
 
 
 

This item was submitted to Loughborough University as a PhD thesis by the 
author and is made available in the Institutional Repository 

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence 
conditions. 

 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



' ! 

' ' 

I 

\ 

,., ' 

LOUGHBOROUGH 
UNIVERSITY OF TECHNOLOGY 

LIBRARY 
AUTHOR/FILING TITLE 

1---------- __ 1':1_1\ ~-':1\R-JIL~_.. ___ \i_ ~-------- __ i 
j i 
. . .i 

' ' ;-------------.----.... -- ... ------- -,... ...... --- --..,..--- ------ ... ..,... I 

! ACCESSION/COPY NO, ! 

I C(b~~ /0 '2- . '• i 

r.-"7--------------- ---- ..................... ~! ---~ ... ,..---.~ ... - ...... .,.. ....... ..,. ""' ! l VOL, NO, CLASS MARK 
.; 

i 6 JUL 1990 
. l- 6 J l:ft" 1!:1~11 

00! 6643 02 

Willllmllllil~l~~~~mmllm~mlmlr 

' 





-~- ~--~--------------

A STUDY 

0 F S Y S T 0 L I C A L G 0 R I T H M S 

FOR VLSI P R 0 C E S S 0 R A.R RAYS 

AND 0 P T I C A L COMPUTING 

By 

K.G.Margaritis, Dipl.Eng., M.Sc. 

V 0 L U M E I 

A Doctoral Thesis 
Submitted in partial fulfilment of the requirements 

for the Award of Doctor of Philosophy 
of the Loughborough Univerity of Technology 

October, 1987. 

Supervisor: Professor D.J. Evans, D.Sc., F.I.M.A., F.B.C.S. 

(§) by K.G.Margaritis, 1987. 



~""~~· ur.lv...., ., T ;;cl~;·L·.:~: ~)-:-,} '- t.~ 
---~-· . . a- _.tlii:-!-1& 

CJa<• ,_, o r b&~:) /v t.-Ne. { 



To my parents, 

Popi and Giorgos Margaritis. 

t~ovs yovt\S pov, 

nonn K~\ r1wpyo M~pyap1~n. 

·"•••W•--~ .... :.:.•, 

.... ~- .... :. ··~' .. 

__ .. _,.. .. :·:.":{ 
lt':·; r 

..................... · . .:· 



A C K N 0 W L E D G E M E N T S 

I wish to express my appreciation and gratitude to Prof. 

D.J.Evans, supervisor of this study, for giving me the 

opportunity to carry out this work, in the first place; and 

subsequently for his unfailing guidance, continuous help and 

inspiring enthusiasm in all the phases of this research; 

finally, for his invaluable advice and infinite patience 

during the writing of this thesis. 

I also wish to thank: 

The State Scholarship Foundation of Greece, whose finan­

cial support made the carrying out of this research pos­

sible. 

Dr. M.P.Bekakos, Dr. G.M.Megson and Mr. R.P.Stallard, 

for their co-operation, support and constructive criti­

cism in the subjects of systolic algorithms and OCCAM 

programming. 

Mrs. J.Poulton for her professional and artistic work in 

typing countless reports, papers, diagrams and tables. 



- ii -

My parents, deserve more than thanks, for their immense 

understanding, their invaluable moral and material support 

and all the sacrifices they have had to undergo for me all 

· these years. 

To my dearest wife and love, I wish to praise more than can 

be expressed: she has been a faithful, patient, supportive 

and inspiring companion in all the difficulties of these 

years of postgraduate studies; and she has devoted long and 

tiresome hours in helping me to type and design this 

thesis. 



A STUDY OF SYSTOLIC ALGORITHMS FOR VLSI PROCESSOR ARRAYS AND 
OPTICAL COMPUTING 

By K.G. Margaritis 

ABSTRACT 

This thesis presents some new. systolic algorithms for 
numerical computation, that are suitable for implementation 
on VLSI processor arrays or optical processors. 

Chapter 1 is an introduction to the environment for the 
development of the systolic approach, followed by an over­
view of major research areas in systolic systems. Chapter 2 
contains basic mathematical definitions and a brief intro­
duction to specific areas of numerical analysis. Chapter 3 
starts with some basic definitions and terminology for sys­
tolic computing; then fundamental systolic algorithms are 
described. Following is a review of some transformation 
techniques and an introduction to systolic 'programming and 
soft-systolic simulation. Finally, systolic and optical com­
puting are combined, and a framework for developing systolic 
algorithms is outlined. 

Chapter 4 investigates systolic algorithms for the 
solution of polynomial equations, and the systolic calcula­
tion of the roots of the characteristic equation of certain 
matrices. Chapter 5 presents systolic algorithms for the 
efficient solution and the ·updating of the solution of 
linear systems of equations, using LU decomposition. 
Chapter 6 develops the concept of pipelining systolic 
a7rays~ as well as the combination of area and time expan­
Slon, 1n iterative solution of linear systems of equations, 
based on series of systolic matrix-vector multiplications. 
Chapter 7 further develops the idea of expanding iterative 
systolic algorithms in area and/or in time. The systolic 
implementation of successive matrix-matrix multiplications 
is discussed and then a group of algorithms based on matrix 
powering is studied. Chapter 8 presents some optical sys­
tolic algorithms. The direct mapping of VLSI systolic algo­
rithms on optical processors is discussed, and then, the 
Outer Product processor is used for the optical systolic 
implementation of basic matrix computations. 

Chapter 9 completes this thesis with some general con­
clusions, and suggestions for further research. A comprehen­
sive list of references is also given, and an Appendix on 
the OCCAM programming language, and programs simulating some 
of the systolic designs presented. 

KEYWORDS: parallel processing, systolic algorithms, VLSI 
processor arrays, optical computing, polynomial 
equations, linear systems of equations, matrix 
eigen-problem solution, matrix functions. 



A STUDY 

0 F S Y S T 0 L I C A L G 0 R I T H M S 

F 0 R V L S I PROCESSOR ARRAYS 

AND OPTICAL C 0 M P U T I N G 

A B S T R A C T 

This thesis presents some new systolic algorithms for 

numerical computation, under the framework of being suitable 

for implementation on to VLSI processor arrays or optical 

processors. 

Chapter 1 gives an introduction to the environment and 

background for the development of the systolic approach, 

followed by an overview of the major research areas in sys­

tolic systems; finally the thesis organization is described. 

Chapter 2 contains basic mathematical definitions and a 

brief introduction to specific areas of numerical analysis; 

further, the algorithms used in subsequent chapters. are 

briefly discussed. 

Chapter 3 starts with an example, through which basic 

definitions and terminology in systolic computing are intro-
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duced; then some fundamental systolic algorithms are 

described. Following is a review of some techniques for 

deriving and/or modifying systolic systems; further the con­

cepts of systolic programming, simulation, and the soft­

systolic paradigm are introduced. Finally, the combination 

of systolic and optical computing is discussed and a frame­

work for developing systolic algorithms is outlined. 

Chapter 4 investigates the systolic implementation of 

algorithms for the solution of polynomial equations. First, 

the derivation and operation of the systolic designs for two 

traditional methods are discussed in detail; then the sys­

tolic calculation of the roots of the characteristic equa­

tion of a symmetric tridiagonal matrix is described, as well 

as some other aspects of the systolic computation of certain 

types of characteristic equations. Finally, a general ring 

architecture, for the iterative solution of polynomial equa­

tions is proposed. 

Chapter 5 presents systolic algorithms for the effi­

cient solution of linear systems of equations, using LU 

decomposition. Initially, the efficiency of the basic algo­

rithm is improved using mathematical techniques; then the 

problem of updating LU factors is discussed, in the context 

of Linear Programming. Further, the LU decomposition with 

partial pivoting is used for the systolic calculation of the 

eigenvectors of a symmetric tridiagonal matrix. 

Chapter 6 develops the concept of pipelining systolic 
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arrays, as well as the combination of area and time expan­

sion, in iterative systolic algorithms based on matrix­

vector multiplications. Firstly, an improved systolic design 

for matrix-vector multiplication is presented; then, area 

and/or time efficient pipelines for the iterative solution 

of line.ar systems are described. Further, pipe lined struc­

tures for cyclic reduction and multi-coloring techniques are 

investigated. Finally, an alternative matrix-vector multi­

plication design for area expansion applications is dis­

cussed. 

Chapter 7 further develops the idea of expanding itera­

tive systolic algorithms in area and/or in time. Initially 

the systolic implementation of successive matrix-matrix mul­

tiplications is discussed, and then a group of algorithms 

based on matrix powering is studied. Thus, the basic itera­

tive methods of chapter 6 are modified, and three closely 

related methods solving the matrix eigenproblem are investi­

gated. Further, systolic matrix polynomial computations are 

implemented, as well as the approximation of matrix func­

tions. 

Chapter 8 presents some. optical systolic algorithms. 

Firstly, the direct mapping of VLSI systolic algorithms on 

optical processors is discussed, and the optical implementa­

tion of fundamental systolic algorithms is presented. Then, 

the Outer Product processor is introduced and modified for 

banded matrix computations; further, the same processor is 



- vi -

used for a series of optical systolic algorithms, based on 

the Gauss Elimination process. 

Chapter 9 completes this thesis with some general con­

clusions, and suggestions for further research. A comprehen­

sive list of references is also given, and an Appendix on 

OCCAM programming language, and programs simulating some of 

the systolic designs presented. 
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CHAPTER 1 

INTRODUCTION 

In this thesis some new systolic algorithms for numeri­

cal computation are presented, under the framework of being 

suitable for direct implementation onto Very Large Scale 

Integration (VLSI) processor arrays, or optical processors. 

The current introductory chapter is structured as fol­

lows. Firstly, ~brief review of the background and environ­

ment of the development of the systolic approach in parallel 

processing is given. Then, the major areas of current sys­

tolic systems research are outlined, as well as its cross 

fertilization with other related areas of research. This 

survey is complemented with the more detailed definitions of 

chapter 3, as well as the conclusions of chapter 9. Finally, 

the organisation of the thesis is given, in relation to the 

main topics of discussion followed throughout this study. 

1.1 ENVIRONMENT FOR DEVELOPMENT OF SYSTOLIC APPROACH 

The systolic approach in parallel processing came as a 

product of a certain environment, that contained the needs, 
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i.e. the possible applications1 the means, i.e. the 

appropriate technology1 and the background knowledge for its 

realisation. The needs can be outlined as the ever­

increasing tendency for faster and more reliable computa­

tions, especially in areas like real-time signal processing 

and large-scale scientific col!lputation. The means were pro­

vided by the remarkable advances in VLSI technology and 

automated design tools. Finally, the background includes the 

applications of parallel processing in the form of parallel 

algorithms and the design of parallel computers1 as well as 

the theory of cellular automata. These aspects are now 

briefly discussed, especially in their special relation to 

systolic architectures. 

Applications of systolic approach 

Systolic systems have been introduced by H.T. Kung and 

C.E. Leiserson [160), [181), [199) as high-performance, 

special-purpose VLSI computer systems that are typically 

used to meet specific application requirements or to off­

load computations that are especially taxing to general­

purpose computers. 

The rationale behind the use of special-purpose sys­

tems, as opposed to general-purpose,· is very carefully 

explained in [104), [109). In areas such as real-time signal 

processing and large-scale scientific computation the 

trade-off balance between generality and performance comes 

down on the side of special-purpose devices, because of the 
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stringent time requirements. Thus, a systolic engine can 

function as a peripheral device attached to a host system, 

as shown in Fig.l.l.l. 

The host system need not be a computer: in the case of 

real-time signal processing systolic systems are suitable 

for sensor devices, accepting a sampled signal and then 

passing it on, after some processing, to other systems for 

further processing (see Fig.l.l.2) [82), [243). In the case 

of large-scale scientific computation systolic systems can 

be used as a 'hardware library', for certain numerical algo­

rithms, equivalent to the software libraries currently 

available (see Fig.l.l.3) [125), [243). Alternatively, they 

can be utilized to •matricialize' the internal arithmetic 

units of more general-purpose supercomputers. 

However, apart from these traditional application 

areas, an increasing number of computations seem to benefit 

from the systolic approach. The common characteristics of 

all these processes is that they are compute-bound problems, 

i.e. with large amount of computation versus input/output 

(i/o) communication. Usually in compute-bound problems, mul­

tiple operations are performed on each data-item in a 

1: repetitive manner. In contrast, problems with large amount 

of (i/o) communication versus computation are called i/o­

bound. A survey of the applications of systolic systems can 

be found in [104), [160), [163). Table.l.l.l gives a 

representative selection of systolic applications; the table 
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I--
Host Special-purpose device: 

1--
Systolic system 

Fig.l.l.l. Systolic system as special-purpose device 

Radar 

Sonar 

Vision ---+-
Robotics 

Further processing: 

Front-end processing: 
systolic system 

Host 

Fig.l.l.2. Signal processing application design 

• • • 

J 1 J 
' .,.._... Interface - Arbitration network 

J I 1 
• • • [ 

Hardware library modules: 
Systolic systems 

Fig.1.1.3. Hardware library design 
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SIGNAL FIR- IIR- Median- Kalman filtering, 
PROCESSING Multi-dimensional convolution, correlation, 

Discrete- Fast Fourier Transform (OFT, FFT), 
Interpolation, Geometric warping, 
Linear algebra in digital signal processing. 

NUMERICAL Matrix-vector, matrix-matrix multiplication, 
ANALYSIS LU- QR decomposition, Solution of triangular 

systems of linear equations, Matrix inversion, 
Singular value decomposition ( SVD) , 
Solution of Toeplitz systems, Least-Squares, 
orthogonal equivalence transformations, 
Eigenvalues, Generalised inverses, 
Iterative algorithms.v 

DATA Stacks, Queues, Priority queues, Counters, 
STRUCTURES Sorting, Searching, Dictionary machines, 

Relational database operations. 

' 

AUTOMATA Tree acceptors, Trellis automata, 
Binary tree automata, Design rule checker. 

GENERAL Largest common subsequence problem, 
Connected word recognition, Convex hull, 
Shortest path- Algebraic path problem, 
Greatest Common Divisor (GCD) computation. 

Table 1.1.1. Selection of major applications of 
systolic systems 
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is further extended during the discussion of the areas of 

current systolic research. 

An important result of the wide applicability of the 

systolic approach is the fact that it has proven to be a 

computational model for a wide range of parallel processing 

structures, not necessarily strictly special-purpose. Thus, 

there exists a large number of systolic algorithms that is 

not practical to map directly onto hardware in order to pro­

duce a special-purpose device, but they perform very effi­

ciently when implemented on appropriate parallel computers. 

Systolic algorithms and parallel processing 

Now we briefly turn our attention to the contribution 

of parallel processing in the development of the systolic 

concept. Initially we examine the application of traditional 

parallel computing techniques on systolic systems and then 

the relation of systolic systems with other models of paral­

lel computers is briefly outlined. For a more general intro­

duction to parallel processing see [91), [130), [137). 

Systolic systems combine pipelining, array-processing 

and multiprocessing to produce a high-performance parallel 

computer system. This combination is exemplified with the 

help of Fig.1.1.4, which is a typical arrangement of a sys­

tolic system. A linear array (pipeline) of n processors 

(cells, in the systolic terminology) is connected with the 

host system, via the boundary cells. The number of cells in 
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.,,, ~ 

-==--::. c~ { 1 ·---- n 

Fig.1.1.4. ~inear systolic array 

Orthogonal array Hexagonal array 

Triangular array Binary H-tree 

Fig.l.l.S. Systolic system communication geometries 



- 8 -

the array is determined by the maximum attainable i/o 

bandwidth of the host. All processors perform their computa­

tion simultaneously and each cell exchanges information 

(data, control) with its neighbouring cells, for further 

processing*. 

In the simplest case, all processors perform the same 

computation, on a different set of data (array processing), 

and then they pass data to the right-hand-side cell, while 

they accept data from the left-hand-side cell (pipelining). 

The left boundary cell accepbinput from the host and the 

right boundary cell sends output to the host. In more com­

plicated systolic systems, the dataflow can be multidirec­

tional and at different speeds. 

The array can expand in two or more dimensions, or t~ke 

the form of asystolic tree (see Fig.l.l.S). Furthermore, 

the processors need not perform identical computation~ (mul­

tiprocessing). It is common to classify a systcilic system 

according to its communication geometry [159); thus, 'linear 

systolic array' can be used instead of 'systolic system with 

linear array communication geometry'. Further the terms 

'systolic array' and •systolic system' may interchange since 

* The name •systolic' is taken from the Greek word sys­
tole (ava<oA~).· The physiology terms systole (ava<oA~) 
and diastole (Staa<OA~) indicate the successive con­
traction and expansion of the heart, by means of which 
blood is pumped to the different organs of the human 
body. The function of the memory in Fig.l.l.4 is analo­
gous to that of the heart: it pulses information (in­
stead of blood) through the pipeline. 
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the array interconnection is the most common. 

The central point in the systolic approach is to ensure 

that once an information item is brought into the system it 

can be used effectively and repetitively while it is being 

•pumped' from cell to cell through the system. This combi­

nation of multiprocessing and pipelining is the crux of the 

systolic approach of parallel processing. 

The relation of systolic systems with the more tradi­

tional models of parallel processing is addressed in [159]. 

Some important differences, include the number and the com­

plexity of the processing elements involved, as well as the 

generality of the architecture. Whereas most parallel com­

puter concepts which have been pursued so far involve a 

relatively small number of high-level processQrs, the sys­

tolic systems suggest the design of parallel processing sys­

tems with very large numbers of relatively simple processing 

elements. Furthermore the systolic systems are 

algorithmically-specialised, and therefore can achieve a 

better balance between computation and communication, since 

the communication geometry and the computation performed by 

each processor are unique for the specific problem to be 

solved. 

Thus, a systolic algorithm must explicitly define not 

only the computation being performed by each of the proces­

sors in the system, but also the communication between these 

processors. That is, a systolic algorithm must specify the 
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processor interconnection pattern and the flow of data and 

control throughout the system. 

Systolic systems and cellular automata 

The concept of a large number of primitive processors 

leads to another factor that has contributed to the develop­

ment of the systolic concept. From a theoretical point of 

view, systolic systems can be traced back to cellular auto­

mata of Von-Neumann, the Mealy Machine and Moore Machine 

[181), [211), [212). 

Automata theory is basically a mathematical model about 

machines and what they can accomplish at a low level of com­

putation. It has mainly been applied to the design of 

electrical circuits with digital hardware, the logic of ner-
0 

vous systems in man and animals, and the underlying logic of 

protein synthesis in cells. This mathematical model seemsto 

gain increasing scientific interest in the investigation of 

physical systems, showing complex, self-organising and 

•chaotic' behaviour. Cellular automata, as well as systolic 

systems, seem to have better capabilities to map physical 

systems and their parallel space and time evolution into 

computer architecture, [130). 

Automata theory is very important for the comprehension 

of systolic systems because it lends a ready-made theory 

about what such machines can achieve. Automata themselves 

can be represented by labelled directed graphs, with machine 
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states represented as nodes, and arcs defining state transi-

tions. Consequently the function of a simple systolic cell 

can be represented by such a graph. Inputs and outputs can 

also be encoded on arcs and from here it is a small step to 

connect inputs and outputs of a number of machines and 

operate them in parallel to create a systolic system. 

However, the specification of systolic systems by means 

of automata theory definitions leads to an overly compli­

cated structure. Consequently systolic arrays have their own 

simpler and relatively abstract graph specification, which 

collapses whole machines to nodes and i/o histories to 

• sequences on arcs [165), [295). 

Systolic architectures and VLSI 

Until the advent of VLSI, the development of parallel 

computers with large numbers of processors had been limited 

by the prohibitively high costs of production. With the use 

of VLSI in circuits, size and cost of processing logic, 

memory and communication hardware was dramatically reduced, 

and it became feasible to combine the principles of automata 

theory with the traditional parallel processing techniques 

to produce highly parallel VLSI architectures, such as the 

systolic systems. This enterprise can take two forms: either 

produce a special-purpose VLSI chip implementing a specific 

systolic algorithm; or combine programmable VLSI processors 

to produce a systolic architecture capable of performing one 

or more algorithms. For a general introduction to VLSI, see 
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[199), [277), [285); while reviews of parallel VLSI archi­

tectures are given in [124), [264). 

Now, if we attempt to map a complex systolic system 

directly on a silicon wafer, it is immediately confined to a 

two-dimensional plane. VLSI is achieved by a combination of 

circuit design with high resolution photographic techniques, 

where it is convenient to place wires on rectangular grids, 

and limit the number of parallel layers of semi-conductor 

material containing wires and circuit elements. Hence, a 

two-dimensional graph is termed planar if it can be drawn in 

the plane with no arcs intersecting at places other than 

nodes (cells). VLSI presents additional problems, as the 

size of wires and transistors approach the limits of _photo­

graphic resolution, for it becomes impossible to achieve 

further miniaturization and the actual circuit area becomes 

a key issue. Furthermore, the chip area is limited in order 

to maintain high yield, and the number of connections to the 

outside world (pins) is limited by the finite size of the 

chip perimeter. 

Some of these limitations are alleviated when systolic 

algorithms are implemented on processor arrays. For example, 

the actual chip design is not an issue any more, since it is 

a programmable processor. Further, the interconnections need 

not be strictly planar. However, in both cases, simplicity 

and regularity remain factors of utmost importance for an 

efficient systolic design. In the first case because they 
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ensure the design of cost-effective, special-purpose VLSI 

chips. In the second case because of the promising proposal 

to harness the programming complexity of parallel computers 

with a large number of cooperating processors. Simplicity 

and regularity in systolic architectures are ensured by 

means of the following techniques: there are only a few 

types of relatively simple cells, where only local and regu-

lar communication is allowed, mainly of nearest-neighbour 

type [160]. 

The replication of a processor in large numbers makes 

the design cost-effective and easy to produ~e; however, 

exactly how simple a cell might be is a question that can 

only be answered on a case by case basis. For example, if a 

systolic system is to be implemented on a single chip, each 
0 

cell should probably contain only simple logic circuits plus 

a few words of memory. On the other hand for board array 

implementations each cell could reasonably contain· a high-

performance arithmetic unit, plus a few thousand words of 

memory and a local control unit. Further, for processor 

array implementations, each cell can be a· simple microcom­

puter. There is, of course, always a trade-off between sim-

plicity and flexibility, in terms of control and programming 

overheads as well as system performance. 

In principle, systolic systems totally avoid long-

distance or irregular interconnections; typical examples are 

given in Fig.l.l.S. The only global communication (besides 
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power and ground) is the system clock. Alternatively the 

need for global clock distribution can be avoided if self­

timed, asynchronous schemes are implemented, based on data­

driven protocols. A consequence of that characteristic is 

that systolic systems are completely modular and expandable, 

and can be easily adjusted to the problem size or other 

external factors. 



1.2 REVIEW OF SYSTOLIC SYSTEMS RESEARCH 

It is interesting to briefly review the current state 

of systolic systems research, in order to point out the wide 

impact and applicability of the systolic approach as well as 

its cross fertilization with other areas of research in 

parallel processing, VLSI systems design and implementation, 

optical computing, etc. This survey just points out the 

issues and introduces topics for further discussion in the 

subsequent chapters. 

System implementation 

Wafer-Scale-Integration and fault-tolerance: for simple 

systolic algorithms it is possible to construct a whole sys-

tern on a single silicon wafer. Howeyer, in wafer-scale-

integration, it is imperative to detect and circumvent the 

faulty cells due to the low fabrication yield. Further, 

except for the faults detected during the fabrication phase, 

hardware deficiencies may occur during the operation of the 

device. Thus, there is a need for fault detection and 

correction techniques, both during the fabrication and 

operational phase (static and dynamic fault-toleranc~). 

Dynamic fault-tolerance techniques may also be extended in 
(aqq) 

multi-chip architectures. Circuits employing fault-tolerance 

can be envisaged as a four-part design, consisting of: an 

original array; spare cells arranged in a simple pattern; an 

interconnection network consisting of data paths, control 

paths and switches for reconfiguration; a control algorithm 
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performing fault detection and reconfiguration. The main 

points at issue is the minimization of area and time over­

heads required for the fault detection and correction; and 

the design of systems that can tolerate a high proportion of 

faults without rapidly losing their efficiency. In general, 

very simple interconnection patterns are favoured, such as 

linear or rectangular arrays with identical cells. For exam­

ple see [71), [83), [107), [154), [164), [180), [247), 

[250), [299). 

Bit-level design: usually, the parallelism of systolic 

algorithms is introduced in word-level, i.e. at the level of 

arithmetic operations. However, finer-grain parallelism, at 

bit-level, has been introduced in a series of systolic 

designs for arithmetic operations [123), [224], [239); 

signal-processing algorithms [46), [73), [287); and simple 

matrix computations, i.e. matrix-vector and matrix-matrix 

multiplication [195-197). A related problem is whether the 

bit-serial or bit-parallel computation is preferable in VLSI 

implementation level. The bit-serial approach alleviates the 

pin-count problem since it requires only one pin instead of 

w, where w is the word length, in the bit-parallel approach. 

Furthermore the bit-serial scheme leads to better structured 

chip layouts since the basic modules are smaller, and there­

fore yielding more efficient fault-tolerance. On the other 

hand the bit-serial approach causes longer delays and 

requires additional latches and control, especially for 

floating point computations. Thus, there is an area-time 
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trade off between serial and parallel approaches [78-79), 

[270), [277). 

Synchronous-asynchronous communication: originally the 

synchronous communication of systolic systems was advocated, 

and it seems that it is well suited for linear arrays of any 

size and with identical processing elements (homogeneous). 

In this case a global clock can synchronize the processor 

computation and communication, and a clock cycle can be 

taken as the time unit of computation [103). For designs of 

higher dimensionality, i.e. two-dimensional arrays or trees, 

or for less homogeneous systolic systems, the asynchronous 

approach seems more suitable. In this case each processor, 

or a group of processors, are self-timed, and the communica­

tion is data-driven and occurs by means of a handshaking 

protocol [4), [199). The computation of a processor occurs 

as soon as all the necessary operands are available; thus 

successive computational •wavefronts' of active processors 

are created and travel along the system. Notice that the 

two approaches do not affect the design of the systolic 

algorithm at a higher level, i.e. as regards the computa­

tions performed and the interconnection structures [44), 

[169), [173]. Self-timed systems are in general more diffi­

cult to test for failures and they require additional com­

munication hardware; however they are better suited for 

fault-tolerant schemes where reconfigurability may require 

long-wire interconnections [83), [250). 
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System design and programming 

Processor complexity: in some systolic algorithms, the 

computations performed in the processors become considerably 

complicated, and therefore the processor complexity 

increases, both in processing logic and in storage require­

ments. The solution seems to be to allow for programmable 

systolic chips, instead of fixed-computation processors 

[104], [168]. A further extension can be the use of high­

performance general-purpose conventional components to build 

board-level systolic systems, at least for the testing of 

the algorithms [7], [26], [93], [158], [167]. Finally, VLSI 

processor arrays can be programmed to efficiently perform 

systolic algorithms (e.g. transputer arrays), [44], [60], 

[170], [1931., [251]. In general, except for the cases where 

performance is very critical, it seems that mapping a compu­

tation directly onto silicon is less attractive than pro­

gramming a special-purpose or general-purpose VLSI processor 

array [264]. 

Interconnection hardware complexity: initially, in a 

systolic scheme, the communication geometry is fixed, deter­

mined by the specific systolic algorithm to be implemented. 

However, the reconfigurability of the interconnection pat­

tern stems from two problems: fault-tolerance and generality 

of the architecture. If the reconfigurable interconnection 

scheme accommodates simple fault-tolerance then its purpose 

is to maintain a single communication geometry by by-passing 



- 19 -

faulty cells; the complexity of the scheme is limited [83), 

[250), [299). As we move from algorithmically-specialised 

designs to structures of more general applicability, i.e. 

consisting of processors with some degree of programmabil­

ity, there is some necessity to allow for reconfigurable 

interconnection so that the same system can accomm.odate more 

than one communication geometries. For example, programm­

able interconnection switches can be used to embed several 

geometries on the same surface, allowing also for fault­

tolerance [137), [269-270). At a board-level, cross-bar 

switches or other arbitration networks can be used to allow 

not only for reconfigurability but also for global intercon­

nections, so that to give a more flexible processor array 

[135), [186), [278). Alternatively, the interconnection 

topolog'y may be kept relatively simple but· then the proces­

sor complexity is increased in both control and storage. 

Part of the data and information is now stored into the 

array, and the systolic algorithm is modified to obey the 

interconnection restrictions [7), [161-162). 

System programming: as the complexity of the systolic 

systems increases the systolic algorithm design becomes more 

complicated and therefore a special notation or language is 

necessary to describe a systolic system. Furthermore, the 

programmability of the processors and the interconnection 

hardware leads to a need of a •systolic programming' 

language. The more general-purpose the systolic system 

becomes, the more the programming necessity seems 
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imperative. Another area where system programming is impor­

tant is the actual interfacing of the system with the host 

system, so that the end-user is isolated from the details of 

the systolic machine. Special systolic design languages have 

been proposed, as well as system design environments [8-9], 

[26], [170], [173], [271]. Further, extensive simulation in 

existing hardware description and parallel processing 

languages is currently used (e.g. OCCAM), [44], [60], [193], 

[200], [251]. 

Overall system design: As regards the design of a sys­

tolic system, there are several trade-offs that should be 

taken into account, besides the fundamental balance between 

specialization and generality. For example, the size and the 

storage capacity of the system should be balanced with the 

nature of the applications to be solved, and the i/o 

bandwidth of the host. Additional hardware and software for 

problem partitioning, interfacing with the host and overall 

system control is necessary, [9], [26], [137-138], [301]. 

Further, for the solution of many important problems, a 

series of systolic computations must be applied. In that 

case the combination of more than one systolic syst~ms in a 

'systolic network' may be necessary, with possible inter­

mediate storage. Alternatively, complex systolic arrays that 

can perform a series of computations can be envisaged. The 

area/time trade-off is especially important, starting from 

bit-serial vs. bit-parallel arithmetic operations, up to the 

systolic implementation of iterative algorithms, [1], [211], 
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[216), [262). 

General-purpose systems: the systolic algorithms can be 

efficiently simulated by general-purpose parallel-processing 

VLSI systems. The advent of single-chip microprocessors 

especially designed for parallel-processing, such as tran­

sputers, makes possible the mapping of systolic algorithms 

as a general-purpose VLSI processor array. An additional 

advantage is that the design of systolic algorithms can 

benefit from the use of general-purpose parallel processing 

languages. On the other hand, general-purpose parallel pro­

cessing can benefit from the systolic approach as it pro­

vides a model for achieving massive parallelism without com­

munication bottlenecks. In this direction, the •soft­

systolic paradigm' advocates the generalisation of the sys­

tolic concept by applying it onto a virtual computing sur­

face, and relaxing the restrictions imposed by current VLSI 

technology. Further, the idea of •systolic instruction 

machines' that can simulate different types of parallel 

algorithms has been also recently pursued, [102), [156), 

[200), [256), [266), [286). 

Algorithms and application areas 

New systolic algorithms: this research area remains 

still the most important despite the vast amount of algo­

rithms that have already been reported for systolic imple­

mentation. The systolic algorithms can be classified in the 

following main categories, according to their application. 
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There are algorithms from traditional systolic research 

topics solving new problems or using new methods, such as 

signal processing and matrix computations, [6), [33-34), 

[37-40), [46), [63), [87), [132-133), [143), [157), [166-

167), [174-175), [198), [221), [224), [239), [257-262), 

[267), [273-274], [294]. Then, there are systolic algorithms 

that try to improve the already existing algorithms in 

several aspects, such·as: in the application aspect, i.e. 

producing an efficient systolic algorithm for a specific 

application; or in the implementation aspect, i.e. producing 

an algorithm with better area or time efficiency by applying 

some hardware or dataflow modification; see for example 

[19-21), [62), [89), [201), [244). Finally there are algo­

rithms from relatively or entirely new areas, such as 

mathemattcal programming, multi-valued logic, solution of 

ordinary and partial differential equations, polynomial com­

putation, data structures and data bases, pattern matching, 

etc., [24), [36), [70), [81), [100), [110), [119-120), 

[155), [178-179), [185), [187), [200), [213), [253). 

Problem partitioning: given that the size of the VLSI 

system will be limited, it is important to partition large 

problems so that they fit on a fixed size VLSI structure. 

The aim of systolic algorithms that include problem parti­

tioning is to minimize the overheads of the partitioning, 

e.g. the additional storage, delay and re-routing of data as 

well as the combination of partial results, [125), [137-

138), [187), [209), [215), [232-233). 
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Algorithmic fault-tolerance: where existing systolic 

algorithms are augmented with error detecting and correcting 

methods to allow for limited fault-tolerance at the algo­

rithm level. This technique can be complementary with 

hardware fault-tolerance methods, [134), [153), [188], 

[189). 

Systolic algorithm design techniques: a significant 

number of more or less formal techniques for the systematic 

design of systolic algorithms have recently been reported: 

surveys of some of these methods are given in [108), [219). 

Typically, a transformation system, starts from a given 

sequential algorithm or a mathematical formulation of the 

problem. Then, a general parallel algorithm model is 

derived, based on some kind of data dependency graph speci­

fying the concurrency that can be achieved. Next, this graph 

is mapped onto a processing surface and transformational 

techniques are applied to produce a systolic design. The 

completeness of these methods varies from semi-automated, 

formal procedures that cover all the transformational steps; 

to simple rules that offer optimisation in a specific aspect 

of the design. Generally, complete methods restrict them­

selves in a specific type of algorithms, in order to reduce 

the number of decisions to be taken during the design pro­

cess. The large number of different approaches indicates the 

multiplicity of factors that must be taken into account. For 

example see [59), [61), [76-77), [112), [118], [123], [139], 

[144), [165), [172), [176), [192), [228), [236), [238), 
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[240], [249]. 

Optics technology 

Optical signal transmission: the advance in the tech­

nology of integrated electro-optical components makes possi­

ble the use of optical signal transmission between, or even 

within, VLSI chips. This could alleviate the problem of com­

plex interconnections, since optical interconnections occupy 

less area, do not suffer from cross-talk phenomena, and long 

delays and it is radiation-hard. Optical signal transmission 

can be either waveguided or in free space; further, the 

free-space transmission can be either focused or unfocused. 

Global synchronization is the simplest form of global com­

munication, in the form of optical clock distribution. This 

approach might be extended to global data communication, in 

the form of optical interconnections, [116], [122], [194], 

[206], [217), [254]. 

Optical computing: basic arithmetic operations, such as 

addition and multiplication can be performed by means of 

acousto-optic, electro-optic or other type of spatial light 

modulators. This enables the optical implementation of sim­

ple systolic algorithms with high-speeds, [13), [30], [50), 

[58], [ 234), [ 241). The use of integrated-optical technology 

is investigated in [290-292]. Digital accuracy may be 

achieved with special techniques that encode the analogue 

optical signal using binary or other number system, [11], 

[12], [14], [29], [31], [49], [222]. The combination of 
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high-speed optical processing elements with conventional 

electronic processors in hybrid optical/electronic systolic 

systems seems a very promising approach to achieve very 

high-performance, [2), [171). 



1.3 ORGANIZATION OF THE THESIS -- ---

Before describing the contents of the remaining 

chapters we summarize the main topics of discussion that are 

being followed throughout this study, based on the brief 

review of the current state of systolic systems research. 

The main subject of this work is the investigation of 

new systolic algorithms for numerical computation; where 

'new' may mean either a new group of algorithms, new algor­

ithm$ in traditional areas of research, or improvements of 

existing algorithms. The OCCAM programming language is 

extensively used for the simulation, and partially verifica­

tion, of systolic algorithms. By verification we simply mean 

the production of the expected results for a given input. 

Further, an important recurring theme is the area-time 

trade-offs in the systolic implementation of iterative algo-

rithms, as well as the possible interconnection of systolic 

arrays in the form of systolic pipelines or iterative struc­

tures. Finally, the impact of the advances in optics tech­

nology and optical computing is discussed, and the optical 

implementation of systolic algorithms is further investi-

gated. 

The remaining chapters of this thesis are organised as 

follows: Chapter 2, contains basic mathematical definitions 

in the areas of polynomial equations, matrix computations, 

linear programming and differential equations. Then, there 

is a brief introduction to specific areas of numerical 
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computation, i.e. solution of polynomial equations; solution 

of systems of linear equations; eigenproblem solution; 

approximation of matrix functions using matrix polynomials 

and the discrete approximation to the solution of differen­

tial equations. Finally, the specific numerical algorithms 

that are used in the subsequent chapters are briefly 

described. This description is complemented by the discus­

sion that precedes the systolic implementation of the numer­

ical algorithm. 

Chapter 3 is an introduction to the basic concepts of 

the systolic approach in parallel processing. It starts with 

a description of a simple systolic algorithm, through which 

the basic definitions and terminology is presented. Then 

some basic systolic designs are presented that are used as 

building blocks in the subsequent chapters. Following is a 

review of some transformational techniques for designing and 

improving .the efficiency of systolic arrays. The concepts of 

time and area expansion, and that of the interconnection of 

systolic arrays are also introduced. Then, there is a dis­

cussion on the soft-systolic paradigm, and the soft­

systolic simulation of systolic algorithms using OCCAM. 

Further, the basic concepts of optical systolic computation 

are discussed. That is, the optical implementation of basic 

arithmetic operations, the set up of an optical processor 

and the description of simple optical systolic algorithms. 

Finally, a general framework for the development of systolic 

algorithms is presented. 
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Chapter 4 investigates the systolic implementation of a 

new group of numerical algorithms, that is the solution of 

polynomial equations. Although, the systolic implementation 

of polynomial computations have attracted the interest of 

many researchers, the class of polynomial equation solvers 

is not yet sufficiently investigated. After a review of the 

systolic work on polynomial computations, two traditional 

methods are described in detail, Graeffe and Bernoulli. In 

the study of these two methods some of the transformational 

techniques of Chapter 3 are applied, as well as the area­

time expansion of iterative processes. Then the Sturm · 

sequence property is used for the calculation of the roots 

of the characteristic equation of a symmetric tridiagonal 

matrix. Finally, a systolic ring architecture is proposed 

for general iterative solution of polynomial equations, and 

some aspects of the systolic computation of a characteristic 

equation of a matrix are discussed. 

Chapter 5 presents some systolic algorithms for the 

efficient solution of linear systems of equations using LU 

decomposition. First there is a survey of the research on 

the systolic solution of linear systems of equations using 

direct methods. Then the efficiency of the systolic LU 

decomposition algorithm is impr6ved using mathematical tech­

niques. The problem of updating an LU decomposition is dis­

cussed subsequently. This problem is of interest in cases 

where a matrix is frequently updated, e.g. linear program­

ming and signal processing. It is also of interest in the 
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application of algorithmic fault-tolerance techniques on 

systolic algorithms. Then the LU decomposition with partial 

pivoting is used in the inverse iteration method for the 

determination of the eigenvectors of a symmetric tridiagonal 

matrix. Finally, there is a discussion on further research 

topics in the area of the systolic direct solution of linear 

systems of equations. 

Chapter 6 develops the concept of pipelining systolic 

arrays for matrix-vector multiplication. The importance of 

systolic matrix-vector multiplication becomes evident from 

the review of the applications of the algorithm. Firstly, 

an improved systolic design is presented. Then the specific 

area of iterative solution of linear systems of equations is 

investigated and some efficient pipeline designs are 

presented. A further development is the introduction of sys­

tolic networks defined as parallel, cooperating pipelines of 

systolic arrays. These structures are used for the iterative 

solution of linear systems, where the coefficient matrix is 

cyclic, or when multi-coloring techniques are applied. In 

the final section of this chapter some extensions of the 

matrix-vector multiplication algorithm are discussed and an 

alternative iterative design, suitable for time-expansion 

applications is described. 

Chapter 7 further develops the idea of pipelines of 

systolic arrays, as well as the combination of area and time 

expansion schemes. After an introduction to the research 
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topic of systolic matrix-matrix multiplication, a new group 

of systolic algorithms based on successive matrix-matrix 

multiplications is studied. Previously, successive matrix­

matrix multiplication algorithms had been considered as too 

expensive to implement in terms of both storage and process­

ing. However, the advances of technology make possible the 

consideration of these algorithms that introduce a high 

degree of parallelism. Firstly, pipelines and iterative 

designs that can efficiently perform successive matrix 

squaring are discussed. Then, the basic iterative methods of 

chapter 6 are revisited and transformed to be based on 

matrix squaring operations. Subsequently the Power and 

Matrix Squaring methods for eigenproblem solution are com­

bined to the Raised Power method. The subject of systolic 

matrix polynomial computation is then discussed under the 

framework of the systolic computation of the exponential of 

a matrix. Finally, it is shown that a number of important 

matrix functions can be computed using successive matrix 

powers. 

Chapter 8 presents some optical systolic algorithms, 

based on the concepts discussed on Chapter 3. A survey of 

optical systolic computing using analog techniques is given 

in the first section of this chapter. Then the optical 

implementation of banded matrix multiplication and LU decom­

position is investigated. Initially, simple mapping of the 

VLSI arrays to the equivalent optical processor is used. 

Then, the outer product concept is implemented to reduce the 
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hardware requirements of the optical processors. The outer 

product processor is further extended to perform several 

algorithms based on the Gauss Elimination method. Then, the 

issues of feedback mechanisms, as well as the combination of 

electronic and optical components in hybrid processors are 

briefly discussed. Finally, further classes of systolic 

algorithms that are possibly optically implementable, are 

outlined. 

This thesis is completed with a review of the main 

results and some general conclusions, that partially reflect 

the research areas mentioned in this introduction. A list of 

references is also given, consisting of material covering a 

wide spectrum of research interests in systolic systems and 

computing.Then, there is an Appendix on the OCCAM program­

ming language, the Loughborough implementation, and the use 

of OCCAM for the soft-systolic simulation of the algorithms 

discussed herein. It follows a selection of OCCAM programs 

with comments. 



C H A P T E R 2 

BASIC MATHEMATICAL DEFINITIONS 

2.1 POLYNOMIAL EQUATIONS 

There is a large literature on methods for solving 

polynomial equations as well as for polynomial computations 

in general; see for example [15), [64), [72), [111), [231), 

[255). Herein a series of basic definitions are given fol­

lowed by some comments on the stability of polynomial compu­

tations. Then there is a brief discussion on methods used 

for solving polynomial equations. 

A polynomial (or algebraic) equation may be expressed 

in the form 

f(x) 

or 

(2.1.2) 

Here n is the degree of the equation, a0 ,a1 , •.. ,an are the 

coefficients and r 1 ,r2, ••. ,rn are the roots (or zeros), of 

the equation f(x)=O. The polynomial equations discussed 
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herein are assumed to be real, i.e. they have real coeffi­

cients. The root with the greatest absolute value is called 

the dominant root of the equation. An nth-degree polynomial 

has exactly n roots, assuming a root of multiplicity m is 

counted as m roots. We say that f{x) has a root r of multi­

plicity m>l if 

f(x) = (x-r)mq(x), q(r) ~ 0 (2.1.3) 

or, equivalently, 

f(r) = f•(r) = . . . = f ( m-l) ( r) = 0, f(m)(r) ~ 0 (2.1.4) 

where f{k)(r) is the kth derivative of f(x) at r. Notice 

that a polynomial is differentiable as many times as desir-

able, for k5n and for all finite values of x. 

tives of a polynomial are polynomials. 

All deriva-

The Newton's theorem defines a relation between the 

zeros and the coefficients of a polynomial equation. 

Theorem 2.1.1. Let r1 ,r2 , ••• ,rn be the zeros of the polyno­

mial 

and for any positive integer p, 

S = rP+rP+ p 1 2 

(2.1.5) 

(2.1.6) 
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(2.1.8) 

The Taylor's theorem gives a relatively simple method 

for approximating a general function ~(x) by polynomials. 

Theorem 2.1.2. Let t(x) have n+1 continuous derivatives on 

[a,~] for some n~O, and let x,x0 belong to [a,~]. Then 

(x-x ) 
_..-::o_.,' < xo > + • • • + 

11 

(x-x )n+1 
0 .,<n+1) ( ~) 

( n+1)! 
(2.1.9) 

Some well known applications of the Taylor's theorem are the 

infinite 
-1 ( 1-x) , 

ex = 1 + 

cos(x) = 

sin(x) -
(1-x)-1 

1og(x) = 

series approximations 

log(x), for a given x: 

X x2 x3 x4 
- + - + - + -+ 
11 2! 3! 4! 

x2 4 x6 X 

1 - - + - + 
21 4! 6! 

x3 x5 x7 
X - +-- - + 

31 51 71 

= 1+x+x2+x 3+ 

(1-x) 2 (1-x) 3 

(1-x) - + 
2 I 31 

of 

4! 

X e , 

+ 

cos(x), sin(x), 

. . . (2.1.10) 

X The infinite series fore , cos(x), sin(x) will converge for 

all x, while those for (1-x)-1 and log(x) will converge for 

all lxl<l. 
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Some basic properties and arithmetic operations for 

polynomials 
n 

are now 

f(x) • ~ n-i L aix and g( x) = 

i•O 

given. 
m 
L bixm-i 

i•O 

Let two 

with n~m. 

f(x)=g(x) if n=m and a.=b., i=O,l,2, ••• ,n 
1 1 

polynomials 

Then: 

f(az+~) with a,~,z real variables is a polynomial in z of 

degree n 

f(x)±g(x) is a polynomial of degree n with coefficients 

c1=a
1
., i=O,l, ..• ,n-m+l and c.=a.+b. , i=n-m,n-m-l, •.• ,n 

1 1- 1-n-m 

f(x)g(x) is a polynomial of degree n+m with coefficients 

i 

ci • L akbi-k' i=O,l,2, ... ,n+m, where by convention we 
k-0 

assume that a coefficient with a subscript less than 0 or 

greater than the maximum power of the polynomial of which it 

is a part is equal to 0. 

f(x)/g(x) produces a quotient polynomial of degree n-m and a 

remainder polynomial of degree m-1. 

The evaluation of a polynomial at x0 , for x0 real, can 

be effected using the nested multiplication scheme. 

• 
f(x

0
l = (((a

0
x

0
+a1 )x0+a 2)x0+ , •• +an_1 )x0+an (2.1.11) 

This computation can be expressed in a recurrence relation, 

known as Horner's scheme: 

(2.1.12) 
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From Taylor's theorem, it is evident that the derivative of 

the polynomial at x0,f•(x0) can be computed using the same 

technique. Similar results can also be produced for the case 

of complex x0 [148]. 

Now, if we introduce the polynomial 

(2.1.13) 

then 

(2.1.14) 

i.e. q(x) is the quotient and b0 is the remainder when f(x) 

is divided by (x-x0 ) (synthetic division). If x0ar, a root 

of f(x), then b0=0 and f(x)=(x-r)q(x). To find the addi-

tional roots of f(x) we can restrict our search to the roots 

of q(x). This reduction process is called deflation. 

The rounding errors and stability problems in polyno­

mial computations have been extensively discussed in [227], 

[297]. Rounding error problems may occur in the evaluation 

of a polynomial and during ~he deflation process. In order 

for errors resulting from the deflation to be negligible, 

the roots should be determined in order of increasing abso­

lute value, .and then, for each root a final iteration with 

the original polynomial should be performed. Additional 

computational difficulties are introduced by roots that have 

~ultiplicity greater than 1 or those which are very close to 

each other. 
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Generally, if the roots of a polynomial equation are 

sensitive to small changes in the coefficients of the poly­

nomial, then the equation is called ill-conditioned; other­

wise it is well-conditioned. Two good measures of the sta­

bility of a polynomial equation are the condition number of 

a root, and the relative separation of the roots. A small 

condition number indicates better stability in the computa-

tions. The condition number of the determination of a root 

r of equation (2.1.1) is given by the ratio 

n n 

L 1(2i+1)an-iril I L lian-iril· (2.1.15) 
i=O i~O 

Similarly, a large relative separation indicates better sta-

bility. For a group of k real roots r1<r2< .• <rk the 

product 

(r2-r1) (r3-r2) ( rk-rk-1 l . . . (2.1.16) 
lr1 1 lr 2 1 lrk-11 

could be taken as a measure of the separation. It may be 

difficult to determine the stability of a polynomial, espe~ 

cially if it is of high degree. For all these cases, special 

sophisticated algorithms have been proposed for the solution 

of polynomial equations [86], [147]. In all methods dis­

cussed herein, it is assumed that the polynomial equation is 

well-conditioned; also, the root to be located is assumed to 

have multiplicity m=l, unless otherwise stated. 

2.1.1 SOLUTION OF POLYNOMIAL EQUATIONS 
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In general the methods for solving a polynomial equa­

tion can be classified into two groups: 

- iterative methods for solving general functions that can 

be specialized for polynomial equations, 

- methods that have been developed especially for polynomial 

equations, using their properties in an essential way. 

These methods can again be characterised as iterative in 

the sense that successive approximations of the roots 

sought are computed, although sometimes not explicitly. 

Convergence: A sequence of iterates x1 ,x 2, .•• ,xk is said to 

converge with order p~l to a point r if 

(2.1.17) 

for some c>O. If p=1, it is necessary that c~1 and c is 

called the rate 
k 

lr-xkl~c 1r-x0 1. 

of linear convergence; furthermore 

The Bisection method is possibly the simplest of the 

general iterative methods. Assume a given interval [a,~] 

with only one zero of f(x) in it, and f(a)f(~)<O. Then 

while ~-a~& 
seq 

x:= (a+~)/2 
if 

f(~)f(x)<O 

true 
~:=x (2.1.18) 

For r the limit of the sequence or iterates x1 ,x2 , •.• ,xk, it 
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can be shown that lr-xkl~(l/2)k(~-a). Therefore the Bisec­

tion method converges linearly with a rate of l/2. 

Another well known method is Newton's method which can 

be derived from the Taylor theorem in (2.1.9). Expanding 

f(x) about xk and keeping only the first two terms we get 

(2.1.19) 

By letting f(x)=O and then solving for x, we have 

(2.1.20) 

We recognize x as xk+l' the next approximation to x; the 

error is given by the third term of the Taylor series. 

Given an initial approximation we evaluate 

f(x 0 ), f'(x 0); then the iterates are computed as follows: 

Theorem 2.1.3. Assume that f(x), f'(x), f''(x) are continu­

ous for all x in some neigbourhood of r, and that f(r)aO, 

f'(r);~O. Then, if x0 is chosen sufficiently close to r, the 

iterates x1,x2 , ... ,xk of Newton's method will converge tor. 

Moreover lr-xkl ~ c1r-xk_1 12 with c = -(f''(r)/2f'(r)); i.e. 

the method converges quadratically. 

The Newton method is used for the iterative computation 

of many simple functions, e.g. inverse, square root, 

inverse square root. Disadvantages of the Newton method is 
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that it requires a good initial approximation and two poly­

nomial evaluations per iteration. On the other hand, how­

ever, it combines simple computation with fast convergence. 

Numerous modifications of this basic method have been 

derived for improved performance or specific applications. 

Two other general methods that have been widely used 

for the solution of polynomial equations are: 

The Muller method, uses quadratic interpolation between 

three previous approximations of the root sought. The calcu­

lation of the next iterate is quite complicated but it 

requires no derivatives of f(x). An advantage of the method 

is that complex zeros can be found starting with real ini­

tial estimations; the order of convergence is p=l.84. 

The Laguerre method requires the computation of f(x), 

f'(x) and f''(x) in each iteration, A significant advantage 

of the method is that it does not require a good initial 

approximation and the method is cubically convergent. 

The Bairstow method is an example of a root-finding 

process, especially designed for polynomial equations. This 

procedure can be derived from the Newton method applied to a 

real polynomial equation with a pair of complex roots. Note 

that all complex roots of real polynomials come in conjugate 

pairs, a+~i, a-~i. A pair can be represented as a quadratic 

factor that is deflated from the polynomial using synthetic 

division in a way similar to that of (2.1.14), The objective 
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is to zero the remainder, which is a function of a,~, 

through successive approximations of Newton's method. 

The method of Bernoulli uses the theorem of Newton to 

derive successive approximations of the dominant zero(s) of 

f(x). In the simplest case we suppose that all roots are 

real and 1r 1 1>1r 2 1~1r 3 1~ ••• ~lrnl Then, from (2.1.6), we 

have 

p 

s = rP{l+(r2) + 
p 1 r 

1 

. . . 

and then, for p sufficiently large, 

(2.1.22) 

(2.1.23) 

It is evident from (2.1.22) that the method converges 

linearly and the rate of convergence depends on the ratio 

1r2;r1 1, i.e. the relative separation of the roots. The 

algorithm can also be extended to cover complex and multiple 

zeros (48), (148). The Quotient-Difference algorithm extends 

Bernoulli's method and may produce all roots of a polynomial 

equation, including pairs of complex roots, simultaneously. 

The root-squaring (Graeffe's) method provides simul­

taneous approximations to all roots of the polynbmial equa- · 

tion. The object of this procedure is to produce an equation 
' ' 

having roots differing greatly in magnitude, since the roots 

of such an equation can be approximated by simple functions 

of its coefficients. Suppose that jr1 l>lr2 1> ••• >lrnl are 
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the zeros of the polynomial (2.1.1). Then, the polynomial 
2 2 2 with zeros r1 ,r2 , •.• ,rn is given by 

(2.1.24) 

with 

(2.1.25) 

This polynomial is referred to as the squared polynomial of 

f (X) • Thus, after a number of m successive squarings on 

f(x) a new polynomial is formed: 

+A = 0 n 

Therefore the roots can be approximated as 

2m 
r. =A.jA. l' 

1 1 1-
i=1,2, ... ,n 

(2.1.26) 

(2.1.27) 

The signs of the zeros are determined by substitution in the 

original equation. Also, the method can be extended to cover 

complex roots [42). For a detailed analysis of the advan­

tages and drawbacks of Graeffe's method see [297). In gen­

eral, the method is mainly suitable for a small number of 

iterations in order to improve the relative separation or to 

provide initial approximations of the roots of a polynomial. 

Finally, using Sturm sequences is yet another approach 

to finding the real roots of an equation and producing them 

more or less simultaneously. A Sturm sequence 
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f 0(x),f1(x), •.• ,fn(x) satisfy the following conditions on an 

interval [a,~) of the real line [255): 

the sign of fn(x) is constant 

if f.(x)=O then f, 1 (x)£.+1 (x)<0 
1 1- 1 

if f 0 (x)=O then for h sufficiently small 

These conditions ensure that the number of real zeros of 

f 0(x) in the interval [a,~) is precisely the difference 

between the number of sign changes in the sequence 

£ 0(a),f1(a), ••• ,fn(a) 

f 0 ( 13) , f 1 ( 13) , ... , f n ( 13) • 

and the corresponding number in 

By choosing various intervals [a,13) 

the real zeros can therefore be located efficiently and 

accurately. 



2.2 MATRICES 

Matrices are very important to Numerical Analysis since 

they provide a concise method for specifying and manipulat­

ing large numbers of linear equations. Herein some basic 

definitions of matrix computations are given, specifically 

related to the numerical algorithms used later on. For 

further details see, for example, [15], [22], [27], [32], 

[111], [114]. 

The collection of m linear equations in the form 

........................... 

(2.2.1) 

is called a system of linear equations (or linear system of 

equations). The i=1,2, ... ,n are the unknowns, bi the 

right-hand-side (r.h.s.) terms, and i=l,2, ... ,m, 

j=1,2, ..• ,n, are the coefficients, all assumed to be real. 

A real( mxn) matrix is a rectangular array of reals 

(called elements, entries,. components or scalars), with m 

rows and n columns. An (nxn) matrix is called a square 

matrix and n is termed as size (or order) of the matrix. 

Herein, we shall use capital letters for matrices. The ele-

ments of a matrix A are represented by lower case letters 
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with two subscripts such as aij' where i denotes its posi­

tion in the ith row and j its position in the jth column. 

A column vector with n elements is a (nxl) matrix. 

Vectors are represented as underlined lower case letters 

with their elements denoted by the same letter, but with a 

lower suffix giving the position of that element in the vec­

tor. For example, the column vector (or simply vector) x 

with its elements denoted by xi, i=1,2, ••. ,n is written as: 

X = (2.2.2) 

To each column vector as shown above there exists a 

corresponding row vector which is usually denoted by the 

same name but with superscript_ T. 

vector of x in (2.2.2) is 

The corresponding row 

(2.2.3) 

Therefore, a linear system of equations, as in (2.2.1), 

can be specified, in matrix notation, as 

Ax = b (2.2.4) 

where A is a (mxn) coefficient matrix, and ~ is the unknown 

vector, b is the r.h.s. vector, wllh n ana m entries. Herein, 

systems with square (nxn) coefficient matrices are mainly 

discussed. 
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Some basic properties and arithmetic operations for 

matrices and vectors are now given: 

If A and B are (mxn) matrices then C=A+B is defined by 

c .. -a .. +b .. , i=1,2, ... ,m, j=1,2, ... ,n. 
1) 1)- 1) 

For s a scalar, sA is the matrix with elements equal to 

saij' i=1,2, ... ,m, j=1,2, ... ,n. 

If A is a (mxn) matrix and B is a (nxp) matrix then 
n 

C=AB is a (mxp) matrix.withcij.·}: aikbkj' i=1,2, ..• ,m, 
k-1 

j=1,2, ..• ,p. In general AB#BA. 

If x and y are two vectors with n components then ~=~±Y 

is defined by z.=x.+y., i=1,2, .•. ,n. 
1 1- 1 

For s a scalar, sx is a vector with elements equal to 

sxi' i=1,2, ... ,n. 

If A is a (mxn) matrix and x is a vector with n entries 
n 

then y=A~ is a -vector of m entries, with yi • }: aikxi' 
k=l 

i=1,2, •.. ,m. Similarly for xT a row vector with m elements, 

yT = xTA produces a row vector with n entries. 

The inner product of two vectors of n elements yT~ is a 

scalar, while the outer product of the two vectors, ~T is a 

(nxn) matrix. 

Suppose that we haven vectors ~1 ,~2 , ••• ,~n' all with n 

components. If the relation 



- 47 -

(2.2.5) 

••• =c :aO, n the vectors are 

said to be linearly independent. The rank of a matrix is 

defined as the number of linearly independent rows or 

columns of the matrix. For example, the result of an outer 

product is a rank 1 matrix. 

A scaled matrix A is the matrix sA where s is a scalar 

chosen so that all entries of A are kept within desirable 

size bounds. Usually s is a power of 2. Normalisation of A 

is a scaling operation where s is a suitably chosen element 

of A. Similarly, a scaled, or normalised vector, x can be 

defined. The scaling or normalisation operations are useful 

in the cases where the entries of a given matrix or vector 

differ greatly in size . Also in cases where successive . 
matrix-vector or matrix-matrix multiplications are performed 

and there is a rapid increase or decrease in the size of the 

matrix or vector elements. 

zero (or null) matrix (0) is the matrix with all its 

elements equal to zero. zero (or null) vector (Q or QT) is 

the vector with all elements equal to zero. 

The set of elements aii' i=l,2, •.. ,n of a matrix A is 

the main diagonal of A. The diagonals above (below) the main 

diagonal called super- (sub-) diagonals. 

If aij=O for i~j, the matrix A is said to be a diagonal 

matrix, usually denoted by D. 
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The identity matrix, I, is a diagonal matrix with all 

diagonal elements equal to 1. It holds that AiaiAmA. 

The matrix A is a lower triangular (strictly lower tri­

angular) matrix if aijaO for i<j(i5j). Similarly, A is an 

upper triangular (strictly upper. triangular) matrix if 

A unit lower (upper) triangular matrix 

has all the main diagonal elements equal to 1. A lower 

(upper) triangular matrix is usually denoted by L(U). 

An (nxn) matrix A is said to be a banded matrix if 

The bandwidth of the 

matrix is w=p+q-1 since this is the number of non-zero diag-

onals in the band. For example, if p=q=2 then matrix A is 

called tridiagonal; if p=q=3 then matrix A is called quindi­

agonal. 

If most (>80%) of the elements aij of a matrix A are 

zero then A is said to be a sparse matrix. If most of the 

elements aij of the matrix A are non-zero, then the matrix A 

is a full (dense) matrix. A matrix is termed sparsely banded 

if there are null diagonals between the significant diago­

nals. 

A matrix is called an upper (lower) Hessenberg matrix 

if a .. =0 for all i>j+1 (for all j>i+1), i,j=1,2, •.. ,n. 
lJ 

A matrix is called a Toeplitz matrix if its elements 

are constant along each diagonal, i.e. aij is a function of 

j-i. 
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A block (pxq) matrix A is a (rxs) matrix where each 

element is a (pxq) submatrix Aij' Thus the corresponding 

point matrix A, i.e. the matrix with scalars as elements, is 

of order (rpxsq). A block (pxl) vector is a vector where 

each element is a subvector with p coefficients. A matrix or 

vector can be further partitioned into submatrices or sub­

vectors of unequal sizes. The basic arithmetic operations 

previously defined for point matrices (e.g. addition, multi­

plication) can be extended to block matrices, provided that 

the submatrices and subvectors involved are dimensionally 

compatible. 

A matrix B is said to be transpose of an (mxn) matrix A 

if 

b .. ~ a .. 
] 1 lJ 

for f=1,2, ... ,m, jal,2, ..• ,n (2.2.6) 

Usually B is denoted with AT. Notice that xT is the tran-

spose of !• 

A square matrix A is symmetric if AT = A, 

The Trace of a matrix A is given by 

n 
Tr (A) - }: aii. 

i=l 

i.e. 

(2.2.7) 

The determinant of a matrix A will be denoted by 

det(A). Matrix A is non-singular if and only if det(A)~O; 

otherwise it is called singular. 
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The inverse of a non-singular square 

matrix usually denoted by A-l It holds 

and det(A)det(A-1 )=det(I)=1. Notice 

(AB)-1=B-1A-1 • 

The matrix A is diagonally dominant if 

n 

\ Ja .. J, L l) . 

j=1 

i=1,2, ... ,n 

matrix A is a 

that AA-1=A-1A-I, 

also that 

(2.2.8) 

A is said to be strictly diagonally dominant if the strict 

inequality holds for all i in (2.2.8). 

The matrix A is said to be orthogonal if ATA=I. 

A real symmetric matrix is positive definite if, 

xTAx>O for all ~ ~ o. 

A permutation matrix P is a matrix with exactly one 

non-zero element, namely unity, in each row and each column. 

For any permutation matrix P we have 

T T PT -1 pp = p p • I, = p • (2.2.9) 

A matrix A is irreducible if and only if there does not 

exist a permutation matrix P such that PTAP has the form: 

(2.2.10) 

where F and H are square matrices and 0 is a null matrix. 
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A planar rotation matrix is a matrix differing from the 

identity matrix I, in at most four elements which have the 

form rii=rjj=cose and rji=-rij•sine, for a given angle e. 

2.2.1 EIGENVALUES AND EIGENVECTORS 

The eigenproblem for a given square matrix A of order n 

is to find the eigenvalues >.. and the eigenvectors x (~~Q) 

such that 

Ax = >..x. (2.2.11) 

The eigenproblem may be written as: 

(A-AI)~ = Q (2.2.12) 

which is a system of n homogeneous linear equations, i.e. 

the r.h.s vector is a null vector. This system has a non-

trivial solution, ~~Q. if and only if the matrix of the sys­

tem is singular, i.e. 

p(>..) = det(A->..I) = 0, (2.2.13) 

Equation (2.2.13) is called the characteristic equation (or 

characteristic polynomial) of matrix A. The characteristic 

equation (2.2.13) has n roots (counting multiplicities), 

i.e. an eigenvalue problem has n solutions >..i, i=1,2, ..• ,n. 

Associated with each >..i there is at least one eigenvector 

solution x. of (2.2.12). Note that, any arbitrary multiple 
-1 

of x. is also a solution. Theoretically, 
-1 
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(2.2.14) 

The spectral radius of matrix A is defined as: 

p(A) = maxp,i I, i-1,2, •.. ,n (2.2.15) 

The spectral radius is particularly useful in the iterative 

solution of linear systems, since it allows the structure 

and properties of the coefficient matrix, via the eigen­

values, to influence the performance of the solution tech­

nique. The use of spectral radius is closely connected with 

the matrix and vector norms, described later on; 

Theorem 2.2.1 (Gerschgorin): If A is any eigenvalue of A 

then 

n 

laii-AI S I laijl 
j=1 

(2.2.16) 

for at least one i, i=1,2, ... ,n. Thus, every eigenvalue of A 

lies in at least one of 
n 

radii I (jaijl>· 
i~1 

the discs with centres aii and 

Two matrices A and B are said to be similar if a 

that A=S-1BS, 

non-

singular matrix s exists such or, 

-1 equivalently, B=SAS • Now (2.2.11) can be rewritten as 

. -1 
SAS Sx = ASX (2.2.17) 

Therefore, 

B(S~) = A(S~) (2.2.18) 
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Thus if A, ~ are an eigenvalue and an eigenvector of A, then 

A, Sx are an eigenvalue and an eigenvector of B. 

A matrix A is called diagonalizable if there exists a 

non-singular matrix s, such that 

(2.2.19) 

where DA is a diagonal matrix having as main diagonal ele­

ments the eigenvalues of A. 

2.2.2 MATRIX AND VECTOR NORMS 

For the purpose of quantitatively discussing errors in 

matrix computations, it is convenient to associate with any 

vector or matrix a non-negative scalar that in some sense 

measures its magnitude. Such measures are called norms. 

For any vector !• its norm I 1!1 I has the following pro­

perties: 

11!11 ~ 0, the equality holds for x=O 

11 a~ I I - I a I 11! 11, 

The most frequently used vector norms are 

n 

I I~ I 11 - L I xi I ( 1 norm) 
i-1 

n 1/2 

11~ ll2 = c~1 1 Xi~ 2} ( Euclidean norm) 

(2.2.20) 

(2.2.?1) 

(2.2.22) 
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11.~11 .. =maxi xi I i=1,2,, •• ,n (eo norm) (2.2.23) 

For any matrix A, its norm I IAI I has the following pro­

perties: 

I IAI I ~ 0, the equality holds for A=O 

I I a A I I = I a I I I A I I 

IIA+BII 5 IIAII + IIBII 

IIABII 5 IIAII IIBII (2.2.24) 

Given a vector norm 11~11, a matrix norm IIAII is called 

compatible or consistent if 

IIA~II 5 IIAII 11~11· X~ 0 (2.2.25) 

Similarly, given a vector norm 1 1~1 1, the matrix norm 

which is subordinate to this vector norm is defined by 

IIAII = maxiiAxll, for llxll=l. - - (2.2.26) 

It can be shown that for a real (nxn) matrix A 

n 

IIAII 1 = max{. L laij 1} j=1,2, ••• ,n (max column sum)(2.2.27) 
1=1 

n 

IIAII .. = max{.}: 1aij1} i=l,2, ••• ,n (max row sum) 

J=1 

(2.2.28) 

1/2 

IIAII 2 = {p(ATA)} (spectral norm) (2.2.29) 
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For any compatible matrix norm 

p(A) ~ JJAJJ. (2.2.30) 

A useful result, for proving convergence of a sequence of 

matrices, is that, for any square matrix A, p(A)<1, if and 

only if 1 JAI 1<1. Notice that the reverse is not always 

true. 

The condition number of a matrix A is defined as 

-1 
cond(A) = I JAil I lA JJ. 

Notice that cond(A) ~ p(A)p(A-1 ). 

2.2.3 MATRIX FUNCTIONS 

(2.2.31) 

If in a polynomial f(x), x is replaced by a square 

matrix A, we get a matrix polynomial 

+a 1A+a I n- n 
(2.2.32) 

It can be shown that if A is an eigenvalue of A, then f(A) 

is an eigenvalue 

eigenvalue of Ak, 

The Taylor 

of f(A). Thus, for example, Ak is an 

and A-p is an eigenvalue of A-pi. 

series approximations obtained from 

(2.1.9,10) can be extended for the approximation of matrix 

functions using matrix polynomials, provided that the series 

is convergent. In general, a power series of the form 

(2.2.33) 
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converges if p(A)<a, and the series 2 ao+a1 x+a2x + • • . is 

convergent for lxl<a. Applying (2.2.30) the convergence 

criterion can be replaced by I IAI l<a. 

Theorem 2.2.2. Let A be a square matrix of order n. Then Ak 

converges to the null matrix as k~~ if and only if p(A)<1. 

Furthermore, if p(A)<1, then (I-A)-1 exists and can be 

expressed by the convergent series (Neumann expansion) 

(2.2.34) 

Convergence: For a square matrix A, if I IAI 1<1, then Ak con­

verges to the null matrix ask~~. Similarly, if IIAII<1 

then (I-A)-1 exists and can be expressed by the Neumann 

expansion. 

Rate of convergence: Let A, B be square matrices. If ---
IIAk 11 <1, k>O, then 

k R(A ) = -
lniiAk 11 

(2.2.35) 
k 

is the average rate of convergence of A. If R(Ak)<R(Bk), 

then I IAkl 1>1 IBkl 1 and therefore B converges faster than A. 

Further, for k~~ the asymptotic rate of convergence is 

defined as R(Ak) ~ R~(A) = -lnp(A). 

Thus, the following power series approximations 

A2 A3 4 
eA 

A 
= I + A + - + - + - + 

2! 31 4! 

A2 A4 A6 
cos(A) = I - - + -- + 

21 41 61 



and sin(A) = A - +---+ . . . (2.2.36) 
3! SI 71 

converge for all A, since they converge for any real x. The 

rate of convergence depends on p(A), I IAI I· 

Similarly, the series 

log(A) = (I-A) - --- + . . . (2.4.37) 
2! 31 

converges only for p(A)<1, or equivalently I IAI 1<1. 

Iterative schemes, based on the Newton method (2.1.20) 

can be used for the computation of some matrix functions, 

provided that a good first approximation is known. For exam­

ple, if Bo=B is an initial approximation of A-1 , then 

iterates computed using the formula 

(2.2.38) 

converge to A-1 • This iteration can be derived from the 

power series expansion as follows. Forming M=I-AB, we get 

A-1 = B(I-M)-1 or 

-1 2 A = B ( I+M+M + ••. ) , I I M 11 <1. (2.2.39) 

Then, by truncating the series after the first two terms we 

get 

A-1 = B(2I-AB) (2.2.40) 

By putting Bo=B we obtain (2.2.38). The convergence to A-
1 

is quadratic. 
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Similar iterative schemes 

A112 and A-112 • 

can be obtained for 

Theorem 2.2.3. Let A be a (nxn) non-singular and diagonaliz­

able matrix, and suppose that none of the eigenvalues of A 

is real and negative. If, for P0aA, Qo=I, the following 

iteration is performed 

k=-1,2, .•• 

then Pk converges to A1/ 2 while 

[ 128]. 

converges to 

(2.2.41) 

-1/2 
A ' 

Theorem 2.2.4. Let A be a (nxn) matrix with positive eigen­

values. Then, if cond(A)<9, there exists a neighbourhood of 

A-1/ 2 such that if T0 is chosen in this neighbourhood the 

sequence 

(2.2.42) 

converges to A - 11 2 linearly, [ 229]. 



2.3 LINEAR SYSTEMS OF EQUATIONS 

Suppose one wishes to solve the system 

Ax = b (2.3.1) 

where A is a square (nxn) matrix, £ is a given r.h.s. vec­

tor, and x is an unknown vector. It will be assumed that A 

is non-singular, hence A-1 exists and there is a unique 

solution x. The choice of solution method depends on a 

number of factors, including the structure and size of the 

matrix A, the number of arithmetic operations required, and 

the control of the rounding error growth (or stability). 

There are two general classes of methods, direct and itera­

tive methods. 

As regards the matrix size and structure, direct 

methods, are used mainly when matrix A is small, dense or 

banded. Direct methods cannot, in general, be used for 

large sparse matrices because of the problem of fill-ins 

which occurs during the elimination process. For large 

sparse matrices we normally use iterative methods since 

these will not alter the structure of the original matrix 

and therefore preserve sparsity. However, there are special 

cases where pivoting techniques can alleviate the fill-in 

problem of direct methods. 

Herein a brief introduction on some important methods 

are presented which are used later on as the basis for sys­

tolic algorithms. The material of these sections is obtained 
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from [15), [72), [231), [289), [298). 

2.3.1 DIRECT METHODS 

In such methods first a sequence of operations is per­

formed, in general once only, which results in an approxima-

tion to the true result. The approximation enters only 

because intermediate results involving arithmetic operations 

are stored and subsequently used with rounding errors. 

Gauss elimination 

This method is generally used to solve a system of 

linear equations of the form (2.3.1) by reducing A to an 

upper triangular matrix u. Simultaneously the r.h.s. vector 

b is modified to b'. The triangularization process in the 

mattix A takes place in (n-1) major steps and· involves 

evaluating matrix A(kl, k=1,2, ... ,n-1 where in general after 

the (k-l)th step of elimination, the matrix A(k-l) has the 

form: 

a(k-1) 
kk 

a(k-1) 
k+1,k 

a(k-1) 
nk 

( 1) 
a2,k+1 

alk-1) 
k,k+l 

a(k-1) 
k+l,k+1 

a(k-1) 
n,k+1 

a(k-1) 
kn (2.3.2) 

a(k-1) 
k+1,n 

),_,J 
nn 
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where the elements aft-ll, i=k+l,k+2, .•. ,n are now elim­

inated by calculating 

a (k) (k-1) (k-1) (k-1) 1 a(k-1) 
ij = aij -akj aik kk ' (2.3.3) 

for i,j=k+1,k+2, .•. ,n. Similarly, £(k-1 ) has the form 

. . . b(k-l)b(k-1) •.. bn(k-1)JT (2.3.4) 
k k+l 

and the elements b!k-1 ), i=k+l,k+2, ... ,n are now modified by 
l 

calculating 

b!kl = b!k-l)_bk(k-lla!kk-1) I ak(kk-ll, (2.3.5) 
l l 1 

for i=k+l,k+2, ... ,n. After the completion of the triangular­

ization procedure, A(n-l)=U and b(n-1 )=b'. Then, the tri-

angular system 

Ux = b' 

is solved by a back substitution process of the form 

i+l 
I 

xi= (bi- L uikxk) I uii' i=n,n-1, ... ,1. 
k=n 

(2.3.6) 

(2.3.7) 

i.e. 

The Gauss elimination method fails if one of the pivots 

( i ) aii , i=l,2, ••. ,n-1, is zero. Furthermore, the accu-

racy of the final solution depends on the choice of the 

pivots. For an accurate result all the pivots have to be 

selected in such a way that the elements I aiklakk I which 

represent the multipliers for the different steps of the 

elimination process should be less than or equal to unity. 

Some important pivoting strategies are briefly considered 



- 62 -

below: 

Full pivoting: At the start of the kth major step all ele-

t ( k-1 ) . . k k 1 h d th 1 t . th mens aij , l 1 Jm , + , ••• ,n are searc e ; e e emen Wl 

maximum absolute value is chosen as pivot. Obviously this 

method is very time consuming, for the reduced matrix has to 

be searched at each reduction stage. 

Partial column pivoting: The elements al:-1 >, i=k,k+l, .•• ,n 

are searched. The result is limited to n-k elements only. A 

similar strategy can be applied to the rows of the matrix. 

Pairwise (or neighbour) pivoting: Only aik and ai,k+1 are 

compared. A detailed evaluation of this method can be found 

in [272). 

No pivoting: For some classes of matrices, no pivoting is 

required. Such cases are, for example, symmetric positive­

definite, or irreducible, diagonally dominant matrices. 

It has been observed that if the elements of A vary 

greatly in size, then it is likely that loss of ~ignificance 

and rounding error propagation will be worse. To avoid this 

problem matrix A is scaled, and therefore, the choice of 

pivot elements is affected. Two techniques are widely used 

Explicit scaling: A power of two is chosen, i.e. 2r, so that 
-1 r 2 < maxlaij/2 I ~ 1, i=1,2, ..• ,n. Then, the Gauss elimi-

nation process is performed on the scaled matrix A. Further, 
r. 

different scaling factors 2 1 can be used for each row or 
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column. 

Implicit scaling: The scaling operation is combined with the 

partial pivoting strategy, by searching for the maximum of 
(k-1) ri · 

Jaik /2 J, i=k, k+l, ••. , n. Then the Gauss elimination 

process is performed, using the unsealed pivot ai~-l) 

An extension to the Gauss elimination process is the 

Gauss-Jordan algorithm. Jordan's modification means that at 

the kth step, the elimination is performed not only in rows 

k+l,k+2, ... ,n but also in rows k-l,k-2, •.. ,1. Thus, the back 

substitution process is incorporated in the elimination pro-

cess. However, the Gauss-Jordan method is computationally 

more expensive than the combination of Gauss elimination and 

back substitution. 

The Gauss elimination can also be applied on matrix 

equations of the form AX=Y, where Y is a square or rectangu-

lar matrix constructed from a set of r.h.s. vectors. 

ermore, by putting Y=I, the solution to AX=I gives 

Furth­
-1 X=A • 

For this application in matrix inversion, the Gauss-Jordan 

method is used. 

LU decomposition 

Let us define the matrix Ek as 



- 64 -

1 

1 

1 

(2.3.8) 

1 

i.e. Ek is the identity matrix with additional elements -eik 

in (ik)th position for i=k+1,k+2, ... ,n. Then, the premulti­

plication of a (nxn) matrix A by Ek has the following 

effect: row k of matrix A is multiplied by -eik and then it 

is added to row i of A for i=k+1,k+2, ... ,n. 

The Gauss elimination algorithm without pivoting can 

then be described theoretically by 

(k) (k) 
where eik=aik ;akk • Thus, we have 

-1 
En-1u. 

-1 where Ek =-Ek' k=1,2, ... ,n-1. Further we can write 

-1 
En-1 = L 

(2.3.9) 

(2.3.10) 

(2.3.11) 

. -1 -1 -1 
Notlce also that E1 ... Ek ... En_1 =-Ec· .. -Ek- ••. -En_1 .Thus L is 

a unit lower triangular matrix, with the elements of column 

k equal to the elements of column k of -Ek. Thus, we con­

clude that A can be factorized in the form 
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A • LU (2.3.12) 

The LU decomposition (or factorization) of a matrix A 

is illustrated here for a general (nxn) matrix. In the rela-

tion AaLU, or 

1 

1 

= 

(2.3.13) 

(L is unit lower triangular and U is upper triangular) all 

the coefficients in L and u are initially unknown. The rules 

for matrix multiplication enables them to be found from the 

following equations: 

i-1 
uij = aij- L tikukj i=1,2, ... ,n, j=i,i+1, ... ,n 

k-1 

j=i+l, i+2, ••• ,n. (2.3.14) 

This factorization method fails only if one of the 

diagonal elements uii' which are used as divisors proves to 

be zero. As in the Gauss elimination process, similar pivo-

tal strategies must be employed in order to ensure suffi­

ciently accurate results. The system Ax=b can now be solved 

with a forward and a backward substitution for the two· 
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triangular systems: 

Lz = b and Ux = z 

The forward substitution has the following form 

i-1 
zi = bi - L tikzk' i=1,2, •.• ,n, 

k•1 

(2.3.15) 

(2.3.16) 

while the backsubstitution is given by (2.3.7),wt-l:h oi• .. i· 

The LU factorization method described is due to Doolit-

tle. Alternatively, if the matrices u is unit upper and L 

lower triangular, Crout's LU decomposition method is esta-

blished. A further variation of the LU decomposition is the 

LDU decomposition, where 

A = LDU' and U = DU' (2.3.17) 

with o a diagonal matrix and L (U') a unit lower (upper) 

triangular matrix. Then Ax=b is solved by the 3 stage calcu-

lation, 

L~ = ~' Dy = ~' U'~ ay (2.3.18) 

The diagonal system solution is given by 

(2.3.19) 

can see is a lower 

(upper) triangular matrix. The elements of L-1 (u-1 ) can be 

derived by using the forward (backward) substitution process 

on the matrix equation 
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or -1 UU a I. (2.3.20) 

Similarly, if the LDU decomposition is used, and since 

-1 . di 1 . -1 -1 -1 -1 D 1s a agona matr1x, A - U' D L . 

Especially for symmetric positive definite matrices: 

(2.3.21) 

This is called the Choleski method and is particularly 

attractive since no pivoting is needed; furthermore the 

storage and computation requirements are approximately 

halved. 

The error analysis of the Gauss elimination method has 

been extensively studied; see for example [106], [298]. An 

important technique is the backward error analysis. Thus, 

for x the computed solution and ~* the correct solution of 

(2.3.1), we show that x is the exact solution of the system 

(A+oA)~=£, in which bounds can be given for oA. It can be 

shown that if partial or complete pivoting is used, 
3 . 2 

I loAI lm ~ 1.01(n +3n )pu, where, n is the order of the 

matrix, p is the pivot with the maximum absolute value, and 

u is the unit roundoff error. Similarly, if the LU factors· 

have been computed using Gaussian elimination of A then they 

satisfy the equation A+oA=LU, with 1 loAIIm ~ n2pu. 

2.3.2 ITERATIVE METHODS 
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In any iterative method one begins with an initial 

approximation vector and then successively modifies the 

approximation according to some rules. For an iterative 

method to be useful the sequence of vector iterates must 

converge. 

Convergence: A sequence of vectors ~(O),~(l),···•~(k) 
is said to converge to a vector ! if there exists, a quan­

tity O<c<l and an integer n>O such that 

lle(k) 11 = 11~-~(k) 11 ~ c, for k~n (2.3.22) 

The iterative methods can provide arbitrary accuracy 

depending on the number of iterations performed. They are 

usually terminated when the difference between successsive 

approximations (displacement) 
(k+l) (k) 

~ -~ , satisfies some 

given tolerance. Different iterative methods produce dif-

ferent rates of convergence and this, together with the 

amount of work required per iteration determines which 

method is used for particular problems. Another important 

factor in the performance of an iterative method is ·the 

choice of the initial approximation, ~(O). A bad choice can 

force even an efficient method to perform a large number of 

iterations. 

Suppose we wish to solve the system A! = £. Several of 

the best known iterative methods are built around a parti­

tion of A into the form 

A = D-L-U (2.3.23) 
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where D is diagonal, L is strictly lower and U is strictly 

upper triangular matrices. It should be noted here that we 

assume, without loss of generality, that the system is 

ordered so that aii # O. 

The equation (2.3.1) thus can be written as: 

Ox = (L+U)~+_£. 

The Jacobi iterative method is defined by 

Dx(k+l) = (L+U)~(k)+_£, 

(2.3.24) 

(2.3.25) 

with x(O) the initial approximation vector. This can be 

rewritten as 

(2.3.26) 

The Gauss-Seidel iterative method is defined by 

(2.3.27) 

giving 

x(k+l) = 0-lLx(k+l)+D-lUx(k)+D-lb (2.3.28) 

so that 

(2.3.29) 

Both Jacobi and Gauss-Seidel methods can be expressed 

in the general form 



- 70 -

(2.3.30) 

For the Jacobi iteration the matrix M=MJ=o-1(L+U) is called 

the point Jacobi iteration matrix, (or simply Jacobi 
-1 matrix). Also~ can be defined as ~J=O £. In a similar 

manner for the Gauss-Seidel method M=MG=(I-o-1L)-lo-1u and 

-1 -1 
g:G=(I-0 L) ~J' 

To analyse the convergence, let e(k) = ~-~(k), k~O, be 

the error in x<kl. Then, 

(2.3.31) 

where ~(O)=~-~(O), is the error of the initial approxima­

tion. Using the convergence definition, in order for x(k) to 

converge to ~· 
independent of the choice of ~ ( 0), it is 

necessary and sufficient that lle(k)ll<&. - - From (2.3.31) it 

is evident that the convergence criterion can be restated as 

Therefore it is sufficient 

that IIMII<l. 

An estimation of the number of iterations can be 

derived as follows. Starting from 

and by putting ~(O)=Q we have 

11~-~ ( k) 11 

11~11 

(2.3.32) 

Further let &/llxll=o; also, since p(Ml~IIMII, we finally 

get 

lno lno 
(2.3.33) k~---=---

lnp(M) -R.,.(M) 
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Thus, it is obvious that the rate of convergence is 

inversely proportional to p(M) or equivalently I IMI I· Notice 

that x<Ol=O is a usual initial approximation if no other 

information is given. 

Over Relaxation Methods 

Related to the Jacobi method is the Jacobi Over Relaxa-

tion method (JOR method). In this method the displacement 

vector x(k+ll_x(k) of the JOR method is taken to be w times - -
the displacement defined by the Jacobi iteration: 

(2.3.30) 

Therefore 

(2.3.31) 

The iteration matrix is now M(w)=wMJ+(l-w)I. The over 

relaxation factor w is chosen to minimize p(M(w)), 

in order to make x(k) converge to ~ as rapidly as possible; 

with w=l we have the Jacobi method~ 

Similarly, related to the Gauss-Seidel iteration method 

is the Successive Over Relaxation method (SOR method). In 

this method, the displacement ~(k+l)_~(k) of the SOR method 

is taken to be w times the displacement defined by the 

Gauss-Seidel iteration, therefore from equation (2.3.28) we 

• For JOR 0 <c..< 21( 1- m (Mrll i 2 , where in (M:rl i~ the ~I'T'<lllest 

eisenvalue of MJ. 
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have that 

then 

with oo=l, we have the Gauss-Seidel method. 

chosen to minimize p(M(oo)) for 0 < cu < 2 and 

(2.3.32) 

(2.3.33) 

Again oo is 

The calculation of-the optimal value of oo is difficult 

except in the simplest cases; usually it is obtained only 

approximately, based on trying several values of oo and 

observing the effect on the speed of convergence. In spite 

of these problems the resulting increase in the speed of 

convergence is dramatic. In many numerical applications the 

convergence of the iterative methods is secured by the fol­

lowing theorems. 

Theorem 2.3.1. If A is a strictly diagonally dominant matrix 

then for any choice of x(O) both Jacobi and Gauss-Seidel 

methods will converge. 

Theorem 2.3.2. If A is a positive definite matrix the 

Gauss-Seidel and SOR methods converge for any x( 0 l. 
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Theorem 2.3.3. Let MJ be non-negative. Then, only one of the 

following can be valid: 

1 = p(MJ) • p(MG) 

1 < p(MJ) < p(MG) 

Block variations of the linear system solution algo­

rithms described herein can also be derived, if all scalar 

operations are replaced by the corresponding block submatrix 

computations. 

£-cyclic matrices 

For some specific types of linear systems, usually 

arising in the numerical solution of certain ordinary or 

partial differential equations, special methods have been 

developed. These methods include Cyclic Reduction, Multi­

coloring techniques, Domain decomposition, Recursive Dou­

bling, etc. [3), [117), [214), [220), [282), [300). Some of 

these techniques are discussed later on in the context of 

developing specific systolic algorithms. The class of p­

cyclic matrices play an important role in the iterative 

solution of these linear systems. Herein some basic defini­

tions and properties are given. 

A square matrix A is p-cyc1ic, p~2, if there exists a 
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permutation matrix P such that PTAP can be partitioned in 

the block form 

fAll A 
l,p 

A21 ~22 
A32 A33 0 

~ 
(2.3.35) 

0 A A 
p,p-1 p,~ 

where Aii are square non-singular submatrices and Aij are 

rectangular submatrices. In the specific case where Aii are 

(lxl) submatrices, then the property that the matrix A is 

2-cyclic is equivalent with "property A". 

A square matrix M is called weakly cyclic of index p if 

there exists a permutation matrix P such that PTMP can, be 

partitioned in the block form 

0 Ml"'] ,p 

M21 0 

M32 0 

0~ (2.3.36) 

M p,p-1 
0 

where the null diagonal submatrices are square and Mij 

rectangular submatrices. 

Theorem 2.3.4. (Frobenius) If M is a weakly cyclic matrix of 
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index p then Mjp is completely reducible, for j~l, i.e. 

there exists a permutation matrix such that Mjp can take the 

form 

(2.3.37) 

where each diagonal submatrix is square and 

If a matrix A is p-cyclic, then A is consistently 

ordered if all eigenvalues of the matrix 

-1 -(p-1) 
M(e<) = D (e<L+e< U) (2.3.38) 

are independent of cx~O. Any block tridiagonal matrix, with 

Aii as non-singular square submatrices, is a consistently 

ordered 2-cyclic matrix. 

Now the convergence of iterative· methods using these 

matrices is examined. Let A be a consistently ordered p­

cyclic matrix. Then 

(2.3.39) 

and consequently R~(MG)=pR~(MJ). Thus, the Gauss-Seidel 

method is p times faster than the Jacobi method. For the SOR 
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method in particular, if the eigenvalues of MP are all real 

and non-negative, then an optimum w can be determined by the 

equation 

(2.3.40) 

and p(MG(oo))=(w-l)(p-1). 



2.4 MATRIX EIGENVALUE PROBLEM 

There are many 

and/or eigenvectors. 

problem and whether 

determining eigenvalues 

used will depend on the 

methods for 

The method 

both eigenvalue 

required or just the eigenvalue. 

and eigenvector are 

It also depends on the 

number of eigenvalues required or their relative positions 

in the eigenvalue spectrum. 

Some eigenvalue methods work with the matrix equation 

(2.2.12) or directly on the matrix A whereas other methods 

are concerned with finding the roots of the characteristic 

equation (2.2.13). Finally there are methods that compute 

the eigenvectors, for given eigenvalues. In this section we 

mention briefly some methods and full details can be 

obtained from [15], [72], [298]. 

2.4.1 THE POWER METHOD 

This method is used to find the dominant eigenvalue of 

a matrix as well as the corresponding eigenvector. Suppose 

that the following relationship holds for the eigenvalues of 

an (nxn) matrix A: 

(2.4.1) 

and that there exist n linearly independent eigenvectors ~i· 

Therefore any arbitrary u can be expressed as 

(2.4.2) 
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If we successively multiply u by matrix A and use the fact 

that if 

then, after k mltiplications, we have the following: 

k 
A u = 

From (2.4.4) and using definition (2.4.1) we have 

k 
A 

(_!) 4 0 as k4= i=2,3, ... ,n 
Al 

Thus, for k sufficiently large 

and we have 

k k-1 A1 = (A ~v(A ~)i i=1,2, ••• ,n 

(2.4.3) 

(2.4.4) 

(2.4.5) 

(2.4.6) 

(2.4.7) 

The sequence converges linearly and the rate of convergence 

depends on the ratio IA2;A1 1 since it converges more slowly 

than the other ratios in (2.4.5). It is essential that the 

are normalized using IIAk~ll= or some othet 

normalisation factor, so that the size of· the vector ele-

ments are kept within the desired bounds. 

In section 2.2.4 it is shown that if A and x are an 

eigenvalue and eigenvector of A, then (;>,.-p), and x are the 

eigenvalue and eigenvector of the matrix (A-pi). Thus, if 
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the Power method is applied on (A-pi), the rate of conver­

gence of matrix (A-pi) now depends on the value of the ratio 

By a suitable choice of p, it may be pos-

sible to make that value smaller than 

iA2/A1 1, and hence speed up the process. This is known as 

the shift of origin method. 

If the Power method is used with the matrix A-l then 

the eigenvalue of the smallest magnitude is determined, pro­

vided that 1An1<1An-l1· More generally matrix (A-AI)-l can 

be used to produce eigenvalues of the form 1/(A1-A), 

i=1,2, ••. ,n. This method is called inverse iteration and a 

more convenient formulation, especially for the computation 

of eigenvectors, is described later on. 

The Power method can also be used when there is not a 

single dominant eigenvalue, but then the algorithm is more 

complicated. The Power method can also be used to determine 

eigenvalues other than the dominant one. This involves the 

deflation of A in order to remove Al as an eigenvalue. 

Another iteration, closely related to the Power method 

is the Matrix Squaring algorithm that operates on matrix A 

as a whole instead of vector u. After s successive squar-

ings 

(2.4.8) 

This method is .mostly suited for full matrices with the 

ratio iA2/All very close to 1, since the convergence depends 
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2s k 
on IA2/A1 1 instead of IA2/A1 1 as in the Power method. 

Notice, however that the Matrix Squaring method requires n 

times more work per iteration than the Power method. In 

order to keep the size of the matrix elements within desir­

able bounds the iterates of the Matrix Squaring method are 

scaled by a factor 2r, such that 

2.4.2 CHARACTERISTIC POLYNOMIAL METHODS 

First we briefly mention the QR factorization method 

that is widely used for both eigenproblem solution as well 

as the solution of linear systems of equations. Given a 

matrix A, there is the factorization 

A= QR (2.4.9) 

with R upper triangular and Q orthogonal. The factorization 

is achieved by means of planar rotations using some class of 

orthogonal matrices P1 ,P2 , •.• ,Pn-l such as Householder or 

Givens matrices. Thus we have 

QT = p lp 2 • • . pl (2.4.10) n- n-

The technique of orthogonal similarity transformation is 

applied on the eigenproblem s6lution as follows: a given 

matrix A is transformed to a similar matrix T 

(2.4.11) 

where T is either symmetric tridiagonal, if A is symmetric, 
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or upper Hessenberg, if A is non-symmetric. 

For the determination of the eigenvalues of a symmetric 

tridiagonal matrix, the Sturm sequence property can be used. 

Similarly, for the case of a Hessenberg matrix, the charac­

teristic polynomial can be calculated using a recurrence 

given in [225). However, in the latter case the well-known 

problems of polynomial computation should be taken into 

account. Alternatively, in both cases, the QR method can be 

used. 

Now, suppose that A is a real symmetric tridiagonal 

matrix with main diagonal elements a1,a2 , ..• ,an and off­

diagonal elements b2,b3, ... ,bn. For any number x we intro­

duce the sequence 

p 0 (x) = 1, 

2 p
1
.(x) = (a.-x)p. 1(x)- b.p. 2(x) i=2,3, ... ,n. 

l l- l l-
(2.4.12) 

Then, pn(x) is the characteristic polynomial of A. 

The sequence pi(x), i•1,2, .•. ,n defined above forms a 

Sturm sequence. The important property which is used to 

locate the roots of the characteristic equation pn(X) is 

that: the number of sign agreements (disagreements) in the 

sequence p0 (x)=1,p1 (x), .•• ,pn(x) equals the number of eigen­

values of A which are strictly greater (smaller) than x. 

Note that if any pi(x) is zero, then the sign of pi(x) 'is 

taken to be the same as pi_1(x). 
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The evaluation of the Sturm sequence enables us to 

obtain successive upper and lower bounds on the roots of the 

polynomial equation Pn(x). To begin, we calculate an inter­

val which contains the roots. Using the Gerschgorin theorem, 

all eigenvalues are contained in the interval [a,~), with 

(2.4.13) 

By means of the Bisection method we divide [a,~) into 

smaller intervals. This technique can be used to compute all 

the eigenvalues of A or any particular one. 

As is shown, the Bisection method converges relatively 

slowly; however it is the ability to locate an eigenvalue 

independently of any others that makes the method so power­

ful and useful. The eigenvalues obtained by the Bisection 

method can efficiently be used as the initial guess for a 

more rapidly converging iteration to obtain further results 

of greater accuracy. 

Finally in the Leverrier-Fadeev method we suppose that 

the characteristic equation of A has the form of a polyno­

mial equation p(x) as in (2.1.1). Then, using the Newton's 

theorem, we have 

(2.4.14) 

Thus, the relations (2.1.5) can now be solved for the coef-
' ficients of the characteristic polynomial a1 ,a2 , ..• ,an' 
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as a linear system of equations containing Tr(A),Tr(A2 ), 
n ••• ,Tr(A ). Then the eigenvalues of A can be found by solv-

ing a polynomial equation. However, given the stability 

problems of the polynomial computations, the method is of 

limited practical interest. 

2.4.3 INVERSE ITERATION 

Now, we assume that some or all the eigenvalues of a 

matrix have been computed accurately. Inverse iteration is 

the preferred method of calculation for the eigenvectors. 

Suppose d(O)=d is taken as the initial vector, then to find 

the eigenvector corresponding to a given value of A we must 

solve 

(A-AI)~(k+l) • ~(k) k=O,l, •.. ,n (2.4.15) 

with !=~(n+l) the eigenvector sought. The iterates are nor­

malised using I l~(k)l I= as scaling factor. To analyse the 

convergence, let ~(O) be expanded in terms of the eigenvec­

tors as in (2.4.3), i.e. 

(2.4.16) 

In analogy to the Power method we have 

(2.4.17) 

Therefore d(k) can be expanded in a way similar to (2.4.4) 

1 k 1 k 1 k 
d(k) 

= cl(--) xl+c2(--) !2+ . . . +en(--) !n (2.4.18) 
A1-A - A -A A -A 2 . n 
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Let IA-Akl~c for some 15k5n, and IA-Ail~~>c for i•1,2, ••• ,n, 

i ;<k. Then 

(2.4.19) 

Usually c is quite small, and therefore rapid convergence is 

ensured. 

The solution of the systems (2.4.15) is effected by 

means of the LU decomposition method, with partial pivoting. 

(A-AI) = LU (2.4.20) 

The solution for each iterate d(k+1 ) is now as follows: 

(2.4.21) 

Since (A-AI) is nearly singular the last diagonal element of 

u will be nearly zero. If it is exactly zero, then it is 

changed to a suitable small quantity. 

Especially for symmetric tridiagonal matrices, the 

inverse iteration method can be further simplified, as sug-

gested in [296]. The initial approximation is taken to be 

~(0)=[1 1 1]T; furthermore it is assumed that A is a 

good approximation of Ak' i.e. IA-Akl is very small, and 

With this assumptions it can be shown that only 

two iterations are enough and no normalization for ·the 

vector iterates is necessary. 



2.5 MISCELLANEOUS ITEMS 

2.5.1 THE SIMPLEX METHOD 

Linear programming is a subject characterized by one 

main problem: to seek the maximum or the minimum of a linear 

expression in the form cTx when the variables of the prob­

lem, i.e. ~· are subject to restrictions in the form of cer­

tain linear equalities or inequalities. Problems of this 

kind are encountered when we have to exploit limited 

resources in an optimal way. Herein we describe the basic 

problem and outline the solution method. For more details 

see [17], [72), [111). 

The canonical problem of linear programming has the 

form: 

maximize the objective function z - cTx 

subject to the constraints A0~0 = ~. x ~ 0. (2.5.1) 

where A0 is a (nxp) real matrix of rank n, n<p; and ~·£ have 

n and p components respectively. 

The Simplex method starts from a simple initial feasi­

ble solution, i.e a solution that satisfies (2.5.1). Then it 

searches iteratively from one feasible solution to another 

seeking an optimal solution. Each cycle of the method pro­

duces one of the following 

-a solution x' for which £T~<ET~,, where xis the current 
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solution; 

an indication that x is optimal; 

- an indication that there is an unbounded set of feasible 

solutions. 

The mechanism of producing x' from x is as follows. Let 

the matrix corresponding to x be 

A ICI { 2.v , •.• , ~v , !v , a , .•• , a ; 
1 m-1 m -vm+1 -vn 

(2.5.2) 

(the notation indicates that there are n 

columns of A0 , but not necessarily the first n columns). We 

let 

T 
u=[x ,xv•···•x I - vl 2 vn 

be the vector of non zero components of x. 

A cycle of the Simplex method is as follows: 

(i) solve Au = b 

(2.5.3) 

(l.l·l·) t ' T • d h compu e c j = y ~j-cj' J=v1 ,v2 , ••• ,vn' an c oose any 

(iv) 

index s such that c' <0· s , 

solve Ad = a ; -s 

(v) let m be an index, such that 

(2.5.4) 
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(vi) drop column ~v from A and add vector ~s at the end: 
m 

A' a I ~v '! ' · · · '~v '~v ' · · · '~v '~s I · 1 v2 m-1 m+1 n 
(2.5.5) 

Now A' replaces A and a new Simplex cycle can start. 

The Simplex cycle cannot be carried past step (iii) if all 

c'. are non-negative, in which case x is optimal. And the 
J 

cycle cannot pass step (iv) if no component of~ is posi-

tive, in which case the objective function is unbounded on 

the set of feasible solutions. The main computational effort 

in the Simplex cycle is the solution of the linear systems 

of equations in steps (i), (ii) and (iv). A common method to 

effect the solution of these systems is the LU decomposition 

of A. 

2.5.2 DIFFERENTIAL EQUATIONS 

Differential equations (DE's) and systems of such equa-

tions appear in the description of physical processes, in 

problems involving rates of change of one or more indepen-

dent variables, [111). 

An ordinary differential equation (ODE) is an equation 

containing one independent and one dependent variable and at 

least one of its derivatives with respect to the independent 

variable. For example, a first order ODE, i.e. an ODE con-

taining the first derivative of the dependent variable w can 

be expressed as 

d>j~ 
a -- + bw + c = o (2.5.6) 

dx 
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A DE with more than one independent variables is called 

partial differential equation (PDE). For example, a second 

order PDE with two independent variables x, y has the form 

a, 
d- + 

ax 

a, 
e- + f>jl + g = 0. 

ay 
(2.5.7) 

The variables a, b, c, d, e, f, g are called coefficients 

and can be zero, or functions of the independent variables 

and also the dependent variable >jl. When the coefficients are 

composed only of functions involving the independent vari-

ables, the DE is termed linear; otherwise it is called non-

linear. A further classification of PDE's is 

elliptic PDE's if b2-4ac < 0 

parabolic,PDE's if b2-4ac = 0 

h b 1 . ' J.'f b2-4ac > 0. yper o l.C PDE s 

Notice that it is assumed that all terms of a DE can be 

formed, i.e. "' is continuous and differentiable as many 

times as the equation requires in a bounded domain. Associ­

ated with this domain is a boundary which defines the limits 

of the domain. Corresponding to the DE is a set of boundary 

conditions, which are functions describing the behaviour of 

"' at the boundary. According to the information available 

for the boundary conditions, different types of problems can 

be distinguished. 

In addition to the boundary conditions many problems 
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also define initial conditions which describe the state of 

the physical problem at some stage. In problems where time 

is one of the independent variables, t=O is adopted for the 

instant when the initial conditions are valid, and this is 

the starting point for the solution of the equation. 

If an ODE is of such form that each of the highest 

order derivatives can be expressed as a function of lower 

derivatives and the two variables, then it is possible to 

replace the equation by a system of n first order ODE's. 

Further, a set of dependent variables, all of them functions 

of the same independent variable, can define a system of 

DE's. Thus, for example, a system of linear first order 

ODE's can have the form of the vector DE 

d~ 
A - + B~ + c 

dx 
= 0 

where A, B are coefficient matrices and 

Finite difference approximation 

(2.5.8) 

Finite-difference methods are a powerful tool for the 

solution of many problems involving ODE's and PDE's. The 

domain of the independent variables is replaced by a finite 

set of points, usually referred to as net (or mesh) points, 

and one seeks to determine approximate values for the 

desired solution of these points. The values of the net 

points are required to satisfy a set of difference 
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equations, obtained by means of an approximation technique, 

[282), [289). 

We now examine the derivation of finite difference 

approximations for the second order ODE. 

+ a(x)~(x) = ~(x) (2.5.9) 

for ~<x<~ and subject to the boundary conditions 

~(~) = c, .p(~) = d. (2.5.10) 

Here c,d are given real constants and ~(x), a(x) are given 

real continuous functions on 1~.~], with a(x)~O. 

For simplicity, we place a uniform net of size 

h=(~-~)/(n+1) on the interval 1~.~), and we denote the net 

points of the discrete problem by 

= ~+ih, i=0,1, ... ,n+1 (2.5.11) 
(n+2) 

Perhaps the best-known method for deriving finite difference 

approximations to (2.5.9) is based on the Taylor's series 

expansions of the solution ~(x) of (2.5.9). Specifically, 

let us assume that ~( 4 )(x)=d~4 (x)/dx 4 exists and is continu­

ous in 1~.~). Denoting ~(xi) by ~i' the finite Taylor 

expansion of ~i+ 1 and ~i- 1 ' is 

2 h , , 
+ -~. 

2! l 
(2.5.12) 
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for O~l~rl~1, from which it follows that 

- 2"'c"'i-l-"'i+1 

h2 

2 
h (4) + -ljl (x.+~.h), 
12 1 1 

Using (2.5.9), we then obtain 

2"'i-ljli+1-ljli-l 

h2 

(2.5.13) 

(2.5.14) 

for i•1,2, •.. ,n, where ai•a(x1 ) and 'i•,(xi). Thus, a rela­

tion between three adjacent points is built, for each of the 

non-boundary points of the net. In other words, a three­

point stencil is placed on a linear net. 

Note that since "'o=c and "'n+1=d, we have n equations 

with n unknowns "'i' i.e. 

1 
- :-21j12 

h 

................................................. 
1 

- .....,.., 1 + 
h"" n- ' -n 

This can be rewritten in matrix notation as 

(2.5.15) 

(2.5.16) 

where A is a real (nxn) matrix, and ~,£ and • are column 
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vectors given specifically by 

2+a1h 2 -1 

-1 2+a2h 2 -1 

1 
A = h1 (2.5.17) 

-1 

-1 

and 

We now define the solution vector ~ of 

A~= b (2.5.18) 

as the discrete approximation to the solution of ~(x) of 

(2.5.9,10). It can be proved that by choosing a net spacing 

h sufficiently small, we can make the difference between the 

discrete approximation ~i and ~(xi) arbitrarily small. 

* Theorem 2.5.1. Let ~ (x) be the solution of the ODE defined 

in (2.5.9,10), where a(x) is non-negative, and let its 

discrete approximation ~ be defined by 

1~( 4 l(xll~~ 4 , for all x in [a,~), then 

(2.5.18). If 
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(2.5.19) 

* * where ~i=w (xi) and with xi defined as in (2.5.11). Further, 

using the vector norm definition 

ia1,2, ••• ,n, we have 

* 11.! -_!I I., ~ 
2 

(13-cx) 

* 11~ -~~~ a - - ... 

(2.5.20) 

* Therefore I 1.! -_!I I., can be decreased arbitrarily if h is 

taken sufficiently small. 

The finite difference approximation method can be 

extended to general second order ODE's as well as second 

order elliptic and parabolic PDE's as it is shown in [282], 

[289]. It is important to note that, in the most general 

case, the coefficient matrix A produced by the application 

of the finite difference approximation method on these 

classes of DE's has the following properties : 

- A is a square, real matrix with positive diagonal and non­

positive off-diagonal entries. Moreover A is irreducible, 

diagonally dominant. 

- A is, in general, block symmetric tridiagonal with A-
1

>0. 

For second-order ODE's A is point tridiagonal, and espe-

cially for (2.5.9) it is symmetric tridiagonal. 

- The Jacobi matrix MJ derived from A is consistently 

ordered, weakly cyclic of index 2 and with p(MJ)<1. 



C H A P T E R 3 

SYSTOLIC ALGORITHMSAND ARCHITECTURES 

This chapter is a brief introduction to certain funda­

mental concepts, concerning the systolic approach of paral­

lel processing that are used as a basis for the development 

of new systolic algorithms and architectures in subsequent 

chapters. In section 3.1, basic concepts and terminology of 

systolic computing are introduced through an example; 

further a framework for the development of systolic algo­

rithms for VLSI is given. The next section contains a set of 

fundamental systolic designs, that are used as building 

blocks and a point of reference for subsequent systolic 

architectures. In the following section, some transforma­

tional techniques are presented, for the derivation and 

manipulation of systolic algorithms; some details are also 

given concerning the context of application for each method. 

Section 3.4 discusses the concept of systolic programming on 

special-purpose or general-purpose computers; further the 

soft-systolic paradigm is introduced as well as the soft­

systolic simulation using OCCAM. In the final section, the 

optical implementation of systolic algorithms is discussed 
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together with the general influence of optical computing on 

the systolic approach; then, the framework presented in the 

first section is revised to take into account the soft-

systolic paradigm and the optical systolic algorithms. 

3.1 BASIC DEFINITIONS AND TERMINOLOGY 

3.1.1 A SIMPLE EXAMPLE 

Consider the problem of multiplying two polynomials, 

f(x)g(x), as defined in section 2.1*; for simplicity we 

assume that both polynomials are of degree n(=2), i.e.: 

and (3.1.1) 

The product f(x)g(x) is a polynomial of degree 2n(=4), i.e.: 

(3.1.2) 

with the coefficients defined as: 

*The same problem can be defined in a number of ways: 
for instance, it can be seen as integer multiplication, 
where the a's and b's are each 0 or 1; or as a type of 
non-recursive convolution between two sampled signals; 
or as Finite Input Response (FIR) filtering operation 
for a given signal; or, finally, as a matrix vector 
multiplication, where the coefficient matrix is a band­
ed Toeplitz matrix [82), [160), [181), [243), [285). 
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(3.1.3) 

Finally, let us assume that f(x) is a standard polynomial 

which is used for multiplying a series of polynomials, one 

of which is g(x). Equation (3.1.3) indicates that each of 

b0 ,b1 ,b2 is multiplied by all the coefficients of f(x), 

forming the terms of the resulting polynomial. Further, a 

certain regularity can be noticed in this process: b0 meets 

first a0 , then a1 and finally a 2; similarly for b1 , but its 

involvement starts from the calculation of c1 , while b2 is 

used for the last three components. Finally, observe that 

only two arithmetic operations are necessary, i.e multipli­

cation and addition, that produce the resulting terms as a 

series of inner products. 

A straightforward systolic design, that readily maps 

the computation in (3.1.3) onto a processing structure, is 

given in Fig.3.1.1. In the same figure the input and output 

sequences are also given, together with snapshots of the 

array operation. It is assumed that there is a global 

clock, synchronizing the computations of all components in 

the system, having a time cycle (step, unit) long enough to 

accommodate the most complex function performed by a proces­

sor, plus the data transfer. In each step, all processors 

simultaneously perform their i/o and then execute their 

operations. 
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c4 

- ao .,...._ al a2 

Fig.3.1.1. Polynomial multiplication array with broadcasting. 
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The array consists of n+l (here n+lm3) processors; the 

values of a 0 ,a1,a2 are stored within the cells; each proces­

sor contains a multiplier and an adder, performing an inner 

product calculation, c=c+ab. The coefficients of g(x) form a 

data stream (or data sequence) that is broadcast to all 

cells of the array at the rate of one data item per computa­

tional step. At the beginning of a cycle, one 'b' is broad­

cast to all cells and one 'c' enters the rightmost cell, 

initialised to zero. The computation of the resulting coef­

ficients is achieved by means of pipelined accumulation of 

the partial products. For example, c1 is computed in two 

steps: first a1b0 is calculated in the middle processor; in 

the next step it is passed to the left-hand-side processor, 

where a0b1 is calculated, and it is added to a1b0 to form 

c1 ; this result is produced as an output in the next step. 

Thus, an output data stream is formed by the resulting coef­

ficients. 

The main drawback of this design is the presence of the 

broadcasting mechanism. This has the disadvantage thatit 

involves long-wire interconnections and therefore long com­

munication delays and clocking problems. Further, it is dif­

ficult to expand the design for a polynomial of a differnt 

degree, because of the global interconnections involved. 

An alternative design is shown in Fig.3.1.2, together 

with the i/o data streams and the corresponding snapshots of 

its computation. Comparing the two designs we can observe 
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Fig.3.1.2. Polynomial multiplication array with bidirectional 
data flow. 
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that the broadcasting has been eliminated. In this case, we 

have a pipelined dataflow for both streams of b's and c's 

(the latter stream in the form of partial or final results). 

The two streams move systolically in opposite directions. 

Notice that consecutive b's and c's are separated by two 

cycles, or equivalently, there exists a dummy element 

between each two consecutive b's or c's. For example, for 

t=2, a1b0 is calculated in the middle cell; in the next 

cycle this partial product is moved to the left, where a 0b1 

is computed; the two partial products are summed to produce 

c1 as output in the next cycle. Observe that this design 

requires no global interconnections and therefore it is 

easily expandable to accommodate polynomials of any size. 

Finally, notice that the processors are not used in full, 

since they perform one useful computation approximately 

every two cycles. 

This disadvanatge can be overcome by another systolic 

design, which is illustrated in Fig.3.1.3, together with its 

i/o sequences and snapshots of its computation. Comparing 

the last two designs we can see that now both data streams 

move in the same direction; further the data streams are 

compact, as there are no dummy elements between the signifi­

cant data items. For example, for t=2, a0b1 is formed in 

the leftmost cell; for t=3, it is passed to its right-hand­

side processor, where a1b0 is calculated; the two products 

are added to form c1; this is produced as an output with a 

delay of one cycle, as it passes through the rightmost 
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processor. Notice that the data stream of the b's is twice 

as slow as that of the c's: this is achieved by inserting a 

delay element in the data path of the b's between each two 

adjacent cells. A delay element is just a register that 

ouputs its input with one cycle delay. 

The basic building block of the arrays described, is 

the Inner Product Step (!PS) cell, shown in Fig.3.1.4(a), 

(b) and (c) ·in three , different configurations, for the 

arrays of Fig.3.1.1, Fig.3.1.2 and Fig.3.1.3 respectively. 

As will be seen in the next section, the IPS cell is the 

fundamental component for a series of important systolic 

algorithms for matrix computations. The basic operation of 

an IPS cell is a sequence of multiplications and additions: 

the value of the coefficient a is stored in a register, 

while b and c enter the cell from the input links (data­

paths, channels) labelled bin and cin repectively. It is 

assumed that the adder and the multiplier have their own i;o 

latches, not shown in the figure. The outputs are produced: 

on the output links, labelled bout and cout; in Fig.3.1.4(b) 

and (c), b has to be delayed for one time unit so that the 

output of c and b will coincide. This is achieved by means 

of ~ delay register, identical to that used in the array of 

Fig.3.1.3. 

In Fig.3.1.4(d), (e) and (f), more abstract specifica­

tions of the three IPS cells are also shown: instead of 

actually giving the details of the cell interior, the pro-
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cesser is described by its function; further, it is taken 

for granted that the output of the processors is delayed by 

one cycle with respect to the corresponding input, and 

therefore no timing information is given. This type of 

description is generally adopted from now on, and is partic­

ularly useful for complex, possibly programmable, proces­

sors. A step further is the description of a cell using a 

section of pseudo-OCCAM code, which may include i/o opera­

tions; such examples are given in subsequent sections. 

3.1.2 MEASURES AND CHARACTERISTICS OF SYSTOLIC SYSTEMS 

Now, using the previously discussed systolic designs as 

examples, some terms and concepts are defined that consti­

tute a set of useful tools for the study of systolic algo­

rithms and architectures. Initially, some general perfor­

mance measures are given, followed by more detailed charac­

teristics of the operation and efficiency of systolic sys­

tems; then some descriptive terms are defined regarding the 

dataflow patterns and the interconnection geometry of sys­

tolic arrays. 

A measure of performance for systolic systems is given 

by the speed-up factor [169]: 

sequential computation time 
s = 

systolic computation time 

A speed-up of order n, where n is the number of processors 

in the systolic system, indicates a successful systolic 
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algorithm. In the case of the polynomial multiplication, s 

is between n/2 (for Fig.3.1.1) and n/4 (for Fig.3.1.2), 

where n is the degree of the polynomial and the number of 

processors in the designs; this indicates a linear speed-up, 

and therefore a good performance of the systolic algorithms. 

A similar measure can be obtained by the .computation to 

communication ratio [82): 

total number of cells 
c = 

number of boundary cells 

A boundary cell is a cell that participates in the host­

system communication. A large c indicates high utilization 

of the input data; however, in many cases,arrays with rela­

tively low utilization may still be useful. In the case of 

the polynomial multiplication, c"n, which indicates a' high 

utilization. Notice that broadcasting (and fan-in) are con­

sidered as internal characteristics of the system since they 

require only one i/o data path from;to the host. 

Except from the general measures of performance, some 

more detailed characteristics of systolic arrays are also 

used to classify and compare them. 

Area Complexity is usually measured in terms of the 

number of processors required; since the basic component 

used is the IPS cell, all other types of cells are defined 

in terms of IPS cell units, i.e. the equivalents of 

multiply-add operations that are involved. The area occupied 
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by interconnections, delays, registers is considered negli­

gible and not taken into account. For example, all the 

designs discussed have area equivalent to n+l IPS cells. 

Computation Time is usually measured in terms of cycles 

(steps, units) , where a time unit is taken to be the time 

required for the most complex cell function to be performed; 

the data transfer time is assumed negligible due to the 

locality of the communication. Again, it is common for the 

time complexity of processors to be expressed as multiples 

of IPS cycles, where an IPS cycle is the time required for a 

sequence ·of one multiplication and one addition to be per­

formed. For example, all three designs have a time cycle of 

one IPS, and the computation time is 2n, 4n+2 and 3n+2 

cycles, for Fig.3.1.1, Fig.3.1.2 and Fig.3.1.3 respectively. 

Processor Utilization can be defined as: 

total number of active cells during all computation steps 

number of cells * number of steps 

A cell is called 'active' if, at a given step, it performs a 

constructive computation, i.e. a computation that contri­

butes in the formulation of the required output (result) of 

the system; otherwise the cell performs a 'neutral' (dummy) 

computation and it is called 'idle'. For instance, in 

Fig.3.1.2, for t=l, the processors containing the quantities 

a 1 and a 2 are idle; further these cells input and output 

neutral (dummy) data items, as opposed to the significant 

data items accepted and produced by the active cells. The 
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dummy data items are necessary, in the input and output 

streams, in order to synchronize the computation of the pro­

cessors. An alternative approach is to assume that b0 and b2 
trigger on and off the cells so that they perform no func­

tion in the remaining cycles at all; the same effect can be 

produced by a control signal distr{buted systolically 

through the cells. Similar arguments can be formulated for 

the other two designs; thus the processor utilization for 

the three designs is approximately 1/2, 1/4 and 1/3 respec­

tively. 

Pipelinebility is the ability of a system to allow for 

consequent problems to be solved ('chaining') without any 

additional delay between successive problems. For example, 

in Fig.3.1.1 and Fig.3.1.3, there should be a 'gap' of n 

cycles between the input of b2 and the input of a new 

sequence b• 0 ,b• 1 ,b• 2 . These intermediate cycles are usually 

called 'drainage' cycles; note that for Fig.3.1.2 the 

drainage phase lasts 2n cycles, because of the direction of 

the result data stream. Similarly to the drainage cycles 

there can be some 'fillup' cycles, for input data to reach 

the appropriate processors. 

Initial Delay (Latency) is the number of cycles 

required between the input of the first significant data 

item and the output of the first significant result. For 

instance, in the first two designs the initial delay is 1 

cycle, i.e. fixed, while in the third the initial delay is 
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n+1 cycles, i.e. it depends on the array (and consequently 

the problem) size. 

Throughput can be defined as the output rate of signi­

ficant data items of the result, after the initial delay. 

For example, in Fig.3.1.1 and Fig.3.1.3 the throughput is 1, 

since they produce one significant result element per cycle 

after the initial delay. However, in Fig.3.1.2 the 

throughput is 1/2, since only one significant element per 

two cycles is produced. Further, notice that throughput and 

latency, do not have universal application, as there exist 

types of systolic systems that store their result instead of 

outputting it. Note also that the term 'efficiency' is also 

used alternatively, instead of processor utilization and/or 

throughput, and. generally to indicate the performance of a 

systolic architecture. 

Now, in order to fully specify a systolic array, the 

following descriptive terms can be defined, related to the 

dataflow patterns and the interconnection geometry of the 

array. 

A Data Sequence (or Data Stream) is a sequence of data 

elements, all of the same type, which has a given direction 

and speed. If we assume a global, synchronous clock, the 

speed of a sequence can be expressed as a fraction of unity, 

where the unity speed is that of a stream moving from one 

processor to its nearest neighbour in a given direction. 

For example, in Fig.3.1.3 the 'c' data stream has speed 1, 
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while the 'b' data stream has speed 1/2. Further, we can say 

that the 'a' data stream has zero speed, since its elements 

remain static in the processors. Notice that dummy elements 

can precede, follow or be between the significant elements 

of a data sequence. The 'guardbands' required in the fillup 

cycles is a case of dummy elements following (or preceding) 

a data stream, while in Fig.3.1.2 we can see that consequent 

significant data items are separated by dummy elements. 

Finally, the notion of a group of data sequences can be 

developed, for a set of sequences with same speed and direc­

tion, but working on different sets of processors. 

A Computational wavefront can be defined by connecting 

processors containing the elements with the same order in a 

group of sequences; similarly, a data wavefront can be 

specified. Usual types of wavefronts are the time-skewed and 

the reflected wavefront (where feedback loops occur). 

If we use the dataflow pattern as a criterion, it is 

possible to classify the systolic arrays as follows: An 

array is called 'stationary', if some data sequence have 

zero speed; otherwise it is called non-stationary (fully 
' . 

pipelined, chained). For instance, all three designs 

described can be defined as stationary, since the coeffi-

cients of f(x) are stored in the array. These two categories 

can be further subdivided according to the direction of the 

flow: we can have unidirectional, bidirectional and in gen-

eral k-directional arrays, i.e with data flowing ink direc-
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tions. For example, the array in Fig.3.1.2 is bidirectional, 

while that of Fig.3.1.3 is unidirectional. 

Using the interconnection geometry as a criterion, 

three types of array topology are the most common. Firstly, 

2-d geometries; a selection of those are given in Fig.1.1.5. 

Then, linear (1-d) geometries, similar to that given in 

Fig.l.l.4 and Fig.3.1.1, Fig.3.1.2 and Fig.3.1.3. A spe­

cial case of linear arrays are the collapsed (degenerate) 

2-d geometries; these are obtained from full 2-d forms, by 

collapsing the array in a single row or column. In this 

case, all cells are boundary cells, and therefore the compu­

tation - to - communication ratio is unfavourable; however, 

they can be transformed to 1-d stationary arrays using the 

same technique as in the three examples given: the redundant 

input sequences are stored in memory modules within the 

appropriate processors. 

3.1.3 FRAMEWORK FOR SYSTOLIC ALGORITHMS FOR VLSI 

The three designs presented are all systolic since they 

fulfil the criteria outlined in section 1.1: 

There exists an underlying structure of processors with 

interconnections and with communication from/to a host 

system; the processor interconnection geometry is simple 

and regular: the processors are arranged according to 

some simple geometrical structure, here a linear array, 

so that the communication between them can be both simple 



- 111 -

and regular. 

They make multiple use of each input data item: for exam­

ple as long as a coefficient of g(x) enters the system, 

it meets all the coefficients of f(x); this is achieved 

by either broadcasting a 'b' to all cells, or by pipelin­

ing it through the array. 

They use extensive concurrency in the form of array pro­

cessing (or multiprocessing) and pipelining: all proces­

sors work in parallel, while input and/or output data 

streams, as well as computations, are pipelined. The 

significance of the 'pumping' action (systole - diastole) 

is underlined by the extensive use of pipelining of both 

the input and the results. 

They have only few types of relatively simple cells: for 

example, each of the designs discussed use only one type 

of processors, i.e. the IPS cell. However, notice that 

the degree of the processor simplicity depends on the 

problem to be solved. 

The flow of data and control is simple and regular: this 

is obvious from the snapshots. The control is implicit: 

all processors perform continuously their function, and 

the dataflow determines the validity of the computations; 

another implicit control mechanism is the limitation in 

the size of the problem that can be solved by a given 

array, which is determined by the size of the array 
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itself. 

By using VLSI technology as a means of 

computing structure, further restrictions 

facilitate easier implementation: 

realising the 

are defined to 

The computing structure is 2-d, similar to a silicon 

wafer1 area optimization is very important, in both func­

tional units and the overall cell arrangement. 

The processor interconnection geometry is planar, or 

almost planar. 

The number (and the width) of ijo links from/to a proces­

sor is limited so that the processor has a limited size. 

Global communication (broadcasting, fan-in) and long wire 

interconnections are generally avoided. 

Using the rules imposed by the VLSI technology, a 

further distinction between the three designs can be made on 

the basis of using global interconnections: the first design 

uses global communication structures, while, in the other 

two, all communication is localised. The former design is 

usually termed 'semi-systolic', in contrast to the latter 

architectures that are termed 'purely-systolic'. 



3.2 SOME BASIC SYSTOLIC ALGORITHMS 

Now we consider some basic systolic algorithms and the 

corresponding arrays; these designs are well published and 

can be found in a large number of references (see, for exam­

ple, [113), [181), [199], [273)). This set of architectures 

illustrates how basic numerical methods for matrix computa­

tions (see Chapter 2) can be implemented systolically. 

Designs from this set will be referred to as basic (origi­

nal) arrays and the accompanying results on computation time 

and area requirements can be used as a benchmark for new 

designs. Further, these arrays will be combined to solve 

more complex problems, in some type of systolic network, 

pipeline or iterative system, in subsequent chapters. 

The fundamental unit of computation for these architec­

tures is the IPS cell, already discussed in the systolic 

polynomial multiplication. The basic IPS cell is transformed 

according to the different array geometries; the specific 

IPS cells will be described together with the corresponding 

array. As new processors are introduced their area and time 

complexity will be graded according to the number of IPS 

equivalents required to implement them; thus, for simplicity 

multipliers and dividers (and inversion circuits) are con­

sidered to have equivalent area; similarly, adders and sub­

tractors (and comparison circuits) are considered to have 

equivalent area, also. 

In the systolic algorithms described herein, we start 



- 114 -

with the statement of the problem and give its mathematical 

formulation, mainly in the form of a recurrence relation. 

Then the corresponding systolic array is presented and its 

main characteristics are discussed, i.e. geometry, cell 

types, dataflow characteristics, etc. It follows a descrip-

tion of the array operation, i.e. the systolic algorithm, 

and the area and time complexity of the design are deter­

mined. Finally, its efficiency, applicability and other 

individual features are briefly mentioned. This discussion 

is complemented with an extensive survey on further research 

in the specific topics (i.e. polynomial computations, matrix 

and vector multiplications, solution of linear systems of 

equations) in the introductory sections of the related 

chapters. 

3.2.1 SYSTOLIC MATRIX-VECTOR MULTIPLICATION 

Now·consider the matrix vector multiplication problem, 

y = A!, as defined in section 2.2, where A is a (nxn) matrix 

and !• y are vectors with n components. Each component of y 

is produced by computing the inner product of a row of A and 

of x. More formally, the recurrence relation can take the 

form 

yPl = o 
1 

Ylk+1) = Ylk)+aikxk 

Y. = y<.n+1 l, 1" k-1 2 n 1 1 ,-,, ••• ,. (3.2.1) 
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A linear array, implementing (3.2.1) for n=4, is shown in 

Fig.3.2.1. It is based on the engagement IPS cell, also 

illustrated in the same figure, that performs a multiply 

accumulate operation, storing partial and final results in a 

local register. The array can be said to be a degenerate 2-d 

array since all cells act as a boundary cell, i.e. accept 

input from the host. The vertical data sequences consist of 

rows of matrix A, while the horizontal data stream contains 

the components of ~· Each element of the resulting vector is 

accumulated into one of the processors. Notice the time­

skewed input wavefront; this formulation, as it will be seen 

later is typical of systolic algorithms involving full 

matrices. 

The array consists of n cells (the size of the prob­

lem). It takes n steps for y1 to be computed and then 

another n-1 cycles for the last element of A to enter the 

array. Thus, using this design the matrix-v_ector multiplica­

tion can be computed in 2n IPS cycles on a linear array of n 

IPS cells. The efficiency of the array is 1/2 as each cell 

performs constructive computations (i.e. it is active) in a 

total of n cycles, while in the remaining cycles it performs 

neutral computations using dummy elements (i.e. it remains 

idle). However, several matrix-vector multiplications can be 

performed on the same array, one immediately after the 

other, provided that each cell can output the previously 

accumulated result as soon as it is formulated. Irl this 

case, the efficiency of the design approaches unity, for a 
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Fig.3.2.1. Full matrix-vector multiplication array. 
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large number of chained problems. 

The array in Fig.3.2.1 is size-dependent, since chang­

ing the order of the matrix alters the size of the array. A 

size-independent array can be derived by assuming A to be 

banded. The new array is constructed by considering another 

ordering of the coefficients in A. The first design, in 

Fig.3.2.1, allocated coefficients to sequences in row order, 

forming a column ordered wavefront pattern. Another possi­

bility is to allocate coefficients in diagonal order such 

that each data sequence contains elements from the same 

sub-(super-) diagonal which are separated by dummy elements. 

Using this i/o sequence format allows the transformation of 

the array from stationary to non-stationary, as shown in 

Fig.3.2.2. (for w=4, p=3, q=2). The array is again linear 

(in the form of a collapsed 2-d array); the dataflow along 

the array is bidirectional, while in the design of Fig.3.2.1 

it is unidirectional. The two-way IPS cell used in this 

array is also specified in Fig.3.2.2. 

Initially, x and ~ move along the array in opposite 

directions until they meet each other (fillup phase); then 

the constructive computation starts, as the elements of A 

enter the array; finally there is a drainage stage, for the 

remaining components of x and ~ to move out of the array. 

Notice that only w cells are necessary, where w=p+q-1 is the 

bandwidth of A, since only w diagonals have non-zero ele­

ments. Further, the longest input sequence has length 2n. 
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Finally, the results yi are accumulated from right to left 

giving an additional delay of w cycles for the first result 

to emerge. Thus, the banded matrix vector multiplication 

problem requires an area of w IPS cells and computation time 

of 2n+w IPS cycles. 

In this design wave fronts are defined by a row ordering 

on the left of the main diagonal sequence and a column ord-

ering on the right. By definition, dummy elements preserve 

operands and results and their use is extended to act as 

synchronizing delay elements, in a way similar to that of 

the delays necessary to produce the skewed input wavefronts. 

The efficiency of the array is 1/2; the efficiency can be 

improved if two problem instances are interleaved, i.e. the 

dummy elements are replaced by the i/o sequences of·. another 

problem. 

Comparing the designs in Fig.3.2.1 and Fig.3.2.2 we can 

see that the banded matrix array is clearly superior to the 

full matrix array for w<<n. For dense matrices, the design 

in Fig.3.2.2 requires an area of 2n-1 IPS cells and a time 

of 4n-1 IPS cycles. This is because of the fillup and 

drainage cycles that are required before and after the con­

structive computation; these cycles are only negligible if 

w<<n and introduce an additional delay in the chaining of 

independent problems, since a new problem cannot start until 

the previous problem has been completely finished. On the 

other hand, however, the banded matrix design is fully pipe-
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lined, and therefore the result is immediately available, 

while in the stationary case, special output action should 

be taken. 

Because of the significance of matrix-vector multipli­

cation in digital signal processing and scientific computa­

tion, a large variety of designs is available, each design 

aiming to improve the performance of the systolic algorithm 

for specific applications*. A survey of these architectures 

and further improvements are given in chapter 6. 

3.2.2 SYSTOLIC MATRIX-MATRIX MULTIPLICATION 

The second important problem to be discussed is the 

multiplication of two (nxn) matrices, C=AB, as defined in 

section 2.2. Again, each component of C is produced by com­

puting the inner product of a row of A and a column of B. 

More formally, the recurrence relation takes the form 

c!~l = 0 
1) 

C !~+1) (k) b 
1) = cij +aik kj 

(n+l) cij = cij , i,j,k=1,2, ... ,n. (3.2.2) 

This formula can be seen as a set of n matrix-vector multi-

plications as defined in (3.2.1). Therefore, a stationary 

* Notice, for example, the similarity of the systolic 
array in Fig.3.1.2 with that of Fig.3.2.2, which stems 
from the similarity of the problem specifications, as 
explained in section 3.1. 
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systolic design can be immediately derived from that of 

Fig.3.2.1, if the linear array is replicated in n rows, as 

shown in Fig.3.2.3 (n=3). The processors used are again 

engagement IPS cells that accumulate cij and propagate aij 

and bij in horizontal and vertical directions respectively. 

The i/o data streams and the related computational wave-

fronts are also given in Fig.3.2.3. The input streams of 

matrix A are constructed from its rows, while the input 

streams of B consist of its columns, thus representing n 

column vectors. Observe the skewed format in both input 

wavefronts. The elements of the resulting matrix c are accu-

mulated within the array, each element into a processor. 

Notice that c1i is computed after n cycles; after 2n 

cycles all inputs have been read in and cln' cnl are com­

puted; finally, after 3n cycles cnn is produced. Thus, the 

product of two dense matrices A,B can be calculated on an 

orthogonally connected array of n2 IPS cells in a time of 3n 

IPS cycles. However, it should be noticed that n extra steps 

are required for the output of the result. 

The efficiency of the array is 1/3, in the sense that 

each processor is active for n cycles out of a total of 3n 

cycles. Further, the chaining of independent problems is not 

obvious, since it involves a mechanism for unloading the 

previously accumulated result. Observe that the array is 

size-dependent, i.e. changing the order of the matrices 

alters the cell count of the array. 
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Fig.3.2.3. Full matrix-matrix multiplication array. 
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A size-independent array can be derived by assuming 

matrices A,B to be banded. The new array is constructed by 

considering a diagonal ordering for the data sequences, 

instead of row/column ordering as in the full matrix-matrix 

multiplication array. The new design is a hexagonally con­

nected (hex-connected) array, given in Fig.3.2.4. Each i/o 

sequence contains elements of the same sub-(super-) diagonal 

which are separated by two dummy elements. The new array is 

not only size-independent but also non-stationary, since C 

is immediately produced as an output. 

The three-way IPS cell used in the hex array is also 

shown in Fig.3.2.4. The dataflow through the array is 

bidirectional in the sense that every partition of the 

dataflow, leaves one of the data·streams flowing in the 

opposite direction of the other two. This is in contrast to 

the stationary array, where it is possible to partition the 

dataflow so that both sequences move in the same direction; 

thus the dataflow in the stationary array can be termed as 

unidirectional. 

Notice that if wA and w6 are the bandwidths of A and B 

respectively, then only wAwB processors perform constructive 

computations (in Fig.3.2.4,_ wA=w6=3). The output matrix C 

has bandwidth Wc=WA+w8-1, for WA' w8<<n. Further, the length 

of the longest input sequence is 3n; finally the results cij 

move upwards through the array, and there is an initial 

delay of min(wA,wB) cycles. Thus, the product of two (nxn) 
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banded matrices A, B of bandwidth wA and w8 respectively can 

be computed on a hex-connected systolic array with wAwB IPS 

cells in time 3n+min(wA,w8 ) cycles. 

The processor utilization and the throughput of the 

array is 1/3; its efficiency can be improved to be nearly 

one if three problem instances are interleaved. Comparing 

the two designs in Fig.3.2.3 and Fig.3.2.4 we can see that 

the hex-array is superior to the orthogonally connected 

array only if wA,w8<<n. Otherwise the efficiency of the 

hex-array is lower; for example, for a full matrix-matrix 

multiplication it requires approximately (2n-1) 2 cells and 

Sn-1 cycles. 

Improvements in the performance of the two systolic 

arrays for matrix-matrix multiplication, as well'as a survey 

of other systolic arrays for the same or related problems 

can be found in chapter 7. 

3.2.3 SYSTOLIC SOLUTION OF LINEAR SYSTEMS 

In this section, systolic algorithms for matrix tri­

angularization, LU-decomposition, and forward (backward) 

substitution are presented. These algorithms are used for 

the solution of a linear system of equations in the general 

form A~=~, as defined in (2.2.4). 

The matrix triangularization process is described in 

section 2.3 using the Gauss elimination method, and also 

mentioned in section 2.4 in the context of the QR 
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factorization method. Matrix triangularization can be per­

formed on the systolic array in Fig.-3.2.5(a) (n=4), which 

consists of a triangular array and a linear (degenerate 2-d) 

array, interconnected to the triangular one. The whole sys­

tem computes using the augmented matrix (AI~); the triangu­

lar part modifies matrix A, while the linear part updates 

the r.h.s vector. 

The specification of the cells is given in 

Fig.3.2.5(b). The square cells are engagement IPS cells aug-

mented with an internal register and row interchange con­

trol. The circular cells compute the multipliers and the 

pivoting information; the pivoting method used is pairwise 

(or neighbour) pivoting. For the circular processors we must 

assume that they can negate xin in parallel with the test 
.. 

lxin I ~lXI, and the comparison takes the same time as an 

additionjsubtraction, so that the time unit of the elimina-

tion is within the 1 !PS cycle. Further, it should be 

ensured that no division by zero occurs; this can be 

achieved by checking either the operands or the input 

streams. 

The array is stationary since the result is stored 

within the array and can be collected at the end of the com­

putation. As output the multipliers and the pivoting infer-

mation are produced. The input data sequences are shown in 

Fig.3.2.5(a); each sequence consists of a column of A, while 

the last stream consists of the components of b. Row 1 of 
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the array forms the input boundary and accepts a row of A 

and an element of b. Every row of A that arrives has its 

first element eliminated and the rest of the row updated. In 

general, row i accepts modified rows from row i-1 and elim­

inates their first entries while updating the others. The 

skewed wavefront format is necessary so that the multipliers 

and the pivoting information reach the appropriate cell 

simultaneously with the element to be updated. 

The array consists of n(n-1)/2 IPS cells and n elimina­

tion cells. Observe that it takes 2n cycles for the last 

input to enter the array, and another n cycles for the final 

modification of the r.h.s vector to be performed. Thus, the 

systolic design of Fig.3.2.5 performs the triangularization 

of the augmented matrix in 3n steps using n(n-1)/2 + n pro­

cessors. The efficiency of the array is 1/3, while addi­

tional time is required for the output of the result. The 

design is size-dependent, since the area requirements change 

with the matrix size. A size-independent array, for banded 

matrices is briefly described in [113]. Similar results can 

be produced if, instead of Gauss elimination, similarity 

transformations are applied on the augmented matrix, using 

orthogonal matrices (e.g. Givens or Householder rotation 

matrices). 

Next we examine the LU-decomposition of a matrix, A=LU, 

discussed in section 2.3. The equations (2.3.14) can be 

expressed equivalently by the recurrence relation 
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a!~l = aij lJ 

a!~+1) ( k) 
= a. . + 1. k ( -uk . ) lJ l J l J 

0 i < k 

1ik = 1 i ~ k 

( k) 
aik ;ukk i > k 

0 k > j 

ukj = 

a(k) 
kj k ~ j, i ,j ,k=1,2, ... ,n. (3.2.3) 

The k-th major step of the decomposition procedure computes 

the k-th row of U and the k-th column of L, and then updates 

the submatrix formed by (k) "'klk2 aij , 1,]= + , + , ••• ,n; then, the 

processing of a new row and column can start - see also 

equation (2.3.2). A corresponding systolic algorithm for a 

banded matrix A with bandwidth w=p+q-1 uses a hex-connected 

array that is shown in Fig.3.2.6 (w=3, p=q=2). The circular 

cell receives ukk and produces it as an output, while it 

calculates the reciprocal uk~ outputting it to the left-

hand-side upper boundary cells The processors in the 

left-hand-side upper boundary perform simple multiplications 

to compute the lik terms; on the right-hand-side the proces­

sors compute the terms -ukj" The remaining cells are simple 

IPS cells; therefore it can be said that all processors have 

area and time complexity not larger than an IPS cell. The 
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specification of the cells is also given in Fig.3.2.6. 

Thus, the upper boundary computes the LU factors while 

the rest of the array updates the remaining submatrix; 

notice that no pivoting strategy is implemented. The i/o 

data sequences correspond to the diagonals of the matrices 

A, L and U, intersected with two dummy elements between each 

significant data item; observe that the main (unit) diagonal 

of L is not produced. The computational wavefronts are for-

mulated by the combination of the row and column that are 

currently being modified. Tracing the wavefronts shows that 

successive column and row modifications are overlapped with 

submatrix updatings. Notice the reflection of the wavefront 

on the upper boundary: it can be said 

involves a feedback loop, in the sense that 

that the array 

a(k+l) de.pends 
ij 

on lik' ukj that have been already produced. The feedback 

operation justifies the spacing of the significant elements 

in the input streams, .since a new row of U and column of L 

is produced every three cycles. The dummy elements conven­

tionally are denoted with zero; in reality either the circu-

lar cell should check for zero operand, or it should be 

ensured that no zero occurs in the input data. 

The array requires a total of pq processors, with corn-

plexity less than or equal to an IPS cell. The computation 

starts when a11 reaches the circular cell, i.e. after 

min(p,q) cycles. The length of the main diagonal sequence, 

which is the larger, is 3n. Therefore, the total computa-
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tion time is 3n+min(p,q) steps. Notice that when A is dense 

we use n2 cells and the computation is completed in 4n 

cycles. An equivalent orthogonal array for full matrix com-

putations requires a similar area and time, and has the 

additional disadvantage that the corresponding systolic 

algorithm is stationary, i.e. matrix A must be stored in the 

array, and the result must be unloaded at the end of the 

computation. The efficiency (and the throughput) of the 

array is 1/3; this performance can be improved by interleav­

ing three problem instances. 

The resulting LU factors can now be used for the final 

solution of the linear system by means of forward and back­

ward substitution (notice that after the triangularization 

only a backsubstitution is required). The forward substitu­

tion process is discussed in section 2.3, equation (2.3.16). 

For a lower triangular (nxn) matrix A, the solution vector x 

can be formulated using the recurrence 

( i ) x. = (b.-y. )/a .. , k=1,2, ... ,i 
1 1 1 11 

(3.2.4) 

The sequence yli) is used for the collection of partial 

results. The forward substitution array is shown in 

Fig.3.2.7 for a banded lower triangular matrix A, of 

bandwidth w=q (here q=4). It consists of IPS cells identical 

to those used in the banded matrix vector multiplication 
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array, as well as a boundary cell, whose definition is also 

given in Fig.3.2.7. Its area-time complexity can be said to 

be equivalent to that of an IPS cell under the assumption 

that multiplication has equivalent complexity with division 

and subtraction with addition. 

The array forms a feedback loop (a reflected wavefront) 

in the sense that a result xi depends on the previous 

results x. l'x. 2' •.. ,xl 1- 1-
for the formulation of y!i). 

1 
It 

follows that y!i> 
1 

can be produced only once every two 

cycles, otherwise it would be impossible to collect all the 

required terms; this fact explains the positioning of the 

dummy elements in the data streams, as well as the time­

skewed input wavefront. The dummy elements, again, conven­

tionally are denoted with zeros; in r~ality the division in 

the circular cell must check against zero, or no zero input 

must be allowed. 

Notice that only q cells are necessary, equal to the 

number of significant matrix diagonals; 

input sequence has length 2n and each 

further, the larger 
( i ) yi requires q-1 

steps to reach the circular cell. Thus, the forward subsitu-

tion process can be performed on a systolic array with q 

processors in 2n+q cycles. The efficiency of the array is 

1/2, and again the interleaving of two problems is possible 

in order to improve this efficiency. 

The significance of the solution of linear systems of 

equations has led to a large number of systolic 
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architectures, tuned for specific applications. A survey of 

these designs, as well as some improvements are given in 

chapter 5. Also, the improvement of the performance of the 

LU-decomposition and backsubstitution arrays is discussed in 

the next section, in the context of applying transformation 

techniques on systolic designs. 



3.3 TRANSFORMATION TECHNIQUES 

Transformation techniques consist part of the systolic 

algorithm design strategies, briefly discussed in section 

1.2. These methods do not attempt to address the problem of 

algorithm ·design as a whole, but rather concentrate on some 

steps of this design process. A transformation technique, in 

general, aims to achieve either (or both) of the two goals. 

First, to modify existing systolic designs, in order to pro­

duce new designs which may be improved in several aspects, 

such as area requirements or computation time. Second, to 

convert non-systolic algorithms into systolic ones that per­

form the same function. 

In this section we discuss some transformation tech­

niques, that are used in subsequent chapters to obtain or 

improve systolic designs. Initially, the Retiming technique 

is discussed, and applied on the example of section 3.1. 

Then, the Cut Theorem is introduced, in the context of the 

application of two-level pipelining and fault-tolerance in 

systolic arrays. Further, the area-time tradeoffs in sys­

tolic designs are considered and the expansion of a systolic 

computation in time and;or in area is discussed. Finally, 

the Rotating and Folding (R+F) method is described, for the 

improvement of the performance of certain fundamental sys­

tolic algorithms. 

3.3.1 RETIMING METHOD 
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The classical retiming theorem was originally stated in 

[181-182]; the formulation followed herein is mainly 

obtained from [243], [285], For the description of the 

retiming technique, it is helpful to view the system as a 

directed graph, where the nodes represent the cells (and the 

host), while the arcs. represent processor interconnections. 

Each arc is given a non-negative delay d, which indicates 

the number of time cycles that are required for a data ele­

ment to traverse the arc. That is, if there is an arc from 

processor v to processor u, and if a data item reaches node 

v at a given cycle, then it will take d time cycles before 

it reaches node u. The value of d can be zero only if a data 

element passes processor v unchanged. Now, for a graph to 

represent a systolic system, no arcs with zero delays should 

exist; that is, d~1, for all delays. This is equivalent to 

the elimination of any broadcasting or fan-in characteris­

tics in a systolic design, i.e. transformation of a semi­

systolic design to a purely-systolic one. 

we shall consider two transformation rules for elim­

inating zero delays. The first rule multiplies the delays in 

any graph by a constant, i.e. causes a global slowing - down 

of the circuit operation. The second rule causes a given 

processor to operate in time t!:_q instead of t, that is, it 

changes the relative timing of the computations in different 

processors. The purpose of the first rule is to give the 

designer more delays to work with, and the second rule is to 

distribute these additional delays in the arcs so that none 
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of them has zero delay. The transformation rules affect the 

following characteristic quantities of the system: 

The delay D experienced by a given stream at a given node. 

The spacing S of the significant elements in a given 

sequence, as it arrives at a given processor. 

The period P, i.e. the number of cycles between the arrival 

of two successive significant elements from a given stream 

to a given processor. 

Notice that in general the equation DS=P must hold. 

Now, the two transformation rules are defined as follows: 

slowing: if we multiply all delays on the arcs of a graph by 

some constant k>1, then the processors may be redesigned so 

that the system will continue to perform its function, 

although at 1/k-th of its original speed, i.e. the period of 

all processors is multiplied by k. 

This transformation rule can be seen as globally modi­

fying the equation DS=P, to (kD)S=kP. Thus, between two 

cycles of the original system, the new processors will count 

k-1 idle cycles. Notice that the transformation rule is not 

valid if k delays are added to each arc of the graph. 

projection: if v is a node, whose every output arc has a 

delay greater than k, k>O, then we may add k delays to each 

input arc and subtract k delays from each output arc (back­

ward ·projection in time). If the processors are modified 
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appropriately the circuit will continue to perform its func­

tion. Similarly, if every input arc of v has a delay greater 

than k, then we can subtract k delays from the input arcs 

and add k delays to the output arcs, and preserve the func­

tion of the system (forward projection in time). 

For this transformation rule, there are significant 

transformations to be done, in order for DS=P to continue to 

hold. For example, suppose that some arc leaving v has a 

delay D, and v needs D cycles to compute its output element 

for that arc. Then the cycle time must be changed so that 

computation is now completed in at most D-1 cycles. Further, 

the change of D must be compensated by a change in S or P. 

Since it is not easy to change P, locally or globally, spac­

ing should change from s to DS/(D-1). 

The 'slowing' and 'projection' rules are combined in 

the following steps to produce the retiming method as 

applied on a given graph: 

Let lag(v) be the length of the longest path consisting of 

zero-delay arcs, ending at v. It is assumed that the graph 

has no cycles consisting solely of zero-delay arcs. We 

choose k so that dk > lag(v)-lag(u) where v, u range over 

all pairs of nodes of the graph, such that there is an arc 

of some positive delay d, from v to u. 

Then we multiply all delays in the graph with k, i.e we have 

dk instead of d (application of slowing). 
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Finally, we delay each node of lag q, by q cycles (applica­

tion of projection). Thus, all delays have been modified to 

dk+lag(v)-lag(u). The new system has all delays,d~1 and the 

retiming transformation has been completed. 

Fig.3.3.1 illustrates the application of the method, 

using the designs discussed in section 3.1: starting from 

the semi-systolic design of Fig.3.1.1, we apply the retiming 

transformation to obtain the systolic design of Fig.3.1.2. 

In the final stage of the transformation, one delay is 

assumed to be included in the definition of the IPS cells. 

Notice the use of the host node to close the loop of the 

graph. Further, observe the effect of the retiming technique 

on the distribution of the computations over the time and 

the area (Fig.3.1.1 and Fig.3.1.2): each cell 'delays' the 

commencement of its calculations according to its spatial 

distance from the host, and there is an interval of one 

cycle between two consecutive computations. 

The retiming method may become quite tedious to apply, 

especially in complex designs; further, it is rather res­

trictive in the types of transformations allowed, as the 

dataflow directions, as well as the cell interconnections 

and computations cannot change. An informal modification of 

the method, used in subsequent chapters, is based on the 

•retiming' of the computations, rather than the graph func­

tion. For example, it can be argued that the basic feature 

in all three designs in section 3.1 is the fact that all b's 
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Fig.3.3.1. Application of the retiming method. 
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should meet all a's to form the corresponding c•s; however 

the interference between the three streams is arranged in a 

different way in each of the three designs. Therefore, it is 

possible, to modify the arrangement of the computations by 

•retiming' the data stream interferences, and thus to even­

tually modify the underlying systolic array. In this way, 

the array of Fig.3.1.3 can be produced by that of Fig.3.1.1 

if the computations of each cell are delayed by 2d cycles, 

where d is the distance of the cell from the host. 

3.3.2 CUT THEOREM 

The mathematical notion of a •cut• has been introduced 

to solve the problem of how to allow additional delays in 

the data paths of systolic designs, while preserving the 

correctness of the original algorithms. The cut theorem is 

related to the retiming technique, but its application is 

simpler, since its scope of transformation is more limited. 

Further, of great interest is the context of application of 

this technique, as well as some related results. The cut 

theorem had been originally proposed in [164), and it was 

applied to two important implementation issues of systolic 

array design: first, the provision of fault-tolerance in 

systolic arrays to yield WSI implementations; and second, 

the design of efficient systolic arrays with two-level pipe­

lining. The first issue refers to the pipelined organization 

of the array at cell level; while the second refers to the 

pipelined functional units inside the cells, which form a 
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second level of pipelining. 

Consider the systolic array for polynomial multiplica­

tion in Fig.3.1.3. Now, Fig.3.3.2 depicts an example of a 

fault-tolerant version of the same array; at the same figure 

the specification of a fault-tolerant cell is given using 

reconfigurable links. Note that it is possible to use the 

i/o latches of the cell as bypass registers in case the cell 

fails. Therefore, no extra registers may be needed to imple­

ment this fault-tolerant scheme. From the specification of 

fault-tolerant circuits in section 1.2, it can be seen that 

the need for spare cells and the associated interconnection 

network has been minimized. What is necessary is only a con­

trol algorithm performing fault detection and reconfigura­

tion of the appropriate switches. A basic assumption of this 

scheme is that the probability of the interconnections and 

latches to fail is very small and thus negligible. This is 

reasonable because these components are typically much 

simpler and smaller than the cells themselves. Furthermore 

they can be inexpensively implemented with redundancy (i.e. 

multiple bypass connections and registers) to increase the 

yield. This technique allows for full utilization of all 

live cells and without any long wire interconnections or 

clocking problems~ since any defective cell is just replaced 

by an additional delay in all data streams, (1641. 

The above reasoning can also be applied to the imple­

mentation of two-level pipelined arrays. We can interpret 
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Fig.3.3.2. Fault-tolerant array. 

Fig.3.3.3. Two-level pipelined array. 
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the stages in a given pipelined functional unit as addi­

tional delays in the communication between a pair of adja­

cent cells. Consider, for example, the two-level pipelined 

array for polynomial multiplication in Fig.3.3.3. Since the 

adder is now a three-stage unit, two additional delays are 

introduced in the result data stream. Thus, each cell 

requires a total number of four delay registers to be placed 

in the 'b' data stream. One is implicit in the original 

definition, the second is the delay register in the original 

design in Fig.3.1.3, and the last two are to balance the two 

new delays in the adder. 

The cut theorem gives a general rule for the transfor­

mation of systolic designs to fault-tolerant or two-level 

pipelined, _by modelling this transformation as the insertion 

of additional delays in the interconnections between cells. 

starting from the graph model introduced in the retiming 

technique, we define a 'cut' to be a set of arcs that parti­

tions the nodes into two disjoint sets, the 'source set' and 

the 'sink set', with the property that these arcs are the 

only ones connecting nodes in the two sets and are all 

directed from the source to the sink set. Also, a systolic 

design is called a 'delayed' system of another systolic 

design, if the former differs from the latter by having 

additional delays on some of the processor interconnections. 

Cut Theorem: for any systolic design, adding the same delay 

to all the arcs in a cut and to those pointing from the host 
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set to the sink set, will result in a delayed systolic 

design performing the same function as the original. 

As depicted in Fig.3.3.4, the interconnections between 

two adjacent cells of the unidirectional linear array of 

Fig.3.1.3 form a cut. Thus, by the cut theorem, we can see 

that both the fault-tolerant array in Fig.3.3.2 and the 

two-level pipelined array in Fig.3.3.3 are delayed versions 

of the original array. 

The cut theorem, as described above, can be efficiently 

applied only to systolic arrays with unidirectional 

dataflow. For example, if the same fault-tolerant technique 

is attempted on bidirectional systolic arrays (see, for 

example Fig.3.1.2 and section 3.2), then the performance of 

~he fault-tolerant array degrades rapidly with respect t6 

the number of consecutive failed cells that need to be 

tolerated. Notice that bidirectional arrays have processor 

utilization and throughput of 1/2 or 1/3 in the first place. 

Now, in order to tolerate k consecutive failures, the 

throughput must be further decreased by a factor of k+1. The 

bidirectional arrays discussed can be distinguished into two 

groups: those with feedback cycles (e.g. LU decomposition, 

solution of triangular systems), and those without feedback 

cycles (e.g. polynomial multiplication, banded matrix-vector 

and matrix-matrix multiplication). The latter group of algo­

rithms can be transformed to unidirectional ones, as it has 

been shown for polynomial multiplication and will be shown 
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Fig.3.3.4. Application of the cut theorem. 

-1 
all 0 0 

a21 0 0 

a31 
-1 

a22 0 

a41 a32 0 

a 51 a42 
-1 

a33 

a61 a 52 a43 
-1 

a44 a62 a 53 

Fig.3.3.5. Systolic ring architecture. 



- 149 -

for the other designs in subsequent chapters. However, for 

the former group, the most suitable transformation is the 

one leading to a systolic ring architecture. 

An example of a systolic ring architecture is given in 

Fig.3.3.5; it solves a lower triangular linear system by 

forward substitution, i.e. it performs the same function as 

the array in Fig.3.2.7. The coefficient matrix A, is banded 

with bandwidth q=6. A ring of q/2 cells is sufficient to 

solve the problem at the same throughput as the linear 

bidirectional array, but with doubled processor utilization, 

since the ring uses only half of the cells of the linear 

array. Notice, however that in order to avoid the computa­

tions of the boundary cell in Fig.3.2.7, i.e. subtraction 

and division, it is necessary to precompute the re_ciprocals 

of the main diagonal and send the elements of the r.h.s vec­

tor b to the cells via the second communication channel. 

Notice also that further preprocessing is necessary for the 

formulation of the input data streams, which are now more 

complex, since they consist of sequences of matrix columns, 

including reciprocals of the main diagonal elements. 

Thus, a recurrence with feedback cycles of size 2m-l 

can be. computed on a systolic ring of m processors, at a 

throughput rate of 1/2. If k cells fail, the ring can still 

solve problems of sizes up to 2m-k-1 at a throughput rate of 

(m-k)/(2m-k). In other words, the reduction in throughput 

due to k failures is only k/(2m-k) of the original. Similar 
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results can be produced for a two-level pipelined ring. 

The cut theorem, and the related fault-tolerant and 

two-level pipelining techniques, has also been extended to 

2-d arrays; similarly, a 2-d systolic ring architecture for 

LU decomposition can be derived, [164). Further, the cut 

theorem has been extended and modified in [82], [169) to be 

applicable in general graphs, and can be used as a simpler 

alternative to the re timing technique. 

3.3.3 AREA-TIME EXPANSION 

In the examples given so far, the designs have been 

evaluated according to cell count and computation time. 

These criteria seem to be quite natural, but also have prac­

tical significance, and furthermore they usually compete 

with each other. The importance of minimizing the computa­

tion time is self-evident: a significant reduction in the 

computation time means that existing problems can be solved 

faster, and bigger problems, previously impractical, may 

become solvable. Further, in real-time applications, the 

ability to provide results for time-dependent processes is 

crucial. On the other hand, the minimization of area 

requirements is also important. First, at chip fabrication 

level, because of the very low-yield of flawless chips per 

wafer, it is imperative to optimize the area required for a 

function. Then, at array level, in order to minimize the 

cell-count of an array, and therefore the implementation 

cost of the system. 
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The selection of a particular systolic algorithm for a 

given problem is therefore a complex tradeoff between area 

(A) and time (T). The history of the computation performed 

by a systolic system can be represented by a rectangular 

solid, where the two horizontal dimensions represent the 

area of the systolic design, and the vertical dimension 

represents the computation time for the system. This third 

dimension can be interpreted as the sequence of snapshots 

for the design operation. Based on this representation, we 

can distinguish three types of arguments that can be used to 

derive lower bounds (theoretical minima) on the area and/or 

time requirements of a given systolic design. The first pos­

sibility is to use the volume of information that is 

included within the solid, and thus define a lower bound for 

AT. The second possibility is to use the ~mount of informa­

tion that flows in a time unit across the system, and thus 

define a minimum for A. Finally, .the third possibility is to 

use the amount of information that flows across the smallest 

area dimension, and thus define a lower bound for AT2 , 

(285]. 

Results concerning area-time tradeoff analysis and 

related lower bounds of systolic algorithms can be found, 

for example, in (178], (181], (184], (212]. In our case, the 

importance of the area-time tradeoff analysis is that it 

indicates that there exists room for further improvements in 

the reported systolic designs, by modifying either A or T. 

Further, the systolic algorithm design methods can be seen 
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as (semi)formal ways of actually searching over the space of 

possible systolic architectures for a given problem, in 

order to find the design that optimizes given criteria, 

mainly area-time tradeoffs. Now, we briefly discuss a 

transformation technique that explicitly addresses the 

area-time tradeoff problem in the implementation of a given 

systolic algorithm. 

A VLSI computation (systolic or otherwise) may be 

arranged in several ways, spanning from fully parallel to 

fully sequential; the former approach spreads the computa­

tions in area ('area expansion'), whereas the latter spreads 

them in time ('time expansion'). Area expansion typically 

achieves high throughput; the data flow is simple and regu­

lar; and the control requirements are minimal, usually 

implicit to the system. This is the case of the original 

systolic arrays. Unfortunately, the cost of full area 

expansion is often prohibitive for large problems. Therefore 

the alternative time expansion, or intermediate designs, 

must be considered. 

It is possible to treat these area-time tradeoffs 

mathematically, by adopting a uniform representation for 

data and control flow, and express the circuit computation 

as a combination of data and control variables, [151]. The 

method is described through a simple example, illustrated 

with the help of Fig.3.3.6: in this figure a possible imple­

mentation of the enagagement IPS cell is given, similar to 
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that used in the full matrix-vector multiplication A~ c ~ 

(see Fig.3.2.1). The cell is augmented with an additional 

link, for the final output of the accumulated result, i.e. a 

component of ~· 

The first (implicit) control element is the delay ele­

ment that is denoted herein by Z; thus, the logical expres-

sion xout=Zxin 

x is delayed 

The component 

indicates that an element of the data stream 

by one cycle time, when it passes through z. 

M is a simple memory location, with no 

inherent delay. The second (explicit) control element is 

denoted by u, and has the form of an input sequence, exactly 

as the data i/o sequences for a, x and y. The control signal 

U has the following functions: if 0=1, then the multiplexer 

opens to output (y) the quant~ty stored in M, and M is reset 

to 0; if U=O (or, equivalently U'=l), then the multiplexer 

provides no output and M accumulates inner products in the 

form s=ainxin+Zs. Thus, the function performed by this 

structure can be described by the following combination of 

mathematical and logical expressions: 

y = Us, where s = ax+Z(U's+UO) = ax+ZU's (3.3.1) 

where, a, x and y indicate the current value of the data 

streams a, x and y. This expression can be expanded as 

y = ax+ZU'ax+ZU'ZU'ax+ZU'ZU'ZU'ax+ ... (3.3.2) 

In other words, the circuit accumulates products in the form 
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as long as U=O; as soon as U becomes 1, the sum is produced 

as an output of the structure. There is no limit on the 

number of summations that can be performed, i.e. the time 

expansion can be carried .on indefinitely. However, if U•1 

every n cycles, and 0 in between, then one sum of the form 

(3.3.4) 

can be produced every n cycles. 

Using this IPS circuit as a basis one can build totally 
' time expanded circuits (i.e. sequential), or intermediate 

circuits that can combine area and time expansion: for exam­

ple one can envisage time expanded circuits that accumulate 

inner products in parallel, which is the case of Fig.3.2.1; 

alternatively, a series of time expanded structures can be 

pipelined so that after some inner product accumulation the 

result can be passed to the next cell, etc. 

The main disadvantage of time expansion over area 

expansion is the fact that extra circuitry and communication 

is required for the control logic. The time expansion 

requires a more complicated control mechanism, which is usu­

ally time-dependent; further, the dataflow is not as regular 

as in the area expansion and typically forms reflected wave­

fronts and feedback loops. In the area expansion structures 

control is implicit, since the validity or not of computa­

tions are determined by the dataflow; further, the maximum 
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size of the problem to be solved is determined by the size 

of the system. on the other hand, a time expansion structure 

has the advantage thoiit can be reconfigured for problems of 

different sizes; this flexibility allows for easier fault­

tolerant implementations, since the computation of a faulty 

component can be performed by another part of the circuit. 

Finally, the area-time tradeoffs (and the corresponding 

area-time expansion schemes) can be applied at several dif­

ferent implementation levels of a systolic system. Initially 

at bit level, in the form of bit-parallel or bit-serial 

implementation of communication and functional units, as 

well as two-level pipelining [78-79), [195-197). Then, at 

word level, as in the example discussed. Further, in a 

•block of computations level', i.e. in the block­

partitioning and partial serialisation of systolic algo­

rithms [125), [137-138); and finally, at an algorithm level, 

with the systolic implementation of iterative algorithms 

[37),[80). 

3.3.4 ROTATE AND FOLD (R+F) METHOD 

The efficiency of the hex-connected array performing 

the LU factorization algorithm is 1/3; similarly, the effi­

ciency of the linear array solving a triangular system is 

l/2. The R+F method improves the efficiency of the LU decom­

position array up to 2/3 and that of the triangular system 

solver up to 1. The same method can also be applied to 

other basic systolic algorithms, such as matrix-vector and 
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matrix-matrix multiplication, [19-21). The major charac­

teristic of the method is the fact that no significant 

changes occur on the underlying computational structure, 

i.e. the array itself, but mainly in the format of the i/o 

data sequences. This makes the R+F method suitable for 

direct implementation on existing arrays, since only some 

additional pre-;post- processing of the data streams is 

necessary. Herein the method will be described using an 

example, namely the solution of a linear system of equa­

tions, with tridiagonal coefficient matrix; the same problem 

is used in chapters 5 and 8, while other instances of the 

R+F method are also described when they occur. 

The original LU decomposition algorithm, for a tridiag-

onal matrix can be summarized from section 3.2 as follows: 

let A be a (nxn) tridiagonal matrix with bandwidth w=p+q-1, 

p=q=2; a systolic array with pq processors connected as in 

Fig.3.2.6 can compute the LU decomposition of A in 

3n+min(p,q) cycles, using the recurrences: 

a!~) = 
lJ 

a!~) = 
11 

( 1) a .. +1 .. 1 (-u. 1 . ) 
11 1,1- 1- ,1 

0 i < k 

tik = 1 i = k 

( 1) 
aik ;ukk i > k, i,j,k=1,2, ... ,n 
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0 k > j 

ukj = a(2) 
kj k = j and j ~ 1 

a(l) 
kj k < j or k = j = 1. (3.3.5) 

When applying the R+F method we proceed from the top 

and the bottom of the matrix simultaneously, and obtain two 

LU decomposition streams functioning concurrently in oppo­

site directions. The two streams confront each other in the 

centre of the matrix and this conflict is resolved by means 

of a double modification of an element in the centre of the 

matrix. Thus, the LU factorization algorithm can be defined 

as follows: Let A be a (nxn) tridiagonal matrix; then the LU 

decomposition of A can be performed on the same hex-array as 

in Fig.3.2.6 in time r3n/2l+min(p,q), using the recurrences: 

n odd 

(i) first stream: As in (3.3.5) for i,j,k=1,2, ... ,(n+l)/2, 

since this stream starts from the top of the matrix and 

moves towards the centre. 

(ii) second stream: The recurrence (3.3.5) is modified to 

start from the bottom of the matrix and move towards 

the centre, i.e. i,j,k=n,n-l, ... ,(n+l)/2. 

aPl = a 
l) ij 

af~l 
ll 
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0 i > k 

1 ik = 1 i = k 

( 1) 
aik ;ukk i < k 

0 k < j 

ukj = a(2) k = j and j t- n kj 

a(1) k > j or k = j = n. (3.3.6) 
kj 

Observe that for n odd, the centre of the matrix is just the 

element a(n+1)/2,(n+1)/2 which is modified twice: once by 

the first stream and then by the second stream. Finally, for 

i=(n+1)/2 we have: 

u. . = a .. +1. . 1 ( -u. 1 . ) +.t. . 1 ( -u · 1 · ) 
11 11 1,1- 1- ,1 1,1+ 1+ ,1 

(3.3.7) 

n even 

(i) first stream: As in (3.3.5), for i,j,k=1,2, ... ,(n/2)+1. 

(ii) second stream: 
) 

As in (3.3.6), for i,j,k=n,n-

1, ..• ,(n/2)+1. Since now there is no single central 

element, the first stream is extended for one row and 

column so that the double modification occurs for the 

element a(n/2 )+1 ,(n/2 )+1 . 

In Fig.3.3.7 the R+F computational streams (or 'dequeues') 

are shown for n=S (odd) and n=6 (even). The arrows indicate 

the direction of the computation as well as the rotating and 

folding operation. The matrix coefficients that are modified 
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twice are located in the overlapping of the 'dequeues' and 

indicated by the dotted line boxes. 

Now, we discuss the solution of the triangular system 

produced by the LU decompostion; since matrix A is tridiago­

nal, the triangular systems produced have bidiagonal form. 

Further, as shown previously, an upper triangular system is 

solved in a way similar to that of a lower triangular sys-

tern; therefore we consider only the solution of a lower tri-

angular bidiagonal sytem. The basic systolic algorithm can 

be derived from section 3.2: Let A be a non-singular (nxn) 

lower triangular matrix of bandwidth q=2, and the r.h.s vec-

tor b be given. A linear array with q processors, as in 

Fig.3.2.7, can solve the system A~=£ in time 2n+q, using the 

recurrences: 

0 

= y\l)+a .. lx. 1 
1 1,1- 1-

(3.3.8) 

When applying the R+F method in the LU decomposition, 

the resulting bidiagonal matrix has the form shown in 

Fig.3.3.7. Subsequently, the solution of the linear system 

can again start · from both ends of the matrix and proceed 

concurrently towards the centre. Again, the confrontation of 

the two streams is resolved by means of a double modifica-

tion of the central element of the matrix. The R+F algorithm 

is as follows: Let a linear system of equations A~=~, with a 
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given r.h.s vector£ and where the coefficient matrix A has 

the form of Fig.3.3.7. This system can be solved on the 

linearly connected array of Fig.3.2.7, using the 

recurrences: 

n odd 

(i) first stream: As in (3.3.8), but for i=1,2, •.• ,(n+l)/2. 

(ii) second stream: The·recurrence (3.3.8) is modified to 

move from the bottom of the matrix upwards, for i=n,n-

l, ... ,(n+l)/2. 

yP l = o 
1 

x. = 
1 

( 2 ) (b.-y. )ja ... 
1 1 11 

The central element x(n+l)/2 is calculated from: 

n even 

(3.3.9) 

(3.3.10) 

(i) first stream: As in (3.3.8), for i=1,2, ... ,(n/2)+1. 

(ii) second stream: As in (3.3.9), for i=n,n-l, •.. ,(n/2)+1. 

The central element is now x(n/2 )+l and is calculated as in 

(3.3.10), for i=(n/2)+1. In Fig.3.3.8 the R+F algorithm for 

the solution of triangular systems is illustrated, for n=S 

(odd) and n=6 (even). The same conventions are used, as in 
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Fig.3.3.7 to indicate the direction of the computations, the 

formulation of the i;o data streams and the elements 

involved in double modifications. 

The hex-connected systolic array for LU decomposition 

of a tridiagonal matrix, and the linearly connected systolic 

array for the solution of the corresponding triangular sys­

tems are shown in Fig.3.3.9, together with the i/o data 

sequences. The sequences for n=6 can be easily derived from 

those shown (i.e. for n=S). Notice the format of the data 

streams: they can be formed if we rotate the lower half of 

the matrix involved and then fold it on top of the upper 

half (hence the name of the method). Thus, the dummy ele­

ments are reduced, from 2 to 1 in the LU decomposition i/O 

sequences, and from 1 to zero in the triangular system 

solver; therefore the efficiency of the arrays is increased 

accordingly. The only modification in the operation of the 

arrays stems from the double updating of the central ele­

ments: notice that the central elements have to be kept in 

the appropriate processors for two time units, as indicated 

in Fig.3.3.9. This can be easily tackled either by program­

ming, or by slightly changing the structure of the processor 

involved so that it is able to 'freeze' its output at a 

given instant of the computation (20). 

The R+F method can be applied more than once on the 

same matrix, by successively splitting it into pairs of 

'dequeues'. Further, the R+F method can be extended to quin-
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diagonal, general banded and full matrices as shown in [19). 

However, in these cases the central part of the matrix that 

requires double updating, increases in size, as it is pro­

portional to the semibands p and q. It can be argued that 

the R+F method is efficient when the ratio r=n/w>>l, where w 

is the bandwidth of the matrix and n its order; in this case 

the central part of the matrix is relatively small, and 

therefore the additional computations required for the dou­

ble modification, can be regarded as negligible, in com­

parison to the parallel computation. 



3.4 SYSTOLIC PROGRAMMING AND SIMULATION 

Systolic systems achieve high performance and effi­

ciency by solving only restricted problem classes, at the 

expense of flexibilty and, sometimes, implementation costs: 

this is the fundamental balance between performance and gen-

erality (special-purpose vs. general-purpose systems). As 

previously noted, the continuously widening applicability of 

the systolic approach, as well as the diversification of 

problems to be solved, gave birth to a large number of sys-

tolic algorithms. Except for a limited number of cases, 

where performance is very critical, it has been accepted 

that, in general, mapping a systolic computation directly 
( 

onto silicon is less attractive than programming a special-

purpose, or even general-purpose, VLSI processor array. 

These 'systolic computers' generally offer a computing 

structure with programmable processing elements and, possi­

bly, reconfigurable interconnections. Further, local and/or 

global memory is supplied, as well as a means of systolic 

control distribution in the form of instructions and/or con-

trol signals. Finally, a 'systolic programming' notation is 

provided, together with other system software support 

(another important part, the interfacing of the system with 

the host and the integration to a general system, is not 

discussed herein). 

The provision of a systolic programming language is of 

critical importance in the development of systolic comput-
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ing, for a number of reasons. Firstly, because a language 

can precisely and unambiguously describe the concurrency 

imbedded in an algorithm; secondly, because it provides a 

flexible means for expressing systolic (and in general 

parallel) computations without having to resort to graphical 

means or mathematical formulation methods; and finally, to 

actually control a systolic computer, in the same way as a 

sequential language is used to control a conventional com­

puter. Some key factors, usually conflicting, for the 

design of such a language, are [170]: wide application 

range; programming simplicity (i.e. relatively high-level 

language); and execution efficiency. 

Furthermore, the simulation of systolic algorithms has 

been extensively utilized as a means for informal verifica­

tion of the algorithm and validation of its performance. 

Notice that since a systolic language is available, the 

development of the algorithm itself is detached from the 

actual systolic implementation. Thus, the algorithm can be 

developed on a conventional machine, using an appropriate 

compiler and all the available programming aids. Then, when 

the algorithm is complete and fully checked, it can be 

transferred onto the actual systolic computer for final 

testing. 

In the following paragraphs, we briefly describe two 

special-purpose systolic computers, the Warp machine and the 

Wavefront Array Processor. The main points of this discus-
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sion reflect the basic characteristics of a VLSI processor 

array, as outlined in section 1.2 and above, i.e.: applica­

tion areas, interconnection geometry, processing element 

structure, memory available, programmability, data and con­

trol communication, and software support. Then, the utiliza­

tion of a general-purpose parallel processing microcomputer 

chip, the transputer, is described. Further, the 'soft­

systolic' approach in systolic programming is introduced. 

Finally, we discuss the use of the OCCAM programming 

language for systolic programming and (soft-systolic) simu­

lation; this discussion is complemented with the OCCAM 

language description and the selection of soft-systolic 

simulation programs in the Appendix. 

3.4.1 THE WARP MACHINE 

warp was developed by H.T.Kung and his colleagues in 

Carnegie-Mellon University (CMU); its main areas of applica­

tion are low-level signal and image processing tasks (with 

special emphasis on computer vision), as well as matrix com­

putations and other numerical algorithms, [7-9], [161-162]. 

It is a linearly interconnected (1-d) array of processors, 

called Warp cells, augmented with an Interface Unit (IU) 

that communicates with the Host, as illustrated in 

Fig.3.4.1. Each of the warp cells is a board-level special­

purpose microprocessor (a VLSI implementation of the Warp 

cell is planned). It has an ALU and a Multiplier (MPY) unit, 

that su·pport two-level pipelined computations; further there 
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are two register files for ALU and MPY to store intermediate 

results and for the approximation of some unary functions, 

e.g. inverse (a special boundary cell for complex computa­

tions has also been constructed). The cell has a signifi­

cant amount of local memory (RAM), so that it is possible to 

reduce the i/o requirements during the computation, and to 

simulate systolic algorithms that have been designed for 2-d 

systolic systems. Each cell is programmable, controlled by a 

microcode sequencer and with microcode storage. Finally, 

there are input queues and multiplexers to implement pro­

grammable delays in the dataflow and to relax the strictly 

pipelined dataflow. 

As it is shown in Fig.3.4.1, Warp provides only two 

one-way communication channels, and an additional path for 

memory address and control passing. The linear structure 

has been chosen because it allows easier implementation; 

synchronization by a simple global clock; minimum i/o 

requirements (since there is only one input and one output 

cell); and finally efficient implementation of 

tolerant techniques. 

fault-

The Warp machine supports two modes of operation: sys­

tolic and local mode; the systolic mode can be subdivided 

into the pipelined and the parallel mode. In the pipelined 

mode, all cells perform the same program and each cell is 

waiting for results from its neighbouring cell; in the 

parallel mode, all cells perform identical programs but they 
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use data from their local memory; in the local mode, each 

cell may perform a different program using data from its 

local memory. 

An Algal-like language, called W2, is used for the 

high-level programming of warp; W2 is translated by a com­

piler to a lower-level language, Wl, which is the assembly­

type language of the system. The user simply thinks of the 

machine as a unidirectional array of sequential processors 

that communicate asynchronously (i.e. at a high level the 

communication is seen to be data-driven). The compiler 

divides the operations in a program into three parts, one 

for each of the different components of the system: the Host 

(external i/o), the IU ( data-independent addresses, loop 

control), the cells (the rest of the operations). The com­

piler currently accepts only programs with unidirectional 

dataflow; flow control between cells is achieved by skewing 

the execution of the cells to ensure that the input data is 

in the queue before it is used. The high degree of pipelin­

ing within the arithmetic units is another cause of concern 

for the compiler. The warp project had shown the signifi­

cance of software support for the development of a systolic 

computer; especially the design of a compiler, which pro­

vides a feedback for the architecture designer since it 

requires a thorough study of the functionality of the 

machine. 

3.4.2 THE WAVEFRONT ARRAY PROCESSOR (WAP) 
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WAP was introduced by S.Y.Kung and his eo-workers in 

the University of Southern California; its main areas of 

applications are basic matrix computations and signal pro­

cessing algorithms [169), [173). It is an orthogonally con­

nected (2-d) square array of processing elements (PE's), 

augmented with a Program Code Memory and data memory 

modules, as shown in Fig.3.4.2. Each of the PE'S is a 

special-purpose VLSI microprocessor that has been optimised 

to support the instruction set of the Matrix Data Flow 

Language (MDFL), which is used to program the WAP. Moreover, 

the ALU is designed to efficiently perform computations, 

such as multiplication and rotation, that are of major 

importance for signal processing applications. Further lim­

ited local memory is provided (RAM), for data and program 

storage. There are four two-way paths for data communication 

and another four for control distribution. 

Probably the main feature of WAP is its asynchronous 

communication; i.e. each PE communicates with its neighbours 

using a handshaking protocol, and performs its computations 

as soon as all the operands and control required are avail­

able. Thus, there is no need for a global clock mechanism 

for synchronization; each cell is self-timed and the whole 

array operation is data-driven, according to the concept of 

dataflow computing. The processor grid acts as a wave pro­

pagating medium, and an algorithm is executed by a series of 

wavefronts moving across the grid. As a further justifica­

tion of the term 'wavefront array' we note that the 
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computational wavefronts are similar to the electromagnetic 

wavefronts (they both obey Huygens' principle) since each PE 

acts as a secondary source and is responsible for the propa­

gation of the wavefront. The pipelining is feasible because 

the consecutive wavefronts will never intersect, thus avoid­

ing any contention problems (see Fig.3.4.2). The spacing of 

the waves (T) is determined by the ·time required for the 

execution of the computations in a processor. The speed of 

the wavefront (6) is equivalent to the data transfer time. 

A special language, called MDFL, has been devised for 

programming the WAP. A MDFL program has two parts: a global, 

which describes the algorithm from the point of view of the 

wavefront meeting successive sets of processors; and the 

local, which describes the algorithm from the point of view 

of an individual PE encountering a number of consecutive 

wavefronts. At the beginning of the computation, each part 

of the program is stored in the appropriate modules, 

together with the data required. The programmer deals only 

with the global part of MDFL; the microcode for the PE's are 

produced by a special preprocessor. For WAP such a prepro­

cessor is relatively easy, since it does not have to con­

sider synchronization problems. 

Comparing the warp machine and the WAP we can observe 

the following 

and clocking 

implementation 

major differences: interconnection geometry 

mechanism. The synchronous asynchronous 

of systolic systems has been discussed in 
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section 1.2: Warp is easier to implement, while WAP is 

easier .trr expand. The interconnection geometry of warp leads 

to more difficult programming, ·especially for 2-d systolic 

algorithms, that must be collapsed to 1-d. Also, the 2-d 

geometry of WAP is well studied and there are many algo­

rithms available; further, the WAP can simulate a 1-d array, 

with uni-(or bi-)directional data flow using MDFL. On the 

other hand, as a computer design project, warp is more flex­

ible and it can be seen as a first step to fully understand 

the power and the limitations of a systolic computer; in 

that sense a linear array is adequate for initial experimen­

tation and allows for easier implementation, as shown above. 

Finally, the Warp project tries to answer some other impor­

tant problems, such as the system interface and the host 

configuration, that are not investigated in WAP. 

3.4.3 THE INMOS TRANSPUTER 

In contrast with the previously discussed systems, in 

the case of transputers the main interest is concentrated on 

the basic building block, i.e. the transputer chip, instead 

of the system as a whole. This is because the transputer is 

a comparatively stand-alone, single-chip microcomputer, with 

general-purpose capabilities and not a simple component of a 

processor array. However, on the other hand, its major 

characteristic is the ability to be interconnected with 

other transputers to build any type of processor architec­

ture (transputer network) [140-141], [149-150], [193]. 
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Thetransputer is produced by INMOS Ltd.; it is a general­

purpose parallel processing component, providing a direct 

implementation of the process model of computing which is 

sufficiently general to include both sequential and con­

current processing in a natural manner. A process is taken 

to mean an independent computation, autonomous in the sense 

that it has its own program and data, but able to communi­

cate with other current processes by message passing via 

explicitly defined communication channels. 

Each transputer contains a CPU (i.e full microproces­

sor), memory and four bidirectional communication links. 

Notice that the processor is not optimised for signal pro­

cessing or scientific computation, but a special application 

interface may be used to provide these facilities (no 

floating-point arithmetic is currently available, but a 

floating-point transputer has been announced). Data is 

transmitted as a sequence of bytes, each byte being ack­

nowledged by the receiver before the next is transmitted 

(handshaking protocol). This enables the processes to run 

asynchronously, only synchronizing when they need to commun­

icate. Communication and program execution can be performed 

in parallel. The transputer supports the OCCAM programming 

language, which has been designed in conjunction with it. 

The structure of the transputer is given in Fig.3.4.3. 

The CPU contains a scheduler that enables any number of 

processes to run on a single transputer, on a time-sharing 
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basis. As every transputer implements OCCAM, an OCCAM pro­

gram can be executed on a single transputer or on a network 

of transputers. In the first case, parallel processes share 

the CPU time and channel communication is simulated by mov­

ing data in the memory. In the second case, parallel 

processes are distributed among transputers and channels are 

allocated to communication links. Thus, an OCCAM program can 

be implemented in a variety of ways, balancing cost and per­

formance. 

It follows that a simulation of both Warp machine and 

WAP is possible using transputers [44), [60), [193), [251). 

Of course, because of the general-purpose nature of tran­

sputers, some penalty in performance must be paid, in com­

parison to the special-purpose systolic computers. However, 

the ability to build, using a standard component, a custom­

ised parallel processing machine, even for prototype pur­

poses, will have a wide impact on the development of algo­

rithms for VLSI processor arrays. 

3.4.4 THE SOFT-SYSTOLIC APPROACH 

The definition of the transputer architecture distin­

guishes in a parallel algorithm between the logical defini­

tion of a network of processes, on the one hand, and the 

physical realisation of this network, on the other. In the 

case of systolic algorithms this is equivalent to defining 

the operation of the processors and the data communication 

patterns, without actually implementing the corresponding 
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processor interconnection geometry. For example, the Meiko 

Computing Surface, or the Reconfigurable Processor Array 

(RPA), [149-150], both based on transputers, can be used for 

the implementation of systolic algorithms at this abstract 

level. 

A step further in this direction is the introduction of 

the •soft-systolic' approach by E.Shapiro and his colleagues 

at the Weizmann Institute of Science, Israel [266]; the 

soft-systolic paradigm is desoibed as a framework for 

realising an algorithm design and programming methodology 

for general-purpose, stand-alone (not attached to a host), 

high-level language parallel computers (more specifically, 

the Fifth Generation Project computers, [284]). Soft­

systolic algorithms are best defined in terms of a dynami~ 

cally changing collection of software processes, synchron­

ized by dataflow, in contrast to the original 'hard­

systolic' algorithms which are typically defined in terms of 

a static collection of hardware processors. 

The soft-systolic approach comprises an abstract 

machine, a programming language, a process - to - processor 

mapping notation, and an algorithm development methodology. 
'' 

Details of a programmable systolic machine are given in 

[102]: it is an infinite processor grid, termed a 

Polymorphic Array, based on an improvement of the 'doubly 

twisted torus' processing surface; the basic building block 

for this machine is proposed to be the transputer. The sys-
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tolic programming language used is Concurrent Prolog, 

although less efficient than OCCAM, mainly because of the 

Artificial Intelligence orientation of the project; the 

language is augmented with a LOGO-like Turtle notation for 

process - to - processor mapping. 

The algorithm development methodology is similar to 

that of designing hard-systolic algorithms. A solution to a 

problem is defined in terms of a collection of processes 

that overlap computation with communication, where the dif­

ficult design task is to ensure that computation and commun­

ication are balanced. The communication structure should be 

designed so that, in addition to not introducing 

bottlenecks, it can be mapped onto a computing surface 

without much penalty. In contrast to the hard-systolic algo­

rithms, a detailed design and analysis of the timing of com­

munication is unnecessary to obtain a correct algorithm, and 

can be deferred until fine-tuning for performance is neces­

sary, since operations are synchronized via dataflow. 

Soft-systolic algorithms observe the main principles of 

systolic algorithms, as defined in the general framework in 

section 3.1. However they do not have to obey the restric­

tions that refer to the VLSI implementation of systolic 

algorithms; thus they differ from the hard-systolic algo­

rithms in the following ways: 

The network of processes need not be planar and static: 
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non-planar networks with multiple and complex intercon­

nections, or even multidimensional and;or time varying 

systems may be possible. 

Area is not a major consideration for optimization; how­

ever, it should be noted that it represents processes, 

and thus processor and memory resources. 

They do not have to be fabricable, but they must be pro­

grammable in some appropriate parallel processing 

language (e.g. OCCAM). 

Broadcasting, fan-in and small irregularities are not 

avoided; but there must be a majority of pipelined struc­

tures. 

Thus, we can say that the set' of soft-systolic algo­

rithms is a superset that includes the set of hard-systolic 

algorithms: a hard-systolic algorithm can be defined in 

terms of a network of processes; however the reverse is not 

true, since the soft-systolic approach allows for freedom 

that is not possible ~o be implemented on VLSI. The systolic 

algorithms that are designed for special-purpose systolic 

computers can be classified as 'hybrid-systolic' algorithms, 

since they consist an intermediate category. Hence, for 

hybrid-systolic algorithms, we can distinguish the following 

main characteristics: 

Area is not a major consideration, in terms of optimizing 

the area of the functional units, or of the array as a 



- 183 -

whole. However, the restrictions of the machine must be 

taken into account, in terms of processors and memory 

available. 

They do not have to be fabricable, but programmable in 

some special- purpose systolic programming language, tar­

geting a special-purpose machine; usually they require 

significant amounts of memory and control. 

Local and regular broadcasting may be available, as well 

as some flexibilty regarding the systolic data flow; 

notice that semi-systolic algorithms are hard-systolic 

algorithms that only allow limited broadcasting or fan-

in. 

3.4.5 SOFT-SYSTOLIC SIMULATION USING OCCAM 

The term 'soft-systolic simulation' indicates the com­

bination of several approaches, i.e.: initially, the simula­

tion of hard-systolic algorithms on conventional computers, 

using some suitable language; further, the development of 

hybrid-systolic algorithms and special-purpose systolic pro­

gramming; finally, the design and development methodology of 

soft-systolic algorithms that have as target machines, some 

general-purpose parallel processing computer. Thus, in 

soft-systolic simulation, systolic algorithms are simulated 

on a conventional computer using the soft-systolic algorithm 

development methodology. Notice, however, that hard- and 
-

hybrid- systolic algorithms can also be simulated using the 
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same technique. Now, the use of the OCCAM programming 

language for soft-systolic simulation is discussed. 

at several levels of 

OCCAM can be seen as a 

of describing con-

An OCCAM program can be viewed 

abstraction. At the first level, 

hardware description .language, capable 

current operation of electronic circuits. At a second level, 

OCCAM is a high-level language designed to program tran­

sputer networks, and thereby avoiding the problem of pro­

gramming multiprocessor systems in a low-level language. 

However, because it is a language that is based on the con­

cepts of concurrency and communication, an OCCAM program can 

be interpreted as a formalism for the behaviour of a con­

current system that implements a given algorithm. An OCCAM 

program can be amended and, as long as the algebraic rules 

of the language are adhered to, the designer can assume that 

the program will implement the same algorithn. 

A brief summary of OCCAM, together with a selection of 

commented soft-systolic simulation programs, is given in the 

Appendix. Fig.3.4.4 illustrates the general logical struc­

ture of the programs; the construction of the programs fol­

lows ideas developed in [200), [44], [60], [251]. 

The Getdata and Putdata sections are responsible for 

receiving and sending data and other information, from and 

to the host, which may be a file or interactive input and 

output. Each procedure is allocated enough memory to store 

the input data, or the final output data; the amount of 
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programs in OCCAM. 
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storage can be easily calculated, given that the computation 

time and the volume of the output is, usually, known in 

advance. However, in cases of algorithms where the computa­

tion time is data-dependent, the Putdata routine can run in 

parallel with the systolic system and immediately produce 

the output data. Similar arrangements can be made for the 

Getdata routine. Notice that, given the fact that OCCAM has 

no standard i/o routines, it is possible to define a library 

of primitive i/o routines that are especially suitable for 

reading and writing data and control streams, as required in 

systolic computation. 

The Setup section computes system-dependent quantities. 

For example, based on the size n of the problem it can com­

pute the time required for full matrix-vector multiplica­

tion, as well as the necessary delays that are required for 

each of the i/o data sequences. The computations performed 

by the Setup section become more important as the systolic 

system becomes more complex (see, for instance, the case of 

pipelines of systolic arrays, in chapters 6 and 7). 

The System section uses the information produced by the 

Setup section to actually 'puild' the systolic system, as a 

network of processes. The System procedure is mainly a set 

of nested parallel loops which allocates processes and 

interconnects them with labelled communication channels; to 

achieve this the network of processes is mapped onto a coor­

dinate grid, so that processes and communication channels 
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can be labelled using a relatively simple mapping function. 

As the system becomes complex, the coordinate system may 

become multi-dimensional; given the difficulty of OCCAM with 

multidimensional arrays, the mapping computation may become 

quite tedious. A possible solution is to distinguish several 

levels of coordinate systems, each one representing a level 

of parallelism in the systolic system. Thus, the main System 

can be analysed into successive levels of subsystems that 

can be further analysed into new subsystems, etc. A 

(sub)system terminates its operation, when all its subsys­

tems have terminated. 

A system is eventually decomposed in Sources - Cells 

Sinks. A Source is loaded initially with vectors from Get­

data, representing input streams, together with possible 

delays, and other control information, created in the Setup 

section. A Sink is the opposite of the Source, i.e. it col­

lects output streams and uses Setup information to, possi­

bly, discard dummy output; finally it passes vectors of out­

put data to Putdata. Sources and Sinks of subsystems are 

usually connected to the Sources and Sinks of the main sys­

tem. Since the basic operation of a Source in any type of 

systolic system is to 'pump' information, and the basic 

operation of a Sink is to collect information, it is 

straightforward to define primitive library routines to form 

the buildin~ blocks of any complex Source or Sink. 

The Cell procedures implement the computations per-
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formed by the processing elements (cells) of the given sys­

tolic architecture. Generally there is one procedure for 

each type of cell, and thus the programming task is simpli­

fied in homogeneous systolic designs. Further, cells with 

small differences may be implemented by a simple generic 

cell and a suitable •switch', defining the exact function of 

a cell. Finally, a library of commonly used cells and other 

standard components of systolic systems can be defined, so 

that a whole class of systolic architectures using the same 

bulding blocks can be constructed by defining only the 

higher layers of the OCCAM program. A cell definition is 

divided into two sections: initialization and main opera­

tion; the main operation is subdivided into i/o and computa­

tion, thus yielding a scheme similar to the •source - cell -

sink' structure for the internal function of the cell. Ini­

tialization is performed only once and allows cells to be 

reset before use, and predetermined or preloaded values to 

be set up. In particular, initialization defines dummy ele­

ments that are used in communication, before significant 

data reaches the cell; this is essential in order to main­

tain dataflow and avoid deadlocks in the OCCAM program. The 

ijo and the computation of the cell are performed repeatedly 

during the system operation and they are enclosed into a 

loop. 

The kind of iteration loop depends on the type of the 

algorithm: in cases where the computation time is predeter­

mined a for-loop can be used; in cases where the computation 
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is not known in advance a while-loop is used. In while-loops 

systolic control can be used to selectively closedown a 

whole cell, or just input or output channels, thus imple­

menting a gradual (wavefront - like) closedown of the sys­

tem. On the other hand, the for-loop approach can be inter­

preted as a global reset signal, being broadcast to all 

cells simultaneously. All communication in a cell is per­

formed in parallel and the computation is mainly sequential; 

communication and computation are performed in sequence, 

thus defining the time cycle of a cell. The communication is 

by definition data-driven, and therefore the systolic system 

is asynchronous. However, as it has been explained, this 

fact does not affect the verification and evaluation of the 

algorithm, but matters only in the actual hardware implemen­

tation of the algorithm. A purely synchronous version of the 

systolic algorithm can be produced by using the time-out 

mechanism of OCCAM, or by broadcasting a special clock sig­

nal to all cells. 

The principle advantages of using OCCAM for the simula­

tion of systolic architectures can be summarised as follows. 

First, it is a genuinely parallel processing language in the 

sense that it is built around the concept of concurrent pro­

gramming - instead of being a sequential language with some 

parallel processing extensions. Second, although it has been 

built for a target machine, the transputer, it is a 

general-purpose language and it is available independently 

of the transputer - instead of being closely connected with 
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a single system, as a special-purpose language. Third, it is 

very simple, as it offers a small number of relatively sim­

ple constructs, which the programmer may have a better con­

ception of, and find easy to reason about - instead of hav­

ing an overwhelmingly extensive repertoire of data and 

language structures to deal with. The main disadvantage of 

the language stems from its very simplicity: limited data 

structure facilities are available and the typing is weak 

(some of these drawbacks have been removed in OCCAM-2). How­

ever, in general, an OCCAM program offers the double benefit 

of working with a relatively high-level parallel language, 

and at the same time having the possibility of actual tran­

sputer implementation. 



3.5 OPTICAL COMPUTING AND SYSTOLIC ARCHITECTURES 

The final section 

cross-fertilization of 

of this chapter investigates the 

the systolic approach in parallel 

processing, with optical computing concepts; further it sum­

marizes the major trends in systolic algorithm development 

discussed in this chapter. 

Optical computing is aimed at replacing the limitations 

imposed on GOmputing circuits due to electrical properties 

of materials. In optical computing, electrical signals are 

replaced by streams of photons and electronic logic elements 

are replaced by optical counterparts. Introductory material 

to optical computing can be found in [10], [13], [116], 

[206], [217], [241]. Some immediate benefits of this 

approach are apparent: 

Possible delays because of long wire communication (clock­

skew) is avoided due to communication at the speed of light; 

Possible crosstalk because of circuit miniaturization is 

reduced due to the relative difficulty in making streams of 

photons to interact; 

Transient errors in computation due to radiation (e.g. 

cosmic rays) incident on the computing circuit are reduced, 

since optical components are more radiation-hard than elec­

tronic ones; 

Circuits can be non-planar as photon streams crossing at an 
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angle >10% do not suffer from crosstalk and separate signals 

can intersect without any erroneous results. 

There are three major areas of development in optical 

computing. Digital optical computing is involved with the 

development of all-optical computers, i.e. optical logic 

elements interconnected with optical signal transmission 

techniques. In principle, this method can be as accurate as 

conventional digital electronic machines. However, problems 

arise in the actual implementation of switching circuits 

(i.e. optical transistors), as there are many competing 

technologies and none of them has produced decisively better 
t10),[206l 

results. Further, the packing densities achievable are very 

low in comparison to the packing densities of conventional 

electronic circuits. There are also doubts whether the all-

optical computers have to be exact counterparts of elec­

tronic machines, or new processing methods have to be fol­

lowed (e.g. different number systems, direct symbolic-image 

processing), that exploit the special properties of the opt-

ical components as opposed to the electronic ones (see, for 

example [35], [85]). 

Analogue optical computing is the second alternative, 

and has been used mainly in optical signal processing. 

Acousto-optical, electro-optical or magneto-optical tech­

niques are used to modulate optical signals (light beams), 

and in this way to implement optically basic arithmetic and 

signal processing operations. This principle had been 
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adapted to systolic arrays originally in [58). Notice that 

this approach is limited by the relatively low accuracy due 

to the analogue nature of the computations; further, it is 

limited in flexibility, since only a limited range of opera­

tions can be implemented. However, on the other hand, it 

offers significant speed improvements in very important 

basic algorithms; further its implementation is relatively 

easy since it is based on already rather well - developed 

technologies. In order to alleviate the problem of digital 

accuracy special encoding techniques have been proposed and 

are currently under experimentation (see, for example [30)). 

Finally, the combination of conventional electronic com­

ponents with optical computing devices into hybrid 

optical/electronic computers, can offer both the speed of 

the optical computations and the flexibility of electronic 

operations, [2), [171). 

A third alternative, and perhaps the first to be widely 

applicable, is the combination of optical signal transmis­

sion with electronic processing elements. Optical signals 

arriving at electronic processing components, are converted 

to electronic signals, then processed and finally converted 

back to optical signals for further transmission. On a 

straight comparison, purely electronic components could 

appear to be faster due to the extra overheads of signal 

conversion. However, as the circuit sizes shrink, the resis­

tance and capacitance of the wires make signal propagation a 

key factor in the overall computing speed; thus, the 
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conversion overheads are counterbalanced by gains in signal 

propagation speed. 

In the following paragraphs, optical signal transmis­

sion methods are described in some detail. Then, the optical 

implementation of systolic algorithms using analogue optical 

computing techniques is discussed, and basic definitions and 

terminology for later use are given through an example. This 

discussion is complemented by surveys, concerning the opti­

cal implementation of specific systolic algorithms, in the 

introductory sections of subsequent chapters. 

The final part of this section serves as a conclusion 

for the whole chapter: the general framework for systolic 

algorithm development, which was introduced in section 3.1 

and then extended in section 3.4, is now modified to include 

the optical implementation of systolic algorithms. 

3.5.1 OPTICAL SIGNAL TRANSMISSION 

with optics used mainly for control and data transmis­

sion, a number of schemes can be envisaged as illustrated in 

Fig.3.5.1. 

A waveguided signal can take two forms: first, as an 

optical fibre transmission for inter-chip interconnection, 

and second as a transmission through a suitable medium (such 

as glass) integrated onto the chip, for intra-chip communi­

cation. In Fig.3.5.l(a) a possible scheme for clock distri­

bution is shown, using optical fibres; the clock signal is 
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collected by detectors that are integrated onto the chip and 

converts the optical signal into electrical pulse form to 

synchronise the electronic logic on the chip. Thus,· the 

clock signal can be broadcast on the whole chip simultane­

ously with no clock skew effects. 

In Fig.3.5.1(b) the use of integrated waveguides is 

exemplified: the signal (data or control) travels along the 

chip and is detected, and subsequently converted, by the 

couplers. Notice that waveguides are restricted by the con­

straint that they must be kept as straight as possible; oth­

erwise radiation and signal losses occur. For example, in 

the case of the integrated waveguides, a network of orthogo­

nal waveguides can be envisaged which can be used for fast 

distribution of contol or data at some major sites on the 

chip, where the signal is converted in order to be electri­

cally redistributed within the local subcircuits. 

In free-space transmission, light is not guided but 

controlled by the laws of light propagation in free space; 

this type of transmission can be subdivided into focussed 

and unfocussed. In unfocussed schemes, optical signals are 

broadcast to the whole chip and are collected by detectors 

integrated onto the chip; an example is given in 

Fig.3.5.1(c), for clock distribution. The problems of this 

approach are: firstly, its inefficiency, since only a small 

amount of light falls on the required sites and is finally 

used. Then, there is a need for a blocking layer to avoid 
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transient errors in the remaining area of the chip. On the 

other hand, its main advantage is the ease of implementa­

tion. If the detectors are replaced with integrated sources, 

it is possible to have multiple data output (emission) from 

the chip, thus alleviating the pin-count problem of VLSI 

technology. 

Focussed free-space light transmission avoids the above 

mentioned problems by using a hologram to focus the light 

beams to all sights required. Fig.3.5.1(d) illustrates a 

focussed version of Fig.3.5.1(c). The main disadvantage of 

this approach is that it requires high accuracy in the 

alignment of the hologram; otherwise transient errors may be 

caused on the chip. Finally, for intra-chip data distribu­

tion, a holographic routing element may be used, as shown in 

Fig.3.5.1(e): the electical signal in the input pins is con­

verted to an optical signal, which is distributed within the 

chip using the hologram. A similar arrangement can be 

achieved for outputting the data, if light sources and 

detectors swap their position. 

3.5.2 OPTICAL SYSTOLIC ARCHITECTURES 

The matrix-vector multiplication systolic algorithm, 

described in section 3.2, is now used as a vehicle in order 

to give some basic definitions concerning the optical imple­

mentation of systolic algorithms by means of analogue­

optical techniques. The configuration of an optical proces­

sor used is given in Fig.3.5.2: it consists of a light 
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emitting diode (LED) array; an imaging system with one 

beam-forming lens for each LED; an acousto-optic (AO) cell; 

an array of charge coupled device (CCD) detectors; and the 

main imaging system that focuses the light beams that are 

emitted from the AO cell on to the detector array. In the 

terminology used herein, the LED array and the AO.cell are 

called input devices or transducers, while the detector 

array is called an output device; the transducers accept the 

input data sequences while the detectors collect (and may 

produce) the output data streams. Between the two transduc­

ers, as well as between the second transducer and the detec­

tor array there are always imaging systems of variable com­

plexity, depending on the focusing patterns that should be 

achieved. The details of the imaging systems are not dis­

cussed herein; for technical characteristics see, for exam-

ple [234). 

Each of the transducers is operated through a driver, 

which transforms the electrical signal it accepts into an 

appropriate physical quantity that can in some way modulate 

a light beam. For example, the AO cell driver transforms the 

electric signal piezoelectrically into an acoustic wave; 

this wave is sent into the AO cell, which is an optically 

transparent block of material (e.g. glass). The acoustic 

wave travels through the medium with the velocity of sound 

and induces periodic compression of the medium. The result 

is a moving, spatially periodic variation of the refractive 

index of 'the medium - a moving grating segment - which can 
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be used to diffract an incident beam of light. The intensity 

of the diffracted beam is proportional to the product of the 

intensity of the incident light, and of the diffraction 

efficiency of the grating segment. The operation of the LED 

is simpler, since the LED driver just supplies the diode 

with the appropriate charge so as to emit a light beam with 

an intensity proportional to the electrical signal that has 

been accepted. 

Similar devices, based on electro-optic and magneto­

optic tecniques, instead of acousto-optic ones, have been 

also used efficiently to produce similar effects. In all 

cases, the basic feature of the input devices is the ability 

to achieve a spatially periodic light emission or modulation 

(spatial light modulators- SLMs), according to some given 

electric signal that can be controlled in real-time rates. 

Thus, in Fig.3.5.2 the drivers accept electrical signals at 

a rate controlled by the global clock, which synchronizes 

all the components of the optical processor. This rate is 

limited by the physical and operational characteristics of 

the input and output devices used. 

For example, in the case of the AO cells, the rate of 

change of the refractive index of the medium is usually lim­

ited by two factors: by the attenuation of the acoustic 

waves in the cell; and by material-dependent cutoff frequen­

cies. Thus, if B is the maximum rate (frequency) attain­

able, and T is the time required by a grating segment to 
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travel along the AO cell, the number of pixels of an AO cell 

is given by N~TB. The number of pixels is equivalent to the 

number of light beams that can be modulated simultaneously 

by an AO cell. Further, given a maximum size (physical 

length) of the transducer medium, we can determine a maximum 

number of pixels available in a 1-d transducer, using a 

given transparent medium, and a given technique (i.e. 

acousto-optical, electro-optical or magneto-optical). Simi­

larly, we can define the number of LED sources as the number 

of pixels of the LED array; and the number of detectors as 

the number of pixels for the detector array. Thus, the 

number of pixels in an input or output device gives the max­

imum number of parallel computations that can be performed 

onto this device; in this sense the number of pixels in an 

optical processor is'a quantity equivalent to the number of 

cells in a VLSI processor. 

The optical processor of Fig.3.5.2 uses one-dimensional 

(1-d) transducer arrays; however 2-d transducer arrays can 

be obtained by using stacks of 1-d transducers, or even by 

building 2-d transducer devices. Current technological limi­

tations favour stacks of 1-d transducers instead of 2-d 

transducers [13), [234]. Notice that the configuration of 

the input devices, and the processor array as a whole, is 

not unique: for example, instead of having a LED array and 

an AO cell, one can have two AO cells illuminated by a sin­

gle light source, and an appropriate imaging system focusing 

light beams onto the pixels of the AO cells. 
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The operation of the optical processor is exemplified 

with the help of Fig.3.5.3. The systolic algorithm being 

performed is the same as described in Fig.3.2.1, but for 

n=2. Therefore, all the components of the optical processor 

are configured for this problem size: e.g there are two 

LEDs, an AO cell with two pixels and a detector array with 

two detectors. The first input to the AO cell, vector ele­

ment x1 , produces a grating segment with diffraction effi­

ciency proportional to x1 that moves across the cell. When 

that grating is in front of the first LED, as shown in 

Fig.3.5.3(a), the diode is pulsed with light intensity pro­

portional to the matrix coefficient a11 , and a time­

integrating detector is illuminated with light intensity in 

proportion to the product a11x1 . Thus, the analogue-optical 

equivalent to a conventional multiplication (i.e. using an 

electronic circuit) is accomplished. In the next clock tick, 

the x1 grating segment is in front of the second LED, and a 

second grating segment, with diffraction efficiency propor­

tional to x2 , has moved in front of the first LED, as shown 

in Fig.3.5.3(b). At that moment, the first LED is pulsed 

with light intensity proportional to a 12 and the second LED 

is pulsed with light intensity proportional to a 21 . The 

light beams that pass through the AO cell have, therefore, 

intensities proportional to a 12x2 and a21 x1 ; the time­

integrated output of the first detector is now proportional 

to a 11x1+a 12x2 , which is the output vector element y1 . Thus, 

the optical equivalent of a conventional addition· has been 



- 203 -

TRANSDUCERS 

A 

OUTPUT DEVICE 

(a ) 

(b) 

( c ) 

Fig.3.5.3. Operation of optical processor. 



- 204 -

performed. The charge collected in the second detector is 

proportional to a 21x1 at this stage. In the next cycle, the 

grating segment x2 has moved in front of the second LED. A 

final pulse from that LED, in proportion to a 22 , yields at 

the output of the second detector a time-integrated charge 

a 21 x1+a22x2 , the second element of the output vector 1· The 

computation is now complete. 

Therefore, the systolic algorithm for full matrix­

vector multiplication can be performed on an optical proces­

sor, as in Fig.3.5.2, with two transducer arrays of n pixels 

each, and a detector array of n pixels. The computation time 

required is 2n cycles (including the output of the final 

result). The time cycle is defined as the time required for 

the following operations to happen: movement of the grating. 

segment to the next pixel in the AO cell; light emission 

from LEDs; light beam detection and signal conversion. Thus, 

it is obvious that the time cycle essentially depends on B, 

the operating frequency of the AO cell. 

It should be noted that the computation described 

involved only non-negative quantities (e.g. light inten­

sity): therefore the optical processor in its simplest con­

figuration can accommodate only non-negative numbers. How­

ever, the representation of negative, and even complex, 

numbers using bipolar data and other techniques, has been 

extensively used in optical signal processing, and has been 

readily applied to optical systolic algorithms (see, for 
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example, [58), [222)). 

A similar optical processor can be designed to imple­

ment the banded matrix-vector multiplication algorithm, 

presented in Fig.3.2.2. The main difference of the new opt­

ical processor with the one shown in Fig.3.5.2 is the need 

for the partial results to move systolically along the 

detector array during the computation. This can be achieved 

by means of a shift-register array, attached to the detector 

array. Thus, instead of a time-integration detector array, 

collecting the charge on the same pixel, we now have a 

shift-register detector array, controlled by the same clock 

as the input devices. In every clock tick, the charge col­

lected by the detector is transferred to the associated 

'bin' (pixel) of the shift-register array. Then, in the next 

clock tick, the contents of the shift-register pixels are 

moved along the array, exactly as the elements of y move in 

Fig.3.2.2. Thus, the accumulation of the partial results is 

now performed on to the shift-register pixels, while the 

detector pixels just collect the incident beams and convert 

them to an electrical signal. In that case, the time cycle 

of the optical systolic computation is somehow prolonged, 

since the shift operation must be taken into account. ·A 

further advancement which can be made is the use of optical 

shift-registers, as suggested in [206), in order to avoid 

the electronic shift operation. 

Alternatively, the light beams can be deflected and 
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diffracted simultaneously, so that instead of moving the 

partial results on the shift-detector array, we can direct 

the partial products to the appropriate detector pixel, 

[58). Notice, however, that in optical processor development 

there exists a critical tradeoff between area, speed and 

processor complexity. Thus, complex light manipulation tech­

niques, require increased area, in the sense that the pixel 

density of the processor components should be reduced to 

avoid crosstalk and mis-alignment phenomena. Further, an 

increase in the operational speed of an optical processor 

may lead to similar phenomena, and thus it must be followed 

by improved imaging systems and decreased pixel densities. 

Another important development, is the use of programm­

able optical interconnections, to achieve greater flexibil­

ity in the communication geometry between optical or elec­

tronic processing components. These devices are similar to 

the holograms shown in Fig.3.5.1(d) and (e), but they offer 

the additional capability of dynamically changing the inter­

connection patterns, in real time rates. Furtiermore, they 

have several operational modes, i.e. they can reflect or 

deflect light beams, and act as lenses or beam splitters. 

Thus, optical crossbar switches, or other types of complex, 

time-varying communication geonietries may become feasible. 

Interesting experimental results are discussed in [122), 

[146), [194), [254). 

Finally, simple space-integration is possible, i.e. the 
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collection of more than one beam on to the same detector 

pixel, in order to achieve the simultaneous accumulation of 

many partial products on the same partial result [50). The 

space-integation method introduces another basic advantage 

of optical processing, equally important to the high speed 

of optical computations. This is the fact that optical com­

puting enables the utilization of 3~d parallelism, thus sub­

stantially increasing the parallelism potential of an algo­

rithm. This possibility will become more apparent in chapter 

8, where the optical implementation of systolic matrix com­

putations is discussed. In the same chapter, the main prob­

lems of the optical implementation of systolic algorithms 

are also discussed, and a review of the possible solutions 

are given. 

3.5.3 A GENERAL FRAMEWORK FOR SYSTOLIC ALGORITHMS 

The application of optical computing concepts to the 

systolic approach, introduces some alterations to the frame­

work discussed in section 3.1, since it is possible to relax 

some of the restrictions imposed by VLSI technology. Thus, 

optical systolic algorithms observe the main principles of 

systolic algorithms, but they differ from the hard-systolic 

algorithms in the· following ways: 

The computing structure can be 3-d; thus a higher degree 

of parallelism is achieved. 

Area optimization is important, since there are techno-
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logical limits in the number of pixels per device, 

closely related to the maximum operational speeds as well 

as the optical processor complexity. Further, area is an 

important consideration in the combination of optical and 

electronic devices. However, there are still no area 

optimization techniques comparable with those of VLSI 

technology. 

Fabrication may not be immediately possible, since opti­

cal technology is not yet very well established; however 

it is clearly foreseeable, at least for the simpler of 

the algorithms. 

Global interconnections (broadcasting, fan-in) are used, 

but their arrangement must be simple and regular. 

Thus, we can see that, in the case of the optical 

implementation of systolic algorithms, the modifications are 

hardware oriented and technology - sensitive In the case of 

soft-systolic algorithms the modifications are software 

oriented and they extend the concept of the systolic 

approach in general parallel processing. Finally, hybrid­

systolic algorithms try to use both hardware and software 

advancements, in the form of flexible VLSI processors, on 

the one hand, and of systolic programming on the other. 

As a conclusion, we present Table 3.5.1, which summar­

izes the main characteristics of the several classes of sys­

tolic algorithms discussed in this chapter. In addition· to 



Systolic Algorithms 

Hard Hybrid Soft Optical 

Computing 2-d 2-d k-d 3-d 
Structure 

Area high medium low medium 
Efficiency or high 

Processor planar almost non non 
Interconnection planar planar planar 

Global no or very limited allowed used 
Communication limited 

Programmability no or low medium high no or low 

Fabrication direct indirect no probable 
VLSI VLSI optical-VLSI 

Simulation by hybrid soft soft soft 
and soft 

Table 3.5.1. Types of systolic algorithms. 
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the criteria already mentioned, the possible simulation of a 

systolic algorithm, using another type of methodology is 

discussed. It is evident that soft-systolic techniques can 

be used for the simulation of any type of algorithm; this 

indicates the significance of soft-systolic simulation, as a 

method for the initial verification and validation of a sys­

tolic algorithm. 

Further, it should be noticed that the boundaries 

between the several categories are not clear-cut: develop­

ments in VLSI or optical technology may allow direct and 

efficient hardware implementation of some hybrid, optical or 

soft-systolic algorithms, in the future. Thus, a 'grey area' 

of 'migrating' algorithms may be distinguished, between some 

of these general categories. 

The new algorithms described in the subsequent chapters 

are termed generally 'systolic', with the exception of the 

optical systolic algorithms. A classification of the algo­

rithms presented in this thesis, using the categories iden­

tified herein, is given in the conclusions (chapter 9). 

Notice also that we use the term 'linear array' to describe 

degenerate (or collapsed) 2-d geometries, since this termi­

nology is widely used in the literatutre, and the distinc­

tion is easy. Finally, the dummy data items are ususally 

denoted by '0' or '*' and the idle processors are left 

blank in snapshot diagrams. 



C B A P T E R 4 

SYSTOLIC SOLUTION OF POLYNOMIAL EQUATIONS 

4.1 INTRODUCTION 

The systolic implementation of polynomial computations 

has been investigated by several researchers, due to its 

interest in a wide range of scientific applications such as 

analysis and synthesis of control systems, signal and image 

processing, data ericryption algorithms, as well as in more 

traditional areas of numerical analysis, i.e. function 

approximation and eigenvalue computation [160), [163). 

For example, in [246) the systolic implementation of 

the nested multiplication algorithm (Horner's scheme) is 

used as an example for the specification of the unidirec­

tional linear systolic array. A two-level pipelined approach 

for the same calculation is given in [161). The evaluation 

of a polynomial is used as an example for the illustration 

of the systolic design system SYS in [177). The Taylor 

series approximation is used for the calculation of unary 

functions, e.g. division, square root in [218), and this 

hardware real_isation is utilized in the implementation of 
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the boundary cell of the CMU Warp Machine [7). Optical and 

integrated-optical architectures for polynomial evaluation 

are proposed in [290), [292) and the direct optical imple­

mentation of unary functions is discussed. 

Polynomial· division on systolic arrays is described in 

[303) and the concept of asystolic digital control archi­

tecture is discussed. The systolic calculation of the 

Greatest Common Divisor of two polynomials and two integers 

is addressed in [36-37). Direct hardware implementation of 

encryption techniques using polynomial manipulation is 

described in [136). The solution of a polynomial equation 

using the Quotient- Difference method and a systolic imple­

mentation of tableau algorithms is discussed in [200). 

Finally the calculation of the characteristic polynomial of 

a symmetric tridiagonal matrix and the subsequent computa­

tion of the corresponding eigenvalues is addressed in [259). 

In this chapter the systolic implementation of solution 

methods for polynomial equations is investigated. In the 

first two sections the Bernoulli and Graeffe methods are 

·described in detail. Although these two methods are not 

currently extensively used, their simple computation allow 

for efficient systolic implementation; furthermore, they 

provide good examples for the application of transformation 

techniques that are used later on in more complex 

recurrences. 

In the third section the calculation of the eigenvalues 
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of a symmetric tridiagonal matrix using an improved Sturm 

sequence recurrence is described, and a systolic ring archi­

tecture is proposed. The symmetric tridiagonal matrices are 

an end-product of many computational techniques for the 

solution of the algebraic eigenvalue problem for symmetric 

matrices [296). 

Finally, in the last section, the systolic ring archi­

tecture is extended to cover several well-known iterative 

methods for the solution of polynomial equations. Further­

more some methods for the calculation of the characteristic 

polynomial of a matrix are briefly discussed. 



4.2 SYSTOLIC DESIGNS FOR BERNOULLI'S METHOD 

The method of Bernoulli for the calculation of dominant 

zeros of polynomial equations of the form, 

+a = 0 
n (4.2.1) 

is summarized in [148) as follows (see also section 2.1): 

Consider the equation (4.2.1) for real polynomial coeffi-

cients and r1 ,r 2, ... ,rn are the roots of the equation; 

then from Newton's Theorem we have if, 

(4.2.2) 

then, 

S = -a s -a s - k k 1 2 k 1 k-1 2 k-2 ••• -ak-1 s1-ak I = I I ••• In 
(4.2.3) 

and, 

S = -a s -a s - a s · 1 2 n+j 1 n+j-1 2 n+j-2 ..• - n j 1 J= 1 1 ''' 
(4.2.4) 

Initially, it is assumed that there is a single real darn-

inant root; then, from (4.2.2), 

r r 
S = rp{1 + (.2_)p + ••• + (~)p} 

p 1 r1 ·r 
1 

hence, for sufficiently large p, 

s /S 
1 

--+ r
1 p p- P-

sp can be written as, 

(4.2.5) 

(4.2.6) 

Therefore in this case the method produces the dominant zero 

with successive divisions of the coefficients 

,sp, as in (4.2.6). 
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Also in the case of a pair of complex zeros the method 

produces the two dominant roots r 1 and r 2 , as follows. Let 

2 
T = s s 2-s 1 , 
p pp- p-

u = s s -s s 
p p p-3 p-1 p-2 

then, for sufficiently large p 

T /T -+ v
2 

p p-1 p->oo , 

where, 

r
1 

= v(cose+isinel , 

u /T 
1 
~ 2vcose p p- p~ 

r 2 = v(cos6-isin8) • 

(4.2.7) 

(4.2.8) 

(4.2.9) 

The cases of multiple real and complex roots are treated in 

a manner similar to (4.2.6) and (4.2.7-9) respectively. The 

method can be extended to consider two or more distinct 

zeros having the same absolute value, as explained in [148]. 

As a rule, the method converges slowly, and, as p 

grows, an overflow in the numerical calculations may occur. 

On the other hand Bernoulli's method produces with a rela­

tively simple and regular computation the dominant root of a 

polynomial equation, especially when it is significantly 

larger than any of the others. 

· The method can be repeated if the original polynomial 

is deflated by (x-r1 ) or (x-r1 )(x-r2 )using Horner's scheme 

giving a polynomial of degree n-1 or n-2, to which the 

method is then applied. Herein systolic designs for the 

calculation of the coefficients from 

(4.2.3,4) are discussed and an appropriate systolic ring 
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architecture is discussed in detail.Finally, the systolic 

ring is integrated in a systolic polynomial equation solver. 

4.2.1 SYSTOLIC DESIGN DERIVATION 

From the description of Bernoulli's method, it is obvi­

ous that the main computational effort is to produce the 

coefficients using the recurrences 

(4.2.3,4). Then some post-processing may be necessary and 

finally a series of divisions to produce the dominant 

zero(s). 

Now recurrences (4.2.3,4) can be unified in a form more 

suitable for systolic implementation as follows : 

(1) 
yi = 0 

(k+l) 
yi 

(k) 
= yi -aksi-k' k=1,2, •.• ,n and s0=s_1= ... =0 

(n+1) . 
sl.. = yl.. -al..l. , i=1,2, •.. and a =a 2= ••• =0 n+l n+ 

For example, we have for n=5, 

s1 = -a 1 
1 

s2 = -a s -a 2 
1 1 2 

s3 = -a
1

s
2
•a

2
s

1
-a

3
3 

s4 = -a
1

s
3
-a

2
s

2
-a

3
s

1
-a

4
4 

ss = -a
1

s
4
-a

2
s

3
-a

3
s

2
-a

4
s

1
-a

5
s 

s6 = -a1s5-a2s4-a3s3-a4s2-a5s1 

s7 = -a1s6-a2s5-a3s4-a4s3-a5s2 • etc. 

(4.2.10) 

(4.2.11) 

Clearly (4.2.10) is a recurrence with feedback cycles, i.e. 

the value of si depends on si-l'si_2 , ••• ,s1 . This 

recurrence can be seen as a special form of the solution of 
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a triangular linear system of equations and can be readily 

realised as a systolic array with bidirectional dataflow.The 

array for n=S is shown in Fig.4.2.l.The partial sums are 

accumulated in y while it travels along the array, until it 

reaches the feedback cell; there a value of S is formed and 

it travels in the opposite direction to produce the inner 

products for the following y's and finally to form the out­

put of the array. 

The quantity s0can be interpreted as a control flag 

that enables the storage of the polynomial coefficients in 

the appropriate cells, and the accumulation of the values 

• ,ann as the partial sums for the correspond-

ing y.Thus a data sequence of the form : 

(4.2.12t 

pumped into the array through the y input stream for the 

first 2n+l cycles can set up the array in a systolic manner. 

The linear array requires n IPS cells and produces its 

first valid output after 2n+2 IPS cycles, and from then on 

one valid output every two cycles, i.e it has a throughput 

rate of 1;2. Similarly the processor utilisation is 1/2 

since only half of the cells are active at any one cycle. 

An additional disadvantage of the bidirectional dataflow is 

the fact that it makes difficult the application of fault­

tolerant techniques, because the performance of the array 

degrades rapidly with respect to the number of consecutive 
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failed cells that need to be tolerated. 

The recurrence relation (4.2.11) of size 6 computed by 

a 5-cell bidirectional linear array as in Fig.4.2.1 can also 

be implemented as a 3-cell ring with unidirectional 

dataflow, as in Fig.4.2.2. This result can be derived more 

systematically if (4.2.10) is reformulated as follows : 

= -a i 
i 

i=l,2, ••• and a 
1

=a 
2

= ••• =0 
n+ n+ 

k=1,2, ••• ,n and s =s = ••• =0 
0 -1 

The example of (4.2.11) is now witten as 

s1 = -a 1 
1 

s2 = -a
2

2-a
1 

s
1 

s3 = -a
3

3-a
2

s
1
-a

1 
s 

2 

54 = -a
4

4-a
3
s

1
-a

2
s

2
-a

1
s

3 

ss = -a 5-a s -a s -a s -a s 
5 41322314 

56 -a s -a s -a s -a s -a s 
5142332415 

57 = -a s -a s -a s -a s -a s etc. 
5 2 4 3 3 4 2 5 1 6' 

(4.2.13) 

(4.2.14) 

It is clear that (4.2.14) represents a unrolled ring-like 

computation; this is more obvious if in s 6 the product a1s 5 

is placed in the leftmost end; and the same happens for a2s 5 

and a
1

s
6 

of s7 • Then each column will contain a cyclic 

sequence of a1 ,a2 , ••• ,a5where all coefficients of a cycle 

are multiplied with the same s ;for the next cycle si is 

then replaced with sn+i-l (n=S here).Again, it is assumed 

that the computation aii is replaced by ais 0• 



- 220 -

Fig.4.2.2. Dataflow for systolic ring design (n=S). 
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The systolic ring of Fig.4.2.2 works as follows.The 

three most recently computed results are stored in each of 

the three cells, while the next three partial sums travel 

around the ring to meet these stored values; together with 

them the coefficients of the polynomial travel around the 

ring with half the speed of the partial sums.Every two 

cycles a sum is completed and a new computation begins; the 

completed sum takes the place of the 'oldest' stored result 

which, in turn, is produced as an output (denoted by '*' in 

Fig.4.2.2). 

The dummy coefficient controls the output and 

storage operations of the ring while the initial values 

-a
1
1,-a

2
2, ... ,-ann can be input onto the ring simultaneously 

with the poly~omial coefficients as it is explained in the 

next subsection. 

The systolic ring requires only half the cells of the 

linear array and· all cells are active at all times, i.e. the 

processor utilisation is nearly 1; the throughput rate 

remains 1/2 and now the output is collected from all 

cells.The basic advantage of the ring is that it degrades 

gracefully as the number of defective cells increases when 

fault-tolerance techniques are applied. 

4.2.2 IMPLEMENTATION DETAILS 

The systolic ring operation for a recurrence of size 5 

(odd) is shown in Fig.4.2.3. A dummy (zero) coefficient 
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enters the ring to synchronize the calculations in a manner 

similar to that of Fig.4.2.2 (for even recurrence size). In 

general for a polynomial equation (4.2.1) of degree n, the 

recurrence (4.2.13) has size n+l and the systolic ring that 

implements it requires l(n+2)/2J IPS cells; in addition an 

equal number of delay elements is required for the ring to 

accommodate all the coefficients of the polynomial. 

During the first n+l cycles, for n=odd, or n+2 cycles, 

for n=even, the initial values enter the ring as illustrated 

in Fig.4.2.3; from then on the normal ring operation is 

resumed and the first valid result is produced when the 

polynomial coefficients complete a full circle on the 

ring.The dummy coefficient a serves as a controlling signal 

that enables the output of si and the storage of sn+i-l in 

its place. 

Although the output is collected from all the cells of 

the ring the valid results can be collected systolically as 

shown in Fig.4.2.4, with the addition of a series of 

linearly interconnected 2-input and 1-output registers.The 

inputs of these registers are again controlled by a 0 : thus 

when a valid output from cell i occurs the corresponding 

register accepts this output; otherwise it propagates the 

data received from the preceeding register. Thus, after an 

initial delay, the results are produced in groups of 

l(n+2)/2J with intermediate intervals of dummy output of the 

same length. 
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In Fig.4.2.5 an overall system for the implementation 

of Bernoulli's method is illustrated schematically.The mul­

tiplexer (MUX) 'closes' the ring after the initial input 

cycles; it can be either data-driven, i.e. controlled by the 

a flag, or programmed from the host machine. The post­

processing element (PP) implements one of the relations 

(4.2.6) or (4.2.7-9), i.e. it formulates the successive 

approximations of the dominant zero(s) of the polynomial 

equation. In the case of relation (4.2.6) PP is a simple 

divider with registers to store the s ,s 1 and data-driven p p-

or host-controlled input port from the ring. Its operation 

can be outlined as follows : 

if 
valid input from ring 

seq 
s.old := s.new 
in ? s.new 
root approximation := s.new I s.old 

However PP is considerably more complicated for the case of 

complex roots as it is obvious from relations (4.2.7-9).A 

soft-systolic simulation program is given in A.l.l, 
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4.3 SYSTOLIC DESIGNS FOR THE ROOT-SQUARING METHOD * 

The Graeffe root-squaring method for the solution of 

polynomial equations of the form, 

(4.3.1) 

is summarized in [111) as follows (see also section 2.1): 

Consider the equation (4.3.1) and for the sake of simplicity 

suppose that all the roots are real and distinct. Collecting 

all even terms on one side and all odd terms on the other, 

we get on squaring 

2 Now by putting x =y, a new equation is obtained 

with 

••• +b = 0 
n 

(4.3.2) 

(4.3.3) 

(4.3.4) 

The procedure can be repeated and it is finally terminated 

when the double products can be neglected, compared with the 

quadratic terms in the formation of the new coefficients. 

Suppose that, after m squarings, we have obtained the equa-

tion, 

+A = 0 
n 

(4.3.5) 

* An extended version of this section appears in Inter­
national Journal 2! Computer Mathematics, Vol. 22, pp. 
43-62, 1987. 
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with the .roots q1,q2, ••• ,qn' while the original equation has 

the roots r 1 ,r2, ••• ,rn. Then the following relation holds 

between the roots of the old and the new polynomials 

q
1 
=r~m , i=l,2, ... ,n. (4.3.6) 

Further suppose that, 

I r1 1 >I r2 1 > .. · > lrn I 
and therefore 

Hence, 

q. "'-A1/A. l' i=l, ... ,n • 
l. l.-

(4.3.7) 

(4.3.8) 

(4.3.9) 

Finally, ri is obtained by m successive square-root extrac­

tions from qi' and the sign has to be determined by inser­

tion of the root into the equation. 

The Graeffe method can be extended for double and corn-

plex roots as shown in [ 42], [282]. The advantages and 

drawbacks of the root-squaring method are discussed in 

detail in [297]. One disadvantage is the fact that the sue-

cessive squarings may cause an overflow in the numerical 

calculations; another disadvantage is the possibility of 

worsening the condition of a polynomial as a result of suc­

cessive squarings. An advantage is that the root-squaring 

method can provide all n roots of a polynomial equation 

simultaneously with relatively simple and regular computa­

tion. Thus, the method is still useful for the separation of 

very close roots and for the computation of initial approxi­

mations, provided that a limited number of iterations is 

performed. 
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Herein the systolic design for an iteration of the 

Graeffe method based on (4.3.4) is discussed and an 

appropriate systolic array is described in detail.Finally, 

the systolic array is integrated into a systolic equation 

solver. 

4.3.1 SYSTOLIC DESIGN DERIVATION 

As it is obvious from the description of the root­

squaring method, the main computational effort is to produce 

the coefficients bi' i=O,l, .•. ,n of the new polynomial 

(4.3.3) by using the recurrence (4.3.4).This calculation is 

repeated m times, i.e.we have m steps, until the equation 

(4.3.6) is produced. Finally, a series of divisions and 

square-root extractions produces the roots of the original 

equation. 

Now recurrence (4.3.4) can be re-written in a form more 

suitable for systolic implementation as follows : 

bk = (-1)kakak+(-2)k-1~ a + 
K-1 k+l 

k::::O,l, ••• ,n, 

a = a = 
-1 -2 = an+1 = an+2 = ··· = 0 ~ 

For example, for n=S (n=odd) we have : 

b = 
0 

b = 
4 

(4.3.10) 
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Similarly, for n=6 (n=even) 
0 b0 = (-1) a0a0 

b1 = 
1 0 (-1) a1a1+(-2) a0a2 

b2 = 
2 1 0 (-1) a2a2+(-2) a1a 3+{-2) a0a 4 

b3 
3 2 1 0 

= (-1) a 3a 3+(-2) a2a4+(-2) a1a5+(-2) a0a6 

b4 = 
4 3 2 (-1) a 4a4+(-2) a 3a5+(-2) a2a6 

bs = 
5 4 (-1) a

5
a5+(-2) a4a6 

bG = 6 (-1) a6a6 • 
(4.3.12) 

It can be easily observed that the basic calculation 

required for the computation of a coefficient b is the 

IPS operation. Another important feature is the pipelinea-

bility of the calculations for successive b's as it is 

obvious from (4.3.11) and (4.3.12) the coefficients of the 

original polynomial are regularly arranged throughout the 

calculations.Furthermore, the number of IPS required is 

binomially distributed over the central coefficients, with a 

minimum of 1 IPS for the first and last coefficients and a 

maximum of r(n+l)/21 operations for the one or two central 

coefficients, for n even and odd respectively.A final point 

is that the exponent that.determines the sign of each IPS is 

arranged to be the same with the subscript of the first 

operand of the multiplication; thus it can be said that this 

component 'carries' its sign throughout the computation as 

it moves in different positions for the calculation of sue-

cessive b's. 
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The above observations will be used in the derivation 

of the systolic design implementing the computations of 

(4.3.10).The first requirement for that design is the 

occurrence of the appropriate data items, in the correct 

cell and during the desired computation step.A possible 

dataflow specification and the resulting systolic design are 

shown in Fig.4.3.1. The case of n=6 is used as an example 

for the remainder of this section since the differences for 

n odd and n even are insignificant. 

The data flow illustrated in Fig.4.3.1 is a direct map­

ping of the recurrence relation (4.3.12) onto a linear array 

of processors; the unused variables are multiplied by dummy 

elements (zeros) and thus in every step one coefficient b is 

produced. The data form a reflected wavefront, i.e. enter 

the array from the right end, travel through the array and 

then they are reflected back towards their input side a 

systolic design implementing this data movement is also 

shown in Fig.4.3.1. Notice that only r(n+l)/21 cells are 

required for the formulation of a polynomial of order n. The 

main operation for the cells is a multiplication while the 

leftmost cell reflects the data item received and multipies 

it by itself. During a time unit all cells perfom a multi­

plication and the results are fanned-in and summed using an 

adder, to form bi. 

When the number of cells is large the adder can be 

implemented as a systolic tree adder to avoid large delays 
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[160), [181). The systolic design of Fig.4.3.1 requires 

f!n+1)/21 preloading steps followed by the delay caused by 

the fan-in adder; from then on one result can be produced in 

each cycle. 

The main disadvantages of the design in Fig.4.3.1 are 

the fan-in mechanism with the tree-structured adder, and the 

bidirectional dataflow of the main array. Some of these 

disadvantages can be removed as shown in Fig.4.3.2. If we 

simply •retime' the calculations in proportion to their spa­

tial distance from the leftmost processor, we can derive the 

data movement of Fig.4.3.2. After this rearrangement the 

following occurrences are observed: the same value of 'a' 

participates in the calculations of all cells simultane­

ously, a fact that implies the suitability of broadcasting 

that value; the other operands of the multiplications have 

subscripts that differ by two, which means a double delay 

between the cells; finally the IPS computation is accom­

plished in the same cell since the computation of the values 

of 'b' is now pipelined. 

A systolic array implementing the dataflow described 

above is illustrated in Fig.4.3.2. The data movement is now 

unidirectional, the cells are IPS cells and additional 

delays are placed for the slow-moving values of 'a'.This 

systolic design requires no preloading steps and it produces 

the first valid result after f(n+l)/21 cycles; no fan-in is 

involved but now broadcasting is introduced; the throughput 
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of the array remains 1. Notice, however that in the case of 

Fig.4.3.1 the time complexity of one step is equal to the 

time required by a multiplication, while in the case of 

Fig.4.3.2 the time complexity is equal-to 1 IPS. 

In order to achieve a purely systolic design all broad-

casting, fan-in mechanisms and long, irregular interconnec-

tions must be removed. If the •retiming' technique is 

applied on the design of Fig.4.3.2 in a similar way as that 

of Fig.4.3.1, a purely systolic design is derived, which is 

shown in Fig.4.3.3. The calculations are delayed for one 

more cycle for each cell : thus the broadcasted data item of 

Fig.4.3.2 which travelled with zero delay, now moves with 

delay equal to one time unit; subsequently a time unit delay 

is added to all data streams and therefore the b's travel 

with a two cycle delay and the 'slow a' travels with three 

cycles delay. The dataflow is unidirectional but the first 

valid result is now produced after zr(n+l)/21-1 cycles. 

4.3.2 IMPLEMENTATION DETAILS 

The systolic array of Fig.4.3.3 needs some further 

refinements as regards the operations to be performed in 

each cell. There are some more complications in the compu­

tation of the coefficients of the n~w polynomial, namely, . ' 

the determination of the sign for each partial IPS and the 

multiplication by 2. It was observed that the sign for each 

'a' is determined once, upon its squaring and then it 

remains the same for the remainder of the calculations; 
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furthermore the doubling can be combined with the sign 

determination so that it happens only once for each 'a'. 

These operations are all collected in the first cell of. the 

array and thus the array takes the final form shown in 

Fig.4.3.4, where the detailed dataflow is also illustrated. 

The first data stream consists of 'fast a's'that travel 

unchanged through the array; the second stream has 'slow 

a's' which are multiplied by -2 or 2; the third stream are 

the b's which collect the inner products that are calculated 

in the cells, and finally produce the coefficients of the 

new polynomial.The first cell can be specified as follows : 

if 
even cycle 

t := ain 
true 

t := - ain 
a-fast := ain 
a-slow := 2 * t 
b :=a * t 

The multiplication by two can be replaced by a simple 

'shift-left' operation; the time complexity of the SQ cell 

is not greater than 1 IPS since the negatibn can be seen as 

a subtraction from zero. The IP is a simple IPS cell. 

A systolic system based on the Graeffe root-squaring 

method should be capable of performing a number of succes-

sive polynomial formulations using the systolic array 

described. The number of iterations can be predefined or can 

be controlled by the host system on inspection of the 

difference in the magnitude of the coefficients being 
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produced. Usually a small number of iterations, e.g. three, 

is enough [ 42),[111). After the final polynomial is formed 

a series of divisions follows and then successive square-

root extractions; the number of square-root operations is 

the same as that of polynomial formulations. 

A systolic system for the implementation of the root­

squaring method is shown in Fig.4.3.5. On the left-hand 

side, there is a pipeline of m (here m=3) systolic arrays 

similar to that of Fig.4.3.4. The first array accepts as 

input the coefficients of the original polynomial and calcu­

lates the coefficients of the new polynomial, and thus each 

array represents a root-squaring iteration. The coefficients 

of the final polynomial pass through a divider;negator where 

the roots of the final polynomial equation are calculated 

according to (4.3.9) : 

par 
A.new := Ain 
qout := Ain 1 A.old 

if 
A.new <> 0.0 

A.old :m - A.new 
true 

A.old :a - suitably small quantity 

Notice that since the coefficients of the final polynomial 

are produced at the rate of one per cycle they can form the 

input to the divider;negator with no delay; similarly the 

roots of the final polynomial are produced at the same 

throughput rate. A possible pipelined implementation of a 

square-root device (SQRT) would secure a smooth dataflow 
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through the successive square-root extractions, which are 

illustrated in the right-hand side of Fig.4.3.5 [218). 

Thus, the absolute values of the roots of the original poly­

nomial can be produced in the same pipelined fashion. 

An alternative configuration for the systolic system 

would be the use of only one systolic array with feedback 

mechanism so that the same array produces the successive 

polynomials (see, for example Fig.4.2.5 for the Bernoulli 

method). The feedback mechanism can be extended to check 

for the convergence of the process as it will discussed in 

subsequent sections. The systolic array for the root­

squaring method is simulated soft-systolically using OCCAM 

in A.l.2 .• 



4.4 SYSTOLIC DESIGN FOR THE CALCULATION OF THE EIGENVALUES 

OF A SYMMETRIC TRIDIAGONAL MATRIX 

Given a symmetric tridiagonal matrix of order n, with 

diagonal elements a1 ,a2 , .•. ,an and off-diagonal elements 

b2 ,b3, ••• ,bn with b1 - 0. For. any number x 

let the Sturm sequence (see sections 2.1, 2.4) defined as: 

2 p
1
• (x) = (a.-x)p. 1 (x) - b.p. 2 (x), i=2,3, •.• ,n 

1 1- 1 1-
(4.4.1) 

then, pn(x) is the characteristic polynomial of the matrix. 

Furthermore the number S(x) of disagreements in sign of the 

sequence p1 (x),p2 (x), •.• ,pn(x) indicates the number of roots 

of the polynomial, i.e. the eigenvalues of the matrix, that 

are smaller than x [298] (see Fig.4.4.1). Bisection is used 

to isolate the roots of pn(x); the termination criterion is 

( 4.4.2) 

where c is a predefined small positive quantity and [ a, ~ ] 

is. the current bisection interval.If the termination cri-

terion is not satisfied the new bisection interval is deter-

mined as follows: Let R be the order of the root being 

sought, i.e. the smallest root has order 0, the next 1, 

etc.; then 

if 
S(x) > R 

x:=(a+x)/2; new interval is [a,x] 
true 
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Fig.4.4.1. Roots for sturm sequence polynomial. 
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x:=(x+l3)/2; new interval is (x,j3) (4.4.3) 

An eigenvalue with multiplicity m > 1 can also be detected 

as S(x) produces a 'jump' of m at x. Therefore the bisection 

process returns to the multiple root for m times before the 

next eigenvalue is located. 

In I 18) a modification of the Sturm sequence was pro­

posed because it was noticed that it is quite common for 

pi(x) to produce overflow. Thus, instead of calculating the 

sequence (4.4.2), an alternative sequence is computed, 

defined as 

(4.4.4) 

and calculated using the recurrence 

(4.4.5) 

Some advantages of the modified sequence are the following : 

the q-sequence does not suffer from overflow problems; less 

computation is required since two multiplications are 

replaced by one division; the calculation of qi(x) requires 

only qi_1(x), while pi(x) requires both pi_1(x) and p1_2 (x). 

on the other hand, recurrence (4.4.5) is unstable, while 

(4.4.1) is extremely stable, for it is possible for qi_1 (x) 

to become zero for some i; however, in such cases the zero 
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can be replaced by a suitably small quantity. Another advan­

tage of the modified sequence is the fact that S(x) is now 

given by the number of negative q's. 

Using the Sturm sequence properties all n eigenvalues 

of a symmetric tridiagonal matrix can be found in parallel 

(101), (259). Bisection can be applied on each root 

independently from the other roots since the only criterion 

used is S(x), as explained in (4.4.3) and in Fig.4.4.1. The 

initial interval can be common to all eigenvalues. Alterna­

tively a different bisection interval can be supplied for 

each eigenvalue, based on good approximations in the cases 

where the matrix is frequently updated and the eigenvalue 

computation process is repeated. 

A pipeline for the calculation of the Sturm sequence of 

polynomials is described herein, based on the recurrence 

(4.4.5) and it is compared to the pipeline proposed in (259) 

using relations (4.4.1). Then, the pipeline is incorporated 

in a systolic eigenvalue solver implementing the bisection 

process; several extentions are also briefly discussed. 

4.4.1 STURM SEQUENCE PIPELINE 

The main compuational effort of the algorithm described 

is concentrated in the calculation of the Sturm sequence for 

a given x and the determination of the corresponding S(x). A 

diagram of the pipeline calculating the Sturm sequence is 

shown in Fig.4.4.2. Each pipeline block is analysed in three 
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parts: the first part is a simple delay element that allows 

the synchronous movement of the bisection distance d with. 

the other data in the pipeline; the operation of d is 

analysed later on. A second usage for this simple communica­

tion channel is the preloading of the matrix diagonals, i.e. 

the polynomial coefficients, into the pipeline blocks during 

the setup phase. 

The Q processor of the pipeline block calculates qout 

for given qin, a, b and x; its functional specification can 

be : 

if 

if 

setup phase 
load a, b through x, d channels 

qin = 0 
q := sufficiently small quantity 

true 
q := qin 

xout := xin 
qout := (a- x) - (b I q). 

The processor is quite complex as it involves two subtrac­

tions, one division and a comparison with zero; if the 

recurrence (4.4.1) is used the processor will require one 

additional input-output channel and it will involve two sub­

tractions and two multiplications. 

The S processor of the pipeline block computes Sout 

for given Sin and qin, i.e. 

if 
qin < 0 

sout := sin + 1 
true 
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sout :- sin. 

Notice that the comparison with zero can be combined with 

the corresponding calculation in processor Q ; observe also 

that this computation is considerably simpler than the 

sign-change detection required if the original Sturm 

sequence is used. From Fig.4.4.2 it is obvious that the com­

putation of processor Si is performed after that of 01 , or, 

in other words, it is overlapped with the computation of 

Qi+l' Therefore S(x) is produced one cycle after qi(x). 

Another implication is that since the si processor is much 

simpler than Qi' the S pipeline remains 'idle' for some part 

of each clock cycle waiting for the Q pipeline to finish its 

computation. An alternative approach is to define as time 

unit for the pipeline the sequence of the computations in Qi 

and si, and have no delay at the end of the pipeline. 

Finally, two unequal clock cycles may be considered or a 

data-driven (wavefront) computation. 

4.4.2 SYSTOLIC EIGENVALUE SOLVER 

The systolic eigenvalue solver is shown in Fig.4.4.3. 

The main part of the system is the n-processor pipeline cal­

culating the Sturm sequence. The pipeline can be folded to 

form a systolic ring reflecting the iterative nature of the 

process, together with two controlling processors, the 

Bisection Test processor and the I/0 controller. 

The initial values are supplied to the first cell of 
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the pipeline, while the nth cell provides S(x) to the Bisec­

tion Test processor.The bisection interval corresponding to 

certain x should be present in the Bisection Test processor 

simultaneously with S(x). This can be achieved in two ways : 

a local store can be placed in the system, keeping all 

bisection intervals and making them available in the proper 

cycle for updating; or a distributed memory, i.e. simple 

registers can allow the bisection interval to travel through 

the pipeline together with x and S(x). The first approach 

introduces the need of large local storage and control 

mechanisms, while the second approach involves additional 

communication channels throughout the pipeline. The second 

technique is used here since it fits better with the pipe­

line scheme and it is also used for the preloading of the 

pipeline with the matrix diagonal elements. 

In order to minimise computation and communication 

overheads a bisection interval (a,~] is expressed in the 

form of a bisection distanced= (~-a)/4, and a bisection 

point x- (a+~)/2. Then, (4.4.3) and (4.4.4) can be 

expressed as 

d .$ t 

and 
if 

S(x) > R 
X := X - d 

true 
X := X + d 

d := d / 2 

(4.4.6) 

(4.4.7) 

The computation of (4.4.7) is performed in the Bisection 
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Test processor, where the 'order' R of the root is kept by 

means of a counter which is initialised during the setup 

phase to 0. Thus S(x1 ) is compared with 0, S(x2 ) with 1 and 

finally S(xn) with n-1; then the counter is reset to 0 for 

the next bisection cycle. The computation of the Bisection 

Test processor is simple enough to be completed within a 

single pipeline time unit, and therefore it introduces only 

one cycle delay. 

The I/0 controller allows for the initial loading of 

the quantities a1 ,a2 , ,an and 0, b2,b3, • . ,bn 

followed by x1 ,x2, ••• ,xn and d1 ,d2, .•• ,dn. After 

that the ring is •closed' and the normal operation of the 

system is resumed as the output of the Bisection Test pro-

cesser is routed back to the pipeline, as shown in 

Fig.4.4.3. The iterates of each bisection cycle are also 

output to the host where a convergence test similar to that 

of (4.4.6) is performed. The I/O controller imposes no addi­

tional delay in the computation since it comprises of simple 

multiplexers. 

The systolic system proposed performs a single itera­

tion for the n eigenvalues in n+2 steps, each step having 

the complexity of 2 subtractions and 1 division, needed for 

the calculations in a Q processor. A soft-systolic simula­

tion program in OCCAM is given in A.1.3. 

The eigenvalue solver can be extended to perform a con­

vergence test for the iterates, as in (4.4.6), and then 
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produces its own Reset signal, when all eigenvalues are 

found. Thus the host is only informed when the computation 

is finished and a new one can start. Furthermore, only cer­

tain eigenvalues can be found, either of specific order or 

in specific range : in the first case the order of the 

eigenvalue would be associated to x and be compared with 

S(x); in the second case an additional convergence check is 

necessary, i.e. 

qn(x) ~ 0 (4.4,8) 

since the eigenvalues o~ide the specified range will 'con­

verge' to the bounds of the interval but will produce a 

non-zero qn(x). 



4.5 CONCLUSIONS 

4.5.1 ITERATIVE METHODS 

The general class of iterative methods for the computa-

tion of a root for a polynomial equation, as described in 

section 2.1, can be expressed as follows [64], [72]: 

given a set of approximations 
while there is no convergence 

seq 
perform a set of polynomial evaluations 
update the set of approximations (4.5.1) 

Depending on the method in question the set of approxima­

tions may consist of one up to three values, while the set 

of polynomial evaluations can comprise either a single 

evaluation or calculation of the derivatives of the polyno-

mial. The updating procedure is relatively simple for the 

Newton-based methods, while it is considerably more compli­

cated for the Bairstow, Muller and Laguerre methods. Cover-

gence can be checked by comparing the two latest approxima­

tions to the root sought. 

All the iterative methods can be implemented by means 

of asystolic ring similar to that of Fig. 4.2.5 and 4.4.3. 

The pipeline part of the ring can have more than one pipe-

line performing parallel polynomial evaluations, if 

required: in [148] Horner's scheme is extended to cover the 

evaluation of derivatives of polynomials in real and complex 

values; the systolic computation is straightforward and it 

is given in A.1.4, A.1.5. 
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The pipelineability of the systolic ring depends on the 

hardware implementation of the updating procedure. In the 

case of Newton-based iterative methods this updating can be 

expressed in a series of simple arithmetic operations and 

therefore the computations of the updating procedure can be 

fully pipelined, or in the case of Fig. 4.4.3. However, for 

the Bairstow, Muller and Laguerre's methods more complicated 

calculations are necessary and therefore the systolic ring 

may not be fully utilized. 

4.5.2 CHARACTERISTIC POLYNOMIAL COMPUTATION 

In section 2.4 (see .also [111), [148)) the Leverrier­

Faddeev method for the calculation of the characteristic 

polynomial of a matrix is described; this method is used in 

[69), [293) for the parallel inversion of a matrix. The Ber­

noulli method discussed in section 4.2 uses the same Newton 

identities as the Leverrier-Faddeev method, with the differ­

ence that now the polynomial coefficients are the unknowns. 

Thus, a similar systolic system as that in Fig. 4.2.4 can be 

used. 

The computation of the characteristic polynomial of a 

lower Hessenberg matrix is addressed in [225), using a 

recurrence similar to the triangular system solution 

described in section 3.2. Therefore, a linear array similar 

to that of Fig. 3.2.7 can be used for the calculation of the 

characteristic polynomial of a lower Hessenberg matrix, as 

shown in A.1.6. 
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Further, in (90) the Sturm sequence of polynomials is 

extended to quindiagonal matrices. This extention can be 

readily incorporated in a design similar to the one proposed 

in section 4.4. 



C H A P T E R 5 

SYSTOLIC LU DECOMPOSITION 

5.1 INTRODUCTION 

The importance of the LU decomposition algorithm for 

the solution of linear systems of equations is well known, 

and for this reason this method was amongst the first to be 

considered for systolic implementation [199], [181], (see 

also section 3.2). 

Several similar architectures or modifications and 

extensions of the systolic algorithm have been proposed. For 

example, in [173] a wavefront LU decomposition algorithm is 

discussed. In [207], [169], the decomposition procedure is 

used for the introduction of methodologies for the formal 

derivation of systolic algorithms and in [207] a new array 

is proposed. The partitioning of the LU decomposition method 

is addressed in [137-138] so that small VLSI arithmetic 

modules can accommodate bigger problems. The incorporation 

of the LU decomposition and the forward and backward substi­

tution arrays is discussed in [1], [301]. The block LU 

decomposition is investigated in [242] as a means for the 
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improvement of the efficiency of the original array. For 

the same purpose the R+F method has been applied in [19), as 

discussed in section 3.3. 

The original implementation uses Gaussian elimination 

without pivoting, a fact that makes the method suitable only 

for a specific but wide subset of applications [199), [242). 

Alternative methods for the solution of linear systems of 

equations have also been proposed. The Cholesky factoriza­

tion method is investigated, amongst others, in [16), where 

some problem partitioning techniques are introduced. The QR 

decomposition, as well as other methods based on similarity 

transformations using rotation matrices, are discussed in 

(5), [68), [126), [142). Notice that similar methods can be 

used for the matrix eigenproblem solution. Some implementa­

tion aspects of QR decomposition are investigated in [262), 

and a problem partitioning method is described in [125). 

In addition to QR decomposition, the Gauss elimination 

procedure with neighbour pivoting is introduced in [113), 

for the triangu1arization of a matrix, as described in sec­

tion 3.2. The numerical properties of the pairwise (or 

neighbour) pivoting are investigated in [272) while a linear 

array for the same method is described in [7). In [261) all 

the above mentioned methods are unified as four alternative 

methods, i.e. LU or QR decomposition with or without pivot­

ing. 

The optical implementation of LU, QR decompositions and 
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generally the direct solution of linear systems of equations 

is addressed in (50-52). Further, an LU factorization algo­

rithm, based on a series of optical matrix multiplications 

is discussed in (28); finally the optical LU decomposition 

using outer products is introduced in (13). 

Another important aspect of matrix decomposition is the 

updating of the LU factors when a change in the original 

matrix occurs. The algorithm based fault-tolerant techniques 

for LU decomposition described in (134), (153), have been 

expressed in terms of updating the corresponding LU factors 

in (188-189). 

Some aspects of the implementation and various other 

applications of the LU decomposition method are addressed in 

this chapter. In section 5.2 the efficiency of the original 

LU decomposition array is increased to 1 by combining block 

(2x2) and R+F methods. A similar array for the triangular 

system solution is also described. 

In section 5.3 the updating of LU factors is described, 

in the case of the simplex method of linear programming. In 

the next section an application of the LU decomposition with 

neighbour pivoting is presented, for the calculation of the 

eigenvectors of a symmetric tridiagonal matrix using the 

method of inverse iteration. The calculation of the eigen­

values of such a matrix has been detailed in section 4.4. 

Finally, in the last section, some extensions and 
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further research topics in systolic LU decomposition are 

briefly addressed. 



5.2 THE R+F METHOD ON SYSTOLIC BLOCK LU DECOMPOSITION 

The use of (2x2) block LU decomposition of a banded 

matrix A is introduced in [242], so that the efficiency of 

the hex-connected array of section 3.2 is improved from 

e~l/3 to e~l/2. The term efficiency denotes the processor 

utilisation and the overall computation time. More specifi-

cally .in section 3.2 the LU decomposition of a (nxn) banded 

matrix A with bandwidth w=p+q-1 requires a hex-connected 

array with no more than pq processors and takes a time of 

3n+min(p,q) IPS cycles. 

In [242] the same computation requires a hex-connected 

array with no more than pq processors and takes a time of 

2n+min(p,q) IPS cycles. It should be noted that the complex­

ity of the systolic network is increased and some prepro-

cessing of the input data streams is necessary. On the other 

hand, however, a considerable speed-up is achieved and the 

processor utilisation is also improved. The systolic array 

for the (2x2) block LU decompo~ition is shown in Fig.5.2.1, 

where its operation is also explained. In Fig.5.2.2 a 

preprocessing array for the formulation of the input data 

sequence is described. 

The R+F method is also used for the improvement of the 

efficiency of the systolic LU decomposition, as explained in 

section 3.3. Thus, the LU decomposition can be performed on 

a hex-array with no more than pq processors in time 

r3n/2l+min(p,q) IPS cycles.The combination of these two 
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Fig.5.2.1(a). Block (2x2) LU, LDU decomposition array. 
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processor S21 

Step t In-s = l,m,n,p 
In-NE = a,b 

Step t+l In-NE = c,d 
Out-N = a*p-n*b,a*m-l*b 
Out-E a a*p-n*b,a*m-l*b 
Out-SW = a,b 

Step t+2 Out-N a d*n-c*p,d*l-c*m 
Out-E = d*n-c*p,d*l-c*m 
Out-SW = c,d 

processor S22 

Step t 
Step t+l 

Step t+2 

In-s = a,b,c,d 
Out-N = a,b,c,d,a*d-b*c 
Out-E = a*d-b*c 
Out-SW = a,b 
Out-SW = c,d 

processor S23 

step t In-s = u,v,w,x 
In-W = D 

Step t+l Out-N = wjD,x/D 
Out-E = D 
Out-SW = w/D,x/D 

Step t+2 Out-N a u(D,V/D 
Out-SW a U/D,v/D 

processor Sll 

Step t In-s = n,l 
In-NE = D 

Step t+l In-S = p,m 
1: = ljD, n: = n/D 
Out-SW = D 

Step t+2 m: = mjD, p: = p/D 
Out-N = l,m,n,p 

--

Fig.5.2.1(b). Cell definitions. 

1 

r 

1 
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processor Sl2 

Step t In-S - a,b,c,d,D 
Step t+l Out-E = a,b,c,d 

Out-SW = D 
Step t+2 Out-N = a,b,c,d T 

l 
processor Sl3 

Step t In-S = w,x 
In-w = a,b,c,d 

Step t+l In-S = u,v 
Out-E = a,b,c,d T 
[n 

lwb-ud I xb-vd 
Step t+2 : = uc-wa 

vc-xa 

Out-N = u,v,w,x 

processor S31 

Step t In-S = a,b,c,d 
In-W = n,l 
In-NE = w,x 

Step t+l In-W = p,m / r In-NE = u,v 
a: = a+l *w, b: = b+l*x 
c: = c+n*w, d: = d+n*x 
Out-E = n,l 
out:..sw = w,x 

Step t+2 a: = a+m*u, b: = b+m*v 
c: = c+p*u, d: = d+n*v 
Out-N = a,b,c,d 
Out-E = p,m 
Out-SW = u,v 

Fig.5.2.l(c). Cell definitions. 
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(2x2) block output (k•3) 

0 1 0 

point input (w=7) 

left right 

xout- -- -- xin 

a 

if 
xin • 1 

right :• a 
true 

left := a 
.xout := xin 

Fig.5.2.2. Preprocessor array. 
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strategies is investigated herein, i.e. the application of 

the R+F concept on the block (2x2) LU decomposition. For 

simplicity the case of a block-tridiagonal matrix is exam­

ined in detail; again it is assumed that no pivoting is 

required. 

5.2.1 BLOCK R+F LU DECOMPOSITION 

Suppose the linear system of equations, A! a £ where A 

is a (nxn) block (2x2) tridiagonal matrix, with n even 

(without any loss of generality), i.e. n=2k, p=q=4, w•7 (see 

Fig.5.2.3(a)). The solution of the system can be effected 

using block LU or LDU decomposition, i.e. 

A = LU and L_z = E_, U.! = X , 

A = LDU' and L_z = E_, D_r = ~ , U'.! = ~ (5.2.1) 

with L,U,D,U' shown in Fig.5.2.3(b); notice that U=DU'. The 

decomposition procedure is exemplified by taking the first 

four rows and columns of matrix A, 

[" '•J A = 
A21 A22 

(5.2.2) 

Then, we have 

~' ~l' '•J t" "·~ = 
A21 A22 u22 (5.2.3) 

with 

(5.2.4) 



or 
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All Al2 ~l ~l 
A2l A22 A23 ~2 ~2 

A32 A33 A34 0 ~3 ~3 

0~~->.> 
c 

l~ 1\,k-l 1\k ~ 

with 

~tm a J ~:J ~bt l R.,m+l 
Aij , .!i = • ~i = 

bt+lj .l+l,m a .2.+ 1 ,m+ 1 

1=2i-l 

m=2j-l 

Fig.5.2.3(a). Block (2x2) tridiagonal system. 

~ l ull 0
12 

L2l I 022 
0

23 
L32 I 

0 033 0
34 

c 
L = 

~ 
u = 

~::::··J 
D = 

c 0 
Lk,k-1 I 

(6) 

uu I 0
i2 l 022 I 0 '23 

033 0 ' u• = I UJ4 0 

~ ~ 
0 0 0~-l,kj 0

1<1< 

Fig.5.2.3(b). LU, LDU decomposition of a block (2x2) 
tridiagonal matrix. 
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or 

[~, f8: (5,2.5) 

with 

(5.2.6) 

Now, since Aij is a (2x2) block submatrix as in Fig.5.2.3, 

-1 then A11 is equal to 

(5.2.7) 

with D = a
11

a
22

-a12a 21 , the determinant of All' Therefore, 

from (5.2.3-6) 

or31 

t41 

= 

f31 
la41 

(5.2.8) 

As is shown in [242), the computation of u22 can be per­

formed in 4 IPS cycles and at the fifth step u22 will be 

taken as pivot to begin the second elimination step, as in 

Fig.5.2.3(b), '. 
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If we apply the R+F method on (5.2.1) we proceed from 

the top and the bottom of matrix A simultaneously and obtain 

two LU decomposition streams functioning concurrently in 

opposite directions. The two streams confront each other in 

the centre of the matrix and the conflict is resolved by 

means of a double modification of the central (2x2) subma­

trix. The confrontation of the two streams takes the form of 

the solution of a subsystem as in (5.2.2). Two cases are 

considered, for k odd and k even; these two cases are sum-

marised in Fig.5.2.4(a) and(b) for the LU and LDU decomposi­

tion respectively. 

Now, the central submatrix has the form 

A • ~::,. 
u m,m+l 

u 
m+l ,m+ 1 ! 

k+l 

m = ~2 

which is reduced, for k=odd, to 

G
+ 
m,m 

um+l,m 

or, for k=even, to 

u J m,m+l 

u:+l ,m+l 

, k=odd 

k=even 
(5.2.9) 

( 5.2.10) 

( 5.2.11) 

In the case of LDU decomposition, (5.2.9) is reduced, for 

k=odd, to 

or, for k=even, to 
~

I 

u' m+l,m 

[: 

(5.2.12) 

(5.2.13) 



All A12 I ull ul2 

l A21 A22 A23 0 L21 I 0 u22 u23 0 

A32 A33 A34 L32 I L34 u33 
LU for 

= 

,,j k=S (odd) 

A43 A44 A4S I L45 u43 u44 
0 0 0 

AS4 Ass I us4 

All Al2 [I ull ul2 

A21 A22 A23 0 u22 u23 
0 

.., 
L21 I "' 

0 
\1) 

A32 A33 A34 L32 I u33 u34 LU for 

= 

A43 A44 A4S L43 I L45 0 u44 
k=6 (even) 

0 AS4 Ass AS6 0 
I LS6 

us4 uss 

A6S A66 I u6S !166 

Fig.5.2.4(a). Block (2x2) R+F LU decomposition. 



All A12 I 

I" l r ui2 

A21 A22 A23 0 L21 I 0 u22 0 I U:23 0 

I 
LDU for 

A32 A33 A34 L32 I L34 u33 

.J 
I I k=S (odd) 

= 
A43 A44 A4S I L45 u44 I u43 I 

0 l 0 AS4 Ass 0 I L 0 US4 I 

L 

"' 

l l 
..... 

All Al2 I ull I ui2 0 

A21 A22 A23 0 L21 I 0 u22 0 I U:23 0 

A32 A33 A34 L32 I u33 
. 

I u;4 = 

A43 A44 A4S L43 I L45 u44 I I I 

A54 Ass A56 I 

L:] 
0 uss 0 US4 I 

0 0 l A65 A66 u66 u6s I 

LDU for 

k=G (even) 

Fig.5.2.4(b). Block (2x2) R+F LDU decomposition. 
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The symbol '+' indicates a double modification; 

conflict is resolved by an additional LU or LDU 

tion step. 

thus, the 

decomposi-

The solution of the resulting triangular sytems in 

(5.2.1) can be effected by means of the same technique, i.e. 

block R+F forward and backward substitution. The matrices 

have the form given in Fig.5.2.4. The discussion is concen­

trated firstly on a lower triangular system of the general 

form 

All 

·~ 
£1 

A21 A22 0 ~2 £2 

A32 A33 A34 ~3 : £3 

A44 A 54 ~4 ~ 
0 Ass ~5 £s (5.2.14) --

The solution of the system can commence from both ends and 

proceed concurrently towards the centre. Again, the confron­

tation of the two streams is resolved by means of a double 

modification of the central (2xl) subvector of ~, here ~3 ; 

in general ~m with m=(k+l)/2 for k odd and m3 (k/2)+1 for k 

even. Thus 

-1 
X : (A ) (b -A X -A x ) 
-m mm -m m,m-1-m-1 m,m+1-m+1 

(5.2.15) 

In the case of LDU decomposition, the lower triangular sytem 

has the form 

I ~1 £1 

A21 I 0 ~2 £2 

A32 I A34 ~3 
: 

£3 
I A54 ~4 ~ 0 I ~ £s 

(5.2.16) 
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and a diagonal system must also be solved. 

5.2.2 SYSTOLIC IMPLEMENTATION OF BLOCK R+F LU DECOMPOSITION 

The data sequence format necessary for the block (2x2) 

R+F LU decomposition can be derived using the preprocessor 

illustrated in Fig.S.2.5(a). The input of the array consists 

of the two streams of the LU decomposition overlapped : 

while in Fig.S.2.2 there should be a dummy element between 

each two successive data items, here the dummy elements are 

replaced by the entries of the second LU decomposition 

stream. 

Each one of the w demultiplexers produces the data item 

it accepts either on the left-hand or on the right-hand side 

output, according to the control signal Cl: 

if 
Cl = 1 

output to the right 
true 

output to the left. 

While in Fig.S.2.2, Cl has the form 1000, for the R+F method 

Cl is 1100. The reformatting delays align all the entries of 

a block (2x2) submatrix in one line. In order to achieve one 

dummy cycle between successive submatrices a second control 

signal, C2 is used. This signal is broadcast in a group of 

four delay cells and operates as follows : 
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0 0 0 0 21 22 11 12 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 10,9 10,10 99 9,10 0 0 0 0 

41 42 31 32 0 0 0 0 23 24 13 14 
0 0 0 0 43 44 33 34 0 0 0 0 

89 8,10 79 7,10 0 0 0 0 10,7 10,8 97 98 
0 0 0 0 87 88 77 78 0 0 0 0 

63 64 53 54 0 0 0 0 45 46 35 36 
0 0 0 0 65 66 55 56 0 0 0 0 

67 68 57 58 0 0 0 0 85 86 75 76 

I 

'-- ----
0 0 0 0 

-
1 1 0 0 1 1 0 0 1 

0 0 0 11 0 0 0 
0 0 21 99 12 0 0 
0 31 10,9 22 9,10 13 0 

41 79 32 10,10 23 97 14 
89 42 7,10 33 10,7 24 98 
0 8,10 43 77 34 10,8 0 
0 53 87 44 78 35 0 

63 57 54 88 45 75 36 
67 64 58 55 85 46 76 
0 68 65 0 56 86 0 
0 0 0 66 0 0 0 

Fig.S.2.5(a)~ Preprocessor array and i/o format for k=S (odd). 
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C2 • 1 
delay output for one cycle; overwrite next output 

true 
no delay or overwrite occurs. 

In order for the output of the preprocessing array to be the 

input of the main computational array, an additional delay 

is required for the off-diagonal blocks. 

The case of k=5 (odd), i.e. n=10 is shown in Fig.5.2.4 

and this example will be used hereafter. For k=even the 

results are similar; for example, the input format for the 

preprocessing array for k=4, i.e. na8, is shown in 

Fig.5.2.5(b), where each rhombus indicates one (2x2) block 

submatrix; notice also the row- column arrangement of the 

input matrix. The output in block (2x2) submatrix form is 

also given in the same figure. 

The systolic array performing the block (2x2) R+F LU 

decomposition for a block tridiagonal matrix A is given in 

Fig.S.2.6; snapshots of the array operation are given in the 

same figure. Notice that processor 513 is necessary only if 

LDU decomposition is required. Comparing the operation of 

the array in Fig.5.2.6 with that of the array originally 

proposed in Fig.5.2.1 it is observed that the processor 

utilisation is doubled : the idle cycles in each processor 

are used for the computations of the second stream of the LU 

decomposition. 

The only difference in the processor specifications of 

the two arrays is that in order for the double modification 
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Point input for n=B 

0 11 0 

0 0 0 

0 44 0 

21 0 12 

0 22 0 

34 0 43 

0 33 0 

32 0 23 

Block (2x2) output for k=4 

Fig.5.2.5(b). I/o format for k=4 (even). 



Fig.5.2.6. Block (2x2) R+F LU, LDU decomposition array. 
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of the central (2x2) block submatrix to be achieved, this 

submatrix has to be kept in processor S31 for two additional 

IPS cycles (see Fig.S.2.6). The central block (2x2) subma­

trix enters the array after 2k-l=n-1 IPS cycles; it is kept 

in processor S31 for 4 cycles and needs 3 more cycles to 

reach the output. Thus, the LU decomposition of a block 

(2x2) tridiagonal matrix (w=7, p=q=4) is computed on a sys­

tolic array having no more than pq processors in 

n+min(p,q)+2 IPS cycles. 

A systolic array for the solution of the triangular 

systems using block R+F methods is given Fig.S.2.7 The pro­

cessors used are similar to those of the LU decomposition 

array; some snapshots of the computation are also given in 

the same figure. The inversion of a block (2x2) submatrix is 

achieved by processors S22 and S23. Processors SO and MA 

calculate 

-1 
~ = A (~-y) and y = y+A~ (5.2.17) 

respectively, ·where A is a block (2x2) submatrix and~· y, ~ 

are (2xl) subvectors. As is obvious from their specifica­

tions in Fig.S.2.7 they can be regarded as 'half' of proces­

sor S31 in terms of area requirements, while the computation 

retains the same format. However the calculation of SO 

requires a time unit equal to 1 IPS + 1 ADD to be completed, 

a fact that imposes a longer cycle for the array. 

The confrontation of the two streams is resolved by 
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Fig.5.2.7. Block (2x2) R+F triangular system solution. 
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keeping the middle (2xl) subvector for two additional cycles 

in processor SD and the corresponding inverse submatrix is 

delayed accordingly. Thus the solution of the block (2x2) 

triangular system in its,general form (5.2.14) requires an 

array of no more than 8 processors and a computation time of 

n+S cycles. 

Soft-systolic simulation programs in OCCAM, for the 

designs presented. in this section, are given in A.2. More 

specifically, A.2.1 simulates the preprocessor for the block 

(2x2) R+F LU/LDU decomposition array, shown in Fig.5.2.5. 

Further, A.2.2 is a program for the block (2x2) LU/LDU 

decomposition array, as in Fig.5.2.6. Finally A.2.3 presents 

a program simulating the triangular system solver of 

,Fig.5.2.7. Notice that, in A.2.2 and A.2.3, the R+F exten- ' 

sion is not included, but the modification is straightfor­

ward. Also, in A.2.2, processor Sl3 is configured for LU 

decomposition, but it can be readilly modified for LDU 

decomposition. 



5.3 SYSTOLIC LU FACTORISATION FOR SIMPLEX UPDATES* 

In the Simplex method forlinear programming a represen­

tation of an (nxn) matrix A is stored which enables inverse 

operations to be carried out readily, i.e. the solution of 

three linear systems of equations for each iteration of the 

' method ( 17). Suppose that the solution of the linear sys-

tems is effected by decomposing A into the LU product. Thus, 

Land U can be stored instead of A, (see also section ~.5). 

Now, at the beginning of a cycle for the Simplex 

method, matrix A has the form 

A= [a
1

,a
2

, ••• ,a 
1

,a ,a 
1

, ••• ,a) 
- - --m- -m ~+ - n 

and the representation of A is A= LU, with 

T 
L=[1

1
,t

2
, ••• ,1 I and U=[u1 ,u2 , ••• ,u I 

-- -n -- -n 

(5.3.1) 

(5.3.2) 

At the end of the cycle matrix A is updated, i.e. column ~m 

is removed and a new column ~s is added : 

A' = [a
1

,a
2

, .... ,a 
1

,a 
1

, ... ,a ,a 1 
- - --m- --m+ -n -.:; (5.3.3) 

Then U is modified as shown in 

Fig.5.3.1(a); notice 

accordingly to u* 

that the column L-1a -s that is added to 

u is produced as a by-product during the computations of the 

specific Simplex cycle. Hence u* can be constructed with no 

* A shortened version of this section has been present­
ed in the International Conference on Supercomputing, 
June 8-12, 1987, Athens, Greece. 



m-1 m+l 

shifted 
columns 

(a) U* 

L 

Shift + 

elimination 

(d) 
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-1 
L a 

-;; 

(c) 

-1 
L a 

-;; 

i 

i+l 

I 

Shift + 
update 

i i+l 

l 0 
X 1 

I 

~-----4 shift 

m+l 

u 

Fig.5.3.1. Matrix configurations for the modification of LU 
factors. 
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significant computational effort. The main point at issue is 

to return to the standard form 

A' = L 1 U1 (5.3.4) 

in which L' and U' are the updated LU factors. U can be 

reduced to U' using the Gaussian elimination procedure for 

the subdiagonal elements in columns m through n. Thus, U' is 

obtained from U by applying a sequence of simple transfor­

mations : 

U' = E E .. n n-1 • (5.3.5) 

where each Ei has the form shown in Fig.5.3.1(b).Thus, we 

have 

(5.3.6) 

This method is suggested in 23) for more general LU updat-

ing applications and it is used in [ 17) for the Simplex 

method. It is proposed in [ 17),[283) that only U is expli­

citly updated while a file of the elementary operators E. is 
' 1 

created; however this file expands after each iteration and 

so the computation time required per Simplex cycle increases 

steadily. When this file becomes sufficiently large it is 

necessary to reinvert, i.e. to explicitly update L, so as to 

keep the total computation within bounds. Alternatively, 

explicit updating of both the L and u matrices in each cycle 

can be adopted and therefore no expanding file of operators 

is required [105); this method is pursued herein. 
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5.3.1 LU UPDATING METHOD 

Consider the matrix * u as shown in Fig.5.3.l(a): 

Fig.5.3.1(c) shows the elements of L and U that are affected 

by the updating of matrix A, i.e. by the application of the 

Gauss elimination procedure * on u . vectors !i and ~i' for 

i=1,2, ••. ,m-1 can be produced without any computation since 

all their elements are already known. Therefore it is suf­

ficient to consider the case that m=l : thus the problem of 

updating the LU factors of an (nxn) matrix A is reduced to 

the updating of the LU factors of an (mxm) submatrix of A. 

Suppose therefore that ~1 is removed from A in 

(5.3.1), giving 

A' = [a
2

,a
3

, ••• ,a ,a ] 
- - --n --s 

(5.3.7) 

which is equivalent to removing the first column from U, as 

shown in Fig.5.3.1(d); i.e. the first element of each vector 

~i in (5.3.2) is removed. The new subdiagonal elements u21 , 

u
32

, •.• have to be eliminated in successive steps, and it 

is sufficient to describe only the first step in which u21 

is eliminated. For simplicity, it is assumed that no permu­

tations are required throughout the LU updating computation. 

identity form [ 105) 

'!i ·!il [~ :] (5.3.8) 

The coefficients of B are chosen to fix the conditions 

i• =i' =1 and t• =u' =0 
11 22 12 21 

(5.3.9) 
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The new vectors !'1 , ~· 1 are the new first row and column of 

L', U' and !' 2, ~· 2 are intermediate quantities that are 

changed again in the second step. 

The modification is determined by the submatrix opera-

tion 

01 . 
1J BB -1 

(5.3.10) 

or, from Fig.5.3.1(d), 

(5.3.11) 

By taking r = (~2 ! 1/(.!!1 ! 1 = u22;u12 , it ·follows from 

(5.3.11) that 

B = 

and 

'~il 1 
( t.) 
-1 2 

= (~1) 1 

= (~1)2+r 

(i.) . = 
-1 l. 

(R.1) · +r (i-2) · - ~ - ~ 

'~2) i = 

. (u') 
-1 n 

(u •) 
-2 n 

= (u1) . 
- J 

(u2) .-r(u
1
). 

- J - J 
-1 = uin = (L ~)1 
-1 

= u' = (L a ) -ru' 
2n -s 2 1n 

ui1 = u12 

i-:21 = i-21 +r 

i.i_1 

uij = ui,j+1 

2<i~n 

uij = u2,j+1-ru1,j+1 
} 1<j<n 

(5.3.12) 

(5.3.13) 

Fig.5.3.2 illustrates the modification of the LU factors 

based on the relations in (5.3.13). The LU updating fails if 

(~1 1 1 = 0 and causes a large growth in the updated factors 
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Fig.5.3.2. Major steps of the modification of LU factors (n=S). 
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when r is large, i.e. (!!2 l 1 > !!!1 )1 : thus the assumption 

that no permutation occurs throughout the LU modification is 

valid if ui,i+1 = 0, i•1,2, •.• ,n and lrl is close to 1. If 

these conditions are not valid then row pivoting is neces­

sary as in [105]. Notice also that the method is mostly 

suitable for full matrices since any possible sparsity of 

matrix A is not taken into account. 

5.3.2 SYSTOLIC LU MODIFICATION 

The LU updating procedure illustrated in Fig.5.3.2 can 

be performed on an (nxn) processor array as shown in 

Fig.5.3.3. At the commencement of the computation each pro­

cessor of the mesh is loaded with the value of the 

corresponding element of the LU matrices. Since the diagonal 

elements of L are 1, there is no need to explicitly store 

them. 

The array computation starts in the top-left corner, 

where is replaced by u12 ; this shift-left operation is 

applied to all cells of row 1 with one cycle delay between 

adjacent cells. As soon as u12 takes its place as u11 , the 

calculation of r 2 = u22;u12 = u22;u• 11 is performed; then 

u22 is replaced by u23-r 2u13 = u23-r2u• 12 • For the second 

row, as well as for all the subsequent rows the shift-left 

operation is accompanied with the modification of uij by 

means of ri and u' . 1 j 1 : 
1- , -

the first row operation is a 

degenerate case since r1=0 and u' 0 .=0 
, J 

for all j. The 

right-most cell of row i receives (L-l~s)i as a result of 
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Fig.5.3.3. Parallel modification of LU factors. 
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its shift-left computation. 

The multiplier r 2 is also passed to 121 to form 

1• 21~1 21+r2 ; then it moves downwards for the calculation 

· 1• 31~1 31+r 2 1 32 ; thus the L matrix updating procedure is per­

formed. A new r computation occurs every two cycles and thus 

a total computaion time of 2n IPS cycles is required. The 

area needed is n2 processors. After the completion of the 

computation the updated LU factors have replaced the origi­

nal LU matrices in the array. 

The overall array configuration as well as the cell 

definitions are given in Fig.S.3.4 and a soft-systolic simu­

lation program in OCCAM is given in A.2.4. There are four 

different types of cells, the main diagonal, the first lower 

diagonal, the upper diagonals and the lower diagonals. All 

are basically IPS processors; however the main diagonal 

cells have an additional diagonal communication channel and 

perform division to calculate r. Also, the first lower diag­

onal cells are simple adders and thus the additional com­

plexity of the main diagonal cells can be balanced by the 

reduced complexity of the cells in the first subdiagonal. 

Notice the wavefront-like computation in Fig.S.3.3: the 

computation starts from the top-left corner ·and moves 

towards the bottom-right corner of the array producing a 

wavefront of active processors. An alternative systolic 

implementation is 

reversed: instead 

possible if 

of having 

the 

the 

wave front concept is 

LU factors in fixed 
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Fig.S.3.4(a). Rectangular array configuration. 
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Fig.S.3.4(b). Cell definitions. 
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positions and the computation moving along them, the compu­

tation can now be performed in fixed processors and the LU 

factors can pass through these processors. 

The input-output sequences, as well as the overall con­

figuration of a linearly connected systolic array for the LU 

modification are shown in Fig.5.3.5(a). A total number of 

2(n-l) cells is required, while the comp~tion time is 2n+l 

time units. In Fig.5.3.5(b) the cell definitions are given: 

the middle cell of the array is a combination of the main 

diagonal and the first subdiagonal processors of the square 

array of Fig.5.3.4. The remaining cells are simple IPS 

cells. A soft-systolic simulation program in OCCAM is given 

in A.2.5. Notice that the linear array for the LU modifica­

tion can accept an input sequence in the form produced by 

the LU decomposition array in section 3.2: the only modifi­

cation on the linear array is the addition of some delay 

elements according to the relative 'retiming' of the compu­

tations. 

Up to now was supposed that the first column of A was 

replaced, as in (5.3.7), i.e. m=l; in the general case of 

(5.3.3), as shown in Fig.5.3.l(a),(c), m=l. The two systolic 

designs described can be easily modified to accommodate this 

general case. The square array design can be augmented by 

two vectors of row and column pointers indicating the loca­

tion of the first main diagonal element of u to be affected, 

namely um,m' For the subarray A22 (see Fig.5.3.6(a)) the 



ui1· 
t;;l 0 ui2 

tjl 0 u22 0 ui3 

t.jl 0 !)2 0 u23 0 ui4 
1s1 0 t' 42 0 u33 0 ui4 0 u' . 

15 
• 1s2 0 t.; 3 0 uj4 0 uis • 
• • 1s3 0 u,;4 0 ujs • • 
• • • 1s4 0 u~s • • • 
• • • ! \]Ss • • • • 

,, " 
L2 Ll Lo D uo ul u2 u3 

w 
0 ... 

• • • ull • • • • • 
• • • 121 0 ul2 • • • • 
• • t31 0 · u22 0 ul3 • • • 
• 141 0 !32 0 u23 0 ul4 • • 
• 0 142 0 u33 0 u24 0 ulS • 
1
s1 

1
52 

0 !43 0 u34 0 u25 0 • 
-1 -1 1s3 0 u44 0 u35 0 (L ~)2 (L !s) 1 

-1 
!54 0 u45 0 (L ·~) 3 

-1 
uss 0 (L !s) 4 -1 

(L ~)5 

*: delay 

Fig.5.3.5(a). Linear array configuration. 



rwout 

rout 

twin 

rin 

U'loOut 

lout 

reo ut 

D 

us in 

tnout 

1sin 

1---•r,out 

uein 

us in 

- 302 -
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Fig.5.3.5(b). Cell definitions. 
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modification procedure is as described. No modification is 

required for subarrays A11 , A21 , while a simple shift-left 

is adequate for subarray A12 • The modification required in 

the input data sequence of the linear array is shown in 

Fig.S.3.6(b) : for the first m-1 steps r=O and therefore the 

LU factors are produced exactly as they are input; from then 

on the normal LU updating operation takes place. Thus, there 

is no additional complexity in the array itself but in the 

input data stream. I 



5.4 SYSTOLIC DESIGNS FOR THE CALCULATION OF THE EIGENVECTORS 

OF A SYMMETRIC TRIDIAGONAL MATRIX * 

Consider a (nxn) symmetric tridiagonal matrix A with 

diagonal elements off-diagonal elements 

b1 ,b2 ~ ... ,bn_1 and an eigenvalue of the matrix, A (see sec­

tion 4.4). Then the eigenvector x of matrix A that 

corresponds to the eigenvalue can be calculated as the 

solution of the linear system of equations 

(A-AI)~=£ (5.4.1) 

where d is a suitably chosen vector. The Inverse Iteration 

method, described in section 2;4, is as follows: if we apply 

the LU decomposition on (A-AI), then (5.4.1) can be solved 

by means of a forward and a backward substitution. If the 

eigenvalue is accurate then two iterations on (5.4.1) are 

more than adequate, provided that d is not completely 

deficient in the eigenvector to be computed,(see [297-298]). 

The LU factors are determined by Gaussian elimination 

with partial pivoting applied to matrix (A-AI). There are 

n-1 major steps to the process, rows i+1, i+2, ••• , n being 

as yet unmodified at the beginning of the ith major step. 

The configuration at the beginning and the end of a step is 

shown in Fig.5.4.1. Matrix U has now three diagonals in 

general, to allow for any interchanges that may occur, while 

* This section is part of a paper submitted for publi­
cation in the Journal of Parallel and Distributed ££m­
puting. 
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Fig.5.4.1. Step 4 of Gaussian Elimination with partial pivoting. 



- 307 -

L has only one subdiagonal stored as a vector, together with 

a record of the permutations occurred. 

The ith step is as follows (see Fig.5.4.1) 

if 

I bi I > I ui I 
ci+1=1, i.e. interchange rows i and i+1 

pi=bi,qi=ai+1-A'ri=bi+1'xi+1=ui,yi+1=vi,zi+1zO 

true 

ci+1=0, i.e. no interchange takes place 

p1.=u1.,q1.=v.,r.=O,x. 1=b.,y. 1=a. 1-A,z. 1=bi 1 1 1 1+ 1 1+ 1+ 1+ + 

mi+l=xi+1/pi 

with bn=O. Now, in the special case, where 

~ = L~, with ~T = [1,1, ... ,1] 

then, from (5.4.1), 

(5.4.2) 

(5.4.3) 

LUx = L~, or UX = e (5.4.4) 

With this choice of ~. the first iterate of the eigenvector 

~· ~l is determined by· a back substitution only. Then,· hav~ 

ing obtained !l' ! 2 can be found by a forward and backward 

substitution. The forward substitution can be performed 

either separately, using the multipliers and permutation 

information saved during the Gauss elimination process; or, 

alternatively the Gauss elimination with partial pivoting 

can be extended to the right-hand-side vector also, as shown 

in Fig.5.4.1, for an initial vector !• and final vector y: 



if 

ci+l=l 

yi=Xi+l'wi+l=Zi 

true 

yiazi,wi+l=Xi+l 

zi+l=wi+l-mi+lyi. 
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(5.4.5) 

This approach is followed herein, since it allows for a more 

compact and general purpose design, i.e allowing two or more 

iterations to be performed on the same systolic array. 

5.4.1 SYSTOLIC DESIGN 

A systolic array implementing the computation described 

is shown in Fig.S.4.2(a) together with the i/o data 

sequences. The array accepts as input the diagonals of the 

matrix and the right-hand-side vector and produces as output 

matrix u, and three vectors corresponding to matrix L, per­

mutation information and the modified right-hand-side vec-

tor. Three inputs are adequate since the matrix is 

syrnrnetric.The array consists of four cells, a boundary cell 

to the left and three IPS cells to the right augmented with 

a row interchange facility. The specification of the two 

types of cells is given in Fig.S.4.2(b). For the boundary 

cell, if before the division p is zero then it is substi­

tuted with a suitably small quantity. The computational com­

plexity of the boundary cell is greater than one IPS and 

therefore the time unit of the computation of the array 
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abs(b) >= abs (u) 
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1-- .. cout: = cin 
I 
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r 
a 

I 

Fig.5.4.2(b). Cell definitions. 
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should be adjusted accordingly. 

The boundary cell accepts ui and bi (see Fig.S.4.1) and 

decides on the next pivot row setting the flag ci+l to indi­

cate an interchange; it also co mputes the multiplier mi+l 

for updating the adjacent non-pivot row. The two first IPS 

cells collect two adjacent row elements belonging in the 

same column: one from the east and one from the south. Thus 

they perform interchanges and modifications based on the 

values of ci+l and mi+l passed to them by the boundary cell. 

The IPS cells are active on alternate cycles and the boun­

dary cell also computes c, m once every two cycles. The 

third IPS cell performs the modification of the right-hand­

side vector, which for this purpose, can be seen as an extra 

diagonal of the matrix. Thus the. array of Fig.S.4.2 per-. 

forms Gauss elimination with partial pivoting and the for­

ward substitution in 2n+3 time units. 

The back substitution process can be performed by the 

systolic array in section 3.2; however, since some pi can be 

zero for some i, the boundary cell must be augmented with a 

device similar to that used in the boundary cell of the 

array of Fig.S.4.2. This means that both arrays will have a 

prolonged time cycle since the computation of their bound~ry 

cells exceed the limit of 1 IPS. The total time required for 

one full step of the Inverse Iteration method is, therefore 

4n+2 time units, since the back substitution can only start 

after the completion of the Gauss elimination. Soft-
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systolic simulation programs for the Gauss elimination and 

back substitution systolic arrays are given in A.2.6, A.2.7. 



5.5 CONCLUSIONS 

The block (2x2) R+F method when extended to matrices 

with bandwidth greater than 7, i.e. block quindiagonal etc., 

imposes a more complicated resolution of the confrontation 

of the two streams, as explained in [19). A measure of effi­

ciency for the method can be the ratio r of the order of the 

matrix over its bandwidth: it is obvious that the method is 

efficient for r>>l, so that the solution of the central sub­

systems can be regarded as negligible. 

The R+F method can be applied in the LU method with 

neighbour pivoting, as described in section 5.4 in order to 

double the efficiency of the array; a similar increase in 

efficiency can be achieved for the triangular system solu­

tion. Furthermore, it would be inteiesting to investigate 

the application of the R+F method on the QR decomposition 

arrays with or without pivoting. 

In the direction of the unification of the matrix 

decomposition methods discussed in [189), [261), it can be 

said that the array in section 5.4 can be seen as an LU 

equivalent of the QR array in [126), for the elimination of 

a subdiagonal. Alternatively the same array can be seen as a 

special case of the Gauss elimination array in [113). 

The updating of LU factors in the Simplex method can 

provide a useful building block not only for the VLSI sys­

tolic realization of Linear Programming methods [24), [200], 
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but also a general updating method for LU decomposition, as 

proposed in [188). The updating can be caused by either a 

modification of the original matrix or a fault detection 

during the computation. 

It would be of interest for the extension of the sys­

tolic algorithm proposed for the updating of the LU factors 

to cover neighbour pivoting as well as the QR method [115). 

Towards this direction some work has been reported in [263), 

for the Choleshl factorization method. Further, another 

closely related problem for investigation is the systolic 

modification of the eigenproblem solution of an updated 

matrix [65), [145). 

In [37) a systolic algorithm for a linear array has 

been proposed for the solution of Toeplitz systems. A simi­

lar approach can be followed for the inverse iteration algo­

rithm in section 5.4: a soft-systolic simulation program for 

a linear array performing all steps of the inverse iteration 

algorithm is given in A.2.8. A further extension would be 

the implementation of the LU decomposition algorithm on a 

linear array of programmable processors. 






