

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

'•' . ··;

: \

' '

... \

\

• . - ... - .

' .-.

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY
' AUTHOR/FILING TITLE . .
:---~-----}jA~~~~.T!.Sr __ .K__G:_ __________ _

1---~ I
i ACCESSION/COPY NO. ·
I

~· ~-voL~f.io~--~---- -c-~i.~~~~{/:-1:-___ , ___________ -· .

~~~ 
I 
['" 6 JUl 1990 
• 

~- 6 Jlli. 1991! . 

1 -sJU~ 
f\8~ 

' 



'· 
' 



A STUDY 

0 F S Y S T 0 L I C A L G 0 R I T H M S 

F 0 .R V L S I PROCESSOR ARRAYS 

A N D 0 P T I C A L COMPUTING 

By 

K.G.Margaritis, Dipl.Eng., M.Sc. 

V 0 L U M E I I 

A Doctoral Thesis 
Submitted in partial fulfilment of the requirements 

for the Award of Doctor of Philosophy 
of the Loughborough Univerity of Technology 

October, 1987. 

Supervisor: Professor D.J. Evans, D.Sc., F.I.M.A., F.B.C.S. 

(§) by K.G.Margaritis, 1987. 



~, .. ··~ 
., r~ ..... , "'""" ..... .. -. .......;.....; 

a- H~.u .. 
Clur --'· ·-. 0 ( 66<t~ ~9--.... 

I 



A STUDY OF SYSTOLIC ALGORITHMS FOR VLSI PROCESSOR ARRAYS AND 
OPTICAL COMPUTING 

By K.G. Margaritis 

ABSTRACT 

This thesis presents some new systolic algorithms for 
numerical computation, that are suitable for implementation 
on VLSI processor arrays or optical processors. 

Chapter 1 is an introduction to the environment for the 
development of the systolic approach, followed by an over
view of major research areas in systolic systems. Chapter 2 
contains basic mathematical definitions and a brief intro
duction to specific areas of numerical analysis. Chapter 3 
starts with some basic definitions and terminology for sys
tolic computing; then fundamental systolic algorithms are 
described. Following is a review of some transformation 
techniques and an introduction to systolic programming and 
soft-systolic simulation. Finally, systolic and optical com
puting are combined, and a framework for developing systolic 
algorithms is outlined. 

Chapter 4 investigates systolic algorithms for the 
solution of polynomial equations, and the systolic calcula
tion of the roots of the characteristic equation of certain 
matrices. Chapter 5 presents systolic algorithms for the 
efficient solution and the updating of the solution of 
linear systems of equations, using LU decomposition. 
Chapter 6 develops the concept of pipelining systolic 
arrays, as well as the combination of area and time expan
sion, in iterative solution of linear systems of equations, 
based on series of systolic matrix-vector multiplications. 
Chapter 7 further develops the idea of expanding iterative 
systolic algorithms in area andjor in time. The systolic 
implementation of successive matrix-matrix multiplications 
is discussed and then a group of algorithms based on matrix 
powering is studied. Chapter 8 presents some optical sys
tolic algorithms. The direct mapping of VLSI systolic algo
rithms on optical processors is discussed, and then, the 
Outer Product processor is used for the optical systolic 
implementation of basic matrix computations. 

Chapter 9 completes this thesis with some general con
clusions, and suggestions for further research. A comprehen
sive list of references is also given, and an Appendix on 
the OCCAM programming language, and programs simulating some 
of the systolic designs presented. 

KEYWORDS: parallel processing, systolic algorithms, VLSI 
processor arrays, optical computing, polynomial 
equations, linear systems of equations, matrix 
eigen-problem solution, matrix functions. 



A STUDY 

0 F S Y S T 0 L I C A L G 0 R I T H M S 

F 0 R V L 5 I P R 0 C E 5 S 0 R ARRAYS 

AND OPTICAL COMPUTING 

ABSTRACT 

This thesis presents some new systolic algorithms for 

numerical computation, under the framework of being suitable 

for implementation on to VLSI processor arrays or optical 

processors. 

Chapter 1 gives an introduction to the environment and 

background for the development of the systolic approach, 

followe~ by an overview of the major research areas in sys-

tolic systems; finally the thesis organization is described. 

Chapter 2 contains basic mathematical definitions and a 

brief introduction to specific areas of numerical analysis; 

further, the algorithms used in subsequent chapters are 

briefly discussed. 

Chapter 3 starts with an example, through which basic 

definitions and terminology in systolic computing are intro-



duced; then 

described. 

- ii -

some fundamental systolic algorithms are 

Following is a review of some techniques for 

deriving and;or modifying systolic systems; further the.con

cepts of systolic programming, simulation; and the soft

systolic paradigm are introduced. Finally, the combination 

of systolic and optical computing is discussed and a frame

work for developing systolic algorithms is outlined. 

Chapter 4 investigates the systolic implementation of 

algorithms for the solution of polynomial equations. First, 

the derivation and operation of the systolic designs for two 

traditional methods are discussed in detail; then the sys

tolic calculation of the roots of the characteristic equa

tion of a symmetric tridiagonal matrix is described, as well 

as some other aspects of the systolic computation of certain 

types of characteristic equations. Finally, a general ring 

architecture, for the iterative solution of polynomial equa

tions is proposed. 

Chapter 5 presents systolic algorithms for the effi

cient solution of linear systems of equations, using LU 

decomposition. Initially, the efficiency of the basic algo

rithm is improved using mathematical techniques; then the 

problem of updating LU factors is discussed, in the context 

of Linear Programming. Further, the LU decomposition with 

partial pivoting is used for the systolic calculation of the 

eigenvectors of a symmetric tridiagonal matrix. 

Chapter 6 develops the concept of pipelining systolic 



- iii -

arrays, as well as the combination of area and time expan

sion, in iterative systolic algorithms based on matrix

vector multiplications. Firstly, an improved systolic design 

for matrix-vector multiplication is presented; then, area 

and/or time efficient pipelines for the iterative solution 

of linear systems are described. Further, pipelined struc

tures for cyclic reduction and multi-coloring techniques are 

investigated. Finally, an alternative matrix-vector multi

plication design for area expansion applications is dis

cussed. 

Chapter 7 further develops the idea of expanding itera

tive systolic algorithms in area and/or in time. Initially 

the systolic implementation of successive matrix-matrix mul

tiplications is discussed, and then a group of algorithms 

based on matrix powering is studied. Thus, the basic itera

tive methods of chapter 6 are modified, and three closely 

related methods solving the matrix eigenproblem are investi

gated. Further, systolic matrix polynomial computations are 

implemented, as well as the approximation of matrix func

tions. 

Chapter 8 presents some optical systolic, algorithms. 

Firstly, the direct mapping of VLSI systolic algorithms on 

optical processors is discussed, and the optical implementa

tion of fundamental systolic algorithms is presented. Then, 

the Outer Product processor is introduced and modified for 

banded matrix computations; further, the same processor is 



- iv -

used for a series of optical systolic algorithms, based on 

the Gauss Elimination process. 

chapter 9 completes this thesis with some general con

clusions, and suggestions for further research. A comprehen

sive list of references is also given, and an Appendix on 

OCCAM programming language, and programs simulating some of 

the systolic designs presented. 



CONTENTS 

V 0 L U M E I 

Page 

ACKNOWLEDGEMENTS • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i 

ABSTRACT . • • • • . • . • • • • • • • • . . . . . . • • . . . . • . . • • • • • • • • • • • • • • • i i i 

CONTENTS •..••.••.••••••..•••••••.•••• , .•.....•••••• , . Vi i 

LIST OF FIGURES . • • . • . . . • . . • • • • • • • . . . . . . • • . . . • • • • • • • • . xiii 

LIST OF TABLES .•••.•.•••.•...•.•.••••.••.••• , . • . • • • • • xx 

LIST OF PROGRAMS ...•• , •..••••••••• , • • • . . . . . . • • • • • • . . • xxi 

CHAPTER 1 

INTRODUCTION 

1.1 ENVIRONMENT FOR DEVELOPMENT OF SYSTOLIC APPROACH . 1 

1.2 REVIEW OF SYSTOLIC SYSTEMS RESEARCH.............. 15 

1. 3 ORGANIZATION OF THE THESIS . • . . . . . . • • . . • . . . . . . . . . . 26 

C H A P T E R 2 

BASIC MATHEMATICAL DEFINITIONS 

2.1 POLYNOMIAL EQUATIONS •••••• ••••••••••••••••• •••••• 32 

2.1.1 Solution of polynomial equations •..••....•. 37 

2.2 MATRICES •••........•.•.•.•••..•......•.•....•• , • . 44 

2.2.1 Eigenvalues and eigenvectors .•.•.••.••••••• 51 

2.2.2 Matrix and vector norms ................•••. 53 



- vi -

2.2.3 Matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

2. 3 LINEAR SYSTEMS OF EQUATIONS ..... , .•••... , • • • • . • . . 59 

2.3.1 Direct methods . .. . . .. . . . . . . . . . . . . . . . . . . . . . . 60 

2.3.2 Iterative methods .......................... 67 

2. 4 MATRIX EIGENVALUE PROBLEM • • • • • • • • • • • • • • • • • • • • • • • • 77 

2.4.1 The Power method .. .. .. .. .. .. .. .... .. .... .. • 77 

2.4.2 Characteristic polynomial methods ..•.•..••. 80 

2.4.3 Inverse iteration .......................... 83 

2. 5 MISCELLANEOUS ITEMS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 85 

2.5.1 The Simplex method ......................... 85 

2.5.2 Differential equations .••••...•.••.•.••.•.. 87 

C H A P T E R 3 

SYSTOLIC ALGORITHMS AND ARCHITECTURES 

3.1 BASIC DEFINITIONS AND TERMINOLOGY................ 95 

3 .1.1 A simple example . . . . . • . . . • . . . . . . . . . • . . . • . . . 95 

3.1.2 Measures and characteristics of systolic 
systems . . . . . • . . . . . . . . . . • . . • • • . . . . . . . . • . • . • . 104 

3.1.3 Framework for systolic algorithms for VLSI • 110 

3.2 SOME BASIC SYSTOLIC ALGORITHMS .............. ,".... 113 

3.2.1 Systolic matrix-vector multiplication 

3.2.2 Systolic matrix-matrix multiplication ...... 
114 

120 

3.2.3 Systolic solution of linear systems ..••..•. 125 

3.3 TRANSFORMATION TECHNIQUES •••••••••••••••••••••••• 137 

3.3.1 Retiming method . . . . • . • . • • • . • . . . . . . . • . . • • . • • 137 

3.3.2 Cut Theorem................................ 143 

3.3.3 Area-Time expansion ........................ 150 

3.3.4 Rotate and Fold (R+F) method............... 156 



- vii -

3.4 SYSTOLIC PROGRAMMING AND SIMULATION •..•......•••. 167 

3.4.1 The warp machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 

3.4.2 The Wavefront Array Processor (WAP) •••. :... 172 

3.4.3 The INMOS Transputer ..•..•..•..•.•.•.••••.• 176 

3.4.4 The Soft-systolic approach .....•.•.•.•.••.• 179 

3.4.5 Soft-systolic simulation using OCCAM ...•••• 183 

3.5 OPTICAL COMPUTING AND SYSTOLIC ARCHITECTURES ••.•• 191 

3.5.1 Optical signal transmission • . • . . . . • . . . . • . • • 194 

3.5.2 Optical systolic architectures ....••...•.•. 197 

3.5.3 A general framework for systolic algorithms. 207 

CHAPTER 4 

SYSTOLIC SOLUTION OF POLYNOMIAL EQUATIONS 

4.1 INTRODUCTION •• 0 0 •• 0 •• 0 ••••••• 0 •••••• 0 •••• 0 ••••••• 211 

4.2 SYSTOLIC DESIGNS FOR BERNOULLI'S METHOD.......... 214 

4.2.1 Systolic design derivation 216 

4.2.2 Implementation details •.................... 221 

4.3 SYSTOLIC DESIGNS FOR THE ROOT-SQUARING METHOD •... 227 

4.3.1 Systolic design derivation................. 229 

4.3.2 Implementation details •...••.......•...•... 235 

4.4 SYSTOLIC DESIGN FOR THE CALCULATION OF THE EIGEN-
VALUES OF A SYMMETRIC TRIDIAGONAL MATRIX......... 242 

4.4.1 Sturm sequence pipeline •••.....•.....•.••.• 245 

4.4.2 Systolic eigenvalue solver • . . . . • . • . . •• . • • . • 248 

4. 5 CONCLUSIONS . • . . . . . . . • . . • . . • . • • . . • . . . . . . . . . • . . • • • • 253 

4.5.1 Iterative methods ........................•. 253 

4.5.2 Characteristic polynomial computation...... 254 



- viii-

C H A P T E R 5 

SYSTOLIC LU DECOMPOSITION 

5.1 INTRODUCTION • . . . • • . • . . . . . . . . . . . . . . . • . . . . . . . • • • . • . 256 

5.2 THE R+F METHOD ON SYSTOLIC BLOCK LU DECOMPOSITION 260 

5.2.1 Block R+F LU decomposition ................. 265 

5.2.2 Systolic implementation of block R+F LU 
decornposi tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 

5.3 SYSTOLIC LU FACTORISATION FOR SIMPLEX UPDATES ,,,, 289 

5.3.1 LU updating method......................... 292 

5.3.2 Systolic LU modification .......••......•.•• 295 

5.4 SYSTOLIC DESIGNS FOR THE CALCULATION OF THE EIGEN-
VECTORS OF A SYMMETRIC TRIDIAGONAL MATRIX........ 305 

5.4.1 Systolic design............................ 308 

5. 5 CONCLUSIONS . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . 313 

VOLUME II 

ABSTRACT 0 ••••••••••• 0 ••••••••••••••••••••••••• 0 •••••• i 

CONTENTS •••• 0 0 ••••••• 0 ••••• 0 •••••••• 0 ••• 0 •••••••••••• 
V 

LIST OF FIGURES ~ ••.•••.•.•.••••.•..••••••.•••••.••••• xi 

LIST OF TABLES •••••••••••• , •••••••.••••••••••••••••• ·• xviii 

LIST OF PROGRAMS ••••••••••••••••••••••••••••••••••••• xix 

C H A P T E R 6 

SYSTOLIC MATRIX VECTOR MULTIPLICATION PIPELINES 

6.1 INTRODUCTION • . • . • . . . . . . . . • . • . • . . . . . . . . • • . . . . . • . . • 315 

6.2 IMPROVED SYSTOLIC MATRIX VECTOR MULTIPLICATION,,, 318 

6.2.1 Systolic array derivation .................. 320 



- ix -

6.3 IMPROVED SYSTOLIC DESIGNS FOR THE ITERATIVE SOLUT-
ION OF LINEAR SYSTEMS •••••••••••••••••••••••••••• 328 

6.3.1 Improved iterative systolic designs •.•••••• 329 

6.3.2 Unidirectional mvm array for J,JOR methods 339 

6.4 SYSTOLIC NETWORKS FOR ITERATIVE METHODS USING 
CYCLIC REDUCTION •.• I............................. 346 

6.4.1 systolic designs . . . . . . . . . . . . . . . . . . . .. . . . . . . 352 

6.5 P-CYCLIC MATRICES AND MULTI-COLORING TECHNIQUES •• 360 

6. 5.1 P-cyclic matrices . • • • • • • • • • • . . • • • • • . . • • • • • • 360 

6.5.2 Multi-coloring techniques . • • . • . . • • • • • • • • • • • 370 

6.6 CONCLUSIONS .•... I................................ 378 

C H A P T E R 7 

SYSTOLIC ALGORITHMS USING MATRIX POWERS 

7 .1 INTRODUCTION •....•....•..•.•....... I • • • • • • • • • • • • • 38 5 

7.2 SYSTOLIC DESIGNS FOR SUCCESSIVE MATRIX SQUARING . . 389 

7.2.1 systolic pipeline designs .................. 389 

7.2.2 Systolic iterative designs .....••..•••.•••• 398 

7.3 SYSTOLIC ITERATIVE SOLUTIONS OF LINEAR SYSTEMS 
USING MATRIX POWERS • . • . . . • • . • • . . . • • • • . . • • • • . • • . . . 404 

7.3.1 Systolic designs .......... ... .............. 406 

7.4 SYSTOLIC DESIGNS FOR EIGENVALUE-EIGENVECTOR COMPU-
TATION USING MATRIX POWERS . . • • • • . • . • • • . . . • • . . • • • • 412 

7.4.1 Systolic design considerations ...••...••••• 415 

7.4.2 Systolic designs ............................ 417 

7.5 SYSTOLIC COMPUTATION OF THE EXPONENTIAL OF A 
MATRIX . • • • • . • • • • . • • • • • • • • • • • • • • • . • • • • • . . . • • • . • • • • 425 

7. 5.1 Systolic designs . . • • • • • • . . . • • . . . • • • • • . • • . . • 426 

7.6 CONCLUSIONS ...•......•.....•......••...•.••.•••.. 436 

7.6.1 Systolic inversion using matrix powers..... 437 

7.6.2 Systolic computation of matrix functions ••• 439 



- X -

C H A P T E R 8 

OPTICAL SYSTOLIC ALGORITHMS 

8.1 INTRODUCTION . • . • . . . . . . . . . . . . . • . . . . . . . . . . . . . . . • • • . 442 

8.2 OPTICAL SYSTOLIC BANDED MATRIX MULTIPLICATION •••• 446 

8.2.1 Mapping of a R+F algorithm on an optical 
processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 

8.2.2 Mapping of the unidirectional mmm array on 
an optical processor •.....•...............• 453 

8.3 OPTICAL SYSTOLIC LU DECOMPOSITION AND SOLUTION OF 
TRIANGULAR SYSTEMS • . • . • • • • • . • • • • . . • • • • . • • • . . . • . • • 456 

8.3.1 Optical LU decomposition................... 456 

8.3.2 Optical solution of triangular systems ••.•. 464 

8.4 OPTICAL SYSTOLIC ALGORITHMS USING OUTER PRODUCTS . 470 

8.4.1 Banded matrix multiplication ••..•••....•••• 470 

8.4.2 Banded matrix LU decomposition .•..••....•.• 479 

8. 5 OPTICAL GAUSS ELIMINATION USING OUTER PRODUCTS . . • 490 

8.5.1 Optical implementation..................... 498 

8.6 CONCLUSIONS . . . . . . . . . • . . . • . . . . . . . . • . . . . . . . . . . . • . • • 506 

C H A P T E R 9 

CONCLUSIONS 

9.1 THESIS SUMMARY ................................... 511 

9.2 SOME FURTHER SUGGESTIONS .. •• •.•. .......••••••.••• 523 

REFERENCES • . . . • . . • • • . . . • • • . . • . • • • . • . . . . . . • . . . . • • • . . • • 528 

APPENDIX 

I. 

I I. 

............................................. 
Brief introduction to OCCAM •••..••.•••.••••• 

Loughborough implementation of OCCAM •••••••• 

552 

552 

561 

III. Soft-systolic simulation programs ••••••••••• 570 



L I S T 0 F F I G U R E S 

Page 

Fig.1.1.1. systolic system as special-purpose device •• 4 

Fig.1:1.2. Signal processing application design .••.... 4 

Fig.1.1.3. Hardware library design.................... 4 

Fig.1.1.4. Linear systolic array...................... 7 

Fig.1.1.5. Systolic system communication geometries ... 7 

Fig.3.1.1. Polynomial multiplication array with 
broadcasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 

Fig.3.1.2. Polynomial multiplication array with 
bidirectional dataflow •...........•.•...•.. 99 

Fig.3.1.3. Polynomial multiplication array with 
unidirectional dataflow ..............•..•.• 101 

Fig.3.1.4. IPS cell designs ........................•.. 103 

Fig.3.2.1. Full matrix-vector multiplication array.... 116 

Fig.3.2.2. Banded matrix-vector multiplication array .• 118 

Fig.3.2.3. Full matrix-matrix multiplication array.... 122 

Fig.3.2.4. Banded matrix-matrix multiplication array.. 124 

Fig.3.2.5(a). Full matrix triangularization array..... 127 

Fig.3.2.5(b). Cell specifi~ation .............•.....•.• 128 

Fig.3.2.6. Banded matrix LU decomposition array ..•.•.. 131 

Fig.3.2.7. Triangular system solver ...•...•..•.••••••. 134 

Fig.3.3.1. Application of the retiming method......... 142 

Fig.3.3.2. Fault-tolerant array....................... 145 

Fig.3.3.3. Two-level pipelined array . . • . • .•• •• • • • . • • . • 145 



- xii -

Fig.3.3.4. Application of the cut theorem • . . • • . . . . • . . • 148 

Fig.3.3.5. systo1ic ring architecture ..•.•........••.• 148 

Fig.3.3.6. Application of area-time expansion......... 153 

Fig.3.3.7. Application of R+F method on LU 
decomposotion of tridiagonal matrices...... 160 

Fig.3.3.8. Application of R+F method on triangular 
bidiagonal system solution .••.•..•..••• •... 163 

Fig.3.3.9. Systolic arrays for R+F method............. 165 

Fig.3.4.1. warp machine architecture . . • • . • . . . . . . . . . . • . 171 

Fig.3.4.2. WAP architecture .. . . • . . •• . . • . . • . . • • . . • . . . • • 174 

Fig.3.4.3. Transputer architecture .....••....•..•.•..• 178 

Fig.3.4.4. Logical structure of soft-systolic 
simulation programs in OCCAM .•....•..••..•• 185 

Fig.3.5.1. Optical signal transmission ...........•..•• 195 

Fig.3.5.2. Optical processor for systolic matrix-vector 
multiplication . . . . . . . . . . . . . . . . . . . . . . . . • . . . . 198 

Fig.3.5.3. Operation of 

Fig.4.2.1. Data flow for 

Fig.4.2.2. Data flow for 

Fig.4.2.3. Data flow for 

optical processor ............. 
bidirectional array design 

systolic ring design (n=5) 

systolic ring design (n=4) 

203 

218 

220 

222 

Fig.4.2.4. Input-output for systolic ring .. .. .. .. .. .. . 224 

Fig.4.2.5. systolic system for Bernoulli method....... 226 

Fig.4.3.1. A simple systolic design for the calculation 
of the coefficients, bi' i=0,1,2, •.. ,n ..... 232 

Fig.4.3.2. Data flow for semi-systolic array design... 234 

Fig.4.3.3. A 'purely' systolic array design........... 236 

Fig.4.3.4. Final systolic array design................ 238 

Fig.4.3.5. A systolic system for the Graeffe root 
squaring method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 

Fig.4.4.1. Roots for Sturm sequence polynomial ....•... 243 



- xiii -

Fig.4.4.2. Sturm sequence pipeline .•....•.........•.•• 246 

Fig.4.4.3. Systolic system overview................... 249 

Fig.5,2.l(a). Block (2x2) LU, LDU decomposition array • 261 

Fig.5.2.l(b). Cell definitions 

Fig.5.2.1(c). Cell definitions 

........................ 

........................ 
262 

263 

Fig.5.2.2. Preprocessor array......................... 264 

Fig.5.2.3(a). Block (2x2) tridiagonal system.......... 266 

Fig.5.2.3(b). LU, LDU decomposition of a block (2x2) 
tridiagonal matrix...................... 266 

Fig.5.2.4(a). Block (2x2) R+F LU decomposition........ 269 

Fig.5.2.4(b). Block (2x2) R+F LDU decomposition ....... 270 

Fig.5.2.5(a). Preprocessor array and i/o format for k=5 
( odd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 3 

Fig.5.2.5(b). I/0 format for k=4 (even) •........•..••• 275 

Fig.5.2.6. Block (2x2) R+F LU, LDU decomposition array. 276 

Fig.5.2.7. Block (2x2) R+F triangular system solution 282 

Fig.5.3.1. Matrix configurations for the modification 
of LU factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 

Fig.5.3.2. Major steps of the modification of LU 
factors (n=5) .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 294 

Fig.5.3.3. Parallel modification of LU factors .••..•.. 296 

Fig.5.3.4(a). Rectangular array configuration ......... 298 

Fig.5.3.4(b). Cell definitions ..••...•..............•. 299 

Fig. 5. 3. 5( a). Linear array configuration .. . .. .. .. .. . .. 301 

Fig.5.3.5(b). Cell definitions ..••...••...••.•.•..•... 302 

Fig.5.3.6. General case of modification of LU factors • 303 

Fig.5.4.1. S~ep ~ of Gaussian Elimination with partial 
p1v0t1ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 

Fig.5.4.2(a). Systolic array for Gaussian Elimination 
of a symmetric tridiagonal system....... 309 

Fig.5.4.2(b). Cell definitions ...........•..••...•.••• 310 



- xiv -

Fig.6.2.1. Dataflow for the bidirectional mvm array ... 
Fig.6.2.2. A simple systolic design for mvm ........... 
Fig.6.2.3. Dataflow for a semi-systolic mvm array ..... 

319 

321 

323 

Fig.6.2.4. Dataflow for unidirectional mvm (~ is 
delayed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 

Fig.6.2.5. Dataflow for unidirectional mvm (x is 
delayed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 

Fig.6.2.6. Systolic array for unidirectional mvm •.••.• 327 

Fig.6.3.1. Pipeline block for J method; w=S, p=q=3 •.•• 330 

Fig.6.3.2. Pipeline block for JOR method.............. 331 

Fig.6.3.3. Pipeline block for GS method............... 332 

Fig. 6. 3. 4. Pipeline block for SOR method .. .. .. .. .. .. .. 333 

Fig.6.3.5. Special cell definitions for pipeline blocks 
in Fig.6.3.1-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 

Fig.6.3.6. Modified pipeline 

Fig.6.3.7. Modified pipeline 

Fig.6.3.8. Preprocessor for 

Fig.6.3.9. Preprocessor for 

block for J,JOR methods .. 
block for GS, SOR methods. 

J,JOR methods ............. 
GS, SOR methods ........... 

337 

338 

341 

342 

Fig.6.3.10. Pipeline block for J,JOR methods using the 
unidirectional mvm array .. .. .. .. .. .. .. .. .. 343 

Fig.6.3.11. Preprocessor for the pipeline in Fig.6.3.10 344 

Fig.6.4.1(a). 2-cyclic ordering of tridiagonal matrices 
for n=4 (even) and n=S (odd) .....••...•. 347 

Fig.6.4.1(b). 2-cyclic ordering of the Jacobi matrices 348 
J 

Fig.6.4.2. Pipeline block for J method (2-cyclic 
matrices) ................. •................. 353 

Fig.6.4.3. Pipeline block for JOR method (2-cyclic 
matrices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 

Fig.6.4.4. Pipeline block for GS method (2-cyclic 
matrices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 

Fig.6.4.5. Overall pipeline configuration for the 
iterative solution of 2-cyclic systems ••••• 359 



- XV -

Fig.6.5.1(a). 2-cyclic ordering using 3 and 5 -point 
stencils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 

Fig.6.5.1(b). 3 and 4 -cyclic ordering using 4-point 
stencils .............. ·.................. 363 

Fig.6.5.2(a). Systolic network for J method (p-cyclic 
matrices) . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 366 

Fig,6.5.2(b). Systolic network for JOR method (p-cyclic 
matrices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 

Fig.6.5.3(a). Systolic network for GS method (p-cyclic 
matrices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 

Fig.6.5.3(b). Systolic network for SOR method (p-cyclic 
matrices) . . . . . . . . . . . .. . . . .. . . . . . . . . . . . . . 367 

Fig.6.5.4. 2-color ordering using 5-point stencil 

Fig.6.5.5. 3-color ordering using 7-point stencil 

Fig.6.5.6. 4-color ordering using 9-point stencil 

..... 372 

372 

373 

Fig.6.5.7. Systolic networks for r-color ordering 375 

Fig.6.6.1. Banded-full mmm systolic array . . . . • . • • . . • • . 379 

Fig.6.6.2. Time and area expansion for mvm computation. 381 

Fig.6.6.3. Re-usable mvm array........................ 382 

Fig.7.2.1. Time and area expansion for matrix squaring 
computation . . . • . . • . . . . . . . . . . . . . . . . • . • . . . . • . 390 

Fig.7.2.2(a). Banded matrix multiplication on unidire-
ctional hex-array . • . . . . . . . . . . • . . • . • • • • . • 391 

Fig.7.2.2(b). Banded~matrix squaring on a unidirection-
al hex-array wA=3, pA=qA=2 ..•.••.••.•••. 392 

Fig.7.2.3. Banded matrix squaring wA=4, pA=3, qA=2 .... 395 

Fig.7.2.4. Matrix squaring for a banded matrix A with 
bandwidth w=5, p=q=3 • . . • . • . • • • . • . . • • • • • • • • • 397 

Fig.7.2.5. Dense matrix multiplication on unidirection-
al hex-array, n=3 .......................... 399 

Fig.7.2.6. Matrix squaring pipeline block for a full 
(nxn) matrix A, with n=3 ••••..••...•.•.•••• 400 

Fig.7.2.7. Re-usable matrix multiplication array, n=3 . 401 

Fig.7.2.8. Iter~tive ar:ay configuration for successive 
matr1x squar1ng . . . .. . . . . . . . . . . . . . . . . . . . . . . . • 403 



- xvi -

Fig.7.3.1. Iterative array configuration for the J,JOR-
Hotelling methods . . . . . . . . . . . . . . . . . . . . . . . . . . 407 

Fig.7.3.2. Iterative array configuration for the GS, 
SOR-Hotelling methods ••..••......••.•...•.• 408 

Fig.7.3.3. Matrix squaring and matrix-vector inner pro-
duct step for a banded matrix c, w=5, p=q=3. 410 

Fig.7.4.1. Power method pipeline block for a banded ma-
trix A with bandwidth w=5, p=q=3 ••.••••••.• 419 

Fig.7.4.2. Matrix Squaring method pipeline block for a 
banded matrix A with bandwidth w=5, p=q•3 •. 420 

Fig.7.4.3. Iterative array configuration for Matrix 
Squaring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 

Fig.7.5.1. Time and area expansion for mmips operation. 429 

Fig.7.5.2. Iterative array configuration ....••..•.•.•• 430 

Fig.7.5.3. Pipeline configuration for k=2, j=1, w=3 •.• 431 

Fig.7.5.4(a). Banded matrix multiplication, wA=4, pA=3, 
qA=2, wB=3, pB=2, qB=2.................. 433 

Fig.7.5.4(b). Banded matrix multiplication, wA=3, pA=2, 
qA=2, wB=4, pB=3, qB=2 . . . . . • . • . . . . . . . . • • 434 

Fig.B.2.1. R+F matrix multiplication .................. 447 

Fig.B.2.2. R+F matrix multiplication array............ 448 

Fig.8.2.3. Details of optical processor for R+F mmm ... 450 

Fig.8.2.4. Matrix multiplication optical processor ..•• 451 

Fig.B.2.5. Details of optical processor for unidirect-
ional mmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 

Fig.8.3.1. Optical processor for LU decomposition ••.•. 458 

Fig.8.3.2. Details of optical processor ....••.......•• 459 

Fig.8.3.3. Optical processor for LU decomposition of a 
tridiagonal matrix . .....•.......... .•.•.... 462 

Fig.8.3.4. Operation of optical processor for R+F LU 
decomposition . . . . • . • • . • . • . . • . • • • . . . • • • • . . . • 462 

Fig.8.3.4. (continued) . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. 463 

Fig.8.3.5. Optical processor for triangular system 
solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 



- xvii -

Fig.8.3.6. Optical processor for bidiagonal system 
solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 

Fig.8.3.7. Optical processor for R+F triangular system 
solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 

Fig.8.4.1. Matrix multiplication using outer products 471 

Fig.8.4.2. Banded matrix multiplication using outer 
products . . . . . . . . . ... . . . . . . . . . .. . . . . . . . . . . . . . 472 

Fig.8.4.3. Optical processor for matrix multiplication. 474 

Fig.8.4.4. Optical processor for banded matrix multi-
plication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476 

Fig.8.4.5. Phases of a matrix multiplication ..•....... 477 

Fig.8.4.6. LU decomposition using outer products ••...• 480 

Fig.8.4.7. Banded LU decomposition using outer pro-
ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 

Fig.8.4.8. LU decomposition using outer product ....... 484 

Fig.8.4.9. Opti7a~ processor for full matrix LU deco-
mposl t1on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 

Fig.8.4.10. Optical processor for banded LU decompo-
sition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 

Fig.8.4.11. Phases of a full step of LU decomposition . 488 

Fig.8.5.1. Triangularization of A •••••••••• 0 •••••••••• 

Fig.8.5.2. Gauss Elimination for A, b 

Fig.8.5.3. Back substitution for A, b 

................. 

................. 

492 

494 

495 

Fig.8.5.4(a). Gauss-Jordan method for matrix inversion. 496 

Fig.8.5.4(b). Gauss-Jordan method for matrix inversion. 497 

Fig.8.5.5. ~ptical processor for matrix triangularizat-
lOn • • • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 499 

Fig.8.5.6. Optical processor for Gauss Elimination.... 499 

Fig.8.5.7. Optical processor system for Gauss-Jordan 
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502 

Fig.8.5.8. Optical processor for matrix inversion .•••• 504 



L I S T 0 F T A B L E S 

Page 

Table 1.1.1. Selection of major applications of 
systolic systems ....................... 5 

Table 3.5.1. Types of systolic algorithms ........... 209 

Table 6.3.1. Area-time requirements for systolic 
pipelines in Fig.6.3.1-5 ............... 335 

Table 6.3.2. Area-time requirements for systolic 
pipelines in Fig.6.3.6-9 0 ••••••••• 0 •••• 340 

Table 6.5.1. Comparison of the area-time requirements 
of the pipelines for normal and p-cyclic 
ordering ................. ~............. 368 

Table 6.5.2. Comparison of the area-time requirements 
of the pipelines for natural and 
r-colored ordering..................... 377 

Table 7.5.1. Optimum (k,j) for given£ and IIA!! 1 ..• 427 



L I S T 0 F P R 0 G R A M S 

Page 

A.l.l. Bernoulli's method • .• . . . . . • . . . . . . . . . • • . . • • . • . 574 

A.1.2. Graeffe (Root Squaring) method............... 576 

A.1.3. Sturm sequence method........................ 578 

A.1.4. Horner's scheme .............................. 
A.1.5. Bairstow method .............................. 
A.1.6. Characteristic polynomial of a lower 

581 

582 

Hessenberg matrix............................ 584 

A.2.1. Preprocessor for block (2x2) R+F LU/LDU 
decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585 

A.2.2. Block (2x2) R+F LU/LDU decomposition......... 586 

A.2.3. Block (2x2) R+F triangular system solution... 589 

A.2.4. LU updating on orthogonal array.............. 591 

A.2.5. LU updating on linear array . . . . . . . . . . • • . . . . . . 593 

A.2.6. LU decomposition with partial pivoting 

A.2.7. Backsubstitution for Inverse Iteration 

....... 595 

596 

A.2.8. Linear array for Inverse Iteration........... 597 

A.3.1. Unidirectional mvm array ..................... 602 

A.3.2. Pipeline of mvm arrays for J,JOR methods .•••• 603 

A.3.3. Preprocessor for iterative methods ...•..•.... 604 

A.3.4. Pipeline for J method (Cyclic reduction) •.... 606 

A.3.5. Pipeline for JOR method (Cyclic reduction) 607 

A.3.6. Unidirectional mvm array with local memory 609 



- XX -

A.3.7. Iterative mvm array (time expansion) .•••...•• 611 

A.4.1. Unidirectional mmm array ...•.......•...•..••• 613 

A.4.2. Pipeline of mmm arrays ......•....•........... 614 

A.4.3. Iterative array for J,JOR method ....•.•..•••. 615 

A.4.4. Iterative array for GS, SOR method ........... 617 

A.4.5. Pipeline of mvm and mmm arrays for J, JOR 
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618 

A.4.6. Pipeline for Power method.................... 620 

A.4.7. Pipeline for Matrix Squaring method.......... 622 

A.4.8. Iterative array for Power method............. 623 

A.4.9. Iterative array for Matrix Squaring method... 625 

A.4.10. Iterative array for matrix exponential ....•. 627 

A.4.11. Pipeline for matrix polynomial .....•.•.... .• 629 

A.5.1. Optical systolic mvm using Inner Products 631 

A.5.2. Optical systolic mvm using Outer Products 632 

A.5.3. Optical systolic mmm using Inner Products 633 

A.5.4. Optical systolic mmm using Outer Products 634 

A.5.5. DMAC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635 

A.6.1. Library routines for soft-systolic simulation 
of hard/hybrid/soft- systolic algorithms .... 636 

A.6.2. Library routines for soft-systolic simulation 
of optical- systolic algorithms .........•... 640 



C H A P T E R 6 

SYSTOLIC MATRIX VECTOR MULTIPLICATION PIPELINES 

6.1 INTRODUCTION 

The matrix vector multiplication (mvm) computation is 

probably the single most useful operation in signal process-. 

ing, since many basic processes, such as convolution, FIR 

filtering, Discrete Fourier Transform, can be regarded as 

special mvm cases [160], [287]. The original systolic mvm 

algorithm in [181] (see section 3.2) has been applied in 

many varied problems and has undergone numerous modifica

tions. 

For example, a two-level pipelined algorithm is pro

posed in [158] and the bit-level hardware implementation of 

a mvm systolic array is discussed in [195-196], where 

several alternative arrays are described. The same basic 

algorithm is used for the description of a series of tech

niques for the derivation and mapping of recurrence equa

tions on-to systolic arrays in [47], [184] and [238]. The 

mvm algorithm was the first to be considered for optical 

systolic implementation in [58]. 



- 316 ~ 

In [19-20) the R+F method is applied in order to 

improve the efficiency of the mvm array. For the same reason 

the 'double pipe' concept is introduced in [200-201). The 

partitioning of the coefficient matrix in triangular fac

tors, so that a small array can accommodate bigger mvm prob

lems is addressed in [232). The same method is further ela

borated in [215), whilst an alternative, more general 

approach is given in [209). 

An important application of the mvm array in Numerical 

Analysis· is concerned with the iterative solution of linear 

systems of equations. Some well known iterative methods are 

used for the solution of linear systems derived from the 

discrete approximation of ordinary and partial differential 

equations [282), [289), [300) (see also sections 2.3. and 

2.5). These methods are based on a series of mvm operations, 

so that they can be readily implemented systolically as long 

as a mvm systolic array is available. 

The systolic realisation of iterative methods has been 

discussed in [80), where a pipeline for the Jacobi 

method,for sparsely banded matrices, is described in detail. 

In [45) the Gauss-Seidel method is investigated. A more gen

eral approach is given in [25), where a number of iterative 

methods are considered. The optical implementation of the 

same algorithms is described in [51), while in [53) the con

cept is extended to non-linear systems of equations. Finally 

a hybrid optical-digital architecture is proposed in [2). 



----------------------------------------
- 317 -

In section 6.2, the derivation of an improved systolic 

mvm array is given, while in the subsequent section the sys

tolic pipelines for the iterative solution of linear systems 

are reviewed and some modified pipelines are proposed, par

tially based on the improved mvm array. 

Some special techniques are discussed in sections 6.4 

and 6.5. Firstly, the solution of tridiagonal sytems using 

Cyclic Reduction is considered. Then the same method is gen

eralised and a Multi-Coloring scheme is also applied. In the 

final section of this chapter, some additional applications 

for the improved mvm array are briefly discussed. Further

more, alternative methods for the systolic implementation of 

the iterative methods for solving linear systems are also 

considered. 



6.2 IMPROVED SYSTOLIC MATRIX VECTOR MULTIPLICATION * 

The linear systolic array for banded matrix-vector mul

tuplication (mvm), originally proposed in (181), (see sec

tion 3.2), can be improved in the following aspects: 

The fact that the data sequence is not compact leads to 

a sub-optimal computation time since the array requires 2n+w 

IPS cycles to complete its computation on a (nxn) matrix A 

with bandwidth w; the processor utilisation is 1/2, as well 

as its throughput; i.e. in general the efficiency of the 

array is 1/2. 

The dataflow is bi-directional along the array, 

although there are no feedback cycles, i.e. none of the 

values of any data stream depends on the preceding value& of 

the same data stream. This bi-directional dataflow compli

cates the application of fault-tolerance techniques; furth-

ermore, drainage and fillup cycles are also necessary (see 

Fig. 6.2.1). 

The interconnection of the array with other systolic 

arrays requires the reformulation of the data sequences: 

e.g. the banded matrix-matrix multiplication (mmm) array, 

also proposed in [181), (see section 3.2), has two dummy 

* A shortened version of this 
ed as part of lectures in the 
tion, Univ. of Leeds, 16 Feb. 
Architectures and Computer 
Oxford, 30 March 1987. 

section has been 
Workshop on VLSI 
1987, and in the 
Vision Workshop, 

present
Computa
Parallel 
Univ. of 



- 319 -

Q 2 D [Sj 1 D 
0 w 2 0 [] 1 

EJ 3 D ·GJ y2 D,, 
D D D E:3 
M 4 D ~ 3 

o,, 
D w 4 D []· 3 

I x4Ysa541 D tJ 4 DY3 

0 M 5 D [] 4 

[S] DQ D'·· 
0 D D [J 5 

Fig.6.2.1. Dataflow for the bidirectional mvm array. 



- 320 -

elements between two successive data items and therefore the 

interconnection of a mvm and a mmm array requires either 

some intermediate processing of the data sequences or the 

slowing down of the mvm array. 

A unidirectional dataflow combined with a compacted 

data sequence format can improve the systolic design in all 

the points discussed above. As is well known, there are 

alternative systolic designs for a given recurrence and the 

optimal design is determined in accordance to the con

straints imposed by the specific application. These alterna

tive systolic designs can be derived by means of more or 

less formal techniques (see chapters 1,3). Herein the 

'retiming' technique is used for the derivation of the 

improved systolic array design, in a way similar to that 

described in section 4.3. 

6.2.1 SYSTOLIC ARRAY DERIVATION 

The mvm computation A~=y, in the case of the example of 

Fig.6.2.1, can be written as 

yl = 0.0 + allxl + al2x2 + al3x3 

y2 = a2lxl + a22x2 + a23x3 + a24x4 

y3 = a32x2 + a33x3 + a34x4 + a35X5 

y4 = a43x3 + a44x4 + a45x5 + 0.0 

Ys = a54x4 + assxs + 0.0 + o.o (6.2.1) 

This algorithm can be straighforwardly implemented as shown 

in Fig.6.2.2 : in any cycle during the computation each cell 



- 321 -

D D D G 
D D B G 
D E3 E;] [;] 
B B B 

yl 

EJ 
B B B B 

y2 

B Ej B Dy' 
B [] D oy· 

Ys 

A 

. ! l 1 1 
- X. 

I 

1 

Fig.6.2.2. A simple systolic design for mvm. · 



- 322 -

performs a multiplication and all products are summed up by 

means of a systolic tree adder. The dataflow is also given 

in Fig.6.2.2 and can be readily derived from (6.2.1); x 

moves to the left, while the diagonals of matrix A are 

accessed through vertical channels; the entries of ~ are 

produced as an output of the tree adder one for each. cycle. 

An initial delay is required for the fillup of the array and 

for the summation through the systolic tree-adder. 

Now if the computations in each cell are delayed by d 

cycles, where d is the distance of a cell from the leftmost 

cell, then the computation for y can be pipelined, as 

illustrated in Fig.6.2.3. The tree adder has been avoided 

and each cell performs a full IPS computation; no fillup 

delay is necessary; however, the elements of x must be 

broadcast to all cells. The computation cycle is now 1 IPS, 

and the initial delay for the first result to be produced is 

equal to the bandwidth w of matrix A. 

Finally, if the calculations are 'retimed' for an 

additional cycle then both x and y travel in the same direc

tion but at different speeds, as shown in Fig.6.2.4. All 

long interconnection characteristics have been removed, and 

the initial delay is now equal to 2w-1; the only additional 

hardware required is w-1 delays in the data stream of ~· 

Notice the unidirectional dataflow and the compactness of 

the data sequences. Thus the processor utilisation is nearly 

1 and no fillup and drainage cycles are required between 



- 323 -

D D D D 
D D D D 
[S3 2 [52] 1 B B 
Ea 3 ~ 2 [52] 1 [] 
~ 4 ~ 3 EJ 2 [52] 1 

~ 5 ~ 4 ~ ~ y1 
3 2 

B ~ 5 ~ 4 ~ 3 
y2 

D D [[] 5 [3D y3 

D D D GJ y4 

A 

l 1 

----- - ~ 
- X 

X 

Fig.6.2.3. Dataflow for a serni-systolic rnvrn array. 



- 324 -

Q 1 D D 0 
[j yl D D D 
D y2 w 1 D D 
~ y3 w y1 D D 
~ y4 M y2 [13 1 D 
D Ys [:]·~ y3 y2 yl LJ 
D Cj y4 [3 y2 w 1 

D DYs w 4 
y3 t::J 2 

yl 

D D [J y4 Q 3 yf. 

D D o,,w y3 

Fig.6.2.4. Dataflow for unidirectional mvm (y is delayed). 



- 325 -

successive mvm computations. 

The relation (6.2.1) can also be rewritten as a back

ward recurrence, i.e. the inner products are collected in 

the reverse order of that given in (6.2.1). If the data 

stream of x is now delayed, then the resulting dataflow is 

given in Fig.6.2.5. The computation time is now n+w+p-1 IPS 

cycles, where n is the order of the matrix and p is the size 

of the upper semiband of matrix A, i.e. w=p+q-1. A systolic 

array implementing the dataf1ow of Fig.6.2.5 is shown in 

Fig.6.2.6 and a soft-systolic simulation program in OCCAM is 

given in A.3.1. 

The unidirectional mvm systolic designs proposed 

herein allow for compact data sequences, and therefore 

optimal computation time; furthermore fault-tolerance tech~ 

niques can be applied to yield a network that degrades 

gracefully with respect to the number of consecutive failed 

cells. They also allow for extensive pipelining, since all 

data streams move in the same direction and no drainage and 

fillup cycles are required; more importantly the direct 

interconnection of mvm and mmm systolic arrays is now easily 

implementable since the mmm hex-array proposed in 

[184),[2951 has the same characteristics with the mvm arrays 

discussed herein. 



- 326 -

DODO 
o··o o o 

[] 5 

D 
D 

ODD 

~x4 
4 

Qx5 

5 

D 

DD 
~ 
L2__j 

~x2 
3 

L:;jx3 

4 

[;J"• 
5 

D 
~ .. 

L2_j 

~ 
~ 
Q 

yl 

y2 

y~ 

D D o·s c::J· y4 

Fig.6.2.5. oataflow for unidirectional mvm (~is delayed). 



aS4 

ass a43 

a44 a32 

a45 a33 a21 

a34 a22 0 

a35 a23 all * 
a24 al2 * * 
al3 0 * * 
0 * * * 
0 * * * w 

"" ..... 

! - r r l ! 
-o~ -- i- ... i-

- L.,. 

* * xS x4 x3 x2 xl 

Ys Y4 Y3 Y2 Yl * * 1---- -

Fig.6.2.6. Systolic array for unidirectional mvm. 



6.3 IMPROVED SYSTOLIC DESIGNS FOR THE ITERATIVE SOLUTION OF ----
LINEAR SYSTEMS * 

Given a linear system of equations, A!=£, which, 

without loss of generality has been so ordered that a1 i10, 

for all i. The system can be rewritten as 

(6.3.1) 

where M is the Jacobi matrix of A, with 

(6.3.2) 

Equations (6.3.1,2) are the basis of many iterative methods 

for the solution of linear systems discussed in section 2.3: 

Some of these.methods are 

(i) Jacobi method (J) 

(k+l) (k) 
~ = ~ +~ • 

(ii) Jacobi overrelaxation method (JOR) 

~(k+l) = w(~(k)+~) + (1-w)~(k) ' 

where is w the overrelaxation factor. 

(iii) Gauss-Seidel method (GS) 

~(k+l) = L~(k+l)+U~(k)+~ 

(6.3.3) 

(6.3.4) 

(6.3.5) 

* A shortened version of this section has been present
ed as part of lectures in the Workshop on VLSI Computa
tion, Univ. of Leeds, 16 Feb. 1987. This section is 
also part of a paper presented at the Numeta 87 confer
ence, University of Wales, Swansea. 



- 329 -

where L(U) is a strictly lower(upper) triangular 
matrices with L+U•M. 

(iv) Successive overrelaxation method (SOR) 

~(k+l) = W(~(k+l)+U~(k)+.s_) + (l-W)~(k) (6.3.6) 

Methods (6.3.3-6) have been considered for systolic 

implementation in [ 25), [ 45), [ 80); Fig.6.3.1-4 illus-

trate linear arrays performing one iteration of the methods 

(6.3.3-6). In the same figures the data sequence format is 

shown as well as the synchronisation delays that are neces-

sary between two successive iterative steps. In general, all 

the designs can be analysed in : one (or two) mvm arrays and 

a special cell performing the computations described in 

Fig.6.3.5. 

Table 6.3.1, summarises the area and time requirements 

for the iterative systolic designs, for k iterative steps, 

and for a (nxn) banded matrix A, with bandwidth w=p+q-1. 

Notice that the time complexity for the special cell in the 

case of SOR is 1 IPS + 1 ADD and therefore the time cycle 

for this method must be prolonged accordingly. 

6.3.1 IMPROVED ITERATIVE SYSTOLIC DESIGNS 

The following observations can be made on the pipeline 

designs of Fig.6.3.1-4. Firstly, the quantities 

b. 
~ , w-

aii 
(6.3.7) 

are calculated repetitively in each step of the iterative 



max(p, (q-1))+1 max(p, (q-1) )-(q-1) 

•, 0 ., 0 ·~ •, ~ b
5 

o 

-a
53 

0 -a
12 

0 -a
31 

0 0 

0 · -a
43 

0 -a
32 

0 -a
21

o 

0 -a
34 

0 

-a35 ° -a24 

-a23 0 -al20 

o -a
13 

0 o 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 a
22 

0 a
11 

o o o o o o 

0 xs 0 x4 0 x
3 

0 x
2 

0 
X~ 

inax (p, (q-1) ) -p 

4 

2p+l delays 

2p delays 

q-1 
IPS 

++delay 

• 
p-1 

• !PS 

1 
~ DIV I 

I 

. (i) (i+l) 
2p delays between ~nput of x 1 and output of x

1 

r 

Fig.6.3.1. Pipeline block for J method; w=5, p=q=3. 

w 
w 
0 



b
5 

o b
4 

o b
3 

o b
2 

o b
1 

o 

-a
53 

0 -a
42 

0 -a
31 

0 o. 0 0 0 
q-1 

0 -a
43 

0 -a
32 

0 -a
21 

0 0 0 0 
IPS 

_!_ I 
J ~ 

0 -a34 ° -a23 0 -a
12 

0 0 0 0 p-1 

-a35 0 -a
24 

0 -a
13 

0 0 0 0 0 
IPS 

11 
0 1-w 0 1-w 0 0 0 0 0 0 
0 a22 0 all 0 0 0 0 0 0 

-------------.. ---- ---DIV 
IPS 

0 x
5 

0 x
4 

0 x
3 

0 x
2 

0 x
1 

Fig.6.3.2. Pipeline block for JOR method. 

2p+l 

2p 

---- -
"' "' ..... 



0 

0 

0 

max( (p-1), (2p-3)) 
.I 

-a
34 

0 -a
23 

o -a
12 

0 o o 
o -a

24 
o -a

13 
o 0 0 0 

0 x
4 

0 x
3 

0 x2 0 x
1 

0 a
11 

o 0 o 0 o 

0 0 0 0 

0 0 0 0 

0 0 0 0 0 0 0 

2 p-1 delays 

p-1 
IPS 

2p-l delays between 
(i) 

xl 

DIV 
ADD 

I 
l 

q-1 
IPS 

Fig.6.3.3. Pipeline block for GS method. 

and x~ i+l) 

w 
w .... 



,....--------------------------- ----

p-1 

0 0 
IPS 

xs 0 x4 0 x3 0 x2 0 x
1 

0 1-w 0 1-w 0 0 0 0 0 --------------- -- -
0 a22 0 all 0 0 0 0 0 DIV 

IPS 
0 b2 0 b1 0 0 0 0 0 ADD 

j 
0 0 0 0 0 0 

q-1 

0 0 0 0 0 00 
IPS 

Fig.6.3.4. Pipeline block for SOR method. 

2p-

- -· 

1 

------... 
w 
w 
w 



x2 
out 

xlin 

x2 out 

x2in 

x2in 

xlout 

DIV 

4
out 

a in 

X 

DIV 
!PS 

1 I J 
a 

wout out 

DIV 
ADD 

b a out out 

bin ain I "'in 

I 

DIV 
!PS 
ADD 

I 

b a f · 
out out wout 

- 334 -

xlout 

x2in 

xlin 

x3in 

xlin 

xlout' =xlin 

x2out•=x21n/ain 

aout :=ain 

xl t•=xl1 ou n 
x2 :=x21 /ai +xwi . out n n n 

(x:=xl1n delayed 2p-l 

a out :=ain 

wout :=win 

cycles) 

xl t:=(xl1 +x2i +bi )/a
1 ou n n n n 

a out: =a in 

b •=b. out 1n 

xl t:=(xl. +x2i +b. )/a. +xwi ou 1n n 1n . 1n n 
(x:=x3in delayed 2(p-l) cycles) 

a out :=ain 

b :=bi out n 

Fig.6.3.5, Special cell definitions for pipeline blocks in 
Fig.6.3.1-4. 



Method J JOR GS SOR 

Area 

Time 

k( (W-l)IPS+DIV) k(wiPS+DIV) k((w-l)IPS+DIV+ADD) k(WIPS+DIV+ADD) 

2(n-l)+(k-l) (2p+l) as for J 2(n-l)+(k-1)2p+p as for GS 
+ (w+l) 

Table 6.3.1. Area-time requirements for systolic pipelines 
in Fig.6.3.1-5. 

I. 

w 
w 
U1 



- 336 -

process, while they need to be calulated only once in the 

beginning of the computation. Thus, the complex special 

cells will be avoided at the expense of some initial prepro--
cessing. Furthermore, for the JOR and SOR methods the addi

tion of vectors (1-oo)~(k) can be interpreted as an addi

tional IPS in the mvm, i.e. (6.3.4,6) can be rewritten as 

(k+l) (k} 
X = (wL+(l-w)I+wU)~ + w9_ 

(6. 3.8) 

(k+l) . (k+l) (k) 
x = wL~ +((1-wli+wU)~ + w9_ 

(6.3.9) 

Thus, a more uniform implementation of the four methods can 

be achieved since for 00=1, JOR yields the J and SOR yields 

the GS methods. Fig.6.3.6-7 illustrate the improved sys-

tolic arrays for one iterative step: the linear array of 

Fig.6.3.6 is a simple mvm array implementing a matrix-vector 

inner product step (mvips) as in (6.3.1). In Fig.6.3.7 there 

are again two mvm arrays but now the middle cell is a 

three-input adder. 

The preprocessing elements required for the formulation 

of the data sequences are shown in Fig.6.3.8,9. The main 

diagonal of matrix A enters a divider cell calculating 

oo;aii; this quantity is propagated to the remaining cells 

while (l-oo) is the main diagonal entry of the output matrix 

M. The other cells calculate -(w/a .. )a .. , except for the 
ll lJ 

cell corresponding to b that only calculates (oo/aii)bi. 

Some reformatting delays are necessary for the output of the 

preprocessing elements to conform with the data sequence 



max( (p-1), (q-1)) max( (p-1), (q-1)) -(q-1) 

g3 ° ~91/ 0 
2p-l delays 

,_...__, 
2 (p-1) delays 

m53 0 m42 0 m31 0 0 0 0 

0 m43 0 m32 0 m
21 

0 0 0 w 
IPS 

1-w 0 1-w 0 1-w 0 1-w 0 0 

·0 m34 0 m23 o ml2 0 0 0 

m53 0 m42 0 m31 0 0 0 0 

x
5 

0 x
4 

0 x 3 0 x 2 0 x 1 T 
max( (p-1), (q-1))-(p-1) 

1 (i) d (i+1) 
2(p-l) between x

1 
an x

1 

Fig.6.3.6. Modified pipeline block for J, JOR methods. 

w 
w 
-.1 



1-w 0 1-w 0 1-w 

0 m34 0 ~3 0 

m35 0 m24 0 ml3 

xs 0 x4 0 x3 

0 9z 0 gl 0 

m32 0 m21 0 0 

0 m31 0 0 0 

p-1 
..---'--. 

' 0 1-w 0 0 

m12 0 0 0 

0 0 0 0 

0 x2 0 xl 

0 0 0 0 

0 0 0 0 

0 0 0 0 

Fig.6.3.7. 

p 
IPS 

ADD 

I 
! 

q-1 
IPS 

Modified pipeline block for 

2p-1 delays 

2p-l dela 
(i) d (i+l) 

ys between x
1 

an x
1 

GS, SOR me thods. 

w 
w 
0> 



- 339 -

formats of the iterative systolic designs; these delays are 

also shown in Fig.6.3.8,9. 

Table 6.3.2 summarises the area and time requirements 

for the improved iterative systolic designs. By comparing 

Tables 6.3.1,2 we can observe that, for the J,JOR methods, 

the special cell in each iteration is replaced by a simple 

IPS cell, which, in the case of the J method can be replaced 

by simple delays. On the other hand,_a new preprocessing 

array is introduced; thus, the main pipeline becomes simpler 

and more regular at the expense of w IPS cells and 1 divider 

of the preprocessor. The computation times do not differ 

significantly. 

For the GS,SOR methods, again the main pipeline is 

simpler and for the GS method the main diagonal cell can be 

removed giving better area results. The computation times 

are nearly the same. In general, the improved designs offer 

simpler and more regular pipelines with approximately the 

same time complexity; furthermore some unification is 

achieved in the treatment of the different methods, i.e. the 

same systolic design can be used for both J and JOR, or for 

GS and SOR methods. 

6.3.2 UNIDIRECTIONAL MVM ARRAY FOR J,JOR METHODS 

The basic building block of the iterative systolic net

works discussed is the mvm array, which can be improved as 

proposed in section 6.2. Thus, for the J,JOR methods the 



Method J,JOR GS,SOR 

Area kwiPS+(W-l)IPS+DIV+MUL k(wiPS+ADD)+(w-l)IPS+DIV+MUL 

Time 2(n-l)+(k-l) (2p-l)+W+ 2(n-l)+(k-1)2p+p+(2q-l) 
(4q-2) 

Table 6.3.2. Area-time requirements for systolic pipelines 
in Fig.6.3.6-9. 

w .... 
0 



q-1 

0 b2 0 bl 0 0 0 0 0 0 0 gs 0 g4 0 g3 0 g2 oj gl 

,.... . • 
m53 0 ml2 0 m31 0 0 0 0 

0 m43 0 m32 0 m21 0 0 0 

w DIV 1-w 0 1-w 0 1-w 0 1-td 0 
w 

0 ~ ... 
0 m34 0 m23 0 m12 0 0 0 

m53 0 m42 0 m31 0 0 0 0 

I 
2q-l 2 (q-1) 

Fig.6.3.8. Preprocessor for J, JOR methods. 



2 (q-1} 

ass 0 a44 0 a33 0 a22 o all w DIV ·-o 0 1-w 0 1-w 0 1-w 0 1-w 

a4S 0 a34 0 a23 0 al2 0 m4S 0 m34 0 m23 0 ml2 0 

a35. 0 a24 o a13 0 0 0 m35 0 m24 0 ml3 0 0 

b3 0 b2 0 b1 0 0 0 0 0 0 0 0 
w 

b4 0 g3 g2 gl ... .., 

0 a32 0 a21 0 0 0 0 0 0 IPS 2 0 m32 0 m21 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Fig.6.3.9. Preprocessor for GS, SOR methods. 



o(p-1 
............... 

0 0 0 0 0 0 0 

w+p-1 delays 

m43 m32 m21° 0 0 0 0 0 

1-w 1-w 

0 0 

0 0 

0 .0 

l:-w 1-w l:-w 0 0 0 0 

m45m34m23ml2° 0 0 

0 0 m
35

m
24

m
13

o 0 

gs g4 g3 g2 gl 0 0 

w IPS I 
I 

w+p-1 delays 

Fig.6.3.10. Pipeline block for J, JOR methods using the 
unidirectional mvm array. 

(i) and xl(i+l) between x
1 

w ... 
w 



aS3 a42 a31 0 0 0 0 m31 0 0 0 0 0 0 

0 aS4 a43 a32 a21 0 0 m43 m32 m21 0 0 0 0 

0 0 ass a44 a33 a22 all 1-w 1-<d 1-w 1-<d 1-<d 0 0 

w ., ., 
0 0 a4S a34 a23 al2 0 IPS 3 0 0 m4S m34 m23 ml2 0 

0 0 a3S a24 al3 0 0 IPS 1 0 0 0 0 m3S m24 ml3 

b4 b3 b2 bl 0 0 0 0 0 0 gs g4 g3 g2 gl 

Fig.6.3.11. Preprocessor for the pipeline in Fig.6.3.10. 



- 345 -

pipeline block can take the form shown in Fig.6.3.10, while 

the preprocessing element is given in Fig.6.3.11. Soft

systolic simulation programs for the J,JOR pipeline and its 

preprocessor are given in A.3.2, A.3.3. 

The area requirements are nearly the same; the only 

additional complexity is the line crossings that are neces

sary for M, g to be fed into the mvm array. The time 

requirements have changed significantly, since the data 

sequence is compact and only n, instead of 2n IPS, cycles 

are required for the result to be produced; on the other 

hand, however, the unidirectional mvm array imposes w+p-1 

IPS cycles delay per pipeline block, instead of 2p-1 for the 

design of Fig.6.3.7. Therefore the gain in computation time 

can be expressed as n-k(w-p) IPS cycles; so that the gain is 

significant for n>>kw. 

In the case of the GS,SOR methods the unidirectional 

array gives no better results than those achieved by the 

design of Fig.6.3.8. This is because the benefit of the com

pactness of the data sequence is cancelled by the need for 

idle cycles between the computation of two successive 

entries of x. Some alternative ways for improving the per

formance of the systolic GS,SOR methods are discussed in the 

subsequent sections. 



6.4 SYSTOLIC NETWORKS FOR ITERATIVE MEHODS USING CYCLIC 

REDUCTION 

An important class of linear systems of equations are 

the systems obtained as the discrete finite difference 

approximation to general second order ordinary differential 

equations. A simple case is the equation (see section 2.5) 

d 2x(z) 

dz 2 + a(z)x(z) - ~(z) 
(6.4.1) 

subject to boundary and continuity conditions given in 

[289),[300). The discrete approximation vector! is given by 

a system of the form A!=£, where A is a tridiagonal, irredu

cible, diagonal dominant matrix, with 

a .. >O, a .. ~o, i;lj, i=l,2, ••• ,n. 
11 1J 

(6.4.2) 

The corresponding Jacobi matrix M is tridiagonal with zero 

main diagonal entries, and non-negative off-diagonal enties 

(see Fig.6.4.1). As shown in the same figure, A and M can be 

rewritten as 

r-0 

M = 
A= 

F -
1 

0 
. (6.4.3) 

Thus, the Jacobi matrix produced by the coefficient matrix A 

of the discrete approximation to the solution of a general 

second order ordinary differential eqution as in (6.4.1), 

can take the form of (6.4.3) and it is said to be a weakly 

cyclic matrix of index 2. Alternativel~A is defined as a 



1 

2 

3 

4 

1 

2 

3 

4 

s 

- 347 -

1 2 3 4 

all a12 

a21 a22 a23 3 

a32 a33 a34 2 

a43 a44 4 

1 2 3 4 s 

all a12 

a21 a22 a23 3 

a32 a33 a34 s 

a43 a44 a4S 2 

aS4 ass 4 

1 3 2 

all al2 

a11 a1? 

a21 a23 a22 

a43 

1 3 s 

all 

a33 

ass 

a21 a23 

a43 a4S 

• 
I I * : 
I 1 : I L...--------1 

4 

a,. 

a44 

2 

a12 

a32 

a22 

4 

a34 

aS4 

a44 

---, 
I 
I ___ _. 
I 

I Hl ---1 
* I ___ j 

Fig.6.4.1(a). 2-cyclic ordering of tridiagonal matrices for 
n=4 (even) and n=S (odd). 



- 348 -

1 2 3 4 1 3 2 4 

1 ml2 1 m12 

2 m21 m23 3 m32 m34 

3 Jn32 m34 2 m21 m23 

4 m43 4 ~43 

1 2 3 4 5 1 3 5 2 4 

1 m12 1 m12 

2 m21 m23 
2 m32 m34 

3 m32 m34 
5 m54 

4 m43 m45 2 m21 m23 

5 m54 4 m43 m45 
I I 

I I I 
I I 1 * I 
I I I I 
L- ------- -· 

Fig.6.4.1(b). 2-cyclic ordering of the Jacobi matrices. 

---, 
I 
I ___ _. 
I F1 

___ J 

* I I 
___ J 



- 349 -

2-cyclic matrix relative to the partitioning of Fig.6.4.1. 

Especially in the case of second order ordinary dif

ferential equation in (6.4.1), matrix A is symmetric, thus 

yielding submatrices H2=Hi and T F2aF1 • In general, Fl is 

lower triangular bidiagonal, and F . 
2 is upper triangular 

bidiagonal matrix, of size ( r( n+l )/21x r(n+l )/21); for n odd 

the addition of a dummy column (row) is necessary. 

Consider the solution of the linear system of equations 

A~=~, using the iterative methods discussed in section 6.3. 

From (6.3.1) it is obvious that both ~ and~ can be parti

tioned as 

~~1 0 F1 ~1 ~' = + 

r2 0 ~2 L-2 

Thus, method J (6.3.3) can be written as 

(k+1) (k) 
~1 = F 1~2 + .9.1 

(k+1) (k) 
~2 = F2~1 + .9.2 

} 

i.e. a pair of decoupled equations is created, where 

depends on only ~~k) and vice versa: 

>< [~>< r::J ><~Jx 
k-1 k k+1 

(6.4.4) 

(6.4.5) 

(k+l) 
~1 

(6.4.6) 

Since ~1 ,~2 have both r(n+l)/21 entries, the two systems can 



- 350 -

be solved in parallel. The JOR method (6.3.4) can be suit

ably modified as follows 

(k+l) 
2£1 

(k+l) 
2£2 

} 
In this case, ~ik+l) ~~~k+l) depend on both ~ik) and 

><, ~:] >< [:~ x[:~ >< 
k-1 k k+l 

(6.4.7) 

x(k) 
-2 . 

(6.4.6) 

Applying the GS method (6.3.5) the vector iterates are 

defined as 

(k+l) 
~1 

(k+l) 
~2 

- F (k) l - 1~2 + .9.1 

(k+l) 
= F 22£1 + S.2 

Alternatively, since 

(6.4.9) 

(6.4.10) 

the solution of (6.4.6) is equivalent to the solution of the 

uncoupled equations 

(k+l) 
~1 

(k+1) 
2£z (6.4.11) 



- 351 -

Now ~ik+l) depends only on !ik) and ~~k+l) on !~k) (Cyclic 

Reduction): 

~ ~ ~ (6.4.12) 
2 k+ k 

Furthermore from (6.4.8) and (6.4.11) the following 

equivalent system can be formed: 

(6.4.13) 

In this way only half of the iterative computation is per

formed, while !l is calculated by means of the final solu

tion vector for ! 2• Therefore we have: 

(6.4.14) 

Thus, ~2 can be computed as soon as F2F1 and !F23 1+32 l are. 

formed. These two calculations can be combined by squaring 

the augmented matrix 

(6.4.15) 

with M2 as in (6.4.10) and 3+M3 analysed as 

(6.4.16) 



- 352 -

For the SOR method (6.3.6) the system is described by 

(k+l) 
~1 

(k+l) 
~2 

} (6.4.17) 

It is obvious that no significant gain is achieved by this 

partitioning, and furthermore the expression of x(k+
1

) in -1 

terms of ~ik) and !~k) introduces excessive complexity in 

the solution of the system. 

6,4.1 SYSTOLIC DESIGNS 

Fig.6.4.2-4 illustrate schematically pipeline stages 

that implement the recurrence relations derived from equa-

tions (6.3.3-5) when M is a weakly cyclic matrix of index 2. 

Fig.6.4.2 shows a systolic design for the realisation of the 

kth iteration of (6.4.5,6) for the case of matrix M as 

defined in Fig.6.4.1, and n=S. The case of n even is not 

discussed as it is covered adequately by the odd case. Two 

parallel pipelines are developed, where the output of stage 

k of one pipeline is the input of stage k+1 of the other 

pipeline. The basic component of the pipeline stages is the 

mvm array discussed in section 6.2. The two mvm arrays have 

area IPS cells, where w
1

,w2 are the bandwidths of 

F
1

,F
2 

respectively; as illustrated in Fig.6.4.2-4, .where 

w
1

=2, w
2

=2, with p1=1, q1=2, and p2=2, q2=1. 

The input data sequence formats and the synchronisation 

delays required are also shown in Fig.6.4.2. The output vec-



Fl 

.9:1 

.2!.2 

~1 

.9:2 

F2 

p1-1 delays 

L 
m35 m24 0 0 

0 0 m25 ml4 

0 9'3 9'2 9'1 

w
1 

IPS I 

0 0 xs x4 

0 x3 x2 xl 

G_I~s] I 
I 

0 9'5 94 0 

0 m53 m42 0 

m52 m41 0 0 r 
p 2-1 delays 

m delays 

m-(w +p -1) delays 
l l 

I I 

""' 
I I I 

m-(w +p -1) delaJ 
2 2 

m delays 

m35 

0 

0 

0 

0 

0 

0 

m 52 

m24 0 

0 m25 ml4 

9'3 9'2 9'1 

x' 3 
x' x' 

2 1 

0 x' x' 5 4 

9'5 9'4 0 

m53 m42 0 

m41 0 0 

Fig.6.4.2. Pipeline block for J method (2-cyclic matrices). 

Fl 

.\1:1 

x' 
-1 

x' -2 

.9:2 

F2 

w 
<11 
w 



m+l delays 

1-w 

1-w -1- - 1-

;-''-

r- m- (w +p -1) d<;lays 
IPS w

1 
IPS I 

1 1 
--1 1-o r" p

1
-1 delays .___ 

~ 
I 

x' 
-1 

x' 
-1 

~l 

I 

I 
I 

/ -
--1 L. 

I p
2
-1 delays IPS w

2 
IPS m- (w +p -1) delays :- 2 2 

x' 
-2 

x' -2 

~r 

-:.. - -
1-w 1-w 

m+l delays 

Fig.6.4.3. Pipeline block for JOR method (2-cyclic matrices). 

w 
<.n .... 



~2 w IPS 

w=w
1

+w
2
-1 

p=p +p -1 
1 2 

q=q +q -1 
1 2 

l 

w+p-1 delays 

x' -2 

Fig.6.4.4. Pipeline block for GS method (2-cyclic matrices). 

w 
U1 
U1 



- 356 -

tors are synchronized by adding the appropriate delays in 

the data stream of the 'faster' output, i.e. in the side 

with smaller (wi+pi-1), i=l,2. Thus, both output streams 

encounter a delay of max ((w1+p1-1), (w2+p2-1)) IPS cycles; 

The same number of delays is placed on the data stream of 

F1 ,F2 and ~1 ,~2 • 

For the case of the tridiagonal matrix A, the Jacobi 

matrix M has two significant diagonals. Using a systolic 

network as in Fig.6.3.10 for the solution of the non-cyclic 

system it will require pipeline stages of w=w1=w2=2 IPS 

cells and a computation time of the order n+kw IPS cycles, 

where k is the number of iterations. Using the systolic 

design of Fig.6.4.2 the solution will require pipeline 

stages of area 2w and computation time of order (n/2)+kw. 

Fig.6.4.3 depicts the implementation of equations 

(6.4.7,8): again the pipeline stage can be analysed in two 

parallel pipelines. However, in this case stage k+1 of one 

pipeline accepts input from stage k of both pipelines; 

furthermore, the computation is more complex since 

(1-oo)~1 or (1-oo)~2 should be added to the result of the 

mvips operation. This is accomplished by means of an addi-

tional IPS cell performing the calculation 

The input data sequence format is the same as in 

Fig.6.4.2. Some delays must be added in the input streams: 

~l has to be delayed by (p1-1) cycles before the beginning 



- 357 -

of the calculation of g1+(1-w)~1 ; similarly ~2 is delayed by 

(p
2
-1) cycles. Furthermore, the additional !PS cell imposes 

a one-cycle delay in all input streams that are not involved 

in its computation. Since the computation time for the pipe

line block is increased by one cycle, the output delays for 

data streams F
1

,F
2

,g1 ,g2 must also be increased by 1 cycle. 

Comparing the design of Fig.6.4.3 with the correspond

ing pipeline implementing the JOR method in section 6.3, it 

is observed that, as in the case of the J method, the area 

has been doubled. The interconnections in the pipeline of 

Fig.6.4.3 are more complex, mainly because the computation 

involving (1-w) cannot be performed in the main mvm array as 

in Fig.6.3.7. The computation time is of order (n/2)+kw, 

instead of n+kw which is a significant gain, especially if 

n>>kw. 

Fig.6.4.4 illustrates the realisation of equations 

(6.4.13,14): only ~2 is produced, while ! 1 can be calculated 

separately using the final result for ~2 . This design can 

be duplicated, so that two parallel and unconnected pipe

lines calculate !l and ! 2. The kth stage of this pipeline is 

a simple mvm array. For the tridiagonal matrix A, the 

bandwidth of F
1

F
2 

is equal to the bandwidth of the original 

matrix A, while matrix M has only two significant diagonals. 

comparing the design of Fig.6.4.4 with the systolic 

pipeline for the GS method discussed in section 6.3, it is 

noticed that the area has been increased by 1/2 and the time 



- 358 -

has been reduced from approximately 2n+kw to (n/2)+kw. How

ever only !
2 

is produced and some pre- and postprocessing 

are necessary to calculate F1F2 and F2g1+g2• If the double, 

uncoupled pipeline is used, the area is three times more 

while the time reduction is the same. 

Block diagrams illustrating the overview of linear sys

tem solvers based on the pipeline designs discussed are 

given in Fig.6.4.5. The preprocessor, common to all system 

solvers, is similar to that discussed in section 6.3, i.e 

for given H
1

,H
2
,£1 ,£2 and w it produces F1 ,F2 ,g1 ,g2 • The 

designs are similar to that in Fig.6.3.1l;what differs is 

the arrangement of the data streams and reformatting delays 

so that the output sequence format of the postprocessor is 

identical to that required by the next block of the system. 

For designs 3 and 4, the next block is a combination of mmm 

and mvm arrays that performs the calculations in 

(6.4.15,16). The mmm array used is the unidirectional array 

in [184],[295]. Finally, for design 3, there is a postpro-

cessing element performing a mvips computation. Soft-

systolic simulation programs in OCCAM, for the pipeline 

designs of Fig.6.4.2 and Fig.6.4.3 are given in A.3.4 and 

A.3.5, respectively. 



--
-
-
-

-
-
-
--

- ---------------

F1 

~1 PRE s:1 
PROCESSOR PIPELINE 

F2 
design 1 ~2 

s:2 

F 

s: 
~1 PRE 1..., PIPELINE 

PROCESSOR 1..., 

s:2 
~2 

F design 2 

F, 
F2F1 

-~, 
PRE .2 MMM-MVIPS PIPELINE 
PROCESSOR MVIPS 

F2.5!:1 +.2_2 
s:, F1-

s: 1 
s:1-

F F F 
1 1 2 design 3 

PRE MMM-MVIPS t--
PROCESSOR F2 F2F1 PIPELINE 

~1 

.2.2 Fl:'lz•.2., -
s: 1 F .2. +.'i[ 2 2 2 

design 4 

Fig.6.4.5. Overall pipeline configuration for the iterative 
solution of 2-cyclic sy_stems. 

~1 



6.5 ~-CYCLIC MATRICES AND MULTI-COLORING TECHNIQUES 

6.5.1 P-CYCLIC MATRICES 

The results of the previous section are now extended in 

the more general case of p-cyclic matrices. A (nxn) matrix 

A is defined to be p-cyclic, where p ~ 2, if by a permuta

tion of rows and columns it can be partitioned into the 

form: 

A = 

A l,p 

A 
p,~ 

(6.5.1) 

where the subdiagonal matrices Aii are non-singular, square 

matrices and the off-diagonal submatrices Aij are rectangu

lar matrices. The Jacobi matrix corresponding to A has the 

form 

M = 

where 

M r,r-1 

0 

M21 

Ml""] ,p 
0 

M32 0 

0~ 
M p,p-1 

0 
(6.5.2) 

(6.5.3) 
r=2, ••. ,p 



- 361 -

Matrix M is said to be weakly cyclic of index p; if all Aii 

are diagonal matrices then (6.5.3) can be rewritten as: 

As discussed in section 6.4, 2-cyclic matrices arise natur-

ally in the discrete approximation by finite differences of 

elliptic or parabolic differential equations. Examples of 

problems producing p-cyclic matrices for p>2 can be found in 

[280),[282) and can be classified in two general categories. 

Firstly, the use of 4-point stencils on triangular or rec-

tangular nets for the finite-difference approximation of 

elliptic differential equations (see Fig.6.5.1) yield p

cyclic matrices for p=3 or 4. Then, finite-difference 

approximation of parabolic differential equations with 

periodic boundary conditions yield p-cyclic matrices with p 

arbitrarily large. 

It is assumed that Aii are diagonal matrices and there

fore the elements of the corresponding Jacobi matrix is 

given by (6.5.4). The bandwidth of the submatrices is 

(s-1) where s is the number of points that are covered by 

the stencil, while the bandwidth of matrix A in natural ord

ering is s, if the null diagonals are not taken into 

account. 

The linear system of equations A~=£, for A a p-cyclic 

matrix, takes the form: 



- 362 -

1,R 2,8 3,R 4,8 5,R 6,8 7,R 

R 8 R 8 R 8 R R R R R B 8 8 
1 2 3 4 5 6 7 1 3 5 7 2 4 6 

R 1 X X R 1 X X 
8 2 X X X R 3 X X X 
R 3 X X X R 5 X X X 
8 4 X X X R 7 X X 
R 5 X X X 8 2 X X X 
8 6 X X X 8 4 X X X 
R 7 X X 8 6 X X X 

p=2, s=3 

1,R 2,B 3,R 

I I 
6!8 4,8 5,R 

I 
8!s 7,R 

I 
9,R 

R 8 R 8 R 8 R 8 R RRRRR8 8 8 8 
1 2 3 4 5 6 7 8 9 1 3 5 7 9 2 4 6 8 

R 1 X X X R 1 X X X 
8 2 X X X X R 3 X X X 
R 3 X X X R 5 X X X X X 
8 4 X X X X R 7 X X X 
R 5 X X X X X R 9 X X X 
8 6 X X X X 8 2 X X X X 
R 7 X X X 8 4 X X X X 
8 8 X X X X 8 6 X X X X 
R 9 X X X 8 8 X X X X 

p=2, s=S 

Fig.6.5.1(a). 2-cyclic ordering using 3 and 5 -point stencils. 



- 363 -

1,R 2,B 3,G 

f~ l~ I 
4,B 5,G 6,R 

1~1~1 7,G 8,R 9,B 

R B G B G R G R B R R R B B B G G G 
1 2 3 4 5 6 7 8 9 1 6 8 2 4 9 3 5 7 

R 1 X X R 1 X I X 
B 2 X X X R 6 X I X X 
G 3 X X R 8 x1 X X 
B 4 X X X B 2 ~:x---1 
G 5 
R 6 
G 7 
R 8 
B 9 

R 1 
B 2 
G 3 
0 4 
G 5 
0 6 
R 7 
B 8 
R 9 
B 10 
Gll 
0 12 

X X X X B 4 X X X I 
X X X B ~XXX X!X ___ • 

X X G 
X X X G 5 X X X X 

X X X G 7 X X 

p=3, s=4 

1,R 2,B 3,G 4,0 

lXlX lXI 
5,G 6,0 7 ,R 8,B 

9!X~~J?<J,o 
R B G 0 G 0 R B R B G 0 
1 2 3 4 5 6 7 8 9 101112 
X X 

X X X 
X X X 

X X 
X X X 

X X X X 

X X X X 
X X 

X X 
X X X 

X X X 
X X 

p=4, s=4 

R R R B B B G G G 0 0 0 
1 7 9 2 8 103 5 114 6 12 

R 1 X I I lv ~ v 
R7 xI I ~ 

: ~~x~x---~--- 1 x 
B 8 X 1 I 
B 10 X 1 I 

3 · X X X--~----· 

~ 5 J~ X X I X I 

Gll ____ ~ x: ----
0 4 I IX X 
06 : XXX X 
0 12 1 X X 

' . 

Fig.6.5.1(b). 3 and 4 -cyclic ordering using 4-point stencils. 



L 

0 

A p,p-1 

and can be rewritten as, 

= 

0 
X 

- 364 -

0 

M p,p-1 

= 

-1 

~2 

~3 

+ 

where mij is given by (6.5.4) and 

method (6.3.3) is partitioned as 

g.=b.;a ..• 
1 1 11 

(k+1) (k) 
~1 = Ml,p"~ + £1 

(k+1) (k) 
~i = Mi,i-1"~i-1 + £1 ' i=2•·•·•P 

Similarly, the JOR method (6.3.4) has the form 

~ik+1) = w(M1,p"~k) + £1) + (1-w)~ik) • 

(k+1) (k) (k) 
~' = w(M .. 1 .x. 1 + .s..l + (1-w)x. , i=2, ... ,p 

.... 1.,1.- --J..- 1. -1. 

The GS method (6.3.5) is defined as 

(k+l) 
~1 

(k+l) 
X. 
-J. 

i=2 •... ,p. 

(6.5.5) 

(6.5.6) 

Thus, the J 

(6.5.7) 

(6.5.8) 

(6.5.9) 



- 365 -

Finally the SOR method (6.3.6) is modified as follows 

(k+1) 
!!.i (M (k+1) + ( 1 ~··) x.(k), = w . i 1x. 1 + lr,) ..... i=2, ... ,p 

1, - "'"'"'1.- .z.1 -'1, 

computational networks for the four methods are 

Fig.6.5.2,3. For the J,JOR methods the 

(6.5.10) 

given in 

subvectors 

x(k+l) x(k+l) x(k+l) can be computed in parallel, at 
-1 '-2 , '-p 
the expense of additional area and interconnection complex

ity, in comparison to the computational networks for the 

same methods for a naturally ordered matrix A (see section 

6.3). For the GS,SOR methods the same subvectors are com

puted in a pipelined fashion, but not in parallel. 

The computation performed by each of the nodes in 

Fig.6.5.2,3 is the same with that performed by a pipeline 

stage discussed in section 6. 4, for the 2-cyclic case. Table 

6.5.1 gives a comparison on the order of area and time 

requirements for the cyclic and the natural case. 

An alternative approach is to use the Frobenius' 

Theorem which states that if M is a weakly cyclic matrix of 

index p then MP is completely reducible, i.e. it has the 

form 

:~ c (6.5.11) 



- 366 -

..... I 
"'{)" 

Fig.6.5.2(a). Systolic network for J method (p-cyclic matrices). 

I I 

I I / 
---- L_ --- -1--------1-------

I I I 

I , I , I ,~ 
~-------~~ M ~ wSOr------

(k) 
X 

(1-W)~tkt 
i 

i,i-1'21' 

...__!_ X (k+l) 
-\.J;;:; -i 

(k+l) 
~i 

Fig.6.5.2(b). Systolic network for JOR method (p-cyclic matrices). 



I 
_1 __ 

I 

Fig.6.5.3(a). Systolic 

I 

- 367 -

~ Mi,i-1'% 

(k+l) 
~ 

network for GS method 

___ _) _____ _ 
I 

(p-cyclic matrices). 

-----r--

Fig.6.5.3(b). Systolic network for SOR method (p-cyclic matrices). 



Methods J,JOR GS,SOR 

Area ; ks 
Normal 

Time = n+k(s+pA) 2n+2kpA 

Area ; kps 
Cyclic 

n n Time • -+k(s+p l -+kp(s+p ) p A p A 

Table 6.5.1. Comparison of the area-time requirements of the 
pipelines for normal and p-cyclic ordering. 

w 
0\ 
CX> 



where 

c1 = M l,p 

c2 = M2,1 

M 
p,p-1 

M l,p 

- 369 -

M 
p-1 ,p-2 

M 
p,p-1 

C =M M M M 
p p,p-1 p-l,p-2 p-2,p-3 ••• 1,p 

Thus, equation (6.5.6) is equivalent to 

~1 [Cl 

~2 c2 

~3 
= 

0 
X -p 

0 

~1 

~2 

~3 

X -p 

~1 
~2 

~3 
+ 

;,j 

(6.5.12) 

(6.5.13) 

Notice that h can be computed simultaneously with MP if the 

calculation 

1 

(6.5.14) 

is performed instead of MP. Thus, 

~1 = M1,p(Mp,p-1 ( ••• (M32~2+~3)+ ••• )+~) + ~1 

~2 = M2,1 (M1,p ( ••• (M43~3+~)+ ••• )+~1) + ~2 

;. = Mp,p-1 (Mp-l,p-2( •. ' (M21~1+~2)+ ••• )+~-1)+.\!p 
(6.5.15) 

The linear system can then be solved by using (6.5.11) by 

means of p uncoupled parallel pipelines similar to those of 



- 370 -

Fig.6.4.4. Notice, however that the bandwidth of Ci is now 

of order ps, leading to increased area requirements and 

increased delays per pipeline block. 

Alternatively, a combination of (6.5.6) and (6.5.11) is 

possible, i.e. only Cp and hp are calculated and the system 

X = C X + h 
--p p-p --p 

(6.5.16) 

is solved iteratively, using a single pipeline. Then, using 

(6.5.7) we have 

~1 = M1,~ + £1 

~i = Mi,i-l~i-1 + gi ' i=2 r•••rP-1. (6.5.17) 

where ~pis the final solution obtained by (6.5.16). Thus, a 

series of _ (p-1) mvips is enough for the calculation of the 

whole solution vector; these calculations can be pipelined 

since x. 1 -1-

i=2,3, ... ,p-1. 

is used for the 

6.5.2 MULTI-COLORING TECHNIQUES 

computation of X •' -1 
for 

In [ 41] it is shown that for any partial differential 

equation defined on a simple geometry, it is possible to 

find a r-color ordering of the discrete points on which the 

GS iteration of the finite difference approximation system 

Ax=b is solved in r J method steps; a similar technique can 

be used for the SOR method. For example, the Red-Black ord

ering, as indicated in Fig.6.5.4 leads to the follwing par

titioned matrix iterative form 

= 
(6.5.18) 



- 371 -

which has been already examined as the 2-cyclic case in sec

tion 6.4. The GS iteration is written as 

~k+l) = ~k) + ~ 

~k+l) = ~R~k+l) + ~ (6.5.19) 

similarly, sui table coloring patterns for 7-point and 9-

point stencils are given in Fig.6.5.5,6. The associated 

linear systems are as follows : 

~ 0 MRB ~G ~l 
~ 

~ = MBR 0 MBG ~ 
+ ~ 

~ MGR MGB 0 ~J ~~ (6.5.20) 

and 

~~ 0 ~ MRG MR;;l 

~1 
r~l 

~ MBR 0 ~ MBO ~ .'Is 
= + 

~ 
MGR M 0 MGO 

~ L~J GB 
MOR MOB MOG 0 (6.5.21) 

yielding 3-step and 4-step J iterations for the GS method : 

~k+l) = ~k) + ~~k) + ~ 

(k+l) = ~ x(k+l) (k) X +M X + q_. 
"'B R--R BG-G 4J 

~k+l) = MG~k+l) + MGB~k+l) + ~ (6.5.22) 

and 

(k+l) 
~ 

= ~k) + M X (k) + ~ X (k) + ~ 
RG-i> 0"0 

(k+l) 
~ 

= M X (k+l) 
BR--R + ~k) + ~~k) + !Is 

(k+l) - M (k+l) +M x(k+l) +M x(k) + 9.c ~ - GA GB-B GCM:> 
(k+l) 
~ 

= M X (k+l) 
OR--R 

+ M x(k+l) 
OB--B 

+ M x(k+l) 
OG-G +% (6.5.23) 



- 372 -

1,R 2,B 3,R 

I 
41 B 5!a 6!B 

I 
7,R ale ·9~R 

R B R B R B R B R R R R R R B B B B 
1. 2 3 4 5 6 7 8 9 1 3 5 7 9 2 4 6 8 

R 1 X X X R 1 X X X 
B 2 X X X X R 3 X X X 
R 3 X X X R 5 X X X X X 
B 4 X X X X R 7 X X X 
R 5 X X X X X R 9 X X X 
B 6 X X X X B 2 X X X X 
R 7 X X X B 4 X X X X 
B 8 X X X X B 6 X X X X 
R 9 X X X B 8 X X X X 

Fig,6.5.4. 2-color ordering using 5-point stencil. 

l,R 2,B 3,G 

1~1~1 
4,B S,G 6,R 

7!~8!R~9~B 
R B G B G R G R B R R R B B B G G G 
1 2 3 4 5 6 7 8 9 1 6 8 2 4 9 3 5 7 

R 1 X X X X R 1 X X X X 
B 2 X X X X X R 6 X X X X X 
G 3 X X X R 8 X X X X X 
B 4 X X X X X B 2 X X X X X 
G 5 X X X X X X X B 4 X X X X X 
R 6 X X X X X B 9 X X X X 
G 7 X X X G 3 X X X 
R 8 X X X X X G 5 X X X X X X X 
B 9 X X X X G 7 X X X 

Fig.6.5.5. 3-color ordering using 7-point stencil. 



R 1 
B 2 
G 3 
0 4 
G 5 
0 6 
R 7 
B 6 
R 9 
B 10 
G 11 
0 12 

- 373 -

l,R 2,B 3,G ,O 

IX I XIX I 
5,G 6,0 7,R 6,B 

9!><1!.?<J:XJ,o 

RBGOGORBRBGO 
1 2 3 4 5 6 7 6 9 101112 

R R R B B B G G G 0 0 0 
1 7 9 2 6 103 5 114 6 12 

X X X X 
X X X X X X 

X X X X X X 
X X X X 

X X X X X x 
X X X X X X X X X 

X X X X X X X X X 
X X X X X X 

X X X X 
X X X X X X 

X X X X X X 
X X X X 

R 1 
R 7 
R 9 
B 2 
B 6 
B 10 
G 3 
G 5 
Gll 
0 4 
0 6 
0 12 

X X X 
X X X X X X 

X X X 
X X X X X 

X X X X 
X X X X X 
X X X X 

X X X X X 
X X X X 
X X X 

X X X Jl X X X X 
X X X 

X 
X X X 

X 
X 

X X 
X 

X X 
X 
X X 

X 
X 

X 

Fig.6.5.6. 4-color ordering using 9-point stencil. 



- 374 -

The convergence rates of the multi-coloring techniques are 

discussed in 3), 41),[220). The parallelism that can be 

achieved by using a multi-colored ordering instead of 

natural ordering techniques is explained with the help of 

Fig.6.5.7 where simplified computational networks 

corresponding to equations (6.5.19,22,23) are given. Each 

block corresponds to a mvm array performing a mvips computa

tion. No synchronisation delays between pipeline stages are 

shown and the communication channels for each pipeline have 

been unified, i.e. (r-1) submatrices are carried along each 

of the r parallel pipelines together with the corresponding 

subvector. 

For r=2, no significant additional parallelism is 

obtained: x(k+1) must be produced in order for (k+1) to be 
-R ~B 

computed. The computation is similar to the GS method for 

the natural ordering in section 6.3, and to the 2-cyclic 

case discussed in section 6.4. However, for r=3 and 4 more 

significant additional parallelism is achieved, since the 

computation of the subvectors can be overlapped. As soon as 

a subvector is produced it takes part in the calculation of 

(r-1) subvectors; thus (r-1) subvectors are computed in 

parallel at any instant of the computation. 

In general, each pipeline stage consists of r(r-1) mvm 

arrays; as soon as one element of a subvector is produced it 

is fed to the mvm arrays that calculate other subvectors in 



- 375 -

(b) r=3 

~ MRB 

J:; I 
~ COb I ~ I 

~ ~ I !!s t 
.2s MBR 

(a) r=2 

·bt I I I 
~ J 

t;::::l t;::::! 1 ~ 
~R 

r-
MD~ -M;,-,.. 

.2s 
-~ -r T 

::I t ::::1 t :::!l J ~ 
MGB M,.-" M"" 

j 
~ 

l 1 ' . 
:::J r ~ q r :l r ::;;j r 

OB MOG M~n 

I I !1o I _l 

-:::f I -.1 X 1':!:1 r- :::1 I --o 

le) r=4 

Fig.6.5.7. Systolic networks for r-color ordering. 



- 376 -

the order indicated in Fig.6.5.7.At the final pipeline stage 

the r solution subvectors can be produced in parallel in a 

skewed fashion and a delay of w'+p'-1 IPS cycles between two 

successive subvectors, where w•~p'+q'-1 is the bandwidth of 

the submatrices The total computation time is 

((n/r)-1)+(r-1)(w'+p'-1) IPS cycles and the area required is 

r(r-1)w' IPS cells. Table 6.5.2 summarises a comparison of 

the area and time requirements of a systolic implementation 

of the GS method using natural and multi-color ordering, 

for the matrices in Fig.6.5.4-6. 



Method 
-·-·--· 

Area 

Time 

GS r=2 GS r•J GS 

SkiPS+kADO SkiPS 7kiPS+kADO 12KIPS 9kiPS+kADO 

2(n-1)+(k-1)8+5 (~ 1)+(k-1)11+10 2<n-1) + (k-1) 10+6 (~ 1)+(k-1)12+11 2(n-l) + (k-1) 12+7 

Table 6.5.2. Comparison of the area-time requirements of the 

pipelines for natural and r-colored ordering. 

r•4 

36kiPS 

n 
(41)+(k-1)16+1 

w .... .... 



6.6 CONCLUSIONS 

The close similarity of the mvm algorithm with the con

volution and FIR filtering leads to the derivation of simi

lar systolic arrays, as shown, for example, in [160], [184]. 

Notice also, the close similarity of systolic mvm with the 

Root-Squaring method described in section 4.3, and the poly

nomial multiplication algorithm discussed in section 3.1. 

The systolic mvm array proposed herein can be seen as a gen

eralisation of all these systolic designs. A similar array 

is proposed in [202] for an irregular wavefront, data-driven 

mvm algorithm. The same array, as that proposed in section 

6.2, is used as an introductory example in [203], but no 

derivation technique or further applications are presented. 

The unidirectional dataflow of the improved mvm array 

allows for direct efficient mapping of the algorithm onto 

the CMU Warp Machine (see section 3.4) [162]: a soft

systolic simulation program is given in A.3.6. Another pos

sible application is the multiplication of a full matrix 

with a banded matrix, using a stack of mvm arrays as shown 

in Fig.6.6.1 [169]. The same stack arrangement can be used 

for an alternative realisation of the bit-level mvm array in 

[195], and the same concept can be extended in bit-level 

convolution and matrix-matrix multiplication [197]. Finally, 

it would be interesting to investigate the application of 

the problem partitioning techniques of [209], [215] in the 

new mvm array. 



"45 "33 8 21 

"34 "22 0 

8
3s "23 all • 

".24 "12 • • 
"u 0 • • 
0 • • • 
0 • • • 

l 
~~ 

l 
K~ 

i 
-fr 

l 
1-

r- -c 

~ 
-- r1 1-- 1--
~ 

r- f--c 

• • - ~ K ro. 
f--o t--c 

• • 
r-

KJ 
r-- 1-- 1-- r-1 1--

.... .... 
1-- • • 

Fig.6.6.1. Banded-full mmm systolic array. 



- 380 -

The pipelines for the J,JOR methods may be improved 

using the R+F method as applied on the mvm array. Similarly, 

a step of the GS,SOR methods can be seen as a combination of 

a mvips followed by a triangular system solution [252]; 

thus, the R+F method can be used again. 

An alternative to the pipeline approach for the imple

mentation of iterative methods is the use of a single pipe

line block with feedback mechanism and adequate memory simi

lar to that described in all optical systolic applications 

and in [209], (see Fig.6.6.2). The area requirements are 

minimised but no pipelining of several problems can be 

achieved (see area-time expansion in section 3.4). Instead 

of pipelining, there exists the possibility of solving a 

number of problems in parallel as independent iterative sys

tolic designs; an i/o interface should then distribute the 

problems and collect the results. In [232-233] the time 

expansion scheme is combined with the partitioning of the 

coefficient matrix in triangular factors to achieve a more 

efficient implementation of GS, SOR methods, but for full 

matrices only. 

Another iterative mvm array, that avoids the explicit 

use of feedback loops, can be derived as a single column 

version of the re-usable matrix multiplication array pro

posed in [237), (see Fig.6.6.3). The array performing the 

computation A!=~, where A is a full (nxn) matrix, consists 

of n IPS processors and a multiplexer cell. Each one of the 



- 381 -

A 

(a) Time-expansion 

A A 

1-------

(b) Area-expansion 

X, 
--.: 

A 

~+l 

Fig.6.6.2. Time and area expansion for mvm computation. 



A 

stored in local memory 

a44 
0 a34 

a43 0 a24 
0 a33 0 al4 
a42 0 a23 0 

0 a32 0 al3 

a41 0 a22 0 
w * a31 0 al2 0<> ... 

* * a21 0 

* * * aJ-1 

~ ~ l l 

1-- 3: 
c 

1--- >< 

Fig.6.6.3. Re-usable mvm array. 



- 383 -

IPS processors has a memory module of n words, similar to 

that of the CMU systolic processor in A.3.4. Each processor 

accumulates the inner products for an element of the result

ing vector y; as soon as the accumulation is completed the 

newly formed element is sent towards the multiplexer. Thus, 

a new mvm can start exactly on time after the completion of 

the previous computation. 

The same array can be used for the mvips operation, 

A~+y, if the multiplexer is augmented with a memory module 

holding vector y, and an adder. Thus, the mvips computation 

for a dense (nxn) matrix can be performed in 2n+l IPS 

cycles, and the area required is n+l IPS cells, if we assume 

that the multiplexing-adding calculation has area and time 

complexity of 1 .IPS. The feedback control complexity within 

the cells is not taken into account; the iterative design 

require a total memory of n(n+l) words. A soft-systolic 

simulation program in OCCAM is given in A.3.7. 

The stack arrangement of Fig.6.6.1 can be used for the 

iterative solution of matrix equations, or for the parallel 

solution of a set of linear systems using the same coeffi

cient matrix. The same stack organisation can be applied on 

the iterative design of Fig.6.6.3. Another method for the 

iterative solution of linear equations, using successive 

matrix squarings is discussed in the next chapter. 

The systolic pipelines described in sections 6.4, 6.5 

introduce an additional level of complexity, i.e the 



- 384 -

interconnection and concurrent operation of parallel pipe

lines. These parallel interconnected pipelines, whose blocks 

consist of systolic arrays are termed herein as •systolic 

networks'. A further extension can be the three-dimensional 

systolic networks to aleviate the interconnection problems 

between the pipelines. 

Similar systems can be produced by using the iterative 

array of Fig.6.6.3. In this case the systolic networks will 

have a single block, with the output being fed back into the 

input, and the coefficient matrices and r.h.s vectors stored 

into appropriate memory modules. Thus, we can have a set of 

co-operating time-expanded systolic structures, that perform 

their computations in parallel, and exchange data using 

inter,-array communication lines, The development of these 

systems is straightforward, using the designs in Fig.6.4.2-

6.4.4, Fig.6.5.2-6.5.3 and Fig.6.5.7. 

An extension of the Cyclic Reduction technique is the 

systolic implementation of the Recursive Doubling algorithm 

discussed in [210], [214]. A possible realisation can be 

achieved by using the VLSI arithmetic modules proposed in 

[137-138]. 



C H A P T E R 7 

SYSTOLIC ALGORITHMS USING MATRIX POWERS 

7.1 INTRODUCTION 

The importance of matrix-matrix multiplication (mmm) in 

numerical computation is well known, and the systolic imple

mentation of this operation was amongst the first to be con

sidered in [181], [199] (see also section 3.2). This sys

tolic algorithm was mainly designed for banded matricis; 

another method, for full matrices, is introduced, amongst 

others, in [173] for the wavefront processor array, and in 

[273] for the engagement processor array. 

Systolic mmm has attracted the attention of numerous 

researchers, in an effort to improve the performance of the 

original systolic designs or to produce efficient algorithms 

for specific applications. For example, in [19], [21] the 

R+F method is applied to improve the performance of the 

banded mmm. In [287] two alternative designs are surveyed: 

one based on a stack of mvm arrays, as discussed in section 

6.6, and another having one of the coefficient matrices 

preloaded into the array. The relationship between word-



- 386 -

level and bit-level mmrn arrays is investigated in [196-197), 

and bit level arrays for signal processing applications are 

presented. 

Since a mmrn can be analysed as a series of mvm's, the 

mmm algorithm can be mapped onto a linear array, as shown in 

[158). A two-level pipelined approach for the same method is 

given in [161-162). A general mapping methodology of mmm and 

mvm algorithms on linear arrays is given in [238). The 

block partitioning of the systolic mmm is discussed in 

[137-138). A different approach, based on triangular fac

tors partitioning, is proposed in [215). Algorithm-level 

fault-tolerance mmm is addressed in [134), [153). The 

fault-tolerance on the systolic array level is discussed in 

[164) using local correctness criteria and the cut theorem, 

on a unidirectional mmm hex-array. 

The unidirectional hex-array, has been derived in [295) 

as a result of the application of a transformation technique 

for systolic algorithms. Similar results, extended to full 

matrix computations are reported in [184], where another 

mapping methodology is exemplified. In [169] systolic arrays 

for full-banded mmm are derived, and in [244) the divide

and-conquer approach is applied on mmm. Two very efficient 

systolic arrays are proposed in [204-205), but their data 

sequence formats and interconnection patterns are rather 

complex. 

Finally, the optical systolic implementation of mmm has 



- 387 -

been extensively discussed, using either purely one dimen-

sional architectures, [50); or two dimensional, as for exam-

ple in [29); or a combination of the two approaches in [12), 

[ 14) . 

Many important problems in matrix iterative methods for 

the solution of linear systems of equations, matrix inver-

sion and eigenvalue-eigenvector computations can be improved 
2s 

if the same methods are applied as A instead of A, where A 

is the original matrix involved in the calculations and s is 

the number of successive squarings of matrix A [32], [298). 

Therefore, a systolic design performing a certain number of 

successive matrix squarings can be attached as a preprocess-

ing element in several other systolic systems implementing 

iterative matrix calculations. 

Furthermore, matrix polynomial computations are widely 

used in digital automatic control and other areas, where the 

calculation of matrix functions is necessary, [117). Both 

successive matrix squarings and matrix polynomial computa

tions are based on a series of mmm's. The systolic implemen-

tation of these computations is discussed in this chapter. 

In section 7.2 the basic computation of successive 

matrix squares is investigated and pipeline and iterative 

systolic designs are proposed. Given the number of dif-

ferent systolic m mm arrays, it is evident that a similar 

number of matrix squaring designs can be derived. Herein 

only a limited number of designs is described in detail, 



- 388 -

i.e. those that seemed to be more suitable for the applica

tions in question. 

Some applications of successive matrix squaring are 

introduced in the following two sections. In section 7.3 the 

iterative solution of linear systems of equations, using 

matrix powers is discussed, while in section 7.4 the Power, 

Matrix Squaring and Raised Power Methods are investigated. 

The systolic computation of the exponential of a matrix 

is addressed in section 7.5, and the systolic evaluation of 

a polynomial of a matrix is also discussed. Finally, section 

7.6, proposes some methods for matrix inversion and evalua

tion of matrix power series. Furthermore the systolic calcu

lation of several matrix functions is investigated. 



7.2. SYSTOLIC DESIGNS FOR SUCCESSIVE MATRIX SQUARING* 

The matrix squaring operation can be seen as a simple 

matrix-matrix multiplication (mmm), 1.e. : 

2 4 22 8 44 
A = A*A; A = A *A ; A = A *A (7.2.1) 

Consequently one of the available systolic arrays for mmm 

suffices for its realisation. Following the definitions 

introduced in sections 3.3 and 6.6 (see also [151)), an 

iterative process can be expanded either in time, yielding 

an iterative array, or in area, producing a pipeline. 

Fig.7.2.1 outlines these concepts for the case of the matrix 

squaring computation. 

7.2.1 SYSTOLIC PIPELINE DESIGNS 

Firstly we concentrate on banded matrices. In order to 

achieve high pipelineability the dataflow of the mmm array 

should be unidirectional; in this way the output of a 

matrix-squaring array can immediately form the input of the 

next matrix-squaring stage without any re-routing of the 

data sequence. A systolic array satisfying the above men-

tioned requirements is the hex-connected array with uni-

directional dataflow described in [184), [295). The array 

and the data sequence are illustrated in Fig.7.2.2(a), for 

the case of the multiplication of two tridiagonal matrices 

* This section is part of a paper to be published in 
Parallel Computing. 



- 390 -

Fig.7.2.1. Time and area expansion for matrix squaring 
computation. 



- 391 -

0 al2 

cl2 a23 

c23 a34 

b2l 0 

b32 c21 

b43 c32 

Fig.7.2.2(a). Banded matrix multiplication on unidirectional 
hex-array. 



C=A2 

A 

- 392 -

ell 

c21 c22 c12 

c31 c32 c33 c23 cl3 

c42 c43 c44 c34 c24 

c53 CS4 css c4S c3S 

• 

0 

a32 a22 a12 a21 a22 a23 

a43 a33 a23 a32 a33 a34 

aS4 a44 a34 a43 a44 a4S 

ass a4S aS4 ass 

• 

Fig.7.2.2(b). Banded matrix squaring on a unidirectional 
hex-array wA=3, pA =qA=2 • 

A 



- 393 -

(w=3) of size n=S. The array consists of w2 IPS cells and 

the computation time is n+w. 

It is observed that in the case of matrix squaring, 

also shown in Fig.7.2.2, the input sequence of the array 

consists of two copies of matrix A that differ only in the 

position of the dummy elements. Notice also that, for n>>wA' 

and wA,wA2 the bandwidths of matrices A, A
2 

we have 

i i 
w 

2
i = 2 wA-(2 -1), i=O,l, ••• ,s (7.2.2) 

A 
2s 

This also means that in order to calculate A an array of 

2 w 
2
(s-l) !PS cells is required. It is obvious then that sue-

A 

cessive squarings broaden the profile of a banded matrix and 

therefore only a limited number of squaring steps should be 

performed if the matrix profile is to be kept within reason-

able size. Since the matrix-squaring design is to be used 

as a preprocessor, the alteration of the matrix profile 

affects the size of the main systolic processor, if we 

assume that it is bandwidth-dependent. On the other hand, 

however, a considerable speed-up of the computation will be 

achieved: consequently, an area-time tradeoff analysis can 

indicate the desirable number of successive squarings. In 

general, if the maximum available area for a single mmm is 

w;ax' then the maximum number of squaring steps s is given 

by the relation 



- 394 -

(7.2.3) 

The squaring of a matrix with unequal semibands is illus-

trated in Fig.7.2.3, for wA•4, pA-3 and qA=2. If we add 

IPA-qAI dummy diagonals in the side with the min(pA,qA) then 

the matrix is transformed to one with equal semibands. For· 

the systolic realisation of the dummy diagonals we can add 

IPA-qAI delays in the appropriate input stream; the same 

amount of delay is added in the output sequence so that the 

coefficients of the output matrix are received in the same 

format as in the symmetrical case.Relation (7.2.2) is writ-

ten as 

w 21 = p 21 + q i -1, i=0,1, ••• ,s 
A A A2 

with (7.2.4) 
i i 

p '2i = 2 p - (2 -1) 
A 

A 

i i 
q 2i = 2q-(2-1) 

A 

l i•O,i, .•• ,, 

A s 
Thus, for the computation of A2 the additional delays would 

be 2(s-l) IPA-qAI· The computation time for the array of 

Fig.7.2.3 is n+w'A' where w'A a 2max(pA,qA)-l, and the array 

consists of w~ IPS cells. The total computation time for the 
2s 

calculation of A in both Fig.7.2.2,3 is 

s-1 . . 
n+ L ((2 1w'A-(2 1 -l)) 

i=O 
(7.2.5) 

IPS cycles; in the symmetric case w'A=wA. From now on the 

symmetric case is only considered since the non-symmetric 

can be transformed easily to a symmetric case. 



- 395 -

"n 

"a "22 "12 

"31 "32 "33 "23 "13 

C=A2 
"42 "43 "44 "34 "24 "14 

"s3 "54 "ss "45 "35 "25 

all 8 12 8 13 

0 0 
a21 a22 a23 a24 

8
43 8

33 8 23 8 13 a32 a33 a34 a35 
8 54 8

44 8
34 8 24 8 43 8

44 8 45 

ass 8 45 8
35 a 54 ass 

A • 
A 

• 

Fig.7.2.3. Banded matrix squaring wA=4, pA=3, qA=2. 



- 396 -

The input for a squaring stage can be reduced to only 

one matrix, if the inputs of the hex-arrays in Fig.7.2.2,3 

are connected to a preprocessing element, producing two 

copies of a given matrix. The additional complexity intro

duced by the branching module is insignificant in comparison 

to the complexity saved by the reduction of the input 

requirements. A straightforward way to implement the branch-

ing operation is by means of a crossbar switch with fixed 

interconnections of input to output paths; alternatively 

optical interconnection is also possible. 

Fig.7.2.4 illustrates a block of a pipeline design for 

successive matrix squaring. Notice that for a matrix with 

w=p+q-1, in the one copy of the matrix the upper diagonal k, 

k=1,2, .•. ,p-l should be delayed fork cycles. For the other 

copy, the input of the q-1 lower diagonals is delayed 

accordingly. The total area required by a pipeline in order 
2s 

to produce A is 

IPS cells, while the total time is given by (7.2.5). It is 

assumed that the area occupied by the branching elements and 

the reformatting delays is negligible. The major disadvan-

tage of this pipeline design is the rapid increase in area 

requirements that is observed. An upper limit for the total 

area requirements can be obtained, similar to that in 

(7.2.3), using (7.2.6). 



a42 

a32 

a22 
A 

a23 

a24 

a31 

a21 

all 

a12 

a13 

Fig.7.2.4. Matrix squaring for a banded matrix A with 
bandwidth w=S, p=q=3. 

A2 

w .., 
-..I 



- 398 -

The same hex-array can be used for dense matrix compu

tations, as is indicated in Fig.7.2.5, for the multiplica-

tion of two square matrices with n=3. The area required for 

is (2n-1) 2-2n IPS cells, and the computation the full mmm 

time is 3n-1 IPS cycles. In Fig. 7.2.6 a pipeline block for 

successive squaring of full matrices is given, for naS. To 
s 

produce A2 a total area of 

s((2n-1) 2-2n) (7.2.7) 

IPS cells is required, and the total time is 

s(3n-1) (7.2.8) 

IPS cycles. Notice again the symmetric organisation of the 

reformatting delay elements in the input of the array. In 

this case no bandwidth increase is ~bserved, i.e. all pipe-

line blocks are identical. Soft-systolic simulation programs 

for the unidirectional hex-array and the matrix squaring 

pipelin~ are given in A.4.1, A.4.2. 

7.2.2 SYSTOLIC ITERATIVE DESIGNS 

Instead of a pipeline design, an iterative scheme might 

be adopted, where the output of a pipeline block is fed back 

into its input; this is possible only in the case of full 

matrix computations, i.e. for Fig.7.2.6, since no bandwidth 

alteration occurs. An alternative systolic design with 

greater area and time efficiency for successive full mmm's 

is introduced in [237), and it is shown in Fig.7.2.7. This 



- 399 -

0 

all a12 al3 b31 b21 bll 

a22 a23 b32 b22 

a21 a33 b33 bl2 

a32 b23 

Fig.7.2.5. Dense matrix multiplication on unidirectional 
hex-array, n=3. 

b31 



a32 

A a33 a22 

a23 

a31 

a21 

all 

a12 

a13 

Fig.7.2.6. Matrix squaring pipeline block for a full (nxn) 
matrix A, with n=3. 

A2 .... 
0 
0 



- 401 -

ell 0 b33 0 

0 b32 cl2 0 0 

b31 c21 0 0 b23 cl3 
0 0 b22 c22 0 0 

b2l c31 0 0 bl3 c23 
0 bl2 0 

bll 0 0 

0 cl2 ° cl3 · 

al3 ° a12 ° all 

0 c 21 0 c
22 

0 

a23 0 a22 0 a21 0 

Multiplexer, Inner Product 
Adder Step Cell 

Fig.7.2.7. Re-usable matrix multiplication array, n=3. 



- 402 -

array can be used for the time expansion scheme, since its 

output is immediately fed back to the input. The area 

requirements of this array are approximately n2 IPS cells, 

if the feedback control is assumed to occupy insignificant 

area. The array can be expanded by means of multiplexing 

elements that allow for matrix computations of the form AB+X 

to be performed. In this case, the area is approximately 

(n+1) 2-1 IPS cells. The computation time is 5n-1 IPS cycles, 

if we assume that the feedback control requires a full IPS 

cycle; however-, a new l'l'li'TIITI can start In 2n+1 cyc.le~. 

The matrix squaring operation for this 're-usable' mmm 

array is given in Fig.7.2.8, where the i;o sequences are 

given together with the feedback control (l=on, O=off) 

the number of mmm's required. Thus, the computation of 

in the re-usable mmm array takes a time of 2n(s+2)+n-1IPS 

cycles. 



Output 

Input 

Feedback 

Multi
plications 

0 

l 

s+2 

- 403 -

Feedback 

Multiplica,ions"' 

0 0 0 

l l l 

4 3 2 

s+2 

4 

3 

2 

1 

A 

l 

l 

l 

l 

l 

l 

l 

Input 

0 

0 

0 

0 

I 

Output 

I 
A 

2" 

Fig.7.2.8. Iterative array configuration for successive 
matrix squaring. 



------

7.3 SYSTOLIC ITERATIVE SOLUTIONS OF LINEAR SYSTEMS USING 

MATRIX POWERS* 

Consider the. system of n linear equations Ax•b, and 

the iterative methods for the solution of the system 

described in section 6.3. Hotellirig has expressed these 

iterative methods in a matrix format where the linear system 

is written in the form [131], [1481 : 

= 0 
(7.3.1) 

Thus, the J,JOR methods (6.3.3,4) can be rewritten as, 

(k+l) (k) 
X. ='I':[ (7.3.2) 

where 

(7.3.3) 

and 

T = 
OT l 

(1-w) I+ M J (7.3.4) 

with y and T possessing identical column partitionings. 

Similarly the GS,SOR methods (6.3.5,6) are modified as fol-

lows : 

* Part of 
Workshop 
1987, and 

this section has been presented 
on VLSI Computation, Univ. of Leeds, 
in Conf. NUMETA 87, Swansea, Wales. 

(7.3.5) 

in the 
Feb. 16 



where 

R =TT T 
n n-1 '· • 1 

with 

T, = 
l. 

l 

- 405 -

(7.3.6) 

(7.3.7) 

where ~i' Ii' Mi have non-zero elements only in row i. The 

advantage of writing the iterative methods in matrix 

that the sequence of matrices T, T2 , T4 ... , 
form is 

2k 
T or 

2k 
... , R can readily be obtained through sue-

cessive matrix squaring. Thus, k successive squarings will 

be equivalent to 2k complete iterations of the methods in 

their original form. A further advantage is that the problem 

of solving a system of linear equations has been reduced to 

the problem of performing a sequence of mmm operations. If 

the iterative process is convergent the first column of the 
2k 2k 

matrix T or R will converge to the solution vector ~· 

An important feature of matrix T is that its squaring 

operation can be partitioned as follows 

(7.3.8) 

where C = (1-w)I+M and matrix C retains all the sparsity 

characteristics of the original matrix A. Therefore, the 

squaring of matrix T can be analysed into a mmm and a mvips 

if this partitioning yields better area results, which is 

true if A is a banded matrix. However, it should be noted 



- 406 -

that the successive matrix squarings will destroy the matrix 

profile as it is indicated in section 7.2. In the case of 

matrix R the partitioning of the mmm computation has limited 

effect since the sparsity characteristics of matrix A are 

only partially retained on matrix R. 

The first column vector that is produced from (7.3.8) 

after a number of successive squarings can be expressed as 

2 4 2 . 
~ = ~+~+C (~+~)+C (~+~+C (~+~))+ 

2 = ~+Cy+C ~+ • • • (7.3.9) 
= ~+C(~+C(~+ ..• +~) ••. ) • 

indicating the equivalence of this process with the one pro

posed in chapter 6. 

7.3.1 SYSTOLIC DESIGNS 

From the description of the Hotelling iterative methods 

it is evident that the main computational effort is the cal-

culation of successive mmm's. Systolic designs for this com

putation has been described in section 7.2, for both area 

and time expansion schemes. 

Firstly, the iterative array implementation (time 

expansion) is discussed, using the systolic array of 

Fig.7.2.7. The system configuration in the case of the 

J,JOR-Hotelling methods is given in Fig.7.3.1: k iterations 

of the method require 2(n+l)(k+2)+1 cycles, where n is the 

size of matrix A. A similar configuration for the GS,SOR-

Hotelling methods is illustrated in Fig. 7.3.2. The computa-



Output 

Input 0 

Feedback 1 

Multi- k+2 
plications 

- 407 -

Multiplications 

\ 

........ 0 0 

•• 0 • 0 • •.• 1 1 

••••• 0 •• 3 2 

T 

1 

1 

k+2 

3 

2 

1 

Feedback 

I 
l 

l 

1 

1 

Input 

I 
0 

0 

0 

I 

Fig.7.3.1. Iterative array configuration for the 
J,JOR-Hotelling methods. 



- 408 -

Feedback 

Multiplications I rut /Output 

~ 
2k 

n+k+l 1 0 R 
n . . . . . . 

i 
. . . . 

n+2 1 0 R2 
n 

n+l 1 0 R 
n 

: . . . . . . . . 
3 1 0 T2Tl 
2 1 0 Tl 
1 1 I 0 

~ 
2k 2 R 

Output R ••••• R R n 
.T2T1 Tl 0 n n n T . . n 

Input 0 . . . . . 0 0 T . .T3 T2 Tl -0---n 

Feedback 1 ..... 1 1 0 . ·.o 0 0 

Multi- n+k+l. .•• n+2 n+l n. . .3 2 1 
plications 

I 

Fig.7.3.2. Iterative array configuration for the I 

GS,SOR-Hotelling methods. 



- 409 -

tion of k iterations takes 2(n+1)(n+k+1)+1 cycles. The only 

difference in the two methods is the input sequence for 

matrix T, and the corresponding feedback sequence. Soft

systolic simulation programs are given in A.4.3, A.4.4. 

A pipeline design similar to that of Fig.7.2.6 can be 

used to implement the same iterative methods, if full 

matrices are involved. Especially for the J,JOR-Hotelling 

method a partitioned matrix squaring pipeline can be used, 

when matrix A is banded, implementing relation (7.3.8). A 

pipeline block is given in Fig.7.3.3 for a matrix C with 

bandwidth w=p+q-1 (here w=5). The partitioned matrix squar

ing block comprises a mmm and a mvm array that perform in 

parallel a matrix squaring and a mvips computation. Since 

the delay introduced by the computation of the mvm array is 

w+p-1 cycles, whereas the delay of the computation in the 

mmm array is only w cycles, the output of the mmm array must 

be delayed by p-1 IPS cycles. In general, for k iterations 

the pipeline requires an area of 

k-1 k 
L (2j-1wA-(2j-1-1)) 2+ L (2j-1w -(2j-l_l)) 

j=l j=l A 
(7. 3.10) 

IPS cells and the computation time is 

k 
n+ _i (2j-l(WA+pA)-(2j-l_l))-k 

J=l 

(7.3.11) 

A soft-systolic simulation program is given in A.4.5. Notice 

that the area of the last matrix squaring stage is not taken 

into account since its computation is redundant. 



c42 c31 

c32 c21 

c c22 ell 

c23 cl2 

c24 cl3 

X 

I
I,. 

1-

-
I
I-

~ 
'r 

-
-J 
7 

7 
I 

\ 
\ 
~ 

............. 

p-1 delays 

\ 
\ 

\ 
\ 
I 

I 
I 

I 

Fig.7.3.3. Matrix squaring and matrix-vector inner product 
step for a banded matrix C, w=S, p=q•3. 

for next pipeline stage 

c2 

.... ... 
0 



- 411 -

The input to both the iterative and the pipeline 

designs can be provided by a preprocessing element similar 

to that described in chapter 6 for the production of M, ~ 

for given A,£, (see Fig.6.3.11). 



7.4 SYSTOLIC DESIGNS FOR EIGENVALUE-EIGENVECTOR COMPUTATION 

USING MATRIX POWERS 

Let the eigenvalues of a (nxn) matrix A be real and 

ordered according to absolute value so that, 

(7.4.1) 

Now let A operate repeatedly on a vector ~· which is a 

linear combination of the eigenvectors of A, (section 2.4): 

(7.4.2)· 

Then, through a series of successive mvm's, we have 

(7.4.3) 

For k sufficiently large, we have, 

(7.4.4) 

Thus, the dominant eigenvalue Al is calculated as 

k k-1 
Al" (A~l/(A ~) 1 , i=l,2, ... ,n (7.4.5) 

while Ak~ is proportional to the corresponding eigenvector 

~1 , providing no overflow occurs. The convergence rate is 

determined by 

(7.4.6) 

where t is a specified tolerance. The Power Method algorithm 

with a normalising strategy included can be formulated as 

follows [298) : Given y0 , an arbitrary vector, and let the 



- 413 -

sequences !k' yk be defined by the equations, 

z =Ay, 
-j+l J 

~j+l = ~j+l/~(~+1), j=O,l, ••• ,k-1 

with 

~(~) = 11~11 ... 

For k sufficiently large, 

YJ< " ~/~<~1) 

~(~) " >.1 

(7.4.7) 

(7.4.8) 

(7.4.9) 

A modified version of the method is proposed in [148), where 

the normalisation factor ~(~) is defined as: 

~(~) = the first non-zero element of x (7.4.10) 

Thus, the dominant eigenvalue Al is given by the first non

zero component of !k' and yk corresponds to ~l divided by 

its first non-zero component. The scaling operation by ,(z,) .. -J 

aims to prevent overflow due to repeated mvm's. However, if 

(7.4.10) is used, the scaling may be cancelled, if the first 

non-zero 

the other 

element of z. is either too big or too small. On 
-J 

hand, (7.4.8) imposes a considerable delay in the 

computations, since !j+l cannot be computed before all ele

ments of z, are known. 
-) 

The convergence rate in (7.4.6) can be improved, if, 

instead of forming the sequence Aky, a sequence of matrix 

powers is constructed directly [298]. The Matrix Squaring 

method has 
' 2' 

the .advantage that when AJ is computed, A J is 



- 414 -

in rnmm. Hence the sequence obtained 
2 4 A, A , A , 

one 
2s 

' A is easily built up. For sufficiently 

large s [ 56] : 

(7.4.11) 

2s 
Each column of A is proportional to ! 1 , each row is pro-

portional to T !
1

• To obtain the eigenvalue A1 any column of 
2s 

A can be multiplied by A. Then 
2s 

between the original column of A 

(7.4.5) can be 
2s 

and that of AA 

applied 

Generally the successive squares will either increase 

or decrease rapidly in size and overflow may occur. This can 

be avoided by scaling each matrix by a power of 2. This 

introduces no additional rounding errors. The convergence 

rate is determined by 

(7.4.12) 

If A is not sparse, there is about n times as much work in 

one step of the Matrix Squaring method as in one step of the 

Power method. Thus, Matrix Squaring is more efficient for 

IA
2
/A

1
1 close to 1; if A is banded its sparseness is des

troyed by Matrix Squaring. 

A combination of the two methods can be considered as 

the application of a limited number of matrix squaring 

steps, followed by simple power method iterations. This corn-

bination, i.e. the Raised Matrix Power (RMP) method, seems 

to be the most economical strategy for finding the dominant 



- 415 -

eigenvalue and the corresponding eigenvector. The number r 

of matrix squaring steps depends on the ratio x2;x1 , but, a 

simple estimation can be derived [1831 

(7.4.13) 

Therefore, the first phase of the RMP method involves the 
2r 

calculation of B=A • Then, after k simple iterations: 

(7.4.14) 

where 

(7.4.15) 

as is shown in [148],[298]. Thus, the dominant eigenvalue is 

obtaine~ by a series of r square root extractions; ~1 is 

collected as before. The rate of convergence is now deter.:.. 

mined by 

(7.4.16) 

For the first phase of the method the same limitations apply 

as in Matrix Squaring; however the overflow effect is now 

alleviated and similarly for r small the sparseness is not 

totally destroyed. 

7.4.1 SYSTOLIC DESIGN CONSIDERATIONS 

The main computational effort in the Power Method is 

the calculation of a series of rnvrn's; the Matrix Squaring 

method is based on successive rnrnrn's, and the RMP method corn-



-----------------------------~--

- 416 -

bines both the computations. Both computations are itera

tive, i.e. the output of step k forms the input of step k+1. 

The systolic implementation of iterative mvm and mmm opera

tions has been already considered, using area and time 

expansion approach schemes, in chapter 6 and section 7.2. 

An additional complexity for the iterative algorithms 

discussed 

between 

method, 

is the normalisation or scaling that is necessary 

two successive iteration steps. For the Power 

the technique in (7.4.8) requires a full search of 

the vector to be normalised; this imposes a delay of approx

imately n cycles and therefore cancels the potential of the 

pipelined implementation of the algorithm. As an alterna

tive, the technique in (7.4.10) requires approximately 1 

cycle delay but may cause adverse effects than those 

expected. A third alternative would be an externally con

trolled normalisation factor based on a priori knowledge of 

the specific matrix characteristics. 

In the case of the area expansion approach (pipeline), 

the technique in (7.4.10) or the externally controlled fac

tor, a combination of the two methods can be used; for the 

time expansion iterative design an additional possibility is 

to use the technique (7.4.8), but for the normalisation of 

the next iterative vector [56): 

Z:l+l = ~j+l/I.L(~)t, j=O,l, ... ,k-1; (7.4.17) 

for the first iteration the normalisation factor is assumed 



- 417 -

to be externally given; t is a given adjustment constant. 

Similar observations can be made for the Matrix Squar

ing method: for the pipeline approach the scaling should be 

based on prior knowledge of the matrix characteristics, pos

sibly with a combination of a limited sample of the output 

of the certain pipeline stage. For the feedback approach 

there is the additional possibility to search the matrix and 

apply the corresponding scaling in the next iteration, with 

some predefined adjustment. However, the searching process 

should be adapted to the mmm calculation, which is performed 

in parallel. 

The RMP method, as a combination of the two preceding 

methods, shares the same problems and possible solutions. 

Especially for the matrix squaring phase, the scaling can be 

avoided or fixed since only a limited number of squaring 

steps is involved. 

7.4.2 SYSTOLIC DESIGNS 

A systolic pipeline block for the Power method is shown 

in Fig.7.4.1, based on the interconnection of the unidirec

tional mvm array. The normalisation cell that is placed 

between two successive pipeline stages can operate using 

(7.4.10), a systolically propagated normalisation factor, or 

a combination of the two techniques, so that the dynamic 

range of the system is efficiently used. The computation 

performed by the normalisation cell can be 



if 

- 418 -

(not first.found) and (yin <> 0) 
par 

first := first * yin 
first.found := true 

yout :~ yin I first 
if 

reset 
par 

first.found := false 
first := norm.factor 

The area and time complexity of the computation of the nor

malisation cell can be reduced if the multipacation and 

division are replaced by shift operations. Therefore, the 

Power method for an (nxn) banded matrix can be performed on 

a pipeline as in Fig.7.4.1, in n+k(w+p) cycles, where 

w=p+q-1 is the bandwidth of the matrix and k is the number 

of iterations. The area required is kw IPS cells + k normal-

isation cells. The length of a time cycle is determined by 

the time complexity of the normalisation cell. A soft-

systolic simulation program for the Power method is given in 

A.4.6. 

A systolic pipeline block for the Matrix Squaring 

method for a banded matrix A is shown in Fig.7.4.2, based on 

the unidirectional mmm array. The major characteristic of 

this pipeline is the sharp increase of the area requirements 

as. k increases, as is explained in section 7.2. This fact 

imposes an upper limit on the number r of the pipeline 

stages, i.e. the number of matrix squaring steps allowed, as 

well as on the bandwidth of matrix A. 

The scaling postprocessor array is an extension of the 



A 

w IPS 

linear. array 

w+p delays 

normalisation 
cell 

A 

xk+l normalised 

Fig.7.4.1. Power method pipeline block for a banded matrix 
A with bandwidth w=5, p=q=3. 



A 

Delays Hex-array Post-processor 

A
2 

scaled 

Fig.7.4.2. Matrix Squaring method pipeline block for a 
banded matrix A with bandwidth w=S, p-q-3. 

.... 
"' 0 



- 421 -

normalisation cell used for the Power method pipeline. The 

simplest post-processor can be one where a scaling factor is 

preloaded to all scaling cells, performing a simple division 

(or shift-right). In order to achieve greater flexibility 

the scaling should be adapted to the matrix being processed; 

however this is very time consuming, if the whole matrix is 

to be searched. Instead the first row and column can be 

searched and the scaling factor determined using this data; 

for small bandwidths the search can be performed serially, 

otherwise a systolic search tree might be used. In the case 

of the simple scaling post-processor the area and time corn-

plexity is comparable to an IPS cell. 

Therefore the Matrix Squaring method for a banded 

matrix A can be performed on a pipeline as in Fig.7.4.2 in 

s-1 i i 
n + ~ {(2 w-(2 -1))+1} 

i=O 

cycles and with area requirements of 

5~1 i i 2 i i 
L { (2 w-(2 -1)) +(2 w-(2 -1)} 

i=O 

(7.4.18) 

(7.4.19) 

IPS and scaling cells. Again the time unit is determined by 

the scaling cell complexity. A soft-systolic simulation pro-

gram for the Matrix Squaring pipeline is given in A.4.7. A 

similar pipeline block for full matrix computation can be 

readily derived from Fig.7.2.6. 

The RMP method can be implemented by simply intercon

necting the Matrix Squaring and the Power method pipelines; 



- 422 -

the only interface required is a set of reformatting regis

ters, imposing no additional delay. Since only a limited 

number of matrix squaring steps will be used the scaling 

process can be relaxed. Another reason that dictates a 

small number of matrix squaring steps is the fact that, in 

the case of banded matrices, the area of the Power method 

pipeline blocks depends on the bandwidth of the output 

matrix of the Matrix Squaring pipeline. 

The iterative systolic array for the Power method is 

shown in Fig.6.6.3, with the difference that the multiplexer 

cell now incorporates the normalisation process. The normal

isation is similar to that used in the area expansion cases; 

as an alternative, the normalisation cell can be modified to 

operate as suggested in (7.4.17). Therefore, the Power 

method for a full (nxn) matrix can be performed on an itera

tive array as in Fig.6.6.3 in 2n(k+l)+l cycles, and the area 

required is n IPS cells + 1 boundary cell. Each of the IPS 

cells has a memory module of n words. A soft-systolic simu

lation program for the Power method iterative array is given 

in A.4.8. 

The iterative systolic array for the Matrix Squaring 

method. is shown in Fig.7.2.7, with the difference that the 

multiplexers include the scaling generation. The i/o feed

back sequence is given in Fig.7.4.3. The scaling process has 

complexities similar to those of the area expansion case of 

Matrix Squaring. Firstly, an externally determined scaling 



O"tput 

Input 

Feedback 

A 

0 

Multi
plications s+3 

scaled 

0 

1 

s+2 

- 423 -

Feedback 

Multiplication~ 

0 0 0 

1 1 1 

4 3 2 

s+3 

s+2 

4 

3 

2 

1 

A 

1 

1 

Input OUtput 

I I s 
1 0 AA2 

1 0 A 
25 

scaled 

1 
22 

0 A 1 

1 0 A2 

1 
20 

0 A 

1 I 0 

Fig.7.4.3. Iterative array configuration for Matrix Squaring. 



- 424 -

factor can be used; in order to improve the efficiency of 

the scaling process a sample of the matrix must be taken. 

For example, for a given class of matrices, it is possible 

to search a specific row or column of the iterates. More 

generally, the row or column to be searched may change 

dynamically from iteration to iteration. 

However, the searching of a column and a row of the 

matrix imposes a delay of more than n cycles. Extending the 

idea in (7.4.17), the scaling factor calculated during 

iteration k can be used to determine the matrix for itera-

tion k+l. 

2s 
The final mmm, i.e. AA can also be computed in the 

same array, provided that A is stored by the systolic aFray 

interface and produced in the final mmm. Therefore the 

Matrix Squaring method for a full (nxn) matrix can be per

formed on an iterative array as in Fig.7.2.7 in 2n(s+3)+1 

cycles; the area required is n2 IPS cells and 2n boundary 

cells. A soft-systolic simulation program for the Matrix 

Squaring iterative array is given in A.4.9. 

The RMP can be performed on either the Matrix Squaring 

array or a combination of the Power method and the Matrix 

Squaring arrays. In the first case, r squaring 
r 

followed by k degenerate mmm•s between B=A2 
steps are 

and [x. 101, 
-~ 

i=O,l, ... ,k. Thus only n+l processors are active; the 

remaining processors act as simple memory registers. In the 

second case, B is passed to the Power method array so that 

the Matrix Squaring array is free for another computation. 



7.5 SYSTOLIC COMPUTATION OF THE EXPONENTIAL OF A MATRIX ---

Mathematical models of many scientific and engineering 

problems involve systems of linear, constant coefficient 

ordinary differential equations, of the form 

dx 

dt 
A(tl~o (7.5.1) -a 

where A is a given (nxn) matrix. In principle, the solution 

is given by, 

A 
X a e ~O' (7.5.2) 

where ~O is a given initial condition. Now, eA can be for

mally defined by the convergent power series, (section 2.2): 

A A
2 

A
3 

e = I+A+- +- + 
21 31 

(7.5.3) 

The systolic computation of this matrix function is dis

cussed herein. The definition of eA in (7.5.3) can be the 

basis for a simple algorithm calculating the exponential of 

a matrix using Taylor series approximation techniques. Thus, 

A. ( ~ 1 i 
e • Tk A) = L (~I A ) . 

i=O ~ 
(7.5.4) 

However, such an algorithm is known to be unsatisfactory, 

since k is usually very large, for a sufficiently small 

error tolerance. Furthermore, the round-off errors and the 

computing costs of the Taylor approximation increase as 

I IAI I increases. These difficulties can be controlled by 

exploiting a fundamental property of the exponential func

tion: 



- 426 -

(7.5.5) 

In the scaling and squaring method, m is chosen so that : 

and :; 1 (7.5.6) 

With this restriction, the Taylor approximation in (7.5.4) 

can be satisfactorily used, and then eA is formed by j suc

cessive squarings [117). For a given error tolerance c, and 

magnitude of 11 A Ill' 

(k,j) associated with 

7.5.1 SYSTOLIC DESIGNS 

summarizes 

[210). 

the optimum 

The systolic implementation of successive matrix squar

ings has been considered in section 7.2. The calculation of 

Tk(A/2j) as in (7.5.4) is a matrix polynomial computation in 
which Horner's scheme of nested multiplication can be used 

! 2.3 7), I 2 8 8 I : 

si= ASi-1+Xk-i I for i=1,2, .•• ,k, 

where 

' 1 
xi = -.-, I 

1. 

(7.5.7) 

(7.5.8) 

Thus, the evaluation of the Taylor series approximation has 

been reduced to a series of matrix-matrix inner product 

steps (mmips) as in (7.5.7). Following the discussion in 

section 7.2 and chapter 6, the process of repeated mmips can 

be expanded either in time, yielding an iterative network, 



- 427 -

~ 10 -3 
10 

-6 lo-9 10-12 10-15 

10 
-2 

1,0 2,1 3,1 4,1 5,1 

10-1 
3,0 4,0 4,2 4,4 5,4 

10° 5,1 7,1 6,3 8,3 7,5 

10
1 

4,5 6,5 8,5 7,7 9,7 

10
2 

4,8 5,9 7,9 9,9 10,10 

10
3 

5,11 7,11 6,13 8,13 8,14 

Table 7.5.1. Optimum (k,j) for given & and I IAI 11 . 



- 428 -

or in area, producing a pipeline (see Fig.7.5.1). Both these 

approaches are pursued herein. 

The re-usable array shown in Fig.7.2.7, can perform 

both matrix polynomial and matrix squaring computations. The 

i/o/feedback sequences for the computation of eA are shown 

in Fig.7.5.2. The area required is not more than n2+2n IPS 

cells, and the computation time is 2n(k+j+2)+~liPS cycles. A 

soft-systolic simulation program in OCCAM is given inA.4.10. 

A pipeline design calculating the exponential of a 

banded matrix is shown in Fig.7.5.3. It consists of two 

parts: the first part performs the matrix polynomial compu

tation, while the second part is the matrix squaring pipe

line, already discussed in section 7.2. The matrix polyno-

mial pipeline exhibits similar characteristics to the matrix 

squaring pipeline, as regards the bandwidth alteration of 

the output matrix. However, the bandwidth increase is not so 

rapid, since in stage i the bandwidth of the output matrix 

is iw-(i-1) while in matrix squaring the same bandwidth is 

2iw-(2i-l), where w is the bandwidth of matrix A. This is 

because the bandwidth of A/2j is fixed in all mmips stages, 

and Xi' i=O,l, ••. have bandwidth equal to 1. 

On the other hand, the matrix polynomial pipeline 

introduces two other problems. Firstly it is necessary to 

propagate matrix A/2j along the pipeline systolically, in a 

way similar to that described in the mvm pipelines of 

chapter 6. Then, the development in the bandwidth of the two 



S =X 
0 k 

- 429 -

k=1,2,,. f 

A 
i=O,l, ••• ,k 

~--------

A A A 

Fig.7.5.1. Time and area expansion for mmips operation. 



- 430 -

cycle feedback input output 

k+j+2 1 0 
s2j 

k . . . . . . . 
k+3 1 0 52 

k 
k+2 1 0 sk 
k+l 0 I Rk 

k 0 A/2j ~-1 . • . . . . 
2 0 A/2j Ro 
1 0 

t' 
0 

output 
2j 

sk ... 52 
k 

5k Rk ~-1 ... Ro 0 

input 0 ... 0 0 xo xl .. • xk-1 xk -0-
feedback 1 ... 1 1 1 1 .. . 1 1 

cycle k+j+2 .•• k+3 k+2 k+1 k ... 2 1 
I 

xi 
1 

Ri = Ti (A/2j)-~-i' Sk = Tk(A/2j), 
2j A =it I, sk = e 

Fig.7.5.2. Iterative array configuration. 



xo----< 

A 
e • 

Fig.7.5.3. Pipeline configuration for k=2, j~l, w•3. 

2 
(2w-l) 

A 
e 

... ... .... 



- 432 -

matrices to be multiplied is uneven, thus leading to hex

arrays as shown in Fig.7.5.4. General banded matrices can be 

transformed to matrices with equal bandwidths and semi-bands 

if appropriate 'dummy diagonals' are added. These diagonals 

are realised as delay elements. 

As observed in Fig.7.5.4 (see also Fig.7.2.2), the mmm 

hex-array is designed for the multiplication of two (nxn) 

matrices with bandwidths wA = pA+qA-1, w8 = p8+q8-1, and 

wA, w
8

<<n, pA = q8 (or qA = p8 ). Therefore, IPA-qal delays 

should be added in the input of the matrix with max(pA,q8 ). 

Furthermore, if the output sequence is to be kept uniform in 

all cases, another lp
8

-qAI delays should be added in the 

output of the side with max(p
8

,qA). Thus, in general, the 

systolic mmm of two matrices introduces a delay of 

min(wA,w8 )+1pA-q8 1+1p8-qAI IPS cycles, and requires an area 

of wAwB IPS cells and max(wA,w8 )
2-wAwB delay registers. 

Applying these results on the matrix polynomial pipe-

line for the computation of the matrix exponential, we con-

elude that the two pipelines require area of 

k-1 . j~ 

1+ L (w(iw-(i-1))+ L (2jw'-(21-l))
2 

i~ i~ 

IPS cells and requires computation time of 

k-1 
n+w+ L (iw-(i-1)) 

i=1 

j~ 

+ L ((2jw'-(21-ll) 
i~ 

(7.5.9) 

(7.5.10) 

IPS cycles where w'=kw-(k-1). The area occupied by the delay 

registers is assumed to be negligible. Upper limits for the 



--- -----

- 433 -

0 
0 

0 
bll bl2 

0 

0 
b21 b22 

0 
b32 

Fig.7.5.4(a). Banded matrix multiplication, wA-4, pA~3, qA=2, 
w8~3, p8=2, q

8
=2. 



- 434 -

Fig.7.5.4(b). Banded matrix multiplication, wA=3, pA=2, qA=2, 
w8=4, p8=3, q8=2. 



- 435 -

values of k,j are imposed due to the bandwidth increase for 

the output matrix. Thus, if the maximum area available for a 

single systolic mmm computation is w;ax then, we have 

2j-l(kw-(k-1))-(2j-1-1) < w - max (7.5.11) 

A soft-systolic simulation program for the matrix polynomial 

pipeline is given inA.4.1l.A pipeline for the comp~tation 

of the exponential of a full matrix can be obtained if the 

systolic design of Fig.7.2.6 is used. In this case, no 

bandwidth alterations are observed, and therefore the pipe

line will consist of k+j identical mmm arrays. 



7.6 CONCLUSIONS 

The key requirement for the systolic calculation of 

successive matrix powers is the fact that the output of a 

given powering stage should form the input of the next 

stage. This leads to the need for all matrices taking part 

in the computation to move through the array at some stage 

during the computation. Thus, stationary systolic mmm arrays 

with preloaded coefficient matrices cannot be used; the spe

cial case of successive matrix multiplications, where one of 

the matrices is constant is considered in [211-212]. 

The unidirectional data flow restriction for the pipe

line case, can be removed by means of a more complicated, 

reflected data flow for the original hex-array as proposed 

in [248-249]. However this leads to lower efficiency and 

unnecessary complexity for the boundary cells. 

The transposition of a matrix can be effected by means 

of a simple systolic design, as shown in [221]; similar 

designs are proposed to reorder a matrix data sequence. 

These designs can be used in conjunction with the mmm sys

tolic array described in [197] and elsewhere for successive 

matrix squaring, since this array accepts input by rows and 

by columns and produces output by diagonals. The same array 

is used in [211-212) for triple-matrix products, but it 

requires intermediate Sbrage. 

In sections 6.4, 6.5 it was shown that a linear system 



- 437 -

of the form A!=£, with A a p-cyclic matrix, can be reduced 

to a set of p uncoupled linear systems, using the Frobeni us 

theorem. These computations can be readily implemented using 

the results of sections 7.3, 7.5, either by means of pipe

line designs or iterative arrays. 

Finally, the concept of iterative systolic structures, 

performing complex matrix computations, is further extended 

in [74), for the iterative solution of matrix equations; and 

in [88), [216), for the VLSI implementation of the Faddeev 

algorithm for matrix inversion. 

In the remainder of this section the systolic matrix 

inversion and the systolic computation of several matrix 

functions are briefly discussed, using the recurrence rela

tions and matrix polynomial approximation methods introduced 

in section 2.2. 

7.6.1 SYSTOLIC INVERSION USING MATRIX POWERS 

Let A be a (nxn) real matrix and we want to compute 
-1 A ; we assume that an approximate inverse B is known. Then, 

for 

M = I-AB ( 7 . 6 • 1 ) 

the inverse is calculated as 

( 7 . 6 . 2 ) 

with I IMI 1<1 [111). The efficient calculation of the approx-

imate inverse B is investigated in [223), so that the con-



- 438 -

vergence condition is satisfied. 

Three alternative ways of evaluating the sum 

Sk = I+M+M2+ ••. +Mk-1 

are proposed in [32]: 

(7.6.3) 

(i) Nested multiplication (Horner's scheme): k-1 mmips 

Sk = I+M+(I+M(I+ .•. M(I+MI).,,)) (7.6.4) 

(ii) Especially for k=2(l+1 ), successive squares of M are 

computed, and is calculated. starting from 

s 0=I, s 2=I+M one computes s 4 ,s8 , ... ,sk in 1+1 steps, 

using the recurrence: 

i 
s 2i+1 = s 2i + s 2iM2 i=0,1,2, •.. ,1 (7.6.5) 

(iii) Another procedure based on successive squarings can be 

derived from (7.6.5): 

(7.6.6) 

Notice, that each step of (7.6.5,6) consists of 1 mmips 

and a mmm for matrix squaring and has approximately twice 

more work than that of (7.6.4). On the other hand, only 1+1 

steps are required instead of 21+1 . Further, if we truncate 

the power series in (7.6.2), after the first two terms. we 

obtain the Newton method for matrix inversion: 

(7.6.7) 



- 439 -

Each step of the Newton method can be analysed into a mmips, 

i.e. Tk=2I-ABk' and a mmm , i.e. Bk+l=BkTk. 

All these recurrences can be readily realised using the 

systolic pipeline or iterative designs proposed in the pre

vious sections. Especially for the Newton method, the itera

tive structure seems more appropriate, since Bk ~an be 

stored in order to be used in both steps of the iteration. 

Another method for parallel matrix inversion, based on 

matrix powers is discussed in [69), [293). This method 

requires the calculation of tr(Ai), i=1,2, •.. ,k, and of the 

coefficients of the characteristic polynomial of A, as dis

cussed in section 4.5. 

7.6.2 SYSTOLIC COMPUTATION OF MATRIX FUNCTIONS 

The calculation of A112 has been studied in [128), 

[129), [117). The Newton's method in the form 

k=0,1,2, ... (7.6.8) 

is recommended as the most stable, but its main disadvantage 

for a systolic implementation is the computation of matrix 

inverses in each iteration. It is interesting to note that 

the computation of A-112 involves no matrix inversion during 



- 440 -

the iterations [111), [229): 

(7.6.9) 

where TO is an initial approximation of A-11 2 . Thus, apart 

from the importance of A-112 itself in numerical applica

tions [229), it can also provide A112 , since A1/ 2=AA-112 . 

The systolic implementation of (7.6.9) is based on iterative 

mmips and mmm operations, and therefore computational struc

tures similar to that of section 7.5 can be used. The itera-

tive array seems especially more attractive since Tk must be 

temporarily stored, so that it can be used in both steps of 

an iteration. 

In [117), [265) the calculation of' cos(A), sin(A) is 

discussed, based on the double-angle method 

cos(2A) = 2cos(A) 2-I 

sin(2A) - 2sin(A)cos(A) (7.6.10) 

Thus, in a manner analogous to the matrix exponential compu-

tation, we can choose a scaling factor j, so that 

I IAI l/2j ~ 1. Then, the Taylor series approximations for 

cos(B), sin( B) are calculated, where B=A/2j, for a given 

number k of steps. 

B3 s5 
sin(B) = so = B - - + . . . 

3! 5! 

B2 B4 
cos(B) = eo - I -- +-- (7.6.12) 

2! 4! 



- 441 -

Finally, the actual values of cos(A), sin (A) are given by 

the recurrence 

2 Ck = 2Ck_1 -I, k=1,2, •.. ,j (7.6.13) 

Again the similarity of the calculations with that of sec

tion 7.5 is evident. Two pipelines or two iterative arrays 

working in parallel can produce systolically cos(A), sin(A). 

Finally, a similar computation is proposed in [117), 

[268), [127) for log(A), based on the Taylor series approxi-

mat ion 

log(A) = (A-I) - + 
(A-1) 3 

3 
(7.6.14) 

However, no scaling method such as those given for the other 

matrix functions is generally available. Thus, the computa-

tion of (7.6.13) can be efficient only for IIAII < 1. 



' C H A P T E R 8 

OPTICAL SYSTOLIC ALGORITHMS 

8.1 INTRODUCTION 

The optical implementation of systolic algorithms was 

originally introduced in [58), where asystolic mvm algo

rithm is implemented using LED's and Acousto-optic cells as 

input devices (transducers, see section 3.5). Since then a 

significant numbei of algorithms and architect~res for opti-

cal systolic processing has been proposed, using acousto

optic, electro-optic, magneto-optic and other techniques for 

the realisation of the transducers. 

Herein we concentrate on the optical implementation of 

basic matrix computations, such as mmm, LU decomposition and 

Gauss Elimination algorithms. In general, the optical reali-

sation of these algorithms require 2-dimensional (2-d) i/o 

devices, i.e. transducers and detector arrays. Three types 

·of optical processors using 2-d arrays have been proposed, 

according to the classification introduced in [49], [241). 

Firstly, a direct mapping of a 2-d VLSI systolic archi-



- 443 -

tecture onto an optical computing structure leads to an opt

ical processor with 2-d transducer and detector arrays. For 

example, in [58], a direct mapping of asystolic mmm algo

rithm is outlined. The same technique is utilized in [30) 

for the optical implementation of the engagement array pro

cessor. The reduction of many matrix computations in a 

series of mmm operations, is addressed in [28], [84). Thus, 

the LU decomposition, direct solution of linear systems 

using Gauss Elimination, matrix inversion, QR factorization, 

etc., can be decomposed in a series of mmm's. 

An interesting property of light transmission and 

detection is the summation of the intensities of light beams 

that are being collected simultaneously by the same detector 

(space. integration, see for example [49-50]). This property 

can be used to reduce the dimensionality of either the 

transducer or detector arrays. Notice, however that more 

complex imaging systems are introduced, than that required 

for the direct mapping of the VLSI arrays. 

Thus, in [12-14], [234) the outer product optical pro

cessor is described, using 1-d input devices and 2-d output 

array. A number of numerical and signal processing algo

rithms for the outer product processor are also discussed, 

such as mmm, LU decomposition, convolution, correlation, 

triple-matrix-product, etc. An integrated optical implemen

tation of the outer product processor, using electro-optic 

processor elements, is addressed in [291]. 



- 444 -

An alternative approach is discussed in [54], where the 

detector array becomes 1-d at the expense of a 2-d trans

ducer array. This architecture is used as a basis for the 

implementation of a wide range of numerical algorithms. 

Direct and iterative methods for the solution of linear and 

non-linear systems of equations are more specifically dis

cussed in [51], [53], where these algorithms are implemented 

as a series of mvm's. 

Some further examples of the optical implementation of 

systolic algorithms are given in [56] for the Power and 

Matrix squaring methods for eigenvalue computation; in 

[290], [292] for polynomial computation. In [2] some simula

tion and experimental results of the combination of digital 

electronic and analog optical components in a hybrid proces

sor are given, for the case of iterative solution of linear 

systems of equations. Possible error sources and fault

tolerance techniques are investigated in [52], [57]. 

In this chapter the basic techniques for the optical 

implementation of systolic algorithms are exemplified, and 

some new algorithms for banded matrix computation are 

presented. 

In section 8.2 the R+F and the unidirectional systolie 

mmm algorithms are directly mapped onto an optical proces

sor. In the following section the LU decomposition and the 

R+F improvement of the method are also mapped on a similar 

processor. Furthermore the solution of triangular linear 



- 445 -

systems is discussed. 

In section 8.4 the outer product processor for banded 

matrix computations is introduced, and the mmm and LU decom

position algorithms are applied. The same basic processor is 

used in the following section for the optical implementation 

of Gauss Elimination algorithms. 

In the last section of this chapter, the improvement of 

the accuracy of the optical computations is discussed, as 

well as the combination of digital and optical computations. 

Finally, some further optical systolic algorithms are pro

posed, mainly based on the iterative systolic algorithms 

described in the previous chapters. 



8.2 OPTICAL SYSTOLIC BANDED MATRIX MULTIPLICATION* 

8.2.1 MAPPING OF A R+F ALGORITHM ON AN OPTICAL PROCESSOR 

The R+F method improves the efficiency of some basic 

systolic algorithms without causing any changes in the 

structure of the cells or in the communication geometry of 

the VLSI system and only requires some additional pre

postprocessing of the matrix elements (see section 3.3). The 

fact that no changes are made on the underlying computa

tional structure makes the R+F method suitable for direct 

optical implementation: the case of a linear array of acous-

tooptic cells is examined in [ 93). Herein the concept is 

expanded to 2-d geometry, using matrix multiplication as the 

target algorithm. 

The R+F method for matrix multiplication is discussed 

in 21) ; Fig.8.2.1 illustrates the method with an example, 

for two tridiagonal matrices (wA=w5=3) of order n=S; this 

example is used for the illustration of the optical imple-

mentation of the method. The bands are rotated and folded in 

the directions shown by the arrows and the elements in the 

boxes of dotted lines are repeated once, so that the bands 

are extended by one row/column. The input and output data 

sequences are shown in Fig.B.2.2, for the VLSI hex-connected 

systolic array. 

* This section is a revised version of a paper to be 
published in Optics Communications. 



-----, 
all a12 ' ' ..... 

' a21 a22 a23 ' .... ... 
r - T- -1' ' 

-....... a32 I a33 1 a34 1 '-, 
...... 1----t---' 
', : a43 I a44 a4S 

....... - ---' 

' aS4 ass .... ...... _____ 

----..... 
all a12" 

...... 
...... 

a21 ass aS4 -..... 

'- a4S 
...... 

...... 
...... 

a22 

a32 

...... 

a23'" 

a44 a43 

* 

(/ 

' ...... J ' ' a34 a33 a34 1 

'----- I .... 
' a43 a33l , ______ 1 

- ---- ..... ------, 
bll bl2 

...... .... ..... ell c12 c13 ' ... 
' 1- --':>.!' '~ Folding ' -+ 

b21 b22 b23 ...... c21 c22 _c2~i_c2_!.! ', -' .... 
---- -1' .... --- Rotating ...... 

b32: b33: b34 I'-, I I I ...... - c31 c32 1 c33 c34 
1 

c3S 
' ' . r- -t- _ _. ' ,--- -r - _I_- -
', I b43 1 b44 b4S ', 1 c42 1 c43 1 c44 c4S 

'+--_J .... __ .... __ ..J 

', bs4 bss .... cS3 cS4 css ' ' .... -----
!; 

, _______ .. !; 

A 
A 
..... 

----- ------""' ' bll bl2 ' ell c12 c13 ', ' ..... ...... 
b21 hss bS4 ...... ' c21 css c54 c53 ' ' .... ..... 

' ' .... .... b4S b22 b23 ' 0
31 '•s '22 '23 '''j ' .... ' ' ' .... 

...... b32 b44 b43 ...... - ', c3S c32 c44 c43 c42l ...... 
' '-.... I ...... 

b34 b33 b34; ' ', c42 c34 c33 c34 1 ' , ____ 
...------- I 

'... b43 b33 1 '-, c24 c43 c33l ' _____ I ...._ _______ j 

* 

Fig.8.2.1. R+F matrix multiplication. 



a34 
a43 

a33 0 
a23 

0 
0 a33 aS4 

a43 a44 0 
a34 0 al2 

0 a22 0 
a32 0 0 

a4S ass 
0 all 

a2l 

0 

-, 

0 0 

0 0 

0 c2l 
0 0 

c3l c4S 

0 c32 

c35 0 

0 c34 

Fig.8.2.2. R+F 

b4S 

b2l 
0 

0 
0 

0 -- bss 
bll 

ell 0 0 

css 0 0 

0 cl2 0 

c22 0 0 

0 CS4 cl3 

c44 c23 0 

c33 0 c53 
0 c43 0 

matrix multiplication array. 

b34 
b43 

b32 
0 

b44 
b33 

b22 
0 

b54 
b23 

bl2 
o· 

0 

b33 
0 

b43 
0 

b34 
0 

.... .... 
CD 



- 449 -

The basic concepts of an optical system implementing 

the R+F matrix multiplication algorithm are explained with 

the help of Fig.B.2.3,4. This system is based on an optical 

processor originally outlined in ( 58), where some technical 

details and possible extensions are also given. The proces

sor shown in Fig.B.2.3,4 consists of two 2-d transducer 

arrays, each with wAwB pixels. Between the transducer planes 

there is a system of lenses that focuses the light beams 

emitted by the first plane onto the appropriate pixels of 

the second plane. Notice that the distribution of the pixels 

on the arrays allows for the direct mapping of the dataflow 

of the mmm algorithm as illustrated in Fig.B.2.2; i.e. the 

optical implementation follows the same dataflow principles 

as the hex-connected VLSI systolic array, although the data 

now travel in three parallel planes instead of one. 

The light beams are modified in intensity as they pass 

through the transducer arrays, and then they enter an imag

ing system that drives the light beams onto an array of 

light detectors which are connected to a set of shift regis

ters. The detectors transform the incident light beams to an 

electrical charge, according to their intensity, and this 

charge is accumulated to the associated shift register. The 

system is controlled by a clock; thus, the input of the ele~ 

ments of matrices A and B into the transducer drivers, to be 

transformed into modulating segments, and the shift of the 

charge packets, which represent the elements of matrix c, 

are synchronised. 



0 0 

-----.....-- ------.-------

__________ ......., ________ --- --------------~-·-------------

Fig.8.2.3. Details of optical processor for R+F mmm. 

.... 
V1 
C) 



ck --+ 

DRIVER 

I 

< l 
' I 

'..t.. l 
', l 

"~ 
I 

1-

LIGHT 
SOURCE 

A 

~---·, 

-1 I-
I ( 

I 
I 
I 

I 

l I 
I I 

-l 1-__ _J 

B 

... - ck. 
DRIVER 

r - - - --- - - - - --, 
-;. l 1- ... 

I l 
I I 
I I 
1 I 
: IMAGING SYSTEM : 

1 I 
I I 
I 

-·-l ·--
, __ ------------ _J 

2 PLANES OF 
TRANSDUCERS 

PLANE OF 
DETECTORS 

Fig.8.2.4. Matrix multiplication optical processor. 

c 

+-- c . k 

PLANE OF 
SHIFT REGISTERS 

.... 
V1 ... 



- 452 -

At the moment illustrated in Fig.8.2.3, modulating seg

ments proportional to b11 , b12 , b55 , b21 and a11 , a 21 , a55 , 

a12 have been input to the transducer drivers producing 

modulating segments. The light beams transmitted through 

the imaging system to the detector array are proportional to 

a11b12 , a 21b11 , a55b55 and a12b21 • These beams are imaged 

onto the CCD detectors, and the appropriate shift registers, 

which are c ~ c 2t c55 and c11 respectively. The presence 

of dummy elements in the transducer planes means that no 

useful light beam is formed and therefore no useful result 

is collected by the shift detectors. 
' 

Thus, by projecting the modulated light onto the 

corresponding register, we achieve the accumulation of the 

necessary inner products onto the appropriate coefficients 

of matrix c, i.e. we achieve the same result as in the VLSI 

array of Fig.8.2.2. In the next clock tick the modulating 

segments travel in the direction shown by the arrows in 

Fig.8.2.3 and the transducer drivers produce new modulating 

segments from the elements of matrices A, B. Similarly the 

charge packets on the shift registers travel upwards accumu

lating in this way the inner products that form the coeffi-

cients of matrix c. 

In general, the optical implementation of the R+F sys

tolic mmm algorithm, for two banded matrices with bandwidths 

wA, w8 respectively, requires an optical system of two 2-d 

transducer arrays, and one 2-d detector-shift register 



- 453 -

array, each one with wAwB pixels. 

8.2.2 MAPPING OF THE UNIDIRECTIONAL MMM ARRAY ON AN OPTICAL 

PROCESSOR 

The unidirectional banded matrix multiplication sys

tolic algorithm discussed in chapter 7 is now mapped onto 

the optical processor shown in Fig.8.2.4. If the direction 

of the dataflow in the detector-shift register plane is 

reversed and the input data sequence format takes the com

pact form shown in Fig.7.2.2 then the optical processor is 

modified as shown in Fig.8.2.5. Notice that there are no 

dummy elements in the input sequences and furthermore the 

input-output format is in natural order, i.e. no additional 

processing is necessary. The hardware requirements remain 

the same as for Fig.8.2.3. 

In both the optical systolic mmm algorithms described, 

the computation time is the same as in the corresponding 

VLSI implementation. Furthermore, all the issues concerning 

matrices with unequal semibands, as well as dense matrices, 

discussed in chapter 7 for the unidirectional mmm VLSI sys

tolic array, can be readily applied on the optical processor 

of Fig.8.2.5. 

In general the direct mapping of a VLSI systolic array 

onto an optical processor can be effected as follows. Each 

of the operands of the IPS computation moves in a separate 

plane: for example, matrices A, B and C move in different 



~-------------------------------------------------------- -----

-----~--------------

----------~-------------------------~--------------

Fig.8.2.5. Details of optical processor for unidirectional mmm. 

··. 



- 455 -

planes, More specifically, the operands involved in the 

multiplication move on the transducer planes, whereas the 

operand that accumulates the results (i.e it is involved in 

the addition) moves on the detector-shift register plane. 

The dataflow and the cell interconnection pattern of the 

VLSI array is preserved in the optical implementation. Each 

data stream retains the data sequence format and relative 

directions of movement through the optical processor. Thus, 

all timing, efficiency and complexity results concerning the 

VLSI arrays can be directly applied to their optical coun

terparts. 



8.3 OPTICAL SYSTOLIC LU DECOMPOSITION AND SOLUTION OF TRI-

ANGULAR SYSTEMS* 

The R+F method improves the efficiency of the systolic 

LU decomposition and triangular system solution algorithms 

as explained in sections 3.3, 5.2. Herein, initially the 

optical implementation of the systolic LU decomposition is 

described. Then the R+F method is applied and the optical 

solution of the resulting upper and lower triangular systems 

is discussed. The attention is concentrated on the case of 

tridiagonal matrices, for simplicity, but the method can be 

extended in general matrices as discussed in 19). 

The example used and the corresponding VLSI systolic 

implementation are given i,n section 3.3. Only the case of n 

odd (n=S) is considered, since the even case can be easily 

derived from it. Notice that for the LU decomposition algo

rithm to be optically implemented the optical processors 

involved must be capable of operating in the full range of 

real numbers. 

8.3.1 OPTICAL LU DECOMPOSITION 

The basic concepts of an optical implementation of the 

decomposition of a matrix A in lower and upp~r triangular 

* This section is a revised version of a paper present
ed in the 4th Int. Symposium on Optical and Optoelec
tronic Applied Science and Engineering, The Hague, The 
Netherlands, April 1987. 



- 457 -

factors, A=LU, are illustrated with the help of Fig.8.3.1,2. 

The system shown in Fig.8.3.1 consists of two 2-d transducer 

arrays whose drivers accept their input from the output of 

the detector-shift register plane, after some processing 

which is later explained. Between each two planes there is 

an imaging system, i.e. a system of lenses that allows the 

proper mapping of the light beams onto the transducer pix

els, the corresponding detectors, and then the appropriate 

shift register. Thus, we can say that the transducer arrays 

and the detector-shift register array have identical pixel 

arrangement although not the same interconnections between 

pixels. 

The elements of matrix A enter the shift register array 

in the same order as in the hex-connected VLSI systolic 

design and move upwards every clock tick. In their route 

they are modified in accordance with the light exposure of 

the detector plane: for an element aij in a certain pixel of 

the shift register array in a certain time unit the modifi-

cation is aij = 

the intensity 

aij+c, where c is a quantity proportional to 

of the incident light beam collected by the 

corresponding detector. Then the modified element moves to 

the next pixel of the shift register array; the movement of 

all information in the optical processor is synchronised by 

a clock. 

Finally, after a number of modifications, the elements 

of matrix A are produced in the output as the entries of 



PRE-PROCESSING 
ELEMENTS 

L 

t--T ~----, r------------, j 
~ r- -1 1- -;- 1 1-•- 1--

/ I I I I I I 
' I I I I I I 

/ I I I I I I 
/ I I I I I 

/ I 1 1 I 1 IMAGING I 
'-, I I 1 I 1 SYSTEM I 

' I I I I I I 
~, I I 1 I I 

'- I I 
'I r-- _ll ,_ 
L _ _j __ .J L-

PLANES OF 
TRANSDUCERS 

_ .. _ ! __ ------------ -~-- L~-o 

PLANE OF 
DETECTORS 

Fig.8.3.1. Optical processor for LU decomposition. 

u 

A 

FEEDBACK 
MECHANISM 

PLANE OF 
SHIFT REGISTERS 

.... 
t11 
CX> 



modified A 

LIGHT 
SOURCE 

L u 

modified A modified A 

A 

TRANSDUCERS DETECTORS SHIFT REGISTERS 

Fig.8.3.2. Details of optical processor. 

.... 
U1 

"' 



- 460 -

matrix U; the same output, augmented with the modified ele

ments of matrix A that are also involved in the calculation 

of the coefficients of matix L, are sent to the transducer 

drivers (see Fig.8.3.1). The division (reciprocal) and sub

traction (negation) operations that are required are not 

readily realisable with optical techniques. These operations 

are performed by conventional preprocessing elements 

attached to the transducer planes. Since the entries of L 

are produced after these calculations the output for matrix 

L is collected from the transducer planes. 

The derivation of the optical system from the 

corresponding systolic array is illustrated in Fig.8.3.2 for 

the case of tridiagonal systems. The relative directions of 

the data streams must be maintained in the optical implemen

tation, although all data cannot move in the same plane any 

more. The operations performed by each part of the optical 

system are also indicated in the same figure: note that only 

one pixel operates as a pure !PS processor. In the general 

case of a banded matrix with bandwidth w = p+q-1 we have 

(p-l)x(q-1) pixels performing !PS computations; p-1 cells 

perfoming negations, i.e. producing -uij; q-1 cells perform

ing simple multiplications, i.e. producing the elements of 
-1 matrix L, and finally one cell producing uii" Therefore, the 

main optical processing with regard to the !PS computation 

through the transducers and the accumulation of the results 

onto the shift registers is concentrated on (p-l)x(q-1) pix

els. 



- 461 -

A schematic overview of the optical processor for the 

LU decomposition of a tridiagonal matrix is shown in 

Fig.8.3.3. The transducers are assumed coplanar for clarity 

similarly the detectors and the shift registers; no imag

ing system is shown. Notice that, in the shift register 

array, the off-diagonal elements of matrix A are not 

involved in an !PS computation and therefore they pass the 

plane with no delay; however, in order to keep the output 

data stream exactly the same as in the VLSI array, a delay 

is introduced for the off-diagonal elements of matrix u. 

Thus, the optical system of Fig.8.3.1-3 can perform the 

systolic LU decomposition algorithm in the same number of 

steps as the corresponding VLSI array. The time unit of the 

optical processor is equal to the time necessary for the 

completion of the longest operation, i.e the reciprocal com-

putation, plus the data transfer time. 

The same optical processor, with only a small modifica-

tion, can be used for the implementation of the R+F LU 

decomposition method, as shown in Fig.8.3.4. In the first 

step, a 11 enters the detector array and in the second step 
-1 it passes through unchanged as u11 ; simultaneously u11 is 

calculated and aSS enters the detector array. In the third 

step, a 21 and a12 are available and 121 =a 21uii,-u12=-a12 are 

calculated. The output of u12 is delayed for the next cycle 

and uss=ass is produced. In the fourth cycle a22 , a 4S and 

a 54 enter the detector array and simultaneously 121 and u12 



L 

LIGHT 
SOURCE 

- 462 -

-------------
TRANSDUCER 
PLANES 

u 

A 

DELAY OF 1 CYCLE 

DETECTOR AND 
SHIFT REGISTERS 
PLANES 

Fig.8.3.3. Optical processor for LU decomposition of a 
tridiagonal matrix. 

-------------

Fig.8.3.4. Operation of optical processor for R+F 
LU decomposition. 



- 463 -

-------------

-------------
Fig.8.3.4. (continued) 



- 464 -

are produced; 145 and -u54 are calculated and the transducer 

plane produce light beam with intensity 121 <-u12 l which is 

added to a 22 to produce a22 = a 22 +1 21 <-u12 ). 

The modification that is necessary so that the R+F 

method can be accommodated regards the final steps of the 

computation.Then, the confrontation of the two LU decomposi

tion streams is resolved by a double modification of the 

central element of matrix A, i.e. for our example a33 • For 

this reason, the contents of the appropriate register or 

pixel must be delayed and kept for two time units. 

8.3.2 OPTICAL SOLUTION OF TRIANGULAR SYSTEMS 

The optical processor implementing the systolic algo

rithm for the solution of the lower triangular systems of 

the general form Ax = b is shown in Fig.8.3.5, based on a 

processor proposed in [ 50]. Similar results can be derived 

for upper triangular systems. 

The processor in Fig.8.3.5 consists of two 1-d trans

ducers and an 1-d detector-shift register array. The inputs 

to the driver of the first transducer vector are the off

diagonal elements of matrix A, while the elements of the 

main diagonal provide the input to the driver of the second 

transducer, after the necessary preprocessing, which consist 

of subtraction and division operations. The processor per

forming these operations also accepts input from b and the 

output of the shift register array (indicated as y). 



X 

TRANSDUCERS 1 --------, - _,--1-
off-diagonal '\ 1

1 
: 

elements of A '\ 
'\ 1 ·I 

-- -- '\ .._ -L __ I-

b 

--
DETECTORS .AND 
SHIFT REGISTERS 

r - - -- -- - -,_,._ r- -
1 IMAGING I 

I SYSTEM 

I 1 
_.,_ L ---------- __ ,....- .__ -· 

FEEDBACK 
MECHANISM 

y -

Fig.8.3.5. Optical processor for triangular system solution. 

0 

... 
"' Ul 



- 466 -

The shift register array accumulates the charges that 

are produced by the detectors in proportion to their light 

exposure. The light beams reaching the detector array have 

been modulated by the two transducers so that an optical 

multiplication is achieved. The optical IPS is concluded by 

the accumulation of the charges on the shift registers, 

exactly as already described for the LU decomposition opti

cal processor. The time unit is determined by the longest 

operation, i.e the sequence of subtraction and division. In 

general, the 1-d transducer and detector vectors have length 

q-1 pixels, where q is the bandwidth of the system. 

For the bidiagonal linear systems produced by the LU 

decomposition of a tridiagonal matrix, the optical processor 

is given schematically in Fig.8.3.6. Since q=2, single-pixel 

devices are sufficient. 

The same processor, with only minor modifications can 

be used for the R+F method: the operation of the system is 

illustrated in Fig.8.3.7. In the first step, x1 is produced 

as a 1 , b1 enter the subtraction and division processing ele

ment; in the second step x5 is produced in a way similar to 

that of x1 while the product a 21 x1 is accumulated onto y 2 ; 

in the third step x1 is the output, the product a 54x5 is 

accumulated on x4 and x2 is calculated from b2 , a 22 and y2 • 

The modification required for the optical processor to 

accommodate the R+F method is similar with that of the LU 

decomposition processor. When the central element, in our 



TRANSDUCER 
/''--..... 

X· 
1 

0 

SUB,DIV 

DETECTOR AND 
SHIFT 
REGISTER 

Fig.8.3.6. Optical processor for bidiagonal system solution. 



0 

- 468 -

0 

0 

Fig.8.3.7. Optical processor for R+F triangular system 
solution. 



- 469 -

example x3 , enters the optical processor, it has to be kept 

for two cycles in the subtraction-division processing ele

ment so that a double modification occurs. 



8.4 OPTICAL SYSTOLIC ALGORITHMS USING OUTER PRODUCTS* 

8.4.1 BANDED MATRIX MULTIPLICATION 

The common approach to the mmm operation, of the form 

AB~C, is to define each element of the output matrix C as an 

inner product between a row of A and a column of B. An 

alternative way is to see matrix C as a summation of 

matrices formed by outer products between columns of A and 

rows of B [ 13). This second approach is exemplified in 

Fig.8.4.1 for two (3x3) matrices A, B: the multiplication is 

realised in n (here n=3) steps. In the first step the first 

column of A and the first row of B produce matrix r 1 ; in the 

second step, the second column of A and the second row of B 

produce matrix F2 that is added upon F1 . Thus, after n 

steps, c = F1+F2+ +F~. 

In Fig.8.4.2 the first two steps of a mmm for two (nxn) 

banded matrices A, B are shown. Applying the outer product 

concept, it is observed that the lengths of the row-column 

vectors involved in the computations are now fixed to wA 

WB' where wA and WB are the bandwidths of matrices 

respectively (here WA=WB=3). Similarly, the entries of 

output matrix c that are affected in any particular step 

* Sections 8.4 and 8.5 form the basis of two papers 
presented in the 4th Int. Symposium on Optical and Op
toelectronic Applied Science and Engineering, The 
Hague, The Netherlands, April 1987, and in 7th World 
Congress of Cybernetics and Systems, London, Sept. 
1987. 

and 

A,B 

the 

of 



--I ------ c(l) c(1) c(1) 
all ' a12 a13 bll b12 bl3 11 12 13 

I 
b2;:- -b;-2 -b~; c(l) c(l) c(l) 

a21 I a22 a23 * a 21 22 23 F1 
I 

a33 b31 b32 b33 
c(1) c(1) c(1) 

a3~ I a32 31 32 33 

___ , 
bll b12 bl3 

c(2) c(2) c(2) 
all I al2 I al3 11 12 13 

I I ------ c(2) c(2) c(2) 
a21 I a22 I a23 * b21 b22 b23 - 21 22 23 F1+F2 

I I ------- c(2) c(2) c(2) 
a31 1 a32 I a33 b31 b32 b33 .... 31 32 33 -.J --- .... 

all 
I 

a12 1 al3 bll b12 bl3 
c(3) 

11 
c(3) 

12 
c(3) 

13 
I 

b21 b22 b23 
c(3) c(3) c(3) 

a21 a22 1 a23 * = 21 22 23 C•Fl+F2+F 3 --- ---·- c(3) c(3) c(3) 
a31 a32 1 a33 b31 b32 b33 31 32 33 I_- -------

Fig.8.4.1. Matrix multiplication using outer products. 



r--i r-------. 
I I I I 
I I I ·-- ----1 I c(l) c(l) I c(O) all I al2 I 

~1_1:. ~':_2 J I__ 1 11 12 13 
I 

a23 b21 b22 b23 
(1) (1) I c(O) c(O) a21 a22 I c21 c22 J 23 24 

__ J 
-·- --- -·-

c(O) a32 a33 a34 b32 b33 b34 
( 0) c(O) c(O) c(O) 

* - c31 32 33 34 35 Fl 
a43 a44 a45 b43 b44 b45 c(O) c(O) c(O) c(O) 

42 43 44 45 
a 54 ass b54 bss 

( 0) c(O) c(O) 
c53 54 55 

r--~ -(2>-- 121- rrrl 
all I al2 I bll bl2 ell cl2 cl3 I 

I I ------1 ( 2) ( 2) < 1 > I c(O) 
a21 I a22 I a23 b21 b22 b23 1 c21 c22 c23 24 

I I ---- -' ( 1) ( 1) < 1 > I c(O) c(O) 
I a32 I a33 a34 * b32 b33 b34 - c31 c32 c33 I 34 35 Fl+F2 
L-:.....J 

b43 b44 b45 
----nr-roT ( 0) c(O) 

a43 a44 a45 c42 c43 c44 45 

b54 hss 
( 0) c(O) c(O) 

a 54 ass c53 54 55 

Fig.8.4.2. Banded matrix multiplic~tion using outer products. 



- 473 -

the computation are located within an 'active window' of 

size wAw6 • The computation is again completed in n steps. 

Notice that now the 'active window' is not static, as in the 

case of full matrix computations, but it moves along the 

diagonal, at the rate of one matrix element per mmm step. 

Notice also that the superscripts in Fig.8.4.2. indicate the 

number of outer products that are accumulated in an entry of 

matrix c. 

The outer produ~t optical processor is illustrated in 

Fig.8.4.3, and its operation will be described in the con

text of mmm. The optical processor consists of two 1-d 

transducers and a 2-d detector [ 13]. The imaging system is 

not shown in Fig.8.4.3 for clarity: spherical and cylindical 

.lenses are placed in front of each 1-d transducer for beam 

shaping and special optic systems are placed between the 

two transducer vectors and between the second transducer 

vector and the 2-d detector array to achieve the beam direc

tions shown in Fig.8.4.3. The length of the 1-d transducers 

is n pixels, and the detector array has area n2 pixels, 

where n is the size of the matrix (here n=3). 

The outer product calculation between the first column 

of matrix A and the first row of matrix B (see Fig.8.4.1) is 

illustrated in Fig.8.4.3. The outer product multiplications 

are performed by means of modulating the intensity of the 

light beams that travel in the .directions shown by the 

arrows. For example, the beam with intensity proportional to 



columns of A ~ 

rows of B 

Fig.8.4.3. Optical processor for matrix multiplication. 



- 475 -

a 31 passes through the transducer pixel which modulates its 

intensity in proportion to b11 , yielding a beam with inten

sity proportional to a31b11 • Thus, the detector array .col

lects and stores in its pixels charges that correspond to 

the values of the entries of matrix F1 . In the next step, 

the 1-d transducers are loaded with the second column of 

matrix A, and the second row of matrix B. Thus, the outer 

product processor will form matrix r 2 which will be added in 

the detector array onto matrix r 1 • Finally, after n outer 

products, matrix C is stored in th detector array. 

The optical processor for mmm of banded matrices using 

outer product is shown in Fig.8.4.4. The following modifica-

tions can be observed in comparison with the optical proces

sor of Fig.8.4.3. Since only the 'active window' elements, 

for all matrices, need to be present at any step of the com

putation, the 1-d transducers have now lengths of wA and w5 
pixels respectively, instead of n (see Fig.8.4.2). Simi

larly, the detector array is of area wAwB pixels instead of 

n2 pixels. The detector array is now augmented with a plane 

of shift registers so that the resulting 'active window' of 

matrix c can be moved along the detector array as indicated 

in Fig.8.4.2. Thus, the elements of matrix C are not stored 

in the detector array but are produced systolically as an 

output of the shift registers. 

The operation of the optical processor, based on the 

matrix of Fig.8.4.2 is illustrated in Fig.8.4.S. Each full 



•active window' 
column of A 

•active window' 
row of B 

'active window• 
of c 

Fig.8.4.4. Optical processor for banded matrix multiplication. 



c(2) c(1) ( 0) 
22 23 c24 

( 1) ( 1) ( 0 ) 
c32 c33 c34 

' -
( 0) 

c42 
( 0) 

c43 
( 0) 

c44 

' 1: shift in new row-column vectors 
shift out matrix C entries 

c(3) ( 2) ( 1) 
22 c23 c24 

( 2) c(2) c(1) c32 33 34 

c(l) ( 1) c(1) 
42 c43 44 

2: perform outer product 
and addition. 

Fig.8.4.5. Phases of a matrix multiplication. 



- 478 -

mmm step can be divided into two phases. In the first phase, 

the •active window' elements of a column of matrix A, and 

the 'active window' elements of a row of matrix B enter the 
. 

1-d transducers. Simultaneously, the contents of the shift 

registers move in the direction shown by the arrow, so that 

wc=wA+wB-1 entries of matrix C are produced. In the second 

phase, the outer product computation takes place and the 

result is accumulated on the detector-shift register plane. 

Now the optical processor is ready to start a new mmm 

step, i.e to shift out another 'active window' row and 

column of matrix C, load the entries of matrices A, B and 

restart the calculations. The computation is completed in 

n+min(wA,wB) time units, where a time unit is defined as the 

time necessary for a full mmm step to be performed. Notice 

the analogy of the calculations performed by the outer pro-

duct processor with the optical processors described in sec-

tion 8.2, and subsequently, the unidirectional VLSI mmm 

array in chapter 7. Thus, all the results concerning the 

multiplication of matrices with unequal semibands, as well 

as full mmm computations, can be readily applied on the 

outer product processor. 

In comparison with the outer product processor dis-

cussed in ( 13), the proposed system reduces significantly 

the hardware requirements especially when n>>wA,wB1 further

more the system is size-independent, i.e it works for any n 

given a maximum bandwidth1 finally, no unloading cycles are 



- 479 -

necessary at the end of the computation. On the other hand, 

some additional hardware complexity is introduced since the 

detector array must be coupled with a shift register plane 

to accommodate the movement of the elements of matrix c. 

8.4.2 BANDED MATRIX LU DECOMPOSITION 

The LU decomposition of a matrix A can be expressed as 

a series of elementary row operations in which multiples of 

a row are subtracted from all the rows beneath it to gen

erate zeros below the main diagonal of A. In general, a 

(nxn) matrix requires (n-1) complete steps to be transformed 

to an upper triangular form u; the row multipliers involved 

in each step with opposite sign also form the corresponding 

lower triangular matrix L. 

This procedure can be carried out by using the matrix 

multiplication operation as illustrated in Fig.8.4.6 for a 

(3x3) matrix 28] . Matrix El of the multipliers is multi-

plied with A(l)=A to give A ( 2) where the elements of the 

first column below the main diagonal are eliminated. By 

repeating the same procedure: E A( 2 ) 
2 = A ( 3) and the elements 

of the second column are now eliminated. 

It is noticed that Ej can be written as an identity 

matrix I' plus a matrix * which has Ej only one non-zero 

column. Therefore 

A ( j+1) = E.A(j) 
J 

= (I+E~)A(j) 
J 

= A(j)+E~A(j) 
J 

(8.4.1) 



- 480 -

1 0 0 
(1) (1) (1) f"' (1) .gj all a12 a13 11 a12 

el 1 0 * 
(1) (1) (1) = 0 

(2) (2) 
a21 a22 a23 a22 a23 

e2 0 1 
(1) (1) ( 1) l_o (2) (2) 

a31 a32 a33 a32 a33 

El * 
A (1) = A (2) 

(1) (1) 

where = 
a21 a31 

el -(If e2 = -(If 
all all 

1 0~ ~ r (1) 
(1) 

(11 f (1) 
(1) (1) 

all a12 a13 ll a12 a13 

0 1 * 

L: 
(2) 

.g~ l: 
(2) (2) 

0 a22 = a22 
a23 ~ 

0 e3 1 
(2) ( 2) 

0 
(3) 

a32 a33 a33 

E2 * 
A (2) = A ( 3) 

(2) 

where = 
a32 

e3 - ('2) 
a22 

01 ~e 
-

1 0 0 0 

R-21 1 ol = 1 0 L 

J ~e: 1J R-31 R-32 -e 
3 

ull u12 r (1) (1) (1) 
u13 all a12 a13 

(2) (2) 
u 

0 u22 u23 = 0 a22 a23 

0 0 u33 0 0 
(2) 

L 
a33 

Fig.B.4.6. LU decomposition using outer products. 



- 481 -

* Since E1 has non-zero entries only in the first column the 

matrix product E~A( 1 ) will consist only of one outer product 

between the first column of E~ and the first row of A(ll, 

The second step will consist of 

duct between the second column of 

A( 2 ) and adding the resulting 

A( 3 )=U. Matrix L contains a record 

calculating the outer pro

* E2 and the second row of 

matrix to A( 2 ) to generate 

of the elementary row 

operations, i.e. the jth column of L is essentially the jth 

* column of Ej' (see also section 2.3). 

The n-1 outer products required for the LU decomposi

tion of a full matrix are calculated between vectors of 

length n, n-1, •.. , 2. Thus, the entries of the matrix that 

take part in a step of the LU decomposition are located in 

an 'active window' of size nxn, (n-1)x(n-1), ... , 2x2 

respectively. Furthermore, the first row and the first 

column of the •active window' are known in advance since the 

first row is not altered and the remaining entries of the 

first column are reduced to zero. Therefore, the lengths of 

the vectors that participate in the modification of A are 

reduced to n-1, n-2, ... , 1 and similarly the size of the 

'active window' is also reduced. 

In Fig.8.4.7 the first two steps of the LU decomposi

tion procedure for banded matrices is illustrated for a 

quindiagonal matrix (p=q=3). Applying the ideas discussed 

previously it is observed that the lengths of the vectors 

involved in the outer product calculation are now fixed to 



---------------

' r- -l, -- r-- -~ 

' all I a12 a13 I '-. all I a12 a13 I '-, 

-t ' -- -- ' -r<il(iil , ' I ' -R-211 1 a21 a22 a23 a24 0 1a22 a23 I a24 ' 
' I 

1 <1l (1)1 -R-31! 1 
. a_J_lj a32 a33 a34 a35 0 a3S * a32 a33 a34 

~ = L - _ _j 

' 
1 ' a42 a43 a44 a4S ' a a43 a44 a45 

' ' ' 1?. 

' 1 ' a 53 a54 ass ' aS3 aS4 aS!? 

" " " 
..,. 
CO 

' ' " N 
1 ' all a12 a13 

' 
all a12 a13 

' 
~~ ' 1- u> T u> -.._I I(1Jl ,:<1) aAj' ' 0 0 ' a22 l a23 a24 ' ~22 1-23 ' 24 ' 

' t-----' - --1 
IR-3~ 11 * 

(1) I (1) a = I o I <2> (1} 0 [ a32 a33 a34 3S 0 a33 a34·a3S I . 
' I 

1 I ' I I " I ~<1> ul '-~4Ll 
1 'I a42. I a 43 a44 a4S ' ~ ~ a43_a44la4S -- --' 

" ' 1 

' a53 aS4 ass ' ' ' aS3 aS4 as ... ' 

Fig.8.4.7. Banded LU decomposition using outer products. 



- 483 -

p-1, q-1 and the size of the •active window' is also fixed 

to (q-l)x(p-1). This means that only a fixed number of 

entries need to be present at a given step of the computa

tion. Notice that in Fig.B.4.7 the superscripts indicate the 

number of modifications each element undergoes. 

The outer product calculation between the first column 

of and the first row of A(l) (see Fig.B.4.6) is illus-

trated in Fig.8.4.8. The 2-d detector array contains the 

components of matrix A(ll. The outer product multiplications 

are performed by means of modulating the intensity of the 

light beams that travel in the directions shown by the 

arrows. For example, the beam with intensity proportional to 

e 2 passes through the transducer pixel which modulates its 

intensity in proportion to aHl, yielding a beam with inten

sity proportional to e2aiil The detectors accumulate a 

charge that corresponds to e 2aiil onto the already existing 

charge a~i) to produce the new charge that corresponds to 

element a~il of matrix A( 2l, i.e. zero. In this way we have: 

E~A(l)+A(l)=A( 2 ) 

The schematic diagram for the outer product optical 

processor for implementing the LU decomposition algorithm is 

shown in Fig.8.4.9 [ 13]. The coefficient matrix A is first 

loaded into the detector-shift register array. The detector 

array then shifts its contents along the row and the column 

direction as indicated by the arrows. The top row is the 

first row of matrix U, whereas the first column is used in 



1st column 1st row of 

1-d input transducers 

a 0 

A(l)+ outer product 

matrix - A ( i) 

2-d detector.array 

Fig.8.4.8. LU decomposition using outer product. 

... 
()) ... 



row of U 

Column of E 

SUB 
DIV 

- 485 -

J)r ., 
~-'--'--1 

Column of L 

) 2-d shifting 
detector array 

Calculation of E,L 
columns 

Fig.8.4.9. Optical processor for full matrix LU decomposition. 



calculating 

• Fig.8.4.6).; An 

first column 

- 486 -

the first column of matrices 

outer product is then calculated 

of Ej and the first row of U and 

* Ej and L (see 

between the 

added to the 

shifted matrix A. This process is repeated n-1 times to gen-

erate matrix u one row at a time and matrix L one column at 

a time. 

An optical processor for the LU decomposition of banded 

matrices is shown in Fig.8.4.10. The following modifications 

can be observed in comparison with the optical processor of 

Fig.8.4.8. No preloading of the whole matrix A is necessary; 

only the •active window' elements need to be present plus 

one element from the uppermost and lowermost diagonals. This 

means that there is no preloading delay and the number of 

pixels is reduced to (q-l)x(p-1)+2. The shift register plane 

now moves its contents in one direction only, yielding a 

simpler detector array design. The 1-d transducers are now 

of length (q-1) and (p-1) pixels respectively. 

The operation of the optical processor, based on the 

matrix of Fig.8.4.7 is illustrated in Fig.8.4.11. Each full 

step of the LU decomposition algorithm has three phases. In 

phase 1 the elements of matrix A are shifted as indicated 

and the outgoing entries form a row of u and a column of L: 

e.g [a11 a 12 a13 1 form the first row of U and [a11 a 21 a 31 JT 

are involved in the calculation of the first column for L, 

* * E1 • The second phase calculates the coefficients for L,E1 • 

The third phase performs the outer product and the addition 

,..The compu.tat1o11 o~ lhe c;olu.mns of E1 o.nd L i~ p€~"forrned (Hin9 

conventiOYlCl.l elec.troni c: c;ornponents ~oi" :so<btruc-li"" ond clilli~;on. 



Column of E 
without 
first element 

row of U 

SUB 
DIV 

Column of L 

diagonals of 
matrix A 

Fig.8.4.10. Optical processor for banded LU decomposition. 



- 488 -

__ ..,.. ____ .. 
:a11:a12la13: u 
L.- ...J_- .1_-\ 

1 

a22 a23 a24 

a32 a33 

a42 '\. 

;---; 
a21 I 1 I 

I !,21 ~ - r- -~ r--, 
all I 121( ,-.t2J 
a 1- --r 1--

!,31 a 
31 I .t I 1-.t I - 31 !.. _3j 

A all L- J 
L E 

for L,E 

1: shift elements of A 2: calculate L,E columns 

ESJ 
bj 

E 

a ( 1) 
22 

a(1) 
32 

a42 

u 

a<1 
23 

a24 

( 1 
a33 

for L,E 

3: perform outer product and addition 

1 
( 1) 

a33 a34 

a43 a44 

a 53 

a35 

' 

Fig.8.4.11. Phases of a full step of LU decomposition. 

A 



to the existing 

- 489 -

matrix e.g. a ( 1) = 
22 

Now the processor is ready to shift out another row of 

U and another column for L and to restart the calculations. 

The computation is completed in n+min(p-1,q-1) time units, 

where a time unit is defined as the time necessary for a 

full step of the LU decomposition to be performed. This 

includes one optical IPS computation, one subtraction-

division and the data transfers. Notice that the 

subtraction-division processing element must be capable of 

performing q calculations in parallel, while in the case of 

the LU decomposition optical processor in section 8.3 no 

such facility is required. 

The LU decomposition outer product processor in 

Fig.8.4.10 can be seen as the mmm outer product processor of 

Fig.8.4.3 augmented with the feedback mechanism, the pro-

cessing element performing subtractions-divisions and two 

additional pixels for the detector-shift register array to 

act as delays for the uppermost and lowermost diagonal 

entries of matrix A. 

In comparison with the outer product processor dis-

cussed in [ 13], the proposed system reduces significantly 

the hardware requirements especially when n>>p,q; further-

more the system is size-independent, i.e. it works for any n 

and for given maximum bandwidth; the proposed system is also 

faster as no preloading cycles are necessary. 



8.5 OPTICAL GAUSS ELIMINATION USING OUTER PRODUCTS 

The outer product processor for banded matrix LU decom

position proposed in section 8.4 is now utilised for the 

implementation of several Gauss elimination (GE) algorithms, 

i.e matrix triangularization; direct solution of linear 

sytems; matrix inversion and solution of matrix equations. 

The quindiagonal matrix is again used as an example (p=q-3, 

n=S). 

The triangularization of a matrix is illustrated in 

Fig.8.5.1; with the help of this figure the Gauss elimina-

tion procedure performed with outer products is explained. 

As is shown in Fig.8.5.1 the GE algorithm can be performed 

in n-1 major steps, each step involving an 'outer product 

plus addition' computation. For example, in the first step 
T of GE [a11 a21 a31 J determines the multipliers 

T [1 e 21 e 31 J ; then an outer product is calculated between 
T [1 e 21 e 31 J and [a11 a12 a13 1 and the resulting matrix is 

added to matrix A to produce the modified matrix for the 

second step. The actual modification takes place in the 

'active window' of size (q-l)x(p-1) as indicated in 

Fig.8.5.1. The GE moves diagonally from the top of the 

matrix towards its bottom and produces a triangular matrix 

U; the elements of the matrix that take part at any step of 

the computation are shown in Fig.8.5.1 and the locality of 

the transformations of GE is illustrated. 

A further final step of the triangularization algorithm 



- 491 -

can be the division of the elements of each row with the 

diagonal element of the row, as shown in Fig.B.S.l. Thus the 

main diagonal entries are all set to 1. Although this step 

can again be analysed in n outer products, it is more con

venient to have a different implementation as will be 

explained later on. The triangularization method is the same 

with the LU decomposition method with the difference that no 

record of the multipliers is kept and therefore no matrix L 

is produced. 

The algorithm described can be readily modified to 

solve a system of simultaneous linear equations based on GE 

and the use of augmented matrices. For the system A~=£, 

where A is as defined in Fig.B.S.l the augmented matrix is 

[Al£1; it is possible using elementary row operations to 

transform [AJ£1 to [UI£'1 where U is upper triangular and 

solve the system with a back substitution. The method is 

illustrated in Fig.8.5.2; for the sake of simplicity all 

non-zero entries are indicated with 'x'; again the 'active 

window' and the elements involved in each computation step 

are indicated in the figure. A final division step can be 

included, where each row of b is also divided by the diago

nal element of the corresponding row of matrix A. 

The GE algorithm for the direct solution of a linear 

system is extended to the Gauss-Jordan (GJ) method at the 

expense of n more cycles as shown in Fig.8.5.3. The superdi

agonal elements are now eliminated using the 'outer product 



q•3 

p=3 
i'u 1'12 8

13 

1>21 ~ ~ 
1>31 ~ ~ 

~42 8
43 

8
53 

11 al al3 

p~; (1 
a2' 

(1) ~ " 
~42 ~ 

~53 

al al al3 

,UJ a~~ 22 
a.(2 

33 

a~~ 
a 53 

al al; al 

f'~~· a~~ 
(2 

0 33 

all a12 al 

(1) (1) . , .,. 
~;J 

a2< 

a3< 

a4< 

aS< 

a2. 

~ 
~ 
a 54 

8
24 
(2 

a34 

~ 
~ 

a24 
(2 

a34 
(3 

a~4 

aJ~ 

r-, • 
i'~~ 
:a,l.l. 

44 

a3 

a4 

as 

a,, 

a4~ 

as~ 

a3 

~· 

~ 

a3~ 
( 

a4' 

~ 

a3~ 

a~~ 
(4 

as: 

- 492 -

for 1,j=2,3 

for i,j=3,4 

for i,j=4,5 

for i,j=S 

for 1=1, ••• ,5 and 

i~j~i+2. 

n=S, p-l=q-1=2. 

Fig.B.S.l. Triangularization of A. 



- 493 -

plus addition' pattern. The computation continues beyond the 

end of the GE algorithm and starts from the bottom and moves 

towards the top of the matrix.Since the lower diagonal 

entries are all eliminated by GE, there are no modifications 

in matrix A only eliminations, while there are still modifi

cations for b. 

In both the algorithms described for the solution of 

linear systems there are two •active windows': one for 

matrix A and one for b. Note that there is some redundancy 

in the calculations for the GJ method. After the first divi-

sion step (Fig.B.5.2) the main diagonal entries are all 1 

and therefore the 'outer product plus addition' is used only 

for £; furthermore the final division step (in Fig.8.5.3) is 

not necessary. Alternatively the first division step can be 

omitted and the remainder of the computation is then carried 

out exactly as shown in Fig.B.5.3. 

The GJ algorithm can be used for the inversion of a 

matrix A if the method is applied on the augmented matrix 

[Alii, where I is the identity matrix. At the end of the 

computation the augmented matrix is transformed to [IIA-1 ). 

The matrix inversion algorithm is shown in Fig.B.5.4. The 

operations in the left-hand side matrix A are identical to 

those of Fig.8.5.2,3. The calculations in the right-hand 

side matrix are slightly different from the operations dis

cussed up to now. It is obvious from Fig.8.5.4 that the pro

file of matrix A is not preserved in A-1 and therefore the 



- 494 -

X X X 

X Vy Vr" X 

X / Vy X X 

X X X X 

X X X 

X X X 

X X X 

X ~ ~ X 

X t:Y ~ X 

X X X 

X X X 

X X X 

X X X 

X ~ ~ 
X r< '/ 

X X X 

X X X 

X X X 

X X 

X ~ n-1 mdification steps 

X X X 

X X X 

X X X 

X X 

X x division 

Fig.B.5.2. Gauss Elimination for A, Q. 



- 495 -

X X X 

X X X 

X X X 

X X 

X 

X X X 

X X X 

X X I 

X 

X 

X X X 

X X 

X 

X 

X 

X X 

X 

X 

X 

X n-1 J!Odification steps 

. 

X 

X 

X 

X 

X x division 

Fig.8.5.3. Back substitution for A, ~. 



- 496 -

X X X 1 

X fY % X 1 

X y ~ X X 1 

X X X X 1 

X X X 1 

X X X 1 

X X X X 1 

X ~ ~ X 1 

X k k X 1 

X X X 1 

X X X 1 

X X X X 1 

X X X X X 1 

X ~ lA- 1 

X -7 [::X 1 

X X X 1 

X X X X 1 

X X X X X 1 

X X X X X 1 

X ~ 

X X X 1 

X X X X 1 

X X X X X 1 

X X X X X 1 

X X X X X 1 division 

Fig.B.S.4(a). Gauss-Jordan method for matrix inversion. 



- 497 -

X X X 1 

X X X 

X X X 

X X 

X X X X X 1 

X X X 1 

X X X < ~ / / ~ 
X X y ~ ~ .-;-~ 

X X X X X X 

X X X X X 1 

X X X 

X X 

X X X X X X 

X X X X X X 

X X X X X 1 

X X -;:; ~ :>-: v ~ 
X X X X X X 

X X X X X X 

X X X X X X 

X X X X X 1 n-1 modifications 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X X 

X X X X X 1 division 

Fig.8.5.4(b). Gauss-Jordan method for matrix inversion. 



- 498 -

concept of the 'active window' cannot be applied in the same 

way on A-l This is more clear in Fig.8.5.4(b) where in 

each computational step the nx(q-1) elements of matrix -1 A 

are modified. Therefore, the concept of the 'active window' 

can be applied only in one dimension of A-1 ; in other words 

matrix A-l can be viewed as n columns, each one representing 

a •vector b' of the GJ algorithm in Fig.8.5.3. It should be 

noted that since the 'active window' for A-l has now size 

nx(p-1) or nx(q-1), the matrix inversion algorithm is not 

size-independent in the sense of the algorithms previously 

discussed. 

The division steps in Fig.8.4.4 introduce the same 

redundancy as in the GJ algorithm for the solution of the 

linear systems of equations; again one of the two division 

steps can be omitted. The same algorithm can be used for the 

solution of a matrix equation AX=Y, if the augmented matrix 

takes the form [AIYJ, so that after the computation we have 

[IIA-lY]. 

8.5.1 OPTICAL IMPLEMENTATION 

The basic component for an optical implementation for 

all the algorithms described, is the optical processor shown 

in Fig.8.4.10, configured for the case of our example 

matrix. The calculations performed by the optical processor 

are detailed in the first four steps of Fig.S.S.l. If the 

final division step is necessary as well, then the optical 

processor can be expanded as shown in Fig.8.5.5: each row of 



multipliers 
E 

row of A 

- 499 -

t t 
DIV 

SUB,or 

row of U 

A 

Fig.8.5.5. Optical processor for matrix triangularization. 

multipliers 
E 

modified A 

DIV 

L------l SUB,DIV 

modified b 

A 

Fig.8.5.6. Optical processor for Gauss Elimination. 



- 500 -

the triangular matrix produced as described before is now 

divided by its first element, thus giving a triangular 

matrix with all main diagonal elements equal to 1. No signi

ficant additional delay is introduced since the division can 

be performed in parallel with the calculation of the multi

pliers; thus only the last step creates a delay. The 

hardware for this additional processing element is a simpler 

version of that needed for the subtraction-division process

ing element. 

Therefore, the triangularization of a banded matrix 

with bandwidth w=p+q-1 using GE without pivoting, can be 

performed in n+min(p-l,q-1) major steps, on an optical pro

cessor as that shown in Fig.8.5.5. The detector array has 

size (q-l)x(p-1)+2 and the transducers (q-1) and (p~l) pix

els. One (or two) processing elements are necessary perform

ing subtraction and division (or division only); these pro

cessing elements must be capable of performing p (and q) 

calculations in parallel. 

The same optical processor, with some extensions, can 

be used for the direct solution of a system of linear equa

tions based on GE and the use of augmented matrices. The 

system .is shown in Fig.8.5.6. The 'outer product plus addi

tion' operation is now extended to include £, as explained 

with the help of Fig.8.5.2. This is achieved by means of a 

second outer product processor working in parallel with the 

one already discussed; the column of the multipliers is the 



- 501 -

same for both outer products. The computation follows the 

same pattern, as described for the matrix triangularization. 

Notice that q-1 initialisation steps are required, so that 

the elements of b are loaded in the detector array; the 

input sequence of matrix A must be modified accordingly. 

Therefore the direct solution of a banded linear system 

of equations with semibandwidths p,q can be performed in 

n+(q-1) major steps on an optical processor as that of 

Fig.8.5.6. The detector arrays have sizes (q-l)x(p-1)+2 and 

q-1 pixels; the transducers have lengths q-1, p-1, and l,q-1 

pixels. The subtraction-division processing element performs 

q calculations in parallel while the additional division 

element performs p+1 calculations in parallel. 

The GJ algorithm for the-solution of a linear system 

can be optically implemented by means of the same basic com

ponent of Fig.8.5.6. The two phases of the algorithm, as 

shown in Fig.8.5.2,3 can be performed by the same optical 

processor provided that in the second phase the triangular 

matrix u is transposed; both u and b' are processed from the 

bottom towards the top during the second phase of the algo

rithm. A system based on the optical processor of Fig.8.5.6 

is shown in Fig.8.5.7: A and~ enter the system and they are 

routed to the optical processor; the intermediate results, 

i.e. u and b' are stored into a LIFO memory module; for the 

second phase of the algorithm the transposed matrix U and b' 

enter the optical processor in the reverse order and the 



.-----" 

GE 

A, ~ r' ~ U, b' 

transposed u, b• I, X 

'-· MEMORY, 1-
CONTROL, 
I/0 

'--

I 
A b X 

Fig.8.5.7. Optical processor system for Gauss-Jordan method. 

VI 
0 .., 



- 503 -

resulting vector ~ is produced as output of the system. 

Therefore the GJ algorithm can be performed in 

2(n+max(p-1,q-1)) major steps on an optical processor as in 

Fig.8.5.7. The maximum semibandwidth is used as the basis of 

the design, so that both phases can be performed on the same 

optical processor. The redundancy of the computations can be 

avoided if a special optical processor for the second phase 

is used, since no division is necessary and no output for U 

is produced. 

The GJ method can be extended for matrix inversion if b 

is replaced by the identity matrix. All the transformations 

on the original matrix A are recorded on the identity matrix 

to 

the 

tion 

produce -1 A , as shown in Fig.8.5.4. As it is explained, 

concept of the' •active window' has only partial applica
-1 on A ; thus, for the optical implementation of the 

matrix inversion, the optical processor is extended as shown 

in Fig.B.S.B. The outer product processor for the modifica

tion of b is expanded so that it can modify nxmax(p-1,q-1) 

elements of the matrix A-1 simultaneously. Thus the optical 

implementation of the matrix inversion is size-dependent. 

The overall configuration of the optical system for 

matrix inversion is exactly the same as that of Fig.8.5.7, 

if E•E'•~ are replaced by I, (A-1 )•,A-1 . Similarly the 

redundancy of the calculations can be removed by a special 

optical processor for the second phase of the algorithm. 



part of row of u 

multipliers 

row of 
modified I· 

1 row of 
I 

I U I 
l • 

SUB,DIV 

Division, interconnection 
with outer-product 

• 

A 

• 4 
4 f I 

I 

I 

I 

I 
row of modified I 

Fig.8.5.8. Optical processor for matrix inversion. 

V1 
C> .... 



- SOS -

The solution of the matrix equation AX=Y can be 

effected in the same optical processor as for matrix inver

sion, if I is replaced by Y. 



8.6 CONCLUSIONS 

Although the optical operations described in the previ

ous sections can be initially applied only on non-negative 

real numbers, there are well-known methods to accommodate 

the full range of real numbers as well as complex arith

metic: see for example [58), [222), [292). 

The limited accuracy of the basically analog optical 

computations that are discussed in this chapter can be 

increased by means of the Digital Multiplication via Analog 

Convolution (DMAC) method. This algorithm is outlined, 

amongst others, in [241), and is based on the convolution of 

two binary encoded input signals, to produce an output sig

nal in mixed binary form that can then be transformed into 

pure binary arithmetic. The output signal is equivalent to 

the product of the input signals. This process is equivalent 

to the polynomial multiplication algorithm, discussed in 

section 3.1, where the a's and b's are all 0 or 1, so that 

each polynomial represents a binary coded number, in integer 

or fixed-point real arithmetic. The product of the two poly

nomials can be seen as the result of the multiplication of 

these two numbers, in mixed binary form. It is possible to 

convert this result in purely binary notation with some sim

ple postprocessing. 

A survey of some of the methods proposed for the imple

mentation of the DMAC method is given in [49). The algorithm 

has been applied on the outer product processor in [12) and 



- 507 -

experimental results are given in [14]. The DMAC algorithm 

has been extended to fixed-point arithmetic in [29], [31]. A 

similar implementation has been reported for integrated

optical processors in [11], [291]. 

Thus, each of the optical systolic algorithms can be 

extended to include digital accuracy, if the entries of the 

matrices or vectors involved are binary encoded and the DMAC 

algorithm is incorporated on the optical processor. 

However, it is argued that this straightforward exten

sion leads to excessive requirements, as regards the number 

of pixels of the transducer and detector arrays. some other 

difficulties that are introduced include the loss.of the 

speed of the optical computation and the accuracy required 

in the Analog-to-Digital conversion [10], [235]. Neverthe

less, the DMAC method has received considerable attention 

and some encouraging experimental results have been reported 

[31], [54], [67], [75]. 

Two other interesting problems arising from the optical 

systolic algorithms discussed herein are the feedback 

mechanisms as well as the combination of electronic and opt

ical processing elements. Given the speed of the optical IPS 

computations, the feedback mechanisms should be equally 

fast, if they are not to introduce any delay in the computa

tions. Thus, optical feedback might be considered, using 

some of the optical signal transmission methods discussed in 

section 3.5, although it requires additional signal 



- 508 -

. ,. 
convers1ons. 

The combination of conventional digital electronic pro

cessing elements with optical components has been advocated 

so that computations not readily realisable in optical com

puting can be performed. This operations include all non-IPS 

calculations, as shown in sections 8.3-8.5. This hybrid pro-

cesser, however, forces a pipelined computation to be per-

formed at the speed of the slowest component, i.e. the digi-

tal electronic processing elements. Thus, an interesting 

field for further investigation, is the development of 

parallel algorithms for hybrid procesors, where the arrange

ment of the computations is such that to minimize the delay 

introduced by the non-linear (conventional) components. 

Some alternative, all-optical implementations of the 

basic unary operations have been proposed in [290], [292], 

based on the concept of an optical polynomial evaluation 

processor. However, for the current state of development of 

optical computing, the realisation of all-optical digital 

(or analog) computers is only experimental [10], [35], [85], 

[206]. Therefore, the combination of optical and electronic 

components seems to be the next step forward for optical 

computing, either in the form of optical interconnections, 

or in the form of hybrid processors. 

One way to reduce the need for complex non-IPS calcula

tions that may cause long delays, is the expression of the 

algorithms to be implemented as a series of simple mvm or 

*l'h;~ hhn~t.<e 
bu.d~ 11.ts / if lhe 

"'o.y be +he ca.c.ue o~ pole,lial 
b().rldwidl-11 of ~i911a.ls is 9rea..t 

problem ; in power 



- 509 -

mmm computations. This technique has been used in the case 

of direct methods, as is shown in the previous sections, but 

it mainly favours iterative algorithms as very good candi

dates for optical implementation. 

Optical iterative systolic algorithms using a series of 

mvm computations have been extensively discussed for the 

solution of linear systems of equations [50-54]; and for 

eigenvalue-eigenvector computation [56]. Following this line 

of thinking, it would be very interesting to investigate the 

design of optical systolic pipelines, as well as optical 

systolic iterative arrays, implementing the algorithms pro

posed in chapter 6 for VLSI systolic networks. One obvious 

advantage of the optical systolic networks would be the 

elimination of the interconnection difficulties. Thus, an 

intermediate approach can be the design of 3-d systolic net

works with VLSI mvm arrays and optical interconnection com

ponents. 

Optical systolic iterative algorithms based on mmm 

operations are discussed in [56], where each mmm is decom

posed as a series of mvm's. The optical realisation of the 

systolic array designs for successive mmm's, proposed in 

chapter 7, will allow for the direct implementation of all 

the algorithms discussed in this chapter. 

Finally, an important aspect for the development of 

optical systolic algorithms, and optical computing in gen

eral, is the actual testing and verification of the 



- 510 -

algorithms and architectures, using simulation techniques: 

see, for example, in [2], [52], [84] for the use of simula

tion methods in the development of optical systolic .con

cepts. The soft-systolic simulation technique offers a suit

able framework for this process, as it is shown in the pro

grams listed in the Appendix (sections A.5 and A.6). 

In A.6.2 there are some pixel definitions of the basic 

components of an optical systolic processor, such as: light 

emitter pixel; light modulator pixel; detector and shift 

register pixel. These basic building blocks are used in the 

programs of A.5 to develop soft-systolic simulation programs 

for some simple optical systolic algorithms. Two types of 

banded mvm are presented (A.S.l and A.5.2), one using outer 

product concepts and the other using simple space integra

tion (inner product). These architectures are further 

extended to accommodate banded mmm, in A .. 5. 3 and A. 5. 4. 

Finally, a possible implementation of the DMAC algorithm is 

given, where two binary-coded sequences are multiplied to 

produce a sequence in mixed binary form. 

It would be interesting to further develop the soft

systolic simulation method to fully accommodate optical com

puting concepts. 



C H A P T E R 9 

CONCLUSIONS 

This thesis has introduced some new systolic algorithms 

and architectures for numerical computation, under the 

framework of being suitable for implementation on to VLSI 

processor arrays, or optical processors. 

This final chapter is structured as follows. Initially, 

a summary of the main topics of 'discussion is given, 

together with an overview of the related results, thus com

plementing the thesis organisation presented in section 1.3. 

Then, some general conlusions are given, partially in rela

tion with the major areas of current systolic systems and 

computing research, discussed in section 1.2. 

9.1 THESIS SUMMARY 

The preceding chapters can be divided in three parts: 

the first part (chapters 1-2) consists of survey and back

ground material for the ready comprehension of this work; 

the second part (chapter 3) combines an overview of basic 

concepts with the introduction of some more recent develop-



- 512 -

ments in the area of systolic computing; the third part 

(chapters 4-8) is devoted to the presentation of new sys

tolic algorithms. 

Chapter 1 gives a brief overview of the environment for 

the development of the systolic approach, by discussing: the 

applications of systolic systems; the advances of VLSI tech

nology; and the relation of the systolic approach with other 

parallel processing methods and the theory of cellular auto

mata. Further, an outline of the major areas of systolic 

systems research is presented, such as: implementation 

issues and optics technology; overall system design and pro

gramming; and algorithm design and applications. Finally, 

the organisation of the thesis is discussed. 

Chapter 2 contains ba~ic mathematical definitions in 

the areas of polynomial equations; matrix computations; 

linear programming; and differential equations. Then, there 

is an introduction to specific topics: solution of polyno

mial equations; solution of systems of linear equations; 

matrix eigenproblem solutions; matrix functions; and 

discrete approximation of differential equations. Finally, 

there is a brief discussion of the numerical algorithms used 

in subsequent chapters. 

Chapter 3 starts with the description of a simple sys

tolic algorithm, through which the basic definitions and 

terminology are introduced; then a framework for systolic 

algorithm development on VLSI is presented. This is followed 



- 513 -

by the discussion of a set of fundamental systolic designs 

for: matrix-vector multiplication; matrix-matrix multiplica

tion; and the solution of linear systems of equations. These 

designs are used as building blocks and benchmarks in the 

subsequnent chapters. Next there is an overview of some 

transformational techniques, for derivation and improvement 

of systolic designs: the retiming method; cut theorem; 

area-time expansion;. and R+F method. Further, the importance 

of systolic programming and simulation is discussed and some 

special-purpose (Warp, WAP) and general-purpose (Transputer) 

'systolic computers' are presented. Then, the soft-systolic 

paradigm is introduced; simulation, systolic programming and 

soft-sytolic approach form the basis for the development of 

the soft-systolic simulation method, using OCCAM. Finally, 

the optical implementation of systolic algorithms is inves

tigated, as well as the use of optical signal transmission 

techniques. The chapter is concluded with a modification of 

the framework initially proposed so that it can accommodate 

the different classes of systolic algorithms: hard (tradi

tional, direct VLSI implementation); hybrid (programmable, 

special-purpose VLSI processor arrays); soft (network of 

processes on a general-purpose parallel processing com

puter); and optical (analogue optical or hybrid electronic

optical processor implementation) 

Chapter 4 investigates the systolic implementation of a 

new group of numerical algorithms, i.e. the solution of 

polynomial equations. Two traditional methods are discussed 



- 514 -

in detail: Graeffe and Bernoulli. In the study of these 

methods transformational techniques are exemplified: 

ing technique; bidirectional array transformed to 

architecture; area-time expansion. Further, a general 

retim

ring 

sys-

tolic ring architecture is proposed that can accommodate the 

majority of iterative methods for the solution of polynomial 

equations, with modifications in the number of parallel 

polynomial evaluations and in the calculation of the new 

approximation. Finally, the Sturm sequence property is used 

for the systolic computation of the roots of the charac

teristic polynomial of a tridiagonal matrix. The method can 

be extended to unsymmetric tridiagonal or quindiagonal 

matrices; moreover, the calculation of the characteristic 

equation of Hessenberg matrices is also possible, using a 

linea~ array, similar to that of ~ triangular system solu

tion. Noticing that, the latter can also be transformed in a 

systolic ring, we can conclude that, it is possible to build 

a more general-purpose ring architecture for polynomial 

evaluation, solution of polynomial equations, as well as 

other polynomial computations. 

Chapter 5 presents some systolic algorithms for the 

efficient solution of linear systems of equations, using LU 

decomposition. Initially, a mathematical transformation is 

introduced (block (2x2) R+F method) for improving the effi

ciency of the systolic algorithms for banded LU/LDU decompo

sition. Then, the problem of updating LU factors is dis

cussed, in the context of the Simplex method; the same 



- 515 -

approach can be used in other cases where updating is neces

sary, such as real-time signal processing and algorithmic 

fault-tolerance. The same technique can be extended to 

include pivoting, as well as other matrix factorization 

methods (e.g. QR decomposition). Further, it would be 

interesting to investigate the combination of the R+F method 

with the updating technique, and other factorization 

methods. Finally, the LU decomposition with partial pivoting 

is used in the systolic implementation of the Inverse Itera

tion method, for the determination of the eigenvectors of 

symmetric tridiagonal matrices. This array may be combined 

with the design determining the eigenvalues of the same type 

of matrices, discussed in chapter 4; thus, it is possible to 

produce a systolic system solving the eigenproblem for sym

metric tridiagonal matrices which form the end-product of 

the eigenproblem solution of general symmetric matrices. As 

a conclusion, notice that the similarity of LU and QR decom

position methods (with or without pivoting) makes possible 

the design of a programmable systolic array performing all 

these types of algorithms, according to the problem at hand. 

Chapter 6 develops the concept of combining systolic 

arrays for matrix-vector multiplication; this technique is 

applied·to the iterative solution of linear systems of equa

tions, usually occurring in the discrete approximation of 

ordinary and partial differential equations. Initially, 

retiming techniques are applied for the derivation of a uni

directional banded matrix-vector multiplication array. 



- 516 -

Further, the area-time expansion method is employed for the 

derivation of an iterative systolic array, suitable for full 

matrix computations. Thus area and/or time efficient pipe

line and iterative designs are produced for different solu

tion methods and techniques: Jacobi; Gauss-Seidel; JOR; SOR; 

cyclic reduction; multi-coloring technique. Finally, the 

concept of systolic networks is introduced, defined as 

parallel, co-operating pipelines of systolic arrays (area 

expansion) or co-operating systolic iterative structures 

(time expansion). An interesting development would be the 

integration of optical data transmission lines, to formulate 

3-d 'prismatic' systolic networks, in order to overcome 

interconnection and communication problems. The importance 

of matrix-vector multiplication in scientific and signal 

processing applications, suggests a wide range of applica

tions for the unidirectional, as well as the iterative, 

arrays discussed in this chapter; thus, a further develop

ment would be the comparison of their performance with that 

of existing arrays, in other specific applications. 

Chapter 7 develops further the idea of combining sys

tolic arrays to produce pipelines or iterative structures , 

following the reasoning of area-time expansion schemes. A 

new group of systolic algorithms is introduced, based on 

successive matrix-matrix multiplications. Previously, suc

cessive matrix multiplication algorithms had been considered 

as too expensive to implement, in terms of both storage and 

processing; further, they introduced scaling and 



- 517 -

normalisation problems. However, the advances in technology 

make possible the consideration of these algorithms that 

introduce a high degree of parallelism, provided that scal

ing and normalisation problems are solved satisfactorily. 

Thus, matrix-matrix multiplication arrays are combined to 

form systolic pipelines or iterative structures, and used 

for the solution of a variety of problems: iterative solu

tion of linear systems; eigenproblem solution, with Power, 

Matrix Squaring and Raised Power methods; matrix inversion; 

matrix polynomial evaluation; approximation of matrix func

tions, such as: exponential; square root; inverse square 

root; cosine and sine; and logarithm of a matrix. As a con

clusion we should notice that the general significance of 

this group of algorithms has not been fully investigated, 

not only in the area of systolic computing, but also in the 

general field of large-scale scientific computation, where 

the 'matricialization' of the basic functional units and 

algorithms is also under consideration. 

Chapter 8 presents some optical systolic algorithms, 

for fundamental matrix computations, such as matrix-matrix 

multiplication and LU decomposition. Initially, the direct 

mapping of VLSI algorithms on to optical processors is 

investigated, and a framework for generalising this tech

nique is given. The implementation of the R+F method is also 

introduced to improve the efficiency of some optical sys

tolic algorithms. Then, the Outer Product processor is 

presented and the potential of 3-d parallelism is exploited 



- 518 -

to produce optical systolic algorithms with higher perfor

mance and reduced hardware requirements. An Outer Product 

processor for banded matrix computations is defined, and 

used for the optical implementation of a wide range of sys

tolic algorithms, mainly based on Gauss Elimination. 

Finally, some of the problems of the optical implementation 

of systolic algorithms are briefly discussed: first the 

utilization of the Digital Multiplication through Analog 

Convolution (DMAC) algorithm, for acquiring digital accuracy 

in the computations; second the combination of electronic 

and optical components into hybrid processors. As a conclu

sion, we should point out that optical computing is an area 

that is by no means 'settled', either in terms of the under

lying technology, or in terms of theory and applications, 

i.e. the potential of optical computing has not been fully 

understood. Herein we only give some indications of the pos

sible applications of optical computing concepts on systolic 

algorithms, and parallel processing. 

Summarizing, we can say that the main subject of this 

work is the investigation of new systolic algorithms for 

numerical computation, where 'new' may mean: 

New groups of algorithms: solution of polynomial equations; 

evaluation and solution of characteristic equations; algo

rithms involving successive matrix powers. 

New algorithms in traditional areas of research: updating of 

LU factors; inverse iteration; algorithms for iterative 



- 519 -

solution of linear equations using cyclic reduction, multi

coloring techniques. 

Improvements of existing algorithms: LU/LDU decomposition; 

matrix-vector multiplication; iterative solution of linear 

systems; power method. 

The OCCAM programming language for parallel processing 

is extensively used for the soft~systolic simulation, and 

the partial verification, of the algorithms presented. By 

soft-systolic simulation we mean the simulation of systolic 

designs on a conventional uniprocessor, using the method of 

soft-systolic algorithm development. By verification we 

simply mean the production of expected results for given 

inputs. Thus, systolic architectures are considered as net

works of processes, rather than processors, and the computa

tion is data-driven. Further, no attempt is made to optimise 

the performance of the programs for a specific parallel pro

cessing computing structure. However, a methodology is 

developed that considerably simplifies the development and 

manipulation of systolic algorithms, using OCCAM. Finally, 

all programs (and algorithms) retain the possibility of 

direct implementation on VLSI processor arrays (transputer 

networks) with only minor modifications. 

Further, an important recurring theme is the area-time 

tradeoffs, especially in the form of area-time expansion 

schemes for the systolic implementation of iterative algo

rithms, i.e: solution of polynomial equations; iterative 



- 520 -

solution of linear systems; algorithms involving successive 

matrix powers. Moreover, the possible interconnection of 

systolic arrays, in the form of systolic pipelines and 

iterative structures, is addressed, in an attempt to develop 

systolic systems for the solution of complex problems, based 

on simple building blocks. Thus, a new level of pipelining 

is introduced, in addition to bit-level, arithmetic opera

tion level and 'block of computations' level. It can be 

termed pipelining at an 'algorithmic level': complex algo

rithms can be decomposed into simpler ones, which form a 

structure that can be expanded either in area, to produce 

systolic pipelines or networks, or in time, to produce 

iterative systolic arrays, with limited reconfigurability. 

Finally, the impact of the advances in optics technol

ogy and optical computing is discussed, and the optical 

implementation of systolic algorithms is further investi

gated. Basic systolic algorithms for VLSI are modified in 

order to be implemented on to optical processors. The soft

systolic simulation technique is used to simulate optical 

algorithms in OCCAM. Therefore, it can be argued that the 

simulation of algorithms and architectures for optical com

puting consists a new application field for the OCCAM pro

gramming language. The programs presented herein offer some 

initial indications in this direction. 

Using the classification of systolic algorithms of sec

tion 3.5, it is possible to categorize the new algorithms 



- 521 -

presented in this thesis, in the four groups: hard, soft, 

hybrid and optical systolic algorithms. Initially, it is 

clear that all algorithms can be classified as soft

systolic, in the sense that they are conceived and simulated 

as networks of processes; thus it is relatively straightfor

ward to map them on to an appropriate computing structure 

(transputer network). Notice that the optical-systolic algo

rithms, especially in sections 8.4 and 8.5 are the most dif

ficult to map due to global interconnections; however a map

ping is still possible, and the classification legal. 

In the optical-systolic group, apart from the algo

rithms in chapter 8, we may add some of the systolic pipe

lines and networks described in section 6.5 and 6.6, as well 

as chapter 7, because of the optical data interconnections 

that may be used. 

Hybrid-systolic algorithms allow for programmable com

ponents with significant amounts of local memory and con

trol. In this category we could include the iterative struc

tures for successive matrix-matrix or matrix-vector multi

plications, in chapters 6 and 7. Further, the block (2x2) 

R+F decomposition array of section 5.2, the rectangular 

array for updating LU factors in section 5.3, and the pro

grammable linear array for inverse iteration. Finally, all 

hard-systolic algorithms can be seen as hybrid ones. 

In the class of hard-systolic algorithms, we can iden

tify the polynomial equation solvers, in chapter 4, since 



- 522 -

they involve minimum programmability and memory; however, a 

general ring architecture would be hybrid-systolic. 

Further, in the same class we can include: the linear array 

for updating LU factors in section 5.3; the inverse itera

tion array in section 5.4; the matrix-vector multiplicaton 

arrays and the related simple pipelines in chapter 6. Notice 

that, all linear arrays that can be seen as degenerate 2-d 

arrays may well be classified as hybrid-systolic designs, in 

the sense that they can be transformed into pure 1-d struc

tures, if adequate local memory is available. 



- 522.1 -

In this thesis we have investigated a wide range of 

numerical algorithms and, to some extent, have achieved some 

unification by applying similar structures and methodology 

to this diversity. Thus, some generic systolic architectures 

can be identified; for each generic structure, we can out

line a class of corresponding algorithms. The algorithms 

belonging to a specific group can be implemented on the 

corresponding architecture, provided that the systolic sys

tem is appropriately programmed and/or reconfigured. These 

systolic systems can be envisaged either as special-purpose 

systolic computers, implementing hybrid-systolic algorithms, 

or as soft-systolic structures performable on a general

purpose parallel processing computer. Therefore, the follow

ing structures, and related groups of algorithms can be 

identified:· 

Systolic Ring architecture, for polynomial computations, 

e.g. solution of polynomial equations, (see chapter 4). 

Systolic Networks, based on mvm - mmm arrays, for algo

rithms involving successive mvips - mmips computations, 

e.g. iterative solution of linear systems of equations, 

(see chapter ,6); or matrix squaring algorithms, (see 

chapter 7). 

Optical Systolic Outer Product Processor, for optical 

systolic algorithms decomposable in simple outer product 

steps, e.g. Gauss elimination, (see chapter 8). 



- 522.2 -

The Systolic Ring archiecture, for the solution of 

polynomial equations can be viewed as a three-part system. 

The main component is a pipeline structure capable of per

forming one or more polynomial evaluations at given points, 

which can provide the approximations to the roots sought. 

Then, another processor can check for the convergence of the 

method; finally a processor can close the ring by producing 

either the results or new approximations, if necessary. It 

may be possible for several methods to be implemented, 

depending on the computations performed in the pipeline and 

the configuration of the convergence and approximation pro

cessors. The Systolic Ring may process many polynomials in 

parallel, or may produce a number of roots of the same poly

nomial in parallel. Further, the pipeline can be used for 

other computations, such as polynomial multiplication, syn

thetic division, polynomial division, etc. 

Systolic Networks have been defined as parallel, co

operating systolic designs, each design having the form of 

either a pipeline of systolic arrays, or an iterative sys

tolic structure. The basic component of the system is a 

number of mvm (and/or mmm) systolic arrays for full (or 

banded) matrix computations. These arrays can be combined 

through a reconfigurable interconnection system, which 

allows the outputs of an array to be routed to other arrays 

and, possibly, back to the input of the same array. This 

feature is especially useful for 

multi-coloring methods, as well as 

cyclic 

in the 

reduction 

computation 

and 

of 



- 522.3 -

matrix functions. A number of processors, attached to the 

interconnection system, can be used for further simple pro

cessing of the intermediate results, as they are routed 

through the network for the next iteration. This is, for 

example, the case of additional IPS operations required in 

some iterative methods for solving linear systems of equa

tions, e.g GS method, or JOR method for 2-cyclic matrices. 

Finally, the Systolic Network should be accompanied with 

adequate memory for storing matrix operands andjor inter

mediate results. The storage of matrix operands is necessary 

in the case of iterative structures based on mvm or mmm 

arrays, while the storage of intermediate results is useful 

in the two-stage recurrences for the computation of matrix 

functions. 

The Outer Product Processor can be used as the basic 

component for the construction of hybrid optical-electronic 

processors, implementing optical systolic algorithms based 

on banded mmm computations decomposable in a series of outer 

products. The processor is compared favourably with the opt

ical processor discussed in [13], since it requires less 

area and is problem size-independent. A number of Outer Pro

duct Processors can operate in parallel to perform multiple 

outer products using the same coefficient marix,· as is the 

case in Gauss elimination algorithms. Further, a feedback 

mechanism may allow the use of the processor for algorithms 

based on successive mmm's. 



9.2 SOME FURTHER SUGGESTIONS 

In less than ten years since the first publication on 

systolic algorithms and architectufes, research on systolic 

systems has undergone an impressive expansion, covering a 

large number of very divergent areas, as shown in sections 

1.1 and 1.2. This thesis is just a small example of this 

multi-disciplinary research effort, as it tries to combine 

numerical algorithms, parallel processing languages and pro

gramming techniques, VLSI processor arrays and optical com

puting, using the systolic approach as the connecting theme. 

However, as systolic computing and systems research 

reaches its first decade, there awaits the imperative task 

of actually implementing a significant proportion of the 

ideas set forth - mainly algorithms and architectures. This 

implementation side is the one that requires further 

development, for the systolic approach to be established as 

one of the major contenders in parallel processing. 

In this direction, we can distinguish three types of 

implementation strategies, roughly corresponding to the pro

posed classification of systolic algorithms. Firstly, algo

rithmically specialized systems: they can perform a limited 

number of algorithms; they correspond to the groups of hard, 

and optical systolic arrays, with limited programmability 

and memory, and are of major interest for critical algo

rithms in real-time signal and image processing. Then, 

special-purpose systolic computers: they can perform a large 



- 524 -

number of algorithms in some specific areas of computing, 

e.g. computer vision, specific matrix computations, solution 

of certain differential equations; they correspond to 

hybrid-systolic algorithms and are of main interest as 

attached units in large-scale scientific computers and 

signal-image processing research. Finally, general-purpose 

parallel computers: they can perform algorithms from a large 

number of areas of computing, in addition to the ones 

already referred to, e.g. general numerical applications, 

data structures and data bases, systems programming, artifi

cial intelligence; they correspond to soft-systolic algo

rithms and are of general interest for the development of 

parallel processing. 

The problems that have to be solved in all these three 

implementation strategies can be summarized under the head

ings: hardware implementation of computing structures; 

overall system design and programming; algorithm design and 

development (see also section 1.2). However, the relative 

wei~hting of the problems for each strategy may be dif

ferent. 

Thus, for algorithmically specialized systems, it is 

important to minimize the system design costs and to achieve 

very high performances. Therefore, the main research effort 

is concentrated on the topics: automated design of systolic 

algorithms and architectures; use of specialized Computer 

Aided Engineering (CAE) tools; hardware and/or algorithmic 



- 525 -

fault-tolerance; efficient problem partitioning; use of Very 

High Speed Integrated Circuits (VHSIC), and/or hybrid 

optical-electronic processors; area and time optimization at 

all levels, [171], [217], [264], [302]. 

For special-purpose systolic computers, it is important 

to achieve a combination of relative flexibility and high 

performance. Therefore, the main research effort is concen

trated on the overall system design and architecture, so 

that it will be suitable for some 'generic' algorithms, 

representing the areas of specialization. Problems such as 

processor and interconnection complexity, host-system com

munication and environment for program development are very 

significant. Notice that the algorithms now have to match 

the architecture, in a way similar to that of a low-level 

sequential machine environment. A good example for this 

implementation strategy is the recently commercially avail

able, warp machine. 

Further, for general-purpose parallel computers, the 

problems start from the definition itself: for the 'generic' 

algorithms are too general (or too many) with a large number 

of tradeoffs to be balanced, and thus a large number of 

alternatives to be followed. Therefore, the main research 

effort is to achieve near-optimal balance between computa

tion and communication for algorithms that vary considerably 

in their pattern of parallelism. Problems arise at the level 

of processor and interconnection complexity: 'clusters' of 



- 526 -

processors and multiple interconnections are being con

sidered. Further, at the algorithm design level, the algo

rithm itself may be detached from the computer structure 

geometry, and therefore the problem of the optimal mapping 

of the algorithm on to the structure is very important. For 

the moment, the soft-systolic approach produces useful 

results in the areas of systems programming, as well as 

logic programming; further, the concept of Instruction Sys

tolic Machines is investigated, that distribute systolically 

both instructions and data, [156], [256], [286]. 

Finally, we think that the combination of the soft

systolic concept with other, competing and/or closely 

related approaches in parallel processing may be fruitful; 

such examples are the Hypercube computer, the Connection 

machine [264] and the Reconfigurable Array Processor (RPA) 

[150]. Also, recent developments in parallel reduction sys

tems [208], [281]; multi-valued logic [213]; neural systems 

(using optical computing techniques) [279]; VLSI and optical 

cellular computers [55], [70-71]; and molecular computers 

(in relation to cellular automata) [66], constitute an 

interesting challenge for further cross-fertilization of the 

systolic concept with other radical approaches in parallel 

computing. 

What is imperative, in all the above strategies, is the 

formulation of a simple, but powerful, notation (language), 

for the development of parallel processing algorithms in 



- 527 -

general and systolic algorithms specifically. In this direc

tion, OCCAM proves to be a very useful tool, although not 

fully developed yet. Furthermore, the ability to build, 

using transputers, many types of experimental parallel 

machines, is very important for the development of systolic 

(and parallel) algorithms and architectures. 

This thesis is completed with a comprehensive list of 

references, followed by an Appendix on OCCAM, the Lough

bourough implmentation of the language, and a selection of 

programs, simulating some of the systolic algorithms pro

posed herein. 



R E F E R E N C E S 

1. Abdel Kader, A.A., "OCSAMO: A Systolic Array for matrix 
operations", in Proc. CONPAR 86, Springer-verlag, 1986, 
pp. 319-328. 

2. Abushagur, M.A.G., caulfield, H.J., "Speed and conver
gence of bimodal optical computers", Optical Engineer
ing, 1987(26), pp. 22-27. 

3. Adams, L., "Iterative algorithms for large sparse 
linear system on parallel computers", Ph.D. thesis, 
Virginia University, 1982. 

4. Alves Marques, I., cunha, A., "Clocking of 
cults", in "VLSI Architecture", Randell, 
(eds.), Prentice-Hall, 1983, pp. 165-178. 

VLSI cir
B., et al. 

5. Ahmed, H.M., Delosme, J., Morf, M., "Highly Concurrent 
Computing Structures for Matrix Arithmetic and Signal 
Processing", IEEE Computer, 1982( 15), pp. 65-82. 

6. Ang, P.H., Morf, M., "Concurrent Array Processor for 
Fast Eigenvalue Computations", Proc. IEEE ICASSP 1984, 
pp. 34A.2.1-34A.2.4. 

7. 

8. 

9. 

10. 

Annaratone, M., et al., "Extending the 
with a Boundary Processor", Proc. 
1985(564), pp. 56-65. 

CMU warp Machine 
SPIE, RTSP VIII, 

Annaratone, M., et al., "Warp Architecture and 
mentation", Proc. 13th Annual Intern. Symposium 
puter Architecture, Tokyo, 1986, pp. 346-356. 

Arnould, E. et al., "ASystolic Array Computer", 
IEEE ICAASP, 1985, pp. 6.11.1-6.11.4. 

Imple
on Corn-

Proc. 

Arrathoon, R., "Digital Optical Computing: 
ties and pitfalls", Proc. SPIE, RTSP VIII, 
pp. 108-118. 

possibili-
1985(564), 

11. Arrathoon, R. et al., "Digital Convolution and Correla
tion with Electrooptic Bragg Processors", Proc. SPIE, 



12. 

13. 

- 529 -

RSIP VII, 1984(495), pp. 150-158. 

Athale, R.A., Collins, w.c., Stiluell, 
accuracy matrix multiplication with outer 
cal processor", Applied Optics, 1983(22), 

P.D., "High 
product opti
pp. 368-370. 

Athale, R.A., 
Outer-Product 
931-941. 

Lee, J.N., 
Concepts •, 

"Optical Processing using 
Proc. IEEE, 1984(72), pp. 

14. Athale, R.A., Lee, J.N., Hoang, H.Q., "High accuracy 
matrix-multiplication with a magnetooptic spatial light 
modulator", Proc. SPIE, RTSP VI, 1983(441), pp. 187-
193. 

15. Atkinson, K.E., "An Introduction 
Analysis", John Wiley, 1978. 

to Numerical 

16. Avila, J.H., Kuekes, P.J., "A one gigaflop VLSI sys
tolic processor", Proc. SPIE, RTSP VI, 1983(441), pp. 
159-165. 

17. Bartels, R.H., "A Stabilization of the Simplex Method", 
Numer. Math., 1971(16), pp. 414-434. 

18. Barth, B., Martin, R.S., Wilkinson, J.H., "Calculation 
of the Eigenvalues of a Symmetric Tridiagonal Matrix by 
the Method of Bisection", Numer. Math., 1967(9), pp. 
386-393. 

19. Bekakos, M.P, 
puters and 
Thesis, Dept. 

"A study of Algorithms for Parallel 
VLSI Systolic Processor Arrays", 
of Computer Studies, LUT, 1986. 

Com
Ph.D 

20. Bekakos, M.P., Evans, D.J., "The Exposure and Exploita
tion of Parallelism in Fifth Generation Computer Sys
tems", Proc. Parallel Computing '85, North-Holland, 
1986, pp. 425-442. 

21. Bekakos, M.P., Evans, D.J., "A Rotating and 
Algorithm using a two-dimensional 'Systolic' 
tion Geometry", Parallel Computing, 1988, in 

22. Bellman, R., "Introduction 
McGraw-Hill, 1960. 

to Matrix 

'Folding' 
Communica
press. 

Analysis", 

23. Bennet, J .M., "Triangular Factors of Modified 
Matrices", Numer. Math., 1965(7), pp. 217-221. 

24. Bertossi, A.A., Bonuccelli, M.A., "A VLSI Implementa
tions of the Simplex Algorithm", IEEE, Trans. on Com
puters, 1987(C-36), pp. 241-247. 

25. Berzins, M., Buckley, T.F., Dew, P.M., "Systolic Matrix 



- 530 -

Iterative Algorithms", Proc. Parallel Computing '83, 
North-Holland, 1984, pp. 483-488. 

26. Blackmer, J., Kuekes, P., Frank, G., "A 200 MOPS sys
tolic processor", Proc. SPIE, RTSP IV, 1981(298), pp. 
10-18. 

27. Blum, E.K., "Numerical Analysis and Computation: Theory 
and Practice", Addison-Wesley, 1972. 

28. Bocker, R.P., "Algebraic operations performable with 
electrooptical engagement array processors", Proc. 
SPIE, Optical Information Processing, 1983(388), pp. 
212-220. 

29. Bocker, R.P., Bromley, K., Clayton, S.R., "A digital 
Optical Architecture for performing matrix algebra", 
Proc. SPIE, RTSP VI, 1983(441), pp. 194-200. 

30. Bocker, R.P., Caulfield, H.J., Bromley, K., "Rapid 
unbiased Bipolar Incoherent Calculator Cube (RUBIC)", 
Proc. SPIE, Optical Information Processing, 1983(388), 
pp. 205-211. 

31. Bocker, R.P., et al., "Optical Fixed-Point Arithmetic", 
Proc. SPIE, RTSP VIII, 1985(564), pp. 150-156. 

32. Bodewig, E., "Matrix Calculus", North-Holland, 1959. 

33. Bojanczyk, A., Brent, R.P., "Tridiagonalisation of a 
symmetric matrix on a square array of mesh-connected 
processors", Technical Report CMA-R45-83, Centre for 
Mathematical Analysis, Australian National University, 
1983. 

34. Bojanczyk, A., Brent, R.P., Kung, H.T., "Numerically 
stable solution of Dense System of Linear Equations 
using Mesh-Connected Processors", SIAM J. on Scientific 
and statistical Computing, 1984(5)~.-95=TO • 

35. 

36. 

Brenner, K.H., Lohmann, A.W., "The 
puting Program at Erlan~en", 
Springer-Verlag, 1986, pp. 69-75. 

Digital Optical Com
Proc. CONPAR '86, 

Brent, R.P., Kung, H.T., 
Time GCD Computation", 
1984(C-33), pp. 731-736. 

"Systolic Arrays 
IEEE, Trans. on 

for Linear 
Computers, 

37. Brent, R.P., Kung, H.T., Luk, F.T., "Some Linear-time 
Algorithms for Systolic Arrays", Proc. 9th World Com
puter Congress, Paris, 1983, pp. 19-23. 

38. Brent, R.P., Luk, F.T., "A Systolic Architecture for 
almost Linear-time solution of the Symmetric Eigenvalue 



- 531 -

Problem", Tech. Report TR-CS-82-10, Depart. of Comp. 
Sci., Australian National Univ., Canberra, 1982. 

39. Brent, R.P., Luk, F.T., "The solution of Singular Value 
Problems using Systolic Arrays", Proc. SPIE, RTSP VII, 
1984(495), pp. 7-12. 

40. Brent, R.P., Luk, F.T., Van Loan, C., "Computation of 
the Singular Value Decomposition using Mesh-Connected 
Processors", Proc. SPIE, RTSP VI, 1983(441), pp. 66-71. 

41. Brochard, ~·· "Domain Decomposition and Relaxation 
Methods", 1n "Parallel Algorithms and Architectures", 
Cosnard, M. et. al. (eds.), North-Holland, 1986, pp. 
61-72. 

42. Brodetsky, s., Smeal, G., "On Graeffe's Method for Com
plex Roots of Algebraic Equations", Proc. Cambridge 
Philosophical Society, 1924(22), pp. 83-87. 

43. Bromley, K., et al., "Systolic Array Processor Develop
ments", in "VLSI Systems and Computations", Kung, H.T., 
et al. (eds.), Computer Science Press, 1981, pp. 273-
284. 

44. Broomhead, D.S., et al., "A practical comparison of the 
Systolic and wavefront Array Processing Architectures", 
Proc. IEEE ICASSP, 1985, pp._8.7.1-8.7.4. 

45. Brudaru, 0., "Systolic Algorithms to solve Linear Sys
tems by Iteration Methods", Computer Centre, Polytechn
ical Institute, Iasi, Romania, 1985. 

46. Capello, P.R., Steiglitz, K., "Digital Signal Process
ing Applications of Systollc Algorithms", in "VLSI Sys
tems and Computations", Kung, H.T., et al. (eds.), 
1981, pp. 245-254. 

47. Capello, P.R., steiglitz, K., "Selecting Systolic 
Designs us1ng Linear Transformations of Space-Time", 
Proc. SPIE, RTSP VII, 1984(495), pp. 75-85. 

48. Carnahan, B., Luther, H.A., Wilkes, J.O., "Applied 
Numerical Methods", John Wiley, 1969. 

49. Cartwright, s., Gustafson, s.c., "Convolver-based opti
cal systolic processing architectures", Optical 
Engineering, 1985(24), pp. 59-64. 

50. Casasent, D., "Acoustooptic Linear Algebra Processors: 
Architectures, Algorithms and Applications", Proc. 
IEEE, 1984(72), pp. 831-849. 

51. Casasent, D., Ghosh, A., "Optical Linear Algebra", 



- 532 -

Proc. SPIE, Optical Information Processing, 1983(388), 
pp. 182-189. 

52. Casasent, D., Ghosh, A., Neuman, C.P., "Direct and 
Indirect Optical Solutions to Linear Algebraic Equa
tions: Error Source Modeling", Proc. SPIE, RTSP VI, 
1983(441), pp. 201-208. 

53. 

54. 

Casasent, 
tions to 
Number of 
102-108. 

D., Ghosh, A., Neuman, C.P., "Iterative Solu
Nonlinear Matrix Equations using. a Fixed 

steps", Proc. SPIE, RTSP VII, 1984(495), pp. 

Casasent, D., Taylor, B.K., 
Processor", Proc. SPIE, RTSP 
149. 

"Optical Finite Element 
VIII, 1985(564), pp. 139-

55. Caulfield, H.J., "Optical Cellular Array Processors", 
Proc. SPIE, RTSP VIII, 1985(564), pp. 45-48. 

56. Caulfield, H.J., Gruninger, J.H., Cheng, W.K., "Using 
Optical Processors for Linear Algebra", Proc. SPIE, 
Optical Information Processing, 1983(388), pp. 190-196. 

57. Caulfield, H.J., Putman R.S., "Fault tolerance and 
self-healing in Optical Systolic Array Processors", 
Optical Engineering, 1985(24), pp. 65-67. 

58. Caulfield, H.J., et al., "Optical I~plementation of 
Systolic Array Processing", Optics Communications, 
1981(40), pp. 86-90. 

59. Chandy, K.M., Misra, J., "Systolic algorithms as pro
grams'', Distributed Computing, 1986(1), pp. 177-183. 

60. Chapman, R., Durrani, T.S., Willey, T., "Design Stra
tegies for Implementing Systolic and wavefront Arrays 
using OCCAM", Proc. IEEE ICASSP, 1985, pp. 8.6.1-8.6.4. 

61. Chen, M.C., Mead, C.A., "Concurrent Algorithms as 
Space-Time Recursion Equations", in "VLSI and Modern 
Signal Processing", Kailath, T., et al, (eds.), 
Prentice-Hall, 1985, pp. 224-240 . 

. 62. Chen, M.J., Yao, K., "On Realizations of Least-Squares 
Estimation and Kalman Filtering by systolic Arrays", 
Proc. Int. workshop on Systolic Arrays, Univ. of 
Oxford, 1986, pp. 161-170. 

63. Codenotti, B., "The Matrix Equation MX+XN=B in the VLSI 
Model'', International J. of Computer Mathematics, 
1986(19), pp. 93-98. 

64. Cohen, A.M., "Numerical Analysis", McGraw-Hill, 1973. 



---- -- ----------------------------
- 533 -

65. Collar, A.R., "Some notes on Jahn's method for the 
improvement of approximate latent roots and vectors of 
a square matrix", Quart. J. of Mechanical and Applied 
Maths, 1948(1), pp. 145-148-

66. Conrad, 
puter", 
480. 

M., "On design principles for a Molecular Corn
Communications of the ACM, 1985(28), pp. 464-

67. Cooley, E.S., Israel, s.c., "Sideways Summer", Proc. 
SPIE, RTSP VIII, 1985(564), pp. 98-100. 

68. Cosnard, M., Robert, Y., Trystram, D., "Parallel Solu
tion of Dense Linear Systems using Diagonalization 
Methods", Intern. ~· Computer Math, 1988, in press. 

69. Csanky, L., "Fast Parallel Matrix Inversion Algo
rithms", SIAM~· of Computing, 1976(5), pp. 6i8-623. 

70. Culik, II,K., Gruska, J., Salomaa, A., 
Trellis Automata, Part I and II", Intern. 
Math., 1984(15), pp. 195-212; 1984(16), pp. 

"Systolic 
J. Computer 
J-22. 

71. Culik, II,K., Yu, S., "Fault-tolerant schemes for some 
systolic systems", Intern.~· Computer Math., 1987(22), 
pp. 13-42. 

72. Dahlquist, G., Bjork, 
Prentice-Hall, 1974. 

A~, "Numerical Methods", 

73. Danielsson, P.E., "Serial/Parallel Convolvers", IEEE, 
Trans. on Computers, 1984(C-33), pp. 652-667. 

74. Davis, G.J., "Numerical Solution of a Quadratic Matrix 
Equation", SIAM, J. Sci. Stat. Comput., 1981(2), pp. 
164-175. 

75. Da~is, J.A., Jones, K.D., Lilly, R.A., "Improved system 
for binary multiplication by optical convolution", Opt
ical Engineering, 1986(25), pp. 572-574. 

76. Delosme, J .M., Ipsen, I .C.F., •systolic 
thesis: Computability and Time Cones", 
Algorithms and Architectures", Cosnard, 
(eds.), North-Holland, 1986, pp. 295-316. 

Array Syn
in "Parallel 
M., et al. 

77. Delosme, J.M., Ipsen, I.C.F., "Efficient Systolic 
Arrays for the solution of Toeplitz systems: an illus
tration of a methodology for the construction of Sys
tolic Architectures in VLSI", Proc. Int. Workshop on 
Systolic Arrays, Univ. of Oxford, 1986, pp. 37-46. 

78. Denyer, P.B., "An Introduction to bit-serial 
tures for VLSI signal processing", 

architec
in "VLSI 



- 534 -

Architecture", Randell, B., et al. (eds.), Prentice
Hall, 1983, pp. 225-241. 

79. Denyer, P.B., Smith, S.G., "Bit Serial Architectures 
for Parallel Arrays", Proc. SPIE, Highly Parallel Sig
nal Processing Architectures, 1986(614), pp. 66-73. 

80. Dew, P.M., "VLSI Architectures for problems in Numeri
cal Computation", in "Supercomputer and Parallel Compu
tation", Paddon, D.J. (ed.), Oxford Univ. Press, 1984, 
pp. 1-24. 

81. Dew, P.M., Manning, L.J., "Comparison of Systolic and 
SIMD Architectures for Computer Vision Computations", 
Proc. Int. Workshop on Systolic Arrays, Univ. of 
Oxford, 1986, pp. 273-282. 

82. Dew, P.M., Manning, L.J., McEvoy, K., "A tutorial on 
Systolic Array Architectures for High Performance Pro
cessors", Univ. of Leeds, Technical Report 205, 1986. 

83. Distante, F., Sami, M.G., "A Protocol for Asynchronous 
wavefront Computation Arrays", Proc. Int. Workshop on 
Systolic Arrays, Univ. of Oxford, 1986, pp. 249-258. 

84. Drake, B.L., Backer, R.P., "A Highly Parallel Algorithm 
for Computing the Singular Value Decomposition using 
Optical Processi~g Techniques", Proc. SPIE, RTSP VII, 
1984(495), pp. 166-174. 

85. Drake, B.L., et al., 
modified signed-digit 
Engineering, 1986(25), 

"Photonic computing using the 
number representation", Optical 

pp. 38-43. 

86. Dunway, D.K., "Calculation of the zeros of a real poly
nomial through factorization using Euclid's algorithm", 
SIAM~· Numer. Anal., 1974(11), pp. 1087-1104. 

87. Eichman, G., "Systolic Arrays for Eigenvalue Computa
tion", Proc. SPIE, RTSP VIII, 1985(564), pp. 39-44. 

88. El-Amawy, A., Porter, W.A., Aravena, J.L., "Array 
architectures for iterative matrix calculations", Proc. 
IEEE, 1987(134-E), pp. 149-154. --

89. Ersoy, o., "Semisystolic Array Implementation of Circu
lar, Skew Circular and Linear Convolutions", IEEE, 
Trans. on Computers, 1985(C-34), pp. 190-196. ----

90. Evans, D.J., "Computation of eigenvalues and eigenvec
tors of a symmetric quindiagonal matrix", J. of Com~u
tational and Applied Mathematics, 1977(3), pp.-r31-1 1. 

91. Evans, D.J., "Parallel Processing Systems", Cambridge 



- 535 -

Univ. Press, 1982. 

92. Evans, D.J., "Systolic Arrays" and "Design of Systolic 
Arrays", Lecture Notes, Dept. of Computer Studies, LUT, 
1986. 

93. Evans, D.J., Bekakos, M.P., "On the Implementation of 
Acousto-optic Cells for a 'Rotating' and 'Folding' 
Algorithm Systolization", Intern. J. Computer Math., 
1986(20), pp. ·123-129. 

94. Evans, D.J., Bekakos, M.P., Margaritis, K.G., "Optical 
'Dequeues' for a 'R and F' systolic LU-factorization of 
Tridiagonal Systems", Proc. 4th Int. Symposium on Opt
ical and Optoelectronic Applied Science and Engineer
ing, Hague, 1987. 

95. Evans, D.J., Margaritis, K.G., "Optical Implementation 
of Banded Matrix Algorithms using outer products", 
Proc. 4th Int. Symposium on Optical and Optoelectronic 
Applied Science and Engineering, Hague, 1987. 

96. Evans, D.J., Margaritis, K.G., "Systolic Designs for 
the Root-Squaring Method", Intern. i!_. Computer Math., 
1987(22), pp. 43-62. 

97. Evans, D.J., Margaritis, K.G., "Improved Systolic 
designs for Iterative solution of Linear systems", in 
Proc. NUMETA '87, Swansea, 1987, pp. Sl8.1-Sl8.17. 

98. Evans, D.J., Margaritis, K.G., Bekakos, M.P., "A sys
tolic and holographic pyramidical soft-systolic designs 
for successive matrix powers", Parallel Computing, 
1988, in press. 

99. Evans, D.J., 
Acousto-optic 
a 2-D Systolic 
cations, 1988. 

Margaritis, K.G., Bekakos, M.P., "On 
cell planes to map a R+F algorithm using 
geometry", to appear in Optics Communi-

100. Evans, D.J., Megson, G.M., "Romberg integration using 
systolic Arrays", Parallel Computing, 1986(3), pp. 
289-304. 

101. Evans, D.J ., Shanehchi, J ., Rick, C.C., "A Modified 
Bisection Algorithm for the Determination of the Eigen
values of Symmetric Tridiagonal Matrix", Numer. Math., 
1982(38), pp. 417-419. --

102. Fiat, A., Shamir, A., Shapiro, E., "Polymorphic Arrays: 
an architecture for a programmable systolic machine", 
Technical Report, CS84-20, Weisman Institute of Sci
ence, Rehovot, Israel, 1984. 



- 536 -

103. Fisher, A.L., Kung, 
Processor Arrays", 
34), pp. 734-740. 

H.T., "Synchronizing Large VLSI 
IEEE, Trans. on Computers, 1985(C-

104. Fisher, A.L., Kung, H.T., "Special purpose VLSI Archi
tectures: general discussions and a case study", in 
"VLSI and Modern Signal Processing", Kailath, T., et 
al. (eds.), Prentice-Hall, 1985, pp. 153-169. 

105. Fletcher, R., Mathews, S.P.J., "Stable modification on 
explicit LU factors for simplex updates", Technical 
Report, NA/64, Dept. of Mathematical Sciences, Univ. of 
Dundee, 1983. 

106. Forsythe, G.E., Malcolm, M.A., Moler, C.B., "Computer 
methods for Mathematical Computations", Prentice-Hall, 
1977. 

107. Fortes, J.A.B., "Algorithm Reconfiguration Techniques 
for Gracefully Degradable Processor Arrays", Proc. Int. 
Workshop on Systolic Arrays, Univ. of oxford, 1986, pp. 
259-268. 

108. Fortes, J.A.B., Fu, K.S., Wah, B.W., "Systematic 
Approaches to the Design of Algorithmically Specified 
Systolic Arrays", Proc. IEEE ICASSP, 1985, pp. 8.9.1-
8.9.4. 

109. Foster, M,J., Kung, H.T., "The design of s~ecial pur
pose VLSI chips", IEEE Computer, 1980(13), pp. 26-40. 

110. Frison, P., Quinton, P., "An integrated systolic 
machine for speech recognition" in "VLSI: Algorithms 
and Architectures", Bertolazzi, P., et al. (eds.), 
North-Holland, 1985, pp. 175-186. 

111. Froberg, C.E., "Introduction to Numerical Analysis", 
Addison-Wesley, 1965. 

112. 

113. 

Gachet, P., Joinnault, 
Systolic Arrays using 
Systolic Arrays, Univ. 

Gentleman, W.M., Kung, 
by systolic arrays", 
pp. 19-26. 

B., Quinton, P., "Synthesizing 
DIASTOL", Proc. Int. Workshop on 
of Oxford, 1986, pp. 25-36. 

H.T., "Matrix triangularization 
Proc. SPIE, RTSP IV, 1981(298); 

114. Gerald, C.F., "Applied Numerical Analysis", Addison
Wesley, 1970. 

115. Gill, P.E., et al., "Methods for modifying Matrix Fac
torizations", Math. Comput., 1974(28), pp. 505-535. 

116. Goodman, J.W., et al., "Optical Interconnections for 



----------

- 537 -

VLSI Systems",~· IEEE, 1984(72), pp. 850-866. 

117. Golub, G.H., Van Loan, C.F., "Matrix Computations", 
North Oxford, 1983. 

118. Guerra, c., "A 
designs", Proc. 
pp.140-149. 

unifying framework for systolic 
AWOC '86, Springer-Verlag, 1986, 

119. Guerra, C., Kanade, T., 11 A systolic algorithm for 
Algorithms and Architec

(eds.), North-Holland, 
stereo matching", in "VLSI: 
tures", Bertolazzi, P., et al. 
1985, pp. 103-112. 

120. Guibas, L.J., Kung, H.T., Thompson, C.D., "Direct VLSI 
implementation of combinatorial algorithms", Proc. Cal
Tech Conf. on VLSI, 1979, pp. 509-525. 

121. Guibas, L.J., Liang, F.M., "Systolic stacks, queues and 
counters", Proc. of Conf. on Advanced Research in VLSI, 
M.I.T., 1982, pp. 155-164. 

122. Hasegawa, M., Shigei, Y., "AT2 =O(Nlog4 N), T=O(logN) 
FFT in a Light connected 3-Dimensional VLSI", Proc. 
13th Ann. Int. Symp. on Computer Architecture, Tokyo, 
1986, pp. 252-260. 

123. Hauck, C.E., Bamji, c.s., Allen J., ."The Systematic 
Exploration of Pipelined Array Multiplier Performance", 
Proc. IEEE ICASSP, 1985, pp. 38.3.1-38.3.4. 

124. Haynes, L.S., et al., "A survey of Highly Parallel Com
puting", IEEE Computer, 1982(15), pp. 9-24. 

125. Heller, D., "Partitioning Big Matrices for Small Sys
tolic Arrays", in "VLSI and Modern Signal Processing", 
Kailath, T., et al. (eds.), Prentice-Hall, 1985, pp. 
185-199. 

126. Heller, D.E., Ipsen, I.C.F., "Systolic Networks for 
Orthogonal Equivalence Transformations and their Appli
cations", Proc. of Conf. on Advanced Research in VLSI, 
M.I.T. I 1982, pp. 113-122. 

127. Helton, B.W., "Logarithms of Matrices", Proc. American 
Mathematical Society, 1968(19), pp. 733-~ 

128. Higham, N.J., "Newton's Method for the Matrix Square 
Root", Math. Comput., 1986(46), pp. 537-549. 

129. Hoskins, w.o., Walton, D.J., "A faster method 
puting the square root of a matrix", IEEE, 
Automatic Control, 1978(AC-23), pp. 494-~ 

of com
Trans. on 



- 538 -

130. Hossfeld, F., "Strategies for Parallelism in Algo
rithms", Lecture notes in IBM summer school in Parallel 
Computing, 1986. 

131. Hotelling, H., "Some new methods in matrix calcula
tion", Ann. Math. Stat., 1943(4), pp. 1-33. 

132. Hu, Y.H., "VLSI 
Eigen System", 
8.4.4. 

Architecture 
Proc. IEEE 

for solving Covariance 
ICASSP, 1985, pp. 8.4.1-

133. Hu, Y.H., Rung, S.Y., "Computation of m1n1mum eigen
va1ue of Toep1itz matrix by Levinson Algorithm", Proc. 
SPIE, RTSP IV, 1981(298), pp. 40-45. 

134. Huang, K.H., Abraham, J.A., "Algorithm based fault 
tolerance for matrix operations", IEEE, Trans. on Com
puters, 1984(C-33), pp. 518-528. -- -----

135. Hsu, F.H., et al., 
chip", Technical 
CMU, 1984. 

"LINC: the link and interconnection 
Report, Dept. of Computer Science, 

136. Hsu, I.N., et al., "The VLSI Implementation of a Reed
Solomon Encoder using Berlekamp's Bit-Serial Multiplier 
Algorithm", IEEE, Trans. on Computers, 1984(C-33), pp. 
906-911. 

137. Hwang, K., Briggs, F.A., "Comput~r Architecture and 
Parallel Processing", McGraw-Hill, 1984. 

138. 

139. 

Hwang, K., Cheng, Y.H., "Partitioned Matrix 
for VLSI Arithmetic Systems", IEEE, Trans. 
ers, 1982(C-31), pp. 1215-1224.--

Algorithms 
on Comput-

Ibarra, O.H., Kim, S.M., Palis, M.A., "Designing 
tolic Algorithms_ using Sequential Machines", 
Trans. on Computers, 1986(C-35), pp. 531-542. 

Sys
IEEE, 

140. Inmos Ltd., "OCCAM: user's manual", Prentice-Hall, 
1985. 

141. Inmos Ltd., "Trahsputer: reference manual", 1985, "The 
Transputer Family: product information", 1986. 

142. Ipsen, I.C.F., "Stable Matrix Computations in VLSI", 
Ph.D. thesis, Pennsylvania State University, 1983. 

143. Ipsen, 
tolic 
13-21. 

I.C.F., "Singular Value Decomposition with Sys
Arrays", Proc. SPIE, RTSP VII, 1984(495), pp. 

144. Jagadish, H.V., et al., "A study of Pipelining in Com
puting Arrays", IEEE, Trans. on Computers, 1986(C-35), 



- 539 -

pp. 431-440. 

145. Jahn, H.A., "Improvement of an approximate set of 
latent roots and modal columns of a matrix by methods 
akin to those of classical perturbation theory", Quart. 
~· of Mech. and~· Math., 1948(1), pp. 131-144. 

146. Jenkins, B.K., Giles, C.L., "Parallel Proce~sing Para
digms and Optical Computing", Proc. SPIE, Optical Com
puting, 1986(625), pp. 22-29. 

147. Jenkins, M., Traub, J., "A three-stage algorithm for 
real polynomials using quadratic iteration", SIAM J. 
Numer. Anal., 1970(7), pp. 545-566. ---

148. Jennings, w., "First Course in Numerical Methods", 
McMillan, 1962. 

149. Jesshope, C.R., "Support for the rapid processing of 
large data structures in OCCAM", Dept. of Electronics 
and Comp. Sci., Univ. of Southampton, 1986. 

150. Jesshope, C.R., "The RPA: an Intelligent Transputer 
Memory System in an OCCAM Programming Model", Proc. 
Int. Workshop on Systolic Arrays, Univ. of Oxford, 
1986, pp. 283-293. 

151. Johnsson, L., Cohen, D., "A Mathematical Approach to 
Modelling the Flow of Data and Control in Computational 
Networks", "VLSI Systems and Computations", Kung, H.T., 
et al. (eds.), Computer Science Press, 1981, pp. 213-
225. 

152. Jones, G., "Programming in OCCAM", Oxford univ. Comput
ing Laboratory, Programming Research Group, 1985. 

153. Jou, J.Y., Abraham, J.A., "Fault-tolerant Matrix.Arith
metic and Signal Processing on Highly Concurrent Com
puting Structures", Proc. IEEE, 1986(74), pp. 732-741. ---- ---- ' 

154. Koren, I., 
Enhancement 
tiprocessor 
711. 

Pradhan, 
through 

Systems", 

D.K., "Yield and Performance 
redundancy in VLSI and WSI Mul
Proc. IEEE, 1986(74), pp. 699-

155. Kunde, M., "A General Approach to sorting on 3-
dimensionally Mesh-connected Array", Proc. CONPAR '86, 
Springer-Verlag, 1986, pp. 329-337. 

156. Kunde, M., et al., "The Instruction Systolic Array and 
its relation to other models of Parallel Computers", 
Proc. Parallel Computing '85, North-Holland, 1986, pp. 
491-498. 



- 540 -

157. Krishnakumar, A.S., Morf, M., "A tree 
the symmetric eigenproblem", Proc. 
1983(441), pp. 77-83. 

architecture for 
SPIE, RTSP VI, 

158, Kulkarni, A.V., Yen, D.W.L., "Systolic Processing and 
an implementation for Signal and Image Processing", 
~IEEE, Trans. on Computers, 1982(C-31), pp. 1000-1009. 

159. Kung, H.T., "The structure of parallel algorithms", 
Advances in Computers, 1980(19), pp. 65-112. 

160. Kung, H.T., "Why Systolic Architectures?", IEEE Com
puter, 1982(15), pp. 37-46. 

161. Kung, H.T., "Two-level Pipelined Systolic Arrays for 
Matrix Multiplication, Polynomial Evaluation and 
Discrete Fourier Transform", Proc. Int. Workshop on 
Dynamical Behaviour of Automata: theory and applica
tions, Academic Press, 1983. 

162. Kung, H.T., "Systolic Algorithms for the CMU Warp Pro
cessors", Dept. of Computer Science, CMU, 1984. 

163. Kung, H.T., "A listing of Systolic Papers", Dept. of 
Computer Science, CMU, 1985. 

164. Kung, H.T., Lam, S.M., "Wafer-scale integration and 
two-level pipelined implementations of Systolic 
Arrays", J. of Parallel and Distributed Computing, 
1984(1), PP· 32-63. 

165. Kung, H.T., Lin, W.T., "An Algebra for VLSI Algorithm 
. d~sign", Proc. of Conf. on Elliptic Problem Solvers, 

1983, pp. 141-160. 

166. Kung, H.T., Picard, R.L., "One-dimensional Systolic 
Arrays for Multidimensional Convolution and Resam
pling", in "VLSI for Pattern Recognition and Image Pro
cessing", Fu, K.S. (ed.), Springer-Verlag, 1984, pp. 
9-24. 

167. Kung, H.T., Ruane, L.M., Yen, D.W.L., "A two-level 
pipelined Systolic Array for Convolutions", in "VLSI 
Systems and Computations", Kung, H.T., et al. (eds. ), 
Computer Science Press, 1981, pp. 255-264. 

168. Kung, H.T., Yu, S.Q., "Integrating high-performance 
special purpose devices into a system", in "VLSI Archi
tecture", Randell, B., et al. (eds.), Prentice-Hall, 
1983, pp. 205-211. 

169. Kung, S. Y., "On Supercomputing with SystolicjWavefront 
Array Processors", Proc. IEEE, 1984(72), pp. 867-884. 



- 541 -

170. Kung, S.Y., "On Programming Languages for VLSI Array 
Processors", Proc. SPIE, Highly Parallel Signal Pro
cessing Architectures, 1986(614), pp. 118-133. 

171. Kung, S.Y., "VLSI Array Processors", Proc. Int. 
Workshop on Systolic Arrays, Univ. of Oxford, 1986, pp. 
7-24. 

172. Kung, S.Y., et al., "Hierarchical Flowgraph Integration 
for VLSI Array Processors", Proc. IEEE ICASSP, 1985, 
pp. 8.5.1-8.5.4. 

173. Kung, S.Y., et al., "Wavefront Array Processor: 
Language, Architecture and Applications", IEEE, TranE_. 
~Computers, 1982(C-31), pp. 1054-1066. 

174. Kung, S.Y., Hu, Y.H., "A highly concurrent algorithm 
and pipelined architecture for solving Toeplitz sys
tems", IEEE, Trans. on Acoustics, Speech and Signal 
Processing; 1983(ASSP-31), pp. 66-75. 

175. Kung, S.Y., Johl, 
Image Processing", 
Image Processing", 
1984, pp. 133-155. 

J.T., "VLSI Wavefront Arrays for 
in "VLSI for Pattern Recognition and 

Fu, K.S. (ed.), Springer-Verlag, 

176. Kung, S.Y., Lo, s.c., Annevelink, J., "Temporal locali
zation on systolization of Signal Flow Graph (SFG) Com
puting Networks", Proc. SPIE, RTSP VII, 1984(495), pp. 
58-66. 

177. 

178. 

Lam, M.S., Mostow, J., "A transformational model of 
VLSI Systolic Design", IEEE, Computer, 1985(18), pp. 
42-52. 

Lang, H.W., et al., "Systolic 
connected Network", IEEE, Trans. 
34), pp. 652-658. --

Sorting on a Mesh
on Computers, 1985(C-

179. Lang, H.W., Schimmler, M., Schroder, H., "Pattern 
matching in binary trees on a mesh-connected processor 
array", in "VLSI: Algorithms and Architectures", Berto
lazzi, P., et al. (eds.), North-Holland, 1985, pp. 
113-124. 

180. Lei~hton, F.T., Leiserson, C.E., "Wafer-scale integra
tion of systolic arrays", IEEE, Trans. on Computers, 
1985(C-34), pp. 448-461. --

181. Leiserson, C.E., "Area efficient VLSI computation•, 
Ph.D. thesis, Dept. of Computer Science, CMU, 1981. 

182. Leiserson, C.E., Saxe, J.B., "Optimising Synchronous 
Systems", i!_. of VLSI and Computer Systems, 1983(1), pp. 



- 542 -

41-68. 

183. Levin, M., "Parallel Algorithms for SIMD and MIMD com
puters", Ph.D. thesis, Dept. of Computer Studies, LUT, 
1987. 

184. Li, G.J., 
arrays", 
66-77. 

Wah, a.w., "The design of optimal systolic 
IEEE, Trans. on Computers, 1985(C-34), pp. 

185. Lin, Y.c., Lin, F.C., "A family of systolic arrays for 
relational database operations", Proc. Int. workshop on 
Systolic Arrays, Univ. of Oxford, 1986, pp. 191-200 

186. Lin, W.T., Chin, C.Y., "A reconfigurable processor 
array using LINC chip", Proc. Int. workshop on Systolic 
Arrays, Univ. of Oxford, 1986, pp. 313-320. 

187. Lipton, R., Lopresti, D., "Comparing Long Strings on a 
Short Systolic Array", Proc. Int. workshop on Systolic 
Arrays, Univ. of Oxford, 1986, pp. 181-190. 

188. Luk, F.T., "Algorithm-based fault-tolerance for paral
lel matrix equation solvers", Proc. SPIE, RTSP VIII, 
1985(564), pp. 49-53. 

189. Luk, F.T., Park, 
fault-tolerance 
86-11, School of 
1986. 

H., "An analysis of algorithm-based 
techniques", Technical Report, EE-CEG
Electrical Engineering, Cornell Univ ..• 

190. Margaritis, K.G., Evans, D.J., "Optical Gauss Elimina
tion Algorithms using Matrix outer products", Proc. 7th 
Int. Congress of Cybernetics and Systems, London, 1987, 
pp. 622-630. 

191. Margaritis, K.G., Evans, D.J., "Parallel Systolic LU 
Factorization for Simplex Updates", Proc. ICS '87, 
Athens, 1987. 

192. Martin, A.R., Tucker, J.V., "The Concurrent 
Representation of Synchronous Systems", 
Report, 887, Centre for Theoretical Computer 
Dept. of Computer Sci., Univ. of Leeds, 1987. 

Assignment 
Technical 
Science, 

193. May, D., Shepherd, R., Keane, C., "Communicating Pro
cess Architecture: Transputers and OCCAM", INMOS Ltd., 
1986. 

194. McAulay, A.D., "Optical Crossbar Signal Processor", 
Proc. SPIE, RTSP VIII, 1985(564), pp. 131-138. 

195. McCanny, J.V., McWhirter, J.G., "Bit Level Systolic 
Array Circuit for Matrix Vector Multiplication", Proc. 



- 543 -

lEE, 1983(130-G), pp. 125-130. 

196. McCanny, J., McWhirter, J., "The derivation and utili
zation of bit level systolic array architectures", 
Proc. Int. workshop on Systolic Arrays, Univ. of 
Oxford, 1986, pp. 47-59. 

197. McCanny, J.V., et al., "The relationship between word 
and bit level systolic arrays as applied to matrix
matrix multiplication", Proc. SPIE, RTSP VI, 1983(441), 
pp. 114-120. 

198. McWhirther, J.G., "Recursive Least-Squares Minimisation 
using a Systolic array•, Proc. SPIE, RTSP VI, 
1983(441), pp. 105-112. 

199. Mead, C.A., Conway, L., "Introduction to VLSI Systems", 
Addison Wesley, 1980. 

200. Megson, G.M., "Novel algorithms for the 
paradigm", Ph.D Thesis, Dept. of Computer 
1987. 

soft-systolic 
Studies, LUT, 

201. Megson, G.M., Evans, D.J., "Soft-Systolic Pipelined 
Matrix Algorithms", Proc. Parallel Computing •ss, 
North-Holland, 1986, pp. 171-180. 

202. Melhem, R., "Irregular Wavefronts in Data-driven, 
Data-dependent Computati6ns", Proc. Int. Workshop on 
Systolic Arrays, Univ. of Oxford, 1986, pp. 303-312. 

203. Melkemi, L., "Reseaux systoliques pour la resolution de 
problemes lineaires", Doctoral Thesis, Dept. df Applied 
Mathematics, University of Grenoble, France, 1986. 

204. Melkemi, L., Tchuente, M., "Algebraic and Combinatorial 
Aspects of Systolic Algorithms for some Linear Prob
lems", in "Parallel Algorithms and Architectures, Cos
nard, M., et al. (eds.), North-Holland, 1986, pp. 269-
279. 

205. Melkemi, L., Tchuente, 
duct on orthogonally 
appear in IEEE, Trans. 

M., "Complexity of matrix pro
connected systolic arrays", (to 
~Computers, 1987). 

206. Midwinter, J.E., "Light electronics, myth or reality?", 
Proc. lEE, 1985(132-J), pp. 371-383. 

207. Moldovan, D.I., •on the Analysis and Synthesis of VLSI 
algorithms•, IEEE, Trans. on Computers, 1982(C-31), pp. 
1121-1126. -- -

208. Moldovan, D.I., "A comparison between Parallel Process
ing of Numeric and Symbolic Algorithms•, in "Parallel 



209. 

- 544 -

Algorithms and Architectures", Cosnard, M., et al. 
(eds. ), North-Holland, 1986, pp. 325-333. 

Moldovan, D.I., Fortes, J.A.B., "Partitioning and 
ping algorithms into fixed size systolic arrays", 
Trans. on Computers, 1986(C-35), pp. 1-12. 

map
IEEE, 

210. Moler, c., Van Loan, c., 
pute the exponential 
1978(20), pp. 801-838.· 

"Nineteen dubious ways to corn
of a matrix", SIAM Review, 

211. Moraga, c., "On a case 
arrays" 1 INTEGRATION, 
243-253. 

of symbiosis between systolic 
the VLSI journal, 1984(2), pp. 

212. Moraga, c., "Systolic Algorithms", Technical Report, 
Dept. of Computer Science, Univ. of Dortmund, F.R.G., 
1984. 

213. Moraga, C., "Design of a Multiple-valued Systolic sys
tem for the Computation of the Chrestenson Spectrum", 
IEEE, Trans. on Computers, 1986(C-35), pp. 183-188. 

214. Nakamura, s., "Computational Methods in Engineering 
Science, with applications to Fluid Dynamics 
Nuclear Systems", John Wiley, 1977. 

and 
and 

215. Navarro, J.J., Llaberia, J.M., Valero, M., "Computing 
Size-independent Matrix Problems on Systolic Array Pro
cessors", Proc. 13th Ann. Int. Symp. on Computer Archi
tecture, Tokyo, 1986, pp. 271-278. 

216. Nash, J.G., Hansen, S., "Modified Fadeev Algorithm for 
Matrix Manipulation", Proc. SPIE, RTSP VII, 1984(495), 
pp. 39-46. 

217. Neff, J.A., "Major initiatives for optical computing", 
Optical Engineering, 1987(26), pp. 2-9. 

218. Ohhashi, M., Schneider, R.E., 
of Unary functions", Proc. 
Arithmetic, 1985, pp. 82-85. 

"High-speed computation 
7th Symposium on Computer 

219. O'Keefe, M.T., Fortes, J.A.B., "A comparative study of 
two systematic design methodologies for Systolic 
Arrays", in "Parallel Algorithms and Architectures", 
Cosnard, M., et al. (eds.), North-Holland, 1986, pp. 
313-324. 

220. O'Leary, D.P., "Ordering Schemes for parallel process
ing of certain mesh problems", SIAM J. Sci. stat. Corn
put., 1985(5), pp. 620-632. 

221. O'Leary, D.P., "Systolic Arrays for Matrix Transpore 



- 545 -

and other reorderings", IEEE, Trans. on Computers, 
1987(C-36), pp. 117-122. 

222. Owechko, Y., et al., "Representation of Bipolar and 
Complex Data in the PRIMO Optical Matrix Multiplier", 
Proc. SPIE, Optical Computing, 1986(625), pp. 72-78. 

223. Pan, V., Re if, J., "Efficient Parallel Solution of 
Linear Systems", Proc. 17th Annual symposium on Theory 
of Computing, 1985, pp. 143-152. 

224. Papadopoulou, E.P., 
Analysis for Large 
Dept. of Mathematics 
Univ., 1986. 

"VLSI Structures and Iterative 
Scale Computation", Ph.D. Thesis, 
and Computer Science, Clarkson 

225. Parlett, B.N., "Laguerre's method applied to the Matrix 
Eigenvalue problem", Maths. Comput. 1964( 18), pp. 
464-485. 

226. Parlett, 
tions 11

, 

Kailath, 
106-120. 

B.N., "Remarks on Matrix Eigenvalue Computa
in "VLSI and Modern Signal Processing", 

T., et al. (eds.), Prentice-Hall, 1985, pp. 

227. Peters, G., Wilkinson, J.H., "Practical Problems aris
ing in the solution of polynomial equations", :!.Inst. 
Mat~. Applic., 1971(8), pp. 16-35. 

228. Petkov-Turkedjiev, N., "Synthesis 
rithms and Processor Arrays", 
Springer-Verlag, 1986, pp. 165-172. 

of systolic 
Proc. CONPAR 

Algo
, 86 1 

229. Philippe, B., "Approximating the Square Root of the 
Inverse of a Matrix", Technical Report, 508, Centre for 
Supercomputing R&D, Urbana IL., 1985. 

230. Phillips, G.M., Taylor, P.J., "Theory and Applications 
of Numerical Analysis", Academic Press, 1973. 

231. Pizer, S.M., "Numerical Computing and Mathematical 
Analysis", Science Research Associates, 1975. 

232. Priester, R.W., et al., "Problem adaptation to systolic 
arrays", Proc. SPIE, RTSP IV, 1981(298), pp. 33-39. 

233. Priester, R.W., et. al., "Signal Processing 
tolic Arrays", Proc. Int. Conf. Parallel 
1981, pp. 207-215. 

with Sys
Processing, 

234. Psaltis, D., "Two-dimensional optical processing using 
one-dimensional input devices", Proc. IEEE, 1984(72), 
pp. 962-974. 



- 546 -

235. Psaltis, D., Athale, R.A., "High accuracy computation 
with linear analog optical systems: a critical study", 
Applied Optics, 1986(25), pp. 3071-3077. 

236. Quinton, P., "The systematic design of Systolic 
Arrays", Technical Report, 193, IRISA, France, 1983. 

237. Quinton, P., Jannault, B., Gachet, P., "A new matrix 
multiplication systolic array", in "Parallel Algorithms 
and Architectures", Cosnard, M., et al. (eds.), North
Holland, 1986, pp. 259-268. 

238. Ramakrishnan, I.V., Fussell, D.S., Silbersachatz, A., 
"Mapping Homogeneous Graphs on Linear Arrays", IEEE, 
Trans. on Computers, 1986(C-35), pp. 189-209. ----

239. Rarnamoorthy, P.A., Chen, T., "Systolic Architectures 
based on Barrel Shifters for Real-Time Signal and Image 
Processing", Proc. IEEE ICASSP, 1985, pp. 26.9.1-
26.9.4. 

240. Rao, S.K., Kailath, T., "What is a systolic Algo
rithm?", Proc. SPIE, Highly Signal Processing Architec
tures, 1986(614), pp. 34-48. 

241. Rhodes, W.T., Guilfoyle, P.S., "Acoustooptic Algebraic 
Processing Architectures", Proc. IEEE, 1984(72), pp. 
820-830. 

242. Robert, Y., "Block LU Decomposition of a Band Matrix on 
aSystolic Array", Int. .'!· Cornput. Math., 1985(17), pp. 
295-315. 

243. Robert, Y., "Systolic Algorithms and Architectures", 
Technical Report 397, IMAG, France, 1986. 

244. Robert, Y., Tchuente, V., "Designing efficient systolic 
algorithms", Technical Report, 393, IMAG, France, 1983. 

245. Robert, Y., Trystrarn, D., "An Orthogonal Systolic Array 
for the Algebraic Path Problem", Technical Report, 553, 
IMAG, France, 1985. 

246. Rogers, M.H., "Specification of Algorithms for Systolic 
Array Elements", in "VLSI Architecture", Randell, B., 
et al. (eds.), Prentice-Hall, 1983, pp. 212-224. 

247. Rosenberg, A.L., "Diogenes, Circa 1986", Proc. AWOC 
'86, Springer-Verlag, 1986, pp. 109-118. 

248. Rote, G., "ASystolic Array Algorithm for the Algebraic 
Path Problem (Shortest Paths; Matrix Inversion)", Com
puting, 1985(34), pp. 191-219. 



- 547 -

249. Rote, G., "On the connection between hexagonal and uni
directional rectangular Systolic Arrays", Technical 
Report, 86-71, Institute of Mathematics, Technical 
Univ. of Graz. 

250. 

251. 

Sami, M., 
for VLSI 
712-722. 

Samwell, 
systolic 
Journal, 

Stefanelli, R., "Reconfigurable Architectures 
ProcessingArrays", Proc. IEEE, 1986(74), pp. 

P.M., "Experience with OCCAM for simulating 
and wavefront arrays", Software Engineering 

1986(5), pp. 196-204. 

252. Saridakis, Y.G., "Parallelism, Applicability and 
Optimality of Modern Iterative Methods", Ph.D. thesis, 
Dept. of Mathematics and Computer Science, Clarkson 
Univ., 1985. 

253. Savage, c., "ASystolic Data Structure Chip for Connec
tivity Problems", in "VLSI Systems and Computations" 
Kung, H.T., et al. (eds.), CMU, 1981, pp. 296-300. 

254. sawchuk, A.A., Jenkins, B.K., "Dynamic Optical Inter
connections for Parallel Processor", Proc. SPIE, Opti
cal Computing, 1986(625), pp. 143-153. 

255. Scheid, F., "Numerical Analysis", McGraw-Hill, 1968. 

256. Schmeck, H., 
array", in 
Cosnard, M., 
281-292. 

"A comparison-based instruction systolic 
"Parallel Algorithms and Architectures", 
et al. (eds.), North-Holland, 1986, pp. 

257. Schreiber, R., "Systolic arrays for eigenvalue computa
tion", Proc. SPIE, RTSP V, 1982(341), pp. 26-34. 

258. Schreiber, R., "On the Systolic Arrays of Brent, Luk 
and Van Loan", Proc. SPIE, RTSP VI, 1983(441), pp. 72-
76. 

259. @chreiber, R., "Computing Generalised inverses and 

U
eigenvalues of symmetric matrices using systolic 

rrays", in "Computing methods in Applied Sciences and 
ngineering, VI", Glowinski, R., et al. (eds. ), North

Holland, 1984, pp. 285-295. 

260. Schreiber, R., "Implementation of Eigenvector Methods", 
Proc. SPIE, RTSP VII, 1984(495), pp. 3-6. 

261. Schreiber, R., "On Systolic Array Methods for Band 
Matrix Factorizations", BIT, 1986(26), pp. 303-316. 

262. Schreiber, R., Kuekes, P.J., "Systolic Linear Algebra 
Machines in Digital Signal Processing", in "VLSI and 



/ 

- 548 -

Modern Signal Processing", Kailath, T., et al. (eds.), 
Prentice-Hall, 1985, pp. 389-405. 

263. Schreiber, R., 
updating the 
pp. 4 51-466. 

Tang, W.P., "On Systolic Arrays for 
Cholesky Factorization", BIT, 1986(26), 

264. Seitz, C.L., "Concurrent, VLSI Architectures", IEEE, 
Trans. on Computers, 1984(C-33), pp. 1247-1265. 

265. Serbin, S.M., Blalock, S.A., "An Algorithm for Comput
ing the Matrix Cosine", SIAM i!.· Sci. Stat. Comput., 
1980(1), pp. 198-204. 

266. 

267. 

268. 

Shapiro, 
Parallel 
Weizmann 

E., "Systolic Programming: a paradigm of 
Processing", Technical Report, CS84-16, 

Institute of Science, Rehovot, Israel, 1984. 

Shepherd, T., McWhirter, J., "A 
linearly constrained least-squares 
Int. workshop on Systolic Arrays, 
1986, pp. 151-159. 

systolic array for 
optimisation", Proc. 

Univ. of Oxford, 

Singer, B., Spilerman, S., 
social processes by Markov 
Sociology, 1976(28), pp. 1-55. 

"The representation of 
Models", American J. of 

269. Snyder, ~., "Introduction to the configuiable highly 
parallel computer", IEEE, Computer, 1982(15), pp. 47- .---
56. ---

270. Snyder, L., "Supercomputers and VLSI: the effect of LSI 
on Computer Architecture". Advances in Computers, 
1984(23), pp. 1-33. 

271. Snyder, L., "Programming Environments for Systolic 
Arrays", Proc. SPIE, Highly Parallel Signal Processing 
Architectures, 1986(614), pp. 134-144. 

272. Sorensen, D.C., "Analysis of pairwise pivoting in Gaus
sian Elimination", IEEE, Trans. on Computers, 1985(C-
34), pp. 274-278. 

273. Speiser, J.M., Whitehouse, H.J., "Parallel Processing 
Algorithms and Architectures for Real-Time Signal Pro
cessing", Proc. SPIE, RTSP IV, 1981(298), pp. 2-9. 

274. Speiser, J.M., Whitehouse, H.J., "A Review of Signal 
Processing with Systolic Arrays", Proc. SPIE, RTSP VI, 
1983(441), pp. 2-6. 

275. Stallard, R.P., "OCCAM: a brief introduction 
The Loughborough Implementation", Technical 
Dept. of Computer Studies, LUT, 1985. 

OCCAM: 
Report, 



- 549 -

276. stallard, R.P., "Loughborough OCCAM Compiler, version 
5.0 Documentation", Technical Report, Dept. of Computer 
Studies, LUT, 1986. 

277. Swartzlander, E.E., "VLSI Architecture", in "VLSI Fun
damentals and Applications", Barbe, D.F. (ed.), 
Springer-Verlag, 1982, pp. 178-221. 

278. Symanski, J.J., "Implementation of Matrix Operations on 
the two-dimensional Systo1ic Array Testbed", Proc. 
SPIE, RTSP VI, 1983(441), pp. 136-142. 

279. Takeda, M., Goodman, J.W., "Neural networks for compu
tation: numbers representations and programming com
plexity", Applied Optics, 1986(25), pp. 3033-3046. 

280. 

281. 

Tee, G.J., "An application of p-cyclic 
solving periodic parabolic problems", 
1964(6), pp. 142-159. 

Matrices for 
Numer. Math., 

Tenorio, 
systems 
Parallel 

M.F.M., Moldovan, D.I., "Mapping production 
into Multiprocessors", Proc. Int. Conf. on 
Processing, 1985, pp. 56-62. 

282. Todd, J. (ed.), "Survey of 
McGraw-Hill, 1962. 

Numerical Analysis", 

283. Tomlin, J.A., "Modifying triangular factors of the 
basis in the Simplex Method", in "Sparce Matrices and 
their Applications", Rose, D.J., et al. (eds.), Plenum 
Press, 1972, pp. 77-85. 

284. Uchida, s., "Toward a new generation of computer archi
tecture", in "VLSI Architecture", Randell, B., et al. 
(eds.), Prentice-Hall, 1983, pp. 395-423. 

285. Ullman, J.D., "Computational aspects of VLSI", Computer 
Science Press, 1984. 

286, Umeo, H., "A class of SIMD Machines simulated by Sys
tolic VLSI Arrays", in "VLSI Algorithms and Architec
tures", Bertolazzi, P., et al. (eds.), 1985, pp. 39-48. 

287. Urquhart, R.B., wood, D., "Systolic matrix and vector 
multiplication methods for signal processing", Proc. 
IEEE, 1984(131-F) 1 pp. 623-631. 

288. Van Loan, C., "A Note on the Evaluation of Matrix Poly
nomials", IEEE, Trans. £.!!Automatic Control, 1979(AC-
24), pp. 32o=T!1. 

289. Varga, R.S., "Matrix Iterative Analysis", Prentice
Hall, 1962. 



- 550 -

290. Verber, C.M., 
cal optical 
942-953. 

"Integrated-optical approaches to numeri
processing", Proc. IEEE, 1984(72), pp. 

291. Verber, C.M., "Integrated optical architectures for 
matrix multiplication", Optical Engineering, 1985( 24 l, 
pp. 19-25. 

292. Verber, C.M., et. al., "Suggested integrated optical 
implementation of pipelined polynomial processors", 
Proc. SPIE, Optical Information Processing, 1983(388), 
pp. 221-227. 

293. Wallach, Y., "Alternating 
ing", Lecture Notes 
Springer-Verlag, 1982. 

Sequential-Parallel Process
in computer Science, 127, 

294. ward, J.S., McCanny, J.V., McWhirter, J.G., "ASystolic 
Implementation of the Winograd Fourier Transform Algo
rithm", Proc. IEEE ICASSP, 1985, pp. 38.5.1.-38.5.4. 

295. Weiser, u., Davis, A., "A wavefront notation tool for 
VLSI Array design", in "VLSI Systems and Computations", 
Kung, H.T., et al. (eds.), Computer Science Press, 
1981, pp. 226-234. 

296. Wilkinson, J.H., "Calculation of the eigenvectors of a 
symmetric tridiagonal matrix by inverse iteration", 
Numer. Math., 1962(4), pp. 368-376. 

297. Wilkinson, J.H., "Rounding 
Processes", N.P.L. Notes on 
H.M.S.O., London, 1963. 

Errors in Algebraic 
Applied Science, No. 32, 

298. Wilkinson, J.H., "The Algebraic Eigenvalue Problem", 
Claredon Press, Oxford, 1965. 

299. Yalamanchili, s., Aggarwal, J.K., "Reconfiguration 
strategies for parallel archi tectures", IEEE, Computer, 
1985(18), pp. 44-61. 

300. Young, D., "Iterative solution of large linear sys
tems", Academic Press, 1971. 

301. Young, T.Y., Liu, P.S., "VLSI Arrays for Pattern Recog
nition and Image Processing: I/O Bandwidth Considera
tions", in "VSLI for Pattern Recognition and Image Pro
cessing", Fu, K.S. (ed.), Springer-Verlag, 1984, pp. 
25-42. 

302. Yung, H.C., et al., "A recursive design methodology for 
VLSI: theory and example", INTEGRATION, the VLSI jour
nal, 1984(2), pp. 213-225. 



- 551 -

303. zak, S.H., Hwang, K., "Polynomial division on Systolic 
Arrays", IEEE, Trans. on Computers, 1985(C-34), pp. 
577-578. 



A P P E N D I X 

This Appendix comprises a brief introduction to the 

OCCAM programming language, followed by the description of 

the Loughborough implementation of OCCAM. Further, there is 

a selection of programs, simulating some of the systolic 

designs discussed in this thesis. 

I. BRIEF INTRODUCTION TO OCCAM 

In OCCAM processes are connected to form concurrent 

systems, each process can be regarded as a black box with an 

internal state which can communicate with other processes 

via point to point communication channels. The processes 

themselves are finite. Each process starts, performs a 

number of actions then terminates. An action may be a set of 

parallel processes to be performed at the same time. As a 

process is itself composed of processes which may themselves 

be executed in parallel a process allows internal con

currency which varies with time. 

Processes: All processes are constructed from three primi-



- 553 -

tive processes, assignment, input and output. An assignment 

is indicated by the symbol ':=', for example, v:=e sets 

variable v to the value of the expression e and then ter

minates. An input is indicated by the symbol'?', for exam

ple, c?x inputs a value from a channel c assigning it to x 

and then terminating. An output is indicated by the symbol 

'!' and c!e outputs the expression e to channel c, and then 

terminates. 

A pair of concurrent processes communicate using a one 

way channel connecting the two processes. One process out

puts a message to the channel, the other process inputs the 

message from the channel. A particular process can be ready 

to communicate on one or more of its channels any time 

between its start and termination, but a communication only 

takes place when both it and the process sharing one of its 

channels is ready. Where a number of connected processes are 

ready simultaneously communication can occur in parallel. 

Constructs: A number of processes can be combined to form a 

construct which is itself a process and can be used as a 

component for other constructs. Each component process is 

indented by two spaces from the left hand margin indicating 

which construct it is part of. There are only four basic 

construct types, sequential, parallel, conditional, and 

alternative. 

SEQ: is the keyword for a sequential construct denoted 



- 554 -

where the component processes p1 ,p2 ,p3 , . • . are executed 

in strict sequence with process pi finishing before pi+l 

starts and after pi-l terminates. Sequential constructs are 

similar to programs written in conventional programming 

languages. 

PAR: is the keyword for a parallel construct of the form 

and in contrast to seq, here all the component processes 

are executed concurrently. The par con-

struct terminates when all the component processes have fin-

ished. 

IF: is the keyword for a conditional construct with the 

appearance 

if 
condition 1 

pl 
cond1 tion 2 

Pz 

This means that p
1 

is executed if condition 1 is true, oth-

erwise Pz iff condition 2 is true, etc. Notice the strict 



- 555 -

sequential ordering of tests. Only one of the processes pi 

is executed and the 'if' construct terminates when the pro-

cess finishes. 

ALT: is the keyword for the alternative construct 

alt 
input 1 

inp~t 2 
p2 

This construct waits until one of input 1, input 2, ••• is 

ready. If input 1 is ready first, input 1 is performed and 

on completion p1 is executed. Similarly if input i is ready 

first input i is performed and pi is executed. Only one of 

the inputs is performed and its corresponding process exe-

cuted before the construct terminates. If more than one 

input becomes ready at the same time the one executed is 

chosen arbitrarily. 

Repetition: There is only one explicit construction for 

repetition denoted by 

while condition 
p 

which repeatedly executes process p until the value of the 

condition is false. Observe that p itself can be a composi

tion of sequential and parallel constructs. 

Replication: A replicator is used with a constructor to 

replicate the component process a number of times. With 



•seq' a standard for loop 

seq i=[O for n] 
p 

- 556 -

is created executing process p sequentially n times. When 

used with 'par' an array of concurrent processes with the 

form 

par i=[O for n] 
pi 

is created such that n similar processes p0 ,p1 , ... ,pn-l are 

executed in parallel. Notice that i=O(l)n-1 not n, thus if 

generally i=[base for count] there are base+count-1 values i 

takes starting with i=base. 

Declarations: A declaration introduces a new identifier for 

use in the process that follows it, and defines the meaning 

the identifier will have within the process. If the new 

identifier is the same as one already in use, all subsequent 

occurrences of the identifier in the process will refer to 

the meaning of the most recent declaration. Declarations are 

of four basic types •var', 'chan', 'def' and 'proc' linked 

to a following process by a colon(:) at the last line of 

the declaration. The process follows on the next line at the 

same level of indentation as the keyword declaration. For 

example: 

var x: 
p 



- 557 -

declares variable x to be used in process p, and 

chan c: 
p 

defines a channel c to be used in communication for p. A 

variable vector declaration introduces an identifier to be 

used as a vector of variables, viz. 

var list (16): 
p 

for a vector named list of 16 variables indexed as list(O], 

list(1), ... , list(15). Likewise a channel vector declara-

tion introduces a new identifier as a vector of channels for 

communicating between concurrent processes 

chan c(n): 
p 

'Def' associates a name with a constant value, or with 

a table of constant values, e.g. 

def a=1, b=2: 

associating a with 1 and b with 2, using these identifiers 

within a process yields the associated values. 

The 'proc' declaration introduces an identifier to name 

the process which follows, indented, on the succeeding 

lines. The process is termed the named process and is itself 

followed by a process in which the named process will be 

used. The named process can have parameters which are 



- 558 -

declared with the declaration of the named process and are 

called formal parameters. The named process text will be 

substituted for all occurrences of the process name in sub-

sequent processes, the 'var' and 'chan' variables substi-

tuted in place of the formal parameters are called actual 

parameters. For example, 

proc buffer(chan in, out) = 
while true 

var x: 
seq 

in?x 
out!x 

chan c,c1 ,c2 : 
par 

buffer(c1 ,c) 
buffer(c,c 2) 

declares two buffer processes executed concurrently, buffer 

is the nam~d process with formal channel parameters in and 

out. In the following process c,c1 ,c 2 , are actual parameters 

and on execution the 'while' loop will replace the procedure 

calls and c,c1 ,c2 will replace in and out channels. The size 

of a vector is not specified in the formal parameters of a 

named process and different sized vectors may be used as 

actual parameters on different substitutions. In addition to 

the standard declarations 'var' and 'chan', a •value' param-

eter may also be used, as either an ordinary or vector for-

mal parameters and cannot be changed within a process by 

assignment or input. 

Finally, an identifier which is used but not declared 

in a named process is termed a free identifier. Any free 



- 559 -

identifier in use when a named process substitution takes 

place must be the same as a variable already in use. The 

free variable then takes on the most recent incarnation of 

the variable at the point where the process substitution 

takes place. 

Program Format: In OCCAM indentation from the left hand mar

gin indicates program structure. Each process starts on a 

new line, at an indentation level indicated by the following 

rules: 

Constructs: The construct keyword (and the optional 

replicator) occupies the first line. Each of the component 

processes start on a new line and are indented by two spaces 

more than the keyword. 

Conditionals: The condition expression occupies the 

first line, and the component process starts on the next 

line indented by two more spaces. 

Alt inputs: The expression and its associated input 

occupy the first line and the component process starts on 

the next line indenting two more spaces. 

Declarations: Each declaration starts on a new line, at 

the same level of indentation as the process it prefixes, 

the final line of the declaration being terminated by a 

colon. Blank lines can be inserted anywhere and are ignored. 

A construct can be broken to occupy more than one line, 



- 560 -

with line breaks occurring after comma, semicolon and before 

the second operand of an operator (requiring two operands). 

The continued line must be more indented than the first line 

of the construct. 

Comments: Comments are denoted by double hyphen (--) 

and terminate at the end of a line. All characters of a 

comment are ignored. A comment may follow an OCCAM construct 

on the same line or be on a line by itself. 

This summary of OCCAM is taken from [140], [152] and 

implements 'proto-OCCAM'. A more sophisticated version 

OCCAM-2 is now available providing Real, Integer, and 

Boolean types, as well as 2-dimensional arrays. We remark 

that the programming in this thesis was performed on a VAX 

machine under UNIX using Loughborough OCCAM as implemented 

by R.P. Stallard, [275-276]. The Loughborough version of 

OCCAM, is now discussed, and particularly its extensions of 

proto-OCCAM to allow real variables and non-standard OCCAM 

features. Then, a selection of programs, simulating some of 

the systolic designs discussed, is given. 



II. LOUGHBOROUGH IMPLEMENTATION OF OCCAM 

Help tor running the occam oonpller 

A source 'occam' rue (ocx::All and INIQS are trademarks of the INIQS group or 
canponles) must be of the form '•.occ•, to canplle lt to tonn an •a.out' 
CCIII1'8nd file uso the default options. For example to ocmpllo "IIIY_first.occ' :-

occom my_tirat.occ 

·An executable object 'a.out' Is produced. As a shorteut you can <~~~it the 
'•OOC' affb and just say 'occam rQY tlrst'. the CClllpiler wUl add oo the 
aftlx tor you. -

It a program Is split Into several tiles these can be ooporately canpiled and 
linked together using the oceam 001lpller and bull t lh llnker. 

&eh previously canpiled occam program Is specified In the <XmJand line In 
the fona ••.o• e.g. ;• 

occam n.in.occ nurerlclib.o screenllb.o 

Thl.s '11.11 canplle the source of 'main' and link lt In with the pro oanplled 
library occam tiles 'ntmerlcllb.occ' 'screenlib.occ'. The -1 option Is used 
to generate new versions ot library tile objects. 

Various sWitch options are provided, mainly tor C011pller debugging. Flags 
can eltber be put separately ( '-g -1') or together and In any order ( '-lg' 
'-gl' ). The follOWing sWitches may be US?ful :- ' 

-g: 
occam -g fast .occ 

O:rnpile the occam program as before but run the reBUt Ung prognw 1mnedh.tely 
(a <Xllllplle,l.,..S and go optloo). It tlag options are apecitied that apply to 
the nm of the program Uiese will be passed on as 1n 'oecam -gqc fast'. 

-1 : 
occam -1 new lib 

O:mplle the program and produce object but do not link the object tiles 
together to produce an object program. This option Is used tor buldlng up 
libraries or routines or to cut down the canpllatlon time tor canpillng one 
long pl"'Cigl"aiD. 

-o: 
occam keep_lt -o saverun 

<bnplle the program as normal but place the object program In tbe tile 
'saverun' ratber than the default 'a.out'. Useful for saving .eeven.l 
occam object tiles at tbe same time. 

-x : 
occam -x old t&shloned.occ 

<bnplle according to the strict Inmos occaro specification, wr extensions 
(see tile 'ocea.mversion') currently include :

llul tip le source tile cross linking. 
Dyrwnic tea tures. 

...., : 

Variable PAR replicator counts. 
Floating point aritlvoetlc. 

a.out -c 

Run the object program with clll"90r addressable facilities enabled, the 
standard library procedures 'goto.ll:.y' and 'clear.screeo' require these 
facilities. 

-<l : occam -<l error yrone 

<bnplles the tile as normal but generates a symbol tile as well (In this 
case it wuld be 'erroryrone.s)'ID'), this Is used by tbe run-time systao to 
Inspect the values ot variables. 

-q: 
a.out -q 

Run the object program Without producing any characters to the acreeo other 
than tho9e output by the PI"O!Il"OIII (unless cnu. c woe<!). This enablee oocaro 
prosra.ms to dunp output that ears be processed by other occam pn:cnms. 

-F and -14 : 
oceam -F ntJD.occ 

'-F' Includes the floating point library routines to provide a simple real 
number arltlvnetlc capability, '-11' Includes both the tloatlng polllt and 
nathematlcal library routines to provide mthematlcal library routines. 

-I : 

This provides the features of the Inmos proto-ocCOIII derinitlon (see 
'occam version') such as STOP and TIN&, it should be used wbere possible 
as lt Is closer to the occam-2 definition. 



1'1111 list of canpiler option flags 

'!be tull (often cr)'l>tic) range of 6Witch options are ae tollOWB. Several 
switch flags can be given, in any orde.- and either separately or tcJ&ethe.-. 

'!be lllllEillOniC chazoacte.- giving the switch is higllligbted by a capital lette.-, 
'!bey are divided into ooctions - use.- deUned flags, and syst811 de tined 

optiOilll, wbich are selected by pretilling with '%'. 

User Flags 

-s 
-c 

.... 
-t 

-g 

-h 
-i 

-1 

.... 

'!be next flag(s) are system flags - sw1 tch flag mode. 
Run the progrlllll with CUrsor addressable options eDAbled. 
'Ibe library routines 'clea.r.ecreeo' and 'goto.x.y' need this tlag set. 
It used tor the ocmpiler must also give the -g opt1oo. 
Produce object/run object !or Execution tracing. '!be resulting object 
file is then run with the '-e' optioo. 'Ibis utility is described 
in • traeerinto' • 
Force full occam semantic check on use of variables. 
A variable (not vectors though) CM not be set within a PAR 
construct if the declaration is outside the PAR. 'Ibis applies 
equally to procedure calls that change global variables. 
Run the l'eSUlting object tile if COllpilatioo succeeded. 
'!be prograno Goes 1nmediately it i~ ready to. 
Print out this 'llelp' intonnation. 
Force an Interrupt 1nmediately tetors start of execution -
1mned1ately displays the debug help menu. 'Ibis enables break and 
t.-ace points to be setup prior to anything being executed. 
O:mpile but do not link the occam source. Needed when using 
mul t1ple OCCIII1l source Library tiles. 
Oleck that every channel Match properly oo execution, channels can 
have only one input and one output process during execution. 
Produce an a.ject program with name giveo by the non-switch 
arguoent following this switch. Enables you to cboose an 
object file name other than 'a.out'. 
Run the program without outputting stme non occam program produced 
messages- e.g. '<n:AII Start Run'. IIUst give -g option ae well 
'q' stands for Quiet. Useful when producing output to be piped 
or processed by other programs. 

_, Suppress the Warning messa&es trau the CQ11P1ler - when you have 
seen these warnings once you rmy tiod it less irritating to suppress 
then on subsequent canp1lations - does not attect error reporting 
or any other compiler action. 

-x l:b not pennit any local urr eXtensions in the source text. 
See 'occinfo' tor inf'om:ation about these - for eumple recursion 
and EXTFJlNAL procedure detini tions. Useful 1t maving an occam 

·program tor use on another occam canpUer syst..,. 
-F Include the standard Floating point library routines. 

Provides routines to read or write floating point routines to 
chaMels • 

..(l •· Produce a symhol table tile (with a!tix '.sym') !or use wi tb the 'm' 
option 1n the dynamic debugger for symhol value elWUination. 

-I 1\?nait the use ot INMOO proto-occam version 2. 'lbese changes include 
the use of 'TUIE' instead o! 'NCM', the 'SlOP' pr1m.1tve and the \..lSI8 ot 
'Stopping IF' - an alternative without any TRUE oondi tions trill SIOP. 

-L Use long winded load, all the 'C' libraries are added at the last 
m::mnent rather than using the pre-Unked object, this any be useful if 
a user occam/C library calls a 'C' routine that is not used in the 
oecam run time system. See 'libraryhelp' for more into. 

-M Include the Mathematical library and floating point routines. 
-<> Produce optlmized object. May improve run time by 20S. 
-R Use Randanized scheduling when running the program - the SlllD8 

scheduler choices will not be made on separate executions. 
This gives non-deterministic execution and will be slightly slower 
but ""Y be useful occasionally. 

-{; l:b not include the Standard I/0 routines with the object. 'Ibis 
library is included by default, there is no reason not to want 
to include it unless you want to deviss a totally new one. 

-T '11>e next argU~~Cnt is a T!Jni.ng definition !He built by the 'tl.mebuild' 
ut1lity to be used 1D oonjuation with the •-..• option , supplying '-T' 
autamtically selects '-e'. If this optioo is DOt selected the executio• 
tlsu1ngs are taken frau the source library file 'times'. Look at the 
't~rinfo' help file tor more details. 

-V 1lle compiler will nonm.lly desist reporting errors and -.rntngs after 
the first fifty or so, with this option all the errors will be 
re(X>rted • May produce Very Verbose output. 

-11 Give ITarning messages about declarations that turn out DOt to have 
teen used at all. 'Ibis l!aY highlight misspelt declarations or 
existence of no longer used procedures. 

U'l 
0\ 

"' 



Systen Flags 

-· 
-t 

-o 
-!1 
-L 

-x 

-Y 

-z 

Switch 'ba<:k to expecting 'user' mode t!ag Options. 
This means you can replace -<;'.l;v by -%>1G. 
Enable Analysis o! the usage o! channels - this facility is still 
under test. 
Oteck the source occam for syntax errors, but do Not produce any 
object data !rem it. 
Print out the program in the tom just alter it was Transformed. 
Not generallt useful as the program has changed so much. 
Give Vera- infonnation at each stage ll!lea I'UMing the canpUer -
will print out a more accurate deocriptioa o! the systeD e<:rmands 
it is calling and all the rues it accesses. 
Also switches on a lull print out of the occam link iofonratioa. 
Produce the object code ( 'C' or Assembler) iD a pemo.nent !Ue 
so that it can be inspected. 
Produce 'C' rather tha.n assembler ootp.J.t fraD the oceam ocrnpUer 
then ccmpUe and Unk it. 'I'here will be •.o and •.o oootatning 
tbe object and cx:ropller generated eource created io the directory. 
'lbe 'C' and. assembler code produced will be similar and there la 
little point 1n pr<Xlucing 'C' Wlless to waste time I (aa the 'C' 
<Xnpilation phase takes a long time), If the conpiler is ported to 
a non-VAX syat<m then this optiDn will autam.tically be selected. 
Sw1 tch oa variable name and l!oe ollllber Dunpiog 1o the C/ Assetbler 
'object' tile so that the object can be tied iD with the BOUJ'CO, 
Undoc\J'Illented featuro under test. 
Produce an occam-'C' interface Library, the two files ending '-e.c' and 
'.oce• are linked together, the occa.m can refer directly to tbe 'C' 
routines. 
Run tho eanpller Hhowlnl( tho fllnP" lt WOUld eJtOOUte but Without 
actually do1ng anything - like •-n' 1n the UNIX 'rm.ke' OCX'On:Uld. Useful 
ll!len options start getting oompl1cated. A No operation !acUity. 
UndoeUDented feature under test. 
D:> not apply .._ Simplifying tranofonnationa on the program. These 
currently r<move constructs w1 th no processes 1n theD and redundant 
SFl;l and PAR headers. These save a BT&ll amount of S!BC8 and time 
a.t run and oompUe time and there la little point in turning oft 
this option. 
Print out the procedures that have been defined in the link !Ues 
but ha.s not been ret'erenced - detects eXtra procedures defined 
across rues but not used. 
Produce the linker assembler output in a penm.nent tile rather than 
1n. a. tanporary file oo '/trop'. Enables tbe output trcu the linker 
to be debugged. 
Get the 11nker to print out a.ll the definitions it is told about, 

Ocscrlpt1on or the library routines 

Standard Library 

Provide conroonly used routines to read and ..,.ite to the keyboard and screen 
channels. The routines are writtea -in 'C' aod occam and use sta.ndard Cor 
'curses' I/0 rootioes. There are also genen.l routines tor use to ::ause or 
abort a program as ""ll as to use the 'C' randao ollllber routines. They are 
available by default to all prOSI'IIJDS unless the -s ccmpUer flag is used to 
override their tnclustoo. 

EX'l'mNAL PROC str.to.screen (VAWE a (]) : 

0-ltput the string a (a byte array with byte 0 a.o the len&th). 
The .tlole otrlng is guaranteecl to be printed in one eequence, no 
ooncurreot calls to str. to. screen rill oot ioterlea•e. 
Fqu1valent to the program fragment :-

PROC str.to.ecreen (VALUE a I J) • = o • 11 ror a IBY!'E OIJ 
screen I a {BYTE nJ : 

EXTEilNAL PROC n\ID. to. screen (VAWE D) 

OJtput a n\JDber to the screen. '!he n\Dber cao be signed, and wee the mintmua 
nunher ot characters (no leading spaces). Equivalent to the 'C' lancuage 
'prlntt ('"%d .. ,n);' statcneot. 

Y.XT>:IINAL moc •tr.to.ehon (OIAH o,v.wn:ooi I]) 

OJtp.~t the str1oe: s to a channel 'e'. 'Ihe call 'atr.to.ch&n (acreeo,"tred.")' 
ia identical to 'str.to.screea (tred)'. Useful tor string output to rues. 
EXTEilNAL PR0C nUll, to.chan (OIAN c, VAWE D) : 

<'Aitput ascu atrtog tor the nl.IDber 'n' to channel 'e'. Like 'str.to.chan' but 
tor ntJDbers oot channels. 

EXTEilNAL PROC nuo.to.acreen.r (VAWE n,d) : 

OJtput a n\J'I'Iber to the· screen 1n a. field ot width 'd'. It the ni.J'Ober 111 too 
blg tor the tield the n\J'Dber ta writteft out 1n full rec•rdlees, tbe routine 
call m.n.to.ecreen.t (o,l) 111 equivalent to n\J'Jl.to.eereen (o). 1be routtoe usee 
tbe 'C' language printt fornat SDd where D. la the field width. 

U'l 
0\ 
w 



EXTrnNAL I'IIOC goto.x .y (VALUE x ,y) : 

Ose the 'cursee' package to lmpl8"Deflt a cursor 'goto' facility. No error 
cbeck1og ia made that the IIIOVe is within the oer<>eD .,..,... '!be x-u1s 1a acroos 
the screen and y-uis down, co-ordloa.te (0,0) la ln the top left hand coroer of 
the 8Cl"eeD.. The tirst Uoe la used by the run tizDe syatEH to print messages. 

EX'l'EmW.o PRCC clear .screen : 

Use curses t.o clear the ecreen,it cursor &ddresea.ble optloa not used thta 
will still try to clear the screen using the cursee "CL" temcap defined 
string. 

ElmllNAI. P!lCC Dua.fraa.keyboard (VAR D) 

Read a ni.I'Ober trau the keyboard and assi&n to variable 'n'. n"le routlne ls 
oot very oophistieated. It will read n-egative nl.ftlbers (start •-•) and ignore 
any leadtng 'space' characters. 'Ihe nmlber ruust be followed by a non-digit, 
this ~racter ta read by the routin-e &nd not avatl&ble on a su'oecquen.t 
'Keyboard ? cb' process. There la no check that the nunber la too big tor the 
number ranee. It will ~pect at least one digit otherwiae tt wtll s1ve an error -· ElmllNAL P!lCC Dllll,fr<:m.chaD (O!AII c,VAR D) : 

Read a nunber trau a channel 'e'. It 'c' ts the keyboa.rd thta la equivalent 
to calltng 1 DUD.trca.keyboard'. 

EXnlUIAL P!lCC abort. program : 

Force the program to abort execution. An explanatory messaae la printed ao 
that the cause will be-· 

EXTmNAL PRO: toree.bl'ftlk : 

Perform the 68JD& action as 1t ·~· .,....a pressed. at the tenninal. The user 
lnterf&ee routines can then be run Wlder the menu selection faclltty provided. 

ElmllNAL P!lCC raod<m (VALUE d, VAR n) : 

Return a pseudo randao nunber In the n.nge 0 to d-1 by ueiog the 'C' 
'n.ndo-4 ()' function 1n the variable n. 'lbe VAWE ot d must not be rero. 
"lbe sequence of randan nunbers w!ll be -1fied if the '-R' run option is used. 

ElmllNAI. P!lCC init.randaD (VALUE D) : 

Init1&11ll0 the seed tor the randm nunber generator for subsequent calls to 
tbe procedure 'randcm'. Uses the 'C' lansuaga routlne 'arandCD ()'. 

EXTrnNAL PRCC trace. value (VALUE n) : 

Print out the integer value of 'n' on tl'le screen with the preflx atrlag 
'Trace v&lue : ' - this makes debuggtne a little easier. 

EXTrnNAL P!lCC opeD.flle (VALUE pa.tb.name (),access (),O!AIIio.chlln) : 

Connect the channel 'io.cha.n' to a UNIX file. The procedure aJJS.t be .. P~ld«l 
with the pa.thname of the tlle as a strlnc. e.nd the aeeesa mode ( r read 
-..ccess,''w'' write a.ccess,'"a'' append access). SUbeequeat lnpu.t or output oo. 
'io.char.' will fetch/J"lt a single character frao/to the flle. Attempts to inJ"lt 
pa.st the end of flle wlll receive the value -1. 

EXTrnNAL P!lCC close. flle (O!AII io.cban) : 

o..se connection of the channel with ita currently open rue. 

EXTrnNAL P!lCC open.p1pe (VALUE ocnroand.name (),access () ,O!AII io.chan) 

O:>nnect the channel 'lo.cha.D' to a UNlX pipe runnlnc eamand 'cxm:ra.nd.name'. 
1be procod~ must be provided. wt th the UNIX OCJ"[[''W.nd IW:Dft and 'r' to re-d frat 
lt, or 'w' to write to it). Subseq,ueot input or output oo 'to.chan' will 
fetch/J"lt a single chAracter fraa/to the file. Attempts to inJ"lt past the end 
ot tile will receive the value -1. 

EXTrnNAL PRCC close. pipe (O!AII io.cban) 

Cease connection of the channel with its currently active ccmrw.nd. 

EXnllNAL PRCC systea.call (VALUE COII1Md (J, VAR oode) : 

EJt.ecute the UNIX ocnnand contained tn the strtcc: 'oc:rrnand' and returo the 
valus to 'code' 11\UB 1t the cx::nn..nd &uccooded •lthout errot" and FALSE 
othe1"W'1 se. 

EXTrnNAL P!lCC 88t.t1Jners (VALUE init.value) : 

Set up the interval timers lTIMm REAL,ITJ:~~En VIRnJAL to the stven start 
value. 'lllese are used for tindng seCtions of ocJe on tbe VAX. Uses "eetltlmer' 
eaU. Note that using 'WAIT' pr1Jill.t1ve will ..., .. t the t!.mer eo it can only be 
~ for e!mple sections of oode. It should aleo be ooted that 1t tl.mee the 
whole prog...,. and not a etogle occam process. 

EllTERIIAL P!lCC get.real.t!.mer (VAR aeca,micro.aecs) : 

Get the curreot elapeed tiroer values in seooods and mtcroseoonds. Timers 
oount downwards and ue not espeel.tlly auurat.e. Uses 'aet!Umer' call. 

EX"mlNAL PRCC get.cpu.t!.mer (VAR aecs,micro.eeca) : 

Get the current executed a:tJ timer values to seoooda and m.ieJoaecouds. Tlmers 
oount downwards and are .oot especially accurate. 



Floo.tlng I'Oiot Ubn.ry 

Routi.Des to perform tloa.tlng point input/output. 1bey are availa.ble by 
stvlog the ccmp1ler flag '-!'' when linking a.n occam prognm. 

Floating point value can be assigned and tranemitted via channels just 
like oonaal integer values, see the tile 'occamvereloo' tor details as to the 
lang\Bge extensions introduced to support .them. 

Input/Output Routines 

ElmliNAL P!1!X: tp.nun.to.ocreen (VALVE I'I.DAT t) 

Print out the rla&tiog point nU!Iber 1n 'C' language Uoo.t tonDlt '1:6.6!''. U 
the nU!Iber ia too mall or too big the standard 'C' actioo will be taken. 

ElcrERNAL P!1!X: tp.oiiD. to.ecreeo. t (VALUE I'I.DAT t, VALUE w ,d) : 

Print out the floating point nunber in 'C' real tormt.t • .,..dt''• It the nl.nlber 
la too llill*ll or toO blg proble'DS will a..rlee. 

EXl'ERNAL PRfX tp.nun.to.ecreen.g (VAUJE Pl.OAT t) : 

Print out the tloatinc point n\I'Dber in 'C' real tonD&t ·~··. Thle will use 
the moat approprla.te toruat - exponent tom 1f nece:a.ary. 

ElcrERNAL P!1!X: tp.nuo.to.chan (OWl c,VALUE I'LG\T f) : 

Write a n1.1Dber to a eha.Mel. It channel la •screen' this la eq,uivalent to 
'fpoD\II.to.ecreea'. Useful for writing data to flle&o 

£>CmU1AL P!1!X: tp.n..,..froo.keyboo.rd (VAR I'LG\T f) : 

Read tn a floating point nunber. 'nle nurber la e:~tpected to begin wlth a dlslt 
or •. • (lnd.lcatlnc o.), leading: spaces are t«nored. "lbe nunber ends oa a 
non-digit and this character will not be available to ou'-!ueat n!Odo froo the 
ke~ channel• '!he following are valid input n~ro followed by the 
interpreted value for the Input. 

45.35 (45.35) 0.0004 (0.0004) .o (0.0) 1. (1.0) 124 (124.0} 

E>CmU1AL P!1!X: tp .n\111. fr<m .chan ( CI!AN e , V AR I'I.DAT t) 

Rad a. :floating point nunber troa a clw.o.Del 'c'. It chaMel la keyboe.rd this 
la equivalent to • tp.oUD .. traD.keybo&rd'. 

lloth<mltlcal lloutine Ubrary 

lloth<mltlcal routlnee froo the UKIX '-!m' library. The9o are lncl\lded by 
specifying tbe •-w• flag. They are all 1n at.rcle pree1e1oo eveo. though 
double proclslon 'C' routines are called. 

EllT!l1NAL RlOC tp.eloe (VALUE I'LQ\T a, VAR n.o.\T reo} : 

Return the sine ot 'a' 1n 'rea'. Anclea ere 1n radl.a.ne. 

EllT!l1NAL RlOC tp.cooloe (VALUE I'I.DAT a, VAR I'I.DAT reo} : 

Return the cosine ot 'a' 1n 'res'. An&lee are in radl.ana. 

ElmliNAL RlOC fp.are.sine (VALUE I'I.DAT r., VAR I'I.DAT reo) : 

Return the arc sine ot '&' 1n 'res'. Ancles are in nd1ana. 

EllT!l1NAL RlOC tp.r.re.cooloe (VALUE I'I.DAT a, VAR n.o.\T res) : 

Return the arc coaloe ot • a' lo • res'. Aoclee are iD n.dt.ana. 

E>CmUIAL RlOC tp.are.tan (VALUE Fl.OAT a, VAR I'I.DAT roe} : 

Return the arc tangent ot 'a' 1A 'ree'. Anc;lee are iD radlal\S. 

EllT!l1NAL P!lOC fp.exp (VALUE I'I.DAT a, VAR n.o.\T reo) 

Return e to the power 'a' 1n 'ree'. 

EllT!l1NAL P!lOC tp.log (VALUE I'LG\T a, VAR n.o.\T ree} 

N&tun.l lop.rltb:D ot 'a' 1.D 'ree'. 

EllT!l1NAL PROC tp.eqrt (VALUE I'LG\T a, VAR n.o.\T roe) : 

SqUI.t'e root ot 'a' 14 'rea'. Returna an ooeam error lt 'a' la ne«attve. 

c.n 
"' c.n 



The nm time systeo 

As you might hope v.hen an occam program la executed lt will follow the 
program execution until one of three things happen. 

1) '!be program tennlnates 
2 I C'rnir<: Is pressed on the keyboard 
3) All error is detected. 

In tne ca.se of (2) and (3) a debug option will be displayed, this allows you 
to abort the progr11111, Ignore the i!lterrupt (continue), and to restart the 
program again. Other options control the •....,• trace output, provide a 'system' 
debug option (which is only really useful to scmeone who knows their way 
around the canpiler), an option to specify which oource tile you want to debug 
and the 'screen animated debug'. 'Ibis later option should be of most use and is 
deseribecl 1!1 detail in the next section. 

Errors cane 1!1 two types 'Fatal Errors' and just 'Errors', lt Is not possible 
(or wise) to continue execution after the fonrer, but the latter rmy be Ignored 
1f the symptau ls expected. 

'!be run time display debugger 

'Ibis utility that runs under the run time systeo enables users to look at the 
status of the processes during execution of a program. 

The utility requires the use of a cursor addressable tennlnal. The systeo 
provides selective display of the source file(s) that were caDp1led to fonn 
the program together w1 th a collJM showing the currently existing processes 
OD those particular lines ot the 90UI'"ce file. 

When initially entered by pressing 'C'I1UrC' the program execution will be 
halted, the execution can be restarted In 'stepped mode' so that the display 
will be updated every occam scheduler action. 

Brealcpoints and trace points can be added at selected line mrnbere. Breal< 
points cause the debug display to be autanatically entered when any of 
the process executes any of the source lines on wich a break point ls set. 
Trace points cause teoporary entry into the debug display before resuning 
nornal execution after five secoods pause. 

It a rue has been canp1led with the '-G' nag then the value of occam 
variables and the status ot channels can be pri!lted, Because an occam progr11111 
can have several processes running w1 tb di!!erent values to the same 
ldentlflers (e.g. wlthi!l PAR n • 10 F<n 7), 'n' has a different value tor each 
separate process) a single process must be selected as before this fac!Uty can 
be used. When selected a second window within the debug display ls opened and 
the values printed by the program are placed within lt. 

Straightforward use of the debug display wUl norrmlly entail running a 
program and pressing C'l'RlrC .men a dubious section of code ls about to be 
executed and entering the debug display ( 'z' conm.nd). Thereafter the conm.nds 
'p' to find the next process. 't' and 'b' might be used to see whereabouts 
the process ~s executing. The program can then be single stepped through 
using the 'r' ocmna.nd to start execution and •a• c:x:mnand. to stop execution. 
Eventually exit of the debug displayer can be made with the 'x' ecmnand. 

'lbere are two special markers that are used, '>' oa a line indicates the 
currently selected line and •-• the currently selected process. 

'!be ccmnands where practical have been made s1m1lar to those in !.NIX 'vi'. 
(UNIX is a traderuo.rk of A,T, r. T.). 

Available commands 

lobvlng about within the rue 

11>- llave forward half a page of source text. 
t P- Mc>ve forward a s:age ot source text. 
1U- Move backward half a page of source text. 
t 8- Move backward a page of oource text. 
:<nunber> -Move to given line <number> ln file. 
k - (or tK) Move down one llne. 
J - (or tJ) Move up one !1ne. 
/<string> - Find given <string> 1n file from current position. 
o - Find next string occurreDCe for m tch string selected by • I' ccmnand. 
p - Find the next process ln the file. 

Trace/Breakpoints 

b - Add breo.kpo1nt at currently selected Une. 
t - Add tracepolnt at currently selected line. 
d - Delete the trace/break poi!lt at the selected llne. 
c - Delete all the points ln the current file. 
C - Delete all the poi!lts ln all the files. 
P - Print process status or the currently selected process 
D - Deselect the current debug occam process. 
S - Select the current debug occam process. 
N - Select next process on the same line, if there are several processes tha.t 

arc shown as executing on the same Uoe theD 'S' will ma.ke e.n arbitrary 
choice, 'N' can be used to override this and step through the processes 
until the one that ls desired ls selected. 

<.n 
C1\ 
C1\ 



Symbol inspection 

m - Select a symbol to display, 1t no symbols have been selected before then 
the symbol window is opened and the value of the variable or the status of 
a channel. 

14 - Repeat the previous 'm' conmand. To find the value of the same variable 
name again. 

Execution control 

a. - Abort the run. will 
r - RuD deb~ display if a debug process is selected the debug display 

be re-entered every time that process is run, otherwise the debug display 
will be run each time any process is run. · 

> - Ex:eeute 1n single step roode. Only a single step is execu~~· , , 
8 - Stop the debug display rron running tenporarUy after a r or x · 

u -=display step interval (initial step interval is 1), this pennits 
the location of processes to be seen after 'n' steps rather than after 
ea.cb and every time it is executed. Not particularly useful. 

x- Exit display debugger, program will proceed nornllllly until a trace/break 
point is found or 'tC' is pressed. 

x - Exit to n:ain '' menu eo that program restart,abort,file selection 
or system debug can be done. Used t.!len you wish to deb~ a different 
file or to set things going again after setting up breakpoints. 

Klecellanoows 

? - Print out this help infonnation. · 
tL- (or tR) Redraw the current displayed infonm.tion. 
1 - Buffer keyboard channel input text for the program. 
0 ·- Print overall data about the processes currently executing -

00. IDIIJ\Y are in each process status, stack use and clock time. 
V - Display the occam program's current screen outpJt tenporarlly 
v - Invoke the 'view' conmand on the occam source file (this is just like 

'vi' but with read only access to the file- This can be used to provide 
100re """"rtul string search facilities t.!len debugging, 

Display key 

'lbe colunn between the line mJDber and the text is used to display the niJ!lber 
and status ot processes executing on that line. Because or the ocmpUation 
these may be out by a line or two in sane cireunstances. Most sequential oode 
will be executed as a single block - so a process will not move thro~h a ~ 
block one step at a time necessarily, 

The special syrnbol 'P' does not represent a p~. it indicates that a 
procedure has been called at that point. 'P' therefore represents the 'call 
point' of the procedure. 

The following symbols are used to represent the various process statU :-

• - An active process - my be chosen tor execution at a.ny time. 
a - Process waiting for one or more ALT guards to becaoe 'lliUE. 
w - Process waiting for a clock t!JDe or tor input/output. 
c - Process is waiting for one or more child PAR processes to tenninate. 

In addition break and trsce points are indicated 1n the colUM by giving a 
'T' !or a trace point a.nd 'B' for a break point. 

So a display of :-

316:3•w : occam.s ? razor 

indicates that there are three active processes and one process waiting inpJt 
on line 316. 

Keyboard and Screen 1nput/outpJt 

llecalL"' the debug display routine is fully interactive the screen and 
keyboard data !ran the program can not be handlEd in the same llllnner as noma!. 
Input for the keyboard must be input using the 'i' oanrnand - a whole line can 
be input and will be buttered up tor program input iD this way, Screen output 
should be displayed as it is produced (but a copy of it will be sent to the 
screen ~e that will redisplayEd on exit frao the display debugger) or the 'V' 
ecmna.nd, Strings can have escapes in them '•n• means newUne,'•r• carriage 
return and '••• space. 

(J1 

"' ..... 



'I'his ec:rnpller to the best or my knowledge (Nr.R.P. Stallard of the Oerartment 
of O:Jnpyter Studiet!l, Loughborough University of Technology, U.K.) 1mplenents 
the occam lang,.ge u defined in the oeCAm proe;:I"M'm.lna: e~&n.,.l publlehed by 
IPMlS l1JI\1ted subject to a few reetrlction11 and e-tenslona ttw.t are do~~oerlt:Mtd 
in thta rne. These dlttr.rences are tnt.endod to maJte tra.nater of oc::ca- Pr"'Onutllll 
fl"a!l different l.rllpleuenta tlons fea.slble. 

It is intended to be conJ)Iltible to the It&OS l:Joo'tlet version llnd the 
Prentice llall book detlnlUon. O:X:.W.I~ and Transputer are res;latered 
trader.rks of 'the Il'MlS Group of O::mpanles. 

Irtm prolo-<lceam lang\..11.&& revisions 

The following additional features introduced into ltu:)S: oeeam products can 
oow be selected by the eonpiler flag opttoa '-I'. 

ST<P prlml tlve. 
TIIIE chonnel. 
IP on tlndlnc oone of the conditione TRUE S'roPa. 

Restrictlona 

nw:se restriet1ona are elther optiona.l feature. u deeerlbed 1.o the publlehed 
b.nguaa• det1D1Uoo or oonpller reatrlctlona unlikely to lim.lt ordtnuy WJe of 
OCCOIIo 

No contiguratlon section n.alea. 
'Ihe operator '»' uses VAX 6hUt right opera. tor. 
tb prloritlzed PAR, all parallel processes have equa.l priority. 
N\.a:rber of al"'g\\Dents to a procedure llmJ. ted to 255 rr•dJDI.D. 
Af'l'm returns a tilDe ditterence not a boolean value. 

ElltonalOM 

PAR repllca.tor count and base can be variable. 
A variable nmber of processea can be created b)' re-pltcated PAR. 

Recursive calls to procedures pP.nnitted 
A procedure caa call lteelt. 

Screen cM.nnel cat1 be used by rore than one process 
'lhe epecial ecreen cha.noel can be aceesaed by any nunber of 

different OCCUI processes. ThiS facilitates debugtns: Of 0C<:.11JD 
procran. and la not dlltlcult to imploemeot. 

Uultlple eource tlle conpllatlon 
Procedures and Va.rt.ables can be detlned in one flle and reterence:i 1D 

anothe-r. 
The detlnitlon is preceded by the new keyword 'LIBRARY' before 'PACC' 
and the detlnition must be a.t the outer level of prccn.m nestlnc. 

Referencee to procedures ln other files are detlned by precedtnc 
'PRO:' by 'F:X'I'fl\NAL' and replacinc the '•' eta.rt of pi"'Cedure dotinltlon 
by •:' to lndieate end or dotinltlon. 

e.s. 
File ID&ln.ooc File sub.ooc 

EliTmNAL PRCX: t (nlue n) 

·~ r (27) 

1he two !llea can be e<:mplled by :-

LIDAARY PR1X f (\'alue n) • 

·~ nua. to.ecr~n (o•102) 
atr.to.ac::reen ("Enter oext""): 

occam rlll1n.oce trub.oec 
occam aub.oec -1 

to <XJDplle both together 
to compile eub.oec separate-ly 

occam n.in.occ sub.o to lin.k 1n the pre-canpiled. sub.ooc file 

.an .~.v uut~~ lw.t~~ IJil."Cn cx.tcrKh .. "\.1 to varla.bles and channels. in the case of 
vectors of variables and channels the size neod not be apecltled but the 
type mU6t be :-

Dettnina ttle :-

LIBIWW OWf nehork,carrns (56) : 
LlBllARY VAR blot (Dm! 4).opot (42) : 
LIBRARY YAR 'FI.J)AT hyper,boUc [21,act1ve [17) 

Referring file :-

1-XTmNAI. ClAN nc.tlwurk ,CUD'I"'II () : 

>:XTU\NA!. VAR blot (ijYTE).opot ().boUc (~T) 
EXTm.NAL VAR no.\T hyper ,active 11 : 

Float1nc polnt aritlm!tlc 

The CO'OPller pennits the use of floating po1nt nUDben and ar1Umet1e 
operators. The C<XnPiler ueea 32 bit YAX floatlna: poiAt throughout. 

Floating point nlllbera are declared by tollowtnc VA.R by the new keyword 
float :-

YAR FLOAT •,y,factor 
VAR mn,ply : 

- Ploatlnc point nunber declantloa. 
- tbntll.l oecam variables. 

U'l 
0\ 
0> 



Floating polnt mrnber constants are supported these rrw.y be iD two tome 
•lth dectnal point or •lth declrral point &Dd exponeot :-

lt :• 1 .. 45 
y :• 2.3e-23 + 3.4e+l - Note that the exponent must be given a sign 

The following operators my be \l.6ed on floating point m.uabera (both 
open.Dde rtiJ8t be tloa.ting point) 

+ - • I < > <• >• • <> - (monadlc minus) 

x :• 1.3 + (y • factor) 
IF 

X ) 67.8 
y :• -3.4 - Note use of monadlc minus. 

Par.metera to procedures must also have type set to VAR FLOAT or 
VAUI£ F1..0o\T - the act~.&l z-rametera must be of the 8lll'llle type. 

mo:: 0\111 (V AWE l'l.lll. T a ( ) , b ( ), VAR l'l.lli.T res (J , V AWE n) • 
PAn I • (0 FOR nJ 

reo (I) :• a (I I + b (I) : 
VAR l'l.lli.T t (23),• (45),w (32) 

BID (t,a,•,12) 

Floating values may be transmitted along channels - but there are 
no checks that the seDder and receiver both expect floating polot values. 

Input ot flQ&tlng J))1nt nmbers can be carried out by ealUng the 
library ~tine 'fp.num.t~.keyboard' and output by the routtDe 
'tp.num.to.acreen•. 

Interconveraion ot floating: point and integere 18 pertonaed by the 
aeeterment operator :-

n~Mn :• x -Convert tloatlng •x• to inte-ger 'n~Mn' 
y :• mu - O:mvert integer 'nlC' to flc».tlng 'y' 

Attempts to use logical and ahlft operator& on floating point nl.lllbers 
aN flagged as errors. 



Ill. SOFT-SYSTOLIC SIMULATION PROGRAMS 

The logical structure of the simulation programs is 

explained in section 3.4. Notice that, in some cases, the 

physical arrangement of the procedures may not coincide with 

the logical structure, mainly because more than one logical 

parts are incorporated into the same procedure. However the 

overall structure remains the same. 

In some programs presented, minor non-standard features 

of OCCAM are used, allowed by the Loughborough implementa

tion. However, the conversion to standard OCCAM, or OCCAM-2 

is straightforward. The main effort of the simulation is the 

testing and partial verification of the correctness of the 

systolic design. Thus, all auxiliary features, such as user 

interface and host-system interface, are kept as simple as 

possible, in order not to interfere with the development of 

the main part of the simulation program, i.e. the systolic 

design itself. Further, the documentation of the code is 

rather limited; but it should be easy to follow in conjunc

tion with the corresponding systolic algorithm description 

in the main part of the thesis. 

The external procedures used, can be distinguished in 

two groups. First, there are some basic routines for: char

acter and string ijo; number conversion; basic unary func

tions; graphical output. These routines are described in 

section Il of the Appendix. Second, there are some primitive 

library routines, developed specially for soft-systolic 



- 571 -

simulation. These procedures are given in A.6, and can be 

classified as follows: 

il£ routines for data streams: they accept/send data streams 

from/to the user, i.e. they form a basic user interface. 

Further, there are routines 

streams, or single quantities. 

sending/accepting control 

sources/sinks: they send/accept data streams to/from the 

systolic design, i.e. they form a basic host interface. 

Further, there are sources/sinks that perform 'dummy' opera

tions, or send/receive control streams, as well as data 

streams. 

delays, links: they simulate simple bulding blocks required 

for the interconnection of cells or arrays, when pipelines 

are formed. 

cells: mainly IPS cells in several configurations, e.g. for 

linear, orthogonal, hexagonal or engagement (iterative) 

designs. 

optical components: they simulate pixels of light sources, 

light modulators, static and shift detectors; they may have 

multiple inputs and/or outputs, that simulate light beams or 

electric signals. 

Notice that the use of library routines is not uniform in 

all programs: the more recent ones make heavier use of 

external procedures, while the initial ones, are compara-



- 572 -

tively 'stand-alone' programs. This fact partially reflects 

the development of the soft-systolic simulation process 

through the course of this study. 

Finally, of special help are the debugging facilities 

provided by the Loughborough implementation of OCCAM, as 

explained in section II of the Appendix. However, it should 

be noted that, given the complexity of the soft-systolic 

simulation programs (and the parallel programs in general), 

two simple rules have been extensively used. First, the gra

dual construction of the systolic design, from its primitive 

components, where each intermediate design is tested: thus, 

the error sources can be easily located. 

Second, the formulation of basic systolic 

'building blocks' (procedures) that can be 

arrays as 

'plugged' 

(called) into a program; thus we can create several levels 

of parallelism, where we always work at the higher level 

only, as the correctness of the lower levels is given. This 

concept is illustrated by the 'subsystem' concept in the 

logical structure of the programs. Notice, however, that 

this technique tends to produce a large amount of nested 

procedure calls and concurrent processes. This fact reveals 

another general problem of simulating systolic algorithms in 

OCCAM (and, possibly, of parallel programming in OCCAM, in 

general). On the one hand, it is important for the program 

clarity to have small and clearly defined procedures. On the 

other hand, it is important to minimize the procedure calls 



- 573 -

and concurrent process creation, so that to avoid excessive 

run-time overheads. Thus, it may be preferable to simulate 

in separate programs the several levels of parallelism (or 

pipelining) that can be seen in a systolic system. 

Examples of the latter technique can be found in A.2, 

A.3 and A.4. In A.2.2 and A.2.3 the block (2x2) partitioning 

of linear system solution is simulated; notice that the 

simulation suggests totally parallel communication and com

putation, for all the components of a (2x2) submatrix. 

Alternatively, partial serialisation of communication and 

computation could be implemented, as shown in section 5.2. 

Finally, total serialisation of the communication can be 

also attempted, although it would lead to delays in the com

putation. Observe that the mapping of channels and processes 

is not expressed by a uniform relation, mainly because there 

are no two-dimensional arrays in OCCAM. 

The same problem is addressed in A.3 and A.4, with the 

systolic pipeline designs. In these cases, two mapping func

tions are used: one for the pipleline as a whole, and one 

for each of the arrays, that comprise a pipeline block. 

Special links are used to •translate' the pipeline mapping 

into the block (array) mapping. 



-- A.l.l 

Systolic System i~plementing the Bernoulli's Method for the 
calculation of the dominant zero of a polynomial.A Systolic 
Ring calculates the coefficients defined by Newton's Theorem 
Given f(x) • x••n + a(l)•x••(n-1) + •• + a(n-l]•x + a(n) 
if S[p] • r(l)••p + r(2)••p + •• + r[n)••p, where 
r(l), r(2), •• , r(n) are the roots of the polynomial, which 
are all real and fr(lll > !r[2)f > •• > fr(n)f.Then 
S[k) •- a(l}*S(k-1) - a(2]*S[k-2] - •• - a(k-l)*S[lJ - a(k)•k 
fork • 1, 2, •• , n, and 
S[n+j) •- a(l]*S[n+j-1)- a[2]*S[n+j-2]- •• - a(n)*S[j) 
forj•l,2, ••• 
Initially the quantities a(ll•l, a(21*2, •• , a(nl•n enter the 
ring together with a(O], a[ll, a(21, .. , a[nl, where a(0)-0 works 
as a flag controlling the operation of the Rlng,The Multiplexer 
restores the normal ring operation and the Divider calculates 
the sequence : 
5(21/S(l), S(31/S(2), •• , S(i)/S(i-1], for i•l, 2, •• , that 
converges to r[l). 

external proc fp.float(value i, var float f): 
external proc get(var v, values()): 
external proc fp.get.n(var float v( ), value n,s( 11: 
external proc fp.put(value float v, values[]): 

-- Max degree of the polynomial; max size of the ring. 
def no • 10, so • 6 : 

-- Coefficients of the polynomial 
var float a(no) : 
-- Degree of the polynomial, size of the ring; input-output time. 
var n, si~e, intime, outime : 
-- Channels 
chan a.c((2•so)+2), x.c(so+2), s.c(so), ~.c(so+2) : 

Inne~ Product Step Cell (Subtraction): accumulates the inner 
product coefficients in negative form.It inputs a, x; if f•l, l.e 
for a-a(O)•O it outputs s, saves x as news, and propagates a, 0; 
otherwise it outputs 0 and propagates a, x. 

proc ips (chan ain, xin, aout, xout, sout)• 
var float a(2J, x(2), s(21 : 
var fl2) : 
seq 

-- initialisation 
par i•[O for 2) 

par 
a[i) :• 0.0 
fll I :• o 
x[l} '" 0.0 
sill :• o.o 

main operation 
while true 

seq 
-- i/O 
par 

ain 7 a[0}1 f(OI 
xin 1 x(OJ 
aout I a(l); fill 
xout I x(l) 
sout I s(l]; f{,l) 

-- calculation 
par 

if 

fiOI • 1 
par 

seq 
sill :• siOI 
s[O} :• x[OJ 

x[l} :• 0.0 
true 

par 
sill :• 0.0 
x[l} :• x[O} - (a[OI • s[OI) 

a[l) J• a(O] 
f(l} :• f[OI : 

Delay Cell : propagates its input with one cycle delay. 

proc delay (chan ain, aout)• 
var float a(2) : 
var !(2) : 
seq 

-- initialisation 
par i•[O for 2) 

par 
alii :• 0.0 
fll I :• o 

-- main operation 
while true 

seq 
-- i/o 
par 

ain? a[OJ; f[O} 
aout I a[l); f[l) 

-- calculation 
a[ll :• a[O) 
fill :• fiOI : 

Register for the systolic collection and output of the ~esulta.A 
valid result is signalled by the flaq f; if no valid result is 
collected the value of the preceding registe~ is propagated. 

proc reel (chan celin, regin, regout)• 
var float eel, reg(2] : 
var f : 
seq 

-- initialisation 
par 

eel :• 0.0 
par i•(O for 21 

reg[il :• 0.0 
f :• 0 

while true 
seq 

par 

If 

celin 1 eel; f 
regin ? reg(O) 
regout 1 reg{l) 

f - 1 
reg[l) :• eel 

true 
reg(l) :• reg[O] : 

Divider for two successive valid results. It works after an initial 
delay of "output time" and receives results in groups of wsize" and 
with intervals of "size•. 

proc divide (chan rin, rout, 



value outime, size)• 
var float r(2), d : 
••q 

-- initialisation 
par 

par 1•(0 for 2) 
rill :• 0.0 

d :• o.o 
-- Initial delay 
seq 1•(0 for outime) 

par 
rin ? any 
rout I d 

while true 
••q 

-- accept results 
seq 1•(0 for size] 

••q 
r(l) :• r(O) 
par 

rin 1 r{O] 
rout I d 

if 
r[1[ • 0.0 

d :• r[O[ I 0.000001 
true 

d :- r(O) /rill 
wait for results 

seq i•[O for size) 
par 

rin ? any 
rout I d : 

Source of the ring : pumps in the coefficients of the polynomial 
as a(O)•O, a(l), •. , a(n) and the initial values for s(l), .• , s(n), 
as 0, a(l)•l, a{2)•2, •• , a(n]•n; it also pumps in zeros for the 
registers collecting the results. 

proc source 

var i ' 
seq 

(chan aout, xout, 
value float a( I, 
value n)• 

rout, 

i J• 0 
while true 

seq 
par 

I 

If 
I - 0 

par 
a out 
xout 

i <• n 
par 

0. 0; 1 
o.o 

a out I a [ 1-11; 0 
var float temp 
seq 

true 

fp.float(i, temp) 
temp :• ( -(a(i-1) 
xout I temp 

par 
a out o.o, 0 
xout o.o 

rout I 0.0 

'" I 
+ 1 : 

• temp)) 

Sink of the ring z it accepts the output from the divider. 

proc sink (chan din, 
value outime, size)• 

var float d : 
seq 

seq 1•10 for (outime+l)] 
din ? any 

while true 
seq 

seq 1•(0 for size] 
seq 

din ? d 
fp.put(d, • root •) 

seq 1•(0 for size] 
din 1 any : 

Multiplexer of the ring : for the •input time• cycles it accepts 
input from the source; then the ring is closed.No delay is caused. 

proc mux (chan asin, arin, xsin, xrin, aout, xout, 
value intime)• 

var float a, atemp, x, xtemp ; 
var f, ftemp, 1 J 

seq 
I :• 0 
while true 

seq 
If 

1 < intime 
par 

a sin ? 
arin ? 
xsin ? 
xrin ? 

true 
par 

a sin ? 
arin ? 
xsin ? 

a; f 
a temp; 
X 

xtemp 

a temp; 
a; f 
xtemp 

xrin ? X 
par 

aout a; f 
xout I x 

i :- i + 1 : 

ftemp 

ftemp 

Ring configuration : (n+l)/2 ips cells and collecting and propagating 
registers is required, for n•odd, and (n+2)/2 for n•even; 
One delay between each cell for a.ror n•even a last dummy coefficient 
is required, thus the input time is (n+2).The output time is the sum 
of the delay for the release of the first valid result plus its 
propagation time through the registers. 

proc system .. 
seq 

if 
In \ 2) • 0 

seq 
intime :• n + 2 

true 
intime :• n + 1 

size :~ (intime I 2) 
outime :• (intime + 2) +size 
par 

source(a.c(OJ, x.c(OJ, r.c(O), a, n) 

1.11 .... 
1.11 



mux(a.c[OJ, a.c[(2•size)+l], x.c[O], x.c(size+l), a.c(l], x.c[l), 
in time) 

par i•(O for size) 
par 

ips(a.c((2•i)+2), x,c(i+l), a.c((2•1)•3), x.c(i+2), s.c(i)) 
delay(a.c((2•i)+l), a.c[(2*i)+2]) 
recl(s,c[i), r.c(i), r.c{i•lll 

divide(r.c(size), r.c(size•l), outime, size) 
sink(r.c[size+l), outime, size) : 

proc getdata • 
seq 

qet(n, • de9ree of polynomial ") 
fp.get.n(a, n, • of coefficients ") 

&eq 
getdata 
system 

A.l.2 

Systolic array for the Graeffe (Root Squarin9) Method, 
It performs one iteration of the algorithm, i.e for a given polynomial 

f{x) • a(OJ•x••n + a{l)*x*•(n-1) + •• + a(n) 
it produces the polynomial 

g(x) - b[O)•y••n + b(l)•y••(n-1) + •• + b(n) 
which has as roots the squares of the roots of f(x). 

external proc get(var v, values(]); 
external proc fp.get.n(var float v(], value n,s[)): 
external proc fp.put.n(value float v(), value n,s[]): 

-- Max degree of polynomials and max number of ips cells. 
de£ no • 10, so - 5 : 
--Vectors of coefficients for polynomials f(x), g(x). 
var float a(no+l], b(no+l) : 
-- Actual degree of polynomials and actual number of ips cells. 
vac n, s, 
-- Overall operation time, and initial delay. 

time, del : 
-- Channels for fast-moving a•s, slow-movinq a's and b•s. 
chan af.c(so+2), as.c({J•so)•l), b,c((2*so)+l) : 

The first cell of the array: produces the squared coefficient and defines 
-- the sign of it and of a-slow, which is also multiplied by two. 

proc square 

var float 
vac neg : 
seq 

(ch~n ~in,afout,asout,bout, 
v~lue time)• 

a(4J, b : 

-- initialisation 
par 

par i•(O for 4) 
a(i( '" 0.0 

b :- 0.0 
neg :• false 

-- main operation 
seq i•(O for time) 

seq 
-- i/o 
par 

ain ? atOJ 
afout I a{l) 
asout I a121 
bout 1 b 

-- calculation 
if 

""9 -- negate a-slow on alternate cycles. 
par 

a(3J '" -a(O( 
neg 1• false 

true 

par 

par 
a(3J '" a(OJ 
neg :• true 

a(lJ ,. a(OJ 
a(2) :• (2.0 • a(3)) 
b :• (a(OJ * a[3)) ·: 

Inner Product Step Cell: accumulates the inner product coeffielents in b 
and propagates a-fast, a-slow and b. 



proc ips (chan a!in, asin, bin, afout, asout, bout, 
value Ume)• 

var float a(4], b(2] ; 
oeq 

-- initialisation 
par 

par i•[O for 4) 
a[l) :• 0.0 

par i•(O for 2) 
b[l) :• 0.0 

-- main operation 
seq i•(O for time] 

seq 
-- 1/o 
par 

afin ? a[O) 
as1n? a{l] 
bin ? b[OJ 
afout 1 a(2] 
asout 1 a(3] 
bout 1 bill 

-- calculation 
par 

a[2) :• a(O) 
a(3) ~- a(ll 
b[l) :• b(OJ + (a(OJ • a[l)) ; 

Delay Cell : propagates its input with one cycle delay. 

proe delay (ehan xin, xout, 
value time )• 

var float x[2] : 
seq 

-- initialisation 
par i•[O for 2) 

x[l) :• 0.0 
-- main operation 
seq 1•10 for time) 

seq 
-- i/o 
par 

xin? x(OJ 
xout 1 x[l] 

-- calculation 
xlll :• •101 : 

Source of the array pumps the coefficients of the original polynomial 

proc source (chan aout, 
value float a(), 
value n,tilne )• 

seq i•{O for time) 
If 

i <• n 
aout a(i] 

true 
aout 0.0 : 

Sink of the array : collects the coefficients of the new polynomial after 
an initial delay. 

proc sink (chan afin, asin, bin, 
var float b(), 
value delay, time )• 

seq 1•{0 for time) 

par 
afin ? any 
asin ? any 
If 

i < delay 
bin ? any 

true 
bin 1 b(i-delay) 

Array configuration : only (n/2) ips cells are required, 
Two delays between each cell for a-slow and one delay for b. 
The initial delay is 2•(n/2]~ the overall operation time is n+2•(n/2), 

proc system -
oeq 

If 
(n \ 2) • 0 

s:•{n/2} 
true 

s :• ((n-1)/2) 
del :• (2 • s) + 1 
time :• (n + del) + 1 
par 

souree(af.c[O), a, n, time) 
square(af.c(O), af.c(l), as.c(OJ, b.e(OJ, time) 
par 1•(0 for s) 

par 
ips(af.c[i+l), as.c[(1*3)+2), b.c[ {1•2)+1), 

af.e(i+2), as.c((1•3)+3), b.e((i*2)+2], time) 
par j•(O for 21 

delay(as.c((i*3)+j), as.c[(i•3)+(j+l)], time) 
delay(b.c(i•2), b.e[(i*2)+1), time) 

sink(af.c(s+l), as.c(3•s), b.c(2*s), b, del, tim~) : 

proc getdata • 
seq 

get(n, M degree of polynomial •1 
fp.get.n(o, (n+l), • of coefficients M) 

proc putdata • 
seq 

fp.put.n(b, (n+l), M of coefficients "I 

seq 
getdata 
system 
putdata 

U1 .... .... 



A.l.3 

Systolic ring for the calculation of the Eigenvalues of a 
symmetric Tridiagonal matrix with diagonal coefficients 

a(l), a(2), •• , a(n) 
and off-diagonal coefficients 

b(l), b(2], •• , b(n-1] 
-- The n eigenvalues are calculated in parallel using the 
-- properties of the Sturm sequence of polynomials and the 
-- method of Bisection. 

external proc num.to.screen(value n); 
external proc fp.num.to.screen(value float n): 
external proc str.to.screen(value s(]): 
external proc get(var v, values(]): 
external proc fp.get(var float v, values()): 
external pcoc fp.get.n(vac float v(), value n,s()): 

-- Max size of matrix. 
def no .. 10 : 

Vectors of matrix diagonal and off-diagonal coefficients. 
-- Vector b starts with a zero. 
-- Bisection interval of the form 1 point • (a+b)/2, 
-- distance • {b-a)/4. 
var float a(no), b(no), x, d 
-- Actual size of matrix. 
var n : 
-- Channels for eigenvalues, bisection distance, sturm polunomial 
-- value, number of sign changes; i/o channels. 
chan x.c(no+4), d,c(no+4), q.c((3•no)+l), s.c(no+2), 

in.c[2), out.c : 

Bisection Check cell: it calculates the new bisection interval 
for each eigenvalue based on the nubmer of sign changes detected. 
A tag associated with x resets the counter that keeps account 
of the order of the eigenvalues. 

proc check(chan xin,din,sin,xout,dout)• 
var float x[2), d(2) : 
var sign, tag[2), count 
seq 

-- initialisation 
par 

par 1•10 for 2) 
par 

x(i] '" 0.0 
tag[!) :• 2 
d(i] ,. o.o 

sign :• 0 
count :• 0 

-- main operation 
while true 

seq 
-- i/O 
par 

xin ? x(O) : tag(O) 
din ? d(O) 
sin ? sign 
xout I x(l] ; tag(l) 
dout I dill 

-- calculation 
if 

sign > count 
-- more than required eigenvalues in the interval 
x(l) '" x(O) - d(O] 

true 
x(l] :• x(O) + d(O) 

par 
tag(l) :• tag(O) 
dill ,. d(O) I 2.0 
if 

tag[O) <> 0 
-- last eigenvalue or reset 
count :• 0 

true 
count :• count + 1: 

Sturm Sequence Polynomial calculation· cell: for giv~n x, q(i-1) 
it clculat~s q(i) • (a(i]-x)-(b(i)•~2/q(l-l)).The valu~s of 
a(i) and b(i)••2 are preload~d into the cell.If q(i-1) - 0 th~n 
it is replaced with a small quantity. 

proc sturm (chan xin, qin, xout, qout, 
valu~ float a,b)• 

var float x[2), q(2): 
var tag(2) : 
seq 

-- initialisation 
par i•(O for 2) 

par 
x(il :-o.o 
tag(!) I• 2 
q[i] :•1.0 

main operation 
while true 

seq 
-- 1/o 
par 

xin 1 x(O) ; tag(OJ 
qin ? q(OI 
xout I x[l) ; tag(l) 
qout 1 q(l) 

-- calculation 
par 

x(l] '" x(OJ 
tag(l) '" tag(OJ 
&eq 

if 
q(O) • 0.0 

-- q(i-1) is replac~d by e 
q(O] '" 0.00001 

q(l] ,. (a- x(O]i- (b I q(O]i 

Sturm Sequence Sign calculation cell : for given q(i), it 
checks if q{i) is negative.If yes, the numb~r of sign chang~s 
is incremented by one. 

proc sign(chan qin, sin, sout)• 
var float q : 
var s{2) : 
seq 

--initialisation 
par 

q ,. 0.0 
par i•(O for 2) 

s(i) ,. 0 
-- main operation 
while true 

seq 
-- i/o 
par 

U1 ..... 
0> 



qin ? q 
sin 1 s[O) 
&out I a[l) 

-- calculation 
If 

q < 0.0 
sill '" )s)O) + 1) 

true 
sill '" s(O)o 

Delay Cell for d: propagates d with one cycle delay. 

proc delay (chan xin, xout)• 
var float x(2) ; 
oeq 

-- initialisation 
par i•(O for 2) 

x(i) :• 0.0 
-- main operation 
while true ••q 

-- i/o 
par 

xin 1 x[O) 
xout I x(l) 

-- calculation 
x)l) '" x)O) 

Delay Cell for x: propagates x and tag, 

proe delay.x (chan xin, xout}• 
var float x(2J : 
var Ug(2J: 
oeq 

-- initialisation 
par 1•(0 for 2) 

par 
xlll '" 0.0 
taqlll ,. 2 

-- main operation 
while true 

seq 
-- i/O 
par 

xin 1 x(O) ; tag[OJ 
xout I x(l) ; tag(1) 

-- calculation 
par 

x(l] :• x(O) 
taq(l) '" taq)O) 

Branching : produces two channels from one without delay. 

proc branch(chan xin, xlout, x2outl• 
var float x : 
seq 

-- initialisation 
X :• 0.0 
-- main operation 
while true 

seq 
-- in 
xin 7 x 
--out 
xlout I x 
x2out I x : 

I/O Controller : accepts n pairs of the initial interval and 
then allows for normal ring operation to take place. 

proc control(chan xlin,dlin,x2in,d2in,xlout,x2out,d2out)• 
var float x, xtemp, d : 
var tag, tagtemp, start 2 
seq 

-- initialisation 
X :• 0.0 
xtemp :• 0.0 
d ,_ o.o 
tag :• 2 
tagtemp :• 1 
start :• false 
-- main operation 
while true 

seq 
-- input 
If 

not stact 
par 

true 

xlin 1 x ; tag 
dlin 1 d 
x2in 1 xtemp; tagtemp 
d2in 1 any 

par 
xlin 7 xtemp; tagtemp 
dlin 7 any 
x2in 7 x ; tag 
dlin 7 d 

output 
par 

if 
·not start 

xlout I xtemp 1 tagtemp 
true 

xlout x ; tag 
x2out 1 x tag 
d2out l d 

-- control 
if 

tag • 1 
stact :• true : 

Source of the ring : pumps in pairs of the original bisection 
interval in the form 
x • bisection point, d • bisection distance.The nth x has 
tag bit equal to 1. 

proc source (chan xout, dout, 
value float x, d, 
value n)• 

var i : 
seq 

-- initialisation 
I '" 0 
-- main operation 
while true 

seq 
par 

If 
i•(n-1) 

xout x ; 1 
true 

<11 ..... 
"' 



xout I x 1 0 
dout l d 

1:•(1+1) 

Produce q(O] • 1 and s(O] • 0 all the time. 

proc feed(chan qout, sout)• 
while true 

par 
qout 1 1.0 
sout 1 0 

Sink of the ring : collects the new approximations for the 
eigenvalues that are produced for each new bisection in an 
array.The initial dummy values are discarded. 

proc sink (chan ~in}• 
var float x : 
var tag : 
seq 

-- initialisation 
par 

X :• 0.0 
tag :• 2 

-- main operation 
while true 

seq 
xin 1 x ; tag 
if 

if 

tag <> 2 
-- no dummy value 
seq 

fp.num.to.screen{x) 
str.to.screen(• •) 

tag • 1 
-- last eigenvalue 
str.to.screen(* *c •n •1 

Receive q(n) all the time. 

proc qn(chan qin)• 
while true 

qin 1 any : 

-- Ring configuration 

proc system • 
par 

-- array for Sturm Sequence computation 
par 1•(0 for n) 

par 
delay(d.c(i),d.c(i+lll 
sturm(x.c(i),q,c(3•i),x.c(i+l),q.c({3*i)+l),a(i),b{i)) 
branch(q.c( { 3•1 )+1) ,q.c( ( 3*1 )+2J,q.c( ( 3*1 )+31) 
sign(q.c((3•i)+2),s.c(i),s.c[i+l)) 

bisection test and i/o controller 
delay(d.c(n),d.c(n+l)) 
delay.x(x.c(n),x.c(n+l)) 
check{x.e[n+l),d.c(n+l],s.c(nl,x.c(n+2),d.c(n+2)) 
control(in.c(O),in.c(l),x.c(n+2l,d.c{n+2), 

out.c,x.c(O),d.c[OJ) 
-- i/o of the ring 
souree(in.e(O),in.e(l),x,d,n) 
sink(out.c) 
feed(q.c(O),s.c(OJ) 

qn(q.c(3*n)) 

proc getdata • 
seq 

get(n, • size of matrix •) 
fp.get.n(a, n, • of diag coeffs *) 
fp.get.n(b, n, • squares of off-diag coeffs : first coeff .. o •1 
fp.get(x, n bisection point ., 
fp.get(d, • bisection distance •1 
str.to.screen(• *c *n •1 : 

seq 
getdata 
system 

U1 
CD 
0 



A.l.4 

Systolic array for the evaluation of a polynomial and its 
derivatives usin9 the nested multiplication (Horner) scheme. 
ror a polynomial p(x) of de9ree d, a trian9ular array of 
area • ((d+l)**2)/2 IPS, produces for a given point x, the 
quantities p(x)/01, p'(X)/11, p"(x)/21, p"'(x)/31, .... in 
time • (d+21 IPS cycles. 

external proc 9et ( var v, values() I : 
external proc fp.get ( var float v, value s[J ) 1 
external proc fp.qet.n ( var float v( J, value n, s[ I I : 
external proc fp,put.n (value float v[), value n, s(J ) ; 
external proc fp.so.x ( chan xout, value float x(), value time ) : 
external proc fp.so.d ( chan xout, value time ) : 
external proc fp.si.x ( chan xin, var float x[J, value time ) : 
external proc fp.si.d ( chan xin, value time I : 
external proc fp.lk ( chan xin, xout, value time I 
def no •. 10 : 

Basic cell : Inner Product with modified output 
-- b is propagated in two directions, x in one. 

proc hip ( chan ain, bin, xin, aout, bout, xout, 
value time ) • 

var float a, b(2), x[2) 
seq 

-- initialise 
pat 

a 1• 0.0 
par i•(O for 2) 

pat 
b(l) ,_ 0.0 
x(i) :• 0.0 

main operation 
seq i•IO for time) 

seq 
-- 1/0 
par 

aln 7 a 
bin 7 b[OJ 
xin? x(OJ 
aout 1 bill 
bout I b[l) 
xout I x[l) 

-- calculation 
par 

b(l) '"a+ (b(O) • x(O]) 
x(l) '" x(O) ' 

Pipeline configuration 
Row i of the array has m • (d+ll-i hip cells, each one 
acceptin9 a coefficient in skewed fashion; b, x are 
pipelined.The partial results (b), are also produced as 
the coefficints for row i+l of the array. 

proc pipe ( chan co.io(), x.in, b.out, 
value m, base, time } • 

chan b.c(no), x.c(no) : 
par 

par i•{O for m] 
hip ( co.io[base-+i), b.c(i), x.c[i), 

co.io((base+m)+(i+l)), b.c[i+l], x.c(i+l), time} 
fp.so.d { b.c(O), time ) 
fp,lk ( x.in, x.c(O), time ) 

fp.lk ( b.c(m], b.out, time 
fp.si.d ( x.c(m), time·} 1 

System configuration 
A triangular array of rows of size d+l, d, d-1, d-2, •• , 1 
Input 1 the coefficients of p(x) and x; output in b. 
A dummy channel in the first row for uniformity. 

proc syst ( chan a.in[J, x.in(J, b.out(), 
value n, time ) • 

chan co.c(no•no) 
var base[no) : 
seq 

base(O) :• 0 
seq i•(O for n) 

base(i+l) :• base(!)+ ({n + 1)- i} 
par 

par i-1 0 for n) 
par 

pipe ( co.c, x.in{i), b.out{i), (n-i}, base(!), time ) 
fp.si.d ( co.c(base(i+l)-1), time ) 

par i•(O for n) 
fp.lk ( a.in(i], co.c(base(O)+i), time ) 

fp.so.d ( co.c[base(1)-1), time ) 
fp.si.d ( co.c(base(n]), time ) : 

Skewed source for a, x. 

proc so.ax ( chan axout, 
value float ax, 
value t, time I • 

vac float temp[l) : 
seq 

temp( 01 :• ax 
fp.so.d ( axout, t) 
fp.so.x I axout, temp, 1) 
fp.so.d ( axout, (time-(t+l))) 

Delayed sink for b. 

proc si,b ( chan bin, 
var float b, 
value time ) • 

var float temp(l) : 
seq 

fp.si.d ( bin, (time-1) ) 
fp.si.x ( bin, temp, 1 ) 
b :• temp(O) : 

System interface-driver 

proc driv ( value float a(), x, 
value n, 
var float b(] } • 

chan a,c[no), x.c(no), b.c[no] 
var time : 
seq 

time :• n + 1 
par 

par i•(O for n) 
par 

so.ax ( a.c(i), a[i), i, time 
so.ax ( x.c{i), x, 1, time ) 
si,b ( b.c(i), b(i), time ) 

syst ( a.c, x.c, b.c, n, time I : 

V1 
(X) 

..... 



-- Main 

var float a[no), x, b(nol 1 

var d : 
oeq 

get ( d, • de9ree of polynomial • ) 
fp.get.n ( a, (d+l), • polynomial coeffs • ) 
fp.9et ( x, • evaluation point " ) 
driv ( a, x, (d+l), b ) 

·fp.put.n ( b, (d+l), " results " ) 

A.l.S 

Systolic Pipelines for the Bairstov Method. 
For a polynomial f(x) of degree d, and a quadratic 
x~~2 - p*x- q- (x- (a+ b*i))*(x- (a- b*i)], the system 
produces the coefficients for the calculation of 
f(a + b*i) and f'(a + b*i). 
Area • 2*d IPS cells, Time • 2~d+6 IPS steps. 

external proc get ( var v, value s( 1 ) : 
external proc fp.get ( var float v, values() } : 
external proc fp.get.n ( var float v(), value n, s(l ) : 
external proc fp.put.n (value float v(), value n, s() ) : 
external proc fp.so.x ( chan xout, value float x(), value time 
external proc fp.so.d ( chan xout, value time ) : 
external proc fp.si.x ( chan xin, var float x[), value time} : 
external proc fp.si.d ( chan xin, value time ) : 
external proc fp.lk ( chan xin, xout, value time ) : 
def no - 10 : 

Basic cell : Modified Inner Product 
Cycle t: b • a+q~b(-21; cycle t+l : b- b+p*b(-1); 
cycle t+2 : output b{-1) , cycle t+3 : output b. 
Cycles t+2, t+3 are overlapped; b is propagated in 2 directions. 

proc bip ( chan ain, bin, pin, aout, bout, pout, 
value time ) • 

var float a, b(3), p(3) 
seq 

-- initialise 
par 

a :• 0.0 
par i•(O for 3) 

par 
b(i) :• 0.0 

p{l) ·-··· main operation 
seq i•(O for time) 

seq 
-- 1/o 
par 

ain 1 a 
bin? b)O) 
pin 1 p(O) 
aout 1 b(2) 
bout 1 b{2) 
pout ·1 p(2) 

-- calculation 
par 

If 
{I\ 2) • 0 

seq 
b{2) ,_ b{l) 
bl 1 I ,_ a + !biOI • p) 0)) 

true 
seq 

bl 1 I ,_ bill + (b)O) • p)O)) 
b{2) ,_ biOI 

seq 
p{2) ,_ p{1) 
p)1) '" p!OJ ' 

Pipeline configuration 
The coefficients enter the pipeline in skewed fashion, 
p,q and b travel along the pipeline. 

01 
CD 
N 



proc pipe { chan co.io(), p.in, b.out, 
value m, base, time I • 

chan b.e(no), p,c(no) : 
par 

par 1•(0 for m) 
bip ( co.io(base+i), b.c(i), p.c(i), 

co.io((base+m)+li+l)), b.c{i+l), p.c(i+l), time) 
fp.so.d ( b.c(O], time I 
fp.lk ( p.in, p.c(O), time I 
fp.lk ( b.c(m], b.out, time I 
fp.si.d ( p.c(m), time ) : 

Skewed source for coefficients,O and p,q. 

proc so.ap ( chan apout, 
value float aq, p, 
value t, time ) • 

var float temp(2) 
seq 

temp(O) :• aq 
temp(ll '" p 
fp.so.d ( apout, t) 
fp.so.x ( apout, temp, 2) 
fp.so.d ( apout, (time-(t+2))) 

Delayed sink : collects for the last two cycles. 

proc si.b ( chan bin, 
var float b(], 
value i, time ) -

var float temp(2J : 
seq 

fp.si.d ( bin, (time-2) 
fp.si.x ( bin, temp, 2 ) 
seq j•(O for 21 

b((i"'2)+j1 :• temp(j) : 

System configu'ration 
Two pipelines of size (d+ll and d; the coefficients of the 
polynomials move across them.The first cell of the second 
pipeline is dummy for synchonization; a dymmy input channel 
for the first pipeline for uniformity. 

proc syst ( chan a.in(J, p.in(J, b.out[J, 
value n, time ) • 

chan co.c(3•no) : 
par 

pipe ( co.c, p.in(OJ, b.out(O), n, 0, time ) 
pipe ( co.c, p.in[l), b.out(l), (n-1), (n+ll, time ) 
fp.so.d ( co.c(n), time ) 
fp.si.d ( co.c(n), time ) 
par i•(O for n) 

par 
fp.lk ( a.in(i), co.c(i), time ) 
fp.si.d ( co.c(t2•n)+i), time 1 : 

System interface-driver 

proc driv (value float a(), p, q, 
value n, 
var float b( 1 I • 

chan a.e(no), p.c(2), b,c(2) : 
var time 1 

seq 
time 1• (2 • n) + 2 

par 
par 1-10 for n) 

so.ap ( a.c(i), a(i), 0.0, (2•1), time 
pat' 1-10 for 21 

par 
so.ap ( p.c(i), q, p, (2•1), time 
si.b ( b.c(i), b, i, time 1 

syst ( a.c, p.e, b.e, n, time ) : 

Main 

var float a(no), p, q, b(4) : 
var d : 
seq 

get I d, " degree of polynomial ) 
fp.get.n ( a, (d+l), " polynomial coeffs " } 
fp.get ( p, " p " ) 
fp.get ( q, " q " } 
driv ( a, p, q, (d+l), b ) 
fp.put.n ( b, 4, " results " ) 

U'1 
CD 
w 



A.l.6 

Systolic Array for the calculation of the characteristic 
polynomial of an Lower Hessenberg matrix. 

external 
external 

. external 
external 
external 
external 
external 
external 
external 
def no • 

proc get ( vac v, ·value s( I ) : 
proc fp.get ( vac float v, value s( I ) ; 
proc fp.9et.n (vac float v(], value n, s[) ) : 
proe fp.put.n (value float v(), value n, s(J ) 
proc fp.br ( chan xin, xoutl, xout2, value time 
proc fp.so.d ( chan xout, value time ) : 
proc fp.so.x ( chan xout, value float x(), value time 
proc fp.si.d ( chan xin, value time ) : 
proc fp.si.x ( chan xin, vac float x(), value time ) : 
10, to • ((2•no)-1) 

-- Bi-Directional Inner Product Step cell 

proc bdips t chan hin, hout, yin, yout, uin, uout, 
value time ) • 

vac float h(2), y(2), u(2) 
seq 

-- initialise 
par i•(O for 2] 

par 
h(l) :• 0.0 
y(l) ,. 0.0 
u(il :• 0.0 

main operation 
seq i•(O for time) 

seq 
-- i/O 
par 

hin ? h(OJ 
yin 1 y(O] 
uin ? u(O) 
hout 1 h{l] 
yout 1 y(l) 
uout I u[l) 

-- calculation 
par 

y(ll :• y(O) + (h(OJ • u(O)) 
h(l) :• h(OJ 
u(l) :• u(O) 

Boundary cell 

proc bound ( ehan hin, hout, yin, uout, 
value float z, 
value time ) • 

var float h(2), y, u : 
seq 

-- initialise 
par 

par i•(O for 21 
h(l) ,. 0.0 

u :• 1.0 
y :• o.o 

-- main operation 
seq i•(O for time) 

seq 
-- i/O 
par 

hin 1 h(O) 
yin 7 y 

hout I h(lJ 
uout I u 

-- calculation 
If 

(I\ 2) • 1 
u :• (y- (z • u)) / (-h(OJ) 

h(l) :• h(OJ : 

Linear array configuration 

proc bdarr ( chan hio( ), uout, 
value float z, 
value n, time ) • 

chan y.c[no), u.c(no+l) : 
par 

par i•(l for (n-111 
bdips I hio(i), hio[n+i), y.c(i), y.c[i-1), 

u.c[i], u.c[i+l), time ) 
bound ( hio(O), hio(n), y.c(O), u.c[OJ, z, time 
fp.br ( u.c(O), u.c(l), uout, time ) 
fp.so.d ( y.c(n-1), time ) 
fp.si.d ( u.c(n), time ) ~ 

System configuration 

proc syst ( value float h( J. z, 
vac float u(), 
value n. time ) • 

chan h.c(2•no), u.c 
par 

par i•{O for n) 
pa< 

vac float h.temp[to) 
seq 

seq j•(O for time) 
h.temp(j) :• h((i•time)+j) 

fp.so.x ( h,c(iJ. h.temp, time 
fp.&i,d I h.c[n+i), time ) 

bdarr ( h.c, u.c. z. n, time ) 
fp.si.x ( u.c, u, time ) : 

Main 

var float h(no•to), z, u[to) ~ 
var d, time ~ · 
seq 

get ( d, • order of lower hessenberg matrix • ) 
time :• (2 • d) + 1 
fp.get.n ( b, ((d+l)•time), • diagonal seq- upper first • ) 
fp.get ( z, • evaluation point • ) 
syst ( h, z, u, (d+l), time ) 
fp.put.n ( u, time, • result • ) 

U1 
CO .... 



A.2.1 

Preprocessor for the systolic array performing block 
(2x2) R+F LU/LDU decomposition. Two control signals are 
used: cl, to align all elements of a submatrix in the 
same liner c2, to achieve the correct spacing between 
submatrices. Further, there are reformatting delays. 
Time is determined by the maximum delay that may occur. 

external proc get ( var v, value s[ 1 ) : 
external proc get.n ( var v(), value n, &() ) : 
external proc fp.get.n ( var float v(), value n, s() ) : 
external proc fp.put.n (value float v[), value n, s() ) 
external proc so.x ( chan xout, value x(), value time ) : 
external proc fp.so.x ( chan xout, value float x(], value time 
external proc si.d ( chan xin, value time ) : 
external proc fp.si.d ( chan xin, value time ) : 
external proc fp.si.x ( chan xin, var float x( ), value time ) 
external proc dl ( chan xin, xout, value d, time ) : 
def no • 10, to • (no+6) 1 

-- Demultiplexer for the alignement of the submatrix elements 
-- Reformatting delays are configured, according to switch. 

proc all ( chan xin, xout, aln, left, right, 
value switch, time ) • 

var float a, 1, r, reg(4) 
var x(2] : 
&eq 

-- initialisation 
par 

a :• 0.0 
1 :• 0.0 
r :• 0.0 
par 1•(0 for 4) 

reg(i) :• 0.0 
pac 1•( 0 for 2 I 

xi i) '" 0 
-- main operation 
seq i•{O for time] 

••q 
-- input/output 
pa< 

xin 1 x(OJ 
xout l x(l] 
ain 1 a 
left I 1 
right 1 r 

-- calculation 
xil) '" xiOJ 
if 

If 

xiOJ • 1 
par 

reg[OJ :• 0 
reg(l) :• a 

true 
par 

reg[OJ :• a 
reg(l) :• 0 

switch • 0 
••q 

1 :• reg(2) 
r :• reg(3) 
re9121 :• reg(O) 

reg(l) :• reg(ll 
true 

••q 
1 :• reg(O) 
r :• reg(l) 
reg( 3] 1• reg(2) 
reg(2) :• reg[l) 

Delay for correct spacing of submatrices. 
Reformatting delays are configured, according to switch. 

proc spa ( chan ain[], aout(), xin, xout, 
value basein, baseout, switch, time ) .. 

var float a0[4), al[4), a2(4), a3(4), a4(4) : 
var x(2), overwrite 
seq 

-- initialisation 
par 

par i•(O for 4) 
par 

aOiil '" 0.0 
alii) ,. 0.0 
a2(i) :• 0.0 
a3(i) :• 0.0 
a4(i) :• 0.0 

par i•(O for 2) 
xi i I '" 0 

overwrite :• false 
-- main operation 
seq i•(O for time) 

••q 
-- input/output 
par 

par i•(O for 41 
par 

ain{basein+iJ 1 aO(i) 
aout(baseout+il I a4(i) 

xin 1 x[O) 
xout l x(l) 

-- calculation 
xil) '" xiOJ 
if 

if 

X I 0 I - 1 
par 

par i•(O for 4) 
par 

a2iil '" 0.0 
al(i) :• aO(i) 

overwrite :• true 
true 

seq 
if 

overwrite 
par i•(O for 4] 

a2iil '"alii) 
true 

par i•(O for 41 
a2iil '" aOiil 

overwrite :• false 

switch • 0 
par i•IO for 4) 

seq 

true 

a4ill '" alii) 
al(i) :• a2(1] 

<.11 
0) 

<.11 



par i•[O for 4) 
a4(1) ;• a2(1) 

System configuration, for block tridiagonal matrix 

proc system ( var float block(), 
value float point(), 
value cl(), c2(J. time I • 

chan ain(7), a.c(14), aout(l2), cl.c(8), c2.c(7) 
par 

-- data sources 
par i•(O for 7) 

var float temp.point(to) 
••q 

seq j•(O for time) 
temp.point(j) :• point((i•time)+jl 

fp.so.x ( ain(i), temp.point, time ) 
control sources 

so.x ( cl.c(O), cl, time ) 
so.x ( c2.c(O), c2, time ) 
-- preprocessor 
par i•(O for 7) 

ali ( cl.c(i), cl.c[i+l), aln(i), a.c((2*i)+l), a.c(2*i), 
U\2), time ) 

par i•(O for 31 
par 

spa ( a.c, aout, c2.c[2•i), c2.c((2*i)+l), 
((4•1)+1), (4*1), (i\2), time ) 

dl ( c2.c{(2*i)+l), c2.c((2*i)+2), 1, time 
data sinks 

par i•(O for 12) 
var float temp.block(to) 
seq 

fp.si.x ( aout(i), temp.block, time ) 
seq j•[O for time) 

block((i*time)+j) :• temp.block(j) 
fp.si.d ( a.c{O), time ) 
fp.si.d ( a.c(13), time I 
-- control sinks 
si.d ( cl.c(7), time ) 
si.d ( c2.c[6), time ) ; 

Main 

vac float point[7*to), blockll2*to) 
var cl(to), c2(to), n, time 
seq 

get ( n, M size of matrix " 
time :• n + 6 
fp.get.n ( point, (7*time), input seq: upper diag fi~st " ) 
get.n ( cl, time, " cl " ) 
get.n ( c2, time, " c2 " ) 
system ( block, point, cl, c2, time ) 
fp.put.n ( block, (12*time). M block output M 1 

A.2.2 

Systolic array for block (2x2) R+F LU/LDU decomposition 
of a (2x2) block tridia9onal matrix. 

external proc get ( var v, values() ) : 
external proc fp.9et.n ( var float v(), value n, s() I : 
external proc fp.put.n (value float v[J, value n, s[) ) : 
external proc fp.so.x ( chan xout, value float x(), value time ) 
external proc fp.si.x ( chan xin, var float x(J, value time) : 
def no - 10, to • ( no + 6 I 

-- Inner Product calculation for (2x21 submatrices : 
-- A • A + 8 * C. 

proc block.ip ( value float b{), c(), var float •I l l • 
par 

aiOJ ,. (( biOI • ciOJ + ( bill * c(2) )) • a[O) 
all I ,. (( biOI * ell J • I bill .., c(3) )) • a( 1 J 
•12) ,. (( bl2) • c(O) . ( bi3J • c(2) ) J + a(2) 
•I 31 ,. (( bl2) * c(l) . ( bi3J • c(3) ) ) + a(3) 

Calculation of the Determinant of a (2x2) matrix. 

p~oc det ( value float a(), var float dt) • 
seq 

dt :• ( a[OJ * a(3) ) - ( a[l) *a 121 

-- Inversion of a (2x2) matrix. 

proc inv ( value float a(), dt, var float ail) ) • 
if 

dt <> o.o 
pa< 

aiiOJ '" a(3) 1 dt 
ailll ,. I -•Ill l 1 dt 
a112) '" I -•121 I 1 dt 
all31 :• aiOJ 1 dt 

true 
par l•{O for 4) 

ai(i) :• 0.0 : 

Processor sll ; accepts a (2x2) matrix A and its 
determinant d, and produces A/d. 

proc sll ( chan ain{), dtin, aout(), 
value time ) • 

vac float a0{4), al[4), dt 
seq 

-- initialisation 
pa< 

pa~ i•[O for 4) 
par 

aOiil ;• 0.0 
al(i) '" 0.0 

dt ,. 0.0 
-- main operation 
seq j•(O fo~ time) 

seq 
-- i I o 
par 

par i•(O for 4) 
par 

alntiJ 1 aO(i) 
aoutl i I l all i) 

l11 
00 
0\ 



dtin ? dt 
-- calculation 
if 

dt <> 0.0 
par 1•(0 for 4) 

al[l) ,. aO[ll / dt 
true 

par i•[O for 4) 
al[il :• 0.0 : 

Processor sl2 : accepts a (2x2) matrix A and its 
determinant d, and produces them unchanged. A is 
delayed for one cycle. 

proc s12 ( chan ain(), dtin, aout[J, dtoutl, dtout2, 
value time I • 

var float a0(4), al[4), a2(4), dt(2] : 
seq 

-- initialisation 
par 

par i•lO for 4] 
par 

aO[l) '" 0.0 
al[ll '" 0.0 
a2[1) '" o.o 

par 1•(0 for 2) 
dt[ll ,_ o.o 

-- main operation 
seq j·(O for time) 

seq 
-- i / 0 
par 

par 1·(0 for 4) 
par 

ain{i)? aO(i) 
a out I i I I a2(1 I 

dtin 1 dt(OJ 
dtoutl I dt(l) 
dtout2 l dt(l) 

-- calculation 
par i•{O for 41 

a2[11 '" al[il 
par i•IO for 41 

al(i) :• aO(i) 
dt[ll '" dt[O) ' 

Processor sl3 : accepts a (2x2) matrix A and its 
determinant d, and produces dA. 

proc s13 ( chan ain(), dtin, aout(), 
value time l • 

var float a0(4), al(4), dt 
seq 

-- initialisation 
par 

par i•(O for 4) 
par 

aO[i) '" 0.0 
allil :• 0.0 

dt :- 0.0 
-- main operation 
seq j•(O for time) 

seq 
-- i / 0 
par 

par i•IO for 41 

par 
ain(i) ? aO[il 
aout(i) I al(i} 

dtin 1 dt 
-- calculation 
par i•(O for 41 

alii I :• aO[i) • dt : 

Processor s21 : accepts two (2x2) matrices A and u, 
and produces dL • d(u••-l)A, where d is the determinant 
of u. 

proc s21 ( chan ain(], uin(), dloutl(), dlout2[], 
value time ) • 

var float a0(4), al(4), u{4), dl(4] : 
seq 

-- initialisation 
par 1•[0 for 4) 

pa< 
aO(i) :• 0.0 
al(i) :• 0.0 
u(i) :•0.0 
dl[i) ,_ 0.0 

main operation 
seq j•(O for time) 

seq 
-- i / 0 
par i•(O for 4) 

par 
ain(i] 7 aO(i) 
uin( i 1 7 u( i 1 
dloutl(i) 1 dl(i) 
dlout2(i) 1 dl(i) 

calculation 
inv ( u, 1.0, al I 
par i•(O for 4) 

dl[i) ,_ 0.0 
block.ip ( al, aO, dl ) : 

Processor s22: accepts a (2x2) matrix, and outputs 
the matrix and its determinant 

proc s22 I chan ain( 1, aoutl( ), aout2( ), dtoutl, dtout2, 
value time I • 

var float a0(4), al(4), dt : 
seq 

-- initialisation 
par 

par i•(O for 4) 
pa< 

aO[Il ,. 0.0 
al[il ,. 0.0 

dt :• 0.0 
-- main operation 
seq j•(O for time) 

seq 
-- i / 0 
par 

par i•(O for 4) 
ain(i) 7 aO(i) 

par i•(O for 4) 
par 

aoutl(i) 1 al(i) 
aout21il 1 al(iJ 

dtoutl 1 dt 
dtout2 1 dt 

l11 
0> 
...... 



-- calculation 
par i•(O for 41 

al(i) •• aOiil 
det ( aO, dt ) : 

Processor s23 ; accepts a (2x2) matrix A and its 
determinant d, and produce~ A/d. 

proc s23 ( chan ain(), dtin, aoutl(], aoutl(), 
value time ) .. 

var float a0(4), a1(4), dt 
seq 

-- initialisation 
par 

par i•(O for 4) 
par 

aO(i) :• 0.0 
al(il :• 0.0 

dt :- 0.0 
-- main operation 
seq j•(O for time) 

seq 
-- i I o 
par 

par i·IO for 4) 
par 

ain(i) ? aO(i] 
aoutl(i] I alii) 
aout2(i} I al(il 

dtin ? dt 
-- calculation 
if 

dt <> 0.0 
par i•[O for 4) 

alii) ,. aO[i) 1 dt 
true 

par i•IO for 4] 
allil •· 0.0 1 

Processor s31 : accepts three (2x2) matrices, A, L, U 
and produces A • A + L * u. It is assumed that the 
computation requires two cycles. 

proc s31 ( chan a in( J 1 1 in(), uin(), aout(], 
value time ) .. 

var float a0(4), a1(4], a2{4), 1(4), u(4): 
seq 

-- initialisation 
par i•IO for 41 

par 
aO[i] :• 0.0 
alii) ,. 0.0 
a2[1) ,. 0.0 
1[1) ,. o.o 
u[i) ,. 0.0 

111.ain operation 
seq j•(O for time] 

seq 
-- i I o 
par i•IO for 4) 

par 
ain(ll ? aO(i) 
lln[l) ? 1111 
uin(i) ? u(il 
aout(i] 1 al(i) 

calculation 

par i•IO for 4) 
a2[i) •· alii) 

par i•(O for 41 
alii) •· aO[I) 

block.ip ( 1, u, al ) 

System configuration 

proc system (value float ainl(), ain2(}, ain3(), 
var float aoutl(), aout2(), aout3(}, 
value time ) • 

chan cllo[4), cl2o(4), c13o(4), cl21ld, c1213d, 

par 

c2111(4], c2212(4), c2212d, c2313[4], c2221[4], e2223d, 
c3122(4), c2131(4), c2331[4), c21il4), c23i(4), c3li[4) 

sources 
par i·{O for 4] 

var float temp.a(to) 
seq 

seq j·IO for time) 
temp.a(j) :• ainl{(i-time)+j) 

fp.so.x ( c23i(i], temp.a, time 
par 1•(0 for 4) 

var float temp.a(to) : 
seq 

seq j•(O for time) 
temp.a(j) :• ain2((i-time)+j) 

fp.so.x ( c3li(i), temp.a, time 
par i•(O for 4) 

var float temp.a(to) : 
seq 

seq j·IO for time] 
temp.a(j] :• ain3((i*time)+j] 

fp.so.x { c2li(i), temp.a, time 
array 

sll ( c2111, clllld, cllo, time ) 
s12 ( c2212, c2212d, cl2o, cl2lld, cl213d, time 
sl3 ( c2313, cl213d, c13o, time ) 
s21 ( c21i, c2221, c2111, c2131, time ) 
s22 ( c3122, c2221, c2212, c2212d, c2223d, time 
s23 ( c23i, c2223d, c2313, c2331, time). 
s31 ( c3li, c2131, c2331, c3122, time ) 
-- sinks 
par i•(O for 41 

var float temp.a(tol 
seq 

fp.si.x ( cl3o(i], temp.a, time) 
seq j•(O for time) 

aoutl[(i*time)+jl :• temp.a[j) 
par i•(O for 4) 

var float temp.a[to) 
seq 

fp.si.x ( c12o[i], temp.a, time ) 
seq j•(O for time) 

aout2((i*time)+j) :• temp.a(jl 
par i•(O for 4) 

var float temp.a(to) 
seq 

Main 

fp.si.x ( cllo(i], temp.a, time ) 
seq j•{O for time] 

aout3((i*time)+jl :• temp.a(j] : 

var float ainl(4*to), ain2(4•to), ain3(4*to), 
aoutl(4*to), aout2(4•to), aout3(4*to) 

Vl 
CX> 
CX> 



var n, time : 
seq 

get ( n, • proble• size • ) 
time :• n + 6 
fp.qet.n ( ainl, (4•time), al input seq • ) 
fp.get.n ( ain2, (4•time), • a2 input seq • ) 
fp.9et.n ( ain3, (4•time), "a3 input seq" ) 
system I ainl, ain2, ain3, aoutl, aout2, aout3, time ) 
fp.put.n ( aoutl, (4*tlme), " al output seq • ) 
fp.put.n ( aout2, (4*time), a2 output seq • ) 
fp.put.n ( aout3, {4*time), " aJ output seq • ) 

A.2.3 

systollc array for (2x2) block backsubstitution. The input 
matrix can be produced by block {2x2) R+F LU/LDU decomposition. 

external proc get ( var v, values{) I : 
external proc fp.get.n ( var float v(], value n, s(l ) : 
external proc fp.put.n I value float v(), value n, s() I : 
external proc fp.so.x ( chan xout, value float x(], value time ) 
external proc fp.si.x ( chan xin, var float x(J, value time ) : 
def no - 10, to • ( no + S ) : 

-- Inner Product calculation for (2x2) submatrix, and 
-- (2xl) subvetors : y • Ax+y. 

proc block.ip (value float a[), x[), var float y() ) • 
par 

yiOI :• (( a(O) * x(O) ) + ( a[l} * x[l] )) + y(O) 
y(l) :• (( a(2) * x(O) ) + ( a[JJ • x(l) )) + y(l) 

Calculation of the Determinant of a (2x2) matrix. 

proc det (value float a(), var float dt) • 
seq 

dt :• ( a(OJ * a(JJ ) - I a(l) * a (21 

-- Inversion of a (2x2) matrix. 

proc inv (value float a(), dt, var float ai(J l • 
If 

dt <> 0.0 
par 

a!IOI '" al31 I dt 
allll o•l -alll I ldt 
all21 ,. I -•121 I I dt 
all31 '" a(OI I dt 

true 
par i•IO for 4) 

al(ll '" 0.0 o 

Processor s22: accepts a (2x2) matrix, and outputs 
the matrix and its determinant 

proc s22 ( chan ain(), aout[], dtout, 
value time ) • 

var float a0(4], al[4], dt : 
seq 

-- initialisation 
par 

par 1•[0 for 41 
par 

aO(I) o• 0.0 
alii) o• 0.0 

dt ,. 0.0 
-- main operation 
seq j•(O for time) 

seq 
-- i I o 
par 

par i-10 for 4) 
ain[i) 7 aO{i] 

par i•(O for 4) 
aout(il 1 al(i) 

dtout 1 dt 
-- calculation 



par 1•[0 for 4] 
alii) :• aOIIJ 

det ( aO, dt ) : 

Processor s23 : accepts a (2x2) matrix and its determinant 
and it produces its inverse. 

proc s23 ( chan ain(J, dtin, aout[), 
value time ) • 

var float a0(4], al(4), dt 
seq 

-- initialisation 
par 

par 1•[0 for 4) 
par 

aOII) :• 0.0 
alii) :• 0.0 

dt ·- o.o 
-- main operation 
seq j·[O for time) 

seq 
-- i I o 
par 

par 1•[0 for 41 
ain(i) 7 aO(i) 

dtin 7 dt 
par 1•[0 for 4) 

aout(i] l al[i) 
-- calculation 
inv ( aO, dt, al } : 

Processot sd : calculates a (2xl) solution subvector x 
as x • (A••-l)(b-y). 

proc sd ( chan ain(), bin( l, yin[J, xout[ l, 
value time ) • 

var float a(4), b(2), y(2], x[2], id(4) : 
seq 

-- initialisation 
par 

par i•[O fot 4) 
all) :• 0.0 

par i•[O for 2) 
par 

bill ·- o.o 
ylll ·- o.o 
xll) :• 0.0 

ld(O) :• 1.0 
ldlll ·- 0.0 
ldl21 ·- o.o 
ldl3) ·- 1.0 

-- main opertaion 
seq j•[O for time) 

seq 
-- i/O 
par 

par i•[O for 4} 
aln[l) 7 alii 

par 1•(0 for 21 
par 

bln[l) 7 b[l) 
yln(l) 7 y[l) 
xout(i] t x[i) 

calculation 
par i•[O for 2) 

por 

yll) :• 1-yllll 
xlll :• 0.0 

block.ip ( id, b, y ) 
block.ip ( a, y, x ) : 

Processor ma : it performs a block (2x2) IPS, in the 
form y•P.x+O. 

proc ma ( chan ain{), xin{], xout(], yout(], 
value time ) • 

var float a{4), x0(2], xl[2], y(2) 
seq 

-- initialisation 
par 

par i•(O for 4) 
all I :• 0.0 

par i•(O for 2) 
par 

xO(I) :•0.0 
xllll :• 0.0 
y(l) ·- o.o 

main operation 
seq j•{O for time] 

seq 
-- i / 0 
par 

par 1•[0 for 4) 
ain[i] 1 a(i] 

par i•(O for 2] 
par 

xin(i] 7 xO(i] 
xout[i) l xl(i) 
yout(i] 1 y(il 

calculation 
par 1•[0 for 2] 

par 
xl[i] :• xO(i) 
y(l) ·- 0.0 

block.ip ( a, xO, y 

System configuration. 

proc system I value float al(], a2(), b(], 
var float x( ), 
value time ) • 

chan as22(4), as23(4), asd[4], ama[4], dts23, 
bsd(2), ysd[2], xsd[2], xmal21 : 

sources 
par i•(O for 41 

var float temp.al[to) 
seq 

seq j•IO for time} 
temp.al[j) :• al[(i•time)+j) 

fp.so.x ( as22(i), temp.al, time 
par i•{O for 41 

var float temp.a2(tol ; 
seq 

seq j•[O for time) 
temp.a2[j) :• a2((i*time)+j) 

fp.so.x ( ama[i), temp.a2, ti~e 
par 1•(0 for 21 

var float temp.b[to) : 
seq 

seq j•(O for time) 
t .. mp.b(j) 1- b((l*tlme)+jl 

.., 
\0 
0 



fp.so.x ( bsd(l), temp.b, time 
array 

s22 ( as22, as23, dts23, time ) 
s23 ( as23, dts23, asd, time ) 
sd ( asd, bsd, ysd, xsd, time ) 
ma ( ama, xsd, xma, ysd, time I 
-- sink 
par 1•10 for 2) 

var float temp.x(to) 
seq 

fp.sl.x ( xma(i), temp.x, time 
seq j•(O for time] 

x((i•time)+j) :• temp.x(j) : 

Main 

var float al(4•to), a2(4•to), b(l•to), x(2•to) 
vac n, time : 
seq 

get ( n, • size of problem • ) 
time :• (n + S) 
fp.get.n ( al, (4*time), " al input seq 
fp.get.n ( al, (4*time), "a2 input seq 
fp.get.n ( b, (2•time), "b input seq" 
system ( al, a2, b, x, time ) 
fp.put.n ( x, (l•time), "x output seq" I 

A.2.4 

Square array of processors for the updating of the LU 
factors in Simplex method.Matrix U is shifted one column 
to the left and a new nth column is added. 

external proc get ( var v, value s() ) : 
external proc fp.get.n ( var float v(), value n, s(] ) 
external proc fp.put.n (value float v(), value n, s[] 

-- Maximum size of problem, 
def no • 10 

-- Diagonal cell. 
proc diaq ( var float u, eo, se, wo, 

value float nw, n, ei, 
value start, t I • 

If 
t • start 

If 
nw • 0.0 

WO :• 0,0 
true 

wo :• (u / nw) 
t • (start + 11 

seq 
par 

u :• ei - (wo • n) 
eo :• wo 

se :• u : 

Upper Diagonal cell. 

proc updi ( var float u, eo, s, wo, 
value float n, ei, wi, 
value start, t I • 

If 
t .. start 

WO :• U 
t • (start + 2) 

seq 
par 

eo :• wi 
u :• ei - (wi • n) 

s :• u 

First Lower Diagonal cell. 

proc ldil 

••• WO:;: 1 
if 

var float 1, s, 
value float ei,~, 
value start, t ) • 

t • start 
seq 

1 ,. (1 
s :• ei 

+ ei) 

Lower Diagonal cell. 

proc lodi 

s.~o::l 
If 

var float 1. s, 
value float n, ei, wo, 
value start, t ) • 

t - start 
seq 

U1 

"' .... 



1 :• 1 + (n • ei) 
s :• n : 

Generic cell for main diagonal. 

proc gend ( chan nwin, nin, eout, ein, seout, sout, wout, win, 
var float x, 
value start, time ) • 

var float nw, n, eo, ei, se, s, wo 1 wi 
seq t•(O for time) 

seq 
par 

nwin ? nw 
nin 1 n 
eout I eo 
ein 1 e1 
seout I se 
sout I s 
wout I wo 
win 1 wi 

diag(x, eo, se, wo, nw, n, ei, start, t) 

Generic cell for other dia9onals. 

proc gene ( chan nin, eout, ein, sout, wout, win, 
var float x, 
value type, start, time ) • 

var float n, eo, ei, s, wo, wi : 
seq t•{O for time] 

seq 
par 

nin 1 n 
eout I eo 
ein ? ei 
sout I s 
wout I wo 
win 1 wi 

If 
type • 0 

updi(x, eo, s, wo, n, ei, wi, start, t) 
type • 1 

ldil(x, s, ei,u,stut, t) 
true 

lodi(x, a, n, ei,wt.,start, t) 

Dummy source. 

proc soud ( chan xout, 
value time ) • 

seq t•IO for time) 
xout I 0.0 

-- OUIIUflY sink. 

proc sind ( chan xin, 
value time ) • 

seq t•(O for time) 
xin 1 any 

Source for elements of new column a. 

proc soua ( chan xout, 
value float x, 
value start, time ) -

seq t•(O for timel 
If 

t .. start 
xout I x 

true 
xout 1 0.0 

System configuration. 

proc syst ( var float lu(), 
value float a(), 
value n, time ) • 

chan v.c(no•(no+l)), hl.c(no•(no+l)), h2.c(no•(no+l)], d.c(no+l] 

-- Main Array. 

proc sqar ( var float lu(], 
value n, time ) • 

par i•(O for n] 
par j•{O for n] 

var k : 
seq 

k :• I i • n) + j 
if 

i • j -- main diagonal cells 
gend(d.c(i), v.c[k), hl.c((k•l)+i), h2.c{tk+l)•i), d.c(l•l], 

v.c(k+n), h2.c[k+i), hl.c(k•il, lu[k), (2~1), time) 
< j -- upper diagonal cella 
gene(v.c(k ), hl.c( (k+l )+i), h2.c( (k+l )+i),v.c(k+n], 

h2.c(k+i), hl.c(k•i), lu(k), 0, ((i+j)-1), time) 
- (j • 1) -- first lower diagonal cells 
gene(v.c(k), h1.c[(k+l)•i), h2.c((k+l)+i],v.c(k+n), 

h2.c(k+i], hl.c[k+i], lu(k), l, ((2~1)+1), time) 
true -- rest lower diagonal cells 

gene(v.c{k), hl.c[(k+l)+i), h2;c((k•ll+i).v.c[k+n), 
h2.c[k•i), hl.c(k•i), lu[k), 2, ((i+j)+2), time) 

sources - Sinks. 

proc sosi (value float a(), 
value n, time ) • 

par 
par i•(O for n] 

par 
soud(v.c(i), time) 
sind(v.c((n"'n)+i), time) 
soud(hl.ct (n+l)~i), time) 
sind(hl.c(((n+l)•i)•nJ, time) 
soua(h2.c(((n+l)~i)+n), a(i), (n+i), time) 
sind(h2.c((n+l)~i), time) 

soud(d.c{O), time) 
sind(d.c(n), time) 

par 
sqar(lu, n, time) 
sosi(a, n, time) : 

Main. 

var float lu(no~no), a[nol 
var n, time : 
seq 

get(n, " problem size ") 
fp.get.n(lu, (n•n), • LU row-wise •J 
fp.get.n(a, n, • new column •1 
time :• (2 ~ n) 
syst(lu, a, n, time) 
fp.put.n(lu, (n~n), • LU updated •) 



-- A.2.5 

systolic Array for the Updating of the LU factors 
of a full (n•n} matrix A: the first column of A is 
removed and a new nth column (An) is added (Simplex). 
For the updatinq: the new nth column in the form 
a • ((L)••-l)An is added to U and the main diagonal is 
removed; L is modified accordingly.It is assumed that 
no permutations needed. 

external proc get ( var n, values(] ) : 
external proc fp.get.n ( var float v( ], value n, si I ) 
external proc fp.put.n (value float v(], value n, stl 

de£ no • 10, to • (2 * no) + 1 

Divider calculating r :• u(i,il I u'(i-1,i-1); 
--Adder calculating l'(i,i-1) :• 1(1,i-1l + r. 
-- Output : l'{i,i-1); r. 

proc dva ( chan ein, win, sin, eout, wout, nout, 
value time )• 

var float r, u{l), 1(2) 1 

seq · 
-- initialisation 
par 

par i•[O for 2) 
par 

util :- 0.0 
lill ,. o.o 

r :• 0.0 
-~ main operation 
seq i•(O for time) 

seq 
-- 1/0 
par 

ein?u{l] 
win 1 1(0} 
sin 1 u[OI 
eout 1 r 
wout 1 r 
nout I 1(1) 

-- calculations 
If 

uill • 0.0 
r :• 0. 0 

true 
r :• (u(O) 1 u(l)) 

1111 :• (1101 + r): 

Inner Product calculating : u'[i,jl :• u[i,j) - r • u'(i-l,j) 
Propagates u'(i,j) and r in opposite directions. 

proc ipu ( chan ein, win, sin, eout, wout, nout, 
value time )• 

var float r(2), u(3] 
seq 

-- initialisation 
par 

par i•IO for 21 
rill,. 0.0 

par i•IO for 3) 
uill ••0.0 

-- main operation 
seq i•[O for time) 

seq 
1/0 

par 
ein 1 u(l) 
win 1 r(O) 
sin 1 u(O) 
eout I rill 
wout 1 u(2) 
nout I u(2) 

-- calculation 
par 

ui21 ,. uiOI- (uill • riO]) 
rill ,. riOI ' 

Inner Product calculating : 1'(1,jl :• l[i,j) + r • l(i,j+l) 
Propagates l(i,j+l), r in opposite directions. 

proc ipl ( chan ein, win, sin, eout, wout, nout, 
value time )• 

var float 1(4), rill 
seq 

-- initialisation 
par 

par 1•10 for 4) 
1ill ,. o.o 

par i•(O for 2) 
tlil =- 0.0 

-- main operation 
&eq i•IO for time) 

seq 
-- i/O 
par 

ein 1 riO) 
win 1 1(1) 
sin 1 1101 
eout I 1(2) 
wout 1 r[l) 
nout 1 1(3} 

-- calculation 
par 

li3l ,. lill • lriOI • liOII 
1i2] ,. 1i0i 
rill ,. riOI 

Delay-branching cell. 

proc dba ( chan ain, u1out, u2out, 
value time ) • 

var float a(21 : 
seq 

-- initialisation 
par i•(O for 2) 

a(i) :• 0.0 
-- main operation 
seq i•{O for time) 

seq 
-- i/O 
par 

ain 1 a(OI 
ulout t a(ll 
u2out ! a(l] 

-- calculation 
ai1l ,. aiO] ' 

Source for a vector x. 



proc srx I chan xout , 
value float x[), 
vAlue time ) • 

seq i•(O for time) 
xout 1 x(il : 

-- Sink for a vector x. 

proc six ( chan xin, 
var float x( J, 
value time ) • 

seq i•[O for time) 
xin ? x[i) 

-- Dumm sink. 

proc sid ( chan xin, 
value time ) • 

seq i•{O for time) 
xin 7 any : 

-- Delay cell. 

proc del ( chan xin, xout, 
value time ) • 

var float x(2) : 
oeq 

par i•(O for 2) 
x!il :• 0.0 

seq i•(O for time) 
seq 

per 
xin 1 x(O] 
xout I x(l) 

x[l) :• x(O} : 

System configuration : n-1 ipu, 1 dva and n-2 ipl linearly 
interconnected; L, U matrices enter the array diagonally, 
together with the new column a.Output the updated matrices 
Ll, Ul • 

proc system ( var float 11(), ul( ), 
value float 1( J, u( I, 
value n, time ) • 

data communication. 
chan ru.c(no), rl.c(no-1), ui.c(no•lJ, uo.c(no), li.c(no-1], 

lo.c(no-1), u.c(no), l.c(no-1) : 
par 

n vector sources 1 sinks for u-diagonals; the source 
v~ctors have last element from new coluMn a. 

par i•(O for n) 
var float uti(to), uto(to) : 
seq 

par j•[O for time] 
uti(j) :• u!(i*time)+j) 

par 
srx(ui.c{i), uti, time) 
six(uo.c(i), uto, time) 

par j•(O for time) 
ul((i•time)+j) :• uto{j) 

1 vector source for the first element of new column a. 
var float uti(to) : 
seq 

par j•(O for time) 
uti[j) :• u((time"n)•jl 

srx(ut.c(n), uti, time) 

-- n-1 vector sources 1 sinks for L-diagonals. 
par 1•(0 for (n-1)) 

var float lti(to), lto(to) 1 
seq 

par j•(O for time) 
lti!j) :• l{(i•time)+j) 

par 
srx(li.c(i), lti, time) 
six(lo.c(i), lto, time) 

par j•(O for time) 
ll((i*time)+j) :• lto(j) 

2 dummy vector sinks for r. 
sid(ru.c(n-1), time) 
sid(rl.cln-2), time) 
--delay-branching cell for the first element of column a •• 
dba(ui.c{n), u.c(n-1), uo.c(n-1), time) 
-- delay for lowest L-diagonal. 
·liO'l(li.c(n-2), l.c(n-2), time) 
-- main systolic array. 
par i•{O for (n-1)) 

ipu(u.cli•l), ru.c(i), ui.c(i+l), ru.c(i•l), u.c(i), uo.c(i), 
time I 

par i•(O for (n-21) 
ipl(rl.c(i), l.c(i+1), li.c(i), l.c(i), rl.c(i•l), lo.c[l•1), 

time) 
dva(u.c(O), 1.c(O), ul.c[O), ru.c(O), r1.c[O), lo.c(O), time) l 

Main 

vac float l((no-1)*to), u((no+l)*to), ll((no-l)"to], ul{no"to] 
var n, time : 
seq 

get(n, " siz~ of matrix ") 
time :• (2 " n) + 1 
fp.get.n(u, ((n•l)•time), • U data s~q ") 
fp.get.n(l, ((n-l)•time), "L data seq ") 
system(ll, ul, 1, u, n, time) 
fp.put.n(u1, (n•time), "Ul data seq ") 
fp.put.n(ll, {(n-l)*time), • Ll data seq ") 



A.2.6 

Systolic array performing Gauss elimination with 
partial pivoting on a tridiagonal matrix, An upper 
triangular matrix, with three diagonals is produced; 
also the multipliers and the pivoting information. 
Computation time: 2n+2. 
The array can be modified to accept symmetric 
tridiagonal matrices; and can be extended to modify 
the r.h.s vector, at the same time. 

external proc get (var v, value s()l : 
external proc fp.get.n (var float v(), value n, s()) : 
external proc fp.put.n (value float v(), value n, s[)) 
external proc put.n (value v( ), value n, s()) : 
external proc fp.so.x (chan xout, value float x(), value time ); 
external proc fp.so.d (chan xout, value time ): 
external proc fp.si.x (chan xin, var float x( ), value time ): 
external proe si.x (chan xin, var x(), value time ): 

def to • 20 

-- Boundary cell calculating multipliers and pivoting control. 

proe pmc ( chan uin, bin, pout, mout, cout, 
value time )• 

var float u(lJ, b(2), p(l), m, x : 
var c: 
seq 

-- initialisation 
par 

par i•IO for 21 
por 

u[i) :• 0.0 
b(l) ,. o.o 
p(ll ,.o.o 

1ft :• o.o 
X :• 0.0 
c :• o.o 

-- main operation 
seq i•(O for time) 

seq 
-- input I output 
par 

uin 1 u(O) 
bin 1 b(O) 
pout 1 p(OJ 
mout 1 m 
eout I c 

-- calculation 
par 

If 
u[OJ < 0.0 

u(1) '" (-u(Oil 
true 

If 

u(1) '" u(OJ 
If 

0.0 biOI < 
b(l) 

true 
,. 1-b(OJl 

b( 11 ,. 

b(1) >• u(ll 
par 

c :• 1 

b(O) 

If 

p(Ol '" b(O) 
x :• u[OJ 

true 
por 

c :• 0 
p(Ol '" u(O) 
X :• b(O) 

p(OJ • 0.0 
p(1) ,_ 0.000001 

true 
p(1) '" p(O) 

m :• xlplll 

IPS cell producing one off-diagonal element (q,r) 
for given c,m and v,a. 

proc qr I chan vln, cin, min, ain, vout, cout,_ mout, qout, 
value time ) • 

var float v(2], m(2), a, q : 
var c(2) : 
seq 

-- initialisation 
par 

par i•(O for 2) 
par 

v(i) :•0.0 
m{i] :• 0.0 
c( I) '" 0 

a :• 0.0 
q :• o.o 

-- main operation 
seq i•(O for time) 

seq 
-- input 1 output 
par 

vin 1 v(O) 
cin 1 c[O) 
min 7 m(O) 
ain 7 a 
vout 1 v( 1] 
cout I c(l) 
mout I m(l] 
qout l q 

-- calculation 
par 

c(1) '" c(OJ 
m[l) 1• m(O) 
if 

c(O) • 1 
par 

q :• a 
v(l] :• v(O] - (m(O) • a) 

true 
par 

q '" v(O) 
v(l] :• a- (m{O) • v(O]) 

system configuration 

proc system ( var float p[), q(), r(], m(], 
var cl}, 
value float at), but I, bl[ J, 
value time } • 

chan a.c, bu.c, bl.c, p.c, q.c, r.c, 
m.c[3), c.c[3), u.c(3J : 

par 

U1 

"' U1 



pme ( u.e(O), bl.c, p.e, m.c(O), e.c(OJ. time ) 
qc ( u.c(l), c.c(O), m.c(O), a.c, u.c(O), c.c(l), 

m.c(l), q.c, time ) 
qr ( u.c(2), c.c(l), m.c(l), bu.c, u.c(l), c.c(2}, 

m.c(2), r.c, time ) 
fp.so.x ( a.c, a, time ) 
fp.so.x ( bu.c, bu, time 
fp.so.x ( bl.c, bl, time 
fp.so.d ( u.c(2], time ) 
fp.si.x ( p.c, p, time ) 
fp.si.x ( q.e, q, time ) 
fp.si.x ( r.c, r, time ) 
fp.si.x ( m.c(2}, m, time I 
si.x ( c.e(2), c, time ) 1 

Plain 

var float a(to), bu(to), bl(to), p(to), q(to), r(to), m(to) 
var c(to), n, time : 
seq 

get ( n, .. size of matrix .. ) 
time :• (2 * n) + 2 
fp.get.n ( a, time, " main diagonal stream " ! 
fp.get.n ( bu, time, " upper diagonal stream 
fp.get.n ( bl, time, " lower diagonal stream 
system ( p, q, c, m, c, a, bu, bl, time 1 
fp.put.n ( p, time, " main diagonal stream " ) 
fp.put.n ( q, time, " first upper diagonal stream • ) 
fp.put.n ( c, time, " second upper diagonal stream • ) 
fp.put.n ( m, time, " multipliers stream M ) 

put.n ( c, time, " pivoting control stream " ) 

A,2.7 

Systolic Array for backsubstitution, for an upper 
triangular matrix, with three diagonals.It is used for the 
second step of the Inverse Iteration method. 
Time : 2n+2. 

external proc get ( vac v, values() ) : 
external proc fp.get ( vac float v, values() ) 1 

external proe fp.get.n (vac float v[], value n, s[) ) : 
external proc fp.put.n (value float v[), value n, s() ) 
external proc fp.so.d ( chan xout, value time I : 
external proc fp.so.x ( chan xout, value float x(), value time 
external proc fp.si.d ( chan xin, value time I : 
external proc fp.si.x ( chan xin, vac float x(], value ti•e) : 

def no- 10, to • ((2*no)+2) 

-- Bi-Directional Inner Product Step cell 

proc bdips ( chan ain, xin, xout, yin, yout, 
value time ) -

var float a, x(2), y(2) : 
seq 

-- initialise 
pa< 

a :• 0.0 
par i•IO foe 2) 

par 
x(i) :• 0.0 
y(i] :•0.0 

main operation 
seq i•(O for time) 

seq 
-- i/O 
par 

ain ? a 
xin 1 x(O) 
yin ? y[OJ 
xout 1 x(l] 
yout l y(l) 

-- calculation 
par 

y(l) :• y(OJ +(a* x(O}} 
x(l) :• x(O) 

Boundary cell 

proc bound ( chan ain, bin, yin, xout, 
value time ) • 

vac float a, b, y, x : 
seq 

-- initialise 
par 

a :• 0.0 
b :- o.o 
y :• o.o 
X :• 0,0 

-- main operation 
seq i•(O for time] 

seq 
-- i/O 
par 

ain 1 a 
bin 1 b 



yin ? y 
xout 1 x 

-- calculation 
if 

a - 0.0 
X :• 0.0 

true 
x :• (b - yl I a 

system configuration 

proc syst ( value float a[), b(), 
var float xt 1, 
value time ) -

chan a.c[3}, b.c, x.c[3), y.c[3) 
par 

sources 
par i•[O for 3) 

var float a.temp[to} 
seq 

seq j•(O for time) 
a.temp(jl :• a[(i•time)+j) 

fp.so.x ( a.c(i), a.temp, time 
fp.so.x ( b.c, b, time ) 
fp.so.d ( y.c[2], time) 
-- &rray 
bound ( a.c{O), b.c, y.c[O), x.c(O), time I 
bdips ( a.c[l), x.c(O), x.c[l), y.c[l), y.c[O), time 
bdips I a.c(2), x.c(l), x.c(2), y.c(2), y.c(l), time 
-- sink 
fp.si.x ( x.c(2), x, time I : 

Plain 

var float a(3•to), b(to), x(to[ : 
var n, time : 
seq 

9et ( n, • order of matrix " ) 
time :• (2 • n) + 2 
fp.get.n ( a, (3•time), "diagonal seq- main first " ) 
fp.get.n ( b, time, " r.h.s vector seq ) 
syst ( a, b, x, time ) 
fp.put.n ( x, time, • result " I 

A.2.6 

Systolic Algorithm for a system of linearly 
connected systolic processors.It calculates 
the eigenvector of a symmetric tridiagonal 
matrix for a given elgenvalue by means of the 
method of inverse iteration. 

external proc str.to.screen(value s[)): 
external proc num.to.screen(value nl: 
external proc num.from.keyboard(var nl: 
external proc fp.num.to.screen(value float nl: 
external proc fp.num.from.keyboard(var float n): 

-- Hax size of matrix. 
defn-10: 

-- the three diagonals of the matrix 
-- bl(O) • brln-11 • 0, 
--alii- a(i)- eigenvalue. 

var float bl(n], a[n), br(n), 
-- multiplier vector 
m{n], 
-- control vector declared as var float 
-- for uniformity 
c(n), 
-- eigenvector 
x[n) : 

Actual size of matrix. 
var nl: 

-- Channels for ~. c transfer 
chan m.c(n+l], c.c(n+l), 

-- Not dedicated channels 
ll.c(n+l], 12.c(n+l), 
rl.c(n+l), r2.c[n+l) : 

Process performing the calculations that 
take place during the inverse iteration in 
row i of the matrix.Initiallly loaded with 
bl{i), a!i}, brill in p, q, r it finally 
contains x(i) in x.Positlonal information 
and the size of the matrix are given also. 

proc 

var 
var 

invit(chan min, cin, mout, cout, 
ill, 112, oll, ol2, 
irl, ir2, orl, or2, 

var float p, q, r, •• c, x, 
value position, nll• 

float temp(6] : 
ig, ib, t, tgl, tbl, tg2, tb2 

State performing gauss elimination with 
partial pivoting.Jt produces P, an upper 
triangular matrix with three diagonals 
stored in p, q, r.Also the multiplier 
and the row-exchange control is calculated. 

proc gaussl• 
proc qaussl.calc• 

seq 
--absolute values for b(i), u 
-- temp(3)-abs(b(i)l, temp(4)•abs(u) 
par 

if 
p < o.o 

templl I :• -p 



If 

If 

true 
temp(3) :• p 

If 
temp(O) < 0.0 

temp(4) :• -temp(O) 
true 

temp{4) :• temp(O) 
if abs(b[i)) >• abs(u) then c•l 

temp(J) >• temp(4) 
temp(4) :• 1.0 

true 
temp(4) :• 0.0 

-- if c•O swap p, q. r with u, v, w; w•O 
If 

temp(4] • 0.0 
seq 

par 
temp(3} :• temp{O) 
temp{S] :• temp(1) 
temp{2) :• 0.0 

par 
temp(O) :• p 
temp[ll :• q 
temp(2) :• r 

par 
p :• temp(ll 
q :• templSJ 
r :• temp(2} 

m•u'/p' where u• and p• are the values of 
u and p after the interchange.Check first 
for zero 

par 
If 

If 

temp(OI • 0.0 
temp(J) :• 0.000001 

true 
temp(l) :• temp[O) 

p- 0.0 
temp(S] :• 0.000001 

true 
temp( 5) :• p 

temp(3) :• temp(31 I temp(S) 
-- new u•v'-m•q• and new v•w'-m*r' 
par 

temp(1) :• temp(ll - (temp(l)*q) 
temp(2) :• temp(2] - (temp(J]•r) 

gaussl control and 1/o 

t - lg 
par 

send a(i], b{11 to i-1 process 
bil-l),. bill 

oll 1 q 
ol2 1 r 
p :• r 

t•(ig+l) 
seq 

par 
--receive m(i), c(i) and u, v from i-1 
--and a(i+l], b(i+1] from i+1 process 
min ? m 
cin ? c 
ill 1 temp{O) 
112 ? temp(l I 

irl 1 q 
i r2 1 r 

--now p•b(i), q•a(i+l), r•b(i+ll 
-- temp(O)•u, temp(l)•v 
qaussl. calc 

t•(iq+2) 
par 

-- send m(i+l], c[i+l), u, v to 1+1 from 
-- locations returned by gaussl.calc 
mout 1 temp(J) 
cout 1 temp( 41 
orl I temp( l] 
or2 I temp(2) : 

State performing back substitution for 
the system P • x • e , where P is the upper 
triangular matrix produced from gaussl and 
e is the unity vector. 

proc backl• 
proc back1.calc• 

seq 

If 

par 
seq 

accumulate q*x(i+l)+r•x(i+2) 
temp(2) :• 0.0 + (q • temp(O)I 
temp(J) :• temp(21 + (r • temp(1)) 

-- check for zero 
If 

p - 0.0 
temp(4) :• 0.000001 

true 
temp(4) :• p 

calculate x(i) 
x :• (1.0 - temp(3)) / temp(4] 

backl control and i/o 

t - lib + tgll 
seq 

par 
--receive x(i+1), x(1+2) from i+1 
irl ? temp(O) 
i r2 1 templl) 

backl.calc 
t- ((ib + 1) + tgl) 

par 
-- send x(i), x(i+l) to i-1 process 
oll 1 x 
ol2 1 temp(O) 

State performing a forward substitution on 
vector x produced by back1, by means of the 
multiplier and control vectors produced by 
gaussl. 

proc gauss2• 
proc gauss2.calc• 

seq 
-- check for interchange 
If 

c • 1.0 
••q 

temp(l] :• temp(OJ 
temp( 0] :• x 
x :• temp{ 1) 

calculate x 

.., ., 
CO 



x :• x- (m* temp(OJ) 
gauss2 control and i;o 

if 
t•(ig+tb1) 

seq 
-- receive x[i-1) from i-1 pcocess 
ill 7 temp{ 0) 
gauu2.calc 

t- ((ig + 1) + tb1) 
par 

-- send new x{i-1) to i-1 and 
-- x(i) to i+l 
oll t temp(O) 
ocl l x 

t. ({ig + 2) + tbl) 
--receive new x(il from i+l 
1 rl 7 x : 

state performing back substitution for the 
system P • x • y , where y is vector x as 
transformed after gauss2 and x is the same 
vector with the final solution. 

proc back2• 
proc back2.calc• 

seq 
par 

seq 
accumulate q*x(i+l)+c•x(1+2] 

temp(2} :• 0.0 + (q • temp[OJ) 
temp(3) :• temp(2) + (r • temp[1)) 

-- check for zero 
if 

p - 0.0 
temp(4) :• 0.000001 

true 
temp{4l :• p 

calculate x( i I 
x :• (x- temp(3)1 1 temp(4) 

back2 control and i/O 
if 

seq 

t - (ib + tg2) 
seq 

par 
-- receive x(i+l), x(1+21 from i+l 
ir1 7 temp(OJ 
ir2 7 temp(l) 

back2.calc 
t- ((ib + 1) + t921 

par 
--send x(i), x(i+ll to i-1 
oll l x 
o12 l temp[OJ 

The process has four states, gaussl, backl, gauss2, 
back2, each one implementing one part of the inverse 
iteration procedure.The state switching is controlled 
by the global clock t, as each state if completed in 
known time tgl, tbl, tg2, tb2.The position of the 
processor within the linear array of processors is 
given by ig (ib gives the reverse order) 

initialisation 
par 

par 1•[0 for 6] 

proc back2• 
if 

t • (((nl- 1) + 1) + tg2} 
par 

-- receive x(1), x(2) 
irl 7 any 
ic2 7 any : 

seq 
initialisation 

par 
par 1·[0 for 2] 

temp(i) :•0.0 
t :• 0 
tgl :• nl + 2 
tbl ;• 12 • nl) + 3 
tg2 :• (3 * nl) + S 
tb2 :• (4 • nl) + 6 

-- state switching 
while t < tb2 

seq 
if 

t < tgl 
gaussl 

t < tbl 
backl 

t < tg2 
gauss2 

true 
back2 

t :• t + 1 

Boundary process for the right end of the array. 
It supllies process nl-1 with the necessary i/O so 
that calculation continues smoothly.It has the 
same structure as the main pcocess but no 
clculations are required. 

proc bound.r(chan min, cin, 
ill, ill, oll, ol2, 

value nl)• 
var float temp ; 
vac t, tgl, tbl, tg2, tb2 
-- gaussl i/O 
proc gaussl• 

if 
t • ((nl - 1) + 1) 

par 
--send a(n+l), b(n+ll 
oll 1 0.0 
ol2 l 0.0 

t • ((nl- 1) + 21 
par 

-- receive m(n+l), c(n+l), u, v 
min 7 any 
cin 7 any 
ill 1 any 
112 7 any 

backl i/o 
proc backl• 

if 
t .. tgl 

par 
--send x(n+l), x(n+2) 
oll I 0.0 
ol2 1 0.0 : 

1.11 

"' "' 



temp[i) :• 0.0 
ig :• position 
ib :• (nl - 1) - position· 

t ·- 0 tgl l'" nl + 2 
tb1 :• (2 ~ nl) + 3 
tg2 :• (3 • n1) + 5 
tb2 :• 14 • nl) + 6 

-- state switching 
while t < tb2 

seq 
If 

t < tgl 
gauss1 

t < tbl 
backl 

t < tg2 
gauss2 

true 
back2 

t :• t + 1 

-- Boundary process for the left end of the array. 
It supllies process 0 with the necessary i/o so 
that calculation continues smoothly.It has the 
same structure as the main process but no 
clculations are required. 

proc bound.l(chan mout, cout, 
irl, ir2, orl, or2, 

value nl )• 
var float temp[2) : 
var t, tg1, tbl, tg2, tb2 
-- gaussl 1/o 
proc gaussl• 

If 
t - 0 

par 
receive arid save a(l), b(l) 

irl ? temp{O) 
ir2 1 temp[l) 

t - 1 
par 

send m(l), c(l], a[l), b(l} 
mout 1 -1.0 
cout 1 1.0 
orl I temp(O} 
or2 1 temp(l} 

backl 1/o 
proc backl• 

if 
t- (((nl- 1) + 1) + tgl) 

par 
-- receive x(l}, x(21 
irl ? any 
ir2 1 any : 

gaussl 1/o 
proc gauss2• 

If 
t - tbl 

-- send x(O) 
orl 1 0.0 

t - (tbl + 1) 
-- receive new x(O) 

-- gauss2 i/o 
proc gauss2• 

If 
t • (((nl- 1) + 1) + tb1) 

-- receive and save x[nl} 
111 1 temp 

t .. (((nl- 1) + 2) + tbl) 
--send back x(nl) 
oll 1 temp 

back2 i/o 
proc back2• 

If 

seq 

t - tg2 
par 

--send x[n+l}, x[n+2) 
oll 1 0.0 
ol2 I 0.0 : 

initialisation 
par 

temp :• 0.0 

t ·- 0 tgl :• nl + 2 
tbl :• (2 • nl) + 3 
tg2 :• (3 • nl) + S 
tb2 :• (4 * nl) + 6 

-- state switching 
while t < tb2 

seq 
if 

t < tg1 
gausGl 

t < tbl 
backl 

t < tg2 
gauss2 

true 
back2 

t :• t + 1 

The system comprises nl linearly connected 
processors with two boundary processors • 

proc system• 
par 

bound.l(m.c(O], c.c(O], 
rl.c(O), r2.c(O), 
ll.c(O(, 12.c(O), nl) 

par i·[O for nl) 
invit(m.c(i), c.c(i], m.c(i+l], c.c(i+l), 

ll.c(i), 12.c[i), rl.c(i), r2.c[i), 
rl.c[i+l), r2.c{i+1), ll.c[i+l), 12.c(i+l), 
bl(i), a(i), br(i), m(i), c(i), xti), i, nl) 

bound.r(m.c(nl), c.c(nl), 
ll.c(nl), 12.c(nl), 
rl.c(nl), r2.c[nl), nl) : 

proc get.f(var float v(],value n,s())• 
seq 

str.to.screent·~c •n Input stream •) 
str.to.screen(s) 
seq i·IO fol" n) 

seq 
fp.num.from.keyboard(v(i)) 

----------------------------------------------------------------------------------------------------------fp~.n-u~m.to.scl."een(v[i)) 
irl ? any 

back2 1/0 

"' 0 
0 



str.to.screen(" "); 

proc get(var vl) ,value n,s( I )• 
seq str.to.screen("•c •n Input stre~m "l 

str.to.screen(s) 
seq 1•(0 for nl 

seq 
num.from.keyboard(vlill 
num.to.screen(v(i}l 
str.to.screen{" "): 

proc 9et.i(var v, values( Jl• 
seq 

str.to.screen("*c •n Input ") 
str.to.screen(s) 
num.from.keyboard(v) 
num.to.screen(v) 

proc 9etdata • 
seq 

get.i(nl, "n ") 
get.f(bl, nl, " bl ~1 
get.f(a, nl, ~ a ~~ 
get.f(br, nl, • br ") 

proc put.f (value float v{) ,value n,sll )• 
seq str,to.screen("*c •n Output stream " ) 

str.to.screen(s) 
seq i·tO for n] 

seq 
fp.num.to.screen(v(i)) 
str.to.screent• ") : 

proc put (value v( ),n,s())• 
seq atr.to.acr&en("*C •n output stream") 

st r. to. screen! s) 
seq i•{O for nl 

seq 
num. to. screen( v ( 1 1) 
str.to.screen(" ") : 

proc putdata • 
seq 

put.f(bl, nl, • bl ") 
put.f(a, nl, " a ") 
put.f(br, nl, • br •) 
put.f(m, nl, • m ") 
put.f(c, nl, c ") 
put.f(x, nl, " x ") : 

seq 
getdata 
system 
putdata 

C7l 
0 .... 



A.3.1 

Systolic array for banded mvips, y • y + C * x. 
Matrix C has size (n*n) and bandwidth w • p+q-1. 
vectors x,y move in the same direction. 
Computation time • n + w + p - 1, area • w. 

external 
external 
external 
external 
external 
external 
external 
external 
external 

proc 
proc 
proc 
proc 
proc 
proc 
proc 
proc 
proc 

get(var v, values()): 
fp.get.n(var float v(), value n,s[)l: 
fp.put.n(value float v( l, value n,s()): 
fp.dl(chan xin, xout, valued,time): 
tp.lk(chan xin, xout, value time): 
fp.so.x(chan xout, value float v(), value time): 
fp.si.x(chan xin, var float v(), value time): 
fp.si.d(chan xin, value time): 
ips.l (chan cin, xin, yin, xout, yout, 

value time): 

def no • 10, wo • ((2•no)-l), to • (no+(2•wo)) : 

--Array confi9uration : w ips cells are required, 
-- one delay after each cell for x. 

proc system (chan cin(), xin, yin, yout, 
value w, time ) • 

ehan c.c(wo), x.c( (2*wo)+l], y.c[wo+l) 1 

par 
par i•(O for w) 

par 
ips.l(c.c(i], x.c(i*2), y.c(i], 

x.c((i*2)+1], y.c(i+l), time) 
fp.dl(x.c[(i•2)+1], x.c( (i•2)+2),1,time) 
fp.lk(cin(i}, c.c{i}, time) 

fp.lk(yin, y.c(O), time) 
fp.lk(xin, x.c(O], time) 
fp.lk(y.c[w), yout, time) 
fp.si.d(x.c(2•w], time) : 

Source for matrix C 
Initial delay of p-1 cycles for the uppermost dia9onal; 
additional delay of 1 cycle for the diagonals up to 
the main; from then on 2 additional delays per diagonal. 

proc souree.c (chan cout[), 
value float c{), 
value n, w, p, time)• 

par j•[O for w) 
var float c.temp(to) 
var del : 
seq 

seq i•[O for time] 
c.temp(i) :• 0.0 

If 
j < p 

del :- (p- 1) + j 
true 

del:•l2*j) 
seq i•(del for n) 

c.temp(i) :• c((j•n)+(i-del)) 
fp.so.x(cout(j), c.temp, time) : 

sou~ce for vecto~s x, y. 
Initial delay of p-1 cycles for y. 

proc souree.xy (chan xyout, 

value float xy(), 
value n, del, time)• 

var float xy.temp(to) 
seq 

seq 1•(0 for time) 
xy.temp(i) :• 0,0 

seq i•(del for n) 
xy.temp(il :• xy[i-del) 

fp.so.x(xyout, xy.temp, time) 

Sink for vector y. 
Initial delay of w + p- 1 cycles. 

proc sink.y 

var float 
••q 

(ehan yin, 
var float yl ), 
value n, del, time 

y.temp(to) 

seq i•{O for time) 
y.temp(i) :• 0.0 

fp.sl.x(yln, y.temp, time) 
seq 1•(0 for n) 

y(i) :• y.temp(i+del) 

Main 

) -

chan c.c(wo), x.c, y.c[2) : 
var float c(no•wo), x(no), yi(no], yo(no] 
var n, w, p, time : 
seq 

get(n, " size of matrix C "l 
get(w, " bandwidth of matrix C •1 
get(p, " size of upper semiband •1 
fp.get.n(c, (w•n), " of matrix diagonals, upper diag. first w) 
fp.get.n(x, n, " vector x ") 
fp.get.n(yi, n, " vector y ") 
time :• (n + w) + (p- 1) 
par 

source.c(c.c, c, n, w, p, time) 
source.xy(y.c(O], yi, n, (p-1), time) 
source.xy(x.c, x, n, 0, time) 
system(c,c, x.c, y.c(O], y.c(l), w, time) 
sink.y(y,c{l), yo, n, (w+(p-1)), time) 

fp.put.n(yo, n, • vector y ") 

"' 0 

"' 



A.3.2 

Systolic pipeline for Jacobi, JOR iterative methods for the 
solution of a linear system A•x • b.The methods have the form 
x• • c•x + y , where C, y are derived from A, b for a 9iven 
overrelaxation factor. Matrix C has size (n•n) and bandwidth 
w • p+q-1. Computation time • n+k•(w+p-1), where k is the 
number of iterationsJ area • k*w. 

external 
external 
external 
external 
external 
external 
external 
external 
external 
external 

proc 
proc 
proc 
proc 
proc 
proc 
proc 
proc 
proc 
proc 

get(var v, value s(J): 
fp.9et.n(var float v( ), value n,s( )): 
fp.put.n(value float v(), value n,s{)): 
fp.so.x(chan xout, value float v(), value time): 
fp.si.x(chan xin, var float v(), value time): 
fp.si.d(chan xin, value time): 
fp.dl(chan xin, xout, valued, time): 
fp.lk{chan xin, xout, value time): 
fp.br{chan xin, xlout, x2out, value time): 
ips.l (chan cin, xin, yin, xout, ·yout, 

value time): 

def no • 10, vo • ((2•no)-l), ko • 10, to • (no+(ko•(2•wo))) 

Block confi9uration 
A mvm array performs the mvips operation x'(•y) • c•x+yJ 
(w+l) branching elements for the l1nes of C and Yl 
(w+p-1) delays for each line of Candy to next block, 

proc system (chan cin[), xin[), yin(), cout(), xout(), yout(), 
value stage, w, delay, time I • 

chan c.c(wo), x.c((2*wo)+l), y.c(wo+1), c.l(3•wo), y.l(3]: 
par 

-- mvm. array 
par i•[O for w) 

par 

par 

ips.l(c.c(i), x.c(i*2), y.c(i), 
x.c((i'2)+1), y.c[i+l}, time) 

fp.dl(x.c{(i*2l+l}, x.c{(i'2)+2}, 1, time) 
brancinq and delays 

par i•(O for w) 
par 

fp.br(c.l{i), c.lti+w}, c.c(i), time) 
fp.dl(c.l{i+w), c.l{i+(2*w)J, delay, time) 

fp.br(y.l{O}, y.l(l], y.c{O}, time) 
fp.dl(y.l(l), y.l[2), delay, time) 

-- i/O links 
par 

par 1·(0 for w) 
par 

fp.lk(cin{(stage•w)+i), c.lli), time) 
fp.lk(c,l(i+(2•w)), cout(((sta9e+l)•w)+i), time) 

fp.lk(yin(sta9e), y.l(OJ, time) 
fp.lk(y:l[2), yout(stage+l], time) 
fp.lk(xin(stage), x.e{O), time) 
fp.lk(y.c(w), xout(stage+1), time) 
fp.si,d(x.c(2•w), time) : 

Source for matrix C 
Initial delay of p-1 cycles for the uppermost diagonal; 
additional delay of 1 cycle for the diagonals up to 
the main; from then on 2 additional delays per dla9onal. 

proc source.c (chan cout(J, 
value float c(), 

value n, v, p, time)• 
par j•(O for v) 

var float c.temp(to) 
var del : 
seq 

seq i·(O for time) 
c.temp(il :• 0.0 

If 
j < p 

del :• (p - 1) + j 
true 

del :• ( 2 • j) 
seq i·ldel for nl 

c.temp(i) :• c{(j*n)+(i-del)) 
fp.so.x(cout(j], c.temp, time) : 

Source for vectors x, y. 
Initial delay of p-1 cycles for y. 

proc source.xy (chan xyout, 
value float xy[], 
value n, del, time)• 

var float xy.temp(to) 
seq 

seq 1•(0 for time] 
xy.temp{i) :• 0.0 

seq i•(del for n) 
xy.temp(i) :• xy{i-del) 

fp.so.x(xyout, xy.temp, time)· 

Sink for vector x. 
Initial delay of k•(w + p - 1) cycles. 

pcoc sink.x (chan xin, 
VH float x( I, 
value n, del, time) • 

var float x.temp(to) 
seq 

seq i•(O for time) 
x.temp(i) :• 0.0 

fp.si.x(xin, x,temp, time) 
seq i•IO for n) 

x(il :• x.templi+del) 

Sink for matrix c 

proc sink.e (chan cin[], 
value k, w, time) • 

par j•[O for w) 
fp.si.d(cin((k•w)+jJ. time) : 

-- Main 

chan c.c(ko•wo), x.c(ko), y.c(ko) : 
var float c(no•wo), y(no), xl(no), xo(no) 
var n, w, p, k, delay, time 
seq 

-- input 
9et(n, " size of matrix C •) 
get(w, " bandwidth of matrix C •1 
get(p, • size of upper semiband •) 
fp.9et,n(c, (w*n), • of matrix dia9onals, upper dia9. first •1 
fp.get.n(y, n, • of r.h.s vector y •) 
fp.get.n(xl, n, • of initial vector x •) 
get(k, " no of iterations •) 
delay :• w + (p - 1) 

"' 0 
...... 



time :• n + (k * delay) 
-- process 

pa~ource.c(c.c, c, n, w, P• time) 
source.xy(y.c(O), y, n, Cp-1), time) 
source.xy(x.c{O), xi, n, 0, time) 
par i•(O for k) i 1 

system(c.c, x.c, y.c, c.c, x.c, y.c, i, w, delay, t me 
sink.c(c.c, k, w, time) 
fp.si.d(y.c(k), time) 
sink.x(x.c(k), xo, n, (k *delay), time) 

-- output 
fp.put.n(xo, n, "of solution vector x "l 

A. 3.3 

Systolic Preprocessor for the formulation of matrix 
C and vector y in the J, JOR iterative. methods : for a 
(n*n) system Ax•b with a( i,i I <> 0 1•1,2, •• ,n and 
an overrelaxation factor w, 0 < w < 2, the 
preprocessor forms matrix C and vector y with 

- (w * a{i,j}) 1 a(i,i) i <> j 
c( I, j J -I 

(1-w) l•j 
y{i] .. (w * b(i)) I a(i,i), i• 1, 2, .. , n. 
Linear array of (wa + 1) cells, where wa • p + q- 1 
the bandwidth of A.Input and output reformatting delays so 
that the data sequence conforms to the requirements of the 
pipeline following. 

external proc get(var v, values()) : 
external proc fp.get(var float v, values()) : 
external proc fp.get.n(var float v(], value n, s()l : 
external proc fp.put.n(value float v(), value n, s()) 
external proc fp.so.x(chan xout, value float x(), value time): 
external proc fp.si.x(chan xin, var float xl ), value time): 
external proc fp.sl.d(chan xin, value time): 
external proc fp.dl(chan xin, xout, valued, time): 

def wo • 10, to • 20 : 

--Main diagonal cell : it calculates w/a{i,i) and 
--propagates it to the other cells; it outputs (1-w). 

proc madi ( chan ain, cout, wout, eout, 
value float w, 
value time ) • 

vac float r( 3) : 
seq 

por 
par i•(O for 2) 

r(l) '" 0.0 
r(2) :• (1.0 - w) 

seq t•(O for time) 
seq 

por 

If 

ain 1 r(O} 
cout 1 rt21 
wout I r(l) 
eout 1 r(l) 

r(OJ • 0.0 
<Ill ,_ 1.0 

true 
r(l) ,. (w/r[O)J 

Diagonal cell : it receives v/a(i,i) and calculates 
-(w • a(i,j)) I a(i,i). 

proc diag ( chan ain, cout, in, out, 
value time ) -

var float r(4) : 
seq 

par i·(O for 4) 
r(l) '" 0.0 • 

seq t•IO for time) 
seq 

par 
ain 1 r(OJ 

"' 0 .... 



cout l r[ll 
in ? r(2) 
out I r[3] 

par 
rill •· 1- (riOI • ri2J)) 
rill •· rl21 • 

vector cell : it receives w;a[i,i) and calculates 
(w" b[i)) I a{i,i). 

proc vect ( 

vor floll-t 

chan bin, yout, 
value time I • 
r(3) : 

in, 

seq 
par i•(O for: 3} 

r:{i) :- o.o 
seq t•[O for: time) 

seq 
par 

bin 1 r(O) 
yout I rill 
in ? r[2) 

par 
rill •· (riOI • rl21) ' 

Array configur:ation. 
In delays : vector and upper-main diag : p-l,p-2, •. ,0 
In delays : lower diag: 2,4,,.,2(q-ll 
out delays; vector and upper-main diag: 0,1,3, •• ,2p-l 
Out delays : lower: diag : 2p-l 

proe system ( chan ain{), bin, cout(), yout, 
value float w, 
value wa, p, time ) • 

chan m.c[wo+l), a,c(wo], c.c(wo), b.c, y.c 
par · 

-- array, delays for A 
par i•(O for wa) 

if 
i < (p- 1) 

par 
fp.dl(ain(i), a.c(l), ((p-11-i), time) 
diag(a.c(i), c.c(i), m.c(i+l), m.c(i), time) 
fp,dl(c.c(l), cout(i), ((2*1)+1), time) 

i - lp- 1) 
par 

fp.dl(ain(i), a.c(i), 0, time) 
madi(a.c(i), c.c(i), rn.c(i+l), m.e(i], w, time) 
fp.dl(c.c(i), cout(i), ((2"p)-l), time) 

true 
par 

fp.dl(ain(i), a.c_[iJ, (2"(1-lp-1))), time) 
diag{a.e(i), e.c(i), m.c(i), m.c[i+l), time) 
fp.dl(c.c(i], cout(i), ((2•p)-1), time) 

cell, dealys for b 
par 

fp.dl{bin, b.c, p, time) 
vect(b.c, y.c, rn.c(OJ, time) 
fp.dl(y.c, yout, 0, time) 

-- dummy sink foe last lower diagonal cell 
fp.si.d(m.c[wa), time) : 

Main 

chlln a,c[wo), c.c(wo), h.c, y.c 1 

var float a(wo•to), b(tol. c(wo•to), y(to), w 1 

vac n, wa, p, time 
seq 

-- getdata 
get{n, • size of matrix A ") 
get{wa, " bandwidth of matrix A") 
get(p, • upper semiband of matrix A") 
time :• n + (2 • wa) 
fp.get.n(a, (wa•n), • matrix A upper diagonal first •) 
fp.get.n(b, n, • vector b "I 
fp.get(w, • overrelaxation factor "I 
-- driver 
par 

system (a.c, b.c, c,c, y,c, w, wa, p, time) 
-- source for matrix A 
par i•(O for wa) 

vac float tempa(to) : 
seq 

seq j•[O for time) 
tempa(j) :• 0.0 

seq j•[O for nl 
tempa[j) :• a((i*n)+j) 

fp.so.x(a.c{i), tempa, time) 
sink for matrix C 

par i•[O for wa} 
vac float tempe(to) : 
seq 

fp.si.x(c.c(i), tempc, time) 
seq j•(O for time) 

c((i•time)+j} :• tempe[j) 
source for vector b 

var float tempb[ to) : 
seq 

seq j•[O for time) 
tempb(j) :• 0.0 

seq j·[O for n) 
tempb(j) :• b(j) 

fp.so.x(b.c, tempb, time) 
-- sink for vector y 
fp.si.x(y.c, y, time) 

-- putdata 
fp.put.n(c, (wa•time), " matrix C ") 
fp.put.n(y, time, " vector y "I 

"' 0 
U1 



A.3.4 

Systolic pipeline for Jacobi iterative method for the 
solution of a linear system A*x • b, where A is a 2-cyclie 
matrix and the Cyclic Reduction technique is used. 
TWo parallel and coupled pipelines solve the systems 
x(l]' • C(l)*x(2) + y(l) and x(2)' • C(2)*x(l) + y(2), 
where C[i], y{i), 1•1,2 are derived from A, b. 
Matrix C(i) has size (n*n), bandwidth w(i) • p(i)+q(i)-1. 
Computation time • n + k * m, where k is the number of 
iterations, and m • max ((w(l)+p(l)-l),(w(2)+p(2)-l)); 
area • k * (w(l] + w(2)). 

external proc get(var v, values(]): 
external proc fp.get.n(vac float v(), value n,s()): 
external proe fp.put.n(value float v(), value n,s()): 
external proc fp.so.x(chan xout, value float v(}, value time): 
external proc fp.si.x(chan xin, var float v(), value time): 
external proc fp.si.d(chan xin, value time): 
external proc fp.dl(chan xin, xout, valued, time): 
external proe fp.lk(ehan xin, xout, value time): 

·external proc fp.br(chan xin, xlout, x2out, value time): 
external proc ips.l (chan cin, xin, yin, xout, yout, 

value time): 

def no • 10, wo • ((2•no)-1), ko • 10, to • (no+(ko*(2•wo))) 1 

Block configuration 
A mvm array performs the mvips operation x'(•y) • C*x+y~ 
(w+l) branching elements for the lines of c and y~ 
m delays for ~ach line of C and y to next block, and 
m-(w+p-11 delays foe x•. 

proc system (chan cio(), yio(), xin(), xout(), 
value stage, w, p, m, time ) • 

chan c.c(wo), x.c((2•wo)+l), y.c(wo+l), e.l(wo), y.l 
pat 

-- mvm array 
par 1•(0 for w) 

pat 
ips.l(c.c{i), x.c(i•2J, y.c(iJ, 

x,c((i*2)+1), y.c(i+l), time) 
fp.dl(x,c((i*2)+1), x.c((i•2)+2), 1, time) 

i;o links, branching, delays 
par i•(O for w) 

par 
fp.br(cio((stage•w)+i), c.l(i), c.c(i), time) 
fp.dl(c.l(i), cio(((stage+1l*w)+i), m, time) 

fp.br(yio(stage), y.l, y.c(O), time) 
fp.dl(y.l, yio(stage+l), m, time) 
fp.lk(xin[stage), x.c[O), time) 
fp.dl(y,c(w), xout(stage+l), (m-((w+p)-1)), time) 
fp.si.d(x.c(l*w), time) : 

Source for matrix C 
Initial delay of p-1 cycles for the uppermost diagonal; 
additional delay of 1 cycle for the diagonals up to 
the main, from then on 2 additional delays per diagonal. 

proc source.c (chan cout(), 
value float c(), 
value n, w, p, time)• 

par j•(O for w) 
vac float c.temp(to] 1 
vac del : 

seq 
seq i•(O for time) 

c.temp(i) :• 0.0 
If 

j < p 
del '" (p- l) + j 

true 
del :• (2 • j) 

seq i•(del for n) 
c.temp(i) :• c((j*n)+(i-del)) 

fp.so.x(cout[j), c.temp, time) : 

Source for vectors x, y. 
Initial delay of p-1 cycles for y. 

proc source.xy (chan xyout, 
value float xy(), 
value n, del, time)• 

vac float xy.temp(to) 
seq 

seq 1•(0 for time) 
xy.temp(i) :• 0.0 

seq i•(del for n) 
xy.temp(i) :• xy(i-del) 

fp.so.x(xyout, xy.temp, time) 

Sink for vector x. 
Initial delay of (k • m) cycles. 

proc sink.x 

vac float 

(chan xin, 
var float x(), 
value n, del, time) • 

x.temp(to) 
seq 

seq i•(O for time] 
x.temp(i] :• 0.0 

fp.si.x(xin, x.temp, time) 
seq i·(O for n] 

x(i) :• x.temp(i+del] 

Sink for matrix C 

proc sink.c (chan cin(J, 
value k, w, time) -

par j•{O for w) 
fp.si.d(cin((k*w)+j), time) : 

-- Main 

chan cl.c(ko•wo], xl.c(ko), yl.c(ko), c2.c(ko•wo), x2.c(ko), 
y2.c(kol : 

var float cl(no•wo), yl(no], xil(no), xol(no), c2(no•wo), 
y2[no), xi2(no), xo2(no) : 

vac n, wl, pl, w2, p2, k, m, time : 
seq 

-- input 
get(n, • size of matrices Cl, C2 ") 
get(wl, • bandwidth of matrix Cl ") 
get(pl, • size of upper semiband ") 
fp.get.n(cl, (wl•n), " of matrix diagonals, upper diag. first ") 
fp.get.n(yl, n, • of r.h.s vector yl ") 
fp.get.n(xil, n, • of initial vector xl ") 
get(w2, • bandwidth of matrix C2 ") 
get(p2, " size of upper semiband •1 
fp.get.n(c2, (w2•n), • of matrix diagonals, upper diaq. first •) 
fp.get.n(y2, n, " of r.h.s vector y2 ") 



fp.get.n(xi2, n, • of initial vector xl •) 
get(k, • no of iterations •) 
if 

(wl + pl) >• (w2 + p2) 
a :• ((wl + pl) -1) 

true 
a :• ((wl + pl) -1) 

time :• n + (k • m) 
-- process 
par 

source.c(cl.c, cl, 
source.xy(yl,c(O), 
source.xy(xl.c(O), 
source.c(cl.c, cl, 
source.xy(yl.c(O), 
source.xy(xl.c(OJ, 
par i•(O for k) 

n, wl, pl, 
yl, n, (pl 
xil, n, 0, 
n, wl, pl, 
yl, n, (p2 
xil, n, 0, 

par 
system(cl.c, yl.c, xl.c, 
system(cl.c, yl.c, xl.c, 

slnk.c(cl.c, k, wl, time) 
fp.si.d(yl.c(k), time) 

time) 
- 1), time) 
time) 
time) 
- l). time) 
time) 

xl.c, I, wl, 
x2.c, '· w2, 

sink.x(d.c(k), xol, n, (k • m), time) 
sink.c(cl.c, k, w2, time) 
fp.si.d(y2.c[k), time) 
sink.x(xl.c(k), xo2 1 n, (k • m), time) 

-- output 
fp.put.n(xol, n, 
fp.put.n(xol, n, 

of solution vector xl ") 
of solution vector xl •) 

pi, m, time l 
p2, m, time) 

A. 3.5 

systolic pipeline for JOR iterative method for the 
solution of a linear system A•x • b, where A is a 2-cyclic 
matrix and the cyclic Reduction technique is used. Two 
parallel and coupled pipelines solve the systems 
x(l}' • C(l)•x(2) + y(ll + orf x(l) and 
x(l)' .. C(l)•x(ll + y[2J + orf x(2), where C[i), y(i), i•l,l 
are derived from A, b, using the overrelaxation factor orf-1. 
Matrix C(i) has size (n•n), bandwidth w(i) • p(i}+q(i)-1. 
Computation time • n + k • (m+ 1), where k is the number of 
iterations, and m • max ((w(l)+p(l)-l),(w(2)+p(2)-l)): 
area • k • (w(l) + w{ll + 2). 

external proc get(var v, values()): 
external proc fp.get(var float v, values()): 
external proc fp.get.n(var float v(], value n,s()): 
external proc fp.put.n(value float v[], value n,s()): 
external proc fp,so.x(chan xout, value float v(), value time): 
external proc fp.si.x(chan xin, var float v(}, value time): 
external proc fp.si.d(chan xin, value time): 
external proc fp.dl(chan xin, xout, valued, time): 
external proc fp.lk(chan xin, xout, value time): 
external proc fp.br(chan xin, xlout, xlout, value time): 
external proc ips.l (chan cin, xin, yin, xout, yout, value time): 

def no • 10, wo • ((2•no)-l), ko • 10, to • (no+(ko•(2•wo)l) : 

Block configuration A mvm array performs the mvips operation x•l(•y) • c•xl+y; 
(w+l) br~nching elements for the lines of C and YJ 
(+1) delays for each line of C and y to next block, and 
m-(w+p-1) delays for xl'. Before the mvm array an ips cell 
computes y•y+orf•xl. There are reformatinq delay& for the 
xl stream and synchronization delays for C, xl. Notice that 
there are two input and ouput x streams. 

proc system (chan ciol ), yio( ), xio( ), orfio{ ), xin( ), xout( ), 
value stage, w, p, m, time ) • 

chan c.c(wo), x.c((l•wo)+l), y.c(wo+l), c.l(l•wo), y.l{l), 
x.ll3), orf.l(ll 

mvm ar:ray 
par i•(O for w) 

par 
ips.l{c.c(i], x.c(i•2J, y.c(i), 

x.c((i•l)+l], y.c{i+l), time) 
fp.dl(x.c{(i*l)+l), x.c((i•2)+2}, 1, time) 

fp.si.d(x.c(l•w), time) 
-- additional ips cell 
ips.l(orf.l(l), x.l(O), y.l(l), x.l(l), y.c{O), time) 
fp.si.d(x,l{l), time) 
-- i;o, branching, delays for C 
par i•( 0 for w) 

par fp.br(cio((stage•w)+i), c.l(i), c.l{w+i], time) 
fp.dl(c,l[w+i}, c.c(i], 1, time) 
fp.dl(c.l(i], cio(((staqe+l)*w)+i), (m+l), time) 

i/o, branching, delays for y 
fp.br(yio(stage), y.l{O], y.l(l), time) 
fp.dl(y.l(O], yio[stage+l), (m+l), time) 
-- i;o, branching, delays for orf 
fp.br(orfio(stage), orf.l(O), orf.l(l], time) 
fp.dl(orf.l(O), or:fio(stage+l), (m+l), time) 
-- i/O branching, delays for xl, xl 

"' 0 ..... 



fp.dl(xio[atage], x.l[O], (p-1), time) 
fp.dl(xin(stage), x.c(O], 1, time) 
fp.dl(y.c(w), x.l(2), (m-((w+p)-1)), time) 
fp.br(x.1(2), xio{stage+l), xout[stage+l], time) : 

Source for matrix C 
Initial delay of p-1 cycles for the uppermost diagonal; 
additional delay of 1 cycle for the diagonals up to 
the main; from then on 2 additional delays per diagonal. 

proc source.c (chan cout(), 
value float c[), 
value n, w, p, time)• 

par j•(O for w) 
var float c.temp(to) 
var del : 
seq 

seq i•(O for time) 
c.temp(i] :• 0.0 

if 
j ( p 

del 1• (p - 11 + j 
true 

de1:•(2"j) 
seq i•{del for n) 

c.temp(i) :• c((j"n)•(i-dcl)) 
fp.so.x(cout(j], c.temp, time) 

source for vectors x, y. 
Initial delay of p-1 cycles for y. 

proe source.xy (chan xyout, 
value float xy(], 
value n, del, time)• 

var float xy.temp(to) 
seq 

seq i•(O for time) 
xy.temp[i] :• 0.0 

seq i•(del for n] 
xy.temp[i) :• xy(i-del] 

.fp.so.x(xyout, xy.temp, time) 

Source for orf. 

proc source.orf (chan orfout, 
value float orf, 
value time)• 

var float otf.temp(to) 
seq 

seq i•(O for time) 
orf.temp(i) :• orf 

fp.so.x(orfout, orf.temp, time) : 

Sink for vector x. 
Initial delay of k * (m+ 1) cycles. 

proc sink.x (chan xin, 
var float x( 1, 
value n, del, time) • 

var float x.temp[to] 
seq 

seq i•(O for time) 
x.temp(i) :• 0,0 

fp.si.x(xin, x.temp, time) 
seq i•[O for n) 

x(i) :• x.temp{i+del) : 

Sink for matrix C 

proc sink.c (chan cin[), 
value k, w, time) • 

plH j•( 0 for w) 
fp.si.d(cin[(k 6 w)+j], time) : 

Mcllin 

chan cl.c(ko"wo), xl.c(ko), yl.c(ko], orfl.c(ko), c2.c(ko"wo), 
x2.c[ko), y2.c(ko], orf2.c(ko), xl2.c(ko), x2l.c[ko) : 

var float cl(no"wo), yl[no], xil(no), xol(no), c2[no"wo), 
y2(no), xi2(no), xo2[no), orf : 

var n, wl, pl, w2, p2, k, m, time : 
seq 

-- input 
get(n, " size of matrices Cl, C2 ") 
-- data for pipeline 1 
get(wl, • bandwidth of mat<ix Cl "I 
get(pl, • size of upper semiband ") 
fp.get.n(cl, (wl"n), " of matrix diagonals, upper diag. first ") 
fp.get.n(yl, n, • of r.h.s vector yl ") 
fp.get.n(xil, n, " of initial vector xl ") 
-- data for pipeline 2 
qct(w2, " bandwidth of matrix C2 ") 
get(p2, " size of upper semiband ") 
fp.get.n(c2, (w2*n), " of matrix diagonals, upper diag. first ") 
fp.get.n(y2, n, " of r.h.s vector y2 ") 
fp.get.n(xi2, n, M of initial vector x2 ") 

fp.get(orf, M 1- overrelaxation factor "I 
get(k, w no of iterations ") 
if 

(wl + pl) >• (w2 + p2) 
m :• ((wl + pl) -1) 

true 
m :• ((w2 + p2) -1) 

time :• n + (k * (m+ 1)) 
-- process 
pa< 

-- sources for pipeline 1 
source.c(cl.c, cl, n, wl, pl, time) 
source.xy(yl.c{O), yl, n, (pl- 1), time) 
source.xy(xl.c[OJ. xil, n, 0, time) 
source.xy(xll.c(O), xil, n, 0, time) 
source.otf(orfl.c(O], orf, time) 
-- sources for pipeline 2 
source.c{c2.c, c2, n, w2, p2, time) 
source.xy(y2.c(O), y2, n, (p2- 1), time) 
source.xy(x2.c(O), xi2, n, 0, time) 
source.xy(x2l.c(O), xi2, n, O, time) 
source.orf(orf2.c(0), orf, time) 
-- pipelines 
par 1•(0 for k) 

pa< 
system(cl.c, yl.c, xl.c, orfl.c, X21.c, x12.c, 

i, wl, pl, m, time) 
system(c2.c, y2.c, x2.c, orf2.c, x12.c, x21.c, 

i, w2, p2, m, time) 
sinks for pipeline 1 

sink.c(cl.c, k, wl, time) 
fp.si.d(yl.c{k), time) 
sink.x(xl.c(k), xol, n, (k *(m+ 1)), time) 
fp.si.d(xl2.e(k], time) 
fp.si.d(orfl.c(k), time) 

"' 0 
(I) 



-- sinks for pipeline 2 
sink.c(c2.c, k, w2, time) 
fp.si.d(y2.c(k], time) 
sink.x(x2.c(k], xo2, n, (k 
fp.si.d(x2l.c(k), time) 
fp.si.d(orf2.c(k], time) 

• (m+ 1)), time) 

-- output 
fp.put.n(xol, n, 
fp.put.n(xo2, n, 

of solution vector xl ") 
of solution vector x2 "I 

A.3.6 

Systolic array for the multiplication of a banded 
matrix C of size (n•n), bandwidth w • p+q-1, with a 
vector x : c•x•y.vectors x,y move in the same direction 
and the computation time is n + w + p- !.The diagonals 
of matrix C are stored one in each cell and accessed 
through an "address" moving systolically with x, y. 

external proc get(var v, values(]): 
external proc get.n(var v(], value n, values{]): 
external proc fp.get.n(var float v(), value n,s[)): 
external proc fp.put.n(value float v( ), value n,sl )I: 

-- Max size of matrix C1 max bandwidth: max size of upper 
-- semiband; max size of address vector. 
def no • 10, wo • ((2*no)-l), po • no, ado • (no +wo): 
-- Vectors of matrix C diagonals ; Vector x : Vector y. 
var float c(ado•wo}, x(no], y(no) : 
-- Actual size of matrix C 1 bandwidth w , semiband p. 
var n, w, p, 
-- Overall operation timei address vector and it size. 

time, ad, a{ado) : 
--Channels for x•s, y's and a•s. 
chan x.c{(2•wo)+l), y.c{wo+l], a.c{wo+ll : 

-- Inner Product Step Cell: accumulates the inner products 
-- x•c(address) in y and propagates x, y, address. 

proc ips (chan xin, yin, ain, xout, yout, aout, 
value float c(], 
value time )• 

var float x(2), y(21 
var a(2) : 
seq 

-- initialisation 
pa< 

par i•(O for 2) 
pa< 

x[ i 1 :• 0.0 
y[i) ,. o.o 
a( 1) :• 0 

main operation 
seq i·(O for time) 

seq 
-- i/0 
pa< 

xin 1 x(O) 
yin 1 y[OJ 
ain 1 a(O] 
xout 1 x( 11 
yout 1 y(l] 
aout 1 a{l) 

-- calculation 
par 

x[l) '" x[O) 
a[l) '" a[OJ 
y[l) '" y[O) + [x[O) • c[a(OJJJ 1 

Delay Cell : propagates its input with one cycle delay. 

proc del~y (chan xin, xout, 
value time )• 

var float x(2) J 

••q 

"' 0 

"' 



-- initialisation 
par i•(O for 2) 

x(IJ :• 0.0 
-- main operation 
seq i•IO for time) 

seq 
-- i/O 
par 

xin ? x(Ol 
xout I x(ll 

-- calculation 
x(l) :• x(OJ : 

Source of the array : vectors x, y and a. 
No delay for x,a ; a has n+w1valid elements. 

proc source (chan xout, yout, aout, 
value float x(], 
value a(), n, ad, time)• 

seq i•(O for time) 
par 

If 
1 >• n 

xout 0.0 
true 

xout l x(i) 
yout l 0.0 
If 

i >• llod 
aout 1 0 

true 
aout I a(i) 

Sink of the array : vectors x, y and a; 
Initial delay of w + p- 1 cycles for y. 

proc sink (chan xin, yin, ain, 
vac float y(}, 
value w, p, time l• 

initial delay 
vac del ; 
seq 

del:•w+(p-1) 
seq i•(O for time] 

par 
xin 7 any 
If 

i < del 
yin ? any 

true 
yin ? y( !-dell 

ain ? any 

Array configuration : w ips cells are required. 
One delay after each cell for x.Each cell has 
n+W-1 memory locations for a diagonal of matrix C. 

proc system • 
par 

source(x.c(O], y.c(O), a.c(O), x, a, n, ad, time) 
par i•(O for w) 

-- load diagonal to cell 
var float c.temp(ado) : 
seq 

seq j•( 0 for ad I 
c.temp(j) :• c((i•ad)+jl 

par 
ips(x.cti~2), y.c(i), a.c{i), 

x.c((i~2)+1], y.c(i+l), a.c(i+l), 
c.temp, time) 

delay(x.c((i~2)+1}, x.c((i•2)+2), time) 
sink(x.c(2~w), y.c(w], a.c[w], y, w, p, time) 

proc getdata • 
seq 

get(n, size of matrix c ") 
get(w, bandwidth of matrix C ") 
get(p, size of upper semiband ") 
time :• (n + w) + (p - 1) 
ad : • n + (W - 1) 
fp.get.n(c, (w~ad), " of matrix diagonals ") 
fp.get.n(x, n, " vector x ") 
get.n(a, ad, " address vector "I : 

proc putdata • 
seq 

fp.put.n(y, n, "vector y ") 

seq 
getdata 
system 
put data 

"' ~ 
0 



A.l. 7 

Iterative systolic array for matrix-vector multiplication. 
The array performs k successive mvms, producing IA**k)•x, 
where A is a (m•m) matrix, and x is a vector of m elements. 
Area • {m+l) IPS cells and (m•m) memory. 
Time • (2•m)*(k+l)+l cycles. 

external proc get ( var v, value s(J ) : 
external proc fp.put ( value float v, value s( l ) : 
external proc fp.get.n ( var float v(], value n, s(] ) : 
external proc fp.put.n (value float v[], value n, s{J ) 
external proc fp.so.x ( chan xout, value float x(J, value time ) 
external proc fp.si.x ( chan xin, var float x(J, value time ) : 
external proc fp.so.d ( chan xout, value time ) ; 
external proc fp.si.d ( chan xin, value time ) : 

def mo•lO, ko•lO, to•(((2•mo)*(ko+l)l+ll : 

Inner Product Step Cell : Multiply - Accumulate 
When the last accumulation occurs the result is sent as feedback 
and the accumulator is reset for next cycle of calculations. 

proc ips ( chan win, nin, nout, sin, sout, 
value cycle, reset, time I • 

var float w[2), n(2], s(2), ace : 
seq 

-- initialise 
par 

ace :• 0.0 
par i•(O for 21 

par 
w(i) :• 0.0 
n(il :• 0.0 
•Ill :• o.o 

main operation 
seq i•(O for time] 

seq 
-- i/O 
par 

win ? w{O) 
nin? n(O) 
sin ? s{O) 
nout 1 n[l) 
sout 1 s(l) 

-- calculation 
ace :• ace+ ( w(l] • n(O) ) 
par 

will :• w(OJ 
n(ll :• s(OJ 
sill •· n(O) 

-- control 
If 

( i ' cycle ) • reset 
seq 

n(l) :• ace 
ace :• 0.0 : 

Multiplexer 
The initial vector enters the array through s. 

proc mux ( chan sin, sout, fin, fout, 
value cycle, reset. time ) • 

var float s, f(2l : 
seq 

-- initialise 
par 

par i•(O for 21 
flil :• 0.0 

6 :• o.o 
-- main operation 
seq i·lO for time] 

seq 
-- i/0 
par 

sin ? s 
fin? f{O] 
sout I f[l) 
fout 1 f{l) 

fill •· fiOI + s : 

Source for initial vector: operates every two steps. 
For the first mpy cycle it sent& the initial vector, and 
then it sends dummy elements. 

proc so.n ( chan nout, 
value float x{), 
value cycle, time ) • 

var float temp(2•mo) : 
seq 

seq j•{O for cycle) 
if 

(j\2)•0 
temp(j) :• x(j/21 

true 
temp(j} :• 0.0 

fp.so.x( nout, temp, cycle ) 
fp.so.d( nout, (time-cycle) ) 

source for a row i of matrix A. 
Operates after an initial delay of i and every two steps, 
for k mpy cyclesJ then it sends dummy elements. 

proc so.w I chan wout(), 
value float a(), 
value k, m. cycle, time ) • 

par i•(O for m) 
var float temp(2•mo) : 
seq 

seq j•[O for cycle) 
.if 

(j \ 2) - 0 
temp[j) :• a((i*m)+(j/2)) 

true 
temp(jl :• 0.0 

fp.so.d( wout(i), i) 
seq j•(O for kl 

fp.so.x( wout(i), temp, cycle ) 
fp.so.d( wout(i), (time- ((k•cycle) + i)) ) : 

Sink for results on the west side 
Collects the result in the last mpy cycle; it works 
every two steps. 

proc si .n ( 

var float 
seq 

fp.sl.d( 
fp.si .x( 

chan nin, 
var float x( 1, 
value m, delay, cycle, time ) • 
x. temp[ 2•mo 1 : 

nin, delay ) 
nin, x.temp, cycle ) 

0"1 ..... ..... 



seq j-10 for cycle) 
if 

(j,2)•0 
x(j/2) :• x.temp(jl 

Array configuration 
Linear array of m IPS cells; north side has a Mux cell. 
m west sources for matrix Ai north source-sink for 
initial and final vector; dummy source-sink in south. 
Cycle is the time for one matrix-vector multiplication. 

proc system (value float a(], x(), 
value m, k, 
var float y() ) • 

chan h.c(mo), u.c(mo+2), d.c(mo+21 
var time, cycle : 
seq 

cycle :• (2 t m) 
time :• (cycle t (k + 111 + 1 
par 

-- ips cells 
par !•I 0 for m) 

var reset : 
seq 

reset :• ((cycle+ (i- 111 \cycle) 
ips ( h.c(i), d.c(i+l), u.c{i+l), u.c(i+2), d.c(i+2), 

cycle, reset, time ) 
mux 

mux ( d.c(Ol. u.c(O), u.c(l), d.c(l), cycle, 0, time) 
-- sources, sinks 
so.w ( h.c, a, k, m, cycle, time ) 
so.n ( d.c{O), x, cycle, time ) 
si.n ( u.c{O), y, m, (time-cycle), cycle, time I 
fp.so.d( u.c(m+l), time I 
fp.si.d( d.c(m+l], time ) : 

Main 

var float a(motmo), x(mo}, y(mo) 1 

var m, k : 
seq 

get ( m, size of matrix A ~ l 
fp.get.n ( a, (m • m), " matrix A row-wise " ) 
fp.get.n ( x, m, " vector x " I 
get ( k, " number of iterations ") 
system ( a, x, m, k, y ) 
fp.put.n( y, m, * result • ) 

"' .... 
"' 



A.4.1 

Systolic Array for matrix-matrix inner product step 
X•A*B+C 

external proc get ( var v, values() ) : 
external proc fp.get.n ( var float v(), value n, s{ 1 ) : 
external proc fp.put.n (value float v(), value n, s(] ) : 
external proc fp.so.x ( chan xout, value float x(), value time 
external proe fp.so.d ( chan xout, value time ) : 
external proc fp.si.x ( chan xin, var float x() 1 v"lue tlme ) 1 

external proc fp.si.d ( chan xin 1 value time ) : 
external proc fp.lk ( chan xin, xout, value time ) : 
external proc ips.h ( chan ain, bin, cin, aout, bout, cout, 

value time ) : 

def no • 10, wo - 10, to • (no + wo) 

Array configuration 
This is the hexagonnally-connected matrix multiplication array. 
TWo dummy diagonals for c, one on each side, for uniformity. 
w is the bandwidth of A,B. 

proc system ( chan ain(J, bin(), cin(J, xout(), 
value W 1 time ) • 

chan a.c(wo•(wo•l)], b.c(wo*(wo•l)], c.c{(wo+l)•(wo+l)) 
po< 

-- ips cells 
par i•( 0 fo[" w) 

par j•[O for w) 
ips.h ( a.c[(i•(w+l))•j) 1 b.c[(i•w)+j), c.c((i*{w+l))+j), 

a.c[(i*(w+l))+(j+l)), b.c((i*w)•(w+j)] 1 

c.c((i*(w+l))+(j+(w•2))}, time) 
i/O links fO[" A, 8 

par 1•[0 for w) 
po< 

fp.lk ( aln{i], a.c(i•(w+l)), time 
fp.lk ( bin(i) 1 b.c(i), time) 
fp.si.d ( .,.,c{ li*(w+l) )+w) 1 time 
fp.si.d ( b.c((w•w)•i), time) 

i/o links fo[" C1 X 
par i•(O for ({2•w)+l)) 

If 

l"'ain 

I • 0 
par 

fp.so.d 
fp. si .d 

<- w 
par 

fp.lk 
fp.lk 

i < (2*w) 
par 

fp.lk 
fp.lk 

true 
par 

fp.so.d 
fp. si .d 

c.c(w), time 
c.c(w), time 

cin(i-1}, c.c(w-i), time ) 
c.c(w+(i*(w+l))), xout(i-1], time) 

cin(i-1), c.c((w+l)*(i-w)), time ) 
c.c[(((w+l)*(w+l))-1)-(1-w)), xout(i-1) 1 time) 

c.c((w+l)*w), time 
c.c((w+l)*w) 1 time 

var float a(wo*toJ, b(wo•to), c(((2•wo)-l)*to), x({(l'wo)-l)•to) : 
chan a.c(2•wo], b.c(2•wo), c.c(l•((l•wo)-1)), x,c(2*({2*wo)-1)) : 
var n, w, tim~ : 

oeq 
getdata 

get ( n, • matrix order • ) 
get ( w, " bandwidth for A, 8 • ) 
time :• (n • w) 
fp.get.n ( a, (w•time), • A sequence, upper diagonal first • ) 
fp.get.n ( b, (w•time), • B sequence, lower diagonal first • ) 
fp.get.n ( c, (((2*w)-1) 6 time), • C sequence, upper diagonal first • ) 
-- driver 
par 

par i•{O for w] 
var float atemp(to), btemp[to) 
oeq 

seq j•[O fot time) 
po< 

atemp(j) :• a((i*time)•jl 
btemp(j) :• b({i*time)•jl 

par 
fp.so.x ( a.c{i), atemp, time 
fp.so.x ( b.c[i), btemp, time 

par 1•10 for ((2•w)-l)) 
var float ctemp[to), xtemp[to] : 
••q 

seq j•(O for time) 
ctemp[j) :• c[(i*time)+j) 

po< 
fp.so.x ( c.c(i), ctemp, time 
fp.si.x ( x.c[i], xtemp, time 

seq j•(O for time) 
x[(i*time)+j) :• xtemp(j) 

system ( a.c, b.c, c.c, x.c, w, time ) 
-- putdata 
fp.put.n ( x, (((2*w)-l)•time) 1 • X sequence, upper diagonal first • ) 

"' .... 
w 



A.4.2 

Systolic Pipeline for s successive squaring& for a 
(n*n) banded matrix of bandwidth w • p + q - 1, p • q. 
area • SUI'I (((2**j)w- ((2**j)-1))**2), j•0,1,2 •• ,s-1 
tirne • n -t SUM ((2**j)w- ((l**j)-1)), j•0,1,2 •• ,s-1 
final bandwidth • (2**s)w- ((2**&)-1), 
channel count • sun ((2**j)w- ((l**j)-111. j•0,1,2 •• ,s 

external proc get ( var v, values(} ) : 
external proc fp.get.n ( var float v(J, value n, s() I : 
external proc fp.put.n (value float v(), value n, s() ) 1 
external proc fp.so.x ( chan xout, value float x(], value time 
external proc fp.so.d ( chan xout, value time l : 
external proc fp.si.x ( chan xin, var float x(}, value time ) : 
external proc fp.si.d ( chan xin, value time ) : 
external proc fp.lk ( chan xin, xout, value time ) : 
external proc fp.dl ( chan xin, xout, value d, time ) : 
external proc fp.br ( chan xin, xlout, x2out, value time ) : 
external proe ips.h ( chan a1n, bin, cin, aout, bout, cout, 

value time ) : 

def no•lO, wi•3, so•3, wo•l7, co•34, to•(no+17) 

Matrix Squaring Block configuration. 
Two copies of A are produced, A•A and B•A transposed 
Delays for A(B) : q(p)-1, q(p)-2, •• , 1 for the q(p)-1 lower 
(upper) diagonal&l here p•q•(w+l)/2. 
A hex-connected mmm array produces C (•A**2) • A * B. 
Two dummy diagonals for C, one on each side, for uniformity. 
s is the stage number; base is used for the ~~pplnq function 
of the channels. 

proc system ( chan ain{], aout{), 
value s, w, base, time ) • 

chan a1.c(wo), bl.c{wo], 
a.c[wo*(wo+l)), b.c[wo*(wo+1)], c.c((wo+l)*(wo+l)J 

par 
branch 

par 1•{0 foe w] 
fp.br ( ain(base+i], 

-- delays 
al.c(i), bl.c((w-1)-i), time ) 

var p : 
seq 

p :• (W + 1) I 2 
par i•( 0 for w) 

if 
i < p 

par 
fp.dl 
fp.dl 

true 
par 

fp.dl 
fp.dl 

hex-array 

al.c(i], a.c(i*(w+l)], 0, time 
bl.c(i], b.c(i], 0, time) 

a1.c(ilt a.c[i*(\H1)), ((i-p)+l), time 
bl.c(i), b.c(i), ((i-p)+l), time) 

par 1·{0 for w) 
par j•IO for w) 

ips.h ( a.c((i*(w+1))+j), b.c((i*w)+j), c.c((i*(w+l))+j), 
a.c{(i•(w+11)+(j+1)) 1 b.c((i*w)+(w+j)], 
c.c((l•(w+l))+(j-t(w+2))), time) 

1/o links for A,B 
par i•(O for w) · 

par 
fp.si.d ( a.c((i*(w+l))+w), time ) 

fp.si.d ( b.c((w*w)+1}, time ) 
i/O links for C • A**2 

par 1·(0 for ((2*W)+1)) 
if 

!'lain 

i - 0 
par 

fp.so.d 
fp. si.d 

i <• w 
par 

fp.so.d 
fp.lk ( 

i < (2*w) 
par 

fp.so.d 
fp.lk ( 

true 
par 

fp.so.d 
fp.si.d 

c.c[w], time 
c.e(w), time 

( c.c(w-1], time ) 
e.e(w-t(i*(w+lll), aout((base+w)+(l-1)], thte) 

( c.c((w+1)*(i-w)), time) 
c.c((((w+l)*(w+l))-1)-(i-w)], 
aout((base+w)-t(i-1)), time ) 

c.c((w+l)*w], time 
c.c((w+l)*w], time 

var float a(wi•no), c[wo•no) : 
chan a.c(co) : 
var n, wa, we, a, p2, base, time 1 

seq 
-- getdata 
get ( n, " matrix order • 
get ( wa, • bandwidth for A : w • 2p - 1 " ) 
fp.get.n ( a, (wa•n), • ~atrix A upper diagonal fir&t • ) 
get ( s, • squarings • ) 
p2 :- 1 
base :• wa 
seq i·(O fors) 

seq 
p2 :• (p2 • 2) 
base :• base+ ((p2 • wa) - (p2- 1)) 

we :• (p2 • wa) - (p2- 1) 
base :• base - we 
time :• n + base 
-- dciver 
par 

-- input of matrix A 
par i•(O for wa) 

var float atemp(to) 
seq 

seq j•(O for time] 
atemp(jl :• 0.0 

seq j•(O for n) 
atemp(j) :• a((illln)+j) 

fp.so.x ( a.c(i], atemp, time 
output of matrix C • A••2••s 

par i•IO for we) 
var float ctemp[to] 
seq 

fp.si,x ( a.c(base+i), ctemp, time ) 
seq j•( 0 for n) 

c((i*n)+j) :• ctemp(base+j) 
pipeline of s blocks 

par 1•(0 for s) 
va r w, p2, base 
seq 

p2 ,. 1 
b3se :• wa 

"' ..... 
""' 



seq j•(O for i) 
seq 

p2:•(p2*2) 
base :• base+ ((p2 * wa)- (p2- 1)) 

w :• (pl * wa) - (pl - 1) 
base :• base - w 
system ( a.c, a.c, 1, w, "base, time 

putdata 
fp.put.n ( c, (wc*n), • C sequence, upper diagonal first • ) 

A. 4.3 

Systolic Array Jacobi-Hotellinq method. 
Time Expansion. 
A full mmm reusable array is used, with source-sink drivers 
configured for the calculation of Successive Matrix Squares 
after an initial Matrix Multpilication. 
Matrix A is the Jacobi matrix obtained by the homogeneous 
transformation of the original linear system of equations. 
area <• (m+l)**2, where m is the order of the matrix A: 
time • (l*m)*(s+2)+1, where s, are the number of stages for 
the matrix squaring. 

external proc 
external proc 
external proc 
external proc 
external proc 
external proc 
external proc 
external proc 
external proc 

get ( var v, values() ) : 
fp.get.n ( var float v(), value n, s( 1 ) : 
fp.put.n (value float v(], value n, s() ) : 
fp.so.x.t ( chan xout, value float x{), value t(),time) : 
fp.si.x ( chan xin, var float x[), value time ) : 
fp.so.d ( chan xout, value time ) : 
fp.si.d ( chan x1n, value time ) : 
fp.float ( value fix, var float flt } : 
ips.r ( chan ein, eout, win, wout, nin, nout, sin, sout, 

value cycle, reset, time ) 
external proc mux.r ( chan sin, sout, fin, fout, 

value time ) : 

def mo•lO, so•lO, to•((2*mo)*(so+2)), co•(mo+2): 

Source for row i of input matrices, west side. 
Operates after an initial delay equal to i and every two steps. 
For the first mpy cycle it sents the ith row of matrix A. 
Then it sent& dummy elements; fb is on. 

proc so.w ( chan wout, 
value float a(), 
value 1, m, cycle, time ) • 

var float temp(to), a.temp(to) : 
var fb(to) 
seq 

-- input vectors 
par 

seq 
seq j•(O for time) 

temp(j) :• 0.0 
seq j•(O for cycle} 

if 
(j \ 2) - 0 

a.temp(j) ,_ a((l•m)+(j/2)) 
true 

a.temp(j) :• 0.0 
seq j•(O for cycle) 

temp( j+i J ;• a. temp( j) 
seq j•(O for time) 

fb(j) ,_ 1 
-- source 
fp.so.x.t( wout, temp, fb, time ) : 

source for a row 1 of input matrices, north side. 
Operates after an initial delay of i and every two steps 
For the first mpy cycle it sents a column of matrix I 
into the array. From then on dummy elements1 fb is on. 

proc so.n ( chan nout, 
value 1. time ) • 

"' ...... 
U1 



var float temp(to) 
var fb[to) 
oeq 

-- input vectors 
par 

seq 
seq j•(O for time) 

temp(j] :• 0.0 
temp((2*il+i] :• 1.0 

seq j•[O for time] 
fb(j( ,. l 

-- source 
fp.so.x.t( nout, temp, fb, time I l 

Sink for results on the west side 
Collects the first column in the last mpy cycle. 

proc si.w ( chan rin, 
vac float x[ l, 
value i, cycle, time I • 

var float x.temp(to) : 
var delay 
seq 

fp.si.x( rin, x.temp, time } 
delay :• ((time + i) - cycle) 
x[i] :• x.temp[delay) : 

Array Configuration 
Square array of (m*m) IPS cells; west and north side have an 
additional row of m Mux•s; the array is ·surrounded with 
4m sources - dummy in east and south sides, and 
4m sinks - dummy in east, north and south sides. 
cycle is the time for one matrix-matrix multiplication. 

proc system ( value float' a(), 
value m, s, 
vac float xtl ) • 

chan r.c(mo•co], l.c[mo-co), u.c(mo*co), d,c(mo*co) 
var time, cycle : 
seq 

cycle :• (2 ' m) 
time :• (cycle' (s + 2ll + 1 
par 

-- ips cells 
par i•[O for m) 

par j•[O for m] 
var di, dj, reset 
seq 

di :• (i • (m + 2)) + (j + 1) 
dj '" (j * (m+ 2)) + li + 1) 
reset :• ((cycle+ ((1 + j)- 1)) \cycle) 
ips.r ( l.c(di+l}, r.c[di+l], r.c(di], l.c(di], 

d.c(dj), u.c(dj!. u.c!dj+l), d.c{dj+l], 
cycle, reset, time ) 

mux•s 
par i•( 0 for m) 

var wn 
seq 

wn :• (i • (m+ 2)) 
par 

mux.r ( r.c(wn), l.c(wn), l.c(wn+l), r.c[wn+l), time 
mux.r ( d.c(wn), u.c(wn), u.c[wn+l), d.c(wn+l), time 

sources, sinks 
par i•(O for m) 

var wn, es : 
seq 

Main 

wn :• (1 * (m+ 2)) 
es :• wn + (m+ 1} 
par 

so.w ( r.c(wn], a, i, m, cycle, time 
so.n ( d.c[wn), i, time ) 
si.w ( l.c{wn), x, i, cycle, time I 
fp.si.d( u.c[wn], time I 
fp.so.d( l.c(es}, time ) 
fp.so.d( u.c(es}, time ) 
fp.si.d( r.c(es), time ) 
fp.si.d( d.c(es), time I 

var float a(mo•mo], x[mo) : 
vac m, s : 
seq 

qet ( m, " size of matrix A " ) 
fp.get.n ( a, (m* m), "matrix A row-wise w I 
qet I s, " iterations ") 
system ( a, m, s, x ) 
fp.put.n( x, m, • result • ) 

"' ..... 
"' 



A.4.4 

Systolie Array Gauss-seidel-Hotellin9 method. 
Time Expansion, 
A full mmm reusable array is used, with source-sink drivers 
confiqured for the calculation of a series of Matrix-Matrix 
Multiplications followed by Successive Matrix Squaring&. 
Matfix A is the Jacobi matrix obtained by the homogeneous 
transformation of the original linear system of equations. 
area <• (m+l)••2, where m is the order of the matrix A; 
time • (2•m)•(m+s+l)+l, where s, are the number of stages 
for the matrix squaring. 

external 
external 
external 
external 
external 
external 
external 
external 
external 

proc 
proc 
proc 
proc 
proc 
proc 
proc 
proc 
proc 

get ( var v, value s( 1 I : 
fp.get.n ( var floZJt v( ], value n, s( l I : 
fp.put.n ( value float v( ], value n, s() ) : 
fp.so.x.t ( chan xout, vZJlue float x[), value t[),time ) 1 

fp.si.x ( chan xin, var float x(J, value time ) : 
fp.so.d ( chan xout, value time I : 
fp.si.d ( chan xin, value time ) : 
fp.float ( value fix, var float flt ) : 
ips.r ( chan ein, eout, wifi, wout, nin, nout, sin, sout, 

value cycle, reset, time ) 
chan sin, sout, fin, fout, 
value time ) : 

external proc mux.r 

def mo•lO, so•lO, to•((2•mo)*((mo+so)+l)), co•(mo+2): 

Source for row i of input matrices, west side. 
Operates after an initial delay equal to i and every two steps. 
For j-O,l, •• ,m-1 mpy cycles it sents the ith row of matrix 
I(j)+A(j), vhere A(j) has non-zero elements only in row j, while 
I(j) is mZJtrix I with row j equal to ~ero.Then it sent& dummy 
elements. fb is on for j•m,m+l, .• mpy cycles, 

proe so.w ( ehan wout, 
value float a[J, 
value i, m, cycle, time ) • 

var float temp(to), a.temp(to) 
var loc, pre, post, fb(to) : 
seq 

-- initialise 
par 

loc :• i 
pre:•(2•i) 
post :• (cycle - pre) 

-- input vectors 
par 

seq 
seq j•tO for time) 

temp(j) 1• 0.0 
seq 1·(0 for m) 

if 
1 - i 

seq 
seq j•(O for cycle) 

if 
lj \ 2) - 0 

a.temp[jl :• a[(i•m)+(j/2)) 
true 

a.temp(jl :• 0.0 
seq j•[O for cycle) 

temp(loc+jl :• a.temp(j) 
loc :• (loc + cycle) 

true 
seq 

loc :• {loc + pre) 
temp( loci :• 1.0 
loc 1• (loc + post) 

seq 
seq j•(O for time) 

fb(j) ·- 1 
seq j•(O for l(m•cycle)+(i-1))) 

fbljl ·- 0 
source 

fp.so.x.t( wout, temp, fb, time ) : 

Source for a row i of input matrices, north side. 
Operates after an initial delay of i and every two steps 
For the first mpy cycle it sents a column of matrix I 
into the array.rrom then on dummy elements; fb is on. 

proc so.n ( chan nout, 
value i, time ) • 

var float temp(to) 1 

var fb(to) 
seq 

-- input vectors 
par 

seq 
seq j•[O for time) 

temp[ j) :• 0.0 
temp((2•i)+i) :• 1.0 

seq j•(O for time] 
fb(j) ·- 1 

-- source 
fp.so.x.t( nout, temp, fb, time ) : 

Sink for results on the west side 
Collects the first column in the last mpy cycle. 

proc si .w ( 

var float 
var delay 
seq 

chan rin, 
var float x(), 
value i, cycle, 
x.temp[to) : 

time ) • 

fp.si.x( rin, x.temp, time ) 
delay :• ((time+ il- cycle) 
x(i) :• x.temp(delay) : 

Array Configuration 
Square array of (m•m) IPS cells; west and north side have an 
additional row of m Mux's; the array is surrounded with 
4m sources - dummy in east and south sides, and 
4m sinks - dummy in east, north and south sides. 
Cycle is the time for one matrix-matrix multiplication. 

proc system (value float a(), 
value m, s, 
var float x() ) • 

ehan r.c(mo•co), l.c(mo•co), u.c(mo•co), d.c(mo•co) 
var time, cycle : 
seq 

cycle :• (2 • m) 
time :• (cycle* ((m+ s) + 1)) + 1 
par 

-- ips cells 
par i•( 0 for m) 

par j•(O for m) 

"' .... ..... 



var di, dj, reset 
seq 

dl :• (I • (m+ 2)) + (j + 1) 
dj :• (j • (m+ 2)) + (I + 1) 
reset :• ((cycle+ ({i + j) - 1)) \cycle) 
ips.r ( l.c{di+l), r.c(di+l), r.c[di), l.cldi), 

d.e(dj), u,c(dj), u.c(dj+l), d,c(dj+l), 
cycle, reset, time I 

-- rnux's 
par i•(O for m] 

vat' wn 
seq 

wn :• {i * (m+ 2)) 
par 

mux.r ( r.e(wn), l.c(wn), l.c(wn+l), r.c(wn+l), time 
mux.r ( d,c(wn], u.c(wn), u.c(wn+l), d.c(wn+l), time 

sources, sinks 
par i•(O for m] 

Main 

var wn, es 
seq 

wn :• (i *(m.+ 2)) 
es :• wn + (m+ 1) 
par 

so.w ( r.c(wn), a, i, m, cycle, time 
so.n ( d.c(wn), i, time ) 
si.w ( l.c{wn], x, i, cycle, time ) 
fp.si.d( u.c(wn), time ) 
fp.so.d{ l.c(es), time I 
fp.so.d{ u.c(es), time l 
fp.si.d( r.c(es), time ) 
fp.s~.d( d.c[es), time ) 

var float a(mo•mo), x(mo) : 
vac m, s : 
seq 

qet ( m, • size of matrix A " ) 
fp.get.n ( a, (m • m)," matrix A row-wise" ) 
get ( s, • iterations •) 
system I a, m, s, x ) 
fp.put.n( x, m, • result • ) 

A,4 .5 

Systolic Pipeline for s iterations of the Jacobi
Hotteling method for the solution of a linear syste•. 
A is the Jacobi (n*n) banded matrix of bandwidth 
w • p + q - 1, p • q, y is the corresponding rhs vector, 
which is finally transformed to the solution vector. 
acea • SUM I w(j)**2 + w[j) ), j•0,1,2, .. ,s-1, and 
w~j] • (2**j)*w- ((2**j)-1) the bandwidth of stage j+l. 
t1me • n +SUM ( w{j) + p(j) - 1 ), j • 0,1,2, •• ,s-1, and 
p(j) • { w[j} + 1 ) I 2 the semiband of stage j+l. 
final bandwidth for matrix squaring .. (2**s)w- ((l••s)-1), 
channel count • SUM I w(j) + 1 ), j•O,l,2, •• ,s. 

external proc get (vac v, value s(J ) : 
external proc fp.get.n (vac float v(), value n, s() ) : 
external proc fp.put.n (value float v(), value n, si I ) : 
extecnal proc fp.so.x ( chan xout, value float x(), value time 
external proc fp.so.d ( chan xout, value time ) : 
external proc fp.si.x ( chan xin, vac float x(), value ti•e ) 
external proc fp.si,d 1 chan xin, value time ) : 
external proc fp.lk ( chan xin, xout, value time ) : 
external proc fp.dl ( chan xin, xout, value d~ time ) : 
external proc fp.br { chan xin, xlout, x2out, value time ) : 
external proc ips.h ( chan ain, bin, cin, aout, bout, cout, 

value time ) : 

def no-10, wl•3, so-3, wo•17, co•34, to•(no+26) 

Matrix Squaring Block configuration, 
Two copies of A are produced, A•A and B•A transposed 
Delays for A{B) : q(p)-1, q(p)-2, .• , 1 for the q(p)-1 lower 
(upper) diagonals; here p•q•(w+l)/2. 
A hex-connected mmm array produces C (•A**2) - A • B. 
Two dummy diagonals for C, one on each side, for uniformity. 

proc hex ( chan ain(), aout(), 
value w, p, time ) • 

chan a1.c(wo), bl.c(wo), 
a.c(wo•(wo+l)), b.c(wo•(wo+l)), c.c( (wo+1) *(wo+1) 1 

pa< 
1/0 links, branch delays for A,B 

par i•(O for w) 
par 

fp.br ( ain(l), a1.c(i), bl.c((w-1)-i), time ) 
If 

( p 
pat 

fp.dl 
fp.dl 

true 
par 

al.c(i), a.c[i•(w+1)), 0, time 
bl.c(i), b.e(i), 0, time ) 

fp.dl ( al.c[i), a.c(i*lw+l)), ((i-p)+l), time 
fp.dl ( b1.c(l), b.c(l), ((l-p)+1), tloe ) 

fp.si.d ( a.c((i*(w+l))+w), time ) 
fp.si.d ( b.c((w•w)+i), time ) 

hex-array 
par i•IO for w) 

par j•(O for w) 
ips.h ( a.c[(i*(w+l))+j), b.c((i*w)+j), e.c((i*(w+l))+j), 

a.c!li*(w+l))+(j+l)), b.c((i•w)+(w+j)), 
c.c((l*(w+l))+(j+(w+2))), time) 

i/o links,delays for c 
par i•(O for ((2•w)+l)) 

"' .... 
C> 



lf 
I • 0 

par 
fp.so.d 
fp.si.d 

1 <• w 
par 

fp.so.d 
fp.dl ( 

< ( 2*w) 
par 

fp.so.d 
fp.dl ( 

c,c(w), time 
c.c[w), time 

( c.c(w-1), time ) 
c.c(w+(i•(w+l))], aout(i-1), (p-1), time) 

I c.e((w+l)*(i-w)], time) 
c.c( ( ( (w+l) • (..,+1) )-1)-(i-w) 1, a out( i-1 I, 
{p-1), time ) 

true 
par 

fp.so.d I c.c((w+l)•w), time 
fp.sl.d ( c.c((w+l)*w), time 

Hvips Block configuration 
A mvm array performs the operation y • A"'x + y, ( x•y ). 
Delay of (p-1) cycles for the uppermost diagonal; additional 
delay of 1 cycle for the diagonals up to the main; from then 
on 2 additional delays per diagonal.(p-1) delays for the copy 
of y that is added. 

proc lin ( chan ain[J, yin, yout, 
value w, p, time ) • 

chan a.c(2•wo], x.c((2•wo)+l), y.c(wo+2) : 
par 

-- linear: array 
par i•(O for w] 

par 
ips.h ( a.c(i), x.c{1*2), y.c[i+l), 

a.c(i+w), x.c((i*2)+1), y.c(i+21. time 
fp.dl ( x.c((i•2)+1), x.c({i*2)+2), l, time) 

i;o, delays for A 
pAl' i•(O for w) 

par 
var del 
seq 

" I < p 
del :• (p - 1) + i 

true 
del:•(2*i) 

fp.dl ( ain(i), a.c[i}, del, time 
fp.si.d ( a.c{i+w), time ) 

ljo, branch, delays for x, y 
fp.br 1 yln, y.c(O), .x.c(O}, time 1 
fp.d1 ( y.c(OJ, y.c(l), (p-1), time 
fp.lk ( y.c(w+l), yout, time ) 
fp.si.d ( x.c{2*w), time ) : 

Pipeline Block configuration 
It consists of one hex array producig A••2, and one linear 
array producing y+A*y.The output of the hex-array is delayed 
for (p-1)•((w+l)/2)-1 cycles for synchronisation. 

proc system ( chan a.c(), y.c(), 
value s, w, base, time ) • 

chan al.c(wo), a2.c(wo), al.c(wo), yl.c, y2.c 
vac p : 
••q 

p :• (w + 1 )/2 
par 

-- input links, branch 
par i•[O for w) 

fp.br ( a.c(base+i), al.c[i), a2.c(i), time ) 
fp.lk ( y.c[s), yl.c, time ) 
-- hex, linear array& 
hex ( al.c, a3.c, w, p, time I 
lin ( a2.c, yl.c, y2.c, w, p, time 
-- output links 
par i•(O for ((2*w)-l)] 

fp.lk ( a3.c(1], a,c[(base+w)+i), time 
fp.lk I y2.c, y.c[&+l), time ) ; 

Main 

var float a(wi•no), yi(no), yo(no) : 
chan a.c(co}, y.c(so+l) ; 
var n, wa, w(so}, we, s, p2, base(so), delay, time 
seq 

-- getdata 
get ( n, M matrix order M ) 

get { wa, " bandwidth for A : w • 2p - 1 " ) 
fp.get.n ( a, (wa•n), " matrix A upper diagonal first M ) 

fp.get.n ( yi, n, M vector y M ) 

get ( s, " squarings " ) 
-- setup 
p2 ,_ l 
w( 0) :• wa 
base(O) :• 0 
delay :• (wa + ((wa + 1) 1 2)) - 1 
seq i•[1 for (s-111 

seq 
p2:•(p2•2) 
w(i] :• (p2 • wa) - (p2- 1) 
base(i] :• base(i) + w(i-1) 
delay :• delay+ ((w[i) + ((w(i) + 1) 1 211 - 11 

time :• n + delay 
we :• ((2•w(s-l))-l) 
-- driver: 
par 

-- i/O of matrix A 
par 

par: 1·(0 for: wa) 
var float atemp(to) 
seq 

seq j•(O for time] 
atemp(j) :• 0.0 

seq j•(O for n) 
atemp(j) :• a((i•n)+j] 

fp.so.x ( a.c(i) 1 atemp, time ) 
par i•{O for we) 

fp.si.d ( a.c((base(s-l]+w(s-l))+i), time ) 
-- 1/o of vector y 
par 

vac float ytemp(to) : 
seq 

seq i•IO for time) 
ytemp( i I :• 0.0 

seq i•(O for n) 
ytemp( I I '· yl (I I 

fp.so.x ( y.c{O), ytemp, time 
vac float ytemp(to] 
seq 

fp.si.x ( y.c(s), ytemp, time 
seq 1•(0 for n) 

yo(i] :• ytemp(i+delay) 
pipeline of s blocks 

"' .... 
\0 



par i•(O for sJ 
system ( a.c, y.c, i, w(i), base[i), time 1 

-- putdata 
fp.put.n ( yo, n, • solution Vector • 1 

A.4.6 

Systolic pipeline for Power Method 
Area Expansion. . 
Calcualtion of the dominant eigenavalue e and the corresponding 
eigenvector u of a (n*n) matrix C.The method has the form : 

y(i+ll • c•x(i]; x(i+l) • y(i+l)/m(y(i+l)), 
where m(x) is the first non-zero element of x; x(OJ•Il 1 •• 1) 

.-- 1 • m(y(k)), u/m(u) • x(k), where k is the number of iterations. 
Area • k•(w+l), where v • p+q-1 is the bandwidth of C. 
Computation time • n+k*(w+p}. 

external proc get(var v, values()): 
external proc fp.put(value float v, values()): 
external proc fp.get.n(var float v( I, value n,s( 1): 
external proc fp.put.n(value float v(], value n,s()): 
external proc fp.so.x(chan xout, value float v( ), value time): 
external proc fp.si.x(chan xin, var float v(), value time): 
external proc fp.so.d(chan xout, value time): 
external proc fp.si.d(chan xin, value time): 
external proc fp.dl(chan xin, xout, valued, time): 
external proc fp.lk(chan xin, xout, value ti•e): 
external proc fp.br(chan xin, xlout, x2out, value time): 
external proc ips.l (chan cin, xin, yin, xout, yout, 

value time): 

def no • 10, wo- ((2•no)-l), ko • 10, to • (no+(ko•(2•wo))) 

Normaliser 
It waits for the first non-zero element of the vector and 
normalises the vector in respect to it.The eigenvalue is 
equal to the first non-zero element. 

proc nor (chan yin, yout, eout, 
value time) • 

var first.found : 
var float y(2), first 
seq 

-- initialisation 
pa< 

first :• 1.0 
pu i-{0 for 2) 

y{l) :- 0.0 
first.found :- false 

-- main operation 
seq i•(O for time) 

seq 
-- i/O 
par 

yin ? y(O) 
yout I y{l] 
eout I first 

-- calculation 
if 

(not first.foundl and (y(O] <> 0.0) 
par 

first :• y(O) 
first.found :• true 

y(l) :• y(O) I first : 

Block configuration 
A mvm array performs the operation x'(•y) • c•x; 
w branching elements for C; (w+p) delays for C to next block. 
A normaliser cell is connected to the output of mvm array. 

0\ .... 
0 



proc system (chan c.io[), x.io(), e.o(], 
value stage, w, delay, time 1 -

chan c.c(wo), x.c((2•wo)+l), y.c(wo+21, c.l(3•wo] e.c 
par ' 

-- mvm array 
par 1•(0 for v) 

par 
ips.l(c.c[i), x.c(1•2J, y.c(i), 

x.c[(1*2)+1], y.c(i+l], time) 
fp.dl(x.c[(1•2)+1], x.c((i*2)+2), 1, time) 

brancinq and delays 
par 

par i•[O for w) 
par 

fp.br(c.l(i), c.l[i+w), c.c(i), time) 
fp.dl(c.l(i+w), c,l(i+(2*w)), delay, time) 

normaliser 
nor(y.c(w), y.c(w+l), e.c, time) 
-- 1/o links 
par 

pu- i•( 0 for w] 
par 

fp.lk(c.io((stage•w)+i), c.l(i), time) 
fp.lk(c.l(i+(2*w)), c.io(((stage+l)~w)+i) time) 

fp.lk(x.io(shge), x,c(O), time) ' 
fp.lk(y.c(w+ll. x.io{stage+l), time) 
fp.lk(e.c, e.o(stage), time) 
fp.so.d(y.c[O), time) 
fp.&i,d(x.c(2*w), time) : 

Source for matrix c 
Initial delay of p-1 cycles for the uppermost diagonal; 
additional delay of 1 cycle for the diagonals up to 
the main; from then on 2 additional delays per diagonal. 

proc source.c (chan cout(), 
value float c(], 
value n, w, p, time)• 

par j•(O for w) · 
var float c,temp(no) : 
var del 
seq 

If 
j < p 

del :• (p - 1) + j 
true 

del:•(2*j) 
fp.so.d(cout(j), del) 
seq i•(O for n) 

c.temp(i) :• c[(j•n)+i) 
fp.so.x(cout(j), c.temp, n) 
fp.so.d(cout(j], (time-(del+n))) 

Source for vector x. 

proc source.x (chan xout, 

seq 

value float x(), 
value n, time)• 

fp.so.x(xout, x, n) 
fp.so.d(xout, (time-n)) 

Sink for vector x. 
Initial delay of k • (w + p) cycles, 

proc sink.x (chan xin, 

var float x( l, 
value n, del, time) • 

var float x.temp(no) 
seq 

fp.si.d(xin, del) 
fp.si.x(xin, x, n) 

Sink for eigenvalue e: one for each pipeline stage. 
It collects e from the last pipeline stage for one cycle 
after an initial delay of k • (w + pi cycles. 

proc sink.e (chan ein(), 
var float e, 
value stage, 

e.ternp(l) 
k, delay, time) • 

var float 
seq 

If 
stage <> ( k-1 I 

fp.si.d(ein(stage), time) 
true 

seq 
fp.si.d(ein(stage), 
fp.si.x(ein(stage), 
fp.si.d(ein{stage), 

e :• e.temp(OJ : 

Sink for matrix C 

delay) 
e.temp, 1) 
(time-(delay+l))) 

proc sink.c (chan cin(), 
value k, w, time} • 

par j•{O for w) 
fp.si.d(cin((k•w)+j), time} : 

Main 

chan c.c(ko•wo], x.c(ko+l], e.c(ko] 1 

var float c(no•wo], xi(no], xo(no], e 
var n, w, p, k, delay, time 
seq 

-- input 
get(n, * size of matrix C *) 
get(w, " bandwidth of matrix C *) 
get(p, " size of upper semiband ") 
fp.get.n(c, (w*n), * of matrix diagonals, upper diag. first *I 
fp.get.n(xi, n, • of initial vector x *) 
get(k, " no of iterations ") 
delay :• (w + pi 
time :• n + (k • delay) 
-- pipeline 
par 

source.c(c.c, c, n, w, p, time) 
source.x(x.c{O], xi, n, time) 
par i•(O for k) 

par 
system(c.c, x.c, e.c, i, w, delay, time) 
sink.e(e.c, e, i, k, (k•delay), till\e) 

sink.c(c.c, k, w, time) 
sink.x(x.c{k), xo, n, (k • delay), time) 

-- output 
fp.put(e, • dominant eigenvalue *) 
fp.put.n(xo, n, " of corresponding eigenvector ") 

"' ..., 
..... 



A.4. 7 

Systolic Pipeline for s successive squarings for a 
(n•n) banded matrix of bandwidth w • p + q- 1, p • q. 
The output of a pipeline stage is scaled over a given 
power of 2, so that overjunder-flow is avoided. 
area • SUM (((2**j)w- ((2**j)-1))**2), j•0,1,2 •• ,s-1 
time • n +SUM ((2**j)w- ((2**j)-1)), j•O,l,2 .. ,s-l 
final bandwidth • (2**s)w- ((2**5)-1), 
channel count • SUM ((2**j)w- ((2**j)-l)), j•O,l,2 •. ,s 

external 
external 
external 
external 
external 
external 
external 
external 
external 
external 

proc 
proe 
proc 
proc 
proc 
proc 
proc 
proc 
proc 
proc 

get ( var v, values() ) : 
fp.get.n ( var float v(], value n, s(] ) : 
fp.put.n (value float v(), value n, s() l : 
fp.so.x ( chan xout, value float x(}, value time 
fp.so.d ( chan xout, value time ) : 
fp.si.x ( chan xin, var float x(), value time) 
fp.si.d ( chan xin, value time ) : 
fp.dl ( chan xin, xout, value d, time ) : 
fp.br { chan xin, x1out, x2out, value time ) : 
ips.h ( chan ain, bin, cin, aout, bout, cout, 

value time ) : 

def no•10, wi•3, so•3, wo•l7, co•l4, to•(no+17) 

-- Scaling Cell 1 it scales its input over a given power of two. 

proc sea ( chan cin, cout, 
value float scale, 
value time ) • 

var float c[2) : 
seq 

-- initialise 
par i•[O for 2) 

c(i) :• 0.0 
-- main operation 
seq i•{O for time) 

seq 
-- i/0 
par 

cin 1 c[O) 
cout 1 c(l) 

-- calculation 
c(l) :• (c[O) /scale) : 

Matrix Squaring Block configuration. 
Two copies of A are produced, A•A and B•A transposed 
Delays for A(B) : q(p)-1, q(p)-2, ••• 1 for the q(p)-1 lower 
(upper) diagonals; here p•q•(w+1)/2. 
A hex-connected mmm array produces C (·A••l) • A * B. 
C is scaled over a povec of 2. 
Two dummy diagonals for C, one on each side, for uniformity. 
s is the stage number; base is used for the mapping function 
of the channels. 

proc ·system ( chan a. io( 1, 
value float scale, 
value w, base, time ) • 

chan al.c(wo], bl.c(wo), 
a.c(wo•(wo+l)), b.c(wo"(wo+l)), c.c((we+l)"(wo+lll 

par 
branch 

par i•(O for w] 
fp.br ( a,io(base+il, al.c[i), bl.c((w-1)-i), time l 

-- delays 

var p : 
seq 

P.=- (W + 1) I 2 
par i•(O for w] 

if 
i < p 

par 
fp.dl 
fp.dl 

true 
par 

fp.dl 
fp.dl 

hex-array 
par i•[O for 'W') 

par j•(O for w] 

a1.c(i), a.c(i"(w+l)J. o, time 
bl.c{i), b.c[i), 0, time ) 

al.c[i], a.c(i*(w+l)J. ((i-p)+l), time 
bl.c{i), b.c[i), ((i-p)+l), time ) 

ips.h ( a.c((i*(w+l))+j), b.e((i"'w)+jl. c.e((i•(w+l))+j), 
a.c((i*(w+l))+(j+l)), b.c((i•w)+(w+j)), 
c.c((i•(w+l))+(j+(w+2))), time) 

i/o links for A,B 
par i•l 0 for w) 

par 
fp.sl.d ( a.c((i•(w+l))•w], time 
fp.si.d ( b.c((w•w)+i), time) 

-- 1/o links, scalin9 for C .. A••2 
par i•(O for ((2•w)+ll) 

If 

Main 

i " 0 
par 

fp.so.d 
fp.si .d 

<• w 
par 

e.c(w], time 
e.e(w), time 

fp.so.d ( c.c(w-1), time) 
sea ( c.c(w+(i*(w+l))], a.io{(base+w)+(i-1)), 

scale, time ) 
< (2"w) 
par 

fp.so.d ( c.c((w+ll*(i-w)], time) 
sea ( c.c((((w+l)*(w+l))-1)-(i-w)), 

a. io( ( base+w)+( i-1) l, scale, time 
true 

par 
fp.so.d 
fp.si.d 

c.c((w+l)•w), time 
c.c((w+l)•w), time 

var float a[wi•no], c[wo•no) : 
chan a.c(coJ : 
var float scale{so+l} : 
var n, s, w(so+l), base(so+l), time 
seq 

-- getdata 
get ( n, " matrix order " ) 
get I w(O], * bandwidth for A : w • 2p- 1 * ) 
fp.get.n ( a, (w(O]•n), " matrix A upper diagonal first • ) 
get ( s, • squarings • ) 
fp.get.n ( scale, (s+l), • scaling factors " ) 
base(O) :• 0 
seq i•(1 for s) 

seq 
w(i) :• ((2 • w(i-1])- 1) 
base(i) :• base(i-1) + w(i-1) 

time :• n + (base(&) + s) 
-- driver 



par 
input of matrix A 

par i•(O for w(O)) 
var float atemp(no) 
seq 

seq j•[O for n) 
atemp(j) :• a[(i*n)+j) 

fp.so.x ( a.c[i), atemp, n } 
fp.so.d ( a.c(i), (time-nl I 

output of matrix c • A**2**s scaled 
par i•(O for w[s)J 

var float ctemp(no) 
seq 

fp.si.d ( a.c(base{s]+i), (time-n) 
fp.si.x ( a.c{base(s)+i), ctemp, n 
seq j•(O for n] 

c((i*n)+jl :• ctemp(jl 
pipeline of s blocks 

par 1•[0 for s) 
system ( a.c, scale(i), wfi), base[i], time) 

-- putdata fp.put.n ( c, (w{s)*n), • C sequence, upper diagonal first • ) 

A. 4.6 

Systolic Array for Power Method. 
Time Expansion. 
Calculation of the dominant eigenvalue e and corresponding 
eigenvector u of a (m*m) matrix A.Form of the method : 

y(i+l) • A*x[i); x(i+l) • y(i+l)/m(y(i+l]), 
where m(x) is the first non-zero element of XI x[OJ•(l 1 •• 1) 
e • m(y[k)), u/m(u) • x{k], where k is the no of iterations. 
Area • (m+l) IPS cells and (m*m) memory. 
Time • (2*ml*(k+l)+l cycles. 

external proc get ( var v, values[) ) : 
external proc fp.put (value float v, values() ) : 
external proe fp.get.n ( var float v(), value n, s() I: 
external proe fp.put.n ( value float v( ), value n, s[ I ) : 
external proc fp.so.x ( chan xout, value float x[), value time I 
external proc fp.si.x ( chan xin, var float x[), value time I : 
external proc fp.so.d ( chan xout, value time ) : 
external proc fp.si.d ( chan xin, value time I : 

def mo•lO, ko•lO, to•(((l•mol*(ko+l))+l) : 

Inner Product Step Cell : Multiply - Accumulate 
-- When the last accumulation occurs the result is sent as feedback 
-- and the accumulator is reset for next cycle of calculations. 

proc ips I chan win, nin, nout, sin, sout, 
value cycle, reset, time I • 

var float w(2), n[2), s[2), ace : 
seq 

-- initialise 
par 

ace :• 0.0 
par i•(O for 21 

par 
w(i) :• 0.0 
nlll ,. 0.0 
sill ,. 0.0 

main operation 
seq i•(O for time) 

seq 
-- i/o 
par 

win? w(OJ 
nin ? n{O) 
sin ? s(O) 
nout 1 n{l) 
sout I s(l) 

-- calculation 
ace :• ace + ( w[l) • n[O) ) 
par 

w(l) :• w{O) 
nlll '" s)O) 
•111 '" n)OJ 

-- control 
if 

{ i \ cycle ) • reset 
seq 

n{l) :• ace 
ace :• 0.0 

Multiplexer 
For each mpy cycle it normalises the feedback vector. 
The initial vector enters the array throu9h s. 

0\ .... 
w 



-- Output: the normalised vector and the eigenvalue. 

proc •ux ( chan sin, sout, fin, foul, eout, 
value cycle, reset, time ) • 

vat floats, f(2), first : 
vat fint.found 
seq 

-- initialise 
par 

par i•(O for 2) 
f(i) ,. 0.0 

s :• o.o 
first :• 1.0 
first.found :• false 

-- main operation 
seq i•( 0 for time 1 

seq 
-- i/O 
par 

sin 1 s 
fin 1 f(OJ 
sout I flll 
foul l f(l} 
eout 1 first 

-- control 
if 

if 

(i \cycle) • reset 
par 

first.found :• false 
first :• 1.0 

(not first.found) and (f(O) <> 0.0) 
par 

first.found :• true 
first :• f(Ol 

f(l) :• (f(O) + s) I first 

Source for initial vector: operates every two steps. 
For the first mpy cycle it sents the initial vector, and 
then it sends dummy elements. 

proc so.n ( chan nout, 
value float x( I, 
value cycle, time ) • 

var float temp(2*mo] : 
seq 

seq j•IO for cycle] 
if 

(j '2) • 0 
temp(j] :• xlj/2) 

true 
temp( j) :• 0.0 

fp.so.x( nout, temp, cycle ) 
fp.so.dl nout, (time-cycle) I 

source for a row i of matrix A. 
Operates after an initial delay of i and every tvo steps, 
for k mpy cycles; then it sends dummy elements. 

proc so.w ( chan wout(), 
value float a(), 
value k, m, cycle, time ) • 

par i•( 0 for m) 
vac float temp{2*mo) : 
seq 

seq j•(O for cycle) 
if 

(j '2) • 0 
temp{jl :• a[(i*m)+(j/2)) 

true 
teop(j) :• 0.0 

fp.so.d{ wout(i), i) 
seq j•(O fork) 

fp.so.x( wout(i), temp, cycle ) 
fp.so.d( wout(i), (time- ({k•cycle) + i))): 

Sink for results on the west side 
Collects the eigenvalue in the first step of the last 
mpy cycle, and the eigenvector in the la.st mpy cycle 
every two steps. 

proc si.n ( chan nin, ein, 
var float x( I, e, 
value m, delay, cycle, time ) • 

par 
vac float x,temp(2*mo) : 
seq 

fp.si.d( nin, delay ) 
fp.si.x( nin, x.temp, cycle 
seq j•(O for cycle) 

if 
(j ' 2) • 0 

x(j/2) :• x.temp(j) 
vac float e.temp(l} ; 
seq 

fp.si.d( ein, delay ) 
fp.si.x( ein, e.temp, 1 
fp.si.d( ein, (cycle-1) 
e :• e.temp(O) : 

Array Configuration 
Linear array of m IPS cells; north side has a Mux cell. 
m west sources for matrix A; north source-sink for 
initial and final vector; dummy source-sink in south. 
Cycle is the time for one matrix-matrix multiplication. 

proc system ( value float a(], xi(), 
value m, k, 
vac float xo(], e ) .. 

chan h.c(mo], u.c(mo+2], d.c(mo+2), e.c 
vac time, cycle : 
seq 

cycle :• (2 * m) 
time :• (cycle * (k + 1)) + 1 
par 

-- ips cells 
par i•( 0 for m] 

vac reset : 
seq 

reset :• ({cycle+ (i- 1)) \cycle) 
ips ( h.c(i), d.c(i+l], u.c(i+l), u.c(i+2), d.cli+2J, 

cycle# reset, time ) 
mux 

mux ( d.c(O), u.c(O], u.c(l), d.c(l), e,c, cycle, 0, time ) 
-- sources, sinks 
so.w ( h.c, a, k, m, cycle, time ) 
so.n ( d.c(O), xi, cycle, time ) 
si.n ( u.c(O), e.c, xo, e, m, (time-cycle), cycle, tim' ) 
fp.so.d( u.c(m+l), time ) 
fp.si.d( d.c(m+l], time ) : 



-- Main 

var float a[mo*mo), xi[mo), xo[mo), e 
var •• k : 
oeq 

get ( m, size of matrix A • ) 
fp.get.n ( a, (Ill • m), • matrix A 
fp.get.n i xi, m, • initial vector 
get ( k, number of iterations ") 
system ( a, xi, m, k, xo, e J 
fp.put( e, • eigenvalue • ) 
fp.put.n( xo, m, • eigenvector • ) 

row-wise " ) . ) 

A.4,9 

Systolic Array for the Matrix Squaring Method. 
Time Expansion. 
A full mmm reusable array is used, with source-sink drivers 
configured for the calculation of a series of Successive 
Matrix Squarings followed by a series of mmm's (usually 1). 
The result of a matrix squaring is scaled over a power of 2. 
area • m••2, where m is the order of the matrix; 
time • (2*m)*(S+p+2)+1, where s,p is the number of squarings 
and mmm•s respectively. 

external 
external 
external 
external 
external 
external 
external 
external 
external 

proc 
proc 
proc 
proc 
proc 
proc 
proc 
proc 
proc 

get ( var v, values() ) : 
fp.get.n ( var float v[), value n, s() ) : 
fp.put;.n. ( value float v(], value n, si l ) 
fp.so.x.t ( chan xout, value float x(), value t(),time 
fp.si.x ( chan xin, var float x(], value time ) : 
fp.so.d ( chan xout, value time ) : 
fp.si.d ( chan xin, value time ) : 
fp.float ( value fix, var float flt 1 : 
ips.r ( chan ein, eout, win, wout, nin, nout, sin, sout, 

value cycle, reset, time ) : 

def mo•lO, so•lO, po•lO, ~o-(((2*mo)*(so+(po+2)))+1), co•(mo+2): 

Multiplexer - scaling Cell. 
Jt adds the source input to the array feedback if fb 
is true; otherwise it accepts the source input. 
The final array input is scaled over a given factor. 

proc mux.s ( chan sin, sout, fin, fout, 
value float scale[), 

value cycle, reset, time ) • 
var float s[2), f(2) : 
var j, fb : 
seq 

-- initialise 
par 

pac i•(O for 2) 
por 

s)l) :• 0.0 
f)l) ,. 0.0 

j ,. 0 
fb ,. 0 

-- main operation 
seq i•(O for time) 

seq 
-- i/o 
par 

sin 7 s(O); fb 
fin 7 f(OI 
sout I s(l} 
fout 1 f(l) 

-- control 
if 

If 

( i \ cycle ) • reset 
j:•(j+l) 

fb • 1 
seq 

tcue 

fill :• ((f)O) + •10)) 1 &cale(j)) 
s(l) :• f(l) 

seq 

"' "' \11 



fill •- s{O) 
s{l) •- (f(OJ 1 scale{j)l ' 

Source for row i of input matrices, north side. 
Operates after an initial delay equal to 1 and every two steps. 
For j•O mpy cycle it sents the ith column of I.Then it sents 
dummy elements; fb is on. 

proc so.n ( ehan nout, 
value i, cycle, time ) • 

var float temp(to] 
var fb(to) 
seq 

-- input vectors 
pa< 

seq 
seq j•(O for time) 

temp(j) •-0.0 
temp(i+(2*i)J ;• 1.0 

seq j•(O for time] 
fb(j) ,_ 1 

-- source 
fp.so.x.t( nout, temp, fb, time ) : 

Source for a row i of input matrices, west side. 
Operates after an initial delay of i and every two steps 
For j•O and s+l,s+2, •• ,s+p mpy cycles it pumps a row of A. 
Otherwise it sends dummy elements; fb is on until s+l mpy. 

proc so.w I chan wout, 
value float a(), 
value i, s, p, m, cycle, time ) • 

var float a.temp(to), temp(to) : 
var fb( to] 
seq 

-- input vectors 
P"' 

seq 
seq j•(O for time] 

temp{j) ,_ 0.0 
seq j•[O for cycle] 

if 
(j,2)-0 

a.temp(j] :• a((i*m)+(j/2)) 
true 

a.temp(j) :• 0.0 
seq j•[O for cycle] 

temp(i+j) :• a.temp(j] 
seq l•((s+ll for p) 

seq 

seq j·{O for cycle) 
temp((i+(l*cycle))+j) :• a.temp[j] 

seq j•(O for time) 
fb{j) ,_ 0 

seq j•{O for (i+((s+l)*cycle))) 
fbljl ,_ 1 

source 
fp.so.x.tl wout, temp, fb, time ) : 

Sink for results on the west side 
Collects the first column of the result in the last two 
mpy cycles. 

proc si.w ( chan rin, 
var float xl(J, x2[), 
value i, m, cycle, time ) • 

var float x.temp(to) ~ 
var delay 1 
seq 

fp.si.x( rin, x.temp, time ) 
delay :• ((time+ 1)- (2 • cycle)) 
xl(i) :• x.temp[delay) 
x2(il :• x.temp(dehyH:yele] 

Array Configuration 
square array of (m*ml IPS cells; west and north side have an 
additional rov of m Mux's; the array is surrounded with 
4m sources - dummy in east and south sides, and 
4m sinks - dummy in east, north and south sides. 
Cycle is the time for one matrix-matrix multiplication. 

proc system (value float a(), scale(), 
value m, s, p, 
var float xl{), x2[) ) • 

chan r.c[mo•co), l.c(mo•co), u.c(mo•co), d.c[mo•co) 
var time, cycle : 
seq 

cycle :• (2 * m) 
time :• (cycle • (s + (p + 2))) + 1 
pa< 

-- ips cells 
par i•(O for m) 

par j•(O for m] 
var di, dj, reset 
seq 

di :• (i • (m+ 2)) + (j + 1) 
dj :• lj * (m+ 2)) + (i + 1) 
reset :• ((cycle+ ((i + j)- 1)) 'cycle) 
lps.r ( l.c(di+l), r.c(di+l), r.c(di), l.c(di), 

d.c{dj), u.c(dj), u.c(dj+l), d.c(dj+lJ, 
cycle, reset, time ) 

-- mux•s 
par i•(O for m) 

var wn, reset 
seq 

wn :- ( i • (at + 2)) 
reset :• ({cycle+ i) 'cycle) 
pa< 

mux.s r.c(wn), l.c(wn), l.c·(wn+l), r.c(wn+l), 
scale, cycle, reset, time ) 

mux.s d.c(wn), u.c(wn), u.c(wn+l), d.c(wn+l), 
scale, cycle, reset, time ) 

sources, sinks 
par 1•(0 for m) 

l'lain 

var wn, es 
seq 

wn :• (i * (m+ 2)) 
es :• wn + (m+ 11 
pa< 

so.n ( d.c(wn), i, cycle, time ) 
so.w I r.c(wn), a, i, s, p, m, cycle, time ) 
si.w ( l.c(wn), xl, x2, i, m, cycle, time ) 
fp.si.d( u.c(wn), time 
fp.so.d( l.c(es), time 
fp.so.d( u.c(es), time 
fp.si.d( r.c(es), time 
fp.si.d( d.c(es), time 

var float a(mo•mo), xl(mo], x2[mo), scale((so+po)+4) 
varm,s,p: 

0\ ..., 
0\ 



seq 
get ( m, • size of matrix A • ) 
fp.get.n a, (m~ m), • matrix A row-wise • ) 
get ('5 1 matrix squaring steps") 
get ( p, multiplication steps ") 
fp.get.n scale, ((s+p)+4), " scaling factors" ) 
system ( a, scale, m, s, p, xl, x2 ) 
fp.put.n( xl, m, result-1 " I 
fp.put.n( x2, m, " result-2 " ) 

A.4.10 

Systolic Array for Matrix Exponential. 
Time Expansion. 
A full mmm reusable array is used, with source-sink drivers 
configured for the calculation of a Matrix Exponential, which is 
analysed to the calculation of a Matrix Polynomial followed by 
a series of Successive Matrix Squarings.These two different 
computations are performed on the same array by changing the 
feedback-multiplexing operations accordingly.The source drivers 
are assumed to have some memory-calculation capabilities. 
area • m••2, where m is the order of the matrix; 
time • (2•m)•'(k+&+2)+n\-lwhere k, are the number of stages for 
the matrix polynomial, and the matrix squaring respectively. 

external pcoc 
external proc 
external pcoc 
external proc 
external proc 
external proc 
external proc 
external proc 
external proc 

external proc 

get ( var v, values[] ) : 
fp.9et .n ( var float v( l, value n, s( l ) : 
fp.put.n (value float v(], value n, s(J ) : 
fp.so.x.t ( chan xOut, value float x(), value t(),time) J 

fp.si.x ( chan xin, var float x(), value time ) : 
fp.so.d ( chan xout, value time I : 
fp.si.d ( chan xin, value time ) : 
fp.float ( value fix, var float flt ) : 
ips.r ( chan ein, eout, win, wout, nin, nout, sin, sout, 

value cycle, reset, time ) 1 
mux.r ( chan sin, sout, fin, fout, 

value time ) : 

def mo•lO, ko•lO, so•lO, to•((2*mo)*((ko+so)+2)), co•(mo+21: 

Source for row i of input matrices, west side. 
Operates after an initial delay equal to i and every two steps. 
For j • O,l, •• k-l,k mpy cycles it sents the ith row of 
(1 1 (k - j)l) • I. Then it sents dummy elements; fb is on. 

proc so.w ( chan wout, 
value i, k, cycle, time I • 

var float temp(tol : 
var fact, loc, pre, post, fb(to) : 
seq 

-- initialise 
par 

seq 
fact :• 1 
seq j·(l fork] 

fact :• (fact ' jl 
loc :• i 
pre :• (2 * i) 
post :• (cycle - pre) 

-- input vectors 
par 

seq 
seq j•(O for time) 

temp{j) :-0.0 
seq j•(O for (k+ll) 

var float ffact : 
seq 

loc :• (lac + pre) 
fp.float ( fact, ffact I 
temp(locl :• (1.0 1 ffactl 
loc :• (loc + post) 
If 

l < k 
fftct :• (fact 1 (k- j)) 



seq j•(O for time) 
fb(j) •• 1 

-- source 
fp.so.x.t( wout, temp, fb, time ) : 

Source for a row i of input matrices, north side. 
Operates after an initial delay of 1 and every two steps 
For j•O,l, ••• ,k-1 mpy cycles it pumps a column of matrix 
(A 1 2**S) into the array. For the kth mpy it sends matrix 
I; from then on dummy elements; fb is on after the kth mpy. 

~roe so.n ( chan nout, 
value float a[), 
value i, k, s, m, cycle, time ) • 

var float a.temp[to], temp(to), div: 
var pre, fb(to) 
seq 

-- ini tial1se 
par 

pre :.. ( 2 * 1 J 
seq 

div :• 1.0 
seq j•(l for s) 

div :• (div * 2.0) 
input vectors 

par 
seq 

seq j•(O for time) 
temp{j) :• 0.0 

seq j•(O for cycle) 
if 

(j '2) - 0 
a.temp[j) :• (a(((j/2)*m)+i) I div) 

true 
a.temp(j) :• 0.0 

seq j•(O for k) 
seq 1•(0 for cycle) 

temp((j•cycle)+(l+ill :• a.temp[l) 
temp((k*cycle)+(pre+il) :• 1.0 

seq 
seq j•[O for time) 

fb(j) •• 1 
seq j•(O for (((k+l)*cycle)+(i-1))) 

fb(j) :• 0 
source 

fp.so.x.t( nout, temp, fb, time I : 

Sink for results on the west side 
Collects results in the last mpy cycle every two steps 

proc si.v ( chan rin, 
var float x[ J, 
value 1, m, cycle, time ) • 

var float x.temp(to) : 
var delay 
seq 

fp.si.x( rin, x.temp, time I 
delay :• ( time- (tycle -1)) - ( (I'I'J-1) -i) 
seq j•{delay for cycle) 

If 
((j -delay)' 2) • 0 

x((i*m)+((j-delay)/21) :• x.temp(j) : 

Array Configuration 
Square array of {m•m) lPS cells; west and north side have an 
additional row of m Mux'&l the array is surrounded with 

4m sources - dummy in east and south sides, and 
4m sinks - dummy in east, north and south sides. 
cycle is the time for one matrix-~atrix multiplication. 

proc system (value float a(], 
value m, k, s, 
var float x() ) • 

chan r.c[mo•co], l.c(mo*co], u.c[mo*co], d.c(mo•co) 
var time, cycle : 
seq 

cycle :• (2 * m) 
time :• (cycle * (k + s + 2)) + (."'-1.1 
po< 

-- ips cells 
par i•IO for m) 

par j•l 0 for m} 
var di, dj, reset 
seq 

di : .. ( i • (m + 2 J ) + ( j + 1) 
dj :• (j • (m+ 2)) + (i + 1) 
reset :- ((cycle+ ((i + jl - 1)) 'cycle) 
ips.r ( l.c(di+l], r.c(di+l), r.c(di), l.c(di), 

d.c(dj), u.c[dj), u.c(dj+l], d.c(dj+l), 
cycle, reset, time ) 

mux•s 
par i•l 0 for m) 

var wn 
seq 

wn :• (i * (m+ 2)) 
po< 

mux.r ( r.c(wn), l.c{wn), l.c{vn+lJ, r.c(wn+l), time 
mux.r ( d.c[wn), u.c(vn), u.c(wn+l), d.c(vn+l), time 

sources, sinks 
par i•IO for m) 

var wn, es 
seq 

wn :• (i * (m+ 2)) 
es :• wn + (m + 1) 
pa< 

so,v ( r.c{wn), i, k, cycle, time ) 
so.n ( d.c{wn), a, i, k, s, m, cycle, time 
si.w ( l.c(wn), x, i, m., cycle, time) 
fp.si.d( u.c[vn), time ) 
fp.so.d( l.c(es), time I 
fp.so.d( u.c(es), time ) 
fp.si.d( r.c{es], time ) 
fp,si.d( d.c(es), time ) 

Main 

var float a{mo*mo), x[to•mo) : 
varm,k,s: 
seq 

get ( m, size of matrix A • ) 
fp.get.n ( a, {m * m), " matrix A 
get ( k, ~ number of Taylor series 
get ( s, ~ scaling-squaring factor 
system ( a, m, k, s, x ) 
fp.put.nl x, (m * m). " result ~ ) 

row-wise 
terms •J . ) 

. ) 

0\ .., 
CO 



A.4.11 

Systolic Pipeline for calculation of matrix polynomial 
p(A) • bO*I + bl*A + b2•A**2 + •• + bs•A**s, where A is 
(n*n) banded matrix of bandwidth w • p + q - 1, p • q, 
and bO, bl, •• , bs given matrices.Horner•s scheme used. 
ips area • 1 +SUM (w * (j"'w- (j-1))), j•0,1,2, •. ,s-l 
total area • s * ((s-l)*w-(s-2))••2, 
time • n + s * {(s-l)*w- (s-2)), 
final bandwidth • s*w- (s-1), 
channel count for result • SUM. (j•w- (j-1)), j•O,l, .. ,s. 
The area in each stage is equal to the max area required; 
only part of it is used and the rest is replaced by delays; 
optimum time • n + w +SUM (j•w- (j-11), j•l,2, .• ,s-1. 

external proc get ( var v, values() ) : 
external proc fp.get.n ( var float v(), value n, s() ) : 
external proc fp.put.n ( value float v( l, value n, s( 1 I : 
external proc fp.so.x ( chan xout, value float x(), value time 
external proc fp.so.d ( chan xout, value time I ; 
external proc fp.si.x ( chan xin, var float x(], value time) : 
external proc fp.si.d ( chan xin, value time ) : 
external proc fp.lk ( chan xin, xout, value time ) ; 
external proc fp.dl ( chan xin, xout, value d, time ) : 
external proc fp.br ( chan xin, xlout, x2out, value time I : 
external proc ips.h ( chan ain, bin, cin, aout, bout, cout, 

value time I : 

def no•lO, so•S, wi•3, wo•l1, co•36, to•(no+(so•wo)) 

Matrix Polynomial Block configuration. 
A hex-connected mmm array produces C • X +A * B, with 
X • bs*l, where s is the stage number.A travels along the 
pipeline and a copy of it branches in each stage.B is the 
result of the previous stage.wa • 2pa-l, win•2pin-l are the 
bandwidths of A, Bl w .. 2p-l is the max bllndwidth allowed 
by the hex-array.A and B are aligned in the center of the 
input channels of the hex-array; similarly only wa+win-1 . 
outputs are significant.Two dummy diagonals for C, one on 
each side, for uniformity.base is used for the mapping 
function of the channels carrying the result. 

proc system ( chan ain{}, cin(), aout(), cout(), 
value float x(J, 
value s, wa, win, w, base, time ) • 

chan al.c{2•wo), a.c{wo•(wo+l)), b.c.(wo•(wo+l)), c.c((wo+l)•(wo+l)) 
par 

-- i/o, branch, delays for A 
par i·(O for wa) 

par 
fp.br ( ain((s•wa)+i), al.c(i), al.c(i+wa), time 
fp.dl ( al.c(i), aout(((s+l)•wa)+i), w, time) 

-- hex-array 
par i•( 0 for w) 

par j•(O for w) 
ips.h ( a.c((i•(w-+l))+j), b.c{(i*w)+j), c.c((i•(w+l))+j), 

a.c( ( i *(w+l) )-+( j+ll), b,c( ( i*w)+(w+j I], 
c.c[(i*(w+l))+(j+(w+2))], time ) 

1/o, input delays for A,B 
var da, din, pa, pin 
seq 

da :• (w - wa) 1 2 
pa :• (wa + 11 I 2 
din t• (w - win) 1 2 

pin :• (win+ 1) I 2 
par i•(O for w) 

par 
If 

If 

(i >• da) and (i < (wa + da)l 
If 

i < (pa + 
fp.dl ( 

do) 
al. et ( i+wal-da l, 
0, time I 

a,c(i*(W+l)), 

true 
fp.dl al.c((i+wa)-da), a.c(i•(w+l)), 

((i-da)-(pa-1)), time I 
true 

fp.so.d a.c(i*(w+l)), time 

(I >• 
If 

I 

din) and (i < (win+ din)) 

< (pin +din) 
fp.dl ( cin(base+(i-din)), b.c(i), 0, time ) 

true 

true 

fp.dl ( cin(base+( i-din) I, b.c( i), 
((i-dinl-(pin-1)), time 

fp.so.d ( b.c(i}, time ) 
fp.si.d ( a.c((i*(w+l))+w), time 
fp.si.d ( b.c((w•w)+i), time I 

i;o for x,c 
var wout, dout : 
seq 

wout :• (wa + win) - 1 
dout :• (((2 "'w) + 1)- wout) I 2 
par 1•(0 for ((2•w)+l)) 

par 
If 

I < V 
fp.so.d c.c{w-i), time ) 

If 

• V 

fp,so.x 
true 

fp.so.d 

i <. dout 
fp.si.d 

i <• w 
fp.lk ( 

1 < (wout 
fp.lk ( 

true 

c.c{w-i), x, time 

c.c((w+l)*(i-w)), time 

c.c(w+(i•(w+l))), tilne 

c.c(w+(i*(w+l))), 
cout((base+win)+(i-dout)), time 
+ dout) 
c.c( ( ( (w+l)*(w+l) )-1 )-( i-w)), 
cout((base+win)+(i-dout)), time 

fp.si.d ( c.c[(((w+l)*(w+l))-1)-(i-w)), time 

Main 

var float a(wi•no], c(wo•to], x(so+l) : 
chan a.c(wi*(so+l)), c.c(wo*so) : 
var n, s, wa, w, we, base, delay, time : 
seq 

-- getdata 
get ( n, • matrix order " ) 
get ( wa, " bandwidth for A : w • 2p - 1 • I 
fp.get.n ( a, (wa*n), "matrix A upper diagonal first • ) 
get ( s, " stages • ) 
fp.get.n ( ~. (s+l), • polynomial coeffs " ) 
bMu~ : .. 0 
,.,.,, 1 ... 1 0 Cor IJ I 



base 1• base+ ((i • wa) - (i- 111 
w :• ((s- 1) * wa)- (s- 2) 
If 

w < wa 
w :• wa 

we :- (s * wa) - (s - 1) 
delay :• {s * w) 
time :• n + delay 
-- driver 
pa< 

-- i/o of matrix A 
par i•(O for wa) 

par 
var float atemp(to) 
seq 

seq j•(O for time) 
atemp[j) :• 0.0 

seq j•(O for n) 
atemp(j) :• a((i•n)+j) 

fp.so.x ( a.c(i), atemp, time 
fp.si.d (a,c((s•wa)+i), time ) 

i/O for C•p(A) 
par 

var float xtemp(to) : 
seq 

seq j•(O for time} 
xtemp(j) :• x{s) 

fp.so.x ( c.c(OJ, xtemp, time ) 
par i•(O for we) 

var float ctemp(to) : 
seq 

fp.si.x ( c.c(base+i), ctemp, time 
seq j•(O for n) 

c[(i*n)+j) :• ctemp(delay+j) 
pipeline of s blocks 

par i•(O for s) 
var float xtemp(to] : 
var win, base : 
seq 

seq j•(O for time) 
xtemp(j) :• x(s-(1+1)) 

base :• 0 
seq j•(O for il 

base :• base+ ((j • wa) - (j - 1)1 
win :• ((i • wal - (1- 1)1 
system ( a.c, c.c, a.c, c.c, 

xtemp, i, wa, win, w, base, time 
putdata 

fp.put.n ( c, (wc•n), w C sequence, upper diagonal first" ) 

"' w 
0 



A.S.l 

Soft-Systolic simulation for an Optical Processor 
performing Matrix-Vector Multiplication ( Ax • y ) 
for a banded (n*n) matrix with band w • p + q - 1, 
using Inner Product. 
computation time • n + w- 1, emitter and modulator 
size • w; detector size • 1. 

i/o routines 
external proc get ( vac v, value s( J ) : 
external proc get.n ( var v(], value n, s(] ) : 
external proc put.n ( value v( ), n, s( I ) : 
-- optical-systolic routines 
external proc emit ( chan datain, dataout, beamout(), 

value start, num, $.iep, time. J1 
external proc 

external proc 

external proc 
external proc 
external proc 
external proc 

modl chan datain, dataout, beaminll,beamoutll 
value stert,. '1"\IA.W'I, -s.te.p, "t.irne 1: • 

shda chan datain, dataout, beamin(), 
value ~art,· tru.m, ~-\ef 1 -t.\111s l: 

driver.em ( chan xout, value x(), time ) : 
outp.em ( chan xin, value time ) : 
inp.shda ( chan xout, value time ) : 
outp.shda ( chan xin, var x(J, value time·) 

-- max matrix size, max band~idth, max time. 
def no • 10, wo • 10, to • (no + wo) 

-- optical processor configuration. 

proc system (vary(), 
value a(}, x{], w, time )• 

-- data communication. 
chan a.c{2*wo], x.c(wo+l), y.c(2), em.c(wo), md.c(wo) 
-- help occam get the types right. 
var temp : 
seq 

temp :• x(O) 
temp :• y(O) 
par 

-- w-pixel emitter for vector x 
par 

driver.em ( x.c(O), x, time 
par i•(O for w) · 

emit ( x.c(i], x.c(i+l), em.c, i, l,~time ) 
outp.em ( x.c(w), time ) 

-- w-pixel modulator for matrix A 
par i•( 0 for w) 

-- diagonal of matrix A 
vat temp.a(to) 
seq 

par j•(O for time) 
temp.a( j I :• a( ( i•time)+j I 

par 
driver.em ( a.c[i], temp.a, time) 
modl ( a.c[i), a.c(i+w], em.c· , md.c,l,J,i,time 
outp.em { a.c(i+w), time ) 

1-pixel shift detector array for result vector y. 
par 

inp.shda ( y.c(O), time ) 
shda ( y.c(OJ, y.c(l], md.c, 0, w,~time ) 
outp.shda ( y,c(l), y, time ) : 

"main program. 
input and output data for calculation Ax .. y. 

var atwo*to), x(to), y(to), 
actual matrix size; bandwidth; time. 

n, w, time 1 

seq 
get ( n, " size of matrix A " ) 
get ( w, " bandwidth of matrix A • ) 
time :• (n + w) - 1 
get.n ( a, (w*time), " matrix A data seq: upper diag first • ) 
get.n ( x, time, " vector x data seq " ) 
system ( y, a, x, w, time ) 
put.n ( y, time, " vector y data seq 

"' w ... 



A.S.:Z 

Soft-Systolic simulation for an Optical Processor 
performing Matrix-vector Multiplication ( Ax - y I 
for a banded (n•n) matrix with band w • p + q - 1, 
using Outer Product. 
Computation time • n + p;. emitter size • 1; modulator 
and detector size • w. 

i/o routines, 
external proc get ( var v, values[) ) : 
external proc get.n ( var v[), value n, s() 
external proc put.n (value v(), n, s(J I : 

-- optical-systolic routines. 
external proc emit ( chan datain, dataout, beamout(), 

value start, num, st·cp, time.l: 
external proc modl 

external proc shda 

chan datain, dataout, beamin[l,beamouttl, 
value $-tart, ru.o~.ttl, step, thtl(t): 
chan datain, dataout, beamin{), 

external 
external 
external 
external 

proc 
proc 
proc 
proc 

value ~tart., h.lo\m~ sl:ep, time); 
driver.em ( chan xout, value x(J, time ) : 
outp,em ( chan xin, value time I : 
inp.shda ( chan xout, value time I : 
outp.shda ( chan xin, var x[), value time I 

-- max matrix size, max bandwidth, max time. 
def no • 10, wo • 10, to • (no + wol 

-- optical pcocessor configuration. 

proc system ( var y[J, 
value a[), x(), w, t;ime )• 

-- data communication. 
chan a.c[:Z*wo), x.c{2), y.c(wo•lJ, em.c(wo), md,c(wo) 
-- help occam get the types right. 
var temp : 
seq 

temp :• x(O) 
temp :• y(OJ 
par 

-- 1-pixel emitte~ fo~ vector x 
par 
d~iver.em I x.c(O), x, time ) 
emit 1 x.c(O), x.c(l), em.c, 0, w,i,time ) 
outp.em I x.c(l), time ) 

-- w-pixel modulator for matrix A 
par i•( 0 for w] 

-- diagonal of matrix A 
var temp.a( to) 
seq 

par j•(O for time) 
temp.a(j) :• a({i*time)+j) 

par 
driver.em I a.c[i), temp,a, time ) 
modl ( a.c(i), a.c(i•w), e111.c , md.c, i

1
1,i,time 

outp.em ( a.c[i+w), time I 
w-pixel shift detector array for result vector y. 

par 
inp.shda ( y.c(O), time 
par i•{O for wJ 

shda I y.c(i), y.c(hl), md.c, i, l,:l,time ) 
outp.shda ( y.c[w), y, time ) : 

main program. 

-- input and output data for calculation Ax • y. 

var a(wo*to), x(to), y(to), 
-- actual matrix size; bandwidth; upper semiband; time. 

n, w, p, time : 
seq 

get ( n, • size of matrix A • ) 
get ( w, • bandwidth of matrix A • ) 
get ( p, • upper semiband of matrix A • ) 
time :• (n + p) 
get.n ( a, (w*time), • matrix A data seq: lowest diag first • I 
get.n ( x, time, • vectoc x data seq • ) 
system ( y, a, x, w, time ) 
put.n ( y, time, • vector y data seq • I 

0\ 
w 

"' 



A.5.3 

Soft-Systolic simulation for an Optical Processor 
performing Matrix-Matrix Multiplication of two banded 
(n*n) matrices A, B with bands w{a) • w(b) • w, 
w • p + q - 1, producin9 matrix C with band w[c) • 
2 * w- 1, p(c) • 2 • p - 1, q[c) • 2 * q - 1 
using Inner Product. 
Computation time • n + p; emitter size • w; modulator 
size • (w * w); detector size • (2 * w- 1). 

1/o routines. 
external proc get ( var v, values(] ) ; 
external proc get.n ( var v[), value n, s() 
external proc put.n (value v(), n, s() ) : 

-- optical-systolic routines. 
external proc emit ( chan datain, dataout, beamout{}, 

external proc 

external proc 

external proc 
external proc 
external proc 
external proc 

value start, num, step, time ) : 
modl eh an data in, da taout, beamin(), beamout I ) , 

value start, num, step, time ) : 
shda chan datain, dataout, beamin(), 

value start; num, step, time ) : 
drlver.em ( chan xout, value x(l. time ) 
outp.cm ( chan xin, vGlue time ) : 
inp.shda ( chan xout, value time ) : 
outp.shda ( chan xin, var x(), value time ) 

-- max matrix size, max bandwidth, max time. 
def no • 10, wo • 10, to • (no + wo) 

-- optical processor configuration. 

proc system ( var c(] 1 

value a[}, b(), w, time )• 
-- data communication. 
chan a.c( 2•wo) 1 b.c(wo•(wo+l) I 1 c.c(2*( (2•wo)-1) ), 

em.c(wo•wo), md.c(wo•wo) : 
-- help occam get the types right. 
var temp, 
-- bandwidth of resulting matrix C 

WC 

••q 
temp :- a{O) 
temp :• b(O) 
temp :• c(O) 
'WC :• ((2 * w) - 11 
par 

-- w-pixel emitter for matrix A 
par i•(O for w] 

-- diagonal of matrix A 
var temp.a[tol 
seq 

par j•(O for time) 
temp.b[j) :• a((i*time)+j) 

par 
driver.em I a.c(i), temp.a, time ) 
emit ( a.e(i), a.c(i+w], em.c, li*w), w, l, time) 
outp.em ( a.c(i+w), time ) 

w•w-pixel modulator for matrix 8 
par i•[O for w) 

-- diagonal of matrix B 
var temp.b(to) 
oeq 

par j•(O for time) 

temp,b[j) :• b[(i-time)+jl 
par 

driver.em ( b.c(i), temp,b, time } 
pu j•( 0 for w] 

modl ( b.c((i*w)+j), b.c((i*w)+(j+w)], em.e, md.c, 
((i*w)+j), 1, 1, time ) 

outp.em ( b.c((w•w)+i), time) 
(2*w-l)-pixel shift detector array for result matrix C 

par 1•(0 for we) 
-- diagonal of matrix C 
var temp.c( to) 
seq 

par 
inp.shda c.c(i), time ) 
if 

I < w 
shda 

true 
shda 

c.c(i), c.c(i+vc), md.c, i, (i+l), (v-1), tial.e) 

c.c(i), c.c(i+'WC) 1 md.c, 
('WC-i), (w-1), time ) 

outp.shda ( c.c(i+vc), temp.c, time 
par j•{O for time] 

c((i*time)+j) :• temp.e(j) : 

( ( i•w)-( (w-1 )*(w-1))), 

main : p-1 cycles delay for the input of A so that 8 reaches 
the appropriate position, 

input and output data for calculation AB • C. 
var a{wo•to), b{wo•to], e(((2•woJ-l)*t0) 1 

-- actual matrix size; bandwidths; upper semiband, time. 
n, w, p, time : 

seq 
get I n, " size of problem " ) 
get I w, " bandwidth of input matrices ") 
get ( p, " upper semibbnd " ) 
time :• (n + p) 
get.n ( a, (w•time), " matrix A data seq " 
get.n I b, (w•time), " matrix B data seq" 
system ( c. a, b, w, time ) 
put.n I e, 1112*w)-l)•time), "matrix C data seq" } 

"' w 
w 



A.5.4 

Soft-Systolic simulation for an Optical Processor 
performing Matrix-Matrix Multiplication of two banded 
(n•n) matrices A, B with bands w(a) • w{b) - w, 
w .. p + q - 1, producing matrix C with band w(c) • 
2 • w- 1, p[c) • 2 • p- 1, q{c) • 2 • q - 1 
using Outer Product. 
Computation time • n + w- 1: emitter size • w; modulator 
size • w; detector size • (w • w). 

i/O routines. 
external proc get ( var v, values(] ) 1 
external proc get.n ( var v(J, value n, s(l 
external proc put.n ( value v( I, n, s( I I : 

-- optical-systolic routines. 
external proc emit ( chan datain, dataout, beamout( ), 

external proc 

external proc 

external proc 
external proc 
external proc 
external proc 

value start, num, step, time ) : 
modl chan datain, dataout, beamin(), beamout(), 

value start, num, step, time I : 
shda chan datain, dataout, beamin(], 

value start, num, step, time I : 
driver.em ( chan xout, value x(], time ) 
outp.em ( chan xin, value time ) : 
inp.ahda ( chan xout, value time ) : 
outp.shda I chan xin, var x(), value time) 

-- max matrix size, max bandwidth, max time. 
def no • 10, vo ~ 10, to • (no • ~o) 

-- optical processor configuration. 

proc system ( var c[], 
value a(), b(], w, time )• 

-- data communication. 
chan a.c(2•wo), b.c(2•wo], c.cl(wo+l)•(wo+l)), 

em.c(wo•wo), md.c(wo•wo) : 
-- h~lp occam get the types right. 
var temp : 
seq 

temp 
temp 
temp 
par 

:• a(O I 
•- biOI 
:• c{O) 

w-pixel emitter for matrix A 
par i•[O for w} 

-- diagonal of matrix A 
var temp.a(to} 
seq 

par j•(O for time) 
temp.a[j) :• a((i•time)+jl 

par 
driver.em I a.c{i], temp.a, time) 
emit ( a.c(i), a.c(i+wJ. e-m.c, (w*i), w, 1 1 time ) 
outp.em ( a.c(i+w), time ) 

w-pixel modulator for matrix B 
par i•(O for w} 

-- diagonal of matrix B 
var temp.b(to) 
seq 

par j•(O for time) 
temp.b(j) :• b{(i•time)+j] 

par 
driver.em ( b.c{i), temp.b, time ) 

modl ( b.c(i), b.c(i+w), em.c, md,c, i, w, w, time 
outp.em ( b.c(i+w), time ) 

w•w-pixel shift detector array for result matrix c 
par 

par i•(O for w) 
par j•IO for wl 

shda ( c.c(((i+l)•(w+1))+j), c.c((i•(w+l))+(j+l)), md.c, 
((i•w)+j), 1, 1, time ) 

par 1•(0 for ((2•w)+1)) 
If 

1 <• w 
inp.shda ( c.c(i•(w+l)), time 

true 
inp.shda ( c.c(i+(w•w)), time 

par 1•[0 for ((2•w)+l)) 
-- diagonal of matrix C 
var temp.c(to) 
seq 

If 
i <• w 

outp.shda ( c.c(i), temp.c, time ) 
true 

outp.shda ( c.c[i+((i-w)•w)), temp.c, time) 
par j•(O for time] 

c((i•time)+j) :• temp.c(j) 

main : two dummy dia9onals for C; the uppermost 
and the lowermost. 

input and output data for calculation AB • c. 
var a(wo•to), b(wo•to), c( ( (2•wo)+l)*to), 
-- actual matrix size; bandwidths; time. 

n, w, time : 
seq 

get ( n, • size of problem • ) 
get ( w, • bandwidth of input matrices ") 
time :• ((n + w) - 1) 
get.n ( a, (w•time), • matrix A data seq • 
get.n ( b, (w•time), • matrix B data seq • 
system ( c, a, b, w, time ) 
put.n I c, (((2•w)+l)•tim~). • matrix C data seq • ) 



A,S.S 

Soft-Systolic simulation for an Optical Processor 
performing Digital Multiplication of two numbers a, b 
with wordlength w, producing a number c with wordlength 
WC • 2 * W- 1, (DMAC algorithm). 
Emitter and modulator size • w; detector size • we. 

i/o routines. 
external proc get ( var v, values() ) : 
external proc get.n ( var v(J, value n, si) ) : 
external proc put.n (value v{), n, s(J ) : 
-- optical-systolic routines, 
external proc emit ( chan datain, dataout, beamout(], 

external proc 

external proc 

external proc 
extern..,! proc 
external proc 
external proc 

value start, num, step, time ) : 
modl chan datain, dataout, beamin{), beamout{), 

value start, num, step, time ) : 
shda chan datain, dataout, beamin(], 

value start, num, step, time ) : 
~river.em ( chan xout, value x(], time ) 
outp.em ( chan xin, value time ) ; 
inp.shda ( chan xout, value time ) ; 
outp.shda ( chan xin, var x{), value time ) 

-- max wordlength, time. 
def wo • 10, to • 2 : 

-- optical processor configuration •. 

proc system ( var c(), 
vlllue a(], b{), v, time )• 

-- data communication. 
chan a.c(2•wo), b.c(2•vo), c.c((vo+l)•(wo+l)), 

em.c{wo•wo), md.c(wo•wo] : 
-- help occam get the types right. 
var temp, 
-- wordlwngth of result number c 

we 
seq 

temp :• a[O] 
temp :• b[OJ 
temp :• c(O) 
we :• ((2 • w) - 11 
par 

-- w-pixel emitter for number a 
par i•(O for w) 

-- one bit of number a 
var temp.a(to] : 
seq 

par j•(O for time) 
temp.a(j) :• a((i•time)+j) 

par 
driver.em ( a.c(i), temp.a, time ) 
emit ( a.c(i], a.c{i+w], em.c, (w•i), w, 1, time ) 
outp.em ( a.c(i+w), time ) 

w-pixel modulator for number b 
par i•[O for w) 

-- one bit of number b 
var temp.b[to) : 
••q 

par j•(O for time) 
temp.b(j) 1• b((i•time)+j) 

par 
driver.em ( b.c(i), temp.b, time ) 
modl ( b.c(i), b.c(i+w), em.c, md.c, l, w, w, time) 

outp.em ( b.e(i+w), time ) 
(2•w-l)-pixel shift detector array for result number e 

par 1•[0 for we) 
-- one bit of number e 
var temp.c(to) 
seq 

par 
inp.shda 
If 

e.c(i), time ) 

l < w 
shda c.c{i], c.c(i+wc), md.c, i, (1+1), (w;:1), time ) 

Main 

true 
shda c.c{i], c.c(i+we), md.c, 

(wc-i), (w-1), time ) 
outp.shda ( c.c(i+wc), temp.c, time 

par j•[O for time) 
e((i•time)+j) :• temp.e(j) : 

input and output data for calculation ab • c 
var a(wo•to), b(wo•to), e(((2•wo)-1)•to), 
-- actual wordlength 

w ' ••q get ( w, "wordlength of input numbers ") 

(I i*w)-( (w-1)*(w-1))), 

get.n ( a, (w•to), " number a bit seq " ) 
get.n ( b, (w•to), "number b bit seq" ) 
system ( c, a, b, w, to ) 
put.n ( c, (((2•w)-1)•to), " number c bit seq " ) "' w 

U1 



A.6.1 

Soft-Systolic Simulation Library 

external proc str.to.screen(value s[J): 
external proc num.to.screen(value n): 
external proc num.from.keyboard(var n): 
external proc fp.num.to.screen(value float n): 
external proc fp.num.from.keyboard(var float n): 

-- Get/Put fixed-/floating-point scalars;vectocs from/to the screen 
-- get put fp n 

library proc fp.get(var float v,value s(J)• 
seq 

str.to.screen("•c •n Input ") 
str.to.screen(&) 
fp,num.from.keyboard{v) 
fp.num.to.screen(v) : 

library pcoc fp.9et.n(var float v{),value n, s( ))• 
seq 

str.to.sereen("*c •n Input stream ") 
str.to.screen(s) 
seq 1•(0 for n) 

seq 
fp.num.from.keyboard(v(i]) 
fp.num.to.screen(v(i)) 
str.to.screen(" ") : 

library proc get(var v,value sfJI• 
aeq 

str.to.screen("*c •n Input ") 
str.to.screen(s) 
num.from.keyboard(v) 
num.to.screen(v) : 

library proc get.n(var v(),value n, sill• 
&eq 

str.to.screen("'c •n Input stream ") 
str.to.screen(s) 
seq i·(O for n) 

seq 
num.from.keyboard(v[i)) 
num.to.screen(v(i]) 
str.to.screen(" ") 

library proc fp.put {value float v,value s())• 
••• str.to,screen{"*c •n Output • ) 

str.to.screen(s) 
fp.num.to.screen(v) : 

library proc fp.put.n (value float v(),value n, s())• 
seq 

str.to.screent••c •n Output stream " ) 
str.to.scceen(s) 
seq i•(O for n) 

seq 
fp.num.to.screen(v(i)) 
str.to.screent• •J : 

library proc put (value v,s(})• 
seq 

str.to.screen("•c •n oUtput • ) 
str.to.screen(s) 
num.to.screen(v) z 

library proc put.n (value v[),n,slll• 
seq 

str.to.screen(••c 'n Output stream • ) 
str,to.screen(s) 
seq i•(O for n) 

seq 
num.to.screen(v[i]) 
str.to.scceen(" ") : 

Source/Sink of fixed-/floating-point 
so si fp 

vectors of dummy/significant 

elements with/without tag 
t 

library proc so.x (chan xout, value x(), time) • 
seq t•(O for time] 

xout I x(t) : 

d • 

library proc fp.so.x (chan xout, value float x(], value time) • 
seq t•(O for time) 

xout t x(t) : 

library proc so.d (chan xout, value time) • 
seq t•(O for time) 

xout 1 0 : 

library proc fp.so.d (chan xout, value time) • 
seq t•(O for time) 

xout 1 0,0 : 

library proc si.x (chan xin, var x(), value time) • 
seq t•IO for time) 

xin 1 x[t] : 

library proc fp.si.x (chan xin, var float x(), value time) • 
seq t•(O for time) 

xin 7 x(t] : 

library proc si.d (chan xin, value time) -
seq t•(O for time] 

xin ? any : 

library proc fp.si.d (chan xin, value time) • 
seq t•(O for time] 

xin ? any : 

library proc &o.x,t (chan xout, value x( ], tag(), time) • 
seq t•(O for time) 

xout 1 x(t]J tag(t] : 

library proc fp.so.x.t (chan xout, value float x(], value tag{], time) • 
seq t•[O for time) 

xout 1 x(t]; tag{t) : 

library proc so.d.t (chan xout, value time) • 
seq t•(O for time) 

xout 1 0; 0 : 

library proc fp.so.d.t (chan xout, value time) • 
seq t•(O for time) 

xout 1 O.o, 0 : 

0\ 
w 
0\ 



library proC sio~ t (chan xin, var x(J, tag(), value time) .. 
seq .t•(O for time) 

xln 7 x(t)l tag(t) 

library proc fp.si.x.t (chan xin, var float x(), var tag(), value time) • 
seq t•[O for time) 

xin 7 x(t); tag{tl 

library proc si.d.t (chan xin, value time) .. 
var r(2) : 
seq t•{O for time) 

xln 7 r(O]; r(l) : 

library proc fp.si.d.t (chan xin, value time) • 
var float r : 
var s : 
seq t•(O for time) 

xln 7 r; s : 

-- Fixed-/Floating-point conversions 

library proc fp.float (value fix, var float flt) • 
seq 

flt :• fix 1 

library proc fp.fix (value float flt, var fix) .. 
seq 

fix :• flt : 

-- Delay/ for fixed-/floating-point variables with/without tag 
-- d1 fp t 

def do • 20 : 
library proc dl (chan xin, xout, 

value d, time )• 
var x(do) : 
seq 

par i•(O for (d+l)) 
x( 1 I :• 0 

seq i•(O for time) 
seq 

oeq 
xin 1 x{O) 
xout 1 x(d) 

seq j•(O for d) 
x(d-j) '" x( (d-j )-1) 

library proc fp.dl (chan xin, xout, 
value d, time )• 

var float x(do) : 
seq 

par i•(O for (d+l)J 
x(l] :• 0.0 

seq i•[O for time) 
seq 

seq 
xin 7 x(O) 
xout 1 x(d] 

seq j•(O for d) 
x(d-j) '" x((d-j)-1) 

library proc 

var x(do), 
seq 

par i•IO 

dl.t (chan xin, 
value d, 

t(do) ' 

for (d+l)) 

xout, 
time )• 

par 
x(l.( ,. 0 
t(l( ,_ 0 

seq 1•(0 for time) 
seq 

seq 
xin 7 x{O}; t[O) 
xout 1 x(d); t(d) 

seq j·[O for d) 
par 

x(d-j l '" x( (d-j )-1 l 
t(d-j) ,_ t((d-j)-1) ' 

library proc fp.dl.t (chan xin, xout, 
value d, time )• 

var float x(do) : 
var t(do) 1 

seq 
par i•(O for (d+l)) 

par 
X( i) :• 0. 0 
t(l) ,_ 0 

seq i•(O for time] 
seq 

seq 
xin 7 x(O); t[O] 
xout l x(d]; t(d) 

seq j•(O for d) 
par 

x(d-j) '" x((d-j)-1) 
t(d-j] ·- t((d-j)-1] 

Branching for fixed-/floating-point variables with/without tag 
br fp t 

library proc br (chan xin, xoutl, xout2, 
value time) • 

var x 
seq 

X :• 0 
seq i•(O for time] 

soq 
xin 1 x 
par 

xoutl I x 
xout2 I x 1 

library proc fp.br (chan xin, xoutl. xout2, 
value time) • 

var float x : 
seq 

X :• 0.0 
seq i•(O for time) 

seq 
xin ? x 
par 

xoutl x 
xout2 x 

library proc br.t (chan xin, xoutl, xout2, 
value time) • 

va r x, t 
seq 

par 
X :• 0 
t :• 0 

"' w 
..... 



seq i•(O for time} 
seq 

xin 1 x: t 
par 

xoutl I x; t 
xout2 1 x; t 

library proc fp.br.t (chan xin, xoutl, xout2, 
value time) • 

vac float x : 
var: t 
seq 

par 
X :• 0.0 
t :• 0 

seq i•[O for time] 
seq 

xin 1 x; t 
par 

xoutl I XI t 
xout2 1 XI t 1 

Links for fixed-/floating-point variables with/Without tag 
lk fp t 

library proc lk (chan xin, xout, value time) • 
vac x 
seq 

X :• 0 
seq t•(O for time] 

seq 
xin 7 x 
xout I x 

library proe fp.lk (ehan xin, xout, value time) • 
vac float x : 
seq 

X :• 0,0 
seq t•[O for time] 

seq 
xin 1 x 
xout 1 x 

library proc lk.t (chan xin, xout, value time) • 
vac x, tag 
seq 

par 
X :• 0.0 
tag :• 0 

seq t•(O for time) 
seq 

xin 7 x; tag 
xout 1 x; tag : 

library proc fp.lk.t (chan xin, xout, value time) -
vac float x : 
vac tag 
seq 

par 
X :• 0.0 
tag :• 0 

seq t•IO for time) 
seq 

xin 1 x; tag 
xout 1 x; tag 

-- Inner Product Step cell for a Linear array 

library proc ips.l (chan cin, xin, yin, xout, yout, 
value time)• 

var float c, x(2), y{2) 
seq 

-- initialisation 
par 

c :- 0.0 
par i·(O for 2) 

par 
x[l] :• 0.0 
y[l] :•0.0 

main operation 
seq i•(O for time) 

seq 
-- i/0 
par 

cin 7 c 
xin ? x(OJ 
yin 7 y(OJ 
xout 1 x(l) 
yout l y[l] 

-- calculation 
par 

x[l) :• x{O) 
y(l] :• y(O) + (x(O) * c) : 

Inner Product Step Cell for the Hex-connected array 

library proc ips.h ( chan ain, bin, cin, aou_t, bout, cout,. 
value time ) • 

vac float a(2], b(2], c(2] : 
seq 

-- initialise 
par i•[O for 2] 

par 
alii :• 0.0 
b(ll ·- o.o 
c(i] :• 0.0 

main operation 
seq i•(O for time] 

seq 
-- 1/o 
par 

ain 7 a(OJ 
bin 1 biOI 
cin 7 c[O) 
aout 1 all) 
bout 1 b(l) 
cout I c(l) 

-- calculation 
pa< 

c(l) :• c(O] + (a(O] * b[O]) 
a(l] :• a[OJ 
bill :• biOI 

Building Blocks for the reusable matrix multiplication array 

Inner Product Step Cell : Multiply ~Accumulate 
When the last accumulation occurs the result is sent as feedback 
and the accumulator is reset for next cycle of calculations. 

library proc ips.r ( chan ein, eout, win, wout, nin, nout, sin, scut, 
value cycle, reset, time ) .. 

var float e(2J, w[2], n[2J, s[2), ace : 

"' w 
0) 



••q 
initialise 

seq 
par i•(O for 2) 

par 
et i] :• 0.0 
w[ll :• 0.0 
n[IJ :• 0.0 
s[i) :• 0.0 

ace :• 0.0 
-- main operation 
seq i•(O for time) 

seq 
-- i/0 
par 

ein? e(O] 
win ? w{ 0] 
nin 1 n(O) 
sin 1 s[O) 
eout 1 e(l) 
wout I w[ 1 I 
nout I n(l) 
sout t s(l) 

-- calculation 
par 

ace :• ace+ ( w{O] ' n[O) ) 
e[l) 1• w(O] 
.,..(1) :• e( 0 I 
n[l) :• s(OJ 
s(l I :• n(O) 

-- control 
If 

( i ' cycle ) • reset 
seq 

par 
w( 1] :• ace 
n{l) :• ace 

ace :• 0.0 : 

Multiplexer 
It adds the source input to the array feedback if fb 
is true; otherwise it accepts the source ~nput. 

1: 

library proc mux.r ( chan sin, sout, fin, fout, 
value time ) • 

var float s[2], f{2) : 
var fb : 
seq 

-- initialise 
par 

par i•(O for 2) 
par 

s(i} :• 0.0 
f(i) :- 0.0 

fb :- 0 
-- main operation 
seq 1•(0 for time) 

seq 
-- i/o 
par 

sin ? s(OJ; fb 
fin 1 f[O] 
sout 1 s(l) 
fout 1 f(ll 

-- control 
par 

If 
fb .. 1 

fill :• lflOJ + s[OJJ 
true 

f[l) :• s[OJ 
s[l] ·:• f[OJ : 



A.6.2 

Soft-systolic simulation library of optical 
systolic algorithms. 

Definition of a pixel of an emitter : a beam with 
intensity proportional to the input data item is 
emitted towards· the modulators as specified by the 
topology of the Optical Procesor.The data item moves 
systolically to the next pixel. 

library proc emit 

var data(2) : 

chan datain, dataout, beamout(), 
value start, num, step, time ) -

seq 
-- initialisation 
par i•[O for 2) 

data(!] :• 0 
-- main operation 
seq i•(O for time) 

seq 
par 

datain ? data[O) 
dataout 1 data(l) 

par 
par j•(O for num) 

beamout(start+(j•step)) I data(l) 
data(l) :• data(O) : 

Definition of a pixel of a modulator : a beam from an 
emitter is modulated in proportion to the input data item 
i.e a multiplication occurs.The data item moves 
systolically to the next pixel. 

library proc modl I chan datain, dataout, beamin(), beamout(1, 
value start, num, step, time ) • 

-- max number of incident beams 
def bo - 10 : 
var data[2), beam(bo) 
seq 

-- initialisation 
par 

par i•{O for 2) 
data[i) :• 0 

par i•(O for num] 
beam( i J :• 0 

-- main operation 
seq i•(O for time) 

seq 
par 

· datain 1 data(O] 
dataout l data(l) 
par j•(O for num) 

beamin(start+(j•step)) 1 beam(j) 
par j•[O for num] 

beam(j) :• (data(O] • beam(j) ) 
par 

par j•(O for num] 
beamout(start+(j•step)) l beam(j) 

data( 1] :• data( 01 ; 

Definition of a pixel of a (shift) detector array : the 
incident light beams are transformed to electic charges 
and accumulated onto a *bin• ; i.e two additions occur ; 
one of the incident beams and one of the accumulated charges. 

-- The result moves systolically to the next plxel. 

library proc shda ( chan datain, dataout, beamin(), 
value start, num, step, time )• 

-- max number of incident beams. 
def bo • 10 : 
var data(2), sum, beam(bo) 
seq 

-- initialisation 
par 

par i•(O for 21 
data(!) :• 0 

par i•(O for num] 
beam( i 1 :• 0 

-- main operation 
seq i•(O for time] 

seq 
par 

datain ? data(OJ 
dataout l data(l) 
par j·(O for num] 

beamin(start+(j•step)] ? beam(jl 
sum :• 0 
par j•(O for num] 

sum :• sum+ beam(j) 
data(!) :• (data(O) +sum) 

Driver for emitter, modulator. 

library proc driver.em 

seq i•(O for time] 
xout l x(i) 

chan xout, 
value x(), time )• 

-- Dummy output for emitter, modulator. 

library proc outp.em 

seq i·(O for time) 
xin 1 any : 

chan xin, 
value time )• 

Input for (shift) detector array. 

library proc inp.shda 

seq i•(O for time) 
xout 1 0 

chan xout, 
value time )• 

-- Output of a (shift) detector array. 

library proc outp.shda 

seq i•(O for time] 
xin 1 x(i) 

chan xin, 
var x(], 
value time )• 






