues are interpreted as 'out' from sending tasks
and IN queues as 'in' to the receiving tasks. Any task
requiring two way communication via the queue system must
contain both a IN and an OUT’queue.

The input/ocutput pointers increment around the queue
array by using the MOD function. This function is used to
evaluate the modulus of two integer expressions. The
modulus is defined as the remainder after dividing one
number by another. In this way the pointers are always
incremented yet in reality are 'rotated' around a queue
array. For a queue size of three the pointers are rotated
as follows:

,,2,0,1,2,0... and so forth, where the modulus is 2.

352

The input and output pointers I#(q) and O#(q)} store
these relative values.

Refering to the flowcharts in the Appendix, these two
procedures involved in queue servicing, data insertion and
data removal. Eack task inserting data into a queue must
use an insertion routine called OUTQ. While each task
extracting data from a queue must use the complementing
removal routine called INQ. The queue manager contains both
these routines with some additional software sorting
functions.

E.2.6.2 QMAN

The Q Manager performs both INQ and OUTQ functions
using almost identical software. For information relating
to the insertion and removal of data from the Q refer to the
INQ and OUTQ sections.

The Q Ménager examines all Qutput Q's (0-4) pointers
I#(q) and O#(q) to determine whether there are ény entries
in an output queue which require servicing, If an entry is
found, message packets are removed from the gqueue. The
header is examined. If the header value is valid the
message packet is placed in the corresponding input queue.
Next the Q Manager locates the job slot in which the input
queue is located. These assignments are located in the
array J() and are allocated in the Setup section of the Q

Manager. A START command is issued for the corresponding
job slot.

In the event that a destination input queue is full the
Q Manager generates an error message, waits 2 ticks and
tries again as many times as necessary. If a message packet
header does not make sense then the packet is dumped. Any
header with a value of 10 or more retains its header and is

353

placed in the PDP1l1/34 link task gqueue.

When a scan is complete, if a message packet had been
serviced on the scan, a further scan is initiated until all
output queues are emptied. -

E.2.6.3 1INQ

The INQ routine must be present in a task which has an
input Q. Refer to Appendix for listing. The routine
performs the following funcitons:

1) Examine I#() and O#{} pointers for the queue in
question.

2) If I#(QZ)-O#(QZ) then the queue is empty, no action
is taken and prog:am control is returned to the main task.

3) If I#(02)>0%#(Q2) then queue entires are present.
The data packet lbéated-in $0%#(Lo) is placed in $N. 0%#(Q2)
is incremented to the next queue location, and program
control is returned to the main task.

By convention Q2 is used to assign the input queue number

and must be specified in the task Setup section along with
the job slot location of the Q Manager; Q.

E.2.6.4 0UTQ

The OUTQ routine must be present in a task which has an
output Q. Refer to section E.20. for listing. The routine
performs the following functions:

l? Examine I#(Ql) and O#(Ql) pointers for the queue in
gquestion. -

354

2) 1f I#(Q1)+1-0#(Ql) then the Q is full. An error
message is generated, the routine waits 2 ticks, and tries
again.

3) The contents of $M is loaded into $Q#(Li) and
I#(Ql) is incremented. The Q Manager is started if
necessary. Program control is returned to the main task.

By convention Q1 is used to assign the output queue number
and must be specified in the task Setup section along with
the job slot location of the @ Manager; Q. $M must contain
the header identification in the first two characters of the
;, text. The header must be present before loading into the .
queue.

‘E.3.0 POWERUP

E.3.1 INTRODUCTION

The POWerup task POW is an alarm handling system
housekeeping task. Initialisation of the alarm handling
system is performed by this task. When the software system
is first booted into the computer various aspects of the
software must be initialised for correct operation. The POW
task also executes functions which will restart the alarm
handling system. In this mode the task is started by the
alarm handling command task COMAH.

E.3.2 OPERATION SUMMARY

As described above in normal operation the POW task is
automatically started when the SWEPSPEED alarm handling
system software is first booted or restarted. In the event
that the user requires to re-initialise or 'clear' the alarm
handling sytem, the POW task can be started via the command
_ task COMAaH.

The only interaction that the user has with the task is
that of entering the date and time as prompted by the -
program on the console terminal.

No error messages are generated by the task, however if
the user miss-keys an entry, the program will detect the
syntax error when trying to set the time or date. If this
shoula occur, tne task is restarted after generating a
SWEPSPEED error message,

356

E.3.3 SOFTWARE DESCRIPTION

The POWerup task is a small and concise progranm
requiring little explanation. Refer to the flow chart and

- listing for clarifications.
The task performs the following functions:

1) Stops all job slots which are not idle.

-

2) Permits user to insert real time and date into

system.

3) Clears all temporary storage arrays which may cause

confusion during a system restart.

4) Initialises the time of occurrence event processor

storagé array $E#(). All elements are set to the minimum or

tdatum' time value =-10E6.

5) Connects the watchdog task WD to the system clock.

6) Appropriate job slots are connected to the systém
clock or started to get the system going.

LTy

357

E.4.0 SETUP

E.4.1 INTRODUCTION

The SETUP task is an initialisation module for the
alarm handling system. The task performs no operational
functions. Principal data array sizes are dimensioned here.
SWEPSPEED is a compiled language therefore itmes such as
array sizes can not be dynamically adjusted. The user of
the alarm system may need to redimension key arrays to suit
the requirements of a particular Alarm Data Base. All
arrays which may require redimensioning are included in the
SETUP task. All these arrays are global types, therefore
redimensioning requires a knowledge of the SWEPSPEED
utilities as follows:

$GLO Used to condense the global table after
reducing array sizes. (SQUEEZE)

$INS Used to re-install overlay files since a new
global table will be in use. The EDIT, LOAD,
and DISPlay overlays must be installed into
job slot 2 after a redimensioning.

$MON Used to inspect the contents of the Alarm
Data Base header.

E.4.2 SOFTWARE DESCRIPTION

Presented here is a list of the global arrays found in
the SETUP task and how to calculate the array dimensions.

A% () The Alarm Data Base. Dimension to at least the
size of the Alarm Data Base as given in 3A#(l).

358

$D# () Data Acquisition current measured value array
store. Dimension to the number of data
acquisition units as given in %A#(2).

$D1% () Data Acquisition historical measured value array
store. Dimension to the number of data
acquisition units as given in %A#(2).

D2 () Data Acquisition trend data array store.
Dimension to the number of data acquisition units
as given in %A#(2).

D1# () Data Acquisition change data stored in bit form
(see BIT function). Dimension to the number of
data acquisition units as given in $A#(2) divided
by 16, the integer bit size.)

$E# () Event Processor 'time of event' store. Dimension
to the number of event definitions as given in
%A% (10).

E# () Event Processor event status store. Data is

stored bit wise (see BIT function). The dimension
is calculated by dividing %A#(10), the number of
event definitions, by 16, the integer bit size.

E1£ () Event Processor measured data hysteresis store.
Dimension to the number of event definitions as
given in tA#(10).

G#() Alarm Generator output alarm status store. Data
is stored in bit wise format (see BIT function).
The dimension is the number of alarm definitions
as in %A#(1l) divided by 16, the integer bit size.

NOTE: Arrays used for bit wise formats are dimensioned by

calculating the total number of bits required. There are 16
bits in each integer represented by the array starting with
array subscript 0. The calculation is as follows:

»

Dimension = INT((number of bits required)/16) MIN 1

Note that since location ¢ is used the result of the

equation is truncated to integers only.

E.5.0 COMMAND TASK - COMAH

E.5.1 INTRODUCTION

The COMAH task is intended for use by the alarm
handling system manager to evoke engineering functions
within the system. The principal uses of the COMAH commands
are to enter the alarm data base EDIT mode and system
startup and shutdown., The task is not intended for use by
the operator. -

E.5.2 OPERATION SUMMARY

To start the task the system manager must use the
SWEPSPEED utility $ACT14 on the console terminal TTO0: thus
activating job slot 14 where the COMAH task is located.

Once in COMAH the prompt '##' will indicate that the task is
ready for input. All inputs consist of up to 2 character
strings followed by a carriage return. The avaiable
functions are as follows:

ED Enter EDIT mode. Overlay storage tape must be in

DDO:

TI Print time and date to console.
RE Restart alarm handling system from scratch.

ST Stop the alarm handling system except for the
watchdog task WD.

RU Run or 'warm start' the alarm handling system.
Useful during fault finding after using the ST
command.

361

X Exit COMAH task.

An error message may be encountered when entering the EDIT
mode if the overlay tape is not inserted in drive DDO:.

E.5.3 SOFTWARE DESCRIPTION

The COMAH task is simple and concise. It provides a
means of command input and subsquent branching to the
appropriate subroutine. For details of program structure
refer to flow charts and listings.

362

E.6.0 WATCH DOG

E.6.1 INTRODUCTION

The Watch Dog task WD drives a system monitor card in
the Media Plant Interface hardware. The task also performs
some alarm handling system housekeeping functions, the most
important of these being the updating of the time of event
records in the event processor array $E#().

-

E.6.2 OPERATION SUMMARY

In normal operation the functioning of the Watch Dog
task is transparent to the operator. The task is set to run
once each second with a top priority job slot assignment,
The POWerup task contains a CONNECT statement for the Watch
Dog task so the Watch Dog begins running only after the
POWerup task is execute. The Media Interface hardware
requires this task to run at least once each second so that
the system monitor card does not think that the computer has

failed.

E.6.3 SOFTWARE DESCRIPTION

The WD task is a short and concise task requiring
little explanation. Refer to the flow chart and listing for

" further details.

When the task runs a specific bit pattern is sent to
the Media system monitor to inform the plant interface that
the computer is operational. The current real time in the
alarm handling system is then examined to see if the time is
00:00:00, and if so, subtract 18280 seconds (1 day) from
each event time in the event processor time of occurance

363

array $E#(). The minimum time or 'datum' time value is
-10E6 (5 days). After completion the WD task remains idle
until the next second at which time the execution is
repeated.

E.7.0 THE COMMUNICATION LINK TASKS

E.7.1 INTRODUCTION

The communication link tasks supervise software
communications with peripheral computer systems. These link
tasks are TALK, LISN, and CHROM. The link tasks must have
there own job slot allocations since in SWEPSPEED once an
input statement is executed the program stops until the
input request is satisfied. If inter-computer
communications were incorporated into other tasks, the
system would not be able to function properly.

Job slot priority assignments must be arranged such
that any incoming inter-computer link tasks, LISN and CHROM,
are as high or higher than other tasks. This is to insure
that incoming data packets are not lost. Links with heavy
traffic such as the host computer link should have very high
job slot priority.

Described in this section are details of the three link
tasks in the alarm handling system,

E.7.2 TALK _

The TALK task is a unidirectional communication link
with the host process control computer. The TALK task sends
ASCII data packets down the serial link line TT3:. To avoid
conflict with the LISN task which also uses this line, TT3:
has been set to no-echo via the SWEPSPEED system generation.
The TALK task prints down line data packets comprised of
text strings as retrieved from the alarm handling system
queue system. The data packets are sent verbatim without
any additional termination characters addea to the ena or

365

-

the string contents.
E.7.2.1 Operation Summary

The TALK task operation is transparent to the operator.
Since its only means of retrieving data packets is via the
system queue, the task is automatically started by the queue
manager when necessay. No program error messages are
generated. When the alarm handling system is restarted the
local print buffer @T3: may still "be operned for output. In
this case the program notes the error, rectifies the
situation and restarts.

E.7.2.2 Software Description
Little explanation of the flowchart and listing is

required. The task uses the standard INQ subroutine for
data packet inputs.

E.7.3 LISN

The LISN task is a unidirectional software
communication link with the host process control computer.
This task is intended to complement the TALK task above.

The LISN task retrieves ASCII data packets from the serial
link line TT3:. The task uses the same serial line as the
TALK task so several precautions must be noted as explaned
above. In general the LISN task retrieves data packets from
the serial line and passeé them verbatim to the alarm
handling system queue system. The LISN task utilises the

standard input statements so in fact a terminating carriage
return is required to input data packets. This means that
all incoming data must not contain a carriage return within
a data packet. The contents of the data packet must conform
with the format as required by the queue manager and the

destination task.

The task is assigned a high priority so that incoming
data is not lost.

E.7.3.1 Operation Summary

The LISN task is automatically started during system
powerup. If a host computer is not present consult the
system manager to remove this automatic startup which is
performed in the POW task. This is important to avoid
difficulties with subsequent alarm system restarts. If the
LISN task has been activated, the program with remain
waiting for an input. In this condition the POW task can
not stop the job. If this should occur the system manager
must use the SWEPSPEED utility $RES to clear and restart the
alarm handling syétem from scratch.

~ In some situations when the alarm system is restarted
the input buffer @L3: may still be opened for input. 1In
this case the program detects this and rectifies the
difficulty.

E.7.3.2 Software Description v
Little explanation of the flowchart and listing is

required. The task uses the standard OUTQ subroutine for
inserting data packets into the alarm handling system queue.

E.7.4 CHROM

The CHROM task is a bidirectional software
communication task which links the Alarm Display Package
resident in the Chromatics display computer with the alarm
handling system DISPlay task. The inter-computer link is

367

comprised of a constant data packet swapping procedure down
the serial link line TT2: with the Chromatics. Data packets
consist of coded ASCII text strings. The Chromatics Alarm
Display Package sends data packets to the DISPlay task
headed with a funciton code initiating further functions in
the DISPlay task. The DISPlay task sends display commands
to the Chromatics as appropriate. If no data packet is sent
during a data packet swap an empty data packet is sent.
This constant swapping is used to detect the health of the
Alarm Display Package. To avoid echoing data packets the
TT2: serial line is set to no echo in the SWEPSPEED system
generation.

E.7.4.1 Operation Summary

The operation of the CHROM task is automatic once
started by the DISPlay task. The CHROM task will not
function correctly if the complementing link routine in the
Alarm Display Package in the Chromatics display éomputer is
not functioning, It is important that the Alarm Display
Package be fully installed and running for the alarm
handling system to function correctly. If the display

- ' package is not running the alarm handling system will -
"perform overhead and data aquisition without performing any
alarm handling funcitons,

During alarm data base transfer from the off-line alarm
handling system in the Chromatics and data base editting,
the CHROM task is stopped to avoid difficulties with the
gerial line between the Chromatics and The PDP 11/03.

No error messages are generated by the task. BHowever,
if a SWEPSPEED error results form an open 1/0 buffer during
alarm system restart, the task detects the error, rectifies
it, and restarts the task.

368

o
a

E.7.4.2 Software Description

The CEROM task operates very closely with the DISPlay
task since its main purpose is to maintain the private
software link between the two tasks. The bulk of the task
deals with this supervision. The inter—-computer link
portion functions the same as in the LISN and TALK tasks,

The CHROM task performs the following functions:

1) Listen to the TT2: serial line for an input via an
input command.

2) If the response is not an empty data packet, the
busy fiag of the link to the DISPlay task (?N#) is checked.
If the flag is set the program waits until it is not set.
The data packet is inserted in N# and the busy flag is set.

3) The program next checks the link form the DISPlay
task. If the busy/request flag ?M# is not set then an empty
data packet is sent to the TT2: serial line. Program
control is then returned to step 1. Otherwise, if the
busy/request flag ?M# is set then a data packet is retrieved .
from $M#, the 2M# flag'cleared, and the data packet is sent
to the TT2: serial line.

Further program details can be obtained from the
flowchart and listing.

369

E.8.0 KEYBOARD DRIVER

E.8.1 INTRODUCTION

The Reyboard Driver software provides software support
for the special purpose operator keyboard described
elsewhere. Although the functions included in this routine
are specific to the prototype alarm handling system, the
module may readily be modified to_meet the requirements of
other types of keyboards. The keyboard driver is a general
purpose software driver for indiviually addressed keys
accessible through digitial input/ocutput type interfaces.,

.- The driver will not supbort multiplexed keyboards.

E.8.2 OPERATION SUMMARY

This section describes in brief the use of the Operator
Keyboard Driver Module. The Operator Keyboard Driver Module
is used as follows:

1) The Meﬁia Driver software module must be loaded
. into a SWEPSPEED job slot having a priority higher
than the Keyboard Driver.

2) The Queue Manéger software must be loaded into a
SWEPSPEED job slot having a priority higher than
S the Keyboard Driver.

3) Ensure that the Keyboard Driver has been assigned
the correct job locations of the Media Driver and
the Q-Manager. Also ensure that the Queue number
and Media link numbers are unique.

4) Load the appropriate Key Function and Key Text

arrays into the global area. This need not be
necessary if new Function or Text arrays are to be
generated.

5) Activate the Kevboard Driver using the $SACT
command or other job interaction instructions.

6) The Keyboard Driver will remain active until
stopped by the user.

E.8.3 COMMUNICATION STRUCTURE AND PROTOCOL

The key board driver communicates with other software
modules via the alarm handling system queue. (See Queue
Manager Documentation). The driver utilises both an IN
gueue and an OUT queué to allow two way communication with
other jobs. Key press functions can be assigned to indicate
the transfer of text from the keyboard driver into the
system queue, Also the driver will read messages received
from its input queue. Messages received in this way are
_interpreted as key press function codes and are executed in
the same manner as if a key press had been detected.

The message protocol from sending a command to the
keyboard is as follows:

The key board driver input queue number is b. Key code
functions, described in section E.8.7.8, are strung together-
and sent as a single string text packet

message string »0605000452
. \ ~e
I.D. Heading BEEP TURN OFF 52
keyboard Q

371

| The message packet is placed into the queue system and
subsequently sent on to the keyboard driver, The output
message texts are defined by the user in the $T#(K) array.
The text is sent verbatim into the system queue when the
appropriate key press is detected. See section E.8.7.8 for
further details.

E,8.4 SUPPORT TASK PRIORITY ASSIGNMENT

The Keyboard Driver utilizes two supporting tasks, the

- Media Driver and the Queue Manager. Job Priority

- assignments follow the rules outlined elsewhere for the
supporting tasks. 1In general, the keyboard driver must be
assigned a sufficiently high job priority to maintain a
reasonable response time from the operator keyboard. With
this in mind, it has been found that a priority assignment
of 28 works satisfactorily in the prototype alarm handling
system. The Media Driver and Queue Manager necessarily have
job priority assignments higher than the keyboard driver.

E.8.5 ERRORS

The keyboard driver does not generate error messages
. with the exception of the Q routine. Any invalid key
‘ function code will not be executed. If an invalid function
- code is imbedded in a string of functions codes, all valid
A codes preceeding the invalid code will be executed. When
the invalid function code is detected, the remainder of the
function codes in the string are aborted.

The OUT Q routine within the driver will generate the
following error message on the console VDU whenever the
keyboard driver's output Q is full and waiting to be

372

serviced:

KB - Q WAITING

E.8.6 SOFTWARE FUNCTIONAL DESCRIPTION

The keyboard driver software module resides in the
Swepspeed system as a job. The job, once activated, runs
continuously until stopped by another Swepspeed job or
command. The Media driver module, described elsewhere, must
be installed in the system when activating the Keyboard
driver module since the operator keyboard can only be
accessed via the Media plant interface.

Functionally the driver performs the following
operations:

1) Poll the operator keyboard inputs to determine
whether or not a key has been pressed.

2) If no key has been pressed, wait a short while and
try again.

3) If a key has been pressed determine which specific
key was pressed.

4) Check key routine to determine whether or not the
key is enabled, if not abort any further key functions

and resume polling scan.

5) Locate the key function codes stored in $F#(K) where
K is the Key number, see appendix.

6) Execute key functions.

373

7) Resume key board polling scan.

E.8.7 SOFTWARE DETAILED DESCRIPTION

This software description explains in detail the
keyboard driver module flowcharts presented in the following
section. Please refer to the flow charts to clarify the
description presented here,

-

E.8.7.1 Set Up

This section sets the initial values of certain
variables used in the driver module which are dependent upon
the location of the keyboard module and other supporting
modules in the Swepspeed system. The following variables
are set as indicated below:

M 10 = Media Driver Module Job number

Ml = 2 = Media Driver Communication link assignment
(must be unique)

Ql = 7 =QUEUE Manager Job number

Q 1 = ﬁéyboard Driver Output Queud Number {must
be unique}

As the set up implies, the keyboard driver module requires
both the Queue Manager and the Media Driver Module to be

_ fully installed in the Swepspeed system to ensure proper
operat;on of the keyboard driver. Any of the above
variables may be set to other values without effecting the
operation of the keyboard driver, however care must be taken
to ensure that new assignments correspond with priority
allocation requirements of the supporting jobs and that
communication assignments do not conflict with other jobs.
Rerer to the desciption of the other modules concerned for

374

more details.
E.8.7.2 Scan Keys

This section polls the digital input channels which
have been assigned to the operator keyboard. The operator
keyboard is physically connected to the computer via the
Media plant interface package. In the prototype system, the
keyboard keys are connected to the digital inputs on a one
to one basis. Any key press will result in a single unique
digital input being activated. Due to physical constraints
the keyboard digital input assignments have been split, some
are maintained contact type input and the remainder are
fleeting contact type inputs. The behaviour of the inputs
differs in the manner by which the inputs are read by the
computer.

The result of this anomally is that the Scan Key
section performs two types of key scan. Keyboard inputs
assigned to Media channels 145-154 are the maintained input
type. There are 16 such inputs-on the Media card. The
Media driver module allows the user to read the status of
.the entire card as an integer representation of the input
status of all 16 channels (See Media Driver Documentation).
The keys on Media Channel 145-154 represent 11 digital
inputs on the card, so by scanning one channel in the group,
a status can be obtained for the entire group. If the
result of the status is non-zero a key press can be
detected. The Media Channel number can then be calculated
by adding the location of the TRUE bit in the input card

status to 145 which represents the first media channel on
the card.

A similar method is used for detecting the inputs on
the Fleeting cards. Fleeting cards are organised in groups
of 8 inputs. The corresponding Media Channels are 161 to

375

185. Similarly the inputs are scanned in such a manner that
only one card status is obtained from the Media Plant
interface. This is important when addressing the Fleeting
inputs since the entire group of 8 inputs on a card is
automatically reset whenever any channel on the card is
read. By identifying non-zero status words indicating a key
press, the bit location of the TRUE bit is added to the
Media channel number of the first input on the card to
establish the Media input channel number activated. There
is a major difference in the way that the two types of Media
inputs respond, this effecting the key operations. Key
connected to Digital fleeting (DIF) Media Channels give only
one output for each key process. Keys connected to Digital
Maintained (DIM) Media Channels remain "on"™ as long as the .-
key is pressed. This difference makes some of the key
function codes available unsuitable for DIF keys.

All the above input information is obtained wvia the
Media Driver Module. Details of the protocol for
communicating with the Media Driver Module are described in
the Media Driver Documentation.

E.8.7.3 Check In Queue

The Check In Queue Section is executed after each scan
of the operator keyboard keys. A check is made to see if an
addition has been made to the keyboard driver modules input
queue., If so the input queue is serviced once. Only one
incoming message is retrieved from the input queue and sent
to the Key Function Section., Any further gueue entries are
processed after the next keyboard scan. The input queue
messages are used to generate Kkeyboard functions such as
turning key backlight lamps on and off, etc. Message texts
are interpreted as if they are key codes and operators. Key
functions codes obtained via the module's input queue are
not maskable. Execution of the text if valid is immediate.

376

The content of the input messages must be in accordance
with the key function codes and operators as discussed in
the Function Section. The procedures for servicing software
module input queues is discussed in the Queue Manager
documentation,

E.8.7.4 Poll Lapse

The Poll Lapse section in effect sets the keyboard scan
rate. After each key scan procedure the driver suspends
operations for 100 mS before starting again. This brief
pause also allows lower priority jobs to be allocated
pﬁocessor time.. The suspension time does not reflect the
exact scan rate due to the unknown amount of time allocated
to higher priority jobs.

E.8.7.5 Which Key

Having established that a key has been pressed, this
section translates the Media Channel number of the key input
into a Key number used by the driver to identify the -
"location of key function codes, etc. The Key numbers (K)
are 1 to 40 and are assigned as described in section 8.0.
The translation of Médig Channel numbers to Key numbers
improves the flexibility of the system for use in other
hardware confiqurations and also optimises the amount of
array area required for look up tables.

E.8.7.6 Key Contiol

The Key Control section supervises the action taken
when a key press has been detected. Firstly, the program
calls the CK Mask Subrutine to determine whether or not the
key mask shows that the key is enabled. The result of the
subroutine is in ?M which is True of the key is disabled.

The key control will sound a brief tone burst from the
operator keyboard's audible output device to indicate that
the key pressed is no masked. No further key functions are
performed and the program control is returned to the Scan
Keys section if the key is masked. Finding the key enabled
the Key Control sends program control to the Function
subroutine described later., After completion of the

Function subroutine Key Control returns program control to
the Scan Keys section.

E.8.7.7 CheCk MaSk

This subroutine returns the variable ?M which is True
if the key number K is disabled as indicated by the mask
array ?M(). The mask is set or reset with Key function
codes as described later.

E.8.7.8 Function

Key functions are executed by Function Section., Key
Function codes are located by the routine and used to select
predefined key function operations. A global string array

"$F#(40) = 20 contains user defined key codes'and operations

to build up key operation sequences. The array elements are
identified by the Key number K. Each individual key can
thus be defined to initiate the execution of any number of
key function operations. The key code is used in
conjunction with an operator. The key code identifies the
type of operation and the operator provides additional
information required. The key codes and operators are
strung together to from a sequential execution of
operations. When all operations are completed the Function
Section returns program control to Key Control.

A list ot the key codes and operations currently
available are presented below.

378

L

Code & Operator

Function

00

0l

02

03

04

05

06

07

nn

nn

nn

00

££

qq

NOP

MASK

UNMASK

ON

OFF

BEEP

CLEAR

Description

No operation is performed.

Disable the key represented
by the key number nn.

Enable the key represented
by the key number nn.

Turn on the digital out
represented by the Media
Channel Number nn.

Turn off the digital out
represented by the Media
Channel Nunber nn.

Sound the keyboard audible
output device for a short
burst.

Clear function with the
following parameters:

££=01 Clear key input mask {enable all keys)
f£f=02 Clear all keyboard digital outputs
f£=03 Clear all (mask and digital outputs)

SEND TEXT
qg=01 CR
qa=02 ESC
gg=03 None

Send the text contained in
Key Text Array $T#(K) to the
output queue., qq defines
the termination character.

379

qq=04 Buffer key text

qq=05 Send and Clear Buffer with CR

qq=06 Send and Clear Buffer with ESC

qq=07 Send and Clear Buffer, no termination
qq=08 Delete last char in buffer

08 nn HOLD ON
09 nn TOGGLE
10 ff SP FUNC

This operation suitable only
for DIM type inputs, -
suspends further key
function operations while
the key is pressed. Hold on
also turns the keyboard
Media digital output number
nn on until the key is
released.

If the keyboard Media
digital output number nn is
already ON, the digital
output is turned off, If
the digital output is OFF
then the output is turned
on. :

This operation selects via
ff a variety of special
functions specific to the
prototype system. These
functions enable the
keyboard to respond
correctly when interfacing
with the PCP process control
language OCP task.

The key function codes ana operators are stored in $P#(K)
from left to right representing the order in which the

380

functions are to be performed. Both the Text and Function
array currently have a maximum of 20 characters available.
Key message text is stored in $7#(K). The following
examples illustrate the operations.

Example 1 : Key number K = 14 is pressed
$F#(14) = "035501140704"
$T#(14) = "Hello"

The key operations are executed from left to right.
0355 Turn on a Media Channel number 55

0114 Mask (disable) key 14
0704 Send "Hello" to the software device with input queue

number 04
Example 2 : Key number K = 10 is pressed
$F#(10) = "035008550450" o
T(10) = * -

0350 Turn On Media Output Channel number 50.

0855 Turn on Media Output Channel 35 and hold until
key is released. Key number must represent a
DIM type input. When key is released turn off
55.

0450 Turn off Media Output Channel number 50.

Key message texts are stored in $T#(40) = 20 by key
number K. The contents of each element forms the message
text plus a header., The header is used to identify the)
software device input queue for which the message is
intended. A typical message text would be "10THREE". For
more details on the queue communication system see the queue
manager documentation.

381

K = the corresponding key number
$T#(K) = "01THIS IS A TEST"

If the key function code 0701 has been specified in $F#(K)
the text THIS IS A TEST will be placed in a input queue of
the software module or device which has been allocated input
queue No 01. The operator in the following function code
indicated the type of terminating character to be added to
the end of the text. oo

01 = CR ASCIT 13
02 Esc ASCII 27
03 No TERMINATING character

|

The above function codes are for single text messages.
Additional codes are available to string or buffer text
strings together before the message is sent into the gqueue.

04 = Buffer key text.

05 = Send to out queue with CR at end and clear.

06 = Send to out queue with ESC at end and clear.

07 = Send to out queue with no termination-char, clear.

08 = Delete one character from the end of the buffer.

The leading characters in the key text describing the
destination queue remains the same as previously discussed..
When a buffer is built the header is taken from the first
key text to be loaded into the buffer. Subsequent entries
to the buffer are stripped of their headers before insertion
into the buffer, Once the buffer is complete a key such as
ENTER can be programmed with the fucntion 05, 06, or 07 to
send buffer with the termination character as defined by the
subfunction number. The buffer is also cleared. A key such
as ERASE may be programmed with function code 08 to delete
the last character in the buffer,

382

A string of key texts may be built and sent as follows:

Key Key Text Key Function
1l "011i"™ 0704

2 012" 0704

3 013" 0704

ENTER - 0705

-

The buffer text will read "01123CR".

These termination characters are required by some

driver module output queue ready for receiving by the queue - .

manager. Details of the generation of the output queue and
other queue communication functions is discussed in the
Queue Manager Documentation.

E.8.7.9 Queue

The Keyboard Driver incorporates both an IN and OUT

_,Queue., The Queue assignments are OUT 1 and IN 6. The .

queues software is identical to calling job queue software
as described in the Queue Manager Documentation.: -

383

E.8.8 SPECIAL OPERATOR KEYBOARD KEY ASSIGNMENTS

Key No. Media Channel Key Text

¢

1 145 ACCEPT ALARM
2 146 PROCESS ALARM
3 147 COMPUTER FAIL
4 148 TEST LAMPS
5 149 START/YES
6 150 FUT HOLD -
7 151 OPEN/THRU
8 152 CLOSE/DIVERT
9 153 HOLD
10 154 STOR
) 155
156
157
158
159
160
11 161 TIME
12 162 DISPLAY
13 163 - LOOP
14 . 164 SEQUENCES.
15 165 PLAD
16 166 REJECT
17 167 EXECUTE
18 . 168 CHANGE
19 169 SPEC CHANGE
20 170 7
21 171 8
22 172 9
23 . 173 4
24 174 5
25 175 6
26 176 M

384

27 177

28 178
29 179
30 180
31 181
32 182
33 183
34 184
35 185
36 186
37 187
38 188
39 189

Status no.

47
48
49
50
51
52
53
54
55
56
57
58
59
60

W o O B b W N =

=
R =Y

O H O W N W0

R -
~SPARE-
ERASE
ENTER .

Digital outputs

HIGHLAND ACCEPT
HIGHLAND TEST LAMPS

TIME INDICATOR

DISPLAY INDICATOR

LOOP INDICATOR
SEQUENCES INDICATOR
PLAD INDICATOR

REJECT INDICATOR
ACCEPT ALARM INDICATOR
PROCESS ALARM INDICATOR
TEST LAMPS INDICATOR
EXECUTE INDICATOR
AUDIO OUTPUT RATE
AUDIO OUTPUT PITCH

385

E.9.0 MEDIA DRIVER MODULE

E.9.1 INTRODUCTION

The SWEPSPEED II Media Driver Module is used to send or
retrieve data from the Alarm Handling Media Plant Interface
hardware. The driver, written in SWEPSPEED II, allows the
user to confidently communicate with the Media system
through the use of normalised data transfer protocol. Since
the Media is accessed through the PDP 11/03 memory
addresses, use of the module prevents system failures caused
by improper accessing. Media I/0 .Devices have differing
forms of computer inputs and/or outputs which require
substantial bitwise data manipulation. The driver module
performs all necessary calculations yielding uniform
normalised values, Error detection intercepts most user
protocol and overflow errors and generates console error
messages. The reader should be familiar with SWEPSPEED II
before proceeding. A description of the SWEPSPEED II system
can be found in the SWEPSPEED II User's Guide. The purpose
of this document is to describe operation and use of the
SWEPSPEED II Media Driver Module.

E.9.2 OPERATION SUMMARY

This section describes in brief the use of the Media
Driver Module. More details are given in the subsequent
sections. The Media Driver Module is used as follows:

l. The Media Driver software must be loaded into a
SWEPSPEED job slot. This job slot must be

assigned a higher priority than any job the driver
services.

2. There are 5 bidirectional communication links with

3.

4.,

5.

6.

the driver comprised of reserved global array
variables. The subscripts identify the
communication link number (n = 1 to 5).

When writing to the driver a job must load data,
if any, into the appropriate global variable
$V#(n), V#(n), and ?V#(n). The Media I/0 Device
channel number (refer to Appendix) is loaded into
C#(n) last. '

The calling job must start the driver using job
interaction statements and then wait until C#(n)
is 0 or less.

When using the driver to read data the calling job
can read data, if any from the appropriate global
transfer variable sV#(n), V#(n), and ?V#(n), If
C#(n) = 0 the transfer is OK. If C#(n) is less
than 0 an error has occurred.

?F1%# is TRUE when the driver is running.

387

E.9.3 COMMUNICATION STRUCTURE AND PROTOCOL

Data transfer to and from the module is accomplished
through reserved global transfer variables as follows:

[2F13le

Channel 1 C#(1) sV#(1) vE(l) 7z2v#(l)

Channel 2 C#(2) sVE(2) vVvE(2) 2v#(2) b

MEDIA DRIVER

Channel 3 | C#(3) sVv#(3) V#(3) ?2v#(3)

JOB MODULE
Channel 4 Cé(4) svi(4) vVvE(4) 2vE(4)
Channel 5§ C#(5) sVE(5) VE(5) 72VE(5)
" Reserved Global Variables Job

There are five communication data links available.
Each link contains space for a Media I/0 Channel Number, a
real variable, an integer variable, and a logical variable.
The variables used for this data transfer are reserved for
Media Driver use, that is, when the Media Driver module is
installed in the system care must be taken not to use the
sane global variables for other purposes.

The reserved global variables are:

?F1#§ -~ Media Busy Flag [True or Falsel
C#(n) = Media I/0 Channel Number array
$VE(n) - Real Variable array normalised [0.0 to 1.0]

388

V#{n) - 1Integer Variable array [-32767 to +32767]

" 2VE (n) - Logical Variable array [True or Falsel

The individual communication links are necessary in a
real-time multi-tasking environment to avoid collision or
corruption of data as several tasks compete for the same
global wvariables.

Each SWEPSPEED job that requires Media I/O data is
assigned its own communication link 1 through 5. It is
important that not more than one job uses a communication
link. Communication through the link is bidirectional so
that a single link is used for both output and input data.
The generalised communication procedure is as follows:

1) The job requiring communication places any output
data (if there is any) in the three array variables %V#(n),
VE#(n), and ?V#(n) where 'n' is the job's communication link
number 1 to 5. Which variables, if any, need to be assigned
depends upon the Media I/0 device as shown in Section E.8.0.

2) The job now places the Media I/0 channel number,
also see Section E.8.0, in the array variable C#(n), where
'n' is the job's communication link number 1 to 5.

3) The job must now start the Media Driver with the
interjob instruction START,

4) The job must now test the value of C#(n). If C#(n)
is 0, the communication is complete and the appropriate data
is located in the three array variables %V#(n), V#(n), and
?V#{n) as specified in Section E.8.0. If C#(n) < 0 then an
error has occured and the data transfer is not valid. The
error codes are as follows:

389

C# (n)

-1 -= invalid Media Channel Number

Ct (n)

-2 == analogue overflow

E.9.4 JOB PRIORITY

The Media Driver must be assigned a job priority higher
than any job that uses the module for effective operation.
This is necessary to insure that the driver is not
interrupted by a job which may change a global transfer
variable at a critical moment. Since a variable is
comprised of more than one byte of information, job
interruptions between byte transfers could lead to erroneous
data if several jobs were trying to access a global transfer
variable.

E.9.5 DRIVER - JOB HANDSHAKING

The Media Driver can not detect when a data transfer is
required so therefore the job module requiring communication
must start the driver with a START instruction. 1In the same
manner, the calling job cannot detect when the Media Driver
is finished, so the calling job must test the value of C#(n)
as previously described. WARNING: Any attempt to use the
Media Driver Module with no power on the Media I/0 hardware
will result in a fatal software error. i.e., SWEPSPEED will
crash.

E.9.6 COMMUNICATION LINK PRIORITY

The Media Driver scans the C#(n) array to determine
which communication links require servicing. When a Media
Channel Number is detected the driver assumes that service
is required. This array is scanned in the order 1 to 5, so
lower numbered communcation links have higher priority. It

is important that when the communication link is loaded that
the Media Channel number C#(n) is loaded last to prevent
data collision.

E.9.7 ERRORS)

As previously mentioned the drive can detect most
errors which can cause system failure. An error code is
placed in C#(n) in response to a data transfer request which
causes an error. All error codes are less than 0. When an
error does occur a message is also displayed on the console
which gives an indication of the type of error generated.
The module can not detect the absence of power on the Media
I/0 hardware. If the module is used in this case SWEPSPEED
will crash.

Error Code Console Message Description
-1 NON-EXISTENT MEDIA I/0O ERROR Improper channel no.
-2 MEDIA ERROR AO = XXX.XXX Overflow on output

calls. &V#{(n) must
be 0.0 to 1.0.

E.9.8 MEDIA I/0O DEVICE DATA

In this section the input and output information
associated with specific Media 1/0 Devices is discussed.
Note that all real variable data must be normalised 0.0 to
1.0. See appendix for nomenclature explanations. -

E.9.8.1 AOV's and AOI's - Analogue Outputs

Vi (n) Write Only - Load normalised output data 0.0

VE(n)
2Vé (n)
E.9.8.2 AI

$V#(n)

V# (n)

2V (n)
E.9.8.3 DO

$V# (n)

VE(n)

VE# (n)
E.2.8.4 DIM
EVi#(n)

Vv (n)

to 1.0 where 0.0 = 0% and 1.0 = 100% output
range.

Not Used
Not Used
Analogue Inputs
Read Only - Contains normalised input from
analogue input where 0.0 = 0% and 1.0 = 100%
of input range.
Not Used
Not Used
Digital Outputs
Not Used
Read Only - Contains integer representation
of the current status of the entire digital
output group in which the channel number
addressed resides. The least significant
(LS) bit is the LS output of the group of 16
where a 1 bit = TRUE.
Write Only - Load TRUE for output 'ON'
Digital Inputs Maintained
Not Used
Read Only - Contains integer representation

of the current status of the entire digital

392

Ve (n)
E.9.8.5 DIF
$VE(n)

V#(n)

1

2VE#(n)

E.Q.B.G WD -
Vi (n)

V#(n)

?VE(n)

input group in which the channel number
resides, The LS bit is the LS input of the
group of 16 where a 1 bit = TRUE.

Read Only - Contains TRUE for input 'ON'

- Digital Inputs Fleeting

Not used

Read Only - Contains an integer
representation of the current status of the
entire digital input group in which the
channel number resides. The LS bit is the LS
input of the group of 8 where a 1 bit = TRUE,
WARNING: Whenever a fleeting input card is
addressed, the entire group of 8 is reset to
FALSE.

Read Only - Contains TRUE for input 'ON'.
WARNING: Whenever a fleeting input card is
accessed the entire group of 8 is reset to
FALSE.

System Monitor Watch Dog

Not Used

Read Only - Contains an integer
representation of the watch dog status word.

See Watch Dog documentation.

Read Only - Contains TRUE for system OK.

383

E.9.9 SAMPLE PROGRAMS

Job 2 = User's job assigned to communication link 3.

Job 10 = Media Driver Module

E.9.9.1 Analogue Output Example

User's Job 2

50 $VE(3)=0.5

60 C#(3)=12

70 START10

80 IFC#(3)>0GOTO70

90 IFC#(3)=-1GO0TOxx
100 IFC#(3)=-2GOTOxx

-

-

$V# contains the normalised output
set Media channel 12
start driver

if error detection required

E.9.9.2 Digital Output Example

Usert's Job 2

40
50
60
70
80
90

?V#(3)=TRUE

C# (3) =26

START10

IFC# (3)>0GOT060

IFC#(3) =-1GOTOxx
IFC# (3) =—2GOTOxx

160 T=V#(3)

?V# contains the output status
set Media channel 26

start driver

if error detection required

optional read of group status

E.%.9.3 BAnalogue Input Example

394

User's Job 2

70 C#(3)=109

80 START10

90 IFC#(3)>0GOT080
100 ¥T=%Vi(3)

110 IFC#(3)=-1GOTOxx
120 IFPC#(3)=-2GOTOxx

-

set Media channel 109
start driver ’

transfer data
optional error detection

-

E.9.9.4 Digital Input Example

User's Job 2

80 C#(3)=167

90 START10

100 IFC#(3)>0GOTO90
110 ?T=2V#(3)

120 T=v#(3)

130 IFC#(3)=-1GOTOxx
140 IFC#(3)=-2GOTOxx

set Media channel 167
start driver

transfer status

optional group value reading
optional error detection

395

E.9.10.0 SOFTWARE DESCRIPTION

The Media Driver Module is comprised of software
routines specifically developed for dealing with the Media
Plant Interface hardware. The plant interface consists of a
variety of different types of interface cards. Each type of
interface card requires a software routine to code or decode
information to or from the cards. The Media Driver Module
recognizes which type of interface card is being addressed
and subsequently selects the appropriate software routine.
Routine selection is based on the channel number requested
by the calling job.

E.9.10.1 Setup

The Setup section of the Media Driver Module contains
all variable initialisation.

E.9.10.2 Communications

The module communicated with other program tasks via
software links as described previously. When the Media
Driver is started by a calling job, the program scans all
communication links to see if a service request has been
entered. This is accomplished by scanning the channel
number array C#(N), where N is the Media link number., If
the value of C#(N) is greater than zero, a request is noted.
The values of the global transfer variables are inserted
into local variables. Program control is temporarily
transferred to the Channel Select section for further
processing of the I/0 request. When the I/0 request has
been serviced program control returns to the communication
section. Local program variables containing Media data are
inserted into the corresponding global transfer variables.
The channel number global variable C#(N) is then set to zero
or less., The calling job can detect that the Media

396

servicing is complete by noting the change in C#(N). Error
detection is performed in the I/0 servic routines. If an
error has occurred, C#(N) will be less than zero. The value
is the error code number.

Each link is checked in the same manner and sent off
for further processing if necessary. When the scan of the
links is conmplete, the driver is stopped unless a link had
made a request. In this case the procedure begins again
until no requests are found on a scan of the Media software
links.

The global transfer variables which make up the links
are comprised of many different variable types. As a result
it is important that the Media Driver job priority is higher
than any calling job's priority. Also by convention the
global transfer variable C#() is always the last variable to
be processed. These steps insure that the transfer variable
3V#(0 is not corrupted. A read or write to a real variable
requires a two byte transfer. Programs of differing
priority may collide by trying to access a real global
_variable 'at the same time’.

E.9.10.3 Channel Selection

Having found a service request in the Communication
section, the channel selection section branches program
control to the appropriate input/output routine for the
channel requested. The user must ensure that Media channel
numbers do indeed allow the program to branch to the correct
subroutine for a specific hardware configuration. In the
prototype alarm handling system channel asssignments have
been based on the configuration of the Media interface
hardware. Channel numbers are assigned consecutively form 1
which represents the first available I/0 port at the lowest
available Media memory address of 160000 octal. Refer to

397

Table E.9-2.

The channel number is retrieved from the transfer
variable C#(N). The link number N has been established by
the Communication section. Program control is passed on to
the appropriate subroutine.

An error can be generated by this routine when a non-
existent Media channel number is requested. The error code
is -1. No branching to a service subroutine occurs when a
none existent channel number error is encountered. Program
control returns to the Communication section.

E.9.10.4 Service Routines

Each Media interface card requires special software
routines. Media cards are electrically located in the
computer in the I/0 page of memory. The exact location is
selected by the user such that the Media interface does not
conflict with any addresses used for other computer
interfaces. The addresses selected for the prototype alarm
handling system start at 160000 octal and continue upwards.
To read or write data to the Media interface cards the
program must perform a memory read or write command.
Following are decriptions of the software service routines
available., Refer to the flow charts and listing for more
detaals.

E.9.10.4.1 AI Routine

There are two types of analogue input interface cards
used in the prototype alarm handling system, individually
accessed and multiplexed analogue inputs. Multiplexed
inputs use a single analogue input card and an attached
multiplexer card which selects one of up to 16 different
input lines to be connected to the analogue card. Accessing

398

inputs therefore requires an input line selection 1 to 16 on
the multiplexer, a wait until the analogue card settles, and
then read the data from the analogue card. Based upon the
Media Driver channel number the program service routine
calculates the appropriate multiplexer and multiplexer line
to be used. The multiplexer is notified. Then the routine
waits for the 50 microsecond settling time of the analogue
card and reads the input data.

Individually accessed analogue cards do not require
settling time so that the data can be read immediately.
This methos allows the fastest form of analogue input with
the unfortunate difficulty of having to provide a separate
card for each analogue variable to be measured.

The Media analogue input cards have a 10 bit
resolution. When reading the card these 10 bits are located
in the most significant bits of the 16 bit memory word
corresponding to the analogue input card. The unused bits
are set to 1 by the card. The service routine calculates
the normalized value €.0 to 1.0 as a proportion of the bit
pattern obtained from the analogue card.

No errors are generated by this routine,
E.9.10.4.2 AOV & AI Routines

Analogue output cards are available with either voltage
or current outputs. AOV are voltage outputs while AOI are
current types. Both cards are dealt with in the same
manner, The Media interfaces require a 10 bit pattern. The
bit pattern is comprised of the most significant bits of the
16 bit word located in the memory location at which the
interface card resides. The analogue ocutput routine
converts the normalized output value %V into a proportion of
the output represented by the octal values 0 to 1777. The

399

memory location of the output cards is calculated and the
output value is transferred to the address. Program control
is returned to the Communication section with the local
variables set to zero. In the event that the normalized
variable 8V is out of the range 0.0 to 1.0, an error -2 is
generated and no service is perforﬁed. '

E.9.10.4.3 DIF Routine

Fleeting digital input card are unique in that once the
card is read the card resets all inputs to read 0. There
are 8 inputs on each card. The condition of the inputs is
represented by al for true in the most significant 8 bits
of the 16 bit word representing the card. The remainder of
the bits are set to 1. The service routine calculates the
input card to be read based upon the channel number
requesetd. The card is read and, for convenience, the top 8
bits are placed in the least significant bits of the integer
transfer variable V# resulting in an integer representation
of the inputs on the entire card or group. The channel
number requested is used to calculate which bit in the 8 bit
pattern is to be returned in the logic transfer variable ?V.
In this way both a group representation can be retrieved
along with an individual channel status.)

No errors are generated by this routine,
E.9.10.4.4 DIM Routine

Maintained digital input cards have 16 input channels.
Unlike the fleeting card types, these input cards are not
reset when read. The service routine calculates in which
group of 16 the Media channel number requested is located
and the appropriate card is read. Data retrieved is in
negative logic, i.e., 0 = true. The program converts the
values into positive logic. Since the cards have 16 inputs,

400

all inputs are read simultaneously and the 16 bit pattern is
placed in the integer transfer variable V. The bit location
of the individual channel requested is calculated, and the
value is placed in the logic transfer variable 2V.

No errors are generated by this service routine.
E.9.10.4.5 DO Routine

Digital output cards used in-the prototype system are
16 way open collector types. The 16 bit pattern sent to
these cards is translated into ON for a l. 8Since individual
bits within the pattern can not be addressed separately, the
service routine stores the current status of the outputs in
a digital output store array A(0). Each word (2 bytes) in
the array represent the output for a digital output card.
When output requests are serviced, the individual bit
location is calculated and inserted in the output store
array. The array elements are then written to the digital
output cards.

No errors are generated by this service routine,
E.9.10.4.6 WD Routine

The watchdog service routine writes a special bit
pattern to the Media System Monitor card. No error messages

are generated by this routine. More details concerning the
watchdog card are described in the watchdog documentation.

401

TABLE E.9-1 - MEDIA I/0 DEVICE NOMENCLATURE

Al
ACI
AQV
DIF
DIM
DO
WD

Analogue Input

Analogue Output Current Type

Analogue Output Voltage Type

Digital Inputs with Fleeting Contacts
Digital Inputs with Maintained Contacts
Digital Outputs

Watch Dog System Monitor

-

Table E.9-2 I/0 Device Channel Allocation

I/0 Device Ch. No.
AOV1 0-10V AN OUT 1
AOV2 2
AOV3 3
AOV4 4
AOV5 5
AOV6 6
AOV7 7
AOVS 8
AOV9 9
AOV10 10
AOV11 11
AOV12 12
AOVL3 0-10V AN OUT 13
AOI1 0-10MA AN OUT 14
AOI2 0-10MA AN OUT 15
WD WATCH DOG 16
DOl DIG OUT OPEN COLLECTOR 17
DO2 18
DO3 « 19
DO4 L 20
DO5 21
DO6 22
DO7 23
Do8 24
D09 25 ‘
D010 26
DO11 27
pO12 28
DO13 29
DO14 30
DO15 DIG GUT OPCL COLLECTOR 31

DO16
D017
DOl18
D019
D020
DO21
DO22
D023
D024
DO25
DO26
D027
D028
D029
D030
D031
D032
D033
D034
DO35
D036
D037
D038
DO3S
D040
DO41
D042
D043
D044
D045
D046
D047
D048
D049
D050
D051

DIG OQUT OPEN COLLECTOR

DIG OUT OPEN COLLECTOR

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

D052 DIG OUT OPEN COLLECTOR 68

D053 69
DO54 70
D055 71
DO56 72
DO57 73
D058 74
DO59 75
DO60 76
DO61 77
D062 78
D063 79
DO64 DIG OUT OPEN COLLECTOR 80
RESERVED 81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

RESERVED 96

ATl 0-5V AN IN 97
AI2 98
AI3 99
AI4 100
AIS 101
AI6 102
AI7 0-5V AN IN 103

405

AIS

AI9

AILO
AIll
AI12
AIl3
AIl4
AIlS
AIl6
AIl7
AIl8
AIl9
AI20
AI21
AI22
AI23
AI24
AI25
AI26
AI27
AIZ28
AI29
AI30
AI3l
AI32

0-5V AN IN

0-20MA AN IN
0-20MA AN IN
0-10V AN IN

0-10V AN IN
0-5V AN 1IN

0-5V AN IN
RESERVED

RESERVED

406

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

AI33
DIM1
DIM2
DIM3
DIM4
DIM5
DIM6
DIM7
DIM8
DIMS
DIM1Q
DIM11
DIM12
DIM13
DIM14
DIM15
DIM16
DIF1
DIF2
DIF3
DIF4
DIF5
DIF6
DIF7
DIF8
DIF9
DIF10
DIF1l
DIFl2
DIF13
DIFl4
DIF15

RESERVED

RESERVED
0-5V AN IN
DIG IN MAINTAINED

DIG IN MAINTAINED
DIG IN FLEETING

DIG IN FLEETING

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
16l
162
163
164
165
166
167
168
169
170
171
172
173
174
175

DIF16
DIF17
DIF18
DIFl9
DIF20
DIF21
DIF22
DIF23
DIF24
DIF25
DIF26
DIF27
DIF28
DIF29
DIF30
DIF31
DIF32

DIG IN FLEETING

DIG IN FLEETING

408

176
177
178
179
180
181
182
183
184
185
186
187
188
189
150
191
192

Table E.9-2 Media Technical Information

C ezl

Pﬂ)&‘f VE Bfrv

2

ATl

Acdgo!
“s2z?/
ez
222¢ 7/
ANP29/!
2L
g a7/
21 @71
At PR

/@721
glrogd2/
272771
AOST 2/
20!

$57240V

|

13 A~ Our O~10V

T 11

v 13 v is e /)

o N

3 Y ¢ ¢ 7

| (872)

APV
AL
2407/

28D

N

&
— >~

i .
>

FLEETING

-t

ocolLiA

22209/

13 tv is 16 17

t focTy

Y e alh

[%]
la]
N
<

O Sv]lonr

m SR00NW

L

992N

1

%&\stﬂ

Y

L)

~5v

Stifooatin

/o

RS20/

I

10N

?

ASZT

Y

to-5|g ¢ [sT-

1fzool W

{

MUX|AT{MIALAL |,

w] o Svler|e

¢

memad la

1

gL
WPp7/

AAED2?
2AZTG/

Gh TN

q

by

I
¥ S 6

i

i

‘l l).f(‘ 0&'1‘"

Clhme fave it >
€0 A

-0l o

3

T

5790y

70
&

Media Layout

E.10.0 DATA ACQUISITION

E.10.1 INTRODUCTION

A principal characteristic of any device which requires
data from the surrounding environment is the data
agcuisition task. In the alarm handling system the data
acquisition task DA performs this function. The DA task
allows the system to obtain process data from any task
capable of generating such data having access to the gqueue
communication system. In addition, the DA task has a
software link with the Media Driver module. Directives are
sent in the form of data packets to appropriate tasks.

These commands initiate the acquisition of process data from
individual plant sensors. The operation of the DA task is
supervised by the DACON data acquisition controller task
which is described elsewhere. The order and frequency with
which the data points are sampled is determined by the
system definition as defined by the contents of the alarm
data base.

£.10.2 OPERATION SUMMARY

The DA task is a core alarm handling system task.
System tasks are not accessible to the user in normal
operation and therefore the functioning of the DA task does
not require user intervention.

E.10.3 SOFTWARE DESCRIPTION

-

E.10.3.1 Setup

The DA task requires program support from the Media
Driver, the Q Manager, and the Event Processor. The job

410

slot locations of these support tasks are assigned here,

E.10.3.2 Run

The program cohtrol section of DA coordinates the
subroutine selection in the task. The software selects the
locations in the alarm data base which correspond to the
variable descriptions of the various process variables to be
measured. Each variable description takes the same amount
of space in the alarm data base. The DA tasks steps through
the sets of data which are organised according to priority
and scan group. Starting with the first variable
description the DA task continues to step through the
descriptions up to the limit set by the Data Acquisition
Controller task.

Each variable description is examined and a process
data request is sent to the appropriate 1/0 device. When
the data is retrieved, the software examines the data type
and calls up the appropriate subroutine to deal with the
. data. When complete the next variable description in the
alarm data base is processed and so on.

When all variables are completed, the program looks to
see if a significant change has occurred in any measured
variable. If so the event processor is started.

With all data acquisition functions completed, the
program stops. It will be started by DACON when the next

data scan time period has elapsed.

Refer to the SETUP task documentation for the
descriptions of the Data Acquisition storage arrays.

411

E.11.0 DATA ACQUISITION CONTROLLER

E.11.1 INTRODUCTION AND DESCRIPTICN

The purpose of the Data Acquisition Controller (DACON)
task is to supervise the operation of the Data Acquisition
task. Process variables can be scanned at various rates
with the maximum scan rate of 1 second. The alarm data base
contains variable definitions describing where and how to
obtain process data represented by these descriptions.

These variable descriptions are ordered sequentially in the
alarm data base according to scan rate and priority within
each scan rate group. Each time the Data Acquisition task
is executed the program starts at the beginning of the
variable description list, i.e., the process variable with
the highest scan rate and priority. After obtaining process
data for this variable the task steps to the next variable
definition and so on. The DACON task sets the upper limit
to which the Data Acquisition task will step through the
alarm data base variable definitions. The upper limit is
set according to the scan group to be executed. For

_ example, at one second intervals the maximum limit is set to
the top or end of the one second scan group. Every five
seconds the limit is set to the top of the five second scan
group so that both the one second and the five second group
are scanned during the data acquisition. The process
continues for the remainder of the scan groups. The DACON
task then resets this top limit to the appropriate level
based upon the current real time. Once the limit is set the
Data Acquisition task is started. Error messages are issued
in the event that the Data Acquisition task has not
completed a data scan during a one second interval.

The DACON task is started by the COMAH alarm handling

command task. The command task also suspends the operation
of DACON during some alarm handling systems functions.

412

E.1l1.2 SOFTWARE DESCRIPTION

The DACON task is a small supervision task. The
operation of the software should be readily understcod by
examining the flow charts and program listings. Described
here is a summary of the software functions.

E.11.2.1 Setup -

The Setup section of the program contains the usual
variable assignments relating to the job slot positions of
supporting taskg. In’'this case the variable D is used for
the job slot location of the Data Acquisition task.

E.11l.2.2 Run

The program periodically checks the current real time
clock values, Depending upon the timg, the variable PC# is
set to the maximum alarm data base variable definition to
_which the Data Acquisition task should scan. Once the scan
group is determined based upon the cuurent real time, the
maximum address (PO%#) to be used in the Data Acquisition
task is calculated. The value of P0# is dependent upon the
number of variable definitions is each scan group.
Information regarding the number of variable definitions in
each scan group is obtained from the alarm data base header.
See alarm data base documentation for further details.
Additionally the DACON task will check the operation of the
Data Acquisition task to ensure that the scanning is being
completed within a one second scan interval.

413

E.12,0 EVENT PROCESSOR

E.12,1 INTRODUCTION

The event processor is one of the core alarm handling
tasks. This task establishes a binary event status image
representing the current mode of operation of the process
plant. Using event definitions contained in the alarm data
base, individual data acquisition units are converted intec a
true/false event status. The event definitions describe all
conditions in which a particular data acquisition unit is to
be considered as indicative of an event occuring on the
plant. A wide variety of event types are available to suit
most needs such as analogue, binary, or contact type data.
In the present version of the alarm handling system, there
is a one to one correspondence of events to data acquisition
units. It is exspected that further additions such as
derived events using multiple combinations of events and
time related events can be added. The event processor
software includes the provisions for such improvements.

E.12.2 “OPERATION SUMMARY

The operation of the event processor is automatic and
generally transparent to the operator. The event processor
is started by the DA task whenever a significant change is
noted in a data acquisition unit. Once started the event
processor steps through event definitions as described in
the alarm data base. Event definitions establish the
measured variable data type and the variable event true
band. The current value of the data acguisition units is
compared with the event limits and pervious plant data. The
processor then decides if an event has occurred. The event
status image in E#{} is’updated as necessary and the alarm

generator is notified of the change.

E.12.3 SOFTWARE DESCRIPTION

The event processor task is relatively short however
the functions in the task have been condensed, obscuring
their operation.

E012¢3 .1 Setup =

The setup section assigns the alarm generator slot
number, sets the busy flag, and defines the hysteresis truth
table.

E.12.3.2 Find Change

When the processor is started by the DA task, the
program tests the data change flag ?D# to see if there have
been significant changes in the data acquisition data store.
If so the D1#(0) array identifies which DA units have
changed indicated by a 1 bit in the array.

'E.12.3.3 Change

Once a change has been noted the program searches
sequentially through the event definitions to locate all
definitions cecntaining the DA unit in question. Using the
definition the event type is used to branch program control
to the appropriate event type subroutine. Here the values
of the DA unit are compared with event parameters to see if
an event has occurred. If a change in event status is noted
the event status image E#(0) is updated and the alarm
generator is started. Program control is returned to the
Find Change section to search for further significant
changes in DA units.

E.12.3.4 Hysteresis Sub

Analogue event detection requires a method for
detecting the relative change in process variables in order
to establish which parameter range limits are to be used to
evaluate the event. This is necessary since the hysteresis
feature requires the event processor to know how the
variable is changing. As described in the Off-Line User's
Guide the range band limits are defined by the parameters 1,
2, 3, and 4. These range parameters define 5 regions in
which the measured variable may be located.

4 REGION 5)
REGION 4 RANGE PARAMETERS
3.~ MARKING EVENT
MV REGION 3 LIMITS
“ 2
REGION 2 |
REGION |

Figure E.12.1 Using regions for hysteresis calculations

As variables make excursions from one region to another
the processor must select the range parameter to be used for
the event detection. There are 25 different transitions
that a variable can make from one region to another. From a
transition table, a truth table can be developed as follows:

Transition Region Does this represent Octal Truth

Number 01d New a true status Table

0 1 1 N 0

1 1 2 N 0 4

2 1 3 Y 1

3 1 4 Y 1

. 1 5 N 0 1

5 2 1 N ¢

6 2 2 Y/N -0 034614
7 2 3 Y 1 6

8 2 4 Y 1l

9 2 5 N 0

10 3 1 N 0 4
11 3 2 Y 1

12 3 3 Y 1

13 3 4 Y 1 3

14 3 5 N 0

15 4 1 N 0 0

16 4 2 Y 1

17 4 3 Y 1 3

18 4 4 Y/N 0

19 4 5 N C

20 5 1l N V] 4

21 5 2 Y 1

22 5 3 Y ¥ 000143
23 5 4 N 0 1

24 5 5 N 0

In the program the truth table is stored in bit form in
H(0), H(1)., The transition number 1s calculated as follows:

Transition = (014 -1)*5 + New - 1

417

The transition number is then used to determine if a change
has occurred in the event status image.

41¢

E.13.0 ALARM GENERATOR

E.13.1 INTRODUCTION

The alarm generator is one of the core alarm handling
system tasks. Event status images produced by the event
processor are examined by the alarm generator each time a
change occurs in the stauts image. Based upon enhanced
Boolean expressions stored in the alarm data base, the alarm
generator determines whether an individual alarm is now on
or off. The Boolean expressions are comprised of
combinations of events and Boolean operators stored in a
coded Reverse Polish Notation as compiled by the off-line
section of the alarm handling system. In the alarm data
base the alarm definitions are comprised of two coded
expressions one for the alarm ON condition and the other for
the alarm OFF condition. Depending on the current status of
a particular alarm, the alarm generator will examine the
appropriate condition expression to see 1f the current
status of an alarm should be changed.

E.13.2 OPERATION SUMMARY

The alarm generator operation is transparent to the
operator. 1It's operation is fully automatic as the task is
started by the event processor whenever a change in the
event status image is detected. Using the event status
image as input data the alarm generator evaluates alarm
definitions in the alarm data base sequentially. There are
no error messages generated by the alarm generator task.

E.13.3 SOFTWARE DESCRIPTION

The alarm generator software has been condensed into a
closely packed program to maximize the efficiency of the
program. The structure of the program is the same as others

419

in the alarm handling system, however several subroutines
exploit the condensed nature of the alarm data base. It may
be useful to examine the cff-line documentation for a better
understanding of the processing of the data base
information.

E.13.3.1 Setup

The DISPlay task is required as a supporting task. The
job slot location is assigned here.

E.13.3.2 Run

The Run section coordinates program control of the
task. Firstly the section locates the beginning of the
lists of alarm definitions in the alarm data base. The
total number of alarm definitions is placed in S. The
program next examines each alarm definition in the same
manner by locating the first three records in the
definition. These records represent 1) the alarm output
code, 2) persistancy (not presently used), and 3) the
length of the ON condition expression. The current status
of the alarm is next checked. The Run section calls either
the ON condition or OFF condition subroutine for processing
the coded Boolean expression in the alarm data base. When
the expression is processed and the alarm status image is
updated, the program halts.

E.13.3.3 Check for ON or OFF

Depending upon the routine called these subroutines
process the appropriate portion of the alarm data base
representing the coded Boolean expression required. These
expressions are coded in Reverse Polish Notation (RPN). The
program processes these expressions using an RPN stack .
defined as ?2S() with P as the stack pointer. Elements are

420

extracted from the Boolean expressions and temporarily
placed in R. If R is less than 0 then the program
recognises the element as a Boolean operator. Program
control branches to the Boolean processor routine and
performs the appropriate function on contents of the stack
?25{). If R is positive, then the program recognises the
element as an event status image position bit location
representing an individual event status. R is then inserted
into the next available location in the stack ?8(). Once
processing the Boolean expression., the result of the
expression, if the expression has been correctly coded, will
be at the top of the stack 2S(). Currently the stack size
is set at 25, i.e. DIM 2S(25). Program control is returned
to the Run section.

E.13.3.4 Check Result

This section checks the result of the Boolean
expression. The result is compared with the present status
of the alarm definition. If there has been a change in the
alarm condition, the result of the Boolean expression will
match the current alarm status. This is the case since when
the status of an alarm changes, the expression chosen to
evaluate its new status will represent the opposing
condition statement result,

If a change is found, the alarm status image is updated
and a message is sent to the DISPlay routine via the
'private software link' as described in the DISPlay task
document. The message is a combination of the display
function code either a 1 for OFF or 2 for ON and the alarm
output code as obtained from the data base alarm definition.

E.}4.0 DISPLAY TASK

E.l14.1 INTRODUCTION

The DISPlay task coordinates all operator display
functions generated by the alarm handling system. Display
coordination is necessary in order to ensure that tasks
within the alarm handling system which compete for the same
display device, do not generate conflicting data and produce
corrupted display information. In the prototype alarm
handling system, the DISPlay Task coordinates display
information for the VI-100 console terminal, the T-43
printer and display protocol for the Chromatics based
display package. The DISPlay task has full access to the
Alarm Handling System queue system thus allowing two way
communication with the majority of tasks within the system.
The DISPlay task also contains a communication task with the
Media Driver. Function codes in incoming message packets
are used to identify which output display device is to be
implemented.

E.14.2 OPERATION SUMMARY

Generally the operation of the DISPlay task is
transparent to the operation of the alarm handling system.
Described here is a brief outline of the major functions of
the DISPlay task. Further details of its operation are
given in subsequent sections. The DISPlay task performs the
following functions:

1) Suvpervises the communication links with the
Chromatics display computer.

2) Supervises output to the T-43 printer log.

422

3) Deals with alarm output messages as received from
the Alarm Generator.

4) Monitors gqueue system for output requests.
5) Coordinates all printed output to peripheral

devices,

E.14.3 COMMUNICATION STRUCTURE AND PROTOCQOL

The DISPlay task monitors three software communication
lines:

1) The Q via INQ.
2) The Alarm Generation task via private link.

3) The Chromatics link via a private link to the
Chromatics link task.

The protocol for all three links is the same, i.e. in
the form of data packets comprised of strings. Private
software link lines are used in some cases Eince the
communication is exclusive to the DISPlay task. The data
packets received by'the DISPlay task are processed in a
similar fashion as those in the Keyboard driver module,
Leading function codes in the string are used to select the
required display operation. The function code is a single
numeric character 1 to 6. Following this function code
operations the function operand. Depending on the function
code selected the operand may be output text on further
subfunction codes. The available display functions are as
follow:

FPunction Code Operation

423

Alarm OFF sends received alarm output
code to Chromatics and requests a Media
digital channel to be turned off.

Alarm ON sends received alarm output
code to Chromatics, requests a Media
digital channel to be turned on, and
keeps the Keyboard audible device.

VT~100 prints text to console terminal

CHROM send text to Chromatics display
computer,

T-43 send text to T-43 printer log.

Q send text to Q system.

Reserved for user specified functions.

Overlay LOAD task for transfer of alarm
data base from OFF-line system.

424

The received data packet has the feollowing format:

[;: FC TEXT
H Ve

DISPLAY Q TEXT OR OTHER COMMANDS
HEADER

FUNCTION
CODE

E.14.4 SUPPORT TASK PRIORITY ASSIGNMENTS

There are several priority and job slot conditions
which must be set for the DISPlay task to function
correctly. Firstly, the Chromatics link task CHROM must be
in job slot 13, The Q Manager and Media Driver modules must
be assigned a higher priority than the DISPlay task.

E.14.5 ERRORS

buring normal operaticn no errors should be
encountered. The program does not generate any of it's own
error messages. During the OFF~line transfer of the alarm
data base to the ON-line computer and during data base
editing, the DISPlay task will be overlayed. In the event
that the DISPlay task is not correctly overlayed back into
its job slot after such an operation, unusual errors will
occur. In this case enter the COMAH command task and re~-
execute the EDit mode which will make another attempt to
overlay the task.

E.14.6 SOFTWARE DESCRIPTION

Careful examination of the flowcharts and listings of
this task will help clarify the operation or tnis task.

Some explanation is required of the private communication
link lines.

E.14.6.1 Private Software Links

The private software links are used for the exclusive
communication between two jobs. The link is comprised of a
data packet swapping routine similar to that used in the
inter-computer link tasks. A unique global string variable
is used for the transfer of the data packet through the one-
way link. A unique global logical variable is used as the
service request and busy flag. The operation of the link is
as follows:

1) Sending job examines logical variable to see if
link is busy. If it is, wait until flag is cleared then
place data packet in global transfer variable and set busy
flag.

2) Receiving job routinely polls the link request/busy
flag. If set then a data packet is retrieved from the
global link variable and the request/busy flag is cleared.

In the DISPlay task global variable assignments are as
follows:

$N#, ?N& Link from Chromatics link task
$M#, 7M#& Link to Chromatics link task
$M1¥, ?2M1# Link from Alarm Generator task

E.14.6.2 Setup

The Setup section contains the usual job slot, link,
and queue assignments.

426

E.14.6.3 Run

The Run section's principal function is to scan all
incoming sources of data packets. These include the INQ
Chromatics link, and the alarm generator link. If a service
request is detected this sections transfers program control
to the Function Select section. Otherwise if no service
request is found the task stops.

E.14.6.4 Function Select

This section strips the leading function code from the
data packet and branches program control to the appropriate
subroutine. When complete the program control is returned
to the Run section.

The function subroutines are simple and require little
explanation. Subroutines retrieve the data as required from
the data packets. Canned routines for the Media Driver,
INQ, and OUTQ routines are used.

When an 'L' function code is encountered, the program
attempts to overla& the LOAD overlay task located on tape
storage over itself, When this occurs an 'X' is sent to the
Chromatics link task to shut down the link. If the
Chromatics link remains active during the data base
transfer, errors will occur.

427

E.15.0 OVERLAY TASKS

E.15.0 INTRODUCTION

Due to restricted memory space in the PDP 11/03
computer, two tasks LOAD and EDIT. are in overlay form.
This means that the tasks are stored on the tape drive
storage system until needed at which time the task is loaded
into a job slot. This is the DISPlay task job slot as well.
It is convenient to use this slot as the overlay slot since
by stopping the DISPlay task the alarm handling system
operation is suspended, not stopped, until the DISPlay task
is re-installed. Since the DISPlay task must be
reinstalled, there also exists an overlay file for the
DISPlay task on the same tape drive.

It is important to note that the overlay tape must be
properly inserted in the tape drive DDO: throughout the
duration of the use of either LOAD or EDIT. Also, if for
any reason the global variable table in the alarm handling
system is modified. the system manager must INSTALL the LOAD
the EDIT, and the DISPlay tasks. Refer to the SWEPSPEED
user's guide for further details on overlay Jjobs and job
slots. .

Described in this section are software descriptions of
the overlay tasks LOAD and EDIT. The DISPlay task although
existing as an overlay file as well is described in a
separate section.

E.15.2 EDIT

The EDIT task permits the user to make modifications to
the alarm data base when installed in the on-line computer.
The EDIT task is an overlay task called via a command ED in

428

the command task COMAH. When the EDIT task is called, the
alarm handling system is halted and the EDIT task is
overlayed from tape drive DDO: into job slot 2. Once in
edit mode the prompt > appears signifying that the system is
ready for edit commands. Modifying the alarm data base is
not recommended since any changes must be executed with a
full knowledge of the structure of the alarm data base and
its functions. Incorrect data entries will result in the
malfunctioning of the alarm handling system when restarted.
Major changes made to the alarm data base should be
performed in the off-line develpoment system.

E.15.2.1 Operation Summary

The EDIT task once evoked via COMAH exhibits the prompt
>« The following commands are then available:

P Send a copy of the current alarm data base to
TTl:, the T-43 printer.

L List the contents of the alarm data base to the
console,

R Replace an element in the alarm data base with a
new value.

I Insert a new element into the data base.
D Delete or remove an element from the alarm data
base. ’

X Exit the edit mode, re—install the deisplay task
in job slot 2, and return to the alarm handling
command task. ‘

Error messages occur during incorrect task overlays and when

A

429

the alarm data base needs to be resized., Refer to the on-
line user's gquide for a full explanation of the operation
and the effects of the various edit commands.

E.15.2.2 Software Description

The EDIT task is an overlay task located on the Alarm
Handling overlay tape. Being an overlay the task can only
be loaded into a pre-~selected job slot. 1In this case job
slot 2 is use for all overlay tasks. The DISPlay task which
is normally in job slot 2 is overwritten by the overlay.
Disruption of the DISPlay task in this manner insures that
the alarm handling system stops functioning while the
overlay task is being executed. Being an overlay file the
EDIT task can be loaded into the system by either an OVERLAY
statement or a system INSTALL utility.

The program is simple in operation and requires little
explanation. A monitor using a > prompt selects the
appropriate subroutine as defined by the user response. The
Setup section contains a definition of the legal inputs.

, The Run section selects the function subroutine. The
various subroutine functions are best explained by
examination of the program flowchart and listing.

F.15.0 LOAD

The LOAD task is an overlay task for use with the off-
line development software. During the operation of TRANSFER
in the off-line system, the Chromatics unit installs an
alarm data base in the PDP 11/03 on-line alarm handling
computer. The LOAD task when installed in the PDP 11/03,
forms the receiving module for the data transfer,
Communication protocol between the Chromatics off-line
system and the on-line system consists of a simple data

430

packet exchange routine. The LOAD task sends an ASCII text

string data packet in exchange for a data packet received

from the Chromatics. Data packets sent by LOAD contain

information concerning the status of the on-line system and i
also error information pertaining to the transfer of data. |
Refer to the off-line software document for additional

information regarding the function of this task.

E.1l5.3.1 Operation Summary

The LOAD task operation is fully automatic once the
task overlay has been installed by the DISPlay task. The
DISPlay task installs the LOAD task when it receives an 'L’
via the CHROM link task to TT2: serial line. The 'L' is
sent by the off-line portion of the alarm handling system
resident in the Chromatics computer when an alarm data base
transfer is to occur.

The LOAD task replaces the on-line functions in the PDP
11/03 of the CHROM link task. The link is maintained by the
LOAD task for transfer purposes. The task responses with
the correct code to execute data base transfer. If an error
is detected the program aborts and the normal on-line tasks
are re-installed and started.

E.15.3.2 Software Description

Little explanation is required for this task since the
program itself provides a good explanation. A few points
must be made.

The off-line program first tests to see if the LOAD
task is present by sending an 'L' at regular intervals until
the LOAD task give the correct coded response. Once the
link is established both program modules, the LOAD tasx ana
the off-line TRANSFER program, check to ensure that each

431

other is operational. With the link firmly established, the
off-line program sends the new alarm data base array size.
The LOAD task test this size to see if there is room. If
there is no room, no transfer takes place and the program
task is aborted., If all is well the data packet transfer
rate is increased and the alarm data base is overwritten
with incoming data. Any transfer error detected by either
transfer task will cause a negative value error code down
line. If this should occur, the process is aborted.

432

E.16.0 ALARM DISPLAY PACKAGE

E.16.1 INTRODUCTION

The Alarm Display Package is an independent hardware
/software system intended to complement the operation of the
prototype Alarm Handling System. Although the Alarm Display
Package does not perform any alarm information generation,
it does provide the primary means by which the alarm
handling system displays alarm information to the operator,
For prototype development, the software has been generalised
in such a manner that the end user can readily ‘add on'
plant specific display formats without the modification to
the display system's communication and data processing
structures.

The display package runs in an intelligent colour
graphics terminal which is connected to %he alarm handling
computer via a serial link. Software within the terminal is
capable of identifying alarm output and other codes as
distributed by the Alarm Handling Computer. The codes are
_interpretted as display commands to evoke appropriate alarm
texts and/or mimics on the display screen. A data packet
swapping protocol is used for communication between the
display package and the alarm handling system. Although
there is no alarm information generated by the display
package, the data packet swapping enables the alarm handling
computer to ascertain the health of the display package and
to ensure that data transfer to the display package is
complete and error free.

E.16.2 HARDWARE

The display package utilizes a Chromatics CG 1999
intelligent colour graphics terminal. This terminal is also

used for the off-line production of the alarm handling
system data base. Operation of the Chromatics in the off-
line mode is described elsewhere, The Chromatics is a Z-80
microprocessor based device with 28K of RAM memory. A
Microsoft Basic interpreter is included in the unit in
addition to a comprehensive selection of colour graphics
operating system commands. A single 8 inch floppy disk unit
is used as the mass storage device. Communications with the
Alarm Handling System computer is by means of an RS232
serial) line port. For a further description of the
Chromatics unit refer to the Chromatics Operators Manuals.

E.16.3 OPERATION SUMMARY

This section describes in brief the use of the Alarm
Display Package., Further details are given in the
subsequent sections., the Alarm Display Package is used as
follows:

1) The Chromatics display computer must be connected
to the alarm handling computer. The connection is made via
TT2: on the PDP11/03 and via SIO0: on the Chromatics.

2) Turn on the Chromatics and insert the Display
floppy disk into the disk drive.

3) Press (RESET)(BOOT Dand (BASIC.)

4) Enter Memory size? &HB00O
5) Type DOS"LOAD DISPLAY"

6) Type RUN

7) Enter the display data base number to be used.

434

8) The display package is now up and running ready for
alarm data to be received from the alarm handling computer.
No further operation on the Chromatics are required.

E.16.4 COMMUNICATION STRUCTURE AND PROTOCOL

The communication protocol between the Chromatics and
the PDP11/03 alarm handling computer is in general
transéareni to the operation of the overal alarm handling
system. The commuication structure is based on a simplified
ring system., Data packets are passed between the Chromatics
and the alarm handling computer. The data packets contain
alarm output codes and other operating instructions. If no
data is to be transferred, the data packets are sent
regardless, filled with code indicating that the data packet
is empty. In normal operation the Chromatics is waiting for
input via the serial I/0 link line. The serial line is
connected to the PDP11/03 device TT2: and the Chromatics
SI00: port. The data packet is in the form of ASCII numeric
codes which represent the type of function the display
package is to perform,

The data packet communication is bidirectional. The
link task CHROM in the alarm handling computer sends a-data
packet which may or may not be empty. The alarm display
unit responds with a data packet which again may or may not
be empty. The procedure continues at a rate of
approximately 3 exchanges per second. The constant exchange
of packets is used by the computers to establish the health
of each computer system. Data packets incoming to the
display unit are executed immediately therefore no data
packet is returned until the requested function has been
completed error free.

The alarm display unit returns either an empty data
. packet or a packet containing alarm texts for printing. The

alarm text packets are headed by the appropriate function
code required for printing via the DISP task in the alarm
handling computer. See DISP documentation for further
information. Empty datalﬁackets in either direction are
coded as a '*', Note: The alarm display linker task CHROM
is used by the alarm handling display task DISP, both of
which reside in the alarm handling computer. It should also
be noted that since the TT2: I/0 line has access to the DISP
task via the link task CHROM, all functions available
through the DISP task are available via the link line.

E.16.5 DATA PACKET STRUCTURE

The data packet structure as received by the alarm
display package is a combination of an alarm output code and
time/date information as follows:

S
Function Alalm Ou;;;EHh“BRs JEEE‘“EEE‘Day Month ear

Code Code

The function code header identifies the display function to
be evoked. The alarm output code immediately following the
function code is used to identify the alarm to which the
function code pertains. The alarm output code range is 000
to 999. ©Not all function codes require an alarm output
code. In these cases all data following the function code
is ignored if it is present. Time/date information
optionally follows the alarm output code as shown in the
above figure. Hours, minutes and secondes are in 24 hour
format.

E.16.6 FUNCTION CODES

1+ALC+[time, datel Deactivate all alarms with alarm

436

24ALC+[tine,datel

3+ALC+[time,datel

E.16.7 ERRORS

output code ALC, i.e., alarm
condition no longer exists.

Activate a new alarm with alarm
output code ALC. i.e., @ new alarm
has occured.

Accept the longest outstanding
alarm with alarm code ALC.

Accept all outstanding active
alarms.

Used for paging displays to roll
display screen up a small amount
and repack alarm list.

Used for paging displays to roll
display sreen down a small amount.
This function does not repack the
alarm list,

Reserved for user defined
functions.

The display package software does not generate error
messages. If a software error does occur, the prototype

437

system uses the normal BASIC error trapping which stops the
program and prints an error message on the display screen.
The display system must be re-started in order for the alarm
handling computer to function correctly. Obviously errors
of this sort should not occur in normal operation, however,
if and error should occur the BASIC software must be
carefully examined for corruption. To re-start the systen
follow the start up procedure described in a previous
section. The alarm display data present in the system
before the failure can not be retgeived.

E.16.8 SOPFTWARE FUNCTIONAL DESCRIPTION

As previously discussed the alarm display packagde is an
independent, stand alone device. The BASIC interpreter
available in the Chromatics can run only one program at a
time unlike the multi-tasking environment present in the
alarm handling computer. The alarm display software must
therefore incorporate all communication, processing, and
display coding in one program. The software correspondingly
is segmented into these three functions. The alarm display
software is intended to be a core module upon which the user
"can readily add user defined display function. Software
‘hooks' are provided for this purpose. The strictly
modularized structured format aids in the addition of custom
display modules.

Data communication is accomplished in the I/0
subroutine. Time out error detection is used to detect the
absence to responses from the link line. For details of the
protocol of the link line see the previous section. Once a
data packet is received the message is decoded. Depending
upon the leading function code the program branches to the
appropriate subroutine to process the alarm output data.

The core of the alarm display package is a data array

in which all current alarm display information is stored.
Access to information in the array is organized in list
processing format. As new alarm data is added to the
display list the array pointer associated with each data
record define the location within the display list. As
entries are deleted due to the disappearance of an alarm,
the associated alarm data in the display list is deleted
simply by alteration of the list pointers. Dealing with the
list in this fashion minimizes the processing time of the
program. This is especially important to the operation of
the overall alarm handling system since the single task
display unit can not queue up display requests coming in
from the link line.

Following the alarm list processing the program
proceeds to display routines which can be user defined. 1In
the case of the prototype system, a paging type of alarm
display is available. Another display routine is also
available to generate mimics of alarm annunciator panels on
the VDU screen.

Once completing all display tasks, the program returns
to the I/0 routines for further instructions.

E.16.9 SOFTWARE DETAILED DESCRIPTION

The alarm display software is highly modularized. The
major software sections are as follows:

SETUP

CONTROL

I/0 ROUTINES

ALARM LIST PROCESSING
DISPLAY GENERATION

Refer to the flow charts and listings following this

section for further clarification of the text descriptions.
E.16.9.1 Setup

This initial routine is executed only at start up of
the alarm display package. The Setup peforms two key
functions

1) 1Initialize the maximum alarm list size.
2) Initialize the alarm list for list processing.

The alarm list size is defined in the variable w. The alarm
list array is P(W,4) with it‘s accompanying texé array
T$ (W) .

" The alarm list array P(W,4) must be assigned with
initial pointers and values as follows:

P{Wo,l) = PRECEEDING ARRAY LOCATION IN LIST
P{Wo,2}) = NEXT ARRAY LOCATION IN LIST
P{Wo,3) = The alarm code as oobtained from
alarm list entry
P(Wo,4) = The current status of the
particular alarm list entry.
T# (Wo) = The associated text for the alrm code

as defined in P(Wo,4). '

All alarm list elements are prenumbered to establish
the list processing network.

440

E.,16.9.2 Alarm List Initialization

A summary of the variables associated with the alarm
lists are initiated in the setup routine and are as follows:

N = Total number of entries in list
FI = First array element in list
LA = Last array element in list

PQ)

Alarm list

T#()= Text for alarm list

PN = Text available empty locations in list
W = Maximum size of alarm list
I = Current location in list, ie. the actual array

element number.

Other variables associated with the list are transient
in nature and therefor difficult to define. However, an
examination of the program text should make these factors
apprent.

The setup section is extended only once at startup,

after which program control is passed on to the RUN control
module.

E.l6.9.3 Alarm List Status

Each entry in the alarm list is tagged with a variable
whose value is dependent upon the current status of the list

441

O_’ L]
element. The alarm status is located in the alarm list
array P(W,4). There are four status values as follows:

0 = No entry in this alarm list element.

1 = 7This alarm has been accepted and will be
removed from the list when the alarm
conditions no longer exits.

2 = This alarm is active. It has not been
accepted and the cooresponding alarm
conditions still exists.

3 = List elements in the dondition are alarms
which represent alarm conditions which no
longer exists however the alarm has not been
accepted.

The alarm list status information is used pr{%ipally
for identification of the manner by which the alarm should
be displayed for example, an active alarm may be displayed
in a different way from an accepted alarm.

E.16.9.4 Run Control

The run control module coordinates all activities of
the alarm display package. Essentially the run controel
module is comprised of a series of GOSUB statements.
Appropriate subroutines are called as necessary. The order
in which the module executes is as follows:

1) Goto Loader routine - load in alarm text and
data format arrays.

2) Goto Display Screen Initialisation routine =~
set up display.

442

3) Goto I/0 routine - send and/or obtain data
from the link line.

4) Examine the data received from the link to
obtain function code.

5) Goto Decode routine — if appropriate to decode
remainder of data package.

6) Locate if necessary the appropriate alarm list
location.

7) Goto the appropriate alarm list processing
routine .,

8) Goto Display routine if required.
9) Return to step 3 and begin again.
E.16.9.5 1I/0 Routine
The I/0 routine coordinates communication on the serial
link line S8I0:0. The routine uses the convention of)
nomenclature used throughout the alarm handling system as

follows:

M$
N§

input data strings.
output data strings.

|

First the routine prints the contents of M$ out to the
link line verbatim. If M$ is empty, I.e., is equal to =
null string, a '*' is printed which is the normal indication
of an empty data packet.

Next the output port is turneé off to prevent echo. An

443

-

input statement is executed to input data into NS, The
program is set up to 'time out' after one second in the
event of no input. 1In this case the routine prints another
'#1 down the line and waits for input again. The procedure
continues until a response is received from the link line,
after which the output port is turned back on to re-
establish the echo on the line.

Upon completion, program control is returned to the Run
Control module. N$ contains the received data packet ané M$
will have been emptied after having been sent down line.

E.16.2.6 Decode

The Decode module strips the alarm and other
information from the incoming data packets. A predefined
funcion FNCO(,) is used to select the appropriate
characters from the data packet string. The decode routine
returns program control to the Run Control module with the
following variables. 1If a portion of the data string is
missing the returned variables are equal to zero.

e
H

Function code 0 - 9,

C = Alarm output code 000 - 999,
o

TO0 = Hours 0 - 23.

Tl = Minutes 0 -~ 59.

T2 = Seconds 0 - 59,

D0 = Day, day ot month.

Dl

Month 1 - 12.

444

D2 = Year, eg. D2 = 82,
E.16.9.7 Alarm List Processing Functions

The available alarm list processing function are as
follows:

ACTIVATE
ACCEPT
GENERAL ACCEPT
NO ALARM
INSERT

DELETE
LIST/REPACK

Each of these functions is comprised of a separate program
module clearly defined in the program listing., The Run
Control module calls the appropriate functions depending
upon the alarm function code as received from the serial
link line. 1In this section each of the list processing
funcitons will be discussed. '

A) ACTIVATE The activate routine is evoked with
function F = 2. The routine adds the alarm ocutput code to
the next available location in the alarm list. The total
number of entries in the alarm list is incremented. Finally
the status code of 2 and the alarm code is assigned to the
list location.

B) ACCEPT This routine changes the status code of the
first entry in the alarm list which matches the alarm output
coe as received form the link line, If the status code is 2
then the code is changed to 1. If the status code is 3 then
the code is changed to 0. The function code F = 3 evokes
this routine.

445

C) GENERAL ACCEPT The function code F = 4 selects the
general accept routine which 'accepts' all outstanding
active alarms in the alarm list. These are represented by
the status codes 3 or 2*which are respectively changed to 0
or 1.

D) NO ALARM This routine is represented by the
function code F = 1. When an alarm condition no longer
exists the status code is changed for all alarm list
elements containing the associated alarm output code. An
active status code of 2 is changed to 3. If the alarm has
been accepted, signified by the status code 1, then the
status is changed to 0.

E) INSERT AND DELETE The insert and delete routines
either add or remove an alarm list element from the alarm
list, The insert routines initiates a display routine which
will add the additional alarm to the display.

The delete routine removes the alarm from the list only
if the status code for the alarm list element is zero. The
pointers in the alarm list array are adjusted to compensate
for the change in array element order. The deleted array
element is cleared and becomes the new last element in the
array. The variable I is the array element to be deleted.
The deleted routine does not initiate any display routine,
only performs the removal of an element in the alarm list.

E.16.10.0 DISPLAY PERSONALITY MODULES

The alarm display software discussed so far is the
basic alarm display routine which executes functions
required by the majority of alarm displays. Software
specific to various types of display formats is dependent
upon the type of hardware used and the formats themselves.
The alarm display software is therefore structured in

modular form to facilitate the user to develop specific
display function routines., The prototype alarm display
system has two types of alarm display presently available:

1) VDU alarm annunciatorn panel mimics.
2) Conventional alarm paging display formats.

"The software discussed in the subsequent sections deals with
these display formats. -

E.16.10.1 Alarm Paging Display

Alarm paging displays present alarm information to the
operator in a chronological list format. Often the maximum
available VDU screen area does not allow all alarms to be
displayed at the same instance. Typical paging formats
allow the operator to move the VDU display 'up and down' the
list.

In the alarm display package commands received via the
serial link line are available to execute the various paging
functions. In particular these include rolling the screen
display area up and down, repacking the list and relisting.
Additional display information is placed at the top and
bottom of the screen, primarily comprised of current alarm,
total number of alarms, and the number of alarm entries
above and below the display page.

The software module specific to the paging display are:

SCREEN INIT.
SCREEN UP
SCREEN DOWN
PRINT/ ADD
REMOVE

UPDATE

The Run Control module is modified to execute these
routines after alarm list processing has occured. Note that
alarm display commands F=5 and F=6 have been added to the
core alarm list processing functions. Additional variables
associated with the paging display include:

PG = Top of page location
L and X1 = List Locations for printing.

E.16.,10.1.1 Screen Initialisation

This program module sets up the screen display for
paging. 1In general the VDU screen is'divided into three
separate addressable windows 0, 1, 2. Printing colours and
cursor operations is set. Refer to the Chromatics Operation
manual for further explanation of the set up procedures.

E.16.10.1.2 Screen Up and Down

These display functions move the contiguous sections of
the alarm list which is displayed up or down the 1ist. Each
time the functions are executed, the section displayea is
moved up or down by ten lines.

E.16.10.1.3 Print/ Add and Remove

These routines either add, modify, or remove alarm
texts from the screen with the following criteria:

Alarm Status

0 Remove
1 Print an 'A' preceeding the alarm text.
2 Print a '*' preceeding the alarm text.

448

3 Print a '*' preceeding the alarm text.

E.16.10.1.4 Update

The update routine adjusts the display data printed at
the top and bottom of the display screen.

449

E.17.0 THE ALARM DATA BASE

E.17.1 INTRODUCTION

The alarm data base contains a definition of the
functions to be executed in the on-line alarm handling
system. Alarm system functions developed by the user in the
off-line system are coded and condensed by the off-line
compiler into a compact form for use in the on-line system.
The on-line system uses the data base much like a
program. The data base therefore defines the operation of
the on~line system. In normal operation it is not important
for the user to understand the structure and organisation of
the data base. However, under certain circumstances it may
be convenient wuser to examine or modify the contents of the
alarm data base on-line without returning to the off-line
system. Presented in this section are details of the alarm
data base format as it would reside in the on-line system.

The alarm data base (ADB) is formed by the computer
functions in the off-line system. A variety of data bases
can be generated and stored on the off-line floppy disk
unit. The ADB is stored in the form of a data file (.DAT)
comprised of lists of real numbeers. When the ADB is
transferred to the on-line system, these data files are
conveyed verbatim to the on-line system. As the values are
transferred, the on-line computer places the values
consecutively into a real global variable array %A#{)
starting with location 1. Although real variaples reguire
twice the memory space as integers, it was found convenient
to use reals since items such as range parameters are
inevitably reals. No doubt this is an area which should be
examined more closely. A real data base requires much nore

menory space and additional accessing time over integer
based storage.

450

The alarm data base is organised into four major
sections:

1) Data Base Header

2) Data Acquisition Variable Definitions
3) Event Definitions

4) Alarm Definitions

F.17.2 DATA BASE HEADER

The data base header is the only section of the ADB
which remains consistent regardless of the structure of the
remainder of the data base. The header contains key
locations and other information in the data base required by
the on-line system. The array elements 1 — 11 comprise the
header as follows: NB In programing terms the element number
should read as the array subscript.

Element Number Contents Description

1l Alarm data base size, i.e., the maximum number
of elements in the ADB.

2 The number of data acquisition variable
definitions.

3 The number of variable definitions in data scan
group 1.

4 The number of variable definitions in data scan
group 2.

5 The number of variable definitions in data scan
group 3.

6 The number of variable definitions in data scan

group 4. .

7 The starting address of the first event
description.

8 The starting address of the first alarm
definition.

9 The required size of the data acquisition

storage arrays. N

10 The number of event status outputs. The size
of the event processor arrays can pe calculatea
from this value.

11 The number of alarm status outputs. The size

of the alarm generator arrays can be calculated
from this number.

E.17.3 DATA ACQUISITION

Data Acquisition variable definitions begin at element
number 12. Variable definitions are all 6 elements long.
The definitions are-organized consecutively according to
scan dgroup and priority within the scan group. The lowest
scan group number and the highest priority definition starts
at element number 12. The format of each variable
definition is as follows:

Element No. Contents Description
12 Plant Ccede
13 Input device number - 1

14 Data type number

15 Range low

16 Range high
17 Significant change value
18 Start of next variable definition.

The values in the variable definition are discussed in the
off-line documentation. Presented here is a brief summary
of the contents. The plant code is the numeric code which
is sent to the input device as a data request. The input
device number directs where the data request is sent. The
data base value is one less than the actual device number.
The data type number represents the following:

Binary

Binary Inversion
Analogue Conversion
Analogue Conversion
Analogue Conversion

m o Wy O
= W N -

Analogue Conversion

The high and low range values defines the operational limits
o the input device. Finally, the significant change value
represents the amount analogue input value must change
before the event process is started. Significant change and
range values apply only to analogue input variables.

E.17.4 EVENT DEFINITIONS

Event definitions follow directly after the data
acquisition variable definition. There are two types of
event definitions, one binary type and the other analogue

453

type. The difference is the length of the definition
record. Each event definition is organised as follows:

Element No. Contents Description
N EP Data Packet sgize
N+l Data acqguistion address location in data

acquisition store -

N+2 Event type

N+§ Band parameter 1 (analogue only)
N+4 Band parameter 2 n

N+5 Band parameter 3 ®

N+6 Band parameter 4 "

The event types are defined as follows:

Value Event Type)
1 OFF
2 ON
3 XLO
4 LO
5 HI

454

6 XHI

7 TREND
8 DEVI
9 TDEVI

E.17.5 ALARM DEFINITIONS

Alarm definitions follow the event definitions. The
order of the alarm definitions is based on the alphanumeric
ordering of the alarm names assigned in the off-line
development software. Each alarm definition is organized as

follows:
Element No.
N
N+;
N+2

N+3

Nl

N'+1

Contents Description

L 3

Alarm output code "

Persistance value

I~

Number of elements in ON condition Boolean
expression

ON condition Boolean expressions ¥

Number of elements in OFF condition Boolean
expression

OFF condition Boolean expressions

455

The alarm output code ig the alarm identification which is
sent to the alarm display package. This code is sent along
with status headers when the Boolean ON or OFF condition
expressions are satisfied. The persistance number is not
presently used.

The Boolean condition expressions are code in reverse
Polish notations with operands being positively sized value
indicating the location of events int the event status
store. Negatively sized values are operators as follows:

Value Operator
-1 NOT
-2 OR
-3 AND
-4 XOR
-5 RXOR
-6 SEQ
-7 TIL
-8 voT

456

E.18.0 AN INTRODUCTIOR TO SWEPSPEED II

E.18.1 INTRODUCTION

SWEPSPEED II is a multi-tasking user oriented operating
system and language primarily intended for real-time use,
The software was developed by the Central Electricity
Generating Board. Full details of the software package are
given in the SWEPSPEED II User's Guide. The language is
suitable for all PDP-1l1 type computers. The software is
based on the DEC RT-11 operating system, however in
operation SWEPSPEED IT appears as a memory resident
independent operating system and high level language. The
SWEPSPEED II in the Alarm Handling System is a subset
version, therefore some commands and facilities are not
available as described in the user's manual. Normally a
system is generated by the system manager to meet the
requirements of a particular application. The purpose of
this document is to give a brief introduction to the whole
package. For further details refer to the SWEPSPEED II
User's Guide.

E.18.2 CONVENTIONS

The SWEPSPEED II operating system is comprised of
utilities and system commands., System commands are resident
in memory. Utilities either are in memory or located on the
TU58 tape storage and are automatically overlayed in memory
when required. Any command or utility must be prefaced with
a <control-c> character. NoO system command or utility will
be accepted by the system until the $ prompt appears on the
console. Any entry into the system must be followed by a
{carrage return>. Only one utility or command may be evoked
at a time.

Although the SWEPSPEED II language resembles BASIC in

457

syntax, care must be taken to insure that the SWEPSPEED
syntax is strictly followed. As with many high level
languages, few error messages are given in response to
syntax errors.

E.18.3 LOG IN AND LOG OUT

SWEPSPEED II supports a single user environment with
full user protection facilities., 1In order to enter the
system a user must LOG in as follows:

LOG IN

1. Enter <control-c> and wait for $ prompt.

2. Enter 'LOG' <cr>. NB. <cr>= carrage return

3. 'name?'; enter your three letter user name then
{cr>.

4. ‘'password?'; enter your three letter password then
<cr>,

5. You are now logged in.

Once logged on the system responds to <control-¢> with the
command job dollar prompt. To log out of the system use the
LOG command. only this time reply with a <cr> when prompted
for the user name,

LOG OUT

1. Enter <control-c> and wait for $ prompt.
2., Enter 'LOG' <cr>.
3. 'name?'; <cr>.

E.18.4 OVERVIEW OF PROGRAM DEVELOPMENT

The system is organised into a number of jobs or job
slots. The total number of available jobs is specified by

the system manager. Each job contains space for a program
written in SWEPSPEED language. Selected job slots have been
assigned to each user. A user only has access to his own
jobs.

Each job is developed as follows:

1. Preparation of job source.
2. Compilation of job to produce a runable form.
3. Activation of a job. -

E.18.4.1 Preparation of Job Source

New job programs are entered or existing jobs are
modified through the use of the EDIT utility. The
particular job number to be edited must be specified.
Program text may now be entered. Editing is completed when
terminated with the END edit sub-command. Some syntax
errors are detected by the editor in which case the line is
only displayed up to the point of the first error. The line
must be retyped. Using the NAME edit sub-command gives new
jobs an identification for future reference. Tip: Keep
jobs short!

E.18.4.2 Compilation of Job

Jobs which have been edited or read in from a file on
the TUS8 tape unit require compilation before activation.
The EDITor utility actually performs much of this function
itself, however the COMpilation utility completes the
process. During compilation variables are zeroed, data
storage is allocated, and line number references are
checked. The number of the job to be compiled is specified
when .entering the utility. All jobs which are to be
activated or clock connected must be compiled. If a
compiled job is stored, only the source is saved, that is,

459

when a stored job is reloaded it must be recompiled.
E.18.4.3 Activation of a Job

Compiled jobs may be activated, i.e., run, by using the
system command ACTivate followed by the specified job
number. Jobs can also be controlled by other jobs using the
SWEPSPEED job interaction statements. The stop a job use
the system command STOp followed by the specified job
number.

E.18.5 FILE STORAGE AND LISTING

All files are stored on the TUS58 tape unit. There are
two drives in the unit. One tape contains the utility files
and a bootable image of the system. This tape is located in
the left hand drive and is referred to as drive DDO:. It is
important that this tape is not removed during system
operation since user jobs may be corrupted. The user file
storage tape is located in the right hand drive and is
referred to as drive DDl:.

Jobs can be stored on the user tape with the SAVe
system utility. The job source code is written to a named
file on the tape store for subsequent use.

Jobs stored on the tape can be reloaded using the
system utility OLD. Only files belonging to the logged in
user can be retrieved.

The DIR system command is used to obtaina 1istin§ of
the user tape directory on the console VDU.

The utility LISt is used to obtain a listing of a job

on the console VDU. A printed copy can be obtained by
SAVing a job to device TTl: which is the T43 teletype. Make

460

\f

certain that the TTl: is installed and powered up.

E.18.6 JOB MONITORING

Three system utilities are provided to help users
monitor the execution of their jobs.

1. MONitor. Allows the user to examine variables in a
specific job while the job is running, and if desired,
change the value of the variable. .

2. STAtus. Reports both static information about a
job (such as its priority, etc.) and also reports the
current status of a job, e.g. whether it is running, gueued
waiting for a device, idle, or uncompiled.

3. STReam. Allows the user to identify the current
status of a general input/output such as which files are
open and which jobs have access to those files and whether
they are open for input or output.

E.18.7 GLOBAL VARIABLES AND REAL-TIME OPERATION

In many real-time program applications it becomes
necessary for jobs to communicate with each other.
SWEPSPEED 1I supports the use of global variables for this
purpose. Global variables are accessable to those jobs
specified by the system manager. Through the use of global
variables data can be passed from one job to another. For
example see Fig. E.l18.1.

Job A obtains process data from plant transducers. The
Retrieved data is placed in global variable G. Job B takes
the data in the global variable G and converts it into
engineering units.

461

The above principle is common in multi-tasking systems.
However, it is important to recognize that when several jobs
are running care must be taken to insure that one job does
not write to a global variable at the same time that another
job is trying to read the same variable. Steps must be
taken to prevent data corruption through the use of flags or
job priorities. (Note that an integer or logical can be
used as a £flag since it takes only one machine instruction
to read or write these to a global.) N.B., As the priority
number lowers, so does the priority of the job decrease.

-

JOB A cH JOB B

Figure E.18.1 Use of Global Variables

E.18.8 HARDWARE CONFIGURATION

The SWEPSPEED II in the Alarm Handling System is
running on a PDP 11/03 supporting several peripheral devices
as follows:

Device Description

DDO: A dual drive TU58 DECtape backing store.
‘ DD1: -

TTO: VT100 VDU used as the system console.

TT1: T43 teletype printer.

TT2: Chromatics display computer.

TT3: Host computer if present.

Media Plant Interface System

) The Media plant interface allows the user to output or
input binary or analogue data to or from plant sensors.
This system is accessable through the use of the SWEPSPEED
job MEDIA.SPD located on the system tape drive. The use of
the system is described elsewhere.

E.18.9 EXAMPLE

FPirst Log ineee..

{ctl-c>

$ LOG

name? ___<cr>
password? ___<cr>

<ctl-c>

$EDI3

*10 PRINT"THIS IS A TEST!"
*END

<ctl-c>

$LIS3

Job3

10 PRINT"THIS IS A TEST!"
End of listing

<ctl-c>

$COM3

Job compiled

0 errors

Job space = 888

<ctl=-c>
$ACT3
THIS IS A TESTI

{ctl=-c>

$SAV3

Save to file? DD1:TEST
done

<ctl-c>
$SCR3

<ctl-c>

$OLD3

From which £ile? DDLl:TEST
done

E.18.10 SWEPSPEED SYSGEN CONFIGURATION

Included in this section is the SWEPSPEED system
generation required for the correct operation of the alarm
handling system. Refer to the SWEPSPEED system manuals for
further details on system generation. The listing
presented here is the SWEPSPEED system generation command
file required to generate the SWEPSPEED system used to
support this alarm handling system softwvare.

-

5§ TT QULET
bt USSR NUSWHE
\ .
+*3YSMAC
n NESAGBE
B21e1ing oda tiles
AL

i
=&T EKROR NOUNE
BELETE/ZLOG ».582, % . MAP ,», TMF, . OB*

SET ERROR UWARNING

A MESAGE o

Lreating temporary files .
d‘bL

N, A

Lttt AMALPALTCSL11.MAC L n1PE.TRP

n LREATE
DIBICN. THE

s L tLE LUBRQ,J

AVGLUDE
AnLLUiE
ydlcLDE
AnLLUDE
3 NLLDBE
LnCLUDE
tNClUDE
- Ll UDE
1 NCLUDE
ANCLUDE
K] NCLUDE
vNLLUDE

LNCLUDE
_;l"lLLUDE
1NLLUDE
LNCLUDE
- InNLLUDE
N CULIE
INLLULE

- THUVR
e bV

REALS ,5STRINGS,LULLILALS

ARD UL, SI0GN

X0y um

FUR,HEA)

ASSiLuN,CLEAR

OCTAL yLRAR ,LEN,VALLE ,FOS,5UBD 1K
BITS
INPUT,PRINT
OFEN,CLOSE
READ,WwRALTE
SGRT
CONNECT ,DISCONNELT ,ELAPSE ,SLEEF ,UAKE
START,ACTIVATE

GOSub,COMFGO
TIME,DATE,SETTINE,,SETUATE - -

MEM)

FORMA]

JOKUVERLAY

CGUSUB,ReEM

nno
Dhy

- - e e = e em A m e e - -——

466

JS— - - - m Ay

tNFBUD O, BUrLEN=132,
FRISUD O, BUFLEN=132, ’
LlFSUD 1, BUuFLEn=132,

InrdUL 2, BurLen=132, ,Trre=nuECHOD

| SRMLNAL TTu, InrSUD=0, PR 5U=0, WIDTn=gu. ,VDU=1

tenriinAL 1 Fh, 4erSUD=E1 , PR SUB=0, IREL=17 0520, IVEC-o1vu
VInLINAL T, anFbUl=2, PR bUL=0, IREL-1 /6330, IVEL=y.l0
PERFLINAL 1 1o, antPoUll=2,Prinun=0, IREv=1/,0010, IVEL=s0u

LeVICE I, BRIVE=D BUFFb=a, 1nirSUD=1 , ¢ s bULIE0
FILED=4 -

JUE NUNBER=1,51ZE=2000,NnHE=JOBL , OWNER=G0D,PRIOR1=100,FKOTEL=10-
y “FRIVIL=6W, FL,F O, NF , A, 0, DI, MP, 1,08, MR, MWD
UL SLZE=100v,rR1VIL=#*

JOBE SIZE=1000,FRIVIL=x
OB SIZE=1000,rRIVIL=#
JubB SIZE=100U,rrRIVIL=»
JE SIZE=300,FRIVIL=%
JUH S1ZE=Y900,FRiVIlL=%
OB SIZE=500,PRIVIL=%
JUE SIZE=%00,PRIVIL=x%
SOB SIZE=S00,PRIVIL=%
JUB S1ZE=500,FPruVIL=%
.08 SIZE=200,PRIVIL=%
Jult SIZE=200,PRiVIL=%
2B SIZE=200,rRIVIL=%
JUB BIZE=10v,riVIL=x
2JH yJors with wo spuce allocatea
JUB

B

SUh

gUB

uber NAME=GUL, PASSWORDI=550, FRIORITY=52766 ,PROTECTION=127 ,FRiVILEGE=1

ubtr NAME=NEIL ,/RIORITY=10U,PROTECTIUNS10=-

y HRIVILEGE=0UW,FC,FO,NF ,A0,0U,DI,MP,J1,G5,MR,M4W,50,5C>
ubc R ‘

UBER
USE s

]
-

n LREATE

467

1=

FALER - THMP et e e et e e e

WLYLUFI=0

AL

® MACRO
FilLeR.0B2=MCTYPE.THFP,FILER. THMF,FILER
AG

r18

2. By te

LS 1GEN

4

LUFT MINERR.LLE MINERR.OBZ

SENRME/NOLVUG SWSFDZ2. (S5.2,mAF) LOBROU.»
n HESAGE

~l4 aonel

ELY A

| LRE

468

E.19.0 HARDWARE CONFIGURATION

Described in this section is the configuration of the
PDP 11/03 computer. This includes details of the hardware
setup of inputs/output cards. memory organisation, boot
strap location, etc. For operational and further details
refer to Digital Equipment Corporation publications.

E.19.1 PDP 11/03 PARTS

The processory, memory, device interface, backplane,
and interconnecting hardware are all modular in design.
Module selection, such as the type and size of memory and
device interfaces, enables custom tailoring to meet specific
application requirements. Following is a summary of the
modules used in the alarm handling system PDP 11/03.

1) PDP 11/03 LSI11l CPU M7264 with 4K RAM
2) One KEV1l, Floating point arthimetic chip

"3) One MSV11-C, 16K word MOS Read-Write memory M7955

4) Two MXV1l-AA, Dual asynchronous serial line interfaces
with 4K word RAM memory and optional ROMs M8047

5) One DLV1l, Seria}l Line Uni¢ M7940
6) One Media Plant Interface Bus extension module

7) One H780-J, Master PDP Power Supply

8) One H9270, Backplane Assembly with logic cabinet

9600

E.l?.2 LS PERIPHERIAL CONFIG?RATIONS

Device I/0 Module Address Vector

TTO: MXV!IAA J2 l775§0 60

DDO:/DD1: MXV11AA Jl 176500 300

TT1: MXV11AA J2 176520 310

TT2: MXV}lAA Jl 176530 320

TT3: DLV%I 175610 330

Device Tx / Rx Interface
Baud Rate Type

TTO: 9600 RS232

,QDO:/?DI: 9600 R5232

TT1: 300 RS232

TT2: 9600 RS232

TT3:

Panction

VDU console

TU58 Tape Drive

T43 Printer

Chromatics Link

Host Link

20MA Active Tx, Pasive Rx

All serial communication lines have the following bit

pattern:

No parity, 1 stop bit, 8 data bits

470

Al . Al A3 ay AL AL A7 .a:g
17 18 9 20 21 22 13 uwtd
. 2 *
[iY) B 83 avY Gs B& &7 AP
e 1< 2164 r i g 24 3o Ny
Ct ct c3 cy cs lé c? <9
3L 33 3y 35 3o 37 3 19 _
D oL >3 O LamP TEST ACCERT
]
) vy YL vy iy ¥
L N
~ FieonT VIEwW

e HIGHLAND ALAGA WumBERZ OF FoveTTON
e v - Nea—— méoTA DRTVER CavwEe NumSEL

SYIFHAN TINNVHO VIGIW JOLVIDNNNNY GNYIHDIH €°6T°d:

E.20.0 LISTINGS AND IMPORTANT FLOWCHARTS

472

NAME FOWA
10 REM “POVERUP VER 4"
20 ON ERROR GO 70 100

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
END

REM "R"

FOR I=2 T0 20\ STOF I\ NEXT 1

PROMPT “DAY = " INFUT DI

PRONPT "MONTH = " INPUT D2

PROMPT "YEAR = * INPUT D3

PROMPT "HOUR = ™ INPUT T1

PRONPT "MIN = ™ INPUT T2 -

SETRATE IM.D2,D3
SETTIME T1.72.0

CONNECT 15 EVERY 1 SECS
CLEAR I#(0).0%(0)

FOR 1=0 TO INT(ZAH(10))\ ZE#(1)=-1,00000E406\ NEXT 1
PF9#=FALSE

C#{1)=48\ ?VH(1)=FALSE\ START 10

START 4

FPRINT "LOG IN & ACTI4"

of listing

NANE DISP4
10 REN "DISPFLAY DRIVE VER 1.4"
20 REM "SETUP*®
23 START 13
23 TF58=TRUE
30 @=7
40 Q1=2
50 Q2=7
40 H=10)
70 Ni=5 -
100 REN “RUN™
105 GOSUR 950\ GOSUB 200\ IF *Q GOTO 103
110 IF NOTTNE GOTD 113\ $N=$NH#\ $N#="“\ *N#=FALSE\ GOSUR 200
115 IF NOT?MTR GOTO 120\ $N=$M1#\ *Hi#=FALSE\ GOSUE 200
120 *FS#=FALSE\ 3TOP
200 REM “"SEL FUNC*®
210 L1=LEN(SNIN IF L1=0 GOTO 240
215 IF Li=1 AND $N="L" GDTD 990
220 A=VALUE{SURSTR(4N,1,1))
230 GOSUB(300,350,400,450.500,550)A
240 RETURN
J00 REH “AL OFF*™
310 *T=FALSE\ GOTO 370
350 REM “AL ON®
360 TT=TRUE\ GOSUB 700
370 C=VALUE(SUBSTR{$N,2,3))\ s$H=$N\ GOSUB 850\ GOSUF 800\ RETURN
400 REN "VT100"
405 $N=SUBSTR{S$N.2,L1)\ PRINT ¢
410 RETURN
450 REM "CHRON®
433 $M=SUBSTR(SN.2,Lt)\ GOSUB BOO\ RETURN
S00 REM "TT1:*
505 RETURN
210 OPENDUT @T:"TT1:DUMNY"
520 $M=SUBSTR($N,2,L1)\ PRINT OT:$N
530 CLOSE 2T:\ RETURN
950 REM "
5% $M=SUBSTR($N.2,L1)\ GOSUB 900\ RETURN
700 PEM *BEEP"
710 $¥="080500"
720 GOSUB 900\ RETURN
800 REN “CHRONOUT™
810 IF $u{>"" GOTO B20\ RETURN
B20 IF NOT?HH GOTO 830\ ELAPSE 2 TICKS \ GOTC 820
830 tMW=$N\ TH#=TRUE\ RETURN

f

474

i 850 RENM “MEDIA“
) 855 IF CH(N1)<=0 GOTD B&O\ START M\ ELAPSE 2 TICKS \ GOTD BSS
B850 TVH(NI)=TT\ CH(M1)=C\ START M\ RETURN
200 REN "DUT D*
205 IF MODCIRCQIX+1.STHXISHOH(QTY GOTO 915
910 START O\ FRINT “DIS B UAITING!“\ ELAPSE 2 TICKS \ GOTOD %95
15 I8) =NODCIRCQT Y+ T, SIHIN L=THIQ1)4ST1H201\ SOB(L)Y=$N\ START O\ RETURN
956 REN "IN Q"
9SS IF MOD(OH(Q2),S1H)=NOD(IR{02),51¥%) GOTO 970
940 ?R=TRUEN D¥(Q)=NOD{ON{B2)+1,S18)\ L=0R(QZ)+518+02\ $N=3RH(L)\ RETURN
270 ?0=FALSE\ $N=""\ RETURN
990 s$N="X"\ GOSUR BOO\ STOP 13\ DVERLAY .ERR=9%95:"DDO:LDAD2T" INTO 2,"R"\ STOP
99% PRINT "GVE ER™\ $N=""\ GOTD 10 N
DIN $N=20, $H=20
DIM $NH=20, $NE=20, $M1#=4
END of listiing

NAME TALK3T

10 REN "11/34 OUT VER 1.3"°

20 REM “SETUP™

30 @2=5

J5 ON ERROR GO TC 800

40 OPENOUT BT3:™TT3:DUMNY"

100 REN “RUN®

110 GOSUR 250\ IF $NO"™ GOTO 120\ CLOSE eT3:\ STOP
120 PRINT BT3:$N:

121 PRINT “T"\ GOTO 100 b

151 $N=SUBSTROUSN.1.LEN(SN)=-1)\ PRINT "TALK ="I3N
160 GOTO 100

800 REH "ERROR"

810 CLOSE BT3:\ GOTO 10

950 REK "IN G"

955 IF MOD(O#{Q2).514)=MOD{I¥(0Q2),51 GOTO 70

960 OH{Q2)=MOD{OH(E2)+T,518#)\ L=08(Q. +51#+Q2\ $N=30#(L)\ RETURN
970 $N=""\ EETURN

DIK $N=20

END of listing

476

NANE KBDRIS

10 REN "KEYROARD DRIVER VER 1.8
20 REM "SET UP"®

30 #=10

40 #1=2

50 @=7

40 M=1 |

70 02=4

100 REN “SCAN KEYS™ -
105 I=145

110 CRINII=I

113 START N

120 IF CH#{M1)>0 GOTO 115

125 IF VE(M1)=0 GOTO *50

130 V=VH{NS)

135 FOR J=0 TC N

140 IF BIT(J.V) GOTD 250

143 NEXT J

150 FOR I=161 TD 185 STEP B

155 C#(N1)=]

160 START N

165 IF CH{N1)>0 GOTO 140

170 IF VH(N1>=0 GOTO 195

175 V=i (N1

180 FOR J=0 TD 7

185 IF BIT(J,.V} GDTO 250

190 KEXT J

195 NEXT 1

200 REW "POLL LAPRSE™

210 ELAPSE S TICKS

2135 GOSUBR 950\ IF $N="" GDTO 220\ K=0\ $F#{0)=$N\ GOSUB 400
220 6OTC 100 ’

250 REN “WITCH KEY"

255 C=14)

260 IF C>=145 AND C<=154 GOTD 280
285 IF C>=161 AND C<=189 GOTD 290
270 K=0\ REN "NO KEY"

275 6010 100

280 K=C-144

2B% GOTO 300

290 K=L-160+10

300 PEM "KEY CONTROL™

303 GOSUER 350

313 IF NOT?H GOTO 330

477

320 BOSUB 575
325 GOTD 100
330 GOSUR 400
335 GOTO 100
350 REN “CK MASK®
355 IF 7H(K) GOTD 370

340 TN=FALSE

345 RETURN

370 TH=TRUE

375 RETURN

400 REN "FUNCTION®

405 IF $FECKISO"™ GOTO 415

110 RETURN

415 p=t

4720 GOSUB 780\ F=P+2\ L1=LEN{SFE(K))\ IF _PF>L1 OR T<=0 GOTD 410

430 GOSUB($00.510.530.550,570.590.625.645,700,720,790,790,790.,790)7

440 P=P+2\ IF P>L1 GOTO 410

445 GOTD 420

500 REN "MASK®

=05 GOSUR 780\ ?H(T)=TRUE\ RETURN

510 REM "UNMASK™ -~

515 SOSUE 780\ ?H(T)=FALSE\ RETURN

530 REM "DN"

535 GOSUB 780\ IF T>=49 AND T<=40 GOTD S40\ RETURN

540 S=T-48\ ?5{S}sTRUE

545 TUH{N1)=TRUE\ CH(HI1)=T\ START M\ RETURN

550 REM “OFF*

ccs GOSUR 780\ IF T>=49 AND T<=40 GOTD 540\ RETURN

540 S5=T-48\ 75(S)=FALSE

545 ?UH(N1)=FALSE\ CH#(M1)=T\ START M\ RETURN

570 REN “BEEP"

572 GOSUR 780

575 IF NOT?5{11) GDTO 585

580 RETURN

585 ¥=0\ GOSUB &00\ ELAPSE # TICKS \ GOSUR 410\ RETURM

590 REM "CLEAR® : T

595 GOSUB 780\ GOTO(594.597.598)T\ RETURN

594 CLEAR ?M(0)\ RETURN

597 CLEAR ?S(0)\ FOR T=48 70 &0\ GOSUB 563\ NEXT T\ RETURN

598 GOSUB S%4\ GOTD 597

400 REM “BEEP ON®

405 TUB{M1)=TRUE\ CH(H1)=594X\ START M\ RETURN

410 KEM "REEP OFF“

415 TURIN1)=FALSE\ CH(M1)=59+X\ START M\ RETURN

425 REM “SEND"

426 GOSUB 780\ GOSUB(632.4633,634,635.840,641.642,443)T\ RETURN

430 GOSUE 900\ $Bi=""\ RETURN

§32 $M=$TH(K)+CHAR(1I)\ RETURN £30

633 $H=STH{K)+CHAR(27)\ RETURN 630

434 $M=STR(KI\ RETURN 630

L2=LEN(STH(KIIN IF 1243 GOTO 638\ IF B{>0 GOTD £36\ $B1=$TH(K)\ BOTO 4637

i ———rr———————
v

636 $B1=5UBSTR(STH{X),3,L2)
. 437 $E=$BH+$B1\ B=B+1\ PRINT $B1:\ RETURN
’ \ 438 RETURN
640 $H=$H+CHARC13)\ $B=""\ B=0\ RETURN 430
441 $H=$B+CHAR(27)\ $B=""\ B=0\ RETURN 430
642 $M=$B\ $R=""\ B=0\ RETURN £30
443 $X=CHAR(&)}\ IF R>=1 GOTO 444\ S$E=""\ B=0\ PRINT $X:\ RETURN
444 B=B-1\ $R=SURSTR($B,1,LENCSE)-1)\ PRINT $X:\ RETURN
445 REN "HOLD ON*
450 GOSUB 780\ IF T>=44 ANR T<=60 GOTD 655\ RETURN
453 IF T>=48 GOTO 640\ GOSUR 543\ GOTD &4&5
6460 GOSUR 540
645 CR(NIY=C -
%70 START M\ ELAFSE 2 TICKS \ IF CH(M1)>0 GOTO 570\ IF ?VH(M1) GOTD 445
67% IF T>=48 GOTOD 480\ GOSUE 545\ RETURM
480 GOSUR 560\ RETURN
700 REM “TOGGLE"
705 GOSUR 780N IF T>=49 ARD T<=40 GOTO 710\ RETURN
710 5=T-48\ IF NBT?S5(S) GOTO 715\ GOSUR 560\ ELAPSE 10 TICKS \ RETURN
715 GOSUB 3540\ ELAPSE 10 TICKS \ RETURN
720 REM "SET"
_ 723 GOSUB 780\ GOTO(730,731,732,733)T\ RETURN
730 ASSIGN 7H(11)=7,T,T,7,T\ RETURN
731 ASSIGN *M(i1)=F,F,F,F,F\ RETURN
732 FOR T=49 70 S8\ GOSUB 545\ NEXT T\ RETURN
733 FOR T=49 T0 S8\ S=T-48\ IF NOT®5(S) GOTO 734\ NEXT T\ RETURN
734 GOSUR 365\ NEXT T\ RETURN
780 REM "GET FUNC*
783 $T=CSUBSTR{$FR(K).P,P+1)\ T=VALUE{$T)\ RETURN
790 REM “END"
795 RETURN 410
900 REM “DUT Q"
905 IF MOD(I#(Q1)+1,51#24>04(01) GOTD 915
910 START G\ PRINT "KB Q@ UAITING™\ ELAPSE 2 TICKS \ GOTO 905
15 IR(A)=NOD(INCQII+1, SIRIN L=1R(G1)+5t1H#401\ $OR(L)=$M\ START O\ RETURN
950 REN "IN O
955 IF MOD(O#(02),S1¥)=MOD(INCO2).518) GOTO 970
760 OR{Q2)=NOD(DR(O2)+1,518)\ L=0H(02)4518#+Q2\ $N=$QHK(LI\ RETURN
970 $N=""\ RETURN
DIN 7H{40), 75(12)
BIN $N=20, $M=20, $T=2, $Bi1=4, $B=20, $X=1
DIN $TH(40)=20, $TH(40)=20
END' of lasting

NANE EPS

10 REN “EVENT PROC VER 1.4"

20 REM “SETUP™

30 TF2#=TRUE

10 H(0X="034414\ H{1)="000143

50 A=5

40 ?X=FALSE

100 REN "FIND CHANGES"

105 IF ?D# GOTO 110\ IF ?X GOTO 107\ ?TF28=FALSE\ STOP
107 7ER=TRUEN ?F2#=FALSEN IF ?F94 GOTO 108\ STOP
108 START A\ STOP

110 *DE=FALSE

120 FOR I=0 TO INT(ZAH#(9))

123 IF D1#(I)=0 GOTOD 130

130 FOR k=0 TO 15

135 IF NOTRIT(E,DIR{I}) GOTO 140\ E=14¢1+B\ BIT(E,D18{I)V=FALSE\ GOSUB 200
140 NEXT B

130 NEXT I

135 GOTO 103

200 REM "CHANBE™

210 L=INT{XAK(7))

220 FOR J1=1 TO INT(XAR(10))

230 Di=L+1\ J=01-

240 IF INT{ZA#(D1))<OE GOTO 250\ GOSUB 300

250 L=INT(ZARCLYY+LN NEXT JI\ RETURN

300 REM “"EX CHANGE"™

310 D=L\ D2=D+42\ D3I=P+3\ D4=D+4\ D5="+5\ Dé=D+4
315 GOSUB(325,340,400,400,400,400,57C,400 INT(XAK(D2))
320 RETURN

325 REM "BINARY"

330 ?E=LOGICCINT(XBUH(ED))

335 IF 7E XOk BIT(J,ER(O}) GOTO 338 RETURN

338 GOSUB 800\ RETURN

JA0 REM "BINARY INy“

345 TE=LOGICCINT(XDR(E)))

330 IF NOT?E XOR BIT(J,E¥{0)) 6OTO 355\ RETURN
355 TE=NOTTEN\ GOSUB 800\ RETURN

400 REM “ANA"

410 N=1\ Ni=PJ

420 IF ZAB(N1)>ZDH(E) GOTD 440

430 N1=N141\ N=N+1\ IF NOOS GOTO 420

440 GOSUE F00

455 IF 7E NXOR BIT(J.E®(0)}) GOTO 480" GOSUr BOO
460 RETURN

500 REM "TREND™

480

310 N=1\ N1=D]

520 IF XAR(N1)>XD2¥(E) GOTO 540

530 N1=N141\ N=N+1\ IF NS GDTOD 520

940 GOSUB 900

330 IF TE NXOR BIT(J,ER{0)) GDTO 540\ GOSUE 800
540 RETURN

400 REM "TIME OUT"

610 RETURN

800 REM “E CHANGE®

801 PRINT “H"IN,"LO™:L0,7E,"J%:J

805 TX=TRUEN TIME T(0)

810 ZT=40.0+FLOATIT(O) I4FLOATIL0*TI1I+TL(D))

315 IF ?E AND ROTBIT{J.EH#(Q}) GOTC 825 N

820 BIT(J,EH(0))=FALSEN ZER{J)=-1.00000E+04\ BOTD 830
825 BIT(J.E#(0))=TRUE\ XER{J)=XT

830 RETURN

900 REM "HYSTERESIS Sup*)

908 1F ETR(ICH0 GOTO 910\ E18(J)=N

910 IF E18{J)=K GOTO 930

920 LO=(E1R()~1)+5+N~1

9530 IF BIT(LO,H(Q)) GOTD 940\ ?E=FALSE\ GOTO 970
960 *E=TRUE

970 E18¢J)=H\ RETURN

980 TE=BIT(J.EH#(0))\ RETURN

DI¥ H{1), T(2)

END of listing

481

. y—.

NAME AG4

1 PRINT "AG"

10 REM “ALARM GENERATOR VER 1.4*
20 REN "SETUP"

30 PF3#=TRUE

40 B=2

100 REN "RUN AG"

105 S=INT(ZA#(11))

104 IF $=0 GOTO 160

110 D=INT(XAK(8))

115 FOR 1=0 TO S-1% N
120 Di=D+1\ D2=0+2\ D3=0+3

125 2=INT(ZA#(D2))

130 Z1=D2+4Z+41\ Z1=INT(ZAR(ZI))
135 IF RIT(I.GH(0)) GOTOD 140\ GOSUE 200\ GOTO 145
140 GOSUE 300

145 GOSUE S00

150 D=2+421+4+D

155 NEXT 1

160 7F3N=FALSE

145 STOP

200 REN "CK FOR ON®

205 IF Z<>0 GOTO 210\ RETURN

210 FOR K=1 10 Z\ J=D2+1

220 GDSUR 400

230 NEXT K

240 RETURN

300 REM "X FOR OFF"

305 IF Z1<>0 GOTO 310\ RETURN
310 FOR K=1 TG Z1\ J=20+1

320 GOSUE 400

330 NEXT K

340 RETURN

400 REM "PRDCESS EXP"

405 P=0

410 R=INT(ZAR(J))

415 1F R<O GOTD 420\ P=P+1\ 75(P)=BIT(R,E#{0))\ GOTD 425
420 GOSUB 500

425 RETURN

500 KREM "CK RESULT"

505 PRINT “C¥ AG"

€10 IF BIT(I.GK(O0)) MXOR ?S(P) GOTO 540
520 76#=TRUE

530 BIT(1.GH(0)2=7S(P)

515 GOSUB 700

- -
—¥ 4

540
500
410
620
&30
&40
4650
460
700
705
710
720
730
740
DIN
DIN
END

RETURN

REM “BoDL OP"

R=ABS(R)\ F1=P-1

GOT0(530,640,850,880)R

?S{P)=NDT?S(F)\ RETURN

*S(P1)=?S5{P1) OR 7?S{P)\ P=PI\ RETURN

S(P1)=?S(P1) AND *S(P)\ P=PF1\ RETURN

PS(P1)=?S(P1} XOR °S{P}\ P=P1\ RETURN

REM “OUT™

PRINT ?S(P)

IF 75(PF) GOTO 720\ $A="1"\ GOTO 730

$A="2"

IF NOT?M1® GOTO 740\ START B\ ELAPSE 2 TICKS \ &OTQ 730
$NI1H=SA+DECIMAL (INTCZAR(DY))\ THIE=TRUEN START B\ RETURN
75(25)

$A=1

of listing

483

NANE DHANA

10 REM "0 HANAGER YER 1.4" ;
20 REM "SETUP"

30 I=4

40 S14=7

50 ASSIGH J(5)=3.4,2,8,17

100 REM “SCAN OQUT @-S8°

110 ®*T=FALSE -

126 FOR Q=0 70 2

130 IF HOD(OR{Q) .51 =NOD(IH{D),S1#) GOTO 1350
140 GOSUR 300

150 NEXT &

14¢ IF °T GOTD 110

170 STOP)

300 REM "GET DATA & DEV HO"

305 ?T=TRUE

310 CH(Q)=MODR(OB(Q)+1,.51%)

J20 L=08(Q)+514+0

330 SN=$OH(L)\ S=LEN(SNI\ IF S>1 GOTO 340\ RETURRN
340 $A=SUBSTR{S$N.1,2)

I50 Q1=VALUE($AIN IF B1>9 GOTO 355\ 4¥=SURSTR{$N,3.5)\ GOTO 490
155 31=5

400 REM "XFER DATA"

405 IF 01>=5 GOTO 410\ RETURN

410 IF MODCIN(Q1)+1,514){>04(Q1) BOTD 500

420 REN "0 FULL®

430 START J(on

430 PRINT "Q-":Q1:"UAITING!™

450 ELAPSE 20 TICKS

450 GOTOD 400

500 REM "0 NOT FULL"

910 I#(R1)=MOD(IN(A1)+1,518)

920 L=1#(01}+51k={1

530 sQ#(L)=$N

540 IF J(G1)<>B 6OTO 545\ WaKE J{(Q1)\ GOTD 550
545 START J{01)

590 RETURN

DIw 3(20)}

DIY $H=20, $A=2

DIM I4C10), O8(10)

DIM $QH(70V=20

ENRD of listing

484

Vg ——

NAME DA18
10 REM *DATA ACD VER 1.8" |
20 REM "SETUP™
"5 TFAR=TRUE
30 N=10
30 H1=3
50 p=7
40 01=3
20 02:8
80 15 .
99 POINT=0
100 REM "RUN D4"
105 IF POH=0 GOTD 170 l
110 FOR 1=1 T0 POR
111 PGINT=POINT+I\ PRINT POINT
115 D=124(1-1) 48\ £=0
120 D1=D+1\ D2=D+2\ DI=1+3\ D4=D+4\ DS=I45
. 125 ?F=FALSE
130 X=INTCZAR(D))
. 135 REM "ASK DEVICE®
140 GOSUB(200.250,300,350) INT(ZAK(D1))+1
145 TF £<0 GOTO 160
150 REN *TYPE®
155 GOSUB(400.610.530,450) INTCZA#(D2))+1
160 NEXT I
- 165 IF NOT?F GOTO 170\ 7DE=TRUE\ START Ei
170 FAB=FALSE
. 171 GOTO 100 |
180 STOP
- T 200 REN "HEDIA" N
L 210 CH(NEI=X
oo 215 START M\ IF CH(H1)30 BOTD 215
¥ 220 C=CROKIIN TD=?VACHIIN ZD=XUB (K1)
225 RETURN
250 REN *11/34*
255 $L="10"
240 GOSUB 500 .
265 GOSUB 950\ GOSUB 700\ RETURN
300 REN *TT1:"
305 $L="04
310 GOSUE 500
120 GOSUP 950\ GOSUR 700% RETURN
156 REN "EMPTY"
S C=-1\ RETURN
0 REN "OUT CODE™

485

205
515
520
400
605
410
815
530
435
450
835

$T=DECINAL (INTCXAH(D)))\ T=LEN(ST)
$H=$L+$T+CHAR(13)

GOSUB 900\ RETURN

REN “BINARY"

GOSUR 800\ RETURN

REN "RINARY INVU™

?h=NOT?D\ GOSUB 800\ RETURN
REN "ANA 1"

GOSUB 750\ RETURM

REN "ANA 2¢

GOSUE 750\ RETURN

700 REN "ID.7D"

705
707
710
250

[4
?JJ

760
755
800
805
810
815
850
233
860
363
870
873
200
903
910
M3
750
95%
960
970
DIN
END

$D="."\ N=LENCSN)\ IF N<20 6OTO 707\ L=-1\ RETURN

N1=POS(SDLSNIN IF NE320 GOTO 710\ 7h=L0GIC{VALUE(SURSTR{SN.N.N))}\ RETURN
LD=FLOAT(VALUE(SUBSTR(SN,¥-3,N}))+1,00000E-04\ RETURN

REM “CK RANGE"

IF ZD>XAR{D4) OR ZD<XAH(DI) GOTO 745

GOSUR £50\ RETURN

PRINT "RANGE CR™:X\ RETURN

REN “upP DATE DIG D*

N=I-1

IF LOGICCINT(XDE(N))) NXOR ?D GOTC 815\ XDE(N)=FLOATCINT(?B)IN BIT!(N, D1#(0)
RETURN

REN "UPDATE AN D"

N=1-1

IF ABS(ZDP-XDH(N))<ZAH(DS) GOTD 845\ ?F=TRUE\ BIT{ N,D1#(0))=TRUE
XDTR(N)=ZDB{NI\ XDH(NI=XD

SD2R(NI=(TD-ZDR(N)+XD2B{N) /2.0

RETURN

REN "OUT Q"

IF HODCIA(Q1)+1,518)>084{01) GOTO 915

START @\ PRINT “DA1 @ VAITING!™\ ELAFSE 2 TICKS \ 5070 905
IR(Q1)=MOD{IH(Q1)+1, 5180\ L=18CQ1)+51%+01\ $0H(L}=3H\ START O\ RETURN
REW "IN G“

IF NOD(DK(02),S18)=H0D(IR(Q2),51N) GATD 970
O#(G2)=HOD(DE{R2)+1,5TH)\ L=08(Q2)+514# 02\ $N=$08(L)\ RETURN

SLEEP \ GOTD 953

$L=2, $T=3, $¥=20, $D=1, $N=20, $A=B, $B=8

of listing

-

NAME DACON2

10 REM "DA CONTROLLER VER 1.2"
20 REM "SETUP™

30 I=8

100 REX “SELECT SCAN GROUP"
110 A=0

120 TIHE T{D)

130 T=T{(2)

140 IF ¥OD(T,60)=0 GDTO 180
150 IF MOD(T,15)=¢ GOTO 190
160 IF MOD(T,5)=0 GOTC 200
1720 S=1\ GOTO 300

180 S=4\ 7F9#=TRUE\ GOTC 390
190 S=3\ GOTD 300

200 S=2\ GOTO 100

300 REM "SET MAX ADDIR™

310 FOR I=3 7D S42

320 A=INT(ZANCI) YA

330 MEXT I

340 PO#=A

330 START D

360 ELAPSE 30 TICKS

370 TINE T(D)

380 IF HOT?TF4% AND T<>T(2) GOTC 100\ ELAPSE 2 TICKS \ GOTD 370
DIN T(2)

END of listing

487

NANE LISN2T

10 REN "11/34 IN VER 1.27
20 REM "SETUP®

30 @=7

40 Q1=0

56 ON ERRDR &C TO 8O0

40 OPENIN @LI:z"TTI:DUMNY"

100
1o
in
120
130
139
140
800
210
00
9035
910
912
DIK
END

REM “LISTEN LOOP"

INPUT PLIz¢H

PRINT "L" =

IF $¥="" GOTD 100

GOSUR 900

’H=“.

GOTO 100

REM "ERROR™

CLOSE BL3:\ GOTO &40

REM "OUT @8*

IF MODCIRCOT)+1,518)4204(Q1) GOTO 9135

START O\ PRINT "LIS 0 WAITING"\ ELAPSE 2 TICKS \ 6OTO 905
TH(E1)=MODCIH(R1)+1,518)\ L=14¢01)+514+01\ $Q#(L)=$H\ START B\ RETURN
$H=20

of listing

nNaN
SR
10
135
20
25
30
35
40
45
50
55
100
105
110
113
120
125
130
135
140
145
140
165
170
179
180
‘200
203
210
212
213
213
300
305
400
405
410
419
420
00
595
510
515

520

E NEDIAS
EM "MEDIA DRIVER VER 1.46"
REM “FIND DEY™
TE1#=TRUE
FOR I=1 10 5
TE=FALSE
IF CH#(I)<=0 GOTO 45
C=CROIMN V=VR{IIN ZU=IVR{IIN ?U=70#(1)
GOsSuUE 100
NEXT 1
F1#=FALSE
STOF
REM "SELECTY I/O"
IF C=143 GOTO 5350
IF €<{1& GOTO 200
IF C=146 GOTD 300
If C<Bt GOTOD 400
IF €<%7 GOTO 140
IF C<129 GOTO 500
IF C£144 GOTO 160 ’
IF C<{141 GOTO 600
IF €193 GOTC 700
PRINT “"MON-EXISTENT MEDIA 1/C ERROR™\ PRINT \ CH(I)=-1\ RETURN
TURCII=PUN ZVR(II=ZVN VR(I)=V
IF NOT?E GOTO 180
C#{I)=-2\ RETURN
CH(I)=0\ RETURMN '
REM “AQVEAOI"
IF %v<0.0 OR ZVv>1.0 GOTD 215
V=INT(FLOAT(“001777)32V) .
V2=0\ FOR J=0 TO 9\ J&=J%4\ BIT{L J6,V2)=BIT(J,V1)\ NEXT J
HEM(7160000+4C+2)=Y2\ GOTD 145
PRINT “MEDIA ERROR AO=";ZV\ TE=TRUE\ GOTO 143
REN "uWD*"
V=NEN(“1560036)\ GOTO 145
REN "DO"
C=C-17
BIT(C.AC0))=?Y
FOR J=0 TO 3% MEN(“140040+J¢2)=A{J)\ NEXT J
6070 145
REN ™“AI"
C=0-97\ ?V=FALSEN V=0
If C»15 GOTD 520
MENC”160052)=C\ ELAPSE 3 TICKS \ V1=HEM(“160054)\ GOTD 540
C=C-16

323
550
560
S70
580
3%0
600
805
410
700
703
M0
NS
20
7235
- 30
735
740
DIN

" DIM

M
DIK
ERD

HEM(“140054)=C\ ELAPSE 3 TICKS \ VI=NEN(“140040)\ GOT0 540
VI=HEN(’1460040)

V=0

FOR J=0 TO 9\ Jé=J+s\ BIT(J,VI=BIT(J§,V1)\ NEXT J -
ZV=FLOAT(V) =9, 746543E-04

BGOTO 185

REM “DIN"

C=C-145\ Iv=0.0

V=NENC 1600640\ FOR 2=0 T0 15\ BIT{ IZ,V)sNOTBIT{Z.VI\ MLXT 2\ ?V¥=BIT(C,V)\ GOTO
REM "DIF"

C=C-161\ XV=0.0

GOTO(715,720,725,.730)(C/8)+1

V=MEN(“140070)\ BOTO 735

V=MEN{/150072)\ C=C-8\ GOTC 735 N

U=HEN(- 1500743\ C=0-14\ GOTO 715

V=HEN(“160076)\ C=C-24

U=(V-"000377)\ V=0\ FOR Z=0 T0 7\ Z1=15-I\ BIT{ Z,W=RIT(Z1.)\ NEXT Z\ *V=RIT(C
GOTD 145

AL

CRIS), V(D)

WH(T)

Zvas)

of listing

490

e e ey i —

NAME HELTH1

10 REN "HEALTH CHECK VER 1.1"

15 REN *®
20 TINE T(0)

30 OPENOUT @T:™TT!:DUNNY"
40 FRINT BTe"TINE ="3T(O)% 2 3T 3™ e TH{D)

50 CLOSE BT:

40 TVH(S)=TRUE\ GOSUR
45 FOR 1=5%% 10 %29

70 CH(S)=]

8¢ START 10\ ELAPSE 2
90 NEXT 1

95 RETURN

100 ELAPSE 30 TICKS
110 ?VH#{5)=FALSE

120 GOSUR 45

DI¥ T{2)

END pof listing

&3\ GOTO 100

TICKS \ IF CH(S)>0 6QTC 80

NANE CHRON4

10 REM “CHRONATICS LINK VER 1.4" ~
20 REM “SETUP®

30 D=2

40 ON ERROR G0 TO 300

50 CLOSE @B1:\ CLOSE 2D2:

100
105
110
200
210
220
230
240
250
300
310
320
DIX
END

- e e e

REM "RUN"

DPENIN @D1:"TT72:DUMNY"

DPENQUT @R2:"TT2:DRUNNY"

INPUT BD1:z$N

IF sN="=" DR $N="" BOTO 240

IF NOT?NE GOTO 230\ START D\ ELAPSE 2 TICKS \ GOTOD 220
SNE=¢N\ ?NE=TRUEN\ START D

IF ?4# GOTO 250\ PRINT €D2:"%\ GOTOD 200

tH=sMA\ PRINT @D2:$MAN $Mi=""\ 7?ME=FALSEN GOTO 200
REM "

CLOSE eD1:\ CLGSE @D2:\ IF sK="X" GOTC 320\ GOTC 109
STOP

$N=20, $H=1

of listing

492

NANE COMAH2

10 REM “AHS COMMANDS VER t,2"

20 REN “SETUP™

30 ASSIGH $CCO)="ED™,"TI","RE™,"ST","RU","X"
100 REM "RUN"

10% C=0\ PRONPT “H8" INFUT SN

110 FOR I=0 TO 5\ IF $N=$C{I) GOTO 120N NEXT I\ G5OTO 130
120 C=I+1\ NEXT I

130 GOSURY 200.250,300,350,400,450)C

140 5070 100 N
200 REN “ED"

21¢ STOR 2,2,12

220 OVERLAY LERR=800:“DDO:EDIT"™ INTO 2,"R™
230 SIOP

250 REM "TI"

260 TIME T(OI\ DATE PCOIN PRINT DUCOYa"/%:D{t) e {2}, T(O) 2 ™2 s T) s e ™ T{2)\ RETURN
J00 REN “RE™

J10 START 1\ STOP

J50 REX »5T"

360 S5TOP 12.8.9\ RETURN

100 REX "RU"

410 START 12.9,.8\ RETURN

450 REM "X

4460 STOF ,

300 PRINT "COVERLAY ERROR™\ GOTEG 100

DIN T(2}, D(2)

DIN $C(5)=2, $N=2

Eﬂﬂ of listing

NANE SETUP

DTN EH(20)., EVH(100), GE(20), DIB(30Q)

DIN ZAR(240). XER(100), ZIDH(100), ZDIHC(100), XD2H{100)
END of listing

.

NANE PCPNC2

10 REN “PCPMC VER 1.2*
20 REM “s"

J0 G1=4

40 02=9

S0 h=10

35 Hi=t

40 0=

70 TFAR=TRUE

100 REN "R*

105 GOSUR 950\ IF NDT?G GOTO 110\ GOSUR 200

107 GOSUR 900\ IF *0 GOTO 105

110 TFaB=FALSE\ STOP

200 REM *=° - '~

210 C=VALUE{SUBSTR{SN,1.3))\ IF C<30 GOTO 220\ RETURN

220 CE(M1)=C

230 START M\ IF CH(M1)>0 GOTD 230

235 V=UH(#1)

240 IV=ZVH(N1)210000.0\ $U=DECINAL{INT(IV))

245 IF LEN(SV)>=4 GOTD 250\ $V="0"+$V\ GOTO 245

250 $H="12"+$N+"0."+$V+DECINAL (V) +CHAR(13)

260 PETURN

200 REN “0O¢ :

905 IF HOD{IH(@1)+1,518)<20%(01) 60TD 915

710 START @\ PRINT “P @™\ ELAPSE 2 TICKS \ GOTO 903

P15 TH(Q1I=MOD(IHCOT)+1,518)\ L=I#(O1)+3184a1\ $QE(L)=$M\ START O\ RETURN
750 REM "1g* .

955 IF NOD(0H#(@2),51#)=NOD(IR(G2),51%) GOTC 970

960 *0=TRUE\ OR(Q2)=NODID#(02)+1,514)\ L=0H(Q2)+518 02\ $N=$QK(L)\ RETURN
970 ?0=FALSE\ $N=""\ RETURN

o g I

 DIN $N=20, $4=20, $v=4

END of listing

495

NAME UWD3

10 REM "SYS UATCH DOG DRIV

20 MEM(71460034)="110000

J0 TIME TCOON IF T4O¥T(1)+T(2)=0 GOTO 40\ STOP

A0 FOR I=0 TO INT(ZARU10DN IF ZE(I)<{=~1,00000E¢04 GOTO SO0\ XE#(I)=XER{I)-34400.0 |
90 NEXT I |
biN T(2H |
ERD of listing

nee

]
»

750

NABE ERIT2

10 REN "EDIT ADB VER 1.2*

20 REM "5*

30 ASSIGN $CC1)="I".“R","D","X","L"."P"
40 ON ERRCR GO TO 900

100
1o
120
140
200
210
220

- 230
,' 240

300
305
310
315
350
355
360
365
400
405
410
413
450

&,45..1
500

505
950
555
260
365
700
703
210

753
q00
903
e
DINM
DINM
END

REN ™®

FROMFT "> * INPUT $F\ L=LEN($F)\ IF L=0 GOTO 100
$X=SUBSTR($F.1,1)\ FOR I=1 TO 4\ IF $X=$C(I) GOTO 200\ NEXT I
GOTO 100

IF L<2 GOTO 210\ A=INT(SUBSTR($F.1.L)I\ -IF A>0 GOTO 220

IF 1>3 GOTO 230\ PROMPT “ARRAY ELEMENT NO =

IF A<=0 OR AXINT(ZAH(1))+1 GOTC 100
GOTO(300,350,400, 450 300,530)1
GOTD 100 -

REM "IN*

IF A=1 GOTO100\ GOSUB 700 -

" INPUT $F\ A=VALUE($F)

GOSUB 730\ FOR J=INT(ZAR{1))+1 TO A STEF -1\ Jt=J-1\ ZAR(D)=TAR(JIIN NEXT J
ZARCA)=XBN ZAR(1)=ZAR(1)+1.0\ A=A+1\ GOTO 300

REM “RE"

GOSUR 700\ IF $F<>®-" GOTOD 350\ A=4-1\ IF A<{=0 GOTO 100\ GOTD 355
IF $FEO"e™ GOTO 385\ A=A+IN IF AZINT(ZAH(1)) GOTO 100\ GOTD 235

GOSUB 750\ ZAR{A)=XB\ GOTO 350
REM "DE"

FRINT "DELETE "3\ GOSUB 700\ IF $F="Y" GDTO 410\ GOTO 100
IF ZA#(1)=0.0 GOTO 100\ FOR J=A TO INT(ZAR(1))\ J1=J41\ JAH(I)=XAR(J1IN NEXT J

ZAR(1)=2AB(1)-1.0\ GOTO 100

REN **

OVERLAY .ERR= 100.“DDO DISP2" INTO 2
REM " -

FOR J=t 10 IHT(IA!(1))\ PRINT J3* => "ITARCJII\ NEXT JN.PRINT \ GOTO 100

REN %",

TINE T(O)\ DATE D(O)\ OPENOUT QE:™TT1:DUNNY"

PRINT EE:D(O)z™-"sD(1)z"-"2B(2),T(0)s"s"sT(1) 21" 2T(2)

PRINT @E:\ FOR 2=1 T{ INT(ZGH(I))\ PRINT BE:ZAR(J)IZ" "3\ NEXT J\ PRINT GE:\ CLOSE
REH "= -

PRINT AZ"=>" XZAR(A),\ INPUT $F\ IF $F="" GOTO 710\ RETURN

RETURN 100

REN "~ ~

PRINT ,™= "5\ INPUT XB\ RETURN
REN “ER* -

E=ERROR\ IF E=12 GOTOD 910\ GOTD 450
PRINT "REDIM ZAHO)"\ GOTC 100

T2y, D)

$Ct4)=1, $F=5, s$X=1

of listing

497

NANE LOAD2T .

10 REM “ADR XFER VER 1.2"

20 REM "SETUP"

25 S10P 13

J0 QPENQUT @C1:™TT2:DUNNY™

A0 OPENIN €C2:™TT2:DUMNY™

100 REM "RUN"

110 PRINT @CYi:™=™\ INFUT BC2:$N\ IF $N="READY" GOTO 120\ ELAFSE 20 TICKS \ GOTO 110
120 ON ERROR GO TD 850\ PRINT 8C1:*0"\ INPUT @C2:XN\ N=INT(IN)

130 ON ERROR GO TD 800\ XAH(N)=0.0\ ZAH(1)=XN

140 ON ERROR GO TD 850

150 FOR I=2 TO N\ PRINT 8C1:*0%\ INPUT @C2:IN\ XA#{IXY=ZN\ NEXT I

700 REM “X"

705 CLOSE eCt:\ CLOSE @C2:

710 DVERLAY .ERR=720:"DDO:DISP2™ INTO 2,"R™

- . 720 PRINT "OVERLAY ERROR DISP“\ ST0OP

. ~<%* 800 REN “ERI™ . .

810 E=ERROR\ IF E<>12 GOTQ 700\ PRINT "REDIM ZAR™\ PRINT 8Ct:"1"\ GOTO 200
B850 REM “ER2"

840 E=ERROR\ IF E<>1 GOTO 700\ PRINT "XFER ERROR"\ PRINT GC1:“2*\ GOTO 700
DIN $N=20

END of listing

$STR

Job MName Stream Device Filenane Status
2 DISP4 @T Closed
3 TALK3T @713 Closed
11 HELTH1 OF Closed
12 LISN2T L3 Closed
13 _ CHRDH4 oDt Closed
13 THROM4 @R2 - Closed
19 TEST 07 €losed

499

$GLO

LIS

Nanme Referenced by jobs

IH{10) 1.2,3.4,7.8.12.17

gR{10) 1.2,3.4,7.8.12.17

TAR(240) eSebeB,F.15.14

~ERC100) .15, 16

5

TN

$NK=20

THiE

$HtE=4

Kt

$M4=20

CyL3)

WHLS)

S18

$a8(70)=20

YH(T}

$FH{40)=20 4

$T#¢40)=20 4

TF28 3

K81} S

TER b

D14 (30} 3

Ce Tl e Ipsd10o0) S

Lol - E#(20} S

. . 2028{100) 9
3
4
é
é
8
8
8
8

— et P IR EI NI I D 4 s
-

4 131D

. T E1R(100)
S 34
- GH(20)
’ ’ 7GR
TFAR
S POX
PR TUR(S)
oo T01#(100)
718 10
128 18
TR 17
7E94 1.5,9 ‘
%3

500

o aemer— ——

$512

LIS

Job Nawse Slot
1 POV4 43¢
2 DISP4 750
3 TALK3T 250
4 KBORIS 1400
5 EPé 200
) aGé 1000
2 ONANS 500
8 batg 1100
9 DACONZ 300

10 MEDTAS 1000
LR HELTH1 200
12 LISN2T 250
13 CHRONA 220
14 CONAH2 350
15 uD3 200
Té SETUP 20
17 PCFNC2 410

18 1INt 40
19 TEST 140
20 JOB20 0
Gleobals 5017

s1Ze

Free space Job size Unallocated

230 220 0
50 700 0
10 22 0
30 1570 0
64 ~ 836 0
398 602 0
67 433 0
98 1002 0
51 249 0
148 . 852 0
37 143 0
27 223 0
2 218 0 |
50 300 0 f
97 103 0
2 18 0
4 404 0
2 59 0
19 121 0
0 0 Q

1730

'
- i"‘» ¢
" *‘1.—;¢

$FRO
Job no. Duner
60D

S0 O A b i B -

-t ah
—
‘

107

B N P G
b B - BN B SOE O AR

b3
<

SUSER

Quner Nane?
Owner

¢ap

NE®

0P

Prot
10

DO O D OO0 - DD OO DO DOOO
B

Prot
127
10

10

Prior
100
22
44
24
25
26
41
40
29
44
n
44
33
34
45
34
37
38
39
40

Prior
32764
100

3

Pravileqes

Gu
&y
&y
6w
GY
Gu
&U
6u
Gu
6u
GU
Gu
&W
GY
6y

Gu
&y
GUY
Gy

GS
GS
GS
GS
65
GS
GS
65
65
GS
GS
GS
65
GS
G§

G5
G5
GS
S

Jl #P
J1 NF
JI WP
J1 KP
JI P
J1 WP
J1-§P
JI HP
J1 P
J1 NP
JI MP
JI WP
JI HP
JI NP
JI NP

JI WP
J1 NP
J1 NP
JI #P

Privileqges
SH 6C GU GS
SH GC GU GBS

502

D1
b1
11
1
I}
U
D1
b1
Bl
M
D1
nt
i}
i
Bl

i}
Dl
Bl

T
L

JI1
J1

ou
ou
U
ou
ov
ou
ou
ou
ou
ou
ou
ou
ou
oy
ou

ou
ou
ou
o

KP
HF

FC FO
FC FO
FC FO
FC FO
FC FO
FC FO
FC FO
FC FO
FC FO
FC FO
FC FO
FC FO
FC FO
FC FO
FC FO

FC FO
FC FO
FC FO
FC FO

D1 O
DI OU

A0
AD
AD
Al
RO
A0
AD
AD
AD
AD
AD
Al
AD
AD
Al

Ao
A0
AD
AD

FC
FC

NF
NF
NF
NF
NF
NF
NF
NF
NF
NF
NF
NF
NF
NF
NF

NF
NF
NF
NF

Fo
Fo

MR
MR
NR

MR
NR
NK
NR
N
MR
HR
HiN
KR
MR
MR

KR
MR
NR
HR

AD
AD

LY
L1
Ky
L
My
My
MU
Lt
[t
bl
Hu
My
My
MY
MY

Ny
NU
MU
hi'}

NF MR N§
NF MR WU

10
20
30
40
30
60
83
N
70
7%
80

g5

20

0%

100
11¢
120
130
140
144
143
150
155
i&0
145
146
170
175
180
200
205
210
215
220
230
235
2490
245
244
250
295
07D
300
30%

/~=- ALARM DISPLAY FAGING PACKAGE
/w== §. HOENIG., LUT, MAR 1982
¢=-~ VER 2.0

-~ SETUP
DEFINTP.L.D,S. U, X, I,T.N,F.C
U=100
DIRP(V,4),Ts(W)
FORX=0TDU=-23P(X+1,1)=X2P(X+1,2)=X+2:NEXT
PLUL1)=0-11P(U,2)=0979
LAzUeFI=1:N=0:PN=21:PL=0 D=1 -
DEF FNCO(W, X)=VALCHIDS (N3, U, X))
ONERRORGOTD900

PRINTCHR$(27):"ROC™;

‘-~ RN CORTROL

GOSUR2000

GOSURYIQ00
GOSUE200:L=LEN{NS):IFL=0THEN130ELSEF=FNCEB({1,1)
IFF<ATHENGOSURI00

NP=F1

IFF<:2THENGOSUBYZ0
ONFGOEUR450.350,400,430,1200,1250
ONFGOTO160,130,140:60T0130
IFI1<>1THENDI=1260T0130

I=0:D=X142: IFD>NTHENDE=1:60T70130
GOT0145
IFN=0THENRETURNELSEFORX=DTON:X1=X-1
IFF(NP,4)=0THENIBOELSEIFF(NFP,3}=CTHENI=NP:X=N
NP=P{NP,2) :NEXTX2zRETURN

#e=. 1/0 ROUTINE

CNERRORGOTO29S

TIKEOUT2S .

IFNS=""THENNS="¢"

PRINTHY NS zHig=""

FRINTCHR$(27)"0RF";

LINEINPUTRI NS

PRINTCHR$(27};"0R4";

ONERRORGDTD900

GOSUB1120:PRINTNS ;CHR$(27);"DA1*;
RETURN
IFERF=25THENPRINTCHRS (27} "0R4A™ S :PRINTH1 "+ " ;RESUNEDIOELSEONERRORG
0

f=- DECODE
F=FNCO(1.1)

J106 C=FNCO(2,3)
315 TO=FNCO(2,3):T1=FNCO(S,2):72=FNL0{9,2)
320 DO=FNCOC11,2):D1=FNCO(13,2):D2=FNCO(15,2)
325 RETURN
350 “-- ACTIVATE
355 GOSUR500
340 RETURN
400 “-- ACCEPT
405 ONP(I.4)G0T0410,415.420:RETURN
410 D1=1:RETURN
415 GOSUBII00:F(1.4)=1:RETURN
" A20 GOSURTIIOC:P(I.4)=0:RETURN
430 “-- GEN ACC"
435 IFN=0THENRETURNELSEI=FI:FORL=1TON:X1=L-1:G0SUR400:I=P{I,2)sNEXTL
440 PETURN
_ 450 “-- NAL N
.. 45T ONP(I,4)GOT0440.465.470:D1=1:RETURN
: 4460 T11=1:50SURII0O:P(I,4)=0:RETURN
455 DI=13P(1.4)=T2RETURN
N 470 D1=1:RETURN
DR) 500 “-=- INSERT
e 505 IFN+1>UTHENRETURN
‘ 10 H=H+1:P(PN, 3V =CeI=PHIP(PN,4)=2:PN=P{PN.2):L=N:G0SUEA50:RETURN
550 7-- DELETE
555 IFI=FITHENFI=P(I.2)}
960 PLLA,2)=1:P(P(I,2),1)=PI 1) sF(P(T,1),2)=P{1,2):P (1,1 =LAsLX=F(],2
}iP{1.2)=9999:N=N-1:LA=I :RETURN
400 “-~ LIST/REPK
405 GOSUR1I100
410 IFN=OTHENRETURN |
4630 LL=FIsL1=N:FORL=1TOL1:]I=LL
433 LX=P(LL,2)
435 IFP(LL,4)=0THENGOSURSSO
' 440 LL=LX:NEXTL:IFN=0THENRETURN
T 845 LL=FI:FORL=1TONzI=LLsLL=P{LL,2):605UB4S0:NEXTL sRETURN
. 450 “-- PRINT/ADD ~
.. 855 IFL<PGORLIPG+4STHENRETURN
S 660 PRINTL}CHR$(9);:0NP(1,4)605UBE70,475,475
865 PRINTT$(P{(I,3)):RETURN
470 PRINT™A"3:RETURMN
475 PRINT"#"3:RETURN

C © 900 “-- ERROR
NFC 905 ONERRORGOTOD
S 1000 “-- SCREEN INT

N . 1003 PRINTCHR$(12)
1005 PRINTCHRS$(27):"0A0"-US11511000480";
1016 FRINTCHRS$(27::*DA1F UST1013000478";
1015 PRINTCHR$(27):"DA2"P*U0,0.511,11";
102¢ FRINT"VC176-°511,12,0.,12,511.479,C,. 479" CHRS (21} 3""C2";
1100 “-- BLANKI
1105 PFINTCHRS(27);"0A1":CHRS${12) :RETURN

1120 7== BLANK O
1125 PRINTCHR$(27);"0A0™;CHR$(12) :RETURN
1140 “-- BLANK 2
1145 PRINTCHR$(27);"DA2" ICHR$(12) :RETURN
1200 -~ SRC UP
1205 PG=PG-10:IFPG<OTHENFG=0
1210 GOSUBSOO:RETURN
1250 “-- SREC DOWN
1255 Pe=PG+1Q:IFPGY=HTHENPG=N
1260 GOSUE&0O0:RETURN
1300 “-- RENOVE
1305 IFX1<PGORX1>PG+45THENRETURR
1310 CX=CURSY(1}:CY=CURSY(1):FRINTCHR$(28)
e) 1315 IFX1-PG=O0THEN1325
) 1320 FORJ=1TOX1-PO:sPRINTCHRS$ (10} tNEXTJ

1325 ORP(1,4)607T01330.1335.1330

S N 1330 PRINT"~@"3:60TD1350

ST 1335 PRINTCHRS(9Y5™AY::00TO1230
1350 PRINT*TU"S:PLOTCX.- LOTCY:RETURN
1400 “-- UFDATE
1405 RETURN®
2000 “-- LOAD
2010 RETURN
7000 FORH=1TO10:FORG=1" -1:FRINTP(H,0), :NEXTG:FRINT :NEXTH
=C2ROE

|

Scan OUT Q pointers
First set @ number to 0

,t_.
Are
I’L— o o OUT Q
I1/0 pointers”

. Is N

“this the\ N ; Increment
-. last OUT Q number J
~.oQ?
Y f

WM Increment OUT Q pointer

v . !;here a ™~ i
L~ " service :eqn;%
unring sca

? 4 .
N i
Calculate subqueune record!

Stop location i
L = 0#(Q) + S1¥*qQ i

o ' ;

b et Ak e e —— W m =

i
1

' : Retrieve Q record contentsi

|
:\.\f .o , end place in ¥N i . ‘
_,l i}.:\ - I3],] |
e T ‘Obtain destinstion Q from

:l header and place in fA

e o 8
Q header

e Y
1)
$owesane o reater tha
L 5 :
: . ’ N Set destination Q

o ; i to host link Q1 = § |
Remove Q header information. '
from #N and place in Q1 j

! T3
! o~ ﬂestinatzo

‘- Q number
~val un/ C

506

Start destination

job slot
N
- Print error
. Increment IN Q input nessage
- pointer |

Calculate subrecord location

- - . I

Wait 20 ticks

. Insert N into subgue record
' - location

T T VWake or start appropriate
R job slot containing IN @ °

Pl S T L
-

507

Dimension
Integer Global Variable Arrays
E#() = no. of events (%A#(10))}/16
E1#() = no. of events (%A#(10))
G#() = no. of alams (%A#(11)
D1#() = no. of DA units (%RA#(9))/16

Dimension
Real Global Variable Arrays
GA#() = ADB size RA#(1)
%E#() = no. of events (%A#(10))
%D#() = no. of DA units (%A#(9))
%D1H() = " .
SD2#() = v

Assign Commend texts to $C{0)

>

Prompt console with ##
Input $N

PRIV

Run Stop Exit

L [,Stop jobs| |Obtain Start job 1 Start all Stop all| (Stop)
Seos 0 1112,7,2° | |system jobs for alam

T time glarm sys jobs .
oo date
C - Overlay Edit Print time

N task into . and date to
O Job slot 2 console -

a7 f ‘\’ !) *‘ L h
Y i s

-
overlay
’<error?

' Print error/

509

Set memory location 160036
octal equal to 110000 octal

Obtain system time

Obtzain the number of event
- statns units form data base
header ®A#(10)

Subtract 86400
from time value
(1Day of Seconds)

|

Increment connter

1

Setup job slot locations

Set error trap
ERROR

Open for ountput TT3:

“netneve N from IN Q |

INQ

/

Print #N to the
1ink 1:|.ne TT3:

l Close TT3: for output

|

Close output

‘ Stop)

b
[Setnp job slot locations |

Set Error trap
ERROR

i Open for imput TI3:

¥

s

/ Input from TI3:
into X3

| Send §¥ into Q system
|
Clear £

-

Close TT3: for input

CHROM

Setup job slot location

Set error trap

ERROR
o
z &

]Close inputs and outputs on TT2:
This clears system after loading
. ADB
{ -
Open TI2: for input and output‘

F N

/
// Input from TT%; and place ii///

outstanding Start Display
service request to | task
N {
. 'Wait 2 ticks
Place $N in transfer
variszble $N# - |

Send service request
IN# = TRUE

!Start Display task

-
Is
there a
service request

e

.. o e .

— = am =

Print a null
\\f om the Displa string to TT2:
t:\s%=

-
" .
x &

513

/ Print $M# (message for Display
task) to TI2:

.
.y l

Clear fM#
Clear service request ?M# = FALSE

O
{Error)

roT) Close TT2: for input
and output

Setup job slot locations,
Q numbers, and Media link

Set Media Channel reguest to 145
{(first channel of 16 group on DIM card)
and start Media Driver

—(

nteger respons
of 16 group equal to O
i.e¢. no key response oz

Calculate first DIM Media
Channel number which is
true

DIM card

Set Media Channel request to 161
(first channel of 8 group on first DIF card)
and start Media Driver

]
-

integer response
of 8§ group equal to 07
i.e, key response o
DIF
card
l/’

-
m«
t DIF carg

N

Calculate DIF Media
' Chennel number which

is true -

A) \r

| Set Media Chanmel request at
start of next group of 8 and

Convert Media Channel
Number to Key nmmber K

start Media Driver

f 1.
" !Elapse 5 ticks
t

Eey Control

| INQ | Set
iretrieve N from @

Function fF#(0)=FN

Eey number teo 0 ‘

Function Sub r
H

Key Control

Check key mask

Is key

1]

Beep
Y

Fn-nc tion Sub -

. - (Check Key nag]

Is ke 5
mask b{t\'

trge 1

- IM=True

; l MM=False

ra
.

Geturn)

(:%nnction Snb:)

c functx { return)
ﬂ?#(x)

Set function pointer P
to begiming of the
function code string

Obtain function code operator T
e from function string

Is

there a
function code
operand in

L N l I |
< Mask | || Domask | ON OFF Beep l u Clear
- } I
Send Hold Toggle HkSet No Function
| | ! ‘ l 1 i
i 3
///Is
this the
< last function f return
code in

| Step to next function code in
function string

517

Mask

| Get function code operand (key aumber)

I

l Set mask bit for key to True

, return)

t
.

Unmask

o=

Ve
wh la x oy

= . Eiéet function code operand (key nnmber)\

s
[}

l

Set mask bit for key to False l

Get function code operand
(Media Channel Digital output)

it a
valid digital

-

Set digital output status
bit to True

-

Request Media Driver service to
turn on cutput

-P.":n. S gl
-~
v -

P TR

Zn

St

= -

Get function code operand
(not used)

and off digital output for

riequest Media Driver to tuxrn on
"l keyboard audio device

PRl

T) {return)

Clear

; Get function code operand
i (ssbfunction number) T

Clear Digital
output status
bit array

'jCIear Key
mask bit .
array

o
<

-

B

Perform subfunction
T=1 and T=2

Perfom a Medis
Driver request to
turn off each
digitel oumtput

] that was on

t

1

return)

Hold On

Get function code operand
{(digital output number)

I

- &s
- it a N
valid channel

-»{ Teturn

ruber?

Set digital output

| status bit true

! Issue a Media Driver request
| to turn on digital output

pressed via
dia reque

Torn off digital
| output status bit

Issue a Media Driver request

e to turn off digital output

el {return)

520

Get fonction code operand
‘ (subfunction) T

a 1
Output toxt Fi= { Output text M= Output text M= Buffer
Key text + CR lKey text + ESC Key text Key text
[s !] 1 o

"

} -

T

i
o - 1

|

Oantput text Fu=

h Output text $h=

FOutput text $N

"i

rDelete Last

Buffer +CR Buffer + ESC {Buffer Character
from Buffer
- I I '
oUTQ .
Send ¥4
. -
Return

Delete Characte

thero a N

bnffer
~ent

Eemove last i
_character for buffer ¥Bl J

Delete Buffer $B1

SR

i -
{Return)

521

(:anfar Key Tefg)

~irst Buffer
“~ent
M

Strip two characters
Q header from key text
T

Add remaining key text
to buffer $£B1

[

Buffer £B1 set equal
to full key text

-

i

/// Print to console ///

p———

etuorn

Get function code operand . -
(Digital ountput channel number)

—:I Retorn)

OFF

i
iwnit 10 ticky |

e ———] .1 tu

Get function code operand

{Subfunction)

I i
User User User User
Specified Specified Specifie Specified

(Return). -

523

G

Set busy flag 7F1#

Start increment through Communication

links I=0

Transfer globals to

[local variables

-~
- -~
Select
1/0
l | | [|
AX A0V/ A0 DIF DIM , WD ' Do
i { i

Set error flags

Transfer locals to
global variables

1

Inérament I

| Clear busy flag —@

. From channel number calculate
. which multiplexer card
R) to address

¥rite analogue input line request
to multiplexer

¥ait 3 ticks for settling
time of anaolgne input

: Retrieve 10 bit pattern from
: analogue input card

- Calculate the normalized
l value %V 0.0 to 1.0 *

(Return)

apegw e Y

<7 -

v ‘r.‘_x_.:_;’, LN
LA 0

g ramaped
LR - -

W e .. Set error flag
oo o Calculate 16 bit pattera
T ’ fron %V
L] - R
. d Write pattern to Media memory
i location according to channel nuwsber

i
/--—-—‘_

Return)

525

Calculate which digital input
card contains channel nuomber | .
requested

Read 8 bit pattern from digital
input card

Reverse bit pattern and place
bits in least significant bits
of V

| Retrieve bit corresponding to
B channel number requested and | -.
e place in logic value 7V

J
|

Cazlculate which digital input
. card contains channel number
‘ requested .« -.

7+ [Read 16 bit pattern from digital
input card

t

p i Place bit pattern in V and
- invert logic

P S vt -
- 2

- R ~ i Retrieve bit corresponding to
channel number and place
i logic value in 7V
i

Return

Read bit patterm in
*160036 and place in V

¥rite bit pattera
'110000 to ‘160036

Update event time arrey every
’ 24 hours

{ Return)

I
Set bit in A(0)
corresponding to 2V
at location calculated from
channe]l number

¥Write the three 16 bit patterns
in A(0) to the three digital
output cards

0 T (Return)

DACON

Obtain real time

Select data scam group|
calcnlated from real tim
seconds value

Set maximum scan group
number in S

Calculate the total number of
variable definitions to be executed
by summing scan group totals

~.° depending upon the maximmm.:y-|:

scan group number § -~ -

Set the global variable PO# to
maximum number of variable
definitions

| Start Dats Acquistion |:-,
l task . .

Yait uvntil end of

present second count - : it

528

@vm maocasson)
|

Set busy flag F2#

Set hysteresis truth table
BH(0)= '34614

H(1)= *143

Locate which DA changed
" as indicated by bit set
) in D#(I)

an event
occurred

Start alzm
generator

Ye

Clear busy flag -

Sto

529

-

Locate event definition in
%A#{) by steping through
event definitions until
the correct ome is found

Retrieve the event definition
record elements

-

gelec
event type
?
‘ . 1 1 1
E Binary Binary | Analogue Trend Deviation
Invert l -
T

r

2 changd
in event
status

Set event flag in E#(0)
event status image

53¢

Binary

‘Binary Inver{)

|

Locate current logic
value in %D#(), place
in B

Locate current logio
value in %D#(), place in
7B and invert

]

e
foe

1EAifferent
found in even
status ima

Set change flag

Return)

{Return)

Locate DA unit trend valaue
%D2#()

Calculate which value region
g DA value is in
N=1, 2, 3, 4, or §

Locate the previous region of
the variable in E1#()

l

[Calculzte transition number
and look up if event is true
in hysteresis truth table

}
1
“there a Py
ange in eve

“status?

vy
f
| Set change flag

e

!

{Retnrn)

531

Setup job slot locations

Start job 13
Chromatics Liak

[Set Busy Flag ?F5#
II':

Check INQ
obtain ¥N

ﬁ Select Display function

 Obtain SN from fN#
& request Clear IN#

rom the Chromatics

nk IN# = TRIE .

Select Display
function

Obtain #N form FM1¥
Clear ?M1¥#

. Select Display i
|| function]
T |

rCIetr busy flag ?FS#J

{ Stop

‘ Select Display Function)

(Return)

quest len v Output 2n “X” to
4 1 and e Chromatics link to
\ #N + ‘L* Stop task
? -
C

Obtain function code A
from the first character

of ¥N into job slot 2
~Selec
function
A=
"_R-estut Display
task |
hﬂam Off h Alarm On l Out to VT100
: Out to Chrom Out to Send to)
i l T43 another Qfl
i
¥
"] i

T ————
Return

533

Set Logical variable
T = TRUE

Alarm Off

Set logical variable
1T = FALSE

1

Form request to ke?board
$x = * 070500’

f
oUTQ

|

H

Obtain alarmm output code from
and place in C

Set M output message equal
to N input message -

Add time and date to -FM

Media routine to set
digital outputs C and 2T

Chrom link
send M to Chromatics

|
@erem) -

VYT100
Print text to comsole

Obtain text from #N
and place in Ty

7/ Print $M to console/

Chrom
send text to Chromatic

Obtain text from #N
and place in N

Chromatics link
send M to Chromatics

|

Send to
Another Q

{ Obtain message to be placed
in Q system from #N and
place in M

|
oUTG

{Return)

T43 Printer
send text to TT1:

Obtain text from #N and
place in fM .

l

E Open ountput on@®T: for TT1:

P
/ Print M to T1: /

; Close output I

535

(Chromatics Link
.o end data to Chromatic

Is
4] Y

-

Wait 2 ticks

I

Set IM# = M
M# = TRUE

-

) 4 (Return) -

536

(:§utput Alarm CO;E)

Yas
result of
alam cxpressis
True?

Set first character in
alamm output code FA = "1

Set first character in
alarm output code A = »2°|

-

| Start Display task

VWait 2 ticks

|

Set link transfer variable FM1# to
$A + output code in alarm definition

Set link request ?M1# = TRUE

(Return)

» (ELARH GENERMNM{)

Set busy flag ?F3#

Determine total nmmber of alamm
definitions form ADB header
®A#(11)
and starting address of alam
definitions RA#(8)

Set data base pointers to first

alarm definition -
—T

-
Is

a in questignA _ :
1lready ~Is
™~ y g there an
N expressi

NS

‘________1 | l
i Process
| Expression
I Find previous alarm status
s there bee v - _J Set alarm change flag

a change in " > 7G#, update status
status . I record
1
14

Output alarm code

¥

H

r
pr———-

last alamm :Aplenr busy flag

definpitio

vV (Sto;_ﬁ

, Increment to next
alarm definition

L4
3

s
it

H
PRy

py
Y

o1

F 35,
ol
N

oy T
i

e

r

r
N

-

¥

x5
Er. 1
[- 5}

' : v- t - ‘
A
I t} Lo

w2
R

3
4ot
ﬁﬂhi;

*

SE
*—gz“; Rk
‘,ﬁ:@s
. o] 2 B i

[& LA
o
% e
-

e,
i
4
I
I
f
P

pRea
e}

4
A

ale

P
g

X2
3

(o
£

v
<
TR

e
l}.“‘
HATn

p LT

a4

:

(:Prooe:s expressio{)
|

Get first entry in axpression_]

operation
R =

¥

NOT ' OR AND
Invert OR last And last
last eatry two stack two stack
in stack entries entries

X0R

XOR last
two stack
entries

Rednce stack by 2
place result in stack

|
SEQ - vor
check event " mejority vote
times of events items in
in stack for stack
chronological order

i Reduce stack by nmmber in

SEQ or VOT place result

in stack .
Is
{fe:e snothes
e\xpressio > Return)
t
Y

. Increment to next

expression entry

539

|Set Busy Flag 7F4#_|

Read global variable PO# to obtain
total number of variable definitions
to be executed

l

Start data base scan
I

Calculate the location ‘of data aquisitionm
definition in alarm data base

Media 11/34 TT1:
(TT2:) .

l 1

Binary Binary Analogue 1 Analogue 2

Set D# True

Start Event
Processor

Clear Busy Flag IF4#

i o, 1
TR

T

4

‘ Media '

Issne a Media Driver request to
retrieve data for appropriate
plant code C

a5 i e

sy

i

N ta
Wit

ey

e S AR A

L

i
o Y

Retrieve data in %D, 7D

(Return)

-

et e b o B

WL.
=

(11/34)) TT1:

g

, Form output code text Fomm output code text
{ for 11/34 1link
{

for TI1l: line
M =10 + plant code = "04" + plant code

e
+
: g ouTQ
] ;L Send ¢M
n
[A
INQ

Weit for response

o POy
'

~ay

Retrieve data from returning message
and decode message to obtain %D, 7D

(Return)

541

‘ Binary ’ (:%inary InverE)

invert 7D

le

I

Set significant change flag ?F -
Update data store %D#()

(Return)

Analogue 1 Analogne 2

Perform linear conversion

Perform range check using
data in alarm data base

oy
X

Ny
o
»>

,:;’y':%

NEBATS
Arey

1

o
o

L‘ }:‘_f;:
i
3 Faat

i
doxnda

& }3-3-:‘15, e

L]

=

o

-

=]

]

B

A

542

N

[N

