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A STUDY OF ALGORITHMS
FOR
PARALLEL COMPUTERS AND VLSI
SYSTOLIC PROCESSOR ARRAYS

TITLE:

N3

ABSTRACT

In this Thesis the design and analysis of parallel algorithms is
investigated under the framework of, either, being suitable for execution
on asynchronous Multiprocessor testbeds (MIMD organizations), or, due
to the recent remarkable advance of 'Very Large Scale Integrated' - VLSI
circuitry, of being suitable for direct hardware implementation.

In the first three introductory Chapters a brief and taxonomically
disciplined etate-of-the-urt survey is presented with up-to-date
information on the parallel computing environment. This survey is
relatively complemented by the contents of the last Chapter VIII, where
most of the envisaged technological advancements are discussed.

More analytically, Chapter I is devoted to the overview of parallel
computer systems and prototypes. After the exploitation of parallelism
in various parallel computer structures, in terms of classifying the
various architectural designs, the Chapter continues with the genealogical

taxonomy of the main current mltiple processor complexes.
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In Chapter II the programming tools and algorithms to exploit the
parallel hardware potential are introduced. In particular, concurrent
programming languages motivations and general concepts for parallel
processing are discussed, to continue with various methodological design
and analysis aspects of parallel algorithms to appropriately map onto
the different architectural categories.

In both these Chapters particular reference has been made to the
'NEPTUNE' MIMD prototype, sited at the Department of Computer Studies,
at Loughborough University of Technology, on which the bulk of the
experimental work contained herein was carried out.

Develcopments in microelectronics have revolutionized computer
design. VLSI technology has enormously increased the number and
complexity of components that can fit on a chip. As a result, machines-
on-a-chip have emerged; these machines can be used as special-purpose
devices attached to a conventional 'host' computer. In Chapter III,
at first, various computational models and 'Knowledge Infermation
Processing Systems' - XIPS are introduced, to continue with the embedding
of information flow schemes on grids and in VLSI chip area and time.

An extensive investigation on the potential parallelism of a new
powerful class of Group Explicit methods compared to the Standard
Explicit method is carried out in Chapter IV, for the solution of
parabol:ic partial differential equations. For the performance analysis,
on the provided MIMD testbed, of all parallel implementations in the
Thesis, a detailed 'Deterministic Performance Model' - DPM is established
along with all the particular general formulae for the estimation of its

various parameters.

A complete performance exploitation of the 'NEPTUNE' MIMD
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prototype is pursued in Chapter V, by implementing several parallel
algorithms using the Cyclic Odd-Even reduction technique, in
combination with all the possible parallel constructs for the system,
to solve Toeplitz tridiagonal linear systems for use in signal and
image processing applications. The Chapter continues with the
implementation of several new parallel algorithms using the same
technique, to solve general periocdic aﬁd non-periodic tridiagonal
linear systems, following an alternate approach for the utilization
of any number of processors.

In Chapter VI the research is being concentrated on algorithmically
specialized systolic networks. A new powerful 'rotating’ and 'folding'
technique is introduced and applied on two-dimensional systelac
communication geometries to solve a variety of occurring problems.

In particular, at first, the matrix-vector and matrix maltiplication
problems are treated; then, the method is applied to tridiagonal and
quindiagonal linear systems, and eventually generalized for p semi-
bandwidth linear systems. To bypass the complexity arising along with
the increase of the semi-bandwidth of the coefficient matrix, an
alternative 'unidirectional' factorization of the central formatted
submatrix is proposed and exemplified.

The resulting upper and lower traangular linear systems are solved
again by the new method using a linear systolic array of processors.

Finally, an Chapter VII, single stage computational dewavefronts
are investigated, as an expansion of the 'rotate' and 'fold' method,
for the implementation of the 'Quadrant Interlocking Factorazation' -

Q@IF parallel method on a data-driven 'Wavefront Array Processor' - WAP,

for the case that the coefficient matrix of the linear system is a
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compact dense (nxn) matrix.

The Thesis 1s concluded with general comments on future computer
architectures, overviewing conclusions and a discussion for further
future research topics in this area. References and Appendices with
complementary theory and proofs, where needed, and a selection of
optimized parallel computer programs from our experimental work are

also included. B

oW
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V.A.1: INTRODUCTORY REMARKS

In this Chapter a thorough performance exposure and exploitation of

the 'NEPTUNE' (MIMD) prototype system 1s carried out, by presenting a
selection of algorathms which, utilizing different parallel strategies,
or constructs available on the system, implement the cyclic odd-even
reduction method and search for the optimal values of the granularity
factor in terms of the size of the final secquentially solved subsystems.

In the present Section 4 we initiate the reader to the necessary
fundamental concepts and notations of matrax computational Algebra and
to the various methods for solving linear systems of equations.

Then, the cyclic odd-even reduction method, which possesses
advantages for transforming sequential computations into highly parallel
ones, is exemplified for particular problems involving coefficient
matrices of Toeplitz type, 1.e., symmetric constant-tridiagonal and
symmetric constant-tridiagonal pericdic matrices.

The sequential algorithmic flowcharts of the aforementioned
technique, for both cases, are given, while i1ts inherent potential
parallelism is detected through a numerical example for the latter type

of matrices above.
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Finally, this Section concludes with the analytical evaluation
of the algebraic-complexity of the serial and parallel versions of
the method and the actual experaimentation and performance analyses of
1ts varjous implemented parallel invariants, in comparison with the
most efficient sequential algorithm of Gaussian elimination. These
performance analyses are dependent on the detailed performance model
established 1n the previous Chapter. They are, again, substantiated
by an analysis of the system's rescurces provided and the resources
demanded by the parallel algorithms. In particular, all the selected
parallel variants of the method are analyzed in a theoretical (i.e.,
program dependent) and experimental (1.e., system dependent) manner.

The experimental vehicle for this i1mplementation was chosen to be
the symmetric constant-diagonal periodic case, since it i1s more
complicated and 1ts concept indirectly includes that of the corresponding
non-periodic case.

In Section B we use the same method for solving general tradiagonal
equations with coefficient matrices of non-periodic and periodic type.
The analytical evaluations of the algebraic-complexity of the serial
and parallel versions of the method, the experimental results and the
performance analyses of 1its parallel variants for each of these cases,
on the NEPTUNE prototype system, are similarly as before presented, in
comparison with a generalized version of Gaussian elimination.

The Chapter concludes with general comments and conclusions
concerning various algorithmic aspects, in relatiocn with future computer
architectural designs. For further investigation, emphasis has been
given on the implementation of the parallel version of the method on

VLSI processor arrays utilizing a tree-structure of processing elements.
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V.A4.2: FunpaMENTAL ConcepTs AnD Norations OF MATRTIX COMPUTATIONAL
ALGEBRA

This Chapter starts by reviewing some preliminaries of matrix
algebra, and since we have already introduced matrix computations in
the previous Chapter, 1ts primary purpose 1s to serve as a brief, but
formal, glossary of some particular and most commonly used concepts
and notations.

Let us begin with the symbol p: el which denotes the vector space

of all the m-by-n order real matrices, i.e.,

A E ]Rmxna

in fact, the capital letters are used to denote a matrix+ , while the
corresponding lower case letters with the subscript 1 imply the (2,5
component of the matrix, where 7 refers to the rows and j to the
colwms of the matraix.

The basic computational manipulations with matrices can be found
in any relevant literature.

The n-by-n matrices are said to be square. In specific, the n-by=n

identity matrix is denoted by I  and its kth column by e ™

n k ¢ Leeey
«ae 0O
: : T
1 - IERE B eén) (0y.2240,1,0,...,0)" .
c e 1 k

In the case that the dimension is clear from context, then we simply

write I and ek, respectively.

g
énclosing the general matrix element, e.g. a1y , in square brackets
18 unother way of representing a matriz, as showm above.

iOne of the basie manipulations of matrices is 'Transposition’ (R R M

i.e., c=AT, cij=aji'
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xn .
If A and B 1in JRn satisfy AB=I, then B 1s the inverse of A
- -1 .
and 1s denoted by A 1. If A  exists, then & is said to be non-
singulay; othexwise, A 1s stngular.

Ix1

If A=(a) € R , then 1ts determinant is given by det(A)=a.

nxn
For A€ R ., We have

2 +1
det(A) = § (-1)777a__det(a R

where Al] 1s an {n=1)-by~(n-I)matrix obtained by deleting the first

row and jth column of A. In accordance, for

nxn N
AER (det{A)#0 ® A 13 non~singular.

A set of vectors {al,...,an} in R™ 1s linearly independent Lf

n
E ga = O¢=’a1=...=an = 0;
7=1 J 3

otherwise, a non-trivial combination of ayse+.,3 1S Zero and {al,...,an}
1s sard to be linearly dependent.
A subspace of R™  1s a subset that 1s also & vector space.

The set of all linear combinations of al,...,an€ JRm is a subspace

referred to as the span of {al,...,an}, 1.e.,

span{al,o-.pan} = {;Bjaj | Bl"" JBnEJR}-

A subset {ail""'aik} is a maximal linearly independent subset
of {al,...,an} 1f {ail""’aik} 1s linearly independent and is not
properly contained in any linearly independent subset of {al,...,an}.
1f {aa.l""'aik} 1s maximal, then,

}

span{al,...,an} = span{all,...,aik

. m
d . s ee .
an {az.l' ,alk} 1s a basig for span{al, ,an} IfSc R 1s a

subspace, then there exist independent basic vectors a in $

AR
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such that
S = span {al,---,ak}.
All the bases for a subspace S have the same number of elements, which
1s called the dimension of S and is denoted by dim({S).
In particular, there are two important subspaces assoclated with
mxn .
a matrix A i1n R . The range of A,which is defined by
m ~
R(a) = {y € R |y=Ax for some x € R,
and the null space of A by
n
N(a) = {x € R |ax=0}.
If A=[al,...,an] then

R(a) = span{al,...,an}.

The rank of a matrix A 1s defined by
rank(aA) = dim[R(a)].
It can bhe shown that rank(A)=rank(AT), and thus, the rank of a matrix
equals the maximal number of independent rows or columns.

For any A € R ", Aim[N(A)]+rank(A)=n. If m=7, then the
following are egquivalent:

1} A 1s non-singular
12) N(a)={o}
71%) rank(A)=n.

We shall now consider instances of matrices with special patterns
of zero entries, also with special symmetries and properties. Let us
begin by classifying matrices according to their zero/non-zero
structure. We say that A € R has lower bandwidth r and upper

bandwidth s 1f aij=0 whenever £>j+r and j>I+s . In the case of r=s

then A is simply said to have bandwidth . The most frequently
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occurring specilal classes of real band matrices are shown in Table
(V.A.2-t1), while analogous definitionst hold for lower bidiagonal,
lower triangular, strictly lower triangular, and lower Hessenberg
matrices.

If most of the elements of a matrix are zere, then it 1s said

. . mxn

to be a sparse matrix; in fact, banded matrices in R whose band-
widths are much smaller than m and n are sparse. However, 1f most of
the matrix elements are non-zero, then the matrix 1s said to be a
dense matrizx.

In accordance with some special propertilies occurring, the
class of real square matrices can be further distinguished into several
. nxn
important types as shown in Table (V.A.2-t2). 1In specific, for A € R

. nxn T
and if X E R 1s non-singular, then we say that A and X AX are
congruent. We must point out that the properties of symmetry, skew-

symmetry, and definiteness are preserved under congruence transformations

{see Golub and Van Loan [GOLU831)}.

MATRIX DEFINITION [A € R ]
Diagonal If a13=0 whenever i#j
Tridiagonal If ai3=0 whenever |1—]|>1
Upper bidiagonal If aiJ=O whenever 1>j or J>i+l
Upper triangular If alj=0 whenever 1>3
Strictly upper triangular If a13=0 whenever 1x]

Upper Hessenberg If aij=0 whenever 1>J+1

Table V.A.2-t1: The Definitions of Special Types of Band Matrices.

+Just apply these definitioms to AT.
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nxyn
MATRIX PROPERTY DEFINITION (A € R~ ]
T
Symmetric If A=A
T
Skew-Symmetric If A =-A
T n
Positive definite If x"Ax>0, 0#x € R
T PR
Noen-negative definite If x Ax20, x S R
T T n
Indefinite If (x a&x)(y Ay)<0, for some x,y € R
T
Orthogonal If A A=In
k .
Nilpotent If A'=0, for some positive integer k
2
Idempotent If A =a
Positive If ai3>0, for all © and j
Non-negative If alJZO, for all © and §
n
Diagonally dominant If |a |2 Z la__|, for all <
11 1)
1=l
J#1
n
Straictly diagonally £ laill Zl Ialjl' for all z
dominant =
J#L
Permutation If A=[eS ,...,es ], where (sl,...,sn)
1 n
1s a permutation of (1,2,...,n)

Table V.A.2-t2: Some Special Properties of Square Matrices.

Many of the properties described above can be extended to block

matrices (1.e., matrices whose elements are again matrices) and

complex matrices whose m-by-n set 1is being denoted by ™" ana by o3l

the set of complex n-vectors. In particular, for {ml,... ,mp} and

{nl rees ,nq} sets of positive integers, 1f
X1
AiJ € R i=1,....,py 3=1,...,q9

then
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By B2 = - - Ay

By Byp = - = By
A= [AJ_J} = | I ]

I ' I

A A_ - - _ A

- pl p2 P

1s a p-by-q block matrix and Al] 1s referred to as the (Z,j) block.
mxn . H
On the other hand, 1f A € T , then 1ts conjugate transpose A is

defined by u .
A= (a, ).
jr

n
The inner product of x and v 1n I  thus has the form

n
B VY xy, =%
XY - R Y .

nxn
Furthermore, an 2 € © 1s said to be
. . H
1) unitary 1f A A=In
.. ., . H
i1) Hermitian 1f A=A

. as . _ H
tit) positive definite 1f x Ax>0 for all non-zero x € L 7,

524]

+

We shall conclude with the concepts related with the eigenvaluesi

. nx
of a matrix A € £V which are the n roots of i1ts chamacteristic
polynomial

pl(z) = det{zI-A).

The set of these roots is called the spectrum and is denoted by A(A).

If A(A)={A1,...,An}, then 1t follows that
n
det{a) = J[ A, .
i
1=1

Moreover, if we define the tmce of A by

nxn
lali, AE T .

trace(d) =

-1

1

e etgenvalues and eigenvectors are otherwise called 'latent' roots

and vectors, respectively.




[Ch. V/Sec. A : 525]

n
then trace(A) = z A
1

1=1

If A € A(A), then the non-zero vectors x € L that satisfy
Bx = Ax
are referred to as eigenvectorsf This eigenproblem may be written as
(AI-A)x = O
which 1s a system of n homogeneous linear equations. This system has
non-trivial solutions 1f and only if 1ts matrix is singular, i.e.,
det (AI-A) = O,
The spectral radius of matrix A is defined as

p(A) = max|x_ | -
1<1¢n *

Finally, in accordance with the eigenvalues concept, a real
matrix is positive definite 1f and only 1f it is symmetric and all

its eigenvalues are strictly positive.

Y e etgenvalues and eigenvectors are otherwise called 'latent' roots
and vectors, respectively.
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V.A.3: CrassiricaTrion AND MEriTs OF THE MeTHODS FOR SoLvinGg LINEAR

Systems Or EQUATIONS

As we have seen in the previous Chapter a finite-difference
method leads to a system of algebraic simultaneocus equations, which
in the case of linear boundary-value problems area always linear.
However, the size of the resulting system 1is generally large and, for
this reason, its efficient solution 1s a major problem in itself.

These problems can be expressed in matrix-vector notation by the

equation
Ax = b , (V.A.3:1)

oL

where A 1s an (nxn)I matrix of the coefficients, b 1s a known 7-vector
and x 1s an unknown 7-vector whose value 1s to be found. The reader
should note the different vector notation X that has been introduced
in Chapter II. Provided that det(A) 1s non-zero, the unique solution
of the equation is expressed simply as
x=a"b,

where A-l, as we have previously seen, 1s the inverse of matraix A.

In numerical practice, however, the computation of this inverse
1s preferably avoided, since more efficient ways of solving the problem
are available. On the other hand, the occurring matrices in real-time,
generally, fall into one of the two categories of matrices, 1.e. dense,
but not large, and Sparse and perhaps very large matrices; and, it 1is
for the latter type, to be specific, 1t 1s unlikely (except in very
special cases) that the sparsity 1is preserved in the inverse computatiocn.

Different solution methods are usually used for these two categories

i * - - - +
classed as direct and indirect or iterative methods.+®

-i.
The most common notation for a n-by-n matric.

tSome Algebra books also advocate Cramer's rule, but it is not indicated
for large n.
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The options that someone has of trying to find a solution to
equation (V.4.3:1), 1n general, are either to change the matrix A4 (most
suirtable for dense matrices via the direct methods), or simply to leave
A unaltered (most suitable for sparse matrices via the iterative
methods). In particular for the dense matrices, when stored in full,
then n2 locaticons are required and any Zero elements are likely to bhe
changed to non-zero, a fact which could be disastrous for the latter
category of matrices. In that case, a matrix i1s likely to be generated
and only the non-zero elements need to be stored.

T techniques

Direct Methods are praincipally based on elimination
and the amount of work involved is fixed and known beforehand.
Furthermore, the solution process is done just once and the only errors
arising in the solution are only the round-off errors introduced in the
computation.

A common direct {factorization} method (a variant of the well
known Gaussian elimination method} for the solution of equation (V.4.3:1)
requlres the decomposition of matrix 4 into lower and upper triangular
matrices [L,l/, respectively, of the same order as A, with the J matrix
having 1's on 1ts diagonal. Thas methodi is known as the triangular-
decomposition method, or LU-decomposition method; also named as Crout
reduction, or, after another discoverer, the Cholesky method (see
Bekakos [BFKA81]) and it 1s feasible only if the matrix 4 1s non-

singular. Hence, equation (V.4.3:1) can then be replaced by

LiUx = P_ ’ (V0A03:2)

YWe consider the 'factorization techniques' indistinguishably related
with the elimination procedure (see Johnson and Riess [JOHN?7]),pp.34-35).

iAn equivalent method transforms A into an L,U pair in which the L matriz
has 1's on its diagonal. This is called 'Doolittle’s method’.
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or by introducing an auxiliary vector z (say) the system of equations
(V.4.3:2) can be formulated as

Lz = b (V.4.3:3)

Ux = z . (V.4.3:4)
Then, the original set of equations (V.4.3:1) 1s solved in two stages,
by solving (V.A.3:3) for z, followed by (V.4.3:4)for x, called
forward elimination and back-substitution procedures,respectively.
However, for this proposition to be viable, (V.4.3:3) and (V.4.3:4)
must be easily solved.

As opposed to the direct methods for sclving a set of linear
equations, which are the premier and exclusive scope of this Chapter,
when the coefficient matrix is sparse, then Iterative methods are much
more preferred due to the fact that they provide more rapid solutions;
but in certain cases only, since the occurrence of the zeros may
follow some easy pattern from which the elimination methods can take
advantage.

Each iterative method 1s designed to generate a sequence of
vectors, (iterates), {Efk)}z=0' which hopefully converge to a value
close to the true solution, Xy of the system (V.4.3:1)., The
iterative procedure 1s said to be convergent when the difference
between the exact solution and the successive approximations tends to
zero, as the number of iterations increases.

The basic 1dea of iterative methods can be described as follows:

7) The matrix A 1s written as the difference of two matrices N and P,
20 that
A =N-P . (V.A.3:5)

This decomposition of A 1s called a splitting.




17)  An 1nitial guess 5{0) is made for
£11) A sequence 5(1),5(2),5(3),..., of

by the formula
N g Wy

The first thing to observe is that

equivalent to solving the system

In corder to get some idea of what might
and P, we consider formula (V.4.3:6).
have.ﬁ(k)

solve the linear system
Nx(k+l)

where the vector_g(k) is given by
(k)

h = Px (k)

+Db .

» then we can get the next iterate x
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the solution vector Et'

estimates to X, 1s generated

k=0,1,2,.c¢ & (V.A.3:6)
solving system (V.4.3:1) 1s
(V.4.3:7)

constitute a good choice N

This formula says that if we

(k+l) provided we can

(V.A.3:8)

(V.4.3:8)

Thus, 1t is clear that we must require ¥ to be non-singular in order

to be assured that we can implement the

an iterative procedure to be efficient,

1teration. Furthermore, for

¥ should be chosen so that

{V.A.3:8) 1s quite easy to solve; this is the case 1f, for instance,

N 1s chosen to be a triangular or a diagonal matraix.

However, the total amount of work involved is not known, as the

calculations continue indefinitely until the answers have converged to

sufficient accuracy.

In fact, the process may not even converge and

therefore it i1s important to know of any conditions under which an

iterative procedure can be guaranteed to converge (see Varga [(VARGE2]).

The first and simplest iterative method 1is the Jacobi method.

For the purposes of briefly discussing this method it 1s convenient
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to think of the matraix P as the sum of lower and upper triangular
matrices. To be specific, let L,0, and U to be the lower triangular,
diragonal, and upper triangular parts of the (nxn) matrix 4. Thus,

A = L+D+U , (V.A.3:10)

and so the Jacobi splitting 1s given by

N =D
(V.4.3:11)
P = -{(L+0}| .
The Jacobi method for solving the system (V,A4.3:1) 1is given by
ch_(kH') = —(L+U)§_(k) +b, (V.A.3:12)
while the matrix
M= -0 L (L) (V.A.3:13)

1s called the Jacobi iterative matriz.
In actual computation, equation (V.A4.3:12) would have to be

written out element-wise. Suppose the vector _:E(k) 1s given by
;(k)-
1
(k)
X

(k) _ 2 , k=0,1,2,... . (V.4.3:14)

(k)

X
L n -

Then, equation (V.4.3:12) leads to the following iteration for the ith

component of :_c-(k):

(k)

K.
J

=-a-—-—[
11 J
]

al:l _bi]' 1=1,2,...,n, {(V.A.3:15)

1
i

b
E3
+
=
S
i
-
W He~31 3

which shows that the Jacobi iteration is quite easy to program. The
only real problem is to determine an efficient test for terminating
the iteration. However, in order for the Jacobi method to be used,

the diagonal elements of A must all be non-zero, but this requirement
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causes no real difficulty.

There are many other, much faster, iterative methods besides
Jacobi, the most important being, the Gauss-Seidel method, the
Successive Over-Relaxation (SOR) method and the Alternating-Direction
Implicit (ADI) method, for which a good advanced reference 1is Varga
[VARGEZ] .

Finally, arranged in tabular form, we shall summarize the merits
of 1terative methods compared with elimination methods:

Advantages

1. Probably more efficient for large order systems

2. Implementation is simpler

3. Advantage can be taken of a known approximate solution, 1f one exists
4. Low accuracy solutions can be obtained quickly

5. Where the equations have a repetitive form, their coefficients

need not be stored but can be generated,

and for sparse matrices only

6. Less storage space required for an iterative solution
7. The storage requirement is more easily defined 1in advance

8. The order of specification of the variables 1s not, usually, important.

Disadvantages

I. Additional right hand sides are not easily processed
2. The convergence, even if assured, may be slow and so the amount of
work 1s not predictable

3. The time and accuracy of the result depends on a Judicious cholce

of parameters
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4. 1If the convergence rate is poor, the results must be interpreted

5. No advantage in time per 1teration can be gained 1f the coefficient

matrix is symmetric. For elimination the time can be halved.

(k+1) ., (k)

All iterative methods are similar to I +b , so that
. 2
1f A 1s a (n*n) full matrix, the number of multiplications 1s ~n°" per
. , 3
iteration. Since this number for elimination methods 1s ~n /3, an

iterative method for solvaing (V.4.3:1) is likely to be viable 1f the

with caution
number of iterations 1s <n/3 (or <1/6 for symmetric 4).
|
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V.A.4: THE SYMMETRIC CONSTANT-DIAGONAL CASE

The principal aim of the present Chapter 1s to investigate the so
termed <mplicit parallelism of a special technique known as Cyclic Odd-
Even Reduction+. This form of parallelism involves the discovery of
independent sub-expressions in the computation capable of proceeding
in parallel. The aforementioned technique possesses advantages for
transforming a sequential calculation into a highly parallel one, and
appears to be one of the best techniques for the symmetric constant-
tridiagonal case.

To be more specific, we assume a set of n linear equations of the

form
Ax =y, (V.A.4:1)

where A 1s a tridiagonal matrix such as,

b a
a b a O
a b a
A = (V.A.4:2}
O a
a b
. —

which, in shorthand notation, we denote as the (sve.,a,b,a,...) case,
As a parenthes:s, matrices whose entries are constant along each

diagonal arise in many applications and are called Toeplits matrices.

Formally, I’Eﬂznxn is Toepllti¥1f there exist scalars P—n+1""’PO""’

rn-l such that tijzrj-i’ for all ¢ and Jj+ Toeplitz matrices belong

to the larger class of persymmetric matrices. We say that B € R "

is persymmetric if i1t is symmetric about its northeast-southwest

+Cyclic reduction was first used to solve tridiagonal equations by
Hockney (1965) in collaboration with Golub (see Hockney and Jesshope
[HOCK8 1))

A Toeplitz matrixz is completely specified by its first row and column.
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diagonal, i.e. if bi':b for all 7 and j.

g n=j+l,n-i+1'
The definition of Toeplitz matrices extends, in a corresponding manner,
to complex square matrices as well.

Finally, a particular, and most frequently occurring, subclass of
Toeplitz matrices is the class of circulant matrices which are defined
by the further property that t-i:tn-i'for 2=1,2,...4n=1. A circulant
matrix is completely specified by i1ts first row; each further row may
be cbtained from the previous one by a right eyelie shaift.

On the other hand, the absolute performance behaviour of Multi-
processor testbeds will be revealed by implementing and analyzing,
according to the deterministic modelling approach established in the
previous Chapter, several parallel algorithms using the above solution
technique in combination with most of the available parallel constructs
for the experimental system in hand, 1.e., the NEPTUNE prototype system.

This technique 1s applicable to the same class of problems, as
applied to the Recursive Doubling process.

In the following discussion, we assume that n can take any of the
following values, i.e., Zm-l, Zm, 2m+l, where m is any positive
integer (see Bekakos [BEK481]).

The general procedure of the cyclic odd-even reduction algorithm
is as follows; let us consider three adjacent rows of A, i.e.,

-1 a b a

7 a b a (V.4.4:3)
i+] a b a.

A mltiple of the middle row 7 is added to the summation of the i=1,1+1
rows, thus obtaining the form (...,a',0,b',0,a',...). This operation

creates a tridiagonal system consisting of Zm-l-l, or 2m-l’ or 2m-l+1
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only, even or odd rows of the original matrix 4.

For example, if we considexr that, originally, the number of
equations 1is: n=2m-1, and the new system consists of the even rows of
the original matrix 4, Zm_l-l the number, then although the odd rows
have been eliminated, the odd unknowns can be computed from the even
unknowns by a back-substitution process.

Repeating the process to the new system of Zm-l-l equations, involving
just the even unknowns, we can eliminate every other row, thus obtaining
a set of 2m-2-l equations involving unknowns with subscraipts which are
miltiples of 4. We can repeat this process until we cbtain a single

equation for x -1’ which can then be easily solved.

Then, by back-gubstituting, we can compute the eliminated unknowns in
the reverse order in which they were eliminated.

The cyelic odd-even reduction algorithm reaches a significant
speed increase when the 'a' coefficients of matrix 4 are initially
equal to unity, i.e., the shorthand notation now has the form (...,1,b,1,
.++}, since they remain equal to unity throughout the computation, thus
reducing the number of additions and multiplications per iteration.

The symmetric constant-tridiagonal system, given in (V.A.4:1),
can be normzlized in the (...,1,b,1,...)} form, dividing by ‘a', to
norralize 'b' and 'y', to produce the symmetrie constant-diagonal form.
This can be performed sim;ltaneously, in mest of the parallel computers,
since the diagonal elements are a constant number.

More specifically, to describe the algorithm, let us consider the

case that n=2mkl, where m=3, i.e., the original matrix 4 consists of 7

equations. In this case the matrix equation given in (V.4.4:1),

after normalization, has the form,




[Ch. V/Sec. A : 536]

eq,

1 b 1 xl yl

2 1 b1 X y
2 2

O

3 i » 1 x3 y3

4 1 b 1 X Y
o T It R (V.4.4:4)

& l b 1 X Y
5 5

O
6 1 b1 X, Vg
7 L 1 b ..x';J 7

When the procedure described previously 1is applied, e.g., for the
even rows, we multiply equations 2,4,6 by '-b', adding the two adjacent

rows to each of them. Then, the system (V,4.4:4) becomes,

£q.
71 [p1 T rx]_ ¥
2 |o b2 o 1 %5 2[2]
O
(2] [2]
4 1 0 b 01 Xl = ¥4 , (V.A.4:5)
5 1 b 1 XS YS
O [2) (2]
6 1 0 b o [xg Y
Wheref b[2] = 2_b2 (V.A.4.'6)
vl oy py ey for 1=2,4,6 (V.A.4:7)
i 1173 Y5400 Reee R

Since the even rows 2,4,6 1in the system (V.4.4:5) are independent

of the odd rows, they may be separated as follows,

<.
[2] (2]
1(2) [b 1 0 N ¥,
20¢) |1 '3, x,| = yizl i (V.A.4:8)
3(6) |o 1 bm X ym

6 6
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Applying the above process, once more, to the system (V.4.4:8),

2
r.e,, maltiplying the second row of the system (V.4.4:8) by '—b[ iy

and adding to i1t the first and third rows, the system (V.A.4:8)

becomes,
eq.
1_(2) =21 o &, y2[21
2(4) |0 b3l o X, = yfl ' (V.A.4:9)
3(6) |o Y Y 2
ez b3 2 2122 (V.A.4:10)
v, = vyl (V.A.4:11)

From the system (}.4.4:9), by separating the second row, we cbtain

(3] (3]

b X4 = Y4 r (V-A-4:12)

which can be easily solved, thus finding X,
By a process of baok-substitution, and in terms of X,y the first
and third rows of the system (V.A.4:9)may be written as,

Sl 12

5 S Yy X, (V.A.4:13)

(21, _ _f21_ .
b Xg = y6 Xy (V.A.4:14)

Therefore, we can easily calculate xz and Xg -
By continuing the back-substitution process, in the same way, to the
system (V.4.4:5), we can calculate xl,x3,x5,x7 in terms of XpyrXyrXps
thus finding the solution of the matrix equation (V.4.4:4).

To conclude, the above described process can be applied for any

of the values of n, (1.e. 2m-l, 2m,2m+l, where m 1s any positive

integer}, choosing each time the even or odd rows of the system to

work waith.
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V.4.5: Tue SymMETrRIC CONSTANT-DIAGONAIL PERIODIC CASE

Herein, we shall again examine the previously described, efficient
for parallelism exploitation, technique, but now operating on a set of
n linear equations of the form
Ax =y , (V.A.5:1)
where the matrix A has the representation
b a al

a b a

A= \\\\\\\\\~ ' (V.A.5:2)

a a b

which, in shorthand notation, we denote as the (a,...,a,b,a,...,a)
case.

In the discussion which follows, we assume, for greatest efficiency,
that n=2m, where m 1s any positive integer. Although the general
procedure for solving the system (V.4.5:1), applying the eyelic odd-
even reduction technique, is similax to that exhibited previously, the
first and last equations are special cases because of the pericdac
nature of the problem. These cases will be explained later in this
paragraph, during the solution procedure of the given example.

Let us, again, consider three adjacent rows of 4, i.e.,

-1 a b a
1 a b a (V.A.5:3)
1+l a b a.

The aim is to obtain a form like (a,...,a',0,b',0,a',...,2), by adding

rows ¢+]1,7-1, to a multiple of the middle 7 row, and this for every
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three adjacent rows of 4. The resulting tridiagonal system consists
of Zm_l only, even or odd rows of the original matrix 4, retaining at
the same time the periodicity of the original system.

We can repeat this process that many times until we obtain a single
equation for x m OF ¥ » 1f we are applying the method by choosing

2 2 1
the even or odd rows, respectively.

m—1+

Finally, the eliminated unknowns can be computed by a pgok-
substitution process, exactly in the reverse order to the elimination
process.

Again, similarly to the simple case, because of the significant
speed increase obtained when the 'a' coefficients are initially equal
to unity (since that way the number of operations is reduced), we can
normalize the system (V.4.5:1) to the (i,...,1,b,1,...,1) form,
dividing by 'a', to normalize 'b' and 'y', to produce the symmetric
constant-diagonal periodie form.

For a clearer insight of the algorithm, in the symmetric constant-
diagonal periodic case, let us consider the instance that n=8, 1.e.,
the original matrix 4 consists of 8 equations.

Thus, the system (V.4.5:1) becomes,

f&
I (b1 i '5:1‘ £y
2 |1 b 1 ) X, ¥,
%3 73
8l _ | (V.4.5:4)
Xg ¥g|
x6 y6
1 *7 ¥7
b Y Yg]
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In a similar manner as before, having chosen the gven rows to
work with when applying the method, we multiply rows 2,4,6,8 by '-b'

and add the two adjacent rows to each of them to cbtain the following

system,
eq.
2] [2]
2 Q b 0 1l o 1 x2 y2
3 1 b 1 x3 y3
[2] [2]
4 1l 0 b 0 1 x4 4
r
5 1 b 1 Re| = lvg {(V.A4.5:5)
{2] [2]
6 1 0 b 0 1 %g Y
7 O 1 1
b *2 Y7
[2] (2]
g o 1 1 0 b [xg] Nousl
where b[2] = 2-b2 (V.A4.5:6)
2] _ _ _ )
yi = yi_l byi+yl+l' for l""2l'4 l'6!'8' (V.A. 5. ?)

Noticeably, different from the simple case 1s that every time for the

last row of the system, due to the periodicity of the problem, the next

row 15 taken to be the first row of the system (1.e. n+I{modn]=1).
Because of the independency between the even and odd rows, in the

system (V.A4.5:5) the even rows may be separated as follows,

eq,
r [2] ST ~ {2]7
1(2) b 1 0 1 X, Yo
204) |1 ot 4 x, v}
3(6) |o 1 b 1 Xe Vg
[2] (21
4(8) Ll o} 1 b g | Yg |

Again, applying the above process, this time multiplying by '-b[Z]'

the rows 2(4), 4(8), we obtain,
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eq'
= [2] n - r [2]4
1(2} |b 1 o 1 X, 5
204) lo pPBlo 2 x, yf]
12} = (2] , (V.A.5:9)
3(6} o 1 b1 Xg Ve
[3] [3]
4(8) {0 2 0 b 7] X5 Yg
where,
pt3 - 2-p[%))2 (V.4.5:10)
(31 _ (21 ,(2)_[2) (2] . .
Yy =Y, 5b Ty Tty o for i=4,8. (V.A.5:11)

Separating again the even rows, in the system (V.4.5:9), we obtain,

eq,

1(¢) [pl3! 2 %, yfl
031 = gl (V.A.5:12)
2(8) |2 b Xq 3

[3]

A final application of the process, multiplying by '-b ' row
2(8), produces a system of the form,
eq,
104) B 2 ] [x, E’EI
[4] = [4] r (V.Aos:ls)
2(8) o b g g

where the two adjacent rows added to the second row coincide with the
first row of the system (V.4.5:13).

This time, exceptionally,

(41 (31,2

= d=(b"""y (V.A.5:14)

{41 __ (31, (3] (3] :
Y8 -2Y4 -b Yg . (V.A.5:15)

b

From the system (V.4.5:13)we can easily calculate Xqs and then by
back-substituting in systems (V.4.5:13), (V.A.5:9), (V.A4.5:5) we

obtain the wvalues for (x4), (xz,xs) . (xl.x3.x5.

terms of the previcusly found values for the xi's.

x.,), respectively, in
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To cenclude, in the case that we choose the odd rows to work
with, applying the eyclic odd-even reduction algorithm, then the
special case occurs in the ISt row of the original system (V.4.5:4)
and every subsequent system resulting during the process, the last

row, each time, being considered as the top adjacent row to 1it,.
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V.4.6: ALGORITHMIC FLOWCHART REPRESENTATION AND INHERENT PARALLELISM

DETECTION

In an attempt to identify sections of parallelism in a serial
algorithm a pragmatic approach would seem reasonable: The serial
algorithms are analyzed for patterns of frequently occurring basic
elements which are then arranged into a parallel formaticn.

In our case, although both of the presented algorithms are very
efficient as serial algorithms, however, because they have been
constructed following the 'serigl way of thinking)indirectly trans-
forming them into parallel ones would result in algorithms which are
not the optimum from the efficiency point of view.

For this pure sequential implementation of both algorithmic cases, and
the stated values for n, the flowcharts are :llustrated in Figures
(V.A.6-f1,f2) respectively, and were coded and run on the VAX 750
computer, at Loughborough University (see Bekakos [BEKA81}).

As we have discussed in previous Chapters, the more natural and
efficient approach to constructing a parallel algorithm i1s to follow
the ’‘parallel way of thinking' directly from the problem itself. 1In
the following discussion we shall exemplify this approach considering
the symmetric constant-diagonal periodic case to work with, since it
is more broad in concept coveraing the non-periodic case.

In order to 1llustrate diagrammatically the serial algorithm
described in (par.-V.A.5) we present the scheme depicted in Figure
(V.A.6-f3). Therein, we have considered the even rows to work with,

and eventually we end up with a single equation having the x, as unknown,

8

which can be easily solved. Then, by back-substitution we can evaluate

the remzining unknowns in both, even and odd rows.
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read
r,n,mb

1
INITIALTIZATION
x{m+1)=0.0
b(i)=0.0, for i=1,3*m/2
w(l)=r, z(l)=r

t=1l

_*ﬂ z(t+1)=1-w(t) *z(t)
Ly 1

m=(2%#*n) =1 >TES >

N

ot

\

z(t+1)=2=-w(t}*z(t)

w(t+l)=2-(w(t) **2)

'Illll'||l|' YES ‘
] ‘

z(t+2)=l-w(t+l) %z (t+l)

L
|

jm2*ke,m, 204t

Y

b(§) =b(j-(2**(t-1)))—w(t)*b(jI+b(j+(2**(t-1)))

1




: continued

[y
g

Y

mz(Zi*n)y

YES
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b (2%*n)=b (2%*n) *(-w(n)) +b(2**(n=-1))
x(2%*n) =b (2**n) /z (n+1)

BACK y SUBST

i=1,n-1

TUTION

]

t=n-1i

\

J=2* %R (2%%(e41))) ,m, 2%*(t )

Y

x(3)=(b{3)-x(3-(2%*t) }-x(j+(2**t))) /w(t+1)

1

\

x(2%kg) = (b (254 )=x{28%(t+1))) /w(t+1)

y

¥

x(1)=(b(1)~x(2))}/x

m=2%#n

T,

], J

YES

-y

x(m)=(b(m)-x(m-1))/r

f

j=3,m-1,2

¥

x(j)=(b(j)-x(j-1)-x(j+1))/r

J

Figure V.A.6-f1:

Yy

The Sequential Flowchart of the Cyclic 0dd-Even
Reduction Algorithm for the Symmetric Constant-—

Diagonal (Case (see Bekakos [BEKAB8I]).

545]
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INITIALIZATION
w{l)=r

{

t=1,n~-1
¥
w(t+l)=2-(w(t)**2)

Y

j=2**t ’m, 2**:

YES
b(jI=b(F~(2**(t-D)-w{t)}*b(j) +b(2%*E-1))

T

Y

b(§)=b{(i-(2%*(t~1))}-w(t)*b () + (j+(2** (D))

il

-_—

Y

win+l)=4-(w(n)**2)

b{2%*n)=b(2%*n) *(-w(n) ) +2*b(2%*(n~1))

x(2%*n)=b(2%*n) fw(n+l)
x(2*%*(n=1))=(b(2**(n-1)) =2*x(2**n) ) /w(n)

BACK —§ SUESTIIUTIUN

i=1,n-1
¥

t=n—1i

Y

J=((2%*%t) +(2%*(t+1))) ,m,2%* (e+1)

!

x(§r=(b(3)-x(j-(2%*) }=x(j+(2**t))) /w(t+l)

(]

Y

k=2%%¢t

YES

k=2%%(n-1)

-;_' )

x(k) =(b (k}x(2%*(t+1) ) ~x(2**n) ) /w(t+l)

y

\

| |

®
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: continued

x(1)=(b(1)-x(2)-x(2**n)) /r

j=3,m-1,2

Y

x(3)=(b(j)-x(j-1)-x(j+1)) /r

Figure V.A.6-f2: The Sequential Flowchart of the Cyclic 0dd-Even
Reduction Algorithm for the Symmetric Constant-—
Diagonal Periodic Case {see Bekakos [BEKA81]).
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In a similar manner, we could have chosen the odd rows to work
with 1instead, thus eliminating the egven rows, and finally, again, by
back-substituting to obtain similar results.

However, by approaching this problem in a parallel manner, since
eirther process, i.e., the even or odd rows, develops independently of
the other, we could consider both cheoices applying the described
algorithm for each of them, simultanecusly. Let us now consider an
example applying this concept and to conclude we shall present
diagrammatically the process of the new evaluation.

We shall make use of the same system (for n=8) as we had in {(par.-V.A.5)

1.e.,
eq,
1 b 1 1 1 ¥y
2 b 1 X, Y,
3 1 b 1 O Xy Y3
4 1 b 1 X Yy
4 4
= . (V.4.6:1)
o 1 b 1 X | = 1¥g
6 0 1 b 1 x6 y6
7 1 b 1 x7 Y,
5 _;_L bR Wl Y]

At first we choose the even rows to apply the cyelic odd-even
reduetion algorithm, 1.e., multiply the rows 2,4,6,8, by '-b' and add
the two adjacent rows to each of them. Thus,we cbtain the following

system,
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eq.
I B 1 N
2 o bi¥l o 1 1 X, ygzl
3 1 b 1 O Xy '
4 1 Q b[2] 0 1 x4 _ Y‘iz]
P L b1 X v L(V.A.6:2)
6 1 o bt¥l o X, ézl
7 O 1 b 1 X., Y,
8 L9 1 1 0O b [2_]_ Lxs ) _y8[2]_
vhere pl2l - 52 (V.A.6:3)
y? -y by 4y ., for i=2,4,6,8 , (V.A.6:4)
1 1-1 1 1+l

where the next row to the Bth row is considered as the ISt row of the
system due to the periodicity of the problem.

If, on the other hand, we again apply the cyclic odd—-even reduction
algorithm to the original system, but this time considering the odd

rows to work with, we obtain the following system,

eq.
1 B o 1 1 o] [x] -‘}1[-2]-
2 1 b 1 o X, Y,
3 1 0 b_[Z] o 1 Xy y:E,z]
4 1 b 1 x| v |
& 1 0 b[21 o 1 Xg é2]
6 1 b 1 X Y
7 1 O 1 0 b[2] ol |x yiz]
7 7
8 11 1 bl {xg] Vg J

where, (V.4.6:5)
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pi2l _ 52 (V.A.6:6)

[2]
Yy

yl-l-byl+yl+l’ for i=1,3,5,7 (V.A-6-’?)

and as the top adjacent row for the lst row 1s considered the Bth
row of the system.

Thus, separating the even from the odd rows and vice-versa, 1in

the systems (V.A4.6:2),(V.A.6:5), respectively, we cbtain two systems

of the fornm,
eq,
— (2] - e - ~ [2]+
1{(2) b 1 o] 1 %, Y,
2(4) 1 b[2] 1 o] X, y4[2]
[21 = (2] (V.4.6:8)
3(6) 0 1 b 1 X, Yg
4(8) {1 o 1 b[2]_ xg ) ysm_
and
eq,
. [2] 1 il [2]4
1(71) [ b 1 o 1 %, ﬁzl
2(3) 1 pl2] 1 o} Xy y3[2]
(2] = [2] . (V.A.6:9)
3(5) 0 1 b 1 x v
5 5
4(7) |1 0 1 biz]__ B _ygz}_

We can now apply the cyclic odd-even reduction algorithm again,
independently to each of the systems (V.4.6:8), (V.A.6:9), multiplying

by *-pl2]

' the appropriate rows each time, to obtain two (2x2) sub-
systems from each system, one from the even case and one from the odd

case.

In specific, from the system (V.4.6:8), we obtain,
eq.

— [31 3]
1{4) |b 2 X4 _ ]‘yzl {even case}, (V.4.6:10)
D [31

2(8) Xg g
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where b[3] = 2-(b[2])2 (V.A.6:
(31 _ 21 . [2]_ (21  [2] _ .
y, o =y b , ¥, ,, o for 1=4,8 (V.4.6:
and
eq,
1(2) b[3] 5 —I F{2 y£3]
[3]J L = (3] {odd case), (V.A.6:
2(6)| 2 b X Ye
where
b3l = 2o (132 (V.A.6:
(31 _ (21, (2] (21 (2] . .
Yy =Y., b i Wi o for i=2,6 (V.A.6:
on the other hand, from the system (V.4.6:%}, we obtain,
eq,
1(3) b[3] 2 x3 Y§3]
[3] = (3] (even case), {V.A.6:
2(7) |2 b X Y5
where
b1 = 2o pl?)2 (V.4.6:
(31 _ _[2) . (21 [2] [2] ‘o .
Y, =¥, b Ty, ey ., . for i=3,7 (V.4.6:
and
€q.
T p . 7 R R
[3] [3] (odd case), (V.4.6:
2(5) |2 b Xg Y
where
p13 - 21?2 (V.4.6:
(3} _ _[21 _[2) [21 [2} _ .
Y, =Y, b Ty, 4y, ., fora=l,5. (V.A.6:

Again, the periodicaty of the problem is

adjacent rows for each considered row of

used, so we always have two

the systems.

The four (2x2) systems obtained can be easily solved either by

applying, once more, the above technique

{1.e., considering for each

11)

i2)

13)

14)

15)

16}

17)

18)

13)

20)

21)
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(2x2) system once the even and once the odd row, separately, to be

3]

maltiplied by '~b '), or by any other method (e.g., Cramer's rule,

etc.).

In order to retain as much parallelism as possible throughout

the reduction phase, and for further exemplification purposes, let us

follow the same technique as above. Thus, from the system (V.A.6:10)

we obtain,

eq,
@ BP 2 ) R S
(4] = (4] (even case),
2¢(8) |o b Xq v
8
and
eq,
12) B 2 %, y 4
4
[3] =1 I3 (odd case),
2(8) |2 b X
8 8
where
b[4} - 4-(bE3])2
(41 _ [31_, [31_1[3]
Yg o =2y, by
(41 _ (31_, [31_13]
Yo o = 2ygT b Ty,

thus evaluating simultanecusly Xg

(V.A.6:23), respectively; from the system (V.A.6:13) we obtain,

eq,
1z BP0 2 I, v}
= (even case),
2(8) |0 b[4] L{G y[4]
6
and
eq,

¥y
(3]
6

where

(V.4.6:22)

(V.4.6:23)

(V.A.6:24)
(V.A.6:25)

(V.A.6:26)

and x4 from systems (V.4.6:22),

(V.A.6:27)

[4]
=[ :I {odd case), {V.4.6:28)
Y
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[4] p131,2

b = 4-( ) (V.A.6:29)
[41 _ __[3)_ [3]_(3] _
Yo = 2¥, by (V.4.6:30)
(41 _ . [31_ [3] [3] )
Y, = 2y6 b Y, ' (V.4.6:31)

thus evaluating simultaneously x, and X, from systems (V.4.6:27),

3]
(V.A.6:28), respectively; from the system (V.4.6:16) we obtain,

eq,
1{(3) b[3] 2 Xq Y§3]
(4] = 4] {even case), (V.A.6:32)
2(7) lo b X 2
and 7
eq,
1(3) b[4] o] X3 y§4]
(3] = (3] {odd case), (V.4.6:33)
2(7) 2 b X
7 7
where
3
pl4 - 432 (V.4.6.34)
it = 2yl 01, I3 (V.4.6:35)
Y:£4] - 2y_f,3]_b[33y353] ] (V.4.6.36)

thus evaluating simltanecusly X and Xy from systems (V.4.6:32),

(V.A.6:33), respectively; and, finally, from the system (V.4.6:19)

we obtain,

eq,
1) B 2 X, v,
(4] = (4] {even case), (V.A.6:37)
2(5) o b Xg 5
and
eq.

1) I o X, v
(3] = (3] (odd case), (V.A4.6:38)
2(5) b Xe 5

where
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pl4l = 43,2 (V.4.6:39)
(41 _ , [31_, [3]_I3] .
[4] (31 . (3} [3] .
Yy, = 2yg T-hiyy ot (V.A.6:41)

thus evaluating simultaneously xg and x, from systems (V.4.6:37),
(V.A.6:38) respectively.

Therefore, we apparently reach the conclusion that by fellowing
the 'parallel way of thinking' we have created independent
computaticnal streams, concerning the even and odd rows of the system(s)
each time, which can proceed concurrently. Hence, the whole second
part of the previously described serial algorithm (1.e. the back-
substitution process) can be eliminated, because this way we end up
with all the solutions of the original system (V.4.6:1) in one step,
simltaneously, thus saving almost 7alf (theoretically) of the total

computing time. Diagrammatically the parallel process described above

(i.e., for n=8) 1s shown in Figure (V.A.6-f4), below.
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V.4.7: IMPLEMENTATION QF THE PARALLEL SYMMETRIC CONSTANT-DIAGONAL

PERIODIC CASE: EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS

On THE 'NEPTUNE' PROTOTYPE SYSTEM

Herein, a thorough performance exposure and expleitation of the
'"WEPTUNE' (MIMD) computer complex is carried out again, by presenting
a selection of algorithms which implement the parallel evaluation
routlng given in Figure (V.A.6-f¢) and search for the optimal values
of the granularaity factor, according to specific sequential subroutines
invited in some of the programs, in combination with most of the available
parallel constructs on this machine.
For the cyclic odd-even reduction technique the symmetric constant-
dragonal periodic case 1s chosen as the experimental vehicle, since 1t
is more complicated and, as we have mentioned earlier, 1ts concept
indirectly includes that of the corresponding non-pericdic case.

The assumption of sufficiently diagonally dominant, constant-
tridiagonal periodic systems would definitely prevent the occurrence
of 1ll-conditioned situations, during the solution process, which would
result in not so accurate answers. In our case, however, because of
the computer's limitations on the real arithmetic range+, we were forced
into a trade-off in solution accuracy with the performance exploitation
of the machine and the technigque used. In other words, in our desire
to experament with as large a system as possible, we have considered
slightly < diagonally dominant systenms, with the diagonal dominance
analogously weakening along with the system size increments; this 1s due

to the fact that the initial constant-diagonal entry increases

8 76

+Theoretically, this range is 10778 x<10” , tneluding zero.
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quadratically during the cyclic odd-even reduction process and being system
s1ze dependent, for systems of size >(64x64), reaches such values which
cause error situations reported by the computer as: 'FLOATING POINT,

DIVIDE BY ZERO AT', e.q.,'>@84C IN $MAIN'.

This method was, 1nitially, implemented on a serial computer, the
IBM 7080, and was chosen in preference to Gaussian elimination because
cyclic reduction deals with periodic boundary conditions in a much
neater way, avoiding the need for the calculation of auxiliary vectors.

In the subsequent experimentation, and although no restrictions
are necessary, for the method, for convenience in balancing the
computational leoad amengst the utilized combinations of the machine's
processors, the size of the considered systems was, always, taken to be
a power of two.

Let us now work out the algebra of the serial cyclic odd-even
reduction method, i1n a general form, considering the symmetric constant-
dragonal periodic system given by (V.4.5:4), with n=2" (where m 1s any
positive integer) number of equations.

In accordance with (par.-V.A.5), at every reduction level, this number
1s being halved; clearly this process will be repeated recursively
until, after Zoggn levels of reduction, we obtain a single eguation
for X -

The reduction process formulae, for reduction levels 2=1,2,...,3092n,

are gaiven by

t
pl* o oo (pl4712 (V.4.7:1)
and +
' _ e el (-1 (e-1] _
R ST L T T TN (V.A4.7:2)
1-2 1+2

e
'The superscript & between [ ] indicates the level of reduction, while

the initial values are: b[OJ:b, yéo]:yi.
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where 1=2£(step 22) until 2m.
In particular, the reader should bear in mind the periodicity of the
problem when the first and last rows of each system are considered in
the reduction process. It 1s due to this fact that, exceptionally
for the last reduction level, formula (V.4.7:1) is slightly modified
as the formula (V.4.5:14).

The solution for the final equation is obtained by the division

x_ = yr[lr]/b[r'] , (V.A.7:3)

where r:Zogzn.
The unknowns at level r-1 can now be found from a back filling in

procedure using the equation

x =

(r-1]_
1 y:I.

2xn)/b[r_l] ., for 2=n/2 . (V.A.7:4)
This filling in procedure 1s repeated until, finally, all the odd
unknowns are found using the original equations.

The recursive filling in of the solution, 1in general, for £:Zog2n+1,

Zoggn,...,B,l,ls given by the formula,

_ (2-11_
x = (yl

il _ [2-1] .
X, o081 =x ., (e-1)/b . (V.A.7:5)

2-1)

where i=2( B ep2(2-l)

(st ) unt1l 2.

Note that, in the implementation of the above formula, when the subscripts
of the xis take values lying outside the defined range IgZ¢n, then as
their correct values are considered the boundary values of the corresp-
onding system each time, according to the pericdicity of the problem.

In particular, for the last reduction level, 1.e., 2=Zogzn ;, where we

have only one equation, the out of bounds xis are considered to be of

Zero value. Also, note that, in the analytical exemplification of all

algorithms in this Chapier,including the diagrammatical routings given 1n
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Figures (V.A.6-f3,f4), the i1nitial values are considered of being at
reduction level one (instead of level 2¢r0 as implied 1in the previous
formulae}, which in fact results in log2n+1 deceptive levels of
reduction, and this 1s for convenient reasons in programming.

The algebraic-complexity sum of formulas(V.4.7:1,8), considering
a theoretical equivalence in the arithmetic {see below), is

lo on
Ac ., = 2log,n + 3 E 2, (V.A.7:6)

g=1 2%

(R]

while for the back-substitution phase, 1.e., through formula (V.4.7:5),

1t 1s

- n . .
[s] = 1+ 3 22 (V.4.7:7)

Ac
Note that, all formulae have been written down according to the
operations sequence appearing in the computaticonal process. Hence,
the total algebraic-complexity of the serial evaluation routing of the
cyclic odd-even reduction method 1s

logzn

Az + Ao = 1+ 2log,n + 6 z

[R] [S] o & -;E - (V.A.?.'B)

On the other hand, 1t 1s obviously quite complex and parallel
machine dependent to evaluate, on a per parallel path basis, the total
algebraic-complex:ity of the parallel variant of this method (where no
back=-substituticn phase occurs), taking into account the reduction
(for Pipelined Vector or.Sh%D computers) or increment’ (for Multi-
processors) 1n parallelism at each reduction level of the process.

In particular, for the last kind of computers, the total algebraic-

complexity of the parallel algorithm using the cyclic odd-even reduction

+Depend£ng on the, in terms of processors, potential of the parallel
machine in hand and until the optimal 'granularity factor' is obtained.
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technique, for the same problem, diagrammatically shown in Figure

fV.A.6=f4), on a p-processor system is

log . n
leg,n % 2
= 27 r2°93n 2 )
Acrsy; = 2logy + 221 r—P-l—zg [Pl . )

In terms of the time-complexity (which conceptually 1s being
considered as a superset of the algebraic-complexity), considering
each basic operation requiring the same executional time-step length,
we obtain the following theoretical Speed-up (1.e., Znternal
acceleration) and Efficiency (i.e., utilization of the parallel machine)

ratios of the parallel variant compared to the serial one

1o 1o
g )l+210g2n + 6 ?2 3 l+21092n+6 gz -
5 = %= 1 2 c g=1 2
p O 1o lo
ot )2log2n N 32 T 3n [ 1 210g2n+-—(3 EZ nspto92m,
P g=1 P g=1
. +
z 0(p) (since ri]ax) (V.A.7:10)
and
loi2
S 1+Zlog2n+ 6 L 22 R
B, =~§ < = <1t (V.4.7:11)
pl2log,n+ = 13 §2 n+210927y4
=1

These should not, however, be considered as the true performance ratios,
since, as we have repeatedly mentioned, the capabilities of the parallel
variant should be compared with the best (1.e., most efficient) existing
sequential algorithm for the specific instance, which in our case happens
to be Gaussian elimination.

Let us now proceed with the actual experimentation of the cyclic

odd-even reduction method at first considering a brief description of

Yihich ave their optimal theoretical values.
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the selected characteristic programs, each making use of a different
parallel strategy, or construct avallable on the NEPTUNE system.

These programs are included in the Appendix C-V, in the same order and
under the following meaningful names:

-(z) mBg2T.causcop

-

GAUSs algorithm for the symmetric

Constant-Diagonal Periodic case.

~(77) MBg2T.PoEGSBP

Parallel cyclic 0dd-Even reduction
algorithm calling the Gauss SuBroutine
for the symmetric constant-diagonal
Periodic case.

-(i1i) MBg2 . POERSBP

Parallel cyclic Odd-Even reduction
algorithm calling the cyclic odd-even
Reduction SuBroutine for the symmetric
constant-diragonal Periodic case.

-{iv) MB$2+.POEXLDP Parallel cyclic 0dd-Even reduction

algorithm to make use of the XPFCLD
command for the symmetric constant-
diagonal Periodic case.

={v) MB$2*.PUEDPRP Parallel cyclic 0dd-Even reduction

algorathm utilizing solely the $DOPAR/
$PAREND parallel construct for the
symmetric constant-diagonal Periodic case.

-(vi) MB$2+.POECSCP Parallel cyclic (dd-Even reduction

*

algorithm utilizing Critical SeCtions
for the symmetric constant-diagonal

Periodic case.

+Directory name.
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More analytically, program (Z), representing the most efficient
sequential algorithm existing, i1mplements the well known Gauss
elimination method. &s the Relative (or normalized) Speed~w9(RS )
w1ill be considered the ratio between the experimental t1me—compl£x1ty
of this uniprocessor standard solution and the experimental time-
complexities of the cyclic odd-even reduction parallel algorithms
achieved 1n a uniprocessor and parallel implementation.

In program ({17) the number of created pathsf 1s always equal to
the number of avallable processors each time. Then, after a pre-set
number of reduction steps, we continue by applying the Gauss
elimination sequential procedure to solve the resulting subsystems,
in each of the created parallel paths, simultaneously.

The notron behind program ({£%) 1s similar to that of program (i)
except that, after the pre-set number of reduction steps, we continue
by applying the cyclic odd-even reduction technique again, but
sequentially this time, to solve the resulting subsystems, in each of
the created parallel paths, simultaneously.

In either of programs (77) and ({{Z) the parallel paths are
created/terminated utilizing the $DOPAR/$PAREND parallel construct.
The principal aim behind these two implementations is, on the one hand,
to determine the optimal granularity factor of parallelism and, on
the other hand, to compare their parallel performance with that of the
following programs.

Program (iv} performs Zogzn reduction steps in total, while it
creates as many parallel paths as it 1s possible, 1.e., in a manner

independent of the number of available processors; but there is an

+At each reduction level.




[Ch. V/Sec. A : 564]

lmportant restriction, that 1is, the maximum number of parallel paths
that can be generated on this particular MIMD prototype, utilizing
the XPFCL command, 1s 75. If, however, an alternate command is
utilized, i.e., the XPFCLD command, then as many as 32,767 parallel
paths can be generated. Certainly, in our case, this number 1s
directly dependent upon the reduction level each time, while the
$DOPAR/$PAREND parallel construct i1s, again, utilized.

In program (v} the number of created paths.I~ 1s, as before,
always equal to the number of available processors each time. This
program performs a total number of 1092n reduction steps as well,
using solely the $DOPAR/$PAREND parallel construct.

Finally, program (V%) creates the parallel paths in a semi=-
asynchronous manner, utilizing critical sections only (1.e., the
$ENTER/$EXIT parallel construct), depending on the reduction level
and the number of available processors each time. In other words,
this program initially, creates two parallel paths and then, each time,
the next available processor creates the next parallel path. The
total number of reduction levels performed is similarly as before Zoggn.

In terms of the programming strategy followed, in all these
parallel variants, we have declared the following shared arrays:

W oo It stores the muliipliers of the constant-diagonal
entry of matrix 4 during the elimination process.

B : It stores the r.%.s. entries of the considered system
each time. On this array will be applied the even

stream of the cyclic odd-even reduction procedure.

+At each reduction level.
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C : It stores a copy of the array B. On this array
will be applied the odd stream of the cyclic odd-
even reduction procedure.

X : It stores the solution of the system.

INDE It stores the INDices of the Even stream of the

cyclic odd-even reduction procedure.

INDO : It stores the INDices of the 0dd stream of the
cyclic odd-even reduction procedure.
ITIME : It stores the fiming information.

Each program can be, theoretically, distinguished into five
different parts, where at the end of the parallel sections all the
processors are forced to synchronize. All parts, except the last,
are included in a D0-loop the execution of which 1s related to the
pre-set depth of recursion, which determines the granularity factor.

In the first part the odd and evern computational streams of the
cyclic odd-even reduction procedure are created and the corresponding
elements are calculated separately.

In the next three consecutive parts, correspondingly, we interchange
the computed r.h.s. values via the appropriate arrays of indices,
shuffle the even and odd used indices to the top of the respective
arrays, and finally, copy the odd and even used indices at the rear
half of each other's array. Note that, all physical ‘removals' of
the elements between the arrays, after every reduction cycle, have
been avoided by the use of an indexing procedure, which experimentally
has proved to be far cheaper (in computing time) compared to the

former approach. In addition, extensive experimentation proved that
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the work involved i1n these three parts was not worthwhile being
performed in parallel and hence the sequential approach was followed
{in fact, 1t proved much faster than the parallel one).

Finally, ain the last part, the original system has been reduced
to a number of subsystems of pre-determined size, which, in a
theoret:ical environment of a machine with an appropriate potential
{(1n terms of the number of processors), could be solved in one
time-step, simultanecusly. Note that, in the case thaé the granularity
factor 1s a {2x2) subsystem, the solution is obtained by repeating the
cyclic odd-even reduction procedure once more, as exemplified in

(par.-V.4.6).

~ Experimental Results

The experaimental results obtained for all the parallel variants
of the cyclic cdd-even reduction algorithm (and for the standard
Gaussian elimination} on the NEPTUNE system, along with the values
of some other parameters of the deterministic performance model
estimated statically, are presented in Tables (V.4.7-t1,t2).

As we mentioned previously, the intention of the experimentation
by being inclined, mainly, towards the best achievable parallel
performance, 1n conjunction with the smallest possible uniprocessor
time-complexity, led us literally to the upper limits of the NEPTUNE
machine, i.e., to the maximum allowed experimental system size for this

particular problem which was (2048x2048).
+
y 1

PROCS have been

The combinations of the utilized processors (N

analytically and in the given order stated in the above Tables, due to

¥ . . :

For a perfect balancing, in the sake of parallelism, between the
problem's computational load and the utilized processors we have
experimented with a power of 'two' combinations of the latter,




M 256 x 256
S
THE GRANULARITY FACTOR IN TERMS OF THE SIZE CF THE FINAL SEQUENTIALLY SOLVED SUBSYSTEMS
The resulting subsystems each time are sequentially solved by the corresponding subroutines
{POEGSBP] : Gauss Elimipnation Subroutane I {PCERSBP] : 0dd-Even Reduction Subroutine
N G N
ster| “F | procs T.(¢) o 5 Ry e e .Tge) Tole) o 5 Rg E F .T;e)
(secs) p p p p p (secs) p p P p p
M a3 4.310 4.310 1 0.578 1 1 2.770 2.770 1 0.899 |1 1l
S
2 ;5 @,1 2.260 4.520 |1.907 1.102 0.954 1.818 1.470 2.940 1.884 1.694 | 0.942 1.775
9,1,2,3 1.210 4.840 ] 3.562 2.058 0,890 }3.172 0.820 3.280 3.378 3.037 1 0.845 2.853
M g1 4.860 | 4.860 |1 0.512 |1 1 3.3% 3.390 |1 0.735 |1 1
S
3 ;3' g,1 2.570 5.140 {1.891 0.9269 0.946 1.788 1.820 3.640 1.863 1.368 § 0.931 1.735
%,1,2,3 1.400 5.600 ]3.471 1.779 0.868 3.013 1.010 4.040 3.356 2.465 ) 0.839 2.816
M ®{ 5.360 | 5.360 |1 0.465 |1 1 4.000 4.000 |1 0.623 |1 1
4 ;;; .1 2.820 5.640 }1.901 | 0.883 0.950 1.806 2.140 4.280 1.869 1.164 | 0.935 1.747
$,1,2,3 1.540 6.160 [3.481 1.617 0.870 3.029 1.210 4.840 3.306 2,058 g, B26 2232
M g] 5.720 | 5.720 |1 0.435 |1 1 4.570 4.570 |1 0.545 |1 1
S
5 ';g 9,1 3.030 6.060 | 1.888 0.822 0.944 1.782 2.440 4.880 1,873 1.020 1 0.936 1.754
g.1.2,3 8 1,690 g.760 013.385 1 1.473 Jo.846 }2.864 21.390 5,560 3.288 4 1.791 10,822 | 2,702
[GRUSCDP]
Tc(e) @ 2.490
|J§secs)

Table V.A.7-tl: Experimental Results and Performance Measurements, for the Symmetric Constant-Diagonal Periodic Case, of
Parallel Variants of the Cyclic Odd~Even Reduction Method on the 'NEPTUNE' Prototype System, for Granularity

Factors of Various Sizes,
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MS 512 x 512
THE GRANULARITY FACTOR IN TERMS OF THE SIZE OF THE FINAL SEQUENTIALLY SOLVED SUBSYSTEMS
The resulting subsystems each time are sequentially solved by the corresponding subroutines
[POEGSBP] : Gauss Elimination Subroutine [POERSBP] : 0dd-Even Reduction Subroutine
Norep)] Gr  [Mprocs To(e) o S R I Y 1.(¢/ o 5 Ry . -y
(secs) r rp P P p s (secs) p P P p p s
M g | 8.670 8.670 1 0.578 1 1 5.460 5.460 1 0.918 | 1 1
2 —%- $,1] 4.470 8.940 1.940] 1.121 0.970 | 1.8381 2.850 5.700 1,916 | 1.758 | 0.958] 1.835
2 $,1,2,3 | 2.340 9.360 3.705| 2.141 0.926 | 3.432 1.550 6.200 3.523 | 3,232 | 0.881] 3.102
M | 9.810 9.810 1 0.511 1 1 6.650 6.650 1 0.753 | 1 1
3 —% $,1 | 5.090 [10.180 1.927] 0.984 0.964 1.857 3.490 6.950 1.905 | 1.43&6 | 0.953} 1.815
2 $,1,2,3 ] 2.680 |10.720 3.660} 1.869 0.915 | 3.350 1.890 7.560 3.519 | 2.651 | 0.880] 3.095
M # |10.870 |10.870 1 0.461 1 1 7.910 7.910 1 0.633 ] 1 1
4 —é% #,1 ]| 5.6e60 |1l.320 1.920| 0.885 0.960 | 1.844 4.170 8.340 1.897 1 1.201 ] 0.948] 1.799
2 #,1,2,3 1 3.020 (12.080 3.599(f 1,659 0.900 | 3.239 2.270 9.080 3.485 | 2.207 § 0.871}] 3.036
M g {11.920 11.920 1 0.420 1 1 9.120 9.120 1 0.549 1 1
5 | = 6,1} 6.200 |12.400 | 1.923} 0.808 | 0.961 | 1.848 || 4.800 | 9.600 |1.900 {1.044 | 0.950] 1.805
2 1g,1,2.3] 3.300 |13.360 | 3.560 1.500 | 0.892 | 3.184 2.650 J1o0.600 §3.442 ] 1.801 ] 0.860] 2,961
[GAUSCDP]
(e) il 5.010
(sgcs)

Yable V.A.7~t1l{cont.d): Experimental Results and Performance Measurements, for the Symmetric Constant-Diagonal Periodic Case,
of Parallel Variants of the Cyclic 0dd-Even Reduction Method on the 'NEPTUNE' Prototype System, for
Granularaity Factors of Various Sizes.
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Mq 1024 x 1024
THE GRANULARITY FACTCR IN TERMS OF THE SIZE OF THE FINAL SEQUENTIALLY SOLVED SUBSYSTEMS
The resulting subsystems each time are sequentially solved by the corresponding subrcutines
[POEGSBP] : Gauss Elimination Subroutine | [POERSBP] : 0dd-Even Reduction Subroutine
N G N
STEP PR
F ocs To(e/ o s Rg E F .T;e) Tole/ c s Rg E I
(secs) 4 P p p r (secs) p p r 14 p s
M ¢ |17.470 17.470 1 0.575 1l 1l 10.880 10.880 1l 0.923 |1 L
2 '%% o,1 8.920 17.840 1.959]1.126 ©.979 1.918 5.600 11.200 1.943 1.793 10.971 1.887
2
6,1,2,3 4,610 18.440 3.790] 2.178 0.9247 3.5%0 2.970 11.880 3.663 3.380 ]0.91¢6 3.355
M # 119.760 19.760 1 0.508 1 1 13.250 13.250 1 0.758 |1 1
3 —-g— %,1 {10.140 20.280 | 1.949f8 0.990 |0.974 1.899 6.870 13.740 [J1.929 ]1.461 J0.964 | 1.860
2
#,1,2,3 5.310 21.240 3.721)11.891 0.930 3.462 3.680 14.720 3.601 2.728 |0.900 3.241
M @ 121.950 21.950 1 0.457 1 1 15.760 15.760 1 0.637 |1 1
4 —j @,1 |11.330 22.660 | 1.937f0.886 |0.969 1.877 8.190 16.380 [1.924 | 1.226 |o.962 f 1.851
2
@,1,2,3 5.950 23.800 3.689] 1.687 0.222 3.402 4,410 17.640 3.574 2.277 |0.893 3.193
M ¢ |24.210 24,210 1 0.415 1 1 18.170 18.170 1 0.553 |1 1
5 —% @,1 112.500 25.000 1.937| 0.803 0.968 1.876 9.480 18.%60 1.917 1.059 [0.958 1.837
2
$,1,2,3 6.620 26.480 3.657]1.517 0.914 3.344 5.130 20.520 3.542 1.957 [0.885 3.136
[GAUSCDP)
Tde/ % 10.040
(secs)

Table V.4.7-tI(cont.d):

Granularaty Factors of Various Sizes.

Experimental Results and Performance Measurements, for the Symmetric Constant-Diagonal Peracdic Case,
of Parallel Variants of the Cyclic 0dd-Even Reduction Method on the 'NEPTUNE' Prototype System, for

Y 9es/A Ydl
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M 2048 x 2048
S5
THE GRANULARITY FACTOR IN TERMS OF THE SIZE OF THE FINAL SEQUENTIALLY SOLVED SUBSYSTEMS
The resulting subsystems each time are sequentially solved by the corresponding subroutines
[POEGSBP} : Gauss Elimination Subroutine I [POERSBP] : 0dd-Even Reduction Subroutine
N G N
STEPy UF | PROCS Tele) c s Rs E .l To(e) c s s E .ol
{gecs) p |4 p P p s ({secs) P P p p p s
M o1 35.000 | 35.000 1 0.575 1 1l 21.850 21.850 1 0.920 |1 1
2 ug- ¢,1{ 17.830 35.660 { 1.963 | 1.128 0.981 1.927 11,220 22.440 1.947 §1.792 0.974 1.8%
2 $,1,2,3 9.170 36.680 3.817] 2.193 0,954 3.642 5.8%0 23,560 3.710 | 3.414 10.927 3.440
M a1 39.740 | 39.740 } 1 0.506 1 1 26.670 26.670 1 0.754 |1 1
3 —% 0,1 20.330 | 40.660 1.955] 0.989 0.977 1.911 13.730 27.460 1.942 11.465 J0.971 1.887
2 0,1,2,3 10.560 | 42.240 ] 3.763}11.904 0.941 3.541 7.250 29.000 3.679 }2.774 |0.920 | 3.383
M ¢ | 44.330 | 44.330 1 0.454 1 1 31.490 31.4%0 1 0.639 |1 1
4 —% B,1 22.780 | 45.560 | 1.946 | 0.883 0.973 1.893 16.330 32.660 1.928 }1.231 J0.964 1.859
2 $,1,2,3 11.930 |} 47.720 3.716 ] 1.686 0.929 3.452 8.690 34.760 3.624 ] 2.314 10.906 3.283
M ¢ | 48.840 | 48.840 1 0.412 1 1 36.410 36.410 1 0.552 |1 1
5 ~§ 9,1 25.150 | 50.300 1.942 ] 0.800 0.971 1.886 18.860 37.720 1.931]1.066 J]0.965 1.863
2 0,1,2,3 13.220 52.880 ] 3.694} 1.521 0.924 3.412 10.100 40.400 3.605711.991 0.90{‘ 3.249
[im(]zfnpl % 20.110
|L(sgc3)

Table V.A.7=t1 (cont.d):

Experimental Results and Performance Measurements, for the Symmetric Constant-Diagonal Periodic Case,
of Parallel variants of the Cyclic 0dd-Even Reduction Method on the 'NEPTUNE' Prototype System, for
Granularity Factors of Various Sizes,
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MS 256 x 256 512 x 512
THE GRANULARITY FACTOR IN TERMS OF THE SIZE OF THE FINAIL SEQUENTIALLY SOLVED SUBSYSTEMS
7.8 R ) || 1 R (e)
C . ¢ S .
Program G NPROCS {secs) P Sp Sp Ep Fp Ts (secs) cp p Sp Ep Fp Ts
M ¢] 4.850 4.850 |1 0.513 |1 1 10.740 | lo.740 |1} 0.466 |1 1
[POEDPRP] ?m—l} p,1] 2.650 5.300 |1.830)0.940{0.915 |1.675 5.750 | 11.500 |1.868 10.871 |0.934 | 1.744
2 #,1,2,31 L.530 6.120 |3.170]|1.627 |o0.792 j2.512 3.240 | 12.960 |3.315 |1.546 |o.829 | 2.747
M #l 5.0%0 5.090 |1 0.489 {1 1 11.250 | 11.250 |1 0.445 |1 1
s
[POECSCP] -TE:IT B,1f 2.7%0 5.580 1.824 1 ©0.892 | 0.912 |1.664 6.020 12.040 ]1.869 §10.832 ]0.934 1.746
2
$,1,2,3]1 1.770 7.080 2.876 |11.407 | 0.719 | 2.067 3.660 14.640 |13.074 ]1.369 |0.768 2.362
M d| 5.180 5.180 |1 0.481 {1 1 11.440 | 11.440 |1 0.438 |1 1
S
[POEXLDP] @-1) ©,1| 2.800 5.600 }1.850]0.889 |0.925 |1.711 6.050 | 12.100 |1.891 |0.828 |0.945 | 1.788
2
$,1,2,3] 1.720 6.880 |[3.0l12|1.448 |0.753 |2.267 3.640 | 14.560 |3.143 [1.376 |0.786 | 2.469
[GAUuSCDP]
(e) i) 2.490 5.010
Te
(secs)

Table V.A.7-t8:

Granularity Factor of Size (2x2).

Experamental Results and Performance Measurements,
Parallel Variants of the Cyclic Odd-Even Reduction Method on the 'NEPTUNE' Prototype System, for a

for the Symmetric Constant-Diagonal Periodic Case, of

Y "92§/4 "Yd]

.
.

[1Ls



M 1024 x 1024 2048 % 2048

THE GRANULARITY FACTOR IN TERMS OF THE SIZE OF THE FINAL SEQUENTIALLY SOLVED SUBSYSTEMS

T.(e) R L] 1,0 R (e)
Program Gp NPROCS (sgcs) Cp Sp Sp Ep Fp TS (s%cs) Cp Sp Sp Ep Fb.Té
M $123.8050 |23.890 {1 0.420 |1 1 52.440 |52.440 |1 0.383 ] 1 1
S
[ POEDPRP] [—r-—g+ $,1112.620 |25.240 | 1.893|0.796 [0.947 | 1.792 ||27.540 |55.080 | 1.904} 0.730) 0.952 | 1.813
2

®,1,2,3{ g.950 27.800 3.437|1.445 lo0.859 | 2.954 15.170 {60.680 | 3.457| 1.326 ]| 0.864 { 2.987

M @ | 24.870 24 .870 1 0.404 |1 1 54.560 |54.560 {1 0.369 ] 1 1
[poacscpl‘—%::IT 6,1]13.170 26.340 1.888]0.762 |0.944 | 1.783 28,760 |s57.520 | 1.897] 0.699 | 0.949 | 1.799
2 $,1,2,3] 7.910 31.640 3.14411.269 lo.786 | 2.471 16.920 {67.680 | 3.225( 1.189| 0.806 | 2.599
M @ 125.300 25.300 1 0.3%7 |1 1 55.270 |55.270 {1 0.364 |1 1
[ POEXLDP] ?m_l) #,1 | 13.230 26.460 1.912§0.759 |0.956 | 1.828 28.840 |57.680 | 1.916] 0.697] 0.958 | 1.836
2
%,1,2,3 ) 7.810 31.240 3.23941.286 |0.810 | 2.623 16.830 |e67.320 | 3.284f 1.195] 0.821 | 2.696
[GAUSCDP]
Tc(e) i) 10.040 20.110
(secs)

Table V.A.7-t2 (cont.d): Experimental Results and Performance Measurements, for the Symmetric Constant-Diagonal Periodic Case,
of Parallel Variants of the Cyclic 0dd-Even Reduction Method on the 'NEPTUNE' Prototype System, for
a Granularity Factor of Size (2x2).

{215 v 9°s/n "Yd]
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the occurring variations in their relative speeds which would
certainly lead to different sets of results 1f other processor
combinations were to be utilized.

The reader should note that 1t was of no use estimating the

Reference internal Speed—up (ﬁé ), due to the obvious effect of the

p

granularity factoer upon the time-complexities obtained.

Some conclusions that can apparently be drawn from the
examination of the above Tables are that, 1n terms of the Sp and Ep
parameters, all programs exhibit results which improve analogously
to the system size experimented with, which at the computer's limits
reach values very close to the optimum theoretical ones, 1.e., P
and £I1, respectively. In addition, the Fb.Tée) parameter also exhibits
optamum results of O(p). These observations, however, are directly
dependent upen the granularity factor and are generally analogous
to its decrement.

In terms of the real Cost of each parallel variant, as was
normally expected, 1t increases along with the increase of the number
of utilized processors.

To accomplish the principally set target, concerning the
determination of the optimal granularity factor, a comparison between
the different parallel variants of the method would prove that its
most efficient value is, always, the size of the systems obtained at
the earliest reduction level that the number of created parallel paths
becomes equal to the number of utilized processors of the machine.

More analytically, we observe that the implementations inviting the

sequential cyclic odd-even reduction and the Gauss elimination
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subroutines, after a pre-set number of reduction steps, are far
superior, and in that priority sequence, compared to the other
immplementations which proceed unt:il the last reduction level. Thas
can apparently be seen from the time-complexities achieved in a uni-
processor and parallel implementation, since the more reduction levels
which are performed, the more expensive the implementation becomes.

In particular for the latter 1mplementations, they have been presented
in Table (V.A.7-t2) 1in the priority sequence of the best parallel
performance achieved, in conjunction with their time-complexities.

From the aspect of the real life 'true' Relative or normalized
Speed-up (Rs ) results, achieved when compared with the most efficient
serial implementation of the Gauss elimination, we observe that the
above comments, regarding the optimal granularity factor and the 'best’
parallel variant of the cyclic odd-even reduction method, apply equally
well for them. In fact for that granularity factor, the results
obtained from the MB$2.POERSBP parallel variant are always of ((p)
and are continucusly lmproving up to the NEPTUNE system's limits.

It would certainly be of great interest in experimenting with very-
very large scale systems (i.e., of size >104) and a MIMD computer
complex of more processors.

The parallel behaviour of all these versions of the cyclic odd-
even reduction methodf since the symmetric constant—-diagonal periodic
case conslsts of the 1deal problem for this technique to be applied,
is diagrammatically depicted in the Figures below. In particular,
Figures (V.A.7-f1,f2) correspondingly exhibit the experimental Time-
complexities and the respective Speed-ups achieved con the NEPTUNE

prototype system. In Figures (V.A.7-f3,f4) the Relative (or normalized)

*For that matriz gize for which the performance analyses are carried out.
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Speed-ups and the Efficiencies achieved are 1llustrated, while the
real Costs of all these versions are given in Figure (V.A.7-f5).
Finally, let us formally introduce, in Table (V.A.7-t3}), the
complementary new local parameters set for thils particular method and
already utilized in the theoretical evaluation of its algebraic-

complexity and the Tables with the experimental results.

LocaL PARAMETERS

AG[R] : The Algebraic-complexity of the Reduction
process in terms of flops.
AG[S] : The Algebraic—complexity of the recursive

f1lling in Solution procedure in terms of flops.

Ac[//] : The total Algebraic-complexity of the
parallel algorithm using the cyclic odd-even
reduction technique in terms of flops.

Mo : The Stz¢ of the original Matrix.

GF : The Granularity Factor in terms of the size
of the final sequentially solved subsystems.

Norgp : The Number of reduction STEPs.

Table V.A.7?-t3: List of Local Parameters for the Performance Model.

= Performance Analysis

The program and system dependent performance analyses of the
parallel variants of the cyclic odd-even reduction method are
correspondingly given in Tables (IV.A.7-t4,t5). Note, the modification
of the local parameters Ac,, . and T(t? «yr Aappearing in the

{(Z,4) (Z,4)

performance analyses in Chapter IV, to Acln and Téln’ respectively,




60

S0 -

'S
(=]
]

Time—Complexity [in secs]
(7]
o

[Ch. V/Sec. A : 576]
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implying the Algebralc-complexity (in terms of flops) and the Time-
complexity per line of the linear system of equations.

In terms of the Ra(s) global parameter, when the processing-to-
shared memory module access ratio is very high, then the cost of
calling and setting the F$RITFP subroutine {i.e., ~252.6us}) 1s, generally,
ignorable. In cases similar to the present one, however, this overhead
can be considered as an additional real-time flop.

In particular for the implementation involving the mutual
exclusion mechanism, we found that, at the period of experimentation
and after extensive experiments+, for the execution of the mechanism
itself, 1.e., the $ENTER/$EXIT parallel construct, reguired a time
(tcs) of ~561ps, 1nstead of ~600us as given in the (Appendix C-II/par.-
IT.B.3.1), having used the 'XPFCL' command to generate the lcad modules;
the processors cycle time (téy)' when walting access to a critical
section resource, was ~1070us, while the blocked time (té) again
exhibited some fluctuation in values around ~319us.

As we observe from the program dependent performance analyses all
programs produce an apparently considerable overhead when accessing
the shared data, parallel path scheduling and critical sections resources.
Although the best out of this asynchronous MIMD system was achieved by
producing long independent tasks in the programs calling the subroutines
for the sequential solution part, however, a cross—comparison between
the theoretical and experimental results obtained proves that, albeat

it was not possible to verifyi, an optimization mechanism, by means of

local registers, must operate in the system taking care of multiple

+
With the old ('parity'} memory installed.

This is internal information of Texas software not available.
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Table V.A.7-t4: Program Dependent Performance Analyses, for the Symmetric Constant-Diagonal Periodic Case, of Parallel

Variants of the Cyclic 0Odd-Even Reduction Method.
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Table V.A.7-t4 (cont.d): Program Dependent Performance Analyses, for the Symmetric Constant-Diagonal Periodic Case, of
Parallel Varaiants of the Cyclic 0dd-Even Reduction Method.
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accesses and transfers to, and from the same shared structures.
Indirectly, this was assured through some of our experiments in which

we eliminated the excess of the accesses to the shared data rescurce,

by declaring 'dummy' local variables for the multi-used shared
structures. The results obtained, though, were more or less the same,
1f not worse. For future investigation, it would be very interesting
to study a general Redundancy Analysis and reveal such optimal aspects
for MIMD asynchronous Multiprocessors testbeds, depending upon and

thus integrating the 'Deterministic Performance Model' - DPM established
1n the previous Chapter.

The conclusions presented in the numerical experaimentation are,
also, reflected from the results of the generalized performance analyses
given 1in Tables (V.A.7-t4,t5), which additionally hint possibilities of
different implementation structures in terms of using the available
processing power. Note, however, that unpredictable dynamic (internal
and external) factors, affecting the behavioural status of the NEPTUNE
prototype system, have caused, similarly to the previcus experimental
results, the particular, deceptive though, declinations from the
generally drawn line of conclusions.

With respect to the programs calling the sequential subroutines to
perform the solution part, although the overheads of the program
involving the Gauss subroutine are less than the other's, i1ts overall

i is due to the alteration from cyclic odd-even

higher executional cost
reduction to Gaussian elimination, which involves an extensive copying

procedure of the already obtained results at that reduction level.

In fact, the larger the size of the sequentially solved subsystems, or

+It results in better internal acceleration results.



[Ch. V/Sec. A : 586]

otherwise, the lesser the refinement steps of analysis, the higher

the relative time-complexity achieved.

This observation can be proved by considering the ratios between the
corresponding time-complexities of these implementations, which call
the subroutines to perform serial Gaussian elimination and cyclic odd-
even reduction, respectively, for different granularity factors; these
ratios are decreasing along with the increase of the reduction steps.

On the other hand, because of these extensive sequential parts
of the involved subroutines, the very low rates of accesses resulted
in unmeasurable shared memory and parallel path scheduling losses for
the corresponding solution parts and therefore therr performance
analysis has been omitted.

In addition, for all implementations, except the shared resources'
contribution to performance degradation, by means of 'waiting' accesses,
the unavoidable sequential parts performing the interchanging of the
computed r.h.s. values via the appropriate arrays of indices, and the
shuffling and copying of the odd and even used indices to the top of
the corresponding arrays and at the rear half of each other's array,
respectively, also negatively affect the overall parallel performance.

Consequently, due to all these factors, the potential performance
of an algorithm i1s always affected, thus the balance between the number
of parallel paths and their algebraic-complexity and the number of
sequential paths and their algebraic-complexity determines the maximum
parallel performance obtainable.

Let us now add some more explanatory comments about the
implementation utilizing critical sections, to assist in a better

understanding of the program dependent performance analysis.
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The number of the generated parallel paths, in terms of the
utilization cost of the parallel mechanism, depends upon the number
of available processors each time; while, in terms of the utilization
cost of the mutual exclusion mechanism, the sectioning of the problem's
lines, on which the cyclic odd-even reduction technique is applied,
depends upon the current reduction level. The allocation of these
various created sections to the available processors takes place 1n
an asynchronous manner to benefit from their different relataive speeds.
Due to this difference in relative speeds, however, the number of
implementation cycles executed by each processor (for p>l) may vary;
in other words, the faster processor may execute more cycles compared
to the slower one, but this i1s only for cases where there are many
sections of small relatively length.
The fact that at the end of each reduction level all utilized processors
are forced to synchronize characterizes the implementation as a
semi-asynchronous one.

The complementary information to that given in (dppendix C-II/par.
-II.B.3.1) 1s as it was presented in (par.-IV.B.3.1). 1In particular
for the information obtained from the shared array ITIME when testing
the parallel variants of the cyclic odd-even reduction method, many
experimental runs were carried out always considering the average
figures accordingly. Th;s information being essential for the
estimation of their experiment dependent performance analysis parameters,
in the case of a maximum utilization of the NEPTUNE system and in the
corresponding 1mplementation sequence as it appears in Tables (V.A4.7-t4,t5),
was as follows:

(e)

7) The smallest run-times Tb to be utilized in formula (IV.B.3.1:25)
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were (in secs) 9.160, 5.870, 15.160, 16.900, 16.820;

2Z)  the total numbers of wait cycles to be utilized in formula
(IV.B.3.1:26) were 156, 151, 767, 1212, 1111, which 1mplied
average numbers of wait cycles per processor of 39, ~38, ~192, 303,
~278, respectively;

117) the average experimental timings of all cooperating processors
were (in secs) ~9.168, 5.880, ~15.168, 16,910, ~16.823; and,

iv) the numbers of parallel paths run by each processor, consideraing
the average of all cooperating processors but P ; Were 4, 4, 12,

0
12, 768.

In particular, for the semi-asynchronous parallel variant the
average numbers of accesses to critical sections and walt cycles to
access resource 1 were ~779 and 61, respectively.

The times the system was not used productively (W), being estimated
through the formula (IV.B.3.1:22) by using the average experimental
timings in £ZZ), were (in secs) -1.672, l1.670, -~8.232, 13.080, -~12.022;
a good approximation to these total wasted times can be obtained from
the sum of the wasted times statically and dynamically given in the
performance analysis Tables.

Finally, for the implementation using mutual exclusion, we may
consider a performance limitation in terms of a theoretical upper
bound on the number of cooperating Pprocessors, in connecticn with the
cycle time of the critical sections resources. The corresponding

estimaticon formula is

R (cs)'f t
Sa(r) = #&T—-R— (V.A.7:12)
c8

which, in this case, produced (mp) values of 4,216/22 and 7, respectively.
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In addition, for the same implementation, the formula (IV.B.3.1:25),
for the static estimation of the average Idle time (Id() , was

modified to include the 1dle time due to the execution of the mutual

exclusion mechanism as

n
ph
(maxps-minps). § (I , JAe, £ . .L } .100
14t L Mot o ot Tplp), 00/ 1), MFes 0tes)
t B fe}l _ &
Tp .10

(V.A.7:13)

Furthermore, despite the generality of the estimating formulae
of the performance model, some very specific implementations of the
parallel constructs consist of exceptions of the followed prediction
line, thus 1mposing some minor alterations to the existing formulae.
In our case, this takes place for the POECSCP and the POEXLDP parallel
variants.

In particular for the former implementation, the formula (IV.B.3.1:23)

1s modified as follows,

Weg T P- (q Tor p(p) 0(//)'te tp Np(p) O(//) Ces® p(p) Yotes)

N Np(p)°[qa el’ 0(//) z (s l_zcyl) Pt 'LO(//) es’ 0(cs)

(V.A4.7:14)
to take care of the semi-asynchronous structure.

Note, for this variant, in Table (V.A.7-t4), the implied use of the

parameter with values for the reduction and solution parts of 2E

Ib(cs)

and 1024, respectively.

For both the above implementations 2% implies the value of

log on=1 N

207 2 STER _ 5 -1y (V.A.7:15)
Ngppp~t
+ . . . .
For the figure given in 'Table (V.A.?-t4)' we have considered the case
that all four processors of the 'NEPTUNE' system were cooperating.
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which for this particular experimental case was 2046; whilst the
approximations given for some of the predicted values are mainly due
to the existing differences in the processors relative speeds, which
are absolutely vital for these types of implementation.

On the other hand, for the POEXLDP parallel variant, the use of
the LO(//) parameter in formulae (IV.B.3.1:23,25) 1s superfluous, since
the parallel paths are generated independently to the number of utilized
Processors.

To conclude, in respect to the Table (V.A.7-t4), note that the
normalization and integer rounding of the number of accesses to the
shared data resource would introduce slight discrepancies in the
results, 1f they were to be utilized where 1t was necessary.

The correct results are obtained 1f the real processing-to-access
ratios are used, 1.e., 3 and 11 flops over 10 and 22 accesses to the
shared data resource, respectively, for each implementation cycle.

In accordance to what was discussed in (par.—IV.B.3.1)+ most of
the performance analyses figures can be verified by a cross—examination
of the program and system dependent Tables, while, generally, 1t
should be noted that the executional cost of all integer operations,
rnvolving shared or local variables, DO-loop increments, etc., has

been considered as ignorable.

.i.
Namely, for the same, in terms of processors utilization, implementation
instances.,
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V.B.1: THE GENERAL NoN-PERIODIC CASE: EXPERIMENTAL RESULTS AND

PERFORMANCE ANALYSIS ON THE 'NEPTUNE' PROTOTYPE SYSTEM

In this Section we investigate the tridiagonal equation solvers
in their most general forms and obtain their algebraic-complexity
counts. The c¢yclic odd-even reduction algorithms we describe are
direct generalizations of the previous Section's parallel algorithms,
solving non-constant coefficient systems.

Herein, we shall examine the case of a tridiagonal non-periodic
coefficient matrix and experament, for greatest efficiency when
balancing the computing power available from the MIMD parallel system
in hand, with a number of egquations taken to be a power of ‘'two'.

For a theoretical simplicity, however, we shall assume that
n:n'-J,where?zEZm and m 1s any positive integer, and solve the general

tridiagonal set of linear algebraic equations

by 9 %) Yy
O
2 P2 %2.__ *2 Y2
S~ "”-... . i
~~. .. Teel : = | (V.B.1:1)
-n..--.-‘ ""-.__.. -__‘“ i :
"'-..._ - - bl 1
O ®p-1 Pn-1 “n-1 ! :
b ' :
L % n :%L _yq_
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¢r, in matrix-vector notation
AX = y . (V.B.1:2)

To exemplify the cyclic odd-even reduction process consider the

following three adjacent equations from (V.B.1:1),

+ =
% TR ¥ Y eaR Y1

y, +(V.B.1:3)

2T}
W
+
o
]
+
9]
»
]

+ =
a1+1x1 * b1+1x1+1 c1+lx1+2 y1+1

for 1=2,4,...,n'-2,
If the first of these equations 1s multiplied by al=-ai/b1_l, and

the last by Y1=—cl/bl+ » and the three equations are added, all

1

reference to the variables x X 1s eliminated, to obtain

1-1"" 141
{1] [1] (11 _ U1 _
3 X tRIR e TR LTy (V.B.1:4)
where (1] \
a, =0 a
1 1 1-1
(11 _
€1 T %
i . V.B.1:6
b[ll =b +0 c, ,+y a ( )
1 1T 1 i-1l "1 1+1
{1] - oy oy
¥y Y 17141 )

Note that, for the special end equations, the out of bounds xis are
considered of zero value.
The equations (V.B.1:4,5) relate every second variable and, if

written for i=2,4,...,n'-2, again consist of a tridiagonal set of

equations of the same form as the original equaticns (V.B.1:3), but
with different coefficients, i.e., ail],bil],cil]. The number of
equations in (V.B.1:1) has, thus, been roughly halwved.

Cbviously the above process can be repeated recursively until,

after Zogzn'—l levels of reduction, only the central equation for
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1=n'/2 remains. This equation 1s

1)[r'] _ . Ir]

nl/2xn|/2 - yn./z r (V-B.I.'G)

where, again, the superscript r:loggn’-iindicates the level of
reduction. The solution for the equation (V.B.1:6) 1s simply obtained

by division, 1.e.,

_ Ir] /b[r]

/2 = Yo sa/Poh s (V.B.1:7)

X

The remaining unknowns can now be found from a back filling in
procedure. In actual fact, the unknowns at level P-I1 can be found
using the equation

x = (y[r-l]_a[r-l] [r-1] )/b[r-ll

1 1 1 1-n'/4 i X /2’ Py , (V.B.1:8)

for i=n'/4 and 3n'/4.
This filling in procedure i1s repeated until, finally, all the odd
unknowns are found using the original equations.

Therefore, the cyclic reduction procedure i1nvolves the recursive
computation of new coefficients and right-hand sides, for levels

2=2,2,...,m~1, from

)] _  _[2-1] ‘
al - ala. (2-1)
i=-2
(21 [2-1]
c, = y,¢ B
1 . 1+2(2 b
o ’ (V-B.I:g)
[2] [2-1] [2-1] [2-1]
b, =b +a_C _q Yty a _
i 1 1 1-2(2 1) "1 1+2(E 1}
(2] [2-1] [£-1] [£-1]
vy, =Y ta Y Y _
1 b 1 1_2(2 1) "1 1+2(£ 1}
where, J
= _[&=11 , [&-1] 4
e ] [bi_z(L-l)
s (V.B.1:10)
-1 -1
Y, = _ci ]/b[ ]

1+2(2_l) ’
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and 1=22(step 22) until n'—22,

(¢l
1

=h and c[O]=c .
1 1 1

with the initial values a£0]=al: b
For the solution a recursive filling in process is followed, for

L=mym=1,.,.,2,1 , from

% — (y[z_l]-a[gdl] - [2—1] )/b[lql-l]

X c X ,(V.B.1:11)
1 1 b3 l_2(2—1) 1 l+2(l-l) b

where

_ L (2=1) (4-1) (L-1)
1 =2

(step 2 } until n'-2
and xo=xn,=0 when they occur. The routing diagram for this algorithm
can be straight-forwardly derived from Figure (V.A.6~f3) bearing in
mind the non-periodic nature of the problem.

Also, note that, in this diagrammatical routine the initial values
are considered of being at reduction level one (instead of level zero
as implied in the previous formulae), which in fact would result in
Zogzn' deceptive levels of reduction, and this i1s for convenient
reasons 1in programming.

The algebraic-complexity sum of formulae (V.B.1:9,10),

considering as before a theoretical equivalence in the arithmetic, 1s
n'-
1og2 1

..f.
Ac, , = 12 ) ol (V.B.1:12)
[8] g=1 Lz"J

while for the back-substitution phase, 1,e., through formula (V.B.1:11),

1t 1s approximately
logzn'—l

Ac =1 +5 [é— . {(V.B.1:13)
[5] Lzl |2J

Hence, the total algebraic-complexaity of the general serial evaluation

+To take care of the not exactly divisible number of considered equations.

Irhis approximation is due to the non-periodic treatment of the
spectal end equations at each reduction level.
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routing of the cyclic odd-even reduction methed 1s approximately

| - [ -
logzn 1 log2n 1

. |n E:d .14
Ac[R] + Ac[S] x 1 4+ 12 Ezl Lzﬂ' +5 Ezl 3 . (V.B.1:14)

On the other hand, as for the symmetric constant-diagonal periodic
case, 1t 1s obviously quite complex and parallel machine dependent to
evaluate, on a per parallel path basis, the total algebraic-complexity
of the parallel variant of this method (where no back-substitution
phase occurs) .

For the particular type of the parallel system in hand, the total
algebraic-complexity of the parallel algoraithm using the cyclic odd-
even reduction technique, for the same problem as previously, whose
diagrammatical routing can be straight-forwardly derived from Figure
(V.4.6~f4), on a hypothetical p-processor system is approximately

logzn'

log.n'
Aep, = 12 N (lg‘l"il -1) + [rg—‘;—l-.} (V.B.1:15)

g=1 2* |

This approximation i1s due to the fact that the previously considered

number of equations does not assist in producing symmetrical workloads+

for every available processor, each time; in fact, this formula
approximates the longest, in terms of arithmetic operations, parallel

path, while 1t should be noted that the number of operations required

for the special end equations is only Azlf the number required for the

rest. Also, the number of reduction levels, in the parallel implementation,
has been increased by one.

In terms of the time-complexity, considering each basic operation

+Bear in mind the particular construction of the parallel programs.
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requiring the same executional time-step length, we obtain the
following theoretical Speed-up {1.e., internal acceleration) and
Efficiency (1.e., utilization of the parallel machine) ratios of the

parallel variant compared to the serial one

logzn'-l logzn'—l logzn'-l
ot 1+12 ) t;%l+ 5 ) F%ﬂ p(l+ J m
s -8 = 2=1 g=1 2 . 21 oot
p T(t) log,n rb‘ - 2logzn £1 log,n
A e R e L "
g=1 Blla p 4=1
logzn'—l {(V.B.1:16)
and b p(l+ E n) +
E =~k g ‘Q‘Tl g1 . (V.B.1:17}
o} P log2n
P ) n
=1

Certainly, the respective optimal values of p and one for the Speed-up
and Efficiency factors, as for the symmetric constant-diagonal
periodic case, are achieved for very large values of n. Again, note
that, these are not the true performance ratios, since the parallel
variant should be compared with the most efficient existing sequential
algorithm of Gaussian elimination.

Let us now proceed with the actual experimentation of the cyclic
odd-even reduction method on the NEPTUNE parallel system, at farst
considering a brief descraiption of the selected characteristic programs,
each making use of a different parallel strategy. These programs
are included in the Appendixz -V under the following meaningful
names:

1

. GAUSSGNP : GAUSS algorithm for the General

-(Z) MB§4

Non-Periodic case.

Ywnich are their optimal theoretical values.

Directory name.




[Ch. V/Sec. B : 59&]

~(47) mB§4 .POEGENYP  :  Parallel cyclic 0dd-Even reduction
algorithm for the GENeral Non-
Periodic case.

—(1it) MB$4+.POEGSGNP : Parallel cyclic Odd-Even reduction
algorithm calling the Gauss
Subroutine for the General Non-
Periodic case.

-{iv) MB$4+.POERSGNP : Parallel cyclic Qdd-Even reduction
algorithm calling the cyclic odd-
even Reduction Subroutine for the
General Non-Periodic case.

More analytically, program (Z), representing the most efficient
sequential algoraithm existing, 1mplements the well known Gauss
elimination method. As the Relative (or normalized) Speed-up (RS )
will be considered the ratio between the experimental time-complexity
of this uniprocessor standard sclution and the experimental time-
complexities of the cyclic odd-even reduction parallel algorithms
achieved 1n a uniprocessor and parallel implementation.

Program (%7} performs Zogzn reduction steps in total, while the
number of created parallel paths, at each reduction level, 1s always
equal to the number of available processors each time.

The structure of programs (ZZ%), (7v)is similar to that of
program {771) except that, after a pre-set number of reduction steps,
we continue sequentially by applying the Gauss elimination and the
cyclic odd-even reduction technigques, respectively, to solve the

resulting subsystems, in each of the created parallel paths, simultaneously.

+D£r'ector'y name.
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In terms of the programming strategy followed, in all these
parallel variants, we have declared the following shared arrays:
EA : It stores the sub-diagonal entries of the
coefficient matrix.
EB : It stores the diagonal entries of the
coefficient matrix.
EC : It stores the super-diagonal entries of the
coefficient matrix.
RHSE : It stores the r.%h.s. entries of the system.
On the above arrays will be applied the Even stream of the cyclic
odd~even reduction procedure.
INDEX : It stores the JNDices of the Even strxeam of
the cyclic odd-even reduction procedure.
04 : It stores a copy of the array EA.
OB : It stores a copy of the array EB.
oc : It stores a copy of the array EC,

RHSQ

It stores a copy of the array RHSE.
On these arrays will be applied the Odd-stream of the cyclic odd-
even reduction procedure.
INDOX : It stores the I¥Dices of the 0dd stream of the
cyclic odd-even reduction procedure.
WE ; It stores the multipliers for the even stream

of the cyclic odd-even reduction procedure.

WO ¢ It stores the multipliers for the odd stream
of the cyclic odd-even reduction procedure,
X : It stores the solution of the system.
ITIME It stores the timing information.
4 : It stores the computed return points of the

cyclic odd-even reduction procedure.
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Finally, the theoretical structural subdivision of each program,
1n general, follows that of the symmetric constant-diagonal periodic
case, while the parallel paths are created/terminated utilizing the
$DOPAR/$PAREND parallel construct. For a better balancing of the
workload, however, the potential of the parallel system (in terms of
the number of utilized processors) 1s applied on the same computaticnal
stream (odd or even} each time. In additicn, another particular
difference appears in the program calling the cycl:ic odd-even reduction
subroutine, i1n which we have avoided the natural back-substitution
phase by performing the parallel process of the main program serially,

in each of the created parallel paths, simultaneocusly.

- Experimental Results

The experimental results obtained on the NEFPTUNE parallel system,
for the previous parallel variants of the cyclic odd-even reduction
algoraithm (and for the standard Gaussian elimination), along with the
values of some other parameters of the DPM estimated statically, are
presented in Table (V.B.I1-t1).

Although the intention of the experimentation was the exploitaticn
of the parallel machine and the method 1itself, however, the natural
programming length and complexity of the implementaticns (the
generality of the problem imposed the plethora of used arrays) forced
us, on the one hand, into the solution of strictly diagonally
dominant systems with the maximm allowed? coefficient matrix size
of (256x256) while, on the other hand, to subdivide the actual programs

into smaller, appropriately interrelated, subroutines. Certainly,

+By the parallel machine.




64 X 64
MS 6
THE GRANULARITY FACTOR IN TERMS OF THE SIZE OF THE FINAL SEQUENTIALLY SOLVED SUBSYSTEMS
The resulting subsystems each time are sequentially solved by the corresponding subroutines
[PCEGSGNP] : Gauss Elimination Subroutine [POERSGNP] : Odd-Even Reduction Subroutine
N G N
STEP, F PROCS Tc(e) c s R E P .Tge) Tc(e) c 3 Ry g F .T;e)
(secs) P p p p p (secs) p P p p p
g l1.970 1.970 1 0.183 1 1 2.440 2,440 1 0.148 1 1
M
3 _% $,1 j1.130 2.260 1.743 ©.319 |o.872 1.520 1.370 2,740 1.781 j0.263 | 0.891 ]| 1.586
2 $,1,2 |0.900 2.700 2.189 | 0.400 |]o0.730 1.597 1.130 3.390 2.159 ]0.319 0.720 | 1.554
$,1,2,3 0.680 2.720 2,897 | 0.529 |o0.724 2.098 0.800 3.200 3.050 jo.450 | 0.763]2.326
P 12.430 2.430 1 0.148 11 1 2.880 2.880 1 0.125 1 1
4 Eg ©,1]1.380 2.760 1.761 | 0.261 |]0.880 1.550 1.610 3.220 1.789 0.224 0.894 | 1.600
24 $,1,2 11.030 3.0%90 2.359 ] 0.350 |0.786 1.855 1.1%0 3.570 2.420 |0.303 0.807 | 1.952
g,1.2,3 10,840 13.360 | 2.893 | 0,429 10,723 2,092 0.960 3.840 1 3.000 10.375 10.750]2.250
% 12.800 2.800 1 0.129 1 1 3.440 3.440 1 0.105 11 1
5 Ms $,1 {1.600 3.200 1.750 | 0.225 ]0.875 1.531 1.940 3.880 1.773 J0.186 | 0.887|1.572
25 @¢.,1,2 {1.200 3.600 2,333 0.300 |0.778 1.815 1.430 4,290 2,406 |0.252 1 0.802]11.929
g.1,2.310.980 3.920 2.857 ) 0.367_10.714 2,041 1,110 4,440 3,099 10,324 10,7751 2,401
[GAUSSGNP]
Tc(e) o) 0.360 §
{secs) ;
2) N
[POEGENNP] : THE CYCLIC ODD-EVEN REDUCTION TECHNIQUE IS APPLIED UNTIL —2$- (2x2) SUBSYSTEMS ARE OBTAINED ‘(_‘(?
M % 12.800 2.800 | 1 0.129 |1 1 -
(m-1) 5 1 6,1 ]1.620 3.240 ] 1.728 0.222 }0.864 1.494 -
(m-1) o~
2 ¢,1,2 }1.200 3.600 | 2.333 | 0.300 J0.778 1.815 S
$.1,.2.310.980 3,920 1. .2.857 1 0,367 10,714 2,041 —

Table V.B.1-tl: Experimental Results and Performance Measurements, for the General Non-Periodic Case, of Parallel Variants of
the Cyclic 0dd-Even Reduction Method on the 'NEPTUNE' Prototype System, for Gramularity Factors of Various Sizes.




Mg 128 x 128
THE GRANULARITY FACTOR IN TERMS OF THE SIZE OF THE FINAL SEQUENTIALLY SOLVED SUBSYSTEMS
The resulting subsystems each time are sequentially solved by the corresponding subroutines
N G - [POEGSGNP] : Gauss Elimination Subroutaine [POERSGNP] : 0dd-Even Reduction Subroutine
STEP 3 PROCS
To(¢/ c S Rg E rte’ 1€/ c S Rs g |r .7(¢
{secs) P P p p p s (secs) P P P p P s
6} 4.010 4.010 |1 0.180 1 1 4.970 4,970 1 0.145 |1 1
MS 6,11 2.170 4,340 |1.848 |o0.332 0.924 1.707 2.670 5.340 1.861 | 0.270 |o.931 | 1.732
3 ;3 ¢,1,2| 1.710 |.5.130 {2.345 |o0.421 0.782 1.833 2.140 6.420 2.322 Y 0.336 {o.774 { 1.798
$,1,2,311 219 4,840 13,314 |} 0,595 0,829 2 746 1,460 5 840 3.404 | 0,493 |p. 89 2 897
@l 5.030 5.030 |1 0.143 1 1 5.950 5,950 1 0.121 |1 1
M, 3,11 2.730 5.460 |1.842 [o0.264 0.921 1.697 3.180 6.360 1.871 | 0.226 |o.936 | 1.750
4 ;Z ¢,1,2} 1.970 5.910 | 2.553 | o0.365 0.851 2.173 2.340 7.020 2.543 | 0.308 |0.848 | 2.155
$,1,2,3] 1.510 6.040 | 3.331 |0.477 0.833 2.774 1.760 7.040 3.381 | 0.409 j0.845 | 2.857
#1 5.940 5.490 |1 0.121 1 1 6.830 6.830 1 0.105 |1 1
M
5 s o,1] 3.230 6.460 |1.839 |0.223 0.920 1.691 3.690 7.380 1.851 | 0.195 |0.925 | 1.713
25 ,1,2f 2.320 6.960 |2.560 |o0.310 0.853 2.185 2.660 7.980 2.568 | 0.271 |o.856 | 2.198
$,1,2,31 1.810 7.240 13.282 ] 0.398 0.820 2.693 2.020 8.080 3.381 ] 0.356_J0.845 | 2.858
[GAUSSGNP)
T,(e) B 0.720
(secs)
%s
[POEGENNP] : THE CYCLIC ODD-EVEN REDUCTION TECHNIQUE IS APPLIED UNTIL - (2x2) SUBSYSTEMS ARE OBTAINED
¢| 6.700 6.700] 1 0.107 1 1
(1) Ms 8.1] 3.620 7.240f 1.851| 0.199 | 0.925 | 1.713
2D 41,2] 2.650 7.950} 2.528| o0.272 | 0.843 | 2.131
9, 1,2,31 2,020 8,0800 3,371 0,356 ] 0,829 2.750

Table V.B.1-t1 (cont.d):

Experimental Results and Performance Measurements, for the General Non-Periodic Case, of Parallel
variants of the Cyclic Odd-Even Method on the 'NEPTUNE' Prototype System, for Granularity Factors of

various Sizes.

g "v°s/n "yi]
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MS 256 x 256
THE GRANULARITY FACTOR IN TERMS OF THE SIZE OF THE FINAL SEQUENTIALLY SOLVED SUBSYSTEMS
The resulting subsystems each time are sequentially solved by the corresponding subroutines
[POEGSGNP] : Gauss Flimination Subroutine [POERSGNP] : 0dd-Even Reduction Subroutine
NsrER GF "procs 7.(¢) c . R . rI‘(e) 1.(e) . s Ry . T(e)
ls i 1
(secs) p P P Ep P {gecg) P P 2 Ep p
¢1 8.080 g.080 11 0.179 |1 1 9,970 9.970 1 0.145 |1 1
3 Ms 3,1 | 4.230 8.460 | 1.910 | 0.343 |o0.955 1.824 5.170 10.340 1.928 |0.280 | 0.964 ] 1.859
23 6,1,2 | 3.180 9.540 | 2.541 { 0.456 {0.847 2,152 4.120 12.360 2.420 ]0.352 Jo.807)1.952
$,1,2,3 1 2.250 9 . 000 0,644 1 0.898 3,224 Jsa Di.oan 1 3.625 10,527 10,906 13,286
o {10.220 {10.220 | 1 0.142 |1 1 12.050 12,050 1 0.120 ] 1 1
My $,1| 5.380 }10.760 | 1.900 | 0.270 |0.950 | 1.804 6.290 {12.580 | 1.916 {0.231 | o0.958|1.835
4 ;E‘ @,1,2 3.770 11.310 { 2.711 { 0.385 (0.904 2.450 4.460 13.380 2.702 10.325 | 0.901} 2.433
g,1,2,31 2.800 111.560 F 3,536 1 0,502 10,834 31.126 3.350 13.400 3.597 10.433 | 0.899) 3.235
p112.270 {12.270 { 1 0.118 |1 1 14.080 14.080 1 0.103 |1 1
M
5 _S 8,1 | 6.450 {12.900 | 1L.902 | 0.225 |o0.951 1.809 7.350 14,700 1.916 }0.197 | 0.958)1.835
25 $,1,2 ) 4.520 J13.560 | 2.715 | 0.321 | 0.905 2.456 5.200 15.600 2.708 [0.279 | 0.903{ 2.444
$,1,2,31 3.480 [13.920 | 3.526 | 0.417 j0.881 f3,108 3.910 15.640 13,601 10,371 10:9001 3,242
[GAUSSGNP]
Tc(e) ¢ 1.450
{secs)
s
[POEGENNP] : THE CYCLIC ODD-EVEN REDUCTION TECHNIQUE IS APPLIED UNTIL - {2x2) SUBSYSTEMS ARE OBTAINED
¢ {15.600 J15.600 | 1 0.093 1 1
Ms p,1 | 8.200 {16.400 | 1.902 | 0.177 0.951 1.810
w-—a] @.1.2] 5.680 |17.040 | 2.746 | 0.255 | 0.915 | 2.514
2 %,1,2,3] 4.450 l17.8 3.506 | 0.326 0.876 3,072
-m —

Table V.B.1-tl (cont.d): Experimental Results and Performance Measurements, for the General Non-Periodic Case, of Parallel

Variants of the Cyclic Odd-even Reduction Method on the 'NEPTUNE' Prototype System, for Granularity
Factors of Varicus Sizes,

[€09 = @ "92S/n 'Y)]
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the fact of involving so many subroutines has contributed the
unavoidable and superfluous overhead to 'call' them.

&n advantage, due to the sufficient diagonal dominance condation
sought from the tridiagonal system, is that the cyclic reduction
algorlthuF may be stopped before completion without loss of accuracy.
Let us define the diagonal dominance of the original system of equations
(V.B.1:1) as §, the minimum over all the equations of the ratios

. We can then consider the solution of the

[b,1/1,] ana [b_|/e,
simpler set of constant coefficient equations:

ax .+ bxl vax, ., =Y. 1=1,2,...,n, (V.B.1:18)

with [b/a|=6. This, in fact, 1s equally or less diagonally dominant
than the original. Consequently, if the system (V.B.1:18) can be
solved to a certain approximation, then the original set of equations
will be solved more accurately. The cyclic reduction recurrences

in (V.B.1:8) for this case become

a[2.] a[2-1])2 [2-1]

= —¢ /b , (V.B.1:19)

(2l _ [2-21_, [2-11,2, [2-1]

b 2( ) o/ ’ (V.B.1:20)

for 2=I,2,...,Zogzn'-1, where a[0]=a, b[O]=b, c[2]=a[£] and the

subscrapt 'i' has been dropped because the coefficients are the same
for all equations. The recurrence relation for the diagonal dominance,
obtained dividing equation (V.B.1:20) by equation (V.B.1:19), 1s

6[R.] [2]|/|a[2]|

|b

6[2—1])2

= | ~2], (V.B.1:21)

for 221,2,...,Zog2n'—1, where 5[O]=5_

Hence, 1f the initial diagonal dominance §>2, the diagonal dominance

T e reduction process.
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will grow quadraticallyat least as fast as equation (V.B.1:21),

and
L

2
s = s , for §>>2 . (V.B.1:22}

Some conclusions that can apparently be drawn from the examination
of the Tagble with the experaimental results are that, in terms of the
internal acceleration and machine witilization parameters, all programs
exhibit results which improve analogously to the system size
experamented with.

Despite the fact that the computer's hardware restrictions were
too severe to not allow our method to be tested for very-very large
system sizes, the performance characteristics obtained from our
experiments were encouraging, following a similar pattern as that for
the symmetric constant-diagonal periodic case.

All performance measurements, 1n the sake of parallelism, are directly
dependent and, in general, although 1t 1s not quite obvious+ due to
the imposed experimentation with small size systems, deteriorate
analogously with the granularity factor's decrement; since the nature
of the method itself assists in a perfect balancing between the
problem's computational lecad and the number of utilized processors
only and only if a power of 'two' combinations of the latter 1s used,
this fact justifies the alteration of the performance pattern in the
case that three processors are cooperating.

In terms of the real Cost of each parallel variant, it, normally,
increases along with the increase of the number of utilized processors.

With respect to the determination of the *‘best' implementation and

the optimal granularity factor, a comparison of the experimental results

+From gome of the parametric figures.
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obtained from all parallel variants proves that the most efficient 1is
the implementation calling the Gauss subroutine at the largest, in
terms of the GF parameter, reduction level experimented with.

Finally, from the aspect of the Relative or normalized Speed-up
(RS } resultsf, achieved when the implementations calling the
seqientlal subroutines are compared with the implementation of
Gaussian eliminationi, the improvemené in values obtained as the system
Size 1ncreases proves the similar potential of the method, as that for
the symmetric constant-diagonal periodic case, and the necessity for
experimentation with very-very large systems (1.e., of size at least
104).

The parallel behaviour of all these versions of the cyclic odd-
even reduction method, for that matrix size for which the performance
analyses are carried out, 1is diagrammatically depicted in the Figures
below.

In particular, Figures (V.B.I~f1,f2) correspondingly exhibit the
experimental Time-complexities and the respective Speed-ups achieved
on the NEPTUNE prototype system, while Figures (V.B.1-f3,f4) dAisplay
the Efficiencies obtained and the occurring real Costs. All these
diagrammatic representations refer only to the optimal results achieved
in accordance with the potential of the hardware in hand.

Note that, the local parameters, for the DPM, utilized for the

general non-periodic case, stand exactly as they were introduced in

Table (V.A.7-t3). BAs for the symmetric constant~diagonal periodic case,

+N’ote that, the respective concepts of the Relative or normalized
Efficiency and the Reference internal Efficiency (where it applies)
may be introduced as ErZ:RS /P, ErszS /p-

p p
It is widely accepted as the most efficient serial method.

3
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[Ch. V/Sec. B : 608]
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K the Cyclic 0Odd-Even Reduction Method for the
General Non-Periodic Case.
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however, an appropriate consideration must be given to the defination
(t)
of the:AcZn and TcZn parameters for the analyzed solution parts of

each implementation.

— Performance Analysis

The program and system dependent performance analyses, of the
parallel variants of the cyclic odd-even reduction method introduced
herein, are correspondingly given in Tables (V.B.1-t2,t3). 1In the sake
of accuracy, a 'ceiling' function should be applied on some of the
figures i1n the former Table, when a mod#0 division occurs.

In terms of the unavoidable and superfluous overhead of calling
every time the various subroutines 1n each program, extensive
experimentation made possible the estimation of this considerable
overhead as ~216us (per call):; however, note that, this value reflects
the particular experimental case 1in hand, since the overhead analogously
inereases with the number of arguments involved in the subroutine call.

On the other hand, we should also recall the observation made
in the previous Section about the overhead to call and set the FERITP
subroutine, which can be considered as an addit:ional real-time flop
in cases+ similar to these appearing in the present Chapter. This is
guite i1mportant in order to justify any discrepancles occurring
between the theoretical and experimental results given.

With respect to the loss due to the accessing of the shared data
resource, similar indications as before were obtalined about the
existence of that optimization mechanism, which takes care of the

multiple accesses and transfers to, and from the same shared structures.

+N&mely, when a very 'poor' processing-to-shared module access ratio
oceurs.




M
g PROCESSORS (p) (+) (+) SHARED DATA
T, L
(256x256 G [ C | P [Twm Loy Ay % " Porw) o[ N
t r a(s) st(s)
Program (secs) {secs)
3
psn (p)| 15 flops | 0.C058 128 1 1.92x10 flops 0. 739 1 3 2:1 flop | 0.471%
Ms P P P
[ POEGSGNP] 3 Serial
2 <23 0(p) _ B 4 Gauss - 1 1 - -
ps 14 p Elimination
128 1 92><103 0. 739
M ps<n (p)] 15 flops | 0.0058 5 = flops .p 1 3 2:1 flop | ©0.471%
S
[POERSGNP] ,3 X . Serial
ps2 X p} - - - 0dd-Even - 1 1 - -
P Reduction
3
. p<n 0p)| 15 flops | 0.0058 léa L:92X10 ¢4 s 0‘17)39 1 |eesmu] 2.1 £10p | 0.4711
5
[POEGENNP] (Egzn-nﬂ 3
2
o778 dp)| 15 f£lops { 0.0058 6—;‘1 0‘92"10 flops'o';—io 1 v | 1:1 f10p |0.209%

Table V.B.1-t2: Program Dependent Performance Bnalyses, for the General Non-Periodic Case, of Parallel Variants

of the Cyclic 0dd-Even Reduction Method.
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PARALLEL PATH

LIMITS TQ PERFORMANCE

(t)
n ot s o . I, b,
al//) st(//)] “d(r) dir) hir) (secs)
1.92%10° 616
1-—/————flops | 0.162p% | m =212 m =170 m = ~0.5% { 0.025
. % % P p
1.92x10° 616
1:=22""" fiops | 0.262p% |m =212 m =170 m —  |-0.4% | 0.025
‘ P p P P
1.92x10° 616
1:———flops | 0.162p% | m =212 m =170 m = 0.058
p 2 p P p
. ~0.6%
1.2:28710 ¢y ool 0.325p% | m =478 m =382 m =508 0.006
p 12 P p

Table V.B.1-t2 (cont.d): Program Dependent Performance Analyses, for the General

Non-Peraiod:ic Case, of Parallel vVariants of the Cyclic
0dd-Even Reduction Metheod.
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M (e) PARALLEL| (e) SHARED

- Tée) S PREALLER PRIH (zgcs) CONTROL (zgcs) DATA
| (256%256) { (secs) ? Ec t 10 | ¢ (e) (e) (e) (e) | “de
— N Bl B A%ty Centy)| FEFCENY [0y7 /) {IXPFCLST [0, 50 )
Program |[XPFCL] | ©¥,1 |9,1,216,1,2,3 (secs) (secs) {gecs)
[poEGSGNP)| 8.080 | 1.910]2.541] 3.591 71 |~10,800 |~8.6% |~686 |0.48% | 0.55% 8.055 0.31% 8.010 0.56%{ 0.767
[POERSGNP)} 9.970 | 1.928] 2.420} 3.625 8o |-10,800 |-7.9% }~686 |0.39% | 0.50% 9.951 0.19% 9.910 0.41%| 0.864
[POEGENNP] 15.600 | 1.902| 2.746} 3.506 180 |-10,800 R0.9% |~686 |0.46% |0.69% |15.550 0.32% [15.430 0.77%| 1.944

Table V.B.1-t3:

System Dependent Performance Analyses, for the General Non-Periodic Case, of Parallel Variants of the
Cyclic 0dd~Even Reduction Method.

[vi9 + @ "92§/p *Y2]
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The conclusicons derived from the numerical experimentation can be,
also, verified from the generalized performance analyses introduced in
Tables (V.B.1-t2,t3), which in turn reveal different implementing
strategies ain terms of using the available processing potential.
Unpredictable dynamic {(internal and external) factors, however,
dairectly affecting the behavioural status of the NEPTUNE testbed,
have caused some, deceptive though, décllnations from the generally
drawn pattern of conclusions.

In particular for the programs calling the sequential subroutines
to perform the solution part, the observations made for the symmetric
constant-diagonal periodic case are reversed in favour of the program
calling the Gauss subroutine; thais 1s due to the alteration in the
sequential procedure, in the cyclic odd-even reduction subroutine,
which results in higher executicnal costs.

In addition, the very low rates of accesses, due to the extensive
sequential parts of the involved subroutines, resulted in unmeasurable
shared memory and parallel path scheduling losses, for the corresponding
solution parts and therefore their performance analysis has bheen
cmitted.

Furthermore, for every implementation, a considerable amount of
the performance degradation, besides that resulting from the shared
resources' demands, 1s contributed by the unavoidable seguential
parts performing the interchanging of the modified elements and the
shuffling and copying of the used indices in the appropriate arrays.

Consequently, similarly as before, the balance between the
number of parallel paths and their algebraic-complexity and the

number of sequential paths and thear algebraic-complexity determines
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the maximum parallel performance cobtainable.

The complementary information to that given in Appendiz C-II/
par.-II.B.3.1) is as 1t was presented in (par.-IV.B.3.1). with respect
to the information obtained from the shared array ITIME when testing
the parallel variants of the cyclic odd-even reduction method, many
experimental runs were carried ocut always considering the average
figures accordingly. This essential information for the estimation
of their experiment dependent performance analysis parameters, in the
case of a maximum utilization of the NEPTUNE prototype and in the
corresponding implementation sequence as it appears in Tables
(V.B.1-t2,t3), was as follows:

1) The smallest run-times %;e) to be utilized in formula

(IV.B.3.1:25) were (in secs.) 2.250, 2.740, 4.440;

i) the total numbers of wait cycles to be utilized in formila
(IV.B.3.1:27) were 71, 80, 180, which implied average numbers
of wait cycles per processor of ~18, 20, 45, respectively;

11i1) the average experimental timings of all cooperating processors
were (in secs.) 2.250, ~2.748, 4.445; and,

iv) the numbers of parallel paths run by each processor,
considering the average of all cooperating processors but

Po, were 9,9,17.

The times the system was not used productavely (¥), being
estimated through the formla (IV.B.3.1:22) by using the average
experimental timings in £1Z), were (in secs.) 0.920, ~1.022, 2.180;
again, the sum of the wasted times statically and dynamically (see
performance analysis Tables) can give us a good approximation to these

total wasted times.
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It should be noted that most of the performance analyses figures
can be verified by an appropriate examination of the program and
system dependent Tables, while taking into account that the executional
cost of all integer operations, involving shared or local variables,
DO-loop increments, etc., has been considered as ignorable.

Furthermore, to obtain the accurate results presented in Table
(V.B.1-t2) the real processing-to-access ratios should be used, 1.e.,
15 flops over 36 and 16+ correspondingly accesses to the shared data
resource, for each implementation cycle. This is due to the fact that
the normalization and integer rounding of the numbers of accesses to
the shared data resource would, otherwise, introduce slight
discrepancies in the results.

In conclusion, the utilization of the parallel constructs for
each set of odd and even lines implies that the parametric faigures

per parallel path, given in Table (V.B,1-t2), should be doubled.

TFor the 'fifth' phase of the [POEGENNP] program.
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V.B.2: THE GENERAL PERIODIC CASE: EXPERIMENTAL RESULTS AND

PERFORMANCE ANALYSIS ON THE 'NEPTUNE' PROTOTYPE SYSTEM

We shall continue our investigation on the solution of non-
constant coefficient systems, using the generalized form of the cyclic
cdd-even reduction solver, to fully exploit the case of a tridiagonal
periodic coefficient matrix.

As we implied in (par.-V.B.1), although the cyclic odd-even
reduction method is generally classified as a direct method, under
special conditions 1t behaves like an Zterative method.

The values of intermediate quantities converge to final values and may
reach the final wvalues to within machine accuracy well before the full
number of ‘iterations' has been performed. The convergence c¢an be
tested, and the algorithm can be terminated early when full machine
accuracy 1s attained.

Therefore, the cyclic odd-even reduction method can be, literally,
considered as a semi—-direct method (or perhaps, should be called a
semi-tterative method).

For an algorithm to be convergent, some dominance conditieons must
hold for the tridiagonal system of equations. Most often it is
convenient to assume the system 1s diagonally dominant.
For our purpose, and under the severe computer's hardware limtaticns,
we have assumed a strict form of dominance in the systems experimented
with, while, again for greatest efficiency when balancing the computing
povwer available from the MIMD parallel prototype in hand, the number
of equations was, always, taken to be a power of 'two'.

We wish to solve a general tradiagonal set of linear algebraic

equations, similar to that given in (V.B.I1:1) but, with the coefficient




matrix A now having the periodic form

i

b
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(V.B.2:1)

Since the theoretical analysis of the cyclic reduction technique,

.[.
introduced in (par.-V.B.I1), indirectly covers the general periodic case ,

we shall describe the parallel cyclic odd-even reduction process, for

this particular case, through the following numerical example (for n=8):

ZRN
1 4 2
1 3
2

O

1

2]

2
4

A
~J o 4] s [9%] [ %] [ 1

]

i
2]
(Y

U’I\.OU1-..I-..I|

11

(V.B.2:2)

Note, the straict form of diagonal dominance holding and that, for tidy

purposes, the solution sought has been pre-arranged to be 5?=(1,1,...,1).

(Z) = The Even Computational Stream
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-1/4 -1/4

~2/3 ~2/3

-2/3 273 (V.B.2:8)
-1/2 -3/4

We just need to take into account the periodic treatment of the

spectal end equations at each reduction level.
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1st Reduction Level

ul's Yi's
[37/12 -2/3 o -1/2] "xz" (23/12] 8/37 3737
-2/3  11/3 -2/3 © x, 7/3 ><
0 -2/3 55/12 -3/2 Xg ~ 129712 6/55 8/55
-1/4 o -1/2 s/21 x| L4
(V.B.2:4)
3/a  -1/72 o -1 | —xl- (7747 1/13 2/13
-1/4 21/10 -2/5 © %3 29/20
0 -2/5 34/15 -1/2| |x, "~ la1r/30 5/34 3/17
-1/2 o -1/3 si2] x| Lssld
(V.B.2:5)
&nd Reduction Level o 's
i
[ 6971 _ 66477 [ 7] (6307 258
2035 2035 4 2035 6971
= (V.B.2:6)
_ 258 4672 . 4414
2035 2035 | |78 2035 |
440 _ 73 N 807 3
221 442 3 242 44
= (V.B.2:7)
_ 30 2009 x| 1889
7201 884 -4 L7 =884 -
961 _ 73 < 148 179
330 330 2 55 1922
= (V.B.2:8)
179 2747J . 214
660 660 6 L 755 -
[ 314 127 DT 1747 31
105 315 *1 63 628
= (V.B.2:9)
3 223 . 83
210 105 | [%s | 42 |




3rd Reduction Level

2.28374695x8 2.28374695 <=»

2.26136364::7 = 2.26136364 =
4.14151925x6 = 4.14151925 &=
2.11252654x5 = 2.11252654 ==

(i1} — The 0dd Computational Stream

lst Reduction Level

2 1 2 %
1 4 2 X,
1 3 1 O X3

2 5 2 X,

1 3 1 x5

O 2 6 3 X

1 4 2 X,

L 2 4 [xg

13/4 -1/2 o -1 ] ﬁ;l—
-1/4 21/10 -2/5 © x,
o -2/5 38/15 -1/2] |x,
-1/2 o -1/3 s/2] [x]
37/12 -2/3 o  -1/2] —x;
-2/3  11/3 -2/3 o x,
o =2/3 s5/12 -3/2| |x.
-1/4 o -1/2 5/2 %

~

7/4
29/20

41/30

L 5/3

23/12]
7/3

29/12

7/4

-1/4

-1/5

-1/6

-1/2

4/21

2/5

2/11

1/5
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(V.B.2:10)
(V.B.2:11)
{V.B.2:12}

(V.B.2:13)

-1/4

-1/5

(V.B.2:14)

-1/6

-1/2

5/21
(V.B.2:15)

1/5

2/11
{(V.B.2:18)

3/5



2nd Reduction Level

314
105

31
210

961
330

179
| 660

440
221

-39
221

(6971
2035

258

| 2035

72] [
“31s *)
223 .
105) Zs]

- o
.13
330 )
2747 %
Geol  %el
NEET
422 3
2009
ssﬂ %7
_ 664 y
2035 4
4672
2035 el

3rd Reduction Level

2.97458894xl = 2.97458894
2.89770659x2 = 2.89770659
l.98108512x3 = 1.98108512
3.40753425x4 = 2.40753425

Note that, the systems (V.B.2:5),

174
63

83

1487
55

214
. 55 |

807
442

1889
L 884

6307
2035

4414

=

L2035 J

72
669

664
4672
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(V.B.2:17)

(V.B.2:18)

(V.B.2:19)

(V.B.2:20)

(V.B.2:21)

(V.B.2:22)

(V.B.2:23)

(V.B.2:24)

(V.B.2:8,9) and (V.B.2:16), (V.B.2:19,20)

have been, respectively, derived through the complementary, at each

reduction level, computational stream.

The routing diagrams for both, serial and parallel implementations

can be easily deduced from Figures (V.A.6-f3,f4), respectively.
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The recursive computational formulae {(for the reduction and back
filling in parts), as well as the corresponding algebraic-complexity
formulae, taking into account the remark made about the starting
level of the initial wvalues, remain as were introduced in (par.-V.B.1I1).
For the former recursive formulae, however, when any of the subscripts
takes a value lying outside the defined range Igig¢n, then as its correct
value 1s considered to be the boundary value of the corresponding
system each time, according te the periodicity of the preblem. In
particular, for the last reduction level, 1.e. E:Zogzn’-l, where we
have only one equaticn, the out of bounds xi's are taken to be of zero
value. In the actual programming, however, the cyclic odd-even
procedure for the last reduction level is apparently more costly than
the direct solution of the (2x2) resulting subsystems. On the other
hand, in respect of the algebraic-complexity formulae, some of the
approximating relations {(due to the non-periodic treatment of the
special end equations) in the present case should be altered to
equalities.

From the actual experimentation aspect, the selected characteristic
programs, for the general periodic case, are included in the Appendix
-V under the following meaningful names:

- (%) mBg2. Tgavssep

GAUSS algorithm for the General
Periodic case.

- () MB$4.+POEGENP Parallel cyclic gdd-Even

reduction algorithm for the

GENeral Periodic case.

T,
Directory name.
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- (117) uB$4. tPOEGSGP : Parallel cyclic 0dd-Even
reduction algorithm calling the
Gauss Subroutine for the General
Periodic case.

- (iv) mBe4. YroERSGP i Parallel cyclic 0dd-Even
reduction algorithm calling the
odd-even FReduction Subroutine for

the General Periodic case.

The general structure of the above programs, the parallel
strategies followed, the parallel constructs and even the shared
arrays utilized, are correspondingly similar to those of the programs
intreduced in (par.-V.B.I1).

Furthermore, in particular for the observations made therein about the
better balancing of the workload and the sequential execution, in the
cyclic odd-even reduction subroutine, of the parallel process of the

main program, still apply to the present periodic case.

- Experimental Results

The experimental results obtained on the NEPTUNE parallel system,
for the parallel variants of the cyclic odd-even reduction algorithm
(and for the standard Gaussian elimination) introduced herein, along
with the values of some other parameters of the DFM estimated
statically, are presented in Tuble (V.B.2-t1).

For the same reasons, as for the general non-periodic case, the
maximum coefficient matrix size allowed by the parallel machine to
experiment with was of (256x256).

The involvement of so many interrelated subroutines in each

+Directory name.




64 x 64
MS
THE GRANULARITY FACTOR IN TERMS OF THE SIZE OF THE FINAL SEQUENTIALLY SOLVED SUBSYSTEMS
The resulting subsystems each time are sequentially solved by the correspending subroutines
[POEGSGP] : Gauss Elimination Subroutine [POERSGP] : 0dd-Even Reduction Subrout
oree | Op | Merocs T (e) (e) (e)
R e
Te'® c s Rg E 1 Te'® c s S E F_.T
(secs) p p p p p & rSP("Q) p p p p p S
o [2.410 2.410 |1 0.324 1 1 2.640 2.640 {1 0.295 |1 1
3 EE #$,1]1.350 2.700 }1.785 ]0.578 0.893 1.593 1.460 2,920 |[1.808 |0.534 | 0.%04 ]| 1.635
23 $,1,2 J1.110 3.330 12.171 |o.703 0.724 1.571 1.230 3.690 |2.146 }0.634 J0.715]1.536
$,1,2,3 Jo.770 3.080_ 13.130 11.013 Q.782 2,449 0,840 3.360 13,143 0,929 ) o, 7861 2.469
o |2.840 2.840 1 0.275 1 1 3.21¢c 3.210 1 0.243 1 1
Ms #,1 |1.600 3.200 |1.775 ]0.488 0.888 1.575 1.79%0 3.580 |1.793 ]0.436 | 0.B97 | 1l.608
4 ——
24 $,1,2 {1.190 3.570 |2.387 (0.655 0.79 1.899 1.330 3.990 {2.414 (o0.586 }jo0.805}1.942
g.1.2.3 10, 9059 3.80g 12,989 19,821 0.747 2..234 1,020 4,080 13,147 10,765 10,72 2,476
o . 4,060 4.060 |1 0.192 |1 1
M The granularity factor 1s too small to
] 6,1 2.230 4.460 |1.821 }0.350 | 0.910]1.657
5 G apply the Gauss procedure
2 $,1,2 1.680 5.040 |2.417 |0.464 | 0.Bo6 | 1.947
B0,1.2.3 1,270 5.080 13.197 10.614 ] 0,799 255
[GAUSSGP]
T1.(e) o 0.780
e
{secs) MS
[POEGENP] : THE CYCLIC ODD-EVEN REDUCTION TECHNIQUE IS APPLIED UNTIL 75—(2x2) SUBSYSTEMS ARE OBTAINED
g 3.330 3.330 11 0.234 1 1
M ®,1] 1.8%0 3.780 | 1.762 | 0.413 0.881 1.552
m-1) | St g,1,2| 1.39 | 4.170 | 2.396 | 0.561 | 0.799 | 1.013
2 p,1,2,3 1.110 4.440 § 3.000 | 0.703 0.750 2 .250

Table V.B.2-t1: Experimental Results and Performance Measurements, for the General Periodic Case, of Parallel Variants of the
Cyclic 0dd-Even Reduction Method on the 'NEPTUNE' Prototype System, for Granularity Factors of Various Sizes.
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MS 128 x 128
THE GRANULARITY FACTOR IN TERMS OF THE SIZE OF THE FINAL SEQUENTIALLY SOLVED SUBSYSTEMS
The resulting subsystems each time are sequentially solved by the corresponding subroutines
[POEGSGP] : Gauss Elimination Subroutine [POERSGP] : 0dd-Even Reduction Subroutine
N G N
cs
STEP F PRO 1.0/ c s Rs E p .rie/ T.(¢/ c S Rs E r (e
{secs) P P p P P (secs) P P P P b 3
914.920 4.920 1 0.317 1 1 5.230 5.230 1 0.298 |1 1
; _fg #,1]2.610 |5.220 |1.885 | 0.598 |o0.043 | 1.777 2.770 5.540 |1.888 lo0.563 { 0.944| 1.782
23 $,1,212.130 6.390 |[2.310 0.732 | o.770 1.778 2.290 6.870 |2.284 {o0.681 | 0.761] 1.739
$,1,2,311.420 5.680 13,465 1,099 10.866 3001 1.520 6,080 13.441 11,026 |} 0,860] 2,960
$15.910 5.910 |1 0.264 |1 1 6.360 6.360 |1 0.245 |1 1
4 fg 6,11 3.160 6.320 |1.870 0.494 | 0.935 1.749 3.380 6.760 |1.882 |o0.462 | 0.941{1.770
24 6,1,2 | 2.310 6.930 [2.558 0.675 |} 0.853 2.182 2.470 7.410 [2.575 }o0.632 | 0.858] 2.210
9,1:,2,3 11 740 £.960 13,397 0,897 1 0.849 2.884 1.840 7,360 13,457 10,848 1 0. 8641 2,087
#l6.770 6.770 |1 0.230 |1 1 7.500 7.500 {1 0.208 |1 1
M $,1]3.630 7.260 }1.865 0.430 | 0.933 1.739 3.990 7.980 |1.880 |o0.391 | 0.940]1.767
5 =
92 @,1,2 | 2.660 7.980 |2.545 0.586 | o0.848 2.159 2.920 8.760 |2.568 |o0.534 | 0.85 | 2.199
#,1,2,3]12 000 8,000 13,385 0.780 lo.846 5. pes 2.180 8,720 13,440 {o.716 10,8601 2,959
[GAUSSGP]
.56
1.(€) ? 1.560
(secs)
s
[POEGENP] : THE CYCLIC ODD-EVEN REDUCTION TECHNIQUE IS APPLIED UNTIL - {2x2) SUBSYSTEMS ARE OBTAINED
#17.900 7.900 |1 0.197 [1 1
M
-1y | -5 | @,114.240 8.480 |1.863 0.368 ]0.932 1.736
21N 41,2]3.060 | 9.180 |2.582 | o0.510 |o.861 | 2.222
$:1,2,3 12.330 9.320 13.391 0,670 10.848 2.874

Table V.B.2-t1 (cont.d): Experimental Results and Performance Measurements, for the General Periodic Case, of Parallel

Variants of the Cyclic 0dd-Even Reduction Method on the 'NEPTUNE' Prototype System, for Granularity
Factors of Various Sazes.
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My 256 x 256
THE GRANULARITY FACTOR IN TERMS OF THE SIZE OF THE FINAL SEQUENTIALLY SOLVED SUBSYSTEMS
The resulting subsystems each time are sequentially solved by the corresponding subroutines
N G N [POEGSGP] : Gauss Elimination Subroutine [POERSGP] : Odd-Even Reduction Subroutine
STEP} "F | PROCS (e) R (e) (e) R (e)
Te c S s E F T, Te C S S E F,.Tg
(secs) pr p p P p (secs) P p p 2 r
) 9.870 9.870 1 0.315 1 1 10.410 10.410 1 0.299 1 1
3 Ms B,1 5.150 10.300 1.917 0.604 ©.958 1.836 5.410 10.820 1.924 j0.575 0.96211.85]
23 $,1,2 4.080 12.240 2.419 0.762 0.806 1.951 4,320 12.960 2.410 ]10.720 0.803 ]11.936
g, 1,2,31 2.750_ }11.000 1 3.589 } 1.131 10.897 3,220 2,880 | 11,520 ] 3,615 11,080 | o.904 13,266
¢ |11.290 |11.9%0 | 1 0.259 |1 1 12.580 12.590 | 1 0.247 |1 1
MS @,1 6.250 12.500 1.918 0.498 0.959 1.840 6.560 13.120 1.919 0.474 0.960 ] 1.842
4 -—_—
24 0,1,2 4.430 13.290 2.707 0.702 0.902 2.442 4.660 13.980 2.702 10.667 0.901 § 2.433
g.1,2,3 1 3,360 113,440 1| 3.568 | 0.926 10,892 3,183 3,510 14,040 1 3,587 lo.886 109,897 13,216
p113.970 j13.970 | 1 0.223 |1 1 14.840 14.840 | 1 0.210 |1 1
5 MS o,1 7.310 14.620 1.911 0.425 0.95%6 1.826 7.730 15.460 1.920 |0.402 0.960 | 1.843
25 $,1,2 1 5.120 (15.360 | 2.729 | 0.607 ]0.910 2.482 5.490 16.470 | 2.703 Jo.566 | 0.901 1 2.436
g.1,2,31 3,900 {15,600 | 3.58 0,797 10,896 3,208 4,130 16,520 .3 3,893 In 753 108913 298
[GAUSSGP]
Tc(e) o} 3.110
(secs)
154
{POEGENP] : THE CYCLIC ODD-EVEN REDUCTION TECHNIQUE IS APPLIED UNTIL _S (2x2) SUBSYSTEMS ARE OBTAINED
2
¢ J18.160 |[1B.160 | 1 0.171 {1 1
(-1} M, 8,1 { 9.520 |19.040 | 1.908 | 0.327 ]o.954 1.819
< 21t g,1,2§ 6.580 |19.740 | 2.760 | 0.473 |o0.920 |2.530
$,1.2,31 5,110 120,440 ] 3.554 ] 0.609 Jo0.888 3.157

Table V.B.2-t1 (econt.d): Experimental Results and Performance Measurements, for the General Periodic Case, of Parallel
Variants of the Cyclic Odd-Even Reduction Method on the 'NEPTUNE' Prototype System, for Granularity

ractors or varilous Sizes,
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implementation has, again, caused the same superfluous overhead
experlenced in the previous case.

The conclusions drawn from the examination of the Table with the
experimental results, in general, follow the same line as that for
the previcus cases examined in this Chapter.

All performance measurements, from the aspect of parallelism, in a
similar manner as for the general non-periodic case, deteriorate
analeogously with the granularity factor's decrement. This 1s not,
however, apparently shown by some of the parametric figures+ in the
above Table, due to the restricted experimentation with relatively

very small size systems. BAgain, the phenomenon of the alteration in

the performance pattern, due to an unavoidably inefficient workload
balance, appears in the case that three Processors are cooperating

With respect to the determination of the 'best' implementation,
taking into account the real Cost figures cbtained, this 1s the
implementation calling the Gauss subroutine at the earliest reduction
level experaimented with, which, therefore, implies the optimal
granularity factor wvalue.

Finally, the same ocbservations, as those made for the general

non-periocdic case, about the Relative or normalized Speed-up (RS )

p

results, achieved, in specific, when comparing the implementations
calling the sequential subroutines with that performing Gaussian
elimination, still apply to the present case.

The parallel behavicur of all these versions of the cyclic odd-

even reduction method, for that matrix size for which the performance

+Iﬁe oceurring fluctuations will smooth out when very-very large
size systems are tested.
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analyses are carried out, 1s diagrammatically depicted in the Figures
below.
In particular, Figures (V.B.2-f1,f2) correspondingly exhibit the
experimental Tame-complexities and the respective Speed-ups achieved
on the NEPIUNE prototype system, while Figures (V.B.2-f3,f4) display
the Efficiencires obtained and the occurring real Costs., These
diagrammatic representations refer to the optimal results achieved in
accordance with the hardware potential of the parallel machine an
hand.

Lastly, note that, the local parameters for the DPM of the

present case remain identical to those utilized in {(par.-V.B.I).

- Performance Analysis

The program and system dependent performance analyses, of the
parallel variants of the cyclic odd-even reduction method introduced
herein, are correspondingly given in Tables (V.B.2-t2,t3).

With respect to the programs calling the sequential subrcoutines,
1t can be observed, from Table (V.B.2-t3), that although the program
calling the Gauss subroutine presents relatively greater static and
contention overheads than the other program, however, the alteration
in the sequential procedure, in the cyclic odd-even reduction
subroutine, results in considerably higher executional costs for this
1mplementation.

In both these programming cases, for similar reasons to those for the
general non-periodic prcblem, the program dependent performance
analysis of their solution parts has been omitted.

Finally, let us consaider the essential information for the
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the Cyclic 0Odd-Even Reduction Method for
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the Cyclic Odd-Even Reduction Method for
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MS PROCESSCORS (p) SHARED DATA
(256 %256) |p._ | & Ac Te(t) 1 Ac Tt | L
H F N s In in el p P plp)|"00//X o O(t)
program ¢ P (secs) (secs) a(s) st(s)
3
12 .92 .
1 I psn O(p) | 15 flops| ©.0058 P8 1.92x10 flops 9 ;39 1 3 2:1 flop | 0.471%
S5
[POEGSGP] 5 3 X . Serial
5 ps2 Otp) - - - Gauss - 1 1 - -
P Elimination
3
1 psn O(p) 15 flops| 0.0058 l;B 1.92x10 flops 0'239 1 3 2:1 flop | 0.471%
M
S
[POERSGP] ;3- 3 a Serial
5 pg2 O(p) - - = 0dd-Even - 1 1 - -
P Reduction
3
1 p<n Hp) 16 flops| 0.0062 lEB 2,o4gx10 flops O';BB 1 tlogon-n| 2:1 flop 0.441%
M
S
[POEGENP] Tog7oo1) ;
2
i -1) . .
5 2 78 0p) | 15 flops} o.00s8 | 64 [2:28X1O flopso—;?—o 1 |1 |12 flop | 0.200%
P

Table V.B.2-t2: Program Dependent Performance Analyses, for the General Periodic Case, of Parallel Variants of the

Cyclic Qdd-Even Reduction Method.
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PARALLEL PATH

LIMITS TO PERFORMANCE

t at
R O(t) S st S
al//) st(//) dir) dir) hlr) (secs)
1.92x10° 616
1:——"———" flopq 0.162p% | m_=212 m =170 m = ~0.4% 1 0.025
p D P p
1.92x10° 616
1l: flopg 0.162p% fm =212 m =170 m=— ~0.4% | 0.025
P P p P p
1-3'—055’519if10 do.152p% |m =226 |m =181 m =227 0.058
‘ i A b b~ p :
‘ “0.5%
3
1.9:36X10 o oo lo.325p% fm-=a78 |m =382 m =28 0.006
2 D P p

Table V.B.2~t2 (cont.d): Program Dependent Performance Analyses, for the General

Periodic Case, of Parallel Variants of the Cyclic 0dd-
Even Reduction Method.
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Mg (e < PARALLEL PATH T;e) pararLerd '€’ SHARED
8 D P (secs) CONTROL | (secs) DATA
(secs) E c t Id(e) t 1z ) (e} (e) W

| I@ Ly ey t b Ost(//) oéi(//) werern fo5y ) |ixprers Joled | Vde

Program | [XPFCL]1 { 9,1 |¥,1,215,1,2,3 {usecs) (Usecs) {secs)
[PCEGSGP] 9.870 1.91712.419| 3.589 85 ~10,800 |~B.3% | ~-686 0.39% 0.53% 9.850 0.20% 9.810 0.41% 0.918
[POERSGP] | 10.410 | 1.924]2.410] 3.615 84 ~-10,800 {~7.9% | ~686 |0.38% 0.50% |10.380 0.29% [10.330 0.48% | 0.907
[POEGENP] | 18.160 1.908]2.760 | 3.55%4 178 ~10,800 §~9.5% | -686 0.40% 0.60% |18.105 0.30% 18 .010 0.52% 1.922

Table V.B.2-t3: System Dependent Performance Analyses, for the General Periodic Case, of Parallel Variants of the Cyclic

0dd-Even Reduction Methed.
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estimation of all the experiment dependent performance analysis
parameters, for the parallel variants of the cyclic odd-even

reduction method, obtained from the shared array ITIME. Thas
information, having averaged the respective figures of many
experimental runs, in the case of a maximum utilization of the NEPTUNE
prototype and in the corresponding i1mplementation sequence as 1t
appears in Tables (V.B.2-t2,t3), was as follows:

(e

Z) The smallest run-times T ~ to be utilized 1in formla
(IV.B.3.1:25)were (in secs.) 2.730, 2.870, 5.110;

77Z) the total numbers of wait cycles to be utilized in formla
(ITV.B.3.1:27) were B5, 84, 178, which implied average numbers
of wait cycles per processor of -21, 21, ~45, respectavely;

177) the average experimental timings of all cooverating
processors were (in secs.) 2.740, 2.875, 5.110; and,

iv} the numbers of parallel paths run by each processor,
considering the average of all cooperating processors but
PO' were 9,9,17.

The times the system was not used productively (W), being
estimated through the formula (V.B.3.1:22) by using the average
experimental timings in Z1%Z), were (in secs.) 1.0%0, 1.090, 2.280.
Note that, the sum of the wasted times statically and dynamically can
give us a good approximation to these total wasted times.

For the verification of the results presented in Table (V.B.2-tZ2)

the real processing-to-access ratios should be used, 1.e., 15 onps/36+,

16 onps/BGi and 15 f'lops/lGi correspondingly accesses to the shared

T
For the programs calling the sequential subroutines.

ifbr the reduction and solution parts, respectively, of the last
implementation.
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data resource, for each implementation cycle. Due to the same
reason, however, as that in (par.-V.B.I1), the parametric figures
per parallel path, given in the above Table, should be doubled.

To conclude, the reader should, once more, bear in mind, on
the one hand, the overheads contributed by the unavoidable calls of
the various interrelated subroutines in each program and the call and
set of the FSRITP subroutine every time; while, on the other hand, the
deduced existence of an optimization mechanism, which takes care of
the multiple accesses and transfers to, and from the same shared
structures.
Furthermore, one should take into account the additional performance
degradation contributed by the unavoidable sequential parts carrying
out the interchanging of the modified elements and the shuffling and
copying of the used indices in the appropriate arrays. As usual, the
minor losses due to all sorts of integer operations, DO-loop increments,

etc., have been considered as lgnorable.
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V.B.3 GENERAL CoMMENTS AND CONCLUSIONS

The discussion in the previous Sections shows that parallel
computation 1s not a simple and darect adaptation of the serial
computation, but that it is an area with 1ts own set of characteristic
problems over and above any attributes inherited from serial computation.

Most of the results obtained have generated cause for optimism
about the cost-effectiveness of parallel computers for selected classes
of computations. Since the construction of parallel computers has still
a long way to advance, further research in parallel computation stands
to influence the architecture of parallel computers, as much as the
programming of parallel computers.

It is relatively easy to invent algorithms. In practice, however,
one wants not only algorithms, one wants effective algorithms. Thus,
the objective is to 1nvent effective algorithms and prove their
effectiveness. The effectiveness of an algorithm can be appraised by
a variety of criteria. One of the most important is the time taken to
execute 1t. There are several aspects of such a time criterion, one
being the execution time required by different algorithms for the
solution of a particular problem on a particular computer architecture.
Such an empirical measure, however, 1s strongly dependent upon both
the program and the machine used to implement it.

A useful alternative to such empirical measurements 1s a
mathematical analysis of the intrainsic difficulty of solving a problem
computationally, which, judiciocusly used, can provide an important means
of evaluating the executional cost of the algor:ithm.

In general, the cost of obtaining a soluticon increases with the

problem size. 1If 1ts value 1s sufficiently small, even an inefficient
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algorithm will not cost much to run; consequently, the choice of an
algorithm for a small problem is not critical {unless the problem 1s to
be solved many times).

In analyzing algorithms for solving numerical problems, the
accuracy of the computed results is another very important craiterion
for distinguishing between effective and ineffective algorithms, in
relation te the computer in hand.

In particular for the complexity analysis amongst other things,
1t 1s concerned with obtaining upper and lower bounds on the performance
of algorithms. The existence of complexity bounds for the algorithms
available can serve as a basis for classifying problems. In terms of
optimality, the goal of complexity analysis 1s to show that in order to
solve a certain problem computationally, one requires a certaln number
of operations of a certain type. This 1s a very difficult objective;
for the majoraty of practical problems we still have to rely on
experience to judge the effectiveness of an algoraithm.

In particular for the various presented versions of the cyclic odd-
even reduction method, the conclusions that we arrive at, after the
detairled tests and comparisons of the results, are not innovative, but
they consist of a verification of what has been discussed already. The
most impertant conclusion is that, in order to obtain the best possible
performance on an asynchronous parallel computer architecture, we
should construct the unavoidable sequential paths of a program as short
as possible, whereas, to the contrary, the parallel paths as leng as
possible, minimizing at the same time the accesses to the shared
resources both in number and duration.

On the other hand, testing all these different parallel algoraithmic
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variants of the method, we do not only test and solve the problem
i1tself, but at the same time we examine and test the parallel system,
proving 1ts weaknesses by means of overheads and i1dle losses due to the
various relataive speeds of the processors. Furthermore, the way that
the parallel routaing of the cyclic odd-even reduction method has been
constructed, allows us, in future lnvgstlgatlon, a straightforward
implementation on VISI processor arrays utilizing a tree-structure of
processing elements.

Finally, the results of the experimental attempts herein should
assist hardware designers, in the near future, to provade or invent a
parallel architecture which will be in a position to meet the resources
demands of most algorithms; but, this can only succeed 1f and only if
they will be guided from such or similar results, by grouping them 1in

sets presenting simxrlar resources demands.
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VI.A.1: INTRODUCTION

"1 have not kept the square, but that fo come
Shall alt be done by the rute."”

William Shakespeare.

In any given technology formation follows function in a particular way.
The most efficient first step towards understanding the architectural
possibilaties of a technology is the study of carefully selected existing
designs.

In order to realize, however, how the evolution of the VLSI
technology has changed the nature of the game we must briefly discuss
the progress carried on in Integrated Circuits (I{) technology.

All JC work depends on the foundation of semiconductor-device
physics that provides the essential knowledge of how the I('s elements
function. Logically built on top of this knowledge 1s that of semi-
conductor fabrication technolegy, whach allows the designed IC's to be
physically constructed, and above this in turn is the circuit- and
logic~design knowledge that the I designer braings to his part of the

overall engineering task.
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At present, device physics is a mature area of knowledge in which
the number of dramatically new i1deas being added is small, while
fabrication technology, although still developing, 1s reachaing the
point at which we have essent:ially all the fundamental knowledge that
will be required.

On the other hand, circuit- and logic-design techniques are still
developing rapidly - there is still room left for 'some cleverness',
but that too will scon saturate.

The three component-skills of current IC design work are thus all
very well establashed, but are they any longer all that 1is required?
In fact, all the evidence available strongly suggests that these
traditional skills are not enough. Throughout the world, design teams
working on VLSI projects have all found the need for an even higher
level set of skills to coordinate their lower level design efforts,
skills that can generally be summed-up as forming a large-systems design
methodology. The knowledge and techniques required for future VILST
systems are only just beginning to be acquired and many fundamental
1deas have yet to be discovered.

Inevitably, the many different groups working in this field all
have their own particular approach to the problems of establishing an
effective formal design methodology, but certain ideas seem to have
been almost universally adopted, and these seem likely to form the
basic elements of whatever fully developed methodologies emerge in
future.

While the IC @esign has traditionally been a highly specialized
task, and certainly the design of a typical custom LSI chip is far from

being a task for an 'amateur', the changed nature of VLSI work means
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that specialists in other areas of technology are increasingly
realizing as possible the design and manufacture of their own VLSI
devices, at least for experimental and prototyping purposes.

The VLSI technology has made one thing clear. Simple and regular
interconnections lead to cheap implementations and high densities, and
high density implies both high performance and low overhead for support
components.

The system architecture and design, however, like any art, can
only be learned by attempt. To carry a small design from conception
through to successful completion provides the confidence necessary to
undertake larger designs.

Further on, and due tco the fact that an application 1s efficiently
implemented on a VLSI circuit chip 1f any large problem can be tackled
on a considerably small network of processors, let us abstractly
introduce here the three approaches considered by H.T. Kung, in [KUNG8O1,
one can follow for solving a large problem on a small network:

) Use algorithms with large modular granularity, 1.e., each
processor handles a large group of elements, rather than a few
elements. This approach 1s suitable for SIMD machines, where

processors can have relatively large local memories.

1) Decompose the problem, so that the resulting subproblems will
be small enough to be solved on the small network of processors.
1iZ) Decompose an algorithm that originally requires a large network,

l.e., there 1s a further analysis of the simultaneous operations
invoked in every step of the original algorithm, so they will be
performed in more than cne step by fewer processors of the

smaller network.
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The 1dea behind the three approaches 1s a functicnal dependency
amongst the number of the processors involved in the network and the
time that they will be kept busy. The longer the time kept busy and
the sequences of data, the better, from the efficiency poant of view,
the VLSI chip,

In thais Chapter a new class of 'pipelined' array structures for
algorithm systolization 1s introduced.

In the present Section 4 we initiate the reader to the classification
and fundamental prainciples of 'systolic’' algorithms, along with the
Presentation of an abstract mathematical model for the verification of
'systolic ' networks.

The principal part of this Seetion covers the investigation of a
new data stream ‘'rotating' and 'foldaing' technique on algorithmecally
specialized 'systolic ' networks,

At first, the matrix-vector and matrix multiplication problems are
tackled using two-dimensional ’systolic' communication geometries. Then,
'systolic' LU-factorization dequeues for tradiagonal systems are
presented and both cases, when n-odd and n-even, are investigated,
along with the introduction of the necessary mathematical background
of the double Gaussian elimination streams for full matrices. Further
on, the complementing dequeues for solving the resulting triangular
linear systems are correspondingly gaiven.

Finally, this Section concludes with general comments about the
existing pavoting problem and the 'orthogonal' factorization based on
Givens's transformation,

In Section B the 1nvestigation is extended to concurrent

systolization for solving general banded linear systems.
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In particular, ’'systolic' LU-factorization dequeues are given
for quindiagonal systems and the complexity problems occurring are
exemplified. This fact led to the introduction of modified dequeues
for the unidirectional elimnation of the ‘'central’ subsystems, thus
bypassing the superfluous complexity caused by the overlapping of the
opposite factorization streams.

Finally, the boundaries of the ce;tral formatted submatrix for
the general banded case are investigated, along with the introduction
of the complementary background theory simplifying the variety of the
OCCUrring cases.

The Chapter concludes with a part of the work gaven in [BEKA85a],
which extends the research into the 'soft-systolic’ area by proceeding
to higher level foldings and proving the superiority of this new
'systolic' solution technique compared with the other approaches

discussed earlier hereain.
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Vr.A.2: CLASSIFICATION AND PRINCIPLES QF 'SYSTOLIC' ALGORITHMS

Systolic processors are a new class of 'pipelined' array architectures,
proneered by H.T. Kung, which are becoming increasingly attractive
because of continuous advances in VISI technology.

As we have already mentioned in Chapter III, a systolic system
1s a 'network of processors whaich rhythmically compute and pass data
through the system'. The fundamental operation on systolic arrays 1s
a multiply-and-add performable by an 'Inner-Product-Step' - (IPS) cell.
It is shown in [KUNG78] that some of these basic cells can be locally
connected together to perform digital filtering, matrix multiplacataon,
and other related operations.

The systolic array features the important properties of modularity,
regularity, local interconnection, a high degree of pipelining, and
highly synchronized multiprocessing. The data movements in a systolic
array are often described in terms of the ’snapshots' of the activities.
As the unit of time is considered the time necessary to achieve a
multiply-and-add operation.

One of the major challenging research items, therefore, has become
the development of algorithms that can be mapped into and executed
efficiently by a special-purpose computer system. Algorithms that match
with systolic systems, utilizing extensive pipelining and multiprocessing,
are called systolic algorithms. BAs we have previously menticned,
systolic algerithms, i1n a general comparison with SIMD and MIMD
algorithms, are the most structured and MIMD algorithms are the least
structured. More specifically, systolic algorithms deal with simple
and frequently interacting task modules, while the sitwation is reversed

for MIMD algorithms.
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Recent developments in programming languages along with the chip
technology has made it possible to classify systolic algorathms into
broad groups dependent on their properties.

We classify systolic algoraithms into two main sets (see Bekakos and
Evans [BEKA85]):
i) Hard-systolic algorithms: - denoted SH, and

1) Soft-systolic algorithms: - denoted Sg-

Hard-systolic algorithms

These are the traditional algorithms which, as well as cobserving
the general features given above, are subjected to further restrictions
placed on their designs. In other words, the graph model representation
must be planar, broadcasting to cells to be avoided, or a 11m:Lted-r amount
to be allowed (Semi-hard-systolic algorithms), and the least amount of
area 1n a chip design to be requaired.

Soft-systolic algorithms

These algorithms are more flexible than the Hard-systolic algorithms,
since non-planar graphs may be represented and area 18 not, directly,
a major consideration (this translates to storage used in a program) .
In addition, they do not have to be fabricable {(but must be simulatable
in some appropriate programming language, e.g. QCCAM, CONCURRENT PROLOGY,
and broadcasting is not to be avoided. Intuitively such an algorithm
may not be suitable for chip implementation, but i1t can be performed
on a sultable parallel computing structure.
It is evident that all Hard-systolic algorithms are special cases

of Soft-systolic ones and so can also be simulated in the same

+If over long distances clock skew occurs and data can become
unsynchronized.
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pProgramming languages. Further it 1s also apparent that some Soft-
systolic algorithms will be very close to being Hard-systolic, but
under the strict definitions would not be purely classed as such, but
as Hybrid-systolic algoraithms: - denoted SHy'

Hybrid-systolic algorithms

They will represent a grey area of algorithms being i1n a state of
'migration' between Soft and Hard and altering technological conditions
over time. In specific, algorithms whach allow local broadcasting (not
necessarily between nearest-neighbour cells), limited non-planarity or
large amounts of non-planarity {(but in a control sense, with regqular
connection structures), could be considered as candidates for thais
category of algoraithms.

All the above definitions will become increasingly important as
FGCS evolve. The relations between these classes of algorithms, in a
set theory manner, are:

t) s, VUs_ =58

H 5

.. - e g .
1) = SHy__ s

s$={All systolic algorithms}

the important question arising is whether SH=SS' because if this is the
case then, all Soft-systolic algorithms can be in essence fabracable.

In the following paragraph a mathematical model for the verification
of systolic networks will be introduced (see Melhem and Rheinboldt
(MELIH8]) , along with the data sequences to represent the data appearing
on the communication links at successive time intervals, and the causal
operators which model the computations performed by a cell of the
network. The latter concept was praimarily inspired by corresponding

approaches 1n systems theory (see Faurre and Depeyrot {FAURZ71).
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VI.A.3: AN ABSTRACT MATHEMATICAI MODEL FOR THE VERIFICATION OF

'SYSTOLIC' NETWORKS

In all theoretical models of VLSI circuits two parameters are of
vital importance, size and speed . Since VLST 1s essentially two-
dimensional, the size of a circuit is best expressed in terms of its
area. Sufficient area must be provided in a circuit layout for each
gate and each wire. Gates are not allowed to overlap each other at all,
and only two {or perhaps three) wires can pass over the same peint.

The speed of a synchronous VLSI circuit can be measured by the
number of clock pulses 1t takes to complete its computation. The
actual size of this time unit, however, 1s a technologlcal+ variable.

The speed of the VLSI circuit may be adversely affected by the
presence of very long wires, unless special measures are taken. In
many VILSI processes, a minimum-sized transistor cannot send a signal
from one end of the chip to the other in one clock peried. Today, to
accomplish such unit-delay cross-chip communication, and to achieve
large fan-outs, special 'driver' (amplifier) circuits are employed.

In general, an efficient systolic array should exhibit a lineaqr-
rate pipelinability,, 1.e., 1t should achieve O(m) speed-up, in terms
of processing rates, where m 1s the number of PE's. The term Efficiency
{(E) will denote the fraction of processor cycles during which a typical
processor 1s actively employed in the array.

Let us now proceed with the definition of the main elements of
the mathematical model for the verification of systolic networks.

- Abstract Model of Data, Causal Relations

We define a data sequence to be an infinite sequence whose elements

Tror the superconducting technology of Josephson junctions, a clock

period of 1-3ns <g achievable today, using a process for which the
area unit is 25um® (see Ketchen [KETC80]).
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are members of the set R6=R v {s} -

R={Real numbers}
Notation:

d="don't care element' (or, 'dummy element'} £ R.

We extend any operator defined on R to RS erther:

7} By adding the rule that the result of any operator
invelving § is § (class of §-regular operators), or
i1} by treating § as a special symbol that affects the result
of the operation {class of non-§-regqular operators).
Definition: Operations

7) &-regular operators, e.g,8'op'x=x'op'8=§ ¥x € RS'

iZ) non-8-regular operators, e.g., binary operator (# such that

for any x,vy € R., x @ y=x+4y 1f x,y#§, x@®8=8§ & x=x.

§
Defznition: Let N be the set of positive integers. Then any data

sequence n 1s defined as a mapping from N to R_; that 1s, the image

6;

th
element n(1), 1 € N, 15 the 1 element i1n the sequence. The set of
all data sequences, that 1is the set of all such mappings, will be
denoted by Rgs{nln : N > Rg}.

Remark: Any arithmetic operation on R6 is extended to Rg by applying

the operation elementwlse to the elements of the sequences, with §
being the result of any undefined operation, e.g.,

1f 'op' i1s a binary operation defined on R,, then an,HZEj Rg, nl'op'n2=n3,

where V2 €N nl(l)'op'nz(l), if n3(1) 1s defined,

(9 s otherwise. D

Definitions:

di: We can also use scalar operations on seqguences, e.g.,

scalar product:
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for N E€ER. A WER, T = w.n € Rg for whach Z({1)=wn(a), i € N.

&
d2: Bounded Data Sequence set: Rg ::EEE{AII sequences having only

a finite number of non-§-elements}.

d3: Termination Function: szﬁs + N such that, for n € is, Tf(n)

1s the position of the last non-§-element in n; in other words:

for any n € E%, Tf(n) =i esn(1)#5 and n(3)=8 for 7>i.
def.

In addition to the operators extended from R, to §6’ we may also

S

define operators directly on ﬁS'

dé: The n-ary Sequence Operator (I'): 1s a transformation

I‘:[ﬁaln > E(S' where [Ed]n = -ﬁaxﬁﬁx...xﬁa is the cartesian preduct space

of n copies of §6'

d5: Shift and Spread Operators (Qk,e'):

QkE =n and 68'€ = ,

where
N 1f igk
n(y) =
| £(1-k} 1f 2>k,
r 1+r
E(r+l) r 1=1,r+2,2r+3,...,(n~L)r+n,...,
(i) = {
S otherwise.

k
More descriptively, @ inserts k §-elements at the beginning of a
sequence, while 8' inserts r § -elements between every two elements of

a sequence. For example, 1f £=a ,a4,6,5,..., then Tf(£)=4 and

132783
E(1) = a; s 1515Tf(€) '

Q3E

5,5,6,& rS;SrG:---:

173078308,

825

al,ﬁ.é,a ,8,6,a ,6.6,a4.6,6--. .

2 3
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It 1s clear that we can define a sequence operator by combining
previously defined sequence operators. For example, we might define
an operator T zﬁéx§6x§6+§6 as follows:

r{g,n,t} = Ql&+n*] ,
where square brackets are used for grouping and parentheses for
enclosing the arguments of the operator.

ds: Causal Operators: Any n-ary sequence operator F:[§5]n+§5,
whlch_;;tlsfles the causality property in the sence that the ith
element of any of 1ts operands can only affect the jth element of 1its
image for j>1. AMore formally, assume that for any nr € ﬁé, r=1,2,...,n,
the image under T 1is E=T(nl,...,nr,...,nn). Then T is a causal
operator :f by replacing any coperands nr by another sequencer&
satisfying

n;(t) = nr(t) » lgt<a,
the resulting image EEF(nl,...,n;,...,nn) satisfies

E'(t) = E(t), lstgi.
Namely, the value of £(1}) depends only on the first 1-1 elements of
nr, lgrgn. In the case that the ith element of the image sequence £(1)
depends only on the first i elements of the operands nr, 1<r<n, then

we are talking about weakly causal operators.

— Abstract Systolic Network Model

The systolic model 1s defined to be composed of the following
compenents:
2) A loopless multigraph G(V,E,¢_,¢+), which in turn is
compeosed of
a) v={Nodes or cells}

b) E={Directed edges}



i1)
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¢) two functions ¢_,¢+:E + V satisfying the condition
that for any (edge) e € E, ¢_(e)#¢+(e) (1.e.,
prevents direct loops). The nodes ¢ (e) and ¢+(e)
are the 'source' and 'destination’' node, respectively,
of edge e € E.
The notation VS,VT,VI w1ll be used for the subsets of V defined
as:
1) VSE{Source nodes {no edges directed IN)}
z2) VTE{Slnk nodes (no edges directed OUT}}
3) v_={Interior nodes (not a source or sink)};

I

certainly, the condition VS u VT U VI = V 15 always satisfied.

A colouring function col:E + C_, where CE 1s a grven finite

E

set of colours,

Essentially, input edges to the same node receive different

colours, as do output edges, e.g., y=col{e) denotes edge e has

colour y.

For each edge e € E, a sequence Ee € ﬁa 1s specified.

For each interior node v € V with IN-degree m and OUT-degree

1 —.m = .

n, n causal m-ary operators sz[RS] * Ry are given, which

specify the 'node I/0 descraiption'. More specifically, if nJ,
L

j=1,2,...,m, and £, 1=1,2,...,n, are the sequences associated

with the IN and OUT edges of v, respectaively, then the n

relations

1 1,1 2 m
g” = Tv(n (M peeeyn )y 2=1,2,...,0,

are the I/0 description of v. The different IN and OUT edges

of v are distinguished in the I/0 descraiption by their colours.
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Remark: Each interior node represents a computational cell*/
processor and each source/sink node corresponds to an input/output
cell for the overall network. Each edge e € E 1s a unidirectional
comminication link or channel.O
Finally, given a systolic network based on the graph GE{V,E,¢_,¢+},
a subset Vic: VI of interior nodes 1s said to be a homogeneous set if:
i) All the nodes in Vi have identical IN-and OUT-degrees, say m
and n, respectively.
27) The m colours of the IN edges of any v € Vi are identical and
s0 are the n colours of the OUT edges of wv.
221) The node I/0 descraptions of any v € Vi are generic [MELH84].
To conclude, a network is said to be homogeneous 1f the set of
interior nodes VI, in 1ts graph G, is a homogeneous set. More generally,
a network 1s said to be k-partially homogenecus 1f there exists a
partition 5 Vi of VI into k non-empty homogeneous subsets V;,

i=1
1=1,2,...,k.

e computations performed by the cells are modelled by a system of
difference equations involving operations on the various data sequences.
The input/output deseriptions, which describe the global effect of the
computations performed by the network, are obtained by solving this
system of difference equations [MELHS84].




[Ch. UI/Sec. A : 658]

VI.A.4: TgE Dara STreEAM 'RoTATING' AND 'FOLDING' TECHNIQUE

Matrix-Vector Multiplication

Definition of the Problem

Given a (nxn) matrix A and a n-vector %, compute a n-vector y,
from Ax=y. This problem was tackled for a matrix with bandwidth w=p+q-1
by Leiserson [LEIS81], from which we get the following Theorem.

Theorem [VI.A.4:91]

For a {(nxn)-band matrix A=(a13)' of bandwidth w, the elements in

the matrix-vector product X?(Yl""'yn)T can be computed by the following

recurrences:
(1) =0
1
k41 k
y: ) = yi ) + aikxk s k=1,2,...,n
- (n+l)
Yl Yl '

on a systolic array of w linearly connected processors, in 2n+w time-
units.
As we have previously defined, a time-unit 1s the cost of one IPS (see
Figure (VI.A.4-f1)).
Remark: The efficiency of the linear array of processors is: E=1/2;
in other words, the Efficiency really evaluates the intrinsic degree of
parallelism which the array can achieve.O

We shall utilize the same type of IPSP as illustrated in Figure
(VI.A.4-f1), making use of the 'delays' appearing in Leiserson's
implementation. More specifically, in that implementation after w units
(cycles} of time the components of the product y=Ax start shifting out
from the left-end processor in the w-linear array of processors, at the
rate of one output every two units of time. Therefore, the O(wn) time

needed for the sequential algorithm on a uniprocessor was reduced to 2n+w.
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VvV
+
: ysy+asXx

Figure VI.A.4-f1: The Architecture of Leiserson's IPS Processor.

Remark: A good measure for the potential of the systolic array is the
well defined by now Speed-up factor, in this case, however, being
estimated in terms of processing rates reflecting the papelining potential
of the systolic algorithm.D

To make use of the gaps ('delays') appearing in the data stream of

the above implementation we can apply any of the following three ways:
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a) Sance at any given time alternating processors are 'idle', by
coalescing pairs of adjacent processors it is possible to use w/2
processors in the systolic network, for a general banded matrix
with bandwidth w. This can be achieved by interleaving the diagonals
of the matrix, while Leiserson's time-units are kept invariant
(mathematical approach);

b) by using a double pipe construction, i.e., by creating a second
pipeline consisting of the alternative processors in the linear
array, to eliminate their occurring 'dormant' situations (see
Robert [ROBE851) (hardware approach);

e) by foldingthe opposite extreme ends of the matrix band to form a
dequeue (or destream, or dewave) with the elements of the lower-half
of the matrix band interleaved in the previous delay spaces
(mathematical approach).

A direct comparison of these three approaches, bearing in mind the
present state of technology, would prove the last approach far superior
for any type of systolic algorithms, despite the mathematical
complications occurring, since they can be easily tackled by elementary
hardware or programming.

In the following we shall exemplify the latter approach, considering
the above defined problem for the simple case of A being a tridiagonal
matrix, i.e., p=g=2, w=3.

Theorem [VI.A.4:82]

The (nxn)-band matrix-vector mult:iplication problem with bandwidth
w=p+g-l can be solved in n+w+l time-units, using leiserson's linear

array+ of w IPSP's.

twith the modifications displayed in Figure (VI.A.4-f2).




Proof :

(By construction of the array}.O
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Remark: The Efficiency of the linear array of processors 1s: E=1.0

Consider the tridiagonal matrix A (for n=5)

834

_O

844 Ags
@gq dss

1

Xg

Xg

I

Ys

Y2

Ya

Ys

: Folding direction

B
: Computational direction

The dequeue resulting when applying the foldlng+ technique 1s the

following:

8a3
Q43 b 34
as3 Qas as notation : § = dummy element
8pa 82z aas
a2z 855 an
:l an l:
] ]
-_— L -—— -— gl -—
VE=Vs V2 w@
—) — —

@m Xy Xg =5 X4

Note that, the middle element of the x-vector, and consequently the

corresponding element in the r.h.s. vector, have to be kept in the

t .
This technique is not a simple folding of the band of the matrix, but
involves a simultaneous 'rotation' of the off—-diagonals.
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a X X ¥y
¢ Voo
) 0,
I
Dl
Y Y
vV
i %

Figure VI.A.4~f2: The Architecture of Leiserson's Modified IPSP.
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respective opposite-end processors for two clock ticks, which can be
eas1ly tackled either by programming, or by altering slightly the

structure of the IPSP (see Figure (VI.A.4-f2).

Remark: We have chosen the tridiagonal case for simple exemplification
purposes. The reader should bear in mind, however, that as the semi-

bandwidths of matrix A increase, irrespective of the size of the matraix,
in the middle of the dequeue we have the formation of a full submatrix
the size of which depends on the semi-bandwidths (p,q).0

Finally, all the computational steps of the systolic algorithm

are 1llustrated in Pigure (VI.A.4-f3).

Step
Number
0 — y -— Y5
1 r——
X5 — Xy - _—
— - —- —
an Ys e Y2
1 Y1=anXy
X2 s Xsg Xy
= — — sy
a4z gy a4 p— Y4
2 Y1 = 811 % + 812Xz Ys = 855Xs Yz = 821Xy
X4 — Xz X5 X1
®_ 854 322 845 — Y3
3 Y5 = 356Xs + 54X Y2 = 821Xy + 822Xz Ya = BasXs
X3 —_ Xa X2 X5 .
— = =
@ a2 a4 d32 —
4 Y2 = 821X + 822Xz + 823%3 Ya = 855%5 T 844X4 Ya = a32Xz
— Xq Xa X2
— — :
843 5 834 —
5 Y4 = 845X + 8aaXy + 843X Y3 = 8azXa + 834X
= X3 Xa —
6 ‘2’ 233 —
Y3 = 832X2 + 8344 + 833%3
e Xa -
h— — —r —
— — —
7 Y3 |—
b X3 —
— r—— — —
= = =
8(:>
- — — —

Figure VI.A.4-f3: The Computational Steps of the

Multiplication Algorithm (n=5)

Matrix-Vector
using a Dequeue.
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VI.A.5; A 'RoraTting' Anp 'Forbping' ALcoOrRITHM Using A Two-DIMENSIONAL

'SYSTOLIC' COMMUNICATION GEOMETRY

How can processors be distributed in a two-dimensicnal area so
that they can be mesh-connected in a simple and regular way, in the
sense that the connections are all symmetric and of the same length?
This problem is related to that of finding regqular figures that can be
closely packed to completely cover a two-dimensiconal area.

It turns out that one ¢f the most preferable solutions to thas
problem, possessing the above property, is the hexagon.

In the following we shall demonstrate a modified rotating and folding
algorithm, utilizing such a systolic communication network.

Matrix Multiplication on a Hex—ConnectedT Systolic Array

Theorem [VI.A.5: 61]

Let A=(aij) and B=(b13) be (nxn)-band matrices of bandwidths wl

and Wor respectively. Their product C=(cij) can be computed by the

following recurrences:

<M
1]
(k+1) _ (k) =
cij = cij + aikbkj . k=1,2,...,n
{n+l)
c., = C, ’
1] 1]
on a systolic network of leQ hex-connected IPSP's, in 3n+min(w1,w2)

time-units (see Leiserson [LEIS81)).

Remark: The Efficiency of the diamond-shaped hexagonal array is: E=1/3;

this is due to the fact that in any row or colum of the network, out of

every three consecutive processors, only one 1s active at any given time.O
We shall apply the 'rotate'and'fold'algorithmic concept to this

problem, making use of the same systolic network of processors with

+An abbreviation for Hexagonally mesh~connected.
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identical cell specifications. The outline of the IPS hexagonal cell
1s given in Figure (VI.A.5-f1). To review the general IPS operaticnal
procedure irrespectively of the used geometry, each processor has three

registers RA'RB'RC and six external connections, three feor input and

three for output. In each time-unit interval, the processor shifts the

data on its input lines denoted by A,B and C, into RA'RB and Rc,

respectively, computes R <R _+R xR, and makes the input values for R

C C A B A

and RB' together with the new value of RC' available as outputs on the

output lines denoted by A,B and C respectively.

Figure VI.A.5=f1: The Outline of the IPS cell in the Hexagonal Geometry.

Again, all outputs are latched and the logic 1s clocked so that, when
one processor 1s connected to another, the changing output of one during
a time-unit interval will not interfere with the input to ancother during
this time interval. This is not, however, the only processing element
we shall make use of, but it will be the work horse.

Comment: The geometrical type of the IPS cell introduced in (par.VIi.A.4)
15 most suitable to be used for matrix-vector multiplication and the

solution of triangular linear systems. The cell geometry introduced
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herein is most suitable for matrix multiplication and LU-decomposition.O

Theorem [VI.A.S:GZJ

The (nxn)-band matrix multaiplication problem: C=AxB, with band-
.f.
widths Wy and Wy respectively, can be solved in t%ﬂ +m1n(w1,w2)

time—units, using Leiserson's systolic network of wlw2 hex-connected

IPSP's.

Proof:

(By construction of the array).OD

Remark: The Efficiency (E) of the hexagonal array 1s not constant, but
exhibits a fluctuation between 1/2 and 2/3. The reader should bear in

mind that these results can be verified by considering the well known

T(e)

Efficiency formula: E_ = £, where p is the number of PE's 1n

pT(e)
p
the systolic network.O

Prior to illustrating the 'rotate'and'fold' concept, as we have
noted, the band-shape of the matrices to be multiplied plays a significant
role in the formation of the appropriate dequeues. In particular, the
diffaculties arise 1f one of the matrices has not equal semi-bands.
Then, the 'rotating'and'folding'technique must be carefully applied on
the elements of those super=~ or sub-diagonals whose presence alters
the band symmetry. We shall examine both the symmetric and unsymmetraic

semi-band cases by considering appropriate Paradigums.

Paradigm [VI.A.5:m;]

Let us consider the following (nxn)-band matrix multiplication
problem (for n=5}, which is a symmetric semi-band example: 1.e.,

Pl=ql=92=q2 =2, Wl=w2= 3,

+
It may change to [%n-l +min(w1,w2) depending on the band-shape of the

matrices to be multiplied.
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I
: Folding direction |

.

: Computational
direction

“11 12 “13

€21 22 “23 sz

= 31 032,2%}’ 34 ©35 .
ﬁ§§§§3; 43 %44 %as

O W53 %54 s5)

C

The dequeues resulting when applying the new technique to each of
the involved matrices, together with the systolic hexagonal array, are
given in Figure (VI.A.5-f2). Note that, each clj is 1nitialized to zero
as it eneters the network through the bottom boundaries.

Remark: The top data stream, in each factor matrix of the multiplication,
slightly overlaps the bottom originated data stream for the sake of the
tail elements (note the elements in circles). Besides this, each of

the dequeues with the data of the factor matrices is identical to the
dequeue given for the matrix-vector multiplication problem.D

Toc measure accurately the time-complexity of systolic arrays we
should sum all the steps required for loading inputs, processing, and
retrieving outputs. For this specific Paradigm the matrix multiplication

is computed 1n L%l

2

time-units that would be required normally.

+min (3,3)=10 time&-units, instead of 3n+min (3,3)=18



——
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Paradigm [VI.A.5: TI’ZJ

Let us now consider the following (nxn)-band matrax multiplication
problem (for n=5), which is an unsymmetric semi-band example:

i.e., pl=2, ql=3, p2=3, q2=2, w_=w,=4,

172
—p; = e 5 - - -
|[211 212 b1y 21p B3 €11 12 %13 %14 ©
ql a a a (D qu b b b () c c c c c
21 “22 “23 1721 722 723 “24 21 T22 T23 T24 25
l 331 332 233 23 by byy Byy bog|= €37 €35 €33 34 35
Ay 243 344 2453 O by3 Py Pasl 141 a2 €43 a4 45
O
254 354 255 gy bSSL O €55 C53 %54 55
L o e - — -
A B C

In particular for the factor matrices, an 'on-the-fly' modification
of the 'rotating'and 'folding’concept is necessary, and this is due to the
lack of band symmetry. In respect to the product matrix C, again a
slight advancement of the top data stream against the bottom originated
one would take place normally, for the sake of the factor dequeues’
tail elenents.

The dequeuesof data resulting when applying this ‘'on-the-fly'
modified/normal 'rotate'and 'fold'to the correspondingly involved matrices,
together with the systolic hexagonal array, are given in Figure (VI.A.5-f3).
Note that, all the in-between gaps are filled in with 'don't care
elements', which for clean diagrammatical purposes have been omitted.

In Figure (VI.A.5-f¢) are displayed four consecutive computational
steps on this hex-connected systolic array, while the matrix
multiplication is computed in {%£}+min(4,4)=12 time-units in total,
instead of 3n+min(4,4)=19 time-units that would be required normally.

The reader 1s invited to study the data flow (indicated by 'arrows')
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(i)

continued.. $
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8 (iv)

Figure VI.A.5-f¢ : Four Consecutive Computational Steps of the Matrix
Multiplication Problem of Faradigm [VI.A.5:1r2].
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of this problem more closely by making transparencies of the banded
matrices, and moving them over the network picture as previously
described.

We shall conclude by introducing the appropriate formulae for the
estimation of the (semi)-bandwidth(s) of the product matrix in the
matrix multiplication problem.

Corollary [VI.A.S—pIJ

Given two (nxn)-band matrices A=(al ) and B=(bi]) of semi-bandwidths

3
PA'qA and PB'qB respectively, the corresponding semi-bandwidths pc,qc

of their product matraix C=(c13) are estimated by formulae:

P P

+—
atPg -1

¢ (VI.A.5:1)
qc=qA+qB-1 '

: = + - 3.
which implies that Wo =Pyt qy tPyt 3
Condition

'L) PA S n-PB

i7) dp € B4y -

Corollary [VI.A. 5-02]

In the complementary condition cases:
2 - >
z) Py >n Pg A qA n-qp
‘. > e
1) Py 2 R"Pg A 9, ¢ Nq,
117) Py € 7Py A I > N, o
the bandwidth of the product matraix c=(clJ) 1s estimated by the

corresponding formulae given for each case:

2n-1

=
[}

£
[}

ntq ta; -2t . (VI.A.5:2)

=
n

=D Py *tPg -2
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VI.A.8: 'SYSTOLIC' LU~-FACTORIZATION DEQUEUES FOR TRIDIAGONAL SYSTEMS

The problem of factoring a matrix A=(aij} into lower and upper
triangular matrices L and U (1.e., LU-decomposition} has been proved
(see [XUNG80], [LEIS81]) that 1t can be done naturally on hexagonal
systolic arrays. It 1s assumed, however, that the matrix A has the
property that its LU-decomposition can be done by Gaussian elimination
without pivoting. This 1s true, for example, when A 1s a symmetric
positive-definite, or an irreducible, diagonally dominant matrix.
Usually this condition 1s not a problem, since most of the systems
encountered in practice are diagonally dominant; on the other hand,
however, there is currently no efficient way of incorporating a paivot
strategy into existing vecter or parallel algoraithms.

Once the L and U factor matrices are computed, it is relatively easy
to sclve the resulting triangular linear systems.

The hex-connected systolic array of processcors to implement the
LU-decomposition, displayed in Figure (VI.A.6=f1), 1s constructed as
follows. The processors below the upper boundaries are the standard
IP5P's and are hex-connected exactly the same as the matrix multiplication
comput ing network presented in {(par.-VI.4.5). The processor at the top,
denoted by a circle, isa special processor. It computes the reciprocal
of i1ts 1nput and pumps the result southwest, and also pumps the same
input northwards unchanged. The other processors on the upper boundaries
are again IPSP's, but their orientation is changed: the processors on
the upper left boundary are rotated 120 degrees clockwise; the
processors on the upper right boundary are rotated 120 degrees counter-

clockwise. Again, the flow of data in the array is indicated by arrows.
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Figure VI.A.6—-f1: Hexagonal Array of Processors for Pipelining the LU-
decomposition of a (nxn)-Band Matrix with Bandwidth
w=7.

Remark: A major part of the LU-decomposition network 1s formed from
the matrix multiplication network due to the similarity of the defining
recurrences. In other words, this implies that the rotating and folding
technique should be successfully applied on the present problem and
systolic network, to increase, in a simlar manner, the overall efficiency
of the array. O

Prior to proceeding to the formation of the systolic LU-factorization
dequeue we shall introduce the following Theorem and Lemma obtained from

[LEXS81] .

Theorem [VI.A.6: 91]

Let A=(aij) be a (nxn)-band matrix with bandwidth w=p+g-1l, then a

processor array having no more than pgq hex-connected processors can

compute the LU-decomposition of A in 3n+min(p,g) time-units.
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Lemma [VI.A.6: Al]

Let A=(aij) be a (nxn)-dense matrix, then n2 hex-connected
processors can compute the L and U matrices in 4n time-units.
Remark: It 1s not to be forgotten that these complexities include I/0,
control, and data movement.O

When we apply the new 'rotate'and fold'concept we obtain two LU-
factorization streams functioning concurrently and in opposite directions,
one from the top downwards and the other vice versa. Certainly, the
two factorization streams should confront each other in the center of
the matrix and the degree of difficulty in handling the factorizing
procedures in this part is darectly dependent upon the size and the
semi-bandwidths of the matrix. Herein, we shall exemplify the concept
of the systolic LU-factorization dequeue for tridiagonal matrices.

Theorem [VI.A.6:92]

Let A=(ai ) be a (nxn)-band matrix with semi-bandwidths p=q=2,

J
then by applying the 'rotate' and 'fold' technigue the factorization
.t.
of A into the L and U matrices can be done in {%g}+m1n(p,q) time-—units,

using a hex-connected systolic network of pg processors.

Proof:

(By the construction of the array in the Paradigms which follow).D

Paradigm [VI.A.S:nIJ

n-odd

Let us consider the following (nxn) tradiagonal matrix (for n=9):

TThe cetling function is used to take care of the case that n is an
odd number.
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——P— -
| [211 212
| |221 832 853
832 %33 34 0

843 244 %5

a a a

A= 54 55 56 (VI.A.6:1)
85 %66 67

a6 %77 %78

337 g8 g9

%98 %99
The general recurrences for the pipelined systol:ic evaluation of

the triangular matrices L=(le) and U=(ul]), for any (nxn)-band matraix

with bandwidth w=p+g-l, are the following:

ai%) S
B
0 if 1<k
Elk = 1 1f 1=k
2 U AE LK (VI.A.6:2)
o 1f k>j
ukj i aii) if kg).

The resulting matrices for the particular case of p=g=2, and n=9

have the form



11 12

22 23
33 34
44 45

55

u

u

56

66

u

u

67

77

u

u

78

88

u

u

89

99.
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Prior to illustrating the LU-factorization dequeue let us discuss

the mathematical alterations imposed on the recurrences (VI.4.6:2)

for the applicaticn of the *rotate'and 'fold'technigue.

the matrix A will be rewritten as two separate matrices A

band length each, 1.e.,

In particular,

17 A2 of half-



and

—T —

Remark :

el

ol

11 12

2r 22

32

“q_

99 98

89 788

78

23

33

43

87

77

67

76

66 65

99

poy |

S8

88
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{1st stream)

{2nd stream)

For this specific example, where the semi-bandwidths are p=q=2,

we shall use a (2x2) systolic array of hex-connected processors.O
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The recurrences given in (VI.A.6:2) wall be modified to the

following:
a(l) = a
1) i3
(2) _ _{1) _
i T %, 7 21,1-1( ul-l,l)
[ o if 1<r
fe T 1 1f i=r
;_a“‘)uwl if 1>r
ir rr ot
(17 stream) (VI.A.6:3)
( o 1f r>)
= 1. @) _
Y B 1f r=3#1
La:é;.) 1f r<3, r=3=1
and (1) (3) _ (2
a, - PR 4 a = a_,.
ij ij 11 1i
2) _ (1) _
i1 T % +21,1+1 ui+l,i)
[ o) 1f 1>r
nd 4.6:4)
9 = 1 if i=r (87" stream) (VI.A.6:4
ir
Lasl)u_l if i<r
ir rr
( 0 if r4¢3
_ (2) ; -
ry - 1 arj if r=3#n .
1) . L
L ar:l if r>j,r=3=n

Comment: Since n is chosen to ke odd, each stream in the destream
procedure modifies the center element of the matrix middle row; and to
be more specific (in the above example) the age element (only) is

modified tw1ceT'U

Let us now compute the corresponding elements of the resulting

triangular matrices, by usaing the above recurrences for the opposite

T s implies that after its first modification this element has to be
collected 'on-the-fly' from the output of the cell and brought back
into the serial stream to re-enter that cell (in the same time-unit
step) for the next modification.




factorization streams.

ISt Stream
(1)
a = .
1] 13
_ W () _
ul:j alJ = ull = all ’ u12 al2 (rnitially)
_ 2 __(2) _ (1)
Ugg T B2y Uy T 2y Ha3 T %23
_(2) _ () _ ()
U3y T 835 P U3y T a4 Uy T B34
u = a(2) = 1] = a(2) u = a(l)
a3 = %45 48 = %4 45 = 35
u = 3(2) u = 3(2)
59 - %54 55 - 35g
(1) -1 (1) -1
L T P O Tl P
_ {1y 1 _ (. -1
22 =35 U= Agy T Ay,
R N S S !
13 T %33 Y33 ™ M43 T 33 Usg
2 = (l)u-l = = a(l)u_l
i4 T %14 M4 ™ P54 T ¥54 Yyg
(2) _ (1) _ (2) _ (1)
3y T3 TRy oAy, =any e, (ugy)
(2) (1) _ (2) _ (1)
3 T 3y Mol d e agst = aggt e, (huyg)
(2) _ (1) _ (2) _ (1) _
30 T, tglug ) et o= a4 (mu,)
(2) _ (1) _ (2) _ (1) B
3 A M) e et =gt (tuy )
an Stream
D a® @)
1] 1j ii 11
_ () _ _ (1) .
u93 agj-# u99 a99 ’ u98 a98 (1nitially)
_ _2) _ _{2) _ (1)
Ygy T %y T Ygg T Pgg (Yg7 T g7
(2) _ _{2) _
73 T 895 T Uq7 T 837 Y95 T 3y
@ o (2) (1)
Y63 T %5 66 %66 |"65 = %5
a = a2 ey
53 53 55 55
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q (Ul)

4 (Ll)

r (U,)
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) -1 (-1 \
Y10 = 249 Ugg ™ gy T 259 Ugg
) -1 -1
18 T 218 %8~ %18 = 275 Ugg S
o -1 ) -1 2
217 = 8178977 %5y = 30
@) -1 S
Y6 = 236 Y%e  *se T 256 Yee J
(2) _ (1) } (2) _ (1) 3
Ay T3 thotUg) T 3gg = a88_+289( Ugg)
(2) _ (1) 3 () _ () _
22 T35 thgltugy) T agyt = an oy (Fugy)
(2) (1) I ¢ S ¢ ) )
a0 Ty Mg )T a s = ag T ()
2y _ () ) (2) (1) )
31, T35y Mg )T agt = ag el (hug ).

The Efficiency achieved in [XUNG80O] from the single stream LU-
decomposition scheme 1s: E=1/3, since in any row or column of the hex-
connected systolic array, similar to the matrix multiplication case,
only one out of every three consecutive processors is active at a given
time.

The dequeue of data resulting when applying the 'rotate'and 'fold’
concept to the two half-A matrices, to take advantage of the processors
'dormant' instances occurring in the above implementation, together
with the systolic array, are given in Figure (VI.A.6-f2).

Remark: The Efficiency achieved has now been increased to E:1/2,
whereas the number of IFS cells 1s the same as for the usual LU-
decomposition array.Od

For exemplary purposes of the new concept, in Figure (VI.A.6-f3)

are displayed all the computational steps required on this hex-

connected systolic array of processors.

0]

2]

For this specific Paradigm the
LU-factorization 1s computed in +min(2,2) =16 time-units, instead of

3n+min(2,2) =29 time-units that would be required normally.




: 683]
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Figure VI.A.6~f2: The Dequeue of Data for the LU-factorization on a

Hexagonal Systolic Array (for p=g=2, and n=9).
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continued




14,

@ (for th
$

(for the 2?2
stream)

The prime denotes
that this element
has been modified
by the previous stream.

i86.

Figure VI.A.6-f3: All the Computational Steps of the LU-factorization of Paradigm [VI.A.6:H1J.
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Again, the reader 1s invited to verify the computational snapshots
given in the above Figure by making transparencies either of the
compound data stream, or the network itself, and moving them one cver
the other appropriately.

Paradigm [VI.A. 6‘:1r2]

n-gven

Let us consider the following (nxn) traidiagonal matrix (for n=4):

—PF
I[2,,
q 11 12 O
l 321 %22 %23
A= a a a . {(VI.A.6:5)
32 3 34
® 3
L 343 %44
The matrix A will be rewritten as two separate matrices Al,A2
one of which is greater than a half-band length, i.e.,
a1 212 © 1 o 17 Y12 O
A1=T321 22 %3 = | ! o B Y23
O ay @ Oty
Ll U1

st
and the other as (1" sgtream)

-——q—

, a a 1 C u u
A, = p 44 43 44 43 .

2 nd
|a34 @ 2.34 1 ® @ (2" stream)

Remark: Again, we shall use a (2X2) systolic array of hex-connected
processors .

The recurrences that we shall use in this case are:



a(1) =a. ., a(3) = af?)
1] ij 11 ii
2) _ _(1)
aii - all'fﬁﬂi-l( ul-l,l)
0 1f 1<r
2 =<1 1f i=r
1r
Sl)u_l if i>r
ir “rr
0 if r>y
- {(2) . .
urj = arJ if r=j#1
1 .
aij) if r<j, r=j=1
and
a(1) = a,
1] ij
(2) _ _(1)
ail - all * %,1+l( u1+l,1)
( 0 if 1>r
Elr =1 1 1f 1=r
Laii)u;i 1f i<
[ o 1f r<y
= (2) .
ur:l = ‘arj 1f r=j#¥n
(1) -
garj r1f r>j, r=j=n
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(VI.A.6:6)

st

(1°° stream)

(VI.A.8:7)

(an stream)

Let us now compute the corresponding elements of the resulting

triangular matrices, by using the above recurrences for the opposite

factorization streams

15% stream

(1) (3)
a, ., -
ij ij ii
ulj =
u2j =
uBJ =

(2)
= a
11
D W
15 % "1 1’
(2) _ (2
857 = U T 2y
(2) _ (2
833 = Y33 T 333

Y12

(1)

= a12 {initially)

(D (U,)
Y3 T 83
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! _ (-1
R T R S T
8 _ (L. -1 (L.}
2ip = 20 Uy Ty T A, 1
(2) _ (1) _ 2y _ ) _
ag, =a b (mu) =at = a) i, (huy)
2y _ (L) _ (2) _ (1) _
ay, Toa i ltuy ) ®agy = ag g, (u, ).
2nd Stream
a(l) = a
i] 1]
¢S _ () _ W
u4J a4j ﬂ'u44 Ay 0 Uy T A5 {1nitially)
_ @2 _ _(2) (u.)
Ujy T B35 T U3 T agy 2
(1) -1 {1) -1
,Q, = = L
14T 34 Vg Tty T 23y Yy } (L))

(2 _ (1) _ 2y _ (1) _
a11 - all +214( u41) = a33 B a33 +£34( u43).

The dequeue of data resulting when applying the 'rotate' and 'fold'

concept to the matraices A, and Az, to benefit from the processors

1
inactive instances occurring in the single LU-decomposition stream,
together with the systolic array, are given in Figure (VI.A.6-f4).
Remark: The Efficiency achieved has again been increased to: E=1/2,
whereas the number of IPS cells 1s the same as for the usual LU-
decomposition array.O

Again, for exemplary purposes of the 'rotate' and 'fold'concept for
this case, in Figure (VI.A.6-f5) are displayed all the computational
steps required on this hex-connected systolic array of processors. For
this specific Paradigm the LU-factorization is computed in %?+min(2,2)+l=9
time-units, instead of 3n+min(2,2)=14 time-units that would be required
normally.

Comment: Note that, the Ay element after its first modification has
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r 44 ‘|
I

I
: a1 812 1

I
3 %43 )
! ;
I 922 "
! [
| |

]
I 3 a I
y 232 23
I I

Figure VI.A.6-f4: The Dequeue of Data for the LU-factorizaticn on a
Hexagonal Systolic Array (for p=g=2, and n=4).

to be collected 'on-the-fly' from the output of the cell and brought
back into the serial stream to re-enter that cell, with a time-unit
delay, for the next modification by the ISt wave.

For a better assistance in understanding the 'rotate'and 'fold’'concept,
in Appendixz C-VI. the mathematical background of the double Gaussian
elimination streams+ 1s introduced, accompanied by an appropriate general
numerical example, 1.e. for a full (nxn) matrix, to demonstrate the
efficiency of the method.

For the specific instance of the present case, however, let us
present a simple numerical example illustrating this necessary 'on-the-fly'

modification discussed above.

Trop full matrices.
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The prime denotes that this
element has been modified
by the previous stream.
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{(for the Ist gtream)

Figure VI.A.6-f5: A1l the Computational Steps of the LU-factorization of Paradigm [VI.A.6:1T2].
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following (4%4)} tridiagonal linear system:

7] 'x— -3-
1
O
1 x2 5
2 1 X3 = 2 . (VI.A B 8)
1 2] _x4_ L3

Notice that, the coefficient matrix i1s diagonally dominant.

By applying the folding algorithmic process we obtain the following

solution steps:

2 1
1 3
-1
O
(2 1
ISt steg_. 5/2
-1
O
2 1
g 5/2
2n step_.
L O

multipliers (top-bottom streams)

200D
T %] T3 7] -1/2
1 C X, 5
2 1 Xq 2
1 2_ ] 3 -1/2
Y \
- .Xl. - 5 -
1 O ®, 7/2 2/5
@ *3 @
1o2]  [x] R
\ \J
- _Xl_ - 37
1 O X, 7/2 )
*3 g
1 2] Xy L 3

The circle and square schemes underline the modification seguence of

that element by the bottom and top streams, respectively. The solution

T
vector x was pre-arranged to be x=(1,1,1,1) . Further, note that,

since n is even the folding procedure ends-up with the formation of a
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(2x2) central submatrix. On this matrix, only the top stream eliminates
the corresponding element and hence the backward, forward substitutions
start from unsymmetric matrix pesitions.

To conclude, in respect to the utilized systolic array for the
Paradigms herein, there are several other equivalent networks that
reflect only minor changes compared with i1t., For example, the elements
of L and U can be retrieved as output in a number of different ways.
Also, the '=1' 1input to the network can be changed to a '+1' if the
special processor at the top of the network computes minus the

reciprocal of 1ts input.

VI.A.6.1: ‘DEQUEUES' FOR SOLVING TRIANGULAR LINEAR SYSTEMS

This paragraph concerns itself with the solution of the correspond-
ing triangular linear systems resulting from the factorization of the
numerical examples of Paradigms [VI.A.6: ﬂl,qg], by applying the 'rotate'
and 'fold'concept again, to obtain a similar increased efficiency as
that for the factorizing part.

Suppose that we want to solve a linear system: Ax=b. In fact,

after the LU-deccomposition we have to solve two triangular linear systems:

Ly =b

QE Yy .

(VI.A.6:1)

An upper triangular linear system can always be rewritten as a lower
triangular linear system without any loss of generality.

Herein, we shall investigate both problems individually, making
use of the same systolic network introduced in (XUNG8(0]:; but, instead
of a single data stream we shall form an appropriate dequeue for each

of the problems above, to solve two triangular linear systems in the
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same amount of time required for the solution of one in the above
implementaticn.

Further, note that, we shall tackle both these problems for the
correspondingly resulting triangular linear systems of the above

Paradigms, in order to cover the instances of n being odd and even.

Case A - (of Paradigm [VI.A.6: WIJ)

(i) - Lower Triangular Linear Systems

Let A=(alj) be a non-singular {9x9)-band lower triangular matrix.
Suppose that A and vector E?(bl""'bg)T are given. The problem 1s to

=p._

T
compute Ef(xl,...,xg) such that: The vector X can be computed

by the following recurrences:

(1) _
yi =0
{2y _ (1) B .
P PP LT 81 ,i-1%11 (VI.A.6.1:1)
= (b, -y %) _ (2) __ (1)
x = (bi Y, )/a.J_i (when 1=1, then Y, =Y, ).

More specifically, let us consider the lower triangular linear

system and compute the solution vector x, using the above recurrences,

i.e.,
ql %11 7] [P
| |21 222 *) B,
%32 %33 O *3 by
343 24 X3 [Pa

agy 4gg xs| = b5 . (VI.A.6.1:2)

355 g *s| 1%
a76 a77 x7 b7
0 237 2gg Xg|  |Pg
. g 290l X9l [P
a b

[
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The solution will be:

x) =b)/a),

a21xl+a22x2 = b2 ==X, = (b2-a21xl)/a22
ag¥ytaggRy = by emxy = (by-ag,x))/ag,

a43x3+a44x4 = b4 w=x, = (b4—a43x3)/a44
g X ag5¥g = bg =% = (bg-ag x ) /a
365%¥5 6% = P <X = (Pggs%s) /3,

agcKptag X, = b7¢==sx7 = (bT_a76x6)/a77
ag,Xqtag Xy = b8 =Xy = (be-a87x7)/388
a, . x.+a = b, =%, = (bg-agsxa)/agg

988" %99%9 9

In this case (i.e., tridiagonal matrix), the bandwidth of the
matrix 1s w=g=2. The above given recurrences, in (VI.A.6.1:1), can be
evaluated by the algorithm and network almost identical to those used
for the band matrix-vector multiplication problem. The ocutline of
this systolic network is illustrated in Figure (VI.A.6.1-f1) further on.

On this network, the Y, which are initially zero, move leftwards
through the network, while the xi,alj, and bl are moving as 1ndicated
in Figure (VI.A.6.1-f1). The left-end processor is special 1n that
1t performs X - (bl-yi)/ail. In fact, the special processor introduced
in the LU-decomposition problem is a special case of this more general
processor.

Each Y, accumulates an inner product term 1n the sguare processor as it
moves to the left. At the time Y, reaches the %eft-end processor, 1t

has, in general, the value allxl+ai2x2+
the x, computed by the formula above at the processor will have the

— . and consequently

a ., .x
1,i-1"1-1

correct value. From [KUNGS8O] we obtain the following Theorem.
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Theorem [VI.A.6.1: 61]

Let A=(alj) be a non-singular (nxn)-band lower triangular matrix
of bandwidth w=g. Suppose that A and an n-vector gf(bl,...,bn)T are
given. Then, an n-vector 5?(xl,...,xn)T such that: Ax=b, can be
computed in 2n+g time-—units on a linearly connected systolic network
of w IPSP's.

Again, we shall take advantage from the fact that the number of
processors required by the network can be reduced to w/2. 1In partacular,
we shall make use of the gape (i.e., 'idle' processors) by coalescing
with the first stream of data, a second stream, thus halving the total
solution time.

More specifically, we have to solve two lower triangular linear

systems, i.e.,

F11 1 1]
21 %2 © 2 %2 (Resulting from the
ECEEREE I ISt gtream of the LU-
O %43 Yag " :ii decomposition)
- 54 (8 )
A S 3]
and
399 _ T [x] EN
agq  Apg Xg b (stultlng from the
Azg  3gq O 3 b, 2"% stream of the LU-
0 azy e X b, decomposition)
- %56 /x-s\ -g;)
By .5} b,
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The recurrence formulae for the system: Alil = 21 will be:
(1)

y, =0

@) _ @) (1% stream)

Yo TYpota % T A 1K
(2) . (2) _ (1)
x, = (bl Yy )/ali, {when l—l=yl Yy Yoo,
(VI,A.6.1:3)
and for the system: A2§2 = 92:
(1) _
Yy, o= o
@ - Y(1)+a = a x (2nd stream)
Y, 1 1,1+17i+1 1,1+171+1
- _.(2) _ (2} __ (1}
Xy = (bi Yy )/aii r (when 1—n=yn =Y, )

(VI.A.6.1:4)
Let us now compute the solution for the above systems, so later,
in the step-by-step analysis, we shall be able to follow the results

in each step.

ISt Stream

: Solution for the system: ALglégl
x, = bl/all
2y ¥ A%y = by e x, = (bymay x) ) /e,
a3pXptaggXy = by e x5 = (Dymag,x))/ag,
ay3X3¥a K, = Dy e x, = (byma . x3)/a,,
g, X, tagc ¥y = b5 - X, = (b5-—a54x4)/a55 .

an Stream

: Solution for the system: A2§2=22
Xg = bglag,
3gg¥gtagg¥y = Pg em Xg = (bgraggxg)/agg
7g¥g ARy = by = X7 = (bymaggxg)/ag,
26777736656 ~ Pg ™ Xg = (Pgmagg%y) ag,
a56x6+a55x5 = b5 = X = (bs-a56x6)/a55 .
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Theorem (VI.A.6.1: 82]

An (nxn)-band lower triangular linear system: Ax=b, with
coefficient matrix bandwidth w=g=2, can be solved 1n n+2§+q+ time-
units applying the 'rotate’and 'fold’'concept on a linearly connected
systolic network of w IPSP's.

Proof':
(See experimental results of Figure (VI.A.6.1-f2).0

The dequeue of data resulting when applying the above concept to
the two half-parts A, and A, of the original matrix A, together with

1 2
the systolic array, are given in Figure (VI.A.6.1-f1).

Remark: The Efficiency achieved has been increased from: E=1/2 to 1,
whereas the number of IPSP's 1s the same as in [KUNGSO].O

In Figure (VI.A.6.1-f2) are illustrated all the computaticnal steps
required on this linear systolic network of processors. Note from this
Figure that the common elements to both streams, denoted by circles
in the Figure (VI.A.6.1-f1), are subject to special handling. For this
specific Paradigm, the solution of the lower triangular linear system 1s
computed in 13 time-units, since (n,p} are (odd,even)i, instead of 20
time-units that would be required normally. It is obwvious that the new

technique, for n very large, pipelines the solution twice as fast.

CASE B - (of Paradigm [VI.A.6: “1])

(72} - Upper Triangular Linear Systems

As we have mentioned, an upper triangular linear system can be

rewritten as a lower triangular linear system and then solved using the

TNote that, p is either p~1 or p (p is the semi-bandwidth of the original
matrix) depending on the combination (odd/even) of (n,p). The related
theory is given in Section B.

tHence s P=p-1.
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1 ]
1 ]
l l
! a a '
1 355 56 :
]
1 %66 %54 :
1
i 244 457 :
V277 3
|
: 433 478 |
|
I %gg %32
| [
p 322 839
1 a a l
;| 299 21
I -
|
L

R RS AARS 4Y6Y5@

@xsxsx:zx?xe,xsxzxgxl

1!ibup' e A A
O b A W @ N o

Figure VI.A.6.1-f1: The Dequeue of Data for the Solution of the Lower
Triangular Linear System of Paradigm [(VI.A.8: n.,]
on the Linearly Connected Systolic Array (for w=q=2).

following recurrence formulae which consist of a generalization of the
formulae (VI.4.6.1:3,4), respectively:

For t tem: =
he system Alfi Eﬁ
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an
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Yg Yy
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%g= (bg¥g) /ag4=
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232 Y5
Y3
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5. continued ... $
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Figure VI.A.6.1-f8: All the Computational Steps of the Solution of the Lower Triangular

Linear System of Paradigm [VI.A.6: 111] .
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. =0
i
{(k+1) _ (k)
1 - yl +a1kxk
_ _, (1)
xl - (bl Yi )/all
and
for the system: AZEQ = 22
(k) _
Yy =0
(k+1) (k)
Y T Y ta X,
- 1)
xe = b=y ) /ay, o
where t = n=-1+1
r = n=-k+1
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gt

stream) (VI.A.6.1:5)

(1

nd

(2 (VI.A.6.1:6)

stream)

In particular, the two upper systems rewritten as lower triangular

linear systems to be solved concurrently by the two opposite elimination

streams are:

2s5 P44
434 233
a3
i @)
A
and
35 %66
276 %77
a
87
C
- A

O

a2

42
O

%gs

%98 %99

b4 {Resulting from the
st
= b3 1 stream of the LU-
b2 decomposition)
bl
El
(Resulting from the
b
= 6 nd
B 2" stream of the LU-
b?
decomposition)
b
8
| L%
b,
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Let us now compute the solution vector for the above systems, so
that we can follow the results given in the subsequent step-by-step

systolic computation.

ISt Stream
: Solution for the system: Al§1 = Ei
bg/2sc
A ¥g * g%y T by T xy = (bymayxc)/a,
334Xy + A33%y = by e xy = (byragx,)/ag,
ay3¥3 * 8py%; = by = x; = (by-a,xg)/ay,
ap¥%y t A ¥ S by e xy = (byaoxy)/a,
2nd Stream
: Solution for the system: A2§2 = 92
bs/agg
Agoke * AL Ko = bg «= X, = (b -a 65 5)/a66
Bgg¥g * Agg%y = by < xg = (byragxp)/ag,
3g7¥7 + 3gg¥g = Pg ™ Xg = (bgmag ;) /agy
39g%¥g * 2gg¥g 7 Py = Xy = (bgraggXg)l/ag, .

The dequeue of data resulting when applying the 'rotate'and 'fold'
concept to the two half-parts Al and A2 of the original matrix A,
together with the systolic array, are given in Figure (VI.A.8.1-f3).

The remark made in the previous case, about the Efficiency achieved,
applies to the present case as well.

Finally in Figure (VI.A.6.1-f4) are illustrated all the computat-
ional steps required on this linear systolic network of processors.
Again, the common elements to both streams, denoted by circles in Figure
(VI.A,6_11f3),are subject to special handling. The soluticn was
obtained, as expected, 1in 13 time-units+.

Trn fact, it can be obtained in even fewer time-units.




xgxlxsxz X7X3X6X4

Ok
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] ]
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L 211 298 1
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! %gs %12 4
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| %22 %37 |
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! 266 334 |
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: %5
l a -—"'-’-‘—
Y e Y
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i
y5®y4y6y3y7y2ysyly9
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Figure VI.A.6.1-f3: The Dequeue of Data for the Solution of the Upper

Triangular Linear System of Paradigm [VI.A.€:7,]
on the Linearly Connected Systolic Array (for “w=g=2).
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-
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' 8.
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i *
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x 1 xl"(ljz;z—y )/a_ = ? x) =(b,-y,)/a), =
— 2 = g~ '\Pg¥g'/¥ggT  x — x -
—(:) ) - .
(bg-agx_)/agg. 2 @ (by-a) %50 /2y,
X. 15 output.
X, 18 output. 2
9. 10.

continued. .. ?

Py "99S/In "yd]

[ott



I

P

1

Q‘;

}t:9 1s output.

g7 (by-yg) /agy=
| (by=a,g¥g) /ag,
xg 1s output.
11.
¢
e
$

@

13,

Linear System of Paradigm [VI.A.6: 111].

—®

Figure VI.A.6.1-f4: All the Computational Steps of the Solution of the Upper Triangular
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CasE A - (of Paradigm [VI.A.S:ng])

() — Lower Triangular Linear Systems

The lower triangular linear systems to be solved are the following:

11 rbl-! ot
A (Resulting from the 1 stream
21
O of the LU-decomposition)
and
344 {(Resulting from the an stream
as, . of the LU-decomposition)
i) % By

The recurrence solution formulae for these systems are those given
in (VI.A.6.1:3,4), or the general ones in (VI.A.6.1:56,6), respectively.

The corresponding solution for each of these systems 1s:

ISt Stream
: Solution for the system: A1§1 = 91

X = b /A,

3y1%1 ¥ 2% = by = x, = (bymayx))/a,

+ = =

A3p%y * A33¥y T by e xy = (bymagoxs)/ag, .
2nd Stream
: Solution for the system: A2§2 = 92

Xy = bylay,

Ay4%y * 233Xy = by e x, = (byagx ) /ag, .

The dequeue of data for the solution of the above systems, together

with the systolic network, are given in Figure (VI.A.6.1-f5). All the
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computational steps required on this systolic array are displayed 1in
Figure (VI.A.6.1-f6); in specific, the solution was obtained in 8 time-
units, instead of 10 time-units that would be required normally. The
Efficiency achieved has been increased from: E=1/2 to 1, while the
number of cells has remained the same as in [KUNGE0}.

Note, the special handling of the common elements to both streams,
dencted by circles in Figure (VI.A.6.1-f5), and that for n very large

the sclution will be pipelined fwice as fast as 1in the above 1mplementation.

1
!
!
1 933 32,
1 %22 %34 |
1 %44 21
13y, .
lep=="" V
| }

| Y11’41"23’36;9
@"3"2 *4*1

o o o o
w N b = —

Figure VI.A.8.1-f5: The Dequeue of Data for the Solution of the Lower
Triangular Linear System of Paradigm [VI.A.6: 7 _]
on the Linearly Connected Systolic Array {(for w=g=2).
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3.
232
A [
i o
= a3 b——v, ady
\
- Y
| Y3ma3.%y
‘ = = (%p) %= iyy,) /ay,s — ) ——*,)

(by=a, %)) /2y, -

xl 1s output.

4.

y, enters
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x)=(b)-y,)/a) =
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-

Y3Tagp%, e
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(b_.-a. x )/a33.
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Case B - (of Paradigm [VI.A.6:7,])

(i2) - Upper Triangular Linear Systems

Since an upper triangular linear system can be rewritten as a

lower triangular linear system, the systems to be solved are:

(Resulting from the ISt
823 %2
O L stream of the LU-
%12 b,
decomposition)
A X b
and 1 1 =1
S
nd
La a,l b . (Resulting from the 2% stream
43 44
Az X, _Q of the LU-decomposition)

We shall make use of the recurrence solution formulae given in
(VI.A.6.1:3,4), or the general ones in (VI.4.6.1:5,6}, respectively.
The corresponding solution for each of these systems 1s:

st

1 Stream

: Solution for the system: A,x, = b

1% =5
X3 = bs/as,
33%3 * A%y T by = xy = (byma, gxi) /ey,
312% T Ayp* TPy xy = by ox)/ay) -
nd

2 Stream

3 ti tem: =
Solution for the system Alil 21
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The dequeue of data for the solution of the above systems,
together with the systolic array of processors, are gaven in
Figure (VI.A.6.1-f7). Note, the common elements to both streams dencted
by circles.

Finally, all the computational steps required on this network are
displayed in Figure (VI.A.6.1-f8); 1n specific, the solution was
obtained in 8 tlme—unlts+, while the comments made in the previous case,

about the Efficiency and the matrix size, still apply to the present case.

! t
|
| all :
|
y ag %12 :
Y 43
! !
I 933 _memmmmToT
P Tt

Y )\

} \

R AR
x1x4x2®x3

Figure VI.A.6.1-f7: The Dequeue of Data for the Solution of the Upper
Triangular Linear System of Paradigm [VI.A.6 Ty ]
on the Linearly Connected Systolic Array (for w=g=2).

+Ih fact, it can be obtained in even fewer time-units.
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Vr.A.6.2: GENERAL COMMENTS: THE PIvoTING PROBLEM, AND ORTHOGONAL

FACTORIZATION

Research 1n intercennection networks and algorithms has been
traditionally motivated by large scale parallel Array computers, such
as the ILLIAC IV. The technique presented herein was motivated by the
advance in VLSI, albeit this 1s certainly applicable to any parallel
computer complex. We have exemplified that many basic computations can
be performed very efficiently by special-purpose multiple processcr
networks, which may be built very cheaply using the evolving VLST
technology. The important feature, common to all algorithms presented,
1s that their data flows are very simple and regular, and they are
pipelinable algorithms.

In respect of the mathematical side, in everything that has been
discussed previously, we have assumed that the matrices have the property
that there is no need of using pivoting when the Gaussian elimination
1s applied to them. What, however, should cne do if the matrices do
not have this 'nice' property? Note that, the Gaussian elimination
becomes very inefficient on mesh-connected processcrs, if pivoting is
necessary.

This question has motivated the consideration of Givens's trans-
formation (see Hammarling [F4MM74]) for triangularizing a matrix, which
1s known to be a numerically stable method.

It turns out that, like Gaussian elamination without pivoting, the
orthogonal factorization based on Givens's transformation can be
implemented naturally on mesh-connected processors, although a pipelined
impmementation appears to be more complex. Sameh and Kuck, in [SAME78],
considered parallel linear system solvers based on Givens's transformation,

but they did not give solutions to the processor communication problem

considered here. -




i B

CONCURRENT SYSTOLIZATION
FOR SOLVING
GENERAL BANDED LINEAR SYSTEMS
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VI.B.1: ‘'SYSTOLIC' LU~-FACTORIZATION DEQUEUES FOR QUINDIAGONAL SYSTEMS

Again, we ought to examine two cases when n is ¢dd and when n 1is

even.

The general form of the matrix A is:

pu— p —
’ 31 %12 %13
9121 %2 %3 %24 O
a a a a
l %31 %32 %33 T3 T35
_ 202 %43 %44 %45 Y46~
A = "'..,\ ."-..‘ ﬁ's‘ ~ - ."-.._. ¢
-~ S ™ - "'"--_.. -
“' “& h"’- = “'-.
‘\\ "'...,,s .'-s ‘.""..... an-2,n
O \“! S ™ - ™ -
an—-l,n-3 an—l,n—2 an-l,n-l an-l,n
b an,n-—2 an,n-l ann

(VI.B.1:1)

We shall consider a small (in size) example to apply the 'rotate'
and 'fold' method, since irrespective of the band-length of the
considered matrix the procedural steps are the same. The only
difficulty arises when we reach the final eliminaticn stage to obtain
the peak of the two streams in order to start the backward and forward

substitutions.

In the penultimate stage of the elimination the middle element ais
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modified twice and then the final stage commences. In this final

stage we have a (3x3)-full matrix and the elimination process cannot

be performed in parallel by both streams. So, obviously we have an

overhead in the whole method, but :t 1s infinatavely small comparing

it with the total amount of achievable parallelism in terms of speed-up.
Hence, conclusively, the two streams will unaveidably confront

each other at the final stage of the elimination process.

Paradigm [VI.B.I:nIJ

n-odd

Let us consider a (5x5) gquindiagonal matrix, since this case will
demonstrate the eritical cases 1in particular, 1.e., the last
confrontation stages above are the only elimination stages to be carried

out. The matrix A will be:

st ——— p ——
1 stream : = =

¥ | 11 %12 %13

T | %22 %23

Qii\ %32 %33

A= \?42 a,, . (VI.B.1:2)
O
253 %54 @55 nd *
— - 2 stream

The middle row 1s the third row, so for each of the two streams
the two submatrices will include one more row than the middle one (1.e.
the last/first row of the central (3x3) subsystem for the top/bottom
elimination streams, respectively). Consequently,the matrix 3,
according to the 'rotate' and 'fold' concept diagrammatically shown
in (VI.B.1:2), will be rewritten as the following two submatrices A

1

and AZ:
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1 O Y11 Y W3 O
foy Upy Un3 Uy
byy F3p L o Uiy Ugy

O %y 3 1 Ugg

Ly Yy
1 Ugg Ugy Y53 O
O
] Yas L Ugg Ya3 Y42
fig Fqy 1 Uy3 Yy,
L 4. 1 O
o 24 *23 Uso
L, U,

We assume that matrix A has the property that each LU-decomposition
can be decne by Gaussian elimination without pivoting.
Remarks: The elimination process for the elements surrounded by the
solid lines in the matrices Al and A2 1s to be carried out concurrently.
On the other hand, the elimination process for the elements in the
circles 1s to be carried out sequentially, 1.e., part of the final
elimination of the (3x3) central submatrix. The elements in the squares
are completely ignored by the bottom originated elimination stream.O

The corresponding trianqular matrices L=(£lj) and U=(u13) are

evaluated according to the following general recurrences:

ISt Stream an Stream
(1) _ (L
a = a, a = a
1] 13 1] 1]

{(k+1) _ _(k) _ (k+1) _ _(k) _
alJ = al:J +21k( ukj) a13 = ai} +£lt( utj)
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0 1f 1<k 0 1f 1>t
Qlk = 1 i1f 1=k th = 1 if 1=t
(k) -1 (k) -1 ,
aik ukk if 1>k alt utt if 1<t
(VI,B.1:3)
0 af k> 0 1f t4]
1 = 1 =
k3 (k) t3 (k)
a, if kg3 at:| 1f t>3
t=n-k+1l.

Because of the bandwidth of the matrix A, 1.e., p=g=3, we have

for the ISt stream:

S
i+2,1 1+2,1
(k) for 1gkgi, 132 , (VI.B.1:4)
i,1+2 a1,1+2
nd
and for the 2 = siream:
a(k) _
i=-2,1 1-2,1
(k) for lgkg[n~-1+11,1<[n-1] . {VI.B.1:5)
i,i-2 © %1,1-2
Remark: The above recurrences certainly can be applied to the

tridiagonal case of (par.-VI.A.6)} as 1s proved in Appendiz C-VI.O

Let us now compute the corresponding elements of the resulting
triangular matrices, by using the above recurrences for the opposite
factorization streams, so we shall have an analytical view of the
sequence of the modifications.

ISt Stream (k denctes steps and rows)

(1) _
a =a,.

1] ij

; _ () _ _ (D _ (W
(k21) > wpmaie gy Sat, u, S an, uy =gy

_ _ _{2) (2 _ {2
(k=2) = Yoy T 825 P Uy T 853 v [Un3 " Uog T %oy
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(k=) > uyy = a_v(j)” "33 z' 34 =
()
{k=4) +> u4J = a£§)=’ U, = a;:) E+aéi)] ]
N N R R
(k=2) - 212 T ag)ugi * 24y = aég)u;’ 240 = ag)“;; F{Ly)
(k=3) > '3 aig)“; = A3 T ag)“;; /
s s DLW . aé§)=a2(§)+22l(—u12)' aé?“‘é?
ij 13 il 13 +221(-u13)
i o
iy (T8 3)
Bl oD
k=z) > a2 =aPas (o, = +2,(-a, )
23 a3 Hag(p3) s g oy
+242(-u24).

Remarks: The elements in the circles have to be collected 'on-the-£ly'
from the cutputs of the corresponding cells and brought back into the
serial stream for a further modification by the 2nduuva In particular,
the element in the rectangle despite its modification to an aég) by

the an factorization stream belongs to the present stream for the

solution process (i.e., backward substitutiocn). The underlined

element is ignored, since the element a43 1s not eliminated.n

d
2% stpeam (k denotes steps and rows)
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NES I
1] 1]
- - _ (l) _ (l) _ (l) )
(k=1)= t=5 > ug =ag’ = ug =ag’, ug =ag’, ugy =ag
i . L@ ) j R
(k=2) = t=4 > u4j = 4] = u,, —, . , Uy = A,
- (U2)
_ ) NE) L3 (@) e
(k=3}) = =3 + 1.133 = 33 = Ug, = a,3 [—ra33 1, Uy, = a5
_ _ - 4 _ @
(k=4} = t=2 - u2j = 23 = u,, =a,, J
\
(k=1)= t=5 > & Wyl we =altlall, 2 =altul

15 ~ 235 Ys5 45 45 55 35 - 235 Uss

) _ _ (@ -1 - e IR (SN 2 N
(k=2)= t=4 >k, ma w2, —-44 1724 T @4 Yyg (L,)

- _ _ 3y -1 R ) I
(k=3)=> t=3 -+ 213 =a 3'ug; 5223 = ayy'ugy J
(2)__(1) (2) _
3 “3gy Y5 "Ugy) 12y,
(1)
+2. ( )
_ _ (2) _ (L) _ J 243 Us3
(k=1) = t=5 > al:J ai) +£'.15( qu) = a(?-):a(l) . - ) {2)
34 34 35 33
(l)
! a3y thyg{-ug4)
(3) (2) (3)_
1233 =233 +34(-u,y)eas5' =
(2)
a,, +4,, {-u, )
(k=2) = t=4 = a;ﬁ) _ ai2)+£14"“4 ) o 32 T34 M4
J J J @ ), (3)
23 23 24 43
| (2) _
a5y Tyt “42"
Remarks: The elements in the circles have to be collected 'on-the-fly!

from the outputs of the corresponding cells and brought back into the
serial stream for a further modification by the ISt wave. In particular,

the elements in the rectangles will be finally outputted by the bottom

NED INEIS SO R ¢ S

originated factorization stream as: u43 43 7 234 34 44 a33 —a33 24

(—u43) + whilst, on the other hand, the underlined elements are completely

ignored. O
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The dequeue of data resulting when the 'rotate' and 'fold' concept
1s applied to the two subparts of the matrix A, together with the
systolic network of the hex-connected processors, are i1llustrated in
Figure (VI.B.1-f1}. Note that, the labelling of data denotes the
sequence of modifications by the opposite factorization streams.

We must notice the diffaculties arising when we attempt to represent
the data stream, due to the ‘on-the-fly' modifications imposed, which
1n addition make it i1mpossible to keep pace with the k increment
{especially for the 2nd stream) . In other words, the formulae (VI.B.1:3)
are applied correctly, but the kth step, because of the multiple
modification of the same data (only in the elimination part+ of the
central (3%3) submatrix), alters without being controlled by these formilae.
Comments: Again, the hex-connected processors have the properties
defined in (par.-VI.A4.6). The sequential badirecticnal elimaination
process in the central (3%3) submatrix commences when (for n-odd) the
middle element, in this example the element 333, first enters the systolic
network as an element of the 2nd stream. Then, all the elements of the
2nd stream already in the network (ready to exit or exiting 1t in that
time-unit) have to be collected 'on-the-fly' as modified aij'si, instead
of zij's and ulJ's, and brought back into the serial flow again. This

).

procedure certainly includes the center element (i1.e., the element asy

. t
as well as the element ays which belongs to the ls gtream and is the

only element (except the middle one) of that stream which will be

modified again by the 2nd stream. O

7
Due to the sequential nature of the factorization process in that part.
These elements are denoted by 'double' circles in Figure (VI.B.I-f2).
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The Dequeue of Data for the LU-factorization

Figure VI.B.1~f1:

=3,

on a Hexagonal Systolic Array (for p=q

and n=5).
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From the speed-up point of view, the sequential elimination
process for the {3x3} central submatrix contributes an unavoidable
{but constant, independent of the original matrix size) overhead of 7
time-units to the time anticipated by Theorem [VI.A.6:92].+ The
previous elimination stages, including the penultimate stage of the
twice modified middle element ag4, are carried out in half the time
required by the single stream LU-decomposition.

Finally, since the presented example demonstrated only the eritical
situations arising in quindragonal banded matrices, the timing obtained
applying the 'rotate' and 'fold' technique was identical to that of the
single stream LU-decomposition. However, for large {nxn) quindiagonal
banded matrices (e.g. n=4096) the speed-up achieved approximates the
cptimal value of 2. 1In terms of the Efficiency (E) achieved it has
been normally as before increased from: E=1/3 to 1/2, whereas the number
of IPS cells is the same as for the usual LU-decomposition array.

In Figure (VI.B.1-f2) are displayed six consecutive computational
steps on this hex-connected systolic array.

In conclusion, for the specific instance of the present critical
case, let us present a simple numerical example 1llustrating the necessary
'on-the-fly' modifications discussed ahove.

Consider the following (5*5) quindiagonal linear system:

4 1 -1 O X 4
1 4 -1 1 X, 5
-1 1 5 -1 1 X,| = 5 (VI.B.1:8)
0 1 2 8 =2 X, 9
L -1 1 4 (%) 1 4]




{Ch. VI/Sec. B : 731]

continued.. $
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continued... :>
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The labelling denotes that this
element has been modified by the

2nd atream.

Figure VI.B.1-f2: Six Consecutive Computational Steps of the LU-
factorization of a Quindiagonal Matrix (for n=5).
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By applying the folding algorithmic process we cbtain the following
multipliers (top-bottom streams)

solution ste
2
1

1 step +

4

2 step >

.

n

3 step *

C

B
&
st (:)
O

.f.
ps:

1 1 g -

11 s - (3

-1 1 4
+
1 -1 ()'1
4 -1 1
1 21/4 -5/4
1 3/217/2
-1 1 4
v
1 -1 ]
O
15/4 -3/4 1
(:) 3/2 17/2
O -1 1 4
¥
1 -1 O 7
15/4 -3/4 o

21/4 @

o) 17/10 24730

M,

47 (-1/4,1/4}

4 {-1/3,-4/15}

11/3

149/15

4

Il'lb

{-1/4,1/2}

{-30/247,95/494}

+
Note the sequential presentation of the parallel computational steps.




4tk steg -

4 1 1
15/4 -945/988
2755/494

7/1
O 17/10

-1

O

247/30

1

4
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-%{ r 4
x2 690/247
x3 = |2755/494
X

4 149/15
l-xS- e 4 —

T
The sclution vector x was pre-arranged to be x=(1,L,1,L,1) . The

elements in the circles are the elements to be eliminated at the next

solution step.

Triangular Linear Systems

Let us now investigate the solution of the four resulting tri-

angular linear systems of Paradigm [VI.B.I:nTL considering, again, that

an upper triangular linear system can always be rewritten as a lower

triangular linear system without loss of generality.

We shall make use of the same systolic network required for the

single LU-decomposition, coalescing two data streams to solve two

lower triangular linear systems concurrently.

(1)

— Lower Trianqular Linear Systems

The systems to be sclved are:

a1

2

431

0

herm

and

55

45

35

O
%2
832 %33
842 343 By4d
A
244 O
834 333
824 %23 %33
)

EN '5£1
%2 b,
x3 = b3
_;4_ _p4_
=) b
'}5" 'bg'
x4 b4
x3 = b3
*2] P2
X b,

(Resulting from the 7°

t

stream of the LU-decomposition)

{Resulting from the 2"

d

stream of the LU-decomposition)
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The recurrence solution formulae for these systems are those
given 1n (VI.A.6.1:5,8), respectively, with the 1nitial:ization:

For later convenience in follow1ng+ the systolic computational
steps, let us proceed with the notational computation of the r.h.s.
vector b, during the solution of the original system with the

coefficient matrix given in (VI.B5.7:2), by applying the bidirecticnal

Gaussian elimination, 1.e.,

ISt atream

PR b R R 0 X by
l %22 %23 P24 YD
st
1 > =
R S -
B840 %43 P4 X4
@]
B 353 @54 35| ¥ by | pgt
- - - 2 stream
st
I stream ¥ ¥
v ;11 2 %3 j —"1-
@)
A2 323 @ Xy
2 step a -
2 step 5 3 €39 %y = .
333 %44 Xy
L 853 %54 %55 |¥s5) t

2nd stream

The 'exponential' labelling in the r.h.s. vector b denotes as
before the modification sequence by the two elimination streams. More
st 1.12 2
analytically, in the I step this sequence will be: b2,b3 ,b4, to
continue in the 2nd step by: b;, b;z, bi. Consequently, the final
r.h.s. vector b, which will be used 1n the solution of the upper

triangular linear system, will have the form:

T . . . e ey .
Since, due to the interleaving opposite elimination streams, it is
not necessary to complete the solution process implied from each of
the above systems.

736]



{Ch. VI/Sec. B : 737]

In particular, according to the above denoted modification
sequence, the interleaved X values expected during the systolic

computational steps are:

»
|

"
|

Furthermore, note that, every time the yl's enter the systolic linear

= (b,-a

2

= {(b,=-a

3

(b, -a

W

{b,-a

12
(b3

2-.

215177222

31517233

X )/a4

4575 4

35%5) /233

mag,%,)/agy

(b4

12

(b3

l-a X
3474

3y0%y) /a3y,

)/a3

1—

(b,

a

24%47 /255

3

3

J

(Ist

(an

(ISt

(znd

array they are initialized to zero.

stream)

stream)

stream)

stream)

The dequeue of data resulting from the application of the 'rotate'

and 'fold' concept to those subparts A

and A2

together with the systolic array, are given in Figure (VI.B.1-f3).

Exceptionally for this case the 'don't care elements' do appear for

conveniency in the data stream, while the elements in the squares are

ignored completely being considered as additional delays.

Note the

miltiply 'on-the-fly' modified elements denoted by the circles.

of the original matraix A,



eesl @@ x3x4x2x5xl<5 5—
FCEPEY CPoEy -

Figure VI.B.1-f3:

r

|

|

l -8

I

.

t

. 8 a§_4,-—

:___6 ="
: Pa:
;
) a32

33
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(an stream)

-L£ 1 st stream)

— Y YsY,Y, ¥, @6 6@...
— ...8 @aa@ a@

The Dequeue of Data for the Solution of the Lower

Triangular Linear System of Paradigm [VI.B.I1:w.,]

on the Linearly Connected Systolic Array (for

w=g=3) . |
e
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In FPigure (VI.B.I-f4) are displayed twelve consecutive
computational steps required on this linear systolic network of
processors,

This specific Paradigm (1.e., critical case) cannot assist in a
fair comparison of the time-units required using the 'rotate' and 'fold'
technique against the normal single stream solution process. In other
words, the former technigue requires 21 time-units as compared to the
13 time-units for the latter, Consequently, the Theorem [VI.A.G.I:BZJ
does not apply to the present case due to the increased complexity 1n
the ’'on-the-fly' multiple modification of common elements, which arises
from the concept of seeking for a central peak (in the forward elimination
procedure) for both elimination streams. In actual fact both streams
perform the elimination process on the (E&Eh central subsystem
sequentially, and in equal depth, which especially for this example
{r.e., n=5, g=3) proves to be critical.

For n>>g, however, the 'rotate' and 'fold' technique has again an
advantage in speed-up compared to the normal process; but, there 1s no
reason to follow such an uneconomical process, since the modified
dequeues for unidirectional factorization of the central subsystems,
to be introduced in (pap,—VI,B_j,Jf; w1ll bhe proved to be much more
efficient even for small size examples. In addition, by using the
'rotate' and 'fold' concept as it stands herein, the 'tail' in the data
stream is much more complicated compared to that of the undirectional

process.

Remark: The Efficiency achieved for the parallel elimination part has

been increased from: E=1/2 to 1 (i.e., one output every time-unit),

1LTheref'ore, the case when n ig 'even' will be investigated therein in
accordance with the new concept.




-— 31 -'_—_y3

— | — y3=a3lxl.

Y4735%5"

3. _
x2—(b2 yz)/a22

=(by-ay,x,/a,,.

§ [==.6

=~ ) o
. 3=(b3-y3)/a33

5. =(b3—a%lx%)/a33.
X, 1s output.

l45 hl |
ain S o
Y3 Yy Y3
Yo 2y1%) -
2. xg=(bo-y.)/a =
b5/a55
6“ Tl {s1ince y5=0) .
8 a35 |3
Yy Y3
_——_@_ ~
3" 235%5" =
g, XYYy, <
=(b4'a45x5)/‘1"‘44' ;@
X, 18 output, o
§ 5l w
I | ;
s Y y 2
1
=, " ‘bi'y3)/a33
=(b3-azeXc) /244
6. This x. is an inter-

mediate value,

M---



8
y3.___6
— x3 _—_b___x4 \‘\ x3—--
This x, is an inter-

7. mediate value. *.

=(b2-a, x

1. RLITINVL PR

System of Paradigm [VI.B.I:nlj.

Ny 12
b3
8 8
a 1
) 42 r
-~ Yy =5
4 \
“
— | —=x ‘\\
Y4=a4%§2' R |
3. x3=(b§2—y3)/a33 \\bzzx
= - 4
(by®-aj x;)/ag. 4
This x3 is an inter-
s 5 mediate value.
5 ¢ s
— 11X | - _ 2 f—=
3 X,=(bymy,) /2y,

12, This x. is an

intermédiate value.’

Figure VI.B.1-fd4: Twelve Consecutive Computational Steps for the Solution of the Lower Triangular Linear

8 ﬁ42
as, § s lee
Y3 —Y,
—= %
s ¥3=a35%5-
* This %, 1s an
intermediate value,
8 )
é o JEX ]
¥y
___.xz
This X, 1s an
10. intermediate value.
a34 8
$ 5
5 Y3 | ~— &
== x,

fg "098/1a "4d]

[




[Ch. VI/Sec. B : 747]

whereas when the opposite streams reach the central subsystem delays
occur due to the multiple modification of the common elements.O

(27) - Upper Triangular Linear Systems

For the completion of the presented example, the two upper tri-
angular linear systems rewritten as Lover triangular linear systems to

be solved concurrently by the two opposite elimination streams are:

244 by
st
1" s
A34 Gi) {Resulting from the tream
any b2 of the LU-decomposition)
0 bl
2}
and
by
nd
@ (Resulting from the 2 stream

- b4 + o©of the LU-decomposition)

Comment: In this phase we have the final backward substitution
process commencing from the central element of the original matrix, the
peak of the two streams. 1In this substitution process, only the
elements included in the triangles are required and hence these will
form the dequeue of data for the systolic computation.O

The recurrence solution formulae for these systems, taking into
consideration the peculiarity of the case imposed by the 'rotate' and
'fold' technique, are those given in (VI.A.6.1:5,6)+, respectively; the

solution vector to be cobtained i1s the following:

YWith the initialization: y£1)=y£1):0.
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ISt Stream
: Solution for the system: A1§1221
_ 1212
x3 = by /ag,
12 _ 12
ay3¥3*agy¥y = by =,y = (B ayyx3)/a,
a13x3+a12x2+allxl = bl = xl = (bl-al3x3—al2x2)/al]_’

2nd Stream

: Solution for the system: A2§2=§2

L1212
Xy = by /ag,
. o2
Agq¥gta, Ky = by e x, = (bayxi)/a,,

X.+a_ ,.X ., ,+a

agq¥qtag X tageXy = by > x

5 = (bgraggrg-agx,)/ags

The dequeue of data resulting when the 'rotate' and 'fold' concept
1s applied to those subparts of the original matrix A surrounded by the
triangles, together with the systolic array, are given in Figure
(VI.B.1-f5}). BAgain, the common elements to both streams, denoted by
circles, are subject to special handling.

Finally, in Figure (VI.B.I1-f6) are displayed sir consecutive
computational steps on this linear systolic network of processors. The
solution was obtained in 11 time-units.

Remarks: This number of time-units was cleosely anticipated by the
Theorem [VI.A.S.I-GZJ, so conclusively the whole delay is caused from
the forward elimination process due to the multiple modification of the
common elements. The Efficiency achieved has been increased from:
E=1/2 to 1, whereas the number of JIPS5P's 1s the same as for the normal

solution of triangular linear systems.O
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1 a ]
1
;55 \
[] [}
a a
| 54 :
| ]
%y %12 53 1
] 1
%22 243 413
1 a "o‘l.
1< 23 oo ~
L1 '
v P33 _LemTT :
] ‘a' 1 I
l.—n‘ : 1
| I T

Figure VI.B,I1-f5: The Dequewe of Data for the Solution of the Upper
Triangular Linear System of Paradigm [VI.B.1 Ty ]
on the Linearly Connected Systolic Array {(for w=g=3).
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Figure VI.B.1.—f6: Six Consecutive Computational Steps for the Solution of the Upper Triangular Linear

Paradigm [VI.B.1:m4].
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1 1373 "1272
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In conclusion, with the new concept following we avoid the double
sequential part in the center of the matrix and bring a balance
between the otherwise should be identical timings in solving the
triangular linear systems, by reducing, considerably, the timing for
the lower system, and increasing, slightly, the timing for the upper

system, to verify the anticipated timings by the above Theorem.

.f.
VI.B.1.1: MODIFIED DEQUEUES For THE UNIDIRECTIONAL FacTorIizaTron OF

Tue 'CENTRAL' SUBSYSTEMS

Let us consider again the case when n is odd and the matrix A as

given in the previous Paradigm [VI.B.I:nl], i.e.,

P
st — —
1 stream, |a a a. .y s
1 12 1
. | 1 3 L o
q a a a. |
2 22 23 24
l E_ﬂ : .
A = as) Rad | 335] 234 : a, . (VI.B.1.1:1)
~ .\ {
s | Pad aqd  Zaar @
O\\____ _________I
i %53 254 3 4
2nd stream

In accordance with the new concept, the parallel part of the opposite
eliminating streams remains the same as 1n the previous process; however,
when the 'central’ subsystem is reached (1.e., the (3%3) system denoted
by the rectangle above) then instead of two sequential parts there is
only one for the top stream, which settles a peak inside the area
belonging to the bottom stream according to the previous concept (1.e.,
the element a,,). When the center element (i.e., the element a33)

44

nd
first enters the systolic network as an element of the 2 stream,

Yohis term is indistinguishably related with the Gaussian elimination
procedure.
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nd
in a similar manner as before, all the elements of the 2 stream
already in the network (ready to exit or exiting 1t in that time-unit)

's

have to be collected 'on-the-fly' as modified al 3

's, i1nstead of &
3 1

and ulJ's, and brought back into the serial flow again. This procedure
does not include the center matrix element (2r.,e., the element a33).
Note the elimination process of the top/bottom streams denoted by
squares and circles, respectively.

Another difference 1s that, in the backward substitution process,
the ISt streaqm from the top commences ahead of the 2nd gtream from the
bottom, because i1t has to go through the sequential part at first,
before the an stream engages in the parallel process.

Consequently, according to the new concept diagrammatically shown
in (VI.B.1.,1:1), the matrix A will be rewritten as the following two
submatrices Al and 4, :

2
.'ZSt Stream

f— P — — - — —
| 41 %12 213 O . o Y M2 %13 0O
q |3y 3y, 33 Ay, Ty L Usyp Uz Yy
A= | a.. a = le o 1 u
31 %32 %33 %34 31 %32 O Y33 Yig
1O 2 2y sa] | O w2 a3 Y| ey
Ly Yy
an Stream
l E‘55 %54 %53 1 o Yss UYsg Us3
Ry P Ay 3y, 343 s 1 Baq a3
l 235 %33 *35 ! O Y33




Remark:
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Note that, the element a {in circle) of the 2nd stream

34
1s ignored.O
The corresponding triangular matrices L=(£lj) and U=(ulj) are

similarly evaluated according to the recurrences and relations given

in (VI.B.1:3,4,5).

streams, by using these recurrences, for a better assistance in

|
|
|
Let us now compute the corresponding elements in both elimination
following the sequence of modifications.

ISt Stream (k denotes steps and rows)

)

= a
13 13
_ e () (1) (1)
(k=1) > wy =a; 7= u, =an’ ,u, =an, u,=a;
- _(2) @ _{2) _ (2
(k=2) Yoy T 825 T Upp T 3y r Uy T 85500 Uy, = Ay, |
()
_ _ (3 (3 _ (3
(k=8) > uy o =a3l’ @ ugy = ayt , ug, = ag
_ _ (&) _ )
(k=4) u4J 514:J = Uy T A )
_ (1) -1 (-1 (.
(k=1) =+ &y =aptuy =8, =ay un, gy = agay
_ () -1 C(2) -1 (2 -1
(k=2) = %5 =a Uy @ 0y =ag U0 Ly = a0, (L)
_ (3 -1 3.1
(k=3) > k3 =aj3uy @ 8,5 = a5,
 (2) (1) _ 2y (1) _
3y Tapp thgy (FU o) eayg =0 4, (Fuy )
{k=1) > ai§)=ai§)+£ll(—ulj) =
(2)__ (1) _ (2) (1) _
%32 T332 *Ryp (TUp) e85 35T+, (U )
- (3)__(2) ) (3)__(2) )
@ @ 333 T3z Hhyp(uyg)iag,mag, # g, (u,y )
{k=2) - aij =alJ +212(—u23) = {
(3) (2 _ (3)__(2) )
(343 T35 g (Tugs)iay, =a,, 42,00, )
_ (4) __(3) _ (4) __(3) _
(k=3) =~ alJ —alj +213( u3j)=* 344 "2, +243( u34).
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an Stregm (k denotes steps and rows)

alt - a
ij 13
) _ () NS NS e
(k=1) = =5~ Ugy T 35y T Ugg T Agg v Ugy T Agy s Ugy T 8g3
(v,)
} _ (2 @ _ @
(k=2) = t=4 -~ u4j = a4j >0, = a0 U, = A
} _ o -1 (W -1 (-1
(k=1) = £=5 > 2.5 =augg = Ly =a, Ugps byg = a3 ug, (L)
(2)__ (1) ) (2)_ (1)
2 ” By T2y thyg(Ugy) 1343772y
{(k=1) = t=5 ~» aij = ai:J +215(-u5j)=° +£45(-u53)
(2)__(1) _ (2) (1)
a3, T334 Hyg{ug,) g5 =gy

(—u53).

+£35

The modified dequeue of data resulting when the 'rotate' and 'fold'
concept 1is applied to the two subparts of the matrix A, together with
the systolic network of the hex-connected processors, are depicted in
Figure (VI.B.1.1~f1). Note, again, the labelling of data which denotes
the sequence of modifications by the opposite factorization streams.

In Figure (VI.B.1.1-f2) are displayed eight consecutive
computational steps on this systolic array.
Comments: The timing formula for thais case, a modification of the
formula given in Theorem [VI.A.S:Gz],is: 3{§J+4§, where p 1s either p-1
or p. For p=p-l, this formula verifies the total number of time-units
(i.e., 14 time-units) required for the factorization of the previous
(5x5) example using the new concept. A comparison with the timing
required using the previous concept (i.e., 18 time-units) proves that
a considerable reduction in time~units was obtained albeit the size

of the considered Paradigm was very small. Note that, for the parallel

part the Efficiency was increased to two outputs every three time-units,
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gq=3, and n

factorization on a Hexagonal Systolic

Array (for p

Figure VI.B.1.1-f1: The Modified Dequeue of Data for the LU-
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continued... :D
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continued.. $
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44
continued.. :>
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8.

Figure VI.B.1.1-f2: Eight Consecutive Computational Steps of
the Unidirectional (for the Central Sub-
matrix) LU-factorization of a Quindiagonal
Matrix (for n=5).
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whereas for the sequential part the Efficiency still remained: E=1/3.
In respect to the k—step numbering, each factorization stream maintains
1ts own counter independent of the other's.
A complete discussion about the general timing formula for the LU-
factorization of general banded linear systems will be considered in
the next paragraph along with the related theory.O

Finally, let us now exemplify the new concept for the specific
instance of the present critical case, considering the (5%5) quindiageonal

linear system of (VI.B.1:6), r.e.,

= - pe- e

4 1 -1 O-| Xl 4
1 4 -1 1 X, 5
-1 1 5 -1 1 x| = s| . (VI.B.1.1:2)
1 2 8 =2 X, 9
O
-1 1 4 x5 4

By applying the folding algorithmic process according to this

concept we obtain the followaing solution steps+:

multipliers (top-bottom

streams)
~ Pt i)
4 1 -1 OT X, 4
1 4 -1 1 X, 5
.11 5 -1 @ x| = |5
- 1 2 8 @ x, 9
L -1 1 4 x| 4] {-1/4,1/2}
¥ ¥
4 1 -1 N (%] oy -
O X, 4 {-1/4,1/4}
4 -1 1 %,
1°% step> 1 21/4 -5/4 x3l = | 4
Ol 3/217/2 X, 11
-1 1 4] Lxs_ L 4.
4 ¥

+Note the sequential presentation of the parallel computational steps.
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4 1 -1 3 4
r @]
15/4 -3/4 1 X, 4 {-1/3,-4/15}
nd _
2 step > 5 -5/4 Xyl= 5
@ 372 17/2 X, 11
\._O _l 1 4.- _XSJ - 4 -
4 ¥
a 1 -1 0 Fxl 4
15/4 -3/4 1 X, 4
3Pd step ~+ 21/4  -19/12 x.|= | 11/3
v ___step 3
O 247/30 X, 149/15| {-34/105}
L -1 1 4_ _XS_ L 4 _
4 +
a 1 -1 ® Fxl 4
15/4 -3/4 1 X, 4
4th step —+ 21/4 -19/12 x.|= | 11/3 .
g step 3
O 551/63 %, 551/63
L [ -1 1 4x5_ L 4 |

T
The sclution vector X was pre-arranged to be x=(1,1,1,1,1) . The
elements in the c¢ircles are the elements to be eliminated at the next

solution step.

Triangular Linear Systems

We shall again investigate the solution of the four resulting
triangular linear systems according to the new unidirectional
factorization of the central subsystem. The systolic network to be
used 1s 1dentical to that used for the solution of the systems resulting

from the single LU-decomposition, while a compound data stream is
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pipelined through it for the concurrent solution of the pairs of lower
triangular linear systems.

(7) - Lower Triangular Linear Systems

The systems to be solved are:

1 EN |
a a O X b st
21 22 2 2 (Resulting from the I stream
231 332 %33 X3 P3l of the LU-decomposition)
Oayy 243 3y |% b4J
L. L L
By % b
and
Ess O Xg Py
nd
e A, X, _ b4 (Resulting from the 2 gtream
ayg Ay, a33 X4 b3 of the LU-decomposation)
b el a J L J
) % b,

The recurrence solution formulae for these systems are those given
in (VI.A.@.I:S,S}T respectively. Again, for later convenience 1n
following the systolic computational steps, let us proceed with the
notational computation of the r.h.s. vector b, during the solution of
the original system with the coefficient matrix gaven in (VI.B.1:2),
by applying the bidirecticnal Gaussian elimination, i.e.,

ISt stream
e — roA e -

+
1 2 3 @) X b

%2 %23 3y )

ISt atep > a a
——23233‘334

-
[

42 43 44

OO

O

a
53, %54 755

YWith the initialization: yf) - yf) = o.

« o

2nd stream
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ISt stream
+ — - ] ~ -
11 %12 %13 *q by
O 1
30 B3 Ay Xy b,
nd
43 %44 4
O
| %53 %54 %ss| s s !
¥ - ¥ 2" stream
ISt stream
¥ 21 %12 33 Xy b
O 1
By B33 By %, b,
d 211
37 step - ay3 3y %4 ks .
O “a4 *a
_ 33 %4 5| |¥s] | Ps _ t

n
2 d atream
Note, again, the 'exponential' labelling in the r.h.s. vector b

denoting the modification sequence by the opposite elimination streams.
Consequently, the fainal r.h.s. vector g, which will be used in the
solution of the upper triangular linear system, will have the form:
5
b
11

o
1

b

b 11

L2 SRR SVI ST SR ol

|

|

bg 1
In particular, according to the double modification stream, the }
|

|

interleaved xl values expected during the systolic computational steps

are:
Xy = (bymayx))/a,,
st
2 (7 stream)
X, = (bl-a..x_)/a
3 3 311 33
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xy = (by-a,cx)/a,, d
(2 stream)
xy = (by-agexg)/ag,
Xy = (b -aj x))/as, o
v {177 stream)
®q ~ (b a,0%y) Ay, )
_21 st
x, = (b4 —a43x3)/a44 (1 stream),

Again, the yis are 1nitialized to zero each time they enter the systolic
linear array.

The modified dequeue of data resulting from the application of the
new unidirectional (for the central submatrix) 'rotate' and 'fold’

concept to those subparts Al and A, of the original matrix A, together

2
with the systolic array, are given in Figure (VI.B.1,1-f3). The delays
are, again, denoted by 'don't care elements', the element 1in the square
1s ignored completely being considered as an additional delay, while
the elements in circles are subject to special handling.
Remark : Note that, in the parallel part the Efficiency (E) of the
array has been increased to one output every time-unit, whereas in the
sequential part 1t has maintained the value 1/2.0

In Figure (VI.B.1.1-f4) are displayed six consecutive computational
steps required on this linear systolic array of processors. The total
number of time-units required for the solution of the previous systens,
anticipated by the Thecorem [VI.A.6.1:92]; equals the number of time-
units (1.e., 13 time-units) required by the single stream sclution

process. The considered case, however, is considered to be a critical

case, and hence, for n>>p, the new 'rotate' and 'fold' concept proves

to be twice as fast compared to the above normal process,
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Figure VI.B.1,1-f3:
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@ ©

]
I |
I |
1 |
1 1
I 43 !
| ]
| 8 42 1
| |
1 %33 432 "
1 ™ 1
1 %22 E o 31
| I
1 a4 %21 %35
|
P21 A5 -t
I
L

= — y5yly4y2y3@5 @

The Modified Dequeue of Data for the Solution of
the Lower Triangluar Linear System of Paradigm
[VI.B.I:ﬁl] on the Linearly Connected Systolic

Array (for w=g=3)}.




421 aﬁs
-—— a45 e 6 -—
| —= —e_1 & S— 2 x
x = (b -ye) /ac. , ¥478y5%5"
. =b5/a55 . xl—(bl-yl)/all
{since y5=0). =b1/all'
a32 s (s1ince yl=0) .
_ § . le— 31 e §
Y, ¥3 Y3
—_— - x L
== _ 1 &)
Y.=a., X_. 2
, 373575 g D3
. y.=a . . —h
2 (él 1 . x,=(by=y,) /2y,
x,={b -y }/a =(h -
4 b4 4 4j b2y ¥13/355
. . =( 4 a45x5) 344" a5 Xg 18 output. gg
333 2
| \ ﬂ i | <
, P
a 8 8 %42 ©
32 - [ >
-— y_‘ -— 8 ‘_—.y4 $ Y4 1S
— Xy =
X — | x — | | = 5 — X o 2 .
2 = 2 Y,=a, X, .
4 37931%1 733250 44272 ~
} - __Seoxy=(b~y,)/a, 5. 3—(bg-y3)/a33 s
b§= - - =(by-a, X.)/a,,. =(b3-ay X, ~ay,%,} A
3 x) 1s ou%pug. This X, 1S an intermediate value.

Figure VI.B.1.1-f4: Six Consecutive Computational Steps for the Solution of the Lower Triangular Linear System of Paradigm

[VI.B.I:WIJ Using a Modified Dequeue of Data.
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(iZ) = Upper Triangular Linear Systems

In this part we shall solve the second pair of systems, i.e. the
upper triangular linear systems, by converting them to lower ones;

thus, the systems to be solved are:

— - A —
a X b
44 O 4 4 (Resulting from the
a a X b
34 33 3 = 3 ISt gtream of the LU-
a a a b4 b
24 23 22 2 deconmposition)
_ O ay ap 11 *o P |
By % b
and
O @ @ (Resulting from the
i @ 131’- stream of the LU-
353 35y %5 | Xg by
L L L decomposition)
A % b,
Comment: The elements of the matrax A2 denoted by the circles are

ignored, since the solution process of these subsystems 1s a straight
backward substitution process due to the lack of interference between
the two copposite streams, according to the unidirectional concept
applied on the central submatrix.O

The recurrence solution formilae for these systems are those
given in (VI.A.G.I:S,S}T while the corresponding solution for each of
these systems is:
st

1 Stream

: Solution for the system: Al-}il=—l

(1) _ (1)
i Y

+With the initialiaation: y = 0.
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Xy = by /ay,
211 o, . . .21
a3,¥,1333%5 = by xy = (bymag,x ) /ag,
a x +a._x_+a_.X_ = bl‘=’ X = (bl—a X =-a. .X.)/a
24%47323%37850% T Py 2 27824%47%23%37 8
] ﬁ = — -
a g¥3tay Xota) %) = b <P x) = (b)-a; xyma) oxo)/a) )
an Stream

: Solution for the systenm: A2§2=92

-

a . x.+a_ X . +a__X_ = h_+= x {(b_-a_.x_-a x4)/a5

5373 75474 555 5 5 S 5373 54 5

The modified dequeue of data for the solution of the above systems,
together with the systolic linear array, are given in Figure (VI.B.1.1-f5).
Note the interchange of positions of the elements of matrix A2 denoted
by squares, and the duplication of the elements denoted by circles in
this Figure to avoid the special 'on-the-fly' handling requisite.

Finally, in Figure (VI.B.1.I-f8) are displayed six consecutive
computational steps on this linear systolic network of processors.
Remark: The total number of time-units required, and anticipated
by Theorem [VI.A.S.I:%](forﬁzp—l), was 12, while the cobservations made
for the previous pair of systems, i.e., about the Efficiency of the array
and the potential of the new concept, well apply to the present case.l

Prior to proceeding with the next Paradigm to summarize the new
concept, when the central submatrix has been reached we do not seek
for a center element, or two opposite stream peaks, in order to start
the destream backward substitution from, but the elimination process
1s a single, top originated, LU-decomposition. The acceptability of
this new concept is supported by the facts that: @) The size of the

central submatrix is very small in comparison with the size of the
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I
1 %11 :
I
I
: %gg a2 "
I
P Ps “13 !
I
8 a |
: 23 a54 :
1 a33 6 R |
: 24 )
| 6 a34 _—"-I
b _ P
I 44 -1 !
I

Y, § Yy § Y, Ys¥)

—

211
4

211

(9% ]

O o O o O oo
[

o
W

o
[

The Modified Dequeue of Data for the Solution of
the Upper Triangular Linear System of Paradigm
[VI.B.I:WIJ on the Linearly Connected Systolic

Array (for w=g=3).




§ 433 8 ﬁ“‘
i — a34 —— l—
vy ¢ Y3 s Y2
I | — 211 x—" % — S— v.=a. X, .
x,=(b, " -y,)/a,,”"3 4 , 3 93474
211 J :
1. =
by /3y, p21l
(since y4=0) . 3
a a
an ITB |Zi3
a 223 o 54 e
— —_— b it
x4 [ Ya=8,.,X, 4 .
2 72474 yo=a_ X, .
5 5474
3. =(b211-y 1/a 4. y.=a, X +a,_ X -
3 3 3 33 2 72474 "23°3
211 2 X, 1s output.
“(b3 a34x4)/a33. 4 F-r_-;
a =
11
I ! ! s
—
a. E—S
%13 - -— 12 V. f=— = ]
Yl—' 1 .
e ™
X, [ —= %4 = == % *3 _(:) -
p Y1=a13§3; 17713932 3§
. Yema ag X, - b -
5 (24 4 )?3 3 b, 6. x.=(bg Yo)/age —
X,= —Y,l/a = - -
The duplicate x, 1s output. 2_ bf 27722 (bS %54% a53x3)/a55.
= 2-a24x4-a23x3)/a22_ X3 1s output.

Figure VI.B.1.1-f6: GSix Consecutive Computatiocnal Steps for the Solution of the Upper Triangular Linear System of Paradigm
{VI.B.1: TTIJ Using a Modified Dequeue of Data.
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original matrix (in real life problems); b) the degree of difficulty

in transforming the 'tail' of the data stream 1s considerably smaller

than previously; and ¢) the time-complexity has been reduced.

Paradigm [VT.B.I.I:HIJ

n-even

Let us cons:ider the following {4x4) quindiagonal matrix, which

similarly as before consists of a eritical case, i.e.,

ISt stream

v P
[ 1 %2 A3 O
Ao %21 |%22 %23 20
| 231 %32 P33 %3a
_ O 42 %43 Pas

(VI.B.1:3,4,5) each of the factorization streams will consider E§L+LJ

nd
2
In accordance with the recurrences and relations given in

1.

gtream

(VI.B.1.1:3)

|p|
2

lines of the original matrix for the 'parallel' eliminatiocn, 1.e., 3

lines for this Paradigm. The resulting (2x2) central submatrix will

have been modified twice by both streams in this bidirectional

procedure, so what
8

the 1 & stream.
Consequently,

ISt Stream

41 %12
A = 331
231 %37

remains 1s the elimination of the element a

we have:

13

23

33

Y11

12

22

12
32 DY




For

2” Stream
%44
By = 234
a4
Remark:

multiplier 223

modified again

Again,

we

43

33

23

42

32

22
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44 a3
Y33

O
Y,

1s not needed and consequently the element u

for the elimination of the element a23.ﬂ

the elements surrounded by the circles note that, the

is not

22

decomposition can be done by Gaussian elaimination without pivoting.

The triangular matrices L=(£i

3

) and U=(u13) are evaluated using

the recurrences and relations given in (VI.B.1:3,4,5), whereas for a

better assistance in following the sequence of medifications we shall

compute the corresponding elements in both factorization streams.

ISt Stream (k denotes steps and rows)

(1)
ai]

(k=1)

(k=2)

(k=3)

(k=1)
(k=2)

(k=1)

(k=2}

i]

>

o]

12

A
iz

a3
1]

= a

a

a

a

(1)

(1) Y
13 7 Y11 T %110 Y2
(2) @)
29 © M2z T 2p 1 Up3
(3) (3
33 © Y33 T 333
(1) 1 (1) -1
11 Y11 T A T3 U
@1, @ -
i2 Y22 32 - 332 Yo
{2)
852
(1)
17 +£ll( ulj) = )
232
L
(2) (3) _
3y * ) = ag

(1)

assume that the matrix A has the property that its LU-

T 812 7 Y13 T 33
- 2
= 353 r (U
- a(l) -1 )
r 23) T A3 U
(Ll)
/
(1) _ (2) (1)
a5y oy (Fuyp)sag3Tman S 4y,
(—ul3)
() _ (2)__(1)
35 *Ryp (Fy5) va35 mag5 gy
2) (-, 4)
= 833 Ry, (muyg).
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2 d Stream (k denotes steps and rows)

(1) _
a =a,
13 i3
_ _ _ (1) _ (D _ () (l)
(k=1) = =4 > Yag T Bgy T Mgg T Bgg 0 Ug3 T 3y3 0 Wy T35
_ _ _ (2 e (@)
(k=2) = t=3 =~ uy, = 3J ® uy, T oagg, Uy, = agy f(Uz)
_ _ D 3
(k=3) = t=2 -~ 1.12:I = 23 = Uy, = a5, J
- _ (1) -1 L0 -1 N EY
(k=1) = t=a > 2, =a a2 by =ag i, L =ay e, L)
L2 () ) .a )
333 TA33 +h,(mu 5),ag, =
- B (2) _ (1) ) w,
(k=1) = t=4 = al:l = aij +214( u4j) = ay, + 34( u42)
S L2
3y =y Hhy(tuyg) iy, s
(l}
3y, thya(Fug,) .

Remarks: Note that, since there are common elements to both streams
(these are the elements consisting of the central submatrix) they are
computed correctly through the given recurrences, but irrespective of
the index k, which cannot follow the pace of the alternate modifications,
since 1ts increment is unique to each elimination stream. The elements
consisting of the central submatrix will be defined by the appropriate
theory introduced for the general case in {par.-VI.B.2), so it will be
known beforehand what exemptions in terms of the index X should be
expected in the factorization formulae.O

The modified dequeue of data resulting vwhen the new concept for
the above factorization is applied, together with the systolic network
of the hex-connected processors, are 1llustrated in Figure (VI.B.1.1-f7).

In Figure (VI.B.1.1-f8) are displayed stx consecutive computational
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The Modified Dequeue of Data for the LU-

Figure VI.B.1.1-f7:

factorization on a Hexagonal Systolic Array

3, and n=4}).

==

(for p




770]

[Ch. VI/Sec. B :

>

continued..
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continued.. $
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Figure VI.B.1.1-f8: Six Consecutive Computational Steps of the Uni-
directional (for the Central Submatrix) LU-
factorization of a Quindiagonal Matrix (for n=4).
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steps on this systolic array. In particular, we should underline the
special 'on-the-fly' handling of the element a33, and the fact that

when 1t first enters the systolic network as an element of the 18t
stream, then all the elements+ already in the network at that snapshot
(or exiting 1t in that time-unit) have to be collected 'on-the-fly' as

medified alj's, instead of Qlj's and ulj's and brought back into the

serial flow agaain.

Comments: The timing formula 1s as the one given for the case when
n 1s odd, 1.e., 3{§j+4§. Again, for P=p-1, this formula verifies the

total number of time-units (i.e., 14 time-units) required for the
factorization of the considered (4%4) example. The comments made for
the above case (1.e., n is odd) regarding the Efficiency achieved apply
to the present case as well. Note that, when n>>p, the above timing
formula becomes a relation depending only up to n, which implies a twice
as fast execution timing compared to the normal single stream LU-
decomposition. O

Finally, let us now exemplify the new concept for the specific
instance of the present critical case, considering the (4x4) quindiagonal

linear system:

G - - - — -
1 1 o] xl 6
1 4 -1 1 x2 5
= . (VI.B.1.1:4)
2 1 g8 -1 X 10
3
o -1 1 2] -34_ | 2]

By applying the folding algorithmic process according to this

concept we obtain the following single solution step:

Trhe element Azz ig certainly included.
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multipliers (top-bottom streams)

m b

t —

4 1 1 o] [x] [se] {(-1/3,-1/2}
1 4 -1 1 x2 5
2 1 8 -1 %, - |10
o -1 1 2 x,) L DJ {-1/2,1/2}
¥ +
4 1 1 xl 6
of 17/4 -7/4 O X, 10/4
1 steg - =
8 x3 8
O
- I-l l 2..4 —x4...L e 2 .

T
The solution vector x was pre-arranged to be x=(1,1,1,1)".

Triangular Linear Systems

The next thing to investigate 1s the soclution of the four

resulting triangular linear systems applying the 'rotate’ and 'fold’

concept.
(Z) - lower Triangular Linear Systems
The systems to be solved are:
— - - -
a X {E [
11 O 1 1 (Resulting from the ISt stream
a a b4 = b
21 22 2 2 of the LU-decomposition)
31 %32 P33l K3 by
ana M T =Y
244 O [ [x, 24
nd
a3y Ay X3] = b3 . (Resulting from the 2 stream
a5y .5122 X, b2 of the LU-decomposition)
- L L
2 % b,

The element denoted by a circle 1s not used, according to the
elirmination process, and hence 1t will be considered as a 'don't care

element' in the modified dequeue of data which will be given further on.
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The recurrence solution formilae are as those for the case when n
is odd, whilst the corresponding solution for each of the above systems
1S:

ISt Stream

: Solution for the system: A X, =b,

12172
X, =by/a))
)% tay Ky = by == x) = (by-a, x))/a,,
231 ¥ 83 X 485 Ky = by < xy = (by-ag; X ~a, %)) /ag,-
2nd Stream
: Solution for the system: A2§2=92
Xg =0 /2,
= — =1 = -
334%4%333%3 = by T x5 = (by-ag x )/ ag,
Ay4%g 183Xt %y = By X, = (bz'a24x4'@) /85y -
Comment: The underlined elements denote the intermediate values obtained

during the maltiple modification of these common elements, which will
substitute the corresponding r.h.s. bl's for the computation of the final
solution value.O
The modified dequeue of data for the solution of the above systems,
together with the systolic linear array, are given in Figure (VI.B.1.1-f9).
In Figure (VI.B.1.1-f10) are displayed six consecutive computational
steps on thas linear systolic network of processors.
Remarks: The total number of time-units required, and anticipated by
Theorem [VI.A.6.1:92] (for p=p-1), was 11, which 1s justified by the
fact that the examined case 1s considered to be a critical case. The
Efficiency (E) of the array has been similarly as before increased to

one output every time-unit for the parallel part, whereas in the
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sequential part 1t has maintained the value 1/2. Hence, for n»>>p, the
modified dequeue will prove to be twice as fast compared to the single
stream solution process. O

(17) - Upper Triangular Linear Systems

The pair of the resulting upper triangular systems to be solved,

converted to a pair of lower triangular systems, are the following:

a b4 b
33 O 3 3 (Resulting from the ISt stream
a a X = b
23 22 2 2 of the LU-decomposition)
33 %12 % *) by
By 5] 2
and
: &
22 O ( ] (Resulting from the 2nd stream
a IRl
32 of the LU-decomposition)
£) a X b
42 43 44 4 4
) % b,
Comments: The elements of the matrix A, denoted by the circles are

2

1gnored, since the solution process of these subsystems 1s a straight
backward substitution process due to the lack of interference between
the two opposite streams, according to the unidirectional concept applied
on the central submatrix. The elements dencted by the squares have
interchanged positions in the modified dequeue of data to be presented

in the following. Also, note the duplication of the elements in circles
1n that Figure to avoid the special 'on-the-fly' handling requisite.l

The recurrence solution formulae for these systems are those given

1) _ (1)
Y Y

in (V1.4.6.1:5,8), with the initialization: N

=0, while the

corresponding sclution for each of these systems is:




x, @ x2x3xlx465
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Figure VI.B.1.1-f9: The Modified Dequeue of Data for the Solution of

the Lower Triangular Linear System of Paradigm
[VI.B.J.I:WIJ on the Linearly Connected Systolic

Array (for w=g=3).




"_:_yz e samd Yz [ Y2
2x=(b-y)/a =8 —:y=a x,.
4 4 “4 44 3 3474
1. “Pilay, 2. ¥Tbyy)/ag,
(since y4=0). =b1/all

{since yl=0) .

-— a -—
.:::y3 31 4N
- m— x —
Pn— _ 1 /
¥55%1% - ; 3 331 %y =
= - = - .:‘
3. ¥27%4%y- R i PR L) ¥y /2y,
- - = - =
- = ¥37(B3Y3) /a5, Pa72ar*) o 2
=(b.-a..Xx,)/a .. X, 1s output.
(by-az x ) /a3, 4 P n
! ! e
e _— =
—-— —— -~
= (=)
—__
— —d x
| — 2
GS) =) x32(b —y3)/a33
f s Y3Tay; ¥y Fagp%,- 6. = (bj-a, % -a %)) /ayy.
2" ,’ ' x.=(bl-y.)/a
b3-x3 2 % 2 22 This x3 1s an intermediate value.
x, 1s output. =(b2—a24x4)/a22-

Figure VI.B.1.1-f10: Six Consecutive Computatjonal Steps for the Solution of the Upper Triangular Linear System of
Paradigm [VI.B.I.I.’TTIJ Using a Modified Dequeue of Data.
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ISt Stream
: Solution for the system: Al§1=§1

¥y 7 bgl/ 933

3y3%3%e5%, = bgz =X, = (bgz'amx?,’/azz

313378 0%p%ay %) = By e ¥y = (bymagaxgma, X0 /Ay, -
an Stream

Ag9%ata3%3* ¥y T By Xy T (BT X may X ) /Ay,

The modified dequeue of data for the solution of these systems,
together with the systolic linear array, are given in Figure (VI.B.1.1-f11).
Finally, in Figure (VI.B.I1.I1-fI2)are 1llustrated six consecutive
computational steps on this linear systolic network of processors.
Remarks: The total number of time-units required, and anticipated by
Theorem [VI.A.S.I:%J(for p=p~l), was 11, while the observations made
for the previcus pair of systems, 1.e., about the Efficiency of the
systolic array of processors and the potential of the modified 'rotate'
and 'fold' concept, apply equally well to the present case. In particular,
by equalizing the timing formulae given by the above Theorem and
Theorem [VIA.S.J:BIJ“@ obtain: p=n/2, vhich, in reverse, indicates the
instance that these taimings will coincide. As an example, however, if
we consider the quindiagonal case for n=4096, then the solution process
using a modified dequeue proves to be 1.997... faster than the single
stream solution process. Overall, and in more practical terms, for the
parallel sclution parts we apply the timing formula given by Theorem
[VI.A.6.1:92], whereas for the sequential parts imposed due to the
formation of the (Ppxp) central submatrix the timing formula given by

Theorem [VI.A.6.1:81] is applied. O
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! a ]
1 11 ,
i :44 12 !
! %42 13 !
t %22 %43 !
:6 23 _ .- s
1 i

| !

== ¥,0¥,0y,¥,

Figure VI.B.1.1-f11: The Modified Dequeue of Data for the Solution of
the Upper Triangular Linear System of Paradigm
[VI.B.I.I:wIJ on the Linearly Connected Systolic

Array (for w=q=3).
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o
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Yy
- < e | — — x2 .
A 2 2 y3 cpran s, ;l=(bl-yl)/all
r 5. l (1153 y4)} 6. =(b1—a13x3—a12:2)/
b X, 1s cutput. 11°
1 The du.pl:n.catex3 1s output. _(b‘,_1 43%3 a42x2)/a £ 2

Figure VI.B.1.1-f12: Six Consecutive Computational Steps for the Solution of the Upper Triangular Linear System of
Paradigm [VI.B.I.I:NIJ Using a Modified Dequeue of Data.
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VI.B.2: 'SYSTOLIC' PIPELINABILITY 'ROTATING' AND 'FOLDING' GENERAL

BanNDED MATRICES

After the detailed 1nvestigation of the 'rotate' and *fold' concept
in the previous paragraphs, and since the d1fficultiest arising in the
implementation of thais technique were bypassed by the established and
exemplified unidirectional procedure, herein we shall examine the
boundaries of the central formatted submatrix for the general banded
case and introduce the complementaryi background theory simplifying the
variety of the occurring cases.

The problem of solving a banded system of linear equations
Ax = B (VI.B.2:1)
occurs frequently in the numerical sclution of partial and ordinary
differential equations. In the subsequent analysis we shall consider,
agaimn, the case that the coefficient matrix A has the property that its

LU-decomposition can be done by Gaussian elimination without pivoting,

and 1t 1s of the following symmetric semi-band type:

TDue to the interference of the two opposite faetorization streams.

i the theory for full matrices introduced in (Appendix C-VI/par-VI.A.6).



P ———
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(VI.B.2:2)

In particular, for simpler exemplification purposes, let us consider the case that the matrix A has a semi-

bandwidth p=4.

concept for the opposite factorization streams will be presented as:

The LU-decomposition of this general heptadiagonal matrix using the 'rotate' and 'fold’

P g "w9s/1n *yd]

[¢8!
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which 1mplies that:
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The triangular matrices L=(£ij) and U=(ulj) are evaluated according

to the recurrences given in (VI.B.1:3). However, because of the band-

width of the matrix A, i.e., p=4, we have the relations (VI.B.1:4,5)
respectively modified as:

1% Stream

{k)
i+3,1

a(k)
1,143

1+3,1

for 1sk<i and i22, (VI.B.2:3)

al,1+3 J
and for the

2nd Stream

(k)
a1-3,1

(k)
i, 1-3

a1-3,i
for lgkgin-1+1]1, 1g[n-11 . (VI.B.2:4)
= al,i-3 J

Corments: Although the central formatted submatrix is unique, the
existence of different counters in each of the factorization streams

1mposes the general expressicn of its elements+ as each of the opposite

TThese elements consist of the exemption for the formulae giving at each
k-step the general matrix elements modification.
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streams 1s 'facing' them, for any semi-bandwidth p (1.e., 0odd or even)

st
and any value of n (i.e., 0dd or even), In other words, for the I

stream the central submatrix appears as:

fTe T~ Pe,t45-1
: \‘\'\ = where t-Pﬂ |§-1|

~ [ ' 1zl 7Lz f
L S L2]
t+p-1,t t+5-1,t+p-1

nd
whereas for the 2 stream 1t appears as:

[ m e — = a ]

, Where r= lr%\l +F%l-l .

T, T r-B+l,r-p+1]

The value of p depends on the size of the central submatrix which 1s
known beforehand as (pxp) or [(p-l)x(p-1)].0
Let us now solve a numerical example considering the following

(5x5) heptadragonal linear system, 1.e.,

4 1 -1 1 9 %] [ s
1
1 4 -1 1 1 X, &
-1 1 5 -1 1 x| = 5] . (VI.B.2:5)
1 2 1 8 -2 %, 10
0 -1 1 -1 4] x| L3

By applying the folding algorithmic process according to the

original concept we cobtain the following solution steps:
miltipliers (top-bottom streams)

- o m, o,

1 -1 1 o x 5 (-1/4,1/4,-1/4}

Mo (:) (:) (:) |

-
o
L
o

I
1]
1%, ]

2 1 8 =2 X, 10
- -1 4
1 1 d (X5 _%_




4 1 -1 1 o
15/4 -3/4 3/4 (:)
Ist sterd O 5/4 1974 -3/4 (:)
7/4  5/4 31/4 Qg)
a1 1 -1 4]
+
4 1 1 ]
4 -1 1
o step+| O (:::) 9/2 -1/2 O
7/4 29/4
_ @) 1 o e
+
T4 1 oa @ 7
¢ 2 @
rd C 39/8 O
3 steg-*
33/16 111/ 16
N 3/4 -=3/4 4_
+
4 1 -48/37 T
4 -48/37 O
th
4 step~ o 190/37
33/16 116
B 3/4 -3/4 4 _

19/4
25/4

35/4

[137/37)
100/37
190/37

9

4
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{~1/4,-1/4,1/2}

{-3/8,-5/16,1/4}

{-16/111,-16/111,14/111}

T
The solution vector X was pre-arranged to be x=(1,1,1,1,1) . The

elements in the circles are the elements to be eliminated at the next

solution step.

With the unidirectional procedure investigated previously we avoided

the superfluous complexity caused by the overlapping of the opposite
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factorization streams; since the degree of their interference, however,
gradually increases along with the increase of the semi-bandwidth p+,
to conclude with the formation of the central full submatrix, it is
necessary to introduce, briefly, the relative background theory.

We shall apply similar techniques as in (dppendix C-VI/par.-VI.A.6)
to transform the matrix A with the form given by (VI.B.2:2).

For the case when n is odd we proceed as follows:

{z) The elements al:I are eliminated by the top stream for 1,3 in the

range:
n+l .
1= l(l)[—5~'-pl, i=[3+1] (1) {3+p-1] , (VI.B.2:6)
wvhich 1mplies that the elements a are eliminated by the

n-1+1,n=-j+1

bottom stream. The transformed matrix A has the form:

“— P
-

a
+ —
=~

o=

(VI.B.2:7)

(71) From this stage onwards we need to introduce slightly more
sophisticated factorization techniques as the opposite streams start
interfering since they have to eliminate elements of the same row. The

elements alJ to be eliminated are for i,3 in the rangei:

TIn accordance with the cases exemplified previously in this Chapter it
18 apparent that any problem tends to become eritical for degenerate
eases of p-n.

4 certain degree of flewibility should be allowed in the application of
these formulae when same degenerated cases (i.e., almost full matrices)
are to be considered.




and

1

[Egi -p+1] (1}t

where t =
[3+1] (1) [j+p-1]
n+l
t({l) [T*P‘l]
where t =

[-p+1) (1) [3-1}

lnips2) p_oddL
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———‘“;P’ , p-odd l
(Ist

2n
(n+p+1)
2 r

p-even

The resulting transformed matrix A will have the form:

and

e e e el

— pPp—
- -
T
0 n—p
2
<P . — . — _.£.* for p — odd
t
p
!
0
e a—p... —
1
0 n- ;-F1
p-1
L 1
_____ - -T- — for p— even.
1 P

stream)

(VI.B.2:8)

stream)

(VI.B.2:8)

(VI.B.2:10)

(VI.B.2:11)
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(¢27) Finally, at this stage, 1n accordance with the original (not
the unidirectional) procedure, each pivoting row eliminates first the
appropriate element of the opposite process, so that each elimination
does not recreate values in the zero elements created by the other.
The elimination procedure continues now exactly as for the case of a

full matrix resulting with the matrix A having the form:

. =D

(VI.B.2:12)

The case when n is €Ve¢n can also be treated in a similar manner
by following the previous steps with the fellowing differences at each
step:

() 1Instead of (VI.B.2:6), the top stream eliminates the elements a

such that n
j = l(l)[E'—P+l]r 1= [3+#1]1(1) [3+p-1] , (VI.B.2:13)

which implies again that the elements a are eliminated by

n-i+l,n-j+1

the bottom stream. The transformed matrix A has the form:




correspondingly eliminated are for 1,3 in the range:

n

3 = [3‘—P+2](l)t n—§+l , p-odd
; where t =

1 = [3+1]1 (1) [3+p~-1] % . p-even

and
= £(1) [ +p-1] +p-1

J 2 P E—g—— +1, p-odd
, where t =

1 = [3-p+1] (1) [7-1] 9-32 +1, p-even

for p-odd and the form (VI.B.2:10) for p-even.

(1i2) Finally, the matrix A has the easily solvable form:
- -
[ — T

n
A p+1
5P

o

(lst

(2

-
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(VI.B,2:14)

(iZ) Then, instead of (VI.B.2:8,9), the elements ai] which are

atream)

(VI.B.2:15)

stream)

(VI.B.2:16)

The resulting transformed matrix A will have the form (VI.B.2:11)

(VI.B,2:17)
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which 1s treated similarly to the even case as exemplified for the
instance when matrix A is full.

In accordance with the previous background theory, the conclusion
emanating 1s that we must always investigate four different cases,
namely, two subcases when n-odd, one for p-odd and the other for p-even,
and two corresponding subcases when n-even. This variety of cases,
however, may be simplified to only one case despite the wvalues of n and p.

It can be noticed easily that the cases: (n-even/p-even) and (n-odd/
p-odd) conclude with the formation of a central subsystem of size (pxp).
On the other hand, the remaining complementary cases, 1i.e., (n-even/
p-odd) and (n-odd/p-even), conclude with the formation of a central
subsystem of size [(p-l)x{p-1)]. Hence, the four different cases have
been reduced to two cases.

Furthermere, 1in every case the formation of the central full sub-
matrix commences at F%Fq+l lines depth for both factorization streams,
counting from the corresponding first line for each wave. Apparently,
we may consider the case: {(n-odd/p-odd) as a subcase of the case:
(n-odd/p-even), as well as the case: (n-even/p-even) a subcase of the
case: (n-even/p-odd). Hence, we end up with only cne case.

All these relations between the variety of cases occurring are
diagrammatically 1llustrated in Figure (VI.B.2-f1).

Comments: In this Figure the number of lines per factorization stream
is considered according to the original 'rotate' and 'fold' concept.

We must notice that when n-odd/p-odd or n-even/p-even, then the range
for each of the opposite streams does not reach the last line of the

central submatrax, but stops cne line before 1t. To the contrary,

when we consider the superset cases of the above pairs, 1.e., when
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n-odd/p-even or n-even/p-odd, then each stream overlaps the other the
full length of the central submatrix. Hence, due to the relation c
between the former and latter pairs of cases always we may consider
the latter range of overlap.Od

Since the size of the matrix in real life problems 1s bound tc be
n>>p, we may consider that the number of lines treated by each stream
is E%J. Consequently, in accordance with the modified 'rotate' and 'fold!
concept, the timing formula 15:!3Eﬂ4ﬂthe time for the central full
matrix', i.e., 4p, where p=p-1 or p.

Theorem [VI.B.Z:GIJ

The systeolic pipelinability of the LU-factorization of (nxn)
symmetric semi~bandwidth matrices by the 'rotating' and 'folding'
technique is directly dependent upon the relation between their size
and semi~bandwidth.

Proof:

By equalizing the above timing formula with the single stream LU-

Figure VI.B.2-fI: The Relativity of the Various Cases

Banded Matrix of Semi-bandwidth p.

nl. lp - < _ nf, p
L2J+L2J n-odd . n-odd ].2_|+ >
Lines/Stream p-odd preven Lines/Stream
Central
®pJ < -1} {p=-
(pxp] Submatrix+[ (p=1)x({p~1)]

atp _ _ = n |p]

> 1 n-gven . n-even > +EU
Lines/Stream p-even p-odd Lines/Stream

for a (nxn)
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decomposition formla given by Theorem [VI.A.G:BIJ we obtain:

3{%J+4§ = 3n+p . (VI.B.2:18)
We must examine the cases: p=p-l and P=p. Hence, for P=p-1

we have:

p-1 = |2 (VI.B.2:19)

p = {%-l . (VI.B.2:20)
Consequently, from formulae (VI.B.2:19,20) we may write:

P = Eﬂ- (VI.B.2:21)

The last relation determines the critical bounds for p and n.
In other terms, if we have a prcblem where P and n verify the relation
(VI.B.2:21), then the expected timings from both schemes will be
identical. If §<{é}, then the 'rotate' and 'folgd! technique proves to
be superior, whereas due to the enlargement of the formatted central
submatrix exactly the opposite applies for §>E§}.
Remarks: In practice 1t is bound that n>>p, hence the superiority
of the 'rotate' and 'fold' technique is apparent. If we consider an
arithmetic example, 1.e., p=5 and n=4096, then the speed-up achieved
by this technique is approximately 2. Also, take into account that

due to the relation < illustrated in Figure (VI.B.2-fI1) we can

practically consider that H=p-1 for every occurring case.O
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To conclude, the reader 1s once more invited to follow any of the
solved examples in the present Chapter, by making transparencies
either of the compound data stream, or the network 1tself, and moving
them cne over the other appropriately. 1In addition, as a further
exercise, the verification of the timings cbtained in these examples
(for the LU-factorization and the solution of the resulting triangular
systems) 1is proposed, by applying the appropriate general formulae

established, respectively.
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VI.B.3: FURTHER REsEArRcH IN THE 'SOFT-SYSTOLIC' AREA, CONCLUSIVE

REMARKS
The data stream 'rotating' and *folding' technique can be
naturally extended to higher level foldings (see Bekakos and Evans
[BEKA85a)l . In specific, if we consider, for simplicity, the problem
and the instance defined in (par.-VI.A.4), then we get the following
Theorem.

Theorem [VI.B.S:BJJ

The {nxn)-band matrix-vector multiplication problem with bandwidth
w=p+g-1 can be solved in fﬁ/f]+w time-units, using a systolic array
of w double IPSP's (with only a simple modification for the x's), and
one adder, applying the fourfolding technique.
Proof:
(By construction of the array).O
In other words, each cell will consist of 2 IPSP's (binary cell)
and the adder 1s to be used for the middle point of the matrix, since
1t will be evaluated concurrently in both streams. In Figure (VI.B.3~f1)

1s 1llustrated the definition of the binary cell,

a a,
Y Ir A
V= =i
x—b F o
i = ™ X
Xj- L J -Xj

b,

Figure VI.B.3-f1: Definition of the Binary Cell.
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Consider again the tridiagonal matrix A (for n=5)

— P
I

’—-— pr— c—

O 7 X1 Y1

() Y2 | g

a a
q 1 ) 12

I 21 | Q22

832 | as; xs |=1 va : Folding direction
N -
843 | Q44 | a5 ¥a | :Computational
\O direction
AN
| e — I I

The quadrequeue resulting when applying the fourfoldmg+ technique is

the following:

notation . § = dummy element

f

]
]
— A : vy ¥a Y2
t 1)
x’@x?‘ = - - — .
Ys Y3 Ya
X3X3 X5 — — p— —

In Figure (VI.B.3-f2) are illustrated all the computational steps

of the algorithm.

Remark: The adjacent elements to the middle element of the x-vector
have to be kept in the left-end binary cell for two clock ticks, as
well as a copy of them to propagate to their right-neighbour. This can

be easily achieved by performing a simple modification in the cell

structure given in Figure (VI.A.4~f2), for each individual IPSP in the

1LTh’fls technique involves a 'rotation' of the corresponding off-diagonals
for each folding of the matrix band.
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binary cell, i.e., connect the [NOT-AND] logic element to the output

line for x's, cancel the clock for the y's.O

when talking about binary cells (although it could be constructed a

Since we have entered the space of the soft-systolic algorithms

simple cell with 6 registers and an adder}, in [BEKA85al, we have made

use of the flexibility of the area to solve another prcblem involving

the diagonal and anti-diagonal banded matrix, cotherwise known as

X-band motric.

Many problems give a matrix of this general structure,

Step
— 5 = T = 3 Number
X3 — :1 — = 0
= o ¥s Y2
X3 =" X5 — — -
e g —
— B ¥s I —v2
Y1 = 81X
Xz —ip :a ——s X1 - = 1
- agg VE) = Ya
¥s = @s5Xs
Xa -1 X3 — Xg — —
— — pre— —
— diz 833 821 —
Y1 = 811X + 892Xz Ya = 833%3 Yz = 8nX,y
X3: X — X Xy —
— -— i -— — 2
= [T ¢ A -
Y5 = 855X + Bsady Ya=¢ Ya = d45X5
X3— X4 X3 Xs —
— _— — poy
\4) daz A2z |—
Y3 = 833Xz + 832 Y2 = d29%y + B22X2
b b3 x e
3= —2 — 2 — — - 3
¥s 834 = 34a _— f—
Y3 = 83aXa Ya = 845X + BagXa
X3 gy My Kag ——
— prom —_— —
= e
Y2 = an¥Xy + 822X + 323%3
— X3 — = = — 4
through the =4 Ba3 — = - —
adder Y4 = BasXp + BaaXa + Ba3X3
X3 -
P - — —
_— _—— s — —
‘VZ ,‘—-! f—
p— P powrs — 5

Figure VI.B.,3-f2:

It

i

The Computational Steps of the Matrix-Vector Multi-
plication Algorithm (n=5) using a 'Quadrequeue’.
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1f we are flexible in allowing some of the sparseness to be 1included
in the ¥X-bands.

Certainly the 'rotate' and 'fold' method as exemplified in [BEKASSa)
can be generalized retaining the quadrequeue as the fundamental
granularity factor. This process, however, implies the utilization of
more complicated binary cell networks with always a doubling number of
IPSP's, compared to the immediately previous folding level, but with a
directly analogous computational speed-up. The number of cells may be
considered as increasing rapidly, however, since we are in the space
of the soft-systolic algorithms, we can have a non-planar (multi-layer)
structure accommodating on each layer a modified Lelserson's linear
systolic array with local broadcasting bhetween them.

In this work the 'rotating' and 'folding' technique has been used
and considered up to the fourfold level. Theoretically we can continue
these foldings until we end up with a (5x5) sub-band partition of the
original band, which is the minimum boundary allowing a fourfolding
step. This 1s currently under 1investigation.

The superiority of the 'rotating' and 'folding' technigque compared
with the other approaches discussed in (par.-VI.A.4) has already (by
constructing the arrays) become apparent. In specific, assuming a
constraint-free technological status, there i1s no comparison with the
interleaving of the diagonals approach. ©On the other hand, in the soft-
systolic space, a direct comparison of this mathematical approach with
the hardware double pipe approach would prove that the timing results
obtained are of the same order. However, in the latter approach the
number of IPSP's increases quadratically, while in our case 1t doubles

for each new fourfolding level. This is even more cbvious in the
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single~band matrix-vectcor multiplication case, where with the double
pipe approach twice as many IPSP's are required compared to ocur case
in order to obtain similar timing results.

We shall conclude this Chapter overviewing some vital points made
in earlier Chapters about the design of special-purpose VLSI computer
systems. In specific, the cost-effectiveness of such systems has always
been a major concern; their fabrication cost must be low enough to
justify their specialized, and consequently limited, applicabilaty.

Cost can be distinguished in non-vecurring design and recurring
part costs. Any fall of the latter's cost 1s equally applied for the
merit of both, special-purpose and general -purpose computer systems.
Furthermore, this cost 1s even less significant than the design cost,
since the production of special-purpose computer systems in large
quantities 1s quite a rare phenomenon.

Hence, the design cost of such a system should be relatively small
for 1t to be more attractive compared to a general-purpose computer,
and this can be achieved by the utilization of appropriate architectures.
More explanatory, if the decomposition of a structure into a few types
of simple substructures, which are respectively utilized with simple
interfaces, 1s feasible, then significant cost savings can be achieved.

In addition, specilal-purpose computer systems based on simple
and regular designs are likely to be modular and, therefore, adjustable
to various performance goals - that 1s, systems' cost can be made
analogous to the performance required. This fact reveals that
accomplishing the architectural challenge for simple and regular

designs ylelds cost-effective special-purpose computer systems.
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VIT.1: INTRODUCTORY REMARKS

As it has become apparent from the previous Chapter, the introduction

of the VLSI circuit technology has offered a promising scenario for
processing large scale data by a multiprocessor array in a haghly
parallel mode. Nevertheless, prior to the efficient utilization of such
an advanced technology in large processor array structures, let us
summarize several of the fundamental problems imposed by the above
technology:

) Interconnection: In massively parallel array processors this is

the most critical issue of the system design, since communication is

very expensive in terms of area, power, and time consumption. Therefore,
communication has to be restricted to 'localized intercomnections’.

ii1) Description: A novel descriptive tool is regquired to assist in
the visualization, description and verification of parallel algorithms

in a large computing network.

itt) Clocking: The clocking scheme 1s another very critical issue.

In the globally synchronous scheme, there is a global clock network to
broadcast the clock signal over the entire array. For very large systems,

however, the clock skew unavoidably incurred in this signal distraibution
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is a non-trivial factor, causing unnecessary slowdown in the clock rate
{(see 8.Y. Kung and Gal-Ezer [KUNGBZ]. Hence, a self~-timed scheme
appears to be more preferable.

iv) Design Complexity: Large design of layout costs suggest the

utilization of repetitive modular structures, 1.e., a few different
types of simple (and often standard) cells.

v) Programmability:  Programmable processor modules (as opposed to

dedicated modules) are preferable due to cost-effectiveness consider-
ations. The high cost of designing such modules may be amortized over
a broader range of applications. Indeed, a major portion of scientific
computations can be reduced to a basic set of matrix operations and
other related algorithms, which should be carefully investigated in the
attempt to simplify the hardware module.

All these constraints which are imposed by VLSI will render the
general-purpose processor array very inefficient, sometimes almost
impossible, a fact which should dictate the scope of the algorithms
which can be tackled by this array.

In this Chapter a special-purpose network of processors 1s
introduced, which was also conceived and further developed by S5.Y. Kung,
et al [KUNGS2al. The important feature of this wavefront array processor
1s its computational nctation which removes the need for glohal
synchronization and also ﬁ?oves to be useful for programming the machine
and describing the algorithm.

The principal theme herein is the direct hardware implementation of
an alternate matrix procedure for the solution of linear systems: Ax=b,
where A 15 a compact dense (nxn) matrix, The method is based on the

factorization of the coefficient matrix into components which are of
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butterfly form, i.e., interlocking matrix quadrants, and for its
implementation the concept of computational dewgvefronts is investigated.
The Chapter concludes with remarks on the simulation of the
phenomenon of the propagation of the waves and a further discussion
about some improved issues of the @IF method.
In addition, further investigating hints are given for a possible, area
efficient, combined utilization of both systolic and wavefront conceptual
computational tools for a fully parallel solution of general banded

linear systems.
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VIT.2 A PIpELINABLE Two-DIMENSIONAL COMPUTATIONAL WAVEFRONT CONCEPRT

It has recently been indicated {see Speiser and Whitehouse [SPEI80])
that a significant part of the computational requirements for signal
processing and other applied mathematical problems can, in fact, be
reduced to a basic set of matrix operations and other related algorithms.
These algoraithms mainly involve the repeated application of relatively
simple operations with regular data flow.

The systolic array configurations, investigated in the previous
Chapter, exploit these properties for the parallel execution of those
recursive algorithms in a synchronized and regular mode,

The systolic array of processors, however, requires global
synchronisatron, a fact which would generally cause difficulties in 1its
VLST implementation.

The introduced approach herein bypasses such global synchronization
requirements by adopting the notion of continuously advancing waves of
data and computational activity, resembling a physical wave propagation
phenomenecn.

In the previous Chapter the hex-connected network of processors was
utilized to solve the matraix multiplication problem. We may consider
a different scheme for matrix multiplication involwving an orthogonal
network of IFSP's. 1In particular, let us consider A=(aij) and B=(le),
and thetrr product C=AxB=(cij) all be {(nxn) matrices. If we decompose
both factor matrices correspondingly into columns (Ai) and rows (Bj),

then,
C=2aB +AB+ ... +AB . (VII.2:1)

Thus, the matrix multiplication can be carried out in n recursions,

executing

ko) ag (VII.2:2)

¢ k'k




MODULES

MEMORY

recursively for k=1,2,...,n.

parallel algorithm for this case.

by using the computational wavefront concept.

MEMORY MODULES
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It becomes apparent how the parallelism can be exploited having (nxn)

brocessing elements available, and hence 1t 1s almost trivial the

In terms of VLSI design, the topology of such an algorithm, with
this degree of localized interconnections and data flow, can be naturally

mapped to a square (nxn) matrix array, illustrated in Figure (VII.2-f1),
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Figure VII.2—f1: The Configuration for a (nxn) ~Square Wavefront

Array Processor (WAP).
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For the purpose of the matrix multiplicaticn problem each wavefront
in the network of processors will correspond to a mathematical recursion
in the algorithm., Hence, successive pipelining of the wavefronts will
accomplish the computation of all recursions in the algoraithmic process.

Let us now exemplify the first recursion for this problem supposing

. C
that the registers of all the PE's are initially set to zero, i.e., Ci.)=0,

J
for all (1,3). The elements of matrix A are stored in the memory modules

on the left (in columns), while the elements of matrix B in the memory
modules on the top (in rows).

The process commences within the top northwest PE(1l,l) as:

(1) _ (O B
Cj1 = C11 * Py T by -

The end of this computation activates the successor neighbours: PE(1,2)

and PE{2,l), which will execute (in parallel):
(1) {0)

Cip = Cip *apyPyp = 31,0y,
and (1) _ (0 _
Coy = Cyp *ay;Pyy = 2Py -

After this computation, their corresponding successor neighbours: PE(1,3),
PE(2,2), and PE(3,1l) will be activated, thus creating a wave of
hierarchical computations travelling down the orthogonal network of
processors. It may be noted, however, that wave propagation implies
localized data flow.

Once the wavefront sweeps through all the cells, the first recursion

has been completed.

The inherent parallelism lies in the fact that synchronously with
the unfoiding of the first wave and i1mmediately after the emergence of
the first front of computation we can propagate the second wave (i.e.,
recursion of the algorithm), and then the third wave, and sc on, until

the matrix multiplication problem is computed.
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For instance, in the second wave the PE(1,j) will execute:
Cig) - C;;) T e 2y
and so on.

The pipelining of these computations is feasible because the wave-
fronts will never intersect (Huyghen's wavefront prainciple), assuming
that they will be using different processors and bypassing any contention
situations. The overall machine architecture is essentially the multi-
processor lattice with additional memery modules on the north and west
edges of the lattice. From the PE's architectural aspect, they are
being built out of conventional LSI modules as illustrated in [KUNG82a].

Finally, to summarize the key advantages claimed by S.Y. Kung and
his co-workers for the wavefront concept are:

) It drastically reduces the complexity of describing parallel
algorithms for matrix computations,

117) the wavefront language (developed for the machine) allows the WAP
to be programmable and increases its applicability range,

12Z) the wavefront language makes it possible to simulate and hence
verafy parallel algorithms, and

iv) the processors have an asynchronous waiting capability which obeys
the Huyghen's prainciple that wavefronts can never intersect.

To conclude, the initiative of this network of processors in our
investigation, independently to S5.Y. Kung and his co-workers, was
motivated as the means for the direct hardware implementation of the
alternate butterfly matrix procedure, established by Evans and Hatzopoulos
in [EVAN72) as an efficient parallel linear system solver. To be more

specific, the attempt to complement+ the systolic implementation of the

TNameZy, for compact dense (nxn) matrices.
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LU-factorization of general banded linear systems, investigated in the
previous Chapter, applying the 'rotate'and 'fold' technique+, led us
directly to the single stage dewavefront concept (note the similarity

in glossary) and a simpler issue of the previous technique.

Tre should be reminded that the degree of interference of the opposite
‘ factorization streams, and hence the complexity of the process, was
increasing analogously with the inerease of the semi~bandwidth p.
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VIr.3 On Tae Sorurron OF LINEAR SYSTEMS APPLYING THE QUADRANT

INTERLOCKING FACTORIZATION - QIF METHOD

Consider the following set of linear egquations
Ax = Db, (VII,3:1)
wvhere A 1s a non-singular compact dense {nxn) matraix, X is an unknown
(nx1l) column matrix and b is a given (nxl) column matrix.

The alternate matrix procedure will now be introduced, which 1s
based on the factorization of the coefficient matrix 1nto components
which are of butterfly form, 1.e., interlocking matrix quadrants. More
specifically, in thas direct method, which 1s equivalent to a (2x2)
block LU-factorization, we consider the matrix A 1s factorized into two

matrices W and Z, of the form,

1 o ]
Wy 1 O © Yon
Y3 Va3 1 © ¥Y3n-1 i
W= . : ; : o : : (VII.3:2)
wn—2,1 n-2,2 0 L wn—2,n-l Wn-2,n
Wn-l,l © O 1 Wn-l,n
0 1
and : - —
i 12 F13 - o+« Frne2 Z1n-1 Zn
Ty Zp3 ot Z2,n~2  Z%2,n-1
33 " " Z3no2
7 - 0O S O , (VII.3:3)
Zn_2'3. . . Zn—2,n-—2
*n-1,2 *n-1,3° * *  Zn-1,n-2 %n-1,n-1
fnl 252 Zn3 ot Za,n-2 zn,n—l zan
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and the following relationship holds, l.e.,

A =W2Z . (VII.3:4)
The matrices can be seen to possess an interlocking quadrant appearance
with matrix structures similar to the capital letters W and z.

The matrices W and Z can be written 1in the compact form shown
below,
W= IWl,Wz, cve ,Wn}
(VII.3:5)

and T
Z = [Zl,Zz,...,Zn] :

where Wl and Zl, 1=1(1)n are the column vectors of the matrices W and
ZT, which are of the following general forns:

(1} For n-odd

T n-1
r[ofol'"‘lorllwl+1'll"'l'wn_l’llol'"I‘O] ¢ 1=1(1) [—ﬁr
| —
1
- T +
W, = 4{10,0,...,0,1,0,...,07, 1-“21 , (VII.3:6)
—_——
1
T n+3
[0,0,¢..,0,w —i42 g7 W 1 :1,0,...,017, 1=[—§—I(l)n,
| n-i+2,1 1-1,1
and n-i+l
T n+l
[0,0,...,0,2, ,v..,2 Q,e..,0]7, 1=l(l){—§—ﬂ,
. , i1 1,n-1+41
Z = -
1 -1 (VII.3:7)
T ,_ n+3 .
[O'O"'"O'zi,n-1+l'""Zii'o""'O] R 1—[-§—i(l)n,
n-1

(iZ) for n-even,

¢ T n
[0’0' .. ‘Ioflrwi_‘_l'ir .. "Wn-l,l'o’ .- -:O] ’ l=1(l) ["2'-1] r

1-1

W, 2400,0,...,0,1,0,...,01", 13,241, (VII.3:8)
| —
1-1
T n

L[O'o'...'o'wn—l-l-Z,l'---'wi“‘l,l'l'o'...'ol ’ i"'[?{'zl (L)n,

n-i+1l
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and
T n
[Oror---aorzil:---:Zl’n_l+1'01---001 ' l=l(l)'2_ r
g = -1 (VII.3:9)

T n
[0,0,...,0,2 ,...,zil,o,...,OJ ’ 1=[§+1](1)n.

—_—— i,n-i+l
n-1i

The elements of the matrices W and 2 can be evaluated in Ljn—l)/ZJ
distinct stages. From the given forms of the matrices W and Z 1n
(VII.3:6,7,8,9) and the equality (VII.3:4), it can easily be chserved
that the values of the elements of the first and last rows of the
matrix Z are as follows:

107 %

and for 1=1(1)n . (VII.3:10)

z ., a
ni ni

The elements of the first and last columns of the matrix W are
then evaluated by solving (n-2) sets of (2x2) linear systems given by

zllwll * znlwln = all

for 1=2(1) [n-1] . (VII.3:11)
Z. W + 2 W a
1n 1l nn in in

T