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Abstract: The spatial organization of nonlinear interactions between different brain re-
gions during the first NREM sleep stage is investigated. This is achieved via consideration
of four bipolar electrode derivations, Fp1F3, Fp2Fj, O1P3, O2P/, which are used to com-
pare anterior and posterior interhemispheric interactions and left and right intrahemispheric
interactions. Nonlinear interdependence is detected via application of a previously written
algorithm, along with appropriately generated surrogate data sets. It is now well under-
stood that the output of neural systems does not scale linearly with inputs received and thus
the study of nonlinear interactions in EEG is crucial. This approach also offers significant
advantages over standard linear techniques, in that the strength, direction and topography
of the interdependencies can all be calculated and considered. Previous research has linked
delta activity during the first NREM sleep stage to performance on frontally-activating tasks
during wake. In the current paper, it is demonstrated that nonlinear mechanisms are the
driving force behind this delta activity. Furthermore, evidence is presented to suggest that
the ageing brain calls upon the right parietal region to assist the pre-frontal cortex. This is
highlighted by statistically significant differences in the rates of communication between the
left pre-frontal cortex and the right parietal region when comparing younger subjects (< 23
years) with older subjects (> 60 years). This assistance has been observed in brain imaging
studies of sleep deprived young adults, suggesting that similar mechanisms may play a role in
the event of healthy aging. Additionally, the contribution to the delta rhythm via nonlinear

mechanisms is observed to be greater in older subjects.



1 Introduction

Until recently, typical investigations of connectivity between different regions of the brain
have generally employed linear measures of interdependence, such as the calculation of the
coherence between two channels. Achermann and Borbely (Achermann and Borbély, 1998)
used the coherence function to illustrate strong coherence of sleep spindles across the scalp,
and sleep-stage dependent changes in coherence in different brain regions. However, Chang
and co-workers (Chang et al., 2000) when considering rhythm generation in chains of mul-
tiple oscillations showed that population metastability was achieved via a combination of
linear and nonlinear dynamical interactions. Furthermore, it was suggested that such stable
rhythms in populations of coupled oscillators could be achieved even in the absence of mutual

entrainment.

An interest in modelling complex system behaviour such as the signals recorded via EEG
requires an understanding of the dynamic process which generated the collected data. Thus
motivated, some recent progress has been made in the development of techniques for distin-
guishing underlying deterministic nonlinear behaviour from stochastic oscillations in time-
series data (Schiff et al., 1996; Terry and Breakspear, 2003). These papers have used local
linear approximations to reconstructed orbits, in order to predict the evolution of errors
between the actual orbit and the predicted value. The manner in which these prediction
errors grow can be used to statistically determine whether the underlying process was a
deterministic nonlinear process or a stochastic linear process. Thus, distinguishing between

these types of process is crucial if we are to subsequently model the process in a suitable



manner. Several recent papers have subsequently employed these techniques to detect the
occurrence of strongly nonlinear interactions between channels in both scalp (le Van Quyen
et al., 1999) and intracranial recordings (Arnhold et al., 1999) in the build-up to and during
epileptic seizures. In certain types of seizure, of the temporal lobe for example, the seizure
activity appears at some focal point and entrains the activity in other brain regions via
some nonlinear synchronization type mechanism. It seems that the appearance of consistent
bursts of strong nonlinear interdependence between EEG channels, reflects the abnormally
strong nonlinear synchronous oscillations of neuronal activity arising in the cortex. As such,
nonlinear synchronization in this context can be viewed as somewhat negative. However,
synchronous cortical activity in normal cognitive function has been studied on a number of
occasions and synchronization has been proposed as a mechanism by which functional inte-
gration between specialized neural networks can be achieved (Gray et al., 1989; Haig et al.,
2000; Rodriguez et al., 1999). Friston (Friston, 1997), suggests that nonlinear mechanisms
may play a crucial role in connectivity in large-scale neural networks, where nonlinear in-
teractions may facilitate integration between distributed neural systems, which each exhibit
distinct local activity. Therefore, understanding the interplay between too little and too
much synchrony is an important question which needs addressing. One possible answer is
that the local nonlinear dynamics of different brain regions are typically in an intermittent
state (Platt et al., 1993) where there are short periods of synchronization together with large
deviations from the synchronous state(s). These types of behaviour have been investigated
numerically in a neurophysiological model (Breakspear et al., 2003a) as well as experimen-
tally, where the presence and patterns of nonlinear interdependence in scalp EEG in normal
subjects (Breakspear and Terry, 2002a; Breakspear and Terry, 2002b) and in those suffering
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from schizophrenia (Breakspear et al., 2003b) was investigated.

In these previous studies, the focus was on an eyes-open, eyes-closed regime. However, in this
paper we attempt to focus on latent connectivity by studying data collected from subjects
during sleep. Specifically, 16 subjects were subdivided into two groups. Young subjects
who were less than 23 years old and older subjects whose age was greater than 60 years.
This type of study offers a number of advantages over previously collected data, particularly
reduction in noise levels due to for example, electromyogenic artifacts, eye movements and
other distractions. It also provides the opportunity to examine for age-specific differences in

brain connectivity and contributions of nonlinear mechanisms to different rhythms.

For example, the delta rhythm has been proposed as an indication of 'recovery’ for the resting
cerebrum (Werth et al., 1996; Werth et al., 1997) and shows large age-related differences in
amplitude and frequency (Wauquler et al., 1989). Until now only the contribution of linear
mechanisms to delta activity has been investigated (Achermann and Borbély, 1998); however
recent results on nonlinear contributions to the alpha rhythm during wake (Breakspear and
Terry, 2002a) suggests that the contribution of nonlinear mechanisms to the delta rhythm

should also be investigated further.

Previous work has described how delta activity in the frontal region during the first NREM
period is linked to performance on frontally-activating tasks during wakefulness (Anderson
and Horne, 2003), suggesting that the general ability of the Pre-Frontal Cortex (PFC) is
reflected in both neuropsychological performance and 'recovery’ sleep at night. Hence, any

significant findings during the first NREM period may reflect daytime executive function.



Interesting developments indicate that the PFC, notably the left PFC, seems vulnerable to
sleep deprivation (Horne, 1993; Thomas et al., 1998) and natural ageing (Harrison et al.,
2000; West, 1996). Furthermore, brain imaging during sleep deprivation has indicated that
the PFC recruits other brain regions (particularly the right parietal) as a compensatory
measure to assist the PFC (Drummond et al., 2000; Drummond et al., 2001). Whether
this type of mechanism has a similar compensatory effect, as the brain naturally ages, is
currently unknown. Therefore, it is of particular interest to examine whether there are
significant differences in the topography of interdependencies between the two age groups,

as this may highlight possible deterioration of the PFC, due to natural ageing.

In order to consider these connections, four bipolar electrode derivations, FpIlF3, Fp2F},
01P3, O2P4, were chosen to represent frontal and posterior and interhemispheric interac-
tions, and left and right-sided intrahemispheric interactions. We analysed this collected data
using software developed in MATLAB based upon the nonlinear interdependence detection
algorithm introduced in (Terry and Breakspear, 2003). Essentially this algorithm determines

the presence of nonlinear interactions between two channels as follows:

1. For each epoch, we reconstruct the orbits from each time-series using a time-delay

embedding technique(Takens, 1981).

2. We then choose appropriate local linear maps for each point along the orbit of system
one and use these to attempt to predict the future evolution of the orbits of system

two.

3. If this prediction is better than that of a randomly chosen map, then there is potentially



nonlinear interdependence between system one and system two.

4. To confirm this is the case, comparison between that of the epoch and that from
appropriately generated surrogate data. This is to control for limitations of the data,
such as the presence of linear coherence, colored noise (which has a % power-frequency
relationship), a finite sample size, sampling error and measurement noise. All of these

are known to permit inaccurate detection of nonlinearity.

The algorithm was applied to the collected data in sequential epochs, each containing 1,024
data points, where the data was sampled at a frequency of 100Hz. This measure of pre-
dictability employed offers a number of advantages over linear coherence, such as sensitivity
to direction of influence, determination of interdependence between different types of activ-
ity, as well as strength of interactions. A more detailed overview of the methods employed

in this paper is given in (Breakspear and Terry, 2002b).

The rest of this paper is organized as follows. The following section is concerned with the
selection of subjects and on how the overnight EEG data was obtained. Subsequently we
describe the statistical methods used to analyse the collected data, focusing in particular
on the construction of appropriate surrogate data sets. We then present the results and a

discussion of our analysis in Section 3, before concluding the paper in Section 4.



2 Materials and Methods

In this section we discuss the procedure for selecting the subjects studied in this paper and
describe the techniques used for acquiring the data and for the statistical analysis carried

out.

2.1 Participants

Sixteen healthy adults (8 male; 8 female) were recruited, via advertisement and were sub-
divided into two groups. Young (range 19-22y; mean age: 21.024+1.05y) and Older (range 61-
75y; mean age: 65.8+£2.8y). The subjects were screened to exclude those with anything other
than minor ailments, or those who were taking medications other than anti-inflammatory
agents (eg, those on -adrenergic receptor-blocking agents, antidepressants, and hypnotics).
The subjects were right-hand dominant (determined by the Edinburgh Handedness Inventory
(Oldfield, 1971)). Further, they also underwent a sleep screening procedure to exclude
those with possible sleep disorders, or sufferers of excessive daytime sleepiness. All subjects
subsequently underwent overnight EEG recordings (see Section 2.3), which also acted as a

final screening for abnormal sleep disturbance.

The study was approved by the Loughborough University Ethical Committee and partici-

pants were paid for their involvement.



2.2 Design and Procedure

Sleep EEG recordings (see below) and electrode application were undertaken at home for
2 nights, on weekdays, 5 to 7 days apart. Home rather than laboratory recording was
utilized because it is typical for participants to prefer having data collected in this manner.
In particular, we have previously found that older people can become apprehensive about
sleeping away from home, in a laboratory setting, and that without extensive adaptation
to the laboratory, their sleep is impaired. The first night was used for adaptation purposes
and the data collected was not used in the statistical analysis. They retired to bed at
their usual times, resulting in all bedtimes being between 23:00h and 00:30h, and all arising
times between 06:45h and 08:00h. Participants were required to abstain from consuming
caffeinated drinks (including strong tea) and alcohol after 18:00h on the evenings of the

sleep recording.

2.3 Electroencephalogram Recordings

EEG recordings were made with an ambulatory 8-channel polygraph (Embla AY, ). The
EEG montage divided the cortex into quadrants as determined by Fpl-F3, Fp2-F4, O1-
P3, O2-P4. To avoid confounding of inter-electrode coherence due to the effects of the
common reference electrode, bipolar derivations were used (Fein et al., 1988). Nunez et al.
(Nunez et al., 1997) have shown that these exclude activity from a number of remote sources
(including the reference electrode), by producing a spatially high-pass filtered estimate of

local activity. Within participants, the 4 bipolar EEG interelectrode distances were the



same, and EEG electrode impedances were maintained at less than 5 kOhm. High-pass
digital filtering (using finite impulse response digital filters) was set at 0.3 Hz, which had
little effect on activity greater than 0.5 Hz. Low-pass filtering was set at 40 Hz. The sigma-
delta A/D converter used by the Embla EEG recording system has an anti-aliasing filter in
front of the sigma-delta conversion. It has anti-aliasing filters before each decimation stage.

The last anti-aliasing filter is set at 45 Hz when sampling at 100 Hz.

We analysed data analysed from the first NREM period as it contains the largest portion of
delta activity and is less problematic with regard to intervening wakefulness, compared with
subsequent periods. This NREM episode was deemed to begin 10 minutes into the first period
of uninterrupted (stage 1 and 2) sleep after lights out and to terminate at the beginning of
the first indication of a greater than 30-second period of REM sleep (Rechtschaffen and
Kales, 1968). This 10-minute criterion also excluded most slow eye movements because
most participants were well into stage 2 sleep. At least 95% of each participants EEG data
from the first NREM period was free of artifact (which usually occurred as a result of the

electromyogram [EMG]).

2.4 Statistical Analysis

For each of the 16 subjects (8 young, 8 old), we analysed between 70 and 80 1,024 point
epochs. These totalled 567 epochs in the case of the young subjects and 587 epochs for
the old subjects. This gave a total of 13,848 pairwise combinations of bipolar derivations

investigated.
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2.4.1 Surrogate Data Analysis

For each subject, 49 surrogate data sets were constructed from randomly chosen epochs
within each subject’s data. Since the comparison of surrogate data to individual epochs is
a one tailed test, 49 sets are required in order to test statistically at the 1% level. It could
be argued that one should generate 49 surrogate sets per epoch, rather than comparing each
epoch to a static 49 data sets. However, this is for computational reasons unrealistic as it
would require analysing 56546 surrogate data sets, as opposed to 49. These surrogate sets
were calculated using a phase-randomized, amplitude-adjusted algorithm, based upon the
work of Theiler et al. (Theiler et al., 1992), Pritchard et al. (Pritchard and Theiler, 1994)
and Rombouts et al. (Rombouts et al., 1995). For each subject, the mean and standard
deviation for each prediction error was computed from this overall ensemble, representing
the values used to compare each epoch with the null hypothesis in each subject. These are
then used to allow accurate calculation of the 99% confidence intervals. P values were then
obtained via a one-tailed parametric test, representing the probability that the experimental
measures would be observed by chance alone, given that the null hypothesis of purely linear
interactions was correct. The Keppel correction to control for repeated observations was
not employed in this analysis, as it is believed to give an overly conservative indication of

nonlinear interactions (Friston, 2002).

If an epoch contained at least one nonlinear index outside this corrected interval, then it
was identified as exhibiting nonlinear interdependence. The strength of nonlinear interde-

pendence was determined by the number of indexes outside of the confidence interval for

11



each epoch.

2.4.2 Topography of interdependence

It has been hypothesized that nonlinear coupling between brain regions (and hence nonlinear
interdependence between EEG channels) would not occur as an isolated phenomenon, but
would occur in different spatial patterns. In order to study the topography of nonlinear
interactions between different brain regions, we investigated the relationship between the
indices of interdependence. This involved selecting an “index” bipolar pair, FpiF3/FpoFy
for example, then establishing which epochs exhibited nonlinear interdependence between
this pair. Subsequently, the correlation coefficients between the indices of the index pair
and those of each other pairwise combination were evaluated. The occurrence of nonlinear
interdependence can occur in consecutive epochs in each electrode pair, which can cause au-
tocorrelations within the sequences of indices. These autocorrelations can become reflected
in the cross-correlations and consequently generate disproportionately high correlation coef-

ficients between pairs.

To account for these autocorrelations, the confidence intervals for the null hypothesis were
calculated from the surrogate data in the following way. For each sequence of nonlinear
interdependencies, a number n, was selected randomly, such that 1 <n < N, where N was
the total number of epochs considered. (N = 587 for the old subjects and 567 for the young
subjects). Subsequently, this sequence was then reordered beginning with the n-th index

and proceeding to the final index, then beginning with the first index, up to the n — 1-th
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index. This shuffling, has the effect of preserving autocorrelations in each sequence, but
removing linear correlations (Breakspear and Terry, 2002b). The values calculated are then
significant at the 99% level, hence values greater than 0.01 can be considered as being a

greater probability than that of chance alone.

3 Results and Discussion

The main questions we wish to address concern the occurrence of nonlinear interactions
between brain regions during sleep. From a basic research perspective, are these interactions
more or less prevalent than was the case in previously studied wake data (Breakspear and
Terry, 2002a; Breakspear and Terry, 2002b), or is the occurrence broadly similar in both
cases? Furthermore, are there any changes in the topography of interactions present in the

data analysed?

Recent brain imaging studies (Drummond et al., 2000; Drummond et al., 2001) of sleep
deprived young adults indicate that specific brain regions, such as the right parietal area,
are activated as a compensatory response for localised areas, known to be affected by sleep
loss (i.e. the PFC). As recent research has suggested similar effects caused by natural ageing
and sleep deprivation, we are interested from a neuropsychological perspective, whether there
are statistically significant differences both in the power spectra of NREM EEG in both age
groups and also in the topography of interdependencies between brain regions. Of special
interest will be the topography when the left frontal-right parietal connection is used as a
reference, as this could highlight similar effects via EEG to that previously observed in fMRI.

13



3.1 Prevalence of the epochs exhibiting nonlinear interdependence

For the whole data set analysed, the number of epochs exhibiting nonlinear interdependence
in each respective direction is presented in Table 4. The total number of epochs which
exhibited nonlinear interdependence in either direction varied from 4.4% to 9.6% across all
subjects. These figures are higher than those in (Breakspear and Terry, 2002a; Breakspear
and Terry, 2002b) for a number of reasons. First, the analysis performed in our previous
studies was overly conservative for reasons discussed previously. Secondly, levels of noise
and artifact are greatly reduced in sleep EEG as opposed to wake EEG and this will have
had a potentially noticeable effect on the performance of the nonlinear detection algorithms

utilised, since all of these are susceptible to the effects of measurement noise.

In keeping with previous studies, there were no significant differences between frontal and
posterior occurrences of nonlinear interdependencies. The number of left-right interactions
was also comparable across all subjects. This should not be construed as a negative finding,
since it is often the connectivity between brain regions that is of particular interest, rather

than simply the occurrences of interactions between any specific brain regions.

3.2 Power Spectrum Analysis

A typical power spectrum from the EEG collected during this stage of sleep is characterized
by a peak in power between 1 and 3Hz. Oscillations with frequency in this region are

known as delta (0) rhythms. In addition there is another peak at approximately 10Hz. This
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secondary peak could be an o — § resonance due to frontal « activity or it could be a variant

of sleep-spindles. An illustrative example of such a power spectrum is presented in Figure 1.

An important question to address is the relative contributions to these oscillations made by
linear and nonlinear mechanisms. In order to achieve this, we subdivided the time-series
of each subject into epochs where the null hypothesis of purely linear interactions between
regions could be rejected (i.e. where nonlinear interdependence was detected) and those for
which the null hypothesis could not be rejected. We then plotted the power spectra for
each case and compared the magnitude of the peaks for each subject (Figures 2 and 3).
Interestingly, the peak in § power was much more pronounced in those epochs exhibiting
nonlinear interdependence relative to those epochs for which the null hypothesis could not
be rejected. However, in the case of the 10Hz peak, there was no such noticeable difference

in the peaks between linear and nonlinear oscillations.

To illustrate this difference more clearly, we took Fp;F3-O5P, as the reference pairing, for
both the younger and older subject groups. We then plotted the average ratio in power
spectra between those epochs exhibiting nonlinear interdependence between these two elec-
trodes and those for which the null hypothesis was not rejected (Figure 4). In both young
and old subjects, a maximum in this ratio occurs at the d-frequency, whereas no equivalent
maximum occurs in the 10Hz range. It is also apparent that this ratio between nonlinear
epochs and all others is noticeably greater in the old subjects than the young subjects. This
is an interesting development, the cause for which can not be conclusively given but can
be speculated upon. From an information processing viewpoint, much greater quantities

of information can be transmitted via nonlinear mechanisms, due to utilisation of multiple
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frequencies simultaneously. Hence, one explanation for this increase in the ratio between
nonlinear epochs and all others in the case of older subjects, is that the left pre-frontal
cortex is having to call upon the right parietal region in order to maintain the equivalent
performance of the younger human brain. We should emphasize at this point that this de-
terioration, can be attributed purely to the effects of natural ageing, rather than any known

neurological defects in the older subjects.

These observations compare favourably with a previous study of eyes-open, eyes-closed data
(Breakspear and Terry, 2002a), where the peak in alpha («) power (10Hz oscillations) was
significantly more pronounced in those epochs exhibiting nonlinear interdependence, relative
to those for which the null hypothesis could not be rejected. This continues to support the
theory that nonlinear interactions between brain regions, whilst detected relatively infre-
quently, are actually the driving force behind many of the common rhythms in the human

brain, often making vital contributions.

3.3 Correlations between nonlinear interdependencies in different

bipolar pairs

We illustrate some of the results for the correlations of nonlinear interdependence between
the various combinations of electrode pairs in Figures 5 and 6. In each figure, an “index”
pair is represented by a bold arrow and correlations are then calculated between this pair
and all others (light arrows). These correlation coefficients were empirically calculated from

the shuffled sequences as described in Section 2.4.2 and had mean 1.1x10~* and variance
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4.9x10~* for the older subjects and mean 6.7x1075 and variance 7.8x10~* for the younger

subjects.

3.4 Bidirectional correlations for occurrence of nonlinear interde-

pendence between bipolar channels

In both age groups, the correlation coefficients for the occurrence of nonlinear interdepen-
dence in either direction between bipolar channels are all highly significant. Were these
patterns of interdependence due to chance alone, we would expect to see correlation co-
efficients of less than 0.01, whereas the actual coefficients are all significantly larger than
this value. On the other hand, these correlations do not show any significant differences ei-
ther between intrahemispheric and interhemispheric interactions within age groups, or even
in equivalent interactions between age groups. This is in keeping with previous studies of
this type, where the statistical differences in the topography of interactions is more often

highlighted when considering directional differences between subject groups.

Further the equivalent diagrams for correlation coefficients of the diagonal pairings and all

others, also did not show any subject specific differences in the correlation of interdependency.
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3.5 Correlations in directional nonlinear interdependence between

bipolar pairs

Consideration of direction between all bipolar channels, including diagonally frontal to poste-
rior, reveals far more topographic structure. Of particular interest to us, are the coefficients
when using the left frontal- right parietal interaction as a reference. In this situation, il-
lustrated in Figure 7 panels a) and b), there are statistically significant differences in these
coefficients between the young and old age groups. Of perhaps greater interest, is the back
connection from right parietal to left frontal, where the correlation coefficient for the old
group is 0.5238, relative to 0.2270 for the young group. This suggests that the right parietal
regions “talks back” to the left frontal region much more frequently than is the case for the
young subjects. This finding is in keeping with the hypothesis that the right parietal region
is called upon to assist in normal neural processing as a result of natural aging, and that
these changes in the “wiring” of the connections are highlighted in this topographic analy-
sis. Further evidence of these changes are the significant differences in frontal and parietal
interhemispheric interactions between subject groups. The differences in these coefficients
are significantly different in the left frontal to right frontal and right parietal to left pari-
etal interactions, providing further evidence of a change in wiring between young and old

subjects.

In contrast, when we take the right parietal to left frontal combination as the reference
pairing, Figure 7 panels ¢) and d), no such statistical differences are observed between young

and old subjects. This is indicative of the left frontal region being the driving force behind
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these interactions and that the wirings involved are in the direction left frontal to right

parietal only.

It is difficult to make a direct comparison to the previously studied eyes open-eyes closed data
(Breakspear and Terry, 2002a; Breakspear and Terry, 2002b) since these diagonal interactions
were not specifically considered. However, analysis of equivalent pairings to those previously
studied did not yield any significant differences in correlations either between subjects in
this study or between this study and the previously considered data. For this reason, it was

not felt necessary to illustrate these connections.

4 Conclusions

In this paper, EEG data collected during sleep from 8 older subjects (> 60 years) and 8
young subjects (< 23 years) was investigated using algorithms for the detection of dynamic
nonlinear interdependence. The algorithm employed was based upon the theory of coupled
nonlinear oscillators; which has recently been widely used for the study of neural function
(Frank et al., 2000; Breakspear, 2001). Specifically, EEG data from NREM sleep stages was
investigated and in this data, oscillations at around 1-2Hz (delta rhythm) and a further peak
at 10Hz were observed to be the dominant frequencies. Interestingly, nonlinear mechanisms
were observed to be dominant in the § region, whereas there was no such dominance in
the 10Hz range. This finding is both in keeping and in contrast with previously studies of
nonlinear interdependence in human EEG (Breakspear and Terry, 2002a; Breakspear and
Terry, 2002b) where nonlinear mechanisms were observed to contribute strongly to the alpha
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rhythm.

Perhaps an even more significant observation was the difference in the ratio peaks in power
between nonlinear epochs and all others. This ratio peaked in d-power and was considerably
greater in the old subjects, indicating an increased activity level in neural activity in the
left Pre-Frontal Cortex in the elderly subjects. The precise explanation for this can not be
elucidated and is still under investigation. However, it might for example highlight differences
in the wiring of the older brain corresponding to a failing of the capabilities of the left Pre-
Frontal Cortex and a need to call upon other brain regions, such as those in the right parietal

area, so as to assist in normal brain function.

With regard to connectivity, due to the nature of human EEG, nonstationarity (Palus, 1996)
is a potential issue. However, both in our previous study (Breakspear and Terry, 2002b) and
in this study, repeated analysis of the data produced remarkably similar results (correlations
0.95). In the present study, the overall occurrences of dynamic nonlinear interdependence
were increased on previous studies in wake data. This increase can be attributed in part
to a decrease in noise in the system, but also to less conservative corrections of the original
statistics. Despite the relatively small number of subjects, statistically significant differences
in the topography of interdependencies were also present between young and older subjects
and these were particularly apparent when taking left frontal, right parietal interactions
as a reference and comparing correlations between this and all other connections. This
particular combination being chosen as Drummond and co-workers (Drummond et al., 1999;
Drummond et al., 2001) have indicated this connection to be particularly important during

working memory tasks, when the PFC is functioning at a less than optimal rate, for example
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due to sleep deprivation.

It is apparent that the study of nonlinear interdependence in human EEG provides a powerful
tool for examining functional connectivity (brain mapping), both in the analysis of sleep EEG
data and also for studying performance due to natural ageing. The high temporal resolution
of EEG makes techniques such as those utilised in this paper highly effective and it is also

a highly cost-effective way of obtaining human neural data.

JRT was partially supported via a Royal Society Research grant and a Nuffield Newly Ap-

pointed Lecturer grant. CA and JAH were partially supported by the Wellcome Trust.
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Figure 1: Illustrative example of the power-spectrum from an older subject during NREM
sleep. The channel under consideration is F'P; — Fs. The peak in d-power at approximately
1.5Hz and a peak corresponding to sleep-spindles is also visible. An interesting question is
whether linear or nonlinear mechanisms are primarily responsible for the generation of these

oscillations.
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Figure 2: Spectral properties of all epochs identified as containing non-linear interdependence
(blue solid) in comparison to all other epochs, for which the null hypothesis could not be
rejected (black dashed). The upper graph presents the resulls of the young subjects, the lower
graph, that of the old subjects. Interestingly the peak in d-power is much more pronounced
in those epochs exhibiting nonlinear interdependence, as opposed to those for which the null
hypothesis could not be rejected. Contrastingly, the peak in power at 12Hz, shows no such
difference in the ration of power in nonlinear vs. linear epochs. This is an important point,
since it indicates that nonlinear mechanisms are not necessarily the driving force behind all
rhythms in the brain. The boxed portion of the spectrum wn illustrated in Figure 3. These

figures were produced using a moving Hanning window of 256 samples.
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Figure 3: Close-up of the power spectrum density in the case of old subjects. The difference
in §-power between nonlinear epochs (blue solid line) and all others (black dashed line) is
clearly wvisible. In addition the closeness between the two in sleep spindles power is also
noticed. This suggests that nonlinear mechanisms are responsible for generation of 6 waves,

but that nonlinear mechanisms do not generate sleep spindles.
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Figure 4: Comparison of the ratio of the power spectra between those epochs exhibiting non-
linear interdependence and all others, in the case of Old subjects and Young subjects. The
peak in this ratio in d-power, indicates that nonlinear mechanisms are the driving force behind
these oscillations. Note that there is no equivalent peak in the sleep-spindles range (9-14Hz).
It is also interesting to observe that the peak in this ratio is noticeably higher for the Old

subjects.
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Figure 5: Correlation coefficients for the concurrent occurrence of nonlinear interdependence
in either direction between different bipolar electrode derivations in the case of young subjects.
F, frontal, P, parietal, L, left and R, right. The bold arrow represents the reference pairing
and the values denote the correlation coefficients for nonlinear interdependence in either
direction of the adjacent arrow pairing relative to the reference pair. P wvalues for these

coefficients were all less than 0.01.
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Figure 6: As per Figure 5, but for the old subject group. Again P values for these coefficients

were all less than 0.01.
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Figure 7: Correlation coefficients for the concurrent occurrence of nonlinear interdependence
i either direction between different bipolar electrode derivations. The bold arrow denotes
the reference bipolar pair and the direction of interaction. The numbers adjacent to all other
arrows are the correlation coefficients for the occurrence of nonlinear interdependence between
the bipolar pair in the corresponding direction. In panels a) and b), the reference pairing is
left frontal — right parietal and statistically significant (bold valued) differences are observed
between young and old subjects. Contrastingly when the reference pairing is right parietal —

left frontal, no such statistical differences are observed.
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Table 1: Number of epochs (%) permitting rejection of the null hypothesis of purely linear

interactions between bipolar channels.

Subjects Bipolar Combination R to L LtoR BtoF FtoB
old FpiFs/FpoFy 44 (7.50) 25 (4.26) - -
(587 epochs) O1P3/0,P4 42 (7.16) 21 (3.58) - -
Fp,F35/05P, 39 (6.64) 34 (5.79) - -
0,P3/Fp.F, 27 (4.60) 20 (3.41) - -
FpiF3/0:P;3 - - 34 (5.79) 20 (3.41)
FpoFa/05Py - - 24 (4.09) 23 (3.92)
Young Fp.F3/FpoFy 25 (4.41) 39 (6.88) - -
(567 epochs) O1P3/0,P4 35 (6.17) 34 (6.00) - -
FpiF3/0.Py 36 (6.35) 24 (4.23) - -
O,P5/FpoFy 36 (6.35) 32 (5.64) - -
Fp;F3/01P;s - - 42 (7.41) 29 (5.11)
FpaFa/O02Py - - 37 (6.53) 32 (5.64)
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