
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Proof-of-concept 3D level creation tool for blind gamersProof-of-concept 3D level creation tool for blind gamers

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Matthew Tylee Atkinson

VERSION

NA (Not Applicable or Unknown)

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Atkinson, Matthew T., and Colin H.C. Machin. 2019. “Proof-of-concept 3D Level Creation Tool for Blind
Gamers”. figshare. https://hdl.handle.net/2134/4478.

https://lboro.figshare.com/


 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



Proof-of-concept 3D Level Creation Tool for Blind Gamers∗

Matthew Tylee Atkinson
Loughborough University

M.T.Atkinson@lboro.ac.uk

Colin H. C. Machin
Loughborough University

C.H.C.Machin@lboro.ac.uk

Presented at CSUN 2009

Abstract

We present a prototype tool that allows blind gamers
to create 3D levels for a mainstream first-person ac-
tion game for the sighted. The system is designed to
abstract many of the details of level design so that, for
example, aesthetics or precise coordinates of objects
need not be specified by the user. Though the sys-
tem has been created with accessibility as the primary
goal, it also brings about the possibility for the com-
puter to dynamically generate game environments.
Keywords: Accessible Games, Audio Games, Mul-
timodal Interfaces, Level Design

1 Introduction

Mainstream computer games—particularly 3D action
games—are both very popular and have large online
communities surrounding them, providing means for
social interaction ranging from competitive and col-
laborative play to news websites and discussion for-
ums (for examples see PlanetUnreal1 and PlanetHalf-
Life2). Further, many games are now released along
with some of the tools used to create them, of-
ten including level editors and facilities to allow
gamers to modify the behaviour of the game.3 This
provides amateur developers with the ability to pro-
gram new game-modes, weapons or enemies and dis-
tribute them to the rest of the community. An even
more popular activity is that of creating new levels,
often referred to as maps, for games—almost every
major game has a mapping community and there are
far more maps than programmed modifications. An
inherently visual CAD-like program such as the one

∗Copyright 2009 Matthew Tylee Atkinson
1http://www.planetunreal.gamespy.com/ (all web pages

last visited on 11/03/2009)
2http://www.planethalflife.gamespy.com/
3UnrealEd ships with games using the Unreal En-

gine http://udn.epicgames.com/Two/IntroToUnrealEd.html

and Valve’s SDK is available free of charge http://en.

wikipedia.org/wiki/Source_sdk.

shown in figure 1 is used to create maps.
Due to the often visual and fast-paced nature of

modern games, few are inherently accessible to people
with disabilities. The goal of this work was to build
on prior work that provided access to mainstream
games and their development tools, to allow blind
gamers to create their own levels for 3D games.

1.1 Accessible and Audio Games

Accessible games are computer games that have been
designed to be (or simply are) playable by people with
disabilities. The challenges involved in making games
that are accessible are significant, covering the ap-
propriate presentation, prioritisation and filtering of
information, often in a time-critical manner.

It is important to consider the accessibility of
games for reasons of social inclusion, emphasised by
the fact that the potential educational qualities of
games are being considered4 [10, 5]. Many popu-
lar user interfaces are gradually incorporating sim-
ilar technologies and paradigms as are employed in
games5 [13]. Game-like paradigms are being applied
to collaborative and social environments6 and it is
vital that access technologies keep up and are adop-
ted so that disabled people are not excluded as these
changes take place [12].

Many accessible games are created specifically for
disabled people, often by disabled people, and span
many styles including action7 and arcade8. Others,
such as “audio games” [3] are accessible to those with
vision impairments by virtue of the fact that their
primary means of output is sound. A number of
research projects have sought to make games that
are accessible to those with other disabilities, such as

4FutureLab: Teaching With Games http://www.

futurelab.org.uk/projects/teaching_with_games
5http://en.wikipedia.org/wiki/Expose_clone
6http://www.secondlife.com/
7Shades of Doom http://www.gmagames.com/sod.html
8Alien Outback http://www.draconisentertainment.com/

products/?id=ao

1



Figure 1: A Representative Graphical Level Editor
(“QuArK”).

motor-control9 difficulties. There has been growing
interest in making games that are playable by people
both with and without disabilities simultaneously [14]
and some organisations have lobbied the mainstream
games industry to improve the accessibility of their
games [7, 6].

There have been some examples of successful
attempts to incorporate accessibility features into
mainstream games, such as closed-captioning10—an
example of where mainstream developers have in-
cluded accessibility features [2, section 4.1]. The AG-
RIP project has provided access to a mainstream 3D
game for the blind [1].

2 The Problem Domain

This section discusses current practices and outlines
the contributions made by our prototype solution—
Level Description Language (LDL).

2.1 Mainstream 3D Level Editing

The standard procedure for creating levels (often re-
ferred to as maps) for games using the Quake engine,
from id Software, is as follows. The basic process is
the same for most other current 3D game engines,
though the specific file formats and tools differ.

1. The user employs a graphical editor, such as
that shown in figure 1, to define the structure
and content (lighting, game-specific items) of
the level. This works in much the same way
as a CAD system. In the case of Quake-engine
games, constructive solid geometry is used—i.e.

9http://www.oneswitch.org.uk/
10http://gamescc.rbkdesign.com/

the world begins as empty space, into which solid
shapes must be placed to form the structure of
the level.11 A well-formed level must have no
gaps in its structure; these are known as leaks
and can cause rendering anomalies.

2. The level is then exported to the standard format
for the particular game in question—a .map file
in this case. The editing application may have
its own custom file-format, so that higher-level
primitive shapes (such as staircases and hollowed
rooms, as opposed to just solid boxes and other
primitive shapes) can be more easily construc-
ted, but all editors are able to export .map files
to ensure compatibility with compilation tools.

3. Finally, the .map file is compiled into a .bsp file
for use in the game. This is usually achieved in
three steps by the standard compilation tools:
bsp, which compiles the human-readable .map
file into an efficient binary structure; light,
which calculates light levels in the map and vis,
which calculates which parts of the map the en-
gine can avoid having to draw given the player’s
viewpoint, thus increasing efficiency.

2.2 Accessible Tools for Level-Editing

For blind and vision-impaired people, the “Non-
Visual Auditory Authoring” approach to audio game
design [9, section 4] would be both accessible and
somewhat game-like in nature. The “Audio Game
Maker”12 is a tool for the creation of entire audio
games and presents an audio-based interface.

Though the consideration of disabilities other than
vision impairments is out of the scope of this paper,
it should be borne in mind. In the case of mak-
ing maps for Quake, deaf people would be able to
use the standard interface of most editors. However,
some motor-impaired users would likely find it very
difficult to create levels in this manner, as it is very
mouse-intensive. The fact that different interfaces
will be needed by different disability groups implies a
need for a common high-level map description format
to be developed before any user-specific editing ap-
plications should be created.

The accessible editing tools that currently exist
tend to put many constraints on what can be created
due to either the nature of the specific accessible game
or the difficulty in creating a flexible editing environ-
ment. For example, the editor for the arcade-style
action game “DynaMan,” included with the game,
only permits levels to be laid out on a grid. This is

11Under this system, a room is composed of six solid blocks.
12http://www.audiogamemaker.com/

2



perfectly adequate for a fast-paced arcade game, but
it was decided that for the case of 3D layout, this
approach would not be scalable.

Most current “3D” accessible games are not fully
3D. As with early first-person mainstream computer
games, the accessible games are actually a series of
2D environments13 that are linked together to give
the user the impression they are in a larger 3D space
(this is achieved by the use of lifts between floors in
“Shades of Doom”, for example).

2.3 Motivations and Contribution

As discussed above, the current problems of accessible
game level editing are that: (a) there are not many
editors; (b) there are no true 3D accessible level ed-
itors and (c) there are no editors that allow disabled
people to make levels for mainstream games (because
most mainstream games are not accessible).

The goals of the AGRIP project are to provide ac-
cess to a mainstream game, online community, devel-
opment tools and level editing facilities in order to
promote inclusion of disabled people. The latter of
these goals is the focus of this paper.

Not least of the reasons for investigating accessible
level creation tools is that a survey carried out pre-
viously by the authors indicated the demand within
the AGRIP and Accessible Gaming communities [1,
section 4]. Out of 20 people that took part, 18 said
they definitely wished to make maps and the remain-
ing 2 said they may wish to do so. It is also con-
ceivable that the system developed here could be of
use to non-disabled people who simply prefer a dif-
ferent method of working than the CAD-like systems
described above.

The work described here makes use of AudioQuake
as the delivery mechanism for the maps generated.
Though this game is based on the original and now
somewhat-antiquated Quake game engine, the tech-
niques discussed here are applicable to later engines.

3 Level Description Language

This section describes the requirements, design, per-
tinent implementation details and justification of
design decisions for the proof-of-concept system de-
veloped.14

13e.g. connected areas/rooms but with no variation in height
14All code and documentation for the system may be ob-

tained from http://www.agrip.org.uk/ldl/

3.1 Requirements

In the previous section, the key requirements for the
system were identified, as follows.

Compatibility with existing game engines, stand-
ards and tools—i.e. allow disabled people access
to the same systems that other gamers use.

Accessibility of both the editor and output levels—
to the blind and vision-impaired in the first in-
stance.

Layered design to allow alternative front-ends
(user interfaces) and back-ends (game engine
formats) to be supported. This allows the pos-
sibility of granting access to those with other
disabilities later, as well as interoperability with
other engines and editing tools.

Automatic production of aesthetically-pleasing
maps that a sighted person would enjoy playing
immediately or, at least, that could be modified
using a traditional editor such that a sighted
person would enjoy playing them.

The prototype system addresses all of these re-
quirements. A pilot survey carried out with members
of the AGRIP community (described in section 4) in-
dicates to what extent the requirements were met.

3.1.1 Scope

The focus of the present work is on making the de-
scription of 3D space accessible and assessing how this
can be improved through the development of other
interfaces. Game-specific and minor features such as
allowing the full range of power-ups to be placed in
a level are out of scope of this paper. The system
developed was designed to allow the user to produce
deathmatch15 maps. Future development will focus
on improving game play, particularly for single-player
levels, and aesthetics (to improve appeal to sighted
gamers).

In this initial work, the available geometric shapes
are rather primitive in comparison to those that the
Quake engine can support. To begin by implementing
very complex architecture would (a) have taken con-
siderable time and (b) potentially caused the system
to be impractically difficult to use bearing in mind
the relative simplicity of current accessible editing
systems and architecture in Interactive Fiction (IF)16

15a type of online game where each player must eliminate
the other players to earn points

16Text-based story/adventure games such as: Spider and
Web; The Lurking Horror and Zork.

3



Figure 2: Previously-proposed architecture for an
adaptable editing system for 3D applications and
games [1, figure 2].

games (which is what the target audience are famil-
iar with). This is discussed in more detail in sec-
tion 4.2.2.

3.2 Layered Architecture

A potential architecture for a level creation system,
where high-level input from the user—essentially
a description of the level—is transformed into the
standard .map format described above was proposed
previously [1, section 3]; see figure 2. As discussed
in the earlier paper, a layered approach may afford
many benefits, including the ability to develop mul-
tiple front-end tools and the possibility of inserting
extra stages into the processing pipeline to carry out
adaptations to the level for people with particular
needs or tastes.

The system was implemented as a sequence of Py-
thon scripts. The top-level XML file, written by the
user, is piped into the first of these scripts, which out-
puts an XML file at the next lowest level. The scripts
are executed in a pipeline to transform high-level de-
scriptions step-by-step into .map files,17 which are
then compiled using the standard procedure. They

17A limited subset of the reverse process—converting .map

files upwards—was also developed.

may also be opened and refined in a traditional graph-
ical level editor.

3.3 Designing for Non-visual Descrip-
tion

The layered approach described below was used for
more than the technical reasons outlined above: it
affords the user some choice over how much detail
they are prepared or able to give to the description
system. It also allows for details such as aesthetics
to be abstracted (see section 3.4.3) and can promote
co-operation with sighted level-designers due to the
interoperability of formats used.

One key aspect of the system is the “view” of the
map that the author is required to hold during the
description stage. A top-down point-of-view onto the
map was used, along with compass directions (plus
“up” and “down”) for specifying spatial relationships.
This was largely for reasons of familiarity—many of
our target users are familiar with this representation
from Interactive Fiction and it seemed the closest
match to the way that people navigate in Audio-
Quake and other accessible games. The user survey
(described in section 4) sought feedback to assess the
validity of these assumptions.

Another issue is that of the map’s overall layout in
terms of the routes between different parts of it. Of-
ten for blind and vision-impaired people, getting an
overview of a particular situation (equation, picture,
place, game level) is very difficult, as they often do
not have the sensory capability to extract an over-
view. This could make using a system like LDL ex-
tremely difficult due to the layout approach described
shortly. The pilot survey also sought opinions on how
hard this task was and how it may be improved.

It was not clear from the motivating survey dis-
cussed above—and subsequent discussion with po-
tential users—what type of interface would be best
suited to level description. For this reason we de-
cided to develop a high-level XML dialect and elicit
feedback from users as to what sort of interface(s)
they would prefer in future.

3.4 Layer Descriptions

Here we discuss each layer of the description system
in turn.

3.4.1 3D Positioning of Rooms

The highest level in the system is that in which rooms
are linked to each other in 3D space. Input is given
by the user in the form of a simple XML dialect. The

4



Listing 1: Most basic usable map in LDL.
<map name=’ Hel lo , World ! ’ s t y l e =’base ’>

<room id =’ s ta r t ’>
<item type=’ i n f o p l a y e r s t a r t ’ pos=’c ’/>

</room>
</map>

Listing 2: A very simple deathmatch level.
<map name=’Very Simple DM Arena ’ s t y l e =’base ’>
<room id =’main ’ s i z e =’big ’>
<con wal l =’s ’ t a r g e t =’spawn a ’ type=’door ’/>
<con wal l =’n ’ t a r g e t =’spawn b ’ type=’door ’/>
<item pos=’c ’ type=’ item armorInv ’/>
<item pos=’e ’ type=’ weapon rocket launcher ’/>
<item pos=’w’ type=’weapon grenadelauncher ’/>

</room>
<room id =’spawn a ’>
<item pos=’c ’ type=’ i n f o p l a y e r s t a r t ’/>
<item pos=’c ’ type=’ in fo p layer deathmatch ’/>
<item pos=’n ’ type=’ i t em rocket s ’/>

</room>
<room id =’spawn b ’>
<item pos=’c ’ type=’ in fo p layer deathmatch ’/>
<item pos=’s ’ type=’ i t em rocket s ’/>

</room>
</map>

most basic usable map is given in listing 1 and a small
example map is given in listing 2.

These examples demonstrate the basic structure of
a map—a series of connected rooms that can contain
items (such as weapons, power-ups and player start
points). The map in listing 1 is a single, medium-
sized (the default) room that contains only a player
start point, positioned in the centre of the room. The
map in listing 2 consists of a larger central room that
connects to 2 medium-sized rooms that house the
player start points. Figure 3 shows part of a larger
LDL map. Other typical game items are distributed
about the map (by means of compass points). The
following are the key design features for this layer.

Order is unimportant when specifying rooms,
items and connections. It was anticipated that
most users will specify the rooms and connec-
tions as a series of routes from the start through
various parts of the map. This is discussed
further in section 4.2.2.

The positioning of items within rooms can be
achieved using compass points, as if one is look-
ing down on the room. An optional height can be
specified—e.g. “nw 20%” signifies that the item
should be placed in the north-west of the room,
when looking down on it from above, and at 20%
of the room’s height above its floor.

Figure 3: Another example map.

Other coordinate systems may be used, such as
an offset from the room’s origin18 as a fraction of
its width, depth and height. For example: “50%
25% 50%” is a point half way across the room,
a quarter of the way from back to front and half
of its height above the floor. This is actually the
same as the compass point “s” (south) in the
current implementation.

A connection between rooms is positioned on a
given wall of the rooms involved, indicated by
compass directions. A connection on the north
wall of one room will require a counterpart con-
nection to be made on the south wall of the tar-
get room—two connections are needed so that
holes are made in the appropriate places in the
walls of both rooms, thus allowing the player to
pass between the rooms. It is not necessary for
the user to explicitly write in the reverse connec-
tion (e.g. in listing 2 only the connections from
the central room to the other rooms were spe-
cified).

Rooms are currently limited to being cuboidal
in shape for reasons of both ease-of-use and im-
plementation simplicity, however their internal
shape may be modified by the introduction of
other solid bodies and contained rooms.

The location in 3D space of each room is de-
termined by the connections between it and
other rooms. The first room encountered in the
XML file by the script is given a default origin
point. Any rooms connected to this room will
have their origins calculated relative to the first
room, via the connections. All rooms must be

18the corner of the room with the smallest x, y and z
coordinates—its bottom left-hand corner as we look down on
the map

5



<map name=’Advanced Connections ’ s t y l e =’base ’>
<room id =’ s ta r t ’>

<item pos=’c ’ type=’ i n f o p l a y e r s t a r t ’/>
<con type=’door ’ t a r g e t =’ other ’ wa l l =’n ’

pos=’t ’ e l ev type =’ s t a i r s ’/>
</room>
<room id =’ other ’/>

</map>

The connection is positioned at the top of the wall on the
“start” side, causing the origin of “other” to be higher and the
elevation device (stairs in this case) to be built.

Figure 4: Example of simple 3D layout: LDL code.

Figure 5: Example of simple 3D layout: overview of
the layout in QuArK.

connected to other rooms and rooms may be nes-
ted inside each other.

True 3D layout is achieved by having rooms at dif-
ferent heights. This is made possible by the no-
tion that connecting doors/holes in walls may be
positioned at any point on the wall face (as if one
is standing in front of the wall looking at it). By
adding an extra pos attribute to the <con> ele-
ment, this can be achieved. An example is given
in figures 4–6, where the pos attribute has been
set to “t” (top)19.

As this is (currently) the highest level in the sys-
tem, any alternative user interfaces to the system
would be expected to output XML in this format.
Compliance to the format may be easily ascertained
by making use of an XML schema.

19Here the positions “top”, “bottom”, “left” and “right”
(and combinations) are used to distinguish the activity of pla-
cing a connection on a wall from that of laying out the map
as a whole. In fact, any coordinate system supported by LDL
can be used in any place, but it was felt that this could easily
confuse matters for new users.

Figure 6: Example of simple 3D layout: the level
in-game.

A possible higher-level layer would allow the user
to simply specify the rooms and which rooms are con-
nected and leave the routing to the system. This is
out of the current system’s scope, however (but the
possibility is discussed in section 4.2.2). Other work
has proposed a method for interacting with a gener-
ated 3D scene with one’s voice [4]. Though it uses
visual feedback to allow the user to verify the scene
manipulations, it could be adapted for use in an ac-
cessible system such as LDL.

3.4.2 Builder Macros

In the top layer, rooms and connections can be spe-
cified to have a number of complex structural fea-
tures within them, such as doors, stairs and eleva-
tion platforms. In traditional editors, these features
have to be manually created from simpler building
blocks and some—interactive elements such as doors
or switches—have to be flagged as entities to the en-
gine, so that the game knows how these pieces of the
structure should behave in-game (i.e. the engine uses
the entity type to attach some executable code to
that particular object).

This stage in the chain builds these sometimes-
complex entities within the bounding area specified
in the top layer, and applies any relevant proper-
ties (such as the direction of slope of stairs) passed
down. This allows the user to create complex struc-
tures easily—they only need to specify the important
parameters (e.g. step height or if a key is required
to open a door). A similar approach, known as “pre-
fabs”, has been taken for complex structures has been
taken in later 3D action games, so that level designers
and modellers can work separately.

6



3.4.3 Lighting and Textures

A number of pre-defined lighting sources and tex-
tures for use in levels are provided by the game en-
gine. Clearly it would be difficult or impossible for a
blind person to apply an aesthetically-pleasing light-
ing scheme to a level, such that a sighted person
would either be able to enjoy playing it (or at least
need to modify it only slightly to make it enjoyable).
This stage of the process compensates for this by se-
lecting a lighting style from a pre-defined list based,
on the style attribute of the map and the size of the
room being lit.

The styles are defined in a separate XML file and
allow for elastic grid-based lighting that guarantees a
suitable minimum separation of lights. Separate grids
can be set up for perimeter and central lighting, as
well as different offset coordinates in each dimension
(so, for example, central lights can be placed higher
than those attached to walls) and different light ob-
ject models rendered by the game.

Another aspect defined in the style XML file is that
of textures. The style attribute of the map determ-
ines the texture set to be used. This attribute may
also be specified for any room individually and is in-
herited by all of its children. In summary, the style
file contains the following.

Lighting Styles as described above.

A list of textures that maps friendly texture
names and descriptions to the often-cryptic
texture names used in the game.

A list of texture sets to be applied to the differ-
ent surfaces of a room. A texture set is a
“known-good” set of appropriate textures for the
room and structural objects inside it. The tech-
nique is used so that blind users know they can
select a sensible appearance.

A textual description of the style, texture or set
of textures that attempts to impart the “feel”
of the particular style in question (e.g. military
base, or medieval).

Figure 7 shows an example of the flexibility of the
styles system. The map from figure 6 is rendered in
“base” style. After changing the style to “medieval”
the map changes significantly.

To improve the aesthetics of maps in future, it is
proposed that randomness be introduced to ensure
that not all rooms and lighting styles look too sim-
ilar. Finally: the adoption of high-contrast styles
(comprised of custom textures) could perhaps enable
vision-impaired users to navigate maps more easily,

Figure 7: Map from figure 6 in “medieval” style as
opposed to “base” style.

without having to use an entirely audio-based render-
ing of the game world.

3.4.4 Rooms → Multiple Separate Solids

As discussed above, Quake engines use constructive
solid geometry. One effect of this is that there can
be no concave solids (brushes) in the map. A hollow
cuboidal room must therefore be constructed out of 6
cuboidal solids that form the sides. To prevent leaks,
there must be no gaps in the map, so any room that
is not inside another must be totally sealed.

This stage breaks rooms (and connecting
corridors—any hollow area specified above) apart
into solids and puts connections at the right places
by building walls around them (and inserting a door
in the gap if need be). The editor “QuArK” has a
similar feature, designed to make easier the moving
around of doors and connected rooms, by having the
editor divide walls up to create holes in the correct
places.20 This stage guarantees that LDL-generated
levels will have no leaks, which can be useful for all
users as opposed to just vision-impaired people.

In future work, structural styling artifacts (such as
turrets for medieval-style levels) may be implemented
at this stage.

3.4.5 The .map File and XML Analogue

A .map file is a text file that, as well as listing the
entities (such as lights and power-ups) in a level and
their properties, describes each of the solid brushes in
a map as a series of intersecting planes. The last two
stages in LDL break the brushes down into planes

20. . . therefore it is at this stage that conversion to the
QuArK .qkm format could take place, which would allow
changes to be more easily made by QuArK users.

7



and convert this, expressed initially in XML form, to
plain text—in the .map file format.

4 Results—User Survey

To test the assumptions discussed above and to ascer-
tain the potential of the system, a survey was carried
out with members of the AGRIP21 mailing list. The
reason for targeting such a small subset of the entire
accessible gaming community was that to accurately
test LDL, the users needed to have familiarity with
AudioQuake. It was deemed that more informed and
reliable answers would be obtained from those on the
mailing list, as they would have the requisite experi-
ence with the game to effectively test LDL.

4.1 Questions and Rationale

The full questions and answers data can be ob-
tained from the LDL website given in the introduc-
tion above. The survey was broken down into 5 main
sets of questions, as follows.

The user’s vision impairment. Participants
were asked about their impairment and spatial
awareness, with the goal of ascertaining how
useful LDL may be to people with different
visual and spatial capabilities.

The user’s experience with other accessible and
Interactive Fiction games, as well as markup lan-
guages (HTML and XML). The intention was
that these details may help us determine why a
user may have problems with the system.

The navigational capabilities of the user (i.e.
their mobility skills) and if they felt that there
were any similarities between navigation in the
real world and AudioQuake and LDL.

Usage of LDL including the factors that the user
attributed errors to (including the strictness of
XML, their spatial awareness, difficulty in con-
ceptualising a whole map’s layout and LDL not
providing the required features). This section
also asked if the user gave up with the system
(and why) and if the results were what they ex-
pected.

The participants’ opinions of LDL were also
collected—i.e. if higher-level layout features are
required; what sorts of interfaces they would like
to the XML format; if they would like any ex-
tra features and, finally, how novel they felt LDL

21http://www.agrip.org.uk/

Table 1: User information.
Property Modal Answer Num

Programmed before? Yes 5
Written HTML? Yes 5
Written XML? Yes 4
Played 3D games? Yes 3
Played IF? Yes 5

Desire for LDL Total 3
Mobility Skill Excellent 3
AQ Relevance Strongly, Totally 2, 2
LDL Relevance Moderately 4

was, how it compared to other similar tools that
they have used and how much potential they
thought LDL had to be improved.

The survey was answered in full by 7 members
of the AGRIP community; certainly not enough for
a detailed statistical analysis but likewise definitely
enough to enable us to determine if the current pro-
totype is worth developing further—and in which dir-
ection. Naturally one very powerful way to asses if a
system actually works is to collect the output users
create with it. A collection of user-made maps can
be found on the LDL web page.

4.2 Findings

The findings of the survey indicate that the system
should be further developed and suggest a number of
further research avenues that should be pursued.

4.2.1 User Backgrounds and Mobility

Information about the users is given in table 1. All
users who took part in the survey were blind and used
screen readers to access the computer. For each of the
questions in the bottom group, the answers were se-
lected from a 5-point scale. In that group, 6 users ex-
pressed at least a moderate desire to make maps; the
same 6 rated their mobility skills at least average and
also believed that both AudioQuake and LDL’s mod-
els of navigation were at least moderately relevant
to real-world navigation. Of the participants, 3 had
extensive experience of other 3D accessible games22.
Most users had extensive experience of Interactive
Fiction which, it was hoped, should make connections
and compass directions easier (section 4.2.3 shows
that this may be worth investigating further).

22though one of these pointed out that in fact there are no
other truly 3D accessible games currently available (further
clarification was sought and this user had in fact played other
accessible games we classify as 3D, such as Shades of Doom).

8



4.2.2 Routing and Architecture

The users were also asked how they conceptualised
both a single route (e.g. to the local shop) and a situ-
ation involving multiple routes that might cross (e.g.
between buildings on campus). For the single route
situation, most (5) said they could imagine it all at
once as if they had a map, as opposed to a series of
instructions to be carried out at specific points. For
the multiple routes situation, only 4 said they could
imagine the routes simultaneously and the rest had
to specifically remember where the routes cross.

These questions were designed to see how easy it
may be for the users to specify a map as a series
of related routes, via the connections between rooms
(in which case they would need to be fully aware of
where the routes through the level cross). There is
some contention as to whether prior visual experience
is a prerequisite for good spatial awareness; different
studies have drawn differing conclusions [8].

The question of whether the current highest (3D
layout) layer is still too concrete was put to the users.
They were given a choice of how they would like to
specify the relationships between rooms, either: us-
ing compass points as it is now; simply specifying that
rooms are connected and having the LDL system do
the layout and a hybrid of the two. Equal numbers of
users (3) sided with the two different approaches and
one voted for the hybrid. This tells us that imple-
menting a higher-level layout feature would be wel-
comed, though the challenge—effectively 3D graph
layout with constraint satisfaction—is significant.

It should be noted that one thing users did not
ask for was any more complex room shapes than the
cuboid. They also did not request the ability to spe-
cify arbitrary angles for connections between rooms.
This is likely to be because no current accessible
games provide these features except for AudioQuake
(by means of already-made maps) and navigation of
such structures has already been noted to be difficult
by AudioQuake players on the AGRIP mailing list.

4.2.3 Causes of Errors

The users were asked to attribute various potential
causes of errors. The results are shown in table 2.

Only one out of the 7 users gave up on using the
system. There was unfortunately no reason given.
However, this user was the only one that had (a) not
played other accessible games or any Interactive Fic-
tion and (b) had rated their mobility ability below
average. It would be interesting to carry out a wider
study to find out if there is a correlation between spa-
tial awareness and ability to navigate in games (and,

Table 2: Attribution of errors across all users.
Error type Users

Vision impairment 4
Human error 4
XML unfamiliar 4
XML too strict 2
Conceptualising layout 2
Spatial awareness 3
Missing features 2
Others 1

Table 3: Alternative interfaces.
Interface type Votes

XML 3
Natural language 2
Dialogue 3
Non-speech audio 2
In-game 5
Haptic 1

if so, can one reinforce the other?); there is already
some research that suggests this may be possible [11].

4.2.4 Proposed User Interfaces

Table 3 shows the votes cast for each type of pro-
posed user interface that could be layered on top
of LDL. No additional alternatives were sugges-
ted by the users. It was noted in the survey that
buildings are inherently structured things so “natural
language” would still be in a somewhat constrained
form, albeit less strict than the current XML. It was
expected that users would not be so keen to use an
in-game interface as this would make it even harder
for them to get a global overview of the level.

5 Conclusions

This paper has highlighted the need for an accessible
level authoring system and proposed a prototype of
such a system that, although currently targeted at
vision-impaired people, could be adapted for people
with a wide range of disabilities in future. We also
believe that the system may have a place with non-
disabled individuals who may wish to specify their
levels in a more abstract way, or who are working as
part of a level design team and may only be respons-
ible for the overall structure, or certain fine details of
the level.

The system has enabled blind gamers to create

9



levels for a mainstream game that, although currently
relatively simple in nature, have much room for im-
provement due to the layered design of LDL. Addi-
tionally, classic errors such as leaks have been erad-
icated. The source code for the levels is machine-
readable and writable, meaning that tools can be de-
veloped to analyse them and even give the computer
the ability to create new levels—possibly on-the-fly
and as a result of the player’s actions and perform-
ance in-game.

5.1 Further Work

We have sought feedback from users and found that
the approach seems to be promising. Further devel-
opment, of LDL and the requested interfaces to it
needs to take place, followed by a larger user study.
This may enable us to find out more about the pos-
sible links between spatial awareness, navigation abil-
ity and use of AudioQuake and LDL—perhaps the
tools being developed could be used in an educational
setting to improve spatial awareness in young blind
people.

Future work must also include the development of
user interfaces tailored for people with other types of
disabilities and an investigation as to whether stand-
ard 3D formats such as X3D23 and COLLADA24 can
be used to improve interoperability.

6 Acknowledgements

The authors would like to thank Sabahattin Gucuko-
glu of the AGRIP project for his advice and support
and the Grundy Educational Trust for part-financing
this work.

References

[1] Matthew T. Atkinson, Sabahattin Gucukoglu, Colin
H. C. Machin, and Adrian E. Lawrence. Making
the mainstream accessible: Redefining the game. In
Sandbox ’06: Proceedings of the 2006 ACM SIG-
GRAPH symposium on Videogames, pages 21–28,
New York, NY, USA, July 2006. ACM.

[2] K. Bierre, J. Chetwynd, B. Ellis, D. M. Hinn,
S. Ludi, and T. Westin. Game not over: Accessibil-
ity issues in video games. In Proc. of the 3rd Inter-
national Conference on Universal Access in Human-
Computer Interaction. Lawrence Erlbaum, 2005.

[3] Johnny Friberg and Dan Gärdenfors. Audio games:
new perspectives on game audio. In ACE ’04: Pro-
ceedings of the 2004 ACM SIGCHI International

23http://www.web3d.org/
24http://www.collada.org/

Conference on Advances in computer entertainment
technology, pages 148–154, New York, NY, USA,
2004. ACM.

[4] Hiromichi Fukutake, Yoshiaki Akazawa, Yoshihiro
Okada, and Koichi Niijima. 3d object layout by
voice commands based on contact constraints. In
CGIV ’05: Proceedings of the International Confer-
ence on Computer Graphics, Imaging and Visualiz-
ation, pages 403–408, Washington, DC, USA, 2005.
IEEE Computer Society.

[5] James Paul Gee. What video games have to teach
us about learning and literacy. Comput. Entertain.,
1(1):20–20, 2003.

[6] Dimitris Grammenos. Game over: learning by dying.
In CHI ’08: Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in comput-
ing systems, pages 1443–1452, New York, NY, USA,
2008. ACM.

[7] IGDA. Accessibility in games: Motivations and
approaches. Technical report, IGDA, http://www.
igda.org/wiki/Game_Accessibility_SIG/Papers,
2004.

[8] J. M. Loomis, R. L. Klatzky, R. G. Golledge, J. G.
Cincinelli, J. W. Pellegrino, and P. A. Fry. Nonvisual
navigation by blind and sighted: assessment of path
integration ability. Journal of experimental psycho-
logy, pages 73–91, 1993.

[9] Niklas Röber and Maic Masuch. Auditory game au-
thoring. In Quasim Mehdi, Norman Gough, and
Gavin King, editors, Proceedings of CGAIDE 2004
Conference, November 2004.

[10] Kurt Squire. Video games in education. Interna-
tional Journal of Intelligent Simulations and Gam-
ing, 2:49–62, 2003.

[11] D Stanton, P Wilson, and N Foreman. Using virtual
reality environments to aid spatial awareness in dis-
abled children. In The First European Conference on
Disability, Virtual Reality and Associated Technolo-
gies, 1996.

[12] Shari Trewin, Vicki L. Hanson, Mark R. Laff, and
Anna Cavender. Powerup: an accessible virtual
world. In Assets ’08: Proceedings of the 10th in-
ternational ACM SIGACCESS conference on Com-
puters and accessibility, pages 177–184, New York,
NY, USA, 2008. ACM.

[13] Aaron Weiss. Desktops in 3d. netWorker, 11(1):26–
33, 2007.

[14] Thomas Westin. Game accessibility case study: Ter-
raformers - a real-time 3d graphic game. In The Fifth
International Conference on Disability, Virtual Real-
ity and Associated Technologies, 2004.

10


