

This item was submitted to Loughborough University as an MPhil thesis by
the author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

. '

Pllklngton Library

• • Lo,!ghb.orough
.,Umverslty

Author/Filing Title ..•.••.... M. .. ~.~f..~.8::Y..?" c.A·

...

Accession/Copy No.

Vol. No Class Mark ..

111111l1li111

INVESTIGATING PROGRAMMING TOOLS AND

PROCESSES; DESIGNING VISUALLY POTENT

PROGRAMMING TOOLS

by

C.A. Humphreys

A Master's Thesis

Submitted in partial fulfilment of the requirements
for the award of

Master of Philosophy of Loughborough University

October, 1997

©by C.A. Humphreys, 1995.

Investigating Programming Tools & Processes,
Designing Visually Potent Programming Tools

Abstract

Thesis: Programmers do not yet possess the full complement of tools needed to

fulfil the requirements of the programming task; particularly during code

development and debugging. It is my contention that programming tools should

exploit typographic effects further. Specifically, by: boosting the visibility of

selected objects, simplifying information extraction tasks, and enhancing visual

rapport with program text.

First year MacPascal student programmers rated MacPascal's programming tools,

and commented on deficiencies and enhancements. A model was drawn correlating

programming processes and the tools provided by a typical programming

environment; with the aim of specifying functional gaps andlor mismatches.

Speculation on filling these various requirements resulted in the design of 3 visually

potent tools, namely: spotlighting. summary tahk£ and ~ ~

Spotlighting. Most editor's search mechanisms only allow the viewer to ~

ONE instance of the specified "search object" at a time, in sequence, using the

cursor as locator. In contrast, the spotlighting tool would illuminate ALL instances

of the specified "search object" within the text - using inverse video or colour -

without reference to the cursor position. Thus each instance is visible in context. and

the viewer can read and move around the text freely, according to his own strategy .

The spotlighting tool was tested using paper experiments; student programmers'

comments showed that it focused attention effectively, and helped them follow a

spotlighted variable's trail through the code.

Summary tables present ·a.progra~' s' declaration data from different perspectives .
. ' '?' '.; , . " , ' -:. "

Specifying an attribute class causes a menu~liSt'of its D;lembers to pop up. For

example, listing the name of every integer variitble; 9rlisting local variable names . ~',' '". , ." .
alphabetically. Giving the programmer immediate a,ccess to accurate information in

.:.
the required context. ,.'.~ .. : ..• ,' -" " ~ ,'," " ,:. -" . . _ .(

Layout Aids. A questi6fl!la.\re,2!.!..d~?'!!U!~g ,siiate~ies showed that the layout of
program text either aids or confounds program compteliension and the subsequent

debugging efficiency of student programmers'.' Diffi.~~i'ty in understanding and

debugging programs increases in proportion to the divergence from the reader's

preferred layout style. Thus visual fIlPlJort is a si&nificant factor in pro~m

comprehension and subsequent processes. Hence the need for a tool to produce

(or reformat) code according to each individual's preferences.

C A Humphreys Abstract

Investigating Programming Tools & Processes;
Designing Visually Potent Programming Tools

Chapter 1 Introduction, Aims of Research, & Thesis Summary 1
1.1 Core Concepts 2
1.2 Principal Aims of Research 2
1.3 Summary of Main Points Raised 3
1.4 Summary of Thesis Contents 5

Chapter 2 Literature Survey - Human Factors, Software Design & Programming 9
2.1 Human Factors & Human-Computer Interaction 9
2.1.1 Human Factors 9
2.1.2 Human Information Structures, Processing & Perception 11
2.1.3 User Interface Design & Task Models 12
2.1.4 Psychological Issues and Cognitive Engineering 14
2.1.5 User Characteristics and Differences 16
2.1.6 Visual Aspects of Cognition 17
2.1.7 Applying Typography to VDUs 18
2.2 Software Development & Programming 20
2.2.1 Programming Stages & Processes 20
2.2.2 Programming Knowledge 21
2.2.3 Programming Plans & Composition 21
2.2.4 Comprehension 23
2.2.5 Debugging 24
2.2.6 Errors 26
2.2.7 Programmers at Work 27
2.2.8 Programming Tools, User Aids & Task Assistants 29
2.2.9 Aspects of Tools 31
2.2.10 Aspects of Program Text 31

Chapter 3 Preliminary Data Collection - Observation & Analysis of Student
Programmer's Reactions to MacPascal's Tools 34
3.1 Students' Problems Observed During Programming Practice Tutorials 34
3.1.1 Summary of Students' Problems 34
3.1.2 Discussion of Problems Observed 37
3.2 Design & Analysis of MacPascal Questionnaire 38
3.2.1 Dimensions of MacPascal Tool Calibration & Rating Scale Descriptions 39
3.2.2 Analysis of Quantitative Data 40
3.2.3 Interpreting the Data With Regard to Students' Comments 40
3.2.3.1 Interpreting the Data Graphically & Numerically 40
3.2.3.2 A Closer Look at Tool Frequency Data 43
§3.2.3.2 Data Table & Summary: Student Votes for Frequency of Use - in Order of
Decreasing Mean Values 44
3.2.3.3 Summarizing the Mean Rating Scale Data 46
3.2.4 Consensus of MacPascal Tool Deficiencies or Necessary Enhancements 50
3.2.4.1 Summary of Problems and Deficiencies 50
3.2.4.2 Summary of Enhancements Suggested in Questionnaire 52
3.2.5 Attitudes Towards MacPascal's Tools 55
3.2.6 Consensus of Student Opinions on Comments and Program Design, & Prior Use
of Computers & Programming Languages 56
3.3 Conclusions Resulting from Preliminary Data 61

C A Humphreys Contents List

Chapter 4 Relating Integrated Editing Tools & Cognitive Programming Tasks 65
4.1 Examining Editing Actions 65
4.1.1 Adding/Inserting Text 65
4.1.2 Deleting Text 65
4.1.3 Modifying Text 66
4.1.4 Moving Text 66
4.1.5 Moving The Cursor 66
4.2 Comparing the Editing Tools of MacPascal & Unix's Vi 67
4.2.1 Allocation of Mutative Editing Functions 67
4.2.2 Comparing How MacPascal & Vi Operate 68
4.2.3 Summary of Editing Tool Usage 69
4.3 Reprise of Programming Tasks From A Programmer's Viewpoint 70
4.3.1 Programming & Editing Shortcuts 70
4.3.2 Software Design in the Real World 71
4.3.3 Summary of Typical Design/Coding Strategy 72
4.3.4 Summary of Design Stages 73
4.3.5 Pre-execution Actions 74

Chapter 5 Discussion of Possible Tools 75
5.1 Programming Problems and Possible Tools 75
5.2 Choice of Tools For Further Discussion and Development 78
5.2.1 Layout Aids 78
5.2.2 Interpretation Aids - Summary Menus 79
5.2.3 Visibility Aids - Spotlighting 80
5.2.4 Moving Aids 83
5.2.5 Conclusions 84

Chapter 6 Design & Application of Proposed Tools 85
6.1 Conceptual Design & Tool Relevance 86
6.l.I Layout Aids 86
6.1.1.1 Examples of Layout Variations 88
6.1.2 Spotlighting 90
6.1.3 Summary Menus 95
6.1.4 Combining Spotlighting & Summary Table Methods 98
6.1.5 Correlating Spotlighting & Summary Tables With Programming Errors 98
6.2 Applying Spotlighting & Summary Table Tools to the Signal Problem 99
6.2.1 Statement of Siddiqi's Signal Problem 99
6.2.2 Applying Spotlighting to the Signal Problem 102
6.2.3 Applying the Summary Tool to the Signal Problem 105
6.3 Integrating Spotlighting & Summary Tables Into A Supportive Environment 107
6.3.1 Discussion of Spotlighting Implementation Issues 107
6.3.2 Discussion of Summary Table Implementation Issues 110
6.4 Conclusions 111
6.5 Discussion 112

C A Humphreys Contents List

Chapter 7 Further Data Collection & Experimental Evaluation of Tool Feasibility 113
7.1 Design & Analysis of Programming & Debugging Strategies Questionnaire 114
7.1.1 Analysis of the Questionnaire 115
7.1.3 Summary of Questionnaire Results 115
7.1.4 Amendments to Suggested Tools 120
7.1.5 Conclusions 121
7.2 Debugging Experiments 122
7.2.1 Design of Experiments & Experimental Method(s) 122
7.2.2 Student Debugging Strategies 123
7.2.2.1 Analysis of Students' Comments While Debugging 124
7.2.2.2 Reconstruction of Student Debugging Strategies 125
7.2.3 Results of Experiments - Interpretation & Evaluation 126
7.2.4 Comments on Debugging Experiments 130
7.2.5 Conclusions 130
7.3 Spotlighting Experiments 131
7.3.1 Defmition of Hypotheses 131
7.3.2 Design of Experiments 133
7.3.2.1 Experimental Options for Testing Spotlighting 133
7.3.2.2 Experimental Tasks 134
7.3.3 Analysing Results Of Spotlighting Experiments 134
7.3.4 Discussion 143
7.3.5 Testing Spotlighting Using Paper Experiments 144
7.4 Results of Post-Spotlighting Questionnaire 144
7.4.1 Summary of Spotlighting Responses 144
7.4.2 Summary of Layout Responses 147
7.5 Discussion of Results 148
7.6 Conclusions 149

Chapter 8 Summary of Findings & Future Work 151
8.1 Summary of Main Findings and Conclusions 151
8.1.1 Questionnaire Design 151
8.1.2 Preliminary Data Collection 151
8.1.3 Spotlighting 152
8.1.4 Debugging Strategies Experiments 152
8.1.5 Spotlighting Experiments & Questionnaire Results 153
8.1.6 Summary Tables 154
8.1. 7 Layout Aids 154
8.1.8 Final Comments 155
8.2 Future Work 155
8.2.1 Spotlighting 155
8.2.2 Summary Aids 156
8.2.3 Mental Simulation 156
8.2.4 Exploring Aspects of Layout & Possible Experiments 157
8.2.4.1 Cataloguing Layout Styles 158
8.2.4.2 Shadow Code Exploration & Experiments 159
8.2.4.3 Shadow Code Observations 159
8.2.4.4 Shadow Code Tasks 161
8.2.4.5 Example Experimental Method 162

C A Humphreys Contents List

Appendix Contents Page

Appendix 2 Chapter 2 References 1

Appendix 3A

- Comparison of Student Numbers & Percentages For Each Tool 20-25

Appendix 3B Additional Questionnaire Data 27

Appendix 7 A Programming & Debugging Strategies Questionnaire Data 32

Appendix 7B Post-Spotlighting Questionnaire Data 61

Appendix 7C Debugging Strategies Experiment Sheets 70

Appendix 7D Spotlighting Debugging Task Experiment Sheets 80

C A Humphreys Appendix Contents List

Investigating Programming Tools & Processes;

Designing Visually Potent Programming Tools

Chapter 1 Introduction, Aims of Research, & Thesis Summary

The Research: Why, what, and who for?

Working as a programmer for 3 years, developing and debugging real-time software

on a daily basis, made me increasingly aware that the tools provided by typical

programming environments were incomplete. As a consequence, the programmer is

forced to expend time and effort on tasks that could be automated.

Simple, but effective programming tools were needed to make specific aspects of the

programmer's task easier, faster, and more efficient. Interacting with (electronic)

program text is a visual task, and it seemed appropriate to apply visual aids to it.

However, such tools had not been provided, and they could not be patched into the

editor to fill the void. Ease of use requires integrated tools; tools that are accessible

from within the editor, not outside it.

The phrase "visua[potency" expresses the need for tools to exploit typographic

effects to benefit visual processing tasks that "feed" the various low-level cognitive

processing tasks essential to the higher-level programming task. For example,

extracting information from (program) text is much easier if it is shown in a format

or representation suited to the specifics of the task.

This research focusses on the requirements of the (solo) programmer using a typical

programming environment with screen editor and compiler. It is particularly

important to aid the programmer in the debugging process, since this is the most time

and cost-consuming phase of software development (Yourdon & Constantine, 1979).

Thus, the primary goal of this work was to design tools that support this task by

reducing cognitive processing during the debug-edit -compile cycle.

Questionnaires provide quantitative, numerical evidence to support all claims

whenever possible (see chapters 3 & 7). All assumptions have been checked,

through discussion with others, to make sure that the views expressed here represent

as accurate an account of the facts as possible.

The remainder of this chapter explains core (basic) concepts, principal aims of

research, the main points raised, and a summary of the thesis contents.

C A Humphreys - 1 - Chapter 1

1.1 Core Concepts

Program text has 2 principal (static) elements which interact:

- various program and procedural variables declared as specific data types; and

- the statements and program constructs that test, use, modify and manipulate each

variable's value according to the programming plans deployed within that program.

However, control flow, the order in which individual statements are executed at run

time, depends on the range and value(s) of input data processed - this in turn

determines which bugs will be revealed. Testing is geared towards revealing bugs,

and debugging to exterminating them. However, although testing gives evidence of

bugs that are present, it may not revealllll bugs. This is why debugging is such a

difficult process, and why the programmer needs all the help he can get.

The visual appearance of the program text, regarding shape and structure, results

from the way that the code is laid out on each page, with the continuity and flow of

visual shape and pattern from one page to another. Although the various items

expressed in the program text contribute to the working (and semantic meaning) of

the program, namely: operations, data flow, control flow, state, and functions

(Pennington 1987); the layout and vhual presentation of the program text also has an

effect on the programmer. Leventhal (1988), Baecker & Marcus (1986), and

Molzberger (1983) all associate the comprehensibility of the program with its

aesthetic appearance. Many studies show that indentation has a defmitive effect on

comprehension (Mynatt, 1990; Van Laar, 1989; Gilmore & Green 1984).

1.2 Principal Aims of Research

Namely, catering for the solo programmer with a typical program development

system, incorporating a screen editor such as Vi, or an editing environment like

MacPascal, and compiler. Designing tools that fit the programming task, and

programmers' needs more closely than existing tools; filling the gap with new tools

and/or "extrapolating" existing tools and concepts.

There are 3 main themes in my research :-

• Using typographic effects to focus visual attention and al1eviate those visual

processing tasks required to locate all instances of a specific word within a text

(spotlighting). Putting that particular word in a spotlight of colour different from

the surrounding text, to make it more visible, and instantly locatable.

C A Humphreys - 2 - Chapter 1

• Reducing information processing burdens by providing essential information in

alternative formats (summary tables/menus). For example, showing lists or tables

of "declaration data" information, to enable the programmer to cross-reference

between variable names, data types, and parent procedure(s), from the perspective

most useful to the current inquiry task.

• Supporting individual aesthetic requirements in the visual presentation of program

text (layout aids). Enhancing the programmer's visual rapport with the code as a

means of maximizing code readability, comprehension and debugging accuracy.

The overall aim is to produce tools that are better suited to the needs of the

programmer and the specifics of the task. In effect, increasing the programmer's

ability, satisfaction and productivity in completing a task, by reducing the frustration

and mental burdens being created by the inadequate, incomplete programming tools

currently provided for the programming and debugging tasks.

The primary goal is to introduce the concepts of spotlighting and summary tables on a

conscious level, and to define their essential characteristics. This was done using the

editing environment as a discussion vehicle for the implementation of spotlighting and

summary aids (see chapter 6); to show how useful spotlighting and summary aids

could be. The secondary goal is to create a demand for the these concepts to be

implemented on other systems, with the further aim of raiSing an awareness of the

power that spotlighting could bring to electronic text processing tasks in general.

1.3 Summary of Main Points Raised

The main points I wanted to raise with this research were :

In General

• more extensive, but considered, application of typography to electronic text

oriented tasks, especially programming;

• more consideration of the programmer's task beyond basic needs;

• correlating programming tasks with the tools provided by a typical programming

environment to reveal missing tools or functions that new tools could fill;

Spotlighting

• the spotlighting concept itself - setting each instance of a given word in an inverse

video or colour spotlight, so that it becomes more visible and easier to locate

within the background text;

• using spotlighting to extend the search/fmd mechanisms;

C A Humphreys - 3 - Chapter 1

• challenging the efficacy of the sequential access principle of existing search

mechanisms, by proposing an alternative, complementary random access principle;

• to define the problems associated with debugging, and explain how spotlighting

can help - especially with variable trail following;

• raising an awareness of the power that spotlighting could bring to electronic text

processing tasks in general;

Summary Tables

• the summary tables concept itself - providing necessary information in alternative

formats to save the programmer from wasting time and resources, and the

cognitive effort required to do the (cross-referencing) task him/herself;

• using summary tables to avoid misinterpretation (or misperception) of the facts;

• using summary tables to make data typing and other declaration problems easier to

detect and resolve;

Spotlighting & Summary Tables

• defming problems addressed by the implementation of spotlighting and summary

tables individually, and when combined (see §6.1.5, the table of programming

errors vs spotligbting and summary tables applicability);

Layout Aids

• showing the need for each programmer to work on code that is laid out according

to his/her preferred style;

• being able reformat existing code into the programmer's preferred style

(especially when a programmer has to modify unfamiliar code);

• maintaining (new or pre-existing) code in the programmer's preferred style during

development or modification;

By Questionnaire Analysis

• defming specific programming errors/problems that need to be addressed;

• identifying the relationship between reading strategies, comprehension and

debugging strategies;

• exposing the importance of layout style and visual rapport - making public its

effects, positive and negative, on readability, comprehension and the accuracy and

efficiency of debugging; and

• identifying the role of mental simulation in program development and debugging,

and its importance.

C A Humphreys - 4 - Chapter 1

1.4 Summary of Thesis Contents

Chapter 2 Literature Survey

The purpose of the Literature Survey was to provide a reprise of programming tasks

from a cognitive viewpoint, as well as reviewing different aspects of the task; such

as information processing aspects in terms of visual processing, and cognitive

structures like programming plans. Thus it has 2 sections: human information

processing, and software development and programming. The aim was to explore

both sides of the programming task - the internal and external factors - and how they

might interact.

For example, almost all information comes via visual processing, and all output via

physical processes. The latter can be defined in terms of programming stages or

project goals, and checked for accuracy by programming metrics. However,

programmers vary, both in their range of skills and experience, and the type of

language they choose to use.

Chapter 3 Preliminary Data Collection & Its Evaluation

The questionnaire of chapter 3 (set in February 1989) was an attempt to find out

student's attitudes towards a typical environment. MacPascal was used to teach first

year B.Sc. students the art of programming, so it (MacPascal) presented itself as an

ideal candidate for investigation. It seemed reasonable to assume that any problems

or inadequacies would show up faster when encountered by novice programmers.

The first half ofthe questionnaire drew out students' opinions on all MacPascal's

tools on a 5-point rating scale for each of 5 dimensions. Namely, usefulness,

frequency of use, ease of use, likeability and frequency of use of (an)other method in

preference to that tool. The remaining questions investigated attitudes towards

various programming issues. Such as the frequency of use of each code development

methodology, and attitudes towards the use of comments within code.

r spent about 1-2 terms prior to setting the questionnaire attending the first year

lectures, and helping out with the practicals/tutorials. Acting as a troubleshooter

during tutorials gave me the ideal way of observing the students' behaviour as they

observe a variety of programming errors that the student programmers made "live".

Interacting with the students while observing, made gathering informal data on

programming and text-editing in real life fairly easy. Some programming errors

would disappear with experience, others, such as syntax errors are perennial, and

happen regardless of experience. Gathering ratings, opinions and attitudes towards

MacPascal's tools provided some surprises (see §3.2.4 & §3.3). The results of these

C A Humphreys - 5 - Chapter 1

preliminary f'mdings were used to focus in on the nature of the "missing"

programming tools, and fed into the model of Chapter 4.

Chapter 4 Relating Integrated Editing Tools & Cognitive Programming Tasks

Chapter 4 attempts to correlate the range of tools provided by typical editors or

programming environments, and the tasks/activities the programmer executes during

development and debugging; to see if any missing tools came to light, or whether the

omissions had a common factor. For example, the advent of WIMPs as applied to

editing made the comparison of 2 different segments of code on screen possible (as

with the Emacs and SunTools editors). Up till then this task was only possible with

paper text (and origami exercises). I used some of the data from the questionnaire to

inform my model, and for guidance in necessary tool functions/functionality.

The Literature Survey provided a reprise of programming across the spectrum.

From an information processing and cognitive viewpoint, as well as reviewing

different aspects of the task from a software development perspective. Relating

information processing aspects in terms of visual processing, and cognitive structures

like programming plans. This information was used as background knowledge in

attempting to relate the physical activities and cognitive tasks of programming with

the editing tools provided.

If the editing tools are completely compatible/congruent with the (cognitive)

programming tasks, then there should be a one-to-one or many-to-one relationship

between the 2 domains. However, if there is non-congruence at one or more points

then this indicates areas of incompatibility and inappropriate or "missing" tools.

Chapter 5 Discussion of Possible Tools

Chapter 5 details the next stage - taking the fmdings of the previous chapters and

using brainstorming to determine a design direction. Discussing all possible

directions of research: defming the variety of tools and their relevant aspects, and

giving reasons for their rejection or acceptance, and why I chose to develop the

following tools, viz what aspects appeared innovative or important, and what area(s)

of programming each tool was applicable to.

The ir'.aiii contenders aH had a [ador {.hat gave some form of visuai support or
enhancement, that would increase visual rapport, and make visual (and subsequent

cognitive) processing less arduous. The spotlighting, layout and summary tables tools

emerged from this melee, as well as a list of other tools that should prove useful to

the programming and debugging tasks. Most of the other tools considered were

• checking" functions with the generic task of "checking ... " then reporting back the

results. In the same way (modus operandi) that a compiler reports back error

messages corresponding to "suspect" line numbers.

C A Humphreys - 6 - Chapter 1

Chapter 6 Design & Application of Proposed Tools

Chapter 6 relates the development of the tool design and redefines the visual issues

that are critical to the too Is under conceptualisation. Giving an in depth discussion of

the conceptual design of each tool and its relevance to the area of application, and its

proposed implementation.

For example, spotlighting could be applied to other forms of electronic text, whereas

summary tables and layout aids refer mainly to procedural programming languages,

such as Pascal, which I have used for demonstration, since it is my preferred

language. The interaction between spotlighting and summary tables is also discussed.

A table (see §6.1.5) specifies the errors that spotlighting and summary tables are

expected to be able to address. Whether any of these tools could be applied to logical

languages is doubtful, although they may be of some use to object-<Jriented tasks.

Providing there is sufficient text to work with, and some form of named or

identifiable object to spotlight within a background text.

Chapter 7 Further Data Collection & Experimental Evaluation of Tool Feasibility

The subjects who tackled the questionnaire and debugging tasks (set in December

1990) were the fmalists - from the same group who answered the questionnaire of

chapter 3, but 2 years on in their experience. This chapter falls into 3 sections.

The first section summarizes a detailed questionnaire (see Q2A in Appendix 7) that

was used to draw out aspects of students' debugging activities and their attitudes

towards various tasks, tools and debugging techniques. Reading and comprehension

strategies were also investigated with respect to debugging. Midway through the

questionnaire, the students tackled 3 shortdebugging tasks (see §7.2). The

remainder of the questionnaire asked specific questions about debugging strategies.

This arrangement was used so that the debugging information required was fresh in

the student's minds, and easier to recall.

The second section explains the aims of the debugging experiments and provides a

summary of debugging strategies and techniques.

The last section describes various aspects of the spotlighting experiments and their

hypou'ieseS. The ~pOt1ighfillg tool was tested using paper-based experiments. A short
post-experiment questionnaire (see Q2B in Appendix 7) found the range of subjective

opinions about the spotlighting tool, and attempted to gain more details about why

individual layout style differs.

C A Humphreys - 7 - Chapter 1

Chapter 8 Summary of Findings & Future Work

The thesis ends with a summary of main fmdings and ideas for continuation of the

work. I had hoped to be able to implement the spotlighting and summary table tools,

but time ran out. Investigating the role of mental simulation was another area that

was drawing attention. It deserves much closer scrutiny. However, I posed a few

questions that could reveal its true role, or at least provoke further research.

I also planned to set a series of exploratory experiments to investigate different

aspects of layout style, after cataloguing the gamut of stylistic variations. The crux

of these layout experiments involved replacing program text characters with a -.

Even a cursory glance at some possible substitutions gave food for thought.

For example, blacking out all characters on a line up to the last alphanumeric (or

punctuation) character. Comparing the effect of blacking out leading "indentation"

spaces or not was quite dramatic. Losing the indentation characteristics changed the

overall pattern of the program text, and made recalling the original text (and its

former shape) more difficult than when the indentation cues were present to reflect

the original shape of the text. This train of thought could provide a useful insight into

the subject of layout style and its effects - both positive and negative.

C A Humphreys - 8 - Chapter 1

Chapter 2 Literature Survey - Human Factors, Software Design & Programming

The aim of this research is to design new programming tools. This chapter covers all

subjects regarded as contributing to the background knowledge of the work. There are

2 sections. The frrst deals with the multitude of human factors, including human

information processing and the visual aspects of cognition that guide the design of such

tools. The second section deals with the programming task itself, its structures, and

its associated processes and products; ending with programming tools and user aids,

and aspects of program text; since program text is the interaction medium and product

of the programming task.

2.1 Human Factors & Human-Computer Interaction

The main prerequisite of a tool is that it is able to aid in achieving the goal either by

making the task easier, more effort efficient, or faster and thus more time efficient.

The diagram below illustrates unification of the user and the tool to accomplish the

task (as originated by Eason 1984, 1988).

user
1\

/ \
/ \

/ \
/ \

tool ----- task

The user interface operates between user and tool; the task interface between tool and

task; and the skill interface between the user and the task. Human factors covers

each of these aspects, with human information processing (see §2.1.2) explaining the

internal structures and mechanisms of the user's mental processes.

2.1.1 Human Factors

The central premise of human factors is simple - taking care of the the user's needs

and designing systems that fit the user as closely and as comfortably as possible. To

ergonomists the comfort of users is of prime importance - sociaiiy, physicaiiy anu

psychologically (Coats & Vlaeminke 1987).

The aspect of human factors has many facets, but the one which concerns HCI

(human-computer interaction) most is usability (Shackel 1984a, 1984b, 1986),

alternatively known as Matching the user's requirements. This is the most

troublesome aspect of software design because the user is only able to tell you what he

thinks he wants and/or needs to carry out any required task (ShackeI1984a, 1986;

Brooke 1986; Damodoran 1983). The functions he actually needs may be very

C A Humphreys - 9 - Chapter 2

different, or (perhaps worse) varying in a slight but non-trivial way from what he says

he wants. In some cases the user may not be able to derme his requirements at all in

which case intensive (knowledge elicitation) interviews are required to try to establish

the user's basic requirements regarding functions and task methods (both "now" and in

the new system) (Gould 1987; Thomas 1984; Gardner, Mayfield & Maguire 1984).

Task analysis is used to find out how each task is performed, why, when, and in what

order; and what specific information is needed for input and output. Allocation of

function is used to derme who should do each task - the human or the computer -

regarding efficiency, accuracy, and ease of completing the task. Task match

measures how well the system matches the requirements of the task and of the person

who uses the system to perform that task.

It is important that potential users are educated on the benefits and drawbacks of

computer systems, before the design really gets under way. This gives the users new

perspectives on how the task may be accomplished. Once people see the range of

possibilities, they are in a much better position to give informative, useful feedback,

and to help the design along in constructive ways (Grudin 1991; Eason 1982a, 1982b,

1987; Damodoran 1983; Eason, Harker, Raven, Brailsford & Cross 1987).

According to Shneiderman (1987), "Paper mockups are useful to review alternative

designs, but online prototype versions of the system create a more realistic review

environment". Candy & Edmonds (1989), like Shneiderman and Eason, believe it is

vital that user interface design proceeds in an evolutionary fashion, preferably using

simulations or prototypes, so that users have a concrete model of what the system will

be like and how it will operate (even if the functions are dummies). This enables

them to reject designs which are just not suitable, or suggest ways of making the

system easier to use or more flexible.

The primary ethos of user centred system design is to meet the human factor needs of

the user and his task with a complementary computer system and set oftools (and a

means of using them) via the user interface.

Thomas (1984) puts the case for a user centred, human factors approach to design

very succinctly, as: "making sure that everything is covered by considering who will

use it, what for, and in what context (both organisationally and physicaiiy)." Most

importantly, he concludes that, "Making the design right in the first place is cheaper

than changing it later. '.

C A Humphreys - 10 - Chapter 2

2.1.2 Human Information Structures, Processing & Perception

Understanding the main human information structures and processes is a key issue in

tool design, since perceptual processing determines how the tool is perceived.

Human memory is thought to have 3 types of memory structure: long term memory

(LTM), short term memory (STM) and working memory (WM). In 1974,

Fiegenbaum defmed WM as a memory store that is more permanent than STM, but

less permanent than LTM, and in which information from STM and LTM may be

integrated into new structures.

In the context of programming and the generation of program code, generic

programming plans are copied from LTM, and filled with the required details from

STM, resulting in a free standing programming plan (Rist 1986) (see §2.2.4).

In 1957, Miller determined that STM could only hold 7 ± 2 chunks. However, these

chunks could be quite substantial, since humans have the ability to group a collection

of small data fragments into a more meaningful and larger chunk. Even so,

Shneiderman (1986) thinks that 5 ±2 chunks might be a more accurate value. STM

uses a rehearsal loop in order to hold temporary information. According to

Shneiderman (1980) "One of the by-products of the limitations of human STM is that

there is great relief when information no longer needs to be retained. This produces a

powerful desire to complete a task, in order to reduce memory load and gain relief. "

This factor affects all human activities, including programming and the use of tools.

However, LTM is permanent, and appears to have (almost) infmite capacity. LTM

has 3 stages - encoding, storage and retrieval (Ormerod 1990). For material stored in

LTM, recognition is far easier than recall. Recognition requires the matching of the

given item with one already existing in LTM. Whereas recall enforces the extraction

and recreation of the required item from LTM, which is much harder.

Lenorovitz, Phillips, Ardrey & Kloster (1984): "Perception deals with the process of

getting information into the (human) system, as well as some initial level of

recognition/classification/identification of that information. Cognition is concerned

with the human information processing activities which users perform upon the

information once it has been perceived. "

There are 2 levels of cognitive processing: automatic and conscious. The automatic

level uses subconscious processing which has a high capacity and operates in parallel,

processing regular predictable information. In contrast, the conscious level is used to

process new, unpredictable or unfamiliar information - anything that is out of the

ordinary. According to Matlin (1989) the subconscious processor takes care of routine

tasks, and only in unfamiliar environments and tasks is there need for higher level

control of the processing by the versatile but slow sequential (conscious) processor.

C A Hurnphreys - 11 - Chapter 2

According to Treisman (1986) human visual processing also has 2 levels; with pre

attentive vision operating in parallel, and focused attention in serial. Pre-attentive

vision is used to locate the stimulus (ie. first sight impressions). Separate processes

are used to describe colour, orientation, size, stereo distance etc. in the stimulus.

Certain elements pop up out of the background as a result of perceptual grouping or

differentiation. Perceptual grouping occurs due to colour and shape effects (Treisman

1982). Pre-attentive vision also detects texture boundaries - changes in the visual

stimulus. Focused attention is used in order to recognise objects (using the attention

spotlight). In search tasks this attention spotlight is used to distinguish between the

background and the search object. This is an important factor regarding the searching

of program text, whether on paper or VDU.

Shneiderman's (1987) list of human centred (neural) processes includes: learning,

problem solving, decision making, attention and set, search and scanning, and time

perception. There are many factors affecting perceptual motor performance,

including: arousal and vigilance, fatigne, perceptual (mental) load, knowledge of

results, monotony and boredom, and circadian rhythm. Hand-eye coordination is a

prime example of perceptual motor performance relevant to the use of tools.

Most of the above factors are addressed by psychological, physical, environmental and

organisational ergonomics (Coats & Vlaeminke 1987). Lessening the overall stress on

the individual user by supporting him in the task, whilst retaining sufficient task

elements to keep his attention without getting bored.

2.1.3 User Interface Design & Task Models

Formalisms and models exist at many levels of description. There are those which

describe formal methods of software interface design; those which define the layered

nature of the user interface in the form of taxonomies; and others which are a

combination of formal methods and design principles.

Design Principles

Thimbleby (1985) described generative user engineering principles (GUEPs) as a
tn~'!IIn<, nf m1;tfinn tfp'<,;o-n ul'ith nrin,...;nlp.~ th!lt "3rp. pff,:lOI"thTP '!lIntt P'!l~ tn nntiprd!tnrl hv
.. &&_ v "" .. 0 _ 0 _ ... ab- y& ~- .. .t'&_ ... _ _ .. - -_ J -- ------ ----- -"

designer and user alike. Many other design principles have been advanced: Hansen's

(1971) design principles are the most well known; Baecker & Marcus (1990) have

looked at them with regard to applying graphic design principles to the production (viz

visual appearance) of C program text; and Gardiner & Christie (1987) from the

cognitive psychologist's point of view. Maguire (1982) compared many guidelines for

design, and drew attention to points of commonality and conflict. In cases of conflict,

the designer must choose carefully which design principle has precedence or is more

relevant to the design problem.

C A Humphreys - 12 - Chapter 2

User Interface Design Models

Various layered models of interface design have been mooted: Foley & Van Dam's

(1982) model has conceptual, semantic, syntactic & lexical layers; whereas Moran

(1981), Clarke (1986), and Norman (1986) all propose triple layer, bipartite models;

and PoIson, Bovair & Kieras (1987) defIDe a seven layer model. The main problem

with user interface design is that it lies at many different levels - like the proverbial

'onion' paradigm originated by Sommerville (1988). Each layer contributes to, and

supports the layer above and below it; with bi-directional communication between

layers to maintain communication between the user and the system.

Moran's Command Language Grammar (CLG, 1981), can be seen as a layered model

of interface design as above, or it can be compared with other grammars. For

example, Reisner's BNF-like grammar (1981, 1984), Payne & Green's (1983) Task

Action Grammar, Alty's path algebras (1984), Card, Moran & NeweU's (1983)

GOMS, Unit Task and Keystroke Model. All meet with various degrees of success in

formalising interface design, but none are able to fulfil the requirements completely.

Types of Models - Definitions

Models held by users have been investigated by Young (1981, 1985), and Rich (1983),

among others. There seems to be general agreement in the literature regarding

nomenclature, as follows:

odesigner's model - embodying the designer's mental model of system functions

ouser's model - the model formed by the user through interacting with the system -

defIDing the user's interpretation of how the system works

ouser model - the designer's model of the user, in terms of skill level, task and

information needs, and the order in which tasks are to be done.

o system image - the totality of what the user sees, accesses or operates in order to

use the system, the VDUs, keyboards, manuals, online help, training - the overall

presentation of the system. Thus the system image is an extension (a fuller

description) of the user model, whereas the user's model is an interpretation of the

system image.

Task models describe the task sequences at a variety of levels from conceptual goal

statement to the operational level of procedural steps (Card et aI, Moran, Reisner).

Predictive task models are related to task models, but refIDe interaction into steps

which can be quantified, to predict task performance (Card et aI's 1983 Keystroke

Model; Reisner 1981, 1984).

Carroll & OIson (1988) defIDe mental models as embodying "knowledge of the

components of a system, their interconnections, and the processes that change the

components; knowledge that forms the basis for users being able to construct

C A Humphreys - 13 - Chapter 2

reasonable actions; and explanations about why a set of actions is appropriate". He

also distinguishes between descriptive and prescriptive model representations. The

researcher holds descriptive models about ·what the user does know", and the

designer holds a prescriptive model "of what the user should know".

The term "conceptual model" usually refers to the user's model of the system, but it

can also denote the designer's model of how the system functions. In an ideal world,

after surmounting the learning curve, the user's model would be the same as the

designer's model, since he would have a complete understanding of the system and the

concepts driving it.

All these (task) models share one problem - they assume an ideal, error-free user who

does not make mistakes, or become confused, or forget his place in the interaction

following an interruption.

The aim of human-computer interaction is to match computer systems and human

cognition, as exemplified by Runciman & Hammond (1986), or as modelled by Clarke

(1986), and Norman (1986). In the first case a simple programming paradigm is used

to define the user's cognitive processes. In the latter 2 models, attention is drawn to

the actual stages a human goes through in converting human goals into operations on

the machine's virtual objects, by applying physical and perceptual processes to the

interface.

2.1.4 Psychological Issues and Cognitive Engineering

Card, Moran & Newell's (1983) work has contributed greatly to this field by

increasing the awareness of subconscious cognitive processes, which is being extended

by researchers such as Norman & Draper (1986), Gardiner & Christie (1987),

Suchman (1987) and being applied in the field by human factor specialists such as

DilIon and Sweeney (1987).

The psychological issues which affect HCI are being investigated and some are

described below, and in the following sections. For example, regarding problem

structuring, DilIon & Sweeney (1987) observed that: "the designer's thought processes

seemed to ChlJnk themselves pri!!1..a..Tj!y abc!:t consecutive and often discrete action

points. That is, designers displayed a tendency to structure the problem into perceived

manageable units and tackle these independently in a series of action cycles. These

cycles were invariably initiated and preceded by a phase of decision making where,

for example, the designer considered options and task parameters."

This can be explained in terms of Clarke'S (1986) model, where achieving a goal

involves forming, executing and evaluating an action sequence. This requires the

transformation of a goal into an intention, which is mapped into a physical action

sequence that is executed and then evaluated, to see if it produced the desired

C A Humphreys - 14 - Chapter 2

outcome. If not, then another intention or different action sequence must be invoked

and the process repeated until the desired outcome is reached.

Norman's (1986) model explicitly illustrates the gulf of execution and evaluation, and

the psycho[ogical or physical activities needed to bridge them. If one of the steps is

missing then that bridge/gulf cannot be crossed. In the article on direct manipulation,

Hutchins, Hollan & Norman (1986) describe 2 aspects of direct manipulation tools -

distance and engagement. "Distance relates the distance between one's thoughts and

the physical requirements of the system under use." Put in more general terms,

distance measures the fit of the physical device in relation to the psychological

variables, such as how easy it is to achieve the task goals. Thus a good task fit

implies a small distance, and a bad task fit implies a large distance, or gap.

Engagement refers to "the feeling that one is directly manipulating the object of

interest", or by Laurel's (1986) wider view of the system, as the leve[of rapport

between the task and the interface.

One of the most difficult psychologica[issues to cope with is user expectations, since

they vary from one individual to the next, by unknown quantities. However,

according to Gaines & Shaw (1984), there is one expectation that is common among

users of computer systems, namely - that the user will be able to do something useful

with the system!

Expectations spring partly from what users interpret from the system image - even

without using a system people have expectations about how it operates (Norman 1986,

Gaines & Shaw 1984). Whether these expectations will prove to be valid or not is

unanswerable until actual operation of the system. Some expectations come from

using other systems and cross generalising (Scho[tz & Wiedenbeck 1993; Card et al

1983; Shneiderman 1987; Suchman 1987). The remaining expectations spring from

the user's model of the system. If his interpretation is wrong then the system will not

operate as he expects in some (or all) aspects (Scho[tz & Wiedenbeck 1993; Norman

& Draper [986; Gardiner & Christie 1987).

Context is a significant psychological aspect in the execution of any action. It depends

on what a person knows about a particular task or activity, and how familiar and
c.omfClrt~hlf>: th~t npr(:on 1<: in th!lt <!nPl"iflr citll!lt;n.n {'l ot1;" 1020 <,,,,..hft'lOJo:n 1 OU'7
----------~--. ----r--~~-- -- -- ---""l'~-""'''''' _ ,,v-', ~,v"

CivikIy 1981). Changing the context around a task can change the human's

response(s) to it. Suchman showed the importance of context and the way that

different instructions lead to different responses when trying to operate a photocopier.

She found that different instructions (or information supplied) affected the way that

the conceptual model was built up. CivikIy (1981) discussed conversations and the

different types of knowledge that are used to establish a context, and the protocols that

people use to enable communication to take place. Establishing a framework of

communication requires a communication protocol, contextual (background)

C A Humphreys - 15 - Chapter 2

knowledge, and a means of expressing and exchanging views. The same applies to

human-computer interaction, as Suchman found out.

2.1.5 User Characteristics and Differences

Users vary in many different ways: in level of expertise, cognitive style and in

personality factors. Heaton & Sinclair (1988) have multi-dimensional axes for user

types, regarding computerized tasks, covering frequency of use, expertise (the degree

of computer use), extent of task knowledge, training level, and knowledge of system

functionality.

Most categories of user types regarding tools use the user's skill or familiarity with the

tool as a base-line. Usually only 2 types of user are considered, novices and experts.

However, Schneider's (1984) set of {parrot, novice, intermediate, expert, master}

user classes, extends beyond the usual simplistic division of expert and novice, and

eloquently describes the variation in approach, knowledge and comprehension of users

at different levels. For example, a master is above an expert, because the master not

only knows how the system works, and how to make it do what he wants using the

appropriate tools (defmition of expert), but can subvert the system using existing tools

and strategies of his own, as well as being able to add other functions to the system to

make it fulfil his needs. According to Petre (1990), expert users want tools that give

them access to, and control of, the nuts and bolts of the system.

Rector, Newton & Marsden's (1985) view is that "Experts are fundamentally

different from novices; not only do they know more, they know differently. They

perceive their field in terms of rich inter-relationships, rather than isolated facts and

can make use of far more information than can novices." This points out the

difference in conceptual models as well as the more recognisable difference in

experience. Also, "Exceptions and anomalies [in data or facts] appear to be

particularly significant both as landmarks to experts and as difficulties for novices. "

Shneiderman (1980) states that, "The pressure for closure means that users, especially

novices may prefer multiple small operations to a single large operation. Not only can

they monitor progress and ensure that all is going well but they can release the details

of coping with the early portions of the task from short term memory. "

Draper (1984) contradicts most novice-expert assumptions; he says that all users are

specialists in some areas and novices in others - dependent on command and context.

This means that each user has a different skill level for each tool that is encountered.

Skill level has an obvious effect on how well the user can carry out the task.

C A Humphreys - 16 - Chapter 2

Rector et al also state that "Cognitive style affects what forms of presentation and

assistance they lie. experts (and others)] find most helpful". So, personality and

cognitive style can also influence skill levels. Dillon & Sweeney (1987) suggest that

there may be as many as 19 different cognitive styles (each of which represents a

"sliding scale" dimension) which can be combined and utilised in a way that varies

from moment to moment, depending on the activity that the person is carrying out at

the time.

2.1.6 Visual Aspects of Cognition

The visual senses are very important in HCI, because it is through the eyes that

perception of the system state takes place, which in turn is interpreted and evaluated

in terms of the user's goals (Norman 1986, Clarke 1986).

Marr (1982) and Treisman (1982,1986) worked on the mechanisms of visual

processing. Marr in terms of using the best representation to get a message across;

and Treisman in terms of perceptual grouping processes (see §2.1.2).

Rogers (1986), Lodding (1983), Kindborg & Kollerbauer (1987) have all worked on

different aspects of the use of icons, symbols and signs in visual representation. They

conclude that the relationship between representation and form is critical, and that the

underlying cognitive models and knowledge that they are associated with, must match

in order to get the message across. Hence, the representation used and the way that it

is interpreted and received by the viewer is of paramount importance. Using the

wrong representation could result in the wrong message being received, causing the

user to draw the wrong conclusions, and confusing him, or worse causing an incorrect

modification to the conceptual model (Rogers 1986, Marr 1982, Lodding 1983,

Kindborg & Kollerbauer 1987).

This explains why prototyping an interface with assessment by its prospective users is

an important means of design. It allows bad interfaces, the ones with the wrong

representation or means of executing a task to be thrown out. Perhaps more

importantly, it allows the designers to discover why a particular representation or

interface solution failed. Thus providing additional detail for the conceptual design,

and driving it towards a more suitable design.

C A Humphreys - 17 - Chapter 2

2.1.7 Applying Typography to VDUs

The human information processing side has been studied in 2 main ways. By Card,

Moran & NeweIl (1983) who studied the psychological aspects of human-computer

interaction. Whereas Treisman (1982), and Thompson (1985) dealt with visual

perception and how human information processing affected perceptual tasks such as

grouping and the focussing of attention in the search task.

Much work has gone into the study of how best to apply typography (and colour) to the

VDU screen itself, in terms of legibility and readability, and the formation of

guidelines for optimum usage of typography, spacing and information grouping. Such

guidelines originate from Cakir, Hart & Stewart's (1980) detailed analysis of VDU

characteristics and the use of colour and typographic effects on VDUs; which Hulme

(1985), van Nes (1984 & 1986), Wright & Lickorish (1988), and van Laar (1989)

have extended and applied to a variety of tasks on the VDU. For example, van Laar's

programming tool used colour coding to reinforce the perceptual cue of indentation.

Baecker & Marcus (1990) also considered the beneficial application of typography to

making program text more readable, and outline specific ways of achieving this. One

of their aims was to make program text • more useful in terms of such common

programming tasks as scanning, navigating, manipulating, posing hypotheses and

answering questions, debugging and maintaining code .•

The main focus of human factors is to present the viewer with information that is easy

to read and digest, in order for the viewer to proceed with the task smoothly, without

needing to re-interpret the information or re-organize the current work plan. In short,

giving guidelines that facilitate human information processing, and optimize visual

processing by exemplifying good practices. These may include, for example:

grouping information in an order that is comfortable for the reader, and appropriate to

the task; and explaining those visual information processing and perceptual factors,

like using more than 4 colours per screen, that increase processing.

Yourdon & Constantine (1979) define 3 factors that affect statement complexity:

- the amount of information that must be understood correctly;

- the accessibility of the information; and

Furthermore, Green, Sime & Fitter (1981) emphasized the importance of applying

typographic aids to programming notation by producing a set of 6 principles;

elaborated upon by Winfield (1986) and applied more closely to the programming task

itself. This idea of applying selective typographic aids in text processing/editing are

directly supported by 4 of those 6 principles, reproduced below. Indeed, they

demonstrate a strong case for applying spotlighting to the trail following task. The

original numbering of the quotes has been retained, as in WinfieId's book, but they

C A Humphreys - 18 - Chapter 2

have been re-emphasized (using underlining) in tune with the important issues that are

addressed in this thesis; as shown in the following (abbreviated) quotes:

"1. 'Perce.ptual cues beat symbolic cues: symbolic cues beat no cues at all.' This

means that if you want to transmit information. think initially about typographic

~ or diagrams. "

"2. 'Short trails are better than long trails.' If meaning has to be deduced from text.

think of how many hurdles the reader has to cross before the meaning is clear,

The fewer the hurdles the better. "

"3. 'Following a trail should demand few mental cmerations.' Common mental

operations in program comprehension include keeping track of changing names as

data is transformed. Another is 'shopping' or accumulating a list of conditions

which govern some aspect of a program's behaviour. Often a compromise has to

be reached between a short but complex trail and a long but simple trail. "

"4. 'Only one mental finger should be necessary. ' A mental fmger is when we check

off one thing against another. If there are strong perce.ptual aids such as flow

charts, we do not need to use mental fingers to remember where we are ."

These principles express the ideas that defme the spotlighting and summary table tools.

Combining the main themes of principles 3, 1, and 4, gives: trail following using

typographic cues as location aids; defining spotlighting's main use.

Principle 2 relates to summary tables, where the user is presented with declaration

data in the required, more consumable form; so that he does not have to waste time

and effort (with the possibility of making a mistake or drawing the wrong conclusion),

by processing the information himself. Giving the short route to accurate information,

and avoiding information processing hurdles.

Chapters 5 and 6 discuss these tools, and their design in detail.

C A Humphreys - 19 - Chapter 2

2.2 Software Development & Programming

The previous section covered the human factors aspects of the user-task-tool situation,

this section will cover all aspects of the programming task relevant to the solo

programmer, including tools and aspects of program text.

2.2.1 Programming Stages & Processes

Large systems require a more elaborate software design process than that considered

for programming in the small, due to the number of people involved, and the explosion

of documentation that must be considered and adhered to.

Schindler's (1982, plO) ·waterfall diagram· of the Software Life Cycle has 7 stages:

System requirements, software requirements, architectural design, algorithm

design, coding & debugging, testing & validation, operation & maintenance.

Schindler has explicit evaluation loops running backwards from each stage to the

previous one. These loops are used to check for consistency within and across the

design.

For small systems, especially those involving solo programmers, the programming

process is more compact and flexible, and has less chance of serious inconsistencies.

If they do occur, the scale of the problem is small, and can usually be solved fairly

quickly, without too much hassle. Principally because there are no other team

members to consult regarding keeping the software compatible. A solo programmer

who can maintain consistency in his internal representation should be able to produce

code that is consistent and compatible, since it derives from a single source, his own

internal representation.

Gould (1975) defmes the principal stages of the programming process as: formulate

problem, generate plan, code, debug, and verify. Whereas Redmond & Gasen (1989)

define the programming process to consist of the following sequential stages: problem

specification, program specification, coding, and testing. However, there is an

evaluation loop running back from each stage to any of the previous stages, which

represents an evaluation point in the thought processes of the programmer.

Most programming models do not seem to pay much attention to these evaluation ioops,

although they are essential for verifying design. Schindler, and Redmond & Gasen

are among the few who make them explicit. In contrast, Pennington & Grabowski

(1990) consider the basic programming tasks to be understanding the problem, design,

coding and maintenance (revision). All in all the programming process is the same

although the naming of the stages has changed. However, Pennington & Grabowski

note that, ·programmers rarely complete one sub task before beginning the next" ,

indeed, they repeatedly alternate among these subtasks.

C A Humphreys - 20 - Chapter 2

2.2.2 Programming Knowledge

According to Soloway, Adelson & Ehrlich (1988), expert programmers have at least 2

types of knowledge that novices do not: "programming plans" and "rules of

programming discourse" (rules specifying programming conventions for composing

programs).

Lewis & Olson (1987) agree, saying that "Programming skill consists of a knowledge

of the primitives and the rules of combination, together with a repertoire of higher

level plans for commonly used assemblies. Flexibility results from the fact that

structures for which the higher-level plans are inappropriate, or must be modified, can

be dealt with by descending to the level of the primitives and synthesizing novel

forms. "

Gilmore (1990) disagrees with the previous 2 views, stating that it is the novice's

combination of fragile knowledge (Perkins & Martin 1986) and the lack of strategic

knowledge, as well as knowing how and when to apply it, that really distinguishes

novices from experts.

Fisher (1987) relates the interaction between task environment, programming

process(es) and LTM (long term memory) and their components concisely. She

describes how design errors creep in due to differences in knowledge or viewpoint

between the customer and designer (mainly) regarding assumptions, the problem

statement, and the perceived purpose of the software. Usually a requirements or

specification document is used to define the system requirements or the problem

statement. Guindon (1990) observed that the requirements presented to the software

designer or programmer are usually incomplete or imprecise. The designer usually

supplies the missing information either by inference or from personal knowledge of the

application. This is confirmed by Visser (1987), and Visser & Hoc (1990)

2.2.3 Programming Plans & Composition

The programmer's mental model (viz Adelson & Soloway's Sketchy Model 1988)

encapsulates the design objectives. An outline of coding in the programming plan

scenario was defined by Brooks (1911), and elaborated by Shneiderman (i980), and

Rist (1986). Each programming plan (or method, as Brooks calls them) is a sequence

of code that achieves a task. For example, a "totalling" programming plan would read

in a series of numbers and write out their total.

What bappens internally, during plan composition, is that a generic programming plan

from LTM (long term memory) is copied into WM (working memory), where

appropriate details are added, and it is then output to external memory (added to

existing program text). As a result of limited WM capacity Green, Bellamy & Parker

(1987) observe that "Rather than build up the whole program internally and then output

C A Humphreys - 21 - Chapter 2

it to the editor from start to finish, they [programmers] output fragments as they are

completed, or incomplete fragments if working memory becomes overloaded." Their

experimental data concerning their parsing-gnisrap model supports the existence of

plans when coding in Pascal (but not Basic).

Current opinions on programming plan strncture are divided. Detienne & Soloway

(1990), and Robertson & Yu (1990), consider that the plans have a flat structure

consisting of a sequence of steps that are concatenated to achieve a goal. Whereas

Rist (1990) assumes a more complex plan structure with 3 distinct mechanisms:

concatenation, interleaving and hierarchy. Rise s approach seems more reasonable

since it reflects the structure of the program text (and its meaning) with respect to

hierarchies and nested procedures, as well as plans that are concatenated and thus

independent, or are linked through function by being interleaved. For example, a

totalling plan can stand on its own, or it can be interleaved with an averaging plan.

Wiedenbeck (1986a, 1986b) has shown that each plan contains at least one focal line,

or beacon, that defines the plan. Green, Bellamy & Parker (1987) observe that for

plans that have a major and minor beacon, the programmer is more likely to forget to

include the minor beacon than the major one; since the major beacon characterizes the

plan, and the minor one just sets the scene.

For example, in the sort plan, 2 values are swapped, but a temporary variable is

needed to hold one of the values, prior to swapping. The programmer is more likely

to forget to declare the temporary variable, than he is to miss out the series of

statements that exchange the variable values. The same goes for the running total

plan, where the major focal line is of the type "total: = total + some_number;" and

the minor beacon is the initialisation statement where "total: = 0;".

Lewis & Olson (1987) note that combining plans is error prone, due to the required

interleaving of plan elements.

Soloway, Bonar & Ehrlich (1983) describe 3 types of plan knowledge: strategic,

tactical, and implementation knowledge. Strategic plans are language independent

plans dealing with global strategies. Tactical plans are more detailed than strategic

p!a."!~, but are stilllang'Jage indepen<:lent; whereas implementation plans defme how to

turn a tactical plan into code for a specific programming language.

Brooks (1977) estimated that an experienced programmer must have tens or hundreds

of thousands of methods (programming plans) in his head. Acquiring this amount of

methods/plans takes a long time, due to the need for the programmer to be exposed to

a sufficient variety of different problems, to increase the internal plan library. The

faster this type of knowledge can be acquired, the faster a "novice" programmer

becomes an "expert".

C A Humphreys - 22 - Chapter 2

Davies' (1993) experimental data shows that expert programmers make more use of

display-based skills and external memory sources than novices. When movement

around an editing screen is restricted, experts' externalize more information to

compensate for the restriction, and to reduce the corresponding memory load.

2.2.4 Comprehension

Boehm-Davis (1988) states that "software comprehension involves reconstructing the

logic, structure and goals that were used to write a computer program". Shneiderman

& Mayer (1979) proposed that this reconstruction process was accomplished through a

bottom-up, hierarchical chunking process based on both syntactic and semantic

knowledge; whereas Brooks (1983) argued that the process is driven from the top

rather than from the bottom. It seems more likely that comprehension uses both

processes, and is not limited to one or the other.

According to Baecker & Marcus (1990), program reading and understanding includes

reading, skimming, searching, retrieving, memorizing, remembering, simulating,

guessing, answering and problem solving. Each of these subtasks contributes to

forming and maintaining a correct mental representation of the program.

Wiedenbeck (I986a) asserts that "using the beacon to recognize the program [or

algorithm] is something like skimming a text. It gives a general, high level

understanding of the program but is not sufficient for debugging or modification,

which require deeper understanding." Indeed, Soloway, Adelson & Ehrlich (1988)

used this feature to mislead their subjects into giving plan-like corrections for unplan

like code. For example, the variable name "max" was used to fmd the maximum

value in a set of numbers in the plan-like code; but it actually returned the minimum

value in the unplan-like code.

Pennington (1987) defmes 5 types of program information available to programmers on

reading program text: operations, data flow, control flow, state and functions. These

are the basic ingredients that form the comprehension model. Van Dijk and Kintsch

(1983) suggest that there are 2 distinct but cross referenced representations of text that

are constructed during discourse comprehension.

Pennington's experimental evidence shows that there are also 2 types of model that

programmers can form, in order to comprehend program text. One for the domain

(the external "real life" setting where the system operates), and one for the

application (the functioning of the program text in terms of program information).

Pennington found that full program comprehension is only possible if a programmer

holds both models and is able to cross reference them. In contrast, a programmer who

only holds one model is unable to fully comprehend the program text, and is thus

C A Humphreys - 23 - Chapter 2

unable to cross reference between them. Bergantz & Hassell (1991) found that Prolog

programmers also use program (application) and domain models.

Littman, Pinto, Letovsky & Soloway (1986) investigated the program reading

strategies of experienced programmers who studied 250 line Fortran database

programs. They found that the "systematic [reading] strategy gives a strong mental

model of static and causal knowledge, • and the "as-needed strategy gives a weak

mental model since it only contains static knowledge". This relates to Pennington's

work, where the weak mental model of the static knowledge refers to the

programmer's application model which is not cross referenced to the domain model.

Another factor is that the as-needed strategy collects pieces of information but does

not connect them to gain a fuller, higher-level (cross-referenced) model.

Letovsky's (1986) and Boehm-Davis' (1988) models of comprehension are similar,

with Letovsky using inquiries and Boehm-Davis using hypotheses. Both models have a

knowledge base, a mental model, and a process for building the mental model.

Letovsky's model is built up by assimilating inquiries. An inquiry consists of 4 stages:

question, conjecture, attempt to find an answer, and draw a conclusion.

Boehm-Davis' synthesis process coordinates the generation of hypotheses and tests

them based on an interaction of information from the knowledge base and from the

current understanding of the program. In either case, information gathering proceeds

by inquiring or hypothesizing, and depends on the comprehension strategy used and the

programmer's motivation.

Robertson, Davis, Okabe & Fitz-Randolph (1990) analysed programmer's verbal

comments during the reading of program text - viewed one line at a time. These

comments defmed 6 groups of programmer motivation: analyse (explain), assume

(predict), question (query), answer (linked to question), function (of code), and

strategy (of programmer - what next, or where to, or what information is needed).

Program comprehension is an essential programming task since it is a subtask of

debugging, modification and learning (Shneiderman 1980) .

.. 2.2.5 Debugging

Wertz (1982) draws attention to the distinction between conceptual & telelogical bugs.

"Conceptual bugs manifest as a discrepancy between actual program behaviour and

required program behaviour (as per specification); and telelogical bugs are a

discrepancy between actual program behaviour and program behaviour as intended by

the program's author independent of required behaviour." Waddington & Henry

(1990, p966) illustrate the relationship between telelogical bugs & conceptual bugs,

and their possible effect on expert debugging strategies. This diagram captures the

variation in the nature of high-level errors very neatly.

C A Humphreys - 24 - Chapter 2

Carver & Klahr (1986) distinguish 4 phases in the debugging process: program

evaluation, bug identification, bug location, and bug correction. The production in

their model draws on 4 sources of information: the correct solution, the program

output, the code, and knowledge of the programming language.

Kessler & Anderson (1986) consider debugging to consist of several subskills.

Including the ability to evaluate code correctly, to be able to locate errors by parsing

the code and, matching it with the results obtained, and the ability to generate correct

code to fix the bug. Debugging can occur in response to compilation errors or run

time errors, but it can also occur during coding, as an off-shoot of the • gnisrap'

activity (Green, Bellamy & Parker 1987). Gray & Anderson (1987) describe the

latter as a "change-episode"; where the programmer fixes the code as soon as a

discrepancy is noticed, and verified as needing to be corrected.

The debugging activities/strategies activated by the programmer depend on his

repertoire of debugging skills, the nature of the bug and/or the evidence that suggests

that there is a bug, and the tools available to him. There are various debugging

strategies: Shneiderman (1980) states that, "Forward comprehension is the ability to

discover the output for a given input; and backward comprehension is the ability to

discover the input necessary to produce the given output. "

Rasmussen (1981) describes 2 major trouble shooting (debugging) strategies. In

topographic search, a programmer uses clues in the output or tests of internal program

states to narrow the possible location of a bug to a small part of the program. In

symptomatic search, the programmer uses prior debugging knowledge and recalls a

bug that has previously caused symptoms like the current ones. "

Nanja & Cook (1987) also observed 2 debugging approaches. The comprehension

approach is used to get a total understanding of the program and so place the error in

context; whereas the isolation approach attempts to identify candidate bug location(s)

by searching the output for clues, recalling similar bugs, and testing the program state.

Nanja & Cook's isolation approach covers both of Rasmussen's debugging strategies;

and their debugging approaches also correlate to Littman, Pinto, Letovsky &

Soloway's systematic and as-needed comprehension strategies respectively. Nanja &

Cook also noticed that experts corrected multiple errors before verifying their

correctness, while novices corrected and verified single errors.

Lukey's (1980) tentative debugging is based on debugging clues; whereas his other

type of debugging makes use of all the different types and levels of descriptions

produced during program understanding - another systematic or comprehension

approach. The systematic or comprehension approach could be called a holistic

approach - seeing how the code correlates to the task description and fixing any

discrepancies either in design approach (specification into program plans) stage, or in

C A Humphreys - 25 - Chapter 2

design translation (program plans into code) stage (such as missing declarations etc.).

Using a top-down systematic hierarchical search - looking at the main program, then

the sub-procedures in the order of calling.

Kessler & Anderson (1986) note that "debugging is not a taught skiII- programmers

have to learn for themselves. . .. It became clear that debugging is a skiII that does not

immediately follow from the ability to write code". In the light of these comments it

would seem prudent to ask why debugging is not taught as well as programming. It

would certainly speed up debugging, and might make programming errors less

frequent, and could even increase the overall productivity of programmers - e~"pecially

since debugging takes up a fairly large proportion of the programming task.

As Corner (1981) states: "Error correction is more difficult and less important than

error detection". The problem with coding/debugging is trying to differentiate

between what is there in the program text, and what should be there, and checking

that every item is in its correct position. It is mainly a question of using the right

highlighting method to show the problem up - to make it visible to the naked eye. To

differentiate the chameleon from its surroundings.

2.2.6 Errors

Offering tools that help the programmer to tidy up, and detect trivial errors using pre

compilation checking and tools that actively assist in preventing errors, or showing

them up as soon as possible wiII surely increase programmer productivity and reduce

debugging time and costs. EspeciaIly since cost per error escalates as time proceeds

(Yourdon & Constantine, 1979). Brooks (1977) asserts that "errors or difficulties in

programming are not random occurrences, produced by random occurrences in the

programmer's environment. Instead, they are clearly linked to specific features or

properties of programming languages."

There are 2 broad categories of errors: syntax and semantic errors. Syntax errors are

most frequently made and corrected during the early debugging stages (using the

compiler and/or syntax checker diagnostics). However, semantic errors are much

more troublesome and time consuming to correct, due partly to their ephemeral

effects, and partly to the fact that the programmer interprets what he thinks he sees in

the code, rather than what he actually sees. This may be due to the programmer

identifying a given section of code with a particular programming plan. Consequently,

instead of actually reading the code, he assumes that it reflects (ie. executes) the plan

as specified in his head, and thus ticks it off as Okay without reading it through

thoroughly and finding it to be different from the intended plan. This is what

Eisenstadt (1993) refers to as a WYSIPIG (What You See Is Probably Illusory

C A Humphreys - 26 - Chapter 2

Guv'nor) error, where the programmer hallucinates keywords (or other program

elements) within the code, that are actually non-existent.

On analysing the frequency of bugs in novice programs, Spohrer & Soloway (1986)

made 2 significant fmdings. Namely, that:

• just a few bugs are made by lots of students learning to program; and

• most bugs do NOT arise because students have some misconceptions about some

language constructs.

Youngs (1974) study of error rates in programming showed that experienced

programmers initially make about the same number of errors as beginni~g
programmers, but that they are able to fmd their errors faster. He classifies

programmer errors into 4 categories: "syntax", "semantic", "logic", and "clerical".

Pattis's (1981) error categories are in terms of lexical, syntactic, intent, and beyond

the horizon situations. Where the latter refers to error events occurring outside the

range of expected behaviour, due to unexpected combinations of data, events or other

factors.

Another possible means of categorizing errors is the reason for their occurrence from

the programmer's viewpoint. Some of these errors could be avoided if the

programmer was given the appropriate information instead of letting him guess

incorrectly. It is usually more prudent (and less costly time-wise) to check and not

make the error in the first place than it is to guess, and have to fIX it later, when

debugging costs rise geometrically.

2.2.7 Programmers at Work

Curtis (1988) defmes several factors affecting individual programmer performance:

intellectual aptitude, knowledge base, cognitive style, motivational structures,

personality characteristics, and behavioural characteristics.

Working with other programmers and software designers is endlessly fascinating - not

only because each person's experience differs, but also because of different

working/designing methods and practices. Susan Lammers (1986) interviews of

so-called "super-programmers" substantiates the anecdotally well-known "poles" of

the software design continuum. On the one hand there are the "proper" programmers

who put everything down on paper first, and then transfer it to the development system

when it is "complete" on paper; and then there are the other programmers, the so

called "hackers" who design code more or less on-line, at the VDU screen itself.

Green (1990a) refers to these programmer types as the "neats" and the "scruffies".

Molzberger's (1983) article describes a specific group of individual hackers as "trance

programmers", since they appear to reach another level of consciousness, as they sit

C A Humphreys - 27 - Chapter 2

in front of the VDU tapping away. Molzberger describes 2 types of reactions from

his "trance programmers", in response to interruptions during these periods of intense

concentration. One reaction is a temporary suspension of thoughts and activities while

attending to the interrupt. Then returning to the previous activity and picking up

where he left off with no ill effects. The other reaction is that any interrupt, no

matter how short, causes the chain of thought up till then to be lost completely. So

that the programmer has to go back to square 1, and start all over again. It seems

obvious that this difference is due, at least in part, to the individual's inherent ability

or inability to sustain a chain of thought using short term or working memory.

However, going back to the theme of variations in software design - most software

design falls into a region between the 2 poles, where the programmer works out the

central algorithms and data structures of the problem on paper (the software skeleton).

This is then transferred to the computer and modified until it meets the requirements.

Perhaps the difference between the software poles is merely a difference in

interaction medium - paper and pen versus screen editing; but it may go deeper than

that, and illustrate different types of programmer or programming ability.

Brooks (1977), Green (1990b), Rist (1990), and Visser (1990 - in the engineering

field) support the opportunistic method of design - filling in details as the design

problem and/or its domain of application becomes better defmed and understood.

The complexity of the required software tends to influence the program development

method chosen; the more complex the software, the more prevalent the paper designs;

the simpler the software, the more prevalent on-line designing. For example, most

experienced programmers wouldn't bother to write down the design for an averaging

program, they would develop it directly on the VDU screen.

Rist (1990) describes 2 approaches to design like Ratcliff & Siddiqi (1985), where

.programs are designed forward from input and output and expanded if the designer

can retrieve a known solution to the problem; (confirmed by Detienne 1991b) or

• designing backwards from the goals of the problem to create a solution - thus bottom

up design, from an initial sketchy solution or focal idea that was expanded to define a

complete solution.

According to Shneiderman (1980 p50), top-down design generates the most general

levels first, followed by more detailed ones/analysis. It is also called "working

backwards" or "reformulating the goal", (from general to specifics). Bottom-up

software design generates low level code first, in an attempt to build up to the goal.

This is also called "working forwards" or "reformulating the givens", (from specifics

to the general), where the "givens" include the permissible statements of the

langnage.

C A Humphreys - 28 - Chapter 2

Rist (1990)found that programmers use either one or both of these design strategies,

depending on task difficulty. Green, Bellamy & Parker (1987) support this

opportunistic design method - where fragments of code may be generated in any order

(in either whole or partial fragments), jumping from one plan to insert additional code

for a second, interleaved, plan. The parsing part of the parsing-gnisrap cycle is used

to remind the programmer of what was done and how they were doing it. One of the

factors determining the frequency of memory refreshing activities is due to the role

expressiveness of the programming language.

As early as 1977, Brooks stated that complete top-down design depends on the

programmer being very familiar with both problem and programming language, since

top-down design is inappropriate for unfamiliar problems or languages. Thus an

opportunistic approach to design will be inevitable whenever a designer comes to a

knowledge or understanding gap, which he is unable to fIU (Visser & Hoc 1990).

2.2.8 Programming Tools, User Aids & Task Assistants

The main aim of programming tools, user aids, and task assistants is to alleviate the

(memory and work) load on the user, and to ensure that tasks are accomplished as

efficiently as possible. There are various types, as below.

Teitelbaum and Reps (1981), Teitelman (1972), Waters (1982), Bourguignon (1984),

and Goldenson & Wang (1991) took the same approach, in that they used programming

cliches, such as the "while-do" or "repeat-until" loops, and presented them to the user

to fill in. This of course is based on programming plans, which were originated by

Brooks (1977). Teitelman and Waters also used knowledge based tools to actively

assist them in the program design task.

Weiser & Lyle's (1986) slicing tool was meant to aid backward comprehension by

printing out only those program statements relative to a chosen statement. In a

previous experiment Weiser (1982a & 1982b) showed that programmers mentally

construct slices when debugging. However, having a slicing tool available did not

seem to benefit the users. One possible reason was that users preferred doing slicing

mentally, and having the tool do it for them did not give the same effect.

Jerrams-Smith's (1985) SUSI (Smart User System Interface) is an intelligent

interface to Unix, which corrects user's misconceptions about the system. The

interface provides intelligent responses suited to the [individual] user, and modularity

for ease of modification. SUSI incorporates an HillS, (intelligent knowledge base

system), and provides user modelling. It interprets user's actions and offers a

personalised response which guides users to the easiest and most efficient method of

carrying out their intention. SUSI trains the user by responding with computer aided

C A Humphreys - 29- Chapter 2

learning material when appropriate. The knowledge base is in the form of production

rules, which are used to interpret the user's intention.

Young and Harris (1986) produced a viewdata structure editing tool to assist in the

modification of viewdata frames; and to remind the user of interrupted tasks and other

goals and plans which are pending. It also regroups actions "to be done" to alleviate

memory load on the user and to gather all actions on one frame together, rather than

having them scattered. Reitman Olson, Whitten & Gruenenfelder (1984) have

produced a similar sort of system which deals with the editing of tree structures.

Card and Henderson's (1987) virtual-workspace interface facilitates task switching

under a windowing environment, by the use of "rooms" (task windows). These

"rooms" are allocated their own set of "engaged tools" - tools that have been invoked

and are available for immediate use. Thus reducing the time and effort overheads

associated with switching from one task to another.

O'Malley and Sharples (1986) have a system that enables the user to view and alter

the organisational structure of text at different levels in an authoring environment.

However, its main use is to keep track of all the various constraints under which the

text is to be written, such as technical or layman's narrative style, pagination and

format style, as well as reminding the author about connections in the narrative.

Monk's Personal Browser (1989) helps users move around a Hypertext network, by

providing colour coded "footprint information". The user has a map of the network

on-screen, which shows nodes already visited in one colour, and unvisited nodes in

another. Monk distinguishes between rambling and orienteering. The latter is goal

directed movement geared towards a specific node, while the former has no particular

destination in mind. He further suggests that the author of the Hypertext sets up a

guided tour, defming which nodes to visit and in what order - giving his user tourists a

uniform view of the data held by those nodes.

Catrambone & Carroll (1987), and Hewett (1988) use similar concepts. In the

former, the functions of a word processing system are restricted to a manageable

number using the Training Wheels systems, and in the latter, learning is achieved by

guided exploration. In each case the user is restricted to a limited subset of system

functions. This restriction is meant to let the user learn in a small, safe environment;

so that confidence in using the system can grow smoothly, and without check, because

destructive functions are inaccessible.

C A Humphreys - 30 - Chapter 2

2.2.9 Aspects of Tools

The better the tool fits the task the more "invisible" its essential characteristics

become. The very smoothness of tool use eliminates recognition of the combination of

working components and the accompanying skill elements. The success of a tool is

directly related to the immediacy which can be established between the task at hand

and the tool's suitability for that task in relation to the goal at hand.

This is what Hutchins, Hollan & Norman (1986, pl(0) call semantic directness.

Semantic directness defmes "the relationship between the task one wishes to

accomplish, and the ways the interface provides for accomplishing it." Engagement

refers to "the feeling that one is directly manipulating the object of interest", or by

Laurel's (1986) wider view of the system, as the level of rapport between the task and

the (tool) interface.

It is well known that as a person develops a skill, and gradually moves from novice

towards expert status, that that skill becomes increasingly automated, and the

component stages blend together "seamlessly". As this happens the person becomes

less able to talk about what is happening at each stage. This is because the skill is

operating from a higher level, and is regarded as a "whole unit" (or cognitive process)

instead of a series of component stages (Ormerod 1990, see §2.1.4).

Wastell (1990, p108) states that, "Much of information processing is non-conscious.

Moreover, an inverse relationship between awareness and behaviour often prevails

(eg. skilled performance) which severely limits subjective techniques. Behaviour as

we have seen, is intrinsically ambiguous." He defmes mental effort as the amount of

controlled processing required by a task." This is a very important factor in the use of

a tool, computerized or not.

Similarly, Kieras & PoIson (1985) observe that from the user's point of view, the

complexity of a device depends on the amount, content, and structure of knowledge

required to operate that device successfully. Furthermore, that "for a new user,

complexity is also determined by the difficulty in acquiring the new knowledge

necessary for this purpose" .

2.2.10 Aspects of Program Text

Leventhal (1988), like Molzberger (1983), links the aesthetic appearance of program

text with its comprehensibility. Leventhal's view is that a well-presented text is

easier to comprehend. Molzberger goes further, by saying that a particular

combination of "good" aesthetic qualities go hand-in-hand with good quality, reliable

programs. Although proving that such a program is correct formally is nigh

impossible, such programs are not liable to breakdown during operation. The latter

may be attributed to the code being produced under "trance" conditions, where code is

C A Humphreys - 31 - Chapter 2

produced in a continuous stream, from start to finish, in one sitting. Thus there is

perhaps less chance of confusion or conflicting requirements being worked in. A

program having this type of "good" layout/presentation is almost guaranteed to be

error free for most practical purposes. Since "good" aesthetic quality implies a

"good", well-balanced program, and a "bad" aesthetic quality implies a "bad",

unbalanced or iIl-defmed program, that is prone to many errors and breakdowns.

Molzberger's subjects recognize this "meta-style" of goodness or beauty, and

inherently understand that a program that embodies it, is very efficient in operation

and not susceptible to run-of-the-mill errors.

Gray & Anderson's (1987) change-episodes include stylistic changes to the code as

well as code corrections. Riecken, Koenemann-Belliveau & Robertson (1991) found

that the programmers in their experiment added vertical spacing between code chunks,

as well as adding begin-end braces in several areas of the code on the first pass

through the code (during comprehension). They preferred to adapt the visual structure

of the program to their style of coding immediately, rather than leaving it until later.

This is a very significant finding. Moreover, that indentation, comprehension, and the

programmer's mental representation of the code are defmitely linked, is illustrated by

the following 3 quotes, and van Laar's (1989) experimental results and conclusions.

Mynatt (1990, p945) "Evidence that language-structure-based indenting aids

comprehension (compared to no indenting or random indenting) would suggest that the

hierarchy implied by the indenting corresponds in some way to the mental

representation built by a programmer through comprehension."

Baecker & Marcus (1986 p51) " ... the body of research they surveyed fails to provide

clear experimental confirmation for what every programmer knows: a program's

appearance drastically effects its comprehensibility and usability. "

Holt, Boehm-Davis & Shultz (1987) found differences between the comprehension

models built by professional and student programmers. "The mental models of the

professionals were primarily affected by the difficulty of the program's assigned

modifications, while the students were primarily affected by the structure and content

of the programs. "

Van Laar's programming tool used colour coding to reinforce the perceptual cue of

indentation. Giving each level of indentation a different colour reinforced the

program structure, and helped with program comprehension. In a series of

experiments he found that this enhanced problem solving originating from questions of

nestedness, and scope. He also found that if the indentation spacing is too large then

the coherence of the code is lost because everything is seen in isolation and appears

unconnected. Indentation is used as a comprehension aid, and provides mental/visible

signposts within the code; it may be thought of as indicating program control signposts.

C A Humphreys - 32 - Chapter 2

Budgen (1992) defmes the dual nature of code as, "passive structure and dynamic

behaviour, since software is represented by a program (with static qualities), which is

then executed as a process (exhibiting dynamic behaviour)·. This description catches

the essential difference between the order of statements, and control flow - the order

of their execution. This difference causes many problems for novice programmers.

Green's (1989) work on cognitive dimensions suggests that certain properties of

notations (viz program text, and the tools applied to it) should be either

avoided/minimized, or maximized. Hidden dependencies, viscosity, premature

committment, hard mental operations, diffuseness, and susceptibility to low level

errors (viz discriminability and action slips), are all to be either avoided or minimized

as far as possible. On the other hand, role-expressiveness, consistency, and adding

(cognitively supportive or beneficial) perceptual cues to the structure, are encouraged

since they make notations easier to comprehend and interact with. In this context,

Van Laar's tool reinforced role-expressiveness (indentation) by additional perceptual

cueing (colour coding), to support comprehension.

Furthermore, Green (1990a, p31) ~iates that, "As programs get larger, programmers

fmd it harder to locate the information they need·. Obviously, what is needed are a

means of locating the information quickly, or making it more accessible, flexible, or

easier to manipulate or transform into the format required by the programmer.

Baecker & Marcus (1990) developed a visual compiler for the C language, called

SEE, that achieves some of the latter goals, by applying graphic design principles to

SEE's output. For example, SEE was used to reformat ordinary C program text so

that comments • governing· chunks were exdented to the lefthand side of the page,

whilst leaving comments appearing within chunks as they were; and data declaration

sections were aligned to specific tab stops to make the variable names and the data

types easier to connect visually. Baecker & Marcus * also experimented with boldface

and italicising, and found that both effects had to used sparingly to be effective.

Adding colour to differentiate between specific elements of the program text also

improved clarity.

* They also included the various reading and searching aspects that underpin

programming activities in the comprehension of program text :-

p12 ·programming tasks: scanning, navigating, manipUlating, posing hypotheses and

answering questions, debugging, maintaining the code .•

p261 ·programming activities: sketching, writing, revising, documenting,

familiarization, reading, reviewing, debugging. "

p261 "program reading and understanding consists of a variety of tasks: reading,

skimming, searching, returning [to the previous location], page turning,

memorization, remembering, simulating, guessing, answering, problem solving. "

C A Humphreys - 33 - Chapter 2

Chapter 3 Preliminary Data Collection - Observation & Analysis of Student

Programmer's Reactions to MacPascal's Tools & Environment

This chapter describes how flfst year Computer Science students approach the

programming task, their problems, and how they respond to MacPascal's tools and

programming environment. This particular group of students were the only ones who

were studying (Mac)Pascal in depth. Thus, they were chosen for observation during

programming practice tutorials; and later on, as questionnaire subjects regarding

their attitudes towards MacPascal's tools and various aspects of programming.

I attended about l'h terms of their programming lectures, so that I became familiar

with both the students and the lecture material. I felt that this would make it easier

for me to blend in with them, and that they would view me as an equal rather than as

a "lecturer", when I attended their tutorials as an adviser. In this way I was able to

follow what they were doing from my understanding of the lecture notes and the

tutorial exercises they were expected to complete on the Apple Macintosh machines.

These exercises provided the student with program specifications in a mathematical

type of notation based on VDM (Vienna Definition Method). Early lectures showed

how to translate a specification in English into one in VDM. Tutorials gave practice

in turning specifications in plain English or VDM into working MacPascal programs.

3.1 Students' Problems Observed During Programming Practice Tutorials

The tutorials were used to help the students, and to observe and defme their problems

as they tackled a range of programming tasks and different types of problems. The

aim of the tutorials was to activate students' knowledge, and to build up actual

experience of how to apply programming knowledge to different areas of application.

So that they learnt how to tailor each programming solution to suit a specific task.

Since it is the individual task requirements that determines the choice of variables

and data types used to flesh out the appropriate programming plans/algorithms.

3.1.1 Summary of Students' Problems

Many types of programming problems came to light. However, only those that are

directly related to programming, and turning a specification into a working program

are listed. From designing on paper or screen, through code development and

debugging using the facilities and tools provided by MacPascal, 20 problem variants

were observed. They have been grouped into a more logical sequence, with 4 main

problem headings - learning (due to novice status in a new skill), task-specific,

general/common errors, and MacPascal·specific problems.

Learning (Novice) Problems:

• learning the differences between data types: viz integer and real, char and

boolean; and the effect this has on what can or cannot be done with a variable of

each type.

C A Humphreys - 34 - Chapter 3

• learning how to manipulate variables of each type, and to select a data type suited

to each variable required to perform the task.

• sub-optimal use of variables, data structures and control structures. In particular,

knowing which combination of programming plans/algorithms, variables and data

types is most appropriate to the problem at hand, and how to use them to best effect.

For example, updating array values using either:

- 2 arrays, one for the old values and one for the new values; or

- just using one array holding both "current" and (previous) "old" values. With one

simple variable (of the same data type as the array) to calculate and hold the new

"current" value of the array element being updated. With the aim of cycling through

the array elements one by one, recalculating the next new value (using the simple

variable to hold the value), and writing it back into the array, until all array element

values have been updated .

• retaining, or not eliminating redundant elements. There are 2 main causes:

- using many variables to do the job of one;

- having unused variables (and occasionally procedures and functions) when their use

or functions have been superceded elsewhere .

• learning how to formulate assignment statements correctly, and the appropriate use

and combination of operators and functions to get the required value.

• using round brackets (parentheses) to obtain the correct intel]lretation of complex

mathematical formulae or boolean expressions.

• understanding the different types of statements, how they work and the effects they

have: empty statements, assignment statements, procedure or function call

statements, if-then and if-then-else statements, case statements, compound

statements; for, while, and repeat-until loops. Knowing how to combine them

successfully to achieve the desired effect(s) .

• appropriate usage of iterative or recursive techniques. Knowing how to set up and

use iterative and recursive algorithms. More importantly, knowing when a recursive

technique is more appropriate than an iterative one, and vice versa.

• difficulty in appreciating and utilising the different effects achieved using

procedures and functions. For example, procedures usually change the surrounding

state - they cause some sort of action to be taken; whereas functions do not (usually)

change the state - they just provide values (such as "trunc" or nabs") or report back

as boolean flags (such as "odd").

C A Humphreys - 35 - Chapter 3

Task-Specific Problems:

.difficulty in translating the lecturer's mathematical VDM program specification

into code. Since the VDM specification has main operations followed by sub

operations. Whereas Pascal, being "declare before use", is the opposite. Also, not

all things in the VDM specification defme things to do - some are "status" type

comments or define relationships between I/O (input/output) variables.

• setting up the required range of data structures, and using the variables correctly,

to maximum effect, and eliminating redundant variables.

• initialisation and declaration of variables, viz appropriateness and correctness.

Such as deciding whether a boolean variable should be initialised as true or false .

• ensuring correct sequencing of variable value or state changes (especially booleans)

to achieve the desired effect (and avoid infmite or redundant loops).

• setting up and connecting the input/output infrastructure - making sure that the

"correct" input/output variables are used to read in or write out the required data at

appropriate junctures in the algorithm and the corresponding code.

• deciding how andlor where to partition subroutines. Sometimes this is a matter of

style or personal preference, at other times it depends on the functionality of the

subroutine itself. There is a general belief that procedures (or functions) should be 1

page long at most. However, splitting a complex algorithm arbitrarily to suit this

limit, may cause bugs to be introduced unnecessarily. For example, leaving the top 3

lines of a nested loop and its conditions on the bottom of a page, with the rest of the

loop body over-page, could lead to comprehension and memory strain. Whereas

splitting code at chunk boundaries causes less comprehension problems all round

(Riecken, Koenemann-Belliveau & Robertson 1991). Thus, (in my view)

functionality of a module should take precedence over such an arbitrary limit.

General/Common Errors:

• syntax errors: usually missing or misplaced ';', 'begin', 'end', or mismatched '(',

')', '[', T, , {', '}' symbols, or parameter list mismatches.

• semantic errors:

- incorrect or non-initialisation of variables before or during use;

- uncompleted variable name changes, such as changing 'i' to 'index', but not

checking that all appropriate changes have been made;

- using the wrong control strategy, like using a repeat loop instead of a while loop; or

- not utilising the control structure features either to full effect, or to minimize

resource usage. For example, initializing all the elements of an array to the same

value is (usually) done most efficiently using a 'for' loop.

C A Humphreys - 36 - Chapter 3

MacPascal-specific Problems:

> finding out how to set up and use data files, using MacPascal's non-standard

input/output routines to gain access to these data files.

> failure to use shortcuts in operating the MacPascal environment. Such as invoking

commands by control character or function keypresses, rather than by time

consuming "mousing" of windows and menus to select options.

<problems of screen reformatting after a bracketing error - sometimes the same

editing operation has to be done several times before it is accepted. MacPascal can

react badly when it detects a bracketing error, and it is difficult to correct a

(complex) line when MacPascal keeps interrupting to tell you that there is a

bracketing error there, when you are in the middle of trying to fIx it. This may be

due to an "eoln" (end of line or line feed) character being in the wrong place, in a

complex expression that occupies 2 or more lines.

<coping with the effects of "invisible" control characters "hidden" on the MacPascal

screen and fmding out how to overcome and eliminate them. Usually such characters

scramble the lines of screen text up, so that it is difficult to tell where the text really

belongs, and where the rogue character might be. So you have to resort to deleting

the original copy, line by line, in an effort to delete the spurious "invisible" control

character. When the effect disappears, the missing text must be retyped - either

from memory, notes, or the last printout. Such characters arise usually as a result of

mis-typing, and unintended, simultaneous keypresses. This is an example of a

problem that needs to. be "visualized" in order to be resolved.

3.1.2 Discussion of Problems Observed

One problem not mentioned above is that some students did not appear to understand

the difference between getting the program to run (no syntax errors) and getting it to

do what is required (no semantic, logic or algorithmic errors). Of course, this is a

consequence of their novice status as programmers; as understanding of programming

methods and the language increase they wiIl soon understand the difference.

Clearly, quite a lot of the above problems wiIl disappear as the student programmer

becomes more experienced, and more adept at program design and the efficient

usage of data types and control structures. It was obvious that some students were

much more experienced than others, and had fewer problems. They already knew

how to use data structures and programming language to construct working programs.

Pascal is supposed to be a "standard", but each system variant has its own

peculiarities. With MacPascal it is the use and setting up of input and output data

files. MacPascal also uses an interpreter that stops at the fIrst error it meets, so

each individual error has to be fIXed in turn. The code is then re-interpreted to fmd

out whether it runs, or another error is found. When it runs, the code is free of

C A Humphreys - 37 - Chapter 3

syntax errors, but may still contain semantic, logic, design or algorithmic errors

which will have to be found and eliminated.

The problem of "invisible" control characters may only happen once in a blue moon,

but when it does it is extremely difficult to get rid of. What is needed is a utility that

makes invisible, non-printable screen/control characters visible, perhaps using

reverse video blocks, or colour to counteract the invisibility problem, and so enable

the rogue character to be seen and eliminated. Or better still, a more rigorous text

input monitor, so that such disruptive characters can be filtered out, and not accepted

as valid characters during text inputting.

A frequently heard remark was, "Wouldn't it be nice to have an editing tool that

would enable you to go straight to a particular procedure so that you could modifY it".

Unfortunately this feature was not included in MacPascal at the time of the study,

although LightSpeed Pascal and folding editors provide this option. Perhaps it should

be more widely available, to satisfY this need.

3.2 Design & Analysis of MacPascal Questionnaire

The aim of the questionnaire was to find out how first year programmers regarded

and responded to a typical programming environment, in this case MacPascal. As

the students were relatively new to programming, and in the learning phase, they

were expected to verbalize their views more openly than older students. Learning a

new skill requires concentration of conscious thought and effort, like driving a car.

But once the skill is learned, it submerges into subconscious processing, and becomes

beyond the reach of verbal description, due to the automaticity effect (Ormerod

1991). This means that only part of the task is done consciously and under true user

control, the rest is done subconsciously by automatic procedural processes. This is

why most "experts' have difficulty explaining what to them are "routine tasks"; they

can demonstrate the task, but not explain or verbalize it beyond the general outline.

MacPascal provides 17 separate programming tools/aids which can be called up via

menus or in some cases by control codes (sequences of key presses) as follows :-

Cut: mark a section of text and remove it to the paste buffer;

Copy: mark a section of text and copy it to the paste buffer;

Paste: insert a copy of the paste buffer contents at the current cursor position;

Find: search for the next instance of the search string;

Replace: fmd the next instance of the search string, and exchange it for the new

string (word or phrase) defmed by the user;

Check: the syntax checker (stops and) reports the flfst syntax error it finds;

Reset: abandons execution of the current "running" program;

C A Humphreys - 38 - Chapter 3

Go: executes current program until next breakpoint or end of program is reached;

Go-go: executes current program to end, ignoring all breakpoints;

(single) Step: pointing hand - executes the "next" statement in the program;

Step-step: pointing hand - executes the program statement by statement;

Stops in: enables insertion of breakpoints within the program;

Instant: enables "instant" execution of a chunk of Pascal code;

Observe: shows value(s) of variables selected by the user;

Clipboard: enables transference of a chunk of code from one program to another;

Font control: enables the user to change the size/sty le of program text characters;

Indent level control (under the preferences option):

- enables the user to choose how many space characters to indent each level by.

There are 4 further features, activated by the MacPascal environment, that the user

can respond to, but not control. Namely:-

Layout style: how the text is laid out on the screen;

Highlighting: by emboldening all reserved words;

Bracketing errors: causes an erroneous statement (of 1 or more lines) to become

highlighted using MacPascal's "outline" font; and

Syntax error (bug) line: defines the nature of the (first) syntax error found during

syntax checking.

3.2.1 Dimensions of MacPascal Tool Calibration & Rating Scale Descriptions

MacPascal's tools were tested on 5 dimensions: usefulness, frequency of use, ease of

use, likeability and frequency of use of other (alternative) method or tool. Each

dimension was associated with a 5 point rating scale, to gauge each individual's

re~')Xlnse to each dimension. The ratings ran from 1 to 5, with 1 representing the

most negative, and 5 the most positive response, and 3 representing the average or

middle of the road response, as below :-

S(;all: I 2 3 4 5
l1sefulnl:SS l!Sl:Il:SS nQl Yl:~ l!Sl:ful Qk l!Seful I:iSSl:nlial

Er!:llul:n(;~ nl:~r Qn(;l: Qr twi(;e SQml:timl:S Qften uSl!all~

EaSl: Qf U Sl: diffi(;ul1 fairl~ difficult Qk fairl~ l:iIS~ l:a~

Likeahili~ disliked mildl~ disliked Qk mildl~ liked likl:d

Othl:r Ml:thod nl:Yl:r Qn(;l: Qr t}yi(;l: SQml:1i ml:S Qften usuall~

Ease of

Pro<!u(;tiQn diffi(;l!lt fairl~ difficult Qk fairl~ l:a~ l:iIS~

The ease of production rating scale was used to rate the ease of producing comment

statements within program code (§3.2.6), for questions 28 & 29 in the questionnaire.

C A Humphreys - 39 - Chapter 3

Students were asked to allocate a rating for each tool on each dimension, by marking

a cross or tick in the appropriate rating scale "box". Comment spaces were also

provided with instructions to make any comment that had a bearing on the tool/aid in

question. A total of 66 students answered the questionnaire, and it took about 1 hour.

3.2.2 Analysis of Quantitative Data

Tool calibration data resulted in 5 sets of data for each tool. This showed how many

students "voted" for each individual point on the rating scale for each tool, on each

dimension; giving 5 sets of 5-point data for each tool. The data was then abstracted

so that the results for usefulness, frequency of use, ease of use, Iikeability, and

frequency of use of other (alternative) method or tool were completely separate.

Calculating the mean rating scale value for all tools on each dimension made it easy

to compare tools on and across each dimension.

The original data tables (see Appendix, Tables 3A - "Comparison of Student

Numbers & Percentages For Each Tool") show student numbers and percentages for

each rating scale value; as well as the rating scale mean, standard deviation and

mean deviation values to illustrate the spread of the data across the rating scales for

each tool on each dimension. The tables also show cumulative rating scale values in

terms of both student numbers and percentages. Thus the tables provide a range of

ways of viewing and interpreting the data. Appendix 3A also contains 2 sets of

frequency data, one in tool order as per the other 4 dimensions, and one ordered

according to decreasing mean rating scale value. With the most frequently used tool

at the top, and the least frequently used tool at bottom. A reduced form of the latter

table is used in §3.2.3.2 to illustrate the frequency of use of each tool.

3.2.3 Interpreting the Data With Regard to Students' Comments

There are 3 main views: the graphs of the mean rating scale data, the frequency of

use of each tool in terms of student votes, and summaries of the mean data.

Student's comments helped put the different views into perspective.

3.2.3.1 Interpreting the Data Graphically & Numerically

Graphing the mean rating scale value for each tool on each dimension made the

results easy to visualise and compare. Bar graphs show the numeric mean value as

well as the name of each tool, in tool order.

The Usefulness, Ease of Use, and Likeability graphs are remarkably similar,

suggesting that they are interdependent. The mean rating scale value is larger than

3.0 for all tools on these 3 dimensions, reflecting the students positive attitudes.

(The graphs appear on the next 2 pages with the Usefulness graph appearing on both

pages for ease of comparison with the other dimensions.

C A Humphreys - 40 -

Text continues 3 pages on.)

Chapter 3

Graph of Ease of Use Means for Each MacPascal Tool
2 3 4 ,
, , , ,
I I I , , , ,

I , , ,
I

I I I I , , , I
I ,
I I , , I
I I , ,

II , ,
I I , ,
, ,
I I I , , , ,

Graph of Usefulness Means for Each MacPascal Tool
2 3 4 5 , , , I

I I I I
I , , , I I , , , I ,
I I I I , , I
I

I , , , I

I I I I
I , ,

I ,
I ,

I I I I , ,
, ,
I I , , I , ,
I I , , I
I I I , ,

I , ,
I I

4.37 Cut
4.23 Copy
4.27 Paste
3.50 Find
3.58 Replace
4.56 Check
4.05 Reset
4.71 Go
4.40 Go-Go
3.67 Step
4.02 Step-Step
3.75 Stops-In
3.69 Instant
3.6S Observe
3.79 Clipboard
4.22 Font Control
3.66 Indent Control

4.11 Cut
4.00 Copy
4.14 Paste
3.47 Find
3.50 Replace
4.33 Check
3.79 Reset
4.73 Go
3.70 Go-Go
3.60 Step
3.85 Step-Step
3.64 Stops-In
3.15 Instant
3.68 Observe
3.97 Clipboard
3.70 Font Control
3.40 Indent Control
3.68 Layout Style
3.92 Highlighting
3.75 Bracketing
3.91 Error Messages

Graph of Likeability Means for Each MacPascal Tool
2 3 4 5 , , !I , ,
I I I

4.03 Cut
4.00 Copy , , iI 4.05 Paste , , I , ,

I I I I
3.\9 Find
3.36 Replace , , , 4.05 Check , , , 3.39 Reset

I I I 4.37 Go , , I , ,
I I I ,

3.63 Go-Co
3.40 Step , , I 3.7\ Step-Step , , 3.36 Stops-In

I I 3.36 Instant , , I ,
I 3.65 Observe , , , , 3.82 CUpboard

I I I 4.10 Font Control , , , , 3.40 Indent Control
I I I , 3.66 Layout Style , , , ,

I 4.29 Highlighting , , , , , , 3.49 Bracketing
I I I I 3.49 Error Mesnges

C A Humphreys - 41 - Chapter 3

--

Graph of Usefulness Means for Each MacPascal TOQI
2 3 4 ~

1=====:±=====~~=====~~----14.11 Cut
: T 4.00 Copy

I I 4.14 Paste
3.47 Find
3.50 Replace
4.33 Check
3.79 Reset

I

I

I I

4.73 Go
3.70 Go-Go
3.60 Step
3.85 Step-Step
3.64 Stops-tn
3.15 Instant
3.68 Observe
3.97 Clipboard
3.70 Font Control
3.40 Indent Control
3.68 Layout Style
3.92 Hlshllshtlns
3.75 Brack.eting
3.91 Error Messages

Graph of Frequency of Use Means for Each MacPascal Tool
3 2 3 4 , , , ,

I I , , ,
I ,

,
, -,
I ,
I ,
, , , ,
I I , , , ,

I
I , ,

I
,
I

I
, , ,

3.52 Cut
3.27 Copy
3.58 Paste
1.89 Find
2.00 Replace
3.80 Check
2.73 Reset
4.41 Go
1.66 Go-Go
2.26 Step
2.48 Step-Step
1.64 Stops-In
1.32 Instant
1.71 Observe
2.26 Clipboard
2.70 Font Control
1.20 Indent Control

Graph of Frequency of Use of Other Method Means for Some Tools
2 3 4 S , ,
I , ,
I , ,
I -, , ,
I -, , ,
I , , ,
I , ,
I , ,
I ,

I ,
I

I , ,
I , ,
,

, , , ,
I I , , , ,
I ,

I ,
I , ,
I , ,

, I , , ,
, , ,

1.58 Find
1.51 Replace
1.53 Check
1.39 Reset

1.61 Stops-In

1.49 Observe
1.51 Clipboard

C A Humphreys - 42 - Chapter 3

But the Frequency graph shows a different story. The frequency mean for the

"Reset" tool is higher than expected, probably due to the greater frequency of

crashed systems or infmite loops in the students' (novice) programs. Students use the

"Font Control" tool to reduce the current font size, so that they can get more text on

the screen at one time, and avoid unnecessary windowing operations. That is

resizing and/or moving the window to view the end of lines that go beyond the width

of the window. It is very surprising that the "Find" and "Replace" tools have both

got such low mean frequency scores. It would also seem that the debugging aids:

"Observe", "Instant", "Stops-in", "Step", and "Step-Step"; have not been put to

much use. Either these tools need to be made more user friendly, or they need to be

explained or demonstrated, so that the students have a head start on understanding

how they work, and how to use them. According to the students' comments, the

usual debugging alternative (to most of the above debugging tools) is to insert "write"

statements in the code at the appropriate points.

The Frequency of Use of Other Method graph (showing only those tools with

alternatives) shows a range of very low mean values, indicating that alternative

methods or tools are used infrequently, and according to the tables by few students

- numerically 12 or less. Some students use visual inspection and manual editing in

lieu of "Find" and "Replace" tools, while others use MacWrite's "Find" and

"Replace" tools. Again, inserting "write" statements seems to be the students'

preferred alternative to "Observe".

MacPascal performs syntax checks as it interprets the code, so some students rely on

this instead of calling "Check" by menu. The alternative "Reset" method is achieved

by rebooting - turning the machine off, then on again. "Stops-in" can be replaced by

"write" statements and any instruction that causes the program to terminate (or pause

for a specific interval, using a wait loop). "Clipboard" can be replaced either by

manual typing, or copying a previous text and editing it down, or by using

MacWrite's "Clipboard" instead.

3.2.3.2 A Closer Look at Tool Frequency Data

Some tools represent paired alternatives: like "Go" and "Go-Go", "Step" and "Step

Step"; so programmers are likely to develop a personal preference or

programming/debugging style suited to one more than the other. The frequency data

discussed here occurs on the following decreasing mean ordered table, with visual

markers indicating the 1 st and 2nd highest values for each tool. These latter values

are drawn out separately in 2 paragraphs, defining the tools with highest and 2nd

highest values in each frequency category, from Never to Usually.

(Frequency data appears on the next page, with the text continuing on the following

page, discussing the results for each frequency category individually).

C A Humphreys - 43 - Chapter 3

§3.2.3 2 Data Tabl~ & SlImmaO!;

StlI!.!~nt V!!tes (Qr Er~!lII~nc~ Qf US~ - in Ord~r!!f D~l:r~asing M~an Va1u~s

Name of Votes Votes per Rating Scale Mean Data Swing Data Majority

Tool actual 1 2 3 4 5 mean stdv modv 1+2 3 4+5 dif2

Go 66 3 1 7 #10 *45 4.41 1.04 0.81 4 7 55 51

Check 66 6 4 11 #21 *24 3.80 1.25 1,00 10 11 45 35

Paste 66 2 8 #15 *3~ 9 3.58 0.97 0.80 10 15 41 31

Cut 66 2 7 #19 *31 7 3.52 0.93 0.Z7 9 19 38 29

Cop~ 66 5 11 #18 *25 7 3.,7 1.09 0,92 16 18 32 16

Beset 66 9 #20 *23 8 6 2.73 1.12 0.91 29 23 H -15

Eont Control 66 #16 13 *18 13 6 2.70 1.28 1,10 29 18 19 -IQ
Step-Step 65 #17 13 *23 11 1 2.48 1.10 0.96 30 23 12 -18

Step 66 #19 16 *28 1 2 2.26 0.99 0,85 35 28 3 -3~

Clipboard 65 *26 #14 11 10 4 2.26 1.29 1.12 40 11 14 -26

Replace 66 *28 #19 11 7 1 2.00 1.07 0.85 47 11 8 -39

Eind 26 *30 #18 13 5 0 1.89 0.97 0.81 46 13 5 -43

Go-go 66 *36 #14 7 7 2 1.86 1.15 0,24 50 7 9 -41

Observe 65 *39 10 #12 4 0 1.71 0.97 0.85 49 12 4 -45

Stops In 64 *39 #13 8 4 0 1. 64 0.92 0.78 52 8 4 -48

Instant 65 *52 #6 #6 1 0 1.32 0.700,52 58 6 1 -57

Indent Cntrl 65 *55 #7 3 0 0 1. 20 0.50 0 , 34 62 3 o -62

Where:

* indicates maximum (primary) student vote for each tool, and

indicates 2nd-maximum (secondary) student vote for each tool.

dif2 = positive - negative = (scale[4] + scale[5]) - (scale[l] + scale[2]).

"dif2" shows the direction of the "majority" vote - the difference between the positive and

negative voting numbers. Scale[3] is the "neutral" or middle of the road vote.

Summary: Largest student votes for each tool, in decreasing order :-

never indent control 55, instant 52, observe 39, stops-in 39, go-go 36, frod 30,
replace 28, clipboard 26

once or twice none

sometimes step 28, step-step 23, reset 23, font control 18

often paste 32, cut 31, copy 25

usually go 45, check 24

C A Humphreys - 44 - Chapter 3

3.2.3.2a Never Data

At flfst glance, it is obvious that a large proportion of students (52/65 or 83 % for

"Instant", and at least 36166 or 54% otherwise) have not tried 5 of the more esoteric

tools (see data range between "Go-Go" and "Indent Control").

It is much more surprising to know that 28-30 (45 % of) students do not use the "Find"

or "Replace" tools at all. According to some students, there is a fault in the search

string recognition algorithm; it does not always find the next appropriate instance of

the search string. An alternative explanation is that students may not be setting up

the options correctly. Such as whether to search for whole or partial words. Or

whether to disregard case differences between search string and candidate string

matches as long as all alphanumerics are in the required order, or not.

3.2.3.2b Once or Twice Data

It would seem that on average between 10 and 20 of the students have tried each of

the tools out at least once, just to see what they do. These numbers were expected to

be less for this category and larger for the Sometimes category. But the students

may not have had long enough to fully overcome the learning curve, or had the need

to use the full range of tools. Of course, as time goes by, and programming tasks

increase in complexity and variety, all tools would tend to be used more often.

3.2.3.2c Sometimes Data

It is encouraging to see that "Step" and "Step-Step" rate slightly over 33% of the

sample size (23 and 28 students respectively) for this category. But the "Reset"

value was expected to be much lower than 23; although students may be using this to

recover from crashed programs or infmite loops.

3.2.3.2d Often Data

As expected "Cut", "Copy" and "Paste" have peak values in this category (31, 25

and 32 respectively), and "Check" is close behind with 21 votes. Programming

always seems to involve a lot of text juggling, and some segments of code are easier

to copy and modify rather than writing it all out from scratch. Also some students

have skeleton layouts for pieces of text that are bound to recur, such as procedure

headers and bodies, with declaration areas and begin-end loops ready for fIlling.

3.2.3.2e Usually Data

As expected "Go" and "Check" have the lead with 45 and 24 votes respectively. As

some students remarked, "How can you run the program unless you use Go?".

C A Humphreys - 45 - Chapter 3

3.2.3.3 Summarizing the Mean Rating Scale Data

Table(s) 3.2.3.3.A shows the rankings of tools for each dimension, in order of

decreasing means. Usefulness and LikeabiIity have 2 sets ofrank values, for 17 and

21 tools, excluding and including MacPascal's 4 automatic features, respectively.

This data was then summarized, and the overall total mean (U + F + E+ L) value for

usefulness, frequency of use, ease of use, and likeability, for each tool calculated,

and ranked on this value. The data is shown in 2 tables (Tables 3.2.3.3.B and

3.2.3.3.C) ranked in order of the decreasing total mean value. The frrst showing

rankings for 17 tools. While the other shows the 17/21 tool ranking data for

usefulness and likeabiIity, with 17 rankings for ease of use and frequency, and the

total mean ranking (for 17 tools only). The 4 automatic features are slightly

separated from the 17 mean ordered tools, as they have no frequency or ease of use

data, and thus cannot be interleaved with the other tools, but they show the rankings

with regard to 21 tools overall, for comparison on usefulness and likeability. As the

latter features are automatic, they were not ranked on frequency of use or ease of

use. Considering the problems associated with bracketing errors and error messages,

perhaps they should have been ranked on ease of use; but ease of use of response to

the tool rather than of the tool itself. In terms of the problems associated with

responding to tool messages or effects, and the actions taken in order to fix the error.

The answers might well have been very revealing.

Table(s) 3.2.3.3.A shows the rankings of tools for each dimension, in order of

decreasing means. The top 5 tools are "Go", "Check", "Paste", "Cut", and "Copy";

for usefulness, frequency, and overall rankings. They also occupy the top 6 rankings

on ease of use and likeabiIity. With "Go-Go" taking 3rd place on the ease of use

dimension, and "Font Control" taking 2nd rank on likeability (3rd rank if you include

"Highlighting" in the ranking of 21 tools); causing a minor alteration in ranking

order. "Font Control" comes in 6th overall. With "Step-Step" coming in 7th

overall, averaging 8th or 9th across the 4 main dimensions. Most other tool's ranks

including "Go-Go" and "Font Control", vary from one dimension to another, with a

range of between 3 and 8 ranks.

Table 3.2.3.3.B, The Summary of Means & Rankings table, shows that for 12 out of

17 (70% of) tools, the order of decreasing mean rating scale value for each

individual tool on the 4 main dimensions is: ease of use, usefulness, likeability, and

frequency. The range in mean values for each dimension was: usefulness 1.58,

frequency of use 3.21, ease of use 1.21, likeabiIity 1.18, and frequency of use of

other method 0.22 (for 7 tools only).

C A Humphreys - 46 - Chapter 3

Table 3.2.3.3.C. Interestingly, "Highlighting" ranks 2nd in likeability, and 7th in

usefulness, when considering 21 tools rather than 17. Likewise, "Layout Style"

ranks 8th in likeability, and 15th in usefulness, "Error Messages" 13th and 8th, and

"Bracketing" 13th and 12th respectively. On the cumulative usefulness and

likeability mean scale, "Highlighting" is well ahead of the others, coming in 3rd,

compared to the other automatic tools (in the previous order) taking 10th, 12th and

14th place respectively. This means that "Highlighting" is the best liked of the

automatic features. This points up how much the students appreciate typographic

signalling, even if it only emboldens reserved words.

C A Humphreys - 47 - Chapter 3

3.2.3.3.A: Means & Rankings for Each Tool, In Order of Decreasing Mean Value
Usefulness Mean Rank 17[21 likeabilitll Me!!n Rank 1U21
Go 4.Z3 10 Go 4.37 W
Check 4.~3 2[2 *Highlighting 4.~9 *[2
Paste 4.14 30 Font CQntrol 4.10 20
Cut 4.11 4[4 Check 4,05 3[4
Cog~ 4.00 5[5 Paste 4.05 3[4
Cl igboard 3,97 6[6 Cut 4.03 5[6
*Highligbting 3.9~ *0 Cog~ 4.0Q 20
*Error Messages 3.91 *[8 *La:lout St:lle 3.88 *[8
Observe 3.88 7[9 Observe ~.85 7 [9
Steg-steg 3.85 8DO Clillbo!!rd 3.82 800
Reset 3.Z9 9D1 Stell-stell 3,71 9D1
*Bracketing 3.75 *D~ Gg-go 3.63 10m
Go-go 3.70 1003 *Bracketing 3.49 *03
Eont Control 3.70 10tl3 *Error Messages 3.49 *03
*La:lout St:lle 3.68 *05 Stell ~,40 1105
Stogs in 3.64 1206 Indent Control 3.40 1105
Steg 3.20 13tl7 Reset 3.39 1307
Reglace 3.50 1408 R~glace ~.38 1408
Find 3.47 lW9 Instant 3.38 1508
Indent Control 3.40 16[20 Stolls in 3.36 16[20
Instant 3.15 17m Find 3.19 l7m

Freguenc:l Mea n R!! nk 17 Ease of Use Mean Rank 17
Go 4.41 I Go 4.71 I
Check 3.80 2 Check 4.58 2
~aste 3.58 3 Go-go 4.40 3
Cut 3.52 4 Cut 4,3Z 4
COll~ 3.27 5 Paste 4.27 5
Reset 2.73 -6 COll:l 4.~3 6
Font Control 2.Z0 -7 Font Cgntrgl 4,22 7
Steg-~tell 2.48 -8 Reset 4.05 8
Steg 2.26 -9 Stell-stell 4.02 9
Cl i llboa rd 2.26 -9 Stell 3.87 10
Reglace 2.00 -ll Observe 3.8~ 11
Find 1.89 -12 Indent Control 3,80 12
Go-go 1.86 -13 C]illboard 3.79 1~
Observe 1. 71 -14 StollS in 3.75 14
Stogs in 1.64 -IS Inst!!nt 3.69 15
Instant 1.32 -16 Rglllace 3.56 16
Indent Control 1,20 -17 Find 3.50 17

Other Method Mean Ran~ 7
Stogs in 1.61 -1
FiOd 1.58 -~
Check 1.53 -3
Relllace 1.51 -4
Clillboard 1.51 -4
OQserv~ 1.49 -6
Reset 1.39 -7
NB. Negative rank indicates a mean rating scale value less than 3.00, thus
respresenting a negative response attitude. Usefulness & Likeability have 2 rank
values, for 17 and 21 tools respectively. * indicates MacPascal's automatic tools.
C A Humphreys - 48 - Chapter 3

Table 3.2.3.3.B Summary
Means & Rankings in Decreasing Order for 17 MacPascal Tools per Dimension

Usefulness Frequency Ease of Use Likeability U+F+E+L
Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank

Go 4.73 I 4.41 1 4.71 1 4.37 I 18.22 1
Check 4.33 2 3.80 2 4.58 2 4.05 3 16.76 2
Paste 4.14 3 3.58 3 4.27 5 4.05 3 16.04 3
Cut 4.11 4 3.52 4 4.37 4 4.03 5 16.03 4
Copy 4.00 5 3.27 5 4.23 6 4.00 6 15.50 5
Font Control 3.70 10 2.70 -7 4.22 7 4.10 2 14.72 6
Step-step 3.85 8 2.48 -8 4.02 9 3.71 9 14.06 7
Reset 3.79 9 2.73 -6 4.05 8 3.39 13 13.96 8
Clipboard 3.97 6 2.26 -9 3.79 13 3.B2 8 13.84 9
Go-go 3.70 10 1.86 -13 4.40 3 3.63 ID 13.59 10
Observe 3.88 7 1.71 -14 3.85 11 3.85 7 13.29 11
Step 3.60 13 2.26 -9 3.87 10 3.40 11 13.13 12
Replace 3.50 14 2.00 -ll 3.58 16 3.38 14 12.46 13
Stops in 3.64 12 1.64 -15 3.75 14 3.36 16 12.39 14
Find 3.47 15 1.B9 -12 3.50 17 3.19 17 12.05 15
Indent Control 3.40 16 1.20 -17 3.80 12 3.40 11 11.80 16
Instant 3.15 17 1.32 -16 3.69 IS 3.38 14 11.54 17

Table 3.2.3.3.C Summary
Means & Rankings in Decreasing Order for 17/21 Tools on Each Dimension

Usefulness Frequency Ease of Use Likeability U+F+E+L
Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank

Go 4.73 111 4.41 I 4.71 1 4.37 III IB.22 1
Check 4.33 212 3.BO 2 4.58 2 4.05 3/4 16.76 2
Paste 4.14 3/3 3.5B 3 4.27 5 4.05 3/4 16.04 3
Cut 4.11 4/4 3.52 4 4.37 4 4.03 5/6 16.03 4
Copy 4.00 5/5 3.27 5 4.23 6 4.00 617 15.50 5
Font Control 3.70 10/13 2.70 -7 4.22 7 4.10 213 14.72 6
Step-step 3.85 8110 2.48 -8 4.02 9 3. 71 9/11 14.06 7
Reset 3.79 9111 2.73 -6 4.05 8 3.39 13117 13.96 8
Clipboard 3.97 6/6 2.26 -9 3.79 13 3.82 8110 13.84 9
Go-go 3.70 10/13 1.B6 -13 4.40 3 3.63 10112 13.59 10
Observe 3.8B 7/9 1.71 -14 3.85 11 3.85 7 /9 13.29 II
Step 3.60 13117 2.26 -9 3.87 10 3.40 11115 13.13 12
Replace 3.50 14118 2.00 -11 3.58 16 3.38 14118 12.46 13
Stops in 3.64 12/16 1.64 -15 3.75 14 3.36 16/20 12.39 14
Find 3.47 15119 1.89 -12 3.50 17 3.19 17121 12.05 15
Indent Control 3.40 16/20 1.20 -17 3.80 12 3.40 11115 I1.BO 16
Instant 3.15 17121 1.32 -16 3.69 15 3.38 14118 11.54 17
*Highlighting 3.92 *17 4.29 *12
*Layout Style 3.68 *115 3.88 */8
*Error Messages 3.91 */8 3.49 *113
*Bracketing 3.75 *112 3.49 *113

Where:
* indicates MacPascal's automatic tools ranked on the 21 tool rankings,

but excluded from the 17 tool rankings.
Negative rank indicates a mean rating scale value of less than 3.00

C A Humphreys - 49 - Chapter 3

3.2.4 Consensus of MacPascal Tool Deficiencies or Necessary Enhancements

There are 2 sub-sections. The first concerns the students' problems, and their

criticisms of the MacPascal tools and environment. The second discusses some of

the enhancements suggested by the students.

3.2.4.1 Summary of Problems and Deficiencies

The following 2 tables show the number of students who voted for each particular

issue, in relation to students' problems (Q26), and their complaints about MacPascal

(Q24). The table heading defines the gist of each question, and the number of

students expressing each opinion (frequency) appears at the righthand margin.

Q26. Students' Most Common or Time Consuming Problems/Difficulties:

Problem Frequency

syntax errors (unspecified) 13

misplaced/missing semicolons 8

typing/spelling errors 6

algorithm/semantic errors 6
file I/O errors 4

miSSing begin/end 3
yariable/parameter declarations 3

bracketing errors 2

MacPascal construct misconceptions 2

switching/resizing (of windows) to see relevant code 2
lack of speed 2

problems in debugging due to layout I

more comprehensive run-time error checking 1

listing all errors in one go I

error elimination 1

finding out why it doesn't work I
infinite loqps I

unwanted recursions I

Clearly most problems are caused by syntax errors in one form or another. Followed

by a combination of algorithmic and semantic errors. Typing and spelling errors can

contribute to either of the former, and bracketing errors usually arise from

miscounting brackets during input typing and checking. File I/O, windowing

problems and speed complaints result from a combination of the way MacPascal is

implemented on the Macintosh system. Window resizing is particularly aggravated

by the small screen dimensions (about 20cms diagonally) due to the combined

Macintosh VDU screen and disc drive unit (the pre-1990 MacPlus look alike).

C A Humphreys - 50 - Chapter 3

Finding out why it doesn't work is a problem that can only be solved by the

programmer's ingenuity in assessing and identifying the error, and applying a suitable

remedy.

Q24. Complaints or Criticisms Frequency

error clicking complaints 6

(lack 00 speed complaints 6

students not using search 6

more informative error messages 5

noise criticisms 3

compiler requests 3

user layout control 3

decent hardcopy facility 3

reset complaints 3

bracketing complaints 3

window switching criticisms 3

multi-windowing/multiple ilPPlication req)Jests 3

window resizing criticisms 2

file handling 2

Many students complained about error clicking - needing to move the mouse and click

the error message (at the top of the screen) before they could go on to fix the bug

itself. Many suggested hitting the "Return" key instead of manipulating the mouse

unnecessarily. Again there were requests for better error messages, and the ability

to send these to the printer, since the error message becomes irretrievable after it has

been "clicked". The noise complaints mostly refer to the beep associated with the

error message appearing. First of all, the sound itself "trumpets-aloud" the fact that

you have an error, which is particularly offilUtting for a novice, and becomes an

annoyance itself when heard 10 times in a row.

The requests for user control of layout, I sympathise with whole heartedly. Like

them I find it difficult to interact with a piece of code that is not laid out according to

my own preferences. The "Indent Control" can help lessen this feeling somewhat by

altering indentation to the user's preferred spacing, but otherwise the layout style is

unaffected. Speed and windowing complaints again are down to MacPascal and the

Macintosh'S screen size.

C A Humphreys - 51 - Chapter 3

3.2.4.2 Summary of Enhancements Suggested in Questionnaire

The following is a distillation of the most interesting or necessary enhancements

suggested by the students in the questionnaire. Mostly from questions 25, 24, and 26,

respectively; but also from the comments given in response to different aspects of

MacPasca\'s tools in previous questions. A Frequency table, like those in §3.2.4.1,

can be found in Appendix 3B. It is not included here as it duplicates part of the

previous tables, which have already been discussed above.

The enhancements have been grouped into 3 categories: MacPascal-specific,

MacPascal-oriented but with wider implications, and general enhancements. The

students have several specific enhancements in mind for MacPascal (regarding files,

windowing, and speed) which are the responsibility of the MacPascal environment's

designers. The more interesting enhancements suggested by the students have been

elaborated further under the last 2 categories.

MacPascal-specific

.Compiler wanted rather than an interpreter (probably to get cumulative error

messages, but see note "**" at top of next page) .

• File handling requirements:

- decent file handling (presumably referring to creation/deletion of files);

- RAM (random access memory) files;

- assigning of I/O files by the user; and

- test file creation facility .

• Saving/editing of text window.

• MuIti-windowing/multiple applications open and on-screen at the same time.

• Facility to speed up window switching

- single keypress window switching; and

- automatic switching and resizing on selection of a given window.

• Decent hardcopy facility - one that enables printing of all, or a selected portion, of

the file rather than just the current window's worth.

Enhancements aimed at MacPascal, but with wider areas of application

.Error messages:

- should be more accurate and informative, and less noisy (or better still noiseless);

- the error message should be accessible/recallable until the error is fixed; that is,

you should be able to remove the error message by a single keypress or mouse click

and then be able to call the error message back up onto the screen, as needed;

- you should be able to send cumulative error messages to file or printer rather than

being restricted to finding and fixing one error at a time. However, the latter is a

feature of MacPascal's implementation. But is certainly a valid point otherwise.

C A Humphreys - 52 - Chapter 3

**Choosing whether to stop on the first error encountered or to accumulate error

messages depends on the implementation chosen, rather than on whether the

environment is based on an interpreter or a compiler (since either is possible) .

• Cut: one student suggested an inverse facility to delete all text, except for a prior

selected block. This idea has innate appeal but whether it would be useful or even

defmable is questionable .

• Search and replace facilities. There is obviously a need for better search and

replace functions, but the question is, in what way can they be improved and made

more effective? What is the simplest way of miling them more effective? Perhaps

making the search string more visible would help. Or, alternatively, making the

students more aware of the options available with the search mechanisms. Then

checking that they know how to set the appropriate options would solve the problem

of "Find" not visiting or locating all intended instances of the search string .

• Step-step: needs an infmite loop indicator. The problem with an infinite loop

detector is in deciding at what numerical loop cycle maximum the loop should abort.

Maybe there should be a tool that increments the loop count each cycle, and shows

this value to the user - perhaps as an adjunct to the "Observe" or "Step-Step" tools.

Then if the user decides that the loop count is too high, he/she should be able to break

out of the program. An alternative would be to have an option whereby the user

defines a maximum loop count value, and if any loop is executed in excess of this

value, then the program stops. Giving the user the choice of exiting the program, or

setting a new maximum loop value, and continuing with program execution .

• Colour. Now that colour screens are replacing green screens the use of colour is

becoming less of a facile decorative feature; and its ability to provide instant

differentiation between objects is beginning to be exploited to its full extent. For

example, using colour coding to distinguish significant elements of program text; like

having one colour for reserved words, one colour for variables, and another colour

for procedure/function calls or declarations. To make it easy to identify each

element's function in one glance, by colour, rather than needing to read each word

individually (within a monochromatic and visually bland text) to determine what it

represents (as proposed by Baecker & Marcus 1990, for the SEE visual compiler).

Colour can be to accentuate cognitive markers or beacons within program text

(Treisman 1982, 1984; Wiedenbeck 1986), or to differentiate levels of nesting within

program text, as with Van Laar's (1989) colour coded support tool.

• User control of text formatting (individualizing layout style), giving the choice of:

- choosing whether to highlight reserved words or not;

- changing the layout of some sections of code; and

- entering text in "free format" according to user's style.

Emboldening reserved words seems to be appreciated by most students. As shown by

C A Humphreys - 53 - Chapter 3

the fact that the "Highlighting" feature came out well in the rankings. However, an

option to turn it on or off would mollify those students who didn't like this feature.

The other 2 enhancements suggest 3 possibilities. First, that students are asking for

automatic layout in a default system sty le that is not open to customization by the

user. But with the option to layout sections of code in their own individual style,

with some kind of marker(s), so that there is no chance of it getting reformatted

automatically. A means of sending some kind of "hands off" marker to the

formatting program to protect the relevant section(s) of text.

Second, that automatic layout is in the user's style - selectable from a matrix of

choices for the disposition of each construct regarding indentation and the placement

of reserved words. With the option to alter that style for a particular section as

above (the "hands off' formatting feature). Say when the length of a group of

individual lines is greater than the current level of indentation will allow, and the

user decides to override the lefthand indentation margin temporarily, to avoid

breaking each line.

Third, that layout is completely under user control - meaning the manual setting and

maintenance of indentation levels. Perhaps with a little help from the system, such

as Vi's auto-indent feature.

oFont control: the ability to choose a new "default" font for program text on

subsequent sessions. Being able to choose a particular font to code in would help

establish a visual rapport with the code, and add familiarity. Possibly helping to

reduce the time taken to get "in tune" with the code at the beginning of an editing

session.

o The ability to define and use libraries of user defmed procedures and functions, and

be able to interrogate them easily. This would add familiarity, and re-use existing

code. So it might cut down on the development and debugging time used to reinvent

the same or similar coded functions or functionality.

o Showing stack and heap pictures - providing a way of representing the "current

memory free/used ratio" graphically. This would probably be most useful for

recursive algorithms or other memory intensive algorithms.

General enhancements

o To widen the range of screen moving commands in terms of scrolling. To speed up

the ballistic phase and cut out intermediate steps towards the goal. For example,

moving by a full or half screen of text, to go to the start or end of a file or a named

procedure (or one of its parts, such as the declaration area) directly, and so on.

o Providing a semicolon adding utility. Since missing or misplaced semicolons

account for a good proportion of (Mac)Pascal errors, it is about time there was a

facility to do this. After all the compiler knows where they should go, otherwise it

C A Humphreys - 54 - Chapter 3

would not report them as missing. So why not put them in instead? At least in

straightforward and simple cases. Leaving ambiguous situations to be resolved by the

programmer directly. This could also be used to demonstrate the basic rules of

syntax regarding semicolons to novices. As well as removing some of the (mental)

burden and drudgery of fIXing common syntactic errors .

• Provide more complete/helpful diagnostics. The better the diagnostics, the faster

bugs can be eliminated; cutting down on debugging costs, by providing

- (non syntax) semantic checker. For example, (a) checking that applied functions

and variable types match - a pre-compiler checker; or (b) checking that real values

were not assigned to integer variables unless a "trunc" or "round" function had been

applied to the real part of the expression beforehand; or (c) checking that loop

variables, values, and/or conditions are specified correctly. That is, using the right

type of loop variable, in terms of data type and its inherent maximum and minimum

values. For example, a boolean variable can only be true or false. Checking that loop

interval values are in the right order, that upper bound is larger than lower bound.

- more comprehensive run-time error checking and reporting back. Such as

reporting on under- or over-flow of a variable's value; or being unable to evaluate a

boolean expression, because one of its sub-parts is undefmed, instead of bombing out

without giving the user a clue as to what has caused the error .

• Reserved words help and syntax diagrams would be useful to novices and those who

have transferred from a different language and need an on-line guide to get correct

syntax.

3.2.5 Attitudes Towards MacPascal's Tools

Reading through the students' comments on the MacPascal tools, significant phrases

(or paraphrases) kept cropping up. Defining specific aspects of the task-tool match

that the students regard as important. Also indicating that the students were applying

specific criteria when assessing the MacPascal environment and its tools in relation

to the programming task. These phrases cover 4 areas of interest. The flfSt group

deals with aspects of direct engagement (Norman 1986) and task-tool efficiency.

The second with error elimination and debugging, the third with aesthetics and

comprehensibility of program text, and the fourth with areas of proposed user

control.

.Criteria for assessment of direct engagement and task-tool efficiency:

straightforwardness, speed, efficiency, saving effort, saving time, ease of use (and

ease of operation), ease of text entry, ease of text modifiability, ease of re-ordering

text, minimizing re-typing, and being able to use command or operational shortcuts

(such as using control codes instead of pointing and selecting with a mouse).

C A Humphreys - 55 - Chapter 3

• Improving error elimination and debugging: error reduction and/or error prevention

at source, efficient error elimination (both syntactic and semantic), the need for good

debugging aids, and informative and understandable error messages - with the option

to print them out.

• Criteria regarding aesthetics and comprehensibility of program text: neatness,

aesthetics of presentation, text presentation and layout style, code readability, and

code comprehensibility .

• Areas of proposed user control: execution speed (especially step-step), text

presentation and layout style, and windows (resizing and repositioning).

These criteria for judgement of tools and environment determine how tools are

regarded, and on what basis the judgement is made. Not only are they judged on how

well they do the job they are made for, but whether they collectively cover all

aspects of the task. Thus they point up some important issues that need to be

addressed.

For example, reducing or eliminating errors in the form of error prevention. By

automatic solution of simple errors, such as missing semicolons, or inserting an "end"

to match an unpaired "begin". To avoid complications, and the possibility of missing

elements being put in the wrong place, an automatic helper could suggest where to

put things. So that the programmer can choose either to confrrm or abort the

proposed action. Indeed, Teitelman's (1972) Programmer's Assistant was designed

to do exactly this type of job in the Lisp environment.

The above list also has another function, it emphasizes and supports the human

factors angle of the tool(s), viz straightforwardness, ease of use, and so on. Re

iterating the importance of making the tool fit the task, in a natural, comfortable

way, and as closely as possible. To bridge the gap between the user and the too\.

I found it very significant that some students stated that the MacPascal style of layout

made it difficult for them to debug their programs. I believe that each programmer

develops a style of layout that heightens his or her rapport with the developing

program, and this enhances understanding of the program, and thus the ability to

debug it thoroughly.

3.2.6 Consensus of Student Opinions on Comments and Program Design, & Prior

Use of Computers & Programming Languages

The last 3 questions in the questionnaire dealt with more general aspects of program

design. Namely, students opinions on comments: firstly in their own programs, and

secondly in other people's programs. This issue has relevance to comprehension of

program text by the reader, especially regarding the updating and maintenance of

C A Humphreys - 56- Chapter 3

code. The last question (Q30) gathered information on which program design method

the students used in real life. To make sure the design of the proposed programming

tool(s) was based on a true assessment of students' actual program design behaviour,

and not on assumptions. Question 27 provided data on students familiarity with

computers and programming languages, defining who had or had not used a computer

before the course began - this data is listed in Appendix 3B.

Q28 Students' Attitudes Towards Putting Comments in Their Own Programs

The following is a distillation of the students' answers to the question "Why do/don't

you use comments, and if so, where?"

Positive Responses were:

9 students put comments at the start of the program and top of each procedure;

6 students sometimes comment, but not always;

6 students comment in order to explain complex parts or to jog their memory;

5 students always comment; and

I student comments only if he thinks he might have to update the program later on.

Making a total of 27 students out of 66 who use comments to some extent.

However, there were also Negative Responses:

6 students are "too lazy' (the students' own words!) to comment their own programs;

4 students don't comment (but gave no reasons why not);

3 students don't comment because their programs are not for other people to read;

3 students thought their programs were not large enough to need them; and

1 student doesn't comment because he thinks they clutter up the window.

Making a total of 17 students out of 66 who don't comment for the above reasons.

However, according to the scoring table below, 12 never comment, 12 use comments

once or twice, and 39 use comments on a more frequent basis, ranging from 16 who

use them sometimes, to 8 who always use them.

Rating SCj!le 1 2 3 4 5 mean
Usgf~lne~s 2 3 lZ 22 12 3.14
FreQuenc): 12 12 12 15 8 2.79
Ease of Prgduction 1 1 15 10 27 3,36
L ikeabil it:t 2 1 21 U 17 2.27

Looking at the range of student votes per rating scale for the other dimensions, most

students think that comments are useful to some degree, and they are not regarded as

being difficult to produce. They score slightly less for likeability, but again the

majority scores range between Ok and liked.

C A Humphreys - 57- Chapter 3

Thus comments are being under used for several reasons, principally :-

I) because students don't bother to spend the extra time or effort producing them; or

2) at the moment they are only producing code basically for themselves, in order to

practise programming and learn how to do it. So they don't see the need for

comments that no-one else except their tutor will see; also

3) the programs being produced are fairly short and well understood, and the

algorithms and underlying structure of the code make it relatively easy to see what is

going on.

Of course, (Mac)Pascal is regarded as an easy to read, fairly easy to comprehend

programming language. From the start student programmers are impressed with the

idea of naming variables to reflect what they are used for, and what the data they

carry represents functionally; such as "maxtemp' or "timecount" and s<! on. Using

self-explanatory variable names may reduce the need for comments overall, but does

not eliminate the need for comments altogether.

What worries me is that students may get into the habit of not commenting their code

and will never learn the discipline of inserting comments as they go. Perhaps they

will see the error of their ways when they come face to face with a 20 page program

with few comments in it! Personally I find that comments often show me the

variation between the intended action of the code and the actual code, and thus

provide useful debugging help. Also if it is difficult to form an appropriate comment

phrase, then there may be something wrong with the intended action to be coded. On

the other hand some things are easier to code than they are to describe!

Q29 Students' Attitudes Towards Comments in Other People's Programs

The following is a distillation of students' answers to the question "What do you think

of other people's comments?"

Positive Responses were:

3 students think that longer or more complex programs should have comments;

I student thinks comments are always useful;

1 student thinks comments are useful in showing structure;

I student thinks comments make a program more readable; and

1 student thinks they make understanding the algorithm easier.

Making a total of 7 students who think that comments are useful and aid

understanding of other people's programs.

However, there are also Negative Views:

2 students consider other people's comments to be too "cryptic";

I student fmds that few people put comments in their programs;

I student thinks that comments disrupt readability;

I student thinks that other people's programs are harder to follow;

1 student would prefer a separate explanation; and

I student doesn't look at other people's programs!

C A Humphreys - 58 - Chapter 3

The table below shows the division of opinion about how useful comments are

according to dimensions a), b) and c). Looking at the data I now realise that b) may

have been interpreted ambiguously - some of the "No" votes may be disagreeing that

comments are only useful in long programs; and may be indicating that comments are

useful regardless of length of code. However, dimensions a) and c) are more clear

cut. Showing that only 44 % of students feel that comments are useful in general. I

think this bodes ill for them professionally in the future, or for the programmers who

have to maintain their programs.

Dimension of Usefulness No Yes
aJ Generally 36
bJ Depends upon length of code (useful only in long programs) 58
c) Depends upon the complexity of the code 37

Q30 Actual Distribution of Program Design Methods Being Used

Student programmers (of my generation 1980-83) were always being exhorted to use

Step-wise Refmement as a design method. Where the emphasis is on the importance

of working out the entire design algorithm on paper before inputting program text to

the computer, and entering the iterative "edit, then attempt compilation" phase. The

more recent programming lectures (attended prior to observation) continued this

traditional emphasis. The following question finds out if they do, and to what extent.

Each choice [except ell was accompanied by "usually· and "sometimes· tick boxes.

What is your natural program development/coding methodology? Do you:

a) work out the entire algorithm then translate it into code

b) work out most of the entire algorithm then translate it into code, and fill out the

missing parts as you go along

c) work out a partial algorithm and then continue as for b)

d) use direct terminal composition - where you express the algorithm in code (on the

VDU screen) directly without working it out on paper flfst

e) use method a) b) c) or d) depending on task complexity - if so define the conditions

where each method(s) is used ego depending on task difficulty, or length of code

required

t) use other method(s) - please give details.

Design Method Used
Student Numbers
N S U S+U

Student Percentages
N S U

30

8
29

S+U
a) entire algorithm 28 20 18 38

21 21 24 45
37 14 15 29
42 20 4 24
58 5 3 8

42.4 30.3 27.3 57.6
b) most of algorithm
c) partial algorithm
d) direct terminal composition
f) other methods

80 64
Where N = never, S = sometimes, U = usually.

C A Humphreys - 59 -

31.8
56.1
63.6
87.9

31.8 36.4 68.2
21.2 22.7 43.9
30.3 6.1 36.4
7.6 4,5 12.1

121.2 97.0

Chapter 3

Looking at the data, it seems obvious that each student uses one main method and at

least one secondary one. Or alternately, two principal methods which are used

depending on the circumstances, such as task complexity. Ranking the design methods

according to student numbers, and in order of decreasing frequency of use, gives

b) a) c) d) with f) last.

The only real difference between methods a) b) c) and d), is the proportion of time

spent designing on paper or on VDU. Does it really matter which medium is used

most? Or is it just an outdated economic consideration that assumes that 100% paper

designing is better, or at least cheaper than designing on-screen. Of course with an

undergraduate population of about 90 students on a programming course, and about

20--30 Macintoshs or terminals linked to the mainframe, there is going to be a

scarcity of resources if everyone decides to design from scratch on-screen.

I know from experience that it is easier to start the design on paper, because you are

not restricted physically in the same way. With an editor you have to use edit

commands to do anything and the screen size is limited, and usually makes it difficult

to compare different sections of code. Although using multiple windows (as with the

EMACS or SunTools editor) can lessen this effect. But the real advantage of paper is

that you can switch between sketch and write mode instantly, and go from one location

to another (either within a page, or document, or even from document to document)

freely, without issuing a stream of commands that break your train of thought. This is

what Green (1989) calls role-expressiveness of the interaction medium. With pen and

paper role-expressiveness is high, but with an editor it is low.

However, for a 10-20 page program, after the basic design is sketched out on paper

and has gone through a couple of revisions to smooth the joins between algorithms and

differnet modules; it becomes increasingly irksome to copy out all previous text in

order to add or change details. Not only does the paper get dog-eared and so full of

writing that it is difficult to add further details, but it begins to become illegible. This

leads to the misplacement of lines of code, so that the sequencing of events or data

modifications becomes incorrect and muddled. Also, transcription errors become

more likely as the copying process reiterates from one full sheet of paper to a clean

sheet. Thus, it is much quicker, simpler, and less error prone to get the text onto the

computer, so that the printer gives a fresh, legible copy for the programmer to amend.

Q27 Students' Prior Use of Computers & Programming Languages

Out in the real world, prices of personal and business computers continue to drop, and

sales increase, making it relatively cheap to supply each employee who needs one with

a computer. With the advent of the Sinc1air Spectrum, Amstrad and the IBM

machines in the early 1980s, came the concept of the Personal Computer for

"ordinary" people. And it is no longer uncommon for a family to possess a computer,

whether for wordprocessing, desktop publishing or programming.

C A Humphreys - 60 - Chapter 3

According to data supplied by the students regarding previous experience of computers

and programming environments (see Appendix 3B); 41 students had prior working

knowledge of computers, and 28 students were familiar with at least one programming

language or environment. Only 5 students said that they had not used a computer

before starting the undergraduate course; 9 had used one form of Basic or another; 18

had already used at least one version of Pascal (but not MacPasca\); 5 had used

different versions of C, and 3 had used different versions of Cobol; 6 list VML

(Virtual Machine Language) only, and 14 skipped the question. Thus it is probable

that at most 25 students (including the 5 students mentioned at the start of paragraph)

had not used a computer before the course began. So 25 out of 66 (37%) students

were not computer literate, compared to 63% who were.

3.3 Conclusions Resulting from Preliminary Data

Quantitatively speaking, the Frequency of Tool Use data was most interesting. It

showed that many of MacPascal' s inbuilt tools were under-utilised by the students.

This may have been due to the students' lack of confidence or reluctance in trying new

tools out, being novices; or simply due to laziness, in avoiding the learning curve for

each additional tool; or because they hadn't done enough programming to bulk up the

frequency mean values to their "true" values (analogous to the law of averages).

That 25 (37% of) students had not used computers before starting the course might

explain the low use of debugging tools, and the difficulties encountered with the

search mechanism. After all, it is difficult for novices to appreciate the difference in

effect when a search task is case sensitive, rather than case insensitive. In everyday

life, case sensitivity is ignored by and large, since the message matters more than the

presentation case-wise.

Thinking back, I don't actually remember anyone telling me how to use an editor.

The most help current students had was probably a brief description or demonstration

of how to use the mouse to pull down menus, and to select an option. With no further

help, unless they were given a (written) "step by step" example editing session to

follow and try out. I don't know that any programming class ever discusses the tools

provided by an enviromnent. Learning to use an editor is a question of trying things

out, and seeing what happens. Building an internal model of editing operations as you

go along, and watching how other people use the tools, or asking "how do I do ... 1".

Recapping, the ranking of MacPascal tools regarding Frequency of Use are :-

Go, Check, Paste, Cut, Copy, Reset, Font Control, Step-step, Step, Clipboard,

Replace, Find, Go-go, Observe, Stops in, Instant, and Indent Control.

Whereas the overall rankings are:-

Go, Check, Paste, Cut, Copy, Font Control, Step-step, Reset, Clipboard, Go-go,

Observe, Step, Replace, Stops in, Find, Indent Control, and Instant.

C A Humphreys - 61 - Chapter 3

That programming involves a lot of text juggling is borne out by the positioning of

"Paste", "Cut", "and Copy", within the top 5 tools. It is obvious that the "Step"ing

tools are the most popular for debugging. The others are way behind the field. As

stated earlier, the students' prefer to insert "write" statements in the code, rather than

using the other debugging tools provided. Inserting "write" statements is a well known

and probably ingrained programmer behaviour, which aids debugging independent of

the tools provided by the programming environment. Perhaps more importantly, it is

simple, effective and completely under the programmer's control, and is applicable

across ALL systems. Thus providing debugging information without having to learn a

variety of other debugging tools and their quirks.

Finding out that 28-30 (45 % of) students do not use the "Find" and "Replace" tools at

all was unexpected. Either there is a fault with MacPascal' s search string recognition

algorithm that needs to be fixed; or the students need to be shown how to set up the

options correctly. Using visual inspection as an alternative is slow and prone to error.

Although invisible character problems were seen on a MacPascal system, they affect

other programming systems as well - including Vi. It is about time that the creators of

editors and editing environments, either developed filters so that invisible control

characters cannot be inputted into program text, or a means of showing their location

and eliminating them was provided.

The ranking data showed that emboldening reserved words seem to be appreciated by

most students. Colour could also play a useful part in tasks requiring visual distinction

or differentiation within an otherwise bland monochromatic program text. To show

the location of each instance of the search string within the text, for example.

Particularly, if the user's goal is to follow a variable's trail- by rmding all instances

of that particular variable name.

Increasing the Macintosh's screen size would help a lot - it is just too small. In fact

the reason the students use the font control tool so much is to reduce each character's

height and width. So that they can squeeze as many characters onto the screen as

possible and avoid unnecessary window movement and resizing. A problem that could

be reduced significantly, by increasing the screen size, and the number of characters

that it can hold.

The main difference between MacPascal and most other procedural programming

environments, is the fact that the programmer is forced to fix errors one at a time,

instead of being able to generate a list of all errors, in one go; so that he/she can

consult the list whilst modifying the program text in the editor. The latter is much

faster because you don't have to keep popping in and out of the editor to check

whether you fixed the last error and can now go on to the next. Thus wasting less

time and mental energy per error fix. Nanja & Cook's (1987) data shows that

experienced programmers tend to fix several errors at once, in bursts, rather than one

C A Humphreys - 62 - Chapter 3

error at a time. So a "fix one error at a time" based environment is contra-indicated

for experienced programmers. Although it might be more helpful to tITst time

programmers since it concentrates their attention on fixing one error at a time, instead

of overwhelming them with a long list of errors (Shneiderman 1980).

Looking through the list of suggested enhancements, there is still a need for a wide

variety of programming tools, as well as modification to existing tools. There is also

a need for more debugging and checking tools. Syntax errors are most frequent

according to §3.2.4.1, but are usually easier to fIX than semantic errors. A syntax

checking and assisting tool, incorporating a semicolon adding feature, would reduce

syntax errors substantially. Particularly, if it fIXed simple syntax errors like missing

semicolons, and suggested solutions to more complex problems. Such as the

placement of a missing "end", but left the fmal decision to the user.

The need for more accurate and informative error messages cropped up time and

again, and MacPa~cal is not the only CUlprit. Most programming system messages are

uninformative and incomprehensible to some degree. Perhaps in the past the shortage

of memory dictated the need for short, terse messages. But this is no longer the case,

and the programmer's time should not be wasted in error decryption.

The observation data showed 4 types of problems: learning-related, task-specific,

general, and MacPascal-specific. Time and experience usually counteract most

learning and task-specific problems. Although some problems, like infinite loops and

the correct sequencing of variable value changes, crop up every so often. Especially

when there are a lot of variables to keep track of and to control.

One suggested enhancement was for an infmite loop indicator. Either reporting the

loop count at each cycle, or pausing when a user-defmed maximum was reached. In

either case giving the user some control over the situation. An alternative would be to

provide some kind of loop or condition checker. To check that loop variables, values,

and/or conditions are specified correctly. Such as using the right type of variable, and

checking that the loop interval values are in the right order. Thus preventing infinite

or redundant loops from occurring.

The data on students' attitudes towards comments is rather worrying. Out in the real

world, the majority of programming work is maintenance work. Where getting in

tune with an existing program, or body of software, is essential in order to be able to

debug and/or modify it. Comments provide one way of gaining an insight into the way

the code was intended to work by its author. Thus passing vital information to the

reader who needs it most. If the comments aren't there the comprehension task

becomes that much harder, especially if the person reading the code is (initially)

unfamiliar with the role the software plays, viz its operational function and the

consequences of each action in the real life domain.

C A Humphreys - 63- Chapter 3

The program development data shows that the most prevalent design method is to lay

down the broad structure of the program elements. Then to add any missing parts or

details, and to gradually fine tune the program, during the edit-compile-debug or

debug-edit-compile cycle (as Pennington & Grabowski 1990 found, most programming

activities are interleaved, including editing and debugging). This is why it is

important to provide tools to help get the details correct at an early stage. Instead of

letting them get through to later stages when they become increasingly expensive to

extract both time- and damage-wise (Yourdon & Constantine 1979).

As to the question of program text layout - MacPascal emboldens reserved words, and

blocks out program text at 2 spaces per level of indentation (by default), for each

controlling construct. Keeping the indentation of "child" blocks or compound

statements at the same level, starting at the same column on the screen.

Automatic layout relieves the programmer of the tedious job of checking that

. indentation is correct, and the placing of reserved words, thus speeding up text entry.

And, if a loop is added that encircles a section of code, the layout changes

automatically. But automatic layout at present has a fixed format and there is only

one • style " of layout for each construct. The system is inflexible and will not allow

the programmer any freedom of choice in the individual disposition of construct

elements.

In contrast, with free format editors such as Vi, the programmer can layout the text

in any way at all. However, adding or deleting a loop means that all indenting and

reformatting of program text must be altered "by hand" - physically adding or deleting

spaces and repositioning the affected text. A time consuming task that uses up time

that could be better spent on development and debugging.

The students' comments suggest a need for some kind of "hands off" marker, that

would allow them to write code in their own style - if only for specific sections of text

- as well as having the facility of automatic formatting of program text. At the

moment the options regarding text layout are either fully automatic, or fully manual

(do-it-yourself), formatting of text. There are no dual-mode layout tools, as yet. But

perhaps there should be. The data certainly shows a need for them.

C A Humphreys - 64- Chapter 3

Chapter 4 Relating Integrated Editing Tools & Cognitive Programming Tasks

One aim of my research is to try to provide some kind of model that relates software

tools and their usage against the cognitive operations that the solo programmer-designer

uses to drive code production.

4.1 Examining Editing Actions

According to Alien (1982) there are 4 basic text editing actions: insert, delete, modify,

and move. Similarly, Douglas & Moran (1983) define 2 text editor operator classes:

mutative - changing the text; and locative - moving the cursor. Galambos, Wilder &

Black (1983) def'me 2 types of moving operation: ballistic - moving to the general area

of interest; and precise - moving to an exact (x,y) location on the screen.

So, the editor must provide a means of adding, deleting, modifying, or moving text; as

well as relocating the cursor position. For example, by using a mouse, andlor keyboard

based and screen scrolling function keys (for ballistic movement); or using command

mode search functions to move to specific locations (precise movement). In either case

the cursor position focuses visual attention.

Most of these actions are specified by the user and are carried out by the tools

automatically. However, the user can also choose to alter (add or delete) text directly

by manual input through the keyboard. The following categories show the range of

variations in tools and utilities for each of these 5 activities :-

4.1.1 Adding/Inserting Text

o inserting or appending lines of text manually character by character;

o importing text from other files - either whole or partial files; or

ousing a buffer to add partial text from the current file being edited.

4.1.2 Deleting Text

ousing "grammar unit" deletion chunks *; such as delete (from current cursor position to

beginning or end of next) word, line, sentence, paragraph, to end of file etc.;

o using backspace and any other keyboard functions to delete text; or

o using a buffer to delete text from the current file being edited.

* This is usually done using a specific symbol to defme each "grammar unit". For

example, "w" for word, ")" for sentence, '}" for paragraph, and so on.

C A Humphreys - 65 - Chapter 4

4.1.3 Modifying Text

According to Gray & Anderson (1987), a change-episode has 3 stages: the noticing

event, the decision to change the code, and the "the fix" (modifying the code).

Modifying text can be achieved by combining the other 3 text editing operations, or by

using specific modification or change commands .

• small scale text modifications - using the search & replace mechanisms on a word or

phrase. These are usually used to make variable, procedure, or function names more

meaningful. One problem involves determining the "depth" or number of replacements

to be executed. Also determining whether case sensitivity matters. And, deciding

(either beforehand, or on the fly) which strings are, or are not, to be replaced; or

• large scale text modification - using "grammar unit" change chunks; such as change

word, line, sentence, paragraph, to end of file etc.

4.1.4 Moving Text

Text movements can range anywhere from small (a couple of lines) to large (60 lines or

more), with movements based on line numbers or screen coordinates. The latter case is

usually oriented towards marking text for copying or cutting using a mouse or other

pointing device. Using a pointer to specify screen coordinates, such as (xl,yl) and

(x2,y2), to mark the start and end positions for copying or cutting means that partial lines

can be included as well as whole lines .

• small scale movements - moving one or more lines of code up or down within a loop or

procedure body to occupy a more relevant position; or

• large scale movements - altering the order of procedures or subprocedures, either by

shuffling the relative positions of 2 or more procedures, or to combine (nest) 2

procedures, or to extract a child procedure from its parent (to make them independent).

Text copying and cutting can be achieved by yanking 1 or more lines of text into a

general purpose buffer; or specifically defming which line numbers or sections of

contiguous marked text are to be copied, or cut and pasted. In copying the original text

remains where it was, and a copy of it goes into the buffer; but cutting removes the text

from its original position, and puts it into the buffer.

4.1.5 Moving The Cursor

.moving around the text by changing the cursor position - using moving

commands/mechanisms: mouse movements, cursor control keys; operation of file, page,

line or screen related control keys (such as go to start or end of file, up or down 1h page

or screen, go to line 200 etc.); or

.using find/search mechanisms to enable movement to an area of text which contains

the search string; or to confirm or refute the hypothesis regarding the existence of such a

search string (eg. if search string "xxx· carmot be found then variable "xxx" does not

C A Humphreys - 66 - Chapter 4

exist}. A critical aspect involves determining the position from which the search is to

commence ie. at the top of the file, or at the current position, and whether the search is

to be case sensitive or not; or

• using search and moving commands in combination - either to view a section of code in

the current window or outside it. Text reviewing can be used to check that the previous

operation (eg. text copying or deletion) had the desired result, if not then another cycle

of activities will have to be set into motion to rectify this.

4.2 Comparing the Editing Tools of MacPascal & Unix's Vi

The editing tools of MacPascal and those associated with Unix's Vi editor will be

compared with regard to the mutative editing actions. To see what variations exist, and

what effect, if any, they have on the programmer and the programming task.

Unix's Vi was built by programmers for programmers. So it should exemplify a good,

possibly complete, set of programming tools. Although it takes most people some time to

get used to, mainly because there are no visible hints, in the form of menu labels. Vi

has a terse user interface *, and depends mainly on the programmer being able to

remember its commands, a~d how to combine them **.

MacPascal, on the other hand, has a graphical WlMP interface, which novices find

relatively easy to learn. Menu labels at the top of the screen cue the programmer as to

where to look for each tool.

4.2.1 Allocation of Mutative Editing Functions

MacPascal's tools are allocated to the editing functions as follows :

Insert: paste, clipboard, and keyboard text entry;

Delete: cut, replace (using a "null-string" argument as replacement), and keyboard

deletion functions (such as backspace);

Modify: cut, paste, replace, clipboard, and keyboard text entry and deletion functions;

Moving text: copy or cut, and paste; in addition to using cursor moving commands; and

* However, a help function is available. Pressing the "?" key prompts the system to

present a very brief description of each command and what it does.

** Several interfaces have been built to shield the user from Unix's brusqueness, and to

make commands (and their parameters) easier to learn and combine: namely, SUSI

(Jerrams-Smith 1985), Unicon (Gittins, Winder & Bez 1984), and Omni (Arthur &

Corner 1987).

C A Humphreys - 67 - Chapter 4

Vi's mutative commands are: change, copy, move, and delete. These commands are a

little more complex than MacPascal's, and are based on 3 text views: line numbers;

"grammar units" (using symbols representing word, line, sentence, paragraph, to end of

file) relative to the cursor position; and marked text. Text that is referenced by line

numbers or has been marked can be moved, copied, or deleted; whereas "grammar unit"

text can only be changed or deleted. For example, typing "dd" followed by "c3)"

deletes the current line, and then changes the following 3 sentences.

Thus, of all 4 commands, only delete works on all 3 text views. Vi's main editing

functions, based on line numbers, are invoked using the command mode ":" prompt.

However, the scope of the commands based on line numbers is increased by the use of

the current line symbol "." that modifies text relative to the current line. For example,

":d.,. + 5" will delete the current line, and the following 5 lines.

4.2.2 Comparing How MacPascal & Vi Operate

MacPascal and Vi cover all the basic editing functions, but they are not identical

regarding flexibility, or power and subtlety in the range of actions or effects that can be

achieved. Basic cursor movements are similar, depending on keyboard based cursor or

screen scrolling functions (plus mouse movement for MacPascal), or by locative

(search) mechanisms.

Text Entry & Moving Mode

Text entry in MacPascal and Vi means typing in program text, character by character,

using backspace to delete the odd unwanted character as it occurs. In MacPascal,

control remains in text entry or moving mode all the time; except when one of the tools

is invoked using the mouse or control codes. After using a tool, control returns to text

entry or moving mode. However, with Vi, only the cursor controls and screen scrolling

functions are immediately available. Insertion (or overwrite) mode has to be invoked

(and subsequently exited) using an appropriate key presto Vi's insert mode adds

characters to existing text at the cursor position. Overwrite mode deletes one old

character for each new character that is entered.

Cut & Copy

In MacPascaJ, areas to be cut or copied are defmed by marking the start and end

locations by mouse or cursor movements **, and then activating the cutting or copying

operation. With Vi, cut or copy can be achieved using line numbers or grammar unit

(word, line, sentence, or paragraph) symbols to define the relevant section of text with

respect to the cursor's current position.

I. Using the "Escape" code followed by: Hi" or "I" for inserting; or "a" or "A" for

appending text. To exit insert or append mode "Control-Z" has to be activated.

** All text within these bounds is put in inverse video, so that the programmer has clear

evidence that the text has been marked, and where the start and end markers are.

C A Humphreys - 68 - Chapter 4

There are other variations in the operation of the copying or pasting buffer. In

MacPascal (as with most editing buffers), the previous contents are erased and replaced

by the new contents. But with Vi, the programmer can choose to append the new

section of text onto the existing buffer contents instead of erasing them. This enables

previously separate sections of text to be combined into a larger single contiguous body

of text. For example, accumulating an index from separate section headings.

Locative Commands/Tools

Vi and MacPascal both provide fmd/search mechanisms. The location of the search

string is indicated by the cursor flashing on the first character of the search string within

the text. Vi uses "/search string/" for forward search, and "?search string?" for

backward search. In contrast, MacPascal only provides forward search; although it has

options for case sensitivity, and whether to search for whole or partial words. The

latter options are absent from both V AX and XENIX versions of Vi.

4.2.3 Summary of Editing Tool Usage

In general, the add, delete, modify, and move text commands/tools are used for text

composition and modification. While the cursor moving and search mechanisms are used

while reading or scanning text for the various purposes of comprehension and debugging

(Davies 1989; Robertson, Davis, Okabe & Fitz-Randolph 1990). Search commands can

be used to follow a variable trail through the code to gather information on its function

and use in the code.

Vi's search and replace commands are more comprehensive than most, since they

include symbols that defme the start and end of lines. This makes them much more

useful as it allows text to be added or deleted from the start or ends of lines which is

impossible otherwise. Vi's wildcard attributes also extend the flexibility of the search

and replace tools, by matching one (or more) characters that prefix or postfix the

actual/specific characters defined in the search string.

As well as providing forward or backward search, Vi also has a confirm option which

can be applied to the fmd/replace command. This allows the programmer to check that

only relevant strings are swapped. One very useful feature of Vi is the "undo·

command that restores the text state as it was before the last command was carried out.

This helps to remedy many "action slips' (defined by Green 1989), where the

programmer specifies and executes the wrong command instead of the intended one.

There are no specific debugging tools available within Vi itself. Debugging tools are

generally geared towards the analysis of test data (and setting breakpoints) rather than

assisting with conceptual debugging. However, MacPascal's Step, Step-Step, and

Observe tools are geared to support/automate hand simulation. Step and Step-Step

C A Humphreys - 69 - Chapter 4

execute the code line by line at the user's required speed; whereas Observe reports the

values of variables that the user has selected for investigation.

4.3 Reprise of Programming Tasks From A Programmer's Viewpoint

§2.2 covered the programming task mainly from a process viewpoint. In this section it

will be covered from the programmer's viewpoint as a practitioner. The former dealt

with what happens, the latter will attempt to explain the why and/or how of real life

software design.

4.3.1 Programming & Editing Shortcuts

Most programmers (including the author) have a penchant for taking a chunk of existing

code, moving it to a new location, and then editing it into the required form. Either

wholesale, using an entire program as the base material to produce a variation on the

original source code (Detienne 1990); or on a smaller scale, say a variation on a existing

procedure or block. In the either case, the search/replace mechanism can be used to

replace old variable names with new variable names appropriate to the purpose of the

new segment. The copy function can also be used to reproduce partial templates or

programming plans. For example, to duplicate a skeleton case selector block (compound

statement) On" times, to reduce the time needed to produce "n" different individual

templates having common features. Each individual template can then be filled with its

own specific details.

There are several other short cuts that the programmer can use ;-

1. Importing an external file holding ready prepared procedure and function outline

templates; or any other significant code skeletons that speed up code production.

2. Instigating the pairing of "reserved word bracketing" templates. For example,

always on producing "begin-end" loops, write the "begin" and "end" on separate lines

(with the fust character of each word at the same column on screen) and then fill in the

middle. This ensures that there is an "end" for each "begin" and that they have the same

indentation. The same theory applies to the positioning of other pairs or multiples, such

as, "repeat-until" loops, "if-then", and "if-then-else" statements. This method has the

added benefit of reminding the programmer of empty parts that are to be filled in later,

and ensures that component parts have the same indentation.

3. Using auto-indent inside the Vi editor to bring the (fust character of the) current line

to the previous line's last level of indentation, to ensure that indenting occurs at the

required position. Thus making the pairing process much easier and faster.

4. Automating as many repetitive actions as possible using macros or shell scripts. For

example, setting up macros to compile code and then link all required libraries together

to produce executable code, and, if necessary, to put new executable code in a specific

C A Humphreys - 70 - Chapter 4

directory (Berlin 1993). The aim is to avoid unnecessary typing, to eliminate time

wasting typos, and to maintain consistency. A correct macro will run properly each

time; whereas a hand inputted one - typed in anew each time - is prone to errors.

NB. Since MacPascal formats text automatically, the alignment of colunms of code is

done without further effort from the programmer - thus saving time, although the pairing

tactic is still useful.

4.3.2 Software Design in the Real World

Each software project derives from the task or system requirements. These are usually

expressed in the specification document. Written in good old ambiguous English.

Varying anywhere between a very vague idea of what is needed, to very specific details

- such as descriptions or mock-ups of screen layouts to be used in the end product.

However, as Visser 1987, Detienne (1990), Visser & Hoc (1990), Green (1990a), and

Guindon (1990) note, the specification is rarely complete, and much detailed information

has to be unearthed, clarified and interpreted by the designer in order to understand the

true extent of the required system, and its idiosyncracies.

Understanding the Problem - Comprehension

As stated in Chapter 1, I spent 3 years programming commercially, designing and

developing Process Control (Pascal) software. Each new project started with a brief

(usually verbal) description of the proposed system from the Project Engineer; followed

by a discussion of what was wanted, and how it was expected to work in very general

terms. After receiving a "system" specification, the first thing to do was to read it

thoroughly. Making notes as to the main points of the system and grouping items together

generically. With some specifications the programmer has to hunt through the

documents, deciding which pieces of information need to be grouped together.

The primary task is understanding all the parts of the system, how they connect, and how

they are expected to operate individually and then as part of the integrated system. This

constitutes what Pennington (1987) refers to as the domain model. The next task is to

design the software to fit the task. Understanding the problem (via the domain model)

and designing a software solution (building a program or application model) progress

until convergence - until the design solution covers the design problem to the required

depth. Understanding the main function(s) of the system in terms of both models, and

being able to cross-reference between them is crucial to the design. Any faults in either

of the models, or in the cross referencing between them, means that the programmer

will not be able to translate the problem into the appropriate design terms, or vice versa.

C A Humphreys - 71 - Chapter 4

Programming Practice - Coding

Lammers (1986) has found 2 distinct poles on the programming in practice continuum.

Those programmers who write out paper designs first (whether in flow chart, Jackson,

Yourdon, Wamier form) and who then translate the design into code on paper or screen;

and those programmers who evolve the design of the software and the corresponding

code simultaneously at the terminal. Green 1990a refers to these as the "neat" and

"scruffy" ends of the programming poles. However, most software design falls into a

region between the 2 poles. Where the programmer works out the central algorithms

and data structures of the problem on paper (the software skeleton), which is then

transferred to the computer and modified until it fulfils the requirements. The data of

chapter 3, on the design development method chosen by student programmers, confirms

that software usually follows an opportunistic and iterative design method.

One of the main reasons I prefer the latter method is that, after a while spent designing

on paper, I find myself continually copying out whole chunks of code, just to insert a

few more lines of code in the right places. And, after the second set of rewrites I get

very frustrated, because with every hand copying operation there is the chance of losing

or inadvertently modifying code and introducing bugs. So that the code will not work as

intended. It is much easier, to my mind, to get a printout of existing code and hand edit

it, then transfer it into the computer via screen editing, and then to print a new copy,

than it is to keep producing hand copied versions, which tend towards illegibility after a

while (due to hasty copying etc.).

4.3.3 Summary of Typical Design/Coding Strategy

For programs of less than 20 pages, or 1200 lines, of code; the iterative software design

method runs as follows (as observed with student programmers of chapter 3, and

consistent with personal experience):-

1. Mainly mental operations: reading the task description or specification thoroughly,

making written notes en route, to get the main thrust of the requirements. Any

ambiguous or conflicting requirements should be noted and resolved by consulting an

authority on those particular details. Guindon (1990) confirms these essential fact

finding phases of the software design task.

2. Externalising the internal representation using pen and paper: writing down the

central and sub-algorithms, and all associated (obvious links) in English, semi or full

Pascal, pseudo-code or some other notation. Each component of the program, module or

procedure, is designed, in turn, by continuously decomposing and elaborating design

goals, whilst keeping in mind any interactions with existing (or proposed) modules or

procedures (Green, Bellamy & Parker 1987).

C A Humphreys - 72- Chapter 4

3. Editing at terminal: transferring the central and sub-plans into program form and

filling in any missing programming plan or language details as needed.

4. Design verification and evaluation: checking for congruence between the

specification, the mental representation of the code, and the code itself; with the aim of

resolving any inconsistencies. Mental simulation is used initially (during the parsing

gnisrap cycle of composition) to check that all design elements of each individual

programming plan are in place and that they work as intended. See §4.3.5 for a full

breakdown of the checks. As code grows, due to the addition of all the implementation

details needed to flesh out each tactical plan, so must the corresponding mental

simulations required to check it. However, due to working memory limitations, these

simulations may only cover the "essential" parts of a plan rather than the whole plan

(Guindon 1990).

5. The next step is to test thoroughly. Firstly with expected data - if this passes without

a hitch, then invalid data is run through. To verify that adequate and appropriate error

response or prevention is in place and working as expected.

6. Debugging: any design faults or bugs found in previous stages are eliminated.

In more general terms, these stages can be defmed as: problem understanding; design

composition; coding; design verification by mental simulation during composition;

thorough testing; and debugging.

4.3.4 Summary of Design Stages

Thus, on one level we have: design specification -> translation -> code

On another level we must verify the correctness and veracity of the translation

On yet another level we must verify the design's correctness and suitability - this means

that the software and its outputs must conform to both the design specification and the

user's requirements. If there is a conflict between design specification and user

requirements, then the latter should take precedence, since the design specification is

supposed to be a distillation of user requirements. If there is a discrepancy, then the

design specification has failed to capture the user's real requirements fully, or

sufficiently accurately. Meeting the user's needs and achieving user satisfaction is more

important than blind and unswerving conformance to the design specification.

C A Humphreys - 73 - Chapter 4

4.3.5 Pre-execution Actions

After the program runs through the compiler without errors, it is usually a good idea to

make a final run through of the following checks before starting testing. Many checks

are made during composition to make sure that all the elements of each plan are present,

but it is best to double check and eliminate obvious bugs before testing.

ovariable declaration checking - checking that each variable has been assigned to an

appropriate data type and data range;

o variable scope checking - making sure that local and global variables are used

correctly, and within the bounds associated with the original data types;

o checking for correct initialisation and re-initialisation of variable values;

o checking that all variables are kept within valid ranges according to the specifications;

o checking the parameters of procedure and function calls against their declared

(formal) parameters to see that they match - type-wise and activation-wise;

o checking that "var" and non-"var" parameters have been assigned correctly within

each procedure call and appropriate to the procedure's parameter declaration;

o checking that values are passed back through "var" parameters to the appropriate

variable; and that the correct non-"var" variable has been passed to the procedure call;

and

o checking that the order of variables in the parameter list match up properly. For

example, should order be calc_range(min, max) or caIcJange(max, min)?

C A Humphreys - 74 - Chapter 4

Chapter 5 Discussion of Possible Tools

Looking through the list of enhancements and programming problems in §3.2 (and the

checks of §4.3.5), checking aids seem to be in greatest demand. Mostly to reduce

syntax and semantic errors at the coding stage, and runtime errors later on.

5.1 Programming Problems and Possible Tools

The following list is a distillation of those problems that need to be addressed:

• invisible control characters;

• incorrect or non-initialisation of variables before use;

• incorrect sequencing of variable value changes;

• infmite or redundant loops, due to incorrect initiating and/or terminating conditions;

• eliminating unused variables, procedures or functions;

• undeclared variables;

• incorrectly specified procedure calls arising from defective parameter lists (too

few or too many variables, or mis-ordering of variables in parameter lists);

• applying the wrong or inappropriate function to a variable;

• type mismatch between left and right sides of an assignment statement;

• placement of brackets to get correct interpretation of an expression; and

• missing or mismatched bracket problems, due to one of (,), [,], { or } going astray.

As stated in Chapter 3, the invisible control characters are a problem because you

can't see them. If you could make them visible using something like inverse video

they wouldn't be such a problem, because you could eliminate them straight away.

It is an accepted fact that most programmers debug their software by applying pen

(and mind) to paper text (Eisenstadt 1993). One particular debugging tecImique is

trail following. This requires each occurrence of one (or more) specific variable(s)

"names" to be highlighted through either a specific section of text, or throughout the

entire text; so that its trail is easy to follow. A forward (top-bottom) search is usually

taken to mark each occurrence of the suspect variable. Using a forward search also

helps the programmer to gather control flow and data flow information pertaining to

that variable. Whereas back tracking helps the programmer to take note of the • most

recent" variable values that had an effect on the suspect variable's value or state.

Thus forward search establishes locations, and backward search establishes prior

contacts with other variables.

An editor's search mechanisms can also be used to follow the trail of a variable. One

aspect of the search mechanism is to ''fmd· the required string, to locate it within the

text. Another is to be able to n see" it within that text, to be able to distinguish it from

the surrounding text, yet to be able to see it in context. The former is a location task;

while the latter aspect concerns visibility (and discriminability Green 1989). Thus the

search mechanisms bind identity, spatial location, and context, using a visual marker.

C A Humphreys - 75 - Chapter 5

For most search mechanisms this visual marker is unique - viz the cursor position - and

only applies to one instance of the search string at a time. The cursor blinks on the

frrst character of the search string, but the rest of the screen remains visually "bland"

and unchanged. Once the cursor moves to the next search string instance, you lose the

visually indicated position of the previous one. This is the main reason why

programmers have to resort to marking up a variable's trail manually, using visual

inspection on a printout. A laborious, tiring and tedious job where it is easy to miss

one or more instance's of the variable the frrst time round; and all because there is no

such facility provided by the programming environment.

One of the most common syntax problems that most programmers have is the

undeclared variables problem. The main problem with this is that you can't get a list

of the undeclared variables, and it is difficult to remember them unless you write them

down. What you are really looking for is a list of them so that you can refer to them

easily without having to write it down yourself. Thus the main problems with

undeclared variables are:

• getting a list in the first place (difficult using visual scanning alone, and even

compiler messages do not list the required information in its most useful format); and

• seeing that all undeclared elements are accounted for - either they get declared, or

they get reassigned (misspellings/typos), or they get scrubbed (redundant variables).

Providing an easy means of transferring an undeclared variables list to the appropriate

declaration area (either in part or in whole) would probably speed the whole process

up. So, how about a tool which generated an undeclared list for each procedure, that

could then be transferred into the appropriate declaration area (at the user's request),

to ensure that all undeclared items get transferred, and have a good chance of being

assigned.

One of the enhancements suggested in §3.2 was user control of text formatting. This

presents the problem of combining automatic text layout and catering for a range of

different layout styles, so that each user gets fast layout of text in a familiar style.

Defming better screen moving commands and search facilities, and the use of colour

on screen, are all good ideas, but they need further thought.

My "[lIst-thOUght" solutions to these problems are as follows:

Layout style determiner/generator:

Display different versions of each construct's layout, and correlate each style to an

option number. The user selects a layout style for each construct in the programming

language, resulting in a matrix of selected options, that defme the preferred layout

style for that language. For code entry: either code is set in directly according to the

user's manual layout (as the user enters text, as with MacPascal); or templates are

selected and filled in on screen.

C A Humphreys - 76 - Chapter 5

Autocompletion & Templates:

To provide a terminating symbol to match the current symbol ego to provide a ")" for

each "(" generated. This tool could also produce an "until" clause at the same level

of indentation, every time a "repeat" was typed in; or a "repeat-until" template could

be called up on a window, filled in, and then transferred into its fmal position in the

program text.

Visibility Aids: To provide a means of highlighting all instances of a given word,

phrase, or symbol (or illegal control codes).

Procedure & function declaration checker:

To show the names of all built-in or user defined procedures and functions via a menu

window; selecting a given name would cause the associated parameter list to be shown

in a child window. Access to the names and parameter lists of the built-in procedures

and functions would act as an on-line reference for users, so they wouldn't have to

waste time going through the manuals (or re-inventing the required code from scratch)

- providing there was a brief description of the effects of each procedure or function.

'Variables' declaration checker:

A menu system could list "variables" either in order of declaration precedence or

alphabetically, with an option on global or local "variables". "Variables" could be

partitioned into data types: real, integer, char, boolean, and array declarations. That

way it might be possible to associate another file with each partition of "variables"

which could indicate the functions or operators that can be applied; thus detecting

"illegal" operators.

"Variables" could include "const", "type" and "var" declarations, or each different

type of declaration could be considered separately.

An "undeclared variables" list could be produced as well. This would contain all

"words" that are not already declared either locally or globally within the scope of the

parent procedure or function, or as a reserved word, or the name of a procedure or

function.

'Statement" checker:

To check that applied functions and variable types match; a pre-compiler checker.

For example, checking that real values were not assigned to integers unless a "trunc"

or "round" function had been applied to the real part of the expression beforehand.

Also to check that the left and righthand sides of the statement were data type

compatible. So that a real value was not assigned to an integer variable for example.

Loop checker:

To check that loop variables, values, and conditions are specified correctly - using the

right type of variable, and checking that the loop interval values are in the right order.

For example, a "for" loop can use an integer or "char" typed variable, but not a real.

C A Humphreys - 77 - Chapter 5

i
1
I
1

5.2 Choice of Tools For Further Discussion and Development

Current software development systems provide little in the way of decision and

perception aids. It seems that there are 2 types of decision aids:

• those that help you to pick out or emphasize certain facts; and

• those that present facts from a variety of perspectives, thus "simplifying" the

interpretation task.

App[ying inverse video to the search mechanism would certainly act as a visualisation

aid, and would satisfy the former criteria. Whilst displaying the declaration data as a

set of alternative summary menus - and thus acting as an interpretation aid - would

facilitate comparison and interrogation of declaration data.

Reading through the previous section, the tools that need developing fall into 5

categories:

• layout aids;

• interpretation aids;

• visibility aids;

• moving aids; and

• checking aids

Combining visibility and moving aids should produce enhanced browsing and user

control of visiting areas. This should help with the various reading, reviewing,

scanning and navigating tasks described by Baecker & Marcus (1990) as being

involved in the program understanding task.

5.2.1 Layout Aids

The students' comments from the questionnaire showed varying views on automatic

layout of code. From those who didn't mind, and were happy to give up the task of

laying out text; to those who found it difficult to relate to the code because the layout

style was different from their own. Some of the latter group stated quite plainly that

the difference in format reduced the code's readability and comprehensibility, and

made debugging more difficult.

A programming colleague of mine once took it upon himself to reconfigure an entire

program of my code in his own style. His excuse was that some modifications had

been required, and he had done them in my absence. When I read the code to find out

what alterations he had done, I fonnd it incredibly difficult to re-establish my usual

rapport with the code. My mental representation of the code was not

congruent/connected to the new shape and style of layout. I could no longer identify

with the code, and lost my bearings easily, even though the program was one that I

was very familiar with prior to its "cosmetic surgery".

C A Humphreys - 78- Chapter 5

I have asked other programmer's of their experiences with code in layout styles

different to their own, and the majority find it difficult to understand and work with

such code if the style is significantly different. Most programmers can cope with

minor differences, such as having indentation set at 4 spaces per indent level instead

of2.

The interesting question is "Why is layout so important to deSigners?" Perhaps

because:

• it maximizes readability and comprehensibility for each user;

• it maximizes rapport and personal identification with the code;

• it enables placement and (enhanced) memorability of cognitive markers: and

provides a visual pattern, a route for navigation along the paths of software control.

Wiedenbeck (1986a)cal\s these cognitive markers, beacons. There have been some

attempts to emphasize indentation, such as van Laar's (1989) colour coded support

tool. But on the whole the differences between individual layout styles has been

ignored.

The reason for designing a layout aid is to enable each user to maintain his own layout

style, without having standards imposed from above. Where each user selects his

own personal configuration style for each of the constructs from a (pre-dermed)

matrix of layout styles. Notice that this is a reversal of the pretty print standardisation

ideology!

By using the layout matrix it should be possible to reinterpret and reformat other

people's code into your own personal style, which would make comprehension of

unfamiliar code much easier and more straightforward (due to enhanced readability as

a result of stylistic rapport), more efficient, less time consuming, and hopeful\y less

prone to errors. This should be particularly useful to maintenance programmers,

where intimate know ledge of the code is essential, so that the required modifications

can be made without introducing inadvertent bugs. Of course, code could be

reformatted back to its previous style when the modifications had been completed, and

al\ testing had proved it free of errors.

5.2.2 Interpretation Aids - Summary Menus

Current systems provide minimal direct comparison of any significance. Typical

examples are Suntools and Smal\talk, where the programmer can select copies of one

or more (different) sections of code to be put in separate windows. So that they can

be compared with each other, or the current window's contents. None of the systems

I have seen offer any kind of summary/comparison data in a format which is

immediately useful to the programmer. It is always up to the programmer to locate

the required data, manipulate and then interpret it into the desired information, in

C A Humphreys - 79 - Chapter 5

order to finalise decisions. For example, to fmd out whether a variable that has been

assigned a value, is a local or parametric variable; you need to check the associated

declaration area. What you find there determines your next course of action. If it is

a local variable or formal/value parameter variable then it (usually) doesn't matter.

But if it is an actual/variable parameter variable then the assigned value will be

written to the address held by the variable named in the procedure call.

So, the idea behind this tool is to provide alternative means for showing declaration

data so that the correct "perspective view" will enable the programmer to gain the

required information in the easiest, simplest, most "consumable" form. Its purpose is

to reduce the time and effort, and the distraction of switching between declaration

areas to confrrm format and/or content of procedure/function parameter lists; or

checking various declaration lists to ensure compatability with declared data structure

characteristics and/or applied functions or operators. It should also be possible to

create a menu for each procedure/function that lists all unknown or undeclared words.

This should help considerably with the undeclared variables problem. By being able to

compare the undeclared words and declared variable lists, you should be able to sort

out which undeclared words are simple misspellings, and those that need to be

assigned to a data type.

The other principle problem is getting procedure/function call parameter lists

specified correctly. Having a menu that shows the original parameter list declaration

for the chosen procedure/function should practically eliminate this problem.

Main menus needed:

• user procedure/function name list, with parameter declaration list as child for each;

• pre-defined procedure/function name list, with parameter declaration list as child

for each;

• variable declaration list for each procedure/function (parameters + local +
undeclared list);

• alphabetic variable declaration list irrespective of data type class (with pointers to

"parent" procedure/function, and data type class);

• alphabetically sorted data type class variable declaration list (with pointers to

"parent" procedure/function).

5.2.3 Visibility Aids - Spotlighting

The purpose of a visibility aid is to apply visual distinction to important information, so

that it stands out from the background text, but remains in context. Typography uses

various effects to achieve this visual distinction: blocking and spacing; using boxes of

different sizes or with different borders; using italics, emboldening, inverse video and

C A Humphreys - 80 - Chapter 5

colour; or by changing the size of the font - as in newspapers. At present most

programming is done on monochrome VDU screens, although WIMP (Windows,

Icons, Menus, Pointer) systems and colour screens are gaining ground fast. Even so,

few systems have been designed to make use of any typographic effects in the

programming environment - where they would do most good. MacPascal uses

emboldening to distinguish reserved words, but that is as far as it goes.

It seems strange that even such simple, but powerful effects as inverse video have not

been put to better use in an editing context. Although, Unix's vi editor does use a

blinking cursor to indicate the position of a search string when "finding".

The primary idea is to extend the search mechanism by making all instances of the

search string stand out, using a strong visual emphasis, such as inverse video or

colour, to provide an attention spotlight. This spotlighting tool should make following

a variable's trail much easier, and less wearing on the visual perception and cognitive

processing front; since it basically eliminates the "find location" side of the task.

At present the only means of fmding all locations of a given variable is:

(a) by using a feature like Unix's "grep" to show all such lines; or

(b) by using a fmd utility to jump from one occurrence to the next.

The problem with solution (a) is that you only get those lines which include the

variable - so they are on their own, isolated and out of context. The problem with (b)

is that you can usually only travel in one direction (top to bottom) and there is no way

of marking each individual occurrence of that variable, hence you cannot easily locate

the positions of the last and next locations, only the current position is obvious.

With variable trail following, you are following the data flow of that variable, and

examining each operation that affects that variable, in order to detect and eliminate a

bug associated with that variable. With normal text editing you have to rely on being

able to spot all occurrences of a given identifier, to remember their locations and the

pattern of the data flow resulting from each combination of successive individual

relationships. If you could immediately spot each occurrence this would reduce the

amount of short term memory and attention needed to pick out each occurrence every

time you needed to look at it.

Spotlighting could be implemented in inverse video, colour, emboldening, italiCising,

underlining or even by change of font size. If colour or inverse video were chosen,

you could spotlight 2 or more different search strings (multi-spotlighting), and see

where they interacted. For such an apparently simple and obvious innovation -

applying the highlighter pens concept to electronic text - the effects could be

extremely powerful and useful in many different ways. I am particularly interested in

applying it to the programming context, so that it can be of use in various debugging

tasks. But it could be very useful with other forms of electronic text - especially large

documents, perhaps even system specifications!

C A Humphreys - 81 -

I well remember having to wade

Chapter 5

through a hardcopy specification of 100+ pages, trying to fmd all the alann conditions

associated with the system, since they were scattered throughout the document.

In a programming environment, applying the spotlighting tool to an entity (a search

string, or phrase, or perhaps even an expression) would:

• enable easy tracking of an entity throughout the code;

• make visible all statements involving the same entity;

• increase the probability of incorrect sequencing of initializing or terminating

statements involving that entity being seen, and corrected;

• enable cycling through a sequence of undeclared variable names (spotlighting each

one in turn) in order to spot usage characteristics within the code, and hence

deduce prospective data structure; and

• with a colour screen, multi-spotlighting could prove very useful in pointing up the

relationships between different spotlighted entities.

Applications:

• for programming: primarily emphasizing the location of a given identifier. Multi

spotlighting could be done using either a different colour for each identifier or by

lighting a sequence of identifiers in turn (one at a time);

• for spreadsheets: to emphasize all equations that used a particular cell value;

• for electronic documents in general - providing the electronic equivalent of

highlighter pens, with the advantage of being able to produce a hardcopy at any

time, that shows the spotlighted words in context.

The primary idea is to apply spotlighting to a search string using the familiar search

mechanism technique. But this idea can be extended to more esoteric problems. Like

the invisible control characters, that gave me the idea in the fITSt place. It could also

be applied to the missing/mismatched bracket symbols problem, by setting inverse

video on, on encountering a lefthand bracket, and then turning inverse video off, on

encountering the next righthand bracket. This would be invaluable for catching those

missing comment brackets, "}", which cause the compiler to ignore all code or text

appearing between successive "{" and "}" symbols. It may also help keep the number

of parentheses, "(" and ")", equal in complex expressions, and assignment statements.

Even this only points up the versatility of one chosen type of visibility aid. There are

certainly more, this is only one instance of it - the tip of the iceberg. Harnessing

different typographic aspects to tools on VDU screens under user control will surely

provide many more powerful tools. Windowing systems are one aspect of this.

Where each window is a bordered typographic box containing text, that users have

been conditioned to think of as the electronic equivalent of pieces of paper. Where

icons represent actions or objects, such as the filing cabinet or the rubbish bin.

C A Humphreys - 82 - Chapter 5

5.2.4 Moving Aids

Robertson, Davis, Okabe & Fitz-Randolph (1990) have shown evidence of the

programmer's need for easy forwards and backwards movement through program text,

during the program reading/comprehension phase, which are attributed to 6 categories

of programmer motivation - assume, question, answer, analyse, function and strategy.

There are 4 basic movements forward-forward (thus continuing with forward motion),

backward-backward, and the switch movements (when changing direction) either

forward-backward or backward-forward. This means that design must be geared to

extend the variety of existing moving commands to fit in better with programming

habits and task characteristics.

The 2 principal reasons/motivations for movement were:

.forward-forward - function & assume;

• backward-backward - question & strategy;

.forward-backward - strategy & function; and

.backward-forward - function & assume.

Davies (1989) has identified several aspects of programmer behaviour - most

significantly the frequency with which inter- or intra-plan jumps are made. These

results are corroborated by Green, Bellamy & Parker's * research and indicates that

moving aids should extend the variety of existing moving commands to fit in better

with known programming habits/task characteristics. In short, to enable:

• free movement, forwards or backwards, between points that are significant to the

programmer without arbitrary restriction; and

• immediate transit between points of interest to enable relevant code review and/or

tuning of software in light of current design decisions (ie. to ensure compatibility).

For example:

.to move relative to the screen (visual page) size ego up or down one screen or more;

• implementation of markers to enable flipping between alternate sections of code;

• to go to defmite areas within a procedure boundary such as the declaration area,

frrst/last line of code, line N of a procedure/function; and

• to go directly to the start or end of a me, or to line N of me (assuming definition of

line numbers is available on user's request).

Also, being able to move between spotlighted entities would be very useful. The role

of moving aids is essential to the programming task as it supports the program

comprehension tasks defined by Robertson et al. Thus freedom to move around the

code is paramount.

* Green, Bellamy & Parker (1987) found that Pascal programmers tend to traverse

their programs more often than Basic or Prolog programmers.

C A Humphreys - 83 - Chapter 5

5.2.5 Conclusions

There are still not enough checking aids provided by the compiler, but I am more

interested in developing tools that aid decision making. As it is more useful to make

relevant information more visible, and to provide alternate interpretations of

information, in order to eliminate errors at source, and to reduce the overall

perceptual and cognitive effort needed to extract relevant information. After all,

picking out the relevant information is the first step in decision making; particularly

when it comes to debugging.

Most errors arise through a combination of interrupted tasks, carelessness,

inattentiveness and forgetfulness. The earlier they are eliminated the better, since the

cost in terms of time and effort increase geometrically the later the bug is discovered.

According to Baecker & Marcus (1990) • Program visualisation is the use of graphics

(induding typography, graphic design, ... , and interactive computer graphics) ... to

facilitate the development, understanding, and effective use of computer programs by

people.· Current program visualisation is inadequate at present, and needs to be

extended further and more fully, to get the best effect. Beginning with the more

extensive, but considered, application of typography and visual enhancement to

computer-aided text processing tasks, in a decision aiding capacity. These tools

should speed up error correction and detection during the code development stage,

where bug costs are lowest.

C A Humphreys - 84 - Chapter 5

Chapter 6 Design & Application of Proposed Tools

This chapter is derived from a paper (Humpbreys 1992) presented to the Psychology of

Programming (Special) Interest Group Workshop (PPIG-4) held at Loughborough

University from 2-4/1/92. It contains a discussion of the conceptual design of each

tool, its relevance to the area of application - and examples of what the tools would

produce viz the visual effects (on the program text or user interface), and how it could

be used; including outlines of proposed implementation or implementation issues.

An application was made to LightSpeed Pascal and other software providers, for

access to the source code, outlining the nature and applicability of the tools and the

necessity for full integration with an existing environment. However, no software

was forthcoming, so a working, fully integrated implementation was out of the

question. The alternative was to produce paper designs, and demonstration art-work

to simulate how the tools would look, and how they could be used. This helped to

focus conceptual design on the primary features of each tool, and the essential

characteristics that would make them useful in the programming tasks.

Examples of layout variations follow the initial section on layout aids. The remainder

of the chapter is devoted to the spotlighting and summary aids.

The spotlighting and summary table tools have been applied to Siddiqi's Signal

problem, as a means of showing their essential characteristics and features; and how

they can be used. A complete, commented program listing of the solution to Siddiqi's

Signal problem, plus the full statement of that problem appears in §6.2 (near the

beginning). This particular problem was chosen because it has a short, simple solution

that only required a few variables, but is long enough for the purposes of effective

demonstration of both tools.

Note that:

All example program listings are in Pascal, but all tools should be applicable to other

procedural languages as well.

The terms summary tables and summary menus are used synonymously.

For brevity, all references to procedures will be regarded as referring equally to

functions, on issues such as parameter calls, and the scoping of variables etc. Any

specific details regarding the data type of functions will be discussed separately.

C A Humphreys - 85 - Chapter 6

6.1 Conceptual Design & Tool Relevance

The central concepts behind the tools are:

• Using typographic effects to (attract and) focus visual attention and to support those

programming tasks dependent on visual processing (spotlighting).

• Reducing information processing burdens by providing essential information in

alternative formats (summary tables/menus).

• Supporting individual aesthetic requirements and promoting visual rapport between

the programmer and the program code being developed or debugged (layout aids).

6.1.1 Layout Aids

The idea of this tool is to enable any program to be laid out according to the

programmer's own particular preferences. Thus enhancing the visual and mental

rapport with that program, and making it easier to understand.

The main layout factors are indentation and the relative disposition of the

programming constructs. The indentation has quite a drastic effect on the code. If

you indent by I space each time (for each new block level) then of course your code is

going to remain much closer to the lefthand edge, whereas, if you indent by 4 spaces

each level, then you're soon going to reach the righthand edge of the page, and you

are going to run over lines much more quickly. Most programmers seem to prefer 2

spaces per indentation level.

The layout aid is intended to format program text as you type it in or modity it, or

alternately to reformat someone else's code that you have to work on. Observations

and the results of the questionnaire (in chapter 3) show that people have their own

different approaches to the layout of the code. Having a particular piece of program

text in your own layout provides the mental rapport which you really need to get a grip

on the code itself. In effect it is your own personal interface to it. If you have to

work on a program text with a different layout style to that which you're used to; then

it is that much more difficult to get into the feel and flow of the program - it seems to

interfere with the comprehension (program understanding) process.

Before the tool can be used for the first time, it will have to be set up to handle all the

different variables that can be applied to program text. Such as the indentation, and a

matrix of choices to defme how each of the different program constructs are to be laid

out (see below).

The basic procedure will be to go through a series of layout options, selecting the

preferred layout for each individual construct. Resulting in a matrix of choices

defming the preferred layout for each construct in the programming language. These

defmitions can then be used to lay code out in your own sty le as you enter or edit it.

C A Humphreys - 86 - Chapter 6

So that it is immediately acceptable to you, and more amenable for your mind to get a

grip on it. Once the matrix of choices has been selected it can be kept for future

reference by the layout tool, and the selection process need only occur once.

There is a "usual/normal" spatial disposition for each construct's sub-components - the

preferred layout - but there may also be exceptions under which a different spatial

disposition is used. For example, when long conditions or expressions cause a

statement to exceed one line in length. Thus the matrix of layout choices must also

cater for those situations. The combination of these choices determines the shape of

the code that will be produced. The indentation controls the lateral shift of the visual

shape, and the disposition of constructs affects the width and length taken up by each

successive construct.

Gray & Anderson (1987) found that programmers make stylistic changes to code as

well as code corrections during change-episodes. This shows the importance of

people being able to work on code in their own style and the importance of being able

to convert from one layout style to another. The reason behind the layout aid is to

promote transformations between layout styles. For example, you could have a piece

of code in your own style, then transform it into the house style and then at some later

date, someone who wants to modify that program, or just check up on it for

maintenance purposes can format it to his or her own sty le with no detrimental effects

to the code at all, and of course making it that much easier for the individual

programmer to work on it.

There are some aspects of layout style that may be more difficult to automate:

• The use (or not) of headers is one difference. Some people produce a large

comment label, about 1 inch high announcing the name of each procedure, as below.

Individual aesthetics vary as to the choice of characters used to pad the label heading,

and how far it extends across the page (halfway or less, or right across). But

basically it is just a means of making it clear where each new procedure begins.

{ ----------------------------

* procedure average

----------------------------- }

• There are also individual differences concerning the placing of comments: where,

when and why (Baecker & Marcus 1990; Riecken, Koenemann-Belliveau & Robertson

1991). Some people only comment particularly difficult pieces of code - they regard

the rest as self-explanatory. Whereas others comment strategically: at the head of

procedures and at the start of main blocks. Some carry this further, by commenting at

each significant stage of the program (Gellenbeck & Cook 1991b). Not merely to say

C A Humphreys - 87 - Chapter 6

what the code does but why, in terms of the programming plan or the effect of the

code when it is in actual operation - such as, "roll-over counter value when count

exceeds maximum value" or "send signal to Sample probe to take an oil sample" .

• A further variation concerns the spacings between paragraphs of program text.

This seems to support visual and cognitive/conceptual blocking or structuring. It is

also used to delineate between different programming plans, or a significant juncture

in a single or combined plan (Riecken, Koenemann-Belliveau & Robertson 1991). It

may also allow a mental pause for breath, as well as acting as a cognitive marker.

All these little personal preferences have an effect on how easy the code is for the

programmer to get into, and grasp hold of the meaning of the code and to actually get

on with developing, modifying, and debugging it.

6.1.1.1 Examples of Layout Variations

The following examples show (some of) the variations in layout for the if-then

statement, if-then-else statement, if-then with compound statement, loop with

compound statement, and the placement of logical operators in multi-line conditions .

• Alternate layouts for each construct of the if-then statement; where" < cond> "

stands for condition, and " ... " stands for the actual statement to be executed.

If the IF condition and the THEN statement are both short, the first variation may be

used, but the succeeding 3 variations are more common.

if <cond> then

if <eond>
then ..• ;

... ,

if <eond>
then •.. ;

if <eond> then
... ,

With an if-then-else statement, some people like to make that into 3 sections, the

IF with its condition, the THEN with its statement, and the ELSE with its statement.

Other people, if its only a short condition and a short THEN statement, like to put the

IF condition and the THEN statement on the same line, and then have the ELSE

statement below it.

if <eond> then if <cond> then

else else ... ;
... ,

C A Humphreys

if <eond>
then
else ... ;

- 88 -

if <eond>
then
else ... ;

if <cond>
then .••

else ... ;

Chapter 6

• Another variation occurs for the if-then statement with a begin-end loop. Some

people have a tendency to put the THEN on the end of the line foIlowing the IF

condition, whereas other people put the THEN on its own line just above the BEGIN

loop. Where ft < cond > • stands for condition, and •... ;" stands for 1 or more

statements.

if <cond> if <cond> if <cond> if <cond> if <cond> then
then then then then begin

begin begin begin begin ... ,
..... , , , , end;

end; end; end; end;

Loop with begin-end statement. Layout acts as a graphical representation of the

way the programmer sees the code control-wise. For example, some people consider

the begin-end loop to be at the same level as the "calling" loop, whereas others

consider the begin-end loop to be at the same level as the internal statements it

contains, and yet others consider the begin-end loop to be 1 level further in, and the

statements it contains to be 1 level further in than that; as shown below. This gives at

least 4 possible layout variations :-

"loop" "loop" "loop" "loop"
begin begin begin begin
...... , , , ,
end; end; end; end;

• The only other major thing with layout aids - again with conditions, is the

arrangement of complex conditions and the placement of logical operators, occupying

2 or more lines. Some people like to put the AND or OR logical operators on the very

end of the line, to make you realise that there is another part of the condition coming

below that. Other people like to put the AND or the OR at the beginning of the line

(this arrangement seems more apt somehow). Compare the following 2 examples,

where "(........)" stands for a complex condition:

((••••••••••••••••••••••••••••) OR (••••••••••••••••••••• » AND
(...)

«) OR (••••••••••••••••••••• »
AND (•••)

These examples are only the tip of the iceberg - collecting and sorting a taxonomy of

layout variations will be quite a task, in order to cover the basic set of stylistic

variations. As a result of the latter consideration, I have decided to develop the other

2 tools, especiaIly spotlighting in greater depth, due to the more novel aspects.

C A Humphreys - 89 - Chapter 6

6.1.2 Spotlighting

If you observe a group of programmers for any length of time, then sooner or later at

least one of them is going to pick up a pen and start marking up program text in order

to follow a variable's trail. There are many different manual methods for doing this -

using a pen to put a dash beside the appropriate lines or underlining or circling the

occurrence of each variable, but fluorescent pen is one of the most useful for this, and

of course it has the direct correlation on the VDU of inverse video or colour.

The reason why people use manual spotlighting (marking the trail of a specific

variable), how it helps, and why they find it useful as a debugging technique probably

depends upon the following features:

.the simple and straightforward marking method, gives direct visual evidence of the

variable's trial;

• making the chosen variable's trail visible "in context" distinguishes those statements

that are central or critical, and those that set up conditions for the main event; and

.the direct visual clues in context may facilitate parallel processing; because merely

by looking at a spotlighted listing, you can can usually tell where the main action is,

and thus guesstimate the most fruitful location to start error prospecting from.

But manual spotlighting is slow and prone to error. The idea of spotlighting is to

automate this process, and to extrapolate the search mechanisms accordingly.

The main problem with current search mechanisms regarding trail following is that the

cursor position has 2 functions: focussing visual attention on the current instance of the

search string; and indicating the position where mutative editing operations are

enabled. But trail following requires that these functions be separable; the

spotlighting concept achieves this by making all instances of the selected word situated

within the current screen window visible at one glance *.

There is a fundamental importance about being able to see multiple occurrences of a

variable simultaneously within the code, that is more informationally or contextually

important than being able to jump between them using the search mechanisms.

The priority with trail following is seeing the trail and investigating it.

One of spotlighting's main features is that it facilitates random access to any location

involving the spotlighted variable, and thus to any statement that refers to, or alter its

value, wherever it occurs within the program text - making trail following easy.

So, the programmer can quickly pick out the best place to start looking for the bug,

and individual statements in the sequencing can be checked in any order. So that the
sI

However, all moving, screen scrolling, and editing aspects of the cursor remain

unaffected; the main difference is that the text is no longer visually bland.

C A Humphreys - 90 - Chapter 6

programmer is not forced into a top-bottom search method which might not be suitable

for the particular task at hand. Plus, you can go forwards and backwards, as long and

often as you like, because you've got the indication of where to look which is most

helpful, and it remains permanent for as long as required. Usually backwards jumps

are a hit and miss affair because you have to estimate whether you went far enough

back to reach the target destination. This means reading the code to find out how

close you are. The spotlights will provide an easy target to home in on, thus avoiding

the usual waste of time and mental effort on bland text.

Thus, spotlighting is a great orientation aid. Spotlighting can also be applied

strategically, since the spotlights can be used as boundary markers, so that you can

investigate the intermediate statements without losing your place. For example, say

you spotlight variable "x" because there is a discrepancy in its expected value, and the

assignment statement, "x : = x + y;' has been brought to your attention by the

spotlights. Then you can use the location of that spotlighted line, and the previous

spotlighted line as boundaries; and proceed to check all the assignments to variable

.y' within that section. Because it might be the "y. value that is contributing the

erroneous value instead of the "x· value by itself.

One of the most important factors that designers of editing environments fail to take

into consideration is that programmers keep a mental map of instance locations. If

you don't have to remember precisely where everything is, then of course you won't

need that memory being expended on that task - or at least not as much. Since

spotlighting is supporting and visually reinforcing your own mental map.

Of course automatic spotlighting also avoids the "missed one" phenomenon, which you

get with the manual method. Where you miss one or more instances of the chosen

variable, either because there are too few or too many instances of the chosen

variable (so you get mentally overloaded).

There are several different typographic effects that could be used: italicising,

underlining, emboldening, and inverse video, of course. See next page for a

comparison of these different effects. Even with a quick glance at the page, your

attention is drawn immediately towards the inverse videoed text. None of the others

grab your attention as quickly, simply because their visual effect is more subtle. An

italic word isn't very easy to spot on VDUs, similarly for underlining. Emboldening

does appear a little more distinct on systems like MacPascal which actually uses it for

reserved words. But again that simply isn't strong enough for debugging purposes.

Thus I regard inverse video as the outright winner in the spotlighting contest.

C A Humphreys - 91 - Chapter 6

Comparing Different Typographic Effects on the Visibility of the Signal Vari~

program surveylinput, output);
var

time, vehicles, wait, maxwalt : Integer;

begin
wait :- 0;
vehicles :- 0;
readlsignan;
repeat

If' signal - 2 then
begin

time :- time + I;
If wait > maxwait

then maxwait :- wait;
wait :- wait + I;

end;
Ir signal - I then

begin
vehicles :- vehicles + I:

end;
until signal - 0:
writeln('Time-span-', time, 'secs'):
writeln(Vehicle-count-', vehicles):
writelnI'Max-wait-', maxwalt, 'secs'):

end,

Itallcjsing

program surveylinput, output):
var

time, vehicles, wait, maxwalt : Integer:

begin
wait :- 0:
vehicles :- 0:
readlsignall:
repeat

if signal - 2 then
begin

time :- time + I:
If wait) maxwait

then maxwalt :- wait:
wait :- wait + I;

end;
If signal - I then

begin
vehicles :- vehicles + I:

end:
until signal - 0:
writelnITime-span-', time, 'secs'):
writelnCV ehicle-count -', vehicles);
writeln('Max-wait-', maxwalt, 'secs1;

end.

f;mboldenjng

C A Humphreys - 92-

program surveylinput, output):
var

time, vehicles, wait, maxwalt : Intege

begin
wait :- 0:
vehicles :- 0:
readl~:
repeat
If~-2then

begin
time :- time + 1;
If wait > maxwait

then maxwait :- wait:
wait :- wait + I:

end;
If~-Ithen

begin
vehicles :- vehicles + I:

end;
until 0§!.Bml - 0;
writelnI'Tlme-span-', time, 'secs'):
writeln{Vehicle - count -', vehicles):
wrltelnI'Max-wait-', maxwait, 'secs');

end.

Underlining

program survey!input, output):
var

time, vehicles, waIt, maxwait : Intege

begIn
wait :- 0:
vehicles :- 0;
readl' •• BiI);
repeat

If IIIIIIID - 2 then
begin

time :- time + I;
If wait) ° maxwalt

then maxwalt :- waIt;
wait :- 'wait + t:

end;
If 1IIIIIIII - I then

begin
vehicles :- vehicles + I;

end;
until 1IIIIIIII - 0;
wrltelnl'Time-span-', time, 'secs');
wrlteln(Vehicle-count-', vehicles);
wrlteln('Max-walt-', maxwait, 'secs1;

end.

Inverse Video

Chapter 6

Spotlighting a variable's name throughout a program text can show up many kinds of

errors. For example, an undeclared error can be detected by the fact that a spotlight

of the named variable does not appear in the declaration area, although it does appear

elsewhere in the text. Redundant variables have the reverse effect, their spotlights

appear only in the declaration area, and not in the program text since they are

(usually) unused otherwise. Of course the most useful types of errors shown up by

spotlighting are those that can be detected by following a variable's trail, such as:

missing variable initialisation statements, or incorrect initialisation or modification of

a variable's value; or sequencing errors.

For the missing variable initialisation error, all you have to do is to spotlight the

required variable; then the first time you fmd a spotlight, will be when that variable's

value is being tested, or fed into a different variable's assignment equation, or even to

modify its own value. This means that an initialisation statement is needed

somewhere above that first spotlight. A similar theory applies to the modification

error. For example, say you have a simple calculating program that prints the value

of a variable called "x". On testing, the program prints the "x" value as 8 instead of

10. Then spotlighting each occurrence of "x" might lead you to an equation where

"x : = x-I;". So you might decide that the error is due to decrementing 1 instead of

incrementing 1, so you need to change the" -" to a "+. sign.

Alternately, you might have used the wrong variable name in an assignment statement,

or one of the constant factors might be wrong. Whatever the case, spotlighting helps

to draw your attention to those statements in the code that involve the spotlighted

variable in some way. It gives a clear indication of where the spotlighted variable's

value is changing or being checked, so that you can check these easily. And, once

you've got the names of any other "suspicious· variables you can spotlight them as

well. For example, you might have a statement where "x : = x + y;", this might lead

you to believe that there is a problem with the .y. value. Perhaps the .y. value is

being changed a few lines above the point where its value is being added to the "x·

value. Careful study of the code and comparing it with your mental model of the way

the code should work, might suggest that the ·x : = x + y;. statement should be moved

upwards, so that it is executed just before the .y. value is changed. This is an

example of a sequencing error, due to the dependency of the ·x· variable's value on

the value of variable .y •.

Sequencing errors of this type usually require multiple spotlighting - in the latter case,

both the ·x· and .y. variables could have been spotlighted, in order to make the

dependency problem easier to see. The signal problem gives some examples of

sequencing errors (see figures indicated in §6.2.1).

C A Humphreys - 93 - Chapter 6

One very direct transference from manual to electronic spotlighting would be the use

of a different colour to spotlight each individual variable's trail. That way you could

tell at a glance where 2 variable trails intersected by the clashing of the colours within

the same line or statement.

If you arrange to spotlight anything that appears between contiguous "{" and "}"

symbols, disregarding any surplus" {" symbols, then you should only spotlight

"comment text", but if a "}" symbol has gone missing, then it will be obvious where,

since all intervening comment and program text will be put into inverse video. This

should counter the missing comment bracket problem, which causes the compiler to

ignore all code or text appearing between successive "{" and "}" symbols.

The spotlight effect could also be used as a memory jogger, to guard against

uncompleted variable name changes. Like using the search and replace tool to change

"in to "index", but without checking that all appropriate changes have been made. So

you could spotlight Hi" and "index" either sequentially or in combination, to enable

checking that all previous instances of "i" have been removed, and replaced by

"index' instead. This would be particularly useful where the scope of a variable

extends across a large section of text, with a "blank area" in the middle. For

example, where a variable is spread across 3 screen "pages", occurring on the first

and third pages, but not on the second page. The wider the gap - the more useful the

reminding effect.

The latter implies that it would also be useful to know how many instances of the

given spotlighted word there were all together, and to know which "position" the

"current" spotlight holds. The use of such a ·current instance/total instance count"

indicator could be used as a strategic (planning-wise) or pure orientation aid. For

example, "2/5" would mean that the current spotlight* is focussed on the 2nd instance,

and that there are 5 instances altogether - this would be particularly useful if the

instances of the selected item were widely scattered amongst the code, particularly

for global variables. An alternate use of this spotlighting count ratio would be to

detect redundant variables - indicated by a spotlighting count ratio of "1/1".

Spotlighting also implies a need for additional "movement" commands, such as, go to

6th spotlight, or go forwards (or backwards) 4 spotlights, and so on. Thus jumping the

cursor position (the primary focus of visual attention) from one spotlight to another

without having to visit all intermediate spotlights (viz instances of the search string, as

is necessary with current search mechanisms). This would fit in much better with the

characteristics of the trail following task, since the programmer is free to move to the

most significant spotlight in one jump, rather than several small jumps.

* The current spotlight can be indicated by positioning the cursor so that it flashes on

the first character of the spotlighted word (as is used by current search mechanisms).

C A Humphreys - 94 - Chapter 6

6.1.3 Summary Menus

The aim of summary menus is to provide alternative views of all or selected data

declarations in the program. Making the information more consumable and instantly

accessible to the viewer. The simplest transform of the declaration data would be to

copy it directly into the confmes of a sub-window, so that the programmer could scroll

down to fmd the required information. However, there are more useful, alternative

formats for this information.

A variable has 5 attributes: a name (its identifier); a data type; a value range; a

parent procedure (the name of the procedure where the variable is declared); and

type/scope of the variable - local or global variable, or "var" or non- "var" parameter

variable. Thus the main indices for variable summary menus are name, data type,

and parent procedure. Consider alphabetizing variable names, summary menus could:

• list variables * alphabetically within one specific procedure (alphabetical by

procedure);

• list variables * alphabetically within each individual procedure in the program,

following each procedure name with an alphabetical list of its variables

(cumulative alphabetical by procedure); or

• list variables ** alphabetically within the entire program (cumulative alphabetical).

Instead of listing variable names alphabetically, they could be listed alphabetically

under each data type either belonging to a specific procedure (alphabetical by data

type by procedure), or listed alphabetically for a specific data type across the entire

program (cumulative alphabetical by data type). The depth or range of information

seen by the viewer depends on his requirements. The aim is to provide a means of

showing the same information from different perspectives and to en~ble variable

declaration and variable usage errors to be detected, both faster and more easily -

requiring less effort from the viewer when using the summary tables.

The main purpose behind the summary tables, is to answer questions like 'What data

type is variable "x", and where is it declared?' If you call up the summary table

submenu associated with variable "x' on the cumulative alphabetical menu, the child

menu will list its data type, and the name of its parent procedure. So you'll be able to

fmd out quite easily how and where it's been used, from an on the spot reference.

Instead of losing your train of thought searching the declaration areas, you can just

call up the information, fmd out the answer and then carry on with what you were

doing.

* with each variable name having a pop-up sub menu to show its data type.

** with each variable name having a pop-up submenu to show its data type for each

individual parent procedure name.

C A Humphreys - 95 - Chapter 6

Some people would argue that a summary menu tool is not needed, because this

information is derived from the declaration area in the code, which the programmer

could access and read for him/herself. This is indeed true, but they provide the

equivalent of library index and cross reference cards. So that the programmer avoids

expending time and energy scrolling back to the declaration area, and searching

through for a particular variable declaration. It's much simpler just to call up the

chosen variable name on a summary menu, and to be told what data type it is. This

also excludes errors in thinking the variable is one data type and then fmding out much

later (when debugging perhaps) that it is something else.

Calling up the required variable name on a cumulative summary menu, would show

what different attributes it has under different procedure names. For example to find

out which other procedures use the same variable name, and if they are declared as

the same or different data types. Perhaps in one procedure it is declared as an integer,

and in another it is declared as a real data type. That difference might indicate that

there is an error somewhere; and that both should be declared as the same type, either

both as reals or both as integers, and of course changing the data type will affect the

actions of any operators applied to them.

Alternately, you can check the variable's data type to make sure that you're using the

right functions and operators to manipulate it, and also to check that if you're

modifying a value and passing it to another variable, that it is assigned to a variable of

the correct or compatible data type. For example if you create or modify a real value

on one side of an assignment statement, and it is assigned to an integer variable on the

other side, then you are going to lose value across the operation, because a real value

will be truncated to an integer value (thus losing the fractional value).

Summary tables provide other possibilities for checking. For example, to resolve such

problems as 'I need a new timing variable, has the name "timer" already been

declared/used in this procedure?'. If no "timer" variable appears on the alphabetical

listing then that variable name can be declared and used, without further qualms.

The summary menus could show 2 additional values for each variable: the declaration

and usage counters. A double declared variable will give a declaration count of 2,

and a usage count of 0 or more. An undeclared variable will give a declaration count

of 0, and a usage count of 1 or more. A redundant variable will give a declaration

count of I, and a usage count of 0-1.

Summary tables are meant to collect and show all the different variable and procedure

names that the user has generated throughout the program. Comparing any word that

is not already declared or is a reserved word or pre- or user- defmed procedure,

means that it is automatically pin-pointed as an undeclared word. If the summary tool

is made to collect all anomalous words into one particular menu labelled

C A Humphreys - 96 - Chapter 6

"undeclared", then the viewer will be able to see at a glance, all the different words

that are undeclared throughout the text.

All these suggestions are ways of making the actual programming and debugging tasks

easier for the programmer, because there is such a lot to remember, and as memory

load increases, so does the probability of mistakes.

One of the things you most frequently forget about variables is what data type * a

particular variable is, and also, what kind of variable - local or global, or whether it

is a formal (non-"var" variable) or actual parameter variable ("var" variable). This

is important because you have to take care to modify the right (kind of) variable for

the right reason. For example, formal parameter values can be altered "carte

blanche" within the scope of the parent procedure, since the original "value" (in the

procedure call) is copied to a new variable on entry to the called procedure - thus no

modifications will affect the original value/variable passed in. But with actual

parameter variables, the corresponding variable's address is passed in and is used to

store all modifications to that variable's value.

The other principle feature of summary tables, apart from working on the user defined

variables, is for work on user defmed procedures (and functions) and their parameter

lists. For example, quite a lot of programming errors are to do with the content and

format of procedure calls, viz the number and ordering of parameter variables.

Summary tables should give the programmer the option to call up the procedure name

and then be able to call up its parameter list as it was declared originally. This would

defme the order and data type of each parameter, and whether it was an actual or

formal parameter. Making it easy to assign the right variables into the right position in

the procedure call's parameter list. This should eliminate the problem of adding or

omitting a parameter, or getting the order of the parameters muddled.

The foregoing applies to the user's own procedures, but it is perhaps even more useful

for unfamiliar predefined procedures/functions, when you need to fmd out the

parameter list. Instead of needing to look at the manual, it's much simpler to call up

the procedure's name on the menu, fmd out it's parameter list and then just fill the

procedure call's variables in to correspond, rather than having to go through the

aggravation of getting the manuals out and trying to fmd out more about the required

procedure. Also it should be error free, because you will have all of the procedural

parameter list there, and, perhaps with a predefmed procedure, there may even be

some additional information on the actual use of the procedure. This all goes to

making life easier for the programmer.

* Pascal has "simple" data types: integer, real, char, boolean, text; and "user

definable" ones: array, string, file, pointer, and records. So there would be at least

10 varieties of data type menus.

C A Humphreys - 97 - Chapter 6

6.1.4 Combining Spotlighting & Summary Table Methods

Summary menus would detect undeclared variables by compiling a list of all the

variables (and which procedures they belong to). Then any variable name or any

word which does not occur in the declared variables list, or is not a reserved word or

reserved procedure/function name is obviously undeclared, and can be added to the

undeclared list. The programmer could compare the summary menu's undeclared list

with the declared list(s) to pick out any discrepancies in spelling ego declaring "time",

and mis~'Pelling it as "ttime", "yime" etc. in the text.

Alternately, knowing which variable names or words are undeclared (from the

summary menus) makes it easy to choose which to spotlight. Using the undeclared list

to select which name to spotlight, either spotlighting each name in turn, or several (or

even all) at once, would give a relatively fast and easy means of name selection.

Thus avoiding the need for each name to be input manually, and so eliminating typos

and spelling mistakes. The programmer would then be free to go to the (spotlighted)

program text to see how each name is used, so that the appropriate action could be

taken, either to declare a name, or correct the name if it is misspelt, or to erase it if it

is redundant. The spotlights also act as a scoping guide as to where (within which

"parent" procedure boundary) each new variable should be declared.

6.1.5 Correlating Spotlighting & Summary Tables With Programming Errors

This table is just a brief run down of al\ the different programming errors that

spotlighting and the summary tables should help resolve. Some errors may be better or

more easily solved with the spotlighting tool than the summary tables and vice versa.

Whereas other errors, such as undeclared variable errors, utilise the features of both

tools for the best effect. For example, the summary tables can provide a list of

undeclared words; and spotlighting each individual undeclared word would show

where it was used, so that the programmer could decide what to do.

Key

Summ means the declaration data summary menu listing tool;

Spot means the Spotlighting (inverse video or colour) tool; and

"y" indicates that Yes, that tool should provide assistance with that particular

programming problem (and Rn" for No).

C A Humphreys - 98- Chapter 6

I Common Errors During Coding SpotSumml

I undeclared variables y

I redundant variables y
I double declared variables y

I misspelt variable names y
I infinite loops y

I redundant loops y
I missing or non-initialisation of a variable before use y

I inapprQJ)riate initialisation or modification of variable values y
I incorrect sequencing of "d<a>endent" variable assignments y
I missing/mis-matched comment brackets y
I incompatible format & content of procedure parameter lists n

I inapprQJ)riate passing/return of variable values via proc calls y

6.2 Applying Spotlighting & Summary Table Tools to the Signal Problem

The spotlighting and summary table tools have been applied to Siddiqi's signal

problem, as a means of showing how they can be used.

6.2.1 Statement of Siddiqi's Signal Problem

y

y
y

y
n

n

n

n

n

n

y

y

The following page contains a complete, commented program listing of the solution to

this problem, plus the full statement of that problem. Basically, it is a question of

repeatedly reading the value of the signal, and incrementing, modifying or resetting

different counting variables.

There are 3 choices of "signal" value: 0 to indicate the end of the survey period; 1 to

indicate that another vehicle has passed the detector; and 2 to indicate that another

second has passed. The problem is to determine the length of the survey period, the

number of vehicles passed, and the maximum waiting period; and then to print each of

these values.

The complete commented Pascal programming solution caters for each aspect of the

problem statement. Including all the initialisation statements, the repeat loop to read

each "signal" value as it comes in, and to increment the appropriate counters.

Reading a "vehicle" signal means incrementing the vehicle counter and resetting the

current waiting period counter, "wait". Calculating the longest waiting period means

maintaining a variable, "maxwait", for the current maximum waiting period, as well

as the one to tot up the current waiting period. Each second the "time" and "wait"

counters are incremented. If the current "maxwait" value is less than the "wait"

value, then the "maxwait" value is updated to have the same value as "wait".

C A Humphreys - 99 - Chapter 6

Statement of Siddiqi's Signal Problem & A Complete Code Solution

Slddiqi's (t985) signal problem (Program designer behaviour, People & Computers I, p377:
stated as follows :
A traffic survey is conducted automatically by placing a detector at the road side
connected by data-links to a computer. Whenever a vehicle passes the detector, it
transmits a signal consisting of the number I. A clock in the detector is started at the
beginning of· the survey, and at one second intervals thereafter it transmits a signal
consisting of the number 2. At the end of the survey the detector transmits a O. Eac
signal is received by the computer as a single number (le. it is impossible for two sign.
to arrive at the same time). Design a program which reads such a set of signals and
outputs the following :
(a) the length of the survey period:
(b) the number of vehicles recorded:
(c) the length of the longest waiting period without a vehicle.

The program text below shows a complete, commented solution to Siddiqi's signal
problem - this can be used for reference and comparison of the subsequent partial
solutions, and the variety of errors that spotlighting emphasizes In each case.

program survey(input, output);
var

signal : 0 •. 2;
{ 0 indicates end of survey period,

1 indicates another vehicle has passed the detector,
2 indicates another second has passed. }

time, { length of survey period in seconds }
vehicles, { no. of vehicles detected so far }
wait, { time in seconds since last vehicle was detected}

maxwait : integer; { maximum waiting period so far}

begin { initialise }
time : = 0;
vehicles := 0;
wait := Oj
maxwai t : = 0;
repeat { read and process signals until end of survey period }

read(signal) ;
if signal = 2 then { another second has passed, 80 increment time counters }

begin
time := time + 1;
wait := wait + 1;
if wait) maxwait { adjust maxwait to new maximum wait value}

then maxwait := waft;
end;

if signal = 1 then
{ a vehicle has passed, 80 reset wait counter, and increment vehicle countj
begin

wait := 0;
vehicles := vehicles + 1;

end;
until signal = 0; { end of survey period }
{ Print out required data }
writeln('Length of survey period is '. time, 'secs');
writeln('No. of vehicles recorded Is ., vehicles);
writelnC'Longeat ~aiting period ls " maxwait, ·secs');

end.

C A Humphreys -100- Chapter E

The Effect of Spotlighting Different Variables

program 8urvey(input, output);
var

time, vehicles, wait, maxwalt

begin
wait := 0;
vehicles := 0;
read(signal) ;
repeat

if signal = 2 then
begin

time := time + 1;
if wait > maxwait

then maxwait := wait;
wait := wait + 1;

end;
if signal = 1 then

begin
vehicles := vehicles + 1;

end;

integer;

until signal = 0;
wrlteln('Time-span=', time, 'secs');
writeln('Vehicle-count=', vehicles);
writeln('Max-wait=', maxwait, 'secs');

end.

Fig 1 Plain Text

program 8urvey(input, output);
var .t .""Pt wait, maxwait

begin
wait := 0: 'b,,"" : = 0;
read(signal) ;
repeat

if signal = 2 then
begin

I11III := .. + 1;
if wait> maxwait

then maxwait := wait;
wait := wait + 1;

end;
if signal = 1 then

begin
.,,'.. : = .,,'.. + 1;

end;

integer;

until signal = 0;
writeln('Tlme-span=', "", 'secs');
wri teln(. Vehicle-count:·, ." ••) i
writeln('Max-walt=', maxwait, 'secs');

end.

Fig 3 Time & Vehicles Variables

C A Humphreys

program survey(input, output);
var

time, vehicles, wait, maxwait

begin
wait := 0;
vehicles := 0;
read(MgIB"> ;
repeat

1 r "916" = 2 then
begin

time := time + 1;
if wait> maxwait

then maxwait := wait;
wait := wait + 1;

end;
if M'6" = 1 then

begin
vehicles := vehicles + 1;

end;

integer

until W916" = 0;
writeln('Time-span=', time, 'secs');
writeln('Vehicle-count=', vehicles);
writeln('Hax-wait=', maxwait, 'secs');

end.

Fig 2 Signal Variable Only

program 8urvey(input, output);
Var

I11III, 0""., wait, maxwait

begin
wait := 0;

0;

if "9iE" = 2 then
begin

_ := IIIIlII + 1;
if wait > maxwait

then maxwait := wait;
wait := wait + 1;

end;
1 f M'916" = 1 then

begin
.,,"P : = .,,". + 1;

end;
until ,F"" = 0;
writeln('Time-span=',
writeln('Vehicle-co'unlt
writeln('Max-wait=',

end.

integer

Fig 4 Signal. Time & Vehicles Variables

-101- Chapter 6

6.2.2 Applying Spotlighting to the Signal Problem

The examples show a combination of errors. I shall only point out those that

spotlighting helps to pin-point with respect to the current variable(s) being spotlighted.

Fig. I shows plain program text - a partial solution to Siddiqi's signal problem - as it

would appear on most VDU screens. The only noticeable feature of the text is its

shape. Nothing else stands out at first glance.

The inverse video blocks of Fig. 2, however, immediately draw the eye towards them

- clearly showing the "signal" variable in context. It's easy to see that there is no

spotlight in the declaration area, so you need to declare the "signal" variable. And

looking down you see that the "read(signal);" statement appears above the "repeat"

loop, which is the wrong place. It needs to be moved down a line, so that the "signal"

value is read each time you go round the loop. All the rest are correct - the "if"

statements increment the right counters, and the condition at the end of the repeat-until

loop is correct.

In Fig. 3 the "time" and "vehicles" variables are spotlighted together, to see if there

are any dependency effects. Dependency effects of course being conveyed by the fact

that if you are using a colour system (lucky you) and you are using different colours

for different variables, then you will have a clash of 2 colours within the same line (or

same statement if the statement spans one or more lines). On a green screen, you will

only have one colour - inverse video - but it should still prove effective. So that's the

simple way of checking for dependency. If2 variables are independent (or not

directly dependent) and they are spotlighted together then their spotlights will not

generally occur within the same statement. In this example the "time" and "vehicles"

variables do not appear within the same statement, at any point. So they are clearly

independent of each other. However, in other cases, an intermediate variable could

cause an indirect dependence.

Another feature of inverse video that aids distinguishing between the 2 variables is the

different lengths of the inverse video blocks - "time" is a 4-letter word whereas

"vehicles" has 8. This second effect is purely coincidental in this case, but it will

obviously provide some benefit as a means of distinguishing between different

letter-length variables on a green screen system. Ideally, a colour system would

provide the means for using a different colour for each variable used in

multi-spotlighting.

In Fig. 4 the "signal" variable is spotlighted in addition to the "time" and "vehicles"

variables. This is just a further demonstration of the dependence/independence

spotlighting effect. If you disregard the spotlights for the "signal" variable

temporarily, then you can see that the "time" and "vehicles" counters are completely

independent of each other, whereas they both rely to some extent on the "signal"

C A Humphreys -102- Chapter 6

variable (as expected). So spotlighting is helping to display sequencing dependencies

between the 3 variables.

The next figures (Figs 5 & 6) show a slightly different semi-developed version of the

solution to Siddiqi's signal problem. In this case some comment text has been added,

as well as proceduralising the segment of the program that increments each of the

timer variables, and updates the "maxwait" counter. This sub-procedure that deals

with the timer variables is then called from within the main program loop. This is just

to show the effect of having spotlighting working on scoped text rather than flat text,

which is what has already been demonstrated, by simply working on a name basis. In

this case you could apply spotlighting to a scoped version of a name, and tie it in with

the summary tables for selection of the right variable name under whichever

procedure you wanted to investigate. So you could make sure that it was only the

global version of the "wait" variable that you wanted spotlighted, as in fig 5, and not

the local variable of the same name.

Fig 5 shows the effect of spotlighting, when the global (main program) variable

"wait" is selected - the declaration, initialisation, re-initialisation and procedure call

statements involving "wait" have all become highly visible. However, the "wait"

variable statements in the sub-procedure remain camouflaged, because they are

associated with the local "wait" variable belonging to procedure "inc_timers", which

is not the same as the global (main program) variable of the same name. If the

procedural parameter list for "inc_timers" had not included the "wait" variable, then

the references would have referred to the global variable (in this particular case) and

spotlighting would have emphasized these instances of the ·wait" variable as well.

There are 2 possible ways in which the user could specify the word that is to be

selected for spotlighting (in the code editing context): either the word is inputted

manually, as per the usual mechanism for the search command, and spotlighting works

on flat text; or the user could choose the relevant word from one of a series of menus

showing lists of variable names (see Figs 9-10) so that spotlighting works on scoped

text. For example, selecting the global "wait" variable from the Fig 10 menu would

produce the spotlighted text of Fig 5. In the latter case, the scope of the chosen

variable restricts the areas where spotlights could appear.

Combining the functionality of such menus with the spotlighting facility should enable

powerful operations to be performed. For example, enabling the individual

spotlighting of each undeclared variable that appears on an undeclared variable menu -

thus enabling checking and correcting of such errors. However, the programmer may

choose to see all undeclared variables in the text spotlighted at once, or alternatively

to cycle through the undeclared variable list, spotlighting each one in turn, either

singly or cumulatively.

C A Humphreys -103- Chapter 6

program survey(input, output);
var

time, vehicles, l1li, maxwait integer;

procedure inc-tlmcra
(var time, wait, maxwalt integer);

begin
time := time + 1;
wait := wait + 1;
if wait> maxwait

then maxwalt := wait;
end;

begin (main program)
l1li := 0;
vehicles : = 0;
read(01gnal) ;
repeat { process signal }

if signal = 2 then
Inc-timers(time, l1li. maxwait);

if signal = 1 then
begin
... := 0;
vehicles := vehicles + 1;

end;
until signal = 0;
writelnC'Time-span=', time, 'secs');
writeln('Vehicle-count=', vehicle.);
writelnC'Max-wait=', maxwait, 'secs');

end.

Fig 5 Wait (global variable only)

Examples of Summary Menus

Program Survey
time
vehicles
wait
maxwalt
Undeclared
signal

Component List
program survey
procedure inc_tlmers

Fig, 12

program .urvey(input, output);
var

time. vehicles, wait, maxwait integer;

procedure inc-tlmers
(var time, wait, maxwait integer);

begin
time := time + 1;
wait := wait + li
if wait> maxwait

then maxwait := wait;
end;

inc-tlmers(tlme, wait, maxwait);
if signal = 1 then

begin
wait := 0;
vehicles := vehicles + I.

end;
until signal = 0;
writeln('Time-span=', time, 'secs');
writeln('Vehicle-count=', vehicles);
writeln('Max-wait=', maxwait, 'secs');

end.

Fig 6 Matching Comment Bracket.

inc timers
time
wait
maxwalt
Undeclared

Fig, 10

Global
time
vehicles
wait
maxwait
Inc timers
time
wait
maxwait

AlphabetIcal
maxwait 2
time 2
vehicles

Undeclared
signal

Component List
program survey
procedure inc_timers (var time, wait, maxwait integerll

wait 2

Fig, 14

procedure Inc_timers
(var time, wait, maxwalt integerl

C A Humphreys -104- Chapter 6

Fig. 6 demonstrates the missing comment bracket problem, which can be a major

problem. If you ask someone else to look, they see it immediately, but you can't see

it yourself until it's pointed out to you. So for this problem, spotlighting (inverse

video) is activated whenever it fmds an open comment bracket, "{", and deactivated

when it finds the next closing comment bracket, "}". In the example shown, there are

5 or 6 lines of code that become commented out because a "}" curly bracket has been

missed off the end of the first comment. This gives a clear indication that you should

do something about it, unless you intended this to happen. For example, to test 2 or

more alternative programming plans that achieve the same/similar effect, to fmd out

which is better in terms of effect or efficiency.

The brevity of the examples give an indication of the interpretational power afforded

by spotlighting. However, it must be remembered that in longer texts, this power

should increase as the (potential) number of selected item instances increases. If the

selected item has a low density (few instances within a large chunk of text), then it

becomes increasingly easy, especially with unassisted visual scanning, to overlook

some instances. The same is true for high densities, where the same effect occurs

due to information overload and confusion between successive statements (Card et. al.

1983).

6.2.3 Applying the Summary Tool to the Signal Problem

Figs 7-14 are examples of the summary menus that could be produced through the use

of an interrogative program, that "reads" a file of program text and creates lists of

entities significant to the programmer, the most useful of which relate to variables, of

course.

Fig 7 shows the declaration ordered variable list of "program survey" with its

undeclared list corresponding to (an interrogation of) the program text of Fig 1.

In contrast, Fig. s 8-14 show the summary table lists that could be produced after

interpreting the structure produced through interrogation of the program text of Fig 5.

Fig 8 shows the component list - the full list of (user-defined) procedures and

functions, including the program name. Selecting a name shown on the component list

would cause the associated child lists to become available - either in declaration or

alphabetical order; with or without the associated undeclared variable lists. The

examples demonstrate some of the possibilities.

Fig 9 shows the declaration ordered variable list of "procedure inc _timers"

corresponding to Fig 8. Note that the lower portion of both Figs 7 & 9 is devoted to

undeclared variables.

In contrast, Fig 10 defmes the list of declared variables that are accessible and can be

used, in terms of global and local variables, when seen from within procedure

C A Humphreys -105- Chapter 6

"inc_timers". This could be really useful for nested procedures, when deciding which

variables need to be declared between parent and child procedures; and to decide what

type of variables go into the child procedure. Whether as parameter variables (either

formal or actual), or as local variables.

Fig 11 shows the cumulative alphabetical list of variables declared throughout the

program. Notice that each variable is associated with a number, if it is declared more

than once. Selecting any individual variable name would cause a list of its "parental"

procedure names (denoting declaration origin), to pop up, with or without an

accompanying definition of the variable's data type (depending on the viewer's

requirements). For example, with the "wait" variable, the program "survey" is one

parent and the procedure "inc_timers" is another.

Fig 12 shows the (cumulative) undeclared variable list, which for this program is very

short. Fig 12 would result from interrogating either version of the program text

(either Fig 1 or 5) in this particular case, but in general the contents of the undeclared

list would change from one version of text to another.

Combining the spotlighting and summary tools for the undeclared variables problem

should be very useful. The summary tables can tot up which variables are undeclared

(as shown by Fig 7 or 12) and then the programmer can choose to spotlight all of them,

either all at once, or individually, and then go and look at them. That should help to

get rid of all the undeclared variable errors - rather than waiting for the compiler to

define them later on. There are 2 ways of showing the entire declared and undeclared

lists - either list all declarations and allocate them as given (Fig 10), and list all

undeclared items separately in a "floating" cumulative list (Fig 12); or list everything

in association with its parent list, noting declared items first and undeclared items

second (Fig 9), so that it is easy to tell where each item appeared, and hence to

allocate it. Having a choice of view should alleviate the degree of memory load and

cognitive processing, and make the undeclared problem easier and faster to resolve.

Each of the lists shown in Figs 8-10 provides a means of associating the spotlighting

concept with a selection mechanism, that is fine-grained enough to uniquely identify

the spotlighting target. Thus, tracing a given procedure name/ call through the text,

using spotlighting, could be achieved by selecting the required name on the component

list of procedure/function names (Fig 8). Variables could be traced by invoking the

required child list (Fig 9), from the component list (Fig 8), and selecting the required

variable name (either from a declaration or alphabetically ordered list).

Alternatively, variables could be listed alphabetically from the entire text (with

dangling "parentage" references, see Fig 11), so that when a variable name is chosen,

the required parent procedure could be selected from the accompanying pop-up menu.

The fmal declaration problem, dealing with incompatibility in format and content of

procedure or function parameter lists, could be resolved by using the component list of

C A Humphreys -106- Chapter 6

procedure and function names. When one name was chosen this would call up a child

menu - listing the original declaration of the parameter list. For example, Fig 13,

shows the parameter list for "inc_timers" as a child menu attached to the parent menu

at a position showing the parent procedure's name. Whereas, Fig 14 shows the named

procedure with its parameter list as a single menu. The latter menu seems clearer in

its meaning, since it is a more direct reference to the procedural declaration - either

view (Fig.s 13 or 14) should provide all the significant clues (schema details) needed

by the programmer to "prime" the procedure call with all the appropriate elements,

and in the correct positions.

The component list of pr ocedurel function names (shown alone in Fig 8, or as a parent

with a derivative child menu in Fig 13), could be ordered either alphabetically, or in

"declaration" order. Depending on what the user fmds most comfortable to work

with. This list could also be used to call up a series of "child" variable lists (for each

individual procedure): declared variables only, undeclared variables only, or,

declared and undeclared variables together; with an option to restrict each such list to

the named parent procedure, or to view each list from the current perspective in terms

of "accessible" global and local variables.

6.3 Integrating Spotlighting & Summary Tables Into A Supportive Environment

This section gives an outline sketch of implementation issues in a hypothetical Pascal

environment, and the basic infrastructure underlying the spotlighting and summary

aids. Note that all references to procedures are equally applicable to functions, unless

stated to the contrary. Also, that the word "global" has 2 meanings: meaning either

global with respect to the current context, or belonging to the main program.

6.3.1 Discussion of Spotlighting Implementation Issues

Now, the purpose of spotlighting, in the programming context, is to make errors easier

to fmd. However, the next task after identifying and locating an error is to correct it

- thus, spotlighting must not interfere with this. This means that all the usual

(mutative and locative) editing commands and tasks must be able to take place on the

spotlighted text as easily as on plain text - that is, with no detrimental or knock-on

effects, either in terms of functionality or (visual) screen effects. One possibility is

to take note of the "earliest" line number when editing, and the "latest" line when

editing fmishes, and to re-spotlight all intermediate code.

The first task of implementation is to define how to select a variable or whatever

items are selectable. Selected items could include variables, procedure or function

names, types, constants - in effect any distinguishable textual element included in the

edit-document, whether source code or not. Thus the primary task is to define what is

C A Humphreys -107- Chapter 6

selectable, and then to produce mechanisms to facilitate selection. Also, to decide

whether to allow selection of partial words, or to restrict selection to whole words

only. Consideration must also be paid to the use of scoping context in the selection.

For example, to match comment brackets, the program text is regarded as flat text,

since missing (closing) comment brackets over-throw what appears to be scoped text

(as in Fig 6 of §6.2). But, for a scoped variable ego the global version of the "wait"

variable (Fig 5 of §6.2), attention must be paid to spotlighting only those items which

meet the scope requirements - this mayor may not include those (potentially

significant or irrelevant) items which occur within comment statements. A secondary

problem is how to deal with items appearing within comments, and whether comments

should be disregarded or included in the defmition of searchable program text.

With mUltiple spotlighting there will be an accumulation of spotlights on a series of

selected items - each individual item having its own spotlight pattern, which will

contribute to the overall pattern of spotlighted items. On a colour system it is feasible

to have different colours, with each selected item having its own colour code. This

should make it easier to distinguish each spotlighted item's individual contributions to

the larger pattern.

On a monochrome system, either all spotlights are the same (all in inverse video), or

an alternative means of typographic differentiation could be used - such as italicising,

emboldening, underlining, or perhaps capitalising. However, the latter approaches

may dissipate the visual power of multiple spotlighting due to the inherent imbalance

of visual power (visibility) provided by the various typographic effects (as is evident

from the visual comparison of typographic effects shown in §6.1). This is because

italicising is more subtle and less obvious than inverse video - whereas colour coding

works on the same (cognitive) level and recognition mechanism.

There would also have to be a mechanism for removing spotlighting - either wholesale

(removing spotlights from all items) or selectively (removing spotlights from one or

more already spotlighted items by individual selection). This suggests that a list (or

menu) of spotlighted items should be available so that the viewer has an up to date

summary of those items which are already spotlighted, and thus of the state of the text

spotlight-wise. The current spotlighted item could be identified on the menu list, by

reversing the background or bordering its name, as is done on MacPascal and other

WIMP systems, to show the current selected item within a list of other items already

spotlighted. Selective removal would be useful for multiple spotlights when checking

dependencies between multiple variables, so that for each new variable selected, an

·old" one is deselected. For example, checking a set of 4 variables {a,b,c,d} would

give 6 sets of paired spotlights - {a+b, a+c, a+d, b+c, b+d, c+d}; or 4 sets of

triple spotlights - {a+b+c, b+c+d, a+c+d, a+b+d}. An electronic note pad

would be useful, for this type of activity, for checking progress and "ticking off" jobs

C A Humphreys -108- Chapter 6

as they are completed, and to remind the programmer of the next or current task - and

to gather evidence, data or sub-plans. It would also be useful to be able to append

selected chunks of code onto a series of data buffers, rather than being restricted to a

single pasteboard or data buffer.

It would be useful to provide a spotlighting instance counter to show how many

instances of the item had been spotlighted. A "current instance / total instance count"

would be even more helpful for orientation purposes. For example, "3/8" would mean

that the cursor position is focussed on the 3rd spotlighted instance of the item, and that

there are 8 spotlights altogether - this would be particularly useful if the instances of

the selected item were widely scattered amongst the code, particularly for global

variables. You could really only have the current instance/total instance counter for

one variable at a time, since the cursor position that indicates the current spotlight is a

unique feature. Applying it to multi-spotlighting is not feasible.

Davies' (1989) results indicate that moving aids should extend the variety of existing

moving commands to fit in better with programming habits and task characteristics.

Embedding spotlight codes in program text implies additional facilities, such as

movement from one ~-potlight to another - this would be particularly useful if the

distance between spotlights exceeds the screen. For example, the ability to move to

the nth spotlight below or above the current one, or to the "nth instance" spotlight.

The programmer's goal is to get to the current point of interest in one jump, rather

than in a series of distracting screen-hopping jumps. What Monk (1989) would refer

to as orienteering, rather than rambling - getting from A to Z in 1, not 26, jumps. In
essence, this means giving the user more control over which areas of text are visited,

by supplying appropriate moving commands that are linked to visually emphasized

points of significance.

One facility that must be available, is the ability to produce a printed version of the

spotlighted file, for more intensive off-line study. This is especially necessary for

lengthy texts, or when the spotlights are widely scattered, and it is not practicable to

jump around the screen text without gaining a better appreciation of the context

associated with each spotlight from a wider perspective.

Infrastructure

The environment must support 2 different aspects of spotlighting - a hierarchical,

scoped version and a "normal" flat text version. The former for detecting scope

errors and the latter for detecting missing bracket type errors. For example, using the

flat text version to enable selection and detection of "partial" items and symbols, like

those spurious control characters, or matching symbols such as "(" and ")", or ''[" and

T, or "{" and "}". Scoping requires that the code be structured, either fully, like a

parse tree with accompanying symbol tables, or semi-structured, like hanging each

block of procedural text off a "procedure" node, so that the main program consists of

C A Humphreys -109- Chapter 6

a network of hierarchical nodes and their associated text. Thus, in the latter 2

structures, scoping would be achieved by going (top-down) through the successive

child nodes (any nodes above the "start" node being outside the scoping bounds).

6.3.2 Discussion of Summary Table Implementation Issues

Assuming that the base environment contains all the familiar functional elements

associated with existing editing environments, including pop-up or pull-down menus,

and a means of selecting a section of text by indicating start and stop points (either

using line numbers, or cursor and mouse movements, as with MacPascal). Then the

hypothetical element is an interrogative program that goes though the current version

of the source code, producing a set of summary tables or (linked) lists, defIDing the

contents of each menu. After running the interrogative program, there would be lists

defining the declared and undeclared variables for each individual procedure and

function, as well as for the parent program.

Instead of just showing the procedure and its parameter list on screen, it might be

useful to have an option to cause either the full procedure declaration (including

parameter variable names and data types), and/or a procedure list of variable names

(without data types) to be inserted on or abovelbelow the line occupied by the current

cursor position, followed by an "empty" procedure call that defIDes the number of

parameters by the number of commas. Plus empty lines above and below, to remind

the programmer to move the procedure/function call if it is in the wrong position in the

statement sequence. For example, "function maxval(vall, val2 : real) : real;" could

be followed by either "maxval(vall, val2 : real) : real;" or "maxval(,);"

If global variables were only allowed in the main program loop, and thereafter

defIDed in terms of procedure calls only, then all items not declared in a procedure

could be accounted for either as undeclared local variables or local parameter

variables. Otherwise the global list might account for some of them.

A facility to transfer the contents of the undeclared variable list into the appropriate

declaration area (selectively or wholesale at the user's request), should speed up

declaration of the previously undeclared items.

Infrastructure

It seems fairly clear that if you are going to have the declaration data expressed as

menu lists which you can go up and down on, then the underlying representational

structure must be tree based with (streams of) forward and backward pointers for

each variety of menus that are going to be produced. The main variety of menus for

variables are related to variable names (in declaration or alphabetical order), data

types, and parent procedure names (in declaration or alphabetical order). Each paired

C A Humphreys -110- Chapter 6

stream of forward and backward pointers will create a linked list, making it easy go

up and down the tree structure corresponding to the list of items on the menu screen.

The links are traversed in order to access the next variable name in the tree structure

and to add it to the menu list. For example, scrolling down a declaration ordered

menu represents a top-down traversal of a tree structure. Thus, as the viewer scrolls

down the menu, the corresponding forward pointers are being traversed in order to

provide names to be added to the bottom of the menu. New names will continue to be

added until the last pointer in the link is traversed.

Paired streams of pointers will be needed for each type of cumulative (global) list as

well as for each list relative to an individual procedure block, in terms of alphabetical

or declaration ordered listing, each individual data type, and so on.

The tree structure could also include "types" and "consts". This would help to tie

variables up with the user-defmed data types. For example, a data type list could be

produced, and if by the end of the program traversal, there were no variables assigned

or corresponding to that entry, then this would indicate a redundant data type.

6.4 Conclusions

Applying Green's (1989) cognitive dimensions to the tools :

Spotlighting:

• adds perceptual cues to the structure to aid/simplify trail following.

• boosts visibil ity and discriminability.

• reveals hidden/explicit dependencies: if A, B, and C are variables, and there is an
error associated with the value given by an assignment statement, "A : = B + C;"
then you need to spotlight both B, and C, to find out which variable is responsible.

• counters viscosity, diffuseness, and hard mental operations by its suitability for the
trail following task (its role expressiveness); by providing an easy to trace path, so
that the viewer can see where each variable is, and how it is used.

Summary tables:

• reveal hidden/explicit dependencies in procedure call parameter lists, viz the
assignment of "var" and non-"var" parameter variables.

• avoid premature committment ego declaring the wrong variable name (one that is
already declared), or assigning values between incompatible data types.

• avoid hard mental operations and diffuseness by showing all required attributes on
demand, according to the viewer's requirements.

• support consistency - the required information format is defined by the viewer.

• minimize (and helps resolve) action slips, such as misspellings and typos by listing
undeclared variables and enabling comparison with declared variables.

C A Humphreys -111- Chapter 6

According to Curtis's (1988a) restatement of Fitter & Green's (1979) conclusions

about notational design, both tools are: relevant to their individual tasks, they provide

revelation and redundant recoding, and their effects are revisable.

Davies's (1993) research on expert programmers showed that, "Experts develop

display-based skills in order to reduce load on working memory". Both spotlighting

and summary tables should help to reduce working memory further.

6.5 Discussion

The usage of highlighter pens on paper text has a long history, ranging across all

varieties of paper based work. In each case, they provide a means of picking out the

important words or data from the surrounding background text. It is time the

electronic viewer had an equivalent tool to apply to electronic text.

Since spotlighting is intended mainly as a feature to be used in computer-aided text

editing, it must be implemented in such a way that it does not interfere with the usual

editing commands. Also, there must be an option to list spotlighted text to the printer,

so that the text can be studied at greater length.

The only existing software facilities tbat have similar actions or results to summary

tables are cross indexing programs, such as Ansiblelndex, where you feed in the main

text containing a selection of words or phrases that are marked for indexing, and the

program returns a list of page numbers where each marked word or phrase occurs.

Spotlighting's nearest relations are spelling checkers, such as Locospel\, which use

inverse video to pick out the offending word, so that the viewer can identify and locate

it, and in so doing begin to absorb its context by reading the text in close proximity, as

a means of determining what word was intended, before correcting the error.

Spotlighting is more generally applicable, for example to electronic books (as an

online interactive index), electronic spreadsheets (for checking variable entries in

formulae), and many other environments where it is useful to find out the location of

specific items. Summary tables may be relevant to stock control and inventory or

other cross referencing cataloguing systems. Layout aids are probably only relevant to

tbe programming environment.

C A Humphreys -112- Chapter 6

Chapter 7 Further Data Collection & Experimental Evaluation of Tool Feasibility

December 1990: the finalists were chosen as subjects to provide data on debugging.

They were the same group of students who provided the data for chapter 3, but 2 years

on in their experi ence.

§7.1 deals with the main questionnaire results

§7.2 deals with the debugging tasks

§7.3 deals with the spotlighted debugging tasks

§7.4 deals with the post spotlighting questionnaire

Data Collection - Questionnaire & Debugging Tasks

Data collection had 2 aspects - a questionnaire with 40 questions (see Appendix Q7A),

and a series of 3 debugging tasks (see Appendix 7C); with the debugging tasks to be

done mid-questionnaire, after answering question 15 and before going on to question 16.

It was expected to take about 11h-2hrs to complete.

The purpose of this questionnaire and the debugging tasks was to gather as much open

ended data as possible about debugging strategies and each student programmer's

approach to programming. From developing code from a task description themselves,

as well as the actual comprehension strategies they applied to code they had not written

themselves.

The questions that prompted these experiments were a) what sort of information do

programmers need to be able to successfully implement their debugging strategies, and

b) how do they use this information. To differentiate between the successful and

unsuccessful strategies behind the interpretation and use of such data.

The reason for doing the debugging tasks part-way through the questionnaire was to

take full advantage of this fresh debugging experience. So that their answers about

debugging strategies would be easier to bring to mind, and hopefully, in greater detail

than usual.

The questionnaire questions were ordered specifically to lead the students through all

aspects of software development and the debugging process. So they could consider the

methods they use, what effects they have and what sort of errors they have to deal

with.

In effect I used a double pronged strategy. Balancing the "basic" question I wanted

answered with an array of "expected" answers; appended by an open ended "Give

reasons for this choice" type of question, to elicit the rationale behind the chosen

answer.

C A Humphreys -113- Chapter 7

The objective of the debugging experiment was to find out what methods the students

used to develop and debug code, and to discover the reasons why they do or do not use

these methods. Ample space was provided to give these reasons and to make any

comments they thought were relevant.

Students expressed their reactions to the debugging tasks and gave a "difficulty rating"

for each task on the comment sheets provided (see last page of Appendix 7C).

Experimental Evaluation of the Spotlighting Tool & Subjective Questionnaire

About a week later, the students evaluated the spotlighting tool by debugging 4

(incomplete) Pascal programs; with 2 tasks on plain (non-spotlighted) code, and 2 tasks

set on text that had been individually spotlighted for each of the 4 principal variables.

Thus the task on spotlighted code had 4 sets of code per task, with a different (single)

variable spotlighted on each.

Students answered a short questionnaire (of 15 questions, see Appendix Q7B) after

finishing all 4 debugging tasks. The questions were primed to get the students reactions

to different aspects of the spotlighting concept after trying it out for themselves in the

experiments. Question 37 (from the questionnaire, Q7 A, of §7.1) was restated, to fmd

out whether the students had changed their opinions in any way. The remaining

questions were all new, 7 concerning spotlighting, and 7 concerning the layout sty le

used in the spotlighting experiments. The latter asked about aspects of layout style that

might have had an effect on the experiments, and gave additional data relating to the

proposed layout tool.

Students expressed their reactions to the 'experimental debugging tasks and gave a

"difficulty rating" for each task on the comment sheets provided (see last page of

Appendix 7D).

7.1 Design & Analysis of Programming & Debugging Strategies Questionnaire

The questionnaire had 2 types of questions.

There were "open" questions which were intended to find out each student's

views/opinions about debugging, and the variety of methods and strategies that they use

to detect and resolve different types of bugs.

There were "multiple choice" questions where the expected answers were shown in

square brackets. If the students had an alternative answer to those presented, I asked

them to write down their answer - with a brief explanation (if necessary), so that I

would be able to interpret their answer correctly,

C A Humphreys -114- Chapter 7

The "open" and "multiple choice" form of questions both appeared at the beginning and

end of the experiment, to get the student's views on different aspects of debugging,

error types etc., before and after attempting the debugging tasks.

The variation in question types was intended to draw out students' opinions as fully as

possible, by making the questions as explicit as possible.

Some ofthe questions were multi-part, having parts i, ii, and iii, to explore different

a~-pects of the same topic.

7.1.1 Analysis of the Questionnaire

Analysing the results of the questionnaire proved more difficult than expected, due to

the complexity of the data, and the lack of simplifying methods applicable. Appendix

Q7 A shows the raw data and its corresponding data tables to give an idea of the

variation in answers and attitudes. Plus a summarizing comment giving the gist of the

responses.

7.1.3 Summary of Questionnaire Results

Brief summary of important points brought out by the questionnaire :-

Experience & Programming Ability - QI-3

Of the 8 students tested, 6 regard themselves as having average (or better)

programming ability with Pascal; so they represent a fairly "typical" subset of students

ability-wise.

Program Development and Coding Methodology - Q4

The main development strategy is to work out most of the algorithm, translate it into

code, and fill in the missing parts as development continues. As task complexity and

code length increases, top-down modularisation techniques become more prevalent.

Development & Debugging Attitudes - Q6, Q8, QI0, Q13 & Q29

Q8. Most (7/8) students check their code before development and (6/8) after

development.

The results of QIO & Q13, show that the students' priority regarding errors is:

error prevention, error elimination, and checking for task correctness after

syntactic elimination.

C A Humphreys -115- Chapter 7

Use of Debugging Techniques & Tools - Q9, Qll, Q12 & Q22

Q9. During code development, quick or slow read throughs, and mental simulation are

the main single debugging strategies, scoring 4,5, and 5 respectively. With 7 (out of

7) students reading through code either quickly or slowly, with 5 (out of 7) of them

using mental simulation as well.

After development the main debugging strategy is reading through rather than using

mental or hand simulation - given by 5 quick and 4 slow readings; 2 mental and 3 hand

simulations. Totalling 7 students reading through, with only 3 of them using mental or

hand simulation.

The predominant debugging strategy after compiler defines errors is a slow read

through with mental and/or hand simulation (for 4 out of 8 students). There are 7

students reading through, with 5 doing both mental and hand simulation as well, while

the other 2 choose to do either mental or hand simulation.

This indicates a higher degree of problem solving during actual development and in

response to compiler defmed errors.

Q 11. Students' rating of 6 debugging strategies, by both frequency of use and

preference, in descending order is: inserting write statements, hand simulation of code,

mental simulation of code, tracing variable values by hand/eye, tracing variable values

by debugger, tracing variable values by search mechanisms.

Q22. The top 5 debugging techniques are: inserting write statements wins with 5 votes;

hand simulation is next with 3 votes; while mental simulation, and comparing the

intended code to the actual code, tie with 2 votes each; and tracing variable values by

search mechanisms comes in last.

Summary

It seems that using write statements is the most frequently used and best liked debugging

method. No other tool(s) seem able to match it for flexibility. Debugging tools are

hardly ever used unless absolutely necessary (QI2), and the same goes for the search

mechanisms (Qll & Q22).

Defining The Nature of Errors, Their Frequency & Troublesomeness - Q14-15

Q14. The top 3 most common semantic, logic and/or algorithmic errors that students

check for are: faulty procedure/function calls (6 votes), variable faults (5 votes), and

faulty conditional statements (3 votes).

C A Humphreys -116- Chapter 7

Q15. Top 12 Most Frequent Errors

1 Missing or extra bracket in an expression

2 Undeclared variables, types or constants

3 Misspelt names (eg. variables, types, constants, reserved words)

4 Incorrect placing of brackets in an expression

5 Using round brackets, (), instead of square brackets, []

6 Inappropriate data typing of variables (eg. using real instead of integer)

7 Redundant declarations of variables, types or constants

7 Inappropriate placing of "end" statements

9 Incorrect modification of variable values

10 Incorrect initialisation or termination of variable values

11 Inappropriate choice of loop variable

12 Missing "else" statement(s) to complement an "iC' statement

Q15. Top 12 Most Troublesome/Time Consuming Ordering

1 Infmite loop(s)

2 Incorrect content of procedural parameter list call

3 Inappropriate declaration of a procedural parameter list

4 Incorrect placing of brackets in an expression

5 Inappropriate declaration of a procedural parameter list

6 Run-time errors (divide by zero, under- or over-flow of values)

7 Inappropriate placing of "end" statements

8 Incorrect modification of variable values

9 Incorrect sequencing of variable value assignments

10 Incorrect sequencing of control structures

11 Incorrect sequencing of procedure or function calls

12 Incorrect choice of loop variable value ranges (eg. in "for" statement)

There are very few errors that appear on both lists, except the 4th, 7th, 8th and 9th

entries which occupy (almost) the same rank on both lists. Most other errors appear on

one list or the other, which seems significant.

C A Humphreys -117- Chapter 7

Investigating Reading Strategies - Q 16-19

These questions relate to the research on comprehension and reading by Pennington

(1987), Nanja & Cook (1987), Gugerty & O1son (1986), and Holt, Boehm-Davis &

Shultz (1987). The results support their main fmdings discussed in Chapter 2 :-

For example, Pennington (1987) has found that programmers who are able to cross

reference the application and domain models are able to create a much richer task

model. This enables full (er) understanding of the task, thus making debugging much

more accurate and effective.

Q16. 6 out of 8 students read and re-read the code/task description to

understand/reaffirm the task requirements. In my opinion, the purpose of reading the

task description is to build up a mental model of the task that is to be performed.

Q 17. 3 students think that reading to get a total understanding of the code makes

debugging faster (students I, 2 & 8), and more accurate (students I, 2 & 5); whereas 3
students think that reading code on as needed basis helps fill in details (students 3, 6 &

7).

Q18. On the fust read through, it seems that the primary task (for 6 out of 8 students)

is to correlate the code and its structure with the task description. Whereas making

sense of the code on its own is a secondary task (for 3 out of 7 students) . This is still

true for the second read through (5 out of 7, and 3 out of 6, respectively), but the

numbers have been reduced by I student, SS8, who starts debugging immediately after

the first read through.

Q16-Q19 Summary

Those students who started debugging on the first read through are likely to give fast

debug times, because I assumed that the first read through is just for reading and that

debugging comes later. If not, then some bugs may already have been solved during the

flfst reading, and it is just a question of writing the error solution out. Rather than

fmding and solving each error in the subsequent debugging phase which I assumed to be

separate from the initial code reading phase. This might account for the fast debugging

times for this sort of strategy in the debugging & spotlighting experiments (see §7.2 &

§7.3).

From experience I know that some errors just spring out at you on the first read through

- usually the glaringly obvious ones - and they are difficult to ignore. It's usually

easiest (less drain on remembering to do it later) to fix them there and then.

C A Humphreys -118- Chapter 7

Investigating Trail Following on Paper & Screen Text - Q24 & Q25

Trail following on paper is preferred by 5 students, although (of the 5) 1 student prefers

trail following on screen if the code is short. Students comments indicate that paper

text is consulted in order to think things out and to decide what to do, whereas the

editor/programming environment is used to fix errors and to test code out immediately.

Differentiating Between Debugging Methods - Q26-28

Students do not appear to be fully conscious of the debugging methods that they use, and

what causes one method to be chosen rather than another.

Attitudes Towards the Search Mechanisms - Q30-33

Q30. That 5 students use the search mechanisms either rarely or never is very

surprising. It is difficult to believe that any programmer neglects the search

mechanisms to this degree, let alone (4 or) 5 out of 8 students. However, 28-30

students (out of 66) had never used the search mechanisms as 1 st years, so perhaps this

is just a consequence of their initial attitudes, which have not been superceded.

Q33. 7 (of the 8) students think that forward and backward search mechanisms should

be provided - supporting Robertson, Davis, Okabe & Fitz-Randolph's (1990) fmdings.

Namely, the reasons for using forward and backward search, and alternating between

them is to aid in comprehension and debugging strategies. Especially when trying to get

an idea of what the code does, and how.

"Live" Editors & Layout Style - Q34 & Q35

Q34. Opinions varied - 3 students think that a "live" editor like MacPascal's, saves

time; and 3 think that it gets in the way sometimes (l of these students voted for both).

Eliminating errors at source gets 2 votes, plus 1 more for enabling immediate detection

of bracketing errors.

Q35. Student 5 found the positioning of the blank lines in the experiment code

confusing. Having the comments on separate lines rather than to the right of the code

also threw him off balance. This is why I think a layout tool is so important - it could

remove these obstructions to understanding other people's code, and make unfamiliar

programs easier to grasp.

C A Humphreys -119- Chapter 7

7.1.4 Amendments to Suggested Tools

Reading the students' responses to the new tool concepts brought several amendments to

mind.

Summary Tables

For the summary tables, the amendments relate to viewing procedure calls and their

parameter lists. The initial idea was to have all the names of the procedures on a list -

either in alphabetical or declaration order. Choosing one procedure name would cause

its parameter list to pop up on a child menu, in declaration order (squeezed to fit the

window but otherwise unchanged).

Having the original procedure call's parameter list available for reference should

enable a procedure call to be written out correctly first time. Having the original

variable name and data type for reference as to which variable is needed and where (in

what order). For example, having a parameter list with slots for 3 variables, "a", "b",

and "c·, gives 6 possible orderings (abc, bac, bca, cab, acb, cba). There is (usually)

only one particular combination (ordering permutation) of these variables within the

parameter list that will achieve the desired effect.

The initial concept was to have only one parameter list on view at a time. But this idea

could be extended so that more than one parameter list could be chosen and displayed at

a time. Or perhaps all parameter lists could be seen all at once. When viewing more

than one parameter list a a time, it might be useful to put each parameter list called in a

secondary window. Where the main window lists all procedure names, and the

secondary window shows the chosen procedure's name and its parameter list.

In this way widely separated procedure names whose lists had been called would be

viewable together. This could be useful for comparison of procedure calls when trying

to decide between 2 alternative caUs. Especially when choosing between predefined

procedures (or functions). This strategy could also be applied to choosing between a

predefined procedure or function (if they were listed together in the main window),

when trying to decide on the more efficient option.

A further possibility would be to insert the chosen procedure call and parameter list into

the code at the cursor position, ready for over-writing by the programmer. Or to have

the procedure name and parameter list in a window for reference, and the chosen

procedure name with an empty parameter list, ready to be filled at the cursor position.

The aim of course is to give the programmer more choice, so that he/she can choose

the most useful format and volume of information. Whether it is selecting only one

item of information, or comparing many and choosing only one of them.

C A Humphreys -120- Chapter 7

Spotlighting

One idea is to maintain a "previously spotlighted" word list in addition to a "currently

spotlighted" word list. So that the programmer knows which variables "have been" and

"are currently" spotlighted at any time. This could be useful in helping the programmer

remember which words/variables have already been investigated, and can perhaps be

eliminated from the list of words needing further investigation.

The other idea pertains to spotlighting on a multi-colour VDU screen and colour

printer.

On a colour system, the colour could indicate the precedence of each spotlighted

variable. Having, say, the 1st word spotlighted in red, the 2nd word spotlighted in

green, the 3rd in blue, and so on. In this way the programmer could rely on the colour

continuity to mark the spotlights already chosen, and would use a new colour for the

next word chosen for spotlighting. The number of colours or different words that could

be spotlighted would then depend only on the number of different colours supported by

the screen (or the colour printer, if choosing a hardcopy printout). So the colour would

indicate the spotlighting precedence, and should help to maintain a debugging history -

by defining the words/variables already under investigation, by the colours shown. The

only other limit on spotlighting on a colour system would be the viewer's perceptual or

visual capacity - when the number of colours used, and the density of spotlights exceeds

human information processing limits.

7.1.5 Conclusions

The questionnaire was very useful in defining the students attitudes, and the aim of

their debugging strategies, and the use of methods and tools in debugging.

Understanding the aim of reading strategies gives a much closer idea of the importance

of developing a good model of the task. So that it can be used to accelerate debugging,

avoiding having to go back to the original source - the task description, by internalising

that information accurately.

Finding out where mental simulation fitted in regarding the debugging stages it is used

in and why, and how popular it is gave me encouragement. I think it is a very

neglected tool and subject area, simply because it is difficult to test for. But at least

this questionnaire has made its importance real, and 1 hope helped to put it on the map

of things that need to be looked into.

C A Humphreys -121- Chapter 7

7.2 Debugging Experiments

The central part of the debugging experiment consisted of the students applying their

debugging skills to 3 separate pieces of "90% complete" buggy Pascal code. These

bugs were to be eliminated (by modifying the code) so that the code would compile, and

be executed according to the task description provided. All 8 students did these

debugging tasks, and the student identifiers remained the same for these tasks, and the

spotlighting experiments (of §7.3) as well, to maintain continuity.

These tasks were not very complex, short (1-2 pages each), and contained helpful

comments. The purpose of these debugging tasks was to fmd out exactly how the

students went about the debugging task, and to get an idea of how long it took them to

"correct" each set of errors, and which errors the students tackled firSt. Students were

advised not to spend more than 15 minutes on each program.

Task 1: Primes program, Task 2: Letter Pairs program, Task 3: Concordance

program.

7.2.1 Design of Experiments & Experimental Method(s)

Types of Errors Planted in The Code

• missing variable declarations;

• mis-declaration of variables (either in data type or type of procedural parameter);

• missing variable initialisation or re-initialisation statements;

• initializing or re-initialising a variable to the wrong value;

• using the wrong operators in an expression or assignment statement;

• using the wrong comparators in an expression or condition statement;

• wrong sequencing of code statements (or variable value modification statements);

• faulty conditional statements - logic (AND/OR) errors, or using wrong comparators;

• typos and "finger trouble" errors, such as initialising to 9 instead of 0, or

incrementing by 11 instead of 1;

• not paying attention errors - writing out or modifying the wrong (variable's) value

ego writing "prime[num]" instead of "num" (see Primes code, Task 1).

These errors were chosen because they are common/typical errors that one would

expect to fmd in a program under development.

C A Humphreys -122- Chapter 7

Help Provided

A task or algorithm description was provided for each task, to give each student a good

chance of getting a clear and detailed task model and to make debugging as

straightforward as possible. Task 2 (Letter Pairs) had further hints on the algorithm

and the format of the expected output. Task 3's (Concordance) help sheet gave

specific help on pointers, and how to use them to make linked lists.

Appendix 7C contains all 3 pieces of code, with the corrections solutions (hand-written)

on each sheet accompanied by the appropriate control error numbers; the task

descriptions, and the help sheets given to the students.

Data Requested From Students

Students were asked to write down the start and end times for :-

• reading the task description;

• reading the algorithm hints (for Tasks 2 & 3); and

• debugging each task.

Students were also asked to write down a list of thoughts, actions, and strategies - a

written "running commentary" as they went about debugging each task.

Each task description was provided with 2 sets of (15 slot) tick boxes arranged

vertically on top of each other. One set for brief, and one set for thorough readings.

The students were asked to put a tick in either the brief or the thorough box next in the

sequence. This was intended to capture the reading history of the task description, and

to discover the pattern of reading depth and frequency for each task. Unfortunately,

the students did not follow the instructions, so the reading history data was useless.

7.2.2 Student Debugging Strategies

Each student was asked to write down his debugging strategy as he went through the

code looking for errors. The students were expected to write down something along the

following lines (see list below) - accounting for each phase or step in the debugging

strategy. The results were very patchy and incomplete. Some students just flXed the

errors and made no other comments at all.

List of expected actions/strategies :-

• checking the algorithm line by line;

• checking begin-end loops;

• checking declarations - looking for missing variable names, or alternatively,

• checking each new variable name encountered with the declaration area

- if it isn't in the declaration area then it isn't declared;

• checking that each variable is initialised correctly;

• checking that each variable is re-initialised correctly;

• checking that variable values are modified in the correct sequence;

• checking that the algorithm is written/executed in the correct sequence;

C A Humphreys -123- Chapter 7

• checking each conditional statement to see that entry and exit (terminating)
conditions are valid, and will be attainable when the program runs;

• reading through to get an idea of what the code does;

• comparing the actual code with the algorithm it is supposed to reflect

- checking for discrepancies;

• mental execution of code;

• hand simulation of code;

• checking mental model of the task against the code as written.

7.2.2.1 Analysis of Students' Comments While Debugging

The following table is a distillation of the students' common debugging strategies

extracted from the students' comment responses, that were written down while

debugging the experiment code. The Common Characteristics were deduced from the

actual amendments they made to the code itself, and to specific entries on the help

sheets (where students ticked a box, or noted start and end times for reading the task

description or algorithm hints).

Summary of Student Comment Responses Students
checking begin-ends P4 P7
mental execution of code P4L8
try numbers in the algorithm P6P7
check variable definitions P6
reading through with no particular strate~ P6 L6 L7 PS CS
seeking to check & eliminate each section of the prQgram P6
looked at help infQrmatiQn then continued reading and debugging L6
read error hints and examined cQde for causes Qf each error C6 C7 CS
textbook check up on pointers C7
looked I!P syntax of write statements P6 P7
IOQked up definitiQn Qf a cQnstant P7
IOQked I!P definition of a statement P7

Common Characteristics Students
adding surplus begin-ends PI P4 P5 P7 L7 PS
checking task descriptiQn Qr algorithm vs code AI A2 P3 L3 A4 AS A6 L7 C7 L8
reading errors list Al A2 A3 A4 C5 A6 A7 AS

Key to coded entries in table.

P = prime, L = letter pairs, C = concordance, A = all programs.

P5 indicates that Student 5 made that comment during debugging of the prime program,

whereas A6 indicates that Student 6 made that same comment during debugging of all 3

programs.

C A Humphreys -124- Chapter 7

As a programmer I always try to pare my code down to the bare minimum, both

variable and construct wise. So that the code and usage of variables and data structures

is efficient. Thus I tend to be very frugal with BEGIN-END loops especial1y around

IF-ELSE statements.

The students reaction to this aspect of my programming style was to add unnecessary

BEGIN-END loops. Regardless of the fact that they had already been told that al1

necessary BEGIN-END loops were present (but not necessarily in the right places).

As a result, some students wasted valuable debugging time on this activity.

The summary of student responses show very little in the way of detailed debugging

strategies. Most comments are very superficial and uninformative, so I have attempted

to reconstruct a model of debugging strategy using the questionnaire results (see

Appendix Q7 A) as a guide.

7.2.2.2 Reconstruction of Student Debugging Strategies

Comprehension Strategies Defined by Questionnaire (Q7 A)

The questionnaire defined the following 3 steps of comprehension with respect to the

code and the task description as important.

Step 1 - (from Q16) students read and re-read the code/task description to

understand/reaffirm the task requirements;

Step 2 - (from Ql7) the students' aim is to get a total understanding of the code, and to

fill in details (or refresh memory) by reading specific sections of the code, as needed;

Step 3 - (from Q18) the students' primary aim is to correlate the code and its structure

with the task description.

Step 1 is almost compUlsory, in order to get a good idea of how the code is expected to

work, and the task carried out. Steps 2 and 3 are usually carried out (approximately)

simultaneously with priority swapping from one to the other on a moment by moment

basis - dependent on the complexity of (understanding) the code on its own, and the

ease or difficulty of relating what the code does to the task (or algorithm) description.

Probable Debugging Strategy

Facts - The students have been told that there are 6 (or 7) errors in each program, and

how each algorithm is supposed to work.

The algorithm expected comes from reading the task or algorithm description.

The algorithm as written/executed comes from reading the code itself.

C A Humphreys -125- Chapter 7

Each student attempts to understand and relate the code to the algorithm and the task at

hand - finding out what is going on in the code (as shown by QI8).

As the students read the code they are checking for compliance and deviation from the

algorithm expected and the algorithm as written/executed in the code. So they become

aware of discrepancies and "problem areas". This means that they can easily find

themselves correcting "obvious" errors on the spot rather than waiting till later (as Q19

confirmed). Fixing errors on the spot may also result as an aspect of closure - needing

to complete a task in order to gain relief, and to free up cognitive resources for the next

task (Winfield 1986).

Error corroboration is usually needed for "problem areas", because some errors are

more difficult to pinpoint than others. The most obvious errors are when the wrong

operator has been used in a "simple" assignment such as "x : = x + I;" where the "+"
should be a "-".

According to Suchman's (1987) theory there may have been a variation in the way the

students tackled the debugging tasks as a result of the different types of information

supplied.

With the first 2 tasks (the primes and letter pairs programs), the students were given

the task description and algorithm hints. The problem was to find the discrepancies

between the task/algorithm description and the code. So the students had an open mind,

looking for "what is wrong" and were using forward or descriptive debugging. This is

a proactive debugging approach.

With the third task (the concordance program), the students were given the task

description and background information on how to use pointers to build linked lists.

Plus the error hints and compiler messages. The problem was to find the

errors/discrepancies by backtracking from the where the error became apparent (as

defined by the error hints) back to its source - backward debugging. Trying to Trod out

"what caused the error". In this case the students had defmite information as to what

was wrong and took a reactive approach.

7.2.3 Results of Experiments - Interpretation & Evaluation

Scoring the debugging experiments proved more problematic than expected, since the

students were expected to a) follow instructions as directed, and b) only correct the

errors planted in the code.

C A Humphreys -126- Chapter 7

One of the main problems occurring with a} was that students insisted on adding

unnecessary BEGIN-END loops (especially in the primes program - Task I). Thus

debugging time was wasted on this activity - and since students only recorded times for

start and end of the debugging period, it was impossible to factor this wasted time out.

Students also attempted to solve non-existent or spurious errors.

During debugging students assign an error number to each bug that is found - in the

order that it is found/solved; but each student debugs the code in a different order.

Therefore I had to assign a nominal number to each control error (or its solution) that I

had planted in the text. For instance, if there are 7 errors, then the successive student

defined errors are denoted by SEI to SE7 inclusive; and the control error that each

student error corresponds to (if any), is denoted by one of CEI to CE7 inclusive. For

example, say that :-

the student errors SEl SE2 SE3 SE4 SE5 SE6 SE7 correspond to

the control errors CE5 CE3 CE6 CEl CE7 CE2 CE4 respectively.

For the purposes of this experiment, each debugging answer was either right or wrong.

The control error correctness factor was invented to deal with the problem of defining

the degree of rightness or wrongness of the debugging solution, as follows.

Control Error Correctness Factor:

If an error hypothesis is correct it can easily be identified as one of CEI-CE7, say CE6

for example. When the error problem is stated, but the error itself was not solved it

would be denoted as CE61h (expressing a half-solved solution). In some cases the error

hypothesis/solution is wrong, but is clearly related to one of the control errors, say

CE6, and would be denoted as CE6X. When the error solution is completely spurious it

is denoted as CEX. Thus it is easy to see which student errors turned out to be correct,

semi-correct, or wrong but related to a specific control error, and those that are

completely spurious.

The following tables correlate the reading times for the task description (TD.time) and

code reading (CR.time) times, with the debugging times (DB.time) and their means

(DB. mean); as well as correlating the student errors (SEl-7) in terms of the control

errors (CEl-7). All times are in mm.ss (minutes. seconds}.

Number of error solutions follows DB.mean directly (after the "x", as in "5.30x2"), to

validate the total debugging time, DB.time. For example, on Task I, SSl had a total

debugging time of 11.00 (DB.time), and solved 2 errors, so his mean debugging time

was 5.30 (5minutes 30seconds).

C A Humphreys -127- Chapter 7

Task 1: Primes Program
TO.time CR.time DB. time DB.mean CEl CE2 CE3 CE4 CE5 CE6 CEl Spur

SSl 1.09 6.00 11.00 5.30x2 J J
SS2 - 3.25 5.00 2.30x2 SElX SE2X
SS3 1.05 2.35 15.22 2.12x7 SE5 SE3 SE6 SE1 SE2 SE4 SE7X
SS4 0.43 0.35 10.15 No errors found at all.
SS5 0.50 2.00 9.15 1.51x5 J J J J J
SS6 0.40 1.50 19.25 4.S1x4 SE2% SEl SE3% SE4X
SS7 2.02 5.42 31.40 7.5Sx4 SE2 SEl SES SE3X
SSB 1.00 7.30 9.30 1.S4xS SE3 SES SE2 SE1 SE4X

Task 2: letter Pairs Program
TD.time CR. time DB. time DB.mean CEl CE2 CE3 CE4 CE5 CE6 Spur

SSl 0.48 3.18 8.28 8.28x1 SEl
SS2 - 9.09 6.45 3.22x2 SEl SE2X
SS3 0.38 2.50 21.55 3.39x6 SEl SE6 SE2 SE3 SE4X & SE5X
SS4 1.05 3.45 3.50 0.46xS J J J J J
SSS 1.35 4.00 21.00 4.12xS J J J J J
SS6 0.30 1.40 13.00 2.10x6 SE1 SE2 SES SE3 SE4 SE6X
SS7 1.20 7.23 25.50 4.18x6 SE2 SE3 SEl SE4 SE5X & SE6X
SS8 2.15 12.00 31.40 5.17x6 SE3 SE4 SES SE2 SE6 SE1X

Task 3: Concordance Program
TO. time CR. time DB. time DB.mean CEl CE2 CE3 CE4 CE5 CE6 Spur

SSl 0.49 2.01 8.15 No errors found at all.
SS2 - 1.16 8.24 No errors found at all.
SS3 0.43 9.20 30.00 6.00x5 SE1 SE5 SE2 SE4 SE3
SS4 1.00 1.50 12.50 4.17x3 J Jlt J
SS5 0.30 2.15 14.30 2.25x6 SEl SE4 SE6 SE2 SE3 SE5X
SS6 0.30 4.50 4.25 0.S3x5 SEl SE3 SE4 SES SE2
SS7 1.21 6.35 28.47 7.12x4 SEl SE2 SE4 SE3
SS8 1.40 16.20 42.30 8.30x5 SEl SE4 SE2 SES SE3

Key
TDtime = total task description reading time, CRtime = total code reading time,
DBtime = total debugging time, DBmean = mean debugging time, Spur = Spurious Errors.
All times in mm.ss, SE = student error, CE = control error . .J = unnumbered solution.
Ih = error problem stated, but not solved. X = spurious error problem/solution.

There doesn't seem to be a specific correlation between mean debugging time and accuracy. But
this may well have been obscured, if much time was spent on fmding one specific error, or trying to
understand an unfamiliar piece of code.

C A Humphreys -128- Chapter 7

Checking The Correlation Between Control & Student Defined Errors

I wondered if there might be a common pattern in the order in which code was

debugged. I expected the Concordance program to show a defInite pattern, since the

error hints I compiler messages were order~ with the same precedence that they

would occur or become apparent when debugging normally (in real life).

Primes Letter Pairs
SEl SE2 SE3 SE4 SE5 SE6 SE? ? SEl SE2 SE3 SE4 SE5 SE6

CEl - 1 1 CEl 2 1
CE2 - 2 2 2 CE2 -
CE3 - 1 - CE3 - 1
CE4 3 1 1 CE4 - 1
CE5 - 2 1 1 CE5 3 1
CE6 - 1 1 CE6 -
CE7 1 1 1 Sp 1 1
Sp 1 1 2 1

Concordance
SEl SE2 SE3 SE4 SE5 SE6 ?

CEl 5 1
CE2 - 1 1 1
CE3 - 3 2
CE4 - 2 2 1 ~

CE5 - 1
CE6 - 1 4 1
Sp 1
Key

Sp indicates spurious errors defIned by the student, and
? indicates student errors that were not numbered.

1

1 1
1 2
2

2 1
1 2 2

?
2

2
2
2
2

The first 2 tasks - the primes and letter pairs programs do not show any significant

correlations between student and control error numbering.

For Task 3, the concordance program - student error numbering should have followed

the control error numbering exactly. If there had been a specific progression in student

errors, as they reacted to the error hints relating to CEI-6 directly, the top-left to

bottom-right diagonal would have been numerically dense. As it happens, numbers are

close to this diagonal, but there are only 2 "direct hits" out of 6. Namely CElxSEl

scoring 5, and CE4xSE4 scoring 2. This indicates that students did not follow the hints

in the order in which they were given.

One reason for this is the nature of the task and the algorithm. Students (especially

novices) usually find difficulty with pointers. Their confidence and accuracy when

developing and debugging code dealing with pointers only increase when they have

much experience with them. A case of practice makes perfect. So this was not an

easy task to set them.

C A Humphreys -129- Chapter ?

7.2.4 Comments on Debugging Experiments

The first set of volunteers, students 1 & 2, did not have access to the help sheets for

tasks 2 & 3, because it wasn't thought necessary. On checking their comments

regarding task difficulty, it became apparent that they did not have sufficient

information to be able to debug properly. The difference in the number of errors

solved correctly between students I & 2, and the rest of the students makes it quite

clear that a full understanding of the algorithm is crucial to efficient and accurate

debugging.

7.2.5 Conclusions

Results of the debugging experiments were disappointing, especia\1y after emphasizing

how important it was for the students to write down their thoughts, actions and

strategies as they went about the debugging task. These debugging tasks were

expected/designed to draw out the student's debugging strategies in more detail, but the

students only recorded superficial activities, on the whole.

One reason for the lack of debugging data may be that the students' were not fully

conscious of their use of debugging strategies because it is operating under (fu\1 or

partial) automatic processing; or the information may be either too volatile (with a fast

decay time in memory), or non-verbal (held at the goal/intention level of cognition).

An alternative explanation may hinge on the fact that debugging is a H doing"

(procedural) activity, and for the students to consciously examine what they are doing

and attempt to write down a description interferes with (derails) the debugging

process; since writing is a complex procedural activity itself.

It obviously requires a different approach to be able to get detail to the required level.

Protocol analysis or talk aloud during debugging would probably be a more useful

technique to draw out this data. So that obscure or vague comments could be

"questioned" and drawn out on the spot, while the subject is debugging, and the

information is fresh and accessible.

The results of the questionnaire came in very useful, and helped to reconstruct a crude

model of debugging strategy. That debugging is prompted by perceived discrepancies

and is geared towards resolving discrepancies, and restoring the code to the correct or

intended action is well-known. Where the mental urge is to correct the code

immediately rather than waiting ti1llater (Gray & Ariderson 1987, Green, Be\1amy &

Parker 1987). Waiting until later opposes the usual "see it now, fIX it now" strategy or

predisposed debugging habit. The latter may also be an aspect of closure - needing to

get something completed, and menta\1y over and done with.

C A Humphreys -130- Chapter 7

7.3 Spotlighting Experiments

The aim of the spotlighting experiments was to determine the debugging time required

to detect, locate and fix each individual error. There were 2 program debugging tasks

for each "half" of the experiment: with plain unemphasized text for the letter count and

she\1 sort programs; and 4 sets of typographica\1y emphasized "spotlighted" text for

each of the survey and bubble sort programs - with each spotlighted program having a

different variable spotlighted within the text.

Variations of the same/similar program algorithms were used for both halves of the

experiment, although the algorithms were disguised superficially to make the results

comparable. However, the she\1 sort algorithm is a little more complicated than the

one for bubble sort (as shown by the debugging task difficulty ratings at the end of

Appendix 7D).

This experiment should yield more concrete data than the previous debugging tasks (of

§7.2) since the experiments are geared specifically towards tabulating the time taken to

debug each individual error, and can thus produce a more accurate "mean" debugging

time value. Unfortunately, the sample size is rather small, with just 7 sets of data to

study (from the same students as in §7.1 & §7.2). So the results will be indicative of

the effects of different information formats viz plain or typographically enhanced

program text, rather than representative.

Another factor is that the tools may need to be used/practised for some time, so that the

users become familiar with their operation, and, as a consequence, fully aware of the

ways in which they can be used. People need time to develop ways of using a tool

efficiently, and understanding its strengths and weaknesses. For example, using

spotlighting to detect errors of omission or misplacement. To offset this effect, hints

were provided that outlined the ways that spotlighting could be used to detect errors of

omission, such as missing declarations or missing initialisation statements. For

example, if a variable name is spotlighted and it hasn't been declared, then it will not

have a spotlight in the declaration area.

7.3.1 Definition of Hypotheses

Spotlighting

I) The use of spotlighting will reduce the time taken to debug a program.

2) The use of spotlighting will enhance the quality of interaction during debugging.

3) Spotlighting will prove useful in the debugging task(s).

4) Spotlighting will make debugging easier.

C A Humphreys -131- Chapter 7

Layout Style

5) Having code in your own preferred layout style increases readability and

comprehension.

6) Having code in your own preferred layout style makes debugging easier.

7) The greater the divergence between the code's layout and your preferred style, the

more difficult it is to debug.

The first hypothesis requires a series of debugging tasks to be set up and timed on a

series of partially complete chunks of programming code, that can be considered as

being in the last phase of development and debugging. With comparable tasks done on

plain code and on code that has all the features of the plain system plus spotlighting.

Each piece of experimental code was accompanied by a description of the task it was to

perform, and its input/output requirements, to maximize the students' (accurate)

detection and correction of all programming errors planted in the code.

To counteract bias, the subjects were split into 2 groups, where one group worked on

the plain code first, while the other group worked on the spotlighting code. After

finishing both programs in the first experimental condition, the student was then given

the other experimental condition to work on. Thus leaving the student with only 2 sets

of code belonging to one experimental condition at a time, to avoid contamination of

results (from copying the solutions, or comparing the solutions of one experimental

condition against the other). Of course, the students may have remembered solution

details from debugging in one experimental condition to the other.

The experimental method used to test the frrst hypothesis, depended on each student

logging his own personal start and finish times for each of the following:

- reading the task deSCription thoroughly;

- reading the code fragment thoroughly; and

- detecting and correcting each bug.

The remaining hypotheses required a series of subjective opinions to be elicited. These

would be difficult to test for directly, other than by asking specific questions. This

meant asking students to answer a questionnaire after the spotlighting experiments, to

get their individual SUbjective responses to the spotlighting tool and the different aspects

of layout style.

C A Humphreys -132- Chapter 7

7.3.2 Design of Experiments

7.3.2.1 Experimental Options for Testing Spotlighting

There were 2 options for the spotlighting experiment. Either paper- or terminal-based

experiments; plus a subjective questionnaire to answer after the experiment.

Each proposed experiment had the format < plain system> vs < plain + tools

system> .

1. Paper experiment: Plain system has one code sheet, showing the code in its original

form, a task description, and a grid for start and finish times of error

detection/correction. Spotlighting system has a set of 4 code sheets, each sheet with

the original code and a different one of the variables highlighted; a task description,

and a grid for start and finish times of error detection/correction.

Advantages: minimal equipment, probably fast to implement.

Disadvantages: non-interactive, perhaps non-representative results.

2. Terminal based experiment: Plain system has very basic editing functions to enable

code corrections to be made. Spotlighting system has all facilities of plain system, plus

simple mechanisms to enable user to define the word that is to be spotlighted.

Advantages: interactive, results more representative - closer fit to the task.

Disadvantages: time and effort to implement and get working, learning curve to gain

skills to implement it, and subjects will require practice with new tools to gain

familiarity, skill and confidence in using them. Another problem is how to determine

individual debugging times.

NB. On the experimental editing system there would be additional delays caused by

invoking the spotlighting utility on each variable. But the plain editing system should

have no such delays, since all variations are already built in and accounted for.

Decision

Reasons for deciding to perform paper experiments rather than interactive terminal

based experiments are as follows:

1. speed of implementation, low resource requirements, expected high data yield.

2. ability to do a large group of timed experiments relying on each individual to time

him/herself, rather than individual experiments timed by me, giving a greater quantity

of data from a single time slot, rather than doing each experiment singly and

accumulating experimental data one set at a time.

3. considering the time factor vs quality and quantity of data, paper based experiments

won hands down.

C A Humphreys -133- Chapter 7

7.3.2.2 Experimental Tasks

The experiment required 4 pieces of code: 2 for use as the "plain" system; and 2 for

use as the "test" spotlighting system. The problem was to find 4 chunks of code that

represented 2 sets of pair-wise comparable tasks. The solution was to have 2 code

solutions, and to recast the surface structure ego the variable names, but with minimal

changes to the underlying semantics or algorithms.

Each plain debugging task consisted of 1-2 sheets of non-highlighted code laid out in a

"standard" familiar form (similar to MacPascal). Each spotlighted debugging task had

4 versions of the same code, each one having a different one of the 4 variables

spotlighted (each debugging program used only 4 variables).

7.3.3 Analysing Results Of Spotlighting Experiments

Fact - the programmer analyses each error problem, and writes the corresponding error

solution on the program text. Either adding new code, or just moving lines or chunks of

existing code around, and/or modifying existing code by using a combination of

insertion, deletion and any appropriate copy/cut/paste operations. On paper text,

moving a chunk of text is (usually) indicated by "boxing" the text that is to be moved,

and narrowing" where it is to be moved to (or giving the necessary line and/or page

numbers instead).

Only 7 students did the spotlighting experiments (all previous volunteers).

Spotlighting data for analysis:

- difference between start and end time for each error/bug gives the debug time;

- the bug solution/correction written on the program text sheet, as per the usual

debugging strategy outlined above.

Asking the students to log the start and end times for debugging each individual bug was

intended to provide the most accurate debugging times, by eliminating (factoring out)

any time spent on distractions between debugging episodes. (The latter was a

confounding factor in the debugging experiments of §7 . 2).

As with the previous debugging tasks (of §7.2.3), the student assigns an error number

(shown in the tables as SEl-SE7) to each bug that he fmds - in the order that he

fmds/solves it; but each control error has a nominal number (CEl-CE7). Both numbers

are related by the Error Correctness Factor (see §7.2.3) which can be applied to both

sets of error notation (either the SEl-7 series, or the CEl-7 series).

Fig. I shows the successive debugging times for each student defined error, denoted by

SEI to SE7; and the control error that it corresponds to (if any), denoted by CEl to

CE7. All debugging times are in mm:ss - minutes and seconds.

C A Humphreys -134- Chapter 7

Fig. I Correlating Student Debugging Times & Control Errors, With Means (in mm:ss)
SSl Letter Count SS1 surve~ SS1 She 11 Sort SS1 Bubble Sort
Mean = 1 :06 Mean = 1: 9 SV Mean = 2:52 Mean = 5:00 SV
SE 1 1:10 CE 3 SE 1 0:30 CE 1% w SE 1 5:14 CE 2 SE 1 5:00 CE 3X i
SE 2 0:15 CE 1% SE 2 1:30 CE 4 w SE 2 0:30 CE 6%
SE 3 1:52 CE 4 SE 3 2:20 CE 2% w

SE 4 1:16 CE 6 w
SE 5 1:40 CE 5 w
SE 6 1:40 CE 3% w

SS3 Letter Count SS3 surveS SS3 Shell Sort SS3 Bubble Sort
Mean = 1:28 Mean = 1: 4 SV Mean = 2:03 Mean = 1:43 SV
SE 1 0:35 CE 1 SE 1 2:56 CE 3 m SE 1 1:30 CE 6 SE 1 2:33 CE 3 i
SE 2 1:47 CE 2 SE 2 1:55 CE 6 w SE 2 0:40 CE 5 SE 2 0:45 CE 5 i
SE 3 0:15 CE 5 SE 3 1:03 CE 5 w SE 3 0:20 CE 2 SE 3 0:28 CE 6 i
SE 4 1:20 CE 6 SE 4 1:30 CE 1 5 SE 4 4:25 CE 4 SE 4 2:47 CE 2 i
SE 5 1:08 CE 4 SE 5 1:23 CE 2 t SE 5 2:40 CE 3 SE 5 1:44 CE 2X in
SE 6 3:41 CE 7 SE 6 2:40 CE 4 t SE 6 3:59 CE 7 SE 6 1: 17 CE X in

SE 7 0:47 CE 1% SE 7 2:29 CE 7 j
SS4 Letter Count SS4 surve~ SS4 She 11 Sort SS4 Bubble Sort
Mean = 1 :42 Mean = 2: 6 SV Mean = 2:11 Mean = 3:19 SV
SE 1 1:30 CE 4 SE 1 3:45 CE 5 w SE 1 1:04 CE 6 SE 1 3:05 CE 3 i
SE 2 1:05 CE 6 SE 2 0:39 CE 3 w SE 2 6:30 CE 7 SE 2 2:40 CE 4 i
SE 3 2:05 CE 3 SE 3 1:55 CE 6 w SE 3 0:38 CE 5 SE 3 1 :40 CE 5 i
SE 4 1:50 CE 5 SE 4 1:40 CE 2 SE 4 5:00 CE 2X i
SE 5 2:00 CE 7 SE 5 1:35 CE 3 SE 5 4: 10 CE X i
SE 6 1:40 CE 2 SE 6 1:07 CE 4~ SE 7 2:45 CE ?
SS5 Letter Count SS5 surveb' SS5 She 11 Sort SS5 Bubble Sort
Mean = 1:18 Mean = 2: 8 SV Mean = 1 :56 Mean = 1:45 SV
SE 1 0:35 CE 1 SE 1 1:55 CE 5 w SE 1 1:05 CE 6 SE 1 2:25 CE 5 i
SE 2 0:20 CE 3 SE 2 0:30 CE 6 w SE 2 1:05 CE 7 SE 2 0:55 CE 7 i
SE 3 1:05 CE X SE 3 1:20 CE 4 w SE 3 1:15 CE X SE 3 1:10 CE 3 j
SE 4 4:15 CE 4 SE 4 0:50 CE 2 w SE 4 2:50 CE 4 SE 4 1:05 CE 4 J SE 5 0:50 CE 6 SE 5 0:55 CE 3 w SE 5 1:30 CE 3 SE 5 2:50 CE 2 1n
SE 6 0:45 CE 5 SE 6 7:20 CE 1 w SE 6 5:05 CE X SE 6 2:05 CE 6 in

SE 7 0:40 CE X
SS6 Letter Count SS6 Surve~ SS6 Shell Sort SS6 Bubble Sort
Mean = 0:5B Mean = 0: 4 SV Mean = 1:25 Mean = 1:03 SV
SE 1 1:25 CE 3 SE 1 0:25 CE 1 5 SE 1 1:25 CE 6 SE 1 0:50 CE 3 in
SE 2 1:40 CE 4 SE 2 0:20 CE 2 t SE 2 1:36 CE 7 SE 2 0:28 CE 5 in
SE 3 0:30 CE 5 SE 3 0:45 CE 6 w SE 3 1:25 CE 1 SE 3 0:53 CE 7 in
SE 4 0: 25 CE 6 SE 4 0:25 CE 3 m SE 4 1: 55 CE 2 SE 4 1:25 CE 2 in

. SE 5 0:50 CE 2 SE 5 0:42 CE 5 w SE 5 0:25 CE 3 SE 5 0:45 CE 4 in
SE 6 0:55 CE X SE 6 3:45 CE 4 w SE 6 1 :46 CE 4 SE 6 0:55 CE 6 in

SE 7 2:05 CE X in
SS7 Letter Count SS7 surve~ SS7 Shell Sort SS7 Bubble Sort
Mean = 1:51 Mean = 2: 7 SV Mean = 1:54 Mean = 1 :20 SV
SE 1 1:33 CE 3 SE 1 1:44 CE 2% w SE 1 2:24 CE 7X SE 1 0: 25 CE 4 t
SE 2 1:08 CE 2% SE 2 2:35 CE 6 w SE 2 2:02 CE 6X SE 2 0:24 CE 3 t
SE 3 1:45 CE 4 SE 3 1:20 SE 3 1:50 CE 2X SE 3 0:18 CE 5 t
SE 4 1:10 CE X SE 4 0:30

CE 3~ m
CE I" s SE 4 1:10 CE 5% SE 4 1: 32 CE 2X in

SE 5 2:08 SE 5 5:20 CE 5 w SE 5 1:26 CE 4 SE 5 4:40 CE 7 in
SE 6 3:19

CE 6%
CE X SE 6 4:11 CE 4% m SE 6 2:30 CE X SE 6 0:55 CE 6X in

SE 7 1 :06 CE 7
SS8 Letter Count SSB surve~ SS8 Shell Sort SS8 Bubble Sort
Mean = 1:13 Mean = 2: 5 SV Mean = 4:31 Mean = 1:18
SE 1 1:00 CE 2 SE 1 2:30 CE 6 w SE 1 16:45 CE 3 SE 1 2:30 CE 3
SE 2 0:45 CE 3 SE 2 0:45 CE 3 m SE 2 2:15 CE 5 SE 2 1:45 CE 5
SE 3 2:15 CE 4 SE 3 1:00 CE 1 5 SE 3 0:30 CE 2 SE 3 0:45 CE 4
SE 4 1:30 CE 5 SE 4 2:00 CE 2 t SE 4 8: 15 CE X SE 4 1 :00 CE 6
SE 5 0:30 CE 6 SE 5 1:00 CE 5 w SE 5 1:15 CE 6 SE 5 0:45 CE 7
SE 6 1:15 CE 7 SE 6 8:15 CE 4 5 SE 6 0:45 CE 7 SE 6 1:05 CE 2

SE 7 2:00 CE 1 SE 7 1:15 CE 1

Key CE - Control Error, SE - Student Dermed Error, SV - spotlighted variable.
Qualifiers appended to error no.s - either X, Ih, or first I (or 2) letter(s) of the variable's
name to specify which spotlighted sheet was used for debugging.
Where X - means wrong error hypothesis; and
Ih - means error problem defmed but not solved; ego "wait variable not declared" .
Survey - spotlighting signal, time, wait & maxwait variables.
Bubble Sort - spotlighting i, j, temp & inorder variables.

j

SV
t
t
t
in
t
t
j

C A Humphreys -1~5 - Spotlighting Experiment Data

Fig. 2 Master matrix defining the debuqging time for each individual control error. Where student defined errors are denoted in debugging
order as SE1, SE2, ... SE1; aga1nst a nom1nal ordering of the "control errors" planted in the code, denoted as CE1, CE2, ... CE1. The stuaent error
number has an inbuilt correctness component in relation to one of CEl. .. CE1. Where X denotes a spurious error, and ~ denotes a statement of the error
problem, such as "signal variable undeclared" or "wait variable not initialised", but without or instead of an error solution, such as ""signal :
1nteger;" or "wait := 0;" either placed or accompanied by an indication of where the missing statement should be placed. Those student error numbers
that are shown without a qualifier, indicate a correct s01ution to that control error.
For example, in the Letter Count program: student 1 correctly defined/solved control error CE3, as his 1st debu9ging attempt, SE1, with a debugging
time of 1:10secs; but only defined control error CE1, as h1S 2nd debugging attempt, SE2, with a debugging t1me of 0:15secs. Whereas student 7
defined/solved 2 spurious errors, SE4 and SE6, with debugging times of 1:10 and 1:08secs respectively.

LETTERCOUNT
CEI CE2 CE3 CE4

SSl SE2~ 0:15 SE1 1:10 SE3 1 :52
SS3 SE1 0:35 SE2 1:41 SE5 1:08
SS4 SE6 1:40 SE3 2:05 SEI 1:30
SS5 SEI 0:35 SE2 0:20 SE4 4:15
SS6 SE5 0:50 SE1 1 :25 SE2 1:40
SSl SE2~ 1:08 SE1 1 :33 SE3 1:45
SS8 SE1 1:00 SE2 0:45 SE3 2:15

Mean 0:28 Mean 1:11 Mean 1:13 Mean 2:04

SURVEY - spotlighting Si~nal, time, wait & maxwait variables
CE1 C 2 CE3 CE4

SSl SEI\ 0:30w SE3\ 2:20w SE6\ 1:40w SE2 1:30w
SS3 SE4 1:30s SE5 1 :23t SE1 2:S6m SE6 2 :40t
SS4 SE2 0:39w
SSS SE6 1:20w SE4 0:50w SES O:SSw SE3 1:20w
SS6 SE1 0:25s SE2 0:20t SE4 0:2Sm SE6 3:45w
SS7 SE4\ 0:30s SE1~ 1:44w SE3\ 1:20m SE6\ 4: llm
SS8 SE3 1:00s SE4 2:00t SE2 0:45m SE6 8:15s

Mean 1:53 Mean 1 :26 Mean 1:14 Mean 3:31

SHELLSORT
CE1 CE2 CE3 CE4

SSl SE1 5:14
SS3 SE1\ 0:41 SE3 0:20 SES 2:40 SE4 4:25
SS4 SE4X 1 :40 SE5X 1:35 SE6\ 1:01
SS5 SE6X 5:05 SE5 1 :30 SE4 2:50
SS6 SE3 1:25 SE4 1:5S SES 0:25 SE6 1:46
SSl SE3\ 1:50 SES 1:26
SS8 SEl 2:00 SE3 0:30 SE1 16:45

Mean 1:24 Mean 2:22 Mean 4:35 Mean 2:19

BUBBLECOUNT - spotlighting i, j, temp & inorder variables
CE1 CE2

SSl
SS3 SE6X l:llin
SS4
SS5
SS6
SSl
SS8

SE1X 1:06j
SEl 1:15t
Mean 1:13

SE4 2:41i
SE4X 5:00i
SE5 2:50in
SE4 1 :25in
SE4X 1:32in
SE6 1:05in
Mean 2 :21

CE3 CE4
SE1X 5:00i
SE1 2:33i
SEl 3:05i
SE3 1:10j
SEl 0:501n
SE2 0:24t
SE1 2:30j
Mean 1:13

SE2 2:40i
SE4 1:05j
SES 0:451n
SE1 0 25t
SE3 0 45t
Mean 1 08

CE5

SE3 0:15
SE4 1:50
SE6 0:45
SE3 0:30

SE4 1:30
Mean 0:45

CE5
SE5 1:40w
SE3 1:03w
SE1 3 :45w
SE1 1:55w
SE5 0 :42w
SE5 5:20w
SE5 1:00w
Mean 2:14

CE5

SE2 0:40
SE3 0 :38
SE3X 1:30

SE4\ 1:10
SE2 2:1S
Mean 1:15

CE5

SE2 0:45i
SE3 1:40i
SEl 2:2Si
SE2 0:28in
SE3 0:18t
SE2 1:45t
Mean 1:14

CE6

SE4 1:20
SE2 1:05
SE5 0:50
SE4 0:25
SE5\ 2:08
SE5 0:30
Mean 1:02

CE6
SE4 1:16w
SE2 1:55w
SE3 1:55w
SE2 0:30w
SE3 0:45w
SE2 2:35w
SEl 2:30w
Mean 1:38

CE6
SE2\ 0:30
SE1 1:30
SEl 1:04
SEl 1:05
SEI 1:25
SE2X 2:02
SE5 1:15
Mean 1:16

CE6

SE3 0:28i

SE6 2:05in
SE6 0:55in
SE6X 0:55in
SE4 1:00t
Mean 1:05

CE7

SE6 3:41
SE5 2:00

SE6 1:15
Mean 2:18

Spurious

CEl

SE6 3:59
SE2 6:30
SE2 1 :05
SE2 1:36
SEIX 2 :24
SE6 0:45
Mean 2:43

CEl

SE2 0:55i
SE3 0:53SEin
SE5 4:40in
SE5 0:45t
Mean 1:48

Spurious

SE3X 1:05
SE6X 0:55
SE4X 1:10 & SE6X 1:08

Mean 1:05

Spurious

SEX 2:45
SE1X 0:40

SE6X 2:30
SE4X 8:15
Mean 3:43

Spurious

SE1X 2:20in
SE5X 4:10i

SE1X 2:05in

Mean 2:52

Vl
>,
<1J
s...

..c::
Co
E

'" ::x::
et
u

The Survey and Bubble Sort programs were used to test the spotlighting concept. Thus

each program had 4 sets of program text. Each sheet having a different variable

spotlighted. The first 1 (or 2) letter(s) of the variable name were used to indicate

which sheet was used to "solve" each bug. Thus Student l's (SSl) first error, SE1,

was denoted CEPhw. This indicates that SEI corresponds to CE1, and 'h to the fact

that the solution was semi-correct (error problem stated but not its solution), and the

fact that it operated on the sheet where the "wait" variable was spotlighted. Mean

debug times are listed for each student per program ..

Fig. 2 shows debug times with respect to control error ordering, CEs vs SEs (control

errors vs student errors). This enables a correlation of debugging times for all students

and for each individual control error. The error correctness factor was applied to

student defmed errors in the same way as to control errors. The debugging time,

student error numbers vs control error matrix has an additional factor for the spotlighted

program text that was debugged. In these cases the letter following the debugging time

indicates which of the variables was spotlighted on the sheet that the debugging strategy

acted on. Mean debug times are listed for each control error.

For example, in the Letter Count program: student I correctly defined/solved control

error CE3, as his 1st debugging attempt, SEI, with a debugging time of 1:lOsecs; but

only defmed control error CEI (thus CE1'h), as his 2nd debugging attempt, SE2, with

a debugging time of 0: 15secs. Whereas student 7 defined/solved 2 spurious errors, SE4

and SE6, with debugging times of 1: 10 and 1 :08secs respectively.

Appendix 7D contains copies of the program text used for the spotlighting experiments,

with accompanying task descriptions. Each piece of program text has been 100%

debugged, and shows the solutions (hand-written) on each sheet, with the appropriate

control error numbers. These sheets show (approximately) what each sheet was

expected to look like after it had been fully debugged. With the spotlighting sheets,

some control error solutions may appear on more than 1 sheet. Usually as a result of a

sequencing error which affects 2 or more variables. Appendix 7D also contains a

separate list of control errors and their solutions for each piece of code.

Fig. 3 shows the mean debug time for each student and each program, plus the total

debugging time per program. Thus each student's debug time can be compared to his

own mean overall debug time, or the mean overall time for that particular program.

Student 8 spent 16:45s on his first error in the Shell Sort program. This is way beyond

the expected debug time - being a factor of approximately 10 times slower than usual.

Discounting the 16:45s debug episode gives a mean debug time of 2:30, and including it

pushes the mean up to 4:32, almost double the debug time. His own personal mean

debug time is 1 :52 (excluding the 16:45s) - which indicates that this value is a one-off

event. The table takes account of this by giving mean values including the 16:45 value,

C A Humphreys -137- Chapter 7

followed by a "/" and the mean value excluding this value. (All times are in mm:ss,

minutes :seconds.)

Fig. 3 Mean Debugging Times Per Student Per Program

Letter Count Survey * Shell Sort Bubble Sort * Overall

Student 1 1:06 1: 29 2:52 5:00 1:55

Student 3 1:28 1:54 2:03 1 :43 1:48

Student 4 1 :42 2:06 2: 11 3:19 2:18

Student 5 1:18 2:08 1:56 1: 45 1:47

Student 6 0:58 0:34 1:25 1: 03 1:07

Student 7 1:51 2:37 1:54 1:20 1:54

Student 8 1:13 2:35 4:32L2:30 1:18 2:27Ll:52

Total Time 54:06 77 :04 100:33L83:48 69:54 301 :37 a84:52
Mean Time 1:23 1: 59 2:24L2:03 1: 45 1:530:47
Where * indicates the spotlighted programs.

The overall means for each program in ascending order of mean debugging times gives

Letter Count, Bubble Sort, Survey and Shell Sort. Faster debugging times indicate

"easier" error problems, or errors that are relatively easy to detect and solve.

If spotlighting improves debugging then debug times for errors involving a spotlighted

variable should be less than those for a non-spotlighted variable.

The difference between mean debugging times for plain vs spotlighted tasks are:

Letter Count mean is 36secs less than Survey mean;

Shell Sort mean is 18-39secs more than Bubble Sort mean.

For Letter Count 6 students' mean debugging time was less than for Survey, but 1 was

higher.

For Shell Sort 2 students' mean debugging time was less than for Bubble Sort, and 5

were higher.

Thus for the Letter Count/Survey pairing, spotlighting is faster in 117 cases; and for the

Shell SortlBubble Sort pairing, spotlighting is faster in 5/7 cases. Thus, overall,

spotlighting is faster in 6/14 cases.

Taking into account the fact that the Shell Sort algorithm was slightly more difficult to

grasp than the one for Bubble Sort; leads to the opinion that spotlighting did not give an:

significant reduction in debugging time. Thus the first hypothesis is not proved true.

C A Humphreys -138- Chapter 7

Fig. 4 Debugging Times in Ascending order For Each Student, With Totais

Student 1 Student 3 Student 4 Student 5 Student 6 Student 1 Student 8
0:15 CEL 1~ 0:15 CEL 5 0:38 CESH 5 0:20 CEL 3 0:20 CES 2t 0:18 eEB 5t 0:30 eEL 6
0:30 CES 1 w 0:20 CESH 2 0:39 CES 3w 0:30 eES 6w 0:25 CEL 6 0:24 CEB 3t 0:30 CESH 2
0:30 CESH 6~ 0:28 CEB 6i 1:04 CESH 6 0:35 CEL 1 0:25 CES Is 0:25 eEB 4t 0:45 CEB 4t
1:10 eEL 3 0:40 CESH 5 1:05 CEL 6 0:40 CESH X 0:25 CES 3m 0:30 eES I~S 0:45 CEB 1t
1:16 CES 6w 0:45 CEB 5i 1 :01 CESH 4\ 0:45 CEL 5 0:25 CESH 3 0:55 CEB 6 in 0:45 CEL 3
1:30 CES 4w 0:41 CESH 1\ 1:30 CEL 4 0:50 CEL 6 0:28 CEB Sin 1:06 eEB H 0:45 CES 3m
1:40 CES 3\w 1:03 CES 5w 1 :35 CESH 3 0:50 CES 2w 0:30 CEL 5 1:08 CEL 0:45 eESH 1
1:40 CES 5w 1:08 CEL 4 1:40 CEB 5i 0:55 CEB 1i 0:42 CES 5w 1:10 CEL X 1:00 CEB 6in
1:52 CEL 4 1:11 CEB Xin 1:40 CEL 2 0:55 CES 3w 0:45 CEB 4in 1:10 CESH 5~ 1:00 CEL 2
2:20 CES 2~W 1 :20 CEL 6 1:40 CESH 2 1:05 CEB 4' 0:45 CES 6w 1 :20 CES 3~m 1:00 CES Is
5:00 CEB 3 i 1 :23 CES 2t 1:50 CEL 5 1:05 CEL xl 0:50 CEB 3in 1:26 CESH 4 1:00 CES 5w
5:14 CESH 2 1:30 CES Is 1:55 CES 6w 1:05 CESH 6 0:50 CEL 2 1:32 CEB 2Xin 1:05 CEB 2t
22:51 1 :30 CESH 6 2:00 CEL 1 1:05 CESH 1 0:53 CEB 7ln 1:33 CEL 3 1:15 CEB 1 .

1:44 CEB 2Xin 2:05 CEL 3 1:10 CEB 3j 0:55 CEB 6in 1:44 CES 2\w 1:15 CEL 1l
1:41 CEL 2 2:40 CEB 4i 1:15 CESH X 0:55 CEL X 1:45 CEL 4 1:15 CESH 6
1:55 CES 6w 2:45 CESH 11 1:20 CES 4w 1:25 CEB 2in 1:50 CESH 2X 1 :30 CEL 5
2:29 CEB l' 3:05 CEB 3i 1:30 CESR 3 1 :25 CEL 3 2:02 CESH 6X 1:45 CEB 5t
2:33 CEB 31 3:45 CES 5w 1:55 CES 5w 1:25 CESH 1 2:08 CEL 6~ 2:00 CES 2t
2:40 CES 4t 4:10 CEB Xi 2:05 CEB 6in 1 :25 CESH 6 2:24 CESR 1 2:00 CESH 1
2:40 CESH 3 5:00 CEB 2Xi 2:25 CEB 5i 1 :36 CESH 1 2:30 CESH X 2:15 CEL 4
2:41 CEB 2i 6:30 CESH 1 2:50 CEB 2in 1:40 CEL 4 2:35 CES 6w 2:15 CESH 5
2:56 CES 3m 48:23 2:50 CESH 4 1:46 CESH 4 3:19 CEL X 2:30 CEB 3t
3:41 eEL 1 4:15 CEL 4 1:55 CESH 2 4:11 CES 4\m 2:30 CES 6w
3:59 CESH 1 5:05 CESH X 2:05 CEB Xin 4:40 CEB 11n 8:15 CES 4s
4:25 CESH 4 1:20 CES lw 3:45 CES 4w 5:20 CES 5w 8:15 CESH X
48:33 44:40 28:00 41:25 16:45 CESH 3

63:35/46:50

22:51 Total 48:33 Total 48 :23 Total 44:40 Total 28:00 Total 41 :25 Total 63:35/46:50 Total

1:55 Hean 1:48 Mean 2:18 Mean 1:41 Hean 1:01 Hean 1:54 Hean 1:53/1:41 Hean

Key
CE - means Control Error for each program;

redefined as CEB, CEL, CES & CESR referring to Bubble Sort, Letter Count Survey & Shell Sort respectivel!.
Qualifiers appended to error no.s - either X, \, or first 1 (or 2) letter(s1 of tlie variable's name to spec fy which spotlighted
sheet was used for debugging.
Where X - means wrong error hypothesis' and

\ - means error problem defined but not solved; ego "signal variable not declared".
Survey - spotlighting Signal, time, wait & Maxwait variables.
Bubble Sort - spotlighting i, j, temp & inorder variables.

C A Humphreys -\3' - Spotlighting Experiment Data

Fig_ 5 Debugging Times in Ascending Order For Each Program
With Totals and Means in mm:ss

Letter Count Survey Shell Sort Bubble Sort
0:15 0:20 0:20 0:18
0:15 0:25 0:25 0:24
0:20 0:25 0:30 0:25
0:25 0:30 0:30 0:28
0:30 0:30 0:38 0:28
0:30 0:30 0:40 0:45
0:35 0:39 0:40 0:45
0:35 0:42 0:45 0:45
0:45 0:45 0:47 0:45
0:45 0:45 1:04 0:50
0:50 0:50 1:05 0:53
0:50 0:55 1:05 0:55
0:55 1:00 1:07 0:55
1:00 1:00 1:10 0:55
1:05 1:03 1:15 1:00
1:05 1:16 1:15 1:05
1:08 1:20 1 :25 1:05
1:08 1:20 1:25 1:06
1:10 1:23 1:26 1:10
1:10 1:30 1:30 1:15
1 :15 1:30 1 :30 1:17
1:20 1:40 1:35 1:25
1:25 1:40 1:36 1:32
1:30 1:44 1:40 1:40
1:30 1:55 1:46 1:44
1:33 1:55 1:50 1:45
1:40 1:55 1:55 2:05
1:40 2:00 2:00 2:05
1:45 2:20 2:02 2:25
1:47 2:30 2:15 2:29
1:50 2:35 2:24 2:30
1:52 2:40 2:30 2:33
2:00 2:56 2:40 2:40
2:05 3:45 2:45 2:47
2:08 3:45 2:50 2:50
2:15 4:11 3:59 3:05
3:19 5:20 4:25 4:10
3:41 7:20 5:05 4:40
4:15 8:15 5:14 5:00

6:30 5:00
8:15
Hi-45 Qyerall IQtal

54:08 77:04 100:33/83 :48 69:54 301 :37/284:52

Mean Mean Mean M!:an Ov!:ralI M!:a!!
1:23 1:59 2:24/2:03 1:45 1:53/1:47

C A Humphreys Spotlighting Experiment Data

If spotlighting really reduces debugging times, then debugging times should have been

faster on the letter count vs survey program comparison, as that pair of programs were

of the same difficulty, with analogous deep structure algorithms. So, spotlighting may

have reduced debugging times, but the result is not sufficiently clear cut to give a

defmite answer.

Fig. 4 shows the debug times for each student in ascending order. Fig. 5 shows the

distribution of debug times for each program, also in ascending order. The mean debug

times of Fig.s 4 & 5 were fed into the table of Fig. 3, for comparison.

In Fig. 6, each matrix defines the ordering of student debugging attempts SEI to SE7 in

relation to the control errors CEl to CE7 for one piece of code. For example, with the

Letter Count program, control error 3, CE3, was solved 3 times as SEI, 2 times as

SE2, and 1 time as SE3.

Control errors were numbered in accordance with their (strictly top-bottom textual)

position in the code. Thus CEI appears first in the code, followed by CE2, ... , and

CE7 denotes the last error appearing near the end of the code.

It is interesting to see that there is a broad band of numbers appearing on or near the

top-left to bottom right diagonal in Letter Count, whereas the Shell Sort matrix has a

numerically dense bottom-left to top-right diagonal. The former might indicate that the

students solved the Letter Count errors in a top-bottom approach, and in the latter in a

bottom-up approach.

Fig. 6 Checking The Correlation Between Control & Student Defined Errors
Letter Count Survey

SEl SE2 SE3 SE4 SES SE6 SE7 SEl SE2 SE3 SE4 SES SE6
CEl 2 1 CEl 2 1 2 1
CE2 1 2 1 1 CE2 1 1 1 2
CE3 3 2 1 CE3 1 2 1 1 1 1
CE4 1 1 3 1 1 CE4 - 1 1 4
CES - 2 2 1 CES 2 1 4
CE6 - 1 1 3 CE6 1 3 2 1
cn - 1 2
Sp 1 1 2

Shell Sort Bubble Sort
SEl SE2 SE3 SE4 SES SE6 SE7 SEl SE2 SE3 SE4 SES SE6 SE7

CEl - 1 2 CEl 1 2
CE2 1 3 2 1 CE2 - 4 1 1
CE3 1 4 CE3 5 1 1
CE4 - 2 1 2 CE4 1 1 1 1 1
CES - 2 2 1 CES 1 3 2
CE6 4 2 1 CE6 - 1 1 3
CE7 1 3 2 CE7 - 1 1 2
Sp 2 Sp 1 1

NB. Sp indicates spurious errors defmed by the student.

C A Humphreys -141- Chapter 7

Fig. 7 shows 4 matrices. The 2 on the left shQW the control error and the name Qf the

spotlighted variable that that errQr was debugged Qn. Thus fQr the Survey program CEI

was debugged Qn 2 wait and 4 signal sheets. HQwever, 2 students did nQt swap

between sheets - they used only I sheet fQr all the debugging. This leaves a problem -

whether to. discount the single sheet debugging times fQr the program cQncerned, Qr to

ignQre it only when it refers to. a different variable that spotlighting shQuld have helped

with.

Fig. 7 Checking Which Spotlighted Sheet Used fQr Each Individual Error
Survey After discounting single sheet solutions

wait maxwait signal time wait maxwait sjgnal time score correct sheet
CEl 2w 4s 4s 4/4 signal
CE2 3w 3t Iw 3t 3/4 time
CE3 3w 4m 4m 4/4 maxwa it
CE4 3w Im Is It Iw Im Is It 1/4 signal
CE5 7w 4w 4/4 wait/maxwait
CE6 7w 4w 4/4 wait

20/24 = 83%

Bubble Sort After discounting single sheet solutions
i j tern!! inorder i j tern!! inorder score correct sheet

CEl Ij It lin Ij It I;n 1/3 temp
CE2 2; 4;n I; 3in 3/4 ;norder
CE3 3; 2j It I;n 2; 2j It 4/4 ;/j
CE4 I; Ij 2t I;n Ij 2t 3/3 ;/j
CE5 3; 2t l;n 2; 2t 4/4 ;/j/temp
CE6 1 ; It 3;n I; It 2;n 1/4 i
CE7 1; It 2;n 1; It l;n 1/3 ;
Sp 1i 2in 2;n

17/25 = 68%

Thus for the Survey program the correct sheet was used in 83 % of cases, and in 68 % Qf

cases fQr the Bubble Sort program.

In SQme case more than I spotlighted sheet could be used to detect an error, as with

sequencing errors involving 2 Qr mQre variables.

LoQking at the range Qf variables/spotlighting sheets relevant in identifying an errQr :-

Survey PrQmm Bubble SQrt PrQgram
variable Relevant ErrQrs Ratio. Variable Relevant Errors Ratio.

signal CEI & CE4 217 CE3. CE4 CES. CE6 & CE7 517
time CE2 1/7 j CE3 CE4 & CE5 317
maxwait CE3 & CE5 217 temp CEl & CE5 217
wait CE5 & CE6 217 inQrder CE2 1/7

FQr Bubble SQrt, sheets i and j have mQre chance Qf being useful than usual (517 and

3/7 respectively) whereas with the Survey program each sheet was usually useful fQr 2

C A Humphreys -142- Chapter 7

errors at most. However, the nature of the sorting task has upped the odds in favour of

i. Thus any student who used the i sheet first off (or throughout) had a head start on

any student starting with another sheet.

In this regard, the Survey problem gave spotlighting a more even chance of each sheet

being used and solving the relevant 1 or 2 errors on it, before moving to another sheet to

solve the next I or 2 errors.

7.3.4 Discussion

The Survey program seemed better suited to a spotlighting solution since all variables

had at least 4 letters in their names *, and the algorithm was simple and relatively

straightforward compared to the sorting tasks. With Bubble Sort, the temp and inorder

spotlights were much more eyecatching than the i & j spotlights since the former were

4-6 characters long, and i & j were only 1 character long. So, this was not a good

choice of variable names to show spotlighting off well. This problem arose because the

algorithms used in the experiments are the original ones learned in my undergraduate

programming course. Also, I almost always use i and j as index counters for FOR

loops. It is an ingrained habit with me, (and other programmers, ego Wiedenbeck's

1986 sorting programs also use i and j indices) and it didn't occur to me that they would

not be suitable variable names to test spotlighting on.

However, this oversight has shown up one of spotlighting's drawbacks. This means

either altering the way that spotlighting is supposed to work on 1-2 letter words. Such

as adding an inverse video space before and after the 1-2 letter word. This could also

be done for all spotlighted words - it would solve that problem, but it might alter the

indentation or code layout. This alteration to the visual appearance of the code, by

adding one space to each side of the variable name, may make correct code look

wrong, or wrong code look right.

These latter effects could well be counter productive, and sabotage spotlighting's

usefulness. Another alternative might be to inverse video whatever characters

appeared I space to either side of these 1-2 letter words. Thus keeping the code

appearing the same line-wise but focussing attention on the intended variable. But even

this could have drawbacks. Another possibility would be to inverse video the entire line

holding the 1-2 letter word(s) and to put a "flash-code" or "cancel inverse video code"

on each 1-2 letter word (doing spotlighting in reverse). Even so the visual stimulus may

still be almost negligible for words less than 3 characters long.

* In Bubble Sort, the "i", "j", "temp", and "inorder" variables were spotlighted.
In Survey, the "signal", "time", "wait", and "maxwait" variables were spotlighted.

C A Humphreys -143- Chapter 7

7.3.5 Testing Spotlighting Using Paper Experiments

The main problem was that with automatic spotlighting on a VDU screen the students

would have only one point of reference at a time - the screen itself. Whereas

indicating the same effect on paper required one spotlighted variable per sheet of paper

to indicate "current screen appearance". Thus producing multiple (4) sheets with the

same text but with a different variable being spotlighted on each.

One or two students got bored with changing between sheets of paper (and confming

themselves to addressing only those errors associated with the spotlighted variable), and

simply used one sheet of program text to debug all the errors; thus defeating the whole

point of the experiment. I feel that this was due entirely to the usage of a paper

experiment - it would have been less likely on a VDU screen-based experiment where

the screen would have reflected the cumulative modifications at each stage. Of

course, the same effect is not possible with multiple sheets of the same text.

7.4 Results of Post-Spotlighting Questionnaire

The aim was to find out how each student felt about the spotlighting tool in detail. As

well as comparing Q37 before and after answers, to see whether there was any change

in the order of features. The latter questions referred to particulars about layout

preferences. The questions were geared towards testing out hypotheses 2) to 7)

inclusive, and gathering any other information that might prove relevant.

Appendix 7B contains the (semi-raw) that is summarized below. The hypotheses are

listed in §7.3.1.

7.4.1 Summary of Spotlighting Responses

Q37. Comments after trying the spotlighting concept out were more enthusiastic than

beforehand (see previous results of Q37 at rear of Appendix 7A). Students seem to

have grasped the uses of spotlighting quite well, since 5 out of 7 of them have

commented on how they help to fmd different errors associated with variables.

Q 1. 4 out of 7 students had something positive to say about spotlighting, with only lout

of 7 students expressing a negative view.

C A Humphreys -144- Chapter 7

Q2. Defining the ordering of 9 spotlighting features.

1. Focussing attention on a specific item

2. Keeping track of all the locations that involve the specified item

3. Trail following

4. Associating an error with a particular variable

5. Confirming the location of a hypothesized error

6. Showing up variable (non-)declaration errors

7. Showing up (non-)initialisation errors

8. Showing up variable value modification errors

9. Showing up sequencing errors

Q2a. Order of ascending scores gives - most useful 1/6, 2, 7, 3, 5/8, 4, 9 least useful.

Q2b. In contrast, asking students to rank task aspects in order of 9 "slots" of

importance (thus eliminating "tied" positions) gave a different ordering altogether.

Order of importance by ascending sum value - most 7,1,4,3,8,6,9,2,5 least important.

On reflection, the Q2a result is probably more accurate, since it depended on a strictly

tri-part (yes, maybe or no) choice for each aspect.

However, focussing attention on a specific item, showing up (non-)initialisation errors,

showing up variable (non-)declaration errors, and trail following all appear within the

flTst 6 items on both lists. Indicating that these are the most important features that

spotlighting offers.

These features all make debugging easier, so this finding supports hypothesis 4).

Q3. Did you find spotlighting helpful in the debugging task?

A positive (Yes) response from 5 out of7 students was encouraging.

Responses to the previous 3 questions show that spotlighting is regarded as useful in the

debugging task. Thus hypothesis 3) is supported.

Q4. Did spotlighting, as applied to this task, conflict with your natural debugging

strategy?

I didn't expect spotlighting to interfere with anyone's debugging strategy; so the 1 yes

vote (against 6 no votes) was rather disconcerting.

C A Humphreys -145- Chapter 7

Q5. Did the benefits of spotlighting outweigh this latter consideration?

Similarly, I expected all answers to be yes (not just 2 out of 5); 1 maybe and 2 noes

went against my expectations. There were no further comments to clarify the answers.

Q6. If you had 2 alternative debugging strategies, one sequence induding spotlighting

and the other using your own strategies, which would you choose, and why?

3 students (SS-3,5,6) definitely go for spotlighting plus their own debugging strategies;

and 2 (SS-4,8) for their own strategies only; and 1 (SS7) tends towards his own

strategies only, but does not rule spotlighting definitely in or out. In the comments,

student 8 changes his mind, and decides that spotlighting could be useful after all.

Thus there are between 3 and 5 students who would use spotlighting in addition to their

own debugging strategies.

Q7. Would the form of debugging medium affect your decision? For example,

a) would you use spotlighting on a paper system

b) on a screen editing system

The data shows that out of 7 students, 4 would and 2 might use spotlighting if it was an

on-screen tool. Whereas out of 5 students, 1 would and 3 might use spotlighting on

paper. This is probably the reason why the spotlighting experiments did not get as

favourable a reception as expected.

These results indicate that spotlighting's quality of interaction - namely speed and on

the spot interaction or usefulness would be greater with a screen-based system, than on

paper. So this supports hypothesis 2) for a screen system, but not for a paper system.

Of course, the spotlighting tool would have to be tested on a screen system to confirm

this indication.

C A Humphreys ·146- Chapter 7

7.4.2 Summary of Layout Responses

Q8. Students did not seem to be hindered by the style of layout used to present the

debugging tasks, since 6 out of 7 students rated the difference(s) in layout style between

their own, and those used in the experiments as "slight".

Q9. Students gave several reasons for having code in their own preferred style :

Obviously, readability and being able to line up loops (thus defining scoping control) are

important features for comprehension and accurate debugging, scoring 3 and 2 votes

respectively. Student 5 thinks that is easier to follow code in your own preferred style.

These answers lend support to hypothesis 5).

QIO. Having code in your own preferred style: 2 students think that it is easier to

follow the flow of the program and helps debugging, while another thinks that it is

easier to spot errors in a preferred style. So this makes 3 votes overall (out of 5).

supporting hypothesis 6) and the need for a layout tool.

Q 11. Ranking ease of error spotting in preferred, standard or other layout sty le. Votes

were :-

6 votes for "easier" in a preferred layout style;

6 votes for "average' in a standard layout; and

7 votes for • more difficult" in a non-standard layout.

I think these answers clearly show that it is easier to debug a program if it is in the

programmer's own style of layout. These results also show that it becomes

progressively more difficult to spot errors as the stylistic differences increase.

Thus supporting hypothesis 7.

Q12. The data shows a defmite preference (5 to 1 to 1 respectively) for semi

automatic layout over fulIy automatic or fully manual layout in editors or programming

systems. The comment responses reflect the students' need for firm/precise control

over layout and its tailorable aspects.

QI3. Votes for editing/programming systems are: 2 for vi, 2 for MacPascal and 3 for

semi-automatic. However the 2 students (SS5 & 6) who voted for vi, wish that vi were

easier to use.

C A Humphreys -147- Chapter 7

Q14. There are 3 students who prefer layout support with override facility. Whereas

students 7 & 8 don't mind what type of editor, as long as the code ends up in their own

preferred style.

However, combining the responses of Q13 and Q14, give the following results:-

Responses Students
manual layout 45
tidy I!P QIltion 5
auto layout I 37 8
auto layout only if it is in the preferred style 78
auto layout only if it can be overridden 356

This set of responses reinforces my argument for an automatic layout tool that is

tailorable to the individual's preferred style.

7.5 Discussion of Results

First of all, the number of volunteers for the experiment was disappointing. A small

sample size of 7 does not give a reliable "population" result; although it does give some

idea of the variation in people's opinions.

The main problem with choosing the finalists as subjects was that they were a) too short

of "spare" time, and b) not as proficient with Pascal as I had been led to believe.

Hence a small sample size with possibly highly variable results, rather than a "normal"

distribution with mainstream mode and trend (high frequency correlations with common

characteristics) .

Most of the volunteers indicated that the experiment was too long; I agree. It also

required intense concentration - so the quality of results may also have been affected

due to tiredness/stress as the experiment continued.

Some questionnaire questions were also miSinterpreted, even though every care was

taken to eliminate ambiguity and misunderstandings. The length and intensity of the

questionnaire/experiment was necessary to extract as much detail as possible. Some

comments indicated that the students thought some questions were repeated, but this

was only to extract all perspectives on an activity (eg. "What information do the

students need to detect a bug?" and "What information do they need to locate a bug?");

or to dissect different phases, and discover basic rules of operation and strategic

influences.

In real life, choosing if or when to use spotlighting would be up to the user. In the

experiments they had the code spotlighted whether they wanted it or not. This lack of

choice and unfamiliarity with the spotlighting concept could well have undone or

removed any advantage expected to be conveyed by the tool, due to user resistance or

resentment (whether conscious or not).

C A Humphreys -148- Chapter 7

7.6 Conclusions

Spotlighting

If spotlighting made/makes the task easier then it seems reasonable to suppose that the

debugging time spent on an error on spotlighted code would be less than that for

ordinary program text.

There doesn't seem to be a consistent reduction ratio for debugging on spotlighting code

rather than ordinary. Thus hypothesis I) fails. This could be due to several reasons.

A bad choice of experiments to test spotlighting with, or a bad choice of experimental

equipment to test spotlighting with. It now seems obvious that a screen based

experiment would have provided a more realistic setting for spotlighting; doing it on

paper just doesn't have the same effect. It could be that when programmers debug on

paper they have already decided on a range of possible error hypotheses. But going to

debug on paper especially someone else's code with only the task description to go on

(and an explanation of the algorithm used), puts them at a major disadvantage. Even

having a new tool to help them won't be of much use when they are not familiar with

how to use it, and how to use it to best effect.

With a screen based experiment there would probably have been more accurate

feedback on qualitative/subjective opinions as to the usefulness of the spotlighting tool.

But quantitative data would have been harder to extract and determine.

In contrast, the paper experiments yielded quite good data quantity-wise, but it may not

be as reliable as I have assumed due to task disruption while swapping papers. Also

there is the fact that each piece of spotlighted program text had the same code; and

could not contain the errors already debugged on the same piece of code due to the

change of sheet. Some students may have been distracted or put off by this factor.

Indeed I student went as far as to asking why the other bug solutions weren't shown on

each sheet - that is, that when spotlighting variable "x", the code shows all bug

solutions for all variables except "x". The fact that that comment is ill considered and

contradicts the purpose of the experiments in that the student has to define ALL the

solutions for himself - might indicate that at least I student didn't fully understand the

purpose of the separate sheets for each spotlighted variable.

Several students got fed up changing between the different spotlighted sheets, and just

stuck to one sheet when debugging. Either this happened as a result of sheer

perversity, or forgetting that a separate sheet was provided for each individual

spotlighted variable. In either case 2-3 students stuck to I sheet only for the

spotlighting experiment - not the same students [S4 & S5 for Survey; and S4 & S6 for

Bubble Sort] for both experiments. An alternative explanation might be that they got so

engrossed with debugging that they forgot the purpose of swapping the sheets

altogether.

C A Humphreys -149- Chapter 7

Spotlighting on a system with a multi-colour monitor should make it a much easier and

more popular tool to use. Using a colour printer to differentiate between spotlights

should make debugging on paper much less effort intensive, getting the machine to do

the hard work instead.

The questionnaire showed that spotlighting can be relevant to debugging, but that it will

probably be of more use as a screen based tool. Leaving spotlighting on paper for

difficult/obscure errors or perhaps for longer term study of a piece of text. Thus

hypothesis 2) is upheld for screen-wise spotlighting, and is borderline for spotlighting on

paper. However, these results will have to be confirmed by user trials or experiments

on screen based systems; due to the small sample size, and the fact that the results give

an indication rather than a ·cast-iron" verdict.

Layout Aids

The response to the layout questions makes it quite clear how important it is to have the

code in your own preferred style. It helps readability, makes the code easier to follow,

and makes debugging faster and more accurate. Question 11 makes it quite clear that

debugging code becomes more difficult the further it differs from the debugee's own

preferred style.

These findings support hypotheses 5), 6) and 7); and shows the need for a layout tool

that is geared towards the needs of each individual programmer.

C A Humphreys -150- Chapter 7

Chapter 8 Summary of Findings & Future Work

8.1 Summary of Main Findings and Conclusions

8.1.1 Questionnaire Design

One of the challenges of questionnaire design is making questions unambiguous, and

phrasing the questions to get the required information in the desired detail.

In the questionnaires the rating scales and multi-choice "answers" provided quantitative

results in a relatively unambiguous format, making analysis straightforward. In

contrast, the open ended "Why did you ... (or Why not)?" questions and the comment

answers gave insights into the responses behind the answers (such as the reading

strategies). Thus the 2-pronged design strategy provided both quantitative and qualitative

results.

8.1.2 Preliminary Data Collection

Observations of 90 first-year student programmers showed 3 main categories of

problems/errors: novice programming problems, common programming errors, and

MacPascal related problems.

The majority of common programming errors are due to faulty syntax in one form or

another. Followed by a combination of algorithm and semantic errors. Typing and

spelling errors can contribute to either of the former, and bracketing errors usually arise

from miscounting brackets during input typing and checking. Although syntax errors are

the most frequent, they usually take less time to fix since the environment provides

syntactic help. Whereas most algorithmic and semantic problems have to be solved by

the programmer alone, and so take longer. The results of §7.1 (question 15) confirm

this.

Few students make use of MacPascal' s debugging tools on any regular or semi-regular

basis. According to the students' comments, the usual alternative to using MacPascal's

debugging tools is to insert "write" statements in the code at the appropriate points. The

results of §7.1 (questions 9,11,12 & 22) reinforce this finding

A group of 66 student programmers gave opinions on MacPascal. As far as I know, no

other programming environment's tools have been assessed in this way. It certainly

shows up MacPascal's deficiencies, and points up several improvements and useful

features that could be added to make MacPascal more effective and user-friendly. The

frequency of use data suggests that some of MacPascal's tools need to be re-thought and

redesigned. Especially the search mechanisms.

C A Humphreys -151- Chapter 8

8.1.3 Spotlighting

The basic argument of the thesis is simple: typographic aids are not being exploited to

the full to help users with electronic text-oriented tasks on VDU s. What is needed is

careful, considered application of typographic aids to those tasks which would most

benefit. Spotlighting is one such tool, aimed primarily at the programming environment.

The examples of Chapter 6 gave an idea of how visually effective and useful this tool

could be. The whole point of spotlighting is to bring the concept of high profile visibility

into the realm of the search mechanisms.

During editing, the cursor position has a dual function: as the focus of visual attention,

and the point at which editing operations are possible. The dual action of the cursor

position is obvious in action, but is taken for granted unconsciously. Defming this dual

function consciously gave the insight into spotlighting's essential feature - it separates the

2 functions, leaving the cursor position as the primary focus of attention and editing

operations, but introducing alternative locations to fix visual attention (at the discretion

of the user). This insight was a long time coming (4 months ago, during the writing of

Chapter 4), but it is so obvious, and explains the solo spotlighting approach of existing

search mechanisms succinctly. For existing search mechanisms, 1 cursor means 1 focus

of visual attention; whereas spotlighting also has 1 cursor, but with multiple focii for

visual attention.

Spotlighting is not a solution looking for a problem, it is a solution to a long standing

problem that programmers encounter every time they want to follow a variable's trdil

through code. Spotlighting's secondary function is to challenge the sequential principle

behind existing search mechanisms, and to show that spotlighting's inherently random

access principle is complementary. At present the primary goal of search mechanisms is

to locate (and jump to) successive instances of the search string one by one. Obviously

something needs to be done when 45 % of students using MacPascal do not use either the

find or the replace tools at all (as shown by Chapter 3's frequency ratings). Some basic

need must be unfulfilled with this percentage of students avoiding these particular tools.

Spotlighting could help fulfil this need.

Investigating the effect of different typefaces and font size on discriminability, visual

distraction, and trail following, when spotlighting program text, may produce some

interesting results. It seems common sense to use a clear, plain, but distinct typeface

for debugging to minimize the visual distraction from the task, and to focus visual

attention the trail following task.

8.1.4 Debugging Strategies Experiments

That the students ouly wrote down superficial reports of their debugging activity was

disappointing, but seems significant: writing as part of the debugging task is natural and

easy, whereas attempting to write down the on-going debugging activity is difficult, and

seems to interfere with the debugging process, perhaps as a result of divided attention.

C A Humphreys -152- Chapter 8

8.1.5 Spotlighting Experiments & Questionnaire Results

There are several reasons why spotlighting on paper may have failed to reduce debug

times. Either the students were disrupted from the task by having to attend to 4 sheets

for each spotlighted program. Thus requiring them to swap from 1 sheet to another,

adding the task of rmding the correct spotlighted sheet before continuing with the

debugging task. The main advantage of automatic spotlighting on a screen is that there

would only be one point of reference at a time - the screen itself. Whereas to indicate

the same effect on paper requires one spotlighted variable per sheet of paper to indicate

"current screen appearance". One or two students got bored with changing between

sheets of paper and simply used one sheet of program text to debug all the errors; thus

defeating the whole point of the experiment. This would have been less likely on a

VDU screen-based experiment where the screen would have reflected the cumulative

modifications at each stage. Of course, the same effect is not possible with multiple

sheets of the same text.

Students answers to the post-spotlighting questionnaire (§7.4) showed that they thought

that spotlighting made debugging easier. Students said that they were more likely to use

~lX>t1ighting on a VDU screen than on paper. This might well explain why the

experiments failed to prove spotlighting conclusively useful regarding reduced debug

times with the paper experiments.

The questionnaire data shows that out of 7 students, 4 would and 2 might use spotlighting

if it was an on-screen tool. Whereas out of 5 students, 1 would and 3 might use

spotlighting on paper. These results indicate that spotlighting's quality of interaction -

namely speed and on the spot interaction or usefulness will be greater with a screen

based system, than on paper.

According to the questionnaire data, spotlighting's most useful features were to jump

directly from one spotlight to another; and using inverse video to make the location of the

search string totally obvious. This shows the need for moving aids that are spotlight

oriented.

Students' ratings of the most important features that spotlighting offers for debugging

are: focussing attention on a specific item, showing up (non-)initialisation errors,

showing up variable (non-)dec1aration errors, and trail following.

Also, 5 out of 7 students agreed that spotlighting was helpful in the debugging task; and

3-5 students would use spotlighting in addition to their own debugging strategies.

The questionnaire showed that spotlighting can be relevant to debugging, but that it will

probably be of more use as a screen based tool. Leaving spotlighting on paper for

difficult/obscure errors or perhaps for longer term study of a piece of text.

C A Humphreys -153- Chapter 8

Spotlighting on a colour system (with both VDU and printer having multiple colour

output, rather than monochrome) will make it a much easier and more popular tool to

use. Using a colour printer to differentiate between spotlights should make debugging on

paper much less effort intensive, getting the machine to do the hard work instead.

8.1.6 Summary Tables

At present, the onus is on the programmer to extract relevant information from the data

declarations. This uses up time, as well as distracting the programmer from the former

task. Providing the data in suitable formats would be more efficient, and less prone to

human errors. For example, displaying all the integer variables, or calling up the global

alphabetic menu listing to name all procedures that use the variable ·count·, and what

data type it has under each procedure.

Summary tables could also be used to display the original declaration of a procedure's

parameter list on demand. Having a visual reminder of which variables go where, and

in what order, should help the programmer get it right first time. An extension of this

idea, would be to put the procedure's name and its original full parameter list onto the

line(s) above or below the cursor position. Or even to put the procedure's name and an

empty parameter \ist below, that is blocked with commas to show how many slots need

to be filled. Making the task much easier.

8.1.7 Layout Aids

The response to the layout questions makes it quite clear how important it is to have the

code in your own preferred style. It helps readability, makes the code easier to follow,

and makes debugging faster and more accurate. Being able to line up loops (thus

defming scoping control) is another important factor for program comprehension and

accurate debugging.

Question 11 (in §7.4) makes it quite clear that debugging code becomes more difficult

the further it differs from the debugee's own preferred style. It is easier to debug a

program if it is in the programmer's own style oflayout. Code becomes progressively

more difficult to spot errors in, as the stylistic differences increase.

These fmdings show the need for a layout tool that is geared towards the needs of each

individual programmer, or for an automatic layout tool that is tailorable to the

individual's preferred style.

C A Humphreys -154- Chapter 8

8.1.8 Final Comments

Throughout my research the emphasis has been on developing tools to increase meaning

and make vital information more visible, easier to understand, and easier to get at -

requiring less cognitive effort to extract relevant details.

What the user needs is freedom of choice. With alternative tools/methods to accomplish

a task. It is well known from work on individual differences that people don't always

use tools the same way, or for the same reasons. It is up to tool-designers to make tools

as useful and functionally flexible as possible. Giving the user a range of alternative

tools to achieve the same or similar tasks.

8.2 Future Work

One goal was to implement the spotlighting and summary tools, and to test them out

properly. Another area of interest was investigating mental simulation, the form(s) it

takes and how it helps with software development and debugging.

Further work could also be done to rmd out what it is about each individual's set of

layout preferences that make it easier for him to use. Why they are so necessary or

particularly useful to each individual. What each user gains from his own set of layout

preferences. What correlation there is, if any, between the individual's personal traits

or individual differences, and the set of specific layout variations he prefers to use.

Ideas for investigating/testing layout are outlined at the end of the chapter.

8.2.1 Spotlighting

On the whole, the spotlighting experiments did not prove spotlighting useful when given

to student programmers to debug from a "cold" start on paper. In real life, spotlighting

should be available as a programming environment tool, at the editing/developing or code

reviewing stage. So it would be better to implement spotlighting on a computer system

and ask users' opinions after using it for a fairly long time; or at least long enough to get

past the tool's learning curve. This would give a fairer test of spotlighting "for real"

rather than under artificial test conditions.

One implementation option is to pilot rlrst and then implement a more sophisticated

system - graduating from a basic system to one that meets users' needs more closely, as

defined by their feedback after using it.

For example, applying spotlighting to multi-file documents, since program files often

contain include files. The compiler opens these up and adds the text inside onto the

program file. It should not be too difficult to do the same with the spotlighting tool, it is

just a case of being able to access these include files and read them in. A similar

method could be applied to a set of files that formed a large report. As long as there is a

mechanism (or list) that dermes which files are to be searched and spotlighted.

C A Humphreys -155- Chapter 8

8.2.2 Summary Aids

The summary aid should be useful as a comprehension aid for development or

maintenance programmers, when trying to correlate between variable names, their

usage and their data types. One issue of implementation concerns updating. Either the

summary aid is updated whenever the user invokes a menu listing from it, or a special

'update summary information/tables" option is provided which the user can select when

ready. The latter gives the user absolute control over the updating decision, instead of

the tool working away, updating "secretly" in the background.

The best way to test the summary tables tool is to integrate it with a programming

environment, and to see out how users react to it. Finding out how often they use it once

they are over the learning curve and how useful they think it is. Gauging their SUbjective

opinions accurately would probably require a short questionnaire, like Chapter 7's post

spotlighting one.

8.2.3 Mental Simulation

In my opinion, mental simulation is a vastly under-rated, yet essential programming tool.

The questionnaire of Chapter 7 helped defme its uses, regarding program development

and debugging tasks, but it is still a research area that needs more attention.

One use of mental simulation is to check through each statement to see that all variable

values change when they are supposed to and that guard conditions work properly -

activating sub-statements when the condition(s) are met, bypassing them if not.

Making sure that events trigger properly and in the correct sequence - a form of

preventative debugging. If the simulation fails to work as intended, then the code must

be modified until it does work as intended.

One of the tricky aspects of programming is the placing of initialising, resetting and

unsetting of trigger variable values. Misplacing them in the code results in either an

infInite loop (one that never stops because the terminating condition is always false) or a

redundant loop (where the terminating condition is met before entry to the loop, so that

the statements within the loop never get executed). Students voted infmite loops as the

most troublesome error (see question 15 in §7.1 or Appendix 7A).

I raised the question of mental simulation at the Psychology of Programming Special

Interest Group (PPIG) Workshop held at Loughborough University in January 1992, and

got a variety of opinions. The consensus was that it was still an open area. Although

people were beginning to realise its importance, it was a difficult subject to identify,

quantify, and generally pin down. Mainly because people differed on their

interpretations and (internal) representations.

C A Humphreys -156- Chapter 8

Questions that deserve further investigation:-

• What is the significance of mentally test running sections of code?

• Is the only function of mental simulation to check whether a section of code works

correctly?

• Is the only function of mental simulation to frod out how a piece of code works, and

to correlate this with how it was intended to work?

• Is mental simulation used to iterate code development towards a more efficient or

more fully functional code solution?

• How do people achieve mental simulation? What do they "see" and "do"?

• Are some forms of mental simulation better than others?

• Does the quality of the mental simulation relate to the expertise of the programmer?

• Does the quality of the mental simulation relate to the quality of programming and/or

debugging skills of the programmer?

• Does the complexity or richness of mental simulations used depend on the expertise

of the programmer?

• Is there a hierarchy of mental simulations? and How is it organized?

• Is there a way/method of improving a programmer's mental simulations that will lead

to an increase in programming and debugging skills?

• Can "good" forms of mental simulation be learnt by study or practice rather than

actual interactive programming/debugging experience?

8.2.4 Exploring Aspects of Layout & Possible Experiments

The purpose of layout (as I understand it) is to reflect control structure and make each

individual construct more recognisable. The 4 concepts that I mostly associate with

individual differences/preferences in layout style are - readability, comprehensibility,

familiarity, and visual rapport. These concepts are central to the issues of layout

variations - understanding the interaction between them may give the answer to many

puzzles.

Students' answers to the questionnaire of Chapter 7 stated that it was easier to detect

bugs in (other people's) code if it was in the same, or similar, layout style to that of the

reader. I believe that this is because having a visual rapport with the code (having it in

a similar layout style to that used by the reader), aids comprehensibility and makes the

mental (internal cognitive) map of the code and its functions easier to build.

C A Humphreys -157- Chapter 8

The first problem is in detailing the variations in layout styles and cataloguing them.

Then it is a question of looking for trends, and grouping stylistic variations in response to

different and/or similar situations. Such as line overflow, where the disposition of

complex conditions (say for an IF statement) fill more than I line of text.

The second problem is defining experiments to test layout itself, or perhaps to explore

layout elements individually and in combination. The shadow code experiments are a

first attempt to define/explore interaction between layout elements.

8.2.4.1 Cataloguing Layout Styles

The obvious option is to give each subject/student a section of unformatted Pascal code

to layout and then get it handed back in. The students could lay the code out either by

hand, giving hand written code; or they could use a manual editor to set the text, and

then get it printed out. The problem with hand written code is that the indentation can

look variable even when the author "intends" the same indentation, and vice versa. Also

it is difficult to judge indentation spacing correctly with hand written code. But with a

manual editor, VDU and printer system it is much easier to check spacings and see how

the author/programmer lines the code up indentation- and construct-wise.

The code to be laid out should contain all Pascal constructs: if-then, if-then-else, for-to

& for-downto, while, repeat-until, case·end, and with. Preferably showing a single

statement and a compound (begin-end) statement for each controlling construct.

Another area of layout variation concerns complex condition statements, and where

programmers place the AND/ORs in multi-line condition statements (see §6.1.1). In

process control software it is not unusual for an if-then condition to cover 2 or 3 lines

- the more complex the condition specified, the more space it takes up.

Getting a large set of layout styles to catalogue would enable the percentage frequency

of each individual variation of construct layout to be calculated. This would then

provide evidence of trends in layout styles. Similar cataloguing of other procedural

languages could also be done.

It may be possible to correlate the layout style and the quality of the program coded -

since Molzberger's article indicates that good or high quality, "efficient" code has a

"meta-style" that his super-programmers recognise. Cataloguing all the layout styles

may make this "meta-style" distinguishable from all the others, or at least help to defme

the particular layout style(s) that gives code maximum readability and comprehensibility.

C A Humphreys -158- Chapter 8

8.2.4.2 Shadow Code Exploration & Experiments

The first question is how each individual line is seen and comprehended in terms of line

length and shape. Not only the shape and position of the line, but of the individual word

elements.

The second question is how this fits in with the context of the whole code - or a

screenful of code - both visua))y, cognitively and in relation to the internal representation

of the code. For example, do people

••••••••••••••••••••• - see individual lines solely in terms of length; or

••••••••••••••••• - as consisting of individual words or operators; or

zen := prev * 1.2345; - as consisting of jigsaw shapes - taking the
individual outline shape of each word into account.

The shadow code investigations/observations are an attempt at addressing these

questions.

8.2.4.3 Shadow Code Observations

On the following page there are examples of shadow code, where all visible

alphanumeric characters have been replaced by ., but the indentation cues (invisible

leading spaces/tabs) have been preserved. One of the interesting things to note about the

shadow code that leaves punctuation, quotes and round brackets symbols unaltered, is

how clearly the round brackets stand out. Making the position of procedure calls (or

complex bracketing elements) easy to spot.

An alternative set of experiments investigating the effect on cognitive markers/beacons

by reducing different sets of symbols including keywords to ., could provide interesting

information. Such as the effect of putting a)) alphabetic characters to ., but not

numerics; or putting all alphanumeric characters to .; or putting all characters from

first to last character to ., either including or excluding spaces.

C A Humphreys -159- Chapter 8

LAYOUT EXPERIMENT - Comparison of Complete Code vs Its Shadow
Indented Code

program survey(input, output);
var

signal, time, vehicles,
wait, maxwait : integer;

begin
time := Oj
wa it : = 0;
maxwait := Oj
vehicles := 0;
repeat

read(signal);
if signal = 2 then

begin
time := time + 1;
wait := wait + 1;
if wait> maxwait

then maxwait := wait;
end;

if signal = 1 then
begin

wait := 0;
vehicles := vehicles + Ij

end;
until signal = 0;
writeln(time, 'secs');
writeln(vehicles);
writeln(maxwait, 'secs');

end.
Completed Code for Sjgnal Problem

•.....••....• (..... ,);
••• , , , ,•......••.. ;
•••••

•••••• a; ;
••••••••• a;
•••••••••• a;
•••••• (......);

••••••••••••••
••••••..... ;

••••••••••• a;
•••••••••••••••....•....•• ; ... ;

•• •••••• • •
•••••
•••• •• .;
•••••••• •• ... ;•...•.. ;

• •••

••••••••

....... (.... , ' '); (........);
(") . .•............ , ,

• •••
Correspondjng Shadow Code

• .;

Cognitive markersfbeacons, such as keywords, seem to be used as mental "hand-holds"

or pivot-points. Analogous to markers on a ski slope which mark the position and help

remind you where you are on the course. Allowing a mental slalom around the cognitive

map, perhaps; up & down, to & fro, and round the loops.

Going back to the shadow code - at first glance the shadow code looks rather

uninformative. But it is easy to spot the procedure calls since they are shown up by the

round brackets. IF-THEN statements can also be determined, since the line starts with

•• (IF) and ends with •••• (THEN). So these can be picked out by deduction and

indentation clues. Deduction also gives the position of the BEGIN-END loops, since

they have easy to recognise block and punctuation patterns. With BEGIN shown as a

line consisting of ••••• , and END as a line consisting of •••. The BEGIN-END

pair should (usually) match indentation-wise, giving a further "hint" as to their function

and importance.

C A Humphreys -160- Chapter 8

When •• appears as the 2nd block/chunk, it can be deduced as representing: = thus

derming an assignment statement. Spacing between mathematical symbols varies

between programmers - some use one space each side, and others don't, as in:

count : = count + 1; or count: = count + 1 ;

Sometimes, spacing around mathematical symbols varies within a program text, even for

a solo programmer. Sometimes this is due to wanting to keep the 'formula' for a

statement all on one line, instead of getting line overflow, just for the sake of a couple

of spaces or characters.

8.2.4.4 Shadow Code Tasks

The idea is to correlate spatial characteristics of the programmer's cognitive map of a

chunk of code to its comprehensibility. 3 sets of layout may be required :

- non-indented code,

- standard code indentation,

- user's preferred style oflayout and indentation.

Task: to study a piece of complete code, and its task description for a pre-determined

length of time, after which the code is removed and 'shadow code" is substituted.

Where the form of the shadowing has 2 possibilities : where all non-space characters

(except punctuation) are turned into black blocks :-

'ifa>c then c:= a;' becomes ' •••••••••••• • ;'

Or all characters on a line between the first and last non-space characters become black

blocks - resulting in a series of 'bar graph' blocks indented according to the original

pattern :-

'ifa>c then c:= a;' becomes " •••••••••••••••••• ; •.

Thus the first part of the task is concerned with the (simultaneous) comprehension and

assimilation of the code. The former on a primarily (conscious) semantic level, and the

latter on a (presumably subconscious) level that binds the spatial characteristics (and

individual pattern) of each piece of code to its semantic meaning. Thus at the end of the

comprehension/assimilation phase, the overall 'shape' of the code (macro-level) and its

individual (micro-level component) features are tied into the primary meaning and its

corresponding sub-ordiuate semantic levels.

Now, the first phase of the task should be enhanced by advising the subjects/students

that the second part of the task will be concerned with pointing out the location of a

variety of distinct code segments. For example, the locations where the 'wait' variable

is initialised; or the vehicle counter is incremented; and so on. Each such question being

dedicated to the task of giving sufficient information for its corresponding coded

doppelganger to be located, using the cognitive mental map and the shadow map, in

C A Humphreys -161- Chapter 8

concert with the spatial and semantic associations existing between them to provide the

answers to the questions in spatial format.

So the student is asked to denote the position of several individual statements on the

shadow code "text" without access to the original (alphanumeric) program text. This

should test the link between memorability and spatial factors. It may also give

information on cognitive markers.

8.2.4.5 Example Experimental Method

The signal problem is the example task for the shadow code experiment (see §6.2 for

statement of Siddiqi's Signal Problem).

Proposed Method

1. The subject is given the task description and program code to read and assimilate.

2. The program code is taken away and replaced by a shadow code version. Whether

the task description is taken away is a moot point. It could act as a distraction from the

remembering task. But, on the other hand, it may help prompt the student to remember

the sequencing of the code. So it could act as either a disadvantage or an advantage.

Perhaps it would be better to remove it and keep things simple.

3. The subject is asked to denote the location of several key statements - where wait

variable is initialised, where signal value is read in, position of loop condition, and so

on.

4. After say 10-15 minutes the shadow code is handed in for evaluation.

Expected Results

Accuracy of shadow code location to actual location in original program text should give

an indication of its memorability. The idea is to do the same type of experiment on

indented and non-indented code vs the blocking of all characters or only all non-space

characters; and see which combination gives most accuracy. Of course the indented

code could be either in standard layout style, or the user's preferred style. This would

give a total of 6 test conditions for 1 piece of program text. So the subject population

would have to be split into either 3 or 6 groups. Where one half of the subjects work on

shadow code that blocks all characters including spaces between "words", and the other

half works on shadow code that blocks all characters excluding spaces between "words·;

for one experiment, and then the two halves "swap" for a second experiment. That

should cut out bias between subjects working with code that does or doesn't have

intermediate spaces blockedlblacked out. Numerically speaking, each third of the

subject population works on shadow code that is either unindented, with standard

indentation, or in the user's preferred style. Of course, to get the preferred style tested,

each subject would have to have formatted the "test" code prior to the experiment. This

C A Humphreys -162- Chapter 8

means that there would have to be a suitable forgetting period between getting the

subjects to format the code, and testing it out in the proposed shadow code experiments;

as well as for producing shadow code to match each individual subject's layout style.

Example Shadow Code Questions

Mark the shadow code location(s) "answering" the question with the question identifier

:- (a), (b), (c), (d), (e), (f) or (g).

(a) Where is the signal variable's value assigned?

(b) Show the location of all 'if' tests on the signal variable

(c) Where is the remaining test on the signal variable's value?

(d) Show the location of all increment assignments

(e) Show the location of all initialisation statements on time-related variables

(f) Where is the maxwait variable's value modified?

(g) Show the location of any remaining re-initialisation statements

Unindented Code
program survey(input, output);
var
signal, time, vehicles,
wait, maxwait : integer;
begin
time := 0;
wait := 0;
maxwait := 0;
vehicles := 0;
repeat
read(signal);
if signal = 2 then
begin
time := time + 1;
wait := wait + 1;
if wait> maxwait
then maxwait := wait;
end;
if signal = 1 then
begin
wait := 0;
vehicles := vehicles + 1;
end;
until signal = 0;
writeln(time, 'secs');
writeln(vehicles);
writeln(maxwait, 'secs');
end.
Completed Code for Signal Problem
C A Humphreys

........•.... (..... ,);
••• , , , , ;
••••• ;
•••••• a;
••••••••• a;
•••••••••• a;
•••••• (......);
••••••••••••••
•••••
••••••••••• a;
••••••••••• a;

•• •••• • •••••••••••.•....• ;
•• a;

••••••••••••••
•••••

•••••• a;••....•...•..•.. ;
•• a;••••..•. ;

(, ,) , , (........); (....... , ' ');
• •••
Corresponding Shadow Code

-163- Chapter 8

Indented Shadow Code
••......••... (..... ,);
••• , , , , .••..•..•....•. ;
•••••

•••••• a;
•••••• a;
••••••••• a;
•••••••••• a;
•••••• (......);

•• •••••• • • ••••
•••••

••••••••••• a;
••••••••••• a;
•• •••• • ••••••••....... ; ... ;

•• •••••• • • ••••
••••• ;

••••••••••••••••••• a; ... ;
•••••••••••• a; (.... , ' '); {); (....... , ' ');

••••
Shadowing all non-space characters

...•...•....• { ,);
• •• , , , , ••..•..•......• ;
••••• ;

...•...•. ;

.....•..••.. ;

...•..•...... ;
•••••• (......);

••••••••••••••••••
• •••••...•.. ;

.........•..••.. ;
••••••••••••••••• . ..•..•..•...••...•. ; ... ;

••••••••••••••••••
• •••• ;

..••.....•.......••...•. ; ... ;
...••...•......• ; (.... , ' '); (........); (....... , ' ');

• •••
Shadowing all intermediate characters

Unindented Shadow Code
........•..•. (..... ,); , , , , .•.....•....•.. ;
••••• ; ;
••••••••• a; ...•....... ;
•••••• (......);
••••••••••••••
••••• ;
••••••••••• a;

•• •••• • ••••••• ; ... ;
•• •••••• • • • •••
••••• ;•.. ; ... ; .•.....••.... ; (.... , ' '}; (........); (....... , ' ');
••••
Shadowing all non-space characters
C A Humphreys

......•..•... (..... ,);
• •• , , , , ...•..•.•...•.. ;
••••• ;
......... ;
............ ;
...•.•..•.... ;
• ••••• (......);
• •••••••••••••••••
• •••• ;
................ ;
••••••••••••••••• ; ... ;
• •••••••••••••••••
• •••••... ;
........................ ; ... ;
.....•...•..•..• ; (.... , ' '); (........ };

(
I I) • , ,

• •••
Shadowing all intermedjate characters

-164- Chapter 8

Appendix Contents Page

Appendix 2 Chapter 2 References 1

Appendix 3A
- Comparison of Student Numbers & Percentages For Each Tool in Tool Order 20-25

Usefulness 21
Frequency of Use 22
Ease of Use 23
Likeability 24
Other Method: Frequency of Use 25

Summary of Means and Rankings for Each Dimension in Tool Order 25

- Comparison of Student Numbers & Percentages For Each Tool
Frequency of Use - in Order of Decreasing Mean Rating Scale Value 26

Appendix 3B Additional Questionnaire Data 27
Q25. Enhancements and Additional Facilities Frequency 27
Summary of Enhancements Suggested in Questionnaire 28
Q27 Data 29
Q30 Data 31

Appendix 7 A Programming & Debugging Strategies Questionnaire Data 32
(A) is the primary information sheet to be read before starting 32
(B) is a reference sheet to help to resolve vague or ambiguous questions 33
Q7 A Results & Summarizing Comments for each Question 35
Q7 A.l Experience & Programming Ability - Q 1-3 35
Q7 A.2 Program Development and Coding Methodology - Q4 35
Q7A.3 Attitudes Towards The Compiler - Q5 & Q7 37
Q7AA Development & Debugging Attitudes - Q6, Q8, QlO, Q13 & Q29 37
Q7A.5 Use of Debugging Techniques & Tools - Q9, Qll, Q12 & Q22 39
Q7A.6 Defming The Nature of Errors, Their Frequency & Troublesomeness-
QI4-15 41

Error Frequency Ordering 43
TroublesomelTime Consuming Ordering 44

Q7A.7 Investigating Reading Strategies - Ql6-19 45
Q7A.8 Information Needed to Detect & Locate Errors - Q20-21 48
Q7A.9 Programming/Software Development Process Diagram - Q23 49
Q7A.I0 Investigating Trail Following on Paper & Screen Text - Q24 & Q25 49
Q7A.ll Differentiating Between Debugging Methods - Q26-28 52
Q7 A.12 Attitudes Towards the Search Mechanisms - Q30-33 54
Q7A.13 "Live" Editors & Layout Style - Q34 & Q35 55
Q7A.14 Program Visualisation - Q36 56
Q7A.15 Suggestions for New Editing/Debugging Aids - Q37-41 57
Q7 A.16 Students' Comments About The Questionnaire 60

Appendix 7B Post-Spotlighting Questionnaire Data 61
Q7B.1 Spotlighting Questions 61
Q7B.2 Layout Questions 66

C A Humphreys Appendix Contents List

Appendix 7C Debugging Strategies Experiment Sheets 70
D1 Instructions 70
D2 Task Descriptions for all 3 Tasks 71
Summary Sheet of Control Errors & Their Solutions 72
D3 Primes Code with Control Error Solutions & Algorithm Hint 73
D4 Letter Pairs Code with Control Error Solutions 74
HI Letter Pairs Algorithm Hint 75
HI & H2 Concordance Algorithm Hint & Linked List Hints 75-6
D5 & D6 Concordance Code with Control Error Solutions 77-8
D7 Task Difficulty Rating Sheet with Table of Results 79

Appendix 7D Spotlighting Debugging Task Experiment Sheets 80
Instructions 80
Summary Sheet of Control Errors & Their Solutions 81
"Plain" Debugging Tasks 82
Letter Count Description 82
Letter Count Code with Control Error Solutions 83
Shell Sort Description 84
Shell Sort Code with Control Error Solutions 85

Spotlighted Debugging Tasks 86
Survey Description 86
Survey Code with Control Error Solutions (4 pieces of code on 2 pages) 87-8
Bubble Sort Description 89
Bubble Sort Code with Control Error Solutions (4 pieces of code, 1 page each) 90-3

Task Difficulty Rating Sheet with Table of Results 94

C A Humphreys Appendix Contents List

Appendix 2 - Chapter 2 Reference List

IJMMS = International Journal of Man-Machine Studies.
BIT = Behaviour & Information Technology.

Adelson B & Soloway E. 1985.
The role of domain experience in software design.
IEEE Trans. on Software Engineering 11(11) p1351-1360.

Adelson B & Soloway E. 1988.
A model of software design.
in Chi M T H, Glaser R & Farr M J (Eds); The Nature of Expertise; Lawrence
Erlbaum, pI85-208.

Alien R B. 1982.
Patterns of manuscript revisions.
BIT 1(2), pI77-184.

Alty J L. 1984.
U se of path algebras in an interactive adaptive dialogue system.
INTERACT'84, p351-354.

Arthur J D & Corner. 1987.
An interactive environment for tool selection, specification and composition.
IJMMS 26, p581-595.

Arthur J D & Raghu K S. 1989.
Taskmaster: an interactive, graphical environment for task specification, execution
and monitoring.
BIT 8(3), p219-233.

Baecker R & Marcus A. 1986.
Design principles for the enhanced presentation of computer program text.
Proceedings of Human Factors in Computer Systems, ACM: Washington DC, p51-58.

Baecker R M & Marcus A. 1990.
Human Factors and Typography for More Readable Programs.
ACM Press, Addison-Wesley.

Bannon L J & Booker S. 1991.
Beyond the interface: encountering artifacts in use.
in Carroll J M (Ed); Designing Interaction: Psychology at the Human-Computer
Interface; Cambridge University Press, p227-253.

Barstow D R, Shrobe H E & Sandewell E. 1986.
Interactive Programming Environments.
McGraw Hill International Edition.

C A Humphreys - 1 - Chapter 2 References

Bergantz D & Hassell J. 1991.
Information relationships in PROLOG programs: how do programmers comprehend
functionality? .
IJMMS 35(3), p313-328.

Berlin L M. 1993.
Beyond program understanding: a look at programming expertise in industry.
in Cook C R, Scholtz J C & Spobrer J C (Eds). Empirical Studies of Programmers:
Fifth Workshop. Ablex, p6-25.

Black J B, Kay D S & Soloway E M. 1987.
Goal and plan knowledge representations: from stories to text editors and programs.
in Carroll J M (Ed); Interfacing Thought: Cognitive Aspects of Human-Computer
Interaction; MIT Press, p36-60.

Boehm-Davis D A. 1988.
Software comprehension.
in Handbook of Human-Computer Interaction. Helander M. Editor. New York:
North-Holland, p107-121.

Bourguignon JP. 1984.
PCTE - Portable Common Tool Environment.
ESPRIT '84 p75-84.

Brooke J B. 1986.
Usability engineering in office product development.
People & Computers II, p249-260.

Brooks R. 1977.
Towards a theory of the cognitive processes in computer programming.
IJMMS 9(6), p737-751.

Brooks R. 1983.
Towards a theory of the comprehension of computer programs.
IJMMS 18(6), p543-554.

Budgen D. 1992.
How to support the work of designers through the presentation of appropriate
information.
Paper from the Psychology of (Special) Interest Group (PPIG-4) Workshop, held at
Loughborough University, 2-4/1/92.

Cakir A, Hart D J & Stewart T FM. 1980.
Visual Display Terminals.
J Wiley & Sons.

Candy L & Edmonds E A. 1988.
Introducing an expert system into an office.
Conference on Man-Machine Systems, Finland, June 1988.

C A Humphreys - 2 - Chapter 2 References

Card S K & Henderson A Jnr. 1987.
A multiple, virtual-workspace interface to support user task switching.
CHI + GI 1987, pS3-S9.

Card S K, Moran T P & Newell A. 1983.
Psychology of Human-Computer Interaction.
Lawrence Erlbaum Associates.

Carroll J M & Olson S R. 1988.
Mental models in human-computer interaction.
in Handbook of Human-Computer Interaction. Helander M. Editor. New York:
North-Holland, p4S-6S.

Carroll J M & Rosson M B. 1987.
Paradox of the active user.
in CarroIl J M (Ed); Interfacing Thought: Cognitive Aspects of Human-Computer
Interaction; MIT Press, p80-111.

Carroll J M (Ed). 1987.
Interfacing Thought: Cognitive Aspects of Human-Computer Interaction.
MIT Press.

Carroll J M (Ed). 1991.
Designing Interaction: Psychology at the Human-Computer Interface.
Cambridge University Press.

Carver S M & Klahr D. 1986ish.
Children's acquistion of debugging skills in a LOGO environment.
Journal of Educational Computing Research.

Catrambone R & Carroll J M. 1987.
Learning a word processing system with Training Wheels and guided exploration.
CHI + GI '87, pI69-174.

Civikly J M. Editor. 1981.
Contexts of communication.
Holt, Rinehart & Winston.

Clarke AA. 1986.
A three-level human-computer interface model.
IJMMS 24(6), pS03-S18.

Coats R B & Vlaeminke I. 1987.
Man-Computer Interfaces: An Introduction to Software Design & Implementation.
Blackwell Scientific Publications.

Curtis B. 1988a.
Five paradigms in the psychlogy of programming.
in Handbook of Human-Computer Interaction. Helander M. Editor. New York:
North-HoIland, p87-lOS.

C A Humphreys - 3 - Chapter 2 References

Curtis B. 1988b.
The impact of individual differences in programming.
in van der Veer G C, Green T R G, Hoc J-M & Murray D M (Eds); Working with
Computers: Theory versus Outcome; Academic Press, p279-294.

Damodaran L. 1983.
User Involvement in System Design: How to make sure users get the support they
need.
Data Processing 25(6), July/Aug 1983, p6-l3.

Davies S P. 1989.
Skill levels and strategic differences in plan comprehenion and implementation in
programming.
in Sutc1iffe A & Macaulay L, Editors, People & Computers V. Cambridge University
Press.

Davies S P. 1990.
The nature and development of programming plans.
IJMMS 32(4), p461-481.

Davies S P. 1993.
Externalising information during coding activities: effects of expertise, environment,
and task.
in Cook C R, Scholtz J C & Spohrer J C (Eds). Empirical Studies of Programmers:
Fifth Workshop. Ablex, p42-61.

Detienne F & Soloway E. 1990.
An empirically-derived control structure for the process of program understanding.
IJMMS 33(3), p323-342.

Detienne F. 1990.
Expert programming knowledge: a schema-based approach.
in Hoc J-M, Green T R G, Samurcay R & Gilmore D J (Eds); Psychology of
Programming; Academic Press, p205-222.

Detienne F. 1991.
Reasoning from a schema and from an analog in software code reuse.
in Koenemann-Bel1iveau J, Moher T G & Robertson S P (Eds). Empirical Studies of
Programmers: Fourth Workshop. Ablex, p5-22.

Detienne F. 1991.
A schema-based model of program understanding.
in Tauber M J & Ackermann D (Eds); Mental Models and Human-Computer
Interaction 2; North-Holland, Elsevier, p225-242.

Diaper D & Winder R. Editors. 1987.
People and Computers Ill: .
Proceedings of the British Computer Society, Human Computer Interaction Specialist
Group, University of East Anglia, 17-20 Sept 1987, Cambridge Univ Press.

C A Humphreys - 4 - Chapter 2 References

Dillon A & Sweeney M. 1987.
The Application of Cognitive Psychology to CAD.
People and Computers Vol IV, Proceedings of the British Computer Society, Human
Computer Interaction Specialist Group, University of Manchester?, 7-9 Sept 1988.

Douglas S A & Moran T P. 1983.
Learning text editor semantics by analogy.
CHI'83, p207-211.

Draper S W. 1984.
The nature of expertise in Unix.
INTERACT'84, p465-472.

Eason K D. 1982a.
Methods of Planning the Electronic Workplace.
Behaviour and Information Technology 1982 Vol 1 No.2 197-213.

Eason K D. 1982b.
The process of introducing information technology.
BIT 1(2), pI97-214.

Eason K D. 1984.
Towards the experimental study of usability.
BIT 3(2), p133-144.

Eason K D. 1987.
Methods of planning the electronic workplace.
BIT 6(3), p229-238.

Eason K D. 1988.
Information technology and organizational change.
London, Taylor & Francis.

Eason K D, Harker SDP, Raven P F, Brailsford J R & Cross A D. 1987.
A user centred approach to the design of a knowledge based system.
INTERACT'87, p341-348.

Eason K. 1983a.
Introduction. Human factors in teleinformatics.
BIT 2(4), p299-300.

Eisenstadt M. 1993.
Tales of debugging from the front lines. 1993.
in Cook C R, Scholtz J C & Spohrer J C (Eds). Empirical Studies of Programmers:
Fifth Workshop. Ablex, p86-112.

Feigenbaum E & Feldman J. 1963.
Computers and Thought.
McGraw-HiII, New York.

C A Humphreys - 5 - Chapter 2 References

Fisher C. 1987.
Advancing the study of programming with computer-aided protocol analysis.
in Empirical Studies of Programmers, Second Workshop. Sheppard S, Olson G M &
Soloway E (Eds). Ablex, pI98-216.

Fitter M J & Green T R G. 1981.
When do diagrams make good computer languages?
in Computing Skills and the User Interface; Coombs M J & Alty J L (Eds); Academic
Press.

Foley J & Van Dam A. 1982.
Fundamentals of Interactive Computer Graphics.
Addison-Wesley.

Gaines B R & Shaw M L G. 1984.
The Art of Computer Conversation.
Prentice-Hall International.

Galambos J A, Wikler E S & Black J B. 1983.
How to tell your computer what you mean: ostension in interactive systems.
CHI'83, pI82-185.

Gardiner M M & Christie B. Editors. 1987.
Applying Cognitive Psychology to User Interface Design.
John WiJey & Sons.

Gardner A, Mayfield T F & Maguire M C. 1984.
Human factors guidelines for the design of computer-based systems.
INTERACT'84, p649-654.

GeIlenbeck E M & Cook C R. 1991a.
An investigation of procedure and variable names as beacons during program
comprehension.
in Koenemarm-Belliveau J, Moher T G & Robertson S P (Eds). Empirical Studies of
Programmers: Fourth Workshop. Ablex, p65-S1.

Gellenbeck E M & Cook C R. 1991b.
Does signa ling help professional programmers read and understand computer
programs?
in Koenemarm-Belliveau J, Moher T G & Robertson S P (Eds). Empirical Studies of
Programmers: Fourth Workshop. Ablex, pS2-98.

Gilmore DJ & Green T R G. 1987.
Are 'programming plans' psychologically real- outside Pascal.
INTERACT'87, p497-504.

Gilmore D J & Green T R G. 1984.
Comprehension and recall of miniature programs.
IJMMS 21(1), p31-48.

C A Humphreys - 6 - Chapter 2 References

Gilmore DJ. 1990.
Expert programming knowledge: a strategic approach.
in Hoc J-M, Green T R G, Samurcay R & Gilmore D J (Eds); Psychology of
Programming; Academic Press, p223-234.

Gittins D T, Winder R L & Bez H E. 1984.
An icon-driven end-user interface to UNIX.
IJMMS 21(5), p451-462.

Goldenson D R & Wang B J. 1991.
Use of structure editing tools by novice programmers.
in Koenemann-Belliveau J, Moher T G & Robertson S P (Eds). Empirical Studies of
Programmers: Fourth Workshop. Ablex, p99-120.

Gould J D. 1975.
Some psychological evidence on how people debug computer programs.
IJMMS 7(2), 151-182.

Gould J D. 1987.
How to design usable systems.
INTERACT'87, pxxxv-.

Gray W D & Anderson J R. 1987.
Change-episodes in coding: when and how do programmers change their code?
in Empirical Studies of Programmers, Second Workshop. Sheppard S, Olson G M &
Soloway E (Eds). Ablex, pI85-197.

Green T R G. 1989.
Cognitive dimensions of notations.
in Sutc1iffe A & Macaulay L, Editors, People & Computers V. Cambridge University
Press.

Green T R G. 1990a.
The nature of programming.
in Hoc J-M, Green T R G, Samurcay R & Gilmore D J (Eds); Psychology of
Programming; Academic Press, p21-44.

Green T R G. 199Ob.
Programming languages as information structures.
in Hoc J-M, Green T R G, Samurcay R & Gilmore DJ (Eds); Psychology of
Programming; Academic Press, p1l7-137.

Green T R G. 199Oc.
The cognitive dimension of viscosity: a sticky problem for HCI.
INTERACT'90 p79-86.

Green T R G, Bellamy R K E & Parker M. 1987.
Parsing and GNISRAP: a model of device use.
in Empirical Studies of Programmers, Second Workshop. Edited by Sheppard S,
Olson G M & Soloway E. Ablex, p132-146.

C A Humphreys - 7 - Chapter 2 References

Green T R G, Sime M E & Fitter M J. 1981.
The art of notation.
in Computing Skills and the User Interface; Coombs M J & Alty J L (Eds); Academic
Press.

Grudin J. 1991.
Obstacles to user involvement on software product development, with implications for
CSCW.
IJMMS 34(3), p435-452.

Gugerty M & Olson G M. 1986.
Comprehension differences in debugging by skilled and novice programmers.
in Soloway E & Iyengar S (Eds). Empirical Studies of Programmers. Ablex, pI3-27.

Guindon R. 1990.
Knowledge exploited by experts during software system design.
IJMMS 33(3), p279-304.

Hansen W J. 1971.
User engineering principles for interactive systems.
Proceeding Fall Joint Computer Conference, Vo139, AFIPS Press, pp523-532.

Harrison MD & Monk A F. Editors. 1986.
People and Computers 11: Designing for Usability.
Proceedings of the British Computer Society, Human Computer Interaction Specialist
Group, University of York, 23-26 Sept 1986, Cambridge Univ Press.

Heaton N & Sinclair M . Editors. 1988.
Designing End-User Interfaces: State of the Art Report 15:8.
Pergamon Infotech.

Helander M. Editor. 1988.
Handbook of Human-Computer Interaction.
New York: North-Holland.

Hewett T T. 1986.
The role of iterative evaluation in designing systems for usability.
People & Computers 11, pI96-214.

Hewett T T. 1987.
The Drexel disk: an electronic "guidebook".
People & Computers Ill, p115-130.

Hoc J-M, Green T R G, Samurcay R & Gilmore D J (Eds). 1990.
Psychology of Programming.
Academic Press.

Holt R W, Boehm-Davis D A & Shultz A C. 1987.
Mental representations of programs for student and professional programmers.
in Empirical Studies of Programmers, Second Workshop. Sheppard S, Olson G M &
Soloway E (Eds). Ablex, p33-46.

C A Humphreys - 8 - Chapter 2 References

Hulme C. 1985.
Extracting information from printed and electronically presented text.
in Fundamentals of Human-Computer Interaction. Monk A. Editor. Academic Press,
p3547.

Humphreys C A. 1992.
The design and application of visually oriented tools for use during software
development.
Paper from the Psychology of (Special) Interest Group (PPIG-4) Workshop, held at
Loughborough University, 2-411/92.

Hutchins EL, Hollan J D & Norman D A. 1986.
Direct Manipulation Interfaces.
in User Centered System Design. Norman D A & Draper SW, Editors. Lawrence
Erlbaum, p87-124.

Jerrams-Smith J. 1985.
SUSI - a smart user-system interface.
People & Computers I, p21l-220.

Johnson P & Cook S. Editors. 1985.
People and Computers I: Designing The Interface.
Proceedings of the British Computer Society, Human Computer Interaction Specialist
Group, University of East Anglia, 17-20 Sept 1985, Cambridge Univ Press.

Kessler C M & Anderson J R. 1986.
A model of novice debugging in Lisp.
in Empirical Studies of Programmers. Edited by Soloway E & Iyengar S. Ablex,
pI98-212.

Kieras D & PoIson P G. 1985.
An approach to the formal analysis of user complexity.
UMMS 22(4), p365-394.

Kindborg M & Kollerbauer A. 1987.
Visual languages and Human Computer Interaction.
People & Computers 1II, p175-188 ffstudy of cartoons and comics.

Lammers S. 1986.
Programmers at Work.
Microsoft Press.

Laurel B K. 1986.
Interface as Mimesis.
in User Centered System Design. Norman D A & Draper SW, Editors. Lawrence
Erlbaum, p67-86.

Lenorovitz A R, PhiIlips M D, Ardrey R S & Kloster G V. 1984.
A taxonomic approach to the specification of human computer interaction.
INTERACT 84.

C A Humphreys - 9 - Chapter 2 References

Letovsky S. 1986.
Cognitive processes in program comprehension.
in Soloway E & Iyengar S (Eds). Empirical Studies of Programmers. Ablex, p58-79.

Letovsky S, Pinto J, Lampert R & Soloway E. 1987.
A cognitive analysis of code inspection.
in Empirical Studies of Programmers, Second Workshop. Sheppard S, Olson G M &
SoIoway E (Eds). Ablex, p231-247.

LeventhaI L M. 1988.
Experience of programming beauty: some patterns of programming aesthetics.
IJMMS 28(5), p525-550.

Lewis C & Olson G M. 1987.
Can principles of cognition lower the barriers to programming.
in Empirical Studies of Programmers, Second Workshop. Sheppard S, OIson G M &
Soloway E (Eds). Ablex, p248-263.

Littman D C, Pinto J, Letovsky S & Soloway E. 1986.
Mental models and software maintenance.
in Soloway E & Iyengar S (Eds). Empirical Studies of Programmers. Ablex, p80-98.

Lodding K N. 1983.
Iconic Interfacing.
IEEE CG&A March/Apri11983 11-20.

Lukey F J. 1980.
Understanding and debugging programs.
IJMMS 12(2), pI89-202.

Maguire M. 1982.
An evaluation of published recommendations on the design of man-computer
dialogues.
IJMMS 16(3), p237-261.

Marr D. 1982.
Vision.
W H Freeman, Chap I, p8-38.

Matlin M W. 1989.
Cognition.
Holt, Rinehart & Winston Inc.

Miara R J, Musselman J A, Navarro J A & Shneiderman B. 1983.
Program indentation and comprehensibility.
Comm ACM 26(11) p861-867.

Miller G A. 1957.
The magical number seven, plus or minus two: some limits on our capacity for
processing information.
Psychological Review 1957, Vo163, p81-97.

C A Humphreys - 10 - Chapter 2 References

Molzberger P. 1983.
Aesthetics and programming.
CHr83, p247-250.

Monk A. 1985.
Fundamentals of Human-Computer Interaction.
Academic Press.

Monk A. 1989.
The Personal Browser: a tool for directed navigation in Hypertext systems.
Interacting with Computers: the Interdisciplinary Journal of Human-Computer
Interaction 1 (2) p 190-196.

Moran T P. 1981.
The Command Language Grammar: A Representation for the User Interface of
Interactive Computer Systems.
IJMMS 15(1), p3-50.

Mynatt B. 1990.
Why program comprehension is (or is not) affected by surface features.
INTERACT'90, p945-950.

Nanja M & Cook C R. 1987.
An analysis of the on-line debugging process.
in Empirical Studies of Programmers, Second Workshop. Sheppard S, Olson G M &
Soloway E (Eds). Ablex, p172-184.

Norman D A & Draper S W, Editors. 1986.
User-Centered System Design: New Perspectives on Human-Computer Interaction.
Hillsda1e, NJ: Lawrence Erlbaum Associates.

Norman D A. 1986.
Cognitive Engineering.
in User Centered System Design. Norman D A & Draper SW, Editors. Lawrence
Erlbaum, p31-62.

Norman D A. 1987.
Cognitive Engineering - Cognitive Science.
in Carroll J M (Ed); Interfacing Thought: Cognitive Aspects of Human-Computer
Interaction; MIT Press, p325-336.

Norman D A. 1988.
The Psychology of Everyday Things.
Basic Books (HarperCollins).

Norman D A. 1991.
Cognitive artifacts.
in Carroll J M (Ed); Designing Interaction: Psychology at the Human-Computer
Interface; Cambridge University Press, pI7-38.

C A Humphreys - 11 - Chapter 2 References

O'MaIJey C & Sharples M. 1986.
Tools for management and support of multiple constraints in a writer's assistant.
People & Computers 11, p115-131.

Ormerod T. 1990.
Human cognition and programming.
in Hoc J-M, Green T R G, Samurcay R & Gilmore D J (Eds); Psychology of
Programming; Academic Press, p63-82.

Pattis R E. 1981.
Karel the Robot: a gentle introduction to the art of programming with Pascal.
John WiJey & Sons.

Payne S J & Green T R G. 1983.
The user's perception of the interaction language: a two-level model.
CHI'83.

Payne S J & Green T R G. 1984.
Task-Action Grammars: a Model of the Mental Representation of Task Language.
Human-Computer Interaction.

Payne S J, Sime M E & Green T R G. 1984.
Perceptual cueing in a simple command language.
IJMMS 21, pI9-29.

Pennington N & Grabowski B. 1990.
The tasks of programming.
in Hoc J-M, Green T R G, Samurcay R & Gilmore D J (Eds); Psychology of
Programming; Academic Press, p45-62.

Pennington N. 1987.
Comprehension strategies in programming.
in Empirical Studies of Programmers, Second Workshop. Sheppard S, Olson G M &
Soloway E (Eds). Ablex, pl00-113.

Pennington N. 1987b.
Stimulus structures and mental representations in expert comprehension of computer
programs.
Cognitive Psychology 19 p295-341.

Perkins D N & Martin F. 1986.
Fragile knowledge and neglected strategies in novice programmers.
in Soloway E & Iyengar S (Eds). Empirical Studies of Programmers. Ablex, p213-
229.

Petre M. 1990.
Expert programmers and programming languages.
in Hoc J-M, Green T R G, Samurcay R & Gilmore D J (Eds); Psychology of
Programming; Academic Press, p 103-115.

C A Humphreys - 12 - Chapter 2 References

PoIson P G, Bovair S & Kieras D. 1987.
Transfer between text editors.
CHI + GI '87, p27-32.

Rasmussen J. 1981.
The human as a system component.
in Human Interaction with Computers; Smith H T & Green T R G (Eds); Academic
Press.

Rasmussen J. 1981.
Models of mental strategies in process plant diagnosis.
in Rasmussen J & Rouse W B, (Eds), Human Detection and Diagnosis of System
Failures, New York: Plenum Press.

Ratcliff B & Siddiqi J I A. 1985.
An empirical investigation into problem decomposition strategies used in program
design.
IJMMS 22(1), p77-90.

Rector A L, Newton P D & Marsden P H. 1985.
What kind of system does an expert need?
People & Computers I, p239-.

Redmond R T & Gasen J B. 1989.
Measuring change in the programming process.
IJMMS 30(6), p697-711.

Reisner P. 1981.
Formal Grammar and Human Factors Design of an Interactive Graphics System.
IEEE Transactions on Software Engineering Vol SE7 No 2 March 1981, p229-240.

Reisner P. 1984.
Formal grammar as a tool for analysing ease of use: some fundamental concepts.
Human Factors in Computer Systems, edited by Thomas J C & Schneider M L, Ablex
Corp, New Jersey.

Reitman Olson J S, Whitten W B & Gruenenfelder T M. 1984.
A general user interface for creating and displaying tree-structures, hierarchies,
decision trees, and nested menus.
in Vassiliou Y. Editor. Human Factors and Interactive Computer Systems.
Proceedings of the NYU Symposium on User Interfaces New York, May 26-28,
1982, Ablex Publishing Corporation, p223-244.

Rich E. 1983.
Users are individuals: individualizing user models.
UMMS 18(3), p199-214.

Riecken R D, Koenemann-Belliveau J & Robertson S P. 1991.
What do expert programmers communicate by means of descriptive commenting? .
in Koenemann-Belliveau J, Moher T G & Robertson S P (Eds). Empirical Studies of
Programmers: Fourth Workshop. Ablex, pl77-195.

C A Humphreys - 13 - Chapter 2 References

Rist R S. 1986.
Plans in programming: definition, demonstration, and development.
in Soloway E & Iyengar S (Eds). Empirical Studies of Programmers. Ablex, p28-47.

Rist R S. 1990.
Variability in program design: the interaction of process with knowledge.
IJMMS 33(3), p305-322.

Robertson S P & Yu C-C. 1990.
Common cognitive representations of program code across tasks and languages.
IJMMS 33(3), p343-360.

Robertson S P, Davis E F, Okabe K & Fitz-Randolf. 1990.
Program comprehension beyond the line.
INTERACT'90, p959-963.

Rogers Y R. 1986a.
An investigation of features important in pictorial representation of abstract concepts.
CHI'86, p353.

Rogers Y. 1986b.
Evaluating the meaningfulness of icon sets to represent command operations.
People & Computers 11, p586-603 #study of the visual perception and subsequent
interpretation of the icons.

Runciman C & Hammond N. 1986.
User programs: a way to match computer systems and human cognition.
People & Computers n, p464-481 #programming user cognitive processes, technique
to codify the user's mental model and try to match it to the designer's model.

Saariluoma P & Sajaniemi J. 1989.
Visual information chunking in spread sheet calculation.
IJMMS 30(5), p475-488.

Schindler M. 1982.
Software toolkit for the Microcomputer.
Hayden.

Schneider M L. 1984.
Ergonomic considerations in the design of command languages.
in Vassiliou Y. Editor. Human Factors and Interactive Computer Systems.
Proceedings of the NYU Symposium on User Interfaces New York, May 26-28,
1982, Ablex Publishing Corporation, pI41-162.

Scholtz J & Wiedenbeck S. 1993.
An analysis of novice programmers learning a second language.
in Cook C R, Scholtz J C & Spohrer J C (Eds). Empirical Studies of Programmers:
Fifth Workshop. Ablex, pI87-205.

C A Humphreys - 14 - Chapter 2 References

Shackel B. 1984a.
Designing for people in the age of information.
INTERACT'84, p9-20.

Shackel B. 1984b.
Information technology - a challenge to ergonomics and design.
BIT 3(4), p263-276.

Shackel B. 1986.
Ergonomics in design for usability .
People & Computers n, p44-64.

Shneiderman B & Mayer R. 1979.
Syntactic/semantic interactions in programmer behaviour: a model and experimental
results.
International Journal of Information Science 7 p219-239.

Shneiderman B. 1980.
Software Psychology.
Winthrop Publishers Inc ..

Shneiderman B. 1986.
Empirical studies of programmers: the territory, paths, and destinations.
in Soloway E & Iyengar S (Eds). Empirical Studies of Programmers. Soloway E &
Iyengar S (Eds). Ablex, pl-12.

Shneiderman B. 1986.
Seven plus or minus two central issues in human-computer interaction.
CHI'86, p343-349.

Shneiderman B. 1987.
Designing The User Interface: Strategies for Effective Human Computer Interaction.
Addison-Wesley .

Siddiqi J I A & Ratcliff B. 1989.
Specification influences in program design.
IJMMS 31(4), p393-404.

Siddiqi J lA. 1985.
A model of program designer behaviour.
People & Computers I, p369-379.

Soloway E & Ehrlich K. 1984.
Empirical studies of programming knowledge.
IEEE Trans. on Software Engineering SE-lO, 595-609.

Soloway E, Adelson B & Ehrlich K. 1988.
Knowledge and processes in the comprehension of computer programs.
in Chi M T H, Glaser R & Farr M J (Eds); The Nature of Expertise; Lawrence
Erlbaum, pI29-152.

C A Humphreys - 15 - Chapter 2 References

Soloway E, Bonar J & Ehrlich K. 1983.
Cognitive strategy and looping constructs: an empirical study.
Comm ACM 26(11) p853-860.

Sommerville I. 1988.
IPSE user interfaces - issues and requirements.
lEE Colloquium on "The Role of Man-Machine Interaction in Software Engineering
Environments", 4th Jan 1988, Digest 198811.

Spohrer J C & Soloway E. 1986.
Analyzing the high frequency bugs in novice programs.
in Empirical Studies of Programmers. Edited by Soloway E & Iyengar S. Ablex,
p230-251.

Suchman L. 1987.
Plans and situated actions: the problem of human-machine communication.
Cambridge, 1987.

Sutcliffe A G & Old A C.1987.
Do users know they have user models?
INTERACT'87, p35-42.

Teitelbaum T & Reps T.
The CORNELL program synthesizer: a syntax-directed program environment.
in Interactive Programming Environments. Barstow D R, Shrobe H E & Sandewell
E. Editors. McGraw Hill International Edition. 1986. p97-l16.

Teitelman w. 1972.
Automated programmering: the programmer's assistant.
in Interactive Programming Environments. Barstow D R, Shrobe H E & Sandewell
E. Editors. McGraw Hill International Edition. 1986. p232-239.

Teitelman W. 1977.
A dispay-oriented programmer's assistant.
in Interactive Programming Environments. Barstow D R, Shrobe H E & Sandewell
E. Editors. McGraw Hill International Edition. 1986. p240-287.

Thimbleby H. 1985.
User interface design: generative user engineering principles.
in Fundamentals of Human-Computer Interaction. Monk A. Editor. Academic Press,
pI65-180.

Thomas J C. 1984.
Organizing for human factors.
in Vassiliou Y. Editor. Human Factors and Interactive Computer Systems.
Proceedings of the NYU Symposium on User Interfaces New York, May 26-28,
1982, Ablex Publishing Corporation, p29-46.

: A Humphreys - 16 - Chapter 2 References

Thompson P. 1985.
Visual perception: an intelligent system with limited bandwidth.
in Fundamentals of Human-Computer Interaction. Monk A. Editor. Academic Press,
p5-33.

Treisman A. 1982.
Perceptual Grouping & Attention In Visual Search For Features & Objects.
Journal of Experimental Psychology: Human Perception & Performance 1982, Vol8
No 2 pI94-214.

Treisman A. 1986.
Features & Objects In Visual Processing.
Scientific American Nov 1986 pl06-115.

Tunnicliffe A. 1987.
The dual & asymmetric brain.
Draft report by PhD research student of Loughborough University, supervised by
Scrivener S A R.

van der Veer G C, Green T R G, Hoc J-M & Murray D M (Eds). 1988.
Working with Computers: Theory versus Outcome.
Academic Press.

van Dijk & Kintsch W. 1983.
Strategies of discourse comprehension.
New York: Academic Press.

van Laar D. 1989.
Evaluating a colour coding support tool.
in Sutcliffe A & Macaulay L, Editors, People & Computers V. Cambridge University
Press.

van Nes F L. 1984.
Limits of visual perception in the technology of visual display terminals.
BIT 3(4), p371-378.

van Nes F L. 1986.
Space, colour and typography on visual display terminals.
BIT 5(2), p99-118.

Vassiliou Y. Editor. 1984.
Human Factors and Interactive Computer Systems.
Proceedings of the NYU Symposium on User Interfaces New York, May 26-28,
1982, Ablex Publishing Corporation.

Vessey I. 1989.
Toward a theory of computer program bugs: an empirical test.
IJMMS 30(1), p23-46.

C A Humphreys - 17 - Chapter 2 References

Visser W & Hoc J-M. 1990.
Expert software design strategies.
in Hoc I-M, Green T R G, Samurcay R & Gilmore D 1 (Eds); Psychology of
Programming; Academic Press, p235-249.

Visser W. 1987.
Strategies in programming programmable controllers: a field study on a professional
programmer.
in Empirical Studies of Programmers, Second Workshop. Sheppard S, Olson G M &
Soloway E (Eds). Ablex, p217-230.

Visser W. 1990.
More or less following a plan during design: opportunistic deviations in specification.
IJMMS 33(3), p247-278.

Waddington R & Henry R. 1990.
Expert progrmmers re-establish intentions when debugging another programmer's
program.
INTERACT'90, p965-970.

Wastell D. 1990.
Mental effort and task performance: towards a psychophysiology of human-computer
interaction.
INTERACT'90 pI07-112.

Waters R C. 1972.
The programmer's apprentice.
in Interactive Programming Environments. Barstow D R, Shrobe H E & Sandewell
E. Editors. McGraw HiII International Edition. 1986. p464-486.

Weiser M & Lyle 1. 1986.
Experiments on slicing-based debugging aids.
in Soloway E & Iyengar S (Eds). Empirical Studies of ProgrammersAblex, p187-197.

Weiser M. 1982a.
Programmers use slices when debugging.
Comm ACM 25(7) 446-452.

Weiser M. 1982b.
Program slicing.
IEEE Trans on Software Eng SE-1O 352-357.

Wertz H. 1982.
Stereotyped program debugging: an aid for novice programmers.
IJMMS 16(4), 379-392.

Wiedenbeck S. 1985.
Novice/expert differences in programming skill.
IJMMS 23(4), p383-390.

C A Humphreys - 18 - Chapter 2 References

Wiedenbeck S. 1986a.
Processes in computer program comprehension.
in Soloway E & Iyengar S (Eds). Empirical Studies of Programmers. Ablex, p48-S7.

Wiedenbeck S. 1986b.
Beacons in computer program comprehension.
IJMMS 25(6), p697-709.

Winfield I. 1986.
Human Resources and Computing.
Heinemann: London.

Winograd T & Flores F. 1986.
Understanding Computers and Cognition.
Ablex.

Witkin H A, Dyke R B, .. 1962.
Psychological Differentiation.
WiJey 1962 (Erlbaum 1974 reprint).

Wright P & Lickorish A. 1988.
Colour cues as location aids in lengthy texts on screen and paper.
BIT 7(1), pI 1-30.

Wu Q & Anderson JR. 1991.
Strategy selection and change in PASCAL programming.
in Koenemann-Belliveau J, Moher T G & Robertson S P (Eds). Empirical Studies of
Programmers: Fourth Workshop. Ablex, p227-238.

Young R M & Harris J E. 1986.
A viewdata-structure editor designed around a task/action mapping.
People & Computers II, p435-446 #hierarchy of associations & implications, edit
assistant eases cognitive effort.

Young R M. 1981.
The machine inside the machine: users' models of pocket calculators.
IJMMS 15(1), pSI-86.

Young R M. 1985.
User Models as Design Tools for Software Engineers.
Alvey Workshop on MMIISE Sept 1985.

Youngs E A. 1974.
Human errors in programming.
IJMMS 6(3), p361-376.

Yourdon & Constantine. 1979.
Structured Design.
Prentice-Hall.

: A Humphreys - 19 - Chapter 2 References

Appendix 3A - Comparison of Student Numbers & Percentages For Each Tool

Key to Table Headings

actual = actual number of students who scored the rating scale

66 students in total answered the questionnaire

Therefore, 66 - actual = number of students who skipped the question, and didn't vote.

Rating scales ranged from J to 5, I being the most negative & 5 being the most positive
choices on the scale. Minimum vote was 0 students, and maximum vote was 66 students.

mean = sample mean value, with "actual" number of students as divisor

stdv = standard deviation from the mean

rnndv = mean deviation

dif2 = (scale[4] + scale[5]) - (scale[J] + scale[2])

= numerical (or percentage) difference between positive and negative sides of the
rating scale, showing the size of the swing. Positive values indicate positive swing,
Negative values indicate negative swing.

Each tool has a double set of values for each heading.

The first set of values shows student numbers, with the corresponding percentage values
below - except for "actual" values which is the same non-percentage "student numbers"
value in both cases.

Underlines are used to separate each tool's set of paired values, and to aid reading.

Meanings of Each of the 5-Point Rating Scales For Each Dimension

Scale I 2 3 4 5
Usefulness useless not very useful Ok Jlseful essential
Frequencs never once or twice sometimes often usually
Ease of Use difficult fairly difficult Ok fairly easy easy
LikeabiIity disliked mildly disliked Ok mildly liked liked
Other Method never once or twice sometjmes often usually

Comparison of Student Numbers & Percentages For Each Tool - in Tool Order Page
Usefulness 21
Frequency of Use 22
Ease of Use 23
LikeabiIity 24
Other Method: Frequency of Use 25

Summary of Means and Rankings for Each Dimension in Tool Order 25

Frequency of Use - in Order of Decreasing Mean Rating Scale Value 26

Direct Comparison of - 3A Page 20 - Student Numbers & Percentages

Comparison of Student Numbers & Percentages For Each Tool - in Tool Order

Usefulness
Name of Votes Votes per Rating Scale Mean Data Swing Data Majority

Tool actual 1 2 3 4 5 mean stdv mn!!v 1+2 3 4+5 dif~
Cut 64 0 2 9 33 20 4.11 0.75 0.56 2 9 53 51
% 0.0 ~.1 14.1 51.6 31.2 3.1 14.1 82.8 79.7%

Copy 61 0 3 11 30 17 4.00 0.81 0.56 3 11 47 44
% 0.0 ~.9 18.0 49,2 27,9 4.9 18.0 77.0 7~.1%

Paste 64 0 3 7 32 22 4.14 0.79 0.59 3 7 54 51
% 0.0 ~.7 10.9 50.0 34.4 4.7 10.9 84.4 79.7%

Find 36 1 3 13 16 3 3.47 0.87 0.72 4 13 19 15
% 2.8 !l.3 36.1 44.~ 8.3 11.1 36.1 52.8 41,7%

Replace 38 2 2 13 17 4 3.50 0.94 0.76 4 13 21 17
% 5.3 5.3 34.2 44.7 10.5 10.5 34.2 55.3 44.7%

Check 60 0 1 7 23 29 4.33 0.75 0.64 1 7 52 51
% 0.0 1.7 11,7 38.3 48.3 1. 7 11. 7 86.7 85.0%

Reset 57 1 2 18 23 13 3.79 0.89 0.72 3 18 36 33
% 1.8 ~.5 31.6 40.4 22.8 5.3 31.6 63.2 57.9%

Go 63 0 0 5 7 51 4.73 0.60 0.44 0 5 58 58
% Q.O 0.0 7,9 11.1 81.0 0.0 7.9 92.1 92.1%

Go-go 30 0 5 7 10 8 3.70 1.04 0.89 5 7 18 13
% 0.0 12.7 23.3 33.3 26.7 16.7 23.3 60.0 43.3%

Step 47 2 5 11 21 8 3.60 1.02 0.84 7 11 29 22
% 4.3 10.6 2~.4 44.7 17.0 14.9 23.4 61.7 46.!l%

Step-Step 48 0 3 9 28 8 3.85 0.76 0.55 3 9 36 33
% 0.0 6.2 18.7 58.~ 16.7 6.2 18.7 7~.0 68,7%

Stops In 25 0 2 8 12 3 3.64 0.79 0.67 2 8 15 13
% 0.0 !l.0 32.0 48.0 12.0 8.0 32.0 60.0 52.0%

Instant 13 0 2 7 4 0 3.15 0.66 0.52 2 7 4 2
% 0.0 15.4 5~,8 30.8 0.0 15.4 53.8 30.8 15.4%

Observe 26 0 1 7 12 6 3.88 0.80 0.62 1 7 18 17
% 0.0 3.8 26.9 46., 23.1 3.8 26.9 69.2 65.4%

Cl ipboard 39 0 I II IS 12 3.97 0.83 0.65 I 11 27 26
% 0.0 2.6 28.2 38.5 30.8 2.6 28.~ 69.2 66.Z%

Font Ctrl 50 0 3 16 24 7 3.70 0.78 0.65 3 16 31 28
% 0.0 6.0 32,0 48.0 14.0 6,0 32.0 62.0 56.0%

Indent Ctrl ID 0 I 6 1 2 3.40 0.92 0.76 1 6 3 2
% 0.0 10.0 60.0 10.Q 20.0 10.0 60.0 30.0 20,0%

Layout 66 4 0 18 35 9 3.68 0.92 0.70 4 18 44 40
% 6.1 0.0 27.3 53,0 13.6 6.1 2Z.3 66.7 60.2%

Highlighting 66 2 4 5 41 14 3.92 0.89 0.55 6 5 55 49
% 3.0 6.1 7.6 6,.1 21.2 9.1 7.683.3 74.2%

Bracketing 63 1 2 17 35 8 3.75 0.78 0.60 3 17 43 40
% 1.6 3.~ 27.0 55.6 12.7 4.8 27.0 68.3 63.5%

Error Msgs 65 2 2 12 33 16 3.91 0.91 0.63 4 12 49 45
% 3.1 3.1 18.5 ~0.8 24.6 6.2 18.5 75.4 69.2%

Direct Comparison of - 3A Page 21 - Student Numbers & Percentages

Freguenc~ of Use
Name of Votes Votes per Rating Scale Mean Data Swing Data Majority

Too] actual 1 2 3 4 5 mean stdv m!ldv 1+2 3 4+5 difZ
Cut 66 2 7 19 31 7 3.52 0.93 0.77 9 19 38 29
% 3.0 10.6 28.8 47.0 10,6 13.6 28.8 57.6 43.9%

Copy 66 5 11 18 25 7 3.27 1.09 0.92 16 18 32 16
% 7.6 16.7 27.3 37.9 10.6 24.2 ~7.3 48.5 24.2%

Paste 66 2 8 15 32 9 3.58 0.97 0.80 10 15 41 31
% 3.0 12.1 22.7 48.5 13.6 15.2 22.7 62.1 47.0%

Find 66 30 18 13 5 0 1.89 0.97 0.81 48 13 5 -43
% 45.5 27.3 19.7 Z.6 0.0 72.7 19.7 7.6 -65.2%

Replace 66 28 19 11 7 1 2.00 1.07 0.85 47 11 8 -39
% 42.4 28.8 16.7 10.6 1.5 71.2 16.7 12.1 -59,1%

Check 66 6 4 11 21 24 3.80 1.25 1.00 10 11 45 35
% 9.1 6.1 16.7 31.8 36.4 15.2 16.7 68.2 53.0%

Reset 66 9 20 23 8 6 2.73 1.12 0.91 29 23 14 -15
% 13.6 30.3 34.8 12.1 9.1 43.9 34.8 21.~ -22.7%

Go 66 3 1 7 10 45 4.41 1.04 0.81 4 7 55 51
% 4.5 1.5 10.6 15.2 68.2 6.1 10.6 83.3 17 .3%

Go-go 66 36 14 7 7 2 1.86 1.15 0.94 50 7 9 -41
% 54.5 21.2 10.6 10.6 3.0 75.8 10.6 13.6 -62.1%

Step 66 19 16 28 1 2 2.26 0.99 0.85 35 28 3 -32
% 28.8 24.2 42.4 1.5 3.0 53.0 42.4 4.5 -48,5%

Step-Step 65 17 13 23 11 1 2.48 1. 10 0.96 30 23 12 -18
% 26.2 20.0 35.4 16.9 1.5 46.2 35.4 18.5 -27.7%

Stops In 64 39 13 8 4 0 1. 64 0.92 0.78 52 8 4 -48
% 60.9 20.3 12.5 6.2 0.0 81.2 12.5 6.2 -75,0%

Instant 65 52 6 6 1 0 1.32 0.70 0.52 58 6 1 -57
% 80.0 9.2 9.2 1.5 0.0 89.2 9.~ 1.5 -87.7%

Observe 65 39 10 12 4 0 1.71 0.97 0.85 49 12 4 -45
% 60.0 15.4 18.5 6.2 0.0 Z5.4 18.5 6.2 -69.2%

Clipboard 65 26 14 11 10 4 2.26 1.29 1.12 40 11 14 -26
% 40.0 21.5 16.9 15.4 6.2 61.5 16.9 21.5 -40.0%

Font Ctrl 66 16 13 18 13 6 2.70 1.28 1.10 29 18 19 -10
% 24.~ 19.7 27.3 19.7 9.1 43.9 ~7.3 28.8 -15,~%

Indent Ctrl 65 55 7 3 0 0 1.20 0.50 0.34 62 3 0 -62
% 84.6 10.8 4.6 0.0 0.0 95.4 4.6 0.0 -95.4%

Direct Comparison of - 3A Page 22 - Student Numbers & Percentages

Ease of Use
Name of Votes Votes per Rating Scale Mean Data Swing Data Majority

Tool actual I 2 3 4 5 mean stdv mndv 1+2 3 4+5 dif2
Cut 64 0 1 11 15 37 4.37 0.82 0.72 I 11 52 51
% 0.0 1.6 17.2 23.4 57.8 1.6 17.281.2 79.7%

Copy 61 0 2 13 15 31 4.23 0.89 0.78 2 13 46 44
% 0.0 3.3 21.3 2~.6 50.8 3.3 21,3 75.4 72.1%

Paste 64 0 2 13 15 34 4.27 0.89 0.78 2 13 49 47
% 0.0 3.1 20.3 23.4 53.1 3.1 20.3 76.6 73.4%

Find 36 1 2 19 6 8 3.50 0.99 0.83 3 19 14 11
% 2.8 5.6 52.8 12.7 22.2 8.3 52.8 38.9 30.6%

Replace 38 1 2 17 10 8 3.58 0.96 0.82 3 17 18 15
% 2.6 5.3 44.7 22.3 21,1 7.9 44.7 47.4 32.5%

Check 60 0 0 8 9 43 4.58 O. 7I 0.60 0 8 52 52
% 0.0 0.0 13.3 15.0 71.7 0.0 13.3 86.Z 86.7%

Reset 57 1 2 17 10 27 4.05 1. 03 O. 90 3 17 37 34
% 1.8 3.5 29.8 17.5 47.4 5.3 29.8 64,9 59.6%

Go 62 0 0 6 6 50 4.71 0.63 0.47 0 6 56 56
% 0.0 0.0 9.7 2.7 80.6 0.0 9.7 90.3 90.3%

Go-go 30 0 0 7 4 19 4.40 0.84 0.76 0 7 23 23
% 0.0 0.0 23.3 13.3 63.3 0.0 23.3 76.7 76.7%

Step 47 1 0 17 15 14 3.87 0.91 0.75 1 17 29 28
% 2. I 0.0 36.2 31.9 29.8 2,1 36.2 61.7 59.6%

Step-Step 48 0 0 17 13 18 4.02 0.85 0.73 0 17 31 31
% 0.0 0.0 35.4 27.1 37.5 0.0 35,4 64.6 64,6%

Stops In 24 0 0 13 4 7 3.75 0.88 0.81 0 13 11 11
% 0.0 0.0 54.2 16.7 29.2 0.0 54.2 45,8 45.8%

Instant 13 0 0 7 3 3 3.69 0.82 0.75 0 7 6 6
% 0.0 0.0 53.8 23.1 23.1 0.0 53.8 46.2 46.2%

Observe 26 0 0 10 10 6 3.85 0.77 0.65 0 10 16 16
% 0.0 0.0 38.5 38.5 23.1 0.0 38.5 61.5 21.5%

Clipboard 38 0 2 14 12 10 3.79 0.89 0.77 2 14 22 20
% 0.0 5.3 36.8 31.6 26.3 5.3 36.8 57.9 52.6%

Font Ctrl 50 0 1 9 18 22 4.22 0.81 0.69 1 9 40 39
% 0.0 2.0 18.0 36.0 44.0 Z.O 18.080.0 78,0%

Indent Ctrl 10 0 0 4 4 2 3.80 0.75 0.64 0 4 6 6
% 0.0 0.0 40.0 4Q.0 20.0 0.0 40.0 60.0 60,0%

Direct Comparison of - 3A Page 23 - Student Numbers & Percentages

L ikeabi lit):
Name of Votes Votes per Rating Scale Mean Data Swing Data Majority

Tool actual 1 2 3 4 5 mean stdv mndv 1+2 3 4+5 dif2
Cut 64 0 1 23 13 27 4.03 0.92 0.82 1 23 40 39
% 0.0 1.6 35,9 20.3 42.2 1.6 35.9 62.5 60.9%

Copy 61 0 2 20 15 24 4.00 0.92 0.79 2 20 39 37
% 0.0 3.3 32.8 ~4.6 39.3 3.3 32.8 63.9 60.7%

Paste 64 0 2 16 23 23 4.05 0.86 0.69 2 16 46 44
% 0.0 3.1 25.0 35.9 35.9 3.1 25.0 71.9 68.7%

Find 36 2 4 17 11 2 3.19 0.91 0.69 6 17 13 7
% 5.6 11.1 47.2 30.6 5.6 16,7 47.2 36.1 19.4%

Replace 37 1 4 15 14 3 3.38 0.88 0.73 5 15 17 12
% 2.7 10.840.537.8 a.l 13.5 40.5 45.9 32.4%

Check 60 0 0 19 19 22 4.05 0.83 0.70 0 19 41 41
% 0.0 0.0 31.7 31.7 36.7 0.0 31.7 68.3 68.3%

Reset 56 3 1 31 13 8 3.39 0.94 0.74 4 31 21 17
% 5.4 1.8 5~.4 23.2 14.3 7.1 55.4 37.5 30.4%

Go 62 0 0 17 5 40 4.37 0.88 0.81 0 17 45 45
% 0.0 0.0 27,4 8.1 64.5 0.0 27.4 72.6 72.6%

Go-go 30 0 1 16 6 7 3.63 0.87 0.78 1 16 13 12
% 0.0 3.3 53.3 20.0 23.3 3.3 53.3 43.3 40.0%

Step 47 1 8 14 19 5 3.40 0.96 0.82 9 14 24 15
% 2.1 17.0 29.8 40.4 10.6 19.1 29.8 51.1 31.9%

Step-Step 48 1 3 19 11 14 3.71 1.02 0.89 4 19 25 21
% 2.1 6.2 39.6 22.9 29.2 8.3 39.6 52.1 43.7%

Stops In 25 1 0 14 9 1 3.36 0.74 0.59 1 14 10 9
% 4.0 0.0 56.0 36.0 4.0 4.0 56.0 40.0 36.0%

Instant 13 1 0 7 3 2 3.38 1.00 0.78 1 7 5 4
% 7.7 0.0 53.8 23.1 15.4 7.7 53.8 38.5 30.8%

Observe 26 0 0 11 8 7 3.85 0.82 0.72 0 11 15 15
% 0.0 0.0 42.3 30.8 26.9 0.0 42.3 5Z.7 57.7%

Clipboard 39 0 2 14 12 11 3.82 0.90 0.78 2 14 23 21
% 0.0 5.1 35.9 30.8 28.2 5.1 35.9 59.0 53.8%

Font Ctrl 50 0 0 14 17 19 4.10 0.81 0.68 0 14 36 36
% 0.0 0.0 28.0 34.0 38.0 O.Q 28.0 72.0 72.0%

Indent Ctrl 10 0 0 7 2 1 3.40 0.66 0.56 0 7 3 3
% 0.0 0.0 70,0 20.0 10.0 0.0 70.0 30.0 30.0%

Layout 66 5 4 14 14 29 3.88 1.25 1.04 9 14 43 34
% 7.6 6.1 21.2 21.2 43.9 13.§ 21.~ 65.2 51.5%

Highlighting 66 2 3 8 14 39 4.29 1.04 0.84 5 8 53 48
% 3.0 4.5 1~.1 21.2 59.1 Z,§ 12.1 80,3 72.7%

Bracketing 63 5 6 21 15 16 3.49 1.19 1.01 11 21 31 20
% 7.9 9.5 33.3 23,8 25.4 17.5 33.3 49.2 31,7%

Error Msgs 65 10 5 14 15 21 3.49 1.40 1.21 15 14 36 21
% 15.4 7.7 ,1.5 23,1 3,.3 23.1 21.5 55.4 32.3%

Direct Comparison of - 3A Page 24 - Student Numbers & Percentages

Other Method : Freguenc~ of Use
Name of Votes Votes per Rating Scale Mean Data Swing Data Majority

Tool actual 1 2 3 4 5 mean std v mndv 1+2 3 4+5 dif2
Find 48 34 3 8 3 0 1.58 0.98 0.83 37 8 3 -34
% 70.8 6.2 16,Z 6.2 0,0 77.1 16.7 6.2 -70.a%

Replace 43 31 4 6 2 0 1.51 0.90 0.74 35 6 2 -33
% 72.1 9.3 14.0 4.7 0.0 81.4 14.0 4.7 -76,7%

Check 43 32 3 5 2 1 1.53 1.02 0.80 35 5 3 -32
% 74.4 Z.O 11.6 4.7 2.3 81.4 11.6 7.0 -Z4.4%

Reset 44 35 3 4 2 0 1.39 0.83 0.61 38 4 2 -36
% 79.5 6.8 9.1 4.5 0.0 86.4 2.1 4.5 -81,8%

Stops In 33 23 3 4 3 0 1.61 1.01 0.84 26 4 3 -23
% 69.7 9.1 1~.1 9.1 0.0 78.8 12.1 9.1 -69.7%

Observe 37 26 6 4 0 1 1.49 0.89 0.68 32 4 1 -31
% 70.3 16.2 10.8 0.0 2.7 86.5 10.8 2.7 -83,8%

Clipboard 37 25 7 4 0 1 1.51 0.89 0.69 32 4 1 -31
% 67.6 18.9 10.8 0.0 2,7 86.5 10.8 2.7 -83.8%

Summar~ of Means and Rankings for Each Dimension in Tool Order
Usefulness Frequenc~ Ease of Use Likeability Other Method

Cut 4.11 4 3.52 4 4.37 4 4.03 6
Copy 4.00 5 3.27 5 4.23 6 4.00 7
Paste 4.14 3 3.58 3 4.27 5 4.05 4
Find 3.47 19 1.89 -12 3.50 17 3.19 21 1.58 - 2
Replace 3.50 18 2.00 -11 3.58 16 3.38 18 1.51 - 4
Check 4.33 2 3.80 2 4.58 2 4.05 4 1.53 - 3
Reset 3.79 11 2.73 - 6 4.05 8 3.39 17 1.39 - 7
Go 4.73 1 4.41 1 4.71 1 4.37 1
Go-go 3 ,70 13 1.86 -13 4.40 3 3.63 12
Steo 3.60 17 2.26 - 9 3.87 10 3.40 15
Step-step 3.85 10 2.48 - 8 4.02 9 3.71 11
Stops in 3.64 16 1.64 -15 3.75 14 3.36 20 1.61 - 1
Instant 3.15 21 1.32 -16 3.69 15 3.38 18
Observe 3.88 9 1.71 -14 3.85 11 3.85 9 1.49 - 6
Clipboard 3.97 6 2.26 - 9 3.79 13 3.82 10 1.51 - 4
Font Control 3,z0 13 2.70 - 7 4.22 7 4.10 3
Indent Control 3 .40 20 1.20 -IZ 3.80 12 3.40 IS
Layout Style 3.68 15 3.88 8
Highlighting 3.92 7 4.29 2
Bracketing 3.75 12 3.49 13
Error Messages 3.91 8 3.49 13

Direct Comparison of - 3A Page 25 - Student Numbers & Percentages

Freguenc~ of Use - in Order of Decreasing Mean Rating Scale Value
Name of Votes Votes per Rating Scale Mean Data Swing Data Majority

Tgol actual 1 2 3 4 5 mean stdv mndv 1+2 3 4+5 dif2
Go 66 3 1 7 10 45 4.41 1.04 0.81 4 7 55 51
% 4.5 1.5 10.6 15.2 68.2 6.1 1Q.6 83.3 77.3%

Check 66 6 4 11 21 24 3.80 1.25 1.00 10 11 45 35
% 9.1 6.1 16.7 31.8 36.4 15.2 16.Z 68.2 5~,0%

Paste 66 2 8 15 32 9 3.58 0.97 0.80 10 15 41 31
% 3.0 12.1 22.7 48.5 13,6 15.2 2~.7 62.1 47,0%

Cut 66 2 7 19 31 7 3.52 0.93 0.77 9 19 38 29
% 3.0 10.6 28.8 47.0 10.6 13.6 28.857.6 43,2%

Copy 66 5 11 18 25 7 3.27 1.09 0.92 16 18 32 16
% 7.6 16.7 27.3 37.9 10.6 24.2 27.3 48.5 24.2%

Reset 65 9 20 23 8 6 2.73 1.12 0.91 29 23 14 -15
% 13.6 30.3 34.8 12.1 9.1 43.9 34.8 21.2 -22.Z%

Font Ctrl 66 16 13 18 13 6 ·2.70 1.28 1.10 29 18 19 -10
% 24.2 19.7 27,3 19.7 9.1 43.9 27.3 28,8 -15.~%

Step-Step 65 17 13 23 11 1 2.48 1. 10 0.96 30 23 12 -18
% 6.2 20.0 35.4 15.9 1.5 46.2 35.4 18.5 -27.7%

Step 66 19 16 28 1 2 2.26 0.99 0.85 35 28 3 -32
% 28.8 24.2 42,4 1.5 3.0 53.0 42.4 4.5 -48.5%

Clipboard 55 26 14 11 10 4 2.26 1.29 1.12 40 11 14 -26
% 40.0 21.5 16.9 15.4 6.2 61.5 16.9 21.5 -40.0%

Replace 66 28 19 11 7 1 2.00 1.07 0.85 47 11 8 -39
% 42.4 28.8 16.Z 10.5 1.5 71.2 16.7 12.1 -59.1%

Find 66 30 18 l3 5 0 1.890.97 0.81 48 13 5 -43
% 45.5 ~7.3 19.7 7.5 0.0 72.7 19.Z 7.6 -65,2%

Go-go 66 36 14 7 7 2 1.86 1.15 0.94 50 7 9 -41
% 54,5 21.2 10.6 10.5 3.0 Z5.8 10.6 13.6 -62.1%

Observe 65 39 10 12 4 0 1.71 0.97 0.85 49 12 4 -45
% 60.0 15.4 18.5 5.2 0.0 75.4 18.5 6.2 -59.2%

Stops In 64 39 l3 8 4 0 1.64 0.92 0.78 52 8 4 -48
% 60.9 20.3 1~,5 §.2 0.0 81.2 19.5 6.2 -75.Q%

Instant 65 52 6 6 1 0 1.32 0.70 0.52 58 5 1 -57
% 80.0 9.2 9.2 1.5 0.0 89.2 9.2 1.5 -87.7%

Indent Ctrl 65 55 7 3 0 0 1.20 0.50 0.34 62 3 0 -52
% 84,6 10.8 4,5 0.0 0.0 95.4 4,5 0,0 -95.4%

Direct Comparison of - 3A Page 26 - Student Numbers & Percentages

Chapter 3 - Additional Questionnaire Data

025. Enhancements and Additional Facilities Frequency

better error messages 8

compiler requests 7

user I ibrary of procedures and functions 5

reserved words help/syntax diagrams 4

multiple application windows 4

better file handling 3

lack of SJ)eed 3

decent hardcopy facility 2

error output to file/printer 2

colour 2

single keypress window switching 2

(non syntax) semantic checker 2

stack and heap pictures 2

RAM files 2

listing all errors in one go 1

test file creation facility)

SJ)ecification - > MacPascal translator)

easier variable value diSJ)lay)

more complete/helpful diagnostics)

type coersion I

user control of I ayout)

better screen moving commands I

disc editor 1
editing of text window)

ability to save text window)

semicolon adding utility)

trace utility)

C A Humphreys - 3B, Page 27 - Chapter 3, Appendix 3B

Summary of Enhancements Suggested in Questionnaire

Cut: inverse facility to delete all except prior selected and highlighted block

Better search and replace facilities

Step-step: an infmite loop indicator

Font control: ability to choose new "default" font for program text on subsequent
sessions

Compiler wanted rather than interpreter

Error messages :
should be more accurate/informative and less noisy (or even noiseless)
~ should leave error message until error is fixed
ID: should be able to remove message by single keypress or mouse click and be able

to call error message back up onto the screen
Should be able to send cumulative error messages to file/printer rather than being

limited to the "find and fix one error at a time" mechanism due to the intrinsic
nature of the interpreter

Semicolon adding utility

More complete/helpful diagnostics

Reserved words help/syntax diagrams

(non syntax) semantic checker

More comprehensive run-time error checking

Easier variable value di~'Play

Trace utility

File handling requirements :
decent file handling
RAM files
assigning of I/O files by the user
test file creation facility

Saving/editing of text window

Multiwindowing/multiple applications open and on-screen at the same time

Facility to speed up window switching
- single keypress window switching
- automatic switching and resizing on selection of a given window?

User control of text formatting (individualizing layout style)
ability to change layout code in some sections of code
option to choose whether to highlight reserved words or not
option to enter text in "free format" according to user's style

Colour leg. one colour for reserved words, one colour for variables, another colour
for procedure/function calls or declarations]

Stack and heap pictures
- a way of representing the "current memory free/used ratio" graphically

Better screen moving commands in terms of scrolling
- by full/half screen, to go to start/end of file directly, etc.

Decent hardcopy facility - one that enables printing of all [or a selected portion] of
the file rather than just the current window's worth
Ability to define and use library(ies) of user defmed procedures/functions

C A Humphreys - 38, Page 28 - Chapter 3, Appendix 3B

Q27 Data

System or Language

amstrad

Student Id No.lMonths Spent on System Language

30

cp/m rml 480Z

cp/m 2.2 & cp/m plus

ibmpc

research machines 380z

ibm mvs/xa tso/ispf

ada pde on vax

hp text editor

view for bbc (wp)

wordstar

any basic

bbc basic

commodore 64 basic

fast basic

hisoft structured basic on atari

spectrum basi c

turbo basic

vic 20 basic

any pascal

acornsoft pascal

apple ucsd pascal

hisoft pascal 80

iso pascal bbc

Isp lightspeed pascal?

mt + pascal on pew

oxford pascal

rm pascal on nimbus

s-pascal

sheffield pascal on prime

turbo pascal

6
65

11

49112

31184

8

62/6-12

32

10

1 2421 27 35 60 61 63

21 2761 63/48

27

1112

2/5

27

35/10

27

1 57 10 20 24 25 26 29 39 40 41 4243485763

65

7

5160

4365/36

4863/24

7

65/36

63/18

251642/648

7

57

115 10118202516262939/340 4116

unix pascal 24

NB. Numbers followed by "I" indicate the student identifier followed by the number
of months spent on the system/language ego "63/48" means student 63 spent 48 months
(4 years) on BBC Basic.
Numbers not followed by"/" indicate students who spent 1 month per systemnanguage.
C A Humphreys - 38, Page 29 - Chapter 3, Appendix 38

System or Language

anyc

Student Id No.lMonths Spent on System Language

2274164 59

lattice C on amiga

metacomco lattice C on Atari

ms (micro soft?) c

microsoft c

turbo c on ibm

turbo c professional

ciscobol ibm clone

cobol 8x on vax111730

steed (cobol) on rm nimbus

auto lisp

codeview optimizing debugger on pc

cad systems

foxbase

unix on sun

hisoft devpac assembler on amiga

65002 assembler lancs univ v1.6

z80 assembler on amstrad

macdraw & macwrite

macpaint & mackeyboard

vml

never

27

217

41/3

64

59112

64

5/24

58112

34

35/10

64

62

35/8

50 53/'h

4715

32

1516

66/6

66/1

23 44 45 46 52 66

1628333651

NB. Numbers followed by "/" indicate the student identifier followed by the number
of months spent on the system/language ego "63/48" means student 63 spent 48 months
(4 years) on BBC Basic.

Numbers not followed by "I" indicate students who spent 1 month per system/language.

C A Humphreys - 38, Page 30 - Chapter 3, Appendix 38

Q30 Data

The following table shows the number of students (at the left margin), and the

combination in which they use methods a) b) c) d) and f). The first block shows the

student numbers who usually use I method only. This is indicated by the defmition

Iu/Os. Ou/ls indicates no (0) usual method, but I sometimes method. lulls indicates I .

method used usually and 1 other method used sometimes, that is I principal method and

1 secondary method.

a bed f
11 u o 000 Iu/Os group
11 o u 0 0 0
2 o 0 u 0 0
I o 0 0 u 0
I o 0 0 0 u

I o s 0 0 0 Ou/Is group
I o 0 s 0 0

I u u 000 2u/Os

I o 0 s s 0 Ou/2s

3 s s s s 0 Ou/4s

3 u s 000 Iu/Is
I o u s 0 0
I 0 u o s 0
2 o u o 0 s
2 o s u 0 0
2 o 0 u s 0
I s 0 o u 0
I o s o u 0

I u s s 0 0 Iu/2s
I u s o s 0
1 s u s 0 0
I s u o s 0
1 o u s s 0
1 s 0 u s 0
2 s suO 0

I sus s 0 lu/3s
1 s u o s s
5 s sus 0
I s s sOu
2 s u s s s Iu/4s
I s u u 0 0 2u/ls
1 u s s u u 3u/2s

C A Humphreys - 3B, Page 31 - Chapter 3, Appendix 38

., Pascal qebugging Strategies Experirnent/\\v.:,.1...:Y:'''~.'.,,--. ®
The object ive of this\~t?e?1file~· is to find out what methods you use to develop and debug
code, and to discover the reasons why you do or do not use these methods. Ample space is
provided to give these reasons and to make any comments you think are relevant.

The questions are ordered specifically to lead you through all aspects of software
development and the debugging process, so that you can consider the methods you use, what
effects they might have and what sort of errors you have to deal with.

There are 2 aspects to this experiment, a series of 3 debugging tasks, and a series of
questions to be answered. It should take about 1 ~-2hi's to complete.

Questions

There are 2 types of questions.

• There are "open" questions which are intended to find out your own views/opinions about
debugging, and the variety of methods and strategies that you use to detect and resolve
different types of bugs.

• There are "multiple choice" questions where the expected answers are shown in square
brackets. For example IYl IMl [NI, correspond to the answers Yes, Maybe and No; whereas
IUl ISl 1Nl, correspond to the answers Usually, Sometimes and NolNever. To answer No, all you
would have to do is to tick the 1Nl box

In some cases you may have an alternative answer to those presented; if so, I would like you
to write down your answer - with a brief explanation <if necessary), so that I w111 be able
to interpret your answer as you intended me to.

Some of the "multiple choice" questions have an answer "table", (or a rating scale
ego ease of use of a tool. important 00000 not important> and you are expected to
"tick" the appropriate box (es). For example, to answer the question : Show what you had for
breakfast each day, Monday-Friday, in the table below'- :

Monday Tuesday Wednesday Thursday Friday
gggs I I I

to~§t I I I I

!:;~r~al I I

!;o([ee I I I I

.- You might want to add an extra row to the table, to indicate that you had orange
uke on Mond" and Wednesda as follows

orange juice I I

Please feel free to add any extra rows or columns, if you think that this will complete the
answer "table", more to your satisfaction.

The "open" and "multiple choice" form of questions both appear at the beginning and end of
the experiment, so that I can get your views on different aspects of debugging, error types
etc., before and after at tempting the debugging tasks.

NB. Some of the questions are multi-part, having parts i, 11, and 11i, that explore different
aspects of the same topic.

Debugging Tasks

• The central part of the experiment consists' of you applying your debugging skills to
3 separate pieces of "90% complete" buggy Pascal code, which I want you to fix so that the
code will compile, and be executed according to the task description provided.

These tasks are not very complex, are short (1-2 pages each), and contain helpful comments.

The purpose of these debugging tasks is to find out exactly how you go about the debugging'·
task, and to get an idea of how long it takes you to "correct" each set of errors, and whleh
errors you tackle first.

Boxed text is usually provided as reference information, either for specific use in
subsequent questions, or simply as information which you might find useful as 8 memory
jogger.

C A Humphreys - 3;1 - Appendix 7A

\15)
NB. algorlthm1c error = error tha t causes the algorithm not to work properly

design error - choosing the wrong algorithm or language construct to implement the design

Information Sheet To g1ve Help With "Vogue" or "AAbiguous" Questions

What I am looking for are the reasons beh1nd (the ch01ce of) each answer, and your opin10ns
on a var1ety of top1cs affecting software development and debugging styles and methods.

I hope the following 11st of the reaSons beh1nd the quest10ns prove helpful in understanding
and answering the questions!

41. To find out how frequently you use each of the 5 methods. Only I method should be
chosen 85 "Usual" method, otherwise the percentages won't add up!

411. To def1ne the circumstances/reasons for us1ng each method, and to get a good 1dea of
what factors affect the dec1s10n to use one method rather than another.

4111. "errors" means all the syntax and semantic errors encountered between developing the
software, f1x1ng all the syntax errors and getting it to compile, and getting it to do the
requ1red task properly (ie. as requ1red by the task descript10n or spec1f1cat10ns).

5. To f1nd out what you think the compiler's main purpose 1s, and to get you to define the
type of errors 1t detects for you.

7. To see wh1ch comments you agree/d1sagree with about compilers, and to collect any other
thoughts generated by this top1c.

8. To make you cons1der how thoroughly you check your code for errors before and after
development, and what your expectations are.

9. A means of getting you to state wh1ch inspection methods (and the1r depth/thoroughness)
you apply to the various software development stages.

14. What I want you to do 1s to 11st all the non-syntact1c errors you can think of.

161 &- 1611. "At what stage{s)" means "In what circumstances"

20. What I want you to do, is to state what spec1fic details lead you to be11eve that an
error exists. The 1st informat10n box at the top of the page is a prompt to help you give
this 1nformat10n. The 2nd information box defines detect and locate!

21. To find out how the methods/strategies ~ used to deduce that the error 11es in a
specific section or 11ne of code - how you determine the location of the suspected error.

22. To f1nd out how you locate the source of semantic (des1gn, logic or algorithmic) errors.

30. "At what stage (s)" means "In what circumstances·t

361. What I mean is, when you are developing code, you have 1deas - mental images - (which
form programming plans) which are joined together to form the eventual program that
executes the requ1red task. What I want to know is ~ ~or!ll. thes~ mental images ~ Do
you just have a straight copy of the code 1n your head, or 1s it like a flow chart deta11ing
the different routes through the code, or 1s it like a black box where input values go 1n
one end and output results/events come out the other end, or is it more exotic than that,eg.
like a branching river whose "ch11d" riverlets cross each other 1n intricate patterns or
what? Please state your answer as clearly as possible or draw a diagram with labels (if
possible)!

C A Humphreys - 33 - Appendix 7A

Design of Programming & Debugging Strategies Questionnaire

The questionnaire had 2 types of questions.

There were "open" questions which were intended to find out each student's
views/opinions about debugging, and the variety of methods and strategies that they use
to detect and resolve different types of bugs.

There were "multiple choice" questions where the expected answers were shown in
square brackets. For example [Y] [M] [N], represent the answers Yes, Maybe and No;
whereas [V] [S] [N], represent the answers Vsually, Sometimes and No/Never. To
answer No, all the students had to do was to tick the [N] box

If the students had an alternative answer to those presented, I asked them to write down
their answer - with a brief explanation (if necessary), so that I would be able to
interpret their answer correctly.

The "open" and "multiple choice" form of questions both appeared at the beginning and
end of the experiment, to get the student's views on different aspects of debugging, error
types etc., before and after attempting the debugging tasks.

The variation in question types was intended to draw out students' opinions as fully as
possible, by making the questions as explicit as possible.

Some of the questions were mUlti-part, having parts i, ii, and iii, to explore different
aspects of the same topic.

Conventions

The following conventions apply to the resulting data, comments and conclusions drawn
from the questionnaires given to the fmal year students. Specific numeric data that
supports a statement/comment are given in round brackets. For example, in Q2, 2
students (25 %) defined their favourite language as easy to use.

In data tables/matrices "SS" acts as the student identifier as in question Q4i.

In data tables, numbers appearing under the "Students" heading are the student
identifiers (ranging from I to 8 inclusive) and NOT totals. This enables direct
correspondence between the "comment response" made and the student who made it.
For example, in Q3, student 5 considers himself as "very good" at Pascal programming.

In data tables 1-2 letters are used as the category label identifiers for brevity. V sually
the method identifier (such as - a,b,c,d,e,), or an amalgam of the first letter of each
word defining the category (such as "QO" indicating the "Quite Difficult" category in
Q4), and so on.

The following labelling/meaning conventions apply unless stated to the contrary in the
text.

Frequency of use labels :-
VSN - usually, sometimes, never.
VOSN - usually, often, sometimes, never.
VOSRN - usually, often, sometimes, rarely, never.

Agreement with a statement, posed as a question :
YMN - yes, maybe, no.
YON - yes, don't mind, no.

The order category lists the resultant choice of methods (or whatever) by precedence.
Thus the first item appearing in an order category is the most important. Items of the
same precedence are shown as "a/c" meaning that methods a) and c) have the same
precedence.

C A Humphreys Appendix Q7A - 34 - Chapter 7 Questionnaire Data

Q7 A Results & Summarizing Comments for each Question

Q7A.l Experience & Programming Ability - QI-3
Ql. They have all done 6 projects in the previous (2nd) year, each lasting 5 weeks.
With 3 projects in C, I in Cobol, I in Fortran and I in MacPascal. Some students did
either a DBase III or Prolog project instead of one of the C projects. One student (SS3)
had done an industrial year using RAMIS and SQL database languages, after doing the
2nd year projects.

Q2. Favourite programming language and environment.
Languages Students
C 24 6'h 78'h
Pascal I 58
SOL 3
ARM Basic V 6
where 'h indicates a 2nd choice - a more common language to "work" or do projects in.
Student I uses MacPascal, and Student 5 uses Hisoft Pascal.

Not surprisingly, 100% of students' loyalty to programming languages, and in 50% of
cases their associated environments is mainly a question of familiarity. With 2 students
(25 %) describing their favourite language as easy to use. Only 3 students out of 8
identify Pascal (or one of its variants) as their favourite language.

Q3. Programming ability for Pascal.

Ability
very good
better than average
average
worse than average

Students
5
I

3478
26

In contrast with the previous question, it seems that 6 out of 8 students regard themselves
as having average or better than average programming ability in Pascal.

Q7 A.2 Program Development and Coding Methodology - Q4
Q4i. Students were asked to defme the frequency with which they used each method,
below. Choices offrequency were [U]=usually, [0] = often, [S] = sometimes,
[N]=never.
With the Usual method being used more than 60% of the time.
a) work out the entire algorithm then translate it into code
b) work out most of the algorithm then translate it into code, and fill in the missing parts
as you go along
c) work out a partial algorithm and continue as for b)
d) use direct terminal composition - where you express the algorithm in code (on the
VDU screen) directly, without working it out on paper first
e) use other method(s)
- According to student's comments, e) = top-down modularisation for SS2, 4, 6 & 7

(each of these students scored it as "u"/usually, except SS4 who scored it as "on/often).

Q4i. UOSN
SS12345678 U 0 S N sum
a ssssnsso a-I 6 1 24
b usouonsu b 3 2 2 1 17
c souousns c 2 2 3 1 19
d snnnsonn d - 1 2 5 28
e nunonuun e 3 1 - 4 21
Taking u=l, 0=2, s=3, n=4 to give sum values above.
Order of ascending sum value gives order of frequency of use as - b,c,e,a,d - with
scores of 17, 19, 21, 24, 28 respectively.
C A Humphreys Appendix Q7A - 35 - Chapter 7 Quest ionna ire Data

Q4ii. Students were asked to choose a method dependent on situations of varying task
complexity/difficulty or code length. With 4 categories for each, as follows.
Task Complexity/DIfficulty: Simple, Average, Quite-Difficult, Very-Difficult; and
Code Length: Short, Medium, Longish, Very-Long.

(with 60 lines/page) <100 100-300 300-600 >600 lines code

Most students chose only 1 method per category, but some chose more than I. These
multiple methods are shown on the right hand side of the 1st pair of tables. But they also
"belong" to the 2nd pair of tables where the room ran out.

Task Complexity Code Length
a bed e order a bed e order Mult iples

S 4 1 1 3 - a, d, b/e S 3 2 2 3 - aid, b/e S ba S abe
A 2 4 2 llb, a/c, die M 3 5 2 1 - b, a, e, d A be de M bea da
OD 1 5 2 - 2 b, e/e, aLl 5 2 - 3 b, e, e, a OD cb ee L cb ee
VD 2 2 1 - 3 e, a/b, c VL 1 2 3 - 3 e, e, b, a VD none VL cb
These orderings result when equal weight is given to each element in a multiple answer,
such as ba, where both b) and a) frequencies are incremented by 1.

Task Complexity Code Length
a bed e order a bed e order

S 3.5 0.5 1 3 a, d, e, b S 2.3 1. 3 1. 3 3 d, a, b/e
A 2 3.5 1 0.5 1 b, a, e/e, d M 1. 8 4.3 1. 3 0.5 - b, a, e, d
OD 0.5 5 1 1 . 5 b, e, e, a L O. 5 4 1 - 2. 5 b, e, c, a
VD 2 2 1 - 3 e, a/b, c VL 1 1. 5 2.5 - 3 e, e, b, a
These orderings result when equal weight is given to each element in a multiple answer,
such as ba, but where the score adds up to 1. Thus both b) and a) frequencies are
incremented by Ih, rather than I. A triple answer gives each component method a score
of 1/3 (0.3). The 1.8 score indicates a frequency score of I + Ih + 1/3 = 1.8
approximately.

There is no major ditTerence between responses to complexity and code length.
As expected a) and d) are the predominant development strategies for simple situations.
Summarizing strategies gives a) or d) for simple or short tasks; b) for average or quite
difficult or long tasks; and e) for very difficult or long tasks. A common sense result,
since it is easier to get a simple problem correct in short order, as the solution is usually
short and easily managed. But as task and algorithm difficulty increases, the problem
has to be split up and details (and bugs) proliferate - so more cautious program
development strategies prevail.

Q4iii. Response to the diametrically paired questions as to which method produces
least/most errors, and requires least/most debugging time for each of methods a), b), c),
d), e), were as follows.

SS 12345678 a b c d e order
LE beeebeea LE 1 2 1 - 4 e b a/c
ME dadddbdd ME 1 1 - 6 - d a/b
LDT beeabeea LDT 2 2 1 - 3 e a/b c
MDT dadddadd MDT 2 - - 6 - d a
where e = top-down modularisation.

Thus most (6/8 = 75%) of the students think that d), direct terminal composition,
produces the most errors, and takes the most debugging time-wise. Whereas the other
methods e) b) a) and c) respectively produce less errors and require least debugging time
(and in that order).

C A Humphreys Appendix 07A - 35 - Chapter 7 Questionnaire Data

Q7A.3 Attitudes Towards The Compiler - Q5 & Q7
Q5. The top 7 opinions on the purpose of the compiler, as to why is it useful and what it
does, and the type of errors it detects, were as follows :-

Reswnses Students
syntax 123478
some semantic errors 14 7
translating program into machine code 357
o-:vos 67
misspelt commands/keywords I 2
missing brackets 25
svelling mistakes 35

Students regard the compiler as most useful for spotting syntax errors (6); detecting
some semantic errors (3) and for translating the program into machine code (3). Typos,
misspelt commands/keywords, missing brackets, and spelling mistakes all fall into third
place with 2 votes apiece. Although it could be argued that misspelt
commands/keywords and spelling mistakes go into second place, with 4 votes in total for
misspelling variants.

Q7. Given a choice of2 attitudes a) and b), towards the compiler, the percentage
responses were:
62% for a) "The compiler only detects obvious errors, it can't deduce the presence of
subtle (or not so subtle) semantic errors resulting from logic, algorithmic or sequencing
errors"; and
75 % for b) "The purpose of the compiler is to detect obvious errors: typos,
misspellings, mixed syntax, missing or misplaced syntactic components. n.

So there is a slight preference (75 % to 62 %) for b) over a).

Q7A.4 Development & Debugging Attitudes - Q6, Q8, QlO, Q13 & Q29
Q6. Students' responses to percentage ratings for confidence of syntactic correctness &
correctness task-wise, when they first attempt to compile their code; were as follows
.-
for syntactic correctness 60 80 75 80 C language 70 40 20 60
mean=485/8=60.63
for correctness task-wise 80 90 50 60 C language 85 70 75 90
mean=600/8=75.0

Using the ratio p/q, where p = syntactic correctness, and q = correctness task-wise.
There are 6 scores where p < q giving a mean ratio of 55 / 82,
there are 2 scores where p> q giving a mean ratio of 77.5 / 55, and
the overall mean is 60.63 / 75.00.

I was surprised that any students rated syntactic correctness above correctness task
wise. Or rather that it was more difficult to express the intended algorithm in terms of
the language than it was to achieve syntactic correctness. Or perhaps the results reflect
the difference between the algorithm expressed in code and the way it runs (being
syntactically correct), rather than the intended algorithm that would perform the
required task (and thus be correct task-wise).

C A Humphreys Appendix Q7A - 37 - Chapter 7 Questionnaire Data

Q8. Students' frequency responses (either usually, sometimes or never) to the question,
"Do you look for errors before attempting to compile your code? How thoroughly?"
were:
a) check each section/chunk of code before you develop and/or extend it
b) check each section/chunk of code afiIT you develop and/or extend it
c) expect (or are confident) that what you have done is correct
d) expect the compiler to detect any trivial errors that have been made?

08. U5N abed
5512345678 U 5 N sum
a uuunsuss a 4 3 1 13
b usunnsus b 3 3 2 15
e susssuuu e 4 4 - 12
d susuuusu d 5 3 - 11
Taking u=l, s=2, n=3, to give the above sum values.
Order of ascending sum values is d, c, a, b.

Most (7) students check their code before, and (6) after development.
It is split approximately 50/50 between usually and sometimes. ["usually" to
"sometimes" ratio is 4 to 3 for a), and 3 to 3 for b).]
SS4 doesn't check the code either before or after development. He just modifies as he
goes.
SS5 checks code before but not after.

QIO. Ranking of post-syntactic debugging strategies by frequency of use (with choices of
usually, sometimes or never).
a) checking that code is correct "task-wise" after eliminating the syntactic errors;
b) only eliminating design, logic and algorithmic errors as you become aware of them,
during testing or as a result of run-time errors.

5512345678
a snsusuus
b ussuuuuu

U S N sum
a34111
b 6 2 - 10

There is a (6 to 3 "usually") preference for b) rather than a). Indicating a tendency
towards a reactive approach rather than a proactive one. Also it is (usually) easier to
set up test data, and to see what errors become apparent. Instead of trying to eliminate
ALL errors by relying wholly on mental visualisation or simulation of how the code will
execute.

Q13. Defming students' primary debugging strategy.
a) to eliminate bugs as you become aware of them
b) to prevent as many errors as possible from occurring in the first place

5512345678
bbbbaacb 2a 5b le

Again the students regard error prevention, b), as being better than cure, with 5 votes to
2 respectively. Having experience as programmers, they have obviously learnt that
error elimination is much, much more time and effort consuming than error prevention.

Combining the results of QI0 & Q13, shows that the students' priority regarding errors is
: error prevention, error elimination (in response to error presentation or detection), and
checking for task correctness after syntactic elimination.

C A Humphreys Appendix Q7A - 38 - Chapter 7 Questionnaire Data

Q29. Which do you think is more difficult to correct? [a] or [b]
a) an inadvertent "typo" that alters the intended execution of the code
b) an algorithmic error (the chosen algorithm doesn't fit the task requirements).
Give reasons for your answer.

SS12345678
babaa*aa, where * = "could be either", Totals are 5a 2b la/b

As expected most students (72 %, 5 out of 7) agree that an inadvertent typo is more
difficult to correct than an intended algorithm that doesn't meet the task requirements.
Student 8 gives the answer "a) ... as b) can be compared with [the] spec, whereas with
a), you know what you INTENDED to type and tend to read it as it SHOULD be ...
reading over the mistake. " .
Errors of type a) can takes weeks to find, due to the reading-over effect. Getting
someone else to look at the code for you, usually gets over the problem, and the typo is
found and fixed pronto. Sometimes describing what the code does to a third party can
give a fresh perspective, and thus lead to the error being found.

Q7A.5 Use of Debugging Techniques & Tools - Q9, QlI, QI2 & Q22
9. Defmes the inspection techniques used to test for errors before (and after) attempting
to compile the code. The table shows the distribution of scores for each individual method

durina development after development after compilation
o=ouick read throuah 4 5 2
s=slow read throuah 5 4 6
m-mental simulation of code 5 2 6
h=hand simulation of code I 3 6

Actual responses were:-
reading
qUs qns
7 2

simulation
mUh mnh

During Development - q s qm srn 2qsm smh
After Development - 2q s qs qsh qmh smh
After Compilation - q srn mh qsh 4smh

7 2
7 1

5 1
5 2
7 5

Table checking for numerically significant component task pairings.

During Development
After Development
After Compilation

q s m h qs qm qh srn sh mh qsm qsh qmh smh
455123-4112 1
5423 2 I 2 122 1 I 1
2666 1 - 1 555 1 4

During development q, s and m are the main single component strategies, scoring 4, 5, and
5 respectively. With 4 pairings of sm, 3 of qm and 2 of qs; with 2 triples of qsm. There
are 7 students reading through, with 5 of them using mental simulation as well.
After development the main strategies are reading through rather than mental or hand
simulation - given by 5q, 4s, 2m, and 3h. There are 7 students reading through, with only
3 of them using mental or hand simulation.

The predominant debugging strategy after the compiler defmes errors is 4smb - a slow read
through with mental andlor hand simulation. There are 7 students reading through, with 5
doing both mental and hand simulation as well, while the other 2 choose to do either mental
or hand simulation.
This indicates a higher degree of problem solving during actual development and in
response to compiler defmed errors.

C A Humphreys Appendix Q7A - 39 - Chapter 7 Questionnaire Data

11 i. Frequency and preference ratings for use of common debugging methods. Where
frequency range is Usually, Often, Sometimes, Rarely, Never; and preference range is
1-6, where' I' indicates the individual's favourite debugging method, and '6' the least
preferred.
The table below shows the mean values derived from the students' rating scores. For
frequency of use these mean values correspond to the Usually -- Never ranges, as shown.
Thus c) inserting write statements' mean score is 1.62, corresponding to somewhere in
the range often-usually (o-u).

mean frpouencv of use mean order of oreference
a mental simulation of code 3.00 s
b hand simulation of code 2.25 s-o
c insert inn write statements 1.62 o-u
dl tracino variable values bv hand/eve 2 50 s-o
el traclng varlable values by search mechanlsms3.50 r-s
fl tracing variable values by debugger 3.00 s I

Order of frequency of use is c,b,d,a/f,e.
Order of preference is c,b,a,d,f,e.

3.25
2.87
1. 75
3.62
4.40
4.00

Looking at the mean values, c), inserting write statements, wins on both counts; with b),
hand simulation, lagging 0.4 behind frequency-wise, and 1.1 behind preference-wise.

One reason for this preference for c) is that adding write statements is easy and
straightforward, and is under direct user control - so its actions are known and
predictable.

Whereas d), tracing variable values by hand/eye, and a), mental simulation of code,
seem to be interchangeable. Since d) is 0.5 smaller than a) frequency-wise, and d) is 0.3
larger than a) preference-wise. Thus d) is used more frequently than a), but is preferred
less.

In both cases alternative methods of tracing variable values, by debugger and search
mechanisms, f) and e) respectively, come in last.

ii. Defining the stage(s) where each of the above debugging methods are used and why.

Before Testinl', After Testinl! ~tllrlent~
I 2'h 8 a 1 2'h 3 4'h 5 6 7'h 8

b) 24 h 123578
14 S r 12~4Sfi78

d) d I 3'h 4'h 6 7'h 8
e) 1 3'h 7 8

where 'h indIcates 2nd chOIce or a method only used when necessary.

The order for "after testing" is the same as the order for preference (see lli. above).
Again c) inserting write statements comes out on top. a) and c) are often used in
conjunction with other methods, as shown in the table below.

Comment ReSJ)onses Students
use debugger as last resort 56
use al b) c) during initial debugging 3
dl e) 0 are used if al bl c) do not find errors 3
use a) & b) to locate the error 5
a) & c) 6
a) & d) 6
visualisation instead of b) 6
cl used to narrow down problem 5
C A Humphreys Appendix Q7A - 40 - Chapter 7 Questionnaire Data

Q12. Finding out which (programming environment) debugging tools (if any) are used
most frequently and why or why not.

Responses Students
never uses debu~gin~ tools 24
rarely uses debu~~ing tools 35
uses own debug~ing methods 235
uses write statements 35
uses debugger as a last resort 56
TurboPascal' s breakpoints and yariable tracing 7

Most comments indicate that students are either not really aware of the debugging tools
provided or they don't have enough information to use them. Hence they do not feel
either confident or comfortable in using them. Also there is the problem of variation in
debugging tools on different systems. So the effort spent learning one tool is wasted when
the student has to change to a new system.

Q22. Describe the methods/tools you use to locate each type of (non-syntactic) error and
the features of each method ie. how it helps you locate such errors.

Responses Students
write statement~ 24567
hand simulation 148
mental simulation 48
compare intended code to actual code I 8
trial & error modifications 6
breakpoints 7
checking value/state of variables 7

Inserting write statements wins with 5 votes; hand simulation is next with 3 votes; while
mental simulation, and comparing the intended code to the actual code, tie with 2 votes
each.

Summary of Debugging Methods & Tools
It seems that using write statements is the most frequently used and best liked debugging
method. No other tool(s) seem able to match it for flexibility.

Q7A.6 Defining The Nature of Errors, Their Frequency & Troublesomeness - Q14-15
Q14. The most common semantic, logic and/or algorithmic errors that students check for
are ;-

Responses Students
(aullY procedurelfunction calls 123457
variable faults 1357 8
faullY conditional statements 568
language errors I 5
al~rithm errors I 7
Iypos 68
missin~ semicolons 68

Overall votes for each type of error are ; faulty procedure/function calls (6), variable
faults (5),
faulty conditional statements (3), and 2 votes each for; language errors, algorithm
errors, typos, and missing semicolons.
The results of this question reinforce the need for some way of reducing the number of
procedure/function call faults. The summary tool should answer this need.
Spotlighting should be effective in resolving some of the errors associated with variables.
C A Humphreys Appendix Q7A - 41 - Chapter 7 Questionnaire Data

15i. The following table lists (23) types of errors; the columns numbered 1 to 5
correspond to the time of detection of each error. The numbers within the columns
represent the total number of students who voted for that stage of detection. (NB.
Parameter list errors are the same for procedures and functions. For procedures read
procedures or functions.

Lahelling Key for Stages of Detection and Error Ordering;
1 = pre-compile (errors detected by you),
2 = during compilation (errors detected by the compiler),
3 = post compile, before testing (errors detected by you),
4 = during execution - run-time, design and algorithm errors, etc.
5 = post execution - errors deduced from output values or events, or lack of them

I Types of Errors
I Undeclared variables. types or constants
I Misspelt names (eg. variables. types. constants. reserved words)
I Redundant declarations of variables. types or constants
I Inappropriate data typing of variables (eg. using real instead of integer)
I Using round brackets. (). instead of square brackets. [J

I Missing or extra bracket in an expression
I Incorrect placing of brackets in an expression
I Inappropriate declaration of a procedural parameter list
I (eg. using wrong variables or data types)
I Inappropriate declaration of a procedural parameter list
I (eg. under- or over-use of 'var' parameters)
I Incorrect format of procedural parameter list call
I (too many or too few parameters)
I Incorrect content of procedural parameter list call
I (mis-ordering/transposition of variables in parameter lists)
I Incorrect initialisation or termination of variable values
I Incorrect modification of variable values

Incorrect choice of loop variable value ranges (eg. in 'for' statement)
Incorrect choice of selection or loop construct to give required effect

(eg. using 'if' rather than 'while')
Inappropriate choice of loop variable

I Infinite loop(s)
I Redundant loop(s)
I Inappropriate placing of 'end' statenents
I Kissing 'else" statenent(s) to complement an 'if' statement
I Incorrect sequencing of variable value assignments

1*1111

I 17111 I I

I I I 13151

1111*1

I (eg. modification. initialisation or termination of variable values) 11131 12141
I Incorrect sequencing of control structures 11131 13141
I Incorrect sequencing of procedure or function calls 111 I 14141
I Run-time errors (divide by zero. under- or over-flow of values) I I I 17121
15ii. The next task was to give opinions as to which .12 errors were encountered most
frequently; 1 indicates the most frequent error, 2 the 2nd most frequent error etc.
[If 2 errors were equally frequent, the same number was to be used for each, and the
next number was skipped. For example, if 2 errors shared the 5th most frequent error
value, then the next most frequent error number would be the 7th.]
15iii. Then the same was done for the ordering of the 12 most troublesome/time
consuming errors.
Orderings for error frequency and the most troublesome/time-consuming errors follow.

C A Humphreys Appendix Q7A - 42 - Chapter 7 Questionnaire Data

EF = Order of most frequently occurring bugs
re = Order of most troublesome/time-consuming bugs

EF re Error Frequency Ordering

1 13 Missing or extra bracket in an expression

220 Undeclared variables, types or constants

3 23 Mis~-pelt names (eg. variables, types, constants, reserved words)

4 4 Incorrect placing of brackets in an expression

5 22 Using round brackets, 0, instead of square brackets, [)

624 Inappropriate data typing of variables (eg. using real instead of integer)

7 20 Redundant declarations of variables, types or constants

7 7 Inappropriate placing of "end" statements

9 8 Incorrect modification of variable values

IO 13 Incorrect initialisation or termination of variable values

II 16 Inappropriate choice of loop variable

12 18 Missing "else" statement(s) to complement an "if' statement

13 12 Incorrect choice of loop variable value ranges (eg. in "for" statement)

14 5 Inappropriate declaration of a procedural parameter list

(eg. using wrong variables or data types)

14 1 Infinite loop(s)

16 6 Run-time errors (divide by zero, under- or over-flow of values)

17 IO Incorrect sequencing of control structures

18 19 Redundant loop(s)

19 17 Incorrect format of procedural parameter list call

(too many or too few parameters)

20 13 Incorrect choice of selection or loop construct to give required effect

(eg. using "if" rather than "while")

21 3 Inappropriate declaration of a procedural parameter list

(eg. under- or over-use of "var" parameters)

22 9 Incorrect sequencing of variable value assignments

(eg. modification, initialisation or termination of variable values)

23 11 Incorrect sequencing of procedure or function calls

24 2 Incorrect content of procedural parameter list call

(mis-ordering/transposition of variables in parameter lists)

C A Humphreys Appendix Q7A - 43 - Chapter 7 Questionnaire Data

EF = Order of most frequently occurring bugs

TC = Order of most troublesome/time-consuming bugs

EF TC Troublesome/Time Consuming Ordering

14 1 Infinite loop(s)

24 2 Incorrect content of procedural parameter list call

(mis-ordering/tran~-position of variables in parameter lists)

21 3 Inappropriate declaration of a procedural parameter list

(eg. under- or over-use of "var" parameters)

4 4 Incorrect placing of brackets in an expression

14 5 Inappropriate declaration of a procedural parameter list .

(eg. using wrong variables or data types)

10 6 Run-time errors (divide by zero, under- or over-flow of values)

7 7 Inappropriate placing of "end" statements

9 8 Incorrect modification of variable values

22 9 Incorrect sequencing of variable value assignments

(eg. modification, initialisation or termination of variable values)

17 10 Incorrect sequencing of control structures

23 11 Incorrect sequencing of procedure or function calls

13 12 Incorrect choice of loop variable value ranges (eg. in "for" statement)

1 13 Missing or extra bracket in an expression

10 13 Incorrect initialisation or termination of variable values

20 13 Incorrect choice of selection or loop construct to give required effect

(eg. using "if" rather than "while")

11 16 Inappropriate choice of loop variable

19 17 Incorrect format of procedural parameter list call

(too many or too few parameters)

12 18 Missing "else" statement(s) to complement an "if" statement

18 19 Redundant loop(s)

2 20 Undeclared variables, types or constants

7 20 Redundant declarations of variables, types or constants

5 22 Using round brackets, 0, instead of square brackets, []

3 23 Misspelt names (eg. variables, types, constants, reserved words)

6 24 Inappropriate data typing of variables (eg. using real instead of integer)

C A Humphreys Appendix Q7A - 44 - Chapter 7 Questionnaire Data

Q7A.7 Investigating Reading Strategies - Q16-19

Q16i. Defming the stage(s) and reasons for reading (or re-reading) the code/task
specification. These questions relate to research on comprehension and reading by
Pennington (1987), Nanja & Cook (1987), Gugerty & Olson (1986), and Holt, Boehm
Davis & Shultz (1987).

Resnonses Students
re-reading to understand/reaffirm task requirements I 4 5 6 7 8
constantly re-reading to know what was going on I
fast read followed hy re-read to make sure nothing was missed 2

In my opinion, the purpose of reading the task description is to build up a mental model
of the task that is to be performed - a task model.

ii. Responses to "At what stage(s) if any did you compare the code/task specification
with your mental image of the task, (ie. your own personal view of how the task should
be performed). Why?" cannot be summarized. So, in this case the students speak for
themselves :-

SSI -- Hardly, apart from with Task (I) as this was the only task I had encountered
before. With this I tried to remember how I had carried out the task previously.
SS4 -- Near the end of each debugging session, to see which one would perform the
task better
SS5 -- After I read the program through once.
It's difficult to spot other peoples' errors
SS6 -- This only occurred in primes. I compared the algorithm printed in the
program with my view, derived from the specification. This was to pin down any
mismatches (I was confident of my version of the algorithm)
SS7 -- I did not, as it would be confusing
[implies that his mental image was at odds with that projected by the code]

SS8 -- I had to occasionally alter my mental model on re-reading the task
specification ... but it was usually only re-read due to reasons in 16i.
{When I couldn't quite follow what was happening in the code, I often had to refer to
the task description which reminded me and usually helped me to see what the code was
doing}

Q17i. Defming the usual code reading strategy, prior to debugging - with choices of
usually, sometimes or never. And asking what effect this has on debugging - whether it
gives faster or more accurate debugging results. Reading choices were:
a) reading code on an as-needed basis
b) reading to get a total understanding of how the code works
5512345678 U 5 N
a snuusuus a 4 3 1
b uuususnu b 5 2 1

Responses Students

debugging is faster if you apply strategy b) 12 8

debugging is more accurate if you ;UWly strategy b) 125

strategy a) helps fill in details 3 6 7

a quick read throueh gives a general overview 3

There is a slight bias (5 to 4) towards b) rather than a); with 3 students considering that
strategy b) makes debugging faster (SSI, 2 & 8) and more accurate (SSI, 2 & 5); and
a further 3 students (SS3, 6 & 7) thinking that a) helps fill in details.

ii. Do you think it is necessary to read through all the code, to get an overall view of
the code structure and all its active elements, before you start debugging? Why/why
not?
5512345678

nyynnnyy 4y, 4n. This split of opinion (4 yes to 4 no) is very
significant. It relates to Pennington's cross-referencing of application and domain
models, and the divergence in approach taken by her problem solvers.

C A Humphreys Appendix Q7A - 45 - Chapter 7 Quest ionna ire Data

Q18. Attempts to define the primary goal of code reading on the first and second
readings of the code, and to see if there are any significant differences for choices a)
and b).
i. What were you doing when you read the code through for the first time?
ii. What were you doing when you read the code through for the second time?
a) attempting to make sense of the code on its own
b) attempting to correlate the code (and its structure) with the task description
[N)

Putting the I st and 2nd read through tables alongside each other enables easy
comparison of the results. Taking u=l, s=2, n=3 to give sum values gives:-
18 i. U5N QI8 i i. U5N
First read through 5econd read through
5S12345678 U 5 N sum 5512345678 U S N sum
a nsusuuss a 3 4 1 14 a ssuusu-- a 3 3 2 15
b uuuuusus b 6 2 - 10 b uusuusu- b 5 2 1 12

[D) IS] [N)
[D) [S)

On the first read through, it seems that the primary task (for 6 out of 8 students) is to
correlate the code and its structure with the task description. Whereas making sense of
the code on its own is a secondary task (for 3 out of 7 students) . This is still true for
the second read through (5 out of 7, and 3 out of 6, respectively), but the numbers have
been reduced by 1 student, SS8, who starts debugging immediately after the first read
through.
This question also refers to Pennington and the cross-referencing of program and
application/task models.

iii. Gauging the importance of using method (a) on the fITst read-through, and method
(b) for subsequent readings. And whether they thought that methods (a) and (b) formed
a natural comprehension strategy, responses were :-

5S12345678
y-ynyyn- 4y 3n

A mixed response with 4 in favour and 3 against. A much larger proportion was
expected to vote Yes, since it seemed the logical progression.

Res.ponses Students
a) then bl 1356
b) then a) if task description is hard to follow 6
b) on both readinzs 2
a) and b) both tozether 8

iv. As to which is more important of a) and b), and why; responses were -

5S12345678
ababb-ba 3a 4b

There is a fairly even split (3 votes to 4) between understanding the code on its own and
correlating the code with the task description. Again this reinforces Pennington' s
summing up of the situation.
Further comments were not forthcoming.

C A Humphreys Appendix Q7A - 46 - Chapter 7 Questionnaire Data

Q19. The response to "Did you fmd yourself trying to debug the code on the first read
through?", was 5 usually, 2 sometimes and 1 never (as shown in the table). Reasons
below -

SS12345678
snuuuusu 5u 2s In

SS2 wanted to make sure of understanding the problem/code before attempting to debug
it. Students 1,5 & 7 were also trying to make sense of the code rather than debugging
it. But all the rest were raring to go and saw no point in "wasting time" .

Summary Q16-Q19
Those students who started debugging on the first read through are likely to give fast
debug times, because I assumed that the first read through is just for reading and that
debugging comes later. If not, then some bugs may already have been solved during the
fITst reading, and it is just a question of writing the error solution out. Rather than
finding and solving each error in the subsequent debugging phase which I assumed to be
separate from the initial code reading phase. From experience I know that some errors
just spring out at you on the first read through - usually the glaringly obvious ones - and
they are difficult to ignore. It's usually easiest (less drain on remembering to do it
later) to fix them there and then.
This might account for the fast debugging times for this sort of strategy in the debugging
& spotlighting experiments.

C A Humphreys Appendix Q7A - 47 - Chapter 7 Questionnaire Data

Q7A.8 Information Needed to Detect & Locate Errors - Q20-21 *
Q20. What specific information/evidence do you need to be able to ~ an error and
why? (ie. What is it that does or doesn't happen that makes you aware that an error
exists?)

Responses Students
when output eyentslvalues differ from those expected 45678
when prol1ram does not behave as expected 2468
relying on compiler to detect and report errors 247
relying on run·time error messages 56
when the program goes into an infinite 100m 35
knowledge of the syntax of the language
knowing how the semantics tie in with the task
need to know for what input values the program should terminate
need a set of sample inputs and manually calculated results

to detect wrong output values
unexpected output & anything that happens unexpectedly
when program crashes

The top 5 responses give the usual signs that the code has a bug. The remaining responses
give a mixture of fmer and coarser interpretations of what means are needed to detect a
bug. The former being "knowing how the semantics tie in with the task" , and the latter
"when program crashes"! Perhaps he assumes there are no bugs if the program doesn't
crash. It seems a f'dther extreme means of detecting errors.

3
3
5

5
6
7

Responses appearing for both Q20 & Q21.
Responses Students
basic know ledge of the language
need to know all errors that are detected by the compiler
need to be aware of all {lOst-execution errors

Q2l. What specific information do you need to be able to ~ * an error (to associate it
with a particular section of code, or specific variable), and why'?

1
1
1

Responses Students
knowing which sectionslprocedure relate to each output 258
need a basic knowledge of the code
inserting extra write statements to fmd the procedurelblock holding the error
knowing values of variables. to identify which ones are causing the problem
knowing the state and the variable values just before the error occurs helps locate its
oricin
if an output value differs from its expected value, then you
need to know where the variable was initialised and which procedures chance its value

usinc knowledge of incorrect output to "backtrack" to faulty section of code
detail of where and why errors have occurred
need to know which part of the al::orithm has cone wronc
program stQPJlinC (crashing or exiting) at a certain point
clear error messaces from the compiler

The responses have been ordered roughly according to importance from a programmer's
viewpoint. Accurate "working" knowledge of the code (how it interacts) is vital, without
it debugging capability is decimated. Knowing the value of principal variables is just as
important.

5
2
6

4

5
8
1
7
8
3

C A Humphreys Appendix Q7A - 48 - Chapter 7 Questionnaire Data

Q7A.9 Programming/Software Development Process Diagram - Q23
Q23. Do you agree with the following programming/software development process
diagram? ie. do you think it reflects the main aspects of the software development task?

task desc ---> programming ---> code ---> working system
or code desc plans evolve evolves /

\ / \ / \ /
testing/debugging

(tuning and/or redesign
of software algorithms)

mental image of translating
task requirements, programming plans

operations and events into code

Responses Students
Yes 12348
mostly a&ree 567

On the whole a favourable response to my diagram showing the process of transforming
a task or code description into a fully working system under software control. But
there are a few provisos:

Comments:
SS2 -- Yes, this is an accurate description of the planning involved, right up to the
fmal working system.
SS3 -- Yes, if mental images are transformed into physical specifications at the
"programming plans evolve" stage.
SS5 -- Mostly agree, but programming plans evolve and code evolves often occurs in
parallel [confirmed by Pennington & Grabowski 1990]
SS6 -- I basically agree, though this diagram is incomplete (no feedback loops)
SS7 -- I agree to a certain extent. I think it is also important however, to determine
how the program is going to be debugged before starting any coding, as it gives you an
idea what to look out for
SS8 -- Yes, I think this fits in very well with the way most people develop a
software program

Q7A.I0 Investigating Trail Following on Paper & Screen Text - Q24 & Q25
Q24i. Ratings as to whether trail following (ie. following a variable's trail through the
code) is an important debugging technique. For a 1-5 rating scale, with 1 as important,
and 5 not important.
important 12345 not important
5512345678 score 1 2 3 4 5 sum mean

21212124 frequency 3 4 - 1 - 15 1.88

So trail following is seen as an important debugging technique. With 5 votes for trail
following on paper. With one student also voting for trail following on a VDU
providing the code is short.

With comments defming in what circumstances trail following is used on :
a) VDU text (using an editor and the search mechanisms), and
b) printed listings (using eyes/hands/pens).

Responses Students
prefer trail followin~ on paper 12 3 5 7
prefer trail following on you if code is short I

4 students defmitely prefer trail following on paper because they are not restricted by
the screen size, where they only have access to 24 lines of code; and they feel they can
spend more time checking on paper. The latter may be due to the restriction of how
much time a student can spend on a VDU, due to the many students to one VDU ratio.

C A Humphreys Appendix Q7A - 49 - Chapter 7 Questionnaire Data

Q24ii. Advantages & disadvantages of working on a) screen text b) paper text; and
what effects these differences have.

Screen
Advantages
can alter code immediately
can use editor's search mechanisms
applies to small pieces of code
can test code immediately
easier to trace yariable values
(vi) ability to jump to matching brackets in an expression
focusses attention on a few statements
edited code remains readable

Disadvantages
cannot study code thoroughly
cannot get an overview
cannot scribble thoughts in margins
screen size sets up distance effects

(body of 10Q12 can be distant from conditions)
sore eyes. back pain
reading screen text is stressful

Paper
Advantages
easier to see whole code
easier browsing
applies to larger codes
easier to follow route (mentally) with pen & paper
use debugger to mark the page before printing
more ti me can be spent on checking
can scribble thoughts in margins
can shuffle pages around and view more than one at a time
no waits while editor looks for "next" page
can see several screenfuls at once
reading paper text less stressful

Disadvantages
none
code can become illegible after a long session
human ese searching not efficient

Students
I 28

48
35

2
4
5
5
6

Students
I
5
6

5
2
8

Students
257
458

35
47

3
I
6
8
8
5
8

Students
I
6
8

With screen text (and having an editor on hand) the main advantages seem to be speed
related. How fast something can be fixed or found or tested; and taking advantage of
the small screen size (and search mechanisms) to narrow down on specific sections of
the code. Principal disadvantages also relate to the small screen size and the "window"
effect of an editor - cutting off access to anything beyond the screen's horizon, and the
physical stresses associated with VDU work.

In contrast, working on paper offers a relaxed, less hurried, more time to check things
out atmosphere; and speed and on the spot "now" decisions seem of less importance.
As stated previously, a high student to system ratio would reinforce the "hurry up, do it
now" nature associated with screen text. Paper text has a more relaxed attitude. It
can be taken away and studied "at leisure" away from the hustle and bustle of a
terminal room. Paper text's main advantage is its flexibility and the fact that you can
"scribble thoughts in the margins" and revise decisions as often as required.

The disadvantage being of course that after a lot of scribbling, code can become
illegible and searching for something by eye is not as efficient as machine search.
However one student has found a way of getting around this - he uses the debugger to
mark things before printing it out. This is obviously an alternative to spotlighting, and
in my view expresses the need for the spotlighting tool.

C A Humphreys Append i x Q7 A-50 - Chapter 7 Quest i onna i re Data

Q25. Investigating the usual debugging strategy(ies) students apply
i. to paper text, and
ii. to screen text (during editing).

Paper Text
Responses
examining specific erroneous sections
for hand simulation
using coloured pens to outline errors & write solutions
highlighting a variable trail
drawing vertical lines to match up indentation
follow passing of control from one procedure to next
checking that code fits task description
print out procedure name & relevant variable values
write error solutions on paper then type into computer

Screen Text
Responses
inserting write statements
correcting misspellings or obvious errors
enables immediate error solution/correction
syntax errors
keeping a specific line on centre of the screen
moving cursor vertically up or down

(to determine "reach" of a control structure)
display values of various variables
finding errors defined by compiler

Students
68
24

1
5
5
2
4
7
1

Students
26
38

1
4
5
5

7
8

The overall impression coming across is that students go to paper text to think things out
and decide what to do; and they go to the screen/editor to write up alterations and test
them out. Most mental or hand simulation is best suited to an unrestricted view of the
code. So it is hardly surprising (from Q9) that it is associated with a slow read through
of the code. Paper text provides the ideal conditions for these activities, of course.
Comparing the lists above, paper seems to provide the best conditions for thinking things
out, and screen text (and editor) for fixing errors and testing them out, or getting
accurate variable value printouts (via write statements or other means) as the code
runs.
The responses to these 2 questions (Q24 & Q25) validate the reasons why programmers
prefer to use paper text for debugging (whether for mental or hand simulation).

C A Humphreys Appendix Q7A - 51 - Chapter 7 Questionnaire Data

Q7A.ll Differentiating Between Debugging Methods - Q26-28
Q26. Which of the following methods do you use to detect/locate most errors, and
how/why'?
a) discrepancies between your mental image of what the program should do, and what
it actually does [U] [S] [N]
b) discrepancies between the code/task specification and the program code itself (or
what it actually does) [U] [S] [N]

Q26. USN
SS12345678
a sss-uuus
b uususssu

U S N
a 34-
b 4 4 -

There is a fairly even split between the 2 strategies, but b) has a 4 to 3 voting
advantage over a).
Student 5 makes the distinction that this question was aiming to draw out. Namely, that
the mental image should encapsulate the code or task description. But with an
unfamiliar task situation the programmer's understanding may be either incomplete or
inadequate, so the mental image is flawed and the code will reflect this. Student 8's
view though is flawed, he doesn't seem to realise that it is the mental image that
drives/fuels the programming plans, and the way the code develops [as per the Adelson
& Soloway 1985 Sketchy Model].

Reasons;
SS2 -- Once you know what the program should do, and what it actually does it
is easier to know what is wrong, and whereabouts in the code it is wrong.
SS5 -- It really depends on how much experience I have with the problem area. If I
have some experience then I use a) as it is faster, but if I have little experience of that
particular method or similar sorts of algorithm then I have to resort to b) which is
slower.

1/ because you have to examine each line of code to see what it does and then fit that
with the specification, whereas if you have experience of similar algorithms you just
look for a general pattern ie. with concord [concordance program] I looked for the
chaining through of the linked list and particular assignments at the places I expected
them.
SS7 -- Your mental image of what the code should do will correspond to the
specification and is therefore related to b)
SS8 -- b) the spec is what the code should be doing (rather than your mental image,
which could itself, have 'bugs') ... if a certain part of the spec is not being executed
properly, can find the part of code which supposedly performs that part of the spec and
compare it to what it SHOULD be doing

Responses Students
difficult to keep a mental image of programs and what it should do 1
use b) to locate errors Quickly 1
c) insertion of print statements 2
mainly use option b) 4
a) as it is faster if you have experience of the problem area [task) 5
b) if you have little experience of that Particular method

or similar sorts of algorithm lie task situation] but b) is slower 5
~~~~ 6 
b) type errors are usually big and easy to identifY 6 

C A Humphreys Appendix Q7A - 52 - Chapter 7 Questionnaire Data 



Lukey (1980) describes 2 types of debugging; he says that "Tentative debugging 
progresses by interpreting debugging clues and tracking them back to source. Whereas 
[descriptive] debugging progresses by detecting and resolving all significant 
discrepancies between the program code (or its description which tells what the 
program actually does) and the program specification (which tells what the pTO&ram 
should do)." 

Q27. a) Do you think that Lukey is right? 
b) Is tentative debugging better than descriptive debugging? 
c) Is descriptive debugging better than tentative debugging? 
d) Are tentative and descriptive debugging complementary? 

Do you think that there are other types of debugging? If so what are they'? 

SS12345678 
a mmymyyym 
b ymyymyyn 
c mmnnmnnn 
d yyymymyy 

Y M N 
a 4 4 -
b 5 2 1 
c - 3 5 
d 6 2 -

[Y] [M] [N] 
[Y] [M] [N] 
[Y] [M] [N] 
[Y] [M] [N] 

Opinion is split (4 yes & 4 maybe) as to whether Lukey is right or not. However, they 
(5 to 0) definitely think that tentative debugging is better than descriptive debugging, 
and 6 agree that they are complementary debugging-wise. 

Holistic approach - seeing how the code correlates to the task description and fixing any 
discrepancies either in design approach (specification -> program plans) stage or 
design translation (program plans -> code) stage (eg. missing declarations etc.). 
Top-down hierarchical search - main program, then sub-procedures in order of calling. 

Isolated approach - following specific items through the code. Sequential text search -
not following the structure. but the text sequence. usually tQJl-down. 

Q28. Do you think that the description of the Holistic Approach, is the same as Lukey's 
[descriptive] debugging description? [Y] [M] [N] 
What do you think the Isolated Approach corresponds to'? Any other comments? 

SS12345678 
myn-yyyn 

Responses 

4y Im 2n 

Holistic approach - descriptive debugging 
Holistic approach E descriptive debugging 
Isolated approach = tentative debugging 
Isolated approach - variable tracing 

Students 
Ph2567 

Ph 38 
2567 

38 

Summary Q26-28 
Curiosity prompted these questions as to whether the students consciously realised that 
they use different debugging methods dependent on the nature of the error. Like 
whether the error can be defmitely linked to something specific being wrong, either an 
algorithm or variable. Or whether it's something more vague, like an intuitive feeling 
that something is not quite right, but it cannot be pinned down easily. Such as a 
program crashing for an unknown reason. 

The students have responded to the questions but I don't think they are fully conscious 
of the differences in the methods and their use of them. Due to the "intuitive" or 
"expertise" features of the debugging activity. Choosing which to use may not be a 
conscious decision - it is usually dictated by the circumstances and what "bug evidence" 
is available at the time. 

C A Humphreys Appendix Q7A - 53 - Chapter 7 Questionnaire Data 



Q7A.12 Attitudes Towards the Search Mechanisms - Q30-33 
Q30. At what stage(s) do you use the editor's search mechanisms? Can they help with 
debugging? How? 

Responses Students 
never used them 45 
rarely use them 127 
used for jumping to reQuired position eg start of procedure 
correcting spelling mistakes 

28 
3 

correcting 1)llos 6 
correcting simple/obvious errors 8 

That 5 students use the search mechanisms either rarely or never is very surprising. 
Presumably they correct these types of (renaming) errors manually instead. It is 
difficult to believe that any programmer neglects the search mechanisms to this degree, 
let alone (4 or) 5 out of 8 students. However, as I st year students 28-30 of them had 
never used the search mechanisms, so perhaps these results are a natural consequence 
of their initial attitudes. 

Q31i. Are the search mechanisms adequate for the tasks you undertake whilst 
programming and debugging? Why or why not? 
Yes I 268 

There were no comments made in response to this question. 

ii. What modifications/improvements would you like to make to them? 
No-one answered this question! 

Q32. Do you think it is important to be able to see all locations involving a given word 
(eg. a specific variable) in screen text at one time? Why? [Y] [M] [N] 

SS12345678 
mmmnyn-n ly 3m 3n 

Responses Students 
to correct a variable that is wrong I 
to check procedure calls and yariable passing 2 

Not a promising response. I thought that they would have realised and understood the 
importance of this facility by now. 
They (all or most of them) may have misinterpreted the question. I may have assumed 
that the concept of "seeing all locations at one time" equates to (or describes) a 
spotlighted word situation; whilst they seem to visualise the question as if it refers to 
the chosen word being within (non-spotlighted) bland homogeneous text, and therefore 
invisible. 
Some (Students 2, 6 & 4? may have misinterpreted the question as in a "grep" of all 
lines. Resulting in a group of lines bunched together with no surrounding background 
text, so each line appears out of context. 

C A Humphreys Appendix Q7A - 54 - Chapter 7 Questionnaire Data 



Q33. Do you think it is important that tools should provide both forward and backward 
search mechanisms? Why? [Y] [M] [N] 
SS12345678 

yyyyyyny 7y In 

Responses Students 
using both or flicking between forwards and backwards search 56 
backward search I 58 
uses page-up and page-down keys 4 

A definite (7 to 1) response supporting Robertson, Davis, Okabe & Fitz-Randolph's 
(1990) fmdings. Namely, the reasons for using forward and backward search, and 
alternating between them to aid in comprehension and debugging strategies. Especially 
when trying to get an idea of what the code does, and how. 

Q7A.13 "Live" Editors & Layout Style - Q34 & Q35 
Q34. Do you prefer to use a "live" editor such as the MacPascal editor, which catches 
simple errors (eg. missing or extra bracket errors) on the spot? [U] IS] [N] 

SS12345678 
unssnssu 2u 4s 2n 

Responses Students 
saving time 478 
gets in the way sometimes 367 
eliminating errors at source 78 
enables immediate elimination of missing or extra bracket errors I 
tind IiYe editor irritating 2 
prevents layout flexibility 3 
needs onloff flexibility ie under user control 5 

3 students think that a "live" editor like MacPascal's, saves time; and 3 think that it 
gets in the way sometimes (1 of these students voted for both). Eliminating errors at 
source gets 2 votes, plus 1 more for enabling immediate detection of bracketing errors. 

Q35. How much 
experiments? 
Responses 

does your preferred layout style differ from that used in the 

Students· 
nil 8 
slightly 134567 
moderately 2 

Responses Students 
none 38 
trivial 167 
within tolerance level 245 

Student 5 found the positioning of the blank lines in the experiment code confusing. 
Having the comments on separate lines rather than to the right of the code also threw 
him off balance. This is why I think a layout tool is so important - it could remove 
these obstructions to understanding other people's code, and make unfamiliar programs 
easier to grasp. 

C A Humphreys Appendix Q7A - 55 - Chapter 7 Questionnaire Data 



Q7A_14 Program Visualisation - Q36 
Q36i. How do you visualise a program that you are developing? 

Some students misinterpreted the question again! They obviously describe the code's 
visual appearance, rather than how they represent the code inside their own heads_ 
What I was hoping for was a range of verbal outlines describing the shape or form the 
code has mentally. Especially when they are developing code themselves, or 
attempting to comprehend someone else's code. 
Instead they give me a pat answer on well structured code and aspects relating to its 
readability (Students 1,2,3). Student 4's answer is closer - at least it describes one 
method of translating from the internal mental representation to the external paperised 
form. The remaining students' answers are ambiguous and mayor may not refer to an 
internal representation. Judge for yourself :-

SSI -- Well structured, loads of comments, variables with easy to understand 
names. 
SS2 -- I try to produce a well structured, easy to read piece of code. 
SS3 -- As a rough whole and then detailed sections 
SS4 -- I visualise using data-flow diagrams and sometimes Structured English 
SS5 -- Depends sometimes on the global level ie, how it all fits together and at the 
individual procedure level. Has to flow well and look right [re. Molzberger (1983)]. 
If it gets to the stage where I'm having trouble following what I've written, I delete 
the whole section and try breaking the problem down in a different way. 
SS6 -- I don't really. I suppose the best answer is that I visualise lines of code in 
my head 
SS7 -- I visualise what the output should look like, how the program should behave 
and what potential interaction errors can occur 
SS8 -- I see it as 'chunks' of function ... usually these correspond to 
procedures/functions ... which may be linked conditionally with other chunks 

ii. How do you perceive errors or bugs in your code? (eg. like a block restricting the 
flow of the program)? 

Students 4, 5 & 8 elaborate slightly more in response to the thought of a bug in the 
code. They see bugs as interrupting the "flow" of the program. This description gives 
a sense of movement, progression and life. In a way, I suppose a program is "alive" 
while it is running, and dormant (or at least in a state of suspended animation) 
otherwise. 

SSI -- Most errors tend to be silly mistakes, although when I am writing some code I 
know it's going to be incorrect so I tend to totally comment it so that it is not compiled. 
[wrapping comments around the faulty parts??] 
SS2 -- Things put in the way to prevent me from finishing the task! 
SS4 -- Like a block restricting the flow of the program 
SS5 -- (other than as a pain in the butt!) 
I like to think of the different sections of the program as a system of interlocking gear 
wheels. A procedure or section with an error is like a gear wheel with missing teeth 
SS6 --Again, this is something I don't consider 
SS7 -- I am seldom overjoyed about them 
SS8 -- No, more like a deviance from the desired flow of the program 

Comment This question relates to Molzberger's (1983) article on aesthetics and 
programming, in which he investigated "trance programmers" and their approach and 
attitudes towards code (theirs and other people's). One aspect that struck me, was how 
his programmers were able to "decide" whether a program would work or not by 
looking at its visual characteristics - the way it was laid out, and the flow of the 
program. Even though the programming styles and layout characteristics varied from 
one programmer to another - there seemed to be a "meta-style" of program disposition. 
Programs that expressed this "meta-style" were usually found to be practically bug
free, and to be very efficient - no matter how long they were. This may of course 
have been due to the effects of the "altered state of consciousness" achieved by some of 
his "trance programmers", during extra-long (24+ hours) code development and 
programming sessions. 

C A Humphreys Appendix Q7A - 56 - Chapter 7 Quest ionna ire Data 



Q7A.15 Suggestions for New Editing/Debugging Aids - Q37-41 
In the following questions, each aspect of the tool was rated on expected usefulness, on 
a 5-point scale. With'I' being the ·useful· rating, '3' being the "average" usefulness 
rating, and '5' being the "not useful" rating. 

Q37. Imagine that all of the following modifications were made to the fmd/search 
mechanisms. Rate each feature on its usefulness : 

a) Wrapping each instance of the search string in inverse video, to form a spotlight, 
that makes it~ location within the current screen totally obvious 

b) The ability to jump directly from one spotlight to another 

c) The ability to jump forwards or backwards between spotlights (eg. use command 
"+ 3s" to move forward 3 spotlights, • -5s· to move back 5 spotlights) 

d) A counter indicating how many instances of the current word there were altogether, 
and which "position" the current spotlight holds ego "3/5· would indicate a total of 5 
instances of the word altogether and that the current spotlight is the 3rd one 

e) The ability to spotlight 2 or more words at the same time 

How would these modifications assist in the programming/debugging tasks? (ie. how 
would you use it, and to do what?) 

After analysis, the order of usefulness was most useful - b,a,d,c,e - least useful, by 
ascending sum value. 
Jumping directly between spotlights, b), gets the highest score, 2.00, corresponding to 
fairly useful. With a) wrapping each instance of the search string in inverse video, to 
form a spotlight, next with 2.25, falling within the range useful-fairly useful. This 
range is shared by d), the counter mechanism showing the "position" of the current 
spotlight in relation to the total number of spotlights for that variable. The other 2 
aspects of spotlighting - c) the ability to jump forwards or backwards between 
spotlights, and e) the ability to spotlight 2 or more words at once, have mean values of 
3.00 and 3.13 respectively, putting them in the average (or slightly less) usefulness 
category. 
The responses also show that features a) and b) are received more warmly than the 
others. 

Positive Responses Students 
able to jump forward and back between spotlights (one at a time) 5 
useful when debugging somebody else's code that is not well understood 7 
using al & bl to locate the variable being tracked quickly 6 
dl gives an idea of where you are in the program 6 
d) the counter dermes the total number of variable instances 1 

Negatiye Responses Students 
undecided about usefulness of spotlighting 24 
spotlighting 2 words Can get confusin2 5 
c) is of dubious value 6 
e) i s pointless 6 

C A Hurnphreys Appendix Q7A - 57 - Chapter 7 Questionnaire Data 



Q38. Imagine a new editing tool that could put a complete line of screen text (80 
characters) in inverse video. Creating an inverse video "bar" that could be moved up or 
down the screen, using the cursor controls, so that you could examine a particular line 
more closely. How useful do you think such a tool would be? 
Why? - Give reasons (ie. how would you use it, and to do what?) 

useful 12345 not useful 
5512345678 score 1 2 3 4 5 sum mean 

34352452 freq - 2 2 2 2 28 3.5 

The scores are spread but there is not a lot of enthusiasm about the tool. The mean 
value is slightly less than average usefulness, so this reflects a non-committal response at 
best. 
However Students 5 & 8 have the most interesting use for an inverse video bar. 

SS5 -- It would draw the eye to a particular line. Would be useful when trying to 
simulate how the code will run in my head, could step the inverse line through the code 
to keep track of where I've got to 
SS8 -- It would allow you to concentrate on ONE line ... this is sometimes difficult, 
with a lot of other code around .. and enables the eye/mind to focus-in on the line of 
interest 

Q39. Imagine a new tool that could produce a series of (vertical) menus, listing all the 
variables used within the current piece of code under development (so that you could 
scroll down each menu gathering information) that could be invoked whilst editing or 
viewing the code from within the editor. Rate the following features: (NB. for 
"procedure" read "procedure or function") 

After analysis, order by ascending sum values gives - most useful f,h,g,b,c,a/e/i,d least 
useful. 

Thus usefulness ordering is as follows, where sum value precedes the identifier. 

10 t) Ability to list all words that are not already declared or pre-defmed, ego typos, 
misspellings, undeclared variables etc. 

13 h) Ability to list all the user-defined procedure names alphabetically, with a sub
menu to show the parameter list of each 

14 g) Ability to list all the user-defined procedure names in declaration order, with a 
sub-menu to show the parameter list of each 

15 b) Ability to list all the declarations (as seen in the code) for a specific procedure 
squashed into a menu 

17 c) Ability to list ALL variables alphabetically, with sub-menus for each variable 
name defining parent procedure(s) and the variable's data type 

19 a) Ability to list ALL variables in declaration order, giving each 
procedure/function its own sub-heading, followed by all its declarations as seen 
in the code, "squashed" into a (long vertical) menu 

19 e) Ability to do all the above with types and constants 

19 i) Ability to provide an alphabetic listing of all the pre-defmed procedures, with 
sub-menus to show the parameter list for each 

22 d) Ability to list ALL variables (alphabetically) according to data type, with sub
menus defming parent procedure(s), and the status of the variable: local; or 
value or variable procedural parameter 

C A Humphreys Appendix Q7A - 58- Chapter 7 Questionnaire Data 



The summary tool concept got a mixed reception as the comments below indicate. 

SSI -- Nice features and some may be useful and/or helpful but I'm not sure if it's 
necessary to implement them. 
SS6 -- a) Not sure what this means 
b) Would help identify duplicate defmitions, name clashes 
c) d) e) Not a particularly useful way of organising it. d) perhaps less useful than c). 
f) Very useful- these are common errors 
g) h) i) a useful reference of how to use the procedures (especially libraries) 
SS7 -- Good idea, it is often useful to quickly relate variables to procedures 

Q40. Imagine a formatting program, that could present you with all the different ways 
of laying out each Pascal structure, in the form of a series of option menus. So that you 
could choose a complete set of layouts, one for each construct, to mimic your own 
pattern of laying out code. Rate the following : 

a) The ability to transform any piece of formatted or unformatted code into your own 
personal style of layout 

b) The ability to transform your code, laid out according to your own preferences into 
another style ego into the "in-house" style 

c) The ability to get the screen editor to layout your code, as you edit/modify it, into 
your own pattern, thus eliminating manual laying out 

SS12345678 sum 
a 22221221 14 
b 21212221 13 
c 22214321 17 

score 1 2 3 4 5 
a 2 6 0 
b 3 5 - - -
c 241 1 -

Ascending sum value gives b,a,c in order of usefulness. 
Although the results are close, I expected either c) or a) first, with b) trailing well 
behind. I expected the students, as programmers, to go for c) - a tool that would do all 
the layout thinking for them, and in their own style; rather than option b). As I thought 
that this would relieve the laying out burden considerably. 

Comments: 
SSl -- All useful, but I think most are present in applications nowadays? 
[balderdash!] ego MacWrite. 
If you had to implement, I think b) would be the easiest and probably the most useful to 
implement. 
SS2 -- This would be useful if several people were working on the same program -
the finished program could then be all in the same sty le instead of in several different 
styles. 
SS4 -- The third option would probably be the most useful. 
The second sounds pretty useful as well, especially if the program in question has to 
move to a different number of people who have different layout styles 
SS5 -- a) would be very useful and [could] considerably speed up debugging 
c) might be useful if it could be turned on and off since I sometimes vary my code layout 
ie. short if statements without an else I like to keep [it] all on one line ego 

if x =5 then write('X = " x); 
SS6 -- All these are useful ideas, though the third [c)] could be unnerving (code 
jumping around etc. as it is being typed). 
SS7-
SS8 -- The latter I think especially useful .. anything which gives the desired 
formatting (and hence readability) with as little effort as possible MUST be good 

C A Humphreys Appendix Q7A - 59 - Chapter 7 Questionnaire Data 



Q41. Do you have any ideas for new editing/debugging tools, or modifications to existing 
tools? 

Students 4, 5 and 6 were the only ones to have any useful ideas :-

SS4 -- To have a help screen for error messages, which would describe the error in 
much more detail. This would be especially useful for those errors which use 
complicated language and which nobody understands 
SS5 -- I like editors that have simple windowing ability ie. can split screen into two 
halves horizontally so that you can keep a procedure declaration on screen whilst 
examining all the places where it is called. 
SS6 -- A facility to attach a run-time module to a program, so that, in response to a 
'hot key' pressing, a window would pop up, allowing inspection/adjustment of variables, 
'program counter' (position in source) etc. Something like Unix debug, but much easier 
to use 

Q7A.16 Students' Comments About The Questionnaire 
SS3 -- Too long, and many questions seemed to ask the same or very similar things, 
as you may be able to tell from my answers. Also, some things seemed too precise to be 
answered for a general editor/debugger. 
SS4 -- Too long 
SS6 --It is far, far too long. It took well over twice the time you suggested it would. 
Also, I had trouble providing specific answers to many of the questions. I am unsure of 
my methods 
I would have preferred to be able to type answers (into the word processor document, as 
I have such awful writing 
SS7 -- It was very difficult to debug the routines from a cold start. My knowledge of 
Pascal is a bit rusty and it was not clear what type of error to look for. 
This took a lot longer than the estimated 2 hours 

C A Humphreys Appendix Q7A - 60 - Chapter 7 Questionnaire Data 



The Post-Spotlighting Questionnaire contains 14 new questions: 7 for spotlighting, and 7 
for layout; plus a restatement of Q37 from the the previous questionnaire, to see whether 
the students had changed their minds about the usefulness of spotlighting after tackling 
the spotlighting experiments. 
NB. Student 2 did not take part in the spotlighting experiments or this questionnaire. 

Q7B.I Spotlighting Questions 
Q37. Results: Comparing the order of usefulness (by ascending mean sum value) -

BEFORE most useful b,a,d,c,e least useful (2.00,2.25,2.63,3.00,3.13) 
AFTER most useful b,a,e,d,c least useful (2.00,2.29,2.86,3.00,3.29). 

Although the mean sum values are pretty close in range, there is a definite swing 
towards b) and a) being the most useful features of the spotlighting tool. Whereas c), d) 
and e) are regarded as being of average usefulness, since they are really only viable on
screen. While b) and a) are applicable to both screen and paper texts. Thus the 
students' order of features in terms of usefulness after using tackling the spotlighting 
experiments is :-

b) The ability to jump directly from one spotlight to another 

a) Wrapping each instance of the search string in inverse video, to form a spotlight, that 
makes its location within the current screen totally obvious 

e) The ability to spotlight 2 or more words at the same time 

d) A counter indicating how many instances of the current word there were altogether, 
and which "position" the current spotlight holds ego "3/5" would indicate a total of 5 
instances of the word altogether and that the current spotlight is the 3rd one 

c) The ability to jump forwards or backwards between spotlights (eg. use command 
"+ 3s" to move forward 3 spotlights, "-5s" to move back 5 spotlights) 

Summary of Comments BEFORE spotlighting experiment 
Positive Responses Students 
able to jump forward and back between spotlights (one at a time) 
useful when debugging somebody else's code that is not well understood 
using a) & b) to locate the variable being tracked quickly 
d) gives an idea of where you are in the program 
d) the counter defmes the total number of variable instances 

Negative Responses 
undecided about usefulness of snotlighting 
spotlighting 2 words can get confusing 
c) is of dubious value 
e) is pointless 

Summary of Comments AFTER spotlighting experiment 
Resnonses 
locating variable instances within the code 
non-declared variables 
uninitialised variables 
highlighting Questionable areas of code 
detecting errors by "missing" spotlights 

(error detection b.y spotlight omission) 
yariable tracing 
setting of variables (seQ!lencing of yariable value modifications) 
locating a snecific point in a program 
ability to spotlight 2 variables and enable parallel debugging 

5 
7 
6 
6 
I 

Students 
24 

5 
6 
6 

Students 
458 
678 

68 
3 

7 
8 
8 
8 
8 

where SS8's deiinition of parallel debugging is: "whereby you (can] concentrate on 
more than one variable whilst only reading through the code once". 

Comments after trying the spotlighting concept out are more enthusiastic. Students seem 
to have grasped the uses of spotlighting quite well, since 5 out of 8 of them have 
commented on how they help to find different errors associated with variables. 
CA Humphreys Appendix Q7B - 61 - Post-Spotlighting Questionnaire 



QI. List the task aspects that the spotlighting tool helped with, and explain how or why. 

Positive Res.ponses Students 
SlJotting non-declared variables 78 
obvious for spotting statement omissions 

(error detection by spotlil:ht omissions) 
variable tracinl: 
initialising and setting of variables 

(sequencing of variable yalue modifications) 
locatinl: specific variables enables close inspection of surroundinl: context 
hil:hlil:htinl: questionable areas of code 
allowinl: concentration on one variable at a time (to some extent> 
checkinl: places where you expect a variable to anrear 

7 
8 

8 
8 
3 
3 
5 

Nel:ative Responses Students 
only helps with explicit statements 
where anything devends on more than one variable it cannot help 
havinl: more than one variable s.potIighted at once could get complicated 

4 out of 7 students had something positive to say about spotlighting, with only lout of 7 
students (SS6, above) expressing a negative view. 

Q2. Spotlighting's tasks aspects (features) are :-
I. Focussing attention on a specific item 
2. Keeping track of all the locations that involve the specified item 
3. Trail folIowing 
4. Associating an error with a particular variable 
5. Confirming the location of a hypothesized error 
6. Showing up variable (non-)declaration errors 
7. Showing up (non-)initialisation errors 
8. Showing up variable value modification errors 
9. Showing up sequencing errors 

Q2a. Which tasks aspects did spotlighting help with? Choices are yes, maybe no. 
(YMN) 
Task 1 Z 3 4 5 6 7 8 9 

Y 7 6 3 1 1 7 5 1 
m - 1 3 5 6 2 6 4 
n 1 1 3 

sum 7 8 12 14 13 7 9 13 20 if y=I, m=2 & n=3. 

Order of ascending scores gives - most useful 116, 2, 7, 3, 5/8, 4, 9 least useful. 

Personally, I think that task 9, showing up variable sequencing errors, is much more 
important, and should be ranked within the first 4 places; because sequencing errors are 
subtle and very difficult to spot. 

The folIowing list shows the resultant usefulness ordering of the task aspects, preceded 
by the sum value (ranging from 7-21) to show aspects in "tied" positions. 

7 I. Focussing attention on a specific item 
7 6. Showing up variable (non-)declaration errors 
8 2. Keeping track of all locations of a specified item 
9 7. Showing up (non-)initialisation errors 
12 3. Trail following 
13 5. Confirming the location ofa hypothesized error 
13 8. Showing up variable value modification errors 
14 4. Associating an error with a particular variable 
20 9. Showing up sequencing errors 

6 
6 
6 

C A Humphreys Appendix Q7B - 62 - Post-Spotlighting Questionnaire 



Q2b. In contrast, asking students to rank task aspects in order of 9 "slots' of importance 
(thus eliminating "tied" positions) gave a different ordering altogether. 

Order of importance by ascending sum value (ranging from 9-81) - most 
7,1,4,3,8,6,9,2,5 least. 

29 7. Showing up (non-)initialisation errors 
30 1. Focussing attention on a specific item 
31 4. Associating an error with a particular variable 
32 3. Trail following 
34 8. Showing up variable value modification errors 
35 6. Showing up variable (non-)declaration errors 
39 9. Showing up sequencing errors 
42 2. Keeping track of all locations of a specified item 
43 5. Confirming the location of a hypothesized error 

Q2b. 
Task 1 2 3 4 5 6 Z 8 9 
most 1 3 1 1 1 1 

2 1 1 1 2 1 1 
3 1 1 2 1 1 1 
4 1 - 2 1 1 2 -

avg 5 1 3 1 1 1 
6 1 1 - 3 - 1 1 -
7 2 - 2 1 1 1 
8 - 3 - 2 1 1 

least 9 2 2 1 2 
Sum 30 42 32 31 43 35 29 34 39 
Order of importance by ascending sum value - most 7,1,4,3,8,6,9,2,5 least. 

On reflection, the Q2a result is probably more accurate, since it depended on a strictly 
tri-part (yes, maybe or no) choice for each aspect. 
However, focussing attention on a specific item, showing up (non-)initialisation errors, 
showing up variable (non-)declaration errors, and trail following all appear within the 
first 6 items on both lists. Indicating that these are the most important aspects that 
spotlighting offers. 

Q3. Did you fmd spotlighting helpful in the debugging task? YMN 
If so, what aspects did it help you with? 
SSI345678 

yymymyy 5y 2m 

A positive response from 5 out of 7 students is encouraging. 

Responses Students 
fmding non-declaration errors 
checking where you expect a variable to appear 
helped spot errors more easily 
finding where a variable next mweared. 
fmding non-initialisation errors 
finding variable modification errors 
variable tracing 
initialising and setting of variables 

Csequencing of variable value modifications) 

678 
57 

1 
1 
6 
6 
8 

8 
locating Sllecific variables enables close inspection of surrounding context 8 

C A Humphreys Appendix Q78 - 63 - Post-Spotlighting Questionnaire 



Q4. Did spotlighting, as applied to this task, conflict with your natural debugging 
~trategy? YMN 

SS1345678 
nnnnnny 1y 6n 

I didn't expect spotlighting to interfere with anyone's debugging strategy; so the 1 yes 
vote (against 6 no votes) was rather disconcerting. Student 8's comment below, gives an 
indication of the problem. 

SS8 -- I jumped about the code a lot more, looking at the highlighted areas ... this 
made me feel that I may be missing other problem areas or not getting a full overview of 
the program (in order to put things in context) 

Comment In real life, choosing if or when to use spotlighting would be up to the user. 
In the experiments they had the code spotlighted whether they wanted it or not. This 
lack of choice and unfamiliarity with the spotlighting concept could well have undone or 
removed any advantage expected to be conveyed by the tool, due to user resistance or 
resentment (whether conscious or not). 

Q5. Did the benefits of spotlighting outweigh this latter consideration'? YMN 

SS1345678 
nn-yy-m 2y 1m 2n 

Similarly, I expected all answers to be yes (not just 2 out of 5); 1 maybe and 2 noes 
went against my expectations. There were no further comments to clarify the answers. 

Q6. If you had 2 alternative debugging strategies, one sequence including spotlighting 
and the other using your own strategies, which would you choose, and why? 

3 students (SS-3,5,6) defmitely go for spotlighting + their own debugging strategies; and 
2 (SS-4,8) for their own strategies only; and 1 (SS7) tends towards his own strategies 
only, but does not rule spotlighting defmitely in or out. In the comments, student 8 
changes his mind, and decides that spotlighting could be useful after all. 
Thus there are between 3 and 5 students who would use spotlighting in addition to their 
own debugging strategies. 
Student 7 tends to rely on the compiler's error messages and program execution 
behaviour more than most. He seems to be totally dependent on the programming 
environment's facilities, and has problems when deprived of a live system to test and run 
code on. 

C A Humphreys Appendix Q7B - 64 - Post-Spotlighting Questionnaire 



Q7. Would the form of debugging medium affect your decision'? For example, 
a) would you use spotlighting on a paper system 
b) on a screen editing system 
Give reasons :-

[Y] [M] [N] 
LY] [M] [N] 

SS1345678 Y M N 
a nm-my-m a 1 3 1 
b nymymyy b 4 2 1 

The data shows that out of 7 students, 4 would and 2 might use spotlighting if it was an 
on-screen tool. Whereas out of 5 students, 1 would and 3 might use spotlighting on 
paper. This is probably the reason why the spotlighting experiments did not get as 
favourable a reception as expected. 

Positive Responses Students 
doesn't matter which medium is used for highlighting 
only useful on paper when a few ( 1 or 2) words are of interest 
spotlighting only as needed on-screen (no wasted paper) 
easier to tlick between spotlighting different variables on-screen 
on paper can see how one (or each) particular instance 

of a spotlighted yariable sits within the whole program 

1 
3 
3 
5 

6 

Negative Responses Students 
paper wastage if doing many reprints 358 
more than 1-2 words spotlighted on paper could confuse 358 
on screen. you can only see a small part of the program 
on paper once highlighted cannot de-highlight words and then S.J!otlight others 
as proportion of spotlighted to non-spotlighted words increases it will become more 
difficult 

to differentiate between the latest spotlighted word. and those preyiously spotlighted 

Paper wastage is obviously a major concern with students. However, using the printer 
to put spotlights onto paper would relieve them of lost time, and the initial manual effort 
and eyestrain expended on manual spotlighting. Additional spotlighting could always be 
done manually anyway. However the use of a colour printer would make manual 
spotlighting practtcally obsolescent, and enable more than 2 variables (or words) to be 
spotlighted at a time. For example, red could be used for the 1st selected word, green 
for the 2nd, and blue for the 3rd, and so on. So the number of spotlights that would be 
differentiable would depend on the palette available on the printer. 

6 
8 

8 

C A Humphreys Appendix Q7B - 65 - Post-Spotlighting Questionnaire 



Q7B.2 Layout Questions 
Q8. How much does your own layout style differ from that used in this experiment? 
What form does the difference take? ego indentation, construct layout, etc. 

Tick-Box Responses Students 
none 3 
slightly 145678 

Comment Responses on Differences in Layout Style Students 
none / basically the same 68 
use more begin-ends for extra clarity 
slight difference in construct layout of some if-then statements 
comments and variables names 

Votes for layout style differences are: 6 slightly, I none. However Student 6 says the 
difference between experimental code layout and his own is "none"; so votes may 
change to 5 for slightly, and 2 for none. 

Q9. Does having the code in your preferred style help you work on it or not? 
how'? 

If so, 

4 
5 
7 

ResponseS Students 
better readability 378 
can clearly see (by lining up) where loops start & end 68 
easier to fo 1I0w code 5 

Obviously, readability and being able to line up loops (thus defming scoping control) are 
important features for comprehension and accurate debugging, scoring 3 and 2 votes 
respectively. Student 5 thinks that is easier to follow code in your own preferred style. 

QIO. Is it easier to spot errors in your preferred style of layout than in a standard 
format'? 
Responses Students 
more begin-ends helps to detine start & end of IOQVs 46 
easier to follow flow of program 58 
helps debugging 58 
easier to spot errors in a preferred style 

These answers, again, clearly show the need for a layout tool. Students did seem to use 
too many begin-end statements in the debugging and spotlighting tasks. They didn't seem 
to be able to grasp/appreciate the "natural scoping" of code, extended by some 
constructs, when they appeared in a slightly more complex form than usual. Like 
nesting two IF or FOR statements that acted on a single statement. It seemed obvious to 
me where scoping started and ended, and I found it strange that they couldn't grasp it. 
However, this may have come about as a result of getting used to programming in C, 
where curly brackets are used instead of BEGIN-ENDs as in Pascal. So they could 
have been translating C's scoping habits into Pascal. 

QIl. Ranking ease of error spotting in preferred, standard or other layout style. Votes 
were :-

6 votes for "easier" in a preferred layout style; 
6 votes for "average" in a standard layout; and 
7 votes for "more difficult" in a non-standard layout. 

I think these answers clearly show that it is easier to debug a program if it is in the 
programmer's own style of layout. These results also show that it becomes 
progressively more difficult to spot errors as the stylistic differences increase. 

1 

C A Humphreys Appendix Q7B - 66 - Post-Spotlighting Questionnaire 



Q 12. Which do you prefer: systems that lay your code out automatically, like 
MacPascal?; or systems that leave the layout to you entirely ie. manual layout; or semi
automatic systems that help with layout by proVIding automatic indentation, with an 
editor such as vi'? Tick preference boxes below, and Explain why: 

Automatic layout (eg. MacPascal) 
Semi-automatic layout (eg. vi with auto-indent "on") 
Manual layout (eg. vi with auto-indent "off") 

[Y] [N] [don't mind] 
[Y] [N] [don't mind] 
[Y] [N] [don't mind] 

551345678 
a dddnndy 
s yyyyydn 
m ddydddn 

Y N D 
a 1 2 4 
s 5 1 1 
m 1 1 5 

The data shows a defmite preference (5 to 1 to I respectively) for semi-automatic layout 
over fully automatic or fully manual layout in editors or programming systems. The 
comment responses reflect the students' need for firm/precise control over layout and its 
tailorable aspects. 

Responses Shldents 
on/off auto-indent control at user's request on selected code I 68 
tailorable layout - able to specify indentation for each construct 68 
prefer semi-automatic. as long as layout style it tailorable 
semi-automatic layout allows flexibility and saves time 
tidy up at user's request 
prefers to layout code manually 
anything to reduce the indenting burden is welcome' 
tinds MacPascal' s constant reformatting of code confusing 

Using vi's auto-indent while adding code (manually) allows flexibility in layout style. It 
is up to the user how the code is laid out. Once the code is set in its pattern, it stays that 
way. Unless it is changed deliberately. Either manually (adding/deleting/modifying 
code) or by executing editing commands. So the layout style is completely under user 
control. This means that the layout style can be varied for the same construct under 
different conditions. 
Such as the variation in layout for an IF -THEN clause for a single statement, or for a 
compound statement. Once laid out the code is fixed, whereas MacPascal "relays" the 
code (from the point of modification downwards) whenever you add or remove code. 
Adding or deleting a level of control can cause a lot of reformatting. MacPascal does it 
all for you. But with an editor like vi, the user has to do it himself, but because of this, 
the layout style remains his own. MacPascal is faster of course, and saves time, but it 
enforces its own layout style, and the user has little say in the matter. 

6 
3 
5 
5 
8 
5 

C A Humphreys Appendix Q7B - 67 - Post-Spotlighting Questionnaire 



Q13. In your opinion, which editing system best supports your layout preference? Why? 

Responses Students 
automatic (MacPascall I 8 
semi-automatic 347 
vi. if it were easier to use 56 

Votes for editing/programming systems are: 2 for vi, 2 for MacPascal and 3 for semi
automatic. However the 2 students (SS5 & 6) who voted for vi, wish that vi were easier 
to use. Comments from SSI, 5, 6 & 7 sum it up :-

SSI -- Automatic probably, because I like to indent a lot and highlight keywords (as 
in MacPascal) 
SS5 -- Difficult to say. Both vi and MacPascal have their problems, but if vi were 
easier to use then I would choose it. 
SS6 -- vi (or similar). It provides the right level of layout facilities without getting in 
the way. I don't like vi itself very much - I prefer something a little easier to use (ie. 
which doesn't force me to remember so many cryptic commands) 
SS7 -- Semi-automatic. Takes the pain out of indenting 

Q14. Does it matter to you whether you lay the code out yourself or it is done for you? 

Responses Students 
prefer layout support with override 356 
manual 45 

prefer layout support with a tidy-up option 
either - as long as code is laid out in preferred sIyle 78 

5 

So 3 students prefer layout support with override facility. Whereas students 7 & 8 don't 
mind what type of editor, as long as the code ends up in their own preferred style. 

C A Humphreys Appendix Q7B - 68 - Post-Spotlighting Questionnaire 



Name : 
Pascal Debugging Tasks 

I have prepared 3 chunks of code that are "90'; complete" development-wise. The problem is, 
that each piece of code contains some errors, mostly semantic, logic or algorithmic errors. 
It is up to you to determine the nature of each error, and to fix it by "correcting" the code 
as you would on one of your own printouts, but please take care that "arrows' indicate 
clearly where each code insertion or mod1fication is to go! 

**The title for each task tells you how many errors there are in each program. 
Please number each error that you find, ego <D, <2>, etc. 

The "purpose of these debugging tasks is to find out how you go about the debugging task, 
and to get an idea of how long it takes you to "correct" each set of errors, and which 
errors you tackle first. Thus 1\ is important that you note down your thoughts, actions 
and/or strategies (to the right of the code, in the space indicated) as you debug each piece 
of code, as well as the time you start and finish each new action. 

I also want you to note down the start and "end times for the first reading of the task 
description, the first reading of the code, and the times at which you start/finish debugging 
each piece of code. Please state start/end times as hh:mm:ss, and rea_her to ched that you 
have writ ten the tllle (s) down whenever you start or finish one of these actions! I will 
need this timing information as a guide to the way that time is spent whilst debugging. 

Each piece of code has a task description that tells you what the code is expected to do. 
All the task descriptions are on one reference sheet. A table is also placed underneath each 
task description, for you to note how often you refer to the task description, whilst 
debugging. It is essential that you fill it in whenever you consult the task description, no 
m.tter how briefly. This will tell me how important the task description is to the 
debugging process, and what part it plays during debugging. 

/lelpful information : The primes task has a hint as to how the main algorithm works, and the 
concordance task has a selection of error messages and error evidence, in the order you 
would expect them to be generated if the code was run and tested in • Pascal environment. 
NB. These hints appear at the end of the code, so that you can rood them, after having your 
first look through the code. There is • double-sided sheet that also contains information as 
to how the algorithms for tasks 2 a. 3 are intended to work. I suggest that you read the 
t.sk description first, then the code, then the algorithm hints, to get the best 1nitial 
understanding. After that it's up to you. 

The following is 8 list of procedure declarations that .re used within the code, with a brief 
explanation so that you know what they do, and you don't get put off when you find them in 
the code. I have treated thell like pre-defined procedures, ie. so that they do not need to 
be declared before use, just like "write In", "readIn", etc. (to save unnecessary clutter). 

procedure openflle (var thisflle : text; name : string); 
{ opens the file "name", and enables its contents to be read from thisfUe ) 

procedure close file (var thisflle : text; name: string); 
{ closes the file "name", whose contents now correspond to thisfile ) 

procedure rewriteflle(var thisflle : text; name: string); 
{ opens the file "name" for rewriting as this file ) 

procedure 8sk(question : strIngj var answer: boolean)j 
{ writes the question to the screen, and ret urns answer value of true 

if the user's response is y/Y for yes, otherwise returns value false) 

procedure readname (message : string; var name : stringj var ok : boolean); 
{ reads 1n the name of the file to be used, using the message string to 

complete the prompt given to the user; returns ok value true if 
a name is given, false 1f quit is entered instead of name) 

procedure writedot (var itemcount : 1nteger); 
{ writes a dot and increments the itemcount variable to indicate to the user 

that another entry has been processed. A line feed is issued every 80 dots ) 

procedure read word (var inUle ; textj var nu word : string)j 
{ reads nuword in from infile ) 

C A Humphreys Appendix 7C - 70 - Debugging Experiments 



Please tick only one colwan for each reading, so that I can tell exactly which "r~. 
were ~ and whleh were (more) thorough. Thank you. W0,) 
Remember to number errors in the order in which you find the... and to write down your 
intended actions/strategies/thoughts throughout the debugging of the code, no lIatter how 
trivial you th1nlc they are! 

NB. Questions a .t 15 can be used as a prompt list of (most) lftely errors that you will 
find in the debugging tasks. 

Prllles Task description 

Reading Time Start 

Debugging Task I - Primes - Contains 7 Errors 

Wrlte a program that lists out all the prime numbers between 2 and 1001, in ascending order, 
in a simple table 80 columns wide, giving each prime number a field width of 5 
(ie. 15 columns, each 5 spaces wide). Also state the number of prime numbers in that range. 

NB. If P is a prime number then P cannot be divided exactly by any other (integer) number, 
other than ltself and 1. For example, 7 is a prime number because Ix7=7, and 2,3,~,5 and 5 
do not divide into 7 without remainder. Likewise, 2 and 3 are also prime numbers, but ~ is 
not since 412=2 (ie. 2 is a factor of 4, since 2x2=~). 

Reading Time End ~'---'---

No. of times 111213141516171819110111112113114115115117118119120 I 
Brief reading 1111111111 I I I I I I I 
Thorough reading 1/1 I I I I I I I I I I 

Debugging Task 2 - Letter Pairs - Contains 6 Errors 

Letter Pairs Task Description 

Reading Time Start -''--'~ 

Write a program to count the frequency of letter pairs ego lea', 'le" 'at', etc. in 6 text 
file, and print a (26x26) matrix containing the frequency values for each letter pair. The 
matrix should have a label for each individual letter (eg. a, b, c, ... z), across the top and 
down the side, to make reference to the frequency values straightforward. 

Reading Time End -'~~ 

No. of times 11121314151617181911011111211311~1151151l71181191201 

Brief reading I I I I I I I I I I I I I I I I I I I I I 
Thorough read ing III I I I I I I I I I I I I I I I I 

Debugging Task 3 - Concordance - Contains 6 Errors 

Concordance Task Description 

Reading Time Start 

Wrlte a program that will read the words from a text file and store them in a linked list, 
placing each word in "d1ctionary· order in the llst (ie. a's at the top and z's at the bottom), 
and keeping count of how many times each word occurs, and the number of words in the input 
file in total. When all the words have been read, the total word count should be written 
out; followed by the complete list of words with the frequency count for each word. 

Reading Time End 

No. of times 11121314151617181911 0 111112113114115115117118119120 I 
Brief reading 1111111111 I I I I I I I I I I! 

VI I I I I I I I I I I I I I I Thorough reading 

C A Humphreys Appendix 7C - 71 - Debugging Experiments 



Control Errors in Primes Code 

1) wrong initial value 

2) missing declaration 

3) wrong initial value on loop 

4) wrong operator used 

5) missing initialisation 

6) not paying attention error 

7) wrong sequencing of code 

Control Errors in Letter Pairs Code 

I) wrong initial value 

2) not paying attenttion error 

3) wrong variable value modification 

4) missing re-initialisation 

5) wrong upper bound on loop range 

6) not paying attention error 

Debugging Tasks 

Error Solution 

firstnum's value should be 2 

count: integer; 

mult's initial value should be 2 

+ should be * (to give num * mult) 

count := 0; 

should write "num" value, since prime[num] = true 

writeln statement should be inside the begin-end loop 

Error Solution 

all matrix elements should be initialized to value 0 

thisch is read from standard input instead of from the 
named file, should be read(infile, thisch); 

increments matrix value by 11 instead of I 

prevch value is not updated, so need to add 
prevch : = thisch; at end of loop 

for loop only executes once since initial value = end 
value, upper bound should be chz 

writes out matrix[ across,across) value repeatedly, 
should write matrix[across,down] value instead 

Control Errors in Concordance Code Error Solution 

1) missing declaration 

2) wrong variable initialise 

3) missing re-initialisation 

4) wrong re-intialisation value 

5) inappropriate declaration 

6) wrong operator used 

count missing from wordrec, need count : integer; 

should be q : = top; in addword (not lastq : = top) 

only the last word inserted remains on the list, need 
to add pt .next : = q; in procedure insert 

infmite loop caused by q: = top t .next, should be 
q := qt .next; 

top should be declared as a var parameter, otherwise 
the wordlist does not get built up 

- should be + (so count: = count + 1) 

Concordance Errors Hints/Eyidence Discovered by Compiler and During Testing 

1) Undeclared variable "count" in procedure insert and addword. 

2) Q not initialised in procedure addword. 

3) Procedure addword is not working - after reading in the file, the wordlist is still empty. 

4) Procedure writelist goes into an infinite loop, writing out the first element of the wordlist 
repeatedly. 

5) Only the last word inserted into wordlist remains, all others have "disappeared". 

6) Words (read in from infile) repeated more than twice have negative count values. 

C A Humphreys Appendix 7e - 72 - Debugging Experiments 



Debugging Task I - Praes - Contains 7 Errors 

Reading Tae start . . 
progra. primes (input, output); 

const 
( define ranJl-e of prime 
firstnum = \!j> __ ,,?® 
lastnum = 1001; 

var 

no.s and array bounds ) 

(CE.~ 

prime: arrayl firstnum .. lastnum) of boolean; 
num. suit : integer; 

<-c\""J( : ~'\44~' . CS::[£. 
begin U I 

( initialise by assuming an are prime no.s ) 
for num := firstnum to lastnum do 

praelnum) := true; 

{ "remove" all multiples of the current prime no. ) 
for num := firstnum to lastnum do ~ 

if primelnum) ~h~ CL;' , 
for mult := ~o na.stnum div num 0 

. prim~.mul~m) := false; ~ 
C.r:."J:~ I~~)~ .~ 

write1n('Th pr numbers between 2 and 1001 sre :-'); 
{ write out esch prime number) 
for num := firstnum to lastnum do 

if primelnum] then 
beg1n 

count := count + 1 i 

Q,,>~;r1te€tmelnumt=.~ cqD 
{ allow 16 prime no.s per e, then sen write1n) 

[!f (count mod 16 = 0) then writeln;._~ 
write1n; ~ 
writeln ('There are I, count, 

, prime numbers between 2 and 1001 sltogether'); 
end. 

Reading Tae End 

Alsorltlul Hint : 

-
Debugging Tae Start 

Thoughts, Actions & Strategies List 

Debugging Tae End ---'---'-_ 

The aim of the program is to start with the smallest (prime) no. in the array, snd to remove 
an multiples of this no. up to the maximum limit (eg. 1001). So starting with the value 2, 
2 is a prime no. so "remove" the values given' by: 2x2, 3x2, 4x2, ... 500x2 from the array. 
That is, to make false all array values corresponding to the elements 4,6,8, ... 1000. Then go 
to the next prime no. in the array <1e. the next one with the value true) and remove its 
multiples, in the same way. At the end of the cycle, the list of prime no.s corresponds to 
those array elements whose values are true. 

C A Humphreys Appendix 7e - 73 - Debugging Experiments 



Debugg:lng Task 2 - Letter Pairs - Conta:!ns 6 Errors 
4< 

Read:lng Time start Debugg:lng Time Start 

program letterpalrs (:lnput,output>; Thoughts. Act10ns .!r Strategies Ust 

const 
numwldth = 4; 
space 
cha = 
chz :::: 

:::: ' t. , 
'a'; 
IZI; 

type 
let ter = cha .. chz; 

var 
matrix : array[letter,let terl of :Integer; 
across, down : let ter; 
thisch, prevch : char: 
:lnflle : text; 
name : string; 
ok : boolesn; 

beg:ln 
for across := eha to chz do aJ 

for down := cha to chz d0r0 \V 
matr1x(across, down] := @j 

readname ('input file', name, ok): 
1f ok then 

begin 
openflle (:lnflle, name); 
prevch := space; ) 
wh1le not eof (:lnf1le) . dOl . x'l.,1J'JJ)'J.,. • 

beg!!>_ ");' I. ""'1 • -> 
Cread (thiSChJ; . 

1f eoIn (:lnflle) then readIn (:lnflle); 
{ :Increment frequency count jff both thlsch and prevch are letters } 
1f lthlsch, prevchl <= lcha .. chzl then -->.01/" c::.. 

matrlxlthlsch, prevchl := matrixlthlsch, prevchl + Q.9 '~ ~ 

end. 

end' ., (, , I . .,..... , p r~" J\ ! .~ .-;\.h/..r.(.~\. ." 
closeflle (inflle, name); " . .-1- 1 

write(space : 2); .~....-'l~ 
for down := cha tolch~' do { write column 

write(space : nuriwrdth - 1, down); 
writelni wrltelnj 

for across := cha to chz do 

head:lngs } 

beg:ln {write out each row of frequency values ) 
write (space, across); 
for down := cha to chz do 

write (matriX[aCross,Gcr~s:?J : numwidth); 
writelnj I 

end; ~ tQ:[1 
end; ~'--/ ~ 

Reading Tae End -,,---L-
NB. lthlsch, prevchl <= lcha .. chzl Is the short way of writing 

(thlsch :In lcha .. chzll and (prevch :In lcha .. chzll 

C A Humphreys Appendix 7C - 74 -

Debugging Tae End --''---'--

Debugging Experiments 



Infonoation to Help You Understand The Algorithm (5) Intended To Execute The Tasks 
letter Pairs ' 
numwidth (=4) is the no. of spaces allocated to each frequency value element contained in 
matrix when it is printed out. . 
thisch is the current character read from infile 
prevch is the previous character read from infile <1e. last cycle's thisch) 
across is the for loop variable for the "row" elements of matrix. when it is printed 
down is the for loop variable for the "column" elements of matrix. when it is printed 

Ilb A180rlthll 
"initialisation" 
all m8trix elements become zero 
prevch is initialised to space 
"counting the letter pairs" 
while infHe is not finished ..-.J-,;x ~ 

~ 
b 

-l.. 
z 

( .... 

~) 

z 
u,\""", . 
~. 

read current character from infile r,<' )4' 1 Vtl\~( 
1f both thisch and prevch are letters (le. both are in I·a· .. ·z·] then the matrix count 

value for the letter combin.tion Iprevch, thischJ is incremented by 1 
prevch then takes on the old value of thi5Ch, so that the next character can be read in 
(eg. if prevch='g', and th1sch='e' then matr1x['g,,'e'1 := matrlx['g','e'] + 1i and then 

prevch := thisch, ie. prevch='e') 
and the loop continues until end of fHe. t A- J( ",;t;. r) 

"writing out entire (26x26) m.trix v.lues with row .nd column headings" (SUo ~ "\ iK""p" r'i"i .. J: 
Writing out column headings: write 2 leading sp.ces (for row headings on subsequent rows). 
followed by all 26 Jet ters - giving 3 spaces followed by the appropriate letter for each 
column, in turn (from a to z) 
Then write out each row's frequency values on a new line, allocating 4 spaces per value, and 
putting the "row" label at the front of each row's values. 
1 No. of times 1112131415161718191101111121131141151161171181191201 
I Brief reading 1 1 1 I 1 1 1 1 1 I 1 1 1 1 I 1 1 1 1 1 1 
1 Thorough reading III 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 

NB. Ithisch, prevch] (= Icha .. chz] is the short way of writing 
(thisch in Icha .. chz]) and (prevch in Icha .. chz]) 

Concordance 2 pages of code 

Main Progr8ll 

lnflle is opened for reading, wordcount is initialised to zero, and word11st is initialised to 
nil (ie. wordl1st is empty). As each new word is read in from infile it is added to wordlist. 
in the correct position (as per "dictionary" order). As each word is processed, a dot is 
written to the screen so the user can see that the program is working ok, and the wordcount 
value is incremented by 1. When all the words have been re.d in from infile, the file is 
closed, and write11st is then used to print out all the words in word11st. starting with the 
first word. 

Procedure Addword 
top is the pointer to the top of word11st 
q is the pOinter which moves down the 11st of words, one record at a time 
lastq points to the record where q pointed to on the previous cycle around the while loop 
The purpose of this procedure is to look through the list of words, starting at the top of 
the word11st, comparing the new word with each word in the 11st. When a word is reached 
that occurs later in the alphabetic ordering than new word ie. when new word < current word, 
then the new word is placed in front of the current word using "insert". 
[ego if new word 1s 'bat' and current word is 'ball' then new word> current word, 
but if new word is 'bat' and current word 1s 'colour' then neW' word < current word,] 
If wordlist Is empty (top=nil) then obviously, the new word is inserted at the top of the 
list, as there are no other records to compare it to. 
If the word already appears in the list then the frequency "count" of that word is 
incremented. 
1 No. of times 11121314151617181911011111211311411511611 71181191201 
1 Brief reading 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1 
I Thorough readlns 111 1 1 1 1 I 1 1 1 1 1 1 1 1 1 

C A Humphreys Appendix 7C - 75 - Debugging Experiments 



Procedure Insert 
p Is the pointer that Is (or will be) pointing to the new wordrec record 
q Is the pointer that is pointing to the remainder of the word list 
"new(p)" creates 8 new wordrec attached to the pointer p 
The purpose of Insert Is to fill all the fields of thiS new wordrec (pt.word, pt.count and 
pt.next) with the appropriate Initial values, and then to ''hook" it intolonto the correct 
position in the wordllst, in front of the record pointed at by q. q then takes on p's value 
le. q now pOints to the new wordrec that has been joined onto the remainder of the wordllst. ~ 

-t~'.'-'~_ - - - -'":'~ It>';·">Y~ fr- ---{ 'J 
(1' .. -l't·n".1' ' \ ''1 j . 

p ~ Il/p1:nlYr 
(I>~ :!.rJ( Wl) 

To insert the record pOinted to by p, in front of the record pointed at by q requires 2 
statements, (in the following order) : 
pt.next := q; ( the ~ pointer now points to the same record as q ) 
q := p; ( q now points to the same record pointed to by p ) 
However, unless q points to the top of the wordlist, the "front" end of the word list (from 
top to the record that used to point to the record pointed at by the "old" q (before 
Insertion of the new record) will have to be re-attached to the newly inserted record, 
otherwise the inserted record will not be acceSSible. 
This Is cured by applying lastqt.next := q;~iCh completes the linkage between the previous 
record and the new record which is already a hed to the remainder of the wordl1st (by the 
previous execution of the pt.next := q; statement). (e,.. IUlJ.~ +-JJ".~ r~) 

No. of times 1112131415161718191101111121131141151161171181191201 
Brief reading I I I I I I I 1 I I I I I I 1 I I I I I 
Thorough reading 11111111111 I I I I 

Procedure Writelist 
q is the pOinter which moves down the list of words, one record at a time 
q starts .t the top of the word list, and writes out the word-string and count v.lues held 
in each record, until the end of the list is reached. 

No. of times 11121314151617181911 0 111112113114115116117118119120 I 
Brief reading 11111111111111111 I11 
Thorough reading VII 1111 11 I I I I I I I I 

Copy of Error Hints Shown At End of Concordance Code 

Note that the main progr .... is error-free - the bugs are elsewhere, as described below. 

Errors Hints/Evidence Discovered by Compiler and During Testing 

- In The Order They Would Be Discovered During "Real" Debugging 

Undeclared variable "count .. in procedure insert and addword. 

Q not 1nl tiallsed In procedure addword. 

Procedure addword Is not working - after reading in the file, the wordlist is still empty. 

Procedure writellst goes Into an infinite loop, writing out the first element of the wordllst 
repeatedly. 

Only the last word inserted into wordlist remains, all others have "disappeared". 

Words (read In from Inflle) repeated more than twice have negative count values. 

C A Humphreys Appendix 7C - 76 - Debugging Experiments 



Debugging Task 3 - Concordance - Contolns ~ Errors 

(2 pages of code) 
\IV' •• • J«'I 

Reading T1Ae Start --''--''- Debugging T1Ae Start --''-'--

progra .. concord (Input, output); 
type 

Thouzhts, Actions a. Strateztes List 

link = twordreci 
wordrec = CtAI.. .... j( . 

record __ • 
wor~ string; 
next link; 

end; 
var 

Inflle : text; 
name 1 t nuword : string; 
ok : boo 1e8n; 
wordcount : integen 
word list : link; 

{ ------------------------------------------------ f 
f procedure Insert 
I ------------------------------------------------

procedure insert (var nuword : string; var q : I1nk)i 
{ creates new wordrec, sets up initial count and word values, then 

appends q's list to end of new wordrec, and passes It back as q ) 
var p : link; 
begin 

new (p>; 
pt.count := I; 
pt.word := nuword; 
q:= p; .. 

end; ( of procedure Insert ) 

"\ 
V,_,' 

T3""- • - 'Y" f ' . 

( ------------------------------------------------ f 
f procedure add word 

;r::::;:-.~~~~~~::-::::::-:-~~::~;~=~:--- ) @) 
( Inserts new word at "dtctloOBrily· correct posItion In list) 
var lastq, q : link; 

begin 
if (top = nil) or (topt.word > nuword) 
then Insert <nuword. top) (insert new word at top of list ) 
else (cycle through I1st until new word> current word) 

be~r=~ caD 
w e (q <> nil) and (qt .word < nuword) do 

begin 
lastq := q; 
q := qt.next; (£) 

if "'::; <> nl1) and (qt.word?nuwOrd) 
then qt.count := qt.countG 1 

{ if new word already In list } 
( then Increment counter ) 

else {Insert new word In front 

end; 

begin 
insert (nu word, q)j 

lastqt.next := q; 
end; 

endj { of procedure addword ) 

C A Humphreys Appendix 7C 

of current word ) 

Debugging Tae End --'---'-_ 

- 77 - Debugging Experiments 



{ ------------------------------------------------ . 
• procedure writel1st · ------------------------------------------------

procedure wrltel1st (ver top: link); 
{ write out entire contents of the 11st. from the top, down} 
begin 

q := top; 
while q <> nil do 

begln 
writeln(q •. word, q •. count 5); 

end. :=<§li:nex;t;;iJ @ 
end; { ~f procedure willel1st ) 

{ ------------------------------------------------ . 
M A I n PRO G R A M · ------------------------------------------------

begin 
readname(linput file'. namel l ok). 
if ok then 

end. 

begln 
openf11e Unflle, namel)j 
wordcount := Oi 
wordlist := nil; 
while not eof (inf1le) do 

begin 
readword <1nf11e, nuword)j 
addword (nuword, wordl1st)j 
writedot <word count>; 

end; 
closef1le (lnfile, namel>; 
writeln ('There are " wordcount, • words altogether. ')j 

writeUst (wordl1st); 
end; 

Readlng Tia e End Debugglng Tiae End --'~'-

Note that the .,aln program Is error-free - the bugs are elsewhere, as described below. 

Errors HintslEvidence Discovered by Compiler and During Testing 

Undeclared variable Ucount" in procedure insert and add word. 

Q not lnilieUsed In procedure addword. 

Procedure addword is not working - after reading in the file, the wordl1st is still empty. 

Procedure writel1st goes lnto an inflnite loop. writing out the first element of the wordl1st 
repeatedly. 

Only the last word inserted into wordl1st remains. all others have "disappeared". 

Words (read in from infile) repeated more than twice have negative count values. 

C A Humphreys Appendix 7C - 78 - Debugging Experiments 



Debugging Tasks Comment Sheet 11 Difficulty Rstlng For Each Task ® 
llNB. Task requirements means all the things you have to consider/evaluate 1n order to develop 

the software so that It will fulfill the task description, and all the constraints (whether 
stated or not) imposed by the Pascal language, (and the machine in some cases) and the way 
that the algorithm (s) cause the task to be executed. In essence. the task description 
defines what is to be done, and the task requirements define how to do this whilst meeting 
all the (sometimes conflicting) constraints imposed by the language, machine and task. 
Task 1 - PriJaes 
Ease of understanding task descript ion 

>k Ease of understanding task requirements 
Ease of understanding code Itself 
Ease of understanding how the coded algorithm(s) 
Comments: 

Primes 
SS 1345678 Score 1 2 3 4 5 Sum Mean 
TD 1222121 TO 3 4 0 0 0 Il 1. 57 
TR 1323221 TR23200 14 2.00 
UC 3354233 UC 0 1 4 1 1 23 3.29 
UA 2333243 UA 0 2 4 1 0 20 2.86 

Task 2 - Letter pairs 
Ease of understanding task description 

>J,Ease of understanding task requirements 
Ease of understanding code itself 
Ease of understanding how the coded algorithm(s) 
Comments: 

Letter Pairs 
SS 1345678 Score 1 2 3 4 5 Sum Mean 
TD 1122221 TD3 1 000 Il 1. 57 
TR 2222231 TR 1 5 1 0 0 14 2.00 
UC 2223244 UC 0 4 1 2 0 19 2.71 
UA 2123343 UA 1 2 3 1 0 18 2.57 

Task 3 - Concordance 
Ease of understanding task descript ion 

*Ease of understanding task requirements 
Ease of understanding code itself 
Ease of unders t anding how the coded algorithm(s) 
Comments: 

Concordance 
SS 1345678 
TD 1342131 
TR 3324341 
UC 5344453 
UA 5334452 

C A Humphreys 

Score 1 2 3 4 5 Sum Mean 
TD31210 15 2.14 
TR11320 20 2.86 
UC 0 0 2 3 2 28 4.00 
UA 0 1 2 2 2 26 3.71 

Appendix 7e 

easy 00000 difficult 
easy 00000 difficult 
easy 00000 difficult 

fulfills the task easy 00000 difficult 

easy 00000 difficult 
easy 00000 difficult 
easy 00000 difficult 

fulfills the task easy 00000 difficult 

easy 00000 difficult 
easy 00000 difficult 
easy 00000 difficult 

fulfills the task easy 00000 difficult 

79 - Debugging Experiments 



Instructions for Timed Debugging Tasks Experiments 

There are 2 pieces of code in each half of this debugging experiment. As in the 1st 
experiment, a task description and/or algorithm is provided for each piece of code, so 
you should have no difficulty in understanding what the code is supposed to do. It 
is your job to spot all the discrepancies in the code <1e. the errors) and to correct 
each one, so that the code will work according to the task description/algorithm. 
However, for this experiment, it is vital that you note down the start and finish 
tilles for detecting EACH error, and remember to NUMBER each error that you find. 
So that I can tabulate each error's "debugging time" and work out a mean value for 
each error across the group as a whole. 

Types of Errors 

There are NO missing semicolons, or missing/mis-matched begin-end loops. 

However, errors may be found in declarations, and inappropriate (or missing) 
initialisation, modification or re-initialisation statements. 

There are also sequencing errors where the statement is correct/appropriate but it is 
in the wrong place, and so destroys the smooth running of the code, and the pattern 
of expected events. 

[Assignment of values to variables - these are most likely to cause trouble (in any 
form of procedural programming), because if the value of the variable is modified 
wrongly, or the correct value is assigned to the wrong variable, then the events that 
depend on the correct variable get ting the correct value "on time" will throw the 
rest of the algorithm(s) out of kilter (ie. into confusion ego infinite loops etc.).) 

Errors are usually associated with specific (le. the spotlighted) variables, their 
values, and/or any language constructs or expressions that contain them. 

[NB. for "spotlight" read "specific variable under investigation".) 

Errors can be detected by examining those lines containing a spotlight, and/or the 
lines between spotlights. However, errors of omission can be detected by the lack of 
expected statements in "critical" positions (eg. missing declarations or initialisation 
statements). 

For example 

• if a variable isn't declared then its spotlight won't appear in the declaration area . 

• if a variable isn't initialised then its spotlight won't appear in the position where 
it should have been initialised. 

etc. 

C A Humphreys Appendix 70 - 80 - Spotlighting Experiments 



·Plain· Debugging Tasks 

Control Errors in Letter Count Code 

I) missing declaration 

2) missing initialisisation 

3) wrong sequencing of code 

4) not paying attention error 

5) wrong compardtor used 

6) wrong sequencing of variable 
value modifications 

7) missing output statement 

Control Errors in Shell Sort Code 

Proc sort errors : 

I) missing declaration 

2) wrong initialisation value 

3) wrong initialisation value 

4) wrong comparator used 

5) assignment back to front 

main loop errors : 

6) wrong initial value on loop 

7) writing wrong output value 

Error Solution 

ch: char; 

wordlen : = 0; 

read(ch) should be first statement inside repeat loop 

in the else clause, the consts variable should be 
incremented not the vowels variable 

should be if wordlen > maxwordlen 

move wordlen : = 0; below if statement, so that 
maxwordlen is modified correctly 

writeln(,Word count = " wordcount); 

Error Solution 

temp : integer; 

should be alldone : = true; (not false) 

should be n : = m + jump; 

< > instead of > 
row[m] := temp; should be temp := row[m]; 

for loop should start at 1, for i : = 1 to count do 

writing out value of inrow[i + I] instead of inrow[i] 

Spotlighted Debugging Tasks 

Control Errors in Survey Code 

1) missing declaration 

2) missing initialisation 

3) missing initialisation 

4) wrong sequencing of code 

5) wrong sequencing of variable 
value modifications 

6) missing re-initialisation 

Control Errors in Bubble Sort 

1) mis-declaration of variable 

2) missing re-initialisation 

3) wrong initialisation value 

4) wrong comparator used 

5) wrong sequencing of variable 
value modifications 

6) wrong upper bound on loop range 

7) not paying attention error 

C A Humphreys Appendix 7D 

Error Solution Relevant Sheet 

signal : O .. 2; or signal: integer; signal 

time: = 0; time 

maxwait : = 0; maxwait 

swap read(signal); and "repeat" signal 

move wait: = wait + I; above if stat wait 
or maxwait 

wait : = 0; when vehicles increments wait 

Error Solution Relevant Sheet 

should be temp : integer; temp 

inorder : = true; above for loop inorder 

j:= i + I; (notj + I) iorj 

should be if num[i] > numfj] i or j 

move temp : = numfj]; up 2 lines temp, i or j 

for i : = I to maxels (not max) i 

write(num[i] : 6); (not i) i 

- 81 - Spotlighting Experiments 



Letter CoWlt Description 

The aim of this program is to read in text from the input stream, and to count and 
eventually print out the total no. of vowels and consonants, the total no. of words 
and to give the length of the longest word in the text. 

AlgoritJuo 

The algorithm starts by initialising all the variable values. The essence of the main 
loop Is to read each character In, and to Increment either the vowel of consonant 
count, if ch is a letter, or to increment the word count if ch is not a letter or a 
hyphen, '-', between words (eg. co-operate). When the end of the word is detected, 
the wordlen variable is returned to zero, after having checked its value against 
maxwordlen, and if necessary updated maxwordlen's value. 

All the required values are printed out on detecting eor. 

variables 

ch = current character being evaluated 

vowels = total no. of vowels (a, e, 1, 0, u) so far 

consts = total no. of consonants so far 

wordlen = length of current word 

maxwordlen = length of longest word so far 

wordcount = total no. of words read so far 

.. there are 6 errors associated with the ch, wordlen, consts/vowels variables 

Let ter Count 
1 Errorl Start. Finishl 
1 No. 1 hh: mm: sslhh: mm: ss 1 
1 1 1 I 1 
1 2 1 I 1 

3 I 1 
4 • 1 
5 • 1 
6 • 

2 3 5 6 
1 Ihh:mm: ssl Ihh:mm: ssl Ihh:mm: ssl Ihh:mm: ssl Ihh:mm:ssl Ihh:mm: ssl 

1 Start 11 11 11 11 11 11 1 
IFinish 11 11 11 11 11 11 1 

C A Humphreys Append ix 70 - 82 - Spotlighting Experiments 



program lellercounl(inpul,oulpul): 
var 

vowels, consls, wordlen, 
maxwordlen, wordcounl : integer: 

ch ~ e.hoJ' @j 
begin ) 

vowels ::: Ill: . _ J '-_ : -::. rfl; @ 
cons ts ::: Ill: r).IJW Vv\ll.f\. r 
maxwordlen ::: Ill: 
wordcount ::: Ill: 
repeat 

IF ch in ['R' ,:Z') 
I demote ch to lower case J 
then Ch := chr(ord(ch) + 321: 

read(ch): 
iF ch in ['.' ,'a',.'z'] then 

case ch or 
la'. 'e'. 'i'. '0'. 'u' : 

begin 
vowels ::: vowels + I: 
wordlen := wordlen + I: 

end: 
'.' : { do nothing I : 

else t- =' ~ -r\j 
begin ~ urD • 

"Bwels :a vBmels s la 
mordlen := wordlen + I: 

end: 
end { of case I 

else ( ch is space, comma or rullstop, I 
begin I so word is ended I _-t-..!) @ s ~ 

wordlen :=~: ~ ~ 6?'...... t"'tJ.~ ::. J 

word count :- ordcount + I: ~~ [ ~) 
ir wordlen < maxwordlen4 ~ 

hen maxwordlen := wordlen: 
end, 

until eor: 

writeln('lJowel count = " vowelsl: 
writeln('Consonant count = " constsl: 
writelnrmaxlmum word length = " maxwordlen): 

end, 

C A Humphreys Appendix 70 - 83 - Spotlighting Experiments 



Shell Sort Algorithm 

The aim of the algorithm is to sort an array of integer values, read in from input, 
into ascending order, and then to print them out. 

Main loop algorithm : 

The values are read into the array inrow, from the input stream, one at a time, by 
incrementing the count variable, until the end of file character is read. If count is 
larger than I, then it is worth while sorting the array. However, first of all the 
last number in the array must be eliminated, by reducing the value of count by I, 
since the last "value" is the eof marker, not a proper integer value. 

The array is then sorted according to the shell algorithm, and the values are printed 
out in ascending order, 6 "spaces' per value, 12 values per line. 

AlgorithI for sub-procedure sort : 

jump is the current "distance" between the pair of array elements of in row, num[m] 
and num[n], that are being compared and if necessary, swapped, since n = m + jump. 
Swapping only occurs if num[m] > num[n]. The variable "temp" is used to hold one of 
these array values during the swap. 

Now the first time round the loop jump is half the length of the array, and 2 
elements are compared, one from the bottom half of the array and the other from the 
top half of the array. For example, say that inrow has 30 elements, then length=30, 
and the first time round the loop jump is 15, so elements [11 and [I6], [2) and [17], 
'" [15] and [30] are compared/swapped, one pair at a time. Now once all these pairs 
have been compared and there are no more to be swapped, the jump size is halved 
again (jump=7) and the comparison and swapping of values ([1] and [8], [2J and [9], ... 
[23] and [30]) continues until these pairs are also in order. At each iteration, the 
higher values are moving to the top end of the array, and the lower values are 
moving downwards. This iteration continues to use smaller and smaller jump sizes 
(jump/2, jump/4, jump/8, etc.) untll the jump size is 1 element, and every element's 
value is being compared/swapped with its neighbour. When this last loop finishes the 
array is sorted in ascending order, ready for printing . 

.. 7 errors altogether : 2 associated with the lIain loop variable 1; and 5 associated 
with the variables _, n, temp, 8Ild alldone belonging to sub-procedure sort 

Shell Sort 
IErrorl Start I Finishl 
I No. I hh: mm: sslhh: mm: ss I 
I 1 I I I 
I 2 I I I 

3 I 
I 

5 I 
6 I 
7 I 

2 3 4 5 6 7 
I Ihh: mm: ssl Ihh: mm:ssl Ihh: mm:ssl Ihh:mm: ssl Ihh:mm:ssl Ihh:mm:ssl Ihh:mm:ssl 

I St art I I I I I I I I I I I I I I I 
I Finis~. I1 11 11 11 11 I I I I 

C A Humphreys Appendix 70 - 84 - Spotlighting Experiments 



program sheltsorl(input,oulput): 
consl maxlength = IIZIIZIIZI: 
type 

index = I .. maxlength: 
rowlype = array[index] of inleger: 

uar 
inrow : rowtype: 
count: RI .. maxlength: 
I : Index: 

[ ----------------procedure sort----------------- I 
procedure sort[uar row : rowtype: length : index): 
uar 

jump. 11. n : index: 
aUdone : boolean: 
~. ;..rt.oo/. (t~D 

begin' -·0' 
jump := length: 
while jump > 1 do 

begin 
jump := jump diu 2: 
repeal ~ ; ~E:Y 

all done :=.-t:alscff 
For III := I to (length - jump) do 

0) b~9i:~~~p: (£) ((]~) . > _ . 

iF row[m) <> ow[n] then _ ~[11\1) Ca~ 
begin ~~-

FBIIf[II] :. telft~. e::--
row[m] := roar!n]: 
row!n] := temp: 
alldone := False: 

end: 
end: 

until alldone: 

end: 
end: I of procedure sort I 

I ----------m R I n PRO G R R m------------- I 

begin I shell sort I 
count := RI: 'l. J .. 

while not eoF do 
begin 

", ~." .. , .. 

count := count • I: 
readln[inrow[countll: 

end: 
iF count > I then 

begin 
count := count - I: 
I as last "number" read in is eoF character I 
sortlinrow. count): 
For I := tiii) to count do 
begin~CD~@ 

IIIrite(inrowl.!jl_ : 6): 

iF (i mod 12] = RI then write In: 
end: 

end: 
end. I shellsort I 

C A Humphreys Appendix 70 - 85 -

({!§) 
ctEiJ 

Spotlighting Experiments 



Spotlighted Debugging Tasks 

Survey Task Descript ion 

A detector is placed to count traffic, which sends signals back to a computer, which 
processes this information, in order to print out certain information. The input 
signals are as follows 

o indicates the end of the survey period 

indicates that a vehicle has passed the detector 

2 indicates that another second has passed (time intervals are in seconds) 

The detector is set up 50 that it only sends one signal to the computer at a time, 
so there is no problem with simultaneous signals. The informat ion required at the 
end of each survey period is as follows: the total time elapsed during the surveying 
session, the vehicle count for this period, and the maximum time period when no 
vehicles were detected. 

Algorithm 

It is clear that the vehicle count increments whenever the signal is I, and that the 
time and wait values increment (and the maxwait value may be altered, to reflect the 
maximum wait value) when the signal is 2. But the wait value must be reset to zero 
whenever a vehicle passes (ie. when signal=!) since this terminates the previous 
vehicle-less interval. 

variables 

signal is the current signal value 

time is the time elapsed since the survey period began 

wait is the length of time bet,'een successive 'vehicle" signals being received 

maxwait is the maximum value of "wait .. during the current survey period 

vehicles is the current vehicle count <ie. no. of "vehicle" signals received) 

.. there are 6 errors associated with the signal, time, wait and .. axwait variables. 

Survey Problem 
IErrorl Start I Finishl 
I No. ! hh: mm: sslhh: mm: ss I 
I ! I • I 

2 I I 
3 • 
4 • 
5 I 
6 • 

2 3 4 5 6 
I Ihh:mm:ssl Ihh:mm: ssl Ihh:mm: ssl Ihh:mm:ssl Ihh: mm: ssl Ihh:mm: ssl 

I St art I I I I I I I I I I I I I 
IFinish 11 11 11 11 11 11 I 

C A Humphreys Appendix 7D - 86 - Spotlighting Experiments 



program BurveYllnput., out.put.J; 
var~, @ 
t.ime,~ehicles, wail, maxwail : int.eger: 

begin 
wail := 121: 
vehicles := 121: 

keadIW!,g!IJ: 
~epeal 

iF IWI,€" = 2 lhen 
begin 

lime := lime + 1: 
iF wail > maxwail 

lhen maxwail := 
wail := wail + 1: 

end: 
iF IWI,€" = 1 lhen 

begin 

wail: 

vehicles := vehicles + I: 
end: 

unlil @II-!,€Il = IZJ; 
wrileln('Time-span,=', lime, 'secs'): 
wrileln('Vehicle-counl=', vehicles): 
wrileln('max-wail=', maxwail, 'secs'): 

encl, 

program surveylinpul, OUlpUl): 
var 

'Mug vehicles, wail, maxwail : inleger: 
begin ~,'_ g. 

wail := IZJ: ~ ,-. - • ~ 'f ) 

vehicles := IZJ: 
read(signal): 
repeal 

iF signal = 2 lhen 
begin 
1& := E + 1: 
iF wail > maxwail 

lhen maxwail := wail: 
wail := wail + 1: 

end: 
iF signal = 1 lhen 

begin 
vehicles := vehicles + I: 

end: 
unlil signal = 121: 
wrileln('Time-span=', E, 'secs'): 
wrileln('Vehicle-counl=', vehicles): 
wrileln('max-wail=', maxwail, 'secs'): 

end. 
C A Humphreys Appendix 70 - 87 - Spotlighting Experiments 



p .... cgram sut"vey(input. cut.putb 
var 

time. vehicles. g. maxwait. : integer: 
begin 

!I1Irn! ,- 121, 
vehicles := 121: 
read(signal): 
repeat. 

iF signal = 2 then 
begin 

time := time + I: 

~
'F El! > maxwail 

then maxwait := !Iffi1B: 
EI!:= El! + I: 

end: 
iF signal = 1 lhe", A. , 

beg in .--)JJrJ.JJ. ~;:o If J 

vehicles := vehicles + I: 
end: 

until signal = 121: 
writelnrTime-span=', lime, 'secs'): 
writelnrVehicle-counl=', vehicles): 
writelnrmax-wail='. maxwait. 'secs'): 

end, 

program surveylinput. oulput): 
var 

time. vehicles, wail. ,uf§fW'€"1 : integer: 
begin . tf.. 

wait := 121: ..---~~ ! =- r; 
vehicles : = 121: 
read(signal): 
repeat 

iF signal = 2 lhen 
begin 

time := time + 1: 
iF wait> 

then , wait: 
wait := wail + I: 

end: 
iF signal = 1 then 

begin 
vehicles := vehicJes + I: 

end: 
until signal = 121: 
writeln('Time-span='. lime, 'secs'): 
wrileln('Vehicle-c:ounl=', vehicles): 
writelnrmax-wail=', ,u@i"€"1, 'sec:s'): 

end. 
C A Humohrevs Appendix 7D - 88 - Sootliahtina F~np~imont~ 



Bubblesort Algorithm 

The integer numbers are read into an array, which can hold up to 
"maxels· defines the actual no. of values held in the array. 
algorithm is to sort this array of values into ascending order. 
array elements, num[l) and num[jJ, are compared. 

1000 numbers in all. 
The purpose of the 
Successive pairs of 

For example, comparing num[ II with num[2J, then comparing num[21 with num[3J, etc. 
lf num[iJ > num[jJ then the 2 values are swapped using the intermediate variable 
"temp· to hold one of the numbers (which would otherwise be lost). The comparison of 
array elements starts with the lowest element, num[ ll, and finishes with the highest 
element, num[maxelsJ. Each cycle of comparison and value swapping, brings the array 
closer to being in order. However the comparison/swapping loop cannot terminate 
until all of the array elements are in ascending order. When order has been 
achieved, the sorted array is written out, 6 "spaces" per value, 12 values per line. 

NB. the ordering has to be checked on each cycle, even if only 2 values were swapped 
on the previous cycle, until UQ values need to be swapped. 

variables 

maxels = no. of array elements to be sorted. 

i = initial index used to read the values into the array, 

i, j are used as indices for comparing successive pairs of array elements; 

ego if i is 1 then j is 2, in general j = i + I 

temp holds one of the values to be swapped. 

inorder = boo lean variable indicat ing whether all elements of the array are in 
ascending order or not 

.. there are 7 errors associated with the 1, j, teJllP and inorder variables 

Bubble Sort 
IErrorl Start I Finishl 
I No. Ihh: mm:sslhh: mm: ssl 

1 I I I 
2 I I 
3 I 
~ I 
5 I 
6 I 
7 I 

2 3 5 6 7 
'Ihh: mm: ss, 'hh: mm:ssl Ihh:mm: ssl Ihh:mm:ssl Ihh:mm:ssllhh:mm:ss' Ihh:mm: ssl 

I Start 
" " " " " " " I , Finish " " " " " " " 

C A Humphreys Appendix 7D - 89 - Spotlighting Experiments 



program bubblesort(input. output); 
canst 

max = IIZIIZIIZI: 
var 

num : arrayl1 .. max] of integer; 
. maxels. O. j. temp : lZI .. max: 
i norder : boolean; 

begin 
o := 121; 
while (0 <= max) and not eaF do 

begin 
o := 0 + I; 
readln( num[U)): 

end: 
maxels := U - I; { last "num" is eoF J 
inarder := False; 
iF maxels > 1 then 

while not inorder do 
begin 

For U := 1 tOAmaxels - I) do 
@D begin '?lC&J ~ 

j := ~ I: 0 (aD 
iF num[Ul ~um[j] then 

begin 

Q
i norder := False: 
num[jl := num(lP; 
numlUl := temp: 
temp := num[j]; 

end: 
end; .Jo 

end; ---<! W\AX 

For 0 := 1 to~ do '1 
beg i n ~ -I'\.vJ1\ (A

writeuv: 6); 
i r (0 mod 12) = IZI then wr i teln: 

end; 
end. 

C A Humphreys Appendix 7D - 90 - Spotlighting Experiments 



program bubblesorl(inpul, oulpul); 
consl 

max = IIZIIZIIZI: 
var 

num : array(l .. max] of int.eger: 
maxels, i, ~, t.emp : lZI .. max: 
inorder : boolean: 

begin 
•" ,- IZI' "- . 
while (i <= max) and not eof do 

begin 
i : = i .. 1; 
readln(num(i]): 

end: 
maxels := i-I: { last "num" is ear } 
inorder := false: 
if maxels > I then 

while not inorder do 
beoin 

for i := I t0Rtmaxels - 1) do 
@) begin ~i1 _ 

~ :=<Jl) + 1: (fj c§!;J 
if num(iJ ~um(~ t.hen 

begin 
'norder := false: 
num[1P := num[i]; 
num(j] := temp: @ 
temp := num[lP; 

end; 
end: 

end; 
for i := 1 to max do 

begin 
writ.e( i : SI: 
if (i mod la) = (ZJ t.hen writ.eln: . 

end: 
end. 

C A Humphreys Appendix 70 - 91 - Spotlighting Experiments 



program bubblesorl(inpul. oulpul); 
const 

max = IIZII21IZ1: 
var 

num : ar"rai~;ij of integer: 
maxels. I. J. • : 121 .. max: 
in order : boolean: 
~:~; ([DJ 

begin 
•" , - 121' ,- . 
while (i <= max) and not eoF do 

begin 
i := i + 1; 
readln(num[i]); 

end: 
maxels := i-I: { lasl "num" is eoF } 
inorder := False; 
iF maxels > I lhen 

while nol inorder do 
begin 

For i := I to (maxels - 1) do 
begin 

j := j + I; 
iF num[i] < num[j] then 

begin 
inorder := False; 
num[j] := num[i]: 
n um[iJ ; = I1*JuISl: 
!1¥J.dSl := num[j]: 

end; 
end; 

end: 
For i := I to max do 

begin 
write(i : 5): 
iF (i mod 12) = IZI then writeln: 

end: 
end. 

C A Humphreys Appendix 70 - 92 - Spotlighting Experiments 



program bubblesorl(inpul. oulpul): 
const 

max = UZII2IIZI: 
va.-

num : array[1 .. max] of integer: 
maxels. i. j. temp : 12I •• max: 
,norCler 

begin 
I' • - no • 

• - tu-

: boolean: 

while (i <= max) and not eoF do 
begin 

i := i + 1: 
readln(num[i)): 

end: 
maxels := i-I: { last "num" is eoF } 
:norCler := False: 
iF maxels > 1 then 

while not do 
-~ 

begin ~~:~; ~ 
For i := 1 to (maxels - 1) do 

begin 
j := j + I: 
iF num[i) < num(j] then 

begin 
inorCler := False: 
num(j] := num[i]: 
num(iJ := temp: 
temp := num(j]; 

end: 
end: 

end: 
For i := 1 to max do 

begin 
write(i : 6): 
iF (i mod 12) = IZI then writeln: 

end: 
end. 

C A Humphreys Appendix 70 - 93 - Spotlighting Experiments 



Debugging Tasks Comment Sheet & Difficulty Rating For Each Task 
Survey Problem. 

Ease of u:",derstandlng task requirements 

Ease of understanding code itself 

Ease of urderstanding how the coded algorHhm<s) fulfl11s the task 
Comments: 

Survey 
SS 1345678 Mean Score 1 2 3 4 5 Sum 

1.14 TR 1111211 TR 6 1 0 0 0 8 
UC 2112311 UC 4 2 1 0 0 15 1.57 
UA 2112311 UA 4 2 1 0 0 15 1.57 

Bubble Sort 

Ease of understanding task requirements 

easy 00000 difficult 
easy 00000 difficult 
easy 00000 difficult 

easy 00000 difficult 
Ease of understanding code itself easy 00000 difficult 

Ease of understanding how the coded algorithm(s) fulfills the task easy 00000 difficult 
Comments: 

Bubble Sort 
SS 1345678 
TR 1122121 
UC 3223352 
UA 3222332 

Letter Colmt 

Score 1 2 3 4 5 
TR 4 3 0 0 0 
UC 0 3 3 0 1 
UA 0 4 3 0 0 

Sum Mean 
10 1.43 
20 2.86 
17 2.43 

Ease of understanding task requirements 
Ease of understanding code itself 

Ease of understanding how the coded algorithm (s) fulfills the task 
Comments: 

Letter Count 
SS 1345678 Score 1 2 3 4 5 Sum Mean 
TR 1112221 TR 4 3 0 0 0 10 1. 43 
UC 2113321 UC 3 2 2 0 0 13 1. 86 
UA 2112322 UA 2 4 1 0 0 13 1.86 

~ell Sort 

easy 00000 difficult 
easy 00000 difficult 

easy 00000 difficult 

Ease of understanding task reqUirements easy 00000 difficult 
Ease of understanding code itself easy 00000 difficult 
Ease of understanding how the coded algorlthm(s) fulfllls the task easy 00000 difficult 
Comments 

Shell Sort 
SS 1345678 
TR 2232342 
UC 4333352 
UA 3323351 

C A Humphreys 

Score 1 2 3 4 5 
TR 0 4 2 1 0 
TR 0 4 2 1 0 
TR 0 421 0 

Appendix 70 

Sum Mean 
18 2.57 
18 3.29 
18 2.86 

- 94 . Spotlighting Experiments 






