

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

' !

' '

I

\

,., '

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY
AUTHOR/FILING TITLE

1---------- __ 1':1_1\ ~-':1\R-JIL~_.. ___ \i_ ~-------- __ i
j i
. . .i

' ' ;-------------.----.... -- ... ------- -,... --- --..,..--- ------,... I

! ACCESSION/COPY NO, !

I C(b~~ /0 '2- . '• i

r.-"7--------------- ---- ~! ---~ ... ,..---.~ ... -,..,. ""' ! l VOL, NO, CLASS MARK
.;

i 6 JUL 1990
. l- 6 J l:ft" 1!:1~11

00! 6643 02

Willllmllllil~l~~~~mmllm~mlmlr

'

-~- ~--~--------------

A STUDY

0 F S Y S T 0 L I C A L G 0 R I T H M S

FOR VLSI P R 0 C E S S 0 R A.R RAYS

AND 0 P T I C A L COMPUTING

By

K.G.Margaritis, Dipl.Eng., M.Sc.

V 0 L U M E I

A Doctoral Thesis
Submitted in partial fulfilment of the requirements

for the Award of Doctor of Philosophy
of the Loughborough Univerity of Technology

October, 1987.

Supervisor: Professor D.J. Evans, D.Sc., F.I.M.A., F.B.C.S.

(§) by K.G.Margaritis, 1987.

~""~~· ur.lv...., ., T ;;cl~;·L·.:~: ~)-:-,} '- t.~
---~-· . . a- _.tlii:-!-1&

CJa<• ,_, o r b&~:) /v t.-Ne. {

To my parents,

Popi and Giorgos Margaritis.

t~ovs yovt\S pov,

nonn K~\ r1wpyo M~pyap1~n.

·"•••W•--~ :.:.•,

.... ~- :. ··~' ..

__ .. _,.. .. :·:.":{
lt':·; r

..................... · . .:·

A C K N 0 W L E D G E M E N T S

I wish to express my appreciation and gratitude to Prof.

D.J.Evans, supervisor of this study, for giving me the

opportunity to carry out this work, in the first place; and

subsequently for his unfailing guidance, continuous help and

inspiring enthusiasm in all the phases of this research;

finally, for his invaluable advice and infinite patience

during the writing of this thesis.

I also wish to thank:

The State Scholarship Foundation of Greece, whose finan­

cial support made the carrying out of this research pos­

sible.

Dr. M.P.Bekakos, Dr. G.M.Megson and Mr. R.P.Stallard,

for their co-operation, support and constructive criti­

cism in the subjects of systolic algorithms and OCCAM

programming.

Mrs. J.Poulton for her professional and artistic work in

typing countless reports, papers, diagrams and tables.

- ii -

My parents, deserve more than thanks, for their immense

understanding, their invaluable moral and material support

and all the sacrifices they have had to undergo for me all

· these years.

To my dearest wife and love, I wish to praise more than can

be expressed: she has been a faithful, patient, supportive

and inspiring companion in all the difficulties of these

years of postgraduate studies; and she has devoted long and

tiresome hours in helping me to type and design this

thesis.

A STUDY OF SYSTOLIC ALGORITHMS FOR VLSI PROCESSOR ARRAYS AND
OPTICAL COMPUTING

By K.G. Margaritis

ABSTRACT

This thesis presents some new. systolic algorithms for
numerical computation, that are suitable for implementation
on VLSI processor arrays or optical processors.

Chapter 1 is an introduction to the environment for the
development of the systolic approach, followed by an over­
view of major research areas in systolic systems. Chapter 2
contains basic mathematical definitions and a brief intro­
duction to specific areas of numerical analysis. Chapter 3
starts with some basic definitions and terminology for sys­
tolic computing; then fundamental systolic algorithms are
described. Following is a review of some transformation
techniques and an introduction to systolic 'programming and
soft-systolic simulation. Finally, systolic and optical com­
puting are combined, and a framework for developing systolic
algorithms is outlined.

Chapter 4 investigates systolic algorithms for the
solution of polynomial equations, and the systolic calcula­
tion of the roots of the characteristic equation of certain
matrices. Chapter 5 presents systolic algorithms for the
efficient solution and the ·updating of the solution of
linear systems of equations, using LU decomposition.
Chapter 6 develops the concept of pipelining systolic
a7rays~ as well as the combination of area and time expan­
Slon, 1n iterative solution of linear systems of equations,
based on series of systolic matrix-vector multiplications.
Chapter 7 further develops the idea of expanding iterative
systolic algorithms in area and/or in time. The systolic
implementation of successive matrix-matrix multiplications
is discussed and then a group of algorithms based on matrix
powering is studied. Chapter 8 presents some optical sys­
tolic algorithms. The direct mapping of VLSI systolic algo­
rithms on optical processors is discussed, and then, the
Outer Product processor is used for the optical systolic
implementation of basic matrix computations.

Chapter 9 completes this thesis with some general con­
clusions, and suggestions for further research. A comprehen­
sive list of references is also given, and an Appendix on
the OCCAM programming language, and programs simulating some
of the systolic designs presented.

KEYWORDS: parallel processing, systolic algorithms, VLSI
processor arrays, optical computing, polynomial
equations, linear systems of equations, matrix
eigen-problem solution, matrix functions.

A STUDY

0 F S Y S T 0 L I C A L G 0 R I T H M S

F 0 R V L S I PROCESSOR ARRAYS

AND OPTICAL C 0 M P U T I N G

A B S T R A C T

This thesis presents some new systolic algorithms for

numerical computation, under the framework of being suitable

for implementation on to VLSI processor arrays or optical

processors.

Chapter 1 gives an introduction to the environment and

background for the development of the systolic approach,

followed by an overview of the major research areas in sys­

tolic systems; finally the thesis organization is described.

Chapter 2 contains basic mathematical definitions and a

brief introduction to specific areas of numerical analysis;

further, the algorithms used in subsequent chapters. are

briefly discussed.

Chapter 3 starts with an example, through which basic

definitions and terminology in systolic computing are intro-

- iv -

duced; then some fundamental systolic algorithms are

described. Following is a review of some techniques for

deriving and/or modifying systolic systems; further the con­

cepts of systolic programming, simulation, and the soft­

systolic paradigm are introduced. Finally, the combination

of systolic and optical computing is discussed and a frame­

work for developing systolic algorithms is outlined.

Chapter 4 investigates the systolic implementation of

algorithms for the solution of polynomial equations. First,

the derivation and operation of the systolic designs for two

traditional methods are discussed in detail; then the sys­

tolic calculation of the roots of the characteristic equa­

tion of a symmetric tridiagonal matrix is described, as well

as some other aspects of the systolic computation of certain

types of characteristic equations. Finally, a general ring

architecture, for the iterative solution of polynomial equa­

tions is proposed.

Chapter 5 presents systolic algorithms for the effi­

cient solution of linear systems of equations, using LU

decomposition. Initially, the efficiency of the basic algo­

rithm is improved using mathematical techniques; then the

problem of updating LU factors is discussed, in the context

of Linear Programming. Further, the LU decomposition with

partial pivoting is used for the systolic calculation of the

eigenvectors of a symmetric tridiagonal matrix.

Chapter 6 develops the concept of pipelining systolic

- V -

arrays, as well as the combination of area and time expan­

sion, in iterative systolic algorithms based on matrix­

vector multiplications. Firstly, an improved systolic design

for matrix-vector multiplication is presented; then, area

and/or time efficient pipelines for the iterative solution

of line.ar systems are described. Further, pipe lined struc­

tures for cyclic reduction and multi-coloring techniques are

investigated. Finally, an alternative matrix-vector multi­

plication design for area expansion applications is dis­

cussed.

Chapter 7 further develops the idea of expanding itera­

tive systolic algorithms in area and/or in time. Initially

the systolic implementation of successive matrix-matrix mul­

tiplications is discussed, and then a group of algorithms

based on matrix powering is studied. Thus, the basic itera­

tive methods of chapter 6 are modified, and three closely

related methods solving the matrix eigenproblem are investi­

gated. Further, systolic matrix polynomial computations are

implemented, as well as the approximation of matrix func­

tions.

Chapter 8 presents some. optical systolic algorithms.

Firstly, the direct mapping of VLSI systolic algorithms on

optical processors is discussed, and the optical implementa­

tion of fundamental systolic algorithms is presented. Then,

the Outer Product processor is introduced and modified for

banded matrix computations; further, the same processor is

- vi -

used for a series of optical systolic algorithms, based on

the Gauss Elimination process.

Chapter 9 completes this thesis with some general con­

clusions, and suggestions for further research. A comprehen­

sive list of references is also given, and an Appendix on

OCCAM programming language, and programs simulating some of

the systolic designs presented.

C 0 N T E N T S

V 0 L U M E I

Page

ACKNOWLEDGEMENTS • i

ABSTRACT

CONTENTS

LIST OF

LIST OF

LIST OF

...

...
FIGURES .•.•..•••.•...••.•.••.••......••••••••

TABLES •••..•.....••••••........•.••.•.••••..•

PROGRAMS ••••••••••••••••••••••..••.••••••••••

CHAPTER 1

INTRODUCTION

iii

vii

xiii

XX

xxi

1.1 ENVIRONMENT FOR DEVELOPMENT OF SYSTOLIC APPROACH • 1

1.2 REVIEW OF SYSTOLIC SYSTEMS RESEARCH.............. 15

1.3 ORGANIZATION OF THE THESIS 26

C H A P T E R 2

BASIC MATHEMATICAL DEFINITIONS

2.1 POLYNOMIAL EQUATIONS • , , , , , , , , , , •.. , , , , ... , , , , • • • • • 32

2.1.1 Solution of polynomial equations ·········'· 37

2.2 MATRICES • . • . . • . •• . . • • •• • . • • • . . • • . . • • • • • • • . • • • 44

2.2.1 Eigenvalues and eigenvectors •..•.•. , , , • • • . • 51

2.2.2 Matrix and vector norms.................... 53

- viii-

2.2.3 Matrix functions•..•.•....•..••.• 55

2. 3 LINEAR SYSTEMS OF EQUATIONS • . • • . . • • • . • . • . . • • . • • . • 59

2. 3.1 Dire et methods . 60

2.3.2 Iterative methods.......................... 67

2. 4 MATRIX EIGENVALUE PROBLEM . • • . . • • • • • • • . • • • • • . • 77

2. 4.1 The Power method • • • • • • • • • • • . • • . • . • • . • • • 77

2.4.2 Characteristic polynomial methods ..••••••.• 80

2.4.3 Inverse iteration.......................... 83

2 • 5 MISCELLANEOUS ITEMS • . • . . . • • • • • • . • . • . • • • . . . • • • 8 5

2.5.1 The Simplex method......................... 85

2.5.2 Differential equations ••••..•••••••.••••••• 87

CHAPTER 3

SYSTOLIC ALGORITHMS AND ARCHITECTURES

3.1 BASIC DEFINITIONS AND TERMINOLOGY •••••••••••••••• 95

3.1.1 A simple example . • . • • • • • • • . . • • . . . •• • . • • . • • • 95

3.1.2 Measures and characteristics of systolic
systems . . • . • • • • • . . • • • • • • • • . . • . . . • • • • • • • 104

3.1.3 Fra.mework for systolic algorithms for VLSI • 110

3.2 SOME BASIC SYSTOLIC ALGORITHMS ••••••••••••••••••• 113

3.2.1 Systolic matrix-vector multiplication

3.2.2 Systolic matrix-matrix multiplication

......

......
114

120

3.2.3 Systolic solution of linear systems •.••..•• 125

3.3 TRANSFORMATION TECHNIQUES.;...................... 137

3.3.1 Retiming method............................ 137

3.3.2 Cut Theorem 143
..

3.3.3 Area-Time expansion........................ 150

3. 3. 4 Rotate and Fold (R+F) method . • • • . • . . • . . 156

- ix--

3.4 SYSTOLIC PROGRAMMING AND SIMULATION,,,,,,,,,,,,,, 167

3.4.1 The Warp machine............................ 169

3.4.2 The wavefront Array Processor (WAP) •••••••• 172

3.4.3 The INMOS Transputer 176

3.4.4 The Soft-systolic approach................. 179

3.4.5 Soft-systolic simulation using OCCAM •...••. 183

3.5 OPTICAL COMPUTING AND SYSTOLIC ARCHITECTURES ••... 191

3. 5.1 Optical signal transmission 194

3. 5. 2 Optical systolic architectures • 197

3.5.3 A general framework for systolic algorithms. 207

C H A P T E R 4

SYSTOLIC SOLUTION OF POLYNOMIAL EQUATIONS

4.1 INTRODUCTION 211

4.2 SYSTOLIC DESIGNS FOR BERNOULLI'S METHOD.......... 214

4.2.1 Systolic design derivation 216

4.2.2 Implementation details•.•...•. 221

4.3 SYSTOLIC DESIGNS FOR THE ROOT-SQUARING METHOD •••. 227

4.3.1 Systolic design derivation 229

4.3.2 Implementation details 235

4.4 SYSTOLIC DESIGN FOR THE CALCULATION OF THE EIGEN-
VALUES OF A SYMMETRIC TRIDIAGONAL MATRIX ...•••... 242

4.4.1 Sturm sequence pipeline .•..•....•••.....••• 245

4.4.2 Systolic elgenvalue solver ••...•.•.•.•••.• ; 248

4.5 CONCLUSIONS ..• •• • . . . •• •. . • • . . . • . . . • •......••••.•• 253

4.5.1 Iterative methods.......................... 253

4.5.2 Characteristic polynomial computation...... 254

- X -

C H A P T E R 5

SYSTOLIC LU DECOMPOSITION

5 .1 INTRODUCTION , , , •• , , • , , , , . , .• , . , , , , , . , , .. , • , , , , , , , 2 56

5.2 THE R+F METHOD ON SYSTOLIC BLOCK LU DECOMPOSITION 260

5.2.1 Block R+F LU decomposition 265

5.2.2 Systolic implementation of block R+F LU
decomposition . 272

5,3 SYSTOLIC LU FACTORISATION FOR SIMPLEX UPDATES ,,,, 289

5.3.1 LU updating method......................... 292

5.3.2 Systolic LU modification • 295

5.4 SYSTOLIC DESIGNS FOR THE CALCULATION OF THE EIGEN-
VECTORS OF A SYMMETRIC TRIDIAGONAL MATRIX........ 305

5.4.1 Systolic design............................ 308

5.5 CONCLUSIONS , • , .•••••.•..••.•••••.... , .•. , . • • • • • • • 313

VOLUME II

ABSTRACT i

CONTENTS V

LIST OF FIGURES , ..••• , .•.•.••••.•.• , .•• , • , .•• , ••••••• xi

LIST OF TABLES • , •• , , , •••••••• , • , •• , •••• , •••• , • , , •• , •• xviii

LIST OF PROGRAMS •••••••• , •• , •• , •••••••••••••.••••• , , • , xix

C H A P T E R 6

SYSTOLIC MATRIX VECTOR MULTIPLICATION PIPELINES

6.1 INTRODUCTION ...•.•... , •...•.•..•••.•..•.•.• , • • • • • 315

6.2 IMPROVED SYSTOLIC MATRIX VECTOR MULTIPLICATION ••• 318

6.2.1 Systolic array derivation 320

- xi -

6.3 IMPROVED SYSTOLIC DESIGNS FOR THE ITERATIVE SOLUT-
ION OF LINEAR SYSTEMS .•.•.•.•••• , • , • • • • • • • . • • • . • • 328

6.3.1 Improved iterative systolic designs........ 329

6.3.2 Unidirectional mvm array for J,JOR methods 339

6.4 SYSTOLIC NETWORKS FOR ITERATIVE METHODS USING
CYCLIC REDUCTION • • • • • • • . • . • • • • • • • • • • • • • • • • . • • • • • • 346

6.4.1 Systolic designs•.......... ~... 352

6.5 P-CYCLIC MATRICES AND MULTI-COLORING TECHNIQUES •• 360

6.5.1 P-cyclic matrices.......................... 360

6.5.2 Multi-coloring techniques.................. 370

6. 6 CONCLUSIONS .•.•..•..........•..•.•..• , , , .•.• , . • • . 378

C H A P T E R 7

SYSTOLIC ALGORITHMS USING MATRIX POWERS

7.1 INTRODUCTION ·····················•••••••••••••••• 385

7.2 SYSTOLIC DESIGNS FOR SUCCESSIVE MATRIX SQUARING .. 389

7.2.1 Systolic pipeline designs 389

7.2.2 Systolic iterative designs .•..•.••. ..••. ... 398

7.3 SYSTOLIC ITERATIVE SOLUTIONS OF LINEAR SYSTEMS
USING MATRIX POWERS • • . • • • • • • • • • • • • . • • • • • • • • • • • • • • 404

7. 3.1 systolic designs • • . . . • • • • • . • . • • • • • • . . • . • • • • 406

7.4 SYSTOLIC DESIGNS FOR EIGENVALUE-EIGENVECTOR COMPU-
TATION USING MATRIX POWERS . • • . . • • • . • • . • . • • . • • • • • • 412

7.4.1 systolic design considerations•••..••. 415

7.4.2 Systolic designs........................... 417

7.5 SYSTOLIC COMPUTATION OF THE EXPONENTIAL OF A
MATRIX • • • • • • • • • • • • • • • . • . • 425

7.5.1 Systolic designs........................... 426

7. 6 CONCLUSIONS • • . • • . • • • . • • • . . • . . . • • • • • • . . • • • • 436

7.6.1 Systolic inversion using matrix powers .•••• 437

7.6.2 systolic computation of matrix functions .•• 439

- xii -

C H A P T E R 8

OPTICAL SYSTOLIC ALGORITHMS

8.1 INTRODUCTION , •• , • • • • 442

8.2 OPTICAL SYSTOLIC BANDED MATRIX MULTIPLICATION.... 446

8.2.1 Mapping of a R+F algorithm on an optical
p·rocessor . 446

8.2.2 Mapping of the unidirectional mmm array on
an optical processor 453

8.3 OPTICAL SYSTOLIC LU DECOMPOSITION AND SOLUTION OF
TRIANGULAR SYSTEMS • • • • • • • • • • . . • • • • • . . • • • • • • • • • • • • 456

8.3.1 Optical LU decomposition................... 456

8.3.2 Optical solution of triangular systems ••••. 464

8.4 OPTICAL SYSTOLIC ALGORITHMS USING OUTER PRODUCTS . 470

8. 4.1 Banded matrix multiplication . • . . . • • . • . • • • • • 470

8.4.2 Banded matrix LU decomposition ..•....•..••• 479

8.5 OPTICAL GAUSS ELIMINATION USING OUTER PRODUCTS .•• 490

8.5.1 Optical implementation ..••••......•.••.••.• 498

8.6 CONCLUSIONS 506

C H A P T E R 9

CONCLUSIONS

9.1 THESIS SUMMARY 511

9.2 SOME FURTHER SUGGESTIONS......................... 523

REFERENCES • • • • • • • • • • • • • • • • .. • 528

APPENDIX

I •

...
Brief introduction to OCCAM

552

552

II. Loughborough implementation of OCCAM •••••••• 561

III. Soft-systolic simulation programs........... 570

L I S T 0 F F I G U R E S

Page

Fig.1.1.1. Systolic system as special-purpose device •• 4

Fig.1.1.2. Signal processing application design....... 4

Fig.1.1.3. Hardware library design•••••.•.•••.• 4

Fig.l.l.4. Linear systolic array• 7

Fig.l.l.5. Systolic system communication geometries ... 7

Fig.3.1.1. Polynomial multiplication array with
broadcasting............................... 97

Fig.3.1.2. Polynomial multiplication array with
bidirectiQnal dataflow ..•....••••.•••.••.•• 99

Fig.3.1.3. Polynomial multiplication array with
unidirectional dataflow .••.....••.•.•••.••. 101

Fig.3.1.4. IPS cell designs .•...•....•.......•...•••.• 103

Fig.3.2.1. Full matrix-vector multiplication array •••• 116

Fig.3.2.2. Banded matrix-vector multiplication array •• 118

Fig.3.2.3. Full matrix-matrix multiplication array.... 122

Fig.3.2.4. Banded matrix-matrix multiplication array.. 124

Fig.3.2.5(a). Full matrix triangularization array ••••• 127

Fig.3.2.5(b). Cell specification••....••.•••.• 128

Fig.3.2.6. ~anded matrix LU decomposition array ••..••. 131

Fig.3.2.7. Triangular system solver 134

Fig.3.3.1. Application of the retiming method ••••.•••• 142

Fig.3.3.2. Fault-tolerant array .••••..•.••...•••.•...• 145

Fig.3.3.3. Two-level pipelined array • . • . . . • . • . • • • • • • • • 145

'

- xiv -

Fig.3.3.4. Application of the cut theorem............. 148

Fig.3.3.5. Systolic ring architecture . • •. • . •. • • • . • • • • • 148

Fig.3.3.6. Application of area-time expansion......... 153

Fig.3.3.7. Application of R+F method on LU
decomposotion of tridiagonal matrices .•..•• 160

Fig.3.3.8. Application of R+F method on triangular
bidiagonal system solution • • • • . . • . • • • • • • . • • 163

Fig.3.3.9. systolic arrays for R+F method .••••••.••.•• 165

Fig. 3. 4 .1. warp machine architecture . . . • • • • • . . . • 171

Fig.3.4.2. WAP architecture 174

Fig.3.4.3. Transputer architecture•............ 178

Fig.3.4.4. Logical structure of soft-systolic
simulation programs in OCCAM .•••.••••....•. 185

Fig.3.5.1. Optical signal transmission................ 195

Fig.3.5.2. Optical processor for systo1ic matrix-vector
multiplication • . • • . . • • . . • 198

Fig.3.5.3. Operation of

Fig.4.2.1. Data flow for

Fig.4.2.2. Data flow for

Fig.4.2.3. Data flow for

optical processor
bidirectional array design
systolic ring design (n=5)

systolic ring design (n=4)

203

218

220

222

Fig.4.2.4. Input-output for systolic ring ..••..•••••.• 224

Fig.4.2.5. Systolic system for Bernoulli method ••••••• 226

Fig.4.3.1. A simple systolic design for the calculation
of the coefficients, bi, i=0,1,2, ••• ,n ••.•• 232

Fig.4.3.2. Data flow for semi-systolic array design... 234

Fig.4.3.3. A 'purely' systolic array design •••••••• ~.. 236

Fig.4.3.4. Final systolic array design • • • • . • • • • • • • • • • • 238

Fig.4.3.5. A systolic system for the Graeffe root
squaring method . 240

Fig.4.4.1. Roots for Sturm sequence polynomial •.•••..• 243

- XV -

Fig.4.4.2. Sturm sequence pipeline • • •. • • • • • • • • • . • • • • . • 246

Fig.4.4.3. Systolic system overview................... 249

Fig.S.2.1(a}. Block (2x2} LU, LDU decomposition array • 261

Fig.S.2.l(b). Cell definitions

Fig.S.2.l(c). Cell definitions

........................

........................
262

263

Fig.S.2.2. Preprocessor array•.•... 264

Fig.S.2.3(a). Block (2x2} tridiagonal system • • • • • • • • • • 266

Fig.S.2.3(b). LU, LDU decomposition of a block (2x2)
tridiagonal matrix•... 266

Fig.S.2.4(a). Block (2x2) R+F LU decomposition........ 269

Fig.5.2.4(b). Block (2x2) R+F LDU decomposition 270

Fig.S.2.5(a). Preprocessor array and i/o format for k=S
(odd) . • . . . 2 7 3

Fig.S.2.5(b). I/0 format for k=4 (even) . . • . • • . • . • • • • . • 275

Fig.S.2.6. Block (2x2) R+F LU, LDU decomposition array. 276

Fig.S.2.7. Block (2x2) R+F triangular system solution 282

Fig.S.3.1. Matrix configurations for the modification
of LU factors . . • • . 290

Fig.S.3.2. Major steps of the modification of LU
factors (n=S) • . . • • . . . 294

Fig.S.3.3. Parallel modification of LU factors........ 296

Fig.S.3.4(a). Rectangular array configuration .•.•••••• 298

Fig.S.3.4(b). Cell definitions•••••••••••••••.•••. 299

Fig.S.3.5(a). Linear array configuration.............. 301

Fig.S.3.5(b). Cell definitions•.................•. 302

Fig.S.3.6. General case of modification of LU factors • 303

Fig.S.4.1. S~ep ~ of Gaussian Elimination with partial
p1v0t1ng . 306

Fig.S.4.2(a}. Systolic array for Gaussian Elimination
of a symmetric tridiagonal system....... 309

Fig.S.4.2(b). Cell definitions 310

- xvi -

Fig.6.2.1. Dataflow for the bidirectional mvm array ,,, 319

Fig.6.2.2. A simple systolic design for mvm
Fig.6.2.3. Dataflow for a semi-systolic mvm array

321

323

Fig.6.2.4. Dataflow for unidirectional mvm (y is
delayed) . 324

Fig.6.2.5. Dataflow for unidirectional mvm (~ is
delayed) . 326

Fig.6.2.6. systolic array for unidirectional mvm ,,,,,, 327

Fig.6.3.1. Pipeline block for J method; w=S, p=q=3 ,,,, 330

Fig.6.3.2. Pipeline block for JOR method , , ...• , , , , , , . , 331

Fig.6.3.3. Pipeline block for GS method,,,,,,,,,,,,,,, 332

Fig.6.3.4. Pipeline block for SOR method.............. 333

Fig.6.3.5. Special cell definitions for pipeline blocks
in Fig.6.3.1-4 . 334

Fig.6.3.6. Modified pipeline block for J,JOR methods .. 337

Fig.6.3.7. Modified pipeline block for GS, SOR methods. 338

Fig.6.3.8. Preprocessor for J,JOR methods ..•.••.•.•..• 341

Fig.6.3.9. Preprocessor for GS, SOR methods• , . • 342

Fig.6.3.10. Pipeline block for J,JOR methods using the
unidirectional mvm array.................. 343

Fig.6.3.11. Preprocessor for the pipeline in Fig.6.3.10 344

Fig.6.4.1(a). 2-cyclic ordering of tridiagonal matrices
for n=4 (even) and n=S (odd)•••••.. 347

Fig.6,4.1(b). 2-cyclic ordering of the Jacobi matrices 348

Fig.6.4.2. Pipeline block for J method (2-cyclic
matrices) . 353

Fig.6.4.3, Pipeline block for JOR method (2-cyclic
matrices) . • . . . 354

Fig.6,4.4. Pipeline block for GS method (2-cyclic
matrices) . 355

Fig.6.4.5. Overall pipeline configuration for the
iterative solution of 2-cyclic systems..... 359

- xvii -

Fig.6.5.1(a). 2-cyclic ordering using 3 and 5 -point
stencils . 362

Fig.6.5.1(b). 3 and 4 -cyclic ordering using 4-point
stencils . 363

Fig.6.5.2(a). Systolic network for J method (p-cyclic
matrices) 366

Fig.6.5.2(b). Systolic network for JOR method (p-cyclic
matrices) , . 366

Fig.6.5.3(a). systolic network for GS method (p-cyclic
matrices) , . 367

Fig.6.5.3(b). Systolic network for SOR method (p-cyclic
matrices) . 367

Fig.6.5.4. 2-color ordering using 5-point stencil

Fig.6.5.5. 3-color ordering using 7-point stencil

Fig.6.5.6. 4-color ordering using 9-point stencil

Fig.6.5.7. Systolic networks for r-color ordering

.....

.....

.....

372

372

373

375

Fig.6.6.1. Banded-full mmm systolic array............. 379

Fig'.6.6.2. Time and area expansion for mvm computation. 381

Fig.6.6.3. Re-usable mvm array .•..••.•.•..•.••.•..•.•• 382

Fig.7.2.1. Time and area expansion for matrix squaring
computation 390

Fig.7.2.2(a). Banded matrix multiplication on unidire-
ctional hex-array....................... 391

Fig.7.2.2(b). Banded matrix squaring on a unidirection-
al hex-array wA=3, pA=qAa2 •••••••••••.•• 392

Fig.7.2.3. Banded matrix squaring wA=4, pA=3, qA=2 •.•. 395

Fig.7.2.4. Matrix squaring for a banded matrix A with
bandwidth w=5, p=q=3 . • . • • . • . • . • . . • • . • • • • . • • 397

Fig.7.2.5. Dense matrix multiplication on unidirection-
al hex-array, n=3•.............. 399

Fig.7.2.6. Matrix squaring pipeline block for a full
(nxn) matrix A, with n=3 •••••.••••••••••.•. 400

Fig.7.2.7. Re-usable matrix multiplication array, n=3 • 401

Fig.7.2.8. Iterative array configuration for successive
matrix squaring . 403

- xviii -

Fig.7.3.1. Iterative array configuration for the J,JOR-
Hotelling methods . 407

Fig.7.3.2. Iterative array configuration for the GS,
SOR-Hotelling methods •••••••••••.•••••••••• 408

Fig.7.3.3. Matrix squaring and matrix-vector inner pro-
duct step for a banded matrix c, w=S, p=q=3. 410

Fig.7.4.1. Power method pipeline block for a banded ma-
trix A with bandwidth w=5, p=q=3 ..•.•..•••. 419

Fig.7.4.2 •. Matrix Squaring method pipeline block for a
banded matrix A with bandwidth w=5, p=q=3 •• 420

Fig.7.4.3. Iterative array configuration for Matrix
Squaring . 423

Fig.7.5.1. Time and area expansion for mmips operation. 429

Fig. 7 .5.2. Iterative array configuration . • . . . • . . . • • • . • 430

Fig.7.5.3. Pipeline configuration for k=2, j=l, w=3 ..• 431

Fig.7.5.4(a). Banded matrix multiplication, wA=4, pA=3,
qA•2, WB=3, pB=2, qB=2 . • • • • 433

Fig.7.5,4(b). Banded matrix multiplication, wA=3, pA=2,
qA=2, wB=4, pB=3, q8 =2 • • . • . . . • 434

Fig.8.2.1. R+F matrix multiplication -· 447

Fig.8.2.2. R+F matrix multiplication array••• 448

Fig.8.2.3. Details of optical processor for R+F mmm ..• 450

Fig.8.2.4. Matrix multiplication optical processor •.•• 451

Fig.8.2.5. Details of optical processor for unidirect-
ional m.mm • 454

Fig.8.3.1. Optical processor for LU decomposition..... 458

Fig.8.3.2. Details of optical processor............... 459

Fig.8.3.3. Optical processor for LU decomposition of a
tridiagonal matrix•... 462

Fig.8.3.4. Operation of optical processor for R+F LU
decomposition . 462

Fig.8.3.4. (continued) 463

Fig.8.3.5. Optical processor for triangular system
solution . 465

- xix -

Fig.8.3.6. Optical processor for bidiagonal system
solution . 467

Fig.8.3.7. Optical processor for R+F triangular system
solution , . , , , , . 468

Fig.8.4.1. Matrix multiplication using outer products 471

Fig.8.4.2. Banded matrix multiplication using outer
products ·, , ,...... 472

Fig.8.4.3. Optical processor for matrix multiplication. 474

Fig.8.4.4. Optical processor for banded matrix multi-
plication , .. , 476

Fig.8.4.5. Phases of a matrix multiplication •••••.•..• 477

Fig.8.4.6. LU decomposition using outer products...... 480

Fig.8.4.7. Banded LU decomposition using outer pro-
ducts .. , . 482

Fig.8.4.8. LU decomposition using outer product
Fig.8.4.9. Opti7a~ processor for full matrix LU deco-

mposl t1on

Fig.8.4.10. Optical processor for banded LU decompo-
sition , ,

Fig. 8. 4 .11. Phases of a full step of LU decomposition .

Fig.8. 5.1. Triangularization of A
Fig.8.5.2. Gauss Elimination for A, b
Fig.8.5.3. Back substitution for A, b

484

485

'
487

488

492

494

495

Fig~8.5.4(a). Gauss-Jordan method for matrix inversion. 496

Fig.8.5.4(b). Gauss-Jordan method for matrix inversion. 497

Fig.8.5.5. ?ptical processor for matrix triangularizat-
l.on .••..•••.••..••....•••.••••..••••• , • • . • • 499

Fig.8.5.6. Optical processor for Gauss Elimination ..•• 499

Fig.8.5.7. Optical processor system for Gauss-Jordan
method • • . • • • . . • • . . • • . . • • • • . . • • . • • • . • • . • 502

Fig.8.5.8. Optical processor for matrix inversion..... 504

L I S T 0 F T A B L E S

Page

Table 1.1.1. Selection of major applications of
systolic systems 5

Table 3.5.1. Types of systolic algorithms 209

Table 6.3.1. Area-time requirements for systolic
pipelines in Fig.6.3.1-5 335

Table 6.3.2. Area-time requirements for systolic
pipelines in Fig.6.3.6-9 340

Table 6.5.1. Comparison of the area-time requirements
of the pipelines for nor•al and p-cyclic
ordering . 368

Table 6.5.2. Comparison of the area-time requirements
of the pipelines for natural and
r-colored ordering .•..•.••......••.•.•. 377

Table 7.5.1. Optimum (k,j) for given e: and IIAii 1 . •• 427

L I S T 0 F P R 0 G R A M S

Page

A.l.l. Bernoulli's method 574

A.l. 2. Graeffe (Root Squaring) method 576

A.l.3. Sturrn sequence method........................ 578

A.1.4. Horner's scheme
A.1.5. Bairstow method
A.1.6. Characteristic polynomial of a lower

581

582

Hessenberg matrix • 584

A.2.1. Preprocessor for block (2x2) R+F LU/LDU
decomposition ~ ,,.,... 585

A.2.2. Block (2x2) R+F LU/LDU decomposition .•....... 586

A.2.3. Block (2x2) R+F triangular system solution . .. 589

A.2.4. LU updating on orthogonal array•....... 591

A.2.5. LU updating on linear array • . • • . . • • • . . 593

A.2.6. LU decomposition with partial pivoting

A.2.7. Backsubstitution for Inverse Iteration

595

596

A.2.B. Linear array for Inverse Iteration........... 597

.A.3.1. Unidirectional mvm array 602

A.3.2. Pipeline of mvm arrays for J,JOR methods ..••• 603

A.3.3. Preprocessor for iterative methods........... 604

A.3.4. Pipeline for J method (Cyclic reduction) •••.. 606

A.3.5. Pipeline for JOR method (Cyclic reduction)

A.3.6. Unidirectional mvm array with local memory

... 607

609

- xxii -

A.3.7. Iterative mvm array (time expansion) ••••••••• 611

A.4.1. Unidirectional mmm array•................ 613

A.4.2. Pipeline of mmm arrays 614

A.4.3. Iterative array for J,JOR method............. 615

A.4.4. Iterative array for GS, SOR method 617

A.4.5. Pipeline of mvm and mmm arrays for J, JOR
methods . 618

A.4.6.

A. 4. 7.

A.4.8.

A.4.9.

A.4.10.

Pipeline for Power method
Pipeline for Matrix Squaring method
Iterative array for Power method
Iterative array for Matrix Squaring method ...
Iterative array for matrix exponential

620

622

623

625

627

A.4.11. Pipeline for matrix polynomial •......••••••. 629

A.5.1. Optical systolic mvm using Inner Products 631

A.5.2. Optical systolic mvm using outer Products 632

A.5.3. Optical systolic mmm using Inner Products 633

A.5.4. Optical systolic mmm using Outer Products 634

A.5.5. DMAC algorithm • 635

A.6.1. Library routines for soft-systolic simulation
of hard/hybrid/soft- systolic algorithms ...• 636

A.6.2. Library routines for soft-systolic simulation
of optical- systolic algorithms............. 640

CHAPTER 1

INTRODUCTION

In this thesis some new systolic algorithms for numeri­

cal computation are presented, under the framework of being

suitable for direct implementation onto Very Large Scale

Integration (VLSI) processor arrays, or optical processors.

The current introductory chapter is structured as fol­

lows. Firstly, ~brief review of the background and environ­

ment of the development of the systolic approach in parallel

processing is given. Then, the major areas of current sys­

tolic systems research are outlined, as well as its cross

fertilization with other related areas of research. This

survey is complemented with the more detailed definitions of

chapter 3, as well as the conclusions of chapter 9. Finally,

the organisation of the thesis is given, in relation to the

main topics of discussion followed throughout this study.

1.1 ENVIRONMENT FOR DEVELOPMENT OF SYSTOLIC APPROACH

The systolic approach in parallel processing came as a

product of a certain environment, that contained the needs,

- 2 -

i.e. the possible applications1 the means, i.e. the

appropriate technology1 and the background knowledge for its

realisation. The needs can be outlined as the ever­

increasing tendency for faster and more reliable computa­

tions, especially in areas like real-time signal processing

and large-scale scientific col!lputation. The means were pro­

vided by the remarkable advances in VLSI technology and

automated design tools. Finally, the background includes the

applications of parallel processing in the form of parallel

algorithms and the design of parallel computers1 as well as

the theory of cellular automata. These aspects are now

briefly discussed, especially in their special relation to

systolic architectures.

Applications of systolic approach

Systolic systems have been introduced by H.T. Kung and

C.E. Leiserson [160), [181), [199) as high-performance,

special-purpose VLSI computer systems that are typically

used to meet specific application requirements or to off­

load computations that are especially taxing to general­

purpose computers.

The rationale behind the use of special-purpose sys­

tems, as opposed to general-purpose,· is very carefully

explained in [104), [109). In areas such as real-time signal

processing and large-scale scientific computation the

trade-off balance between generality and performance comes

down on the side of special-purpose devices, because of the

- 3 -

stringent time requirements. Thus, a systolic engine can

function as a peripheral device attached to a host system,

as shown in Fig.l.l.l.

The host system need not be a computer: in the case of

real-time signal processing systolic systems are suitable

for sensor devices, accepting a sampled signal and then

passing it on, after some processing, to other systems for

further processing (see Fig.l.l.2) [82), [243). In the case

of large-scale scientific computation systolic systems can

be used as a 'hardware library', for certain numerical algo­

rithms, equivalent to the software libraries currently

available (see Fig.l.l.3) [125), [243). Alternatively, they

can be utilized to •matricialize' the internal arithmetic

units of more general-purpose supercomputers.

However, apart from these traditional application

areas, an increasing number of computations seem to benefit

from the systolic approach. The common characteristics of

all these processes is that they are compute-bound problems,

i.e. with large amount of computation versus input/output

(i/o) communication. Usually in compute-bound problems, mul­

tiple operations are performed on each data-item in a

1: repetitive manner. In contrast, problems with large amount

of (i/o) communication versus computation are called i/o­

bound. A survey of the applications of systolic systems can

be found in [104), [160), [163). Table.l.l.l gives a

representative selection of systolic applications; the table

Host

- 4 -

I--
Host Special-purpose device:

1--
Systolic system

Fig.l.l.l. Systolic system as special-purpose device

Radar

Sonar

Vision ---+-
Robotics

Further processing:

Front-end processing:
systolic system

Host

Fig.l.l.2. Signal processing application design

• • •

J 1 J
' .,.._... Interface - Arbitration network

J I 1
• • • [

Hardware library modules:
Systolic systems

Fig.1.1.3. Hardware library design

- 5 -

SIGNAL FIR- IIR- Median- Kalman filtering,
PROCESSING Multi-dimensional convolution, correlation,

Discrete- Fast Fourier Transform (OFT, FFT),
Interpolation, Geometric warping,
Linear algebra in digital signal processing.

NUMERICAL Matrix-vector, matrix-matrix multiplication,
ANALYSIS LU- QR decomposition, Solution of triangular

systems of linear equations, Matrix inversion,
Singular value decomposition (SVD) ,
Solution of Toeplitz systems, Least-Squares,
orthogonal equivalence transformations,
Eigenvalues, Generalised inverses,
Iterative algorithms.v

DATA Stacks, Queues, Priority queues, Counters,
STRUCTURES Sorting, Searching, Dictionary machines,

Relational database operations.

'

AUTOMATA Tree acceptors, Trellis automata,
Binary tree automata, Design rule checker.

GENERAL Largest common subsequence problem,
Connected word recognition, Convex hull,
Shortest path- Algebraic path problem,
Greatest Common Divisor (GCD) computation.

Table 1.1.1. Selection of major applications of
systolic systems

- 6 -

is further extended during the discussion of the areas of

current systolic research.

An important result of the wide applicability of the

systolic approach is the fact that it has proven to be a

computational model for a wide range of parallel processing

structures, not necessarily strictly special-purpose. Thus,

there exists a large number of systolic algorithms that is

not practical to map directly onto hardware in order to pro­

duce a special-purpose device, but they perform very effi­

ciently when implemented on appropriate parallel computers.

Systolic algorithms and parallel processing

Now we briefly turn our attention to the contribution

of parallel processing in the development of the systolic

concept. Initially we examine the application of traditional

parallel computing techniques on systolic systems and then

the relation of systolic systems with other models of paral­

lel computers is briefly outlined. For a more general intro­

duction to parallel processing see [91), [130), [137).

Systolic systems combine pipelining, array-processing

and multiprocessing to produce a high-performance parallel

computer system. This combination is exemplified with the

help of Fig.1.1.4, which is a typical arrangement of a sys­

tolic system. A linear array (pipeline) of n processors

(cells, in the systolic terminology) is connected with the

host system, via the boundary cells. The number of cells in

- 7 -

.,,, ~

-==--::. c~ { 1 ·---- n

Fig.1.1.4. ~inear systolic array

Orthogonal array Hexagonal array

Triangular array Binary H-tree

Fig.l.l.S. Systolic system communication geometries

- 8 -

the array is determined by the maximum attainable i/o

bandwidth of the host. All processors perform their computa­

tion simultaneously and each cell exchanges information

(data, control) with its neighbouring cells, for further

processing*.

In the simplest case, all processors perform the same

computation, on a different set of data (array processing),

and then they pass data to the right-hand-side cell, while

they accept data from the left-hand-side cell (pipelining).

The left boundary cell accepbinput from the host and the

right boundary cell sends output to the host. In more com­

plicated systolic systems, the dataflow can be multidirec­

tional and at different speeds.

The array can expand in two or more dimensions, or t~ke

the form of asystolic tree (see Fig.l.l.S). Furthermore,

the processors need not perform identical computation~ (mul­

tiprocessing). It is common to classify a systcilic system

according to its communication geometry [159); thus, 'linear

systolic array' can be used instead of 'systolic system with

linear array communication geometry'. Further the terms

'systolic array' and •systolic system' may interchange since

* The name •systolic' is taken from the Greek word sys­
tole (ava<oA~).· The physiology terms systole (ava<oA~)
and diastole (Staa<OA~) indicate the successive con­
traction and expansion of the heart, by means of which
blood is pumped to the different organs of the human
body. The function of the memory in Fig.l.l.4 is analo­
gous to that of the heart: it pulses information (in­
stead of blood) through the pipeline.

- 9 -

the array interconnection is the most common.

The central point in the systolic approach is to ensure

that once an information item is brought into the system it

can be used effectively and repetitively while it is being

•pumped' from cell to cell through the system. This combi­

nation of multiprocessing and pipelining is the crux of the

systolic approach of parallel processing.

The relation of systolic systems with the more tradi­

tional models of parallel processing is addressed in [159].

Some important differences, include the number and the com­

plexity of the processing elements involved, as well as the

generality of the architecture. Whereas most parallel com­

puter concepts which have been pursued so far involve a

relatively small number of high-level processQrs, the sys­

tolic systems suggest the design of parallel processing sys­

tems with very large numbers of relatively simple processing

elements. Furthermore the systolic systems are

algorithmically-specialised, and therefore can achieve a

better balance between computation and communication, since

the communication geometry and the computation performed by

each processor are unique for the specific problem to be

solved.

Thus, a systolic algorithm must explicitly define not

only the computation being performed by each of the proces­

sors in the system, but also the communication between these

processors. That is, a systolic algorithm must specify the

- 10 -

processor interconnection pattern and the flow of data and

control throughout the system.

Systolic systems and cellular automata

The concept of a large number of primitive processors

leads to another factor that has contributed to the develop­

ment of the systolic concept. From a theoretical point of

view, systolic systems can be traced back to cellular auto­

mata of Von-Neumann, the Mealy Machine and Moore Machine

[181), [211), [212).

Automata theory is basically a mathematical model about

machines and what they can accomplish at a low level of com­

putation. It has mainly been applied to the design of

electrical circuits with digital hardware, the logic of ner-
0

vous systems in man and animals, and the underlying logic of

protein synthesis in cells. This mathematical model seemsto

gain increasing scientific interest in the investigation of

physical systems, showing complex, self-organising and

•chaotic' behaviour. Cellular automata, as well as systolic

systems, seem to have better capabilities to map physical

systems and their parallel space and time evolution into

computer architecture, [130).

Automata theory is very important for the comprehension

of systolic systems because it lends a ready-made theory

about what such machines can achieve. Automata themselves

can be represented by labelled directed graphs, with machine

~ 11 -

states represented as nodes, and arcs defining state transi-

tions. Consequently the function of a simple systolic cell

can be represented by such a graph. Inputs and outputs can

also be encoded on arcs and from here it is a small step to

connect inputs and outputs of a number of machines and

operate them in parallel to create a systolic system.

However, the specification of systolic systems by means

of automata theory definitions leads to an overly compli­

cated structure. Consequently systolic arrays have their own

simpler and relatively abstract graph specification, which

collapses whole machines to nodes and i/o histories to

• sequences on arcs [165), [295).

Systolic architectures and VLSI

Until the advent of VLSI, the development of parallel

computers with large numbers of processors had been limited

by the prohibitively high costs of production. With the use

of VLSI in circuits, size and cost of processing logic,

memory and communication hardware was dramatically reduced,

and it became feasible to combine the principles of automata

theory with the traditional parallel processing techniques

to produce highly parallel VLSI architectures, such as the

systolic systems. This enterprise can take two forms: either

produce a special-purpose VLSI chip implementing a specific

systolic algorithm; or combine programmable VLSI processors

to produce a systolic architecture capable of performing one

or more algorithms. For a general introduction to VLSI, see

- 12 -

[199), [277), [285); while reviews of parallel VLSI archi­

tectures are given in [124), [264).

Now, if we attempt to map a complex systolic system

directly on a silicon wafer, it is immediately confined to a

two-dimensional plane. VLSI is achieved by a combination of

circuit design with high resolution photographic techniques,

where it is convenient to place wires on rectangular grids,

and limit the number of parallel layers of semi-conductor

material containing wires and circuit elements. Hence, a

two-dimensional graph is termed planar if it can be drawn in

the plane with no arcs intersecting at places other than

nodes (cells). VLSI presents additional problems, as the

size of wires and transistors approach the limits of _photo­

graphic resolution, for it becomes impossible to achieve

further miniaturization and the actual circuit area becomes

a key issue. Furthermore, the chip area is limited in order

to maintain high yield, and the number of connections to the

outside world (pins) is limited by the finite size of the

chip perimeter.

Some of these limitations are alleviated when systolic

algorithms are implemented on processor arrays. For example,

the actual chip design is not an issue any more, since it is

a programmable processor. Further, the interconnections need

not be strictly planar. However, in both cases, simplicity

and regularity remain factors of utmost importance for an

efficient systolic design. In the first case because they

- 13 -

ensure the design of cost-effective, special-purpose VLSI

chips. In the second case because of the promising proposal

to harness the programming complexity of parallel computers

with a large number of cooperating processors. Simplicity

and regularity in systolic architectures are ensured by

means of the following techniques: there are only a few

types of relatively simple cells, where only local and regu-

lar communication is allowed, mainly of nearest-neighbour

type [160].

The replication of a processor in large numbers makes

the design cost-effective and easy to produ~e; however,

exactly how simple a cell might be is a question that can

only be answered on a case by case basis. For example, if a

systolic system is to be implemented on a single chip, each
0

cell should probably contain only simple logic circuits plus

a few words of memory. On the other hand for board array

implementations each cell could reasonably contain· a high-

performance arithmetic unit, plus a few thousand words of

memory and a local control unit. Further, for processor

array implementations, each cell can be a· simple microcom­

puter. There is, of course, always a trade-off between sim-

plicity and flexibility, in terms of control and programming

overheads as well as system performance.

In principle, systolic systems totally avoid long-

distance or irregular interconnections; typical examples are

given in Fig.l.l.S. The only global communication (besides

- 14 -

power and ground) is the system clock. Alternatively the

need for global clock distribution can be avoided if self­

timed, asynchronous schemes are implemented, based on data­

driven protocols. A consequence of that characteristic is

that systolic systems are completely modular and expandable,

and can be easily adjusted to the problem size or other

external factors.

1.2 REVIEW OF SYSTOLIC SYSTEMS RESEARCH

It is interesting to briefly review the current state

of systolic systems research, in order to point out the wide

impact and applicability of the systolic approach as well as

its cross fertilization with other areas of research in

parallel processing, VLSI systems design and implementation,

optical computing, etc. This survey just points out the

issues and introduces topics for further discussion in the

subsequent chapters.

System implementation

Wafer-Scale-Integration and fault-tolerance: for simple

systolic algorithms it is possible to construct a whole sys-

tern on a single silicon wafer. Howeyer, in wafer-scale-

integration, it is imperative to detect and circumvent the

faulty cells due to the low fabrication yield. Further,

except for the faults detected during the fabrication phase,

hardware deficiencies may occur during the operation of the

device. Thus, there is a need for fault detection and

correction techniques, both during the fabrication and

operational phase (static and dynamic fault-toleranc~).

Dynamic fault-tolerance techniques may also be extended in
(aqq)

multi-chip architectures. Circuits employing fault-tolerance

can be envisaged as a four-part design, consisting of: an

original array; spare cells arranged in a simple pattern; an

interconnection network consisting of data paths, control

paths and switches for reconfiguration; a control algorithm

- 16 -

performing fault detection and reconfiguration. The main

points at issue is the minimization of area and time over­

heads required for the fault detection and correction; and

the design of systems that can tolerate a high proportion of

faults without rapidly losing their efficiency. In general,

very simple interconnection patterns are favoured, such as

linear or rectangular arrays with identical cells. For exam­

ple see [71), [83), [107), [154), [164), [180), [247),

[250), [299).

Bit-level design: usually, the parallelism of systolic

algorithms is introduced in word-level, i.e. at the level of

arithmetic operations. However, finer-grain parallelism, at

bit-level, has been introduced in a series of systolic

designs for arithmetic operations [123), [224], [239);

signal-processing algorithms [46), [73), [287); and simple

matrix computations, i.e. matrix-vector and matrix-matrix

multiplication [195-197). A related problem is whether the

bit-serial or bit-parallel computation is preferable in VLSI

implementation level. The bit-serial approach alleviates the

pin-count problem since it requires only one pin instead of

w, where w is the word length, in the bit-parallel approach.

Furthermore the bit-serial scheme leads to better structured

chip layouts since the basic modules are smaller, and there­

fore yielding more efficient fault-tolerance. On the other

hand the bit-serial approach causes longer delays and

requires additional latches and control, especially for

floating point computations. Thus, there is an area-time

- 17 -

trade off between serial and parallel approaches [78-79),

[270), [277).

Synchronous-asynchronous communication: originally the

synchronous communication of systolic systems was advocated,

and it seems that it is well suited for linear arrays of any

size and with identical processing elements (homogeneous).

In this case a global clock can synchronize the processor

computation and communication, and a clock cycle can be

taken as the time unit of computation [103). For designs of

higher dimensionality, i.e. two-dimensional arrays or trees,

or for less homogeneous systolic systems, the asynchronous

approach seems more suitable. In this case each processor,

or a group of processors, are self-timed, and the communica­

tion is data-driven and occurs by means of a handshaking

protocol [4), [199). The computation of a processor occurs

as soon as all the necessary operands are available; thus

successive computational •wavefronts' of active processors

are created and travel along the system. Notice that the

two approaches do not affect the design of the systolic

algorithm at a higher level, i.e. as regards the computa­

tions performed and the interconnection structures [44),

[169), [173]. Self-timed systems are in general more diffi­

cult to test for failures and they require additional com­

munication hardware; however they are better suited for

fault-tolerant schemes where reconfigurability may require

long-wire interconnections [83), [250).

- 18 -

System design and programming

Processor complexity: in some systolic algorithms, the

computations performed in the processors become considerably

complicated, and therefore the processor complexity

increases, both in processing logic and in storage require­

ments. The solution seems to be to allow for programmable

systolic chips, instead of fixed-computation processors

[104], [168]. A further extension can be the use of high­

performance general-purpose conventional components to build

board-level systolic systems, at least for the testing of

the algorithms [7], [26], [93], [158], [167]. Finally, VLSI

processor arrays can be programmed to efficiently perform

systolic algorithms (e.g. transputer arrays), [44], [60],

[170], [1931., [251]. In general, except for the cases where

performance is very critical, it seems that mapping a compu­

tation directly onto silicon is less attractive than pro­

gramming a special-purpose or general-purpose VLSI processor

array [264].

Interconnection hardware complexity: initially, in a

systolic scheme, the communication geometry is fixed, deter­

mined by the specific systolic algorithm to be implemented.

However, the reconfigurability of the interconnection pat­

tern stems from two problems: fault-tolerance and generality

of the architecture. If the reconfigurable interconnection

scheme accommodates simple fault-tolerance then its purpose

is to maintain a single communication geometry by by-passing

- 19 -

faulty cells; the complexity of the scheme is limited [83),

[250), [299). As we move from algorithmically-specialised

designs to structures of more general applicability, i.e.

consisting of processors with some degree of programmabil­

ity, there is some necessity to allow for reconfigurable

interconnection so that the same system can accomm.odate more

than one communication geometries. For example, programm­

able interconnection switches can be used to embed several

geometries on the same surface, allowing also for fault­

tolerance [137), [269-270). At a board-level, cross-bar

switches or other arbitration networks can be used to allow

not only for reconfigurability but also for global intercon­

nections, so that to give a more flexible processor array

[135), [186), [278). Alternatively, the interconnection

topolog'y may be kept relatively simple but· then the proces­

sor complexity is increased in both control and storage.

Part of the data and information is now stored into the

array, and the systolic algorithm is modified to obey the

interconnection restrictions [7), [161-162).

System programming: as the complexity of the systolic

systems increases the systolic algorithm design becomes more

complicated and therefore a special notation or language is

necessary to describe a systolic system. Furthermore, the

programmability of the processors and the interconnection

hardware leads to a need of a •systolic programming'

language. The more general-purpose the systolic system

becomes, the more the programming necessity seems

- 20 -

imperative. Another area where system programming is impor­

tant is the actual interfacing of the system with the host

system, so that the end-user is isolated from the details of

the systolic machine. Special systolic design languages have

been proposed, as well as system design environments [8-9],

[26], [170], [173], [271]. Further, extensive simulation in

existing hardware description and parallel processing

languages is currently used (e.g. OCCAM), [44], [60], [193],

[200], [251].

Overall system design: As regards the design of a sys­

tolic system, there are several trade-offs that should be

taken into account, besides the fundamental balance between

specialization and generality. For example, the size and the

storage capacity of the system should be balanced with the

nature of the applications to be solved, and the i/o

bandwidth of the host. Additional hardware and software for

problem partitioning, interfacing with the host and overall

system control is necessary, [9], [26], [137-138], [301].

Further, for the solution of many important problems, a

series of systolic computations must be applied. In that

case the combination of more than one systolic syst~ms in a

'systolic network' may be necessary, with possible inter­

mediate storage. Alternatively, complex systolic arrays that

can perform a series of computations can be envisaged. The

area/time trade-off is especially important, starting from

bit-serial vs. bit-parallel arithmetic operations, up to the

systolic implementation of iterative algorithms, [1], [211],

- 21 -

[216), [262).

General-purpose systems: the systolic algorithms can be

efficiently simulated by general-purpose parallel-processing

VLSI systems. The advent of single-chip microprocessors

especially designed for parallel-processing, such as tran­

sputers, makes possible the mapping of systolic algorithms

as a general-purpose VLSI processor array. An additional

advantage is that the design of systolic algorithms can

benefit from the use of general-purpose parallel processing

languages. On the other hand, general-purpose parallel pro­

cessing can benefit from the systolic approach as it pro­

vides a model for achieving massive parallelism without com­

munication bottlenecks. In this direction, the •soft­

systolic paradigm' advocates the generalisation of the sys­

tolic concept by applying it onto a virtual computing sur­

face, and relaxing the restrictions imposed by current VLSI

technology. Further, the idea of •systolic instruction

machines' that can simulate different types of parallel

algorithms has been also recently pursued, [102), [156),

[200), [256), [266), [286).

Algorithms and application areas

New systolic algorithms: this research area remains

still the most important despite the vast amount of algo­

rithms that have already been reported for systolic imple­

mentation. The systolic algorithms can be classified in the

following main categories, according to their application.

- 22 -

There are algorithms from traditional systolic research

topics solving new problems or using new methods, such as

signal processing and matrix computations, [6), [33-34),

[37-40), [46), [63), [87), [132-133), [143), [157), [166-

167), [174-175), [198), [221), [224), [239), [257-262),

[267), [273-274], [294]. Then, there are systolic algorithms

that try to improve the already existing algorithms in

several aspects, such·as: in the application aspect, i.e.

producing an efficient systolic algorithm for a specific

application; or in the implementation aspect, i.e. producing

an algorithm with better area or time efficiency by applying

some hardware or dataflow modification; see for example

[19-21), [62), [89), [201), [244). Finally there are algo­

rithms from relatively or entirely new areas, such as

mathemattcal programming, multi-valued logic, solution of

ordinary and partial differential equations, polynomial com­

putation, data structures and data bases, pattern matching,

etc., [24), [36), [70), [81), [100), [110), [119-120),

[155), [178-179), [185), [187), [200), [213), [253).

Problem partitioning: given that the size of the VLSI

system will be limited, it is important to partition large

problems so that they fit on a fixed size VLSI structure.

The aim of systolic algorithms that include problem parti­

tioning is to minimize the overheads of the partitioning,

e.g. the additional storage, delay and re-routing of data as

well as the combination of partial results, [125), [137-

138), [187), [209), [215), [232-233).

- 23 -

Algorithmic fault-tolerance: where existing systolic

algorithms are augmented with error detecting and correcting

methods to allow for limited fault-tolerance at the algo­

rithm level. This technique can be complementary with

hardware fault-tolerance methods, [134), [153), [188],

[189).

Systolic algorithm design techniques: a significant

number of more or less formal techniques for the systematic

design of systolic algorithms have recently been reported:

surveys of some of these methods are given in [108), [219).

Typically, a transformation system, starts from a given

sequential algorithm or a mathematical formulation of the

problem. Then, a general parallel algorithm model is

derived, based on some kind of data dependency graph speci­

fying the concurrency that can be achieved. Next, this graph

is mapped onto a processing surface and transformational

techniques are applied to produce a systolic design. The

completeness of these methods varies from semi-automated,

formal procedures that cover all the transformational steps;

to simple rules that offer optimisation in a specific aspect

of the design. Generally, complete methods restrict them­

selves in a specific type of algorithms, in order to reduce

the number of decisions to be taken during the design pro­

cess. The large number of different approaches indicates the

multiplicity of factors that must be taken into account. For

example see [59), [61), [76-77), [112), [118], [123], [139],

[144), [165), [172), [176), [192), [228), [236), [238),

- 24 -

[240], [249].

Optics technology

Optical signal transmission: the advance in the tech­

nology of integrated electro-optical components makes possi­

ble the use of optical signal transmission between, or even

within, VLSI chips. This could alleviate the problem of com­

plex interconnections, since optical interconnections occupy

less area, do not suffer from cross-talk phenomena, and long

delays and it is radiation-hard. Optical signal transmission

can be either waveguided or in free space; further, the

free-space transmission can be either focused or unfocused.

Global synchronization is the simplest form of global com­

munication, in the form of optical clock distribution. This

approach might be extended to global data communication, in

the form of optical interconnections, [116], [122], [194],

[206], [217), [254].

Optical computing: basic arithmetic operations, such as

addition and multiplication can be performed by means of

acousto-optic, electro-optic or other type of spatial light

modulators. This enables the optical implementation of sim­

ple systolic algorithms with high-speeds, [13), [30], [50),

[58], [234), [241). The use of integrated-optical technology

is investigated in [290-292]. Digital accuracy may be

achieved with special techniques that encode the analogue

optical signal using binary or other number system, [11],

[12], [14], [29], [31], [49], [222]. The combination of

- 25 -

high-speed optical processing elements with conventional

electronic processors in hybrid optical/electronic systolic

systems seems a very promising approach to achieve very

high-performance, [2), [171).

1.3 ORGANIZATION OF THE THESIS -- ---

Before describing the contents of the remaining

chapters we summarize the main topics of discussion that are

being followed throughout this study, based on the brief

review of the current state of systolic systems research.

The main subject of this work is the investigation of

new systolic algorithms for numerical computation; where

'new' may mean either a new group of algorithms, new algor­

ithm$ in traditional areas of research, or improvements of

existing algorithms. The OCCAM programming language is

extensively used for the simulation, and partially verifica­

tion, of systolic algorithms. By verification we simply mean

the production of the expected results for a given input.

Further, an important recurring theme is the area-time

trade-offs in the systolic implementation of iterative algo-

rithms, as well as the possible interconnection of systolic

arrays in the form of systolic pipelines or iterative struc­

tures. Finally, the impact of the advances in optics tech­

nology and optical computing is discussed, and the optical

implementation of systolic algorithms is further investi-

gated.

The remaining chapters of this thesis are organised as

follows: Chapter 2, contains basic mathematical definitions

in the areas of polynomial equations, matrix computations,

linear programming and differential equations. Then, there

is a brief introduction to specific areas of numerical

- 27 -

computation, i.e. solution of polynomial equations; solution

of systems of linear equations; eigenproblem solution;

approximation of matrix functions using matrix polynomials

and the discrete approximation to the solution of differen­

tial equations. Finally, the specific numerical algorithms

that are used in the subsequent chapters are briefly

described. This description is complemented by the discus­

sion that precedes the systolic implementation of the numer­

ical algorithm.

Chapter 3 is an introduction to the basic concepts of

the systolic approach in parallel processing. It starts with

a description of a simple systolic algorithm, through which

the basic definitions and terminology is presented. Then

some basic systolic designs are presented that are used as

building blocks in the subsequent chapters. Following is a

review of some transformational techniques for designing and

improving .the efficiency of systolic arrays. The concepts of

time and area expansion, and that of the interconnection of

systolic arrays are also introduced. Then, there is a dis­

cussion on the soft-systolic paradigm, and the soft­

systolic simulation of systolic algorithms using OCCAM.

Further, the basic concepts of optical systolic computation

are discussed. That is, the optical implementation of basic

arithmetic operations, the set up of an optical processor

and the description of simple optical systolic algorithms.

Finally, a general framework for the development of systolic

algorithms is presented.

- 28 -

Chapter 4 investigates the systolic implementation of a

new group of numerical algorithms, that is the solution of

polynomial equations. Although, the systolic implementation

of polynomial computations have attracted the interest of

many researchers, the class of polynomial equation solvers

is not yet sufficiently investigated. After a review of the

systolic work on polynomial computations, two traditional

methods are described in detail, Graeffe and Bernoulli. In

the study of these two methods some of the transformational

techniques of Chapter 3 are applied, as well as the area­

time expansion of iterative processes. Then the Sturm ·

sequence property is used for the calculation of the roots

of the characteristic equation of a symmetric tridiagonal

matrix. Finally, a systolic ring architecture is proposed

for general iterative solution of polynomial equations, and

some aspects of the systolic computation of a characteristic

equation of a matrix are discussed.

Chapter 5 presents some systolic algorithms for the

efficient solution of linear systems of equations using LU

decomposition. First there is a survey of the research on

the systolic solution of linear systems of equations using

direct methods. Then the efficiency of the systolic LU

decomposition algorithm is impr6ved using mathematical tech­

niques. The problem of updating an LU decomposition is dis­

cussed subsequently. This problem is of interest in cases

where a matrix is frequently updated, e.g. linear program­

ming and signal processing. It is also of interest in the

- 29 -

application of algorithmic fault-tolerance techniques on

systolic algorithms. Then the LU decomposition with partial

pivoting is used in the inverse iteration method for the

determination of the eigenvectors of a symmetric tridiagonal

matrix. Finally, there is a discussion on further research

topics in the area of the systolic direct solution of linear

systems of equations.

Chapter 6 develops the concept of pipelining systolic

arrays for matrix-vector multiplication. The importance of

systolic matrix-vector multiplication becomes evident from

the review of the applications of the algorithm. Firstly,

an improved systolic design is presented. Then the specific

area of iterative solution of linear systems of equations is

investigated and some efficient pipeline designs are

presented. A further development is the introduction of sys­

tolic networks defined as parallel, cooperating pipelines of

systolic arrays. These structures are used for the iterative

solution of linear systems, where the coefficient matrix is

cyclic, or when multi-coloring techniques are applied. In

the final section of this chapter some extensions of the

matrix-vector multiplication algorithm are discussed and an

alternative iterative design, suitable for time-expansion

applications is described.

Chapter 7 further develops the idea of pipelines of

systolic arrays, as well as the combination of area and time

expansion schemes. After an introduction to the research

- 30 -

topic of systolic matrix-matrix multiplication, a new group

of systolic algorithms based on successive matrix-matrix

multiplications is studied. Previously, successive matrix­

matrix multiplication algorithms had been considered as too

expensive to implement in terms of both storage and process­

ing. However, the advances of technology make possible the

consideration of these algorithms that introduce a high

degree of parallelism. Firstly, pipelines and iterative

designs that can efficiently perform successive matrix

squaring are discussed. Then, the basic iterative methods of

chapter 6 are revisited and transformed to be based on

matrix squaring operations. Subsequently the Power and

Matrix Squaring methods for eigenproblem solution are com­

bined to the Raised Power method. The subject of systolic

matrix polynomial computation is then discussed under the

framework of the systolic computation of the exponential of

a matrix. Finally, it is shown that a number of important

matrix functions can be computed using successive matrix

powers.

Chapter 8 presents some optical systolic algorithms,

based on the concepts discussed on Chapter 3. A survey of

optical systolic computing using analog techniques is given

in the first section of this chapter. Then the optical

implementation of banded matrix multiplication and LU decom­

position is investigated. Initially, simple mapping of the

VLSI arrays to the equivalent optical processor is used.

Then, the outer product concept is implemented to reduce the

- 31 -

hardware requirements of the optical processors. The outer

product processor is further extended to perform several

algorithms based on the Gauss Elimination method. Then, the

issues of feedback mechanisms, as well as the combination of

electronic and optical components in hybrid processors are

briefly discussed. Finally, further classes of systolic

algorithms that are possibly optically implementable, are

outlined.

This thesis is completed with a review of the main

results and some general conclusions, that partially reflect

the research areas mentioned in this introduction. A list of

references is also given, consisting of material covering a

wide spectrum of research interests in systolic systems and

computing.Then, there is an Appendix on the OCCAM program­

ming language, the Loughborough implementation, and the use

of OCCAM for the soft-systolic simulation of the algorithms

discussed herein. It follows a selection of OCCAM programs

with comments.

C H A P T E R 2

BASIC MATHEMATICAL DEFINITIONS

2.1 POLYNOMIAL EQUATIONS

There is a large literature on methods for solving

polynomial equations as well as for polynomial computations

in general; see for example [15), [64), [72), [111), [231),

[255). Herein a series of basic definitions are given fol­

lowed by some comments on the stability of polynomial compu­

tations. Then there is a brief discussion on methods used

for solving polynomial equations.

A polynomial (or algebraic) equation may be expressed

in the form

f(x)

or

(2.1.2)

Here n is the degree of the equation, a0 ,a1 , •.. ,an are the

coefficients and r 1 ,r2, ••. ,rn are the roots (or zeros), of

the equation f(x)=O. The polynomial equations discussed

- 33 -

herein are assumed to be real, i.e. they have real coeffi­

cients. The root with the greatest absolute value is called

the dominant root of the equation. An nth-degree polynomial

has exactly n roots, assuming a root of multiplicity m is

counted as m roots. We say that f{x) has a root r of multi­

plicity m>l if

f(x) = (x-r)mq(x), q(r) ~ 0 (2.1.3)

or, equivalently,

f(r) = f•(r) = . . . = f (m-l) (r) = 0, f(m)(r) ~ 0 (2.1.4)

where f{k)(r) is the kth derivative of f(x) at r. Notice

that a polynomial is differentiable as many times as desir-

able, for k5n and for all finite values of x.

tives of a polynomial are polynomials.

All deriva-

The Newton's theorem defines a relation between the

zeros and the coefficients of a polynomial equation.

Theorem 2.1.1. Let r1 ,r2 , ••• ,rn be the zeros of the polyno­

mial

and for any positive integer p,

S = rP+rP+ p 1 2

(2.1.5)

(2.1.6)

- 34 -

(2.1.8)

The Taylor's theorem gives a relatively simple method

for approximating a general function ~(x) by polynomials.

Theorem 2.1.2. Let t(x) have n+1 continuous derivatives on

[a,~] for some n~O, and let x,x0 belong to [a,~]. Then

(x-x)
..-::o.,' < xo > + • • • +

11

(x-x)n+1
0 .,<n+1) (~)

(n+1)!
(2.1.9)

Some well known applications of the Taylor's theorem are the

infinite
-1 (1-x) ,

ex = 1 +

cos(x) =

sin(x) -
(1-x)-1

1og(x) =

series approximations

log(x), for a given x:

X x2 x3 x4
- + - + - + -+
11 2! 3! 4!

x2 4 x6 X

1 - - + - +
21 4! 6!

x3 x5 x7
X - +-- - +

31 51 71

= 1+x+x2+x 3+

(1-x) 2 (1-x) 3

(1-x) - +
2 I 31

of

4!

X e ,

+

cos(x), sin(x),

. . . (2.1.10)

X The infinite series fore , cos(x), sin(x) will converge for

all x, while those for (1-x)-1 and log(x) will converge for

all lxl<l.

- 35 -

Some basic properties and arithmetic operations for

polynomials
n

are now

f(x) • ~ n-i L aix and g(x) =

i•O

given.
m
L bixm-i

i•O

Let two

with n~m.

f(x)=g(x) if n=m and a.=b., i=O,l,2, ••• ,n
1 1

polynomials

Then:

f(az+~) with a,~,z real variables is a polynomial in z of

degree n

f(x)±g(x) is a polynomial of degree n with coefficients

c1=a
1
., i=O,l, ..• ,n-m+l and c.=a.+b. , i=n-m,n-m-l, •.• ,n

1 1- 1-n-m

f(x)g(x) is a polynomial of degree n+m with coefficients

i

ci • L akbi-k' i=O,l,2, ... ,n+m, where by convention we
k-0

assume that a coefficient with a subscript less than 0 or

greater than the maximum power of the polynomial of which it

is a part is equal to 0.

f(x)/g(x) produces a quotient polynomial of degree n-m and a

remainder polynomial of degree m-1.

The evaluation of a polynomial at x0 , for x0 real, can

be effected using the nested multiplication scheme.

•
f(x

0
l = (((a

0
x

0
+a1)x0+a 2)x0+ , •• +an_1)x0+an (2.1.11)

This computation can be expressed in a recurrence relation,

known as Horner's scheme:

(2.1.12)

- 36 -

From Taylor's theorem, it is evident that the derivative of

the polynomial at x0,f•(x0) can be computed using the same

technique. Similar results can also be produced for the case

of complex x0 [148].

Now, if we introduce the polynomial

(2.1.13)

then

(2.1.14)

i.e. q(x) is the quotient and b0 is the remainder when f(x)

is divided by (x-x0) (synthetic division). If x0ar, a root

of f(x), then b0=0 and f(x)=(x-r)q(x). To find the addi-

tional roots of f(x) we can restrict our search to the roots

of q(x). This reduction process is called deflation.

The rounding errors and stability problems in polyno­

mial computations have been extensively discussed in [227],

[297]. Rounding error problems may occur in the evaluation

of a polynomial and during ~he deflation process. In order

for errors resulting from the deflation to be negligible,

the roots should be determined in order of increasing abso­

lute value, .and then, for each root a final iteration with

the original polynomial should be performed. Additional

computational difficulties are introduced by roots that have

~ultiplicity greater than 1 or those which are very close to

each other.

- 37 -

Generally, if the roots of a polynomial equation are

sensitive to small changes in the coefficients of the poly­

nomial, then the equation is called ill-conditioned; other­

wise it is well-conditioned. Two good measures of the sta­

bility of a polynomial equation are the condition number of

a root, and the relative separation of the roots. A small

condition number indicates better stability in the computa-

tions. The condition number of the determination of a root

r of equation (2.1.1) is given by the ratio

n n

L 1(2i+1)an-iril I L lian-iril· (2.1.15)
i=O i~O

Similarly, a large relative separation indicates better sta-

bility. For a group of k real roots r1<r2< .• <rk the

product

(r2-r1) (r3-r2) (rk-rk-1 l . . . (2.1.16)
lr1 1 lr 2 1 lrk-11

could be taken as a measure of the separation. It may be

difficult to determine the stability of a polynomial, espe~

cially if it is of high degree. For all these cases, special

sophisticated algorithms have been proposed for the solution

of polynomial equations [86], [147]. In all methods dis­

cussed herein, it is assumed that the polynomial equation is

well-conditioned; also, the root to be located is assumed to

have multiplicity m=l, unless otherwise stated.

2.1.1 SOLUTION OF POLYNOMIAL EQUATIONS

- 38 -

In general the methods for solving a polynomial equa­

tion can be classified into two groups:

- iterative methods for solving general functions that can

be specialized for polynomial equations,

- methods that have been developed especially for polynomial

equations, using their properties in an essential way.

These methods can again be characterised as iterative in

the sense that successive approximations of the roots

sought are computed, although sometimes not explicitly.

Convergence: A sequence of iterates x1 ,x 2, .•• ,xk is said to

converge with order p~l to a point r if

(2.1.17)

for some c>O. If p=1, it is necessary that c~1 and c is

called the rate
k

lr-xkl~c 1r-x0 1.

of linear convergence; furthermore

The Bisection method is possibly the simplest of the

general iterative methods. Assume a given interval [a,~]

with only one zero of f(x) in it, and f(a)f(~)<O. Then

while ~-a~&
seq

x:= (a+~)/2
if

f(~)f(x)<O

true
~:=x (2.1.18)

For r the limit of the sequence or iterates x1 ,x2 , •.• ,xk, it

- 39 -

can be shown that lr-xkl~(l/2)k(~-a). Therefore the Bisec­

tion method converges linearly with a rate of l/2.

Another well known method is Newton's method which can

be derived from the Taylor theorem in (2.1.9). Expanding

f(x) about xk and keeping only the first two terms we get

(2.1.19)

By letting f(x)=O and then solving for x, we have

(2.1.20)

We recognize x as xk+l' the next approximation to x; the

error is given by the third term of the Taylor series.

Given an initial approximation we evaluate

f(x 0), f'(x 0); then the iterates are computed as follows:

Theorem 2.1.3. Assume that f(x), f'(x), f''(x) are continu­

ous for all x in some neigbourhood of r, and that f(r)aO,

f'(r);~O. Then, if x0 is chosen sufficiently close to r, the

iterates x1,x2 , ... ,xk of Newton's method will converge tor.

Moreover lr-xkl ~ c1r-xk_1 12 with c = -(f''(r)/2f'(r)); i.e.

the method converges quadratically.

The Newton method is used for the iterative computation

of many simple functions, e.g. inverse, square root,

inverse square root. Disadvantages of the Newton method is

- 40 -

that it requires a good initial approximation and two poly­

nomial evaluations per iteration. On the other hand, how­

ever, it combines simple computation with fast convergence.

Numerous modifications of this basic method have been

derived for improved performance or specific applications.

Two other general methods that have been widely used

for the solution of polynomial equations are:

The Muller method, uses quadratic interpolation between

three previous approximations of the root sought. The calcu­

lation of the next iterate is quite complicated but it

requires no derivatives of f(x). An advantage of the method

is that complex zeros can be found starting with real ini­

tial estimations; the order of convergence is p=l.84.

The Laguerre method requires the computation of f(x),

f'(x) and f''(x) in each iteration, A significant advantage

of the method is that it does not require a good initial

approximation and the method is cubically convergent.

The Bairstow method is an example of a root-finding

process, especially designed for polynomial equations. This

procedure can be derived from the Newton method applied to a

real polynomial equation with a pair of complex roots. Note

that all complex roots of real polynomials come in conjugate

pairs, a+~i, a-~i. A pair can be represented as a quadratic

factor that is deflated from the polynomial using synthetic

division in a way similar to that of (2.1.14), The objective

- 41 -

is to zero the remainder, which is a function of a,~,

through successive approximations of Newton's method.

The method of Bernoulli uses the theorem of Newton to

derive successive approximations of the dominant zero(s) of

f(x). In the simplest case we suppose that all roots are

real and 1r 1 1>1r 2 1~1r 3 1~ ••• ~lrnl Then, from (2.1.6), we

have

p

s = rP{l+(r2) +
p 1 r

1

. . .

and then, for p sufficiently large,

(2.1.22)

(2.1.23)

It is evident from (2.1.22) that the method converges

linearly and the rate of convergence depends on the ratio

1r2;r1 1, i.e. the relative separation of the roots. The

algorithm can also be extended to cover complex and multiple

zeros (48), (148). The Quotient-Difference algorithm extends

Bernoulli's method and may produce all roots of a polynomial

equation, including pairs of complex roots, simultaneously.

The root-squaring (Graeffe's) method provides simul­

taneous approximations to all roots of the polynbmial equa- ·

tion. The object of this procedure is to produce an equation
' '

having roots differing greatly in magnitude, since the roots

of such an equation can be approximated by simple functions

of its coefficients. Suppose that jr1 l>lr2 1> ••• >lrnl are

- 42 -

the zeros of the polynomial (2.1.1). Then, the polynomial
2 2 2 with zeros r1 ,r2 , •.• ,rn is given by

(2.1.24)

with

(2.1.25)

This polynomial is referred to as the squared polynomial of

f (X) • Thus, after a number of m successive squarings on

f(x) a new polynomial is formed:

+A = 0 n

Therefore the roots can be approximated as

2m
r. =A.jA. l'

1 1 1-
i=1,2, ... ,n

(2.1.26)

(2.1.27)

The signs of the zeros are determined by substitution in the

original equation. Also, the method can be extended to cover

complex roots [42). For a detailed analysis of the advan­

tages and drawbacks of Graeffe's method see [297). In gen­

eral, the method is mainly suitable for a small number of

iterations in order to improve the relative separation or to

provide initial approximations of the roots of a polynomial.

Finally, using Sturm sequences is yet another approach

to finding the real roots of an equation and producing them

more or less simultaneously. A Sturm sequence

- 43 -

f 0(x),f1(x), •.• ,fn(x) satisfy the following conditions on an

interval [a,~) of the real line [255):

the sign of fn(x) is constant

if f.(x)=O then f, 1 (x)£.+1 (x)<0
1 1- 1

if f 0 (x)=O then for h sufficiently small

These conditions ensure that the number of real zeros of

f 0(x) in the interval [a,~) is precisely the difference

between the number of sign changes in the sequence

£ 0(a),f1(a), ••• ,fn(a)

f 0 (13) , f 1 (13) , ... , f n (13) •

and the corresponding number in

By choosing various intervals [a,13)

the real zeros can therefore be located efficiently and

accurately.

2.2 MATRICES

Matrices are very important to Numerical Analysis since

they provide a concise method for specifying and manipulat­

ing large numbers of linear equations. Herein some basic

definitions of matrix computations are given, specifically

related to the numerical algorithms used later on. For

further details see, for example, [15], [22], [27], [32],

[111], [114].

The collection of m linear equations in the form

...........................

(2.2.1)

is called a system of linear equations (or linear system of

equations). The i=1,2, ... ,n are the unknowns, bi the

right-hand-side (r.h.s.) terms, and i=l,2, ... ,m,

j=1,2, ..• ,n, are the coefficients, all assumed to be real.

A real(mxn) matrix is a rectangular array of reals

(called elements, entries,. components or scalars), with m

rows and n columns. An (nxn) matrix is called a square

matrix and n is termed as size (or order) of the matrix.

Herein, we shall use capital letters for matrices. The ele-

ments of a matrix A are represented by lower case letters

- 45 -

with two subscripts such as aij' where i denotes its posi­

tion in the ith row and j its position in the jth column.

A column vector with n elements is a (nxl) matrix.

Vectors are represented as underlined lower case letters

with their elements denoted by the same letter, but with a

lower suffix giving the position of that element in the vec­

tor. For example, the column vector (or simply vector) x

with its elements denoted by xi, i=1,2, ••. ,n is written as:

X = (2.2.2)

To each column vector as shown above there exists a

corresponding row vector which is usually denoted by the

same name but with superscript_ T.

vector of x in (2.2.2) is

The corresponding row

(2.2.3)

Therefore, a linear system of equations, as in (2.2.1),

can be specified, in matrix notation, as

Ax = b (2.2.4)

where A is a (mxn) coefficient matrix, and ~ is the unknown

vector, b is the r.h.s. vector, wllh n ana m entries. Herein,

systems with square (nxn) coefficient matrices are mainly

discussed.

/

- 46 -

Some basic properties and arithmetic operations for

matrices and vectors are now given:

If A and B are (mxn) matrices then C=A+B is defined by

c .. -a .. +b .. , i=1,2, ... ,m, j=1,2, ... ,n.
1) 1)- 1)

For s a scalar, sA is the matrix with elements equal to

saij' i=1,2, ... ,m, j=1,2, ... ,n.

If A is a (mxn) matrix and B is a (nxp) matrix then
n

C=AB is a (mxp) matrix.withcij.·}: aikbkj' i=1,2, ..• ,m,
k-1

j=1,2, ..• ,p. In general AB#BA.

If x and y are two vectors with n components then ~=~±Y

is defined by z.=x.+y., i=1,2, .•. ,n.
1 1- 1

For s a scalar, sx is a vector with elements equal to

sxi' i=1,2, ... ,n.

If A is a (mxn) matrix and x is a vector with n entries
n

then y=A~ is a -vector of m entries, with yi • }: aikxi'
k=l

i=1,2, •.. ,m. Similarly for xT a row vector with m elements,

yT = xTA produces a row vector with n entries.

The inner product of two vectors of n elements yT~ is a

scalar, while the outer product of the two vectors, ~T is a

(nxn) matrix.

Suppose that we haven vectors ~1 ,~2 , ••• ,~n' all with n

components. If the relation

- 47 -

(2.2.5)

••• =c :aO, n the vectors are

said to be linearly independent. The rank of a matrix is

defined as the number of linearly independent rows or

columns of the matrix. For example, the result of an outer

product is a rank 1 matrix.

A scaled matrix A is the matrix sA where s is a scalar

chosen so that all entries of A are kept within desirable

size bounds. Usually s is a power of 2. Normalisation of A

is a scaling operation where s is a suitably chosen element

of A. Similarly, a scaled, or normalised vector, x can be

defined. The scaling or normalisation operations are useful

in the cases where the entries of a given matrix or vector

differ greatly in size . Also in cases where successive .
matrix-vector or matrix-matrix multiplications are performed

and there is a rapid increase or decrease in the size of the

matrix or vector elements.

zero (or null) matrix (0) is the matrix with all its

elements equal to zero. zero (or null) vector (Q or QT) is

the vector with all elements equal to zero.

The set of elements aii' i=l,2, •.. ,n of a matrix A is

the main diagonal of A. The diagonals above (below) the main

diagonal called super- (sub-) diagonals.

If aij=O for i~j, the matrix A is said to be a diagonal

matrix, usually denoted by D.

- 48 -

The identity matrix, I, is a diagonal matrix with all

diagonal elements equal to 1. It holds that AiaiAmA.

The matrix A is a lower triangular (strictly lower tri­

angular) matrix if aijaO for i<j(i5j). Similarly, A is an

upper triangular (strictly upper. triangular) matrix if

A unit lower (upper) triangular matrix

has all the main diagonal elements equal to 1. A lower

(upper) triangular matrix is usually denoted by L(U).

An (nxn) matrix A is said to be a banded matrix if

The bandwidth of the

matrix is w=p+q-1 since this is the number of non-zero diag-

onals in the band. For example, if p=q=2 then matrix A is

called tridiagonal; if p=q=3 then matrix A is called quindi­

agonal.

If most (>80%) of the elements aij of a matrix A are

zero then A is said to be a sparse matrix. If most of the

elements aij of the matrix A are non-zero, then the matrix A

is a full (dense) matrix. A matrix is termed sparsely banded

if there are null diagonals between the significant diago­

nals.

A matrix is called an upper (lower) Hessenberg matrix

if a .. =0 for all i>j+1 (for all j>i+1), i,j=1,2, •.. ,n.
lJ

A matrix is called a Toeplitz matrix if its elements

are constant along each diagonal, i.e. aij is a function of

j-i.

- 49 -

A block (pxq) matrix A is a (rxs) matrix where each

element is a (pxq) submatrix Aij' Thus the corresponding

point matrix A, i.e. the matrix with scalars as elements, is

of order (rpxsq). A block (pxl) vector is a vector where

each element is a subvector with p coefficients. A matrix or

vector can be further partitioned into submatrices or sub­

vectors of unequal sizes. The basic arithmetic operations

previously defined for point matrices (e.g. addition, multi­

plication) can be extended to block matrices, provided that

the submatrices and subvectors involved are dimensionally

compatible.

A matrix B is said to be transpose of an (mxn) matrix A

if

b .. ~ a ..
] 1 lJ

for f=1,2, ... ,m, jal,2, ..• ,n (2.2.6)

Usually B is denoted with AT. Notice that xT is the tran-

spose of !•

A square matrix A is symmetric if AT = A,

The Trace of a matrix A is given by

n
Tr (A) - }: aii.

i=l

i.e.

(2.2.7)

The determinant of a matrix A will be denoted by

det(A). Matrix A is non-singular if and only if det(A)~O;

otherwise it is called singular.

- 50 -

The inverse of a non-singular square

matrix usually denoted by A-l It holds

and det(A)det(A-1)=det(I)=1. Notice

(AB)-1=B-1A-1 •

The matrix A is diagonally dominant if

n

\ Ja .. J, L l) .

j=1

i=1,2, ... ,n

matrix A is a

that AA-1=A-1A-I,

also that

(2.2.8)

A is said to be strictly diagonally dominant if the strict

inequality holds for all i in (2.2.8).

The matrix A is said to be orthogonal if ATA=I.

A real symmetric matrix is positive definite if,

xTAx>O for all ~ ~ o.

A permutation matrix P is a matrix with exactly one

non-zero element, namely unity, in each row and each column.

For any permutation matrix P we have

T T PT -1 pp = p p • I, = p • (2.2.9)

A matrix A is irreducible if and only if there does not

exist a permutation matrix P such that PTAP has the form:

(2.2.10)

where F and H are square matrices and 0 is a null matrix.

- 51 -

A planar rotation matrix is a matrix differing from the

identity matrix I, in at most four elements which have the

form rii=rjj=cose and rji=-rij•sine, for a given angle e.

2.2.1 EIGENVALUES AND EIGENVECTORS

The eigenproblem for a given square matrix A of order n

is to find the eigenvalues >.. and the eigenvectors x (~~Q)

such that

Ax = >..x. (2.2.11)

The eigenproblem may be written as:

(A-AI)~ = Q (2.2.12)

which is a system of n homogeneous linear equations, i.e.

the r.h.s vector is a null vector. This system has a non-

trivial solution, ~~Q. if and only if the matrix of the sys­

tem is singular, i.e.

p(>..) = det(A->..I) = 0, (2.2.13)

Equation (2.2.13) is called the characteristic equation (or

characteristic polynomial) of matrix A. The characteristic

equation (2.2.13) has n roots (counting multiplicities),

i.e. an eigenvalue problem has n solutions >..i, i=1,2, ..• ,n.

Associated with each >..i there is at least one eigenvector

solution x. of (2.2.12). Note that, any arbitrary multiple
-1

of x. is also a solution. Theoretically,
-1

- 52 -

(2.2.14)

The spectral radius of matrix A is defined as:

p(A) = maxp,i I, i-1,2, •.. ,n (2.2.15)

The spectral radius is particularly useful in the iterative

solution of linear systems, since it allows the structure

and properties of the coefficient matrix, via the eigen­

values, to influence the performance of the solution tech­

nique. The use of spectral radius is closely connected with

the matrix and vector norms, described later on;

Theorem 2.2.1 (Gerschgorin): If A is any eigenvalue of A

then

n

laii-AI S I laijl
j=1

(2.2.16)

for at least one i, i=1,2, ... ,n. Thus, every eigenvalue of A

lies in at least one of
n

radii I (jaijl>·
i~1

the discs with centres aii and

Two matrices A and B are said to be similar if a

that A=S-1BS,

non-

singular matrix s exists such or,

-1 equivalently, B=SAS • Now (2.2.11) can be rewritten as

. -1
SAS Sx = ASX (2.2.17)

Therefore,

B(S~) = A(S~) (2.2.18)

- 53 -

Thus if A, ~ are an eigenvalue and an eigenvector of A, then

A, Sx are an eigenvalue and an eigenvector of B.

A matrix A is called diagonalizable if there exists a

non-singular matrix s, such that

(2.2.19)

where DA is a diagonal matrix having as main diagonal ele­

ments the eigenvalues of A.

2.2.2 MATRIX AND VECTOR NORMS

For the purpose of quantitatively discussing errors in

matrix computations, it is convenient to associate with any

vector or matrix a non-negative scalar that in some sense

measures its magnitude. Such measures are called norms.

For any vector !• its norm I 1!1 I has the following pro­

perties:

11!11 ~ 0, the equality holds for x=O

11 a~ I I - I a I 11! 11,

The most frequently used vector norms are

n

I I~ I 11 - L I xi I (1 norm)
i-1

n 1/2

11~ ll2 = c~1 1 Xi~ 2} (Euclidean norm)

(2.2.20)

(2.2.?1)

(2.2.22)

- 54 -

11.~11 .. =maxi xi I i=1,2,, •• ,n (eo norm) (2.2.23)

For any matrix A, its norm I IAI I has the following pro­

perties:

I IAI I ~ 0, the equality holds for A=O

I I a A I I = I a I I I A I I

IIA+BII 5 IIAII + IIBII

IIABII 5 IIAII IIBII (2.2.24)

Given a vector norm 11~11, a matrix norm IIAII is called

compatible or consistent if

IIA~II 5 IIAII 11~11· X~ 0 (2.2.25)

Similarly, given a vector norm 1 1~1 1, the matrix norm

which is subordinate to this vector norm is defined by

IIAII = maxiiAxll, for llxll=l. - - (2.2.26)

It can be shown that for a real (nxn) matrix A

n

IIAII 1 = max{. L laij 1} j=1,2, ••• ,n (max column sum)(2.2.27)
1=1

n

IIAII .. = max{.}: 1aij1} i=l,2, ••• ,n (max row sum)

J=1

(2.2.28)

1/2

IIAII 2 = {p(ATA)} (spectral norm) (2.2.29)

- 55 -

For any compatible matrix norm

p(A) ~ JJAJJ. (2.2.30)

A useful result, for proving convergence of a sequence of

matrices, is that, for any square matrix A, p(A)<1, if and

only if 1 JAI 1<1. Notice that the reverse is not always

true.

The condition number of a matrix A is defined as

-1
cond(A) = I JAil I lA JJ.

Notice that cond(A) ~ p(A)p(A-1).

2.2.3 MATRIX FUNCTIONS

(2.2.31)

If in a polynomial f(x), x is replaced by a square

matrix A, we get a matrix polynomial

+a 1A+a I n- n
(2.2.32)

It can be shown that if A is an eigenvalue of A, then f(A)

is an eigenvalue

eigenvalue of Ak,

The Taylor

of f(A). Thus, for example, Ak is an

and A-p is an eigenvalue of A-pi.

series approximations obtained from

(2.1.9,10) can be extended for the approximation of matrix

functions using matrix polynomials, provided that the series

is convergent. In general, a power series of the form

(2.2.33)

- 56 -

converges if p(A)<a, and the series 2 ao+a1 x+a2x + • • . is

convergent for lxl<a. Applying (2.2.30) the convergence

criterion can be replaced by I IAI l<a.

Theorem 2.2.2. Let A be a square matrix of order n. Then Ak

converges to the null matrix as k~~ if and only if p(A)<1.

Furthermore, if p(A)<1, then (I-A)-1 exists and can be

expressed by the convergent series (Neumann expansion)

(2.2.34)

Convergence: For a square matrix A, if I IAI 1<1, then Ak con­

verges to the null matrix ask~~. Similarly, if IIAII<1

then (I-A)-1 exists and can be expressed by the Neumann

expansion.

Rate of convergence: Let A, B be square matrices. If ---
IIAk 11 <1, k>O, then

k R(A) = -
lniiAk 11

(2.2.35)
k

is the average rate of convergence of A. If R(Ak)<R(Bk),

then I IAkl 1>1 IBkl 1 and therefore B converges faster than A.

Further, for k~~ the asymptotic rate of convergence is

defined as R(Ak) ~ R~(A) = -lnp(A).

Thus, the following power series approximations

A2 A3 4
eA

A
= I + A + - + - + - +

2! 31 4!

A2 A4 A6
cos(A) = I - - + -- +

21 41 61

and sin(A) = A - +---+ . . . (2.2.36)
3! SI 71

converge for all A, since they converge for any real x. The

rate of convergence depends on p(A), I IAI I·

Similarly, the series

log(A) = (I-A) - --- + . . . (2.4.37)
2! 31

converges only for p(A)<1, or equivalently I IAI 1<1.

Iterative schemes, based on the Newton method (2.1.20)

can be used for the computation of some matrix functions,

provided that a good first approximation is known. For exam­

ple, if Bo=B is an initial approximation of A-1 , then

iterates computed using the formula

(2.2.38)

converge to A-1 • This iteration can be derived from the

power series expansion as follows. Forming M=I-AB, we get

A-1 = B(I-M)-1 or

-1 2 A = B (I+M+M + ••.) , I I M 11 <1. (2.2.39)

Then, by truncating the series after the first two terms we

get

A-1 = B(2I-AB) (2.2.40)

By putting Bo=B we obtain (2.2.38). The convergence to A-
1

is quadratic.

- 58 -

Similar iterative schemes

A112 and A-112 •

can be obtained for

Theorem 2.2.3. Let A be a (nxn) non-singular and diagonaliz­

able matrix, and suppose that none of the eigenvalues of A

is real and negative. If, for P0aA, Qo=I, the following

iteration is performed

k=-1,2, .••

then Pk converges to A1/ 2 while

[128].

converges to

(2.2.41)

-1/2
A '

Theorem 2.2.4. Let A be a (nxn) matrix with positive eigen­

values. Then, if cond(A)<9, there exists a neighbourhood of

A-1/ 2 such that if T0 is chosen in this neighbourhood the

sequence

(2.2.42)

converges to A - 11 2 linearly, [229].

2.3 LINEAR SYSTEMS OF EQUATIONS

Suppose one wishes to solve the system

Ax = b (2.3.1)

where A is a square (nxn) matrix, £ is a given r.h.s. vec­

tor, and x is an unknown vector. It will be assumed that A

is non-singular, hence A-1 exists and there is a unique

solution x. The choice of solution method depends on a

number of factors, including the structure and size of the

matrix A, the number of arithmetic operations required, and

the control of the rounding error growth (or stability).

There are two general classes of methods, direct and itera­

tive methods.

As regards the matrix size and structure, direct

methods, are used mainly when matrix A is small, dense or

banded. Direct methods cannot, in general, be used for

large sparse matrices because of the problem of fill-ins

which occurs during the elimination process. For large

sparse matrices we normally use iterative methods since

these will not alter the structure of the original matrix

and therefore preserve sparsity. However, there are special

cases where pivoting techniques can alleviate the fill-in

problem of direct methods.

Herein a brief introduction on some important methods

are presented which are used later on as the basis for sys­

tolic algorithms. The material of these sections is obtained

- 60 -

from [15), [72), [231), [289), [298).

2.3.1 DIRECT METHODS

In such methods first a sequence of operations is per­

formed, in general once only, which results in an approxima-

tion to the true result. The approximation enters only

because intermediate results involving arithmetic operations

are stored and subsequently used with rounding errors.

Gauss elimination

This method is generally used to solve a system of

linear equations of the form (2.3.1) by reducing A to an

upper triangular matrix u. Simultaneously the r.h.s. vector

b is modified to b'. The triangularization process in the

mattix A takes place in (n-1) major steps and· involves

evaluating matrix A(kl, k=1,2, ... ,n-1 where in general after

the (k-l)th step of elimination, the matrix A(k-l) has the

form:

a(k-1)
kk

a(k-1)
k+1,k

a(k-1)
nk

(1)
a2,k+1

alk-1)
k,k+l

a(k-1)
k+l,k+1

a(k-1)
n,k+1

a(k-1)
kn (2.3.2)

a(k-1)
k+1,n

),_,J
nn

- 61 -

where the elements aft-ll, i=k+l,k+2, .•. ,n are now elim­

inated by calculating

a (k) (k-1) (k-1) (k-1) 1 a(k-1)
ij = aij -akj aik kk ' (2.3.3)

for i,j=k+1,k+2, .•. ,n. Similarly, £(k-1) has the form

. . . b(k-l)b(k-1) •.. bn(k-1)JT (2.3.4)
k k+l

and the elements b!k-1), i=k+l,k+2, ... ,n are now modified by
l

calculating

b!kl = b!k-l)_bk(k-lla!kk-1) I ak(kk-ll, (2.3.5)
l l 1

for i=k+l,k+2, ... ,n. After the completion of the triangular­

ization procedure, A(n-l)=U and b(n-1)=b'. Then, the tri-

angular system

Ux = b'

is solved by a back substitution process of the form

i+l
I

xi= (bi- L uikxk) I uii' i=n,n-1, ... ,1.
k=n

(2.3.6)

(2.3.7)

i.e.

The Gauss elimination method fails if one of the pivots

(i) aii , i=l,2, ••. ,n-1, is zero. Furthermore, the accu-

racy of the final solution depends on the choice of the

pivots. For an accurate result all the pivots have to be

selected in such a way that the elements I aiklakk I which

represent the multipliers for the different steps of the

elimination process should be less than or equal to unity.

Some important pivoting strategies are briefly considered

- 62 -

below:

Full pivoting: At the start of the kth major step all ele-

t (k-1) . . k k 1 h d th 1 t . th mens aij , l 1 Jm , + , ••• ,n are searc e ; e e emen Wl

maximum absolute value is chosen as pivot. Obviously this

method is very time consuming, for the reduced matrix has to

be searched at each reduction stage.

Partial column pivoting: The elements al:-1 >, i=k,k+l, .•• ,n

are searched. The result is limited to n-k elements only. A

similar strategy can be applied to the rows of the matrix.

Pairwise (or neighbour) pivoting: Only aik and ai,k+1 are

compared. A detailed evaluation of this method can be found

in [272).

No pivoting: For some classes of matrices, no pivoting is

required. Such cases are, for example, symmetric positive­

definite, or irreducible, diagonally dominant matrices.

It has been observed that if the elements of A vary

greatly in size, then it is likely that loss of ~ignificance

and rounding error propagation will be worse. To avoid this

problem matrix A is scaled, and therefore, the choice of

pivot elements is affected. Two techniques are widely used

Explicit scaling: A power of two is chosen, i.e. 2r, so that
-1 r 2 < maxlaij/2 I ~ 1, i=1,2, ..• ,n. Then, the Gauss elimi-

nation process is performed on the scaled matrix A. Further,
r.

different scaling factors 2 1 can be used for each row or

- 63 -

column.

Implicit scaling: The scaling operation is combined with the

partial pivoting strategy, by searching for the maximum of
(k-1) ri ·

Jaik /2 J, i=k, k+l, ••. , n. Then the Gauss elimination

process is performed, using the unsealed pivot ai~-l)

An extension to the Gauss elimination process is the

Gauss-Jordan algorithm. Jordan's modification means that at

the kth step, the elimination is performed not only in rows

k+l,k+2, ... ,n but also in rows k-l,k-2, •.. ,1. Thus, the back

substitution process is incorporated in the elimination pro-

cess. However, the Gauss-Jordan method is computationally

more expensive than the combination of Gauss elimination and

back substitution.

The Gauss elimination can also be applied on matrix

equations of the form AX=Y, where Y is a square or rectangu-

lar matrix constructed from a set of r.h.s. vectors.

ermore, by putting Y=I, the solution to AX=I gives

Furth­
-1 X=A •

For this application in matrix inversion, the Gauss-Jordan

method is used.

LU decomposition

Let us define the matrix Ek as

- 64 -

1

1

1

(2.3.8)

1

i.e. Ek is the identity matrix with additional elements -eik

in (ik)th position for i=k+1,k+2, ... ,n. Then, the premulti­

plication of a (nxn) matrix A by Ek has the following

effect: row k of matrix A is multiplied by -eik and then it

is added to row i of A for i=k+1,k+2, ... ,n.

The Gauss elimination algorithm without pivoting can

then be described theoretically by

(k) (k)
where eik=aik ;akk • Thus, we have

-1
En-1u.

-1 where Ek =-Ek' k=1,2, ... ,n-1. Further we can write

-1
En-1 = L

(2.3.9)

(2.3.10)

(2.3.11)

. -1 -1 -1
Notlce also that E1 ... Ek ... En_1 =-Ec· .. -Ek- ••. -En_1 .Thus L is

a unit lower triangular matrix, with the elements of column

k equal to the elements of column k of -Ek. Thus, we con­

clude that A can be factorized in the form

- 65 -

A • LU (2.3.12)

The LU decomposition (or factorization) of a matrix A

is illustrated here for a general (nxn) matrix. In the rela-

tion AaLU, or

1

1

=

(2.3.13)

(L is unit lower triangular and U is upper triangular) all

the coefficients in L and u are initially unknown. The rules

for matrix multiplication enables them to be found from the

following equations:

i-1
uij = aij- L tikukj i=1,2, ... ,n, j=i,i+1, ... ,n

k-1

j=i+l, i+2, ••• ,n. (2.3.14)

This factorization method fails only if one of the

diagonal elements uii' which are used as divisors proves to

be zero. As in the Gauss elimination process, similar pivo-

tal strategies must be employed in order to ensure suffi­

ciently accurate results. The system Ax=b can now be solved

with a forward and a backward substitution for the two·

- 66 -

triangular systems:

Lz = b and Ux = z

The forward substitution has the following form

i-1
zi = bi - L tikzk' i=1,2, •.• ,n,

k•1

(2.3.15)

(2.3.16)

while the backsubstitution is given by (2.3.7),wt-l:h oi• .. i·

The LU factorization method described is due to Doolit-

tle. Alternatively, if the matrices u is unit upper and L

lower triangular, Crout's LU decomposition method is esta-

blished. A further variation of the LU decomposition is the

LDU decomposition, where

A = LDU' and U = DU' (2.3.17)

with o a diagonal matrix and L (U') a unit lower (upper)

triangular matrix. Then Ax=b is solved by the 3 stage calcu-

lation,

L~ = ~' Dy = ~' U'~ ay (2.3.18)

The diagonal system solution is given by

(2.3.19)

can see is a lower

(upper) triangular matrix. The elements of L-1 (u-1) can be

derived by using the forward (backward) substitution process

on the matrix equation

- 67 -

or -1 UU a I. (2.3.20)

Similarly, if the LDU decomposition is used, and since

-1 . di 1 . -1 -1 -1 -1 D 1s a agona matr1x, A - U' D L .

Especially for symmetric positive definite matrices:

(2.3.21)

This is called the Choleski method and is particularly

attractive since no pivoting is needed; furthermore the

storage and computation requirements are approximately

halved.

The error analysis of the Gauss elimination method has

been extensively studied; see for example [106], [298]. An

important technique is the backward error analysis. Thus,

for x the computed solution and ~* the correct solution of

(2.3.1), we show that x is the exact solution of the system

(A+oA)~=£, in which bounds can be given for oA. It can be

shown that if partial or complete pivoting is used,
3 . 2

I loAI lm ~ 1.01(n +3n)pu, where, n is the order of the

matrix, p is the pivot with the maximum absolute value, and

u is the unit roundoff error. Similarly, if the LU factors·

have been computed using Gaussian elimination of A then they

satisfy the equation A+oA=LU, with 1 loAIIm ~ n2pu.

2.3.2 ITERATIVE METHODS

- 68 -

In any iterative method one begins with an initial

approximation vector and then successively modifies the

approximation according to some rules. For an iterative

method to be useful the sequence of vector iterates must

converge.

Convergence: A sequence of vectors ~(O),~(l),···•~(k)
is said to converge to a vector ! if there exists, a quan­

tity O<c<l and an integer n>O such that

lle(k) 11 = 11~-~(k) 11 ~ c, for k~n (2.3.22)

The iterative methods can provide arbitrary accuracy

depending on the number of iterations performed. They are

usually terminated when the difference between successsive

approximations (displacement)
(k+l) (k)

~ -~ , satisfies some

given tolerance. Different iterative methods produce dif-

ferent rates of convergence and this, together with the

amount of work required per iteration determines which

method is used for particular problems. Another important

factor in the performance of an iterative method is ·the

choice of the initial approximation, ~(O). A bad choice can

force even an efficient method to perform a large number of

iterations.

Suppose we wish to solve the system A! = £. Several of

the best known iterative methods are built around a parti­

tion of A into the form

A = D-L-U (2.3.23)

- 69 -

where D is diagonal, L is strictly lower and U is strictly

upper triangular matrices. It should be noted here that we

assume, without loss of generality, that the system is

ordered so that aii # O.

The equation (2.3.1) thus can be written as:

Ox = (L+U)~+_£.

The Jacobi iterative method is defined by

Dx(k+l) = (L+U)~(k)+_£,

(2.3.24)

(2.3.25)

with x(O) the initial approximation vector. This can be

rewritten as

(2.3.26)

The Gauss-Seidel iterative method is defined by

(2.3.27)

giving

x(k+l) = 0-lLx(k+l)+D-lUx(k)+D-lb (2.3.28)

so that

(2.3.29)

Both Jacobi and Gauss-Seidel methods can be expressed

in the general form

- 70 -

(2.3.30)

For the Jacobi iteration the matrix M=MJ=o-1(L+U) is called

the point Jacobi iteration matrix, (or simply Jacobi
-1 matrix). Also~ can be defined as ~J=O £. In a similar

manner for the Gauss-Seidel method M=MG=(I-o-1L)-lo-1u and

-1 -1
g:G=(I-0 L) ~J'

To analyse the convergence, let e(k) = ~-~(k), k~O, be

the error in x<kl. Then,

(2.3.31)

where ~(O)=~-~(O), is the error of the initial approxima­

tion. Using the convergence definition, in order for x(k) to

converge to ~·
independent of the choice of ~ (0), it is

necessary and sufficient that lle(k)ll<&. - - From (2.3.31) it

is evident that the convergence criterion can be restated as

Therefore it is sufficient

that IIMII<l.

An estimation of the number of iterations can be

derived as follows. Starting from

and by putting ~(O)=Q we have

11~-~ (k) 11

11~11

(2.3.32)

Further let &/llxll=o; also, since p(Ml~IIMII, we finally

get

lno lno
(2.3.33) k~---=---

lnp(M) -R.,.(M)

- 7l -

Thus, it is obvious that the rate of convergence is

inversely proportional to p(M) or equivalently I IMI I· Notice

that x<Ol=O is a usual initial approximation if no other

information is given.

Over Relaxation Methods

Related to the Jacobi method is the Jacobi Over Relaxa-

tion method (JOR method). In this method the displacement

vector x(k+ll_x(k) of the JOR method is taken to be w times - -
the displacement defined by the Jacobi iteration:

(2.3.30)

Therefore

(2.3.31)

The iteration matrix is now M(w)=wMJ+(l-w)I. The over

relaxation factor w is chosen to minimize p(M(w)),

in order to make x(k) converge to ~ as rapidly as possible;

with w=l we have the Jacobi method~

Similarly, related to the Gauss-Seidel iteration method

is the Successive Over Relaxation method (SOR method). In

this method, the displacement ~(k+l)_~(k) of the SOR method

is taken to be w times the displacement defined by the

Gauss-Seidel iteration, therefore from equation (2.3.28) we

• For JOR 0 <c..< 21(1- m (Mrll i 2 , where in (M:rl i~ the ~I'T'<lllest

eisenvalue of MJ.

- 72 -

have that

then

with oo=l, we have the Gauss-Seidel method.

chosen to minimize p(M(oo)) for 0 < cu < 2 and

(2.3.32)

(2.3.33)

Again oo is

The calculation of-the optimal value of oo is difficult

except in the simplest cases; usually it is obtained only

approximately, based on trying several values of oo and

observing the effect on the speed of convergence. In spite

of these problems the resulting increase in the speed of

convergence is dramatic. In many numerical applications the

convergence of the iterative methods is secured by the fol­

lowing theorems.

Theorem 2.3.1. If A is a strictly diagonally dominant matrix

then for any choice of x(O) both Jacobi and Gauss-Seidel

methods will converge.

Theorem 2.3.2. If A is a positive definite matrix the

Gauss-Seidel and SOR methods converge for any x(0 l.

- 73 -

Theorem 2.3.3. Let MJ be non-negative. Then, only one of the

following can be valid:

1 = p(MJ) • p(MG)

1 < p(MJ) < p(MG)

Block variations of the linear system solution algo­

rithms described herein can also be derived, if all scalar

operations are replaced by the corresponding block submatrix

computations.

£-cyclic matrices

For some specific types of linear systems, usually

arising in the numerical solution of certain ordinary or

partial differential equations, special methods have been

developed. These methods include Cyclic Reduction, Multi­

coloring techniques, Domain decomposition, Recursive Dou­

bling, etc. [3), [117), [214), [220), [282), [300). Some of

these techniques are discussed later on in the context of

developing specific systolic algorithms. The class of p­

cyclic matrices play an important role in the iterative

solution of these linear systems. Herein some basic defini­

tions and properties are given.

A square matrix A is p-cyc1ic, p~2, if there exists a

- 74 -

permutation matrix P such that PTAP can be partitioned in

the block form

fAll A
l,p

A21 ~22
A32 A33 0

~
(2.3.35)

0 A A
p,p-1 p,~

where Aii are square non-singular submatrices and Aij are

rectangular submatrices. In the specific case where Aii are

(lxl) submatrices, then the property that the matrix A is

2-cyclic is equivalent with "property A".

A square matrix M is called weakly cyclic of index p if

there exists a permutation matrix P such that PTMP can, be

partitioned in the block form

0 Ml"'] ,p

M21 0

M32 0

0~ (2.3.36)

M p,p-1
0

where the null diagonal submatrices are square and Mij

rectangular submatrices.

Theorem 2.3.4. (Frobenius) If M is a weakly cyclic matrix of

- 75 -

index p then Mjp is completely reducible, for j~l, i.e.

there exists a permutation matrix such that Mjp can take the

form

(2.3.37)

where each diagonal submatrix is square and

If a matrix A is p-cyclic, then A is consistently

ordered if all eigenvalues of the matrix

-1 -(p-1)
M(e<) = D (e<L+e< U) (2.3.38)

are independent of cx~O. Any block tridiagonal matrix, with

Aii as non-singular square submatrices, is a consistently

ordered 2-cyclic matrix.

Now the convergence of iterative· methods using these

matrices is examined. Let A be a consistently ordered p­

cyclic matrix. Then

(2.3.39)

and consequently R~(MG)=pR~(MJ). Thus, the Gauss-Seidel

method is p times faster than the Jacobi method. For the SOR

- 76 -

method in particular, if the eigenvalues of MP are all real

and non-negative, then an optimum w can be determined by the

equation

(2.3.40)

and p(MG(oo))=(w-l)(p-1).

2.4 MATRIX EIGENVALUE PROBLEM

There are many

and/or eigenvectors.

problem and whether

determining eigenvalues

used will depend on the

methods for

The method

both eigenvalue

required or just the eigenvalue.

and eigenvector are

It also depends on the

number of eigenvalues required or their relative positions

in the eigenvalue spectrum.

Some eigenvalue methods work with the matrix equation

(2.2.12) or directly on the matrix A whereas other methods

are concerned with finding the roots of the characteristic

equation (2.2.13). Finally there are methods that compute

the eigenvectors, for given eigenvalues. In this section we

mention briefly some methods and full details can be

obtained from [15], [72], [298].

2.4.1 THE POWER METHOD

This method is used to find the dominant eigenvalue of

a matrix as well as the corresponding eigenvector. Suppose

that the following relationship holds for the eigenvalues of

an (nxn) matrix A:

(2.4.1)

and that there exist n linearly independent eigenvectors ~i·

Therefore any arbitrary u can be expressed as

(2.4.2)

- 78 -

If we successively multiply u by matrix A and use the fact

that if

then, after k mltiplications, we have the following:

k
A u =

From (2.4.4) and using definition (2.4.1) we have

k
A

(_!) 4 0 as k4= i=2,3, ... ,n
Al

Thus, for k sufficiently large

and we have

k k-1 A1 = (A ~v(A ~)i i=1,2, ••• ,n

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)

(2.4.7)

The sequence converges linearly and the rate of convergence

depends on the ratio IA2;A1 1 since it converges more slowly

than the other ratios in (2.4.5). It is essential that the

are normalized using IIAk~ll= or some othet

normalisation factor, so that the size of· the vector ele-

ments are kept within the desired bounds.

In section 2.2.4 it is shown that if A and x are an

eigenvalue and eigenvector of A, then (;>,.-p), and x are the

eigenvalue and eigenvector of the matrix (A-pi). Thus, if

- 79 -

the Power method is applied on (A-pi), the rate of conver­

gence of matrix (A-pi) now depends on the value of the ratio

By a suitable choice of p, it may be pos-

sible to make that value smaller than

iA2/A1 1, and hence speed up the process. This is known as

the shift of origin method.

If the Power method is used with the matrix A-l then

the eigenvalue of the smallest magnitude is determined, pro­

vided that 1An1<1An-l1· More generally matrix (A-AI)-l can

be used to produce eigenvalues of the form 1/(A1-A),

i=1,2, ••. ,n. This method is called inverse iteration and a

more convenient formulation, especially for the computation

of eigenvectors, is described later on.

The Power method can also be used when there is not a

single dominant eigenvalue, but then the algorithm is more

complicated. The Power method can also be used to determine

eigenvalues other than the dominant one. This involves the

deflation of A in order to remove Al as an eigenvalue.

Another iteration, closely related to the Power method

is the Matrix Squaring algorithm that operates on matrix A

as a whole instead of vector u. After s successive squar-

ings

(2.4.8)

This method is .mostly suited for full matrices with the

ratio iA2/All very close to 1, since the convergence depends

- 80 -

2s k
on IA2/A1 1 instead of IA2/A1 1 as in the Power method.

Notice, however that the Matrix Squaring method requires n

times more work per iteration than the Power method. In

order to keep the size of the matrix elements within desir­

able bounds the iterates of the Matrix Squaring method are

scaled by a factor 2r, such that

2.4.2 CHARACTERISTIC POLYNOMIAL METHODS

First we briefly mention the QR factorization method

that is widely used for both eigenproblem solution as well

as the solution of linear systems of equations. Given a

matrix A, there is the factorization

A= QR (2.4.9)

with R upper triangular and Q orthogonal. The factorization

is achieved by means of planar rotations using some class of

orthogonal matrices P1 ,P2 , •.• ,Pn-l such as Householder or

Givens matrices. Thus we have

QT = p lp 2 • • . pl (2.4.10) n- n-

The technique of orthogonal similarity transformation is

applied on the eigenproblem s6lution as follows: a given

matrix A is transformed to a similar matrix T

(2.4.11)

where T is either symmetric tridiagonal, if A is symmetric,

- 81 -

or upper Hessenberg, if A is non-symmetric.

For the determination of the eigenvalues of a symmetric

tridiagonal matrix, the Sturm sequence property can be used.

Similarly, for the case of a Hessenberg matrix, the charac­

teristic polynomial can be calculated using a recurrence

given in [225). However, in the latter case the well-known

problems of polynomial computation should be taken into

account. Alternatively, in both cases, the QR method can be

used.

Now, suppose that A is a real symmetric tridiagonal

matrix with main diagonal elements a1,a2 , ..• ,an and off­

diagonal elements b2,b3, ... ,bn. For any number x we intro­

duce the sequence

p 0 (x) = 1,

2 p
1
.(x) = (a.-x)p. 1(x)- b.p. 2(x) i=2,3, ... ,n.

l l- l l-
(2.4.12)

Then, pn(x) is the characteristic polynomial of A.

The sequence pi(x), i•1,2, .•. ,n defined above forms a

Sturm sequence. The important property which is used to

locate the roots of the characteristic equation pn(X) is

that: the number of sign agreements (disagreements) in the

sequence p0 (x)=1,p1 (x), .•• ,pn(x) equals the number of eigen­

values of A which are strictly greater (smaller) than x.

Note that if any pi(x) is zero, then the sign of pi(x) 'is

taken to be the same as pi_1(x).

- 82 -

The evaluation of the Sturm sequence enables us to

obtain successive upper and lower bounds on the roots of the

polynomial equation Pn(x). To begin, we calculate an inter­

val which contains the roots. Using the Gerschgorin theorem,

all eigenvalues are contained in the interval [a,~), with

(2.4.13)

By means of the Bisection method we divide [a,~) into

smaller intervals. This technique can be used to compute all

the eigenvalues of A or any particular one.

As is shown, the Bisection method converges relatively

slowly; however it is the ability to locate an eigenvalue

independently of any others that makes the method so power­

ful and useful. The eigenvalues obtained by the Bisection

method can efficiently be used as the initial guess for a

more rapidly converging iteration to obtain further results

of greater accuracy.

Finally in the Leverrier-Fadeev method we suppose that

the characteristic equation of A has the form of a polyno­

mial equation p(x) as in (2.1.1). Then, using the Newton's

theorem, we have

(2.4.14)

Thus, the relations (2.1.5) can now be solved for the coef-
' ficients of the characteristic polynomial a1 ,a2 , ..• ,an'

- 83 -

as a linear system of equations containing Tr(A),Tr(A2),
n ••• ,Tr(A). Then the eigenvalues of A can be found by solv-

ing a polynomial equation. However, given the stability

problems of the polynomial computations, the method is of

limited practical interest.

2.4.3 INVERSE ITERATION

Now, we assume that some or all the eigenvalues of a

matrix have been computed accurately. Inverse iteration is

the preferred method of calculation for the eigenvectors.

Suppose d(O)=d is taken as the initial vector, then to find

the eigenvector corresponding to a given value of A we must

solve

(A-AI)~(k+l) • ~(k) k=O,l, •.. ,n (2.4.15)

with !=~(n+l) the eigenvector sought. The iterates are nor­

malised using I l~(k)l I= as scaling factor. To analyse the

convergence, let ~(O) be expanded in terms of the eigenvec­

tors as in (2.4.3), i.e.

(2.4.16)

In analogy to the Power method we have

(2.4.17)

Therefore d(k) can be expanded in a way similar to (2.4.4)

1 k 1 k 1 k
d(k)

= cl(--) xl+c2(--) !2+ . . . +en(--) !n (2.4.18)
A1-A - A -A A -A 2 . n

- 84 -

Let IA-Akl~c for some 15k5n, and IA-Ail~~>c for i•1,2, ••• ,n,

i ;<k. Then

(2.4.19)

Usually c is quite small, and therefore rapid convergence is

ensured.

The solution of the systems (2.4.15) is effected by

means of the LU decomposition method, with partial pivoting.

(A-AI) = LU (2.4.20)

The solution for each iterate d(k+1) is now as follows:

(2.4.21)

Since (A-AI) is nearly singular the last diagonal element of

u will be nearly zero. If it is exactly zero, then it is

changed to a suitable small quantity.

Especially for symmetric tridiagonal matrices, the

inverse iteration method can be further simplified, as sug-

gested in [296]. The initial approximation is taken to be

~(0)=[1 1 1]T; furthermore it is assumed that A is a

good approximation of Ak' i.e. IA-Akl is very small, and

With this assumptions it can be shown that only

two iterations are enough and no normalization for ·the

vector iterates is necessary.

2.5 MISCELLANEOUS ITEMS

2.5.1 THE SIMPLEX METHOD

Linear programming is a subject characterized by one

main problem: to seek the maximum or the minimum of a linear

expression in the form cTx when the variables of the prob­

lem, i.e. ~· are subject to restrictions in the form of cer­

tain linear equalities or inequalities. Problems of this

kind are encountered when we have to exploit limited

resources in an optimal way. Herein we describe the basic

problem and outline the solution method. For more details

see [17], [72), [111).

The canonical problem of linear programming has the

form:

maximize the objective function z - cTx

subject to the constraints A0~0 = ~. x ~ 0. (2.5.1)

where A0 is a (nxp) real matrix of rank n, n<p; and ~·£ have

n and p components respectively.

The Simplex method starts from a simple initial feasi­

ble solution, i.e a solution that satisfies (2.5.1). Then it

searches iteratively from one feasible solution to another

seeking an optimal solution. Each cycle of the method pro­

duces one of the following

-a solution x' for which £T~<ET~,, where xis the current

- 86 -

solution;

an indication that x is optimal;

- an indication that there is an unbounded set of feasible

solutions.

The mechanism of producing x' from x is as follows. Let

the matrix corresponding to x be

A ICI { 2.v , •.• , ~v , !v , a , .•• , a ;
1 m-1 m -vm+1 -vn

(2.5.2)

(the notation indicates that there are n

columns of A0 , but not necessarily the first n columns). We

let

T
u=[x ,xv•···•x I - vl 2 vn

be the vector of non zero components of x.

A cycle of the Simplex method is as follows:

(i) solve Au = b

(2.5.3)

(l.l·l·) t ' T • d h compu e c j = y ~j-cj' J=v1 ,v2 , ••• ,vn' an c oose any

(iv)

index s such that c' <0· s ,

solve Ad = a ; -s

(v) let m be an index, such that

(2.5.4)

- 87 -

(vi) drop column ~v from A and add vector ~s at the end:
m

A' a I ~v '! ' · · · '~v '~v ' · · · '~v '~s I · 1 v2 m-1 m+1 n
(2.5.5)

Now A' replaces A and a new Simplex cycle can start.

The Simplex cycle cannot be carried past step (iii) if all

c'. are non-negative, in which case x is optimal. And the
J

cycle cannot pass step (iv) if no component of~ is posi-

tive, in which case the objective function is unbounded on

the set of feasible solutions. The main computational effort

in the Simplex cycle is the solution of the linear systems

of equations in steps (i), (ii) and (iv). A common method to

effect the solution of these systems is the LU decomposition

of A.

2.5.2 DIFFERENTIAL EQUATIONS

Differential equations (DE's) and systems of such equa-

tions appear in the description of physical processes, in

problems involving rates of change of one or more indepen-

dent variables, [111).

An ordinary differential equation (ODE) is an equation

containing one independent and one dependent variable and at

least one of its derivatives with respect to the independent

variable. For example, a first order ODE, i.e. an ODE con-

taining the first derivative of the dependent variable w can

be expressed as

d>j~
a -- + bw + c = o (2.5.6)

dx

- 88 -

A DE with more than one independent variables is called

partial differential equation (PDE). For example, a second

order PDE with two independent variables x, y has the form

a,
d- +

ax

a,
e- + f>jl + g = 0.

ay
(2.5.7)

The variables a, b, c, d, e, f, g are called coefficients

and can be zero, or functions of the independent variables

and also the dependent variable >jl. When the coefficients are

composed only of functions involving the independent vari-

ables, the DE is termed linear; otherwise it is called non-

linear. A further classification of PDE's is

elliptic PDE's if b2-4ac < 0

parabolic,PDE's if b2-4ac = 0

h b 1 . ' J.'f b2-4ac > 0. yper o l.C PDE s

Notice that it is assumed that all terms of a DE can be

formed, i.e. "' is continuous and differentiable as many

times as the equation requires in a bounded domain. Associ­

ated with this domain is a boundary which defines the limits

of the domain. Corresponding to the DE is a set of boundary

conditions, which are functions describing the behaviour of

"' at the boundary. According to the information available

for the boundary conditions, different types of problems can

be distinguished.

In addition to the boundary conditions many problems

- 89 -

also define initial conditions which describe the state of

the physical problem at some stage. In problems where time

is one of the independent variables, t=O is adopted for the

instant when the initial conditions are valid, and this is

the starting point for the solution of the equation.

If an ODE is of such form that each of the highest

order derivatives can be expressed as a function of lower

derivatives and the two variables, then it is possible to

replace the equation by a system of n first order ODE's.

Further, a set of dependent variables, all of them functions

of the same independent variable, can define a system of

DE's. Thus, for example, a system of linear first order

ODE's can have the form of the vector DE

d~
A - + B~ + c

dx
= 0

where A, B are coefficient matrices and

Finite difference approximation

(2.5.8)

Finite-difference methods are a powerful tool for the

solution of many problems involving ODE's and PDE's. The

domain of the independent variables is replaced by a finite

set of points, usually referred to as net (or mesh) points,

and one seeks to determine approximate values for the

desired solution of these points. The values of the net

points are required to satisfy a set of difference

- 90 -

equations, obtained by means of an approximation technique,

[282), [289).

We now examine the derivation of finite difference

approximations for the second order ODE.

+ a(x)~(x) = ~(x) (2.5.9)

for ~<x<~ and subject to the boundary conditions

~(~) = c, .p(~) = d. (2.5.10)

Here c,d are given real constants and ~(x), a(x) are given

real continuous functions on 1~.~], with a(x)~O.

For simplicity, we place a uniform net of size

h=(~-~)/(n+1) on the interval 1~.~), and we denote the net

points of the discrete problem by

= ~+ih, i=0,1, ... ,n+1 (2.5.11)
(n+2)

Perhaps the best-known method for deriving finite difference

approximations to (2.5.9) is based on the Taylor's series

expansions of the solution ~(x) of (2.5.9). Specifically,

let us assume that ~(4)(x)=d~4 (x)/dx 4 exists and is continu­

ous in 1~.~). Denoting ~(xi) by ~i' the finite Taylor

expansion of ~i+ 1 and ~i- 1 ' is

2 h , ,
+ -~.

2! l
(2.5.12)

- 91 -

for O~l~rl~1, from which it follows that

- 2"'c"'i-l-"'i+1

h2

2
h (4) + -ljl (x.+~.h),
12 1 1

Using (2.5.9), we then obtain

2"'i-ljli+1-ljli-l

h2

(2.5.13)

(2.5.14)

for i•1,2, •.. ,n, where ai•a(x1) and 'i•,(xi). Thus, a rela­

tion between three adjacent points is built, for each of the

non-boundary points of the net. In other words, a three­

point stencil is placed on a linear net.

Note that since "'o=c and "'n+1=d, we have n equations

with n unknowns "'i' i.e.

1
- :-21j12

h

...
1

-,.., 1 +
h"" n- ' -n

This can be rewritten in matrix notation as

(2.5.15)

(2.5.16)

where A is a real (nxn) matrix, and ~,£ and • are column

- 92 -

vectors given specifically by

2+a1h 2 -1

-1 2+a2h 2 -1

1
A = h1 (2.5.17)

-1

-1

and

We now define the solution vector ~ of

A~= b (2.5.18)

as the discrete approximation to the solution of ~(x) of

(2.5.9,10). It can be proved that by choosing a net spacing

h sufficiently small, we can make the difference between the

discrete approximation ~i and ~(xi) arbitrarily small.

* Theorem 2.5.1. Let ~ (x) be the solution of the ODE defined

in (2.5.9,10), where a(x) is non-negative, and let its

discrete approximation ~ be defined by

1~(4 l(xll~~ 4 , for all x in [a,~), then

(2.5.18). If

- 93 -

(2.5.19)

* * where ~i=w (xi) and with xi defined as in (2.5.11). Further,

using the vector norm definition

ia1,2, ••• ,n, we have

* 11.! -_!I I., ~
2

(13-cx)

* 11~ -~~~ a - - ...

(2.5.20)

* Therefore I 1.! -_!I I., can be decreased arbitrarily if h is

taken sufficiently small.

The finite difference approximation method can be

extended to general second order ODE's as well as second

order elliptic and parabolic PDE's as it is shown in [282],

[289]. It is important to note that, in the most general

case, the coefficient matrix A produced by the application

of the finite difference approximation method on these

classes of DE's has the following properties :

- A is a square, real matrix with positive diagonal and non­

positive off-diagonal entries. Moreover A is irreducible,

diagonally dominant.

- A is, in general, block symmetric tridiagonal with A-
1

>0.

For second-order ODE's A is point tridiagonal, and espe-

cially for (2.5.9) it is symmetric tridiagonal.

- The Jacobi matrix MJ derived from A is consistently

ordered, weakly cyclic of index 2 and with p(MJ)<1.

C H A P T E R 3

SYSTOLIC ALGORITHMSAND ARCHITECTURES

This chapter is a brief introduction to certain funda­

mental concepts, concerning the systolic approach of paral­

lel processing that are used as a basis for the development

of new systolic algorithms and architectures in subsequent

chapters. In section 3.1, basic concepts and terminology of

systolic computing are introduced through an example;

further a framework for the development of systolic algo­

rithms for VLSI is given. The next section contains a set of

fundamental systolic designs, that are used as building

blocks and a point of reference for subsequent systolic

architectures. In the following section, some transforma­

tional techniques are presented, for the derivation and

manipulation of systolic algorithms; some details are also

given concerning the context of application for each method.

Section 3.4 discusses the concept of systolic programming on

special-purpose or general-purpose computers; further the

soft-systolic paradigm is introduced as well as the soft­

systolic simulation using OCCAM. In the final section, the

optical implementation of systolic algorithms is discussed

- 95 -

together with the general influence of optical computing on

the systolic approach; then, the framework presented in the

first section is revised to take into account the soft-

systolic paradigm and the optical systolic algorithms.

3.1 BASIC DEFINITIONS AND TERMINOLOGY

3.1.1 A SIMPLE EXAMPLE

Consider the problem of multiplying two polynomials,

f(x)g(x), as defined in section 2.1*; for simplicity we

assume that both polynomials are of degree n(=2), i.e.:

and (3.1.1)

The product f(x)g(x) is a polynomial of degree 2n(=4), i.e.:

(3.1.2)

with the coefficients defined as:

*The same problem can be defined in a number of ways:
for instance, it can be seen as integer multiplication,
where the a's and b's are each 0 or 1; or as a type of
non-recursive convolution between two sampled signals;
or as Finite Input Response (FIR) filtering operation
for a given signal; or, finally, as a matrix vector
multiplication, where the coefficient matrix is a band­
ed Toeplitz matrix [82), [160), [181), [243), [285).

- 96 -

(3.1.3)

Finally, let us assume that f(x) is a standard polynomial

which is used for multiplying a series of polynomials, one

of which is g(x). Equation (3.1.3) indicates that each of

b0 ,b1 ,b2 is multiplied by all the coefficients of f(x),

forming the terms of the resulting polynomial. Further, a

certain regularity can be noticed in this process: b0 meets

first a0 , then a1 and finally a 2; similarly for b1 , but its

involvement starts from the calculation of c1 , while b2 is

used for the last three components. Finally, observe that

only two arithmetic operations are necessary, i.e multipli­

cation and addition, that produce the resulting terms as a

series of inner products.

A straightforward systolic design, that readily maps

the computation in (3.1.3) onto a processing structure, is

given in Fig.3.1.1. In the same figure the input and output

sequences are also given, together with snapshots of the

array operation. It is assumed that there is a global

clock, synchronizing the computations of all components in

the system, having a time cycle (step, unit) long enough to

accommodate the most complex function performed by a proces­

sor, plus the data transfer. In each step, all processors

simultaneously perform their i/o and then execute their

operations.

- 97 -

~ ~ ~ tal
0 1 2

I a~:l I w w 2
eo 2 3

c;] w w 3
cl 2 3 4

c2 D D D 4

CJ D D 5
c3

D D D 6

c4

- ao .,...._ al a2

Fig.3.1.1. Polynomial multiplication array with broadcasting.

- 98 -

The array consists of n+l (here n+lm3) processors; the

values of a 0 ,a1,a2 are stored within the cells; each proces­

sor contains a multiplier and an adder, performing an inner

product calculation, c=c+ab. The coefficients of g(x) form a

data stream (or data sequence) that is broadcast to all

cells of the array at the rate of one data item per computa­

tional step. At the beginning of a cycle, one 'b' is broad­

cast to all cells and one 'c' enters the rightmost cell,

initialised to zero. The computation of the resulting coef­

ficients is achieved by means of pipelined accumulation of

the partial products. For example, c1 is computed in two

steps: first a1b0 is calculated in the middle processor; in

the next step it is passed to the left-hand-side processor,

where a0b1 is calculated, and it is added to a1b0 to form

c1 ; this result is produced as an output in the next step.

Thus, an output data stream is formed by the resulting coef­

ficients.

The main drawback of this design is the presence of the

broadcasting mechanism. This has the disadvantage thatit

involves long-wire interconnections and therefore long com­

munication delays and clocking problems. Further, it is dif­

ficult to expand the design for a polynomial of a differnt

degree, because of the global interconnections involved.

An alternative design is shown in Fig.3.1.2, together

with the i/o data streams and the corresponding snapshots of

its computation. Comparing the two designs we can observe

- 99 -

Q:J 0 D D
eo D ~ 1 D

c:J 1 D c;::] 2

cl D LTI 2 D
~ 2 D ~ 3

c2 D c;:] 3 D
Q D [';] 4

c3 D CJD
[J DD

c4 D DD
~

ao al a2

Fig.3.1.2. Polynomial multiplication array with bidirectional
data flow.

tal

2

3

4

5

6

1

8

9

10

- 100 -

that the broadcasting has been eliminated. In this case, we

have a pipelined dataflow for both streams of b's and c's

(the latter stream in the form of partial or final results).

The two streams move systolically in opposite directions.

Notice that consecutive b's and c's are separated by two

cycles, or equivalently, there exists a dummy element

between each two consecutive b's or c's. For example, for

t=2, a1b0 is calculated in the middle cell; in the next

cycle this partial product is moved to the left, where a 0b1

is computed; the two partial products are summed to produce

c1 as output in the next cycle. Observe that this design

requires no global interconnections and therefore it is

easily expandable to accommodate polynomials of any size.

Finally, notice that the processors are not used in full,

since they perform one useful computation approximately

every two cycles.

This disadvanatge can be overcome by another systolic

design, which is illustrated in Fig.3.1.3, together with its

i/o sequences and snapshots of its computation. Comparing

the last two designs we can see that now both data streams

move in the same direction; further the data streams are

compact, as there are no dummy elements between the signifi­

cant data items. For example, for t=2, a0b1 is formed in

the leftmost cell; for t=3, it is passed to its right-hand­

side processor, where a1b0 is calculated; the two products

are added to form c1; this is produced as an output with a

delay of one cycle, as it passes through the rightmost

- 101 -

G::J D D 0
t-1

c:JCJ bO CO D 2

G;]blC'J GJ cl
3

D w bo w c b2
2

4
0

D c:J IT] c bl
3 2

5
1

D D c:J c b2
3 2

6

D D w c
4 3

7

D D D c 4
8

r r"

b2 bl bo -- 1-o
ao 1- al 1- a2 - - . . .

Fig.3.1.3. Polynomial multiplication array with unid
dataflow.

irectional

- 102 -

processor. Notice that the data stream of the b's is twice

as slow as that of the c's: this is achieved by inserting a

delay element in the data path of the b's between each two

adjacent cells. A delay element is just a register that

ouputs its input with one cycle delay.

The basic building block of the arrays described, is

the Inner Product Step (!PS) cell, shown in Fig.3.1.4(a),

(b) and (c) ·in three , different configurations, for the

arrays of Fig.3.1.1, Fig.3.1.2 and Fig.3.1.3 respectively.

As will be seen in the next section, the IPS cell is the

fundamental component for a series of important systolic

algorithms for matrix computations. The basic operation of

an IPS cell is a sequence of multiplications and additions:

the value of the coefficient a is stored in a register,

while b and c enter the cell from the input links (data­

paths, channels) labelled bin and cin repectively. It is

assumed that the adder and the multiplier have their own i;o

latches, not shown in the figure. The outputs are produced:

on the output links, labelled bout and cout; in Fig.3.1.4(b)

and (c), b has to be delayed for one time unit so that the

output of c and b will coincide. This is achieved by means

of ~ delay register, identical to that used in the array of

Fig.3.1.3.

In Fig.3.1.4(d), (e) and (f), more abstract specifica­

tions of the three IPS cells are also shown: instead of

actually giving the details of the cell interior, the pro-

(a) (b)

a a

(d) (e)

Fig.3.1.4. IPS cell designs.

(c)

b ab,
.-------. out 1 n

a

r---
L-.----1 c tab. a+cl'n ou 1n

(f)

...
0
w

- 104 -

cesser is described by its function; further, it is taken

for granted that the output of the processors is delayed by

one cycle with respect to the corresponding input, and

therefore no timing information is given. This type of

description is generally adopted from now on, and is partic­

ularly useful for complex, possibly programmable, proces­

sors. A step further is the description of a cell using a

section of pseudo-OCCAM code, which may include i/o opera­

tions; such examples are given in subsequent sections.

3.1.2 MEASURES AND CHARACTERISTICS OF SYSTOLIC SYSTEMS

Now, using the previously discussed systolic designs as

examples, some terms and concepts are defined that consti­

tute a set of useful tools for the study of systolic algo­

rithms and architectures. Initially, some general perfor­

mance measures are given, followed by more detailed charac­

teristics of the operation and efficiency of systolic sys­

tems; then some descriptive terms are defined regarding the

dataflow patterns and the interconnection geometry of sys­

tolic arrays.

A measure of performance for systolic systems is given

by the speed-up factor [169]:

sequential computation time
s =

systolic computation time

A speed-up of order n, where n is the number of processors

in the systolic system, indicates a successful systolic

- 105 -

algorithm. In the case of the polynomial multiplication, s

is between n/2 (for Fig.3.1.1) and n/4 (for Fig.3.1.2),

where n is the degree of the polynomial and the number of

processors in the designs; this indicates a linear speed-up,

and therefore a good performance of the systolic algorithms.

A similar measure can be obtained by the .computation to

communication ratio [82):

total number of cells
c =

number of boundary cells

A boundary cell is a cell that participates in the host­

system communication. A large c indicates high utilization

of the input data; however, in many cases,arrays with rela­

tively low utilization may still be useful. In the case of

the polynomial multiplication, c"n, which indicates a' high

utilization. Notice that broadcasting (and fan-in) are con­

sidered as internal characteristics of the system since they

require only one i/o data path from;to the host.

Except from the general measures of performance, some

more detailed characteristics of systolic arrays are also

used to classify and compare them.

Area Complexity is usually measured in terms of the

number of processors required; since the basic component

used is the IPS cell, all other types of cells are defined

in terms of IPS cell units, i.e. the equivalents of

multiply-add operations that are involved. The area occupied

,---

- 106 -

by interconnections, delays, registers is considered negli­

gible and not taken into account. For example, all the

designs discussed have area equivalent to n+l IPS cells.

Computation Time is usually measured in terms of cycles

(steps, units) , where a time unit is taken to be the time

required for the most complex cell function to be performed;

the data transfer time is assumed negligible due to the

locality of the communication. Again, it is common for the

time complexity of processors to be expressed as multiples

of IPS cycles, where an IPS cycle is the time required for a

sequence ·of one multiplication and one addition to be per­

formed. For example, all three designs have a time cycle of

one IPS, and the computation time is 2n, 4n+2 and 3n+2

cycles, for Fig.3.1.1, Fig.3.1.2 and Fig.3.1.3 respectively.

Processor Utilization can be defined as:

total number of active cells during all computation steps

number of cells * number of steps

A cell is called 'active' if, at a given step, it performs a

constructive computation, i.e. a computation that contri­

butes in the formulation of the required output (result) of

the system; otherwise the cell performs a 'neutral' (dummy)

computation and it is called 'idle'. For instance, in

Fig.3.1.2, for t=l, the processors containing the quantities

a 1 and a 2 are idle; further these cells input and output

neutral (dummy) data items, as opposed to the significant

data items accepted and produced by the active cells. The

- 107 -

dummy data items are necessary, in the input and output

streams, in order to synchronize the computation of the pro­

cessors. An alternative approach is to assume that b0 and b2
trigger on and off the cells so that they perform no func­

tion in the remaining cycles at all; the same effect can be

produced by a control signal distr{buted systolically

through the cells. Similar arguments can be formulated for

the other two designs; thus the processor utilization for

the three designs is approximately 1/2, 1/4 and 1/3 respec­

tively.

Pipelinebility is the ability of a system to allow for

consequent problems to be solved ('chaining') without any

additional delay between successive problems. For example,

in Fig.3.1.1 and Fig.3.1.3, there should be a 'gap' of n

cycles between the input of b2 and the input of a new

sequence b• 0 ,b• 1 ,b• 2 . These intermediate cycles are usually

called 'drainage' cycles; note that for Fig.3.1.2 the

drainage phase lasts 2n cycles, because of the direction of

the result data stream. Similarly to the drainage cycles

there can be some 'fillup' cycles, for input data to reach

the appropriate processors.

Initial Delay (Latency) is the number of cycles

required between the input of the first significant data

item and the output of the first significant result. For

instance, in the first two designs the initial delay is 1

cycle, i.e. fixed, while in the third the initial delay is

- 108 -

n+1 cycles, i.e. it depends on the array (and consequently

the problem) size.

Throughput can be defined as the output rate of signi­

ficant data items of the result, after the initial delay.

For example, in Fig.3.1.1 and Fig.3.1.3 the throughput is 1,

since they produce one significant result element per cycle

after the initial delay. However, in Fig.3.1.2 the

throughput is 1/2, since only one significant element per

two cycles is produced. Further, notice that throughput and

latency, do not have universal application, as there exist

types of systolic systems that store their result instead of

outputting it. Note also that the term 'efficiency' is also

used alternatively, instead of processor utilization and/or

throughput, and. generally to indicate the performance of a

systolic architecture.

Now, in order to fully specify a systolic array, the

following descriptive terms can be defined, related to the

dataflow patterns and the interconnection geometry of the

array.

A Data Sequence (or Data Stream) is a sequence of data

elements, all of the same type, which has a given direction

and speed. If we assume a global, synchronous clock, the

speed of a sequence can be expressed as a fraction of unity,

where the unity speed is that of a stream moving from one

processor to its nearest neighbour in a given direction.

For example, in Fig.3.1.3 the 'c' data stream has speed 1,

- 109 -

while the 'b' data stream has speed 1/2. Further, we can say

that the 'a' data stream has zero speed, since its elements

remain static in the processors. Notice that dummy elements

can precede, follow or be between the significant elements

of a data sequence. The 'guardbands' required in the fillup

cycles is a case of dummy elements following (or preceding)

a data stream, while in Fig.3.1.2 we can see that consequent

significant data items are separated by dummy elements.

Finally, the notion of a group of data sequences can be

developed, for a set of sequences with same speed and direc­

tion, but working on different sets of processors.

A Computational wavefront can be defined by connecting

processors containing the elements with the same order in a

group of sequences; similarly, a data wavefront can be

specified. Usual types of wavefronts are the time-skewed and

the reflected wavefront (where feedback loops occur).

If we use the dataflow pattern as a criterion, it is

possible to classify the systolic arrays as follows: An

array is called 'stationary', if some data sequence have

zero speed; otherwise it is called non-stationary (fully
' .

pipelined, chained). For instance, all three designs

described can be defined as stationary, since the coeffi-

cients of f(x) are stored in the array. These two categories

can be further subdivided according to the direction of the

flow: we can have unidirectional, bidirectional and in gen-

eral k-directional arrays, i.e with data flowing ink direc-

- 110 -

tions. For example, the array in Fig.3.1.2 is bidirectional,

while that of Fig.3.1.3 is unidirectional.

Using the interconnection geometry as a criterion,

three types of array topology are the most common. Firstly,

2-d geometries; a selection of those are given in Fig.1.1.5.

Then, linear (1-d) geometries, similar to that given in

Fig.l.l.4 and Fig.3.1.1, Fig.3.1.2 and Fig.3.1.3. A spe­

cial case of linear arrays are the collapsed (degenerate)

2-d geometries; these are obtained from full 2-d forms, by

collapsing the array in a single row or column. In this

case, all cells are boundary cells, and therefore the compu­

tation - to - communication ratio is unfavourable; however,

they can be transformed to 1-d stationary arrays using the

same technique as in the three examples given: the redundant

input sequences are stored in memory modules within the

appropriate processors.

3.1.3 FRAMEWORK FOR SYSTOLIC ALGORITHMS FOR VLSI

The three designs presented are all systolic since they

fulfil the criteria outlined in section 1.1:

There exists an underlying structure of processors with

interconnections and with communication from/to a host

system; the processor interconnection geometry is simple

and regular: the processors are arranged according to

some simple geometrical structure, here a linear array,

so that the communication between them can be both simple

- 111 -

and regular.

They make multiple use of each input data item: for exam­

ple as long as a coefficient of g(x) enters the system,

it meets all the coefficients of f(x); this is achieved

by either broadcasting a 'b' to all cells, or by pipelin­

ing it through the array.

They use extensive concurrency in the form of array pro­

cessing (or multiprocessing) and pipelining: all proces­

sors work in parallel, while input and/or output data

streams, as well as computations, are pipelined. The

significance of the 'pumping' action (systole - diastole)

is underlined by the extensive use of pipelining of both

the input and the results.

They have only few types of relatively simple cells: for

example, each of the designs discussed use only one type

of processors, i.e. the IPS cell. However, notice that

the degree of the processor simplicity depends on the

problem to be solved.

The flow of data and control is simple and regular: this

is obvious from the snapshots. The control is implicit:

all processors perform continuously their function, and

the dataflow determines the validity of the computations;

another implicit control mechanism is the limitation in

the size of the problem that can be solved by a given

array, which is determined by the size of the array

- 112 -

itself.

By using VLSI technology as a means of

computing structure, further restrictions

facilitate easier implementation:

realising the

are defined to

The computing structure is 2-d, similar to a silicon

wafer1 area optimization is very important, in both func­

tional units and the overall cell arrangement.

The processor interconnection geometry is planar, or

almost planar.

The number (and the width) of ijo links from/to a proces­

sor is limited so that the processor has a limited size.

Global communication (broadcasting, fan-in) and long wire

interconnections are generally avoided.

Using the rules imposed by the VLSI technology, a

further distinction between the three designs can be made on

the basis of using global interconnections: the first design

uses global communication structures, while, in the other

two, all communication is localised. The former design is

usually termed 'semi-systolic', in contrast to the latter

architectures that are termed 'purely-systolic'.

3.2 SOME BASIC SYSTOLIC ALGORITHMS

Now we consider some basic systolic algorithms and the

corresponding arrays; these designs are well published and

can be found in a large number of references (see, for exam­

ple, [113), [181), [199], [273)). This set of architectures

illustrates how basic numerical methods for matrix computa­

tions (see Chapter 2) can be implemented systolically.

Designs from this set will be referred to as basic (origi­

nal) arrays and the accompanying results on computation time

and area requirements can be used as a benchmark for new

designs. Further, these arrays will be combined to solve

more complex problems, in some type of systolic network,

pipeline or iterative system, in subsequent chapters.

The fundamental unit of computation for these architec­

tures is the IPS cell, already discussed in the systolic

polynomial multiplication. The basic IPS cell is transformed

according to the different array geometries; the specific

IPS cells will be described together with the corresponding

array. As new processors are introduced their area and time

complexity will be graded according to the number of IPS

equivalents required to implement them; thus, for simplicity

multipliers and dividers (and inversion circuits) are con­

sidered to have equivalent area; similarly, adders and sub­

tractors (and comparison circuits) are considered to have

equivalent area, also.

In the systolic algorithms described herein, we start

- 114 -

with the statement of the problem and give its mathematical

formulation, mainly in the form of a recurrence relation.

Then the corresponding systolic array is presented and its

main characteristics are discussed, i.e. geometry, cell

types, dataflow characteristics, etc. It follows a descrip-

tion of the array operation, i.e. the systolic algorithm,

and the area and time complexity of the design are deter­

mined. Finally, its efficiency, applicability and other

individual features are briefly mentioned. This discussion

is complemented with an extensive survey on further research

in the specific topics (i.e. polynomial computations, matrix

and vector multiplications, solution of linear systems of

equations) in the introductory sections of the related

chapters.

3.2.1 SYSTOLIC MATRIX-VECTOR MULTIPLICATION

Now·consider the matrix vector multiplication problem,

y = A!, as defined in section 2.2, where A is a (nxn) matrix

and !• y are vectors with n components. Each component of y

is produced by computing the inner product of a row of A and

of x. More formally, the recurrence relation can take the

form

yPl = o
1

Ylk+1) = Ylk)+aikxk

Y. = y<.n+1 l, 1" k-1 2 n 1 1 ,-,, ••• ,. (3.2.1)

- 115 -

A linear array, implementing (3.2.1) for n=4, is shown in

Fig.3.2.1. It is based on the engagement IPS cell, also

illustrated in the same figure, that performs a multiply

accumulate operation, storing partial and final results in a

local register. The array can be said to be a degenerate 2-d

array since all cells act as a boundary cell, i.e. accept

input from the host. The vertical data sequences consist of

rows of matrix A, while the horizontal data stream contains

the components of ~· Each element of the resulting vector is

accumulated into one of the processors. Notice the time­

skewed input wavefront; this formulation, as it will be seen

later is typical of systolic algorithms involving full

matrices.

The array consists of n cells (the size of the prob­

lem). It takes n steps for y1 to be computed and then

another n-1 cycles for the last element of A to enter the

array. Thus, using this design the matrix-v_ector multiplica­

tion can be computed in 2n IPS cycles on a linear array of n

IPS cells. The efficiency of the array is 1/2 as each cell

performs constructive computations (i.e. it is active) in a

total of n cycles, while in the remaining cycles it performs

neutral computations using dummy elements (i.e. it remains

idle). However, several matrix-vector multiplications can be

performed on the same array, one immediately after the

other, provided that each cell can output the previously

accumulated result as soon as it is formulated. Irl this

case, the efficiency of the design approaches unity, for a

- 116 -

0 0 0 a44

0 0 a34 a43

0 a24 a33 a42

al4 a23 a32 a4l

al3 a22 a3l 0

al2 a2l 0 0

all 0 0 0

l
x4 x3 x2 xl yl - y2 y3 y4

y

Fig.3.2.1. Full matrix-vector multiplication array.

- 117 -

large number of chained problems.

The array in Fig.3.2.1 is size-dependent, since chang­

ing the order of the matrix alters the size of the array. A

size-independent array can be derived by assuming A to be

banded. The new array is constructed by considering another

ordering of the coefficients in A. The first design, in

Fig.3.2.1, allocated coefficients to sequences in row order,

forming a column ordered wavefront pattern. Another possi­

bility is to allocate coefficients in diagonal order such

that each data sequence contains elements from the same

sub-(super-) diagonal which are separated by dummy elements.

Using this i/o sequence format allows the transformation of

the array from stationary to non-stationary, as shown in

Fig.3.2.2. (for w=4, p=3, q=2). The array is again linear

(in the form of a collapsed 2-d array); the dataflow along

the array is bidirectional, while in the design of Fig.3.2.1

it is unidirectional. The two-way IPS cell used in this

array is also specified in Fig.3.2.2.

Initially, x and ~ move along the array in opposite

directions until they meet each other (fillup phase); then

the constructive computation starts, as the elements of A

enter the array; finally there is a drainage stage, for the

remaining components of x and ~ to move out of the array.

Notice that only w cells are necessary, where w=p+q-1 is the

bandwidth of A, since only w diagonals have non-zero ele­

ments. Further, the longest input sequence has length 2n.

0 a44 0 a35

a43 0 a34 0

0 a33 0 a24

a32 0 .a23 0

0 a22 0 al3

0
Yin

a21 al2 0
xout-xin

0 all 0 0

0

0

Fig.3.2.2. Banded matrix-vector multiplication array.

a in

___,. Yout-Yin+ainxin

xin
Q)

I

i

I

I

- 119 -

Finally, the results yi are accumulated from right to left

giving an additional delay of w cycles for the first result

to emerge. Thus, the banded matrix vector multiplication

problem requires an area of w IPS cells and computation time

of 2n+w IPS cycles.

In this design wave fronts are defined by a row ordering

on the left of the main diagonal sequence and a column ord-

ering on the right. By definition, dummy elements preserve

operands and results and their use is extended to act as

synchronizing delay elements, in a way similar to that of

the delays necessary to produce the skewed input wavefronts.

The efficiency of the array is 1/2; the efficiency can be

improved if two problem instances are interleaved, i.e. the

dummy elements are replaced by the i/o sequences of·. another

problem.

Comparing the designs in Fig.3.2.1 and Fig.3.2.2 we can

see that the banded matrix array is clearly superior to the

full matrix array for w<<n. For dense matrices, the design

in Fig.3.2.2 requires an area of 2n-1 IPS cells and a time

of 4n-1 IPS cycles. This is because of the fillup and

drainage cycles that are required before and after the con­

structive computation; these cycles are only negligible if

w<<n and introduce an additional delay in the chaining of

independent problems, since a new problem cannot start until

the previous problem has been completely finished. On the

other hand, however, the banded matrix design is fully pipe-

- 120 -

lined, and therefore the result is immediately available,

while in the stationary case, special output action should

be taken.

Because of the significance of matrix-vector multipli­

cation in digital signal processing and scientific computa­

tion, a large variety of designs is available, each design

aiming to improve the performance of the systolic algorithm

for specific applications*. A survey of these architectures

and further improvements are given in chapter 6.

3.2.2 SYSTOLIC MATRIX-MATRIX MULTIPLICATION

The second important problem to be discussed is the

multiplication of two (nxn) matrices, C=AB, as defined in

section 2.2. Again, each component of C is produced by com­

puting the inner product of a row of A and a column of B.

More formally, the recurrence relation takes the form

c!~l = 0
1)

C !~+1) (k) b
1) = cij +aik kj

(n+l) cij = cij , i,j,k=1,2, ... ,n. (3.2.2)

This formula can be seen as a set of n matrix-vector multi-

plications as defined in (3.2.1). Therefore, a stationary

* Notice, for example, the similarity of the systolic
array in Fig.3.1.2 with that of Fig.3.2.2, which stems
from the similarity of the problem specifications, as
explained in section 3.1.

- 121 -

systolic design can be immediately derived from that of

Fig.3.2.1, if the linear array is replicated in n rows, as

shown in Fig.3.2.3 (n=3). The processors used are again

engagement IPS cells that accumulate cij and propagate aij

and bij in horizontal and vertical directions respectively.

The i/o data streams and the related computational wave-

fronts are also given in Fig.3.2.3. The input streams of

matrix A are constructed from its rows, while the input

streams of B consist of its columns, thus representing n

column vectors. Observe the skewed format in both input

wavefronts. The elements of the resulting matrix c are accu-

mulated within the array, each element into a processor.

Notice that c1i is computed after n cycles; after 2n

cycles all inputs have been read in and cln' cnl are com­

puted; finally, after 3n cycles cnn is produced. Thus, the

product of two dense matrices A,B can be calculated on an

orthogonally connected array of n2 IPS cells in a time of 3n

IPS cycles. However, it should be noticed that n extra steps

are required for the output of the result.

The efficiency of the array is 1/3, in the sense that

each processor is active for n cycles out of a total of 3n

cycles. Further, the chaining of independent problems is not

obvious, since it involves a mechanism for unloading the

previously accumulated result. Observe that the array is

size-dependent, i.e. changing the order of the matrices

alters the cell count of the array.

c:•c+a. b. 1n 1n

a in

0 0

0

- 122 -

bin

c _.a taai ou n

b =b out in

0

0

0

0 0 b33
0 b32 b23

b31 b22 bl3

b21 bl2 0

bll 0 0

ell cl2 cl3

i

c21 c22 c23

c31 c32 c33

Fig.3.2.3. Full matrix-matrix multiplication array.

- 123 -

A size-independent array can be derived by assuming

matrices A,B to be banded. The new array is constructed by

considering a diagonal ordering for the data sequences,

instead of row/column ordering as in the full matrix-matrix

multiplication array. The new design is a hexagonally con­

nected (hex-connected) array, given in Fig.3.2.4. Each i/o

sequence contains elements of the same sub-(super-) diagonal

which are separated by two dummy elements. The new array is

not only size-independent but also non-stationary, since C

is immediately produced as an output.

The three-way IPS cell used in the hex array is also

shown in Fig.3.2.4. The dataflow through the array is

bidirectional in the sense that every partition of the

dataflow, leaves one of the data·streams flowing in the

opposite direction of the other two. This is in contrast to

the stationary array, where it is possible to partition the

dataflow so that both sequences move in the same direction;

thus the dataflow in the stationary array can be termed as

unidirectional.

Notice that if wA and w6 are the bandwidths of A and B

respectively, then only wAwB processors perform constructive

computations (in Fig.3.2.4,_ wA=w6=3). The output matrix C

has bandwidth Wc=WA+w8-1, for WA' w8<<n. Further, the length

of the longest input sequence is 3n; finally the results cij

move upwards through the array, and there is an initial

delay of min(wA,wB) cycles. Thus, the product of two (nxn)

0
a23

a33
0 0

0 0 0
a12 b21 0 0

a22· 0 0
0

a32 0 0 0
0 0 0

o.
a21

0
, , -,

cout-cin+ainbin

a in bin

/ ~· 0 0 ell 0 0
b •b. out 1n aout-ain

0 0 0 0 0
cin 0 c21 0 c12 0

0 0 c22 0 0

c31 0 0 0 c13

0 c32 0 c23 0

0 0 c33 0. 0

Fig.3.2.4. Banded matrix-matrix multiplication array.

b32
0

b22
0

0

b12
0

0

0
b33

()
b23

0

.....
N

- 125 -

banded matrices A, B of bandwidth wA and w8 respectively can

be computed on a hex-connected systolic array with wAwB IPS

cells in time 3n+min(wA,w8) cycles.

The processor utilization and the throughput of the

array is 1/3; its efficiency can be improved to be nearly

one if three problem instances are interleaved. Comparing

the two designs in Fig.3.2.3 and Fig.3.2.4 we can see that

the hex-array is superior to the orthogonally connected

array only if wA,w8<<n. Otherwise the efficiency of the

hex-array is lower; for example, for a full matrix-matrix

multiplication it requires approximately (2n-1) 2 cells and

Sn-1 cycles.

Improvements in the performance of the two systolic

arrays for matrix-matrix multiplication, as well'as a survey

of other systolic arrays for the same or related problems

can be found in chapter 7.

3.2.3 SYSTOLIC SOLUTION OF LINEAR SYSTEMS

In this section, systolic algorithms for matrix tri­

angularization, LU-decomposition, and forward (backward)

substitution are presented. These algorithms are used for

the solution of a linear system of equations in the general

form A~=~, as defined in (2.2.4).

The matrix triangularization process is described in

section 2.3 using the Gauss elimination method, and also

mentioned in section 2.4 in the context of the QR

- 126 -

factorization method. Matrix triangularization can be per­

formed on the systolic array in Fig.-3.2.5(a) (n=4), which

consists of a triangular array and a linear (degenerate 2-d)

array, interconnected to the triangular one. The whole sys­

tem computes using the augmented matrix (AI~); the triangu­

lar part modifies matrix A, while the linear part updates

the r.h.s vector.

The specification of the cells is given in

Fig.3.2.5(b). The square cells are engagement IPS cells aug-

mented with an internal register and row interchange con­

trol. The circular cells compute the multipliers and the

pivoting information; the pivoting method used is pairwise

(or neighbour) pivoting. For the circular processors we must

assume that they can negate xin in parallel with the test
..

lxin I ~lXI, and the comparison takes the same time as an

additionjsubtraction, so that the time unit of the elimina-

tion is within the 1 !PS cycle. Further, it should be

ensured that no division by zero occurs; this can be

achieved by checking either the operands or the input

streams.

The array is stationary since the result is stored

within the array and can be collected at the end of the com­

putation. As output the multipliers and the pivoting infer-

mation are produced. The input data sequences are shown in

Fig.3.2.5(a); each sequence consists of a column of A, while

the last stream consists of the components of b. Row 1 of

I
I
l
I

0

0

0

0

0

0

0

0

- 127 -

0

0

0

0

0

0

0

0

0

0

0

0

'' 'I L-.~
'I :I ,, _..~..._

o I ~

11

Multipliers
Pivoting control

L ------------------------- ·- -----

Triangularization
Part

R.h.s modification
Part

Fig.3.2.5(a). Full matrix triangularization array.

- 128 -

if

if

cin

xout:=x+m. x.
1n 1n

x:=xin

true

xin<>O

mout==-x/xin

true

true

mout:=-xin/x

cout:=O

Fig.3.2.5(b). Cell definitions.

- 129 -

the array forms the input boundary and accepts a row of A

and an element of b. Every row of A that arrives has its

first element eliminated and the rest of the row updated. In

general, row i accepts modified rows from row i-1 and elim­

inates their first entries while updating the others. The

skewed wavefront format is necessary so that the multipliers

and the pivoting information reach the appropriate cell

simultaneously with the element to be updated.

The array consists of n(n-1)/2 IPS cells and n elimina­

tion cells. Observe that it takes 2n cycles for the last

input to enter the array, and another n cycles for the final

modification of the r.h.s vector to be performed. Thus, the

systolic design of Fig.3.2.5 performs the triangularization

of the augmented matrix in 3n steps using n(n-1)/2 + n pro­

cessors. The efficiency of the array is 1/3, while addi­

tional time is required for the output of the result. The

design is size-dependent, since the area requirements change

with the matrix size. A size-independent array, for banded

matrices is briefly described in [113]. Similar results can

be produced if, instead of Gauss elimination, similarity

transformations are applied on the augmented matrix, using

orthogonal matrices (e.g. Givens or Householder rotation

matrices).

Next we examine the LU-decomposition of a matrix, A=LU,

discussed in section 2.3. The equations (2.3.14) can be

expressed equivalently by the recurrence relation

- 130 -

a!~l = aij lJ

a!~+1) (k)
= a. . + 1. k (-uk .) lJ l J l J

0 i < k

1ik = 1 i ~ k

(k)
aik ;ukk i > k

0 k > j

ukj =

a(k)
kj k ~ j, i ,j ,k=1,2, ... ,n. (3.2.3)

The k-th major step of the decomposition procedure computes

the k-th row of U and the k-th column of L, and then updates

the submatrix formed by (k) "'klk2 aij , 1,]= + , + , ••• ,n; then, the

processing of a new row and column can start - see also

equation (2.3.2). A corresponding systolic algorithm for a

banded matrix A with bandwidth w=p+q-1 uses a hex-connected

array that is shown in Fig.3.2.6 (w=3, p=q=2). The circular

cell receives ukk and produces it as an output, while it

calculates the reciprocal uk~ outputting it to the left-

hand-side upper boundary cells The processors in the

left-hand-side upper boundary perform simple multiplications

to compute the lik terms; on the right-hand-side the proces­

sors compute the terms -ukj" The remaining cells are simple

IPS cells; therefore it can be said that all processors have

area and time complexity not larger than an IPS cell. The

L u

0

0 0 all 0

0 0 0 0

0 a21 0 al2

0 0 a22 0

a31 0 0 0

0 a32 0 a23

0 0 a33 0

Fig.3.2.6.

0

0

0

0

0

a13

0

0

-1

mout•-ain

U •U. out J.n

a in

0

-1

Banded matrix LU decomposition array.

....
w

- 132 -

specification of the cells is also given in Fig.3.2.6.

Thus, the upper boundary computes the LU factors while

the rest of the array updates the remaining submatrix;

notice that no pivoting strategy is implemented. The i/o

data sequences correspond to the diagonals of the matrices

A, L and U, intersected with two dummy elements between each

significant data item; observe that the main (unit) diagonal

of L is not produced. The computational wavefronts are for-

mulated by the combination of the row and column that are

currently being modified. Tracing the wavefronts shows that

successive column and row modifications are overlapped with

submatrix updatings. Notice the reflection of the wavefront

on the upper boundary: it can be said

involves a feedback loop, in the sense that

that the array

a(k+l) de.pends
ij

on lik' ukj that have been already produced. The feedback

operation justifies the spacing of the significant elements

in the input streams, .since a new row of U and column of L

is produced every three cycles. The dummy elements conven­

tionally are denoted with zero; in reality either the circu-

lar cell should check for zero operand, or it should be

ensured that no zero occurs in the input data.

The array requires a total of pq processors, with corn-

plexity less than or equal to an IPS cell. The computation

starts when a11 reaches the circular cell, i.e. after

min(p,q) cycles. The length of the main diagonal sequence,

which is the larger, is 3n. Therefore, the total computa-

- 133 -

tion time is 3n+min(p,q) steps. Notice that when A is dense

we use n2 cells and the computation is completed in 4n

cycles. An equivalent orthogonal array for full matrix com-

putations requires a similar area and time, and has the

additional disadvantage that the corresponding systolic

algorithm is stationary, i.e. matrix A must be stored in the

array, and the result must be unloaded at the end of the

computation. The efficiency (and the throughput) of the

array is 1/3; this performance can be improved by interleav­

ing three problem instances.

The resulting LU factors can now be used for the final

solution of the linear system by means of forward and back­

ward substitution (notice that after the triangularization

only a backsubstitution is required). The forward substitu­

tion process is discussed in section 2.3, equation (2.3.16).

For a lower triangular (nxn) matrix A, the solution vector x

can be formulated using the recurrence

(i) x. = (b.-y.)/a .. , k=1,2, ... ,i
1 1 1 11

(3.2.4)

The sequence yli) is used for the collection of partial

results. The forward substitution array is shown in

Fig.3.2.7 for a banded lower triangular matrix A, of

bandwidth w=q (here q=4). It consists of IPS cells identical

to those used in the banded matrix vector multiplication

444

0

a33

0

a22

0

all

x•O

0

0

0

0 a 53 0

a43 0 a 52

0 a42 0

a32 0 a4l

0 all 0

a2l 0 0

0 0 0

. .
0

Fig.3.2.7. Triangular system solver.

i

0 0 0
....
w

- 135 -

array, as well as a boundary cell, whose definition is also

given in Fig.3.2.7. Its area-time complexity can be said to

be equivalent to that of an IPS cell under the assumption

that multiplication has equivalent complexity with division

and subtraction with addition.

The array forms a feedback loop (a reflected wavefront)

in the sense that a result xi depends on the previous

results x. l'x. 2' •.. ,xl 1- 1-
for the formulation of y!i).

1
It

follows that y!i>
1

can be produced only once every two

cycles, otherwise it would be impossible to collect all the

required terms; this fact explains the positioning of the

dummy elements in the data streams, as well as the time­

skewed input wavefront. The dummy elements, again, conven­

tionally are denoted with zeros; in r~ality the division in

the circular cell must check against zero, or no zero input

must be allowed.

Notice that only q cells are necessary, equal to the

number of significant matrix diagonals;

input sequence has length 2n and each

further, the larger
(i) yi requires q-1

steps to reach the circular cell. Thus, the forward subsitu-

tion process can be performed on a systolic array with q

processors in 2n+q cycles. The efficiency of the array is

1/2, and again the interleaving of two problems is possible

in order to improve this efficiency.

The significance of the solution of linear systems of

equations has led to a large number of systolic

- 136 -

architectures, tuned for specific applications. A survey of

these designs, as well as some improvements are given in

chapter 5. Also, the improvement of the performance of the

LU-decomposition and backsubstitution arrays is discussed in

the next section, in the context of applying transformation

techniques on systolic designs.

3.3 TRANSFORMATION TECHNIQUES

Transformation techniques consist part of the systolic

algorithm design strategies, briefly discussed in section

1.2. These methods do not attempt to address the problem of

algorithm ·design as a whole, but rather concentrate on some

steps of this design process. A transformation technique, in

general, aims to achieve either (or both) of the two goals.

First, to modify existing systolic designs, in order to pro­

duce new designs which may be improved in several aspects,

such as area requirements or computation time. Second, to

convert non-systolic algorithms into systolic ones that per­

form the same function.

In this section we discuss some transformation tech­

niques, that are used in subsequent chapters to obtain or

improve systolic designs. Initially, the Retiming technique

is discussed, and applied on the example of section 3.1.

Then, the Cut Theorem is introduced, in the context of the

application of two-level pipelining and fault-tolerance in

systolic arrays. Further, the area-time tradeoffs in sys­

tolic designs are considered and the expansion of a systolic

computation in time and;or in area is discussed. Finally,

the Rotating and Folding (R+F) method is described, for the

improvement of the performance of certain fundamental sys­

tolic algorithms.

3.3.1 RETIMING METHOD

- 138 -

The classical retiming theorem was originally stated in

[181-182]; the formulation followed herein is mainly

obtained from [243], [285], For the description of the

retiming technique, it is helpful to view the system as a

directed graph, where the nodes represent the cells (and the

host), while the arcs. represent processor interconnections.

Each arc is given a non-negative delay d, which indicates

the number of time cycles that are required for a data ele­

ment to traverse the arc. That is, if there is an arc from

processor v to processor u, and if a data item reaches node

v at a given cycle, then it will take d time cycles before

it reaches node u. The value of d can be zero only if a data

element passes processor v unchanged. Now, for a graph to

represent a systolic system, no arcs with zero delays should

exist; that is, d~1, for all delays. This is equivalent to

the elimination of any broadcasting or fan-in characteris­

tics in a systolic design, i.e. transformation of a semi­

systolic design to a purely-systolic one.

we shall consider two transformation rules for elim­

inating zero delays. The first rule multiplies the delays in

any graph by a constant, i.e. causes a global slowing - down

of the circuit operation. The second rule causes a given

processor to operate in time t!:_q instead of t, that is, it

changes the relative timing of the computations in different

processors. The purpose of the first rule is to give the

designer more delays to work with, and the second rule is to

distribute these additional delays in the arcs so that none

- 139 -

of them has zero delay. The transformation rules affect the

following characteristic quantities of the system:

The delay D experienced by a given stream at a given node.

The spacing S of the significant elements in a given

sequence, as it arrives at a given processor.

The period P, i.e. the number of cycles between the arrival

of two successive significant elements from a given stream

to a given processor.

Notice that in general the equation DS=P must hold.

Now, the two transformation rules are defined as follows:

slowing: if we multiply all delays on the arcs of a graph by

some constant k>1, then the processors may be redesigned so

that the system will continue to perform its function,

although at 1/k-th of its original speed, i.e. the period of

all processors is multiplied by k.

This transformation rule can be seen as globally modi­

fying the equation DS=P, to (kD)S=kP. Thus, between two

cycles of the original system, the new processors will count

k-1 idle cycles. Notice that the transformation rule is not

valid if k delays are added to each arc of the graph.

projection: if v is a node, whose every output arc has a

delay greater than k, k>O, then we may add k delays to each

input arc and subtract k delays from each output arc (back­

ward ·projection in time). If the processors are modified

- 140 -

appropriately the circuit will continue to perform its func­

tion. Similarly, if every input arc of v has a delay greater

than k, then we can subtract k delays from the input arcs

and add k delays to the output arcs, and preserve the func­

tion of the system (forward projection in time).

For this transformation rule, there are significant

transformations to be done, in order for DS=P to continue to

hold. For example, suppose that some arc leaving v has a

delay D, and v needs D cycles to compute its output element

for that arc. Then the cycle time must be changed so that

computation is now completed in at most D-1 cycles. Further,

the change of D must be compensated by a change in S or P.

Since it is not easy to change P, locally or globally, spac­

ing should change from s to DS/(D-1).

The 'slowing' and 'projection' rules are combined in

the following steps to produce the retiming method as

applied on a given graph:

Let lag(v) be the length of the longest path consisting of

zero-delay arcs, ending at v. It is assumed that the graph

has no cycles consisting solely of zero-delay arcs. We

choose k so that dk > lag(v)-lag(u) where v, u range over

all pairs of nodes of the graph, such that there is an arc

of some positive delay d, from v to u.

Then we multiply all delays in the graph with k, i.e we have

dk instead of d (application of slowing).

- 141 -

Finally, we delay each node of lag q, by q cycles (applica­

tion of projection). Thus, all delays have been modified to

dk+lag(v)-lag(u). The new system has all delays,d~1 and the

retiming transformation has been completed.

Fig.3.3.1 illustrates the application of the method,

using the designs discussed in section 3.1: starting from

the semi-systolic design of Fig.3.1.1, we apply the retiming

transformation to obtain the systolic design of Fig.3.1.2.

In the final stage of the transformation, one delay is

assumed to be included in the definition of the IPS cells.

Notice the use of the host node to close the loop of the

graph. Further, observe the effect of the retiming technique

on the distribution of the computations over the time and

the area (Fig.3.1.1 and Fig.3.1.2): each cell 'delays' the

commencement of its calculations according to its spatial

distance from the host, and there is an interval of one

cycle between two consecutive computations.

The retiming method may become quite tedious to apply,

especially in complex designs; further, it is rather res­

trictive in the types of transformations allowed, as the

dataflow directions, as well as the cell interconnections

and computations cannot change. An informal modification of

the method, used in subsequent chapters, is based on the

•retiming' of the computations, rather than the graph func­

tion. For example, it can be argued that the basic feature

in all three designs in section 3.1 is the fact that all b's

- 142 -

(a) The original graph.

I has')

1

~ '"•··~
1 i ,.,., ~ 1

i"···l 0 0 0

(b) Slowing: k=2.

I hos0

2

i ~
2

i ~
2

i 0 0 0

(c) Projection: dk+lag(u)-lag(v).

1

I hos0
1 i ~

1

i ~
1

i 1 1 1

(d) The retimed (systolic) graph.

host

(e) The corresponding systolic array:
i/o latches are included in the cells.

Fig.3.3.1. Application of the retiming method.

- 143 -

should meet all a's to form the corresponding c•s; however

the interference between the three streams is arranged in a

different way in each of the three designs. Therefore, it is

possible, to modify the arrangement of the computations by

•retiming' the data stream interferences, and thus to even­

tually modify the underlying systolic array. In this way,

the array of Fig.3.1.3 can be produced by that of Fig.3.1.1

if the computations of each cell are delayed by 2d cycles,

where d is the distance of the cell from the host.

3.3.2 CUT THEOREM

The mathematical notion of a •cut• has been introduced

to solve the problem of how to allow additional delays in

the data paths of systolic designs, while preserving the

correctness of the original algorithms. The cut theorem is

related to the retiming technique, but its application is

simpler, since its scope of transformation is more limited.

Further, of great interest is the context of application of

this technique, as well as some related results. The cut

theorem had been originally proposed in [164), and it was

applied to two important implementation issues of systolic

array design: first, the provision of fault-tolerance in

systolic arrays to yield WSI implementations; and second,

the design of efficient systolic arrays with two-level pipe­

lining. The first issue refers to the pipelined organization

of the array at cell level; while the second refers to the

pipelined functional units inside the cells, which form a

- 144 -

second level of pipelining.

Consider the systolic array for polynomial multiplica­

tion in Fig.3.1.3. Now, Fig.3.3.2 depicts an example of a

fault-tolerant version of the same array; at the same figure

the specification of a fault-tolerant cell is given using

reconfigurable links. Note that it is possible to use the

i/o latches of the cell as bypass registers in case the cell

fails. Therefore, no extra registers may be needed to imple­

ment this fault-tolerant scheme. From the specification of

fault-tolerant circuits in section 1.2, it can be seen that

the need for spare cells and the associated interconnection

network has been minimized. What is necessary is only a con­

trol algorithm performing fault detection and reconfigura­

tion of the appropriate switches. A basic assumption of this

scheme is that the probability of the interconnections and

latches to fail is very small and thus negligible. This is

reasonable because these components are typically much

simpler and smaller than the cells themselves. Furthermore

they can be inexpensively implemented with redundancy (i.e.

multiple bypass connections and registers) to increase the

yield. This technique allows for full utilization of all

live cells and without any long wire interconnections or

clocking problems~ since any defective cell is just replaced

by an additional delay in all data streams, (1641.

The above reasoning can also be applied to the imple­

mentation of two-level pipelined arrays. We can interpret

- 145 -

n
·---~ ---· I LJ I

-!.~1
ai -1 I

Fig.3.3.2. Fault-tolerant array.

Fig.3.3.3. Two-level pipelined array.

- 146

the stages in a given pipelined functional unit as addi­

tional delays in the communication between a pair of adja­

cent cells. Consider, for example, the two-level pipelined

array for polynomial multiplication in Fig.3.3.3. Since the

adder is now a three-stage unit, two additional delays are

introduced in the result data stream. Thus, each cell

requires a total number of four delay registers to be placed

in the 'b' data stream. One is implicit in the original

definition, the second is the delay register in the original

design in Fig.3.1.3, and the last two are to balance the two

new delays in the adder.

The cut theorem gives a general rule for the transfor­

mation of systolic designs to fault-tolerant or two-level

pipelined, _by modelling this transformation as the insertion

of additional delays in the interconnections between cells.

starting from the graph model introduced in the retiming

technique, we define a 'cut' to be a set of arcs that parti­

tions the nodes into two disjoint sets, the 'source set' and

the 'sink set', with the property that these arcs are the

only ones connecting nodes in the two sets and are all

directed from the source to the sink set. Also, a systolic

design is called a 'delayed' system of another systolic

design, if the former differs from the latter by having

additional delays on some of the processor interconnections.

Cut Theorem: for any systolic design, adding the same delay

to all the arcs in a cut and to those pointing from the host

- 147 -

set to the sink set, will result in a delayed systolic

design performing the same function as the original.

As depicted in Fig.3.3.4, the interconnections between

two adjacent cells of the unidirectional linear array of

Fig.3.1.3 form a cut. Thus, by the cut theorem, we can see

that both the fault-tolerant array in Fig.3.3.2 and the

two-level pipelined array in Fig.3.3.3 are delayed versions

of the original array.

The cut theorem, as described above, can be efficiently

applied only to systolic arrays with unidirectional

dataflow. For example, if the same fault-tolerant technique

is attempted on bidirectional systolic arrays (see, for

example Fig.3.1.2 and section 3.2), then the performance of

~he fault-tolerant array degrades rapidly with respect t6

the number of consecutive failed cells that need to be

tolerated. Notice that bidirectional arrays have processor

utilization and throughput of 1/2 or 1/3 in the first place.

Now, in order to tolerate k consecutive failures, the

throughput must be further decreased by a factor of k+1. The

bidirectional arrays discussed can be distinguished into two

groups: those with feedback cycles (e.g. LU decomposition,

solution of triangular systems), and those without feedback

cycles (e.g. polynomial multiplication, banded matrix-vector

and matrix-matrix multiplication). The latter group of algo­

rithms can be transformed to unidirectional ones, as it has

been shown for polynomial multiplication and will be shown

- 148 -

CUT

Fig.3.3.4. Application of the cut theorem.

-1
all 0 0

a21 0 0

a31
-1

a22 0

a41 a32 0

a 51 a42
-1

a33

a61 a 52 a43
-1

a44 a62 a 53

Fig.3.3.5. Systolic ring architecture.

- 149 -

for the other designs in subsequent chapters. However, for

the former group, the most suitable transformation is the

one leading to a systolic ring architecture.

An example of a systolic ring architecture is given in

Fig.3.3.5; it solves a lower triangular linear system by

forward substitution, i.e. it performs the same function as

the array in Fig.3.2.7. The coefficient matrix A, is banded

with bandwidth q=6. A ring of q/2 cells is sufficient to

solve the problem at the same throughput as the linear

bidirectional array, but with doubled processor utilization,

since the ring uses only half of the cells of the linear

array. Notice, however that in order to avoid the computa­

tions of the boundary cell in Fig.3.2.7, i.e. subtraction

and division, it is necessary to precompute the re_ciprocals

of the main diagonal and send the elements of the r.h.s vec­

tor b to the cells via the second communication channel.

Notice also that further preprocessing is necessary for the

formulation of the input data streams, which are now more

complex, since they consist of sequences of matrix columns,

including reciprocals of the main diagonal elements.

Thus, a recurrence with feedback cycles of size 2m-l

can be. computed on a systolic ring of m processors, at a

throughput rate of 1/2. If k cells fail, the ring can still

solve problems of sizes up to 2m-k-1 at a throughput rate of

(m-k)/(2m-k). In other words, the reduction in throughput

due to k failures is only k/(2m-k) of the original. Similar

- 150 -

results can be produced for a two-level pipelined ring.

The cut theorem, and the related fault-tolerant and

two-level pipelining techniques, has also been extended to

2-d arrays; similarly, a 2-d systolic ring architecture for

LU decomposition can be derived, [164). Further, the cut

theorem has been extended and modified in [82], [169) to be

applicable in general graphs, and can be used as a simpler

alternative to the re timing technique.

3.3.3 AREA-TIME EXPANSION

In the examples given so far, the designs have been

evaluated according to cell count and computation time.

These criteria seem to be quite natural, but also have prac­

tical significance, and furthermore they usually compete

with each other. The importance of minimizing the computa­

tion time is self-evident: a significant reduction in the

computation time means that existing problems can be solved

faster, and bigger problems, previously impractical, may

become solvable. Further, in real-time applications, the

ability to provide results for time-dependent processes is

crucial. On the other hand, the minimization of area

requirements is also important. First, at chip fabrication

level, because of the very low-yield of flawless chips per

wafer, it is imperative to optimize the area required for a

function. Then, at array level, in order to minimize the

cell-count of an array, and therefore the implementation

cost of the system.

- 151 -

The selection of a particular systolic algorithm for a

given problem is therefore a complex tradeoff between area

(A) and time (T). The history of the computation performed

by a systolic system can be represented by a rectangular

solid, where the two horizontal dimensions represent the

area of the systolic design, and the vertical dimension

represents the computation time for the system. This third

dimension can be interpreted as the sequence of snapshots

for the design operation. Based on this representation, we

can distinguish three types of arguments that can be used to

derive lower bounds (theoretical minima) on the area and/or

time requirements of a given systolic design. The first pos­

sibility is to use the volume of information that is

included within the solid, and thus define a lower bound for

AT. The second possibility is to use the ~mount of informa­

tion that flows in a time unit across the system, and thus

define a minimum for A. Finally, .the third possibility is to

use the amount of information that flows across the smallest

area dimension, and thus define a lower bound for AT2 ,

(285].

Results concerning area-time tradeoff analysis and

related lower bounds of systolic algorithms can be found,

for example, in (178], (181], (184], (212]. In our case, the

importance of the area-time tradeoff analysis is that it

indicates that there exists room for further improvements in

the reported systolic designs, by modifying either A or T.

Further, the systolic algorithm design methods can be seen

- 152 -

as (semi)formal ways of actually searching over the space of

possible systolic architectures for a given problem, in

order to find the design that optimizes given criteria,

mainly area-time tradeoffs. Now, we briefly discuss a

transformation technique that explicitly addresses the

area-time tradeoff problem in the implementation of a given

systolic algorithm.

A VLSI computation (systolic or otherwise) may be

arranged in several ways, spanning from fully parallel to

fully sequential; the former approach spreads the computa­

tions in area ('area expansion'), whereas the latter spreads

them in time ('time expansion'). Area expansion typically

achieves high throughput; the data flow is simple and regu­

lar; and the control requirements are minimal, usually

implicit to the system. This is the case of the original

systolic arrays. Unfortunately, the cost of full area

expansion is often prohibitive for large problems. Therefore

the alternative time expansion, or intermediate designs,

must be considered.

It is possible to treat these area-time tradeoffs

mathematically, by adopting a uniform representation for

data and control flow, and express the circuit computation

as a combination of data and control variables, [151]. The

method is described through a simple example, illustrated

with the help of Fig.3.3.6: in this figure a possible imple­

mentation of the enagagement IPS cell is given, similar to

- 153 -

aout~~-------,--------------~

xout*---r-------~--~--------~

1------+---- a in

1-----''--+--- xi n

I
s o 1

-r- ---L--0--
MUX .J

Yout+---r-----~--------------------~L_-

--·----------------...1

u.
1n

Fig.3.3.6. Application of area-time expansion.

- 154 -

that used in the full matrix-vector multiplication A~ c ~

(see Fig.3.2.1). The cell is augmented with an additional

link, for the final output of the accumulated result, i.e. a

component of ~·

The first (implicit) control element is the delay ele­

ment that is denoted herein by Z; thus, the logical expres-

sion xout=Zxin

x is delayed

The component

indicates that an element of the data stream

by one cycle time, when it passes through z.

M is a simple memory location, with no

inherent delay. The second (explicit) control element is

denoted by u, and has the form of an input sequence, exactly

as the data i/o sequences for a, x and y. The control signal

U has the following functions: if 0=1, then the multiplexer

opens to output (y) the quant~ty stored in M, and M is reset

to 0; if U=O (or, equivalently U'=l), then the multiplexer

provides no output and M accumulates inner products in the

form s=ainxin+Zs. Thus, the function performed by this

structure can be described by the following combination of

mathematical and logical expressions:

y = Us, where s = ax+Z(U's+UO) = ax+ZU's (3.3.1)

where, a, x and y indicate the current value of the data

streams a, x and y. This expression can be expanded as

y = ax+ZU'ax+ZU'ZU'ax+ZU'ZU'ZU'ax+ ... (3.3.2)

In other words, the circuit accumulates products in the form

- 155 -

as long as U=O; as soon as U becomes 1, the sum is produced

as an output of the structure. There is no limit on the

number of summations that can be performed, i.e. the time

expansion can be carried .on indefinitely. However, if U•1

every n cycles, and 0 in between, then one sum of the form

(3.3.4)

can be produced every n cycles.

Using this IPS circuit as a basis one can build totally
' time expanded circuits (i.e. sequential), or intermediate

circuits that can combine area and time expansion: for exam­

ple one can envisage time expanded circuits that accumulate

inner products in parallel, which is the case of Fig.3.2.1;

alternatively, a series of time expanded structures can be

pipelined so that after some inner product accumulation the

result can be passed to the next cell, etc.

The main disadvantage of time expansion over area

expansion is the fact that extra circuitry and communication

is required for the control logic. The time expansion

requires a more complicated control mechanism, which is usu­

ally time-dependent; further, the dataflow is not as regular

as in the area expansion and typically forms reflected wave­

fronts and feedback loops. In the area expansion structures

control is implicit, since the validity or not of computa­

tions are determined by the dataflow; further, the maximum

- 156 -

size of the problem to be solved is determined by the size

of the system. on the other hand, a time expansion structure

has the advantage thoiit can be reconfigured for problems of

different sizes; this flexibility allows for easier fault­

tolerant implementations, since the computation of a faulty

component can be performed by another part of the circuit.

Finally, the area-time tradeoffs (and the corresponding

area-time expansion schemes) can be applied at several dif­

ferent implementation levels of a systolic system. Initially

at bit level, in the form of bit-parallel or bit-serial

implementation of communication and functional units, as

well as two-level pipelining [78-79), [195-197). Then, at

word level, as in the example discussed. Further, in a

•block of computations level', i.e. in the block­

partitioning and partial serialisation of systolic algo­

rithms [125), [137-138); and finally, at an algorithm level,

with the systolic implementation of iterative algorithms

[37),[80).

3.3.4 ROTATE AND FOLD (R+F) METHOD

The efficiency of the hex-connected array performing

the LU factorization algorithm is 1/3; similarly, the effi­

ciency of the linear array solving a triangular system is

l/2. The R+F method improves the efficiency of the LU decom­

position array up to 2/3 and that of the triangular system

solver up to 1. The same method can also be applied to

other basic systolic algorithms, such as matrix-vector and

- 157 -

matrix-matrix multiplication, [19-21). The major charac­

teristic of the method is the fact that no significant

changes occur on the underlying computational structure,

i.e. the array itself, but mainly in the format of the i/o

data sequences. This makes the R+F method suitable for

direct implementation on existing arrays, since only some

additional pre-;post- processing of the data streams is

necessary. Herein the method will be described using an

example, namely the solution of a linear system of equa­

tions, with tridiagonal coefficient matrix; the same problem

is used in chapters 5 and 8, while other instances of the

R+F method are also described when they occur.

The original LU decomposition algorithm, for a tridiag-

onal matrix can be summarized from section 3.2 as follows:

let A be a (nxn) tridiagonal matrix with bandwidth w=p+q-1,

p=q=2; a systolic array with pq processors connected as in

Fig.3.2.6 can compute the LU decomposition of A in

3n+min(p,q) cycles, using the recurrences:

a!~) =
lJ

a!~) =
11

(1) a .. +1 .. 1 (-u. 1 .)
11 1,1- 1- ,1

0 i < k

tik = 1 i = k

(1)
aik ;ukk i > k, i,j,k=1,2, ... ,n

- 158 -

0 k > j

ukj = a(2)
kj k = j and j ~ 1

a(l)
kj k < j or k = j = 1. (3.3.5)

When applying the R+F method we proceed from the top

and the bottom of the matrix simultaneously, and obtain two

LU decomposition streams functioning concurrently in oppo­

site directions. The two streams confront each other in the

centre of the matrix and this conflict is resolved by means

of a double modification of an element in the centre of the

matrix. Thus, the LU factorization algorithm can be defined

as follows: Let A be a (nxn) tridiagonal matrix; then the LU

decomposition of A can be performed on the same hex-array as

in Fig.3.2.6 in time r3n/2l+min(p,q), using the recurrences:

n odd

(i) first stream: As in (3.3.5) for i,j,k=1,2, ... ,(n+l)/2,

since this stream starts from the top of the matrix and

moves towards the centre.

(ii) second stream: The recurrence (3.3.5) is modified to

start from the bottom of the matrix and move towards

the centre, i.e. i,j,k=n,n-l, ... ,(n+l)/2.

aPl = a
l) ij

af~l
ll

- 159 -

0 i > k

1 ik = 1 i = k

(1)
aik ;ukk i < k

0 k < j

ukj = a(2) k = j and j t- n kj

a(1) k > j or k = j = n. (3.3.6)
kj

Observe that for n odd, the centre of the matrix is just the

element a(n+1)/2,(n+1)/2 which is modified twice: once by

the first stream and then by the second stream. Finally, for

i=(n+1)/2 we have:

u. . = a .. +1. . 1 (-u. 1 .) +.t. . 1 (-u · 1 ·)
11 11 1,1- 1- ,1 1,1+ 1+ ,1

(3.3.7)

n even

(i) first stream: As in (3.3.5), for i,j,k=1,2, ... ,(n/2)+1.

(ii) second stream:
)

As in (3.3.6), for i,j,k=n,n-

1, ..• ,(n/2)+1. Since now there is no single central

element, the first stream is extended for one row and

column so that the double modification occurs for the

element a(n/2)+1 ,(n/2)+1 .

In Fig.3.3.7 the R+F computational streams (or 'dequeues')

are shown for n=S (odd) and n=6 (even). The arrows indicate

the direction of the computation as well as the rotating and

folding operation. The matrix coefficients that are modified

1st stream

- ' ' ' 8 21 a22 a23i
__ 1 __

\ an : a33 I a34 \\
,_-- _J

I \.
I a43 a44 a45

' ' a54 ass.

' i
2nd stream

1st stream

1
2nd stream

= •

•

Fig.3.3.7. Application of R+F method on LU decomposotion
of tridiagonal matrices.

double
modification

....
0\
0

- 161 -

twice are located in the overlapping of the 'dequeues' and

indicated by the dotted line boxes.

Now, we discuss the solution of the triangular system

produced by the LU decompostion; since matrix A is tridiago­

nal, the triangular systems produced have bidiagonal form.

Further, as shown previously, an upper triangular system is

solved in a way similar to that of a lower triangular sys-

tern; therefore we consider only the solution of a lower tri-

angular bidiagonal sytem. The basic systolic algorithm can

be derived from section 3.2: Let A be a non-singular (nxn)

lower triangular matrix of bandwidth q=2, and the r.h.s vec-

tor b be given. A linear array with q processors, as in

Fig.3.2.7, can solve the system A~=£ in time 2n+q, using the

recurrences:

0

= y\l)+a .. lx. 1
1 1,1- 1-

(3.3.8)

When applying the R+F method in the LU decomposition,

the resulting bidiagonal matrix has the form shown in

Fig.3.3.7. Subsequently, the solution of the linear system

can again start · from both ends of the matrix and proceed

concurrently towards the centre. Again, the confrontation of

the two streams is resolved by means of a double modifica-

tion of the central element of the matrix. The R+F algorithm

is as follows: Let a linear system of equations A~=~, with a

- 162 -

given r.h.s vector£ and where the coefficient matrix A has

the form of Fig.3.3.7. This system can be solved on the

linearly connected array of Fig.3.2.7, using the

recurrences:

n odd

(i) first stream: As in (3.3.8), but for i=1,2, •.• ,(n+l)/2.

(ii) second stream: The·recurrence (3.3.8) is modified to

move from the bottom of the matrix upwards, for i=n,n-

l, ... ,(n+l)/2.

yP l = o
1

x. =
1

(2) (b.-y.)ja ...
1 1 11

The central element x(n+l)/2 is calculated from:

n even

(3.3.9)

(3.3.10)

(i) first stream: As in (3.3.8), for i=1,2, ... ,(n/2)+1.

(ii) second stream: As in (3.3.9), for i=n,n-l, •.. ,(n/2)+1.

The central element is now x(n/2)+l and is calculated as in

(3.3.10), for i=(n/2)+1. In Fig.3.3.8 the R+F algorithm for

the solution of triangular systems is illustrated, for n=S

(odd) and n=6 (even). The same conventions are used, as in

1st stream

l ' " x1 b1

" a21 a22 ' x2 b2 r:_,_" ---
' a31 I a33 a34 * x3 b3 ..,_ double

'-- -\-l ' modification - -·- -b~--
' a44 aS4 x4

t " ass xs bs

' '
2nd stream

1st stream

{ all ' Kl bl

' ' a21 a22 ' K2 b2

'
'

a32 a33 ' K3 b3

' r-'la"""' * ---
'

8 431 a44 a4S "- b4 double - modification
'--1- _l

' ' ass 8 S6 X~ bs

1 ' ' 8 66 K6 b6 ' '
2nd stream

Fig.3.3.8. Application of R+F method on triangular bidiagonal
system solution.

...
0\

- 164 -

Fig.3.3.7 to indicate the direction of the computations, the

formulation of the i;o data streams and the elements

involved in double modifications.

The hex-connected systolic array for LU decomposition

of a tridiagonal matrix, and the linearly connected systolic

array for the solution of the corresponding triangular sys­

tems are shown in Fig.3.3.9, together with the i/o data

sequences. The sequences for n=6 can be easily derived from

those shown (i.e. for n=S). Notice the format of the data

streams: they can be formed if we rotate the lower half of

the matrix involved and then fold it on top of the upper

half (hence the name of the method). Thus, the dummy ele­

ments are reduced, from 2 to 1 in the LU decomposition i/O

sequences, and from 1 to zero in the triangular system

solver; therefore the efficiency of the arrays is increased

accordingly. The only modification in the operation of the

arrays stems from the double updating of the central ele­

ments: notice that the central elements have to be kept in

the appropriate processors for two time units, as indicated

in Fig.3.3.9. This can be easily tackled either by program­

ming, or by slightly changing the structure of the processor

involved so that it is able to 'freeze' its output at a

given instant of the computation (20).

The R+F method can be applied more than once on the

same matrix, by successively splitting it into pairs of

'dequeues'. Further, the R+F method can be extended to quin-

(a33) a34

L u a44 a32

a22 aS4

ass a21

all 0

0 1

-o- y-0

x-0

1 i
0 all 0

bl
"'

0 ass 0
bs U1

a21 0 a12
b2 x3

a45 a22 a 54 b4 0
0 a44 0

(b3) x4
a32 0 a23

x2
a34 (a33) a43

xs
xl

D: double modification for the elements in brackets.

Fig.3.3,9. Systolic arrays for R+F method.

- 166 -

diagonal, general banded and full matrices as shown in [19).

However, in these cases the central part of the matrix that

requires double updating, increases in size, as it is pro­

portional to the semibands p and q. It can be argued that

the R+F method is efficient when the ratio r=n/w>>l, where w

is the bandwidth of the matrix and n its order; in this case

the central part of the matrix is relatively small, and

therefore the additional computations required for the dou­

ble modification, can be regarded as negligible, in com­

parison to the parallel computation.

3.4 SYSTOLIC PROGRAMMING AND SIMULATION

Systolic systems achieve high performance and effi­

ciency by solving only restricted problem classes, at the

expense of flexibilty and, sometimes, implementation costs:

this is the fundamental balance between performance and gen-

erality (special-purpose vs. general-purpose systems). As

previously noted, the continuously widening applicability of

the systolic approach, as well as the diversification of

problems to be solved, gave birth to a large number of sys-

tolic algorithms. Except for a limited number of cases,

where performance is very critical, it has been accepted

that, in general, mapping a systolic computation directly
(

onto silicon is less attractive than programming a special-

purpose, or even general-purpose, VLSI processor array.

These 'systolic computers' generally offer a computing

structure with programmable processing elements and, possi­

bly, reconfigurable interconnections. Further, local and/or

global memory is supplied, as well as a means of systolic

control distribution in the form of instructions and/or con-

trol signals. Finally, a 'systolic programming' notation is

provided, together with other system software support

(another important part, the interfacing of the system with

the host and the integration to a general system, is not

discussed herein).

The provision of a systolic programming language is of

critical importance in the development of systolic comput-

- 168 -

ing, for a number of reasons. Firstly, because a language

can precisely and unambiguously describe the concurrency

imbedded in an algorithm; secondly, because it provides a

flexible means for expressing systolic (and in general

parallel) computations without having to resort to graphical

means or mathematical formulation methods; and finally, to

actually control a systolic computer, in the same way as a

sequential language is used to control a conventional com­

puter. Some key factors, usually conflicting, for the

design of such a language, are [170]: wide application

range; programming simplicity (i.e. relatively high-level

language); and execution efficiency.

Furthermore, the simulation of systolic algorithms has

been extensively utilized as a means for informal verifica­

tion of the algorithm and validation of its performance.

Notice that since a systolic language is available, the

development of the algorithm itself is detached from the

actual systolic implementation. Thus, the algorithm can be

developed on a conventional machine, using an appropriate

compiler and all the available programming aids. Then, when

the algorithm is complete and fully checked, it can be

transferred onto the actual systolic computer for final

testing.

In the following paragraphs, we briefly describe two

special-purpose systolic computers, the Warp machine and the

Wavefront Array Processor. The main points of this discus-

- 169 -

sion reflect the basic characteristics of a VLSI processor

array, as outlined in section 1.2 and above, i.e.: applica­

tion areas, interconnection geometry, processing element

structure, memory available, programmability, data and con­

trol communication, and software support. Then, the utiliza­

tion of a general-purpose parallel processing microcomputer

chip, the transputer, is described. Further, the 'soft­

systolic' approach in systolic programming is introduced.

Finally, we discuss the use of the OCCAM programming

language for systolic programming and (soft-systolic) simu­

lation; this discussion is complemented with the OCCAM

language description and the selection of soft-systolic

simulation programs in the Appendix.

3.4.1 THE WARP MACHINE

warp was developed by H.T.Kung and his colleagues in

Carnegie-Mellon University (CMU); its main areas of applica­

tion are low-level signal and image processing tasks (with

special emphasis on computer vision), as well as matrix com­

putations and other numerical algorithms, [7-9], [161-162].

It is a linearly interconnected (1-d) array of processors,

called Warp cells, augmented with an Interface Unit (IU)

that communicates with the Host, as illustrated in

Fig.3.4.1. Each of the warp cells is a board-level special­

purpose microprocessor (a VLSI implementation of the Warp

cell is planned). It has an ALU and a Multiplier (MPY) unit,

that su·pport two-level pipelined computations; further there

- 170 -

are two register files for ALU and MPY to store intermediate

results and for the approximation of some unary functions,

e.g. inverse (a special boundary cell for complex computa­

tions has also been constructed). The cell has a signifi­

cant amount of local memory (RAM), so that it is possible to

reduce the i/o requirements during the computation, and to

simulate systolic algorithms that have been designed for 2-d

systolic systems. Each cell is programmable, controlled by a

microcode sequencer and with microcode storage. Finally,

there are input queues and multiplexers to implement pro­

grammable delays in the dataflow and to relax the strictly

pipelined dataflow.

As it is shown in Fig.3.4.1, Warp provides only two

one-way communication channels, and an additional path for

memory address and control passing. The linear structure

has been chosen because it allows easier implementation;

synchronization by a simple global clock; minimum i/o

requirements (since there is only one input and one output

cell); and finally efficient implementation of

tolerant techniques.

fault-

The Warp machine supports two modes of operation: sys­

tolic and local mode; the systolic mode can be subdivided

into the pipelined and the parallel mode. In the pipelined

mode, all cells perform the same program and each cell is

waiting for results from its neighbouring cell; in the

parallel mode, all cells perform identical programs but they

HOST

Address-Control

INTERFACE UNIT

X

YL.. -

~ I·
... - ---- CELL 1 CELL 2 - - --- - -

-

WARP PROCESSOR ARRAY

Fig.3.4.1. Warp machine architecture.

x·

~C<LLN~ y

,_.
--.1 ,_.

- 172 -

use data from their local memory; in the local mode, each

cell may perform a different program using data from its

local memory.

An Algal-like language, called W2, is used for the

high-level programming of warp; W2 is translated by a com­

piler to a lower-level language, Wl, which is the assembly­

type language of the system. The user simply thinks of the

machine as a unidirectional array of sequential processors

that communicate asynchronously (i.e. at a high level the

communication is seen to be data-driven). The compiler

divides the operations in a program into three parts, one

for each of the different components of the system: the Host

(external i/o), the IU (data-independent addresses, loop

control), the cells (the rest of the operations). The com­

piler currently accepts only programs with unidirectional

dataflow; flow control between cells is achieved by skewing

the execution of the cells to ensure that the input data is

in the queue before it is used. The high degree of pipelin­

ing within the arithmetic units is another cause of concern

for the compiler. The warp project had shown the signifi­

cance of software support for the development of a systolic

computer; especially the design of a compiler, which pro­

vides a feedback for the architecture designer since it

requires a thorough study of the functionality of the

machine.

3.4.2 THE WAVEFRONT ARRAY PROCESSOR (WAP)

- 173 -

WAP was introduced by S.Y.Kung and his eo-workers in

the University of Southern California; its main areas of

applications are basic matrix computations and signal pro­

cessing algorithms [169), [173). It is an orthogonally con­

nected (2-d) square array of processing elements (PE's),

augmented with a Program Code Memory and data memory

modules, as shown in Fig.3.4.2. Each of the PE'S is a

special-purpose VLSI microprocessor that has been optimised

to support the instruction set of the Matrix Data Flow

Language (MDFL), which is used to program the WAP. Moreover,

the ALU is designed to efficiently perform computations,

such as multiplication and rotation, that are of major

importance for signal processing applications. Further lim­

ited local memory is provided (RAM), for data and program

storage. There are four two-way paths for data communication

and another four for control distribution.

Probably the main feature of WAP is its asynchronous

communication; i.e. each PE communicates with its neighbours

using a handshaking protocol, and performs its computations

as soon as all the operands and control required are avail­

able. Thus, there is no need for a global clock mechanism

for synchronization; each cell is self-timed and the whole

array operation is data-driven, according to the concept of

dataflow computing. The processor grid acts as a wave pro­

pagating medium, and an algorithm is executed by a series of

wavefronts moving across the grid. As a further justifica­

tion of the term 'wavefront array' we note that the

PROGRAM
CODE
MEMORY

[['
'

r-e-

'-'--
/

/

'--'-- ,

r-;-

/

- 174 -

MEMORY MODULES

-
-
- r-

t•A+T t•2A+T t•3A+T t-4
/" t~A " t=2A 7/ t=3A /

I- .I

V ~ / / /
/ / /

/ / /
/ / /

/ / / t-
~/

/ /
/ v /_ /

V // V / V
/
/i/

SA+T

t=SA

/
/ /

./ /
/ / / / /

"/
/ /

/ V /~ /
/ / /

/ /
/ / /

/ / /
/ /

/
...

/ ' / /
'

A = unit time of data transfer

/

/'
/

/

,
'

t=
/

V
6A+T

t=6A

t•7 A+T
"/

v
T m unit time of arithmetic operation

Fig.3.4.2. WAP architecture.

- 175 -

computational wavefronts are similar to the electromagnetic

wavefronts (they both obey Huygens' principle) since each PE

acts as a secondary source and is responsible for the propa­

gation of the wavefront. The pipelining is feasible because

the consecutive wavefronts will never intersect, thus avoid­

ing any contention problems (see Fig.3.4.2). The spacing of

the waves (T) is determined by the ·time required for the

execution of the computations in a processor. The speed of

the wavefront (6) is equivalent to the data transfer time.

A special language, called MDFL, has been devised for

programming the WAP. A MDFL program has two parts: a global,

which describes the algorithm from the point of view of the

wavefront meeting successive sets of processors; and the

local, which describes the algorithm from the point of view

of an individual PE encountering a number of consecutive

wavefronts. At the beginning of the computation, each part

of the program is stored in the appropriate modules,

together with the data required. The programmer deals only

with the global part of MDFL; the microcode for the PE's are

produced by a special preprocessor. For WAP such a prepro­

cessor is relatively easy, since it does not have to con­

sider synchronization problems.

Comparing the warp machine and the WAP we can observe

the following

and clocking

implementation

major differences: interconnection geometry

mechanism. The synchronous asynchronous

of systolic systems has been discussed in

- 176 -

section 1.2: Warp is easier to implement, while WAP is

easier .trr expand. The interconnection geometry of warp leads

to more difficult programming, ·especially for 2-d systolic

algorithms, that must be collapsed to 1-d. Also, the 2-d

geometry of WAP is well studied and there are many algo­

rithms available; further, the WAP can simulate a 1-d array,

with uni-(or bi-)directional data flow using MDFL. On the

other hand, as a computer design project, warp is more flex­

ible and it can be seen as a first step to fully understand

the power and the limitations of a systolic computer; in

that sense a linear array is adequate for initial experimen­

tation and allows for easier implementation, as shown above.

Finally, the Warp project tries to answer some other impor­

tant problems, such as the system interface and the host

configuration, that are not investigated in WAP.

3.4.3 THE INMOS TRANSPUTER

In contrast with the previously discussed systems, in

the case of transputers the main interest is concentrated on

the basic building block, i.e. the transputer chip, instead

of the system as a whole. This is because the transputer is

a comparatively stand-alone, single-chip microcomputer, with

general-purpose capabilities and not a simple component of a

processor array. However, on the other hand, its major

characteristic is the ability to be interconnected with

other transputers to build any type of processor architec­

ture (transputer network) [140-141], [149-150], [193].

- 177 -

Thetransputer is produced by INMOS Ltd.; it is a general­

purpose parallel processing component, providing a direct

implementation of the process model of computing which is

sufficiently general to include both sequential and con­

current processing in a natural manner. A process is taken

to mean an independent computation, autonomous in the sense

that it has its own program and data, but able to communi­

cate with other current processes by message passing via

explicitly defined communication channels.

Each transputer contains a CPU (i.e full microproces­

sor), memory and four bidirectional communication links.

Notice that the processor is not optimised for signal pro­

cessing or scientific computation, but a special application

interface may be used to provide these facilities (no

floating-point arithmetic is currently available, but a

floating-point transputer has been announced). Data is

transmitted as a sequence of bytes, each byte being ack­

nowledged by the receiver before the next is transmitted

(handshaking protocol). This enables the processes to run

asynchronously, only synchronizing when they need to commun­

icate. Communication and program execution can be performed

in parallel. The transputer supports the OCCAM programming

language, which has been designed in conjunction with it.

The structure of the transputer is given in Fig.3.4.3.

The CPU contains a scheduler that enables any number of

processes to run on a single transputer, on a time-sharing

Reset
Analyse

Error
BootFromROM

Clock In
vcc
GND

notMemS0-4
notMemWrB0-3

notMemRd
notMemRf

MemWait
MemConfig

---< -----i
____,
-

.___ -4----

- 178 -

r--
System 32bit
services Processor

32 32
L L , ,

32 Link 2K bytes L"_ . Interface On-chip
RAM

32 Link .L , Interface 32
~ ,

32 Link L , Interface

32 Link
, Interface

Appli ea ti on 32
specific ~

Interface
, I Event

'--

.L

32

Fig.3.4.3. Transputer architecture.

-

~

LinkinO
LinkOutO

Linkinl
LinkOutl

Linkin2
LinkOut2

Linkin3
LinkOut3

EventReq
Even tAck

MemReq
MemGranted
Mem_AD0-31

- 179-

basis. As every transputer implements OCCAM, an OCCAM pro­

gram can be executed on a single transputer or on a network

of transputers. In the first case, parallel processes share

the CPU time and channel communication is simulated by mov­

ing data in the memory. In the second case, parallel

processes are distributed among transputers and channels are

allocated to communication links. Thus, an OCCAM program can

be implemented in a variety of ways, balancing cost and per­

formance.

It follows that a simulation of both Warp machine and

WAP is possible using transputers [44), [60), [193), [251).

Of course, because of the general-purpose nature of tran­

sputers, some penalty in performance must be paid, in com­

parison to the special-purpose systolic computers. However,

the ability to build, using a standard component, a custom­

ised parallel processing machine, even for prototype pur­

poses, will have a wide impact on the development of algo­

rithms for VLSI processor arrays.

3.4.4 THE SOFT-SYSTOLIC APPROACH

The definition of the transputer architecture distin­

guishes in a parallel algorithm between the logical defini­

tion of a network of processes, on the one hand, and the

physical realisation of this network, on the other. In the

case of systolic algorithms this is equivalent to defining

the operation of the processors and the data communication

patterns, without actually implementing the corresponding

- 180 -

processor interconnection geometry. For example, the Meiko

Computing Surface, or the Reconfigurable Processor Array

(RPA), [149-150], both based on transputers, can be used for

the implementation of systolic algorithms at this abstract

level.

A step further in this direction is the introduction of

the •soft-systolic' approach by E.Shapiro and his colleagues

at the Weizmann Institute of Science, Israel [266]; the

soft-systolic paradigm is desoibed as a framework for

realising an algorithm design and programming methodology

for general-purpose, stand-alone (not attached to a host),

high-level language parallel computers (more specifically,

the Fifth Generation Project computers, [284]). Soft­

systolic algorithms are best defined in terms of a dynami~

cally changing collection of software processes, synchron­

ized by dataflow, in contrast to the original 'hard­

systolic' algorithms which are typically defined in terms of

a static collection of hardware processors.

The soft-systolic approach comprises an abstract

machine, a programming language, a process - to - processor

mapping notation, and an algorithm development methodology.
''

Details of a programmable systolic machine are given in

[102]: it is an infinite processor grid, termed a

Polymorphic Array, based on an improvement of the 'doubly

twisted torus' processing surface; the basic building block

for this machine is proposed to be the transputer. The sys-

- 181 -

tolic programming language used is Concurrent Prolog,

although less efficient than OCCAM, mainly because of the

Artificial Intelligence orientation of the project; the

language is augmented with a LOGO-like Turtle notation for

process - to - processor mapping.

The algorithm development methodology is similar to

that of designing hard-systolic algorithms. A solution to a

problem is defined in terms of a collection of processes

that overlap computation with communication, where the dif­

ficult design task is to ensure that computation and commun­

ication are balanced. The communication structure should be

designed so that, in addition to not introducing

bottlenecks, it can be mapped onto a computing surface

without much penalty. In contrast to the hard-systolic algo­

rithms, a detailed design and analysis of the timing of com­

munication is unnecessary to obtain a correct algorithm, and

can be deferred until fine-tuning for performance is neces­

sary, since operations are synchronized via dataflow.

Soft-systolic algorithms observe the main principles of

systolic algorithms, as defined in the general framework in

section 3.1. However they do not have to obey the restric­

tions that refer to the VLSI implementation of systolic

algorithms; thus they differ from the hard-systolic algo­

rithms in the following ways:

The network of processes need not be planar and static:

- 182 -

non-planar networks with multiple and complex intercon­

nections, or even multidimensional and;or time varying

systems may be possible.

Area is not a major consideration for optimization; how­

ever, it should be noted that it represents processes,

and thus processor and memory resources.

They do not have to be fabricable, but they must be pro­

grammable in some appropriate parallel processing

language (e.g. OCCAM).

Broadcasting, fan-in and small irregularities are not

avoided; but there must be a majority of pipelined struc­

tures.

Thus, we can say that the set' of soft-systolic algo­

rithms is a superset that includes the set of hard-systolic

algorithms: a hard-systolic algorithm can be defined in

terms of a network of processes; however the reverse is not

true, since the soft-systolic approach allows for freedom

that is not possible ~o be implemented on VLSI. The systolic

algorithms that are designed for special-purpose systolic

computers can be classified as 'hybrid-systolic' algorithms,

since they consist an intermediate category. Hence, for

hybrid-systolic algorithms, we can distinguish the following

main characteristics:

Area is not a major consideration, in terms of optimizing

the area of the functional units, or of the array as a

- 183 -

whole. However, the restrictions of the machine must be

taken into account, in terms of processors and memory

available.

They do not have to be fabricable, but programmable in

some special- purpose systolic programming language, tar­

geting a special-purpose machine; usually they require

significant amounts of memory and control.

Local and regular broadcasting may be available, as well

as some flexibilty regarding the systolic data flow;

notice that semi-systolic algorithms are hard-systolic

algorithms that only allow limited broadcasting or fan-

in.

3.4.5 SOFT-SYSTOLIC SIMULATION USING OCCAM

The term 'soft-systolic simulation' indicates the com­

bination of several approaches, i.e.: initially, the simula­

tion of hard-systolic algorithms on conventional computers,

using some suitable language; further, the development of

hybrid-systolic algorithms and special-purpose systolic pro­

gramming; finally, the design and development methodology of

soft-systolic algorithms that have as target machines, some

general-purpose parallel processing computer. Thus, in

soft-systolic simulation, systolic algorithms are simulated

on a conventional computer using the soft-systolic algorithm

development methodology. Notice, however, that hard- and
-

hybrid- systolic algorithms can also be simulated using the

- 184 -

same technique. Now, the use of the OCCAM programming

language for soft-systolic simulation is discussed.

at several levels of

OCCAM can be seen as a

of describing con-

An OCCAM program can be viewed

abstraction. At the first level,

hardware description .language, capable

current operation of electronic circuits. At a second level,

OCCAM is a high-level language designed to program tran­

sputer networks, and thereby avoiding the problem of pro­

gramming multiprocessor systems in a low-level language.

However, because it is a language that is based on the con­

cepts of concurrency and communication, an OCCAM program can

be interpreted as a formalism for the behaviour of a con­

current system that implements a given algorithm. An OCCAM

program can be amended and, as long as the algebraic rules

of the language are adhered to, the designer can assume that

the program will implement the same algorithn.

A brief summary of OCCAM, together with a selection of

commented soft-systolic simulation programs, is given in the

Appendix. Fig.3.4.4 illustrates the general logical struc­

ture of the programs; the construction of the programs fol­

lows ideas developed in [200), [44], [60], [251].

The Getdata and Putdata sections are responsible for

receiving and sending data and other information, from and

to the host, which may be a file or interactive input and

output. Each procedure is allocated enough memory to store

the input data, or the final output data; the amount of

- 185 -

GEDATA

SETUP

SYSTEM

' SUB-SYSTEMS

SOURCES CELLS SINKS

SUB-SYSTEMS TERMINATION
1

SYSTEM
TERMINATION

PUTDATA

Fig.3.4.4. Logical structure of soft-systolic simulation
programs in OCCAM.

- 186 -

storage can be easily calculated, given that the computation

time and the volume of the output is, usually, known in

advance. However, in cases of algorithms where the computa­

tion time is data-dependent, the Putdata routine can run in

parallel with the systolic system and immediately produce

the output data. Similar arrangements can be made for the

Getdata routine. Notice that, given the fact that OCCAM has

no standard i/o routines, it is possible to define a library

of primitive i/o routines that are especially suitable for

reading and writing data and control streams, as required in

systolic computation.

The Setup section computes system-dependent quantities.

For example, based on the size n of the problem it can com­

pute the time required for full matrix-vector multiplica­

tion, as well as the necessary delays that are required for

each of the i/o data sequences. The computations performed

by the Setup section become more important as the systolic

system becomes more complex (see, for instance, the case of

pipelines of systolic arrays, in chapters 6 and 7).

The System section uses the information produced by the

Setup section to actually 'puild' the systolic system, as a

network of processes. The System procedure is mainly a set

of nested parallel loops which allocates processes and

interconnects them with labelled communication channels; to

achieve this the network of processes is mapped onto a coor­

dinate grid, so that processes and communication channels

- 187 -

can be labelled using a relatively simple mapping function.

As the system becomes complex, the coordinate system may

become multi-dimensional; given the difficulty of OCCAM with

multidimensional arrays, the mapping computation may become

quite tedious. A possible solution is to distinguish several

levels of coordinate systems, each one representing a level

of parallelism in the systolic system. Thus, the main System

can be analysed into successive levels of subsystems that

can be further analysed into new subsystems, etc. A

(sub)system terminates its operation, when all its subsys­

tems have terminated.

A system is eventually decomposed in Sources - Cells

Sinks. A Source is loaded initially with vectors from Get­

data, representing input streams, together with possible

delays, and other control information, created in the Setup

section. A Sink is the opposite of the Source, i.e. it col­

lects output streams and uses Setup information to, possi­

bly, discard dummy output; finally it passes vectors of out­

put data to Putdata. Sources and Sinks of subsystems are

usually connected to the Sources and Sinks of the main sys­

tem. Since the basic operation of a Source in any type of

systolic system is to 'pump' information, and the basic

operation of a Sink is to collect information, it is

straightforward to define primitive library routines to form

the buildin~ blocks of any complex Source or Sink.

The Cell procedures implement the computations per-

- 188 -

formed by the processing elements (cells) of the given sys­

tolic architecture. Generally there is one procedure for

each type of cell, and thus the programming task is simpli­

fied in homogeneous systolic designs. Further, cells with

small differences may be implemented by a simple generic

cell and a suitable •switch', defining the exact function of

a cell. Finally, a library of commonly used cells and other

standard components of systolic systems can be defined, so

that a whole class of systolic architectures using the same

bulding blocks can be constructed by defining only the

higher layers of the OCCAM program. A cell definition is

divided into two sections: initialization and main opera­

tion; the main operation is subdivided into i/o and computa­

tion, thus yielding a scheme similar to the •source - cell -

sink' structure for the internal function of the cell. Ini­

tialization is performed only once and allows cells to be

reset before use, and predetermined or preloaded values to

be set up. In particular, initialization defines dummy ele­

ments that are used in communication, before significant

data reaches the cell; this is essential in order to main­

tain dataflow and avoid deadlocks in the OCCAM program. The

ijo and the computation of the cell are performed repeatedly

during the system operation and they are enclosed into a

loop.

The kind of iteration loop depends on the type of the

algorithm: in cases where the computation time is predeter­

mined a for-loop can be used; in cases where the computation

- 189 -

is not known in advance a while-loop is used. In while-loops

systolic control can be used to selectively closedown a

whole cell, or just input or output channels, thus imple­

menting a gradual (wavefront - like) closedown of the sys­

tem. On the other hand, the for-loop approach can be inter­

preted as a global reset signal, being broadcast to all

cells simultaneously. All communication in a cell is per­

formed in parallel and the computation is mainly sequential;

communication and computation are performed in sequence,

thus defining the time cycle of a cell. The communication is

by definition data-driven, and therefore the systolic system

is asynchronous. However, as it has been explained, this

fact does not affect the verification and evaluation of the

algorithm, but matters only in the actual hardware implemen­

tation of the algorithm. A purely synchronous version of the

systolic algorithm can be produced by using the time-out

mechanism of OCCAM, or by broadcasting a special clock sig­

nal to all cells.

The principle advantages of using OCCAM for the simula­

tion of systolic architectures can be summarised as follows.

First, it is a genuinely parallel processing language in the

sense that it is built around the concept of concurrent pro­

gramming - instead of being a sequential language with some

parallel processing extensions. Second, although it has been

built for a target machine, the transputer, it is a

general-purpose language and it is available independently

of the transputer - instead of being closely connected with

- 190 -

a single system, as a special-purpose language. Third, it is

very simple, as it offers a small number of relatively sim­

ple constructs, which the programmer may have a better con­

ception of, and find easy to reason about - instead of hav­

ing an overwhelmingly extensive repertoire of data and

language structures to deal with. The main disadvantage of

the language stems from its very simplicity: limited data

structure facilities are available and the typing is weak

(some of these drawbacks have been removed in OCCAM-2). How­

ever, in general, an OCCAM program offers the double benefit

of working with a relatively high-level parallel language,

and at the same time having the possibility of actual tran­

sputer implementation.

3.5 OPTICAL COMPUTING AND SYSTOLIC ARCHITECTURES

The final section

cross-fertilization of

of this chapter investigates the

the systolic approach in parallel

processing, with optical computing concepts; further it sum­

marizes the major trends in systolic algorithm development

discussed in this chapter.

Optical computing is aimed at replacing the limitations

imposed on GOmputing circuits due to electrical properties

of materials. In optical computing, electrical signals are

replaced by streams of photons and electronic logic elements

are replaced by optical counterparts. Introductory material

to optical computing can be found in [10], [13], [116],

[206], [217], [241]. Some immediate benefits of this

approach are apparent:

Possible delays because of long wire communication (clock­

skew) is avoided due to communication at the speed of light;

Possible crosstalk because of circuit miniaturization is

reduced due to the relative difficulty in making streams of

photons to interact;

Transient errors in computation due to radiation (e.g.

cosmic rays) incident on the computing circuit are reduced,

since optical components are more radiation-hard than elec­

tronic ones;

Circuits can be non-planar as photon streams crossing at an

- 192 -

angle >10% do not suffer from crosstalk and separate signals

can intersect without any erroneous results.

There are three major areas of development in optical

computing. Digital optical computing is involved with the

development of all-optical computers, i.e. optical logic

elements interconnected with optical signal transmission

techniques. In principle, this method can be as accurate as

conventional digital electronic machines. However, problems

arise in the actual implementation of switching circuits

(i.e. optical transistors), as there are many competing

technologies and none of them has produced decisively better
t10),[206l

results. Further, the packing densities achievable are very

low in comparison to the packing densities of conventional

electronic circuits. There are also doubts whether the all-

optical computers have to be exact counterparts of elec­

tronic machines, or new processing methods have to be fol­

lowed (e.g. different number systems, direct symbolic-image

processing), that exploit the special properties of the opt-

ical components as opposed to the electronic ones (see, for

example [35], [85]).

Analogue optical computing is the second alternative,

and has been used mainly in optical signal processing.

Acousto-optical, electro-optical or magneto-optical tech­

niques are used to modulate optical signals (light beams),

and in this way to implement optically basic arithmetic and

signal processing operations. This principle had been

- 193 -

adapted to systolic arrays originally in [58). Notice that

this approach is limited by the relatively low accuracy due

to the analogue nature of the computations; further, it is

limited in flexibility, since only a limited range of opera­

tions can be implemented. However, on the other hand, it

offers significant speed improvements in very important

basic algorithms; further its implementation is relatively

easy since it is based on already rather well - developed

technologies. In order to alleviate the problem of digital

accuracy special encoding techniques have been proposed and

are currently under experimentation (see, for example [30)).

Finally, the combination of conventional electronic com­

ponents with optical computing devices into hybrid

optical/electronic computers, can offer both the speed of

the optical computations and the flexibility of electronic

operations, [2), [171).

A third alternative, and perhaps the first to be widely

applicable, is the combination of optical signal transmis­

sion with electronic processing elements. Optical signals

arriving at electronic processing components, are converted

to electronic signals, then processed and finally converted

back to optical signals for further transmission. On a

straight comparison, purely electronic components could

appear to be faster due to the extra overheads of signal

conversion. However, as the circuit sizes shrink, the resis­

tance and capacitance of the wires make signal propagation a

key factor in the overall computing speed; thus, the

- 194 -

conversion overheads are counterbalanced by gains in signal

propagation speed.

In the following paragraphs, optical signal transmis­

sion methods are described in some detail. Then, the optical

implementation of systolic algorithms using analogue optical

computing techniques is discussed, and basic definitions and

terminology for later use are given through an example. This

discussion is complemented by surveys, concerning the opti­

cal implementation of specific systolic algorithms, in the

introductory sections of subsequent chapters.

The final part of this section serves as a conclusion

for the whole chapter: the general framework for systolic

algorithm development, which was introduced in section 3.1

and then extended in section 3.4, is now modified to include

the optical implementation of systolic algorithms.

3.5.1 OPTICAL SIGNAL TRANSMISSION

with optics used mainly for control and data transmis­

sion, a number of schemes can be envisaged as illustrated in

Fig.3.5.1.

A waveguided signal can take two forms: first, as an

optical fibre transmission for inter-chip interconnection,

and second as a transmission through a suitable medium (such

as glass) integrated onto the chip, for intra-chip communi­

cation. In Fig.3.5.l(a) a possible scheme for clock distri­

bution is shown, using optical fibres; the clock signal is

source WAVECUIDES

COUPLERS

DETECTORS SOURCES

(a) Clock distribution using fibres (b) Use of optical waveguides (on-chip)

SOURCE

HOLOGRAM

DETECTORS

DETECTORS

(c) Unfocused clock broadcast

HOLOGRAPHIC ROUTING

ELEMDI'I'

~SOURCES

(d) Focused distribution of clock signal (e) Data communication in free space

Fig.3.5.1. Optical signal transmission.

- 196 -

collected by detectors that are integrated onto the chip and

converts the optical signal into electrical pulse form to

synchronise the electronic logic on the chip. Thus,· the

clock signal can be broadcast on the whole chip simultane­

ously with no clock skew effects.

In Fig.3.5.1(b) the use of integrated waveguides is

exemplified: the signal (data or control) travels along the

chip and is detected, and subsequently converted, by the

couplers. Notice that waveguides are restricted by the con­

straint that they must be kept as straight as possible; oth­

erwise radiation and signal losses occur. For example, in

the case of the integrated waveguides, a network of orthogo­

nal waveguides can be envisaged which can be used for fast

distribution of contol or data at some major sites on the

chip, where the signal is converted in order to be electri­

cally redistributed within the local subcircuits.

In free-space transmission, light is not guided but

controlled by the laws of light propagation in free space;

this type of transmission can be subdivided into focussed

and unfocussed. In unfocussed schemes, optical signals are

broadcast to the whole chip and are collected by detectors

integrated onto the chip; an example is given in

Fig.3.5.1(c), for clock distribution. The problems of this

approach are: firstly, its inefficiency, since only a small

amount of light falls on the required sites and is finally

used. Then, there is a need for a blocking layer to avoid

- 197 -

transient errors in the remaining area of the chip. On the

other hand, its main advantage is the ease of implementa­

tion. If the detectors are replaced with integrated sources,

it is possible to have multiple data output (emission) from

the chip, thus alleviating the pin-count problem of VLSI

technology.

Focussed free-space light transmission avoids the above

mentioned problems by using a hologram to focus the light

beams to all sights required. Fig.3.5.1(d) illustrates a

focussed version of Fig.3.5.1(c). The main disadvantage of

this approach is that it requires high accuracy in the

alignment of the hologram; otherwise transient errors may be

caused on the chip. Finally, for intra-chip data distribu­

tion, a holographic routing element may be used, as shown in

Fig.3.5.1(e): the electical signal in the input pins is con­

verted to an optical signal, which is distributed within the

chip using the hologram. A similar arrangement can be

achieved for outputting the data, if light sources and

detectors swap their position.

3.5.2 OPTICAL SYSTOLIC ARCHITECTURES

The matrix-vector multiplication systolic algorithm,

described in section 3.2, is now used as a vehicle in order

to give some basic definitions concerning the optical imple­

mentation of systolic algorithms by means of analogue­

optical techniques. The configuration of an optical proces­

sor used is given in Fig.3.5.2: it consists of a light

A

- 198 -

TRANSDUCERS (INPUT DEVICES)

/ "" LEDS ACOUSTO-OPTIC MODULATORS

I 1----,
... 1 1-

1 :.: I
lfil

E-<
(/)

><
(/)

(!)
z

I~
I ;j I
1

... L 1-__ _J

CLOCK -

r --------- - -...,
- ;- 1 I·

I I
I I
I I
I I
1 IMAGING SYSTEM I

I
I
I

.,., '-~-

, __ ------------ _J

·-

--
DRIVER TIME-INTEGRATING DETECTORS

I
OUTPUT DEVICE

X

Fig.3.5.2. Optical processor for systolic matrix-vector
multiplication.

- 199 -

emitting diode (LED) array; an imaging system with one

beam-forming lens for each LED; an acousto-optic (AO) cell;

an array of charge coupled device (CCD) detectors; and the

main imaging system that focuses the light beams that are

emitted from the AO cell on to the detector array. In the

terminology used herein, the LED array and the AO.cell are

called input devices or transducers, while the detector

array is called an output device; the transducers accept the

input data sequences while the detectors collect (and may

produce) the output data streams. Between the two transduc­

ers, as well as between the second transducer and the detec­

tor array there are always imaging systems of variable com­

plexity, depending on the focusing patterns that should be

achieved. The details of the imaging systems are not dis­

cussed herein; for technical characteristics see, for exam-

ple [234).

Each of the transducers is operated through a driver,

which transforms the electrical signal it accepts into an

appropriate physical quantity that can in some way modulate

a light beam. For example, the AO cell driver transforms the

electric signal piezoelectrically into an acoustic wave;

this wave is sent into the AO cell, which is an optically

transparent block of material (e.g. glass). The acoustic

wave travels through the medium with the velocity of sound

and induces periodic compression of the medium. The result

is a moving, spatially periodic variation of the refractive

index of 'the medium - a moving grating segment - which can

---------· --·· -·--.

- 200 -

be used to diffract an incident beam of light. The intensity

of the diffracted beam is proportional to the product of the

intensity of the incident light, and of the diffraction

efficiency of the grating segment. The operation of the LED

is simpler, since the LED driver just supplies the diode

with the appropriate charge so as to emit a light beam with

an intensity proportional to the electrical signal that has

been accepted.

Similar devices, based on electro-optic and magneto­

optic tecniques, instead of acousto-optic ones, have been

also used efficiently to produce similar effects. In all

cases, the basic feature of the input devices is the ability

to achieve a spatially periodic light emission or modulation

(spatial light modulators- SLMs), according to some given

electric signal that can be controlled in real-time rates.

Thus, in Fig.3.5.2 the drivers accept electrical signals at

a rate controlled by the global clock, which synchronizes

all the components of the optical processor. This rate is

limited by the physical and operational characteristics of

the input and output devices used.

For example, in the case of the AO cells, the rate of

change of the refractive index of the medium is usually lim­

ited by two factors: by the attenuation of the acoustic

waves in the cell; and by material-dependent cutoff frequen­

cies. Thus, if B is the maximum rate (frequency) attain­

able, and T is the time required by a grating segment to

- 201 -

travel along the AO cell, the number of pixels of an AO cell

is given by N~TB. The number of pixels is equivalent to the

number of light beams that can be modulated simultaneously

by an AO cell. Further, given a maximum size (physical

length) of the transducer medium, we can determine a maximum

number of pixels available in a 1-d transducer, using a

given transparent medium, and a given technique (i.e.

acousto-optical, electro-optical or magneto-optical). Simi­

larly, we can define the number of LED sources as the number

of pixels of the LED array; and the number of detectors as

the number of pixels for the detector array. Thus, the

number of pixels in an input or output device gives the max­

imum number of parallel computations that can be performed

onto this device; in this sense the number of pixels in an

optical processor is'a quantity equivalent to the number of

cells in a VLSI processor.

The optical processor of Fig.3.5.2 uses one-dimensional

(1-d) transducer arrays; however 2-d transducer arrays can

be obtained by using stacks of 1-d transducers, or even by

building 2-d transducer devices. Current technological limi­

tations favour stacks of 1-d transducers instead of 2-d

transducers [13), [234]. Notice that the configuration of

the input devices, and the processor array as a whole, is

not unique: for example, instead of having a LED array and

an AO cell, one can have two AO cells illuminated by a sin­

gle light source, and an appropriate imaging system focusing

light beams onto the pixels of the AO cells.

- 202 -

The operation of the optical processor is exemplified

with the help of Fig.3.5.3. The systolic algorithm being

performed is the same as described in Fig.3.2.1, but for

n=2. Therefore, all the components of the optical processor

are configured for this problem size: e.g there are two

LEDs, an AO cell with two pixels and a detector array with

two detectors. The first input to the AO cell, vector ele­

ment x1 , produces a grating segment with diffraction effi­

ciency proportional to x1 that moves across the cell. When

that grating is in front of the first LED, as shown in

Fig.3.5.3(a), the diode is pulsed with light intensity pro­

portional to the matrix coefficient a11 , and a time­

integrating detector is illuminated with light intensity in

proportion to the product a11x1 . Thus, the analogue-optical

equivalent to a conventional multiplication (i.e. using an

electronic circuit) is accomplished. In the next clock tick,

the x1 grating segment is in front of the second LED, and a

second grating segment, with diffraction efficiency propor­

tional to x2 , has moved in front of the first LED, as shown

in Fig.3.5.3(b). At that moment, the first LED is pulsed

with light intensity proportional to a 12 and the second LED

is pulsed with light intensity proportional to a 21 . The

light beams that pass through the AO cell have, therefore,

intensities proportional to a 12x2 and a21 x1 ; the time­

integrated output of the first detector is now proportional

to a 11x1+a 12x2 , which is the output vector element y1 . Thus,

the optical equivalent of a conventional addition· has been

- 203 -

TRANSDUCERS

A

OUTPUT DEVICE

(a)

(b)

(c)

Fig.3.5.3. Operation of optical processor.

- 204 -

performed. The charge collected in the second detector is

proportional to a 21x1 at this stage. In the next cycle, the

grating segment x2 has moved in front of the second LED. A

final pulse from that LED, in proportion to a 22 , yields at

the output of the second detector a time-integrated charge

a 21 x1+a22x2 , the second element of the output vector 1· The

computation is now complete.

Therefore, the systolic algorithm for full matrix­

vector multiplication can be performed on an optical proces­

sor, as in Fig.3.5.2, with two transducer arrays of n pixels

each, and a detector array of n pixels. The computation time

required is 2n cycles (including the output of the final

result). The time cycle is defined as the time required for

the following operations to happen: movement of the grating.

segment to the next pixel in the AO cell; light emission

from LEDs; light beam detection and signal conversion. Thus,

it is obvious that the time cycle essentially depends on B,

the operating frequency of the AO cell.

It should be noted that the computation described

involved only non-negative quantities (e.g. light inten­

sity): therefore the optical processor in its simplest con­

figuration can accommodate only non-negative numbers. How­

ever, the representation of negative, and even complex,

numbers using bipolar data and other techniques, has been

extensively used in optical signal processing, and has been

readily applied to optical systolic algorithms (see, for

- 205 -

example, [58), [222)).

A similar optical processor can be designed to imple­

ment the banded matrix-vector multiplication algorithm,

presented in Fig.3.2.2. The main difference of the new opt­

ical processor with the one shown in Fig.3.5.2 is the need

for the partial results to move systolically along the

detector array during the computation. This can be achieved

by means of a shift-register array, attached to the detector

array. Thus, instead of a time-integration detector array,

collecting the charge on the same pixel, we now have a

shift-register detector array, controlled by the same clock

as the input devices. In every clock tick, the charge col­

lected by the detector is transferred to the associated

'bin' (pixel) of the shift-register array. Then, in the next

clock tick, the contents of the shift-register pixels are

moved along the array, exactly as the elements of y move in

Fig.3.2.2. Thus, the accumulation of the partial results is

now performed on to the shift-register pixels, while the

detector pixels just collect the incident beams and convert

them to an electrical signal. In that case, the time cycle

of the optical systolic computation is somehow prolonged,

since the shift operation must be taken into account. ·A

further advancement which can be made is the use of optical

shift-registers, as suggested in [206), in order to avoid

the electronic shift operation.

Alternatively, the light beams can be deflected and

- 206 -

diffracted simultaneously, so that instead of moving the

partial results on the shift-detector array, we can direct

the partial products to the appropriate detector pixel,

[58). Notice, however, that in optical processor development

there exists a critical tradeoff between area, speed and

processor complexity. Thus, complex light manipulation tech­

niques, require increased area, in the sense that the pixel

density of the processor components should be reduced to

avoid crosstalk and mis-alignment phenomena. Further, an

increase in the operational speed of an optical processor

may lead to similar phenomena, and thus it must be followed

by improved imaging systems and decreased pixel densities.

Another important development, is the use of programm­

able optical interconnections, to achieve greater flexibil­

ity in the communication geometry between optical or elec­

tronic processing components. These devices are similar to

the holograms shown in Fig.3.5.1(d) and (e), but they offer

the additional capability of dynamically changing the inter­

connection patterns, in real time rates. Furtiermore, they

have several operational modes, i.e. they can reflect or

deflect light beams, and act as lenses or beam splitters.

Thus, optical crossbar switches, or other types of complex,

time-varying communication geonietries may become feasible.

Interesting experimental results are discussed in [122),

[146), [194), [254).

Finally, simple space-integration is possible, i.e. the

- 207 -

collection of more than one beam on to the same detector

pixel, in order to achieve the simultaneous accumulation of

many partial products on the same partial result [50). The

space-integation method introduces another basic advantage

of optical processing, equally important to the high speed

of optical computations. This is the fact that optical com­

puting enables the utilization of 3~d parallelism, thus sub­

stantially increasing the parallelism potential of an algo­

rithm. This possibility will become more apparent in chapter

8, where the optical implementation of systolic matrix com­

putations is discussed. In the same chapter, the main prob­

lems of the optical implementation of systolic algorithms

are also discussed, and a review of the possible solutions

are given.

3.5.3 A GENERAL FRAMEWORK FOR SYSTOLIC ALGORITHMS

The application of optical computing concepts to the

systolic approach, introduces some alterations to the frame­

work discussed in section 3.1, since it is possible to relax

some of the restrictions imposed by VLSI technology. Thus,

optical systolic algorithms observe the main principles of

systolic algorithms, but they differ from the hard-systolic

algorithms in the· following ways:

The computing structure can be 3-d; thus a higher degree

of parallelism is achieved.

Area optimization is important, since there are techno-

- 208 -

logical limits in the number of pixels per device,

closely related to the maximum operational speeds as well

as the optical processor complexity. Further, area is an

important consideration in the combination of optical and

electronic devices. However, there are still no area

optimization techniques comparable with those of VLSI

technology.

Fabrication may not be immediately possible, since opti­

cal technology is not yet very well established; however

it is clearly foreseeable, at least for the simpler of

the algorithms.

Global interconnections (broadcasting, fan-in) are used,

but their arrangement must be simple and regular.

Thus, we can see that, in the case of the optical

implementation of systolic algorithms, the modifications are

hardware oriented and technology - sensitive In the case of

soft-systolic algorithms the modifications are software

oriented and they extend the concept of the systolic

approach in general parallel processing. Finally, hybrid­

systolic algorithms try to use both hardware and software

advancements, in the form of flexible VLSI processors, on

the one hand, and of systolic programming on the other.

As a conclusion, we present Table 3.5.1, which summar­

izes the main characteristics of the several classes of sys­

tolic algorithms discussed in this chapter. In addition· to

Systolic Algorithms

Hard Hybrid Soft Optical

Computing 2-d 2-d k-d 3-d
Structure

Area high medium low medium
Efficiency or high

Processor planar almost non non
Interconnection planar planar planar

Global no or very limited allowed used
Communication limited

Programmability no or low medium high no or low

Fabrication direct indirect no probable
VLSI VLSI optical-VLSI

Simulation by hybrid soft soft soft
and soft

Table 3.5.1. Types of systolic algorithms.

- 210 -

the criteria already mentioned, the possible simulation of a

systolic algorithm, using another type of methodology is

discussed. It is evident that soft-systolic techniques can

be used for the simulation of any type of algorithm; this

indicates the significance of soft-systolic simulation, as a

method for the initial verification and validation of a sys­

tolic algorithm.

Further, it should be noticed that the boundaries

between the several categories are not clear-cut: develop­

ments in VLSI or optical technology may allow direct and

efficient hardware implementation of some hybrid, optical or

soft-systolic algorithms, in the future. Thus, a 'grey area'

of 'migrating' algorithms may be distinguished, between some

of these general categories.

The new algorithms described in the subsequent chapters

are termed generally 'systolic', with the exception of the

optical systolic algorithms. A classification of the algo­

rithms presented in this thesis, using the categories iden­

tified herein, is given in the conclusions (chapter 9).

Notice also that we use the term 'linear array' to describe

degenerate (or collapsed) 2-d geometries, since this termi­

nology is widely used in the literatutre, and the distinc­

tion is easy. Finally, the dummy data items are ususally

denoted by '0' or '*' and the idle processors are left

blank in snapshot diagrams.

C B A P T E R 4

SYSTOLIC SOLUTION OF POLYNOMIAL EQUATIONS

4.1 INTRODUCTION

The systolic implementation of polynomial computations

has been investigated by several researchers, due to its

interest in a wide range of scientific applications such as

analysis and synthesis of control systems, signal and image

processing, data ericryption algorithms, as well as in more

traditional areas of numerical analysis, i.e. function

approximation and eigenvalue computation [160), [163).

For example, in [246) the systolic implementation of

the nested multiplication algorithm (Horner's scheme) is

used as an example for the specification of the unidirec­

tional linear systolic array. A two-level pipelined approach

for the same calculation is given in [161). The evaluation

of a polynomial is used as an example for the illustration

of the systolic design system SYS in [177). The Taylor

series approximation is used for the calculation of unary

functions, e.g. division, square root in [218), and this

hardware real_isation is utilized in the implementation of

- 212 -

the boundary cell of the CMU Warp Machine [7). Optical and

integrated-optical architectures for polynomial evaluation

are proposed in [290), [292) and the direct optical imple­

mentation of unary functions is discussed.

Polynomial· division on systolic arrays is described in

[303) and the concept of asystolic digital control archi­

tecture is discussed. The systolic calculation of the

Greatest Common Divisor of two polynomials and two integers

is addressed in [36-37). Direct hardware implementation of

encryption techniques using polynomial manipulation is

described in [136). The solution of a polynomial equation

using the Quotient- Difference method and a systolic imple­

mentation of tableau algorithms is discussed in [200).

Finally the calculation of the characteristic polynomial of

a symmetric tridiagonal matrix and the subsequent computa­

tion of the corresponding eigenvalues is addressed in [259).

In this chapter the systolic implementation of solution

methods for polynomial equations is investigated. In the

first two sections the Bernoulli and Graeffe methods are

·described in detail. Although these two methods are not

currently extensively used, their simple computation allow

for efficient systolic implementation; furthermore, they

provide good examples for the application of transformation

techniques that are used later on in more complex

recurrences.

In the third section the calculation of the eigenvalues

- 213 -

of a symmetric tridiagonal matrix using an improved Sturm

sequence recurrence is described, and a systolic ring archi­

tecture is proposed. The symmetric tridiagonal matrices are

an end-product of many computational techniques for the

solution of the algebraic eigenvalue problem for symmetric

matrices [296).

Finally, in the last section, the systolic ring archi­

tecture is extended to cover several well-known iterative

methods for the solution of polynomial equations. Further­

more some methods for the calculation of the characteristic

polynomial of a matrix are briefly discussed.

4.2 SYSTOLIC DESIGNS FOR BERNOULLI'S METHOD

The method of Bernoulli for the calculation of dominant

zeros of polynomial equations of the form,

+a = 0
n (4.2.1)

is summarized in [148) as follows (see also section 2.1):

Consider the equation (4.2.1) for real polynomial coeffi-

cients and r1 ,r 2, ... ,rn are the roots of the equation;

then from Newton's Theorem we have if,

(4.2.2)

then,

S = -a s -a s - k k 1 2 k 1 k-1 2 k-2 ••• -ak-1 s1-ak I = I I ••• In
(4.2.3)

and,

S = -a s -a s - a s · 1 2 n+j 1 n+j-1 2 n+j-2 ..• - n j 1 J= 1 1 '''
(4.2.4)

Initially, it is assumed that there is a single real darn-

inant root; then, from (4.2.2),

r r
S = rp{1 + (.2_)p + ••• + (~)p}

p 1 r1 ·r
1

hence, for sufficiently large p,

s /S
1

--+ r
1 p p- P-

sp can be written as,

(4.2.5)

(4.2.6)

Therefore in this case the method produces the dominant zero

with successive divisions of the coefficients

,sp, as in (4.2.6).

- 215 -

Also in the case of a pair of complex zeros the method

produces the two dominant roots r 1 and r 2 , as follows. Let

2
T = s s 2-s 1 ,
p pp- p-

u = s s -s s
p p p-3 p-1 p-2

then, for sufficiently large p

T /T -+ v
2

p p-1 p->oo ,

where,

r
1

= v(cose+isinel ,

u /T
1
~ 2vcose p p- p~

r 2 = v(cos6-isin8) •

(4.2.7)

(4.2.8)

(4.2.9)

The cases of multiple real and complex roots are treated in

a manner similar to (4.2.6) and (4.2.7-9) respectively. The

method can be extended to consider two or more distinct

zeros having the same absolute value, as explained in [148].

As a rule, the method converges slowly, and, as p

grows, an overflow in the numerical calculations may occur.

On the other hand Bernoulli's method produces with a rela­

tively simple and regular computation the dominant root of a

polynomial equation, especially when it is significantly

larger than any of the others.

· The method can be repeated if the original polynomial

is deflated by (x-r1) or (x-r1)(x-r2)using Horner's scheme

giving a polynomial of degree n-1 or n-2, to which the

method is then applied. Herein systolic designs for the

calculation of the coefficients from

(4.2.3,4) are discussed and an appropriate systolic ring

- 216 -

architecture is discussed in detail.Finally, the systolic

ring is integrated in a systolic polynomial equation solver.

4.2.1 SYSTOLIC DESIGN DERIVATION

From the description of Bernoulli's method, it is obvi­

ous that the main computational effort is to produce the

coefficients using the recurrences

(4.2.3,4). Then some post-processing may be necessary and

finally a series of divisions to produce the dominant

zero(s).

Now recurrences (4.2.3,4) can be unified in a form more

suitable for systolic implementation as follows :

(1)
yi = 0

(k+l)
yi

(k)
= yi -aksi-k' k=1,2, •.• ,n and s0=s_1= ... =0

(n+1) .
sl.. = yl.. -al..l. , i=1,2, •.. and a =a 2= ••• =0 n+l n+

For example, we have for n=5,

s1 = -a 1
1

s2 = -a s -a 2
1 1 2

s3 = -a
1

s
2
•a

2
s

1
-a

3
3

s4 = -a
1

s
3
-a

2
s

2
-a

3
s

1
-a

4
4

ss = -a
1

s
4
-a

2
s

3
-a

3
s

2
-a

4
s

1
-a

5
s

s6 = -a1s5-a2s4-a3s3-a4s2-a5s1

s7 = -a1s6-a2s5-a3s4-a4s3-a5s2 • etc.

(4.2.10)

(4.2.11)

Clearly (4.2.10) is a recurrence with feedback cycles, i.e.

the value of si depends on si-l'si_2 , ••• ,s1 . This

recurrence can be seen as a special form of the solution of

- 217 -

a triangular linear system of equations and can be readily

realised as a systolic array with bidirectional dataflow.The

array for n=S is shown in Fig.4.2.l.The partial sums are

accumulated in y while it travels along the array, until it

reaches the feedback cell; there a value of S is formed and

it travels in the opposite direction to produce the inner

products for the following y's and finally to form the out­

put of the array.

The quantity s0can be interpreted as a control flag

that enables the storage of the polynomial coefficients in

the appropriate cells, and the accumulation of the values

• ,ann as the partial sums for the correspond-

ing y.Thus a data sequence of the form :

(4.2.12t

pumped into the array through the y input stream for the

first 2n+l cycles can set up the array in a systolic manner.

The linear array requires n IPS cells and produces its

first valid output after 2n+2 IPS cycles, and from then on

one valid output every two cycles, i.e it has a throughput

rate of 1;2. Similarly the processor utilisation is 1/2

since only half of the cells are active at any one cycle.

An additional disadvantage of the bidirectional dataflow is

the fact that it makes difficult the application of fault­

tolerant techniques, because the performance of the array

degrades rapidly with respect to the number of consecutive

D
rn
D
w
D
m
D
rn
D

al

- 218 -

D

D
QJ
D
[1J

D
GJ

1--
a2

1--

D
QJ
D
rn
D
G!J
D

a3

D
rn
D
rn
D
IT]

a4 as

Fig.4.2.1. Dataflow for bidirectional array design.

1-

I-

- 219 -

failed cells that need to be tolerated.

The recurrence relation (4.2.11) of size 6 computed by

a 5-cell bidirectional linear array as in Fig.4.2.1 can also

be implemented as a 3-cell ring with unidirectional

dataflow, as in Fig.4.2.2. This result can be derived more

systematically if (4.2.10) is reformulated as follows :

= -a i
i

i=l,2, ••• and a
1

=a
2

= ••• =0
n+ n+

k=1,2, ••• ,n and s =s = ••• =0
0 -1

The example of (4.2.11) is now witten as

s1 = -a 1
1

s2 = -a
2

2-a
1

s
1

s3 = -a
3

3-a
2

s
1
-a

1
s

2

54 = -a
4

4-a
3
s

1
-a

2
s

2
-a

1
s

3

ss = -a 5-a s -a s -a s -a s
5 41322314

56 -a s -a s -a s -a s -a s
5142332415

57 = -a s -a s -a s -a s -a s etc.
5 2 4 3 3 4 2 5 1 6'

(4.2.13)

(4.2.14)

It is clear that (4.2.14) represents a unrolled ring-like

computation; this is more obvious if in s 6 the product a1s 5

is placed in the leftmost end; and the same happens for a2s 5

and a
1

s
6

of s7 • Then each column will contain a cyclic

sequence of a1 ,a2 , ••• ,a5where all coefficients of a cycle

are multiplied with the same s ;for the next cycle si is

then replaced with sn+i-l (n=S here).Again, it is assumed

that the computation aii is replaced by ais 0•

- 220 -

Fig.4.2.2. Dataflow for systolic ring design (n=S).

- 221 -

The systolic ring of Fig.4.2.2 works as follows.The

three most recently computed results are stored in each of

the three cells, while the next three partial sums travel

around the ring to meet these stored values; together with

them the coefficients of the polynomial travel around the

ring with half the speed of the partial sums.Every two

cycles a sum is completed and a new computation begins; the

completed sum takes the place of the 'oldest' stored result

which, in turn, is produced as an output (denoted by '*' in

Fig.4.2.2).

The dummy coefficient controls the output and

storage operations of the ring while the initial values

-a
1
1,-a

2
2, ... ,-ann can be input onto the ring simultaneously

with the poly~omial coefficients as it is explained in the

next subsection.

The systolic ring requires only half the cells of the

linear array and· all cells are active at all times, i.e. the

processor utilisation is nearly 1; the throughput rate

remains 1/2 and now the output is collected from all

cells.The basic advantage of the ring is that it degrades

gracefully as the number of defective cells increases when

fault-tolerance techniques are applied.

4.2.2 IMPLEMENTATION DETAILS

The systolic ring operation for a recurrence of size 5

(odd) is shown in Fig.4.2.3. A dummy (zero) coefficient

- 222 -

Da0 [}]a2

(I]a1[]Ja3
rna2[I]a4
[I]a3[}]o
[]Ja4 [Oao
[[Jo rnal

WO
[]Jao
(I]al
wa2
[I]a3

-a· i -a 2
1 2

Fig.4.2.3. Dataflow for systolic ring design (na4).

- 223 -

enters the ring to synchronize the calculations in a manner

similar to that of Fig.4.2.2 (for even recurrence size). In

general for a polynomial equation (4.2.1) of degree n, the

recurrence (4.2.13) has size n+l and the systolic ring that

implements it requires l(n+2)/2J IPS cells; in addition an

equal number of delay elements is required for the ring to

accommodate all the coefficients of the polynomial.

During the first n+l cycles, for n=odd, or n+2 cycles,

for n=even, the initial values enter the ring as illustrated

in Fig.4.2.3; from then on the normal ring operation is

resumed and the first valid result is produced when the

polynomial coefficients complete a full circle on the

ring.The dummy coefficient a serves as a controlling signal

that enables the output of si and the storage of sn+i-l in

its place.

Although the output is collected from all the cells of

the ring the valid results can be collected systolically as

shown in Fig.4.2.4, with the addition of a series of

linearly interconnected 2-input and 1-output registers.The

inputs of these registers are again controlled by a 0 : thus

when a valid output from cell i occurs the corresponding

register accepts this output; otherwise it propagates the

data received from the preceeding register. Thus, after an

initial delay, the results are produced in groups of

l(n+2)/2J with intermediate intervals of dummy output of the

same length.

- 224 -

ODD
Dl=:JD
ODD

.lGJ DD
•

2
[] DD

•
3 0 DD
ODD
ODD.
DUD

•

4

[] DD
- - -- 0 -a 1" -a 2 • • • i

1 2

-~-ao al a2 ... I

Fig.4.2.4. Input-output for systolic ring.

- 225 -

In Fig.4.2.5 an overall system for the implementation

of Bernoulli's method is illustrated schematically.The mul­

tiplexer (MUX) 'closes' the ring after the initial input

cycles; it can be either data-driven, i.e. controlled by the

a flag, or programmed from the host machine. The post­

processing element (PP) implements one of the relations

(4.2.6) or (4.2.7-9), i.e. it formulates the successive

approximations of the dominant zero(s) of the polynomial

equation. In the case of relation (4.2.6) PP is a simple

divider with registers to store the s ,s 1 and data-driven p p-

or host-controlled input port from the ring. Its operation

can be outlined as follows :

if
valid input from ring

seq
s.old := s.new
in ? s.new
root approximation := s.new I s.old

However PP is considerably more complicated for the case of

complex roots as it is obvious from relations (4.2.7-9).A

soft-systolic simulation program is given in A.l.l,

- 226 -

TO/FROM HOST

0

5 in a. J.n

a a a
n n

a2 ai
al a

1
1

ao 0

MUX

l
yjr

I I
I •

l 1
youtaout

SYSTOLIC RING

S/Sl

S/s2
s/s3

.

pp

s out

Fig.4.2.5. Systolic system for Bernoulli method.

4.3 SYSTOLIC DESIGNS FOR THE ROOT-SQUARING METHOD *

The Graeffe root-squaring method for the solution of

polynomial equations of the form,

(4.3.1)

is summarized in [111) as follows (see also section 2.1):

Consider the equation (4.3.1) and for the sake of simplicity

suppose that all the roots are real and distinct. Collecting

all even terms on one side and all odd terms on the other,

we get on squaring

2 Now by putting x =y, a new equation is obtained

with

••• +b = 0
n

(4.3.2)

(4.3.3)

(4.3.4)

The procedure can be repeated and it is finally terminated

when the double products can be neglected, compared with the

quadratic terms in the formation of the new coefficients.

Suppose that, after m squarings, we have obtained the equa-

tion,

+A = 0
n

(4.3.5)

* An extended version of this section appears in Inter­
national Journal 2! Computer Mathematics, Vol. 22, pp.
43-62, 1987.

- 228 -

with the .roots q1,q2, ••• ,qn' while the original equation has

the roots r 1 ,r2, ••• ,rn. Then the following relation holds

between the roots of the old and the new polynomials

q
1
=r~m , i=l,2, ... ,n. (4.3.6)

Further suppose that,

I r1 1 >I r2 1 > .. · > lrn I
and therefore

Hence,

q. "'-A1/A. l' i=l, ... ,n •
l. l.-

(4.3.7)

(4.3.8)

(4.3.9)

Finally, ri is obtained by m successive square-root extrac­

tions from qi' and the sign has to be determined by inser­

tion of the root into the equation.

The Graeffe method can be extended for double and corn-

plex roots as shown in [42], [282]. The advantages and

drawbacks of the root-squaring method are discussed in

detail in [297]. One disadvantage is the fact that the sue-

cessive squarings may cause an overflow in the numerical

calculations; another disadvantage is the possibility of

worsening the condition of a polynomial as a result of suc­

cessive squarings. An advantage is that the root-squaring

method can provide all n roots of a polynomial equation

simultaneously with relatively simple and regular computa­

tion. Thus, the method is still useful for the separation of

very close roots and for the computation of initial approxi­

mations, provided that a limited number of iterations is

performed.

- 229 -

Herein the systolic design for an iteration of the

Graeffe method based on (4.3.4) is discussed and an

appropriate systolic array is described in detail.Finally,

the systolic array is integrated into a systolic equation

solver.

4.3.1 SYSTOLIC DESIGN DERIVATION

As it is obvious from the description of the root­

squaring method, the main computational effort is to produce

the coefficients bi' i=O,l, .•. ,n of the new polynomial

(4.3.3) by using the recurrence (4.3.4).This calculation is

repeated m times, i.e.we have m steps, until the equation

(4.3.6) is produced. Finally, a series of divisions and

square-root extractions produces the roots of the original

equation.

Now recurrence (4.3.4) can be re-written in a form more

suitable for systolic implementation as follows :

bk = (-1)kakak+(-2)k-1~ a +
K-1 k+l

k::::O,l, ••• ,n,

a = a =
-1 -2 = an+1 = an+2 = ··· = 0 ~

For example, for n=S (n=odd) we have :

b =
0

b =
4

(4.3.10)

- 230 -

Similarly, for n=6 (n=even)
0 b0 = (-1) a0a0

b1 =
1 0 (-1) a1a1+(-2) a0a2

b2 =
2 1 0 (-1) a2a2+(-2) a1a 3+{-2) a0a 4

b3
3 2 1 0

= (-1) a 3a 3+(-2) a2a4+(-2) a1a5+(-2) a0a6

b4 =
4 3 2 (-1) a 4a4+(-2) a 3a5+(-2) a2a6

bs =
5 4 (-1) a

5
a5+(-2) a4a6

bG = 6 (-1) a6a6 •
(4.3.12)

It can be easily observed that the basic calculation

required for the computation of a coefficient b is the

IPS operation. Another important feature is the pipelinea-

bility of the calculations for successive b's as it is

obvious from (4.3.11) and (4.3.12) the coefficients of the

original polynomial are regularly arranged throughout the

calculations.Furthermore, the number of IPS required is

binomially distributed over the central coefficients, with a

minimum of 1 IPS for the first and last coefficients and a

maximum of r(n+l)/21 operations for the one or two central

coefficients, for n even and odd respectively.A final point

is that the exponent that.determines the sign of each IPS is

arranged to be the same with the subscript of the first

operand of the multiplication; thus it can be said that this

component 'carries' its sign throughout the computation as

it moves in different positions for the calculation of sue-

cessive b's.

- 231 -

The above observations will be used in the derivation

of the systolic design implementing the computations of

(4.3.10).The first requirement for that design is the

occurrence of the appropriate data items, in the correct

cell and during the desired computation step.A possible

dataflow specification and the resulting systolic design are

shown in Fig.4.3.1. The case of n=6 is used as an example

for the remainder of this section since the differences for

n odd and n even are insignificant.

The data flow illustrated in Fig.4.3.1 is a direct map­

ping of the recurrence relation (4.3.12) onto a linear array

of processors; the unused variables are multiplied by dummy

elements (zeros) and thus in every step one coefficient b is

produced. The data form a reflected wavefront, i.e. enter

the array from the right end, travel through the array and

then they are reflected back towards their input side a

systolic design implementing this data movement is also

shown in Fig.4.3.1. Notice that only r(n+l)/21 cells are

required for the formulation of a polynomial of order n. The

main operation for the cells is a multiplication while the

leftmost cell reflects the data item received and multipies

it by itself. During a time unit all cells perfom a multi­

plication and the results are fanned-in and summed using an

adder, to form bi.

When the number of cells is large the adder can be

implemented as a systolic tree adder to avoid large delays

[I]
0

CJ l

[I]
CJ 3

CJ
CJ 5

CJ

Fig.4.3.1.

- 232 -

CJ
CJ 2

CJ
CJ 4

w 5

CJ 6

[I]

MUL

CJ
D
[I]
CJ 5

CJ 6

m
[]]

MUL

ADD

b
out

CJ bo

CJ bl

CJ b2

m b3

6

[I] b4

[I] b5

[I] b6

A simple systolic design for the calculation
of the coefficients, bi' i=0,1,2, .•. ,n.

- 233 -

[160), [181). The systolic design of Fig.4.3.1 requires

f!n+1)/21 preloading steps followed by the delay caused by

the fan-in adder; from then on one result can be produced in

each cycle.

The main disadvantages of the design in Fig.4.3.1 are

the fan-in mechanism with the tree-structured adder, and the

bidirectional dataflow of the main array. Some of these

disadvantages can be removed as shown in Fig.4.3.2. If we

simply •retime' the calculations in proportion to their spa­

tial distance from the leftmost processor, we can derive the

data movement of Fig.4.3.2. After this rearrangement the

following occurrences are observed: the same value of 'a'

participates in the calculations of all cells simultane­

ously, a fact that implies the suitability of broadcasting

that value; the other operands of the multiplications have

subscripts that differ by two, which means a double delay

between the cells; finally the IPS computation is accom­

plished in the same cell since the computation of the values

of 'b' is now pipelined.

A systolic array implementing the dataflow described

above is illustrated in Fig.4.3.2. The data movement is now

unidirectional, the cells are IPS cells and additional

delays are placed for the slow-moving values of 'a'.This

systolic design requires no preloading steps and it produces

the first valid result after f(n+l)/21 cycles; no fan-in is

involved but now broadcasting is introduced; the throughput

- 234 -

ODD

I ::b3 I

[;]
C!J
Q;J

I ::b2 I

CEJ
rn
[}]

Dc:J
DD

IP

DD
c:;JD
[SJ

rn
[}]

rn
c:J
Q

IP

a
out

b
out

Fig.4.3.2. Data flow for semi-systolic array design.

~-~------------------

- 235 -

of the array remains 1. Notice, however that in the case of

Fig.4.3.1 the time complexity of one step is equal to the

time required by a multiplication, while in the case of

Fig.4.3.2 the time complexity is equal-to 1 IPS.

In order to achieve a purely systolic design all broad-

casting, fan-in mechanisms and long, irregular interconnec-

tions must be removed. If the •retiming' technique is

applied on the design of Fig.4.3.2 in a similar way as that

of Fig.4.3.1, a purely systolic design is derived, which is

shown in Fig.4.3.3. The calculations are delayed for one

more cycle for each cell : thus the broadcasted data item of

Fig.4.3.2 which travelled with zero delay, now moves with

delay equal to one time unit; subsequently a time unit delay

is added to all data streams and therefore the b's travel

with a two cycle delay and the 'slow a' travels with three

cycles delay. The dataflow is unidirectional but the first

valid result is now produced after zr(n+l)/21-1 cycles.

4.3.2 IMPLEMENTATION DETAILS

The systolic array of Fig.4.3.3 needs some further

refinements as regards the operations to be performed in

each cell. There are some more complications in the compu­

tation of the coefficients of the n~w polynomial, namely, . '

the determination of the sign for each partial IPS and the

multiplication by 2. It was observed that the sign for each

'a' is determined once, upon its squaring and then it

remains the same for the remainder of the calculations;

- 236 -

CSJDDD
CEJDDD
CSJGDD
GJITJDD
[1][];]~0

CSJGJGJD
Q;][}J[}JGJ
D m m G bo

o rn rn GJ bl

oornrn b
2

DDQCSJ b3

IP IP IP IP

-[}
.__ _ _.. L-~

Fig.4.3.3. A 'purely' systolic array design.

b
out

- 237 -

furthermore the doubling can be combined with the sign

determination so that it happens only once for each 'a'.

These operations are all collected in the first cell of. the

array and thus the array takes the final form shown in

Fig.4.3.4, where the detailed dataflow is also illustrated.

The first data stream consists of 'fast a's'that travel

unchanged through the array; the second stream has 'slow

a's' which are multiplied by -2 or 2; the third stream are

the b's which collect the inner products that are calculated

in the cells, and finally produce the coefficients of the

new polynomial.The first cell can be specified as follows :

if
even cycle

t := ain
true

t := - ain
a-fast := ain
a-slow := 2 * t
b :=a * t

The multiplication by two can be replaced by a simple

'shift-left' operation; the time complexity of the SQ cell

is not greater than 1 IPS since the negatibn can be seen as

a subtraction from zero. The IP is a simple IPS cell.

A systolic system based on the Graeffe root-squaring

method should be capable of performing a number of succes-

sive polynomial formulations using the systolic array

described. The number of iterations can be predefined or can

be controlled by the host system on inspection of the

difference in the magnitude of the coefficients being

~
~
~
~
GIU
~
~

- 238 -

ODD
ODD
ODD

DD
DD
DD

b =b +
2 2
2a

0
a

4 D
D
D

D
DDGTI
ODD
DDDD

IP

Fig.4.3.4. Final systolic array design.

b
out

- 239 -

produced. Usually a small number of iterations, e.g. three,

is enough [42),[111). After the final polynomial is formed

a series of divisions follows and then successive square-

root extractions; the number of square-root operations is

the same as that of polynomial formulations.

A systolic system for the implementation of the root­

squaring method is shown in Fig.4.3.5. On the left-hand

side, there is a pipeline of m (here m=3) systolic arrays

similar to that of Fig.4.3.4. The first array accepts as

input the coefficients of the original polynomial and calcu­

lates the coefficients of the new polynomial, and thus each

array represents a root-squaring iteration. The coefficients

of the final polynomial pass through a divider;negator where

the roots of the final polynomial equation are calculated

according to (4.3.9) :

par
A.new := Ain
qout := Ain 1 A.old

if
A.new <> 0.0

A.old :m - A.new
true

A.old :a - suitably small quantity

Notice that since the coefficients of the final polynomial

are produced at the rate of one per cycle they can form the

input to the divider;negator with no delay; similarly the

roots of the final polynomial are produced at the same

throughput rate. A possible pipelined implementation of a

square-root device (SQRT) would secure a smooth dataflow

a •
n ~

4

..__

- 240 -

POLYNOMIAL rORMULATION

POLYNOMIAL rORMULATION

POLYNOMIAL rORMULATION

r-

-

A ••• A
n 0

r- SQRT

r- SQRT

DIV,NEC: SQRT

Fig.4.3.5. A systolic system for the Graeffe root
squaring method.

r-

1-

- 241 -

through the successive square-root extractions, which are

illustrated in the right-hand side of Fig.4.3.5 [218).

Thus, the absolute values of the roots of the original poly­

nomial can be produced in the same pipelined fashion.

An alternative configuration for the systolic system

would be the use of only one systolic array with feedback

mechanism so that the same array produces the successive

polynomials (see, for example Fig.4.2.5 for the Bernoulli

method). The feedback mechanism can be extended to check

for the convergence of the process as it will discussed in

subsequent sections. The systolic array for the root­

squaring method is simulated soft-systolically using OCCAM

in A.l.2 .•

4.4 SYSTOLIC DESIGN FOR THE CALCULATION OF THE EIGENVALUES

OF A SYMMETRIC TRIDIAGONAL MATRIX

Given a symmetric tridiagonal matrix of order n, with

diagonal elements a1 ,a2 , .•. ,an and off-diagonal elements

b2 ,b3, ••• ,bn with b1 - 0. For. any number x

let the Sturm sequence (see sections 2.1, 2.4) defined as:

2 p
1
• (x) = (a.-x)p. 1 (x) - b.p. 2 (x), i=2,3, •.• ,n

1 1- 1 1-
(4.4.1)

then, pn(x) is the characteristic polynomial of the matrix.

Furthermore the number S(x) of disagreements in sign of the

sequence p1 (x),p2 (x), •.• ,pn(x) indicates the number of roots

of the polynomial, i.e. the eigenvalues of the matrix, that

are smaller than x [298] (see Fig.4.4.1). Bisection is used

to isolate the roots of pn(x); the termination criterion is

(4.4.2)

where c is a predefined small positive quantity and [a, ~]

is. the current bisection interval.If the termination cri-

terion is not satisfied the new bisection interval is deter-

mined as follows: Let R be the order of the root being

sought, i.e. the smallest root has order 0, the next 1,

etc.; then

if
S(x) > R

x:=(a+x)/2; new interval is [a,x]
true

- ------- -- ------ ------------------

- 243 -

S(x)

n

n-1

n-2

2

l

X

0

x1 x2 X
n-1

X R
n

0 l n-2 n-1

Fig.4.4.1. Roots for sturm sequence polynomial.

~~--·-----

- 244 -

x:=(x+l3)/2; new interval is (x,j3) (4.4.3)

An eigenvalue with multiplicity m > 1 can also be detected

as S(x) produces a 'jump' of m at x. Therefore the bisection

process returns to the multiple root for m times before the

next eigenvalue is located.

In I 18) a modification of the Sturm sequence was pro­

posed because it was noticed that it is quite common for

pi(x) to produce overflow. Thus, instead of calculating the

sequence (4.4.2), an alternative sequence is computed,

defined as

(4.4.4)

and calculated using the recurrence

(4.4.5)

Some advantages of the modified sequence are the following :

the q-sequence does not suffer from overflow problems; less

computation is required since two multiplications are

replaced by one division; the calculation of qi(x) requires

only qi_1(x), while pi(x) requires both pi_1(x) and p1_2 (x).

on the other hand, recurrence (4.4.5) is unstable, while

(4.4.1) is extremely stable, for it is possible for qi_1 (x)

to become zero for some i; however, in such cases the zero

- 245 -

can be replaced by a suitably small quantity. Another advan­

tage of the modified sequence is the fact that S(x) is now

given by the number of negative q's.

Using the Sturm sequence properties all n eigenvalues

of a symmetric tridiagonal matrix can be found in parallel

(101), (259). Bisection can be applied on each root

independently from the other roots since the only criterion

used is S(x), as explained in (4.4.3) and in Fig.4.4.1. The

initial interval can be common to all eigenvalues. Alterna­

tively a different bisection interval can be supplied for

each eigenvalue, based on good approximations in the cases

where the matrix is frequently updated and the eigenvalue

computation process is repeated.

A pipeline for the calculation of the Sturm sequence of

polynomials is described herein, based on the recurrence

(4.4.5) and it is compared to the pipeline proposed in (259)

using relations (4.4.1). Then, the pipeline is incorporated

in a systolic eigenvalue solver implementing the bisection

process; several extentions are also briefly discussed.

4.4.1 STURM SEQUENCE PIPELINE

The main compuational effort of the algorithm described

is concentrated in the calculation of the Sturm sequence for

a given x and the determination of the corresponding S(x). A

diagram of the pipeline calculating the Sturm sequence is

shown in Fig.4.4.2. Each pipeline block is analysed in three

- - r-
d d •

I - - --I I •
I • I
I I I

L .. I_ • !
X Ql Qi Qn X

2 2 2
q 0 (xl-1 al, b0-o ai, b. 1 an, bn-1 1-

qi-l(x) qn-l(x)

ql(x) qi(x) qn(x)

N

""" "' - si -51 sn
s0 (x)•O -s 1 (x) Si(x) s n(x)

si-l(x)

Fig.4.4.2. Sturm sequence pipeline.

- 247 -

parts: the first part is a simple delay element that allows

the synchronous movement of the bisection distance d with.

the other data in the pipeline; the operation of d is

analysed later on. A second usage for this simple communica­

tion channel is the preloading of the matrix diagonals, i.e.

the polynomial coefficients, into the pipeline blocks during

the setup phase.

The Q processor of the pipeline block calculates qout

for given qin, a, b and x; its functional specification can

be :

if

if

setup phase
load a, b through x, d channels

qin = 0
q := sufficiently small quantity

true
q := qin

xout := xin
qout := (a- x) - (b I q).

The processor is quite complex as it involves two subtrac­

tions, one division and a comparison with zero; if the

recurrence (4.4.1) is used the processor will require one

additional input-output channel and it will involve two sub­

tractions and two multiplications.

The S processor of the pipeline block computes Sout

for given Sin and qin, i.e.

if
qin < 0

sout := sin + 1
true

- 248 -

sout :- sin.

Notice that the comparison with zero can be combined with

the corresponding calculation in processor Q ; observe also

that this computation is considerably simpler than the

sign-change detection required if the original Sturm

sequence is used. From Fig.4.4.2 it is obvious that the com­

putation of processor Si is performed after that of 01 , or,

in other words, it is overlapped with the computation of

Qi+l' Therefore S(x) is produced one cycle after qi(x).

Another implication is that since the si processor is much

simpler than Qi' the S pipeline remains 'idle' for some part

of each clock cycle waiting for the Q pipeline to finish its

computation. An alternative approach is to define as time

unit for the pipeline the sequence of the computations in Qi

and si, and have no delay at the end of the pipeline.

Finally, two unequal clock cycles may be considered or a

data-driven (wavefront) computation.

4.4.2 SYSTOLIC EIGENVALUE SOLVER

The systolic eigenvalue solver is shown in Fig.4.4.3.

The main part of the system is the n-processor pipeline cal­

culating the Sturm sequence. The pipeline can be folded to

form a systolic ring reflecting the iterative nature of the

process, together with two controlling processors, the

Bisection Test processor and the I/0 controller.

The initial values are supplied to the first cell of

r-
1
I
I
I
I
I
I
I
I
I
I
L-

- 249 -

xout xin din

----------- -----·--"'" -- -- f--- ,
I
I
I
I
I
I
I
I
I
I

-
)

-

BISECTION

TEST

__ .__
f--

qn(x) X

-- -- f---

n

n-1

I I I

d

I/0

CONTROL
X

~-----------~--

d
s 0(x)=O

--1 r-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I I
I I
I I
I I I
I I
I I
L ___ _j

I

q0 (x)=1

I
t

--

I

'

--

1

2

X

I
t

--_J

d

-

I

~ I

I
I

STURM PIPELINE I

L---- -- __________________ j

Fig.4.4.3. Systolic system overview.

- 250 -

the pipeline, while the nth cell provides S(x) to the Bisec­

tion Test processor.The bisection interval corresponding to

certain x should be present in the Bisection Test processor

simultaneously with S(x). This can be achieved in two ways :

a local store can be placed in the system, keeping all

bisection intervals and making them available in the proper

cycle for updating; or a distributed memory, i.e. simple

registers can allow the bisection interval to travel through

the pipeline together with x and S(x). The first approach

introduces the need of large local storage and control

mechanisms, while the second approach involves additional

communication channels throughout the pipeline. The second

technique is used here since it fits better with the pipe­

line scheme and it is also used for the preloading of the

pipeline with the matrix diagonal elements.

In order to minimise computation and communication

overheads a bisection interval (a,~] is expressed in the

form of a bisection distanced= (~-a)/4, and a bisection

point x- (a+~)/2. Then, (4.4.3) and (4.4.4) can be

expressed as

d .$ t

and
if

S(x) > R
X := X - d

true
X := X + d

d := d / 2

(4.4.6)

(4.4.7)

The computation of (4.4.7) is performed in the Bisection

- 251 -

Test processor, where the 'order' R of the root is kept by

means of a counter which is initialised during the setup

phase to 0. Thus S(x1) is compared with 0, S(x2) with 1 and

finally S(xn) with n-1; then the counter is reset to 0 for

the next bisection cycle. The computation of the Bisection

Test processor is simple enough to be completed within a

single pipeline time unit, and therefore it introduces only

one cycle delay.

The I/0 controller allows for the initial loading of

the quantities a1 ,a2 , ,an and 0, b2,b3, • . ,bn

followed by x1 ,x2, ••• ,xn and d1 ,d2, .•• ,dn. After

that the ring is •closed' and the normal operation of the

system is resumed as the output of the Bisection Test pro-

cesser is routed back to the pipeline, as shown in

Fig.4.4.3. The iterates of each bisection cycle are also

output to the host where a convergence test similar to that

of (4.4.6) is performed. The I/O controller imposes no addi­

tional delay in the computation since it comprises of simple

multiplexers.

The systolic system proposed performs a single itera­

tion for the n eigenvalues in n+2 steps, each step having

the complexity of 2 subtractions and 1 division, needed for

the calculations in a Q processor. A soft-systolic simula­

tion program in OCCAM is given in A.1.3.

The eigenvalue solver can be extended to perform a con­

vergence test for the iterates, as in (4.4.6), and then

- 252 -

produces its own Reset signal, when all eigenvalues are

found. Thus the host is only informed when the computation

is finished and a new one can start. Furthermore, only cer­

tain eigenvalues can be found, either of specific order or

in specific range : in the first case the order of the

eigenvalue would be associated to x and be compared with

S(x); in the second case an additional convergence check is

necessary, i.e.

qn(x) ~ 0 (4.4,8)

since the eigenvalues o~ide the specified range will 'con­

verge' to the bounds of the interval but will produce a

non-zero qn(x).

4.5 CONCLUSIONS

4.5.1 ITERATIVE METHODS

The general class of iterative methods for the computa-

tion of a root for a polynomial equation, as described in

section 2.1, can be expressed as follows [64], [72]:

given a set of approximations
while there is no convergence

seq
perform a set of polynomial evaluations
update the set of approximations (4.5.1)

Depending on the method in question the set of approxima­

tions may consist of one up to three values, while the set

of polynomial evaluations can comprise either a single

evaluation or calculation of the derivatives of the polyno-

mial. The updating procedure is relatively simple for the

Newton-based methods, while it is considerably more compli­

cated for the Bairstow, Muller and Laguerre methods. Cover-

gence can be checked by comparing the two latest approxima­

tions to the root sought.

All the iterative methods can be implemented by means

of asystolic ring similar to that of Fig. 4.2.5 and 4.4.3.

The pipeline part of the ring can have more than one pipe-

line performing parallel polynomial evaluations, if

required: in [148] Horner's scheme is extended to cover the

evaluation of derivatives of polynomials in real and complex

values; the systolic computation is straightforward and it

is given in A.1.4, A.1.5.

- 254 -

The pipelineability of the systolic ring depends on the

hardware implementation of the updating procedure. In the

case of Newton-based iterative methods this updating can be

expressed in a series of simple arithmetic operations and

therefore the computations of the updating procedure can be

fully pipelined, or in the case of Fig. 4.4.3. However, for

the Bairstow, Muller and Laguerre's methods more complicated

calculations are necessary and therefore the systolic ring

may not be fully utilized.

4.5.2 CHARACTERISTIC POLYNOMIAL COMPUTATION

In section 2.4 (see .also [111), [148)) the Leverrier­

Faddeev method for the calculation of the characteristic

polynomial of a matrix is described; this method is used in

[69), [293) for the parallel inversion of a matrix. The Ber­

noulli method discussed in section 4.2 uses the same Newton

identities as the Leverrier-Faddeev method, with the differ­

ence that now the polynomial coefficients are the unknowns.

Thus, a similar systolic system as that in Fig. 4.2.4 can be

used.

The computation of the characteristic polynomial of a

lower Hessenberg matrix is addressed in [225), using a

recurrence similar to the triangular system solution

described in section 3.2. Therefore, a linear array similar

to that of Fig. 3.2.7 can be used for the calculation of the

characteristic polynomial of a lower Hessenberg matrix, as

shown in A.1.6.

- 255 -

Further, in (90) the Sturm sequence of polynomials is

extended to quindiagonal matrices. This extention can be

readily incorporated in a design similar to the one proposed

in section 4.4.

C H A P T E R 5

SYSTOLIC LU DECOMPOSITION

5.1 INTRODUCTION

The importance of the LU decomposition algorithm for

the solution of linear systems of equations is well known,

and for this reason this method was amongst the first to be

considered for systolic implementation [199], [181], (see

also section 3.2).

Several similar architectures or modifications and

extensions of the systolic algorithm have been proposed. For

example, in [173] a wavefront LU decomposition algorithm is

discussed. In [207], [169], the decomposition procedure is

used for the introduction of methodologies for the formal

derivation of systolic algorithms and in [207] a new array

is proposed. The partitioning of the LU decomposition method

is addressed in [137-138] so that small VLSI arithmetic

modules can accommodate bigger problems. The incorporation

of the LU decomposition and the forward and backward substi­

tution arrays is discussed in [1], [301]. The block LU

decomposition is investigated in [242] as a means for the

- 257 -

improvement of the efficiency of the original array. For

the same purpose the R+F method has been applied in [19), as

discussed in section 3.3.

The original implementation uses Gaussian elimination

without pivoting, a fact that makes the method suitable only

for a specific but wide subset of applications [199), [242).

Alternative methods for the solution of linear systems of

equations have also been proposed. The Cholesky factoriza­

tion method is investigated, amongst others, in [16), where

some problem partitioning techniques are introduced. The QR

decomposition, as well as other methods based on similarity

transformations using rotation matrices, are discussed in

(5), [68), [126), [142). Notice that similar methods can be

used for the matrix eigenproblem solution. Some implementa­

tion aspects of QR decomposition are investigated in [262),

and a problem partitioning method is described in [125).

In addition to QR decomposition, the Gauss elimination

procedure with neighbour pivoting is introduced in [113),

for the triangu1arization of a matrix, as described in sec­

tion 3.2. The numerical properties of the pairwise (or

neighbour) pivoting are investigated in [272) while a linear

array for the same method is described in [7). In [261) all

the above mentioned methods are unified as four alternative

methods, i.e. LU or QR decomposition with or without pivot­

ing.

The optical implementation of LU, QR decompositions and

- 258 -

generally the direct solution of linear systems of equations

is addressed in (50-52). Further, an LU factorization algo­

rithm, based on a series of optical matrix multiplications

is discussed in (28); finally the optical LU decomposition

using outer products is introduced in (13).

Another important aspect of matrix decomposition is the

updating of the LU factors when a change in the original

matrix occurs. The algorithm based fault-tolerant techniques

for LU decomposition described in (134), (153), have been

expressed in terms of updating the corresponding LU factors

in (188-189).

Some aspects of the implementation and various other

applications of the LU decomposition method are addressed in

this chapter. In section 5.2 the efficiency of the original

LU decomposition array is increased to 1 by combining block

(2x2) and R+F methods. A similar array for the triangular

system solution is also described.

In section 5.3 the updating of LU factors is described,

in the case of the simplex method of linear programming. In

the next section an application of the LU decomposition with

neighbour pivoting is presented, for the calculation of the

eigenvectors of a symmetric tridiagonal matrix using the

method of inverse iteration. The calculation of the eigen­

values of such a matrix has been detailed in section 4.4.

Finally, in the last section, some extensions and

- 259 -

further research topics in systolic LU decomposition are

briefly addressed.

5.2 THE R+F METHOD ON SYSTOLIC BLOCK LU DECOMPOSITION

The use of (2x2) block LU decomposition of a banded

matrix A is introduced in [242], so that the efficiency of

the hex-connected array of section 3.2 is improved from

e~l/3 to e~l/2. The term efficiency denotes the processor

utilisation and the overall computation time. More specifi-

cally .in section 3.2 the LU decomposition of a (nxn) banded

matrix A with bandwidth w=p+q-1 requires a hex-connected

array with no more than pq processors and takes a time of

3n+min(p,q) IPS cycles.

In [242] the same computation requires a hex-connected

array with no more than pq processors and takes a time of

2n+min(p,q) IPS cycles. It should be noted that the complex­

ity of the systolic network is increased and some prepro-

cessing of the input data streams is necessary. On the other

hand, however, a considerable speed-up is achieved and the

processor utilisation is also improved. The systolic array

for the (2x2) block LU decompo~ition is shown in Fig.5.2.1,

where its operation is also explained. In Fig.5.2.2 a

preprocessing array for the formulation of the input data

sequence is described.

The R+F method is also used for the improvement of the

efficiency of the systolic LU decomposition, as explained in

section 3.3. Thus, the LU decomposition can be performed on

a hex-array with no more than pq processors in time

r3n/2l+min(p,q) IPS cycles.The combination of these two

- 261 -

Sl2 Sl3

r

su 822 S23

S21 S31

Fig.5.2.1(a). Block (2x2) LU, LDU decomposition array.

- 262 -

processor S21

Step t In-s = l,m,n,p
In-NE = a,b

Step t+l In-NE = c,d
Out-N = a*p-n*b,a*m-l*b
Out-E a a*p-n*b,a*m-l*b
Out-SW = a,b

Step t+2 Out-N a d*n-c*p,d*l-c*m
Out-E = d*n-c*p,d*l-c*m
Out-SW = c,d

processor S22

Step t
Step t+l

Step t+2

In-s = a,b,c,d
Out-N = a,b,c,d,a*d-b*c
Out-E = a*d-b*c
Out-SW = a,b
Out-SW = c,d

processor S23

step t In-s = u,v,w,x
In-W = D

Step t+l Out-N = wjD,x/D
Out-E = D
Out-SW = w/D,x/D

Step t+2 Out-N a u(D,V/D
Out-SW a U/D,v/D

processor Sll

Step t In-s = n,l
In-NE = D

Step t+l In-S = p,m
1: = ljD, n: = n/D
Out-SW = D

Step t+2 m: = mjD, p: = p/D
Out-N = l,m,n,p

--

Fig.5.2.1(b). Cell definitions.

1

r

1

--- ---------------------------

- 263 -

processor Sl2

Step t In-S - a,b,c,d,D
Step t+l Out-E = a,b,c,d

Out-SW = D
Step t+2 Out-N = a,b,c,d T

l
processor Sl3

Step t In-S = w,x
In-w = a,b,c,d

Step t+l In-S = u,v
Out-E = a,b,c,d T
[n

lwb-ud I xb-vd
Step t+2 : = uc-wa

vc-xa

Out-N = u,v,w,x

processor S31

Step t In-S = a,b,c,d
In-W = n,l
In-NE = w,x

Step t+l In-W = p,m / r In-NE = u,v
a: = a+l *w, b: = b+l*x
c: = c+n*w, d: = d+n*x
Out-E = n,l
out:..sw = w,x

Step t+2 a: = a+m*u, b: = b+m*v
c: = c+p*u, d: = d+n*v
Out-N = a,b,c,d
Out-E = p,m
Out-SW = u,v

Fig.5.2.l(c). Cell definitions.

1 0

- 264 -

(2x2) block output (k•3)

0 1 0

point input (w=7)

left right

xout- -- -- xin

a

if
xin • 1

right :• a
true

left := a
.xout := xin

Fig.5.2.2. Preprocessor array.

- 265 -

strategies is investigated herein, i.e. the application of

the R+F concept on the block (2x2) LU decomposition. For

simplicity the case of a block-tridiagonal matrix is exam­

ined in detail; again it is assumed that no pivoting is

required.

5.2.1 BLOCK R+F LU DECOMPOSITION

Suppose the linear system of equations, A! a £ where A

is a (nxn) block (2x2) tridiagonal matrix, with n even

(without any loss of generality), i.e. n=2k, p=q=4, w•7 (see

Fig.5.2.3(a)). The solution of the system can be effected

using block LU or LDU decomposition, i.e.

A = LU and L_z = E_, U.! = X ,

A = LDU' and L_z = E_, D_r = ~ , U'.! = ~ (5.2.1)

with L,U,D,U' shown in Fig.5.2.3(b); notice that U=DU'. The

decomposition procedure is exemplified by taking the first

four rows and columns of matrix A,

[" '•J A =
A21 A22

(5.2.2)

Then, we have

~' ~l' '•J t" "·~ =
A21 A22 u22 (5.2.3)

with

(5.2.4)

or

- 266 -

All Al2 ~l ~l
A2l A22 A23 ~2 ~2

A32 A33 A34 0 ~3 ~3

0~~->.>
c

l~ 1\,k-l 1\k ~

with

~tm a J ~:J ~bt l R.,m+l
Aij , .!i = • ~i =

bt+lj .l+l,m a .2.+ 1 ,m+ 1

1=2i-l

m=2j-l

Fig.5.2.3(a). Block (2x2) tridiagonal system.

~ l ull 0
12

L2l I 022
0

23
L32 I

0 033 0
34

c
L =

~
u =

~::::··J
D =

c 0
Lk,k-1 I

(6)

uu I 0
i2 l 022 I 0 '23

033 0 ' u• = I UJ4 0

~ ~
0 0 0~-l,kj 0

1<1<

Fig.5.2.3(b). LU, LDU decomposition of a block (2x2)
tridiagonal matrix.

- 267 -

or

[~, f8: (5,2.5)

with

(5.2.6)

Now, since Aij is a (2x2) block submatrix as in Fig.5.2.3,

-1 then A11 is equal to

(5.2.7)

with D = a
11

a
22

-a12a 21 , the determinant of All' Therefore,

from (5.2.3-6)

or31

t41

=

f31
la41

(5.2.8)

As is shown in [242), the computation of u22 can be per­

formed in 4 IPS cycles and at the fifth step u22 will be

taken as pivot to begin the second elimination step, as in

Fig.5.2.3(b), '.

- 268 -

If we apply the R+F method on (5.2.1) we proceed from

the top and the bottom of matrix A simultaneously and obtain

two LU decomposition streams functioning concurrently in

opposite directions. The two streams confront each other in

the centre of the matrix and the conflict is resolved by

means of a double modification of the central (2x2) subma­

trix. The confrontation of the two streams takes the form of

the solution of a subsystem as in (5.2.2). Two cases are

considered, for k odd and k even; these two cases are sum-

marised in Fig.5.2.4(a) and(b) for the LU and LDU decomposi­

tion respectively.

Now, the central submatrix has the form

A • ~::,.
u m,m+l

u
m+l ,m+ 1 !

k+l

m = ~2

which is reduced, for k=odd, to

G
+
m,m

um+l,m

or, for k=even, to

u J m,m+l

u:+l ,m+l

, k=odd

k=even
(5.2.9)

(5.2.10)

(5.2.11)

In the case of LDU decomposition, (5.2.9) is reduced, for

k=odd, to

or, for k=even, to
~

I

u' m+l,m

[:

(5.2.12)

(5.2.13)

All A12 I ull ul2

l A21 A22 A23 0 L21 I 0 u22 u23 0

A32 A33 A34 L32 I L34 u33
LU for

=

,,j k=S (odd)

A43 A44 A4S I L45 u43 u44
0 0 0

AS4 Ass I us4

All Al2 [I ull ul2

A21 A22 A23 0 u22 u23
0

..,
L21 I "'

0
\1)

A32 A33 A34 L32 I u33 u34 LU for

=

A43 A44 A4S L43 I L45 0 u44
k=6 (even)

0 AS4 Ass AS6 0
I LS6

us4 uss

A6S A66 I u6S !166

Fig.5.2.4(a). Block (2x2) R+F LU decomposition.

All A12 I

I" l r ui2

A21 A22 A23 0 L21 I 0 u22 0 I U:23 0

I
LDU for

A32 A33 A34 L32 I L34 u33

.J
I I k=S (odd)

=
A43 A44 A4S I L45 u44 I u43 I

0 l 0 AS4 Ass 0 I L 0 US4 I

L

"'

l l
.....

All Al2 I ull I ui2 0

A21 A22 A23 0 L21 I 0 u22 0 I U:23 0

A32 A33 A34 L32 I u33
.

I u;4 =

A43 A44 A4S L43 I L45 u44 I I I

A54 Ass A56 I

L:]
0 uss 0 US4 I

0 0 l A65 A66 u66 u6s I

LDU for

k=G (even)

Fig.5.2.4(b). Block (2x2) R+F LDU decomposition.

- 271 -

The symbol '+' indicates a double modification;

conflict is resolved by an additional LU or LDU

tion step.

thus, the

decomposi-

The solution of the resulting triangular sytems in

(5.2.1) can be effected by means of the same technique, i.e.

block R+F forward and backward substitution. The matrices

have the form given in Fig.5.2.4. The discussion is concen­

trated firstly on a lower triangular system of the general

form

All

·~
£1

A21 A22 0 ~2 £2

A32 A33 A34 ~3 : £3

A44 A 54 ~4 ~
0 Ass ~5 £s (5.2.14) --

The solution of the system can commence from both ends and

proceed concurrently towards the centre. Again, the confron­

tation of the two streams is resolved by means of a double

modification of the central (2xl) subvector of ~, here ~3 ;

in general ~m with m=(k+l)/2 for k odd and m3 (k/2)+1 for k

even. Thus

-1
X : (A) (b -A X -A x)
-m mm -m m,m-1-m-1 m,m+1-m+1

(5.2.15)

In the case of LDU decomposition, the lower triangular sytem

has the form

I ~1 £1

A21 I 0 ~2 £2

A32 I A34 ~3
:

£3
I A54 ~4 ~ 0 I ~ £s

(5.2.16)

- 272 -

and a diagonal system must also be solved.

5.2.2 SYSTOLIC IMPLEMENTATION OF BLOCK R+F LU DECOMPOSITION

The data sequence format necessary for the block (2x2)

R+F LU decomposition can be derived using the preprocessor

illustrated in Fig.S.2.5(a). The input of the array consists

of the two streams of the LU decomposition overlapped :

while in Fig.S.2.2 there should be a dummy element between

each two successive data items, here the dummy elements are

replaced by the entries of the second LU decomposition

stream.

Each one of the w demultiplexers produces the data item

it accepts either on the left-hand or on the right-hand side

output, according to the control signal Cl:

if
Cl = 1

output to the right
true

output to the left.

While in Fig.S.2.2, Cl has the form 1000, for the R+F method

Cl is 1100. The reformatting delays align all the entries of

a block (2x2) submatrix in one line. In order to achieve one

dummy cycle between successive submatrices a second control

signal, C2 is used. This signal is broadcast in a group of

four delay cells and operates as follows :

- 273 -

0 0 0 0 21 22 11 12 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 10,9 10,10 99 9,10 0 0 0 0

41 42 31 32 0 0 0 0 23 24 13 14
0 0 0 0 43 44 33 34 0 0 0 0

89 8,10 79 7,10 0 0 0 0 10,7 10,8 97 98
0 0 0 0 87 88 77 78 0 0 0 0

63 64 53 54 0 0 0 0 45 46 35 36
0 0 0 0 65 66 55 56 0 0 0 0

67 68 57 58 0 0 0 0 85 86 75 76

I

'-- ----
0 0 0 0

-
1 1 0 0 1 1 0 0 1

0 0 0 11 0 0 0
0 0 21 99 12 0 0
0 31 10,9 22 9,10 13 0

41 79 32 10,10 23 97 14
89 42 7,10 33 10,7 24 98
0 8,10 43 77 34 10,8 0
0 53 87 44 78 35 0

63 57 54 88 45 75 36
67 64 58 55 85 46 76
0 68 65 0 56 86 0
0 0 0 66 0 0 0

Fig.S.2.5(a)~ Preprocessor array and i/o format for k=S (odd).

··--

if

- 274 -

C2 • 1
delay output for one cycle; overwrite next output

true
no delay or overwrite occurs.

In order for the output of the preprocessing array to be the

input of the main computational array, an additional delay

is required for the off-diagonal blocks.

The case of k=5 (odd), i.e. n=10 is shown in Fig.5.2.4

and this example will be used hereafter. For k=even the

results are similar; for example, the input format for the

preprocessing array for k=4, i.e. na8, is shown in

Fig.5.2.5(b), where each rhombus indicates one (2x2) block

submatrix; notice also the row- column arrangement of the

input matrix. The output in block (2x2) submatrix form is

also given in the same figure.

The systolic array performing the block (2x2) R+F LU

decomposition for a block tridiagonal matrix A is given in

Fig.S.2.6; snapshots of the array operation are given in the

same figure. Notice that processor 513 is necessary only if

LDU decomposition is required. Comparing the operation of

the array in Fig.5.2.6 with that of the array originally

proposed in Fig.5.2.1 it is observed that the processor

utilisation is doubled : the idle cycles in each processor

are used for the computations of the second stream of the LU

decomposition.

The only difference in the processor specifications of

the two arrays is that in order for the double modification

- 275 -

Point input for n=B

0 11 0

0 0 0

0 44 0

21 0 12

0 22 0

34 0 43

0 33 0

32 0 23

Block (2x2) output for k=4

Fig.5.2.5(b). I/o format for k=4 (even).

Fig.5.2.6. Block (2x2) R+F LU, LDU decomposition array.

'n
'•1

0
1

1
31

01 141

0
1

1
32

0
1142

os

01131

Dl 141

t-----.1 a23/D 1

a2/Dl

U • A +L A 1 22 22 21 12 • A22 - ((All)- A) A

a :•a +D all a 21 12
33 33 11.31 • - +D t 23 o

1
1 32 • D

1

t•S

• or 13
.14 ' ,32 42

D t 1 32 "s
0

1
1

42

D t s 79

0
5

1
89

0
1

1
32

A4S 04112

0
i2 •

(·1 (·1 r·ll 0
141 [2

r·ll ... 1
uu) ul2 • All) Al2 "11-·2~J . ..:1

- 12 °t :1 I r2, auj a23

~1 .1.!J 01

012 .. "12 (simple delays)

os

l"ssl

L21 os a97/os
or

.97
4 1o 110s 4 to,7 ' or

4 9e10s ••• 4 to,s10s •to,s

1
79 "'to, l 0 s

•••
02 4 to,e10s

1
7,10

1e,lo

0s1
79

0
22 0s19a

a97/os

0s1
7,10 "2

0 s1
B,l0

4 9a10s
0s1

7,10 ro t l A '•A + l 5 79 (a97'os,agsfDs)
0s1a,lo

44 44 D t
0s1

79
5 89

0 s1
e9

A44

0
2

1
53

02163

0s1
7,10

A32

0s1
B,l0

02

(U22)

L45 02
aJS/02

or
•Js

4 36102
0

36 a4s102 a45
or

1
s3 4 45,0 2 .,. 1
63 04 4

46102

•••

446,0 2 446
~-''-''""T

0
4

4
7/

0
4

4
76

10
4

0
2

1
53

"•• 4
Js

102 0
2

1
54 "•

0
2163

4
36

10
2 0

2
1
64 f02

1sJl 0
2

1
54 A •·A • [1 <•35

102'•3/021
0

4157
33 33 D 1

02164 2 63) 0
2 1

53

02 .. 63
0

4
1
67 0

2
1

54

"33
0

2
1
64

A34

04

L32
< u44l

4 7s104

4 Bs104

•
•

or 75

or 85
486104 •e6

476104
476

1
s1 4es104

1se 16e
167 486104

0
4

1sa
04157

0
4

1
68 "' 0

04167 a,s;o4 a86104

0 41sa
4 76

10
4

04 168

+ ~04 1 571
+ [:••se]

A33t"'A33 + l J <a,s/o4,a76/D4)

A33:•A33+ (ass10 4 ·•e6/D 4>

0
4

1
57

04 167

04158 4168

0
4168

04167

t=l2

- 281 -

of the central (2x2) block submatrix to be achieved, this

submatrix has to be kept in processor S31 for two additional

IPS cycles (see Fig.S.2.6). The central block (2x2) subma­

trix enters the array after 2k-l=n-1 IPS cycles; it is kept

in processor S31 for 4 cycles and needs 3 more cycles to

reach the output. Thus, the LU decomposition of a block

(2x2) tridiagonal matrix (w=7, p=q=4) is computed on a sys­

tolic array having no more than pq processors in

n+min(p,q)+2 IPS cycles.

A systolic array for the solution of the triangular

systems using block R+F methods is given Fig.S.2.7 The pro­

cessors used are similar to those of the LU decomposition

array; some snapshots of the computation are also given in

the same figure. The inversion of a block (2x2) submatrix is

achieved by processors S22 and S23. Processors SO and MA

calculate

-1
~ = A (~-y) and y = y+A~ (5.2.17)

respectively, ·where A is a block (2x2) submatrix and~· y, ~

are (2xl) subvectors. As is obvious from their specifica­

tions in Fig.S.2.7 they can be regarded as 'half' of proces­

sor S31 in terms of area requirements, while the computation

retains the same format. However the calculation of SO

requires a time unit equal to 1 IPS + 1 ADD to be completed,

a fact that imposes a longer cycle for the array.

The confrontation of the two streams is resolved by

l

-

I
-1-

- -
S22

All,ol

A21

= =
= I=

S23
.22 0

21
o;-·-~

~1 ,-
;----

SD MA

Fig.5.2.7. Block (2x2) R+F triangular system solution.

r--
..,
(l) ..,

I
4S • • I 22

-f-

Ass' 0s
.

: t=
.21

.12 •u
-I\' I\

•ss •s•
~~ -o;-

- t-- -
X

1

[-•1l"1l ~1 • X.1 + a /D (b2-y2)
11 1 ~s•·.!s•

fass1"s]
t·•s/"sj

y

y2•x_2+A21.1!1 1 [31
y4

t•4

-1-

=
••s

F=

.21

(b9-y9}

y ,. [31 + [
y4

t•S

t--

l2'.X.2 +

.31 .32
J

•n ..2

["311 •4lj xl

X [11
x2

"' (]) ...

I I ...
-1-

A22'02

: I= .. , .. , ...
-o;-· o;- ...

o' 2

~ 1-- ~

-

:

_ a43

02

'l

X -s

r-

.32

=

.. ,
1--X

-1

"' 0>

A

I
43

- -

A44' 04

=I=
'32 .,. a33

-o;-· o;-

- 1---- -

I

••• •• 7

o;·-~

:.:.

!!. 2

- -

.. ,
=f=

.32

1----

N
0>
l11

I
- -

A33'D3

= :A
4)

0
78 •n -o;, ~

- -

I

1,0

~,

-
~

-1-

= =

A43

-

':f..':•:t..' + 57\ X [. \ 3 3 a67J 7

...,
CO

"'

I I
-1-

: F=

o,l

- 1----- -

••• o, . _
4 65

03

x;

r·.lol \
[-a65!o3J

-1-

= I=

1--

- 288 -

keeping the middle (2xl) subvector for two additional cycles

in processor SD and the corresponding inverse submatrix is

delayed accordingly. Thus the solution of the block (2x2)

triangular system in its,general form (5.2.14) requires an

array of no more than 8 processors and a computation time of

n+S cycles.

Soft-systolic simulation programs in OCCAM, for the

designs presented. in this section, are given in A.2. More

specifically, A.2.1 simulates the preprocessor for the block

(2x2) R+F LU/LDU decomposition array, shown in Fig.5.2.5.

Further, A.2.2 is a program for the block (2x2) LU/LDU

decomposition array, as in Fig.5.2.6. Finally A.2.3 presents

a program simulating the triangular system solver of

,Fig.5.2.7. Notice that, in A.2.2 and A.2.3, the R+F exten- '

sion is not included, but the modification is straightfor­

ward. Also, in A.2.2, processor Sl3 is configured for LU

decomposition, but it can be readilly modified for LDU

decomposition.

5.3 SYSTOLIC LU FACTORISATION FOR SIMPLEX UPDATES*

In the Simplex method forlinear programming a represen­

tation of an (nxn) matrix A is stored which enables inverse

operations to be carried out readily, i.e. the solution of

three linear systems of equations for each iteration of the

' method (17). Suppose that the solution of the linear sys-

tems is effected by decomposing A into the LU product. Thus,

Land U can be stored instead of A, (see also section ~.5).

Now, at the beginning of a cycle for the Simplex

method, matrix A has the form

A= [a
1

,a
2

, ••• ,a
1

,a ,a
1

, ••• ,a)
- - --m- -m ~+ - n

and the representation of A is A= LU, with

T
L=[1

1
,t

2
, ••• ,1 I and U=[u1 ,u2 , ••• ,u I

-- -n -- -n

(5.3.1)

(5.3.2)

At the end of the cycle matrix A is updated, i.e. column ~m

is removed and a new column ~s is added :

A' = [a
1

,a
2

, ,a
1

,a
1

, ... ,a ,a 1
- - --m- --m+ -n -.:; (5.3.3)

Then U is modified as shown in

Fig.5.3.1(a); notice

accordingly to u*

that the column L-1a -s that is added to

u is produced as a by-product during the computations of the

specific Simplex cycle. Hence u* can be constructed with no

* A shortened version of this section has been present­
ed in the International Conference on Supercomputing,
June 8-12, 1987, Athens, Greece.

m-1 m+l

shifted
columns

(a) U*

L

Shift +

elimination

(d)

- 290 -

-1
L a

-;;

(c)

-1
L a

-;;

i

i+l

I

Shift +
update

i i+l

l 0
X 1

I

~-----4 shift

m+l

u

Fig.5.3.1. Matrix configurations for the modification of LU
factors.

- 291 -

significant computational effort. The main point at issue is

to return to the standard form

A' = L 1 U1 (5.3.4)

in which L' and U' are the updated LU factors. U can be

reduced to U' using the Gaussian elimination procedure for

the subdiagonal elements in columns m through n. Thus, U' is

obtained from U by applying a sequence of simple transfor­

mations :

U' = E E .. n n-1 • (5.3.5)

where each Ei has the form shown in Fig.5.3.1(b).Thus, we

have

(5.3.6)

This method is suggested in 23) for more general LU updat-

ing applications and it is used in [17) for the Simplex

method. It is proposed in [17),[283) that only U is expli­

citly updated while a file of the elementary operators E. is
' 1

created; however this file expands after each iteration and

so the computation time required per Simplex cycle increases

steadily. When this file becomes sufficiently large it is

necessary to reinvert, i.e. to explicitly update L, so as to

keep the total computation within bounds. Alternatively,

explicit updating of both the L and u matrices in each cycle

can be adopted and therefore no expanding file of operators

is required [105); this method is pursued herein.

- 292 -

5.3.1 LU UPDATING METHOD

Consider the matrix * u as shown in Fig.5.3.l(a):

Fig.5.3.1(c) shows the elements of L and U that are affected

by the updating of matrix A, i.e. by the application of the

Gauss elimination procedure * on u . vectors !i and ~i' for

i=1,2, ••. ,m-1 can be produced without any computation since

all their elements are already known. Therefore it is suf­

ficient to consider the case that m=l : thus the problem of

updating the LU factors of an (nxn) matrix A is reduced to

the updating of the LU factors of an (mxm) submatrix of A.

Suppose therefore that ~1 is removed from A in

(5.3.1), giving

A' = [a
2

,a
3

, ••• ,a ,a]
- - --n --s

(5.3.7)

which is equivalent to removing the first column from U, as

shown in Fig.5.3.1(d); i.e. the first element of each vector

~i in (5.3.2) is removed. The new subdiagonal elements u21 ,

u
32

, •.• have to be eliminated in successive steps, and it

is sufficient to describe only the first step in which u21

is eliminated. For simplicity, it is assumed that no permu­

tations are required throughout the LU updating computation.

identity form [105)

'!i ·!il [~ :] (5.3.8)

The coefficients of B are chosen to fix the conditions

i• =i' =1 and t• =u' =0
11 22 12 21

(5.3.9)

- 293 -

The new vectors !'1 , ~· 1 are the new first row and column of

L', U' and !' 2, ~· 2 are intermediate quantities that are

changed again in the second step.

The modification is determined by the submatrix opera-

tion

01 .
1J BB -1

(5.3.10)

or, from Fig.5.3.1(d),

(5.3.11)

By taking r = (~2 ! 1/(.!!1 ! 1 = u22;u12 , it ·follows from

(5.3.11) that

B =

and

'~il 1
(t.)
-1 2

= (~1) 1

= (~1)2+r

(i.) . =
-1 l.

(R.1) · +r (i-2) · - ~ - ~

'~2) i =

. (u')
-1 n

(u •)
-2 n

= (u1) .
- J

(u2) .-r(u
1
).

- J - J
-1 = uin = (L ~)1
-1

= u' = (L a) -ru'
2n -s 2 1n

ui1 = u12

i-:21 = i-21 +r

i.i_1

uij = ui,j+1

2<i~n

uij = u2,j+1-ru1,j+1
} 1<j<n

(5.3.12)

(5.3.13)

Fig.5.3.2 illustrates the modification of the LU factors

based on the relations in (5.3.13). The LU updating fails if

(~1 1 1 = 0 and causes a large growth in the updated factors

l

21 1

31 32 1

41 42 43 1

51 52 53 54 1

1

21' 1

31' 32 l

41' 42 43 1

51' 52 53 54 1

1

21' 1

31' 32' 1

41' 42' 43 1

51' 52' 53 54 1

1

21' 1

31' 32. l

41' 42. 43' 1

I~ 1 • I~'' I~" I" 1

1

21' 1

h1. lu• 1 ,., . ,,,. IA1' I 1

51' 52' 53' 54' 1

L'

- 294 -

1' 12' 3' 4'

2 23 4 ~5

33 4 ps

4 ~5

5

ll 12. 13' 14'

22' 23' 24'

33 34 35

44 45

55

ll' fL2' 13' 14.

~2· 23' 24'

33' 34.

44 45

55

ll' 12 13' 14'

22 23' 24'

33' 34'

44'

55

ll' 12' "'3' p.4'

22' 3. 124.

3' 134'

4'

U'

5'

s•

s•

s•

55

15'

25'

35'

45'

ss•

15.

25'

35.

45*

55*

15'

25.

35'

45'

55*

15'

25'

35.

45'

55'

11'•1,1+1 i=l,n-1
15'=15*
15*· (L-la l • -si

r =22/ll '=22/12
2

r =33/22'
3

r =44/33'
4

r =55/44'
5

Fig.5.3.2. Major steps of the modification of LU factors (n=S).

- 295 -

when r is large, i.e. (!!2 l 1 > !!!1)1 : thus the assumption

that no permutation occurs throughout the LU modification is

valid if ui,i+1 = 0, i•1,2, •.• ,n and lrl is close to 1. If

these conditions are not valid then row pivoting is neces­

sary as in [105]. Notice also that the method is mostly

suitable for full matrices since any possible sparsity of

matrix A is not taken into account.

5.3.2 SYSTOLIC LU MODIFICATION

The LU updating procedure illustrated in Fig.5.3.2 can

be performed on an (nxn) processor array as shown in

Fig.5.3.3. At the commencement of the computation each pro­

cessor of the mesh is loaded with the value of the

corresponding element of the LU matrices. Since the diagonal

elements of L are 1, there is no need to explicitly store

them.

The array computation starts in the top-left corner,

where is replaced by u12 ; this shift-left operation is

applied to all cells of row 1 with one cycle delay between

adjacent cells. As soon as u12 takes its place as u11 , the

calculation of r 2 = u22;u12 = u22;u• 11 is performed; then

u22 is replaced by u23-r 2u13 = u23-r2u• 12 • For the second

row, as well as for all the subsequent rows the shift-left

operation is accompanied with the modification of uij by

means of ri and u' . 1 j 1 :
1- , -

the first row operation is a

degenerate case since r1=0 and u' 0 .=0
, J

for all j. The

right-most cell of row i receives (L-l~s)i as a result of

- 296 -

•
• s. q

•
t "; . q u' " . ,. •

r X ' s

I

• ul u' " l>v l-q u' u•

';! t ~ . (-q L' u'

• t>
z f-p r

y
X

•
z ~

u' u' u' u' " 1-- u' u'

L' u' u' ": ~-: f- q L' u'

L' • 1-q y t V L' L'

; . l-p
t>r

y L' y

z" 1-p y •
• z

•
u' u' u' u' u• u' u'

L' u' u' u' u' L' u'

L' L' u' u' w·"- L' L'

L' L' y, t t... 1-
V q Ll Ll

•
L' lv. z 1-,., 1\

L' Ll
•

•
~. q

u' "
" lt~

' s l-q

u' u'

u' u'

u' " -
X< :.

1-p

u' u'

u• u'

u' u'

L' ul

Y, X

1:

I>~ i- q

l-q

u'

" ~

•
V 1-q

l-q

u'

u'

u'

,- ~
~

s 1- q

r:=input ui-1 , 1 _1

r=ui,i/u~-1,1-1
s:=input ui-1 ,1

input u1 ,i+l
output r

ul,j=ui,i+l-rul-1,1
q:=output u or (L-la)

i,j ..,.
t:=output ui.. 1
v:=input uj__1 ,j

input ui,j+1
input r

u' =u -ru' i,j i,j+1 i-l,j
w· =output u 1

• i,j
output r

u' ,.t.': new elements
ready.

x: input r

1 i ,i-1 =ti ,i-1 +r
z: input r

input ti,j+l
L~ .=t .+rt ..

1 1,J i,J l.,J+
p; output t 1 , j

Fig.5.3.3. Parallel modification of LU factors.

- 297 -

its shift-left computation.

The multiplier r 2 is also passed to 121 to form

1• 21~1 21+r2 ; then it moves downwards for the calculation

· 1• 31~1 31+r 2 1 32 ; thus the L matrix updating procedure is per­

formed. A new r computation occurs every two cycles and thus

a total computaion time of 2n IPS cycles is required. The

area needed is n2 processors. After the completion of the

computation the updated LU factors have replaced the origi­

nal LU matrices in the array.

The overall array configuration as well as the cell

definitions are given in Fig.S.3.4 and a soft-systolic simu­

lation program in OCCAM is given in A.2.4. There are four

different types of cells, the main diagonal, the first lower

diagonal, the upper diagonals and the lower diagonals. All

are basically IPS processors; however the main diagonal

cells have an additional diagonal communication channel and

perform division to calculate r. Also, the first lower diag­

onal cells are simple adders and thus the additional com­

plexity of the main diagonal cells can be balanced by the

reduced complexity of the cells in the first subdiagonal.

Notice the wavefront-like computation in Fig.S.3.3: the

computation starts from the top-left corner ·and moves

towards the bottom-right corner of the array producing a

wavefront of active processors. An alternative systolic

implementation is

reversed: instead

possible if

of having

the

the

wave front concept is

LU factors in fixed

- 298 -

0

" I I I I I
- D - u f.- u '-- u u -

I
""'

I I
- Ll - D '-- u f.-- u u -

I ""' l I
L

-1
~

0 - L 1--- Ll 1-- D 1-- u u 1--

I I I
---.,... L 1--I L ,_____ Ll - D u ~

I I I
- L 1-- L L - Ll -D

I.

I I I I I
0

Fig.S.3.4(a). Rectangular array configuration.

..,
wi

..,
wi

WO

wi

- 299 -

n

eo
e1

u1 1

se

s

n

ui,j
eo

ei

ui ,j

s

n

eo
L11,1-1

ei
11 ,i-1

s

n

eo

ei

s

if time~21

nw?uj__l ,1-l

r=u1,1/ui.-1,1-1

t1me=21+1

wolr

n?ui.-1,1

ei?ui,i+1

ur,i=ui,i+l-rui-1,1
time=2i+2

eolr

setui_,i

if time=i+j

wo!ui,j

time=i+j+1

? ' n.ui-l,j
wi?r

• ?
e>.ui,j+1

uj_,j=ui,j+l-rui.-l,j

time=i+j+2

eo!r

s !u~ j
1,

if time=2i+1

ei?r

1i. ,i-1 =1 i. ,1-l +r
time=21+2
sir

llrne~ 2.1
wo! ti,i·s

if time=i+j+2

n?r

ei?11,j+l

1j_,j=t1 ,j+r1i,j+l

time=i+j+3

sir
tiW\e: i+j+ 1

Wo!ti,j

Fig.S.3.4(b). Cell definitions.

- 300 -

positions and the computation moving along them, the compu­

tation can now be performed in fixed processors and the LU

factors can pass through these processors.

The input-output sequences, as well as the overall con­

figuration of a linearly connected systolic array for the LU

modification are shown in Fig.5.3.5(a). A total number of

2(n-l) cells is required, while the comp~tion time is 2n+l

time units. In Fig.5.3.5(b) the cell definitions are given:

the middle cell of the array is a combination of the main

diagonal and the first subdiagonal processors of the square

array of Fig.5.3.4. The remaining cells are simple IPS

cells. A soft-systolic simulation program in OCCAM is given

in A.2.5. Notice that the linear array for the LU modifica­

tion can accept an input sequence in the form produced by

the LU decomposition array in section 3.2: the only modifi­

cation on the linear array is the addition of some delay

elements according to the relative 'retiming' of the compu­

tations.

Up to now was supposed that the first column of A was

replaced, as in (5.3.7), i.e. m=l; in the general case of

(5.3.3), as shown in Fig.5.3.l(a),(c), m=l. The two systolic

designs described can be easily modified to accommodate this

general case. The square array design can be augmented by

two vectors of row and column pointers indicating the loca­

tion of the first main diagonal element of u to be affected,

namely um,m' For the subarray A22 (see Fig.5.3.6(a)) the

ui1·
t;;l 0 ui2

tjl 0 u22 0 ui3

t.jl 0 !)2 0 u23 0 ui4
1s1 0 t' 42 0 u33 0 ui4 0 u' .

15
• 1s2 0 t.; 3 0 uj4 0 uis •
• • 1s3 0 u,;4 0 ujs • •
• • • 1s4 0 u~s • • •
• • • ! \]Ss • • • •

,, "
L2 Ll Lo D uo ul u2 u3

w
0 ...

• • • ull • • • • •
• • • 121 0 ul2 • • • •
• • t31 0 · u22 0 ul3 • • •
• 141 0 !32 0 u23 0 ul4 • •
• 0 142 0 u33 0 u24 0 ulS •
1
s1

1
52

0 !43 0 u34 0 u25 0 •
-1 -1 1s3 0 u44 0 u35 0 (L ~)2 (L !s) 1

-1
!54 0 u45 0 (L ·~) 3

-1
uss 0 (L !s) 4 -1

(L ~)5

*: delay

Fig.5.3.5(a). Linear array configuration.

rwout

rout

twin

rin

U'loOut

lout

reo ut

D

us in

tnout

1sin

1---•r,out

uein

us in

- 302 -

r=usin/uein

reo ut: =rw;:,ut 1 =r

tout: =t in+r

tnout: =twin+rin*tsin

rout: rin

teout: =!sin

unout:=uwout:=usin+rin•uein

rout:=rin

Fig.5.3.5(b). Cell definitions.

Row
Pointer

=dified

~
I

Shift +
update

- 303 -

All Al2

A21 A22

Column Pointer

(a)

n-2 n-1

L I Dl u

• • I
I
I
I

(b)

.... .--

1-

+
I

I
I
I
I
I
I
I
I

Source of

(L-1a)
-s

Fig.S.3.6. General case of modification of LU factors.

- 304 -

modification procedure is as described. No modification is

required for subarrays A11 , A21 , while a simple shift-left

is adequate for subarray A12 • The modification required in

the input data sequence of the linear array is shown in

Fig.S.3.6(b) : for the first m-1 steps r=O and therefore the

LU factors are produced exactly as they are input; from then

on the normal LU updating operation takes place. Thus, there

is no additional complexity in the array itself but in the

input data stream. I

5.4 SYSTOLIC DESIGNS FOR THE CALCULATION OF THE EIGENVECTORS

OF A SYMMETRIC TRIDIAGONAL MATRIX *

Consider a (nxn) symmetric tridiagonal matrix A with

diagonal elements off-diagonal elements

b1 ,b2 ~ ... ,bn_1 and an eigenvalue of the matrix, A (see sec­

tion 4.4). Then the eigenvector x of matrix A that

corresponds to the eigenvalue can be calculated as the

solution of the linear system of equations

(A-AI)~=£ (5.4.1)

where d is a suitably chosen vector. The Inverse Iteration

method, described in section 2;4, is as follows: if we apply

the LU decomposition on (A-AI), then (5.4.1) can be solved

by means of a forward and a backward substitution. If the

eigenvalue is accurate then two iterations on (5.4.1) are

more than adequate, provided that d is not completely

deficient in the eigenvector to be computed,(see [297-298]).

The LU factors are determined by Gaussian elimination

with partial pivoting applied to matrix (A-AI). There are

n-1 major steps to the process, rows i+1, i+2, ••• , n being

as yet unmodified at the beginning of the ith major step.

The configuration at the beginning and the end of a step is

shown in Fig.5.4.1. Matrix U has now three diagonals in

general, to allow for any interchanges that may occur, while

* This section is part of a paper submitted for publi­
cation in the Journal of Parallel and Distributed ££m­
puting.

m2,c2

m3,c3

- 306 -

pl ql rl

p2 q2 r2

u3 v3

b3 a4-). b4

b4 as-). bs

bs a -).
6

l

Pl ql rl

P2 q2 r2

P3 q3 r3

x>l~v4

[yl y2 z3

c2 c3

m2 m3

b4 as-). bs

bs aG-).

X4 XS XG)

t

Fig.5.4.1. Step 4 of Gaussian Elimination with partial pivoting.

- 307 -

L has only one subdiagonal stored as a vector, together with

a record of the permutations occurred.

The ith step is as follows (see Fig.5.4.1)

if

I bi I > I ui I
ci+1=1, i.e. interchange rows i and i+1

pi=bi,qi=ai+1-A'ri=bi+1'xi+1=ui,yi+1=vi,zi+1zO

true

ci+1=0, i.e. no interchange takes place

p1.=u1.,q1.=v.,r.=O,x. 1=b.,y. 1=a. 1-A,z. 1=bi 1 1 1 1+ 1 1+ 1+ 1+ +

mi+l=xi+1/pi

with bn=O. Now, in the special case, where

~ = L~, with ~T = [1,1, ... ,1]

then, from (5.4.1),

(5.4.2)

(5.4.3)

LUx = L~, or UX = e (5.4.4)

With this choice of ~. the first iterate of the eigenvector

~· ~l is determined by· a back substitution only. Then,· hav~

ing obtained !l' ! 2 can be found by a forward and backward

substitution. The forward substitution can be performed

either separately, using the multipliers and permutation

information saved during the Gauss elimination process; or,

alternatively the Gauss elimination with partial pivoting

can be extended to the right-hand-side vector also, as shown

in Fig.5.4.1, for an initial vector !• and final vector y:

if

ci+l=l

yi=Xi+l'wi+l=Zi

true

yiazi,wi+l=Xi+l

zi+l=wi+l-mi+lyi.

- 308 -

(5.4.5)

This approach is followed herein, since it allows for a more

compact and general purpose design, i.e allowing two or more

iterations to be performed on the same systolic array.

5.4.1 SYSTOLIC DESIGN

A systolic array implementing the computation described

is shown in Fig.S.4.2(a) together with the i/o data

sequences. The array accepts as input the diagonals of the

matrix and the right-hand-side vector and produces as output

matrix u, and three vectors corresponding to matrix L, per­

mutation information and the modified right-hand-side vec-

tor. Three inputs are adequate since the matrix is

syrnrnetric.The array consists of four cells, a boundary cell

to the left and three IPS cells to the right augmented with

a row interchange facility. The specification of the two

types of cells is given in Fig.S.4.2(b). For the boundary

cell, if before the division p is zero then it is substi­

tuted with a suitably small quantity. The computational com­

plexity of the boundary cell is greater than one IPS and

therefore the time unit of the computation of the array

- 309 -

pl 0 0 0 0 0

0 ql 0 0 0 0

p2 0 rl 0 0 0

0 q2 0 yl c2 m2

t r l r
4
I
I

/ 0 I
I
I
I

-- -· ___ .., ---- ------- _,
/

l

a c). 0 0

0 bl 0

a2-). 0 xl

0 b2 0

Fig.5.4.2(a). Systolic array for Gaussian Elimination of a
symmetric tridiagonal system.

- 310 -

p

i if
abs(b) >= abs (u)

/ I-- u c: = 1; p: = b; x: = u
true

c: = 0; p: = u; x: = b
if -- c p = 0

- t := suitably small quantity
/ m true

t := p
m := x;t

b

q

1 if
uout uin cin = 1

+--- - a; y: uin q: = =
true

I q: = uin; y: = a
cin --· eo ut uout: = y-q*min

1-- .. cout: = cin
I

m in _.. ~mout mout: = min

r
a

I

Fig.5.4.2(b). Cell definitions.

..

- 311 -

should be adjusted accordingly.

The boundary cell accepts ui and bi (see Fig.S.4.1) and

decides on the next pivot row setting the flag ci+l to indi­

cate an interchange; it also co mputes the multiplier mi+l

for updating the adjacent non-pivot row. The two first IPS

cells collect two adjacent row elements belonging in the

same column: one from the east and one from the south. Thus

they perform interchanges and modifications based on the

values of ci+l and mi+l passed to them by the boundary cell.

The IPS cells are active on alternate cycles and the boun­

dary cell also computes c, m once every two cycles. The

third IPS cell performs the modification of the right-hand­

side vector, which for this purpose, can be seen as an extra

diagonal of the matrix. Thus the. array of Fig.S.4.2 per-.

forms Gauss elimination with partial pivoting and the for­

ward substitution in 2n+3 time units.

The back substitution process can be performed by the

systolic array in section 3.2; however, since some pi can be

zero for some i, the boundary cell must be augmented with a

device similar to that used in the boundary cell of the

array of Fig.S.4.2. This means that both arrays will have a

prolonged time cycle since the computation of their bound~ry

cells exceed the limit of 1 IPS. The total time required for

one full step of the Inverse Iteration method is, therefore

4n+2 time units, since the back substitution can only start

after the completion of the Gauss elimination. Soft-

- 312 -

systolic simulation programs for the Gauss elimination and

back substitution systolic arrays are given in A.2.6, A.2.7.

5.5 CONCLUSIONS

The block (2x2) R+F method when extended to matrices

with bandwidth greater than 7, i.e. block quindiagonal etc.,

imposes a more complicated resolution of the confrontation

of the two streams, as explained in [19). A measure of effi­

ciency for the method can be the ratio r of the order of the

matrix over its bandwidth: it is obvious that the method is

efficient for r>>l, so that the solution of the central sub­

systems can be regarded as negligible.

The R+F method can be applied in the LU method with

neighbour pivoting, as described in section 5.4 in order to

double the efficiency of the array; a similar increase in

efficiency can be achieved for the triangular system solu­

tion. Furthermore, it would be inteiesting to investigate

the application of the R+F method on the QR decomposition

arrays with or without pivoting.

In the direction of the unification of the matrix

decomposition methods discussed in [189), [261), it can be

said that the array in section 5.4 can be seen as an LU

equivalent of the QR array in [126), for the elimination of

a subdiagonal. Alternatively the same array can be seen as a

special case of the Gauss elimination array in [113).

The updating of LU factors in the Simplex method can

provide a useful building block not only for the VLSI sys­

tolic realization of Linear Programming methods [24), [200],

- 314 -

but also a general updating method for LU decomposition, as

proposed in [188). The updating can be caused by either a

modification of the original matrix or a fault detection

during the computation.

It would be of interest for the extension of the sys­

tolic algorithm proposed for the updating of the LU factors

to cover neighbour pivoting as well as the QR method [115).

Towards this direction some work has been reported in [263),

for the Choleshl factorization method. Further, another

closely related problem for investigation is the systolic

modification of the eigenproblem solution of an updated

matrix [65), [145).

In [37) a systolic algorithm for a linear array has

been proposed for the solution of Toeplitz systems. A simi­

lar approach can be followed for the inverse iteration algo­

rithm in section 5.4: a soft-systolic simulation program for

a linear array performing all steps of the inverse iteration

algorithm is given in A.2.8. A further extension would be

the implementation of the LU decomposition algorithm on a

linear array of programmable processors.

