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Abstract

There exists substantial applications motivating the study of nonlinear lon-

gitudinal wave propagation in layered (or laminated) elastic waveguides, in

particular within areas related to non-destructive testing, where there is a

demand to understand, reinforce, and improve deformation properties of

such structures. It has been shown [76] that long longitudinal waves in such

structures can be accurately modelled by coupled regularised Boussinesq

(cRB) equations, provided the bonding between layers is sufficiently soft.

The work in this thesis firstly examines the initial-value problem (IVP) for

the system of cRB equations in [76] on the infinite line, for localised or

sufficiently rapidly decaying initial conditions. Using asymptotic multiple-

scales expansions, a nonsecular weakly nonlinear solution of the IVP is

constructed, up to the accuracy of the problem formulation. The asymptotic

theory is supported with numerical simulations of the cRB equations.

The weakly nonlinear solution for the equivalent IVP for a single regularised

Boussinesq equation is then constructed; constituting an extension of the

classical d’Alembert’s formula for the leading order wave equation. The

initial conditions are also extended to allow one to separately specify an

O(1) and O(ε) part. Large classes of solutions are derived and several

particular examples are explicitly analysed with numerical simulations.

The weakly nonlinear solution is then improved by considering the IVP for

a single regularised Boussinesq–type equation, in order to further develop

the higher order terms in the solution. More specifically, it enables one to

now correctly specify the higher order term’s time dependence. Numerical

simulations of the IVP are compared with several examples to justify the

improvement of the solution.



Finally an asymptotic procedure is developed to describe the class of ra-

diating solitary wave solutions which exist as solutions to cRB equations

under particular regimes of the parameters. The validity of the analytical

solution is examined with numerical simulations of the cRB equations.

Numerical simulations throughout this work are derived and implemented

via developments of several finite difference schemes and pseudo-spectral

methods, explained in detail in the appendices.

Keywords: coupled regularised Boussinesq equations; regularised Boussi-

nesq equation; regularised Boussinesq–Ostrovsky equation; initial-value prob-

lem; asymptotic multiple-scales expansions; averaging; perturbation theory;

solitons; radiating solitary waves; wave packets; nonlinear waves in layered

waveguides.
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Chapter 1

Introduction

The study of nonlinear waves has been a relatively recent actively developing area

of research in mathematics, with important applications in fluid and solid mechanics,

nonlinear optics and mathematical biology, to name but a few (see, for example, [1, 3,

29, 48, 91, 115]). A significant part of this area of research is devoted to the study of

waves exhibiting weak nonlinearity and weak dispersion, which is particularly relevant

to nonlinear processes in fluids and elastic solids. The most significant feature of such

problems is the possibility of a balance between nonlinearity and dispersion, resulting

in the existence of stable localised solutions such as solitons and nonlinear wave packets.

The first observation of a solitary wave dates back to 1834, when John Scott Russell

followed “the great wave of translation” on horseback along the Edinburgh–Glasgow

canal (reported in 1844) [99]. The first mathematical models describing this observed

solitary wave were derived and studied in the works of Boussinesq (1872, 1877) [15, 16],

Lord Rayleigh (1876) [98] and Korteweg & de Vries (1895) [78].

The Boussinesq and Korteweg–de Vries (KdV) equations, originally derived in the

context of fluids, reappeared in connection with waves in solids, in the groundbreaking

work by Zabusky and Kruskal (1965) [119]. Their work was motivated from the Fermi–

Pasta–Ulam (FPU) lattice model (1955) [40] where it was shown that there was an

absence of equipartition of energy among the modes of the harmonic approximation.

This unexplained observation motivated Zabusky and Kruskal to consider the problem

in the long-wave approximation, and to rederive the Boussinesq and KdV equations in

this new setting, which subsequently led to numerical studies of solutions of the KdV
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1. INTRODUCTION

equation [119]. The general concept of a ‘soliton’ emerged from this study: a stable

localised travelling wave of permanent form.

Later work showed that the Boussinesq and KdV equations belong to the group

of so-called ‘integrable’ models, which possess a number of remarkable mathematical

properties (for example, they have infinitely many conservation laws, and can be written

as a compatibility condition for a pair of linear equations known as the ‘Lax pair’ [81]).

Perhaps most importantly, a rather general Cauchy problem for such equations can

be solved using the ‘inverse scattering transform’ (IST). This method was initially

developed by Gardner, Green, Kruskal and Miura (1967) for the KdV equation [44].

However, Zakharov and Shabat (1972) developed the method in order to solve the

Nonlinear Schrödinger (NLS) equation [121], and later Ablowitz, Kaup, Newell and

Segur (1974) suggested a rather general scheme, by showing that the methods for

solving the KdV and NLS equations in fact applied to a large class of equations, e.g.

the Sine-Gordon equation and the modified KdV equation [2]. This work has since

formed a foundation for all subsequent developments in the area of integrable systems.

Lattice models of the type considered by Fermi, Pasta and Ulam, i.e. ordered, in

particular periodic, discrete systems of interacting particles, are often used to model

nonlinear dynamics in condensed matter physics (e.g. [7, 19, 20, 85]). Typically lat-

tice models allow for a long-wave or continuum approximation, which links them with

continuum theories. Frenkel and Kontorova (1939) used a harmonic chain of particles

in the presence of an external periodic potential to model the dynamics of dislocations

in metals [77]. Various extensions and generalisations of the Frenkel–Kontorova model

have been applied to studies of dynamics of molecular and polymer chains, DNA, and

many more areas (see [19, 107] and references there). Toda (1967) introduced a chain of

particles with exponential interaction potentials, which were shown to manifest exact

soliton solutions [108]. A modified Toda lattice with an external linear elastic term was

used to model the dynamics of a solid waveguide on an elastic substrate in [116], es-

tablishing that stable wave packet solutions play a central role in the dynamics of such

a system, instead of solitons. Coupled Klein–Gordon (cKG) chains and corresponding

cKG equations were proposed as a model for long longitudinal waves in bilayers where

nonlinearity comes only from the bonding material [71] (see also references therein).

The model was used to study solitary waves, modulational instability of nonlinear

multi-phase wave trains and energy exchange between the layers.

2



In [76] a lattice model was used to study nonlinear waves in layered elastic waveg-

uides with some softer material between the layers (for example, a soft adhesive bond-

ing). The key element of this model is the use of a complex chain of oscillating me-

chanical dipoles, earlier considered as a linear model in [70] (the model is a natural

generalisation of the linear model considered in [7] and [60], and the nonlinear model

in [69]). A system of coupled Boussinesq-type equations were derived as an accurate

asymptotic model from a complex chain which has all the essential degrees of freedom

of a real elastic waveguide, taking into account both geometrical and physical sources

of nonlinearity.

The work contained in this thesis is devoted to the analytical and numerical studies

of one-dimensional longitudinal nonlinear bulk strain waves in layered elastic waveg-

uides with a soft bonding layer, modelled by cRB equations derived in [76]. In Chapter

2 we consider a simplified model consisting of two coupled one-dimensional FPU chains,

with some soft bonding between the layers, and rederive a system of coupled Boussinesq-

type equations in the continuum approximation. We also overview the derivation of the

equations from the complex lattice model considered in [76]. We then briefly discuss

the conservation laws for the system of cRB equations, as well as the structure of the

linear dispersion relation and the difference between classical and radiating solitary

wave solutions.

Chapter 3 is devoted to the construction of a weakly nonlinear solution of the

Cauchy problem for the cRB equations. We consider the IVP for a system of cRB

equations on the infinite line for localised or sufficiently rapidly decaying initial data,

where it is assumed that the data generates sufficiently rapidly decaying right- and

left-propagating waves. We study the dynamics of weakly nonlinear waves, and using

asymptotic multiple-scales expansions and an averaging procedure with respect to the

fast time variable, we obtain a hierarchy of asymptotically exact coupled and uncoupled

Ostrovsky equations for unidirectional waves. The Ostrovsky equation is a modification

of the KdV equation, which first appeared in the study of oceanic waves to include

background rotation in the model [94]. We then construct a nonsecular weakly nonlinear

solution of the IVP in terms of solutions of the derived Ostrovsky equations, within

the accuracy of the problem formulation. We perform numerical simulations for the

cRB equations to illustrate the striking difference in the behaviour of the solutions for

different asymptotic regimes, obtained from the theory.

3



1. INTRODUCTION

In Chapter 4 we consider a weakly nonlinear solution of the Cauchy problem for

the single regularised Boussinesq equation, obtained when coupling parameters in the

system of cRB equations are equal to zero. The weakly nonlinear solution of the IVP

for the single Boussinesq equation is constructed in terms of solutions of the IVPs

for two KdV equations, integrable by the IST. This solution constitutes an extension

of the classical d’Alembert’s formula for the linear wave equation. We generalise the

formulation of the work in Chapter 3, to account for possible perturbations to ‘exactly

solvable initial conditions’ and test the formula by considering several examples with

both exactly solvable initial conditions and their perturbations. Explicit analytical

solutions are compared with numerical simulations of the single Boussinesq equation.

In Chapter 5 we show how the accuracy of the constructed solution can be improved

even further by considering higher order terms in the weakly nonlinear solution. To

do this, we now view the Boussinesq-type equations studied in Chapters 3 & 4 as

exact models, disregarding higher order terms in the equations in order to simplify

the analysis. In this respect we can view this work as a ‘toy’-problem. However, it

is certainly a valid mathematical problem, and it makes sense as a first step towards

the study of relevant physical problems, since the results we obtain can be extended to

account for the higher order terms in the equations. The derived higher order problems

in this chapter are solved numerically and for a particular configuration of the initial

conditions, a perturbation approach is developed. The validity of the solutions are

analysed with relevant numerical simulations of the Boussinesq-type equations.

In Chapter 6 we develop an asymptotic procedure for the construction of radiating

solitary wave solutions of cRB equations for the case when the coefficients of the system

are slightly perturbed from the symmetric case. The derived analytical solutions are

compared directly with results of numerical simulations for the cRB equations.

The final chapter is devoted to summarising and discussing the results obtained

throughout the thesis, along with a discussion on how this work can be developed in

future studies.

Numerical simulations throughout this work are performed using finite difference

and pseudo-spectral methods; detailed descriptions of the numerical schemes are con-

tained in Appendices A & B respectively.
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Chapter 2

Nonlinear waves in layered

waveguides

Recent studies of nonlinear waves, especially solitons, have included intensive studies

of longitudinal bulk strain solitary waves in nonlinear elastic waveguides (see [96, 102]

and references therein). One of the first long wave models used to describe waves

propagating in solid waveguides was the well-known KdV equation [35, 90, 95]. Later

it was shown that long longitudinal bulk solitary waves in an elastic rod are governed by

the so-called ‘doubly dispersive equation’ (DDE), which is an equation of Boussinesq-

type with two kinds of dispersive terms [97, 101]. This result was then confirmed

by experiments on the generation and observation of bulk solitary waves in optically

transparent polymeric materials such as polystyrene and plexiglas [32].

Various types of layered (or laminated) waveguides are used in physics and en-

gineering to reinforce and improve deformation properties of elastic structures. The

mechanical properties of the structure depend not only on the type of bulk material,

but also on the type of bonding between the layers. The nonlinear effects in a waveguide

with perfect horizontal bonding (not allowing a jump in the horizontal displacement

across the interface) has been studied in [75]. The theory predicts, in particular, that

the result of splitting (delamination) in the layered waveguide leads to fission of an

incident bulk strain solitary wave (i.e., generation of a train of secondary solitons from

a single incident soliton). This prediction has been confirmed experimentally [30], and

it has been suggested that this phenomenon can be used for nondestructive testing of

layered structures [31].

5



2. NONLINEAR WAVES IN LAYERED WAVEGUIDES

The study of nonlinear processes in a waveguide with imperfect bonding between

layers (allowing a jump in the horizontal displacement across the interface) was initiated

in [76] where the following system of cRB equations:

utt − uxx = uxuxx + uttxx − δ(u− w),

wtt − c2wxx = αwxwxx + βwttxx + γ(u− w), (2.1)

were derived as a model describing long nonlinear bulk strain waves in a two layered

waveguide, with a soft intermediate bonding layer. The displacements in the upper and

lower layer are described by u and w respectively and the parameters c, α, β, δ, γ depend

upon the physical and geometrical properties of the waveguide. In this chapter we first

derive system (2.1) from a simplified model consisting of coupled one-dimensional FPU-

type chains. We then overview the derivation of the system of cRB equations from the

complex lattice model used in [76], and discuss some general mathematical properties

of system (2.1) (also detailed in [76]).

2.1 Derivation of coupled regularised Boussinesq equa-

tions

2.1.1 Simplified lattice model

Let us consider a simplified lattice model of longitudinal waves in a layered elastic

waveguide consisting of two weakly coupled one-dimensional FPU chains, as depicted

in Figure 2.1 (this is an extension of the cKG chains modelled in [71]).

M

m

Figure 2.1: Coupled one-dimensional FPU chains of particles in equilibrium.
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2.1 Derivation of coupled regularised Boussinesq equations

We denote the distance between adjacent particles in each chain when in equilibrium

as a, and we allow the particles to move only along smooth horizontal tracks (i.e. not

allowing for vertical displacements). We assume particles in the ‘upper’ and ‘lower’

chains have mass m and M respectively, and denote the n-th particles horizontal dis-

placements by un and wn respectively. We consider only nearest neighbour interactions,

and write the Lagrangian of the system as

L = T − U,

where the kinetic energy T of the system is given by

T =
∑
n

1

2
(mu̇2

n +Mẇ2
n),

and the potential energy U of the system is of the form

U =
∑
n

[
1

2
α(un+1 − un)2 +

1

3
β(un+1 − un)3

+
1

2
A(wn+1 − wn)2 +

1

3
B(wn+1 − wn)3 +

1

2
γ(un − wn)2

]
.

The potentials of interchain interactions are approximated by the first few terms of the

respective Taylor expansions, where interactions between chains is assumed to be weak.

Substituting the Lagrangian of the system into each of the Euler-Lagrange equations

d

dt

(
∂L

∂u̇n

)
− ∂L

∂un
= 0,

d

dt

(
∂L

∂ẇn

)
− ∂L

∂wn
= 0, (2.2)

we obtain the following system of difference-differential equations:

mün = α(un+1 − 2un + un−1) + β(un+1 − un−1)(un+1 − 2un + un−1)− γ(un − wn),

Mẅn = A(wn+1 − 2wn + wn−1) +B(wn+1 − wn−1)(wn+1 − 2wn + wn−1) + γ(un − wn).

To study long waves, one can use the continuum approximation (e.g. [85]) in the

governing equations. Hence, we approximate the terms

un(t) = u(x, t),

un±1(t) = u(x± a, t) = u(x, t)± aux(x, t) +
a2

2
uxx(x, t)

± a3

6
uxxx(x, t) +

a4

24
uxxxx(x, t) + ... ,

7



2. NONLINEAR WAVES IN LAYERED WAVEGUIDES

and use equivalent approximations for the functions wn(t), to yield the following system

of coupled partial differential equations (PDEs):

utt −
α

m

(
a2uxx +

a4

12
uxxxx

)
− 2

βa3

m
uxuxx +

γ

m
(u− w) + . . . = 0,

wtt −
A

M

(
a2wxx +

a4

12
wxxxx

)
− 2

Ba3

M
wxwxx +

γ

M
(w − u) + . . . = 0. (2.3)

Introducing the dimensionless variables

ũ =
u

u0
, w̃ =

w

w0
, t̃ =

t

t0
, x̃ =

x

x0
, (2.4)

and assuming that x0/t0 ∼ O(1), one can see that the scalings

u0

a
∼ O(ε

1
2 ),

w0

a
∼ O(ε

1
2 ),

a

x0
∼ O(ε

1
2 ),

γ

α
∼ O(ε2), (2.5)

where ε is assumed to be a small parameter, together with the assumptions that

αa2

m
∼ O(1),

2βa3

m
∼ O(1),

Aa2

M
∼ O(1),

2Ba3

M
∼ O(1), (2.6)

will yield the following system of coupled Boussinesq equations:

ũt̃t̃ − c
2ũx̃x̃ = ε [D1ũx̃ũx̃x̃ +D2ũx̃x̃x̃x̃ −D3(ũ− w̃)] +O(ε2),

w̃t̃t̃ − ĉ
2w̃x̃x̃ = ε

[
D̂1w̃x̃ũx̃x̃ + D̂2w̃x̃x̃x̃x̃ − D̂3(w̃ − ũ)

]
+O(ε2), (2.7)

where the coefficients c2, ĉ2, Di and D̂i (i = 1, 2, 3) are of order O(1). Therefore to

leading order we have

ũt̃t̃ = c2ũx̃x̃ +O(ε),

w̃t̃t̃ = ĉ2w̃x̃x̃ +O(ε), (2.8)

and as a result one can write system (2.7) in the asymptotically equivalent form

ũt̃t̃ − c
2ũx̃x̃ = ε

[
D1ũx̃ũx̃x̃ +

D2

c2
ũt̃t̃x̃x̃ −D3(ũ− w̃)

]
+O(ε2),

w̃t̃t̃ − ĉ
2w̃x̃x̃ = ε

[
D̂1w̃x̃ũx̃x̃ +

D̂2

ĉ2
w̃t̃t̃x̃x̃ − D̂3(w̃ − ũ)

]
+O(ε2). (2.9)

Truncating the O(ε2) terms and reverting back to the original dimensional form yields

equations (2.9) in the form of the following cRB equations:

utt − c2
0uxx = E1uxuxx + E2uttxx − E3(u− w),

wtt − ĉ2
0wxx = Ê1wxwxx + Ê2wttxx − Ê3(w − u), (2.10)

8



2.1 Derivation of coupled regularised Boussinesq equations

where the coefficients in (2.10) are

c2
0 =

αa2

m
, E1 =

2βa3

m
, E2 =

a2

12
, E3 =

γ

m
,

ĉ2
0 =

Aa2

M
, Ê1 =

2Ba3

M
, Ê2 =

a2

12
, Ê3 =

γ

M
.

2.1.2 Complex lattice model

In this section we overview the derivation of the cRB equations from the complex lattice

model used in [76]. Although we have formulated the problem from a simplified model

using coupled one-dimensional FPU chains, it should be emphasised that the complex

lattice model in this derivation simulates all essential degrees of freedom of a real elastic

waveguide, taking into account both physical and geometrical sources of nonlinearity.

Hence it is important to consider the mathematical problem which most represents the

real life problem.

A basic dipole lattice model representing a homogeneous waveguide is first consid-

ered by using two coupled FPU-type chains of interacting particles (see Figure 2.2(a)).

From the approach outlined in this first model, the problem is then extended to include

an intermediate layer in between two sets of two coupled FPU-type chains, thus simu-

lating a two layered waveguide with some intermediate bonding material (the method-

ology can be further extended to model an N -layered waveguide with N -1 intermediate

bonding layers).

In the dipole model for the homogeneous waveguide, each particle is assumed to

have a mass m and to be separated horizontally in each chain by a distance a and

vertically by a distance 2l when in equilibrium. Each pair of n-th particles situated

in the upper and lower chains represent two poles of a dipole denoted Pn and Pn

respectively (see Figure 2.2(a)).

The displacements of the n-th dipole are characterised by: (i) the horizontal dis-

placement un1 of the geometrical centre denoted On; (ii) the vertical displacement un2

of the geometrical centre On; (iii) the in-plane rotation ∆φn of the dipole axis; (iv) the

difference in distance between the poles (2un4 ). From this, the horizontal displacements

of the poles of the n-th dipole are defined relative to their original position as (see

Figure 2.2(b)):

Un1 = un1 − (l + un4 ) sin ∆φn, U
n
1 = un1 + (l + un4 ) sin ∆φn, (2.11)

9



2. NONLINEAR WAVES IN LAYERED WAVEGUIDES

2 2

(a) (b)

Figure 2.2: (a) A dipole lattice model consisting of two coupled FPU chains and (b)

displacement of the n-th dipole from equilibrium.

and similarly, the corresponding vertical displacements are

Un2 = un2 + (l + un4 ) cos ∆φn − l, U
n
2 = un2 − (l + un4 ) cos ∆φn + l. (2.12)

In subsequent derivations we denote un3 = l∆φn and assume ∆φn � 1 (corresponding

to weak rotations), and take Taylor series expansions up to and including cubic terms.

The kinetic energy of the n-th dipole is given by

Tn =
M

2

(
(u̇n1 )2 + (u̇n2 )2 + (u̇n4 )2 +

(
1 +

un4
l

)2

(u̇n3 )2

)
, (2.13)

where M = 2m is the dipole mass. The potential energy at the n-th dipole is char-

acterised by each of the nine possible pairwise interactions of the dipoles at the n-th

position (see Figure 2.2(a)), namely:

Φn = Φn,n+1 + Φn,n+1 + Φn,n+1 + Φn,n+1 + Φn−1,n

+ Φn−1,n + Φn−1,n + Φn−1,n + Φ⊥, (2.14)

where the bars above the position notations n correspond to the particles in the bottom

chain, and the final term denotes the vertical interaction between the poles of the n-th

dipole. Each of the individual potential energy terms in (2.14) can be written as

Φ∗(∆r∗) =
β̃

2
∆r2
∗ +

γ̃

3
∆r3
∗ + . . . , (2.15)

where ∆r∗ denotes the change of distance between the two corresponding particles.

The set of constants (β̃, γ̃) each correspond to one of three constants depending on

10



2.1 Derivation of coupled regularised Boussinesq equations

Figure 2.3: Distance between two poles at equilibrium: P̃n, P̃n+1 and after a displace-

ment: P̃ ′n, P̃ ′n+1.

whether the pair-wise interactions are horizontal, vertical or diagonal. The distance

∆r
ñ,ñ+1

is explicitly defined as

∆r
ñ,ñ+1

=
[
(∆x+ r0 cos θ0)2 + (∆y + r0 sin θ0)2

]1/2 − r0, (2.16)

where ∆x = Ũn+1
1 − Ũn1 , ∆y = Ũn+1

2 − Ũn2 denotes the changes in the horizontal and

vertical distances respectively between any interacting pole P̃n of the n-th dipole and

any pole P̃n+1 of the (n + 1)-th dipole (see Figure 2.3). Note, the change of distance

between the poles both at the n-th dipole is ∆r⊥ = 2un4 .

Assuming horizontal and vertical displacements are small, namely ∆x/r0 � 1,

∆y/r0 � 1, the change in distance of the dipoles are approximated as

∆r
ñ,ñ+1

= ∆x cos θ0 + ∆y sin θ0 +
1

2r0
(∆x sin θ0 −∆y cos θ0)2

− 1

2r2
0

(∆x cos θ0 + ∆y sin θ0)(∆x sin θ0 −∆y cos θ0)2 + ... . (2.17)

Substituting the kinetic and potential energy expressions into the following Euler-

Lagrange equations

d

dt

(
∂Tn
∂u̇ni

)
− ∂Tn
∂uni

+
∂Φn

∂uni
= 0, for i = 1, 2, 3, 4, (2.18)

yields the system of difference-differential equations

Mün1 +
∂Φn

∂un1
= 0, Mün2 +

∂Φn

∂un2
= 0,

M

[
ün3

(
1 +

un4
l

)2

+ 2
u̇n3 u̇

n
4

l

(
1 +

un4
l

)]
+
∂Φn

∂un3
= 0,

M

[
ün4 −

(u̇n3 )2

l

(
1 +

un4
l

)]
+
∂Φn

∂un4
= 0. (2.19)

11



2. NONLINEAR WAVES IN LAYERED WAVEGUIDES

The continuum approximation is then implemented, thus the terms in (2.19) are

approximated as:

uni (t) = ui(x, t),

un±1
i (t) = ui(x± a, t) = ui(x, t)± auix(x, t) +

a2

2
uixx(x, t)

±a
3

6
uixxx(x, t) +

a4

24
uixxxx(x, t) + ..., for i = 1, 2, 3, 4,

and the four difference-differential equations (2.19) are rewritten as PDEs (see [76] for

full details and the exact form of these equations).

From the subsequently derived PDEs it is noted that the equations uncouple into

two subsystems involving the variables u1, u4 and u2, u3 respectively. After non-

dimensionalising the equations, it is shown that from seeking predominantly longitudi-

nal waves, one can obtain suitable scalings (analogous to the approach outlined for the

simpler model in Section 2.1.1) to find that the leading order behaviour of the system

is described by the subsystem for u1 and u4. It is then shown that u4 can be expressed

in terms of derivatives of u1. Therefore, returning to the original dimensional form

of the system and denoting u1 = u, yields the following equation for long nonlinear

longitudinal waves:

utt − c2
0uxx = E1uxuxx + E2uttxx + E3uxxxx, (2.20)

where c0, E1, E2, E3 are expressed in terms of the lattice parameters (see [76] for the

explicit form of these parameters). Equation (2.20) is in the form of the DDE, which

as noted, is previously derived in [97, 101]. It is also shown in [76] that the solutions

of the other subsystem, involving equations for the variables u2, u3, are determined at

higher order and thus transversal and rotational motions are slaved to the longitudinal

waves.

Since the parameters in the right-hand side of (2.20) are O(ε), one can notice

utt ∼ c2
0uxx and thus (2.20) is asymptotically equivalent to the integrable (via the IST)

‘nonlinear string equation’ (see [120]), and also the regularised Boussinesq equation:

utt − c2
0uxx = E1uxuxx + Ẽ23uttxx, (2.21)

where Ẽ23 = E23/c
2
0. This form of the Boussinesq equation is nonintegrable by the IST

(see [3, 120]), however it is favourable from a numerical viewpoint since it obviates the

12



2.1 Derivation of coupled regularised Boussinesq equations

short wave instability (see [10, 14, 25]). This latter feature of the Boussinesq equation

(2.21) can be realised directly by considering the linear dispersion relation, where one

can find that the phase velocity is real for any wavenumber. Conversely, if one replaces

the fourth order mixed derivative term in (2.21) with a fourth order spatial derivative

term, one can find that for some wave numbers the phase velocity is imaginary, hence

indicating the instability.

The work in [76] is then extended to consider a two layered imperfectly bonded

waveguide by considering the analogue of the homogeneous problem in each layer, but

now the effects of an intermediate bonding layer are introduced (see Figure 2.4).

Soft Bonding Layer

2

2

Figure 2.4: Two layered lattice model: two dipole lattices with an intermediate bonding

layer.

The potential energy of an n-th lattice element is now modified to the form

Φtotal
n = Φn + Φ̂n + Φg

n, (2.22)

where the potential energy of the n-th dipole in the upper and lower layer is denoted

by Φn and Φ̂n respectively, and are each found similar to the approach outlined in

the homogenous case (see equations (2.14)–(2.17)). The potential energy Φg
n models

the potential energy in the interactions between the upper and lower layer where, as

depicted in Figure 2.4, there are five possible interactions at the n-th element, thus

Φg
n = Φg

n,n+1 + Φg

n,n+1
+ Φg

n−1,n
+ Φg

n−1,n + Φg
⊥. (2.23)
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2. NONLINEAR WAVES IN LAYERED WAVEGUIDES

Crucially in [76] it was found that if one assumes the bonding layer is sufficiently ‘soft’

(implemented by choosing the interaction constants to be sufficiently small in compar-

ison with the constants in both layers), and subsequently following the same process

as in the problem for the homogenous waveguide, with the same scalings previously

derived from seeking predominantly longitudinal waves, one can asymptotically de-

rive ‘coupled doubly dispersive equations’ describing the longitudinal displacement in

each layer. In the form of dimensional variables, denoting u1 = u and w1 = w, these

equations are

utt − c2
0uxx = E1uxuxx + E2uttxx + E3uxxxx − E4(u− w),

wtt − ĉ2
0wxx = Ê1wxwxx + Ê2wttxx + Ê3wxxxx − Ê4(w − u), (2.24)

where c0, ĉ0, E1,2,3,4 and Ê1,2,3,4 are expressed in terms of the lattice parameters (see [76]

for the exact form of these coefficients). Noting that to leading order uxx ∼ c2
0utt and

wxx ∼ ĉ2
0wtt (since the terms in the right-hand side of (2.24) are O(ε)), one can write

an asymptoticly equivalent form of (2.24) in the form of the following cRB equations:

utt − c2
0uxx = E1uxuxx + (E2 +

E3

c2
0

)uttxx − E4(u− w),

wtt − ĉ2
0wxx = Ê1wxwxx + (Ê2 +

Ê3

ĉ2
0

)wttxx − Ê4(w − u). (2.25)

2.2 Conservation laws

We first rewrite the cRB equations (2.25) by introducing the variables

t→ t

T ∗
, x→ x

X∗
, u→ u

U∗
, w → w

U∗
,

where

U∗ =
c2

0X
∗

E1
, T ∗ =

X∗

c0
, X∗ =

(
E2 +

E3

c2
0

)1/2
,

yielding the cRB equations (2.25) in the following nondimensional form:

utt − uxx = uxuxx + uttxx − δ(u− w),

wtt − c2wxx = αwxwxx + βwttxx + γ(u− w). (2.26)

The coefficients in (2.26) are written in terms of the previous coefficients as

c2 =
ĉ2

0

c2
0

, δ =
(
E2 +

E3

c2
0

)E4

c2
0

, α =
Ê1

E1
, β =

(
Ê2 +

Ê3

ĉ2
0

)
/
(
E2 +

E3

c2
0

)
, γ =

δÊ4

E4
.
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2.2 Conservation laws

It should be noted that system (2.26) is Lagrangian with the Lagrangian density

L =
1

2

[
u2
t +

δ

γ
w2
t − u2

x −
δc2

γ
w2
x −

1

3

(
u3
x +

αδ

γ
w3
x

)
+ u2

tx +
βδ

γ
w2
tx − δ(u− w)2

]
.

One can show (2.26) admits three groups of point symmetries: shifts in x and t, and

a shift in u and w; all of which preserve solutions of (2.26). Using Noether’s theorem

(e.g., [59]), one can utilise these symmetries to derive two conservation laws, in addition

to an obvious conservation law[
ut +

δ

γ
wt

]
t

−
[
ux +

δc2

γ
wx +

1

2
u2
x +

αδ

2γ
w2
x +uttx +

βδ

γ
wttx

]
x

= 0,

(corresponding to conservation of mass) found directly by rearranging the cRB equa-

tions (2.26). The conservation laws from Noether’s theorem are

Ait +Bi
x = 0, for i = 1, 2, (2.27)

corresponding to conservation laws for energy and momentum respectively, where the

densities and flows are of the form

A1 =
1

2

[
u2
t +

δ

γ
w2
t + u2

x +
δc2

γ
w2
x +

1

3

(
u3
x +

αδ

γ
w3
x

)
+ u2

tx +
βδ

γ
w2
tx + δ(u− w)2

]
,

B1 = −utux −
δc2

γ
wtwx −

1

2
utu

2
x −

αδ

2γ
wtw

2
x − ututtx −

βδ

γ
wtwttx,

A2 = utux +
δ

γ
wtwx + utxuxx +

βδ

γ
wtxwxx,

B2 = −1

2

[
u2
t +

δ

γ
w2
t + u2

x +
δc2

γ
w2
x +

2

3

(
u3
x +

αδ

γ
w3
x

)
+ u2

tx +
βδ

γ
w2
tx − δ(u− w)2

]
− uxuttx −

βδ

γ
wxwttx.

Naturally, the conservations laws defined by (2.27) can be shown to hold by virtue of

the governing equations (2.26).

For the purpose of the work considered in this thesis, the main use of the conser-

vation laws (2.27) is from the viewpoint of numerical simulations. The accuracy of

derived numerical approaches for solving equations of the type (2.26) can be justified

via the conservation laws.
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2. NONLINEAR WAVES IN LAYERED WAVEGUIDES

2.3 Classical and radiating solitary waves

The system of cRB equations (2.26) generally admits kink-type solutions. In order to

analyse localised solutions and subsequently utilise the well known theory of solitons,

we differentiate (2.26) with respect to x, denoting ux = f, wx = g, to obtain

ftt − fxx =
1

2
(f2)xx + fttxx − δ(f − g),

gtt − c2gxx =
1

2
α(g2)xx + βgttxx + γ(f − g). (2.28)

We refer to both systems of equations (2.26) and (2.28) as cRB equations, since system

(3.2) is obtained directly by differentiation of system (3.1). In the symmetric case,

when c = α = β = 1, system (2.28) admits a reduction g = f , where f satisfies the

single Boussinesq equation

ftt − fxx =
1

2
(f2)xx + fttxx. (2.29)

The Boussinesq equation (2.29) has particular solutions in the form of pure solitary

waves:

f = A sech2x− vt
Λ

, (2.30)

where A = 3(v2− 1), Λ = 2v√
v2−1

. Figure 2.5 illustrates the pure solitary wave solution

(2.30) for some typical parameters.

However, in the cRB system of equations (2.28) these ‘pure’ or ‘classical’ solitary

wave solutions, rapidly decaying to zero in their tail regions, are structurally unstable

and are replaced with ‘radiating’ solitary waves [76], i.e. a solitary wave radiating a co-

propagating one-sided oscillatory tail, using the terminology in [9, 14, 113]. A typical

illustration of radiating solitary wave solutions in each component of the cRB equations

(2.28) is depicted in Figure 2.6 (the solution is obtained from a numerical approach for

solving the system of cRB equations, discussed in detail later in this thesis).

There have been extensive studies of generalised and radiating solitary waves, es-

pecially in the context of fluid mechanics (e.g., [17, 41, 51, 52, 67, 83, 112]). The

most commonly studied systems supporting these non-local nonlinear long waves in-

clude: perturbed KdV equations; coupled KdV systems; perturbed NLS equations and

coupled NLS systems. The underlying reason for the occurrence of generalised and

radiating solitary waves is due to a resonance between a long wave (with wavenumber
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x

Figure 2.5: Pure solitary wave solution (2.30) at t = 30, with v = 1.1.

k ≈ 0) and a short wave (with some finite wavenumber). Steady generalised solitary

waves are necessarily symmetric (they support oscillating tails on both sides of the

localised central core), however this means they usually cannot be realised physically

since the group velocity of the oscillating tails is the same at both ends. In practice, one

instead finds that radiating solitary waves are generated (asymmetric non-local solitary

waves) with the oscillating tail appearing on the side of the central core determined by

the group velocity.

In the system we consider (2.28), long-wave ripples are radiated by solitons, due to

the type of coupling terms in the equations and the resulting structure of the dispersion

relation. The linear dispersion relation for (2.28) was analysed in [76] by assuming

that coefficients in (2.28) are perturbed compared to the symmetric case, but remain

positive. The dispersion relation is of the form

[k2(1− p2)− k4p2 + δ][k2(c2 − p2)− βk4p2 + γ] = γδ,

where k is the wavenumber and p is the phase speed. A typical linear dispersion curve

of the system of cRB equations (2.28) is shown in Figure 2.7. A significant difference

with the linear dispersion curve of the reduction (2.29) consists in the appearance of

the second (upper) branch, going to infinity as k → 0, and approaching zero, remaining

above the lower branch, as k →∞.

The classical or pure solitary waves of the single Boussinesq equation (2.29) arise

as a bifurcation from wavenumber k = 0 of the linear wave spectrum, shown in Figure

2.7(b), when there is no possible resonance with any linear wave for any value of k.

The solitary wave speed v is greater than the linear long wave speed, i.e. v > 1, while
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Figure 2.6: Typical generation of radiating solitary waves in the system of cRB equations

(2.28), from pure solitary wave initial conditions.

the speed of a linear wave of any wavenumber is smaller, i.e. p ≤ 1. This becomes

impossible when the symmetry is broken. Instead, radiating solitary waves arise for

the case when there is a possible resonance with the upper branch for some finite

non-zero value of k. For example, a possible resonance is shown in Figure 2.7(a) for

v = p = 1.3. The solitary wave solutions of (2.29), viewed as particular solutions of the

coupled equations in the symmetric case, constitute a one-parameter family of so-called

‘embedded’ solitary waves (e.g., [21, 118]). Recently, radiating solitary waves have been

experimentally observed in two- and three-layered elastic waveguides with soft bonding

layers [33].

The radiating solitary wave solution depicted in Figure 2.6 is discussed in further

detail in subsequent chapters.

2.4 Concluding remarks

In this chapter we have discussed the motivation for considering nonlinear wave prop-

agation in layered elastic waveguides with an introduction to some of the key models
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Figure 2.7: (a) Two branches of the linear dispersion curve of the cRB equations (2.28) for

c = 1.05, β = 1, δ = γ = 0.01 and intersection with p = 1.3 (horizontal line) and (b) Linear

dispersion curve of the reduction (2.29) in the symmetric case c = 1, β = 1, δ = γ = 0.01.

which have been previously derived to mathematically simulate such processes. We have

outlined the derivation of Boussinesq-type equations as nonlinear asymptotic models

describing one-dimensional longitudinal displacement in layered waveguides with a soft

intermediate bonding later.

Firstly, using a simple lattice model consisting of two weakly coupled one-dimensional

FPU chains (extended from the cKG chains modelled in [71]) we rederived cRB equa-

tions modelling longitudinal displacement; generalising the derivation in the famous

work by Zabusky and Kruskal [119] in a single FPU chain. We then overviewed the

derivation in [76] where the cRB equations were derived using a complex layered lat-

tice model from two sets of coupled FPU-type chains with all the essential degrees of

freedom in a real elastic waveguide. We then finished by discussing some key features

of the derived cRB equations including conservation laws, the linear dispersion relation

and a brief discussion of some types of solutions which are known to exist for the cRB

equations. In particular, it is noted that rather subtle changes to the parameters in

the system of cRB equations yield significant qualitative changes to the solitary wave

solutions of the symmetric case.

Using the derived Boussinesq-type models reviewed in this chapter, we now aim

to develop some suitable methods for solving these equations, with the view to fur-

ther develop the understanding of the behaviour of nonlinear waves in layered elastic

waveguides, hence contributing to the many applications governed by such models.

It is interesting to ask such questions as:
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2. NONLINEAR WAVES IN LAYERED WAVEGUIDES

• Can one develop some analytical representation of the radiating solitary waves

which arise from pure solitary waves when the parameters in each layer are close

to the symmetric case?

• Alternatively, what type of waves exist when the parameters in the system are

sufficiently perturbed from the symmetric case? Do the pure solitary wave fea-

tures of the solution still exist? If not, do any localised long wave solutions exist

in such a case?

• Can one derive a general solution to describe the propagation of a wave through

a layered waveguide from a given rather general initial condition?

Such natural questions and many more alike are examined and answered throughout

the work contained in the subsequent chapters.
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Chapter 3

Cauchy problem for coupled

regularised Boussinesq equations

We consider the IVP for a system of coupled Boussinesq equations on the infinite line

for localised or sufficiently rapidly decaying initial data, generating sufficiently rapidly

decaying right- and left-propagating waves. We study the dynamics of weakly nonlinear

waves, and using asymptotic multiple-scales expansions and averaging with respect

to the fast time variable, we obtain a hierarchy of asymptotically exact coupled and

uncoupled Ostrovsky equations for unidirectional waves. We then construct a weakly

nonlinear solution of the IVP in terms of solutions of the derived Ostrovsky equations

within the accuracy of the governing equations, and show that there are no secular

terms. We also perform relevant numerical simulations of the original unapproximated

system of Boussinesq equations to illustrate the difference in the behaviour of the

solutions for different asymptotic regimes.

The results of this chapter are partially summarised in [72].

21



3. CAUCHY PROBLEM FOR COUPLED REGULARISED
BOUSSINESQ EQUATIONS

3.1 Introduction

The Ostrovsky equation

(ηt + νηηx + γηxxx)x = λη,

is a modification of the KdV equation used in the study of oceanic waves, which takes

into account the effect of background rotation [94]. It is well known that rotation in

the oceanographic problem (γλ > 0) eliminates the solitary wave solutions of the KdV

equation through the terminal radiation damping [49, 82]. The numerical simulations in

[50, 56] have shown that a localised wave packet emerges as a stable dominant solution

of the Ostrovsky equation. In an independent study [116], it was established that stable

envelope solitons play a central role in the dynamics of a modified Toda lattice with an

additional linear term, which can be related to the two-directional generalisation of the

Ostrovsky equation derived in [46]. The weakly nonlinear description of the emerging

wave packet for the Ostrovsky equation in terms of a higher order NLS equation has

been developed in [50], linking the wavenumber of the carrier wave with the extremum

of the group velocity [50, 116].

In this chapter, we are concerned with the construction of a weakly nonlinear solu-

tion of the IVP for the system of cRB equations:

utt − uxx = uxuxx + uttxx − δ(u− w),

wtt − c2wxx = αwxwxx + βwttxx + γ(u− w), (3.1)

(see Section 2.1 for an overview of the derivation of such Boussinesq-type equations).

As previously mentioned, this version of the Boussinesq equation is nonintegrable via

the IST, but from the viewpoint of the subsequently developed analytical approach,

we could have worked with any version of coupled Boussinesq equations. Also, within

this approach, generalisation of the derivations to the case of three and more equations

of this type is straightforward, and we do not discuss it in this work, although the

detailed study of various physical effects is interesting. In the context of waves in

solids, Boussinesq-type equations have been derived, for example, for nonlinear waves

in solid waveguides [97, 101, 102] and for waves in microstructured solids [62, 96] (further

references can be found in [85] and [23, 24, 25]).
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3.1 Introduction

Differentiating (3.1) with respect to x, and denoting ux = f, wx = g, we obtain

ftt − fxx =
1

2
(f2)xx + fttxx − δ(f − g),

gtt − c2gxx =
1

2
α(g2)xx + βgttxx + γ(f − g), (3.2)

(uncoupled equations in this form are sometimes called ‘regularised long wave equa-

tions’ and ‘improved bad Boussinesq equations’). In what follows we will consider

solutions of system (3.2) instead of the solutions of the original system (3.1). We refer

to both systems (3.1) and (3.2) as cRB equations, since system (3.2) is obtained by

differentiation of system (3.1).

We are interested in constructing a weakly nonlinear solution of the IVP for system

(3.2) using asymptotic multiple-scales expansions of the type used in the study of

oblique interaction of solitary waves in [86, 87] (see also references therein and also in

[45]). Recently in [75], a scheme based on these type of asymptotic expansions were

developed in order to solve a weakly nonlinear wave scattering problem, formulated in

terms of a Boussinesq-type equation with piecewise-constant coefficients subject to two

continuity conditions across the jump and some natural radiation conditions. In this

chapter, we first use the procedure of averaging with respect to the fast time variable to

obtain a hierarchy of asymptotically exact coupled and uncoupled Ostrovsky equations

for the cases when the characteristic linear speeds of the two wave operators in (3.2)

are close or essentially different (‘strong’ or ‘weak’ interactions in the terminology of

[45, 86, 87]). More precisely, to leading order we derive four uncoupled Ostrovsky

equations when c − 1 = O(1), but two coupled systems of Ostrovsky equations when

c − 1 = O(ε). We then show how to construct the weakly nonlinear solution of the

IVP in terms of solutions of the derived Ostrovsky equations within the accuracy of

the cRB equations (3.2). We also establish that corrections to leading order terms are

nonsecular due to a special property of the solutions of the Ostrovsky equation. In

the absence of coupling (δ = γ = 0), these results yield a weakly nonlinear solution

of the IVP for the Boussinesq equation in terms of solutions of the IVPs for two KdV

equations; this case is examined in more detail in the following chapter. Finally, we

perform numerical simulations of the original unapproximated system (3.2) to show

the difference in the asymptotic behaviour of the solutions, when initial conditions are

taken in the form of co-propagating solitary waves of the uncoupled equations. The

numerical results support the developed theory.
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The word ‘hierarchy’ is used here to reflect on the growing complexity of the lead-

ing order asymptotic models. In particular, generalisation to the case of N coupled

Boussinesq-type equations (describing, for example, long longitudinal waves in an N -

layered elastic waveguide, or waves in N coupled FPU chains), with N characteristic

speeds close to each other, will lead to a system of N coupled Ostrovsky equations.

From the studies of solitary waves in [45, 86, 87] and the recent studies of the

dynamics of weakly nonlinear wave packets [47] we know that the dynamics and the

asymptotic models depend on the relative speeds of the waves. A question arises, to

what extent does the difference between the characteristic linear speeds of the two wave

operators (i.e., c−1) effect the dynamics of the nonlinear waves in (3.2)? In particular,

if we take initial conditions in the form of the solitary wave solutions of the uncoupled

Boussinesq equations, will the outcome be different for the cases c − 1 = O(ε) and

c − 1 = O(1), where ε is the natural small parameter of the Boussinesq model? The

following analysis shows that this difference is crucial.

3.2 Weakly nonlinear solution of the initial-value problem

In this section we are concerned with unidirectional waves, which constitute the lead-

ing order terms in the asymptotic multiple-scales expansions. We use an averaging

procedure which allows us to derive asymptotic reductions to simpler asymptotically

exact models in the form of coupled and uncoupled Ostrovsky equations, and construct

a weakly nonlinear solution of the IVP in terms of solutions of the derived Ostrovsky

equations.

For these purposes we need to rewrite system (3.2) in the original unscaled form

ftt − fxx = ε

[
1

2
(f2)xx + fttxx − δ(f − g)

]
+O(ε2),

gtt − c2gxx = ε

[
1

2
α(g2)xx + βgttxx + γ(f − g)

]
+O(ε2). (3.3)

The previous system of cRB equations (3.2) is obtained by truncating the cRB equations

(3.3) and implementing the substitution (and also omitting the tildes)

f̃ = εf, g̃ = εg, t =
√
εt̃, x =

√
εx̃, δ̃,= ε2δ γ̃ = ε2γ.

As with any Boussinesq-type model, system (3.3) appears as an approximation con-

taining O(1) and O(ε) terms (see [76]).
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3.2 Weakly nonlinear solution of the initial-value problem

We consider the Cauchy problem for the system of cRB equations (3.3) on the

infinite line, imposing the following initial conditions:

f |t=0 = F (x), g|t=0 = G(x), (3.4)

ft|t=0 = V (x), gt|t=0 = W (x). (3.5)

Some local existence results applicable to this problem were recently obtained in [34]

(Theorem 2.4 and Remark 2.5, according to [39]). In this chapter we are concerned

with the ‘explicit’ construction of the weakly nonlinear solution of the Cauchy problem

in terms of asymptotically exact (KdV-like) models for unidirectional waves.

We assume that the initial conditions are sufficiently rapidly decaying at both in-

finities, so that to leading order the initial (t = O(1)) evolution of the Cauchy data is

described by the classical d’Alembert’s solution

f0(t, x) = f−0 (x− t) + f+
0 (x+ t), g0(t, x) = g−0 (x− ct) + g+

0 (x+ ct),

where

f±0 (x± t) =
1

2

(
F (x± t)±

∫ x±t

−∞
V (x)dx

)
, (3.6)

g±0 (x± ct) =
1

2

(
G(x± ct)± 1

c

∫ x±ct

−∞
W (x)dx

)
. (3.7)

In general, f±0 and g±0 are some step-like functions. In what follows we restrict the

considerations to the case when these functions are sufficiently rapidly decaying 42∫∞
−∞ V (x)dx = 0 and

∫∞
−∞W (x)dx = 0).

To describe the subsequent (t = O(ε−1)) evolution of the given initial data we

introduce the slow time T = εt and look for the weakly nonlinear solution of the

Cauchy problem (3.3)–(3.5) in the form of asymptotic multiple-scales expansions. The

form of these expansions depends on the difference between the characteristic speeds

of the linear wave operators in system (3.3), thus we next consider the two main cases:

when c− 1 = O(ε) and c− 1 = O(1).

3.2.1 Strong interactions: c− 1 = O(ε)

In this case, we rewrite system (3.3) as

ftt − fxx = ε

[
1

2
(f2)xx + fttxx − δ(f − g)

]
,

gtt − gxx = ε

[
1

2
α(g2)xx + βgttxx + γ(f − g) +

c2 − 1

ε
gxx

]
, (3.8)
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where c2−1
ε ∼ O(1) since c− 1 = O(ε), and look for the solution in the form

f = f−(ξ, T ) + f+(η, T ) + εf1(ξ, η, T ) +O(ε2),

g = g−(ξ, T ) + g+(η, T ) + εg1(ξ, η, T ) +O(ε2). (3.9)

We define ξ = x − t, η = x + t, T = εt, and consider each wave in its own reference

frame. We view the leading order approximation of the linear solution (3.6) and (3.7)

(for the case c − 1 = O(ε), c is replaced with 1) as initial conditions for the functions

f−, f+, g−, g+ with respect to the slow time variable T , i.e.

f±|T=0 = f±0 , g±|T=0 = g±0 , (3.10)

(this is later derived at leading order, when we substitute the asymptotic expansions

into the initial conditions (3.4) and (3.5)).

Substituting expansions (3.9) into (3.8), we find that the equations are satisfied at

leading order, while at O(ε) we obtain

−4f1
ξη = (2f−T + f−f−ξ + f−ξξξ)ξ + (−2f+

T + f+f+
η + f+

ηηη)η

+ 2f−ξ f
+
η + f+f−ξξ + f−f+

ηη − δ(f− + f+ − g− − g+), (3.11)

−4g1
ξη = (2g−T + αg−g−ξ + βg−ξξξ)ξ + (−2g+

T + αg+g+
η + βg+

ηηη)η

+ α(2g−ξ g
+
η + g+g−ξξ + g−g+

ηη) + γ(f− + f+ − g− − g+)

+
c2 − 1

ε
(g−ξξ + g+

ηη). (3.12)

We next average equations (3.11) and (3.12) with respect to the fast time variable

t (see for example [8]), by taking

lim
τ→∞

1

τ

∫ τ

0
. . . dt

at constant ξ or η, i.e. in the reference frame moving with the linear speed of the

right- or left-propagating waves, respectively. Indeed, requiring that f1, g1 and their

derivatives remain bounded (which is necessary to avoid the appearance of secular

terms in expansions (3.9)), we see that, for example at constant ξ,

lim
τ→∞

1

τ

∫ τ

0
f1
ξηdt = lim

τ→∞

1

2τ

∫ ξ+2τ

ξ
f1
ξηdη = lim

τ→∞

1

2τ

[
f1
ξ

]ξ+2τ

ξ
= 0.

We find similar results for g1, as well as for f1 and g1 at constant η, showing that the

averaging results in zeros in the left-hand sides of (3.11) and (3.12). Assuming that
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3.2 Weakly nonlinear solution of the initial-value problem

the functions f−, f+, g−, g+ and their derivatives remain bounded and are sufficiently

rapidly decaying at infinity for any fixed T (the assumptions are consistent with relevant

numerical experiments), and averaging the entire equation (3.11) with respect to t at

constant ξ, we obtain

0 =
(

2f−T + f−f−ξ + f−ξξξ

)
ξ
− δ(f− − g−)

+ lim
τ→∞

1

τ

∫ τ

0
[(−2f+

T + f+f+
η + f+

ηηη)η + 2f−ξ f
+
η + f+f−ξξ + f−f+

ηη − δ(f+ − g+)]dt

=
(

2f−T + f−f−ξ + f−ξξξ

)
ξ
− δ(f− − g−) + lim

τ→∞

1

2τ

∫ ξ+2τ

ξ

[
(−2f+

T + f+f+
η + f+

ηηη)η

+ 2f−ξ f
+
η + f+f−ξξ + f−f+

ηη − δ(f+ − g+)
]
dη

=
(

2f−T + f−f−ξ + f−ξξξ

)
ξ
− δ(f− − g−), (3.13)

while averaging (3.12) at constant ξ results in

0 =
(

2g−T + αg−g−ξ + βg−ξξξ

)
ξ

+ γ(f− − g−) +
c2 − 1

ε
g−ξξ. (3.14)

Similarly, averaging (3.11) at constant η under the same assumptions yields

0 =
(
−2f+

T + f+f+
η + f+

ηηη

)
η
− δ(f+ − g+), (3.15)

while averaging (3.12) at constant η results in

0 =
(
−2g+

T + αg+g+
η + βg+

ηηη

)
η

+ γ(f+ − g+) +
c2 − 1

ε
g+
ηη. (3.16)

Thus, to leading order we obtain two systems of coupled Ostrovsky equations.

Substituting equations (3.13)–(3.16) back into equations (3.11) and (3.12), we ob-

tain the following equations for the higher order corrections:

f1
ξη = −1

4

(
2f−ξ f

+
η + f+f−ξξ + f−f+

ηη

)
, g1

ξη = −α
4

(
2g−ξ g

+
η + g+g−ξξ + g−g+

ηη

)
,

which imply

f1 = −1

4

(
2f−f+ + f−ξ

∫ η

−∞
f+dη̃ + f+

η

∫ ξ

−∞
f−dξ̃

)
+ φ1(ξ, T ) + ψ1(η, T ),

g1 = −α
4

(
2g−g+ + g−ξ

∫ η

−∞
g+dη̃ + g+

ξ

∫ η

−∞
g−dξ̃

)
+ φ2(ξ, T ) + ψ2(η, T ),

where φ1,2, ψ1,2 are four arbitrary functions. The presence of four arbitrary functions

allows us to satisfy not only the equations, but also the initial conditions (3.4) and

27



3. CAUCHY PROBLEM FOR COUPLED REGULARISED
BOUSSINESQ EQUATIONS

(3.5) up to O(ε2), constructing therefore an accurate asymptotic solution of the IVP

(within the accuracy of the problem formulation).

Indeed, substituting the expansions (3.9) into the initial conditions (3.4) and (3.5)

to leading order we recover formulae (3.10) for the initial conditions, while at O(ε) we

obtain d’Alembert-like formulae for the functions φi(ξ, T ) and ψi(η, T ), i = 1, 2:

φi(ξ, T ) =
1

2

[
Ri1(ξ, T ) +

∫ ξ

−∞
Ri2(x, T )dx

]
,

ψi(η, T ) =
1

2

[
Ri1(η, T )−

∫ η

−∞
Ri2(x, T )dx

]
, (3.17)

where

R11(x, T ) =
1

4

[
2f−f+ + f−ξ

∫ η

−∞
f+dη̃ + f+

η

∫ ξ

−∞
f−dξ̃

]
t=0

,

R12(x, T ) =

[
f−T + f+

T +
1

4

(
f+f−ξ − f

−f+
η + f−ξξ

∫ η

−∞
f+dη̃ − f+

ηη

∫ ξ

−∞
f−dξ̃

)]
t=0

,

R21(x, T ) =
α

4

[
2g−g+ + g−ξ

∫ η

−∞
g+dη̃ + g+

η

∫ ξ

−∞
g−dξ̃

]
t=0

,

R22(x, T ) =

[
g−T + g+

T +
α

4

(
g+g−ξ − g

−g+
η + g−ξξ

∫ η

−∞
g+dη̃ − g+

ηη

∫ ξ

−∞
g−dξ̃

)]
t=0

.

Within the accuracy of the problem formulation (i.e. O(ε2)), the dependence of func-

tions φ and ψ on the characteristic variables is determined, while their dependence

on the slow time variable T is inherited from their dependence on the leading order

waves, or it may be neglected, at least for sufficiently small values of time. In order

to determine the dependence on T one needs to consider higher O(ε2) terms. This is

discussed in Chapter 5.

The leading order systems of coupled Ostrovsky equations for unidirectional waves

can be rewritten in a symmetric form if we use the reference frame moving with the

average linear speed c̄ = c+1
2 , i.e. we formally change ξ and η in (3.13)–(3.16) to

ξ̄ = ξ −∆c̄T and η̄ = η + ∆c̄T , where ∆ = c−1
2ε , which yields[

2(f−T −∆c̄f−
ξ̄

) + f−f−
ξ̄

+ f−
ξ̄ξ̄ξ̄

]
ξ̄

= δ(f− − g−),[
2(g−T + ∆c̄g−

ξ̄
) + αg−g−

ξ̄
+ βg−

ξ̄ξ̄ξ̄

]
ξ̄

= −γ(f− − g−),

and [
2(f+

T + ∆c̄f+
η̄ )− f+f+

η̄ − f+
η̄η̄η̄

]
η̄

= −δ(f+ − g+),[
2(g+

T −∆c̄g+
η̄ )− αg+g+

η̄ − βg+
η̄η̄η̄

]
η̄

= γ(f+ − g+).
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3.2 Weakly nonlinear solution of the initial-value problem

Systems of coupled KdV equations have appeared in the literature before (see [41, 45]

and references therein). To the best of our knowledge this is the first appearance of

the coupled Ostrovsky equations.

3.2.2 Weak interactions: c− 1 = O(1)

In this case, we look for the solution in a different form:

f = f−(ξ1, T ) + f+(η1, T ) + εf1(ξ1, η1, T ) +O(ε2),

g = g−(ξ2, T ) + g+(η2, T ) + εg1(ξ2, η2, T ) +O(ε2), (3.18)

where ξ1 = x−t, η1 = x+t, and ξ2 = x−ct, η2 = x+ct are the two pairs of characteristic

variables for the two linear wave operators in (3.3), and again, we consider each wave

in its own reference frame.

Substituting expansions (3.18) into (3.3) we obtain

−4f1
ξ1η1 = (2f−T + f−f−ξ1 + f−ξ1ξ1ξ1)ξ1 + (−2f+

T + f+f+
η1 + f+

η1η1η1)η1

+ 2f−ξ1f
+
η1 + f+f−ξ1ξ1 + f−f+

η1η1 − δ(f
− + f+ − g− − g+), (3.19)

−4c2g1
ξ2η2 = (2cg−T + αg−g−ξ2 + βc2g−ξ2ξ2ξ2)ξ2 + (−2cg+

T + αg+g+
η2 + βc2g+

η2η2η2)η2

+ α(2g−ξ2g
+
η2 + g+g−ξ2ξ2 + g−g+

η2η2) + γ(f− + f+ − g− − g+). (3.20)

Under the same assumptions as in the first case, we average (3.19) and (3.20) with

respect to t, by taking

lim
τ→∞

1

τ

∫ τ

0
. . . dt,

at constant ξ1 or η1, and ξ2 or η2, respectively. In this case we obtain the following

four uncoupled Ostrovsky equations:

(2f−T + f−f−ξ1 + f−ξ1ξ1ξ1)ξ1 = δf−, (3.21)

(2f+
T − f

+f+
η1 − f

+
η1η1η1)η1 = −δf+, (3.22)

(2cg−T + αg−g−ξ2 + βc2g−ξ2ξ2ξ2)ξ2 = γg−, (3.23)

(2cg+
T − αg

+g+
η2 − βc

2g+
η2η2η2)η2 = −γg+, (3.24)

and equations for the higher order corrections as

f1
ξ1η1 = −1

4

(
2f−ξ1f

+
η1 + f+f−ξ1ξ1 + f−f+

η1η1

)
− δ

4
(g− + g+), (3.25)

g1
ξ2η2 = − α

4c2

(
2g−ξ2g

+
η2 + g+g−ξ2ξ2 + g−g+

η2η2

)
− γ

4c2
(f− + f+), (3.26)
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where in the right-hand sides we have solutions of the leading order Ostrovsky equations

g−(ξ2, T ) = g−
(

(1 + c)ξ1 + (1− c)η1

2
, T

)
, g+(η2, T ) = g+

(
(1− c)ξ1 + (1 + c)η1

2
, T

)
,

and

f−(ξ1, T ) = f−
(

(c+ 1)ξ2 + (c− 1)η2

2c
, T

)
, f+(η1, T ) = f+

(
(c− 1)ξ2 + (c+ 1)η2

2c
, T

)
.

Remarkably, the particular solutions of (3.25) and (3.26) are bounded functions,

because of the special property of smooth solutions of the Ostrovsky equation, namely

∫ ∞
−∞

f−dξ1 = 0,

∫ ∞
−∞

f+dη1 = 0,

∫ ∞
−∞

g−dξ2 = 0,

∫ ∞
−∞

g+dη2 = 0. (3.27)

Indeed, the solution of (3.25) and (3.26) can be found in the form

f1 = −1

4

(
2f−f+ + f−ξ1

∫ η1

−∞
f+dη̃1 + f+

η1

∫ ξ1

−∞
f−dξ̃1

)
+ fp1(ξ2, T ) + fp2(η2, T )

+ φ1(ξ1, T ) + ψ1(η1, T ),

g1 = − α

4c2

(
2g−g+ + g−ξ2

∫ η2

−∞
g+dη̃2 + g+

η2

∫ ξ2

−∞
g−dξ̃2

)
+ gp1(ξ1, T ) + gp2(η1, T )

+ φ2(ξ2, T ) + ψ2(η2, T ),

where

fp1 =
δ

c2 − 1

∫ ξ2

−∞

∫ v

−∞
g−(u, T )dudv, fp2 =

δ

c2 − 1

∫ η2

−∞

∫ v

−∞
g+(u, T )dudv,

gp1 = − γ

c2 − 1

∫ ξ1

−∞

∫ v

−∞
f−(u, T )dudv, gp2 = − γ

c2 − 1

∫ η1

−∞

∫ v

−∞
f+(u, T )dudv.

Let us then consider for example the particular solution fp1 and note
∫∞
−∞ g

−(u, T )du =

0, because of the aforementioned property of the Ostrovsky equation, immediately

obtained by integrating (3.23). Furthermore, using (3.23) and recalling that solutions

are decaying at infinity, we obtain∫ ∞
−∞

∫ v

−∞
g−(u, T )dudv =

1

γ

∫ ∞
−∞

(2cg−T + αg−g−v + βc2g−vvv)dv

=
2c

γ

d

dT

∫ ∞
−∞

g−(v, T )dv = 0.

Therefore, the particular solution fp1 is a bounded function, and lim
ξ2→±∞

fp1 = 0. Sim-

ilarly, other particular solutions are also bounded functions and there are no secular

terms.
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3.2 Weakly nonlinear solution of the initial-value problem

The presence of four arbitrary functions allows us to satisfy the initial conditions

with the desired accuracy. Substituting the expansions (3.18) into the initial conditions

(3.4) and (3.5), to leading order we again recover formulae (3.10), while at O(ε) we

obtain d’Alembert-like formulae for φi(ξi, T ) and ψi(ηi, T ), i = 1, 2:

φi(ξi, T ) =
1

2

[
Ri1(ξi, T ) +

1

ci

∫ ξi

−∞
Ri2(x, T )dx

]
,

ψi(ηi, T ) =
1

2

[
Ri1(ηi, T )− 1

ci

∫ ηi

−∞
Ri2(x, T )dx

]
, (3.28)

where c1 = 1, c2 = c and

R11(x, T ) =
1

4

[
2f−f+ + f−ξ1

∫ η1

−∞
f+dη̃1 + f+

η1

∫ ξ1

−∞
f−dξ̃1

]
t=0

− δ

c2 − 1

∫ x

−∞

∫ v

−∞

[
g−(u, T ) + g+(u, T )

]
dudv,

R12(x, T ) =

[
f−T + f+

T +
1

4

(
f+f−ξ1 − f

−f+
η1 + f−ξ1ξ1

∫ η1

−∞
f+dη̃1 − f+

η1η1

∫ ξ1

−∞
f−dξ̃1

)]
t=0

− δc

c2 − 1

∫ x

−∞

[
g−(u, T )− g+(u, T )

]
du,

R21(x, T ) =
α

4c2

[
2g−g+ + g−ξ2

∫ η2

−∞
g+dη̃2 + g+

η2

∫ ξ2

−∞
g−dξ2

]
t=0

+
γ

c2 − 1

∫ x

−∞

∫ v

−∞

[
f−(u, T ) + f+(u, T )

]
dudv,

R22(x, T ) =

[
g−T + g+

T +
α

4c

(
g+g−ξ2 − g

−g+
η2 + g−ξ2ξ2

∫ η2

−∞
g+dη̃2 − g+

η2η2

∫ ξ2

−∞
g−dξ̃2

)]
t=0

+
γ

c2 − 1

∫ x

−∞

[
f−(u, T )− f+(u, T )

]
du.

In both cases c − 1 = O(ε) and c − 1 = O(1), the asymptotic multiple-scales

expansions and the averaging procedure described above have allowed us to construct

a nonsecular weakly nonlinear solution of the given IVP for the values of time up to

O(ε−1), within the accuracy of the problem formulation. To construct a more accurate

solution, and for greater values of time, one would need to know higher order terms in

the original cRB equations (3.3). However, the derived hierarchy of Ostrovsky equations

will still describe the leading order terms in the solutions, hence making the study of

the long-time evolution of the solutions interesting.

To finish this section, we would like to make an important comment that although

smooth solutions of the Ostrovsky equation must satisfy the ‘zero mass’ constraints
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(3.27) (and similar conditions
∫∞
−∞(f− − g−) dξ̄ = 0 etc., in the case of coupled Ostro-

vsky equations derived in Section 3.2.1), this does not impose any forbidding restrictions

on the choice of the initial conditions (3.4) and (3.5) for the cRB system (3.3). Indeed,

initial conditions for the Ostrovsky equation can always be modified by adding a long

but very small amplitude (i.e. O(ε2) or smaller) ‘pedestal’ (e.g., O(εn) constant over

the finite O(ε−n) interval, n ≥ 2), so that the composite initial condition has zero mass.

This does not lower the accuracy of the asymptotic solution and a transition to the

zero mass solution is very fast (see the relevant discussion in [53]). Moreover numerical

simulations for the Ostrovsky equation show that if a smooth initial condition has a

nonzero mass, numerically the solution adjusts immediately, since this initial condi-

tion can be viewed as an approximation to the composite zero mass solution (with

any given accuracy). Note that similar issues have appeared in connection with sev-

eral other equations, for example the Kadomtsev-Petviashvili equation (see [4]) and

more recently the short-pulse equation (see [58]), where the notion of the ‘initial time

layer’ has been introduced to describe such transitions [4] (see also [53] and references

therein).

3.3 Numerical simulations

In this section we discuss numerical simulations of solutions of system (3.2). We imple-

ment a finite difference scheme which is an extension of the scheme developed in [106]

for a single regularised Boussinesq equation. Derivations of the finite difference scheme

including stability and accuracy discussions are detailed in Appendix A. The emphasis

in this section is to compare the numerical solutions for the two cases discussed in the

previous section, i.e. when the difference in the characteristic speeds of the system is

of O(1) or O(ε).

We let x ∈ [−L,L], for finite L, and discretise the (x, t) domain into a grid with

spacings ∆x = h and ∆t = κ. The solutions f(x, t) and g(x, t) of the cRB equations

(3.2) are approximated by the solutions f(ih, jκ) and g(ih, jκ) (for i = 0, 1, ..., N and

j = 0, 1, ...) of the difference scheme, denoted fi,j and gi,j . We derive the following

32



3.3 Numerical simulations

difference scheme for system (3.2) (see Appendix A.2):

−fi−1,j+1 + (2 + h2)fi,j+1 − fi+1,j+1 = (κ2 − 2)[fi−1,j − 2fi,j + fi+1,j ] + 2h2fi,j

+
κ2

2
[(fi−1,j)

2 − 2(fi,j)
2 + (fi+1,j)

2]

+fi−1,j−1 − (2 + h2)fi,j−1 + fi+1,j−1

−h2κ2δ(fi,j − gi,j), (3.29)

−βgi−1,j+1 + (2β + h2)gi,j+1 − βgi+1,j+1 = (κ2c2 − 2β)[gi−1,j − 2gi,j + gi+1,j ] + 2h2gi,j

+
ακ2

2
[(gi−1,j)

2 − 2(gi,j)
2 + (gi+1,j)

2]

+βgi−1,j−1 − (2β + h2)gi,j−1 + βgi+1,j−1

+h2κ2γ(fi,j − gi,j). (3.30)

We impose zero boundary conditions, far enough from the propagating waves, thus:

f0,j = fN,j = g0,j = gN,j = 0, ∀j. (3.31)

The initial conditions are chosen in the form of the co-propagating pure solitary wave

solutions of the uncoupled equations (in which case δ = γ = 0):

fi,0 = A1 sech2

(
ih

Λ1

)
, fi,1 = A1 sech2

(
ih− v1κ

Λ1

)
,

gi,0 = A2 sech2

(
ih

Λ2

)
, gi,1 = A2 sech2

(
ih− v2κ

Λ2

)
, ∀i, (3.32)

where A1 = 3(v2
1−1), A2 = 3

α(v2
2−c2), Λ1 = 2v1(v2

1−1)−
1
2 and Λ2 = 2v2

√
β(v2

2−c2)−
1
2 .

The nine point implicit difference schemes (3.29) and (3.30), with tridiagonal matrices

of constant coefficients, are solved simultaneously using a Thomas Algorithm (e.g., [6]).

Using a von Neumann stability analysis on the single regularised Boussinesq equa-

tion with arbitrary coefficients (i.e. system (3.2) for δ = γ = 0 and f = 0), we find to

ensure stability we require the step size restriction κ < κc =
√

h2+4β
c2+αg0

(see Appendix

A.1.3), where g0 is a constant introduced to linearise gi,j such that g0 > gi,j ∀i, j. It can

also be shown that the principal truncation error of the single regularised Boussinesq

equation with arbitrary coefficients is O(h2κ4 + h4κ2) (see Appendix A.1.2).

Numerical simulations for the symmetric case (scheme (3.29) with δ = 0) compared

with the known analytical solution (2.30) reveal that the choice of discretisation can
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reduce the maximum absolute error, across x for a given time, to as low as O(10−5)

(for amplitude O(1)). This accuracy is within the range which is deemed suitable from

previous work on Boussinesq-type equations (e.g. see [18, 37, 38, 54, 61, 89, 93]). The

step size h = κ = 0.01 results in errors of this order and is thus chosen for simulations in

this section. We numerically approximate u(x, t) and w(x, t) (the original variables in

the cRB equations (3.1)) via Simpson’s rule using the relationship
∫ x
−L f, g dx = u,w,

due to the boundary conditions (3.31), and hence utilise the energy conservation law

given in Section 2.2 (naturally numerical integration introduces some additional errors).

The conserved quantity
∫∞
−∞A2dx was monitored and for simulations with h = κ = 0.1

the energy was conserved, within the chosen time interval, up to 0.021% and 0.006%

for the results shown in Figures 3.1 & 3.2, respectively. For smaller step sizes energy

conservation computations become very time-consuming, but there is no noticeable

difference in the plots of the solutions for h = κ = 0.1 and h = κ = 0.01 (useful

discussions of the difficulties associated with the accuracy of conservation laws in finite-

difference schemes can be found in [24]).
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Figure 3.1: Generation of radiating solitary waves for c = 1.05, α = β = 1, γ = δ =

0.01; v1 = v2 = 1.3 from pure solitary waves of the uncoupled equations.

The emergence of radiating solitary waves replacing the initial pure solitary waves
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Figure 3.2: Generation of wave packets for c = 2, α = β = 1, γ = δ = 0.01; v1 = 1.3, v2 =

2.3 from pure solitary waves of the uncoupled equations.

in both components of f and g is shown in Figure 3.1 for the case c = 1.05, α = β = 1,

δ = γ = 0.01; v1 = v2 = 1.3. These simulations agree with the discussion in Section 2.3

and numerical studies in [76]. The numerically determined wavelength of the oscillatory

tail at t = 300 is (36.5±0.1) for f and (37.0±0.2) for g, which is close to the theoretical

prediction (≈ 36.7) for p = 1.3 using the dispersion relation (see Figure 2.7 in Section

2.3).

As the interactions between the waves become weak (c − 1 = O(1)), one can see

a transition from the radiating solitary wave solutions (as depicted in Figure 3.2) to

wave packet type solutions. The amplitude of the leading pure solitary wave in each

component starts to decrease and similarly the amplitude of the oscillations in the co-

propagating oscillatory tails tend to zero. Once the parameter c is sufficiently increased,

the oscillatory tails completely diminish and the leading pure solitary wave in each

component forms a stable dominant wave packet.

For the case c = 2, α = β = 1, δ = γ = 0.01; v1 = 1.3, v2 = 2.3, the initial

solitary waves are replaced by these aforementioned dominant wave packets in both

components, shown in Figure 3.2. The emergence of a wave packet in both f and g
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can be observed almost instantaneously and for long time appears stable. From the

asymptotic analysis for c − 1 = O(1) in Section 3.2.2 we found that to leading order,

the solution for both f and g, for right propagating waves, are the solution to the two

Ostrovsky equations (3.21) and (3.23). At t = 600 in Figure 3.2 the leading wave packet

in g qualitatively closely resembles the numerical solution of the Ostrovsky equation

studied in [50]. Similarly, at t = 600 for f a similar but smaller and slower moving

wave packet is present at approximately x = 600. In [50] it is shown that a parameter

denoted a0, equivalent to af0 = 6(v1−1)√
δ

and ag0 = 6(v2−c)√
βδ

for f and g respectively in

the system of cRB equations (3.3), determines whether a distinct wave packet emerges

or not. For the simulations shown in Figure 3.2, this aforementioned parameter lies

within the range for which the distinctive wave packet will emerge and hence it can be

seen in both f and g. As af0, ag0 → 0 there exists a range for which the distinctive

wave packet no longer emerges. Alternatively as the parameters af0, ag0 are increased,

the faster the wave packet emerges and in the case of g, the faster it will move away

from the rest of the solution. The range of af0 and ag0 for which this transition occurs

is also in very good agreement with the results for the Ostrovsky equation in [50].

The simulations in this section confirm that there is indeed a distinctive difference in

the qualitative behaviour of the solution upon varying the difference in the characteristic

speeds, and hence support the asymptotic analysis. From the numerics we can conclude

that for pure solitary wave initial data in the parameter range c − 1 = O(ε), stable

radiating solitary waves emerge in both components f and g. However as we increase

the difference in the characteristic speeds, i.e. let c − 1 = O(1), we see to leading

order the emergence of wave packets in both components f and g, agreeing with the

numerical solution of the Ostrovsky equation (for example in [50]).

3.4 Concluding remarks

In this chapter we addressed the question of constructing a weakly nonlinear solution of

the IVP for coupled Boussinesq-type equations for localised or sufficiently rapidly de-

caying initial data, generating sufficiently rapidly decaying right- and left-propagating

waves. Crucially, we considered the general case, when the two linear wave operators

have different characteristic speeds, which complicates the analysis since in this case

the number of characteristic variables (four) is greater than the number of independent
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variables (two). Further generalisations to the case of more than two equations (and

characteristic speeds) are straightforward.

We introduced two different types of asymptotic multiple-scales expansions for the

cases c−1 = O(ε) and c−1 = O(1) and averaged with respect to the fast time variable,

which allowed us to derive, to leading order, a hierarchy of asymptotically exact coupled

and uncoupled Ostrovsky equations for unidirectional waves. We then constructed the

nonsecular solution of the IVP in terms of solutions of the derived leading order models

for the values of time up to O(ε−1), within the accuracy of the problem formulation. To

construct a more accurate solution, and for greater values of time, one needs to know

higher order terms in the original cRB equations (3.3).

We performed numerical simulations of the original unapproximated cRB equations

(3.3) for the initial conditions in the form of co-propagating pure solitary waves of the

uncoupled equations, and compared the numerical results with known numerical results

for the Ostrovsky equation [50], which confirmed predictions of the leading order asymp-

totic theory. Expanded numerical studies for the cRB system of equations (3.3), and

analysis for other types of initial conditions, will follow in subsequent chapters. Later

in this thesis we will also directly compare numerical simulations of Ostrovsky-type

equations with numerical simulations for the corresponding Boussinesq-type equation,

in order to explicitly determine the accuracy of the models as approximations for the

corresponding Boussinesq-type equations (see Section 5.3).

The approach developed in this chapter is generic and can be used to construct

weakly nonlinear solutions of some other IVPs, and in other physical contexts. In

particular the coupled Ostrovsky equations have been recently derived for strongly

interacting internal waves in a rotating ocean [5].

For the practical applications of the constructed solution it is useful to remember

that within the accuracy of the problem formulation in (3.3) (i.e. O(ε2)), the initial

conditions (3.4) and (3.5) can be represented in the form

f |t=0 = F 0(x) + εF 1(x) +O(ε2), g|t=0 = G0(x) + εG1(x) +O(ε2),

ft|t=0 = V 0(x) + εV 1(x) +O(ε2), gt|t=0 = W 0(x) + εW 1(x) +O(ε2).

This allows one (if needed) to formally satisfy the zero mass constraints for f±0 , g
±
0 by

adding appropriate O(ε2) ‘pedestal’ terms (as explained in Section 3.2). However, it

also gives some flexibility with the choice of initial conditions for the auxiliary IVP
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problems for unidirectional waves by splitting the functions F (x), G(x), V (x),W (x)

into a ‘nice’ O(1) part (i.e. in the case that the IVP problems have some favourable

analytical properties, e.g. from the viewpoint of the IST) and a small O(ε) remainder.

This O(ε) remainder can be readily accounted for in the d’Alembert-like formulae (3.17)

and (3.28) for the functions φi and ψi, i = 1, 2. We expand the weakly nonlinear solution

to explicitly include initial conditions of this type in the next chapter.

Finally, we would like to emphasise the importance of the Ostrovsky equation as a

canonical asymptotically exact model, similar to the KdV model. The reduced form of

the Ostrovsky equation

(ηt + νηηx)x = λη

was recently shown to be an integrable equation [79, 111], reducible to the Tzitzeica

equation [110]. We also believe that the full Ostrovsky equation might have some

‘nice’ analytical properties (although it is not necessarily integrable in the conventional

sense).
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Chapter 4

Weakly nonlinear extension of

d’Alembert’s formula

In this chapter we construct a weakly nonlinear solution of the Cauchy problem for

the regularised Boussinesq equation (the case when γ = δ = 0 in the cRB equations

from the previous chapter), which constitutes an extension of the classical d’Alembert’s

formula for the linear wave equation. We also generalise the formula in the preceding

chapter to account for possible perturbations to ‘exactly solvable initial conditions’.

The derived weakly nonlinear solution is given by a simple and explicit formula, ex-

pressed in terms of two special functions solving the IVPs for two KdV equations,

integrable by the IST. We test the formula by considering several examples with ex-

actly solvable initial conditions and also examples with perturbations to these. Explicit

analytical solutions are compared directly with the results of numerical simulations of

the regularised Boussinesq equation.

The results of this chapter are partially summarised in [73].
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4.1 Introduction

The Boussinesq equation and its generalisations, since the original derivation in the

context of fluids [15] and reappearance in connection with the famous FPU problem

[40, 119], have recently emerged in a vast variety of problems describing nonlinear waves

in solids (see, for example, [22, 62, 75, 76, 85, 96, 102]). At the same time, considerable

progress has been made in understanding the validity of regularised models and proofs

of existence and local well-posedness of the IVP in the context of water waves (see

[10, 11, 12, 13, 80] and references therein), while the global well-posedness is known

to be a complicated issue [64]. Some progress has also been made in the study of

boundary-value problems [42]. Most relevant to the work in this chapter are the results

establishing the validity of two KdV equations as a leading order approximation to

solutions of Boussinesq-type equations, as well as some results for the higher order

corrections [8, 27, 45, 63, 65, 66, 91, 103, 104, 114].

In the previous chapter (see [72] for the full published work) we constructed a

weakly nonlinear solution of the IVP for a system of cRB equations on the infinite

line, assuming that initial data generates sufficiently rapidly decaying right- and left-

propagating waves, in terms of solutions of various Ostrovsky-type equations (see [94]

for the original Ostrovsky equation). When coupling parameters are equal to zero,

the results yield a simple formula for the weakly nonlinear solution of an IVP for the

regularised Boussinesq equation

ftt − fxx = ε

[
1

2
(f2)xx + fttxx

]
+O(ε2). (4.1)

In this chapter we begin in Section 4.2 by generalising the weakly nonlinear solution

of the Cauchy problem studied in the previous chapter (see Section 3.2) by considering

the case when initial conditions are split into O(1) and O(ε) terms, allowing one to

construct explicit analytical solutions for a wider class of initial conditions. We use

asymptotic multiple-scales expansions, similar to the type used in the study of oblique

interaction of solitary waves [86], and an averaging technique, used for example in

[8, 72], to derive asymptotically exact models which describe the leading order terms in

the expansions. The leading order terms satisfy the IVP for two KdV equations [78],

integrable by the IST [44] (see also [3, 29]). We use two arbitrary functions present

in the higher order terms to improve the accuracy of the approximate solution. The
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derived formula constitutes a weakly nonlinear extension of the classical d’Alembert’s

formula for the linear wave equation, and has a similar structure. To the best of our

knowledge, such a formula has not been suggested in previous studies. The simple

and explicit form of this solution allows one to construct a large class of approximate

solutions corresponding to exactly solvable initial conditions (see Section 4.4). The

weakly nonlinear approach used in this chapter can be applied to any form of the

Boussinesq equation and coupled systems of Boussinesq equations (see [72]) and, in

particular, it offers an alternative to implementing the IST to the integrable version of

the equation in physically relevant cases.

In Section 4.3 we numerically solve, via the finite difference scheme introduced in

Appendix A.1, a scaled version of (4.1), in the form

f̃t̃t̃ − f̃x̃x̃ =
1

2
(f̃2)x̃x̃ + f̃t̃t̃x̃x̃, (4.2)

where f̃ = εf, t =
√
ε t̃, x =

√
ε x̃. Equation (4.2) has particular solitary wave solutions

of the form

f̃ = A sech2

(
x̃− vt̃

Λ

)
, where A = 3(v2 − 1), Λ =

2v√
v2 − 1

, (4.3)

which we denote fsol. We directly measure the scheme’s accuracy by comparing the

analytical solution (4.3) to corresponding numerical simulations (denoted fnum), at

times within the derived asymptotic model’s validity, i.e. from t̃ = 0 to some point

between t̃ ≈ ta = 1
ε
√
ε

and t̃ ≈ tb = 1
ε2
√
ε
.

In Section 4.4, we explicitly derive the weakly nonlinear solution for exactly solvable

initial conditions of the IVP in the form of right-propagating and both right- and left-

propagating N-soliton solutions of the KdV equation. Note that these initial conditions

do not correspond to the exact soliton solutions of the Boussinesq equation.

In Section 4.5 we consider particular cases of initial conditions, namely one- and two-

soliton solutions of the KdV equation, and analyse the absolute error in comparison

with relevant numerical simulations. We define the maximum absolute error of the

solution at t̃ = τ as

elτ = max
−L≤x̃≤L

|fnum(x̃, τ)− f̃l(x̃, τ)|, for l = 1, 2,

where we restrict x̃ to the finite domain 2L and f̃l(x̃, t̃) denotes the weakly nonlinear

solution up to and including O(εl) terms.
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In Section 4.6 we consider perturbations to exactly solvable initial conditions of

the IVP, in particular for the case of right-propagating N-soliton solutions, and again

analyse the error for a specific example. We finish with concluding remarks in Section

4.7.

4.2 Weakly nonlinear solution

We consider the following IVP for a single regularised Boussinesq equation on the

infinite line:

ftt − fxx = ε

[
1

2
(f2)xx + fttxx

]
+O(ε2),

f |t=0 = F 0(x) + εF 1(x) +O(ε2), ft|t=0 = V 0(x) + εV 1(x) +O(ε2), (4.4)

(or any other asymptotically equivalent form of this equation) for the case when the ini-

tial conditions generate sufficiently rapidly decaying right- and left-propagating waves.

Therefore to leading order the initial (t = O(1)) evolution of the Cauchy data is de-

scribed by the classical d’Alembert’s solution

f0(x, t) = f−0 (x− t) + f+
0 (x+ t) for f±0 (x± t) =

1

2

(
F 0(x± t)±

∫ x±t

−∞
V 0(x)dx

)
.

In general f±0 are some step like functions but in what follows we shall restrict further

considerations to the case when these functions are sufficiently rapidly decaying at

infinity (in particular,
∫∞
−∞ V

0(x)dx = 0).

To describe the subsequent (t = O(ε−1)) evolution of the Cauchy data we introduce

the slow time variable T = εt and seek the following weakly nonlinear solution in the

form of asymptotic multiple-scales expansions

f = f−(ξ, T ) + f+(η, T ) + εf1(ξ, η, T ) +O(ε2), (4.5)

where ξ = x − t and η = x + t. Substituting (4.5) into the Boussinesq equation (4.4)

we find to leading order the equation is satisfied, whilst at O(ε) we obtain

−4f1
ξη = (2f−T + f−f−ξ + f−ξξξ)ξ + (−2f+

T + f+f+
η + f+

ηηη)η

+ 2f−ξ f
+
η + f+f−ξξ + f−f+

ηη. (4.6)

The subsequent derivation can be performed either by integrating (4.6) and requiring

that f1 is nonsecular (see, for example, [45]) or using averaging arguments similar to
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the previous chapter (see also [8, 72]). In what follows we use the latter of the two,

namely, we average (4.6) with respect to the fast time variable t at constant ξ or η.

The left-hand side of (4.6) at constant ξ is averaged as follows

lim
τ→∞

1

τ

∫ τ

0
f1
ξηdt = lim

τ→∞

1

2τ

∫ ξ+2τ

ξ
f1
ξηdη = lim

τ→∞

1

2τ

[
f1
ξ

]η=ξ+2τ

η=ξ
= 0,

where we assume f1 and its derivatives remain bounded (required to have a nonsecular

expansion (4.5)), and similarly we get zero when averaging the same term at constant

η. Averaging entirely over (4.6) at constant ξ and assuming f± and their derivatives

remain bounded and are sufficiently rapidly decaying at infinity for any fixed T (con-

sistent with relevant numerical experiments), we obtain

0 =
(

2f−T + f−f−ξ + f−ξξξ

)
ξ

+ lim
τ→∞

1

2τ

{[
−2f+

T + f+f+
η + f+

ηηη

]η=ξ+2τ

η=ξ
+

∫ ξ+2τ

ξ
(2f−ξ f

+
η + f+f−ξξ + f−f+

ηη)dη

}
=

(
2f−T + f−f−ξ + f−ξξξ

)
ξ
.

Averaging entirely over (4.6) at constant η we derive a similar equation for the function

f+. Integrating each of these equations with respect to their respective characteristic

variables, and taking into account the behaviour of f± at infinity, yields the following

two KdV equations

f−T +
1

2
f−f−ξ +

1

2
f−ξξξ = 0, f+

T −
1

2
f+f+

η −
1

2
f+
ηηη = 0. (4.7)

The higher order correction f1 is then obtained by substituting (4.7) into (4.6) to yield

f1 = −1

4

(
2f−f+ + f−ξ

∫ η

−∞
f+dη̃ + f+

η

∫ ξ

−∞
f−dξ̃

)
+ φ(ξ, T ) + ψ(η, T ), (4.8)

where φ and ψ are arbitrary functions. Finally, substituting the weakly nonlinear

solution (4.5) into the initial conditions of the IVP (4.4), we derive to leading order

initial conditions with respect to T , for the leading order terms f±

f±|T=0 = f±0 =
1

2

(
F 0(x± t)±

∫ x±t

−∞
V 0(x)dx

)
,

whilst at O(ε) we obtain, within the accuracy of the problem formulation, the following

d’Alembert-like formulae for the functions φ(ξ, T ) and ψ(η, T ):

φ(ξ, T ) =
1

2

[
R1(ξ, T ) +

∫ ξ

−∞
R2(x, T )dx

]
, ψ(η, T ) =

1

2

[
R1(η, T )−

∫ η

−∞
R2(x, T )dx

]
,
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where

R1(x, T ) =
1

4

[
2f−f+ + f−ξ

∫ η

−∞
f+dη̃ + f+

η

∫ ξ

−∞
f−dξ̃

]
t=0

+ F 1(x), (4.9)

R2(x, T ) =

[
f−T + f+

T +
1

4

(
f+f−ξ − f

−f+
η + f−ξξ

∫ η

−∞
f+dη̃ − f+

ηη

∫ ξ

−∞
f−dξ̃

)]
t=0

− V 1(x).

The dependence of the functions φ and ψ on T is either inherited from their dependence

on the leading order functions f− and f+, or it is neglected, i.e. R1,2(x, T ) can be

replaced with R1,2(x, 0). To construct a more accurate solution, valid for greater values

of time, one needs to know higher order terms in the problem formulation (4.4). An

alternative way of defining φ and ψ’s dependence on T is discussed in detail in the next

chapter.

4.3 Numerical scheme

We next examine the numerical scheme used to solve the Boussinesq equation (4.2).

We implement a finite difference scheme derived in [106] for a regularised Boussinesq

equation (see Appendix A.1) or equivalently the scheme used for simulations in Section

3.3 but with the reduction g = δ = γ = 0 and c = α = β = 1.

We let x̃ ∈ [−L,L], for finite L, and discretise the (x̃, t̃) domain into a grid with

spacings ∆x̃ = h and ∆t̃ = κ. The solution f̃(x̃, t̃) of (4.2) is approximated by the

solution f(ih, jκ) (for i = 0, 1, ..., N and j = 0, 1, ...) of the difference scheme, denoted

fi,j . We consider the following difference scheme for (4.2) (see Appendix A.1):

−fi−1,j+1 + (2 + h2)fi,j+1 − fi+1,j+1 = (κ2 − 2)[fi−1,j − 2fi,j + fi+1,j ] + 2h2fi,j

+
κ2

2

[
(fi−1,j)

2 − 2(fi,j)
2 + (fi+1,j)

2
]

+fi−1,j−1 − (2 + h2)fi,j−1 + fi+1,j−1. (4.10)

We choose zero boundary conditions such that they are sufficiently far away from the

propagating waves. Periodic boundary conditions were also considered (see Appendix

A.1.1), but for the added complexity and computational effort involved in solving the

difference scheme, the difference in the error of the solution was negligible, therefore

f0,j = fN,j = 0, ∀j.
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To directly analyse the error of the difference scheme we choose initial conditions of

the IVP (4.4) in the form of the particular Boussinesq soliton solution (4.3), namely

fi,0 = A sech2

(
ih

Λ

)
, fi,1 = A sech2

(
ih− vκ

Λ

)
, ∀i,

where A = 3(v2 − 1), Λ = 2v(v2 − 1)−
1
2 and we choose v ≈

√
ε
3 + 1 to ensure the

amplitude is O(ε) (required to make comparisons with the weakly nonlinear solution in

the next sections). The nine point implicit difference scheme (4.10), with tridiagonal

matrices of constant coefficients, is solved using a Thomas Algorithm (e.g., [6]).

It can be shown from using a von Neumann linear stability analysis (see Appendix

A.1.3) that we require the step size restriction κ < κc =
√

h2+4
1+f0

to ensure stability

of scheme (4.10), where f0 is a constant introduced to linearise fi,j such that f0 >

fi,j ∀i, j. It can also be shown that the principal truncation error of scheme (4.10) is

O(h2κ4 + h4κ2) (see Appendix A.1.2).

For a given h, the step size restriction on κ can be used to determine valid choices

of the time discretisation in order to ensure stability. Table 4.1 displays the maximum

absolute error across x̃ for different choices of κ for fixed ε (and hence fixed v) for two

different space step sizes h, and at two different times ta and tb (within the asymptotic

region of validity of the KdV models (4.7)). The optimal discretisations h = κ = 0.1

are chosen for subsequent numerical simulations in this chapter, where the maximum

absolute error within the time interval considered ranges from O(10−6) to O(10−7); well

within what is considered acceptable in previous numerical studies of such equations.

Figure 4.1 shows the evolution of the numerical solution of scheme (4.10) compared

with the particular analytical solution (4.3), along with the respective error plots at

each time. It is clear that for this range of time, the numerical solution is in good

agreement with the analytical solution.

Table 4.2 depicts the maximum absolute error over x̃ for different ε at the cor-

responding times t̃ ≈ ta. This measure of accuracy for the scheme is utilised when

analysing the error of the weakly nonlinear solution for particular examples in Sections

4.5 & 4.6.
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Max error at t̃ = 32 Max error at t̃ = 300

κ h=0.1 h=0.01 h=0.1 h=0.01

1 4.4693 x 10−4 4.5089 x 10−4 3.3 x 10−3 3.3 x 10−3

0.5 8.8851 x 10−5 1.1299 x 10−4 7.7082 x 10−4 4.8012 x 10−4

0.2 4.4300 x 10−5 1.8105 x 10−5 9.7890 x 10−4 1.2671 x 10−4

0.1 5.2846 x 10−6 4.5133 x 10−6 2.6891 x 10−4 3.1518 x 10−5

0.05 2.8857 x 10−6 1.1439 x 10−6 2.1081 x 10−5 8.0360 x 10−6

0.025 3.7396 x 10−6 4.3677 x 10−7 2.7026 x 10−5 3.2910 x 10−6

0.0125 3.9559 x 10−6 9.0239 x 10−7 2.8532 x 10−5 1.1751 x 10−6

0.00625 4.0198 x 10−6 3.6362 x 10−7 2.8988 x 10−5 4.6968 x 10−6

Table 4.1: Maximum absolute error of the numerical solution compared with the exact

solution (4.3) for various time and space discretisations h and κ, with ε = 0.1.

ε t̃(≈ ta) Max error of |fnum − fsol|
0.1 32 5.2846 x 10−7

0.075 49 3.6296 x 10−7

0.05 90 1.3789 x 10−7

0.025 253 3.4930 x 10−8

0.0125 716 8.4222 x 10−9

0.00625 2024 2.3201 x 10−9

Table 4.2: Maximum absolute error of the numerical solution compared with the exact

solution (4.3) at t̃ ≈ ta for h = κ = 0.1 and various ε.
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t̃ = 32 t̃ = 300

−400 −200 0 200 400

0

0.02

0.04
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0.08

0.1

x̃
−400 −200 0 200 400

0

0.02

0.04

0.06

0.08

0.1

x̃

(a) fnum(—) fsol(- -) (b) fnum(—) fsol(- -)

(c) (fnum - fsol)(—) (d) (fnum - fsol)(—)

Figure 4.1: Evolution of numerical solution and exact solution (4.3) at (a) t̃ = 32 (≈
ta) & (b) t̃ = 300 (≈ tb), and the absolute errors (c) & (d) at the respective times.

Parameter values are h = κ = 0.1 and ε = 0.1.
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4.4 Exactly solvable initial conditions

Due to the construction of the weakly nonlinear solution (4.5) it is favourable to split

the initial conditions of the IVP (4.4), if possible, into an O(1) ‘exactly solvable part’

(from the viewpoint of the leading order KdV equations) and an O(ε) perturbation. In

this section we consider the case when the perturbations are zero. First we transform

the KdV equations (4.7) into the standard form

f̂−
T̂
− 6f̂−f̂−

ξ̂
+ f̂−

ξ̂ξ̂ξ̂
= 0, f̂+

T̂+
− 6f̂+f̂+

η̂ + f̂+
η̂η̂η̂ = 0, where (4.11)

f̂− = − 1

6β2
f−, f̂+ = − 1

6β2
f+, ξ̂ = βξ, η̂ = βη, T̂ =

β3

2
T, T̂+ = −β

3

2
T,

and β is a free parameter. We consider the class of N-soliton solutions of equations

(4.11) (see [44, 57, 68]), which yields, for the original functions,

f−N (ξ, T ) = 12
∂2

∂ξ2
log[detMN (ξ,−T )], f+

N (η, T ) = 12
∂2

∂η2
log[detMN (η, T )],

for the N x N matrix MN (x, T ) = (mij(x, T )) with elements

mij(x, T ) = δij +
2ki

ki + kj
e(kix+

k3i T

2
+αi),

where αi and ki are arbitrary parameters for i, j = 1...N and δij is the Kronecker delta

function.

4.4.1 Right-propagating initial conditions

Let us first consider the case of initial conditions of the IVP (4.4) in the form of right-

propagating N-soliton solutions of the KdV equation, i.e.

f |t=0 = 12
∂2

∂x2
log[detMN (x, 0)], ft|t=0 = −12

∂3

∂x3
log[detMN (x, 0)]. (4.12)

In this case the leading order solutions of the weakly nonlinear solution appear in

the form f+ = 0, f− = f−N (ξ, T ) and the higher order terms (4.8) reduce to f1 =

φ(ξ, T ) + ψ(η, T ) where

φ(ξ, T ) =
1

2

∫ ξ

−∞
R2(x, T )dx, ψ(η, T ) = −1

2

∫ η

−∞
R2(x, T )dx,
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and R2(x, T ) = (f−T )|t=0. Therefore we have

f1 = −1

2

∂

∂T

∫ η

ξ
f−N (x, T )dx = −6

[
∂2

∂x∂T
log[detMN (x,−T )]

]x=η

x=ξ

,

and consequently the weakly nonlinear solution of the IVP (4.4) for KdV N-soliton

initial conditions propagating to the right is

f = 12
∂2

∂ξ2
log[detMN (ξ,−T )]− 6ε

[
∂2

∂x∂T
log[detMN (x,−T )]

]x=η

x=ξ

+O(ε2). (4.13)

4.4.2 Right- and left-propagating initial conditions

For the case of right- and left-propagating KdV N-soliton initial conditions of the IVP

(4.4), we choose the initial conditions in the form

f |t=0 = 24
∂2

∂x2
log[detMN (x, 0)], ft|t=0 = 0. (4.14)

The leading order solutions take the form f+ = f+
N (η, T ), f− = f−N (ξ, T ). Unlike the

previous case, the higher order terms are now more difficult to determine since f+ 6= 0.

It is convenient to introduce the notation

f− = 12Uξξ(ξ, T ), f+ = 12Vηη(η, T ), where

U(x, T ) = log[detMN (x,−T )] and V (x, T ) = log[detMN (x, T )],

and thus we can write the higher order terms of the weakly nonlinear solution as

f1 = −36 [2Uξξ(ξ, T )Vηη(η, T ) + Uξξξ(ξ, T )Vη(η, T ) + Vηηη(η, T )Uξ(ξ, T )]

+ φ(ξ, T ) + ψ(η, T ).

The terms φ and ψ are constructed from the functions (4.9), which for this case are

R1(x, T ) = 36
∂

∂x
[Uxx(x, T )Vx(x, T ) + Ux(x, T )Vxx(x, T )],

R2(x, T ) = 12[UxxT (x, T ) + VxxT (x, T )]

+ 36
∂

∂x
[Uxxx(x, T )Vx(x, T )− Ux(x, T )Vxxx(x, T )] .

It therefore follows that∫ x

−∞
R2(s, T )ds = 12[UxT (x, T ) + VxT (x, T )]

+ 36[Uxxx(x, T )Vx(x, T )− Ux(x, T )Vxxx(x, T )],
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and since we have

φ+ ψ =
1

2

[
R1(ξ, T ) +R1(η, T )−

∫ η

ξ
R2(x, T )dx

]
= 36

{
Uξξ(ξ, T )Vξξ(ξ, T ) + Uηη(η, T )Vηη(η, T ) + Uξξξ(ξ, T )Vξ(ξ, T )

+Vηηη(η, T )Uη(η, T ) +
1

6

[
UξT (ξ, T ) + VξT (ξ, T )− UηT (η, T )− VηT (η, T )

]}
,

the weakly nonlinear solution of the IVP (4.4) for KdV N-soliton initial conditions

propagating both left and right, can be explicitly expressed in the form

f = 12[Uξξ(ξ, T ) + Vηη(η, T )] + 36ε

{
∂

∂x

[
Uξξ(ξ, T ) [Vx(x, T )]x=ξ

x=η

+Vηη(η, T ) [Ux(x, T )]x=η
x=ξ

]
+

1

6
[UxT (x, T ) + VxT (x, T )]x=ξ

x=η

}
+O(ε2).(4.15)

4.5 Examples: weakly nonlinear solution and numerical

simulations

4.5.1 Right-propagating 1-soliton initial conditions

We now consider particular examples of the two general classes of solutions formulated

in the previous section and compare them to numerical simulations of the regularised

Boussinesq equation. For the case of initial conditions of the IVP (4.4) in the form of

a right-propagating single KdV soliton solution, the leading order terms are

f+ = 0, f− = f−1 (ξ, T ) = 12
∂2

∂ξ2
log(1 + eθ(ξ,−T )),

where θ(x, T ) = kx+ k3

2 T + α. From (4.12) the initial conditions of the IVP (4.4) are

f |t=0 = 12
∂2

∂x2
log(1 + eθ(x,0)), ft|t=0 = −12

∂3

∂x3
log(1 + eθ(x,0)), (4.16)

and from (4.13) the weakly nonlinear solution is

f = 12
∂2

∂ξ2
log(1 + eθ(ξ,−T ))− 6ε

[
∂2

∂x∂T
log(1 + eθ(x,−T ))

]x=η

x=ξ

+O(ε2). (4.17)

Explicitly evaluating the derivatives in (4.17) yields

f = 3k2sech2

[
k

2

(
ξ − k2

2
T

)
+
α

2

]
+

3k4ε

4

{
−sech2

[
k

2

(
ξ − k2

2
T

)
+
α

2

]
+ sech2

[
k

2

(
η − k2

2
T

)
+
α

2

]}
+O(ε2). (4.18)
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To consider the error of the weakly nonlinear solution in this example, we transform

(4.18) into the same form used in the numerics:

f̃ = 3k2ε sech2

[
k
√
ε

2

(
x̃−

[
1 +

k2ε

2

]
t̃

)
+
α

2

]
+

3k4ε2

4

{
−sech2

[
k
√
ε

2

(
x̃−

[
1 +

k2ε

2

]
t̃

)
+
α

2

]
+ sech2

[
k
√
ε

2

(
x̃+

[
1− k2ε

2

]
t̃

)
+
α

2

]}
+O(ε3). (4.19)

The initial conditions for numerical simulations are chosen to coincide with (4.16):

fi,0 = 3k2ε sech2

(
k
√
ε x̃+ α

2

)
, fi,1 = 3k2ε sech2

(
k
√
ε(x̃− κ) + α

2

)
, ∀i,

where we choose k such that the weakly nonlinear solution is applicable.

Figure 4.2 depicts the evolution of the weakly nonlinear solution (4.19) within the

time region of its applicability. Figures 4.3(a) & (b) highlight the difference in the

numerical solution compared with the weakly nonlinear solution, taken up to leading

and second order, for a particular time and choice of ε. In Figure 4.3(a) the difference

between the solution (4.19) and the numerical solution is almost indistinguishable,

whilst a considerable difference can be observed for the leading order solution upon

comparison with the numerical solution.

Figure 4.3(c) displays the maximum absolute error compared with ε at the corre-

sponding time t̃ ≈ ta. It can be seen that higher order corrections significantly reduce

the error of the solution. Note that the leading order solution does not capture the left-

propagating wave whatsoever. More detailed analysis of errors will be discussed in the

next chapter. Each of the errors plotted in Figure 4.3(c) are far greater in magnitude

than the corresponding errors of the numerical scheme (for the same parameters but for

different initial conditions), given in Table 4.2 of Section 4.3. This confirms the validity

of these plots as a true measure of the accuracy of the weakly nonlinear solution and

hence are not displaying potential numerical artefacts of the finite difference scheme.
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Figure 4.2: Evolution of the weakly nonlinear solution for right-propagating 1-soliton

initial conditions, with ε = 0.1, k = 1√
3

and α = 0.

(a) (b) (c)

0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

1x 10−3

ε
 

 

fnum(—) f̃2(- -) f̃1(- -) (fnum - f̃2)(—) (fnum - f̃1)(- -) e2ta(—) e1ta(- -)

Figure 4.3: Right-propagating 1-soliton initial conditions. (a) Numerical solution com-

pared with the weakly nonlinear solution f̃2 and f̃1, and (b) the respective absolute errors,

both for ε = 0.1 and t̃ = 32 (≈ ta). (c) Maximum absolute errors e2ta and e1ta versus ε at

t̃ ≈ ta. All other parameters are k = 1√
3

and α = 0.
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4.5.2 Right- and left-propagating 1-soliton initial conditions

The case of initial conditions of the IVP (4.4) in the form of a right- and left-propagating

single KdV soliton solution, yields the leading order solutions

f+ = f+
1 (η, T ) = 12

∂2

∂η2
log(1 + eθ(η,T )), f− = f−1 (ξ, T ) = 12

∂2

∂ξ2
log(1 + eθ(ξ,−T )).

From (4.14) this corresponds to the initial conditions of the IVP (4.4) in the form

f |t=0 = 24
∂2

∂x2
log(1 + eθ(x,0)), ft|t=0 = 0. (4.20)

The weakly nonlinear solution is therefore in the form (4.15) where in this particular

case U(x, T ) = log(1 + eθ(x,−T )) and V (x, T ) = log(1 + eθ(x,T )). Explicitly evaluating

each of the terms in the weakly nonlinear solution yields the solution in the form

f = 3k2
[
sech2θξ− + sech2θη+

]
+

9k4ε

2

{
−1

6

[
sech2θx+ − sech2θx−

]x=η

x=ξ

− sech2θξ−
[

1

2

(
sech2θη+ + sech2θξ+

)
− tanh θξ−

(
tanh θη+ + tanh θξ+

)]
− sech2θη+

[
1

2

(
sech2θξ− + sech2θη−

)
− tanh θη+

(
tanh θξ− + tanh θη−

)]}
+ O(ε2), (4.21)

where we introduce the notation θx± = 1
2θ(x,±T ).

To investigate the error of the weakly nonlinear solution we transform the variables

in (4.21) to the same form used in the numerics, and for numerical simulations we use

the following initial conditions to coincide with (4.20):

fi,0 = 6k2ε sech2

(√
εkx̃+ α

2

)
, and fi,1 =

1

2

(
fi,0|x̃=x̃−κ + fi,0|x̃=x̃+κ

)
.

We again choose suitable k to ensure the validity of the weakly nonlinear solution.

Figure 4.4 depicts the evolution of the weakly nonlinear solution (4.21) but trans-

formed to the same variables used in the numerics. Figures 4.5(a) & (b) display the

behaviour of the numerical solution compared with the weakly nonlinear solution, up

to leading and second order, for fixed t̃ and ε. Figure 4.5(c) displays the maximum of

the absolute errors for the weakly nonlinear solution taken up to each order, for various

ε and at the corresponding times t̃ ≈ ta. Similar to the previous example, the weakly

nonlinear solution derived for this example becomes more accurate when we account

for the higher order corrections.
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Figure 4.4: Evolution of the weakly nonlinear solution for right- and left-propagating

1-soliton initial conditions, with ε = 0.1, k = 1√
3

and α = 0.

(a) (b) (c)
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Figure 4.5: Right- and left-propagating 1-soliton initial conditions. (a) Numerical solu-

tion compared with the weakly nonlinear solution f̃2 and f̃1, and (b) the respective absolute

errors, both for ε = 0.1 and t̃ = 32 (≈ ta). (c) Maximum absolute errors e2ta and e1ta versus

ε at t̃ ≈ ta. All other parameters are k = 1√
3

and α = 0.
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4.5.3 Right-propagating 2-soliton initial conditions

We next examine another particular example of the weakly nonlinear solution derived

in Section 4.4.1, namely initial conditions of the IVP (4.4) in the form of a right-

propagating 2-soliton solution of the KdV equation. Therefore we have the following

leading order solutions

f+ = 0, f− = f−2 (ξ, T ) = 12
∂2

∂ξ2
log
(

1 + eθ1(ξ,−T ) + eθ2(ξ,−T ) + Ceθ1(ξ,−T )+θ2(ξ,−T )
)
,

where we denote C = [(k1 − k2)/(k1 + k2)]2 and θi(x, T ) = kix+
k3i
2 T + αi for i = 1, 2.

From (4.12) the corresponding initial conditions of the IVP (4.4) in this case are

f |t=0 = 12
∂2

∂x2
log
(

1 + eθ1(x,0) + eθ2(x,0) + Ceθ1(x,0)+θ2(x,0)
)
, ft|t=0 = − ∂

∂x
f |t=0,(4.22)

and from (4.13) the weakly nonlinear solution can be explicitly expressed as

f = 6
(k1 − k2)2 +

√
C
(
k2

1 cosh θξ−2 + k2
2 cosh θξ−1

)
[

cosh

(
θξ−1 −θ

ξ−
2

2

)
+
√
C cosh

(
θξ−1 +θξ−2

2

)]2

+
3ε

2

 D +
√
C
(
k4

1 cosh θs2 + k4
2 cosh θs1

)[
cosh

(
θs1−θs2

2

)
+
√
C cosh

(
θs1+θs2

2

)]2


s=η−

s=ξ−

+O(ε2), (4.23)

where D = (k1 − k2)2(k2
1 + k2

2) and we use the notation θx±i = kix ±
k3i
2 T + α̂i (where

we shift αi → α̂i − ln
√
C) for i = 1, 2. We next examine the error of solution (4.23) by

transforming the variables into the same form as used in numerical simulations, and to

coincide with (4.22) we implement the following initial conditions:

fi,0 = 6ε
(k1 − k2)2 +

√
C
(
k2

1 cosh θ̃x0
2 + k2

2 cosh θ̃x0
1

)
[

cosh
(
θ̃x01 −θ̃x02

2

)
+
√
C cosh

(
θ̃x01 +θ̃x02

2

)]2 , fi,1 = fi,0|x̃=x̃−κ,

where θ̃x0
i = kix̃

√
ε + α̂i for i = 1, 2, and we choose k1 and k2 appropriately to ensure

applicability of the weakly nonlinear solution.

In Figure 4.6 we consider the case where the amplitudes of the leading order parts

of the solution are close (k1 = 0.61, k2 = 0.56) and their relative positions are initially

close together (α̂1 = α̂2 = 0). The initial conditions of the IVP (4.4) for this example
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are shown in Figures 4.6(a) & (d), and the evolution of the weakly nonlinear solution,

up to first and second order, and the numerical solution, are displayed in Figures 4.6(b)

& (c), all for times within the region of validity of the weakly nonlinear solution. The

corresponding absolute errors up to each order are displayed in Figures 4.6(e) & (f) at

each of the respective times. It can be seen that there is a noticeable improvement in

the agreement of the numerical solution with the weakly nonlinear solution taken up

to second order compared to the leading order solution, best emulated at earlier time

(i.e. in Figures 4.6(b) & (c).

We also examined each combination for when the two leading order components of

the weakly nonlinear solution are initially close or separate and when the amplitudes

are similar or essentially different, controlled by the α̂i’s and the ki’s respectively.

There were slight alterations to these results from the example presented in Figure

4.6, however the main features remained; that being e2
t remained small throughout the

same time interval, but e2
t → e1

t as time increased through the region of the validity of

the weakly nonlinear solution.
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4.5 Examples: weakly nonlinear solution and numerical simulations
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4.5.4 Right- and left-propagating 2-soliton initial conditions

We consider one final particular example of exactly solvable initial conditions, namely

initial conditions of the IVP (4.4) in the form of right and left-propagating 2-soliton

solutions of the KdV equations. Therefore, the leading order solutions are in the form

f+ = f+
2 (η, T ) = 12

∂2

∂η2
log
(

1 + eθ1(η,T ) + eθ2(η,T ) + Ceθ1(η,T )+θ2(η,T )
)
,

f− = f−2 (ξ, T ) = 12
∂2

∂ξ2
log
(

1 + eθ1(ξ,−T ) + eθ2(ξ,−T ) + Ceθ1(ξ,−T )+θ2(ξ,−T )
)
,(4.24)

and the initial conditions (4.14) for this example are

f |t=0 = 24
∂2

∂x2
log
(

1 + eθ1(x,0) + eθ2(x,0) + Ceθ1(x,0)+θ2(x,0)
)
, ft|t=0 = 0. (4.25)

The explicit form of the weakly nonlinear solution for this example is omitted here

since the solution is rather lengthy, particularly due to the requirement of third order

derivatives of the log terms in (4.24) within the solution (4.15). However, the solution

can be easily obtained from (4.15) using any computer algebra package (we use Maple

14 to determine the solution in subsequent comparisons in this chapter), indeed, the

only operations required in determining (4.15) are differentiations.

Once again, we explicitly compare the weakly nonlinear solution in this example

with numerical simulations. Transforming the variables into the same form as used

in the numerics, we use the following initial conditions for numerical simulations to

coincide with (4.25):

fi,0 = 12ε
(k1 − k2)2 +

√
C
(
k2

1 cosh θ̃x0
2 + k2

2 cosh θ̃x0
1

)
[

cosh
(
θ̃x01 −θ̃x02

2

)
+
√
C cosh

(
θ̃x01 +θ̃x02

2

)]2 ,

fi,1 =
1

2
(fi,0|x̃=x̃−κ + fi,0|x̃=x̃+κ) ,

where we again choose the ki’s appropriately in order to maintain the applicability of

the weakly nonlinear solution.

For the example presented in Figure 4.7 we choose the same α̂i’s and ki’s as chosen

in the previous example. The initial conditions of the IVP (4.4) for this example are

shown in Figures 4.7(a) & (d), and the evolution of the weakly nonlinear solution, taken

up to first and second order, along with the numerical solution, is shown in Figures

4.7(b) & (c). As the solution evolves one can notice qualitatively the resemblance of
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4.6 Perturbations of exactly solvable initial conditions

the leading order terms in the previous example propagating in both directions. The

absolute errors of the weakly nonlinear solution up to each order are shown in Figures

4.7(e) & (f) at each of the respective times and it is again clear that they are small

throughout the time interval considered. There is a significant improvement in the

accuracy of f̃2 compared with f̃1 for this example especially at earlier time, shown in

Figure 4.7(e), where e2
t /e

1
t is approximately O(ε).

4.6 Perturbations of exactly solvable initial conditions

Finally we consider the weakly nonlinear solution for perturbations to the exactly solv-

able initial conditions of the IVP (4.4) considered in Section 4.4. More specifically,

we examine just one particular case: initial conditions with a perturbation to a right

propagating KdV N-soliton solution. We choose the simplest perturbed form to the

initial conditions of the IVP (4.4):

f |t=0 = 12
∂2

∂x2
log[detMN (x, 0)] + εF 1(x), ft|t=0 = −12

∂3

∂x3
log[detMN (x, 0)].

Therefore, the leading order terms are still given in the form considered in Section 4.4.1

f+ = 0, f− = f−N (ξ, T ),

but the higher order terms are of the form

f1 =
1

2

[
R1(ξ, T ) +R1(η, T )−

∫ η

ξ
R2(x, T )dx

]
, where

R1(x, T ) = F 1(x), R2(x, T ) =
∂

∂T
f−N (x, T ).

The weakly nonlinear solution for a perturbation of the KdV N-soliton initial conditions

propagating to the right, is therefore

f = 12
∂2

∂ξ2
log[detMN (ξ,−T )]

+
ε

2

{
F 1(ξ) + F 1(η)− 12

[
∂2

∂x∂T
log[detMN (x,−T )]

]x=η

x=ξ

}
+O(ε2). (4.26)

We consider a particular example, namely a perturbation of the single KdV soliton

solution, as in Section 4.5.1, with the perturbation defined as

F 1(x) = sech

(
kx+ α

2

)
.
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4.6 Perturbations of exactly solvable initial conditions

Therefore, the initial conditions of the IVP are

f |t=0 = 12
∂2

∂x2
log(1 + eθ(x,0)) + ε sech

(
kx+ α

2

)
,

ft|t=0 = −12
∂3

∂x3
log(1 + eθ(x,0)), (4.27)

and from (4.26) the weakly nonlinear solution is explicitly given by

f = 3k2sech2

(
k

2

(
ξ − k2

2
T

)
+
α

2

)
+
ε

2

{
sech

(
kξ + α

2

)
+ sech

(
kη + α

2

)
+

3k4

2

[
−sech2

(
k

2

(
ξ − k2

2
T

)
+
α

2

)
+ sech2

(
k

2

(
η − k2

2
T

)
+
α

2

)]}
+O(ε2).(4.28)

To analyse the error we transform the variables to the form used in the numerics and

for simulations we use the following initial conditions in order to comply with (4.27):

fi,0 = 3k2ε sech2

(
k
√
εx̃+ α

2

)
+ ε2sech

(
k
√
εx̃+ α

2

)
,

fi,1 = 3k2ε sech2

(
k
√
ε(x̃− κ) + α

2

)
+

ε2

2

{
sech

(
k
√
ε(x̃− κ) + α

2

)
+ sech

(
k
√
ε(x̃+ κ) + α

2

)}
.

The initial conditions of the IVP (4.4), for this example, are shown in Figures 4.8(a)

& (d), and the evolution of the weakly nonlinear solution, up to leading and second

order, along with the numerical solution are shown in Figures 4.8(b) & (c). Figures

4.8(e) & (f) depict the corresponding errors of the weakly nonlinear solution at each of

the respective times. The weakly nonlinear solution (4.28) is significantly more accurate

than the leading order solution, most evident for early time (Figure 4.8(e)). However,

as time increases beyond the region of validity of the weakly nonlinear solution, we find

that e2
t → e1

t .
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4.7 Concluding remarks

4.7 Concluding remarks

In this chapter we have constructed a nonsecular weakly nonlinear solution of the IVP

for the Boussinesq equation on the infinite line, for initial data generating sufficiently

rapidly decaying right- and left-propagating waves. Seeking asymptotic multiple-scales

expansions and implementing an averaging procedure with respect to the fast time

variable, we derived two KdV equations describing the leading order terms and obtained

formulae for the higher order corrections in an explicit and simple form. The initial

data was split into O(1) and O(ε) parts, and it was shown, in a case study, that this

allows one to obtain explicit approximate solutions of the IVP for exactly solvable

initial conditions (from the viewpoint of the IST for the leading order KdV equations).

A finite difference scheme was implemented primarily to check the accuracy of the

developed weakly nonlinear solution. We showed through comparisons of the numerical

solution with an exact solution of the Boussinesq equation that the scheme’s accuracy

was well within the required accuracy to measure the weakly nonlinear solution. Al-

beit that changing the initial conditions in simulations for subsequent examples would

undoubtedly alter the magnitude of the error of the numerical scheme determined in

the test case in Section 4.3, it remains a good indicator of the scheme’s accuracy.

On comparison of the weakly nonlinear solution with relevant numerical simulations

there arose two consistent features in each of the examples considered. Firstly, the

weakly nonlinear solution remained within its required accuracy throughout the time

interval of its validity. For a more accurate solution and applicability for larger time,

one must reformulate equation (4.1) to consider higher order terms. Secondly, the

maximum absolute error of the weakly nonlinear solution (e2
t ) was significantly lower

than for the leading order solution (e1
t ). This was particularly evident for earlier times.

As time extended towards the end of the validity region of the weakly nonlinear solution,

it can be seen that e2
t and e1

t become comparable. Improvements to the accuracy of

the solution relating to this feature, are accounted for in the next chapter.

In all examples considered in this chapter the constructed weakly nonlinear solution

was in excellent agreement with the results of numerical simulations, within the range

of the solutions asymptotic validity. It would be interesting to consider other classes

of initial conditions for the leading order KdV equations, using the well-developed

techniques of the IST.
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Chapter 5

Time dependence of higher order

solution

In the previous two chapters we have constructed a weakly nonlinear solution of the

Cauchy problem for Boussinesq-type equations on the infinite line, with localised and

sufficiently rapidly decaying initial conditions, up to the accuracy of the problem for-

mulation. The derived higher order functions denoted ψ and φ, which were found at

T = 0 (where T is the slow time variable), enabled us to satisfy the initial conditions of

the Cauchy problem for the Boussinesq-type equations. However, within the accuracy

of the problem formulation, there was no way to correctly define the time dependence

of ψ and φ. The aim of this chapter is to improve the accuracy of the previously con-

structed weakly nonlinear solution by defining the functions ψ and φ’s dependence on

T , for the more broader ‘Boussinesq–type’ equation.

We examine the accuracy of the approach by considering a particular example for

the regularised Boussinesq equation, corresponding to a right-propagating leading order

KdV soliton solution. In this case we derive higher order linearised KdV equations

for ψ, φ and solve the equations by (i) using a perturbation approach and (ii) using

numerical techniques. We compare the accuracy of the two different approaches with

numerical simulations of the Boussinesq equation. Lastly, we consider an example

for the Boussinesq–type equation modified by the ‘Ostrovsky term’, which we refer to

henceforth as the ‘Boussinesq–Ostrovsky’ equation. We compare the derived solution

with numerical simulations of the Boussinesq–Ostrovsky equation.

The results of this chapter are partially summarised in [74].
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5.1 Weakly nonlinear solution

We consider the following Cauchy problem for the truncated Boussinesq–Ostrovsky

equation on the infinite line:

ftt − fxx = ε

[
1

2
(f2)xx + fttxx − γf

]
,

f |t=0 = F (x), ft|t=0 = −Fx(x), (5.1)

where the initial conditions are assumed to be localised or sufficiently rapidly decaying,

and so too is the initial evolution of the solution from the initial conditions. Note, the

form of the initial conditions (5.1a) is chosen to simplify derivations in order to best

emphasise the subsequent methodology outlined in this chapter. The extension to the

more general class of initial conditions constituting left- and right-propagating leading

order terms is omitted since derivations become rather lengthy).

Of course, Boussinesq-type models should not be considered ‘exact’ in the majority

of real life applications; from this viewpoint the problem formulation (5.1) can be viewed

as a ‘toy’-problem. Nevertheless, (5.1) is still a valid mathematical problem. Moreover,

the methodology we develop in this chapter can be generalised and extended when the

problem formulation of Boussinesq-type equations include higher order terms.

Following the derivation of the weakly nonlinear solutions developed in Sections 3.2

& 4.2, we seek the following solution of the particular configuration (5.1):

f = f−(ξ, T ) + ε[φ(ξ, T ) + ψ(η, T )] + ε2f2(ξ, η, T ) +O(ε3), (5.2)

(the initial evolution found from d’Alembert’s solution yields f+ = 0), where ξ = x− t,
η = x+ t and T = εt. Note we now include further higher order terms in the solution,

denoted f2. However, we do not specify and include these terms in the solution, they

appear purely to derive the evolution equations for the terms ψ and φ.

Substituting expansions (5.2) into (5.1a) we find the equations at leading order are

satisfied and at O(ε) we directly find

(2f−T + f−f−ξ + f−ξξξ)ξ = γf−, (5.3)

which is indeed the Ostrovsky equation. Note, to derive (5.3) it is not required to

average the equations at O(ε) (as we did in the previous chapters) due to the construc-

tion of the solution (5.2) and the particular configuration of the IVP (5.1). The initial
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condition for (5.3) in terms of T , is found from matching with the initial evolution of

the Cauchy data (5.1b) (described by the classical d’Alembert’s solution), thus we find

f−T=0 = F (ξ). (5.4)

Next we find at O(ε2)

−4f2
ξη = (2φT + (f−φ)ξ + φξξξ)ξ − γφ− f−TT − 2f−ξξξT + (−2ψT + ψηηη)η − γψ

+ 2f−ξ ψη + f−ψηη + f−ξξψ, (5.5)

which after averaging with respect to the fast time variable t, at constant ξ and then

at constant η (see Chapters 3 & 4, [72], [73]), yields the following linearised Ostrovsky

equations respectively (see also [74]):(
− 2ψT + ψηηη

)
η

= γψ, (5.6)

and (
2φT + (f−φ)ξ + φξξξ

)
ξ

= γφ+ f−TT + 2f−ξξξT , (5.7)

where we assume (i) f2 and it’s derivatives remain bounded (required in order to have

a nonsecular solution) and (ii) f−, ψ, φ and their derivatives remain bounded and are

sufficiently rapidly decaying for any fixed T . The initial conditions for (5.6) and (5.7)

are obtained in the same way as the solutions obtained in Chapters 3 & 4 (which were

previously used to describe ψ and φ ∀T ), namely

ψ(η, 0) = −1

2

[ ∫ η

−∞
f−T (s, T )ds

]
T=0

, φ(ξ, 0) =
1

2

[ ∫ ξ

−∞
f−T (s, T )ds

]
T=0

. (5.8)

It is important to reiterate that the approach considered here is not implemented

to yield a more accurate solution beyond O(ε) and for applicability for larger time. It

is considered instead to yield a solution with closer accuracy to O(ε) throughout all

times within the solutions applicability. It was noted in Chapters 3 & 4 that although

the previously developed weakly nonlinear solution improved the leading order approx-

imation at all times t ∈ [0, ε−1], the absolute error increased with time. We would like

to emphasise that this previously noted characteristic of the solution should be viewed

as a deficiency of the problem formulation, not the constructed solution.
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5.2 Regularised Boussinesq equation

In this new setting, let us reconsider the Cauchy problem for the single regularised

Boussinesq equation with the configuration corresponding to a single right-propagating

KdV soliton solution to leading order (previously considered in Section 4.5.1), that is

ftt − fxx = ε

[
1

2
(f2)xx + fttxx

]
,

f |t=0 = 12
∂2

∂x2
log(1 + epx) = 3p2 sech2(px/2),

ft|t=0 = −12
∂3

∂x3
log(1 + epx) = 3p3 sech2(px/2) tanh(px/2), (5.9)

(note, γ = 0) on the infinite line. The weakly nonlinear solution is therefore of the form

f = f−(ξ, T ) + ε[φ(ξ, T ) + ψ(η, T )] +O(ε2), (5.10)

where the leading order solution is given by the single KdV soliton solution

f−(ξ, T ) = 3p2sech2(z), z =
p

2

(
ξ − p2

2
T

)
. (5.11)

However, the higher order terms ψ, φ, under the configuration (5.9), are now found as

solutions to the Cauchy problems for the following linearised KdV equations:(
− 2ψT + ψηηη

)
η

= 0,

ψ|T=0 =
3p4

4
sech2(pη/2), (5.12)

and (
2φT + (f−φ)ξ + φξξξ

)
ξ

= f−TT + 2f−ξξξT ,

φ|T=0 = −3p4

4
sech2(pξ/2). (5.13)

The linearised KdV equations have previously appeared in the framework of the reg-

ularised Boussinesq equation [114], however in the work contained in this chapter we

explicitly construct solutions of the IVP in terms of the leading order solutions.

By noting f−T = −p2

2 f
−
ξ , we can integrate the nonhomogeneous variable coefficient

linearised KdV equation (5.13a), subject to zero boundary conditions, to yield

2φT + (f−φ)ξ + φξξξ =
p4

4
f−ξ − p

2f−ξξξ. (5.14)
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5.2 Regularised Boussinesq equation

It can be shown that (5.14) has a particular solution in the form

φps(ξ, T ) = −3

8
p4Tf−ξ + p2f−, (5.15)

and therefore the general solution of (5.13) can be written as

φ(ξ, T ) = φ̃(ξ, T ) + 3p4sech2(z) +
9p7T

8
sech2(z)tanh(z), (5.16)

where φ̃ is the solution to the following Cauchy problem for the homogeneous linearised

KdV equation:

2φ̃T + (f−φ̃)ξ + φ̃ξξξ = 0,

φ̃|T=0 = −15p4

4
sech2

(
pξ

2

)
, (5.17)

(note the slight change to the initial conditions in (5.13b)).

The method of stationary phase is often used to obtain some asymptotic form of

solutions for equations of the type (5.12a) (e.g., see [1]). However, approaches of this

type require one to consider long time, which contradicts the restrictions on the slow

time T for the construction of the weakly nonlinear solution in this work. Cauchy

problems of the type (5.17) were studied in [100], for arbitrary initial conditions and

with f− as a general solution of the KdV equation. However, the constructed solutions

are not always easily explicitly obtainable in terms of elementary functions. This there-

fore motivates the consideration of the perturbation approach for the Cauchy problems

(5.13) and (5.17), detailed in the next section.

5.2.1 Perturbation solution for higher order left-propagating wave

Integrating the linearised KdV equation for ψ with respect to η, subject to zero bound-

ary conditions, yields the Cauchy problem (5.12) in the form

−2ψT + ψηηη = 0,

ψ|T=0 =
3p4

4
sech2

(pη
2

)
= g1(η). (5.18)

Applying the Fourier transform (B.1) to (5.18) yields

−2ψ̂T − ik3ψ̂ = 0,

ψ̂(k, 0) =

∫ ∞
−∞

e−ikηg1(η)dη, (5.19)
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which we can solve in the Fourier space to find

ψ̂(k, T ) = ψ̂(k, 0)e
−ik3T

2 . (5.20)

Applying the inverse Fourier transform (B.2), the solution of (5.18) can be written as

ψ(η, T ) =
1

2π

∫ ∞
−∞

[∫ ∞
−∞

e−ikyg1(y)dy

]
e

−ik3T
2 eikηdk, (5.21)

where the inner integral can be explicitly found as∫ ∞
−∞

g1(y)e−ikydy =
3p2kπ

sinh
(
kπ
p

) , (5.22)

but the full outer integral in (5.21) is not so easy to explicitly obtain.

To yield an easily obtainable solution in terms of elementary functions, we Taylor

expand the exponential term involving T in (5.21), about T = 0 (not only do we in

principle require T ∈ [0, 1] but moreover this expansion converges on the entire domain),

to find

ψ(η, T ) =
3p2

2

∫ ∞
−∞

k[cos(kη) + i sin(kη)]

sinh
(
kπ
p

) (
1− ik3T

2
− k6T 2

8
+ ...

)
dk

=
3p2

2

∫ ∞
−∞

k cos(kη)

sinh
(
kπ
p

)dk +
3p2T

4

∫ ∞
−∞

k4 sin(kη)

sinh
(
kπ
p

)dk − 3p2T 2

16

∫ ∞
−∞

k7 cos(kη)

sinh
(
kπ
p

) dk
+ ... . (5.23)

Explicitly evaluating the integrals in (5.23) yields

ψ(η, T ) =
3p4

4
sech2

(pη
2

)
+

3p7T

8
sech2

(pη
2

)
tanh

(pη
2

) [
3sech2

(pη
2

)
− 1
]

+
3p10T 2

128
sech2

(pη
2

) [
4− 126sech2

(pη
2

)
+ 420sech4

(pη
2

)
− 315sech6

(pη
2

)]
+ ... . (5.24)

Therefore Taylor expanding in this way, provides an easily obtainable explicit solution

for ψ, found up to a chosen order of p. Restricting p4 to being a small parameter will

yield an accurate asymptotic approach to the solution for ψ (this assumption on p is

made in the next section in order to make analytical progress with the solution for φ).
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5.2 Regularised Boussinesq equation

5.2.2 Perturbation solution for higher order right-propagating wave

Rescaling (5.17) such that φ̃ = p4φ̄, we have the following Cauchy problem for φ̄:

2φ̄T + φ̄ξξξ = −3p2φ̄ξ sech2(z) + 3p3φ̄ sech2(z)tanh(z),

φ̄|T=0 = −15

4
sech2

(
pξ

2

)
. (5.25)

Assuming |p| � 1, we seek the following asymptotic solution of (5.25)

φ̄ = φ̄0 + pφ̄1 + p2φ̄2 + p3φ̄3 + p4φ̄4 + p5φ̄5 + p6φ̄6 + ... . (5.26)

Substituting (5.26) into (5.25) yields the following Cauchy problems up to O(p3):

O(1) : 2φ̄0T + φ̄0ξξξ = 0,

φ̄0|T=0 = −15

4
sech2

(
pξ

2

)
, (5.27)

O(p) : 2φ̄1T + φ̄1ξξξ = 0,

φ̄1|T=0 = 0, (5.28)

O(p2) : 2φ̄2T + φ̄2ξξξ = −3φ̄0ξ sech2(z),

φ̄2|T=0 = 0, (5.29)

O(p3) : 2φ̄3T + φ̄3ξξξ = −3φ̄1ξ sech2(z) + 3φ̄0 sech2(z)tanh(z),

φ̄3|T=0 = 0. (5.30)

To leading order we have a very similar problem to that for ψ. Taking the Fourier

transform of (5.27), solving the derived ordinary differential equation (ODE) in the

Fourier space and implementing the inverse Fourier transform to get back to the physical

space, yields the solution

φ̄0(ξ, T ) =
1

2π

∫ ∞
−∞

[∫ ∞
−∞

g2(y)e−ikydy

]
e
ik3T

2 eikξdk, (5.31)

where we denote g2(ξ) = φ̄0|T=0. The inner integral in (5.31) is explicitly found as∫ ∞
−∞

g2(y)e−ikydy = − 15kπ

p2 sinh
(
kπ
p

) , (5.32)
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therefore, Taylor expanding the exponential in (5.31) involving T , about T = 0, yields

φ̄0(ξ, T ) = − 15

2p2

∫ ∞
−∞

k[cos(kξ) + i sin(kξ)]

sinh
(
kπ
p

) (
1 +

ik3T

2
− k6T 2

8
+ ...

)
dk

= − 15

2p2

∫ ∞
−∞

k cos(kξ)

sinh
(
kπ
p

)dk +
15T

4p2

∫ ∞
−∞

k4 sin(kξ)

sinh
(
kπ
p

)dk +
15T 2

16p2

∫ ∞
−∞

k7 cos(kξ)

sinh
(
kπ
p

)dk
+ ... . (5.33)

Explicitly evaluating the integrals in (5.33), yields the solution to (5.27) as

φ̄0(ξ, T ) = −15

4
sech2

(
pξ

2

)
+

15p3T

8
sech2

(
pξ

2

)
tanh

(
pξ

2

)[
3sech2

(
pξ

2

)
− 1

]
− 15p6T 2

128
sech2

(
pξ

2

)[
4− 126sech2

(
pξ

2

)
+ 420sech4

(
pξ

2

)
− 315sech6

(
pξ

2

)]
+ ... . (5.34)

From (5.34) it is now clear that the term φ̄0ξ in (5.29) is indeed O(p) and so we

must shift this term to the next order. As a result, the solution of Cauchy problems

(5.28) and (5.29) will be in the same form as (5.31), but with zero initial conditions,

and are therefore the trivial solutions

φ̄1(ξ, T ) = φ̄2(ξ, T ) = 0. (5.35)

The Cauchy problem (5.30) is now modified to the following form:

2φ̄3T + φ̄3ξξξ = −3

p

[
φ̄0 sech2(z)

]
ξ
,

φ̄3|T=0 = 0. (5.36)

From Duhamel’s principle (see e.g. [43]), the solution of (5.36) can be expressed as

φ̄3(ξ, T ) =
1

2

∫ T

0
φ̆3(ξ, T, s)ds, (5.37)

where φ̆3, for fixed s ≥ 0, is the solution to the homogeneous Cauchy problem

2φ̆3T + φ̆3ξξξ = 0,

φ̆3|T=s = −3

p

{
φ̄0(ξ; s) sech2

[
p

2

(
ξ − p2s

2

)]}
ξ

. (5.38)
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Taking the Fourier transform of (5.38), and solving the resulting ODE, one can yield

the solution of (5.38) in the original physical space as

φ̆3(ξ, T, s) =
1

2π

∫ ∞
−∞

[∫ ∞
−∞

g3(y; s)e−ikydy

]
e

−ik3(s−T )
2 eikξdk, (5.39)

where we denote g3(ξ; s) = φ̆3|T=s. Integrating the inner integral in (5.39) by parts

once, and noting that φ̄0 is bounded as ξ → ±∞ ∀T , we find∫ ∞
−∞

g3(y; s)e−ikydy = −3ik

p

∫ ∞
−∞

φ̄0(y; s) sech2

[
p

2

(
y − p2s

2

)]
e−ikydy. (5.40)

We substitute the leading order expression for φ̄0, given by (5.34), into (5.40),

such that the overall solution of φ̄ is accurate up to O(p6). In order to obtain some

explicit form of (5.40), in terms of elementary functions (useful for the subsequent outer

integral in (5.39)), we also Taylor expand the non-symmetric hyperbolic term in (5.40)

about s = 0 (s is restricted to the same domain as T ∈ [0, 1], moreover the radius of

convergence of this expansion is greater than this domain), to obtain∫ ∞
−∞

g3(y; s)e−ikydy =
45ik

4p

∫ ∞
−∞

sech4
(py

2

)
cos(ky)dy

− 45p2ks

8

∫ ∞
−∞

sech4
(py

2

)
tanh

(py
2

) [
3sech2

(py
2

)
− 2
]

sin(ky)dy

+
45p5iks2

128

∫ ∞
−∞

sech4
(py

2

) [
16− 164sech2

(py
2

)
+ 444sech4

(py
2

)
− 315sech6

(py
2

) ]
cos(ky)dy + ... . (5.41)

Explicitly evaluating the integrals in (5.41) we find the inner integral of (5.39) is∫ ∞
−∞

g3(y; s)e−ikydy =
30ik2(k2 + p2)π

p5 sinh
(
kπ
p

) − 3sk3(k4 − p4)π

p5 sinh
(
kπ
p

)
+
is2k2(k2 + p2)(35k6 + 127k4p2 + 440k2p4 + 288p6)π

112 p5 sinh
(
kπ
p

) + ... .(5.42)

Taylor expanding the exponential term involving T in (5.39) about (s−T ) = 0; noticing

the order of each of the resulting integrals will be O(pn+m+1), where n,m are the order

of the terms pnkm in the resulting integrands; we find φ̆3 up to O(p3) as

φ̆3(ξ, T, s) = +
15i

p5

∫ ∞
−∞

k2(k2 + p2) [cos(ky) + i sin(ky)]

sinh
(
kπ
p

) [
1− ik3(s− T )

2
+ ...

]
dk

− 3s

2p5

∫ ∞
−∞

k3(k4 − p4) [cos(ky) + i sin(ky)]

sinh
(
kπ
p

) [
1 + ...

]
dk + ... . (5.43)
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Explicitly evaluating the integrals in (5.43) yields

φ̆3(ξ, T, s) = −45

2
sech4

(
pξ

2

)
tanh

(
pξ

2

)
+

45p3(s− T )

16
sech4

(
pξ

2

)[
32− 130sech2

(
pξ

2

)
+ 105sech4

(
pξ

2

)]
− 45p3s

16
sech4

(
pξ

2

)[
8− 28sech2

(
pξ

2

)
+ 21sech4

(
pξ

2

)]
+ ... , (5.44)

where we find from (5.37), the solution to the Cauchy problem (5.36), up to O(p3), is

φ̄3(ξ, T ) = −45T

4
sech4

(
pξ

2

)
tanh

(
pξ

2

)
− 45p3T 2

32
sech4

(
pξ

2

)[
20− 79sech2

(
pξ

2

)
+ 63sech4

(
pξ

2

)]
+ ... . (5.45)

We next consider higher order solutions. From the substitution of (5.26) into (5.25),

we find the following higher order Cauchy problems that arise at the next three orders:

O(p4) : 2φ̄4T + φ̄4ξξξ = 0,

φ̄4|T=0 = 0, (5.46)

O(p5) : 2φ̄5T + φ̄5ξξξ = −3φ̄3ξ sech2(z),

φ̄5|T=0 = 0, (5.47)

O(p6) : 2φ̄6T + φ̄6ξξξ = −3φ̄4ξ sech2(z) + 3φ̄3 sech2(z)tanh(z),

φ̄6|T=0 = 0. (5.48)

The first thing to note is that from (5.47) the term φ̄3ξ, which can be found from (5.45),

is O(p). Therefore we shift this term to the next order, which as a result reduces the

Cauchy problem (5.47) to the same form as (5.46) and indeed (5.28), thus

φ̄4(ξ, T ) = φ̄5(ξ, T ) = 0. (5.49)

Now from (5.48) we have the following Cauchy problem

2φ̄6T + φ̄6ξξξ = −3

p

[
φ̄3 sech2(z)

]
ξ
,

φ̄6|T=0 = 0, (5.50)
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5.2 Regularised Boussinesq equation

which is analogous to the Cauchy problem for φ̄3. From Duhamel’s principle, the

solution of (5.50) can be written as

φ̄6(ξ, T ) =
1

2

∫ T

0
φ̆6(ξ, T, s)ds, (5.51)

where φ̆6, for fixed s ≥ 0, is the solution to the following homogeneous Cauchy problem

2φ̆6T + φ̆6ξξξ = 0,

φ̆6|T=s = −3

p

{
φ̄3(ξ; s) sech2

[
p

2

(
ξ − p2s

2

)]}
ξ

. (5.52)

Taking the Fourier transform of (5.52), one can obtain the solution of (5.52) as

φ̆6(ξ, T, s) =
1

2π

∫ ∞
−∞

[∫ ∞
−∞

g4(y; s)e−ikydy

]
e

−ik3(s−T )
2 eikξdk, (5.53)

where we denote g4(ξ; s) = φ̆6|T=s. Integrating the inner integral in (5.53) by parts

once, and noting that φ̄3 is bounded as ξ → ±∞ ∀T , we find∫ ∞
−∞

g4(y; s)e−ikydy = −3ik

p

∫ ∞
−∞

φ̄3(y; s) sech2

[
p

2

(
y − p2s

2

)]
e−ikydy. (5.54)

Taking the first term in the expression for φ̄3 and Taylor expanding the non-symmetric

hyperbolic term in (5.54), about s = 0, (both taken such that the overall solution for

φ̄ is accurate up to O(p6)), we find the inner integral (5.54) in the form∫ ∞
−∞

g4(y; s)e−ikydy =
135sk

4p

∫ ∞
−∞

sech6
(py

2

)
tanh

(py
2

)
sin(ky)dy + ...

=
6sk3(k2 + p2)(k2 + 4p2)π

p8 sinh
(
kπ
p

) + ... . (5.55)

Substituting (5.55) into (5.53) and Taylor expanding the exponential term involving T

in (5.53), about (s− T ) = 0, yields the solution φ̆6 as follows

φ̆6(ξ, T, s) =
3s

p8

∫ ∞
−∞

k3(k2 + p2)(k2 + 4p2) cos(kξ)

sinh
(
kπ
p

) dk + ...

=
135s

8
sech6

(
pξ

2

)[
7sech2

(
pξ

2

)
− 6

]
+ ... . (5.56)

From (5.51) we find the solution to the Cauchy problem (5.50), to leading order, as

φ̄6(ξ, T ) =
135T 2

32
sech6

(
pξ

2

)[
7sech2

(
pξ

2

)
− 6

]
+ ... . (5.57)

75



5. TIME DEPENDENCE OF HIGHER ORDER SOLUTION

Combining solutions (5.34), (5.35), (5.45), (5.49) and (5.57), each found such that

the overall solution for φ̄ is accurate up to O(p6), yields the following asymptotic

solution of the Cauchy problem (5.25):

φ̄(ξ, T ) = −15

4
sech2

(
pξ

2

)
− 15p3T

8
sech2

(
pξ

2

)
tanh

(
pξ

2

)[
3sech2

(
pξ

2

)
+ 1

]
− 15p6T 2

128
sech2

(
pξ

2

)[
4 + 114sech2

(
pξ

2

)
− 312sech4

(
pξ

2

)
+ 189sech6

(
pξ

2

)]
+ ... . (5.58)

Therefore the general solution to the original Cauchy problem (5.13), up to O(p10), is

φ(ξ, T ) = −15p4

4
sech2

(
pξ

2

)
− 15p7T

8
sech2

(
pξ

2

)
tanh

(
pξ

2

)[
3sech2

(
pξ

2

)
+ 1

]
− 15p10T 2

128
sech2

(
pξ

2

)[
4 + 114sech2

(
pξ

2

)
− 312sech4

(
pξ

2

)
+ 189sech6

(
pξ

2

)]
+ 3p4sech2(z) +

9p7T

8
sech2(z)tanh(z) + ... , (5.59)

where the particular solution comprises of the final two terms in (5.59) (although the

particular solution contains different orders of p, it is indeed found exactly).

5.2.3 Numerical solution for higher order corrections

We numerically solve the Cauchy problems for ψ and φ̃, given by (5.18) and (5.17)

respectively. This is considered firstly to directly compare the accuracy of the pertur-

bation solutions developed in the previous sections, but ultimately to further improve

the accuracy of the weakly nonlinear solution of the Cauchy problem for the Boussinesq

equation (5.9), using the evolution equations for ψ, φ.

Both of the homogenous linearised KdV equations governing ψ and φ̄ are solved

using spectral methods based on the fast Fourier transform (FFT) algorithm (refer

to Appendix B.3.1 & B.3.2 respectively, for full details of the methods). As a result

the numerical methods are implemented on a periodic domain, although for simulations

comparing the weakly nonlinear solution on the infinite line we simply adjust the spatial

boundaries such that they are suitably far enough from the propagating waves. We let

η, ξ ∈ [−L,L], for finite L, and discretise the (η, T ), (ξ, T ) domains into grids with

constant spacings ∆η, ∆T and ∆ξ, ∆T respectively. The solutions ψ(η, T ) and φ(ξ, T )

76



5.2 Regularised Boussinesq equation

of the linearised KdV equations (5.12) and (5.13) are approximated by the solutions

ψ(i∆η, j∆T ) = ψnum and φ(i∆ξ, j∆T ) = φnum for i = 1, 2, ..., N and j = 0, 1, ..., found

via the solutions of spectral methods (B.20) and (B.26) plus the particular solution

(5.15), respectively. For later comparisons with numerical simulations of the Boussinesq

equation (5.9), we shift the spatial domains from the moving reference frames η and ξ

to the x domain. This is simply done provided t is completely divisible by ∆η and ∆ξ.

If we note that φ̄ has an exact solution in the form:

φ̄sol(ξ, T ) = −3p3sech2(z) tanh(z), (5.60)

(which is indeed the first order derivative of f−(ξ, T )), the accuracy of φnum can be

tested with the following exact solution of the nonhomogeneous equation for φ:

φsol(ξ, T ) = −3p3sech2(z) tanh(z) + 3p4sech2(z) +
9p7T

8
sech2(z)tanh(z). (5.61)

Setting the initial condition in the spectral method (B.26) in Appendix B.3.2, as

ˆ̄φsol(k, 0) = −3p3 F
[
sech2

(
pξ

2

)
tanh

(
pξ

2

)]
, (5.62)

we compare the difference between φnum and the particular solution for φ, given by

(5.61). One can see from Table 5.1 that as the time step size is reduced by a factor of

2, the maximum absolute error in φnum improves by almost exactly the same factor.

One can continue to improve the accuracy of φnum by further reducing the time step,

although as ∆T → 0 the length of computational time will start to compromise the

value in the improvement of error (this is of course a question of how accurate one

requires the solution to be). To make comparisons with the developed perturbation

solution for φ and subsequently with the weakly nonlinear solution of the Cauchy

problem for the Boussinesq equation (5.9) (at least for times up to T = O(1)), the

magnitude of the maximum absolute error in the latter entries of Table 5.1 already

far exceed the necessary accuracy required. Figure 5.1 illustrates φnum and the exact

solution φsol for specific parameters at times T = ε and T = 1.

We define the perturbation solutions derived in Sections 5.2.1 & 5.2.2 for the Cauchy

problems (5.12) and (5.13) as

φ3i+1
pert = φ up to O(p3i+1),

ψ3i+1
pert = ψ up to O(p3i+1), for i = 1, 2, 3, .., (5.63)
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Figure 5.1: Evolution of numerical solution φnum and exact solution (5.61) at (a) T = ε

& (b) T = 1, and the absolute errors (c) & (d) at the respective times, with p = 1/
√

3,

ε = 0.1. Numerical parameters: L = 103, N = 20000 and ∆T = 7.8125× 10−5.
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Maximum absolute error

∆T T = ε T = 1

0.01 1.4883 x 10−6 1.3674 x 10−5

0.005 7.4393 x 10−7 6.8372 x 10−6

0.0025 3.7191 x 10−7 3.4186 x 10−6

0.00125 1.8594 x 10−7 1.7093 x 10−6

6.25 x 10−4 9.2967 x 10−8 8.5466 x 10−7

3.125 x 10−4 4.6483 x 10−8 4.2733 x 10−7

1.5625 x 10−4 2.3241 x 10−8 2.1367 x 10−7

7.8125 x 10−5 1.1621 x 10−8 1.0683 x 10−7

3.90625 x 10−5 5.8103 x 10−9 5.3416 x 10−8

1.95313 x 10−5 2.9051 x 10−9 2.6708 x 10−8

Table 5.1: Maximum absolute error of the numerical solution φnum compared to the exact

solution (5.61) at T = ε and T = 1, for various time discretisations ∆T , with p = 1/
√

3

and ε = 0.1. Numerical parameters: L = 103, N = 20000.

where ψ and φ are given by (5.24) and (5.59) respectively. Figures 5.2 & 5.3 illustrate

the difference in the perturbation solutions (5.63) compared with their respective nu-

merical solutions ψnum and φnum. As we increase the number of terms in (5.63), we see

the perturbation solutions ψpert and φpert tending towards ψnum and φnum respectively

(at least for times up to T = O(1)). One can also notice a worse approximation of the

numerical solution φnum from the perturbation solution φpert, than for ψnum from ψpert,

particularly for the perturbation solutions up to O(p4) and O(p7). This is perhaps due

to more approximations being used in the derivation of φpert, namely the extra Taylor

expansion of the non-symmetric hyperbolic term in (5.40) and (5.54). Nonetheless,

in both comparisons there is a clear convergence of the perturbation solutions to the

numerical solutions as more terms are added, thus encouraging the use of (5.24) and

(5.59) as accurate asymptotic representations of the solutions to the Cauchy problems

(5.12) and (5.13) respectively.

5.2.4 Numerical simulations

We now compare direct numerical simulations of the Cauchy problem for the Boussinesq

equation (5.9) with: (i) the weakly nonlinear solution found from the perturbation
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T = ε T = 1
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Figure 5.2: Evolution of ψnum and perturbation solutions (5.63a), with p = 1/
√

3, ε = 0.1,

at (a) T = ε & (b) T = 1, and the absolute errors (c) & (d) at the respective times, (e) &

(f) are close ups of the errors. Numerical parameters: L = 103, N = 20000, ∆T = 0.00125.
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T = ε T = 1
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Figure 5.3: Evolution of φnum and perturbation solutions (5.63b), with p = 1/
√

3, ε = 0.1,

at (a) T = ε & (b) T = 1, and the absolute errors (c) & (d) at the respective times, (e) &

(f) are close ups of the errors. Numerical parameters: L = 103, N = 20000, ∆T = 0.00125.
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solutions for the higher order evolution problems; (ii) the weakly nonlinear solution

found with the numerical solutions for the higher order evolution problems; (iii) the

weakly nonlinear solution originally developed in Chapter 4.

The Boussinesq equation is solved using a pseudo-spectral method, based on the

FFT algorithm (details of the method are outlined in Appendix B.2, along with discus-

sions regarding the accuracy of the method). We let x ∈ [−L,L], for finite L, and discre-

tise the (x, t) domain into a grid with constant spacings ∆x and ∆t. The solution f(x, t)

of the Boussinesq equation (5.9a) is approximated by the solution f(i∆x, j∆t) = fnum

for i = 1, 2, ..., N and j = 0, 1, ..., found via the solution of the spectral method (B.15)

(with γ = 0). The accuracy of the numerical method is far in excess of what is required

for comparisons with the weakly nonlinear solution derived in this chapter, neverthe-

less, extensions for further more accurate requirements are trivially achieved by further

decreasing the time step and/or increasing the number of harmonics in the FFT.

To consider the errors of the different weakly nonlinear solutions we first introduce

some notation. We define the weakly nonlinear solution of the Cauchy problem for the

Boussinesq equation (5.9), with the perturbation solutions ψ and φ, as

f lpert = f1 + ε[ψlpert + φlpert], (5.64)

where ψlpert and φlpert up to O(pl), are defined by (5.63), and f1 is the leading order

term in the weakly nonlinear solution (for the configuration (5.9), f1 = f−). We define

the weakly nonlinear solution of the Cauchy problem for the Boussinesq equation (5.9),

with the numerical solutions for ψ and φ, as

fnum
2 = f1 + ε[ψnum + φnum], (5.65)

where the numerical methods for ψnum and φnum are developed in Appendix B.3.1 &

B.3.2 respectively.

Figure 5.4(a) depicts the weakly nonlinear solutions (5.72) and (5.64) for l = 4, 7, 10,

and the weakly nonlinear solution originally developed in Chapter 4, all in comparison

with the numerical solution fnum. Figures 5.4(b) & (c) depict the absolute errors of

each of the weakly nonlinear solutions with respect to fnum. The first thing one can

notice from Figure 5.4 is that fnum
2 and all but the lowest order perturbation solution

improve the accuracy of the weakly nonlinear solution previously developed in Chapter

4. As seen in Figures 5.2 & 5.3, one can also notice the weakly nonlinear solution
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5.2 Regularised Boussinesq equation

for the perturbation solutions converging towards fnum as more terms are taken in

the perturbation solutions for ψ and φ. The most accurate solution is indeed fnum
2 ,

significantly better than all but the highest order perturbation solution we consider,

which is f10
pert.

We now analyse the errors of the weakly nonlinear solutions (5.64) and (5.72) in

more detail, by first defining the maximum absolute error over x at t = τ , as

emτ = max
−L≤x≤L

|fnum(x, τ)− fm(x, τ)|, for m = 1, 2,

ePiτ = max
−L≤x≤L

|fnum(x, τ)− f (3i+1)
pert (x, τ)|, for i = 1, 2, 3, ... ,

eNτ = max
−L≤x≤L

|fnum(x, τ)− fnum
2 (x, τ)|, (5.66)

where e2
τ corresponds to the maximum absolute error of the weakly nonlinear solution

without the evolution equations describing the higher order problems (i.e. the solution

developed in Chapter 4). We use a least squares power fit to determine how the

maximum absolute error of each of the weakly nonlinear solutions vary with the small

parameter ε. Let us write the errors defined in (5.66) as

emτ = Cmε
αm for m = 1, 2,

ePiτ = CPiε
αPi for i = 1, 2, 3, ... ,

eNτ = CN ε
αN . (5.67)

Taking logs of the errors in this form and considering a range of ε, one can find the

coefficients C and α, with the latter revealing how the maximum absolute errors scale

with ε. We find the coefficients using Matlab’s ‘polyfit’ command.

Figures 5.5 & 5.6 display double log plots of the maximum absolute errors we

find explicitly from numerical simulations compared with the log of the errors defined

in (5.67), both against ln(ε). Figure 5.5 illustrates the error scaling of the weakly

nonlinear solution developed previously without the higher order evolution equations,

compared with the most accurate weakly nonlinear solution which includes the solution

of the higher order evolution equations developed in this chapter; which is the solution

with ψ, φ solved numerically. The error scaling of the leading order approximation

is also included. As one can see from Figure 5.5, the weakly nonlinear solution f2
num

dramatically improves the scaling of the maximum absolute error with ε, in comparison

with the previously developed solution f2. To be precise, the maximum absolute error
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5. TIME DEPENDENCE OF HIGHER ORDER SOLUTION

of f2
num scales almost precisely as O(ε2) as opposed to f2 which scales almost as O(ε);

a complete order of ε larger.

The scalings of the errors found here coincide very accurately with that derived in

[74], where rigorous error estimates of the weakly nonlinear solution are developed for

the Cauchy problem for the Boussinesq–Ostrovsky equation.

Since analysis of error using a least squares power fit was not undertaken in Chapters

3 & 4, this similarity of scaling with ε between both orders of the previously developed

weakly nonlinear solution was not observed. Upon direct comparison of each order of

the previously found solution, it was shown that the maximum absolute error of f2 was

significantly smaller than f1. This is because the constant C2 in the definition of the

higher order error (5.67) is substantially smaller than C1, corresponding to the leading

order error.

Figure 5.6 displays the scaling of the maximum absolute error with ε, for the weakly

nonlinear solution found using the perturbation solutions for the higher order evolution

problems, compared with f2 and fnum
2 . One can see that the error scaling is improved

from the previously developed solution at all orders of the perturbation solution. One

can also see an increasing improvement of the error scaling as the order of the per-

turbation solutions for ψpert, φpert is increased. This further cements the validity of

the developed perturbation approach outlined in Sections 5.2.1 & 5.2.2 as a valid and

effective methodology for solving the higher order evolution problems in the weakly

nonlinear solution of the Cauchy problem for the Boussinesq equation (5.9). Although

the errors of the weakly nonlinear solution found from the numerically obtained so-

lutions for ψ and φ, scale significantly closer to O(ε2), the developed perturbation

approach has the scope to be continued to obtain fpert up to arbitrary orders of p, and

subsequently the accuracy can be continually improved. Moreover, if one wants to ex-

tend the weakly nonlinear solution of the Cauchy problem (5.9) beyond O(ε) accuracy

(indeed one needs to also extend the derivation of the Boussinesq equation to the same

order), it can be very useful to have ψ, φ in some analytical form.
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t = 1/ε
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Figure 5.4: (a) Comparison of numerical solution fnum with the weakly nonlinear solution

using the higher order: (i) perturbation solutions; (ii) numerical solutions; (iii) solution f2;

all for p = 1/
√

3, ε = 0.1, at t = 1/ε, with (b) the absolute errors and (c) a close up of the

errors. Numerical parameters: L = 103, N = 20000, ∆T = 0.00125, ∆t = 0.01.
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t = 1/ε
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Figure 5.5: Double log plot of absolute errors of the weakly nonlinear solution, at t =

ta = 1/ε (T = 1), for p = 1/
√

3 and varying ε. Coefficients are α1 = 0.9906, α2 = 0.9928,

αN = 2.0103 and C1 = 0.09281, C2 = 0.02896, CN = 0.07417. Numerical parameters:

∆t = 0.01, ∆T = 0.00125 and L = 2000, N = 2× 104.
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Figure 5.6: Double log plot of absolute errors of the weakly nonlinear solution, at t =

ta = 1/ε (T = 1), for p = 1/
√

3 and varying ε. Coefficients are α2 = 0.9865, αP1 = 0.9906,

αP2 = 1.2669, αP3 = 1.5308, αN = 1.9827 and C2 = 0.02830, CP1 = 0.04885, CP2 =

0.01722, CP3 = 0.0221, CN = 0.0668. Numerical parameters: ∆t = 0.01, ∆T = 0.00125

and L = 2000, N = 2× 104.
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5.3 Regularised Boussinesq–Ostrovsky equation

We now consider an initial configuration for the Boussinesq–Ostrovsky equation (5.1):

ftt − fxx = ε

(
1

2
(f2)xx + fttxx − γf

)
,

f |t=0 = 3p2 sech2(px/2)− α̂[sech2(p(x+ x0)/2) + sech2(p(x− x0)/2)],

ft|t=0 = 3p3 sech2(px/2) tanh(px/2)− pα̂
[
sech2(p(x+ x0)/2) tanh(p(x+ x0)/2)

+ sech2(p(x− x0)/2) tanh(p(x− x0)/2)
]
, (5.68)

where x0 is an arbitrary shift along x. Note we choose the constant α̂ in the initial

conditions of (5.68) to satisfy the zero mass property of the subsequent leading order

Ostrovsky equation. For the particular configuration (5.68) this yields

α̂ =
3p2 tanh(pL/2)

tanh(p(L+ x0)/2) + tanh(p(L− x0)/2)
,

(note, α̂→ 3p2/2 in the limit L→∞).

The weakly nonlinear solution of the Cauchy problem (5.68) is of the form

f = f−(ξ, T ) + ε[φ(ξ, T ) + ψ(η, T )] +O(ε2) ,

where the leading order term f− is the solution to the Ostrovsky Cauchy problem:(
2f−T + f−f−ξ + f−ξξξ

)
ξ

= γf−,

f−|T=0 = 3p2 sech2(pξ/2)− α̂
[
sech2(p(ξ + x0)/2)

+ sech2(p(ξ − x0)/2)
]
. (5.69)

From the particular configuration (5.68), the higher order terms ψ, φ are given as

solutions of the following linearised Ostrovsky Cauchy problems:

(−2ψT + ψηηη)η = γψ,

ψ|T=0 = −1

2

[∫ η

−L
f−T (s)ds

]
T=0

(5.70)

and (
2φT + (f−φ)ξ + φξξξ

)
ξ
= γφ+ f−TT + 2f−ξξξT ,

φ|T=0 =
1

2

[∫ ξ

−L
f−T (s)ds

]
T=0

. (5.71)
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The Cauchy problems (5.69), (5.70) and (5.71) are solved numerically and simulta-

neously at each time step; details of the numerical methods are outlined in Appendix

B.4, B.5.1 & B.5.2 respectively. We let η, ξ ∈ [−L,L], for finite L, and discretise the

(η, T ), (ξ, T ) domains into grids with constant spacings ∆η, ∆T and ∆ξ, ∆T respec-

tively. The solutions f−(ξ, T ), ψ(η, T ) and φ(ξ, T ) of the Ostrovsky-type equations

(5.69), (5.70) and (5.71) are approximated by the solutions f−(i∆ξ, j∆T ) = f−num,

ψ(i∆η, j∆T ) = ψnum and φ(i∆ξ, j∆T ) = φnum for i = 1, 2, ..., N and j = 0, 1, ..., found

via the solutions of the spectral methods (B.31), (B.35) and (B.42), respectively.

We now compare direct numerical simulations of the Cauchy problem for the Boussinesq–

Ostrovsky equation (5.68) denoted fnum, found via the spectral method outlined in

Appendix B.2, with the weakly nonlinear solution at each order. We define the weakly

nonlinear solution of the Cauchy problem for the Boussinesq–Ostrovsky equation (5.68),

with the numerical solutions for ψ and φ, as

fnum
2 = f1 + ε[ψnum + φnum], (5.72)

where f1 denotes the leading order approximation (in this case f1 = f−) and the

numerical solutions ψnum and φnum are developed in Appendix B.5. Figures 5.7(a) & (b)

illustrate the evolution of fnum, with the weakly nonlinear solution at each order, for a

particular choice of ε. Figures 5.7(c) & (d) depict a magnification of the aforementioned

figures. One can notice a distinct improvement in the absolute error (Figures 5.7(e) &

(f)) of the weakly nonlinear solution with the higher order correction terms included.

Note, the terms we choose in the initial conditions for (5.68) to satisfy zero mass

are chosen in the form of localised functions. Since the initial conditions of ψ, φ are

dependent on the integral of the term f−T , it transpires that choosing a localised zero

mass term in the problem for f− (for instance, as opposed to a nonlocal constant

pedestal term), enables the initial conditions of ψ, φ to be localised and not too large.

5.4 Concluding remarks

In this chapter we have extended the weakly nonlinear solution of the Cauchy problem

for Boussinesq-type equations, originally constructed in Chapters 3 & 4 (see also [72],

[73]), to include time dependence within the higher order solutions. We considered

the so-called Boussinesq–Ostrovsky equation (reducible to the regularised Boussinesq
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Figure 5.7: Comparison of the weakly nonlinear solution with respect to the numerical

solution fnum, for p = 1/
√

3, ε = 0.01, γ = 0.1, x0 = 10, at (a) t = 1 & (b) t = 1/ε, with

close ups (c) & (d), and the absolute errors (e) & (f), at the respective times. Numerical

parameters: ∆t = 0.01, ∆T = 0.0000125 and L = 150, N = 4× 104.
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equation under one parameter choice) as an exact model, in order to simplify the

analysis. The weakly nonlinear solution from the previous approach is extended to

include a further higher order term, which is not included in the solution but rather

introduced in order to derive the evolution equations at the previous order.

We derived the weakly nonlinear solution for the Cauchy problem with initial con-

ditions which eliminated the left-propagating leading order solutions. For the case

of the regularised Boussinesq equation we derived the KdV equation to leading order

and two linearised KdV equations describing the higher order terms. Similarly, for

the Cauchy problem for the Boussinesq–Ostrovsky equation we derived the Ostrovsky

equation to leading order and two linearised Ostrovsky equations describing the higher

order correction terms.

First, by considering a particular configuration of the Cauchy problem for the reg-

ularised Boussinesq equation we: (i) numerically solved the higher order evolution

equations; (ii) developed an accurate perturbation theory for solving the higher or-

der evolution equations; (iii) compared (i) and (ii) with numerical simulations of the

Boussinesq Cauchy problem, along with the weakly nonlinear solutions previously con-

sidered in Chapter 4. We found the weakly nonlinear solution with the higher order

terms, found via the numerical solution and perturbation solution, both improved the

previously constructed weakly nonlinear solution developed in Chapter 4. The weakly

nonlinear solution with the numerical solution at higher order produced the most accu-

rate approximation and by considering a least squares power fit, the maximum absolute

error of this solution was shown to scale almost precisely as O(ε2). On the contrary,

the corresponding error from the previous approach in Chapter 4 was found to scale as

O(ε) at T = 1. We would like to stress that this should be viewed as a deficiency of

the problem formulation, not the constructed solution in the previous approach.

Finally, we considered a particular configuration of the Cauchy problem for the

Boussinesq–Ostrovsky equation by numerically solving both the leading order Ostro-

vsky and higher order linearised Ostrovsky problems. On comparison with numerical

simulations of the Cauchy problem for the Boussinesq–Ostrovsky equation we found

that the constructed solution up to O(ε) significantly improved the leading order ap-

proximation.

All numerical methods used throughout this chapter are implemented using pseudo-

spectral methods, derived and discussed in Appendix B.
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Chapter 6

Radiating solitary wave solutions

of coupled Boussinesq equations

In this chapter we are concerned with the construction of a theoretical description for

radiating solitary wave solutions of the coupled system of cRB equations (3.2) (see Sec-

tion 2.3 for details regarding radiating solitary waves). This type of solution, comprising

of a leading pure solitary wave with a linear co-propagating oscillatory tail, emerges

from a pure solitary wave solution when the parameters c, α, β are slightly perturbed

from the symmetric case (c = α = β = 1); seen in particular for the parameter c in

Section 3.2.1 (in the case of strong interactions).

We construct an asymptotic procedure to yield the solution of the cRB equations,

where the leading order approximation in both components f and g is given in terms of

the particular solution (2.30) of the regularised Boussinesq equation in the symmetric

case. At higher order, the system uncouples into two linear nonhomogeneous ODEs with

variable coefficient terms, one correcting the localised part of the solution, for which

we solve analytically, and the other describing the co-propagating oscillatory tail. We

solve the latter of these higher order problems by: (i) making an assumption on some

of the small localised terms in the governing equation and subsequently determining

key features in the far spatial limits; (ii) implementing an asymptotic approach and

similarly investigating the solution in the far spatial limits.

The derived theoretical radiating solitary wave solutions of the cRB equations are

compared with corresponding numerical simulations (this is already considered for some

parameter choices in Chapter 3) to examine the accuracy of the developed approach.
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6.1 Weak perturbation from the symmetric case

Let us rewrite the system of cRB equations (3.2) as

ftt − fxx =
1

2
(f2)xx + fttxx − δ(f − g),

gtt − gxx =
1

2
(g2)xx + gttxx + γ(f − g) + µ

[
Ag +

1

2
Bg2 + Cgtt

]
xx

, (6.1)

where (c2 − 1) = Aµ, (α − 1) = Bµ, (β − 1) = Cµ, for A,B,C = O(1) and |µ| � 1.

Seeking travelling wave solutions of the form f = f(ξ), g = g(ξ) for ξ = x−vt, we have

from (6.1)

(v2 − 1)fξξ =
1

2
(f2)ξξ + v2fξξξξ − δ(f − g),

(v2 − 1)gξξ =
1

2
(g2)ξξ + v2gξξξξ + γ(f − g) + µ

[
Ag +

1

2
Bg2 + v2Cgξξ

]
ξξ

. (6.2)

We look for a solution of (6.2) in the form of the following asymptotic expansions:

f = f0 + µf1 +O(µ2) , g = g0 + µg1 +O(µ2), v2 = v2
0(1 + µv1 +O(µ2)) . (6.3)

Substituting (6.3) into (6.2), we derive the particular solution of the single regularised

Boussinesq equation, as discussed in Section 2.3 (given by (2.30)), as the leading order

terms for f and g:

f0 = g0 = A0 sech2

(
ξ

Λ

)
, where A0 = 3(v2

0 − 1), Λ =
2v0√
v2

0 − 1
, (6.4)

and at O(µ) we find

(v2
0 − 1)f1ξξ = (f0f1)ξξ + v2

0f1ξξξξ − δ(f1 − g1) + v2
0v1(f0ξξ − f0)ξξ,

(v2
0 − 1)g1ξξ = (f0g1)ξξ + v2

0g1ξξξξ + γ(f1 − g1) + v2
0v1(f0ξξ − f0)ξξ +[

Af0 +
1

2
Bf2

0 + v2
0Cf0ξξ

]
ξξ

. (6.5)

Introducing the variables φ = f1 − g1 and ψ = f1 + δ
γ g1, system (6.5) uncouples into

(v2
0 − 1)φξξ = (f0φ)ξξ + v2

0φξξξξ − (δ + γ)φ− P (f0)ξξ, (6.6)

(v2
0 − 1)ψξξ = (f0ψ)ξξ + v2

0ψξξξξ +
δ

γ
P (f0)ξξ + v2

0v1(1 +
δ

γ
)(f0ξξ − f0)ξξ, (6.7)

where we denote

P (f0) = Af0 +
1

2
Bf2

0 + v2
0Cf0ξξ = [A+ (v2

0 − 1)C]f0 +
1

2
(B − C)f2

0 .
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6.2 Non-oscillating higher order part of the solution

Introducing the variable χ =

√
v20−1

2v0
ξ and integrating (6.7) twice yields

ψχχ + 4(3sech2χ− 1)ψ = L(χ) + C1χ+ C2, (6.8)

for the arbitrary constants C1,2, and we denote the term

L = − 4δ

γ(v2
0 − 1)

P (f0) +
2v1(1 + δ

γ )

v2
0 − 1

[2f0(χ) + f2
0 (χ)].

We choose the constants of integration C1, C2 = 0 since we seek solutions of ψ which

are localised as χ→ ±∞. The homogeneous part of (6.8):

ψχχ + 4(3sech2χ− 1)ψ = 0, (6.9)

has a bounded solution of the form

ψ1(χ) = tanh(χ) sech2(χ), (6.10)

(see for example [29]) which is proportional to f0χ, since (6.9) is the linearisation of the

solitary wave equation for f0. A second linearly independent solution of (6.9), denoted

ψ2, can be found using the Wronskian

ψ1ψ2χ − ψ2ψ1χ = W, (6.11)

where W is a constant. Solving (6.11) for ψ2 yields

ψ2(χ) =
W

32

[
60χ− 32 coth(χ) + 16 sinh(2χ) + sinh(4χ)

]
tanh(χ)sech2(χ), (6.12)

and note, ψ2 is unbounded as χ→ ±∞. Using the method of variation of parameters,

the general solution of (6.8) can be written in the form

ψ = α1ψ1 + α2ψ2 −
ψ1(χ)

W

∫ χ

0
L(χ̂)ψ2(χ̂)dχ̂+

ψ2(χ)

W

∫ χ

0
L(χ̂)ψ1(χ̂)dχ̂, (6.13)

for the arbitrary constants α1,2. Since we have ψ1 ∼ exp (∓2χ) and ψ2 ∼ exp (±2χ)

as χ → ±∞, we must set α2 = 0. Also the first term in the particular solution will

contain a secular term proportional to χ exp (∓2χ). This term arises from the term in

L proportional to f0 ∼ exp (∓2χ) but can be removed by the choice of v1, namely

v1 =
δ

γ + δ
[A+ (v2

0 − 1)C] . (6.14)

Therefore we derive the following nonsecular general solution of (6.8), for W = 32:

ψ(χ) = α1tanh(χ)sech2(χ) +
3δ(v2

0 − 1)

γ
(A−B + v2

0C)sech2(χ)[1− tanh(χ)]. (6.15)
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6.3 Oscillating higher order part of the solution

The equation for φ is more difficult to solve since we cannot simply begin by integrating

the problem to reduce it to a 2nd order ODE. Let us first write (6.6) in the form

L(φ) ≡ φξξξξ + (3ε̂2sech2(ε̂ξ/2)φ)ξξ − ε̂2φξξ − k4φ = Qξξ , Q =
P (f0)

v2
0

, (6.16)

where we denote ε̂ =
√
v2

0 − 1/v0 and k4 = (δ + γ)/v2
0. The homogeneous form of

(6.16) has four linearly independent solutions, which can be uniquely defined by their

behaviour as ξ → ±∞, as

φ1 ∼ cosmξ , φ2 ∼ sinmξ , φ3 ∼ coshMξ , φ4 ∼ sinhMξ , ξ →∞ , (6.17)

φ̂1 ∼ cosmξ , φ̂2 ∼ sinmξ , φ̂3 ∼ coshMξ , φ̂4 ∼ sinhMξ , ξ → −∞ . (6.18)

where m2,M2 = (k4 +
ε̂4

4
)1/2 ∓ ε̂2

2
,

and note, in the limit as ε̂ → 0, we have m,M → k. Exploiting the symmetry in the

operator L; namely if φ(ξ) is a solution, so too is φ(−ξ); we can write

φ̂1(ξ) = φ1(−ξ) , φ̂2(ξ) = −φ2(−ξ) , φ̂3(ξ) = φ3(−ξ) , φ̂4(ξ) = −φ4(−ξ) .

Also, we note the solutions

φ5 = φ3 − φ4 ∼ exp (−Mξ), ξ →∞ ; φ6 = φ̂3 + φ̂4 ∼ exp (Mξ), ξ →∞ . (6.19)

Let us write the fourth order equation (6.16) as the following 4× 4 system

Uξ = AU + F , where U = (φ, φξ, φξξ, φξξξ)
T , F = (0, 0, 0, Qξξ)

T , (6.20)

and A is a 4×4 matrix with rows (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), ((k4−Sξξ),−2Sξ, (ε̂
2−

S), 0), where S = 3ε̂2sech2(ε̂ξ/2). Using the method of variation of parameters we seek

a solution of (6.20) in the form

U = B1U1 +B2U2 +B3U3 +B4U4 = GB , B = (B1, B2, B3, B4)T , (6.21)

where the vectors Ui for i = 1, 2, 3, 4 are solutions of the homogeneous part of equa-

tion (6.20) corresponding to φi, and G is the fundamental matrix whose columns are

U1,U2,U3,U4, namely

G(ξ) =


φ1 φ2 φ3 φ4

φ1ξ φ2ξ φ3ξ φ4ξ

φ1ξξ φ2ξξ φ3ξξ φ4ξξ

φ1ξξξ φ2ξξξ φ3ξξξ φ4ξξξ

 . (6.22)
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Substituting (6.21) into (6.20) yields

GξB + GBξ −AGB = F,

(Gξ −AG)B + GBξ = F,

Bξ = G−1F , (6.23)

since G (more specifically each column in G) satisfies the homogeneous equation. In-

tegrating (6.23) enables us to deduce the general solution of (6.20):

U = G(ξ){C +

∫ ξ

0
G−1(η)F(η) dη} , (6.24)

where C = (C1, C2, C3, C4)T is an arbitrary constant vector. In what follows, two of

these arbitrary constants are chosen to ensure φ is bounded as ξ → ±∞. Then, we

impose an asymmetric condition on the oscillatory part of the solution (supported by

relevant numerical simulations or equivalently from relevant group velocity arguments),

in order to specify the final two arbitrary constants.

6.3.1 Approximation to the variable coefficient term

To make further analytical progress we let ε̂→ 0 but only in the variable coefficient term

in the left-hand side of (6.16). This yields approximate solutions of the homogeneous

equation in the form

φ1 → cos (mξ) , φ2 → sin (mξ) , φ3 → cosh (Mξ) , φ4 → sinh (Mξ) . (6.25)

This approximation is inaccurate ∀ξ but since the variable coefficient term is localised

and small we maintain the correct behaviour of φ as ξ → ±∞ (in what follows we seek

the solution of φ in the far spatial region only). Under this approximation we find

G−1(ξ) =
1

m2 +M2


M2φ1 −M2

m φ2 −φ1
1
mφ2

M2φ2
M2

m φ1 −φ2 − 1
mφ1

m2φ3 −m2

M φ4 φ3 − 1
M φ4

−m2φ4
m2

M φ3 −φ4
1
M φ3

 . (6.26)

With the variable coefficient term neglected in (6.16), the matrix A in equation (6.20)

is now a constant coefficient matrix. Therefore, if U(ξ) is a solution of the homogeneous

equation, so is U(ξ + ξ0) for any constant ξ0. Let us define K(ξ, η) = G(ξ)G−1(η) as

the unique matrix solution of the homogeneous equation, such that K(η, η) = I where
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I is the unit matrix. It then follows that we have K(ξ, η) = E(ξ − η), where E(ξ̂) (we

denote ξ̂ = ξ−η) is the unique matrix solution of the homogeneous equation, such that

E(0) = I. One can write the unique matrix solution in the form

E(ξ̂) =
1

m2 +M2
(Φ1,Φ2,Φ3,Φ4) ,

where the column vectors Φi = (Φi,Φiξ,Φiξξ,Φiξξξ)
T, for i = 1, 2, 3, 4, are generated

from the approximate solutions (6.25), corresponding to the homogeneous part of (6.6),

where the first element of each vector is of the form

Φ1 = M2 cos (mξ̂) +m2 cosh (Mξ̂) , Φ2 =
1

mM
[M3 sin (mξ̂) +m3 sinh (Mξ̂)] ,

Φ3 = − cos (mξ̂) + cosh (Mξ̂) , Φ4 =
1

mM
[−M sin (mξ̂) +m sinh (Mξ̂)] . (6.27)

It then follows from (6.24), with the aforementioned approximation on the variable

coefficient term, that the general solution of (6.20) is

U = G(ξ)C +

∫ ξ

0
E(ξ̂)F(η) dη ,

= G(ξ)C +
1

m2 +M2

∫ ξ

0
Φ4(ξ̂)Qηη dη. (6.28)

Taking the first equation from (6.28), yields the solution of (6.6), with the variable

coefficient term neglected, as follows

φ = C1 cos (mξ) + C2 sin (mξ) + C3 cosh (Mξ) + C4 sinh (Mξ)

+
1

m2 +M2

∫ ξ

0
Φ4(ξ − η)Qηη(η) dη . (6.29)

Evaluating the integral term in (6.29) by integrating twice by parts, and noting that

Q is a symmetric function in η, we can rewrite (6.29) in the alternative form

φ = C̃1 cos (mξ) + C2 sin (mξ) + C̃3 cosh (Mξ) + C4 sinh (Mξ)

+
1

m2 +M2

∫ ξ

0
[m sin(mξ̂) +M sinh(Mξ̂)]Q(η) dη, (6.30)

where C̃1 = C1 + 1
m2+M2Q(0) and C̃3 = C3 − 1

m2+M2Q(0). Writing (6.30) as

φ = C̃1 cos (mξ) + C2 sin (mξ) +
1

2
C̃3(eMξ + e−Mξ) +

1

2
C4(eMξ − e−Mξ)

+
1

m2 +M2

∫ ξ

0

{
m sin[m(ξ − η)] +

M

2

[
eM(ξ−η) − e−M(ξ−η)

]}
Q(η) dη , (6.31)
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and recalling that Q is symmetric and exponentially small in the limit ξ → ±∞, yields

φ ∼
(

1

2
C̃3 ±

1

2
C4 +D

)
exp (±Mξ) , as ξ → ±∞, (6.32)

where D =
M

2(m2 +M2)

∫ ∞
0

exp(−Mη)Q(η) dη .

Since these terms are secular, we require 1
2 C̃3 ± 1

2C4 + D = 0, which implies C4 =

0, C̃3 = −2D. Now in the limit ξ → ±∞ we find the following oscillatory terms

φ ∼ (C̃1 + E3) cos (mξ) + (C2 ± E4) sin (mξ) as ξ → ±∞, (6.33)

for E3 = − m

m2 +M2

∫ ∞
0

sin (mη)Q(η) dη , E4 =
m

m2 +M2

∫ ∞
0

cos (mη)Q(η) dη ,

where in particular,

E4 =
6m2π[A+Bv2

0(ε̂2 +m2)− Cv2
0m

2]

(m2 +M2) sinh
(
mπ
ε̂

) . (6.34)

Finally, we impose an asymmetric condition on φ, namely that we have one-sided

oscillating solutions in the region ξ < 0 only. This implies from (6.33) that we require

C̃1 = −E3 and C2 = −E4, and thus yields

φ ∼ 0 as ξ → +∞,

φ ∼ −2E4 sin (mξ) as ξ → −∞. (6.35)

The one-sided oscillating asymptotic solution for φ depends only upon the original pa-

rameters in the cRB problem (6.1) without the presence of any arbitrary parameters.

From (6.34) it is clear that the amplitude of oscillations is dependent upon all three

perturbations of c2, α and β from 1. Also we note as ε̂ → 0, the amplitude of oscilla-

tions tend to zero, which we expect since the same follows for the rest of the solution

(amplitude of f0).

We next consider an alternative approach to neglecting the variable coefficient term

in the governing equation for φ.
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6. RADIATING SOLITARY WAVE SOLUTIONS OF COUPLED
BOUSSINESQ EQUATIONS

6.3.2 Asymptotic solution

If we assume the speed of the solitary wave solution at leading order is sufficiently close

to 1 (which is natural since we require it to be close to the characteristic speed c), this

implies we have the small parameter |ε̂| � 1. Let us rewrite (6.16) in the form

φ′′′′ − k4φ = ε̂2φ′′(1− 3 sech2χ) + 6ε̂3φ′ sech2χtanhχ

+
3

2
ε̂4(A− φ) sech2χ

(
2− 3 sech2χ

)
+

3v2
0

2
ε̂6 sech2χ

[
2C

+ 15C sech2χ( sech2χ− 1) + 3B sech2χ(4− 5 sech2χ)
]
. (6.36)

For ε̂ = 0 the solution of (6.36) will exhibit simple harmonic motion (at least sufficiently

far away from the origin; that is as ξ → ±∞) with period 2π/ω, for some frequency ω.

We therefore follow the Lindstedt–Poincaŕe method (e.g. [28]) by introducing τ = ωξ

and seeking an asymptotic solution for φ(τ), as well as expanding the frequency ω.

Under this change of variable in ξ, we find (6.36) in the following form

ω4φ(τ)′′′′ − k4φ(τ) = ε̂2ω2φ′′(τ)(1− 3 sech2χ) + 6ε̂3ωφ′(τ) sech2χtanhχ

+
3

2
ε̂4(A− φ(τ)) sech2χ

(
2− 3 sech2χ

)
+

3v2
0

2
ε̂6 sech2χ

[
2C

+ 15C sech2χ( sech2χ− 1) + 3B sech2χ(4− 5 sech2χ)
]
, (6.37)

where χ(τ) = ε̂τ/2ω. We seek an asymptotic solution of (6.37) as follows

φ(τ) = φ0 + ε̂φ01 + ε̂2φ1 + ε̂3φ2 + ε̂4φ3 + ε̂5φ4 + ε̂6φ5 + ... , (6.38)

and also expand the frequency as

ω = ω0 + ε̂ω01 + ε̂2ω1 + ε̂3ω2 + ε̂4ω3 + ε̂5ω4 + ε̂6ω5 + ... . (6.39)

Substituting (6.38) and (6.39) into (6.37) yields the following equations up to O(ε̂3)

O(1) : ω4
0φ
′′′′
0 − k4φ0 = 0, (6.40)

O(ε̂) : ω4
0φ
′′′′
01 − k4φ01 = −4ω3

0ω01φ
′′′′
0 , (6.41)

O(ε̂2) : ω4
0φ
′′′′
1 − k4φ1 = −4ω3

0ω01φ
′′′′
01 − (4ω3

0ω1 + 6ω2
0ω

2
01)φ′′′′0

+ ω2
0φ
′′
0(1− 3 sech2χ), (6.42)

O(ε̂3) : ω4
0φ
′′′′
2 − k4φ2 = −4ω3

0ω01φ
′′′′
1 − (4ω3

0ω1 + 6ω2
0ω

2
01)φ′′′′01

− (12ω2
0ω01ω1 + 4ω0ω

3
01 + 4ω3

0ω2)φ′′′′0 + 6ω0φ
′
0 sech2χ tanhχ

+ (ω2
0φ
′′
01 + 4ω3

0ω01φ
′′
0)(1− 3 sech2χ) . (6.43)
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From the leading order equation (6.40), the general solution is

φ0 = C01 cos (k̂τ) + C02 sin (k̂τ) + C03 cosh (k̂τ) + C04 sinh (k̂τ), (6.44)

where C0i, for i = 1, 2, 3, 4, are arbitrary constants and we denote k̂ = k/ω0. To ensure

φ0 remains bounded as τ → ±∞, and imposing an asymmetric condition on φ (namely

that we have one-sided oscillating solutions in the region ξ < 0 only), we must choose

C0i = 0 ∀i, and hence

φ0 = 0.

Consequently, equations (6.41)–(6.43) systematically reduce to the same form as (6.40),

and similarly

φ01 = φ1 = φ2 = 0.

The first nonhomogeneous equations appear at and beyond O(ε̂4), where we have

O(ε̂4) : ω4
0φ
′′′′
3 − k4φ3 =

3A

2
sech2χ

(
2− 3 sech2χ

)
, (6.45)

O(ε̂5) : ω4
0φ
′′′′
4 − k4φ4 = −4ω3

0ω01φ
′′′′
3 , (6.46)

O(ε̂6) : ω4
0φ
′′′′
5 − k4φ5 = −(4ω3

0ω1 + 6ω2
0ω

2
01)φ′′′′3 + ω2

0φ
′′
3(1− 3 sech2χ)

− 4ω3
0ω01φ

′′′′
4 +

3v2
0

2
sech2χ

[
2C + 15Csech2χ(sech2χ− 1)

+ 3B sech2χ(4− 5 sech2χ)
]
, (6.47)

and therefore φ3 will constitute the leading order solution for φ. It turns out that non-

zero higher order correction terms appear only at subsequent even powers of ε̂ (after

imposing boundedness and asymmetry conditions on the solution).

6.3.2.1 Leading order solution

Using variation of parameters, the general solution for the leading order term φ3 is

φ3 = C31 cos (k̂τ) + C32 sin (k̂τ) + C33 cosh (k̂τ) + C34 sinh (k̂τ)

+
ω3

0

2k3

{
cos(k̂τ)

∫ τ

0
L3(s) sin(k̂s) ds− sin(k̂τ)

∫ τ

0
L3(s) cos(k̂s) ds

+
ek̂τ

2

∫ τ

0
L3(s)e−k̂s ds− e−k̂τ

2

∫ τ

0
L3(s)ek̂s ds

}
, (6.48)
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where L3(τ) = (3A/2ω4
0) sech2χ

(
2− 3 sech2χ

)
. If we consider the limit as τ → ±∞,

noting L3 is localised and symmetric, we find

φ3 ∼
(

1

2
C33 ±

1

2
C34 + F1

)
exp (±k̂τ) , as τ → ±∞, (6.49)

where F1 =
ω3

0

4k3

∫ ∞
0

L3(s)e−k̂s ds , (6.50)

and thus for φ3 to be nonsecular we require C33 = −2F1 and C34 = 0. Therefore,

φ3 ∼ (C31 + F3) cos (k̂τ) + (C32 ± F4) sin (k̂τ) as τ → ±∞, (6.51)

for F3 =
ω3

0

2k3

∫ ∞
0

L3(s) sin (k̂s) ds , F4 = − ω3
0

2k3

∫ ∞
0

L3(s) cos (k̂s) ds , (6.52)

where in particular

F4 =
3Aπω4

ε̂4ω4
0 sinh

(
kωπ
ω0ε̂

) . (6.53)

Finally, imposing an asymmetric condition on φ (namely that φ has one-sided os-

cillations only in the region ξ < 0), requires C31 = −F3 and C32 = −F4. This yields

(6.51) in the form

φ3 ∼ 0 as τ → +∞,

φ3 ∼ −2F4 sin (k̂τ) as τ → −∞. (6.54)

Notice the leading order asymptotic solution for φ developed here (up to O(ε̂4), and

at leading order for ω) coincides with solution (6.35) (at leading order for m and M),

with B = C = 0, found from the alternative approach outlined in Section 6.3.1. It

follows that φ’s dependence on perturbations via B and C are found at higher order,

subject to a constraint on the magnitude of the three perturbation terms A, B and C.

6.3.2.2 Higher order correction terms

It is clear that the terms in the right-hand side of the higher order equations (6.46)

and (6.47), which do not tend to zero in the limit τ → ±∞, will contain secular terms.

If we follow the same approach used for solving the leading order equations, we find in

order to impose an asymmetric solution, some of these secular terms are nonremovable
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from the choice of the arbitrary constants alone (these arbitrary constants arise from

the solutions of the homogeneous equations). We therefore utilise the higher order

correction terms in the expansion of the frequency ω.

At O(ε̂5) we can easily remove these so-called ‘nonremovable’ secular terms by

choosing ω01 = 0, and as a result, (6.46) reduces to a homogeneous equation in the

same form as (6.40), which means

φ4 = 0.

With this choice of ω01, the equation (6.47) at O(ε̂6), reduces to

φ′′′′5 −
k4

ω4
0

φ5 = − 3

ω2
0

φ′′3 sech2χ+ P (τ) +
1

ω2
0

L5BC(τ), (6.55)

where these nonremovable secular terms arise within the term we denote

P (τ) =
φ′′3
ω2

0

− 4ω1φ
′′′′
3

ω0
, (6.56)

and we also denote the term which contains the perturbations B and C by

L5BC(τ) =
3v2

0

2
sech2χ

[
2C + 15Csech2χ(sech2χ− 1) + 3B sech2χ(4− 5 sech2χ)

]
.(6.57)

We note the 2nd and 4th order derivatives of the leading order solution φ3, which

appear in the term denoted P (τ), are of the form

φ′′3 =
k2

ω2
0

[
F3 cos(k̂τ) + F4 sin(k̂τ)− F1(ek̂τ + e−k̂τ )

]
+

ω0

2k

{
− cos(k̂τ)

∫ τ

0
L3(s) sin(k̂s) ds+ sin(k̂τ)

∫ τ

0
L3(s) cos(k̂s) ds

+
ek̂τ

2

∫ τ

0
L3(s)e−k̂s ds− e−k̂τ

2

∫ τ

0
L3(s)ek̂s ds

}
, (6.58)

and

φ′′′′3 = − k
4

ω4
0

[
F3 cos(k̂τ) + F4 sin(k̂τ) + F1(ek̂τ + e−k̂τ )

]
+

k

2

{
cos(k̂τ)

∫ τ

0
L3(s) sin(k̂s) ds− sin(k̂τ)

∫ τ

0
L3(s) cos(k̂s) ds

+
ek̂τ

2

∫ τ

0
L3(s)e−k̂s ds− e−k̂τ

2

∫ τ

0
L3(s)ek̂s ds

}
+
L3(τ)

2
, (6.59)
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where F1,3,4 are constants defined by (6.50), (6.52) and (6.53). It transpires that these

secular terms which are nonremovable from the choice of the arbitrary constants alone

(in order to still impose an asymmetric solution), arise only from the trigonometric

terms in (6.56). Therefore, choosing ω1 = −ω0/4k
2 removes these terms, thus

φ′′′′5 −
k4

ω4
0

φ5 = − 3

ω2
0

φ′′3 sech2χ+ P̂ (τ) +
1

ω2
0

L5BC , (6.60)

where

P̂ (τ) = −2k2F1

ω2
0

(
ek̂τ + e−k̂τ

)
+
ω0

2k

[
ek̂τ
∫ τ

0
L3(s)e−k̂s ds− e−k̂τ

∫ τ

0
L3(s)ek̂s ds

]

− ω2
0

2k2
L3(τ). (6.61)

The general solution of (6.60), using variation of parameters, can be written as

φ5 = C51 cos (k̂τ) + C52 sin (k̂τ) + C53e
k̂τ + C54e

−k̂τ

+
ω3

0

2k3

{
cos(k̂τ)

∫ τ

0
L5(s) sin(k̂s) ds− sin(k̂τ)

∫ τ

0
L5(s) cos(k̂s) ds

+
ek̂τ

2

∫ τ

0
L5(s)e−k̂s ds− e−k̂τ

2

∫ τ

0
L5(s)ek̂s ds

}
, (6.62)

for the arbitrary constants C5i, i = 1, 2, 3, 4, and where we denote

L5(τ) = − 3

ω2
0

φ′′3 sech2χ+ P̂ (τ) +
1

ω2
0

L5BC .

Using (6.58) and (6.59) we can write (6.62) as φ5 =
∑4

i=1C5iφ̂i(τ) + φps5 , for

φps5 =
ω0

2k3

4∑
i=1

(−1)i+1φ̂i(τ)

bi

{
−3k2

ω2
0

∫ τ

0
S2φ̂(i+a)(s)

[
F3φ̂1(s) + F4φ̂2(s)

− F1[φ̂3(s) + φ̂4(s)]

]
ds+

∫ τ

0
φ̂(i+a)(s)L5BC(s)ds

+
3ω0

2k

∫ τ

0
S2φ̂(i+a)(s)

(
φ̂1(s)

[∫ s

0
L3(y)φ̂2(y)dy

]
− φ̂2(s)

[∫ s

0
L3(y)φ̂1(y)dy

])
ds

− 3ω0

4k

∫ τ

0
S2φ̂(i+a)(s)

(
φ̂3(s)

[∫ s

0
L3(y)φ̂4(y)dy

]
− φ̂4(s)

[∫ s

0
L3(y)φ̂3(y)dy

])
ds

+
ω3

0

2k

∫ τ

0
φ̂(i+a)(s)

(
φ̂3(s)

[∫ s

0
L3(y)φ̂4(y)dy

]
− φ̂4(s)

[∫ s

0
L3(y)φ̂3(y)dy

])
ds

− 2k2F1

∫ τ

0
φ̂(i+a)(s)

[
φ̂3(s) + φ̂4(s)

]
ds− ω4

0

2k2

∫ τ

0
φ̂(i+a)(s)L3(s)ds

}
, (6.63)
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where we denote S = sech(χ(s)), a = (−1)i+1, b1,2 = 1, b3,4 = 2, and

φ̂1(τ) = cos(k̂τ), φ̂2(τ) = sin(k̂τ), φ̂3(τ) = ek̂τ , φ̂4(τ) = e−k̂τ ,

(see Appendix C for the summation in (6.63) written explicitly).

Taking the limit as τ →∞ we find

φ5 ∼
ω0I

+
2 cos(k̂τ)

2k3
− ω0I

+
1 sin(k̂τ)

2k3
− ω0I

+
3 e
−k̂τ

4k3
+

(
1

2
C53 +

1

2
C54 + J1

)
ek̂τ , (6.64)

where we define

I+
j =

3k2F1

ω2
0

∫ ∞
0

S2φ̂j(s)e
k̂sds− 3ω0

4k

∫ ∞
0

S2φ̂j(s)e
k̂s

[∫ s

0
L3(y)e−k̂ydy

]
ds

− 2k2F1

∫ ∞
0

φ̂j(s)e
k̂sds+

ω3
0

2k

∫ ∞
0

φ̂j(s)e
k̂s

[∫ s

0
L3(y)e−k̂ydy

]
ds, (6.65)

for j = 1, 2, 3, and the bounded term J1 is defined as the integral coefficients of φ̂3(τ)

in (6.63) for i = 3, with τ → ∞. Unlike the asymptotics for φ3, it appears we have

unbounded terms within the coefficients of the other three solutions of the homogeneous

equation for φ5 as τ → +∞ (each separate integral within I+
j is unbounded ∀j), which

is problematic in removing secular terms whilst also later requiring asymmetry of the

solution. However writing (6.65) with F1 explicitly

I+
j = −ω

3
0

2k

{∫ ∞
0

L3(s)e−k̂sds

∫ ∞
0

[
1− 3

2ω2
0

sech2(χ(s))

]
φ̂j(s)e

k̂sds

−
∫ ∞

0

[
1− 3

2ω2
0

sech2(χ(s))

]
φ̂j(s)e

k̂s

[∫ s

0
L3(y)e−k̂ydy

]
ds

}
, (6.66)

for j = 1, 2, 3, and noting the following general property of definite integrals:∫ x∗

0
Ia(s)ds

∫ x∗

0
Ib(s)ds−

∫ x∗

0
Ib(s)

[∫ s

0
Ia(y)dy

]
ds =

∫ x∗

0
Ia(s)

[∫ s

0
Ib(y)dy

]
ds,(6.67)

for any functions Ia,b and some fixed point x∗, we find the combined terms within each

I+
j ∀j are in fact bounded. Therefore from (6.64) we actually have

φ5 ∼
(

1

2
C53 +

1

2
C54 + J1

)
ek̂τ as τ → +∞. (6.68)

Similarly as τ → −∞ we have

φ5 ∼
ω0I

−
2 cos(k̂τ)

2k3
− ω0I

−
1 sin(k̂τ)

2k3
+
ω0I

−
4 e

k̂τ

4k3
+

(
1

2
C53 −

1

2
C54 + J2

)
e−k̂τ , (6.69)
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where we define

I−j =
3k2F1

ω2
0

∫ −∞
0

S2φ̂j(s)e
−k̂sds+

3ω0

4k

∫ −∞
0

S2φ̂j(s)e
−k̂s

[∫ s

0
L3(y)ek̂ydy

]
ds

− 2k2F1

∫ −∞
0

φ̂j(s)e
−k̂sds− ω3

0

2k

∫ −∞
0

φ̂j(s)e
−k̂s

[∫ s

0
L3(y)ek̂ydy

]
ds, (6.70)

for j = 1, 2, 4, and the bounded term J2 is defined as the integral coefficients of φ̂4(τ)

in (6.63) for i = 4, with τ → −∞. Writing F1 explicitly and changing the signs of the

integration variable in (6.70) yields

I−j =
ω3

0

2k

{∫ ∞
0

L3(s)e−k̂sds

∫ ∞
0

[
1− 3

2ω2
0

sech2(χ(s))

]
φ̂j(−s)ek̂sds

−
∫ ∞

0

[
1− 3

2ω2
0

sech2(χ(s))

]
φ̂j(−s)ek̂s

[∫ s

0
L3(y)e−k̂ydy

]
ds

}
, (6.71)

for j = 1, 2, 4. Noting the general property (6.67), we find the combined terms within

each I−j , for j = 1, 2, 4, are indeed bounded. Therefore from (6.69) we actually have

φ5 ∼
(

1

2
C53 −

1

2
C54 + J2

)
e−k̂τ as τ → −∞. (6.72)

Denoting J1 = J11 + J12, we find J2 = J11 − J12, where we define

J12 = −−3F4

4kω0

∫ ∞
0

sech2(χ(s)) e−k̂s sin(k̂s)ds, (6.73)

J11 =
ω0

4k3

{
−3k2

ω2
0

∫ ∞
0

S2e−k̂s

[
F3 cos(k̂s)− F1

(
ek̂s + e−k̂s

)]
ds

+
3ω0

2k

∫ ∞
0
S2e−k̂s

(
cos(k̂s)

[∫ s

0
L3(y) sin(k̂y)dy

]
− sin(k̂s)

[∫ s

0
L3(y) cos(k̂y)dy

])
ds

− 3ω0

4k

∫ ∞
0
S2

([∫ s

0
L3(y)e−k̂ydy

]
− e−2k̂s

[∫ s

0
L3(y)ek̂ydy

])
ds

+
ω3

0

2k

∫ ∞
0

([∫ s

0
L3(y)e−k̂ydy

]
− e−2k̂s

[∫ s

0
L3(y)ek̂ydy

])
ds

− 2k2F1

∫ ∞
0

e−k̂s
[
ek̂s + e−k̂s

]
ds− ω4

0

2k2

∫ ∞
0

e−k̂sL3(s)ds+

∫ ∞
0

e−k̂sL5BC(s)ds

}
,

and thus from (6.68) and (6.72), the solution of φ5 as τ → ±∞ is of the form

φ5 ∼
(

1

2
C53 ±

1

2
C54 + J11 ± J12

)
e±k̂τ as τ → ±∞. (6.74)
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Therefore, to remove secular terms we require C53 = −2J11 and C54 = −2J12.

Now in the limit as τ → ±∞ we find the following oscillatory terms

φ5 ∼ (C51 +K1) cos(k̂τ) + (C52 +K3) sin(k̂τ) as τ → +∞,

φ5 ∼ (C51 +K2) cos(k̂τ) + (C52 +K4) sin(k̂τ) as τ → −∞, (6.75)

where we denote K1 = K11 +K12, and it can be shown K2 = K11 −K12, for

K12 = − 3F4

2kω0

∫ ∞
0

sech2(χ(s)) sin2(k̂s)ds, (6.76)

K11 =
ω0

2k3

{
−3k2

ω2
0

∫ ∞
0

S2 sin(k̂s)
[
F3 cos(k̂s)− F1e

−k̂s
]
ds

+
3ω0

2k

∫ ∞
0
S2 sin(k̂s)

(
cos(k̂s)

[∫ s

0
L3(y) sin(k̂y)dy

]
− sin(k̂s)

[∫ s

0
L3(y) cos(k̂y)dy

])
ds

+
ω0

4k

∫ ∞
0

L3(s)e−k̂s

(∫ s

0

[
3sech2(χ(y))− 2ω2

0

]
sin(k̂y)ek̂ydy

)
ds

+
ω0

4k

∫ ∞
0

[
3S2 − 2ω2

0

]
sin(k̂s)e−k̂s

[∫ s

0
L3(y)ek̂ydy

]
ds

−2k2F1

∫ ∞
0

sin(k̂s)e−k̂sds− ω4
0

2k2

∫ ∞
0

sin(k̂s)L3(s)ds+

∫ ∞
0

sin(k̂s)L5BC(s)ds

}
. (6.77)

Similarly we denote K3 = K31 +K32, and it can be shown K4 = K31 −K32, where

K31 =
3F4

2kω0

∫ ∞
0

sech2(χ(s)) cos(k̂s) sin(k̂s)ds, (6.78)

K32 = − ω0

2k3

{
−3k2

ω2
0

∫ ∞
0

S2 cos(k̂s)
[
F3 cos(k̂s)− F1e

−k̂s
]
ds

+
3ω0

2k

∫ ∞
0
S2 cos(k̂s)

(
cos(k̂s)

[∫ s

0
L3(y) sin(k̂y)dy

]
− sin(k̂s)

[∫ s

0
L3(y) cos(k̂y)dy

])
ds

+
ω0

4k

∫ ∞
0

L3(s)e−k̂s

(∫ s

0

[
3sech2(χ(y))− 2ω2

0

]
cos(k̂y)ek̂ydy

)
ds

+
ω0

4k

∫ ∞
0

[
3S2 − 2ω2

0

]
cos(k̂s)e−k̂s

[∫ s

0
L3(y)ek̂ydy

]
ds

−2k2F1

∫ ∞
0

cos(k̂s)e−k̂sds− ω4
0

2k2

∫ ∞
0

cos(k̂s)L3(s)ds+

∫ ∞
0

cos(k̂s)L5BC(s)ds

}
.(6.79)
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Therefore, we can write (6.75) as

φ5 ∼ (C51 +K11 +K12) cos(k̂τ) + (C52 +K31 +K32) sin(k̂τ) as τ → +∞,

φ5 ∼ (C51 +K11 −K12) cos(k̂τ) + (C52 +K31 −K32) sin(k̂τ) as τ → −∞.(6.80)

Imposing the asymmetric condition on φ (that is, we have one-sided oscillating solutions

in the region ξ < 0 only), we must choose C51 = −(K11+K12) and C52 = −(K31+K32),

thus yielding the asymptotic asymmetric solution for φ5 as

φ5 ∼ 0 as τ → +∞,

φ5 ∼ −2K12 cos(k̂τ)− 2K32 sin(k̂τ) as τ → −∞. (6.81)

Therefore, the asymptotic solution of (6.37) as τ → ±∞, up to O(ε̂6), is

φ(τ) ∼ 0 as τ → +∞,

φ(τ) ∼ −2ε̂4F4 sin(k̂τ)− 2ε̂6[K12 cos(k̂τ) +K32 sin(k̂τ)] as τ → −∞. (6.82)

The leading order term ω0 in the frequency expansion factors out of the solution, thus

we set ω0 = 1 (any other choice results in an unnecessary trivial change in ξ), yielding

ω = 1− ε̂2

4k2
+O(ε̂3). (6.83)

Further corrections to the asymptotic solution for φ can be obtained by deriving equa-

tions beyond O(ε̂6). Similarly the frequency ω is systematically corrected by choosing

the suitable higher order terms ωi for i = 2, 3, 4, ..., in order to remove secular terms

that arise in the derived equations for φ.

Lastly we comment on a constraint between the perturbation parameters A, B and

C. If we explicitly evaluate the final integral in (6.79), containing the B, C terms, we

find the contribution to the asymptotic solution (6.82) as τ → −∞ is

ε̂6 sin(kτ)

k3

∫ ∞
0

cos(k̂s)L5BC(s)ds = −6v2
0π[B(ε̂2 + k2)− Ck2]

sinh
(
kπ
ε̂

) sin(kτ). (6.84)

It is now clear that this term will be comparable to the leading order terms which involve

perturbations via A. Therefore, to maintain asymptotic validity we must either consider

perturbations via B and C separately from perturbations via A, or alternatively for

all three perturbations A, B and C to coexist, we must impose that perturbations via
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B and C are at least O(ε̂2) smaller than via A. It is apparent that the leading order

solution of φ for perturbations in B, C arise at O(ε̂6). Indeed, to find higher order

corrections to the solution in this case, as we did for perturbations via the parameter

A, we must again seek further higher order equations in φ and repeat the procedure

outlined in this section.

Finally, we note that if A = 0, the asymptotic solution (6.82) reduces to

φ(τ) ∼ 0 as τ → +∞,

φ(τ) ∼ −6v2
0π[B(ε̂2 + k2)− Ck2]

sinh
(
kπ
ε̂

) sin(kτ) as τ → −∞, (6.85)

which if we take ω to leading order, coincides with the asymptotic solution derived

from the previous approach in Section 6.3.1, given by (6.35) with A = 0 (also taking m

and M to leading order). We can view the approach developed in the previous section

as an alternative way to derive the leading order solution of φ from this approach. The

systematic methodology outlined in this section has the scope to extend the solution

to arbitrary orders of ε̂.

Later in this chapter we compare the developed asymptotic solution for φ with cor-

responding numerical simulations for the system of cRB equations, in order to analyse

the methodology. More specifically, we examine the solution with and without the

inclusion of the higher order corrections, in order to determine the effectiveness of this

approach in describing radiating solitary wave solutions of cRB equations.

6.4 Analytical description of radiating solitary waves

Returning to the original variables f and g, we have the following asymptotic solution

of the system of cRB equations (3.2):

f=A0 sech2(χ) +
µ

δ + γ
(γψ + δφ) +O(µ2), g=A0 sech2(χ) +

µγ

δ + γ
(ψ − φ) +O(µ2).

Using the particular solution for ψ, given by (6.15), and the asymptotic solution for φ

from Section 6.3.2, given by (6.35) (under the approximation to the variable coefficient
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term in the governing equation for φ), we have the following solution:

f = A0 sech2(χ) +
µ

δ + γ

{
δA0(A−B + v2

0C)sech2(χ)[1− tanh(χ)]

− 2δE4H(−ξ) sin(mξ)
}

+ ... ,

g = A0 sech2(χ) +
µ

δ + γ

{
δA0(A−B + v2

0C)sech2(χ)[1− tanh(χ)]

+ 2γE4H(−ξ) sin(mξ)
}

+ ... , (6.86)

where χ = ε̂ξ/2, H(·) is the Heaviside function and E4 is given by (6.34).

Alternatively, using the asymptotic solution for φ from Section 6.3.2 taken up to

O(ε̂6), given by (6.82), we instead have the solution of the system of cRB equations

(3.2) as

f = A0 sech2(χ) +
µ

δ + γ

{
δA0(A−B + v2

0C)sech2(χ)[1− tanh(χ)]

− 2ε̂4δH(−ξ)
(
F4 sin(kωξ) + ε̂2[K12 cos(kωξ) +K32 sin(kωξ)]

)}
+ ...,

g = A0 sech2(χ) +
µ

δ + γ

{
δA0(A−B + v2

0C)sech2(χ)[1− tanh(χ)]

+ 2ε̂4γH(−ξ)
(
F4 sin(kωξ) + ε̂2[K12 cos(kωξ) +K32 sin(kωξ)]

)}
+ ..., (6.87)

where the frequency ω is given by (6.83) and the constants F4, K12 and K32 are defined

by (6.53), (6.76) and (6.79) respectively.

We next compare direct numerical simulations of the system cRB equations (3.2)

with each of the corresponding analytical approximations (6.86) and (6.87).

6.5 Numerical Simulations

In this section we compare the theoretically derived radiating solitary wave solutions

of the cRB equations (3.2) with corresponding numerical simulations, using a pseudo-

spectral method which is extended from the work in [36] for a single regularised Boussi-

nesq equation. Details of the spectral method for the cRB equations are described in

Appendix B.6. Alternatively, one can implement the finite difference scheme used in

Section 3.3, however the spectral methods we consider generally outperform the finite

difference schemes and hence we choose the former of the two approaches.

We let x ∈ [−L,L], for finite L, and discretise the (x, t) domain into a grid with

constant spacings ∆x and ∆t. The solutions f(x, t) and g(x, t) of the cRB equations
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(3.2) are approximated by the solutions f(i∆x, j∆t) = fnum and g(i∆x, j∆t) = gnum

for i = 1, 2, ..., N and j = 0, 1, ..., found via the spectral method (B.54).

Since we implement a spectral method, we impose periodic boundary conditions,

but in order to simulate the solutions propagating on the infinite line, we choose L

to be sufficiently large. To compare the numerical and theoretical solutions we choose

the initial conditions in numerical simulations to coincide with the localised part of

the theoretical solutions (6.86) and (6.87). This comprises of the leading order solitary

wave solution and the higher order correction terms given by ψ, in Section 6.2, namely:

f |t=0 = g|t=0 = A0 sech2

(
ε̂x

2

)
+
µδA0

δ + γ

(
A−B + v2

0C
)

sech2

(
ε̂x

2

)[
1− tanh

(
ε̂x

2

)]
,

ft|t=0 = gt|t=0 = ε̂vA0 sech2

(
ε̂x

2

)
tanh

(
ε̂x

2

)
+
µδA0ε̂v

δ + γ

(
A−B + v2

0C
)

sech2

(
ε̂x

2

)
×

[
tanh

(
ε̂x

2

)
− 1 +

3

2
sech2

(
ε̂x

2

)]
. (6.88)

6.5.1 Simulations using the approach in Section 6.3.1

We first consider the radiating solitary wave solutions derived from the first approach,

given by (6.86), which we denote as ftheory and gtheory. Figures 6.1 & 6.2 depict the com-

parison of the theoretical and numerical radiating solitary wave solutions propagating

in each component f and g, for perturbations in the parameters c and β respectively.

In both figures we find the leading order solitary wave solution is indeed significantly

improved by the localised higher order correction term ψ. However, as one can see from

the close up plots of the oscillating tail region, there is significant discrepancies in the

amplitude of oscillations; more evident in Figure 6.1, which corresponds to perturba-

tions in c.

On the contrary, the wavenumber of oscillations from the theoretical (m) and numer-

ical solution are in good agreement, as well as with predictions found via the dispersion

relation (see Table 6.1). From both Figures 6.1 & 6.2 it also appears that the phase

of oscillations are well described from the theoretical description, however this is only

by chance since we do not expect to capture the phase of φ as it is found in the limit

ξ → −∞.
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Wavenumber Wavelength

Dispersion Relation 0.8110 7.747

Numerical 0.81 ± 0.1 7.75 ± 0.1

k 0.85 7.392

m 0.8147 7.712

kω 0.8139 7.719

Table 6.1: Comparison of wavenumbers/wavelengths of the numerical solution (averaged

readings), m, k and that predicted from the linear dispersion relation. All parameter values

correspond to Figure 6.1.

400 450 500 550 600 650 700

0

0.1

0.2

0.3

0.4

x
400 420 440 460 480 500−5

0

5x 10−4

x

(a) fnum(—) ftheory(—) (b) fnum(—) ftheory(—)

400 450 500 550 600 650 700

0

0.1

0.2

0.3

0.4

x
400 420 440 460 480 500−5

0

5x 10−4

x

(c) gnum(—) gtheory(—) (d) gnum(—) gtheory(—)

Figure 6.1: Numerical solution and theoretical solution (6.86), at t = 600 and a magnifi-

cation of the oscillating tail. Parameter values: ε̂ = 0.35, k = 0.85, µ = 0.005 and A = 7,

B = C = 0, which implies m = 0.8147, M = 0.8868, ω = 0.9576, c = 1.017, α = β = 1,

γ = δ = 0.297, v = 1.077, v0 = 1.068. Numerical parameters: ∆t = 0.01, L = 2000,

N = 4× 105.
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Figure 6.2: Numerical solution and theoretical solution (6.86), at t = 600 and a magnifi-

cation of the oscillating tail. Parameter values: ε̂ = 0.35, k = 0.85, µ = 0.005 and C = 7,

A = B = 0, which implies m = 0.8147, M = 0.8868, ω = 0.9576, c = α = 1, β = 1.035,

γ = δ = 0.297, v = 1.069, v0 = 1.068. Numerical parameters: ∆t = 0.01, L = 2000,

N = 4× 105.
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Although the tail region of the radiating solitary waves shown in Figures 6.1 & 6.2

are rather small, they are still considerably greater in magnitude than O(µ2), which

rules out the discrepancies are due to higher order terms in the expansions for f and g

(6.3) not being included.

6.5.2 Simulations using the approach in Section 6.3.2

We next consider the alternative asymptotic approach for finding φ, derived up toO(ε̂6),

given by (6.87). Figure 6.3 depicts numerical simulations and the solution (6.87) for

the same perturbation in the parameter c as in the simulations illustrated in Figure 6.1,

which is reincluded in Figure 6.3 for comparison purposes. We denote the solutions f

and g from (6.87) with the perturbation solution for φ (6.82) as f ipert and gipert, where

φ is taken up to O(ε̂2(i+1)), for i = 1, 2, ... .

One can see that the solutions for f and g with the higher order terms for φ included

indeed correct the leading order approximations f1
pert and g1

pert. This supports the

approach outlined in Section 6.3.2 as a valid perturbation method for obtaining the

oscillatory part of radiating solitary wave solutions of cRB equations.

Moreover, it is clear that this alternative asymptotic approach for finding the oscil-

latory part of radiating solitary wave solutions of cRB equations is more effective. The

solutions for f and g with φ taken up to O(ε̂6) significantly improves the discrepancy

in the amplitude of oscillations from the numerics, compared with the solutions for f

and g using φ from the previous approach in Section 6.3.1

Furthermore, we also see an improvement in the amplitude of oscillations in the so-

lutions f1
pert and g1

pert, compared with the solutions using φ from the previous approach

denoted, ftheory and gtheory. It was previously noted that the leading order perturbation

solution in φ, in the case for B = C = 0, is equivalent to the solution for φ from the

previous approach, however this is only for leading order ω, m and M . Since ω appears

explicitly in the coefficient of the leading order term, denoted F4 (6.53), taking higher

order terms in φ and subsequently ω, will improve the amplitude of oscillations even for

the leading order solution. This is evident in Figure 6.3, which displays the solutions

f1,2
pert, g

1,2
pert with the asymptotic solution φ found with the first non-zero correction term

in ω (and with m and M taken exactly in the first approach for finding φ), where one

can already notice a distinct improvement in the accuracy of the leading order solutions

f1
pert, g

1
pert from the solutions using the previous approach in finding φ.
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The same follows for perturbations in the parameter β as depicted in Figure 6.4.

In this case A = 0, and so the leading order asymptotic solution for φ appears at

O(ε̂6), thus the solutions denoted f2
pert, g

2
pert indeed correspond to the leading order

approximations for φ. Since the oscillating part of the solutions in this case are already

relatively close to the numerical solution, finding the next order correction in φ, which

will appear at O(ε̂8), should yield a very accurate theoretical solution for radiating

solitary waves of the cRB equations (3.2).
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Figure 6.3: Numerical solution and both theoretical solutions (6.86) and (6.87), at t =

600. Parameter values: ε̂ = 0.35, k = 0.85, µ = 0.005 and A = 7, B = C = 0, which

implies m = 0.8147, M = 0.8868, ω = 0.9576, c = 1.017, α = β = 1, γ = δ = 0.297,

v = 1.077, v0 = 1.068. Numerical parameters: ∆t = 0.01, L = 2000, N = 4× 105.
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Figure 6.4: Numerical solution and both theoretical solutions (6.86) and (6.87), at t =

600. Parameter values: ε̂ = 0.35, k = 0.85, µ = 0.005 and A = B = 0, C = 7, which

implies m = 0.8147, M = 0.8868, ω = 0.9576, c = α = 1, β = 1.035, γ = δ = 0.297,

v = 1.069, v0 = 1.068. Numerical parameters: ∆t = 0.01, L = 2000, N = 4× 105.
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6.6 Concluding remarks

In this chapter we have developed an asymptotic approach to describing radiating soli-

tary wave solutions inherent in systems of cRB equations, in the case when the param-

eters in the system are slightly perturbed from the symmetric case. Using asymptotic

expansions similar to the type used in the Lindstedt–Poincaŕe method, we find the

leading order approximation is characterised by the pure solitary wave solutions of the

symmetric case. To higher order, the equations uncouple into two linear problems, with

the solution of one of them correcting the localised part of the radiating solitary wave

solutions, and the other describing the co-propagating oscillatory tail. We have devel-

oped and implemented a pseudo-spectral method to solve the system of cRB equations

primarily in order to test the validity of the derived solutions (details of the method

are provided in Appendix B.6).

The derived problem involving the localised higher order term was solved exactly

and on comparison with numerical simulations was shown to indeed accurately correct

the leading order pure solitary wave approximation. The higher order problem charac-

terising the oscillating terms could not be solved exactly and so we begun by making

an assumption on a particular term in the governing equation. This then allowed us

to determine the key features of the radiating solitary waves oscillating tails, in the far

limits of the spatial domain (see Section 6.3.1). However, on comparison with numer-

ical simulations, this approximation proved slightly too strong and clear discrepancies

were apparent in the amplitude of oscillations between numerics and the theory.

This led to the consideration of an alternative asymptotic approach for the higher

order problem describing the oscillatory part of the radiating solitary wave solutions

(see Section 6.3.2). We found good agreement of the oscillating part of the solutions

from the two different approaches, when the latter asymptotic approach was taken

to leading order (under a slight ordering constraint to the parameters in the cRB

equations). Crucially, the latter approach enables one to improve the solution by taking

arbitrary higher order corrections. We found that taking the asymptotic solution of the

latter approach to include the first higher order terms significantly improved the noted

discrepancy in the amplitude of oscillations between the numerics and the theory, and

furthermore corrected the wavelength (in comparison with the numerics and the linear

dispersion relation, see Table 6.1). The phase was the only feature of the oscillating
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part of the radiating solitary waves solution for which the asymptotic approach fails to

capture. This is due to the solution being found in the far limits of the spatial domain.
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Chapter 7

Conclusions and future work

In this work we were concerned with the study of nonlinear longitudinal wave propa-

gation in layered elastic waveguides, motivated mainly from the demand to investigate

mechanical properties of layered structures.

An accurate asymptotic model, containing all the essential degrees of freedom of a

real layered elastic waveguide, was derived in [76] using a complex nonlinear layered

lattice model, under the assumption that the bonding between layers is sufficiently

‘soft’. For the problem of a two layered waveguide, the model is in the form of two

cRB equations; the approach is reviewed in Chapter 2, along with the derivation of the

system from a simpler model consisting of two weakly coupled FPU chains.

Throughout this thesis the following four main problems were considered:

(i) The construction of a nonsecular weakly nonlinear solution of the Cauchy problem

for cRB equations on the infinite line, for localised or sufficiently rapidly decaying

initial conditions.

(ii) The construction of a nonsecular weakly nonlinear solution of a similar Cauchy

problem for a single regularised Boussinesq equation on the infinite line, with

initial conditions extended to include perturbations to ‘exactly solvable’ ones.

(iii) Further development and improvement of the weakly nonlinear solution of the

Cauchy problem for single regularised Boussinesq and Boussinesq–Ostrovsky equa-

tions, in order to make further analytical progress with the higher order terms in

the original Cauchy problem.
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(iv) Development of an asymptotic methodology to describe the particular class of

solutions known as radiating solitary waves, inherent in coupled Boussinesq-type

equations.

Problem (i)

The weakly nonlinear solution in the first problem is considered in the general case

when the two linear wave operators of the cRB equations have different characteristic

speeds, namely for (a) c− 1 = O(ε) and (b) c− 1 = O(1).

Introducing two different asymptotic multiple-scales expansions for each of the two

cases and implementing an averaging procedure with respect to the fast time variable,

we derived to leading order a hierarchy of asymptotically exact coupled and uncoupled

Ostrovsky equations in cases (a) and (b) respectively (see [72] for the full published

work). Higher order terms were then constructed from the solutions of the leading

order problems, and the weakly nonlinear solution up to the accuracy of the problem

formulation was shown to be nonsecular. Accurate numerical simulations using a finite

difference scheme (see Appendix A.2) were implemented to solve the cRB equations.

From pure solitary wave initial conditions, in case (a) the solution in both components

was shown to evolve into so-called radiating solitary waves; a pure solitary wave ac-

companied with a co-propagating oscillatory tail. The dispersion relation was shown

to capture the wavelength of the oscillating tail observed from numerical simulations.

In case (b) the pure solitary wave solutions in both components were destroyed and to

leading order replaced with stable localised wave packets (a well know feature of the

Ostrovsky equation [50]). From comparisons with previous numerical studies of the

Ostrovsky equation, it was shown that the numerics of the cRB equations qualitatively

supported the theory.

The approach developed for the Cauchy problem of the cRB equations is generic

and can be used to construct weakly nonlinear solutions of Cauchy problems for other

similar models.

Problem (ii)

We then considered the Cauchy problem for a single regularised Boussinesq equation

(see [73] for the full published work). We again sought asymptotic multiple-scales ex-

pansions and implemented the same averaging procedure as we did in the first problem.
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However in this case, to leading order we derived two KdV equations which describe

the leading order right- and left-propagating waves. The higher order correction terms

were again derived in an explicit simple form, given entirely in terms of the leading

order solutions.

The initial conditions in this problem were extended from the first problem by

allowing them to be split into O(1) and O(ε) parts, enabling one to implement a broader

class of initial conditions. In doing this one can then explicitly obtain solutions of the

Cauchy problem for exactly solvable initial conditions (from the viewpoint of the leading

order KdV equations being solved via the IST) and also initial conditions with O(ε)

perturbations to these.

Explicit examples of the weakly nonlinear solution of the Cauchy problem, in the

form of both right-propagating and right- & left-propagating N KdV soliton solutions

were developed, and also an example to allow for an arbitrary O(ε) perturbation. Spe-

cific examples of these (N = 1, 2) were examined with direct numerical simulations

of the single regularised Boussinesq equation using a finite difference scheme (see Ap-

pendix A.1). It was shown in all examples that the higher order correction terms sig-

nificantly improved the leading order KdV approximation throughout the times within

the validity of the solution.

Problem (iii)

In the previous problem it was noted that although the developed weakly nonlinear so-

lution improved the KdV approximation within the time interval of validity of solutions,

the absolute errors of the higher order solution increased with time. This observation

is due to a deficiency in the problem formulation and not the constructed solution.

The weakly nonlinear solution constructed for both the single and coupled Boussi-

nesq equations, were found up to the accuracy of the problem formulation in the deriva-

tions of the models. However, as a result, there was no way to determine the slow time

dependence of the d’Alembert-like functions derived at higher order (instead these so-

lutions were fixed at T = 0). To make further analytical progress we reconstructed the

weakly nonlinear solution of the Cauchy problem for a single ‘Boussinesq–Ostrovsky’

equation (reducible to the regularised Boussinesq equation under one parameter choice)

on the infinite line, but instead treated the equation as an exact mathematical model

(see [74]). We included a further higher O(ε2) term in the construction of the solution,
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although crucially we did not specify and include this term in the solution, instead

it was used in order to derive time dependent problems for the terms at the previous

order (the ones originally fixed at T = 0).

Two particular configurations of this Cauchy problem were examined to assess the

accuracy of the derived evolution equations. Firstly (a) the initial conditions were cho-

sen in the form of a right-propagating exactly solvable initial condition of the Boussinesq

equation. In this case the higher order terms were found to now be characterised by two

linearised KdV Cauchy problems (see also [114]). Secondly (b) we chose a particular

configuration corresponding to right-propagating initial conditions of the Boussinesq–

Ostrovsky equation, where to leading order we derived a Cauchy problem for the Os-

trovsky equation and to higher order, two linearised Ostrovsky Cauchy problems were

derived.

The higher order problems in case (a) were solved numerically and also solved using

a perturbation approach. The original Boussinesq Cauchy problem was solved numer-

ically and from direct comparison between numerical simulations of the Boussinesq

equation and the weakly nonlinear solution, it was shown the accuracy of the solution

with the new evolution equations, solved from both the numerical and perturbation

approach, was significantly improved from the previously constructed solution. It was

shown that the maximum absolute error throughout all times within the region of the

solutions applicability, scaled as O(ε2), as opposed to the solution without the evolution

equations which scaled as O(ε) at T = 1.

Similar accuracy improvements were obtained in case (b). The leading and higher

order Ostrovsky-type problems were solved numerically in this case, and upon solving

the Boussinesq–Ostrovsky equation numerically, the accuracy of the weakly nonlinear

solution with the higher order evolution equations was shown to significantly improve

the leading order approximation.

All numerical simulations in this problem were performed using pseudo-spectral

methods, details of which are enclosed in Appendix B .

Problem (iv)

The analytical description of radiating solitary wave solutions in each component of the

cRB equations, which evolve from pure solitary wave solutions when the parameters

in the system of cRB equations are slightly perturbed from the symmetric case (as
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noted in case (a) in Problem (i)), were developed using an asymptotic procedure of

Lindstedt-Poincaŕe type. Assuming the parameters in the system were sufficiently

close to the symmetric case, and seeking travelling wave solutions, the leading order

approximation in both components was found as the exact pure solitary wave solutions

of the symmetric case. To higher order it was shown that the system uncoupled into

two linear ODEs, the first problem corresponding to correcting the localised region

of the solution (where the leading order pure solitary wave is present), and the other

problem corresponding to describing the oscillatory tail of the solution.

The problem for the localised higher order component was solved exactly and the

higher order problem corresponding to the oscillating part of the solution was solved

using two different approaches. In the first approach a particular localised term in the

governing equation was neglected and subsequently this enabled us to determine an

exact form of the solution in the far spatial regions. In the second approach an accurate

asymptotic procedure of the exact form of the governing equation was obtained to

describe the solution in the far spatial regions, assuming the oscillations were sufficiently

small (and depending on a slight constraint in the order of the parameters).

Upon comparisons with numerical simulations of the cRB equations, for several

different examples of perturbations in the parameters, it was shown that the two alter-

native solutions were found to accurately correct the pure solitary wave approximation

and give a relatively good approximation to the oscillatory component of the solution.

The first approach coincided with the second asymptotic approach taken to leading

order. However taking further higher order terms in the second asymptotic approach,

it was shown that the amplitude of the oscillatory part of the solution was significantly

improved. As a result the latter asymptotic approach was considered more favourable

since it has the scope to be continually extended up to an arbitrary order of accuracy.

Future work

It was previously commented that the weakly nonlinear solution of the Cauchy problem

of the cRB equations, developed in Chapter 3, should be straightforward to extend to

the problem of N -cRB equations, corresponding to an N layered waveguide with N -

1 intermediate soft bonding layers. It would be interesting (and indeed useful from

an applications viewpoint) to derive a general solution of the Cauchy problem for an
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N -coupled system of Boussinesq equations. One could first consider the problem of a

three layered waveguide and examine what happens to the different asymptotic regimes

of the derived equations, similar to the ones developed for the difference between the

characteristic speeds in the two cRB equations.

In terms of analysing different models, it would be interesting to consider more

complicated waveguides. For example, one could consider a waveguide with multiple

regions of perfect and imperfect horizontal bonding across the interface of layers. It

would then be interesting to observe what would happen to the localised solutions

obtained for the waveguides considered in this work as they enter and exit the different

regions.

In terms of examining how the current solutions developed here would behave in

other waveguides, one could consider the two different developed asymptotic regimes

in a two layered waveguide with complete delamination between the layers. More

specifically, allowing each one of the radiating solitary wave solutions and wave packet

solutions (solved numerically) initially propagating in an imperfectly bonded layered

waveguide to enter a region of complete delamination. As a first step, one could take

the radiating solitary wave and wave packet solutions as initial conditions of the Cauchy

problem for the derived equations in this delamination problem. This would constitute

an extension to work in [75], where it was shown, in particular, that a phenomenon

known as fission occurs when a pure solitary wave solution propagating in a homoge-

neous waveguide enters such a region of delamination. Thus it would be interesting

to see how delamination of layered waveguides effects the qualitative features of waves

propagating in imperfectly bonded layered waveguides. This could first be done nu-

merically and then one could try to develop an analytical solution.

An example of a direct extension to the work contained in this thesis, is to develop

the weakly nonlinear solution of the Cauchy problem with the evolution equations de-

scribing higher order terms, to allow for more general initial conditions. So far we have

considered the configuration which yield right-propagating leading order solutions only.

The developed methodology can be extended to include the configuration corresponding

to right- and left-propagating leading order solutions, but this is omitted in this work

as derivations become rather lengthy. Furthermore, explicit examples for more initial

conditions which are in the form of the configuration used in this work can be consid-

ered. In particular for the Boussinesq case, one could consider both right- & right- and
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left-propagating N KdV soliton solutions as initial conditions. If possible, one could

also extend the perturbation approach used to solve the higher order linearised KdV

equations to include N KdV soliton solutions of the leading order problem.

Of course, one could also extend the derivation of the Boussinesq equations to

incorporate O(ε2) terms and hence construct the weakly nonlinear solution to higher

order (which as a result increases the time validity of the solutions). Computations

in derivations using the complex lattice model outlined in Section 2.1.2 would become

increasingly more complicated, however this could first be done using the simpler model,

explained in Section 2.1.1.

There are indeed many model extensions and alternative problem formulations one

can consider to improve the current solutions and to inevitably apply the ideas to

a broader area of real life problems. Similarly, there are a vast amount of interest-

ing different mathematical applications for the derived and developed techniques and

solutions of the Boussinesq-type problems contained in this thesis.
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Appendix A

Finite difference methods for

Boussinesq-type equations

A.1 Regularised Boussinesq equation

Using a finite difference scheme originally derived in [106], we numerically solve the

Cauchy problem for the following regularised Boussinesq equation on the infinite line:

ftt − c2fxx =
1

2
α(f2)xx + βfttxx, (A.1)

f |t=0 = F (x, 0), (A.2)

ft|t=0 = G(x, 0), (A.3)

thus we restrict x to the finite interval x ∈ [−L,L] and discretise the (x, t) domain into a

grid with equal spacings ∆x = h and ∆t = κ. The continuous analytical solution f(x, t)

is approximated by the exact solution of the difference scheme f(ih, jκ) denoted fi,j ,

which lies on the discrete grid at the points (ih, jκ) (for i = 0, 1, ..., N and j = 0, 1, ...).

Approximating the derivatives in (A.1) by the central difference approximations

(fi,j)xx =
fi−1,j − 2fi,j + fi+1,j

h2
+ ...,

(fi,j)tt =
fi,j−1 − 2ui,j + fi,j+1

κ2
+ ..., (A.4)

the regularised Boussinesq equation (A.1) is approximated as

fi,j−1 − 2fi,j + fi,j+1

κ2
− c2 fi−1,j − 2fi,j + fi+1,j

h2
− α

2

[
(fi−1,j)

2 − 2(fi,j)
2 + (fi+1,j)

2

h2

]
−β

[
(
fi−1,j−1−2fi−1,j+fi−1,j+1

κ2
)− 2(

fi,j−1−2fi,j+fi,j+1

κ2
) +

fi+1,j−1−2fi+1,j+fi+1,j+1

κ2

h2

]
= 0.
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Multiplying through by h2κ2 and rearranging to separate the unknown j+ 1 terms, we

derive the following nine point implicit difference scheme

−βfi−1,j+1 + (2β + h2)fi,j+1 − βfi+1,j+1 = (κ2c2 − 2β)[fi−1,j − 2fi,j + fi+1,j ] + 2h2fi,j

+
ακ2

2
[(fi−1,j)

2 − 2(fi,j)
2 + (fi+1,j)

2]

+βfi−1,j−1 − (2β + h2)fi,j−1 + βfi+1,j−1.

(A.5)

To solve scheme (A.5) for fi,j+1 ∀i one requires boundary conditions and since it is a

three time-level scheme, two initial conditions. Throughout this work we deal mainly

with localised solutions of the Boussinesq-type equations considered. In this case,

provided the boundaries are sufficiently large, we can choose zero boundary conditions:

f0,j = fN,j = 0 ∀j. (A.6)

If the initial condition (A.2) is given analytically then we can simply choose the initial

conditions for scheme (A.5) as follows

fi,0 = F (ih, 0), fi,1 = F (ih, κ) ∀i. (A.7)

Alternatively if the initial conditions (A.2) and (A.3) are not analytical then one can

deduce the second initial condition for scheme (A.5) by implementing the forward dif-

ference approximation (simulations have proved either choice are sufficiently accurate).

Writing the difference scheme (A.5) in matrix form, excluding the zero boundary

terms, highlights in particular the system’s tridiagonal nature

b c 0 . . . . . 0
a b c 0 . . . . 0
0 a b c 0 . . . 0
. . .
. . .
. . .
. . 0
0 . . . . 0 a b c
0 . . . . . 0 a b





f1,j+1

f2,j+1

.

.

.

.

.

.
fn−1,j+1


=



X1

X2

.

.

.

.

.

.
Xn−1


, (A.8)

where a = c = 1, b = 2 + h2 and Xi ∀i denotes the known terms in the right-hand

side of (A.5). We solve the system of equations (A.8) using a Thomas Algorithm (e.g.,
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[6]); essentially an optimised Gaussian elimination which utilises the tridiagonal char-

acteristic of the matrix to minimise computational effort. Furthermore, computational

storage is also minimised since we solve for a constant coefficient matrix.

A.1.1 Periodic Boundary conditions

As opposed to the zero boundary conditions implemented in the previous section, one

may require the case of periodic boundary conditions (e.g. if one wishes to solve the

Cauchy problem (A.1)–(A.3) on the periodic domain).

In this case the boundary conditions are

f0,j = fN,j ∀j, (A.9)

and the system of equations which must be solved at each time step, denoted by the

matrix form AF = X, is now



b c 0 . . . . 0 a
a b c 0 . . . . 0
0 a b c 0 . . . 0
. . .
. . .
. . .
. . 0
0 . . . . 0 a b c
c 0 . . . . 0 a b





f1,j+1

f2,j+1

.

.

.

.

.
fn−1,j+1

fn,j+1


=



X1

X2

.

.

.

.

.
Xn−1

Xn


, (A.10)

where a = c = 1, b = 2 + h2 and the vectors X and F denote the known right-hand

side of (A.5) and the unknown j + 1 solutions respectively.

Essentially, the difference from the zero boundary condition problem is that an

extra row and column is introduced to the matrix A. However, crucially the banded

tridiagonal structure is no longer present and hence the Thomas algorithm used in the

zero boundary condition problem is no longer applicable.

Therefore, we rewrite the non-diagonally dominant n×n matrix A as A = Ā+uvT
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where

Ā =



0 c 0 . . . . 0 0
a b c 0 . . . . 0
0 a b c 0 . . . 0
. . .
. . .
. . .
. . 0
0 . . . . 0 a b c
0 0 . . . . 0 a b̄


, u =



b
0
.
.
.
.
.
0
c


, v =



1
0
.
.
.
.
.
0
a
b


. (A.11)

The term b̄ = (b2 − ca)/b and we now note the matrix Ā is indeed tridiagonal. Using

the Sherman–Morrison formula (see [105]) we can write

(Ā+ uvT )−1 = Ā−1 − Ā−1uvT Ā−1

1 + vT Āu
, (A.12)

and therefore the j+1 solutions of the system of equations (A.10) can be expressed as

F = Ā−1X − Ā−1uvT Ā−1

1 + vT Āu
X. (A.13)

If we denote Q1 = Ā−1X, Q2 = Ā−1u and η = vTQ1

1+vTQ2
we can re-write (A.13) as

F = Q1 − η Q2. (A.14)

Since Ā is tridiagonal and u and X are known, we can solve for the vectors Q1 and

Q2 simultaneously at each time step using a Thomas Algorithm. It then remains to

calculate the parameter η at each time step and hence one can determine F , yielding

the solutions fi,j+1 ∀ i.

A.1.2 Local truncation error

Let Di,j denote the difference scheme operator approximating the solution of (A.1) at

the discrete (i, j)th mesh points where Di,j(fi,j) = 0. If we denote the exact solution

of (A.1) as f̄ then we have the expression

Di,j(f̄) = −βf̄i−1,j+1 + (2β + h2)f̄i,j+1 − βf̄i+1,j+1 − (k2c2 − 2β)
[
f̄i−1,j − 2f̄i,j

+f̄i+1,j

]
− 2h2f̄i,j −

ακ2

2

[
(f̄i−1,j)

2 − 2(f̄i,j)
2 + (f̄i+1,j)

2
]

−βf̄i−1,j−1 + (2β + h2)f̄i,j−1 − βf̄i+1,j−1

= Ti,j , (A.15)
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where Ti,j , the local truncation error, measures the amount in which the exact solution

of (A.1) does not satisfy the solution of the difference scheme (A.5), at the point (ih, jκ).

We determine the magnitude of Ti,j in terms of the discretisations h and κ by

approximating the terms in (A.15) with Taylor series expansions. It transpires that the

magnitude of the principal part of the local truncation error is unchanged if we include

terms in the expansions O(hnκm) or beyond, where n+m = 5. Hence, we approximate

the terms

f̄i±1,j = f̄i,j ± h(f̄x)|i,j +
h2

2
(f̄xx)|i,j ±

h3

6
(f̄xxx)|i,j +

h4

24
(f̄xxxx)|i,j +O(h5),

f̄i,j±1 = f̄i,j ± κ(f̄t)|i,j +
κ2

2
(f̄tt)|i,j ±

κ3

6
(f̄ttt)|i,j +

κ4

24
(f̄tttt)|i,j +O(κ5),

f̄i+1,j±1 = f̄i,j + h(f̄x)|i,j ± κ(f̄t)|i,j +
1

2

[
h2(f̄xx)|i,j ± 2hκ(f̄xt)|i,j + κ2(f̄tt)|i,j

]
+

1

6

[
h3(f̄xxx)|i,j ± 3h2κ(f̄xxt)|i,j + 3hκ2(f̄xtt)|i,j ± κ33h2κ(f̄ttt)|i,j

]
+

1

24

[
h4(f̄xxxx)|i,j ± 4h3κ(f̄xxxt)|i,j + 6h2κ2(f̄xxtt)|i,j ± 4hκ3(f̄xttt)|i,j

+κ4(f̄tttt)|i,j
]

+O(h5 + h4κ+ h3κ2 + h2κ3 + hκ4 + κ5),

f̄i−1,j±1 = f̄i,j − h(f̄x)|i,j ± κ(f̄t)|i,j +
1

2

[
h2(f̄xx)|i,j ∓ 2hκ(f̄xt)|i,j + κ2(f̄tt)|i,j

]
+

1

6

[
− h3(f̄xxx)|i,j ± 3h2κ(f̄xxt)|i,j − 3hκ2(f̄xtt)|i,j ± κ33h2κ(f̄ttt)|i,j

]
+

1

24

[
h4(f̄xxxx)|i,j ∓ 4h3κ(f̄xxxt)|i,j + 6h2κ2(f̄xxtt)|i,j ∓ 4hκ3(f̄xttt)|i,j

+κ4(f̄tttt)|i,j
]

+O(h5 + h4κ+ h3κ2 + h2κ3 + hκ4 + κ5),

and the nonlinear terms in (A.15) are then approximated as

(f̄i−1,j)
2 − 2(f̄i,j)

2 + (f̄i+1)2 = 2

[
h2(f̄2

x)|i,j +
h4

4
(f̄2
xx)|i,j

]
+ 4

[
h2

2
f̄i,j(f̄xx)|i,j

+
h4

24
f̄i,j(f̄xxxx)|i,j +

h4

6
(f̄x)|i,j(f̄xxx)|i,j

]
+O(h5).

Substituting the Taylor expansions into (A.15) yields

Ti,j = h2κ2

[
(f̄tt)i,j − c2(f̄xx)i,j − α

1

2

(
(f̄2)xx

)
i,j
− β(f̄xxtt)i,j

]
+ h2κ4

[
1

12
(f̄tttt)i,j

]
+h4κ2

[
− c

2

12
f̄xxxx − α(

1

24
f̄ f̄xxxx +

1

3
f̄xf̄xxx +

1

4
f̄2
xx)

]
+ ... , (A.16)
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where to leading order the discrete form of the regularised Boussinesq equation (A.1)

has emerged. Since f̄ is the exact solution of (A.1), Ti,j reduces to the following form

Ti,j = h2κ4

[
1

12
(f̄tttt)i,j

]
+ h4κ2

[
− c

2

12
f̄xxxx − α(

1

24
f̄ f̄xxxx +

1

3
f̄xf̄xxx +

1

4
f̄2
xx)

]
+O(h5 + h4κ+ h3κ2 + h2κ3 + hκ4 + κ5). (A.17)

The principal part of the local truncation error is therefore O(h2κ4 + h4κ2). One can

easily show that taking higher order terms in the Taylor series expansions, namely

beyond O(hnκm) where n + m = 4, will not effect the leading order form of Ti,j . One

can also notice that only terms of even powers of h and κ appear in the truncation

error.

A.1.3 Stability

We examine the stability of the difference scheme (A.5) using a von Neumann linear

stability analysis. First we linearise the scheme by setting fi,j = f0 + f̂i,j , where f0 is

constant such that f0 > fij ∀i, j. Hence, from (A.5) we have

−βf̂i−1,j+1 + (2β + h2)f̂i,j+1 − βf̂i+1,j+1 = [κ2(c2 + αf0)− 2β][f̂i−1,j − 2f̂i,j + f̂i+1,j ]

+2h2f̂i,j

+βf̂i−1,j−1 − (2β + h2)f̂i,j−1 + βf̂i+1,j−1,

(A.18)

where essentially the nonlinear terms f2
i,j in (A.5) have been replaced with 2f0f̂i,j . We

are concerned with the growth of error in (A.18) as t→∞. Let us define round off error

at the (i, j)th point as ξi,j = Ni,j− f̂i,j , where Ni,j is the numerical solution we compute

from simulations for scheme (A.18). Since the difference scheme is now linear, the error

ξ̂i,j will also satisfy (A.18) and so the numerical solution and the round off error will

both have the same decay/growth behaviour with respect to time. Furthermore we can

express the error in the interval 2L as

ξ(x, t) = ΣN
n=0Aie

iθx, (A.19)

where θ ≥ 0 (and i2 = −1), but since it satisfies the linear scheme (A.18) we can

examine just a single term in the series (A.19) to understand the decay/growth rate of

the entire error (all other terms will be additive).
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Writing the error at the (i, j)th point as

ξi,j = eajκeiθiih = Gjeiθiih (A.20)

where G = eaκ (often denoted the amplification factor) and G is generally complex, it

is clear the error will grow without bound if |ξi,j+1| > |ξi,j | as j → ∞. Therefore for

the difference scheme (A.18) to remain stable we require∣∣∣∣ξi,j+1

ξi,j

∣∣∣∣ =

∣∣∣∣∣ea(j+1)κeiθiih

eajκeiθiih

∣∣∣∣∣ = |G| ≤ 1 ∀θ and arbitrary h, κ. (A.21)

Substituting the error (A.20) into scheme (A.18) we find the following quadratic ex-

pression for G:

G2 − 2µG+ 1 = 0 where µ = 1−
2κ2(c2 + αf0)sin2( θh2 )

h2 + 4βsin2( θh2 )
. (A.22)

Since µ ≤ 1 ∀θ, h, κ, the roots of (A.22) are G1,2 = µ±
√
µ2 − 1.

If G is real (µ2 ≥ 1), and in particular µ2 > 1 then |G1| > 1 and we have instability.

Alternatively if µ2 = 1, we have stability, although this particular case is not of much

use or interest (this case corresponds to the wave number being zero and hence there is

no propagation through space). Therefore to ensure stability is maintained, G cannot

be real. If G is complex (µ2 < 1) this implies |G| = 1 and hence the scheme is indeed

stable ∀θ and arbitrary h, κ provided |µ| < 1, which implies

0 <
κ2(c2 + αf0)sin2( θh2 )

h2 + 4βsin2( θh2 )
< 1. (A.23)

The left-hand side of (A.23) is unconditionally satisfied ∀θ and arbitrary h, κ and the

right-hand side is also satisfied provided

κ = κc <

√
h2 + 4β

c2 + αf0
. (A.24)

Therefore if (A.24) holds true, difference scheme (A.18) is stable. For simulations of

the original nonlinear scheme (A.5), we implement the stricter condition κ < 1
2κc, to

help accommodate for the effects of nonlinearity. We also choose f0 to be the largest

positive value which is the most restrictive choice on the criteria (A.24).
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A.2 Coupled regularised Boussinesq equations

We extend the numerical method outlined in Section A.1 to the case of cRB equations.

In particular let us consider the IVP for two cRB equations on the infinite line:

ftt − fxx =
1

2
(f2)xx + fttxx − δ(f − g),

gtt − c2gxx =
1

2
α(g2)xx + βgttxx + γ(f − g), (A.25)

imposing the following initial conditions:

f |t=0 = F1(x, 0), g|t=0 = G1(x, 0), (A.26)

ft|t=0 = G1(x, 0), gt|t=0 = G2(x, 0). (A.27)

Analogous to the single Boussinesq equation, we let x ∈ [−L,L], for finite L, and

discretise the (x, t) domain into a grid with spacings ∆x = h and ∆t = κ. The solutions

f(x, t) and g(x, t) of (A.25) are approximated by the solutions f(ih, jκ) and g(ih, jκ)

(for i = 0, 1, ..., N and j = 0, 1, ...) of the difference scheme, denoted fi,j and gi,j .

Substituting central difference approximations of the form (A.4) into system (A.25) we

derive the following coupled difference scheme:

−fi−1,j+1 + (2 + h2)fi,j+1 − fi+1,j+1 = (κ2 − 2)[fi−1,j − 2fi,j + fi+1,j ] + 2h2fi,j

+
κ2

2
[(fi−1,j)

2 − 2(fi,j)
2 + (fi+1,j)

2]

+fi−1,j−1 − (2 + h2)fi,j−1 + fi+1,j−1

−h2κ2δ(fi,j − gi,j), (A.28)

−βgi−1,j+1 + (2β + h2)gi,j+1 − βgi+1,j+1 = (κ2c2 − 2β)[gi−1,j − 2gi,j + gi+1,j ] + 2h2gi,j

+
ακ2

2
[(gi−1,j)

2 − 2(gi,j)
2 + (gi+1,j)

2]

+βgi−1,j−1 − (2β + h2)gi,j−1 + βgi+1,j−1

+h2κ2γ(fi,j − gi,j). (A.29)

We now have two coupled nine point implicit difference schemes, both with tridiag-

onal matrices of constant coefficients, which we solve simultaneously at each time step

for fi,j+1 and gi,j+1, using two Thomas algorithms.
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Periodic boundary conditions can be implemented analogous to the approach imple-

mented for the single Boussinesq equation in Section A.1.1. However, since we consider

localised solutions of (A.25) for the majority of the work in this thesis, we implement

zero boundary conditions

f0,j = fN,j = g0,j = gN,j = 0, ∀j, (A.30)

provided we set L to be sufficiently large. If the initial conditions (A.26) and (A.27)

are given analytically we can choose the initial conditions of scheme (A.29) as

fi,0 = F1(ih, 0) fi,1 = F1(ih, κ),

gi,0 = F2(ih, 0), gi,1 = F2(ih, κ), ∀i, (A.31)

alternatively we can utilise the forward difference approximation and make use of the

two derivative initial conditions G1,2.

The numerical scheme for N cRB equations is easily extended by solving N differ-

ence schemes of the form (A.28) and (A.29) in the same way, simultaneously at each

time step.

Conservation laws inherent in the system of cRB equations (A.25) are utilised in

the numerics in order to test the accuracy of the coupled difference scheme (A.28) and

(A.29). See Section 2.2 for more details concerning the conservation laws.
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Appendix B

Pseudo-spectral methods and the

Fourier transform

B.1 Introduction

Spectral methods have come to the forefront of numerical approaches for solving PDEs,

initialising in the early 1970’s (naturally some of the underlying ideas were developed

prior to this). As was the case with the once leading preceding techniques in finite

difference methods and then with finite element methods, a newer more effective and

efficient approach has come into prominence (of course this depends on the specific

nature of the problem). Generally if one wants to solve an ODE or PDE on a simple

domain with smooth data, spectral methods will usually offer the best accuracy and

computational efficiency.

The underlying concept behind spectral methods is to write the solution of a differ-

ential equation as a sum of basis functions. Then by implementing the FFT algorithm,

one can determine the coefficients of the sum to yield the best approximation of the

solution to the differential equation. The FFT is an algorithm developed in 1965

by Cooley and Tukey [26] (although it has been suggested, e.g. in [55], that it was

originally deduced in unpublished work by Gauss with a presumed year of composition

dating back to 1805), which is used to efficiently compute the discrete Fourier transform

(DFT), and similarly the inverse fast Fourier transform (IFFT) is used for calculating

the inverse discrete Fourier transform (IDFT).

The DFT’s are analogues of the Fourier transforms on the continuous domain. We
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define the Fourier transform of a function u(x, t) for x ∈ R, denoted by the operator

F{u(x, t)} = û(k, t), as

û(k, t) =

∫ ∞
−∞

e−ikxu(x, t)dx, (B.1)

where k ∈ R is known as the transform variable. Conversely the inverse Fourier trans-

form, denoted F -1{û(k, t)} = u(x, t), is defined as

u(x, t) =
1

2π

∫ ∞
−∞

eikxû(k, t)dk. (B.2)

Considering the spatial derivative for the function u(x, t), we find from (B.1) that

F

{
∂u

∂x

}
=

∫ ∞
−∞

e−ikx
∂u

∂x
dx, (B.3)

which after integrating by parts and assuming u(x, t)→ 0 as |x| → ∞ yields

F

{
∂u

∂x

}
=

[
e−ikxu

]∞
−∞

+ ik

∫ ∞
−∞

e−ikxu(x, t)dx

= ikû(k, t). (B.4)

Therefore it follows if u(x, t) is continuously n times differentiable and ∂nu
∂xn → 0 as

|x| → ∞, for k = 1, 2, ..., (n− 1), then

F

{
∂nu

∂xn

}
= (ik)nû(k, t). (B.5)

For the DFT let us consider the function v(x, t) on the finite domain x ∈ [−L,L]

and discretise the domain into N equally spaced points, which yields the spacing ∆x =

2L/N . Denoting the discrete form of the function v(x, t) = vj(xj , t) where xj = j∆x

for j = 1, .., N , we define the DFT for the function vj(xj , t) as

v̂k = ∆x

N∑
j=1

e−ikxjvj(xj , t), for k = −N
2

+ 1, ...,
N

2
, (B.6)

and similarly, the IDFT is defined as

vj =
1

2π

N/2∑
k=−N/2+1

eikxj v̂k(k, t), for j = 1, ..., N, (B.7)

where k ∈ Z, is now the discrete transform variable.
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We implement the FFT and IFFT in Matlab using the built-in algorithms denoted

‘ftt’ and ‘iftt’ respectively. Unlike the definitions for the DFT (B.6) and IDFT (B.7),

Matlab requires the transform variable k to be ordered as k = 0, 1, ..., N2 ,−
N
2 +1,−N

2 +

2, ...,−1. Note we have only considered even N , although naturally this is not a restric-

tion and the algorithms we use introduced throughout this work can be easily modified

to accommodate odd choices of N . In terms of computational duration of simulations:

if one discretises the spatial domain of a function into N equally spaced points, the

usual number of arithmetical operations of determining the DFT is O(N2), however

the FFT can compute the DFT in as few as O(N logN) operations (this requires N to

be highly composite).

For the purpose of implementing the spectral methods outlined in this appendix,

we scale the periodic spatial domain from x ∈ [−L,L] to x ∈ [0, 2π] (this formally

corresponds to multiplying the Fourier domain by s = π/L).

B.2 Boussinesq–Ostrovsky equation

We first outline a pseudo-spectral method used to solve the Cauchy problem for the

following Boussinesq–Ostrovsky equation:

Utt − c2Uxx = ε
(α

2
(U2)xx + βUttxx − γU

)
,

U |t=0 = F (x),

Ut|t=0 = V (x), (B.8)

on the periodic domain −L ≤ x ≤ L. This method is an extension to the approach

outlined in [36] which solves the regularised Boussinesq equation in the context of

microstructured solids.

Introducing

W = U − εβUxx, (B.9)

we find from (B.8a)

Wtt = c2Uxx + ε
(α

2
(U2)xx − γU

)
. (B.10)

Taking the Fourier transform of (B.9) yields

Ŵ = (1 + εβk2)Û , (B.11)
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where k is the Fourier transform variable, and thus the solution to (B.8) in the Fourier

space is as follows

Û =
Ŵ

(1 + εβk2)
. (B.12)

Taking the Fourier transform of (B.10) and substituting (B.12) into the resulting ODE

yields the following ODE for Ŵ :

Ŵtt = −(εγ + k2c2)

(1 + εk2β)
Ŵ − εk2α

2
F

{
F -1

[
Ŵ

(1 + εk2β)

]2}
= Ĥ(Ŵ ). (B.13)

We solve the second order ODE (B.13) by reducing it to two first order ODE’s and

simultaneously implementing a Runge–Kutta fourth-order (RK4) method to solve in

time. We therefore define

Ŵt = Ĝ,

Ĝt = Ĥ(Ŵ ), (B.14)

and discretise t = tn, Ŵ (k, tn) = Ŵn, Ĝ(k, tn) = Ĝn for n = 0, 1, 2, ..., where tn = n∆t

and k now denotes the discrete Fourier space. Taking the Fourier transform of the initial

conditions (B.8b,c) yields the initial conditions Ŵ0 and Ĝ0 and thus we implement the

following RK4 method:

Ŵn+1 = Ŵn +
1

6
[k1 + 2(k2 + k3) + k4] , Ĝn+1 = Ĝn +

1

6
[l1 + 2(l2 + l3) + l4] ,

where k1 = ∆tĜn, l1 = ∆tĤ(Ŵn),

k2 = ∆t(Ĝn + l1/2), l2 = ∆tĤ(Ŵn + k1/2),

k3 = ∆t(Ĝn + l2/2), l3 = ∆tĤ(Ŵn + k2/2),

k4 = ∆t(Ĝn + l3), l4 = ∆tĤ(Ŵn + k3). (B.15)

Once (B.15) is solved up to a given time, we substitute the solution Ŵ into (B.12) and

implement the inverse fast Fourier transform to find U in the original physical space.

We now test the accuracy of scheme (B.15) by considering the case γ = 0 in (B.8a),

corresponding to the Cauchy problem of the regularised Boussinesq equation. This

equation has exact solitary wave solutions of the form:

Usol(x, t) = A sech2

(
x− vt

Λ

)
, where A =

3(v2 − c2)

α
, Λ = 2v

√
β

v2 − c2
,(B.16)
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therefore we choose the following initial conditions to coincide with the exact solution:

Ŵ0 = (1 + εβk2) F{Usol(x, 0)},

Ĝ0 = (1 + εβk2) F

{[
∂

∂t
Usol(x, t)

]
|t=0

}
, (B.17)

and illustrate in Table B.1 the accuracy of scheme (B.15), for γ = 0 with initial con-

ditions (B.17), compared with the corresponding exact solution (B.16). As one can

see, simulations of scheme (B.15) are extremely accurate for the time region we are

concerned with in this problem. As the time step is decreased we find the accuracy of

the scheme is bound only by the accuracy of the FFT algorithms used to compute the

DFT and IDFT in (B.13) and (B.17). Increasing the number of harmonics and further

decreasing the time step would yield even better results.

Maximum absolute error

∆T T = ε T = 1

0.01 7.1767 x 10−12 7.2886 x 10−11

0.005 4.4853 x 10−13 4.5370 x 10−12

0.0025 2.7978 x 10−14 2.8366 x 10−13

0.00125 1.9984 x 10−15 1.7653 x 10−14

6.25 x 10−4 4.4409 x 10−16 1.4433 x 10−15

3.125 x 10−4 9.6936 x 10−16 9.6936 x 10−16

Table B.1: Maximum absolute error of the numerical solution (B.15) for c = α = β = 1,

ε = 0.1, v = 1.016 & γ = 0, compared with the exact solution (B.16), for various time

discretisations ∆T . Numerical parameters: L = 2000, N = 214.

B.3 Linearised Korteweg–de Vries equation

B.3.1 Linearised Korteweg–de Vries equation on zero background

We next outline the spectral method used to solve the Cauchy problem for the homo-

geneous linearised KdV equation, linearised on a zero background, namely

−2ψT + ψηηη = 0,

ψ|T=0 =
3p4

4
sech2

(pη
2

)
. (B.18)
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on the periodic domain −L ≤ x ≤ L. Taking the Fourier transform of (B.18) yields

−2ψ̂T − ik3ψ̂ = 0,

ψ̂(k, 0) =
3p4

4
F

{
sech2

(
pξ

2

)}
. (B.19)

and solving the Cauchy problem for the ODE (B.19) yields

ψ(η, T ) = F -1

{
ψ̂(k, 0)e

−ik3T
2

}
. (B.20)

Discretising ψ̂(k, Tn) = ψ̂n with T = ∆T = Tn for n = 0, 1, 2, ..., where k now denotes

the discrete Fourier space, the solution (B.20) is obtained from applying the FFT

algorithms.

B.3.2 Linearised Korteweg–de Vries equation on nonzero background

We next outline the spectral method used to solve the Cauchy problem for the homo-

geneous linearised KdV equation, linearised on a non-zero background, namely

2φT + (f−φ)ξ + φξξξ = 0,

φ|T=0 = −15p4

4
sech2

(
pξ

2

)
. (B.21)

on the periodic domain −L ≤ x ≤ L. Taking the Fourier transform of (B.21) yields

2φ̂T + ik(̂f−φ)− ik3φ̂ = 0,

φ̂(k, 0) = −15p4

4
F

{
sech2

(
pξ

2

)}
. (B.22)

Analogous to the approach in [109] used to solve the KdV equation, we remove the stiff-

term by multiplying (B.22a) by the integrating factor exp(−ik3T/2) and introduce

Φ̂ = e−
ik3T

2 φ̂, (B.23)

which after noting Φ̂T = exp(−ik3T/2) φ̂T − ik3/2 φ̂, yields (B.22a) in the form

Φ̂T = − ik
2
e−

ik3T
2 f̂−φ. (B.24)

Therefore we have the following ODE for Φ̂, in the Fourier space:

Φ̂T = − ik
2
e−

ik3T
2 F

{
f−F -1

[
e
ik3T

2 Φ̂

]}
= A(T, Φ̂). (B.25)
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We discretise Φ̂(k, Tn) = Φ̂n with T = ∆T = Tn for n = 0, 1, 2, ..., where k now denotes

the discrete Fourier space, and with Φ̂0 obtainable from the initial conditions (B.22b),

we implement the following optimised RK4 method (see [109]):

φ̂n+1 = E2φ̂n +
1

6

[
E2h1 + 2E(h2 + h3) + h4

]
,

where h1 = − ikdt
2

F
{
f−F -1 [φn]

}
,

h2 = − ikdt
2

F

{
f−F -1

[
E

(
φn +

h1

2

)]}
,

h3 = − ikdt
2

F

{
f−F -1

[
Eφn +

h2

2

]}
,

h4 = − ikdt
2

F
{
f−F -1

[
E2φn + Eh3

]}
, (B.26)

for E = exp(ik3dt/4) (note, for convenience we have returned to the original variable

φ̂). Once φ̂n is obtained up to a given n, we apply the inverse Fourier transform to

find the solution φ in the original physical space, and thus obtain the solution to the

Cauchy problem (B.21).

B.4 Ostrovsky equation

The Ostrovsky equation has recently been solved numerically using both pseudo-spectral

and finite difference methods (e.g., [50, 88, 92, 117]). We extend the spectral method

described in [109], used to solve the KdV equation, to now solve the Cauchy problem

for the Ostrovsky equation:(
α0f

−
T +

ν0

2
((f−)2)ξ− + λ0f

−
ξ−ξ−ξ−

)
ξ−

= γf−,

f−|T=0 = 3k2 sech2(kξ−/2)− c0, (B.27)

on the periodic domain −L ≤ x ≤ L. The constant ‘pedestal’ term denoted c0 is

introduced to satisfy the zero mass property inherent in the Ostrovsky equation (alter-

natively one can choose a variable term to satisfy zero mass).

Taking the Fourier transform of (B.27a) yields

f̂−T =
i

α0

(
λ0k

3 − γ

k

)
f̂− − ikν0

2α0
(̂f−)2. (B.28)

Multiplying (B.28) by the integrating factor exp[−i/α0

(
λ0k

3 − γ/k
)
T ] and introducing

ˆ̄f−T = e
− i
α0

(λ0k3− γk )T f̂−, (B.29)
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yields from (B.28) the following ODE for ˆ̄f−:

ˆ̄f−T = − ikν0

2α0
e
− i
α0

(λ0k3− γk )T F

{
F -1

[
e
i
α0

(λ0k3− γk ) ˆ̄f−
]2
}
. (B.30)

We discretise ˆ̄f−(k, Tn) = ˆ̄f−n with T = n∆T = Tn for n = 0, 1, 2, ..., where k now

denotes the discrete Fourier space, and implement the following optimised RK4 method:

f̂−n+1 = E2f̂−n +
1

6

[
E2h1 + 2E(h2 + h3) + h4

]
,

where h1 = − ikν0∆T

2α0
F

{
F -1

[
f̂−n

]2
}
,

h2 = − ikν0∆T

2α0
F

{
F -1

[
E

(
f̂−n +

h1

2

)]2
}
,

h3 = − ikν0∆T

2α0
F

{
F -1

[
Ef̂−n +

h2

2

]2
}
,

h4 = − ikν0∆T

2α0
F

{
F -1

[
E2f̂−n + Eh3

]2
}
, (B.31)

for E = exp[i/2α0

(
λ0k

3 − γ/k
)

∆T ] (note, for convenience we have returned to the

original variable f̂−). Once f̂−n is obtained up to a given n, we simply apply the inverse

Fourier transform to find the solution f− in the original physical space, and thus obtain

the solution to the Cauchy problem (B.27).

As previously mentioned, the DFT and IDFT in (B.31) are computed using the FFT

algorithms via Matlab’s build in ‘fft’ commands. To avoid having problems computing

the zero harmonic (due to terms in (B.31) containing 1/k coefficients) we simply alter

the zero harmonic from precisely zero to something close to zero. Since the Ostrovsky

equation satisfies zero mass, the Fourier coefficient at k = 0 is indeed zero, thus there

will be no contribution from this term anyway. In doing this, one can still utilise the

built in FFT algorithms.
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B.5 Linearised Ostrovsky equations

B.5.1 Linearised Ostrovsky equation on zero background

First we consider the Cauchy problem for φ+; a homogeneous linearised Ostrovsky

equation, linearised on a zero background:(
α1φ

+
T + λ1φ

+
ξ+ξ+ξ+

)
ξ+

= γφ+,

φ+|T=0 = −1

2

[∫ ξ+

−L
f−T (s)ds

]
T=0

(B.32)

on the periodic domain −L ≤ x ≤ L. Taking the Fourier transform of (B.32a) yields

φ̂+
T =

i

α1

(
λ1k

3 − γ

k

)
φ̂+, (B.33)

which given the initial condition, can be solved to yield the general solution

φ̂+(k, T ) = φ̂+(k, 0)e
i
α1

(λ1k3− γk )T . (B.34)

Taking the inverse Fourier transform yields the following general solution to the Cauchy

problem (B.32):

φ+(ξ+, T ) = F -1
{
φ̂+(k, 0)e

i
α1

(λ1k3− γk )T
}
. (B.35)

Since the initial condition (B.32b) is given in terms of the solution of the leading order

Cauchy problem for the Ostrovsky equation, which is solved numerically, we do not

have it in an analytical form. We therefore find the initial condition by differentiating

with respect to ξ+ and taking the Fourier transform to yield

φ̂+|T=0 = − i

2k

[
f̂−T (k, T )

]
T=0

. (B.36)

Substituting (B.28) into (B.36) yields the initial condition (B.32b), in the Fourier space,

as follows:

φ̂+(k, 0) = − 1

2α0k

[(
λ0k

3 − γ

k

)
f̂−(k, 0)− kν0

2α0
F ([f−(k, 0)]2)

]
.

The general solution (B.35) is now easily obtained from the initial conditions in this

form. Alternatively one could reach the same result by numerically integrating the

initial conditions.

143



B. PSEUDO-SPECTRAL METHODS AND THE FOURIER
TRANSFORM

B.5.2 Linearised Ostrovsky equation on non-zero background

Next we consider the Cauchy problem for the non-homogeneous linearised Ostrovsky

equation for φ− on a non-zero background; in this case, on the background of the

solution of the leading order Ostrovsky equation f−:(
α2φ

−
T + ν2(f−φ−)ξ− + λ2φ

−
ξ−ξ−ξ−

)
ξ−

= γφ− + S(f−, ξ−, T ),

φ−|T=0 =
1

2

[∫ ξ−

−L
f−T (s)ds

]
T=0

, (B.37)

on the periodic domain −L ≤ x ≤ L, where the non-homogeneous forcing term is

S = f−TT + 2f−
Tξ−ξ−ξ− . (B.38)

Taking the Fourier transform of (B.37a) yields

φ̂−T =
i

α2

(
λ2k

3 − γ

k

)
φ̂− − ikν2

α2
f̂−φ− − i

α2k
Ŝ. (B.39)

Again, following the approach in [109] for removing the stiff-term, we multiply (B.39)

by exp[−i/α2

(
λ2k

3 − γ/k
)
T ] and introduce

Φ̂−T = e
− i
α2

(λ2k3− γk )T φ̂−, (B.40)

to yield (B.39) in the following form

Φ̂−T = − ikν2

α2
e
− i
α2

(λ2k3− γk )T F
{
f−F -1

[
e
i
α2

(λ2k3− γk )Φ̂−
]}

− i

α2k
e
− i
α2

(λ2k3− γk )T Ŝ. (B.41)

We discretise Φ̂−(k, Tn) = Φ̂−n and f̂−(k, Tn) = f̂−n with T = n∆T = Tn for n =

0, 1, 2, ..., and implement the following optimised RK4 method:

φ̂−n+1 = E2φ̂−n +
1

6

[
E2h1 + 2E(h2 + h3) + h4

]
,

where h1 = − ikν2∆T

α2
F
{
f−n F -1

[
φ̂−n

]}
− i∆T

α2k
Ŝ,

h2 = − ikν2∆T

α2
F

{
f−n F -1

[
E

(
φ̂−n +

h1

2

)]}
− i∆T

α2k
Ŝ,

h3 = − ikν2∆T

α2
F

{
f−n F -1

[
Eφ̂−n +

h2

2

]}
− i∆T

α2k
Ŝ,

h4 = − ikν2∆T

α2
F
{
f−n F -1

[
E2φ̂−n + Eh3

]}
− i∆T

α2k
Ŝ, (B.42)
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for E = exp
[
i/2α2

(
λ2k

3 − γ/k
)

∆T
]
, where again note we have returned to the original

variable φ−. In order to optimise computational storage we solve algorithms (B.31) and

(B.42) simultaneously with the solution of the Ostrovsky Cauchy problem f− feeding

into (B.42) at each time step. To avoid any problems computing the FFT algorithms

in (B.42), due to the 1/k terms, we alter the zero harmonic from precisely zero to

something close to zero (this is previously discussed in Section B.4).

The non-homogeneous forcing term S, which involves derivatives of the solution of

the Cauchy problem for the Ostrovsky equation f−, must also be computed at each

time step. Since we do not have an analytic expression for f− we construct these terms

from the governing equation for f−; namely the Ostrovsky equation in the Fourier

space written in the form (B.28). Thus we can write the term

f̂−
Tξ−ξ−ξ− =

k2

α0

[(
λ0k

4 − γ
)
f̂− − k2ν0

2
(̂f−)2

]
, (B.43)

and similarly

f̂−TT =
1

α2
0

(γ
k
− λ0k

3
)[(

λ0k
3 − γ

k

)
f̂− − ν0k

2
(̂f−)2

]
+
iν0k

α2
0

F

{
f−
[
γF -1

(
i

k
f̂−
)
− λ0 F -1

(
ik3f̂−

)
+
ν0

2
F -1

(
ik(̂f−)2

)]}
.(B.44)

Finally to compute the initial condition (B.37b), we follow the same approach used

to solve the linearised Ostrovsky problem, linearised on a zero background (see Section

B.5.1). Thus we differentiate the initial condition with respect to ξ− and take the

Fourier transform to yield

φ̂−|T=0 =
i

2k

[
f̂−T (k, T )

]
T=0

. (B.45)

Substituting (B.28) into (B.45) yields the initial condition of φ̂− as:

φ̂−(k, 0) =
1

2α0k

[(
λ0k

3 − γ

k

)
f̂−(k, 0)− kν0

2
F ([f−(k, 0)]2])

]
,

Finally, we note one potential drawback for the numerical scheme given here for

φ−. The term f̂TT , which appears within the forcing term Ŝ, for nonzero γ and large

enough L will become very large (see equation (B.44)). This is because we scale the

spatial domain in all the spectral methods given in the appendices from x ∈ [−L,L]

to x ∈ [0, 2π], which formally corresponds to k being multiplied by s = π/L. As a
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result, the lowest order of k contains the highest order of L, in the case of (B.44)

this is L3. This stiff term will clearly cause the solution to become unbounded for

significantly large enough L. To counteract this, significantly smaller time steps must

be implemented.

B.6 Coupled regularised Boussinesq equations

We extend the pseudo spectral method used to solve the Cauchy problem for the

Boussinesq–Ostrovsky equation in Section B.2 to now solve the Cauchy problem for

the cRB equations:

Utt − c2
aUxx = ε

[αa
2

(U2)xx + βaUttxx − δa(U − V )
]
,

Vtt − c2
bVxx = ε

[αb
2

(V 2)xx + βbVttxx + δb(U − V )
]
,

U |t=0 = F1(x), V |t=0 = F2(x),

Ut|t=0 = F3(x), Vt|t=0 = F4(x). (B.46)

The methodology of the scheme developed in Section B.2 was extended from the work

in [36], used to solve a single regularised Boussinesq equation in the context of mi-

crostructured solids.

Introducing

W 1 = U − εβaUxx, W 2 = V − εβbVxx, (B.47)

we can write (B.46b) and (B.46c) in the form

W 1
tt = c2

aUxx + ε
[αa

2
(U2)xx − δa(U − V )

]
,

W 2
tt = c2

bVxx + ε
[αb

2
(V 2)xx + δb(U − V )

]
. (B.48)

Taking the Fourier transforms of (B.47) yields

Ŵ 1 = (1 + εβak
2)Û , Ŵ 2 = (1 + εβbk

2)V̂ , (B.49)

where k is the Fourier transform variable, and equivalently we have

Û =
Ŵ 1

(1 + εβak2)
, V̂ =

Ŵ 2

(1 + εβbk2)
. (B.50)
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Taking the Fourier transforms of (B.48) and substituting (B.50) into the resulting

ODEs, yields the following ODEs for Ŵ 1,2:

Ŵ 1
tt = −(εδa + k2c2

a)

(1 + εk2βa)
Ŵ 1 − εk2αa

2
F

{
F -1

[
Ŵ 1

(1 + εk2βa)

]2}
+

εδa
(1 + εk2βb)

Ŵ 2

= Ĥ1(Ŵ 1), (B.51)

Ŵ 2
tt = −

(εδb + k2c2
b)

(1 + εk2βb)
Ŵ 2 − εk2αb

2
F

{
F -1

[
Ŵ 2

(1 + εk2βb)

]2}
+

εδb
(1 + εk2βa)

Ŵ 1

= Ĥ2(Ŵ 2). (B.52)

We solve the second order ODEs (B.51) and (B.52) by reducing each of them to

two first order ODE’s and subsequently implementing a RK4 method on each of the

four ODEs, simultaneously at each time step. Therefore we define

Ŵ 1
t = Ĝ1, Ŵ 2

t = Ĝ2,

Ĝ2
t = Ĥ2(Ŵ 1, Ŵ 2), Ĝ2

t = Ĥ2(Ŵ 1, Ŵ 2), (B.53)

and discretise t = n∆t = tn, Ŵ 1,2(k, tn) = Ŵ 1,2
n , Ĝ(k, tn) = Ĝ1,2

n for n = 0, 1, 2, ...,

where k now denotes the discrete Fourier space. Noting the initial conditions Ŵ 1,2
0 and

Ĝ1,2
0 are given by (B.46b,c), we implement the following RK4 method:

Ŵ 1
n+1 = Ŵ 1

n +
1

6
[k1 + 2(k2 + k3) + k4] , Ĝ1

n+1 = Ĝ1
n +

1

6
[l1 + 2(l2 + l3) + l4] ,

Ŵ 2
n+1 = Ŵ 2

n +
1

6
[m1 + 2(m2 +m3) +m4] , Ĝ1

n+1 = Ĝ2
n +

1

6
[n1 + 2(n2 + n3) + n4] ,
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where k1 = ∆tĜ1
n, l1 = ∆tĤ1(Ŵ 1

n , Ŵ
2
n),

m1 = ∆tĜ2
n, n1 = ∆tĤ2(Ŵ 1

n , Ŵ
2
n),

k2 = ∆t(Ĝ1
n + l1/2), l2 = ∆tĤ1(Ŵ 1

n + k1/2, Ŵ
2
n +m1/2),

m2 = ∆t(Ĝ2
n + n1/2), n2 = ∆tĤ2(Ŵ 1

n + k1/2, Ŵ
2
n +m1/2),

k3 = ∆t(Ĝ1
n + l2/2), l3 = ∆tĤ1(Ŵ 1

n + k2/2, Ŵ
2
n +m2/2),

m3 = ∆t(Ĝ2
n + n2/2), n3 = ∆tĤ2(Ŵ 1

n + k2/2, Ŵ
2
n +m2/2),

k4 = ∆t(Ĝ1
n + l3), l4 = ∆tĤ1(Ŵ 1

n + k3, Ŵ
2
n +m3),

m4 = ∆t(Ĝ2
n + n3), n4 = ∆tĤ2(Ŵ 1

n + k3, Ŵ
2
n +m3). (B.54)

Once (B.54) is solved up to a given time, we substitute the solutions Ŵ 1,2 back into

(B.50), which after implementing the inverse fast Fourier transform, yields U and V in

the original physical space.
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Appendix C

Miscellaneous equations

As stated in Section 6.3.2.2, equation (6.63) can be expressed fully as

φps5 =
cos(mτ)

m(m2 +M2)

{
−3

∫ τ

0
S2 sin(ms)

[
m2F3 cos(ms) +m2F4 sin(ms)

− M2F1(eMs + e−Ms)
]
ds+

∫ τ

0
L5b(s) sin(ms)ds

+
3m

(m2 +M2)

∫ τ

0
S2 sin(ms) cos(ms)

[∫ s

0
L3(y) sin(my)dy

]
ds

− 3m

(m2 +M2)

∫ τ

0
S2 sin2(ms)

[∫ s

0
L3(y) cos(my)dy

]
ds

− 3M

2(m2 +M2)

∫ τ

0
S2 sin(ms)eMs

[∫ s

0
L3(y)e−Mydy

]
ds

+
3M

2(m2 +M2)

∫ τ

0
S2 sin(ms)e−Ms

[∫ s

0
L3(y)eMydy

]
ds

}
− sin(mτ)

m(m2 +M2)

{
−3

∫ τ

0
S2 cos(ms)

[
m2F3 cos(ms) +m2F4 sin(ms)

− M2F1(eMs + e−Ms)
]
ds+

∫ τ

0
L5b(s) cos(ms)ds

+
3m

(m2 +M2)

∫ τ

0
S2 cos2(ms)

[∫ s

0
L3(y) sin(my)dy

]
ds

− 3m

(m2 +M2)

∫ τ

0
S2 cos(ms) sin(ms)

[∫ s

0
L3(y) cos(my)dy

]
ds

− 3M

2(m2 +M2)

∫ τ

0
S2 cos(ms)eMs

[∫ s

0
L3(y)e−Mydy

]
ds

+
3M

2(m2 +M2)

∫ τ

0
S2 cos(ms)e−Ms

[∫ s

0
L3(y)eMydy

]
ds

}
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C. MISCELLANEOUS EQUATIONS

+
eMτ

2M(m2 +M2)

{
−3

∫ τ

0
S2e−Ms

[
m2F3 cos(ms) +m2F4 sin(ms)

− M2F1(eMs + e−Ms)
]
ds+

∫ τ

0
L5b(s)e

−Msds

+
3m

(m2 +M2)

∫ τ

0
S2e−Ms cos(ms)

[∫ s

0
L3(y) sin(my)dy

]
ds

− 3m

(m2 +M2)

∫ τ

0
S2e−Ms sin(ms)

[∫ s

0
L3(y) cos(my)dy

]
ds

− 3M

2(m2 +M2)

∫ τ

0
S2

[∫ s

0
L3(y)e−Mydy

]
ds

+
3M

2(m2 +M2)

∫ τ

0
S2e−2Ms

[∫ s

0
L3(y)eMydy

]
ds

}
− e−Mτ

2M(m2 +M2)

{
−3

∫ τ

0
S2eMs

[
m2F3 cos(ms) +m2F4 sin(ms)ds

− M2F1(eMs + e−Ms)
]

+

∫ τ

0
L5b(s)e

Msds

+
3m

(m2 +M2)

∫ τ

0
S2eMs cos(ms)

[∫ s

0
L3(y) sin(my)dy

]
ds

− 3m

(m2 +M2)

∫ τ

0
S2eMs sin(ms)

[∫ s

0
L3(y) cos(my)dy

]
ds

− 3M

2(m2 +M2)

∫ τ

0
S2e2Ms

[∫ s

0
L3(y)e−Mydy

]
ds

+
3M

2(m2 +M2)

∫ τ

0
S2

[∫ s

0
L3(y)eMydy

]
ds

}
, (C.1)

where we denote S = sech(ε̂s/2).
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