

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY
AUTHOR/FILING TITLE

f3&k4KOS M fJ , -----------------------!----------------------,

ACCESSION/COPY NO

VOL NO CLASS MARK , 7

3 0 JUN 95

j

000 4l36 Ol

ll~lll\\\\\\\\l\ll~\\~\l~l\l\l~l\\~ll~lllll

This book was bound by

Badminton Press
18 Half Croft, Syston, Leicester, LE7 8LD
Telephone Leicester (05331 602918

/ LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE I
S&k4 KOS M f' : -----------------------f----------------------

----------------------------------- --------- ------
ACCESSION/COPY NO

Oo4-1:Jio jot
--------------~-- ---------------------------------

VOL. NO CLASS MARK
, 7

_/I Col

'
t t JAft-1991

-8 Fe! 1991

I

000 4136 01

~~\\\\\\l\l\l\\~~\l~l\~l\l\lilll~~~,l~l

This book was bound by

Badminton Press
18 Half Croft, Syston, Leicester, LE7 8LD
Telephone Leicester (05331 602918

A STUDY OF ALGORITHMS

FOR

PARALLEL COMPUTERS AND VLSI

SYSTOLIC PROCESSOR ARRAYS

VoLUME-1

BY

MICHAEL P. BEKAKOS
B.Sc. (Hons.) ,M.Sc. ,M.H .M.S.

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the Award of Doctor of Philosophy

of the Loughborough University of Technology

July, 1986.

SUPERVISOR: PROFESSOR DAVID J. EVANS
B.Sc. ,M.Sc. ,Ph.D. ,D.Sc. ,F.I.M.A. ,F.B.C.S.

Department of Computer Studies

This Research LS Sponsored by NATO and the Greek MLnLstry
of NatLonal Economy under the ScLence Fellowship Contract
No. [~E5450/TB.2391/15-7-8l/AYE-(AE.347/32213/Tporr.6)].

© by Michael P. Bekakos, 1986.

To AellLepwSJw

~~OSJ u~~ep~ ~OU

11 wisq tn l'XJu·t.s.s my .sin.rr.rt ttpp.rt.ritttinn tn
p.rnft.s.sn.r ill.~. 1Eunn.s, my .supr.rui.snr, fn.r qi.s guibttn.rt,
unfniling rntqu.sin.sm ttnb ptttirn.rt tn .rtttb ttn innumtrnblr
numbt.r nf QJ:qr.si.s b.rnft.s.

11 wisq tn tqnnk N . .A.QJ:.@. ttnb tlrt @.ruk .iilini
.st.ry .nf Nntinnttl iE.rnn.nmy, my .s.rqnln.r.sqip habits, wqn.sr
finttnrittl .suppnrl mttbt tqt rttr.rying nut nf tqi.s ltngtlry
u.srn.rrq pn.s.siblt.

mn my mnin, m.nrttlly ttnb mntrrittlly, .suppnrl
r.rs ttr.rnugqnut ttll my pn.stg.rttbuttft yttt.rs, my ptt.rrnts, 11
wisq tn p.rttist mnu tqnn .run br txp.rtssrb, fn.r tlrti.r
unbr.rstnnbing ttnb ttll tl7r sttmfirrs tqry wrnt unqur
stinntthly intn in n.rbr.r tn su mr ttrqiruing my gnttls.

11 wisq tn rsprrittlly tt.rknnwlrbgr !n.r. 1Rnhrrl
p. §tnlltt.rb fn.r ttll qis suppnrl ttnb rnn.strurliur rriti
risms nn ttrr Ntc:pmmN:rc: pnrnllrl C!lnmputr.r p.rntntypr.

illttst, hut by nn mrttns lrn.st, 11 ttm grntrful
tn my wifr C!lqristintt, wqn ptttirntly tt.r.rrptrb tqr lnng
qnu.rs nf ttb.srnrr buring tqr 'ups ttnb bnwns' nf tqis
wn.rk ttnb tnnk .rn.rr nf mttmttgr ttnb fttmily sa fltnt 11
.rnulb pu.rsur my brg.rrr.

ifinttlly, my snn Pttnttyintis krpt smiling nt mr
wqtnrurr 11 nubrb it tqr mnst.

11 ttm ttlsn inbrhtrb tn .miss ~. a. Vlrit.r.s: wqn
Sf ttrlisti.r p.rnfrssinnnli.sm in typing is uflrrlrb f.rnm
ttr r .s .rript its rlf.

TITLE:

A STUDY OF ALGORITHMS
FOR

PARALLEL COMPUTERS AND VLSI
SYSTOLIC PROCESSOR ARRAYS

[Ab6t. ~1

In this Thesis the des~gn and analysis of parallel algor~thms is

invest~gated under the framework of, either, be~ng su~table for execut~on

on asynchronous Multiprocessor testbeds (MIMD organ~zations), or, due

to the recent remarkable advance of 'Very Large Scale Integrated' - VZSI

c~rcu~try, of being suitable for direct hardware ~mplementation.

In the first three ~ntroductory Chapters a br~ef and taxonomically

d~sc~pl~ned state-of-the-art survey ~s presented w~th up-to-date

~nformation on the parallel computing environment. This survey ~s

relat~vely complemented by the contents of the last Chapter VIII, where

most of the envisaged technological advancements are discussed.

More analytically, Chapter I ~s devoted to the overv~ew of parallel

computer systems and prototypes. After the explo~tat~on of parallel~sm

in var~ous parallel computer structures, in terms of classify~ng the

var~ous architectural designs, the Chapter cont~nues w~th the genealog~cal

taxonomy of the main current multiple processor complexes.

In Chapter II the programm1ng tools and algorithms to exploit the

parallel hardware potential are introduced. In part1cular, concurrent

programming languages motivations and general concepts for parallel

processing are d1scussed, to cont1nue w1th various methodological design

and analysis aspects of parallel algorithms to appropr1ately map onto

the different arch1tectural categor1es.

In both these Chapters particular reference has been made to the

'NEPTUNE' MIMD prototype, sited at the Department of Computer Studies,

at Loughborough Univers1ty of Technology, on which the bulk of the

experimental work contained herein was carried out.

Developments in microelectronics have revolution1zed computer

des1gn. VLSI technology has enormously 1ncreased the number and

complexity of components that can f1t on a chip. As a result, machines

on-a-chip have emerged; these mach1nes can be used as spec1al-purpose

devices attached to a convent1onal 'host' computer. In Chapter III,

at f1rst, var1ous computat1onal models and 'Knowledge Information

Process1ng Systems' - KIPS are 1ntroduced, to cont1nue w1th the embedd1ng

of informat1on flow schemes on gr1ds and 1n VLSI chip area and t1me.

An extens1ve invest1gation on the potent1al parallelism of a new

powerful class of Group Expl1c1t methods compared to the Standard

Expl1c1t method 1s carried out in Chapter IV, for the solution of

parabol1c partial different1al equat1ons. For the performance analys1s,

on the prov1ded MIMD testbed, of all parallel 1mplementat1ons in the

Thes1s, a deta1led 'Determin1stic Performance Model' - DPM 1s establ1shed

along w1th all the part1cular general formulae for the est1mat1on of its

various parameters.

A complete performance exploitat1on of the 'NEPTUNE' MIMD

[AbJ.d;. ill]

prototype is pursued ~n ChapteP V, by ~mplement~ng several parallel

algor~thms using the Cycl~c Odd-Even reduct~on technique, in

comb~nation w~th all the possible parallel constructs for the system,

to solve Toeplitz trid~agonal linear systems for use ~n signal and

image process~ng appl~cations. The ChapteP cont~nues w~th the

~mplementation of several new parallel algor~thms us~ng the same

techn~que, to solve general periodic and non-per~odic tr~diagonal

!~near systems, following an alternate approach for the utilizat~on

of any number of processors.

In ChapteP VI the research ~s being concentrated on algor~thm~cally

specialized systolia networks. A new powerful 'rotat~ng' and 'fold~ng'

techn~gue is introduced and appl~ed on two-d~mens~onal systol~c

communication geometr~es to solve a var~ety of occurring problems.

In particular, at first, the matr~x-vector and matr~x mult~pl~cat~on

problems are treated; then, the method is appl~ed to trid~agonal and

qu~nd~agonal !~near systems, and eventually general~zed for p se~

bandw~dth !~near systems. To bypass the complexity ar~s~ng along w~th

the ~ncrease of the semi-bandw~dth of the coeffic~ent matr~x, an

alternat~ve 'unidirect~onal' factor~zat~on of the central formatted

submatr~ ~s proposed and exempl~f~ed.

The result~ng upper and lower tr~angular l~ear systems are solved

aga~n by the new method us~ng a !~near systol~c array of processors.

F~ally, ~ ChapteP VII, single stage computat~onal dewavefPonts

are invest1gated, as an expans1on of the 'rotate' and 'fold' method,

for the ~mplementat~on of the 'Quadrant Interlocking Factor~zat~on' -

QIF parallel method on a data-dr~ven 'Wavefront Array Processor' - WA~

for the case that the coeff~c~ent matr~x of the linear system ~s a

[Abr..;t. -<.V]

compact dense (nxn} matr1x.

The Thes1s 1s concluded w1th general comments on future computer

arch1tectures, overv1ew1ng conclusions and a discuss1on for further

future research topics in th1s area. RefePences and Appendices w1th

complementary theory and proofs, where needed, and a select1on of

opt1m1zed parallel computer programs from our exper1mental work are

also mcluded. •

\[A1!H!i1E ®lJT QI ®NuHE NIDg,
-------==

DECLARATION

AcKNoWLEDGEMENTS

ABsTRACT

LisT Qp fiGURES

LisT OF TABLES

!iVOLUME-l

A TREE-LIKE loGICAL SuBDIVISION OF CHAPTER I CoNTENTS

CHAPrER I : AN OvERVIEW OF PARALLEL CoMPUTER ARcHITECTURES

SECTION A: ExPLOITATION OF PARALLELISM IN VARIOUS

PARALLEL CoMPUTER ARcaiTECTURES ,

I.A.l: The Innovat~on of the Parallel Not~on

I.A.2: Classif~cat~on of Designs

I.A.2.1: Flynn's Very H~gh-Speed Comput~ng
Systems

I.A.2.2: Shore's Taxonomy

I.A.2.3: Other Class~f~cat~on Approaches

[Cont. 2]

Pzye

-<.--<.V

11

22

27

29

35

35

41

44

SECTION B: THE MAIN CURRENT MuLTIPLE PROCESSOR ARcHITECTURES 46

I.B.l: Introduct~on

I.B.2: The Genealogy of the SIMD Organ~zat~on

I.B.3: The Util~zat~on and Appl~cat~on of the SIMD
Systems

47

50

52

[Cont. 3]

I.B.3.1: The Assoc~at~ve Processor Architecture

I.B.3.1.1: The Associat~ve Memory Organ~zat~on

I.B.3.1.2: Arch~tectural Taxonomy of the
Assoc1ative Processors

I.B.3.1.2.i: Fully Parallel Assoc~at~ve
Processors

I.B.3.1.2.ii: B~t-Ser~al Assoc~at~ve
Processors

I.B.3.1.2.iii: Word-Ser~al Assoc~at~ve
Processors

I.B.3.1.2.iv: Block-Oriented Assoc~at~ve
Processors

I.B.3.1.2.v: H~ghly Parallel Assoc~at~ve
Processors

I.B.3.2: Parallel Processor Arch~tectures

P;@:e

54

58

60

61

64

66

67

70

71

I.B.3.2.1: The Utilizat~on of Parallel Memor~es 74

I.B.3.2.2: The Interconnect~on Networks 76

I.B.3.2.3: Implemented Parallel Processor
Systems 79

I.B.3.2.3.i: The Orthogonal Computer Concept 84

I.B.4: The Genealogy of the P~pel~ned Vector Organ~zat~on 86

I.B.4.1: P~pel~e as a Fundamental Design Pr~nc~ple
and Performance Character1st1cs

I.B.4.2: Vector Process~g Character~st~cs

I.B.4.3: Implemented P~pel~ned Vector Computers

I.B.S: The MIMD Multiprocess~g Arch~tectures

I.B.S.l: The MIMD Hardware System Organ~zation

I.B.S.l.l: The Time-Shared/Common Bus Inter
connect1on Schema

I.B.5.1.2: The Crossbar Switch Matr~x Inter
connect1on Schema

I.B.5.1.3: The Mult~us/Mult~port Interconnect~on
Schema

87

97

99

103

104

109

11 0

11 2

I.B.5.1.4: The Virtual and Mailbox Log1cal
Interconnect1on Schemas

I.B.5.2: The MIMD Operat1ng System Organ1zat1on

I.B.5.J: Implemented MIMD Arch1tectures

[Cont.

I.B.5.J.l: The Interdata Dual Processor System

I.B.5.J.2: The •NEPTUNE• System

I.B.6: A General Review of Mult1ple Processor Systems'
Pr1nc1ple Mot1vat1ons

A TREE-LIKE LOGICAL SuBDIVISION OF CHAPTER IICoNTENTS

CHAPTER II : PROGRAMMING TOOLS AND ALGORITHMS T 0 ExPLOIT THE

PARALLEL HARDWARE PoTENTIAL

SECTION A: PRoGRAMMING LANGUAGES AND CoNCEPTS FoR PARALLEL

PROCESSING

II.A.l: Introduct1on

II.A.2: 'Conourrent'Prograrnm1ng Languages Mot1vat1ons and
Transformat1ons of Sequent1al Programs 1nto
Parallel Programs

II.A.2.1: A Level-Detect1on of Parallel1sm

II.A.2.2: Explic1t Parallel1sm Detection Approach

II.A.2.3: Impl1c1t Parallel1sm Detect1on Approach

II.A.3: Prograrnm1ng Concepts of the Loughborough MIMD
Mult1process1ng Arch1tectures

II.A.3.1: The User Interface to the•NEPTUNE•Parallel
Processor System

SECTION B: AsPECTS OF PARALLEL ALGORITHMS DESIGN AND ANALYSIS

METHODOLOGY

II.B.l: Construct1on Pr1nc1ples for Eff1c1ent Parallel
Algor1thms

II.B.2: Schemes and Techn1ques to Des1gn Algor1thms to Map
onto SIMD and P1pel1ned Vector Computer Arch1tectures

II.B.2.1: Part1cular Concepts and Performance Features

4]

r.zye.

11 3

114

116

123

125

133

136

137

138

143

147

150

158

164

174

183

184

79 2

of the •DAP• System 206

II.B.J: Fundamental Algor1thm Structural Concepts to
Explo1t the Potent1al of MIMD Computer
Arch1tectures

[Con-t. 5]

II.B.3.1: Mult1processors Performance Analys1s
Character1stics and Resource Provis1ons
of the 'NEPTUNE'Parallel Processor System

A TREE -LIKE LOGICAL SuBDIVISION OF CHAPTER I II CoNTENTS

CHAPTER Ill: FIFTH GENERATION KNoWLEDGE-BASED AND VLsi CHIP

EMBoDIED INFoRMATION FLow CoMPUTER SYsTEMS

SECTION A: CoMPuTATIONAL f'bDELS AND •KNoWLEDGE INFoRMATION

PROCESSING SYSTEMS' - KIPS

III.A.l: Introduct1on

III.A.2: Applied Schemas for Describ1ng Parallel1sm 1n
Computer Systems

III.A.2.1: Orig1nation and Modell1ng Potent1al of
'Petri Nets'

III.A.2.1.1: The Structure, Modell1ng Propert1es
and Execut1on Rules of 'Petri Nets•

III.A.2.1.2: 'Petri Nets• Analys1s Approaches,
Programm1ng Constructs Represent
at1on, and Formal Languages

III.A.2.2: Extens1ons, Subclasses and Related Models
to 'Petri Nets'

III.A.3: Ob]ect1ves of 'F1fth Generat1on Computer Systems' -
FGCS and Novel Decentral1zed Machines as their
Potent1al Arch1tectural Bas1s

III.A.3.1: Or1g1nat1on, Fundamental Hardware and
Software Pr1nc1ples, Character1st1cs of
the 'Data Flow• Mach1ne Arch1tectures

III.A.3.1.1: Prototype •Data Flow• Mach1ne
Arch1tectures, Programm1ng
Languages, and Further Des1gn
Alternat1ves

III.A.3.2: A General Spec1f1cat1on of Research SubJects
and Character1st1cs for a FGCS 'Data Base'
Mach1ne Arch1tecture

210

229

239

240

241

246

250

253

259

266

271

277

283

290

[ConJ:.

SECTION B: EMBEDDING INFORMATION Frow ScHEMES ON llRIDS Arm
IN CHIP AREA Arm TIME

III.B.l: The Impact of the Technological InnovatJ.on on

6]

rzye
294

Future ArchJ.tectures - The VLSI Challenge 295

III.B.2: Fundamental ArchJ.tectural Concepts in DesignJ.ng
SpecJ.al-Purpose VLSI OomputJ.ng Structures 301

III.B.2.1: The Fundamental Principle, CrJ.terJ.a and
Advantages of •SystoZia' Architectures 304

III.B.2.2: A OompatJ.bJ.lJ.ty Taxonomy in the Space of
'SystoUa' Computations and VLSI Structures 37 0

A TREE-LIKE loGICAL SuBDIVISION OF CHAPTER IV CoNTENTS

CHAPTER IV: AN INVESTIGATION ON THE POTENTIAL PARALLELISM OF A
NEw CLAss OF GRoUP EXPLICIT METHODS FoR THE SoLUTION

OF PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

SECTION A: FUNDAMENTAL CoNCEPTS OF DIFFERENTIAL EQUATIONS

IV.A.l: Introductory Remarks

IV.A.2: Mathematical PrelJ.IDJ.narJ.es of DJ.fferentJ.al
EquatJ.ons

IV.A.3: CanonJ.cal ClassifJ.cation of PartJ.al DJ.fferentJ.al
EquatJ.Ons

IV.A.3.1: Boundary OondJ.tJ.ons

IV.A.3.2: MathematJ.cal PhysJ.cs and Well-Posedness
of Problems

IV.A.3.3: Analytical/Numerical ApproxJ.IDate Methods
of SolutJ.On

SECTION B: PARALLEL ExPLOITATION OF EXPLICIT METHODS FoR THE

SoLUTION OF NoN-lrNEAR PARABOLIC EQUATIONS

IV.B.l: PrelJ.IDJ.nary Concepts and NotatJ.ons of FJ.nJ.te
D1fference Approximations to Der1vat1ves

IV.B.l.l: ParabolJ.c EquatJ.ons J.n One Space
Dimension and D1scret1zing F1nite
DJ.fference Formulae

IV.B.1.2: A DescriptJ.ve Treatoont of the Convergence,
StabJ.lJ.ty, and ConsJ.stency or OompatibilJ.ty
Concepts

317

318

379

322

329

334

335

338

344

345

350

357

[Con.t. 71

IV. B. 2: Var1ous Finite-Difference ApproX1mation Schemes
to a Non-Linear Parabol1c Problem 364

IV.B.3: The New Class of 'Group Expl1c1t' - GE Solut1on
Metoods 37 3

IV.B.3.1: The Standard Expl1cit Method: Performance
Model,Exper1mental Results and Performance
Analysis on the 'NEPTUNE' Prototype System 386

IV.B.3.2: The 'Group Explic1t with Ungrouped ends' -GEU
Method: Experimental Results and
Performance Analysis on the 'NEPTUNE'
Prototype System 4Z3

IV.B.3.3: The 'Group Explicit Complete' - GEC Method:
Exper1mental Results and Performance
Analys1s on the 'NEPTUNE' Prototype System 434

IV.B.3.4: The '(S1nglel Alternat1ng Group Explic1t' -
(S)AGE Method: Experimental Results and
Performance Analys1s on the 'NEPTUNE'
Prototype System 44Z

IV. B. 3. 5: The ' (Double) Alternat1ng Group Expl1cit' -
(D)AGE Method: Exper1mental Results and
Performance Analysis on the 'NEPTUNE'
Prototype System 455

IV. B. 3. 6: A ' (!obd1fied Double) Alternat1ng Group
Expl1c1t' - (MD)AGE Method: Exper1mental
Results and Performance Analys1s on the
'NEPTUNE' Prototype System 467

IV.B.3. ?: Ind1cat1ve Exper1mental Results and
Performance Measurements of the GEU Method
on SIMD and P1pel1ned Vector Computers 477

IV.B.4: Relat1ve Performance Comparisons and Conclusive
Remarks on the GE Methods 481

lll!lVOLUME-ll

A TREE-LIKE LOGICAL SuBDIVISION OF CHAPTER V CoNTENTS

CHAPTER V: IMPLICIT PARALLELISM ExPLOITATION Qp DIRECT TRIDIAGONAL

LINEAR SYSTEM SoLVERS 515

SECTION A: PARALLEL CYCLic OoD-EVEN REDUCTION ALGoRITHMS

FoR SoLVING ToEPLITZ TRIDIAGONAL EQUATIONS 516

V.A.l: Introductory Remarks 517

[Con-t. 8]

V.A.2: Fundamental Concepts and Notations of MatrLX
Computat~onal Algebra

V.A.o: Class~f~cat~on and Mer~ts of the Methods for
Solving L~near Systems of Equations

V.A.4: The Symmetr~c Constant-Diagonal Case

V.A.5: The Symmetr~c Constant-Diagonal Per~od~c case

V.A.6: Algorithm~c Flowchart Representat~on and
Inherent Parallel~sm Detect~on

V.A.?: Implementat~on of the Parallel Symmetric
Constant-D~agonal Per~od~c Case: Experimental
Results and Performance Analysis on the
'NEPTUNE' Prototype System

SECTION B: PARALLEL CYCLIC ODD-EVEN REDUCTION ALGoRITHMS

FoR SoLVING GENERAL-TRIDIAGONAL EQUATIONS

V.B.l: The General Non-Per~od~c Case: Exper~mental
Results and Performance Analysis on the
'NEPTUNE' Prototype System

V.B.2: The General Period~c Case: Exper~mental
Results and Performance Analys~s on the
'NEPTUNE' Prototype System

V.B.3: General Comments and Conclusions

A TREE-LIKE LoGICAL SUBDIVISION DF CHAPTER VI CoNTENTS

CHAPTER VI : A NEw CLAss OF 'PIPELINED' ARMY ARcHITECTURES FoR

ALGORITHM SYSTOLIZATION

SECTION A: ON ALGORITHMICALLY SPECIALIZED SYSTOLIC NETWORKS

UsiNG THE 'ROTATING • AND • FoLDING • TECHNIQUE

VI.A.l: Introduct~on

VI.A.2: Class~f~cat~on and Principles of 'Syetolic'
Algor~thms

VI.A.3: An Abstract Mathemat~cal Model for the
Ver~f~cat~on of 'Syetolic' Networks

VI.A.4: The Data Stream 'Rotat~ng' and 'Fold~ng'
Techn~que

VI.A.5: A 'Rotat~ng' and 'Folding' Algor~thm Us~ng a
Two-D~mens~onal 'Syetolic' Commun~cat~on
Geometry

~e

519

5Z6

533

538

543

557

591

592

618

639

642

643

644

649

652

658

664

[Con:t. 9]

VI.A.6: 'Systolia' LU-Factorization Dequeues for
Tridiagonal Systems

VI.A.6.1: Dequeues for Solving Tr~angular
Linear Systems

VI.A.6.2: General Comments: The P~vot~ng
Problem and Orthogonal
Factor~zation

SECTION B: CoNcURRENT SYSTOLIZATION FoR SoLVING GENERAL

BANDED LINEAR SYSTEMS

VI.B.l: 'SystoZia' LU-Factor~zat~on Dequeues for
Qu~d~agonal Systems

VI.B.l.l: Mod~fied Dequeues for the
Uni~rectional Factor~zat~on of
the 'Central' Subsystems

VI.B.2: 'SystoZia' Pipel~nab~l~ty 'Rotating' and
'Fold~g' General Banded Matr~ces

VI.B.3: Further Research ~n the 'Soft-SystoZia'
Area, Conclus~ve Remarks

A TREE-LIKE loGICAL SuBDIVISION Or CHAPTER VII CoNTENTS

CHAPTER VII: SuPERCOMPUTING WITH DATA-DRIVEN WAVEFRONT ARRAY

PRocEssoRs

VII.l: Introductory Remarks

VII.2: A P~pel~nable Two-D~mensional Computat~onal
wavefront Concept

VII.3: On the Solut~on of L~near Systems Apply~ng
the QUadrant Interlock~ng Factor~zation - QIF
Method

VII.4: S~gle Stage Computational Dewavefronts
for the Implementat~on of the QIF Algor~thm

VII.5: D~scuss~on and Further Remarks

CHAPTER VI I I : GENERAL CoMMENTS ON FuroRE CoMPUTER ARcHITECTURES ,

DvERVIEWING CoNCLUSIONS , AND FuRTHER REsEARCH

REFERENCES

r.zye
674

696

720

7 21

722

746

782

797

802

803

806

811

816

838

841

856

APPENDIX C-I

APPENDIX C-II

APPENDIX C-IV

APPENDIX C-v

APPENDIX C-vi

Further Analys1s of the 'Speed-up' and

'Effiaienoy'Formulae 1n (par.-I.B.4.1)

Extended Implementation Deta1ls for

(par.-II.A.3, II.B.3.1)

A Select1on of Opt1mized Parallel Computer

Programs for the 'GE' Methods

A Selection of Optim1zed Parallel Computer

Programs for the Tr1d1agonal L1near System

Solvers

Mathemat1cal Background and Exemplary

Numer1cal Examples

[Cont. 10]

906

909

918

940

997

.... F~gure

I.A.l-fl

I.A. 2.1-fl

I.A.2.1-f2

I.A.2.1-f3

I. A. 2. 2-fl

I.B.2-fl

I.B.3.1-fl

I.B.3.1.1-fl

I.B.3.1.2.i-f1

I.B.3.1.2.i-f2

I.B.3.1.2.ii-fl

I.B.3.1.2.ii-f2

I.B.3.1.2.iii-fl

I.B.3.1.2.iv-fl

I.B.3.2-fl

:

:

:

:

:

:

lF-<.g. 111

The Increment ~n Computat~onal Ar~thmet~c Speed
(a factor of 10 every 5 years).

Flynn's SISD Organ~zat~on.

Concurrency and Instruction Process~ng.

A MISD Organ~zat~on.

The Configuration of the Six Machine Classes.

The SIMD Genealogy.

The General Scheme of an Assoc~ative Processor
Arch~tecture.

An Example of the Operat~on of an Assoc~at~ve
Memory.

The General Structure of a Fully Parallel,
Word-Organ~zed Assoc~at~ve Memory and ALU
(each crosspo~nt represents a bit-cell of
the memory) •

The General Structure of a Fully Parallel
D~str~uted Log~c Assoc~at~ve Processor
(as proposed by Lee).

The OUtline of a B~t-serial Assoc~at~ve
Memory and the ALU.

The Operat~onal Concept of a STARAN
Assoc~at~ve Array Module w~th a 256-Wordsx
256-B~ts Memory.

The Hardware Interconnect~ons of a Word
Ser~al Assoc1at1ve Processor.

The Assoc~at~ve Memory of RAPID.

The General Model of an Array or Parallel
Computer, having an ~dent~cal number of
Processors and Memory Banks.

30

38

38

39

42

51

57

60

62

63

65

66

68

69

73

.... F1gure

I.B.3.2.1-f1

I.B.3.2.1-f2

I.B.3.2.2-f1

I.B.3.2.2-f2

I.B.3.2.3-f1

I.B.3.2.3-f2

I.B.4-f1

I.B.4.1-f1

I. B. 4. 1-f2

I.B.4.1-f3

I.B.4.1-f4

I.B.4.1-f5

I.B.4.1-f6

I.B.4.1-f7

I.B.5.1-f1

I.B.5.1-f2

I.E. 5. 1-f3

I.B.5.1.1-f1

I.B.5.1.2-f1

I.B.5.1.3-f1

I.B.5.3-f1

:

:

:

:

:

:

[FA..g.

A typ1cal straight storage of a Two
D1mensional (4x4) Array 1nto 4 Memory Un1ts.

A Skewed storage 1nto 4 Memory Un1ts allow1ng
access to Rows and Columns of a Two-Dimens1onal
(4 x4) Array.

a) One-D1mens1onal; b)-f) Two-Dimensional;
g)-J) Three-D1mens1onal Networks.

1) S1ngle stage, sxs Shuffle-Exchange Network;
LL) Multistage, sxs Benes Network;
1i1) Crossbar Sw1tch Network.

The ILLIAC IV System Conf1gurat1on.

The MaJor Hardware Un1ts of the DAP System.

The Genealogy of Pipel1ned Arch1tectures.

A P1pel1ned Processor System.

The Modules of a P1pel1ned Processor.

The Module - T1me Diagram.

Modules for Float1ng PoLnt Operat1ons.

The Bottleneck is 1n Module 2.

Subd1v1s1on of Bottleneck.

Parallel1ng of Bottleneck.

A MIMD Arch1tecture.

Indirectly or Loosely Coupled Systems.

Directly or Tightly Coupled systems.

The TLme-Shared/Common Bus Interconnection
Schema.

The Crossbar Sw1tch Matr1x Interconnect1on
Schema.

The Mult1bus/Mult1port Interconnect1on
Schema.

The C.mmp Mult1-min1 Processor.

12]

Page
-v

75

75

78

78

83

84

87

91

91

91

94

95

95

95

106

106

106

110

Ill

112

119

.... F~gure

I.B.5.3-f2

I.B.5.3-f3

I.B.5.3.1-fl

I.B.5.3.1-f2

I.B.5.3.2-fl

I.B.5.3.2-f2

I.B.5.3.2-f3

II.A.l-fl

II.A.l-f2

II.A.2.2-fl

II.A.2.3-fl

II.A.2.3-f2

II.A. 3-fl

II.A. 3.1-fl

II.A.3.1-f2

II.A.3.1-f3

II.B. 2-fl

II.B.2-f2

II.B.2-f3

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

[F-i.g. 13]

A Three-Cluster Cm• Network.

A MIMD Arch~tecture w~th Skeleton Processors
and Central~zed Computat~on Fac~l~t~es.

The IntePdata Dual ProcessoP System
Conf~gurat~on.

The IntePdata Dual ProcessoP System.

The Current 'NEPTUNE'System Configuration.

The 'NEPTUNE' System.

P~ctor~al Representat~ons of the Memory
Allocat~on to Various Tasks. [Obta~ned

ut~l~zing the 'Show Memory Map' - SMM
command).

H~erarchical Representat~on of a Sequentially
Organ~zed Program (Each block w~th~n a level
represents a s~ngle task) .

Sequent~al and Parallel Execution of a Task.

The FORK/JOIN Techn~que.

B~nary Tree Representat~ons of the Ar~thmet~c
Express~on: A+B+C+D+E+F+G+H.

Tree-He~ght Reduct~on (by DistPibutivity)
of the Ar~thmet~c Express~on: A'(B'C'D+E).

The Flowchart Structure of a Program for a
MIMD Computer.

The XPFCL Command.

The XPFT Command.

The Report of a 'Non-Running' Parallel
Program.

A P~pel~ned Integer Adder (w~th k=3) .

The 'PePfect Shuffle' Interconnect~on Pattern
of E~ght Processors.

The Evaluat~on Tree of the Express~on An
(for n=8) •

Page
v-

120

122

124

124

126

126

130

142

14 2

156

161

763

172

177

1 81

181

795

798

201

.... F1gure

II.B.2-f4

II.B. 2-f5

II.B.3-f1

II.B.3-f2

III.A.2.1.1-f1

III.A.2.1.1-f2

III.A.2.1.1-f3

III.A.2.1.2-f1

III.A.2.1.2-f2

III.A.2.1.2-f3

III.A. 3.1-f1

III.A.3.1-f2

III.A. 3.1-f3

III.A. 3.1-f4

III.A. 3.1.1-f1

III.A. 3.1.1-f2

III.A.3.2-f1

III.B.1-fl

III.B.2-f1

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

[F-i.g .

The 'Inner' or 'Scalar Product' of two n-vectors
x,y.

The 'Odd-Even Transposition Sort' on a L1near
Array of Processors (The even-numbered
processors have been act1vated f1rst) •

The Evaluat1on Tree of the Express1on An of
(II.B.3:2) (1n the case that p 1s even).

The Trans1t1on Tree of the A z2 Algor1thm.

A S1mple Graph Representat1on of a 'Petri-Net'.

The Modellmg of e1ther Firing Order 'Concmrrent'
Events.

The Firing of e1ther of the Transitions t.,t.
D1sables the other (i.e. 1n 'Conflict'). ~ J

Programm1ng Language Constructs Representat1on
v1a 'Petri Nets'.

'Petri Net' Modelhng of Parallel1sm.

'Petri Net' Representation of MUtual Exclusion.

Instruction Execut1on Mechan1sm 1n a Data Flow
Machine for the Computat1on of a=(b+1)*(b-a).

Three Snapshots of the Data Flow Computat1on
for a=(b+1) *(b-a),

A 'Statio' Data Flow Mach1ne Organ1zat1on.

A 'Dynamic' Data Flow Machine Organ1zat1on.

The Denn1s 'Statio' Data Flow Mach1ne Arch1-
tecture at MIT.

The Manchester 'Dynamic' Data Flow Mach1ne
Arch1tecture.

A General Conf1gurat1on for a 'Data Base'
Mach1ne.

The Relat1ve Evolut1on of the 'VLSI'
Component F1elds.

The Des1gn Stages of a Spec1al-Purpose VLSI
Ch1p.

14)

Page
-v

202

203

216

223

255

258

258

263

264

264

279

280

281

281

286

287

293

298

305

.... Fl.gure

III.B.2.1-fl

III.B.2 .1-[2

III.B.2.2-fl

III.B.2.2-f2

IV.A. 3-fl

IV.A. 3-f2

IV.B.l-fl

IV.B.l.l-fl

IV.B.l.l-[2

IV.B.2-fl

IV.B.2-f2

IV.B.2-f3

IV.B. 3-fl

IV.B. 3-f2

IV. B. 3-f3

IV.B. 3-f4

IV.B. 3-[5

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

The Fundamental Prl.ncl.ple of a 'Systo~ic'
ArchJ.tecture.

'Conceptuar Cost and Performance Curves
[KUNG82] •

[F-~..g.

A ClassJ.fication of Communication Geometry
of Parallel AlgorJ.thms.

VarJ.ous 'Systo~ic' Array Configurations.

The Area of IntegratJ.on S and the Boundary
Curve C.

The Open-Ended, Area of IntegratJ.on S and
Curve C.

The Finite-DJ.fference Grid.

The SolutJ.on Regions for ParabolJ.c EquatJ.ons.

Geometrl.cal Representatl.on of the Fl.nl.te
Difference Formulae Concept.

The Molecular Dl.agram of the Standard
Explicit Scheme for the Dl.rect Solution
of Burgers' EquatJ.on.

The Molecular DJ.agram of the Fu~~y Imp~icit
Scheme for the Iterative SolutJ.on of
Burgers' Equation.

The Molecular Diagram of the Crank-Nico~son
Scheme for the Dl.rect SolutJ.on of Burgers'
EquatJ.on.

The Molecular Diagram of Saul'yev's
Asymmetric Formula (IV.B.3:2).

The Molecular Dl.agram of Saul'yev's
Asymmetrl.c Formula (IV.B.3:4).

A VarJ.atJ.on of the Use of Saul'yev's
Asymmetric Equations.

The Molecular Diagrams of the GE Formulae
for Burgers' Equat1on.

The RepresentatJ.ve Diagrams of the varJ.ous
GE Schemes.

15]

Page
v-

308

309

311

313

333

333

347

351

354

368

369

370

374

374

377

380

385

..... Figure

IV.B.3.2-fl

IV.B.3.J-fl

IV.B. 3.4-fl

IV. B. 3.5-fl

IV. B. 3.6-fl

IV.B.4-fl

IV.B.4-f2

IV.B.4-fJ

IV.B.4-f4

IV.B.4-f5

IV.B.4-f6

V.A. 6-fl

V.A.6-f2

V.A. 6-f3

: The Representat~ve D~agram of th~s Scheme
(Le. G.E.U.}.

: The Representative D~agram of th~s Scheme
(Le. G.E.C.}.

: The Representat~ve Diagram of th~s Scheme
(i.e. S.A.G.E.}.

: The Representat~ve D~agram of th~s Scheme
(Le. D.A.G.E.}.

: The Representat~ve D~agram of this Scheme
(Le. M.D.A.G.E.).

: The Time-complexity of the Parallel
Algor~thms for the GE Schemes and the
Standard Explic~t Method.

: The Speed-ups ach~eved by the Parallel
Algor~thms for the GE Schemes and the
Standard Explicit Method.

: The Relative (or Normalized) Speed-ups
ach~eved by the Parallel Algor~thms
for the GE Schemes.

[F-<.g.

: The Reference Internal Speed-ups ach~eved
by the Parallel Algor~thms for the
Uncond~t~onally Stable (for all r>O} GE
Schemes.

: The Efficiency ach~eved by the Parallel
Algorithms for the GE Schemes and the
Standard Expl~cit Method.

: The Real Cost of the Parallel Algorithms
for the GE Schemes and the Standard Expl~c~t
Method.

: The Sequent~al Flowchart of the Cycl~c
Odd-Even Reduction Algor~thm for the
Symmetric Constant-Diagonal Case (see
Bekakos [BEKABl]).

: The Sequent~al Flowchart of the Cycl~c
Odd-Even Reduct~on Algorithm for the
Symmetric Constant-Diagonal Periodic Case
(see Bekakos [BEKABll).

: Ser~al Evaluat~on Rout~ng of the Symmetr~c
Constant-D~agonal Per~od~c Case (with
reference to even rows and n=B} •

16]

Page
v-

425

434

443

456

467

482

483

484

485

486

487

544-545

546-547

548

~ FLgure

V.A.6-f4

V.A.?-fl

V.A.?-f2

V.A.?-f3

V.A.?-f4

V.A.?-f5

V.B.l-fl

V.B.1-f2

V.B.1-f3

V.B.1-f4

V.B.2-f1

V.B.2-f2

[F~g.

: Parallel Evaluation Routing of the SymmetrLc
Constant-Diagonal Periodic Case (n=S).

: The Time-Complexity of Parallel Variants of
the eyclLc Odd-Even Reduction Method for the
Symmetric Constant-Diagonal Periodic Case.

: The Speed-ups achLeved by Parallel VarLants
of the CyclLc Odd-Even ReductLon Method for
the SymmetrLc Constant-DLagonal Periodic
Case.

: The Relative (or Normalized) Speed-ups
achLeved by Parallel varLants of the eyclLc
Odd-Even ReductLon Method for the SymmetrLc
Constant-D1agonal Periodic Case.

: The Efficiency achieved by Parallel varLants
of the Cyclic Odd-Even ReductLon Method for
the Symmetric Constant-Diagonal PerLodLc Case.

: The Real Cost of Parallel VarLants of the
CyclLc Odd-Even ReductLon Method for the
SymmetrLc Constant-Diagonal PerLodic Case.

: The Time-Complexity of Parallel VarLants of
the eyclLc Odd-Even ReductLon Method for
the General Non-PerLOdLc Case.

: The Speed-ups achieved by Parallel VarLants
of the Cyclic Odd-Even Reduction Method for
the General Non-PerLodic case.

: The Efficiency achieved by Parallel VarLants
of the CyclLc Odd-Even ReductLon Method for
the General Non-PerLodic Case.

:

:

:

The Real Cost of Parallel VarLants of the
CyclLc Odd-Even ReductLon Method for the
General Non-PerLOdLc Case.

The Time-Complexity of Parallel Variants of
the Cyclic Odd-Even Reduction Method for the
General Per~od~c Case.

The Speed-ups achLeved by Parallel VarLants
of the CyclLc Odd-Even ReductLon Method for
the General PeriodLc Case.

17]

Page
~

556

576

577

578

579

580

607

608

609

610

630

631

~ Figure

V.B. 2-f3 :

V.B. 2-f4 :

VI.A.4-fl :

VI.A.4-f2 :

VI.A.4-f3 :

VI.A. 5-fl :

VI.A. 5-f2 :

VI.A. 5-f3 :

VI.A.5-f4 :

VI.A. 6-fl :

VI.A.6-f2 :

VI.A.6-f3 :

VI.A.6-f4 :

VI.A.6-f5

[FJ.g.

The Efficiency ach~eved by Parallel
Var~ants of the Cycl~c Odd-Even Reduct~on
Method for the General Per~od~c Case.

The ReaZ Cost of Parallel var~ants of
the Cycl~c Odd-Even Reduct~on Method for

18]

Page v-

632

the General Period~c Case. 633

The Architecture of Leiserson's IPS
Processor.

The Arch~tecture of Leiserson's Mod~f~ed
IPSP.

The Computat~onal Steps of the Matr~x
Vector Multipl~cat~on Algor~thm (n=5)
Us~ng a 'Dequeue'.

The OUtl~e of the IPS Cell ~ the Hexagonal
Geometry.

The Dequeuee of Data for the Matr~ Mult~
pl~cat~on Problem on a Hexagonal Systolic

659

662

663

665

Array (for p
1

=q
1

=p
2

=q
2

=2, and n=S). 668

The Dequeuee of Data for the Matr~x Mult~
pl~cat~on Problem on a Hexagonal Systol~c
Array (for p

1
=2, q

1
=3, p

2
=3, q

2
=2, and n=5). 670

Four Consecut~ve Computational Steps of the
Matrix Mult~pl~cat~on Problem of Paradigm
{VI.A.5:~2J. 671-672

Hexagonal Array of Processors for P~pel~n~g
the LU-decomposit~on of a (nxn)-Band Matr~
w~th Bandw~dth w=7. 675

The Dequeue of Data for the LU-factor~zat~on
on a Hexagonal Systol~c Array (for p=q=2,
and n=9). 683

All the Computat~onal Steps of the LU
factor~zation of Paradigm {VI.A.6:~1J. 684-687

The Dequeue of Data for the LU-factor~zat~on
on a Hexagonal Systol~c Array (for p=q=2,
and n=4) . 691

All the Computat~onal Steps of the LU
factor~zation of Paradigm {VI.A.6:~2J. 692-694

~ Figure

VI.A.6.1-f1 :

VI.A. 6 .1-f2 :

VI.A. 6 .1-fJ :

VI.A. 6 .1-f4 :

VI.A. 6 .1-f5 :

VI.A.6.1-f6 :

VI.A.6.1-f7 :

VI.A. 6 .1-fB

VI.B.1-f1 :

VI.B.1-f2 :

VI.B.1-f3 :

VI.B.1-f4 :

lUg. 19]

The Dequeue of Data for the Solut1on of
the Lower Tr1angular L1near System of
Paradigm [VI.A.6:n1] on the L1nearly
Connected Systol1c Array (for w=q=2).

All the Computat1onal Steps for the
Solut1on of the Lower Tr1angular L1near
System of Paradigm [VI.A.6:n 1J.

The Dequeue of Data for the Solut1on of
the Upper Tr1angular L1near System of
Paradigm [VI.A.6:n1J on the L1nearly
Connected Systol1c Array (for w=q=2).

All the Computat1onal Steps for the
Solut1on of the Upper Tr1angular L1near
System of Paradigm [VI.A.6:n 1].

The Dequeue of Data for the Solut1on of
the Lower Tr1angular Linear System of
Paradigm [VI.A.6:n2] on the L1nearly
Connected Systol1c Array (for w=q=2) •

All the Computat1onal Steps for the
Solut1on of the Lower Tr1angular L1near
System of Paradigm [VI.A.6:n2}.

The Dequeue of Data for the Solution of
the Upper Triangular L1near System of
Paradigm [VI.A.6:n2] on the L1nearly
Connected Systol1c Array (for w=q=2) •

All the Computat1onal Steps for the
Solut1on of the Upper Tr1angular L1near
System of Paradigm [VI.A.6:n2].

The Dequeue of Data for the LU-factor1za
t1on on a Hexagonal Systol1c Array (for
p=q=3, and n=S).

Six Consecut1ve Computational Steps of
the LU-factor1zat1on of a Qu1nd1agonal

Page
""V

702

703-705

708

709-711

713

714-715

717

718-719

729

Matr1x (for n=S). 731-733

The Dequeue of Data for the Solut1on of
the Lower Tr1angular Linear System of
Paradigm [VI.B.l:n1] on the Linearly
Connected Systol1c Array (for w=q=3). 738

TWelve Consecut1ve Computat1onal Steps for
the Solut1on of the Lower Tr1angular L1near
System of Paradigm [VI.B.1:rr 1]. 740-741

~ Figure

VI.B.l-f5 :

VI.B.l-f6 :

VI.B.l.l-fl :

VI.B.1.1-f2 :

VI.B.1.1-f3 :

VI.B.1.1-f4 :

VI.B.1.1-f5 :

VI.B.1.1-f6 :

VI.B.l.l-f? :

VI.B.l.l-fB :

VI.B.l.l-f9 :

The Dequeue of Data for the Solut1on of
the Upper Tr1angular L1near System of
Paradigm [VI.B.1:~1 J on the Linearly
Connected Systol1c Array (for w=q=3) •

Six Consecut1ve Computat1onal Steps for
the Solution of the Upper Triangular
L1near System of Paradigm [VI.B.1:~1J.

[F-tg.

The Mod1f1ed Dequeue of Data for the LU
factor1zat1on on a Hexagonal Systol1c
Array (for p=q=3, and n=S).

Eight Consecut1ve computat1onal Steps of
the Un1d1rect1onal (for the Central Sub
matr1X) LU-factor1zat1on of a Quindiagonal

20]

Page
~

744

745

750

Matr1x (for n=S). 751-754

The Mod1f1ed Dequeue of Data for the
Solut1on of the Lower Triangular L1near
System of Paradigm [VI.B.1:~1J on the
L1nearly Connected Systol1c Array (for
w=q=3).

Six Consecut1ve Computat1onal Steps for
the Solut1on of the Lower Tr1angular
L1near System of Paradigm [VI.B.1:~1J Us1ng a Mod1f1ed Dequeue of Data.

The Mod1f1ed Dequeue of Data for the
Solut1on of the Upper Triangular L1near
System of Paradigm [VI.B.1:~ 1J on the
L1nearly Connected Systol1c Array (for
w=q=3).

Six Consecut1ve Computat1onal Steps for
the Solution of the Upper Tr1angular
L1near System of Paradigm [VI.B.1:~ 1J Us1ng a Mod1f1ed Dequeue of Data.

The Mod1f1ed Dequeue of Data for the LU
factor1zat1on on a Hexagonal Systol1c
Array (for p=q=3, and n=4).

Six Consecut1ve Computational Steps of
the Un1d1rect1onal (for the Central Sub
matr1X) LU-factor1zat1on of a Qu1nd1agonal

760

761

764

765

769

Matr1x (for n=4). 770-772

The Mod1f1ed Dequeue of Data for the
Solut1on of the Lower Triangular Linear
System of Paradigm [VI.B.1.1:~ 1J on the
L1nearly Connected Systol1c Array (for
w=q=3) . 777

lF-tg. 21]

~ F~gure Page

VI.B.l.l-flO

VI.B.l.l-fll

VI. B. 1.1-f12

VI.B. 2-fl

VI.B.3-fl

VI.B. 3-f2

VII.2-fl

VII.4-fl

VII.4-f2

VII. 4-f3

VII.4-f4

VII.4-f5

VII.4-f6

:

:

:

Six Consecut~ve Computat~onal Steps for the
Solut~on of the Upper Tr~angular Linear
System of Paradigm [VI.B.1.1:~1J Us~g
a Modified Dequeue of Data.

The Mod~f~ed Dequeue of Data for the
Solution of the Upper Tr~angular L~near
System of Paradigm [VI.B.1.1:~1J on the
L~early Connected Systol~c Array (for
w=q=3).

Six Consecut~ve Computat~onal Steps for
the Solut~on of the Upper Tr~angular
Linear System of Paradigm [VI.B.1.1:~ 1J
Us~ng a Mod~f~ed Dequeue of Data.

The Relat~v~ty of the var~ous cases for
a (nxn) Banded MatrLX of Sem~-bandw~dth p.

Def~n~t~on of the Binary Cell.

The Computational Steps of the Matr~x
Vector Mult~pl~cat~on Algor~thm (n=S)
Us~g a 'Quadrequeue 1

•

The Conf~gurat~on for a (nxn)-Square
Wavefront Array Processor (WAP)·

Hardware Conf~gurat~on for a (2x2) L~ear
System Solver Us~ng Cramer's Rule.

The Propagat~on of Two-D~mens~onal
Computational 'Dewavefronts'.

The Data Streams for the Mod~f~cat~on
Part of the Factor~zat~on Phase (for
n=S) •

The Data Streams for the Mod~f~cat~on
Part of the Forward Solut~on Phase
(for n=S).

The Data Streams for the Mod~f~cat~on
Part of the Backward Solut~on Phase
(for n=S).

The Overall Hardware Configuration for
the Implementat~on of the QIF Algor~thm.

""V

778

780

7 87

794

797

799

807

825

827

831

832

833,

837

• Table

II.B.l-tl

II.B.3.1-tl

III.B.2.2-tl

IV.B. 3.1-tl

IV.B. 3.1-t2

IV.B.3.1-t3

IV.B. 3.1-t4

IV.B. 3.2-tl

IV. B. 3.2-t2

IV.B. 3.2-t3

IV.B. 3. 3-tl

IV.B. 3. 3-t2

IV.B.3.3-t3

[Ta.b. 2Z]

: Typ~cal Problems Solved on SIMD Computers.

: Resource Prov~s~ons of the 'NEPTUNE' System.

: The Potent~al Ut~lization of '8ystolia' Array
Conf~gurat~ons.

:

:

:

:

:

:

:

:

:

:

L~st of Parameters for the Performance Model.

Experimental Results and Performance
Measurements of the Parallel Algor~thm for
the Standard Expl~c~t Method on the 'NEPTUNE'
Prototype System.

A Program Dependent Performance Analys~s of
the Parallel Algorithm for the Standard
Expl~c~t Method.

A System Dependent Performance Analysis of
the Parallel Algorithm for the Standard
Explic~t Method.

Experimental Results and Performance
Measurements of the Parallel Algor~thm for
the G.E.U. Method on the 'NEPTUNE' Prototype
System.

A Program Dependent Performance Analys~s of
the Parallel Algorithm for the G.E.U. Method.

A System Dependent Performance Analys~s of
the Parallel Algor1thm for the G.E.U. Method.

Exper1mental Results and Performance
Measurements of the Parallel Algor1thm for
the G.E.C. Method on the 'NEPTUNE' Prototype
System.

A Program Dependent Performance Analys1s of
the Parallel Algor~thm for the G.E.C. Method.

A System Dependent Performance Analys1s of
the Parallel Algorithm for the G.E.C. Method.

Page v
191

237

314

394-400

403-404

408

408

429-430

432

432

437-438

440

440

• Table

IV.B.3.4-t1

IV.B. 3.4-t2

IV.B.3.4-t3

IV. B. 3.4-t4

IV.B. 3.4-t5

IV.B. 3.4-t6

IV.B.3.4-t7

IV.B. 3.5-tl

IV. B. 3.5-t2

IV.B.3.5-t3

IV.B. 3. 5-t4

IV.B. 3. 5-t5

[Ta.b.

: Experimental Results and Performance
Measurements of the Parallel Algorithm for
the (S).A.G.E. Method (for r=l) on the
'NEPTUNE' Prototype System.

: A Program Dependent Performance Analys~s of
the Parallel Algorithm for the (S).A.G.E.
Method (for r=l).

: A System Dependent Performance Analys~s of
the Parallel Algorithm for the (S).A.G.E.
Method (for r=l).

: Exper~ental Results and Performance
Measurements of the Parallel Algor~thm
for the (S).A.G.E. Method (for r=2) on the
'NEPTUNE'Prototype System.

: Exper~mental Results and Performance
Measurements of the Parallel Algorithm
for the (S).A.G.E.Method (for r=4) on the
'NEPTUNE'Prototype System.

: A Program Dependent Performance Analys~s
of the Parallel Algorithm for the (S).A.G.E.
Method (for r=4).

: A System Dependent Performance Analys~s of
the Parallel Algor~thm for the (S).A.G.E.
Method (for r=4).

: Exper~mental Results and Performance
Measurements of the Parallel Algor~thm
for the (D).A.G.& Method (for r=l) on the
'NEPTUNE' Prototype System.

: A Program Dependent Performance Analys~s
of the Parallel Algor~thm for the (D).A.G.E.
Method (for r=l).

: A System Dependent Performance Analys~s
of the Parallel Algor~thm for the (D).A.G.E.
Method (for r=l).

: Exper~mental Results and Performance
Measurements of the Parallel Algor~thm
for the (D).A.G.E. Method (for r=2) on the
'NEPTUNE'Prototype System.

: Exper~mental Results and Performance
Measurements of the Parallel Algor~thm
for the (D).A.G.E. Method (for r=4) on the
'NEPTUNE' Prototype System.

23]

Page
""V

445-446

450

450

451-452

453

454

454

458-459

461

461

462-463

464

• Table

IV.B. 3.5-t6

IV.B.3.5-t7

IV.B.3.6-t1

IV.B. 3.6-t2

IV.B. 3.6-t3

IV.B. 3.6-t4

IV.B.3.6-t5

IV.B. 3.6-t6

IV. B. 3.6-t?

IV.B. 3. 7-tl

IV.B.4-t1

V.A.2-t1

V.A.2-t2

[Ta.b. 241

Page
V"

: A Program Dependent Performance Analysis
of the Parallel Algor~thm for the (D).A.G.E.
Method (for r=4). 465

: A System Dependent Performance Analysis
of the Parallel Algor~thm for the (D).A.G.E.
Method (for r=4). 465

: Experimental Results and Performance
Measurements of the Parallel Algor~thm
for the (M.D).A.G.E. Method (for r=l) on
the 'NEPTUNE' Prototype System. 469·470

: A Program Dependent Performance Analys~s
of the Parallel Algor~thm for the (M.D).A.G.E.
Method (for r=l). 472

: A System Dependent Performance Analys~s
of the Parallel Algor~thm for the (M.D).A.G.E.
Method (for r=l). 472

: Experimental Results and Performance
Measurements of the Parallel Algor~thm for
the (M.D).A.G.E. Method (for r=2) on the
'NEPTUNE' Prototype System. 473·474

: Exper~mental Results and Performance
Measurements of the Parallel Algor~thm
for the (M.D).A.G.E. Method (for r=4) on the
'NEPTUNE'Prototype System.

: A Program Dependent Performance Analys~s
of the Parallel Algor~thm for the (M.D).A.G.E.
Method (for r =4) •

: A System Dependent Performance Analysis
of the Parallel Algor~thm for the (M.D).A.G.E.
Method (for r =4) .

: Exper~mental Results on the 'DAP' and 'CRAY-lS'
Systems.

: The Algebra~c-complex~ty of the GE Schemes
~n Comparison w~th the Standard Expl~c~t
and Crank-N~colson Methods.

: The Def~n~t~ons of Spec~al Types of Band
Matr1ces.

: Some Spec~al Properties of Square Matrices.

475

476

476

480

488

522

523

.Table

V.A. ?-tl

V.A. ?-t2

V. A. ?-t3

V.A. ?-t4

V.A.?-t5

V.B.l-tl

V.B.1-t2

V.B.1-t3

V. B. 2-tl

[T a.b.

: Experimental Results and Performance
Measurements, for the Symmetr~c Constant
D~agonal Per~odic Case, of Parallel
var~ants of the Cycl~c Odd-Even Reduct~on
Method on the 'NEPTUNE' Prototype System,
for Granularity Factors of Various S~zes.

: Exper~mental Results and Performance
Measurements, for the Symmetric Constant
D~agonal Per~od~c case, of Parallel
Var~ants of the Cyclic Odd-Even Reduct~on
Method on the 'NEPTUNE' Prototype System,
for a Granularity Factor of Size (2x2).

: L~st of LoaaZ Parameters for the Performance
Model.

: Program Dependent Performance Analyses, for
the Symmetr~c Constant-D~agonal Period~c
Case, of Parallel var~ants of the Cycl~c
Odd-Even Reduct~on Method.

: System Dependent Performance Analyses, for
the Symmetr~c Constant-D~agonal Per~od~c
Case, of Parallel var~ants of the Cyclic
Odd-Even Reduct~on Method.

: Exper~mental Results and Performance
Measurements, for the General Non-Per~od~c
Case, of Parallel Var~ants of the Cycl~c
Odd-Even Reduct~on Method on the 'NEPTUNE'
Prototype System, for Granularity Factors
of Various S1zes.

: Program Dependent Performance Analyses, for
the General Non-Per~od~c Case, of Parallel
Var~ants of the Cyclic Odd-Even Reduct~on
Method.

: System Dependent Performance Analyses, for
the General Non-Per~od~c Case, of Parallel
Var~ants of the Cycl~c Odd-Even Reduction
Method.

: Exper~mental Results and Performance
Measurements, for the General Per1.od1c Case,
of Parallel Var~ants of the Cycl~c Odd-Even
Reduct~on Method on the 'NEPTUNE' Prototype
System, for Granular~ty Factors of Var~ous
S1.zes.

25]

Page
v-

567-570

571-572

575

582-583

584

601-603

612-613

614

625-627

• Table

V.B.2-t2

V.B.2-t3

[T a.b •

: Program Dependent Performance Analyses,
for the General Per1od1c Case, of Parallel
var1ants of the Cycl1c Odd-Even Reduction
Method.

: System Dependent Performance Analyses, for
the General Period1c Case, of Parallel
variants of the Cyclic Odd-Even Reduct1on
Method.

26)

Page
v-

634-635

636

-= CHAPTER I: AN OVERVIEW OF PARALLEL t.Ul'WUTER ARCHlltLr~ - -
SECTION A: E'xPwiTATION OF PARALLELISM IN VARious Pluru.u:r. fDMPUTER • 0 SECTION B: THE MAIN CURRENT MuLTIPLE PROCESSOR ARCBITECTURE~

I.A.l: THE INNOVATION OF TI!E PARALLEL Ncm:ON ~ ni.B.l: INTRODUCTIONl ~ r· T .. , • T I!E ~ •• ~- OF TI!E siMD ORGANIZATION -I.A.2: OF Ih:siGNS r
r

I I.B.3.1.1: THE AssociATIVE MEMoRY n -l I. B. 3.1. 2: AaCHITECTURl\L TAXONOMY OF THE Assocu.nw PROCESSORS J

L I.B.3.1.2.iv:

./ L I.B.3.1.2.V:11 • '

----I.B.3.1.2.i:fDLLY ~
Prux:ESSORS

I.B.3.1.2.U.: Brr-SEanr. AsSOCIATIVE
Prux:Essoas

I.B.3.1.2.i.ii.:
I'Pocrsso~

I

•

I

OF I

I.B.3.2.2: THE INTERCONNECTICN NETwoRKS)

/

I I. B. 3. 2. 3 : biPLEMENTED PARALLEL "

I
I.B.3.2.3.i:THE f

I I.B.4.3:r;

l I.B.S.l: THE Mnm HARDWARE SYSTEM n I

I.B.S.2:THE MxMo OPERATING SYSTEM ORGANIZATION I~
I.B.S.3:1MPLEMENTED f1nm ~s

'\
JI:B.S.l.3: l~ ..

1\

- ' r.B.S.l.4: THE VIRTUAL AND ~.'I!OY loGICAL

~I.B.S.3.l:THE DuAL,.

~ I.B.S.3.2: fHE •NEPTUNE'

I

I.B. 6: A GENERAL REVIEW OF MULTIPLE PROCESSOR SYSTEMS'
'\ PRINCIPLE

_ (!t1!fi\JID1EiR
11

AN OVERVIEW

OF PARALLEL

COMPUTER ARCHITECTURE$

EXPLOITATION OF PARALLELISM

IN VARIOUS PARALLEL

COMPUTER ARCHITECTURES

s.r..tnp.rt ,su12n3t"t£"f! ..tnss.tjn..td utn..t;r

,;..rwn u! fi1t12Hu.rnb.rs

..t.rlno Ip12.t monnJ fitP!..llS' pmw 4..t!ltm SUO!J.ll2 Jll

s.rp.rs 12 ntU! qt..tnm tJttl2..tl2rl fittl2..tnt12U 12 U!l2..ttsuo.J u.r4J fiqm

!.tJ!l ..tnJ s;u.rw.r..t!nb.r..t

..tpln fiJS!JI25 Dl ..t.rq..to U! ..t.rqpfioJ fiuH..tl2..t.tlU! s.r..tntl2.t..t.t

t-U.tfi!ll.tJU! jO suonnw jO rln .rq12w S! Qt..tnm ttUnJllU .rqJ ···,

Jfr

JfrJfrJfY

J~

[Ch. I/See. A 29)

I.A.l: THE INNOVATION OF THE PARALLEL NOTION

In this presentat1on of the process of evolution of the parallel way of

thinking, we have not attempted a complete survey of the conceived-

implemented parallel not1ons; we are roughly trac1ng the h1story of this

development, lay1ng out the pr1nc1ples that can be appl1ed to class1fy

these parallel arch1tectures and character1ze the1r relat1ve performance.

As a consequence of the aim to eff1c1ently use parallel systems, the

programmer has to be aware of the overall structure of such a system and

therefore, Section B 1s devoted to the descr1pt1on of the ma1n classes of

parallel arch1tectures.

A s~mple ar~thmetic operat~on, ~.e. a float~ng-po~nt mult~pl1cat1on,

presented schemat1cally 1n Figure (I.A.l-fl), demonstrates a ten-fold

ar1thmet1c comput1ng speed 1ncrement, every f1ve years, s1nce the f1rst

commerc1ally establ1shed computer, the UNIVAC 1, 1n 1951 (see Hockney

[HOCK81], 1n 1981). The comb1nat1on of all the technolog1cal 1mprovements

1n the performance of the hardware components, w1th the 1ntroduct1on of

even greater parallel1sm at all levels of the computer arch1tecture, has

made possLble th1s s1gn1ficant 1ncrement 1n computat1onal speed.

The earl1est reference to parallel1sm, 1n computer des1gn, 1s thought

to be 1n General L.F. Menabrea'st publ1cat1on, in the B1bl1oth~que

tAn Italian army officer, who sat through a series of lectures Babbage
gave in TUrin in 1840.

[Ch. I/Sec. A 30]

' Universelle de Geneve, October 1842,entLtled 'Sketch of the AnalytLcal

EngLne', Lnvented by Charles Babbage, There, lLsting the utLlity of the

I -2, 10
M EDSACl ,_
s "' .., " -4
" 0 10
0 ..,

"'"' I u
b'>.-1 M
<:M "' 0.,

lo-6 " "' Q)
0 "' M CDC "" 360/195 M

"' Q) CDC M

" lo-8 M
0 "' "" " ..
Q) "' .. NASF

"'
..

s
1950 1 60 1970 1980 E-<

Year

Figure I.A.l-[1: The Increment Ln ComputatLonal ArithmetLc
Speed (a factor of 10 every 5 years).

analyt~c eng1ne, he wr1tes: 'Secondly, the economy of t1me: to conv1nce

ourselves of thLs, we need only recollect that the multLplLcatLon of two

numbers, consist1ng each of twenty f1gures, requ1res at the very utmost

three m1nutes. L1kew1se, when a long ser1es of 1dent1cal computat1ons

1s to be performed, such as, those requ1red for the format1on of numer1cal

tables, the machLne can be brought into play so as to gLve several results

at the same tLme, whLch will greatly abrLdge the whole amount of the

processes•.

Although Babbage's notLon was neLther Lmplemented Ln the fLnal

desLgn of hLs calculatLng engLne or elsewhere, due to the lack of

technologLcal development accordLngly, though, the notLon of the paraZZeZ

way of thinking had been conceLved. A search Ln the evolutLon of the

electronLc technology, on the hardware of the computer systems, reveals

[Ch. l/See. A 31]

the reason which f1nally urged sc1ent1sts to th1s not1on, as the only,

up-to-date, way to overcome the ex1st1ng comput1ng diff1cult1es and

constraints.

The first-generation of computers, 1n 1950s, accord1ng to the

technolog1cal ach1evements, used vacuum tubes, magnet1c drums as central

memor1es and electron1c valves as their sw1tching components, w1th gate

delay times of approx1mately l~s.

The use of the d1screte germanium trans1stors, around 1960, with

gate delay t1mes of approx1mately 0.3~s, gave r1se to the second-generation

computers, such as the IBM ?090.

The third-generation of computers, which were 1ntroduced around 1965,

used b1polar planar Integrated C1rcu1ts (ICS) on Sil1con, at a Small-Scale

Integrat1on (SSI) level, w1th a few gates per ch1p and gate delay t1mes of

about lOns, and later, around 1975, of sl1ghtly less than lns. The

1ncrease 1n the process1ng rate of a computer, was the a1m of all these

developments 1n dev1ce, c1rcu1t technology and m1n1atur1zat1on techn1ques,

through these computer generat1ons.

The processing rate of a computer, pr1mar1ly, can be conce1ved as

the volume of the cube(s) enclosed by one or more po1nts 1n a rectangular

coord1nate system, w1th three axes denoted by the clock rate, theword

width, and the number of words. Consequently, the process1ng rate of a

computer could be 1mproved by increas1ng e1ther the clock rates 1n the

system or the number of bits that could be processed s1multaneously.

The use of h1gh-speed sw1tch1ng devices and c1rcu1ts, as well as

the shortening of the propagat1on t1me 1n 1nterconnect1on lines, could

1ncrease the clock rates. However, as 1mprovements 1n sw1tch1ng devices

and m1n1aturization reached the current eng1neer1ng and electron1c l1m1ts,

[Ch. I/Sec. A 32]

and as word w~dth was limited by the prec~s~on of ~ntended appl~cat~ons,

it was apparent that any further s~gnif~cant increase in comput~ng speed

would be obta~ned by the concurrent process~ng of a number of words.

A dec~s~ve factor ~n th~s turn to concurrent process~ng was the

development of the sem~conductor technology, which used the alternat~ve

Metal Oxide S~licon (MOS) and although f~ve to ten t~mes slower, offered

much greater pack~ng dens~t~es. Thus, around the beg~nn~ng of 1980s,

the construct1on of m1croprocessors started, with speeds and capac1t1es

s~m~lar to first generation computers, but on a few mill~metres square

s~ze of a s~ngle s~l~con ch~p. This fact ~ntroduced the fourth generation

of computers, rema~ned ~n theory up to then, by ~mplement~ng var~ous

h~ghly parallel arch~tectures, comb~ning different numbers of processors,

as well as, new sc1ent1f1c terms came to use, such as mult1programming,

mult1process1ng, on-l1ne, real-t1me, synchronous, asynchronous, etc.

All these var~ous mult~ple processor arch~tectures can be categor~zed

in four d~st~nct(!) organ~zat~ons- Associativ~ Parallel, Pipeline~ and

MUltiprocessors - of which the arch~tectural structure and process~ng

techn~ques w~ll be surveyed.

An attempt to summar1Ze the pr~ncipal ways to ~ntroduce the notion

of parallel processing at the hardware level of the var~ous computer

arch1tectures, results 1n:

1. Pipelining - assembly-line techn~ques are employed to improve the

performance of the ar~thmetic or the control un~t, by decompos~ng

a repeated sequent~al process ~nto subprocesses, capable of be~ng

executed by dedicated autonomous un~ts;

2. FUnctional - var~ous ~ndependent un~ts are prov~ded, to perform

d~fferent funct~ons, ~.e. log~c, add~t~on or mult~pl~cat~on, allow~ng

s1multaneous operat1on on d1fferent data;

[Ch. I/Sec. A 33)

3. Array - an array of ident1cal Processing Elements (PEs) 1s prov1ded,

capable of performing, simultaneously, the same operation on dLfferent

sets of data, stored ~n the1r pr1vate memories, under common control -

1.e. lockstep operat1on; and,

4. MuLtiprocessing- several processors commun1cate v1a a common or shared

memory, each obey1ng 1ts own 1nstruct1ons.

Naturally, we may combLne some or all of these parallel features on

LndivLdual desLgns; for example, a Processor Array may have p1pelined

ar1thmet1c un1ts as 1ts process1ng elements, and a funct1onal un1t, 1n a

multL-unLt system, could be a Processor Array.

It would be 1mpract1cal to present a comprehens1ve descr1pt1on of all

the des1gns Ln the above categor1es; Lnstead, we have selected the

pr1nc1pally s1gn1f1cant archLtectures, whLch dLffer suff1c1ently from each

other, to Lllustrate alternat1ve hardware and software approaches.

SpecLfLcally for the MultLprocessor class, the NEPTUNE parallel process1ng

system, at Loughborough UnLversity of Technology, LS descr1bed Ln greater

detail, due to the fact that Lt was extensLvely used dur1ng the carry1ng

out of the present research.

FLnally, and as a preface for Chapter III, we ought to ment1on here

that due to the prev1ously ment1oned lack of synchron1zat1on between the

theoret1cal research achLevements and the technology, although at the

f1rst steps of the paraLLeL fourth generation, w1th a tremendous number of

phys1cal problems st1ll not yet implemented, we are talkLng about the

'FLfth GeneratLon of Computer Systems'- FGCS, which WLll represent the

un1f1cat1on of research Lnto VLSI processors and into d1str1buted

process1ng.

In th1s generat1on each computer system WLll cons1st of a network

[Ch. I/See. A 34]

of comput1ng elements support1ng an ind1v1dual appl1cat1on or need. VLSI

processor research w1ll allow a comput1ng element to prov1de, e1ther

a general-purpose or a spec1al-purpose funct1on, and range 1n power from

a ma1n-frame computer to a m1niature m1crocomputer.

On the other hand, d1str1buted process1ng research will allow a

network to be physically dispersed across a country or a build1ng, or to

be phys1cally close, as on a s1ngle highly 1ntegrated ch1p.

More about th1s generat1on of computers, as well as, about the gen

eral data flow computer concepts, i.e. a computer wh1ch allows the

execut1on of programs represented 1n data-flow form, to achieve h1ghly

parallel computat1on, w1ll be d1scussed 1n ChapteP III.

In conclusion, we would l1ke to suggest that th1s work, somehow,

is related to both prev1ous generations, by presenting algor1thms

1mplemented on parallel arch1tectures of fourth genePation and proposing

the diPecthardware 1mplementat1on of others using Systolic VLSI processor

arrays.

[Ch. I/See. A 35]

I.A.2 CLASSIFICATION OF DESIGNS

Any attempt to str1ctly class1fy all the proposed computer

arch1tectures, or at least those which have been already well establ1shed,

would not be wholly successful, ma1nly due to the fact that some of them

(e.g. ICL DAP), could fit equally well 1nto several d1fferent class1f1ed

groups, or others (e.g. P1pel1ned computers) would not f1t 1n any of them.

Alternat1vely, on the one hand, we shall br1efly present the

theoret1cal concepts of the architectures taxonomy g1ven by d1fferent

researchers, espec1ally by the two p1oneers, Flynn [FLYN6~ 1n 1966 and

Shore [SHOR?J] in 1973, s1nce both proposals, not only, have been w1dely

ment1oned but also the correspond1ng term1nology has contributed to the

formation of the computer science language; wh~lst,on the other hand,1n

Section B we shall refer, 1n greater deta1l, to the four spec1f1c

organizat1ons prev1ously ment1oned, 1.e. Associative, Parallel, Pipelined

and Multiprocessors, present1ng well establ1shed correspond1ng arch1tectures

w1th their process1ng techn1ques and features.

I.A.2.1: FLYNN'S VERY HIGH-SPEED CoMPUTING SYSTEMS

When Flynn presented h1s theoret1cal concepts for the class1f1cat1on

of parallel organ1zat1ons,these were not based on the hardware structure

of the computers, but on the dependent relat1on between the instruct1ons

be1ng propagated by the computer and the data be1ng processed.

For conven1ence he adopted two new def1n1t1ons: the InstPUct~on Stream,

def1ned as the sequence of 1nstruct1ons wh1ch are to be performed by the
t
' syfem, and the Data Stream, as the sequence of data called for, by the

instruction stream (1nclud1ng any 1nput and partial or temporary results).

Also, he def1ned two add1t1onal useful not1ons: the Bandwidth not1on, by

[Ch. I/See. A 36]

wh1ch he expressed the t1me-rate of occurrence, and the Latency or

Latent periodnot1on, as the time needed, totally, from exc1tat1on to

response, 1n order to process a part1cular data un1t, during a phase 1n

the comput1ng process.

Part1cularly for the former not1on, the mean1ng of the computat1onal

or execut1on bandw1dth 1s the number of 1nstruct1ons processed per second,

and the storage bandw1dth is the retrieval rate of the data stored 1n

memory (1.e. memory words/second) .

By us1ng the first two def1n1tions, Flynn categor1zed the exist1ng

~ostly theoret1call~organ1zat1ons depend1ng on the multiplicity of the

hardware provided, to serv1ce the Instruction and Data Streams, thus

avo1d1ng the ub1quitous and amb1guous term parallelism.

By the word multiplicity,Flynn meant the activity of the most

constrained component of the arch1tecture, i.e. the max1mum poss1ble

number of simultaneous operat1ons (1nstruct1ons) or operands (data) ,

wh1ch that constra1ned component was capable of execut1ng 1n the same

execut1on phase.

Consequently, four broad(!) class1f1cat1ons emerged, be1ng

character1zed from the mult1pl1c1ty or not of the Instruct1on or Data

streams:

l. S1ngle Instruct1on stream- S1ngle Data stream (SISD);

2. S1ngle Instruct1on stream - Mult1ple Data stream (SIMD);

3. Mult1ple Instruct1on stream - Single Data stream (MISD);

4. Multiple Instruct1on stream- Multiple Data stream (MIMD);

The f1rst class of the confluent, (as confluence or concurrence

he named the rat~o of the number of s~multaneous ~nstruct~ons beLng

processed by the constra1ned mult1pl1c1ty, 1.e. the t1ghtest constra1nt

1mposed by a system component), SISD processor [l1ke IBM STRETCH; CDC 6600

[Ch. I/Sec. A 37]

(unp1pelined}; CDC 7600 (p1pelined ar1thmet1c}; IBM 360/90 ser1es] 1s

noth1ng more than a conventional ser1al van Neumann computer, wh1ch

ach1eves 1ts power by overlapp1ng the var1ous sequent1al decis1ons

involved 1n the execut1on of a s1ngle 1nstruct1on. In Figures (I.A.2.1-

fl,f2) we see a SISD organizat1on, and the concurrency and instruction

processing, respect1vely.

An increase 1n computat1onal bandw1dth is ach1eved by max1m1z1ng the

ut1l1ty of the constra1n1ng components (bottZeneak), whereas, as 1t can

be seen in Figure (I.A.2.1-f2) ,a ahainZy sequent1al procedure 1s adopted

to 1ncrease the computat1onal speed. However, desp1te the var1ous p1pe-

11ning schemes 1nvented to 1ncrease the effic1ency of this organ1zat1on,

the bottleneck or constra1nt of decoding only one 1nstruction 1n a un1t

t1me has rema1ned.

The SIMD-type structures, proposed by Unger [UNGE58] 1n 1958, Slotn1ck,

et al [SLOT62] 1n 1962, Crane and G1thens [CRAN65] 1n 1965, and Hellerman

[HELL66] 1n 1966, possess a s1ngle stream of 1nstruct1ons and n

(generally} execut1on vector elements. Each vector element 1s cons1dered

as belong1ng to a d1screte data stream, excluding degenerate extreme cases

(e.g. vectors of length one}, thus there are mult1ple data streams, on

wh1ch the s1ngle 1nstruct1on stream acts s1multaneously, w1thout any

concurrent techn1ques. Although the latency 1n the data stream, due to

data commun1cat1on problems, causes some d1ff1cult1es, the performance of

th1s organ1zat1on can be 1ncreased by us1ng longer vectors of execut1on

un1ts~

The MISD-type structures, the outl1ne of wh1ch can be seen 1n Figure

(I.A.2.1-f3), 1s apparently the least favourable class compared to the

others, since no examples of any establ1shed organ1zat1ons ex1st, the

~TORAGE
UNIT

• L.
•

~ •

STORAGE
UNIT 1-

EXECUTION BANDWID

INSTRUCTIO

INSTRUCT
STREAM
OPERAND ION HAND

LING lNIT
STREAM

)STORAGE BANDWIDTH

[Ch. I/Sec.. A 38]

Tll

N

D···
8···

Figure I.A.2.1-fl: F1ynn's SISD Organ~zat~on.

INSTR
#1

INSTR

INSTR

r-

.

• #2

.#3

GENERATE ADDRESS OF INSTRUCTION

,_FETCH

D···D
I I· ..

I I . . .

INSTRUCTION

DECODE INSTRUCTION

GENERATE ADDRESS OF OPERAND

FETCH OPERAND
EXECUTE

INSTRUCT
ION

0 D D···D D···D
[;?

INSTRUCTION #1 STARTS

INSTRUCTION #2 STARTS

INSTRUCTION #3 STARTS

r::-:::> SR: STORAGE
U REGENERA

TION

Figure I.A.2.1-f2: Concurrency and Instruct~on Process~ng.

[Ch. I/Sec. A 39)

nearest example be~ng the line printer. Th~s class has employed a

forward~ng procedure of the data flow~ng through the execut~on

components. The ~nstruct~on that any control component executes may be

fixed (thus the ~nterconnect~on of the components must be flex~ble) ,

semifixed (such that the funct~on of any component ~s f~xed for one pass

of a data f~le), or variable (mean~ng that the execution of a stream of

~nstruct~ons may take place at any po~nt along the s~ngle data stream).

Accord~ng to th~s order of the execution components, only the f~rst of

them faces the source data stream, whereas the rest operate on the

resultant data stream from the prev~ous, ~n sequence, component.

DATA
STORAGE

INSTRUCTION
STORAGE

1

NSTRUCTION
UNIT

1

EXECUTION

~IT

SOURCE DATA
STREAM

t

INSTRUCTION
STORAGE

2

INSTRUCTION
UNIT

2

EXECUTION
UNIT

0

RESULTANT DATA
STREAM

•••

• • •

_____ ,..

Figure I.A.2.1-f3: A MISD Organ~zat~on.

INSTRUCTION
STORAGE

N

NSTRUCTION
UNIT

'

EXECUTION
UNIT

"'

In the last class of the MIMD organ~zat~ons, we have several

-

~nstruct~on process1ng components and correspond1ng data streams. These

components (processors) are ~ndependent of each other and capable of

execut~ng ~nstruct~ons s~multaneously. They each have ar~thmet~c and

[Ch. I/Sec. A 40)

logic capabLlLty, but communLcatLon LS lLIDLted by theLr need to build a

path, to reach the appropriate required data. ThLs class Lncludes all

the dLfferent Multiprocessor organLzatLonst, starting from the lLnked

maLn-frame systems, up to large arrays of mLcroprocessors.

RecapLtulatLng, Flynn's taxonomy is somehow obscure, due to the fact

that it was dependent on the systems LnterrelatLons, between Lnstructions

and the data to be processed, rather than the archLtectural desLgn of the

parallel computers; consequently there LS no signifLcant distLnctLve

poLnt between these classes (the PLlMD class exempted), e.g. the PLpelLned

and the Processor Array computers are consLdered simLlar, although they

are entirely dLfferent archLtectures.

More or less, accordLng to Flynn, all parallel computers, except

the MultLprocessors, could be lumped Lnto the SIMD classLfLcatLon. Also,

the meanLng of the Data Streams, as used by Flynn,caused many ambLguities,

whLch led, Ln some cases, to confusLon; for example, although Flynn had

classLfLed the PLpelined vector computers Lnto the SIMD class, the

confusLon led scLentists, eLther to place them Ln the SISD class (see

Hackney [HOCK??] in 1977), because they were processing a sLngle stream

of vectorized data, or others (see GorslLne [GORS80] Ln 1980) accepted

Flynn's classifLcatLon, but also consLdered that these systems could fall,

evenly well, Ln the MultLprocessor class; thLs was due to the fact that

they had a pLpelLned arLthmetLc unit whLch could be considered equLvalent

to perform1ng s1multaneously varLous 1nstruct1ons, on either, a s1ngle

vectorLzed data stream or a multLple scalar stream.

Consequently, Ln Section Bof thLs Chapter, we shall consLder the

SIMD and Pipelined computers as two distLnct classes accordLng to theLr

archLtecture, along wLth the Multiprocessor category.

t The NEPTUNE parallel computer system at Loughborough University is an
example of this class.

[Ch. I/Sec. A 41]

I.A.2.2: SHORE'S TAXONOMY

Shore [SHOR73J in 1973 attempted a class~f~cat~on of the parallel

arch~tectures, based on the~r constituent hardware components. Accord~ng

to h~m, all ex~st~ng computers could belong to one of the six d~fferent

types of mach~nes he proposed, wh~ch can be seen ~n Figure (I.A.2.2-fl).

The Mach1ne I, 1s the conventional ser1al von-Neumann organ1zat1on,

cons~st~ng of an Instruction Memory (IM), a s~ngle Control Un~t (CU), a

Process~ng Un~t (PU) and a Data Memory (DM) • The process~ng un~t, may

cons~st of mult~ple funct~onal components, p~pel~ned or not, and follows

the ser~al way of word read~ng, ~.e. all b~ts of a single word are read

~n order to be processed s~multaneously. Examples of th~s type are the

CDC 7600, a P~pel~ned Scalar computer, as well as the CRAY-1 , a

P~pel~ned Vector computer.

A change on reading the data, from all b~ts of a word, to a b~t

from all words ~n the memory, ~.e. b~t-ser~ally, but word process~ng in

parallel, yields Mach~ne II, wh~ch ~n all other ways ~sa repl~ca of

Mach~ne I. More schemat~cally, ~f the memory area is cons~dered as a

two dimensional array of bits, w~th each word occupy~ng an ~ndividual

row, then Mach~ne I reads horizontal slices, whereas Mach~ne II vertical

slices.

A comb~nat~on of Mach~nes I and II, yields Mach~ne III; th~s means

that Mach~ne III has two processing un~ts, one hor~zontal and one

vert1cal, so the process1ng can be done 1n e1ther of the two d1rect1ons.

If the ICL DAP or STARAN computers had separate process~ng un~ts to offer

th~s capabil~ty, they could be placed ~n th~s class of computers. An

example of th~s organ~zat~on ~s the Sanders Assoc~ates OMEN-60 ser~es of

computers (see H~gb~e !HIGB72J, ~n 1972).

[Ch. I/See. A : 42]
(I) (II)

IM cu IM

HORIZON-
TAL cu

PU

J 11 11 ! I
~ORD-SLIO VERTICAL BIT-SLICE

DM PU DM

(III)

(IV)

IM cu

HORIZON

__ _......-- t
PU PU PU

l I I
DM DM DM

{V) (VI)

cu

cu

t
PU

PU

+

DM

DM DM DM

Figure I.A.2.2-[1: The Conf1gurat1on of the S1x Mach1ne Classes.

[Ch. I/Sec. A 43]

The Machine IV, consLsts of a sLngle control unit and as many as

poss1ble, Lndependent to each other, processLng elements. Each of these

elements consLsts of a processLng unLt and a data memory. The

communication between these elements takes place only through the

control unLt. A well known example of thLs MachLne LS the PEPE system.

The addLtLonal facLlLty to thLs MachLne of communLcatLon between

the nearest-ne1ghbour - 1n a l1ne - process1ng element& and thus the

capabLlLty of each element to access data not only from Lts own private

memory but also of its LmroedLate neLghbours, gave rLse to MachLne V. An

example of that MachLne Ls ILLIAC IV, whLc~ Ln addLtLon, provLdes a

short-cut communLcatLon every eLght processLng elements.

Shore's last class of organization 1s Mach1ne VI, or otherw1se

LogLc-In-Memory Array (LIMA) . The dLfference between thLs Machine and

the prev1ous ones 1s that the process1ng un1ts and the data memory are

no longer LndLVLdual hardware parts, communLcatLng through data buses or

swLtching devices, but they are on the same IC board. Examples range

from s1mple assoc1at1ve memor1es to complex assoc1at1ve processors.

Generally speaking, comparLng thLs classifLcation WLth Flynn's one,

we observe that, on the one hand, less S1gn1f1cantly, the numer1cal

desLgnator for the characterLzatLon of each class LS not very mnemonLcally

successful and,on the other hand, Shore's class1f1cat1on does not offer

anythLng new, but only a subcategorLzatLon of the obscure SIMD class

gLven by Flynn, except for MachLne I whLch LS of SISD type.

FLnally, agaLn the PLpelLned computers are not dLstLnguLshably

placed 1n a class represent1ng the1r character1st1cs, but are m1xed up

wLth unpLpelLned Scalar computers.

[Ch. I!Sec. A 44]

I.A.2.3: 0rHER CLASSIFICATION APPROACHES

In this paragraph we refer to some other classifLcatLon approaches,

less SLgnifLcant than the former two, based maLnly upon the notion of

parallelLsm.

One of these taxonomies was suggested by Hobbs, et al [HOBB?O]

in 1970 and dLStLnguLshes the parallel archLtectures into MultLprocessors,

Assoc1at1ve processors, Network or Array processors and Funct1onal

machines.

Furthermore, Hobbs,et al proposed that architectures could be

classLfLed based upon the amount of parallelism Lnvolved Ln the Control,

Data streams, and ProcessLng units; but these factors proved to be vague

since they are present Ln all highly parallel machLnes.

On the other hand, Murtha and Beadles [MURT64] based theLr taxonomy

view upon the parallelLsm propertLes, attemptLng to underlLne the

dLfferences between the MultLprocessors and the HLghly parallel

organizations. AccordLng to them the parallel organLzations could be

classLfLed into, the General-purpose network computers, the SpecLal

purpose network computers with global parallelLsm and fLnally the Non

global, semL-Lndependent network computers WLth local parallelLsm - thus

LncludLng Ln thLs class all the computers excluded from the former two

classes.

Furthermore, they dLStLnguLshed some subclasses for the fLrst two

classes, the General-purpose network computers subclass, w1th a

centralized common control, and the General-purpose network computers

subclass, wLth identLcal processors but Lndependent LnstructLon

executLon actions; regardLng the second class, they consLdered the

Pattern processors and the Assoc1at1ve processors subclasses.

[Ch. I/See. A 45]

These two class~fications of the computer systems together w~th

the prev~ous two, are the most s~gn~f~cant and widely known attempts to

categor~ze the d~fferent computer arch~tectures ~nto groups and

consequently they w~ll provide the framework w~thin wh~ch to v~ew the

Associative, ParaZZeZ, PipeZined and MIMD organ~zations.

~ 1E <tr ID 11 QH~ - ------

~

THE MAIN CURRENT

MULTIPLE PROCESSOR

ARCHITECTURE$

'1\ny.ane wqo says qt> ltnow.s qow romputt>rs .sqoulll bt>

built .sqaulll qaut> qi.s qt>ab examint>ll!

!!tqt> man wqa says it i.s eitqrr inuptdrnub .ar

rraUy mnb.'

[Ch. I/Sec. B 47]

I.B.l INTRODUCTION

It 1s certa1nly true that the terms parallel computers and parallel

processing have been used 1n many ways 1n the prev1ous section; start1ng

30 years ago, when 1t referred to computers perform1ng ar1thmetic operat1ons

on whole words, rather than on one b1t at a t1me, up to recent years, where

we talked about Mult1ple-processors, Array-type mach1nes (Parallel or

P1pel1ned), Assoc1at1ve processors, etc.

In th1s sect1on, we start from a bas1c 1dea, thec~ss1f1cat1on of all

the computer arch1tectures 1nto broad cons1stent categor1es, each of wh1ch

has certa1n hardware and software cr1ter1a, wh1ch must be obeyed by an

arch1tecture 1n order to fall 1nto th1s category. In consequence, and

1ns1de each of these categor1es, we shall d1st1ngu1sh subcategor1es, where

1t 1S appl1cable, accord1ng to the part1cular character1st1cs of the

arch1tectures 1ncluded 1n the ma1n category.

The basis to th1s class1f1cation w1ll be the prev1ously discussed

(see par.- I.A.2.1) Flynn's class1f1cat1on 1n conJunct1on w1th H1gb1e's

[HIGB73] expans1on of Flynn's SIMD category.

H1gb1e d1st1ngu1shed four subcategor1es 1n the SIMD class:

1. The Array Processor;

[Ch. I/See. B 48]

2. Xhe Associative Memory Processor;

3. Xhe Associative Array Processor; and

4. Xhe OrthogonaZ Processor.

The difference between the f~rst two subcategor~es is that the data

items are retr~eved using the locat~on addresses for the Array Processors,

whereas for the Associative Memory Processors, depend~g on the part~cular

characterist~cs of the~ memory, the data are addressed by a tag or their

contents, rather than by the~r addresses. Also, the process~g of data

in the former processor ~s ~n parallel, whereas the latter does not

require parallel operat~on, although the definition allows for machines

that process data in th~s way.

The Associative Array Processor category, ~ncludes the processors

which are assoc1at1ve, operat~g on arrays of data on a b1t-sl1ce bas1s,

~.e. using a b~t from every word ~n the memory.

The OrthogonaZ Processor cons~sts of two subsystems, an array of

processing elements to do the assoc1at1ve process1ng and a convent1onal

processor system to do the sequent~al tasks.

Accord~ng to H~gb~e, any computer organizat~on compr~s~g mult~ple

ar~thmetic un~ts, capable of operat~g on multiple data streams, ~s a

parallel processor system; thu~he vaguely ~eludes all of the above

categories ~nto th~s def~n~tion.

None of the class~f~cation schemes presented up to now was

mathemat~cally prec~se and a lot of confus~on has been caused by

us~g the current terminology.

Although we have mentioned (see par.- I.A.l) that we shall present

a survey of four spec1f1c mult1ple processor organ1zat1ons, (Associative,

ParaZZeZ,PipeZined and MUltiprocessors), the f~rst two organ~zations

[Ch. I/Sec. B 49]

cons~st of subclasses of the general category of the SIMD systems.

Consequently, summar~zing we can say that we have three major

architectur~categor~es: the SIMD, the Pipelined and the Multiprocessor

arch~tectures.

In the follow~g paragraphs of th~s sect~on, we shall exam~e these

categor~es ~ greater deta~l, referr~g to the most s~gn~ficant, w~dely

known and commerc~ally ~mplemented examples of each class and the~r

hardware and software character~st~cs, bear~g ~ m~d that the inter

sect~on of the above categor~es ~s not null due to the overlap ~

class~fy~g mach~ne arch~tectures.

[Ch. I/Sec. B 50]

I.B.2: THE GENEALOGY OF THE SIMD ORGANIZATION

The creation of the subclasses of the SIMD category, ~s based on

the gener~c relat~onships g~ven by Thurber and Wald [THUR75) in 1975, but

maJor mod~f~cat~ons and subsequent amendments have been made, changes

wh~ch w~ll be JUSt~fied, as we shall proceed further, by exam1n1ng each

of these subclasses 1nd~v~dually.

Thurber and Wald, based the~r def~n~t~ons and subd~v~s~on on Flynn

[FLYN72) and Thurber [THUR76); accord~ng to them the maJor characterist~c

of the SIMD category, ~s a s1ngle global control unit, wh~ch dr~ves

mult~ple process1ng elements, all of which e~ther execute or ignore the

current instruct~on.

They d~st1ngu~shed three subclasses , the Associative Processors,

the Parallel Processors and the Ensembles. The JUSt~ficat~on for th~s

subd1V1s1on, was based on the particular character1st1c of the Assoc1at1ve

memory when retr~ev1ng the data stored 1n ~t, for the f~rst subclass,

on the fact that the process1ng elements had a complex~ty of s~m~lar order

to small computers, with a high level of interconnect~v~ty amongst them,

for the second subclass, and fLnally, on the fact that m the ensemble

arch~tectures the level of mterconnect~v~ty could be non-ex~stent or very

low.

In Figure (I.B.2-fl) we can see the gener~c relationsh~ps wh~ch we

present ~n this Section and wh~ch w~ll be Just~f~ed 1n the subsequent

examination of each subclass. It should be understood that SIMD processors

are spec~al-purpose and useful for a l~m~ted set of applicat~ons, wh~ch

w~ll be summar~zed 1n the following paragraph; 1n addit~on, the reasons

for wh~ch we need the SIMD processors w~ll be surveyed.

SIMD ARCHITECTURES

ASSOCIATIVE PROCESSORS

CRYOGENIC CATALOG MEMORY {SLAD56}

fULLY PARALLEL
ASSOCIATIVE PROCESSORS

BIT-SERIAL
ASSOCIATIVE
PROCESSORS

[SH0060]

\',\:)RD-SERIAL
ASSOCIATIVE
PROCESSORS

[CROF66]

BLOCK-QRIENTED
ASSOCIATIVE
PROCESSORS

[SWT?O]

PARALLEL PROCESSORS

t
[JNGER
MACHINE
{UNGE58]

l
'SOLOMON I'
{SLOT62]

~
'SOLOMON II'

~
0RTHOGONAL
COMPUTER

[SH0060]

~~~ 

'ILLIAC IV' 
[SLOT67] 

1 
WoRD-ORGANIZED 
1'1EMORY {YAUY66} 

HIGHLY PARALLEL AsSOCIATIVE PROCESSORS 

'ICL DAP' 
[REDD73] 

DISTRIBUTED loGIC MEMORY {LEEC62} 

' l l ASSOCIATION 
STORING 
PROCESSOR 
[SAVI66] 

TREE 
CHANNEL 
PROCESSOR 
[LIPO?O] 

Two 
DIMENSIONAL 
& BULK 
DISTRIBUTED 
loGIC MEMJRIES 
[LOVE?l] 

Figure I.B.2-[1: The SIMD Genealogy. 

ENSEMBLES 

AUGMENTED 
CONTENT 
ADDRESSABLE 
MEMORY 

[KAUT?l] 

ASSOCIATIVE 
CONTROL 
SwiTCH 

[SCHM72] 

AsSOCIATIVE 
LOGIC 
PROCESSING 
SYSTEM 

{SEEB63] 
IMPLEMENTED ASSOCIATIVE PROCESSORl 

' s ' s BIT 
SLICE 

[FULM?O] 

'OMEN' 
[HIGB72] 

ADDER ExOR BYTE DISTRIBUTED 
SKEWED SKEWED SLICE loGIC 
BIT BIT [GONZ72] [WALD?l] 
SLICE SLICE I 1 
[STON68] [BtTC741] t t 

'STARAN' 
[GOOD74} 

'OMEN-60' 'PEPE' 
[CRAN72] 



[Ch. I!See. B 52] 

I.B.3: THE UTILIZATION AND APPLICATION OF THE SIMD SYSTEMS 

The most important aspects for util1z1ng SIMD arch1tectures can be 

categor1zed in the follow1ng three classes, although, we must bear 1n 

m1nd that, these systems are special-purpose computers and an 1mproper 

appl1cat1on of them could lead to h1ghly 1neff1c1ent results. 

The first class can be character1zed from the hardwa~structure of 

these systems, which 1s more eff1cient, espec1ally now w1th the advent of 

LSI microprocessors, compared to other Multiprocessors, for problems with 

large amounts of parallel1sm, provid1ng the economy of dupl1cating 

structures and lower nonrecurrLng and recurring costs. 

The characterization of the secondclass depends on the software 

used in these systems and wh1ch tends to be s1mpler, with less execut1ve 

funct~on requ1rements, than the one needed for Mult1processors, thus 

making the construct1on of large systems eas1er. 

Finally, 1n the third class comes the functionalutil1ty of these 

mach1nes, wh1ch proves to be more eff1c1ent than the Mult1processors for 

large problems demand1ng heavy data process1ng, e.g. weather forecast1ng, 

and for problems 1nherently possess1ng global parallel1sm, prov1d1ng at 

the same t1me rel1ab1lity, s1mpler system complexity and cons1derably 

h1gher potential computat1onal load. 

On the other hand, the categor1zat1on of the problems on wh1ch a 

cost effective 1mplementat1on of the SIMD systems may be poss1ble, has 

concentrated all the sc1ent1sts' research attent1on. However, 1t 1s not 

always enough JUSt to descr1be and analyze the nature of the problem and 

then offer a solut1on; 1t must proceed further, w1th an actual 1mplementat1on, 

wh1ch of course depends on the econom1cs of the problem. Th1s means that 

researchers must not purely develop solutions for problems (wh1ch somet1mes 



[Ch. I/Sec. B 53) 

may be ill-defined), but also must concentrate on the systems aspects of 

the problem too. 

Numerous applicatLons have been proposed for AssociatLve and Parallel 

Processors, the most common beLng for matrix multLplLcat1on, dLfferentLal 

equatLons and linear programmLng; some of these applLcatLons are quLte 

well suLted for the former class whLlst others for the latter class. 

By ut11LzLng SIMD systems, the elLIDLnatLon of crLtLcal bottlenecks, 

which had appeared Ln the general-purpose computer systems, seemed to be 

apparent. However, the Assoc~at1ve Processors were constrained by h1gh 

cost-factors, makLng feasLble only the use of small assocLatLve memory 

systems for var1ous, but l1mited s1ze problems, such as, 1n the management 

of computer resources involv1ng protection mechanisms, resource allocat1on, 

etc. Of course things are go1ng to change wLth the evolutLon of LSI 

technology, but 1n the mean tLme,due to these COSt-factors the burden Of 

1mplement1ng th1s category of systems was carr1ed out, mostly, by us1ng 

Parallel Processors, which were appl1ed in var1ous research areas, such as, 

weather forecastLng, nuclear data processLng, ball1st1c miss1le defence, 

etc. 

An attempt to summarLze the numerous appl1cat1ons that the SIMD systems 

have been proposed to be well suLted for, dLstLngULshing between AssocLatLve 

and Parallel Processors, would gLve the follow1ng; the applLcatLons appearLng 

Ln the Parallel Processors' menu to be very cost-effectLve are, the trackLng, 

bulk fLlter1ng, data compressLon, air traffLc control and SLgnal processLng. 

Correspond1ngly, for the Associative Processors' menu, bear1ng Ln m1nd 

the cost-factor constra1nt, the applLcatLons 1nclude resource allocatLon, 

V1rtual memory mechan1sm, 1nterrupt processLng, protect1on mechanisms and 

schedul1ng. 



[Ch. I/Sec. B 54] 

Of course, there are many other applicat1ons where the Parallel 

Processors are probably cost-effect1ve and 1n which the Associat1ve 

Processors would be perhaps more eff1c1ent 1f no constraints were 1mposed; 

these appl1cat1ons are, the sort1ng, pattern recogn1tion f1elds, sea 

surve1llance,p1cture process1ng, graph process1ng, d1fferential equat1ons, 

e1genvectors, matr1x operat1ons, network flow analys1s, data f1le man1p

ulations and search1ng, compilat1on, theorem prov1ng, computer graph1cs 

and weather forecast1ng. 

F1nally, recap1tulat1ng, we must mention that Slotn1ck [SLOT6?) 

and Fuller [FULL6?) have compared both classes of the SIMD mach1nes, 

reaching the conclus1on that Parallel Processors, as spec1al-purpose 

systems, had appeared to be, at that date, more useful than the Assoc1at1ve 

Processors. 

I.B.J.l: THE AssociATIVE PROCESSOR ARcHITECTURE 

Basically, the ma1n notion beh1nd the Assoc1at1ve Processors depends 

on the extens1ve search capab1l1ties offered by the assoc1at1ve memories, 

wh1ch are ma1nly eff1c1ent for non-numer1cal applicat1ons, e.g. process1ng 

of d1g1t1zed p1ctures, radar s1gnal track1ng, weather pred1ct1on 

computat1ons, etc. 

Although this class of computers was the least favourable, due to the 

fact that, 1t was not econom1cal to construct large capac1ty memor1es for 

JUSt non-numer1cal appl1cat1ons, however, many experimental models were 

bu1lt and a survey of these associat~ve memor~es and their Lmplementat~ons 

wasproduced by A.A. Hanlon [HANL66) 1n 1966. 

The p1oneer sc1ent1sts who developed the f1rst assoc1at1ve memory, 

were Slade and McMahon [SLAD56] 1n 1956, by us1ng cryotrons. Many other 



[Ch. 1/Sec. B 55] 

d~fferent components have been used s~ce then, ~n construct~g such 

types of memor~es, such as: tunneZ diodes (see Fuller [FULL60] and 

N~ss~m £NISS63]), evaporated organic diode arrays (see Lewin, Beel~tz, 

and RaJchman [LEWI63]), magnetic cores (see Fuller [FULL60], McDerm~d, 

Peterson [MCDE61], K~seda, Peterson, Seelback, Te~g £KISE61], Hunt, 

Snider, Suprise, Boyd £HUNT64], Younker, Heckler, Masher, Yarbourough 

[YOUN64] , Apicella, Franks, [APIC65] , Goody ear Aerospace Corp. [GOOD68]) , 

plated wires (see Fuller [FULL60], Ewing, Dav~es[EWIN64]), semiconductors 

(see Lee [LEEE63]), transflu:x:ors (see Luss~er, Schneider £LUSS63]), biax 

cores (see McAteer, Capob~no, Koppel [MCAT64]), laminated ferrites (see 

Wolff [WOLF63]), magnetic films(see Raffel, Crowther £RAFF64]), solenoid 

arrays (see P~ck [PICK64]), bicore thin-film sandWiches(seeFuller [FULL60]), 

multi-aperture logic elements (see Tuttle [TUTT63]), and integrated 

circuits (see Couranz, Gerhardt, Young [COUR74]). 

The p~oneers who f~rst bu~lt an assoc~at~ve processor were Behnke and 

Rosenberger [BEHN63] ~ 1963, us~g cryotrons and d~sregard~g the 

exist~g constra~~g factors, such as the high ~mplementat~on cost, the 

half-select no~se l~m~ting the length of the words, as well as the 

~nterrogat~on drive problems l~~t~ng the number of words. 

The evolut~on of LSI technology has broadened the bounds of the 

assoc~at~ve memories wh~ch were, ~ early years, about lk words of length 

up to lOO b~ts; then PEPE-'Parallel Element Process~ng Ensemble' (see 

Crane, G~lmartin, Huttenhoff, Rux, Sh~vely [CRAN?2], W~lson [WILS?2], 

cornell [CORN72] , Evensen, Troy [EVEN?3] , D~geld~e, Mart~n, Patter son 

[DING73], V~ck, Merwin [VICK?3]), STARAN (see Rudolph [RUD0?2], Batcher 

[BATC72jJATC741], Dav~s [DAVI?4]) and OMEN-'Orthogonal Mm~ EmbedmeNt' (see 

H~gb~e [HIGB72]) assoc~at~ve systems were developed. 



[Ch. I/See. B 56] 

The des~gnLng ~dea beh~nd PEPE was a number of processLng elements, 

+ each hav~ng a s~mple lkx32-b~t RAM , called the element memory, wh~ch 

could be shared, on a cycle-stealing bas~s, by the ar~thmetic un~t, the 

correlat~on un~t and the associat~ve output un~t, in order to perform 

assoc1at1ve process1ng. 

On the other hand, the orthogonal computer concept (see Shooman 

[SH0060,SH00?0]), Wh~ch w~ll be discussed later in th~s Chapter, formed 

the basis of the STARAN and the OMEN Assoc~at~ve Processors, wh~ch were 

commerc~ally ~mplemented, by the Goodyear Aerospace Corporat~on, and 

Sanders Assoc~ates, respect~vely. 

The OMEN computer ut~l~zed a DEC PDP-11 conventional computer for the 

Hor~zontal Ar~thmet~c Un~t (HAU) and an array of 64 ~dent~cal processLng 

elements for the assoc~ative vert~cal Ar~thmetic Un~t (VAU) wh~ch operated 

on byte sl~ces, rather than b~t slices, under the control of masks. 

The idea of construct~ng the STARAN Assoc~at~ve Processor was 

conce~ved Ln 1962, completed Ln 1972 and by 1976 four systems had been 

sold. The typ~cal STARAN system cons~sted of a control system, four array 

modules, each w~th 256 one-bit processLng elements for the assoc~at~ve 

vertical arithmet~c un~~ and a 256-wordx256-bit of MA~to facilitate both 

the assoc~at~ve processLng, by allowLng b~t-slice access~ng, and the I/O 

procedure by allowLng a word-slice accessing. The range of the total 

storage was between 64K b~ts and 64M b~ts, controlled by a sequent~al 

PDP-11 for the convent~onal horizontal ar~thmet~c un~t. The evolut~on of 

the Large Scale Integrated electron~c technology w~ll undoubtedly renew 

the Lnterest Ln th~s class of computers. Many sc~ent~sts are ant~c~patLng 

that the extens~ve use of these processors w~ll greatly enhance the special-

t Random-Access Memory. 

tMUltidimensional-Access Memory. 



[Ch. I/See. B 57] 

purpose and general-purpose computer systems performance. Already a 

mod~f~ed model of the commerc~al STARAN computer, w~th a storage capac~ty 

of several hundred m~ll~on b~ts, has been developed. Also, various other 

exper~mental des~gns, e.g. the 'Assoc~at~ve L~ear Array Processor' (ALAP), 

developed by F~nn~la, at Hughes A~rcraft Co. [FINN??], and the 'Extended 

Content Addressed Memory' (ECAM), developed by Anderson and Kain [ANDE76] 

at Honeywell, were prom~s~ng total system capac~t~es of about one b~ll~on 

b~ts. 

F~nally, we emphas~ze the two ma~n propert1es wh~ch character~ze th1s 

class of the Assoc~at~ve Processors: a) The s~ngle ~nstruct~on propagated 

by the central control un~t, wh~ch can be executed dur~g an ar~thmet~c 

or log~c data transformat~on over many sets of arguments; and b) ~t ~s 

the retr~eval of the operands stored in the assoc~at~ve memory by us~ng 

the content or part of ~t, of the data, ~stead of the address of the 

locat~on stor~g them, wh~ch contr~utes to the super~ority, from the 

h~gher processing rate po~t of v~ew, when compared w~th the ord~ary 

sequent~al systems. Consequently, problems l~ke the weather forecast~g, 

the radar s~gnal track~g or the handling of large databases, demand~g 

heavy and h1gh t1me-consum~g comput~g, are tackled faster and eas~er. 

In Figure (I.B.3.1-fl), we can see the general outl~e of such an 

arch1tecture; due to the impact that the assoc1at1ve memor1es have on th1s 

class of systems, 1t 1s poss1ble for these processors to be categor1zed 

depending on the organ1zat1on of the assoc1at1ve memor1es. 

ASSOCIATIVE (ALU) ARITHMETIC 

INPUT/ MEMORY AND LOGICAL UNIT 

OUTPUT l I 
INTER- CONTROL SYSTEM 
FACE - ---------- --- -- - --· 

INSTRUCTION MEMORY 

Figure I.B.J.l-[1: The General Scheme of an Assoc1at1ve 
Processor Arch1tecture. 



[Ch. I /Sec.. B :58] 

I.B.3.1.1: THE ASSOCIATIVE MEMORY ORGANIZATION 

Many names have been given to the associative memor1es, such as: 

cataZog memory (see Slade and McMahon [SLAD56]), data-addressed memory 

(see Newhouse and Fru1n [NEWH62]), content-addressed memory (see Lew1n 

[LEWI62]), paraZZeZ search memory(see Falkoff [FALK62]), search memory 

(see Joseph and Kaplan [JOSE62], Kaplan [KAPL63], Gall [GALL64]), search 

associative memory (see P1ck [PICK63]), content-addressabZe memory (see 

Estr1n and Fuller [ESTR63]), distributed Zogic memory (see Lee and Paull 

[LEEP63]), associative pushdown memory (see Der1ckson [DERI68]), and 

multi-access associative memory (see Natarajan and Thomas [NATA69]). 

D1sregard1ng the great number of ass1gned synonyns to these memories, 

the ma1n and most significant property of them is the content-based 

retrieval capab1l1ty of the stored data, 1nstead of their expl1c1t 

location (address). This can be ach1eved by e1ther purely software 

techn1ques, e.g. l1st structures, hash addressing, etc., or by us1ng 

har~are methods and therefore depend1ng on the basic memory element, the 

so-called bit-ceZZ, wh1ch can reta1n a s1ngle b1t of 1nformat1on in order to 

compare 1t w1th the 1nterrogating 1nformat1on. 

The memory search is based on a compar1son procedure, performed, 

e1ther parallel-by-b1t (word-parallel or word-ser1al), or ser1al-by-bit, 

between a pre-def1ned search-key word, and the other words 1n memory, 

through the ava1lable log1c c1rcu1try and the 1nterrogat1ng b1t dr1ves. 

A word-match tag network 1s used to flag the mult1ple-matched 

contents which at the end of the search1ng procedure can be retr1eved 

through a s1ngle 1nstruct1on. More explanator1ly, 1n order to present 

more pract1cally the above, we shall make use of the follow1ng example: 

Let us suppose that we have the personnel f1le of a Un1vers1ty department 



[Ch. I/Sec. B 59] 

and we w~sh to locate these employees w~th a salary of more than £650 

per month and less or equal to £1000 per month, ~.e. £650<x~£1000. The 

compar~son operat~ons that we shall use are greater than and not greater 

than. 

F~rst of all we must set two d~fferent search-key words each w~th 

the correspond~g information to be in~errogated; also a mask has to be 

used for the search-key words, thus avo~d~ng a thorough search of all 

fields ~ the correspond~g f~les. At the end of the search-key there is 

a b~t-~dicator wh~ch can take the values of one or zero, accord~g to the 

c~rcumstances, thus showing a match or m~smatch. Each of the above 

searches can be performed in parallel. Figure (I.B.3.1.1-fl) shows this 

operat~on of the assoc~at~ve memory. 

In~t~ally, for the two d~fferent searches the ~d~cator f~eld of 

each word, in the assoc~ative memory, ~s set to zero; the f1rst search

key word ~s loaded w~th the salary f~gure (£650) and the b~t-~nd~cator 

set to zero, for compar1son, us1ng the log1c operat1on greater than. 

After the f~rst search, all the matched words w~ll have set the field 

~ndicator to one, to memor1ze these words. The second search-key word 

w1ll have been loaded w~th the salary f~gure (£1000) and the b~t-ind~cator 

will be set to one, for the log1c operat~on not greater than. The final 

result, wh~ch w~ll be s~gnall~g from the ind~cator field, w1ll show 

the salar~es sat1sfy~g both the above cond1t~ons, and consequently these 

data can be pr~ted out through the output c1rcu~t. 



[Ch. I/See. B 60] 

First Search-
(15 

Key Word 650 ~ 

Second Search-, 
Key Word ~ (15 (15 1000 1 

Mask I~ ~~I~ 1~ ~In ... 1~ 1 AFTER FIRST 
INITIAL SEARCH 

NAME SEX JOB SALARY 

JOE TINA ~ OPERATOR 550 ~ 

GRAY TOM 1 PROFESSOR 1500 ~ 

SMITH ALAN 1 ENGINEER 680 (15 

McRAY MARY ~ SECRETARY 600 (15 
. . . . . . . . . . . 

MULLER TED 1 LECTURER 700 (15 

Figure I.B.3.1.1-[1: An Example of the Operat1on of an Associat1ve 
Memory. 

I.B.3.1.2: ARCHITECTURAL TAXONOMY OF THE ASSOCIATIVE PROCESSORS 

AFTER 
SECOND 

The Assoc1ative Processors, from the hardware structure point of v1ew, 

form a subclass of the general category of SIMD arch1tectures. In the SIMD 

systems we have a s1ngle 1nstruct1on be1ng propagated, instructing the 

processing elements of the organ1zat1on to operate on d1fferent arguments. 

Sim1larly, the Assoc1at1ve Processors, 1n add1t1on to the fact that they 

sat1sfy the character1st1c property of the associative memory when 

retr1ev1ng the data, they can perform both ar1thmet1c and logic data 

transformation operat1ons, over many sets of arguments under a s1ngle 

1nstruct1on from the control un1t. 

The compar1son process followed by the assoc1at1ve memory for the 

retr1eva1 of the data forms the bas1s for a classif1cation 1nto five 



[Ch. I/See. B 61] 

architectural Associative Processor categories: The fuZZy parallel, the 

bit-serial, the word-serial, the block-oriented, and the highly 

parallel Assoc1at1ve Processors, the f1rst two be1ng the most w1dely known 

and 1mportant categor1es. 

In the follow1ng paragraphs we shall br1efly refer to each of these 

categor1es separately, present1ng the1r ma1n hardware features and examples 

of commerc1ally 1mplemented systems. 

I.B.3.1.2.i: fULLY PARALLEL ASSOCIATIVE PROCESSORS 

Th1s class of computers can be further dist1ngu1shed into the word

organized and the distributed logic types of Associat1ve Processors. 

In the f1rst subclass, the log1cal funct1ons for compar1son are 

related to each b1t-cell of every word 1n the memory and consequently we 

obta1n a parallel-by-word and parallel-by-b1t compar1son process1ng, w1th 

the logical dec1s1on known at the output of every word. Although this 1s 

the fastest vers1on of the Assoc1at1ve Processors, however, the high 

hardware complex1ty 1nvolved 1n each b1t-cell conta1n1ng a separate log1c 

c1rcu1try,Just1f1es the fact that all 1mplementations of th1s type of 

computers have rema1nded at the experimental level. In Figure (I.B.3.1.2.i

f1) we can see the general structure of such an arch1tecture. 

The other type of th1s category has the log1cal funct1on for compar1son 

related to each character-cell (for a f1Xed number of b1tsl or a group of 

character-cells. In Figure (I.B.3.1.2.i-f2) we can see the general 

structure of such an arch1tecture. 

Lee lLEEC62] 1n 1962 was the p1oneer to propose such a system, but 

the best known developed system 1s PEPE, or1g1nally developed by Bell 

Laborator1es for the U.S. Army Advanced Ball1st1c M1ss1le Defense Agency. 



[Ch. I/See. B 6Z] 

A few years later, in 1965, Crane and G~thens [CRAN65] ~traduced an 

extens~on to Lee's system, a two-d~mensional d~strLbuted log~c memory, 

util~z~g a large number of ident~cal process~ng elements, thus achiev~ng 

a h~gher executional performance for arithmet~c operat~ons. 

I INTERRO~TING BIT DRIVES I 
11 12 3 ln " I WORD-MATCH TAG I 

NETWORK 1 

~2 21 23 2n WORD-MATCH TAG I 
NETWORK 2 

. . . . . • . 
fn2 • ml m3 mn . I WORD-MATCH TAG .I 

·1 NETWORK m 

I OUTPUT CIRCUIT I ALU I 

Figure I.B.3.1.2.i-[1: The General Structure of a Fully Parallel, 
Word-Organ~zed Assoc~at~ve Memory and ALU 
(each crosspo~t represents a b~t-cell of 
the memory). 

Of course many compl~cat~ons have been encountered ~ ~mplement~g 

such types of computers, but step after step they have been researched 

carefully and solutions offered; for example,L~povsk~ [LIPO?O] ~n 1970 

des~gned the 'Tree Channel Processor' (TCP) wh~ch is an ~terconnect~on 

scheme attempting to solve the problems wh~ch occurred by the requ~rements 

t 
of the DLMs for h~gh-speed I/O and ab~lity to segment the processor to 

execute subprograms. 

F~ally, another extens~on to the DLM was the 'Assoc~at~on Stor~g 

Processor' (ASP)- see Sav~tt [SAVI66],wh~ch was an attempt for even faster 

process~g resulted ~ two spec~al-purpose mach~e des~gns, the item-oriented 

ASM and the phrase-oriented ASM. 

tDistributed Logic Memory. 

I 



[Ch. I/Sec. B 63] 

The general ASP cons~sted of much more than a processor and the 

ma~n pr~nc~ple of ~ts des~gn was that the hardware was espec~ally 

des~gned to support the language to be used on ~t. The ma~n d~fference 

was that the phrase-oriented vers~on, ~nstead of ~dent~fying s~ngle 

1tems, was capable of stor1ng, search1ng and replac1ng phrases, 1.e., 

sequences of relat~ons (substructures of the data structure) . 

IXlNTROL 

SYSTEM 

DISTIU!tJ'I'D) LOCIC KEKORY r----------------, 
I 
I 
I 

~~ 
CELL 

I lr---r--,-.~ 
I 
I 
I 
I 

IRPtrr SIGNAL LEAD I 

IXIHPAR!SO 

LOGIC 

C!:LL 

~ 2 

' CCMP ARISO> 

LOGIC 

- .. O!ARACTER I 
..:·:. 11 

C!:LL 

~ n I 
'r-----r-----....1 I 

f I 
poHPAAISON 

lDCIC 

I 
I 
I 
I 

I l ~~';~~d 
r~-~_s_I_c•_ll_u_m~l~---+-~--+-~----r+-~+-~-----+~+-~+' Lines 

r'~~~·~~~T~IO~N~ll~AD~~----f-~--+-~----rf---f-~-----+~--rf-1 
INPUT !US I "I 

OlJI"PllT SlGNlllll.ll\ 

~·-T~Att~•-us~--~----~-----+-4------~--4~-----._---~4-:)~~~~s 
Ol'li'UT IUS r 
DIRECTioN llADs : } Direction 
r-----~~~~~----------~--~------~--------~.1- Specifi

cation 
! I I I Lines 
I I OUTPUT SYMBOL BUFFER l 
~------------------~ 

llU 

Figure I.B.3.1.2.i-f2: The General Structure of a Fully Parallel 
D~stributed Log~c Assoc~at~ve Processor 
(as proposed by Lee). 



[Ch. I/See. B 64] 

I.B.3.1.2.ii: BIT-SERIAL ASSOCIATIVE PROCESSORS 

The expensive logic required for each memory bLt in the previous 

class of Assoc1at1ve Processors, as well as the commun1cat1on problems 

between them, resulted Ln the appearance of the bit-serial associative 

processors. Shooman's concept on using vertical data in parallel processing 

formed the basis of thLs class, sLnce, comparatLvely, the number of bLts, 

Ln each word to be processed, LS smaller than the total number of words. 

EWLng and DavLes [EWIN64] Ln 1964, first proposed the design logLc 

for such a computer; Ln Figure (I.B.3.1.2.ii-fl) we can see the outlLne of 

a bit-serial assocLatLve memory, where each LntersectLon of a bit-lLne 

and a word-lLne LS of one bLt-storage. The operatLon takes place at bit

slices, selected by the bLt-column select logLc, and the associatLve 

processLng Ls obtained through the word logic assocLated wLth each word

l~e. Th1s 1s ident1cal for all words and cons1sts of a sense amplif1er, 

storage flip-flops, a write amplLfLer and a control logLc. In contrast to 

a d1str1buted log1c Associative Processor, such a processor can be 

consLdered as an external-logic assocLatLve processor. 

BLt-serLal AssocLatLve Processors have been implemented through the 

use of 2!D core search memory (see HardLng and Rolund [HARD68], Stone 

[STON68]). Goodyear Aerospace CorporatLon developed one of the most WLdely 

known bLt-serial assocLatLve processor, the STARANcomputer, consLsted of 

an optLonal number -up to 32-of assocLative array modules. The most 

signLfLcant part Ln thLs system LS the permutation network or otherwLse 

flip or interconnection network, through which the communicatLon between 

the processLng elemenrnand the memory modules LS obtaLned. In Figure 

(I.B.3.1.2.ii-f2) we can see the operatLonal concept of such a type of 

computer; after the propagatLon of the sLngle instructLon, the processLng 



[Ch. I/See. B 65] 

r BIT-COLUMN SELECT LOGIC r r CONTROL UNIT 1 

••• 
• •• 

r INTERROGATING BIT DRIVES I 

11 12 l3 ln I WORD 
I LOGIC 

l 

+··· ~ 21 22 23 2n WORD 
LOGIC 

2 

+ ••• + • • • • • • r··l • 
.ml m2 ln3 Inn WORD 

LOGIC 
m 

r I I 
ALU OUTPUT CIRCUIT I l 

Figure I.B.3.1.2.ii-[1: The Outl~ne of a B~t-Ser~al Assoc~at~ve 
Memory and the ALU. 

elements corresponding to those words which satisf~ed the search cr~ter~a, 

start to operate on each word s~multaneously, unt~l the seek~g data 

argument ~s f~ally located. 

Occas~onally, some heavy demand~ng data process~g problems, as the 

weather forecast~g or the air traff~c control systems, can be tackled 

much faster by a hybrid system composed of an Associative Processor to 

operate on tasks suited for ~t ~ parallel and a convent~onal sequent~al 

processor to handle tasks which must be processed ~n a single sequent~al 

data stream. 

Conclud~ng, we mention some other examples of bit-ser~al Assoc~at~ve 

Processors, l~e the OMEN computers - developed by Sanders Associates, the 



WORDS 

255 

TO/FROM CONTROL 

BITS 255 

BIT-SLICE 

256 

[Ch. I/See. B 66] 

• 
• 
• 

Figure I.B.3.1.2.ii-[2: The OperatLonal Concept of a STARAN 
AssocLatLve Array Module wLth a 256-Wordsx 
256-BLts Memory, 

hybrid AssocLatLve Processor - developed by Hughes ALrcraft Co. (see Love 

[LOVE73)), the 'Raytheon AssocLatLve/Array Processor' (RAP) - (see Couranz, 

I/O 

Gerhardt, and Young [COUR74)), the 'AssocLatLve LLnear Array Processor' (ALAP) 

- (see FLnnLla and Lcve [FINN??J),whLch can also be consLdered as a dLstributed-

logLc bLt-serLal AssocLatLve Processor, and the 'Extended Content Addressed 

Memory' (ECAM),- (see Anderson and KaLn [ANDE76)). 

I.B.3.1.2.iii: WORD-SERIAL ASSOCIATIVE PROCESSORS 

Th~s subclass of Associative Processors has not been commerc1ally 

Lmplemented due to the fact that they have not promLsed hLgh executLonal 

speeds. Such a type of computer, sLmply represents a hardware implementatLon 

of a program loop for searchLng the data; on thLs fact depends the 

Lmproved efficLency compared to conventLonal sequentLal computers, sLnce 

L_ ______________________ --- - - - -- - -



[Ch. I/See. B 67] 

only one ~nstruct~on ~s required for the word search, each t~me, and 

consequently the ~struct~on decod~ng t~me ~s m~~m~zed. 

The f~rst to present an exper~mental model of th~s type of computer 

were Crofut and Sott~le [CROF66], ~ 1966. The bas~c const~tuent of that 

model was a word-ser1al assoc1ative memory w1th operat1onal character1st1cs 

very s~m~lar to that of a drum or d~sk; the memory ut~lized n ultrason~c 

d~gital delay lLnes, operating at lOO MHz, w~th 10 usec delay t~me, where 

n ~s the number of b~ts/word. 

Th~s memory was under the control of a rewrite controZ Zogic 

whLch checked the ~nformational traff~c through the delay l~ne system and 

would allow e~ther the same data to c~rculate or new data to flow ~nto it. 

Each b~t/word occup~ed a delay l~ne and a synchronous propagat~on of all 

the b~ts of the word through the delay l~es took place, thus mak~g feas~le 

the ~dLv~dual ~terrogat~on and updating of every word at the ex~t of the 

delay l~e system. The synchron~z~ng clock pulses, ~ order to advance 

the address counter, were prov~ded by a stable oscLllator (StaZo). The 

hardware outl~e of such a type of computer can be seen ~n Figure (I.B.3. 

1.2.iii-fl). 

I.B.3.1.2.iv: BLOCK-ORIENTED ASSOCIATIVE PROCESSORS 

Th1s subclass of the Assoc1at1ve Processors, can be seen as a 

comprom1se between the low-speed word-ser1al and the expens1ve b1t-ser1al 

Assoc1at1ve Processors, offer1ng low-cost assoc1at1ve processLng wh1ch 1s 

very eff~c~ent ~n the cases where a large data argument storage and retr~eval 

system are requ1red. 

Var~ous models, of thLs type of computer, have been developed, the 

p~oneer sc~ent~st, who presented the f~rst bZock-oriented Assoc1at1ve 



[Ch. I/See. B 68] 

REWRITE CONTROL LOGIC }--

I 

I ALU 

• • • 

WRITE AMPLIFIER 

..... ~ r-'- r'- I SEARCH KEY _I 

1 2 ••• n 

FINAL 
ADDRESS 

1 I 
REGISTER 

T I COMPARE ~ READ AMPLIFIER 

••• 

READ REGISTER ~ 
ADDRESS 
COUNTER STABLE 

LOCAL 
OSCILLATOR 
(STALO) 

CONTROL SYSTEM 

Figure I.B.3.1.2.iii-[1: The Hardware Interconnect1ons of a Word
Ser~al Assoc1ative Processor. 

Processor called RAPID ('Rotat1ng Assoc1at1ve Processor for Informat1on 

Dissem1nat1on'), be1ng Parhami [PARH72] 1n 1972. Th1s computer, whose 

associat1ve memory can be seen 1n Figure (I.B.3.1.2.iv-[1), was based on both, 

Slotn1ck' s (SL01'70] and Parker's [PARK71] concept of uswg logic-per-trock 



[Ch. I/See. B 69] 

devices, 1.e. d1sk memor1es hav1ng a head and some log1c on every track, 

and on Lee•s d1str~uted log1c memory to store and retrieve informat1on. 

After Parhaml., Minsky [MINS?2] l.n 1972, among other scientists who 

presented various modl.fl.ed versl.ons of the above J.dea, utl.ll.zed the delay 

time spent to locate a gJ.ven address, for content informatl.on retrieval. 

He J.ntroduced the term partially associative memory using rotatJ.ng drum 

or dJ.sk memorJ.es controlled by a Controller Processor to store the 

l.nformatl.on accordJ.ng to thel.r basl.c structure, l..e. name part and data 

part, as well as the operatJ.onal characteristics, l..e. instructionsand 

predicates. 

In a recap1tulat1on of Assoc1at1ve Processor systems, we ment1on that 

they are very efficient for hl.gh-speed parallel J.nformatl.on processJ.ng and 

from the above categor1es, based on the assoc1at1ve memory organ1zat1on, 

the first two are the most Wl.dely known commercially. 

H EAD-PER-TRACK 

D~K CHARACTER 

' STRINGS DISTRIBUTED 

( 0 ) LOGIC 
MEMORY 

/ CHARACTER 
STRINGS 

CONTROL 
UNIT 

Figure I.B.3.1.2.iv-[1: The AssocJ.atJ.ve Memory of RAPID. 



[Ch. 1/See. B 70] 

I.B.3.1.2.v: HIGHLY PARALLEL AsSOCIATIVE PROCESSORS 

In the last subclass of the AssociatLve Processors we shall refer to 

some arch~tectures which, apart from the1r assoc1at1ve features, possess 

eLther multLple control unLts or an extensLve control buLlt insLde the 

memory array. 

An example of this type of computer LS the ACAM ('Augmented Content-

Addressed Memory') system, desLgned by Kautz [KAUT?l] in 1971; Ln thLs 

system, each storage cell Lncorporates many functions thus provLdLng an 

extensLve arLthmetLC capabilLty, which is traded-off agaLnst an excess 

amount of complexLty compared to the conventLonal AssociatLve Processors, 

e.g. there are 40 NOR gates/cell LnStead of the 10 gates/cell Ln a simple 

Associat1ve Processor. 

Thus ACAM, is an (mxn) array of cells, where each cell consLsts of 

many dLfferent functLons; Ln each cell there are three regLsters dedLcated 

to hold the programmable values c.,b.,a. Ln a column fashLon whLch are 
~ ~ ~ 

used to defLne the behavLour of the array. The c values, whLch are constant 

along a column, are used as bLt masks to select the requLred operatLon 

columns, whereas a word-based logLc paLrs the ab values, whLch are constant 

over each word; the latter values are used to select the type of function, 

unLquely determLned by theLr LntersectLon wLth the c column, to be performed 

on the specLfLc cell. In other words, thLs means that dLfferent operatLons 

can be SLmultaneously performed on dLfferent words. Of course all thLs 

flexLhliLtyhas caused an Lncreased complexLty according to whLch each cell 

has 8 termLnals and the (mxn) array has 4.(m+n) edge termLnals. 

FLnally, for specLal purpose applLcatLons, i.e. bulk fLlterLng of 

radar data, another type of AssocLatLve Processor was desLgned by SchmLtz, 

et al [SCHM?2] Ln 1972, attemptLng to utilLze the dormant ProcessLng 



[Ch. I/See. B 71] 

Elements IJ'Es) occurrmg m a conventJ.onal AssocJ.ative Processor durmg the 

~struct1on execut1on phase. 

ThJ.s system comprJ.ses m control unJ.ts and n PEs of varJ.ous degrees 

of complexJ.ty. The mam constJ.tuent J.n thJ.s archJ.tecture J.S the ACS 

('AssocJ.atJ.ve Control SwJ.tch') whJ.ch acts as an extended search-results 

regJ.ster, J..e. accordmg to the result(s) of an operatJ.on(s) performed J.n 

a PE, theACM selects the suJ.table control unJ.t for thJ.s PE or leaves J.t 

mactJ.ve; consequently dJ.fferent parts of the architecture can operate 

sJ.multaneously on dJ.fferent mstructJ.on streams. 

In conclus1on, we mention that other researchers 1n the past (see 

Seeber and LJ.ndquJ.st [SEEB63]) have proposed other schemes 1n wh1ch J.nstead 

of us~g s1mple PEs have assumed whole Associat1ve Processors. However, 

most of these have rema1ned 1n the experJ.mental stage due to the dJ.ffJ.cultJ.es 

of constructLng large associat1ve memor1es. 

I.B.3.2: PARALLEL PROCESSOR ARCHITECTURES 

Under the Parallel Processor archJ.tecture category, according to the 

presented genealogy of the SIMD computers, we shall examine the character

J.stJ.cs of the so-called actual Array or ParaZZeZ Processors, relatJ.vely 

go1ng J.nto some more details about the ILLIAC IV and especJ.ally the ICL DAP 

computers. 

ThJ.s J.S mostly because, the influence of the former computer had a 

profound effect on thJ.s class of systems, although J.t may be consJ.dered as 

a faJ.lure 1n that J.t cost four tJ.mes the orJ.gJ.nal contract fJ.gure, and J.ts 

actual performance dJ.d not come even WJ.thJ.n a factor of 10 of J.ts expected 

performance; on the other hand, the latter mach1ne J.S accessl.ble from 

Loughborough University through a modem. FJ.nally and briefly, we shall 



[Ch. I/See. B 72] 

refer to Shooman's concepts for the Orthogonal Processor classified in 

this category but mainly offer~ng the basis for construct~g Associative 

Processors. 

One of the first theoret~cal descr~ptions of such a parallel 

process~g system ~s due to R~chardson, L.F. [RICH22] ~ 1922, who 

attempt~g to do a weather forecast~ng ent~rely by hand spent an excessive 

amount of t~me. This work led h~m to propose an operat~onal forecasting 

factory cons~st~g of an army of 64,000 'computers' -each probably be~g, 

accord~g to the age of computers then, a person us~g a present day desk 

calculator - each of wh~ch would be assigned to the atmosphere column above 

a predeterm~ed locat~on on the earth's surface, and all the calculat~ons 

of them would be coord~ated by a general director. 

All the systems in th~s class can be roughly ident~f~ed of cons~st~ng 

of some maJOr components, harnessed together 2n a var1ety of d1fferent 

ways: 1) A number of ~dent~cal processors, centrally dr~ven and synchron~zed, 

adJusted ~ 2) var~ous forms of communicat~on networks; 3) a number of 

memory banks, not necessar~ly equal to the number of processors, 4) some 

form of local control, and f~ally 5) some form of global control. The 

general hardware model of an Array or Parallel computer system, compr~s~g 

p processors and parallel memor~es, can be seen ~Figure (I.B.J.2-f1). 

The control un~t, wh~ch is usually a computer ~tself, called the host 

computer, prov~des the common ~struct~on stream, and a private memory 

~s assoc~ated w~th each processor, wh~ch suppl~es ~t w~th the data stream, 

on which ~t executes the propagated ~struct~ons ~ a synchronous fash~on 

way. These systems are capable of ach~ev~g speed-ups proport~onal to 

the number of processors they conta~n. 



' 

[Ch. I/Sec. B 73] 

CONTROL PATHS 

~-------- -;-----------+---------------------+ t 
CONTROL 
PROCESSOR 

-"' :;; 
H 
>-3 
() 
0: 
H z 
Gl -
-

"-.._-
• • • 

PROCESSOR 1 

PROCESSOR 2 

PROCESSOR 3 

PROCESSOR 4 

PROCESSOR 5 

• • • 

PROCESSOR p 

DATA STREAM 1 

DATA STREAM 2 

DATA STREAM 3 

DATA STREAM 4 

DATA STREAM 5 

ATA STREAM P 

PARALLEL \ 
MEMORY 

1 

PARALLEL-\ 
MEMORY 

2 ,_=\ 
MEM~RY 

PARALLEL \ 
MEM~RY 

PARALLEL \ 
MEMORY 

5 

• • • 
PARALLEL 
MEMORY 

p 

Figure I.B.3.2.-[1: The General Model of an Array or Parallel 
Computer, hav1ng an ident~cal number of 
Processors and Memory Banks. 

of course there are many d~ff~cult~es in us1ng these parallel 

memor~es, wh~ch we shall discuss in the follow1ng paragraphs, the maJor 

one be1ng the accessing conflicts which may ar~se and consequently slow 

down the whole system. In fact, ~f a speed balance has been ach~eved 

amongst memor~es and processors and 1f parallel process1ng cannot proceed 

unt~l every required element has been fetched from the correspond1ng 

memor~es, then the system ~s slowed down by a factor equal to the max~mum 

number of confl~cts in any memory module. 



[Ch. I/Sec. B 74) 

I.B.3.2.1: THE UTILIZATION Qp PARALLEL MEMORIES 

Any memory system that contains a number of separately addressable 

memory modules is called a multimemory or parallel memory system. More 

specif~cally, if ~a m-mult~memory system the success~ve addresses are 

ass~gned across the memor~es, module m, ~t w~ll be called an interleaved 

memory system. The terms phased and ~nterlaced memories sometimes are 

used to refer to 1nterleaved memor~es and at other times refer to des1gns 

~ wh~ch each of the parallel memory modules is cycled on a different 

minor clock cycle. 

Generally, the parallel memories are of h~gh s~gnif~cance for the 

Parallel or P~pel~ed computers, because at the word-level parallel~sm, 

~.e. each memory produces one word/met, they offer the means to ma~tain 

a balance between the unevenly ~creas~g speeds, accord~g to the 

technolog~cal evolut~on, of the processors and the corresponding memory 

banks. 

Many techniques have been developed ~n an attempt to solve the most 

ser~ous problem of confl~cts occurr~g in the use of these memor~es dur~g 

the access~g of the stored data. S~ce mult~d~ens~onal arrays are used 

frequently ~ programs, we cons~der a s~mple example of stor~g a two-

d~mens~onal (mxn) array, where m=n=4, see Figure (I.B.3.2.1-fl). The 

storage has taken place columnw~se, thus the data ~s su~table for ro~ or 

diagonal access, th~s however presents confl~ct problems when accessing 

a column, and therefore ~t ~s necessary to cycle the memor~es that many 

tLmes, as the number of elements ~n a column. 

Var~ous alternat~ve storing techn~ques have been developed for 

spec~f~c problems; for example, by ske~ing the data along the memor~es, 

t Memory cycle. 



[Ch. I/See. B 75] 

see Figure (I.B.3.2.1-f2), the conflicts~ retr~ev~g a row or column 

of data will be avo~ded, but not for the diagonals. In fact, there ~s 

only one way to store an (nXn) matr1x Ln n memories, when n ~s even, so 

that arb~trary rows, columns and d~agonals can be fetched w~thout confl~cts, 

th~s is 1£ we cons1der more than n memor1es. 

MEMORY UNITS- \ll 1 2 3 

xoo XOl X02 X03 

xlO xll xl2 xl3 

x20 x21 x22 x23 

x30 x31 x32 x33 

Figure I.B.3.2.1-f1: A typ~cal stra~ght storage of a Two
D~mensional (4X4) Array ~to 4 Memory Un~ts. 

MEMORY UNITS- \ll 1 2 3 

X X X X 
00 01 02 03 

X X xll xl2 13 10 
X X X X 

22 23 20 21 
X X X X 

31 32 33 30 

Figure I.B.3.2.1-f2: A Skewed storage into 4 Memory Un~ts 
allow~ng access to Rows and Columns of 
a Two-D~mens~onal (4x4) Array. 

Of course, the skewed storage ~s not a s~mple scheme, s~ce ~t 

requ~res each memory module to be prov~ded w~th an ~dependent ~dex~ng 

mechan~sm allow~g access to a d~fferent relat~ve locat~on of them. Thus, 

th~s ~s one way to man~pulate the behav~our of the parallel memor~es, 

s~ce other ex~st~g computers - see the Control Data STAR and the Texas ASC 

-have adopted the physical array transposition,mechan~sm wh~ch although 

~t produces a wasted transpos~t~on t~me overhead, offers the capab~l~ty 



[Ch. 1/See. B 76] 

to access a pair from the rows, columns and diagonals accordLngly. 

Th1s 1s not the only problem that ar1ses 1n parallel memories nor 

the most 1mportant, sLnce there are many others, on wh1ch the usefulness 

of these memor1es depends, such a~ the k1nd of mechan1sm that 1s assumed 

for reta1n1ng unserv1ced accesses and the kind of data dependenc1es assumed 

1n the memory access sequence, which have accepted a w~de invest1gat1on 

by the researchers 1n the past 15 years. 

I.B.3.2.2: THE INTERCONNECTION NETWORKS 

Assume we have a computer arch1tecture consist1ng of a number of 

processLng un1ts and memor1es; the quest1on wh1ch ar1ses 1s, 'What k1nd 

of 1nterconnect1on techniques are employed, w1th what costs, speeds and 

pr1or1t1es?'. The un1ts that are 1nterconnected can be of var1ous types, 

start1ng from d1fferent components w1th1n a processor, 1.e. reg1sters, 

ar1thmet1c un1ts, up to d1fferent processors, memor1es, I/O dev1ces. 

We shall not attempt a deta1led answer to the above quest1on, but 

roughly d1stLnguish the types of the networks Ln uset and the d1fferent 

topolog1es they can be class1f1ed 1nto. The 1mm1nent compl1cat1ons of 

usLng these networks, 1.e. the confl1ctLng s1multaneous demands on the 

1nterconnect1on network, are settled by the use of a 'Network Control 

Un1t'. 

Generally, we can d1st1ngu1sh two types of interconnection networks, 

the bus and the alignment networks, whereas the latter can be topolog1cally 

subclass1f1ed 1nto statio and dynamic networks. It 1s not poss1ble to 

make a r1gorous d1st1nct1on between buses and al1gnment networks, but 

basically through the former one only two un1ts can commun1cate at one 

tin general reduced interconnection networks are utilized, since the 
complete ones are very expensive. 



[Ch. I/Sec. B 77] 

1nstant of time, whereas through the latter one a number of un1ts can 

commun1cate 1n parallel. Consequently, 1t follows that a bus is a 

slowe4 less expens1ve network than an alignment network. 

The al1gnment networks are, not only, used 1n the SIMD computers, 

but 1n the P1pel1ned and Mult1processor systems as well, 1nterconnect1ng 

processors and memor1es allow1ng transm1SS1on from memory to memory, 

processor to processor, or back and forth between processors and memor1es. 

The topolog1cally static networks are character1zed by the requ1red 

dimens1ons for layout and consequently, see Figure {I.B.3.2.2-fl), we can 

have from one-d1mens1onal topolog1es, e.g. l1near array used for some 

P1pel1ned arch1tectures, up to hypercube structures. 

On the other hand, the topologically dynamic networks are d1st1ngu1shed 

1nto the single-stage, multistage and crossbar types of networks. The 

single-stage or recirculating network 1s composed of a stage of sw1tch1ng 

elements cascaded to a l1nk connect1on pattern; the multistage network 

cons1sts of more than one stage of sw1tch1ng elements, whereas w1th a 

crossbar sw1tch network we can ach1eve any one-to-one connect1on of 1nputs 

to outputs and, even more, one-to-many connect1ons for broadcast1ng, but 

th1s sw1tch 1s qu1te expens1ve and consequently not eff1c1ent for large 

systems. In Figure {I.B.3.2.2-f2) we can see some examples of the 

topolog1cally dynamic networks. 



[Ch. I/Sec.. B 78) 

(a) Linear 
array 

(d) Tree 

(b) Ring 

(g) COmpletely (h) Chordal 
connected 

(c) Star 

(l.) 3-cube 

(J) 3-cube connected cycle [dev1.at1.on of the 
hypercube] 

Figure I.B.3.2.2-[1: a) One-DJ.mensional; b)-f) Two-DimensJ.onal; 
g)-J) Three-Dimensional Networks. 

( l.i) 

5 • 
....... .... _. 

-"\.,._J--8 

( l.) 

• 
• 
u 
T 

( il.l.) 

0 

u 

• 
u 
T 

Figure I.B.3.2.2-[2: l.) Single-stage, sxs Shuffle-Exchange Network; 
l.l.) Multistage, sxs Benes Network; 
l.l.l.) Crossbar SwJ.tch Network. 



[Ch. I/Sec. B 79] 

I.B.3.2.3: IMPLEMENTED PARALLEL PROCESSOR SYSTEMS 

In the parallel processor systems area, sc1ent1sts began, pr~r1ly, 

1nvest1gat1ng architectures cons1sting of arrays of processing elements 

connected ~ a four-nearest-neighbour manner. The characteristics wh1ch 

will pr1mar1ly dist1nguish one system from another are: 

1) The number of processors; 

11) the 1nterconnect1on paths between the processors; 

i11) the parallel memory module s1zes; 

1v) the complex1ty of the operat1ons supported by the processors 

hardware; 

and v) the commun1cat1on paths to other host systems. 

The Unger's computer, (see [UNGE58]),was des1gned for pattern

recogn1tion process1ng, mainly deal1ng w1th typ1cal l1ne-man1pulat1on 

functions, as l1ne th1nn1ng, extend1ng, doubl1ng, etc; the four-nearest

ne1ghbours connected type of array of PEs was capable of allow1ng 

cond1t1onal JUmps to the ma1n control computer by ut1l1z1ng a test mechanism 

search1ng for zero values 1n a des1gnated b1t of each PE 1n the array. 

The SOLOMON I, SOLOMON II (the acronym stands for 'Simultaneous 

Operat1on Linked Ord1nal MOdular Network) and ILLIAC IV computers were 

des1gned by Slotn1ck, et al (see [SLOT62J,[WEST64] ,[SLOT6?]). SOLOMON I 

was a b1t-serial processor and each PE conta1ned a ser1al accumulator; 

a change of the slow arithmet1c un1t concept to a 24-b1t float1ng-point 

un1t led to the SOLOMON II vers1on of computer. 

Summar1z1ng, in general, the SOLOMON system, wh1ch was a maJOr 

m1lestone 1n the h1story of parallel1sm, had three pr1nc1pal features: 

1) A s1ngle control un1t controlled a large array of PEs interconnected 

1n a four-nearest-ne1ghbour manner, thus prov1d1ng a moderate coupl1ng 



[Ch. I/Sec. B 80] 

for data exchange; 

ii) the central control unit broadcasted the common memory addresses 

and data to all PEs and, 

~~~) each PE could perform local tests and so a form of local control 

was obtamable;

therefore the execut~on of the common mstruct~ons was controlled on a

per 1nd~v~dual bas~s scheme.

The SOLOMON computer was never bu~lt as ~t was descr~ed m [SLOT62],

but led to the des~gn of two more s~gnif~cant systems, the ILLIAC IV

(des~gned m 1966, m the Un~vers~ty of Illino~s under a contract of the

U.S. Dept. of Defense's 'Advanced Research Projects Agency' - ARPA) and

the ICL DAP array of smgle b~t PEs.

The ILLIAC IV was pr~r~ly des~gned for the solut~on of Part~al

Different~al Equat~ons and was never bu~lt as env~saged, due to the fact

that the tendency to attempt to implement such p~oneer proJects gradually

superseded the or~gmal ob]ect~ves for greater eff~c~ency. Actually, only

1/4 of the or~gmal conf~guration was fmally bu~lt by Burroughs and

del~vered to NASA Ames Research Center, Californ~a, m 1972; but even th~s

arch~tecture can be regarded as a failure, not only from the h~gh cost, but

also from the operational pomt of v~ew, w~th delays m routmg the data to

long d1stances across the array, caused by the l1m1ted nearest-ne1ghbour

connect~ons between the 64 PEs and the 64 correspondmg banks of PE memory.

Th~s problem forced Burroughs to reduce the number of processors and memory

banks to 16 and 17, respect~vely, when they constructed the commerc~al ESP

system (see Jensen [JENS?8], 1978).

The pr~mary conf~gurat~on of ILLIAC IV, see Figure (I.B.3.2.3-f1),

compr~sed four quadrants, each cons~stmg of 64 floatmg-pomt PEs, m a

[Ch. I/Sec. B 81)

(8x8) array format1on, w1th a 2048 words of 64-bit thin-f1lm memory,

with a 240ns cycle t1me, ass1gned to each of them. These quadrants would

be 1nterconnected through a highly parallel I/O bus and the 256 coupled

PEs would be dr1ven by instruct1ons from a common control un1t. Also, a

9
10 -b1t, head-per-track d1sk, with a 40-ms rotat1on speed and an effect1ve

9
transfer rate of 10 b1ts/sec, was to be provided as a secondary memory to

read from and write to.

Although the max1mum process1ng rate ach1eved was approximately 50

M flops/s out of the expected lG flop/s, and the or1g1nal clock per1od

lengthened from 40ns to SOns, th1s computer was the first to use semi-

conductor memory ch1ps for the ma1n memory, 1.e. 256-b1t bipolar log1c

gates, s1nce there was not enough space to use th1n-f~lm memor1es; these

gates were packed about 7 per ch1p (SSI), due to the use of the new and

faster Emitter-Coupled Logie(ECL) 1nstead of the Transistor-Transistor

Logie (TTL). Also th1s system used 15-layer c1rcu1t boards and computer-

a1ded layout methods to w1re them.

The complete system included a Burroughs B6500 computer to hold most

of the software wh1ch conta1ned four programm1ng languages that could

explo1t the systems' parallel1sm, i.e. the Algol-l1ke TRANQUIL (see Abel,

et al [ABEL69]), the Pascal-l1ke ACTUS (see Perrott [PERR?8]), the GLYPNIR

(see Lawr1e, et al [LAWR75]), and the CFD FORTRAN (see Stevens [STEV75]).

In conclus1on, th1s computer arch1tecture was too far and amb1t1ously

ahead of 1ts technolog1cal t1me, to be cons1dered as practicable, but

undoubtedly was a profound step forward 1n parallel computer arch1tecture.

The p1lot model of the ICL 'D1stributed Array Processor' (DAP) started

in 1974, attempt1ng to ach1eve a balance between computational power and

inexpens1ve comput1ng construction technology, and finally comm1ss1oned in

[Ch. 1/Sec. B 82]

1976 (see Reddaway [REDD79]); conceptually it was very close to the rn~tial

SOLOMON computer (see [SLOT62]) which cons1sted of a (J2XJ2) array of one

b~t PEs each w1th 4096 bits of memory performing 1ts ar1thmet1c on 1024

numbers s1multaneously m a b1t-ser1al fash1on.

However, the des1gn of DAP rntroduced two new features to the SOLOMON

concept: The first one, was a hardware sl1cing of the array in two orthogonal

direct1ons, whereas a number of registers 1n a 'Master Control Un1t' (MCU)

were capable of al1gnment w1th e1ther dimens1on, by the use of two orthogonal

data highways threadrng the rows and columns of the PEs. These h1ghways

have one bit for each b1t m the MCU register wh1ch termrnates in e1ther

a row or column of the array, e.g. PEij possesses a one-b1t h1ghway

d1rectly to b1ts i and j of the MCU register. The second feature was that

DAP not only emulated a memory module for the ICL 2900 ma1nframe computer

to wh1ch 1t was attached, but, also ~t was autonomously capable of

processrng data m a highly parallel manner.

The organizat1on on a b1t word bas1s rather than a 64-bit word

cons~1tutes the marn d1fference between the PEs of th1s system and those

of the ILLIAC's IV.

The f~rst 1mplemented machrne of th1s type was rnstalled at Queen

Mary College, London, m 1980, compr1srng a (64X64) matrix of PEs w~th

nearest-neighbour connect1ons, each capable to operate rndependently on

1ts own local store; consequently the DAP store was the total sum of 4096

local stores. The maJor components of the DAP system can be seen 1n

Figure (I.B.3.2.3-f2).

Another p1oneer feature of the DAP's des1gn 1s that the PE log1c ~s

placed, along with the memory to wh1ch 1t belongs, on the same c1rcu1t

board, wh1ch helps to avo1d the van Neumann's machrne bottlenecks due to

[Ch. I/Sec. B 83]

the separation of these two 1n dLfferent components. Furthermore, us1ng

the VLSI technology the PE(s) and correspond1ng memory(s) could be

mounted on the same chLp, which means that even larger matrLces of PEs could

be constructed, e.g. a (256x256) DAP.

Each PE contains 3-one-bit regLsters A,Q,C, two multLplexers and a

one-bLt full addeP - arLthmetic unLt to perform the arithmetLc. The A

register provLdes a programmable control over the PE's actLons, the Q

regLster is an accumuZatoP and the C register a caPry store; the full

adder adds Q ,C and the 1nput to the PE produc1ng the sum and caPPY

outputs, stor1ng them 1n the Q and C regLsters, respectLvely.

F1nally, a parallel FORTRAN based language, called DAP FORTRAN, has

been developed to take advantage of the machine's superLor process1ng

power. In ChapteP II we refer to the programm1ng concepts and performance

of thLs, specLal, SIMD system, s1nce in ChapteP IV we mentLon some results

obta1ned 1n the Computer StudLes Department from it.

ARPA CONTRACTORS
NETWORl

ILLINET 4

CU4

B6500

CU3

c SYSTEM DISK

STANDARD PERIPHERALS

I/0
SWITCH

I/O
CONTROLLER

REAL TIME INPUTS

FiguPe I.B.3.2.3-[1: The ILLIAC IV System ConfLguration.

[Ch. I/See. B 84]

MCU
REGISTERS

r- 8X64 BITS

i
t!l
H
0::

TO COLUMN ~ MODIFIER I INSTRUCTION
/FROM

~ 2900 DAP HIGHWAY BUFFER
ACCESS
CONTROL 60X32 BITS

L..j INSTRUCTION I

N

64X64
w DAP ARRAY E• INSTRUCTION

OF PROCESSORS COUNTER

s

Figure I.B.J.2.J-[2: The Major Hardware Un1ts of the DAP system.

I.B.J.2.J.i: THE 0RTHOGONAL CoMPUTER CoNcEPT

Another maJor m1lestone 1n the h1story of parallel1sm is, undoubtedly,

Shooman's concept of parallel comput1ng us1ng vertical data [SH0060].

Although we have already referred to some arch1tectures wh1ch ut1l1zed th1s

concept, we d1scuss th1s subclass1f1cat1on here to be prec1se w1th the SIMD

genealog1cal topology.

Shooman, in 196~proposed a new way 1n parallel process1ng ach1eved by

referenc1ng the memory not only 1n a word-ser1al/b1t-parallel fash1on,

1.e. horizontally, but also 1n the orthogonal or vertical d1rection, 1.e.

across the words by b1t sl1ces; this effect could s1mpl1fy many problems

where the retrieval search was ended after searching only a few bits of

each word. Accord1ng to h1s not1on, each process1ng element of the

organizat1on was ass1gned to each word occupying an hor1zontal row of the

two-d1mens1onal b1t-space 1n the memory, thus mak1ng feas1ble the parallel

[Ch. T/See. B 85]

process2ng of the bLts of a b~t sl~ce. Th~s procedure formed the so

called b~t-ser~al/word-parallel process2ng.

Of course, 2n add~t~on to the 'Vertical Ar~thmet~c Un~t· (VAU), the

orthogonalcomputer was prov~ded with a 'Hor~zontal Arithmetic Un~t' (HAU),

to perform the word-ser~al/b~t-parallel operat~on for the cases that would

be more efficient.

In conclus~on,the ma2n representat~ves of the orthogonal concept,

the STAHAN and the ICL DAP computers, have been presented together 2n

proposals for the recent construct~on of a 'Massively Parallel Processor'

(MPP) w~th an (128x128) array of one-b~t PEs, connected two-d~mens~onally.

[Ch. I/See. B 86]

I.B.4: THE GENEALOGY OF THE PIPELINED VECTORt0RGANIZATION

The pipeline not1on, 1n 1ts w1dest sense, can be 1ncluded 1n the

general paraZZeZism notion; 1n other words, it 1s a form or techn1que to

1mbed parallel1sm or concurrency 1nto a computer arch1tecture.

P1pelined vector computer architecture has received cons1derable

attent1on s1nce the 1960s when the need for faster and more cost-effect1ve

systems became cr1tical. The mer1ts of a P1pel1ned computer are 1ts

avaiZabiZity and reZiabiZity; also pipel1n1ng can help to match the speeds

of var1ous subsystems w1thout dupl1cat1ng the cost of the ent1re system

1nvolved.

The p1pel1ne 1s closely related to an 1ndustrial assembly l1ne. Like

the assembly l1ne, precedence 1s automat1cally honored, but, it takes t1me

to f1ll the p1peline before full eff1c1ency per cycle 1s reached and also

t1me to drain the p1pel1ne totally.

In Figure (I.B.4-fl)- (see Hackney [HOCK81]), 1n 1981, we can see

the topology of the geneaZogicaZ tree of the Pipel1ned arch1tectures.

Although P1pel1ned arch1tectures are somewhat different compared to SIMD

and Multiprocessor architectures, they present a s1gn1f1cant 1nterest

because the algor1thms best su1ted for SIMD systems are closely connected

to those wh1ch ach1eve a great eff1c1ency on a P1pel1ned system.

The future of p1pel1n1ng can be considered most prom1s1ng 1f we take

1nto account the electron1c and Large Scale Integrated (LSI) c1rcu1ts

evolut1on wh1ch offers faster and much cheaper hardware components.

In the follow1ng paragraphs, we shall present the theoret1cal

cons1derat1ons behind the p1pel1ne not1on, br1efly surveying some

commercial representat1ve systems and establ1sh1ng a criterion for the

trade-off between sequent1al and p1pel1ned vector process1ng.

timplies emphatically both, PipeZined 'ScaZar' and 'Vector' architectures,
appropriately distinguished when it is necessary.

[Ch. I/Sec. B 87]

PIPELINED ARCHITECTURES I

~ ~
I SCALAR INSTRUCTIONS! I VECTOR INSTRUCTIONS J

A A
HORIZONTAL ISSUE-WHEN SPECIAL-PURPOSE GENERAL-PURPOSE

CONTROL READY PIPES PIPES
A B c D

FPS CDC CDC
AP-120B ?600 CRAY-1 CYBER 205

PIPELINED PIPELINED SPECIAL-PURPOSE GENERAL-PURPOSE
HORIZONTAL SCALAR PIPELINED PIPELINED

SCALAR
COMPUTER

COMPUTER VECTOR COMPUTER VECTOR COMPUTER

A: One 1nstruct1on controls all un1ts at each cycle

(Hor1zontal control);

B: Instruct1ons are 1ssued to un1ts 1nd1v1dually, when

they are ready to carry out an operat1on;

C: Separate spec1al-purpose p1pelines for each type of

ar1thmet1c operat1on;

D: One or more general-purpose p1pel1nes, each capable

of performing more than one type of operat1on.

Figure I.B.4-[1: The Genealogy of P1pel1ned Arch1tectures.

I.B.4.1: PIPELINE As A FUNDAMENTAL DESIGN PRINCIPLE AND PERFORMANCE

CHARACTERISTICS

In th1s paragraph we present the pr1nciples of overlap and pipeZining

as general techn1ques for handling even precedence dependent tasks,

operat1ng at several levels of mach1ne des1gn.

[Ch. 1/Sec. B 88]

Overlap ~s the phenomenon of concurrent processing, often towards

some well-defined common goal. In a computer system there can be an over

lap of input/output operat~ons w~th processor operat~ons, namely an

Asynchronous input/output. W~th~n the processor, there can take place an

overlap on what the user real~zes as a monol1th1c computer 1nstruct1on; to

the computer designer this ~s made up of a number of distinct operat~ons,

such as, fetch~ng the ~nstruct~on, decod~ng the operat~ons involved and

fetch~ng the operands before ~t ~s f~nally executed. These operat~ons fall

~nto two separate phases or cycles of operation, the Interpretat~on or

Instruction cycle (I), when an ~struct~on ~s acquired and stab~l~zed in

the processor and the Execut~on cycle (E) , when the part~cular funct~on ~s

actually performed.

More deta~led overlaps can be des~gned into the mach~e; a s~mple

example ~s the s~multaneous runn~ng of many ~nput/output dev~ces. In the

case of I and E overlaps an ~nterlock mechan~sm ~s requ~red between the

d~fferent sub-un~ts, each entrusted to carry out the smaller subprocesses,

~n order to enforce the precedence rules. Th~s ~s ach~eved by the propagation

of s~gnals between the autonomous un~ts ~d~cat~ng the completion of a task

and the validat~on of registers at the ~nterfaces. Although the ~terlocks

can present a s~gn~f~cant complexity, mult~ple processor overlap des~gns

can potent~ally ra~se the performance of the computer several-fold.

Such an extreme form of mult~ple overlap ~s the pipelining technique,

when rather than complet~on s~gnals there are synchron~z~ng t~me clock

pulses rem~n~scent of SIMD parallel process~g.

P1pel1ned or vector computers ach1eve an increase 1n computat1on speed

by decompos1ng or segment1ng successive computat1onal processes, each 1nto

several subprocesses, which can be executed eff~c~ently by spec~al autonomous

and concurrently operat~ng hardware units, wh~ch overlap their operat~ons to

[Ch. I/Sec. B 89]

g1ve an1ncreased rate of complet1on of the process. Th1s 1s poss1ble

even 1f subprocesses show a precedence dependence.

Th1s techn1que, was f1rst 1ntroduced 1n computers such as Atlas and

Stretch. Although, very often, we read in publicat1ons the term pipeline

1n general, this concept depend1ng on the degree of subd1v1s1on of processes

can be 1mplemented at several levels. Therefore, the subprocesses can be

steps of the 1nstruct1on execut1on cycle wh1ch means several part1ally

completed 1nstruct1ons can be 1n progress s1multaneously; 1n th1s case,

although the time to complete any one 1nstruction 1s st1ll lim1ted by the

sum of the t1mes for the var1ous act1v1t1es, the rate at wh1ch 1nstruct1ons

progress through the pipe 1s only restr1cted by the t1me for an 1nd1vidual

act1v1ty.

In the case of p1pel1ning an ar1thmet1c funct1on, a subprocess can be

one (or more) steps of the algor1thm. F1nally, the p1pel1n1ng of software

processes can be cons1dered, thus extend1ng the concept of a co-rout1ne to

I
that of parallel eo-routines.

Part1cularly, Handler [HAND82], in 1982, d1st1ngu1shed three d1fferent

logical p1pel1ne levels, under the names: macro-pipelining for the program

level, instruction pipelining for the 1nstruct1on level and arithmetic

pipelining for the word level. Furthermore, others d1st1nguished the

1nstruct1on p1pel1n1ng, depending on the control structure of the system,

to strict and relax p1pel1n1ng; under the former not1on they cons1der a

p1pel1ne with a smooth ordered data flow through 1t, whilst under the relax

term they cons1der a p1pel1ne wh1ch may accept a turbulence w1th1n 1t, e.g.

later operat1ons can move ahead of earl1er operat1ons. W1th the latter

control structure the system 1s fully asynchronous, more powerful and

flex1ble, but also more expensive.

[Ch. I!Sec. B 90]

In add1t1on to the h1erarch1cal levels of p1pelin1ng, the p1pe 1tself

can be further d1st1ngu1shed by 1ts des1gn conf1gurations and control

strategies into two forms, the static and the dynamic p1pe. Somet1mes a

p1pel1ned un1t is ded1cated to a s1ngle algorithm or funct1on, e.g. a

p1pel1ned adder or mult1pl1er; 1n th1s case 1t can be termed as a uni

functional p1pe w1th a static conf1gurat1on.

On the other hand, a p1pel1ned un1t can be ded1cated to a set of

d1fferent funct1ons, namely a multifunctional pipe; in th1s case the p1pe

may have to be flushed between two consecut1ve and d1fferent operat1ons.

Th1s sort of p1pe can be e1ther static or dynamic. The d1fference between

them 1s that in the static case, at any t1me 1nstant, only one conf1gurat1on

(1.e. 1nterconnect1ons of pipeline modules} is act1ve and therefore any

overlapp1ng of operat1ons has to ~valve the same 1nterconnect1on; 1n

dynamic mult1funct1onal p1pes several or all conf1gurat1ons can be act1ve

thus perm1tt1ng a synchronous overlapp1ng on d1fferent 1nterconnect1ons.

The eas1er control of mult1functional stat1c p1pes)USt1f1es the fact that

most, 1f not all, of the ex1st1ng P1pel1ned computers ut1l1ze these k1nd

of p1pes.

The s1mpl1f1ed model of a general P1pel1ned computer 1s depicted 1n

Figure (I.B.4.1-f1), compr1s1ng m pipelin1ng segments; each of these

segments performs 1ts part of the process1ng and consequently the f1nal

result is obta1ned at the end of the last segment.

The pipeline concurrency will be exempl1f1ed cons1der1ng the process

of execut1ng 1nstructions. In Figure (I.B.4.1-f2) we cons1dered four

modules wh1ch 1nd1v1dually can execute a subprocess into wh1ch the task of

processing an 1nstruct1on has been decomposed. In consequence four success1ve

1ndependent 1nstruct1ons may be executed concurrently. The overlapp1ng

procedure amongst the 1nd1v1dual modules 1s dep1cted 1n Figure (I.B.4.1-f3)

CONTROL
UNIT

l +
SEGMENT 1

SEGMENT 2

• • • • GENERAL
• • REGISTERS

SEGMENT M

I

I ALIGNMENT NETWORK I
t t

MEMORY MEMORY
1 •• K

• • ' I CHANNEL I
: 1

I/O
DEVICE

rECONDARY
MEMORY

-

1--

[Ch. 1/See. B 91]

PIPELINED
PROCESSOR
UNIT

CONTROL
FLOW
DATA
FLOW

Figure I.B.4.1-[1: A P1pel~ed Processor System.

-Jf"IiiF;-1--•• [I ==I~D=J~-• r1 ~OF;:---,t--~•1 EXEC

Figure I.B.4.1-[2: The Modules of a P1pel~ed Processor.

MODULES

EXEC

OF

ID

IF 1

1

1 2

2 3

1 2 3 41
2 3 4

3 4

4

Figure I.B.4.1-[3: The Module-T1me D1agram.

TIME

[Ch. 1/See. B 92]

by a space (module)-t1me d1agram. Accord1ng to th1s, wh1le the EXEC module

1s execut1ng the first instruct1on, the Operand Fetch (OF) module fetches

the requ~red operand for the second ~struct~on, the Instruct~on Decode

(ID) module prepares the various act1v1t1es for the third 1nstruction and

the Instruction Fetch (IF) module fetches the next instruct1on.

However, there ex1st some des1gn and operational problems assoc1ated

w1th a typical p1pel1ne wh1ch can actually 1nfluence the eff1c1ency and

performance of the result1ng des1gn. These are the buffering, busing

structure, branching and interrupt handling. F1nally we shall br1efly

refer to the processLng of ar1thmetic funct1ons.

The use of buffers serves the purpose of cont1nu1ng the smooth data

flow through the p1peline segments whenever a var1able speed occurs. In

other words buffering or Zook-ahead1s the process of stor10g results of a

segment temporar1ly before advanc10g them to the next segment. S1m1larly

to an 1ndustr1al assembly l10e, when the slowing down segment resumes normal

serv1ce, 1t clears out its buffer, perhaps, at a faster speed. Consequently,

buffer1ng may be requ1red before or after any segment w1th process1ng speed

not f1xed, but anyway the expected full speed-up 1s not always ach1eved,

s10ce the buffers have to be stab1l1zed before the act1v1ty transfer can be

effected.

Except1ng the arch1tectural features of a P1pel1ned processor, the

busing struct~is a very 1mportant and decis1ve factor for the eff1c1ency

of an algor1thm to be executed on such a system. P1pel1010g, theoret1cally,

refers to the concurrent process1ng of independent tasks (e.g. 10structions),

which may be 10 d1fferent stages of execut1on due to overlapp1ng. In real

t1me, often, P1pel1ned computers have to tackle dependent or 1nterm1xed

tasks. W1th dependent tasks, the1r 1nput and traversal through the p1pe

have to be paused unt1l the dependency 1s resolved.

[Ch. 1/Sec. B 93)

The ~ternal busing structure serves th1s purpose by routing the

results to the request~g modules eff1c1ently, thus reduc1ng the adverse

effect of tasks dependency. In the case of ~term1xed tasks, more

concurrent process1ng can take place, s1nce the resolv1ng of dependency 1s

h1dden beh~d the process~g of the 1ndependent tasks.

Another qu1te damag1ng factor, even more than the task (e.g. 1nstruction)

dependency, symptom wh1ch 1nfluences the performance of a P1pel~ed computer,

1s branching. The encounter of a cond1t1onal branch not only delays

further execut1on, but also affects the performance of the ent1re p1pe,

s~ce no one can tell the exact sequence of instructions to be followed

unt1l the dec1d1ng result becomes available at the output. To el1m~ate

the damaging effects of branch1ng, var1ous d1fferent techn1ques have been

employed to prov1de mechan1sms through wh1ch process1ng can be resumed

safely, s1nce an 1ncorrect 1nstruct~on branchmg may create a d~scont1nuous

supply of ~struct1ons.

A s1m1lar effect, to the cond1t1onal branching, 1s caused by interrupts,

namely a d1srupt1on of the 1nstruct1on stream contLnUlty takes place; the

1nterrupt must be serv1ced before any act1on can be appl1ed to the next

instruct1on. In the case that the cost of recovery 1s not overly

substant1al, then suff1c1ent ~format1on 1s set as1de for the recovery of

the next ~struct1on; otherw1se these two ~struct1ons have to be executed

sequent1ally, a fact wh1ch rad1cally changes the aim of p1pel~1ng.

In the case of the STAR-lOO processor, a recovery mechan1sm 1n the

form of spec1al 1nterrupt counters is present; these are capable of hold1ng

addresses, del1miters, f1eld lengths, etc., 1nformat1on necessary for the

eventual recovery of vector-type ~struct1ons after an unpredictable

1nterrupt has occurred. In a mere general-purpose P1pel1ned computer the

1nstruct1on recovery, after an 1nterrupt, 1s a very costly and complex

[Ch. I/Sec. B 94]

problem. Also, d~fferent types of interrupts, depend~g on what they are

associated w~th, can be d~st~nguished, e.g. ~n the IBM 360/91, two types

of interrupts occur, the pPecise 1nterrupts, assoc1ated w1th an instruction

(l~ke an illegal operat~on code} and the imprecise ~terrupts result~g

from the storage, address and execut1on functions.

Finally, the execut~on of arithmetic functions has been one of the

most fru~tful appl~cat~ons of overlapped processing ~n order to ~mprove

the total throughput. Spec~fically the advantages of p~pel~~g w~ll be

obta~ed when float~g po~t operat~ons are being executed s~ce they are

qu~te long; but again the full speed-up will not be obtained unless all

the modules of the pipe are fully used. For example, the p~pe of the TI ASC

system, the architecture of wh~ch ~s dep~cted in Figure (I.B.4.1-f4), has

e~ght modules to execute floating point ~struct~ons; a float~g po~nt

add~tion on this system does not use modules 6 or 7 and therefore a reduced

speed-up ~s obta~ed.

l

EXPONENT
SUBTRACT I ALIGN 11 NORMALIZE 11 ADDIIMULTIPLYIIACCUMULATEIIOUTPUTI

2 3 4 5 6 7 8

Figure I.B.4.1-f4: Modules for Float~ng Po~t Operat~ons.

In conclus1on, we present some performance cons1derat1ons of P1pel1ned

computers; at f~rst, the evaluat~on of the bas~c tim~ngs related to the

throughput rate, s~ce th~s ~s one of the most ~mportant performance

measures of such a system.

Let us suppose that, ~n an ~deal case, each subprocess of the or~g~al

process can be executed on a ded~cated module or segment of the p~pe ~

t~me T, wh1.ch ~s the same for all modules. If the p~pe compr ~ses P modules,

then the process (subdiv~ded ~nto at most p subprocesses} w1.ll be executed

[Ch. I!See. B 95]

1n p.T t~me. In the case of k consecutive processes and due to the over-

lapp1ng processing, the f~rst process produces a result 1n p.T time,

whilst the (k-1) subsequent results are obta1ned 1n (k-1) .T t~me. In

other words, the k processes will be executed 1n p.T+(k-1) .T t~me,

del~ver1ng a result at every interval T, after a set-up t~e of (p-1) .T.

If we let t be the t~e to complete a single process 1n a sequent~al

computer, then to ach~eve a faster execut~on of the k processes we requ~re:

..
(k-1) • T+p. T<k. t

k > (p.T-T)
(t-T)

(I.B.4.1:1)

Th~s last formula expressed the cond~t~on wh~ch must be sat~sfied for a

P~pel1ned system to be eff~c~ently ut~l~zed; namely the number of processes

has to be long relat~vely to the number of modules 1n the p~pe. In real

applicat~ons the throughput of a p~pel1ne ~s determ1ned by ~ts slowest

facility, or bottleneck. In th~s case the throughput can be ~mproved

e~ther by subd~v~d1ng the bottleneck element, or by plac1ng fac~l~t~es 1n

parallel- see Figures (I.B.4.1-f5,6,?).

_, 1 ·I 2 .. , 3 ~
T 3t T

Figure I.B.4.1-f5: The Bottleneck ~s ~n Module 2.

2

3

T T T T

1 2 3 •
T T

Figure I.B.4.1-[7: Parallel~ng of Bottleneck.

[Ch. I/Sec. B 96]

To formulate the Speed-up and Fffiaienay aspects of p1pel:uung ill

real t1me, let us cons1der agaill k tasks which can be presented to the

p1pe w1thout illcurrillg new set-up and flush t1mes.

.th

Let T be the requ1red
1

process1ng t1me of a subtask, by the ~ module and T be the bottleneck
J

t1me, 1.e. T.~T , for l~i~p, where p 1s the number of modules in the p1pe.
1 J

The speed-up 1s g1ven by the quot~ent:

k. I T.

1=1
1

(I.B.4.1:2)

IT +(k-l)T
1=1 1 J

In 1deal c1rcumstances, when T 1s the same for all modules, then
1

formula (I.B.4.1:2) becomes:

p.k
p+k-1

(I.B.4.1:3)

wh1ch at the l1m1t (k~) produces a p-fold Speed-up, namely 1t approaches

the p1pelille length as would be expected. The Effiaienay of the p1pelille

1s defilled by the quot1ent:

Time spent on computing
Time modules are used

wh1ch 1n 1deal c1rcumstances becomes:

k
p+k-1

k. T,
1

1!1[1!1T1+(k-l)TJ]

(I.B.4.1:4)

(I.B.4.1:5)

From the last formula 1t can be easily concluded that for k>>p , the

Effic1ency tends close to the theoret1cal value one.

The mathemat1cal explanat1on of the Speed-up and Eff1c1ency formulae is

presented ill Appendix C-I.

[Ch. 1/Sec. B 97]

I.B.4.2: VECTOR PROCESSING CHARACTERISTICS

The most natural appl1cation for pipel1ning 1s Vector processing;

the main requ1rement 1n just1fy1ng the p1pel1ning of a process 1s the

frequent repet1tion of the same sequence of operat1ons wh1ch occurs

naturally 1n vector processes. The overlapped characterist1cs of p1pe-

lin1ng are employed when the requ1red transformat1on of vector elements are

1ndependent to each other.

A Vector pipe can be character1zed by the ex1stence of one or more,

stat1c or dynam1c, mult1funct1onal pipes 1n the execut1on unit (ar1thmet1c

and log1c unit). Natural overheads are assoc1ated w1th the vector process1ng,

such as the set-up t1me, or the t1me to structure the pipel1ne prepar1ng

the vector operand streams and the fZush time wh1ch 1s the period of t1me

between the init1al operat1on (the decoding) of the instruct1on and the

ex1t of the result (for vectors, the first result element) through the

ent1re pipe.

Although the way to treat vector operat1ons 1s d1fferent from system

to system, bas1cally all vector 1nstruct1ons must produce the 1nformat1on

of the type of the performing 1nstructions, (e.g. float1ng-point add), as

well as, the start address of each vector and the 1ncrement of th1s address

to f1nd the successive elements to be processed. The alternat1ves appear

when some of the vector elements are to be chosen accord~ng to some control

vector, or when the rout1ng of a result1ng vector 1s requ1red due to the

way 1t 1s go1ng to be used as the 1nput operand for the next 1nstruct1on.

According to the above t1me constra1nts, the vector process1ng t1me,

1n the case of an effect1ve vector f1eld length k, is g1ven by:

V V V
= Ts/p + (k-1) .TJ + Tf/h' (TV - bottleneck t1me).

J (I.B.4.2:1)

On the other hand, the execut1on of k operat1ons 1n the same p1pe, but 1n

--

[Ch. l/See. B 98]

scaZar mode, 1.e. w1thout vector process1ng power, 1s g1ven by:

s s s
T = (k-1) .T J + Tf/h (I.B.4.2 :2)

The bottZeneck time Ts w1ll be greater than Tv, s1nce the add1t1onal
J J

reg1ster sett1ngs for the vector 1nstruct1ons are very advantageous and they

w1ll speed-up the operand fetches, as well as the computations of the1r

effect1ve addresses. From the last two formulae we deduce the advantageous

case for vector process1ng:

T V +) V V (S S s/p (k-1 •TJ + Tf/h ~ k-l).TJ + Tf/h

(I.B.4.2:3)

The last formula (I.B.4.2:3) reveals that Vector process1ng 1s benef1c1al

when the length of the executed vector 1s considerably large; 1n other

words,1f the set-up and d1fferent1al fZush t1mes are large compared to the

d1fferent1al bottleneck t1mes, then a large vector f1eld length 1s required

to JUSt1fy vector process1ng.

Vector pipes are des1gned to be cost-effect1ve; 1n an attempt to match

the speed of the Array Processors, wh1ch are often more expens1ve, they are

implemented w1th suff1c1ent power and flex1b1l1ty.

In conclus1on, the advantages of Vector process1ng as compared to a

sequentiaZ Pipelined Processor (e.g. I.B.M. 360/91) are 1ts speed

1mprovement for cons1derably lengthy vectors and the more eff1c1ent

ut1l1zat1on of all the system resources when deal1ng w1th vectors, wh1ch

1s a result of the more orderly management. The overhead 1ncurred is

pr1nc1pally 1n the add1t1onal software facil1t1es requ1red to use the

p1pel1ne eff1c1ently. There is also add1t1onal control c1rcu1try requ1red,

espec1ally for Vector computers w1th mult1funct1onal p1pes, to establ1sh

the desired conf1guration and the rout1ng of operands between p1pe segments.

[Ch. I/See. B 99]

When these costly problems have been solved effic1ently,then vector

process1ng would be general1zed and extended to smaller scale process1ng

systems.

I.B.4.3: IMPLEMENTED PIPELINED VECTOR COMPUTERS

In th1s concluding paragraph of the P1pel1ned processors, we br1efly

refer to the arch1tectural character1st1cs and performance of some

commerc1ally 1mplemented P1pel1ned systems.

The CRAY-1 was one of the most successful Vector computers with a

des1gn ph1losophy follow1ng closely the trad1t1on of the CDC 6600 (renamed

CYBER 70 model 74) and CDC 7600 (renamed CYBER 70 model 76). The CRAY-1

t is manufactured by Cray Research Inc., at Chippewa Falls, W1scons1n, U.S.A.,

and 1ts most str1king feature 1s the small s1ze. It compr1ses twelve

1ndependent p1pel1ned functional un1ts to perform the ar1thmet1c and log1c;

these 1ncorporate vector process1ng capab1l1t1es and can be connected to

form eff1c1ent cha1ns as a cont1nuous p1pel1ne, thereby max1m1z1ng overlapped

vector process1ng. The max1mum s1ze of the ma1n memory 1s 2
20

, 64-b1t

words of b1polar memory w1th a sons access and cycle time, d1v1ded 1nto 16

memory banks be1ng capable of s1multaneous operat1on. The memory has been

1ncreased to 4M words on the CRAY-1St d1v1ded into 8 or 16 memory banks.

The max1mum comput1ng rate on the CRAY-1 1s 160M flops/s (i.e. 80 m1ll1on

mult1pl1cat1ons and 80 m1ll1on add1tions per second), w1th a clock per1od

of 12.5ns. The CRAY-1 was des1gned w1thout any 1ncent1ve for experiments

with new technology; the a1m was the commerc1al compet1t1ve subst1tute of

the exist1ng computers, such as the CDC 7600 and the IBM 360/195.

The CYBER 205 is the culm1nat1on of a long programme of research and

development that 1n1t1ated w1th the des1gn and delivery of the CDC STAR 100

computer 1n the per1od 1965-75. It 1s manufactured by Control Data

tThe first deZivery was made to the Los AZamos Scientific Laboratory, New
Mexico, in February 1976.

tThis series of computers was announced in 1979.

[Ch. I/Sec. B 100]

Corporat1on 1n Saint Paul, Minnesota, U.S.A. and the f1rst customer was the

U.K. Meteorolog1cal Off1ce, at Bracknell, 1n 1981.

The CDC STAR 100 had many d1sadvantages whwh made it unattract1ve

to potent1al customers. CDC dec1ded to develop a new LSI technology and

re-eng1neer the whole system us1ng 1t, but reta1n1ng the software developed

for the STAR 100. At f1rst they manufactured the CYBER 203, 1n1t1ally

descrilied as the STAR 100A, which overcame the d1sadvantages of slow ma1n

memory and four t1mes slower scalar arithmetic compared to the CDC 7600

and IBM 360/195. The next step produced the (1nit1ally known) STAR 100C or

CYBER 203E which was f1nally announced as CYBER 205. The clock per1od is

20ns and the number of p1pes may be optionally increased to four (instead

of two), the memory to 4M words and the I/O channels to 16, w1th an

effective max1mum performance of 800t1 flop.,'s 1n 32-b1t ar1thmetw on a

four pipe mach1ne. However, the d1sadvantage of unit vectoP incPement,

caused by the contiguous vector requ1rement, 1.e. success1ve vector elements

should be stored 1n success1ve memory locat1ons, rema1ned.

The AMDAHL 470V/6, manufactured by AMDAHL Corporat1on, was the f1rst

computer to use LSI technology for its logic, utiliz1ng a comparat1vely

s1mple 1nstruct1on p1pelin1ng arch1tecture served by four funct1onal units.

The fust AMDAHL470W6del1vered 1n 1975 w1th a basic cycle time of 32.5ns,

wh1ch was reduced to 29ns 1n the subsequent vers1on of the AMDAHL 470V/7.

The former model compris1ng four execut1on subun1ts (1.e. mult1plier, adder,

sh1fter and byte mover) performs 4.6Mf1op.,'s and the latter 7H flops/s,

namely 1.2 to 1.4 t1mes faster than IBM's 3033. Also a h1gh-speed buffer

(or cache) b1polar memory of 16K bytes (65ns access) was used to 1mprove

the effect1ve access to the slow ma1n memory of up to 8M bytes of MOS store

(650ns access) .

The TI ASC system, manufactured by the Texas Instruments, 1s closer to

[Ch. I/See. B 101]

the STAR 100 than to CRAY-1 and started around 1966 as a computer suLtable

for the high-speed processLng of seismLc data; it comprLses four pLpes,

each capable of performLng all the elementary Lnstructions on vector

operands. WLth the four pipes operatLng optLIDally a desLgn rate of SOM flop,j

/s was theoretLcally achieved. The semLconductor memory has 8 banks and a

cycle tLme of 32ons.

In conclusLon, the FPS AP-120B, manufactured by Floating PoLnt Systems

Inc., Ln Beaverton near Portland, Oregon, U.S.A., in 1976, LS called an

t 'Array Processor' (AP) , since it is desLgned to process efficLently arrays of

numbers. One mLght say that the AP-120B LS to a mini or medium computer

what the CRAY-1 LS to a large maLnframe computer; Ln other words, a poor-man's

CRAY-1 due to Lts low cost. The machLne LS drLven synchronously from a

sLngle clock WLth a perLod of 167ns. The standard memory has an access/

cycle time of SOOns, whereas the optLonal fast memory has a cycle time of

333ns. The system performs 38-bLt floatLng-poLnt arLthmetic Ln separate

pLpelLned multLplLcatLon and addLtion unLts and 16-bLt countLng and address

calculat1on 1n an 1ndependent 1nteger ar1thmet1c un1t. Three memor1es

(for data, tables and programs) and two scratch pads of regLsters are

provLded, WLth multLple paths between each memory and each arLthmetLc unLt.

Typically, processLng rates of 5-lOMflops/s may be achLeved.

An Lmproved versLon of the AP-120B was announced Ln 1980 under the name
+ + FPS-164 ; the prLncLpal Lmprovements compared to Lts predecessor were a 64-

bLt floating-point arithmetLc, a 32-bLt Lnteger arLthmetLc, a 24-bLt

addressLng, a l024X64-bLt word LnstructLon cache memory loadLng fromthemaLn

memory, replacLng the program memory of the AP-120B and a maLn memory

expandable to 12M bytes.

tThis name does not imply that the computer is architecturaZZy an array of
processors.

+ Before FPS-164, an enhanced version of AP-120B, with more memory, called
AP-190L, was designed.

[Ch. I/See. B 102]

F1nally, the arrangement of control 1n AP-120B computer was referred

to as horizontal microcode, since each 1nstruct1on, 64 b1ts w1de,

controlled the operat1on of all units in the mach1ne every clock

per1od; 1n other words, there was only one 1nstruct1on in the

1nstruct1on set with f1elds controll1ng each of the functions,

although some fields overlapped exclud1ng certain comb1nat1ons of

funct1ons.

[Ch. I/See. B 103)

I.B.5: THE MIMD MULTIPROCESSING ARCHITECTURES

For a number of years Mult~processing systems were relat~vely a rar~ty

found pr~mar~ly in spec~al-purpose systems requ~r~g h~gh ava~lab~l~ty, e.g.

~ m~litary command and control appl~cat~ons. The def~~t~on of a Mult~-

processor as ~t appears Ln an Informat1on ProcessLng vocabulary says: A

computer employing two or more processing units under integrated control.

However, th~s def~n~t~on is hardly complete since ~t does not refer to the

sharing and interaction of mostly s~gnificant features cons~st~g of the core

of a Mult~process~g system.

Enslow [ENSL??], ~ 1977, provided a complete def~~t~on of a true

Mult~processor depending on ~ts character~st~cs; accord~ng to h~m such a

system compr1ses two or more processors w1th approx1mately comparable

capab~l~t~es, all of them sharing access to a common memory, I/O channels,

control units and dev~ces. Also, the ent~re complex ~s under the control

of a s~gle operat~ng system prov~d~ng the interaction character~st~c

amongst the processors and the~r programs at the JOb, task, step, data set

and data element levels.

In general, Multiprocessor systems cons~st of a subclass of MIMD-

' Mult~ple Instruct~on stream, Mult~ple Data stream', mult~ple-computer

arch~tectures. The MIMD computers s~ce they possess a greater ~herent

flex~~l~ty than SIMD computers, are su~table for a much larger class of

computat~ons; these can be f~tted ~ a much more stra~ghtforward way than

for SIMD computers, but a careful synchron~zat~on of the ass~gned

computat1ons to the processors is requ1red, for a h1gh-eff1c1ency to be

obta~ned. Th~s ~s a sharp d1fference between the MIMD and SIMD computers,

where, 1n the latter ones, the synchron1zat1on 1s done automat1cally and

add~t1onally the task allocat1on problem of the former systems does not

ex1st s~ce all of the processors perform the same task.

[Ch. I/Sec.. B 104]

Consequently, the trade-off between these two classes of computers

l~es on the problems whwh do not arise ill SIMD computers due to the

~posed constraillts; such problems are el~millated in MIMD computers at the

cost of the added flex~bil~ty, wh~ch comes with the need to solve the

synchron~zat~on and allocat~on problems.

In the subsequent paragraphs, we refer to the reasons wh~ch urged

sc~ent~sts towards the des~gn of th~s sort of architectures,focusillg mostly

on some s~gnif~cant hardware and software features of these systems that

are necessary to support parallel~sm.

I.B.S.l: THE MIMD HARDWARE SYSTEM ORGANIZATION

A MIMD system can be def~ned as a collection of m~n~computers (~.e. a

multimini) or m~croprocessors (i.e. a multimicro), wh~ch are connected

e~ther through a shared memory or v~a low- or h~gh-speed data links.

Although the actual ~mplementat~on of this def~nit~on appears to be

pr~ar~ly a hardware des~gn problem, th~s appearance ~s very decept~ve;

th1s 1s because Lmplement1ng such an 1dea, a1ming to support parallel1sm,

su~table operat~ng systems are requ~red, as well as ult~mate appl~cat~ons

to make the complex an effect~ve parallel computer.

Each component (or processor) of the MIMD complex provides ~ts own

control un~t, thus beillg capable of generatillg ~ts own stream of ~nstruct~ons,

wh~ch can then be executed on ~ts own stream of data, concurrently.

Consequently, a MIMD complex ~s considered as an asynchronous system. The

general structure of a MIMD complex compr~s~ng p-processors ~s dep~cted ~n

Figure (I.B.S.l-fl).

The shared memory may be a multiported ma~n memory, cache memory, or a

multiported d~sk. A b~t-ser~al or parallel bus data path can be used to

connect the I/O ports of two processors, or a shared bus data path ~n the

[Ch. 1/See. B 105]

case of two or more processors; somet~es the broadcasted data, onto the

bus, are Lntercepted by the ·~nterested' component, wh~lst Ln some other

commun~cat~on l~ks (e.g. daisy chain) the ~format~on may pass through

from one leg of the bus to the other, until the 'Lnterested' component

fLnally 'erases' the message off the path.

The arch~tectures employ~ng the shared memory ~nterconnect~on have

been coLned directly or tightly coupled; th~s memory can be regarded as

very fast, compr~s~g several parallel memory un~ts. More comprehens~vely,

Ln such a system, all the processors can have access to all the memor1es,

shar~ng I/O and other resources of the complex (~.e. per~pherals) , whereas

the ~terprocessor communicat~on latency is low due to the potent~al access

t~e be~g l~~ted only by the actual memory access t~e.

On the other hand, indirectly or loosely coupled systems d~ffer from

tightly coupled systems ~ that they do not share a common pr~mary memory;

they have d~SJO~t, pr~ry or ma~n memory address spaces,wh~ch ~mpl~es

the ex~stence (at the hardware level) of an expl~c~t ~terprocessor

commun~cat1ons ~terface, wh1ch 1n turn causes a h1gher latency of

commun~cat~ons amongst the processors than would be caused when shar~ng a

pr~mary memory. Add~t~onally, the execut~on of processes on loosely coupled

systems can be performed asynchronously, whereas the most ~ntegrated tightly

coupled systems requ~re synchron~zat~on amongst cooperat~ng processes. In

Figures (I.B.5.1-f2,f3) the loosely and tightly coupled systems are

~llustrated. Accord~ng to the above, SIMD arch~tectures can be cons~dered

as tightly coupled systems, wh~lst most of the MIMD arch~tectures as loosely

coupled systems.

Although there ~s a control un~t connected w~th each processor, a

h~gher level control ~s required to take care of the data transfer and the

task and var1ous sequences of operat1ons ass1gnment amongst the processors.

MEMORIES

(P><M) -cROSSBAR

PROCESSORS l
{PXN) -CROSSBAR

[Ch. I/Sec. B 106]

MEMORY MAPS (ADDRESS TRANSLATORS)

• • •

INTERRUPT
SIGNAL

INTERCONNECTION
NETWORK

)
N-INPUT/OUTPUT

CHANNELS

~igure I.B.S.l-[1: A MIMD ArchLtecture.

MEMORY MEMORY I MEMORY

PROCESSOR PROCESSOR PROCESSOR
A B c

I/O J.nterface

Figure I.B.S.l-[2: Indirectly or Loosely Coupled Systems.

I MEMORY I
~ I ~

PROCESSOR PROCESSOR PROCESSOR
A B c

Figure I.B.5.1-[J: Directly or Tightly Coupled Systems.

[Ch. l/Sec. B 107]

Th1s sort of control funct1on can be prov1ded by one of the processors,

des1gnated as the global processor, being g1ven overall respons1b1lity and

t connected via an I/O 1nterface to every other ZoeaZ processor • The

global processor 1s the entry for all JObs 1nto the system, but anyway 1t

is not 1rreplacable, since 1n the case of a erash the overall control can

be reassumed by one of the local processors.

In the case that the 1nterconnect1on amongst the processors (e.g,m1n1s)

1s restr1cted to the transfer of data files only and additionally there 1s

no global controll1ng processor 1n the system, then we talk about fuZZy

distributed systems.

In a Mult1processor system, the total throughput depends cr1tically

on the degree of memory access 1nterference (or eonfZiete), fact wh1ch

1mpl1es that the speed-up factor w1ll always be less than the number of

processors, due to that 1nterference.

The memory access confl1cts can be d1st1ngu1shed 1nto two types, the

hardware and software type. S1nce only one access can be made (per memory

cycle) , the former type of confl1cts occurs when 1n a s1ngle memory cycle

more than one processor attempt to access the same memory un1t (or module)

concurrently; the other requests must wait usually for a cycle or two 1n

each case. The more of th1s type of confl1cts that occur, the greater the

degradat~on of the system, wh1ch is known as 1 1nterprocessor 1nterference'a

The latter type of confl1cts occur when a processor attempts to use

data wh1ch 1s currently being accessed by another processor. Th1s data set

forms the so-called critieaZsection (see Chapter II); there 1s a lock

mechan1sm wh1ch 1s act1vated by the'served'processor at that t1me, prevent1ng

any other processor from accessing the same data set. Th1s type of confl1cts

tAs in the NEPTUNE system.

[Ch. 1/Sec. B 108]

are often known as memory lockouts and when processors encounter them they

have to 'wait' and repeatedly check the status of the lock unt~l the unlock

state ~s reached.

To reduce memory confl~cts the use of a very fast buffer memory (cache),

~terposed between the processor and the ma~ memory, has been proposed.

In th~s memory can be stored the very frequently used data and/or

~nstruct~ons. Spec~f~cally, the cache memory contains the ~format~on of

a l~mited number of contiguous memory locat~ons and the whole not~on of ~t

depends on a probab~l~st~c theory for access~g th~s ~format~on. Certa~ly

a s~gle cache may be proved ~suff~c~ent to support a Mult~processor system,

since it must match the speed of several processors. The number of ut~l~zed

cache memor~es ~ an arch~tecture certa~ly depends on the organ~zat~on

chosen. Consequently, systems can be conf~gured e~ther w~th a cache

assoc1ated w1th each memory and accessible to each processor v1a a crossbar

switch, or w~th a cache assoc~ted w~th each processor and capable of be~g

loaded from any memory. Apparently ~ the latter conf~gurat~on the

content1on 1s reduced s1nce only one processor has access to the cache and

references, code and data ~n ~t alone for most of the t~me.

A diff~culty presented by cache memor~es ~s that of the corrupt~on of

shared data, due to the fact that at least two processors may alter

~ndependent cop~es of the same data, ~ different ways, in different cache

memories, thus creatLng a contradictory confus1on Ln the ma1n store. In

addit~on, s~nce ~t can rarely be pred~cted wh~ch spec~f~c ~nformat~on w~ll

be used next, a better way to reduce memory confl1cts 1s to ut1l1ze s1mple

private memories, each assoc~ated w~th each processor, ~ wh~ch local

~dependent cop~es of the ~nformat~on to be used are stored.

Certa~ly all these commun~cat~on and confl~ct problems just~fy the

fact that large numbers of processors cannot be util~zed effect~vely ~ MIMD

[Ch. I/Sec. B 109]

t systems; Ln fact, most of the MIMD systems compr1se at most 16 processors

Anyway the Lnterconnection network for such a system, w1th a small number

of processors, 1s qu1te manageable, although a reduced 1nterconnect1on

pattern can be used, sim1larly to SIMD systems, in cases when the complex

compr1ses many processors.

In conclus1on, shared memory I/O systems are character1zed by the

following general types of physicaland logical 1nterconnect1on schemes:

T1me-shared/Common bus

Crossbar Switch Physical

Mult1bus/Mult1port memory

V1rtual

) Logical Mailbox

to be br1efly d1scussed in subsequent paragraphs.

I.B.5.1.1: THE TIME-SHARED/COMMON Bus INTERCONNECTION SCHEMA

Figure (I.B.S.l.l-fl) 1llustrates th1s 1nterconnect1on scheme wh1ch 1s

the SLmplest one for Mult1processors, s1nce all processors, memor1es and I/0

un1ts are connected to a s1ngle bus wh1ch 1ncorporates some arb1trat1on

log1c, to ser1alize concurrent requests by a number of processors. F1xed

pr1or1t1es, 1.e. 'First-In, F1rst-Out' (FIFO) and 'da1sy cha1n1ng' are used

to resolve processors content1on s1nce the common bus 1s a shared resource.

The rel1ab1l1ty of such a system and the 1nterference amongst the

processors request1ng the bus, are 1ts most ser1ous l1m1tat1ons, together

w1th the total overall transfer rate w1th1n the system, due to the l1m1ted

bandw1dth and speed of the s1ngle path. For th1s reason, pr1vate memory and

pr1vate I/O are highly advantageous, although a common path fa1lure 1mpl1es

a complete system fa1lure. Processors are connected to the common bus v1a
t
The NEPTUNE system to be described later on comprises four processors.

[Ch. I/Sec. B 110]

pr~vate buses, used to 1nterconnect a central processor, some pr1vate

memory, a number of I/O 1nterfaces, as well as, a bus sw1tch 1nterface.

On the other hand, the shaPed environment of the common bus, except

the memory arbLtratLon logLc, some shared memory, shared I/O and a bus

swLtch interface, contaLns the List ContPoZZeP or else ConauPPenoy Box

used to provLde a synchronLzatLon capabLlLty by means of semaphores and

queue operators; an example of such a system, ut1l1z1ng mult1ple m1ni-

computers, is the SL-10 Data SwLtch for the Bell Canada Datapac network

(see Weitzman [WEITBO]).

pl p2

Interconnect on Bus

Ml

P : Processor Element
M s Memory Element

M2

I/O : Input/Output Controller

p3
....--- I/01

M3
- I/02

Figure I.B.5.1.1-[1: The TLme-Shared/Common Bus InterconnectLon Schema.

I.B.5.1.2: THE CROSSBAR SWITCH MATRIX INTERCONNECTION SCHEMA

The orossbaP switch matrix can be consLdered as the most extensLve and

expens1ve Lnterconnection scheme prov1d1ng d1rect paths from processors to

memorLes. In the case that the system comprLses p processors and m memory

modules, then the crossbar requLres (pxm) SWLtches, each provLdLng hardware

capable of switchLng parallel transmLSSLons and for resolvLng conflLcting

requests for a gLven memory module; thLs fact proves the swLtchLng devLce to

be the domLnant cost factor of the entLre complex. ThLs WLll become more

obvLous WLth the advances Ln LSI technology, which WLll mLnLmLze the memory

and processor build cost more rapLdly compared to that of the swLtch structure.

[Ch. I/Sec.. B 111]

Th1s interconnect1on scheme can be obtained from the prev1ous

organ1zat1on by 1ncreas1ng the number of buses, so that 1nd1v1dual paths

are ava1lable for each memory and I/O unit. The bus interface logic,

required by the funct1onal units, 1s m1n1mal, since they perform ne1ther

recognit~on of data 1ntended for them, nor confl~ct resolution. These

funct1ons are performed by the sw1tch matr1x, wh1ch consequently 1s very

complex (the complex1ty growsexponent1ally as p,m become large), costly to

control and phys1cally large. Every line 1n the crossbar scheme conta1ns

address, data and control bus signals wh1ch may correspond to as many as

32 to 64 w1res.

However, the major mer1t of such a crossbar sw1tch, wh1ch is dep1cted

1n Figure (I.B.5.1.2-f1), 1s the concurrent transfer ab1l1ty amongst all

processors and memory modules.

I

I

I

l Ml J

pl l
I

p2 I
J

P3 I

P 1 Processor Element
M : Memory Element
I/O : Input/Output Controller

I M2 I l M3 J

I I/01 I
I

I
I/02 I I

r
I/03 I I

Figure I.B.5.1.2-f1: The Crossbar Sw1tch Matr1x Interconnection
Schema.

[Ch. I/See. B 112]

For h1stor1cal purposes, the earl1est known system wh1ch employed a

crossbar-type 1nterconnect1on switch was the Ramo-Wooldr1dge RW-400, the

Polymorphie Computer system, developed for the u.s. A1r Force for large

command and control 1nstallat1ons.

J.B.5.1.3: THE MULTIBUS/MULTIPORT INTERCONNECTION SCHEMA

Th1s organ1zat1on 1s remLn1scent of the crossbar sw1tch, except that

the control, sw1tch1ng and pr1or1ty arb1trat1on log1c are concentrated at

the 1nterface to the memory modules. There are pr1vate buses for each

processor through wh1ch 1t can access all memory modules. All memor1es and

I/O un1ts (passiveelements) have multiple ports, one for each connect1on to

a processor; the memory access conflicts, wh1ch are bound to occur, are

resolved by ass1gn1ng f1xed pr1or1t1es to each memory port.

Th1s organ1zat1on due to the h1gh offered throughput capabil1ty 1s

very often used, although the flex1b1l1ty of the system 1s somewhat lim1ted

s1nce the number of memory ports restr1ct the number of processors to wh1ch

1t can be linked.

The complex1ty and amount of hardware requ1red 1s of the same order of

magnitude, as Ln the crossbar sw1tch, namely m connections per memory

module, but st1ll 1t 1s more local1zed. In Figure (I.B.5.1.3-fl) the outl1ne

of th1s organ1zat1on 1s 1llustrated.

l PROCESSOR I I PROCESSOR I I PROCESSOR I

I MEMORY
J

I/0 J
I MEMORY

I MEMORY
I/0 I

Figure I.B.5.1.3-fl: The Mult1bus/Mult1port Interconnect1on Schema.

[Ch. I/Sec. B 113]

I.B.5.1.4: THE VIRTUAL AND MAILBOX loGICAL INTERCONNECTION SCHEMAS

There are two maJor forms of shared memory logical 2nterconnections,

through wh1ch many of the mult1port schemes, as well as other ~terconnect1on

schemes, can also be represented; these forms are the virtuaZ and the

maiZbox shared memory.

The former 1ncorporates a shared memory 1nto a virtual memory

env1ronment; accord1ng to th1s, there 1s a v1rtual address space, beyond

the s1ze of any processor's real memory, to provide address1ng capabil1ty

to a larger memory space, for the case that more act1ve computing elements

ex1st. Of course, there 1s an unavo1dable overhead result1ng from the

requ1rement for address transZataphardware, and the need for var1ous

segmentat1on techn1ques. An example of a v1rtual shared memory m1n1computer

system is PLURIBUS developed by Bolt Beranek and Newman (see We1tzman

[WEITBO]), ut1l1zing a number (typ1cally from 6 to 14} of Lockheed SUE

m1nicomputers to ach1eve 1ts process1ng power.

In the latter form of log1cal Lnterconnection, the shared memory acts

as a message center for the Lntercommunicat1on of var1ous CPU's. The use

of local memory 1s h1ghly recommended, 1n an attempt to m1n1m1ze the common

memory reference, 1n the case that the number of processors exceeds three;

th1s 1s due to severe content1on problems wh1ch w1ll ar1se when processors

access the common memory for a substantial fraction of 1ts cycles.

t
In conclus1on, this scheme 1s more efficient than the former one, 1n

cases when the memory access character1st1cs, of the specif1c appl~cat~on,

are well known, as ~n dedicated real-t~me systems; add~t~onally, ~n th~s

scheme there 1s no extra overhead as with the address translator hardware

1n the v1rtual shared memory.

tA detaiZed comparison between aZZ these interconnection schemas can be
found in [WEITBO}, pp.3?-38.

[Ch. 1/See. B 114]

I.B.5.2: THE MIMD OPERATING SYSTEM ORGANIZATION

After the presentat1on of the basic MIMD hardware 1nterconnect1on

schemas and problems, ~ order to complete the p~cture of such a system, we

br1efly d1scuss the bas1c organizat1ons 1n the des1gn of Operating Systems,

wh1ch are needed to control a Mult1processor.

The d1fference between the software requ1rements of large systems

util1zing mult1programming and Mult1processors, are conceptually very little;

actually, from the most common funct1onal capabilit1es requ1red 1n an

Operat1ng System, such as, resource allocation and management, table and

data set protect~on, preventLon of system deadlock,abnormal term1nat1on,

I/O load balanc1ng, processor 1ntercommun1cat1on, processor load balanc1ng

and reconf1gurat1on, only the last three may be cons1dered as un1que to

Mult1processors. The eff1c1ency of an Operating System 1s very s1gn1f1cant

1n such a system, otherw1se a poor performance could destroy any cost-

performance advantages that the system has ach1eved.

In the Operat1ng System the code segments that prov1de the fundamental

serv1ces {e.g. 1nterrupt decod1ng) to the system are often grouped under the

collect1ve name of the kernel or the executive.

There are three bas1c organ1zations ~ the design of Multiprocessors

operat1ng Systems, the master-slave, the separate executive for each

processort and the symmetric or anonymous treatment of all processors.

The master-slave type of Operat1ng System is the eas1est one s1nce 1t

can be obta1ned stra1ght from a un1processor Operat1ng System w1th full

mult1programm~g capab1l1t1es, by makLng relat1vely simple extens1ons to 1t.

Th1s]ust1f1es the fact that, at f1rst, most of the Mult1processor systems

ut1l1zed such an organ1zat1on. However, th1s type 15 very Lneff1c1ent Ln

ut1l1z1ng and controlling the system's resources; add1t1onally, the

tThe NEPTUNE system, to be discussed later on, utilized such an organization,
although modifications are in hand to produce an Operating System more
likely to the symmetric organization.

[Ch. I/See. B 115]

d~ff~culty to construct a fast master to keep the sla~busy created a

delay t~e and consequently h1gh performance was not very l1kely to be

achieved.

In th~s organ1zat~on it is not necessary for the execut~ve and the

rout~nes ~t uses to be repl~cated, s~ce only one processor w1ll be us~g

them, a fact which m~1m~zes the table confl1ct and lock-out problem for

control tables. If the slave requ1res a serv1ce to be prov~ded by the

executive, 1t requests that, wa1t~g unt1l an ~terruption of the current

program on the master processor and the dispatch of the execut1ve. However,

~ the case of an ~rrecoverable error or fa1lure of the master processor

th1s ~mpl1es the catastrophic fa1lure of the ent~re system, wh1ch can then

be restarted only by the operator's ~tervent1on. On the other hand, th~s

organ1zat1on, which requ1res s1mple software and hardware, 1s most effect1ve

for spec~al appl1cat1ons w~th work load well def1ned or for asymmetr1cal

systems w1th slaves hav~ng less capab1l~ty than the master processor.

In the case of the separate executive organ~zat1on each processor

serves 1tself due to the replicat1on of some of the superv1sory code to

prov~de d1st~ct cop~es for each processor. consequently each processor

(actually each executive) has 1ts own set of I/O equ1pment (reconf1gurable

by manual 1ntervent~on), files and pr~vate tables; though, there are some

tables wh1ch must be common to the ent1re system thus creat~g table access

control problems. Add1t~onally, a fa1lure case is not a complete system's

fa~lure although 1t can be a diff~cult task to restart the fa1led processor.

The ph1losophy of a true Mult1processor system is more closely

approached by the symmetric organ1zat1on. In th1s organ1zat1on all tasks

~kernel software are treated equally; ~other words, all processors are

cons1dered as an anonymous pool of resources, each of wh1ch can execute

a kernel task as and when required. In th1s scheme the master passes from

[Ch. I/Sec. B 116]

one processor to the other, w~th an ~mproved balanced load over all

resources, wh~lst pr~or1t1es set under stat1c or dynam1c control resolve

the serv~ce request conflicts. Also, most of the supervisory code ~s

reentrant s1nce several processors can execute the same serv1ce rout1ne

sLroultaneously. Of course, the unavo~dable conflicts, 1n multiprocess1ng,

due to table accesses, as well as, the table lock-out delays, are present,

but under control to protect the system's 1ntegr~ty. The advantages of

th~s type of organ~zat~on over the previous ones are, the better ava~lab~l~ty

of a reduced-capac~ty system, true redundancy, the most eff~c~ent use of

the ava~lable resources and a graceful degradat~on (~.e. the ab~l~ty to

reconf~gure a v~able system automatically from funct~on~ng components,

after the fa~lure of some others).

F~nally, ~t must be emphas~zed that most Operat~ng Systems for

Mult~process1ng arch~tectures are not 'pure' examples of any one of the

three schemes above; most of the ~mplemented architectures have adopted

'hybr~d' solut~ons comb~n1ng features of all of them. The development of

software systems for Multiprocessors is st1ll 1n an exper1mental state.

I.B.5.3: IMPLEMENTED MIMD ARCHITECTURES

In th~s part of Chapter I, we shall br~efly d~scuss the characteristics

cf some ~mplemented MIMD architectures; certa~nly there are many such

systems, bu~lt by var~ous manufacturers (e.g. Burroughs D-825, RCA 215,

MIT/IL ACGN, BeLL Labs. CLC, PLessy system 250, etc.), but s1nce th~s ~s

not a deta~led survey of the ~mplemented MIMD systems, we shall restr~ct

ourselves to some fundamental representat1ve arch1tectures such as the

C.mmp and the Clusters of M~crocomputers: Cm*, both developed at Carnegie

Mellon un~versity, U.S.A. In the subsequent paragraphs we emphas~ze on two

other examples s~ted ~ Loughborough un~vers~ty, the Interdata DuaL processor

[Ch. 1/See. B 117]

and ~ts successor, the NEPTUNE system, on wh~ch the maJor~ty of the

research was carr~ed out.

The C.mmp system (see Wulf, Bell [WULF?2]), ~llustrated ~n Figure

(I.B.S.J.-[1) was a maJor research project util~z~ng a crossbar ~nter-

connect~on system; the a~m of this architecture was the invest~gat~on of

economical techn~ques for ~nterconnect~on, as well as the study ~n depth

of the Operating System and the overall system's performance. The

processors utilized ~n the architecture are var~ous models of the DEC

PDP-11 and each of them has assoc~ated with ~t a block of ded~cated

pr~vate memory; also, each processor has assoc1ated w1th Lt a separate

unit, the address translator, to translate addresses at the processor

~nto physical memory addresses, for all accesses to the shared memory,

s~nce the address space of the ma~n memory greatly exceeds that of the

PDP-11 ~tself. F~nally, w~th each processor an I/O dev~ce ~s associated,

wh~ch cannot be shared.

The shared pr~ary memory comprises up to 16 modules [M
0

, •.• ,M
15

J,

each cons~sting of 64K, 16 bit words, wh~lst the total s~ze of the

20 21
phys~cal shared memory ~s 2 words (or 2 bytes) • The use of a cache

memory between the address translators and the crossbar sw~tch can reduce

the confl~cts from access~ng the memory, but ~f a large number (15-30)

of processors is used, then the ~nterference problem has a h~gh cost-

effect1veness anyway, s1nce all the programs are stored 1n the common

memory. The local memor~es are ut~l~zed to support the error-recovery

and ~nterrupt only, but not to store programs or data.

A d~sadvantage of the system ~s cons~dered to be the h~gh pr~ce of

the requ~red soph~sticated crossbar sw~tch, s~nce the rout~ng of the

memory requests from the processors to the shared memory ~s done by the

hardware w~th~n th~s sw~tch; the very compl~cated hardware lowers the

rel~ab~l~ty of the system and reduces the performance speed because of

queue~ng delays ~n the sw~tch.

[Ch. 1/Sec. B 118]

A more soph~sticated shared memory, virtual env~ronment, is the Cm*

system (see Swan, Fuller and s~ew~orek [SWAN??]) developed at Carneg~e

Mellon Un~versity. The bas~c 'bu~lding block' of th~s arch~tecture is the

'computer module'. The ma~ const~tuents of this module is a DEC LSI-11

m~crocomputer and 4 to 124K words of pr~mary memory potent~ally access~le

by all processors. In add~t~on, per~pherals such as, teletypes or d~sks

can be present. Also an address mapp~g dev~ce (SZocaZ) is attached to

the LSI-11 bus prov~ding the interface between Cm's in the same cluster.

The Cm* arch1tecture compr~ses several clusters connected v~a

intercZuster buses; each cluster compr1sing several modules connected

through a map-bus. Powerful controllers (Kmap), wh~ch can communicate

each w1th two ~tercluster buses, provide the traff~c control and memory

address translations 1nter and 1ntra clusters, whereas, on the other hand,

ensure mutual exclus1on on access~g shared data w1th m1n1mum overheada

However, these maps and the1r map-buses are the cr1t1cal shared resources

that may lead to 'deadlocks'.

Each Kmap contains three maJor compcnents, the Kbus (~.e. a m1cro

programmed processor prov~d~g the ~terface between the map-bus and the

Pmap), the Pmap (~.e. a spec1al-purpcse processor hold~g the mapp1ng tables

for ~tra and inter-cluster references) and the Line (~.e. the interface

to the two intercluster buses).

In Figure (I.B.5.3-f2) 1s illustrated a three-cluster Cm* architecture;

around 1979, the configurat~on of the Cm* compr~sed 5 clusters of 10

modules each (~.e. 50 modules totally). Theoret~cally, the arch1tecture

can be extended up to 14 modules per cluster as well as in the number of

clusters.

On the other hand, th~s system has scme d1sadvantages; for example, 1f

a module for some reason 1s lost, then all I/O devices attached to 1t are

[Ch. I/Sec.. B 719]

1 Megawords

/ l.
Mo f

16 x 16 Crossbar
l mterconnect

M, I
Processor-to-memory .

l only
M,s f

I I

Address ••• Address
translator translator

Processor Memory Processor Memory
<f> 4KW 15 4KW

DECUn1bus-

Periph.
Comm Periph.

Comm. 1/0 1/0

I Clockl
lnterprocessor + interrupt

controller lnterprocessor interrupt bus

F1gure I B 5 3- f 1 • The C mmp Multi- m1m Processor

lntercluster bus

Cluster
lntercluster bus

Map-bus
Computer module
j" - - - - - - - - - ;.-..:-:.t:..::,
I
1,_ ___ _,

: LSI-11
:L:P~r~oc~e:s~s~o~rJ==r==~~p=====r=~ l_~P_JF=;======r======r:=J
I
I
I
I

L~~~~~~~~~~~=:::::~~~~~--------------------·

p p

Frgure I B 5 3- fz A Three -Cluster cm• Network.

p

[Ch. I/Sec.. B 121]

also lost; also the data of the local memor~es are shared by other

modules, a fact wh~ch causes the 'lock1ng' problem and consequently delays

s1nce the messages are transferred 1n a package-sw~tchLng mode. Finally,

th~s system is not very su~table for off-l1ne problems wh~ch cannot be

part~t~oned 1nto 1ndependent subproblems.

In conclusLon, and for h1storical purposes,we ment1on here an

alternative proposal for a MIMD arch~tecture, 1ntroduced by Flynn, et al,

1n 1970 [FLYN70], wh~ch ~s depicted in Figure (I.B.5.3-f3). Accord~ng to

th~s scheme, several 1ndependent skeleton processors, ~.e. processors who-

se ar1thmet1c funct1ons and computational logic have been removed, are

~nterconnected. These funct~ons w~ll be performed by h~ghly spec~al~zed

high-speed processors, shared amongst the skeleton ones. Th~s shar1ng ~s

obtained by closely synchron~zed t~me-phased sw~tch~ng, thus the resultant

system can avo~d many of the contention problems assoc~ated w~th shared

resource systems. When a skeleton processor requests an ar1thmet1c un1t

from the 'pool' of the h~gh-speed processors and not one is free, then the

request ~s e~ther placed in a queue or can be repeated unt~l ~t ~s f1nally

granted.

The advantage of this proposal ~s that ~t can create a Mult~processor

system, w~thout repl~cat1ng the expens~ve components of the processors to

~"'
' the same extent that the processors are repl~cated.

MEMORIES

•
•
•

[Ch. I/Sec.. B 122]

SKELETON PROCESSORS

Figure I.B.5.3-[3: A MIMD Architecture w~th Skeleton Processors
and Central~zed Computat~on Fac~lit~es.

[Ch. I/See. B 123]

I.B.5.3.1: THE lNTERDATA DUAL PROCESSOR SYSTEM

The Interdata Dual Proaessor, wh~ch can be seen ~n Figures(I.B.5.3.1-f~f2~

has been developed at Loughborough Un~vers~ty. This system f~rst appeared

as an Interdata model 55 dual communicat~ons processor [MODE71]; later on,

the I/O processor (B), an Interdata model 50 processor, was replaced by a

second model 70 processor.

Th~s twin Interdata model 70 system prov~des 32K bytes of private

(to each processor) memory addressed as bytes [~-(32K-1A , and a further

32K bytes of shared memory. The shared memory, ~s appended to the private

memory of processor B, addressed as bytes [32K-(64K-1)], thus, actually,

the processor B had 64K bytes of memory. Each locat~on of the shared

memory ~s referred to by the same address ~ the two processors.

The model 70 ~s a 16-b~t processor ut~liz~g 16 reg~sters and

operat~g on an IBM 360 -like ~struct~on set. Instruct~ons can be 16 or

32 b~ts long and take 1 or 2~secs to load from memory. Integers are held

as 16 b~t halfwords and float~g point numbers as fullwords. Float~ng

po1nt operat~ons are implemented ~ hardware.

The Interdata Dual Proaessor system has the property of asymmetry, ~.e.

the shared memory overheads (statia and dynamia) are not symmetr~c between

the processors. In other words, whereas processor A delays by 1 to 1.25

~secs by the memory bus ~terface to B's d~rect memory access port,

processor B experiences no such statia delay, when they access the shared

memory. From the dynamic shared memory overhead po~nt of v~ew, ~f processor

B accesses the shared or ~ts pr~vate memory, processor A 1s 'locked out'

of the common memory until the access~on ~s completed; on the other hand,

when processor A accesses the shared memory then processor B ~s 'locked out'

of both, ~ts pr~vate and shared memory unt~l the memory cycle (l~sec) is

completed. Consequently, both processors exper~ence a delay of one memory

PRIVATE
HEHDRY 'A'
132 KBI

HEHORY HEHORY
f-- BANK ._,__ BUS

COHTROllE R

PROCESSOR

' A'
I tHE RDATA
HODEL 70

J HTE RFACE

SHARE D.
HE H 0 RY

_ _ l3_2_K_l!) ____ _

PR JVATE
HE f\9 'hrl ' B'

DHA
PORT

P R 0 C E SS 0 R
' B '

I H TER DATA
HDOEL 70

[Ch . I /Sec. . B 1241

Figure I.D . 5. 3.1- fl : The Interdata Dual Processor System Configuration .

Figure I .B. 5. 3.1-[2: The Interdata Dual Processor System .

l

[Ch. I!Sec.. B 125]

cycle {1.e. l~sec) due to memory content1on; 1n fact, processcr A reserves

the shared memory o.S~secs before 1t can ut1l1ze 1t {due to the memory bus

1nterface log1c), which makes the dynamic contention mere asymmetr1c.

Consequently, 1n dynamic content1on, processor A delays up to O.S~secs

while B 1s delayed by up to l.S~secs.

The programs can run on one or the other processor, or on both of

them, by stor1ng the common data 1n the shared memory and repl1cating the

code 1n both the private memories.

In conclus1on, the l1mitations of this system are, pr1mar1ly the

asymmetry 1t possesses and also, the small number of processors, the 64K

bytes max1mum memory s1ze, the lack of memory protect1on and the poor

qual1ty of the manufacturer's software.

I.B.5.3.2: THE 'NEPTUNE' SYSTEM

The NEPTUNE parallel process1ng system, yet another type of MIMD

arch1tecture compr1s1ng four Texas Instruments 990/10 m1n1computers, has

been developed at the Department of Computer Studies of Loughborough

Un1vers1ty {see Barlow, et al [BARL81], in 1981). S1nce th1s system was

the veh1cle ut1l1zed to 1mplement a sign1f1cant part of the research

presented 1n th1s Thesis, we d1scuss 1n more deta1l some of 1ts spec1f1c

hardware and software features. The related programm1ng concepts and the

performance measurements of the system will be presented 1n Chapter II.

The Physical current organ1zation of the NEPTUNE system, w1th an up-

t to-date potent~al number of connected term1nals and storage capac~ty, as

well as the actual NEPTUNE system itself, are shown p1ctor1ally 1n Figures

(I.B.5.3.2-fl,f2).

The system compr1ses five l1nked buses {TILINES), four of wh1ch are

tThe up-to-date system, theoretically, can accept
mapped VDT's and nine RS232 standard terminals.
possesses one of them via the Gandalf network.

four (at a maximum) memory
Hatfield Polytechnic

[Ch. I /Se.c.. B 126]

~: 1erminal

Figure I.B.5.3. 2- [1: The Current ' NEPTUNE 1System Configuration·

I

.. ~.. -.... -· .. -.

- ... --

Figw•e I . B. 5. 3. 2- [2: The 'NEPTUNE 'system.

r;-: ~··. c-- ~-.

i.. • .. J ;~.J J •• ~ •••• - :.

[Ch. I/Sec.. B 127]

connected l~ke Zocal buses to the correspond~ng processor. Each processor,

via ~ts local TILINE, can access ~ts own (private) memory of at least

128K bytes capac~ty (a capacity of up to 512K bytes is env~saged, e.g.

the memory of processor ~ has now been increased to 384K bytes) • In

addit~on, processor ~ has a lOM bytesdisk dr~ve on its local TILINE

(actually it is two disks, one f~xed and one exchangeable, each of SM bytes

capac~ty); the processor 2 has a controller w~th 474M bytes WLnchester

disk dr~ve as well as a magnetic tape streamer attached to it.

Each of the four local TILINEs is connected, v~a a TILINE coupler, to

a fifth shared TILINE, on wh~ch 104K bytes (r~sLng to 128K bytes) of memory

and a SOM bytes disk are attached. Th~s memory can be addressed by all

processors, consequently a minimum, not normally cont1guous, addressable

space of 232K bytes ~s ava~lable. In add~t~on,the SOM bytes d~sk can be

accessed by each processor w~th disk ~nterrupts be~ng transm~tted to each

of them.

In a br1ef reference to the processors'spec1f1c characterist1cs, these

are ident~cal Ln many hardware features, though they present some

d~fferences in the~r memory accessLng speeds. More spec~f~cally, the t~me

for each processor to access ~ts local memory ~s ~o.6~s, wh~lst the excess

access t~me to the shared memory ~s o.Sl~s, o.52~s, 0.7l~s and o.72~s

t for processors P
0

,P1,P2 , and P3 , respect~vely. Consequently, the total

sharedmemory access t~me is the sum of both access t~mes to the shared

(excess) and local memory made by each processor; ~n add~t~on, the relat~ve

t
speeds of processors P

0
,P1,P

2
,P

3
are 1.000, 1.037, 1.006 and 0.978 ,

respect~vely, a fact wh~ch also contr~utes to a reduced eff~c~ency

and decreases the performance measurements of an algor~thm w~th

synchron1zation.

tin an attempt to provide as much as possible up-to-date information about
the system, we must mention that the speed measurements may slightly vary
now, which is unofficially verified by test runs carried out by the staff
supporting the system.

[Ch. I/See. B 128]

From the logical organizatkon poknt of Vkew and durkng normal use,

this system operates 11ke four kndkv1dual processing systems. Any processor,

at any time, of course SubJect to avaklabil1ty, can request storage kn the

shared memory and once allocated th1s storage kt treats it as kf kt was a

slower local memory. A small shared memory area on top, 1s ma1nly util1zed

to store the data structures used kn the management of the shared resources

(knclud1ng the shared memory ktself) and to provkde the knter-processor

commun1cation.

Any parallel program to be 1mplemented on th1s system log1cally consksts

of two parts, one wh1ch contakns the program code and the local variables

and another containing the shared variables; these two parts res1de 1n two

dkfferent segmentst, which kS ensured by the commands used to generate the

parallel programs. Now, in the case that a processor receives a request to

execute a parallel task, kts f1rst act1on 1s to cla1m shared memory area

and once allocated, to load 1nto that space the segment conta1n1ng the

shared var1ables; subsequently, the management area (kn the shared memory)

kS set to contain poknters to that shared segment and tasks are act1vated

in other processors w1th suff1c1ent knformat1on for them to execute the

requested program. On the other hand, the segment(s) contakn1ng the local

var1ables are loaded knto the prkvate memor1es of the correspondkng

processor~ wh1lst the other processors, except the knkt1ator, link knto

that shared segment which is res1dkng 1n the common memory.

From the Operating system's point of v1ew, each processor runs under

the powerful DX10 uniprocessor operat1ng system, whkch ks a general-purpose,

very soph1st1cated multk-taSkkng system. It features an effective fkle

management package, which kncludes support for mult1-key kndexed f1les.

Modkf1cat1ons have, however, been underway for the DX10, to produce a new

tThe 990/10 hardware allows a program to exist on up to three segments.

[Ch. I/See. B 129]

mark of the Operat~ng System (VXlO Mk 3.5) along with the ~stalment of

a new hardware (memory, hardware float~g po~t, resource management) and

the development of some new fac~l~t~es (e.g. a new preprocessor for use on

the VAX, a file transfer mechanism between VAX and NEPTUNE etc.). The

files that are stored on the shared disk by DXlO, are ava~lable to tasks

runn~ng on all processors simultaneously and consequently a coordination

procedure is requ~red to allow files to be created, opened, accessed,

(~.e. read and wr~tten) as well as deleted, by more than one processor.

However, the standard DXlO l1m~tat~on for only one task w~th the f~le open

for writing, as well as the lack of direct updating (i.e. when two tasks

on d~fferent processors open a file, one to read and the other to wr~te,

the reader is informed about the changes made only when the wr~ter closes

the f~le) are still restr~ct~g the simultaneous accesses of a s~gle f~le.

From the user's po~t of view, the 'System Command Interpreter' (SCI)

prov~des the user ~terface to the NEPTUNE system. The SCI prov~des

several ways in wh~ch commands may be ~ssued. ~t the s~rnplest level, a

sequence of Menus 1s d1splayed on the term~al's screen, dr1v1ng the user

t
through a coherence of command classes and eventually reaches a l~st of

commands. The command parameters requ~red can be e1ther typed follow1ng

the command or wait for SCI to prompt them; ~ any case ~t ~s SCI's role

to perform a check on the g~ven value. The commands can be ~mplemented

e~ther as funct~ons of the SCI (e.g. superv~sor calls), or as tasks runn~g

under the Operating System (e.g. the comp~lers, the ut~l~ty programs).

DXlO prov~des and supports a tree-structured f~l1ng system 1n the form

of a sequence of Directories starting from a spec1f1c d1sk pack or volume

mainta1ned 1ndependently. The spec~ficat~on of the f~les depends on the

volume they res~de on; ~ other words, ~f they res~de on the system volume,

tThe Menu sequence can be skipped by typing the command name directly.

[Ch. I/Sec.. B 130]

the volume name can be om~tted, wh~lst ~ any other case a full f~lename

specificat~on ~s requ~red start~g from the volume name.

For simpl~c~ty purposes synonyms may be util~zed, which are espec~ally

useful ~ the case of long character str~gs; for example a Directory

VOLl.DIRl.DIR2 can be replaced by the synonymDIR, wh~ch means that all

f~les ~n th~s d~rectory can be referred to as DIR.fiZename. Aga~n, ~t is

SCI's role to evaluate the g~ven synonym. A var~ety of commands concern~g

the f~le management and memory allocat~on [see Figure (I.B.5.3.2-f3)] are

ava~lable in the SCI. Generally, for file and Directory operations we refer

to the reference manual [Texas Instruments,II&IV] the commands concern~ng

f~le ed~t~ng and runn~ng along w~th some other fac~l~t~es w~ll be d~scussed

~ Chapter II.

In the Texas Instrument 990/10, the foreground and the background

features are ava~lable dur~g the execut~on of a task. The d~fference

between these two features is that wh~lst the background is a mult~-task~g

management env~ronment, the foreground can be owned by one only user for

only one task to run, at any time, suspending the SCI. However, background

tasks should not involve I/O w~th the term~nal and commands are ava~lable

to ~spect the background status, s~ce the SCI ~s still runn~ng and ~s

ava1lable to process user requests.

s~ce NEPTUNE is a research system and consequently as such, ~s subJect

to frequent changes and extens~ons, ~t ~s bound from t~me to time to

exper~ence some malfunctioning problems. The normal symptom of a malfunction

1s when one or more processors fait, Lnd1cat1ng a fault (the front panel's

'FAULT' l~ght goes on, although we may have a fault w~thout th~s ~nd~cat~on);

th~s malfunction ~s known as a system crash. To reload the system there

~s a manual procedure on the front panel of each processor, conclud~ng with

IS ('Install System') command, wh~ch w~ll g~ve back the message 'In~t~al

Lzation Complete•.

l C h. I IS ec. . B 7 3 7 1

{i) - [Processor ~]

(ii) - [Processor 2]

Figure I . B. 5. 3. 2-[3: Pictorial Repre sentations of the Memory
Allocation to Various Tasks.
[Obtained utilizing the ' Show Memory Map ' -

SMM command) .

[Ch. I/Sec. B 132]

To avo~d undesirable s~tuations wh~ch can be arisen ~ a var~ety of

ways {e.g. d~sk corrupt~on), the system prov~des a dumping fac~l~ty, in a

t
short or long term bas~s, of all files on the d~sk packs PARUSERl {~.e.

Parallel User source f~les) and FIXED every n~ght, except Sunday; ~nstalled

programs and temporary files are not preserved.

F~ally, another ~mportant software extens~on made to this system,

~s the development of a PASCAL vers~on+ allow~ng commun~cat~ng programs;

also a prOJect to offer a PASCAL-PLUS ~plementat~on ~s underway, as is one

for a mult~processor s~ulator.

In conclus1on and antic1pat1ng the future work to be carr1ed out 1n

the Department of Computer Stud~es, at Loughborough Un~vers~ty, a group has

been act~vely research~g ~ the area of MIMD systems propos~ng a different

conf~guratLon {s~~lar to Cm*) for the construct~on and development of a

larger and more powerful system, possLbly comprLs~ng 16 processors.

t
On a separate disk, normaZZy for Zarge and important fiZes which wiZZ
need to be kept for a month or more.

in addition to the FORTRANbased paraZZeZ software.

[Ch. I!Se~. B 133]

I.B.6: A GENERAL REVIEW OF MuLTIPLE PROCESSOR SYSTEMS' PRINCIPLE MbTIVATIONS

In reviewing some aspects of parallel systems, one must recogn1ze that

technology 1s cons1derably ahead of software and arch1tecture, a fact which

affects all the mot1vat1ng characterist1cs ment1oned below. Th1s 1s

because modern electron1c components are remarkably rel1able, wh1lst the

complex software systems are bound to introduce errors 1nto the programs

s1nce they are subJect to cont~uous maintenance, mod1f~catLon and

development. Currently there 1s no Operat1ng System known wh1ch controls

tasks and processes as eas1ly as block languages handle funct1onal blocks.

Probably, Petri nets or related nets, as well as flow schemes and spec1al

hardware, wh1ch we shall d1scuss 1n Chapter III, are a step 1n the des1red

d1rect1on.

The motivat1ng goals for mult1ple processor systems development

proJects, and 1t 1s somewhat remarkable, they have rema1ned bas1cally

unchanged s1nce the earl1est days of d1g1tal computer systems. The most

1mportant of these long-sought-after mot1vat1ng goals are, an 1ncreased

system productivity (1.e. greater aapacity,shorter responset1me, 1ncreased

throughput), an 1mproved flexibility and reliability, an improved abil1ty

to share system resources, and the ease of system expans1on. S1nce these

goals are not expressed 1n absolute numbers, 1t 1s not surpr1s1ng that they

cont1nue to apply albe1t phenomenal advances have been made in many of the

areas, such as speed, capacity, and reliability.

The 1ncrease of system productivity was env1saged that w1ll be

obta1ned by 1ncreas1ng the number of processing elements 1n the conf1gurat1on,

s1nce the speed of logic c1rcu1try, w1th cont1nuous enhancement, was

approach1ng its phys1cal ult1mate. In add1t1on, the ut1lizat1on of more

process1ng elements also greatly 1ncreased the system potent1al flexibility.

Th1s flex1b1l1ty may be used to 1ncrease the reliability of the system,

[Ch. I/Sec.. B 134]

but Lt has considerable implLcations for the allocatLon of the system

avaLlable resources to the workload. More specifLcally, when more than

one program may be run SLmultaneously, there LS a greater opportunLty for

sharing critLcal resources lLke large sets of data.

One of the most signLfLcant motLves for developLng a multiple processor

system ~s to atta~n a greater measure of reliability. However, the term

relLabLlLty LS often very 'loosely' appiied and computer systems desLgners

somet~mes overlook the fact that computer rel~ab~l~ty combines two related,

but d~stLnct, aspects required by d~fferent applLcat~ons to d~fferent

degrees; these are the system availability and the system integrity.

The requLrement that the process~ng capacLty of the system should

remaLn ava~lable to all albeLt someth~g LS go~g wrong Ln the system,

def~es the availability of the system (e.g. in computer controlled

telephone exchanges, a~rl~e reservat~on systems, etc.).

On the other hand, the requ~rement that the results produced by the

system should be always 'correct', def~nes the integrity of the system

(e.g. Ln a bankLng system, etc.); Ln other word~thLs feature should be

cons~dered as a requirement to 'protect' the ~formatLon content of the

system. However, the cost of integrity LS greater (as greater as LS Lts

Lmportance) than that of availability and consequently the cost of the

entLre system that needs both ~s very h~gh.

As an Epilogue to thLs Chapter, ~t seems that every new maJor system

concept or development (e.g. multiprogramming, multiprocessing, networking,

distributed processing, etc.) has been presented as the answer to achLev~g

all of these mot~vat1on goals. Also we must underlLne the fact that, by no

means, we have referred to all computer arch~tectures wh1ch have contrLbuted

to the not~on of parallelLsm (e.g. the EGPA, CII IRIS 80, Fairchild SYMBOL 2R,

[Ch. I!Sec. B 135]

CYBA-M, etc., computer archLtectures have not been mentLoned); sLmply we

have referred to a selectLon of some well known commercLally Lmplemented

systems.

In conclusLon and Ln order to brLng up-to-date the classification of

mult~ple processor systems, we must ment~on some other classif~cations

presented by Hackney and Jesshop [HOCK81] and by Handler [HAND82] • Both

of these classLficatLons have Lntroduced an LnnovatLve mnemonic(!) sort of

t structural notatLon; the fLrst one Ln the form of chemical formulae ,

whLlst the second one (L.e. ECS - 'Erlangen ClassLfLcatLon System')

introduces a SLmple, lucLd but rLgLd trLplet as a characterLzatLon for

bas~c structures, as well as the operat~ons '+','*',and 'V' ~n order to

make composit~ons of the ava1lable structures.

tThe 'Multiprocessors' category has been entirely omitted(!).

CHAPTER 11: PROGRAMMING TOOLS AND ALGORITHMS TO EXPLOIT THE PARALLEL HARDWARE POTENTIAL

SECTION A: PROGRAMMING WGUAGES AND CoNCEPrS FOR PARALLEL PROCESSING

II.A.2: 'CONCURRENT' PROGRAMMING UNGUAGES l'brnrATIONS AND
TRANSFORMATioNs oF SEQUENTIAL !'RoGRAH.s mro PARALLEL
PROGRAMS

PROGRAMMING CONCEPrS OF THE loUG!!BOROUGB MIMD MULTI
PRocESSING ARorrTECTURES

II.A.2.1: A lEVEL-DETECTION OF Pl\RALLELISM

II.A. 2. 3: IMPLICIT PARALLELISM DETEcTION APPROACH

II.A.3.1: THE UsER INTERFACE TO THE •NF:P_TUNE• PARALLEL PROCESSOR SYsTEM

II.B.l: CoNSTRUCTION PRINciPLES FOR EFFiciENT P
ALGORITHMS

II.B.2: Sc:=.s AND TECENIQUES TO DESIGN ALGORITHMS TO MAP
ONTO SIMD AND PIPELINED VECTOR CoMPUTER ARCHITECTURES

II.B.3: FUNDAMENTAL ALGORITHM STRUCTURAL CoNCEPTS
TO ExPLOIT THE POTENTIAL oF MIMD CoMPtJTER
ARCHITECTURES

II.B.2.1: PARTICULAR CoNCEPTS AND PERFORMANCE FEATURES OF
THE 'DAF' SYSTEM

II. B. 3.1: MuLTIPROCESSORS PERFORMANCE ANALYSIS CEARACTERISTICS AND
RESOURCE PROVISIONS OF THE 'NEPTUNE' ~PROCESSOR S'lSTEM

_ Qli!fAJIDiEi!l
1111

PROGRAMMING TOOLS AND ALGORITHMS

To EXPLOIT THE

PARALLEL HARDWARE POTENTIAL

PROGRAMMING LANGUAGES

AND CONCEPTS FOR

PARALLEL PROCESSING

'Wr ilissrd naturr along linrs laib boum

by our nntiur languagr ...

illnngungr is not .simpl!J a rrpoding llruirr

for rxprrirnrr , but

a brfining frnmrwodt for it.'

ilJrnjnmin m~orf l897-l94l

[Ch. II/Sec.. A 138]

II.A.l: INTRODUCTION

Although 1t 1s poss1ble and useful to separate the system software

structure from the hardware structure, however, since a ser1ous m1smatch

between them 1s l1kely to lead to an 1neffect1ve overall system, the state

of-the-art advances - 1n part1cular, ant1cipated advances generated by

LSI - have given a fresh 1mpetus to research 1n the area of parallel

systems software.

From the haPdwaPe-softwaP~ relat1on po1nt of v1ew, all the parallel

arch1tectures ment1oned 1n ChapteP I and the correspond1ng system software

organizat1ons ut1lized to manage parallelism, serve a purpose on which

the1r conf1guration was based 1n the f1rst place. In other terms, for

some architectures the hardware structure has concealed the parallel1sm

1tself, as in the p1pel1ning, wh1lst for others the system software

des1gner had to decide whether to reveal (or not) the parallel arch1tecture

to the user, or how to explo1t the hardware capab1l1t1es 1n the system

software 1tself.

In consequence, 1f the overall system Peliability, 1mposed by the

repl1cat1on of var1ous components to prov1de a h1gh probab1lity of one

rema1ning operat1onal at all t1mes, the ease of 1mplementing the system,

[Ch. II/Sec. A 139)

as well as the overall system throughpu~were cons1dered to be the system

conf1guration reasons, then the concealment (from the applicat1on

programmers) of the parallel hardware fac1lit1es, g1v1ng the appearance

of a un1processor system, would be appropr1ate.

On the other hand, 1f the system configurat1on reason was to prov1de

a h1gher execut1on speed w1th1n a s1ng+e program, then the concealment

of the hardware parallel1sm would be qu1te counterproduct1ve, although

1ts effect1ve ut1l1zat1on through the system software 1s qu1te a d1ff1cult

task.

As a general rule, the MIMD arch1tectures are more l1kely to have

been conf1gured for overall rel1ab1l1ty, ease and throughput, wh1lst

the SIMD arch1tectures are preferably conf1gured for h1gh execut1on speed

on part1cular classes of problems.

Any parallel system 1s cons1derably more d1ff1cult from the

programm1ng po1nt of v1ew than a un1processor. In the case of many SIMD

systems, where the system software s1mply 1gnores the parallel arch1tecture

allow1ng the appl1cat1on programmer to benef1t from a parallel1sm free

of system software overhead, 1t causes a heavy burden of programm1ng;

th1s may lead to a longer development t1me for programs wh1ch can be

eventually proved of low potent1al parallel benef1t (e.g. low execut1on

speeds) .

The alternat1ve solut1on 1s a system software 'part1ally' conceal1ng

the parallel1sm; for example, comp1lers translat1ng vector or array

operat1ons d1rectly 1nto appropr1ate hardware operat1ons, although, aga1n,

a max1mum hardware speed 1s not normally obta1nable and the development

t1mes are also decreased.

More spec1f1cally, the term 'parallel1sm' can be appl1ed to the

[Ch. II/Sec. A 140]

system software in two different ways, the actual and the hierarchical

parallel~sm. W~th reference to a single program (Job), the term actual

parallel~sm can be appl~ed at several levels as we shall discuss ~n a

subsequent paragraph; to the contrary, the term hierarchical parallel~sm

t
refers to the task (process) parallel~sm which can ex~st at several levels

w~th~n a h~erarchy of levels. For example, the 'statements' w~th~n a

program can be character~zed as first, second, third, or etc. level, if

they res~de ~n the ma~n program, ~n a subrout~ne called by the main program,

~n a subrout~ne called by the previous subrout~ne, etc., respect~vely. In

Figure (II.A.1-f1) we can see the way a sequent~ally organ~zed program

can be represented by a h~erarchy of levels.

After the level-by-level analys~s of a sequent~ally organ~zed program

the pr~mary cons~derat~on to explo~t parallel~sm res~des on the ~dent~-

f~cat~on of those tasks wh~ch can be executed ~n parallel. The determ~n~st~c

approach to th~s problem can be made from two d~rect~ons, the explicit and the

implicit one, wh~ch we shall present ~n subsequent paragraphs. The

~nformat~on obta~ned by any of the above approaches must be sent to and

ut~l~zed by the Operat~ng System, s~nce an eff~c~ent resource ut~l~zat~on

~s the pr~me cons~derat~on at th~s po~nt.

In Figure (II.A.1-f2,a), a sequent~ally organ~zed program ~s

dep~cted conta~n~ng a number of 'i tasks. If the tasks T
1

and T
2

can be

executed ~n e~ther order and st~ll leave 'J unaffected, then parallel~sm

can be said to ex~st between tasks T
1

and T
2

; the~r parallel execut~on ~s

~llustrated ~n Figure (II.A.1-f2,b).

tA task can be generally defined as a self-contained part of a computation,
which without any further additional inputs can be carried out to its
completion - e.g. a single statement or a group of statements.

[Ch. II/Sec. A 141]

In conclus1on, we must underl1ne that this 'commutat1v1ty'

cond1t1on is necessary but not suff1c1ent for parallel process1ng, since

there may ex~st processes w1th s1milar 1ndependence in the execut1on

t order but not processable 1n parallel (e.g. the 1nverse of a matr1x A) .

Certa1nly other compl1cat1ons may ar1se due to hardware l1m1tat1ons

:j: (e.g. accesses to the same memory, etc.) • Bernste1n [BERN66], 1n 1966,

p1oneered 1nvest1gat1ng the determ1n1st1c cond1t1ons (implicit approach)

for the parallel execut1on of two tasks (see par. - II .A. 2. 3). These

cond1tions were suff1c1ent to guarantee 1 commutat1v1tY and 'parallel1sm'

between tasks, although Bernste1n had shown that there did not ex1st

algorithms for dec1d1ng the presence of these factors.

tThe inverse of a matrix A can be obtained in three distinct processes;
T1: obtain transpose of A, T2: obtain matrix of cofactors of the trans
posed matrix, 1 3: divide result by determinant of A. The T

1
and T2 processes can be equally well commutated in the execution order,

they cannot though be executed in parallel.

:j:Dijkstra [DIJK65], Knuth [KNUT66], and Coffman, Muntz [COFF69] developed
efficient scheduling procedures for using common resources.

[Ch. II/Se.c. A 142]

Level 1 LeveZ 2 Level 3 ... Level n

~ I
I I

I I

l I I
I I

I I

I 1 I

T I I

I I
I l I

I

f
I

I t
I ~ I
I

I

! I

··~ I

I

I I + I I I
I I

I

~
I

I
I

Figure II.A.1-[1: H1erarch1cal Representat1on of a Sequent1ally
Organ1zed Program (Each block w1th1n a level
represents a s1ngle task).

I

(a) (b)

Figure II.A.1-[2: Sequent1al and Parallel Execut1on of a Task.

[Ch. II/See. A 143]

II.A. 2: 'CONCURRENT' PROGRAMMING lANGUAGES MoTIVATIONS ANn TRANSFORMATIONS

OF SEQUENTIAL PROGRAMS INTO PARALLEL PROGRAMS

The maJorLty of the commercLally avaLlable parallel systems were,

untLl quLte recently, basically sequentLal systems where 'parallelLsm'

occurs in the form of vector instructions or pLpelLned streams at lower

levels and quasL-usual programmLng languages at hLgher levels.

The reasons for thLS status are quLte SLmple and res~de on the fact

that the parallel system manufacturers when bu~ld~ng the~r systems found

a vast software background wr~tten ~n FORTRAN, the language on wh~ch

computer sc~ent~sts argue ~f ~t was 'invented' by God or dev~l.

Consequently Lt was very prof~table for them to cons~der FORTRAN as the

language for the~r system, and JUSt ~mprove ~ts absolute sequent~al

t
character by Lntroduc~ng 'extens~ons' to descr~e the obvious parallel~sm

available and develop~g opt~m~z~ng comp~lers to match (Lf poss~ble)

the hardware level control mechan~sms.

However, desp1te the fact that an 1ncreased Lnterest 1n •parallel'

languages has arLsen pr~marily due to the theoret~cal potent~al of

parallel hardware, the real mot~vat~on for 'parallel' languages should

come from the programmer's needs. H~gh level languages have developed

prec~sely because they prov~de concepts relevant to the programmer

1ndependent of machine arch1tectures.

When des~gn~ng new programm~ng languages a 'key' problem about them

is the representat~on of programs. Any programm~ng language pr~mar~ly

a1ms to serve two main purposes: first, to express the programs 1n an

tSince FORTRAN is a sequential language the only place where parallelism
can be found out is the DO-loop statements, within which actions are
applied to objects sevenzl times.

[Ch. II/Sec. A 144]

abstract representat~on and,secondly,to ~nstruct the system to execute

a program. Typ~cally, after the representat1on of a program 1n a h1gh

level language a transformation via a comp1ler takes place, 1nto another

representation executable by the hardware. The basic problem 1s the

opt~m~zat~on of these transformations 1n terms of certa1n measures, e.g.

s1ze, execut1on speed and potent1al parallel1sm.

A plethora of 'parallel' programm1ng languages have been proposed

for d1fferent types of systems. For example, Coulour1s (see Iverson

[IVER62]) invest1gated the 1mplementat1on of a h1gh level language system

for the array process1ng language APL. Also, TRANQUIL (see Abel, et al

[ABEL69]) an ALGOL-l1ke language, and ACTUS (see Perrot [PERRBOJ), have

been des1gned to explo~t parallel1sm 1n algor1thms to be ~mplemented on

Array Processors, such as ILLIAC IV. Per Br1nch Hansen [HANS??J,

developed the CONCURRENT PASCALt, at the Cal1forn1a Inst1tute of Technology

from 1972-75, partly supported by the Nat1onal Sc1ence Foundat1on. Also,

we should not m1ss out the work carr1ed out on the ICL DAP system (see

Flanders, et al [FLAN77]),wh1ch allowed access to the pr1m1t1ve mach1ne

1nterfac~, embody1ng a h1gh degree of parallel1sm to be explo1ted by the

DAP FORTRAN language developed by Flanders 1n conJunct1on w1th ICL (see

Flanders [FLAN82]).

The current parallel programm~ng representat1ons may be character1zed

as 1nadequate, s1nce they suffer from a lack of flex1b1l1ty wh1ch makes

decompos1t1on, opt1m1zat1on and translat~on d1ff1cult. Th1s problem would

tSince then, other extended versions of PASCAL, such as the PASCAL-PLUS
(see Welsh and Bustard [WELS79}) and the 'dynamic' PATH PASCAL (see
Dowsing and Elliott [DOWSB4]) (processes and objects can be created at
run-time, unlike in CONCURRENT PASCAL), have been introduced.

tThe use of the primitive level hardware interface, often referred to as
'microcode',provides a 'virtual' system, capable of executing a specific
high level language (see Iliffe [ILIF82]).

[Ch. II/Se.c.. A 145]

become even worse ~n a 'Very Large Scale Integrated' (VLSil env~ronment

(see Chapter IIIl, s~nce the ex~st~ng programm~ng languages would not be

able to eff1c~ently ut~l~ze the much greater opportun~ty for parallel~sm

offered by the VLSI; the rise of spec~al-purpose ch~ps and architectures

also requ~res more flex~ble representat~ons for programs.

The sort of merits that scient~sts are seek~ng for, we think can be

obta~ned from the applicative or functionallanguage representationst, ~n

wh~ch a computat~on is expressed as a funct~on evaluat~on. Th~s type of

representatLon offers a very small number of basic concepts, m1n1m1zed

complex~t~es, a lack of central state or global environment (due to the

fact that funct~ons are dependent only on the~r ~nputs) , and a very h~ghly

parallel nature thus be~ng su~table for the VLSI env~ronment.

Certa~nly there is a number of ~mportant, yet unsolved, problems to

overcome, 1f functional language representations are to succeed, such as,

the ab~l~ty to match ex~st~ng and future arch~tectures, human eng~neer~ng

qual1t1es, effect1veness in terms of parallel1sm potent1al, ut1l1zat1on

and representat1on of data structures, etc.

Finally, to come up-to-date w~th the technolog~cal advances,we must

ment~on the forthco~ng, so-called, transputer(see also Chapter III) and

the OCCAM language (see May and Shepherd £MAYS84]), wh~ch are des~gned by

INMOS; OCCAM was ~n~t~ally des~gned as a concurrent programm~ng language,

and ~s the lowest level at wh~ch the transput@"can be programmed, ~n effect

an assembler language for parallel programm~ng. The theoret~cal bas~s

for this language was worked out by Professor C.A.R. Hoare of the Program

tSome of the most well known 'functional' languages ar~ the Formal
Functional Programming language (see Backus [BACK?B}), the Kent Recursive
£alculator language (see TUrner [TURN82}) and the Saint Andrews Static
y:mguage (see TUrner [TURN79}).

[Ch. 11/Sec. A 146]

Research Group at Oxford Un~vers~ty. He developed the concept of

'Communicating Sequent~al Processes' (CSP) [HOAR?B,HOARBOl for the u.s.

Department of Defence, but they chose ADA ~nstead as the~r new real-t~e

language. They, then, added the pr~~t~ves from CSP to ADA, mak~ng the

language even more unw~eldly, although CSP was supposed to be a simple,

lean-and-hungry language.

Another recently developed parallel language ~s the CONCURRENT EUCLID

(see Cordy and Holt [CORD83]), a modern PASCAL-based programm~ng language

to be ut~l~zed ~n the 'Network Access Controllers' (NACs) of a funct~onal

system called Hubnet (see Lee and Boulton [LEEB83]).

From the actual programm~ng po~nt of v~ew, ~n order to program in a

way to allow 'concurrency', one needs to reveal natural dependenc1es of

the subparts, but not to ~ntroduce new dependenc~es by overspec~fy~ng the

problem.

Th~s can be done by the programmer h~mself (explicit approach)

ind1cat1ng the tasks w1th1n a computat1onal process wh1ch can be executed

~n parallel by means of add~t~onal ~nstruct~ons ~n the ut~l~zed programm~ng

languages. However, the ~ntrins~c complex~ty of a descr~pt~on of

concurrency has unavoidably led to ~nvestigate automat~c transformat~ons

(implicitapproach}of sequent~al programs ~nto parallel ones. Much

research has been devoted to th~s top~c; Baer [BAER?J] and Kuck [KUCK?5]

have surveyed all the var~ous proposed methods.

In conclus1on, these methods generally can be class1f1ed 1nto two

complementary categor~es. The f~rst, refers to local transformations,

attempt~g to underl~ne the ~nherent parallel~sm of a certa~n task,

depend~ng, e~ther on the semant~cs of some part~cular operators: FORTRAN

DO-loops [KUCK?5], commutat~v~ty, d~str~but~vity and assoc~at~v~ty of

[Ch. II/Sec. A 147]

arLthmetLc operations [BAER?3], or on the semantLcs of data structures

(sLmultaneous accesses to parallel hyperplanes of an array), see Lamport

[LAMP?5]; the second category, refers to global transformatLons accordLng

to whLch the sequentLal programs are syntactically analyzed and theLr

control structure is completely modifLed, thus allowLng the parallel

executLon of instructions utilLzing dLstinct varLables.

The explieit and implieit parallelism detection approaches will be

dLscussed Ln greater detaLl Ln paragraphs (II.A.2.2) and (II.A.2.3),

respect~vely.

II.A.2.1: A lEVEL-DETECTION OF PARALLELISM

As was explaLned by the varLous archLtectures of exLstLng parallel

computers, parallelLsm can be achLeved Ln a variety of ways. AttemptLng

to summarLze all these possLble known ways of achLevLng parallelLsm and

categor1ze them 1nto several d1st1nct levels, we obta1n:

a) Job Level C
be~~

between

Jobs;

phases of a JOb;

Cbetween parts of a program;
b) P~og~am Level

WLthLn DO-loops;

c) Instruetion Level~ between phases of LnstructLon executLon;

d) A~thmetie and Bit Level C
between elements of a vector
operat1on;

WLthLn arLthmetLc logLc cLrcuLts.

The prov1s1on of a correctly balanced set of repl1cated resources,

com1ng under the general class1f1cat1on of funct1onal parallel1sm, 1s

the ma1n s1gn1f1cant requ1rement of a computer arch1tecture 1n order to

[Ch. II/See. A 148]

allow parallel1sm at the highest (Job) level. In th1s respect it 1s of

great s1gn1f1cance that the overall act1v1ty in all parts of the

installat1on be mon1tored, in order to ass1st 1n identifying bottlenecks

and to add or remove any resources accord1ng to the spec1f1c problem

demands. The max1m1zat1on of the process1ng rate of Jobs 1s the obJeCt1ve

of the system at th1s level.

In a s1mpler analys1s, each JOb can be cons1dered as a set of

several sequential Phases, each of wh1ch requ1res a different system

program and resources. These phases could be considered to be the input

program source code, read from a d1sk or tape, the compiling of this code

1nto obJect code, the Zinking of the obJect code w1th any needed 11brary

subrout1nes, the execution of the resulting module and f1nally the print

out of the result f1les.

The first and the last phases (I/O operat1ons), compared to the

execut1on phase, are cons1derably slower, so all large computer

1nstallat1ons offer several I/O channels or per1pheral processors 1n

order to perform I/O 1n parallel w1th the program execut1on, prov1d1ng a

battery of d1sk and tape drives.

On the other hand, 1nd1vidual 1nstallat1ons use a d1fferent number

of processors for the execut1on of the programs, but in all cases only

one computer program, the so called Operating System, ex1sts to control

the flow of the work through the system, organiz1ng the shar1ng of the

system resources amongst the var1ous JObs.

In the case that the 1nstallat1on has only a single processor and

in the fast memory reside many programs for execut1on, then the execut1on

1S sequent1al, starting w1th the f1rst program; by the use of an 1nterrupt

procedure a dynam1cal overlapping process can occur w1th the suspension

l
I

[Ch. II/Sec. A 149]

of the active program (e.g. demand for I/O), and the execut~on of the

next program ~n the queue commences. The operation of the I/O (e.g. read

from the disk or tape) ~s then ~n~t~ated ~n the channel; the control for

the execut~on of the suspended program is rega~ned when the other program(s)

are similarly suspended and of course the former program has gone out of

this state.

In the subsequent lower (Program) level of parallel~sm, we may have

a program includ~g Sectionsof code quite ~ndependent of each other, thus

being possible to be executed ~n parallel on d~fferent processors, ~n a

mult~processor env~ronment (e.g. a set of l~nked processors l~ke the

NEPTUNE (MIMD) parallel system).

A log~cal analysis of the source code reveals some of the ~ndependent

sect1ons, s1nce for others some constra1nts st1ll ex1st; for example, a

data dependency which cannot be revealed before program execut~on.

Sim~larly, d~fferent execut~ons of DO-loops may be ~ndependent of each

other, even though different code routes could be taken through the

cond~tional statements conta~ned ~n the loop.

In the case of the PipeZined Vector computers (e.g. CRAY-1, CYBER 205,

etc.) all manufacturers have produced (mostly ~n FORTRAN) comp~lers that

recogn~ze when a DO-loop can be replaced by one or several vector

instruct1ons.

In the case that a lower (Instruction) level of parallel~sm is traced

between Phasesof instruct~ons, then the process~ng of any ~nstruct~on may

be d~v~ded ~nto several sub-operat~ons using p~pel~ning to overlap

d~fferent sub-operations on d~fferent ~nstructions.

F~nally, at the lowest (Arithmetic and Bit) level of parallelism we

have the opt~on to def~ne the Arithmetic Logic ~tself; namely, whether

to proceed by perform1ng the spec1f1c ar1thmet1c 1n a b1t-ser1al fash1on,

[Ch. IT/Sec.. A 150]

or on all the b~ts of the number ~n parallel. Of course, ~ntermed~ate

possib~lit~es ex~st, such as: To consider the number as subd~v~ded

=to bytes t, then to proceed by tak~ng the bytes of the number in a

ser~al fash~on, whereas the arithmet~c log~c has been performed

simultaneously on all the bits of each byte of the number.

II.A.2.2: EXPLICIT PARALLELISM DETECTION APPROACH

In the explicit approach to parallel~sm the programmer h~self has

to spec~fy those tasks of a computat~onal process wh~ch can be performed

concurrently, by means of addit~onal spec~al ~nstruct~ons ~n the

programm=g language ~tself. Although the add~t~on of these parallel

programming constructs ~s a t~me consuming and d~ff~cult to ~mplement

JOb, ~t has the s~gnif~cant advantage that the programmer ~s able to

change the structure of the algor~thm ~f ~t ~s not efficient for parallel

process~ng.

Considerabillresearch has been done on th1s approach and several concepts

concern~ng the parallel tasks (namely, declaration, activation,

tePmination,and espec~alijsynchronization and communication) have been

cons~dered.

In other terms, a concurrent program cons~sts of sequent~al

processes that are carr1ed out S:Lmultaneously. These processes

'cooperate' on common tasks by exchang~ng data through shared var~ables.

The problem ~s that unrestr~cted access to the shared var~ables can make

the result of a concurrent program dependent on the relat~ve speeds of

1ts processes.

tOne byte is a sequence of 8 binary digits (bits).

[Ch. II/Sec. A 151]

D~jkstra [DIJK68], ~ 1968, suggested the ut~lizat~on of

semaphores to prove many synchron~zat~on properties. Although semaphores

have not reduced the requ~rements for large numbers of shared var~ables

and consequently the ~nterference potent~al ~s still qu~te large, they

have been qu~te successfully ut~l~zed for a harmonious cooperation of a

system of several processes.

After the semaphores, the conditional critical region concept was

developed (see Hoare [HOAR72] and Hansen [HANS?J]). The conditional

critical regions ass~sted to reduce the potent~al ~terference by

group1ng the shared var1ables 1nto resources, w1th an exclus1ve access to

them and also allowing ~nvariants on the shared variables establ~shed on

a per region bas~s.

Later on, Campbell and Habermann [CAMP74], ~ 1974, suggested the

ut~l~zat~on of signals and path expressions for synchron~zation purposes.

A further reduct~on ~n the processes ~nterference led to the

~ntroduct~on of monitorst (see Hansen [HANS77]). Th~s ~sa language

construct that enables a programmer to tell a comp~ler how a shared data

structure can be used by processes. In other terms, a monitor def~nes a

shared data structure and all the operat~ons processes can perform on ~t,

synchron~z~g them and transm~tt~g data amongst them: these synchron~z~ng

operations are called monitor procedures. It can also control the order

~n wh~ch compet~g processes ut~l~ze shared, phys~cal resources.

Hoare (see [HOAR78,HOAR80], respect~vely), f~rstly, suggested that

the parallel composit~on and commun1cat1on of processes should be accepted

as a pr1mit1ve programm~ng concept and, secondly, ~ntroduced a simple

mathemat~cal model for 'Communicat~g Sequent~al Processes' (CSP), prov1ng

tCONCURRENT PASCAL extends sequential PASCAL with 'concurrent processes',
'monitors', 'queues' and 'classes'.

[Ch. II/See. A 152]

also the correctness of programs expressed as such.

The CSP concept formed the bas~s on wh~ch the mutual exclusion

concept, ~ the case of asynchronous parallel processes, was developed

(see Burns, et al [BURN82]). There ~sa vast d~fference between the

sequent1al process1ng and the concurrent processing of several asynchronous

parallel processes, s~nce the execut~on of the latter depends on var~ables

d~ff~cult to pred~ct, such as the relat~ve speeds of the processes, the

operator•s 1ntervent1on, the 1nterrupts, etc.

W~thout a doubt the most eff~c~ent way to prevent ~nterference

amongst the processes ~s by ut~l~z~ng critical sections, which w~ll

~nclude the sect1on of code that every process attempts to execute at the

same t1me; in other terms, the critical section can be executed by one

at a t1me (i.e. ~ a sequent~al manner) process only. Th~s mutual

exclusion of access1ng that sect~on 1s ensured by means of entry and exit

protocols to each cr1t~cal sect~on, protocols wh1ch also do a sort of

scheduli~thus determ~n~g wh1ch of the several contend~ng processes 1S

allowed to proceed each time. A more deta1led study of th~s parallel

construct can be found in paragraph (II.A.3.1).

For express1ng concurrency, several mechan1sms in the form of

add~t1onal parallel constructs have been 1mplemented; these w1ll cope

w1th the assignment of the ava~lable processors to the 1ndependent

computat~ons and also w~ll allow the concurrently execut1ng tasks to

commun1cate, synchronize cr1t1cal computat1ons, etc., l1terally'to look

over each other's shoulders'.

In add~t~on, precaut1ons must be taken to ensure the 1ntegr1ty of

those areas ~n the ma~n storage, shared by the var~ous tasks. Each

parallel path must be executed by only one processor, no matter how many

[Ch. II/Sec. A 153]

processors are 'attached' to the task, in order to protect the stab~l~ty

of the results; ~n other terms, when a processor ~s assigned to a path,

all the others must be ·~nformed' of that and be locked out of th~s path.

Var1ous forms of statements have been invest1gated; for example,

COBEGIN (see D~Jkstra [DIJK68)) or PROCESS declarat~ons (see Hansen [HANS75l)

~dent~fy the parts of a parallel program wh~ch can be executed ~ parallel,

d~st~nguish~g the local var~ables from the shared var~ables. A

programm~ng language which allows process declarations, as well as, an

arb~trary nesting between processes and procedures, ~s ADA - (see

Ichb~ah, et al [ICHB79)); this fact although ~t g~ves a great deal of

programm~ng power to the language, ~t makes very d~fficult to understand

the effects of the so complex programs, s~nce ~t leads to potent~ally more

sharing and more complex execut~on paths.

Another example of the explicit approach ~s the PARALLEL FOR (see

Gosden [GOSD66)), wh~ch takes advantage of parallel operat~ons generated

by the foP statement ~n ALGOL and s~m~lar constructs ~n other languages.

Also, the programm~g language PL/1 provides the TASK option with the CALL

statement, wh~ch ~ndicates the concurrent execut~on of parallei tasks.

A d~fferent way to ~dicate the parallel~sm ~n the explicit approach

~s to wr~te a language exploit~ng the parallel~sm ~n algor~thms to be

t
~mplemented by the operat~ng system •

Anderson [ANDE65), ~n 1965, ~ntroduced the FORK, JOIN, TERMINATE,

OBTAIN and RELEASE constructs for parallel process~ng; the form of these

statements, ~n ALGOL-68 format, ~s:

[FORK statement) ::=foPk [Label l~st);

~n example of this case is the ALGOL-like TRANQUIL language which was
utilized on ILLIAC IV.

where

[Ch. II/See. A 154]

[JOIN statement]: :=LABEL: join [Label lJ.st];

[TERMINATE statement]::=LABEL: terminate [Label lJ.st];

[OBTAIN statement]::= obtain [Variable lJ.st];

[RELEASE statement]::= release [Variable lJ.st];

[Variable lJ.st]::=[Variable],[Variable]/[Variable list] ,[VarJ.able].

The [FORK statement] l.ndJ.cates the concurrent processabilJ.ty of a

specJ.fied set of tasks Wl.thl.n a process, J.nl.tl.atJ.ng a separate control

for each task under a different label. Only local labels must be used

and thel.r scope is defJ.ned as the block scope J.n which thl.s statement l.S

declared. The next sequence of tasks can be initiated as soon as all the

emanated tasks, from a FORK, have reached a JOIN statement. However, J.n

certal.n cases some of the parallel operatJ.ons (e.g. a branch operatl.on to

alert an I/O unJ.t for a momentary utl.ll.zatl.on) , is not necessary to be

completed for the processl.ng to be contJ.nued. The release of these

processors, w~thout the ~1t1at1on of further action, can be ach1eved by

the execution of an IDLE statement (see Gosden [GOSD66]).

The [JOIN statement] l.S closely related Wl.th the previous statement,

occurring l.n the same program level. This statement termJ.nates the

parallel paths that are involved l.n the FORK accordl.ng to the Label list

and a single path may follow. Thl.s actJ.on l.S l.mplemented by compl.ling a

code that causes test bl.ts to be aval.lable, allowJ.ng the FORKed paths to

be synchronized after they are completed. The JOIN statement label l.S

the operand of the last goto statement appearJ.ng J.n each task generated

by the FORK statement.

AlternatJ.vely, the eo-routines concept, J.mmediately emanatJ.ng from

the FORK-JOIN technique, allows J.ndependently executable routJ.nes to l.nter-

[Ch. II /Sec.. A 155]

commun~cate dur1ng execut1on; in add1t1on, they ma1nta1n some re-

synchron~zat1on key-points to ensure that the computed values have been

properly passed from one to the other. The FORK-JOIN techn~que is depicted

~n Figure (II.A.2.2-fl).

The [~RMINATE statement] ~s used to explic~tly term1nate program

paths (accord~ng to the ~eluded Label list), wh~ch have been dynam~cally

act~vated by the FORK statement, thus avo~d~ng the creat~on of a backlog

of mean1ngless incomplete act1vations.

t Actually, the JOIN and TERMINATE statements are aontrol aounters ,

decreas1ng by one after the execut~on of one statement, compar~ng each

t~me to zero; ~f different than zero, the path ~s term~ated and the

processor 1s free to execute the next path 1n the queue, otherw1se, the

processor goes to the next program segment, exactly after the JOIN statement.

The last two powerful statements perm~t the loaking/unloaking of

var~ables, from access by other segments of the program.

The [OBTAIN statement] prov~des exclus1ve use of the var~ables ~n

the Var~able l~st. It ~s used to avo~d mutual interference by looking-out

other parallel program paths from the use of these var~ables. If th~s

statement occurs ~n a block then these var~ables should be the same

var1ables occurr~g in h~gher level blocks.

The [RELEASE statement] is the log~cal counterpart of the OBTAIN

statement. It can be appl~ed selectively s~ce it only allows access

(releases) to those variables (from the Var~able l1st) that have been

previously looked-out by an OBTAIN statement.

More spec1fically the OBTAIN/RELEASE concept ~s an approach

tThey are initialized to the number of labels in their Label lists.

[Ch. II /Sec.. A 156]

~mplemented to assist ~ solving the synchron~zat~on problem. However,

these statements present many Lmplementat1on d1fficult1es since they

occur JUSt before the use of a variable. The execut~on of a data-fetch

funct~on determ~~ng (before perform~ng the request} the status of the

requested data or 1nd1rect addressing, can ensure the exclus1ve use of

var~ables and arrays. The data request cannot be performed when, either

the path executed by the processor awa~ts access (suspended) and the

processor 1s reass1gned to other work, or 1n the case of a processor

be~ng dormant by attempt~ng to access locked data, unt~l the data ~s

released by a RELEAtgstatement.
I

I
I

Figure II.A.2.2-[1: The FORK/JOIN Techn~que.

[Ch. II/Sec. A 157]

A concept sLmLlar to the OBTAIN/RELEA~is the LOCK/UNLOCK concept

which was Lntroduced by DennLs and Van Horn [DENN66], Ln 1966.

In conclusLon, all the above mentioned statements are dLrected to

the run-tLme OperatLng System and supply enough Lnformation to control

parallel and multLprogrammLng actLv1t1es. In part1cular, when a FORK

statement is encountered, the comp1ler generates code to enter the run

t1me execut1ve rout1ne to create as many parallel paths as the number of

labels Ln the Label lLst of the FORK statement. Each of these paths is

assigned to the available processors and usually the f1rst path LS carried

out by the same processor that carries out the FORK statement itself.

In the case that the number of processors LS smaller than the number

of paths then the excess paths are placed Ln a resources queue to wa1t

for a free processor.

The labels contained 1n the Label l1st of the FORK statement are

arranged on a spec1al forward reference l1st, sLOce they can be presented

anywhere Ln the program. When a label 1s encountered, thLs l1st 1s

searched and when the label LS found Lt 1s removed from the l1st and a

specLal headLng informatLont 1s generated JUSt before the labelled block,

wh1ch may be fed Ln when the program segment 1s completely comp1led.

To recapitulat~ in the explicit approach the process of parallel1zation

1s under the ent1re respons1b1l1ty of the programmer, a fact wh1ch

JeopardLzes program determ1nancy.

tThis information may include code length, data, etc.

[Ch. II/Sec. A 158]

II.A.2.3: IMPLICIT PARALLELISM DETECTION APPROACH

This approach to parallelism involves the impliait detectLon of

parallel processable tasks, wLthLn programs Lntended for sequentLal

executLon. The determinatLon of the inherent parallelLsm does not

depend on the programmer, but relies Lnstead on indLcators exLsting

wLthLn the program Ltself; in other terms, there LS not such a need,

as Ln the expliait approach, for the programmer to recede the sequentLal

programs LndLcatLng the parallelLsm, for these propertLes can be detected

USLng impliait recognitLon technLques. However, in contrast to the

relatLve ease of LmplementatLon of the former approach, this is

assocLated with sophLstLcated, complex compiling and supervLsory programs.

A desired LndLcatLon of the tasks is wh1ch of them can be executed

in parallel and whLch must be completed before the next sequence of

tasks commences;consequently, the detectLon process of the Lnherent

parallelLsm can be dLstLnguished Lnto two parts - 'recognLzLng' the

relatLonshLps between tasks WLthLn a level and 'util1ZLng' thLs

Lnformation to indLcate the ordering between tasks.

A variety of methods, some of which we subsequently present,

have been proposed for an automatia recognLtLon scheme to accomplish

this detectLon; however, a reaognizer whLch LS universally applLcable

cannot be Lmplemented sLnce Lt is dependent on the source language.

As we have already mentLoned, BernsteLn [BERN66], Ln 1966, presented

an Lnherent parallelism detectLon method Ln terms of sets representLng

memory locatLons, developing the deteriDLnistLc condLtions for the

parallel executLon of sequentLally organized processes. His work LS

maLnly based on four separate ways Ln whLch a memory locatLon can be

utLlLzed by a sequence of instructions; Ln particular, these ways are:

[Ch. II/Sec.. A 159]

~) The locat~on ~s only fetahed dur~ng the execut~on of T . task;
"!-

~~) the locat~on ~s only stored dur~ng the execut~on of Ti task;

~ii) the f~rst operation w~th~n a task ~nvolves a fetch w~th respect

to a locat~on.

One of the succeed~ng operations of T . task stores ~n th~s
"2-

locat1.on; and,

~v) the f~rst operation w~thLn a task ~nvolves a store with respect

to a locat~on.

One of the succeeding operat~ons ofT. task fetches th~s locat~on.
"2-

However, although these cond~t~ons were sufficient to ensure the

commutativity and parallelism of two program blocks, he showed the lack

of proper algor~thms for dec~d~ng these factors of arbitrary program

blocks.

A complementary to Bernste~n's work, was the work carr~ed out by

F~sher [FISH6?], Ln 1967, wh~ch approaches the problem of parallel task

detect1.on 1.n a general manner, formall.zLng 1n the form of an algor1.thm

the above condit~ons. Th~s algor~thm util~zed the input and output sets

of each task (process) to determ~ne the essent~al order~ng and thus the

~nherent parallel~sm.

In 1969, RamalllOorthy and Gonzalez ([RAMA69], [G0NZ69]), presented a

new approach based on the or~ented graph modelling of computat~onal

processes, develop~ng also a FORTRAN Parallel Task Recognizer; ~n these

graphs, the vertices (nodes) represented s~ngle tasks and the oriented

edges(d~rected branches) represented the per~ss~le trans~tion to the

next task ~n sequence. Consequently, the computat~onal processes propert~es

could be stud~ed by s~mply man~pulatLng a (nxn) Connectivity Matrix-G

(see Ramamoorthy [RAMA66]), ut~l~zed to express these graphs ~n computer

[Ch. II/Sec. A 160]

terms. The representLng theory beh~nd the matrix was that an element

C .. was a 1 if and only ~f there was a d~rected edge from node i to
~J

node j, or ~t was~ otherwise.

Another work carr~ed out by Evans and Will~ams [EVAN78), in 1978,

introduced a method of detectLng parallelism in ALGOL-type programming

and some part~cular language constructs, such as Zoops,i[and assignment

statements, were stud1ed. For Lmplement1ng these constructs, Williams

IWILL78), ~ 1978, presented an ALGOL 68-R program describ~ng how an

ex~stLng mult~-pass comp~ler can detect the potential parallelism. Th~s

compiler was extended by add~g two more stages to ~t, the AnaZyzer and

the Detectcrprograms.

The role of the AnaZyzer was the l~~ted subdivis~on of the main

program ~to subprograms, the so-called stanzas; the size of a stanza

would be a spec~f~c program construct (e,g, a loop) or a collect~on of

statements ut~l~zLng f~fteen d~fferent var~ables, the most.

The receiver of these stanzas was the Detector whose role was to

determine the ex~sting (~f any) parallel relat~ons between them.

Subsequently with the ~nformat~on prov~ded by the AnaZyzer and Detector

programs would be possible the ~dent~f~cation, dur~ng the comp~lation

time of a sequential program, of those parts that m~ght be executed

concurrently.

A particular attention has been g~ven for the detect~on of ~nherent

parallelism w~thLn arithmetic expressions. It has been est~mated that

the time requ1red to calculate an ar1thmet1c expression on a convent1onal

computer is proportional to the number of operations ~nvolved; however,

the t~me requ~red, for the calculat~on of the same ar~thmet~c express~on

on a parallel computer, has been estimated to be proport~onal to the

[Ch. II/Sec.. A 161]

number of levels 1n the tree representat1on of the expression.

The above can be apparently seen 1f we cons1der the follow1ng

s1mple ar1thmet1c expression:

A+B+C+D+E+F+G+H (II.A.2.3:1)

In Figure (II.A.2.3-fl) is dep1cted the representation of th1s

express1on for a ser1al and a parallel computer, respect1vely. It can

be eas1ly detected that this expression, sequentially est1mated, requ1res

seven un1ts of time, whereas, in parallel, requ1res only three un1ts of

t1me (and a decreasing number of processors), as the number of represent-

at1on tree levels, respect1vely.

A conclusion wh1ch may be drawn 1s that execut1ng an arithmet1c

express~on, ~n a parallel process~ng environment, the potentLal Lnherent

parallel1sm 1s 1nversely proport1onal to the number of levels (or height)

of the express1on tree representat1on.

Level

Level

Level

Level

Level

Level

Level

J
A

? •••••••

6 • •••••
H

5 •• .•• G

4 •• ••
F

3 • •• + ...
E

2 • • + ..
D

1. .
J

c .I
B A B

(1) - Serial computer (11) - Parallel computer

Figure II.A.2.3-fl: B1nary Tree Representat1ons of the Ar1thmet1c
Expression: A+B+C+D+E+F+G+H.

[Ch. II/Sec. A 162]

Many algorLthms have been proposed for the detectLon of parallelLsm

at the arLthmetic expression level; some of them are those proposed by

Squire [SQUI63], Hellerman [HELL66], Stone [STON67], Baer and Bover

[BAER68], RamaJWorthy and Gonzalez [RAMA69], Kuck and Maruyama [KUCK73] ,

Brent [BREN74], and Muller and Preparata [MULL76],

Although we have not attempted a complete survey of all the proposed

algorLthms, we should, in partLcular, mentLon the works carrLed out by

Kuck [KUCK77] and wang and LLu [WANGBO].

Kuck examLned the application of distPibution+ over arLthmetLc

express1ons, such that a tree representat1on is of m1n1mum he1ght.

However, although thLs distribution form may involve some extra operatLons

[see Figure (II.A.2.3-f2)] for the parallel executLon, than for the

sequentLal executLon, the completLon of the former executLon LS stLll

faster, due to fewer operatLonal levels.

FLnally, Wang and LLu followed an LnnovatLve approach whLch dLd not

concernw1th tree-height reductLon technLques, as proposed by Squire,

Stone, Baer and Bovet and Ramamoorthy and Gonzalez; they Lntroduced the

notLon of the 'Parallel ExecutLon StrLng' (PES), whLch was utLlLzed to

detect parallelLsm not only at the arLthmetLc expressLon level, but also

at the statement and the block levels. They, also,presented two

algor1thms to convert express1ons 1nto PES's, as well as the organ1zat1on

of a multLple mLcroprocessor system designed for the parallel processLng

of them.

t
Since,by use of 'associativity' and 'commutativity~ in some cases, no
lower height tree representation could be found (e.g. the tree represent
ation of the arithmetic expression in 'Figure (II.A.2.3-f2)').

Level 4

Level 3

Level 2

Level 1

B

..... *

...
A

..
E

.
D

c
(i) - Serial computer

A

[Ch. 11/Sec.. A 163]

* *
A

B C D
(LL) - Parallel computer (one more

multLplLcatLon)

Figure II.A.2.3-[2: Tree-HeLght Reduction (by Distributivity) of
the ArithmetLc ExpressLon: A*(B*C*D+E).

E

[Ch. II/Sec.. A 164]

II.A.3: PROGRAMMING CONCEPTS OF THE LoUGHBOROUGH MrMD MuLTIPROCESSING

AACHITECTURES

The hardware and software characterist1cs of the IntePdata Dual

ProeessoP and the NEPTUNE(MIMD) systems have been discussed 1n ChapteP I.

The programming concepts beh1nd these systems w1ll be presented 1n th1s

paragraph.

The 1mplement1ng programm1ng language for both parallel systems is

FORTRAN; especially for the latter system, wh1ch 1s an advanced extens1on

of the former, s1nce parallel programming fac1l1t1es were requ1red as

qu1ckly as poss1ble, the cho1ce of parallel language was l1m1ted to

those ava1lable on the Texas 990/10. Between the PASCAL and FORTRAN IV

programm1ng languages prov1ded, the latter was preferred, s1nce, for

example, 1t d1d not perm1t recurs1on and storage was stat1cally allocated

at comp1le t1me, i.e. there was no stack area to have to copy to other

processors; consequently, ~ts adaptat1on for parallel ut1l1zation was a

far eas1er task.

Th1s took place by means of several pseudo-FORTRAN syntactic

constructs (1.e. maePOS), wh1ch were added to the language to ach1eve

the parallel process1ng requ1rements. These constructs are converted to

FORTRAN calls to mach1ne code wr1tten rout1nes by a preprocessor program

running before the normal FORTRAN compiler.

In general, the user of the NEPTUNE system, s1milarly to the

IntePdata Dual PPoeessoP system, 1S requ1red to def1ne in h1s program

and in a s1mple manner, the creat1on and term1nat1on of parallel paths,

wh1ch data is shared between paths, and the synchron1zat1on to ensure

the rel1able update of certa1n shared data structures.

All paths that are created together must be term1nated together;

[Ch. IT /Sec.. A 165]

~ addLtion, each path must be executed by only one processor whLle at

the same tLIDe the remainLng processors must be ~formed and looked-out

of that path, a fact ensurLng the stabLlLty of the results.

From the data 'communLcatLon' poLnt of view, an Lmportant programm~g

construct which has been Lmplemented on the NEPTUNE system, to maLntaLn

the utLlLzation of varLables whLch are shared amongstparallel paths, LS

the $SHARED construct • Data that is requLred by parallel paths and LS

not inLtLalLzed ~ a $DOALL statement or a FORTRAN DATA statement, has

to be defLned as shared data usLng

$SHARED Variable List;

thLS forces the variables Ln the list to be loaded Ln the common memory,

whLlst the rest of the data, LncludLng the program code, is held Ln

local memory. This construct has exactly the same propertLes as a normal

FORTRAN labelled COMMON block, namely, Lt LS a regLon of statically

allocated storage sharable by different program unLts.

In any MLMD parallel processLng system, 'synchronization' (or

'coordLnatLon'} between parallel paths is requLred. In partLcular, when

a path produces results that nught be requLred by another path,

synchron1zat1on 1s necessary to transform correctly these results, as

well as, when parallel paths try to access shared resources; namely,

these shared resources, wh1ch may be some shared data structures 1n the

user program or a shared dLsk drive, must be accessed Ln a controlled

manner to prevent them from being corrupted.

VarLous approaches have been proposed to enable accesses to shared

resources to be synchronLzed. The algorLthms proposed so far in the

lLterature can be broadly classLfied into two groups, resource master and

bartering (although some work has been couched in terms of communLcatLng

[Ch. IT/See. A 166]

sequent~al processes) -see Newman, et al ~wrus4].

t
In the case of resource master, as the name ~mpl~es, the resource

~s always 'owned' by one of the processors, w~th the ownership pass~ng

between the processors at the discret~on of the current owner.

W~th bartering algor~thms (see Lamport [LAM?74]) the resource ~s

usually 'unowned'. When a processor wishes to access a resource 1t

performs some b~dd~g algor~thm at the same time as any (and poss~ly

many) other processors who also require the resource. This b~dd~ng

algor~thm ensures that the ownersh~p ~s always held un~quely. Once

the resource has been ut~l~zed, ~t ~s released, wh~ch then per~ts

processors requ~r~g the resource to restart barter~g.

In the follow~ng, we shall d~scuss on a h~erarch~cal development

bas~s the ~mplementat~on of the parallel progra~ng constructs on

Loughborough parallel process~ng systems.

The answer to the lock-out or mutual interference problem, ment~oned

prev~ously, between the processors, was provided by the ~mplementation of

an Abstract Resource Ring+. This r~ng consists of a set of abstract

resources that are ava~lable to all processors ~n the system. A resource

may be 'possessed' by only one processor at a time, wh1ch Ln sequence,

after ~t f~~shes, w~ll pass it to the next 'waiting-requir~ng ~t'

processor.

The un1que possess1ng of a resource, by only one processor at a

t1me, can be ensured by transferring a resource on a 'g1v1ng', as opposed

to a 'tak1ng', bas1s. Four states of a processor are d1st~gu1shable:

(~) Not hav~ng, not want~g

tA simply modified 'resource master' has been utilized on the Interdata
Dual Processor'system.

+First implemented on the 'Interdata Dual Processor' system.

[Ch. II/Sec.. A 167]

(~~) Hav~ng, not want1ng

(1~1) Want1ng, not having

(1v) Want1ng, hav1ng.

Due to the f1rst two states and the fact that a resource 1s 'g1ven'

not 'taken', ~t 1s not possible to 1mplement control pass1vely on a

flagging bas1s. However, a flag 1s set by each processor indicating

whether 1t wants a part1cular resource or not, which can be seen by

every other processor. The 'resource-want' message, from a processor,

1s sent, by means of an 1nterrupt, around the system caus1ng the other

processors to try to give up the1r unwanted resources. The demand1ng

processors cycle send1ng interrupts until they get the requ1red resources.

Or1ginally the system is init1alized so that the resources are

arb1trar1ly allocated to one processor. The r1ng structure 1s 1mplemented

t
~n terms of two subrout~nes, the GETRES(I) and the PUTRES(I), w~th

resources I=l,B; the former one obta1ns exclus1ve use of the resource I

and the latter one rel1nqu1shes 'ownersh~p' of the resource I. In

part~cular, they prov1de the exclus1ve use of a whole segment of a program

to a processor, 1nstead of the exclus1ve use of Just the var1ables

conta~ed there1n; 1n other terms, a program segment, 1ntended to be

exclus1vely ut1l1zed by a processor, 1s created 1nto a resource I and 1s

placed between these FORTRAN callable subrout1nes, namely:

CALL GETRES(I)

} Program Segment

CALL PUTRES(I)

Later on, the d1rect FORTRAN CALLs to these subrout1nes were

replaced by two preprocessor commands, ($ENTER,$EXIT), wh1ch are

1nternally translated to the above subrout1ne CALLs, respect1vely.

tTheir role is similar to that of the 'OBTAIN/RELEASE' statements.

[Ch. II/Sec. A 168)

Actually, to claim and release resources, this pa~r of constructs

~s implemented as follows:

$ENTER'name 1'

(code)

$EXIT'name 1',

wh~ch enforces sequent~al access to certa~n des~red shared data structures

to ensure the~r ~tegr~ty. In other terms, a critical section of a

program, 1.e. one wh1ch requ1res single processor access, at a t1me, 1s

embedded w~th~n this pa~r of constructs. The resources ut~l~zed must be

declared w~th FORTRAN-l~ke names, us~g $REGION 'l~st of names', the

scope of th~s declarat~on being the next $END construct; also, the same

resource can protect d1fferent cr1t1cal sections 1n the program.

In add1t1on, cr1t1cal sect1ons can 1nclude subrout1ne calls, as

well as, cla1ms for resources can be nested, but certa1nly under the

t risk of a poss~le deadlock s1tuat~onwh~ch was the ent~re user's

respons~~l~ty to prevent ~t. Moreover, the resources named on the

region are bound to system ent~ties at the preprocessor stage.

In part~cular for the Interdata Dual Processor system+ th~ static

overhead ~volved ~ 'obta1n1ng/releas1ng' a cr1t1cal reg1on 1s -soo~.

On the other hand, the complexity of operat~ons, performed on the

structure w1th1n the crit1cal reg1on, def1nes the max1mum dynamic or

content~on delay. Thus, in parallel path schedul~ng, for wh~ch operat1ons

on the l1st take -7oo~s, the max1mum dynam1c delay 1s •(800+700)~s,1.e•l500~s.

However, this is not the only dynam1c delay assoc1ated w1th the

1mplementat1on of cr1tical reg1ons. In fact, there 1s an add1t1onal

tit is possible now to check parallel programs for 'deadlock' automatically
and an experimental program has been written for this purpose.

+The characteristics of the 'NEPTUNE' system will be discussed in a
subsequent paragraph.

[Ch. II /See. A 169]

dynam1c delay when the requ1red crit1cal reg1on 1s not immed1ately

ava1lable to the aaller processor; 1n th1s case, 1t demands from the

other processors, v1a an interrupt line r1ng l1nk1ng the processors,

to rel1nquish their unwanted resources thus causing a •servic1ng-1nterrupt'

overhead of 125~s.

To cont1nue our h1storical development retrospect1on, the Interdata

Dual Processor system purely sequentiallayout of the actual program code,

w1th nested loops separate counters and sequent1al 1nd1cators have to be

set up for each level of nesting to ensure the stable and aorreet

execution of the, therefore, extensive code, was causing Lnconvenience.

Th1s fact led to the 1ntroduct1on of some macro-commands 1n the code and

a dynamic scheduling list.

These commands are expanded by an 1nterpreter to the lengthy

equ1valent code, thus sav1ng the programmer from a considerable amount

of work; on the other hand, the l1st would 1nclude every path segment

that had been referenced, wh1ch, together w1th suff1c1ent 1nformat1on

to ensure the paths correct execut1on,would be access1ble to all processors.

In fact, the user has ava1lable three pa1rs of parallel constructs

in order to generate/terminate parallel paths, the last one be1ng

addit1onally 1ntroduced to the NEPTUNE system. These are:

(1) $FORK L1,L2, ... ,Lk;Ln (where L 1s a statement label)

'code for path 1 '

GOTO L
n

L2 'code for path 2 1

GOTO L
n

Lk 'code for path k'

L $JOIN ,
n

[Ch. II!Se.c.. A 170]

wh~ch generates parallel paths with d~fferent code, forc1ng them, w~th

the GOTOs, to terminate to the label appear~ng after the sem1colon;

'aode'

L1 $PAR(ALLEL)END ,

t
which generates and terminates (I2-I1+1)/I3 un1que parallel paths,

accord~ng to the values of the control var~able I (i.e. I
1
,I

1
+I

3
, ••.),

w~th ~dent~cal code.

On encounter~ng the constructs, the parallel paths are created

dynam~cally and consequently the r
1
,I

2
,I

3
values can be def~ned at

program run-t~me.

We shall not extend more our reference to the Interdata Dual

Proaessor system, s~nce th~s system has been actually subst~tuted by

the newer, more advanced and w~th more process~g units, NEPTUNE system;

however, to conclude the operating p~cture of the f~rst Loughborough

parallel processor system, the user programs are developed, compiled and

then wr1tten to d~sk on system B. The appl~cat~on program and the

Resource R~g control rout1nes (GET.RES,PUTRES) are then loaded ~to the

bottom (private) 32K bytes of memory attached to processor B. The R~ng

Data Structure and any user def1ned data appearing on FORTRAN COMMON

statements are loaded ~to the top (shared) 32K bytes of B's memory.

F~ally, the contents of the pr~vate memory of B are then cop1ed to the

pr~vate memory of A and both systems are init~alized (including the

arbitrary allocat~on of the Abstraat Ring Resouraes). Execution of the

tThis ensures that different paths evaluate different results.

[Ch. II/Se.c.. A 171]

program then takes place in both processors.

The last paLr of constructs LS utilized to generate parallel paths

with the same code, forcing each processor to execute the code once

and once only; it occurs as:

$DOALL L1

'code'

L
1

$PAR(ALLEL)END

In actual fact, thLs construct is utLlLzed to LnLtialLze the data, or

to obtaLn the tLIDLng LnformatLon.

In all the three pa1rs of constructs nesting LS permLtted (see

Appendix C-II), but consLderable care must be taken when handlLng the

variables beLng utLlLzed Ln the Lnner loops. Actually, before a parallel

. • 0 ,+ path LS executed, all nested ~ ~Ks must have theLr index varLables set

correctly, as these LndLces must be held Ln prLvate memory; also, the

local varLables of a 'parent' path are not made avaLlable to the chLldren.

The flowchart Ln Figure (II.A.J-fl) Lllustrates the form that a program,

for aMIMD computer, mLght have (see Bekakos [BEKABl]).

Two SLmLlar commands have been developed for the Lmplementation

of these constructs on the NEPTUNE system, the XPFCL and the XPFCLD

(see Appendix C-II), the latter beLng more effLcLent than the other.

As we mentLon Ln Appendix C-II, wLth the utLlLzation of the XPFCLD

command only a sLngle descrLptor blockt LS used for all the paths

created by a TO~Ki Ln fact, the $FORK construct ut1l1zes the same type

of block as the $DOPAR construct. The transformatLon LS as follows:

tEither '$FORK' or 1$DOPAR' or 1$DOALL' construct
>Blocks containing information about the paths (otherwise called 'Task
Control Blocks' - 'TCBs').

[Ch. II/See. A 172]

START

$FORK

1
$DO PAR

$JOIN

$PAREND

$JOIN

FINISH

Figure II.A.3-[1: The Flowchart Structure of a Program for a MIMD
Computer.

[Ch. II/Sec.. A 773]

$FORK L1,L2,L3, .•. ,Lk;Ln (where L ~s a statement label)

to

$DOPAR L O~Ol=l,k
n

L $PAREND.
n

In add~t~on, the processor that executes the'FORK'construct also

takes the first path from the schedul~ng l~st to execute ~t, as well

as, ~t executes the path following the ~OINtconstruct, after all paths

from the $FORK or $DOPAR have term~nated; th~s secures the var~ables

track and ma~ta~ns their correct sett~g, since the var~ables not

ut~l~zed ~n the parallel paths are stored ~n pr~vate memory. In other

terms, those private var~ables ut~l~zed in the path preced~ng theTORK'

construct and requ~red aga~n ~the follow~ngthe ~OIN'construct path, but

not utilized w~th~ the'FORK'created paths, w~ll have the correct values

only in the program-copy, stored ~n the pr~vate memory, of the processor

that executed the path preced~ng the 'FORK' construct. Consequently, s~nce

the TCB, for the path following the JOIN' construct, ~s created when the

TORK'construct ~s encountered, ~t ~s necessary that the number of that

processor to be ~eluded in the TCB ~n order to enforce ~ts reselection.

In conclusion, some other overall necessary constructs, wh~ch are

essent~al ~n any parallel program to be ~mplemented on the NEPTUNE

system, are the $USEPAR, $STOP and $END constructs.

The last two constructs s~mply replace the normal STOP and END

statements of FORTRAN, respect~vely; the latter one forces check~ng,

tEither '$JOIN' or '$PAREND' construct.

[Ch. IT/See. A 174]

at pre-comp~le time, that the nesting of parallel syntact~cal constructs

~s complete w~th~ each ~d~vidual subrout~e, wh~lst the former one

ensures the graceful program terminat~on.

F~nally, the $USEPAR construct must be the f~rst parallel statement

to be executed; on encounter1ng this construct, all but one processor

are forced to 'wait' unt~l parallel paths are created for them to execute.

II.A.3.1: THE USER INTERFACE To THE WEPTUNE'PARALLEL PROCESSOR SYSTEM

In the previous Chapter (par.-I.B.5.3.2), ~t was mentioned that

the 'System Command Interpreter' - SCI is the user ~nterface to the

parallel system by provid~ng several ways in which commands may be

issued, e.g. at the s~mplest level, a sequence of Menus dr~ves the

potent~al user to the f~nal des~red l~st of commands.

In th~s paragraph, we present br~efly and ~n a h~erarch~cal

sequence those standard particular commands wh~ch have been ~ntroduced

to s~pl~fy the user ~nterface to the parallel system and are, on a

common bas~s, ut~l~zed in order to ~plement any program on ~t.

To ~og'onto the system, hav~g connected via a modem, type the

sequence 'ESCAPE; 'exclamation mark'(for the TTY/820 hard copy term~nals),

or 'blank' (red key), 'exclamation mark'(for the memory mapped 911 VDTs).

Th~s forces the SCI to respond w~th ~ts title, request~ng the user's

TDENTIFICATION'and PASSWORD' (echoed as spaces); ~f the prov~ded

~nformat~on ~s 'val~d', then the SCI prompts back'[] ,t.

The next task ~nvolved is the 'editing' of the spec~f~c program to

create a 'new' f~le into a d~rectory (see par.-I.B.5.3.2). The editor

~s ~nvoked by typ~ng d~rectly, ~.e. the Menu sequence ~s sk~ppe~the command

t
Indicates that commands may be typed in.

[Ch. II/Sec.. A 175]

'XE'- eXecute Ed t th SCI d _ ~ or; e respon s:

'<INITIATE TEXT EDITOR>'

'<FILE ACCESS NAME:>',

and s~nce a 'new' file ~sunder creat~on, by press~ng the'<RETURN~ key

~t d~splays an <*EOF>'- §nd Qf !~le prompt on top of the screen.

By press~ng the ~F?>'button oncet a new l1ne ~s fed ~n automat~cally

every t~me the <RETURN>' key is pressed; note that only 'upper case'

letters are allowed for the actual program code.

As soon as the typ~ng of the program ~s completed, the'QE'- Qu~t

Editor command ~s ~nvoked forc1ng the SCI to respond:

'<QUIT EDIT>' (first page)

'<ABORT? :NO (by default)>' ;

by answer~ng the 'ABORT?' w~th 'YES' the ed~t phase ~s to be lost, wh~lst

by press~ng the '<RETURN>' key a new screen w~ll d~splay:

'<QUIT EDIT>'

'<OUTPUT FILE ACCESS NAME:>'

'<REPLACE?:NO (by default)>'

'<MOD LIST ACCESS NAME:>'

(second page)

The f~rst question ~s filled ~n w~th the name the file is to be known

by; a response to REPLACE?'w~th 'YES'w~ll overwr~te an already ex~st~ng

f~le, whilst the last quest~on allows one to put 'the mod~fications'

made 1nto a f~le named at th~s po~nt. If no name is g~ven the mod~f~-

cat1ons are not saved.

Somet1mes a QE'command may 'fa1l', but the user remaLns 1n the

ed~tor unt~l a subsequent successful one, without los~ng the work

carr1ed out in the ed1t phase; the most common reasons for fa1lure are,

tA second press brings us back to the manuaZ Zine advancement mode.

[Ch. IT/See. A 176]

either as the answer to the REPLACE?'quest~on has been cons~dered the

system default one, wh~le already a f~le exists under this name, or

when the 'f1le protect1on• has not been erased, or there is not space

~that d~rectory (or even d~rectory), or f~ally, another user's program,

runn~ng ~n the background, has the file open.

After the program has been fed ~ the system the next phase can

be started, involv~ng the Vompiling/Linking'of the created program, in

an attempt to produce the so-called Load Module'. There are several

commands related to the creat~on, delet~on and ~nstallat~on of load

modules. The most commonly (up to now) ut~lized command, to create

, rr
load modules from the user's source program, is the XPFCL -~ecute

£arallel £ortran £ompile and ~ink command (see Appendix C-II/paP.-II.A.J-i).

The effect of th~s command ~s to:

~) Preprocess the user's source program to translate the ut~l~zed

parallel constructs ~to normal FORTRAN statements,

~~) comp~le the resultant FORTRAN code,

~~~) l~nk the comp~ler output w~th the ava~lable FORTRAN l~rar~es 

and mach~e code wr~tten rout~es to control the parallel~sm, 

and 

iv) store the created load module ~n the user's program f~le. 

A progress report message, ~ the form of ERRORS/NO ERRORS: ~s 

available for each of the above stages; certainly, the procedure of the 

command w~ll be ~nterrupted ~f an error ~s detected ~n one of these 

stages and an add~t~onal, to the progress report, more explanatory 

message will be wr~tten to that stage f~le, wh~ch can be v~ewed us~ng 

tCePtainly, (see Appendix C-II/paP.-II.A.J.-ii), thePe aPe now available 
the 'XPFCLD/XPFCL~commands which aPe moPe powePful than the 'XPFCL' 
command. 



[ C h. I I IS e. c. . A 1 77 ] 

.the ' SF' - Show File command. 

In Figure (II .A. 3. 1- fl) we can see the actual terminal displ ay of 

the XPFCL command, where '<SOURCE: >' asks for the name o f the source 

program file, 

' <FMPLIST:>'for a filename for the output of the preprocessor 

stage, 

' <COMLIST: >'for a filename for the compiler listing , 

' <LINKLIST:>'for a filename for the linker listing, and 

' <NAME: >'for a name by which the load nodule will be known 

thereafter . 

Figure II.A . 3. 1-fl : The XPFCL Command . 

Some other commands related to the CompiZing/Linking command are, 

the 'DPT'-De lete faralle l ~ask , the 'IPT' -£nstall farallel ~ask , the 

' MPF '-!j_ap Program file, the 'WAIT '-wait for background task , and the 

'KPT' - Kil l Parallel Task commands. 

For the first two commands, the system responses : ' <NAME: >' , for the 



[Ch. II/Se.c.. A 178] 

name of the load module. The DPT command allows the user to delete a 

named load module, before Lnstall1ng a new copy. Th1s delet1on procedure 

~s necessary, because 1t 1s not possible to overwrite an ex1st1ng load 

module; however, each user 1s allowed up to 256 differently named load 

modules. 

In the case that the 1nstall phase of the Compiling/Linking 

command 'fails', because the 1nstalled name already ex1sted, the program 

can st1ll be 1nstalled from the 'linked' output, by ut1l1z1ng the IPT 

command, thus sav1ng the re-1ssue of the Compiling/Linking command. 

The DPT command will delete the old vers1on of the program, pr1or to 

us1ng the IPT command, or the IPT command can be ut1l1zed to 1nstall 

the program under a different name. 

For the MPF command the system responses: 

'<LISTING ACCESS NAME:>', 

list1ng the names of all user's load modules, for the case the requ1red 

load module name has been forgotten. The user may spec1fy a f1le for 

the l1sting, however, the default response, by pressing ~RETURN>' 

w1thout any f1le or dev1ce name g1ven, 1s the user termLnal. 

The last two of the above commands are util1zed to manage the 

parallel tasks runn1ng 1n the background env1ronment; namely, the WAIT 

command causes the SCI to wa1t unt1l the background task 1s completed, 

producing a term1nat1on report, wh1lst the KPT command 'k1lls-off' th1s 

background run. 

To 'k1ll-off' a parallel task runn1ng 1n the foreground, the user 

I 1t I I 
must press the ~ESCAPE>'key, followed by the <CTRL> and <X> keys 

tThe abbreviation for CONTROL. 



[Ch. II/Sec. A 179) 

(for the TTY/820 hard copy temmals), or the '<Blank>' (Red Key) 

followed by the '<cMDl key (for the memory mapped 911 VDTs) . 

After havLng concluded the above phase successfully, the 

' . ' user enters the last and most important phase, that of the actual runn~ng 

of the load module. 

An essential task, whLch must be carrLed out before the running of 

the load module, LS the determinatLon of the Input/Output channels 

utLlized in the FORTRAN program; by utilizLng the command ~S'- ~ssLgn 

~ynonym value+ the system responses: 

'<SYNONYM: ;i 

'<VALUE: ;i , 

* where the ~YNONYM'waits to be assLgned wLth an I/0 channel each tLme, 

whLlst the VALUKwaLtS to be assLgned WLth a fLle or devLce name. 

AlternatLvely, the value ME' can be gLven, Lmplying a dLrect I/O 

commun1cat1on w1th the user termLnal. 

Parallel programs are 1nit1ated from one processor, the processor 

that the user LS 'logged m' on; the system then starts up copLes of 

the program on the other processors that have been requested. 

To run a parallel program the 'XPFT'- ~ecute ~arallel Fortran Task 

command LS utLlLzed. The user declares (see Figure (II.A.3.1-f2)) on 

whLch processors the specLfLc program should run, the name of the load 

module and fLnally whether thLs executLon is requLred Ln the foreground 

or in the background (multL-tasking) management envLronment. However, 

background tasks should not mvolve I/O WLth the termLnal and commands 

(the maJority of the utLlLty commands for the NEPTUNE system can be 

tThe abbreviation for 'COMMAND'. 

+This command can be utilized to set or clear synonyms. 
* All 'FORTRAN' I/0 channels are characterized by the word 'UNITm', 
where 'm' is the channel number. 



---- --- ------------------------------------------------------------------------

[Ch. IT/Sec.. A 180] 

found 1n the [Texas Instruments, II & IV]) are ava1lable to 1nspect the 

background status, s1nce the SCI is still runn1ng thus being ava1lable 

to process user requests. 

The processors 1n the system are numbered ~ to J and any 

comb1nation of them can be g1ven, as long as the 1n1t1at1ng processor 

(the one 'logged 1n' on) 1s 1ncluded in the list. 'Errors' occurr1ng 

at run-t~me and term~nat~ng cond~t~ons, are reported to the user, whereas 

a l1st1ng of the most common ones 1s given in [Texas Instruments, VI]. 

A correct execution produces the report 

'<STOP VJ>' 

'<NORMAL PROGRAM COMPLETION> , 

for every execut~ng processor (an actual example of a •non- runn1.ng 1 

parallel program can be seen 1n Figure (II.A.J.l-fJ)). 

In add~t1on, a more advanced execution command has been developed, 

the 'XPFR'- Repeated XPFTs, wh1ch remembers the prev1ously g1ven list 

of processors, as well as, 1t displays the output unit automat1cally at 

the end. 

' ' Finally, there 1s a most 1mportant command, the SOPR -~et up 

~vern1ght ?arallel ~un, wh1ch allows timing runs to be made overn1ght, 

rather than requiring exclus1ve use dur1ng the day. A user, 1n one 

login sess1on, can request up to ten overn1ght runs, each cons1sting of 

a number of executions of the same program, w1th the same 1nput data 

' ' on var1ous processor comb1nat1ons, term1nated by press1ng the <RETURN> 

key in response to the prompt. The l1st1ngs from the runs are 

concatenated 1nto the f1le des1gnated by the SOPR 'output f1le' prompt, 

t wh1ch w1ll be on the users' temporary file D1rectory used for comp1lat1on 

l1st1ngs. 

tThe users' source disk 'PARUSERl' is 'write' protected during the night. 



[Ch. IT/Sec.. A 781] 

FigUI'e II. A. 3 .1-[2: The XPFT Command. 

FigUI'e II.A. 3.1-[3: The Report of a 'Non-Running 1 Parallel Program. 



[Ch. IT/Sec. A 182] 

The command lOBD'- Eelete XOBt queue entry, can delete the number 

of a wrong SOPR entry, which entry number can be found using the'XOBQ' 

-XOB ~ueue l~st~ng command. 

To conclude, as the overall throughput of SISD computers ~mproves 

by mult~-task~g, ~ the same way a MIMD computer can ~mprove the 

utilization of processors by two d~fferent multi-tasking methods: 

~) By us~ng different processors to run sequentially each, 

~ndependent programs in parallel, and 

ii) by us~ng d~sjo~t sets of processors to run several parallel 

programs. 

The ~herent parallelism, for the maJor~ty of general~zed problems, 

l~es between 30 to 100 ~n potent~al speed-up, consequently, the 

ut~l~zation of a large MIMD computer of approx~tely 1000 process~ng 

elements, to run a m~x of programs, could produce an overall throughput 

speed-up of perhaps 200-500. 

tXOB 1
- eXecute Qvernight ~atch. 

l 
I 



_ ~IQHiJlJ®N 

1i 

ASPECTS OF 

PARALLEL ALGORITHMS DESIGN 

AND ANALYSIS METHODOLOGY 



'Notqing rnn br rrrntrh out of notqing.' 

i!Iurrrtiu.s 94 ?-55 i1l.m. 



[Ch.IT/Sec. B 184] 

II.B.l: CONSTRUCTION PRINCIPLES fOR EFFICIENT PARALLEL ALGORITHMS 

De[.: A pltOcedWLe coM-<J.>.ting o6 a 6b!Ue .~.e;t o6 unamb,[guoU-6 Jwlu, 

WMch .6peu6y a 6b!Ue .6equence o<) opeJUtt:wM tha;t pll.ov,[du, the 

Mfution to a pJtob.tern, aJt to a .6peu6-tc cfu-6.6 o6 pll.ob.tern-6, ,[}., called 

an 'a.tgo)t,[thm'. 

Desp1te the cont1nu1ng dramat1c decl1ne 1n the cost of hardware, 

wh1ch 1n com1ng years w1ll make 1t feas1ble to econom1cally build 

computers w~th a hundred thousand, or even a m~ll~on process~ng elements, 

and to the contrary of the chronolog1cal evolut1on, the development of 

a parallel computer should only be cons1dered as a second stage towards 

the algor1thm1c solut1on of a spec1f1c problem. However, although, and 

th1s 1s fundamental, the solut1on rel1es on the concept of the parallel 

algor1thm more, than on the concept of the parallel computer, s1nce the 

complex1ty of a parallel algor1thm depends very much on the parallel 

arch~tecture on wh~ch 1t 1s due to run, 1t 1s necessary to keep the 

arch1tecture 1n m1nd when des1gn1ng the algor1thm. 



[Ch. II /Sec.. B 185] 

Certainly there ex~sts, at least, a substant~al amount of parallel-

ness ~n a surpr~s~ng var~ety of problems, but the greatest constra~nt 

of all l~es ~n us, ~n the form of the 'ser~al way of th~nking'; ~n 

other terms, as we learn to formulate parallel algor~thms and write 

parallel programs, we should also learn to 'th1.nk', at the 'conscious', 

as well as, the 'unconscious' level, 1.n an 1.ncreas1.ng parallel mode, 

there ~s a cruc~al need to develop our powers of parallel th~nk~ng. 

Th~s 1s the ma~n reason that researchers should get involved w~th 

the system network and ~ts structure, consider~ng together problem, 

program, network structure, mapp~ng of program onto that structure, and 

flow of data and other k~nds of ~nformat~on through that structure. It 

~s apparent that be~ng fully aware of the system structure can prove 

~tself to be a powerful means for develop~ng more eff~c~ent algor~thms. 

Today, a w~de range of parallel algor~thms have been explored. 

For example, Kuck, et al [KUCK??a], Kuck [KUCK?BJ, and Kung [KUNGBO] have 

~nvest~gated numer~cal algor~thms; Hanson and R~seman [HANS?B], Tan~moto 

and Kl~nger [TANIBO], and Preston and Uhr [PRESBll have dealt w~th 

percept~on programs, wh~lst Boral [BORABl] and F~shburn [FISHBll w~th 

database and art~f~c~al ~ntell~gence problems. 

To actually construct a parallel algor~thm there are two bas~c 

t concepts: The h~stor~cally older and weaker concept ~s that of ~nd~rectly 

transform~ng the sequent~al algor~thm ~nto a parallel one, to be adapted 

to the g~ven parallel computer arch~tecture; the newer concept starts 

more naturally w~th the problem ~tself and ~nvest~gates ~ts potent~al 

~nherent parallel~sm. 

tFor efficient sequential algorithms do not necessarily lead to efficient 
parallel algorithms; to the contrary, sometimes inefficient sequential 
algorithms may lead to efficient parallel algorithms. 

_j 



[Ch. II/Se.c.. B 186] 

Both of these concepts are relat1vely acceptable depend1ng on the 

case-in-hand. In almost all cases we have a problem that we w1sh to 

attack. Occas1onally, we can pose that problem prec1sely and def1n1tely, 

and develop a solut1on procedure that can be formulated and coded for a 

computer. In such a case, the s1tuat1on is rather a clear-cut, s1nce 

1t becomes a s1mple matter to def1ne the 1nherently conta1ned 1ndependent 

computat1ons, thus develop1ng more parallel but ent1rely equ1valent 

algor1thms. 

As an example of such 1ndependent computat1ons, cons1der the 

+ + + 
add1t1on of two n-vectors a and b, to y1eld another vector c, 1.e. 

+ + + 
c = a + b , (II.B.l:l) 

+ 
a = 

bll 

r::1 b2 
+ 

t. kJ b = and 

b 
n 

where, 

(II.B.1:2) 

+ 
Apparently, the evaluat1on of the components of the result vector c 1s 

of the form, 

c =a + b, for 1=1,2, ... ,n, 
1 1 1 

(II.B.l :3) 

and so the calculat1ons are 1ndependent. Consequently, a computer w1th 

n processors can compute the result 1n one t1me-step, by evaluat1ng the 

formula (II.B.1:3), for each value of i, on a d1fferent processor. 

However, much more often we come across a fuzzy problem, really a 

whole set of problems, or a whole realm of obscure and unknown 1ssues, 

about wh1ch we would l1ke to know more. For example, we w1sh to better 

understand and forecast the weather, we want perceptual systems for 

robots to recogn1ze, grasp and man1pulate ObJects; we develop programs 

to hack away at these problems, to g1ve part1al solut1ons or s1mply new 



[Ch. II /Sec.. B 187] 

~nformation and greater ins~ght, programs that exh~b~t l~ttle or no 

~nherent parallel~sm. In such cases, we should go back to the problem 

set, to our realm of ~nqu~ry, to start afresh ~n develop~ng more parallel 

approaches to the problem. Certa~nly, sometimes we shall succeed only 

at the pr~ce of los~ng some of the ~nformat~on prov~ded by the or~g~nal 

algor~thm; but, more often, we shall develop a powerful parallel algor~thm. 

The not~on of parallel algor~thms, and th~s ~s not surpr~s~ng, has 

often been confused w~th the not~on of programm~ng an actual parallel 

computer; th~s had led to the class~f~cat~on of parallel algor~thms 

accord~ng to the parallel arch~tecture best su~ted for them (e.g. SIMD 

algor~thms, MIMD algor~thms, etc.). We th~nk ~t would be better to 

follow the typology f~rst proposed by Kung [KUNG?6,KUNG80], s~nce ~t 

~s not only based upon parallel arch~tectures, but also, upon the ~nter

commun~cat~on features requ~red amongst the var~ous process1ng modules; 

accord~ng to th~s typology all algor~thms can be class~f~ed ~nto two 

broad categor~es, the Synchronized algor~thms category and the Asynchronous 

algor~thms category. 

Because of h~stor~cal and techn~cal reasons (namely the ex~stence 

of the ILLIAV IV computer), the maJority of the l~terature, s~nce the 

early s~xt~es, has referred to the f~rst category of the roughly 

ment~oned as 'parallel algor~thms for SIMD systems' (see the surveys by 

M~ranker [MIRA?l], Sameh [SAME??], and Heller [HELL78]); however, the 

relat~vely recent and phenomenal advances ~n technology have g~ven 

to the second and scarcely ~nvest~gated, up to then, category of 

Asynchronous or roughly 'parallel algor~thms for MIMD systems' a 

cons~derable 'push' towards re-establ~sh~ng a certa~n balance w~th the 

f~rst category. 



[Ch. II/Sec. B 188] 

Desp1te the apparent technolog1cal construct1on problems, 

constra1n1ng the phys1cal expans1on of MIMD systems, compared to SIMD 

ones, researchers are st1ll 1nterested 1n 1nvest1gat1ng and compar1ng 

these two d1fferent types of systems, each w1th 1ts advantages and d1s-

advantage~ to explo1t the1r d1fferences 1n parallel1sm. 

As was exempl1f1ed by the var1ous arch1tectures of ex1st1ng parallel 

computers, parallel1sm can be ach1eved 1n a var1ety of ways; the same 

holds w1th parallel algor1thms, s1nce a close correspondence must ex1st 

between arch1tectures and algor1thms. Consequently, s1nce there ex1sts 

such a var1ety, the quest1on to answer now 1s, 'How to choose amongst 

the different alternat1ves 1n order to solve a specif1c problem, or what 

type of problem 1s better adapted to a g1ven arch1tecture?'. 

S1nce, 1n most cases, Performance 1s the reason why parallel1sm 1s 

be1ng 1nvest1gated, 1t must be cons1dered as a very cr1t1cal 1ssue. 

The study of how to des1gn algor1thms, for d1fferent parallel arch1tectures, 

m1ght reveal that an algor1thm requ1res a pecul1ar feature of that 

arch1tecture to run eff1c1ently. 

The Performance of an algor1thm 1s def1ned by the absolute 

ar1thmet1c answer to some relevantly set quantit1es, such as, the 

Computation time, Speed-up and Efficiency of the algor1thm. 

The actual Computation times are often proport1onal to the total 

number of ar1thmetic operat1ons 1n the programs, wh1lst,1n cases of 

programs w1th l1ttle ar1thmet1c, are proport1onal to the number of memory 

accesses, or the number of I/O transact1ons. 

In general terms, s1milarly to what was d1scussed 1n ~ppendix C-I/ 

par.-I.B.4.1), the Speed-up rat1o t 
S 1s def1ned as: nap 

ts 
no. of £rocessors. 



[Ch. II/Sec.. B 189] 

s nap 
Computation 
Computation time on 

a serial computer 
the parallel computer 

time on 

and, the Efficiency ratLo E is de~Lned as: nap 

E nap 
= Speed-up ratio 

No. of processors 

s 
...!!:EP._ 

nap 

T s 
= 

T 
nap 

(II.B.1:4) 

(II.B.1:5) 

For a parallel organizatLon that can support n sLmultaneous 

processes, the ideal Speed-up and Efficiency ratLos are equal to n and 1, 

respectLvely, but these are seldom (or never achLevable). In order to 

ach1eve a 'fa1r' compar1son, we must, always, compare the best sequent1al 

algorLthm, to the optimum parallel algorLthm, even when the two algorLthms 

are quLte different. 

ComputatLons that are very effLcLent to parallel computer systems, 

have a Speed-up ratLo of k.n (L.e. lLnear to n), where k LS a constant 

near unLty, but strLctly less than unLty; such a result LS attaLnable 

1n problems that have a natural 1terat1ve structure. In some cases, 

problems have Speed-up ratLOS of otrk.n/log2n), but these results are 

less desLrable, although stLll well acceptable, sLnce the speed can be 

Lmproved by doublLng the number of processors. 

The dLvLdLng lLne between problems well-suLted and poorly-suLted 

for parallelLsm, lLes between the Speed-up ratLos of 0(k.n/log2n) and 

0(k.log2n). An algorLthm WLth a Speed-up ratLo of 0(log2nJ, exhLbLts 

very lLttle speed Lncrease when we double the number of processors, so 

that such problems are usually best suLted to serLal computers, or to 

computers wLth a very lLmLted amount of parallelLsm. In Table (II.B.l-tl) 

we present some typLcal problems whLch have been solved on SIMD computers, 

t Order. 



[Ch. II/Sec. B 190] 

as well as, the~r Speed-up rat~os. 

To conclude, desp~te the fact that, s~nce human time becomes 

~ncreasingly valuable and costly and computers become cheaper to bu~ld, 

parallel computers are so ~nd~cated, they are far from easy to program. 

Th~s can only become true after we have developed 'proper' languages and 

1nteract1ve program-development systems, to 1nv1te, suggest, encourage 

and even gently 'push' the researcher to be parallel, by help~ng h~m to 

explore and pin down the poss~b~l~tLeS of parallel~sm. Therefore, all 

parallel programmers should be g~ven as much help as poss~ble, and 

appl1cat1ons programmers should be burdened as l1ttle as necessary, s1nce, 

as the up-to-date s~tuat~on stands, the researcher/programmer has to do 

as much of the work as poss~ble, ~n order to g~ve the system as much help 

as he can. 

For the future, as many of us 'th1nk in our own language', we should, 

some day, reach out the level where we shall 'formulate 1n s1l1con'; 

that ~s, we shall move from problem, to an anatomy-physiology formulat~on, 

that embod1es our solut1on procedure 1nto an arch1tecture complex, 

through wh~ch an algor~thm flows ~nformat~on. 

In the rema~nder of th~s Chapter, we shall exam~ne some part~cular 

schemes and techn~ques ut~l~zed to des~gn algor~thms, to eff~c~ently 

explo~t the parallel hardware potent~al of the d~fferent categories of 

computer systems. F~nally, specLf~c emphas~s w~ll be g~ven to the 

part~cular parallel features and performance analys~s character~st~cs 

of the NEPTUNE parallel processor system, at Loughborough Un~vers~ty, 

s~nce one of the goals of th~s Thes~s ~s the des~gn and analys~s of 

certa~n parallel algor~thms to explo~t the NEPTUNE parallel processor 

system potent~al~ty. 



Algorithms 

Matr1x computat1ons and mesh calculat1ons 
(Kuck [KUCK68]) 

Sort1ng (Stone [STON?l]), tr1d1agonal 
l1near systems (Stone [STON73a]) 
L1near recurrence relat1ons (Kogge and 
Stone [KOGG72]) 
Polynom1al evaluat1on (Munro and Paterson 
[MUNR?l]) 

Search1ng (Karp and Muanker [KARP68]) 

Certa1n nonl1near recurrence relat1ons, 
certa1n comp1ler processes 

[Ch. II/Sec. B 191] 

Speed-up ratio 

k.n 

k (Lndependent of 
n) 

Table II.B.l-tl: Typ1cal Problems Solved on SIMD Computers. 



[Ch. TI/Se.c.. B 192) 

II.B.2: ScHEMES AND TECHNIQUES To DESIGN ALGORITHMS To MAP ONTo SIMD 

AND PIPELINED VECTOR COMPUTER ARCHITECTURES 

We shall cons~der the des~gn of parallel algor~thms for these two 

categor~es of parallel computer arch~tectures together, for, as has been 

ment~oned earl~er in Chapter I, the same essent~al approach ~s followed, 

s~ce the same algor~thms can be very eff~cient for both types of systems. 

In general, we can say that algor~thms executed on a SIMD computer 

requ~re a h~gh degree of parallel~sm, because this type of system 

possesses up to O(nm), m=2,3,4, ... processors. The processors of SIMD 

computers are synchronous and consequently, they cannot be ut~l1zed to 

execute 1ndependent, but not Ldentical,computations; 1n add1t1on, they 

must rema~ idLe when not requ~red. 

One of the most s~gn~f~cant factors, ~nfluenc~ng the system 

performance, 1s the 1 1ntercommun~cat1on' requ1red amongst the var1ous 

processing elements, tasks or processes; consequently, algor1thms should 

require a very 'regular' (and thus 1nexpens1ve) 1ntercommun1cat1on 

between the modules (~n th~s respect, they resemble VLSI algor~thms, 

wh~ch w~ll be d~scussed ~n Chapter III), follow~ng a pattern coinc~d~ng 

w~th the ex~st~ng process~ng elements network. 

In part1cular, non-1dent1cal computat1ons will be executed 

sequentially on a SIMD computer, a fact wh~ch reduces the overall system 

performance. 

A f~rst part~al conclus~on wh~ch can be drawn up to here ~s that to 

des~gn eff~c~ent algor~thms for SIMD computers, one should only cons~der 

problems w~th substant~al ~nherent amounts of ident~cal 1ndependent 

computations; therefore, th1s means that all matr1x and vector operat1ons 

are well-su~ted to SIMD computers, but of course ~n each part~cular case 



[Ch. II/Sec. B 193] 

one must cons1der the correspond1ng number of processors, for the 

result to be obta1ned 1n exactly one step each t1me. 

In a s1milar way, algor1thms des1gned for Pipelined type of 

computers should be presented as a long str1ng (the longer the str1ng 

the greater the eff1ciency ach1eved) of ident1cal operat1ons that w1ll 

be treated 1n an assembly l1ne fash1on. 

A s1mple example, ideally apply1ng the not1on behind SIMD computers, 

1s the sum of the two n-vectors given 1n (II.B.1:2h where then 

1ndependent computat1ons can be assigned to n d1fferent processors to 

be all carr~ed out 1n one t1me-step, s1multaneously. Certa1nly, th1s 

sum can be general1zed to the add1t1on of two (nxm) matr1ces A and B, 

where every row of A 1s added to every row of B and the requ1red add1t1on 

1s as def1ned 1n formula (II.B.l:3);obv1ousl~ the add1t1on can be performed 

1n one tlme-step by ut1l1zing (nxm) processors. 

In a s1m1lar way we may cons1der the matr1x product: 

C = A.B , 

where A,B are (nxp), (pxm) matr1ces, respect1vely, def1ned as: 

[a J. i=l,2, .•• ,n/)=1,2, ••. ,p and 
1) 

(II.B.2:1) 

[b ], 1=1,2, .•• ,p/J=l,2, ••• ,m; the result matr1x C 1s def1ned 
1) 

as: 

c 
1) 

= (II.B.2:2) 

Aga1n the number of 1ndependent computat1ons 1s (nxm) and so the result 

can be obta1ned 1n one time-step by utiliz1ng (nxm) processors. 

The execut1on of ar1thmetic operat1ons 1s also one of the most 

successful appl1catwns of PipeUned Veat01" computers, especially when 

the same sequence of operat1ons 1s 1nvoked very frequently, so that the 



[Ch. II/Sec.. B 194] 

start-upt time becomes, relat~vely, ~ns~gn~f~cant. In part~cular for 

vector programming, it appears as a challenge to the software specialist. 

Areas where advances are specifically required ~nclude the following 

interrelated topics: 

(~) Algor~thmics (algor~thms for vector processing, and methods 

for f~d~g such algorithms); 

(~i) program des~gn (how to f~d program and data structures which 

w~ll lead to eff~c~ent use of supercomputers, wh~le ensuring 

other program qualities, such as, rel~ab~l~ty, clar~ty, 

portab~lity, modularity, etc.); 

(ii~) program transformat~on (methods for adapt~ng ex~st~ng programs 

to eff1c1ent execut1on on vector computers); 

(~v) languages for vector programming; and, 

(v) proof methods. 

P~pel~ed algor~thms, for float~g-po~t add~tions, mult~pl~cat~ons, 

d~vis~ons and square roots, have been d~scussed ~n Chen [CHEN75) and 

Ramamoorthy and L~ [RAMA77), where the connection amongst the var~ous 

stat~ons of the p~pe ~s l~near. 

As an example, let us cons~der a k-pipeZined digit adder (see 

Figure (II.B.2-fl)), the descr~ptwn of whwh ~s g~ven by Chen [CHEN75). 

be added. Let U.=u 
1

,u 
2

, ••. ,u, and 
'!. ~ ~ ~k 

V.=v 
1

,v , .•. ,v k' to be the binary 
'!. ~ ~2 ~ 

representat~ons of U. and V., respect~vely. The u and v approach the 
'!. '!. ~J ~J 

l~near array of modules in a synchronous fashion mode. At each cycle, 

each module sums the three numbers arriv~g through the correspond~ng 

tThe initialization time. 



L ul3 ., ............ 

I ',, 

sum J sum 2 

carry-i : ~ I· out 

u22 u31 

u12 u21 ,, 
I' ',, ull ',, 

r-..! 
I sum 1 I 

+ H : + 
J--1 

--V I 
111 

v21 I 
I 

v31 I 
I 
I 
I 
I 

[Ch. II/Sec.. B 195] 

I· carry 
in 

Figure II.B.2.-[1: A P1pel1ned Integer Adder (w1th k=J). 

m put l1nes and then outputs the carry through the output l1ne. It 1s 

relatively easy to check that when the pair (u ,v. ) enters a module, then 
1) 1) 

.th 
at the same time-step the carry, requ1red to produce the correct ~ d1g1t 

++ 
ID the U+V operat1on, enters the same module. Therefore, the p1pel1ned 

adder can compute each sum of U.+V. 1n every cycle 1n the steady state. 
~ ~ 

Th1s algor1thm can also be appl1ed to SIMD computers but w1thout cons1der1ng 

the bmary representat1ons of the d1gits. 

A s1gn1ficant requ1rement of parallel processor systems, that 1s rarely 

a requ1rement for sequential systems, 1s the necessity for rearrang1ng data 



[Ch. II/See. B 196] 

in order to take advantage of the opportunities for parallelism. Two

d1mens1onal matrix calculat1ons are part1cularly susceptible to these 

requ1rements. In part1cular for matr1x mult1pl1cation, it 1s necessary to 

al1gn the rows of one matr1x w1th the columns of another to obta1n max1mum 

eff1c1ency; accord1ng to th1s, the computat1on of the A.B matr1x product 

requ1res d1fferent types of accessing capab1l1t1es, than the computat1on of 

the B.A matr1x product, s1nce 1n the former case the rows are requ1red, 

whilst 1n the latter case the coZumns of matr1x A. However, for complete 

flexib1l1ty, one should be able to have s1multaneous access to both 

rows/columns of a matr1x, consequently the data had to be arranged, in 

some fash~on, to permit such an access. A number of solut1ons were 

proposed to th1s problem. 

One way, as already has been ment1oned earl1er (see par.-I.B.3.2.1), 

was to cons1der a spec1al, but not s1mple, unconvent1onal storage scheme 

for the matrix, known as a Skewed storage; according to th1s scheme, the 

rows of the matr1x are stored so that success1ve elements of each row are 

1n successive processors, which 1n turn 1mpl1es that the elements of a 

column w1ll not be stored 1n a s1ngle processor, but 1n success1ve 

processors. Thus, 1t became possible to fetch e1ther a row or a column 

in a s1ngle memory cycle. 

However, somet1mes, as 1n the case of the matrix product algor1thm, 

one may actually need to transpose a matrix, wh1le th1s may never be 

requ1red on a sequent1al computer. A solut1on to th1s problem was to 

build an efficient mechanism, 1n the form of an interconnect1on pattern, 

for obta1n1ng the matr1x transpose. Th1s pattern 1s called the Perfect 

ShuffZe (see Stone [STON?l]). S1nce 'b1d1rect1onal' 1nterconnections 

are normally not much more expens1ve that •unid1rect1onal' 1nterconnect1ons, 



[Ch. II/Sec. B 197] 

one can assume that the Inverse Perfect Shuffkis ava1lable, if the 

perfect shuffle is 1mplemented; th1s 1s the permutation obta1ned by 

revers1ng the arrows 1n Figure (II.B.2-f2). 

There 1S a number of parallel algor1thms that can make effect1ve 

use of the perfect shuffle or 1ts 1nverse, such as, algor1thms to perform 

Four1er Transforms, Sort1ng, etc.; however, 1n some appl1cat1ons one of 

the two 1s favoured over the other and so, for greatest flexibil1ty, 1t 

appears to be advantageous to have both ava1lable. 

In concern w1th the number of shuffles requ1red when ut1l1z1ng such 

an 1nterconnection pattern, as an example, a perfect shuffle 1nter

connect1on pattern, 1nstalled 1n an ILLIAC-l1ke computer, can transpose 

a matr1x of s1ze /,;"x.t,;" by Zog2n perfect shuffles, when n=2m (m 1s 1nteger). 

In the case of a PipeZined Vector computer - e.g. CDC STAR 100computer, 

1t would requ1re 2Zog2n passes, s1nce 1t computes the perfect shuffle 

of a vector 1n two passes; however, 1n such a type of computer the skewed 

storage scheme cannot be appl1ed, for 1t does not have the equ1valent 

of 1ndex reg1sters 1n each processor (as for example, the ILLIAC IV 

computer) and therefore th1s type of computer has a b1as to algor1thms 

that process matr1ces only by rows or only by columns. 

As we have ment1oned earl1er (see par.-II.B.l), 1neff1cient sequent1al 

algor1thms may lead to the most eff1c1ent parallel algor1thms and even 

more emphat1cally, sequent1al algorithms that are apparently 1nherently 

sequent1al may have h1dden a great deal of parallel1sm. Th1s fact has 

led to the development of some powerful techn1ques to explo1t such a 

h1dden parallel1sm and produce eff1cient parallel algor1thms. 

One of these techn1ques 1s the Recursive Doubling techn1que, so

called because 1t div1des the or1g1nal computat1on 1nto two 1ndependent 



[Ch. 11/Sec.. B 798] 

8-----·0 

Note: The processors 
on the left are 
the same as 
those on the 
r~ght; they 
appear tw~ce 
for clar~ty. 

Figure II.B.2-[2: The 1Per[eat Shu[[le 1 Interconnect~on Pattern 
of E~ght Processors. 

smaller computat~ons of equal complex~ty, each capable of being 

s~multaneously executed on a SIMD computer; these ~n turn are subd~v~ded 

~nto smaller tasks, recurs~vely, but after each stage of a computat~on 

the ~ntermed~ate express~ons double ~n the~r complex~ty. To exempl~fy 

th~s techn~que let us consider the recurrence problem: 

G1ven coeffic1ents: a ,b , for l~1~n 
~ ~ 

x = b,x +a x. , for 1~2; 
~ ~ ~-1 ~ ~-2 

compute x , for 2~1~n. 
~ 

(II.B.2:3) 

Although there ~s no assoc~at~ve operator apparent ~n th~s case, 



[Ch. II/Sec. B 199] 

the problem can be reformulated as a vector-matr~x problem with an 

assoc1ative operator. 

Let X 
~ 

and A 
~ 

X 
~ 

A .X. l 
~ ~-

(II.B.2:4) 

~s the recurrence relat~on satisfy~ng the problem. 

In order to generate Xi from X1, all that is requ~red ~s to pre

mult~ply the latter by a ser~es of (2x2) matrices as follows: 

X 
~ 

(II.B.2:5) 

where all of the A., j=2, •.• ,n are known explicitly. The formula (II.B.2:5) 
J 

can then be evaluated by ut~l~z~ng the recurs~ve doubl~ng, or otherw1se 

log product techn~que. Because of the assoc~ativ~ty of matr1x multi-

pl1cation 1t 1s possible to construct all of the products: 

1 

TT A , J.=2, .•. , n, 
J=2 J 

(II.B.2:6) 

1n the manner shown below. 

Let us assume for conven1ence that n=2k+l, so that, there are 2k 

matrJ.ces A. and for 1llustrat1ve purposes 
J 

that k=2; then we have: 

rA2 Il lAz A2 ri A2 1 
I 

A3 A2 A3A2 A3A2 I A3A2 
I (II.B.2: ?) 

A4 A3 A4A3 A4A3 A2 A4A3A2 J • 
As A4 ASA4 ASA4 A3A2 ASA4A3A2 

Then, the f1nal vector of matr1.ces can be used to compute all of the X. 
1-

s1multaneously, by tak1ng the product of each component of th1s vector 

k 7 k .th In general, for n=2 , there are cog
2

n= vector operat1ons, the 1-



[Ch. II/Sec.. B 200] 

i-1 
component of wh~ch ~s of length n-2 The obtained speed-up rat~o ~s 

proport~onal to n/log2n, wh~ch makes th~s techn~que well-su~ted to 

Parallel computers w~th ~nf~nitely many, or at least n processors. It 

~s worthwh~le not~ng that as the construct~on of the vector products 

progresses, the extent of parallelism ~n the products decreases by an 

amount wh~ch is a power of two. Th~s technique, obv~ousl~ can be 

extended to linear recurrences of all orders, as well as, to some non-

l~near recurrences, e.g. spl1ne funct1ons, l1near ord1nary different1al 

equat1ons w1th non-constant coeff1cients, etc. 

In general terms, algor~thms having adopted the above techn~que 

can be g~ven the form of an evaluation tree (see Heller [HELL78]). Let 

us cons1der, as a s1mple example, the evaluat1on of the expression: 

A 
n 

(II.B.2:8) 

where 0 ~s any assoc~at~ve operator. Apply~ng the recurs~ve doubl~ng 

techn~que to th~s express~on, produces an algor~thm that ~s ~llustrated 

by the evaluat~on tree ~n Figure (II.B.2-f3), where at each level the 

operations are independent and ~dent~cal and so, may be executed 

s=ul taneously. 

The f~rst level has the greatest number of operat~ons be~ng ln/21t, 

wh~ch means that rn/21 processors w~ll be suff~c~ent to evaluate the 

operat~ons at each level s~multaneously. The number of levels ~s llog
2
nl 

and so by utiliz~ng ln/2l processors the result A may be evaluated ~n 
n 

llog
2
nl t~me-steps. Heller called this algor~thm the associat~ve fan-in 

algor~thm, but ~t ~s more fam~l~arly known as the log sum and log 

product, when the operators are + and x, respect~vely. 

tAs lxl is defined the least integer greater than or equal to 'x'; as LxJ 
is defined the greatest integer Zess than or equal to 'x'. 



[Ch. II/See. B 201] 

Level 3 

Level 2 

Level 1 

Figure II.B.2-[3: The Evaluat1on Tree of the Express1on 
A (for n=B). 

n 

A spec1al case of the fan-1n algor1thm 1s the Inner or Scalar 

+ + 
Product of two n-vectors x and y, which has the form: 

( II.B. 2:9) 

In this case, obv1ously the n products are 1ndependent and therefore can 

be evaluated s~multaneously, ut1l1z1ng n processors; then, 1t follows a 

log swn and the result 1s obta1ned m llog
2
nl+l t1me-steps. Th1s 1s 

illustrated 1n Figure (II.B.2-[4). 

In accordance w1th th1s, the matr1x product g1ven by the formula 

(II.B.2:2)can be s1m1larly evaluated, smce 1t cons1sts of nxm 

independent 1nner products and consequently the matr1x C can be evaluated 

1n llog2pl+l t1me-steps ut1l1zmg nxmxp processors. 



[Ch. IT/Sec.. B 202] 

Y -----------X y X 2 n-1 n-1 n 

Figure II.B.2-[4: The Inner or Saalar Produat of two 
++ 

n-vectors x,y. 

Another powerful technique, known for transform~ng a ser~al 

computat~on ~nto a h~ghly parallel one, ~s the Cyalia Odd-Even Reduation 

techn~que; although th~s techn~que is qu1te d~fferent from recurs~ve 

doubl~ng, ~t appears to be appl~cable to the same class of problems. 

Th~s techn~que w~ll be d~scussed ~n more detail ~n Chapter V, s1nce 1t 

was extens~vely used to solve trid1agonal l1near systems of equat1ons on 

the NEPTUNE (MIMD) parallel processor system. 

But the numer1cal area was not the only area to be searched and 

algor~thms and techn1ques to be proposed for, as su~table for SIMD and 

Pipelined computers. Wyll~e [WYLL?9], ~n 1979, presented some non-numerical 

algor1thms mainly appl1ed to var1ous data structures; for example, us1ng 

a spec~al techn~que called dOubling, he cons1dered an algor~thm to count 

the number of elements ~ a l~nked list and another to delete an element 

from a l1nked list. 

The sorting of a number of keys has been another 1nterest1ng non-

numer~cal problem, and the most w1dely known algorithm to tackle 1t, 

ut1l1z1ng a l1near processor array, is the Odd-Even Transposition Sort 



[Ch. II/Sec. B 203] 

(see Knuth [KNUT?3]). The algor~thmlc procedure starts w~th the storing 

of the n keys, to be sorted, let us assume, ~n ascend~ng order, ~n the 

l~near processor array. The problem can be solved ~n n time-steps. The 

odd- and even-numbered processors are activated alternately. In each 

cycle, the compar~son-exchange operat~ons are performed as follows: The 

key, ~n every act~vated processor, ~s compared w~th the key stored ~n 

~ts r~ght-hand ne~ghbour~ng processor, and the one with the smaller value 

~s stored in the activated processor. Hence, in n cycles the keys w~ll 

have been sorted 1n the l1near processor array, as is exempl1f1ed 1n 

Figure (II.B.2-f5). 
~eessore 0 1 2 4 5 

&~~~-............_ 

ne~ ~UGDGJEJ 

1 

2 

3 

4 

5 

Figure II.B.2-f5: The'Odd-Even Transposition Sort'on a L~near Array 
of Processors (The even-numbered processors have 
been act~vated first). 



[Ch. II/Sec. B 204] 

A part~al conclus~on, wh~ch can be drawn from all the above 

ment~oned algor~thms, ~s that, when one designs and develops a parallel 

algor~thm, unreal~st~cally, cons~ders that ~t ~s go~ng to be ~mplemented 

on a parallel architecture, that can always prov~de as many processors as 

required by the computat1on, to achieve 1ts m1n1mum execut1on t1me; a so-

called unlimited architecture. The computat~ons constructed for such 

unl~~ted arch~tectures are then called unlimited computations. 

Then, a second, more real~st~c and pract~cally of equal effic~ency, 

algor~thm ~s obta~ned, wh~ch w~ll be ~mplemented on the actually ex~st~g 

parallel processor arch1tecture, w1th a max1mum of p processors, wh1ch 1s 

called a p-limited architecture. 

There are two fundamental pr~nc~ples to construct the processors 

l~~ted algor~thms, the algorithm-decomposition and the problem-

decomposition princ~ples (see Hyaf~l and Kung [HYAF?4]). 

Accord~ng to the former pr~c~ple, if the originally unl~mited 

computat1onal algor~thm performed q. operat~ons dur~g a step i, then 
~ 

prov~ded ~t has a max~mum of p processors,lq./pl t~me-steps w~ll be 
~ 

required to perform the same step i. 

on the other hand, accord~ng to the latter pr~nc~ple, the or1g~nal 

task ~s part1t1oned ~nto smaller tasks of order equal to the number of 

the ava~lable processors and the parallel algor~thm ~s appl~ed to each 

of them. 

A s~mple example of these principles is the general~zat~on of the 

Odd-Even Transposition Sortdiscussed earl~er, so that, each processor, 

~nstead of a s~ngle key, will hold a sorted subsequence of keys. In 

th1s case, the algor~thm w~ll be ut1l~z~ng a merge-splitting operat~on, 

~nstead of the compar1son-exchange one; the opt1mal speed-up w~ll be 



[Ch. II/Sec.. B 205] 

achLeved Ln cases where the number of keys to be sorted LS large, 

relatLve to the number of lLnearly connected processors, sLnce, this way, 

each processor WLll have a large amount of computing to perform, compared 

to the 1nterprocessor communLcatLon,which relatively m1n1m1zes the latter, 

otherwLse SLgnLfLcant, overheads. 

In a s1m1lar way, one may cons1der the evaluat1on of the express1on 

A g~ven ~n (II.B.2:8), when p~n~processors are ava~lable; then, to 
n 

evaluate the computat~ons (e.g. sums) of the first level, ~t would requ~re 

at most ln/2pl time-steps, of the next higher level at most ln/4pl 

time-steps, and so on, unt~l the last level, which would requ~re at most 

ln/2[Zog2nlR t~me-steps. Consequently, the total requLred run-t~me w~ll 
be: 

T total 
~ ln/2pl +ln/4pl + ••• +ln/2llog2'1,l 

< (l+n/2p)+(l+n/4p)+ 

~ c 1 .log2n + c2 • n/p 

0(log
2

n + n/p) 

+ (l+n/Jlog2rl] p) (s~nce r xl <l+x) 

(II.B.2:10) 

In the case that p=n/Zog2n, the Ttotal tends to become of 0(log2nJ and 

so, an execution t1me of s1m1lar order, as the prev1ous algor1thm, can 

be ach~eved by ut~l~z~ng fewer processors (reduced by a logarithmic 

factor) • 

In conclus~on, numerous other algor~thms have been developed for SIMD 

and Pipelined computers, ut~lLzLng the fundamental schemes, technLques 

and pr1nc1ples ment1oned earl1er, cover1ng var1ous f1elds of sc1ence. 

To selectively refer to some of them, G~lmore [GILM71], L~u [LIUJ74], 

Hayes [HAYE74] and Sameh, Chen and Kuck [SAME74], proposed algorLthms to 



[Ch. II/Sec.. B 206] 

solve systems of equations arLsing from dLfferential equations; SmLth 

[SMIT?l], LnVestLgated ceZZuZaTalgorithms to perform pattern recognLtLon, 

Levitt and Kautz [LEVI72], algorLthms to solve graph problems, Thompson 

and Kung [THOM77], studied sorting algorLthms and Barlow, et al [BARL82a], 

algorLthms for eigenvalue problems. 

The maJOrLty of these algorLthms have explored perfectly the parallel 

hardware potential of the available SIMD and Pipelined computers, despLte 

the unavoidable overhead constraLnts imposed by the large amounts of 

synchron1zat1on and interprocessor communication. 

II.B.2.1: PARTICULAR CONCEPTS AND PERFORMANCE FEATURES OF THE VAP'SYSTEM 

TO be consLstent WLth the promises made in Chapter I, we shall, 

briefly, refer to some of the partLcular characteristLcs of thLs specLfLc 

SIMD parallel processLng system, accessible from Loughborough UnLversLty 

vLa a modem. 

The language for programming the DAP system came as a result of the 

~voZutionary school of thought'(see Parkinson [PARK82]), who transformed 

the abysmal normal FORTRAN into an effLcLent and more user frLendly 

t 
parallel language, the so-called DAP FORTRAN . 

Although, Lt is out of the scope of this ThesLs to present the 

language features here (see ICL DAP Manual [DAPM78]), we shall emphasLze on 

a couple of fundamental powerful facLlLties that dLStLnguLsh thLs Lssue 

of FORTRAN from the normal one. 

The first powerful facilLty was Lntroduced under the form of an 

extended lLst of data modes; Ln other terms, whLlst normal FORTRANdeals 

tit has many features which make it specific for the 'DAP' system. 



[Ch. IT /Sec. B 207] 

only w1th scalar var1ables (or sets of them}, the DAP FORTRAN 1ssue 

ut1lizes two new modes - vector and matrix. A DAP FORTRAN vector 1s a 

data structure w1th 64 values; a DAP FORTRAN matr1x 1s a data structure 

of 4096 values, considered e1ther as a (64x64) array or as a long vector. 

t Var1ables can still be of integer, real, logical or character type 

and one can def~ne sets of vectors or matr~ces; however, there ~s a 

d1stinct log1cal d1fference between 64 vectors and a matr1x, albe1t the 

equ1valent (4096) number of values. 

Another powerful fac1lity, which occurs when one wishes to prov1de 

conditional computat1ons, 1s the ut1l1zat1on of the Zogical expression 

1n a fashion s1milar to an index; for example, the operat1on, wh1ch 

requ1res an IF statement 1n normal FORTRAN, here appears 

X(Y.GE.p) = SQRT(Y}+, (II.B.2.1:1) 

where a value FALSE or TRUE 1s obtained, each t1me, from the log1cal 

express1on-index 'Y.GE.0'. Th1s construct 1s called LOGICAL or MASK 

INDEXING and is a powerful construct, s1nce 1t allows the programmer 

close access to the computat~ons, whLch 1s an essent1al programm1ng 

necess1ty for optimal util1zat1on of SIMD systems. 

In general, more 1mportant than understand1ng how an algor1thm works, 

1s tte understand1ng of the time dependence of the algor1thm. For example, 

1f a sequent1al FORTRAN code has three nested DO-loops, each performed n 

3 
times, then, that algor1thm requ1res a t1me proport1onal to n on a 

sequent1al computer; the correspond1ng parallel algor1thm can only have 

a s1ngle loop and so requ1res a t1me proportional to n, provided the 

2 system compr1ses at least n processing elements. 

tAs in no1'!11al FORTRAN. 

+It computes the square root of every member of Y set, provided it is 
positive. 



[Ch. II /Sec.. B 208) 

The Speed-up rat~o of the parallel computer to any g~ven ser~al 

computer ~s therefore a funct~on of the size and complex~ty t of the 

problem, with the parallel computer g~ving ~ts best performance when the 

number of process~g elements generally matches the problem s~ze. 

On the other hand, to measure the Efficiency of a parallel algor~thm, 

one needs to cons~der both, 1ts complex1ty, as well as, its cost 1n terms 

of the number of PEs ut~l~zed. The 'Eff~c~ency of Processor Util~zat~on' -

EPU. ~s def~ed w~th respect to the parallel algor~thm and the fastest 

known sequent~al algor~thm :j: for the same problem. In part~cular, for a 

problemPr and ~ts parallel algor~thmPa, we def~ne: 

EPU(Pr,Pa) Complexity of the fastest sequential algorithm for Pr 
Number of PEs utilized by Pa * Complexity of Pa 

(II.B. 2.1 :2) 

In a general terms rev~ew, the overall performance of a DAP FORTRAN 

program ~s h~ghly appl~cat~on dependent; ~n other words, ~t depends upon 

several factors, such as the mode of the data processed by the program, 

the type of operat~ons performed upon the data, and the degree of 

parallel~sm ~n the algor~thm chosen. In respect to the def~~t~on of the 

eff~ciency ~ terms of processor ut~l~zat~on and the fact that at each 

substage of the algor~thm half of the processors are eliminated, exper~ence 

has shown that ~t ~s not catastrophic to cont~nually sw~tch processing 

elements off; in fact, the h~ghest performance of the DAP system, relat~ve 

to ser1al systems, occurs 1n problems w1th many log1cal operat1ons, 

rather than problems ~n wh~ch all the PEs are apparently fully occup~ed -

e.g. a dense matrix mult~plicat~on does not exh~b~t a peak performance. 

tMore details about this term in paragraph (II.B.J). 

:j:Sinee the lack of a 'true' meaning of the 'T 'time on a bit-serial organized computer system. 



[Ch. II/Sec.. B 209] 

Finally, l.n respect of the varJ.ous data modes, they are mapped 

onto the DAP store in a dl.fferent way, so that indJ.vidual processJ.ng 

elements have dl.fferent access to thel.r components. In partl.cular, a 

vector component l.S processed by 64 cooperating processing elements, 

sJ.nce each bit of the component l.S kept l.n the local store of a dl.fferent 

process1.ng element; wh1.lst a matrix component, s1.nce 1t l.S ent1.rely 

withl.n the local store of a processing element, is processed by thl.s 

l.ndl.VJ.dual element. A scalar may be processed eJ.ther wl.thl.n the array 

or l.n the array 'Master Control Unl.t' - MCU. 

Arl.thmetl.c operatJ.ons are performed most effl.cl.ently on matrl.ces. 

To compare the tJ.me regul.red for vector and matrix processl.ng, although 

the former operat1.on 1.s faster per component, 1.ts overall eff1.c1.ency l.S 

less, s1.nce a matr1.x operat1.on processes 64 t1.mes as many components. 

Although scalar process1.ng 1.s st1ll much faster than an operat1.on on a 

matrl.x component, the matrl.x operatJ.on Wl.ll process 4096 components 

sl.multaneously. 
t In the case that a large amount of unavoidable scalar 

processJ.ng occurs, J.t should be performed within the host section of a 

program, that l.S on the host-2900 ICL computer. 

In conclusion, to further clar1.fy the above statements, 1.n br1.ef, 

a DAP program has two sectJ.ons, the host and the DAP section. Sl.nce DAP 

FORTRAN has no l.nput/output facl.ll.tJ.es and all calls, from the host 

sect1on to the DAP sect1.on, are parameterless subrout1.ne calls, data l.S 

passed between them Vl.a named COMMON blocks; these DAP FORTRAN COMMON 

blocks are kept l.ll the DAP store, but are accessl.ble to both, the DAP 

and the host. 

tA certain amount of 'scalar' processing can be performed by the 'DAP' 
facilities, avoiding the overheads of a return to the 'host' computer. 



[Ch. II/See. B 210] 

II.B.3: FUNDAMENTAL ALGORITHM STRUCTURAL CONCEPTS To ExPLOIT THE 

POTENTIAL OF MlMD COMPUTER AACHITECTURES 

Although Multiprocessor (M1MD) arch1tectures have now been 1n 

ex1stence for several years (see the D825, Anderson,et al [ANDE62], 1n 

fact dates back to the early 60's), relatively very little has been 

publ1shed so far about des1gning eff1c1ent parallel algor1thms for th1s 

type of system. 

A pr1nc1pal clar1f1cat1on wh1ch must be made is that the categor1zat1on 

of algor1thms to Synchronized and Asynchronouslsee par.-I.B.l) aimed, 

ma1nl~ to d1st1ngu1sh the algor1thms in respect to the parallel computer 

systems particular features; however, the greater flex1b1l1ty of 

Multiprocessor arch1tectures, as be1ng composed of sets of 1ndependent 

processors, makes both categor1es of algor1thms effic1ently appl1cable 

on them, w1th the latter pos1ng more difficult1es 1n the respect that 

t they can allow asynchronous processes. 

The maJOr issue for the Multiprocessor arch1tectures 1s that of 

partitioning a problem into many processes that can be executed 1n 

parallel onto them. For a small number of processors, say two to four, 

this problem is not a signif1cant one; but, for several processors, say 

S1Xteen (e.g. the CYBA-M at UMIST), or more, the problem becomes 

extremely diff1cult. Programs w1thout a spec1f1c 1terat1ve structure 

are seldom so complex that they can have s1xteen to th1rty-two d1st1nct 

sub-processes. However, programs with an 1terat1ve structure are l1kely 

to be better suited to SIMD systems and w1ll execute w1th somewhat lower 

eff1c1ency on MIMD systems due to resource allocat1on and synchron1zation 

overheads. 

t 
This fact justifies the use of the term 'Asynchronous Multiprocessor' 
for this type of system. 



[Ch. II!See. B 

In general terms, a parallel algorithm, for a MuLtiprocessor 

architecture, can be def1ned as a collect1on of concurrent processes 

211] 

that may operate s~ultaneously for solv1ng a given problem. To ensure 

that an algor1thm performs correctly and utilizes parallel1sm effect1vely 

for solving a given problem, it 1s usually necessary to have interactions 

amongst the processes; 1n other terms, in the program which controls 

a process there may be some po1nts where the process can commun1cate 

w1th other processes, the so called interaction points, wh1ch d1v1de a 

process into stages. Thus, at the end of each stage, a process may 

commun1cate w1th other processes before start1ng the next stage; but, 

th1s communication should be m1n1mal (1.e. tasks should be as 1ndependent 

from each other as poss1ble), while the locality of the tasks should be 

maximal (1.e. all the data accessed by a process/processor should be 

kept 1n 1ts local memory) • 

The time required by a fixed stage of a process 1s usually not a 

constant, s1nce there are some major sources for caus1ng fLuctuations 

1n process speed. W1th respect to the Multiprocessor arch1tecture, 

these fLuctuations 1n process speed are due to the var1ous processors 

speeds, 1n add1t1on to the probable asynchronous behav1our of them and 

the ar1s1ng memory confl1cts. Such fluatuationsare also due to the 

Operat1ng System schedul1ng pol1c1es, that ass1gn certa1n processors 

to perform I/O, allocate processors to processes, sw1tch a processor 

from one process to another, and so on. F1nally, the process speed 

may be influenced by the user env1ronment itself, s1nce the amount of 

resources allocated to a part1cular process, at a g1ven time, 1s a 

var1able depend1ng upon the number of created processes by the user and 

the1r pr1orit1es. 



[Ch. II/Sec.. B 212] 

On the other hand, the work to be performed by an algor~thm may 

depend on ~ts 1nput 1nstances; consequently, the work performed by a 

stage ~s unpredictable, since, in general, the property of the input to 

a stage ~s unpredictable or regarded as such. Therefore, the t~me 

requ~red by a stage can vary in an unpred~ctable way, a fact which can 

easily make us assume that it is a random variable satisfying some 

distribution function, which hopefully under certain circumstances can 

be est~ted. 

But, before we cont1nue further on, we should t~dy up ~n a cons~stent 

way the two,bas~cally, d~st1nguished approaches for tackling an occurr~ng 

problem, the synohronous and the asynohronous approach. 

In the former approach, one synohronizes the processes forc~ng them 

t to wa~t for the requ~red 1nputs, wh~lst ~n the latter approach lets 

them continue asynohronously. The motivat~on for the asynohronous 

approach resulted from the fact that, ~n some cases, no synohronized 

parallel algorithm would load all the processors equally, 1n add~tion 

to the performance degradation due to the requ~red synchron~zat~on. 

However, the asynohronous behaviour of an algor~thm may lead to ser~ous 

1ssues regard1ng its correctness and eff1c1ency. The former 1ssue 

ar~ses because dur1ng the execution of an algor~thm, operat~ons from 

d1fferent processes may interleave 1n an unpredictable manner; wh1lst, 

the latter 1ssue arises because any synchron1zat1on 1ntroduced, for 

correctness purposes, requires an extra t1me and also reduces concurrency. 

An attempt to strictly def1ne a synohronized parallel algorithm would 

result ~n that, 'It ~s an algorithm cons~st~ng of processes expl~c~tly 

+Thus, theoretioally, there is no way to avoid the possibility of one 
prooess sitting 'idle' for a potentially large (oould be infinite?) 
amount of time, before other prooesses finish generating the operands 
it requires. 



[Ch. II/Sec. B • 213] 

t utilLzing synchronLzation prLIDLtLves, in whLch, upon completion of a 

stage, a process may have to wait for the results of other processes 

before resumLng its executLon'; Ln such an algorLthm a task LS decomposed 

Lnto subtasks, of the same,hopefully, sLze, so that each subtask LS 

solved by one process of the algorithm. 

However, one must bear Ln mLnd that it is not always advantageous 

to create as many processes as poss~ble, accord1ng to the maximal 

decomposLtLon of a task, SLnce the executLon tLme of the synchronLzatLon 

prLIDLtLves is usually non-negligLble (e.g. a typical execution tLme for 

these prLmLtives LS usually in the order of a couple of hundreds of 

addLtLons). Also, SLnce the time required by a stage of a process LS 

a random variable, synchronized algorLthms have the drawback that some 

processes may be 'blocked' at a gLven tLIDe (e.g. whLle waitLng for a 

s1gnal WhLCh LS supposed to be LSSued by some aead'process). A character-

LStLc example of a synchronized algorLthm is the producer-consumer type of 

program. 

On the other hand, an asynchronous parallel algorLthm can be defLned 

as, 'An algor~thm cons1stLng of processes wh1ch commun1cate amongst 

themselves only through the use of some global varLables (possLbly 

updated wLthin a crLtLcal sectLon to ensure !ogLe correctness) or shared 

data; and, at the complet1on of a stage, a process e1ther terminates 

or proceeds further, wLthout any delay, accordLng to the current contents 

of the global varLables and the results JUSt obtaLned from the last stage'. 

The asynchronous characterizatLon LS due to the fact that synchronLzatLons 

are not required to ensure that specLfLc Lnputs are avaLlable for 

processes at varLous tLmes; however, there stLll exists the possLbLlLty 

tSynchronization primitives are required for synchronizing processes 
and implementing critical sections. 



[Ch. II/Sec. B 214] 

of processes be1ng 1 blocked 1 from enter1ng cr1t1cal sect1ons, s1nce 

the access to them follows the 'F1rst-In, F1rst-Out' (FIFO) pr1or1ty 

rule. 

In the follow1ng, we shall, br1efly, exempl1fy the above fundamental 

algor1thm structural concepts, by recall1ng some of the previous examples, 

cons1dered 1n (par.-II.B.2), and adapt1ng them to map onto Multiprocessor 

arch1tectures. 

To start w1th, let us cons1der the express1on of (II.B.2:8): 

(II.B.3:1) 

wh1ch can be evaluated on SIMD systems ut1l1z1ng the assoc1at1ve fan-in 

algor1thm. It was obv1ous from the g1ven Figure (II.B.2-f3) that the 

operat1ons at each level are 1ndependent, wh1ch 1s not true for the 

operat1ons amongst the levels. Therefore, the above express1on can be 

eas1ly decomposed 1nto a number of 1ndependent processes, to be carr1ed 

out by several processors s1multaneously, w1th a m1n1mum amount of 

1nterference amongst them. 

Consequently, on a hypothet1cal MUltiprocessor system of p 

processors, the above express1on can be part1t1oned 1nto the follow1ng 

p subsets: 

A 
n 

(II.B.3:2) 

where i=rn/pl. The evaluat1on tree for th1s algor1thm 1s presented 

1n Figure (II.B.3-fl). 

Before we proceed to the analys1s of th1s algor1thm, we should 

clar1fy someth1ng already ut1l1zed 1n (pa~-II.B.2.1), the complexity 



[Ch. II/Sec. B 215] 

concept. In general terms, when measur1ng the cost of execut1ng a 

program, one customar1ly defines a complexity (or cost) function~ , 

where ~(n) 1s either a measure of the t1me requ1red to execute the 

algor1thm of a problem of s1ze n, or 1s a measure of the memory space 

requ1red for such an execution. Accord1ngly, one may speak of e1ther 

t . ? • t ? • 
the ~me-comp"ex~ty or the space-comp"ex~ty funct1on of the algorithm, 

or refer to either of them as S1mply a complexity (or cost) funct1on of 

the algor1thm. 

In th1s Thesis our pr1ncipal concern w1ll be with time-complexity 

funct1ons, but we shall d1stingu1sh, where appropr1ate, between the time-

complexity and the computational-complexity of an algor1thm. The latter 

term w1ll be ut1l1zed to refer to est1mates of the computat1onal power 

requ1red to solve a g1ven problem, be1ng measured by the number of 

arithmetic or logical operat1ons requ1red. W1thin our context, the 

computational-complexity measure w1ll be cons1dered as a branch of the 

time-complexity measure. 

A further clar1f1cat1on in general 1s that, 1n part1cular for the 

analys1s of the computational-complexity of numer1cal algor1thms, 1t would 

be conven1ent to d1st1ngu1sh two further branches of 1t, (1) algebraic 

and (11) analytic-complexity measures. 

The object1ves of algebraic-complexity stud1es are man1fold: e.g. 

(1) to f1nd out how many ar1thmet1c operat1ons are used by a g1ven 

algor1thm, (2) how many ar1thmet1c operat1ons are requ1red to solve a 

g1ven problem, and (3) what 1s the best way to solve a g1ven problem 1n 

terms of ar1thmet1c operat1ons. The solut1on of l1near sets of equat1ons 

tThere are, apparently, two 'time-complexity' functions for problems, 
defining the 'lower' and 'upper' (time-complexity) bounds, and the 
ultimate goal is the coincidence of these functions to produce the 
'optimal' algorithm; however, for most of the problems this goal is 
not yet realized (see [WEID77] J. 



[Ch. II/Sec.. B 216] 

by dLrect methods LS an example of a problem studLed Ln terms of 

algebraic-complexity. 

Analytic-complexity, on the other hand, addresses the questLon of 

how much computatLon has to be performed to obtaLn a result w1th a gLven 

degree of accuracy, and focuses on computat1onal processes wh1ch 1n a 

certa1n sense never end. Iterat1ve processes prov1de an obvious example . 

• \ 
\ 

• • • 
\ . 

a2£ 1\ A a(p-l)tap£ 

···! " a a a a 
£+1 £+2 (p-2)£+1 (p-2)£+2 

1\ 
a a 

(p-1) £+1 (p-1) £+2 

Figure II.B.3-[1: The EvaluatLon Tree of the ExpressLon ~ 
of (II.B.3:2) (Ln the case that p LS even). 

Back to the prevLously presented algorLthm by (II.B.3:2) and 1n 

order to estLmate the speed-up and effLcLency ratLos, Lt LS requ1red to 

t 
estLmate the sequentLal T

8 
and the parallel Tnop runn1ng tLmes. Thus, 

the time-complexity for sequentLal execut1on Ls: 

T = n-1 tLme-steps , s 

whLlst Ln parallel execut1on (wLth p processors) 1s: 

tT 
no. of r:ocessors. 

(II.B.3:3) 



[Ch. II/See. B 217] 

(II.B. 3:4) 

whereiZog2pl are the final t1me-steps to est1mate the values of the p

paths. 

The Speed-up and Efficiency ratios then are: 

T 
n-1 s s 

p T ln/pl-l+flog2Pl 
p 

n-1 
(s1nce rxhx> ~ 

n/p-l+log
2
p 

plog
2
p-p+l 

p -
n/p-l+log2p 

plog
2
p-ptl 

p [1- 1 
n-p+plog

2
p (II.B.3:5} 

and 
s plog

2
p-p+l 

E ..E.. ~ 1 -
p p n-p+ plogi' 

(II.B. 3:6} 

in the case that n>>p the fract1on 1n (II.B.3:6) tends to zero and 

consequently the Speed-up and Efficiency rat1os approx1mate the1r opt1mal 

theoret1cal values of p and one, respect1vely. To the contrary, for a 

fLxed value of n, an 1ncrease of the number of processors 1mpl1es a 

decrease of the speed-up and eff1c1ency, due to var1ous occurr1ng 

overheads. 

The same strategy of decomposit1on can now be appl1ed to the Inner 

or ScaZar product of two n-vectors of (II.B.2:9~ Assum1ng there are p 

processors, then the p subsets, of s1ze i= [n/pl, have 1ndependent 

computat1ons and can be evaluated s1multaneously. The correspond1ng 

evaluat1on tree w1ll be of the same form, as that of the expression 

(II.B.3:2}, dep1cted 1n Figure (II.B.3-fl}. Th1s algor1thm proceeds by 

evaluat1ng the mult1pl1cat1ons and add1t1ons of all i subsets 

concurrently, to conclude, w1th the add1t1on of the values obta1ned from 

----------------------------------------------------. --

I 



[Ch. II/Sec. B 218] 

the i subsets, ~nllog2pl t~me-steps. The time-aomplexityt of th~s 

algor~thm, for sequent~al and parallel execut~on respect~vely, ~s g~ven 

by: 
Ts = 2n-l t~me-steps (~.e. n-mult~pl~cat~ons+(n-1)-add~t~ons), 

and 

Consequently, the Speed-up rat~o ~s: 

2n-l 

2n-l 
2n/p-l+log

2
p 

plog
2
p-p+l 

2n/p-l+log
2

p 
p-

p [1-

and the Effiaienay rat~o ~s: 

E 
p 
=~ 

p 

(s~nce rxl ~x) 

(II.B.3:7) 

(II.B. 3:8) 

(II.B.3:9) 

(II.B. 3: 10) 

where aga~n for n>>p the fract~on ~n (II.B.3:10) tends to zero and 

consequently the Speed-up and Effiaienay rat~os approx~mate the~r opt~mal 

theoret~cal values of p and one, respect~vely. 

W1 th respect to ma tr1.x opera t1.ons ( 1..e., add1. t1.on, mul tl.pl1cat1.on, 

etc.), the computat~ons of the elements a .. of the resultant matr~x C 
1-J 

are l.ndependent and therefore can be evaluated concurrently. For 

example, let us cons~der the add~t~on of two (nxm) matr~ces, such that, 

C = A + B , (II.B.3:11) 

tS1-nae the total number of multiplications and additions, respectively 
remains the same, in both, 'serial' and 'parallel', executions, it is 
therefore convenient, for simplicity reasons, to assume the same time
step length for both. 



[Ch. II/See. B 219] 

which 1s def1ned as: c 
1J 

a . + b , for 1.=1,2, ... ,n/]=1,2, ... ,m. 
1J 1J 

(II.B.3:12) 

Assum1ng aga1n the ava1lab1l1ty of p processors, then rn/pl rows (or 

columns} are ass1gned to each processor to carry out the operat1on. 

The time-complexity, for sequential and parallel execut1on respect1vely, 

1.s g1.ven by, 

and 

T
8 

= n.m t1.me-steps, 

T = rn/p l. m t1me-steps. 
p 

Consequently, the Speed-up rat1o 1s: 

T s 
T 
p 

= ....!n!:":..!m!!.... __ 

and the Efficiency rat1o is: 

E 
p 

~ n.m 
(n/p}.m = p 

(II.B.3:13) 

(II.B. 3: 14) 

(since rxl ~X} (II.B.3:15) 

(II.B. 3: 16) 

In th1s case, 1t 1s apparent that both rat1os are approx1mat1ng the1r 

opt1mal theoret1cal values of p and on~ respect1vely. 

S1nce matr1x subtraction and multiplication also 1mply the 

evaluatl.on of n.m elements of the result matr1.x, each of wh1ch l.S 

1ndependent, exactly the same strateg1es can be appl1ed, ach1ev1ng 

1dent1cal speed-ups and eff1c1enc1es. One may note however that, 1n 

the case of the matr1x mult1plicat1on of (II.B.2:2), each component of 

the result matrix 1s a scalar product, and so they can be evaluated one 

at a t1me by ut1l1z1ng the scalar product strategy d1scussed earl1er 1n 

th1s paragraph. 

After these s1mple, but character1st1c, algor1thm structur1ng 

examples, 1n the rema1nder of th1s paragraph we shall refer to some 

spec1f1cally s1gn1f1cant and un1que 1ssues concern1ng synchronized and 

asynchronous Multiprocessor algor1thm 1mplementat1ons. 



[Ch. IT/Sec. B 220] 

One of the class1cal problems, wh1ch 1nvolved qu1te an amount of 

research, was the Search for Zeros problem. The def1n1t1on of th1s 

problem 1s that, 'Given a cont1nuous (or d1screte) funct1on f, having 

oppos1te s1gns at the endpo1nts of an 1nterval of length i, locate a 

zero off w1th1n a unit 1nterval'. Two 1ssues of parallel algor1thms 

were developed by Kung [KUNG76], one synchronized and one asynchronous, 

to tackle th1s problem, be1ng compared w1th the best cons1dered to be 

a known, sequent1al search method, 1.e. the Binary search. 

W1th respect to the synchronized Zero-Searching algor1thm, 1t cons1sts 

of k processes and at each '1terat1on', each process evaluates fat one 

of the k po1nts, d1v1d1ng the current 1nterval of uncerta1nty into k+l 

sub-1ntervals of equal length. The evaluat1on 1s cons1dered as a stage 

of the process. It 1s obv1ous that every 1terat1on reduces the length 

of the uncerta1nty 1nterval by a factor of k+l. Th1s algor1thm 1s 

synchronized 1n the sense that the k 1dent1cal stages are synchron1zed, 

s1nce when all of them are completed, a new uncerta1nty 1nterval 1s 

computed by one of the processes. 

Consequently, the algor1thm w1ll perform a total of llogk+lil 

1terat1ons, w1th an expected time-complexity of llogk+lil.Ak.t, where 

-t Ak.t 1s the expected time-complexity for each 1terat1on (rather than t ) , 

s1nce one must also cons1der the 'penalty factor' Ak+ of synchron1z1ng k 

funct1on evaluat1ons each t1me. In compar1son w1th the expected time-

complexity of the Binary search algor1thm, wh1Ch 1S of llog2~.t 

(s1nce 1t takes at most llog2il funct1on evaluat1ons), the conclus1on 

1s that the synchronized parallel algor1thm w1ll be proved 1neff1c1ent 

tThis is the 'mean' of the random time variable 't' required to evaluate 
'f' at a point in the interval. 

+see [RUNG76], p.161,for the definition of this 'penalty factor'. 



[Ch. II/Se.c.. B 221) 

for large Ak' wh1ch usually occurs when k 1s large. 

W1th respect to the asynchronous issue for the same problem, Kung, at 

f1rst, 1ntroduced an algor1thm (called AZ2> w1th two processes, based 

on a F1bonacc1 law; later, he general1zed th1s algor1thm for three or 

more processes. These algor1thms can be def1ned by the1r trans1t1ons 

amongst var~ous states. 

In part1cular for the former and simpler case, he considered two 

types of states, A
1

(i) and A
2
(i), wh1ch are def1ned by the follow1ng 

bas1c pattern: 

(II.B.3:17) 

2 t 
where 6 +6 =1; the pattern (II.B.3:17) 1s state A

2
(i) as 1t stands and 

becomes state A
1
(i) 1f the r1ght 1nner-point 1s deleted. In both states 

the 1nterval of uncerta1nty 1s of length i, but 1n the former one, f 

~s evaluated simultaneously at two po~nts denoted by 'O', both Lns1de 

the 1nterval, wh1lst 1n the latter one, f 1s evaluated s1multaneously 

at a po1nt 'O' 1ns1de the interval and another po1nt outs1de the 1nterval. 

Let us assume that we are at state A
2

(i) and that, w1thout loss of 

general1ty, the evaluat1on at the left po1nt f1n1shes f1rst. Then, the 

new 1nterval of uncerta1nty 1s e1ther [------o or o-----o-----1' 

depend1ng upon the s1gn of the outcome. Suppose that the f1rst case 

occurs, then the process, whLch JUSt f1nished the evaluat1on at the 

left po1nt, act1vates a new evaluat1on at the po1nt ·~· def1ned as 

follows: 

tNameZy, 6=.618 ... is the reciprocal of thegoZden ratio ~· 



[Ch. II!Sec. B 222] 

2 
A

1 
( 8 .11.) : --------~.--------~ (II.B.3:18) 

2 
hence, state A

1
(8 .11.) 1s obta1ned. 

In a s1m1lar way, state A2 (8.11.) can be obta1ned from the other case, 

as 1llustrated by the follow1ng graph: 

3 
8 .11. 

;=~~-----~,----- (II.B.3:19) 

8.11. 

The trans1t1on to e1ther of the above states, of state A
2

(.11.), 

1s denoted by: 

(II.B. 3:20) 

Correspond1ngly for A
1

(.11.) we have: 

(II.B. 3:21) 

The state A2(.11.), 1n the trans1t1on rule (II.B.3:21), corresponds to the 

ass1gnment of the second process at the po1nt denoted by·~· on the graph 

below: 

:--------o------~~---1 0 (II.B.3:22) 

An 1mportant property of algor1thm AZ2 1s that it assoc1ates w1th 

the very s1mple trans1t1on tree of Figure (II.B.3-f2). Assum1ng that the 

algor1thm starts from state A
1

(.11.), 1t passes through all the states on 

one of the paths 1n the tree. The part1cular path taken by the algor1thm 



[Ch. Ii!Sec. B 223] 

depends upon the input function f and the relative speeds of the two 

processes. 

Al (8
3
£) Ait£) 

• • • • • • 

A (~) 
1 

A
2 

( 8~) 

• • • 

A
2 
(8~) 

• • • 

Figure II.B.3-[2: The Trans~t~on Tree of the AZ2 Algor~thm. 

For the analys~s of th~s algor~thm, let n be the number of funct~on 

evaluat~ons performed by the algor~thm. s~nce the evaluat~ons are 

performed by two concurrent processes, the expected time-complexity of 

n.t d the algor~thm ~s -~, as n+oo, Consequently, the Spee -up rat~o 

between the Binary search and th~s algor~thm ~s: 

s -2 
n.t 

2 

, as n--too • 
n 

(II.B. 3:23) 

It ~s obv~ous from (II.B.3:23) that the determ~nat~on of the value 

for n 1s of great 1nterest. Th1s value, 1n the 'worst' case, 1s g1ven 

by the length of the longest path in the trans~t~on tree, ~n the 'best' 

case, by the length of the shortest path and, ~n the 'average' case, by 

the average path length. 



[Ch. IT/Sec.. B 224] 

An asynchronous algorithm w1th three processes can be s1m1larly 

def1ned by using the follow1ng two patterns: 

t/4 t/4 t/4 t/4 

and 
(II.B. 3:24) 

t/3 t/6 t/6 t/3 

In general, Lk/2j +1 patterns are suff1c1ent for defin1ng an asynahronous 

algorithm w1th k processes. 

An asynahronous Zero-Searching algor1thm w1th k processes corresponds, 

1n a natural way, to an asynchronous algorithm w1th k-1 processes for 

locat1ng the max1mum of an un1modal funct1on. Thus, the patterns 1n 

(II.B.3:24) prov1de an asynchronous algor1thm w1th two processes for 

locat1ng the maximum of an un1modal funct1on, which is faster than the 

opt1mal synahronizal algon.thm with two processes- (see Avr1el and W1lde 

[AVRI66] and Karp and Muanker [KARP68]} -as long as the 'penalty 

factor' of synchronizat1on is greater than one. 

In the follow1ng, we shall 1ntroduce a h1ghly 1mportant group of 

methods ut1l1zed to solve many numer1cal problems, the Iterative Methods. 

For example, zeros of a funct1on f can be computed by the Newton 1terat1on: 

-1 
x 

1 
= x - f'(x} .f(x} ; 

1+ 1 1 1 

also, the solut1ons of l1near systems by 1terat1ons of the form: 

+ + + 
X l = Ax + b , 

1+ 1 

where ;;; . ,b are n-vectors and A 1s a (nxn} matr1x. 
"1-

(II.B.3:25) 

(II.B.3:26) 

In general terms, an Iterative Process can be represented by the 

formula: 



[Ch. II/See. B 225] 

x = f(x ,x 
1

, ... ,x d 
1

) , 
J.+l l. ].- ].- + (II.B.3:27) 

and the aLm LS to desLgn algorLthms for Multiprocessor systems to 

speed-up the computatLon of the LteratLve process. 

BasLcally, either of two strategLes (or a combinatLon of both) can 

be followed when designLng synchronized or asynchronous iterative 

algorLthms. The first one aims to exploit parallelism WLthLn the 

LteratLon functLon f, and the other to exploit the fluctuations (a priori 

consLdered harmful?) Ln process speed, mentLoned earlier Ln this paragraph, 

by utLlLzing more than one process to compute the same function Ln 

parallel. 

In a synchronized iterative algorLthm Lterations are generated 

Just as Ln a sequential algorLthm, except that the LteratLon functLon 

LS decomposed so that each Lteration step can be executed by more than 

one process, whLch are then synchronLzed at the end of each LteratLon; 

consequently, these algorLthms dLffer from the sequentLal ones Ln the 

execution tJ.me requJ.red by each J.teratJ.on. However, one must bear ~ 

mind that synchronized iterative algorLthms are not suLtable for those 

LteratLon functLons which cannot be decomposed Lnto mutually Lndependent 

tasks of the same complexity. 

On the other hand, asynchronous iterative algorLthms are parallel 

J.teratJ.ve algorithms 'free' from any synchronizatJ.on restrJ.ctJ.ons. To 

desLgn an asynchronous iterative algorLthm for a general iteratLve process 

(as II.B.3:27), one should fLrst ident1fy certa1n var1ables, such that, 

each 1terative step can be regardedas comput1ng the new values of these 

variables from the1r old values. In general terms, 1t 1s des1rable to 

choose these var1ables, such that, the updat1ng of each of them 

const1tutes a sign1f1cant portion of the work 1nvolved 1n each 1terat1on. 



[Ch. II/Sec. B 226] 

After these var1ables have been chosen, concurrent processes, wh1ch 

would update these var~ables asynchronousZy, have to be def~ned. 

One can eas~ly not~ce that a plethora of asynchronous iterative 

algor~thms can be des~gned, even based on a simple ~terat~on such as 

the Newton ~terat~on. The problem ar~sing ~s how to choose an algor~thm. 

In any case, the advantage of asynchronous iterative algor~thms ~s that 

processes are never blocked and the overheads due to the execut1on of 

the synchron~zat~on pr~m~t~ves are avo~ded. In fact, carefully selected 

asynchronous iterative algor~thms can be proved to be very compet~t~ve 

to the best synchronized iterati~ones. Research on the performance of 

asynchronous iterative algor~thms is of great ~nterest. 

In [KUNG76] a part~cular cons~derat~on has been g~ven to algor~thms 

purely der~ved from the second of the prev~ous strateg~es, wh~ch are 

called by h~m as simpZe asynchronous iterative algor~thms. The ma~n 

advantage of them ~s the~r general appl~cab~l~ty; ~n other terms, they 

are not restr1cted to numer1cal 1terat1ve processes only, but they can 

be employed to speed-up any sequence of tasks, becom~ng part~cularly 

attract~ve when the task decompos~t~on appears d~ff~cult. There are, 

however, some disadvantages, such as, the requ1rement for cr1t1cal 

sect~ons ~n the algor~thms, and the fact that the speed-up obta~ned ~s 

qu~te l~m~ted ~f fZuctuations~n computat~on t~me, due to the system, 

are not large. 

In a review of synchronizedand asynchronous algor~thms, s~nce the 

former had the drawback that processes could be blocked and the latter 

that the~r analys~s could be somet~mes extremely d~ff~cult, a prom~s~ng 

d1rect1on was to des1gn 1terat1ve algor1thms wh1ch were a comprom1se 

between these two types of algor~thms, tak~ng advantage of the spec~al 



[Ch. II/See. B 

features of 1nd1v1dual iterat1ons. These algor1thms are called 

semi-synchronized (or semi-asynchronous) iterative algor1thms. 

227) 

The ma1n character1stics of such an algor1thm are that, 1t is 

'loosely' synchron1zed so that processes are not expected to be blocked 

very often, thus reduc1ng the synchronized iterative algor1thms drawback; 

and, the synchron1zat1on guarantees that the 1terat1ons generated by the 

algor1thm sat1sfy some des1rable propert1es, thus reduc1ng the 

asynchronous iterative algor1thms drawback. 

F1nally, 1n [KUNG76] 1s 1ntroduced the spec1al class of the adaptive 

asynchronousalgor1thms ut1l1z1ng global deques (1.e. 'double-ended 

queues', see Knuth [KNUT69]), to hold the tasks to be executed 1n parallel. 

Accord1ng to this class of algor1thms, the tasks performed by a part1cular 

process are not spec1f1ed a priori, but depend upon the relat1ve speeds 

of the processes. The eff1c1ency of an adaptive algor1thm 1s obta1ned 

from the fact that the processes are able to adJUSt themselves dur1ng 

the computat1on, so that, they can all f1n1sh 1n about the same t1me. 

The concept of adaptive algor1thms seems to be fundamental to the design 

of many eff1c1ent asynchronous algor1thms. 

In part1cular, the speed of an asynchronousalgor1thm may be 1mproved 

1f those processes not perform1ng useful computat1ons (a fact determ1ned 

by exam1n1ng the current contents of the global var1ables) can be 

1nterrupted promptly and 1f the extra overheads cost 1s not excess1ve. 

In a rev1ew of all prev1ously ment1oned, we resume that synchronized 

algor1thms should be ut1l1zed when fluctuations 1n process speed are 

small and when there are relat1vely few processes to be synchron1zed. 

To the contrary, when fluctuations 1n computat1on t1mes are large, 

asynchronous algor1thms are, 1n general, more effic1ent than synchronized 



[Ch. II/See. B ZZ8] 

ones, s1nce, processes never waste tLme in wa1t1ng for 1nputs, the 

algor~thms can take advantage of runn~ng fast processes and they can 

be adaptive so that the processes can f~n~sh at about the same time. 

Furthermore, from the 'rel~ab~l~ty' po~nt of v~ew, an asynahronous 

algor~thm can be more reliable than a synahronized one, s~nce,even ~f 

some processes are blocked forever, 1t can cont1nue comput1ng the solut1on 

of the problem, as long as, no block1ng occurs 1n cr1t1cal sect1ons 

and there rema1n at least one act1ve process. 

To complete th~s paragraph and the concept of generally des~gn~ng 

parallel, 1n part1cular, numer1cal algor1thms, except their earlier 

d~scussed complexity, we should also br~efly refer to the~r numerical 

stability, ~n order to conclude the~r quality cr~ter~a-p~cture. In the 

early days of parallel comput~ng complexity was the pr~me a~m. Only ~n 

the last few years has a grow~ng ~nterest developed for numerical 

stability or otherw~se insensit~vity to round-off error. More specif~cally, 

numer1cal algor1thms on real computers produce results wh1ch, 1n general, 

contain a certa1n type of round-off error. Th1s error can be d1v1ded 

1nto two components: 

(~) Inaccurate ~nput data w~ll produce an error in the f~nal 

result, even w1th an exact computat1on; and, 

(~~) real-l~fe computer systems produce round-off errors at every step, 

be~ng aaaumulated up to the end of the computat~on. 

An algor~thm ~s def~ned as numerically stable ~f error (~~) does not 

exceed error (~). 

To conclude, there are two methods of analyz~ng the numer~cal 

stab~l~ty of an algor~thm, the Backward Error Analysis and the Forward 

Error Analysis methods. The former one was proposed by G~vens [GIVE54], 



[Ch. II /See. B 2291 

~n 1954, and br~ll~antly ut~l1zed by W~lk~nson [WILK63], ~n 1963, in 

the analys~s of the round~ng errors 1n algebra~c processes. The 

quest1on asked ~n backward error analysis ~s, 'What problem has one 

solved exactly and how far ~s th1s problem from the one set out to be 

solved?'. In other terms, th~s method mathemat~cally transfers the 

round-off errors to the 1nput data (var~ables) . This may be contrasted 

w~th the usual forward error analys~s where the quest~on asked ~s, 'By 

how much does the computed answer d1ffer from the true answer?'. In 

other terms, th~s method attempts to analyze the consequences of 

perturbat1ons in 1nput data (see Feilme~er [FEIL82]). The advantage 

of backward error analys1s 1S that ~t is often eas~er to perform and 

the answers are often more useful. 

II.B.J.l: MuLTIPROCESSORS PERFORMANCE ANALYSIS CHARACTERISTICS AND 

RESOURCE PROVISIONS OF THE WEPTUNE'PARALLEL PROCESSOR SYSTEM 

Computer performance analys1s, 1n general terms, 1s concerned w1th 

the analys1s of computer systems throughput under var~ous program loads. 

Through th1s analys~s one can determ~ne both, the k~nds of load wh1ch 

can be processed eff1c1ently by a specif1c computer system, as well as, 

any poss~ble bottlenecks w1th~n the system that would cause the 

1neff1c1ent process1ng of other k1nds of load. However, s1nce a 

var1ety of resource amounts 1s prov1ded by d1fferent computer systems, 

there exist some relat1ve overheads from access1ng these resources, 

depend~ng upon the type of the resource, the programs (loads) vary~ng 

demands for them (accord1ng to the way parallel1sm ~s ~ntroduced) and 

the des1gn of the system 1tself. 

The analys1s of a sequential system performance can ass1st one 



[Ch. II/See. B 230] 

to determ1ne the opt1mal prov1s1on of resources, such as I/O bandw1dth 

and memory or processor speed. In terms of parallel process1ng, 

although all sequent1al processing features are of quite 1mportance to 

the former, the effects of the new (spec1f1c to parallel1sm) resources 

must be taken 1nto account. 

More spec1f1cally, in th1s paragraph, by v1ew1ng performance as 

the 1nteract1on of resources demanded by programs and prov1ded by a 

Multiprocessor system, we shall prov1de a performance pred1ct1on 

framework for parallel algor1thms designed for such systems. The 

pr1nc1ple beh1nd the demand and supply analys1s of resources is that 

parallel comput1ng 1nvolves the sharing of resources (1.e. processors, 

shared data structure, or a memory block), whose l1m1ted (f1n1te cycle 

t1me) ava1lab1l1ty forces program demands to compete to 'own' them. 

More analyt1cally, th1s compet1t1on or content1on has three 

consequences: 

(1) The theoret1cal l1m1t to the number of demands that can be 

sat1sf1ed constra1ns the max1mum system or program performance; 

(11) a mechan1sm (allocation algor1thm) 1s necessary to resolve 

amongst compet1ng demands, wh1ch 1tself 1mposes an overhead 

on resource access even ln the absence of content1on; and, 

(111) an 1mpl1cat1on of the (1) factor 1s that some of the compet1ng 

demands w1ll be forced to 'wa1t' for the spec1f1c resource to 

become available. 

The last two performance degrad1ng factors are called respect1vely the 

static and dynamic costs of shared resource access. 

Consequently, by analyz1ng these system propert1es (1.e. resources 

ava1lab1l1ty and allocat1on algor1thm) under various theoret1cal demand 



[Ch. II!Sec. B 231] 

patterns and by character~z~ng a program demands, these two p~ctures 

can be super~mposed to y~eld the performance of a part~cular algor~thm 

on a part~cular p~ece of hardware. Th~s analys~s w~ll be substant~ated 

by a br~ef analys~s of the resources provided by the NEPTUNE parallel 

processor system. 

To rev~ew,the ma~n pr~nc~ple of parallel comput~ng ~s that ~t 

requ~res three pr~mary resources: Multiple processors, communication 

for data shar~ng (even ~f th~s ~s only as much as requ~red to start 

process~ng ~n the f~rst ~nstance), and synchronizatiorlto allow un~que 

data mod~f~cat~on (although ~t is poss~ble to construct asynchronous 

programs, 1t 1s not the norm). 

Two alternat1ve overall performance measures of a program, 

reflect~ng respect~vely the d~ffer~ng, algor~thm and system des~gner, 

aspects, are the ratio of ~ts time-complexity on a p-l~nked processors 

system, to the time-complexity on a s~ngle processor; and, the percentage 

of the potent~al output of p ~ndependent processors, l~nked together 

and cooperat~ng on a number of programs. 

In the follow~ng, we shall d~scuss, more analyt~cally, some of the 

~nherent l~m~tat~ons on the performance of a p-processor parallel system 

due to some either apparent (or not) types of overhead, assoc~ated w~th 

the Multiprocessor execution but not w~th that on a un~processor. 

Pr~mar~ly, it ~s obv~ous that a p (all ~dent~cal)-processor system 

cannot complete a task more than p t~mes faster than a s~ngle processor 

and therefore the speed-up factor ~s l~m~ted by the number and power of 

the process~ng elements. However, ~t ~s also l~m1ted by other factors 

1ntroduced by the 'cooperat1on' requ1red amongst all the processors 

tit is not the 'synchronization primitive' alone that is the resource, 
but it and the structure it protects, and if there are several logically 
independent structures each should have its own measure. 



[Ch. II/Sec.. B 232] 

perform~ng on a common task; ~n fact, conceptually there ~s a shared 

database wh~ch may be requ~red to be changed some t~mes dynam~cally 

dur~ng process~ng. 

Also, the fact that a task must be subd~v~ded ~nto p (or more) 

~nd~v~dual subtasks, e~ther before the process~ng can start or dur~ng 

process~ng, causes an add~t~onal overhead expl~c~tly associated w~th 

a Multiprocessor. 

The above task subdiv~s~on may g~ve r~se to a further three poss~ble 

types of overhead, un~que to the nature of a Multiprocessor system: 

(~) In the case that less than p subtasks are ava~lable, at any 

t1me, to be allocated for execut1on, then some of the processors 

must rema~n idle. Th~s ~dle status length can be est~mated 

(even pred~cted) , ~f the processors speed ~s known, by exam~n~ng 

the computational-complexity and the number of subtasks; 

(~~) an organizational overhead, assoc~ated w~th ensur~ng the 

proper sequenc1ng of the execut1on of subtasks, occurs when 

one subtask generates results requ~red as ~nput to another 

subtask; ~n th~s case, the latter subtask has to 'wa~t· unt~l 

the former subtask produces the results. In a s~m~lar way, 

an add1tional overhead can 1ncur when one subtask must 'wa1t 1 

because the informat~on ~s not ava~lable. The d~fference w~th 

the former organizational overhead ~s that the latter can occur 

~n the m~ddle of subtask execut~on, thus be~ng equ~valent to 

wa1t1ng for a resource; and, 

(~~~) ~n the case that the shared database can be s~multaneously 

accessed, at any t1me, by a lesser number of processors than 

the system compr1ses, then, an overhead 1ncurs assoc1ated w1th 



[Ch. II/Sec.. B 233] 

the checkLng of the number of sLmultaneous accesses not to 

exceed the lLmLt, whLch also causes a waste of tLme Lf processors 

must 'wa1t' to ga1n access. 

In conclus1on, two d1st1nct sources of overheads can be dist1nguished, 

those due to the desLgn of software and hardware and those due to the 

1nterference between two or more subtasks runn1ng on d1fferent processors, 

caus1ng one or more of them to 'wa1t'. 

The former one Lncludes the overheads from, the subdLVLSLon of the 

task, allocatLon of the subtasks to processors, checkLng by hardware 

and software for contentLon when accessLng the shared database, as well 

as, checkLng for correct sequencLng; these are all called static overheads, 

s1nce, once the number of processors, the methods of commun1cat1on, 

synchronLzatLon and task allocatLon, for the algorLthm to be processed, 

are dec1ded, then the number of subtasks, synchron1zat1ons and accesses 

are all propertLes of the algorLthm Ltself. 

The other source of overheads concerns the so-called dynamic 

overheads whLch depend on the algorLthm, but also on the detaLled tLmLng 

consLderatLons whLch may vary even if the same task LS executed on the 

same p1ece of hardware on consecut1ve occas1ons. 

From the measurement poLnt of vLew, the static overheads can be 

determLned. In partLcular, Lf subtasks are created and allocated to 

processors at run-tLme, then the statLc cost LS obtaLned by multLplyLng 

the total number of subtasks, by the cost of executLng the approprLate 

1nstruct1ons on a s1ngle processor; 1n a s1m1lar way, by know1ng the 

cost of one access or synchron1zat1on, the relat1ve overhead 1s est1roated. 

The same way does not apply though for the estLmatLon of dynamic 

overheads, where, usually, a stat1stical est1mate can be made depend1ng 



[Ch. II/Sec.. B 234) 

on the occurrence and durat1on of events (subtask creat~on, resource 

demands, synchron1zation) model. 

As 1t was ment1oned earl1er, the performance of a Multiprocessor 

can be expressed by the usual speed-up factor, but also, 1t can be 

expressed 1n terms of the t1me not ut1l1zed product1vely, namely, the 

'Wasted-t1me' (iv') • For the latter case, the formula 1s: 

W = p * Tt- T 
p s 

(II.B.3.1:1) 

the wasted-t1me must be equal to the 'sum' of the static and dynamic 

overheads. 

Consequently, by 1gnor1ng the algor1thm design t1me, 1t would be: 

w 

where, t 

A 

B. 
J 

= tA + L q B 
J J J 

(W 
1 

+I X ) 
1] 

J 

static overheads dynamic overheads 

1s the number of subtasks 

1s the creat1on and allocat1on overhead for a task 

(II.B.3.1:2) 

h h h .th f 1s the over ead assoc1ated w1t an access to t e J type o 

resource 

1s the number of accesses to th1s resource 

th 1s the overhead assoc1ated w1th the k synchron1zat1on method 

1s the number of such synchron1zat1ons 

.th 
1s the t1me the ~ processor 1s '1dle' wa1t1ng for the 

allocat1on of subtasks 

X.. 1s the t1me the ith processor wa1ts for access to the jth 
'LJ 

resource. 

Both measures (1.e. Speed-up and Wasted-time) are 1nterrelated, 

tFoP a 'p'-processor system. 



[Ch. II/Sec. B 235] 

s~nce ~t ~s clear that e~ther all processors complete process~ng 

together, or some processors take longer than others; consequently, 

T + W s T ~ _::._ __ <=> 
p p 

s 
p 

pT 
s 

<--
.... T +W ' 

s 
(II.B. 3.1 :3) 

and the maxLmurn speed-up factor, for a g~ven algorLthm, can be determ~ned 

by assurnLng the dynamia overhead to be zerot. 

FLnally, and desp~te the requ~rement of an exact pattern for the 

shared resources demands to determ~ne 1n deta1l the wa1t1ng t1mes, 1t 

1s poss1ble to est1mate the bounds on the max1mum number of processors, 

that can be utLl~zed eff~c~ently on an algorLthm, from the average 

ut1l1zat1on f1gures for each resource, for each subtask. In conclus1on, 

SLnce dLfferent hardware and software gLves rLse to d~fferent statia 

costs, therefore, by know~ng the spec~fLc overheads of the system to be 

ut~lLzed, algor~thms may be accord~ngly desLgned to min~mLze these costs. 

In the remaLnder of thLs paragraph, we shall dLscuss the actual 

overheads observed on a system w~th shared memory, the NEPTUNE parallel 

processor system at Loughborough Un~versLty. The abll~ty of thLs system 

to prov1de resources stat1cally (1.e. when requests for resources do 

not contend each other) has been summar~zed ~n Table (II.B.3.1-tl). 

However, before we proceed w1th th1s, we must ment1on that a 

commun1cat1on based system cons1st1ng of 1nd1v1dual mach1nes, l1nked 

together by a communLcatLons subsystem, Lnvolves dlfferent statia and 

dynamia overheads. More specLflcally, the tLme a machine spends to 

establLsh local coples of the requLred Lnformat~on from the shared 

database, the tLme requlred for the messages exchange amongst machLnes 

and the updating tlme of the local databases to Lncorporate these 

tif subtasks are available to proaessors throughout the tasks exeaution 
period and no resourae is ever busy when requested, then it is possible 
for the 'dynamia aost' to be zero. 



[Ch. II/Sec. B 236] 

messages, cons~st the prime static costs for such a computer complex. 

In part1cular for the performance 11m1tat1ons due to resource demands, 

at the hardware level t, they ~ncur only from the load~ng on the 

commun~cation system, the only shared resource at this level. 

To return to the NEPTUNE parallel processor system, spec~fically 

for the three necessary for parallel comput~ng resources, ment~oned 

earl1er, and from the processors aspect, the software controll1ng the 

processors schedul~ng to processes counts the number of processes run 

by each processor; then, the static cost of parallel control ~s 

est~mated as the product of this number and the cost of scheduling g~ven 

~n Table (II.B.3.1-tl). Also, the ·~dle' processor t~me, because there 

are not ava~lable processes to be allocated to them, can be est~mated by 

th~s software. 

On the other hand, the generat~on of the parallel processes and 

the~r allocat~on to processors ~s done dynamically and th~s schedul~ng 

~s ach~eved ut~l~z~ng a shared l~st of processes protected by mutual 

exclusion. In Table (II.B.3.1-tl)one can see the average t~me th~s 

resource 1s 'blocked' to other processors, wh1lst software can est1mate 

the dynam~c loss of performance due to th~s content~on for the resource. 

From the sharedmemory po~nt of v~ew, the static cost of each 

processor to access 1t, ar1s1ng out of the hardware mult1plexing of 

more than one processor 1nto a s1ngle memory block, 1s also g1ven 1n 

Table (II.B.3.1-tl). Content~on ~ncreases the static overhead and ~s 

w~dely recogn~zed to be a funct~on of the number of contend~ng 

processors and the temporal pattern of access to the block of shared 

memory; however these losses are markedly smaller, than the content1on 

tAt the software level other logically shared resources can exist e.g. 
the local database of a machine may be required to be accessed by 
subtasks running on other machines. 



-----------------------------------------------------------------------------

[Ch. II/Sec. B 237] 

Processor 
Resource PO pl p2 PJ 

Relat~ve Speedst 1.000 1.037 1.006 0.978 

Float~ng Po1.nt* -700 -700 -700 -700 

Integer* - 20 -20 -20 -20 

Local Memory Access* -0.6 -0.6 -0.6 -0.6 

Shared Memory Access* -1.41 -1.12 -1.31 -1.32 

Mutual Exclus1.on Mechan1.sm* -400 -400 -400 -400 

(blocked)* -200 -200 -200 -200 

Parallel Path Mechanl.sm* -800 -BOO -800 -800 

(blocked)* -400 -400 -400 -400 

- t exclud~ng access to shared memory 

- * t1.mes 1n ml.croseconds 

Table II.B.J.l-tlt: Resource Prov~s~ons of the ~EPTUNE'System. 

losses ar1.s1ng from mutual exclus1.on, due to normally more regular (or 

synchronous) access pattern to shared memory. 

F~nally, the fact that a h~gh level software techn~que has been 

adopted, for the mutual exclusion to overcome hardware ex~st~ng 

~nadequac~es, has ~ncreased ~ ts cost s~gn~f~cantly. Thus, although 

hardware 'test' and 'set' operat~ons are ava~lable (w~th XPFCL command -

see Appendix C-II/par.-II.A.J-i>, as a bas~s for cla~m~ng resources, they 

cannot be accessed d~rectly from the user program. Furthermore, these 

operat~ons 'block' the shared memory for 10~ and,under h~gh load 

condl.tl.ons, the resultant wa1.t1ng by other processors, for shared memory 

access, could suff1.c1.ently exceed the memory access t1.me-out, thus 

tMost of the timings in the Table, due to amendments performed on the 
system, have been altered (see Appendix C-II/par.-II.B.J.l). 



[Ch. II/See. B 238] 

'crash1ng' the system {see XPFCLD command-Appendix C-II/par.-II.A.3-ii). 

The rout1nes ensur1ng mutual exclusion to shared data structures, 

count the number of t1mes each processor accesses each d1st1nct data 

structure; consequently, the static cost of mutual exclus1on 1s the 

product of that number, w1th the unit cost of the mutual exclus1on 

mechan1sm g1ven 1n Table (II.B.3.1-tl). In addit1on, these rout1nes 

also can est~mate the 'wa1t1ng• t1rne, due to the contention for each 

of these resources from each of the processors. The control rout1nes 

themselves add a small amount of t1me, to the t1me for wh1ch the relevant 

resource 1s blocked to other demands {see Table (II.B.3.1-tl) ). 

To conclude the d1scuss1on, we must clar1fy a s1gn1f1cant factor 

to the performance, related to the l1m1ted availability of the shared 

resources on a Multiprocessor system. In part1cular, 1f the resource 

ava1lab1l1ty equals the total processes demand rate, then saturat1on 

has occurred and no more speed-up can be ach1eved through ut1l1zat1on 

of more processors. In other terms, th1s means that the max1mum number 

of processors, that can be effectively ut1l1zed 1n a parallel program, 

1s l1m1ted 1ndependently by each shared resource accord1ng to: 

M1X. no. of processors = 1/(demand rate* unit access time). Therefore, 

the mean demand rate to a resource, 1s an 1rnportant measure of the best 

overall performance ach1evable, s1nce 1t can also determ1ne, together 

w1th the access mechan1sm propert1es of the system, any losses 1n the 

performance ar1s1ng from processes shar1ng resources. 



I 

-= [J CHAPTER Ill: FIFTH GENERATION KNOWLEDGE-BASED AND VLSI CHIP-EMBODIED INFORMATION FLOW COMPUTER SYSTEMS! ----
I SECTION A: CoMPUTATIONAL MoDELS AND •KNoWLEDGE INFORMATION PROCESSING SYSTEMS' - KIPS I] SECTION B: EMBEDDING INFoRMATION FLow ScHEMES ON GRIDS AND IN CHIP AREA AND TIME 

~ / 
THE IMPACT OF THE TECHNOLOGICAL INNOVATION ON FuTURE I III.A.l: INTRODUCTION J III.B.l: 
ARcHITECTURES - THE VLSI CHALLENGE 

l III.A.2: APPLIED ScHEMAS FOR DESCRIBING PARALLELISM IN CoMPUTER SYSTEMS 11~ III.B.2: FUNDAMENTAL ARcHITECTURAL CoNCEPTS IN DESIGNING SPECIAL-PuRPOSE 
VLSI CoMPUTING STRUCTURES 

~ ~ / ~ 
~ III.A.J: OBJECTIVES OF 'FIFTH GENERATION CoMPUTER SYSTEMS' - FGCS AND NoVEL < ,JII.B.2.1: THE FuNDAMENTAL PRINCIPLE, CRITERIA AND 

DECENTRALIZED ~~CHINES AS THEIR PoTENTIAL ARcHITECTURAL BASIS ADvANTAGES OF 'SYSTOLIC • ARcHITECTURES 

~ ~ ----
~'·'·'-'• A eo~,Trnm~ r~~ rn m< s,,.,, " 

'SYSTOLIC'CoMPUTATIONS AND VLSI STRUCTURES 

~~ III .A. 2. 1• O~"AA"""' ~' Mooru.= p,,m,~ '' • '"'RI NETS • I) ~ 
......... 

III.A.J.l: ORIGINATION, FuNDAMENTAL HARDWARE AND SoFTWARE PRINCIPLES, 

I III.A.2.2: ExTENSIONs, SuBCLAssEs AND RELATED MoDELS TO 'PETRI NETS' (J ' CHARACTERISTics OF THE 'DATA FLOW' MAcHINE ARCHITECTURES 

~ " ...... 
III.A.J.2: A GENERAL SPECIFICATION OF REsEARCH SuBJECTS AND 

/ ~ / ....... CHARACTERISTICS FOR A FGCS 'DATA BASE' MAcHINE ARcHITECTURE 
III.A.2.1.1: THE STRUCTURE, MoDELLING PROPERTIES AND ExECUTION 

~ RuLEs oF 'PETRI NETS' 1/ ----- 1"- - ~ 
/ ~ / III.A.J.l.l: PRoTOTYPE 'DATA FLOW' MAcHINE ARcHITECTURES, PROGRAMMING 
III.A.2.1.2: 'PETRI NETS' ANALYSIS APPROACHES' PROGRAMMING CoNSTRUCTS 

......... LANGUAGES, AND FuRTHER DESIGN ALTERNATIVES 
REPRESENTATION, AND FoRMAL lANGuAGES 1/ 



_ (1t 1fi i\ lHiHE 1!l 

111111 

FIFTH GENERATION 

KNOWLEDGE-BASED AND VLSI 

CHIP-EMBODIED INFORMATION FLOW 

COMPUTER SYSTEMS 



~ iE <!HiJ 3J ® N - -----o-

~ 

COMPUTATIONAL MODELS AND 

'KNOWLEDGE INFORMATION 

PROCESSING SYSTEMS' - KIPS 



']t i.s a hig rruolt.' 

2a D\oc~efoucau!b-2iancourt : 'J.Fnv,::f~, 

'N.o, §ir, it i.s a hig n-uolution.' 

Dur or ln 1Rorqrfouruulu-1l!ianroud 

17<1.7-1lt27 

f} ,:lJ.r.c,.jf.v.,' 

:f'.a- ~<c{.ow:xudd --:liamcowr-i 
tgoJ,~t~. ii,~rd. iii 



[Ch. III/Sec.. A 241] 

III.A.l: INTRODUCTION 

Today's requLrements for hLgh-speed computer systems became apparent in 

an ever increasLng number of applLcations. In fact, the success of GRAY

like type of vector processors has shown the requLrement for very fast 

computer architectures to perform complex scLentLfLc computatLons. 

However, almost all of the varLous types of multLple processor systems, 

mentLoned Ln prevLous Chapters, do not seem to fLt the performance goals 

that scLentLsts would lLke to be met by the next 'Fifth Generation 

Computer Systems' - FGCS, whatever the technologLcal advancements would 

be Ln the future. 

The Speed-up and the better performance Ln general, up to now, 

have been prLncLpally achLeved by archLtectural Lmprovements and the 

development of compLiers to map programs onto any partLcular computer 

archLtecture. 

With the advent of 'Very Large Scale IntegratLon' - VLSI, the 

desLgn of hLgh-performance dLg1tal computer systems changes from the 

realLzatLon of an algorLthm on a gLven archLtecture, fabrLcated Ln a 

fixed technology, to an integrated process. FGCS, by handling these 



[Ch. III/Sec. A 242] 

rap1d developments 1n microelectron1cs, w1ll represent a unificat1on 

of the research into VLSI processors and into d1str1buted process1ng, 

a1ming to solve very complex problems with a very h1gh level of performance. 

Each computer system will consist of a network of comput1ng elements 

support1ng an indiv1dual application or requ1rement; these comput1ng 

elements, through VLSI technology, w1ll prov1de e1ther a general-purpose 

or a spec1al-purpose funct1on, rang1ng 1n power from a miniature micro

computer to a mainframe computer. If a large number of comput1ng 

elements are to work together 1n a FGCS or otherw1se decentralized 

comput1ng system, then 1t 1s necessary to have a harmon1ous set of 

arch1tectural princ1ples wh1ch the program and computer organ1zat1ons 

w1ll support. Th1s 1s true whether the decentral1zed computer system 

~s composed of m1n1ature comput1ng elements, w1th1n a s1ngle board or 

even ch1p, or cons1sts of geograph1cally distr1buted ma1nframe computers. 

However, 1f the des1gn of such computer systems is one aspect of 

the problem, the successful des1gn of these systems 1s another. In 

order for the latter aspect to be accompl1shed, systems must be seen to 

be the result of 1ntegrat1ng together several different constraint domains, 

each of which has 1ts own characterist1c structures; these are, 

technology, algorithm, and architecture 1n the f1rst place and, w1thout 

d1min1sh1ng their importance, data structure and programming language 

1n the second place, the mutual 1nteract1on of wh1ch w1ll establish a 

balanced des1gn sat1sfying the system goals. It can be certa1nly cla1med 

that the best des1gns w1ll be obta1ned when these structures 'match' or 

1nterrelate in a complementary way, each support1ng the other. 

All of these constra1nt doma1ns are of course knowledge sources, 



[Ch. III/Sec.. A 243] 

each wLth a separate substantLal Lnternal theory; but, an overlap WLth 

the other domaLns may occur, a fact which implLes that the overall 

system desLgner must be well aware of the desLgn freedom and constraLnts 

at each level, as well as, the consequences of desLgn decisions at any 

gLven level on all of the other LnteractLng levels. However, Lt should 

be po1nted out that the first three knowledge sources are more complex 

ones, w1th a non-tr1v1al overlap. 

In many problem domaLns, from the algorithmLc and archLtectural 

representatLon aspects, we are often given an LnLtLal algorithm and 

archLtecture together. However, unfortunately,this fact confounds the 

t performance of the algorLthm, as we have seen Lt , wLth what the 

algorLthm really does, or, otherwLse, its competence. ThLs LS maLnly 

because the algorLthm is expressed Ln terms of an architecture, which 

up to now was usually a van Neumann S1ngle-sequence computer 

archLtecture; but, thLs fact tends to obscure the potentLal parallelLsm, 

and represents the algorLthm at only one performance level. It would be 

more preferable to have a fundamental means to represent separately 

the performance and competence of an algorithm. 

However, 1t 1s poss1ble to 1ntroduce competence-constra1ned 

performance transformatLons which, whLle guaranteeLng the competence 

preservat1on, allow a method1c performance man1pulat1on; for example, 

by ut1lizLng some techniques dependLng on basic Ldeas of conflLct 

resolut1on, a system specLfLed by a hardware desLgn language scheme can 

be transformed to any other theoretLcally possLble performance. 

In partLcular for the technologLcal domaLn, Lt LS far ahead than 

t 
Name~y, how the a~gorithm is executed. 



[Ch. III/Sec. A 244] 

the rest of the f~eld and the recent advances in ~ntegrated circu~t 

technology have led to a rapid expansion of the research ~nto highly 

parallel and spec~al~zed computer archLtectures; for an excellent 

state-of-the-art survey, the reader should refer to the January 1982 

Lssue of IEEE Oomputer MagazLne. 

The realizat~on of a part1cular arch1tecture, 1n a selected 

technology, LS done hierarchLcally Ln a way that displays the available 

useful parallel~sm; th~s means that module interconnectLons must be 

made explLcLt (topologically and Ln area utilLzatLon}, a fact whLch 

Lnduces close coupl~ng between archLtecture and technology. 

Today, packLng dens~t~es of tens of thousands of transLstors per 

chLp (LSI) are possible and ~nto the near future factors of 10 to 100 

tLmes thLs amount (VLSI) are pred~cted. Integrated cLrcu~ts are 

thought of as 2-dLmensLonal arrays of dev~ces now; however, WLth the 

~ntroductLon of stacked epitaxLal sLlicon layers, 3-dimensLonal structures 

are possible. Furthermore, the metal Lnterconnect and contact 

technolog~es have very strong effects on the archLtecture and ~ts 

performance in both, space and time. Consequently, Lt ~s necessary 

to carry out research programmes to effectLvely exploLt the potentLal, 

beLng offered by VLSI technology, to construct highly sophLstLcated 

'plug-Ln' processors to form a parallel system. 

Finally, of SLm~lar signLf~cance to the Lncrease Ln packLng dens~ty 

LS the rapLd development of sophLst~cated CAD tools, wh~ch wLll 

drast~cally cut down the design tLme and make the technology available 

to a much w1der user community. 



[Ch. III/Sec. A 245) 

To conclude, the requLrements of parallel archLtectures for VLSI 

have been dLscussed by a plethora of authors (see Kung [KUNG82], 

SeLtz [SEIT82]) and will be brLefly analyzed in Section B of the 

present Chapter. 



[Ch. III/Sec. A 246] 

III.A.2: APPLIED SCHEMAS FOR DESCRIBING PARALLELISM IN COMPUTER SYSTEMS 

An overview of our br~ef and selective top to bottom descript~ve 

approach to the general top~c of parallel process~ng (~.e. classif~-

cat1on of des1gns, global architectural structures, process1ng un1ts 

descr~ption, appl~cat~ons, programm~ng languages, des~gn and part~cular 

analys~s of parallel algor~thms), wnich was ~ntroduced ~n the prev~ous 

Chapters, can reveal that these descr~pt~ons have to be considered as 

'static', ~n the sense that they simply del~neate e~ther, an overall 

computer structur~or, dep~ct program instructions and their d~ctat~ng 

rules for execut1on. 
t 

Also, the way informat~on flows through PMS 

pr~it~ves ~s of course graph~cally indicated by buses and, w~th~n 

part~cular systems, by programming languages' control statements. 

However, the 'dynamic' sequences of events, requ1red to perform 

part1cular act1ons, are not represented 1n as clear a fash1on as one 

would l~ke. 

Th~s ~s not a d1ff~culty 1nherent ~n Computer Arch~tectures. There 

are very few algor1thm1c processes, amenable to a certa1n notation, 

reflect~ng the sequenc~g of 1mm1nent execut1ons. Regular expressions, 

drawn from formal language theory, are the most ev~dent examples of 

such a case. 

In part1cular for Software Engineer1ng, flowcharts, w1thout any 

t A notation due to BeU and lleweU [BELL?l}, comprising the foUowing 
'seven' primitive components: 1) 'Memory-M' (stores information over 
time without modifying its contents or format), 2) 'Link-L' (connects 
other components and transfers unaltered information), J) 'Switch-S' 
(builds links or transfer paths of control and data), 4) 'Control-K' 
(evokes the other PMS components), 5) 'Data-Operation-D' (alters units 
of information, Zike an ALU), 6) 'Transducer-T' (represents the 
communications with the external environment), and?) 'Processor-P' 
(not a purely primitive component, comprising all the previous six 
components, being able to interpret a stored program). 



[Ch. III/See. A 247] 

gaLn 1n formalism, dep1ct, 1n a very s1m1lar manner to the source 

programm1ng language, the execut1onal procedure. However, although 

flowcharts assist in the understanding of a process, they are restricted 

to the modell1ng of the flow of control, wh1le the representat1on of 

data structures and data flow 1s generally non-ex1stent. 

In Systems Arch1tecture several factors may 1ncrease the complex1ty 

of the representat1on, espec1ally when one w1shes the overall descr1ptions 

to 1nclude means for analysis and evaluat1on, 1.e. prov1de a des1gn 

apparatus. In general, such an apparatus should present sat1sfactory 

the fZow of control, the struatures(hardware and software 'data 

structures') 1n wh1ch 1nformat1on 1s stored and util1zed, the creation 

and deletion of processes, and the allocat1on and occupancy of resources 

dur1ng the processes' l1fet1mes. 

CUrrently, there 1s not such a completely successful modell1ng med1a 

and th1s 1s an area of 1ntense 1nvest1gat1on wh1ch has a var1ety of 

rather d1fferent sound1ng applied sehemas (or modeZs) to show; these 

schemas are appl1ed expl1citly and consequently they could, somehow, be 

c1ted 1n cont1nuance to the expZieit approach to parallel1sm d1scussed 

1n the prev1ous Chapter. 

The author though, urged by futur1st1c concepts (see par.-I.B.6), 

has placed them here, s1nce the1r modell1ng and dec1s1on powe~ so far, 

offers a certa1n clearness and cleanness; th1s perm1ts a simple, natural 

and conceptually closer to the next generat1on, representat1on of 

computer systems, a fact JUst1fy1ng the1r ga1ned 1ncreasing acceptance 

and ut1l1zat1on. 

Some of these schemas, depend1ng on the1r 1ntended appl1cat1on, but 



[Ch. III/Sec. A 248] 

WLthout beLng oblLVLOUS to the underlying computer archLtecture and 

its software, aLm mostly at formal descr1ptions, hence su1table for 

correctness analys1s (see M1ller [MILL7J]); while others are more 

attuned to the descrLption of large systems, less formal and more ak1n 

to parallel flowcharts (see Baer and Jensen [BAER77]). 

Most of the notat1onal means, that are utLlized to descr1be, model 

and study computer systems, are probably best thought of as graphs. 

Pipel1ned or Array computer arch1tectures are naturally descr1bed 

ut1l1z1ng graphs, 1n a s1m1lar way that programs are represented as 

flowcharts, flowgraphs, or other graph-l1ke structures. The branch of 

mathemat1cs known as Graph Theory offers useful term1nology and 

notat1on to descr1be computer systems; therefore, a brief retrospect1on 

of some, conceptually requ1red for the subsequent paragraphs, prel1m1nary 

def1n1tions about graphs 1s absolutely imposed. 

- Preliminary Graph Definitions 

d1: A aonneated graph 1s s1mply a set of 'nodes' connected by 

'l1nks' (each l1nk JOLned to two nodes, called 1ts ends or parts). 

Term1nology, though, 1s not standard and hence, the reader may f1nd 1n 

the l1terature 'vert1ces or po1nts' and 'edges or l1nes' as synonyms for 

'nodes' and 'l1nks', respectively. 

d2: The number of l1nks Joined to a node def1nes 1ts degree; Ln the 

case that all nodes are of the same degree, then the graph 1s called 

regular. 

d
3

: When there are several paths between a pa1r of nodes, these 

form cycles, s1nce they g1ve paths from a node back to 1tself; a graph 

free of cycles consLsts of a tree. 



[Ch. III/Sec.. A 249] 

d
4

: When a lmk ex1sts between every pa1r of nodes then the graph 

1s called complete. A graph wh1ch can be partit1oned into two subsets 

of nodes, so that each node 1s Joined to every node in the other subset, 

1s called a complete bipartite graph. 

d
5

: A graph hav1ng one-way l1nks (rather than undirected two-way 

lmks) 1s called a directed graph or digraph. 

The term ne~ork, 1n th1s Thes1s and elsewhere 1n the l1terature, 

has been ut1l1zed more generally 1n order to des1gnate computer 

architectures w~th several processors and memor~es, and as a synonym 

for graph; however, in the context of ne~ork flow problems 1t 1s 

defined as a directed grcq;h whose lmks are ass1gned non-negat1ve mteger 

values (des1gnat1ng, e.g. channel capac1ty or power), w1th two usually 

d1sJoint subsets of nodes, the sourcet and the sink*. 

our b1as, 1n the related paragraphs wh1ch follow, 1s towards a less 

formal pragmat1c approach requirmg as a f1rst quality of the schemas 

that they be descr1pt1ve of the control and mformat1on flows they 

represent. Th1s fact leads us towards graph models to wh1ch we can 

ass1gn var1ous levels of 1nterpretat1on. 

Amongst the modellmg med1a, wh1ch have been ut1l1zed to represent 

concurrent act1v1t1es, Petri Nets (1n the f1rst place) and the1r 

extens1ons and subclasses have been qu1te popular. The1r modell1ng of 

control flow, compared to flowcharts, 1s performed 1n a r1cher and 

more formal way and when supplemented by some data representat1on they 

can be of spec1f1c 1nterest to Systems Arch1tects. 

t 
Where, e.g. raw material or initial information is input. 

*where, e.g. finished products or solutions to problems are output. 



[Ch. III/Sec. A 250] 

Because of Petri Nets powerful general potent1al, a fact a priori 

establ1sh1ng them as the 'Kernel' of all modell1ng media, and since 

the l1terature on them 1s quite abundant, the author w1ll restr1ct 

h1mself to a part1cular, but br1ef and informal, 1ntroduct1on. 

III.A.2.1: ORIGINATION AND MODELLING POTENTIAL 0F'PETRI NETS' 

In many sc1ences, a phenomenon1s studied by examining not the 

actual phenomenon 1tself, but rather a modeZ of the phenomenon. To 

successfully ut1lize the modell1ng approach, however, requ1res a 

knowledge of both, the modelled phenomena and the modell1ng techniques. 

Then, by the appropr1ate man1pulat1on of the model, 1t 1s gracefully 

expected that new knowledge about the phenomenon under examination, as 

well as the model 1tself, w1ll be obtained w1thout any cost, 1nconven1ence, 

or danger that would emanate from the man1pulat1on of the real 

phenomenon itself. 

Most modelling makes use of mathemat1cs. In many phys1cal 

phenomena the1r sign1f1cant character1stics can be 1llustrated numer1cally, 

w1th equations or 1nequal1t1es descr1b1ng the hold1ng relat1ons amongst 

them. For example, the D1fferent1al Calculus was developed 1n direct 

response to the requirement for a means to model cont1nuously alter1ng 

properties, such as, pos1t1on, velocity or accelerat1on in Phys1cs. 

Petri Nets have been ut1l1zed as r1gorous models for modell1ng the 

dynam1cs of a system, as Turing Machinest (see Turing [TURI36]) have 

~uitabZy powerfuZ 'finite-state automatons', with 'potentiaZZy infinite' 
memory, capabZe of doing anything that any other computer might 
conceivabZy do - given enough time. 



[Ch. III/Sec. A 2511 

been for sequent~al computer organizations. More specif~cally, Petri Nets 

are abstract and formal modelling media, w~th properties, concepts and 

techn~ques especially dev~sed in a search for natura~ simple and 

powerful methods for describing and analyzing the ~nformat~on and 

control flow for the category of discrete-event systems. These systems 

may exh~b~t asynchronous and concurrent activ~t~es, more likely under 

certa1n constra1nts on the concurrence, precedence or frequency of them. 

In th~s aspect, at any given time, certain cond~t~ons w~ll hold, a fact 

wh1ch causes the occurrence of certa1n events. In accordance, th1s may 

lead to a change of the system status, causing some of the prev~ous 

cond~t~ons to cease hold~ng and others to beg~n then to hold. 

A br~ef h~storical retrospect~on reveals that, the theory of Petri 

Nets orig~nated in the early (1962) work of earl Adam Petr~, ~n Germany, 

who ~n his thes~s [PETR62] developed a new model of ~nformat~on flow ~n 

systems. This model was based on the concepts of asynchronous and 

concurrent operat~on by the parts of a system and the real~zat~on that 

relat~onships between the parts could be ~llustrated by a graph or net. 

Later on, Petri's 1deas came to the attent1on of a group of 

researchers, led by Anatol Holt, at Appl~ed Data Research, Inc., 

working on the Information System Theory ProJect (see Holt, et al [HOLT68]). 

Th~s group developed the theory of 'Systemics' (see Holt and Commoner 

[HOLT70]), concerned w~th the systems representation, analys~s and 

behav~our. It was th~s specific work wh~ch prov~ded the early theory, 

notat~on, and representat~on of Petri Nets, showing the way they could 

be appl~ed to the modelling and analys~s of systems of concurrent 

processes. 



[Ch. TIT/Sec. A 252] 

Petri, since then, has expanded upon his orLgLnal theory, carrying 

out work on the basLc concepts of Lnformation flow and the structure of 

concurrent systems. This has resulted Ln a form of general systems 

theory, called Net Theory {see [PETR?3], [PETR?5])whLch is related to 

Topology. 

In contrast to the work of PetrL, Holt and other European 

researchers, whLch emphasizes the fundamental concepts of systems, 

evolvLng into a more general and abstract theory, the work carried out 

Ln some AmerLcan research centers {e.g. at MIT) concentrates on those 

mathematical aspects of Petri Nets closely related to Automata Theory. 

AccordLng to this approach, systems are beLng modelled as Petri Nets, 

the convenLent manLpulatLon of which assLsts in der1VLng the propertLes 

of the modelled systems. 

ThLs mechanistic approach LS quLte dLfferent Ln orLentatLon from 

the more philosophical approaches of PetrL and Holt, and requLres the 

development of technLques for analyzLng Petri Nets Ln order to answer 

quest1ons arLsLng, like: 'What markingst are reachablet Ln a gLven 

Petri Net?' ,'What sequences of transitiont firingst are possLble?',etc. 

F1nally, in a rev1ew1ng and h1erarch1cally del1neate manner, from 

the modellLng potent1al aspect, there are certaLn areas Ln whLch Petri 

Nets would seem to be the perfect medLa to Lmplement: Those, Ln specLfLc, 

areas 1n wh1ch events occur asynchronously and 1ndependently. Large, 

powerful computer systems often utLlLze asynchronous parallel actLVLtLes, 

Ln an attempt to ach1eve optLmal parallelLsm and hence increase effective 

processing speed, while of course beLng determinate, i.e., still 

+This notational concept will be introduced in the following paragraph. 



[Ch. III/Sec.. A 253] 

produce correct results; consequently, Petri Nets can be naturally 

ut~l~zed ~n the modell~ng of 1Hardhlare'. In particular, Petri Nets 

have been assoc~ated with the descr~ption of general modular 

asynchronous systems (see Denn~s [DENN?O], Pat~l [PATI72]), and 

macromodules (see Clark [CLAR67]). In add~t~on, at Honeywell, Petri 

Nets have been ut~l~zed for ~nvest~gat~ng the fault-tolerant propert~es 

of des~gns (see Jack [JACK76]). 

At the Software Engineering design level, Operat~ng Systems (e.g. 

resources allocat1on, deadlock s1tuations, processes coord1nat1on, etc.), 

Compilers,and D~str~uted Database update algor~thms,are some of the 

applicat~ons whose control flows have been modelled w~th (extens~ons of) 

Petri Nets. 

To conclude, a var1ety of other research areas have been ment1oned 

as pcss~ble ~mplementat~on subJects of Petri Nets schemas, ~nclud~ng 

Queue~ng Networks, Traffic Control, D~str~buted Computer Systems, 

Legal Systems (see Meldman and Holt [MELD?l]), Proofs ~n Mathemat~cs 

t 
(see Genr~ch [GENR75]), and even Bra~n Modell~ng. 

III.A.2.1.1: THE STRUCTURE, MoDELLING PROPERTIES AND EXECUTION RULES 

OF 'PETRI NETS' 

The development of an appropr~ate theory has motivated most of 

the research on Petri Nets, s~nce the eff~c~ent ut~l~zat~on of them 

requ~res a careful understanding of the~r structural nature and 

tThP neuroscientist W. McCuZloch and the mathematician W. Pitts, in 1943, 
first proposed an idealized 'neuron-net' calculus for modelling the 
brain's computations [MCCU43]. 



[Ch. IIT /Sec. A 2541 

facLlLtLes; Ln fact, for a Petri Net to accurately model a system, Lt 

must ensure that all events sequences, possible to be met Ln real life, 

have been 1ncluded. Our introduct1on, here1n, to the1r bas1c concepts, 

WLll be presented briefly and less rLgorously defined and formalLzed, 

than they appear in the lLterature. The Lnterested reader in a more 

formal treatment should consult the provLded references. 

The pictorLal representation of a Petri Net by a graph LS a common 

practice Ln thLs research field. In fact and accordLng to the prelimLnary 

graph defLnLtLons of (par.-III.A.2), a Petri Net LS a directed bipartite 

graph contaLning two types of nodes: 'Circles' (called 'places') 

corresponding to conditions which may hold in the system, and 'bars' 

(called 'transitions') represent1ng the events wh1ch may occur. If a 

'link' (or 'arc') 1s dLrected from node i to node j (eLther, from a 

place to a trans1t1on, or v1ce versa), then i is an '1nput' to j, wh1ch 

Ln turn LS an output of i: for example, Ln Figure (III.A.2.1.1-fl), 

whLch depLcts a sLmple graph representat1on of a Petri Net, place p1 

LS an 1nput to transitLon t
2

, while p
2 

and p
3 

are outputs of transit1on 

t2. 

A maJOr feature of Petri Nets LS theLr asynchronous nature, wh1ch 

1n other terms means that there 1s no 1nherent measure of t1me, or the 

flow of tLme in the net. Since Ln real l1fe events take var1able 

amounts of t1me, Petri Net models should reflect this var1abil1ty by not 

depend1ng upon a not1on of t1me to control the occurrence of events; 

therefore, a Petri Net structure, Ltself must conta1n all necessary 

informat1on to def1ne the poss1ble sequences of events of a modelled 

system. 



[Ch. III /Sec.. A Z55] 

Figure III.A.2.1.1-[1: A s~mple Graph Representat~on of a 'Petri Net~ 

A Petri Net graph, ~n general, models the static propert~es of a 

system, much as a flowchart represents the stat~c propert~es of a 

computer program. In addit~on to the static properties represented by 

the graph, a Petri Net has dynamic properties result~ng from ~ts 

execut~on. The execut~on of a Petri Net ~s controlled by the pos~tion 



[Ch. III/Sec. A 256] 

and movement of 'markers' (called 'tokens'), indicated by black dots 

l.n the places of the net. 

In an l.nformal definJ.tJ.on-lJ.ke manner, a Petri Net wJ.th tokens 

l.S a 'marked Petri Net'. The dJ.strJ.butJ.on of tokens l.n such a net, 

called J.ts 'marking'~ defJ.nes the state of the net and the set of all 

-
its markJ.ngs forms the state space of the Petri Net . Tokens are moved 

by the 'firing' of the net transitions. A transitionJ.s 'enabled' to 

fl.re, when all of J.ts input places are full. A transition l.S 'potentially 

firable ', if there exJ.sts a sequence of transition fl.rJ.ngs that enables 

it. In dJ.fferent markings, dl.fferent transitions may be enabled. 

However, the lack of un1queness ~n the event occurrence leads to a non-

determinism l.n executJ.on; thl.s means that J.f at any tJ.me more than one 

transition l.S enabled, then any of them may fl.re, the choJ.ce bel.ng 

l.mposed randomly, or by unmodelled forces. The result of the transition 

fl.rJ.ng is to remove one token from each of J.ts l.nput places and to put 

one token on each of J.ts output places. No net change occurs, J.f a place 

l.S neither an l.nput nor an output, or l.S botht an l.nput and an output. 

The non-deterministic manner of executJ.on, albel.t it J.ntroduces 

some modelll.ng advantages, certainly causes a consl.derable complexJ.ty 

l.nto the analysl.s of Petri Nets. To reduce thl.s complexl.ty, the fl.rl.ng 

of a transition l.S consl.dered to be instantaneous, i.e. take zero tJ.me; 

then, sl.nce tJ.me l.S a 'continuous' variable, the probabl.ll.ty of any 

two or more events bel.ng executed Sl.ffiultaneously l.S zero, whl.ch Sl.mply 

t A marking 'M' is notationaZZy presented as a vector 'M'=(!-'1'1-'2 , ... '"n)' 

where each component 1-'· represents the number of tokens in the 'ith_place' 
of a 'Petri Net' with ~'n' 'places' in total. 

tIn this case it is necessary for a 'token' to be in the input 'place', 
albeit no change in marking occurs for this 'place'. 



[Ch. III/See. A 257] 

means that two transitions cannot f1re s1multaneously. The events 

being modelled that way are cons1dered as primitive events; 1n the 

case of no prim1t1ve ones {1.e. events requ1r1ng non-zero t1me), they 

are decomposed 1nto a 'beg1nning' and an 'end1ng', wh1ch are instantaneous 

events, plus the non-instantaneous occurrence. In the case that 

mark1ng 1s such that some enabled transitions are dependent on each 

other (1.e. share a common 1nput place), then they are sa1d to be 1n 

'conflict'. These concurrency and conflict concepts, wh1ch are basic 

to an understanding of Petri Nets, are illustrated 1n Figures (III.A. 

2.1.1-f2,f3). 

The f1r1ng of transitions may change the net marking, and 1t, 

1.e. the execut1on sequence, may continue as long as there ex1sts an 

enabled transition. It should be noted that a token 1n a placecan be 

ut1l1zed 1n the f1r1ng of only one transition, and a Petri Net 1s 

cons1dered 'safe', 1f a place cannot hold more than one token at any 

t1me. In add1t1on, a Petri Net iscalled 'conservative~ 1f the number 

of tokens 1n the net 1s conserved. 

A mark1ng M' 1s 'immediately reachable' from marking M , 1f the 

f1r1ng of some enabled transitions 1n the mark1ng M results 1n the 

mark1ng M'. A mark1ng M' 1s 'reachable' from M, 1f 1t 1s 1mmediately 

reachable from M, or 1s reachable from any mark1ng wh1ch 1s 1mmed1ately 

reachable from M. The set of all reachable mark1ngs from M is denoted 

as r(M}. 

A transition t 1s 'live' for a mark1ng M, 1f for all markings 

M" E r(M} there exists an execut1on sequence wh1ch reaches M" where t 

can f1re. A Petri Net is called 'live', 1f all its transitions are 11ve. 



[Ch. III/Sec. A 258] 

Figure III.A.2.1.1-f2: The Modell~ng of either Firing Order 'Concurrent' 
Events. 

Figure III.A.2.1.1-[3: The Firing of e~ther of the Transitions t., t. 
D~sables the other (i.e. ~n 'Conflict'). ~ J 



[Ch. III/Sec. A 259] 

Th~s liveness property ~s related to the absence of 'deadlock', that 

of safety to boundedness ~n the util~zat~on of resources, and conflicts 

are ut~l~zed to model synchron~zat~on constra~nts, as well as pred~cates. 

Another ~mportant aspect of Petri Nets ~s that they are uninterpreted 

models; ~n other terms, no mean~ng ~s attached to the places and 

transitions ~n th~s sort of nets deal~ng only w~th the abstract 

propert~es ~nherent ~n the~r structure. 

F~nally, a valuable feature of Petri Nets ~s the~r ab~l~ty to model 

a system hierarchically. An entire net may be replaced by a single 

place or transitionfor at a more abstract level modell~ng <'abstraction'), 

or places and transitions may be replaced by subnets to provide more 

deta~led modell~ng <'refinement'). 

Tb conclude, the reader must real1ze that term1nology, notat1on 

and emphas~s have varied w~dely ~n research on th~s subJect, a problem 

pr~nc~pally caused by Petri Nets power and the resultant d~vers~ty of 

appl~cations; however, as the author ment~oned at the beg~nn~ng of th~s 

paragraph, the ~nterested reader may refer to the or~g~nal works, 

proofs and details, gu~ded from the g~ven B~bl~ography ~n J.L. Peterson's 

paper (see [PETE??]). 

III.A.2.1.2: 'PETRI NETS' ANALYSIS APPROACHES, PROG~~ING CONSTRUCTS 

REPRESENTATION, AND FORMAL lANGUAGES 

In a h~stor~cal-l~ke retrospect~on, Petri Nets, w~th the~r un~form 

and s~rnple execut~on rules, were or~g~nally or~ented to play JUSt a 

descr~pt~ve (and sornet~rnes des1gn1ng) role, present1ng systems of 



[Ch. III/Sec. A 260] 

asynchronous concurrent processes 1n terms of s1mple and natural 

concepts. However, after a short t1roe, 1t became obv1.ous that another 

s~gn~f~cant ut~l~zat~on of Petri Nets could be ~n the analysis of the 

systems descr~pt~on for the locat~on of des~rable or not desirable 

propert1es. 

In actual fact, the first task ~n develop~ng analys~s techniques 

~s to def~ne the sorts of quest~ons that the analys~s procedures are 

to answer, as well as the propert1es to be stud1ed. It 1s obv1ous 

that these analys~s techn~ques should, r~ghtfully, be b~ased towards 

the solut~on of the most commonly (requ~red to be solved) problems, 

rather than problem areas of academ~c only ~nterest. 

There ~s a var~ety of ~nterest~ng quest~ons that m~ght be stud~ed 

w~th Petri Nets. Therefore, it ~s of h~gh ~mportance for general 

techn~ques to be developed, wh~ch are capable of answer~ng new quest~ons, 

s1nce, even the quest1ons des1gners themselves w1sh to 1nqu1re about 

the~r des~gns depend on the proJected ut~l~zat~on of them. However, 

some of the analyt~c quest~ons that one would, probably, l~ke to ~nqu~re 

about a Petri Net are qu~te d~ff~cult; hence, restr~cted subclasses of 

Petri Nets+ have been def~ned to ach~eve an eas~er analys~s ~n spec~f~c 

s1.tuat1ons. 

We must emphas~ze on the fact that many quest~ons can often be 

reduced to the so-called 'reachability problem't wh~ch ~s of h~gh 

s~gn~f~cance to the analys~s of Petri Nets. Th~s problem can be 

cons~dered as a spec~al case of the 'set reaahability problem', wh~ch 

+We shall discuss them in (par.-III.A.2.2). 

*The 'reachability problem' is: 'Given a marked 'Petri Net' (with marking 
'M') and a marking 'M'', is 'M'' reachable from 'M'?'. 



[Ch. III/Se.c.. A 261] 

~s to determ~ne 1f a g~ven set of mark~ngs ~s a subset of the reach-

ab~hty set r(M) of a marked Petri Net . 

Desp~te the fact that for the analys~s of Petri Nets several 

approaches have been cons~dered, one bas~c techn1que ~s ut~l~zed by 

almost all researchers 1n this area; the a~m of th1s techn~que is the 

determ~nation of a finite representation for the reachab~l~ty set of 

a Petri Net, s~nce most of the net propert~es are based on properties 

of th1s set. The representat~on of th1s set 1s best known as the 

'reachability tree~w~th nodes and arcs representing, respect1vely, 

mark~ngst of the Petri Net and the poss1ble changes in state due to 

trans~t1ons f1r1ng (see Karp and M1ller [KARP69], Keller [KELL72]). 

One should notice, however, that the reachab~l~ty set of a marked Petri 

Net ~s often infinite and consequently a f1n~te representat1on of it 

~mpl~es a 'many-to-one' mark~ngs mapp~ng onto the same node of the tree. 

s~nce ~t 1s out of the scope of th~s Thes1s, the author w1ll not 

proceed ~nto further deta~ls of how th~s reachab~l1ty tree 1s ut1l~zed 

for the Petri Nets analys~s. We must, however, underl1ne the fact that 

although many general questions (e.g. boundedness, safeness, eoverabilityt, 

etc.) can be answered by th~s tree, there st~ll exist some other more 

general quest~ons (e.g. l~veness, reachab~l1ty, etc.), wh~ch are not 

answerable by the reachab~l~ty tree; ~n add1t1on, some Petri Net problems 

(e.g. the subset, the equality problem, etc.) are not solvable 

(undecidable) despite the1r apparent s~m1larity to the reachabil1ty 

problem (see Baker lBAKE73], Hack [HACK?5]). 

t 
The 'root' of the tree is labelled with the initial marking. 

*The 'eoverabiZity' problem is the following: 'Given a marked 'Petri Net' 
and a marking 'M', does there exist a marking 'M'', in 'r(M} ', such that 
'M' '~'M'?'. 



[Ch. III/Sec.. A Z6Z] 

From the determ~nat~on of the actual usefulness of Petri Nets 

aspect, a very s~gn~f1cant factor, under Lntense 1nvest1gat1on, 1s the 

computational-complexity of the reachab~l~ty problem; in fact, ~t cannot 

be exactly est~mated, but ~ts lower bounds can be determ~ned. 

L~pton has shown that the reachab~l~ty problem is exponential time-hard 

and exponential space-hard (see L~pton [LIPT75]); ~n other terms, the 

amount of time and memory space requ~red to solve th~s problem must be, 

at least, an exponent~al funct~on of the length of the ~nput descr~pt~on 

of the Petri Net (~n the 'worst' case). Th~s ~s a lower bound; ~n 

fact, the actual complex~ty could be much worse, wh~ch makes the cost 

of answering even s1mple quest1ons quite s1gn1f1cant and such an analys1s 

unfeasilile. 

In the follow~ng of th~s paragraph, we shall, ~n part~cular, 

emphas~ze and exempl~fy the way that most common programm~ng language 

constructs can be ~llustrated by ut~l~z~g Petri Nets. 

Although transitions and places can be, s~mply, ~ntroduced on each 

arc and node of a flowchart, respect~vely, to obta~n the Petri Net 

program representat1on, however, the1r bas1c Lnterpretation 1s not qu1te 

followed. In fact, ~n such a modell~ng, transitions w1ll correspond to 

executable statements, wh~le places w1ll act as deciders, bes~des 

hav~g the1r usual mean1ng of cond~t~on holders. In Figure (III.A.2.1.2-fl) 

a Petri Net representat1on of a 'DO-WYILE'and an 'IF-THEN-ELSE' 1s 

1llustrated. 

In add1t1on, Petri Nets may represent the partitioning of tasks. 

For example, the ALGOL-l~ke program 1n (III.A.2.1.2:1) 1s ~llustrated 

by the Petri Net ~Figure (III.A.2.1.2-f2). 



Parbegin 

Sl: Parbegin 

Sl.l: Begin ••• End; 

51.2: Begin ••• End; 

Parend; 

S2: Begin ••• End; 

S3: Begin ••• End; 

Fa rend 

[Ch. III/Sec.. A 263] 

(III.A.2.1.2:1) 

On the other hand, Petri Nets are extremely valuable for represent-

~ng propert~es, such as, process synchronization and mutual exclusion. 

For example, a semaphore can be represented as an ~nput place shared by 

the transitions (critical sections), wh~ch are to be mutually exclusive. 

Th~s approach ~s ~llustrated ~n Figure (III.A.2.1.2-f3). 

If 
lmt1al 

Body 

---::.!'"-_,f-_ Loop Terminal 
• 
• (1) DO-WHILE Construct (h) IF-THEN-ELSE Construct 

Figure III.A.2.1.2-fl: Programming Language Constructs Representat~on 
v~a 'Petri Nets'. 



[Ch. III/Sec. A 264] 

Figure III.A.2.1.2-[2: 'Petri Net' Modell~ng of Parallel~sm • 

• 

Figure III.A.2.1.2-[3: 'Petri Net'Representat~on of Mutual Exclusion. 



[Ch. 111/See. A 265] 

F~nally, ~n a very br1ef 1ntroduct1on, an 1mportant area 1n 

which Petri Nets have been ut1lized 1s the study of fo~al languages 

(see Peterson rFETE?6], Hack [HACK75aD. To represent the act1ons of 

the modelled system, the transitions of the Petri Net, s1nce theoret1cally 

a finite number, are labelled ut1l1z1ng a finite alphabet set l: . In 

accordance, a labelled marked Petri Net def1nes a set of strings over l: , 

each str1ng correspond1ng to a possible execution 1n the net. The set 

of all poss1ble str1ngs def1nes a Petri Net Language. 

Several var1et1es of Petri Net languages result from sl1ghtly 

d1fferent definit1on approaches. For example, d1fferent labell1ng 

polic1es create an ent1re group of Petri Net languages (e.g. A-free 

languages, etc., see Peterson [FETE??], p.243). 

Another 1mportant determ1nat1ve factor of Petri Net languages 1s 

the defin1t1on of the set of final states;1n other terms, s1nce the 

execut1on of a labelled Petri Net commences from an 1nit1al mark1ng (or, 

one of a finite set of 1n1t1al mark1ngs), and term1nates 1n any element 

of a set of final markings, d1fferent classes of languages (1n factfour, 

namely: L-type, G-type, T-type,and P-type), correspond to d1fferent 

def1n1tions of the set of f1nal mark1ngs. 

To conclude, the or1ginal 1mpetus for study1ng Petri Net languages 

1ntended to attempt settl1ng some of the dec1dab1l1ty quest1ons for 

Petri Nets; however, although there appears a plethora of d1fferent 

approaches to the study of Petri Nets by the ut1l1zat1on of formal 

language theory (see Keller [KELL72], Cresp1-Regh1zz1 and Mandr1ol1 

[CRES74)), much further research is requ1red 1n th1s cruc1al area. 



[Ch. III/Sec. A 266] 

III.A.2.2: EXTENSIONS, SUBCLASSES AND RELATED l'bDELS To'PETRI NETS' 

The acceptance and success of any computational schema, ma1nly, 

depends on two pr1nc1pal factors, generally work1ng at cross purposes, 

1ts 'modelling' and 'decision' power, respectively. Behind the modelling 

power term h1des the schema's ab1lity for a faithful representation of 

the system to be modelled; while, beh1nd the decision power term hides 

the schema's abil1ty to analyze part1cular model versions determin1ng 

propert1es of the modelled system. 

The Petri Net models, to be specific, appear as a compromising 

attempt between these two factors; as a matter of fact, a search1ng 

answer to the l1m1ted modelling power of finite-state models offered 

the r1ght mot1ve for the dev1se of PetPi Nets, wh1ch would attempt not 

only to 1mprove th1s modelling power, but also, hopefully, to retain 

most of finite-state models decision power. However, not all researchers 

have been thoroughly sat1sf1ed with the ach1eved modelling powePt of 

Petri Nets, therefore, several proposals have been 1ntroduced anew 1n 

an attempt to increase this power even more. 

- Extensions of Petri Nets 

One s1mple extension to Petri Nets was the1r 1mmediate extens1on 

to k-safe; 1n other terms, more than one token would be allowed 1n a 

place, and thus, a backlog of tokens could be bu1lt up to be ut1l1zed 

by later fir1ngs. 

Another primary and s1gn1ficant extens1on was to remove the 

constra1nt that a place could contr1bute or receive only one token 

from the f1r1ng of a tPansition. Th1s was ach1eved by allow1ng multiple 

t 
Since the coppect modelling of Pelatively Peasonable systems was still 
imposs~ble (see AgePWala and Flynn [AGER?3}). 



[Ch. III/See. A 267] 

arcs between transitions and pZaces, sign1fy1ng the number of tokens 

required; th1s class of Petri Nets have been called 'generalized' Petri 

Nets (see Hack [HACK?4]), and pr1nc1pally are equ1valent to ord1nary 

ones. 

A more fundamental extension of Petri Nets was due to a maJor 

l1m1tat1on in the1r modelling power, wh1ch was their 1ncapacity to 'count' 

the number of tokens 1n a place, or equ1valently, to test whether a 

place 1s empty. Th1s extens1on 1nvolved the so-called zero-testing 

(see Keller [KELL?2]); 1n other terms, 1t meant the 1ntroduct1on of 

arcs, from a pZace to a transition, wh1ch would allow the 'test1ng' of 

empt1ness of a place, 1.e. a transition would f1re only 1f the place 

conta1ned zero tokens. These spec1al arcs, called 'inhibitors', were 

1ntroduced by Agerwala and Flynn [AGER?3] and they have been denoted 1n 

t 
var1ous ways ; th1s extension has 1ncreased the Petri Nets modelling 

power to almost the power of a Turing Machine. 

Many other extensions of Petri Nets were 1ntroduced, some of them 

be1ng: 

{i) 'Disjunctive logic' (1n contrast to the conjunctive logic of 

transition fir1ng), wh1ch greatly enhances Petri Nets descr1pt1ve power. 

Disjunctive logic, 1nstead of a NOT cond1t1on represented by an inhibitor, 

allows the dec1s1on mak1ng events to be modelled as transitions, 

1tself be1ng denoted by a '+' at the 1nput or output of the transition. 

(ii) 'Token absorbers', useful for 'k1ll1ng' redundant processes and 

for leav1ng the net in a 'Properly Terminating' - PT cond1tion (see 

tEither as arcs with a 'dash', or as arcs with a circle at the oriented 
end. 



[Ch. III/Sec. A 268] 

Baer [BAER82]). 

(iii) 'Coloured tokens', to model program reentrancy and the instant1at1on 

of several ident1cal processes (see Jensen [JENS79], Baer and Jensen 

[BAER??]). In th1s extens1on places conta1n bags of coloured tokens 

and are connected to transitions via labelled arcs, the labels be1ng 

e~ther sets of colours, or free var1ables. In accordance, the f1r1ng 

rules are mod1f1ed as follows: Assum1ng a (pi,t)tbeing labelled with a 

set Ni' then t can be enabled only 1f pi conta1ns, at least, one token 

from each colour belong1ng to Ni and the firing will remove one token 

from each colour; if (t,pj) is labelled w1th Nj, then the f1r1ng of t 

w1ll depos1t on p j one token from each colour belonging to N j" 

In conclusion, rather than carrying on d1scuss1ng other extens1ons, 

such as, time-bounds on transition f1r1ngs, or other constra1nts on the 

subsets of places, wh1ch can be full concurrently or t1m1ng attr1butes 

for transition f1r1ngs, the author w1ll emphas1ze on the fact that, 1n terms 

of modelling power, Petri Nets seem to be JUSt below Turing Machines, so 

that any s1gn1f1cant extens1on would result 1n Turing Machine equ1valence 

(see Peterson and Bredt [PETE74]). 

Subclasses of Petri Nets 

The motive behind the definition of these subclasses was a 

compensat1onal 1ncrease 1n decision power to balance the modelling power 

l1m1tat1ons. More spec1f1cally, for Petri Nets many dec1s1on problems 

were equ1valent to the reachability problem, whose complexity has shown 

to be (albeit 1ts decidability) very d1fficult to solve; so Petri Nets 

m1ght be too powerful to be analyzed, a fact wh1ch consequently leads 

tTh . . , . th 7 , 't "t. , e notat~on ~s: p.- ~ -p.ace, t- rans~ ~on. 
~ 



[Ch. III/Sec. A 269] 

to the def1n1t1on (w1th restr1ctions on the1r structure for better 

analyzab1l1ty) of a number of Petri Nets subclasses, 1n the hope of 

finding a subclass of known decision pcwer for practical purpcses. 

In particular, two subclasses are most commonly cons1dered, the 

'State Machines' and the 'Marked Graphs' (see Halt and Commoner [HOLT?O]). 

The State Machines are restr1cted Petri Nets, so that each transition 

has exactly one input and output, be1ng obv1ously conservative and hence 

finite-state; 1n fact, they are exactly the class of finite-state 

mach1nes. This f1n1te property of them results 1n a s1gn1f1cantly high 

decision power, but they are of l1m1ted usefulness 1n modell1ng infin1te 

systems. 

On the other hand, a Marked Graph is a Petri Net 1n which each place 

has exactly one 1nput and output transition. Var1ous algor1thms exist 

which can prove that a Marked Graph 1s li~and safe and the reachability 

problem 1s solvable on them. Therefore, Marked Graphs have h1gh de

cision pcwer, but a l1m1ted modelling one, since they are restr1cted 

to model systems without control flow branches; 1n other terms, parallel 

act1v1t1es can be eas1ly modelled, wh1le alternat1ve ones cannot. 

In add1t1on to these two classes, there are some others like, the 

class of 'Simple' Petri Nets, the class of 'Conflict-free' Petri Nets, the 

class of 'Persistent' Petri Nets (see Landweber and Robertson [LAND75)) 

and the class of 'Free-choice' ones (see Hack !HACK?2)). In part1cular, 

Hack has shown that the class of Free-choice Petri Nets can qu1te 

successfully model a class of systems, called production schemata, 

wh1ch are s1m1lar to assembly-lLne systems. 



[Ch. III/See. A Z70] 

- Related models to Petri Nets 

In th~s part we must emphas~ze on 'Vector Addition Systems', which 

were def~ned by Karp and M~ller £KARP69] and are equ~valent to Petri Nets. 

A Vector Addition System ~s essentially a mathemat~cal formulat~on, 

in terms of vectors, of the markings and transitions of a Petri Net, 

in an attempt of a more formal manipulation of the nets. A generalizat~on 

of these systems produced the related and equ~valent model of the 'Vector 

Replacement Systems'(see Keller [KEL£72]). 

The author w~shes to po~nt out the fact that Petri Nets certa~nly 

are far from being the only model of concurrent systems to have been 

developed. There are many other models developed to-date, ~nclud~ng, 

'Program Graphs' (see Rodnguez U?ODR6?J), 'Computation Graphs 1 (see Karp 

and Miller [KARP66]), 'Message Transmission Systems' (see R~ddle £RIDD72]), 

'Flo~ Graph Schemata' (see Slutz [SLUT68]), 'Complex Bilogic Directed 

Graphs' (see Gostelow [GOST?l]),etc! 

TO conclude, the reader should be rem~nded that, th~s part~cular 

introduction to Petri Nets ~s Just~f~ed from the fact that these nets 

cons~st of the 'Kernel' of all the above models. Compar~sons of the 

propert~es of many of these models (see Peterson and Bredt [PETE74]), 

have shown that most of them are e~ther subclasses of Petri Nets, or 

are equivalent to them, of course under a certain predef~ned not~on of 

the equivalence* property; consequently, th~s exclus1ve reference to 

Petri Nets has the form of a tr~bute to the fundamental offer of th~s 

p1oneer1ng schema. 

tBaer [BAER73} has published a survey of some of these models. 

+Lipton, Snyder and Zalcstein [LIPT74] found important differences in 
the 'modelling' power amongst the various models of concurrent systems, 
by utilizing a considerably different (but equally valid) definition 
of equivalence. 



[Ch. III/See. A 271] 

III.A.3: OBJECTIVES OF 'fiFTH GENERATION COMPUTER SYSTEMS' - FGCS 

ANn NOVEL DECENTRALIZED MACHINES As THEIR POTENTIAL 

ARCHITECTURAL BASIS 

Although researchers, from all over the world, have already started 

competing in what could be the most sign~ficant scientific race of th~s 

century - the race to develop the 'F~fth Generat~on Computer System' - FGCS, 

the path to that goal ~s far from being stra~ght-forward; the d~fficulties 

are almost as daunt~ng as the prospects are exc~ting. 

The term Fifth Generation, grossly, understates the task volume, by 

~ply~ng a cont~nuat~on ~n progress from the first four generat~ons, which 

have dr~ven computers from valves, through transistors and microchips, 

to extremely powerful m~croch~ps. Th~s new generat~on w~ll be proved to 

be more than JUSt a great leap ahead, s~nce ~t is a leap ~n the dark. 

In other words, the Fifth Generation ~n the comput~ng doma~n, for 

parallelizat~on, it ~s analogous to attempt~ng a leap of s~milar s~ze 

w~th the one made ~n aeronaut~cal sc~ence w~th the commencement of 

fl~ghts ~nto space. The progress and ~mprovement there, from the 

Wright brother's f~rst plane, to a modern Jumbo Jet, has been made 

stead~ly depend~ng on the same a~r travel pr~nc~ples; fl~ghts ~nto space, 

on the other hand, ~ntroduced a much more d~fferent and advanced 

technology. 

The forthcom~ng co~uters generation w~ll mean much the same th~ng 

for comput~ng: A complete re-th~nk and a lot of innovat~ve technology. 

The pr~nc~pal d~fference, between the up-to-date known computer 

systems and those of the Fifth Generation, lies ~n that the former 

perform exactly what they are asked to, follow~ng a pre-arranged track; 

the a~ of the next generat~on w~ll be, as much as poss~ble, the 



[Ch. III/Sec. A 272] 

acqu~sition of knowledge and ~ts intelligent util~zat~on. In other 

terms, FGCS w~ll be bu~lt to operate more l~ke a human bra~n and the 

operators will be able to ~nterrogate them qu~ckly d~scover~ng the~r 

l~ne of reason~ng. 

Although the real~zation of the Fifth Generation concept requ~res 

a whole ser~es of technolog~cal and sc~ent~fic advances, already there 

are a few 'Proto-Fifth'computer systems designed to explore certain 

t 
aspects of th~s generat~on. In part~cula~Br~t~sh p~oneer~ng has 

exh~b~ted some strengths ~n Fifth Generation hardware research, by hav~ng 

developed by INMOS the so-called transputer (see also par.-II.A.2), 

wh~ch ~s the f~rst computer on a s~ngle ch~p, ~nclud~ng memory as well 

as a m~croprocessor and a number of cornmun1cat1on l1nks, wh1ch w1ll 

allow d~rect connect~on to other transputers (see May and Shepherd 

[MAYS84]). 

The transputer ~s planned to be ut~l~zed ~n the Alice exper~mental 

computer, wh~ch is currently being developed at Imper~al College and 1s 

pr1marily des1gned for inferencing ut~l1zing parallel operat1ons. Th~s 

Alicecomputer ~n turn, w~ll be, hopefully, ut~l~zed ~n the Plessey 

proJect, wh1ch a1ms to produce a speech recogn1t1on system, w1th a 5000 

words vocabulary, a ~n~mal error rate, and the ab1l~ty to adapt to 

different speakers. 

In general terms, for the FGCS to succeed 1n ach1ev1ng the above 

set goals, five key-problems have to be cracked, concern1ng, the 'Very 

Large Scale Integrat1on' - VLSI, the Logical Inference, the Storage, 

the Parallel Processing and f1nally the Natural Langua9Bto be ut1l1zed. 

t However, the real problem will be to combine all these aspects into 
one all-embracing super-machine. 



[Ch. III/See. A 273] 

The s~l~con-based VLSI construct~on of devices w~ll offer the 

potent~al of plac~ng vast amounts of computer power ~nto a tiny area, 

s~nce the forthco~ng generat~on will require ch~ps carrying qu~te a 

few m~ll~ons of computing elements. In accordance with the present pace 

of progress, one could eas~ly attempt the pred~ct~on that, at the end of 

this decade ~t would be feas~ble to place the equ~valent of today's 

huge computers on a few t~ny ch~ps; any such pred~ct~on, however, 

probably will not come true due to the fact that des~gn and fabr~cat~on 

problems grow d~sproportionately with ~ncreas~ng chip complexity. 

The Logicar Inference problem underl~nes the computer's ab~lity to 

think for ~tself; however, th~s w~ll requ~re novel arch~tectures, 

software, and spec~al languages for the programm~ng, wh1ch w~ll need to 

be not 'procedurar• l~ke Fortran, Cobor, etc., but 'decrarative' (~.e., 

cons~st~ng of statements) like Prorog, Lisp, etc. The advantage of such 

languages ~s that the programmer, ~nstead of ~nstruct~ng the computer 

the solut~on steps, s~mply feeds ~t w~th all the requ~red knowledge for 

the part~cular subJect (i.e. the known facts, and the rules and relat~on

sh~ps connect~ng them), ~nform~ng it what ~s to be performed, not how 

to perform ~t. 

However, from the Storage po1nt of v1ew, th1s new generat1on of 

computers w1ll have to manage huge amounts of 1nformat1on 1n a useful 

form, wh1ch w~ll requ~re a s~1lar to the human bra1n flexlble approach. 

Today's Databases can cope with a few thousand items and the assoc1at~ons 

amongst them; the FGCS w~ll be ai~ng at Kno~redge Bases comparable 1n 

s1ze to the Encyclopaed~a Br~tannica. 

The solut~on of the d1ff1cult Pararrer Processing problem should, 



[Ch. III/Sec. A 274] 

eventually, not only produce huge 1ncreases 1n process1ng speed, but also 

to m1n1m1ze the great difficult1es of keep1ng track of many operat1ons 

go1ng on s1multaneously; and th1s 1s a v1tal key-problem to crack, 

s1nce there l1es the cruc1al difference wh1ch w111 make the forthcom1ng 

generat1on to perform much more l1ke a human brain. 

F1nally, the last problem, wh1ch 1s requ1red to be tackled, concerns 

the ab1l1ty of the FGCS to understand things 1n terms s1m1lar to those 

we use 1n real l1fe; 1n other words, 1t 1mpl1es the requ1rement of a 

Natural Language. Th1s general understand1ng of what one really means 

when 'speak1ng' to a computer, forms one of the most 1mportant problems 

fac1ng researchers around the world; s1nce, 1t 1nvolves such problems 

as, how word order affects mean1ng, amb1gu1t1es resolut1on, metaphors 

and 1ntent1ons recogn1t1on, etc. 

In a more pragmat1c and determ1nate manner, rev1ew1ng the pr1nc1pal 

aspects of FGCS, at f1rst, one can eas1ly real1ze that each system w111 

t 
consist of a network of comput1ng elements , to prov1de e1ther a general-

purpose or a spec1al-purpose funct1on, rang1ng 1n power from a ma1n-

frame computer, to a m1n1ature m1crocomputer; while, on the other hand, 

that the ma1n ob]ect1ve of FGCS 1s the real1zat1on of the so-called 

'Knowledge Informat1on Process1ng Systems' - KIPS, wh1ch pr1mar1ly 

1mpl1es the development of a new software for inference comput1ng 

capable of handl1ng vast amounts of data. 

As a f1rst part1al conclus1on, 1n relat1on to the former aspect, 

for FGCS to be programmed as 1nd1v1dual computers and for the1r comput1ng 

+ 
Either physically close, as on a single highly integrated chip, or 
dispersed across a building or country (see also par.-I.A.l). 



[Ch. III/Sec. A 275] 

elements to cooperate together, 1t 1s necessary to ex1st a s1ngle 

computer arch~tecture to wh~ch they w~ll all conform. 

More analytically, the maJor components of KIPS are, the Inference 

Engine and the Know~edge Base System. 

Although inference operat~ons can be ~mplemented on a convent~onal 

von Neumann computer, an effect1ve model for parallel execution 1s 

requ~red, to perform inference operat~ons of pract~cal s~ze w~th h~gh-

speed. t A variety of d~fferent computat~onal models have been proposed 

as the most el~g~ble for being the architectural bas~s for FGCS - namely, 

Data F~ow. Contro~ F~ow, String Reduction, Graph Reduction models, or 

even a 'synthes~s· of them called Recursive Control F~ow model. 

More spec~f~cally, ~n 'data-dr~ven' (e.g. Data F~ow and 'mult~-

thread' Contro~Flow) models, the ava~lab~l~ty of operands tr~ggers the 

execut~on of the operat~ons to be performed on them, wh~le ~n 'demand-

dr~ven' (e.g. Reduction) models, the requ~rement for an operand tr~ggers 

the operation(s) that w~ll generate ~t. S~nce a comprehens~ve cover~ng 

of all these models and the~r underly~ng concepts w~ll be too extensive, 

the author will l~m~t h~s reference to the Data Flow model only, wh~ch 

seems to be one of the most attract~ve and feasible solut~ons for the 

above problem; however, the part1cularly 1nterested reader can refer to 

Treleaven and Hopk~ns [TREL81] and Treleaven [TREL82] for a specif~c 

analysis of all these models and concepts. 

On the other hand, KIPS requ1re knowledge 1nformation of a large 

s1ze; consequently, to real~ze a Knowledge Base System, w~th such a h~gh 

performance~, sophisticated hardware support is requ~red, a powerful 

t 
These models are distinguished by the way computations manipulate their 
arguments and by the way the execution of computations is initiated. 

~Since it is required to be highly general, so as to handle any k~nd of 
know~edge data. 



[Ch. III/Sec. A 276] 

means of whLch can be proved to be the so-called Data Base machLne. 

More specLfLcally, such a machLne wLll be utLlLzed for storLng and 

accessLng LnformatLon, whLle the Inference Engine for drawLng 

conclusions. However, an add1t1onal d1ff1culty w1ll be due to the 

requLrement for the development of specLal software for managLng the 

Knowledge Base, whLch wLll not JUSt be a usual Database contaLnLng only the 

known facts, Lt WLll Lnclude the rules and relatLonshLps connectLng 

them, as well. 

AccordLngly, we can conclude that the Data Flow and Data Base 

machLnes, whLch we brLefly Lntroduce in the followLng paragraphs, are 

the most promLsLng candLdates for the basLc architecture of KIPS. They 

WLll, eventually and hopefully around the end of thLS decade, have been 

combLned, VLa a high-speed local networkt, Ln a workLng prototype, 

namely a functLonally dLstrLbuted archLtecturet, whLch WLll probably 

bear the name of a 'Superinference' machLne (see Sakamura, et al [SAKA82]); 

however, SLnce the immLnent general plan LS the establLshment and 

experLmentatLon of the new technology Ln lLmited areas, rather than 

producLng an Lntelligent system wLth a full Knowledge Base, it LS the 

author's opLnLon that research should concurrently start on network 

archLtectures, whLch may offer the basLs for further systems growth. 

tThe transfer rate of this network will probably be lOOMb/s at the 
initial stage, to be improved, later on, to lGb/s. 

*Remote accesses to this system will be possible through a suitable 
'Fifth Generation' communication network. 



[Ch. III/Sec. A 277] 

III.A.3.1: ORIGINATION, fUNDAMENTAL HARDWARE AND SOFTWARE PRINCIPLES, 

CHARACTERISTICS OF THE 'DATA FLOW' MACHINE ARCHITECTURES 

As inference is the fundamental operation ~n KIPS and 'tr~al and 

error' and non-determ~n~st~c operat~ons w~ll be the character~st~c of 

Inference Engines, and since the Data FZow model was suggested as a 

suitable parallel hardware to form the~r bas~s, a FGCS project should 

commence w~th an evaluation and feas~~l~ty study of the existing Data 

FZow mach~ne architectures. 

Although one cannot prec~sely define or~g~nators of 'data-dr~ven' 

computation, ~t appears that its theoret~cal basis was set in the paper 

of Karp and M~ller [KARP66l, ~n 1966. A couple of years later (1968), 

J.B. Denn~s and, almost at the same t1me, Tesler and Enea commenced 

the~r data flow research; the former, def~ned graphs allow~ng the 

express~on of algor~thms by expla~n~ng data dependency only, while the 

latter, ~n a report they publ~shed (see [TESL68)), were concerned w~th 

programm~ng languages embody~ng syntact~c and semant~c features for data 

flow programming. The part~cularly ~nterested reader, for a comprehens~ve 

h~storic evolut~onal chron~cle, should refer to Syre [SYRE82), who 

presents, although not complete, a relat~ve amount of data flow stud~es 

~n the form of a d~agram cover~ng the per~od 1968-80. 

To cover the way machine code programs are represented and executed 

~n a DataFZowmach~ne arch~tecture, the author w~ll ut~lize the term 

prog~ organization; in fact, there are two fundamental computat~onal 

mechanisms concerned with the program organizat~on, the data and the 

eontroZ mechan~sms. 

The data mechan~sm def~nes the way a part~cular argument ~s ut~l~zed 



[Ch. III/Sec. A Z78] 

by a number of ~nstructions, wh~le the control mechan~sm def~nes how 

one instruct~on causes the execut1on of one or more other 1nstructions, 

and also the result~ng control pattern. 

A data flow program organ~zat~on has a 'by value' data mechanism 

and a 'parallel' control mechanism. More explanator~ly, a 'by value' 

data mechan~sm means that an argument, generated at run-t~me, is shared 

by replicat~ng ~t and giv~ng a separate copy to each access~ng ~nstruct~on, 

th1s copy be1ng stored as a value 1n the 1nstruction; a 'parallel' {or, 

'by ava~lab~l~ty') control mechanism means that the control s~gnals the 

ava~lab~l~ty of arguments and an ~nstruct~on is executed when all ~ts 

arguments (e.g. ~nput data) are available. For compar~sons w~th the 

other computational mechan~sms underly~ng the models ment~oned in 

(par.-III.A.3), the author refers the ~nterested reader to Treleaven 

[TREL82]. 

In a data flow comput1ng env1ronment, 1nformat1on 1tems appear as 

operation packets and data tokens. In part~cular, data flow programs 

are represented by directed graphs+, held ~n the memory sect~on, wh~ch 

show the flow of data between instructions; the arcs of these data flow 

graphs are queues of data tokens directed from one operator node to 

another. Each ~nstruct~on cons~sts of an operator, one or two operands, 

and one (or more) destinations to wh~ch the part~al result (~.e. data 

token) w~ll be sent, all these form~ng the so-called operation packet. 

Many of these packets or tokens are passed amongst var~ous resource 

sect1ons 1n a Data Flow machine; therefore, such a mach1ne can assume 

apaoket communication arch~tecture, which ~sa type of d~str~buted 

+For their definition refer to (par.-III.A.2). 



[Ch. III/Sec. A 279] 

Mult~processor organizat~on. In Figures (III.A.3.1-fl,f2), respect~vely, 

are ~llustrated the instruct~on execution mechan~sm, and three data flow 

graph snapshots of a computation, where data tokens are represented by 

black dots. Data Flow machine arch~tectures, depend~ng on the way of 

handling data tokens, are d~stingu~shed ~nto the 'Static' and the 'Dynamic' 

models, the del~neat~on of wh~ch ~s ~ntroduced in Figures (III.A.3.1-f3,f4). 

More spec~fically, ~n a 'Static' DataFZow mach~ne tokens are not 

labelled and control tokens must be ut~l~zed to acknowledge the proper 

t1m1ng in transferr1ng data tokens between 'nodes'; consequently, since 

success~ve sets of tokens could not be d~st~ngu~shed, only one token ~s 

allowed to ex~st on any arc, at any g~ven t~me. J.B. Denn~s and h~s 

research team at the MIT Laboratory for Computer Science are currently 

develop~ng such a computer model. 

On the other hand, a 'Dynamic' Data Flow mach~ne ut~l~zes tagged 

tokens (labelled or coloured), to allow mult~ple tokens to appear 

s~multaneously on any ~nput arc of an operator node. Through this tagging, 

the context of each token can be un~quely ~dent~fied and, although 

(b) (cl 

y: + ( l 1 B/1 et: ( ) 

B: 

Figure III.A.3.1-f1: Instruct~on Execut~on Mechan~sm ~n a Data Flow 
Machine for the Computat~on of a=(b+l) •(b-e). 



[Ch. III/Sec. A 280] 

(3)=b (5)=C 

Step 1 

* 

Step 2 

* 

Step 3 

* 

(-8) =a 

Figure III.A.3.1-[2: Three Snapshots of the Data Flow Computat1on for 
a=(b+ 1) *(b-e). 

addit1onal hardware 1s requ1red to attach these tags and to perform tag 

match1ng, no control tokens are requ1red to acknowledge the transfer of 

data tokens amongst 1nstruct1ons. Such a dynam1cally tagged data flow 



[Ch. TIT/Sec.. A 281] 

model suggests that maximum parallelism can be exploLted from a program 

gra ph. 

• MEMORY UNIT • • • • (Instructions) • 

••• ••• 

UPDATE 1--------------- FETCH 
UNIT Instruction Address UNIT 

••• ••• 
(Data 
tokens) 

I-. • PROCESSING UNIT 
ENABLED 

• • INSTRUCTION • (Processors) ~ QUEUE 

Figure III.A.J.l-[J: A 'Static' Data Flow Machine OrganizatLon. 

MEMORY UNIT 

(Instructions) 

••• MATCHING 
UNIT (Matched token sets) 

UPDATE/ 
FETCH UNIT 

••• ••• 
Data 
okens) '---:-

• PROCESSING UNIT I-. ENABLED 

• (Processors) • INSTRUCTION 
• t-!- QUEUE 

Figure III.A.J.l-[4: A 'Dynamic' Data Flow MachLne OrganLzation. 



[Ch. III/Se.c. A 282] 

If the graph LS cyclic, the taggLng allows dynam1cally unfoldLng of the 

LteratLve computatLons. Dynamic Data Flow computers include, the 

Manchester machLne developed by Watson and Gurd, at the UnLversLty of 

Manchester, and the Arvind machLne, under development at MIT, whLch has 

evolved from an earlLer data flow project at the UniversLty of CalLfornLa, 

at Irv~ne. 

Although both these packet communLcation organizatLons comprLse 

multLple processLng elements, capable of an Lndependent and asynchronous 

executable LnstructLon packets evaluation, they are based on two 

dLfferent schemes for LnstructLon executLon synchronLzatLon, the so-called 

'Token Storage' and 'Token Matching' schemes. 

In the former scheme, sLngle tokens from the Lnput pool of the Update 

Unit, through thLs unLt, are actually stored Lnto theLr destLnatLon 

LnstructLon, or a copy of Lt, Ln the Memory Unit; an LnstructLon LS 

enabled to be forwarded, through the Fetch Unit, to the Enabled 

Instruction Queue, when Lt has receLved all its requLred operand tokens. 

In the latter scheme, the Matching Unit LS utLlLzed to group 

together and temporarLly store tokens taken from Lts Lnput pool, 

destLned for the same LnstructLon. When the group LS complete Lt LS 

released to the Fetch/Update Unit, whLch Ln turn forms the enabled 

LnstructLons, by mergLng the values from the token sets WLth a copy of 

theLr LnstructLon, and forwards them to the Enabled Instruction Queue. 

In conclusLon, both, Static and Dynamic Data Flow machLne 

architectures, have a pipelined ring structure. In general, thLs ring 

comprLses four resource sectLons: Memories, Processors, Routing Network, 

I/0 Unit , but Lt can be certaLnly extended to many other Lmproved Data 



[Ch. III/Sec.. A 283] 

Flow arch1tectural conf1gurat1ons. 

In order to ident1fy and br1efly clar1fy the role of these 

structural components on some actually implemented Data Flow mach1ne 

arch1tectures, the pr1mary a1m of the follow1ng paragraph w1ll be the 

1ntroduct1on of two character1st1c representat1ves of the above 

categor1es: The Denn1s Static mach1ne at MIT and the Manchester Dynamic 

machine 1n England. 

III.A.3.1.1: PROTOTYPE 'DATA FLOW' MACHINE ARCHITECTURES, PROGRAMMING 

lANGUAGES, AND FURTHER DESIGN ALTERNATIVES 

The intent under the Data Flow mach1ne architectures presentation 

spectrum l.S the lay1.ng out, 1.n a comparative-ll.ke manner, of the 

arch1tectural concepts of the Denn1s Static mach1ne and the Manchester 

Dynamic machine, rather than any descr1pt1on of the1r 1mplementat1on 

deta1ls; the outl1ne of both arch1tectures is introduced 1n Figures 

(III.A.3.1.1-fl,f2). 

The Denn1.s mach1.ne 1.s designed to explo1.t the concurrency 1.n programs 

represented by Statio data flow graphs. In this mach1ne arch1tecture one 

can 1dent1fy five maJor sect1ons, wh1ch, be1ng connected by channels 

through wh1ch 1nformat1on flows, can operate 1ndependently w1thout 

ut1liz1ng central timing s1gnals: 

-Memory Section, wh1ch 1s subd1v1ded 1nto 'cell blocks' (each 

w1th a un1que address, the cell identifier) to hold 1nstruct1ons. 

Processing Section, wh1ch cons1sts of process1ng un1ts that perform 

funct1onal operat1ons on the data tokens. 



[Ch. III/See. A 

Arbitration Network, whLch transmLts operatLon packets from the 

memory sectLon to an approprLate processing unLt accordLng to the 

operatLon code of the packet· 

Control Network, whLch del1vers a control token from the 

proceSSLng sectLon to the memory sectLon. These tokens act as 

'acknowledge SLgnals', when data tokens are removed from output 

arcs, to correctly Lmplement the fLrLng rule for program graphs; 

and, 

Distribution Network, whLch accepts data tokens from the 

processLng sectLon and, utLlLzing the address of eacht, directs 

284] 

them to the correct regLster of an Lnstructlon cell. In fac~ each 

LnstructLon cell LS composed of three registers; the first 

regLster, holds the operatLon to be performed and the address(es) 

of the register(s) to whLch the result of the operatLon LS to be 

dLrected, whLlst the other two regLsters, hold the operands to 

be util1zed 1n the 1nstruct1on execut1on. 

The Manchester Data Flowmach1ne, also, demonstrates five functLonal 

blocks commun1cat1ng 1n a clockw1se d1rect1on around a r1ng: 

Switch, whLch handles external Lnput/output. 

Token Queue, whLch LS a 'FLrst-In, FLrst-out' (FIFO) buffer to 

equalLze data rates around the system. The token package LS the 

ma1n un1t of informat1on, as 1n the Static model, compr1sing a 

label Ln addLtLon to the data value and destLnatLon poLnter. 

- Matching Store, whLch although 1t LS Lmplemented usLng a conventLonal 

random access store w1th hardware hash1ng techn1ques, 1t 1s 
t 
Each result token comprises a result value and a destination address 
derived from the instruction being processed by a processing unit. 



[Ch. III/Sec. A 285] 

'assocl.at1.ve' 1.n nature. The assoc1.at1.ve f1.eld J.S formed from a 

concatenat~on of the label and next ~nstruct~on fields, the value 

f~eld being the token value. In the case of single ~nput nodes, 

where no match~ng operat~on ~s required, a control d~g~t ~n the 

next instruct~on ~nformat~on allows a bypass of th~s unit. 

Instruction Store, wh~ch ~s a random access memory hold~ng the 

d~rected graph descr~pt~on. Each entry is ~n the form of a nodal 

operat~on and the addressest of the subsequent nodes to wh~ch the 

data token(s) w~ll be d~rected; and, 

Processing Units, wh~ch are m~croprogrammed ~croprocessors w~th 

a 'd1.str1.but1.on' and 'arb1.trat1.on' system. The former system, 

on rece~pt of an executable package selects any processor wh~ch 

~s free and allocates the nodal operat~on, wh~lst the latter 

system controls the output of tokens from the processors. 

The del~neate presentat~on of the Data Flowmach~ne arch~tectures 

would be incomplete without a br~ef outl~ne of the methods ava~lable for 

programming them, albe~t no attempt w~ll be made to address the problems 

of do~ng th~s; after all, the Data Flow mach~nes are language-or~ented 

mach~nes. In fact, the~r research started w~th data flow languages and 

~t ~s the rap~d progress in VLSI that has pushed the construction of 

several hardware Data Flow prototypes ~n recent years. 

It would seem that only graphical languages (see Denn~s [DENN?4]) 

would offer a natural way of express~ng a d~rected graph; however, 

textual languages are far more fam~l~ar and ~t can be argued that 

tin fac~in this implementation, nodes are able to specify two output 
destinations for their result. 



[Ch. Ill/Sec. A 286] 

PROCESSING SECTION 

PROCESS-
ING UNIT 

• • • 
-

PROCESS-
ING UNIT 

(Control 

J 
tokens) ••• 

r 
CONIROL 
NETWORK 

(Data (OperatiU 
tokens) I packets) 

••• 

----- INSTRUCT- ~ 
ION CELL 

Lo BLOCK 
1-

DISTRIBUT- • • • ARBITRATION 
ION • • • • • • NETWORK 

NETWORK 

INSTRUCT-

~ ION CELL L------
MEMORY SECTION 

Figure III.A.J.l.l-[1: The Denn1s 'Static' Data Flow Mach1ne 
Arch1tecture at MIT. 



[Ch. III/Sec.. A 287] 

1-- PROCESSING I 
UNIT 

1--- ---
1--- ---
1--- ---
f.-- PROCESSING 

UNIT 

Input 
INSTRUCTION STORE l Tokens 

Ope ratio Next 
SWITCH I I~struction 

+ Next or Output 
Instruction B Litera Tokens 

TOKEN QUEUE 

ValuE Label Next . Ins ructio 

MATCHING STORE 

Value Label Next 
Instl'ltsti-

Figure III.A.J.l.l-[2: The Manchester 'Dynamic' Data Flow 
Mach1ne Arch1tecture. 



[Ch. III/Sec. A 

features such as data structures are eas~er to express into a textual 

form. 

One approach would be to cons~der a convent~onal language and 

translate ~t ~nto a data flow graph. The pr~nciples ~nvolved ~n such 

a translat~on were or~g1nally suggested by M1ller and Rutledge lMILL66]. 

2881 

Another class of languages, the Single Assignment languages, are 

more naturally su1ted to the express1on of parallel~sm ~n data flow form. 

An eff~c~ent data flow language should be able, to express 

parallel1sm ~n a program more naturally, to promote programm1ng 

product~v~ty, and to fac1htate close interact1ons amongst algor~thm 

constructs and hardware structures. Examples of data flow languages 

include, the 'Irv~ne Data flow' - ID language and the 'Value Algor1thm~c 

Language' - VAL, amongst several Single Assignment and Functional 

Programming languages that have been proposed by many computer 

researchers. Other s~~lar languages, such as LUCID (see Ashcroft and 

Wadge lASHC??J), have been developed w1th emphas~s on the proof of 

program correctness. It 1s, certa1nly, too early to forecast wh1ch of 

these approaches w~ll eventually be the most fru~tful, s1nce the exact 

form of languages wh1ch w1ll ga1n acceptance 1s yet to be dec1ded. 

F~nally, we must underl~ne the fact that, there are several data 

flow proJects with spec~al arch1tectural approaches, d1fferent from the 

Static or Dynamia mach1nes ment1oned prev1ously. For example, the 'Data

Dr1ven Mach1ne' - DDM tree structured architecture, currently located at the 

Un~vers1ty of Utah, the LAU Data Flow system 1n TOulouse, France, w1th 

32 b1t-s11ce m1croprocessors 1nterconnected by mult1ple buses, etc. 

In fact, up to 1983, only the DDM system at Utah, the Dynamia 



[Ch. III/Sec.. A 289] 

t 
'Experimental system for Data-Dr~ven processor arraY' - EDDY ~n Japan, 

the Manchester mach~ne and the French LAU system, were operational Data 

FZow computers. 

s~nce most of the data flow proJects emphas~ze on the run-t~me 

simultaneity at the instruction ZeveZ, which somet~mes (because of h~gh 

system overhead, in detect~ng the parallel~sm and in schedul~ng the 

ava~lable resources) results 1n a very poor performance, we shall 

conclude th~s paragraph w~th two other des~gn alternatives to the data 

flow approach; they should offer higher machine compat~b1l~ty, as well 

as, a better ut~l~zat~on of the ex~st~ng software assets, the 'dependence-

dr~ven' and the mult~level •event-dr~ven' approaches~ 

The former approach was proposed by Ga]ski, et al [GAJS81], ~n 1981. 

The ~dea was to ra~se the level of parallel~sm to compound-function 

level at run-t~me, and apply the data flow pr~nc1ples over multiple 

compound-function nodes. A compound-function ~s a collection of 

computational tasks (e.g. array (vector, matr~x) operat~ons, blocks of 

ass~gnment statements, etc.), that are su~table for parallel processing 

by multiprocessors. A program is a dependence graph connect~ng the 

compound-funct~on nodes; 1n a sense, th1s approach 1s a 'procedure-

driven' approach, where trad~tional h~gh level languages can be ut~lized 

~nstead of data flow languages. 

The 'event-driven' approach appeared as a general1zat1on of the 

former one, made by Hwang and Su [HWAN83]. An event ~s a log1cal 

act1vity, wh1ch can be defined at the JOb level, through, down to the 

1nstruct1on level, after a proper abstraction or engrossment. However, 

+The functionaZ Zanguage to be utilized in EDDY is caZZed 'VALID' 
(see Hwang and Briggs [HWAN84}). 



[Ch. III/Sec. A 290] 

a program abstraction mechan~sm is requ~red to be developed, wh~ch 

should not require h~gh system overhead. In add1t~on, a h1erarch~cal 

schedul~ng of resources is requ~red and this has proved to be the most 

challeng1ng part of the research in this approach. Heur~st~c algor~thms 

are requ~red for schedul~ng mult~ple events to the ava1lable resources; 

~n fact, for the schedul~ng of the events, this approach considers the 

ut1l~zat~on of priority queues on all enabled activ~t~es, ~nstead of 

the 'First-In, F~rst-Out' (FIFO) schedul~ng pol~cy of a 'data-dr~ven' 

system. 

As a f1nal remark, for research-or1ented readers, a number of 

~portant issues, that demand further efforts towards the development 

of workable Data Flow Mult~processor systems, can be found ~n Hwang and 

Br1ggs [HWAN84]. 

III.A.3.2: A GENERAL SPECIFICATION OF RESEARCH SUBJECTS AND CHARACTERISTICS 

FOR A FGCS 'DATA BASE' MACHINE ARCHITECTURE 

In general terms, a Data Base mach1ne can be thought of as e~ther, 

a 'dual• un1t stand-alone system, where one unit 1s a 'Host' funct1on 

handl1ng un1t and the other a 'Database' funct1on handl1ng un1t; or, as 

JUSt a 'Host' attached funct~onal un~t, conceptually, equ~valent to the 

latter un~t above. 
t 

A proposed general conf1guration for a Data Base 

mach~ne 1s ~llustrated ~n Figure (III.A.3.2.-fl). 

From the type of functions aspect, that should be ass~gned to a 

Data Base mach~ne, one should d~st1nguish funct~ons such as, data 

tsee Tanaka, et aZ [TANA82]. 



[Ch. III/Sec. A 297] 

man~pulat~on, data compression and encod~ng, memory management, query 

analys~s and opt~m~zat1on, 1ntegr1ty control, concurrency control, 

recovery control, etc. 

ThLs paragraph, primarily, aLms towards a general descriptive 

presentatLon of the Data Base machLne fundamental concepts and character

LstLcs, rather than the analysLs of proposed Database organLzatLon 

schemas. However, an effectLve solutLon to thLs problem would be a Data 

Base machLne that supports a relational model (see Ullman [ULLM82]), 

SLnce through that model any kLnds of data can be expressed; as 

pr1m1t1ve operat1ons could be cons1dered the •set' or1ented operat1ons, 

such as the ones defLned Ln relational algebra (e.g. unLon, intersectLon, 

CartesLan product, etc.), whLch WLll form the host interface. 

The confLguration of the hardware system LS a means to realLze the 

parallelLsm of processLng, whLch can be Lntroduced under three forms. 

The first form of parallelLsm refers to the utLlLzatLon of many 

processing elements and memory modules, connected to each other through 

connect1ng circuits, such as packet sw1tches; it 1s closely related to 

the concurrent mult1-user support, to permit the s1multaneous execut1on of 

many user querLes, and/or updates, whLch LS essentLal to Lmprove the 

system throughput suffLcLently enough, to be utLlLzed as the Knowledge 

Base System for the Inference Engine. 

The second form refers to the Lnternal parallelLsm of a processLng 

element, that can be made of many functional unLts (e.g. sorter); Lt is 

the maLn factor to lLmLt the speed of a sLngle prLIDLtLve operation and 

LS realLzed by the parallel and pLpelLned process~ng amongst many unLts. 

Finally, the third form refers to the ~nternal parallelLsm of a 



[Ch. III/Sec. A 

memory module (1.e. 'work1ng memory'), made of many memory cells and 

several functional un1ts (e.g. search modules); 1t a1ms substant1ally 

to reduce the data volume that flows with1n the network of process1ng 

elements. 

To-date, there have been proposed many Data Base mach1ne 

architectures, but almost all of them support a 11m1ted data capac1ty. 

We should 1nvest1gate a mechanism of large capac1ty handling feature, 

through, probably, pagination, or staging networks that w1ll load 

necessary relat1ons to the working memory modules from a mass memory. 

'Secur1ty' and 'Integrity' support funct1ons are other very 

important research subJects. The future Data Base systems w1ll not be 

stand-alone systems, but, hopefully, connected to each other by 

communicat1on l1nes, thus form1ng a total 'virtually' integrated data 

system. However, to ach1eve th1s object1ve, problems such as, data 

model homogen1zation, query process1ng, comm1tment control aga1nst 

fa~lures, concurrency control of update operations, etc., have to be 

tackled. 

F1nally, as the Data Base mach1ne arch1tecture w1ll be 1mplemented 

by VLSI dev1ces, the hardware structure had better be modular. 

To conclude, another 1mportant research subJect, and undoubtedly not 

the last one, concerns the Reliability problem, wh1ch as the system 

s1ze will grow, will become severer because of 1ts great 1nfluence to 

the users 1n the case of a system 'failure'; however, it may requ1re 

a great overhead to collect the check po1nt 1nformat1on and update 

records, due to the large data capacity. 

292) 



I Query 
Processor 

I Page Manager I 
I Scheduler I 

'DATA BASE 1 MACHINE 

PE Processing Element 

MASS MEMORY 

STM Search & foTmat Transformation Mechanism 

MM Memory Module 

AFP Associative File Processor 

[Ch. I11/Sec. A 293] 

Figure III.A.3.2-fl: A General Conf~gurat~on for a 'Data Base' Mach~ne. 



_ ~1E<!HiJ1l ®N 

rs 

EMBEDDING 

INFORMATION fLOW SCHEMES 

ON GRIDS AND 

IN CHIP AREA AND TIME 



•my Up· Ninr- ~obs lp· s urnrt> it, 

.1\nb nttmt>b tt trysting bttlJ, 

1\n.b bttbt> qis mrsst>ngt>rs ribt> fodq 

1Enst nn.b urt>st nn!l snutq nnb nnrtl], 

\no summon qis nnnlJ.' 

:£cuf"' rq J"Jrn:icm.i ~'?o-mc, 

J~fia~J, ,1,18•~2 

i'4or!l .ffinrnulttlJ 



[Ch. III/Sec. B 295] 

III.B.l: THE IMPACT OF THE TECHNOLOGICAL INNOVATION ON FUTURE 

ARCHITECTURES - THE VLSI CHALLENGE 

The subJect of th~s paragraph, rather than technolog~cal ~nnovat~on 

~n general, w~ll be what ~s widely believed to be the most ~portant 

opportun~ty s~nce the industr~al revolut~on, r~vall~ng ~t ~n s~gn~f~cance. 

In fact, futur~sts foresee that two new and far-reach~ng technolog~es, 

'Very Large Scale Integrated'- VLSI c~rcu~ts and Biotechnology,w~ll 

dominate ~ndustr~al ~nnovat~on and development over the rema~nder of 

th~s century. 

Th~s unique c~rcumstance ~s created by the emerg~ng VLSI technology 

w~th wh~ch enormously complex digital electron~c systems can be 

fabr~cated on a single ch~p of silicon, one-tenth the s~ze of a postage 

stamp. In fact, VLSI ~s a new med~um for the real~zat~on of computat

~ons, ~t ~s a statement about system complex~ty, and not c~rcu~t 

performance. It ~s a medium with amaz~ng propert~es, wh~ch w~ll 

profoundly affect and rad~cally change our modes of communicat~on, 

commerce, educat1on, enterta1nment, sc1ence and the underly1ng rate of 

cultural evolution; the qual~ty of human l~fe, ~n general, can be 

improved ~n remarkable ways by these changes. Th~s profound effect 



[Ch. III/Sec. B 296] 

will not be caused by the fact that VLSI allows us to make mLcro

processors, since they are JUSt processors, as we have known them for 

more than two decades, whLch hardly exploit VLSI's amazLng propertLes. 

The fundamental property of VLSI Ls that, Lt is a medLum Ln which 

computatLons can be realLzed that exhLbit an unrLvalled degree of 

concurrency. We are not referrLng to ~ few cooperating processes, but 

to a surface of thousands, and Ln the future possLbly mLllLons, of 

SLmultaneously actLve computLng elements, WhLch wLll form modular 

hLghly parallel-parallel, possLbly heterogeneous, computLng structures. 

From the historLcal aspect, the concept of the Lntegrated cLrcuLt 

goes back to the early days of the vacuum tube to valve, when some 

compound valves were made. However, the first proposal for a solLd

state 1ntegrated c1rcu1t, based on sem1conduct1ng mater1al 1 was made 

Ln 1955 by G.W.A. Dummer, at the Royal Research EstablLshment, Malvern. 

ThLs concept was brought to practLcal realLzatLon Ln 1959, sLmultaneously 

by Westinghouse Electric CorporatLon and Texas Instruments, under the 

U.S. ALr Force Molecular ElectronLcs Programme. One can, therefore, 

compare the dramatLC change Ln the level of integratLon, which has been 

made over the past 25 years, and whLch has brought us from dLscrete 

semLconductor devices to VLSI components. 

The technology has now reached a stage where Lt LS capable of 

yLeldLng even further Lmprovement Ln packLng densLty of the cLrcuitry. 

However, we may face a lLmLtatLon Ln our capabLlity of evaluatLng the 

cLrcuLts themselves Ln order to guarantee theLr performance. It LS 

possLble that future developments Ln VLSI may be more constraLned by 

computer-aLded desLgn and testing, than they will be by the physLcal 



[Ch. III/Sec. B 297] 

lim~tat~ons of process~ng. For a comprehens~ve chron~cle of the 

evolut~onary course of the semiconductor technology, the reader should 

refer to Larkin [LARK81]. 

In relat~on w~th what was sa~d above, approaches to device des~gn 

have progressed so sign~f~cantly, to the po~nt that hardware des~gn now 

rel~es heav~ly on software techn~ques, ~.e. spec~al rules for c~rcu~t 

layout and h~gh level des~gn languages (e.g. Geometry languages, Sticks 

t 
languages, Register Transf~languages, etc.) • In fact, some of these 

languages offer the powerful ch~p fabr~cat~on capab~l~ty d~rectly from 

a des~gn they express. 

Illustrat~ve of th~s trend ~s the term silicon compiler, ut~l~zed 

by hardware des~gners to refer to computer-a~ded des~gn systems 

currently under development. Analogous to a convent~onal software 

comp1ler, the s1l1con comp1ler w1ll convert l1ngu1st1c representat1ons 

of hardware components 1nto mach1ne code, wh1ch can be stored and 

subsequently util~zed ~n computer-assisted fabr~cat~on. The relat~ve 

evolution of the component f~elds compr~s~ng m~croelectron~cs technology 

~s del~neated ~n Figure (III.B.l-fl)t. 

The actual ~mplementat~on of such des~gns requ~res a h~ghly 

soph~st~cated manufactur~ng technology, found ~n silicon wafer 

fabr~cat~on, the most powerful attr~bute of which ~s its pattern 

independency. In other words, there ~s a clear d~st~nct~on between, 

the process~ng performed dur~ng wafer fabr~cat~on, and the des~gn effort 

that creates the patterns to be implemented. Th~s d~st~nct~on requ~res 

a prec1se spec1f1cat1on to the des1gner of the process1ng l1ne 

tSee Ullman [ULLM84], Smith and DalZen [SMIT84}. 

tsee Mead [MEAD81], Moralee [MORA82]. 



FUNDAMENTAL 
KNOWLEDGE 

DEVICE 
PHYSICS 

~~-----,, 
,' ,' 

I 
' , / 

CIRCUIT AND 
LOGIC DESIGN 

+ 
1982 

[Ch. III/Sec.. B 298] 

TIME 

Figure III.B.l-[1: The Relat~ve Evolut~on of the 'VLSI' Component F~elds. 

capab~l~t~es. The spec~f~cation, usually, takes the form of a set of 

perm~ss~le geometr~es, that may be ut~l~zed by the des~gner w~th the 

knowledge that, they are w~th~n the resolut~on of the process ~tself, 

and, that they do not v~olate the dev~ce phys~cs, requ~red for the 

proper operation of trans~stors and ~nterconnect~ons formed by the process. 

When reduced to the1r s1mplest form, such geometr1~al constra1nts, are 

called design ruZes. These constra~nts are of the form of m~n~mum 

allowable values for certain widths, separations, extensions, and overlaps 

of geometr~cal obJects, patterned ~n var~ous system levels (see Mead and 

Conway [MEADBO]). 

Although there ~s not any ~ntent~on to proceed ~nto any further 

deta~ls of the des~gn rules, we must ment~on a character~st~c and 

fundamental fact concerning the progress~ve shr~nkage of the m~n~mum 



[Ch. III/Sec. B 299] 

d~stance, w~thin wh~ch one can expect what ~s depos~ted on the wafer 

actually to appear, ~n the des~gn of ~ntegrated c~rcu~ts. This ~s that, 

all d~mens~ons ~n designs are spec~f~ed not ~n absolute s~zes, but ~n 

terms of mult~ples of an elementary d~stance parameter, the so-called 

length-unit, A-lambda. Th~s parameter ~s, approx~mately, the max~mum 

amount of 'acc~dental' d~splacement that we can expect, when we depos~t 

a feature on the wafer. In the early l980st, A was usually cons~dered 
-6 

to be about 2~m (l m~cron(~m) = 10 meters). 

From the aspect of program des~gn, however, to real~ze them as VLSI 

c~rcu~ts w~ll be very d~ff~cult. This d~ff~culty ~s, pr~mar~ly, caused 

by the many mutual dependenc~es 1ntroduced by concurrency, that ~s, 

by the sheer complex~ty that uncontrolled concurrency ~nfl~cts on us. 

It ~s undoubtedly an ~mportant area of study, but ~t does not address 

VLSI's most urgent problem requ~r~ng mathemat1cal attent~on, the problem 

of ~ntellectually master~ng the des~gn of ultraconcurrent comput~ng 

structures. 

However, to proceed w~th plann~ng for the problems even further, 

1n the near, relat1vely, future the sem1conductor 1ndustry, under current 

h~gh-resolut~on photo-l~thograph~c methods of fabr~cat~on, w~ll, probably, 

reach the fundamental l~m~ts after only two or three more doubl~ngs ~n 

c1rcu1t dens1ty. Moreover, as these max1mum dens1t1es are approached, 

the proport~on of manufactur~ng defects w~ll ~ncrease, necess~tat~ng 

costly qual~ty assurance procedures. 

In fact, 1t has recently occurred to researchers, 1n, both, Bio-

technology and Microelectronics, that these two technolog~es may be 

tToday sub-micron levels are envisaged. 



[Ch. III/Sec. B 

combined, and th1s 1s not an utopia, to allow the ut1lizat1on of bio

log1cal mater1als and processes 1n the des1gn and fabr1cat1on of m1cro

electron1c dev1ces. BioeZeetronies,therefore, a h1ghly revolut1onary 

and far-reaching, ~n 1ts departure from convent1onal m1croelectron1cs, 

proposal, w1ll represent a convergence of the requirement 1n m1cro

electron1cs for ever-1ncreas1ng dens1ty of c1rcu1t elements and the 

1nherent capac1ty of b1olog1cal systems to transport electrons on a 

molecular scale. Its ult1mate goal w1ll be the fabr1cat1on of a 

remarkably spec1al electron1c dev1ce, the bioehip. 

300] 

In conclus1on, the seeds of the new wave of 1nnovat1on have, already, 

begun to take root; undoubtedly, much of the thrust 1s yet to come, not 

from the 1ntegrated c1rcu1t 1ndustry 1tself though, but from the 

collaborat1ve effort of faculty members 1n many un1vers1ty computer 

sc1ence departments and scattered 1nd1v1duals throughout the 1ndustry. 



[Ch. III/Se.c. B 301] 

III.B.2: fUNDAMENTAL ARCHITECTURAL CoNCEPTS IN DESIGNING SPECIAL

PURPOSE VLSI COMPUTING STRUCTURES 

H~gh-performance special-purpose VZSI computer systems are 

typically ut~l~zed to meet spec~f~c applicat~on requ~rements, or to off

load computations that are especially tax~ng to general-purpose computers. 

However, s~nce most of these systems are built on an ad hoa basis for 

specif~c tasks, methodolog~cal work ~n th~s area is rare. In an 

attempt to ass~st ~n correct~ng th~s ad hoa approach, some general 

des~gn concepts w~ll be d~scussed, while ~n the follow~ng paragraph, 

the part~cular concept of SystoZia arch~tecture, a general methodology 

for mapp~ng high level computations ~nto hardware cellular structures, 

w~ll be ~ntroduced. 

The problem of embedd~ng a network of processors and memor~es, 

~nto a set of VLSI chips, is currently be~ng exam~ned under a sim~lar 

spectrum as that for the problem of embedd~ng graphs, whose nodes are 

computers, or gates, onto gr1ds so as to m1n1m1ze area. Most of the 

researchers explor~ng th~s problem (e.g. Thompson [THOM80], Le~serson 

[LEIS80]), usually make certa~n assumpt~ons; for example, they assume 

that w~res run and dev~ces are or~ented in only hor~zontal and vert~cal 

d~rect~ons, everyth~ng is embedded on a square grid, all dev~ce nodes 

are at the same layer (th~s ~s often called planar, although, s~nce 

w~res l~e ~n two or more add~t~onal layers, non-planar graphs can be 

embedded), etc. 

VLSI ch~p des~gn rules, typically, spec~fy a gr~d on wh~ch the 

graph structure of l~nked gates must be embedded. Many researchers 

have begun to explore the area and t~e-complex~ty of var~ous s~mple 



[Ch. III/Sec. B 

algorithms, when effected by opt1mal embedd1ngs of the computation on 

such a grid. 

Although a VLSI ch1p is roughly a 4-8mm square of s1l1con, yet 1t 

outperforms several cub~c feet of twenty plus years of old computer 

components. The computat1onal power of a ch1p 1s often measured by 

the number of transistors it conta~ns. However, th~s 1s qu1te a m1s

lead1ng approach, for the organizat1on of a ch1p's c1rcu1try has a very 

strong effect. In general, regular ch1p des1gns make more eff1c1ent 

ut111zation of s1licon area, wh1ch 1s a more natural measurement factor 

for the c1rcu1t size, than the number of trans1stors. Such designs 

ut1l1ze less area for the w1r1ng amongst transistors, leaving more 

space for the trans1stors themselves. 

From the memory capacity aspect, the number of bits per ch1p has 

been quadrupl1ng every few years; 1n the m1d 1970s, technology passed 

through the era of lK, 4K and 16K b1ts memory ch1ps. In 1981, the 

capac1ty was expanded to 32K b1ts and 1t was pred1cted that by 1985 1t 

would have been 1ncreased to 64K b1ts. 

302) 

In part1cular, for the des1gn of spec1al-purpose VLSI computer 

systems, cost-effect1veness has always been a maJOr concern; the1r 

fabr1cat1on cost must be low enough to JUSt1fy the1r spec1alized, and 

consequently l1m1ted, appl1cabil1ty. Cost can be dist1ngu1shed 1n non

recurring design and recurring part costs. Any fall of the latter's 

cost 1s equally appl1ed for the mer1t of both, spec1al-purpose and 

general-purpose computer systems. Furthermore, th1s cost 1s even less 

s1gn1f1cant than the des1gn cost, since the product1on of spec1al

purpose computer systems 1n large quant1t1es 1s qu1te a rare phenomenon. 



[Ch. III/Sec. B 303] 

Hence, conclus~vely, the design cost of such a system should be 

relat~vely small, for ~t to be more attract~ve compared to a general

purpose computer, and th~s can be ach~eved by the ut~l~zat~on of 

appropr~ate arch~tectures. More explanator~ly, ~f the decomposit~on 

of a structure ~nto a few types of simple substructures, wh~ch are 

repet~vely ut~l~zed w~th s~mple interfaces, ~s feas~ble, then s~gn~ficant 

cost sav~ngs can be ach~eved. 

In addit~on, spec~al-purpose computer systems based on s~ple 

and regular des~gns are l~kely to be moduU7r and, therefore, adJUStable 

to various performance goals -that is, systems cost can be made 

analogous to the performance requ~red. Th~s fact reveals that 

accompl~sh~ng the arch~tectural challenge for s~ple and regular des~gns, 

y~elds cost-effect~ve spec~al-purpose computer systems. 

S~nce such VLSI comput~ng structures can funct~on as peripheral 

devices, attached to a convent~onal host computer, typ~cally rece~ving 

data and output results, I/O cons~derat~ons greatly ~nfluence the overall 

performance. A computat~on rate, wh~ch w~ll balance the ava~lable I/0 

bandw~dth with the host, is the ult~mate performance goal of a spec~al

purpose computer system. Therefore, the l~kely modular attr~bute of 

such a system ~s h~ghly necessary, since ~t w~ll allow the flex~b~l~ty 

of the structure to match a variety of I/O bandw~dths; and, s~nce an 

accurate a priori est~mate of ava~lable I/O bandw~dths, 1n complex 

systems, ~s often 1mposs~ble. 

However, th~s problem becomes espec~ally severe, when a very 

large computat~on ~s performed on a, relat~vely, small spec~al-purpose 

computer system; ~n this case, the computat~on must be decomposed. 



[Ch. III/Se.e. B 304] 

t In fact, one of the maJOr challeng~ng research ~terns becomes the 

development of algorithms, that can be mapped ~nto and executed 

efficiently by a spec~al-purpose computer system. Th~s ~mpl~es that 

algor~thms should decompose ~nto modules, that map compactly ~nto one 

ch1p (or, a module of ch1ps), and modules should be interconnected, so 

that the whole flow of 1nformat1on through processes 1s also managed 

eff1c1ently. These algor1thms must support high degrees of concurrency, 

and employ a s~mple, regular commun~cat1on and control, to enable an 

eff1c1ent ~plementationa 

To conclude, s1nce spec1al-purpose VLSI computing structures can 

be e1ther, a s1ngle ch1p, bu1lt from a repl~cat1on of s1mple cells, 

or a system, bu1lt from 1dentical ch1ps, or even a comb1nat1on of these 

two approaches, Figure (III.B.2-f1) summar~zes the pr1nc1pal stages 

and tasks' 1nterdependenc1es 1n the des1gn of a VLSI ch1p (see Foster 

and Kung lFOST80]). Normally, the algor1thm des1gn and spec1f1cat1on 

levels should be 1ndependent of the f1nal ~mplementat1on; however, th1s 

1s not possible due to the merg1ng of levels 1n the des~gn, to ach1eve 

cost-effect1ve mapp1ngs of the h1gh level computat1ons into hardware. 

III.B.2.1: THE fUNDAMENTAL PRINCIPLE, CRITERIA AND ADVANTAGES OF 

'SYSTOLIC' AACHITECTURES 

The cho1ce of an appropr1ate arch1tecture, for any electron1c 

system, 1s very closely related to the 1mplementat1on technology. Th1s 

~s espec1ally true in VLSI computing structures whose computat1onal goal 

t s 0 0 0 bl "nee, "n pract"ce, pro ems are typically 'larger' than special-
purpose computer systems. 



[Ch. III/Sec. B 305] 

PROBLEM 

r--------. 
!FUNCTIONS OF ~ 
~~LL _TY:_E_:: __ j 

r-----------i 
I DATA FLOW AND : 
I I 
•GEOMETRY I 
L.-----r------' 

~----------------~ 
o CELL COMBINATIONS I 
I 
I AND I 

_.--L-!'E.E~~~~ --- _J... 

r----- -----. .------ -------, 
I CELL LOGIC i I DATA FLOW I 

J CIRCUIT :r,----------~--------~: CONTROL CIRCUIT! 
L I L _____________ , ----- ----~ --

,--- ----, r------ ------, 

J j-'--------------------i~ COMMUNICATION ! j CELL STICKS i I I ! ! STICKS I 
~--- ----' .. ______ ______ j 

r--- L____ ~----- -----, 
~CELL LAYOUTS~~----------.-----------~~CELL BOUNDARY ! 
L 

I I LAYOUTS I 
-----r-----J : _____ r _____ : 

ALGORITHM 
DESIGN 
LEVEL 

GATE 
LEVEL 

STICKS 
LEVEL 

LAYOUT 
LEVEL 

~--, 
, __ J . Sub task 

MASKS FOR FABRICATION 

t 
CHIP 

Figure III.B.2.-[1: The Des1gn Stages of a Spec1al-Purpose VLSI Ch1p. 



[Ch. Ill/See. B 

1s the implementat1on of compute-bounialgor1thms, rather than I/0-

boundcomputat1ons. In a compute-bound algor1thm, the number of 

comput1ng operations 1s larger than the total number of I/O elements; 

otherw1se, the problem 1s I/0-bound. Illustrat1ve of these concepts 

are the following matrix-matrix multiplication and addition examples. 

An ord1nary algor1thm, for the former, represents a compute-bound task, 

since every entry in the matr1x 1s multipl1ed by all entr1es 1n some 

row or column of the other matrix (1.e. 0(n3) multiply-add steps, but 

only 0(n2
) I/O elements); the add1t1on of two matr1ces, on the other 

hand, 1s an I/0-bound task, s1nce the total number of adds 1s not 

2 larger than the total number of I/0 operat1ons (1.e. O(n ) add steps 

and 0(n2) I/O elements). 

It 1s apparent, that any attempt to speed-up an I/0-bound 

computat1on must rely on an 1ncrease 1n memory bandwidtht. Memory 

306] 

bandw1dth can be increased by the ut1l1zat1on of e1ther, fast components, 

which may be qu1te expens1ve, or 1nterleaved memories, wh1ch may create 

compl1cated memory management problems. However, the speed-up of a 

compute-bound computat1on may often be accompl1shed 1n a, relat1vely, 

s1mple and 1nexpens1ve manner; that 1s, by the SystoliCarch1tectural 

approach developed by Kung and h1s assoc1ates at Carneg1e-Mellon 

Un1vers1ty. Through th1s approach, any long d1stance wir1ng 1ns1de a 

chip and irregular commun1cation, wh1ch can eas1ly dom1nate the power, 

ch1p area and the t1me requ1red to perform a computat1on, can be eas1ly 

prevented. It was, or1g1nally, proposed for the VLSI 1mplementation of 

some matr~x operat~ons; today, many vers~ons of systol~c processors have 

tSince bottlenecks to speeding-up a computation are 
system memory bandwidths, so-called 'von Neumann' 
than limited processing capabilities. 

often due to Zimited 
bottlenecks, rather 



[Ch. III/Sec.. B 307] 

been designed by un~vers~t~es and industr~al organ~zations. 

A systol~c system cons~sts of a set of ceZZs,, ~.e. 'Process~ng 

Elements' - PEs, wh~ch are regularly ~nterconnected to form asystolic 

array or a systol~c tree. Informat~on in a systolic system flows 

amongst cells ~n a pipel~ned fash~on and communication w~th the 

env~ronment occurs only at the 'boundary cells'. 

The fundamental pr~nc~ple of a systol~c architecture, a systol~c 

array ~n part~cular, ~s ~llustrated ~n Figure (III.B.2.1-f1). By 

replacing a s~ngle process~ng element w~th an array of PEs, a h~gher 

computation throughput can be ach~eved w~thout ~ncreasing memory band-

w~dth. Th~s is apparent ~f we assume that the clock per~od of each PE 

~s lOOns; then, the convent~onal memory-processor organization (i) has 

t 
at most a 5MOPS performance, wh~le, w~th the same clock rate, the 

systol~c array will result ~n a possible 30MOPS performance. 

Conceptually, the word Systolic ~tself ~s der~ved from the 

phys~olog~sts word 'Systole', wh1ch refers to the rhythm~cally 

recurrent contract~ons of the heart and arter~es. More explanator1ly, 

as the heart and arter~es pump blood around the human body, a systol~c 

system pumps data from memory, around a network of processes representing 

the computat~on structure required. In fact, this data stream passes 

through a number of cells-PEs, on wh~ch each process l~es, before 

return~ng to memory hav~ng completed a computat~on c~rcle. 

In the body, each organ either takes someth1ng from the blood to 

cont~nue funct1oning, or acts on ~t 1n some predetermined way; 1n a 

s~m~lar manner, the data flow~ng around the network can be spl~t ~nto 

t 
M~ZZion Qperations Per Second. 



[Ch. III/See. B 308] 

data and control. Each PE can accept control (funct~on~ng) s~gnals, 

or can perform predeterm~ned computations on the data, before the 

stream is passed onto the next PE, eventually c~rculat~ng to memory. 

The crux of th~s approach is to ensure that once a data ~tem ~s brought 

out from the memory, ~t can be ut~l~zed effect~vely at each cell ~t 

passes through, wh~le being pumped from cell to cell along the structure. 

Somet~mes, ~t is conven~ent to distinguish the pumping mechan~sm 

~nto two d~stinct states, the Systole and the Diastole state. The 

former one, ~s the actually 'act~ve' pumping state ~n which the 

commun~cat~on and controlled data flow occurs amongst PEs; wh~le dur~ng 

the latter, seem1ngly '1nactive' state, the pump1ng mechan1sm recovers 

and ~ndiv~dual PEs perform the due computat~on on the portion of data 

stream under the~r control, sett~ng up the next data and control ~terns 

to be ~nJected ~nto the stream during the next act~ve state. 

Finally, th~s capab~lLty to utLlLze each Lnput data Ltem a number 

of tLroes, thus ach~eving a hLgh computatLon throughput WLth only a 

modest memory bandwidth, ~s JUSt one of many advantages of the systolLc 

approach. Other, equally signLfLcant, crLterLa and advantages Lnclude, 

modular expansLbLlLty, utLlLzation of SLmple, unLform cells, el~mLnatLon 

of global broadcast1ng, l1m1ted fan-1n, extens1ve concurrency and fast 

response t1me. 

MEMORY MEMORY 

(L) - The conventional organLzatLon (LL) - A systolic processor array 

Figure III.B.2.1-[1: The Fundamental PrLncLple of a 'Systolic' ArchLtecture. 



[Ch. III/Sec. B 309] 

In conclus1on, systol1c des1gns based on these criteria meet 

all the arch1tectural challenges for spec1al-purpose computer systems. 

A un1que character1st1c of the systol1c approach 1s that, as the 

number of cells - PEs expands, the system's cost and performance 

1ncrease proport1onally, prov1ded that the s1ze of the underly1ng 

problem 1s suff1c1ently large (see FiguPe (III.B.2.1-f2,i)); that 1s 

1n contrast w1th other parallel arch1tectures, wh1ch are seldom cost

effect1ve for more than a small number of processors (see FiguPe (III. 

B.2.1-f2,ii)). 

COST PERFORMANCE 

# PROCESSORS # PROCESSORS 

(1) - For systolic arch1tectures 

PERFORMANCE 

# PROCESSORS # PROCESSORS 

(11) - For other paPallel arch1tectures 

FiguPe III.B.2.1-[2: 'Conceptual' Cost and Performance Curves [KUNG82]. 



[Ch. III!See. B 

III.B.2.2: A CoMPATIBILITY TAXONOMY IN THE SPACE OF 'SYSTOLIC' 

COMPUTATIONS AND VLSI STRUCTURES 

370] 

In this conclus1ve paragraph of Chapter III the spat1al 

determ1nat1on of systol1c computat1ons, in the general space of parallel 

algor1thms, is attempted, 1n relat1on with appropriate VLSI systol1c 

array conf~gurat~ons for the1r eff1c1ent execution; however, any 

spec1f1c algor1thm exempl1ficat1on will be avo1ded, s1nce this part 

W1ll be comprehens1vely explo1ted later on 1n the Thesis. 

In a parallel algor1thm, in general, s1nce more than one task 

module can be executed at a time, a type of aoncurrency control (1.e. 

control via shared memory, synchronous central1zed control, synchronous 

or asynchronous d1stributed control, etc.) is requ1red, wh1ch by enforc1ng 

des1red interactions amongst task modules ensures the correctness of 

concurrent execut1on. 

The max1mal amount of computat1on that a typ1cal task module of 

a parallel algor1thm can perform, before hav1ng to communicate with 

other modules, 1s referred to as module granularity and ranges from 

small constants to large computat1on parts; 1n other words, the module 

granular1ty of a parallel algor1thm reflects whether or not the 

algor1thm tends to be commun1cat1on 1ntensive, s1nce a small module 

granular1ty requ1res analogously frequent 1ntermodule communication. 

COnsequently, 1n th1s case, for eff1c1ent reasons, 1t may be des1rable 

to prov1de proper data paths 1n hardware, to facilitate such a 

commun1cat1on. 

Suppose that task modules of a parallel algorithm are connected 

to represent intermodule communication; then, a geometr1c layout of 



[Ch. III/Sec. B 311] 

the result~ng network ~s referred to as the communication geometry 

of the algorithm. In Figure (III.B.2.2-[1) is presented a classificat~on 

of the commun~cation geometry of parallel algor~thms. 

In part~cular for systol~c systems, they correspond to synchronous 

algor~thms that util~ze d1str1buted control ach~eved by s1mple local 

control mechan~sms and have small constant module granularities. 

Algor1thms that match w1th systol~c systems, utiliz~ng extensive 

p~pel~n~ng and mult~process~ng, are called systolic algorithms. For a 

low-cost and h~gh-performance ch~p 1mp1ementation, ~t ~s absolutely 

crucial that the geometry of the communicat~on paths, in a systolic 

system, be s1mple and regular. 

[COMMUNICATION GEOMETRY] 

[REGULAR] [IRREGULAR] 

I 
[TREE] [ARRAY] [SHUFFLE] ••• [CROSSBAR] 

I I 
[ONE-DIMENSIONAL] [TWO-DIMENSIONAL] ••• 

I I I I 
[SQUARE] [HEXAGONAL] [TRIANGULAR] ••• 

Figure III.B.2.2-[1: A Class~f~cation of Communication Geometry of 
Parallel Algor1thms. 

In summat~on, the cross product {concurrency controls}x{module 

granulaPities}x{communication geometPies} represents the space of 

parallel algor~thms. One could attempt g~v~ng an extensive taxonomy 

for parallel algor~thms, class1fying them in terms of the~r pos~tions 



[Ch. III/Sec.. B 312] 

~n three-d~mensional space, but th~s space ~s seen to be large, 

conta1n1ng qu1te a few uninterest1ng cases; therefore, a reference to 

a smaller subspace, that nevertheless conta~ns some very s~gn~f~cant 

parallel algorithms, seems to be more real~stic. Th~s subspace is the 

cross product {systoZie}x{eommunication geometries}, where systol~c ~s 

a part~cular pos~t~on ~n the area {eoneurreney controls}x{module 

granularities} representing systol~c algor~thms. 

To compare systol~c algor~thms, ~n general, w~th SIMD and MIMD 

algor~thms, systol~c algor~thms are the most structured and MTMD 

algor~thms are the least structured. Systol~c algor~thms deal w~th 

s~mple and frequently interact~ng task modules, whLle the situat~on ~s 

reversed for MIMD algor~thms; both concepts w~ll be extens~vely 

exempl~f~ed ~n the follow~ng Chapters of the Thes~s. In spec~fLc, 

systolLc algorLthms are desLgned for direct hardware LmplementatLon, 

whLle MTMD algorLthms are desLgned for executLon on general-purpcse 

Mult~processors. SIMD algorLthms, utilizing a central control, are 

found lyLng between these two classes of algor~thms. 

VLSI systolLc arrays can assume many d~fferent structures for 

dLfferent compute-bound algorLthms. Figure (III.B.2.2-f2) exh~b~ts 

a varLety of systolLc array conf~gurations. The~r potent~al ut~l~zat1on 

for various problem cases is summarLzed Ln Table (III.B.2.2-tl). 

t 
FLnally, Ln a partLcular hLstorLcal retrospectLon, the 2-D square 

array 1s perhaps one of the f1rst communLcatLon geometrLes stud1ed by 

researchers Lnterested 1n parallel processLng; work Ln cellular 

automata, concerned wLth computat1ons d1stributed in a 2-D orthogonally 

tD · · 7 7-mens?-ona". 



[Ch. III/Sec. B 313] 

(a) One-d1mensional l1near array 

(b) Two-d1mens1onal square 
array 

(d) B1nary tree 

(c) Two-d1mens1onal hexagonal array 

(e) Tr1angular array 

Figure III.B.2.2-[2: Var1ous 'Systolie' Array Conf1gurat1ons. 



'SYSTOLIC' PROCESSOR 

ARRAY STRUCTURE 

1-D linear arrays 

2-D square arrays 

2-D hexagonal arrays 

Trees 

Triangular arrays 

[Ch. III/Sec.. B 314] 

PROBLEM CASES 

FIR-filter, convolut~on, ·o~screte 

Four~er Transform• - DFT , matr~x-vector 

multipl1cat1on, recurrence evaluat1on, 

solut1on of tr1angular l1near systems, 

carry p~pel1n1ng, Cartes1an product, odd-

even transpos1t1on sort, real-t1me 

pr1or~ty queue, p1pel~ne ar1thmet1c units. 

Dynamic programm~ng for opt~mal parenthe-

s1zat1on, 1mage process1ng, pattern 

match1ng, numer1cal relaxat1on, graph 

algor1thms 1nvolv1ng adJacency matr1ces. 

Matr~x problems (matr1x mult1pl1cat~on, 

LU-decompos1t~on by Gauss~an el~minat~on 

without pivot~ng, QR-factor1zat1on), 

transit1ve closure, relat1onal database 

operat~ons, DFT. 

Search1ng algor1thms (quer1es on nearest 

ne1ghbour, rank, etc., systol1c search 

tree), recurrence evaluat1on. 

Invers1on of tr1angular matr1x, formal 

language recogn1t~on. 

Table III.B.2.2-t1: The Potent1al Ut1lization of 'Systolic' Array 
conf1gurat~ons. 



[Ch. III/Sec. B 

connected array, was 1n1t1ated by von Neumann [VONN66J, in 1966. 

More recently, because of the technological advancement, there has 

been an 1ncreas1ng 1nterest 1n design1ng algorithms for cellular 

arrays. In specif1c for pattern recogn1tion algor1thms, the pattern 

match1ng ch1p descr1bed 1n Foster and Kung [FOSTBOJ has recently been 

fabr1cated, tested, and found to work. 

315] 

To conclude, the main advantage provided by the tree structure, 

wh1ch 1s not shared by any array structure, 1s the logar1thm1c-time 

property for broadcast1ng, search1ng, and fan-in. However, 1f the 

maJority of commun1cat1onsare not confined to processors at low levels, 

then the processors at h1gh levels may become bottlenecks causing a 

certain drawback. Algor1thms that can take advantage of the potent1al1ty 

provided by the tree structure, while avo1d1ng its poss1ble drawback, 

exh1b1t a s1gn1f1cant interest. 

To th1s end, we have completed a br1ef and taxonom1cally 

d1sc1plined state-of-the-art survey, with as much ~s was possibl~ up-to

date 1nformation on the parallelcomput1ng env1ronment. Certainly, 1n 

the space of the 1mplemented computer systems a plethora of them, 

espec1ally some currently, at the t1me of complet1ng th1s Section, 

ava1lable commerc1al Mult1processor systems (e.g. Cray X-MP, Denelcor's 

'Heterogeneous Element Processor' - HEP, poss1bly Cray 2, etc.) have 

been om1tted; but, th1s was log1cally bound to happen w1th the 

tremendously rap1d technological advancement. 

Furthermore, we have not d1rectly dealt w1th networks of 

autonomous computers connected v1a commun1cat1on l1nes, such as the 

ETHERNET, ARPANET, Cambridge Ring, etc., wh1ch have been successfully 



[Ch. TIT/See. B 376] 

establ~shed and have been operating for a number of years. The 

pr~nc~pal reason was that, these computer complexes are conceptually 

much more indirectly or ZooseZy coupZedtcompared to the MIMD designs 

we have introduced; ~n fact, the~r Operat~ng Systems are usually built 

and tuned to cope with electronic ma~l and document handl~ng (e.g. 

shar~ng of resources, edit~ng, d~splaying, pr~nt~ng, etc.), rather than 

the eff~cient execut~on of a s~ngle program by many processors. 

In particular for the contents of the present Section, they w~ll 

be more analytically complemented ~n later Chapters of the Thes~s, 

wh~ch w~ll deal w~th spec~al algor~thms for direct hardware ~mplementat~on. 

t 
Hence, out of the scope of this Thesis. 



-= CHAPTER IV: 
AN INVESTIGATION ON THE POTENTIAL PARALLELISM OF A NEW CLASS OF GROUP EXPLICIT METHODS FOR THE 

SOLUTION OF PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 

- -----------== I I 

I - --11 SECTION A: fUNDAMENTAL CoNCEPTS OF DIFFERENTIAL EQUATIONS 0 / SECTION B: PARALLEL EXPLOITATION OF EXPLICIT METHODS FOR THE SoLUTION OF NoN-lrNEAR 

PARABOLIC EQUATIONS 

/ ~~ I IV.A.1: INTRODUCTORY REMARKS 
...., 

IV.B.1, P"""""' Cc."''''"' N,,,,.. o• fi.,,-n,.,.""' ~ 
1/ APPROXIMATIONS TO DERIVATIVES 

~ 

IV.A. 2: MATHEMATICAL PRELIMINARIES OF DIFFERENTIAL EQUATIONS ,.... 
IV.B.2: VARIOUS FINITE-DIFFERENCE APPROXIMATION ScHEMES 

TO A NoN-lrNEAR PARABOLIC PROBLEM 

IV. A. :5: CANONICAL CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS 
"7 . 

r IV.B.J: THE NEw CLASs oF •GRoUP ExPLICIT' - GE SoLUTION METHODS I -
IV.B.1.1: PARABOLIC EQuATIONs IN ONE SPACE DIMENSION 

IV.B. 4: RELATIVE PERFORMANCE CoMPARISONS AND CoNCLUSIVE 
AND DISCRETIZING fiNITE-DIFFERENCE FoRMULAE 

REMARKS ON THE GE METHODS 

jiv.A. :5.1: BoUNDARY CoNDITIONs 
IV. B .1 • 2: A DEsCRIPTIVE TREATMENT oF THE CoNVERGENCE, STABILITY, 

..... AND CoNsisTENCY oR CoMPATIBILITY CoNCEPTS 

L_ 
IV.A.J.2: MATHEMATICAL PHYSICS AND WELL-POSEDNESS OF PROBLEMS 

IV. B. J. 4: THE ' (SINGLE) ALTERNATING GROUP ExPLICIT' - (S)AGE METHoD: ExPERIMENTAL 

lf IV. A. s. s: ANALYTICAL;NUMERICAL APPROXIMATE METHODS OF soLUTION 1 REsuLTS AND PERFORMANCE ANALYSIS oN THE 'NEPTUNE' PROTOTYPE SYsTEM 
I 

' 
! 

1'-
I 

IV.B.3.1: THE STANDARD EXPLICIT METHoD: PERFORMANCE MboEL,EXPERIMENTAL REsuLTS AND IV. B. :5.5: THE '(DouBLE) ALTERNATING GRoUP EXPLICIT' - (D)AGE METHOD: EXPERIMENTAL 

PERFORMANCE ANALYSIS ON THE 'NEPTUNE' PROTOTYPE SYSTEM ' 
REsuLTS AND PERFORMANCE ANALYSIS ON THE 'NEPTUNE' PROTOTYPE SYSTEM 

# 
A '<MoDIFIED DouBLE) ALTERNATING GRoUP EXPLICIT' - (MD)AGE METHOD: IV.B.J.2: THE •GRoUP EXPLICIT WITH UNGROUPED ENDS' - GEU METHOD: EXPERIMENTAL I/ IV.B.3.6: 

REsuLTS AND PERFORMANCE ANALYSIS oN THE 'NEPTUNE' PROTOTYPE SYSTEM EXPERIMENTAL REsULTS AND PERFORMANCE ANALYSis ON THE 'NEPTUNE' PROTOTYPE SYsTEM 

IV.B.J.S: THE •GRoUP ExPLICIT CoMPLETE' - GEC METHOD: ExPERIMENTAL REsULTS AND IV.B.J.7: INDICATIVE EXPERIMENTAL REsuLTS AND PERFORMANCE MEASUREMENTS oF THE GEU 
PERFORMANCE ANALYSIS ON THE 'NEPTUNE' PROTOTYPE SYSTEM METHOD ON SIMD AND PIPELINED VEcroR CoMPUTERS 



_ (t!~AJID1E1R 
1f~ 

AN INVESTIGATION ON 

THE POTENTIAL PARALLELISM OF 

A NEW CLASS OF GROUP EXPLICIT METHODS 

FOR THE SOLUTION OF PARABOLIC 

PARTIAL DIFFERENTIAL EQUATIONS 



FUNDAMENTAL CONCEPTS 

OF 

DIFFERENTIAL EQUATIONS 



[Ch. IV /Sec.. A 319] 

IV.A.l: iNTRODUCTORY REMARKS 

In this Chapter we J.nvestigate the applicabJ.lJ.ty of a new class of 

Group ExplJ.cJ.t methods, for the numerJ.cal solution of parabolJ.c partJ.al 

dJ.fferential equatJ.ons, to parallel processJ.ng. 

In the present Section A we J.nJ.tiate the reader to the necessary 

prelJ.mJ.nary mathematical background of dJ.fferential equatJ.ons and J.n 

partJ.cular the class of partJ.al dJ.fferentJ.al equatJ.ons revJ.ewJ.ng all 

the related notations, condJ.tions and concepts essential for their 

proper use. 

In Section B we confine ourselves to fJ.nJ.te-dJ.fference methods 

only, as applied to solve parabolJ.c partJ.al dJ.fferentJ.al equatJ.ons, 

dJ.scussJ.ng agaJ.n some of theJ.r fundamental concepts and notatJ.ons, 

while a descrJ.ptJ.ve treatment of the convergence, stabJ.lJ.ty and 

consJ.stency or compatJ.bJ.lJ.ty concepts J.s gJ.ven. The Section continues 

by presentJ.ng the new class of powerful solutJ.on methods, the Group 

ExplJ.cJ.t methods, whJ.ch use stable asymmetrJ.c approxJ.matJ.ons to the 

partJ.al dJ.fferentJ.al equatJ.On coupled J.n groups of 2 adJacent poJ.nts 

{4 for two dJ.mensJ.ons) on the grid; thJ.s results J.n irnplicJ.t equations 



[Ch. IV /Sec.. A 

which can be easily converted to explicLt form and whLch offer many 

advantages especLally for use on parallel computers. Furthermore, by 

judicLous use of alternatLng thLs strategy on the grid poLnts of the 

domaLn results in new explLcLt algorithms whLch possess unconditional 

stabLlLty. The merit of thLs approach also results Ln more accurate 

solutLons because of truncatLon error cancellatLons. 

320] 

The potentLal parallelism of these methods Ln comparLson WLth the 

Standard Explicit method is extensively exploLted, the experLmental 

vemcle beLng Burgers' non-linear parabolLc partial dLfferent1al equatLon 

of second-order. 

For the performance analysLs of all parallel implementatLons Ln 

the Thesis, a detaLled performance model LS establLshed along WLth all 

the partLcular general formulae for the evaluatLon of Lts various 

parameters. The prLnciple behLnd thLs analysLs is that parallel 

processLng Lnvolves the sharing of some resources whLch have a limited 

avaLlabLlLty. This has the consequence that there LS a limLt to the 

number of demands that can be satisfLed and some of them must wait 

if there are some competLng ones. These demands are determLned by the 

program,whLle the avaLlabLlity and allocatLon algorithm are propertLeS 

of the system. Therefore, the performance of a gLven algorithm on a 

g1ven parallel archLtecture can be obtaLned by analyzing the propertLes 

of the system under varLous theoretLcal demand patterns. ThLs analysLs 

LS substantLated by an analysLs of the resources provLded by the NEPTUNE 

prototype system and the resources demanded by the investigated parallel 

algorLthms. In particular, all dLfferent LmplementatLons are analyzed 

Ln a theoretLcal (L.e. program dependent} and experLmental (L.e. system 

dependent} manner for cross-verLfLcatLon purposes. 



[Ch. IV/See. A 3Z1] 

F1nally, some 1ndicat1ve exper1mental results and performance 

measurements of the Group Explic1t methods, aga1n 1n comparison with 

the Standard Expl1c1t method, are presented, obtained on SIMD and 

PipeZined Vector computers, thus completing our study of the potent1al 

and suitab1ll.ty of these methods for parallel process1ng. The Chapter 

concludes with some relative performance compar1sons and general 

remarks for future investigation on th€. Group Explic1t methods. 



[Ch. IV/See. A 

IV.A.2: MATHEMATICAL PRELIMINARIES OF DIFFERENTIAL EQUATIONS 

The process of gradual and cont1nuous growth or 1ncrease may be 

observed in 1nnumerable 1nstances, what 1s of real 1mportance though, 

1s not necessar1ly the actual amount of growth or 1ncrease, but the 

rate of growth or increase. It is th1s problem, closely connected 

w1th infin1tes1mal 1ncreases, that 1s the bas1s of the Inf1n1tes1mal 

Calculus, and more espec1ally that part of 1t wh1ch 1s called the 

Differential Calculus. 

As a br1ef h1stor1cal note, the word 'calculus', lingu1st1cally, 

is the Latin name for a stone which was employed by the Romans for 

reckon~ng, 1.e. for 'calculat1on'. The calculus 1s one of the most 

powerful mathemat1cal 1nvent1ons whose d1scovery cred1t has been 

cla1med for both, S1r Isaac Newton and Le1bn1tz, the great German 

mathemat1c1an. 

To become more determ1n1st1c, the study and use of Differential 

Equations ar1ses from the need to express and subsequently solve a 

var1ety of phys1cal phenomena and problems, rna1nly, 1n Phys1cs and 

Eng1neer1ng sc1ence. In actual fact, they are concerned w1th the 

rates of change of unknown quant1t1es, called dependent variables, 

such as,temperature, pressure, etc., w1th respect to one (or more) 

independent variable represent1ng length, angle, etc. The maJor1ty 

of the above problems fall naturally 1nto one of three physical 

categor1es: Equilibrium problem~Eigenvalue problems and Fropagation 

problems. 

The problems of the first category are problems of steady-state 

(1.e. t1me-invar1ant), 1n wh1ch the equilibrium conf1gurat1on, 1n a 

g1ven dorna1n D; 1S to be determ1ned by solv1ng a spec1f1c d1fferent1al 

t 
Very often, but not always, the integration domain D is 'closed' and 
'bounded' (see Ames [AMES69}, p.3). 

322] 



[Ch. IV/See. A 323] 

equation w1thin th1s doma1n, subJect to certa1n boundary cond1tions 

on the boundary of the doma1n. In mathemat1cal term1nology such 

problems are known as boundary-value problems. Typ1cal phys1cal 

examples 1nclude, steady v1scous flow, steady temperature distribut1ons, 

etc. 

The Eigenvalue problems may be thought of as an extens1on of the 

equ1l1br1um problems where1n 'cr1t1cal values' of certa1n parameters 

are to be determined, 1n add1t1on to the correspond1ng steady-state 

conf1gurat1ons. Typ1cal phys1cal examples 1nclude, buckl1ng and 

stab1l1ty of structures, natural frequency problems 1n v1brat1ons, etc. 

The Propagation problems are initial-value problems that have an 

unsteady state or trans~ent nature; ~n other terms, they are concerned 

w1th the pred1ct1on of the subsequent behav1our of a system g1ven the 

1n1t1al state. In mathemat1cal parlance such problems are known as 

initial/boundary-value problemst. Typ1cal phys1cal examples 1nclude, 

the propagat1on of pressure waves 1n fluid, propagat1on of heat, etc. 

The d1stinct1on between equ1l1hr1um and propagat1on problems l1es 1n 

' the fact that, 1n the former the ent1re solut1on 1s passed on by a 

jury requ1r1ng sat1sfact1on of all the boundary cond1t1ons and internal 

requ1rements; wh1le 1n propagat1on problems the solut1on marches out 

from the 1n1t1al state gu1ded and mod1fied 1n transit by the s1de 

boundary condit1ons (see Richardson [RIC~). 

A Differential Equation can be def1ned as an equat1on wh1ch 

involves derivatives. If there 1s only a s1ngle 1ndependent variable, 

then the der~vat1ves are 'ordinary' der1vat1ves and the equat1ons are 

called Ordinary Differential Equations. However, 1n most cases, the 

tSometimes only the terminology 'initial-value problem' is utilized 
(see Ames [AMES69], pp.J-5). 



[Ch. IV/Sec.. A 324] 

dependent var1able, 1n any of the categories of problems ment1oned 

earl1er, 18 expressed in terms of several 1ndependent variables. 

Such problems 1nherently give rise to the need for 'part1al' 

der1vat1ves 1n the descr1pt1on of their behav1our. The study of 

d1fferential equat1ons ar1s1ng from these problems const1tutes the 

f1eld of Partial Differential Equations. 

The Order of a d1fferential equation is the order of the h1ghest 

der1vat1ve wh1ch occurs, wh1le the Degree of a d1fferent1al equat1on, 

wh1ch can be wr1tten as a polynom1al 1n the derivat1ves, 1s the degree 

of the h1ghest ordered der1vat1ve wh1ch the equat10n conta1ns. 

The general mathemat1cal form of an ordinary differential equation 

(henceforth abbrev1ated as o.d.e.), for a dependent var1able u(x), 

1s a relat1on such as, 

, (r-1) (r) 
F (X I u, u I ••• I u , u , ... ) = 0, for r~l), 

(IV.A.2: 1) 

where F 15 a g1ven funct1on of the independent variable x, the 'unknown' 

funct1on u and a finite number of the latter's der1vat1ves. 

From the l1nearity a8pec~any o.d.e. of order n determ1ned by a 

form such as, 

n-1 
d u 

+ p + 1 n-1 
dx 

n-2 
d u du 

+ ••• + p 1-- + p u n-2 n- dx n 
dx 

h, (IV.A.2:2) 

where p
0

Fo,p
1

,p
2

, ••• ,pn,h are funct1on5 of x or constants, 18 sa1d 

to be linear; any other form of equat1ons 1s cons1dered to be non-linear, 

1.e. 1f at least one of the terms 1nvolved with the dependent var1able 

or 1ts der1vat1ves 1s not of the same degree as the other terms. In 

part1cular, 1f h=o, then (IV.A.2:2) takes the form, 



[Ch. IV/See. A 325] 

n-1 
d u 

n-1 + P2 
dx 

n-2 
d u du 

n-2 + ••• + Pn-1 dx + pnu = 0' 
dx 

(IV.A.2:3) 

and ~s add~t~onally called homogeneous to ~d~cate that all of the 

terms are of the same (~.e. first) degree ~n u and ~ts derivat~ves. 

The general mathematical form of a partial differential equation 

(henceforth abbrev~ated as p.d.e.), for a dependent variable u(x,y, ... ), 

~s a relat1on such as, 

au au 
F (x, y I ••• , u' ax, ay, ... , = o, 

(IV.A.2:4) 

where F ~sa g~ven funct~on of the ~dependent var~ables x,y, ... , 

the 'unknown' funct~on u and a finite number of the latter's part~al 

der~vat~ves. The ~ndependent var~ables x,y, ... are real (unless ~f 

stated otherw~se) and u and ~ts der~vat~ves occurr~ng ~n (IV.A.2:4) 

are aontinuous funct~ons of x,y, ... ~n some real doma~n D, ~the 

space of these ~dependent variables. 

In a s~m~lar manner, a p.d.e. of the above (IV.A.2:4) form ~s 

sa~d to be linear if F ~s linear ~n the unknown function u and all ~ts 

part~al der~vat~ves; wh~lst, ~t ~s sa~d to be quasi-linear ~f F 

is l~ear ~n the h~ghest order der~vat~ves and the coeff~c~ents of F 

depend not only on the ~dependent var~ables, but also on u,au/ax, 

3u/ay, ... ,etc. A l~near equat~on ~sa spec~al case of a quas~-l~near 

equat1on. For example, the equat1on 

~s a f~rst-order quasi-linear p.d.e., and the equat~on 

a2
u a2

u 
---2 + ---2 - 32u = 0 
ax a 

(IV.A.2:5) 

(IV.A.2:6) 

tVarious authors often 
2 2 

use the aonventional notations: u =au/ax, 
X 

uxx=a u/ax , ... , eta. 



[Ch. IV !Sec.. A 326] 

l.S a second-order linear p.d.e. MeanwhJ.le, the equatl.on 

0 (IV.A.2:7) 

l.S an example of a second-order non-linear p.d.e. 

In these examples x and y are the l.ndependent varJ.ables, whJ.le u=u(x,y) 

l.S the dependent varl.able whose form is to be determl.ned. 

On the other hand, the defJ.nl.tl.on of the homogeneous attribute 

for a lJ.near p.d.e. is sll.ghtly vague, because of the fact that there 

l.S not any agreement amongst authors l.n the use of this term. So, we 

may come across a case that a l1.near p.d.e. such as, 

2 a
3
u a

3
u + 2 

a
3
u a

3
u 2 3 (IV.A.2:8) X 

ax
3 + xy 2 

+-- = X + y 
' 2 ay3 ax ay axay 

1n whl.ch the derl.vatl.ves l.nvolved are all of the same order, is 

consl.dered to be homogeneou~however, a more wl.dely acceptable 

defJ.nl.tJ.on is that, a ll.near p.d.e. l.S considered to be homogeneous 

l.f each term contal.ns el.ther, the dependent varl.able, or one of J.ts 

der1.vatives. For example, the equat1.on 

au 
at 0 (heat-conduction equation) (IV.A.2:9) 

l.S homogeneous, whl.le, accordl.ng to the latter defl.nl.tl.on, the equatJ.on 

au at- a f (x, t) , a>O (IV.A. 2: 10) 

where f(x,t) l.S a given functl.on, l.S an inhomogeneous equation. 

The problem of f1nd1ng a solution (or an integral) of a general 

elementary dl.fferentl.al equatl.on l.S essentl.ally that of recoverl.ng the 

primitive which g1ves r1se to the dl.fferentl.al equatl.on. In other 

words, the problem of solvl.ng a differentJ.al equatl.on of order n l.S 



[Ch. TV/Sec. A :327] 

1n fact that of finding a relation amongst the var1ables 1nvolv1ng n 

1ndependent, and essentialt,arbitrary constants, wh1ch together w1th 

the der1vatives obta1ned from 1t sat1sfy the d1fferential equat1on. 

The cond1t1ons under wh1ch one can be assured that a d1fferent1al 

equat1on 1s solvable are given by Existence Theorems. 

A particular solution of a d1fferent1al equat1on 1s one obta1ned 

from the pr1m1t1ve by ass1gn1ng def1n1te values to the arb1trary 

constants. In geometr1cal terms, the pr1m1t1ve 1s the equat1on of a 

fam1ly of curves and a part1cular solut1on 1s the equat1on of one of 

the curves. These curves are called integral curves of the different1al 

equat1on. 

However, we must note that a g1ven form of the pr1m1t1ve may not 

include all of the part1cular solut1ons; moreover, a d1fferent1al 

equat1on may have solut1ons wh1ch cannot be obta1ned from the pr1m1t1ve 

by any man1pulat1on of the arb1trary constants. such solut1ons are 

called singular solutions. The pr1m1t1ve of a d1fferent1al equat1on 

1s usually called the general solution of the equat1on, although, due 

to the above remarks, some authors consider 1t as a general solution 

of the equat1on. 

In spec1fic for the f1eld of p.d.e.'s, the problem of f1nd1ng a 

solut1on to a p.d.e. 1s a very d1ff1cult problem due to the lack of 

a general method of solut1on, except for certa1n spec1al types of 

linear or quas1-l1near equat1ons. In any case, however, a funct1on u 

def1ned 1n some reg1on Q, 1n the space of the 1ndependent var1ables, 

w1ll be called a classical solution of (IV.A.2:4) 1n the region Q, 1f 

throughout this reg1on the funct1on u has cont1nuous part1al 

t Namely, they cannot be replaced by a smaller number of constants. 



[Ch. IV/Sec. A 

derLvatives up to the order of the equatLon LnclusLvely and 

substLtutLon of u(x,y, .•• ) Lnto the original equatLon reduces that 

equatLon to an identLty. The requLrement that the fLrst m (L.e. as 

the order of the p.d.e.) partial derLvatLves exLst LS often 

unJust~f1ed from a physical, and somet1mes even from a mathemat1cal, 

poLnt of vLew. 

Therefore, Ln addLtLon to the concept of a classical solutLon, 

the concept of a generalized solution of a p.d.e. was Lntroduced by 

S.L. Sobolev (see MLkhlin [MIKH6?]). However, a generalLzed solutLon 

328] 

LS usually of very lLttle use, sLnce Lt has to satisfy certaLn boundary 

condLtLons arising from the nature of the problem Ltself. The SLmplest 

formal def1n1t1on of such a solut1on stands as: 'If there ex1sts a 

sequence of classLcal solutLons of the given dLfferentLal equatLon Ln 

a regLon n and Lf thLs sequence converges unLformly to some functLon u 

Ln an arbLtrary subregLon Ln the LnterLor of the regLon n, thLs 

functLon u LS said to be a generalized solution of the gLven dLff

erentLal equation Ln the regLon n•. 

Finally, sLmLlar to an o.d.e., Lf u1,u2, ••• ,un are n different 

solut1ons of a l~ear homogeneous p.d.e. 1n some g1ven doma1n, then, 

1s also a solut1on ~the same doma1n, where a
1

,a
2

, ... ,an are 

arbLtrary constants. 

(IV.A.2:11) 



[Ch. IV /Se.c.. A 329] 

IV.A.3: CANONICAL CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS 

The physLcal classifLcation of problems, presented Ln the previous 

paragraph, brLefly emphasLzed on their distinctLve features, a fact 

whLch, Ln addLtLon, suggests that theLr governLng equatLons are quLte 

dLfferent Ln nature as well. However, not all p.d.e.'s can be 

classLfLed Lnto well-defLned categorLes. The most comprehensLve 

analysLs relates to lLnear or quasL-linear equatLons of the second-

order Ln two Lndependent varLables (see VLchnevetsky [VICH81],p.8). 

The classifLcation of p.d.e.'s, Ln a descriptLve-lLke manner, 

depends on the type of the physLcal problems to whLch they apply, e.g. 

the heat-conduction equation, the wave equation, etc.; normally, though, 

Lt LS best accornplLshed by developLng the concept of characteristics. 

In a more analytic presentatLon of the latter concept, let us 

consLder the second-order quasL-lLnear p.d.e. 

+ c + e = 0 , (IV.A.3:1) 

where a,b,c and e may be functLons of x,y,u,3u/ax and 3u/3y, but not 

2 2 2 2 2 
Of d U/dX ,3 u/axoy and a u/ay 0 i.e. the second-order derLVatLves 

occur only to the fLrst degree. It will be shown that at every point 

of the x-y plane there are two dLrectLons Ln whLch the integratLon of 

the p.d.e. reduces to the Lntegration of an equatLon LnvolvLng total 

dLfferentLals only; Ln other words, Ln these dLrectLons the equatLon 

to be Lntegrated is not cornplLcated by the presence of partLal 

derivat~ves 1n other d1rec,1ons. 

Let us consLder the followLng denotatLon for the fLrst- and 

second-order 

au 
- = p· ax ' 

der1.vat1.ves, 

au a2u ay = q; -2- = r; 
ax 

s,and 



[Ch. IV/See. A 330] 

t Let C be a curve on the x-y plane on which the values of u 

and ~ts der~vat~ves above sat~sfy equat~on (IV.A.3:1). Therefore, 

the d~fferent~als of p and q in d~rect~ons tangent~al to C sat~sfy 

the equa t1.ons, 

dp = .£E. dx + .£E. dy = rdx + sdy 
ax ay 

(IV.A.3.2) 

and 

dq aq dx + aq dy = sdx + tdy , 
ax ay 

(IV.A. 3:3) 

where 
ar + bs + et + e 0 (IV.A. 3:4) 

and dy/dx ~s the slope of the tangent to Cat po~nt P(x,y). 

El~m~nat~on of rand t from (IV.A.3:4) us~ng (IV.A.3:2) and 

(IV.A.3:3) results ~n 

a c 
- (dp-sdy) + bs + - (dq-sdx) + e = o 
dx dy 

1.. e. , 

s{ a(~) 2 -b(~} } { 
dp dy dq dv} + c - a- - + c - + e ..::.... 
dx dx dx dx 

= o. (IV. A. 3:5) 

Now,by choos~ng the curve C so that the slope of the tangent, 

at every po~t on ~t,~s a root of the equat1on 

s ~s also el~m~nated. 

b(~} + c = 0 ' 
dx 

Therefore, (IV.A.3:5) leads to 

Consequently, ~t ~s apparent that at every point P(x,y) 

(IV.A.3:6) 

(IV.A. 3: 7) 

of the solution domain there are two direct~ons, g~ven by the roots 

of equat~on (IV.A.3:6), along wh~ch there ~sa relat~onsh~p, g~ven 

by equat~on (IV.A.3:7), between the total d~fferent~als dp and dq 

tin fact, this is not a curve on which the initial-values of u,p and 
q are given. 



[Ch. IV/See. A 331] 

with respect to x and y. The d~rect~ons g~ven by the roots of 

equat~on (IV.A.3:6) are called the aharaateristia directions and 

the p.d.e. ~s cons~dered to be hyperbolia, parabolia or elliptia 

dccord~ng to whether these roots are real and d~st~nct, equal, or 

. 2 > complex, respect~vely, ~.e. accord~ng to whether b -4aa=O. 
< 

The reader must bear in mind that the class1f1cat1on of a p.d.e., 

.md therefore 1ts solut1on method, may depend on the reg1on of the x-y 

plane under cons1derat1on; namely, 1t 1s poss1ble for a p.d.e. to 

change class1f~cat1on with1n d1fferent reg~ons of the same doma1n 

where1n the problem is def~ned. For example, the characterist1c 

d1rect1ons of the equation 

F(x,y,u,p,q) (IV.A.3:8) 

are g1ven by the roots m
1

,m
2 

of the quadrat1c 

2 
ym - xm + y = 0 , m = dy/dx , (IV. A. 3:9) 

2 2 > 
wh1ch are real, equal or complex accord1ng to x -4y =0. Consequently, 

< 

the equat1on 1s hyperbolia for lxi>2IYI, parabolic along lxi=2IYI 

and elZiptio for lx I <2ly I· However, such cases are 1nfrequent and 

therefore can be 1gnored w1th l1ttle loss of general1ty (see V1chnevetsky 

[VICH81], p.lO). 

In general, the best known and most su1table representat1ves of 

t 
these classes of p.d.e.'s are, 

the hyperbol1c wave equation 

a2
u 2 a2

u ---2 = c --- , (c 1s a real constant) 
at ax2 

(IV. A. 3: 10) 

T 

Their general 'aanoniaal' forms, in two independent variables, are: 

uxx-utt+ .•• = 0 (in the hyperbolia aase) 
u + .•• = 0 (in the parabolic aase) 

u +uxx+ •• : = 0 (in the elliptic case). 
XX yy 



[Ch. IV /Sec.. A 332] 

the parabolic heat-conduction or diffusion equation 

2 
au a u 

(a LS a real constant) = a -2 at I 

ax 
{IV.A.3:11) 

and the elliptLC 

2 2 r -g(x,y) Poisson's equation 
a u +~ = i or -2 2 
ax ay 

0 Laplace's equation. \ 

{IV.A.3:12) 

In concern with the governLng equatLons of the physLcal class-

LficatLon presented Ln the prev1ous paragraph, the or1gLnal mathemat1cal 

formulat1on of an equilibrium problem w1ll generate an elliptic 

equat1on or system, albeit, possLbly, later mathemat1cal approx1mat1ons 

may alter the type. In some cases the curve along which the 

1nformat1on 1s g1ven may be closed, wh1le for others may be not; for 

example, the general (analytical) solut1on of a two-d1mens1onal 

ell1pt1c equat1on 1s a function of the space coord1nates x and y, 

wh1ch not only sat1sf1es the p.d.e. at every point P . . of the areas; 
1-,J 

1ns1de a plane closed curve C, but also sat1sf1es certa1n boundary 

condit1ons at every point on th1s boundary curve C [see Figure (IV.A.3-fl)]. 

On the other hand, propagation* problems are governed by parabolic 

or hyperbolic equatLons, wh1ch can g1ve r1se to an open-ended area of 

1ntegrat1on S 1nto wh1ch the solut1on propagates. The 1n1t1al and 

boundary cond1tLons are known and are, normally, located along the x-

ax1s and along parallel l1nes perpend1cular to the x-ax1s, respect1vely, 

as shown in Figure (IV.A.3-f2). In a s1m1lar way, the solut1on u{x,t) 

must fulfil the g1ven cond1t1ons along curve C and sat1sfy the p.d.e. 

at every point P . . of the 1nf1n1te area of integrat1on S bounded by 
1-,J 

the open curve C on the x-t plane. 

tCalled the area of integ~tion. 
+or, in general, problems involving time- 't' as one independent 
variable. 



[Ch. IV/Sec. A 

y 

/ 
,. -!'-.. 

! -\ P, P,, 

P,, s / 

\ P,, P,, 1/ 
' 1--

0 X 

Figure IV.A.3-f1: The Area of Integrat~on Sand the Boundary CUrve C. 

• 
'E 
~ 
2 
< 
1:-• 
" 5 c 
~ 

c • c 
~ 

- lj+llH1 Tunc row 

" li-----1---11---+---1---.f' ~- J"'Tune row 
g-
= c 5------1--l-~;---..ji--JI-4 g. 
" ~--+--~~~~·--+---!---~ [ 
~ 

~--+---~--+--~--~ • 

0 
-~~~~~c·~~~~~--

t..nown m1t1d.l vc~lut>S of u X 

Figure IV.A.3-f2: The Open-Ended, Area of Integrat~on S and Curve C. 

F~ally, the general~zat~on of the name of hyperbol~c, parabol~c 

and ellipt~c to equat~ons that are ne~ther second-order, nor in two 

~ndependent var~ables, but wh~ch possess s~~lar propert1es, is often 

done as a matter of fact. The conclusion ~s that the maJor~ty of 

problems of pract~cal 1mportance can be related to these three 

t eanonieaZ classes, although, somet~mes, a more compl~cated class-

1ficat1on 1s carr1ed out. 

333] 

t 
For exampZe, a p.d.e. of eZZiptie type, in three independent variabZes, 
is referred to with a three-dimensionaZ anaZogous name, such as, 
'eZZipsoidaZ' p.d.e. 



[Ch. IV/See. A 334] 

IV.A.J.1: BOUNDARY CONDITIONS 

The solut~on of a p.d.e., as was ment~oned earl~er ~ th~s 

Chapter, has to sat~sfy, in particular, some boundary conditions 

ar~s~ng from the formulat~on of the problem ~tself. In accordance 

w~th the spec~f~c type of the occurred boundary cond~t~ons four 

d~fferent bas~c categor~es of problems can be d~st~gu~shed, wh~ch 

ar~se frequently ~ the descr~ption of var~ous phys~cal phenomena. 

These are: 

(i) - Xhe First Boundary-Value Problem (the Diriahlet Froblem), where 

a solut~on u ~s sought, wh~ch ~s a continuous funct~on w~thin a 

spec~f~ed reg~on and sat~sf~es the g~ven values 

on the boundary C. 

u I = ~ c (IV. A. 3.1: 1) 

(ii) - Xhe Second Boundary-Value Froblem (the Neumann Froblem), where 

a solut~on u ~s sought as before, wh~ch has to sat~sfy the normal 

der1.vat1.ves 

au I = 1/J 
an c 

(IV.A.J.1:2) 

on the boundary C of that reg~on. 

(iii) Xhe Third Boundary-Value Froblem (Mixed or Robbin's Froblem), 

where a solut1.on u l.S sought, wh1.ch l.S aga1.n a cont1.nuous funct1.on 

w1.th1n a spec1.f1.ed reg1.on and sat1.sf1.es a comb1nati.on of u and 1.ts 

der1.vat1.ves, namely, 

au 
[-;;-- + hu] = ljJ 

on C (IV. A. 3.1 :3) 

on the boundary C. 

All of the above problems are sa~d to be homogeneous ~f ~.1/J are 

equal to zero. 

; 



[Ch. IV/See. A 335] 

The problem of the steady-state temperature d~strLbut~on, in 

part~cular, can illustrate the phys~cal concept behind these three 

boundary-value problems. More explanator~ly, ~n the D~r~chlet Problem, 

the temperatures are given on the boundary of a solid. 

In the Neumann Problem the loss or ga~ of heat through the 

boundary ~s given (~t ~s proportional to ou/~). In fact ~n th~s 

problem, for a steady-state d~str~but~on of temperature, the net flow 

of thermal energy pass~g through the boundary of a sol~d ~s necessary 

to be equal to zero, namely, 

(IV.A.3.1:4) 

On the other hand, the Mixed or Robb~n's Problem ~s concerned 

with the heat exchange w~th the surround~ng medium the temperature of 

wh~ch ~s ~/h, where h ~s the coeff~c~ent of thermal conduct~v~ty 

d~v~ded by the spec~f~c heat (see MLkhl~ [MIKH6?] , p.68) • 

F~nally, the rema~~ng category concerns: 

(iv) -The Fourth Boundary-Value FToblem (Periodic Boundary Problem), 

wh~ch d~ffers from the others ~n that the solut~on u has to sat~sfy 

some periodicity cond~t~ons; for example, 

u\x = u\x+2 ' ~~~x = ~~~x+2 ' (IV.A.3.1:5) 

where 2 ~s called the period (see Abdullah [ABDU83], p.l6). 

IV.A.3.2: MATHEMATICAL PHYSICS AND WELL-POSEDNESS OF PROBLEMS 

The part~al d~fferent~al equat~ons that one ~s ~nterested ~n are 

above all mathemat~cal models of phys~cal phenomena. In fact, for any 

problem descrLb~ng a stable s~tuat~on, one would expect that small 

var~at~ons ~ the data should result ~n correspond~gly small var~at~ons 



[Ch. IV/See. A 336] 

in the solut~on. In the case that this did not turn out to be true, 

then any ~ncl~nat~on to accept that the mathematical model of the 

phys~cal problem has been badly formulated would be ent~rely JUSt~f~ed. 

The propos~t~on of f~nd~ng, ~n mathemat~cal terms, which problems 

are, or are not, acceptable models of the phys~cal world has led to 

the concept of a well-posed (or, otherw~se, properly-posed) problem 

(see Hadamard [HADA32]). Th~s concept ~sa very ~mportant one s~nce 

problems wh~ch are not well-posed cannot, ~n general, be tackled 

successfully w~th numer~cal methods; however, improperly-posed problems 

rece~ve also an ~creas~ng attent~on (see Ames [~377], p.41). 

In a def1n1t1on-l1ke manner, a p.d.e., or a system of p.d.e.'s, 

~s well-posed in the sense of Hadamard, ~f and only ~f ~ts solut~on 

exists, is unique, and depends continuously on the prescr~bed data. 

These criter~a are physically reasonable ~n most cases. Ex~stence 

and un~queness are an aff~rmation of the principle of determinism 

w~thout wh~ch exper~ments could not be repeated with the expectat~on 

of cons1stent data, wh1le the cont1nuous dependence cr1ter1on is an 

express~on of the stab~l~ty of the solution. 

More analyt~cally, and ~n br~ef, th~s def~n~t~on, from the 

aspect of an initial-value problem,~mpl~es that such a problem ~s 

cons~dered well-posed (see Me~s and Marcow~tz [MEIS81], p.2) ~f ~t 

sat1sf1es the cond1t1ons: 

i) The set of ~n~t~al values, for wh~ch the problem has a solut~on, 

~s dense ~n the set of all in~tial values - (existence); 

ii) for each ~n~t~al value there exists at most one solution -

(uniqueness); and, 

iii) the solut~on sat~sf~es a Lipschitz condition w~th respect to 

I 

_______________j 



[Ch. IV/Sec.. A 337] 

1n1t1al values for wh1ch the problem 1s solvable - (continuity 

1n fact, th1s attr1bute itself implies un1queness) . 

From the aspect of a boundary-value problem, the def1nit1on 1mpl1es 

that 1t 1s a well-posed one 1f 1t sat1sf1es the follow1ng: 

i) There ex1sts one and only one solut1on to the problem wh1ch 

sat1sfies the boundary cond1t1ons - (existence and uniqueness); 

and, 

ii) small changes 1n the g1ven functions, wh1ch occur in the 

boundary cond1t1ons, cause only small changes 1n the solut1on 

(continuity - namely, a cont1nuous dependence of the solut1ons 

on the boundary data) • 

Th1s last requirement 1s, 1n part1cular, necessary 1f the 

theoret1cal results obtained by solv1ng the boundary-value problem are 

to be ut1l1zed 1n pract1cal appl1cat1ons, where the boundary cond1t1ons 

are known only w1th whatever degree of accuracy that may be prov1ded 

by the measur1ng dev1ces 1nvolved. In the case of a well-posed problem, 

adm1ss1ble errors 1n the determ1nat1on of the boundary cond1t1ons do 

not 1nval1date the results found; they lead only to 1ns1gn1f1cant 

quant1tative dev1at1ons 1n the theoret1cal solut1on from the exper1mental 

results. 

To demonstrate the role of the above well-posedness cond1t1ons 

through an example, let us cons1der the Hadamard's example wh1ch 1s a 

problem that 1s not well-posed. It concerns the f1nd1ng of a solut1on 

of the two-d1rnens1onal Laplace's equat1on 

(IV.A.3.2:1) 



[Ch. IV/See. A 338] 

~ the sem~-str~p y>O, -1!/2~<1!/2 under the cond~t~ons 

ul = 0 
y=O 

aul - = 4> (x) 
ay y=O 

1T (<j>(- -) 
2 

1T 
4> (-) =0) 

2 

(IV. A. 3.2 :2) 

If we set <j>(x)=o, the only solut~on of th~s problem ~s u(x,yJ=o. On 

the other hand, 1f we set 

<j>(x) = ~l2n+l cos(2n+l)x 

the un1que solut~on w~ll be 

u 
1 

2n+l 
-hn+l 

e cos (2n+l) xs~nh (2n+l)y • 

(IV.A. 3.2 :3) 

(IV. A. 3.2 :4) 

It is easy to show that the funct1on 4> and all 1ts derivatives, for 

suffic1ently large n, only d~ffer by an arb~trar1ly sl~ght amount from 

zero. Yet, for any non-zero constant y, the funct1on u has the form 

of a cos~e funct1on of arb1trar~ly large amplitude prov~ded n ~s 

large. Consequently, for suff~c~ently large n, th~s funct~on d~ffers 

by an arb~trarily great amount from the zero solut~on (see M~khl1n 

[MIKH67J, p.l9). 

IV.A.3.3: ANALYTICAL/NUMERICAL APPROXIMATE METHODS OF SOLUTION 

Although we have repeatedly mentioned the term 'solut~ons' of 

p.d.e.'s, we have sa1d almost noth~g so far about the1r solut~on 

methods themselves. 

In general, for the solut1on of problems w1th arb1trar1ly shaped 

reg~ons and general prescr~bed cond~tions, an exact solut1on to a g1ven 

p.d.e. ~s not usually poss1ble to be determ1ned. Only 1n the s~mplest 



[Ch. IV/Sec. A 339] 

cases can a solution be analyt1cal either, in 1mpl1c1t form, or by 

1nvolv1ng a f1n1te formula. 

The AppPoximate Methods, which have been developed to tackle 

th1s problem, can be d1v1ded 1nto two pr1nc1pal groups, the AnaZytieaZ 

and the NumePieaZ Methods. Desp1te the fact that p.d.e.'s were 'invented' 

relat1vely early, 1n the f1rst half of the e1ghteenth century, for 

nearly two hundred years they were util1zed mostly as analyt1cal tools 

to descr1be the physical world w1th which they are intimately related. 

t 
The primary mathemat1c1ans' interest was in analyt1cal solut1ons and 

elegant analyt1cal methods were developed throughout the e1ghteenth 

and n1neteenth centur1es. 

More spec1f1cally, by Analytical Apppoximate Methods we mean 

analytical procedures for obtain1ng solut1ons 1n an analyt1cal form 

of functions, wh1ch sat1sfy the g1ven equat1ons at evePy point of the 

reg~on of ~ntegrat1on, as well as, the prescr1bed cond1t1ons; 1n some 

sense, they are close to the exact solut1ons of the problems (e.g., 

the exact solut1on is 1n the form of a certa1n inf1n1te ser1es, wh1le 

the approx1mate solution 1s the sum of the f1rst few terms) • Th1s 

k1nd of approx1mate methods may be class1f1ed 1nto thPee broad 

categor1es, the asymptotic, weighted Pesidualand the itePative methods; 

certa1nly, comb1nat1ons of these methods may and have been ut1l1zed 

to develop alternate ad hoe procedures. 

Asymptotic methods have at the1r foundat1on a des1re to obta1n 

solut1ons that are approx1mately val1d when a phys1cal parameter (or 

var1able) of the problem is very small or very large (e.g.,the 

pePtUPbation procedures) . 

StaPting with d'AZembePt in the eighteenth eentUPy. 



[Ch. IV/Sec.. A 

The weighted residual methods; probably origLnat~ng in the 

calculus of var~at~ons, ask for the approx~mate solut~on to be close 

to the exact solut1on 1n the sense that the d1fference between them 

(residual) 1s m1n1~zed (e.g., the collocation procedure requires 

the res1dual to van1sh at a set of po1nts}. 

FLnally, the iterative methods are analogous to the Picard 

method of o.d.e.•s ~that repet1tive calculat1on, v1a some operat1on 

F whose form 1s u 1=F(u ,u 1, ... ), success1vely ~mproves the n+ n n-

approx1mat1on. Transformat1on of the equat1ons to an 1ntegral 

equat1on leads to 1teration. 

In general, though, there is a w1de class of problems for wh1ch 

the analyt~cal solut1ons are not read1ly ava1lable. For example, 

the area of 1ntegrat1on S can rarely be found such that the 1n1t1al 

and boundary cond1t1ons are sat~sf1ed. The boundary curves C may not 

be defined at all and even ~f the1r equat1ons are known, the boundary 

cond1t~ons may be d1ff1cult to be satisf1ed. Furthermore, 1t 1s 

almost 1mposs1ble to f1nd an analyt1cal solut1on 1f certa1n changes 

are made to the shape of the area of Lntegration S, or to the 1n1t1al 

and boundary cond1t~ons. All these facts 1mpl1ed that numer~cal 

techn1ques had to be sought. 

These Numerical Approximate Methods fall 1nto a separate 

category, s1nce the approximate values of the requ1red solut1on can 

be found at var1ous po1nts of a reg1on under cons1derat1on 1n a 

tabular form, as opposed to the funct1onal forms above. However, 

f1nd1ng part1cular solut1ons numer1cally, by some more-or-less 

approx1mate set of calculat1ons on numbers, was not recogn1zed as a 

tOften called 'direct methods' of the calculus of variations (see 
Ames [AMES65}). 

340] 



[Ch. IV!Sec. A 

respectable pursu~t and consequently these methods were not held ~n 

high esteem by the sc~entif~c commun~ty of the t~e; the pr~ncipal 

reason was that the best computat~onal dev~ce ~n hand, at that t~me, 

was a desktop mechan~cal calculator. 

341] 

A gradual change became perce~vable towards the turn of the 

twent~eth century and many numerical approx~mate methods for p.d.e.'s 

were to be developed. In fact, R~chardson, to w~t, found ~t necessary 

to wr~te an ~ntroduct~on to h1s 1910 paper, 'The approximate 

ar1thmet~cal solut1on .•• of phys1cal problems 1nvolv1ng part1al 

d1fferent~al equations, .•• •, ~n wh1ch, after hav~ng noted that there 

are many phys1cal problems where analyt1cal methods fa~l, he expla1ns 

that, 

'there 1s a demand for rap~d methods ... appl1cable to unusual 

equat1ons and 1rregular bod1es. If they can be accurate, so 

much the better; but 1 percent would suff1ce for many purposes'. 

Descr1ptions of numer1cal approx~mate methods began to appear 

1n the l1terature w1th an 1ncreased frequency. However, the true 

revolut1on came w1th the post World War II development of h1gh-speed 

d1g~tal and analog comput~ng dev1ces wh~ch spurred a substant1al 

growth, by orders of magn1tude, on the scope of the mathemat~cal 

sc1ence of Numer1cal Analys~s. The methods that were ut1l1zed at 

f1rst were mostly adaptat1ons of those that had been developed 1n 

precomputer days (lntended for penc~l and paper 1mplementat1on), to 

whatever new capab1l~t~es the emerg1ng electron~c computers were offer1ng. 

Today, there 1s a number of numer1cal approx1mate methods for 

solv1ng p.d.e.'s wh1ch can be d1st1ngu1shed ~nto two d~fferent ma1n 



[Ch. IV/Sec.. A 342] 

classes, the finite-differenae and the finite-etement methods. 

The method of finite-differenaes ~s the most w~dely util~zed 

and understood method for problems~ p.d.e.'s, which is supported 

by the fact that ~t ~s the only one of the methods that stands out 

as be~ng un~versally applicable to both l~near and non-l~near problems. 

The ma~n subclasses of th~s method are the methods of tines and nets. 

To be more spec1f1c, 1n these methods the derivat1ves occurr1ng 1n 

the p.d.e. are replaced by su~table approx~mat~ons over some small 

~terval and the solut~on of the resulting f~~te-d~fference approx-

t h t rob fd 
. t 

1ma 1on 1s soug t a a nu er o 1screte po1nts 

On the other hand, the most ~mportant development Ln the 1950s 

and 6os, that qual~f~es as modern, was the finite-etementmethod, wh~ch 

~s out of the scope of the present Thes~s. However, ~n br~ef, th~s 

method rests on more r~gorous foundat~ons than the method of f~nite-

dLfferences, and th~s fact d~d not escape the attent~on of numerous 

mathemat~c~ans who have consequently devoted themselves to furtherLng 

the supporting theory. Much of the drudgery of generat~ng d~scret~zed 

equat~ons pr~or to the~r solutions can now be delegated to f~n~te-

element computer codes, ~ part~cular for ell~pt~c equat~ons that 

descr~be structural problems of mechan~cal and c~v~l eng~neerLng, 

and steady-state fLeld problems ~n many other appl~ed scLences. In 

fact, codes wLth a sim~lar Lntent had been Lroplemented w~th fLn~te-

dLfference methods, but they were largely unable to adapt the 

dLscret~zatLon of space to the complex shapes and ~rregularLt~es found 

~n many real-lLfe problems; wLth f~nLte elements, complex shapes and 

~rregularit~es create lLttle complLcation any more, thus mak~ng the 

t These methods are, otherwise, aatted 'disarete' numeriaat methods. 



[Ch. IV/Sec. A 

correspondLng codes convenLent to utLlLze and broad Ln theLr 

applLCabLlLty. 

To conclude, Ln Seation B, we confLne ourselves to fLnLte

dLfference methods only as applLed to solve parabolLc p.d.e.'s; 

343] 

the Seation contLnues by presentLng a new class of powerful solutLon 

methods, i.e. the Group Explicit methods, and by exploLtLng, Ln a 

comparative manner, the potentLal parallelLsm of the Standard ExplLCLt 

method and the new methods, the experLmental vehLcle beLng a non

lLnear parabolLc p.d.e. of second-order. 



_· ~iE<!Hi!11®N 

1S 

PARALLEL EXPLOITATION OF 

EXPLICIT METHODS FOR 

THE SOLUTION OF NON-LINEAR 

PARABOLIC EQUATIONS 



[Ch. IV/Sec. B 

IV.B.l: PRELIMINARY CONCEPTS AND NOTATIONS OF fiNITE-DIFFERENCE 

APPROXIMATIONS To DERIVATIVES 

345] 

The ultimate goal of discrete numer1cal methods is the reduct1on 

of cont1nuous systems to equivalent d1screte systems wh1ch are su1table 

for h1gh-speed computer solut1on. However, one can be, 1n1t1ally, 

dece1ved by the, seem1ngly, elementary nature of these techn1ques. To 

be more spec1f1c, s1nce the1r usage 1s certa1nly w1despread, a l1ttle 

knowledge of them can eas1ly lead to a m1sappl1cat1on; in fact, these 

approx1mat1ons ra1se many ser1ous and d1ff1cult mathematical quest1ons 

of convergence, stab1l1ty, and cons1stency. 

D1scret1zation of the govern1ng equat1ons and boundary cond1t1ons 

of the cont1nuous problem may be accompl1shed physically, but 1s more 

often carr1ed out mathematically. 

The physical approach 1s somet1mes cons1dered by the experts as 

qu1te useful, since 1t can rnot1vate further analys1s. In such a modus 

operandi approach the phys1cal character1st1cs of the cont1nuous system 

are g1ven to the d1screte phys1cal model; for example, a heat-conduct1ng 

slab could be replaced by a network of heat-conduct1ng rods. A d1rect 



[Ch. IV/Sec. B 346] 

applicat1on of the physical laws to the d1screte system then g1ves 

rise to the govern1ng equat1ons. 

On the other hand, in the mathematical approach, wh1ch we shall 

follow, the cont1nuous formulat1on 1s transformed to one (or more) 

d1screte formulat1on(s) by replac1ng the der1vat1ves by fin1te-

d1fference approximat1ons; 1n the case that the formulat1on of the 

cont1nuous problem 1s already ava1lable, th1s procedure 1s simpler and 

more flex1ble. Der1vatives can be approx1mated by f1n1te-d1fferences 

1n var1ous ways, but what 1s a fact 1s that all such approx1mat1ons 

introduce errors, the so-called truncation errorst. The1r presence 

will be henceforth sign1f1ed by employ1ng the asymptot1c 0(b1g oh) 

notat1ont introduced by Bachmann and Landau (see Ames [AMES69)), wh1ch 

clearly suppresses much less 1nformat1on than the 'l1m1t' notation, 

be1ng, 1n add1t1on, easy to handle; 1n fact this O-notat1on denotes 

that, if S 1s any set and f, ~are real or complex funct1ons dehned on 

S,then the notat1on 

f(t) = 0[~(t) J, t E s, (IV.B.l.l) 

* means that a pos1t1ve number M ex1sts, independent of t, such that 

lf(t) I ~ Ml~(t) I, for all t E s. (IV.B.1:2) 

Thus, the 0 symbol means 'someth1ng that 1s, 1n absolute value, at most 

t Some texts confuse this term UJi th the 'disaretization error; 1ilhiah 
refers to the error in the solution due to the replacement of the 
continuous p.d.e. by a discrete model; in this Chapter, though, the 
term 'truncation error' is reserved only for the difference bet1i!een 
the differential equation and its approximating difference equation. 

*rhis notation was first introduced in (par.-II.B.l) as simply '(term of) 
order', e.g. h2, and meant that, 11i!hen his small enough the term 
behaves essentially like a constant times h2 ~ Here, 1ile make this 
concept mathematically precise. 

*In certain eases though, to eliminate some non-essential minor 
inconvenience, a modified 0-notation is introduced (see Ames [AMES69], 
p. 12). 



[Ch. IV/Sec. B 347] 

a constant multJ.ple of the absolute value of'; J.f ~(t)#O, for all 

t E S,then equatJ.on (IV.B.1:2) implJ.es that f(t)/~(t) J.S bounded 1n S. 

Returnl.ng to finJ.te-differences, let us present the concept 

behJ.nd the so-called finite-difference grid. Assume that the solutJ.on 

reg1on of funct1on u, on the x-t plane, J.s an open rectangle [O,l)X[O,+~), 

wh1ch l.S covered by a rectangular grid (sometJ.mes called a mesh or net), 

w1th grl.d spacJ.ngs, ~=h, 6t=k, in the x,t dJ.rectJ.ons, respectJ.vely. 

The values of h,k are assumed unJ.form throughout the reg1on, albeit 

they are not necessar1ly so. The J.ntersectJ.on po1nts w1th coord1nates 

t (x.,t.) are called grid points (mesh or Zattice points, nodes or pivots) 
1- J 

and the spac1ngs are called grid Zengths (or, mesh sizes). 

The gr1d po1nts (x,t) are given by, 

where m=l/h and, 

X= X =~~X= ~h, ~=0,1,2, ... ,m, 
]. 

t = t = J6t = Jk, J=O,l,2, ••. ; 
J 

(IV.B.1:3) 

(IV.B.1:4) 

they l1e on lJ.nes parallel to both axes as shown 1n Figure (IV.B.l-fl) 

below. 

t 

I)+ I 

}k 
Pf.th,,k) 

t-IJ .. , 1+IJ 

IJ-1 

t 
1__ 

X 

Figure IV.B.l-fl: The FJ.nJ.te-DJ.fference GrJ.d. 

tDenoted by (i,j). 



[Ch. IV!See. B 348] 

The a1m through th1s f1n1te-d1fference gr1d 1s to seek approx1mate 

values of the des1red solut1on of funct1on u at these 1ntersect1on 

po1nts; consequently, the problem reduces to the solut1on of algebra1c 

equat1ons (11near, 1f the d1fferential equat1on is l1near), which can 

be obtained 1n one of several ways. 

F1nally, the follow1ng notat1ons will be ut1l1zed for values of u 

and 1ts der1vat1ves at the gr1d po1nt P(ih,jk), 

u ~ u(x,t) ~ u(1h,Jk) 
1,] 

(IV.B.1:5) 

aru[ 
rl at 

1 ,J 

, r:::l,2, ... 

(IV.B.1:6) 

a sui 
a s 

x [x~1h 

, s=l ,2, ... 

t~]k 

We shall conclude th1s paragraph by concentrat1ng on the Taylor's 

ser1es expansion method, wh1ch w1ll be ut1l1zed throughout the ChapteP 

and 1s probably the best known of all methods for der1v1ng f1n1te-

d1fference approx1mat1ons. 

Let us assume that u(x) has up to (k+l)-order cont1nuous 

der1vat1ves on a$):~b, for some k'?.O; also that I; E [a ,b] and h 1s a 

real number #O such that i;+h E [a,b]. Then,Taylor's formula 1s g1ven 

by 

<TF ): u(l;+h) 
1 

~ (<) +..!:!_du(l;) 
u ~ 1! dl; + ••• + 

hk dku(l;) + 
-k1 k Rk+l' 

. dl; 

(IV. B.l:?) 

where the rema1nder Rk+l 1s expressed us1ng the der1vat1ve of order 

(k+l) on a po1nt between i;,i;+h; th1s remainder can be est1mated 

ma1nly 1n the follow1ng three d1fferent ways: 



[Ch. IV/Sec. B 349] 

(Lagronge) : 
T, 1 rl;+h k dk+lu 

R": = - J (l;+h-z) ~.,---0: dz = 
k+l k! r k+l 

" dz 

(k+l) (1;+6h)' 
(k+ 1) ! 

for some ~6~1; (IV.B.l:B) 

(Cauchy): 
c = hk+l 
~+l k! 

for some o::o:; 1; (IV.B.1:9) 

(Schlomilch) : 
k+l 

= _11__k' (1-A)k+l-pu_(k+l) (I;+J-h)' 
.p 

for some O::J-:;1, and p J.nteger. 

(IV.B.l:lO) 

If we neglect the remaJ.nder in formula (TF ) , then the second part of 
1 

this formula expresses an approxJ.mation of u(l;+h) under a polynomJ.al 

form of degree k referrJ.ng to h, namely, 

u(t;+h) h du(l;) 
+-

1! dl; 
h2 d2u(l;) hk dku(l;) 

+- ~=*'- + ... + -k, k 
2 ! d/;2 • dl; 

(IV.B.l: 11) 

In the case when there are two (or more) J.ndependent varJ.ables, 

then the derivatives become partial derivatJ.ves and the formula (TF ) 
1 

J.s slightly modifJ.ed as follows: Let (x
0
,t0J and (x0+h,t0+k) be gJ.ven 

poJ.nts and assume that u(x,t) J.s (k+l) tJ.mes contJ.nuously dJ.fferentJ.able 

for all (x,t) J.n some neJ.ghbourhood of L(x0,t0;x0+h,t0+k)+. Then, 

(T ) :u(x +h,t +k) = u(x
0
,t

0
J + 

F
2 

0 0 

k 1 a l: -<h- + 
1 

J! ax 
J= 

k ;t)ju(x,t)lx=xo+Rk+l' 
t=t 

0 

(IV.B.1:12) 

where the remaJ.nder term J.S simJ.larly, as before, expressed by the 

tWe use '~'as the symbol representing approximation. 

+It denotes the set of all points (x,t) on the straight line segment 
joining (x0,t

0
J and (x0+h,t

0
+k). 



[Ch. IV/Sec. B 350] 

partial der~vatives of order (k+l), ~.e., 

~+1 
1 a a k+l 

(h 'x + k 't) u(x,t) 
o o x=x

0 
+~h, 

t=t0+~k 
for some 0~~~1, (k+l) ! 

(IV.B.1:13) 

and the po~nt (x0+~h,t0+~k) ~s an unknown point of the line L(x
0
,t

0
; 

xo+h,to+k); ~n other terms that ~s. 

(IV.B.1:14) 

which, accord~ng to what was discussed prev~ously in the present 

paragraph, means that there exists a pos~t~ve number M such that, 

(IV.B.1:15) 

as both h,k tend to zero. 

IV.B.l.l: PARABOLIC EQUATIONS IN ONE SPACE DIMENSION AND DISCRETIZING 

FINITE-DIFFERENCE FoRMULAE 

Pr~or to proceed~ng w~th the formulat~on of the f~n~te-d~fference 

approx~mat~ons for parabol~c p.d.e.'s,let us d~scuss f~rst, br~efly, 

the usual reg~on of solut~on for such equations, a character~st~c 

representat~ve of which ~s g~ven by the heat-conduction equation 

(IV.A.J:ll). 

In general, a plethora of problems in Phys~cs and Engineering 

sc~ence, requLr1ng numerical solutLon, 1nvolve spec1al cases of 

the linear parabol~c p.d.e. 

au a au au 
a(x,t)at = ax(a(x,tlaxl + b(x,tlax- c(x,t)u , (IV.B.l.l:l) 

wh~ch holds with~n some prescr~bed reg~on Q on the x-t plane; w~th~n 

th1s reg~on, the functions a,a are str1ctly pos1tive and c 1s non-



[Ch. IV!See. B 351] 

negatLve. The regLon of solution is usually one of the three forms 

Lllustrated 1n Figure (IV.B.1.1-[1) below. 

t t t 

0 X 0 X 0 1 " 
(i): (x,t)E(-oo,+oo)x[Q,+oo) (ii): (x,t)E[O,+oo)x[Q,+oo) (iii): (x,t)E[O,l]X[Q,+oo) 

Figure IV.B.1.1-[1: The Solut1on Reg1ons for Parabol1c Equat1ons. 

The case (i) 1s called the semi-infinite p~ane. ThLs leads to 

a purely 1n1t1al-value (Cauchy) problem consLstLng of equatLon (IV.B.1.1:1) 

and the 1n1t1al cond1t1on 

u = f(x), for -oo<x<+oo at t=O. (IV.B.1.1:2) 

The case (ii) 1s called the quarter p~ane. ThLs leads to an 

1n1t1al!boundary-value problem cons1stLng of equatLon (IV.B.1.1:V 

together with the 1nLt1al condLt1on 

u = f(x), for O~x<+oo at t=O, 

t and the boundary condLtLon 

au 
cx 0 (x,t)u+cx

1 
(x,t>a; = cx2 (x,t), at x=O, t~o , 

where 

tSome boundary information is a~so required at x=oo, t~O. 

(IV.B.1.1:3) 

(IV.B.1.1:4) 

(IV.B.1.1:5) 



[Ch. IV/Sec. B 352] 

FLnally, the case (iii) LS called the open rectangle plane. ThLs 

agaLn leads to an initLal/boundary-value problem consLstLng of equatLon 

(IV.B.l.l:l) together with the initLal condLtion 

u = f(x), for O~x~l at t=O, 

and the boundary condLtLons 

where 

a0 (x,t)u+a
1 
(x,t)~ = "2(x,t) at x=O, t>,O 

au 
S

0
(x,t)u+S

1 
(x,t)

0
x = S2 (x,t) at x=l, t>,O 

simLlar condLtLons on the a's as Ln (IV.B.l.l: 5). 

(IV.B.l.l:6) 

(IV.B.l.l:?) 

ReturnLng to fLnLte-dLfference approxLmations to derivatLves, let 

us assume that a funct~on u and 1ts der1vat1ves are SLngle-valued, 

f1n1te and cont1nuous funct1ons of x; then, using Taylor's formula 

(IV.B.l: 7), we obtaLn, 

u(x+h) 

and si=larly, 

u(x-h) 

du 
u(x)+~ + ax 

Add1tLon of these expansLons results Ln 

2 
u(x+h)+u(x-h) = 2u(x)+h 

(IV.B.l.l:B) 

(IV.B.1.1:9) 

(IV.B.l.l: 10) 

4 where the quantLty 0(h ) represents the asymptotLc notatLon for the 

truncation error of th1s approxLmatLon and denotes terms contaLnLng 

t 
fourth and hLgher powers of h. AssuiDLng that these are neglLgible 

compared to lower powers of h results Ln 

tLeading term. 



d2ul -
21 ~ dx x=x 

u(x+h)-2u(x)+u(x-h) 

h2 

[Ch. IV!See. B 353] 

(IV.B.l.l:ll) 

w~th a truncat~on error of order h2 - (second-order approximation)t. 

In a s1milar way, subtracting equat~on (IV.B.1.1:9) from equat~on 

(IV.B.l.l:B) and neglect~ng terms of order h3 results ~n 

dui = 
dx x=x 

u(x+h)-u(x-h) 
2h 

w~th a truncat~on error of order h2 • 

(IV.B.1.1:12) 

As shown ~n Figure (IV.B.1.1-f2), equation (IV.B.1.1:12) clearly 

approximates the slope of the tangent at P by the slope of the chord AB, 

and is called a central-difference approx~mat~on. The slope of the 

tangent at P can also be approximated by either the slope of the chord 

PB, resulting in the forward-difference formula 

dui ~ u (x+h) -u (x) 
dx - h 

x=x 
(IV.B.1.1:13) 

or the slope of the chord AP, resulting 1n the backward-difference 

formula 

dui dx ~ 
x=x 

u(x)-u(x-h) 
h 

(IV.B.l.l: 14) 

Both (IV.B.1.1:13,14) can be wr~tten directly from equat~ons (IV.B.1.1:8,9), 

respect~vely, assum~ng second and higher powers of h are negl~g~ble; 

th~s shows that the truncat~on errors in these formulae are both O(h). 

In the case of two (or more) independent var~ables the above 

formulae are sl~ghtly mod~fied +. For example, let us consider a 

representat1ve gr~d po~nt (i,j); then by apply~ng formula (IV.B.1:12) 

we obta1.n, 

tif U(x) is an approximation to u(x), we say it is of order 'n', with 
respect to some quantity 6x=h, if 'n' is the largest possible positive 
real number such that lu-UI=O(hn), as h+O. 

:j:In fact, the new formulae can be correspondingly derived from the 
previous formulae in a straight-forward manner. 



[Ch. IV /Sec.. B 354] 

U(X) 

tangent of u at P 

0 x-h X x+h X 

Figure IV.B.1.1-f2: GeometrLcal RepresentatLon of the FLnLte-DLfference 
Formulae Concept. 

u u ± lraul + h2 a2ui 
, O<~l <1 L±l,J L,J axl . z! a 2, +~ J L' J X ~- 1 t 

(IV.B.1.1:15) 

and 

+ k2 a2u/ 
u~,]±l u ± kaul 

' 0<~2<1, L' J at I 2' 2 L,J · at L,J±~2 
(IV.B.1.1:16) 

where expansions about u . . up to the second power of h,k have been 
1-,J 

consLdered. Consequently, for the fLrst-order spatLal derLvatLve we 

obtaLn the followLng formulae, 

u .-u . 
<forward-difference) : ~I l.+l,~ l.,J + 0(h) 

ax . h ' L,J 
(IV.B.1.1: 1 ?) 

aul 
u -u 

L-1,) (backward-difference): l.,J 
+ 0(h) axl. h 

. 
L,J 

(IV.B.1.1:18) 

If u. 1 .,u. 
1 

. are expanded about u. . up to the thLrd power of h, 
?-+ ,J ?-- ,J 1-,J 

u =u ±h~~ +h2a2ul +h3 
L±l,) L,) ax , 2! a 2 ) - 3! 

1. 1 ] X 1, 

J.. e . , 

(IV.B.1.1:19) 



[Ch. IV/Sec. B 355) 

then by subtract1ng them the following formula ~s obta~ned, 

(central-difference): (IV.B.1.1:20) 

F~n~te-d~fference formulae for the h~gher-order derivat~ves can also 

be developed ~n a s~ilar way; for example, from 

aul u =u ±h'= 
~±l,J ~.J ax . 

~' J 

we obta~n the formula, 

3 3 I +!:'....~ 
- 3 1 3 . ax i,J 

h4 4 I + a u 
41 4 + ' ax ~-~1 ,J 

(IV.B.1.1:21) 

2 
<central-difference), a ~I 

ax I 

u -2u +u 
-_i_+_l ... ,"'J'----'~-;'';'J'--~--_1=.,, ~J 0 2 ) 2 + (h ). (IV.B.1.1:22 

~ ,] 
h 

In a similar manner the f~n~te-d~fference formulae for the 

der~vat~ves of u with respect to the independent var~able t at the gr~d 

po~nt (i,j) may be obtained. For example, the forward-, backward- and 

central-difference formulae for the f~rst-order t~me der~vat~ve are, 

respect~vely, g~ven by, 

aul at 
~ ,] 

= 

u -u 
~,J+l ~.) + 0(k) 

k 

u -u 
~,] i,]-1 

k 
+ 0(k) 

u, . 1-u 1 
1.,]+ l.,J-

2k 

(IV.B.1.1:23) 

(IV.B.1.1:24) 

(IV.B.1.1:25) 

wh~le the second-order der~vat~ve, correspond~ngly to formula (IV.B.1.1:22), 

is given by the central-difference formula, 

2 u -2u +u 
a ~I ~,J+l ~.J ~.J-1 + 0 (k2) . 

at 1 k
2 

~ ,] 

(IV.B.1.1:26) 



[Ch. IV/See. B 356] 

W~th the derivat~ves be~ng d~scret~zed w~th the above f~n~te-

d~fference approx~mat~ons, ~t ~s ~nstructive, at th~s stage, to 

establ~sh a criterion for the ZocaZ aceu~cy of a f~n~te-difference 

equat~on. In particular, let us consider a special case of equation 

(IV.B.1.1:1), ~.e. the heat-conduction equat~on 

au 
at 

a2
u 

---2 (w~th constant coeff~c~ents). 
ax 

By the use of equat~ons (IV.B.1.1:22,23) we can, respect~vely, 

subst~tute the right-and Zeft-hand-side terms of this equat~on; 

hence, we obta~n, 

u -u 
l.,]+l l.,j = 

u -2u .+u 
l.+l,] l.,J l.-1,] 

k h2 

wh~ch can be approx~mately and explic~tly wr~tten as 

where 

u 
~ ,]+l = (l-2r)U .. + r(U l +U. l ) 

l. ,] l.+ ,] l.- ,] 

2t 
r=k/h and U. . is an approx~mat~on 

1-,J 
to u. .. 

1-,J 

(IV.B.1.1:27) 

(IV.B.1.1:28) 

(IV.B.1.1:29) 

Such approx~mation methods are called explicit(open), because 

the~r formulae ~nvolve only one gr~d po~nt at the advanced t~me-level 

t=(j+l)k; whereas formulae ~volv~ng more than one po~nt at th~s 

advanced t~me-level ~ntroduce the so-called impZicit (cZosed) methods. 

Since parabol~c (and hyperbol~c) equations character~st~cally have open 

~ntegrat~on doma~ns, expl~c~t methods are appl~cable to these problems; 

stab~l~ty quest~ons are critical ~ these situat~ons though, wh~le 

stab~l~ty diff~cult~es are not as serious ~n ~pl~c~t methods. 

Now, w~thout suppress~ng any ~nformat~on v~a the asymptot~c 

notation, the subst~tution of formulae (IV.B.1.1:22,23) to equation 

(IV.B.1.1:27) results in 

tThis is called the 'grid ~tio'. 



[Ch. IV /Sec.. B 357] 

u -(l-2r)u. -r(u +u ) = 
l.,J+l l.,J l.+l,J J.-l,J 

au 
k(-

at + ••• (IV.B.1.1:30) 

Let us now l.ntroduce the dl.fference between the exact solutions 

of the differentl.al and dJ.fference equations at the grl.d pol.nt (i,j) as: 

e = u -u (local discretization error); 
~,J ~,J ~,J 

then from equatJ.ons (IV.B.1.1:27,29,30) the result 

2 
2 a u 

= (l-2r)e +r (e. +e 
1 

) +!k (-
2 l.,J l.+l,J ].- ,J at 

l.S obtaJ.ned. The quantl.ty 

(IV.B.1.1:31) 

(IV.B.l.l.32) 

2 4 
!k2 (~- 2:_~) + (IV.B.1.1.33) 

3t2 6r ax4 i,J 

is defined as the local truncation error; (henceforth abbrevl.ated as 

l.t.e.) of equatJ.on (IV.B.1.1:29) and the principal part of the l.t.e. J.s 

To conclude, the concept of l.t.e. l.S absolutely necessary for the 

dl.scussJ.on of the concepts J.ncluded in the followl.ng paragraph. 

IV.B.l.2: A DESCRIPTIVE TREATMENT OF THE CONVERGENCE, STABILITY, AND 

CoNSISTENCY OR CoMPATIBILITY CoNCEPTS 

Thl.s paragraph l.S concerned with the condl.tl.ons that must be 

tThe 'local order of aceu~cy' (often abbreviated to local accuracy) of 
equation (IV.B.1.1:29), as shown, is 0(k+h2). This should not be confused 
with the 'global accuracy' of a difference equation, which is a measure of the 
accu~cy of the difference equation 'all over' the region under consider
ation and is a very difficult quantity to estimate. 

tThis is the amount by which the exact solution u of the p.d.e. does not 
satisfy the difference equation at the grid point (i,j). 



[Ch. IV/Sec.. B 358] 

sat1sf1ed 1n order to obta1n a reasonably accurate approx1mat1on to a 

t 
p.d.e.'s solut1on by the solut1on of the correspond1ng fin1te-d1fference 

equat1ons. More spec1fically, these cond1tions are pr1mar1ly associated 

with two d1fferent but 1nterrelated problems. The f1rst problem concerns 

the aonvergenae of the exact solut1on of the approx1mating difference 

equat1ons to the exact solut1on of the d1fferent1al equat1on, as h and k 

tend to zero; wh1le, the second problem concerns the stabi~ity of the 

difference scheme resulting from the unbounded growth or controlled 

decay of any errors assoc1ated w1th 1ts solution. 

A d1fference scheme is sa1d to be aonvergent 1f the d1scret1zat1on 

error tends to zero, as h+o, k+o. The magnitude of th1s error, at any 

grid po1nt, depends on the f1n1te-sizes of the gr1d lengths h,k, as well 

as on the number of terms in the truncated ser1es of d1fferences wh1ch 

approx1mate the der1vatives. The order of the overall d1scret1zat1on 

error 1s the order of the lead1ng term 1n the truncated series of 

d1fferences. The d1scret1zat1on error can be analyzed 1n terms of the 

preced1ng l.t.e.•s; more specifically, as can be seen 1n the prev1ous 

paragraph, the l.t.e. at the grid po1nt (i,j) 1s a measure of the 

(local) d1scret1zat1on error at the gr1d point Ci,j+l), when the f1n1te-

d1fference scheme 1s applied once only to the exact solut1on values of 

the different1al equation, all ar1thmet1c being exact, 1.e. w1thout 

round-off errorst The discretization error can usually be d1m1n1shed 

by decreas1ng h,k subJect 1nvar1ably to some relat1onsh1p between them; 

but, as th1s leads to an 1ncrease 1n the number of equat1ons to be 

solved, th1s method of improvement is lim1ted by factors such as, 

tin our aase a parabo~ia p.d.e.'s so~ution. 
tThey resu~t from the faat that aomputers aarry numbers with a finite 
number of digits. 



[Ch. IV/Sec. B 359] 

computatLonal cost, computer storage requLrements, etc. 

In a more 'analytical' treatment of aonvergenae, let E. denote the 
J 

max~mum I I 
.th 

value of e. . along the J tLIDe-level. When r~ L then 
1-,J 

equatLon (IV.B.1.1:32), sLnce all the coefficients of e are positive 

or zero , gives , 

~ (l-2rll e. I+ rl e 1 I +rl e 1 .1 +M[k
2

+kh
2

] 1,J 1.+ ,] 1.- ,] 

= 

2 2 
~ (l-2r)E.+rE +rE +M[k +kh ] 

J J J 
2 2 

E.+M[k +kh ] , 
J 

where M LS the maxLmum modulus of the expressLon whLch LS Lncluded Ln 

the 0 [k
2 

+kh
2

] for all i ,j. As the above is true for all values of i, 

it LS true for m::lX I e . '+ll . Hence, 
1-,J 

2 2 2 2 2 2 
E l < E +M[k +kh ]((E. 

1
+M[k +kh ])+M[k +kh] = 

)+ ' J )-

etc., from whLch it follows that, 

E) ~ E0+jM[k
2

+kh
2

J = JM[k
2

+kh
2

] 

2 2 
E 

1
+2M[k +kh ] , 

)-

(IV.B.1.2:1) 

because the exact solutLons u,U, of the dLfferential and dLfference 

equatLons respectLvely, have the same magnLtudet on the inLtLal lLne, L.e., 

E0 = maxle I = o • 
L,O 

L 

Thus, it follows that, 

lLm E 
h->0 J 

2 2 
~ lLID JM[k +kh ] 

h->0 
0 . (IV.B.1.2:2) 

Consequently, under the condLtion r~t thLs error term tends to zero, 

as h~ and k~, and the exact solutLon of the dLfference equation 

(IV.B.1.1:29)converges to the exact solution of the p.d.e. (IV.B.1.1:27); 

however, the necessary condit1on r~! l.S a rather severe cond1.t1.on for 

convergence. 

+Their initial values are the same. 



[Ch. IV /Sec.. B 360] 

In general, the problem of convergence 1s a diff1cult one to 1nvest1gate 

eff1c1ently because the f1nal expression for the d1scret1zation error 

1s usually 1n terms of unknown derivat1ves for which no bounds can be 

est1mated. However, to our benefit, the convergence of d1fference 

equations approx1mat1ng l1near parabol1c (and hyperbolic) equat1ons 

can be 1nvest1gated in terms of stab1l1ty and cons1stency or 

compat1b1l1ty,wh1ch are much easier to deal w1th. 

As 1t was remarked earl1er, 1n pract1ce, dur1ng the solut1on of 

the fin1te-d1fference equat1ons, wh1ch are the equat1ons that are 

actually solved, each calculat1on, depending on the part1cular computer, 

1s carr1ed out to a fin1te number of dec1mal places or sign1f1cant 

f1gures, and so an inevitable round-off error 1s 1ntroduced at every 

computat1onal step. Consequently, 1nstead of f1nd1ng the exact solut1on 

of a d1fference equation, wh1ch would be normally found 1f 1t were 

poss1ble to carry out all calculat1ons to an 1nf1n1te number of dec1mal 

places, the actually computed solut1on 1s not U,but, say, U*; this 

solut1on will be called the numerical solution of the d1fference 

equat1on, while the d1fference R=U-U* the global round-off error. 

The total error A .. at the gr1d po1nt (i,j) 1s 
1-,J 

A = u -U* . = [(u -U )+(U -U* )]t 
~,J ~,] 1.,] l.,J l.,J l.,J l.,] 

Under the assumpt1on that the d1scret1zat1on error can be 

(IV.B.1.2:3) 

controlled, 1t would seem reasonable, 1f the growth of the global 

round-off error R . . 1s bounded, for all i, as j tends to 1nf1n1ty, 
1-,J 

to cla1m that the d1fference equat1ons are stable; this 1s not 

tThe discretization error + the global round-off error. 



[Ch. IV/Sec. B 361] 

applicable though, since the global round-off error depends not only 

on the d1fference equations themselves, but also on the part1cular 

manner 1n which d1fferent computers round-off numbers and carry out 

arithmet1c. 

Th1s error, 1nvar1ably smaller than the d1scret1zat1on error due to the 

powerful modern computers, differs from 1t 1n that as the grid lengths 

tend to zero the number of ar1thmet1c operat1ons 1ncreases, a fact 

which 1mplies that th1s error cannot be made to converge to zero. 

Stability can be successfully defined 1n terms of the boundedness 

of the exact solution of the d1fference equations, s1nce 1t 1nvolves 

only known coeff1c1ents and boundary values, 1s amenable to mathemat1cal 

analys1s and has some useful consequences. More spec1f1cally, when 

propagat1ng the solution forward 1n t1me, 1f U . . is bounded as j 
~.J 

1ncreases 1t 1mplies that the magn1f1cat1on of each round-off error 1s 

also bounded because the same ar1thmetic operat1ons are appl1ed to both 

numbers. Also, because u . . 15 a f1xed number for a g1ven equat1on 
~.J 

w1th known boundary and in1t1al cond1t1ons, when U . . 1s bounded then 
~.J 

the discret1zat1on error is also bounded. As the latter error can be 

expressed Ln terms of l.t.e.'s, the d1fference equat1ons are sometLrnes 

def1ned as stable when local round-off errors and l.t.e.'s do not 

1ncrease unboundedly as the calculation t1me-1evels 1ncrease. Th1s 

def1n1t1on of stab1lity, for 11near d1fferent1al equat1ons, 1S related 

to convergence through the concept of consistency; more explanator1ly, 

s1nce 1n actual computation h,k are kept constant during the propagat1on 

of the solut1on forward in t1me, the cond1tions necessary for the 

boundedness of U . . (and of any form of local error) as j tends to 
~.J 

1nf1n1ty, together w1th cons1stency, guarantee convergence. 



[Ch. IV/See. B 

There are two standard methods of investigat~ng the boundedness 

of the solut~on of the f~nite-difference equations, the matrix and the 

Fourier series methods. In the former method, the equat~ons are 

expressed Ln matr1x form and the eigenvalues of an associated matr1x 

are exam~ned. In the latter and easier method, s~nce no knowledge of 

matr1x algebra 1s requ1red, a f1n1te Fourier series is used; however, 

~t ~s less r~gorous than the former method, s~nce it neglects the 

boundary cond~t~ons. 

362] 

F~nally, consistency or compatibility ~s concerned w~th the f~nd~ng 

of the cond~t~on for wh~ch a d~screte problem is an approx~matLon of 

the correspondLng contLnuous problem. In pract1ce, somet1mes, 1t 1s 

possLble that the solutLon of a stable finLte-difference scheme, which 

approximates a parabolLc (or hyperbolic) equatLon as the grLd lengths 

tend to zero, to converge to the solutLon of a dLfferent d~fferential 

equatLon. Such a dLfference scheme LS saLd to be ~nconsLstent (or 

LncompatLble) wLth the p.d.e. Lax's equLvalence theorem (see RLchtmyer 

and Morton [RICH67)) gives us the real ~mportance of the concept of 

consLstency; Lt states that Lf a l~near fLnLte-difference equatLon LS 

consLstent w~th a properly-posed lLnear LnLtLal-value problem,then 

stabLlLty LS the necessary and sufficLent conditLon for convergence. 

ConsLstency can be defLned Ln eLther of two equ~valent but 

slLghtly d~fferent ways, the more general one be~ng as follows: 

Let us cons~der that L(u)=o andNUJ=o represent the p.d.e. and the 

approx~mat~ng f~n~te-d~fference equat~on ~n the Lndependent variables 

x,t, w~th exact solutions u,U, respectively. Let also V be a 

cont1nuous funct1on of x,t w1th a suffic1ent number of cont1nuous 



[Ch. IV/Sec. B 363] 

der~vat~ves to enable L(V) to be evaluated at the gr~d point (i,j). 

The truncat~on error T .. {v) at the gr~d point (i,j) ~s def~ned by 
1-,J 

t 
T <vl = F(v ) - L(v ) • 

1.,] l.,J l.,J 
(IV.B.1.2:4) 

Then, ~f T .. {v) ~ 0 as h+O, k+O, the d~fference equat~on ~s said to 
1-,J 

be consistent w~th the p.d.e. 

However, to conclude, most authors put v=u because L(u)=O; consequently, 

from equat~on (IV.B.1.2:4) ~t follows tha~ 

T (u) = F(u ) , (IV.B.1.2:5) 
l.,] l.,J 

t 
and the truncat~on error co~c~des w~th the l.t.e. The cons~stency 

then of the difference equat~on rel~es on the limit~ng value of the 

l.t.e. being zero, as h+o, k+O. 

tWith this definition Ti j 
from the replacement of' 

*see Smith [SMIT?B}, p.??. 

gives an indication 
L(v. .) by F(v. .) • 

1-,J 1-,J 

of the error resulting 



[Ch. IV!See. B 364] 

IV.B.2: VARIOUS fiNITE-DIFFERENCE APPROXIMATION SCHEMES To A NoN

LINEAR PARABOLIC PROBLEM 

As we have previously dLscussed Ln the ThesLs parallelism can arLse 

at many dLfferent levels wLthLn a given problem, whLch Lf properly 

exposed can be efficLently exploLted by the new parallel computers. 

To summarLze, some of the broadly known techniques of performLng 

thLs are: 

(i) The Veotorization of the exLstLng software, usually achieved 

by altering the order to evaluatLon of terms in a complLcated 

expressLon, so that a vector or matrLx of elements can be 

handled in one operatLOn; 

(ii) the Divide-and-Conquer strategy, where the problem LS 

decomposed Lnto a number of independent sub-problems all of 

which can proceed Lndependently to yLeld the answer of the 

orLgLnal problem; and fLnally, 

(iii) the so termed ImpUoit Parallelism (e.g. recursLve decoupling, 

cyclLc reduction), which Lnvolves the dLscovery of Lndependent 

sub-expressLons Ln the computatLon capable of proceeding in 

parallel. 

Some other techniques, such as, Pipelining, Broadcasting, and 

Streaming, are Ln fact out of our concern sLnce they are more usually 

assocLated wLth the hardware features of the system. 

However, another sLgnLfLcant technique to exploLt the potential 

parallelism Ln a numerLcal algorLthm LS by the utLlizatLon of Explicit 

methods, whLch are the oldest methods for the solutLon of many problems. 

Unfortunately, they suffer from maJor defects, such as, poor stabLl1ty 

and convergence characteristLcs and requLre unacceptable lengthy solutLon 

t~mes. 



[Ch. 1V/See. B 365] 

Undoubtedly the newer ImpZioit methodS are far better, but often we are 

not able to exploJ.t to the full the ImplJ.cit Parallelism within the 

algorJ.thm. 

The prJ.ncJ.pal aJ.m of this Chapter is the formulation of some new 

ExplJ.cJ.t methods of solutJ.on and the exploJ.tatJ.on, J.n a comparatJ.ve 

manner, of the potential parallelJ.sm of the Standard ExplJ.cJ.t method 

and the new methods, whJ.ch, J.n additJ.on, exhibJ.t improved stabJ.lJ.ty 

and convergence characterJ.stJ.cs. All methods wJ.ll be formulated for 

the solutJ.on of the one-dJ.mensional non-linear parabolJ.c p.d.e. 

au 
at 

au 
G(x,t,u,ax' 

2 
~) 

2 ' ax 
for O~xt;l, t~O, (IV.B.2:1) 

WhJ.le, for practJ.cal purposes, they will also be formulated for, and 

analytJ.cally exper=ented on, equatJ.on 

2 au a u -=e---
at axz 

au 
u ax I for E>O (IV. B. 2:2) 

this partJ.cular equatJ.on has been dJ.scussed by Burgers [BURG48] as a 

mathematJ.cal model of turbulence and by Cole, et al [COLE51] as the 

approximate theory for weak non-statJ.onary shock waves J.n a real fluid. 

This equation can also be consJ.dered as a Sl.mplifJ.ed form of the NavJ.er-

Stokes equatJ.on (see Ames [AMES65]). 

For decades equation (IV.B.2:2) has attracted the attentJ.on of 

many researchers and as a result many finJ.te-dJ.fference and fJ.nJ.te-

element methods have been proposed to solve thJ.s equatJ.on. One common 

dJ.ffJ.culty WJ.th the existJ.ng solutJ.ons l.S that as the value of E 

decreases a fJ.ner grJ.d of pol.nts has to be chosen in order to obta1n 

a reasonable accuracy. This J.n turn determJ.nes the problem as 

prohJ.bJ.tJ.vely tJ.me consuming and often unrealJ.stic to solve on standard 



[Ch. IV/See. B 366] 

sequential computers. However, since the emergence of Supercomputers 

able to execute at rates between 100-500 ~ll1on floating point 

operat1ons, it has been feasible to des1gn effective solution methods 

for problems wh1ch prev1ously were not poss1ble to solve. 

In the follow1ng we shall briefly investigate the existing schemes 

for the solut1on of our problem, with the 1nitial condition, 

u(x,O) = f (x) , for o~x:; 1 (IV.B.2:3) 

and boundary condJ.tJ.ons, 

u(O,t) gl (t) 
} for t>O • (IV.B.2:4) 

u(l,t) g2 (t) 

A Standard Explicit scheme for solv1ng equat1on (IV.B.2:1) 1s 

2 2 
formed by tak1ng the central-difference approximat1ons for au/ax and a u/ax , 

and a forward-difference approx1matwn for au/at. Th1s results 1n a 

non-hnear fin1te-chfference equat1on of form, 

u -u 
U +kG(1h jk U 1+l,J 1-l,J 
i,] , , i,J' 2h 

where aga1.n , 

llx h, llt = k, u 
1,) 

X= J.h, J.=0,1,2, ••• ,m, 

t ]k, ]=0,1,2, ..• 

U(ih,Jk) 

m=l/h 
1 

J 

U .-2U +U 
J.+l,] J.,] l.-1,)) I 

h2 
(IV.B.2:5) 

(IV.B.2:6) 

However, U. • 
1 

1s a non-hnear functwn 1n known terms U. 
1 

., U • • 
1-,J+ '!-- .J 1-,J 

and U. 1 . and therefore it can be computed d1rectly w1thout 1nvolv1ng 
7-+ ,J 

an 1.terat1.on process. 

For the equation (IV.B.2:2) th1s class1cal expl1c1t scheme 1s 

g1ven by the formula, 

rh U =er (U -2U +U )+[1- -(U -U. ) ]U, , 
1,)+1 1+1,) 1,) 1-l,J 2 1+1,) 1-1,) 1,) 

2 
for r=k/h . (IV.B.2:?) 



[Ch. IV/Sec. B 367] 

Althoujl this method is computatJ.Onally simple it suffers from a very 

restr~ct~ve stab~l~ty condition, i.e. the value of r should be ~~ 

~n order to retain reasonable accuracy; however, 1n pract1ce, a very 

small value of e w~ll force a small value of h, which in turn, w~th 

r~~, makes the value of k too small for practical purposes. A clear 

advantage of th~s method is the independency of the po~nts with~n a 

s~ngle time-level, wh~ch makes ~t naturally su~table for SIMD type 

arch~tectures (see Evans, et al [EVANB&l]) • F~nally, the molecular 

d~agram of formula (IV.B.2:?), wh~ch is for illustrat~ve purposes 

rewr~tten as 

u 
~,J+l 

h h 
= r(e+:::{J

2 
)U. 

1 
+ (1-2er)U. + r(E-

2
- U )U. 

1 
, 

J.,] 1.- ,] l.,J l.,J 1.+ ,] 

~s as ~n Figure (IV.B.2-fl), where, 

h 
b=e+-

2
u .. 
~.J 
l . 

(IV.B.2:8) 

(IV.B.2:9) 

A stable Fully Implicit scheme can be obta~ned by tak~ng the 

backward-difference approx~ation to au/at, at po~nt (i,j+l), to 

obtain, 

U = U. +kG(~h,(j+l)k,U l' 
1.,]+1 l.,J l.,J+ 

u -u 
~+l,J+l ~-l,J+l 

2h 

(IV.B.2:10) 

~n case of equat~on (IV.B.2:1), and 

rh u. 
1 

= u +er(U . -2u +U )- -(u -u lu 
~.J+ ~.J ~+l,J+l i,j+l i-l,J+l 2 i+l,J+l ~-l,j+l ~.J+l 

(IV.B.2:11) 

for the part~cular case of equat~on (IV.B.2:2). In th~s approximat~on 



[Ch. IV/Sec. B 368] 

scheme the unknown V. 1 . 1, V .. +1, V. 1 . 1 are ~nvolved ~n a non-
~- ,J+ ~.J ~+ ,J+ 

l~near relation and therefore ~t must be solved ~teratively. The 

molecular diagram of formula (IV.B.2:11), which ~s for ~llustrat~ve 

k 

h h 
j 

i-1 i i+1 

FigUl'e IV.B.2-[1: The Molecular D~agram of the Standard Explicit 
Scheme for the Duect Solution of Burgers' Equation. 

purposes rewr~tten as 

-r(£+-
2
hu 

1
)u 

1 1
+(1+2sr)u 

1
-r(s-.!:u )U 

~,J+ 1- ,]+ 1,]+ 2 1,]+1 1+1,]+1 
u 
1,]' 

(IV.B.2: 12) 

~s as ~n Figure (IV.B.2-[2), where, 

h 
a =s--U 

2 ~. J+l ) (IV.B.2:1J) h 
b =£+-U 

2 ~. j+l 

Alternat~vely, approx~mat~g the part~al der~vat~ves 3u/3x 
2 2 

and a u/3x by the mean of the~r centraZ-di[[erence approx~mat~ons 

on the jth and (j+1)th t~me-level w~ll result ~ a Crank-Nicolson 

type of impl~c~t scheme; namely, 

u 
~.J+l 

U +kG[~h, (J+!)k, 
~.J 

U +U 
~.J ~,J+l 

<u -u ) 
! ~+l,J ~-l,J 

2 2h 

(U -u ) 
~+l,J+l ~-l,J+l 

2h 

(U -2U +U ) 
1+1,] 1,] 1-l,J 

2 + 
h 

+ 



[Ch. IV/S~c. B 369] 

+ ! 
(U -2U +U ) 
~+1,]+1 ~.]+1 ~-1,]+1 l 

h2 
(IV.B.2: 14) 

for the equat~on (IV.B.2:1) , and 

u 
~. ]+l 

£r 
u. + 2 
~.] 

[ (U -2U +U ) + (U -2U +U . ) ] -
~+l,] ~.] ~-1,] ~+l,]+l ~.j+l ~-l,]+l 

rh 
4 

(U +U . ) 
[(U -u. )+(u .. -u )J ~.J ~,J+l 

~+1,] ~-1,] ~+l,]+l ~-1,]+1 2 

(IV.B.2:15) 

for the equat~on (IV.B.2:2). As can be seen the unknowns Ui-1,j+l' 

U . . 1 and U. 1 . 1 are aga~ related through a non-l~ear express~on 1-,J+ 1.-+ ,J+ 

wh~ch has to be solved iterat~vely. 

For the spec~f~c case of equat~on (IV.B.2:2) the non-l~near~ty 

au occurring stems from the approx~mat~on schemes due to the term uax' 

h h j+1 

k 

j 

i-1 i i+1 

Figure IV.B.2-f2: The Molecular D~agram of the FuZZy Implicit Scheme 
for the Iterat~ve Solut~on of Burgers' Equat~on. 

but certa~ly, there are approx~mat~on alternat~ves ~n wh~ch th~s non-

l~ear~ty can be avo~ded; for example, the non-l~earity ~ scheme 

(IV.B.2:15) can be avo~ded ~f ~stead we use the mean of the central-

difference approx~mat~ons as, 



[Ch. IV/Sec. B 370) 

aul u-ax 
l.' J+! 

"__!_[ (u -u )u +(u -u )u J 
4h i+l,J l.-l,J i,J+l i+l,J+l l.-l,J+l l.,J . 

(IV.B.2:16) 

The molecular dl.agram of formula (IV.B.2:15), whl.ch l.S by the use of 

approxJ.matJ.on (IV.B.2:16) and for l.llustrative purposes rewrJ.tten as, 

E h rh E h 
-r<-2 + -:-U4 . )U 1 1+[l+Er+ -

4 
(U .-u )]U, -r(---:-U ) 

l.,J l.- ,J+ l.+l,J l.-l,J l.,J+l 2 4 l.,J 

U =E£U +(1-Er)U +~U 
l.+l,J+l 2 l.-l,J l.,J 2 l.+l,J ' (IV.B.2: 17) 

is as l.n Figure (IV.B.2-f3),where, 

E 
1-Er l al bl = 2 ' cl 

I 

E h rh ~ a2 2 - fl ,c2 l+Er+ ~<u 1 -u 
1 

l 
l.' J 1.+ t] 1.- ,J 

J b = 
E h 
- + -:-{] 

2 2 4 i,J 

(IV. B. 2: 18) 

The popularl.ty of the l.mplicl.t methods l.S due mal.nly to thel.r 

property of possessJ.ng uncond1tional stabl.ll.ty, whl.ch leads to larger 

time-steps of 1ntegrat1.on and often 1.ncreased accuracy. However, 

these methods are more expens1.ve computat1.onally, 1n compar1.son with 

the expll.Cl.t methods, sl.nce they lead l.nevl.tably to the problem of 

h h 
j+1 

h h 
j 

i-1 i i+1 

Figure IV.B.2-f3: The Molecular Dl.agram of the Crank-NicoZson Scheme 
for the Dl.rect Solutl.on of Burgers' EquatJ.on. 



[Ch. IV!See. B 371] 

solv1ng large numbers of l1near systems of equat1ons, 1.e. tr1d1agonal, 

sparse qu1nd1agonal, etc. On the other hand, w1th the 1mpl1c1t schemes, 

from parallel computat1onal aspects, the unknowns are usually related 

through an express1on and l1ttle or no independencies ex1st to be 

exploitable by parallel arch1tectures. Consequently, w1th the 1ncreas1ng 

ava1lab1l1ty of parallel computers and their greater throughput, the 

expl1c1t methods of solut1on not only offer s1mpl1c1ty, but also the 

capab1l1ty that the solut1on can be obtained at every po1ntconcurrently. 

Th1s important factor re1nforces the need for 1mproved expl1c1t 

procedures for ut1l1zat1on on parallel computers. 

F1nally, all the var1ous convent1onal approx1mat1on schemes 

d1scussed here1n can be obta1ned from the general1zed approx1mat1on 

(see Abdullah [ABDU83]), 

u 
1, J+l 

U. +U 
U +kG[1h (J+1 )k 1 'J 1 'J+l 

l.rJ I "I I 2 I 

ex t, U 
1

+cx
2
v u +cx

1
•v u +cx't, u 

1 X 1. 1 ]+ X 1 1 ] X 1,]+1 2 X 1. 1 ] 

2h 

e
2
o u 1 1

J+ ...!_2 (e
1
•o u. 1 .-e

2
•o u 1 ll 

X 1.-z,J+ h X l.+z,J X 1.--z,J (IV.B.2:19) 

for the equat1on (IV.B.2:1), and 

u 
1,J+l 

u +er ( e o u -e o u +e • o u -e • o u l-
1,J 1 X 1+!,J+l 2 X 1-l,J+l 1 X 1+l,J 2 X 1-!,J 

(U , +U. ) 
k _..:1:..<•c..J";,--'1""'"'J'-+-'l=-

2 

(ex t, U +<X Vu +<X''V U •cx't, U ) 
1 X 1,]+1 2 X 1,J 1 X 1,J+l 2 X i,J 

2h 

(IV.B.2:20) 

for the equat1on (IV.B.2:2). Theparameters e•s and ex's have to sat1sfy 

the compulsory cond1t1.ons, 



[Ch. IV !Sec.. B 372] 

2 

I (9 +9') = 2 ) 

l.=l l. l. 

I 2 
L (ex +ex') 2 (IV.B.2:21) 

l.=l l. l. 

-9 +9 -9'+9' 0 
1 2 1 2 ) 

whl.le the operators o .~ and V are the central-, forward- and 
X X X 

t backward-difference operators wl.th respect to the x variable, 

respectJ.vely. 

t 
Namely, o u. . = u. ;, .-u. ;, ., ~ u. . = u. 1 .-u. ., v u. . = u. .-u. 

1 
.. 

X 1-,J 1-+2>J 1--2,J X 1-,J 1-+ ,J 1-,J X 1-,J 1-,J 1-- ,J 



[Ch. IV/Sec. B 373) 

IV.B.3: THE NEW CLASS OF •GRoUP EXPLICIT' - GE SoLUTION METHODS 

In a summarl.zl.ng prologue, a new solutl.On strategy is introduced 

herel.n and has been extensively experimented on parallel systems l.n the 

remainder of this Chapter; it combl.nes stable asymmetrl.c approx1.mat1.ons 

t to the p.d.e. 's, whl.ch, when coupled l.n groups of 2 adJacent pol.nts on 

the grl.d, result in l.mPll.cl.t equatl.ons whl.ch are eas1.ly convertl.ble to 

expll.cl.t form. In partl.cular, by )udicl.ous use of alternatl.ng thl.s 

strategy on the grl.d pol.nts of the domal.n results in new explicl.t 

algor1.thms whl.ch possess uncondl.tl.onal stabl.lity. The merl.t of these 

approaches results l.n accurate solutions because of truncation error 

cancellatl.ons. 

More analytl.cally, let us consl.der the generall.zed approximations 

(IV.B.2:19,20) and the followl.ng choJ.ces for 8 's and a.'s: 

(i} 81 = 8' = 1, 82 8' = o, ''1 = a2 1, a' = a• = 0; and, 
2 1 1 2 

(ii) 81 8' = 0, 82 = 8' 1, al = a2 = o, a' a• = 1. 
2 1 1 2 

The former chol.ce Wl.ll result l.n 

U = U +kG[l.h,(J+!)k, 
l.,]+l l.,) 

U +U (U. . -U ) + (U -U ) 
l. ' J l. , J + 1 ,-..:l.:..:+..:l~·c.J!...+c.:l:_...:l.=-=:, ),_+...:1=-_...:l.::..<.' ,_) _.::l._-.::1..:.':.)_ 

2 2h 

1 (u. -u -u +U ll 
h2 l.+l,]+l l.,]+l l.,] l.-1,) 

(IV. B. 3:1) 

and 

-raU 
1 1

+ (l+ra)U .. 
1 

= (1-rb)U. +rbU 
1 

, 
1.+ ,]+ 1.,]+ l.,J ].- ,J 

(IV.B. 3:2) 

respectively; whl.le the latter chol.ce will result l.n 

U +U 
U . l = U. +kG[l.h, (J+!)k, l.,J i,J+l 
l.,J+ l.,J 2 

(u -u. l+(U -u l 
l.,]+l l.-1,]+1 l.+l,) l.,) 

2h 

1 -(u -u -u +U ll 
h2 l.+l,) i,) l.,j+1 l.-1,]+1 , 

(IV.B.3:3) 

+Four points for 2-dimensions. 



[Ch. IV/See. B 374) 

and 
-rbU 1 . 1+(l+rb)U . 

1 
= (1-ra)U +raU 

1 
,, 

1- ,]+ l.,J+ l.,J 1.+ ,] 
(IV. B. 3:4) 

respectJ.vely, where for both choices 

a == e: h - -(U +U, ) 
4 l.,J+l l.,J 

h ) (IV. B. 3: 5) 
b = e + -

4 
(U 

1
+U. . ) 

l.,J+ l.,J 

These asymmetrJ.c formulae, whose molecular diagrams for the 

partJ.cular case of Burgers' equatJ.on are as in Figures (IV.B.3-f1,f2), 

respectively, are due to Saul 'yev [SAUL64]; they are uncondJ.tionally 

stable for r>O and semi-explicit J.n the sense that if the equations 

(IV.B.3:1,2) are solved J.n a 'rJ.ght-to-left' - (RL) directJ.On and the 

equatJ.ons (IV.B.3:3,4) J.n a 'left-to-rJ.ght' - (LR) duection, then the 

need to solve a lJ.near system for the solution on each lJ.ne J.S averted. 

In general, the equatJ.ons (IV.B.3:1,2) are non-l:mear in U . . 
1 

and 
1-,J+ 

U. 1 . 1 ,whJ.le the equatJ.ons (IV.B.3:3,4) are non-lJ.near J.n U .. 
1 

and 
7-+ ,J+ 1-,J+ 

U. 1 . 1 The equatJ.Ons (IV.B.3:1,3)can be neatly descrJ.bed as, 1-- ,J+ 

h 

h 

i-1 i 

Figure IV.B.3-f1: The Molecular DJ.agram 

L-_.,R 

i-1 
Figure IV.B.3-[2: 

Formula (IV.B.3:2). 

h 

h 

i 
The Molecular DJ.agram 
Formula (IV.B.3:4). 

L,._-
j+l 

j 

i+l 

of Saul'yev's Asymmetr1.c 

j+l 

j 

i+l 
of Saul'yev's Asymmetric 

R 



[Ch. IV/Sec. B 375] 

a U, +b U = G (U ,U ) 
1 L,J+l 1 L+l,]+l 1 L,J L-1,] (IV. B. 3:6) 

and 

(IV.B.3:7) 

respectLVely, Where a1 ,b1 are functLons Of Ui,j+1 and Ui+1,j+1 1 

In partLcular for 

equatLons (IV.B.3:2,4), they can be linearLzed Lf the values of a,b 

Ln (IV.B.3:5) are re-defLned as, 

h a•=e::--u 
2 i' J 

b' = £ + .!:>_ u 
2 L ,j 

(IV. B. 3:8) 

The equations (IV.B.3:1,2,3,4) are ZaddeP-step formulae and 

therefore algorLthms sLmLlar to those suggested by LarkLn [LARK64] for 

the heat-conduction equation are possLble. More explanatorLly, these 

algorLthms are: 

(i) -By use of equatwns (IV.B.3:6,2) from a RL -directwn exphcLtly 

as, 
(IV. B. 3:9) 

and 

th 
respectLvely, where the superscript n refers to the n LteratLon 

number. 

(ii) -By use of equatwns (IV.B.3:7,4) from a LR- duectwn explicLtly 

as' 

(IV.B. 3: 11) 

and 

1 
{
rb(n)U(n+ll +(1-ra(n))U +ra(n)u. }. 

L-1,]+1 L,J L+l,J (l+rb (n)) 

respectLvely. (IV.B. 3: 12) 



[Ch. IV/See. B 376] 

(iii) - By use of equatl.ons (IV.B. 3:9,10) at the /h tl.IIE-level from a 

RL- directl.on and alternatively usl.ng equatl.ons (IV.B.3:11,12), 

respectl.vely, at the (j+l)thtime-level from a LR - directl.on 

(l. .e. a RL-LR combl.natl.on) • 

(iv) - By use of equat1ons (IV.B.3:9,10) as in algorl.thm (i) and 

equatl.ons (IV.B.3:11,12) as l.n algorithm (ii), at each tl.me-

level, and then average the results for the fl.nal answer for 

that level. This averaging approach has great merit compared 

to the otheiS because of truncat1.on error cancellations l.n the 

combl.ned solutions. 

The last two algorl.thms are semi-explicit 1.n nature and certal.nly less 

preferable l.n comparison Wl.th the pure expll.cl.t scheme Whl.ch l.S normally 

easl.er to handle l.rrespectl.ve of the computatl.onal work l.nvolved. 

Recently, an interest1.ng new varl.atl.on of the use of Saul'yev's 

asymmetric equatl.ons was l.nvestigated by Evans and Abdullah [EVANBJb]. 

The central theme of the l.dea was not to restrl.ct the use of those 

equat1.ons solely along the X ll.nes l.n the RL - and LR - dl.rections, 

but to apply them to groups of 2 points successl.vely along every ll.ne 

l.n the manner l.llustrated l.n Figure (IV.B. 3-fJ); the symbol Q denotes 

the use of equations (IV.B.3:9,10) and the symbol 0 the use of 

equatl.ons (IV.B.3:11,12). 

As we have already mentl.oned, the explicl.t methods although very 

suitable for parallel processing always deny us reasonable accuracy 

and sore stabill.ty; on the other hand, the l.mplicit schemes offer 

stabl.ll.ty, but the exploitatl.On of these methods for parallel processl.ng 

may be diffl.cult and possl.bly l.nefficient. The semi-expll.cl.t algorl.thms 

dl.scussed above enable us Wl.th a trade-off between stabill.ty and the 



[Ch. IV/Sec. B 377] 

poss1bil1ty of them being suitable for implementation on parallel 

systems. Furthermore, 1t is poss1ble to express the semi-expl1cit 

schemes 1n terms of pure explic1t formulae to enable the1r eff1cient 

1mplementat1on. Of th1s sort is the class of 'Group Expl1c1t' - GE 

methods,wh1ch, to some extent, provide more effective formulae for 

1mplementation in parallel. In fact, the coupled use of Saul 'yev's 

asymmetr1c equat1ons at the po1nts (i,j+l) and (i+1,j+l) results in a 

(2x2)-set of 1mpl1c1t f1n1te-difference equat1ons, wh1ch can be easily 

converted to expl1c1t form as 1s developed in the following. 

j+1 

k k 

h h 
j 

i-1 i i+1 i+2 

FigUPe IV.B.J-[3: A Var1ation of the Use of Saul'yev's Asymmetric 
Equat10ns. 

In order to formulate the GE equations, we assume, w1thout any 

loss of generality, that the line segment o~x~l 1s d1v1ded 1nto an even 

number m of equal sub-1ntervals, wh1ch impl1es that at every time-level 

the number of 1nternal po1nts 1s odd, i.e. (m-1} • Now cons1der any 

group of two points, i.e. (i,j+~) and (i+1,j+~), and use equat1ons 

(IV.B.3:6,2) at the po1nt (i,j+~) and equat1ons (IV.B.3:7,4) at the 

po1nt (i+l,j+~), correspondingly grouped together, to g1ve, 1n matr1x 

form, the (2x2) systems of equat1ons, 

1 



and 

-a r 
A (n) J 

l+b;n)r 

[Cho IV/Seeo B 378) 

lu (n+l) l i,J+l 

u<n+l) 
1+l,J+l ~G1 (Uo ,U l ) ] = ~,) ~- ,] 

(IVoBo 3: 13) 
G (U 

0 
,U ) 

2 1+1 ,J 1+2 ,J 

1-b(n)r 
1 

0 

rb (n)ru 

~ 
1 1-l,J 

A(n) 
a rU 

2 1+2,J 

o J ~u 0 J 1 ,J 
+ 

A (n) 
l-a2 r ui+l,J 

(IVoBo3:14) 

where, 

A (n) _h (U (n) +U bl =£+ ); 
4 1,J+l 1,J 

h (n) 
-4(Uo 1 l+Uo 1 ) 

~+ ,]+ ~+ ,] 
(IVoB.3:15) 

b2(n) =£+.!::(u(n) +U ). 
4 1+l,J+l 1+l,J 

In part1cular for the (2x2) system of equatwns (IV.B.3:14), w1th the 

expl1c1t form of which we shall extensively experiment, 1t can be 

11. A 11 1\ l1nearized, s1m1larly to (IV.B.3:8), 1f the values of a1 ,a2 ,b1 ,~ 
are re-defl.ned as, 

A h A ~ al = £ uo a2 = £ -2 1' J 2 1+l,J 
(IV.B.3:16) 

A 
.!::u • +~ bl = £ + b2 = £ 2 1,J 2 1+l,J 

As we shall see later on in the correspond1ng paragraphs, desp1te the 

small t1me-step values k the results at each t1me-1eve1 were so accurate 

that there was no need for any 1teratwn of the non-l1near problem and 

A A A 11 
the use of such values for a,. a2, bp b2 as 1n (IV. B. 3:16) was absolutely 

JUSt1f1ed. 

The explic1t form of the (2x2) systems of equatwns (IV.B.3:13,14) 



is gl.ven by, 

u<n+l) 
~,J+l 

u<n+l) 
l.+l,J+l 

and 

u (n+l) 
l.,J+l 

u<n+l) 
l.+l,j+l 

l 

(n) 
a2 

=-
f1 

1 
-b(n) 

2 

+ 

-b(n 
l 

(n) 
al 

[Ch. IV/Sec. B 379] 

G
1 

(U , U. l , ) 
l.r] 1.- ,J 

(IV.B.3:17) 

G (U , U ) 
2 J.+l,J J.+2,J 

( l A (n) ) A (n) l -a
2 

r a
1 

r 

( l 
A (n) A (n) A (n) A (n) 2) 

+a
1 

r-a2 r-a
1 

a2 r j 

(IV.B.3:18) 

Where the inVerse Of the coeffl.Cl.ent matrices for Ui,j+l'Ui+l,j+l 

has been estimated through the use of thel.r adjoint matrJ.ces and 

correspondJ.ng determl.nants, 

/11 
(n) (n) b(n)b(n) 

al a2 - 1 2 (IV.B. 3: 19) 

The equations (IV.B.3:17,18) are the expll.cl.t equatl.ons whl.ch are 

computatJ.onally easier to handle. The molecular dl.agrams of the GE 

formulae,for the partl.cular case of Burgers' equatJ.on (IV.B.2:2), are 

as l.n Figure (IV.B.3-f4);whilst for the ungrouped (sl.ngle) po1nts near 

the right and Zeft boundaries we use Saul'yev's equatJ.Ons(IV.B.3:10,12), 

respectJ.vely. 

Now makl.ng use of these GE equatJ.ons we shall consJ.der a varl.ety 

of schemes for thJ.s class of methods, whJ.ch can be at fJ.rst established 

obey1.ng the prevJ.ous assumption for an even number of equal sub-J.ntervals. 



-----------------------------------------------------------------

[Ch. IV!See. B : 3&0] 

In accordance with th~s assumpt~on, for a later pract~cal match~ng, the 

equations (IV.B.3:10,12),in spec1f1c, can be correspond1ngly rewr1tten as, 

(for the right near-boundary po~nt): 

u(n+l) 
1 

= 1
1

) {ra(n)u(n+l)+(l-rb(n))U .+rb(n)u 
2 

.}. (IV.B.3:20) 
m-l,J+ (l+ra n ) m,J+l m-l,J m- ,J 

(for the left near-boundary po~nt): 

(IV.B.3:21) 

(i) - The ·~roup ~xpl1c~t w~th ~~ght ungrouped po1nt' - GER scheme 

This scheme 1s obta1ned by e~ther use of the systems of equat~ons 

(IV.B.3:17,18) for ~(m-2) t1mes, for the f~rst (m-2) po~nts grouped 2 

at a time and the correspond~ng use of e1ther of equations (IV.B.3:9,20) 

for the last, i.e. (m-l)th, right ungrouped po1nt, at every t~me-level. 

In ~pl~c1t matr1x form, for the part~cular case of Burgers 1 equat1on, 

i-1 

A(n) A(n) A(n)A(n) 2 
(l+b2 r-b

1 
r-b

1 
b

2 
r ) 

i 

(1 A(n) )A(n) -a
2 

r a
1 

r 

i+l i+2 

j+l 

j 

j+l 

A(n)A(n) 2 
b

1 
b

2 
r (1 A(n) A(n) A(n)A(n) 2) 

+a
1 

r-a
2 

r-a
1 

a
2 

r (1 A(n) )A(n) . 
+a

1 
r a

2 
r 7 

i-1 i i+l 

Figure IV. B. 3-[4: The Molecular D~agrams of the GE Formulae for 
Burgers' Equat1on. 

i+2 



[Ch. IV/See. B 381] 

1.t l.S gl.ven by, 

1 
1\ (n) A (n) 

+al r -al r • r • 
I I I 

-bA(n) 1+bJI(n) I I I : 
r o r I I I 

- 2------ -"--- T- -li (n)--- ll (n)- ,-1----------- .l-----
l+a1 r -a1 r 1 1 o: 

I I 1 
A (n) A (n) I I 1 -b

2 
r 1 +b

2 
r1 1 1 I I 

1 
I I ------------ ------------~-.-----------~------
11 I 
I 1 I 
I 11 
I 11 
I 11 

-------------r------------T~----------- -----
10 1 11 A (n) A (n) 
I I I +al r -al r 
I IIA() Jl() 

[

- ___________ -~ ____________ ~ ~~b_?:_r __ :+_1'~~:~ 1- _A_(;;)_J 
I I I 1 +al J 

' A (n) : • I I 
1:~],.- t--~Inr~;,rr- -H-------

0
---- t ---------- -l 

I I I I 
1~ (n) 1_~ (n) r! 1 1 
I 1 r 1 I I 1 
I I I I 

----,---------~~-----------,-----------' 
I h I 1 
1 I I I I 
I I I I I 

---~---------T~----------~-----------

u 
1,) 

u 
2 ,J 

u
3 

. 
,J 

I 

u 
1,) +1 

u 
2,]+1 

0
3 ,j+1 

u 
4 ,]+1 

I 
I 
I 
I 
I 
I 
I 

U I 
m-3 ,J+1 

u 
m-2 ,J+1 

u 
m-1,]+1 

1 11
1

A(n) A(n) I 
I 0 I I -a2 r a2 r I 

I I 1A(n) A(n) I 

U I m-4 ,J 

u ----~--------JJ~~-~-!~~-~!----------
1 I I 1

1 
A(n) A(n) 

1 1 1 -a
2 

r a
2 

r 

m-3 ,J 
(IV. B. 3:22) 

u 
um-2,JI I I I 1 

I 1 1 1A(n) ll(n) 
I I I I b1 r 1-b

1 
r 

1\ A A A 

where, a 1,a2 ,b1,b
2 

are as defined J.n (IV.B.3:15), and 

Tt "(n) ... (n) 
b = [b

1 
rU ,O, ..• ,o,a

1 
rU 

1 -1 O,J m,J+ 

cons1st1ng of known boundary values; or, otherw1se, 

(I;+rG
1 

)U = (I*-rG
2 

)U + bl , 
,J -J+1 ,J J -

dn) • (n): : : l J at -a1 I I 
-b (n) 1, (n) I : : 1 _ ::;;_ __ ::;;_ _J • (n.l. __ • ..!n) 1- ___ 

1 
________ -'- - -

I a1 -a1 I I 0 I 
: -t (n) 1, (n) 1 1 : I 

where, 

G = 
1,) 

-------~--------~:~-T,~r--,,m,---
I I 1 1 

-------·-1---~-~---J--------·---11 
1 0 I ,a -a I 

I 1 : _t,(n) t<n) : 

-,----l--_-_-_-_-_-_-_-.:_:-_--- ---- ~--- 1 - :;z_ -- :2.-- i ~·{nl:J 
t The 'Transpose' of ?:..r 
*The 'Identity' matrix. 

m-1,J_ 

(IV. B. 3:23) 

(IV. B. 3:24) 

= 



[Ch. IV/See. B 382] 

f"' G(2) 0 l ' ' ' ' ' ' ' ' ' (IV.B. 3:25) 

0 
'-J! (m-2)-1) 

G!(m-2) 

and 
A (n~ al 

r 
I I I I l 

_i:~k-(;;)---;(;,)-- ~--- ~--- -0---- +-------_I 
1a2 -a

2 
I I I 

I I I I 
I A (n) A (n) I I I 
l-b

1 
b

1 
I I 1 

---~----------~---~--------~--------1 I ' I I 
I ', I 1 

I I 'I I 

G ~ ~---:----

0
------:---~A"(n)--;(7,)~--------

2 , J 1 I 1a
2 

-a
2 

I 
I I I I 

l 
I I I A (n) A (n) I 
I I 1-b b I 

-- -'---------- '--- - 1- :J._- _l_- "'11 (n)-- 7': (n) 
I I I la -a 
I I I I 2 2 
I I I I A (n) A (n) 
I I I 1-b b 
I 1 I I 1 1 

~ 

0 
l (IV.B.3'"! 

0 

L 
w~th, 

G(~) ~ 

for ~~1,2, ••• ,!(m-2), 

. (~) 
G ~ 

j=O,l,2, ... . 

(IV.B.3:2?) 

Th~s scheme can be ~llustrated by the briak d~agram ~n Figure (IV.B.3-f5,i). 



[Ch. IV/Sec. B 383] 

(ii) -The 'Qroup ~xpl~cit w~th feft ungrouped po~nt' - GEL scheme 

Th~s scheme ~s obta~ned by either use of equations (IV.B.3:11,21) 

st 
for the 1 left ungrouped po~nt and ~(m-2) times the correspon~ng use 

of e~ther of the systems of equat~ons (IV.B.3:1?,18) for the remaining 

pairs of po~nts, at every t~me-level. In accordance w~th the above 

def~n~twn of matrices G
1 

.,G
2 

. , sim~larly as before, for the 
,J ,J 

part~cular case of Burgers' equation, it ~s given by the formula, 

(I+rG2 ) U l = (I-rGl ) U + b2 ,J -J+ ,J -J -
(IV.B. 3:28) 

where, 
T to (n) A (n) 

E_
2 

= [o
1 

ru
0 1

,0, ••• ,o,a
1 

rU ] ; 
, J+ m ,J 

(IV. B. 3:29) 

the brick d~agram for this scheme ~s as in Figu:r>e (IV.B. 3-f5,ii). 

(iii) -The '(~ingle) ,1_lternat1ng Qroup ~xphcit' - (S)AGE scheme 

Another var~at~on ~nvolving the coupled use of the GER and GEL schemes 

at every alternate t~me-level. In a sim~lar manner as above, for the 

particular case of Burgers' equat~on, ~t ~s given by the formulae, 

(I+rG
2 

.)U. 
2 

= (I-rG
1 

)U, l + _b
2 ,J -J+ ,J -J+ 

} (IV.B.3:30) 
(I+rG

1 
) U l = (I-rG

2 
) U + bl 

,J -J+ ,J -J -

the brick d~agram for th~s scheme LS as in Figu:r>e (IV.B.3-f5,iii). 

(iv) - The '(Q_ouble) ,1_lternat~ng Qroup !!:xpl1c~t' - (D)AGE scheme 

Th~s var~at~on has been developed from a per~odic rotation of the 

prevLous two tLme-level (S)AGE scheme, resultLng in a fou:r> time-level 

step process with the second half cycle in reverse order. Consequently, 

again for the partLcular case of Burgers' equation, Lt ~s given by the 

formulae, 



(I+rG
1 

) U 
1 ,J -J+ 

(I+rG
2 

) U 
2 ,J -J+ 

(I+rG2 , )U 
3 ,J -J+ 

(I+rG
1 

) U 
4 ,J -J+ 

(I-rG
2 

) U +b 
,J -J -1 

(I-rG
1 

) U 
1

+b
2 ,J -J+ -

(I-rG
1 

, ) U 
2

+b
2 ,J -J+ -

(I-rG2 )U 
3
+bl 

,J -J+ -

[Ch. IV/Sec.. B 384) 

(IV.B.3:31) 

thLs scheme LS represented by the brick diagram in Figure (IV.B.3-f5,iv). 

The estLmate of the truncat10n errors of all the schemes in thLs 

class can be shown by Taylor's series expansLon to be of order 0(k+h2+k/h). 

These schemes wLll be consistent to the orLgLnal problem Lf k/h+o and 

when k->0 and h+o • 

From the aspect of the stabLlity analysLs, Lt has been consLdered, 

usLng the matrLx method (see Evans and Abdullah [EVAN83]), for the 

specLfLc case of Burgers' equatLon only, sLnce such an analysis for 

solvLng the general non-lLnear parabolic equation (IV. B. 2: 1) w:>uld be 

very complLcated and dLffLcult. In fact, even in this case, since G
1 

• , 
,J 

G2 • are not 'commutatL ve' and furtheriiOre they are matr Lees WLth 
,J 

varLable elements, where the verLfication of the 'positive definLte' 

property LS not obvLously straightforward, the analysLs of stability of 

the GE type of schemes is very complLcated. However, sLnce these schemes 

are derived from stable semL-explLcLt schemes, the probabLhty of them 

beLng stable LS very hLgh. The stabihty of the GE schemes can also be 

seen from the numerLcal results exhibLted Ln the following paragraphs; 

thereLn, the GE equatLons have been considered under the assumptLon of 

an odd number of Lntervals, whLch results Ln slightly dLfferent schemes, 

much more balanced and computationally preferable, thus LntegratLng the 

Lmage of thLS new powerful class of explLcLt methods. 

Finally, to prologue the followLng paragraph, the Standard ExplLcit 

method LS prLmarily Lmplemented and analyzed on the NEPTUNE prototype, 



[Ch. IV/Sec. B 385] 
Even Number of Intervals 

I I I I I 
ungrouped 

1st group ~(m-2)- - poi'"t -
group\ 

~ - - -

--- ---
------' ) - G.E.R. (Group Explicit with Right ungrouped pomt) method 

I I I I I I I I I I I I 
(i 

I I I I I I ungrouped 
' ' - point 

7
1st group ~(m-r group -

-

-' 
(ii) -I G.E.L. (Group Explicit with Left ungrouped point) method 

I I I I l I I I 1 I I 

-- --

- - -

---

--
' (iii) - S.A.G.E. (Smgle Alternating Group Explicit) method 
I I I I I I I I I I 

I 

--

-

--
' ' ' - D.A.G.E. (Double Alternating Group Explicit) method (iv) 
I I I I I I I ' I ' 

Figure IV.B.3-f5: The Representat~ve D~agrams of the Var~ous GE Schemes. 



[Ch. IV/See. B 386] 

s~nce it w~ll form the basis for performance compar~sons w~th the GE 

schemes wh~ch will be fully and ~nd~vidually explo~ted on this system 

~n the subsequent paragraphs. 

IV.B.3.1: THE STANDARD EXPLICIT METHOD: PERFORMANCE f'bDEL, 

EXPERIMENTAL RESULTS AAo PERFORMANCE ANALYSIS ON THE 

'NEPTUNE' PROTOTYPE SYSTEM 

After hav~ng presented the bas~c concepts of the var~ous f~n~te-

d~fference solution schemes, we proceed w~th the parallel ~mplementation 

of the Standard Explic~t method represented by the formula 

rh U . =E:r(U -2U +U )+[1--(U -U ,)]U , 
~.J+l ~+l,J ~.j ~-l,J 2 ~+l,J ~-l,J ~.J 

(IV.B.3.1:1) 

2 
for r=k/h , since the performance analys~s results obtained from th~s 

method will be directly compared w~th the correspond~ng results obta~ned 

from the new GE methods. Fbr our numerical exper~ments w~th Burgers' 

equation (IV.B.2:2) the follow~ng exact solution has been chosen (see 

Madsen and S~ncovec [MADS? 6]) , 

-A -B -C 
O.le +0.5e +e 

where, 

u (x,t) = 
A -B C 

e +e +e 

0.05( A = ---- x-0.5+4.95t) 
E: 

B = 
0

"
25

<x-0.5+0.75t) 
E: 

c = 0 "5 (x-o.375) 
E: l 

(IV.B.3.1:2) 

(IV.B. 3.1:3) 

Th~s problem ~n pract~ce would have a very small value of E: and 

this ~n turn means that the ~nterval [0,1] ~n the X d~rect~on has to be 

subd~vided ~nto a very fine grid ~n order to obta~n reasonable accuracy. 



[Ch. IV /See. B 

In our experLmental work, for a reasonably small value of~. the 

Standard Expll.cl.t D>3thod, as well as the followl.ng GE methods, has 

387] 

been analytically tested for a wide range of internal points and tLme

levels reachl.ng the extremest figures allowed by the NEPTUNE system; 

l.n partl.cular, the latter's number is adjusted 1n accordance with r to 

mal.ntal.n the same overall tl.me-advance length. In all cases, despite 

the very small values of the time-step k, the results at each time

level are so accurate that there l.S no need for any l.teratl.on of the 

non-ll.near problem. 

From the aspect of paralle 1 programm1ng, the prev1ous formula 

(IV.B.3.1:1) has been Lmplemented in an unavoidable, but highly 

effl.cl.ent, synchronized manner which l.S due to the nature of the method; 

asynchronous algorl.thms, l.n fact, are the oldest and most prim1t1ve 

ways of l.mplementatl.on, s1nce as the methods and problems became more 

and more compll.cated, synchronl.zation actl.vl.tl.es were l.nevl.tably brought 

into use. Fl.nally, the number of sub-intervals m l.s assumed to be odd, 

whl.ch l.mpll.es that at every time-level the number of l.nternal points 

l.S even, i.e. (m-1). 

Prl.or to proceedl.ng Wl.th the dl.scussl.on of the l.nherent parallell.sm 

of the method and the actual experl.mentatl.on and analysl.s of the obtained 

results, and although we have already provl.ded our performance pred1ct1on 

framework (see par.-II.B.3.1), we ought to make, for the interested 

reader, an essential clar1ficat1on concernl.ng the style of the perform

ance analysl.s supported by some other different 'schools' of analys1s. 

S1nce qul.te a few such experl.mental systems, otherwl.se called 

'Mult1processor testbeds', have been built to l.nvestigate algorithm 

performance, a comprehensive approach to performance prediction requ~res 



[Ch. IV /Sec.. B 

accurate performance frameworks in order to reduce the overall 

expen.mentatl.on time. In accordance, most of the Multl.processor 

performance frameworks have been theoretJ.cally based on statJ.stical 

methods, predl.ctl.ng statistical mean values for performance over some 

t~DlE! interval. 

388] 

In partl.cular, a 'school' of performance J.nvestigatl.on (see Baudet 

ffiAUD78J) performs an analysl.s of algorithms employl.ng sl.mple technJ.ques 

on order statl.Stl.CS and queueJ.ng theory, whl.le others (see Robl.nson [ROBI79J) 

approach the analysl.st through the rules of probabl.ll.ty theory. In 

partl.cular for the former 'school' , l.t l.S only concerned Wl.th the 

l.nvestJ.gatl.on of the l.nherent parallell.sm, of the applicatl.on in hand, 

in terms of the total run-t=e. 

In general, these approaches may g1ve a good approXJ.mate estl.mate 

to the experl.mental tl.ml.ng results, and thl.s can be very useful 

theoretl.cally since it can be used to predl.ct the optimal deaomposition 

of a problem (J..e. the optl.mal number of processes to create l.n order 

to, for example, ml.nl.mize the overall executl.on time). In other words, 

a successful l.mplementatl.on of these approaches can be proved as a 

theoretl.cal gul.de-ll.ne of h1gh assl.stance l.n answering the important 

questl.on that concerns the best combl.natl.on amongst the various parallel 

computer archl.tectures and parallel algorJ.thms in order to solve, l.n the 

most effl.Cl.ent way, a specl.fl.c problem. 

However, 1n real-time shared memory based systems the SJ.tuatl.on 

l.S qul.te often dl.fferent, sl.nce indl.Vl.dual systems may l.nvolve such 

specl.alized hardware and software features that make them more enhanced 

than others and thus of not accurately predictable performance vl.a the 

tMainZy for sorting and merging algorithms. 



[Ch. IV/Sec. B 389] 

framework of such theoret~cal approaches. These cases are eas~ly 

taken care of ~n our 'school' of determ~nist~c performance analys~s, 

which v~ews performance as the interaction of resources demanded by 

programs and prov~ded by the Mult~processor system, in both system 

dependent and ~ndependent manner; ~t also matches algor~thm to mach~ne 

try~ng to avo~d the danger of reJecting an algor~thm because it performs 

badly on one part~cular parallel prototype system. Hence, our frame-

work of analys~s attempts a more real~stic and d~ect approach, be~ng, 

nearly from every aspect, eompZete, aeeuratet and eredibZe, exclusively 

referr~ng, w~thout any loss of generality though, to the spec~f~c 

system in hand, the NEPTUNE prototype; and that is because, although 

we have des~gned general, ~n nature, parallel algorithms for MIMD 

complexes of processors, the attempt to exploit as much as ~t was 

poss~ble NEPTUNE'shardware potent~al and resource prov~s~ons has 

s~gn~f~cantly affected the 'thinking' ~n our progr~ng. 

A s~~lar framework to ours has been set by Vrsalov~c,et al [VRSA84], 

who presented a model for predicting Mult~processor performance on 

~terative algor~thms; these algor~thms are made up of repeated 

appZieation eyeZes cons~sting of some synchronous or asynchronous 

amount of accesses to global data and local processing. In particular, 

they are us1ng the notion of eyeZie processing power defined as the 

effect~ve number of processors (that ~s the number of processors not 

'idle' due to contention), working cooperat1vely 1n every cycle. 

Return1ng to the NEPTUNE prototype system, let us d~scuss some 

absolutely necessary special~zed character~st~cs of it that w~ll be 

ma~nly and repeatedly ut~l~zed ~n our analysis, ~n combination w~th 

tUnder the condition that the values of aZZ system panxmetrie figures 
are aeeurateZy provided. 



[Ch. IV!See. B 390] 

the resource provLsions Table presented Ln (Appendix C-II/par.-II.B.3.1). 

MOre specLfLcally, two subroutLnes are ava~lable for obtain~ng the 

t~m~ng Lnformation. The rout~nes should be embedded w~thLn a $DOALL/ 

$PAREND sequence to force each processor to execute them. The t~~ng 

~s started or restarted with 

CALL TIMEST 

and current t~~ng(s} is obtained us~ng 

CALL TIMOUT(ITIME), 

where ITIME must be declared as a shared array of s~ze 100 and pr~nted 

out from a subsequent sequent~al path, its results be~ng arranged ~n 8 

columns. 

The t~~ng results for each processor are held ~n ITIME as follows: 

ITIME(1+j*25) •.• ITIME(24+j*25) :hold ti~ng informat~on for 

processor j=0,1,2,3, 

where, w~th i=j*25, one has: 

ITIME(1+i) } ITIME(2+i) 

ITIME(3+i) } ITIME(4+i) 

ITIME(5+i) 

ITIME(6+i) 

ITIME(7+i) 

ITIME(8+i) 

ITIME(9+i) l 
ITIME(22+i) 

clocked CPU t~ ~n seconds 
and 

m~lliseconds 

elapsed t=e Ln seconds 
and 

~ll~seconds 

number of parallel paths run by th~s processor 

number of waiting cycles because no path ~s ava~lable 

number of accesses to cr~t~cal section resource 1 

number of waiting cycles because th~s resource ~s 

be~ng used by another processor 

same for cr~t~cal sectwns resources 2 to 8 



[Ch. IV /Sec.. B 391] 

ITIME(23+i) informat~on on system cr~tical sect~on resource 

ITIME (24+i) 1nformat1on on system cr1t1cal section resource 

ITIME(25+i) l.S not used. 

Most l.nformatl.on about the algorl.thm performance l.S obtal.ned from the 

ITIME array as l.t Wl.ll be exempll.fied further on l.n the analysl.s of 

the algorJ.thms. 

To proceed with the actual experJ.mentation of the Standard Explicl.t 

method, let us fl.rst consl.der a brief descrl.ptl.on of the l.mplemented 

program which l.S l.ncluded l.n the Appendix C-IV under the name MB$5t.STEXMt. 

It can be dl.VJ.ded into six dl.screte phases from whl.ch three are the 

prl.ncl.pal ones wherel.n the l.nherent parallell.sm of the l.mplementatl.on 

unfolds. For these phases the tl.IDJ.ngs, speed-ups and performance 

analysl.s fl.gures are gl.ven l.n the approprl.ate Tables that follow. 

For direct comparl.son reasons these phases, l.n all the Group Expll.cl.t 

algorl.thms that are accordingly l.mplemented, have been set l.n 

correspond1ng pos1tions and in a s1m1lar manner. 

More analytically, the general first phase concerns the settl.ng 

of the whole framework in terms of the requ1red arrays, variables, 

shared data, crl.tl.cal sectl.ons, l.nl.tl.all.zatl.on of parallell.sm, the 

dynaml.cally set, at each executl.on tl.me, number of processors, the 

l.nput data, as well as, the locall.zatl.on of some shared varl.ables to 

dl.ffil.nl.sh the overheads due to shared memory accesses. 

In the seaond phase takes place the cornputat1on of the exact 

theoretl.cal values at all the boundary and l.nternal po1nts, at the 

maxl.mum tl.ffie-level, using the chosen exact solution formula (IV.B.3.1:2). 

tD. 1-reatory name. 

tIt stands for ~'!_andard ~~Ziait fiethod. 



---------

[Ch. IV /Sec.. B 392] 

The next three consequent phases include all the parallel work and 

consl.st of the central part of the algorithm producing the performance 

analysl.s f1gures. In partl.cular, l.n the third phase takes place the 

CODI>Utatl.On of the exact values at all the points on both boundaries, 

from zero up to the penultimate tJ.me-level, us1ng the prev1ous exact 

solution formula. In the fourth phase takes place the computation of 

the exact in1t1al values (i.e. the values at zero tl.me-level) at the 

internal pol.nts, us1ng aga1n formula (IV.B.3.1:2); while, l.n the fifth 

phase takes place the computatl.on of the approximate values at the 

internal pol.nts, at every tJ.me-level, for all tJ.me-steps, us1ng the 

Standard Expl1cit finl.te-dl.fference formula (IV.B.3.1:1). 

The program concludes with the sixth phase where 1t takes place 

the output of the t1m1ng(s) and results obtal.ned from the t:uned 

CODI>Utatl.onal procedure, the computat1on of the maxl.mum 'Absolute Error' -

A.E. and the max~mum 'Percentage Error' - P.E., as well as the settLng 

of the ent1re program's format statements. 

Let us now restrl.ct ourselves to the inherent parallell.sm of the 

Jmplementatl.on and the Standard Explicit method l.n specific, l.n terms 

of the IIDSt efficl.ent utill.zatl.on of system's hardware and software 

potent1al. 

The expll.cit nature of the 1mplementat1on, as well as the method's 

itself, offers the possib1l1ty for alternat1ng ways of ach1ev1ng the 

l.nherent parallelJ.sm. In fact, the consl.dered each tl.me total number 

of boundary and 1nternal po1nts can be d1v1ded 1nto var1ous task s1zes 

to be ass1gned to the cooperat1ng each t1me processors. 

BasJ.cally, we have set, except the ITIME, three shared real arrays 

U,Z,F to be, maJ.nly, utl.ll.zed 1ns1de the tl.med computational procedure 



[Ch. IV/Sec. B 393) 

of the central three parallel phases. The first array holds temporarl.ly, 

at each tl.me-level, the p.d.e. 's approx:unate values at the l.nternal 

pol.nts, ccrrputed usl.ng the Standard Explicit finite-dl.fference formula. 

The second one holds, at each time-level, the p.d.e.'s exact and 

approXl.mate values at all the boundary and l.nternal points, copl.ed from 

the array F and the work-array U, respectl.vely; whl.le, the last array 

holds the p .d.e. 1 s exact values at the pol.nts on both boundaries, for 

all ti.me-levels, computed using the cbosen exact solution formula. 

The p .d .e.'s exact theoretical values at all the boundary and 

l.nternal pol.nts, at the maxl.mum tl.me-level, computed usl.ng the chosen 

exact solutl.on formula, are held l.n a non-shared real array W; and 

that l.S because l.t is l.nvolved l.n a sequentl.al computl.ng procedure without 

any timl.ng effect sl.nce l.t ll.eS outside the tl.med one. For the same 

reason a non-shared real array ERROR holds the dl.fferences between the 

p .d .e.'s exact and approxl.mate values at the l.nternal points, at the 

max:unum t:une-level. 

After an extensl.ve varl.ety of exper:unentatl.On we converged to the 

conclusl.on that the irrplementatl.on's granularity factor, or otherwise 

the number of processes (paths) generated at every time-level, has to 

be made to be equal to the number of cooperat1ng processors. lob re 

specl.fl.cally, each path l.S assl.gned a subset of boundary or l.nternal 

t 
pol.nts equal to ISTEP/NPROC or NFOINT/NPROC, respectl.vely; wl.thout 

any loss of generality and mal.nly for a perfectly 1 balanced' l.rrplement-

atl.on, the total number of tl.me-steps (ISTEP) and the number of 1nternal 

grl.d points (NPOINT) have been chosen to be even and exactly divisible 

by any number of cooperat1ng processors. F1nally, to generate and 

t 
~umber of f~Q£essors. 



[Ch. IV/See. B 394] 

terminate the NPROC paths each time, the $DO PARI $PARFND construct J.S 

utJ.lJ.zed, whJ.ch is the most effJ.cJ.ent and economJ.cal way to J.ntroduce 

parallelism J.n a program for the NEPTUNE prototype system. 

- Performance MOdel, Experimental Results 

SJ.nce our performance analysJ.s framework WJ.ll be consJ.stently 

applJ.ed for all parallel algorJ.thms l.lllplemented J.n the Thesis, a 

complete list of all model parameters is presented J.n Table (IV.B.3.1-tl). 

TC dJ.stJ.nguish those parameters that are required by the partJ.cular 

algorJ.thm J.n discussJ.on each tJ.me, we shall denote them as local 

parameters, whJ.le the generally utJ.lJ.zed ones WJ.ll be denoted as global 

parameters. 

In specJ.fJ.c for the parallel algorJ.thm for the Standard Explicit 

method, the experimental results obtained on the NEPTUNE system are 

presented in Table (IV.B.3.1-t2) along wJ.th the values of some other 

parameters of the performance model estimated statically. 

N 
PRO CS 

p 

@ GLOBAL PARAMETERS 

The Number of cooperating PROCessorS J.n the system each 

run-tJ.Ine. 

Tbe potential of the parallel machJ.ne J.n terms of provJ.ded 

processors. 

Time-complexity (experJ.mental) of the algorithm, which is 

analytically dJ.StJ.nguJ.shed to T~eJ (uniprocessor tJ.me-

(e) 
complexJ.ty) and Tp (p-processor tJ.me-complexity) (see 

par.-II.B.3). 

Time-complexity (theoretJ.cal) of the algorJ.thm, whJ.ch is 

analytJ.cally dJ.stJ.nguJ.shed to T~tJ (uniprocessor tJ.me

complexJ.ty) and TbtJ (p-processor tJ.me-complexJ.ty). 

Table IV.B.3.1-tl: LJ.st of Parameters for the Performance Model. 



c 
p 

s 
p 

E 
p 

F 
p 

[Ch. IV/See. B 395] 

The real Cost of the algon.thm l.n relatJ.on with the number 

of t . c T(e) cooperatJ.ng processors each J.me, l. .e. p = p. p • 

Speed-up, the ratio between the experJ.Jnental time-complexl.tl.es 

achieved in a unl.processor llnplementatwn and in a parallel 

llnplementation of the same algorithm; l.n other wcrds, J.t 

shows the internal acceleration of the parallel algorJ.thm 

dependent on the number of cooperating processors, 1.e. 

sp = T~e) I T~e) (~1). 

Relative or normalized Speed-up, the ratJ.o between the 

experl.mental tJ.Jne-complexity of the uniprocessor standard 

solutJ.on and the experl.mental tJ.me-complexl.tJ.es of the 

consl.dered each tJ.me parallel algorithm achJ.eved J.n a unl.-

processor and parallel implementatJ.on. 

Reference internal Speed-up, the ratJ.o between the 

experJ.mental t=e-complexity of the unl.processor basis 

solutwn and the experl.mental time-complexitJ.es achieved,e.g., 

J.n terms of r, l.n a unl.processor and parallel l.mplementatJ.on 

of the same algorithm. 

Efficiency, the ratl.o of the achieved Speed-up to the 

corresponding number of cooperatl.ng processors, l..e. Sp/p 

(~1); l.t measures the utilization of the parallel machine. 

Effectiveness, a common basl.s for comparl.sons between varJ.ous 

parallel algorJ.thms for the same problem l.n terms of the 

real Cost factor, l. .e. F = s /C • 
p p p 

Number (theoretical) of processors that l.S allowed by the 

algorJ.thmic structure. 

Table IV.B. 3.1-tl ( aont. d.): LJ.st of Parameters for the Performance Model. 



Ae p 

N p(p) 

LO( I I) 

L O(cs) 

R a(s) 
(t} 

0 st(s) (%)' 

(t) 
0 st r I I J (% >: 

o(tJ J%l: 
st(cs 

[Ch. IV/See. B 396] 

Algebraic-complexity (see par.-II.B.J) per path of the parallel 

algon.thm l.n terms of flops and the number of cooperatl.ng 

t processors l.n the system. 

Time-corrrplexity (theoretl.cal) per path of the parallel 

algorithm l.n terms of the number of 
t 

cooperat1ng processors 

in the system. 

Number of parallel paths allocated per processor. 

Loops of parallelism, i.e. the number of tl.mes the 

computatl.onal procedure l.ncludl.ng the 'DOPAR' constructs 

is executed. 

Loops of critical sections, l..e. the number of tl.mes the 

computatl.onal procedure includl.ng the mutual exclusion 

constructs ~s executed. 

Rate of access to the shared memory module in terms of flops. 

The static (theoretical) Overhead due to accesses to the 

shared memory module. 

Rate of access to the shared schedull.ng structure l.n terms 

of flops and the number of 

system. 

t 
cooperating processors in the 

The static (theoretical) Overhead, 1.n terms of the number 

of t 
cooperatLng processors 1n the system, due to accesses 

to the shared schedull.ng structure. 

Rate of access to critical sections resources l.n terms of 

flops. 

The static (theoretical) Overhead due to accesses to 

critical sections resources. 

Table IV. B. 3.1-tl (cont. d.): Ll.st of Parameters for the Performance Model. 

tit is not always the case that the number of cooperating processors will 
be involved in the parametric figure. 



m 
p 

t cy 

t e 

s cy 

[Ch. IV/Sec. B 397] 

Performance limJ.tation J.n terms of a theoretJ.cal upper 

bound on the number of cooperat:~.ng processors J.n connect:~.on 

w:~.th the:~.r average excess access time to the Shared data 

resou.Pee, on the bas1..s that the access mechanism 1..s 

J.ndependent of the number of cooperatJ.ng processors. 

Performance l1m:1.tation in terms of a theoretical upper 

bound on the number of cooperatJ.ng processors J.n connectJ.on 

w:~.th theJ.r average access time to the Shared data resource, 

~.e., the t1.me to rece1..ve-serve a request, theu average 

excess overhead due to the access mechan1sm be1ng excluded. 

Performance l:~.mitat:~.on J.n terms of a theoretical upper 

bound on the number of cooperating processors in connect1on 

with the cycle time of the parallel path Scheduling resource. 

Notation for the maximum theoretical number of cooperating 

processors due to the previous performance lJ.mJ.tatJ.ons. 

The real time requued for a flop to be performed. 

The overhead of start:~.ng and term:~.nating a parallel path, 

i.e. the cycle time of the parallel path scheduling resource. 

The cycle time of the local mei!Xlry module of each processor 

J.n the system. 

The average excess access time to the shared memory module 

for all processors 1n the system, compared WJ.th the average 

access tJ.me to their local memory modules. 

The cycle time of the shared memory I!Xldule for each processor 

1n the system. 

Number of accesses to the shared data resource. 

Table IV. B. 3.1-tl (cont. dJ: L1st of Parameters for the Performance Model. 



c 
y 

t cy 

rit; (%J 
t 

[Ch. IV/Sec. B 398] 

The Wasted time stat1cally due to, the creation, allocat1on 

and synchronizat1on overheads for parallel paths and, the 

overheads associated w1th accesses to the shared memory 

module and critical sect1ons resources. 

Number of parallel paths run by each processor. 

Number of waiting cycles for each processor because no 

parallel path 1s ava1lable. 

Processors cycle time wh1le wa1t1ng for a parallel path to 

be allocated. 

The average time wasted statically (theoretical) when all 

but one cooperating processors are Idle, 1n terms of the1r 

relat1ve speeds, t1me-complexity per parallel path, the 

number of parallel paths run by each processor and the 

loops of parallelism. 

The average time wasted dynam1cally (exper1mental) when 

all cooperat1ng processors are Idle, 1n terms of the 

average number of wa1t1ng cycles for parallel path allocat1on 

and for access to crit1cal sect1ons resources. 

Processors idle looping time when no parallel path 1s 

available. 

The blocked time wasted by a processor to execute some 

shared and local 1nstruct1ons 1n the GETRES/PUTRES 

cr1t1cal resource rout1nes, when there 1s not any free 

block 1n the parallel path schedul1ng resource. 

Table IV.B.3.1-tl(cont.d): L1st of Parameters for the Performance Model. 



[Ch. IV/Sec. B 399] 

(e) 
Ost(//J(%): The static (experimental) Overhead accordLng to the number 

of cooperating processors Ln the system, due to accesses 

to the parallel path schedulLng resource. 

(e) 
ocn(//)(%): The overhead occurrLng when processors contend for the 

'ownersh~p' of a free block Ln the parallel path schedul~ng 

resource a 

(e) 
Otl(//)(%): The total (experimental) Overhead Ln the case of a un~processor 

(e) 
0tUsJ (%) 

t 
CS 

n 
CS 

c, 
y 

t' 
cy 

d' 
l 

t' 
b 

appl~cat~on due to the control of the parallel mechan~sms. 

The total (experimental) OVerhead Ln the case of a un~-

processor appl~cat~on due to the shared data load~ng ~n the 

shared memory module. 

The t~me to execute a $ENTER/$EXIT, ~.e. the mutual 

exclusion mechanLsm. 

Number of accesses performed by each processor to critical 

sections resources. 

Number of waiting cycles for each processor to access 

cr1tical sectLons resources. 

Processors cycle time wh~le wa~tLng access to a cr~t~cal 

sect1on resource. 

Processors idle looping time when access to a cr~t~cal 

sect1on resource is not granted. 

The blocked time wasted by a processor to execute some 

s~m~lar ~nstructions to those causLng tb Ln the GETRES/PUTRES 

cr1t1cal resource rout1nes, when the requ1red crit1cal 

sect~on resource ~s being used by another processor. 

Table IV.B. 3 .1-tl (cont. d.): L~st of Parameters for the Performance Model. 



[Ch. IV/Sec. B 400] 

(e) 
ost(cs)(%): The static (experimental) Overhead accord1ng to the number 

o(e) % • 
cn(cs) ( ) · 

w 

ps 

Ac(. ") 1-,J 

(t) 
Tc( . . 1 1-,J 

of cooperat~g processors 1n the system, due to accesses 

to critical sections resources. 

The OVerhead occurring when processors contend for the 

'ownership' of a critical section resource. 

The Wasted time dynam~cally due to processors total ~dle 

looping t~me and the total time of content~on for parallel 

paths and cr~t1cal sections resources. 

The total Wasted time, or the t~me the system is not used 

product~vely, as the 'sum' of the stat~cally and dynam~cally 

wasted t~mes. 

Processors speeds relat1ve to the reference processor. 

@ LoCAL PARAMETERS 

Grid size, ~.e. Number of Internal Points (N ) X T~me-steps. 
I.P. 

The PHases where the parallel~sm of the algor~thm unfolds. 

The total number of phases where the parallel~sm of the 

algorithm unfolds. 

Algebraic-complexity per po~nt (or per group of two points) 

of the problem 1n terms of flops. 

Time-complexity (theoret~cal) per po~nt (or per group of 

two po1nts) of the problem. 

The actual number of parallel Implementation cycles per 

sect~on, of each phase of the algor~thm, ~mplemented 1n 

parallel, 1n terms of the number of 

~n the system. 

t 
cooperat1ng processors 

Table IV.B.J.l-tl(cont.d.): L~st of Parameters for the Performance Model. 

tIt is not aZwys the case that the number of cooperating processors 
will be involved in the parametric figure. 



[Ch. IV/Sec.. B 401] 

Wlth respect to the Number of Internal grld Polnts (N ) and 
I.P. 

Tlme-stepst experimented with, the determlnlStlC factor for the slzes 

of the rectangular grlds consldered ln the open rectangle[O,l]x[O,+oo) 

is the grid ratlo r. More speclflcally, the grid slzes, when r=l, have 

been considered as the common baslS to estlmate the correspcndlng grld 

Slzes for each lndividual method when r takes dlfferent values, slnce 

thls lS the maxlmum value for r satlsfylng the stablllty condltlon (l.e. 

r~l) for the basic GE schemes upon whlch the more advanced GE schemes 

are dependent. Consequently, the Standard Expllcit method proves ln 

turn to be the determlnlStlc method for the partltlonlng ln the x-t 

plane each time, slnce lt suffers from the most restrlctlve stablllty 

condltlon r~! ln order to retaln reasonable accuracy. The maxlmum grld 

Slze allowed by the system ln hand is (1920x480) *· whwh analogously 

lmposes the correspondlng maxlmum grld Slzes for the GE methods for 

every value of r. Certalnly, the consldered numbers of lnternal polnts 

and time-steps could equally well be ln reverse order; however, thls 

would probably lead to less accurate solutlons, and thls can be checked 

out from the Table for the case of (480x240) . In fact, the lntentlon 

of the lnvestlgatlon by belng lnCllned, malnly, towards the best 

achlevable parallel performance, ln conJunctlon Wlth the smallest 

pcsslble tlme-complexlty, lmposed a hlgher prlorlty on the number of 

lnternal polnts rather than the time-steps. 

The comblnatlons of the utlllzed processors ~ ) have been 
PROCS 

analytlcally and ln the glven order stated, due to the occurrlng 

varlatlons ln processors relatlve speeds* (see Table (II.B.J.l-tl) and 

tin every program dependent performance analysis Table following, for 
the Number of Boundary Points we use the notation NB.P. · 

t Internal grid Points x Time-steps. 

*Processors speeds relative to the speed of the 'reference' processor 
P0 which is normalized to be 1.000. 



[Ch. IV/Sec. B 402] 

Appendix C-II/par.-II.B.3.1), a fact which would certaLnly lead to 

different sets of results Lf other processor combLnatLons were to be 

utLlJ.zed. 

2 
The value for the grJ.d ratJ.o r=k/h , the MaxJ.mum Absolute Error 

obtained 1n each case, ~.e., 

= max lu -u I , 
~,) ~,J 

(IV. B. 3.1 :4) 

and the correspondJ.ng Percentage Error, labelled as Maximum to LndJ.cate 

that J.t refers to the maximum absolute error occurrLng at this grLd 

pomt, 1..e., 

(% Error) = 
maxle I J.,] 

X lOO ' (IV. B. 3.1 :5) 

are gLven in the columns under the abbrevLations r, MA.E.' MP.E.' 

respectLvely. 

The concepts of the Time-complexJ.ty (Tc) and AlgebraJ.c-complexJ.ty 

(Ac) have been thoroughly dLscussed J.n (par.-II.B.3). The run-tJ.me 

measurements, however, obtal.ned from the exper1.mentation on such a 

parallel computer complex, as we have dLscussed J.n (par.-II.B.3), are 

not constant, since there J.S a varJ.ety of dynamJ.c and unpredLctable 

(Lnternal and external) factors whLch are most lLkely to cause 

fluctuations Ln run-tJ.me, Such fluctuatJ.ons are prJ.marLly due to the 

OperatJ.ng System scheduling polLCJ.es that assign certaJ.n processors to 

perform I/O, allocate processors to processes, etc.; 1.n fact, even 

external factors, as the env1.ronmental temperature or the occas1.onal 

temperature of the processors chassJ.s, may consJ.derably affect the run-

tJ.me measurements. Therefore, thJ.s fact forced us, Ln all the experJ.mental 

cases where a substantLal dJ.screpancy Ln run-tLmes appeared, to perform 

a serJ.es of runs (i.e. about 4-10 repetitJ.ons), for the same case, to 



N N 
Tc(e) 

c s IF. _,/ e 
Tc(e) 

Fn.~ 1' M M 
(secs) E M M cP sP Ep I.P. PROCS P.E. A.E. p p p p s p .E. A.E. (secs) . 

~ 
,_. ,_. 

195.383 195.383 l l l w "' 385.738 385.738 l l l w "' "' "' "' w "' 0 
~,l 0 w lOO. 790 201.580 1.939 0.969 1.879 0 "' 198.583 397.166 1.942 0.971 1.887 lJl "' -.J w 240 0.5 w lJ1 2 ,_. 

~,1 ,2 ,_. 
"' 69.720 209.160 2.802 0.934 2.618 w 137.003 411.009 2.816 0.939 2.642 "' "' -.J 0 w "' ,... 

"' ~,1,2,3 t>J t>J 52.993 211.972 3.687 0.922 3.398 t>J t>J 104.363 417.452 3.696 0.924 3.415 I I I I 0 0 0 p ,_. w ,_. 
. 

"' 
,_. 

~ 
,_. ,_. 

382.918 382.918 l l l 8 w 755.790 755.790 l l l 0 0 w 
"' "' w w 

~.l "' "' 197.950 395.900 1.934 0.967 1.871 w -.J 392 .053 784.106 1.928 0.964 1.858 N -.J "' -.J 
480 0.5 lJl lJ1 w lJ1 

~.1,2 w 0 135.710 407.130 2.822 0.941 2.654 lJ1 w 267.298 801.894 2.828 0.943 2.665 0 "' lJ1 -.J w "' "' "' ~.1,2,3 t>J "' 102.730 410.920 3. 727 0.932 3.473 I I 202.205 808.820 3.738 0.934 3.493 I I 0 0 0 0 ,... w ,_. w 
,_. ,_. 

N N 

~ 
,_. 0 759.735 759.735 1 1 1 0 0 1498.070 1498.070 l 1 l ,_. 

"' "' "' N 0 w "' ~.1 lJ1 w 393.510 787.020 1.931 0.965 1.864 0 N 776.815 1553.630 1.928 0.964 1.860 "' "' "' N 
960 0.5 "' N lJ1 -.J 

~.1,2 "' "' 268.718 806.154 2.827 0.942 2.664 0 "' 530.485 1591.455 2.824 0.941 2.658 lJ1 "' "' "' t>J t>J t>J t>J 
0,1,2,3 I I 203.228 812.912 3.738 0.935 3.494 I I 401.073 1604.292 3. 735 0.934 3.488 0 0 0 0 ,_. w ,_. w 

,_. ,_. 
N N 

~ 
,_. 0 1513.813 1513.813 1 1 1 N 0 2987.858 987.858 1 1 1 lJl w -.J "' 0 -.J "' w 

~.1 w ,_. 
786.073 1572.146 1.926 0.963 1.854 lJ1 "' 1548.110 096.220 1.930 0.965 1.862 lJ1 "' "' 0 

1920 0.5 "' 0 -.J w 
i1l,l,2 lJ1 "' 535.260 1605.780 2.828 0.943 2.666 w -.J 1054.413 163.239 2.834 0.945 2.677 ,_. 

"' "' w t>J t>J "' "' ~.1,2,3 I j 404.855 1619.420 3.739 0.935 3.495 I I 798.165 192.660 3.743 0.936 3.503 g 0 0 

TIME-STEPS: 120 240 

Table IV.B.3.1:-t2: Exper1mental Results and Performance Measurements of the Parallel Algorithm for the Standard Explic1t 
Method on the 'NEPTUNE' Prototype System. 



[Ch. IV/Sec. B 404] 

N NPROCS r M M Ta(e) c s E F .fe 
I.P. P.E. A.E. 

I"""" 1 
p p p p s 

9l "' "' 766.268 766.268 1 1 1 ..., 2 0 
9l ,1 "' CD 394.895 789.790 1.94C 0.970 1.883 w CD 

240 0.5 w ..,. 
9!,1,2 w w 271.700 2 .82( ... CD 815.100 0.940 2.651 

"' CD 

9!,1,2,3 t'l t'l 207.075 828.300 3. 70C 0.925 3.423 I I 
0 0 ... w . 

9l 
w w 500.133 1500.133 1 1 1 "' "' ..,. w 

9l ,1 '"' ... 775.268 1550.536 1.935 0.967 1.872 "' 
..., 

480 0.5 
..,. ... 

9l 11 ,2 "' ... 532.595 1597.785 2.817 0.939 2.645 w 0 
0 ... 

9),1,2,3 t'l t'l 402.493 1609.972 3. 727 0.932 3.473 6 6 ... w 

9l 
..,. w 

974.615 2974.615 1 1 0 '"' 1 
-J '"' 9),1 '"' "' 541.228 3082.456 1.930 0.965 1.863 "' 

..,. 
960 w '"' \1),1,2 

0.5 ..,. ... 
053.690 3161.070 2.823 2.657 ..,. ..,. 0.941 

'"' w 

\1),1,2,3 
t'l t'l 797.498 3189.992 3.730 0.932 3.478 I 6 0 ... w 

\1J 
. 

934.120 5934.120 ..,. ..,. 1 1 1 ..,. 0 ..., w 
~072 .303 \1),1 "' 

..,. 6144.606 1.931 0.966 1.865 
"' "' 1920 

\1),1,2 
0.5 CD w 

096.200 "' CD 6288.600 2.831 0.944 2.671 
0 ..,. 

\1),1,2,3 
0 0 

!-588.353 t'l 

~ 6 
6353.412 3.736 0.934 3.489 

. 
TIME-STEPS: 480 

Table IV.B.3.1-t2(aont.d.): Exper~mental Results and Performance Measure
ments of the Parallel Algor~thm for the 
Standard Explicit Method on the 'NEPTUNE' 
Prototype System. 



[Ch. IV/Sec. B 405] 

produce an average run-t~me measurement, wh~ch would probab~l~st~cally 

t 
be closer to the real absolute value. 

In respect of the utilization of the parallel mach~ne ~n terms of 

the Eff~c~ency rat~o (E), the longer processors are idle, or carry out 
p 

extra calculat~ons ~traduced through the parallel~zation of the problem, 

the smaller ~t becomes. 

From the Effect~veness factor po~t of v1ew note that, 

= E • s !r (e) ~1. 
p p s (IV. B. 3.1:6) 

In other words, FP ~s a measure both of Speed-up and Eff~c~ency and 

consequently a parallel algor~thm can accord~ngly be regarded as 

effective ~f ~t max~m~zes the value of th~s parameter. The values for 

the Effect~veness (mult~pl~ed by the sequent~al run-t~me) of the parallel 

algor~thm are g~ven ~n the corresponding column under the abbrev~at~on 

F .T(e} 
p s 

Some conclus~ons that can apparently be drawn from the exam~nat~onof 

the prev~ous Table are that, in terms of the sp and Ep, they exh~b~t 

values very close to the opt~mum theoretical ones, ~.e.~p and ~1, 

respect~vely, wh~lst F . .f e) also 
p s exh~~ts opt~mum results of O(p). 

In actual fact, when ~ncreas~ng the number of ut~l~zed processors ~n each 

case, the real Cost of the algor~thm naturally ~ncreases along with the 

Sp' while Ep decreases. More spec~f~cally, the obta~ned Speed-up values 

are linear to the number of ut~l~zed processors and qu~te h~gh, produc~ng 

sl~ghtly better peaks when the gr~d s~ze ~s (1920x240) , but only for 

the spec~f~ed comb~nat~on of three and four processors; for the 

combinat~on of two processors the best peak ach~eved was for a grid of 

tSince, theoretically, only an infinite number of runs would produce the 
real run-time value(!). 

I 

~ 



[Ch. IV/Sec. B 406] 

s~ze (240x240). In consequence, for the same ~nstances, the Effic~ency 

and the Fp.~e)parameters of the performance model s~m~larly exhib~t a 

h~gher peak compared to the rest; the latter factor ~tself ~nd~cates the 

gr~d s~zes w~th the opt~mum cho~ce of the number of processors for th~s 

computat~on. 

W1th respect to the statement made prev~ously about the trade-off 

occurr1ng when choos~ng the max~mum number of ~nternal po1nts 1nstead 

of time-steps, ~t can be otherw~se ver~f~ed by compar~g the exper~mentally 

obta~ed T~me-complex~t~es and real Costs for the gr~d of s~ze (480x240) 

and 1ts transposed one. 

F~ally, and ~ terms of the eonvergenee of the solut1on of the 

f~~te-d~fference equat1on (IV.B.3.1:1~ the best accuracy obta1ned and 

consequently the opt1mum gr1d s1ze was for (1920x120). 

- Performance Analys1s 

In accordance w1th what was d1scussed 1n (par.-II.B.3.1) and wh1le 

the parallel algor~thms des~gn has to take ~to account the potent1al 

parallel1sm, demands for shared data and demands for synchron1zation, 

1t ~s the last factor that is the determ~n~g feature of the des1gn of 

programs for such asynchronous parallel mach~es as the NEPTUNE 

prototype system. Thus, for all parallel systems the f1rst two features 

must be taken into account, but ~t 1s only for asynchronous systems that 

synchron~zat~on 1tself 1s a cost. The algor~thms are des1gned to m1n~mize 

the amount of synchron1zat1on requ1red w1thout, however, l1m1t1ng the 

parallel1sm to 2,3 and 4 processors. As 1t was noted~ (par.-II.B.3.1) 

one funct1on of synchron1zat1on can be to ensure that one set of 

processes term1nates before the next set of processes 1s started, a 

fact wh1ch can result ~n idle processors. 



[Ch. IV/Sec. B 407] 

In some ~stances, however, 1t can be possible to construct 

var~ants of the algor~thms which allow, under weak conditions, the 

faster processors to move onto what were ~ the usual vers~on the next 

set of processes. To ensure that each of the old processes ~s taken up 

by only one processor, mutual exclusion (or, otherw~se, cr~tical sect~ons) 

on a l~st of processes ~s ut~l~zed, wh~ch ~traduces a rough correspondence 

between the demand for parallel paths and the demand for mutual exclus~on 

for these algor~thm vers~ons. 

With respect to the parallel algor~thm for the Standard Expl~c~t 

method, for a Gr~d of S~ze (240x480), the Table (IV.B.3.1-t3) being 

program dependent summar~zes, the Algebra~c-, (theoret~cal) T~me-

complex~t~es per po~nt and per parallel path of the algor~thm, the 

Implementat~on cycles, the Number of parallel paths allocated per 

processor, the Loops of parallel1sm, the process1ng-to-access rat1os 

along w~th the~r respect~ve percentage-Overheads, the ~mposed perform-

ance lim~tations and the est~mat~ons of the Wasted t~me stat~cally. 

Wh~le th~s Table ~s manually obta~ed from the program ~tself pred~ct~g 

somehow the experimental performance, Table (IV.B.3.1-t~ ~s system 

dependent and presents the 'real' performance measures obta1ned when 

'runn~g' the algor~thm on the system. s~nce the est~mat~on of most 

of the above f~gures ~s not s~mply a stra~ghtforward process and s~nce 

th~s process w~ll be accord~ngly repeated for all the parallel algor~thms 

presented ~ the Thes~s, we shall ~ntroduce a complete set of measur~ng 

I formulae, mostly general ~n nature, depend~g on the parameters of 

Table (IV.B.3.1-t1) and cover~ng every poss~le parallel ~stance, even 

~f ~t does not appear ~ th~s part~cular algor~thm, for future reference. 

tit is a trivial matter to exclude from the formulae the parameters not 
applicable on each particular instance. 



---------------------------------------------------------, 

PROCESSORS (p) T( t) T~t) 
SHARED DATA PARALLEL PATH 1•/ 

Gs p Ac (. ·; c (. . I cl Ac pp) 1xm ,It) (t} ., H 
Nt s 1.-,J 1.-,J p p R Ra( I I) 0 st(IIJ p (secs) (secs) a(s) 0 st(s) 

p~2N 3 3 
--,~, . 

B.P. 0 (p) 60 flop' 0.023 
960 57.6xlo 

flops 
22.176 

1 1 1:60 flops 0.003% 1 57.6xlo f1 o.ooSp% • 3 
[pIN,- p l 

: ops p p p p ·-p~N 
240 3 5.174 3 

240X48( 4 I.P. 0 (p) 56 flop' 0.022 13 .44xlo flops 1 1 1:56 flops 0.004% 1 13 .44xlo f1 o.o23p% ,_ fPINI.P.l 
- : P ops p p p 

240 3 3 lV p<N 
0(p) 14 flop' 

~.36xlo flops 1.294 
480 1:2 flops 0.098% 1 .3.36xlo 

o.o93p% 5 , I.P. 0.005 t-- 1 flops 
[piNI.P.J 

p p p . p 

•• 

[I LIMITS TO PERFORMANCE 
IitJ 

wst ,_.; sd(r) sd(r) sh(r) t 
sec~ 

•• 18,480 ''"p =30' 596 mp=24,5o9 tnp 0.006 
p 

Table IV.B.3.1-t3: A Program Dependent Performance Analys~s of the 
Parallel Algorithm for the Standard Expl~cit • 
Method. 

~In =28,556 mp=22,875 tnp 4,312 
~1.5% 0.005 

) 1·:·'·"" 
p 

mp=816 lnp 1,078 
2.913 p 

(e) 
PARALLEL PATH T(e) PARALLEL T(e) SHARED T (e) s s (s~cs) CONTROL ~ DATA 

Gs (secs) p p 
t Jdt tb wdc I c (e) o(e) (e) (e) cy 

[XPFCLNJ [XPFCLSJ (secs) [XPFCL] !1\,1 !1\, 1, 2 i1l,l,2,3 i=l y~ 
(~secs) I (usecs 

0 st(IIJ en( I IJ otl(IIJ 0 tl(s) 

240x480 766.268 1.940 2.820 3.700 5106 ~1o,8oo ~6. 7% ~686 0.28% 0.42% 765.356 0.12% 764.558 0.1% 55.145 

Table IV.B.3.1-t4: A System Dependent Performance Analysis of the Parallel Algor~thm for the Standard Expl~c~t Method. 



[Ch. IV/Sec. B 409] 

For the ~mplementat~on of these formulae it ~s essent~al to be g~ven 

the resource prov~s~ons of the NEPTUNE system as were presented, but 

t 
not complete though, ~ <Appendix C-II/par.-II.B.3.1), wh~le referr~g 

to the notation that can be met th~s ~s: [~oat~g po~nt qperat~on~ -

flops, f~teger gperat~on~ - inops and the rat~o of flops to ~nop~ -

flips. 

However, w~th respect to the accuracy of the actual ar~thmet~c of 

Tables (IV.B.3.1-t3,t4), the exper~mental nature of the system along 

w~th certaLn existing, but not accurately known, ~ternal l~mLtatLons 

~Texas software (e.g. comp~ler, etc.) do not allow a perfect match~g 

between the figures g~ven ~ the above performance analys~s Tables, 

wh~ch otherw~se should theoretically co~nc~de; they only allow an 

approximat~on that, under certa~ c~rcumstances wh~ch w~ll subsequently 

become apparent, proves to be very accurate. 

The exper~mental nature of the system has been already discussed, 

when JUSt~fy~g the need for averag~g the t~me-complex~t~es of a set 

of exper~mental runs for an even closer approx~mat~on to the real 

absolute values. However, even such a procedure would not prov1de us 

w1th 'perfect' approx1mat1ons, due to the cont1nuous amendments, 

alterat~ons and enhancements of the system's conf~gurat~on ~ncons~stently 

~nterleav~g w~th all the research work carr~ed out on ~t, wh~ch are 

~troduc~ng unavo~dable fluctuat~ons ~ most parametr~c f~gures as we 

shall further not~ce. On the other hand, ~t was pract~cally ~mposs~le 

always to obta1n their exact values at each sess1on of exper1mentat1on, 

s~nce this would requ~re exclusive+and extens~ve (~.e. at least 5 hours) 

tThe complementary, but necessary, system parametric figures will be 
given in the text where they are accordingly required. 

+Runs on a system 'owned' exclusively by a single operator for the 
whole measuring session. 



[Ch. IV/Sec. B 410] 

runs of a plethora of special1zed measurement programs; 1n general, the 

1nstances that th1s procedure has been followed become apparent from a 

cross-ver1f1cat1on of the results 1n the correspond1ng performance 

analys1s Tablespresented each t1me, by apply1ng the est1mat1on formulae 

given below, us1ng the parametric f1gures prov1ded. To-date, the system 

w1th the new ECC memory 1nstalled exh1bits those character1st1cs of 

a d1str1buted system. Note, howeve~ that the exper1mental results and 

performance analys1s f1gures exh1b1ted 1n the present Chapter were 

obta1ned pr1or to the 1nstallat1on of the ECC memory. 

The est1mat1on formulae for the performance analys1s factors g1ven 

1n Tables (IV.B.3.1-t3,t4) will be 1ntroduced 1n the rema1nder of the 

paragraph, along w1th some part1cular parametric measurements essent1al 

for the1r proper 1mplementat1on. 

In respect of the program dependent performance analys1s 1n 

Table (IV.B.3.1-t3), the Algebra1c-complex1t1es are related by the 

formula 

k ~Il.kr··;· p a 1-, J 
(IV.B.3.1:?) 

wh1ch 1mpl1es for the T1me-complex1t1es the formula 

(t) 
I l.Ta(. ") a '~-• J 

~ I l.Aa(. ") .f t (in microseconds) .(IV.B.3.1:8) 
a '~-• J p 

The theoret1cal, accordLng to the number of cooperat1ng processors, 

total T1me-complex1t1es of the algor1thm, for a cross-ver1f1cat1on w1th 

the exper1mental f1gures ach1eved, are g1ven by the formula 

n 
(t) ph .ft) 

Ta ~ J: Te .L0(/1) 
k~l Fk k 

~h {e) 6 
L_ Ial .Aa(i,j) .fpt .LO(//)<Ta .10 . 
k-1 k k k k (IV.B.3.1:9) 



[Ch. IV/Sec. B 411] 

The strict inequal~ty ~s ma~ly due to the exist~g, but unknown, 

computat~onal bounds of the real number ~terpreter (~.e. the F$RITP 

subrout~e) w~th~ the FORTRAN run-t~me system, as well as the ~gnor~ng of the 

t1me-complex1ties due to 1nteger operat1ons, DO-loop increments, local 

and shared transfers and the total Wasted t1me. certa~ly a cons1derable 

t~me overhead occurs, caused by the call of this subrout~e wh1ch has 

been measured by our spec1al1zed programs. However, due to opt1m1zat1on 

~the run-t~me system,a long sequence of flops ~s completed much more 

effect~vely than an equal number of operat~ons t~med ~nd1v~dually. In 

actual fact, every t1me th~s subrout~e ~s called the parameters of a 

long sequence of success~ve flops are set dur1ng th~s call, thus produc~ng 

a ser~es of requ1red results at the ex~t (~.e. XIT) of the subrout1ne, 

for the F$RWF subrout~ne to wr~te the results. Consequently, the cost 

of sett~g-up th~s procedure w~ll not have to be repeated for each 

~d1v1dual flop, an overhead be~ng ~ncluded ~n the flops f~gures g1ven 

~ the Table (II.B.J.l-tl) and ~n the (Appendix C-II/par.-II.B.J.l). 

In our system measurements we succeeded to d~st~guish the t~me 

requ~red for an ~nd~v~dual flop, to ~ts real absolute t1me and the t~me 

taken to set-up the F$RITP subrout~ne. Averag~ng the real absolute 

t~mes for an addition,subtraetionand multiplication, each be1ng cons1dered 

as a bas~c flop due to the close approx~mat~on between the~r values, we 

t 
concluded to a t~me of -385~s for each flop; wh~le the t~me requ~red to 

set-up the subrout~ne, ~rrespect1ve of the number of operat~ons to be 

executed, was for both, the old (parity) memory and the newly ~nstalled 

ECG memory, -252.6~s. 

In accordance w1th the real absolute f~gure for a division, s1nce 

t~is figure has been used for our estimations in Table (IV.B.J.l-tJ). 



[Ch. IV/Sec. B 412] 

~t was quite larger than the other operat~ons, it was converted in terms 

of the above flop f~gure to obta~n an equ~valent of -z.s flops. 

However, 1n concern with the restrict~ons ment~oned 1n the real 

number ~terpreter, we could not determLne the upper bound to ~ts total 

capac~tyt in terms of the maximum number of flops that ~t can accept at 

each call; what we did ver~fy was that ~t ~s called and set-up ~s~de 

any ex~sting DO-loops. 

In add~t~on, when exponential operat~ons are ~volved, th~s sub-

rout~ne ~s ~nd~v~dually called and set-up for each one of them. The 

measured real absolute value for each real exponent~at~on, after 

exper1mentat1on w1th a w1de range of real numbers and g1ven in terms of 

the prev~ous flop figure, was equivalent to -11.3 flops. 

The percentage of the static (theoretical) losses due to accesses 

to the shared data resource, the shared schedul~ng structure and crit~cal 

sect1ons resources are, respect1vely, est1mated by the formulae 

and 

(t} 
0st(s) (%) 

(t) 
0 st(//) (%) 

o(tJ (%) 
st ( cs) 

t .loo 
e 

Ra(s)"fpt 

y (s -£ ) .lOO 
~=1 cy i cy ~ 

p.Ra(s) .fpt 

t .100 

Ra( I I) .fpt 
t .loo 

CS 

(IV.B.3.1:10) 

(IV. B. 3.1: 11) 

(IV. B. 3.1.12) 

Note tha4as the Rate of access to a shared resource we cons~der the 

processing-to-access rat~o, ~.e. the quotient of the number of flops 

over the number of accesses to th1s resource. 

tThis is internal information of Texas software not available. 

l 



[Ch. IV/See. B 413) 

W1th respect to the performance l~itat1ons, 1f the resources 

availab~l~ty equals the total processes demand rate, then saturat~on 

occurs and no more speed-up can be ach~eved through ut~l~zat~on of more 

processors, despite the theoretical f1gure g~ven by the Nt parameter. 

In an attempt to further analyze the formula presented at the end of 

(par.-II.B.J.l), we ~ntroduce some analyt~cal formulae wh~ch correspond-

~ngly set theoret1cal upper bounds on the number of cooperat1ng processors 

1n connect1on w1th: 

i) The1r average excess access time to the shared data resource, 

on the bas1s that the access mechan1sm ~s ~ndependent of the 

number of cooperat1ng processors; 

ii) the~r average access time to the shared memory module, 

exclud~ng the~r average excess overhead due to the access 

mechan1sm; and, 

iii) the cycle time of the parallel path schedul~ng resource. 

These formulae, respect1vely, are: 

R ( )"f t 
i) 8d(rJ= 

a s 2 
t e 

p.Ra(s)"fEt 
(IV.B.J.l:lJ) 

I (s -£ ) 
~=1 cy~ cy~ 

ii) s~~= 
p.Ra(s}"f2t 

p 
(IV.B.J.1.14) 

I £cy 
~=1 ~ 

iii) ~~= 
Ra(//J"f2t 

t 
(IV.B.J.1:15) 

p 

For the system dependent performance analys~s of Table (IV.B.J.l-t4) 

the parallel path static overhead is usually est~mated ~n a max~um, 1n 

terms of cooperat1ng processors, parallel 1mplementat1on; accord~g to 



[Ch. IV/Sec.. B 414] 

the ~format1on accumulated 1n the shared array ITIME, concern~g the 

number of parallel paths run by each processor, we cons1der the average 

for all cooperat1ng processors but P
0

, s~ce 1ts number of paths is 

large compared to the others due to 1t ~eludes the sequential paths 

~ the program. Consequently, the percentage of the paraZZeZ path 

static Zoss is est1mated by the formula 

p. I n (//) .t .loo 
1=2 p 1 p 

(p-1) • I 
(IV. B. 3. 1:16) 

1=1 

where we have cons1dered the average of the exper1mental t1m1ngs (T(e)) 
p 

of all cooperat1ng processors. For the part1cular case of four eo-

operat1ng processors of TabZe (IV.B.3.1-t4) the average number of parallel 

paths was 483, whilst the average of the exper1mental t1m1ngs was - 207 .071 

secs., these averages taken from a plethora of run-t1me sets. To est1mate 

the overhead occurr1ng when processors contend for the 'ownersh1p' of a 

free block 1n the parallel path schedul~g resource, aga~ we cons1der 

the ~format1on accumulated 1n the shared array ITIME, wh1ch concerns 

the number of wa1t1ng cycles because no path 1s available, averag~g the 

exper1mental f1gures of all cooperat1ng processors, and the prev1ous 

(e) 
average of the1r exper1mental t1m~gs (T ) • Consequently, the percentage 

p 

of the paraZZeZ path contention Zoss 1s g1ven by the formula 

(e) 
0cn(//) (%) 

! c .~.100 
1=1 y 1 

(IV.B.3.1:17) 

t (t) 
A good approximation to this figure can be obtained from the Ost(//) 

parameter, bearing in mind the overZapping procedure for the creation 
of paraZZeZ paths which we shaZZ discuss further on. 

_________________________ j 



[Ch. IV /See. B 415] 

Note that, for the partLcular case of four cooperatLng processors of 

Table (IV.B.3.1-t4J the average number of waLt cycles, an average figure 

of various experLmental running sets, was -1277. W1th respect to the 

blocked time tb for the path schedulLng resource, Lt LS quLte a 

t compl1cated and tLme consumLng fLgure to estLmate , SLnce Lt is a part 

of the processors whole waLt cycle t1me (t ) along with the Ldle loopLng tLme cy 

(dl) and the tLme Lt takes a blank routLne for the basLc overhead of 

program optLon servLcLng, whLch LmplLes that all these fLgures have to 

be estLmated by LndLVLdual specLalLzed procedures. In accordance with 

our measurements, carr~ed out at the same per1od as the actual exp-

erLmental work of this Chapter, thLs blocked tLme exhLbited a consLder-

able fluctuatLon Ln values around the fLgure of -686~s, whLle the wait 

cycle as a whole around -loSoo~s. 

Although crJ.tJ.cal sectJ.ons do not occur 1n our programs hereJ.n, 

however, for future reference we shall s1mply J.ntroduce the estJ.matJ.on 

formulae for theLr static and contention losses usLng aga1n the 

Lnformation accumulated Ln the shared array ITIME. 

For the former overhead, we consider the average of the number of 

accesses to crJ.tJ.cal sectJ.ons resources made by each processor J.n a 

usually maxJ.mum, in terms of cooperatJ.ng processors, parallel 

LmplementatLon. 

The correspondLng formula LS gLven by 

(e) 
0st(cs} (%) = 

I n .t .lOO 
L=l CSL CS 

(IV.B.3.1:18} 

tt is estimated indirectly depending on the figures of the other parts 
of the processors 'wait cycle'. 



[Ch. IV/Sec. B 416] 

For the contention loss, we consider the average of the wa1t1ng 

cycles for each processor due to their access to cr~t1cal sect1ons 

resources has not been granted, once aga1n 1n a usually max1mum, 1n 

terms of cooperat1ng processors, parallel implementat1on. The 

correspond1ng formula is g1ven by 

o(e) (%) 
cn(cs) 

I c. .tb .100 
1=1 y1 

(IV.B.3.1:19) 

The parallel control and shared data access overheads can be 

est1mated by us1ng variants of the preprocessor to obta1n the required 

informat1on. In fact three load modules of the same algor1thm have to 

be created us1ng three d1fferent commands to comp1le 1t, the follow1ng: 

(i) - 'XPFCLS': Th1s command generates a load module w1th no 

parallel paths 1nvolved and no shared data load1ng 

1nto the shared memory, wh1ch 1mplies the run-t1me 

taken by the equ1valent sequent1al algor1thm. The 

rules used by th1s preprocessor var1ant to generate 

a sequent1al FORTRAN program from the parallel 

syntax are: 

$DOPAR + to DO 

$PAREND,$JOIN + to CONTINUE 

$SHARED + to COMMON/000X/ 

$ENTER/$EXIT +to CONTINUE; 

referr1ng to the $FORK construct 1t ut1l1zes the 

same type of block as the $DOPAR construct (see 

par.-II.A.J). It follows then that the preprocessor 



[Ch. IV/Sec. B 417] 

can only generate a work1ng sequent~al program 

from a parallel program that can be executed on 

a un~processor. 

(ii) - 'XPFCLN': Th1s command creates the same sequent~al load 

(iii) - 'XPFCL': 

module as 1n (i), but only the shared data will be 

loaded 1nto the shared memory. Consequently, 

compar~ng the run-t~mes ach~eved w~th th~s load 

module on a un~processor execut1on, w1th those of 

the prev~ous command, w1ll y1eld the shared data 

access OVerhead. The correspond1ng formula 1s 

(e) 
0 tUsJ (%) = 

(T(e}[XPFCLN]-T(e)[XPFCLS]).lOO 
s s 

T(e) [XPFCLN] 
s 

(IV.B.J.1:20) 

Note that, the run-t~mes ach~eved through the XPFCLN 

command are certa1nly expected to be greater than 

those ach~eved through XPFCLS, but only under 

s1m1lar exper1mental cond1t1ons 1n accordance w1th 

what was d1scussed earl1er here1n. The results 

obta~ned can be checked from est1mat1ons of the 

number of shared data resource accesses made by 

the program, coupled w1th the un~t (average) excess 

access t1me to shared memory; th1s theoret1cally 

est1mated overhead 1s presented ~n Table (IV.B.J.l-tJ). 

Th~s command, wh~ch has been d~scussed ~n (par.-

II.A.J.l), generates a load module as ~n (ii), w~th 

the add1t1onal overhead of parallel paths creat1on, 



[Ch. IV/Sec. B 418] 

allocation and ter~nation. Consequently, Lf we 

compare the run-tLmes achLeved USLng the XPFCLN 

command wLth those achLeved through the XPFCL 

command, the tLme dLscrepancy wLll be the static 

paraZZeZ control access Overhead. The corres-

pondLng formula L~ 

(e) 
0 tU/IJ (%) 

(T( e) [XPFCL]-T( e) [XPFCLN]).lOC 
s s 

T( e) [XPFCL] t 
s 

!IV.B.3.1:21) 

Again, the longest run-tLmes are naturally expected 

to be those achLeved through the XPFCL command, 

but only under simLlar experLmental condLtions. 

Once agaLn, the results obta1ned can be checked 

from estLmatLons of the number of parallel path 

schedul1ng resource accesses and the cr1t1cal 

sectLon 'entrLes/exLts' made by the program, 

coupled WLth theLr measured unLt tLme cost; thLs 

theoretLcally estLmated overhead LS presented Ln 

TabZe (IV.B.3.1-t3). 

Let us now present a general formula wh1ch wLll express the entLre 

performance of a MultLprocessor computer complex in terms of the tLme 

not used product1vely, L.e. the Wasted t1me (W) Ln total; th1s formula LS 

w 

(IV.B.3.1:22) 

tNote that, the 'XPFCL' t~me given in Table (IV.B.3.1-t4) represents the 
time of the slowest processor in the system. 



[Ch. IV!Sec. B 419] 

wh~ch 1s the sum of t1mes taken by the p processors to complete the1r 

subtasks, less the un1processor t1me. The algor1thm design t1me, 

certa1nly, has been 1gnored. 

The Wasted time statically (Wst), due to the creat1on, allocat1on 

and synchron1zat1on overheads for parallel paths and the overheads 

assoc1ated Wlth accesses to the shared memory and cr1t1cal sect1ons 

resources, can be estimated 1n a program and system resource prov1s1ons 

dependent manner. 

The Wasted time dynamically (Wdc) refers to the t1me 1n total that 

all cooperat1ng processors are 1dle 'wa1t1ng' for subtasks to be 

allocated and for access to the cr1t1cal sect1ons resources; or rather 

more spec~f~c, to the t~me they waste to perform 1dle loops and contend 

for the 'ownersh1p' of shared resources. 

W~th respect to the former Wasted time statically two est1mat1on 

formulae can be g1ven cross-ver1fy~g each other: 

p.(qa" 1cl"Np(pJLO(IIJ"te+tp.Np(p)"LO(!I)+tcs"Np(p)"LO(cs)) 

p 

[qa.Icl.LO(I/)"1~1 (scy1-£cy1)+p.(tp.LO(IIJ+tcs" 

(IV.B.3.1:23) 

and, 1n part1cular for the parallel algor1thms of th~s Chapter, 

(t) (t) (t) 
p.Tcp .Np(p).LO(II)"(Ost(s) +Ost(ll)) 

lOO 

(t) (t) (t) 
P • 1cl" Tc (i,,j) .Np(p) .LO( I I) · (O st( s) +Ost (I I)) 

lOO 

(IV.B.3.1:24) 



[Ch. Ill /Sec. B 420] 

where the time f~gures for both formulae are expressed ~n m~croseconds 

(~s). Note that ~n Table (IV.B.3.1-t3) th~s parameter (~n secs) ~s 

given for the case of all four processors cooperat~ng. In spec~f~c 

w~th formula i) as q; we should not cons~der the normalized rate of 

access to the shared data resource. In add~t~on, we have cons~dered that 

parallel paths are created ~nd~v~dually one after the other ~n success~on, 

wh~ch bas~cally ~s not true s~nce there is an overlapp~ng procedure (not 

accurately est~matable though) wh~ch reduces the total parallel mechan~sm 

overhead to str~ctly 

For the average 

<p.t (p>l). 
p 

Idle time (Id~ t)) of all but one cooperat~ng 

processors, a relevant est~mat1on f1gure, complementary to the f1gure 

for the Wasted time statically (Wst), can be obta~ned. More spec~f~cally, 

~f p subtasks are not ava~lable at any t~me, ~n a p-processor system, 

then all processors cannot be process~ng and thus some of them must be 

idle. All processors can only be process~ng at every stage ~f subtasks 

can be allocated to them, tak~ng ~nto account subtasks length and 

processors relat~ve speed for the part~cular set of data and the 

spec~f~c hardware involved (see par.-II.B.3.1). Consequently, for 

d~fferent processors of d~fferent relat~ve speeds, the faster processor 

w~ll f~n~sh process~g before the slower one and so ~t w~ll be forced 

to wa~t for the slower processor. Th~s ~s apparent for the synchronous 

algor~thms ~mplemented on MIMD complexes of processors. 

Therefore ~t follows that ~f the relat~ve speeds of processors 

are known, a static est~mat~on of the average Idle time of all but one 

cooperat1ng processors can be g1ven (rather pred1cted) by exam1n1ng 

tFor this particular parallel algorithm the actual processing-to-access 
ratio is 14 flops over 7 accesses to the shared data resource, for 
each implementation cycle. 



[Ch. IV/See. B 421] 

the t~me-complex~ty per parallel path, the number of parallel paths run 

by each processor and the loops of parallel~sm. However, this method 

prov~des us w~th only a fa~r approx~mat~on to the actual average Idle 

time of all but one cooperat1ng processors; th1s 1s due to all the 

factors d1scussed prev1ously, as well as others 1gnored wh1ch contr~bute 

to 1ncrease the run-t1me 1nterval betwe~n fastest-slowest processor, 

such as, the t1me-complex~ties due to 1nteger operat1ons, DO-loop 

1ncrements, local and shared transfers, etc. 

The formula for the static est1mation of the average Idle time 
(t} 

(ldt ) of all but one cooperat1ng processors, 1n spec1f1c for the 

algor~thms of th1s Chapter, 1s 

(t} 
I dt < %) 

(maxps-m~nps) . 
nph (t) 

L Tc .N ( ) .LO(//) .loo 
k=l pk pp k k 

(maxpS-m1nps) . 
nph 

L I l .Ac( 0 ") .f t .N ( ) .LO(//) .lOO 
k=l c k ~.J k p k p p k k 

(IV.B.3.1:25) 

where as TjeJ has been cons1dered the smallest run-t1me w1th p-processors. 

For the f1gure given 1n Table (IV.B.3.1-t3) we have cons1dered the case 

that all four processors of the NEPTU~system were cooperat1ng, wh1le 

(e) 
Tp , an average of the smallest run-t1me f1gures of a plethora of 

runn1ng sets w1th four processors, was 207.065 secs. 

On the other hand, 1n respect of the total Idle time ( 1.e. 1dle 

loop1ng t1me+blocked t1me) for the est1mat1on of the Wasted time 

dynamically (Wdc)' th1s parameter can be eas1ly est~mated w1th a system 

dependent method s~nce 1ts character 1s completely exper1mental depend1ng 



[Ch. IV/See. B 422] 

upon the outcome of running the algor~thm on the system. According to 

th~s method, the shared array ITIME ~s scanned once more for the 

~nformat~on concern~ng the number of waiting ay ales for each processor, 

due to the fact that no parallel path was available and no access to 

cr~tical sect~ons resources was granted. Consequently, the corresponding 

formula for the Wasted time dynamiaally (Wda) ~s 

p 

wda = I (c .t +c' .t' 
y~ ay y~ ay 

~=1 ~ ~ 

p 
= I lc • (dl +tb )+c' • ('7_ +t;; ) l 

' 
(IV.B.J.l:26) 

~=1 yi i i y~ ~ ~ 

wh~ch, due to the lack of crit~cal sections resources ~n the algor~thms 

of th~s Chapter, s=pl~fies as 

p t 
I c • (~ +tb > 

i=lyl. l. 
(in miaroseaonds) • (IV.B.J.l:2?) 

l. 

Note that, for the f~gure presented ~n Table (IV.B.J.l-t4) as the total 

number of wa~t cycles (i.e. 5106) we considered the average f~gure of 

various exper~ntal runn~ng sets w~th all foUP processors of the NEPTUNE 

system cooperat1ng. 

F~nally, an alternate ~nd~cat~ve parameter of the average Idle 

t• (ld(e)) of all the 1-me t cooperat~ng processors ~n the system can be 

dynamiaally est~mated cons~der~ng the~r average number of wa~t~ng cycles 

for parallel path allocatwn and for access to crl.t~cal sectwns resources 

from the shared array ITIME, coupled with their respect~ve wa~t cycle 

t1me-un1t, 1.e., 

1/eJ (%) 
t 

p 
I (c .t +c' 
~=1 y~ ay~ y~ 

~ T( e) 6 
L p .10 

~=1 ~ 

.t' ay 
~ 

) .lOO 

(IV. B. 3.1:28) 

tThe basia time overhead of program option se:r>V'!-a'!-ng (i.e. 'blank' 
routine) does not appear, but it is inaluded in the aatually used 
figUPe of proaessors 'ayale time'. 



[Ch. IV /Sec.. B 423] 

For the f~gure g~ven ~n TabZe (IV.B.3.1-t4) we have cons~dered the case 

that all four processors of the NEPTUNE system were cooperat1ng, wh1le, 

once =re, we have taken the average of the~r exper=ental tim1ngs (TIe)) 
p 

g~ven earlier here~n. Th1s parametert ass~sts in a very good approx-

imation to the total Wasted time dynamicaZZy (Wd
0
), wh1ch can be 

verif~ed from the latter f1gure ~n the same TabZe. Also, the sum of 

the wasted t1mes stat~cally and dyn~cally g~ves us a quite good 

approximat~on to the total Wasted t~me (W) est~mated through the formula 

(IV.B.3.1:22). In fact, the figure found accord~ng to th~s formula, 

us~ng the above average of exper1mental timJ.ngs (TIe) ) of all co-
p 

operating processors, was -62.016 secs. 

In oonclus~on, for the ver~f~cat1on of each of the f~gures g~ven 

~n TabZes (IV.B.3.1-t3,t4), the ~nterested reader should follow each 

procedure, lead1ng to the spec~f1c parameter, 1n an analyt1cal manner, 

from the start, to obta1n the accurate values for the ~nterleav1ng 

factors 1n the formulae, s1nce the round-off errors 1n computat1ons are 

bound to introduce sl1ght discrepanc1es when substitut1ng the factors 

as they appear 1n the Tab Zes. 

IV.B.3.2: THE 'GROUP EXPLICIT WITH UNGROUPED ENDS' - GEU METHOD: 

EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS ON THE 

'NEPTUNE' PROTOTYPE SYSTEM 

As prev1ously ment1oned 1n (par. -IV. B. 3), 1n the case that the 11ne 

segment o~x~l 1s d1v1ded 1nto an odd number m of equal sub-1ntervals, 

the concept of the GE class of methods can be s=1larly =plemented and 

1n fact the result1ng schemes are much more balanced and computat1onally 

When the corresponding timing is muZtipZied by the number of cooperating 
processors in the system. 



[Ch. IV/Sec. B 424] 

preferable for MIMD conplexes of processors. Hence, at every t:une-

level, the number of J.nternal points l.S even, J..e. (m-1). This gJ.ves, 

at every time-level, eJ.ther (m-1)/2 complete groups of two pol.nts, or 

(m-3) /2 groups of two pol.nts and one ungrouped pol.nt adjacent to each 

boundary. 

The fJ.rst GE scheme for this partJ.cular case, examJ.ned herein, is 

obtaJ.ned by usJ.ng, at every tJ.me-level, eJ.ther of equatJ.ons (IV.B.3:11,21) 

at the left ungrouped po1nt, (m-3)/2 times eJ.ther of the systems of 

th equatJ.ons (IV.B.3:1?,18) from the second J.nternal pol.nt to the (m-2) 

poJ.nt and eJ.ther of equatJ.ons (IV.B.3:9,20) at the last (m-1)th point 

whJ.ch is left ungrouped at the far right of the lJ.ne, adjacent to the 

boundary. Thl.s scheme J.n :unplJ.cit matrJ.x form, for the partJ.cular case 

of Burgers' equation (IV.B.2:2), sJ.mJ.larly as for the even number of 

equal sub-J.ntervals case, is gJ.ven by 

(I+rG
1 

}u 
1 ,J -J+ 

(I-rG
2 

. l u 
,J -J + .£3 (IV.B.3.2:1) 

where 
bT ~(n} A(n} 

= [b2 ru
0 

. 
1

,o, ••• ,o,a
1 

ru 
1

1 -3 ,J+ m,J+ 
(IV. B. 3.2:2) 

and 
rin} l G (1} 

0 G (2} 

' A 

' G = ' , !(m-3}-1 l,J 

l 0 G G! (m-3} 

A (nJ 
al 

(IV. B. 3.2:3) 

(1} 

. (2 } 
0 G 

' A ' G = ' 2,J ' ''G! (m-2} 
0 ·!(m-1} 

G 

(IV.B.3.2:4) 



[Ch. IV/Sec. B 425] 

(k) •(l.) 
whJ.le G , k=l,2, .•• ,t(m-3), G , J.=l,2, ... ,!(m-l), for J=O,l,2, •.. , 

are the (2X2) matrl.ces defl.ned l.n (par.-IV.B.J). Thl.s scheme l.S 

descrl.bed by the brick dl.agram l.n Figure (IV.B.3.2-fl). 

I I 

I 
I I I I I 

ungrouped I ungrouped 
-- point I }S(m-3)th poont 1--

1st 
1
group I group 

1 \ 
- --1--- -

- --- ,.............. - -

-- -- . 
G.E.U. (Group Explicit with Ungrouped ends) method 

I : I I I I l I 

Figure IV.B.3.2-fl: The RepresentatJ.ve Dl.agram of this Scheme. 

From the aspect of parallel programmJ.ng of all the resultJ.ng GE 

schemes, under the prev~ous assumpt~on for an even number of ~nternal 

pol.nts and for the partJ.cular case of Burgers' equatJ.on, formulae 

(IV. B. 3:18,20,21/have been :unplemented l.n an unavol.dable, but hl.ghly 

effl.cl.ent, synchronized manner whJ.ch l.S due to the nature of the methods. 

To proceed Wl.th the actual experl.mentatl.on of the GEU method, the 

implemented program of which l.s l.ncluded l.n the Appendix C-IV under the 

name MB$5.GEUONit and l.n accordance Wl.th what we have mentioned for the 

MB$5.STEXM program, l.t can be dl.Vl.ded l.nto six corresponding d1screte 

phases from Whl.ch, agal.n, three are the prl.ncl.pal ones wherel.n the 

l.nherent parallell.sm of the l.mplementatl.on unfolds. 

The first two phases are Sl.ml.lar Wl.th those of the MB$5.STEXM 

tNot aZUJays required aU of them. 

tit stands for Group Explicit UJith Qngrouped ends method for Qdd ~umber 
of !._ntervaZs. - -



[Ch. IV !Sec.. B 426] 

program except that, 1.n the second phase, we do not compute the exact 

theoretical values at the boundary po1.nts, at the max1.mum tJ.me-level. 

To proceed with the phases which include all the parallel work 

and compr1.se the central part of the algorl.thm producing the performance 

analys1.s figures, we have, in the third phase, the computat1.on of the 

exact values at all the po1.nts on both poundaries, for all tJ.me-levels, 

start1.ng from tJ.me-level one up to the max1.mum tl.Dle-level, using, as in 

the prev1.ous phase, the chosen exact solutl.on formula (IV.B.3.1:2). 

In the fourth phase an 1.dent1.cal computatl.on to the correspond1.ng phase 

of MB$5.STEXM program occurs, while in the fifth phase takes place the 

computat1.on of the approxJ.mate values at the internal pol.nts, at every 

tl.me-leve 1, for all tJ.me-steps, using the Group Expll.cit f1.n1.te-

difference and Saul'yev's asymmetr1.c formulae, accord1.ngly. Note that 

1.n accordance with what was d1.scussed 1.n (par.-IV.B.3), the values of 

A A A " 
a,. a 2, b1 , b2 have been computed using the formulae g1.ven l.n (IV.B. 3: 16). 

The program l.S brought to a Sl.ml.lar conclus1.on 1.n the last phase 

by outputting the t1.m1.ng(s) and results obta1.ned from the t1.med 

computational procedure or computed there in thl.s phase, l..e. the 

maXJ.mum A. E. and the max1.mum P.E., as well as sett1.ng the entire 

program's format statements. 

From the aspect of the l.nherent parallelism of the 1.mplementat1.on 

and 1.n terms of the most efficient ut1.lizat1.on of system's hardware 

and software potent1.al, the expll.cl.t nature of the l.mplementatl.on, as 

well as the method's J.tself, offers a plethora of alternat1.ng ways to 

exploit the parallel1.sm concern1.ng the task s1.zes that the total number 

of boundary and 1.nternal po1.nts can be dl.Vl.ded l.nto, to be allocated to 

the cooperat1ng processors. After an extens1.ve range of exper1.ments 



[Ch. IV/See. B 427] 

we reached the conclus~on that the ~mplementation's granularity factor 

has to be made to be equal to the number of cooperat~ng processors, 

~n terms of the subset sizes of the boundary and internal po~nts. 

Aga~n, without any loss of generality and for a 'balanced' implementat~on, 

the considered total number of time-steps (ISTEP) and the number of ~nternal 

gnd points WPOINT) have been chosen to be even and exactly divisible 

by any number of cooperating processors. To generate and term~nate the 

NPROC paths each t~me, the $DOPAR/$PAREND construct ~s ut~lized, wh~ch 

~s the most eff~c~ent and econom~cal way to ~ntroduce parallel~sm ~n a 

program for the NEPTUNE prototype system. 

F~nally, ~n concern w~th the shared arrays utilized, ag~n, except 

for the ITIME array, three shared real arrays U,Z,F have been declared 

for s~lar purposes; on the other hand, t'WO non-shared real arrays 

W,ERROR are ut~lized w~ch being involved ~n a sequent~al comput~ng 

procedure respect~vely hold, the p.d.e.'s exact theoret~cal values at 

the ~nternal po~nts only, at the maximum t~me-level, computed using the 

exact solut~on formula, and the differences between the p.d.e. 's exact 

and approximate values at the ~nternal po~nts, aga~n at the max~mum 

time-level. 

- Exper~mental Results 

The experimental results obta~ned from'the parallel algor~thm for 

the GEU method are presented ~n Table (IV.B.3.2-tl) along with the values 

of other parameters of the performance model estimated statically. 

The concepts of the parameters appear~ng ~n th~s Table are as they 

were presented ~n (par.-IV.B.3.1), w~th the except~on of a new introduced 

parameter R8 wh~ch mirrors the Relative or normalized Speed-up, 
p 



[Ch. IV/Se~. B 428] 

obta1ned compar1ng the experimental t1me-complex1ty of the uniprocessor 

solut1on us1ng the Standard Explic1t method, to the experimental t1me-

complex1ties of the present parallel algorithm ach1eved 1n a uniprocessor 

and parallel 1mplementation. 

The exper1mented gr1d s1zes, when the gr1d ratio r=l, have been 

accordingly set to correspond to the gr1d s1zes chosen for the Standard 

Expl1c1t method, where r=!, for a direct comparison. 

Some conclus1ons that can be apparently drawn from the exam1nat1on 

of TabZe (IV.B.3.2-tl) are that, in terms of the sp and Ep' they exh1bit 

values very close to the opt1mum theoret1cal ones, 1.e. ~p and ~1, 

respect1vely, wh1lst Fp.~:Jalso exh1b1ts optimum results of O(p). 

In comparison w1th the parallel algor1thm for the Standard Expl1c1t 

method (hereafter be1ng called the standard algor1thm) all these 

parameters produce cons1derably better f1gures for the present algor1thm; 

however, the extraord1nary thing to be noted is that these better results 

have been obta1ned w1th smaller runn1ng t1me-complex1t1es, for every 

number of cooperat1ng processors, a fact wh1ch agrees with the 

1mplementor's should be real goal to m1nim1ze execut1on t1me and not 

s1mply to max1m1ze Speed-up. In fact, the ReZative Speed-up (RS ) 

p 
parameter very clearly shows that the O(p} speed-up l1m1t has been well 

surpassed and 1s be1ng establ1shed to >O(r.p) as it w1ll become even 

clearer 1n the subsequent algorithms. 

The same observat1on, w1th that for the standard algor1thm, can be 

made concern1ng the real Cost (C ) of the present algorithm wh1ch 
p 

naturally 1ncreases, when 1ncreas1ng the number of cooperating processors, 

along w1th the S , while E decreases. In part1cular w1th the obta1ned p p 

Speed-up values, wh1ch are Zinear to the number of cooperat1ng processors 



N N Ta(e) Fp.f~ Ta(e) I.P. PROCS 1' M M c s R E ~' M c s R E P.E. A.E. 
(secs) p p SIJ p P.E. A.E. (se cos l p p sv p 

f..> ;.... w N 

\2! "' ... 182.435 182.435 1 1.071 1 1 0 N 361.038 361.038 1 1.068 1 N 0 0 0 
2 w "' "' \2!,1 N 93.405 186.810 1.953 2.092 0.977 1.907 .t> "' 184.615 369.230 1.956 2.089 0.978 240 1.0 w CD .t> "' CD ... 0 -.1 

\2!,1,2 CD "' 63.180 189.540 2.888 3.092 0.963 2. 779 .t> "' 124.425 373.275 2.902 3.100 0.967 N -.1 0 fil DJ DJ DJ 
\2!,1,2,3 I I 47.935 191.740 3.806 4.076 0.951 3.621 I I 94.075 376.300 3.838 4.100 0.959 0 0 0 0 ... w ... w 

. . . 
\2! "' "' 363.390 363.390 l 1.054 l l ... ... 716.290 716.290 l 1.055 l "' "' 0 0 

N N "' "' \2!,1 "' .t> Hi6. 390 372.780 1.950 2.054 0.975 1.901 "' "' 367.170 734.340 1.951 2.058 0.975 CD -.1 -.1 -.1 

480 l.O .t> 0 0 0 

\2! ,1,2 "' ... 124.660 373.980 2.915 3.072 0.972 2.833 "' "' 246.360 739.080 2.907 3.068 0.969 0 "' -.1 -.1 
CD "' 0 0 

\2!,1,2,3 DJ DJ 93.990 375.960 3.866 4.074 0.967 3.737 DJ DJ 185.750 743 .ooo 3.856 4.069 0.964 I I I I 
0 0 0 0 
N .t> ... w 

\2! "' "' 724.058 724.058 l 1.049 l l ... ... 
:~-424.425 1424.425 l 1.052 l "' "' w w 

CD -.1 0 0 

\2!,1 "' "' 369.803 739.606 1.958 2.054 0.979 1.917 "' -.1 725.733 1451.466 1.963 2.064 0.981 
960 

... w CD ... 
l.O -.1 "' ... N 

\2!,1,2 
.t> N 248.258 744.774 2.917 3.060 0.972 2.835 .t> "' 488.213 1464.639 2.918 3.068 0.973 N w w CD 
-.1 N 0 "' 

12),1,2,3 
DJ DJ 186.598 746.392 3.880 4.072 0.970 3.764 DJ DJ 368.608 1474.432 3.864 4.064 0.966 6 6 I I 

0 0 
N .t> ... w . 

\2! "' "' 1449.140 1449.140 l 1.045 l l ... ... lz856.785 2856.785 l 1.046 l "' CD N N 
0 "' -.1 "' 

\2! ,l 
... "' 735.848 1471.696 1.969 2.057 0.985 1.939 0 "' 1453.493 2906.986 1.965 2.056 0.983 w N "' "' 1920 "' "' ... ...., 

\2!,1,2 l.O N ...., 
495.085 1485.255 2.927 3.058 0.976 2.856 w CD 974.453 2923.359 2.932 3.066 0.977 .t> .t> "' "' N 0 ... w 

;2S,l,2,3 
DJ DJ 372.115 1488.460 3.894 4.068 0.974 3.791 DJ DJ 733.708 2934.832 3.894 4.072 0.973 I I I I 
0 0 0 0 
N .t> ... w 

TIME-STEPS: 60 120 

Table IV.B.3.2-tl: Exper1mental Results and Performance Measurements of the Parallel Algor1thm for the G.E.U. Method on the 
'NEPTUNE' Prototype System. 

F .feJ 
p s 

1 

1.912 

2.807 

3.682 

l 

1.903 

2.818 

3. 718 

l 

1.926 

2.838 

3.733 

l 

1.932 

2.865 

3.790 



[Ch. IV/See. B 430] 

N N 1' M M Ta(e) c s Rs Ep 
,. .feJ 

I.P. PROCS P.E. A.E. (secs) p p p s 
p . . 

lJ1 ol> 
9l "' N 

ro "' 
715.018 715.018 1.072 fl 1 

ol> N 
p.973 9l '1 .... w 367.410 734.820 1..946 2.086 .894 w N 

240 
9),1,2 1.0 0 ro 

248.180 .881 p.960 ~.767 "' .... 744.540 3.088 
"'" lJ1 

9),1,2,3 
t'l t'l 

187.918 751.672 ~.805 4.078 p.951 3.619 I I 
0 0 .... w 

N N 

9l w w 1.416.660 1416.660 1.059 .... 0 ro ..., 
p.975 9l ,1 "' N 726.310 1452.620 .950 2.065 fl· 902 ro "" 480 1.0 "" lJ1 
p.969 9!,1,2 "' ro 487.400 1462.200 .907 3.078 .816 0 0 

t'l t'l 
~.075 ~.702 9!,1,2,3 I I 368.120 14 72 .480 !1-848 .962 

0 0 .... w 

N N 

9l "' "' 827.950 2827.950 fl 1.052 .... .... ..., .... 
l1.o54 p.976 9l ,1 .... ro 448.135 2896.270 .953 .907 

"" ..., 
960 1.0 lJ1 lJ1 

~-069 9!,1,2 "" lJ1 969.343 2908.029 .917 .972 .837 
"" w 
t'l t'l 

~.071 9!,1,2,3 6 I 730.743 2922.972 .870 .967 rJ.744 0 .... w 

~ N N 667.958 5667.958 fl-047 fl "'" ol> 
N N 

~-063 9!,1 "'" N 876.640 5753.280 .970 p.985 .941 .... w 
1920 1.0 .... w 

~.070 p.977 9l' 1 ,2 N N 932.828 5798.484 .932 .866 w ..., 
~,1,2,3 

w "' t'l t'l 454.243 5816.972 .898 r<-081 .974 .798 I I 
0 0 .... w 

TIME-STEPS: 240 

Table IV.B.3.2-tl(aont.d.): Exper~mental Results and Performance Measure
ments of the Parallel Algor~thm for the G.E.U. 
Method on the 'NEPTUNE' Prototype System. 



[Ch. IV/See. B 431] 

each t~me, they produce sl~ghtly better peaks when the grid s~ze is 

(1920x240), for every spec~hed combinat~on of processors, wh~le, as 

the number of ~nternal po~nts increases, the Speed-ups achieved with 

the stated comb~natwn of 3 and 4 cooperat~ng processors analogously 

and smoothly increase, compared with the fluctuat~ng figures of the 

standard algor~thm. In consequence, for the same ~nstances, the 

0 d 0) 
Eff~c~ency an the F .T parameters of the performance model sim~larly 

p s 

exh~bit a cont~nuous increase. The latter factor ex~ned alone ~nd~cates 

the optimum, allowed by the system, grid s~ze ~n terms of the accelerat~on 

~n computat~on. 

F~nally, and ~n terms of the convergence of the solution ach~eved 

through the GEU method, the best accuracy obta~ned and consequently the 

opt~um gr~d s~ze was for {48Qx6Q) • 

- Performance Analysis 

In accordance with the list of parameters for the performance model 

presented ~n Table (IV.B.3.1-tl) and the correspond~ng measuring formulae 

introduced ~n {par.-IV.B.3.1), the program and system dependent perform

ance analyses f~gures are given ~n Tables (IV.B.3.2-t2,t3)t, respect~vely. 

The complementary ~nformat~on to that given ~n {Appendix C-II/par.-

II.B.3.1) ~s as ~t was presented ~n {par.-IV.B.J.l). In part~cular for 

the ~nformat~on obtained from the shared array ITI~ when test~ng the 

parallel algor~thm for the GEU method, a plethora of runs was carr~ed 

out always cons~dering the average*f~gures accord~ngly. This ~nformat~on 

be~ng v~tal for the est~atwn of the experiment dependent performance 

tNote that, in the ease of the parameters Aa(. ")'Tbt(~ ")'for the fifth 
1-,J 1-,J 

phase of the algorithm, we have considered the corresponding complexities 
per group of two internal points, at eaah time-level, the rest of the 
parameters computed accordingly. 

*This also concerns the timings presented in Table (IV.B.3.2-t3) obtained 
from running the load modules generated through the 'XPFCL ', 'XPFCLN' and 
'XPFCLS' commands. 



PROCESSORS (p) 
T, (t} To(t) 

SHARED DATA PARALLEL PATH 
Gs p 

Ae (i,J) a (. ') I Ae N ~/} H 1-,J ol p p p(p) 
Ra(s) 

(t} 
Ra(IIJ 0~~~ 1/J Nt SD (secs) (secs) 0st(s) 

p~2N 
480 

3 
11.088 3 

3 B.P. 0(p) 60 flop 0.023 28 .8xlo fl 1 1 1:60 flops 0.003% l 28.8xl0 fl O.Ollp% 
[piN, P l 

- ops : ops p p p p 

p<N 
240 3 

5.174 3 ·-24ox24C 
' I.P. 13 .44xl0 fl 1 13 .44xlo fl 4 

[piNI.P.J 
0(p) 56 flop' 0.022 - ops 1 1 1:56 flops 0.004% : ops 0.023p% ,_ p p p p 

p~N 
120 5.88xloJ fl 2.264 l 5.88xloJ fl !I 5 I.P. 0(p) 49 flop 0.019 1 240 1:4 flops 0.049% o.o53p% -- ops : ops 

[piNI.P.J 
p p p p 

•• 

f"JI. LIMITS TO PERFORMANCE 
IartJ wst r-. sd(rJ sd(rJ sh(r) t (secs) 

• • • ~p=30,596 np=24 ,509 np 
9,240 

o.oos p 

TabZe IV.B.3.2-t2: A Program Dependent Performance Analys~s of the 
Parallel Algor~thm for the G.E.U. Method. 

• 

~ ~p=28,556 np=22,875 
4,312 

"-'1.4% 0.005 

~~ 
np p 

mp=2,039 np=l ,633 1,886 1.413 np=--
p 

T(e} s PARALLEL PATH 
T(e) PARALLEL T (e) SHARED 

s s s 
(secs) p p 

IieJ (secs) CONTROL (secs) DATA 
Gs I c t tb 

w 
~=1 y 1. ay t (e) o(e} [XPFCLN] 

(e) 
[XPFCLS] 

(e) de 
[XPFCL] 6,1 6,1,2 ~,1,2,3 (Jlsecs) (!lsecs) 

0
st(IIJ on (I I) otZ(IIJ 0

tUsJ 
(secs) 

24ox240 715.018 1.946 2.881 3.805 2712 ~1o,8oo ~3.9% "-'686 0.16% 0.25% 714.163 0.12% 713.693 0.07% 29.290 

TabZe IV.B.3.2-t3: A System Dependent Performance Analys1.s of the Parallel Algor~thm for the G.E.U. Method. 



[Ch. IV/See. B 433] 

analys~s parameters, for the case that all four processors of the NEPTUNE 

system were cooperat~ng was as follows: 

i) The smallest run-time T;e) to be util~zed ~n formula (IV.B.3.1:25) 

was ·187.908 secs; 

ii) the total number of wait cycles to be ut~hzed in formula 

(IV.B.3.1:2?) was "2712, which ~mplied an average number of 

wa~t cycles per processor of "678; 

iii) the average exper~mental t~m~ng of all cooperating processors 

was "187.912 secs; and, 

iv) the number of parallel paths run by each processor, consider~ng 

the average of all cooperat~ng processors but P
0

, was 243. 

F~nally, the t~me the system was not used product~vely (W) be~ng 

est~mated through the formula (IV.B.3.1:22), by us~ng the average 

exper~mental t~m~ng ~n iii), was-36.630 secs; a good approx~mat~on to 

tms total wasted time can be obta~ned from the swn of the wasted t~mes 

stat~cally and dynamically g~ven ~n the performance analys~s Tables. 

To conclude, with respect to the Table (IV.B.3.2-t2), note that the 

normal~zat~on and ~nteger round~ng of the number of accesses to the 

shared data resource, in the fifth phase of the algor~thm, ~ntroduce 

slight discrepanc~es between the results found through the cross-

ver~fy~ng formulae (IV.B.3.1:23,24) for the wasted t~me statically. 

However, ~f the real process~ng-to-access ratio ~s used, ~.e. 49 flops 

over 12 accesses to the shared data resource, for each implementation 

cycle, then both results co~nc~de to the 1.413 secs f~gure. 



[Ch. IV/See. B 434] 

IV.B.3.3: TilE 'GROUP EXPLICIT COMPLETE' - GEC METHOD: 

EXPERIMENI'AL RESULTS AND PERFORMANCE ANALYSIS ON TilE 

'NEPTUNE' PROTOTYPE SYSTEM 

Th1s scheme 1s obtained by using (m-1J~times either of the systems 

of equat1ons (IV.B.3:17,18) for the f1rst to (m-1)thpoint, at every 

time-level, and 1n 1mpl1c1t matr1x form, for the particular case of 

Burgers' equatwn and in accordance w1th the prev1ous def1m.t1on of 

A A 

matr1ces G1 .,G2 ., 1s g1ven by 
,J ,J 

(I+rG
2 

)U 
1 

= (I-rG )U + b. 
,J -]+ l,J -J ..... 

(IV.B.3.3:1) 

where 
(IV.B.3.3:2) 

Th1s scheme is descr1bed by the brick d1agram 1n Figure (IV.B.3.3-fl). 

I 
I I 

I I 
I Yl(m-1 )th 

1st group 
' 

group 
i ' 
I 

I I 
I ---

- I.......... - --
' ' ' 

G.E.C. (Group Explicit Complete) method 
' ' ' ' ' ' ' 

Figure IV.B.3.3-[1: The Representat1ve D1agram of th1s Scheme. 

To proceed w1th the actual implementation of the GEC method, the 

l.!Dplemented program, wh1ch 1s included 1n Appendix C-IV under the name 

MB$5.GECONit, has a s1m1lar phase-structure to that of the prev1ous 

parallel algor1thms 1n this Chapter. 

In a general compar1son of this 1mplementat1on w1th the one for the 

GEU method and 1n outhne terms of the differences occurr1ng, 1n the 

tit stands for Group Explicit Complete method for Odd Number of Intervals. - - - - - -

--------------------------------------------------------------------~ 



[Ch. IV/Sec. B 435] 

seaond phase, we do compute the exact theoret~cal values at all the 

boundary and ~nternal po~nts, at the maximum t~me-level, using the 

ch:lsen exact solut~on formula (IV. B. 3.1: 2). In the third phase, the 

computat~on of the exact values at all the points on both boundar~es 

starts from t~e-level zero up to the penult~mate time-level using aga~n 

the above formula. In particular for the fifth phase, where the main 

part of the ~nherent parallel1sm l~es, th~s algor~thm requires less 

progr~ng effort than that for the GEU method, s~nce there are no 

ungrouped po~nts and only the Group EXPlicit fin~te-difference formulae 

~n (IV.B.3:18) are used at each t~e-level. Note, aga~n, that the values 

/\ " 1\ 1\ 
of a1'a2,b1,b2 have been computed us~ng the formulae g~ven ~n (IV.B.3:16). 

Once ag~n, and s~lar for all the rema~n~ng GE alternat~ng schemes 

~ntroduced ~n this Chapter, an extens~ve range of eXPer~ments led us to 

the same conclus~on about the ~mplementat~ons' granularity faat~ as for 

the previous two parallel algor~thms. The same JUSt~ficat~on therein 

about the choice of the number of time-steps ([STEP) and the number of 

~nternal gr~d points INPOIN1J for a balanaed implementatwn, due to the 

natural behavl.our of MIMD systems, Wl.ll also stand for all algor~thms 

herel.n. In addl.tl.on, to obtal.n always the same runnl.ng effects, for 

fal.r comparl.son purposes, the $DOPAR/$PAREND construct l.S throughout 

utl.l~zed as be fore • 

F~nally, in concern with the declared shared and non-shared arrays 

l.n the program, the only difference, compared to the GEU method's 

programml.ng, occurs in the real non-shared array W wh~ch Wl.ll hold the 

p.d.e.'s exact theoretical values at all the boundary and l.nternal points, 

at the maxl.mum time-level, computed usl.ng formula (IV.B.3.1:2). 



[Ch. IV /Sec.. B 436] 

- ExperLmental Results 

The experLmental results obtained from the parallel algorithm for 

theGEC method are presented inTabZe (IV.B.3.3-tl) along WLth the values 

of other parameters of the performance node! estLmated statically, 

their concepts being those Lntroduced for the previous parallel algorLthms. 

The experLmented grLd sizes have been simLlarly set according to the grid 

ratLO r=l, for a direct comparison of the achLeved performance analysLs 

results with those of the other implemented methods hereLn. 

The 5 
p 

and E parameters exhLbit values very close to the optLrnum 
p 

theoretLcal ones, L .e. ~p and ~ 1 , respectLvely, along w1th O(p) results 

(e) 
for the F .T· factor. 

p s 

In comparLson with the standard parallel algorithm, all these 

parameters produce much better figures for the present algorLthm, w1th, 

agaLn, consLderably smaller runnLng tLme-complexities achLeved for all 

numbers of cooperat~ng processors. Th1s observation rece1ves even more 

signLfLcance Lf these runnLng tLrne-complexLtLes are compared with the 

correspondLng ones achLeved from the parallel algorLthm for the GEU 

method. In actual fact, the t=e-complexLtLes of the present algorLthm 

are also consLderably smaller than those achLeved runn1ng the latter 

one, despLte the fact that the 5 and E exhLbit generally lower opt=urn 
p p 

values. The programming sLmphcity of the algorLthm for the GEC method, 

compared to that for the GEU method, has resulted Ln smaller tLm1ngs, 

whLle, on the contrary, the comparatively excessive coding in the 

latter's implementation resulted Ln a greater seemLngly Lnternal 

acceleration. However, once again$ the ~plementor's should be real 

goal has been truly achLeved and th1s is exhLbited from the even hLgher 

values, for the present algorithm, of the Relative Speed-up (R5 } 
p 

parameter their range beLng s=ilarly >O(r.p). 



N NPROCS r M M Tc(e) c s Rso E F Jt M M 
Tc(e) 

c s R8,o E I.P. P.E. A.E. (secs) p p p p 8 P.E A.E. (secs) p p p 

!<l "' "' 167.940 167.940 1 1.163 1 1 ..... ..... 330.368 330.368 1 1.168 1 ..... "' ro w .._, U1 w .,. 
!<l ,1 w .._, 

86.338 172 .676 1.945 2.263 0.973 1.892 w U1 170.325 340.650 1.940 2.265 0.970 "' ro .,. 
"' 240 1.0 "' w w .._, 

!<l,l,2 "' ro 58.408 175.224 2.875 3.345 0.958 2.756 "' "' 114.903 344.709 2.875 3.357 0.958 .._, ro "' ro 

~,1,2,3 
U1 "' ..... w 
t'l t'l 44.210 176.840 3.799 4.419 0.950 3.608 t'l t'l 86.828 347.312 3.805 4.443 0.951 6 6 I I 

0 0 
"' .,. ..... w 

. 
"' "' ..... ..... 

!<l "' "' 332.520 332.520 1 1.152 1 l "' "' 654.200 654.200 l 1.155 l ..... ..... ..... ..... 
"' 0 U1 U1 

!<l' 1 ro ro 170.910 341.820 1.946 2.240 0.973 1.893 ro w 336.420 672.840 1.945 2.247 0.972 "' 0 0 w 
480 1.0 "' w ..... ro 

!<l,l ,2 ro "' 114.670 344.010 2.900 3.339 0.967 2.803 .._, .._, 
225.660 676.980 2.899 3.349 0.966 N "' "' ..... 

t'l t'l t'l t'l 
!<l,l,2,3 6 6 86.480 345.920 3.845 4.428 0.961 3.696 6 I 170.390 681.560 3.839 4.436 0.960 0 

N .,. ..... w . 
!<l "' "' 662.550 662.550 1 1.147 l 1 ..... ..... 1304.110 1304.110 1 1.149 1 U1 U1 w w ro .._, ..... 0 

!<l '1 "' .,. 339.740 679.480 1.950 2.236 0.975 1.902 ..... ro 668.390 1336.780 1.951 2.241 0.976 ..... w N w 
960 1.0 

.._, 
"' U1 N 

!<l ,1 ,2 
.,. N 227.960 683.880 2.906 3.333 0.969 2.816 ..... ..... 449.080 1347.240 2.904 3.336 0.968 N w U1 "' .._, 

"' N U1 

!<l,l,2,3 t'l t'l 171.820 687.280 3.856 4.422 0.964 3.717 t'l t'l 338.630 1354.520 3.851 4.424 0.963 6 6 6 6 
N .,. ..... w . 

!<l 
U1 U1 1330.143 1330.143 1 1.138 1 1 ..... ..... 2616.143 2616.143 1 1.142 1 "' "' ..... ..... 
w w ro ro 

!<l' 1 
U1 0 677.565 1355.130 1.963 2.234 0.982 1.927 .,. ..... 1333.985 2667.970 1.961 2.240 0.981 N "' 0 w 

1920 1.0 N "' "' "' !<l,l ,2 U1 N 454.303 1362.909 2.928 3.332 0.976 2.857 
.._, 

"' 893.750 2681.250 2.927 3. 343 0.976 "' ..... 0 0 
"' "' ..... "' !<l,l,2,3 t'l t'l 341.755 1367.020 3.892 4.430 0.973 3.787 t'l t'l 672.883 2691.532 3.888 4.440 0.972 I 6 6 6 0 
N .,. ..... w 

TIME-STEPS: 60 120 

Table IV.B.3.3-tl: Experimental Results and Performance Measurements of the Parallel Algor~thm for the G.E.C. Method on the 
'NEPTUNE' Prototype System. 

F' .feJ 
p 8 

1 

1.881 

2.756 

3.619 

l 

1.891 

2.802 

3.685 

1 

1.903 

2.811 

3.708 

1 r,:, 
1.923 ;s-

2.856 ..... 
r.:: 

3. 779 ~ p 

"" 
w 



[Ch. IV/Sec. B 438) 

N N r M M Tc(e} c s RSp E "' .feJ I.P. PROCS P.E. A.E. 
(secs l p p p p 8 

. . 
0 

w "' 655.305 655.305 1 1.169 1 1 ,. "' ... "' 
0,1 

..., 
"' 337.360 674.720 1.94 2.271 0.971 1.887 ... ,. 

"' 0 240 
0,1,2 1.0 "' w 

228.065 684.195 2.87 3.360 0.95E 2.752 "' "' "' 0) 

0,1,2,3 t'l t'l 172 .603 690.412 3.79 4.439 0.94' 3.604 I I 
0 0 ... w . 

0 
... ... 

1.298. 380 1298.380 1 1.155 1 1 "' "' "' "' 
0,1 

N ..., 
0.97' 0 "' 665.700 1331.400 1.95 2.253 1.902 

"' "' 480 
0,1,2 

1.0 ... '"' 449.620 2.88 3.336 2. 78C 0) w 1348.860 0.96; 
"' ..., 

0,1,2,3 
t'l t'l 

338.740 1354.960 3.83 4.429 0.95( 3.67 I 6 0 ... w 

0 
. 

N N 2590.950 w w 2590.950 1 1.148 1 1 
N N 

0 .97( 0,1 ,. w 1327.720 2655.440 1.95 2.240 1.90! 
0 w 

960 
0,1 ,2 

1.0 w 0) 

0.97C ,. 
'"' 889.940 2669.820 2.91 3.342 2.825 

N 0 ..., VI 
0 .96€ 12!,1,2,3 t'l t'l 670.560 2682.240 3.86 4.436 3. 732 

6 I 
0 ... w . 

12! N "' 5193.213 5193.213 1 1.143 1 1 w w 
N N 

1.92( 0,1 ..., N 2644.630 5289.260 1.96< 2.244 0.98 0 ... 
1920 1.0 N '"' 2 .86C 12!,1,2 w "' 1772.875 5318.625 2 .92 3.347 0.97 ,. 

'"' "' "' 3. 78: 0,1,2,3 t'l t'l 1335.070 5340.280 3 .89< 4.445 0.97 
I 6 8 

TIME-STEPS: 240 

Tab~e IV.B.3.3-tl(cont.d.): Exper1mental Results and Performance Measure
ments of the Parallel Algor1thm for the G.E.C. 
Method on the 'NEPTUNE' Prototype System. 



[Ch. IV /Sec.. B 439] 

The greater the number of cooperat~ng processors, the h~gher the 

real Cost (C ) of the algor~thm, along w~th the linear to them Speed-up 
p 

values obta~ned, wh~ch produce sl~ghtly better peaks when the gr~d s~ze ~s 

(1920x240) for the spec~f~ed comb~nat~on of 2 and 3 processors; on the 

other hand, when all 4 processors are cooperat~ng the best peak ~s 

ach~eved for the gr~d of s~ze (1920x60).. Again, we must note the fact 

that the Speed-ups ach~eved, and consequently the values for the 

(e) 
Eff~c~ency and F .T parameters, when ~creas~g the number of ~nternal p s 

gr~d points, show a very smooth analogous ~crease wh~ch has not been 

observed w~th any of the prev~ous parallel algor~thms. Th~s last 

observat~on establ~shes the present algor~thm as the most eff~c~ent so 

far, but st~ll th~s method, together w~th the GEU method, does suffer 

from the restr~ct~ve stab~l~ty cond~t~on r~l, wh~ch prevents the re-

velat~on of the potent~al h~dden ~n th~s sort of GE schemes; and th~s 

potent~al, as ~t will be subsequently exempl~f~ed, having to comprom~se 

w~th a standard g~ven MIMD 'testbed' of processors ~s qu~te unbel~evable. 

F~nally, and ~ terms of the convergence of the solut~on ach~eved 

through the GEC method, the best accuracy obtained and subsequently the 

opt~mum gr~d size was for (1920x60). 

- Performance Analys1s 

In accordance w~th the l~st of parameters for the performance model 

and measur~g formulae introduced ~n (par.-IV.B.J.l), the program and 

system dependent performance analyses f~gures are g~ven ~ Tables 

(IV.B.3.3-t2,t3), respectively. 

Aga~n, and for all the rema~~ng GE parallel algor~thms, note that 

the parameters Aa ( . ') and 
1-,J 

(t) 
To(. '), 1.-,J 

for the fifth phase of the algor~thms, 



PROCESSORS (p} !Y TbtJ SHARED DATA PARALLEL PATH • , Ac (. ·; 
T (. . Ac tpp; Gs PH 1-,J I cl p r--oe! I 0bf?sJ o~EfiiJ Nt s 1-,J (secs} p (secs} Ra(s) Ra(IIJ ,. p 

1?~2NB.P. 480 3 
1.088 28.8XlQ

3 
fl 3 

[pf NB.P.J 
Q(p) 60 flops 0.023 -- 28 .8xlo flops 1 1 1:60 flops 0.003% : ops O.Ollp% 

p p p p 
•• 

~~N Q(p) 56 flops 
240 13 .44xloJ flope 5.174 

1 0.004% 
13 .44Xl0j 

0.023p% ·-240x240 4 I.P. 0.022 1 1:56 flops t'": flops 
[p[NI.P.l 

p p p p !t_ 
~~N 3 3 

5 I.P. 
0(p) 49 flops 0.019 

120 5.88xl0 
flope 

2.264 
1 240 :4 flops 0.049% 

5.88xlo 
flops 0.053p% l!l [p[NI.P.l 

-- : 
p p p p 

t-'· LIMITS TO PERFORMANCE 
IitJ wst 

~--• sd(r) 5d(r) sh(rJ t 
(sec~ 

•• • mp=30,596 fp=24,509 mp 
9,240 

0.005 
p 

Table IV.B.J.J-t2: A Program Dependent Performance Analys~s of the 
Parallel Algor~thm for the G.E.C. Method. 

• 

~ mp=28 ,556 fnp=22,875 mp 
4,312 

.ovl.S% 0.005 

)~ 
p 

mp=2 ,039 fnp=l ,633 
1,886 

1.413 mp p 

T(e) s PARALLEL PATH T(e} PARALLEL T(e} SHARED 
s p 

p 
IieJ _( sgcsl CONTROL I <s~csl DATA 

Gs (secs} I c t tb wda 
i=l yi cy t (e) o(eJ (e) (e) 

!XPFCLJ 1'),1 1'),1,2 ~,1,2,3 (!!secs} (!!secs} 0 st(IIJ en( I I J !XPFCLN] otZ(IIJ !XPFCLS] 0 tUsJ (secs} 

240X240 655.305 1.942 2.873 3.797 2723 ~10,800 ~ 4.3% ~ 686 0.17% 0.27% 654.690 0.09% 653.800 0.14% 29.40[ 

Table IV.B.J.J-tJ: A System Dependent Performance Analys~s of the Parallel Algor~thm for the G.E.C. Method. 



[Ch. IV/See. B 441] 

have been est~mated cons~der~ng the correspond~g complex~t~es per 

group of two ~nternal grid points, at each t~me-level, the rest of 

the parameters computed accordingly. 

The same general~zation appl~es for the complementary ~nformat~on, 

to that given ~n (Appendix C-II/par.-II.B.3.1k presented ~n ~ar.-IV.B.3.1). 

In part~cular for the informat~on obta~ned from the shared arrayiTIME, 

when test~ng the rema~ning GE parallel algor~thms presented ~n th~s 

Chapter, a plethora of runs was carr~ed out as before, always cons~der-

~ng the average f~gures for every ~nformat~on taken from th~s array. 

Th~s essential ~nformat~on for the est~ation of the experiment dependent 

performance analys~s parameters of the present algorithm and for the 

case that all four processors of the NEPTUNE system were cooperat~ng 

was as follows: 

i) 
(e) 

The smallest run-t~me Tp to be ut~l~zed ~n formula 

(IV.B.3.1:25) was 172.580 secs; 

ii) the total number of wait cycles to be ut~lized ~n formula 

(IV.B.3.1:2?) was -2723, wh~ch impl~ed an average number of 

wait cycles per processor of -681; 

iii) the average exper~mental timing of all cooperat~g processors 

was -172.591 secs; and, 

iv) the number of parallel paths run by each processor, cons~dering 

the average of all cooperat~ng processors but P
0

, was 243. 

w~th respect to the t~me the system was not used product~vely (W), 

being est~mated through the formula (IV.B.3.1:22) by us~ng the average 

exper~ental t~m~ng ~n iii), ~t was ·35.059 secs; aga~n a good approx-

~mat~on to th~s total wasted t~me can be obta~ned from the sum of the 

wasted t~mes statically and dynam~cally g~ven in the performance analys~s 

TabLes. 



[Ch. IV/Sec. B 442] 

F1nally, the same note must be made, as for the parallel algor1thm 

for the GEU method, about the normal1zat10n and integer round1ng of 

the number of accesses to shared memory, 1n the fifth phase of the 

algor1thm, a fact wh1ch is bound to 1ntroduce sl1ght d1screpanc1es 

between the results found through the alternate cross-ver1fy1ng formulae 

(IV.B.3.1:23,24) for the wasted t1me stat1cally. 

The seem1ng 1dent1f1cat1on of Table (IV.B.3.3-t2) to Table 

(IV.B.3.2-t2) 1s due to the fact that the program dependent performance 

analys1s 1s only concerned with the flops of the algor1thms, 1gnor1ng 

all ~nteger operat1ons, shared and local transfers, etc. The d1fferences 

between the algorithms become apparent exam1ning all the exper1mentally 

est1mated parameters. 

To conclude, the real process1ng-to-access rat1o, in the fifth 

phase of this algor1thm, was aga1n, as for the prev1ous algor1thm, 49 

flops over 12 accesses to the shared data resource, for each 1rnplementat1on 

cycle. 

IV. B. 3.4: THE '(SINGLE) ALTERNATING GROUP EXPLICIT' - (S}AGE METHOD: 

EXPERIMENTAL RESULTS fum PERFORMANCE ANALYSIS ON THE 

'NEPTUNE' PROTOTYPE SYSTEM 

Th1s scheme results from the coupled use of the GEU and GEC schemes 

at each alternate t1me-level. In correspondence w1th the formulae 1n 

(IV.B.3:30) 1t is g1ven by 

• (I+rG
1 

.)U l = 
,J -J+ 

• 
(I-rG

2 
)U + b 

• ,J -J -J ; (IV.B.3.4:1) 
(I+rG

2 
)U 

2 ,J -J+ 

. } 
= (I-rG

1 
)U l + b, 

,J -J+ ...... 

the brick d1agram for th1s scheme 1s as 1n Figure (IV.B.3.4-f1). 



[Ch. IV/See. B 443] 

I I I I 
' 

I 
I I 

----

- --' 
S.A.G.E. (Single Alternating Group Explicit) method 

I I I I I I t I I I 

Figure IV.B.3.4-fl: The RepresentatLve DLagram of thLs Scheme. 

The implemented program of thLs method, wLth a sLmilar as before 

sLx-phase formatLon, LS included in Appendix C-IV under the name 

MB$5 .SAGEONI! AgaLn, in a comparatLve manner and Ln terms of the 

differences occurrLng from the prevLous algorLthms, Ln the second phase, 

the exact theoretLcal values are computed at the Lnternal poLnts only, 

at the maxLmum tLme-level, usLng the exact solution formula (IV.B.3.1:2). 

In the third phase, the computatwn of the exact values, according to 

thLs formula, at all the poLnts on l::oth l::oundarLes, for all tLme-levels, 

starts from tLme-level one up to the maXLmum tLme-level. In partLcular 

for the complicated programmLng fifth phase, the approximate values at 

the Lnternal poLnts, at every tLme-level and for all tLme-steps, are 

computed USLng the Group ExplLcLt fLnite-difference and Saul'yev's 

asymmetrLc formulae Ln accordance with the alternate formation of this 

scheme. 

tit stands for SingZe Alternating Group ExpZieit method for Odd Number 
of !_ntervaZs. - - - - - -



[Ch. IV/See. B 444] 

The l.mplementatl.On' s granularity factor, the parallel constructs 

and shared/non-shared arrays utilized J.n the program have remained the 

same as for the prevJ.ous parallel algorJ.thms, while, to be specific, 

the arrays have been declared for SJ.IDJ.lar purposes as for the MB$5 .GEUONI 

program. 

- ExperJ.IDental Results 

Since thJ.s scheme, on the same region of the open rectangle 

[0,1) X[O,+~), has been proved to be uncondl.tionally stable for all r>O 

(see Abdullah [ABDU83)) enabled us to use greater values for the grJ.d 

ratio, retaJ.nJ.ng always the grid sJ.ze correspondence with all the prevJ.ous 

parallel algorithms. In fact, accordl.ng to the maxJ.IDum grid sJ.ze allowed 

by the NEPTUNE system for the determinJ.stJ.c Standard ExplJ.cJ.t method, we 

have experimented WJ.th grid ratJ.o values of 1,2 and 4, respectively; the 

t 
grid sJ.zes experJ.mented WJ.th, along WJ.th the results obtained, are 

beJ.ng presented J.nTables (IV.B.3.4-t1,t4,t5}, accordingly. 

The concepts of the parameters appearing J.n these Tables are as 

they were presented J.n the previous GE parallel algorJ.thms, WJ.th the 

exceptl.On of a new J.ntroduced parameter RS J.n Tables (IV. B. 3.4-t4, t5}, 
p 

whJ.ch mJ.rrors the Reference internal Speed-up of the algorithm depending 

on the values for r; J.n other words, J.t provides the ratJ.o between the 

experJ.mental tJ.me-complexity of the unJ.processor basis solutJ.on and the 

e~er1mental t1me-complexit1es ach1eved, 1n terms of P, 1n a uniprocessor 

and parallel J.mplementatl.On of the same algorJ.thm. 

'lb draw some conclusJ.ons by comparJ.ng the results of Table 

(IV. B. 3. 4-tl} wJ.th the correspondJ.ng ones J.n the Tables of the prevJ.ous 

Seeking always a 'balanced' implementation in respect of the utilized 
processors each time. 



N M M 
Ta(e) 

c s Rsn E F Jfl M 
Ta(e) 

c s RSp E ., .feJ N r 
(secs) "'· (secs) I.P. PROCS P.E. A.E. p p p p $ P .E. A. E. p p p p $ 

0 0 0 0 ,... ro !'V ,... 
9.1 

,... 
"' 175.248 175.248 1 1.115 1 1 w __, 

345.300 345.300 1 1.117 1 1 w "' w "' w 0 "' 
__, 

9.1 ,1 w "' 89.860 179.720 1.95C 2.174 0.975 1.902 "' 
__, 

177.320 354.640 1.947 2.175 0.97 1.896 "' "' "' "" 240 1.0 ro "" "' 0 
9),1,2 

__, ro 60.778 182.334 2.88 3.215 0.961 2 0 771 "' w 
119.660 358.980 2.886 3.224 0.96, 2.776 "' w "' 

__, 
t'l t'l t'l t'l 

szj,l,2,3 0 0 45.948 183.792 3.814 4.252 0.954 3.637 0 0 90.420 361.680 3.819 4.266 0. 95' 3.646 ,... 
"" 

,... w 

0 ,... ,... 
9.1 "' "' 348.000 348.000 1 1.100 1 1 

,... ,... 
684.570 684.570 1 1.104 1 1 w w ,... ,... 

w w ,... ,... 
9),1 

,... 0 178.350 356.700 1.951 2.147 0.976 1.904 "" 0 351.420 702.840 1.948 2.151 0.974 1.897 w !'V "' w 
480 1.0 0 "' w 0 

"' "' 
__, 

"' 9.1, 1 ,2 w ro 119.700 359.100 2.907 3.199 0.969 2.817 __, ro 235.800 707.400 2.903 3.205 0.968 2.809 w 0 t'l t'l 

lzl,l,2,3 t'l t'l 90.280 361.120 3.855 4.241 0.964 3.715 0 0 178.420 713.680 3.837 4.236 0.959 3.680 0 0 ,... w 
!'V "" 0 ,... ,... 

9.1 "' "' 694.620 694.620 1.094 1 
!'V !'V 

1366.180 1366.180 1 1.097 "" "" 1 1 "' "' 1 1 w ,... !'V 8 9.1 ,1 0 w 355.440 710.880 1.954 2.137 0.977 1.910 
!'V 

695.190 1390.380 1.965 2.155 0.983 1.931 "' "" 
,... 

"" 960 l.O "' !'V ro !'V ,... 0 "' 
,... 

9),1,2 "" !'V 238.020 714.060 2.918 3.192 0.973 2.839 ,... w 467.260 1401.780 2.924 3.206 0.975 2.850 ,... 
"" t'l t'l 

lll,l,2,3 t'l t'l 179.180 716.720 3.877 4.240 0.969 3.757 0 0 352.600 1410.400 3.875 4.249 0.969 3.753 0 I 
0 ,... w 

!'V "" 
9.1 

0 

~391.230 1391.230 1 1.088 1 1 
,... ,... 

2738.860 2738.860 1 1.091 1 1 ;::; "' "' N !'V 
w w ,... ,... 
w w 705.080 1.947 w !'V 

1385.270 2770.540 1.977 2.157 0.989 1.955 
;s-9.1 ,1 "" 0 1410.160 1.973 2.147 0.987 !'V w 

1920 1.0 "' 0 "' "' __, ,... ,... ro ._. 
9),1,2 __, w 473.460 1420.380 2.938 3.197 0.979 2.878 0 "" 930.190 2790.570 2.944 3.212 0.981 2.890 ;:; w !'V "' 

__, 

~,1,2,3 "" ro 
356.090 1424.360 3.907 4.251 0.977 3.816 

t'l t'l 
701.420 2805.680 3.905 4.260 0.976 3.812 

(I) 
t'l t'l 0 0 "' 0 0 n ,... w 
!'V ... 

"" 120 .. 
TIME-STEPS: 60 

""" """ "' Tab~e IV.B.3.4-tl: Experimental Results and Performance Measurements of the Parallel Algorithm for the (S).A.G.E. Method (for r-1)~ 
on the 'NEPTUNE' Prototype System. 



[Ch. IV/See. B 446] 

N NPROCS r M M Ta(e) c s Rs E F .feJ 
I.P. P.E. A.E. p p p p s (secs) -p 

(21 
... w 

685.175 U1 w 685.175 1 1.118 1 1 N "' (21,1 "' "' 351.200 702.400 1.95] 2.182 1.903 .... N 0.975 ro .... 
240 

(21,1,2 
1.0 .... N 

0.96l U1 "' 237.675 713.025 2.88 3.224 2.770 
@ "' (21,1,2,3 t'l 

180.140 720.560 3 .80t 4.254 3.617 I I 0.951 0 0 .... w 

(21 N N 360.020 1360.020 1 1.103 1 1 .... .... 
"' "' (21,1 ro .... 698.020 1396.040 l.94t 2.149 0.974 1.898 .... "' 480 1.0 "' N 

2 .89< (21 ,1 ,2 "' w 469.340 1408.020 3.196 0.966 2.799 U1 N 
ro lJ1 

(21,1,2,3 t'l t'l 354.580 1418.320 3 .83E 4.231 0.959 3.678 I I 
0 0 .... w . . .... .... 

(21 "' "' 712.530 2712 .530 1 1.097 1 1 w w 
U1 N 

(21 ,1 "' w fl380.620 2761.240 1.965 2.155 0.982 1.930 
"' ro 

960 1.0 N N 
(21,1,2 .... U1 928.930 2786.790 2 .92C 3.202 0.973 2.842 

"' ro 
t'l t'l 

(21,1,2,3 I I 699.610 2798.440 3.877 4.252 0.969 3.758 0 0 .... w . 
(21 N N 435.620 5435.620 1 1.092 1 1 w w 

N N 
(21 ,1 N 0 765.210 5530.420 1.966 2.146 0.983 1.932 1920 1.0 ro ... 

N 0 
(21 ,1 ,2 0 ro 853.370 5560.110 2.933 3.202 0.978 2.867 U1 ro .... N 

(21,1,2,3 t'l t'l 393.490 5573.960 3.901 4.258 0.975 3.804 
6 6 .... w 

TIME-STEPS: 240 

Table IV.B.3.4-tl(aont.d.): Experimental Results and Performance Measure
ments of the Parallel Algor~thm for the (S).A.G.E. 
Method (for r=l) on the 'NEPTUNE' Prototype System. 



[Ch. IV/See. B 447] 

methods, the LmpressLon gLven LS that the present algorithm, in terms 

of the time-complexLties and Relative Speed-ups (R5 ) achieved running 
p 

it, behaves worse than the GEC method and better than the GEU one; 

certaLnly, there LS not any comparison WLth the standard algorLthm's 

time-complexLties. 

The values for the S and E parameters Ln this Table prove Ln 
p p 

general to be better than the correspondLng values for the GEC method 

and are more or less equLvalent, or even better (especLally as the size 

of the grid increases) than those for the GEU method. In fact, the 

Speed-up and EffLCLency values show almost the smooth and analogous to 

the number of internal grid poLnts Lncrease observed Ln the algorLthm 

for the GEC method, whLle the peaks observed (L.e. for 2 and 3 cooperatLng 

processors for the grid of SLZe (1920x120) and when all 4 processors are 

utLlLzed for the grLd of size (1920x60)) are much hLgher than the highest 

peaks of the GEU method. Apparently this LS due to the excessLve code 

Lnvolved as was for the latter method and these results should not be 

consLdered serLously by the Lmplementor. 

The tremendous potentLal of thLs method unfolds when passLng the 

restrLCtLve barrLer of 1 for the grLd ratio and experiment WLth greater 

values. In general, from every aspect, either numer~cal or experimental, 

thLs method performs unbelievably. Although Lt LS a matter of less 

Lnterest to dLscuss the values of s and E parameters, however, a very 
p p 

close fluctuation Ln theLr values has been observed reachLng instances 

where they prove agaLn to be even better than those of the GEU method. 

The revealLng factors of the tremendous potential of the method are the 

R5 and R5 parameters. More analytLcally, by examinLng Tables 
p p 

(IV.B.3.4-t4,t5) we note that the Relative Speed-ups are amazLngly 



[Ch. IV/See. B 448) 

keep~ng-up an analogous ~ncrease ~n values acccr~ng to the ~ncrease of 

the gr~d rat~o p, always being >0(P.p). In actual fact, for p=4, we 

reached a maximum 16.766 times accelerat~on ccmparing to the standaPd 

algor~thm by only us~ng 4 processors; it ~s really a very interest~ng 

matter what the result would be if we cculd exper~ment with th~s method 

for greater gr~d sizes (and consequently P 1s), unfortunately not 

feas~ble on the NEPTUNE prototype system. In other words, we have 

proved that th~s method can really accelerate in a manner ~ndependent 

of the system's restr~ct~ve, ~n terms of the number of ava~lable 

processors, conf~gurat~on. 

The explanat~on for this amaz~ng result l~es on the R5 parameter 
p 

wh~ch exh~b~ts a RefePenae intePnaZ aaaelePation of O(P.p), reach~ng a 

max1mum value of 15.357, again, for p=4 and ~n a maximum ut~lizat~on of 

the system, due to the smaller t~me-complex~t~es (and consequently real 

Costs) caused by the proport~onal reduct~on ~n the total number of t~me-

steps. 

F~nally, from the pure numer~cal po~nt of v~ew, any poss~ble doubt 

about the accuracy of the solut~on obta~ned through th~s method is 

proved unecessary, s>nce, by exam>n~ng Tables (IV.B.3.4-tl,t4,t5) 

ccrrespondingly, we note that the accuracy of the method generally 

~ncreases along w1th the gr1d rat>o p, to reach a value for the max>mum 

absolute error (when p=4)t wh1ch 1s the smallest ach1eved from the 

parallel algor1thms exper1mented w1th to-date. 

- Performance Analys1s 

The program and system dependent performance analyses concern1ng 

tFoP the maximum gPid size indiPectly allowed by the system. 



[Ch. IV/See. B 449] 

the bas1c and max1mal experimental cases allowed by the system, in terms 

of the gr1d ratw (i.e. when r=l and r=4, respect1vely) and 1n 

accordance w1th the parameters of the performance mdel and measuring 

formulae presented in (par.-IV.B.3.1), are g1ven 1nTabZes (IV.B.3.4-

t2,t3,t6,t?), respectively. 

In add1t1on to the general notes made 1n the performance analys1s 

part of the parallel algor1thm for the GEC method, applicable to all 

GE algor1thms presented 1n th1s Chapter, the part1cularly essent1al 

1nformat1on for the est1mat1on of the exper1ment dependent performance 

analys1s parameters of the present algorithm, obta1ned from the shared 

array ITIME 1n the same manner as for all prevwus algorithms and 1n a 

maximum system ut1l1zat1on, was as follows: 

i) The smallest run-time T/e) to be ut1l1zed 1n formula 

(IV.B.3.1:25), whenr=l, was 180.125 secs., wh1le whenr=4, 

was 45.718 secs; 

ii) the total number of wait cycles to be ut1l1zed 1n formula 

(IV.B.3.1:2?) , when r=l, was -2692, wh1le when 1'=4, was -716, 

which 1mpl1ed average numbers of wa1t cycles per processor of 

-673 and -179, respect1vely; 

iii) the average experimental t1ffi1ngs of all cooperat1ng processors 

for these cases were -180.132 secs and -45.722 secs, accord1ngly; 

and, 

iv) the number of parallel paths run by each processor, cons1der1ng 

the average of all cooperat1ng processors but P
0

, 1n 

correspondence w1th the values of the gr1d rat1o were 243 and 

63, respect1vely. 



(p) SHARED DATA PARALLEL PATH PROCESSORS 
Ao ( .. ) T (tJ Ao Tc(t) 

N)ip) Gs p I ILorll o(tJ H c(. f cl R 0~%(8) Ra(/ I) Nt sp 1-,J 1-, p p 
(secs (secs) a(8) 8t(IIJ 

p~2NB.P. ~so 
3 

11.088 l 28 .8Xl0
3 
fl 3 0(p) 60 flops 0.023 8 .Sx10 flops 1 1 1:60 flops 0.003% O.Ollp% 

[piNB.P.] p p p : P ops 
•• 

p~N 0(p) 56 flops 0.022 
40 3.44xloJfl 5.174 

1 1 1:56 flops 0.004% l 13 .44XlO.j fl 
0.023p% ·-240X24C 4 I.P. p ops : P ops ,_ [piNI.P. J 

p p 

20 3 
2.264 5.88Xl03 

l!l 5 p~N O(p) 49 flops 0.019 f:>.SBxlO 
flops 2 120 1:4 flops 0.049% 0.053p% I.P. 1: p flops 

[pI NI P. l 
p p p 

[I LIMITS TO PERFORMANCE 
ld(t) W8t ,...; s,u.,.J sdr.,.J shr.,.J t (secs) 

• • • mp=30 ,596 mp=24 ,509 lnp 
9,240 

0.005 p 

Table IV.B.3.4-t2: A Program Dependent Performance Analys1s of the 
Parallel Algor1thm for the (S).A.G.E. Method 
(for r=l) . • 

~ mp=28 ,556 mp=22 ,875 l"p 
4,312 

!"-1.5% 0.005 

)~ 
p 

mp=2 ,039 mp=l,633 l"p 
1,886 

1.413 p 

T(e) T(e) 
PARALLEL T(e) SHARED s 

Iie) 
PARALLEL PATH 8 8 8 p p (secs) CONTROL (secs) DATA (secs) I c 

t tb wdc Gs cy t (e) o(e) (e) (e) 
[XPFCL] 11),1 11),1,2 ~,1,2,3 

1=1 y 1 
(Jlsecs) (Jlsecs) 08t(IIJ en(/ I) [XPFCLN] 0

tUIIJ 
[XPFCLS] 0tl(8) (secs) 

240x240 685.175 1.951 2.883 3.804 2692 "'-'10 ,800 ~4% ~686 0.16% 0.26% 684.450 0.11% 683.967 0.07% 29 .07L 

Table IV.B.3.4-t3: A System Dependent Performance Analys1s of the Parallel Algorithm for the (S).A.G.E. Method (for r=l). 



N NPROCS r M M Ta(e) c s Rs Rs Ep F -~e) 
I.P. P.E. A.E. 

(secs) p p p s 
p p 

Ill 
N ... 173.960 173.960 1 2.217 1.985 1 1 N "' <D 0) 

\ll,l 
... ... 89.040 178.080 1.954 4.332 3.878 0.977 1.909 "' ... 

240 2.0 
0) ... 

\1l,l,2 
0) ..., 

60.200 180.600 2 .89C b.408 5. 736 0.963 2.783 ... 0 ... w 
\1l,l,2,3 t'l t'l 45.570 182.280 3 .81~ 8.465 7.577 0.954 3.643 I I 

0 0 ... w 

Ill "' "' 346.020 346.020 1 2.184 1.978 1 1 0 8 N 

\ll,l 
w N 177.500 355.000 1.94~ '!.258 3.857 0.975 1.900 0) ... 
"' ro 480 

\1l,l,2 
2.0 0) ..., 

119.170 357.510 2 .90' b.342 5.744 0.968 2.810 <D ..., 
N w 

\1l,l,2,3 
t'l t'l 89.510 358.040 3.86E 8.444 7.648 0.966 3.736 6 6 
N ... 
. 

Ill "' "' 687.910 ..., ..., 
w w 

687.910 1 .178 1.986 1 1 

\ll,l 
... w 

350.900 701.800 1.96C r->-269 3.893 0.980 1.922 N <D ..., 
"' 960 

\1l,l,2 
2.0 N "' 235.550 2.92( w ro 706.650 p.360 5.800 0.973 2.843 

0 w 
\1l,l,2,3 

t'l t'l 
177.970 711.880 3.865 p.418 7.676 0.966 3.735 I I 

0 0 
N ... 

Ill "' w "' w 
375.810 1375.810 1 .172 1.991 1 1 

\ll,l 
... 0 

698.990 w ... 1397.980 1.968 .275 3.918 0.984 1.937 w 0) 

1920 
\1l,l,2 

2.0 w ... 
w w 471.620 1414.860 2.917 .335 5.807 0.972 2.837 ... w 
N <D 

\1l,l,2,3 t'l t'l 354.920 1419.680 3.876 p.418 7. 717 0.969 3.757 
I I 

0 0 
N ... 

TIME-STEPS: 60 

Table IV.B.3.4-t4: Experimental Results and Performance Measurements of the Parallel 
Algorithm for the {S).A.G.E. Method (for r=2) on the 'NEPTUNE' 
Prototype System. 

"' 

--- -----------------------------------------------------------------------------------------------------------



N N 1' ~P.E. ~A.E. 
Tc(e) c s Rs Rs E F .feJ 

I.P. PROCS (secs) p p p . p s p p 
. 

0 .. w 343.953 343.953 1 2.228 1.992 1 1 w "' CD CD 
0,1 .. .., 176.318 352.636 1.951 4.346 3.886 0.975 1.903 

"' 
.., 

240 2.0 .... "' 0,1,2 .. "' 118.973 356.919 2.891 6.441 5.759 0.964 2.786 
"' "' "' .... 

0,1,2,3 t'l t'l 90.068 360.272 3.819 8.508 7.607 0.955 3.646 
6 6 .... w . .... .... 

0 .... .... 679.180 679.180 1 2.209 2.002 1 1 .., .., 
N 0 

0,1 "' "' 347.780 695.560 1.953 4.313 3.911 0.976 1.907 CD w 
480 2.0 "' "' 0,1,2 8 "' 233.540 700.620 2.908 6.423 5.823 0.969 2.819 

"' t'l t'l 
0,1,2,3 6 I 176.780 707.120 3.842 8.486 7.693 0.960 3.690 0 .... w 

0 "' "' 1353.130 1353.130 1 2.198 2.005 1 1 "' "' .... .... 
0,1 .. .. 689.260 ...378.520 1.963 4.316 3.935 0.982 1.927 .. "' 960 2.0 "' "' 0,1,2 w "' 464.440 1393.320 2.913 6.405 5.840 0.971 2.829 

"' "' 0 0 
0,1,2,3 t'l t'l 351.010 1404.040 3.855 8.474 7.728 0.964 3. 715 

6 6 
"' .. . . 

0 CD CD 2710.050 710.050 1 2.190 2.006 1 1 "' "' "' CD 

0.1 
w "' 1375.670 751.340 1.970 4.314 3.951 0.985 1.940 0 .. 

1920 2.0 "' .... 
0,1,2 .... "' 927.640 782.920 2.921 6.397 5.860 0.974 2.845 "' "' "' .., 

0,1,2 ,3 t'l t'l 698.720 794.880 3.879 8.493 7. 779 0.970 3.761 
6 I 

0 
N .. 

TIME-STEPS: 120 

Table IV.B.3.4-t4(cont.d.): Experimental Results and Performance Measurements of the Parallel 
Algorithm for the (S).A.G.E. Method (for r=2) on the 'NEPTUNE' 
Prototype System. 



N N 1' M M Ta(e} c s Rs R E F .T(e} 
I.P PROCS p .E • A.E. (secs) p p s p p s 

p p 

(ll ... w 174 .062 174.062 1 4 .4o< 3.936 1 1 ... w ..., 
"' 1. 94f 8.57: (ll,1 <Y> <Y> 89.356 178.712 7.668 0.974 1.897 ..., 
"' 240 4.0 N w 

1.34C (ll ,1 ,2 0 w 60.420 181.260 2.88 12.682 o.96c 2.766 
0 "' "' "' 3 .so~ 16. 75E (ll,1,2,3 ., ., 45.726 182.904 ~4.984 0.952 3.623 
I I 

0 0 ... w 

(ll <Y> "' 344.070 344.070 1 4 .36C 3.953 1 1 w w ... ... 
1.94: (ll,1 "' N 177.190 354.380 8.466 7.675 0.971 1.885 

"' ... 
480 4.0 "' w 

12.56~ 0.961 (ll,1 ,2 ... ... 119.370 358.110 2 .88, 1.393 2. 769 
"' "' "' "' (ll,1,2,3 
., ., 90.240 360.960 3.81 16.624 1'-5 .071 0.953 3.634 
I I 

0 0 
N ... 

(ll <Y> <Y> 686.320 686.320 1 4.334 3.952 1 1 
"' "' ..., ... 

(ll, 1 <Y> ... 350.720 701.440 1.95 8.48 7.734 0.978 1.915 N "' 960 4.0 w "' (ll,1,2 N 8 235.620 706.860 2.91 12.625 1'-1.512 0.971 2.828 <Y> ... 0 
(ll,1,2,3 

., ., 177.770 711.080 3.86 16.733 5.259 0.965 3.726 I I 
0 2. N . 

(ll "' "' 1374.880 1374.880 1 4.316 3.954 1 1 ... 0 
N ..., 

(ll ,1 ... "' 699.810 1399.620 1.96 8 .48C 7.767 0.982 1.930 ... w 
1920 4.0 N ... 

(ll,l ,2 "' "' 469.720 1409.160 2.92 12.633 1.572 0.976 2.856 w ..., 
"' w 

(ll,1,2,3 
., ., 353.940 1415.760 3.88 16.766 r-5.357 0.971 3. 772 I I 

2 2 
TIME-STEPS: 60 

Table IV.B.3.4-t5: Experimental Results and Performance Measurements of the Parallel 
Algorithm for the (S).A.G.E. Method (for r=4) on the 'NEPTUNE' 
Prototype System. 



PROCESSORS {p) (t) T~tJ 
SHARED DATA PARALLEL PATH •' Gs !PH Aa (. ") 

To( . . I a~ Aa ~p(p W!J ort~ ) o:~j/1) Nt s 1-,J 
1-,J p p R Ra(//) , .. p {secs) {secs) a(s) st s 

p~2NB.P. 
0{p) 

120 7.2xl03 2. 772 1 1 1:60 flops 0.003% 1 7.2xlo
3 

fl 0.043p% 3 
[pjNB.P.J 

60 flops 0.023 flops : ops 
p p p p 

~~NI.P. 240 
3 5.174 1 ,13.44Xl0jflops ·-[pjNI.P.J 

0 {p) 56 flops 0.022 -- 13.44xlo flop 1 1 1:56 flops 0.004% 0.023p% 
240x6o 4 p p p p ,_ 

• 

j>~NI.P. 3 2.264 
3 

!) 5 0{p) 49 flops 0.019 
120 5.88xl0 

flops 2 30 1:4 flops 0.049% 1 ,5.88xlo flops 0.053p% 
[pjNI.P.J 

--
p p p p 

Tab~e IV.B. 3.4-t6: A Program Dependent Performance AnalysLs of the [I LIMITS TO PERFORMANCE 
lit) wst 

Parallel AlgorLthm for the (S).A.G.E. Method ... ,...; sd(r) sd(r) sh(r) t {secs) {for r=4). 

• m =30,596 ~.=24,509 m 
2,310 

0.005 
p p p p 

it m =28,556 ~.=22,875 m 
4,312 

~1.5% 0.005 
~· p p 

p p 

1,886 /j_ mp=2,039 ~P=l,633 m o. 353 p p 

r--------r-------,------------------~-----,-------,-----,------~------------~-------,~------~------~-----,----~~ 

240x60 

/e) 
8 {secs) 

[XPFCL] !<1,1 !<1,1,2 !<1,1,2,3 

174.062 1.948 2.881 3.807 

p 

I c 
L=l yi 

716 

t ay 

{llsecs) 

T (e) PARALLEL T (e) SHARED ;:s-

(s"i,cs) CONTROL \S~cs) DATA 
tb 1-:-( e-)~"-T0-(:-e-) --+[..;,_ __ ] -+""r""e""J ---f-----+~( e-)--1 w 00 ~ 

{l!secs)b~t(//J an(//) XPFCLN Ot~(//) [XPFCLSJ Ot~(s} {secs)~ 

PARALLEL PATH 

~1o ,8oo ~4 .2% ~686 0.17% 0.27% 173.880 o.l% 173.690 0.11% 7. 733 "" 

~----~-----L--~----~--~----~----~--~----~--~----~----~------~----~--~----~·· 
Tab~e IV.B.J.4-t7: A System Dependent Performance AnalysLs of the Parallel AlgorLthm for the (S).A.G.E. Method {for r=4). 



[Ch. IV/Sec. B 455] 

With reference to the times the system was not used productLvely 

(W), beLng again estLmated through the formula (IV.B.3.1:22) by usLng 

the average experLmental timings Ln iii), accordingly, they were 

-35.353 secs and -8.826 secs; once more, good approxLIDations to these 

total wasted tLmes can be obtained from the swn of the respectLve 

wasted times statLcally and dynaiDLcally, presented Ln the performance 

analysLs Tables. 

To conclude, the reader should bear in mLnd the notices gLven for 

the prevLous GE algorithms about the ratio of accesses to the shared 

data structure, to avoLd any LllusLve discrepancies when seeking the 

cross-verLfLcat~on of the results obtained through the alternate 

formulae (IV. B. 3.1:23,24) for the wasted tLme stat~cally, ~n the fifth 

phase of the algor~thm. Again, the real process~ng-to-access ratio, 

for this phase, was 49 flops over 12 accesses to the shared data 

resource, for each implementat~on cycle. 

IV.B.3.5: THE '(DoUBLE} ALTERNATING GROUP EXPLICIT' - (D)AGE METHOD: 

EXPERIMENrAL RESULTS AND PERFORMANCE ANALYSIS ON THE 

'NEPTUNE' PROTOTYPE SYSTEM 

Th~s scheme, as we have d~scussed ~n (par.-IV.B.3), is a per~odLc 

rotat~on of the (S)AGE two t~me-level scheme result~ng in a four t~e-

level step process w~th the second half cycle in reverse order. In 

correspondence with the formulae 1n (IV.B.3:31) 1t 1S g~ven by 

• • 
1 (I+rG

1 
}U l (I-rG

2 
.}U + !?.3 ,J -J+ ,] -J 

A A 

) 
(I+rG

2 
}U 

2 (I-rG
1 

.}U l + b 
,] -J+ ,] -J+ -4 (IV.B.3.5:1) • • (I+rG

2 
}U (I-rG1 '/!l_J+2 

+ b 
, J -j+3 -4 

A • U+rG
1 

}U 
4 (I-rG2 ,j}~J+3 + b 

,] -J+ -3 



[Ch. IV/Sec. B 456) 

the brick d1agram for th1s scheme is as in Figure (IV.B.3.5-fl). 

I I --

---
-

-

D.A.G.E. (Double Alternating Group Explicit) method 
I I I I I I I I 

Figure IV.B.3.5-fl: The Representative D1agram of this Scheme. 

Again, th1s method has been 1mplemented 1n a s1x-phase formatted 

program wh1ch 1s 1ncluded in Appendix C-IV under the name MB$5.DAGEONit. 

More spec1fically, there 1s a close correspondence between th1s 

:unplementat1on and the :unplementation of the (S)AGE method for all 

phases of the algorithm, but the fifth. In there, due to the period1c 

use of the GEU and GEC bas1c schemes synthes1z1ng th1s scheme, a flag 

1s 1ntroduced to control their alternat1ng sequence and form th1s four 

time-level step process. Any other program structur1ng specif1cations 

made for the parallel algor1thm for the (S)AGE method are well appl1ed 

for the present algorithm. 

Exper1mental Results 

In a s1milar manner, as for the previous GE scheme, 1t has been 

proved that the present scheme 1s also unccnd1tionally stable for all 

r>O (see Abdullah [ABDU83l) , on the same reg1on of the open reatangle 

[O,l)X[O,+«>). 

tit stands for Double Alternating Group Explicit method for Odd Number 
of !_ntervals. - - - - - -



[Ch. IV/Sec. B 457] 

Aga~n for dLrect compar~son reasons, as well as due to the system's 

hardware li~tations, we have exper~ented w~th the same values for r 

as for the prev~ous parallel algorithm. The grid s~zes experimented 

w~th, along with the results obtained, are be~ng presented ~n TabZes 

(IV.B. 3.5-tl,t4,t5), accord~ngly, while for the concepts of all the 

~nvolved parameters in these TabZes the reader slx>uld refer to lpar.-IV.B.3.]). 

To draw some conclus~ons by compar~ng the correspond~ng results 

ach~eved through the present algor~thm, to those achieved through the 

algon.thm for the (S)AGE method, we note that this method behaves more 

or less sim~larly to the latter one, wh~le ~n particular with the 

achieved t~e-complexit~es, ~n certa~n ~nstances and despite the 

cont~nuous cond~tional branching due to the alternating use of the bas~c 

GEU and GEC schemes, they prove to be even smaller. Th~s sl~ghtly affects 

the ~nternal accelerat~on and eff~ciency of the method, which therefore 

exh~b~ts smaller performance peaks, st~ll retaining, though, the almost 

smooth and analogous to the number of internal grid po~nts increase 

observed in the previous algorithm. In fact the best Speed-ups and 

t 
Eff~cienc~es ach~eved were for the gr~d of s~ze (1920x240) for the 

case of 2 and 3 cooperat~ng processors and for the gr~d of size (192Qx 

120) ~n a max~um system ut~lization. 

Certa~nly, aga~n, there ~s not any compar~son w~th the standard 

algorithm from every aspect, while, in general, correspond~ng observat~ns 

as for the case of the (S)AGE method, ~n concern w~th the bas~c schemes 

above , can be appl~ed. 

In a s~m~lar manner to that algorithm, the tremendous potent~al of 

tFor the partieuZar ease that r=l. 



N NPROCS r M M Tc{e) c s Rs E F .feJ M M Tc(e) c s Rs E F .f" I.P. P.E. A.E. p p p p s P.E. A.E. p p p p s (secs) p (secs) 'J2_ . . . . 
!11 

,.... w 175.255 175. 255 1 1.115 1 1 "' ,.... 345.830 345.830 1 1.115 1 1 ,.... __, 
w __, 

"' 0 "' "' !11 ,1 "' "' 89.893 179.786 1.95C 2.174 0.975 1.900 w "' 177.080 345.160 1.953 2.178 0.976 1.907 ,.... "' "' "' 240 1.0 0 __, ., ., 
!11 ,1 ,2 

__, w 60.835 182.505 2.881 3.212 0.960 2.766 ,.... w 119.940 359.820 2.883 3.216 0.961 2.771 "' 
,.... 

"' w 
"' ., 

"' w 
!11,1,2,3 "' "' 45.963 183.852 3.813 4.251 0.953 3.635 "' "' 90.800 363.200 3.809 4.248 O.J52 3.627 I I I I 0 0 0 0 ,.... ., ,.... w . 

!11 
. 

346.850 346.850 
,.... ,.... 

685.660 "' "' 1 1.104 1 1 ,.... ,.... 685.660 1 1.102 1 1 0 0 0 0 
!11 ,1 

w w 
354.620 2.160 "' "' __, 

"' 177.310 1.956 0.978 1.913 "' "' 350.370 700.740 1.957 2.157 0.978 1.915 "' "' "' 
., 

480 
!11 ,1 ,2 

1.0 "' w __, 
"' "' 

., 119.590 358.770 2.900 3.202 0.967 2.804 w ., 235.210 705.630 2.915 3.213 0.972 2.833 ., 
"' w ., 

!11,1,2,3 
., w 

"' "' "' "' 90.260 361.040 3.843 4.242 0.961 3.692 I I 177.640 710.560 3.860 4.255 0.965 3. 725 I I 0 0 0 0 ,.... w 
"' ., . 

!11 "' "' ,.... ,.... ., ., 692.270 692.270 1 1.097 1 1 "' "' 1364.370 1364.370 1 1.098 1 1 w ,.... 
"' "' !11 ,1 

0 "' "' 8 "' ., 354.770 709.540 1.951 2.141 0.976 1.904 "' 695.700 1391.400 1.961 2.153 0.981 1.923 "' "' ,.... ., 
960 

!11 ,1 ,2 l- .0 ,.... 0 w "' ., 
"' 237.950 713.850 2.909 3.193 0.970 2.821 "' ,.... 466.510 1399.530 2.925 3.211 0.975 2.851 ,.... ., ,.... 

"' !11,1,2,3 "' "' "' "' I I 178.570 714.280 3.877 4.255 0.969 3.757 I I 351.830 1407.320 3.878 4.258 0.969 3. 760 0 0 0 0 
"' ., ,.... w . . 

~735.670 !11 "' "' D87 .540 1387 .540 1 1.091 1 1 ,.... ,.... 2735.670 1 1.092 1 1 w w "' "' w w ,.... ,.... 
!11,1 ., 0 707.810 1415.620 1.960 2.139 0.980 1.921 w "' fL394.490 2788.980 1.962 2.143 0.981 1.924 "' 0 "' w 1.0 __, ,.... 

"' "' !11,1 ,2 __, w 474.220 1422.660 2.926 3.192 0.975 2.854 ,.... w 934.780 2804.340 2.927 3.196 0.976 2.855 w "' 0 ., 
1920 ., w "' 

__, 
!11,1,2,3 "' "' 356.350 1425.400 3.894 4.248 0.973 3.790 "' "' 702.050 2808.200 3.897 4.256 0.974 3.796 I 6 I I 0 p 8 "' 

., 

TIME-STEPS: 60 120 

Tab~e IV.B.3.5-tl: Experimental Results and Performance Measurements of the Parallel A1gor1thm for the (D).A.G.E. Method (for r=1) 
on the 'NEPTUNE' Prototype System. 

~ 
;s-

..... 
<: 

to 
~-

I-" 

I<-
00 



[Ch. IV/Sec. B 459] 

N NPROCS r M M Tc(e) c s Rs El? F .feJ 
I.P. P.E. A.E. 

(secs) I? I? I? 8 
I? 

0 

1>.1 ""'" 
w 684.933 684.933 1 1.119 1 1 "' w ... ro 

1'),1 ""'" "' 351.053 702.106 1.951 2.183 0.976 1.903 240 1.0 ro "' ..., 
""'" 1'),1 ,2 w w 2 37 .688 713.064 2.882 3.224 0.961 2.768 ..., ro ..., "' 1'),1,2,3 t'l t'l 180.180 720.720 3.801 4.253 0.950 3.613 0 I 
0 ... w 

"' "' 1>.1 
... ... 1358.420 1358.420 1 1.104 1 1 <0 <0 
ro ..., 

1>.1,1 ... "' 694.850 1389.700 1.955 2.159 0.977 1.911 <0 "' 480 1.0 "' w 
1>.1 ,1 ,2 "' "' 468.680 1406.040 2.898 3.201 0.966 2.800 ro "' t'l t'l 

1'),1,2 ,3 I I 353.980 1415.920 3.838 4.238 0.959 3.682 0 0 ... w 

. 
1>.1 

... ... 2708.230 2708.230 1 1.098 1 1 <0 <0 
w w 

1>.1 ,1 "' "' 1381.580 2763.160 1.960 2.153 0.980 1.921 <0 w 
960 1.0 

<0 ro 
1'),1,2 "' "' 930.690 2792.070 2.910 3.196 0.970 2.823 ..., "' "' ro 

1'),1,2,3 t'l t'l 699.290 2797.160 3.873 4.254 0.968 3.750 6 I 
0 ... w 

1>.1 "' "' 5428.920 5428.920 1 1.093 1 1 w w ... ... 
1>.1 ,1 

w 0 2753.400 5506.800 1.972 2.155 0.986 1.944 "' ro 
1920 1.0 

..., ..., 
1'),1,2 

w "' 1847.880 5543.640 2.938 3.211 0.979 2.877 ..., 0 ..., ro 
1'),1,2,3 

t'l t'l 1394.440 5577.760 3.893 4.256 0.973 3.789 I I 
0 0 ... w 

TIME-STEPS: 240 

Table IV.B.3.5-tl(cont.d.): Experimental Results and Performance Measure
ments of the Parallel Algorithm for the (D).A.G.E. 
Method (for r=l) on the 'NEPTUNE' Prototype System. 



[Ch. IV/Sec. B 460] 

the present method unfolds when passLng the restrLCtLve barrier of 1 

for the grLd ratLo and experl.!Dent with greater values. From every 

aspect, eLther numerical or experl.!Dental, thLS method, Ln accordance 

with the prevLous one, performs Ln an unbelLevable manner, which Ls 

agaLn underhned by the R5 and RS parameters of the performance model, 
p p 

exhLbLting Speed-ups of >O(r.p) and O(r.p), respectLvely. To become 

more specLfLc, for r=4, we achLeved an even greater maxLmum, Relative 

to the standard algorLthm, acceleration of 16.786 times, whLle the 

Reference internal acceleration exhibLted a lower maxl.!Dum, than that of 

the (S)AGE method, of 15.315 times, always in a total utLlLzatLon of 

the system. 

Finally, from the pure numerical poLnt of VLew, the accuracy of this 

method generally Lncreases along with the grid ratio r, reaching a 

t 
maXLmum absolute error (when r=4) whLch COLnCLdes WLth the smallest 

ever error achLeved WLth the parallel algorLthm for the (S)AGE method. 

- Performance AnalySLS 

The program and system dependent performance analyses, agaLn, 

concerning the basLc and maximal experimental cases allowed by the 

system, in a SLmilar manner as for the parallel algorLthm for the (S)AGE 

method, are presented Ln Tables (IV.B.3.5-t2,t3,t6,t?), respectLvely. 

WLth respect to the complementary LnformatLon reguLred for the 

estl.IDatLon of the experLment dependent parameters appearLng in these 

Tables, obtained from the shared array ITI~ followLng the same procedure 

as for all previous GE parallel algorLthms and Ln a maxLmum system 

ut~l~zat~on, was as follows: 

tFor the maximum grid size indirectly allowed by the system. 



PROCESSORS (p) (t) It) SHARED DATA PARALLEL PATH •t Gs p Ac (. ') Tc ( . . I cl Ac Tc ~(p) itxi!J H 1-,J 1-,J p p ,(tJ (t) ,. Nt SD (secs) (secs) Ra(s) 0st(s) Ra( //) 0st(//J 

p~2N 480 28.8xlQ
3 

fl 11.088 3 
3 B.P. 0(p) 60 flops 0.023 1 1 1:60 flops 0.003% 28 .8xl0 fl 

[piNB.P ] 
-- ops : P ops O.Ollp% 

p p p 

p~NI .P. 240 3 5.174 13 ,44x103 ·-240X240 4 
[piNI.P.J 

0(p) 56 flops 0.022 -- 13.44xlo flops 1 1 1:56 flops 0.004% : flops o.o23p% t_ p p p p 

•• 

p~NI.P. O(p) 49 flops 0.019 
120 5.88xl0~ fl 2.264 

4 60 1:4 flops 0.049% 
5.88XlQj fl 

o.o53p% lV - ops ~· P ops 5 
[piNI.P.J 

p p p 

,JI_ LIMITS TO PERFORMANCE 
ld(t) w 

sd(r) 
st -· sd(r) sh(r) t (secs) 

• • • 9.240 
mp=30,596 mp=24,509 m=-- 0.005 p p 

Table IV.B.3.5-t2: A Program Dependent Performance Analysis of the 
Parallel Algor1thm for the (D).A.G.E. Method 
(for r=l). • 

ill mp=28 ,556 mp=22,875 mp 
4,312 

~l.S% 0.005 p 

lt· 1,886 ~ j_ mp=2 ,039 mp=1,633 mp p 1.413 

T(e) PARALLEL PATH T(e) PARALLEL ie) SHARED 
s I c rieJ 

8 CONTROL (segs) DATA 
G Cse~sl p t tb 

(secs) wde 
s i=l y1 ey t (e) o(e} [XPFCLN] 

(e) 
[XPFCLS] 

(e) 
[XPFCL] 11\,1 11\,1,2 11\,1,2,3 (!lsecs) (llsecs) ost( //) en(//) otl(//J 0tUsJ (secs) 

240X240 684.933 1.951 2.882 3.801 2710 ~10,800 ~4.1% ~ 686 0.16% 0.26% 684.330 0.09% 683.860 0.07% 29.268 . . Table IV.B.3.5-t3. A System Dependent Performance Analys1s of the Parallel Algor1thm for the (D).A.G.E. Method (for r-1). ~ 

"' 



N N 2' M M Tc(e) c s Rs R:s Ep F .feJ 
I.P. PROCS P.E. A.E. 

(secs) p p p s 
p p 

. 
9l "' .... 173.840 173.840 1 2.219 1.989 1 1 w "' 0 ()) 

(ll,l .... ()) 89.050 178.100 1.952 4.332 3.884 0.976 1.905 w ln 

240 2 .o w '"' 
9l,l,2 "' '"' 60.210 180.630 2.887 6.407 5.744 0.962 2.779 0 ln 

()) '"' 9l.l,2,3 "' "' 45.580 182.320 3.814 8.463 7.587 0.953 3.637 I I 
0 0 .... w 

9l "' "' 346.080 346.080 1 2.184 1.981 1 1 0 8 "' 
(ll,l 

w "' 176.790 353.580 1.958 4.275 3.878 0.979 1.916 ()) .... 
480 2.0 "' ()) 

9l,l,2 
()) ..._, 

118.830 356.490 2.912 6.360 5.770 0.971 2.827 '"' 
..._, 

"' w 

9l,l,2,3 "' "' 89.640 358.560 3.861 8.431 7.649 0.965 3.726 I I 
0 0 

"' .. 
. 

9l 
ln ln 687.170 687.170 1 2.180 1.985 1 1 '"' ()) 

0 ()) 

(ll,l 
..._, "' 350.930 701.860 1.958 4.269 3.888 0.979 1.917 .... '"' 0 ..._, 

960 
9l,l,2 

2 .o ..._, ()) 
235.410 706.230 2.919 6.364 5.796 0.973 2.840 .... .. .. .. 

9l,l,2,3 "' "' 177.970 711.880 3.861 8.418 7.666 0.965 3. 727 I I 
0 0 
"' .. 

9l 
. 

1374.860 374.860 1 2.173 1.990 1 1 ln ln 

"' "' '"' ..._, 
697.480 394.960 1.971 4.284 3.922 0.986 1.943 (ll,l ln ln .... 0 

1920 2.0 w .... 469.710 409.130 2.927 6.361 5.824 0.976 2.856 \IS ,1,2 ()) .... 
()) 0 .... "' 354.100 416.400 3.883 8.438 7.726 0.971 3. 769 (ll,l,2,3 "' "' I I 

2 2. 

TIME-STEPS: 60 

Table IV.B.3.5-t4: Exper~mental Results and Performance Measurements of the Parallel 
Algorithm for the (D}.A.G.E. Method (for 2'=2) on the 'NEPTUNE' 
Prototype System. 



N NPROCS M M Ta(e) c F .feJ I.P. r P.E A.E. s Rs R E 
(secs) p p -p sP p p s 

0 
,0. w 343.978 343.978 1 2.228 1.991 1 1 w "' 00 <0 

0,1 00 0 175.798 351.596 1.957 4.359 3.896 0.978 1.914 240 2.0 ,0. -.J 
00 -.J 

0,1 ,2 <0 "' 119.243 357 0 729 2.885 6.426 5.744 0.962 2. 774 "' ,0. 

0 ,0. 

0,1,2,3 t'l t'l 90.163 360.652 3.815 8.499 7.597 0.954 3.639 I I 
0 0 ,_. w 

0 0 

0 
,_. ,_. 

679 0 780 679 0 780 1 2.207 1.998 1 1 ,_. ,_. 
-.J -.J 

0,1 "' a\ 347.790 695.580 1.955 4.313 3.906 0.977 1.910 "' 480 2.0 00 w 
0,1,2 "' "' 234.200 702.600 2.903 6.405 5.800 0.968 2.808 0 "' 0 "' 0,1,2,3 t'l t'l 176.920 707.680 3.842 8.479 7.678 0.961 3.691 I I 

0 0 ,_. w 

0 
<0 <0 1353.520 1353.520 1 2.198 2.001 1 1 "' "' ,_. ,_. 

0,1 
,0. ,0. 691.470 1382.940 1.957 4.302 3.917 0.979 '1.916 "' "' 960 2.0 0 "' 0,1,2 
00 <0 464.180 1392.540 2.916 6.408 5.834 0.972 2.834 "' "' 0 0 

0,1,2,3 t'l t'l 350.020 1400.080 3.867 8.498 7.737 0.967 3.738 I I 
0 0 

"' 
.,. 

0 
0 2717.820 2717.820 1 2.183 1.998 1 1 <0 <0 

0 0 

0,1 
00 -.J 1382.310 2764.620 1.966 4.293 3.927 0.983 1.933 (X) -.J 

1920 2.0 "' -.J 

0,1 ,2 
w (X) 

927.250 2781.750 2.931 6.400 5.855 0.977 2.864 ,_. -.J ,_. ,0. 

0,1,2,3 
.,. 0 695.850 2783.400 3.906 8.528 7.802 0.976 3.814 t'l t'l 
I I 

0 I? 

TIME-STEPS: 120 

Table IV.B.3.5-t4(cont.d.): Exper~ental Results and Performance Measurements of the Parallel 
Algor1thm for the (D).A.G.E. Method (for r=2) on the 'NEPTUNE' 
Prototype System. 



N NPROCS r M M Ta(e) c s Rs R Ep F .fel 
I.P. P.E. A.E. 

(secs) p p s p s 
p p 

p "" w 174.108 174.108 1 4.40 3.93 1 1 "" w 
(X) "' P,1 "' "' 89.375 178.750 1.948 8.574 7.66 0.974 1.897 "" "" 240 4 .o w -.1 

p,1,2 -.1 0 60.315 180.945 2.887 12.70 11.35 0.962 2. 778 (X) w 

"' "" P,1,2,3 t'l t'l 45.648 182.592 3.814 16.78 15.00 0.954 3.637 I I 
0 0 .... w 

p 
. 344.220 344.220 1 4.35 3 .94( 1 1 "' "' w w 

P,1 
.... .... 176.350 352.700 1.952 8.50 7.70 0.976 1.905 "' "' 480 4 .o "' .... 
1.1' w 

p,1 ,2 "" .... 118.780 356.340 2.898 12.63 11.43( 0.966 2.799 
"' (X) 

P,l,2,3 "' (X) 
89.700 358.800 3.837 16.72 15 .14t 0.959 3.682 t'l t'l 

I I 
0 ~ "' 

p "' "' 686.290 686.290 1 4.33 3.94E 1 1 1.1' 1.1' 
-.1 "" p,l "' "" 352.480 704.960 1.947 8 .43~ 7.68 0.974 1.895 "' 1.1' 

960 4 .o w "' "' § 12 .58( fa. 968 p,1,2 "' 236.310 708.930 2.904 11.46( 2.811 .... 
P,l,2,3 

t'l t'l 178.710 714.840 3.840 16.64 15 .15< 0.960 3.687 I I 
0 0 

"' "" 
p 

. 
1378.870 1378.870 1 4 .30' 3.93 1 1 1.1' 1.1' .... 0 

P,l "' -.1 703.590 1407.180 1.960 8 .43< 7. 71E 0.980 1.920 "" (X) 

1920 4.0 .... w 

"' .... 
11.49S p ,1 ,2 "' 1.1' 472.130 1416.390 2.921 12.56 0.974 2.843 w -.1 

1.1' w 
354.480 16. 74C 0.972 P,l,2,3 t'l t'l 1417.920 3.890 15.31 3.783 

I I 
0 2 "' 

TIME-STEPS: 60 

Table IV.B.3.5-t5: ExperLmental Results and Performance Measurements of the Parallel 
AlgorLthm for the (D}.A.G.E. Method (for r=4) on the 'NEPTUNE' 
Prototype System. 



PROCESSORS (p) (t) (t) SHARED DATA PARALLEL PATH 1•1 I 
Ac (. ·; 

Tc( . . 
I cl Ac Tc Pp~; triiJ o~;J( s) o~;J( I IJ 

1 .. 

Gs PH Nt s 1-,J 
1-,J 

p (sel5s) R Ra(/ IJ p (secs) a(s) 

p~2N 120 7.2XlQJ 2. 772 7.2xlo3 
0.043p% ·1· 3 B.P. 0(p) 60 flops 0.023 -- flops -- 1 1 1:60 flops 0.003% fl-' flops 

[pjNB.P.J p p p p 

p~N p 3 3 ·-240 13 .44Xl0 flops 5.174 13 .44XlQ fl 0.023p% 240X60 4 I. • 0(p) 56 flops 0.022 -- 1 1 1:56 flops 0.004% : ops ,_ 
[pjNI.P.J p p p p 

5.88Xl03 3 • p~N 120 2.264 
1:4 0.049% 

5.88Xl0 
flops 0.053p% I.P. 0 (p) 49 flops 0.019 flops 4 15 flops : 5 

[pjNr.p.J p p p p 

Tab~e IV.B.3.5-t6: A Program Dependent Performance Analysis of the rJ LIMITS TO PERFORMANCE 
IaftJ Parallel AlgorLthm for the (D).A.G.E. Method Wst 

(for r=4). ... -· sd(r) s;l(r) sh(r) t (secs) 

2,310 • mp=30,596 fnp=24,509 mp 0.005 
p 

~ mp=28,556 fnp=22,875 
4,312 

"-'1.5% 0.005 

.L! 
mp p 

mp=2,039 fnp=l,633 mp 
1,886 

0.353 
p 

T{e) PARALLEL PATH T(e) 
PARALLEL T(e) SHARED s 

IafeJ 
s s s p I c tb 

(secs) CONTROL (secs) DATA (secs) t wdc Gs ay t ,< e1. oceJ 0~z{ I IJ 
,c ~~ [XPFCL] (I! ,1 (2!,1,2 (I!, 1,2 , L=l y L 

(f!Secs) (f!secs) 
0 st(IIJ en( I IJ [XPFCLNl [XPFCLS] 0tl{s) 

(secs) 

240X60 174.108 1.948 2.887 3.814 689 ~10,800 ~4 .1% ~686 0.17% 0.26% 173.880 0.13% 173.680 0.12% 7.441 

Tab~e IV.B.3.5-t7: A System Dependent Performance Analysis of the Parallel Algorithm for the (D).A.G.E. Method (for r=4). 

•• 

-n 
;s-



i) 

[Ch. IV/Sec. B 466) 

The smallest run-tine T {e) to be ut~l~zed ~n formula 
p 

(IV.B.3.1:25), when r=l, was 180.170 secs, wh~le, when r=4, 

was -45.638 secs; 

ii) the total number of wa~t cycles to be utilized in formula 

(IV.B.3.1:2?), when r~l, was -2710, while, when r~4, was -689, 

wh~ch ~mpl~ed average numbers of wa~t cycles per processor of 

-677 and -172, respect~vely; 

iii) the average experimantal t~m~ngs of all cooperat~ng processors 

for these cases were -180.176 secs and -45.644 secs, accordingly; 

and, 

iv) the number of parallel paths run by each processor, cons~der~ng 

the average of all cooperat~ng processors but P
0

, ~n correspondence 

w~th the grid rat~o values were 243 and 63, respectively. 

F~nally, the t~mes that the system was not used product~vely (W), 

aga~n est~mated through the formula (IV.B.3.1:22) by us~ng the average 

exper~ental ti~ngs in iiih accordingly, were -35.771 secs and -8.468 

secs, wh~le,sim~larly as before, good approximations to these total 

wasted t~s can be obta~ned from the sum of the respect~ve wasted t~es 

statically and dynam~cally, given ~n the performance analysis Tables. 

The same conclusive remarks made for the parallel algor~thm for 

the (S}AGE method and the sane real process~ng-to-access t ratio, for the 

fifth phase of the algor~thm, apply for th~s case as well. 

tTo the shared data resource, for each implementation cycle. 



[Ch. IV/See. B 467] 

IV.B.3.6: A '(MoDIFIED D::lUBLE) ALTERNATING GRoup EXPLICIT' - (MD)AGE 

METHOD: EXPERIMENI'AL RESULTS AND PERFORMANCE ANALYSIS ON 

THE 'NEPTUNE' PROTOTYPE SYSTEM 

This fl.nal scheme is based on the formatl.On of the (D)AGE scheme 

as it was outll.ned l.n Figure (IV.B.5-f5,iv), but J.t l.s a modl.fl.ed 

perl.Odl.c rotation of its three fust tJ.me-levels only. In specific, 

thl.s scheme is gl. ven by 

11 
(I+rG

2 
) U 

1 ,] -]+ 

11 
(I+rG

1 
) u 

2 ,] -]+ 
11 

(I+rG
1 

) U. 
3 ,] -]+ 

11 
(I-rG2 )U l + _b

3 ,] -]+ 

11 
(I-rG2 )U 

2 
+ _b

3 ,] -J+ 

(IV.B.5.6:1) 

the brick dl.agram for this scheme l.S given l.n Figure (IV.B. 5. 6-fl). 

MD 

I....-

I....-

1....-

AGE Mod• ( 
I 

I....-

I....-

L.. 

1ed Double 

---
-- I....---

L---

Alternat1n Grou Ex I p 1c1t)method 

Figure IV.B.3.6-f1: The Representatl.ve Dl.agram of thl.s Scheme. 

The six-phased implemented program of thl.s method l.S l.ncluded l.n 

Awendix C-IV under the name MB$5.MDAGEONI t. 

Once more, there l.S a close correspondence between this l.mplementation 

and that of the (D)AGE method, except that, l.n the second phase, the exact 

tit stands for Modified Double ~Zternating ~roup ~xplicit method for Qdd 
!'!._umber of !_ntervals. -



[Ch. IV/See. B 468] 

theoret~cal values are computed at all the boundary and ~nternal po~nts, 

at the max~mum time-level, using the exact solution formula (IV.B,J,l:2) 

and they are held in the non-shared real array W. In add~t~on, in the 

third phase, the computat~on of the exact values at all the po~nts on 

both boundaries starts from zero t~me-level up to the penult~ate one 

uswg aga~n the above formula. At the last parallel fifth phase, a 

s~~lar flag is appropr~ately set as before to control the alternating 

asymmetr~c sequence between the GEC and GEU schemes, synthes1Zing the 

present step process. All the other program structuring specif~cat~ons 

made for the previous parallel algor~thm can equally well apply for the 

present one. 

- Exper~mental Results 

This method can be aga~n, similar to the previous ones, proved to 

be uncond~twnally stable for all r>o, for the same reg~on of the open 

rectangle [O,l]X [O,+oo}. The grid s~zes exper~ented with and the 

correspond~ng results obtained, for the same as before values for r, are 

be~ng presented ~n Tables (IV.B.J.6-tl,t4,t5), accord~ngly. 

A general comparison of these results w~th those of the prev~ous 

uncondit~onally stable, for r>O, GE parallel algorithms, proves that 

the present algorithm behaves slightly worse ~n terms of the determining 

performance factors, ~.e. the t~e-complex~t~es ach~eved. Certa~nly, 

ag~n, there is not any compar~son w~th the standard algor~thm from every 

aspect, wh~le, in concern w~th the GEU and GEC methods, it ~s far better, 

~n terms of the t ime-complex~t~es, than the former and worse than the 

latter one. However, in a s1milar manner as before, the tremendous 

potential of the method, when exceed~ng the restr~ct~ve barrier of 1 for 



,------------------------------------------------- - -- -- -------------------------------------------

N NPROCS r M M Tc{e) c s Rs E F.feJ M M Tc(e) c s Rs E F .feJ 
I.P. P.E. A.E. (secs) p p p p 8 P.E A.E. (secs) p p p p 8 p p 

. IV ,_. 
~ 

,_. 
"' 177.393 177.393 1.101 1 1 U1 00 350.420 350.420 1 1.101 1 1 IV w __, 00 

"' "' 
,_. 

"' 1.952 ~.1 0 w 91.010 182.020 ~.949 2.147 0.975 1.90C 0 ... 179.490 358.980 2.149 p.976 1.906 240 1.0 IV 00 w 00 __, 00 
0.95S 

0 __, 
~.1,2 N "' 61.668 185.004 .877 3.168 2. 758 w 0 121.660 364.980 2 .sac 3.171 p.960 2.765 

"' "' w ,_. 
~,1,2,3 

IV "' 3.608 
t'l t'l 

t'l t'l 46.698 186.792 3.799 4.184 0.95C I I 91.920 367.680 3.81L 4.196 p.953 3.633 I I 0 0 0 0 ,_. w ,_. ... . . . . 
U1 U1 ,_. ,_. 

~ ... ... 352.030 352.030 1.088 1 1 0 0 694.880 694.880 1 .088 1'- 1 ,_. ,_. w w 

"' 00 N ,_. 
~.1 U1 0 180.160 360.320 .954 2.125 0.977 1.909 0 __, 355.630 711.260 1.95~ 2.125 J.977 1.909 ... "' w U1 

480 1.0 ... N ... "' ~.1,2 00 IV 121.530 364.590 .897 3.151 0.966 2.797 w ... 239.500 718.500 2.90 3.156 J.967 2.806 00 ,_. ,_. 0 
~,1,2,3 

t'l t'l t'l t'l 
3.84C 0 I 91.910 367.640 .830 4.166 0.958 3.668 I I 180.650 722.600 4.184 J.962 3.699 0 0 0 

IV ... ,_. w . . 
"' "' ,_. ,_. 

~ ... ... 703.020 703.020 ~ 1.081 1 1 IV IV 1385.520 385.520 1 -1..081 ~ 1 
"' 

__, U1 U1 
w "' IV 0 

~.1 U1 0 358.950 717.900 .959 2.117 0.979 1.918 "' U1 706.480 412.960 1.96 2.120 J.981 1.923 
"' N "' 0 

960 1.0 0 ... U1 U1 

~.1 ,2 
__, 00 241.500 724.500 .911 3.146 0 .97C 2.825 w ... 475.840 427.520 2.912 3.148 J.971 2.826 __, 

"' 
__, U1 

t'l t'l t'l t'l 
~,1,2,3 I I 181.740 726.960 3.868 4.180 0.967 3.741 0 0 359.050 436.200 3.85~ 4.172 0.965 3. 723 0 0 

IV ... ,_. w . . . 
~ "' "' 1408.700 1408.700 1.075 1 1 

,_. ,_. 2774.870 774.870 1 .077 1 "' "' IV IV 
IV ,_. ... ... 

~.1 0 "' 714.820 1429.640 .971 2.118 0.985 1.942 ,_. 0 1405.300 810.600 1.97o 2.126 J.987 1.949 
"' 

,_. 00 "' 1920 1.0 "' 
,_. 00 "' ~.1,2 

,_. U1 480.960 1442.880 .929 3.147 0.976 2.86C IV 00 946.530 839.590 2.932 3.157 J.977 2.865 "' U1 ,_. __, 

~,1 ,2 ,3 
00 __, U1 0 
t'l t'l 362.880 1451.520 .882 4.172 0.97C 3.767 t'l t'l 712.590 850.360 3.89~ 4.193 p.974 3.791 
0 0 I I 

0 0 
N ... ,_. w 

TIME-STEPS: 60 120 

Table IV.B.J.6-t1: Experimental Results and Performance Measurements of the Parallel Algor~thm for the (M.DhA.G.E.Method (for r=l) 
on the 'NEPTUNE' Prototype System. 

t;:, 
;::;-

-8 
~ 
(> 

"" 
:"' 

"' 



[Ch. IV/Sec. B 470] 

N NPROCS 1' M M. Ta (e) 
cp sp R Ep 

F £el 
I.P. P.E. A.E. 

(secs) sp p· s 
. 

(1j "'" w 694.593 694.593 1 1.103 1 1 ro "' ro "' (1j ,1 "' "' 355.393 710.786 1.954 2.156 0.97 1.91C IV IV 

"' ro 240 
(Zj,1,2 1.0 ro ..... 240.938 722.814 2.883 3.180 0.96 2. 77( ...., ...., 

""" 0 

(Zj,1,2,3 "' "' 182.535 730.140 3.80 4.198 0.95 3.62C I I 
0 0 ..... w 

IV IV 

(1j 
0 0 1378.700 1378.700 1 1.088 1 1 "' "' w IV 

(Zj,1 
w ...., 

703.450 1406.900 1.96( 2.133 0.98 1.92 "' ..... 
ro "' 480 1.0 """ 0 474.920 1424.760 2 .90 3.159 0.96 2.80S (Zj,1,2 0 ro 

"' "' I I 359.150 1436.600 3 .83' 4.177 0.96( 3.684 (Zj,1,2,3 0 0 ..... w 

IV IV 
~746 .810 (1j ..... ..... 2746.810 1 .083 1 1 ro ro 

"' "' 1.95S ?.121 o.97S (Zj,l "' ..... 402.350 2804.700 1.918 
"' 0 

960 1.0 ...., 
"' 2 .91< ~ .154 (1j ,1,2 "' IV 943.120 2829.360 0.97 2.827 w ro 

(Zj,l,2,3 "' "' 710.280 3. 86" 0.96" 0 I 2841.120 ~.188 3.739 0 ..... w 

IV IV 
(1j w w 1>518.160 5518.160 1 .075 1 1 

IV IV 
IV 0 

0,1 ro ... 1'798.840 5597.680 1.972 .120 0.986 1.944 
IV 0 

1920 1.0 0 ro 
2 .931 0 ,1,2 "' CO 1'-882 .650 5647.950 fl.l52 0.977 2.864 ...., IV 

"' "' 3 .88' 0,1,2,3 I I 418.900 5675 .600 f1.182 0.972 3.781 0 0 ..... w 

TIME-STEPS: 240 

Table IV.B.3.6-tl(cont.d.): Exper~mental Results and Performance Measure-
ments of the Parallel Algor~thm for the (M.D).A.G.E. 
Method (for r=l) on the 'NEPTUNE' Prototype 
System. 



[Ch. IV /Sec.. B 471] 

the grJ.d ratJ.O, establJ.shes J.t far superJ.Or in comparJ.son WJ.th the basJ.c 

methods above. In fact, the best Speed-ups and EffJ.cJ.encJ.es achieved, 

for the partJ.cular case that r=l, were for the grid of size (1920xJ20), 

for every combJ.nation of cooperatJ.ng processors in the system. 

In accordance, the RS and RS , parameters of the performance model 
p p 

exhJ.bJ.t Speed-ups of >O(r.p) and O(r.p), respectJ.vely; J.n specifJ.c, when 

r=4, we achJ.eved a maxJ.mum, Relative to the standard algorJ.thm, 

acceleration of 16.560 tJ.mes, while the Reference internal acceleration 

exhJ.bJ.ted an even greater maximum, than those of the (S)AGE and (D)AGE 

methods, of 15.399 times, both figures achJ.eved in a total system 

utJ.lJ.zatJ.on. 

FJ.nally, from the pure numerJ.cal poJ.nt of vJ.ew, the accuracy of thJ.s 

method generally J.ncreases along wJ.th the gr1.d ratJ.o r, the maxJ.mum 

absolute error, when r=4, achJ.eVJ.ng J.ts smallest value when the grJ.d sJ.ze 

becomes maXJ.mum. 

- Performance Analysis 

In a corresponding manner as for the prevJ.ous GE algorJ.thms, Tables 

(IV.B.3.6-t2,t3,t6,t?) respectJ.vely present the program and system 

dependent performance analyses results for the extreme cases, 1n terms of the 

gr~d rat1o, again. 

The complementary J.nformation, essentJ.al for the estJ.matJ.On of the 

experJ.ment dependent parameters in these Tables, sJ.mJ.larly obtaJ.ned from 

the shared array ITIME and followJ.ng once more the same procedure as 

before, 1n a max1mum system ut1l1zat1on, was as follows: 

i) The smallest run-time Tp( e) to be utJ.lJ.zed J.n formula (IV.B. 3.1 :25), 

when r=l, was 182.525 secs, whJ.le, when r=4, was 46.500 secs; 



, 
PROCESSORS (p) 

T (t) Ta(t) 
SHARED DATA PARALLEL PATH 

I~ Aa (. ") Aa rr<P Gs PH 
Nt s 1-,J a(i,j Ial p p 0(//) Ra(s) o~~;s) Ra(//J o~;;//J p secs) lse<"'sl 

p.;2N 
480 28.8x1Q3 

11.088 l•28.8Xl0
3 ,, . 

3 B.P. 0(p) 60 flops 0.023 flops 1 1 1:60 flops 0.003% flops O.Ollp% 
[pJNB.P.J p p p . p 

·-p.;NI.P • 240 13 .44Xl03 
5.174 l 13 .44XlQ

3 
fl 240X24( 4 

[pJ NI.P.l 
0 (p) 56 flops 0.022 flo.,. 1 1 1:56 flops 0.004% : P ops 0.023p% 

~-p p p 

•• 

5 
p~NI.P. 

O(p) 49 flops 0.019 gQ ~.88xl03 
flops 

2.264 
3 80 1:4 flops 0.049% 1

.5.88Xl0
3 

flops o.o53p% • [pJNI.P.J p p p • p 

[J. LIMITS TO PERFORMANCE 
t- lit) wst 

~· 5
d(r) sd(r) sh(r} t (secs)_ 

• • 9,240 
.lnp =30 ,596 mp=24,509 Pp 0.005 p 

Table IV.B.3.6-t2: A Program Dependent Performance AnalysLs of the 
Parallel Algorithm for the (M.D).A.G.E. Method 
(for r=l). 

• 

~In. =28 ,556 mp=22,875 top 
4,312 

~1.5% 0.005 
~ p 

p 

) _j !np =2 ,039 mp=l,633 tn, = 1' 886 1.413 p p 

...... 
T(e) PARALLEL PATH T(e) PARALLEL T(e) SHARED ~ s I c lie) 

s CONTROL s DATA s p (secs) (secs) ..... 
Gs (secs) t tb wda ~ i=l yi ay t 0~~~/1) o(e; ,ce; 

o~~~s) [XPFCLN] 0tU/IJ 
[XPFCLS] 

~ [XPFCL] (I! ,1 (I! ,1 ,2 (2!,1,2,3 (>tsecs) (>tsecs 
an( I/) (secs) 

"' 
24ox240 694.593 1.954 2.883 3.805 2673 ~10,800 ~4% ~686 0.16% 0.25% 693.986 0.09% 693.503 0.07% 28.86 o:J . 

Table IV.B.3.6-t3: A System Dependent Performance AnalysLs of the Parallel AlgorLthm for the (M.D).A.G.E. Method (for r=l). 



N NPROCS 1' M, M Tc(e} c s R R E F .feJ 
I.P. P.E. A.E. p p s sp p p s 

_(_secs l p . . 
i1l "' .... 177.230 177.230 1 2.176 1.97 1 1 w ..., 

<!J l11 

Ill ,1 "' CD 90.780 181.560 1.95 4.249 3 .86C 0.97E 1.906 w w 
240 2.0 

..., w 
!1l,l,2 <!J ..., 

61.510 184.530 2.88 6.271 5 .69' 0.96C 2.767 0 0 ... "' !1l,l,2,3 t'l t'l 46.490 185.960 3.81 8.297 7 .53( 0.95 3.633 I I 
0 0 .... w 

i1l "' "' 349.950 349.950 1 2.160 1.98( 1 1 0 0 
"' 0 

Ill ,1 w "' 178.970 357.940 1.95 4.223 3.88, 0.97E 1.912 CD .... 
480 2.0 "' CD 

!1l,l,2 CD ..., 
120.650 361.950 2.90 6.264 5. 75~ 0.961 2.804 <!J ..., 

"' w 
i1l,l,2,3 t'l t'l 91.190 364.760 3.83 8.288 7 .62C o.95S 3.682 I I 

0 0 
"' ... . 

i1l "' "' 695.770 695.770 1 ~ .153 1.991 1 1 ..., ..., 
"' w 

Ill ,1 "' l11 
355.140 710.280 1.95! 4.218 3.901 0.98( 1.919 <!J w ... "' 960 

!1l,l,2 
2.0 ..., ... 

239.040 717.120 2.91 j6.267 5.796 0.97( 2.824 CD CD 
<!J "' !1l,l,2,3 t'l t'l 180.130 720.520 3.86 ~.317 7.692 0.96E 3.730 I 6 0 
"' ... . 

i1l 
l11 l11 

1396.850 1396.850 1 2.139 1.987 1 1 w w 
w "' 

Ill' 1 
w "' 709.520 1419.040 1. 96' 4.211 3.911 0.984 1.938 w "' .... <!J 

1920 
!1l,l,2 

2.0 .... ... 
477.180 2.92' 6.261 5.815 0.976 2.856 CD ..., 1431.540 

"' CD 

i1l,l,2,3 
t'l t'l 

360.090 1440.360 3 .87S 8.298 7.706 0.970 3.762 6 I 
0 

"' ... 
TIME-STEPS: 60 

Table IV.B.J.6-t4: Exper~mental Results and Performance Measurementsof the Parallel 
Algorithm for the (M. D) .A. G. E. Method (for r=2) on the 'NEPTUNE' 
Prototype System. 



--------

N NPROCS J:> M M Tc(e} c s Rs Rs E F .feJ 
I.P. P.E. A.E. p p p p 8 

(secs) p p 
. 

\<) "" w 348 .218 348.218 1 2.201 1.995 1 1 t.n "" ();) w 
\<1,1 8 "" 178 .4 75 356.950 1.951 4.293 3.892 p.976 1.903 "" t.n t-' 240 

!21,1,2 
2.0 w w 

120.765 362.295 2.883 6.345 5.752 p.961 t2. 771 w "' t-' w 
\<1,1,2,3 t<J t<J 

91.488 365.952 3.806 8.376 7.592 p.952 3.622 I I 
0 0 
t-' w . 

!1l 
t-' t-' 

"' "' 691.640 691.640 1 2.169 1.993 P-"" "" 
!21,1 "' "' p.982 ();) t-' 352.240 704.480 1.964 4.259 3.914 1.928 480 2.0 t-' "' 

!21,1,2 
t.n 0 

~ .805 p.971 b.827 "' ();) 2 37 .510 712 .530 2.912 6.316 ();) 
~ 

!21,1,2,3 
t<J 

179.270 717.080 17.691 p.965 ~.721 I I 3.858 8.368 0 0 .... w 

. 
!1l 

t-' t-' 
~ .171 ~.004 t-' t-' 1370.370 1370.370 1 

0 0 
w "' j4.233 !21,1 t.n 0 702.800 1405.600 .950 .908 p.975 r-.901 
"' 

__, 
960 2.0 "' 0 

h.9o9 ~.314 p.970 !21,1,2 __, .... 471.130 1413.390 .830 .820 w t-' 
t<J t<J 

~.362 !21,1,2,3 6 I 355.740 1422.960 3.852 .721 .963 fj.710 0 
t-' w 

!1l w w 753.210 2753.210 L ~ .155 .004 
"' w 

"' ();) 

r.247 !21,1 "' 
__, 1397.330 2794.660 .970 .949 p.985 .941 0 __, 

1920 2.0 "' w 
\<1,1,2 "' t-' 939.420 2818.260 ~ .931 ".317 5.874 p.977 .863 

"' t.n 
w "' ~-888 ~.379 !21,1,2,3 t<J t<J 708.180 2832.720 .792 p.972 .779 I 6 0 

"' "" 
TIME-STEPS: 120 

Table IV.B.3.6-t4(cont.d.): Exper1mental Results and Performance Measurements of the 
Parallel Algorithm for the (M.D).A.G.E. Method (for r=2) 
the 'NEPTUNE' Prototype System. 

on 

-. 
n 
;s-

..... 
<:: ...... 
V> 

"' n 

0;:1 

.... ..... .... ._. 



N NPROCS M M Tc(e) c s R R: E F .feJ I.P. r P.E. A.E. 
(secs) 

p p sl?_ ~ p p 8 

. 
!ll "' w 176.988 176.988 1 4.329 3.925 1 1 "' "' .... "' !ll,l 

ro w 
90.363 180.726 1.959 8.480 7.687 0.979 1.918 "' 0 240 4.0 0 "' 

!ll,l,2 
-.J "' 61.405 184.215 2.882 2.479 1.312 0.961 2.769 w ro 
-.J "' !ll,l,2,3 
t>l t>l 46.510 186.040 3.805 6.475 4.934 0.951 3.620 I I 
0 0 .... w 

!ll "' "' 350.370 350.370 1 4.282 3.935 1 1 U> "' 0 "' 
!ll,l "' "' 179.020 358.040 1.957 7. 701 0.979 1.915 "' "' 8.380 

U> 0 
480 !ll,l,2 

4.0 "' "' 120.500 361.500 2.908 1.441 0.969 2.818 "' "' 2.449 
w ro 

!ll,l,2,3 
t>l t>l 

91.010 364.040 3.850 6.483 5.149 0.962 3.705 I I 
0 0 

"' "' . 
!ll 

-.J -.J 
U> "' 697.800 697.800 1 4.263 3.936 1 1 .... -.J 

!ll ,1 
0 "' 356.080 712.160 1.960 8.354 7.714 0.980 1.920 U> "' "' "' 960 4.0 .... "' 716.520 !ll,l,2 U> "' 2 38.840 2.922 2.454 1.501 0.974 2.845 
0 U> 
t>l t>l 

180.240 !ll,l,2,3 6 I 
0 

720.960 3.872 6.504 5.240 0.968 3.747 

"' "' . 
398.520 1398.520 !ll U> U> 

U> "' 
1 4.243 3.946 1 1 

"' "' 710.590 1421.180 !ll ,1 w U> 
0 U> 

1.968 8.351 7.766 0.984 1.937 
1920 4.0 w "' !ll,l,2 (J) (J) 478.310 1434.930 2.924 2.406 1.537 0.975 2.850 

"' "' U> U> 
!ll,l,2,3 t>l t>l 358.350 1433.400 3.903 6.560 5.399 0.976 3.808 I 

~ 0 

"' 
TIME-STEPS: 60 

Tab~e IV.B.3.6-t5: Experimental Results and Performance Measurements of the Parallel 
Algorithm for the (M.D).A.G.E. Method (for r=4) on the 'NEPTUNE' 
Prototype System. 



PROCESSORS (p) StJ Tc(t) SHARED DATA PARALLEL PATH 

Gs PH k(. ") T (. . I cl k ~(p) fa//) 
oJffsJ Ra(//) o£it!/J Nt s 1-,J 1-,J p p Ra(s) p 

I (secs) _l_se_c_s1 

p:S2NB.P. 120 3 2. 772 7.2xlo3 
3 

[piNB.P.J 
0 (p) 60 flops 0.023 - 7. 2x1o flops -- 1 1 1:60 flops 0.003% 1: flops o.o43p% p p p p 

3 
5.174 

3 ·-p<N 
0(p) 56 flops 0.022 

240 13 .44XlO flops 1 1 1:56 flops 0.004% l 13 .44XlQ fl 0.023p% ' I.P. --- : ops !t_ 24ox6o 4 
[piNT_P I 

p p p p 

•• 

p~NI.P. 
0 (p) 49 flops 0.019 

120 5 .88Xl0
3 

flops 
2.264 

3 20 1:4 flops 0.049% 1 5 .88xlo
3 
fl o.o53p% !) 5 

[piNI.P.J 
- : P ops p p p 

[J. LIMITS TO PERFORMANCE 
ld(t) wst .. t-. sd(rJ ~l_ ~f_rl_ t 

li~"csl 
2,310 

• mp =30,596 l"p =24, 509 mp p 0.005 

Table IV.B.3.6-t6: A Program Dependent Performance Analysis of the 
Parallel Algorithm for the (M.D).A.G.E. Method 
(for r=4). 

• 

~ mp=28,556 i"p=22,875 mp 
4,312 

-1.5% 0.005 

.L! 
p 

mp=2,039 l"p =1 ,633 mp 
1,886 

0.353 p 

(e) (e) PARALLEL (e) SHARED 
T sp PARALLEL PATH T T 

s p 
JieJ ~ CONTROL _l_s~c_s_)_ DATA 

woo Gs (secs) I c tcy t tb , , e;_ ,'e' l.=l y i [XPFCLNl 0~~~ //) [XPFCLSl 0~~~$) [XPFCLl 12),1 12),1,2 ~,1,2,3 (Jlsecs) (Jlsecs) 
0st(//J 0an(//J (secs) 

240x6o 176.988 1.959 2.882 3.805 718 ~1o,8oo ~4.2% ~686 0.16% 0.27% 176.496 0.28% 176.200 0.17% 7.754 

Table IV.B.3.6-t?: A System Dependent Performance AnalysJ.s of the Parallel Algorithm for the (M.D).A.G.E. Method (for r=4). 



[Ch. IV/Sec. B 477] 

ii) the total number of wa~t cycles aga~n for formula (IV.B.3.1:2?), 

when r=l, was • 267 3, wh~le, when r=4, was • 718, wh~ch ~mplied 

average numbers of wa~t cycles per processor of ·668 and ·180, 

respect~vely; 

iii) the average exper~mental t~mings of all cooperat~ng processors 

for these cases were ·182.531 secs and 46.505 secs, accord~ngly; 

and, 

iv) the number of parallel paths run by each processor, consider~ng 

the average of all cooperat~ng processors but P
0

, ~n corres

pondence w~th the gr~d rat~o values were 243 and 63, respect~vely. 

To conclude, the t~es that the system was not used product~vely {W), 

est~mated through formula (IV.B.3.1:22) by us~ng the average exper~mental 

t~m~ngs ~n iii), accord~ngly, were ·35.531 secs and 9.032 secs, figures 

wh~ch can be approXl.mated by the sum of the wasted t~es stat~cally and 

dynam~cally, appearing in the appropr~ate Tables prev~ously g~ven. The real 

process~ng-to-access t rat~o, for the fifth phase of the algor~thm, has 

reta~ned the same value as for the prev~ous parallel algor~thms presented 

here1.n. 

IV. B. 3. ? : l NDICATIVE EXPERIMENTAL RESULTS AND PERFORMANCE MEASUREMENTS 

OF THE GEU METHOD ON SIMD AND PIPELINED VECTOR COMPUTERS 

Our study of the potential and su~tab~l~ty of the GE methods for 

parallel computers w~ll be completed by briefly report~ng some results 

obta~ned from the ~mplementation of the GEU method :j: , aga~n for Burgers' 

equat~on (IV.B.2:2) w~th (IV.B.3.1:2) as the exact solut~on formula, on 

t 
To the shared data resource, for each implementation cycle. 

+see Evans, et al [EVAN83a]. 



[Ch. IV!See. B 478] 

two dLfferent types of computers: The ICL DAP and the CRAY-18, the 

partLcular characterLStLcS of whLch have been d1scussed Ln the earlLer 

surveyLng Chapters. 

WLth respect to the DAP system, the dLfferent modes of operatLon 

avaLlable (L.e. vector and matrix modes) deter~ne the subd1v1sion of 

the consLdered Lnterval 1n the x dLrectLon for a partLcular problem; 

however, note that the vector mode is of order of 5 to 6 tLmes faster 

than the matrLx mode for correspond1ng vector and matr1x operations. 

In fact for any~ scheme, Lf the Lnterval Ln the x dLrectLon is 

dLvided Lnto any number up to 64 or 4096 po1nts, then the most effective 

operat~on mode for each ~nstance would be the vector and matr1x mode, 

respectLvely. However, since the grLd poLnts are grouped in pairs of 

two and the evaluatLon of each LS dLfferent to that of the other, a 

fact opposLng DAP's phLlosophy for Ldent1cal operatLons, Ln the vector 

mode, for all 64 processors to be effect1vely utLlLzed, the Lnterval 

[0,1] Ln the x direction 1s dLVLded Lnto 128 sub-Lntervals; then, Ln 

accordance wLth the formula utLlLZed for each grLd poLnt, two sets of 

64 poLnts are formed which can be evaluated in two separate sweeps. On 

the other hand, in the matrix mode, thLs divisLon is Lncreased to 8192 

sub-Lntervals and two SLmLlar separate sets of 4096 grLd poLnts. 

WLth respect to the CRAY-18 vector computer, Lt employs multLple 

pLpelLned functional unLts Ln lLeu of processLng elements. ThLs computer 

usually consLsts of 8 or 16 separate memory banks and Ln theory up to 8 

or 16 elements can be accessed SLmultaneously. The algorLthms to be 

Lmplemented on thLS system should, as much as possLble, be expressed Ln 

a set of vector operatLons to be executed very fast. However, sLnce most 

of the real tLme procedures cannot be fully vectorLzed, the performance 



[Ch. IV/Sec. B 479) 

of such systems heav~ly depends upon the balance between the speed of 

the system for vector and sequent~al operat1ons; therefore, th1s impl1es 

that vector machines should be prov~ded w~th a reasonably fast 

sequential functional unit compat~ble w~th the speed of the vector un~ts. 

In add~t~on, and although ~t ~s tempting to th~nk that the~r performance 

t 
~mproves as the vector length of the vector operat~ons ~ncreases , ~n 

real terms, increased parallelism {i.e. vector length) can only be 

ach~eved by ~ncurring certa~n am:mnts of overhead costs, wh~le to 

m~n~~ze memory access confl~cts d~fferent vector elements should be 

stored in separate memory banks. A maJOr advantage on th~s system 

compared w~th the DAP ~s that there are no constra~nts upon the sub-

div~s~on of the cons~dered ~nterval on the x ax~s. 

Note tha~ desp~te the very small values of k, due to the very f~ne 

subd~v~sion of the interval [0,1] -up to a max~mum of 8192 points, the 

results at each t~-step were so accurate that there was no need for 

any ~teratwn of the non-l~near problem. 

The follow~ng Table (IV. B. 3. 7-tl) ~llustrates the results of the 

exper=ents on both systems above, wh~le the number of t~me-sweeps was 

3000 for the parallel algor~thm for the GEU method and 6000 for the 

standard algor~thm. The accuracy obta~ned in both schemes was of order 

O.lE-08. 

The number of gr~d po~nts was taken to be 4096, wh~le the grid rat~o 

values were chosen to be 1 and 1/2, respect~vely. The Speed-up shown 

for the DAP system was, consequently, obta~ned when approx~mately half 

of ~ts process~ng power was effect~vely ut~hzed, s~nce to cons~der 8192 

tSince the starting up time associated with the functional unit will 
have less effect on the total time. 



[Ch. IV/See. B 480] 

gr~d po~nts to ach~eve ~ts full process~ng power can be proved 

unreal1st1c in pract1ce. However, 1f the latter case occurs then the 

Speed-up can increase to about 15 when compared w~th the ICL 2980 

system. 

DAP CRAY-lS 

T (e) st T (e) s* a (secs) p a (secs) p 

11.8 18.6 4.013 6.56 

44.2 9.8 11.5 3.48 

t 
Speed-up aompared to the ICL 2980 (The DAP host) 

Standard Expliait 
Method 

GEU Method 

* - Speed-up aompared to the CRAY-lS without veatorization 

Table IV.B.3.?-tl: Exper~mental Results on the 'DAP' and 'CRAY-1S' 
Systems. 

Hence, the ~rregularity and complex~ty between the computat~on of 

the two different formulae ~nvolved for each pa~r of gr~d po~nts on DAP 

prove to be very uneconom1cal, s1nce they reduce the process1ng power 

ava~lable. 

To conclude, aga~n s~~lar remarks as before, for the uncond~t~onal 

stable for r>O GE methods, can be made when choosing greater values for 

r. In spec~f~c, when r=4, only one quarter of the number of t~me-steps 

will be requued to reach the same time-advance length, than when r=l, 

and consequently the timings w~ll be reduced by a factor of 4, wh~le 

the f~nal accuracy more or less rema~ns the same. 



[Cho IV/Seeo B 481] 

IV.B.4: RELATIVE PERFORMANCE COMPARISONS ANo CONCLUSIVE REMARKS 

ON THE GE METHODS 

We shall conclude th~s Chapter by present~ng a d~agrammat1cal 

descript1on of the parallel behaviour of all the GE schemes exper1mented 

w~th here1n, ~n compar~son w1th the Standard Explicit method. These 

d1agrams apparently demonstrate the power and the merits of these new 

h 0 11 ° t d h 0 h se emes, ~ ustrat1.ng our comparat1.ve remarks ma e w en exanan1.ng t em 

earl1er 1n tms Chapter. Note that, all the occurr1ng similar1t1es 

amongst the program dependent performance analysis Tables are due to the 

fact that th1s analys1s was only concerned with the flops of the algor1thms, 

ignor1ng all 1nteger operations, shared and local transfers, etc., as 

well as the round1ng errors 1ntroduced 1n the ar1thmet1c. The differences 

between the algor1thms become apparent exam1ning all the experimentally 

estimated parameters. 

In part1cular for the d1agrams, Figures (IV.B.4-fl,f2) 

correspond1ngly exh1b1t the experimental T1me-complex1t1es obta1ned on 

the NEPTUNE prototype system and the respect1ve Speed-ups ach1eved. In 

Figures (IV.B.4-f3,f4) the Relat1ve (or normal1zed) and Reference 1nternal 

Speed-ups are dep~cted, wh~le the Eff1c1ency and the real Costs of all 

schemes are g~ven 1n the last two Figures (IV.B.4-f5,f6), respect1vely. 

A compar1son of the Algebra1c-complex1ty of the GE schemes w1th 

the Standard Explicit and Crank-Nicolson methods ~s now necessary, wh1ch 

will prove that the GE method w1ll be able to preserve the s1mpl1city of 

the Expl1c1t method. 

In the follow1ng Table (IV.B.4-t1) the number of ar1thmet1c 

operat1ons 1nvolved to evaluate the solution at a po1nt for all schemes 

+ 
'For those grid sizes for which the perfonnanoe analyses were carried out. 



/ 

800 

700 

600 

500 

~ 

] 400 
a. 
E 
0 

0 
I 

CD 

E 
J= 

300 

200 

tDO 

[Ch . I V /Se.c. . B 482) 

Legend 
~ STEXW 

0 GEU - --
XX G£C ------
181 ~AGE(~ . 

• (~}~~~(r::2l _ 
EB (S)AGE[~•L 

0 (D)AGE[r=1] 

m (I?~~~(~J. .. 
181 {D)~g~~~. 

~ {WD)AGE[r=~ 

0 (WD)A~E[r=2] 

0 ~D)AGE[::4] 

\ 

' ~, 
~ .........___ __ 
~ ----.. -------s ---- "'8 

0~----------~----------~------------r-----------, 

0 1 2 3 

Number of Processors 

Figure IV. B. 4-[1 : The Time- Complexit y of the Parallel Algorithms for the GE 
Schemes and the Standard Explicit ~thod . 



[Ch . IV /See . B 483 ] 

3 

D. 
::l 
I 

-a 2 Q) 
CD Legend D. 

(/) 
!:::. STEXt.t 

0 GEU -----
XX GEC ------
181 ~AGE(~ 

• (~}~~_qr.::_2l_ 
ffi (S}AGE(~4L 

1 
0 (D)AGE[r=1] 

m (l?)~~~l~L 
18! {DJ~~~(c~-
~ (t.tD}AGE[r=ll 

0 (t.tD}A~E[r=2] 

0 ~D)AGEfr=4] 

04------~------~------r--------. 

0 1 2 3 

Number of Processors 

Figure IV. B. 4- f 2: The Speed-ups achieve d by the Paralle l Algorithms for the 
GE Schemes a nd the Standard Explic i t Method . 



[Ch . IV/See. B 484] 

18 

16 
J'~~ 

/!/ 
Legend / · 

// l:l GEU ,/ · 

14 <> GEC /y - ---
XX (S)AGEjr:_::lL f. 
181 ~AGE(~] _ 

~" a. 
~ (~)~'!~~~--::J 

I 12 I. 
~ EB (D)AGE(r~1l_ ,f CD 

0 (D)AGE(~] _ CD / · a. ;f (/) EB CP.>~~~(r:=.~l. ...-.. 
{~~)A_G~{t:=Jl 

I · 
~ 10 !81 ./ ~ 

~ ( .. D)AGE(~ ·- h. 
0 

I E 0 ( .. D)A(!E(r=4] 
~ 

/ 0 z 8 
~ ,. 

~ / // 
CD 

/ > I += 
0 6 
CD 

I / / 0::: 
~ 

2 

0~-----~------~------r------. 

0 1 2 3 

Number of Processors 

Figure IV. B. 1- f3 : The Relative (or Nonmalized) Speed- ups achieved by the 
Parallel Algorithms for the GE Schemes . 



[Ch . IV/See. B 485] 

16 

12 

Legend 
6 

Q. 
{S)AGE(r~] 

:l 0 (S)AGE(r=~ I 10 
'"0 XX (D)AG~(~_l_ CD 

CD 
~ 181 @AGE(r=-i]_ 

(/) 

c ~ ~~~)~~~~~1 
E 8 EB (t.4D)AGE_[r~ CD -£ 
CD 
(.) 

c 
CD 
L.. 

.! 6 
CD 

0::: 

2 

0~----------~------------~-----------r-----------. 

0 1 2 3 
Number of Processors 

Figure IV. B. 4-f4: The Referenae Interna~ Speed-ups achieved by the Parallel 
Algorithms for the Unconditionally Stable (for all r>O) GE 
Scherres . 



[Ch . I V/S~c . B 486] 

1 

0.99 

0.98 

Legend 
0.97 6 STEXt.t 

0 GEU ----
XX GEC ------

0.96 181 ~AGE[~ 
>- • (~2~!'-~(.r:::?J __ 
(.) 
c 
Q) ·o ·-..... w 

EB (S}AGE[r=:_.4L 
0 .95 0 (D)AGE(r=1] 

EB {1?)~~~1~1. 

0.9<4 
181 {DJ~~~I[:~-
~ (t.tD}AGE(r=Jj_ 

D {t.tD)A~E(~] 

0.93 0 ~D)AGEfr=-4] 

0.92 

0.91 

0.904-----------~------------~-----------r-----------. 

0 1 2 3 

Number of Processors 

Figure IV. B. 4- f5 : The Efficiency achieved by the Parallel Al gorithms for 
the GE Schemes and the Standard Explicit Method . 



900 

800 

700 

600 

,._ 500 

"' 0 
u 
c 
Cl) 

o::: •oo 

300 

200 

tOO 

[Ch . IV /See . B 487] 

~~-- -~ 
~-- ---v 

--- - !!a-~ - ---:::::::1== - ----_. ----
1= -.B--- - - - B __ .. ____ _ 
~------- Legend 

/::). STEXW 

0 GEU --·· 

XX ~----
181 {!)AI!!(r=j_ 

~ {~l~~~I~-
e (S)AGE[r•4) 

0 (D)AGE[r=1) 

EB (OJ.~~~k.~J.. 
® {DJ~~Elr_:::~l 
~ (WD)AGE[r:1] 

0 (WD)AG~~ 
Q ~D)AG!(r•4] 

••=------------"-GI-IIi!·----- - 11 =-=---=--=-41 

0~-----~------~-----~---------~ 
0 1 2 3 

Number of Processors 

Figure IV . B. 4- f6 : The Real Cost of the Parallel Algorithms for the GE 
Schemes and the Standard Explicit Method . 



[Ch. IV/Sec. B 488] 

~n this class of mathods, ~n compar~son w~th the Standard Expl~c~t and 

Crank-N1colson methods, is given. For the latter CN method the f~gure 

given ~s the average from the number for solv~ng the 1mpl~c1t system. 

Th1s Table shows that very much better stab1l1ty character1st1cs 

are ach~eved over the Expl1c~t method at the cost of some add1t1onal 

computational expense, ~.e. approx~mately double, but th1s 1s st1ll 30% 

less than that of the CN method. As far as the storage requirement ~s 

concerned, all the above methods are s~milar. Even =re mportant, the 

explic~tness of the new formulae has been retained and so are ~deally 

su~table for parallel implementat~on. 

METHOD 
-OPERATION 

ADDITION MULTIPLICATION DIVISION 

GE (Ord~nary po~nts) 3 4 1 

GE (Ungrouped po~nts) 2 2 2 

CN (Average per pmnt) 
(Sn-1) 

~s 
(Sn-1) 

~s 
(2n-l) 

~2 
n n n 

Explicit 2 2 0 

Table (IV.B. 4-tl): The Algebraw-COmplex~ty of the GE Schemes ~n 
Compar~on with the Standard Expl~c1t and Crank
N~colson Methods. 

F1nally, the concepts of the GE schemes can be, s1m1larly, extended 

to the case of a two- and three-space d1menswnal problem (see Abdullah 

[ABDU83]). For the latter case we have groups of 8 grid points taken to 

form a cube, 1nstead of the 4 points 1n a plane as for the two-d~mens1onal 

problem. It ~s expected that the parallel behav~our of these schemes 

w1ll 1mprove as the number of d1mens1ons 1ncreases. 



N 0 T E S - N 0 T E S - N 0 T E S 



N 0 T E S - N 0 T E S - N 0 T E S 



N 0 T E S - N 0 T E S - N 0 T E S 



N 0 T E S - N 0 T E S - N 0 T E S 



I 
~ 


