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NOVEL ALGORITHMS FOR THE SOFT SYSTOLIC PARADIGM 

a.M. Megson 

ABSTRACT 

The soft-systolic paradigm, a framework of semi-formal axioms and 

heuristics, is introduced and used to develop a variety of novel systolic 

arrays and architectures for new and innovative numerical algorithms. 

Designs presented include systolic arrays based on the so-called 

Quadrant Interlocking (QI) methods, Systolic Preconditioning strategies, 

Incomplete methods (for matrix factorisation and triangularisation), 

Table generation (including Interpolation, Extrapolation, Simplex and 

Assignments problems) and Systolic Group Explicit (GE) methods for 

Partial Differential Equations (PDEs). 

A number of themes tie the different designs together within the 

new paradigm and illustrate its extensions over traditional methods of 

array construction. For instance, systolic arrays are represented as 

OCCAM programs whose execution and output implicitly confirm the 

correctness of the design. This adds flexibility, allowing formal 

(explicit) verification by already well developed program proof 

techniques. The systolic incomplete schemes allow optimal array 

structure to dictate the numerical method, while the QI methods use 

block partitioning strategies to improve array efficiency. The Table 

and GE arrays expose the close relationship between the algorithmic 

and geometric form of a problem and the use of templates or computational 

molecules (in the case of PDE's) for area efficient designs. While, 

preconditioning arrays illustrate that theoretically well-founded 

additional computation in the form of systolic preprocessing elements 



can be used to produce overall area reduction with an accompanying 

speed-up of array operation. 

The problems considered provide examples in which existing 

systolic arrays can be considered deficient in some respect, be it 

area, computation or efficiency and, for the most part these new 

methods and arrays provide some improvement. 

Finally, a more general architecture is discussed in which 

systolic algorithms are considered purely as programs. A basic 

specification language is defined and a primitive simulator developed 

and tested with elementary examples. Hence bridging the gap between 

the soft-systolic paradigm and more general notions of parallel 

computation. 
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PART I 

INTRODUCTORY CONCEPTS AND DEFINITIONS 

, 



CHAPTER 1 

INTRODUCTION: 

THE ORIGINS OF SYSTOLIC ARRAYS 

"A morseZ of genuine history is a thing so 

rare as to be always valuabZe". 

Thomas Jefferson. 
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The initial revelation of H.T. Kung and C.E. Leiserson (Circa 1979) 

indicated that highly parallel architectures and algorithms for 

computationally intensive and regular problems, could be implemented by 

area efficient, cost effective circuits; in a manner which permitted 

regular communication geometries and replicatable sub-circuits (or cells). 

Since then a tremendous volume of research in a variety of areas from 

signal and image processing, pattern matching, linear algebra, and 

recurrence-evaluation, to graph algorithms, sorting, searching, and on 

to real time priority queues and relational data operations has occurred. 

Supporting the claim in Leiserson [81] that systolic systems had the 

desirable properties necessary to capture concepts of parallelism, 

pipe lining and interconnection structures, in a unified framework which 

is known today as the systolic paradigm. 

The relative youthfulness of the subject means that researchers 

entering the field, have more or less a free hand in the way they develop 

their ideas. A rough skeletal framework for systolic computation does 

exist, but sometimes it is difficult to define, and depends largely upon 

one's interests as to how restrictive it appears when encountered. 

H.T. Kung [80], Leiserson [81], Mead and Conway [79], Dew, Manning, 

Mcevoy [86] provide excellent introductory material and references, 

however one finds that a few simple designs have been developed before 

a more serious study is conducted~ A version of the framework relevant 

to our discussions is given in Chapter 3. 

More tangible and difficult to grasp are the philosophical and 

pragmatic threads that bind the framework together. Although, once 

understood a guiding philosophy provides exciting research opportunities, 

and denying or extending key assumptions to provide broader based 
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systems of design rules with wider applications is a worthy objective. 

By introducing the soft-systolic paradigm I feel we have moved some 

way towards this aim. 

The aim of the current chapter however, is two-fold. Firstly, a 

brief historical review of the origins of systolic arrays is given, 

which is a fitting introduction to basic principles and requirements 

complementing the more detailed definitions in Chapter 3. Secondly, 

the structure of the thesis is outlined in relation to the themes 

followed throughout the work. 

1.1 ORIGINS OF SYSTOLIC ARRAYS 

We shall begin the journey into the soft-systolic paradigm with an 

informal analogy between the human body and systolic systems. The 

analogy is useful for two reasons, firstly it allows identification of 

the main characteristics of systolic computation in a simple and 

intuitive way, and second such a simple relation also implants in the 

mind a vivid picture of the mechanics inVOlved, which can be embellished 

to support more complex discussions. Furthermore, the environment in 

which we live is inherently parallel in nature and our activities in 

some respects model the processes involved in systolic computation. 

In fact, the development of parallel systems in general, has been 

motivated by the difficulties encountered in implementing so-called 

Natural problems from the real world, on sequential (Von-Neumann) 

machines. 

Consider the human body broken down to a simple circulatory and 

control system consisting of nerves, arteries and major organs. Each 

organ performs a unique function in parallel with the rest which is 
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necessary to keep the whole body alive. Organs co-operate and in a 

sense communicate with each other making the body a parallel system 

based on communication. The whole system is co-ordinated by a 

controller (the brain) and a pumping mechanism (the heart) driving 

blood around the circulatory system. Under normal circumstances the 

brain issues controls as nerve impulses and blood is pumped rhythmically 

at correct intervals and arrives at the required organs when necessary. 

The simpler functions of the organs complement each other to achieve the 

more complex goal of healthy life for the body. Taking the analogy 

further, we can dissect each organ which reveals that it too is a 

parallel system constructed from a vast number of simple cells, co

operating and communicating to achieve the function of the individual 

organ. Now, if nerve impulses are sent incorrectly or at wrong times, 

or blood is pumped erratically then an organ fails to produce the 

correct response. Alternatively individual cells within an organ can 

develop faults resulting in sickness of the organ, then the whole body, 

and ultimately death. Furthermore, the body includes built-in redundancy 

among the vital organs, so if,one organ fails (e.g. kidney, lung) a 

second identical organ can cover for it but at a cost of reduced 

efficiency to the body. The process of failures may continue in some 

caSeS until faults are so numerous that the body dies. 

Now, consider systolic systems, the above discussion illustrates 

all the essential features of systolic computation. The body becomes 

a machine, nerves and arteries, control and data paths, while, major 

organs are systolic array components performing dedicated or special 

purpose computations. The heart and brain form a host computer which 

orchestrates calculation according to control and data signals pumped 
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continuously around the system, arriving at the place required at the 

precise moment in time when they will be used, before eventually 

returning to the host. This pumping action is the origin of the word 

systolic, derived from the word systole or 'contraction of the heart' 

borrowed from physiology. At a high level any system which preserves 

this attribute may be termed systolic, our analogy however is closer 

than that. First of all, systolic systems retain the concept that a 

number of independent systolic components (or arrays) can be connected 

to achieve more complex tasks. Individual components can be further 

broken down into networks (arrays) of simple self-contained circuits 

(cells), which are replicated to construct the complete component. The 

cell collections work in parallel to fulfil the special function of the 

component, if controls are issued incorrectly or data arrives at the 

wrong speed, erroneous values are produced making the whole system 

faulty. On the lower cell level individual cells may develop faults 

with time, and in a normal computing system the machine would grind to 

a halt. However, an interesting feature of modern systolic arrays is 

the inclusion of fault tolerance, which like the body introduces 

redundancy and checking procedures so that system performance degrades 

gracefully as faults develop. Also, like the body systolic systems 

limit the major portion of memory to the host machine (brain), with 

cells confined to simple functional arrangements. In the case of cells 

in the lung the function is a chemical reaction, replacing carbon 

dioxide (C02 ) with oxygen (02) in the blood as it flows through the 

cells. Similarly, in a systolic array data flows through the cells 

which modify it according to simple computational rules akin to the 

reaction. 
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NOw, the immediate task is to trace the origins of systolic arrays 

so that the constraints imposed by the framework may be better 

appreciated, and indirectly our extensions. The correlation above 

between body and machine although useful should not be taken too 

literally, because systolic arrays abstract away the overwhelming 

details of physiology. For instance, true systolic arrays exhibit 

severe restrictions on the regularity and dimension of the cell network, 

betraying the roots of systolic design but which are not apparent in 

the above analogy. 

CELLULAR AUTOMATA: From a theoretical viewpoint, systolic arrays 

can be traced back to cellular automata of Von-Neumann, the Mealy 

machine (G.F. Mealy, 1955) and Moore Machine (E.F. Moo re , 1956, from 

his Gedanken experiments on sequential machines in Automata Studies) .. 

During the development of the systolic framework, work has progressed 

independently on automata studies by Katona [83] and more recently 

Umeo [85a]. Automata theory is basically a mathematical theory about 

machines and what they can accomplish at a low level of computation; 

it has mainly been applied to the design of electrical circuits with 

digital hardware, the logic of nervous systems in man and animals, and 

the underlying logic of protein synthesis in cells. Hence, it is not 

surprising that our body analogy is a good one, and general reading 

about automata studies can be found in Hopcroft & Ullman [79], Minsky [67]. 

Automata theory is tremendously important for the comprehension of 

systolic arrays because it lends a ready-made theory about what such 

machines might achieve. Automatons themselves can be represented by 

labelled directed graphs, with machine states represented as nodes, and 

arcs defining state transitions. Consequently a simple cell function 
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(with little or no memory) can be represented by a simple graph. 

Responses to inputs (i.e. outputs) can also be encoded on arcs, and 

from here it is a small step to connect inputs and outputs of a number of 

(possibly identical) machines, and operate them in parallel to create a 

systolic array (see Leiserson [81]). The formal specification of such 

parallel networks involves the breakdown of the array to its constituent 

machines, which are then formally defined, and linked by connecting 

equations. For even small arrays formal specification and hence 

verification is both tedious, messy, and error prone. Consequently 

systolic arrays have their own simpler and relatively abstract graph 

specification, which collapses whele machines to nodes and input/output 

histories to sequences on arcs. See Weiser & Davis [81], I~elhem & 

Rheinboldt [84], H.T. Kung & Lin [83]. Thus, obviating the need for 

detailed understanding of automata theory. Notice, that a well 

established theory about machines lends some formality to the discussion, 

expanding nodes to smaller machines presents a hierarchical structure to 

the design process allowing us to fix the abstract level of design, see 

Thompson & Tucker [85] while a theoretic description of arrays keeps 

the analogy with the body quite realistic as no claims on the dimension

ability or regularity of arrays are made. 

VERY LARGE SCALE INTEGRATION (VLSI): The second thread of systolic 

array realisation was the desire to construct fast, highly parallel 

computing structures at low cost, H.T. Kung first realised that rapidly 

developing chip industry and automaton theory together could achieve 

this. Until the advent of VLSI, the development of parallel computers 

with large numbers of processors had been limited by the prohibitively 

high costs of manufacture. Existing machines had been improved by 
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tinkering with the traditional Von-Neumann architecture, for instance 

cycle stealing, direct memory access (DMA) , and pipe lining of fetch 

and execute operations. Parallel machines were left as mainly special, 

one off productions, primarily for research interests. 

The development of new manufacturing techniques for fabrication of 

small, dense, and inexpensive, semi-conductor chips created a revolution 

in the computer industry. with the use of VLSI in circuits, size and 

cost of processing elements and memory was reduced, and it became 

feasible to combine the principles of automata theory with the pipeline 

ideas of traditional architectures. The combination was especially 

attractive because device manufacture cost remained constant relative to 

circuit complexity, with most time and money invested in design and 

testing. 

NoW, if we endeavour to sketch a complex automata arrangement one 

is immediately confined to the two dimensional (2-D) plane defined by 

sheets of paper. In fact VLSI is achieved in a similar manner by a 

combination of circuit design with high resolution photographic techniques 

(Mead & Conway [791), where it is convenient to place wires on rectangular 

grids, and limit the number of parallel layers of semi-conductor material 

containing wires and circuit elements. Hence, the problem of collapsing 

a three dimensional (3-D) graph structure onto a 2-D plane or chip, is 

simplified if the graph is as close to 2-D as possible. (A 2-D graph is 

termed planar if it can be drawn in the plane with no arcs intersecting 

at places other than nodes). Furthermore, an 'almost' planar graph 

based circuit is easier to design if it is modular - i.e. composed of 

many replicatable components (like cells), and reduces overall production 

time as only a single or few cells must be designed. VLSI presents 
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additional problems, as the size of wires and transistors approach the 

limits of photographic resolution, for it becomes impossible to achieve 

further miniaturization and actual circuit area becomes a key issue. 

Add the fact that chip area is limited in order to maintain high chip 

yield, and the number of connections to the outside world (pins) is 

limited by the finite size of the chip perimeter, and a highly restrictive 

set of constraints is imposed on the theoretical systolic array model. 

These restrictions form the basis of the systolic paradigm - and cull 

the large number of algorithms available to a select few for implementation. 

See Savage [81], Ullman [84] and Kung [82] for VLSI models and area 

considerations. 

TIMELINESS: So far we have combined a theoretical idea of parallel 

computation on regular connection geometries, with the physical constraints 

necessary for cost effective manufacture. A final third thread remains, 

that of applicability. It is rare in a competitive industry for a 

methodology or product to survive unless there is sufficient demand for 

it. The emergence and consequent success of systolic arrays is not due 

only to H.T. Kung's foresight but also the timing. At the same time 

Kung revealed the systolic concept, the idea of using VLSI for signal 

processing was the major focus of attention in governmental, industrial, 

and university research establishments as a means of bridging the gap 

between theory, algorithms and implementation. The constantly increasing 

demands for high performance real-time signal processing illustrated the 

need for a vast computation capability in both volume and speed. Clearly, 

fast, low cost, high density VLSI devices promised practical cost 

effective, high speed parallel processing for large volumes of data 

with ultra-high throughput rates. Furthermore, the algorithms used 
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relied heavily on the solution of linear equations, and as Leiserson 

[81) demonstrates such computations are well suited to systolic arrays. 

The demand ensured the survival of the systolic concept at least for 

the present and near future. 

1.2 APPLICATIONS OF THE SYSTOLIC PRINCIPLE 

Virtually a decade has passed since the first systolic principles 

were introduced and in hindsight a number of important events have 

occurred to shape the field. 

After the initial concept, what can only be described as a frenzy 

of research activity followed, in which the principle was applied to 

any algorithm or area with similar properties. The commotion propagated 

a wave through computer science, and although not all designs or areas 

considered were successful, many contributed to the rules of systolic 

design. For instance, it was soon found that systolic arrays work best 

for computationally intensive tasks with a recurrence type formulation 

(e.g. matrix multiplication), such problems are called compute-bound, 

and are measured by the amount of computation versus host communication. 

In contrast problems with a high ratio of communication to computation 

are termed Input-output (I/O) bound (e.g. matrix addition) and the 

systolic principle is difficult to apply efficiently in these areas. 

Attempts at implementing a wide variety of algorithms (see Table 1.2) 

have identified a small number of 'standard' networks, the most famous 

being the hexagonal array of H.T. Kung & Leiserson. Broadly speaking 

the development of systolic principles has remained polarized around the 

three threads of its inception, Theory, Implementation and Applications. 
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Signal processor for recursive 

SIGNAL filtering, Implementation of Kalman 

PROCESSING filters, Discrete Fourier Transform 
(DFT) , Convolution (multi-dimensional), 
Linear algebra machines in digital 
processing. 

Finite element analysis, Singular value 

NUMERICAL decomposition, Linear till>'! solution of 

PROBLEMS Toeplitz systems, Orthogonal equivalence 
transformations, Least-squares (adaptive 
beam forming), Eigenvalues and generalized 
inverses, (symmetric matrices), Iterative 
algorithms. 

SHAPES & 
Pattern matching, Feature extraction and 

PATI'ERNS pattern classification, Stereo matching, 
Algorithms for recti-linear polygons. 

WORDS & 
Largest common s~bsequence problem, 

RELATIONS Dictionary machines, Relational Database 
operations, Connected word recognition. 

Tree acceptors, Trellis automata, 
AUTOMATA Binary tree automata, Design rule 

checker. 

Shortest path problem, Algebraic path 
problem (including matrix inverse), 

GENERAL Fundamental sorting problems, Linear-
time Greatest Common Divisor (GCD) 
computation, Priority queues. 

TABLE 1.2: Selection of systolic applications. 
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On the theoretical side relationships between other forms of 

parallel computation and architectures have been examined. For Single 

Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data 

(MIMD) machines, Kunde, Lang, Schimmler, Schmeck and Schroder [85], 

S.Y. Kung [84], Umeo [85], Saxe & Leiserson [83] have considered the 

mapping (or systolization) of existing algorithms into systolic arrays. 

Producing the concept that systolic systems are special cases of Reduced 

Instruction Set Computers (RISes), and that the range of applications 

solvable on a particular architecture, in parallel, is a trade-off 

between general purpose data-flow multiprocessors and dedicated 

architectures (like systolic arrays). Graph theoretic models of systolic 

arrays have been developed as aids for formal verification but remain 

unwieldly and fraught with difficulties. Problems arise from the lack 

of ability to specify cells with complex internal arrangements, and the 

derivation of systems of mutually recursive equations - which are 

unsolvable, even for intuitive and obviously correct arrays. See 

Melhem & Rheinboldt [84]. ;/hile Turkedjiev [86] has examined methods for 

enumerating all the possible systolic networks for a given problem using 

the idea of cluster graphs derived from the necessary data flow of the 

problem, again even simple problems require detailed analysis, and so 

far only l-D convolution and hexagonal matrix product have been examined. 

thoroughly. This illustrates the fact that the inherently special purpose 

nature of systolic arrays, so far can only be captured in special theories 

for certain applications. What is lacking is a general intuitive feel 

implicit in the theory for what a systolic algorithm is - but systolic 

algorithms today are confined by the constraints of VLSI and so we must 

be certain that we are studying systolic computation not VLSI computation. 
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The ultimate aim of systolic theory is the automatic synthesis of 

systolic arrays. That is, given a problem encoded in some high-level 

(parallel) language, can we automatically choose the best (Le. area 

efficient, fastest) array in a suitable form to produce a chip 

specification which can then be manufactured. This is a formidable 

and long term task and is related to the concept of a silicon compiler 

which given a high level description of a circuit produces the 'best' 

chip. In this context, a systolic array synthesizer forms the front 

end to the silicon compiler. However, until a strict and automatic 

theory for verifying systolic arrays is developed it is often easier 

to adopt a simple 'dry run' technique or some form of simple simulation 

for testing. 

Allied to the theoretical side is applications where the search 

for new arrays is conducted informally, at present. This field attracts 

experts from different specialist fields eager to try systolic design, 

but only a limited number appreciate the underlying necessity for the 

constraints of the systolic paradigm. Consequently there is a widening 

gap between new proposed systolic algorithms and the means to implement 

them. Designers in an attempt to apply systolic principles adopt large 

numbers of cells, of increased complexity and allow complex data and 

control movements. This neglect, or lack of concern for implementation 

issues is worrying because if it continues could make systolic array 

design an abstract principle largely of academic interest, divorced 

from any means of implementation. 

The implementation side has progressed slower than theory or 

applications, but perhaps in terms of real achievements and the 

establishment of a hard core of practical knowledge, is the leader. 
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Very few of even the earliest systolic algorithms have been 

implemented as chips. The first attempt at implementation was the 

pattern matcher of Foster & H.T. Kung [80], followed by the systolic 

2-D convolution chip, H.T. Kung & Song [82], the pipelined Lattice 

Processor (PLP) S.Y. Kung & Hu [83] for Toeplitz systems and the 

programmable systolic chip (PSC), Fisher, H.T. Kung, Monier, Walker & 

Dohi [83]. With commercial companies taking up the challenge only 

recently with NCR'S Geometric Arithmetic Parallel Processor (GAFP), 

a 6x12 arrangement of single bit processing cells (each with ALU) , and 

Marconi's SOS systolic array (a CMOS radiation hard bit-slice correlator), 

with applications in radar/sonar systems, beam forming, FIR filtering 

and medical electronics. Problems with implementations arise for a 

number of reasons, such as heat dispersion when the chip is densely 

packed and mistiming problems due to propagation delays down wires 

particularly as feature size diminishes. More complex designs may 

benefit from a two level approach for metal lines as used in the INMOS 

transputer (INMOS [85]). Systolic arrays however reduce the effectiveness 

of cheap implementation as they can only be used on a narrow set of 

problems, and design cost cannot be spread over large numbers of devices. 

While effective parallelism often is only achieved by expanding the host 

array interface, demanding a high number of wires (pins). Both cell 

area and pin count can be modified by serializing some of the computation 

i.e. essentially chopping it up into identical steps and performing 

them serially on small hardware, see Fisher [84]. Bit-serial or byte

serial implementations have potential because hardware is easier to 

design, allows flexible word lengths and smaller cell cycle time (due 

to increased clock speed), but has the disadvantages of additional area 
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for latches and reduced opportunities for optimization and trade-offs 

at the cell level. And, unless pipe lining is used in conjunction" with 

serialization throughput of data is often reduced. For examples of 

bit serial signal processing applications see McCanny & McWhirter ([821, 

[831). 

Because of the narrow range of problems for which systolic arrays 

can be implemented successfully, and the growing gap between abstract 

arrays and implementation capability, emphasis has been placed on 

programmability. In generic arrays a number of related problems .can 

be solved by a more general cell type, and usually the individual arrays 

have a common structure. The leading development in programmable systolic 

arrays is the WARP processor at Carnegie-Mellon University (CMU) 

Pittsburgh (H.T. Kung [841) and is based on the PSC, plans are to 

incorporate the array in a general purpose systolic array computer. 

But, Kung himself has noted, producing generic arrays allows memory 

to creep into basic cells, which then are no-longer simple. Problems 

also occur in defining a suitable programming language - as systolic 

arrays have difficulty with structures like while-loops which can run 

indefinitely until some test is satisfied. The design of a suitable 

generic cell component is crucial and still an active area of research. 

The INMOS Transputer (a true microprocessor) has a wider range of 

applications, being more general purpose in nature, and a simple"MIMD 

array can be constructed quite easily from transputer components. The 

transputer itself is a language (OCCAM) based design, providing 

concurrency and communication as a basic feature and is an example of 

a RISC architecture. Hardware links contain built-in hand shaking 

circuits and represent the software construct of a communication channel. 
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This makes it possible to represent abstract array designs via the 

language OCCAM as networks of transputers. In general a loss of speed 

will be expected in an algorithm over its dedicated counterpart, due 

to the generic nature of the processor/cell, but allows networks derived 

theoretically to be implemented almost directly. 

1.3 TOPICS OF DISCUSSION 

The individual chapters of this thesis are bound together by a 

number of themes and arguments which raise important questions concerning 

the design of systolic arrays and their future. 

Our first task at the end of Chapter 3 is to define the soft

systolic paradigm a more general set of rules and heuristics. This 

new paradigm replaces the old framework, and relaxes the more rigid 

constraints in a controlled manner which is sensitive to technological 

advances. To illustrate the point recall the analogy in (l.l). The 

organs of the body are essentially 3-D conglomerates of cells, so why 

not relax the 2-D constraint permitting 3-D systolic arrays? Such 

proposals are in line with technology research as Rosenberg [83] presents 

,a case study of 3-D VLSI, indicating that overall wire length and design 

volume savings will be made over existing 2-D approaches, where,as in 

optical computing (Caulfield, Rhodes, Foster & Horvitz [81], and 

Goodman, Leonberger, S.Y. Kung, & Athale [84]) illus'trate that free 

space and wave guided transmission of light can be used to overcome pin 

and long-wire restrictions with data and clock transmission at the speed 

of light, to implement systolic arrays. 

A particularly strong theme throughout the work is the 

representation of systolic algorithms/arrays as OCCAM programs. The 
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OCCAM language (see Appendices for synopsis of syntax) contains some 

useful features for mapping directed graph structures to parallel 

programs. OCCAM also doubles as a semi-formal verification tool; 

by semi-formal we mean that the usual error-prone hand testing of 

arrays is performed by program execution, hence reduced testing time 

facilitating quick debugging. We must be careful at this stage and 

observe Dikjistra's old adage - that program testing reveals only the 

presence not the absence of bugs. Program representation does more 

than correct initial design problems, it side steps the complex and 

problematical formal verification techniques mentioned above, while 

retaining a vestige of formality. TO elaborate, OCCAM is based on the 

language CSP (Communication Sequential Processes) Hoare [78], Hehner & 

Hoare [83] and developed by David May at INMOS. The proof of correct

ness of programs is achieved by the use of invarient arguments, and 

these ideas can be extended via CSP to provide correctness proofs of 

OCCAM programs. Hence, the correctness of a systolic array can be 

defined implicitly, although this is not pursued in the text. Instead 

we adopt a semi-formal method where correct output of the program indicates 

array 'correctness', a selection of programs for major designs appears 

in the Appendices. The use of programs to represent systolic algorithms 

is extended in Chapter 9, to define a more general purpose architecture 

and its extensions, where, the role of·the rhythmically recurrent 

pumping action is retained only at a low architectural level, 

facilitating program execution. 

Emphasis is also placed on defining new efficient algorithms 

using relaxed constraints, as well as improving or redesigning arrays 

which suffer certain difficulties under the old paradigm. The general 



17 

theme is the improvement of systolic array efficiency and computation 

time. In this context, efficiency is taken to be the propcrtion of 

cycles a cell is active during the computation, or the number of cells 

used by different systolic designs. In order to achieve a measure of 

improvement, where possible new arrays have been compared with old ones. 

As the thesis develops it becomes apparent that efficiency improvement 

is related to algorithmic and geometric implementations of arrays 

together with various assumptions about the type of hardware available. 

In particular, new arrays are developed from cells based on simple 

computational rules and molecules implicitly defining the geometry of 

a problem, rather than the recurrence relations on which algorithmic 

array forms have been based to date. 

The third strand running through the thesis, is the special purpcse 

nature of systolic arrays. As arrays are inherently application 

dependent the philosophy for design must be decided at the outset, in 

the main we attempt to introduce generic arrays where pcssible. However, 

general purpcse design is problematical because applications dictate 

structure. As a basic model to unify the deSigns, which are mainly 

numerical, it is appropriate to regard the thesis as an attempt to 

produce a systolic hardware library of compcnents. Each compcnent can 

be considered akin to a routine called from LINPACK or EISPACK, and 

we might call our component machine SYSPACK for reference. The 

structure of the hypothetical machine is shown in Fig. 1.1 and also 

defines the structure of the thesis. 

The use of compcnents raises the issue of granularity in systolic 

design. Granularity of an algorithm refers to the maximal amount of 

computation a typical module can perform before having to communicate 
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with other modules. Furthermore, the choice of granularity is often 

critical for the performance of an algorithm. The module size in Fig. 

1.1 can be classed as medium sized, as each component solves a 

relatively complex task, using a collection of pipe lined systolic 

arrays. A finer grain setup is to use a small set of common arrays 

which reduces the total number of arrays, but loses pipe lining 

features due to increased communication requirements. This fine grain 

will be referred to as the 'bag-of' approach derived from the idea of 

having a bag of useful components from which you extract the most 

appropriate for each stage of a calculation. A larger grain size is 

exhibited in Chapter 9 where systolic algorithms are partitioned into 

blocks of program instructions on a general architecture. 

1.4 OVERVIEW OF THE THESIS 

The structure of the sys-pack machine gives a global view of the 

work contained in this thesis. 

CHAPTER 2: here sections of basic mathematical definitions and 

concepts necessary for the description of algorithms are given. 

CHAPTER 3: gives a broad foundation of the basic techniques and 

definitions for the design of systolic algorithms/arrays. Included is 

a treatment of the representation of arrays by a computational graph 

model together with a method for mapping graphs to OCCAM programs. 

Basic quantities such as area, cycle time, efficiency and the structure 

of common networks are given. Various trade-offs are examined in 

relation to area, efficiency and time, and the concept of two-level 

pipelining for improving the throughput introduced. 

CHAPTER 4: presents the concept of double pipes for improving 

array efficiency by extending layout to a small number of layers in 
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which circuits remain planar on individual slices. The technique 

is modified to introduce block partitioning for traditional hexagonal 

patterns and basic theorems about the best block size and efficiency 

constructed. Finally, a stable and efficient systolic pipeline is 

developed for the solution of circulant matrices, using first the 

method of rank annihilation and second a novel factorisation scheme. 

CHAPTER 5: considers the Quadrant Interlocking (QI) methods for 

factorisation, elimination and iterative methods and systolic arrays, 

based on the previous chapters, derived. It is shown that block 

partitioning affects efficiency only on systolic arrays with certain 

input formats. Applications of the arrays for periodic matrices are 

shown to be superior than those of existing designs. 

CHAPTER 6: examines the theory of preconditioning, incomplete 

factorisation, and matrix triangularisation to produce area efficient 

designs. In preconditioning a new hex array pipeline, for repeatedly 

squaring a matrix is described and used as a preprocessing array to 

reduce the number of iterations, hence hardware required by systolic 

iterative methods. Whereas, the incomplete theory is used to derive 

new numerical algorithms based on optimal systolic arrays, which can 

take advantage of sparsity within the band of a matrix and for Which 

standard systolic arrays produce fill-in and high area usage. 

CHAPTER 7: extends the use of systolic arrays to the parallel 

construction of tables. The idea of a table template is introduced 

and used to derive arrays for extrapolation, solution of ordinary 

differential equations (ODE's), and an area efficient ring design 

produced. The main concepts are used to develop a unified generic 

array for differencing operations like rational function approximation 
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and Wynn's £-algorithm (for converting slowly converging sequences 

to rapidly converging ones). The Quotient Difference algorithm for 

root finding is implemented, before more complex table algorithms like 

the simplex, revised simplex and assignment problems are discussed. 

CHAPTER 8: extends the ideas of templating to computational 

molecules and representation of a problem in its geometric form. 

Systolic marching techniques based on asymmetric approximations of 

Saul'ev [64] are introduced for I-D and 2-D parabolic partial differential 

equations and compared with iterative forms derived from purely 

algorithmic implementation. The group explicit methods are then used 

to develop fast arrays and the best is used to examine bit serial 

implementation with fixed point arithmetic. Area efficient versions 

of the arrays are introduced based on hopscotch techniques before the 

ideas are extended to I-Dhyperbolic equations. 

CHAPTER 9: limitations of the syspack structure are discussed and 

as already indicated, a more general architecture for simulating 

systolic algorithms and its operation and extensions are described and 

illustrated with examples. In particular an area efficient design for 

the implementation is discussed based on collapsing 2-D arrays to I-D 

alternatives, and program transformations to the new arrays with 

respect to SIMD and MIMD algorithms considered. 

CHAPTER la: concludes the thesis and gives an overview of techniques 

developed during the work and outlines areas of further study. In 

particular the Systolic Control Ring Instruction Processor (SCRIP) is 

proposed as a conglomerate of designs to replace the syspack machine 

and provide a general purpose systolic computer. 



CHAPTER 2 

BASIC MATHEMATICS 

"A good Notation has a subtlety and suggestiveness 

whiah at times make it seem almost like a live 

teaaher". 

BERTRAND RUSSELL. 
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In this chapter basic definitions and theory about Linear Algebra, 

Linear Systems and Partial Differential Equations is given. The 

material presented is necessary for the ready comprehension of the 

Systolic Algorithms in later chapters. 

Linear Algebra deals with the specification and solution of linear 

systems (of equations) which can be derived from a variety of problems 

in Engineering, Mathematics, Business and Economics. In fact differential 

equation problems themselves can be written in terms of Linear systems. 

Furthermore the recurrence relations inherent in matrix formulations 

and subsequent computations make them suitable for Systolic Array 

applications. Consequently, matrix notation can be used as a cipher 

to translate numerical algorithms to systolic arrays. 

The interested reader is referred to more advanced texts such as 

varga[62] and Evans[83] , while introductory material is given in Burden, 

Faires & Reynolds [81], Smith [85], Lipschutz [74] and Wu & Coppins [81]. 

First of all the chapter defines vectors and matrices together 

with relevant properties and relations. This base is then used to discuss 

direct and iterative methods for solving linear systems. Partial 

differential equations are defined next, and by the use of the finite 

difference technique the corresponding linear systems are derived. 

Finally, some brief definitions of convex sets are provided for discussion 

of topics in Chapter 7. 

2.1 VECTORS 

In mathematical terms a vector is an ordered n-tuple which can be 

represented as either a row or column of elements, viz, 
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a = (2.1.1) 

whether row or column forms are used depends largely on the context in 

which the vector appears. For instance, it is quite acceptable to 

t t 
write a=b (or b=a ), where the superscript 't' denotes transposition, 

and indicates that a row vector can be converted to a column vector (and 

vice versa) • The values a" i=l(l)n are termed components and throughout 
l. 

the thesis we shall denote vectors by Roman lowercase letters, and their 

components with the same letter but sub scripted to indicate position 

unless the meaning is clear. The vectors in (2.1.1) are said to be from 

n-space and we further define lR to be the set of real numbers, with lR
n 

the n-space of vectors with components from lR. Consequently (2.1.1) 

would be defined as a ,b E lR n and a, E lR for i=l (1) n. Values like Cl E lR 
l. 

which are not vector components in a problem specification are termed 

scalars and will be denoted by lowercase greek letters where confusion 

would otherwise occur. vectors and the operations on them form vector 

spaces which are Algebraic structures involving fields (or commutative 

rings, see Section 2.6). The main operations are defined below and are 

used with the proviso that the vectors in an operation are all from the 

same space. 

EQUALITY: if a,b E lR
n 

then a=b if a,=b" i=l(l)n 
l. l. 

ADDITION: for a,b,c (: lR n, 

SCALAR 

t 
c = (al+b

l
, a

2
+b

2
, ... ,a

n
+b

n
) 

MULTIPLICATION: for a E lR
n 

and a ElR 

t t 
aa = a(al, ••• ,a

n
) = (aa

l
,aa

2
, ••• ,aa

n
) 

(2.1.2) 

(2.1.3) 

(2.1.4) 
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SUBTRACTION: for a,b E lR and a E lR 

set a=-l form ab then add to a, a+ab=a+(-l)b 

INNER PRODUCT: for a,b,c E lR n and a E lR 

and also observes the following rules, 

(i) (a+b).c = a.c+b.c = c.(a+b) 

(ii) (aa~b = a(a.b) 

(iii) a.b = b.a 

(iv) a.a >- 0 and a.a=O iff a=o 

(v) (a+b).(c+d) = a.c+a.d+b.c+b.d 

+a b = 
n n 

n 
z: a,b 

j=l J j 

BASIC ALGEBRA:for a,b,c E lR n and scalars a,S E lR 

(i) (a+b) +c = c+(a+b) (v) a (a+b) = aa+ab 

(ii) a+O = a (vi) (a+Sl a = aa+Sa 

(iii) a+ (-a) = 0 (vii) (as) a = a (Sa) 

(iv) a+b = b+a (viii) La = a 

using these basic formulae a number of basic definitions 

can be constructed, for the simpler formulas and choosing 

a geometric interpretation. 
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(2.1.5) 

1 

(2.1.6) 

1 (2.1.7) 

J 
and concepts 

k 
lR ,k:;3 gives 

n Definition 2.1.1: Vectors a,b E lR are said to be ortiwgonat (perpendicular) 

if a.b=O. 

Defini tion 2.1. 2: A Vector Norm is a mapping of a vector in lR n to an 

element of lR and is denoted 11.11. Intuitively,. the norm measures the 

size (length) of a vector and satisfies the properties below: 

(i) 11 all >-0 for all a E lR n 

(ii) Ilall=o iff a=(O, .,. ,0) t = 0 

(iii) 11 aa 11 = 1 alii all for all a E lR, a E lR n 

(iv) Ila+bll:;llall+llbll for all a,b ElR
n 

(2.1.8) 
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Any computation rule connecting components of a and satisfying (2.1.8) 

is a norm, different norms are denoted by a subscript e.g. L =11 ai I p p 

'for the p-norm and from a practical viewpoint the most useful norms are 

given by 

Definition 2.1.3: The L
l

, L~, and L2 norms for all a E mn are defined 

respectively as, 
n 

L
l

: I1 aliI = la
l l+l a

2 1+ +Ia 1= L la.1 
n i=l l. 

(2.1.9) 

L : 11 all~ max la. I (2.1.10) 
l. 

i 2 2 2 ! n 
L

2
: 11 al1 2 = ( I all + I a21 + .•• + I ani ) = [ L I a .1

2
) ! (2.1.11) 

i=l l. 

k 
The L2 norm gives the geometric interpretation of vector length (for m , 

k~3). Consequently the distance between two vectors a,b in general is 

given by the length of the vector between a and b or I la-bl 12 and 

motivates the following result. 

Definition 2.1.4: A sequence {a (k) t of vectors from lR n is said to 
k=l 

be convergent (or converges) to a vector a in the same space under norm 

11.1 I if for £>0 and some integer N , 
£ 

I1 a (k) -a I1 < £ for all k>N 
£ 

(2.1.12) 

The relation (2.1.12) indicates an error bound on the approximation, 

and due to the finite arithmetic in computers which introduce rounding 

errors, is often used as an algorithm termination criterion. In iterative 

algorithms the value £ is termed the tolerance representing the accuracy 

of solution, when (2.1.12) is satisfied the distance between an 

approximate and exact vector are considered close enough and the 

algorithm terminates having satisfied the tolerance. All norms on space 

n 
lR are equivalent with respect to convergence, meaning, that if the 

sequence converges for one norm, it does so for all the others, but 

pcssibly at different rates. 
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Extending the ideas of the inner product, results in the following 

important relationships. 

n 
Definition 2.1.5: A linear combination of vectors al, ••• ,a

m 
E m and 

scalars a1, .•• ,a
m 

E m not all zero is a set of vectors which when 

combined by vector addition and scalar multiplication form a new vector 

n 
alE m m+ 

a = 
m+l 

m 

2 a.a. 
i=l l. l. 

(2.1.13) 

If no ai' i=l(l)m can be formed as a linear combination of the others 

the set is termed LinearZy Independent otherwise LinearZy Dependent. 

In particular, linear independence implies orthogonality from 

(2.1.6) as, 
m 

2 
m 

= 0 otherwise -a.a. = '2 aia
i ) ) i=l 

iFj 

(2.1.14) 

1 2 3 
Definition 2.1.6: A vector space (e.g. m , m , m , etc.) is any set 

of vectors closed under addition and scalar multiplication. In this 

context closed means that any operation performed on the vectors results 

in a vector from the same space. 

A subspace of a vector space is simply a set of vectors contained 

in the vector space, and which are also closed. 

Definitions (2.1.5) and (2.1.6) combine to form the concept of a 

basis. 

Definition 2.1. 7: A set of vectors a
l

, .•• ,am Em n form a spanning set 

for m n if every vector in m n can be written as a linear combination 

of the ai' i=l(l)m. If the a
i 

are also linearly independent the spanning 

set is termed a Basis. 

It can further be shown (see Lipschutz[74) that a Basis contains 

only n vectors to span the space m n
, and that this set is a minimal 
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spanning set. That is, the smallest possible set of vectors which 

still spans the space. 
3 

As a simple example, a Basis for lR (3-D) is 

the set s~{(l,O,O},(O,l,O},(O,O,l}} and a linear combination 

a ~ "1 (l,O,O) +<>2 (O,l,O) +"3 (O,O,l) , "i E lR 

generates any vector in lR
3 

(hence s is a spanning set), now remOve a 

vector to give sl~{(l,O,O},(O,l,O}} and 

b ~ "1 (l,O,O) + "2(O,1,O} , 

which generates vectors restricted to a 2-D space (lR
2
), indicating 

(but not proving) that s has the minimal number of vectors for a spanning 

3 
set of lR • 

2 
Incidentally sI is a Basis for lR , and we note that any subset of 

a linearly independent set must itself be a linearly independent set. 

2.2 MATRICES 

Matrices are important to Numerical Analysis because they provide 

a concise method for specifying and manipulating large numbers of linear 

equations. The collection of equations and their unknowns is called a 

linear system if each one can be expressed in the form, 

alxl 
+ a

2
x

2 
+ ... + a x ~ 

mm 
b , (2.2.1) 

with x. I ai,b E JR, i~l(l}m. The x., 
~ ~ 

i~l(l}m are the unknowns I a. 
~ 

the coefficients and b the constant or right hand side (RHS) term. 

Hence, for·an n equation system we write, 

allxl + a
12

x
2 

+ +almxm 
~ b

l 1 
a

21
x

l 
+ a

22
x

2 
+ +a x ~ b

2 
I 

2m m 

f 
(2.2.2) 

; 

anlxl 
+ a

n2
x

2 
+ +a x ~ b I ... J nm m m 

Definition 2.2.1: An n by m (or n*m) matrix is a rectangular array of 
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elements (or scalars) from lR, with n rows and m columns in which not 

only the elements value is important but also its position. When m=n, 

the matrix is square, and said to be order n (or m) when m=l reduces 

to a column vector or when n=l a row vector and with m=n=l produces a 

single scalar value. Throughout the text we shall denote matrices by 

upper case Roman letters, pictorially or as a row vector of column 

vectors as illustrated below, 

all 
a ________ a 

12 lm 

a
2l 

a
22

- - - -- --- a 
2m 

A = (a
ij

) = I I I 
I I 

(2.2.3) 

I I 

~~l 
I I 
I I a - ----a 
n2 nm 

t 
where ci=[ali,a2i, ••• ,anil , aij E lR for i=l(l)n, j=l(l)m and aij 

locates the element at the intersection of the ith row and jth column. 

Thus, a linear system can be formally specified by matrices and vectors 

as, 

Definition 2.2.2: A Linear System of equations can be represented by, 

Ax = b , (2.2.4) 

with A an nXm coefficient matrix, and x,b vectors. The system is 

homogeneous if the components of b,b,=O, i=l(l)n and always has a triviaZ 
l. 

solution with x,=O, i=l(l)m (the components of x), any solution with 
l. 

some x,~O is termed a nontriviaZ solution. A non-homogeneous system has 
l. 

a particular solution if u E lR
n 

satisfies (2.2.4) when substituted for 

x, and the set of all vectors satisfying (2.2.4) gives the generaZ solution. 

In fact we shall restrict our attention to linear systems with 

mainly square coefficient matrices, and which often arise from physical 

problems. Fortunately such systems if solvable produce only a single or 
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unique 8o~ution obviating the need to deal with general solution sets. 

Similar to vectors, matrices observe rules from an algebraic 

structure, this time a non-commutative ring. Many matrices have 

elements whose positioning form special structures and together with 

the value of the entries produces certain properties. Such quirks are 

essential for deriving relationships between matrices and identifying 

classes of matrices which in some sense are easier to solve than others. 

Special structures and properties are detailed below, but the solution 

of large and intricately related equations often needs some manipulation 

before a form corresponding to (2.2.4) is produced, consequently basic 

operations on matrices are required. 

EQUALITY:Two n":m matrices A and B are equal iff a.j=b .. for i=l(l)n, 
l. l.J 

j=l(l)m and is denoted A=B. 

ADDITION: For two nxm matrices A=(a
ij

) and B=(b .. ) is written 
l.J 

C = A+B = (aij+bij ) = (c
ij

) for i=l(l)n,j=l(l)m 

t and obeys the rules 
(2.2.5) 

J A+B = B+A and (A+B)+C = A+ (B+C) 

SCALAR MULTIPLICATION: Let A,B be nXm matrices and a,SEm. 

then 

and 

aA = a(a
i

.) = (aa .. ) i=l(l)n, j=l(l)m 
J l.J 

a (A+B) = aA+aB, (a+S)A = aA+SA } (2.2.6) 

MATRIX MULTIPLICATION: is possible for two matrices A and B only if A 

has the same number of columns as rows of B. Let A be an mxp and B a 

pxn matrix the product, 

C = (c . .l 
l.J 

is an mxn matrix. 

AB= , i=l(l)m, j=l(l)n 

BASIC ALGEBRA: for compatible matrices A,B,C, 

(2.2.7) 
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(i) ABIBA ) 

(ii) A(BC) = (AB)C 

(iii) (A+B)C = AC+BC, C(A+B) = CA+ CB (2.2.8) 

(iv) a(AB) = (aA)B = A(aB) J 
Notice that for A and B nxm matrices setting n=l or m=l reduces scalar 

multiplication to the same definition as for vectors. Selecting B to 

be mxl defines matrix vector multiplication, and with A also lXm produces 

the inner product operation. 

As mentioned earlier certain matrix structures are useful, below 

are some which recur throughout Linear Algebra problems. 

so: NULL (or zero) matrix denoted 0, with a, ,=0 for all i,j 
kJ 

SI: IDENTITY matrix denoted I, a square nxn matrix with 

{ .: 
ilj 

i,j=l(l)n 
i=j 

S2: DIAGONAL matrix (usually denoted D), nXn square matrix 

o ilj 
i,j=l(l)n 

non-zero i=j 

(2.2.9) 

(2.2.10) 

when a diagonal matrix has aii=a, a E lR it is sometimes called a sca~p 

matrix. Non-zeros are situated on the main diagonal. 

S3: UPPER TRIANGULAR MATRIX (U) is an nxn matrix in which all the 

elements below the main diagonal are zero. 

S4: LOWER TRIANGULAR MATRIX (L) same as structure S3 but with zeros 

above the main diagonal, non-zeros below. 

When the main diagonal is zero, S3 and S4 are termed stpictZy upper 

(lower) triangular respectively. 

Ss: a BAND MATRIX is an n<n matrix together with integers p and q 

l<p,q<n such that a, ,=0 for i+q~j or j+p~i the 
kJ 

bandwidth w=p+q-l. (2.2.11) 
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Common matrices arising from this structure are the TridiagonaZ matrix 

(p=q=2) and QuindiagonaZ matrix (p=q=3). 

A subdiagonaZ is defined as a line of elements parallel to the 

main diagonal with a
ij 

for j<i, in the above structure there are q-l 

subdiagonals. For a
ij 

with i<j we define SuperdiagonaZs (in a band 

matrix there are p-l). Notice that a band matrix restricts only the 

positioning of non-zero elements. Individual sub(super)diagonals can 

also contain zeros and adjacent groups of such diagonals allows the 

construction of striped matrices. 

S6: .. a SPARSE MATRIX is produced when the elements are predominantly zero. 

Consequently band matrices of high order tend to be sparse e.g. the 

tridiagonal matrix. Usually however, no restrictions on the placement 

of the minority non-zeros are assumed, if a pattern exists (like a 

banded fO~TI) the matrix is termed reguZarZy sparse otherwise irreguZarZy sparse. 

S7: a DENSE MATRIX in constrast to S6 contains predominantly non-zero 

elements and only a few zeros. 

S8: a SYMMETRIC MATRIX is a square matrix of order n which is symmetric 

about the main diagonal, that is a,,=a'j' i,j=l(l)n. A square matrix 
J1. ~ 

symmetric about the opposite diagonal is termed per-symmetric. 

Alternatively, a matrix which is symmetric with aji=-a
ij

, i,j=l(l)n is 

termed skew symmetric (or ToepZitz). 

S9: a CIRCULANT MATRIX A of order n has the form, 

A = I 
I 

~l 

"--------,, ~ 1 n-ll 

, "i E lR, i=O(l)n-l 
(2.2.12) 
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related to the circu1ant form is a Periodic Matrix which is often a 

band matrix form of A. 

S10: the TRANSPOSE of a matrix A is denoted At (or AT) of a rectangular 

matrix and is formed by interchanging the rows and columns, that is 

T (a, ,)= (a, j) and satisfies the following rules, 
) l. l. 

(i) 

(11) 

(Hi) 

(At) t = A 

(A+B)t = At+Bt 

(AB)t = BtAt 

(iv) IF A-1 exists (A-1)t = (At )-l (A-1 see later) 

(v) 
t 

det(A ) = det(A) (de~)a1so later) 

Notice that if A=A
T 

the matrix is symmetric. 

1 
(2.2.13) 

) 

Sll: PARTITIONED (BLOCK) forms of a matrix are constructed by dividing 

the elements into non-overlapping submatrices, if the submatrices are 

square kxk matrices the matrix is said to be in.kxk block form and 

regularly partitioned, if submatrices are of different size we have an 

irregular partition. 

S12: a PERMUTATION MATRIX (usually denoted P) is a square matrix which 

has precisely one entry in each row and column, with all other entries 

zero. e.g. 3x3 permutation matrix 

1 

P o (2.2.14) 

o 

S13: a ROTATION MATRIX (R) is a matrix differing from the identity 

matrix (I) in at most four elements which have the form, 

rl.'l.' = r = case jj 
and rji = -r

ij 
= sinS 

for given angle S. Sometimes the elements are adjacent where j=i+1 

and the matrix can then be partitioned to produce a 2x2 submatrix 
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containing the elements for which the special notation below is often 

used, 

(2.2.15) 

Accompanying the structures SO-S13 are a number of properties but before 

these are given some additional concepts are required. 

The idea of a vector norm (definition 2.1.2) can be extended to 

matrices yielding, 

Definition 2.2.3: A Matrix Norm for a Real nxn matrix is a real valued 

function denoted I 1.1 I defined for all matrices A,B and a scalar a E lR 

satisfying 

(i) IIAI ha 

(H) IIAII=o iff A is a null matrix 

(Hi) IlaA11=la111A11 

(iv) II A+B II ~ II All + II B II 

(v) IIABII~IIAII IIBII 

1 

(2.2.16) 

J 
The left-hand side of (2.2.4) uses matrix vector multiplication and 

indicates that both vector and matrix norms may appear together, in 

such situations it is imperative that the two norms are compatible or 

consistent. Compatibility means satisfying the condition, 

(2.2.17) 

Now, if we take x from a set S (with x E S iff Ilxll=l), and further 

denoted Xo E s as the vector which makes I lAx II a maximum, then, 

IIAII = IIAx II=max IIAxl1 
o Ilxll=l 

(2.2.18) 

a matrix norm satisfying this stronger condition is termed a subordinate 

norm. The condition is stronger than (2.2.17) because if ensures 

compatibility as, 



Definition 2.2.4: A is a convergent matrix when, 

lim ( k = A ) ij k __ o for i,j=l(l)n O=null matrix 
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(2.2.20) 

As the coefficients of A are used to construct norms it can also be 

shown that limllAllk=o when A is convergent. k __ 

Definition 2.2.5: The determinant of a square matrix A, det(A), is 

given by, 

( i) 

(ii) 

(iii) 

(iv) 

If A=[ul is a lxl matrix det(A)=u u E E 

The Minor M .. is the determinant of the (n-l)x(n-l) submatrix 
~J 

of A obtained by deleting the ith row and jth column 

_ i+j 
The Cofactor Aij associated with Mij is Aij-(-l) Mij 

Thus the determinant of A for n>l is 

n 
det(A) = I aijAij , i=l(l)n 

1 
j=l 

or (2.2.21) 
n 

det(A) I aijAij , j=l(l)n 
i=l 

depending on Whether the rows or columns are expanded. 

An interesting question, (which leads to a very useful branch of Linear 

Algebra) is whether the matrix A in a system can be substituted by a 

simple scalar A EE. Formally, can some A for x;o!O be found for which, 

Ax = AX, (2.2.22) 

and is termed the eigen-problem. Alternatively we can use the following 

definition relating the eigen-problem to the matrix determinant. 

Definition 2.2.6: If P(A)=Det(A-~I) is a polynomial, with A an order n 

matrix and A a scalar, the zeros (roots) of P are called eigenvaZues, 

and associated with each value is an eigenvector x;o!O satisfying (2.2.22). 



35 

As A is of order n, P(A) can have at most n roots or eigenvalues 

Ai' i=l(l)n and hence n eigenvectors, from Definition (2.2.2) each 

vector is the non-trivial solution of the homogeneous system (A-AI)x=O. 

P(A) is often termed the characteristic poZynomiaZ and A the character-

istic value. 

Definition 2.2.7: The spectral radius p(A) of any nXn matrix A is defined 

as the maximum eigenvalue associated with A. , i.e., 

p(A) = max IAil 
l~i~n 

(2.2.23) 

Definition 2.2.8: The P-condition number of the matrix A is defined as, 

P = b/a , 

where a,b E m satisfy a~IA.i~b, i=l(l)n and are the largest and 
l. 

smallest eigenvalues respectively. 

(2.2.24) 

The spectral radius is extremely useful (particularly in iterative 

solution of linear systems) b~cause it allows the structure and properties 

of a coeffiCient matrix via the eigenvalues to influence the performance 

of the solution technique. ·To develop the use of the spectral radius more 

definitions are required including the most common matrix norms. 

Definition 2.2.9: The L
l

,L
2 

and L~ matrix norms for an nxn matrix A are 

given by, n 
i jAll l = max L la .. i 

l~j~n i=l l.J 

maximum column sum (2.2.25) 

n 
IIAII~ = max L la .. 1 

l~i~n j=l l.J 

maximum row sum (2.2.26) 

IIAI12 = P(ATA)t Euclidean Norm (2.2.27) 

is the Hermitian or complex conjugate transpose of A. 



These norms can be used to place bounds on the eigenvalues of a co-

efficient matrix by using the following theorems. 

Theorem 2.2.1: p(A)~i IAI I for the nxn matrix A. 

Proof: 

Let A., i=l(l)n be the eigenvalues of A and x., i=l(l)n the 
~ ~ 

associated eigenvectors, then, 

and 

hence for compatible norms, 

IAil Ilxill = 11 Axil I:; IIAi I Ilxill 

IAil < IIAII 
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for an eigenvalue of A, and in particular the largest, thus by Definition 

2.2.7, 
p (A) ~ I i All (2.2.28) 

Corollary 2.2.1: If I IAI 1<1 by definition (2.2.4) A is convergent and 

as p(A)<l must be true limp (A)k=o. Now I IAI 1<1 is a necessary and k __ 

sufficient condition for convergence but with p(A)<l this does not 

follow as I IAI 1>1 could be true. Consequently p(A) is a tighter bound 

on the convergence rate of A. 

Theorem 2.2.2: (Gerschgorin Disk theorem) 

Let D be the sum of the absolute values of elements along the sth 
s 

row excluding the element a of an nxn matrix A. Then each eigenvalue ss 

of A lies inside or on the boundary of at least one of the n circles 

with centre a .. and radius D., i=l(l)n. 
~~ ~ 

Proof: 

Let Ai be an eigenvalue of A then, 

AAi = \xi 
t and with xi =(Sl,S2, ••• ,Sn) and expanding to the form in (2.2.2) row s 
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has the appearance, 

giving, 

A.-a 
l. ss 

+ ••• 
I>s_l I>s+l 

a l(-O-)+a 1(-0-)+'" 
8,5- ~ sa+ ~ 

Thus, 

I>n 
+ a (-) 

sn I> 
s 

1>1 
1 A. -a 1 = 1 a 1 (Q) + •.. + 0 + 

1. ss S I-l 
S 

s s 

I>n 
+ a (-) 1 

sn I> 
s 

and if s has the largest row sum, 

< 1, i=l(l)n iFs. 

Hence, 

IA.-a 1 E lasl+ '" + 0 + ••. a 1 = D 
1. ss sn s 

(2.2.29) 

Corollary 2.2.2: If r of the circles form a connected region isolated 

from all other circles the region contains exactly r eigenvalues. 

Finally, one special bound for a matrix with special structure 

Theorem 2.2.3: A symmetric matrix A satisfies p (A) =max 1 A. 1= 11 A 11 
1 . l. 2 
~l.~n 

proof: 

(2.2.30) 

Indicating that p(A)<l is a necessary and sufficient condition for 

convergence of A for a symmetric matrix. 

We can now consider some special properties of matrices 

-1 
po: the INVERSE of a square matrix A is a square matrix A such that 

AA-l=A-1A=I (i.e. commutative matrix product). Matrices with inverses 

are termed nonsingular those without singular. A matrix is singular if 
. -1 

det(A) =0. Also det(A)det(A )=det(I). 

plo Cramer's Rule. The inverse of a 2x2 matrix is given as follows, 
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A = = 
1 

ad-bc 

and det(A}=ad-bc, so A is singular if a=c=O or d=b=O, etc. 

REMARK: Although similar rules are available for large matrices for n>3 

they are very complex and faster methods are available. 

P2: a DIAGONALLY DOMINANT nxn matrix A is one where, 

i,j=l(l}n. 

If ~ is replaced by>, A is strictly diagonally dominant. 

P3: a POSITIVE DEFINITE matrix A, is a real symmetric matrix for which 

t n 
x Ax>O for every x;lo from lR • 

P4: an IRREDUCIBLE nxn matrix for n~l and two non-empty disjoint subsets 

Sand T of W (a set comprising the first n positive integers) such that 

S+T=W satisfies a, ,;lo with i E s, JET. 
~J 

PS: ORTHOGONALITY a matrix A is orthogonal if A-l=A
T

• 

p6: SIMILARITY. Two matrices A and B are said to be similar if a non-

-1 
singular matrix S exists such that A=S BS. 

If we denote A and eigenvalue of A and x the corresponding eigen-

vector, 
Ax = AX , 

and 
-1 

SAS Sx = A sx 

B (sx) = A (Sx) 

Thus if B is similar to A, it has eigenvalue A and eigenvector Sx. 

2.3 DIRECT METHODS FOR THE SOLUTION OF LINEAR SYSTEMS 

The previous two sections have introduced a mathematical basis for 

Linear Systems of the form given in (2.2.4), i.e., 



39 

!Ix = b • (2.3.1) 

We now turn to methods of constructing the solution of the system, 

-1 
and assume for convenience that A is non-singular (A exists) so 

that the solution is unique. The methods discussed are intended for 

use on computers and so the solution of a system is generally only 

approximate due to rounding errors introduced by the finite word (length) 

calculations. However, the growth of errors is bounded in practice and 

results are acceptable especially if double precision arithmetic is used. 

The choice of solution method depends on a number of factors 

including structure and size of the matrix A, the number of arithmetic 

operations required to construct the solution, the amount of storage 

available/required for (2.3.1), and the control of rounding error growth 

(or stability) • 

In this section direct methods of solution are considered, which 

are applicable to small dense matrices, and have the advantage of 

producing a solution after a fixed number of operations proportional to 

the matrix order. Furthermore, in most cases the accuracy of the solution 

is usually stable and adequate for our purposes. 

Equation (2.3.1) is an example of an impZicitsystem, the solution 

vector cannot be derived without modifications to the system, which 

preserve the solution, and also give access to the unknowns. 

A brute force approach is to solve (2.3.1) by converting it to an 

equivalent expZicit form, ~sing the fact that A is non-singular. This 

yields, -1 
x = Ab, (2.3.2) 

and x is constructed explicitly by matrix vector multiplication. This 

implicit-explicit conversion is fine if A-I is already known, or easily 

constructed but generally this is not the case. Instead direct methods 
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are aimed at a compromise which manipulates A and b to produce a 

semi-expZiait form, 
(2.3.3) 

where x can be derived from an ordered substitution process, and A is 

a matrix with an easily solvable structure, and b is a modified RHS. 

2.3.1 Forward/Backward substitution 

Linear systems which have upper or lower triangular matrix 

structures (i.e. S3 and S4) automatically form semi-explicit solution 

schemes and so are easily solvable. With A=L we write, 

Lx = b , (2.3.1.1) 

and with A=U 
Ux = b (2.3.1. 2) 

and the process of forming x is termed forward substitution for (2.3.1.1) 

and backward substitution for (2.3.1.2~ As an example in the latter 

case, the problem can be expanded to give a coefficient form, 

u --12 
"-

"-
"-

" "-
" o 

L 
u 

'- I '- IJ " I '- u 
nn 

and the backsubstitution formula is, 

x 
n 

= b /u 
n nn 

I 

I 

~nJ 
x b 

} 
, i=n-l, ... ,l. 

(2.3.1.3) 

(2.3.1.4) 

The method could fail if some uii=O' i=l(l)n, but implies from Definition 

(2.2.5) that Det(U)=O which with property PO contradicts the assumption 
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that A was non-singular. The amount of work involved in back-

substitution is assessed by counting the number of scalar operations, 

and from (2.3.1.4) this is, 

Mults/Divs 

Adds/Subs 

n-l 
1 + I «n-i)+l) 

i=l 

n-l 
I «n-i-l)+l) 

i=l 

n 
= -(n-l) 

2 

(2.3.1.5) 

A similar formula with the same operation counts can be derived for the 

forward substitution process (with A=L). 

Given this simple technique of solving triangular systems, direct 

methods are developed from the simple supposition that converting a 

general matrix to an easily solvable triangular form, by operations 

preserving the solution will minimise the amount of computational work. 

Consequently direct methods are divided into two forms: 

(i) Triangularisation Methods: which convert A to L or U form. 

or (ii) Factorisation (or decomposition) Methods: which replace A 

by a product of Triangular matrices. 

2.3.2 Matrix Triangularisation 

The most popular method for triangularising a matrix is Gaussian 

Elimination which is based upon the use of three operations on the rows 

of A with form like (2.2.1) which preserve the solution vector. The 

rules are: 

(i) row
i 

can be multiplied by any non-zero constant ~ and the 

result used in place of row
i 

(i.e., scalar multiplication of 

a row vector). 
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(ii) Two rows, row, and row, can be added together and used to 
~ J 

replace one of the rows, that is, rowi=row,+row" or row = 
~ J j 

row,+row, (alternatively vector addition). 
~ J 

(iii) Two rows can be interchanged. 

The rules are applied to an augmented matrix A,(which is an nxn+l 

matrix constructed by making b an additional column of A), to form a 

-(1) -(2) -(k) 
sequence of modified matrices A ,A , ••. ,A for k=l(l)n and when 

k=l, "A(l) =A 

k>l, o 
~J 

) 
i=l(l)~,j=l(l)n+l 

i=k(l)n, j=l(l)k-l (2.3.2.1) 1 
a ~~-l) 

(k-l) 
a
ij 

(k-l) 
a 

_ (i,k-l )a(k-l) 
(k-l) k-l,j 

i=k(l)n, j=k(l)n+l J 
a 
k-l,k-l 

-(k) 
when k=n,A is upper triangular, when the (n+l)th column the 

modified b vector is removed. 
(k-l) 

a, 
The 

~,k-l 
value «k-l) is termed the mu Uip Uer and there is a separate 

a 
k-l,k-l 

value associated with each element set to zero. Thus, multipliers can 

be stored in the strictly lower triangular portion of A assumed zero, 

this is particularly useful when the same matrix is to be used to solve 

a number of different right hand sides, as only the new vector has to be 

modified. 

Generally, the A(k) matrix has the form, 

t(l) 
(1) 

all a
12 

0 
(2) 

a 22 

~ 

(1) (1) 
a 1 ,k-1 

_________ a 
l,n 

~ (k-1) 
a k-1,k-l 

0 

I 
0 

(k-l) 

ak_l,k 
(k-I) 

-----ak_1 ,n 
(k) 

a
kk 

(k) ------akn 

I (k) 
a 
n,k 

I (k) ----------ann 

(1) "1 
a 1 ,n+1 I 

(k-I) I 
ak_1 ,n+lI (2.3.2.2) 

(k) 
ak ,n+1 

a~~~+l J 
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at the end of the modifications in (2.3.2.1), and it is trivially 

observed that if any a~:)=o, i=l(l)n the method breaks down as multipliers 
~~ 

are impcssible to form. 
(k) 

The element a
kk 

of (2.3.2.2) is the crucial 

value in forming A(k+l) and is termed the pivot, it follows that if the 

pivot is zero the method fails, and the use of methods to avoid failure 

are termed pivoting strategies. Notice also, that (2.3.2.1) requires 

the application of only the first two solution preserving rules, the 

essential idea of pivoting is to replace zero pivots by non-zero values, 

using the third rule to interchange rows. Adopting pivoting ensures that 

Gaussian elimination fails only if A was originally singular, and we 

assumed A was non-singular. The extensions of the pivoting strategy can 

be used to control the stability of the method, in this case the pivot 

value is swapped if a better one (i.e. compresses rounding error more) 

can be found, and gives rise to a number of pivoting strategies. 

(i) MAXIMAL COLUMN (or PARTIAL) PIVOTING: 

This is the simplest method and selects an element in the same 

column as the pivot but below it with the largest absolute va'lue, and· 

swaps its associated row with the one containing the pivot. 

(ii) SCALED COLUMN PIVOTING: 

This is the same as (i) but scales the rows first by dividing the 

row entries by the maximum row element before choosing the element. 

(iii) MAXIMAL (total) PIVOTING: 

This is the most general method, selecting an element by scaling 

the remaining rows, and then using row and .column interchanges to produce 

the best pivot value. 

Although pivoting is useful for avoiding breakdown and controlling 

rounding error they involve extra work and it is desirable to keep this 
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to a minimum, hence the simplest strategy that can be used is adopted. 

The total number of operations for Elimination without pivoting is 

Adds/subs 

n-l 3 2 

1 L (n-i) (n-i+2) 2n +3n -Sn 
= 

6 
i=l 

J 

(2.3.2.3) 

n-l n 2 
L (n-i) (n-Hl) = -(n -n) 

i=l 3 

Mults/divs 

Thus, the total number of operations to solve (2.3.1) requires the 

addition of (2.3.1.S) and (2.3.2.3) yielding the expressions, 

Mults/divs 
3 2 

n +3n -n 
3 

Adds/subs 
3 2 

2n +3n -Sn 
6 

) (2.3.2.4) 

A number of variations to Gaussian Elimination are available which 

minimise time and storage by making use of the special structure of the 

matrix. The above method works for general non-singular matrices, 

matrices with banded structures for instance rarely use as many operations 

as (2.3.2.4). 

Other methods for general problems include the Gauss-Jordan 

algorithm and the Givens (orthogonal) Rotation method. The former 

scheme follows (2.3.2.1) by a second sequence of matrices which eliminate 

in the reverse direction to produce a diagonal matrix, which .is trivially 

solved by n divisions and requires a total .of 

3 
2 Mults/divs n n 

-+ n -2" 2 
3 

Adds/subs 
n n 
2 2 

) (2.3.2.S) 

operations. The Givens orthogonal triangularization method is identical 

to Gaussian Elimination except that the equation, 



(k) 
a, , 

l.J 

(k-l) 
= ai,j 

(k-l) 
a, k 1 l., -

(k-l) 
a 
k-l,k-l 

a(k-l) in 
k-l,j 

is replaced by the 2x2 rotation matrix operation 

with 

and 

~ -1 ak_l,j ~ (k-l] 
~ (k) 1 
:k-l,jJ = 

(k-l) 
~ a, 

- l., j 

(k-l) (k-l) 
0 sak 1 ' + ca,. = 

- ,J 

2 2 
= 1 s + c 

(k-l)/A c=a
kl

,,, 
- ,J 

l.J 

s = (k-l) /6 a
ij 

A = {[ (k-l)j2 [(k-l)j2}I 
" a ij + ak_l,j 
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(2,3.2.1) 

1 

(2.3.2.6) 

which requires more basic operations than the elimination scheme, but 

requires no pivoting to remain stable. 

2.3.3 MATRIX FACTORISATION: 

Factorisation is an alternative to triangularisation which avoids 

modification of the rhs of (2.3.1) and so is more convenient for multiple 

rhs solutions. Generally it also avoids pivoting. The idea is to 

replace A by the product of a lower and upper triangular matrix, 

A = LU , (2.3.3.1) 

which on substitution for A and the introduction of an auxiliary vector 

y produces an answer by solving the two coupled systems, 

a) Ly = b } b) Ux = y 
(2.3.3.2) 

by forward and backward substitution respectively. A number of methods 

for producing Land U factors which satisfy (2.3.3.1) are known and can 

be classified according to whether the diagonal element tii or u
ii 

are 

set to 1 or equal (tii=uii), they are: 



(i) Doolittles' method which (~ii=l, i=l(l)n) formulated as 

a,. -
1J 

1 
[a .. -

J1 

~ikUkj j~i 

i-l 
~ ~jkUkil j>i , i=l(l)n 

k=l 

(ii) Crouts' method with (u .. =1, i=l(l)n) given as, 
11 

1 
= ~ii 

i-l 

[a. j - 2 ~1·kukJ·l 
1 k=l 

j>i, i=l(l)n 

(iii) Choleski's method (~ .=u .. effectively) 
i1 11 

= (a
ii 

-
k=l 

i=j 

i-l 

~ij = (a
ji 

- 2 ~ik~jk) /~ii , i>j, 
k=l 

j=l(l)n 

I 

1 
J 

Note that if any ~ .. or u .. is zero the methods breakdown. 
J.1 11 
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(2.3.3.3) 

(2.3.3.4) 

(2.3.3.5) 

The formulae 

(2.3.3.3) and (2.3.3.4) are general methods for non-singular matrices, 

while (2.3.3.5) is applicable only for symmetric positive definite 

matrices and A=LLT. A root-free form of the Choleski with A=LDL
T 

(D 

a diagonal matrix) is also possible. Due to the fact that only the 

entries of L are computed in (2.3.3.5) savings in memory and computation 

time can be made .over Gaussian Elimination. The number of operations are, 

square roots n 1 3 2 
Mults/divs 

n +9n +2n 

I 6 (2.3.3.6) 
3 2 

Adds/subs 
n +6n -7n 

6 ) 

but requires the relatively complex square root calculation, while 

Doolittle's and Crout's method use approximately the same amount of 



computation as Gaussian Elimination. 

To define the types of matrices which can be solved using 

triangularisation and factorisation methods consider the following 

two theorems. 
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Theorem 2.3.1: If A is an nxn strictly diagonally dominant matrix or 

positive definite A is non-singular and Gaussian Elimination can be 

performed without pivoting and remains stable against the growth of 

rounding errorSa 

Theorem 2.3.2: If Gaussian elimination can be performed on a system 

Ax=b without row interchanging, A can be factorised into the form A=LU. 

Further improvements can be made to the methods if A has a regular 

structure (like symmetry) or is banded. But as A becomes larger and 

less dense the above methods produce fill-in (replacing zeros by non

zeros) increasing the amount of computation and storage. If the matrix 

structure is irregular fill-in occurs in predictable places and we look 

for alternative optimised methods of solution. 

2.4 ITERATIVE SOLUTION OF LINEAR SYSTEMS 

Iterative methods preserve the sparse structure of a matrix, but 

do so by computing a sequence of approximations which converge 

(Definition (2.1.4)) to the solution. The methods can provide 

arbitrary accuracy depending on the number of iterations performed, 

and are terminated usually when the difference between successive 

approximations satisfies some tolerance. 

To form an iterative scheme we split A (from (2.3.1)) into 

matrices E and F such that, 

A = E-F , (2.4.1) 
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which produces, Ex = Fx + b • (2.4.2) 

Now if x(O) is some arbitrary selected start vector, and x(n) denotes 

th 
the n approximation to x (the exact solution), the iterative scheme 

is, 
(2.4.3) 

-1 (n) 
and providing E exists, x can easily be found. The amount of 

(n) 
work to construct x depends on the structure of E and F, in the 

light of Section 2.3, the sensible thing to do is to restrict E and F 

to easily solvable matrices. If E is a Diagonal matrix the so-called 

simultaneous displacement methods (e.g. Jacobi, Richardson) result, 

when E is lower triangular successive displacement methods (e.g. Gauss-

Seidel, SOR) are produced. In the simultaneous case the order that the 

(n) 
components of x are updated is unimportant, while in the successive 

case a sequential modification order is imposed. 

2.4.1 Simultaneous Displacement Methods 

Consider the system A=D-L-U=D-B with B=L+U, put E=D and F=B and 

substitute in (2.4.2) 

DX(n) = BX(n-l) + b 

and x(n) = D-IBX(n-l) + D-lb (2.4.1.1) 

The Jacobi method. Now substitute for B=D-A to give, 

(n) -1 (n-l) -1 
x = (1-0 A)X. +D b (2.4.1.2) 

which is also; 
(n) (n-l) -lIb (n-l» x -x = D -Ax (2.4.1.3) 

illustrating that the difference between successive approximations is 

proportional to the difference between the true solution (x) and the 

(n-l) . 
x estl.mate. If we define CL ( lR a scalar and r (n-l) =D -1 (b-Ax (n-l) ) 

convergence to x can be accelerated by the formula, 
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(n) (n-l) (n-l) 
x = x +Clr (2.4.1.4) 

known as the Simultaneous Displacement method. Choice of the 

acceleration parameter Cl is clearly important, and for some types of 

matrices derived from differential equations bounds can be placed on 

it. An alternative to (2.4.1.4) which is more sensitive to the errors 

in approximation is to define Cl
i 

E lR for each iteration giving 

Richardsons method, 
(n) (n-l) 

x = x 
(n-l) 

-1- a r 
n 

(2.4.1.5) 

The simultaneous method (2.4.1.4) is termed stationary because the 

error of approximation is always affected by the same amount (Cl), 

while (2.4.1.5) is nonstationary as the error at each iteration is 

affected differently due to the changing Cl., Consequently the choice 
l. 

of Cl
i 

is generally more difficult than in the stationary case. 

2.4.2 Successive Displacement Methods 

To derive the Gauss-Seidel method set A=D-L-U and E=D-L with F=U 

to give, 
(n) (n-l) 

(D-L) x = Ux + b , (2.4.2.1) 

consequently, 
(2.4.2.2) 

This is superior to the Jacobi form because (D-L) is lower triangular 

and so the latest estimates of components in x(n) can be incorporated 

to produce the remaining components. Implicitly using the most recent 

values implies that x(n-l) can be overwritten with x(n) and hence 

requires storage of only one approximation vector instead of two needed 

by the Jacobi method. 

As for simultaneous methods, an acceleration parameter w E lR can 

be introduced deriving the Successive OVerrelaxation (SOR) scheme 



so 

from (2.4.2.1) 

( (n) (n-l)) (n) U (n-l) b D (n-l) D x -x = Lx + x + - x 

so 
( (n) (n-l) ) -1 [ (n) (n-l) b (n-1)] 
x -x = D Lx +Ux + -Dx 

introducing the acceleration parameter gives, 

(x(n}_x(n-1}) WD-l [LX(n}+ux(n-1}+b_DX(n-1}] 

-1 (n) -1 -1 (n-l) -1 
(I-wD L}x = wD (U-D+w D}x +wD b 

2.4.3 Convergence of Iterative Schemes 

NoW (2.4.1.1), (2.4.2.2) and (2.4.2.3) can be represented by the 

general iterative form, 

(n) (n-l) 
x =Mx +c, (2.4.3.1) 

where M is called the iteration matrix and c is a vector, which for 

the above schemes take the forms, 

-1 -1 -1 
Jacobi M = (I-D A) = D B, c=D b 

-1 -1 
Gauss-Seide1 M = (D-L) U c= (D-L) b 

M = (I_WD-1L}-1{WD-1U+(1_W}}, C=(I_WD-1L}-lWD-lb SOR 

(i) ( . ) 
The error vector e associated with the ith iterate x ~ is 

(i) (i) 
e = x-x 

and with x the exact solution substituted in (2.4.3.1) we have, 

x = Mx + c , 

Subtraction of (2.4.3.1) from (2.4.3.3) produces, 

x_x(i} = M(X_x(i-l}} 

Hence, e (i) = Me (i-1) 

and consequently 

(2.4.3.2) 

(2.4.3.3) 

(2.4.3.4) 
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(n) (n-l) n (0) 
e = Me = ••• = M e 

using consistent and compatible norms produces, 

11 e (n) 11 ~ 11 M (n) 11 lie °11 

~ IIMllnlleoll (2.4.3.5) 

Thus from Definition (2.2.4) and Corollary (2.2.1) I IMI 1<1 for the 

(i) 
error to decrease and the sequence of approximations x to converge 

(0) 
to x for an arbitrary starting vector x 

The error vectors of (2.4.1.4) and (2.4.1.5) satisfy, 

(n) n (0) 
e = (I-etA) e 

and 
(n+1) 

e = 
n 

IT (I-a .A) e (0) 

i=O l. 

} 

indicating the stationary and non-stationary nature. 

(2.4.3.6) 

Different methods produce different rates of convergence and this 

together with the amount of work required for each iteration dictates 

which method is used for particular problems. For instance, a more 

complicated iteration method may converge significantly faster than a 

simple one, but involve much more work per iteration; unless the amount 

of work in two competing methods is approximately the same a simpler 

iteration scheme could out-perform a complex one in terms of total 

number of operations. Choice of iterative method is further 

(0) 
complicated by the selection of a good initial approximation x a 

bad choice, some distance from x can force even an efficient method 

to perform large amounts of computation. The definitions and theorems 

below formalise these concepts allowing a numerical method of analysis. 

Definition 2.4.1: Average Rate of Convergence 

Let A and B be two nXn matrices. If, for some positive integer 
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is the average rate of convergence, for m iterations of A. If R(A
m

} < 

R(B
m

} , B is iteratively faster for m iterations. Note also that the 

number of iterations is inversely proportional to the average rate of 

convergence. We can also distinguish which methods are better for large 

numbers of iterations when ~ by 

Theorem 2.4.1: Let A be a convergent nxn matrix. For all m sufficiently 

large the average rate of convergence for m iterations R(A
m

} satisfies, 

m 
liro R(A } ~ -~np(A} = R (A) 

'" 
(2.4.3.8) 

~ 

where R (A) denotes the Asymptotia Rate of Convergenae. 
'" 

Proof: m 

R(A
m

} ~nllAmll 
" 

~nv ~n (p-l) m-p+l 
- - --- [ 1 ~np (A) 

m m m m 

( m ) m! 
and 

~n (P~l) 
= -+ 0 as D)-k'O. 

p-l (p-l) I (m-p+l) I m 

with 

m 
-~np (A) lim R(A } = " R (A) 

'" 

Thus, 

or-

Furthermore 

An indication of the relationship between (2.4.3.1) and (2.3.2) the 

explicit solution of (2.3.l) is contained in the following proofs: 

Theorem 2.4.2: If the spectral radius of an nXn matrix M satisfies 

-1 
p(M}<l then (I-M) exists and 

-1 2 
(I-M) = I+M+M + (2.4.3.9) 

(the righthand side of (2.4.3.9) is called the Neumann expansion.) 

Proof: 

(i) Let A be an eigenvalue of M then l-A is an eigenvalue of I-M. 

(ii) If IAI~p(M}<l then I-M can have no zero eigenvalues and hence is 

nonsingular (see characteristic polynomial Definition (2.2.6) and 

property PO). 



(Hi) 
2 m 

Put S =I+M+M + ••• +M 
m 

and (I-M)S 
m 

m+l = I-M 

as p(M)<l, M is convergent (Definition 2.2.4) hence, 

lim 
m-><o 

. m+l 
(I-MlS =lJ.m (I-M ) m 

m--

lim S = (I_M)-l 
m->a> m 

= I 
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(iv) NOW (k) (k-l) 
x = Mx + C 

and 

k 
for k large enough M =0 hence, 

x "S c = (I-M)-lc 
k-l 

(2.4.3.10) 

(2.4.3.11) 

using (2.4.3.5) a rough bound on the number of iterations is 

given by, 

11 x-x (k) 11 ~ 11 Mk 11 11 x-x (0) 11 

and with p (M) ~ 11 M 11 

Ilx-x(k)ll" p(M)k11x_x(0)11 

(0) 
and with the initial guess x =0 the relative error is derived 

11 x-x (k) 11 

Ilx 11 -t 
and with a tolerance of 10 defining the error of approximation 

k -t 
termination occurs with p(M) ~10 and 

-t 
(2.4.3.12) 

Consequently if the iteration matrix is convergent, it will converge to 

the correct solution for x(O)=o, which gives a simple starting vector. 

From (2.4.3.12) we conclude that the smaller the spectral radius the 

faster convergence will be. For the Jacobi and Gauss-Seidel methods we 

can prove the following. 

Theorem 2.4.3: If A is strictly diagonally dominant then for any choice 



of x(O) both Jacobi and Gauss-Seidel methods give vector sequences 

(x(k)}~ which converge to x the solution of Ax=b. 

Proof: 

(i) Jacobi: Iteration matrix M=D-l(L+U) and for convergence I IMI 1<1 

thus, 
110-

1 
(LtU) 11 ~ 110-

1
11 I i (L+U) 11 < 1 

'and, 
IIL+ull < \ 

110- 11 

11 L+U 11 < i I D 11 as 11 0 11 I i 0-
1

11 > 11 I I i = 1 

and this is a norm representation of property p2. 

(ii) Gauss-seidel: M=(D-L)-lU so for I IMI 1<1 

hence, 

11 (D-L)-lull ~ 11 (D_L)-lll Ilull < 1 

11 U 11 < 11 (O-L) 1I < 11011-11 L 11 

IIL+ull ~ IILII + Ilull < IIDli 

S4 

Thus from Theorem (2.4.2) part (iv) both methods converge for any 

(0) 
x 

Finally the last few theorems indicate bounds on the acceleration 

parameters of (2.4.1.4) and (2.4.2.3). 

Theorem 2.4.4: The optimal value a for the simultaneous replacement 

method x(n) = x(n-l)+ar(n) with r(n)=D-l(b_Ax(n-l)) is a=2/(a+b) where 

a and b are the largest and smallest eigenvalues of A. 

Proof: 

Assume (I-0-1A) has n-linearly independent eigenvectors vi 

associated with n distinct eigenvalues A. and let ~. be eigenvalues of 
l. l. 

-1 -1 
o A, for i=l(l)n. Then the method converges with p(I-aD A)<l and by 

definition a~~.~b and A.=l-a~. for i=l(l)n. 
l. l. l. 

Consequently, 



and o < a < ~ 
b 
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(2.4.3.13) 

-1 
Now to achieve optimal convergence we minimise p(I-aD A} resulting 

in 2 
Il-aal = -Il-abl ~ a = a+b 

(2.4.3.14) 

and so, b 
b-a (-}-l 

Il-allil 
a 

< 1 ~ b+a 
(E.) +1 

, 

a 

(2.4.3.l5) 

and from Definition (2.2.8) minimising the spectral radius is related 

to the p-condition number of the iteration matrix. For the SOR method 

w is characterised by the results. 

Theorem 2.4.5: (Kahan) If aii#o i=l(l}n for a matrix A and iteration 

matrix M ,p(M }>Iw-ll hence, 
w w 

Proof: (omitted). 

p(M ) < 1 iff O<w<2 
w 

Theorem 2.4.6: (Ostrowski-Reich) If A is a positive definite matrix and 

(O) 
O<w<2 the SOR method converges for any initial approximation x 

Let M, and M be the iteration matrices of (2.4.l.l) and (2.4.2.2) 
J g 

respectively. 

2 
Theorem 2.4.7: If A is a positive definite tridiagonal matrix p(M }=[p(M,}] <1 

g J 

and the optimal value of w in SOR is, 

with p(M }=w-l, 
w 

w = 2 

I 2 
l+il-p (M,) 

. J 

which indicates that the Gauss-Seidel method is iteratively faster than 

Jacobi's method. 

Theorem 2.4.8: (Stein & Rosenberg) If aij~O for i#j and aii>o for 

i,j=l(l}n then one and only one of the following is true: 

( i) O~p(M } < p(M,} < 1 
g J 
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(ii) 1 < P (M.) 
J 

< p(M ) 
g 

(Hi) P (M.) = P (M ) = 0 
J g 

(iv) P(M
j

) = P (M ) = 1 
g 

Finally, we have made one critical and implicit assumption about the 

iterative schemes discussed, and which is termed the 'consistency 

condi tion I • 
.. (n) (n+i). 

That is, when x 1S subst1tuted for x , x 1>,1 are 

also solutions. Consequently, when the method converges it is assumed 

that it does not diverge on subsequent iterations. 

2.5 PARTIAL DIFFERENTIAL EQUATIONS 

Almost all problems involving rates of change of two or more 

independent variables representing some physical quantity (e.g. time, 

length, etc.), leads to a partial differential equation (PDE) which can 

be written in a general form as, 

d ~~ + e ~~ + fu + g = O. (2.S.1a) 

The variables a,b,c,d,e,f and g are called coefficients and can be 

zero, or functions of the independent variables x and y and also the 

dependent variable u. When coefficients are composed only of functions 

involving x and y (2.5.la) is termed linear, but if they also contain 

terms with u or its derivatives they are called non-linear equations. 

It is possible to classify PDE's further and (2.5.1~ is termed, 

elliptical when b
2
-4ac < 0 

parabolic when b
2
-4ac = 0 

2 
hyperbolic when b -4ac > 0 

1 

J 
(2.5.1b) 

We also make the implicit assumption that all terms in (2.5.1) can be 

formed and this implies that the solution function u is twice 
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differentiable and continuous in a bounded space called a region 

(denoted R). Associated with R is a boundary (denoted C) which 

defines the limits of R, and generally we are not interested in solving 

(2.5.1) beyond the boundary. Corresponding to (2.5.1) in R, a set of 

boundary conditions are attached to C which are functions describing 

the behaviour of u at the periphery of the region. The two main types 

of boundary conditions are specific and generaZ boundary conditions. 

With specific boundary conditions, the dependent variables can be 

assigned specific values at specific points on C, and can be further 

partitioned into homogenous and non-homogenous types. Specific homogen

ous boundary conditions are such that if U=f
l

, (where fl is a function 

on the boundary) au=af
l 

is satisfied for some parameter a, any other 

specific condition not obeying the relation is non-homogenous. on the 

other hand, general boundary conditions arise when the behaviour is 

unpredictable on C. For instance, we might want a solution to u in R
3

, 

a region made up of two subregions Rl and R2 which in physical terms 

constitute different mediums, the boundary between Rl and R2 may be 

uncertain but usually functions can be derived using values not on but 

adjacent to the boundary in both regions, these functions are then 

interpreted as C. In this thesis the partial differential equations 

will possess specific boundary conditions. 

Given a partial differential equation we can define four main 

types of boundary value problems (which amount to solving the equation 

under different boundary conditions), they are: 

(i) Dirichlet problem where u is specified at every point on C 

(ii) Neumann problem where only values of the normal derivative are 

given on C. 
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(iii) Robbins problem where a linear combination of u and its 

derivatives is given on C. 

(iv) Mixed problem where u is given for part of C and the normal 

derivative for the remainder leading to a discontinuous solution 

near the boundary. 

In addition to the boundary conditions many problems also define 

initial oonditions which describe the state of the physical problem at 

some stage. In problems where time (t) is one of the independent 

variables, t=o (zero-time) is adopted for the instant when the initial 

conditions are valid, and is the starting point for the solution of 

the equation. The boundary and initial conditions arise from the 

physical constraints of the problem rather than from the form of eqn. 

(2.5.1) and are sometimes termed 'auxiliary conditions'. 

Definition 2.5.1: A partial differential equation is said to be well-

posed if its auxiliary conditions are specified in such a way that there 

exists a unique solution, and that small changes in the auxiliary 

conditions transmit only small changes to the solution. 

Parabolic and hyperbolic equations are derived mainly from problems 

which can·define time as an independent variable and so possess initial 

conditions. For instance, the simplest parabolic problem is, 

au 
at (2.5.2) 

derived from the theory of heat diffusion, u is the temperature at a 

distance x units from one end of a thermally insulated metal bar with 

length (£) at time t. The initial conditions are clearly the temperature 

of the rod at t=O, and the boundary conditions the temperature at the 

ends of the bar (x=O, x=£ say). 
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The simplest hyperbolic equation is that of a vibrating string 

more generally the wave equation given by, 

(2.5.3) 

where u is the transverse displacement (of the string) at distance x 

units from one end of the vibrating string again of length £ at time t. 

This time initial conditions are the initial displacements of the string 

and its shape and velocity at various points from x=o to x=£ given by 

au 
u and at' the boundary conditions are the displacements of the string at 

its ends (i.e. x=O, x=£). 

REMARK: Hyperbolic equations arise generally in vibration problems where 

there are discontinuities over time (e.g. shock waves with discontinuities 

in speed, pressure and density). 

The simplest and best known elliptic equations are the two-

dimensional Poisson and Laplace equations given by, 

a) a
2
u 

2 
+ l...!! + g(x,y) = 0 

ax 
2 

a/ 
and (2.5.4) 

a
2
u 

2 
b) + l...!! = 0 

ax
2 a/ 

and associated with steady state or equilibrium problems. The standard 

physical examples being: 

(i) velocity potential for the steady flow of an incompressible 

non-viscous fluid (modelled by (2.5.4b)) 

(ii) The electric potential associated with a two-dimensional 

electron distribution of given charge density (modelled by 

(2.5.4a)) • 

Throughout the text we will assume that our problems are well-posed. 
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The usual requirement for hyperbolic/parabolic equations to be well

posed is that the region R is open in the direction of one of the 

independent variables (for our purposes t), giving an infinite region. 

While for elliptical equations all the points on the boundary must be 

specified and R must be a closed region (see Fig.2.1). 

2.5.1 Solution of PDE's Using Finite Differences 

In solving an equation of the form (2.5.1) we integrate to produce 

the function u which is twice differentiable and continuous, and when 

suitably differentiated produces (2.5.1). There are two main ways to 

recover the function - the Analytic and Numeric approaches. A purely 

analytical method is symbolic and attempts to derive an exact finite 

mathematical formula. The numeric approach, approximates the function 

with numeric values at various points in R. A cross between purely 

analytic and numerical approximations are the approximate analytic 

methods, these replace the finite exact formula of analytic methods by 

an easier derived formulation often an infinite series, the methods then 

become approximate as some terms in the series must be neglected 

producing truncation errors. Analytical methods have the advantage that 

the character of the solution (at key positions in R) can be easily 

extracted but are hampered by difficulties in representing boundary 

value information as regions and boundaries become more complex. We 

shall use only numerical methods and in particular the finite difference 

technique, where the solution for a number of points in R is written 

in tabular form. 

The first step towards a finite difference solution is to 

discretize the region R, this means selecting specific points at which 
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(2.5.1) will be solved numerically, the solution is then discrete 

rather than continuous as in the analytic approach. The easiest 

method of specifying points which cover the whole region is to 

envisage R as a Cartesian space with independent variable axes (of the 

space) as illustrated in Fig.(2.1a). Partitioning the axes into 

uniformly spaced points separated by distances 6x (in the x direction) 

and 6t (in the t direction) produces a discrete set of points, with 

x =t =0 
o 0 = xo +i6x i=O (l)R, } x. 

l. 
(2.5.1.1) 

t. = to+j6t j=O,l, .•• 
J 

Drawing the abscissa and ordinates of all these points defines a 

rectangular grid over R, and the set of solution points are simply 

the intersecting points of horizontal and vertical lines, and termed 

grid (nodal or pivotal) points. 

The next step is to approximate the solution of each grid point 

in R, the most popular method is to employ the Tay10r expansion. When 

a function u and its derivatives are single valued, finite and 

continuous values of x, the Taylor expansion is, 

u(x±h) = u(x) ± hu'(x) + 

and for a value t 

u(t±k) = u(t) ± ku'(t) + 

h 2 
- u"(x) ± 
21 

k2 
- u" (t) ± 
21 

au 
with h=6x, k=6t, and u' (x)=--, ax 

3 
h "' -u 
31 

3 
k .It 

~ 

(x) + ••• 

(t) + .,. 

etc. 

(2.5.1.2) 

(2.5.1.3) 

Forming u (x+h) +u (x-h) and rearranging to isolate u" (x) produces, 

u"(x) = ~U(X+h)-2U(X)+U(X-h)} + T 

b) T = {
2h2 (4) 2h4 (6) 

- -- u (x) + -- u (x) 
41 61 + ••• } 

) (2.5.1.4) 

a) 

with 

known as the central difference formula. Considering u(x+h) and u(x-h) 
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j+l 

j 

x 



individually we have the forward and backward differences 

a) 

b) 

and 

1 
u' (x) ~ h'lu(x+h)-u(x)} + T 

h h
2 

(3) 
T ~ -{ 2j""'1" (x) + 31 u (x) + ••• } 

1 
u' (x) ~ h'l u (x) -u (x-h)} + T 

T ~ {!!....u" (x) 
2! 

2 
h (3) ( ) + - u x 
3! 

+ ••• } 

are derived. 

I 
I 
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(2.5.1.5) 

(2.5.1.6) 

The partial derivatives are formed by applying (2.5.1.2) in the x-

direction and (2.5.1.3) in the t-direction. If P
ij 

is the grid point 

at coordinate (ih,jk) then the approximation of u at this point is 

U(ih,jk)~Uij and it follows that, 

2 a u 
(-2) 'j 
ax l. 

, 12 {u((i+l)h,jk)-2u(ih,jk)+u((i-l)h,jk)} 
h 

• h12 {ui+l,j-2ui,j+ui_l,j} , (2.5.1. 7) 

neglecting the T term from (2.5.1.4) makes the formulation approximate 

and T is called the Trunaation error. We denote the error above as 

O(h
2

) indicating that the largest (or principal) term in the truncated 

part is dominated by h
2 

This assumes that the higher derivatives are 

small relative to powers of h. Likewise, 

au • 
(ax) ij with O(h) 

1 
-¥ui j l-2u, j+u, '-l} k I + 1., 1.,) 

au 
(at) ij 

~ lr } "k ui '+l-u, , with O(k) 
,J 1.,) 

error 

2 
with O(k ) error 

error 

Now consider the parabolic equation of the form, 

au 
-~ 

at 1 

(2.5.1.8) 

(2.5.1.9) 

(2.5.1.10) 
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Initial condition u(x,O) = f(x) 

f 
) 

(2.5.1.11) 

Boundary conditions u(x,O) = u(~) = ° 
At point P" (2.5.1.11) is approximated by substituting (2.5.1.10) and 

~J 

(2.5.1.7) for the partial derivatives, yielding, 

1 1 ) 3u, j l-u, ,} = --'2'!u, 1 ,-2ui ,+u, 1 j} + Tij k 1., + 1.J h ~+ ,J J ~-, I 
h 2 4 2 

J 
(2.5.1.12) 

a u k a u T, , = (4) '+6 h ' (2)i '+<1> k + ... 
~J 12 ax ~ i' J 2 at ,J j 

T" is the Local Truncation error, neglecting 
~J 

this term gives an approximate value for u,' at the point P, , and after 
~J ~J 

re-arrangement and with r=k/h
2

, we have, 

Ui,j+l = rUi +l ,j+(1-2r)uij + rui_l,j , (2.5.1.13) 

known as the classical explicit formula, its structure is shown by the 

molecule on Fig. (2.1a) and it follows that given three points on the 

jth abcissa (the jth time level) then one point of the (j+l)th level 

can be computed. The initial conditions of (2.5.1.11) gives us all the 

points on t=o hence we can compute all the points on t=1,2 etc. by 

repeated application of (2.5.1.13). Further suppose that there are n 

internal points along t=o (i.e. not counting x=O, x=2) then a complete 

time level can be formulated as n applications of (2.5.1.13). Numbering 

the points from left to right on the jth time level produces the n 

linear equations, 

(1-2r)u
l 

,+ru
2 

' 
,J ,J 

= u -ru 
l,j+l O,j 

rU
l 

,+(1-2r)u
2 

,+ru
3 

' 
,J ,J,J = U2 ,j+l 

ru 1 ,+(1-2r)u j = u -ru n- ,J n, n,j+l n+l,j 
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and as u .=u 1 .=0 (boundary conditions) this yields a linear system 
O,J n+,J 

of the form (2.4.3.1) given by, 

(j+l) 
u, = 

l. 
+ b , (2.5.1.14) 

with, 

r 1-2r r l h jl r 1 

0 IU2j 

l,j+ll 

u ~j) ( j+l) 
U2 ,j+l 

= u
i 

= 
l. 

1T-2r r 

A = 

r 

r 1-2~ t'nj ~n,j+=l nxn -

o 

r-ruo,j l 
0 

C:Un+l,jJ 

From the structure properties SO-S13 and for large nJA is symmetric 

sparse banded and tridiagonal and is already in explicit form and 

solved simply by a matrix vector multiplication. Successive levels 

are constructed by repeatedly solving (2.5.1!~) replacing the old 

level by the new at each iteration. If (2.5.1.10) had been a backward 

difference, substitution into (2.5.1.11) would have produced the linear 

system, 

with, 

(j+l) 
Au. 

l. 

( .) 
= u J 

i 
+ b , (2.5.1.15) 
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r2r -r l r' l o,J 
-r 1+2r -r 

~ 
0 

A = b = 

l 0 -r~ 0 

bn+l,jJ 
-r 1+2r 

which is diagonally dominant, symmetric, sparse and tridiagonal, but 

yields an implicit system which requires direct or iterative solution 

techniques at each level. The formula corresponding to (2.5.1.12) is 

called the aZassiaaZ impZiait formuZa. 

2.5.2 Convergence, Stability and Consistency 

Given a solution method, how can we be sure that the approximations 

at successive levels will stay close to the true solution of the problem. 

Convergence: Suppose U is the exact solution of the PDE, and that u is 

the exact solution of the finite difference formula. If u approaches U 

along a time level or at a point as 6x and 6t tend to zero the method 

is convergent. This corresponds to introducing more and more points, 

and hence finer and finer grids, and at some stage the points will be 

so close together that the discretized solution will look very much like 

a continuous one. Consequently, the difference U-u is termed the 

disaretization (or global trunaation) error. The choice of grid size 

is critical to the success of the approximation, and can be analyzed 

using local truncation terms, we might also consider improving the 

result by estimating the error but this usually involves evaluating 

unknown derivatives leading to a more complicated process. 

Stability: We actually solve the difference equations on a computer 
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with inherent rounding errors. The initial conditions themselves 

introduce additional errors associated with the gathered data from a 

physical process. Now if the finite difference formula was solved 

exactly (i.e. no rounding errors) and they limited the amplification 

of errors in all components of the initial conditions the formula would 

be stable. Successive time levels can consider the previous level as 

initial conditions and so limiting error growth also limits rounding 

error. 

If we assume that h+O and k+O convergence and stability can be 

related using, 

Theorem 2.5.1: (Lax's equivalence theorem) 

Given a properly posed linear initial-value problem and a linear 

finite-difference approximation to it that is consistent, stability is 

a necessary and sufficient condition for convergence. 

Now suppose that U
o 

is the exact and U
o 

the estimated initial 

conditions given that e.=uj-u, is the error on the jth time level, 
J J 

substitution into (2.5.lli) yields e,=Ae, 1 which by repeated substitution 
J J-

produces ej=Aje
o 

and using (2.4.3.2)-(2.4.3.5) indicates that convergence 

and stability of the methods occur if IIAI 1<1. Likewise (2.5.1.15) is 

diagonally dominant and symmetric indicating that solution by direct 

or iterative methods at each level will also provide a stable hence 

convergent method. 

This leaves only the problem of consistency. A finite-difference 

method may be stable but may converge to the solution of a different 

differential equation than the one intended as k~ and h+o, such a 

method is said to be inconsistent. We assume throughout the work 

that equations are consistent and so matrix theory and convergence can 
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be applied to finite difference methods using Theorem(2.5.l2 

Finally the technique described for solving the parabolic form 

(2.5.1.11) can be applied to other equations deriving other structured 

coefficient matrices and corresponding solution methods. 

For the 2-D elliptic P.D.E., i.e. Laplace equation (2.5.4b) with 

Dirichlet boundary conditions u(x,y)=O on C, corresponding to Fig. (2.lb) 

a five point formula, 

4u ,-ui 1 ,-u, 1 ,-ui ' l-u, , 1 = ° , i,] + IJ 1.-,J ,J+ 1.,J-
(2.5.1.16) 

2 
is derived and assuming n internal grid points with a columnwise 

ordering (Pij~(j-l)n+i) of points and hence equations produces a co-

2 
efficient matrix A of order n of the form, 

< n+l ) 

-1 ""1 

A = 
C~ 

-1 , b=O , (2.5.1.17) 

-1 

~ L -1 

-1 

-1 ~ 

a symmetric sparse banded matrix which illustrates simple striped 

features. Similarly, the 3-D problem of the form, 

(2.5.1.18) 

(x,y,z) E lR =- (O,l,)x(O,l)x(O,l) 

and boundary conditions, 

u(x,y,t) = ° 
produces a cube dissected by a three-dimensional grid with spacing 

~x,~y,~z and when ~x=~y=~z produces a seven-point finite difference 

formula, 
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6u, , k-ui 1 ' k-ui 1 ' k-u , , 1 k-u , j 1 k-u , 'k -U, j k 1 ~/J, + ,J, - ,), 1.,)+, 1., -, 1.,), +1 1., , + 
= 0 

(2.5.1.19) 

3 
specified at the n grid-points in Rwith u(Ux, jlly, klIz)=u, , k 

1. , J , 

ordering these points produces the linear system, 

-I 

A = 

-I 

with, 

rj +l 

-J 

-J 

o 

L 

1 

-I 

A I 3 3 
~n Xn 

o 

-J 

-J 

Bj+n 2 2 
n xn 

i=l(l)m 

B. = 
J 

j= (i-I) (l)m. 

(2.5.1.20) 

2 2 
with I and J the n Xn and nxn identity matrices respectively, and u,d 

3 
n x 1 vectors. 

Clearly, when n is large these matrices produce large sparse 

banded matrices, where even the band is sparse in structure. 

2.6 MISCELLANEOUS ITEMS 

2.6.1 Convex Sets 

Defini tion 2.6.1.1: A convex combination of points aI' a
2

, ... , an E lR n is 

a linear combination a=alal+a2a2+ ••• +anan where a i E lR non-negative 
n 

and satisfy 2 ai=l. 
i=l 
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Definition 2.6.1.2: A vector space (or a set of points) A is convex 

if for all pairs of points a
1

, a
2 

E A and scalar Cl E lR then any convex 

combination a
3

=aa
1

+(1-Cl)a
2 

E A, (i.e. closed under convex combination). 

A point is called an extreme point of a convex set if it cannot 

be represented by more than one pair of points in A. 

Definition 2.6.1.3: A convex polyhedron is the set of all convex 

combinations of a finite number of points. A Simplex is a convex 

polyhedron generated by n+1 points which do not lie in a plane formed 

from point vectors in lR n, e.g. a Simplex in lR 2 is a triangle, in 

lR 3 it is a tetrahedron. 

2.6.2 Rings and Fields 

Let K be a non-empty set with two binary operators, say addition 

denoted + and multiplication by juxtaposition, K is a ring if it 

satisfies the axioms: 

1. For any a,b,c E K (a+b) +c=a+ (b+c) 

2. There is an element 0 E K called the zero element and a+O=o+a=a 

for a E k. 

3. For each a E K there is an element called the negative of a, denoted 

-a E K such that a+(-a)=(-a)+a=O. 

4. For any a,b E K a+b=b+a 

5. For any a,b E K (ab) c=a (bc) 

6. For any a,b,c E K, a (b+c) =ab+ac and (b+c)a=ba+ca 

K is called a commutative ring if a.b=b.a for all a,b E K, and a 

with a unit element has 1 E K such that a.1=1.a=a for all aE K. 

field is a commutative ring with a unit element if every 

non-zero element has a multiplicative inverse a -1 E R such that 

-1 -1 
a.a =a. a=1. 

ring 

A 
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2.6.3 O-Notation 

We use a technique involving asymptotic notation to compare two 

competing algorithms which concentrates on the basic number of 

operations or component cells in an array design. The notation we 

adopt is the O-notation. 

Definition 2.6.3.1: f(n)=O(g(n» is used to represent the relationship 

If(n) I ~ clg(n) I for all n~no' where c and no are constants. 

For operation counts (2.3.2.4) and (2.3.2.5) we can put, 

3 2 3 2 
fIn) = [n +3n -nj and gIn) = [n +2n -nj 

for mults/divs 

hence I f (n) I ~ cl g (n) I 3 
c~ n =2 

2 0 
3 3 

as n- f(n)->n g(n)"'n consequently g(n)=O(f(n» and f(n)=O(g(n» and 

the methods are asymptotically equivalent. 

3 3 
Futhermore f(n)=O(n ) and g(n)=O(n ) and we say the algorithms 

have o(n
3

) complexity. Backsubstitution is an o(n
2

) complexity problem 

from (2.3.1.5) and as o(n
2

)<o(n
3

) solving an upper/lower triangular form 

is always computationally easier than a general matrix. 

We can now substantiate the claim that converting a linear system 

to its explicit form (2.3.2) requires more computation than triangular-

isation. 
-1 

If A exists implying A is a non-singular matrix, say of 

order nXn, 
-1 

AA' = I I (2.6.3.1) 

-1 
taking each column of A as an unknown vector with the corresponding 

column of I as the rightside produces n linear systems. Each system 

requires o(n
3

) operations and so forming A-I and solving (2.3.2) has 

434 
O(n ) complexity, it follows as O(n )<O(n ) that Gaussian Elimination 

is better. 
4 

O(n ) is a very rough bound, by making use of the sparsity 
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in I and saving multipliers on the first solution, with subsequent 

solutions obtained by modifying rhs and back substitution operations, 

the time can be reduced to 0(n
3
), this makes the two methods asymptotically 

equivalent but is rather misleading. 
-1 

In practice, when A is unknown 

and A is a general matrix Gauss elimination or Factorisation is preferred, 

asymptotic analysis ignores the value of c which in this case is large 

enough to affect the choice of method. For parallel algorithms extra 

processors are incorporated to perform some operations simultaneously, 

and although the same notation is used the number of processors and 

value of c become important. In comparing parallel with sequential 

algorithms an order of magnitude drop in complexity is expected due 

to simultaneous operations, while comparison of two parallel algorithms 

with the same asymptotic number of processors indicates changes in c. 

Consequently improvements to eXisting parallel algorithms seem less 

dramatic. 



CHAPTER 3 

FOUNDATIONS OF SYSTOLIC ALGORITHMS 

"You can observe a tot just by watching" 

Yogi Berra. 

"This is the awe-inspiring universe of magic: 

There are no atoms, onty waves and motions 

a U around •.. " 

-The Atreides Manifesto 
extract from "Heretics of 
Dune", by Frank Herbert. 
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In this chapter the focus of attention shifts to systolic 

algorithms and their corresponding arrays. Section 3.1 defines basic 

concepts such as systolic spaces/processor geometries, wavefronts and 

types of systolic arrays. A basic set of axioms is given for systolic 

design which play a similar role to the algebraic structures in the 

previous chapter. Complementing these 'systolic' structures is a set 

of technology conscious heuristics which define practical design limits. 

Common networks are identified, and in Section 3.2, are used to illustrate 

systolic principles for the basic numerical methods from Chapter 2 forming 

a reference set for later discussions. The snapshot method for tracing 

systolic array operation is adopted for hand testing, before more 

theoretical techniques for manipulating systolic spaces and structures 

by means of re-timing and replacement are examined in Section 3.3. A 

mapping technique is used to translate abstract designs into OCCAM code 

providing automatic snapshot generation by program execution and implicit 

algorithm verification. Section 3.4 considers constraints imposed by 

VLSI technology validating the existing design heuristics and briefly 

examines area/time tradeoffs. Finally in Section 3.5 we propose new 

design heuristics in the light of recent innovations in 3-D VLSI design 

and optical computing and propose an alternative framework, the soft

systolic paradigm, used in later chapters. 

3.1 SYSTOLIC SPACES AND STRUCTURES 

At the most abstract level systolic computation demands only that 

moving data and instruction sequences interact to achieve some 

computation in parallel, while preserving a pumping action. This high 

level view motivates the following definitions which define hierarchical 
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levels of design complexity, illustrating that technological constraints 

imposed on systolic arrays limit systolic algorithms to a narrow design 

domain, and consequently small problem space. 

Definition 3.1.1: A Data (fZow) sequence (D ) is a sequence of data 
s 

elements all of the same type which has direction and speed. 

The sequence can be represented by a triple D =(a,b,B) where 
s 

a=<a
l

,a
2

, •.• ,a
m

> is a sequence of length m, bEEn is an n-space 

direction vector and B is a speed (velocity) parameter. 

Definition 3.1.2: An Instruction (fZow) sequence (I ) is a sequence of 
s 

instruction procedures consisting of instructions from some finite set 

of instructions, which has direction and speed. 

Instruction sequences are also represented by triples I =(p,b,S) 
s 

where P=<Pl,P2, •.• ,Pk> is a finite sequence of procedures and b,B have 

the same meanings as above. Individual procedures are considered 

similar to communicating sequential processes (Hoare (781). For a 

systolic computation to occur data and instruction sequences must move 

in a common space. 

Definition 3.1.3: A systoZic space is a cartesian space of dimension m, 

where m is greater than or equal to the maximum dimension of direction 

vectors taken over all data and instruction sequences flowing in the 

space. 

By the property that the systolic space is cartesian it can be 

discretized to produce points (locations, sites or co-ordinates) by 

using vectors with integer components. Because the space is at least 

as large as the space required by flow sequences, they can be mapped 

into it by assigning sequence elements to contiguous points in the 

direction of the direction vector. The velocity parameter preserves 
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the pumping action by defining a beat or pulse. 

Definition 3.1.4: A systolic beat or pulse of a sequence (a,b,e) is 

the number of points it moves in unit time along direction b. If we 

assume a uniform notion of time throughout the space all the beats of 

sequences can be normalized to give a global or synchronous clocking 

mechanism. This mechanism can be used for timing systolic computations. 

Now imagine we have a number of data sequences passing through 

the same space (S) then two pcssibilities are apparent, either: 

(i) Some sequences collide, that is elements of the sequences occupy 

the same point in S at the same beat, or 

(ii) No elements of sequences occupy the same point in S on the same 

beat. 

In the first case it is clear that co-habiting elements may interact 

while in the second case no interaction is pcssible. Yielding 

Definition 3.1.5: A potentiaL computation site is produced at a pcint 

in a systolic space where elements from different data sequences occupy 

the same pcint at the same instance in time. Hence a collection of data 

sequences can be assigned a 'computational potential' according to the 

number of sites formed from the time they enter the space to the time 

when they leave it and this in some way measures the implicit parallelism 

of the dataflow. In order to fulfil this computational pctential a 

catalyst is required and takes the form of instruction sequences. 

Instruction sequences are assigned to the systolic space just like data 

sequences with procedure elements occupying pcints. A single systolic 

beat is then divided into a systole phase for movement between pcints 

and diastole phase where the procedure in the node is executed. The 

cycle time is the total number of global beats required to complete the 
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most complex procedure in the space. 

Definition 3.1.6: The union of a systolic space, data and instruction 

sequences which preserve a pumping action, with instruction sequences 

passing through potential computation sites is termed a systolia 

aZgorithm. 

Some simple characteristics of systolic algorithms follow from 

this general definition. Firstly, the pumping action is only preserved 

if at least one (possibly an instruction) sequence has non-zero velocity. 

Second, elements of distinct instruction sequences cannot occupy the same 

point at the same time. Otherwise distinct procedures could interfere 

with each other's computations on the co-habiting data elements generating 

erroneous results. We shall call systolic algorithms possessing these 

qualities well-posed and otherwise ill-posed. The computation performed 

at points in systolic space by a well-posed algorithm are unique, with 

data modified according to the procedures residing at each point. The 

time of a systolic algorithm T can then be measured by the number of 

cycles from the first creation of a computational site to the last. 

To simplify discussions about systolic algorithms it is useful to 

consider whole collections of sequences together motivating the 

definition below. 

Definition 3.1.7: A data or Instruction (flow) group is a group of 

sequences which share a common direction and speed and also occupy non

overlapping regions of points in a systolic space. 

Notice that once elements of a group are assigned points in space 

they remain stationary with respect to each other. The task of 

reasoning about groups is then simplified if their elements are 

regarded as wavefronts. 
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Definition 3.1.8: Let di=(ai,b,S) i=l(l)k define k sequences forming a 

(k-ary) group. A systoZia wavefront is defined by connecting points 

containing the elements with the same location in different sequences, 

i.e. ai(j) j=l(l)m for sequences of length m. When j=l the principal 

or leading wavefront is defined. 

The stationary property of groups ensures that wave fronts move and 

act according to the Huygens principle whereby no two waves from the 

same source (group) can interfere or cross one another. Borrowing 

further ideas from Wave Theory in Physics provides a natural terminology 

for data and instruction flow in systolic algorithms. For instance, the 

concept of wave duality can be adopted for flow sequences. During the 

systole or flow phase of a beat data and instructions become 

indistinguishable, but in the diastole phase take on different properties 

with instructions capable of performing actions and data only capable 

of being acted upon. Systolic wave duality is strengthened if we 

consider a uniform (e.g. binary) representation for both data and 

instructions and further limit instruction procedure elements to single 

operations. We might also consider coupling different systolic designs 

by methods such as pipelining. For two algorithms sl and s2 boundaries 

between the systolic spaces exist where changes in beat and direction 

of flow could occur. In a similar manner to the refractive index for 

the change in the speed of light and Snell's law for the angle 'of re

fraction in physics we might define a systolic index for coupled 

algorithms defining changes in wave speed and direction. Generally, 

however, it is a non-trivial task to speed up or slow down waves already 

flowing in a space and re-scaling the global beat mechanism over both 

algorithms is often wiser. 
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Systolic computation itself can be envisaged as the interaction 

of systolic wavefronts and leads naturally to the idea of computationaL 

interference. Individual elements of sequences arriving at the same 

point are portions of their respective wave fronts and must satisfy these 

restrictions: 

(i) waves must be coherent: data sequences must be of the same 

type, which instruction sequences must be capable of 

manipulating. 

(ii) speed of waves must be consistent that is the same speed or 

multiples or simple fractions of each other. 

(iii) sequences at a point must be compatibki.e. data and 

instruction sequences cannot be combined to yield valid data 

or instructions. 

This latter point is interesting because the duality of systolic waves 

means that sequence flow can fool a point into modifying an instruction 

sequence interpreted as a data sequence; by using a second instruction 

sequence to carry out modification. Thus systolic arrays which modify 

instructions are also well-posed. 

Wavefronts satisfying the above properties lead to three types of 

computational interference 

(i) Constructive Interference: Instruction and data elements combine 

to modify data creating true computations. 

(ii) Neutral Interference: Data sequences are preserved and a null 

computation is achieved. 

(iii) Destructive Interference: Instruction and data elements combine 

to produce erroneous results or fallacious computations. 

The most difficult and exciting part of systolic algorithm design is the 
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arrangement of data and instruction sequences to form waves that 

constructively interfere to produce recognizable computations. 

Reasoning about systolic algorithms at this abstract level is further 

complicated by the limited processing power of the human brain. In 

order to picture any real examples we immediately place restrictions 

on the dimensionality of the systolic space as well as the number, 

direction and speed of sequences in the space. 

Definition 3.1.9: A proaessor geometry is a directed graph whose nodes 

correspond' to potential computation sites and whose arcs are defined by 

direction vectors of sequences; and which itself has direction and speed. 

By allowing the geometry direction and speed, computation can be 

achieved by a smaller processor graph than the total number of potential 

computation sites providing that all the sites yielding constructive 

computations are visited during the course of the calculation. 

Consequently an alternative definition of algorithm computation 

time can be given as the number of cycles required by the geometry to 

traverse the locus of constructive computation sites. As sequences and 

geometry move relative to each other it is usually possible to give the 

geometry zero speed and modify sequence flow to preserve computation. 

The task of adjusting data and instruction sequences is simplified if 

we allow variable direction sequences. 

Definition 3.1.10: A variable direction (flow) sequence is a sequence 

whose direction vector can vary with time, e.g. 

for d =(a,b,S) from Definition(3.1.U, a variable direction equivalent 
s 

is ds=(a,bt'~ for t=1,2,3, ••. with bt direction vectors in the 

systolic space. 

Definition 3.1.11: A systoZia array is a processor geometry with zero 

velocity covering all constructive computation sites together with a 

set of data and instruction sequences. 
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The processors of the geometry are assumed capable of performing any 

of the operations in the instruction sequence procedures. consequently 

if an instruction group is homogeneous meaning that all the procedure 

elements are identical, it can be made stationary such that elements 

and processes coincide producing a dedicated systolic array. Furthermore, 

if instruction sequences are composed only of a few types of simple 

operations the complexity of processors is significantly reduced 

producing simple cells. As a result it is often the case that the 

terms systolic algorithm and systolic array are used interchangable in 

the context of array diagrams and operation, this arises from the need 

to visually represent algorithms in order to understand their dataflow. 

Combining all the above features permits the following definition 

of a systolia frame over a systoliC space: 

R[l]: There must be an underlying structure of processors with 

connections 

R[2]: Data and instructions must flow through the processors like 

waves (pumping action preserved) • 

R[3]: Processors perform only simple operations. 

R[4]: Flow of data and instruction should be simple and regular 

R[S]: Connections are nearest neighbour 

R[6]: The processor geometry consists of only a few types of 

simple cells. 

We can refer to systolic frames satisfying R[I-3] as irregular frames 

and those also including R[4-6] as regular frames. A systolic semi-frame 

can then be defined as a regular frame in which R[S] is relaxed to allow 

almost or next nearest-neighbour and limited fanout connections. 

Furthermore, we can say that a systolic frame (F) is a frame with a 



neutral element preserving the real data operands - i.e. neutral 

interference. 
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Defining systolic arrays to have zero-speed has practical merit 

because they can then be mapped onto physical computing structures. 

Assuming that processors provide methods of performing operations 

implies some physical structure, and consequently, the geometry 

consumes area or volume. By using VLSI technology as a means to 

restrict systolic algorithms/arrays to semi-conductor or chip surfaces 

further heuristics can be defined to facilitate easier implementation. 

H[l): The systolic space hence frame is restricted to 2-D 

H[2): The processor geometry is planar or almost planar 

H[3): The number of input and output sequences to a point 

is limited (this ensures fixed sized processors) 

H[4): Broadcasting to a number of processors simultaneously 

is avoided. 

H[5): Longwires are undesirable as for wires over a certain 

length propagation delays can become significant, 

causing mistiming. 

Systolic frames also possessing these properties will be termed 

constrained frames. Notice that usually designs in regular frames 

contain designs in constrained frames as a subset, it follows that 

it may not 'be feasible to implement designs from an unconstrained 

frame in VLSI technology. 

We may attempt to map designs in a regular frame with a high 

dimensional systolic space into designs for a space of lower dimension 

to create a constrained frame for implementation. There is no guarantee 

however, that the resulting designs fit a regular or constrained frame 

of the smaller space. 
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The definition of a systolic array implies that designs in a 

systolic frame can be further classified according to their sequence 

movement and processor geometry. 

(i) Sequence Flow Patterns: 

The number, speed, direction and structure of sequences and 

groups of sequences can all be used to characterize a systolic design. 

When instruction sequences are homogeneous and have zero speed emphasis 

is placed on systolic dataflow, and designs are divided into stationary 

and non-stationary arrays. An array is stationary if a selection of 

data sequences has zero speed, if no sequences have zero speed the array 

is non-stationary. Normally a result sequence or group is present in 

a design whose purpose is to collect partial and complete results as 

it moves through the array. These result sequences are often the ones 

made stationary, in principle however, any set of sequences can be made 

stationary, but can result in larger geometries. These two categories 

can be further sub-divided according to the direction of flow. For 

instance, there are uni-directional arrays with data flow in only one 

direction, and bi-directional (two-way) flow in two directions, and in 

general k-directional with flows in k-directions. Structure of groups 

and sequences can be assessed according to the position of neutral 

elements (if any) and the sequence elements. Many problems are given 

in terms of matrix computations with groups representing matrices and 

sequence vectors, in these cases the complexity of the function for 

producing subscripts for successive sequence elements is a useful 

measure of flow complexity. 

(ii) Processor Geometries: 

A static processor geometry implicitly defines the number of data 
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sequences and their direction by the inputs/outputs on the boundary of 

the geometry and interconnecting arcs. If we assume a regular 

constrained systolic frame three types of array topology can be used. 

They are: 

(i) Two dimensional (2-D) geometries:- a selection of commonly 

used forms is shown in Fig (3.1). 

(ii) Collapsed (or degenerate) 2-D geometries:- These are obtained 

from full 2-D forms like Fig~3.lb)and c by collapsing the 

array onto only a single row and column. 

(iii) Linear (1-0) geometries:- obtained from collapsed geometries 

by restricting input/output to the left most and right most 

cells only. 

FigJ3.lc) indicates an array using boundary cells, these cells are added 

to an otherwise homogeneous network'to perform on different and often 

more complex tasks than the other processors. Clearly a two cell 

stationary geometry requires two stationary instruction groups. A 

final criteria for assessing geometries is the ratio of computation to 

communication (input/output). Suppose the design in Fig(3.l~has n 

cells, there are Irl connections on each of the four boundaries. Hence 

on a particular cycle there can be at most 4~ inputs/outputs and n 

computations giving a ratio of Vn or 0 (Irii. For a collapsed form 

of Fig.(3.lb) there are In computations a~d O(/n) communications giving 

a ratio 0(1), while for a linear array with n cells only a constant 

number of communications occur on the boundary giving a ratio of O(n) • 

Notice that these geometries are produced by a 2-D systolic space and 

satisfy properties of a regular constrained systolic frame and so are 

considered amenable, to VLSI implementation. 



a) Hexagonal b) Orthogonal 

d) Triangular e) Binary H-Tree 

FIGURE 3.1: Selection of common 2-D processor geometries 

c) Orthogonal triangular 

m .. 
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Finally, the contribution of this section can be enumerated as 

follows:-

1. A simple terminology is defined for describing and relating 

different systolic designs. 

2. systolic algorithms are described as abstract objects which 

sit on processor geometries to create systolic arrays. 

3. Constructive interference of wavefronts is defined as a 

necessary condition for recognizable computation. 

4. The systolic structure of frames is introduced to define 

designs satisfying certain properties and constrained frames 

for designs sensitive to implementation problems. 

We will see in the next section that a sufficient condition for useful 

computations is a mixture of neutral and constructive interference, 

where designs have a neutral element (zero). 

3.2 STANDARD (OR TRADITIONAL) ARRAYS 

Now consider some real systolic algorithms/arrays derived from 

constrained regular systolic frames over a 2-D systolic space. The 

designs are well publicised and can be found in a number of references 

such as Leiserson [81] and Mead & Conway [79] with the latter also 

providing basic VLSI knowledge. This reference set illustrates how 

the traditional numerical methods for solving linear systems (in 

Chapter 2) can be implemented as systolic arrays. Designs from the set 

will be referred to as traditional arrays and accompanying theorems on 

computation time and cell count can be used as a benchmark for neW 

designs. In addition, the traditional arrays form a fine grain set 

of components which allow a 'bag-of' approach to more complex problems, 
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whereby a computational task is broken down into smaller tasks which 

are solved by selecting the most suitable array for each subtask, from 

a bag of standard arrays. 

The fundamental unit of computation for these designs is the inner 

product step (y=y+a*x, with y,a,x E lR scalars) the internal structure 

of the basic cell (processor) for different geometries are shown in 

Fig. (3.2) below. 

.--. 

t:s 
~[J 
~ 

a) Hex IPS b) Three-way IPS 

cl Acculllulating IPS d) One-way instant IPS 

FIGURE 3.2: IPS geometries 

The small empty boxes indicate latches preventing overwriting of data 

values before their replacements are valid. Circles indicate operations 

and where necessary are latched internally. Fig. (3.2ru and(3.2B occur 

most frequently and define unit area and unit (cycle) time (i.e. the 

area and time required by one multiplication and one addition) for all 

designs. 
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As new cell designs are introduced their complexity will be graded 

according to the number of IPS equivalents required to implement them. 

This means counting additions and multiplication circuits and denoting 

cycle time by the proportion of IPS cycles required for cell operation. 

As the arithmetic portions dominate the cell area latches are omitted 

from calculations and for simplicity multipliers and dividers, adders 

and subtractors are considered to have equivalent area. 

In general, the definition of a new cell can be achieved in two 

ways: 

(i) A shape with labelled inputs and outputs is given together 

with a procedure defining its internal computation. 

(ii) A sketch of the internal structure is shown. 

(ii) is used for relatively simple cells with very little control but 

is replaced by (i) as the complexity of the cell increases. Sometimes 

(i) and (ii) are adopted simultaneously to illustrate special features 

of cells which can be used to reduce overall area or time, using 

techniques like the pipelining of internal operations. 

3.2.1 Matrix and Vector Multiplication 

We start with some very simple designs which illustrate stationary 

and non-stationary arrays, wavefronts, and why an IPS cell is adopted 

as the basic unit of computation for matrix orientated calculations. 

Consider the inner product of two n-component vectors defined by 

(2.1.6) we require three data flow sequences one for each vector and a 

third for results, hence a design stationary with respect to results 

has flow sequences, 

(1) 
d

s 
= «a

l
,a

2
,···,a

n
>,(O,-1),S) 
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d (2) = «bl ,b2
, ••• ,b n> , (-1,0) ,B) ) 

s 

and, } (3.2.1.1) 
d (3) = «(1>, (0,0) ,0) 

s 

direction vectors are from 2-D due to the assumed constrained frame. 

d(3) is the stationary result sequence and its direction is irrelevant, 
s 

while d(l) and d(2) are orthogonal and hence must collide with each 
s s 

other, creating a single potential computation site. Embedding a 

single accumulating IPS processing element into this site defines a 

dedicated stationary processor geometry as the corresponding instruction 

sequence is homogeneous. The systolic array is given in Fig.(3.2.l.l) 

and is essentially sequential • 

• n 

••• b 
n 

FIGURE 3.2.1.1: Stationary inner product 

The 2-D systolic space is defined by the plane of the paper and moving 

sequences have the same velOCity B equivalent to a single IPS cycle. 

Observing the array over a number of cycles proves the following theorem. 

Theorem 3.2.1.1: The inner product of two nxl vectors, a,b E lR
n 

can 

be computed using a single accumulating inner product cell in T=n IPS 

cycles. 

The result is not very exciting, we hardly need an elaborate 

framework to extract this type of behaviour from (2.1.6), more 
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interesting properties are observed by constructing a non-stationary 

version. For the non-stationary case redefine vectors a and b to be 

groups and make result a a non-stationary sequence as follows, let, 

= <a.>, 
1. 

<b.>, 
1. 

b = (O,-l),a } 
i=l(l)n 

b = (0,1),8 
(3.2.1.2) 

be the component sequence of the groups common direction, and speed 

of the two groups with the result sequence, 

r = «a>, (-1,0) ,a) (3.2.1.3) 

where a=l is the IPS cycle time. This design is shown in Fig. (3.2.1.2a) 

and consists of n one-way instant IPS cells, connecting all the 

components of vectors a or b defines the principle wave fronts for the 

two groups. Notice 'how sequences in the group are delayed in time to 

synchronise with the result sequence moving right to left accumulating 

a single term of the result at each cell. The dashes signify don't 

care or neutral elements, after the principal wave front computational 

interference can be neutral or destructive and due to Huygens principle 

will not affect the result. Thus the following theorem is valid. 

Theorem 3.2.1.2: The inner product of two vectors a and b can be 

computed by n one-way instant IPS cells in T=n cycles. Now comparing 

the two schemes we immediately notice that computation time is the same 

but the non-stationary scheme requires an additional n-1 cells. 

Furthermore, the stationary case requires only 3 boundary inputs/ 

outputs (allowing one for the result output) while the non-stationary 

version uses 2(n+1). Finally, the stationary array computes a 

constructive calculation every cycle, but in the non-stationary case 

each cell produces only one constructive computation. 



a) Non-stationary inner product (n=4) 

........... a4 
1'"', I .................. "3 

I "I ......... 
I I .................. &2 
I I .......... 

I I .......... 
I I ', .... 
1 I 

I 11 ~~ b 
~ 1 I I ...... 

I )~ 
I ,. ....- ..... b2 
.1- ........ 

~' 
.......... b) 

~~ 
J.~ 

.... b. 

b) Non-stationary matrix vector (n:4) 

: 
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FIGURE 3.2.1.2: Matrix vector and inner product arrays 
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Definition 3.2.1.1: The number of constructive computations a typical 

or representative cell of an array performs during the course of an 

algorithm is termed the efficiency denoted e. 

Normally O<e~l holds and for the above designs the stationary 

case has e=l (the ideal value) while the non-stationary case is e=l/n 

indicating that its efficiency decreases as the problem size increases. 

It appears that the one cell design is best, and is not surprising 

due to the inherent sequential nature of equation (2.1.6). 

Now consider the matrix vector multiplication problem Ax=y from 

(2.2.7) when Band Care reduced to nxl vectors x,y respectively. Each 

component of y is produced by computing the inner product of a row 

from A and the vector x. More formally in recurrence notation, 

( 1) 
Yi = ° 

(3.2.1.4) 

For a non-stationary solution, groups for A and x are formulated with 

component sequences, 

a, «al" ... ,a ,>,(0,-1),1) 
1. 1. nl. } (3.2.1.5a) 

i=l(l)n 
(3.2.1.5b) 

and the result sequence is, 

(1) (1) (1) 
c = «Yl 'Y2 '''''Yn >,(-1,0),1) (3.2.1.5c) 

The systolic array is given by Fig. (3.2.1.2b) for n=4. As the yi
l

) 

values shift left each one collects a term for its inner product, and 

the computation of the components of y are pipelined. Tracing 

successive cycles of the array operation yields the following result. 



92 

Theorem 3.2.1.3: The matrix vector problem Ax=y for an nxn matrix A 

and nxl vectors x and y can be computed in T=2n IPS cycles using n 

one-way instant IPS cells. 

Proof: 

Using Fig!3.2.l.2~, after n cycles yi l ) has collected all its 

terms and is about to leave the array at the same time y(l) sits in 
n 

the rightmost cell. Hence an additional n cycles are required for 

all the results to leave the array, giving T=2n. 

The efficiency of the array for the new algorithm is e=! as each 

cell performs a total of n constructive computations, a great improve-

ment over the single inner product computation as e is now independent 

of n. 

Corollary 3.2.1.1: An array of n one-way instant IPS can outperform 

a single accumulating IPS for multiple inner products even though it 

is twice as efficient. 

Proof: 

(i) The matrix vector problem is a sequence of n independent 

inner products requiring T=2n. 

(ii) From Thm.(3.2.l.Da single inner product on a one cell array 

requires T=n, as the cell has e=l the n problems must be 

computed sequentially giving T=n2 in total. 

This Corollary illustrates the power of systolic arrays for utilising 

pipeline and parallel computations, the difference in cell count is 

out-weighed by the improvement in computation time. 

A number of variations on the structure of Fig.(3.2.l.2b) which 

preserve the timing but modify the dataflow exist, two possibilities 

are: 



(i) Each of the xi' i=l(l)n sequences are homogeneous thus a 

stationary design w.r.t. x can be constructed with x 's 
i 
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pre10aded into cells (the typed cell of Fig.(3.2) is augmented 

with a loadab1e register.) 

(ii) The result sequence c is made stationary, and a non-

stationary sequence X=«x
1

x
2 

••• x
n

>,(-1,O) ,1) for vector x 

instead of a group is defined and the group for A is modified 

to give, 
a, = «a'l" .a, >, (0,-1) ,1) • 

.... ~ l.n 

Each cell is now an accumulating IPS, with x using the former 

input for c:. Both these arrays have the same timing and efficiency as 

Thm.(3.2.1.3) but reduce the number of boundary input/outputs. The 

original matrix vector scheme demanded that the x vector components 

were repeatedly pumped into the array, the latter schemes require that 

they are input only once and from this viewpoint are superior. 

REMARK: It is generally considered good practice to avoid repetition 

of inputs wherever possible. 

Returning to the sigg1e inner product 1 cell design for a moment 

observe that not only does the cell have efficiency e=l but that the 

array size is also independent of problem size n. On the other hand, 

the matrix vector (pipe1ined inner product) array is dependent on the 

problem size, changing the order of the matrix alters the size of the 

array. Fortunately, a problem size independent array can be derived 

by considering A to be banded. 

The new banded array is constructed by considering another 

ordering of the coefficients in A as a flow group. The first design 

(Fig.3.2.1.2b) allocated coefficients to sequences in a column order 
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forming a row ordered wave front pattern, and the stationary result 

scheme would require a sequence row ordering with column ordered 

wavefronts. A final possibility is to allocate coefficients in 

diagonal order such that each flow sequence contains elements from 

the same sub(super) diagonal which are separated by neutral elements. 

Using this diagonal group format allows the modification of the array 

stationary w.r.t. to x to make a non-stationary array with X:=«x
1

x2 , ••• ,xn 

(1,0) ,1) a moving sequence for x. The array is pictured in Fig.(3.2.1.3), 

its operation is slightly more complex incorporating a three-way IPS 

cell giving two-way flow of x and y. 

The first 6 cycles of array operation are shown in Fig.(3.2.1.4) 

and a full trace gives this theorem. 

Theorem 3.2.1.4: The matrix vector problem Ax=y for an nXn bandmatrix 

A with bandwidth w=p+q-1 and nX1 vectors x and y requires T=2n+w IPS 

cycles and w IPS cells. 

Proof: 

(i) From structure property S5 (Chapter 2) diagonals outside the 

band are all zero, hence cells with these inputs can be 

removed as they perform neutral computations leaving only w 

cells for necessary constructive computations. 

(ii) The longest sequence in the flow group has length 2n, all 

these elements must be input giving lower bound T=2n. 

(iii) The results of y. are accumulated right to left giving an 
L 

additional delay of w cycles for the first result to emerge 

hence T=2n+w. 
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FIGURE 3.2.1.3: Banded matrix vector array (w=4, p=2, q=3) 

In this design wave fronts are defined by a row ordering on the 

left of the main diagonal sequence and column ordering on the right. 

By definition neutral elements preserve operands and results and their 

use is extended to act as synchronising delay elements to permit the 

non-stationary sequence for x. The efficiency of the array is e=i 

but the distribution of constructive computations is much more balanced 

than in Fig.(3.2.l.2b). In the latter scheme cells compute in a 

contiguous block of n constructive calculations and the portion of 

active or constructive cells moves left with time, in the new scheme 

active cells spread out from the main diagonal and alternate between 

constructive and neutral computations. Hence by nature of its problem 

size independence the band scheme appears superior - the Corollary below 

indicates a significant restriction. 
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t=4 

FIGURE 3.2.1.4: Snapshots of matrix vector computation 

Corollary 3.2.1.2: A band matrix vector array independent of problem 

size is superior to an equivalent problem dependent array only when. 

w<<n, where w is the bandwidth of A an nxn matrix. 

Proof: 

(i) When w«n e.g. tri- or quin-diagonal w is constant the 

additional cycles in T for the banded case are negligible 

for large n, making cell count the main consideration. Thus 
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the banded array is superior. 

(ii) When A is full w~2n-l and banded scheme requires T~4n-l and 

2n-l cells compared with T~2n and n cells for the problem 

dependent case. 

The result w«n follows immediately. 

The band matrix vector scheme can be improved by taking into 

account additional properties of the matrix coefficients. For instance 

in Toeplitz matrices of FIR filtering and symmetric matrices from 

discrete Fourier transform (DFT) matrices with constant diagonals (i.e. 

the same value in each location) or simple powers of each other are 

produced. The flow group associated with the matrix can then be made 

stationary w.r.t. A by preloading the constant values, and leads to 

the well studied convolution arrays of H.T. Kung [82b] • 

In the above cases we adopted a hand testing method for tracing 

the array operation, essentially the image of the array is drawn on 

each cycle giving snapshots of the dataflowover time. This snapshot 

method is adopted throughout the thesis to support timing and data flow 

arguments. So far, however snapshot traces have been simple but 

considering a more complex problem like matrix multiplication is more 

difficult. 

From (2.2.7) the matrix product of two nXn matrices A and B can 

be formulated as recurrences, 

(1 ) 
c,' ~ 0 

l.J 

(k+l) (k) 
cij ~ cij + aikbkj 

(n+l) c
ij 

~ c
ij 

(3.2.1.6) 

) 

for i~l(l)n, j~l(l)n. This formula can be manipulated in a similar 
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way as the simple matrix vector scheme to derive 2-D orthogonal and 

hexagonal arrays using geometries a) and b) in Fig.(3.1) and are 

illustrated in Fig.(3.2.1.5) and Fig.(3.2.1.6) respectively. A hint 

to deriving these arrays is to notice that a matrix product is a 

sequence of n independent matrix vector computations using A and the 

columns of B as the x vectors. Using the matrix vector array stationary 

- - - - - - - - - - - - - - - - - - -.- '1--tI 
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FIGURE 3.2.1.5: Stationary matrix product array (n=4) 
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w.r.t. results replicated n times will lead to the orthogonal array 

which is problem size dependent. The hexagonal array is problem size 

independent and based on the banded array. By tracing snapshots the 

following theorems corresponding to those for matrix vector arrays can 

be derived. 

Theorem 3.2.1.5: The product of two dense nxn matrices A and B can be 

2 
computed on an orthogonally connected mesh of n cells in T=3n IPS 

cycles. 

Proof: (from Fig~3.2.1.5)data flow) 

(i) After n cycles the result cll is completed. 

(ii) After 2n cycles all the results on and above the anti-

(Hi) 

diagonal are complete and all inputs have been read. 

After 3n cycles the last result c is completed and the 
nn 

product resides in the mesh. 

Note: An extra n cycles will be required to read out the result but 

this is omitted. 

Theorem 3.2.1.6: The product of two nxn band matrices A and B with 

bandwidths w
l 

and w2 respectively can be computed on a hexagonally 

connected network of wl w2 hex IPS cells in T=3n+min(w
l

,w
2

) cycles 

including input output time. 

Proof: (From Fig.(3.2.1.6» 

(i) The length of the longest input sequence is 3n giving a 

(11) 

lower bound of 3n, as all elements must be input and output. 

The c .. results move north through the array and the first 
~J 

result cll is delayed by min(w
l

,w2) cycles. 

Corollary 3.2.1.3: A hexagonal band matrix product array is superior 

to a dense mesh connected array only when w
l 

or w
2

<<n. 
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Proof: 

is negligible and we save n cycles because no output time is 

required in the hexagonal case and require only w
l
w2 cells. 

(ii) when one matrix is full w
l

=2n-l or w
2

=2n-l hence time is 

unaffected due to minimum condition and requires w(2n-l) hex 

2 cells compared with n orthogonal cells (w is the bandwidth 

(Hi) 

of the sparser matrix) • 

2 
when wl =w2=2n-l both A and B are full T=5n-l and we use (2n-l) 

hex cells making the orthogonal scheme superior. 

Finally notice that both the orthogonal and hex scheme have e=1/3 but 

that the distribution of constructive computations is more balanced in 

the hexagonal array, as each cell works once every 3 cycles. In the 

orthogonal case cells perform constructive computations· in a block of n 

cycles spreading out as a wave front from the top left to bottom right 

corner. In fact for dense matrix multiplication the orthogonal scheme 

is the most efficient scheme known. 

3.2.2 Arrays for Direct Solution of Linear Systems 

Now consider systolic arrays corresponding to the equations 

(2.3.1.4) (2.3.2.1) and (2.3.3.3) which are back substitution, matrix 

triangularisation and LU-factorisation procedures respectively. 

For backsubstitution (2.3.1.4) can be reformulated as the recurrence, 

(1) 
Yi = 0 

(k+l) 
Y

i 
:::. (3.2.2.1) 

= (i) (d. -y. ) la .. 
~ ~ 1.1. 
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using yi
k

) as an extra sequence collecting partial results. The array 

is shown in Fig~3.2.2.1)below for a lower triangular matrix with band-

b
4 
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b
3 

, 
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FIGURE 3.2.2.1: Backsubstitution (q=4) 

and consists of the three-way IPS and a boundary cell on the left 

with the following cell definition, 

Shape 
a, 
~n 

x 
\--~ outl 
j(--- Yin 

Procedure 

Notice that x relies on y, and forms a feedback loop. 
outl ~n 

It follows that y, values can arrive only once every two cycles, 
~n 

) 
(3.2.2.2) 

otherwise it would be impossible for them to collect all their required 

terms, and explains the positioning of synchronising neutral elements. 

Theorem 3.2.2.1: A nXn band triangular system A with bandwidth w=q can 

be solved in T=2n+q IPS cycles using q IPS cell equivalents. 
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Proof: [Tracing data flow of Fig.3.2.2.Dl 

(i) The length of the longest data sequence is 2n requiring 2n 

(ii) 

IPS cycles to output results. 

Each y. moves left picking up one term per cell and on 
L 

reaching the boundary cell has accumulated the expression 

which has at most q-l terms. An additional delay occurs in 

the boundary cell producing x. giving a total delay of q 
L 

cycles for the first output. 

In this proof we have invoked the assumption that subtract and divide 

has the same cost as an inner product cell in area and time. 

Modifications to the design are more difficult due to the feedback 

loop and the relations between successive Xi elements. A minor 

improvement is to write (3.2.2.1) as, 

(1) 
~ = b. 

L 

(k+l) (k) 
Yi = Yi -aik~' i=l(l)n 

Xi = Yi/aii 

(3.2.2.3) 

which simplifies the boundary cell by removing the subtraction and 

bin input. 

Matrix triangularisation can be performed by using the array 

in Figi3.2.2.2)which consists of an orthogona1 triangular array for 

triangularizing the matrix and a collapsed (linear) array to modify 

the righthand side vector, the whole array computes using the augmented 

coefficient matrix A from (2.3.2.1). 

Row 1 of the array forms the input boundary and accepts every row 

of A. every row that arrives has its first entry set to zero and the 
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Triangularisation part rhs uodifier 

FIGURE 3.2.2.2: Array for matrix triangularisation 

rest of the row updated, this corresponds to removing the first column 

of A. Likewise row 2 of the array accepts the resulting modified rows 

from row 1 of the array and zeroes their first entries corresponding 

to removing column 2 of A. In general, row i accepts modified rows 

from row i-l and zeroes their first entries - corresponding to removing 

column i of A. Notice that the data sequences are skewed so that 

modification information in the form of a multiplier can be pumped 

right and meet with all elements of a particular row. A limited 
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pivoting strategy known as pairwise pivoting can be incorporated 

which only interchanges adjacent rows and is still numerically stable 

(Sorenson [85J). When pivoting is used during the computation row i 

of the array holds only the current row i of A and final placement of 

rows is obtained only on the last step of the algorithm. The basic 

cells for Gaussian elimination are defined below, 

Shape 

x 
in 

r--' 
I 

I x 1 
L __ -' 

x 
out 

(m c ) 
out out 

Procedure 

IF c. THEN 
1n 

{x =x+m. x. 
out l.n 1.0 

X=X. 

} 
1n 

ELSE 

x =X. +m. X out 1.0 1.n 

IF IXinl~lxl THEN 

{IF x. <>0 THEN 1n 

} 

ELSE 0 

x=x, I 
1n 

ELSE 

c =1 out 

(3.2.2.4) 

m =-x/x out in 

(3.2.2.5) 

{m =-x. Ix, c =O} out 1n out 

and corresponding cells for the orthogonalisation process in (2.3.2.6) 

are given below with pivoting no longer necessary as 

Shape Procedure 

xin 

} X =c x -s x out in in in 
x=s. x. +c i x • 

r--' 1.n 1.n n 

(cin,sin I x 1 (cout,Sout) IF =0 THEN 

1 
1 I xin L __ -1 

{c t=l, s =O} ou out 
I x ELSE 

out 
2 2 ! i 

{1I=(x +x. ) r 1n 
c t =xlll x OU in 
S t=x. III 

OU 1n 

X=1I I ~ } 
( \ ) 
\ x ) (Cout,Sout) 

-

(3.2.2.6) 

(3.2.2.7) 
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Notice that only (3.2.2.4) can be computed in a straightforward IPS 

cycle. For (3.2.2.5) we must assume that we can negate x. in parallel 
~n 

with the test I x. 1)1 X I, and that the comparison takes the same time 
~n 

as addition/subtraction, before the cycle time for elimination is equal 

to an IPS cycle. For the Givens rotation cells, (3.2.2.6) is bounded 

by 2 IPS cycles but (3.2.2.7) requires the complicated square root. 

Hence a basic cycle is bounded by the cost of the boundary cell 

computation. 

Theorem 3.2.2.2: The triangularisation of an augmented matrix A consisting 

of a full nXn matrix A and nxl vector d requires 0(n
2

) basic cells and 

T=3n basic cycles. 

proof: [from Fig.(3.2.2.2)] 

(i) After n cycles the first column has been eliminated. 

(ii) After 2n cycles the last rhs component enters the array and 

filters down to the last cell hence, 

(iii) After 3n cycles the final modification of the rhs occurs. 

An additional n cycles for outputting results is neglected 

as they play no part in computation. 

A second array which is suitable for triangularising a band matrix can 

also be constructed and is given in Gentleman & H.T. Kung [81], it is 

based on a diagonal sequence ordering like the arrays for matrix vector 

and product operations given above and a version appears in Chapter 6. 

Next consider matrix factorisation defined by (2.3.3.3) and in 

equivalent recurrence form is given by, 
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0 i<k 

~ik = 1 i=k 

(i) 
i>k a lk /~k (3.2.2.8) 

t{k) 
k>j 

~j = 
akj k~j 

Schematically the order of formation for ~ik and ukj is 

. , .. , 
• • ..... . 

...... 
...... 

.......... 
..... 

..... 
..... .... .... 

with ~ik represented as columns and ~j as rows. The factorisation 

(k) 
procedure computes a row and column then updates the submatrix of a ij 

left, before starting the next row and column. A corresponding 

systolic algorithm uses a 2-D systolic array shown in FigO.2.2.3). 

The circular cell receives ~k from the south and sends it north and 

computes the reciprocal l/ukk outputting it south west, and represents 

the '.' in the above sketch. The remaining cells are all hex IPS cells 

except for those on the upper boundary which are connected differently. 

On the upper boundary left of the circule hex cells are rotated by 

120 0 clockwise and perform the ~ik computations denoted by the vertical 

lines, hex cells on the upper boundary right of the circle are rotated 

120 0 anti-clockwise and form -~j terms denoted by horizontal lines in 

the sketch. The wave fronts of the input data correspond to the chevrons 

formed by the horizontal and vertical lines together. Thus, the upper 

boundary computes the factors with the rest of the hex modifying the 
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L U -----

• ~ f- A ~ ~ I 
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I 
I 
I 
I 
I 
I 

0 0 

FIGURE 3.2.2.3: Systolic array for matrix factorisation 
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submatrices. Tracing the wave fronts from the array shows that 

successive row and column factorisation is overlapped pipe lining sub-

matrix modifications and producing: 

Theorem 3.2.2.3: Let A be an nxn band matrix with w=p+q-l, asystolic 

array with pq hex IPS equivalents can form the LU factors in T=3n+min(p,q) 

IPS cycles which includes input output time. 

Proof: [From Fig.(3.2.2.3~ 

(i) From the diagonal input sequences the total number of inputs 

is wand this defines the array dimension to be pq. 

(ii) Computation starts when all reaches the circular cell, this 

takes min(p,q) cycles. 

(iii) The 'length of the a .. sequence (which is the longest) is 3n 
11 

and this is the maximum number of outputs for a single stream. 

At one output per cycle the timing follows. 

Notice that when A is dense we use 2 only n cells and 4n cycles, an 

equivalent orthogonal mesh preloaded with A would require similar area 

and time. In the case of a symmetric matrix only the rows or columns 

of the sketch need to be explicitly constructed and this can reduce 

the hex cell count by half. Finally we note that once the triangular 

forms are found they can be pipelined into back and forward substitution 

arrays to solve the system. The method for triangularisation is utilised 

in least squares calculations as illustrated in Gentleman & H.T. Kung [81). 

3.2.3 Arrays for Iterative Solution of Linear Systems 

Systolic arrays for iterative solution of equations were first 

reported in Berzins, Buckley & Dew [83) and Dew [84). The basic 

principle is to devise a linear systolic array for performing a single 
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iteration and then cascade a number of them to pipeline successive 

iterations. This cascaded iterative pipeline or array is illustrated 

in Fig.(3.2.3.1) the solution vector is successively approximated by 

cascading it through r linear arrays to output finally the rth iteration. 

The coefficient matrix A is pipelined through the r arrays and synchronised 

(i) 
with x on each level as is the righthand side vector d. We assume 

that A has a simple splitting so that the E and F matrices in (2.4.3) 

can be formed 'on-the-fly'. 

Now if the iteration matrix M and vector c from (2.4.3.1) were 

known and M was banded, each linear array would simply be a matrix 

vector array like Figi3.2.1.3)except that M would have to flow south 

out of the cells and the recurrence (3.2.1.4) would be initialized 

with y!l)=c" i=l(l)n where c, are the components of c. For a band 
~ ~ ~ 

(i) matrix with bandwidth w=p+q-l the first component of xl would emerge 

(i-l) 
2p cycles after xl entered the array and p cycles after it met mll , 

the first matrix input to the array. It follows that matrix elements 

(and hence data sequences) must be delayed by 2 (p-l) cycles between 

corresponding cells in array i and i-l for successive iterations to 

synchronise. Hence each IPS cell must be augmented with a delay queue 

of 2(p-l) delay registers for the south output. The righthand side 

vector c (in this case) also has to synchronise but this is dependent 

on the sizes of p and q and can be derived in a similar way, thus the 

boundary cells at the right in Fig!3.2.3.D are simply delay queues. 

(i) (i-l) 
Theorem 3.2.3.1: r iterations of the form x =Mx +c where M is 

an nXn band matrix with bandwidth w=p+q-l and c is an n<l vector 

requires rw IPS cells (augmented with delay queues) and time T=2n+r(2p-l)+ 

MAX(p-l,q-l)-p+l. 
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• • • 

Irl x 

A 

LINEAR ARRAY 1 

LINEAR ARRAY 2 

• • • 

LINEAR ARRAY r 

FIGURE 3.2.3.1: Cascaded iterative pipeline 

Proof: [using Fig~3.2.3.1)and Fig~3.2.1.~1 
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d 

• • • 

(i) Initialisation for first array is max(p-l,q-l) and first 

component is output in an additional p cycles. 

(ii) Each array has latency of output 2p-l thus the 1st result 

is ready to emerge from the pipeline after (r-l) (2p-l) cycles. 

(iii) There are 2n cycles required to output all components. 

If M and c are unavailable alternative linear arrays can be considered 

for the Jacobi and Gauss-Seidel schemes using modified inputs. 

The Jacobi iteration scheme is illustrated in Fig.(3.2.3.2) and 

consists of a matrix-vector array which forms Z=Bx(i-l)+b and a boundary 

. (i) -1 
cell wh~ch gives x =D z. Thus computing (2.4.1.1). 



112 

1 
1 
1 
1 
1 
I 

I -°45 -4
54 - 1 

°33 I - -°531 1 
I -'34 "443 - 1 

'22 1 
-a

42 
, 

I -'23 -4
32 

- I 
I 

I 1 
all I - -'31J 

I _r' -- I 
l-o'2 -a

21 
_ - I 

"t ... - I 
-1' I ... .... -... I I ... ... I I I :_x-: 

~ 
1 

X
2 

~ 
x, 

~ D---1 Y, Y2 ---{]-
L ___ .J 

FIGURE 3.2.3.2: Array for single Jacobi iteration (w=4) 

The cell in the matrix vector array associated with the zero 

main diagonal of B can be replaced by a simple delay cell performing 

no computation, and the boundary cell consists of a divider and accepts 

the elements of D. The timing for the array can be easily derived from 

Theorem (3.2.3.1) by substituting p=p+l for p to take account of the 

extra delay through the boundary cell. 

For the Gauss-Seidel method (2.4.2.1) a single iteration is a 

composite array constructed from an upper triangular matrix vector 

(i-I) (i) 
array for z.ux +b and a back substitution array for (D-L)x =z. 

Theorem 3.2.3.2: r iterations of the Gauss-Seidel iterative method for 

an nXn band matrix A with bandwidth w=p+q-l requires rw ips cells 
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(augmented with delays) and T=2n+r(2p-l). 

Proof: [from Fig.(3.2.l.3) and Fig.(3.2.2.l) and Fig.(3.2.3.l)] 

(i) The upper triangular matrix vector array has p-l cells 

and thus a component input to a linear array for iteration 

takes 2(p-l) cycles to produce the equivalent z component 

from Ux (i-I) +b. 

(ii) The backsubstituter can be arranged so the z vector enters 

as the righthand side requiring only a single delay to produce 

(i) the x component. 

(iii) The total delay is 2p-l cycles between input and output of 

components the 1st result arrives at output of the rth linear 

array after r(2p-l) cycles. 

(iv) There are 2n cycles to output all the result components hence 

T=2n+r (2p-l) • 

Improvements to these basic schemes will be introduced later in the 

text, but for the moment we can observe that as long as w<<n r iterations 

of an iterative scheme of form (2.4.2) can be computed in O(2n) IPS 

cycles. 

3.3 THEORETICAL CONCEPTS FOR MANIPULATING SYSTOLIC ARRAYS 

So far the mapping of a systolic algorithm into a processor 

geometry has been achieved in an ad-hoc manner. As designs become 

more complex this task becomes more difficult and error-prone, and a 

systematic methodology to synthesize systolic designs can save 

considerable time and effort. For the restricted class of algorithms 

from the 2-D systolic space and a regular constrained frame, namely 

algorithms with highly regular structures expressed as recurrence 
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relations, transformational methods based on data dependencies provide 

powerful manipulation tools. In this section we concentrate on two 

representations of the systolic algorithm, firstly, by a computational 

graph (implicit in the examples of the previous section) and second an 

algebraic form. The former pictorial representation is useful when 

combined with a geometry for deriving hardware specifications and the 

latter for algebraic transformations on a design. These approaches 

have a number of attractive features as they: 

1. Indicate an automatic method of manipulating existing and 

complex designs by so-called "symbol pushing" techniques used 

in algebra to prove theorems. 

2. Permit reasoning about systolic designs without recourse to 

detailed sketches and traces. 

3. Admit the possibility of formal verification of design 

correctness. 

4. Identify and derive sequences of transformations to produce 

alternative designs which may be better than existing ones. 

The starting point is a formal mathematical model for the data sequence 

processor geometry combination of the systolic array. 

3.3.1 Systolic Array Model [cf. Melhem & Rheinboldt [8411 

The model is based on a strict formalisation of the intuitive and 

informal representation used above expressing data sequences as wave

fronts the main characteristics are: 

a) Data items on communication channels = data sequences 

b) Computations of cells are modelled by systems of difference 

equations (involving operations on data sequences) • 
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c) Input/output descriptions indicate the global effect of 

the network computations and are deduced by solving systems 

of difference equations. 

d) The resultant output descriptions verify correct network 

operation. 

The model itself can be further subdivided into models for the data and 

geometry. 

Abstract Model of Data: 

Notation: IN = set of integers, lR = set of rea1s, 

o = "don't care elements" 

A data sequence is an infinite sequence whose elements are members of 

Definition 3.3.1.1: Operations on data sequences are logical extensions 

of operations on elements of IR and subdivided into: 

(i) o-reguZar operators: where o"op" x=x"op" 0=0 for all x E lR 0 

and model destructive interference. (3.3.1.1a) 

(ii) non o-reguZar operators: where x"op"y=y"op"x if X,YFO and 

X"OpIlO=O"Op"X=X (3.3.1.1b) 

which models constructive and neutral interference respectively. 

Definition 3.3.1.2: Any data sequence D can be defined as a mapping 

IN ... IRo whereby n(i) for i EN is the ith element in the sequence. 

The set of all data sequences lR'6 = {n ID: IN ... lR 0 J. 

Hence an operation on two sequences n
1

,n
2 

E lR6 produces a third 

sequence D3 according to 

= { :1 (i) "op" 

otherwise, 
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and soalar produot for sequences is similar to that of vectors with 

n E IRt and wEIR yielding, ~=wn E IR 6. 
Definition 3.3.1.3: The set of bounded data sequenoes IR C lR6 with 

only a finite number of non c elements. The end of the sequence is 

defined by a Termination funotion T: iR c .... IN such that for nE lRc' 

T(n} is the position of the last non-c element. 

Actions on collections of bounded data sequences can then be 

formalized by an n-ary sequence operator. 

Definition 3.3.1.4: An n-ary sequence operator r is a transformation 

- n - n- -r: [Rc] .... Rc where [Rc] =RcXRc'" Rc the cartesian product of n copies 

For instance, the basic inner product cell structures a} , b) in 

- 3 -Fig. (3.2) effect a transformation r: [Rc] .... Rc which could be written 

r. (I;,n,~) = n[l;+n .~] 
1pS 

(3.3.1.2) 

for I;,n,~ ER<I' where "(" enclose arguments and "[" signifies grouping, 

and n is a delay symbol defined below. 

Definition 3.3.1.5: The shift (n) and spread (e) operations for 

k r sequences I;,n,~ are given by n I;=n and ~=e I; where 

n(i) = { 

~ (i) = { 

I; (i-k) i>k 

~ (Hr) 
~(r+l) ,i=1,r+2,2r+3, •.• ,(n-l}r+n ••• 

<I otherwise. 

(3.3.1.3) 

(3.3.1.4) 

and for bounded data sequences S, SI and S2 satisfy the properties: 

( i) 

(ii) 

(iii) 

(iv) 

nrnkS=nr+kS 

n(r+l}kere=ernke 

k k k k 
w[e e]=e [we], w W e]=n [we] 

k k k k k k 
n [e "op"e ]=n e "op"n e e [e "op"e ]=e e "op"e e 1 2 1 2' 1 2 1 2 
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Shift and spread operations can be applied to individual sequences and 

permit the addition of a-elements to achieve synchronisation, nO 

signifies no delay and will be useful later. 

The following example illustrates the use of nand e. Let 

i=l(l}T(S}' 

a
4

,Q,a. 

Finally an n-ary sequence operator is termed a causal operator if 

the ith elements of its input sequences affect the jth element of its 

result or output sequence for j>i, and weakly causal if the ith output 

element relies on the first i elements of the input sequences. 

Abstract Model of Geometries: 

The processor geometry is represented as a loopless multigraph 

G(V,E,f ,f } 
+ -

where V=set of nodes (processors) , E=set of arcs (communication paths) 

and f ,f : E+V are two functions mapping arcs to nodes defining the 
+ -

direction of communication. Any two nodes can be connected by a number 

of arcs as G is a multigraph and f (e}if (e) for any e € E prohibiting 
+ -

direct loops. The set of nodes V can be further partitioned ~nto three 

disjoint subsets such that V=VSUVIUV
T 

with the definitions below, 

Vs a set of source nodes (with no arcs directed into the nodes) 

VI = a set of interior nodes defining the geometry 

V
T 

= a set of sink nodes (with no arcs directed out of the nodes) 

An arc e is directed into a node V iff f (e}=V and directed out if 
+ 

f (e}=V, consequently sources define points at which data enter a 

systolic space and sinks points where data leaves ardinterior nodes 

potential computation sites. Finally we define a colouring function 



118 

col:E+C
E 

mapping arcs to a finite set of colours (C
E

); such that each 

arc has a colour, and all the incoming edges of a node have different 

colours, and likewise different outgoing edges also have different 

colours. Corresponding incoming and outgoing edges can be allocated 

the same colours if required. 

A systolic array is then simply constructed by assigning a 

sequence ~e E Ra to each arc e E E, and for each node v with n incoming 

i i 1 n 
arcs and m outgoing arcs a set of m,n-ary sequence operators ~ =r (n , ••• ,n ) 

v 

i=l(l)m defining how input sequences affect output sequences and 

consequently processor structure. It is clear that nodes from VI 

represent geometry processors and sources/sinks act as pumping stations, 

with each arc a uni-directional communication link. 

Definition 3.3.1.6: A subset VIcV
I 

of interior nodes is homogeneous 

if: 

(i) All nodes in VI have the same number of incoming and outgoing 

arcs say n and m respectively. 

(ii) The colours of the n incoming edges and m colours of the 

outgoing arcs are identical for every node. 

(iii) The n-ary sequences defining a node are generic in the sense 

that every node is described by the same set of sequences 

denoted, 
i i 1 2 n 

~ = r (n ,n ,.··,n ) i=l(l)m, v v v v 

and so are independent of any node. 

It follows that if V =v(l)U v(2)U v(3) .. v(k) are k disjoint 
I I I I • I 

homogeneous subsets of VI that the graph can be termed k-partially 

homogeneous. As examples the matrix factorisation of Fig~3.2.2.~ is 

4-partially homogeneous (due to rotations of hex ips) and backsubstitution 



119 

in Fig.O.2.2.~ is 2-partially homogeneous. Implicitly part (3) of 

Oefinition{3.3.1.6)defines a stationary instruction group hence 

dedicated array. 

The above definitions are sufficiently powerful to provide a 

limited verification capability for arrays which have a repetitive 

pattern and so fit our regular frame. To illustrate the verification 

we consider only a single simple example from Melhem & Rheinboldt [84] 

where more complex examples are also given. 

The problem is the 1-0 convolution problem derived from a 4-tap 

Finite Impulse Response (FIR) filter with coefficients w
l

,w
2

,w
3 

and w4 ' 

which produces the matrix vector problem, 

w
l 

w
2 ~ 

w
4 r' Yl 

w
l 

w
2 w3 w

4 
0 x

2 Y2 , , , , , , , , , , , , , , , , , 
(3.3.1.5) , , , ~ , , , , , 

0 'w 'W w3 1 2 

~n 
normally we are interested in only the first n-k+l y components in 

this case k~4, and the w
i

' i~l{l)k are termed weights. A systot;c 

array can be derived easily from Fig.{3.2.1.3) (as mentioned previously) 

by making the matrix input stationary but requiring the preloading of 

the w. values. The network is shown in Fig.{3.3.1.1a) on the start of 
L 

the first computation cycle, each cell is a simple three-way IPS 

modified to contain a register holding the w. value thus removing the 
L . 

vertical connection. Fig.{3.3.1.lb) shows the equivalent multigraph 

using two colours P and S augmented with a subscript label to identify 
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:=j~. ~r 
x - x 

3 2 

a) Two-way convolution 

Ut Pl-1 P2 
node .. . 

i .. . 

81+ 1 Si 53 c 

b) Coloured computational graph 

y. 
I" l 

Y3 r w l Y2 r l Y1 r " l • 3 "2 1 

rx -j ~ -1 x3 f- 1 I- 1 X
7 6 x, x. x2 xl 

L J L J L J L J 

cl Unl-directional convolution 

FIGURE 3.3.1.1: Representations of 1-D Convolution 
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different arcs, square boxes represent sources and sinks,circles 

interior nodes, and the graph is homogenous. Verification of the 

design is as follows: 

(i) The input sequence definitions 

k-l 
o = 0 611 

1 
(for initial values of y associated 

and with P) 

(for x associated with S) 1Tk = 6~ 

with T(~) = n, T(ll) n-(k-l) and ~(t) 

(ii) n-ary sequence operators are given by, 

1T
i

_
l 

= 01T
i 

0i+l = O[Oi+wi 1Ti l 

(3.3.1.6) 

(3.3.1. 7) 

(3.3.1.8) 

(3.3.1.9) 

This definition is generic as the graph is homogenous, the cell 

is a simple IPS. 

(iii) Derivation of output sequences: 

By repeated substitution 
k-i 

1T i = 0 1Tk (3.3.1.10) 

and substituting (3.3.1.10) in (3.3.1.9) yields, 

n [nk - i +l I °i+l = .. oi + wi .. 1Tk (3.3.1.11) 

Now (3.3.1.11) has the form 0i+l=OOi+~i i=l(l)k+l its solution is 

r-l r-l . 
0 o 0

1 
+ L n)-l~ . , r=2(1)k+l 

r j=l r-) 

The proof of this fact follows by induction, 

for i=l O
2 

= 001+~1 ' which satisfies (3.3.1.12) for r=2 

assume (3.3.1.12) is true for r=l(l)k, then, 

for r+l 
r-l 

o = 00 + ~ = 0 [il 0
1 

+ 
r+l r r 

r-l 

L 
j=l 

r-l 
oj~ r I o 0

1 
+ + ~ 

j=l 
r-j r 

r 
r I nj-l~ = o 0

1 
+ 

. r+l-j 
)=1 

(3.3.1.12) 
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It follows that (3.3.1.11) is solved by applying (3.3.1.12) with r=k+l 

_ k-{k+l-j)+l 
on t.k+l_j-wk+l_j [n "kl 

k k 
ck+l = n cl + L 

j=l 

producing, 

(3. 3 .1.13) 

substituting for (3.3.1.6) and (3.3.1.7) the original input sequences, 

2k-l ~ 
ck +l = n 811+ L 

j=l 

2j-l 
n [wk' l·e~l -J+ (3.3.1.14) 

and on further manipulation using the properties of Defn.{3.3.1.S) 

equation (3.3.1.14) becomes, 

j-l 
Q [wk_j+l ~l (3.3.1.1S) 

From the ordering of the w
i 

coefficients in the graph it follows 

that 

(3.3.1.16) 

where S.{t)=w
k 

. l~{t) and as l1{t) =0 i.e. initial results of 
J -J+ 

accumulation zero 

with T{S) = n-k+l and, 

S{t) = 
k 
L SJ.{t+k-j ) 

j=l 

k 

= .L Wk_j+lXt+k_j = 
J=l 

and this is the algebraic form of (3.3.1.S). 

k 
\' w x 
L q t+q-l 

q=l 
t=l{l)T{S) 

Finally Fig.{3.3.1.1c) indicates an alternative systolic array 

for the same problem where both streams move in the same direction, and 

y~s moving twice as fast as the x~s, and the padding neutral elements 
L L 

have been removed. This is desirable because only n cycles would be 

required to read the n-components of the solution vector instead of 2n 
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cycles in the former case. The cell is another variation on the IPS 

cell and is given later. The above proof is significant because it 

illustrates that systolic arrays can be verified algebraically. 

3.3.2 Transformation Rules 

The two main objectives of transformation rules are: 

(i) To modify existing and correct systolic designs to produce 

new designs which have improvements over the old ones. 

(ii) To convert non-systolic algorithms into equivalent 

systolic designs. 

For purposes of discussion it is necessary to assume that the 

design to be modified is correct, in (i) this is achieved by using the 

verification technique of the previous section while for (ii) an 

alternative method must be found. In the case of systolic designs an 

essential feature of transformations is that they preserve the 'systolic 

property' or pumping action. In its weakest form this means that a 

single data or instruction item must reach different nodes of the graph 

at different times, for non-systolic designs a graph must be modified 

to give it this property before further improvements can be made. Once 

a transformation is validated it can be used as a legitimate rule in 

all designs with similar arrangements. In this sense validated means 

that the rule preserves the systolic property and· the correctness of 

the computation. It follows that sequences of validated transformations 

applied to a verified design result in a new ar~ay which is implicitly 

verified. Hence verification can take place only on arrays which suit 

the proof techniques. 

We can assess the validity of transformation by considering their 
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effects on three quantities (Ullman [84]) which are: 

D = the delay of data to propagate through a cell 

S = the spacing of elements within a sequence (i.e. the effect 

of the spread operator) 

P the period or cycles between real inputs in a sequence arriving 

at a cell. 

The aim of a transformation is to modify D,S or P, such that DS=P is 

preserved, which usually indicates that the array continues to operate 

correctly. 

Definition 3.3.2.1: Two given designs are equivaZent if for initial 

values given for one design there exist initial values for the other 

design with the same input function and the two designs compute 

essentially the same output function. 

One final quantity termed latency is also useful and defined as: 

Definition 3.3.2.2: The Zatency of a systolic array is the number of 

cycles between the first input and the first output. 

or 

Now, there are two main types of transformations we can consider. 

1) Re-timing of data flow around the network by adding or 

removing delay elements (0). 

2) Re-placement of cells which can detect isomorphisms 

between data flow in different designs to simplify 

processor geometries. 

The principles of re-timing can be summarised by the following 

lemmas and theorems which use a timing graph notation called the n-graph 

representation (modified from the z-graph representation of H.T. Kung & 

Lin [83]) which is simply a geometry graph whose arcs indicate delays 

with a label nk 
for k delay cycles. 
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Lemma 3.3.2.1 (k-slowing) 

If all the delays on arcs of a timing graph are multiplied by k>l 

then the cells can be redesigned so the array network will work 

correctly but a l/kth speed (i.e. k-slowed). 

Proof: 

(i) The network will perform the same function if the period of 

all streams at all nodes are multiplied by a constant, and is 

simulated by all processors taking k cycles instead of one, 

with k-l idle cycles. 

(ii) The equation DS=P is modified to (kD)S=kP 

(iii) Two data streams a,b which travel between nodes u and v and 

have delay nR. and nm arrive at v by times that differ by I R.-ml. 

Multiply by k and they arrive at times differing by klR.-ml 

so if the process is k slowed operation is preserved. 

Note: If k delays are added to each arc timing is no longer preserved. 

Lemma 3.3.2.2 (timing shift) 

Suppose k>O, and that v is a node whose outgoing arcs all have 

delay greater than k, we can add k delays to each incoming arc and 

subtract k from all outgoing arcs. Provided processors are modified 

correctly the network will perform correctly. The reverse procedure 

applies if all incoming edges have delays greater than k, and k is added 

to outgoing edges and subtracted from incoming edges. 

Proof: 

(i) Intuitively delays before and after a cell provide a certain 

amount of slack time and k represents the largest shift in time 

that the cell can make and still produce its result before or 

at the time required by other cells dependent on its output. 
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(ii) If u is a processor node and some arc leaving u has delay 0, 

and u needs 0 cycles to compute its result before the theorem 

can be applied the cycle time must be changed so that 

computation completes in at most 0-1 cycles. 

(iii) To preserve 05=P, the change in 0 must be compensated by 5 or 

P. It is not easy to change P locally or globally, and so 

changing delays from 0 to 0-1 make 5 change to 05/(0-1). 

Using these two Lemmas and the assumption that there are no loops of zero 

o 
delays (n ) the re timing theorem for general graphs follows:-

Theorem 3.3.2.1 (retiming): Any finite network with cycles consisting 

only of zero-delay arcs can be transformed into a network performing the 

same function whose delays are at least 1. 

Proof: 

Let N be the original network with no zero-delay cycles, define 

lag(v) of every node to be the longest path consisting of zero-delay 

arcs ending at v. 

(i) lag(v) is finite and the amount v must lag behind nodes of 

lag zero. 

(ii) There is at least one node with lag zero otherwise tracing 

back arcs would locate a cycle of zero-delay because N is 

finite and we eventually repeat nodes. 

(iii) An arc from u to v with delay 0 in N will be given a delay 

lag(v)-lag(u) as the largest path to u must be shorter than 

the largest path of v making the delay positive. 

(iv) A likely problem is that v may be the source of an arc with 

delay d>O to a node w with lag much less than v and we would 

have to subtract lag(v)-lag(w) from arc with delay d. In this 



case apply Lemma (3.3.2.1) to select k such that, 

dk>lag(v)-lag(w) 
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where v and ware taken over all nodes so d>O for v to w. 

The network is now reconstructed in a two stage process. First, 

select k and apply Lemma(3.3.2.1). Second, delay each node of lagt by t 

cycles and for all arcs from nodes u to v with delay d~O replace with 

delay lag(v)-lag(u), for arcs with d>O replace with dk+lag(v)-lag(u). 

These three mechanisms constitute the famous re-timing Lemmas of 

Leiserson and Saxe [83], the problem with these techniques is that for 

large designs they can become quite complex. In H.T. Kung & Lin [83] and 

H.T. Kung and Lam [84] alternatives have been suggested but the latter 

is the simplest and can be summarized as: 

Theorem 3.3.2.2: [Cut Theorem] 

For any design, adding the same delay to all the edges in a cut and 

to those pointing from sources to sinks set of the cut will result in an 

equivalent design. 

Recently, Dew, Manning, & MCEvoy [86] presented a more general notion 

of a cut which allowed delays on all arcs of the cut set, a cut partitions 

the nodes of a graph into two sets with undirectional dataflow between them. 

Retiming methods can also be used to derive new arrays as shown in 

Fig. (3.3.1.2), part a) is the timing graph of Fig. (3.3.1.1a) and part d) 

is the equivalent timing graph for Fig.(3.3.1.1c). In part b) the point 

to point connections of the x input are turned into broadcasting wires 

by using additional delays preserving computation. In part c) the 

direction of the y stream is reversed and by collecting terms in reverse 

order the unidirectional form is produced by observing the delays 

necessary on x to synchronise with y as it filters through. The broadcast 
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a) ./l, -graph representation of t'Wo-.... ay convolution 

b) semi-systoliC convolution 

c) Uni-directional serni-systolic convolution 

d) Uni-directional convolution 

FIGURE 3.3.1.2: Retiming of convolution scheme 
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line is then removed by sharing delays producing point to point 

connections. 

An analogous method to retiming aimed at processor geometries is 

replacement. The general technique is to modify the design by allowing 

the processor geometry to move identifying isomorphisms between data-

flows of different designs and determining a path or locus of computation 

sites which a smaller network could visit to achieve full computation. 

In practical terms this often means folding the data streams to fit a 

stationary but reduced network. We shall only consider a simple 

example comparing the two matrix multiplication arrays of Fig.(3.2.1.5) 

and Fig.(3.2.1.6). The orthogonal array has two-directions of dataflow 

and is stationary allowing data to be stored in cells between steps. 

The hexagonal scheme has three-way data flow and is non-stationary with 

no data residing in the cells between steps. In the latter case the 

dataflow splits into three disjoint sets as illustrated by Fig.(3.3.1.3) 

FIGURE 3.3.1.3: Rote transformation 

with circles, triangles and squares. A data element participates in 

constructive computation by passing from circle to triangle to square 

then back to circle. This fact and the Huygens principle ensure that 

the three data sets never meet and indicates that these problems could 
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be interleaved on the same array. The argument in reverse implies 

that each matrix multiplication on a hexagonal array is really three 

problem instances interleaved. Now embedding the hexagonal grid into 

an infinite grid representing the systolic space as shown by Fig.(3.3.1.4a) 

with normal data flow. If we move the grid relative to the data in the 

direction shown by Fig. (3.3.1.4b) the dataflow appears to have changed 

with one data path becoming stationary. Drawing the relevant part of 

a) Hex dataflow 

b) Shifted dataflow 

cl Rectangular form 

FIGURE 3.3.1.4: Relationship between hex and orthogonal geometries 
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the grid in Fig.(3.3.1.4c) indicates that connections between only the 

circular (or star or triangles) are possible producing a rectangular form 

and hence uses only a third of the original cells. A simple reorganisation 

of the dataflow and rotation of the rectangular grid gives the form in 

Fig.G.2.l.s1. 

For general replacement strategies three steps are necessary once 

a structure on the infinite grid has been found. 

1. The bounds of the array are located:-

As the grid moves the union of all the visited locations is 

the new array, and it may occur that data movement operations 

in the old algorithm fall outside the new design saving time. 

2. The place of input and output are located:-

This is trivial if arrays have an initial position for input 

and satisfy simple and regular dataflows. 

3. Processor actions:-

By moving the processor grid the instruction groups become 

non-stationary and so processors may no longer be stationary 

and will require some type of control mechanism. 

Note: If we start with a rectangular array we can also develop a 

hexagonal scheme. 

Using retiming and replacement strategies a better hexagonal matrix 

multiplier which uses T.n+wtime can be derived by reversing the direction 

of the result connections, a version of the array appears in Huang & 

Abraham [84]. 

Finally re timing and replacement can be viewed as operations on 

elements (designs) of a systolic frame. A sub-frame can then be defined 

as the set of all designs for the same underlying algorithm, and an 
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Anchored sub-frame as a sub-frame with at least one formally verified 

design. Furthermore, a closed subframe is a subframe, such that for 

any design from it, application of retiming and replacement methods 

always produces an alternative design in the subframe. Clearly the l-D 

convolution problem is an anchored subframe and is probably the closest 

to being a closed subframe in existing literature. From the designers 

point of view an anchored sub-frame is useful because there is no need 

to verify designs formally just apply the timing and placement rules. 

When a sub-frame is shown to be closed there is no pOint investigating 

its systolic algorithms further in a mathematical sense, only implementation 

methods can improve their operation. 

3.4 PRACTICAL CONSIDERATIONS AND VLSI 

In this section we examine and justify the heuristics used to 

derive a constrained systolic frame, which are applicable to chip 

implementation of arrays. The first step in the argument is to restrict 

the systolic space model to a more formal set of constraints which back 

up experience in circuit production, and allow reliable reasoning about 

practical implementation problems. 

3.4.1 The Grid Model 

For VLSI implementation purposes the systolic model is' constrained 

into a 2-D space and gives rise to a variety of circuit models attributed 

to Thompson and Brent & Kung among others, and discussed in Savage [81]. 

The grid model we use has many common features with these models and is 

a modified version of the one given in Ullman [84] and has the following 

components: 
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1. The systolic space is constrained to a 2-D rectangular grid 

which is further stratified into a number of layers fixed 

before we start a design. 

2. Wires run horizontally or vertically, and on the same grid 

line there can be at most one wire in each layer. 

3. Circuit elements occur only at grid points, wires entering 

grid points are inputs, those leaving outputs. 

4. If the number of inputs to an element are >4 a shape can be 

placed over a number of grid points to provide the correct 

number. 

5. There is limited fan-in, that is a small finite number of 

inputs to a circuit element. 

These definitions cover heuristics H[l] and H[3] with H[2] following 

almost immediately. The grid model itself is representative of VLSI 

processing techniques because the manufacturing process requires three 

layers for wires in different materials (polysilicon, diffusion and 

metal) see Mead & Conway [79] and while 2. appears restrictive it is a 

method often used in real manufacturing techniques and is supported by 

the following theorem. 

Theorem 3.4.1.1: If C is a circuit in the grid model that uses k layers 

in which to run wires. A second circuit C can perform the same function 

2 
as C in the same time using 2 layers but k times the area of C with 

wires in one layer running only horizontally or vertically. 

Proof: [Ullman [84] pg.37] 

Notice that diagonal connections can be implemented by a staircase 

arrangement of horizontal and vertical wires passing through a number 

of grid points which contain no circuit elements. Thus it becomes 
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possible to embed a timing graph or processor geometry for arrays given 

in the previous sections on to the grid. The geometries are planar and 

so require only a single layer of the grid to accommodate its wires. 

It should be clear that if ~x and ~y are the grid lines spacing in the 

two available directions the area of the circuit is bounded by the 

smallest rectangle which contains all the grid points. If we further 

assume that these points form a convex set the area is only over

estimated by a factor of two at the most - this is termed the convexity 

assumption and the extra area is asymptotically negligible. Once the 

geometry is embedded we can reduce 6x and ~y to provide a finer grid 

creating a number of grid points inside each cell. In the case of the 

hexagonal array of Fig.(3.2.1.6) the circuit in Fig. (3.2a) would be 

added to the smaller grid covering points bounded by the hex's. The 

refinement continues until finally basic fabricable logic elements are 

allocated to grid points. Now the internal arrangement of the hex IPS 

involves wires that cross and is avoided on the grid by using the 

additional layers. Consequently, if the systolic array geometry is 

planar (H[2]) the complexity of wiring using different layers is 

controlled and often implies regular geometries. 

To justify the remaining heuristics the notion of timing must be 

examined in more detail. So far the notion of time has been given by a 

cycle which implicitly assumes that: 

1. A computation is a discrete computational step marked by a 

series of beats or clock pulses. 

2. There are a limited number of logic elements through which 

signals propagate in one time step, and the transmission of 

signals on wires is instantaneous. 

Thus H[3] is justified because if no limit was placed on inputs to a 



135 

grid point the size of the basic cell could be unlimited, hence 

propagation delay through its circuit elements would be variable and 

length of a time step difficult to derive. Furthermore we have defined 

a cycle to be the time to complete an inner product step of one 

multiplication and one addition, the circuits to perform these operations 

are made up of logic elements which themselves must be switched on and 

off to compute results. So the basic cell cycle consists of a number 

of smaller cycles or clock ticks defined by the basic switching time 

. of logic components. The time between ticks (or pulses) is dictated by 

. 
the properties of the materials used to implement the components and 

control the speed at which electrical signals can propagate through 

logiC elements and down wires. Even for the fastest devices propagation 

delays must be given serious consideration. H[4] and H[5] are now easily 

justified because as a wire gets longer the more time a signal takes to 

travel its length; eventually wires will be so long that data arrives at 

the wrong clock tick and computation is invalid. This phenomenon is 

called data skew, a solution is to increase the period between clock 

ticks slowing down the computation, or to limit the length of wires to 

allow time for the signal to arrive. The situation is further 

exacerbated by the fact that the clock tick itself must be broadcast to 

components in all the cells of the geometry and so tend to be long wires, 

an added constraint on the clock period. It follows that broadcast of 

data should also be avoided. 

3.4.2 Area/Time Tradeoffs 

In the examples given so far the theorems have graded designs 

according to cell count and computation time. These seem quite natural 
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measures but also have practical significance. 

During the factorisation process of a cricuit many opportunities 

arise for a flaw to appear in a chip making it useless. In fact the 

largest feasible circuits have a very low probability of producing and 

unflawed chip of about 0.1 (or 10%). The total cost of manufacture 

must be spread over all the 'good' chips making the cost inversely 

proportional to yield. If we multiply the area of a chip by a constant 

C>l the probability of a good chip is (O.l)C and costs increase by lOCo 

Consequently designs with small area are of paramount importance. 

Minimising computation time is also important, because existing 

problems can be solved faster, and bigger problems previously impractical 

may become solvable. Furthermore, in real-time applications like signal 

and image processing the ability to provide results for time dependent 

processes is crucial. 

The selection of a particular algorithm for a problem is a complex 

tradeoff between area (A) and computation time (T) which is inherently 

problem dependent. An idea of the best possible tradeoff can be derived 

theoretically from the grid model using lower bound arguments on area 

and time, when a bound is achieved it indicates that our design is in a 

sense optimal. Three basic bounds which have had some success use an 

area-time solid which can be formed by taking all the snapshots of an 

array and stacking them on top of one another. First we can argue about 

the volume of the solid giving us a lower bound on AT, second we can 

argue that a certain amount of information must flow temporally across 

the boundary between two snapshot levels. And, thirdly consider the 

amount of information flowing across a line (partitioning the grid by 

cutting its sides of smallest length) during execution of the algorithm 
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and which gives us a lower bound according to AT2 The strongest or 

2 
these three bounds is the AT result, because it represents a bound 

which matches the best circuits that can be constructed, results for 

hexagonal matrix multiplication and related problems using AT2 can be 

found in Savage [81] and extensions in Lin & Wu [85]. In our case, 

the importance of lower bounds is that they indicate room for manoeuvre 

between existing designs and the optimal bound betraying the possible 

existance of a new design. These new designs can then be created by 

2 modifying A and T to produce an overall reduction in AT • 

There are basically two levels at which we can attempt to modify 

A and T, first at the array level by re-timing and re-placing cells or 

using fundamentally different algorithms for the same problem, and second 

modifying the techniques of implementation. The former technique is 

adopted throughout the thesis and is not discussed here, while the latter 

idea has been considered in detail by Fisher [84]. For area reduction 

we can consider re-arranging the cell changing it from a bit parallel 

implementation to a byte or bit serialized version. Serialization 

attempts to reduce the area by replacing parallel logic by a smaller 

piece of logic performing the same task but requiring a larger number 

of steps. The problem here is that additional circuitry in the form of 

latches for data and logic for controlling the serialized calculation 

must be added and offset the initial reduction. serialization also 

affects the cycle time of a cell due to the increased number of stepsl 

but this is also offset by a reduction in the circuit clock period due 

to smaller propagation delays through the cell logic. Related to 

serializing a parallel computation is pipe lining which breaks up the 

computation into a number of not necessarily identical stages with the 
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same delay. All the original logic is used with the addition of delay 

registers between each stage to allow successive problems to be over

lapped. This technique gives rise to the term two-tevet pipetining in 

systolic arrays, where the first level is the global pipe lining between 

array cells, and the second level the pipelining of computations within 

a cell. An example is shown in Fig.(3.4.2.1) for the unidirectional 

convolution algorithm. 

FIGURE 3.4.2.1: Two level pipelining of convolution 

Two levels are useful because only the propagation delay of 

individual stages is important allowing a reduction in clock period, 

but limited because the individual problems pipelined cannot depend on 

the results of closely preceding problems as results will still be in 

the pipe. Thus, the technique encounters problems with arrays with 

feedback like backsubstitution (see H.T. Kung & Lam [84]). 

Another significant problem in implementing a systolic array as a 

chip is communication with the outside world. A bit parallel approach 

is expensive on pins (off chip connections) as each input or output 

requires enough pins for accommodating the word length. Serialization 

has the advantage of producing hardware independent of word length and 
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thus reducing pin count, an attractive feature as the chip perimeter 

is fixed by its area. Finally, when area considerations are not so 

important we can combine serialization and pipelining to increase the 

throughput of the system, as the convolution example indicates. However 

the parallelism in the algorithm must be sufficient to keep the pipelines 

full, otherwise the possibility of interleaving problem instances must 

be investigated to maintain efficiency of cells. 

3.4.3 Fault Tolerance 

Serialization and global redesign of the algorithm are not the 

only ways to cope with manufacturing problems. Another intuitive 

approach is to design a complex circuit and then increase the resolution 

of the implementation technique to scale down the feature size (which 

defines basic dimensions of wires and logic elements), and 'stuff' the 

circuit into a smaller area. The problem with this is that scaling down 

cannot continue for ever and eventually a circuit will be produced for 

which there is no alternative but to increase area. Furthermore as 

resolution approaches its limits the electrical properties of wires and 

components limit performance. For instance, the propagation delay as 

basic elements shrink is reduced but the corresponding delay on inter

connections remains the same, so eventually transmission of signals 

dominate the speed of operation creating a lower bound on the clock 

period. 

A more devious approach to solving the area/yield problem is to 

increase yield significantly so that area is no longer a good measure 

for cost. For instance, if yield (i.e. probability of an unflawed 

chip) was 0.9 (90%) then increasing area by a constant C>l would produce 
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a yield of (0.9)C, hence yield decreases slowly which in turn raises 

cost slowly, making it less sensitive to chip area. This approach is 

adopted by fault tolerence techniques aimed at producing more reliable 

and robust chips; and essentially designs a circuit so that it can be 

restructured after fabrication. Restructuring avoids the flaws in a 

chip by routing around faulty elements allowing a defective chip to be 

used. Circuits employing fault tolerance can be envisaged as a four 

part design (Sami & Steffanalli [86): 

1. An original array of cells/processors. 

2. Spare cells/processor (preferably arranged in simple patterns) 

3. An interconnection network (usually a grid) consisting of 

data paths, switches and control paths for reconfiguration. 

4. A control algorithm performing a fault tolerance algorithm. 

Using ~~is model fault tolerant circuits and strategies can be designed 

to cope with two types of failure: 

1. FToduation defeats:- which are high with current fabrication 

technology. 

2. OperationaZ defeats:- which occur while the device is operating 

inside a real system. 

The corresponding fault tolerant strategies are termed static and 

dynamic respectively. Static schemes test and fix defects before the 

chip is packaged and contribute only to production costs and are performed 

just once. Dynamic schemes cater for operational defects and must be 

applied many times in a real computing environment consequently static 

schemes generally use less hardware than dynamic schemes which require 

programmable switching elements and additional control networks so 

restructuring can be performed automatically. Where the area of a basic 



141 

cell is not significantly more than the extra connections and switches 

to implement fault tolerence dynamic schemes are questionable. 

The reconfiguration or restructuring whether static or dynamic 

is not usually performed as a direct one-to-one substitution of faulty 

cells for spare ones, but depends upon the components of the model 

present. For instance, if 1. and 3. are available but 4. is omitted 

there are no spare cells and 3. is reduced to a fixed set of paths which 

must be reconfigured manually, for instance by laser programmable links 

(e.g. VLSI RAMS) making the scheme static. The lack of spare cells means 

that a smaller network is produced and consequently can only solve smaller 

problems. When all the models components are present the spare cells 

can be used by re-configuring the network around faulty cells. In these 

cases the control algorithm and network are simplified if the whole row 

or column containing faulty cells is switched out of the network, resulting 

in a number of perfectly good cells being wasted. These wasted cells 

can be recovered by a more complex control algorithm which incorporates 

a global re-naming procedure mapping the structure of the array onto 

the available working cells. Renaming introduces additional problems 

over and above the complexity of the control algorithms as it requires 

a highly flexible communication network and may introduce long wire 

connections for large number of cell failures. Many variations are 

possible on these dynamic schemes such as fault stealing structures 

where rows and columns can steal good cells from adjacent rows and 

columns, but all trade hardware and complexity for increased reliability 

and flexibility. 

As well as error detecting and correcting tolerance schemes there 

are also error masking schemes. For example, in Triple Module 
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Redundancy (TMR) only 1., 2. and 4. of the model are retained, but each 

original cell has two spares with it. The control algorithm is built 

into these cells which can check for faults and switch in a spare cell 

if necessary to mask the error. An alternative is to redesign the 

original network to incorporate 4. with only a few extra cells to 

compute where errors occur but fix the results rather than modifying 

the cell network. 

An implicit assumption in all these fault tolerent systems is that 

the extra hardware incorporated cannot be faulty, or at least has a 

significantly less chance of failure than the original cells. As fault 

tolerence techniques become more complex they may contradict this basic 

premise. 

Fault tolerence techniques can be tailored to systolic arrays by 

using the additional information about the regularity of data flow, and 

produce effective low-overhead schemes. Briefly the salient features 

of the systolic fault tolerance schemes are as follows. The above model 

is restricted to 1. and 3. with the communication network further 

confined to nearest neighbour communication. Attention is then 

restricted to unidirectional arrays and basic cells are augmented with 

simple bypass registers and switches, as illustrated by Fig.(3.4.3.l) 

when a faulty cell is detected it is switched out using these extra 

connections and registers to maintain throughput but reducing the range 

of problems that can be solved. For instance, in the convolution example 

of Fig. (3.3.l.lc) a fault in a single cell would mean only three co

efficients could be used instead of four. Notice that a series of faulty 

cells will not produce a long wire as the data will be fed from bypass 

register to bypass register of successive faulty cells maintaining 
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nearest neighbour dataflow. The amount of extra hardware is trivial 

and we can reasonably assume that the extra wires and registers will 

not be faulty. For 2-D arrays and arrays with feedback the problem 

is more complex and throughput is reduced rapidly as faults occur. A 

solution to the feedback problem is to convert feedback arrays into 

unidirectional ones, this is done by re-timing the array to create a 

systolic ring architecture, which mixes stationary and non-stationary 

dataflow. A systolic ring for back substitution is shown in Fig. (3.4.3 .2) 

described below. The q-l term recurrence of Fig.(3.2.2.1) can be 

implemented using only q/2 cells in the systolic ring, and is operated 

as follows. The q/2 most recently computed results are stored in the 

cells (one in each), while the partial results of the next q/2 results 

cycle around the ring meeting the stored values. Every two cell cycles 
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a result is completed and gets loaded into a cell. The output period 

is the same as the feedback array but now cells work all the time 

improving efficiency and require only half as many/loading and 

unloading of values complicates the cells and requires an extra line 

for output on some problems but this is compensated by reduced cell 

count and increased fault tolerance. The division required by the 

former two-way array is now performed outside the array to avoid placing 

a divider in every cell. In addition to the backsubstitution ring 2-D 

ring arrays for triangu1arising and factorising a matrix requiring only 

a half and a third of the original cells and the same computation time 

exist. (The methods can be found in H.T. Kung & Lam [84]). In conclusion, 

the basic characteristics of the above schemes are that throughput is 

unaffected, interconnection length is not increased so clock period is 

unaffected and the arrays degrade gracefully as more faults are 

encountered. 

In contrast to the prinCiple of routing around bad cells is 

algorithmic fault tolerance (Huang & Abraham [84]). This technique is 

used to detect and correct errors resulting from permanent and transient 

errors, and is not generally applicable but for specific cases can be 

achieved with a very low overhead. Rather than tailoring the correction 

technique to architectures, algorithm-based tolerance is tailored to 

specific algorithms and consists of three parts: 

(i) The input data is encoded 

(ii) The algorithm is redesigned to operate on encoded data 

(iii) The new algorithm is distributed onto the architecture. 

For a low overhead the unencoded result or information part must be 

easy to recover, and enough redundancy must be available for the detection 



145 

and correction of errors. 

One particular encoding is the checksum method which is applicable 

for many common matrix operations. 

Definition 3.4.3.1: The row, column, and full checksum matrices for an 

nXm matrix A-(a .. ) are defined as follows: 
1J 

(i) 

(ii) 

(iii) 

The coZumn checksum matrix A of A is an (n+l)xm matrix 
c 

n 
consisting of A and the extra row al' - I a. j , j-l(l)m. 

n+ ,J i-l 1 

The row checksum matrix A of A is an nX(m+l) matrix consisting 
r 

of A and the extra column a
i 

1 ,m+ 

m 
- I a .. , i-l(l)n. 

j-l 1J 

The full checksum matrix Af of A is the (n+l)x(m+l) matrix is 

the column checksum matrix of the rOw checksum matrix of A. 

Each column of Af is an encoded vector, and the following results hold 

for nXn matrices, 
AB - C c r f 

(3.4.3.1) 

C -f 
L U 

c r 
(3.4.3.2) 

Af+Bf - Cf 
(3.4.3.3) 

Once a computation has been performed the fault tolerance scheme 

is as follows: 

1. Detect error: 

a) Compute sum of information element of each row + column 

b) Compare results with corresponding check sums 

c) "Errors are indicated by inconsistent values. 

2. Locate error: 

Errors lie on the intersections of inconsistent rows and 

columns. 

3. Correct error: 

(i) Add difference between computed row or columns sum 

and its corresponding checksum. 
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or (ii) Replace checksum by computed value. 

Note: A small tolerance for round-off error should be allowed to avoid 

detecting a faulty cell incorrectly. 

Additional cells are required to compute the checksum parts of the 

problems, but there is no need to route around faulty cells because 

error correction can be performed outside the array. Thus, the same 

type of problem can be solved even in the presence of errors. 

Unfortunately the scheme has only limited correction capability, and 

for certain configurations of errors the technique can be fooled. A 

more powerful method is the ~eighted checksum scheme reported by Jou 

& Abraham [86] and extended by Luk [86]. 

¥ ~ / X l~ 

I X r-- ¥ 
~ ~ ~ ~ -~ 

~ ~, X ~ 

FIGURE 3.4.3.3: Uncorrectable faults in checksurn scheme (for cf. n=4) 

The normal procedure in chip manufacture is to fabricate a number of 

identical circuits simultaneously on a wafer of silicon. Once the chips 

are completed the wafer is diced and the individual chips tested, without 

fault tolerance the faulty chips are discarded at this stage. With fault 

tolerance virtually all the chips will be used and it becomes feasible 

to use the whole wafer as a single circuit. This process is termed Wafer 

Scale Integration (WSI) and is an active area of research. The larger 

area makes it possible to connect larger and separate subcircuits which 

ordinarily would reside on separate chips on the same wafer and removes 

the communication bottleneck caused by pin restrictions. Fault 
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tolerance is of course essential because the probability of producing 

on unf1awed wafer are very remote. WSI also adds to our problems of 

signal propagation because the potential for longwires and large number 

of components through which signals must be driven increases dramatically. 

By using the grid model and consequently designs from constrained and 

regular systo1ic frames dataf10w and cell complexity can be controlled. 

The global clocking mechanism however is another matter, clock skew is 

a key factor even for single chips, for WSI it could present a 

significant problem. Fortunately work by Fisher [84) indicates clocking 

these large systems is practical. 

3.4.4 Synchronous Versus Asynchronous Array Operation 

The essential feature of the systo1ic array is the mapping of data

flow into a simple and regular pattern implying communication between 

cells. In the examples so far it has been convenient to envisage cells 

computing in lock step or synchronisation. This view arises from the 

definition and structure of snapshot tracing making computations easy 

to follow, as computation is chopped up into discrete steps, and produces 

a global clocking mechanism. If we assume that the circuit has bounded 

communication delay and an ability to pipeline Signals the clock pulse 

can be broadcast to cells in two ways: 

1. For l-D arrays the clock period is made independent of array 

size by repeatedly folding the cell structure to bound clock skew. 

2. In 2-D arrays a H-tree layout is used making all cells equi

distant from the root (clock source) of the tree again 

controlling clock skew. 

AS systolic arrays satisfy these assumptions global clocking even for 

VLSI is controllable. 
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An alternative method which avoids global clock distribution is 

self-timing or asynchronous communication. In a synchronous scheme, 

the clock signal tells cells when data is available and transfer 

between all cells is essentially simultaneous. In contrast, asynchronous 

schemes communicate by a predetermined handshaking protocol that allows 

cells to start computation as soon as its inputs are ready. The absence 

of a global clock avoids clockskew and allows variations in component 

speed to take advantage of data cependencies. The cost of this extra 

flexibility appears in additional hardware for handshaking and increased 

difficulty in testing of the synchronisation logic. This overhead is 

further compounded by the regular structure of arrays using uniform 

cell structures with a high dependency on input and output relationships 

which force the asynchronous scheme to run at its worst case speed. 

Consequently the tendency is to choose synchronised schemes. 

Where the size of a circuit is unbounded - for instance in the 

case of extendable arrays a trade-off between asynchronous and synchronous 

can produce a hybrid clocking scheme. Here, the circuit is partitioned 

into chunks of bounded size and each chunk given a clock node. 

Synchronisation between chunks is performed asynchronously and the clock 

nodes are then used to broadcast a clock pulse to all the cells in the 

chunk. 

We conclude that the use of constrained and regular systolic 

frames to derive systolic arrays will produce designs suitable for 

possible VLSI implementation provided cell count and global input and 

output is limited. 
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3.5 GENERIC ARCHITECTURES 

For large applications it may not be feasible to design a single 

chip implementation of an array, especially when balance between 

flexibility, efficiency, performance and implementation costs is 

essential. An alternative implementation strategy is to implement 

basic cells at the board level using a collection of "off-the-shelf" 

components which are widely available as chip sets from various 

manufacturers. 

Systolic arrays achieve high performance and efficiency by 

considering only restricted problem classes, at the expense of 

flexibility and some times implementation cost. A more economic 

solution results if arrays can be constructed which incorporate 

features for a number of systolic algorithms. These more flexible 

systolic forms are called generic systolic arrays, and in this section 

we shall briefly review the main contenders which have received attention 

to date. 

3.5.1 The Warp Architecture 

The Warp Architecture developed at Carnegie Mellon University 

(CMU) by H.T. Kung and his associates is the most advanced generic 

design for purely systolic algorithms. Its design began with a study 

to identify architectures of general purpose micro-processors which 

could implement a variety of systolic algorithms efficiently. The 

study resulted in the Programmable Systolic Chip (PSC) discussed in 

Fisher [84] and Fisher, H.T. Kung & Sorocky [84] and prompted research 

into cell structures for high performance systolic arrays in a particular 

area (in this case signal processing). 



151 

The Warp architecture is a l-D linear systolic array with data 

and control flowing in one-direction with input at one end of the 

array and output at the other. From the preceding discussions we 

observe that the design allows easy implementation allowing synchron

ization by a simple global~clock mechanism, minimum input/output 

requirements and the use of efficient fault tolerance techniques for 

faults. The basic Warp cell is constructed from a collection of chips 

as is illustrated in Fig. (3.5.1.1) , its main characteristics being the 

pipelining of data and control. Weitek 32-bit floating point multiplier 

(MPY) and ALU perform operations and can be used in pipeline mode to 

improve throughput by two-level pipelining. The MPY and ALU register 

files use Weitek register file chips and can compute approximate 

functions like inverse square root using look-up facilities. The x,y 

and addr-files are also register files but this time used to implement 

delays for synchronising data paths, and can be used as extra registers 

for book-keeping operations, while the data memory is used to reduce 

the input/output band-width by implementing tables of data and storing 

intermediate results, it can also be used to implement multiple cells 

on the same processor and hence 2-D arrays. The crossbar and input 

multiplexors (muxes) provide communication between the, individual 

elements and can be re-configured by control signals. The muxes 

permit two-directional data flow and ring setups (using wrap around). 

A lO-cell prototype has been built at CMU and tested on a number of 

example arrays discussed in H.T. Kung [84aj. 
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3.5.2 The Wavefront Array Processor (WAP) 

The WAP was introduced by S.Y. Kung and consists of an NXN 

processing element with regular connection structure, a program store 

and memory buffering modules as illustrated in Fig.(3.5.2.l). The 

processor grid acts as a wave propagating medium and timing is 

asynchronous, using handshaking protocols, thus no global clock is 

needed. 

Each processor can perform a limited number of operations and is 

controlled by a program loaded from the program store. Data for 

problems is stored in memory modules around the boundary and extra 

time must be allowed to set up a computation. An algorithm is executed 

by a series of wavefronts moving across the grid with processors 

computing whenever its data and instructions are available. processors 

are assumed to support pipelining of waves and the spacing of waves (T) 

is determined by the availability of data and the execution of the 

basic operation. The speed of the wave front ~ is equivalent to the 

data transfer time. 

Different algorithms are computed by changing the control program 

which is written in a special Matrix Data Flow Language (MDFL) (see 

S.Y. Kung, Arun, Bhasher, Rao & Hu [8l) .. which exploits the principles 

of waves acting according to Huygens principle. Non-wavefront 

algorithms can be converted (or systolized) to wave front version using 

similar re-timing and cut theorems based on a signal flow graph, to 

those in Section 3.3. 

To compare the WARP and WAP we can consider pipelining ability, 

architectural extendibility, programming simplicity and fault tolerance. 

The Warp is essentially a pipelined architecture and can use two level 
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pipelining to improve throughput, as well as having the ability to 

perform stationary and non-stationary algorithms with special control. 

On the other hand the WAP being asynchronous can take advantage of data 

dependencies in problems which may result in significant speedups. 

In terms of extendability the WAP is quite flexible, its lack of 

global clock allows the array size to be extended to very large sizes, 

whereas the synchronous warp must use folding arguments to bound clock 

skew requiring re configuration on each upgrade of cells. The WAP is 

simpler to program too, having an architecture structure already well 

studied in SIMD and MIMD machines and supporting the MDFL language. 

The WARP on the other hand requires the pipeline of control and the 
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choice of a suitable language for performing while and repeat loops 

is still problematical. But in fault tolerance the WARP processor 

has an advantage as it can cope with faults quite easily whereas 

hardware recovery is quite difficult on the WAP without additional 

processors. A neat solution would be to modify wavefront algorithms, 

use the check sum procedures by simply adding an extra row and column 

of processors, but this would require extra computation stages to set 

up the checksum and fix the error. 

3.5.3 INMOS Transputers and OCCAM 

A third possibility is the INMOS transputer, a single chip micro

processor containing a memory, processor and communication links for 

connection to other transputers, which provides direct hardware support 

for the parallel language OCCAM. The structure of a transputeris 

given in Fig.(3.5.3.1). 

The transputer and OCCAM were designed in conjunction and all 

transputers include special instructions and hardware which provide 

optimal implementations of the OCCAM model of concurrency and 

communication. Different types of transputers can have different 

instruction sets depending on the required balance between cost, 

performance, internal concurrency and hardware, without altering the 

users view of·OCCAM. Hence the transputer is a Reduced Instruction 

set Computer (RISC) 

The processor contains a scheduler which enables any number of 

processes to run on a single transputer sharing processor time, while 

each link provides two uni-directional channels for point to point 

communication synchronised by a handshaking protocol. Communication 
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on any link can occur concurrently with communication on other links 

and with program execution. 

OCCAM itself is based on communicating sequential processors 

(Hoare [78]) where parallel activities are viewed as black boxes with 

internal states called processes and which communicate with each other 

using a one-way channel. Communication is achieved by sending a 

message down a channel between two processes, one process sends a 

message and the other reads it from the channel. 

As every transputer implements OCCAM, an OCCAM program can be 

executed on a single transputer or a network of transputers. In the 
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former case, parallel processes share the processor time and channel 

communication is simulated by moving data in memory. For a transputer 

network processes are distributed among transputers and channels 

allocated to links. Thus, the OCCAM program can be implemented in a 

variety of ways. One transputer network can be used to minimise cost, 

another to optimise performance, or a third to balance the two. It 

follows that an approximation to both the WARP and WAP machines can be 

made using transputers. We say approximation because the general 

purpose nature of the transputer must pay some penalty in performance 

over a dedicated network. In the case of a WAP, OCCAM is particularly 

useful for implementing wavefronts. 

The definition of the transputer architecture divides neatly into 

logical aspects defining network interconnections and programs, and 

physical aspects defining how transputers are connected. For systolic 

algorithms we can liken this to the separation of dataflow and the 

processor geometry. 

3.5.4 Simulation of Systolic Arrays 

We use the fact that OCCAM programs can be divorced from, trans

puter configurations by using the language as a simulation tool 

throughOut the thesis, for testing designs. A brief summary of the 

OCCAM language is given in the Appendices, together with selected 

simulation programs. Fig.(3.5.4.l) indicates the general structure of 

the programs, where branching indicates parallel execution. The 

construction of programs follows ideas developed by the author in 

Megson [84] but is modified to take advantage of the formal model 

developed in Section 3.2.1. Consequently OCCAM programs simulate the 
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FIGURE 3.5A.l: structure of OCCAM program for simulating systolic arrays 

the formal proofs by replacing input output descriptions by actual 

results. Although the simulation does not guarantee correctness it is 

nevertheless a less time consuming approach which does not result in 

un solvable equations. Furthermore, a working OCCAM program retains 

the possibility of actual transputer implementation and so solves two 

problems in one attempt. 

The getdata and putdata sections of Fig.(3.5.4.1) represent the 

host machine interface and are responsible for receiving and sending 
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data and control to and from the program. Each routine contains 

enough memory to store the initial array input data and the final 

output data corresponding to the global input and output sequences of 

the model. The amount of storage is easily calculated by summing the 

termination functions of the bounded data sequences of each input output 

sequence. In principle the two routines can be run in parallel with each 

other and the array, and for some of the examples this is the case, but 

generally they are sequential, in order to emphasize the parallel 

operation of the array. The actual host can be predefined input and 

output files or simply the terminal, the former method is useful for 

buffering and throughput testing, while the latter helps with debugging 

and interactive array performance. The routines can be augmented with 

user friendly features directing the program use, the collection of 

data necessary for the array construction and formatting of results. 

The setup routine is a key section of the algorithm which computes 

array dependent quantities. For instance, in the matrix vector array, 

Fig.(3.2.1.3) depending on the size of p and q the x,y and A data streams 

must be delayed in order for them to synchronize. The setup performs 

these calculations and in addition computes certain values useful in 

defining the structure of the array. These latter structural values are 

more important as the array becomes more complex. 

Sources, sinks and cells are OCCAM procedures corresponding to 

nodes in V , V and VI of the network model. A source is loaded 
. S T 

initially with a vector from getdata representing its associated bounded 

data sequence, together with additional values from the setup routine. 

The values from setup are used to create the shift and spread of a 

sequence before inputting it to the VI procedures. Sinks are analogous 
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to sources except they work in reverse, using shift and spread data to 

cut out neutral elements and placing real values into data vectors 

which are then passed to putdata for output. The cell procedures 

implement the n-ary sequence operators associated with nodes in VI 

Generally there is one procedure for each type of cell, and the 

programming task is simplified for homogeneous networks. The input 

and output sequences are represented by OCCAM channels appearing as 

actual parameters in the procedure headings. Where cell definitions 

are only marginally different extra switches and flags can be added to 

a procedure heading so it can set up the correct cell type. This 

collapses a number of definitions onto a single generic one. Extra 

parameters can also be used for preloading array values, such as 

convolution weights. A cell definition is divided into three sections, 

initialization, communication and computation. Initialization is 

performed only once and allows cells to be cleared before use or pre

determined values to be set up. In particular, initialization defines 

neutral element quantities which can be used in communication before 

real data reaches the cell, and is essential to maintain dataflow in 

OCCAM programs. The communication and computation sections of the cell 

are performed many times and are enclosed in a loop for iteration, 

and are performed sequentially one after the other. All communication 

is performed in parallel and computation is mainly sequential. The 

loop control depends on the type of algorithm, if the execution time 

can be computed in advance by a simple setup calculation a for-loop 

can be used where the operation is uncertain a while-loop can be used. 

The while-loop is more flexible because it allows successive problem 

instances to be pipelined, whereas the for-loop scheme runs an algorithm 
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a fixed number of times. The two loop schemes also have differences 

in the way they terminate but to follow this the allocation de

allocation procedures must be discussed. 

The Allocator routine is called after setup and is supplied with 

parameters about the array dimensions, synchronisation details (shift, 

spread, etc.) and the total number of cycles in the algorithm if a loop 

scheme is used, and data sequence sizes. The allocator is simply a 

set of parallel loops which specify and startup the computational graph 

by connecting VS'V
T 

and VI procedures using OCCAM channels as arcs and 

allocating channels according to the colour set CE' To achieve setup 

the graph is mapped onto a grid of points whose points and hence arcs 

can be recovered from a simple address type calculation. The simpler 

the array the easier are the mapping functions, and the result is an 

allocation similar to the VLSI grid model. Once started the sources 

and sinks control computation, and the allocator only terminates when 

all the graph cell procedures have terminated. Termination of procedures 

is assumed to be globally synchronised if a for-loop is used in cells 

and asynchronous if while-loops are incorporated. As OCCAM is an 

asynchronous communication language for-loops tend to be messy requiring 

some additional computation after the loop to clear all the channels -

hence avoiding deadlock. While-loops are better suited to the model of 

concurrency and when augmented with systolic control sequences can be 

used to selectively closedown a cells input and output channels. 

consequently array cells can be switched off or de-allocated by a wave

front progression or pipelined approach from sources to sinks. 

An additional procedure for debugging purposes can be added which 

runs in parallel with graph network, and is mainly a screen/file mixer 
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routine. The allocator sets up the procedure and network cells are 

augmented with an additional channel each which the debug routine uses 

to analyse cells. Debug channels are allocated from a pool of channels 

all of the same colour and require an ordering of network cells for 

correct indexing. When the indexing function is simple debug can be 

used to output snapshots of array operation so data flow can be easily 

verified. Snapshots are output in a sequential cell-ordering and the 

additional debug channel communication must be placed carefully· in cell 

definitions. It should be clear that a globally synchronised scheme can 

always be simulated by an asynchronous network and placing the debug 

channel operation as the first statement in a loop acts as a synchronising 

and ordering mechanism for cell computation rather than computations. 

Although we cannot force OCCAM procedures into lock step execution a 

similar idea to the debug scheme can be used to distribute cell 

termination controls for while-loop schemes when controls are themselves 

complex. Such a scheme has merit because it lends an intuitive synchronous 

outline to the algorithm construction even though it is executed 

asynchronously. 

Finally, the techniques described above have been used successfully 

throughout this thesis to implement designs in OCCAM but can in principle 

be extended to any parallel language provided channels and cel~can be 

modelled. In fact Brent & H.T. Kung & Luk [83] used an extended version 

of PASCAL, ADA also seems a likely candidate as ADA rendezvous is very 

similar to channel communication both being based on CSP. We adopt 

OCCAM because it offers more direct hardware support for special purpose 

designs as well as common architectures. 
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3.6 THE SOFT-SYSTOLIC PARADIGM 

To c~~t~j~this chapter we shall attempt to unify the systems of 

the previous sections into a unified framework which we term the soft

systolic paradigm. This new paradigm incorporates the old version 

allowing the systolic principle to be exploited to the full. In 

particular, we define three types of systolic algorithm, hard, soft 

and hybrid which lead to new types of systolic design frames, and 

which can adapt to changing technology conditions over time to evolve 

new constrained frames. 

Hard systolic algorithms (SH) are the so-called traditional 

algorithms discussed in Section 3.2 which form regular frames and also 

obey additional heuristics of constrained frames. In essence, these 

algorithms should be designs which can be implemented using current 

technological practices without programming. 

In contrast soft-systolic algorithms (SS) are the most general 

algorithms which are not constrained and may even be irregular. 

Intuitively such algorithms are not suitable for direct hardware 

implementation and can only be realised in a simulated environment 

using a programming language executed on some parallel architecture 

(which may be is a general purpose systolic architecture) see Shapiro 

[84]. Soft-systolic algorithms map the systolic space onto the memory 

structure of the machine and array architectures and processor geometries 

form data structures for controlling the parallelism within the machine. 

Such algorithms are clearly possible and supported by the OCCAM 

language and architectures such as the Meiko computing surface. 

Hybrid systolic algorithms fill the gap between hard and soft 

algorithms allowing the marriage of limited programming and hardware to 
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achieve satisfactory cost/performance relationships for well defined 

areas of computation. A current contender for hybrid classification 

is the WARP architecture which is aimed at generic problem solving but 

will be incorporated into a more general purpose machine. 

This framework neatly partitions designs meant for direct 

implementation and those which are programmed, allowing algorithm 

designers the choice to develop designs based on a different trend in 

technology. Consequently systolic algorithms can be considered in a 

state of flux or migration through soft, hybrid and finally to hard 

designs as technology develops. At the soft end new systolic frames 

can be devised together with manipulation rules to enumerate all the 

possible systolic designs for a particular problem. Closed frames will 

result in a finite set of designs which can then be considered to 

produce a few hybrid and hard architectures. Such techniques will be 

essential for examining connections between systolic and existing 

algorithms as well as generalising the systolic concept. In particular, 

the goals of fifth generation computing projects requiring massive 

parallelism and high performance would greatly benefit from an approach 

which explicitly incorporates a technology sensitive migration of 

algorithms. 

To illustrate these ideas we can point to two main trends in 

manufacturing technology which could provide alternative definitions 

for systolic frames in the near future. 

3.6.1 3-D VLSI 

Rosenberg [83] presents a case study in 3-D VLSI which is relevant 

to our purposes. The main concept is to extend the grid model of Section 
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(3.4.1) so it forms a rectangular solid of grid points and allows 

vertical wire connects as well as in the plane of each horizontal 

level of grid points. Each level or laminar also consists of enough 

layers to run wires as in the original model but only a single wire 

can occupy a vertical connection. The immediate consequences of such 

an arrangement are listed below. 

1. Wire routing should become easier due to the extra dimension 

for avoiding crossovers. 

2. An overall volume reduction should occur due to reduction in 

area used to route around processors. 

3. Shorter wires will reduce clockskew bounds and cycle time. 

4. An increased surface area for input and output pins. 

Fig.(3.6.1.1) illustrates a 3-D chip arrangement. 
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FIGURE 3.6.1.1 

TO keep production costs low only a finite number of extra laminars 

should be adopted and schemes based on this model are easily derived. 

The simplest scheme would be a two-layer design, with one-layer for 

circuit elements and the other for wire routing. A more complex 

arrangement would be 3 laminars forming a sandwich with circuit elements 

on the middle layer with data and control separated onto the remaining 
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two layers. Advanced techniques would permit more layers with a 

mixture of circuit element layers and routing planes. Unfortunately 

such ideas are non-trivial and will require a great deal of time and 

effort. CUrrent technology is just beginning to introduce two layer 

schemes in which the second layer is used for metalisation for power 

and ground lines. Significant problems in future development are: 

(i) The alignment of successive layers - this must be precise 

if all inter-layer connections are to be formed. An 

additional problem is the alignment and bonding of pins on 

each layer. 

(ii) The sinking of shafts for wires between layers - difficulties 

arise due to diffraction of x-rays and the non-uniform 

exposure to solvents used in etching the shaft, and increase 

with depth. 

(iii) Cooling of densely packed chips is already a significant 

problem circuits layers sandwiched between other layers 

only have the perimeter of the layer to lose heat. 

The two layer design with wires on one layer reduce these problems 

particularly when we assume that wires give off less heat than circuit 

elements. 

3.6.2 Optical Computing 

3-D VLSI avoids clockskew and area problems by stacking circuits 

on top of one another in the same way sky-scrapers solve space problems 

in urban areas. Optical computing on the other hand is aimed at 

replacing the limitations imposed on computing circuits due to electrical 

properties of materials. In optical computing, electrical signals are 
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replaced by streams of photons and electrical logic elements replaced 

by optical counterparts. Introductory material to optical computing 

can be found in Goodman, Leonberger, S.Y. Kung, Athale [84], Athale & 

Lee [84] and Huang [84]. Some immediate benefits of this approach are 

apparent: 

(i) Clockskew: is avoided due to communication at the speed of 

light. 

(ii) Crosstalk: the interference of electrical Signals by mutual 

inductance in closely placed wires is reduced due to 

relative difficulty in making streams of photons interact. 

(iii) Radiation hard: Transient errors in computation due to radiation 

(e.g. cosmic rays) incident on the chip surface is reduced. 

(iv) Non-planarity: Circuits can be-non-planar as photon streams 

crossing at an angle of >10% suffer no crosstalk occurance 

and separate signal lines can intersect, with no ill

effects. 

There are three kinds of optical computing which can be defined. 

Acousto-optical is essentially analogue and has been used in optical 

signal processing to produce moving data streams for multiplications. 

The same principle is easily adapted for systolic arrays and is 

discussed in Caulfield, Rhodes, Foster and Horvitz [81]. However 

acousto-optics is limited by low accuracy inherent in its analogue 

representation and flexibility in terms of the types of operations to 

which it can be applied. Digital optical computing on the other hand 

is involved with the development of optical logic elements to complement 

optical signal transmission. In principle, this method will be as 
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accurate as current digital machines, but problems arise because 

components so far accept inputs in one form such as intensity and 

output in another like phase and so cannot be cascaded to form circuits. 

There are also doubts about the best representation of the binary units 

'0' and '1'. Some favour pulses while others prefer methods of 

polarization (see Brenner & Lohmann (86)}. It follows that full digital 

optical computing requires a great deal of time, money and effort to 

get it working. A third alternative and perhaps the best in the short 

term is electro-optical computation which combines electronics and 

optics. Optics take the role of signal transmission, electronics 

providing well established cascadable logic elements. Optical signals 

arriving at logic is converted to electrics processed and then converted 

back to optics for further transmission. On a straight comparison purely 

electronic components would appear to be faster due to the extra over

head of signal conversion, but as feature sizes shrink and resistance 

and capacitance of wires conspire to make propagation the key factor in 

speed the conversion is justified, with optics used mainly for data and 

control transmission a number of schemes can be envisaged and illustrated 

in Fig.{3.6.2.l}. 

1. Waveguided: A waveguided signal can take two forms, first, as optical 

fibre transmission for connection chips and second a guide {such as 

glass} integrated onto the chip, for internal chip communication 

waveguides are restricted by the constraint that they must be kept 

as straight as possible otherwise radiation and signal loss occur. 

Consequently, a network of orthogonal gUides must be used on chip, 

and we could use a variant of Fishers' hybrid clocking scheme where 

light is used for global synchronisation of clocks distributed 

electrically for subcircuits. 
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2. Free-Space Transmission: In free-space transmission light is not 

guided but controlled by the laws of propagation of light in free 

space, and is further subdivided into focussed (or imaging) and 

unfocussed. In unfocussed schemes optical signals are broadcast to 

the whole chip (i.e. collineated light illuminates the chip at 

normal incidence) and is detected by sensors distributed around the 

chip. The problem with this is its inefficiency as only a small 

amount of light falls on the required area, and the need for a 

blocking layer to avoid transient errors in other parts of the 

circuit. Focussed light avoids these problems but uses a hologram 

to focus the signal to all the sights required but as with 3-D VLSI 

it requires a high accuracy of alignment. Finally for data signals 

inputs to pins can distribute signals into the middle of the chip by 

reflecting them from a routing holograph. 

Alot of development is required for all these techniques but research is 

progressing into waveguides on chip with some success and fibre optics 

is already well developed. Furthermore electro-optics by marrying the 

existing abilities of chip technology with optical developments will 

provide a transient technology until true digital optics becomes 

achievable. 

3-D VLSI and optic$ represent two of the most realistic improve

ments in implementation technology for the near future, their basic 

philosophy is to remove some of the limitations listed as heuristics for 

a constrained systolic frame. We can also modify the basic rules of a 

systolic frame to accommodate the soft-systolic approach. A revised list 

of rules defines a soft-systolic frame as follows:-

R[1-3] unchanged, these are the essential features of systolic 

algorithms. 



R[4] flow of data should be regular, and complex data 

movements must be constructed from simple ones in a 

controlled manner. 
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R[S] The majority of connections should be nearest neighbour 

or to local cells but long connections are permitted. 

R[6] Unchanged. 

The heuristics are modified as follows:-

H[l] The systolic space can be multi-dimensional 

H[2] The processor geometry is non-planar in a limited sense, 

that it can be stratified into a series of planar layers. 

H[3] Unchanged. 

H[4] Local broadcasting is permitted to cells on the same layer 

or between adjacent layers. 

H[S] Long wires are permitted but should be omitted if possible. 

In the following chapters we will examine new algorithms which make use 

of these properties as well as the original restrictions, emphasis is 

placed on a limited and controlled expansion of rules of systolic 

design based on current research trends. As the technology is not yet 

available our designs are limited to OCCAM testing and so are essentially 

soft-systolic. 



PART 11 

IMPROVEMENTS TO SYSTOLIC ARRAYS 

FOR LINEAR ALGEBRA 



CHAPTER 4 

SOFT-SYSTOLIC PIPELINED MATRIX ALGORITHMS 

" ... or an Opus Of tunes based on canons and fugues" 

Definition: Ca'non (Music) 

piece with different parts taking up the same 

subject sucessively in strict imitation. 

Definition: FUgue (Music) 

Polyphonic composition in which short melodic 

theme ('subject') is introduced by one part 

and sucessiveZy taken up by others and 

developed by interleaving the parts. 

An allegory of systolic computation. 
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In Hwang & Cheng [82] the idea of partitioning matrices to solve 

arbitrarily large linear systems using iteration was considered, while 

Heller [85] considers partitioning large matrices for small systolic 

arrays. The motivation behind these techniques is the technological 

constraints imposed by the physical realization of devices. In this 

chapter we have suggested some new arrays which use the relaxed 

constraints of a soft-systolic frame and which improve efficiency and 

possibly computation time. Two main themes are the combination of 

multi-layer and multi-pass arrays and the use of block partitioning 

to improve efficiency. 

4.1 ADDITIVE SPLITTING AND DOUBLE PIPES 

Additive splittings take the form, 

A. + ••• A , i=l(l)m , 
l. m 

(4.1.1) 

for an nxn band matrix A with bandwidth wand have been applied 

successfully to matrix multiplication problems in order to reduce 

the effective bandwidth of A used in computation. Now, the size of 

many systolic arrays (for matrix problems) are independent of n but 

dependent on w; thus reducing w to w implies that a smaller array can 

be employed. For a splitting this reduction is achieved by choosing 

the Ai to have bandwidths ~i~;' i=l(l)m. Hence, the original problem 

can be solved by solution of the A. subproblems by repeated use of an 
l. 

array of size ". As an example, the matrix vector problem, 

Ax = Y , (4.1.2) 

is solved for ">.1 using the splitting form of (4.1.1) by the procedure 

y = 0 

for i=l to m do y=y+AiX , (4.1.3) 
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where the inner loop is computed by a matrix vector array of the 

form Fig.(3.2.1.3) with w cells, whenw=l, m=w and the solution of 

(4.1.2) is achieved by a sequence of single elemental diagonal type 

matrices, and the array consists of a one cell non-stationary 

arrangement similar to Fig.(3.2.1.1). Alternatively, when w=n and m=2 

dense matrix product can be computed by applications of lower and upper 

triangular matrix vector problems. When W""'N and m=l we have the normal 

systolic array which is applied only once. Computations using (4.1.3) 

for m=l are called single-pass methods and when m>l multi-pass schemes; 

in the former case data is passed through the array only once, whereas 

in the latter case data passes through m times. Consequently multipass 

computations have the disadvantages of repeatedly pumping x and y data 

from the host and increased computation time for extra passes. But 

this is offset by the advantage of fixed sized hardware which can be 

used to solve problems of arbitrary bandwidth by using a variable number 

of passes. 

Splitting techniques can also be used to avoid redundant 

computations (e.g. symmetry properties), increase effective band density 

and improve efficiency. For instance, in the case w=n, m=2 above with 

the array of Fig. (3.2.1.3) with W cells, upper and lower triangular 

computations can be interleaved by filling neutral elements occurring 

in the original input data sequences. Hence, two passes are reduced to 

only one and array efficiency is increased from e=1/2 to e=l. 

The use of additive splittings for mUltipass computations is 

optimised when a balance between the number of passes and the time for 

a single pass is achieved. The number of passes are reduced only by 

increasing w, while the duration of a single pass is only affected by 
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array design. In this section, we propose a splitting which addresses 

both problems simultaneously. This is achieved not by reducing the 

bandwidth of the A" but producing forms which allow the array to be 
L . 

split into disjoint groups of cells which can be mapped onto a multi-

layer layout. As a result more cells can be placed in the same 

effective area by stacking layers, so increasing wand producing 

decrease in m, a side-effect is improved array efficiency and reduced 

computation time for a pass. 

To introduce the splitting, consider the simple problem of 

multiplying an nxn lower triangular matrix L with bandwidth q with a nxl 

vector x, i.e., 
(4.1.4) 

which from Theorem (3.2.1.4) requires q ips cells and time T=2n+q. 

We define an additive splitting with m=2 of the form, 

such that, 

, 
o " 

? R.42 : ... 

I " 

... ... , 

" , 

, 

... ... 

-" , 

0 ' " 

o 

... , ... l'" "-
... R,' 
,--- n,n-2 

, , , 
o 

1 

R. 
nn 

+ ... ... ... ... 

(4.1.5) 

I o 

, , 

Ll contains rq/2l subdiagonals and L
2

, q-rq/i[ subdiagonals. Hence when 

q is even Ll and L2 contain equal numbers of subdiagonals and when q is 

odd, Ll has one more subdiagonal than L
2

• Substituting for L in (4.1.4) 
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produces two subproblems of bandwidth q containing some sparse 

diagonals, written as follows with Yl and Y2 auxiliary result vectors, 

(4.1.6) 

This problem can be solved by two passes using (4.1.3) or 1 pass 

using interleaving which produces the original array timing. A 

superior array is derived by noticing that Ll requires only the odd 

subdiagonals and L2 the even ones, so that each solution of Yl and Y2 

needs to collect only rq/il terms at the most. Consequently the data 

flow can be re-timed to remove all the neutral synchronising elements 

and (4.1.6a) and (4.1.6b) can be solved on arrays with Iq/2i and q-Iq/il 

cells respectively with times bouridEidby T=n+[q/21 as illustrated in 

FigJ4.1.1) for q=5. The time for a single pass is then reduced by 

solving (4.1.4) using two arrays computing in parallel arranged in a 

double pipe format shown in Fig. (4.1.2a). As the timing of the whole 

array is bounded by the cost of (4.1.6a) we have proved the following 

theorem. 

Theorem 4.1.1: An nXn lower triangular matrix vector multiplication 

problem of bandwidth q can be solved using a double pipe in time 

T=n+rq/2l+1 using q ips cells, an adder and one delay cell. 

A simple corollary follows immediately and is stated for 

completeness:-

Corollary 4.1.1: A nXn upper triangular matrix vector problem with 

bandwidth p is solved by a double pipe in T=n+G?/il+1 using pips an 

adder + delay cells. 

The extension to banded matrix vector multiplication follows 

naturally and is illustrated in Fig. (4 .1.2b) . with the corresponding 

theorem. 
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t 1 2 3 

1 R,l1x1 0 0 

2 .I', 22x2 R,31X1 0 

3 R,33x3+R,31x1 R,42 x2 l',Slx1 

4 R,42x2+R,44x4 R,53x3+R,51x1 -
5 R,53 x3+R,51X1 

- -
+R,55xS 

.1',54 

.1',43 .1',52 

.1',32 .1',41 

.1',21 --, - I 
~ , 

x3 x2 xl 

Y1 Y2 
-

t 1 2 

1 R,21x1 0 

2 R,32x2 R,41x1 

3 R,43x3 + .1',41 xl R,52x2 
4 R,54x4+R,52x2 R,63X3 
5 R,65x5+R,63x3 -

FIGURE 4.1.1: Double pipe dataf10w 
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a) L~ = d q=5 
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b)Ax= d 0 0 0 855 
X5 835 845 844 854 853 

Xc 824 834 833 843 842 

X3 813 823 822 832 83' 
X2 0 8'2 8" 82' 0 
X, 0 0 0 0 0 
r-t--- -, ~ ! 

I'r'\ ~ 
_1 

I , 
~ 11 I 

I Ll r- -, I 
I I 

I I 
cJ> L __ 

I I 

I I 
Double IPS Cell L ______ .J 

FIGURE 4.1.2: Double pipe arrays 



178 

Theorem 4.1.2: The multiplication of an nxn band matrix A with 

bandwidth w=p+q-l can be solved on a double pipe with T=n+rw/i1+1 

using w ips cells, one adder and a delay cell. 

Proof: [by construction of the array]. 

The band matrix problem, 

Ax = d , (4.1. 7) 

can be rewritten as a lower triangular problem, 

(4.1.8) 

where L is an (n+p-l) * (n+p-l) lower triangular matrix of bandwidth 

wand x,a: are n+p-l component vectors. Applying Theorem (4.1.1) gives 

T=(n+p-l)+~/2]+l and requires w ips cells an adder and a delay cell. 

Now (4.1.8) has the form, 

1 
~ l r~~ 
!~,~_." 0 II! I 

J I... P .... I 
q I'" ... 

I.......... If 

l I ...'" x a1 ........... ""', Ion 

q '" '<'-'-'-'-"U~ 0] J J 
~ __________ ~ ______ -J' • 

n p-l 

p-l 

0 

l p-l 1 
0 

d
l 

I 
= (4.1.9) 

L has its first p-l rows zero and the splitting (4.1.5) produces two 

similar triangles of size (p-l)/2 as the leading inputs to the 

component arrays of the double pipe which produce only zero results. 

By virtue of the fact that ~/21>(p-l)/2 these preliminary values can 

be overlapped with the initialisation of the array absorbing the 

additional (p-l) cycles and producing the exact theorem timing. 

Comparing the double pipe arrays with their corresponding 
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traditional arrays indicates that double pipes are twice as fast and 

twice as efficient with a negligible hardware overhead of one adder 

and delay register. The double pipe can be represented by a two-layer 

design with one pipe in each layer and x values broadcast between 

layers. All the connections are in this sense regular and each layer 

contains a planar layout, consequently the double pipe is a design from 

a soft-systolic frame (an OCCAM program is given in the Appendix). 

Each layer contains at most half the cells of the traditional 1 layer 

design, so we have produced a design with half the effective area or 

alternatively we can double w to use the same area. The number of 

matrices in an additive splitting like (4.1.1) is then reduced and 

pass time is smaller because we apply the larger double pipe as the 

inner loop of (4.1.3). An additional property is that a I-layer 

design as depicted by Fig.(4.1.2~ could be made using waveguides if 

electro-optical implementation was considered. No cross talk would 

occur because all intersecting lines are orthogonal. 

Let us now consider a more difficult matrix-vector problem 

consisting of a matrix banded about its diagonal and anti-diagonal. 

For reference purposes, the matrix will be termed the X-band matrix 

which reflects its structure, indicated below, 

f PI ~ ( 
P2 • 

ql I r 0 II q2 ~ 
P12 

X = 0 C = (4.1.10) 
------- .. - - - - --

I 
I 

l 
P21 I 

I 

0 I 

j I 

nXn I 
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where wl=Pl+ql-l and w2=P2+q2-1 are the forward and backward band

widths respectively. Many problems give a matrix this structure if we 

are willing to allow some sparseness to be included in the bands. For 

instance constant quindiagonal Toeplitz linear systems derived from 

non-linear partial differential equations under Dirichlet or periodic 

boundary conditions (Evans,[80~) and symmetric linear systems in initial 

and boundary value problems containing fourth order parabolic and 

elliptic partial differential equations again under periodic and 

specified conditions (Evans ~3aD. To solve the X-band matrix-vector 

problem a single pass systolic array must have w=2n-l and T=4n-l. 

Furthermore, the selection of a suitable splitting for a multi-pass 

scheme is more difficult as some diagonals will possess a proportion 

of zero and hence redundant elements. The task is simplified if some 

of the sub(super) diagonals crossing P21 and P12 in (4.1.10) contain 

only zeroes (as is the case in the examples mentioned above). In the 

single pass case, the zero diagonals can be used to replace true cells 

by delay cells as in Fig.(3.2.3.2), but do not affect computation time. 

For multi-pass schemes zero diagonals reduce the number of matrices 

(in a splitting) reducing the number of passes. However by applying 

the double pipe splitting in conjunction with a simple partitioning 

for which an efficient solution to the X-band is easily derived. 

Without loss of generality assume n is divisible by 2 then X can 

be partitioned into four mXm submatrices as indicated by (4.1.10) with 

m=n/2. The matrix vector problem, 

Xu = d , (4.1.11) 

is then given by, 
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b) 
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a) 

b) 

c) 

d) 

and 

e) 

f) 

with 
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} (4.1.12) 

(2) 
d = (d , .... d) or, 

( 1) (1) 
Pllu = c 

(2) (2) 
P12u = c 

(1) 
P2lu = 

(3) 
c 

(2) (4) 
P22u = c 

d (1) (1) (2) 
= c + c 

d (2) (3) 
+ c 

(4) 
= c 

(1) t (2) )t. 
u =(ul ,···,un/2), u =(un l, ••• ,un 

2' 

.!4l n 
2 

1 

~ 
I 

Each subproblem (4.1.13) a-d corresponds to a simple matrix 

(4.1.l3) 

vector problem of bandwidth w
l 

or w
2

' and the simple permutation of 

elements, 
Pll(i,j) = Pll{i,j) 

P12(i,j) = P12 (i,n-j+l) i=l(l)m 
(4.1.14) 

P2l (i,j) = P21(n-i+l,j) j=l(l)m 

P22(i,j) = P22(n-i+l,n-j+l) 

with u (1) (i) = u (i) , -;;(2) (i) = u (n-i+l) } dIll (i) d(2) (i) 
i=l (1) m (4.1.15) 

= d(i), = d(n-i+l) 

'" where a denotes a vector reversed in order. This allows the X-band 

problem to be solved using four passes on a traditional or double 

pipe array with ~max(wl,w2) ips cells. More importantly, the usual 

splitting techniques can be applied to each permuted submatrix 

problem to introduce more passes and reduce hardware. As a result, 

choOSing .r=min(w
l

,w
2

) requires the splitting of only Pil and P22 or 

P2l and P12 depending on which have the largest bandwidth, thus 



minimising the number of additional passes introduced. 

if w=w2 we split I\l and P22 to give, 

- (1) - (m) 
PH = PH + ... + PH 

and P22 
-(1) 

= P22 + ... + 
_ (m) 
P22 , with bandwidths 

Then solve according to the multi-pass procedure, 

Y = 0 

{ -(i) (I)} 
FOR i=l TO m DO Y=Y+Pll u 

(1) - ""(2) 
dl =Y+P12u2 

'" Y = 0 

{ ~.., -(i)~(2)} FOR i=l TO m DO Y=Y+P22 u 

"'(2) ""- (1) 
d =Y+P21u • 

I 

j 
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For instance 

<w2 ' 

(4.1.16) 

An alternative approach which utilises a multi-layer approach to 

the full is shown in Fig.~.l.l. 
2 

This design is a double-double or D -

pipe and can be separated out onto two or four layers depending on 

implementation details. If we assume w=w
l

=w
2 

then a straight forward 

3-D approach produces a four layer design with a maximum of 2 rw/21 ips 

cells on each layer and u broadcast to all the layers. If waveguides 

and electro-optics are adopted to make a double pipe planar, the design 

reduces to two layers with 2w ips cells on each and the local broad-

casting of u. 

Theorem 4.1.3: The matrix vector multiplication problem for an nxn 

X-band matrix with forward and reverse bandwidth w
l 

and w
2 

respectively 

b d . i n w 2 D2 . i i t t 4 can e compute Ln a t me T-
2

+2 + on a -pLpe requ r ng a mOs w 

ips cells six adders and four delay cells (where w=max(w
l

,w
2
». 

Proof: Trace the array operation. 

Assuming all pipes have w cells simplifies synchronisation, but 

if w
l
«w

2 
or vice versa a large number of cells could be wasted. These 
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(2) 
c 

.... (4) 
c 

FIGURE 4.1.3: D
2

_Pipe arrangement a) planar b) multi-layer layout. 



.184 

redundant cells can be exchanged for delay cells to retain 

synchronisation if necessary but a typical periodic matrix will often 

satisfy w
1

=w
2

+2 and the main concern is not the redundant cells but 

utilisation of cells for the sparse anti-diagonal band. 

The D
2

_PiPe design can also be used for multi-pass computation, 

allowing the number of cells to be fixed at 4wfor w<w. In this scheme 

each of the subprob1ems of (4.1.13) are themselves split and in 

permuted form for array input produce, 

-(1) _(m
l

) _ (1) _(m
2

) 

PH = PH + ... + PH P12 = Pl2 + + P12 

(1) 
(m

3
) - (1) (m4 ) 

P21 = P21 + + P21 
P22 = P22 + • •• + P22 

extra null matrices to produce the multi-pass procedure, 

d (1) 

"'"'(2) 
d 

o 

o 

FOR i=l TO m DO 

{ 

d (I)_d(l) -(i) (1) -(i)~(2) 
- +P11 u +P12 u 

aY) _dN (2) -(i) (1) - (ih(2) 
- +P21 u +P22 u 

} 

1 

J 

(4.1.17) 

with Fig.(4.1.~ corresponding to the inner loop allowing simultaneous 

processing of the four splittings, and the total number of passes 

required to solve a general X-band problem of (4.1.11) is reduced. 

A natural question which arises from these experiments is, 

"how far can we decompose a linear systolic array into parallel pipes?" 

The answer is a complex one depending upon the number of layers and 

additional cells we are willing to admit. The use of multi-layers is 

an argument based on the principle that a large design can be folded 
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(or stuffed) into the same effective area. Consequently, a birds-eye 

view of the design reveals only the area of the top layer with 

additional cells hidden on subsequent levels. From an implementation 

viewpoint additional layers can be added so that the effective area 

of each layer is less than the original design, this improves yield 

for a single layer. But now we have to be able to make and stack a 

series of these layers, the effect on yield can only be assessed with 

any accuracy from practical experience which is not yet attainable. 

Intuitively a small number of layers would limit the opportunities 

for further flaws. From a theoretical standpoint the basic principle 

of partitioning in (4.1.10) can be applied recursive1y to each submatrix 

to develop arbitrary depths of parallel pipes. Oifferent types of 

pipe can be related using the On_pipe expression, with 0=2, 0°,01 and 

02_Pipes being the original, double and double-double pipes 

respectively. The next level of recursion after 02-Pipes produces the 

partitions below creating ~x~ submatrices, 
4 4 

I 
P12l 

t (1) I (1) (2) (2) 
Pll 1 P12 Pn 1 P12 
- (1)- T - (1)-

~ ""I - ---
PU 1 (2) (2) 

1 I _ I=~l_ ~ _ P}2_ 
I P21 P22 

1 (4.1.18) - - - ,-- -j - .., -

~ ''', '" (4) (4) 
Pll I P12 PU 

L 
P12 

P21 P22 ---r--- -,- - -

L (3) 1 (3) (4) (4) 
nxn P2l I P22 P21 P22 nxn 

Recursion stops when lxl submatrices occur and there can be at most 

IIog2nl recursion levels. For a dense matrix the starting bandwidth 

is wo=2n-l, and the bandwidth of subsequent submatrices are wl=Lwo/~' 

w2=Lw/2J and generaUy wi+l=Lw/~. The array for recursion level 

i+l is constructed from the array of level i by replacing each ol_pipe 

in the 02_pipes corresponding to each submatrix of level i, by 02-PiPes 
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for the submatrices of level i+l, and inserting extra adders to 

filter the results out of the network. Each ol_pipe of the 

substituted 02_Pipe contains w
i

+
l 

ips cells, 1 adder and a delay. 

2 
Consequently when 2x2 blocks are reached there are (n/2) submatrices 

and corresponding 02_pipes consisting of ol-Pipes with 3 ips cells, 1 

adder and delay, because 4x4 blocks have bandwidth w~7. Thus, lxl 

submatrices have ol_pipes with 2 ips cells implying oD-Pipes of 1 

cell allocated to separate levels. The technique is illustrated by 

Fig.(4.1.4) from which it is clear that at the end of recursion an 

n-layer design results such that one compcnent of the right hand side 

in (4.1.2) with A, a general matrix, output on each layer. There are 

nips cells on each layer which form the leaves of a binary fanin 

adder tree of height h~fiog2nl and containing 2h_l adders. An area 

efficient design is produced by using H-tree layouts for each layer 

and ips cells can be arranged so that the same x" i~l(l)n component 
~ 

is broadcast to leaf cells aligned in the same column through all the 

layers. The leaf cell of layer i also require the elements of row 

i of A which present a Significant communication problem. To 

construct a systolic solution a 3-0 structure like Fig.(S.6.1.1) 

(without routing layers), is required. Each H-tree level is rotated 

to form a column and data communication is achieved by pumping the 

vector x horizontally in one direction and the rows of A in the other, 

such that a complete row or the whole of x enter all the tree leaves 

of a column every cycle. Wherever a row meets x the column tree 

outputs their vector product rlog2nl cycles later, and for all the 

rows to meet x they must be input every alternate cycle. The array 

operation is indicated in Fig.(4.1.5)and the timing is clearly 
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FIGURE 4.1.5, Full tree organisation of recursive method 
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T=2n+llog
2

i11 ' with 2n cycles for all the rows of A to be input and 

jlog 2i11 for the last result to be output. Notice, that each columns' 

leaf cells are active on only one cycle, and that results on the fanin 

tree can be pipe1ined. Thus, the n-column design can be reduced to a 

single H-tree requiring nips cells and n-1 adders to form dense 

matrix vector product in T=n+rLog2n! cycles. 

REMARK: notice that the fanin tree must be a complete binary one to 

accumulate results correctly, consequently when n is odd, A 

must be padded with a zero row and column. 

This latter systo1ic tree technique for computing linear 

recurrences is. well known, and indicates that re timing and re-placement 

procedures can be used to derive arbitrary sequentia1ized and oi_piPe 

schemes for matrix vector problems. Thus, the original 0°_pipe systo1ic 

array is shown to be a special case of the general tree method and 

adopting mu1tipass schemes for 0
1 

and 02-Pipes with w=1 produces trees 

of height h=l and h=2 respectively. 

The double pipe splitting extends in a straightforward manner to 

matrix product computations. In this case the general additive 

splitting is written as, 
m 

c = AB = I 
i=l 

A.B. , 
1. J 

j=l(l)m , (4.1.19) 

for two nxn band matrices A and B of bandwidths w
l 

and w
2 

respectively. 

The double pipe splitting has m=2 and, 

(4.1.20) 

where Ai and B
j 

for n=6 have the forms, 



190 

rll 0 a
l3 

0 a
lS 

,;~ 10 a
12 

0 a14 0 al~ 
0 a

22 
0 a 24 

0 a21 0 a
23 

0 a
2S 

0 

a 3l 
0 a

33 
0 a

3S 
0 a

32 
0 a

34 0 a
36 

Al = 
a46 / A2 = (4.1.21) 

0 a
42 

0 a44 0 a
4l 

0 a
43 0 a

4S 
0 

aSl 0 a
S3 

0 aSS 0 0 a
S2 

0 a
S4 0 a

S6 

0 a
62 

0 a 64 0 a
66 

a
6l 

0 a
63 0 a

6S 
0 

L J J 
and 

fbll 
0 bl3 0 b

lS 
~ ro b

l2 
0 b14 b~1 

01 0 

I 0 b 22 
0 b 24 0 b

26 
b2l 0 b

23 
0 b

2S 
I 
b
3l 

0 b
33 

0 b
3S 

0 I 0 b
32 

0 b
34 

0 b
36 

Bl = 
B2 =!b

4l 

(4.1.22) 
0 b

42 
0 b44 0 b

46 
0 b

43 
0 b

4S 
0 

bSl 
0 b

S3 
0 b

SS 
0 10 b

S2 
0 b

S4 
0 I 

I 
b

S61 

I 0 b62 
0 b64 0 b6~ L6l 

0 b
63 0 b

65 0-' L 
and 

C = Cl + C2 + C3 + C4 
where, 

a) Cl = AlBl b) C
2 

= AlB2 } (4.1.23) 
c) C

3 = A2Bl d) C
4 

= A2B2 

Now consider that the result of product (4.1.23a) has the form, 

cll 0 c
l3 

0 c
15 °l 

0 c22 0 c
24 

0 c 26 

c3l 
0 c 33 

0 c
35 0 

Cl = (4.1.24) 
0 c

42 
0 c44 

0 c
46 

c
Sl 

0 c
S3 

0 c
S5 

c:J Lo c62 0 c
64 

0 

and taking advantage of the zero patterns of Al,B l and Cl produces 

a special hex array with re-timed dataflow as illustrated in Fi~(4.1.6), 
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e.q. AB-C with A and B matrleee from spUttinq of form (4.1.20) 

t-l a13 bll 

FIGURE 4.1.6: Double pipe hex single layer, standard form 
matrix product 
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FIGURE 4.1.6: Cont. 
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FIGURE 4.1.6: Cont. 
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3 IWl~1 rW;1 
which requires at most T- ;,min(l:r '/:2/) ips cycles. This timing 

follows from the facts that only a single neutral element is 

associated with every two genuine input data elements, and the 

effective bandwidths of Al and Bl are bounded by r-:~ and r-:2~ 
respectively. As a result the hex array for producing Cl requires 

only approximately w
l
w

2
/4,cellsquarter that of the normal hex for a 

matrix product and improves efficiency from e=1/2 to e=2/3 and 

computes twice as fast. These advantages are retained for the partial 

products (4.1.23b-d) by converting them to a normal form with the 

same matrix structure as (4.1.23a) using simple computation preserving 

row and column interchanges. 

For (4.1.23b) C
2 

and B
2

, interchanges are performed swapping 

columns i and i+l for i=1(2)n-l producing matrices C
2 

and B
2

• In 

- -(4.1.23c) C
3 

and A2 produce C
3 

and A2 by interchanging row i and i+l 

for i=1(2)n-l, while for (4.1.23d), A
2

,B
2 

and C
4 

are permuted to 

A" " produce A
2

,B
2 

and C
4 

by a two step process, first interchanging rows 

i and i+l of A2 and C
4

, and second swapping columns i and i+l of B2 

and C
4 

for i=1(2)n-l. The resulting normal form of (4.1.23), 

a) Cl = AIBl 

c) C3 = A2Bl 
} (4.1.25) 

can be solved on the same arr~ used for (4.1.23a) using four passes 

and a time T=4(32n)+4min(r-w2~'i:~)""2(3n+min(Wl'W2». That is, using 

twice the time of the original hex scheme, but a quarter of the cells, 

and has the interesting quality of preserving the bound AT2 , as (~) (2T)2= 
4 

2 
AT , where A and T are the area and time requirements given in Theorem 

(3.2.1.6) . 

A Dl_pipe hex design using two layers is constructed by placing 
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these smaller hexes on separate layers and noticing that Cl and C
4 

have the same structure, as do C
2 

and C
3

• Hence two passes form 

the full matrix product by computing Cl and C
4 

on separate layers on 

the first pass and C
2

'C3 on different layers on the second pass. 

Like the double pipe for matrix vector the final results C
l

+C
4 

and C
3

+C
2 

can be ove!lapped with hex operations by introducing an upper 

boundary of r-w;~ + r-w; 1-1 adders to each hexagonal array. Because the 

arrays actually compute using (4.1.25) the order of the matrix elements 

must be restored before the addition takes place. Fortunately the 

localised permutations used to derive (4.1.25) keep the recovery 

- - "-simple, as C
2

'C
3 

and C
4 

have the forms, 

and 

A 

C
4 

= 

1c22 
o IC24 , 

0 c ll ' 0 ____ l_ 
C
42 o :c44 

f21 0; c 23 0: C2S °l 
I 0 c12 ' 0 c14 : 0 c16 

J~4~ -<;4~ -0 :c:s-·~-
o c 32 ; 0 c34 : 0 c36 

- ,- - ,-
c6l 0 ,c63 0 :C6S 0 

, , J 
o c s2 ' 0 c s4 ' 0 c s6 

o :c26 °l , 
cl3 , 0 clsl 
--+----

0 ,c
46 

0 , 
0 c 3l ' 0 c33 ' 0 C3S 

- - - - '- - --' - -- -
c

62 
o IC

64 o : c66 0 J , 
Lo CSl : 0 CS3 : 0 css 

Simply swapping the diagonal elements of each 2x2 block in C
3 

and 

1\ 
C

4 
and adding to Cl and C

2 
(or vice versa) produces the correct 

result, and can be achieved using only a single delay with each adder 

(see Fig. 4.1.7). 



Cin layer 1 

Cin layer 2 

a) Adder delay arrangement 

----, 
I I) 

I I 
r---'1 
I I) 

___ J 

r-=--, 
I 

c22 I 
I-----t 
I - I 

cll 
L ___ .J 

--r-r-_=-_ ,---IEf 
c 

I 33 I 
r ----I 

- I 
I c

44 ___ ...1 

c
22 

c
33 

cll c
44 

1-:,--, 
I cll I 
1--- ---I 
I - I 
I 

r---, 

r=--, 
I c 44 I 
1-----1 
I I 
I I 

b) Production of full result for main diagonal column 
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FIGURE 4.1.7: Snapshots of double pipe hex adder/delay arrangement 
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Theorem 4.1.4: The matrix product of two n<n bandmatrices A and B 

of bandwidth w
l 

and w
2 

can be 

T=3n+min(wrw
2

)+2 cycles using 

adders and delay cells. 

Proof: 

the two layer design with 

h 1 . 2 (3n on eac ayer g~ve T= :2 

and 

An extra two cycles are added for delays through the adders. 

It also follows that a n2
_PiPe hex can be formulated using four 

layers with a quarter size hex array on each layer and using a single 

rw l rw~ 
pass to give a time T-3; +min( J:f-J ' I ; I) cycles. The main result 

however is the above theorem indicating that a nI-PiPe can compute 

just as fast as the ordinary scheme with only half the hardware, and 

improved efficiency. 

4.2 BLOCK SCHEMES FOR SYSTOLIC ARRAYS 

The double pipe splitting relies on the fact that matrix 

multiplication problems can be partitioned into independent subtasks 

which fall neatly into multi-layer arrangements. Arrays involving 

feedback such as the LV factorisation hex of Fig.(3.2.2.3) and the 

substitution array in Fig.(3;2.2.1) do not partition or split directly, 

and create difficulties in allocating cells to layers and retiming 

dataflow, anti alternative methods must be sought to improve efficiency. 

For the substitution array double pipes can be applied indirectly, 

by solving a modified form of the problem discussed in Robert & 

Tchuente [841, and summarized below. If L is an nxn lower triangular 
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matrix of band width q, and D is the diagonal matrix formed from L, 

then the substitution process, 

Lx = b , (4.2.1) 

is modified by putting, 

-1 
x = D Y (4.2.2) 

and, 
-1 

By = LD Y = b , (4.2.3) 

essentially dividing columns by their corresponding diagonal values 

to normalise L, and then, 

with, 

p = 

L 

y = PZ , 

Cz = BPZ = b 

1 

o 

o~ 
-b n,n-l 

l 

I 

I 
I 
J 

(4.2.4) 

(4.2.5) 

(4.2.6) 

Thus, C has a unit diagonal and null first subdiagonal and is solved 

using the double pipe shown in Fig.(4.2.l). Fortunately the above 

procedure can be overlapped with array computation by the use of 

additional preprocessing cells (see Robert & Tcheunte [84]). 

In the case. of LU factorisation Robert [85] proposed an explicit 

2x2 block form of computation and a modified hexagonal array yielding: 

Theorem 4.2.1 [2x2 block LU]: If A is an nXn band matrix with band-

width w=p+q-l, an array with no more than pq processors can compute 

the 2X2 block LU factorisation in T=2n+min(p,q) cycles including 

input/output time with efficiency e=1/2. 
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a
64 

a
74 

a
73 

a S3 a
63 

a
62 

a42 a
S2 

a
S1 

a
31 

a
41 
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V /~---. 
'i' 
• 

a
S3 

a
S2 

a
92 

an an a S1 
a

61 

r rL-_ .... 

· , r- - L -1 l ___ ..r-..J'."-l-__ .r.....31~ -" •• 
I I • • I-__ ~. 

: ~------~ ~---. ~--- ~--L _ - _ L-_~ '-_--' L-_...J 

b 

Y; Y~ Y~ Y~=O 

Yout ... 
I 

r-L-"\ . : 

1 
Y =0 

4 6 

t i4--y 
' ___ --' in 

I 
I 
2 

Y 

1 2 x =b-(y +y } 
out 

FIGURE 4.2.1: 

Yout=Yin 

Solution of Ly=b by a double pipe 

(from Robert [SS]) 
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In this section we extend ideas of explicit block computation 

to examine higher block strategies and multi-layer arrays. This is 

accomplished by introducing the block hex cell which implements a 

block inner product using kxk point inner products for a kxk block, 

with the hardware equivalent to kXk inner product cells. The double 

pipe schemes improved efficiency by removing the neutral elements in 

input sequences, here the underlying architecture is adjusted to give 

better hardware performance and decreased computation time. To 

illustrate the method consider matrix multiplication again. 

4.2.1 Block Matrix Multiplication (BMM) 

Fig(3.2.l.6) and Theorem(3.2.L6) give the structure, timing and cell 

requirements of banded matrix multiplication for the lXl block or 

point case. The same architecture is easily generalised to the BMM 

methods creating a generic block array form by interpreting each 

point hex cell as kxk block-hex containing kxk ips cells. Each data 

element of the input is replaced by a kXk block of elements read in 

unit time (an ips cycle); and for k~3 blocks are separated by k-l 

synchronising neutral blocks. A corresponding generic timing theorem 

is then given by: 

Theorem 4.2.2 [kxk blocks BMMJ 

Let A and B be two nxn matrices, partitioned into kXk blocks with 

block bandwidths W
l 

and W
2 

respectively. Then using a network of w *;/ 1 2 

hexagonally connected block-cells the product A"B can be found in, 

{ 

k (n/k) 

3 (n/k) 

+ kmin(w
l

,w
2

) + k-l 

+ kmin(w
l

,w
2

) + k-l 

k>3 
(4.2.1.1) 

k{:3. 
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Proof: (By construction) 

(i) With k=l, T=3n+min(w
l

,w
2

) and requires wl*w2 cells the result 

of Theorem (3.2.1.6). 

(ii) When k=2 (2x2 blocks). The block ips computation has the form, 

rl c;J 101 o~ lal a~ 
-* 

ft.l 

"J cJ 

= 

b 
+ I a~ t3 t3 

c
4 L3 

b
4 

(4.2.1.2) 

cl and c
3 

are generated using a pipelined tree arrangement 

equivalent to two point ips cells and three point ips cycles. 

a
3 

a
l 

* 
b

l 
b

l 
+ t 

a4 . a
2 * + 

b
3 

b
3 

c
3 cl 

FIGURE 4.2.1.1: 2x2 block ips segment 

Le. cycle 1 to = al b l +a
2
b3 tl=o 

cycle 2 tl = to+c l , to = a 3b
l 

+a
4
b3, result cl 

cycle 3 tl = to+c3 
result c

3 
• 

The latency of the cell is two point ips cycles and a second tree 

segment is operated in parallel to form c
2 

and c
4 

giving a final cell 

hardware requirement of 2x2=4 point ips cells. Now consider a column 

of block hex cells running vertically through the array and numbered 

from bottom to top. The computation of cell i can be overlapped with 

the start-up of cell i+l and the result sequence re-synchronised by 

delaying c
ij 

blocks by one cycle. It follows that the delay through 

the array is 2min(w
l

,w
2

) ips cycles and a total of 3rn/2l+l cycles are 

required to output the rn/2l c
ij 

blocks. Hence, 

(4.2.1.3) 
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(Hi) For k=3 (3x3 blocks), a 3x3 block-hex cell is formed from 9 

point ips cells using three pipe lined tree segments each 

equivalent in hardware to 3 point ips cells. The block hex 

computes, 

fl 
c

2 
c

3 rl c
2 

c
3 

a
l 

a
2 a;l b

l 
b

2 
b

3 
I 

~. Cs c
6 

= c
4 Cs c

6 + a
4 as a

6 *" 
b

4 
b

S 
b

6 

C
7 ca c

9 
c

7 ca c
9 

a
7 aa a

9 
b

7 
b

a 
b

9 L L :J :J 

and c l ,c4 and c7 are computed on a single segment structure. 

* 

* 

* 

FIGURE 4.2.1.2: 3x3 block ips segment 

with c 2,cS,ca and c 3 ,c6 ,c
9 

evaluated on the remaining segments. Each 

segment requires a total of five point ips cycles, viz., 

Step 1 t (0) = a *b + a
2 

*b
4

, t (1) = a *b 0 1 1 0 3 7 

Step 2 tl = t (0) +t (1) t(O) = a *b +a *b t (1) = a *b o 0' 0 4 1 S 4' 0 6 7 

Step 3 t2 = tl+cl , tl = t (0) +t (1) (0) 
a

7
*b

l
+a

a
*b

4
, o 0' to = 

(1) 
a

9
*b

7 to = 

Step 4 t2 = t
l

+c
4

, tl = t(l)+t(l) 
o 0 

Step S t2 = t
l

+c
4 
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From which we conclude that every k=3 cycles, the hex is ready to 

receive its next block input. For a column of cells numbered bottom 

to top when cell i completes Step 3, cell i+1 can be finishing Step 2, 

and requires cl on the next step. Hence operation of cell i and i+l 

can be overlapped, with cell i+1 starting only a cycle after cell i. 

As cells have latency of three cycles and c
ij 

blocks must be delayed 

by two cycles initially, 

(4.2.1.4) 

(iv) kxk blocks (for k>3). Again, a block hex with equivalent 

hardware of kxk point ips cells is constructed from k pipe1ined 

tree segments using k point ips cells. The latency of the block 

hex is at most k cycles. Results are output on successive cycles 

giving a total computation time of 2k-1 point ips cycles and the 

multipliers of the tree are free after k cycles. C
ij 

blocks 

must therefore arrive every k cycles with k-l neutral blocks 

between inputs. Cell i+1 can still start only a single cycle 

after cell i starts, and the c
ij 

must be delayed initially by 

k-1 cycles. Hence the timing 

Tk = krn/kl + kmin(w
1

,w
2

) + k-1 , 

[End of Proof]. 

(4.2.1.5) 

Using this result and additional properties of the generic BMM 

array the optimal block size for a matrix product is determined as 

follows: 

Block Efficiency: the point scheme has e=1/3 and a point hex computes 

once in every three cycles. By counting cycles requiring ips 
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computations and overlapping successive block computations in a single 

block-hex, 2x2 blocks have e=2/3 and 3x3 blocks e=3/3=1. For kxk 

blocks when k>3 only the number of cycles required to start up all the 

array cells is reduced, as the block bandwidths w
l 

and W
2 

are rwl/kl 

Iw
2
/kl, with w

l 
and w

2 
the bandwidths of the point case, 

(4.2.1.6) 

is the minimum time we can hope for when the matrices are really 

banded, producing an O(n) scheme in contrast to 0(3n). 

Block hexs with balanced binary tree segments can be introduced to 

reduce propagation delay through the cell and improve overall array 

performance. However, for k~4 a binary tree will have latency Ilog2kl+l 

and produces, 

T 4 = k [n/kj+ (fiog
2
k1+l) min(w

l
,w

2
) + k-l • 

As fiog41=2 it follows that the term containing min(w
l

,w
2

) is 

reduced even though cell latency in T3 and T4 are the same. For 

large n and really banded systems the saving is asymptotically 

(4.2.1.7) 

negligible, for dense systems binary tree arrangements can reduce 

time significantly but at the cost of increased block cell complexity. 

Generally, however 3x3 blocks tend to outperform higher blocks even 

with balanced trees. 

Array layout can be achieved in a multi-layer arrangement in two main 

ways. A natural method is to allocate each tree segment to a 

separate layer so that only the a
i 

have to be broadcast between levels. 

Alternatively, each segment can be aligned vertically with one leaf 

multiplier on each level. Both schemes produce an effective area on 

th 
each layer l/k that of the point case but the latter restricts 
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broadcasting to the plane of each layer and requires only local inter-

layer connections for tree fan-in. 

A further drawback is the increased number of inputs and outputs. 

For a kxk block input to be read in unit time we require kxk inputs, 

and although more connections are available in a multi-level approach 

small block size simplifies matters. Fortunately, requirements can be 

reduced to only k connections for each block input by utilising the 

tree pipeline features. At anyone time there are only k c .. elements 
l.J 

inside a block hex, thus k groups of k inputs can be pipelined by 

filling the neutral block spaces with the k-1 gaps left after the first 

row. A similar argument is used for A .. , but the B .. must all be present 
l.J l.J 

at the start of cell computation, and so must be retimed to input the 

first (k-l) groups before the Aij elements start to arrive. When k~3 

these folding arrangements follow naturally from the dataf10w of the 

point array supporting the efficiency argument, for k>3 folding is 

less intuitive. We conclude that the optimal area time trade-off 

occurs for 3x3 blocks for BMM. 

4.2.2 3*3 Block LU Factorisation 

Theorems(3.2.2.3) and (4.2.1) give timings for point and 2x2 LU 

factorisation in the light of Theorem(4.2.2) and with a choice of 3x3 

blocks for BMM arrays, does a similar relationship hold for block LU 

factorisation (BLUF) arrays? To answer this question we develop a 3x3 

BLUF array. 

Assuming that A is an nXn irreducible diagonally dominant or 

symmetric positive definite band matrix of bandwidth w=p+q-l, a 3x3 

BLUF scheme is derived as follows. First A is partitioned into a 3x3 
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block matrix with bandwidth >i=r+s-l with p~3r and q~3s and when n=3m 

has the form,. 

fAll A12 AIr 
0 

A21 

I 
A ; ASl 

L~ AmmJ 

Choosing All as the first pivot we produce, 

A = 

I 
L 

------J 

nxn 

I sI I 

L~.- ,J l ;~ 
where the blocks in A(2) have been modified and, 

LilAll = -Ail i=2(1)s • 

(4.2.2.1) 

(4.2.2.2) 

(4.2.2.3) 

Continuing the process on the submatrices A(i) for i=2(1)m-l produces 

the required block LU form. For purposes of illustration, let A be a 

6x6 matrix then, 

II ~ 

Al;1 r~l l 0 

~u A12 

bl A2~ = (4.2.2.4) 
I A21 A22+L21AI~1 
J L 

with each A, ., 
~J Lij 3x3 blocks, 

L21All = -A21 + L21 = 
-1 

-A
21

A
ll 

(4.2.2.5) 

and 
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t' 
b

l ~ -1 
= %; a2 

1 
All b

2 
C

2 
= -X (4.2.2.6) 

D 

a 3 
b

3 
c

3 
where, L _I 

D = allal+a12a2+a13a3 

and a
l 

= (a22a33-a23a32), a
2 (a23a31-a21a33) , a

3 
= (a~1 a 32 -a22a 31 ) 

b l (a13a32-a12a33), b
2 

= (a11a33-a13a31) , b
3 

= (a12a21-alla32) 

Cl = (a12a23-a13a22), c2 
= (a13a21-alla23) , c

3 
= (all a 22 -a12a21) 

and r4l a4~ b
l 

~ 

a
42 

a
l Cl 

D.L21 = a
sl 

a
s2 as3 1 a

2 
b

2 
c

2 
(4.2.2.7) 

a61 a
62 a63 1 a

3 
b

3 
c

3 L .::J L _I 
to compute the modified A22 we form, 

(4.2.2.8) 

which can be computed in six steps, 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

compute bl , b 2 , b3 , D = allal+a12a2' tl = a13a 3 

D·~41 = a41al+a42a2' t2 = a43a 3 

(and D.ts1 ' D.~61 similarly). 

compute Cl' c2 ' c 3 ' a14 = a14/(D+t1), D·~41 = D·~41+t2 

D·~42 = a41b1+a42b2' t2 = a43b3 

(D·~s2' D·~·62' "'ls,a16 similarly). 

compute a 24 = a
24

/(D+t
1
), D.t

42 
= D.t

42
+t

2 

a 44 = a44-D·~·41*a14' a4s = a4s-D·~·41*a1s' a 46 = a46-D·R..41*a16 

(D·~s3' D·~63' a2s,a26,as4,ass,as6,a64,a6s,a66 similarly) 

compute a34 = a 34/(D+tl)' D·~43 = D·~43+t2 
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a44 = a44-0·~42*a24' a 45 = a45-0·~42*a25' a46 =a46-0·~42*a26 

(and others) 

a 44 = a44-0·~43*a34' a 45 = a45-0·~43*a34' a46 = a46-0·~43*a36 

(and remaining elements of A
22

) • 

Thus, six point ips steps are required to update a single 3x3 block 

assuming computations of a single step are performed in parallel. On 

the seventh cycle, A22 becomes the new pivot and defines the feedback 

cycle time of the systolic array. Hence All and A22 must be separated 

by six cycles, and after 6(m-l) cycles block A becomes the pivot. 
nun 

The overall structure of the array is shown in Fig.(4.2.2.1) and 

is a modified version of the array in Robert [851, extra cells can be 

added to the right upper boundary to compute LOU instead of LU. As a 

guide cells compute as follows:-

(i) 

(ii) 

The upper boundary to the left forms Li' from O.L" (i<j) 
J 1J 

The second line of cells on the upper boundary and to the 

left compute O.L
ij

, cells to the right (1/0) (Ai~)) for i~j 
-1 

and the centre Aii and o. 

The remaining cells are block ips containing the equivalent of 9 point 

ips cells each, and are described below. 



Cell Definitions 

OUT-N 

OUT-E 

OUT-SW 

IN-S 

OUT-N 

OUT-E 

OUT-SW 
IN-S 
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Center lDeterminant) Processor 

t: INS a1 ,a2 ,a3 ,.a 4 ,as ,a6 ,a7 ,as ,ag 

t1=aSa9-a6aS' t2ca6a7-a4a9' t3=a4aS-aSa7 

t+11 OUTSW t 1 ,t2,t3 
t1=a1t1+a2t2' t2~a3*t3 

t 4=a3aa-a2a9 , tS=a1a9-a3a7' t6=a2a4-a1aS 

t+2: OUTN a1,a2,a3,t1,t2 

OUTSW t
4
,t

S
,t

6 
- OUT E t

1
,t2 

t7=a2a6-a3aS' ta=a3a4-a1a6' t 9=a1aS-a2a 

t+3: OUTSW t 7,ta ,tg 
OUTN a4 ,aS,a

6 
t+4: OUTN a 7,aa,ag 
t+S: 

t: 

t+l: 

t+2: 

Right Processor IUpper Boundary) 

INS a1,a2,a3,a4,aS,a6,a7,aa,ag 

INW b,c 

a1=a1/b+c, a 2=a2/b+c, a3=a3/b+c 

OUTN a
1

,a2,a
3 

OUTE b,c 

OUTSW a1 ,a2 ,a3 
a4=a4/b+c, as=aS/b+c , a6=a6/b+c 

t+3: OUTN a4 ,aS,a6 
OUTswa4 ,aS,a6 

a7=a7/b+c, aa=aa/b+c, ag=b+c 

t+4: OUTN a7 ,aa,ag 
OUTSW a 7 ,aa,ag 

t+S: 

Left 12nd Line Upper Boundary) 

t: INS a1,a2,a3,a4,aS,a6'~7,aa,ag 

INNE b,c,d 

t ll) - d 1 -a3 

t ll) d 2 =a6 

t ll) d 
3 =ag 



OUT-N 

IN-NE 

OUT-SW 

ru-s 
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t+ll OUTSW b,c,d 

t+2: 

t+3: 

t+4: 

t+S: 

INNE e,f,g 

(0) 
t4 "ea1 +fa2 , 

(0) 
ts =ea4+faS ' 

(0) 
t6 =ea7 +faS' 

OUm.. t(2) t(2)~(2) 
... 1 ' 2 1'-3 

OUTSW e,f,g 

INNE h,i,j 

OUTE t (2) t(2) t(2) 
1 ' 2 ' 3 

t(2)"t(0)+t(1) 
1 1 1 

t(2)=t(0)+t(1) 
222 

t(2)=t(0)+t(1) 
333 

(0) h i t(l)=ja t(2)=t(0)+t(1) 
t7 = al + a2 , 7 3' 4 4 4 

(0) i (1) t(2)=t(0)+t(1) 
ts =ha4+ as' ts =ga6 , S S S 

t (O)-ha +ia t(l)=ga t(2)=t(0)+t(1) 
9 - 7 S' 9 9' 5 S S 

OU'I'N t(2) t(2) t(2) 
4 ' S ' 6 

OUTSW h,i,j 

OUTE t(2) t(2) t(2) 
4 ' S ' 6 

t (2) =t (0) +t (1) 
777 

t (2) =t (0) +t (1) 
S S s 

t (2) =t (0) +t (1) 
999 

OU'I'N t(2) t(2) t(2) 
7 ' s ' 9 

OUTE t(2) t(2) t(2) 
7 ' S ' 9 



OUT-N 

IN-NE 

IN-W OUT-E 

OUT-SW 
IN-S 

OUT-N 

OUT-SW 
IN-S 

211 

Block IPS 

- - - - - - - - -t: 

t+l: 

t+2: 

OUTN Al,A2,A3,A4,AS,a6,a7,ae,ag 

INS al,a2,a3,a4,AS,a6,A7,ae,Ag 

OUTE b
3

,b
6

,bg 
OUTSW c

7 
,Ce ,cg 

t+31 INW b
1

,b4 ,b7 
INNE c

l
,c2 ,C

3 
A1=a1+b1c1 , A2=a2+b1c2 , A3ca3+blc3 

a
4

=A
4

+b
4

c
1

, A
S

=a
S

+b
4

c
2

, A
6

=A
6

+b
4
c

3 
A

7
=A

7
+b

7
c

1
, a

e
=A

e
+b

7
c

2
, Ag=ag+b

7
c

3 

t+4 I INW b
2 

,b
s 

,be 

INNE c
4

,c
S

,c
6 

OUTE b
1

,b
4

,b
7 

OUTSW c
4

,cs ,ce 
A

1
=a

1
+b2c

4
, a

2
=a2+b2c

S
' a

3
=a

3
+b2c6 

a 4=a4+bsc4 , as=as+bscs ' A6=a6+bs c6 
a7=a7+bec4 , a8=~e+becs' 8 g=ag+bec6 

t+s: INW b
3

,b
6

,bg 
INNE c

7
,ce,cg 

OUTE b
2

,b
s

,b
e 

OUTSW c4 ,cs ,c6 ' 

a 1=al +b
3
c 7 , a

2
=a2+b3ce , A3=a

3
+b

3
c! 

a 4=a4+b4c7 , a s=as +b4ce , ~6=a6+b4c! 

a 7=a7+bgc 7 , ae=ae+bgce , ag=ag+bgc! 

Center cell (1st Line Upper Boundary) 

t: 

t+l: 

t+2: INS al,a2,a3,tl,t2 

D=tl +t2 
t+3: OUTN a

l
,a

2
,a

3 
OUTSW D 
INS a

4
,a

S
,A

6 
t+4: OUTN A

4
,a

S
,A

6 
INS a

7
,ae,ag 

t+S: OUTN a 7 ,ae,ag 



OUT-sW 

OUT-N 

IN-NE 

IN-S 
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Left Processor (1st Line Upper Boundary) 

t: 

t+l: 

t+2: INNE 0 

INS 4
1

,42 ,43 
4

1
=a

1
/0, a2=4

2
/O, a

3
=a3/0 

t+3: INS a
4

,a
5

,a6 

t+4: 

OUTN 4
1

,a
2

,a
3 

a
4

=a
4
/o, a s= a

5
/o, a

6
=a

6
/0 

a
4

,a
5

,a
6 

a
7

=a
7
/o, 

OUTN a
7 

,as ,a9 

The input format for the array is given in Fig.(4.2.2.2), where 

each data entry is a 3x3 block of elements. Computation starts when 

All reaches the determinant cell, requiring a delay of 3min(r,s) for 

it to filter up through the array. As the last pivot block A leaves 
mm 

the determinant cell after 6m=6(n/3) cycles, the total computation 

time is T=2n+3min(r,s) and when p=3r and q=3s T=2n+min(p,q). We also 

see from the cell definitions that each cell computes fully for 

approximately three cycles in six, produCing an efficiency of e=1/2. 

Theorem 4.2.2.l:[3x3 BLUF] The 3x3 block LU factorisation of an nxn 

band matrix A can be computed in T=2n+min(p,q) with efficiency e=l/2 

using rs block ips cells, where p=3r, q=3s. 

Comparing this theorem and theorem (4.2.1) we find that changing 

from 2x2 BLUF to 3x3 BLUF has no benefits in computation time or 

efficiency. The result is interesting because it indicates that the 

increases in efficiency and computation apparent in BMM arrays do not 



left centre right 
__________ -A _________ ~ 

~------.------~------

D first line processor 

o second line processor 

o block IPS cell 

FIGURE 4.2.2.1: Arrangement for 3*3 block LU factorisation 

{with p=12, q=12, w=23} 
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Array 

4.2.2.1 

- A -33 

Aij = 9 elements corresponding to block Aij 

(can be input in parallel or sequentially 

depending on bandwidth of the array and 

cell structure) 

214 

N.B. cell structure design implies parallel I/O i.e. 9 input lines per block. 

FIGURE 4.2.2.2: Input format for 3*3 LU systolic array 
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carry over to the BLUF methods, even though the modification part of 

the BLUF hex is essentially a matrix product form. This mismatch in 

timings results from feedback in the array and can be understood by 

considering the smallest feedback loop of the array denoted by the 

directed graph 

NODE A = computation of determinant and inverse of a kXk matrix 

NODE B = computation of D.L
ji 

part of new multiplier matrix 

NODE C = computes (l/D) Aij part of modification matrix 

NODE D actually computes A, ,=Aj ,-D(L 'i)*(l/D)A" 
JJ J J ~J 

The times TABD and T
ACD 

represent the number of point ips cycles needed 

to traverse the cycle ABD or ACD and return to A, hence the minimum 

time for a complete block modification, is 

~ = MAX(T ,T ) = TABD ABD ACD 
(4.2.2.9) 

This is also the time between block inputs, and directly determines 

array performance. To improve on the point LU scheme we must satisfy, 

1!! < 3n -> .1 < 3 
k k 

(4.2.2.10) 

For the 2x2 block scheme k=2 and ~=4 giving 4/2=2<3 and for 3x3 blocks 

k=3, $=6 giving 6/3=2<3, thus to improve on the 2x2 block scheme $/k<2 

must hold. 
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Now suppose the computation starts at node A, then this node must 

compute: 

(i) The first column of the product D.X where (l/D)*D.X is 

the inverse of the pivot block 

(ii) As many terms of D as possible 

before nodes Band C can start and denote this time by ~l' Node B 

must compute the first column of D.L
ji 

before Node D can begin 

operation. If each column of D.L .. is computed in parallel using a 
J~ 

binary tree layout the latency of the node is ~2= iiog2kl. 

Then Node D requires an entire block ips operation to be performed, 

and takes ~ =k cycles as a binary tree format cannot be used (observe 
3 

the operation in the 3x3 case). 

Consequently for kxk blocks, 

TABD = ~l +~2 +~3 = ~/ liogll +k 

It follows from (4.2.2.10) that, 

TABD 
k 

(4.2.2.11) 

(4.2.2.12) 

for an improvement on 2x2 block schemes. If we consider 4X4 blocks 

k=4 then (4.2.2.12) yields, 

TABD 
-k-= (4.2.2.13) 

implying that ~1<2 or ~l=l for a whole number of cycles. Computing 

the algebraic form of the 4x4 D.X matrix confirms that a single D.X 

element, even when binary fanin trees are used, requires at least two 

sequential multiplications. Thus, ~1~2 and 4x4 BLUF schemes cannot 

improve on 2x2 schemes. Notice that this statement is valid even if 

unlimited hardware is allowed in the computation of D.X by node A. 
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Corollary 4.2.2.1 BLUF arrays for kxk blocks where k~4 cannot improve 

timing and efficiency over 2x2 or 3x3 BLUF arrays. 

Finally we consider the hardware requirements for 2x2 and 3x3 

BLUF arrays. In the following discussion the array architecture in 

Fig. (4.2.2.1) will suffice as a generic block LU matrix architecture. 

For the 2x2 scheme we assign hardware requirements of cells as 

follows:-

(i) block ips cell = 4 point ips cells 

(H) processors of 2nd line-to left = 4 " " " 

(Hi) processors of 2nd line-to right = 2 " " " 

(iv) processors of 1st line-to left = 2 " " " 

(v) centre processor (2nd line) = 2 " " " 

(vi) centre processor (1st line) = none (delay cell) 

Notice that omitting the processors of the first line Fig.(4.2.2.1) 

is a skewed rectangle with dimensions rand s. Hence amalgamating 

(iii) and (iv) gives a simple hardware bound on 4rs. NOW, the nxn 

matrix A has bandwidth w=p+q-l and rand s must be the smallest 

integers such that: 

( 2r A full 
r 

26 A full 

I 
p = i 2r-l p odd q = i 2s-1 q odd 

2r-2 p even 2s-2 q even t t 

giving block bandwidth ~r+s-l. From Theorem (3.2.2.3) the point 

case requires pq point ips cells, so to save or use equal hardware 

in 2x2 schemes, 
pq ~ 4rs (4.2.2.14) 

It follows immediately that when A is really banded and p=2r-l, q= 2r-l 

that an extra 2r+2s-1 point ips cells are required in the 2x2 case, and 
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Table(4.2.2.l) indicates overheads for general rand s. 

Similarly for 3x3 blocks hardware requirements are assigned as 

follows:-

( i) Block ips = 9 point ips 

(ii) 2nd processor line (left) = 9 " " 

(iii) 2nd line processor (right) = 3 " " 

(iv) 1st line processor (left) = 3 " " 

(v) centre processor 2nd line = 9 " " 

(vi) centre processor 1st line = 1 adder 

(amalgamated with (v» 

This time when (iv) and (iii) are amalgamated they produce a count of 

6 point ips, to simplify the argument we add an additional 3 ips to 

give uniform cell allocation. For 3x3 blocks rand s must be the 

smallest integers such that, 

3r A full 3s A full 

3r-l 3s-l 
p = , q = 

3r-2 3s-2 

3r-3 factor of 3 35-3 factor of 3 

consequently pq ::: 9rs , (4.2.2.15) 

and Table(4.2.2.2)gives hardware overheads for different rand s. 

Intuitively the additional hardware occurs because the addition 

of a sub (super) diagonal adds a column or row to the rectangle of cells. 

For the point case, these additions are rows and columns of point ips 

cells, whereas in the 2x2 block scheme 4-point ips cells are incorporated, 

and 9-point ips cells for 3x3 blocks. This applies even when the 

outer blocks of the band include some zero sub (super) diagonals which 

the point scheme exploits. Also, notice that the values in Table 
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(4.2.2.1) are weak lower bounds as the amalgamation of the 1st line cells 

is only exact for r=s. Generally when s>r and extra 2(s-r) point ips 

cells are required to fill out the remaining processors on the 1st 

line to the left, and for s<r,2(r-s) point ips cells must be removed. 

The bounds in Table(4.2.2.2)are weak upper bounds as we introduced an 

extra 3(r-l) point ips cells to simplify calculations. It follows 

that the boun:lS holds for 2r~s, and for s>2r 3 (s-2r) point ips cells must 

be added to the architecture. Fortunately s"r is often the case and 

the bounds are quite accurate, and we can conclude from the tables 

that BLUF schemes only use the same hardware as the point scheme when 

the matrix A is full. In fact the 3x3 case saves n-3 

point ips cells and so uses less hardware than the 2x2 case; but for a 

full matrix o(n2) point cells are required and the saving is negligible. 

2x2 blocks 

~ 2s 2s-1 2s-2 

2r (IJ 2r 4r 

2r-l 2s 2r+2s-1 4r+2s-2 

2r-2 4s 2r+4s-2 4r+4s-4 

TABLE 4.2.2.1: Lower bound on additional point ips hardware in 2x2 

block LU array than in point scheme 

3x3 blocks 

~ 3s 3s-1 3s-2 3s-3 

3r (Il 12r 6r 9r 

3r-l 12s 12r+12s+8 6r+12s-2 9r+l2s-3 

3r-2 6s l2r+6s-2 6r+6s+4 9r+6s-6 

3r-3 9s 12r+9s-4 6r+9s-6 9r+9s-9 

TABLE 4.2.2.2: Upper bound on point ips hardware added for 3x3 

block LU than for point LU scheme 
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4.2.3 Complex Matrix problems 

To conclude this section on block partitioning we briefly 

consider systolic arrays for complex matrix product and LU factorisation, 

where matrix elements have the form, 

I 
(1) real 

a
kj 

= 
a
kj (4.2.3.1) 
(1) i (2) 

akj + ~j complex 

(1) 
where akj 

( 2) 
,a

kj 
ElR, and i=r-I, and the basic complex inner product 

for complex numbers (e+fi), (a+bi) and (c+di) is the 2x2 form, 

(4.2.3.2) 

(e+fi) = (e+fi) + (a+bi) * (c+di) 

Hence a nXn complex matrix product is translated to an (2n)x(2n) real 

matrix product by expanding each complex element to a 2x2 real matrix. 

A further re-ordering of rows and columns in the (2n)x(2n) matrix 

gives a partitioned form, 

[~_L~BJ 
CB : A-J 

(4.2.3.3) 

(1) 
with A,C and AC-BD corresponding to the a

kj 
(or real) components of 

the matrix elements and B,D and BC+AD the a~~) (or imaginary) 

components. Using the symmetry property only AC-BD and BC+AD need to 

be calculated and can be performed with only 3 nxn real matrix 

multiplications of the form, 

a) Ml = p(l)c, b) M2 = BP(2), c) M3 (4.2.3.4) 

where pIll = A-B, p (2) = C-D, p (3) = A+B (4.2.3.5) 

From the construction of (4.2.3.3), A,B and C,D have the same 



221 

bandwidths of their corresponding complex matrices, i.e. w
l 

and w
2 

respectively. As matrix addition and subtraction do not affect the 

bandwidth p(l), p(2) and p(3) have bandwidths w
l 

and w2 • 

Consequently construction of Ml , M2 and M3 can be interleaved on a 

point hex array described by theorem (3.2.1.6) to give efficiency e~l 

without increasing computation time significantly when the 

construction of p(l) , p(2) and p(3) is overlapped with the array 

calculation. 

Theorem 4.2.3.1: The matrix product of two nXn matrices A and B with 

bandwidths w
l 

and w
2 

is performed in T~3n+min(wl,w2)+4 ips cycles 

using w
l
w

2 
ips cells and w

l
+w

2
-l pre(post) processing cells. 

Proof: (the array is shown in Fig. (4.2.3.1». 

From the above discussion M
l

, M2 and M3 are computed in T~3n+ 

min(w
l

,w
2

) using interleaving and w
l
w

2 
point ips cells. It remains 

(1) (2) (3) 
only to explain how P ,P and P are produced, and the final 

output results generated. we start by adding w
l

+w
2
-l pre(post) 

processing cells to the upper boundary of the hexagonal array, which 

act as pre-processors for the matrix inputs and post-processors for 

the result matrix outputs, these compute as shown below, where unknown 

(1) 
values are assumed zero, and the inputs of Fig. (4.2.3.1) are P ~A, 

(2) (3) . 
p ~D, P ~O (null matr~x) initially. Thus, pre-processing and 

post-processing delays are identical at 2 ips cycles, and results 

from Ml+M2~AC-BD and M2+M3~BC+AD begin to leave the array pre(post) 

boundary cells after min(w
l

,w
2

)+4 cycles producing the correct 

theorem time. 



LEFT PRE (POST) CELL 

Ol1l' N 

J IN NE 
IN~r '~ 

( ) 

~'-'f -J~ 
OUT SW I Ol1l' SE 

IN S 
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C "C tABi out in in n 
B " B out in 
A " A out in 

t: IN S A 

Ol1l' N BfC 

t+l: IN S B 

Ol1l' N ZERO 

t+2: IN S C 

Ol1l' N AtB 

t: IN NW A 

IN S r
1 

Ol1l' SE B 
Ol1l' N r

2
+r

3 
t+l: IN NW B 

IN S r
2 

Ol1l' SE' A+8 
Ol1l' N ZERO 

t+2: IN S T3 

Ol1l' SE A-B 

Ol1l' N r 1 +r 2 

A~A B=B 



RIGHT PRE(POST) CELL 

Ot1l' 1 IN NE 

IN~r ' ........ 

{ } 

~ ... \·l-" 
OUT SW "OUT SE 

""IN S 

t: IN NE C 

IN S"r
l 

Ot1l' SW C-D 

Ot1l' N r
2

+r
3 

t+l: IN NE 0 

IN S r2_ 

Ot1l' SW 0 
Ot1l' N ZERO 

t+2: IN S r3 

Ot1l' SW C 

Ot1l' N_rl+r2 
C'''C, 0,,0 
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r values denote postprocessing and start when first values arrive. 

[end of proof]. 

Because the array efficiency is e"l and pre(post) processors are 

relatively simple (consisting of only adders/subtractors and delays), 

it completes the computation with only four extra ips cycles over the 

real matrix computation; we conclude that complex calculations are 

better suited to the traditional hex design. H.T. Kung [84a] considers 

a linear array implementation using two-level pipelining which requires 

five instead of three cycles between inputs and adopts a similar 

strategy to fill some, but not all the wasted cycles. 

For matrix factorisation the reCiprocal of a complex number is 

required in addition to the inner product, and is given by, 

I ra bl- l 
I ra bl = -b = (4.2.3.6 ) 

(a+bi) 
~ ~ 2 b2 tb ~ a + 

It follows that the (2n)X(2n) matrix obtained by replacing each 

complex number of the nxn complex matrix by its 2x2 form allows the 

2x2 BLUF scheme of Robert [85] to be employed, giving, 
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Theorem 4.2.3.2 (2x2 complex matrix factorisation) 

An nXn complex matrix of bandwidth w can be factorised on a 

hexagonally connected array in time T=4n+min(2p,2q} and requiring 

approximately 4pq point ips cells. 

Proof: The complex factorisation is equivalent to a real 2x2 block 

factorisation on a (2n}x(2n) matrix of bandwidth ~2p+2q-l. 

An alternative approach to complex factorisation is to utilise 

interleaving in a similar manner to the complex product form above. 

If 
Ax = b , (4.2.3.7) 

is a complex nxn linear system then its (2n}x(2n) real equivalent is, 

(4.2.3.8) 

where C and Dare nxn real matrices and x=(y+iz}, b=(c+id}. 

After some manipulation this can be written in the form, 

a} Zy = 
-1 D c + C-ld 1 

b) 
-1 -1 I (4.2.3.9 ) Zz = D d + C c 

-1 -1 c) Z = D C + C D J 

which are all subproblems involving nxn real matrices. The factorisation 

of Z is then a three step process: 

(i) 
-1 K(l} 

1 
compute D C = 

-1 K (2) (H) Compute C D = 

t 
(4.2.3.lO) 

(Hi) Factorise Z = k(l} + k (2) 
J 

AS noted in Leiserson [81] a factorisation array can be embedded into 

a matrix product array, consequently (4.2.3.10) can be solved by 

(I) (2) . . 
interleaving k ,k and Z, and making use of the matr1X ~nput 

structure to overlap the summation k(l} + k(2} and the factorisation 
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t t 

FIGURE 4.2.3.1: Hex connected complex matrix product 
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of Z. The array is described in Megson & Evans [8Eh] but relies on 

. -1 -1 
the ability to easily form C ,D and the right hand sides of 

(4.2.3.9) a and b,-and the assumption that A is full, which are 

usually contradictory requirements. 
-1 -1 

When A is banded C and D 

would tend to be full and because matrix multiplication is not 

commutative the summation k(l) + k(2) in conjunction with interleaving 

requires the maximum size hexagonal array. Hence we have the 

following theorem. 

Theorem 4.2.3.3: 

The LU factorisation of an nXn complex matrix with bandwidth w 

can be performed using point ips computation in time T=3n+(2n-1)+2 

2 
cycles and requires (2n-1) ips cells. 

Proof: (Megson & Evans[86h]). 

We conclude that 2x2 block computation is both faster and more 

area efficient, for banded systems and does not require additional 

matrix vector arrays for extra computations to modify the righthand 

side vector of the complex system like (4.2.3.~). 

4.3 MATRIX INVERSION BY SYSTOLIC RANK ANNIHILATION 

Recently, systo1ic arrays for arbitrary matrix inversion using 

hexagonal and orthogona1 processor grids requiring O(7n) and O(5n) 

2 
respectively and O(n ) processors have been presented (see Rote [85], 

~ Robert & Trystram [85]). The latter scheme is almost optimal differing 

from the theoretical lower bound for matrix inversion by only a few 

cycles. However, because of their generality, these arrays are often 

less adaptable to small changes to a coefficient matrix occurring in 
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iterative type processes. Hence on each iteration a full matrix 

inverse must be computed. On the other hand rank annihilation 

techniques are aimed at updating a known inverse when local changes 

in the coefficient matrix produce global changes in its resulting 

inverse. AS a result rank annihilation is important in a large number 

of application fields, for instance: 

(1) STATISTICS: for updating correlation matrices 

(2) GRAPHICS: in spline approximation and refinement 

(3) NUMERICAL ANALYSIS: in the repeated solution of problems for 

which only minor modifications occur in boundary conditions 

(4) OPTIMISATION: for solving non-linear systems, and updating 

the Jacobian matrix. 

To employ the rank annihilation technique we require a matrix A with a 

-1 
known inverse A ,and a matrix B whose elements are only partially 

different from those of A. 
-1 

The inverse B of B is then found by a 

simple relationship between A-l and B-1 • For example, if A and Bare 

nxn matrices and u,v are n component vectors, and B differs from A only 

by changes in elements along a single row or column then with u and v 

suitably chosen, B can be written in the form, 

and 

T B = A+uv 

-1 T -1 
B = (A+uv) , 

(4.3.1) 

(4.3.2) 

which after some manipulation·(Westlake [68]) yields the Sherman-Morrison 

or RANK-l formula, 

T -1 -1 
(A+uv) = A 

-1 T -1 
(A u) (v A ) 

T -1 
l+v A u 

(4.3.3) 

The basic idea can be extended to produce a relationship between the 

inverses when A and B differ by changes in m rows or columns producing 
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the Sherman-Morrison-Woodbury formula or RANK-m method, 

T -1 -1 -1 T -1 -1 T -1 
(A+uv) ~ A -A u(I+v A u) v A , (4.3.4) 

withu and v nxm matrices. Clearly when m~l (4.3.4) reduces to 

T -1 
(4.3.3) with I+v A u a scalar. When m~2 we derive the RANK-2 method 

T -1 
and (I+v A u) is an easily invertible 2x2 matrix. From section (4.2) 

the difficulty of producing a systolic rank annihilation scheme 

increases as m becomes larger, because the complexity of forming the 

T -1 -1 
rnxm matrix (I+v A u) rises significantly. Consequently, we restrict 

our attention to RANK-I and 2 schemes and investigate two contrasting 

designs, i.e., a mesh connected wavefront scheme and a highly concurrent 

pipe lined scheme. 

To simplify the discussion we partition the RANK-l and RANK-2 

formulas as follows: 

when m~l, 

where 

and 

and for m~2, 

where 

and 

Thus, 

with, 

a) 

b) 

e) 

a) 

b) 

B
-1 -1 

= A 

t 
p = xy , 

T 
Z=V"X= 

1 -,-::-=--,... p 
(l+z) 

-1 
c) A u ~ x, 

n 

I 
i~l 

T -1 
d) v A 

-1 
B 

-1 T 
= A -Py 

-1 
or B 

-1 -= A -xP 

-1 
P = xC 

-1 T 
or P ~ C Y 

T 
~ Y (4.3.5) 

c) 
-1 

A u = x, 
T -1 T 

c) 
-1 T -1 

d) v A = Y I C = (I+v x) • 

-1 1 
C ~--==-

ad-bc [~c 
-b l 
aJ 

n 
a) a = 1 + I vlixil 

i~l 

n 
c) c ~ I v2,x'l 

i~l 1. 1. 

(4.3.6) 

n 
b) b ~ 

it vlixi2 

(4.3.7) 
n 

d) d ~ 1+ 
iIlv2ixi2 
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4.3.1 Mesh Connected Schemes 

To define a wavefront model for rank annihilation we introduce a 

special kind of wavefront processor. The processor is an orthogonally 

connected square mesh of (n+2)*(n+2) reduced instruction set processing 

elements. 
-1 

The known inverse A is loaded into the nXn mesh of elements 

embedded inside a Systolic Control Ring (SCR) formed from the first and 

last rows and columns of the mesh. The processors at grid positions 

(1,1), (1,n+2), (n+2,n+2) and (n+2,1) are simple controller units 

capable of generating a number of control signals in the horizontal 

and vertical directions. The remaining processors perform book-keeping 

and auxiliary operations as well as relaying control signals. This 

architecture is shown in Figure(4.3.l.~. The input/output interface 

consists of cells in the SCR along the first row and column, and the 

-1 
controller initiates computation after A ,u and v have been loaded into 

their correct cells. 

The last row and column provide auxiliary storage and collect the 

partial results of (4.3.Sb-e) and (4.3.6b-e) for RANK-I and RANK-2 

respectively. Finally the wavefront mesh consists of identical 

processors receiving a SCR wave front control from North, South, East 

or West and performing appropriate inner product operations and data 

outputs. Consequently the SCR can generate multiple wavefronts in 

different orientations using only point to point connections around 

the ring. As variations in processor type are restricted to the 

boundaries the mesh is also suitable for a VLSI approach to 

implementation. 

For RANK-l annihilation, and a preloaded mesh, (4.3.Sa-e) imposes 

a strict regime on the computation easily translated to control 
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wave fronts on the mesh given by the following control algorithm. 

RANK-I MESH CONTROL ALGORITHM: 

STEP 1: 

a) SCR cell Cl generates a control signal moving right Cl~2, as the 

control passes through the u
i 

cells, the value u
i 

and a control is 

propagated south down column i. At the same time, a signal Cl~4 is 

issued causing a zero and control to be propagated from left to right 

along row i, as it passes through cell vi' These two wavefronts 

constructively interfere producing a wavefront Wl moving diagonally 

-1 
from Cl~3, and collecting the partial results xi' i=l(l)n of X=A u 

systo1ically from left to right on row i. 

b) on the cycle immediately after a) starts another set of signals 

C1~2 and C1~4 are produced reversing the roles of ui and vi SCR cells 

producing a wavefront W2 parallel to Wl and accumulating y., i=l(l)n 
1 

T -1 T 
for v A =y along column i of the mesh. 

c) Wl and W2 travel at unit speed with w2 one cycle behind W1, 

consequently the xi and vi values are adjacent to each other with vi 

one cycle behind X.' 
1 

STEP 2: 

On the (n+1)st cycle the first C1~2, and Cl~4 signals enter C2 and 

C4 and xi on row i has i terms left to accumulate and Yj in column j 

has j+1 terms left to accumulate. On cycle n+2, xl is complete and Y1 

has one term left to compute, consequently pushing the control values 

along C2~3 and C4~3 allows the xi and Yi to be loaded into the x

vector and y-vector arrays, with the yis one cycle behind the xis. The 

close proximity of the x. and v. values implies that the second control 
1 1 

value reaching C2 from Cl~2 on cycle n+2 can be employed in computing 
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(4.3.Se) on its trip C2~3. If C2 is allowed to initiate the summation 

with starting result of one, z+l is computed. After 2n+3 cycles all 

SCR control values have reached C3, all the y. and x. have been stored 
~ ~ 

in vector arrays and C3 contains z+l. 

STEP 3: 

-1 
C3 now takes control, and updates the A mesh elements. Control 

values are sent along C3~2, and c3~4 (accompanied by the value z+l). 

Controls moving along the y-vector array formy.=O-y./(l+z), j=n(-l)l 
J J 

as they pass through cell j, outputting the control up into column j 

of the mesh. Likewise controls along the x-vector array simply push 

x. into row i of the mesh for i=n(-l)l. The two resulting wave fronts 
~ 

constructively interfere to produce a wavefront W3 travelling 

-1 
diagonally along C3~1 performing the modification A.j-X. Y. as it moves. 

~ ~ J 

STEP 4: 

After 3n+4 cycles SCR controls have reached C4 and C2 and w3 is half-

way across the mesh. Pushing controls along C4~1 and C2~1 meanS that 

all controls arrive back at Cl after 4n+S cycles and the algorithm 

terminates. 

[End of RANK-l algorithmJ. 

Now a sequence of r updates can be written as, 

B = A 

and in recurrence form, 

r T 
+ L uiv .• 

i=l ~ 
(4.3.1.1) 

(4.3.1.2) 

-1 
Theorem 4.3.1.1: r updates of A the inverse of nXn matrix A can be 

2 
performed on a wave front mesh of (n+l) cells incorporating asystolic 
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control ring in T=2(n+l)+r(4n+5) ips cycles. 

Proof: 

-1 
A can be loaded or unloaded in (n+l) cycles, so input/output 

consumes 2(n+l) cycles altogether. 

From (4.3.1.2) when all updates are to distinct rows or columns 

the U i , vi 

A(i),s 

for i=l(l)r can be pre-computed without having to calculate 

the explicitly. The successive loadings of u
i 

and vi can be 

overlapped with a modification in step 4 (above algorithm) using C4~1 

and C2~1 as loading signals, hence r updates require r(4n+5) cycles 

giving a total time of T=r(4n+5)+2(n+l) cycles. 

Where updates occur on the same row or column more than once the 

A(i) must be calculated explicitly in order to compute u. and v.' If 
~ ~ 

we assume some host machine which supplies u. and v. to the mesh exists 
~ ~ 

it must calculate A(i) in the 4n+5 cycles associated with each inverse 

update. As a row modification is typically of the form, 

I'] 
0 0 °l T 

uv = 

~ 
[v 1 v 2 v 31 = v l v2 v31 

(4.3.1.3) 

[g 0 O..J 

only n additions are required, and the assumption is valid even for a 

sequential host machine (the same holds for column modifications) . 

[End of Proof1. 

Corollary 4.3.1.1: The inverse of an arbitrary matrix B can be computed 

2 
in T=4n +7n+2 cycles using the SCR wavefront mesh. 

Proof: 

(0) T 
Simply put A =1 and r=n in (4.3.1.2) and choose uiv

i 
to be 

distinct rows (or columns) of B. 
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Finally, consider the structure of mesh cells, it is clear from 

the algorithm that all cells compute in a single inner product cycle. 

The SCR controllers Cl, C2, C3 and C4 are simple combinational logic 

units, while u and v interfaces are registers with additional logic to 

suppcrt the SCR. The x-vector arrays require a register to save xi and 

an inner product form to add the partial product term to z+l as it passes 

through. Similarly, the y-vector array contains a register for Yi and a 

subtract/divide cell for modifying y. 
~ 

using z+l; while the wave front 

mesh cell contains a register for -1 
A .. 
~J 

and performs, 

E = W+N*A wave front Wl 

S = N+E*A " W2 

A = A+S*E " W3 

-1 
where A=A

ij
, and N,E,S,W are compass directions for input/output 

controlled by the SCR. Consequently the area of basic cells is bounded 

by the cost of an inner product cell plus some additional switching logic. 

The results indicate that Rank Annihilation for a single update 

requires more cells and has an intermediate time between the arbitrary 

inversion schemes of Rote and Robert & Trystram [85]. From Corollary 

(4.3.1.1) it is evident that general inversion by rank annihilation does 

not compete with these arbitrary schemes. The explanation is simple 

and is illustrated by Fig.(4.3.l.2). A RANK-I update generates only 

three wavefronts in 4n+5 cycles yielding a low processor efficiency, 

while the positioning of waves indicates that successive updates cannot 

be overlapped. In contrast, the arbitrary schemes are based on the Gauss-

Jordan algorithm, and like Gaussian elimination in Fig.(3.2.2.2) have 

successive modifications pipe lined to give high processor efficiency. 

In an attempt to improve processor efficiency and consequently the 
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number of wavefronts generated in a complete circuit of the SCR, the 

RANK-2 scheme can be implemented on the same mesh with modified boundary 

cells. The u and v interface cells contain two registers instead of one, 

while the y-vector array swaps its subtract/divide for two multipliers 

and an adder and the x-vector array swap requires an extra ipso The 

controller C3 is no longer a simple logic unit, but implements Cramer's 

rule to compute the 2x2 inverse in parallel with six ips cells. Now 

bounding the Y-vector array cells by the cost of two ips cells gives a 

2 cell requirement of n +4n+6 cells for the mesh. More wavefronts can now 

be introduced by using a partitioned form of (4.3.6) where, 

a) A-lu(l) = x(l) b) 
-1 (2) (2) 

A u = x 

.. (l)TA-l (l)T (2)T -1 (2)T } (4.3.1.4) 
c) v = Y d) v A = Y 

and u=[u(l) ,u(2)], vT=[v(1)T,v(2)T], x=[x(l) ,x(2)], yT=[y(1)T,y(2)T] 

A-l , u(l), u(2), vel) and v(2) are loaded into the mesh and the 

computation proceeds as follows:-

RANK-2 MESH CONTROL ALGORITHM: 

STEP 1: 

Cl starts the algorithm by pipelining four control signals along 

Cl4C2 and Cl~4 on successive cycles. On cycle 1 signals entering 

interface cells u
i 

and Vi propagate u~l) down column i and zero along 

row i. These component waves constructively interfere producing a 

resultant wavefront Wl moving diagonally· in direction Cl+C3, and 

accumulating x~l) from left to right on row i. Similarly cycle 2 
l. 

signals produce a wave front W2 one cycle behind Wl accumulating x~2) 
l. 

on 

row i from component waves involving u~2). on cycle 3 the roles of u. 
l. l. 

(1) 
and Vi cells are reversed with cell Vi sending Vi along row i and ui 

propagating zero down column i producing wavefront W3 one cycle behind 



237 

W2 accumulating y~l) down column i. Likewise cycle 4 produces wavefront 
1. 

(2) (2) 
W4 from components vi and zeroes accumulating the Yi values. 

STEP 2: 

After n+l cycles, the first SCR controls reach C2 and C4. xiI) and 

x~2) have i and i+l terms, and y~l) , y~2) have i+2 and i+3 terms left 
l. l. 1. 

to accumulate. Hence the signals associated with cycles 1 and 2 of 

(1) (2) . 
step 1 are used to load x. and x. l.nto the x-vector array, while 

l. 1.' 

(1) (2) . 
cycles 3 and 4 are used to load Yi and Yi l.nto the y-vector arr~y 

(1) (2) 
and v. ,v. into the x-vector array. consequently the signal leaving 

l. l. 

C2 on cycle n+5, is used to form the values (4.3.7), with a=l, b=O, 

c=O and d=l initially. 

STEP 3: 

After 2n+5 cycles the last control signals and the 2x2 matrix C 

-1 
have been collected by C3, which takes control computing C by Cramer's 

rule in 2 ips cycles. Now on cycle 2n+8 C3 outputs controls along the 

SCR in directions C3~4 and C3~2. The signal on C3~4 is accompanied 

by the first row of c-l and Y-vector array cell i computes OUT(l)= 
i 

* (1) * (2) (1) cll Yi +c
12Yi and propagates OUT

i 
into column i. At the same time 

(i) xi is pushed out into row i, and the two components for wavefront W5 

moving in direction C3+Cl. On the next cycle C3 issues a similar signal 

d 11 (2)_ * (1)+ * (2) (2) d (2) an y-vector ce s compute OUT. -c2l y. c
22 

y. ,x. an OUT. 
1. 1. 1. 1. l. 

move along row i and column·i one cycle behind W5 forming wavefront w6. 

The inverse elements are modified in two steps by W5 and w6 using 

-1 A~\x~l)OUT~l) Aij = 
l.J 1. J 

and -1 A~:-x~2)OUT~2) Aij = 
l.J l. J 

STEP 4: 

On reaching C4 and C2 signals are sent back to Cl along C2~1 and 
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C4+el, and the interface section can be re-loaded with new u and v 

matrices, in parallel with the inverse modification. The last signals 

arrive back at Cl after 4n+lO cycles. STOP. 

[End of RANK-2 algorithmJ. 

Analogous arguments to the RANK-I problem produce: 

-1 
Theorem 4.3.1.2: r RANK-2 updates on the inverse A of an nxn matrix A 

can be performed on an SCR wavefront mesh of O«n+l)2) cells in time 

T=2(n+2)+r(4n+lO), and, 

Corollary 4.3.1.2: The inverse of an arbitrary nXn non-singular matrix 

2 
A can be found by RANK-2 annihilation in T=2n +7n+4 ips cycles. 

Proof: 

Put r=n/2 and A(O)=I in (4.3.1.2) and update two rows at a time. 

We conclude that RANK-2 is twice as fast as RANK-l for k updates 

as r=k in Theorem (4.3.1.1) and r=[k/2] in Theorem (4.3.1.2). The 

intuitive idea behind rank annihilation is that successive updates of 

RANK-M will take less time than computing the full inverse of the 

modified matrix at each stage. Theorem (4.3.1.1) and (4.3.l.~ support 

this argument as we can write, 

2(n+l)+rl (4n+5) < 5rl n , for rl~3 (4.3.1.5) 

and (4.3.1.6) 2(n+2)+r2 (4n+10) < 5r
2

n , for r2~3 

-1 
These timings result from the assumption that A can be left inside 

the mesh from one update to another. A typical iterative process using 

-1 
rank annihilation, would use A in a computation, determine u and v and 

-1 -1 
tbenupdate A • This requires A to be loaded and unloaded on every 

update giving the revised relations, 

and 

r
l

(6n+7) > 5r
l
n , for all r

l 

r
2

(6n+14) > 5r2n, for all r
2 

(4.3.1.7) 

(4.3.1.8) 
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These relations indicate that it is better to invert each of the A(i) 

in (4.3.1.2) rather than modify the already known inverse of A(i-l). 

Remark: Corollaries (4.3.1.1) and (4.3.1.2) are still valid because 

-1 
general matrix inversion is a special case where each A is not used 

outside the mesh. 

4.3.2 Highly Pipelined Rank Annihilation 

The above result seems contradictory and arises from the repeated 

-1 
loading/unloading of A • A more satisfactory result would be achieved 

if input, output and updating could be overlapped, and the communication 

overhead of 2n cycles removed from the left hand sides of (4.3.1.7) and 

(4.3.1.8). This implies some kind of pipelined scheme capable of 

computing (4.3.5) and (4.3.6) in parallel. For RANK-l we notice that 

(4.3.5b,c,d and e) comprise only of matrix-vector, outer product, and 

inner products respectively, and define the ordering of computations in 

the pipe. For instance, (4.3.5c and d) can be computed in parallel but 

must begin before (4.3.5b and e), which in turn must start before 

(4.3.5a). From this ordering the pipeline in Fig. (4.3.2.1) is derived 

for RANK-l annihilation. 

The matrix transpose matrix (m.t.m.) array performs (4.3.5c and d) 

on an array of 2n-l special ips cells described below. Using the standard 

-1 
matrix vector array in Fig.(3.2.l.3) and assuming A is full Fig. 

(4.3.2.2) illustrates the dataflow for solving AX=y and XtA=Y. The 

cells in Fig. (4.3.2.2b) are obtained from the standard cell in Fig. 

(4.3.2.2a) by a rotation of 1800 and a modification of the matrix input 

connection. Hence from Theorem (3.2.1.4), (4.3.5c and d) can be 

computed in parallel in 4n ips cycles using 4n-2 ips cells. Assuming 
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-1 
that A is full (for generality) and pipe1ined between the two arrays 

to avoid bringing it from the host more than once. The number of cells 

could be reduced to 2n-1 if the data in Fig.(4.3.2.2b) was rotated about 

the axis formed from the a .. diagonal inputs and interleaved with inputs 
l.l. 

of Fig.(4.3.2.2a). However we consider an alternative arrangement which 

-1 
amalgamates both arrays preserving the neutral elements of the A input 

but filling the horizontal ones. This arrangement requires modifications 

to the internal structure of the cell, so that on one cycle it computes 

a term from (4.3.5c) and on the next a term from (4.3.5d). In the former 

case inputs are from the left and outputs to the right, for the latter 

the reverse is true. Consequently simple switching logic and a delay 

register to hold the matrix elements inside the cell for two cycles 

must be added to the basic ips cell. Switching can be implemented by a 

single control bit tagged to the matrix inputs and is of further value 

later. Fig.(4.3.2.3) illustrates the array operation and reveals the 

reason for the more complex cell design. The vectors x and v have been 

interleaved so that x and v. for i=l(l)n are adjacent. Now z+l can be 
i l. 

easily computed by a simple accumulating inner product cell connected 

to the left end of the m.t.m. array, a control tagged to the xl value 

can be used to reset the cell to I forming z+l in 2n ips cycles. This 

leaves only (4.3.5a,b) to calculate. (4.3.5b) is an outer product form 

which produces a matrix of the form 

x y - --
1 2 --x{nl 1 n 

I .. --
I 

p = (4.3.2.1) 
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and can be computed by a linear array of 2n-l multipliers in 2n cycles 

with a cell producing all the elements of a particular sub (super) 

diagonal. 
-1 

Notice that in order to compute (4.3.5a) the elements of A 

and P must be locally placed with respect to each other. Ideally we 

-1 
would like to pipeline the A input and results from the m.t.m. array 

into the solver for (4.3.2.1) and this is achieved by the arrangement in 

Fig. (4.3.2.4). -1 We make use of the retained neutral elements in the A 

data stream by filling them with the p .. values. The control used for 
l.J 

switching input and output directions in the m.t.m. can now be utilised 

again to overwrite the neutral value with the x.y. result. The outer 
l. J 

product array requires the values of Xi and Yj which must be synchronised 

-1 -1 
with Aij to produce correct interleaved output of A and P. The total 

-1 
time for Xl after meeting all in the m.t.m. to reach the centre cell 

of the outer product array by passing through the z+l accumulating ips 

-1 
is 2n cycles, consequently all must be delayed 2n-2 cycles between m.t.m. 

and outer product arrays to retain synchronisation. However, an added 

T -1 constraint is that the outer product generates P , when compared to A 

and the intermediate delay time must be utilised to form (A-l)T, so 

interleaved elements remain adjacent. 
-1 

Clearly the transpose of the A 

inputs is formed by a 1800 rotation of elements about the main diagonal 

-1 
inputs (a .. ), and can be achieved in a number of ways shown in Fig. 

l.l. 

(4.3.2.5). Intuitively the time for transposition is bounded by the 

number of cycles required to swap the outer sub (super) diagonal inputs. 

Assuming a diagonal element shifts its location by one diagonal per cycle 

transposition requires W cycles for a matrix of bandwidth W, and the area 

2 -1 
is bounded by W exchange-delay cells. Thus, for A full we require 

2 (2n-l) cells and time 2n-l cycles. Hence synchronisation in the outer 



81 INPUT FORMAT 

I .. 
I .. 0 a,. 

I" 0 a .. 0 a,. 
a., 0 " .. 0 a" 0 

I" 0 "22 0 a,. 
a2' 0 a" 

an 

x, Y, 

bl OUTPUT FORMAT 

x.v. 
x.Y. a .. X3V. 

x.v, a .. X3V, IM x'v. 
x.Y, a., X3VZ I .. X2Y' I,. 
a., X3V, a32 X,V2 " .. X'Y3 

a., X2V, a22 X,V2 a,. 
a" x,y, . "2 

an 

REMARK: BASIC CELL IS A MULTIPLIER WITH EXTRA CONTROL 
TO INSERT xlVI 1.1 = 1(11n INTO VERTICAL DATA STREAM 

t FIGURE 4.3.2.4: Computation of P=xy 
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a,. 

Y2 

x,v. 
a,. 
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D 

a) intuitive non-planar version 

b) array from Ipsen [84 1 

FIGURE 4.3.2.5: Transposition networks 
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product array is achieved by placing a transposition network between 

m.t.m. and outer product arrays and adding an extra delay to the xi 

data stream. As A is full the m.t.m. array is symmetrical and Yi values 

must also be delayed by a cycle. 

-1 
The only task remaining is the final modification of A by (4.3.5a) 

-1 T 
requiring z+l, and the interleaved form of (A ) and P. z+l accumulates 

-1 T 
one term every two cycles, so that by the time (all) enters the outer 

product array, at most rn/il+l terms have accumulated. Now for z+l and 

-1 T (all) to meet in the centre cell of the modifier array of Fig.(4.3.2.l) 

as indicated by Fig.(4.3.2.6), a delay of at most 2n-l cycles is required. 

n cycles to accumulate the rest of z+l and n-l cycles to filter z+l to 

the centre cell of the modifier. This delay time can be utilised 

effectively by transposing the interleaved data, so that the final 

output is in the Same form as input. The modifier array consists of 

2n-l divide and subtract cells with a loadable register to store z+l. 

A control value tagged to z+l can be used to load the register and the 

-1 -1 -1 1 
control tagged to a ij elements to form aij=aij- (z+l) Pij as data passes 

through. 

The timing of the array is then derived from the formula, 

T = (start-up time) + (pipeline latency) .. (output time) 

-1 
From Fig.(4.3.2.3) the start-up time to synchronise A ,u and v is 

simply n-l cycles. Pipe tine latency is the total number of cycles 

-1 
required for all to pass through the whole array, and is given by, 

(i) delay through m.t.m. array 2 cycles 

(ii) " " outer product array 1 cycle 

(Hi) " " modifier array 1 cycle 

(iv) " " transpose network 2n-l cycles, 
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p .. 

P,.. a .. p .. 
P,. a,.. P33 ... p., 

P,. a,. P'3 a33 P,. a., p., 
a,. P" 8'3 P" a" P" a., 

a" P" a2' P" a" 
a" P" a" 

a" 

z z 

- a" I---
- z z z z I---

- a" P" 8" I--
- z z ·Z a" Z I---:-z 

- a" P" a" P" 8" f--

- Z Z a" P" a" Z f--z z z 

J 
6" 

- P" a23 P" a32 '. P31 a., I---
- Z 8" ~" a" 15" a" Z f--z z z z z 

1 I 1 
1'" 

WHERE A = A --}P 
P = H(y') = l-P 

FIGURE 4.3.2.6: Systolic generation of new inverse 
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u, RANK 1 ARRAY 1 
_ V, 

u. RANK 1 ARRAY 2 - V. 

• 
• 

u, RANK 1 ARRAY r 
_ (V, 

FIGURE 4.3.2.7: A cascaded RANK-I scheme 

giving a total of (4n-2)+4=4n+2 cycles. An extra 2n cycles is required 

to output all the modified matrix elements, yielding the result. 

Theorem 4.3.2.1 

-1 The RANK-I update of A the inverse of an nxn matrix A can be 

performed on a systolic pipeline in T=(3n-l)+(4n+2) cycles. The design 

2 
requires 3 (2n-1) +1=6n-2 ips cells and 2 (2n-l) delay cells from the 

transposition networks. Comparing this with Theorem (4.3.1.1) for r=l 

indicates that the mesh scheme is faster for a single update. However 

2 
the pipelined scheme uses only 0(6n) true ips cells compared with O(n ) 

2 
and the O(n ) delay cells permit a more compact design. Indeed, Fig. 

(4.3.2.1) admits a natural two layer design by folding the pipeline in 

half, and placing one transposition network on each level. Furthermore, 

the efficiency of cells in this new scheme is much improved. In the mesh 
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case, computation is charted by wave fronts with only those processors on 

the wavefront active giving poor efficiency. In the pipeline case, the 

m.t.m. and modifier arrays mimic the wave front movements of Wl, W2 and W3 

-1 
respectively as A pass through their elements producing high efficiency. 

High throughput can also be achieved by overlapping computation of 

different problem instances, which is not possible with the mesh scheme. 

In fact when the u
i 

and vi of (4.3.1.2) can be precomputed r copies of 

the pipelines can be cascaded to allow both problem instances and 

successive updates to individual cases to be overlapped. A drawback to 

cascading is that it increases hardware by a factor of r, which can be 

significant for large n or r. An alternative, which reduces throughput 

of distinct problem instances but uses constant hardware is asystolic 

ring. The ring is formed by noticing that pipeline latency is 0(4n) and 

data length 0(2n), as a result the modified inverse elements can be 

wrapped around to the pipeline inputs for the next update. Even with 

the ring only half the cells are used at anyone time, and so two 

problems can be interleaved to achieve good cell efficiency. Hence, 

Corollary 4.3.2.1: 

r RANK-l updates of A- l the inverse of an nxn matrix A can be 

performed in T=(3n-l)+r(4n+2) cycles using a RANK-l pipeline. 

The RANK-l pipeline is easily extended to RANK-2 updating, and for 

the sake of completeness we briefly outline its operation. Fig.(4.3.2.8) 

shows the global connection structure. The two m.t.m. arrays compute 

as shown in Fig.(4.3.2.9). The first array computes the first columns 

of X and y,the second the last columns. The output results of M.T.M.l 

are delayed by a single cycle to synchronise with M.T.M.2 results, 

allowing the first row of X to enter C on the same cycle. The locality 



C 

D 
E 
L 
A 
Y 

X 

XC-' 

Y23 y" 
U32 U" 

Y22 Vu 
U22 U21 

Y:n VU 
U,2 U11 

o Loot 

y 

,/~ 

M:r.M. , 

~k 
M:r.M.2 

"(y 

TRANSPOSE 

A-' 

~y 
SYNCHRONISATION 

DELAY 

""- ~ 

MODIFIER 

~ 

FIGURE 4.3.2.8: RANK-2 systo1ic inverter 

251 

Vt3 Vu 

X3' X32 

Vu Vu' 
X" Xu 

. Vu ,V21 

X" X,2. 

I-

I 

0 

0 

D 
E 
L 
A 
Y 

Y 

0 

n = DELA 



• • 
• • a .. • • 
• • a"" 0 a .. • • 
• V" 

a,. 0 a33 0 842 V" • V .. V,. a,. 0 a,. 0 a" 0 a •• X" V .. 
V .. VIZ a" 0 a,. 0 a" VIZ X .. 

a" 0 a" 
a,. 

l J l l l l l 
.......... 

V21 V" . Ut, X,. V,. X21 ,-
V21 I- V" X" V •• 

~ l l , , , , 
FIGURE 4.3.2.9: RANK-2 M.T.M.l and M.T.M.2 arrays in starting positions 

a .. 
a .. 0 a"" 

a •• 0 a33 0 a,. 

a •• 0 a" 0 a" 0 a,. 

a" 0 a,. 0 a" 
a21 0 a" 

a,. 

'" [Il D [I] 0 y" 0 v,. In x.. 0 · )(~, 0 

~ ~ '" x" y" 0 y,. 0 y,. 
x •• 0 X32 0 

FIGURE 4.3.2.10: RAIlK-2 modifier array 
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of X and V is used again to compute (4.3.7) in cell C using four inner 

products and 2n cycles, with an extra two cycles added for C-l to be 

-1 
computed before it is output to the XC cell. Incoming X values are 

delayed a single cycle in C resynchronising them with Y, before they 

-1 
enter delay queues long enough for C to be produced. On leaving its 

delay queue X is used in the XC-l cell to compute the products, 

Pil = xilcll + xi2c2l 

Pi2 = x
il

c
12 

+ x
i2

c
22 

, i=l(l)n, 

in a single cycle, using four multipliers and two adders, and delaying 

the Y values an extra cycle, for synchronisation. The matrix update 

-1 
Bij = Aij-[lll 'ylj + Pi2Y2j ] , i,j=l(l)n, 

is then made in the modifier array of Fig.(4.3.2.l0) using a multiplier 

-1 and subtracter in two ips cycles, with the dummy element in the A 

data stream covering the extra computation time. In a similar manner 

T to xy in the RANK-l scheme PY produces a transposed output requiring 

formation of (A-l)T while c-l is computed and P and yT filter into the 

modifier for synchronisation. 
-1 computation of C starts n+l cycles 

-1 
after all leaves M.T.M.l, and requires 2(n+l) cycles, synchronisation 

-1 
of P and Y requires n cycles (allowing an extra cycle for delay in xc ). 

Thus, a total of 4n delays are required to synchronise a~i with P and Y. 

-1 
Consequently the transposition is easily computed before all reaches the 

modifier. Now allowing two cycles in the m.t.m. arrays and two cycles 

in the modifier the total delay through the pipe is 4(n+l), initial 

synchronisation requires n-l cycles and output of modified inverse 

consumes 2n cycles hence, 
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Theorem 4.3.2.2 

-1 
The RANK-2 update of the inverse A of an nxn matrix A using a 

RANK-2 pipeline requires T=(3n-l)+4(n+l). 

Corollary 4.3.2.2, 

r RANK-2 updates can be performed with a RANK-2 pipeline in 

T=(3n-l)+4r(n+l) • 

The cell count is simply computed as follows,-

(i) 

(ii) 

(iii) 

(iv) 

M.T.M. arrays 

C cell (at most) 

-1 
XC 

modifier 2 ips per cell 

4n-2 ips 

Sips 

4 ips 

(4n-2) ips 

giving a total count of Sn+S ips with 4n delay between m.t.m. and modifier 

4n(2n-l) is an approximate count of delay registers neglecting X and Y 

delay queues. 

In comparison with the RANK-l scheme RANK-2 requires 2n+6 more ips 

cells and at least 4n additional delay registers, but modifies two rows 

or columns in a single update for the loss of only two cycles. The 

RANK-2 pipe retains the advantages of high efficiency and throughput, 

but loses the natural partitioning on to two layers. The systolic ring 

arrangement is also move involved because the modifier outputs the updated 

matrix in transposed form requiring u and v inputs to be switched on 

alternate ring cycles. 

4.3.3 Choice of Schemes 

The choice of scheme depends upon whether a general matrix inverse 

-1 -1 
A is required or an update to A based on local changes in A. 

For a general inverse the sequences of modification encoded by u 
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and v can be precomputed because changes in A occur on distinct rows, 

and the intermediate updates are not incorporated in a larger comput-

ational process. Consequently mesh schemes do not have to be repeatedly 

unloaded and the ring pipeline schemes can be adopted. The general 

inversion methods based on Gauss-Jordan permit much more pipelining of 

successive computations producing O(5n) time which out performs the 

2 
rank-annihilation schemes using O(n ) time. From the view point of 

2 
area, general schemes use O(n ) cells highly efficiently, while wave-

front mesh schemes use o(n2) inefficiently. In contrast, the rank 

pipeline systolic rings use O(n) cells and o(n
2

) registers with high 

efficiency, but do not compensate for the increased time. 

In the cases when a large number of matrix updates are made, where 

modification data is derived by using the modified inverse of the previous 

step, choice of array must be made by comparing the time of a single 

update by annihilation with that of general inversion. The time trade-off 

is O(5n)-O(7n) for arbitrary inversion, O(6n) for mesh annihilation 

and O(7n) for pipe lined inversion, giving a much better time relation-

ship. The lack of cell efficiency would favour arbitrary methods over 

mesh schemes; but reduced cell count and improved throughput of pipe-

lined schemes is preferable to general inversion schemes as two 

independent updates can be performed simultaneously. (The general 

scheme requires O(lOn) for two updates). Finally the systolic ring 

idea is easily extended to incorporate more components for an iterative 

-1 process where computation involving A and u,v generation could also 

be pipelined. The increased delay may permit more problem instances 

to occupy the ring simultaneously. 
-------- ~---.- .. ----- ~-.-----,--------



Pipelining or separate problem instances. OUlpul or modified and original inverses interleaved. 

OCCAM-Slarl run OCCAM-Start run 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Time 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 Time 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 .......-I.~O.OOO 0.000 0.000 0.000 0.000 0.000 _-.. J.~O.OOO 0.000 0.000 
0.000 O.~.OOO __ A.lOO.., ,2.~ 0.000 0.000 0.000 O.~.OOO __ -O.soo... _2.000___. 0.000 0.000 
0.000 - 1. --.:::0.500 1.000 . I.~ 1.000 0.000 0.000 -1. -0.500 1.000 1.000. -1.000 0.000 
0.000 -3.500~. 1.000~.000 -.0. __ ::::..0.500 0.000 0.000 -).500~:'_ .000-....:::.4.000 0.~0.5OO 0.000 
0.000 0.000 -"4.000 .000 2.500 0.000 0.000 0.000 0.000 -~.OOO_. 2.~2.5OO 0.000 0.000 
0.000 0.000 0.000' - -4.500- - '0.000 0.000 0.000 0.000 0.000 0.000 -4.500- 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 ·0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 

OCCAM-Run finished. 0.000 0.000 0.000 /.~.OOO 0.000 0.000 
0.000 0.000 /..000 __ 0.500_ .~O.OOO 0.000 - -, 0.000 0.000 -1.000~.5OO 1.000 1.000~I.000 
0.000 -3.500, .000 -4.000 0.000 ~0.500 0.000 
0.000 0.000 -.:-4.000---.2.000--'2.500- - 0.000 0.000 
0.000 0.000 0.000' - '4.500- - 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 FIGURE 4.3.2.11: Example OCCAM runs 0.000 0.000 O.~.~OOO 0.000 0.000 
0.000 0.000.......!n. _,-0.500_ •. 000___.0.000 0.000 
0.000 0.000 '" -1.000X .5OO 1.000 1.000;:..<1.000 

'" 0.000 -).500, I.~.OOO 0.000 ~0.5OO 0.000 '" , 000-- -' 0.000 0.000 0.000 -"4.000... _ .. 2.500 0.000 
0.000 0.000 0.000 -4.SOO- 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 

OCCAM-Run finished. 
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Finally we conclude this section with some remarks about 

implementation. Fig.(4.3.2.l) incorporates long wires of length 

proportional to n making the design soft-systolic under current 

technology. Use of waveguides for optical data transmission, and 

multi-layers make the RANK-l pipeline an attractive design, and 

program 18 in the Appendix is an OCCAM simulation of Fig.(4.3.2.l). 

The program was tested on a variety of cases and a simple 3x3 example 

is given below. 

Let 
-2 5 -1 1 2 -1 

1 4 -1 2 -1 2 1 A = , A :: 0 9 

-3 3 3 -1 1 2 

and put 
6 14 

'~ 
0.5 -0.5 -,.~ 1 

4 -1 -1 -4.0 -4.0 B = , B = 1 9 

-3 3 .5 2.5 4.5 
t then u=(l,O,O) , t v =(2,1,3) in (4.3.1) • The results of the program 

output are shown in Fig.(4.3.2.ll) verifying theorem (4.3.2.1), and 

indicating that k successive problem instances require T=(n-l)+(4n+2)+ 

k (2n+3) cycles. 

4.4 BATS: A BANDED AND TOEPLITZ SYSTEM SOLVER 

Section 4.1 considered the X-band matrix vector multiplication 

problem and the use of D
2

-piPes to take advantage of sparsity. In this 

section we consider the solution of a linear system like (4.1.11) with 

an X-band coefficient matrix. X-band system solution is a non-trivial 

task because both triangularisation and factorisation techniques allow 
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fill-in of zero elements which destroy sparsity and increase bandwidth. 

As already noted the solution of P.D.E.'s with periodic boundary conditions 

using finite difference techniques leads to an x-band form matrix, i.e., 

a
O 

a
l 

a a a
l p p 

a l 0 ~I I a 
p 

a p 
A = (4.4.1) 

c 
a p 

a 

I p 

I~O a
l 

a l 
a a a

O nxn p p 

Factorising this matrix produces fill-in along the last p rows of the L 

factor and last p columns of the U factor and'a hexagonal systolic array 

Fig. (3.2.2.3) must treat Ac as a full matrix. Consequently the solution 

of Toeplitz systems such as circulant, symmetric and skew-symmetric forms 

like (4.4.1) have received much attention. The most successful designs 

to date from a systolic view point are the PLP (S.Y. Kung & Hu [83]) and 

a linear array of Brent and Luk [83]. Both designs have O(n) time and 

the latter is also sensitive to band structure and can solve both 

symmetric and skew symmetric forms. The PLP consisting of three tiers 

of n inner product cells each, and a LIFO structure of o(n2) cells, is 

based on Levinsons algorithm and requires O(2n) time. The linear 

array is based on the Bariess algorithm and consists of r¥l super cells 

each with a control algorithm and requires O(4n) time with six ips 

per cell and is essentially soft-systolic. 

In contrast our technique is based on new factorisation methods 

developed in Chen [85] and Audish & Evans [85a,b] and permits the 
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pipelining of solutions to more than one system through the array. 

The previous schemes cannot pipeline successive instances and for a 

dedicated Toeplitz solver our method should improve throughput 

significantly. 

We consider the solution of the nxn system. 

A x = f. 
c 

(4.4.2) 

where x=(X
l
.x

2 
•••.• x

n
)t is unknown and f is the known right hand 

side. Chen [85] shows that if A is strictly diagonally dominant it 
c 

can be factorised into the form, 

-1 "" ~T 
A = 80 

L L • 
c 

(4.4.3) 

where, 

ISo 
~~i~ 1

81 

11 
IIp 

'" IIp 
L = 

o~ 
(4.4.4) 

(4.4.2) is then solved by the coupled systems. 

a) '" Ly = d. b) 
"'T 
L x = Y • (4.4.5) 

Now put. 

0 
t3p t3~ 

and R = ~Il 
L PJ pxp 

IIp--1l1 1l£J 
nxn 

(4.4.6) 



260 

then, 
(4.4.7) 

where I = pth order identity matrix, and 0 the (n-p)*p null matrix. 
p 

We now apply the rank annihilation formula (4.3.4) to yield, 

1.-1 = L-l_L-l [:]{I+[OT IplL-l [~}-l[OT IplL-l , 

and the coupled system (4.4.5) is solved explicitly viz, 

a) 
"'-1 

Y = L d and 
"'-T 

b) x = L Y . 

(4.4.8) 

(4.4.9) 

The method extends easily to the simple banded Toeplitz matrix At 

where, 

A = A 
t c [

I-j T rOl 
- Plu[O I 1 - l 

o J p I j 
P 

and the corresponding linear system, 

is given by, 

. _l~pl T x - A i u [0 
c OJ 

with, 

I lx - A-l 
P c 

rO l T T I. I U [I 0 1 x = 
~pl p 

-1 
A f 

c 

-J"Ipl -1 [0 1 
Ac I !' and B3 = Ac I. ' 

LOJ p 

(4.4.10) 

(4.4.11) 

(4.4.12) 

(4.4.13) 

X
(2)=(x T (3) T , ••• ,x ) andx =(x l' ••• 'x) p+l n-p n-p+ n 

(1) T 
where x =(Xl, .•• ,x

p
)' 

and U is a pth order matrix like R but with elements al, ••• ,a
p

• 

solution is then determined by premultiplying (4.4.13) by (I ,OT) 
P 

(OT,I ) to produce the system, 
p 

The 

and 

(1) 
y } (4.4.14) 

= Y 
(3) 
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-1 
where Mll and Mlp are the pth order submatrices of Ac at the northwest 

(1) (3) 
and northeast corners. We then find x and x using (4.4.14) and 

(3) 
x with (4.4.13). This latter scheme is more computationally complex 

than existing systolic schemes for At matrix structures but shows that 

the solution of At is simply a linear combination of the solution to 

-1 
(4.4.2) and the first and last p-colurnns of A • 

c 

4.4.1 A Pipelined Solver 

A solution to (4.4.2) can be constructed by a simple pipeline 

arrangement illustrated in Fig (4.4.1.1), and consists of a triangular 

-1 -T 
inverter for finding Land L ,a rank annihilation pipeline for 

(4.4.8) and a matrix vector array for the coupled systems (4.4.9). 

The only new component is the inverter and its operation requires some 

explanation. 

TRIANGULAR 
INVERTER 

'~v 
u 

RANK 
ANNIHILATOR 

'''-../v 
MATRIX VECTOR 

I I 

1,0,0, ... 

T 
v 

FIGURE 4.4.1.1: Pipelined Topelitz solver 
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The inverter itself comprises two back to back triangular 

T 
inverters, one on the left producing upper triangular inverses (or L ) 

and one on the right for lower triangular inverses. These two components 

are operated in mutually exclusive fashion so no conflicts occur in 

later stages of the pipe and make use of the special form of A. Since 
c 

-1 
A is a symmetric circulant matrix so is A and is uniquely defined by 

c c 
-1 

its first column hence L is found by, 

Ly T 
= (I,O,O, ... ,0) I (4.4.1.1) 

and can be computed on a p-cell back substitution array in T=2n+p 

cycles, producing the solution sequence YO 0 Y
l 

0 ... o Y l' n-
However, 

the rank annihilation array accepts input in standard diagonal format, 

YO 

0 Yl 

0 YO Y2 
0 0 Yl Y3 

0 0 YO Y2 Y4 (4.4.1.2) 

0 0 Yl Y3 

0 YO Y2 
0 Yl 

YO 

for 
-1 . 

Land n=5, and a transposed form for L 
-T 

Each inverter 

component is a bi-linear array, shown in Fig.(4.4.1.2). The top tier 

is a modified backsubstituter which preloads the constant diagonal 

values S., i=O(l)p, and the bottom tier contains n cells to generate 
~ 

the non-zero portion of the above diamond input. As the don't care 

slots ('-') can be replaced by the neutral element zero, and the 

components are operated in mutuallY exclusive fashion. The off-state 

of a component generates the zero side of the input automatically. 
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.) Lower triangular inverter (n-6, pa2) 

b) Two back-to-back components (n-3,p-i) 

FIGURE 4.4.1.2: Triangular inverter 

Second tier generating cells consist of loadable registers and 

simple control logic as defined below. 

Cell 

out 

Procedure 

mem=O 

If r. THEN{mem=y. ,toggle=TRUE} 
l.n l.n 

If F. l.n 
THEN mem=O 

If toggle THEN Qut=mem 

ELSE out=O 

Fout =Fin ,rout =zin' Yout'·=Yin 
Toggle:=NOT Toggle 

As the backsubstituter produces the y. values, they are pumped from 
l. 

right to left along the second tier. Associated with and travelling 

one cycle in front of, Y
o 

is a control value (F). This forward control 

signal on the right to left journey resets cells by putting mem=O, and 

when F drops off the left end of the array it is immediately input as 
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a return signal (r). By virtue of the Y
i 

spacing and its lead on YO' 

r meets each y., i=O(l)n-l, as it moves left to right loading them 
~ 

into generating cells, and locking the cell into an alternating output 

cycle (see Fig.4.4.l.3) • 

which is output only once. 

On reaching the rightmost cell, r loads Y 1 
n-

consequently on leaving the array r is 

pumped back in as F to reset cells forming the remaining input pattern 

of (4.4.1.2). The control travels in cyclic fashion forming a control 

ring and indicates that the next solution sequence can be fed right to 

left along the second tier while the current inverse is still being 

output. If we allow2~+1) additional cycles to load the new parameters 

into the first tier and output the first result y , the reset control 
o 

is 2(p+l) cycles in front, causing erroneous loading of the next 

inverse coefficients. Hence the overlapping of different instances 

on the same inverter component requires a modified control arrangement. 

A working version of this modified form is given in the Appendices 

(program 19) and yields the following theorem. 

Theorem 4.4.1.1: 

The lower triangular inverter of a symmetric Toeplitz matrix L 

of bandwidth p requires T=3n+2(p+l) cycles to generate a diagonal 

input format. 

Proof: 

We require p+l cycles to load the parameters representing L, and 

a further p+l cycles for the first result to emerge from tier 1 of 

Fig.(4.4.l.2). This first result requires n cycles to filter through 

the second tier to its correct position. As the element corresponds to 

the diagonal and hence longest data sequence in (4.4.1.2) containing 2n 

elements, T=2n+n+2(p+l) follows immediately. 
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FIGURE 4.4.1.3: Snapshots of inverse output generation 

* = control signal. 

* 
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Corollary 4.4.1.1: Successive matrix outputs of the same inverter 

components are separated by at le9st 2(p+l) cycles. 

Proof: 

Computation in tier 1 is complete after 2(n+p+l) cycles, and tier 

two cells begin to switch off. Allow 2(p+l) cycles for paramater 

loading and the computation of the first result of the next instance 

on tier 1, switch off controls are 2(p+l) cycles in front of the new 

data. As the leftmost cell of tier 2 is the first and last to output, 

successive matrix diamond patterns must be separated by 2(p+l) cycles. 

This completes the description of the inverter. 

We can now consider the operation of the pipeline in Fig.(4.4.1.1). 

Initially the parameters 8
i

, i=O(l)p are loaded into the right component 

-1 
of the inverter and after n+2(p+l) cycles L begins to emerge. These 

values' are pipe lined onto the rank annihilator which for simplicity is 

assumed to be a RANK-l pipe with a ring capability. 
-1 

Converting L to 

"'~l L requires p column updates to distinct columns and the vectors u
i 

and Vi corresponding to (4.3.1.2) can be precomputed. It follows that 

--1 
L is computed by p cycles around the ring requiring p(4n+2) cycles 

using corollary (4.3.2.1) and the fact that initial synchronisation and 

output are overlapped with other pipe segments. 
"'-1 Finally L is pipelined 

onto the matrix vector array to produce (4.4.9a). NOW using the left 

component of the inverter L-
T 

and its first update computations can be 

~-l 
overlapped with the last modification of L producing an additional 

",,-T 
time of (p-l) (4n+2) cycles to complete L Feeding y back into the 

~-T 
matrix vector array to synchronise with L produces the result (4.4.9b). 

Theorem 4.4.1.2: 

The solution of k nxn circulant symmetric matrix systems of the 
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form A x=f with semi-bandwidth p+l is computed on a Toeplitz solver 
c 

in T=(6-4k)n+8kp(n+l)+2 cycles. 

Proof: 

T = Tl + T2 + T3 (4.4.1.3) 

where Tl = initialization and output latency delays 

T2 = total length of input/output sequence 

T3 = additional delays spent cycling in rank annihilator. 

Now T
l
=2(n+p+l) as the inverter requires n+2(p+l) to produce the first 

-1 
element of the first L ,and the first output is delayed by n cycles 

on its way out of the matrix vector array. 

There are k systems and allowing for the inverter delay, each one 

is represented by two diamond forms like (4.4.1.2) of length 2n separated 

by 2(p+l) cycles. 
-1 -T 

One diamond represents L the other L Thus, a 

single system has input length 4n+2(p+l) generated by the inverter. 

Furthermore to retain synchronisation each system must be separated 

by 2(p+l) cycles. Thus the total input length to the rank annihilator 

is, 
T2 = 2k(2n+p+l) + 2(k-l) (pH) • (4.4.1.4) 

NoW for a semi-bandwidth p+l the rank annihilator performs p 

-1 -T 
modifications to Land L of each system. Cycles of the rank 

annihilator introduce additional delays effectively lengthening the 

input incident on the matrix vector array. For the first system as 

described above this delay is p(4n+2)+(p-l) (4nT2)=(2p-l) (4n+2). Using 

the fact that the 
--T 

production of L of the ith system can be overlapped~ 

'" -1 with L of the (i+l)th system for subsequent solutions add a delay 

2(p-l) (4n+2) each hence, 

T3 = (2p-l) (4n+2) +2 (k-l) (p-l) (4n+2) , (4.4.1.5) 
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forming the summation (4.4.1.3) and some algebraic manipulation produces 

the theorem time. 

Corollary 4.4.1.2, The solution of a single nXn circulant symmetric 

matrix system A x=f of semi-bandwidth p+l requires T=2(4p+l) (n+l) 
c 

cycles using the Toeplitz solver. 

Proof, Use k=l in Theorem(4.4.1.2). 

Further improvements to these timings are possible by using a 

RANK-2 pipeline and by noticing that for p>l the 2(p+l) delay associated 

with the inverter can be overlapped with the last update in the rank 

annihilator. An alternative scheme is to try and interleave 

~-l N-T 
the computation of Land L using the fact that a cycle length is 

4n+2 cycles and data length is 2n; thereby halving the delay associated 

with the rank annihilation. But from Corollary (4.4.1.1) the input 

-1 -T 
diamonds of Land L are separated by 2(p+l) cycles giving a 

combined input length of 2n+2(p+l) cycles. Hence even with p=l inter-

leaving is not possible. 

Now p=l is an interesting problem because A becomes a circulant 
c 

-1 -T 
tridiagonal and only a single update is required to Land L 

Consequently terms in (4.4.1.4) and (4.4.1.5) associated with cycling 

disappear, improving throughput and decreasing computation time. These 

attributes can be retained for general A bandwidths by considering an 
c 

alternative factorisation method due to Audish and Evans [85b). The 

idea is to factorise A such that, 
c 

where, 

A 
c 

(4.4.1.6) 
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1 Cl!" 

Cl. 1 0 J. 

Q
i 

= , i=l(l)p 

0 
Cl

i J 
substituting for A in (4.4.2) allows x to be computed using the c 

coupled systems, 

i=l, Q1Yl=f 1 
l<i~p, QiYi = Yi - l ' ~ 
p<i~2p, Q~P-i+1Yi = Yi - l ' J 

where Y
i

' i=1(1)2p are auxiliary vectors and x=y • 
2p 

By a simple 

(4.4.1.7) 

(4.4.1.8) 

extension of the solution method in (4.4.7)-(4.4.9), (4.4.1.8) reduces 

to 2p matrix-vector multiplications. It follows that (4.4.2) is 

solved by interpreting A as 2p special circulant problems of semi
c 

bandwidth p+l (with p=l). Hence, 

Theorem 4.4.1.3: 

The solution of A x=f where A is an nxn symmetric circulant 
c c ~ 

matrix of semi-bandwidth r requires, T=2(2r+3)n+8r+2 using the Toeplitz 

solver, and the factorisation (4.4.1.6). 

Proof: 

Using the factorisation above we have 2r problems with semi-

bandwidth p=l. So the inverter latency is n+2(p+l)=n+4, and a single 

pass through the rank-l pipe costs 4n+2 cycles. For 2r problems, the 

input length is 2r(2n)+(2r-l)2(p+l)=4rn+4(2r-l). All these values pass 

through the matrix vector array generating the same number of outputs 

which filter out of the array with an additional n cycles delay. 

Summing these delays gives T=2(2r+3)n+8r+2. This answer is verified 
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by applying Theorem (4.4.1.2) with k=r and p=p+l. Note that k=r not 

2r because the proof of Theorem (4.4.1.2) assumes each system computes 

-1 -T 
Land L but the solutions in (4.4.1.8) .are a special case using 

-1 
only L consequently 2r problems can be compressed into the space 

-T 
and time of r problems by using the spare L places. Now solving k 

problems of semi-bandwidth r+l using the old factorisation is equivalent 

to solving rk problems of semi-bandwidth 2 with the new factorisation, 

and Theorem (4.4.1.2) yields the speed-up inequality 

(6-4k)n+8kr(n+l)+2 > (6-4kr)n+8kr(n+l)+2 (4.4.1.9) 

It follows that for r>l the new factorisation is faster. Furthermore 

the method can be applied to different problems of varying bandwidth. 

For example, the time to solve k problems of 

i=l(l)k is given by Theorem (4.4.1.2) with k 

semi-bandwidth r.+l, 
k ~ 

= L r. and p=l. 
i=l ~ 

Throughout the discussions so far we have assumed that successive 

matrix inputs arriving at the matrix vector array in Fig. (4.4.1.1) 

synchronise. For a p>l column rank annihilation strategy this is 

trivial to arrange using (4.4.9) because there is plenty of time for y 

in (4.4.9a) to filter out of the array and then be pumped back to 

~-T 
synchronise with L in (4.4.9b). For (4.4.1.8) the arrival of 

successive Y., i=1(1)2p is a time critical problem. The typical 
~ 

structure of two solutions Q
i 

and Q
i

+
l 

is given by, 
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where the shaded regions are zero elements used solely for synchronisation 

and AB=AC=BD=EF=n as the matrix vector array has 2n-l cells. In general, 

-1 
the computation of Yi=Qi Yi - l starts when the element at A enters the 

array. After a further n cycles elements along BC have entered implying 

that the last component of Yi-l has been input and the first component 

of Yi has been output. Now the elements of BDEF have the property of 

never modifying results (i.e., neutral computation). Consequently the 

synchronisation of known elements of Yi with Q
i

+
l 

can be overlapped 

with computation of unknown y. values, by a simple feedback loop with 
1 . 

a delay 2{p+l)+1=5 cycles as p=l. Note that the loop must be switchable 

to allow the input of the initial vector (Yl) of a new problem. A 

similar argument verifies that successive rank annihilations can start 

in the same way, and we conclude that no additional delays are required 

over those incorporated into the theorems. 

4.4.2 A Linear Array Scheme 

An alternative method for the solution of (4.4.l.8) is a linear 

array of the form shown in Fig.{4.4.2.l) which makes use of the 

symmetry in A and the simple structure (4.4.1.7). The array itself 
c 

consists of 2r BATS cells and computes in a time T=~+2rc where 

~=total input length of data and c=cell latency. Each BAT cell is made 

up of a computation part solving one Q.Y.=Y. 1 problem and a parameter 
~ 1 ~-

part which is responsible for loading and saving the correct ~i associated 

with each cell. Finally, two trivial switching networks are used to 

route data between cells and cell components. 

The computation part of the BATS pipeline solves the generic 

problem of the form, 
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form, 

DATAl 

CNTRL --

DATA2 

BATS 
CELL 

1 

BATS 
CELL 

2 

a) BATS linear array 

r-

H PROGAAH 
LOADING 

---I="-
8

1 r-
,. ~- SOLVER 

r-
'--

51,82 simple switching networks 

b) BATS cell structure 

FIGURE 4.4.2.1: BATS pipeline 

By = v , 

unknown and v known nxl vectors 

1 a 

a 0 
B = 

o 
a 1 

I--

I---
r-

BATS 
CELL 

1 

r----

8
2 

~ 

.. 
r 

---I:> 

BATS 
CELL 
2r 
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respectively, while B has 

nxn 

the context of the problem determined by the substitution a = a, 
~ 

(4.4.2.1) 

the 

(4.4.2.2) 

depending on cell, thus it is necessary only to discuss the solution of 

(4.4.2.1). From pickering [84] we can write, 

- - --1 
B = (B+P) = B(I+B p) • (4.4.2.3) 
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where B is lower triangular and, 

0 ~ 1 ex 

0 2 
-ex 

--1 3 
0 ex p = , I+B P = r 

I 
I 

0 I 

n 
0 0 1+ (-ex) 

and solve the coupled system, 

a) Bu = v b) 
--1 

(I+B p) Y = u , (4.4.2.4) 

instead of (4.4.2.1). 

Now using only the value ex the solution of (4.4.2.4a) and construction 

--1 
of (I+B p) can be computed in parallel by the structure in Fig.(4.4.2.2}. 

The design consists of three cells and two memory sets of n bi-directional 

delay registers each. The cells are controlled by two tag bits associated 

with the input v, and memory by a single control bit Cl which remains 

constant during computation. The tag bits mark the start and finish of 

data and can be used to generate" cell controls during computation as 

summarized below. 

tl t2 Action 

0 0 Normal computation 

0 1 Reset cells/disable Cl 
1 0 Enable Cl and load y 

n 
1 1 -

where data is input in the order 

DATA v v3 v
2 VI n 

tl 1 0 0 0 ~ (4.4.2.S) 

t2 0 0 0 1 

Now the BATS cell computes as follows:- The LIF stores act as FIFO queues 



• 
F F 

y 

x 
F 

z 

L/F 1 
r---

• I n n 
'1 

~ 

D B 

.. I 
,4, 

'--
L/F 2 

( i) y:x-ag. 
l. 

i:l (1) n 

gi=Y 

(H) a=O-aa 

Initially g :0, 

° 
a=-l 

z = x/(l-y) 

IF tl THEN ysave:y 

IF. tl THEN w:ysave 

ELSE w=x-(z*ysave) 
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'" r 

where tl is tag bit control before entering L/F, tl controls 

generated after leaving L/F store. 

FIGURE 4.4.2.2: O(n) BATS cell structure 
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initially. --1 The F-cell computes (4.4.Z.4a) and generates (I+B p) by 

Z n 
the sequence -a,~ , ... ,(-~) piping the results into the L/F memory, 

while the D-cell continually performs subtract/divides to find y • 
n 

The D-cell result is valid only after n+l cycles at which time u and 
n 

its associated tag bits from v have been stored. Now the method of 
n 

solution for (4.4.2.4b) depends on the BATS cell position in the array, 

which in turn depends on the computation in (4.4.1.8) to be performed 

If we are computing Q y =y 1 the next calculation is QTy l=y 
P P p- P p+ P 

next. 

and output must be in a reversed order to input, otherwise it is in the 

same order. It follows that when the tag enables Cl' if cl=l then L/F 

stores act as LIFO and if cl=O they act as FIFO. Consequently we use 

tag t2 to reset the F-cell and B-cell before computation and tag tl to 

load Yn from the D-cell into B-cell. Thus, the control Cl is sufficient 

to switch the direction of vector output computing (4.4.Z.4b) by forward 

or backward recursion as necessary. The B-cell can then use the tag 

bits to decide whether to send Yn as first or last output, tl A t2 

implying first and t2 A tl last. Finally when the vector is reversed 

the role of the tag bits must also be reversed to prevent incorrect 

control signals, this is achieved by the formula, 

tl = (tl A Cl) V (t2 A Cl) 

t2 = (tZAcl ) V (tl AC1) } 
and is implemented by trivial combinational logic. Fig.(4.4.2.3) 

(4.4.2.6) 

indicates the necessary Cl assignments and data reversals. The latency 

of the BATS cell is clearly c=n+2 allowing n cycles to fill the L/F 

stores and two cycles for the delay through the F- and B-cells. In 

terms of area the BATS cell requires 2n L/F registers and a total of 

four ips cell equivalents for F-, D- and B-cells with extra logic for 
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loading parameters and reversing tags assumed negligable. Consequently 

the design is termed an O(n) BATS cell. The latency of the BATS pipe 

in Fig.(4.4.2.l) using this O(n) cell is 2r(n+2) giving a computation 

time T=~+2r(n+2), where ~ is determined by the size of the problem n 

and the cost of loading the a
i

• i=l(l)r parameters. Adopting a simple 

addressing scheme modified from Umeo [85] and using the fact that 

computation uses only a single data input line a. loading is achieved 
1 

as follows. The right handside f in (4.4.1.8) and the a. parameters are 
1 

input to the left boundary of the linear array in the form. 

. .. a 
r 

(4.4.2.7) 

using a single connection. while a set of addresses associated with 

each a
i 

is input on the remaining connection with the form. 

ADDR " 0 Ol.2 ••.• r. (4.4.2.8) 

n 
The parameter section of each BATS cell contains an address describing 

its position in the array and a comparator. The parameter section checks 

each input address with its stored address, loading the a. when they 
1 

match. Synchronisation for a number of problems is then achieved by 

piping the DATA and ADDR through the L/F stores and utilising the unused 

tag bit combination (t
l
=t

2
=1) to disable the cell computation as a

i 
and 

the addresses pass through. The f. and zero addr values are replaced by 
1 

i 
true results of u

i 
and (-a) respectively as explained above. We 

conclude that k problems have input length ~=k(n+r)+(k-l)n provided 

each address and hence its associated parameter is allocated to two 

different cells; for example by numbering cells from left to right for 

i=l(l)2r and allocating cell i with address i for i~r and with addres·s 

2r-i+l for i>r. 
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Theorem 4.4.2.1: 

The solution of k systems of the form A x=f where A is an nxn 
c c 

symmetric circulant system of semi-bandwidth r+l can be computed on a 

linear array of 2r O(n) BATS cells in T= (2k+2r-l)n+r (4+k) • 

Proof: [summation of timings in the above discussion] • 

Where the extra (k-l)n delays are required to allow for the 

emptying of a cell LIFO, a simple comparison using Theorems (4.4.1.2) 

and (4.4.2.1) gives the relation, 

(6-4kr)n + 8kr(n+l) + 2 > (2k+2r-l)n + r(4+k) • (4.4.2.9) 

indicating that the O(n) BATS cell and array is faster than both previous 

methods using the relation (4.4.1.9). 

4.4.3 P-Cyclic and Double Pipe Schemes 

There are many variations on the O(n) BATS cell which utilise further -

features of the special factorisation of Evans & Audish [86]. In 

particular the condition o<la. 1<1, i=1(1)2r is often satisfied in 
1. 

practice. Consequently if a bound a=maxla. 1 can be found for a special 
1. 

set of problems the BATS cell can be modified to improve speed and 

throughput using the P-cyclic properties of (4.4.2.2). 

Now consider (4.4.2.1) where B is a block p-cyclic matrix with p=n 

and lxl block sizes. 

form, 
0 

The block Jacobi iteration matrix is B =L+U with 
J 

a 

B
J 

= "~ , O<a<l , (4.4.3.1) 

a 0 

and Land U strictly lower and upper triangular matrices. We can choose 

a matrix, 
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such that, 

o 

Sa 

o 
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-(n-l) 
S a 

c (4.4.3.2) 

Sa 0 

(4.4.3.3) 

(4.4.3.4) 

Implying that BJ(S) has eigenvalues independent of S making Bp-cyclic 

and consistently ordered. Now, 

Theorem 4.4.3.1 

Let an nxn matrix A be a consistently ordered p-cyclic matrix with 

non-singular diagonal submatrices. If wio and A is a zero eigenvalue of 

-1 
L =(I-wL) {wU+(l-W)L} and if ~ satisfies, 

w 

(A+w-l)P = AP-lwP~P, (4.4.3.5) 

then ~ is an eigenvalue of BJJand conversely) if ~ is an eigenvalue of 

BJ and A satisfies (4.4.3.5), A is an eigenvalue of Lw 

proof: [see Varga [62] pp.106-l07]. 

With w=l, L is the iteration matrix in the Gauss-Seidel algorithm 
w 

and a simple relationship between the eigenvalues of B
J 

and Ll when p=n 

is given by 
A (n-l) ~n or n 

A=~ , 

thus from (4.4.3.2), 

and 

IIBlloo = lal ...... p(B)~lal<l 

I/BI/2 =;J:i2 =lal J p(BH;/al<l, 

(4.4.3.6) 

and using (4.4.3.6) P(Ll)<p(B) implying that each coupled system in 

(4.4.1.8) can be solved by iteration. Considering the relative error 
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of successive approximations to (4.4.2.1) gives. 

Ily(k)_yll : P(Ll)k11y(0)_yll 

for k iterations. and using (2.4.3.12) with P(Ll)=P(A)<lal 

(4.4.3.7) 

Thus k>.l for n»t implying that 1 or 2 iterations of the Gauss-Seidel 

method are the minimum number of iterations. 

The Gauss-Seidel iteration can be written in the form. 

a) (k) (k-l) 

} Yl = v -ay 
1 n (4.4.3.8) (k) (k) b) Yi = v,-ay, 1 i=2(1)n 
1. 1.-

and by repeated substitution in (4.4.3.8b) 

2 n-i n-i n (k-l) = v -ay +a v ••••• (-1) a v,··,,+(-a) y 
n n-l n-2 n-l. n (4.4.3.9) 

now if Yn is the exact solution of the nth unknown and rn is the error 

term, (k-l) 
Yn = y +r 

n n 

and (4.4.3.9) is. 

(k) n-i n-i n 
Yn =v-av ..• (-1) a v i ••••• (-a) (y+r) n n-l n- n n (4.4.3.10) 

but as o<lal<l and sufficiently large n~. lasl=o truncating (4.4.3.10). 

(k) 2 i i s-l 
Hence y =v -aY l+a v 2'" •• (-1) a v, ••••• (-a) vn_s+l n n n- n- l. 

(4.4.3.11) 

(1) It follows that y =y after only a single iteration. and yields a 
n n 

direct method of solution involving two steps. 

(i) compute (4.4.3.11) 

(ii) construct the forward recurrence (4.4.3.8) 

T A generic cell capable of computing both the Q and Q forms in (4.4.1.8) 

is given in Fig.(4.4.3.l). Notice that data is split into two input 
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FIGURE 4.4.3.1: P-cyclic BATS cell 
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assumption that s~ rn/2l which is reasonable for large n. Operation of 

the cell is simple. The FIFOs act as delay queues for both data and 

control tags while y is computed. On emerging from the queues IPS(2) 
n 

computes half the results using the forward recurrence, and as y is 
n 

available the D-cell computes the remaining terms by a backward 

recursive procedure. Calculation of y is performed by two cells, the 
n 

i 
multipliers form the powers a reducing (4.4.3.11) to a simple dot 

product accumulated by IPS(l). As only s terms must be accumulated we 

need to delay the substitution phase by s cycles giving the size of the 

FIFO queues. By pipelining control tags associated with data through 

the FIFOs control can be divided into pre and post-FIFO processing, and 

controls the IPS(l), Mult, IPS(2) and D-cell as summarized below. 

Pre-FIFO control 

tl t2 Action 

0 0 Normal computation (next polynomial term) 

0 1 Initialise Mult and IPS(l) 

1 0 Load first polynomial term in IPS (1) 

1 1 Null 

Post-FIFO control 

tl t2 Action 

0 0 Calculate Y"Y'+l 1. n-l. 
in IPS (2) and D-cell 

0 1 Copy a to IPS(2) and D-cell 

1 0 Load y into IPS(2) and D-cell (set Yn n for output) 

1 1 -

as in the O(n) BATS cell tl~t2~1 can be used to disable cells while 
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parameter data pass through the cell. The two level pipelining of 

control and data in FIFOs increases throughput, as total input length 

i=k(~/21+r) for k problems. While the latency of the P-cyclic cell 

is c=(s+l) hence, 

Theorem 4.4.3.2: 

The solution of k circulant symmetric systems of form A f=x where 
c 

TT. . 
A =Ql".Q Q .. ·Ql 1S an nXn matrix with semi-bandwidth r+l 1S solved in c r r 

T=k(n+r)+2r(s+1) using 2r p-cyclic cells, where, 

s for 

1~/21 

and Cl s =0 when Cl=max (I Cl i I ) is 
1~i~2r 

Proof: 

otherwise 

selected from the Q. in (4.4.1.7). 
1 

Generally data is split into two streams v
l

,v2 ,··.,vn and v
n
"'" 

vn_n+1 When n>rn/21 some data is repeated for input but retains smooth 

data flow. For n~rn/21 argument is the same as the above discussion. 

In hardware terms each cell requires 2s registers in the FIFO queues 

and the equivalent of four inner products for the computation, giving a 

total of 4rs registers and Br ips equivalents for the full array. 

The basic idea of the p-cyclic cell can be extended to produce a 

double pipe scheme for solving circulant systems, and more generally, a 

recursive decoupling scheme producing a systolic tree arrangement 

(similar to Section 4.1). The double pipe is derived by considering the 

system, 
Tx = Z I (4.4.3.12) 

of the form, 



1 ex xl 

1 

0 
ex I 

1 I ex Xn/2 
- -- - - - - - I- - - - - - -

1 ex x 

~, 
~1 2 

0 
I 

ex 1 x nXn n 

where O<ex<l as before. We partition the system so, 

which after some simple eliminations yields, 

a) 
-1 "V -1 '" (P-BP B)X

1 = zl-BP z2 

b) -1 '\..- -1 ...... 
(P-BP B)X2 = z2-BP zl 

denoting 

- -1 
a) P = (P-BP B) 

b) 
...., -1....,J 

zl = zl-BP z2 

c) 
-./ -1"'" 

z2 = z2:-BP zl 

representing the decoupled system, 

where, 

P = 
':~ 
~ex 

<-<x) 1 

} 
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zl 

zn/2 
= (4.4.3.13) 

z 
~1 
2 

I 
z 
n 

(4.4.3.14) 

(4.4.3.15) 

(4.4.3.16) 

(4.4.3.17) 

(4.4.3.18) 



now denoting, 

a) PI (n/2) ~ a (z 
n z+1 

n 
2-1 

-<Xz , ••• ,+(-<X) Z) 
!42 n 
2 

n 

b) P2(n/2) ~ 
2-1 

a (zl-<Xz2, ••• ,+ (-cd Zn) 

2 
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) (4.4.3.19) 

We conclude that there is no need to compute p-
l explicitly and that 

(4.4.3.17) has the strictly upper triangular form, 

I:~ I 

~:I 
o 

- - - - - 1- - - - - - -

'~o 
1 

o 

~' 
~~/}-
x 
!!..l 
2 

x -n 

~ 

(4.4.3.20) 

when the vanishing point aS~O satisfies s~n/2. Now using the principle 

of the p-cyclic cell to solve a system of the form, 

1 a 

1 c 
~ (4.4.3.21) 

c a 

1 

repeated forward substitution yields, 

2 s-l 
xl ~ zl-az2-a z3,···,(-a) Zs (4.4.3.22) 

Hence, 
(4.4.3.23) 

consequently, (4.4.3.21) is solved by a backward recursive scheme 
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producing x /2""'x and a forward recursive procedure producing 
n !4l 

4 
xl, ••• ,xn ' With analogous reasoning 

4 

and 

= Z -aZ 

.!41 !42 
2 2 

PI (n/2) = cxx 
.!4l 
2 

2 s-l 
+cx z , ••• ,+(-cx) z 

~3 ~S-l 
(4.4.3.24) 

(4.4.3.25) 

giving X I •• • IX3 ' 
n 41 

and X I ••• IX
3 

• 
!4l ..E.. 

Thus using two modified BATS 

4 2 4 

cells as shown in Fig.(4.4.3.2) a double pipe BATS solver is produced. 

We use one cell for each de coupled system, and modify the cells to 

produce PI or P2 (depending on input data) and to pass the results 

between each other. The first action of the cell is to compute the 

modification to the righthand side of (4.4.3.13), and it is clear that 

Xl and x are available one cycle before PI and P2 • Consequently an 
!4l 
2 

additional delay is added to synchronise the loading of xl and x into 
!4l 

of PI and P2 into the IPS(2) parts ~f the the D-cells with the loading 

respective BATS cells. The timing of the double pipe BATS array is 

derived directly from Theorem (4.4.3.2) by substituting s+l for s and 

putting, 

n = { s, [n/4J < s ~ rn/21 

rn/41 s ~ rn/41 
(4.4.3.26) 

Clearly data is not repeated when 0=01/41, and gives the best results. 

In terms of IPS equivalen~the double pipe requires twice as many cells, 

doubling the hardware requirements to 16r ips cells. 4s FIFO registers 

are also required. 
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4.4.4 Comparison of Methods 

A summary of timings and hardware requirements for solving (4.4.2) 

using the arrays discussed above are listed in Table (4.4.4.1). From 

this table it is clear that the Toeplitz pipe using rank annihilation 

is slowest and uses most hardware. While the D(n) BATS cell pipeline 

and its modification using the P-cyclic properties of A make them 
c 

comparable to the Brent and Luk (BL) and S.Y. Kung and Hu (KH) schemes. 

For instance, when k>2r-l the D(n) BATS cell has a time bounded above 

by that of the BL method and from below by the KH scheme. In terms of 

IPS cell equivalents the D(n) BATS cell is far superior to both BL and 

KH, and for register usage bounded below by BL and above by KH. 

Consequently the D(n) BATS scheme gives intermeaiate performance 

between the two methods. 

The results for the Toeplitz pipe are disappointing but easily 

understood. First consider Chen's factorisation yielding the coupled 

/ 
systems (4.4.5), which are more jifficult to solve than straightforward 

lower and upper triangular factors. The motivation behind the method 

is to quickly invert the special forms using rank-annihilation converting 

the solution to simple matrix-vector problems which are easily pipelined. 

This breaks the sequential dependency of solving by forward and backward 

substitution which is normally associated with factorisation methqds. 

Hence throughput should increase hopefully bringing overall computation 

time down. However the latency of the RANK-l scheme is more than the 

computation time for both the BL and KH methods making a speedup 

impossible. Tracing the computation further shows that the computation 

of (4.3.5e) (an inherently sequential task) is the root cause of the 

problem. Notice that throughput is increased over the BL scheme as a new 
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problem can be input every 2(n+p+l) cycles in the Toeplitz pipe rather 

than 4n cycles in BL, and is also comparable to the KH method for small 

p. Consequently, the delay and extra hardware associated with rank 

annihilation creates overheads which destroy any advantages from 

pipelining. The new factorisation of Audish & Evans [8Sb] simplifies 

the data flow through the Toeplitz pipe and improves the cell efficiency, 

and timing. The improvement is due to the factorisation structure which 

demands that only a single RANK-l elimination occurs on each component 

coupled system, before its solution. A itself and hence its factors 
c 

can be encoded by a small number of parameters. The Toeplitz pipe 

expands this compact form into a full matrix format increasing hardware 

and computation time due to the increases in component pipe latencies. 

Again, this traces back to the rank annihilator which makes no assumptions 

about matrix structure. The O(n) BATS cell and linear array is a design 

specifically aimed at the Audish & Evans [8Sb] factorisation. The 

compact representation of the factors is retained by using a parameter 

loading scheme, and a modified method for solving the quasi-tridiagonal 

form in Pickering [84]. The minimum amount of additional data required 

is produced reducing design area and simplifying systolic data flow, ~ 

while retaining the throughput of the Toeplitz pipe and KH schemes. As 

the solution of each component system in (4.4.1.8) uses a single BATS 

cell the pipeline size is related to the semi-bandwidth r+l rather than ~ 

n in the other schemes, a vital attribute of systolic arrays. The only 

drawback being that each cell contains O(n) registers. -
The p-cyclic cell produces a truly problem size independent array 

but relies on special features of the factorisation process (discussed 

below), which may not always be satisfied. In particular we assume that 



METHOD TIME 

Brent & Luk 4nk 

S.Y. Kung & Hu 2nk 
(PLP) 

Toeplitz pipe (6-4k)n+ 
(Chen's method) Bkr(n+l) 

Audish & Evans (6+4kr)n+ 
method Bkr+2 

. 
O(n) BATS (2k+2r-l) n 
pipe r (4+k) 

P-cyclic cell k (rn/2l +r) + 

2r(s+1) 

k=number of consecutive problems 
r+l=semi-bandwidth 
n=problem size 
s=vanishing point as=o for 0< la/<l 

CELLS REGISTERS 

3n 2n 

3n 2 
O(n ) 

10n+r-3 2(2n-l) 

" " 

8r 4rn 

Br 4rs 

Times and cell counts multiples of IPS equivalents 

TABLE 4.4.4.1: Timing and hardware for Toeplitz solvers 

I:'Z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
i 

2 2 3 4 6 7 10 13 21 44 

4 4 6 8 11 14 19 26 42 88 

5 5 8 10 13 17 23 33 52 110 

6 6 9 12 16 20 28 39 62 132 

7 7 11 14 18 24 32 46 73 153 

8 8 12 16 21 27 37 52 83 175 

9 9 13 18 23 30 41 59 93 197 

10 10 14 20 26 34 46 65 104 219 

11 11 16 22 28 37 50 72 114 241 

12 12 18 23 31 40 55 78 124 263 

13 13 19 25 33 44 59 84 135 285 

14 14 21 27 36 47 64 91 145 306 

15 15 22 29 38 50 68 97 155 328 

16 16 23 31 41 54 73 104 166 350 

2 

TABLE 4.4.4.2: Tabulation of vanishing 
decimal places t 
s -t 

a <£ where £=lxlO and 

point s for values of a and 

loglO£ 
s = 

log lOa 
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the a" i=l(l)r parameters satisfied o<la, 1<1. To derive a fixed 
~ ~ 

sized cell we then chose a=max(a,), with cell design based on the 
~ 
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principle that as=o for s sufficiently large. This vanishing point(s) 

clearly depends on the word length of calculations and Table (4.4.4.2) 

gives an indication of its value. As the systems considered are 

normally of the order n>lOOO, s<rn/2l is a reasonable assumption when 

o<lal<l. Thus, the p-cyclic scheme is a fast area efficient design 

superior to all the others when n»r and s. The only problem with the 

p-cyclic cell and its double pipe modification is that the backward 

recursive procedures adopted are unstable due to the division by a. 

In order to derive a stable p-cyclic cell further concepts developed 

in the next chapter are required. 

Now so far we have been quite vague about the methods of factor-

ization to produce (4.4.3) and (4.4.1.6). The BL and KH methods 

operate on the matrix A directly, whereas the techniques investigated 
c 

here assume a factorisation has been completed before the solution 

starts. In Chen's method multiplying out (4.4.3) produces the non-

linear system of equations, 

2 2 2 2 
S +Sl + ••• S l+S o p- P 

SOSl+SlS2+ "'+Sp_2Sp_l+Sp_1Sp = a l 

SOS2+S1S3+ "'+Sp_3Sp_2+Sp_2Sp = a2 

= a 
p 

1 
(4.4.4.1) 

which must be solved to produce Si' i=l(l)r. Likewise in the Audish 

,& Evans factorisation the form, 

(4.4.4.2) 
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with Ak;Ac ' k;p+l and A
k

_
l 

a modified matrix of semi-bandwidth k-l such 

that, 

and 

~-l ; 

rl Y2 ---Yk - l 

Y2 , 
I 

I 
Yk- l 

multiplying out (4.4.4.2) yields the nonlinear system, 

{Y 2+Y 1Yk )Yk + (Y l +Y 2Yk ) ; a
l 

1 {Y l +Y 2Yk )Y
k 

+ (Y 2+Y 3Yk) ; a
2 

.......................................... 

~ (Yk-3+Yk-2Yk)Yk+{Yk-2+Yk-1Yk) ; 

~-2 

{Yk- 2 +Yk- l Yk)Yk + Yk- l 
; a

k
_

l 

J Yk-1Yk 
; a

k 

(4.4.4.3) 

(4.4.4.4) 

(4.4.4.S) 

relating the coefficients of ~ to the elements of Q
k 

and ~-l. Solving 

(4.4.4.S) and repeating the process on ~-l yields a sequence of k-l 

factorisations producing (4.4_l.6) according to, 

A - Q A QT z;l{l)k-l. 
~k-z+l - k-z+l k-z k-z+l ' (4.4.4.6) 

requiring the solution of a non-linear system at each step. 
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Audish (81) discusses an iterative procedure to solve (4.4.4.1) by 

repeated computation of a (p+l)*(p+l) matrix vector problem, and 

(4.4.4.6) is solved by the Newton Raphson method using a (k-z+l)*(k-z+l) 

Jacobian matrix at each step. (See Audish & Evans (86). Both methods 

converge quite quickly from good initial approximations, and the 

solutions of the coupled systems in (4.4.1.8) are stable as long as 

the k matrices are all strictly diagonally dominant. --k-z 

For example put, 

where a
l 

= 52614328, 

a
5 

= 1501038, 

34066223, 

so A6 is factorisable yielding, 

A6 = Q6Q5Q4Q3Q2Q~Q~Q~Q~Q~ 
The values of the Q k 1 are given by, 

r- + 

a
3 

= 10825702, = 1801441 

with each non-linear solution requiring five iterations. Normalizing 

(4.4.4.3) yields, 

a
6 

= 1/8, a
5 

= 1/7, a
4 

= 1/6, a
3 

= 1/5, a
2 

= 1/3 , 

hence a=ma~)=1/3 and the number of s registers in the p-cyclic cell is 
l. 

obtained from Table (4.4.4.2) for some accuracy t. 

A more realistic example is, 

A3 = (34,-16,1) 

and 

yields Y3 = -1.7819687, Y
2 

= -0.2032583, Y
l 

= 2.7609056, 

with Y2 and Yl the coefficients of A2 requiring seven iterations. Using 

(4.4.4.9) with aO=Yl and a
l

=Y
2 

and (4.4.4.10) indicates that o<lail<l 

in our standard form (4.4.1.7). 
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When A has a quin or tri-diagonal circulant form the resulting non
c 

linear equations are reduced to a special form which can be solved 

directly. For instance to produce (4.4.3) for a quindiagonal A (in 
c 

compact form 
!-v . 

Ac=(aO,al,a2}},80L 1S given by, 

a
O 

= 8
2

+8
2

+8
2 

1 o 1 2 

a
l 

= 80 8
1

+8
1

8
2 ~ a

2 
= 80 82 J 

and from Evans & Hqdjidimos [80] it follows that, 

where, 

8
0 

= d+e+f 

8
1 

= 2 (d-e) 

8
2 

= d+e-f 

4d = (a
o

+2a
l

+2a
2

)! 

4e = (a -2a +2a )! 
012 

1 

J 

. 2 2 i ! 
4f = [2 (ao -6a

2
) +{(ao +2a

2
) -4a

l
} ] • 

Similarly, for tridiagonal systems, 

a} a
O 

= 8
2

+8
2 

} o 1 

b) a
l 

= 80 8
1 

and substituting for 81 
in (4.4.4.9a) gives, 

4 2 2 
8 -a 8 +a = o , o 00 1 

with the trivial solution, 

2 2! i 8
0 

= [0.S{ao±(ao-4a
l

} }] 

with 81 given by (4.4.4.9b). 

(4.4.4.7a) 

(4.4.4.7b) 

(4.4.4.8) 

(4.4.4.9) 

(4.4.4.le) 

From (4.4.4.7) it follows that a quindiagonal A has the factorized 
c 

form, 

with, 

T 
Ac = QQ , (4.4.4.11) 



o 
Q = 

o 

and factorising Q such that, 

and, 
1 Y~ 
Y2 

~, Ql = , Q2 

j 2 

gives, 
a) So = Yo 

b) Sl = Yl +Y2Yo 

c) S2 = Y2Yl 

substituting for Yo and Y2 in (4.4.4.14) 

2 
Yl-Y1Sl-SOS2 = 0 , 

giving, 

substituting in (4.4.4.14) a,c produces, 

TT 
Ac = Q1Q2Q2Ql 
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(4.4.4.12) 

(4.4.4.13) 

, 'I Yl 0 

~ = 

L o Yl Yo 
~ 

(4.4.4.14) 

yields the quadratic, 

(4.4.4.15) 

(4.4.4.16) 

(4.4.4.17) 

which after normalising Q
2 

produces the Audish & Evans factorisation. 

Likewise the Chen factorisation on a tridiagonal given by (4.4.4.9) 

produces an Audish & E~ans form directly. We conclude that for restricted 

bandwidths the BATS pipeline competes very favourably with the BL and 

KH schemes, but for general bandwidths the overhead associated with the 

factorisation creates a serious disadvantage. This problem is compounded 
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by the difficulty in extending the techniques to skew-symmetric matrices, 

of the form, 

A = -c 

a 
p 

a 
,-p 

a --- a 
-1 -p 

:~O 
a 1- -_ a - -p 

a 
-1 

a a a 
p' -'. 1 0 

(4.4.4.1S) 

which the BL and KH schemes solve easily. Again limited Chen type 

factorisations for quindiagonal and tridiagonal by direct methods are 

possible see Evans [S3a] ,[SOb], which extend to Audish and Evans type 

forms by a similar argument to that above. But generally a factor-

isation of the form (4.4.1.7) is not available. 

Finally, the real advantage of these new factorisations is their 

utilisation of hardware. We have already seen that the O{n) and p-

cyclic arrays are sensitive to bandwidth. But the Audish & Evans 

factorisation with the form (4.4.1.S) is also suitable for mUltipass 

computation, permitting an arbitrary number of cells to be used. 

Consequently when systems of order n>looo are considered, and area 

usage is a premium the overhead in factorisation is compensated by the 

fact that BL and KH schemes require O{n) cells. 

4.5 SUMMARY 

In this chapter the concept of a soft-systolic algorithm and OCCAM 

simulation has been introduced by considering new designs for traditional 

algorithms which map easily into multi-layer environments. Section 4.1 



297 

introduced the double pipe a natural two layer design with planar sub

arrays on each level with local broadcasting between layers. The 

extension to general Dn-pipe and n level arrangements was dicussed, 

proving that systolic matrix vector computation was a limited version 

of a parallel tree arrangement already well known. In the form of a 

matrix product array the double pipe mapping extended to 2-D arrays 

illustrating that a two layer design reduced hardware while retaining 

the computation time of the traditional array. 

Section 4.2 examined methods for overcoming feedback loop problems 

in factorisation and substitution (forward, backward recursive) schemes 

for solving linear systems. This led to block partitioning of array 

cells and explicit block computation. Block hex cells and inner products 

were introduced and shown to utilise hardware more efficiently than 

traditional schemes, while multi-layer layout was achieved at the 

internal cell level rather than global array organisation. While 

examination of the feedback loop length determined the optimal block 

size to be 3x3, showing that no improvement in computation could be 

gained for higher block sizes. An assessment of additional hardware 

required in arrays due to the inclusion of zero sub(super) diagonals of 

outer block diagonals was also considered. Finally, block schemes 

were used to produce efficient matrix product and factorisation arrays 

for complex matrix problems utilising implicit and explicit block 

computations respectively. 

Section 4.3 considered the more difficult problem of matrix 

inversion and in particular rank annihilation. A special form of 

wave front processor incorporating a Systolic Control Ring (SCR) was 

used to examine RANK-l and RANK-2 wave front schemes. Then a dedicated 
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systolic pipe utilising soft-systolic long wire heuristic was developed, 

which folded naturally into two levels to form a point to point 

systolic ring for repeated inverse updates. The new array reduced the 

number of true ips cells by trading them for delay cells, but could not 

compete with existing arrays for arbitrary matrix inversion in terms 

of speed. Arbitrary schemes requiring O(n) time for full inversion and 

the rank annihilator O(n) for a single update and o(n
2

) time for 

arbitrary inversion. However the rank annihilation array was well suited 

to mul tipass type computation while reducing hardware. 

Section 4.4 considered the solution of circulant and Toeplitz 

matrices. These systems are interesting because fill-in during the 

factorisation process forces traditional arrays for dense matrices to 

be used even though the matrices have well defined sparsity. The rank 

annihilation array was adopted to construct a pipelined solver based on 

a new factorisation method rather than the Levinson and Bariess schemes 

already investigated. The main idea being to factorise the circulant 

matrix into a number of easily invertible circulant factors. Two 

algorithms were considered, the first producing circulant lower and 

upper triangular factors, the second replacing the triangular forms by 

a sequence of r bi-diagonal circulant matrix factors. Both methods 

could be solved on the same systolic pipeline with the latter scheme 

improving efficiency, throughput and computation time. An alternative 

was then developed removing the rank annihilator and making use of the 

special bi-diagonal structure of the second factorisation. This new 

array retained the throughput of the pipelined scheme, decreased 

computation time, and required a number of cells proportional to the 

matrix semi-bandwidth. Some simple modifications to this array using 
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special properties of the matrix yielded a more compact and faster 

array and extended to double pipe implementation. Finally, the new 

arrays were compared with existing methods. A significant factor in 

the comparison was that existing methods used the subject matrix 

directly while the new schemes required a factorisation before 

computation. The factorisation itself required the solution of non

linear systems of equations, making it difficult for the new arrays 

to compete even though the linear array was faster and used less ips 

cells. However the new arrays were suitable for mUltipass computations 

where area is the main consideration,(with computation time secondary,) 

the effects of the factorisation are not as significant making the new 

methods attractive. 



CHAPTER 5 

SYSTOLIC QUADRANT INTERLOCKING (QI) METHODS 

"I SazJ four AngeZs standing at the four corners of 

the Earth ••• " 

Book of Revelations 

(New Testament) • 
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The recent rapid development of systolic arrays for problems in 

Linear Algebra has uncovered a variety of algorithms which produce 

different area time tradeoffs. However, this development of systolic 

algorithms has to date been largely restricted to existing sequential 

algorithms like the LU factorisation, Gaussian Elimination and QR

decomposition. There is no fundamental reason other than simplicity 

which indicates that a sequential to systolic algorithm conversion 

gives the best systolic array. Indeed, the BATS pipeline in Chapter 4 

questionedithis implicit assumption of array designers. 

In this chapter we pose the following question 'are the Quadrant 

Interlocking (QI) methods better suited to systolic computation than 

basic sequential methods already employed?' 

Intuitively QI methods are divided into three groups for solving 

linear systems; 

I} Quadrant Interlocking Factorisations (QIF) 

2} Quadrant Interlocking Eliminations (QIE) 

3} Quadrant Interlocking Iteration (QII), 

and have a number of advantages. Firstly, they are aimed at a parallel 

machine from the outset, and secondly, they have improved performance 

over other parallel implementations for solving linear systems. The 

QI algorithms themselves have been well studied, see Hatzopoulos (79), 

Shanehchi (80), Evans & Hadjidimos (80), Sojoodi-Haghighi (81), Evans 

& Sojoodi-Haghighi [82), Evans & Levin (85). Our task here is to 

transfer these improvements to systolic array implementations. 
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5.1 SYSTOLIC QUADRANT INTERLOCKING FACTORISATIONS (SQIF) 

Consider the linear system, 

Ax = b , (5.1.1) 

where A is a non-singular nxn matrix and x and bare nXl vectors with 

x unknown and b known. The basic idea of the QI factorisation is to 

factorise A such that, 

A = WZ , (5.1.2) 

where it is observed that matrices Wand Z have a Quadrant Interlock-

ing structure defined by the relationships, 

1 i=j 

o i=l (1) Ln/2J, j= (i+l) (1) (n-i+l) 
(5.1.3) 

o i=m(l)n, j=(n-i+l) (1) (i-I) 

w. . otherwise, 
1.J 

and 

Zij i=I(I) L(n+l)/2J, j=i(l) (n-i+l) 

i=m(l)n, j= (n-i+l) (1) i (5.1.4) 

o otherwise, 

where m=n+l- Ln/;U and LtJ denotes largest integer <R.. For example, 

when n=5, 

1 

W = 

and when n=4 

W = 

o 
1 

o 

o 
1 0 

o 1 

o 

o 
o 

I Z = 

Z = 
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(5.1.1) is then solved by substituting for A and solving the coupled 

systems, 

a) Wy ~ b , b) Zx ~ y • (5.1.5 ) 

Now assuming no pivoting is required the computation of Wand Z can 

be described as follows. 

with, 

and 

Thus, 

Let, 

[O, ••• p,l,w. 1 ., ••• ,w . i,o, ••• ,O]T i~1(1)ln2-ll ~+ ,1 0-1., [ J 
, ~ 

i-1 

T 
[0, ••• ,0,1,0, ••• ,01 i~ {~ n-even, i~ -n_2+1_ n-odd, 

n+2 
2 i-1 

T 
[0, ••• ,0 w i 2 ., ••• ,w. 1 .,1,0, ••• ,01 

~ n- + ,1. 1.- ,l. 
~-.--~ 

n-i+1 

. In+41 1T-2-J (l)n, 

[ .]T 
~ I 0, .•• ,0, zii,···,zi,n_i+1'0, ••• ,0 

zi i-1 

T 
[0, ••• ,0 z. . 1, •.• ,zi"0, ••• ,0] 

, l.,n-1.+ l. 

i~l (1) ~;~ 

In+~1 
i~[-2-J (1)n. 

~-.--~ 

n-i 

A ~ WZ ~ 
n T I W.Z. 
i~l 1 1 

, (5.1.6) 

consequently A is factorised using at least L(n-2) /2J stages consisting 

of computing two W. and two Z. vectors and updating a submatrix of A 
1 1 

at each stage as follows. At the kth stage, the vectors, 

are known and we denote, 

~ ~ A - (5.1.7) 

it follows that the first and last k-l rows and columns are zero hence, 



and 

hence, 

(k) 
zn_k+l,j = an_k+l,j 

Z J n-k+l,k 

zn-k+l,n-k+l 

T T 

j=k+l (l)n-k 

A. = A. -to: Z -w Z -1<+1 -1<'X k n-k+l n-k+1 • 
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(5.1.8) 

, (5.1.9) 

(5.1.10) 

After factorisation the coupled system (s.l.sa) 
n 

is solved as follows: 

and 

where, 

Wy = b .. l: y.W. = b(l) 
i=l 1. 1. 

y = b (k) 
k k 

= b (k) 
n-k+1 

(k-l) 
= b -Yk-lwk-l-Yn-k+2wn-k+2 

Similarly, (s.l.sb) is given by solving the 2x 2 system, 

~'-'H"-'H Z1,-k+l,n-1,+~ b'-"j ~'-'~ = 

Zn-1,+k,n-1,+~ Yn-1,+k n-1,+k,1,-k+1 n-1,+k 

where tn-~ 1,= -2- , and setting 

for j=l(l)1,-l and j=(1,+k+l) (l)n. 

(5.1.11) 

(5.1.12) 

(5.1.13) 

(S.1.14a) 

(s.1.Mb) 

Now the construction of a systolic array for this problem requires 

the representation of dataflow for the various 2x2 systems to be arranged 

to retain a regular communication structure. A natural type of basic 

cell based on 2x2 system operations suggests itself. However, the 
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locality of data varies from stage to stage during the factorisation. 

The first stage uses data in the four corners of A, and the last stage 

up to four adjacent neighbours at the centre of A. Consequently a data 

permutation is required to smooth out these locality variations. 

Tylavsky [85] introduces a permutation on rows and columns of A 

which is admirably suitable for our intentions, and is illustrated 

below. When n=6 

1 6 2 

1 1 0 I 

6 o 1 I 
- - - - - 1-

2 w2l w
261 

1 

w5l W561 0 
----~--

5 

3 

4 

and for n=5 

1 0 

5 3 4 

--"--
o 1 

1 

1 1 

-1- --

w35 11 0 
1 

w45 10 1 

o 1 1 

- --1----
1
-

1 6 2 5 3 4 

Zll z16 1 z12 Z15: z13 z14 
1 I 

z61 z66 1 z62 z65 1 z63 z64 
- - - -1- - - -I - - --

1 z22 z25 1 z23 z24 

1 

____ : ~52_ z551 ~3 _~5~ 
1 
1 z33 z34 

z43 z44 

z14 1 z13 
1 

z54 1 z53 --, -

--= WZ = A 

(5.1.15) 

w2l w25 1 1 0 1 z24 1 z23 = WZ = A(5.1.l6) 
1 1 

~4!. ~5_1 ~ _1_1_ z44 1 z43 _:.1 
w3l w35 IW32 w34 1 1 

1 1 
1 z33 

-- -where W,Z and A are permuted forms of W,Z and A • 

It immediately follows by multiplying out W and Z, to produce A 

that the QIF method is a permuted form of 2x2 BLUF. Consequently the 

SQIF algorithm can be described by three steps: 

Step (i) Permute A to A 

Step (ii) Pass A through 2x2 block array of Robert [85] to 

produce W,Z 

Step (iii) Permute W and Z to produce Wand Z. 
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As only simple row and column permutations are employed steps (i) and 

(iii) constitute host pre- and post-processing. This allows step (ii) 

to dominate computation costs when array input data is generated using 

pointers rather than explicit row and column interchanges in the host 

memory. Furthermore, the equivalence of 2x2 block schemes and QIF 

methods allows the use of the block partitioning theorems in Chapter 4. 

It follows that the improved performance of QIF schemes carries over 

to SQIF implementations. 

The permutation technique also suggests that a variety of 

patterns other than the QI structure exist. Different patterns being 

produced by different permutations or by selecting larger block sizes. 

It is evident from Chapter 4 that increasing block size will not 

improve array performance for a SQIF method. New permutations on the 

other hand could yield new arrays but the SQIF form produces nearest 

neighbour data orderings which minimise communication problems and 

maximise efficiency. Soft-systolic arrays at present would be the 

only way of utilising non-local data orderings while maintaining array 

efficiency. 

In establishing the above relationships we assumed that no 

pivoting was required during factorisation. From (5.1.8)-(5.1.10) 

it follows that the factorisation breaks down 

,., [~~n_'.' 
or equivalently, 

zn-k+l,k 11 
Zn_k+l ,n-k+':' J 

(k) a (k) -a (k) (k) = 0 
~k n-k+1,n-k+l n-k+l,k~,n-k+l 

as det(W) .det(Z) = det(W).O = 0 = det(A) 

only if any of the values, 

= 0 (5.1.17) 

(5.1.18) 

(5.1.19) 

follows by applying definition (2.2.5) to the 2x2 block upper 
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triangular matrix Z. Evans and Hatzopoulos [79] prove that a 

contradiction to (S.1.17) is always found by using pivoting as long 

as A (and hence l\' k=l (I) Un-I) /~} is non-singular. Furthermore if 

A is diagonally dominant (S.1.17) never occurs and no pivoting is 

required. Applying the permutation method to yield a 2x2 block LU 

factorisation and extending Theorem (2.3.1) the uniqueness of the LU 

form yields the same results directly. 

Now consider the solution of the coupled systems (S.l.S). The 

permuted form (S.l.lS) indicates that W and Z are 2x2 block lower 

triangular and upper triangular forms respectively. It follows that 

(S.l.S) can be solved by a substitution array of the form in Fig. 

(3.2.2.1) incorporating 2x2 block ips cells. Modifying the recurrence 

(3.2.2.1) for block computations yields. 

y~l} = [O,O]t 
~ 

yt+l} = y t} +LikXk ' i=l (l) rn/2J 
-1 (i) 

Xi = Lii (Bi-Yi ) 

(S .1.20a) 

where 
t t 

Bi=[b2i_l,b2i] , Yi =[Y2i-l'Y2i] , and Xi=[x2i_l,x2i] and the 

block ips is defined by, 

t 
[g ,h] 

--t 
[e ,f] , t 

~- [e,f] 

and the boundary cell by, 

e=e+ (ag+bh) ) 

) f=f+ (cg+dh) (S .1.20b) 

g=g, h=h 
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~ ~ t.: -1 
1 6 

D; (ad-bc) 
t - - t 

~ 
[e ,f] ) [g ,h) k;e-g, p;f-h 
- - t t (5.1.20c) [g ,h] ( [g ,h] 

g;D (dk-bp) 

h;D (ap-ck) J 
These operations can be implemented in a number of ways. The boundary 

cell is the most complex, but assuming the elements a,b,c,d are input 

on the same cycle its calculation can be pipelined to produce a cell 

cycle time bounCied by a two point ips cycle, as follows, 

t: D;ad-bc 

t+l: a;a/D, b;b/D, C;C/D, d;d/D, k;e-g, p;f-h 

t+2: g;dk-bp, h;ap-ck 

and has area bounded by 10 point ips cells. The block ips cell can be 

implemented using the equivalent of 4 point ips cells using a single ips 

cycle plus the time for addition (giving a cycle bounded by two point 

ips cycles). 

Theorem 5.1.1: A 2x2 block triangular solver computes Lx;y where L is 

a nxn lower triangular matrix of bandwidth q, in a time T<2{2rn/2l+[q/2l+l} 

point ips cycles using at most 4 [q/2] +6 point ips cells. 

Proof: 

Using Theorem (3.2.2.1) and substituting [n/2] and [q/2l for the 

block form of L, and adding a cycle to allow D to be formed initially 

in the boundary cell gives 21n/21+rq/2J+1. Multiply this timing by 2 

as each cell requires at most two point ips cycles yields the upper 

bound T. There are jq/2l block ips cells including the boundary cell. 

Allowing 4 point ips cells per block cell and an extra 6 for the boundary 

gives the area bound. 
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Overlapping block ips computations produces a further improvement. 

Notice that steps t+l and t+2 of the pipelined boundary cell 

constitute the two ips cycles necessary for synchronisation. As a 

single point ips consists of multiply and add, two sequential additions 

or subtractions can be performed on one ips cycle. Now, staggering 

the calculation of k and p, such that k occurs in the first half 

cycle and p in the second half cycle, allows e and f block ips 

computations to be pipelined. That is, 

t: to=ag+bh 

t+l: e=e+to ' tl=cg+dh 

t+2: f=f+t l 

at the end of the second cycle e is ready and half a cycle later f is 

available. It follows that a,b and c,d as well as e,f can be input 

sequentially. Notice that g and h must be output in parallel and as k 

and p are available at the end of the same cycle is possible. This new 

arrangement does not alter the computation time of Theorem (5.1.1) 

but reduces cell count to 2f<i/21+8 as only two point ips cells are 

required in a block ips cell. Consequently a 2x2 block solver uses 

approximately the same hardware as the point case (with an overhead 

for the boundary cell), and computes with almost the same time. 

An alternative approach to solving (5.1.5) is to notice that the 

inverse ·of the 2x2 system in (5.1.9) is computed explicitly during 

the factorisation. Using the permuted form of A this known inverse 

is utilised to generate the 2x2 block form, 

A = LDU (5.1.21) 

where for n=6, 
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fl 0 l Idll d
16 

I 

-!-_J I 
d

66 0 1 , d6l 
- T - - - -,- -I-

w2l 
w

26 
1 0 I d22 d2S , 

1 A =. wSl wS6 0 1 dS2 d55 I 
I --.J 

d3~ - - -- - - - 1-- - -- - -- T 
w3l w36 I w32 w35 I 1 0 I d33 

I I 

bl 
w

46 I w42 
w

45 
I 0 j L I d43 d4~ I I I 

L 0 

rr 0 I z12 z15 I z13 z14 1 

I I 
0 1 I z62 z65 I z63 z64 

1-
11 

--1----
o I z23 z24 

10 1 I zS3 

':J /- I -I 
1 

1-
I 

0 

U 

--1-. -and 0 is composed of the diagonal blocks of Z and U=D Z w~th L=W. 

Substituting (5.1.21) in the permuted form of (5.1.1) then yields the 

coupled systems, 

b) Ds=y, c) Ux=s (5.1.22) 

and the simple point ips substitution array in Fig.(3.2.2.l) can be 

used directly to solve (5.l.22a, and c). (5.l.22b) is simply solved 

by inverting 0, which is known from the generation of U, and performing 

2x2 matrix-vector calculations. 

Finally we remark that (5.1.21) must not be confused with the 

alternative factorisation 

A = WDZ (5.1.23) 

in Shanehchi [80] where (5.1.9) is replaced by the relations, 



~ 
(k) 

a
kk 

(k) 
a 

Lk,n-k+l 

a(k) 
n-k+l,k 

(k) 
a n-k+ 1 ,n-k+ 1 

(k)1 (k) 
Zkj = a kj a kk 
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r: (k) l 
~

jk 

(k) 

a j ,n-k+J 

(5.1.24) 

jj=k (1) n-k+l (5.1.25) 

= a (k) la (k) 
n-k+l,j n-k+l,n-k+l 

and 

I (5.1.26) 
d = a n-k+l,n-k+l n-k+l,n-k+l 

Here D is a true point diagonal matrix. Applying the QI permutation 

produces, -,,-
A = WDZ (5.1.27) 

" where W has the same structure as in (5.1.15), D is a permuted point 

diagonal matrix and Z has a similar form to that in (5.1.15) except 

that zii=l i=l(l)n. Hence solving the associated permuted coupled 

system, 

"- -a) Wy=b, b)DS=y, c)Zx=s (5.1.28) 

requires a 2x2 block triangular solver and no advantage is gained over 

the original QIF method of (5.1.2). Indeed the solution process is 

more complex and is not offset by hardware savings which utilise the 

property z .. =l for i=l(l)n. 
:n 

5.2 A MODIFICATION OF THE QIF METHOD 

Now consider an alternative method 

QI factors in (5.1.2) have the form, 

1"1 0 0 0 

w2l 1 0 w24 W = Z = 
w3l w32 1 w34 
w
4l 0 0 1 

for solving (5.1.1) where the 

zll z12 z13 z141 
0 z22 z23 0 

0 0 z33 0 

Z4J 0 z42 z43 
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for n=4 and, 

r- 0 0 0 0 1 
zll z12 z13 z14 ZlJ 

w
21 

1 0 0 w
2S 

0 z22 z23 z24 0 

W = w
31 

w
32 

1 w
34 

w
3S ' z = 0 0 z33 0 0 

w
41 

w
42 

0 1 
W:j ~ 

0 z43 z44 0 

b1 
0 0 0 zS2 zS3 zS4 zsJ 

for n=S. More formally let, 

W = [w1 ,W2 '··· ,wn ] and ZT = [zl ,z2"" ,zn] 

as before and, 

applying 

(.[0,.:~1 
t 

i=l(l) Ln/~ w. 1 ..... ,W . 1 i 0, ••• ,0] 
1+ ,1. n-1+ , 

i-I 

T 
[0, ••• ,010, ••. ,0] 
'-----.---' 

i= Ln/2J +1 

T 
[0, ••• ,0 W • 2 i""'w, 1 . 1 0, ••. ,0] i=I.!'/~+2(1)n . . ~ n-].+ , 1.- ,1. 

n-i+1 (S.2.1) 

T 
[0, ••• ,0 z·i,···,zi i l' 0, •.• ,0] 

1. ,n- + 

i-I 

T 
[0, ... ,0 z. '+2' ... 'z .. ,o, ... ,0] 

. ' w ~ 1. ,n-l. .1.l. 

n-i+1 

i=l(l) t;~ 

i=C
n;J11 (1)n. 

(S.2.2) 

(S.1. 6) yields the relation, 

Al = A } k-1 
T n T 

k=2 (1) E;:J (S.2.3) 

~ = A I wizi - I w.z. 
. k2l.l. i=l l.=n- + 

as before and the elements of the kth stage in the kth and n-k+1 st 

column can be found by the procedure, 



a} 

b) 

c) 

Zk . ,J 
(k) 

~ ~j , j~k(l}n-k+l 

(k) 
wj,k ~ a jk /zkk' j~k+l(l}n-k+l 

(k) 
zn-k+l,j ~ an-k+l,j-Wn-k+~tkj' j~k+l(l}n-k+l 
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(k) 
(S.2.4) 

d) Wj ,n-k+l ~ (aj,n-k+l-WjkZk,n-k+l}/zn-k+l,n-k+l' 

and e) 
T T 

A- ~A--WZ-W Z 
~k+l k k k n-k+l n-k+l 

j~k+l(l}n-k I 
Now applying the QI permutation produces locally placed elements for 

simplified data flow and yields the following interesting 2x2 block 

partitioning. 

1 

6 

2 

W ~S 

3 

4 

For n~6 

1 

1 

6 

o 

1 

2 

I 

1 

.1_ 
W

26
1l 
1 

wS6 I wS2 
- -I -
w36 1 w32 

I 
w

46
,w

42 
1 

5 

I 

1 

1 

o I 

3 

1 0 

-T
w

3S1 
1 

I 
w4S ' w43 , 

4 

Z ~ 

o 

1 

1 6 2 

Zll z16 I z12 

o z66 1 z62 
- __ L 

1 z22 

1 0 
1 
1 

5 3 

Notice that the diagonal blocks contain extra sparsity. The above 

4 

block partitioning can be termed implicit because without the partition 

lines the permuted Wand Z appear to be simple L and U factors. As the 

point LU factorisation is unique, it follows that the hexagonal (point) 

array of H.T. Kung and Leiserson (see Fig.3.2.2.3) can be applied to 

find the modified QIF of a matrix by applying simple pre- and post-

permutations on the input and output. Likewise, the form of the permuted 

coupled systems, 
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a) Wy = b b) Zx = y , (S.2.S) 

corresponding to the point systems in (2.3.3.2) allows normal point 

triangular solver arrays like Fig.{3.2.2.1) to be employed to solve 

(S.l.l). Comparing Theorems (3.2.2.3) and (4.2.2.1) it appears that 

the modified QIF has no advantages in speed or efficiency over the 

ordinary QIF (or explicit block computation) regarding the application 

of systolic arrays. However this argument is based on a comparison of 

point and block methods using point-{ips) on block-{ips) structured 

arrays. The essential feature of the modified QIF is its implicit block 

structured nature which allows a block structured array to perform 

point-like computations on implicitly block structured data; thereby 

retaining the improved efficiency and reduced computation time of the 

explicit block schemes but producing point (or implicit block) 

structured outputs. This resolves the difficulties associated with 

the ordinary QIF scheme, which requires an explicitly block structured 

triangular solver, or the more complex LDU factorisation (requiring the 

solution of three coupled systems) using implicit block (point) structured 

solvers. 

The implicit block structured array for the modified QIF uses the 

same principles as the 2x2 block array in Robert [85] but utilises the 

structure of Wand Z diagonal blocks to adjust hardware and computation 

within each block ips cell. For the development of the array we make· 

the following simple assumptions: 

(i) The nxn permuted input matrix A does not cause a breakdown 

in the factorisation process (i.e. diagonally dominant or 

positive definite) • 

(ii) n=2m for m<n (i.e. ensures an even partitioning) • 

(iii) A is banded with bandwidth w=p+q-l. 
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The global structure of the array is shown in Fig.(5.2.l) and contains 

rs 2x2 implicit block ips cells where, 

p = 
{ 

2r-l 

2r-2 
, q = 

{ 

25-1 

25-2 
(5.2.6) 

left right centre 
tj. ~I 

r-l s-l 

u . 

L 

(Input format same as Fig.(4.2.2.l) 

FIGURE 5.2.1: Implicit block array for modified QIF method 

Each implicit block cell contains the equivalent of 2x2=4 point ips 

cells and computes as follows:-
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Implicit Block Cell 

OUT N 
INiIE 

tl IN S a,b,c,d 
----

OUT N a,b,c,d 

t+la 

IN W --11 1--. OUT E t+21 IN W W
1

,W
2 

OUT SW 
IN NE Zl,Z2 

INS 

~ ~ = G ~ [:~ [Zl Z2) 

t+3: OUT E W
1

,W
2 

OUT SW zl,z2 

IN NE Z3,z4 

IN W w
3

,w
4 

~ ~= ~ J- C:l [Z3 ,Z4) 

Each cell receives four inputs corresponding to an implicit block every 

four point ips cycles, this being the longest period of any block cell. 

As there are m=n/2 implicit blocks of input data the total output time 

for data is 4m=2n point ips cycles. Output/computation starts after 

the first implicit block has reached the center processor. As each 

implicit block cell requires two point ips cycles for computation data 

is shifted into its initial starting position in at most 2min(r,s~ 

min(p,q). Hence we have the following theorem. 

Theorem (5.2.1): The modified QIF of an nXn matrix A whose QI permutation 

matrix A has bandwidth w=p+q-l can be computed in T=2n+min(p,q) ips 

cycles using approximately pq point ips cells. 

This is identical to the result in Robert [85), and arises from 

the fact that the global data flow of the two arrays are the same. 
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Examining the computation of the implicit cells, reveals that 

calculations occur two cycles in four and the efficiency e=1 achieved 

in Robert [85] is also preserved. 

5.3 RESTRICTED FORMS OF SYSTOLIC QI SCHEMES 

If the matrix A in (5.1.1) is a real symmetric positive definite 

matrix a better factorisation of the form, 

(5.3.1) 

exists, and by use of symmetry the modified SQIF method is reduced 

to the following procedure: 

a) 

b) 

c) 

= (k) 
'\ akk 

(k) 
wjk = a jk Idk ' j=(k+l) (l)n-k+l 

(k) (k) 
d = a -w a 

n-k+l n-k+l,n-k+l n-k+l,k n-k+l,k 

1 

d) 
(k) (k) (5.3 ;2) 

= (a -w a ) Id , j=k+l (1) n-k Wj ,n-k+l j,n-k+l jk n-k+l,k n-k+l 

e) 
T T 

~+l = Ak-'\WkWk-dn_k+1Wn_k+1Wn_k+l 

substituting (5.3.1) for A in (5.1.1) produces the three coupled systems, 

a) Wy = b, b) Du = y, 
T 

c) W x = u , (5.3.3) 

where W has the form in (5.2.1) and D is a diagonal matrix. After 

applying the QI permutation (5.3.1) can be written as, 

-T 
A = LDL (5.3.4) 

where L=W and iJ=D the permuted forms of Wand D respectively. The 

associated coupled systems, 

a) Ly = b, b) Du = y, 
-T- _ 

c) L x = u , (5.3.5) 

complete the conversion indicating an implicit block form for the root-

free Choleski factorisation. The global structure of the array is shown 

in Fig.(5.3.l) and computes according to the following cell definitions. 



Cell Oefinitions 

OUTN 

OUT SW' 

INS 

OUTN 
III NE 

OUT E 

OUT SW 

IN S 

OUTN 

INW ~ -\ OUT E 

IN S 
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tl IN S a,b,c,d 

w-c/. 

t+11 OUT SW a,c 

t+2: 

t+3: 

t; 

t+1: 

t+2: 

OUT N a,v 

O=d-wc, t=t*.· 

OUT NO 

OUT SW 0 

t=t*d 

OUT N d 

IN S a,b,c,d 

IN E d1,x 

"l=a/d, "2cc!d1 
OUT SW d

l 
,x 

OUT E a,c 

IN NE 0 

"3= (b-"lx) 

"'4c (d-"2x) 

OUT N "1 '''2 
OUT SW 0 

OUT E "1'''2'''3'''4 

"3=~!O 
"4=w4!O 

t+3: OUT E "3 '''4 

OUT N "3 '''4 

t: IN S a,b,c,d 

OUT N a,b,e-,d 
t+1: 

t+2: IN W e,f 



319 

D 

w 

5n 
T = :2 +2s s=n/2 for a full matrix 

NOTE: the orthogonal connections 

FIGURE 5.3.1: Implicit block array for symmetric positive 
definite factorisation 
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The array input format is easily derived from the minimum path length 

of the feedback loop passing through cells 1,2 and 3, which implies 

that successive data blocks are separated by five cycles. Adopting the 

same assumptions as the modified SQIF and using the symmetry of A gives 

s A a bandwidth of w=2q-l, and from (5.2.6) the array contains 2(S+1) 

implicit block cells. Finally, using analogous reasoning to that 

producing Theorem (5.2.1) we derive, 

Theorem (5.3.1): The modified QIF of a real symmetric positive definite 

nxn matrix A can be formed by computing a root-free Choleski factorisation 

of the QI permuted matrix A of bandwidth w=2q-l on a 2x2 implicit block 

array with t(q+u) (q+u+2) ips cells in T=2.5n+(q+u) point ips cycles where 

3>1D,0. 

Proof: 

From the assumptions in Section (5.2) m=n/2, giving a total block 

data length of 5m=2.5n. computation begins when the first block reaches 

cell 1 in Fig.(S.3.l) adding an additional delay of 2s ips cycles. 

Summing these times and employing (5.2.6) yields T=2.5n+(q+u), where u=o 

when q=2s, u=l for q=2s-1 and u=2 when q=2s-2. 

Each implicit block cell has four point ips equivalents giving 

2s(s+1) point ips cells in all. Now when q=2s we require tq(q+2) point 

. (q+l) 
cells, w~th q=2s-l, 2 (q+3) cells and for q=2s-2!(q+2) (q+4) cells. 

Thus !(q+u) (q+u+2) is a generalised area estimate. 

We are now in a position to justify our initial assumptions in 

array construction. First of all we assumed no breakdown during 

factorisations. Evans & Hadjidimos [80] derive these conditions from 

the QIF methods and support the results for point LU factorisations given 

in Theorems (2.3.1)-(2.3.2). Next we assumedn=2m m>O this was convenient 
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because it avoided partitionings which produce isolated rows and 

columns, for example when n is odd. The single elements associated 

with these special rows and columns requires separate treatment and 

consequently requires cell modifications. For instance, cells must 

be able to detect the special elements and switch to point orientated 

calculations using extra switching hardware (or program code). 

Fortunately, the task is simplified by the QI permutation which pushes 

the special elements to the end of the input stream where they can be 

represented by implicit blocks of the form, 

: cJ ,x=matrix element 

for row, diagonal and column elements respectively. Neutral elements 

can then be used to good effect in simplifying internal cell changes, 

and a control tag adopted to mark the blocks. 

Finally consider the effect of the QI permutation on the matrix 

structure. We assumed A was banded and the examples below show this 

is a reasonable assumption. 

Case (i) : When A is banded with bandwidth w, A has bandwidth 2w+l, e.g. 

1 2 3 4 5 6 7 8 1 8 2 7 3 6 4 5 

1 X X X l 1 X 0 X 0 X 0 0 Cl 
2 X X X X 8 0 X 0 X 0 X 0 0 

3 X X X X X 2 X 0 X 0 X 0 X 0 

4 X X X X X 7 0 X 0 X 0 X 0 X .. 
5 X X X X X 3 X 0 X 0 X 0 X X 

6 X X X X X 6 0 X 0 X 0 X X X 

7 X X X X 4 0 0 X 0 X X X X 

8 X X X 5 0 0 0 X X X X X 

A A 
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Case (ii): When A is full. A is full and the permutation is a special 

case of banded systems where the dense bottom right corner extends 

over the whole matrix. 

Case (iii): If A is an X-band matrix of forward bandwidth W
l 

and backward 

bandwidth W2 ,A has bandwidth W=W
l

+W
2
+l, e.g., 

12345678 18273645 

1 

2 

3 

4 

5 

6 

7 

X X X 

X X X o X 

X X X X 

X X X 

o X X X 0 

X X X X 

X o 
8· X 

X X X 

X X 

A 

1 

8 

2 

7 

3 

6 

4 

5 

X X X 

X X 0 X 

X 0 X X X 

X X X 0 X 

o 

X 0 X X X 

X X X 0 X 

X 0 X X 

X X X 

A 

REMARK: Observe that in each case if A is symmetric so is A which 

colloborates the results of Theorem (5.3.1). 

It is trivial to see that any matrix form fits into one of these 

categories by allowing bands to contain some zero entries. 

Case (i) indicates that applying the QI permutation to an already 

banded system extends the bandwidth which increases the number of block 

cells in the SQIF array (by a factor of 4). Optimising internal cell 

requirements using the extra sparsity of permuted blocks does not 

compensate. However the relation between QI and LU factorisations 

indicates that A can be passed through the SQIF arrays to yield the 

2x2 or point LU factors directly; thus retaining minimum bandwidth 

and array dimensions. By extension when A is full, both permuted and 
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unpermuted schemes can be employed on the same array. Finally in 

case (iii) the factorisation of A requires an effective bandwidth of 

w=2n-l to allow for the fill-in of the matrix factors, producing a 

large SQIF array. Applying the QI permutation folds the fill-in into 

a reduced effective bandwidth of w=wl +w2+l allowing a compact SQIF 

array to be employed. We conclude that it is necessary to form the QI 

permutation only when A has a X-band form. Thus, the QIF methods are 

factorised counterparts of the double pipe methods in Chapter 4. 

5.4 INTERLUDE: THE BATS CELL REVISITED 

At the expense of a slight digression recall the Audish & Evans 

(85) factorisation in (4.4.1.6) and the associated coupled systems of 

(4.4.1.8), for solving a circulant matrix. Each coupled system required 

T the solution of a matrix A or A where, 

~ ~ 

A = L~, (5.4.1) 

1 

In Section(4A) two constrasting cell designs were developed; the O(n) 

and p-cyclic cells respectively, and incorporated into a pipelined 

linear array solver (BATS). Clearly (5.4.1) has the X-band structure 

indicating that the QI permutation can be applied effectively. In'this 

section we suggest improvements to the O(n) and p-cyclic BATS cells to 

improve throughput and stability using the QI methods. 

5.4.1 Improvements to the O(n) BATS Cell 

Principally there are two main drawbacks with the existing O(n) 

BATS cell: 
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(i) All the data is entered on only one input line, even though 

two are available (see Fig.(4.4.2.1a». 

(ii) The combinations of LIFO and FIFO storage reduces throughput 

and restricts problem size. 

In the first case data and parameters defining the coupled system 

travel on one input, while cell addresses for loading parameters 

travel on the other. As computation is mainly sequential the right

hand side vector of the circulant system (4.4.2.2) cannot be shared 

between the two lines. In the second case L/F storage is LIFO or FIFO 

depending on a hardwired control, and the size of storage (say n) places 

an upper bound on the maximum problem size solvable as follows. If A 

in (5.4.1) was an nxn matrix with n>n and a particular BATS cell L/F 

stores operated in LIFO mode at the end of input nI-n stored elements 

would have been overwritten. The LIFO operation also determines 

throughput as the store requires at least 2n cycles to fill up and 

then empty. The pipelined loading of parameters on the other hand 

determines a lower bound on problem size. For example when the L/F 

stores and problem are both of size n the parameters are piped through 

the store and output before a LIFO or FIFO mode begins. But, when the 

problem size is n<n and a LIFO or FIFO operation begins some parameters 

are caught in the stores. Consequently the cell generates erroneous 

results and destroys parameters, causing subsequent cell computations 

to be invalid. It follows that the O(n) BATS cell can compute most 

efficiently for only one problem size (i.e., n). For problems with 

n<n input data must be padded with dummy parameters, placed between 

the real parameters and right hand side data, to achieve the correct 

synchronisation. In addition, the dummy parameters must have invalid 
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addresses associated with them to prevent erroneous loading of cells. 

These problems can be overcome by converting all FIFO type data 

movements into LIFO operations, and throughput is increased by reducing 

the individual LIFO sizes. To achieve this we apply a pseudo-QI 

formulation on the system, 

Au = d , (5.4.1.1) 

by interpreting the factorisation (4.4.2.3) as the system, 

PWu = d , (5.4.1.2) 

and solving the coupled systems, 

a) Pv = d , b) wu = v , (5.4.1.3) 

where P is unchanged but W is interpreted as a sparse 'butterfly' 

matrix of the form, 

rr a l 0 0 2 
1 / -a 

/ 

/ a 3 
W = 0 / 0 (5.4.1.4) 

/ 
/ 

/ 
/ 0 n-l 0/ 1+ (-a) 

(5.4.l.3a) is then solved by the forward recurrence, 

a) vl = d
l } b) v. = d . .,;tV. 1 i=2(1)n 

l. l. l.-

(5.4.1.5) 

and (5.4.1.3b) by the form, 

a) 

~ ~~ rv~l 
) 

a ~ l = n-l 
1+(-a) lVnJ J (5.4.1.6) 

~ ~ ~:-"J 
- i+1 i ] v.-(-l) a u , 

I = [;'. _(_"n-~.' n-"'n 
n-l.+l a '1 

i=2(1) ~/~ 

b) 
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(5.4.1.6) retains the desirable QI property of producing two results 

on each step, which are the inputs of the next cell. By a careful 

use of LIFO storage the cell can accept data in this format and 

sequentialise it for (5.4.1.5). 

Fig.(5.4.l.l) illustrates the structure of the new O(n) cell, 

which consists of seven LIFO stores each of size t~, combinational 

cells for (5.4.1.5), a 2x2 solver arrangement for (5.4.1.6), and a 

simple logic controller to orchestrate LIFO switching. Now assuming 

A n is even we define two data streams of length n=t(n+2r), 

SdI = "1"2 •• ·"r d1 d2 .•. dtn 

and (5.4.1. 7) 
'" sd2 = Yl Y2 • ··Yr dn dn _l •• .dtn+l 

where Cl. and y. i=l(l)r are the parameters of the circulant factor-
l. l. 

isation and associated addresses for loading. The solution to (5.4.1.1) 

is then found in three stages: 

STAGE 1: 

(i) The parameters of sdI pass through the forward solver without 

modification into LIFO 2, while LIFO 7 collects addresses 

from sd2 , and the correct cell parameter is selected. 

(ii) Computation starts when d l reaches the forward solver, with 

the already selected parameter loaded into the" cell, and 

the term (5.4.l.5a) produced. On subsequent cycles the PIPS 

cell generates terms in (5.4.1.5b) depositing them in LIFO 2, 

while the WIPS cell generates the last column of W inserting 

it into LIFO 1. 

STAGE 2: 

(i) Stage 2 begins when all the elements of sdI and sd2 have been 

input. LIFO's 1,2,7 are switched to output and LIFO's 3,4,5 
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LIFO 1 LIFO 2 LIFO LlFO 4 

R "" • vI • "I • , o , I • , 0 

I j" T 
~r;;.L 

'-t . 
r , 2.2 SOLVER 

• • 
L J , 

WIPS 

'-- , N , 0 I 0 d2 LIro 7 
• • v2 

LIFO 5 LIFO • 

a) Global cell layout 

.... v
i 

0""1 
Xi 

"I 
zn 0t1l'2 

xn_1+1 

CELLS AC'TIQNS 

:~c 
IF CONTROL THEN 

c-b/(l-a) 

ELSE c-l 
::O-c d .. a-{b·c} 

b c 
IF C<:NI'ROL THEN t}d load xn 

,n J 
ELSE 

• d-a-(b*c} b) 
2-2 solver 

FIGURE 5.4.1.1: Improved O(n) BATS cell 
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and 6 to input. The last ,n terms of (5.4.1.5) and Ware 

computed by PIPS and WIPS and deposited into LIFO's 5 and 6 

respectively. 

(ii) The forward solver is switched off when the addresses begin to 

leave LIFO 7 and pass through PIPS into LIFO 6 unchanged. 

STAGE 3: 

(i) At the start of stage 3, LIFO's 3,4,5 and 6 are full, and 

switch to output. LIFO's 1,2 and 7 are empty and switch to 

input. The parameters and addresses then filter out through 

the 2x2 solver unchanged to the next cell. 

(ii) 2x2 solver starts up computing u
l 

and un in (5.4.1.6a) 

sequentially. 

(iii) Finally the recurrence in (5.4.1.6b) is evaluated using the 

2x2 solver. 

The operation of the 2x2 solver requires some further explanation, and 

its structure is shown in Fig. (5.4.1.1b). Cells 1 and 2 compute u 
n 

and u
l 

while cells 3 and 4 evaluate u
i 

and un_i+l i=2 (1) [P/;U. Notice 

that the inputs of cell 2 are delayed by one cycle so that u is 
n 

available when they arrive. Consequently the output line for u is 
n 

also delayed to synchronise the final parallel output of u
l 

and un. 

While ul is calculated, cells 3 and 4 load un and compute u
2 

and Un_I. 

Thus, outputs of cell 3 and cell 4 are delayed a single cycle to avoid 

a clash of u
l 

and un with Uz and un_Ion output. Successive cycles 

then sees u, and u '1 generated by cells 3 and 4 with cells 1 and 2 
~ n-l.+ 

redundant. 

Now consider the signals required to control the new cell. These 

can be generated by the controller using triggers from a pair of tag 



bits associated with the input data summarized below. 

tl t2 

0 0 

0 1 

1 0 

1 1 

The sequence of tags for 

{ 1 1 
control = 

1 1 

r 

and define, 

a PIPS c 

b 

Action 

Normal computation 

Reset solvers 

LIFO toggle 

Disable solver to pass 
parameters and addresses 

(5.4.1.7) is 

100 

1 1 0 
.... 

n/2 

c=a-b*ctmp 

ctmp=c 

given by 

0 10 1 

000 0 
. . 

n 
r+ -

2 

b 

WIPS 
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(5.4.1.8) 

a a=O-ba 

(a=-l initially) 

with the a cell a simple register. To control the cell tag bits are 

interpreted differently at each stage in the computation by using the 

tags stored in the LIFOs. Denote the tags associated with LIFO i output 

as t(i) and the tags associated with cell input as tl and t
2

• Also 

define L
l

={1,2,7} and L
2
={3,4,5,6} and notice that any two LIFOs i ELl 

and j E L2 are mutually exclusive because if LIFO i is inputting LIFO j 

must be outputting and vice versa. Thus, 

{ 0 Ll 
input 

cl = tl A t2 = 

1 L2 input 
(5.4.1.9) 

is sufficient to control all LIFOs and, 
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(5.4.1.10) 

disables the forward cell to pass parameters and addresses (this is 

achieved by zeroing the a register) , while, 

c = t(4) "t(6) , 
3 

is used to disable the 2x2 solver, this is a simple task as the 

(5.4.1.11) 

output of LIFOs 3 and 5 associated with parameters and address are 

zeroes due to disabling of the forward solver. So using cells 3 and 4 

of the 2 x2 solver is sufficient. The 2x2 solver itself can be started 

with the code, 

c = t(4) " t(6) 4 
(5.4.1.12) 

and it follows that only simple combination logic is necessary for 

cell control. 

Next consider the case when n is odd sdl and sd2 in (5.4.1.7) are 

of different lengths. Nominating sd2 as the shortest sequence unit 

delays must be added to the input of LIFO 7 and the outputs of LIFOs 

1 and 2. These delays allow a smooth switch over from sdl input to 

the input from LIFO 7 to the forward solver and re-align data for 

input to the 2X2 solver. A third tag bit t3 must be added to the input 

controls to mark data streams when n is odd, and to control switching, 

in and out of these additional delays. 

Finally by tracing the longest path through the cell we derive 

the following result, 

Theorem 5.4.1: The solution of the system A x=b where A is an nxn 
c c 

matrix of semi-bandwidth r and x and b are nxl vectors can be found 

by' the Audish & Evans factorisation using 2r improved O(n) BATS 

cells in, 

" " A T = !n+2r(n+5)ips cycles where n=n+2r. 
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Proof: 

The timing T is given by T=~+2rc where ~=total input length and 

c is the cell latency. From (5.4.1.7) ~=tn+r, and by summing delays 

through the cell c=(n+2r)+S, where we allow two delays for the forward 

solver and three delays in the 2x2 solver, and assume n is odd. As 

there are 2r cells, output is delayed by 2rc cycles in total. 

This improved timing results over that of Theoremt4.4.2.l) from 

the increased throughput of the array, analysing LIFO operations shows 

"'-that the next problem instance can be input after n cycles, rather than 

the 2n required previously. The new design requires 6 ips equivalents 

and at most ~ FIFO register, compared with 4 ips and 2n LIF registers 

in the old O(n) cell. Thus speed increase and throughput are offset 

by an increase of 1.S-2 times the hardware, which for large n is 

significant. Notice however, that the new cell is capable of solving 

any problem of size n<n without modification giving added flexibility. 

S.4.2 A Stable p-cyclic Cell, 

The p-cyclic cell was developed in Section (4.4.3) and solved the 

alternative nxn system, 

t 
A u = d , (S.4.2.l) 

t s+l 
using the p-cyclic properties of A and the fact that a =0 for s<n 

and o<lal<l. The resulting procedure consisted of evaluating a 

polynomial of s terms to generate u
l

' a forward recursive scheme to 

calculate u. i=l(l)tn and a backward recursion for u . 1 i=l(l)tn. 
~ 0-1+ 

This latter recursive scheme was unstable against rounding error, 

involving division by a. 

In the new cell we factorise At using the QIF method. The special 
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form of A 
t 

allows factors to be constructed by inspection and generated 

'on-the-fly' by the cell, consequently, 

At = WZ , (5.4.2.2) 

where for n=even, • 

iT 0 1 Cl 0 
/ 

/ / 
1 / 1 Cl / 
"- 0 / 

/ / "- 1, Cl / 
"- / , 

"- o / " "- 0/ 1 "- Cl 

"- , 
1 0 1 Cl 

n-2 0 n-l 0 
W= -Cl 0 I Cl Z= Cl 1 

/ / " / I n-3 , 
I I Cl, Cl 

"-
/ I , , I , 

4 / 
, , I , 

-Cl 0 
, 

'Cl I I 
/ , / 

2 / 
'1 

3 
0 Cl Cl 1 

0 I Cl 1 

(5.4.2.3) 

and n=odd, 

I 0 I Cl 0 

I 0 1 Cl 0 
"- / , / 

"- 0 / , / 

'" / 1 "-, 
/ "- / , "-

'" 
, , " / , , 

" 0 I Cl 0' 
n-I"-

-Cl 1 Cl 

C n 0 W= "- I Z= l+a 
/ 0 1 "-

/ "- n-2 
1 I 

, 
Cl 

/ , , , 
/ "- "- / , 4 

-Cl I '" Cl / " I C "- 3/ " 2 / , 
'1 -Cl 0 1 Cl Cl 

0 I Cl 1 

(5.4.2.4) 
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which after substitution in (5.4.2.1) yields the coupled systems, 

a) Wv = d and b) Zu = v , (5.4.2.5) 

Applying the QI permutation produces the simple 2x2 block LU form which 

for n=8 has the form, 

1 8 2 7 3 6 4 5 1 8 2 7 3 6 4 5 

T 01 I 1 01 a 0 I 
I I 

I I 
0 1 a 11 0 0 ___ L .L __ .1 T- --I -+-
0 0 1 01 I I 1 0 la 0 I 

2 I I I 
'a 

3 10 
I 

-a a I 0 1 I I 1 0 I 
-1-

0 
- -,- - - I" -1- -I -1--

o 1 0 I I 1 o I a 0 
L = I I I , U = I 

I-a 
4 I 1 I la 

5 
1 10 0 a 0 I 

-I - - -1- - --j I" t- - -1-
I 1 0 0 I 1 0 I I 1 a 

I 6 I I 
7 la I-a a 10 1 I 1 

(5.4.2.6a) 

and for n=7, 

1 7 2 6 3 5 4 1 7 2 6 3 5 4 

~ 
0 

---i~ 
1 o I a 0 I 

I 
1 I a 1 I 0 0 

1- - 1 I --, - - --
I I 

0 0 1 0 
I 

1 0 la ° I 

2 I 3 I I 
-a a I 0 1 

--1 .: _1_: 0 _ 0_ 1- --I L = - 1- _ .!... + , U = 
10 0 I 1 01 11 ° I a 
I 4 I I 5 I 
I-a a LO

_ !~ la 1 10 
-1- -- -r -t- t- --

I I 6 J I 7 
I-a a; 1 I l+a.J 

I I I 

(5.4.2.Gb) 

n 7 now for n large enough a =0 thus a =0 and in general the last diagonal 

block of U has the form, 

~ J' n=even, 1 n=odd. 
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Now as 0<1 a 1 <1 and Z is diagonally dominant, it follows that the block 

co-diagonal of U can be eliminated using implicit block calculations 

without pivoting and with the modifications restricted to the permuted 

rhs of (S.4.2.Sb). This leads to the elimination recurrences, 

e = v -exV 1 q q q-l 

e 
q-l v 1 +ae 

J 

q- q 

and generally, 

e 
q-i 

= v . -exe 
q-i+l 

, i=O{l)q-l 
q-~ . 

(S.4.2.7) 

which produce the modified vector e in polynomial form, 

2 3 q 
e l = v 1 -a v 2 +a v 3 -ex v 4 + •.• + ( -ex) v q+ 1 

2 3 q-l 
e2 = v 2 -exv3+a v4 -a Vs + ••• + (-ex) Vq+l 

2 { )q-i+l e, = v. -aV. l+a v. 2 + ••• + -a v 
~ ~ ~+ ~+ q+l (S.4.2.8) 

e = v -aV 
q q q+l 

and 
e . =v ., j=1(1)qwhereq=~/21. 
q+J q+J :.J 

After elimination the permuted form of (S.4 .2.Sb) is a 2x2 block diagonal 

matrix. Hence the solution of (S.4.2.1) can be found using a stable 

three stage process: 

STAGE 1: SOLVE (S.4.2.Sa) 

"" STAGE 2: CONVERT (S.4.2.Sb) into the system Zu=e by elimination 

'V 

where Z is a matrix with a W type format. 

'" STAGE 3: SOLVE Zu=e for u. 
~ 

It follows, from the fact that Wand Z fit the same global format 

that the three stages can be pipelined to achieve high throughput 

yielding the new BATS cell form, 
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... 
w r- z .. . 

--- -! SOLVER Cl POLYNOMIAL 

r:t 
SOLVER ---, f-i GENERATOR 

FIGURE 5.4.2.1: Stable p-cyclic cell 

'V 

where Wand Z have the following definitions: 

:---j ,~ ~ :: 

on start up S=l, cold=O,dold=O 

cold=c, dold=d 

c=a, d=b+(S*cold)-(a*dold) 
2 

S=S*(a ) 

f=a 

on start up S=a 

c=a, d=b-(S*a) 
2 

S=S*(a ) 

The polynomial generator is a linear array of q cells which produces 

the polynomials of (5.4.2.8) according to the general recurrence, 

(0) 
e i = vi 

r 

(k+l) _ (k) ( )k 
e. - e. + -a v. k ' k=l(l)m (5.4.2.9) 

1. 1. 1+ 

_ (q-i+2) 
e

i 
- e

i 

where m=q-i+l and i=l(l)q, 

and uses cells of the form, 

e 
1 

a ~ 

f Sign ---- - --
b 

~ 

c 

g 

d 

c=a± (e*f) (sign dictates + or -) 

g=af 

d=b 

x '!'x q+ 
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The basic idea is to pump the e~O) values from left to right through 
1 

the array as they emerge from the W solver. From (5.4.2.9) it follows 

that at the end of the qth cycle of array operation the (q-i+1)th 

generator cell contains the completed e
i 

polynomial. Thus, on the 

(q+1)th cycle the generator must be disabled to preserve the results 

and cells reduced to simple FIFO type operations, pipelining data into 

'" the Z solver. Snap-shots of generator operation are given in Fig. 

(5.4.2.2), notice that the values v ., j=l(l)q are also queued by the 
q+] 

cells to maintain synchronisation. 

Control of the new BATS cell and in particular the generator sub-

array is achieved by adopting the tag bit method used in the O(n) cell 

improvement. First we revise the tl and t2 tag bit definitions as 

follows: 

t1 t2 Action 

0 0 Normal computation 

0 1 Data switch 

1 0 Start up the cell 

1 1 Disable cells 

and define the tag bits entering different cells of Fig.(5.4.2.l), as 

t1 (i) and t 2 (i) for i=0(1)q+1, such that the input tags of cells Wand 

--Z are t1 (0), t 2 (0) and t
l

(q+l),t
2

(q+1) respectively. Also let polynomial 

generator cell i receive tag bits t
1
(i), t

2
(i), i=l(l)q and tl (b) ,t

2
(b) 

which define the tag bits associated with the broadcast line. The 

generator array is then easily switched from polynomial generator to 

FIFO mode and vice versa using two mutually exclusive states defined by, 

OFF
i 

= (t
l 

(b) A t
2

(b» V ON
i 

ON
i 

= (t
1 

(i) A t
2

(i» V OFF
i 

} (5.4.2.10) 
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Y1 I I * * t ;:~ 
Y1 
~ 

Y1 
~ 

Y1 
~ 

Y1 
~ (-) (+) (-) (+) 

Y2 I I I J-
Ul ::~:1 Y2y:'~ 

Y
2 

~ 
Y

2 

~ 
Y2 

~ 
Y3 

Y3 V
2 

V3 8 2 
81 V3 el 

Y
3 Y

3 
t+2 a--.. • .2 

Y6 
Y7 Ye 

Y4 

t+3 
Y

4 
Y -

1 4 8 1 
Y4 

Y
6 

Y7 
.3 

Y
s 

Ys 

v4 Vs 8 4 
Ys -U4 6 °2 Y -2 8

1 
5 e

1 • --- Cl 3 
6 Y7 .4 YS Y6 Ye 

uS Disabled (Act as FIFO) 

FIGURE 5.4.2.2: Snapshots of polynomial generator (for n=8) 

for cell i, with OFF and ON indicating FIFO and polynomial modes 

respectively. Clearly the requirement that all cells should be switched 

OFF simultaneously on completion of the polynomials is satisfied by the 

use of broadcast tags. Notice however that cells can only be switched 

ON again in a strict left to right order, which preserves data already 

in the array, but also achieves high throughput by allowing different 

problem instances to be pipe lined. Thus preserving the attributes of 

the original but unstable BATS cell. 
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A further area of concern is the passing of parameters and 

addresses (for setup) through the array unharmed, and is solved by 

adopting the input format, 

!~ 
I 

cx2 CX d
l 

d2 d 'a cx2 ••• data r ql I 
sdI = I 

I I I 0 ••• 0 I I I ••. tl , 
I 

1st problem 2nd problem 

and, 

h Y2 Yr 
d2q d 

q+l YI Y2 data 

sd2 = 

1 1 1 ... I 0 o ... 1 1 1 . .. t2 

where q=n/2 from above. Tracing through the array operation shows 

that this sequence also controls the polynomial cells using (5.4.2.10) 

'" and that the wand z cells are easily disabled by setting and holding 

cold=dold=O and S=O respectively. 

Next consider the data switch command (t
l 

A t
2
). This is a 

special control which provides a neat solution to the construction 

of e. From (5.4.2.8) e is the smallest polynomial and enters the 
q q 

generator last and accumulates only one term using v and v I occurring 
q q+ 

on different input lines whereas the values used in evaluating all 

other e. polynomials are derived from a single input line. Consequently 
1. 

to preserve computation the broadcast value is selected from the correct 

. line using a multiplexor controlled by the data switch tag code. A 

further complication arises when n is odd and the WZ form of (5.4.2.4) 

must be used. Here q=~/~ producing data sequences of different 

lengths which must be padded as follows: 

d
l 

d
2 

d 1-

{ 
cxI cx2 cx clcxl r q 

sdI = I 

I I ••• I 1 o ... 0 01 I 
I 



and 
= {Yl Y2 ••• Yr dn dn _l 

11 ... 100 

d q+2 

o 

d I 
q+ll Yl 

I 
I 

1 I 1 ... 
I 
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From (5.4.2.6) it follows that the W cell computes correctly with no 

~ n 
further control, as does the Z cell under the assumptions that a =0 

and the dummy element 0=0. The only significant problem is the correct 

synchronisation of elements for the calculation of e : this is solved by 
q 

further use of the data switch and an additional tag bit t3 to 

differentiate between problems with odd and even n. Thus the interface 

between the W cell and polynomial generator which produces the broadcast 

signal has the form, 

W 
CELL 

HI-__ ...... -;r-, 
L-~ 1 

broadcast line 
./ ••• . . 

... 

... 
'\. • 

polynomial cell 

FIGURE 5.4.2.3: w-cell/generator interface 

s+l Finally, when a =0 where s<q the value m of (5.4.2.9) can be 

redefined as, 
m = min(q-i+l,s) , (5.4.2.11) 

from which it follows that each e i , i=l(l)q polynomial contains at 

most s terms. Consequently the polynomial generating array can be 

truncated to s cells reducing area and cell latency. We can now prove 

the following timing theorem for the solution of the circulant problem 

(4.4.1.8) using the improved cell. 
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Theorem S.4.2.1: The solution of the linear system A x;b where A is 
c c 

a nXn circulant matrix of semi-bandwidth r, and x and bare nXl 

component vectors, can be found using the Audish & Evans factorisation 

and 2r stable p-cyclic BATS cells in at most T=n+r(4s+14)+2 ips cycles, 

s+l where a =0 for a=max (a.). 
1. 

l~i:;;r 

Proof: 

The timing of the BATS pipeline using the new p-cyclic cell is 

given by, 
(S.4.2.12) 

where ~= rn/2] +r~! (n+2) +r and is the maximum data input (hence output) 

length, c is the new cell latency and k is the number of ips cycles 

equivalent to the maximum cycle of the cells in Fig.(S.4.2.1). 

Observation of the above cell definitions shows that the W-cell is the 

most computationally complex cell, and a lower and upper bound for T 

can be derived according to whether the value a
2 

is known or not. 

Case (i): Lower bound 

Wh 2·k h . en a 1.S nown t e W-cell computation can be pipelined, US1.ng 

the two stage calculation: 

t: dO = b+8co 'co= 
2 

a, B ; B*a , 

t+l: d01d = d, d = do-adold' c ; Co 

Thus by introducing an extra cycle to the cell latency a single ips 

cycle is the cycle time of the internal p-cyclic cell hence k=l. The 

latency is c=s+4, allowing 2 cycles for W-cell, 5+1 for polynomial 

array (and interface) and 1 for Z-cell. Hence, we have, 

T ; !n+r(2s+9) + 1 . (5.4.2.13) 

Case (ii): Upper bound 

When a
2 

is unknown the term 8=8*a
2

, must be calculated by 
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two sequential operations, 

S = S*cx, S = S*cx; 

the pipelining of W-cell computations is no longer possible and k=2 

results. The latency is determined as c=s+3 hence, 

T = n+r(4s+14)+2 (5.4.2.14) 

giving the theorem time. 

The area estimate of the design in ips equivalents is determined 

"" as follows. Assign 3 (or 4) 2 (or 3) and 2 ips equivalents for the W,Z 

and polynomial cells respectively depending on whether cx
2 

is known or 

not. The area is then at most (2s+7) ips cells per BATS cell and 

2r(2s+7) for the full pipe. By comparison with the original p-cyclic 

cell and the intuitive assumption that a
2 is unknown (i.e. simpler 

set up procedure), we conclude that the former scheme waS faster and 

more area efficient. However the new design would be more desirable 

in practice due to its inherent stability which outweighs the lower 

speed and area estimates of the unstable cell. 

5.5 SYSTOLIC QUADRANT INTERLOCKING ELIMINATIONS (SQIE) 

The close relationship between Gaussian Elimination and the 

factorisation of matrices embodied in Theorems (2.3.1)-(2.3.2), implies 

that if a QI factorisation exists intuitively there should also be a 

corresponding QI form of Gaussian elimination. The essential idea of 

a QI Elimination (QIE) is to replace (5.1.1) by the more easily solved 

system, 

where, 

and 

Zx = b , 

ZT = [zl,z2, .•• ,zn1 

(5.5.1) 



[0 ••. 0 zii 

i-I 

~O.: .0, zi,n-i+l 

n-i 

Z. • 1 0 ••• 01 l.,n-l.+ 
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T 
i=1(l) ~;~ 

(5.5.2) 

and permuted form of the nXl vector b in (5.1.1) is b. 

Now by employing the QI permutation the permuted matriz Z of z 

has a 2x2 block upper triangular form. Consequently by extending 

(2.3.2.1) to the 2x2 block case, Z is constructed from a sequence of 

. (1) (2) (k) ,.... ;;1 
modified matrLces A ,A , .•. ,A for k=l(l) jn/2jas follows:-

when k=l 

k>l 

where, 

A (1) = A (the QI permuted form of A) 

A(k) 
IJ 

A (k) = 
ij 

A(k-l) , i=l(l)k-l, j=l(l) ~/21 

, i=k(l) rn/21, j=l(l)k-l = 1 
O

ij 

(k-l) (k-l) 1- ;;1 r:1 A. . -M. k lA-' 1 ., i=k(l) n/2j. j=k(l) n/2 J 
l.J 1., - k- ,] 

~ 
(k) 

a
ij 

(k) 
an_i+l,j 

(5.5.3) 

1 (k) 
a. . 1 l.,n-]+ 

(S.S.4a) 
(k) J 

an-i+l,n-j+l 

are 2x2 submatrices and the M. k 1 are multiplier matrices with the 
L, -

form, 

(k-l) (k-l) -1 
Mi,k-l = Ai,k-l [Ak-l,k-11 , (S.S.4b) 

finally, (k) 
Z = A ,when k= 1n/2J . 

The corresponding rhs modification sequence follows trivially as, 

b (1) 
= b (QI permuted form of b) } ti ~k) "(k-l) '" 

(S.S.4c) 
= b -M b i=k (1) rn/2] 

where, L i i,k-l k-l 

'" T b
j 

= [b"b j 11 J n- + 
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Tracing the elimination sequence shows that the Mi,k_l matrices form 

a 2x2 block lower triangular matrix which produces a W format matrix 

M and (5.5.1) becomes, 

Zx = Mb (5.5 • .5) 

The systolic QIE (SQIE) therefore reduces to a 2x2 explicit block 

structured Gaussian elimination array. The new array is easily derived 

using the global structure in Fig.(3.2.2.2), by re-defining the cells 

of (3.2.2.4) and (3.2.2.5) and reformating data inputs, as follows: 

first assume that no pivoting is necessary, (i.e. A is diagonally 

dominant or positive definite) in order to simplify block 2x2 cell 

definitions. Next from (5.5.4b) with k=2 

(1) (1)-1 
Mi,l = Ail [All 1 

and for i=2 (the first modification) it follows that, 

(5.5.6) 

(5.5.7) 

The first 2x2 block row update in (5.5.3) has the form, 

and can be computed in pipelined fashion as follows. 

of illustration let j=2 then (5.5.8) becomes, 

Now letting, 

(2) (1) (1) 
A22 = A22 -M2lA12 

M2l 
-1 

= 1:. A (1) *X 
D • 21 

where X = D.All ' 

and substituting for (5.5.10) in (5.5.9) yields, 

(5.5.8) 

For purposes 

(5.5.9) 

(5.5.10) 

(5.5.11) 

Notice that.X is easily constructed by simply swapping diagonal 

elements and negating anti-diagonal elements. Likewise i.A~i) is 

simple to compute requiring the formation of D=allann-alnanl and 
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simple divisions. With these values known (5.5.11) is constructed 

1 (1) 
by assigning E-

D
A2l and 

Y = XA (1) 
12 

A(2) = A(l)_(E*Y) 
22 22 

} 
producing simple block ips calculations of the form, 

which yields the pipeline procedure, 

t: compute X 

t+l: evaluate D, and y(!) using (5.5.12a) 

t+2: evaluate 1st column of 

(5.5.12) 

a ~ (1) 17 

a
S7 

(5.5.l2a) 

a ~l) 17 

a
S7 

(5.5.l2b) 

(5.5.l2c) 

(5.5.l2d) 

t+3: evaluate 2nd colunn of 

E and y(l) using (5.5.l2b) 

(1+;) 
E and A22 using (5.5.l2c) 

t+4: 
( 2) 

evaluate A22 using (5.5.l2d) 

From which the new cell definitions follow immediately. 
N, 
~n 

S out 

I---~ (E, ,C t) 
~n Oll 

IF c
in 

THEN 

{PHASE 1 : STARTUP 

t:N
in 

r
l
,r

2
,r

3
,r

4 
Win xl ,x2 ,x3 ,x4 
Yl=o+xlr1 , Y2=o+xl r 2 
Y3=o+x3r l , y 4=o+x4r 2 



" " "-
~ sync 

t+l: 

} 

ELSE 
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E
out 

x
l

,x
2

,x
3

,x
4 

y
l

=y
l

+x
2

r
3

, y
2

=y
2

+x
2

r 4 
y

3
=y

3
+x

4
r

3
, y

4
=y

4
+x

4
r

4 

{PHASE2: COMPUTATION 

} 

t: N
in 

r
l
,r

2
,r

3
,r

4 
Win e l ,e3 
E
out 

e
2
,e

4 
Sout r l ,r2 ,r3 ,r4 
rl=rl-elYl' r2=r2-elY2 

r3=r3-e3Yl' r4=r4-e3Y2 

t+l: Win e2 ,e4 
E
out 

e
l

,e
3 

rl=rl-e2Y3' r2=r2-e2Y4 

r3=r3-e4Y3' r4=r4-e4Y4 

IF C, THEN 
l.n 

{PHASEl: SETUP 

} 

ELSE 

t: N
in 

r
l
,r

2
,r

3
,r

4 
x

2
=o-r

2
, x

3
=o-r

3
, x

l
=r

4
,x

4
=r

l 

t+l: E
out 

x l ,x
2

,x
3

,x
4 

D=r r -r r 
1 4 2 3 

{PHASE2: COMPUTATION 

} 

t: N
in 

e
l
,e

2
,e

3
,e

4 
E
out 

e
2
,e

4 
i:\=e/D, 93=e/D 

t+l: Eout el ,e3 
e2=e/D, e4=eiD 

Notice that each cycle of a phase is a single ips cycle, and that the 

control value C, moves independently of computation. For instance, 
l.n 
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the horizontal signal (C t/Ci) moves one cell every cycle starting ou n 

up cells left to right, while the diagonal signal sync initiates row 

computation and moves from boundary cell to boundary cell every 5 ips 

cycles. This is clarified by tracing array operations shown in 

Fig. (5.5.1) which also indicates the data input format. Each input 

A44 

A43 

A42 A34 

A4l A33 

A32 A24 

A3l A
23 

A22 A14 

A2l Al3 

A12 

All 

1 

I r: -. 
In/21 

A
ij

=2x2 block input 

FIGURE 5.5.1: 2x2 Block eliminator 

is a 2x2 block of four inputs, and the block Bi have the special form, 

fi 
I~n-i+l 
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derived from (S.S.6) which preserves computation at the expense of 

extra hardware in the last column of cells. The corresponding result 

to Theorem (3.2.2.2) now follows immediately. 

Theorem (S.S.I): The 2x2 block Gaussian elimination (or QIE) of a 

matrix A can be found using a block structured triangular array in 

T=S rn/21 ips cycles and uses o{n
2

) point ips cells. 

Proof: 

The array contains 1n/21 rows of block ips cells with each cell 

equivalent to 4 point ips cells. The synchronisation signal starts 

a new row computing every 5 point ips cycles and when it leaves the 

array all modifications must be complete. It follows that T=si~/21 

is the total computation 

The array requires 

time. 
i~/2l 
I i=t rn/2i{ rn/il +1) 

i=l 
block ips cells, and 

2i~/21 (ln/il+1) point ips cell equivalents, compared with tn{n+l) in 

the ordinary point elimination case. We conclude that the block 

elimination method is faster but requires more hardware than the 

point case. Efficiency is also improved in the block case but this 

results from effectively starting up two adjacent rows of point cells 

for each block row at a time in the new design when compared with a 

single row in the old method. 

Finally, Fig.{S.S.2) indicates that the input format for the new 

array can be derived from the input of the original point version of 

the array. The idea is to employ a re formatting preprocessor consisting 

of a linear array of 1n/21 + 1 reformating cells. Each cell of the 

processor consists of delay registers and whose output is controlled by 

a simple bit signal travelling left to right. The preprocessor also 

provides a suitable method for expanding a small host interface to a 

large enough bandwidth for array input. 



10100 
Preprocessing Array 

471472&81&82 0 ·SS·S64 6S·66 0 

0 .53.544 63464 0 437438447448 

451452461462 0 435.36445446 0 

0 433434443444 0 &17 8 184 21 4 28 

431432441&42 0 415.16425.26 

0 413414423424 

4 11412&21422 

.) Input/output format of the preprocessing array (n::S) 

ENABLE 

INPUT 

Or 
~ .., 
, I 
I I 
L. ... 

all a12 
b) Basic preprocessing cell 

ENABLE 
OUTPUT 
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FIGURE 5.5.2: Reformatting of data for 2x2 block eliminator 

5.6 SYSTOLIC QUADRANT INTERLOCKING ITERATION (SQII) 

To complete this chapter we now briefly consider Quadrant Inter-

locking Iterative (QII) schemes as introduced by Evans & Sojoodi-

Haghighi [821. The idea here is to take the linear system, 

Ax = b (5.6.1) 

and apply a QI splitting of the form, 

A = X-W-Z , (5.6.2) 

where, 



x = [x
1

,x
2
"",xn] 

T 
-W = [W

1
'W

2
""'W

n
] and -Z = [z1,z2, ••• ,zn] 

such that, 

[0 ••• 0 a
ii 

0, •.• 0, a
n

- i +
1
,i 0, ••• ,0] T i=l (1) f;~ 

i-I 

T ~+3J 
[0, ••• ,0 a n - i +1 ,i 0, •.• ,0 aii 0, .•• ,0] i=I--2--1 (l)n 

and for n odd 

w = 
i 

Z = 
i 

r [0 ° ° O] T '=1(1)n-1 , ..• , a' l " ... ,a ., ... ..... 2 
1+ ,1 n-1,1 

~-.----' 

i 

[O, ••• ,O]T i=t(n+1) 

[0, ••• ,0 a .2 .••• a. 1 . o, ... ,O]T i_
n

2
+

3
(1)n 

.. . . n-l.+,1. 1.-,l. 

n-i+1 

T .. n-1 
[0, .•• ,0 a .. 1, ••• ,a. .,0, ••• ,0] i=1(1)--2-

1.,1.+ l.,n-l. 
~-y--~ 

i 

T . n+1 
[0, ... ,0] 1.2 -

[0 ° ° O] T ,_n+3(1)n 
, .•• , a. . 2,···,ai i l' , ••• , ~ 2 

'___ __ -' 1.,n-1+ , -

n-i+1 

and "for n even, 

w = 
i 

Z = 
i 

[0, ... ,0 a i 1 " ... /a . it 
"'---...,---_ +, 1. n-l. I 

[ 
~ T . n 

0, ••• ,0] i=n/2, ~1 

O, ••. ,O]T i=l(l)~l 
2 

T n 
[0, ••• ,0 a .2 ., ••• ,a. 1 .,0, ••• ,0] i-

2
12(1)n 

n-l.+ ,1. 1.- ,1. 
~~~ 

n-i+1 

[0, ... ,0 a .. 1, ... ,a, 0' 
___ -' 1.,1.+ l.,n-l. 

~ 

T n n 
[0, ••. ,0] i-2,~1 

O, ••• ,O]T i=l(l)~l 
2 

T n 
[0, ••• ,0 a

i 
-i 2,···,a

i 
·_1,0, ••• ,0] i- 2

12(1)n. ____ - In + ,1. 

n-i+1 
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(5.6.3) 

(5.6.4) 

(5.6.5a) 

(5.6.5b) 

(5.6.6a) 

(5.6.Gb ) 
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substituting for A in (5.6.1) yields the various QI iterative schemes, 

by an analogous reasoning to that given in Section (2.4). First we 

replace the system (5.6.1) by the equivalent system, 

EX(k+l) = FX(k) + b . (5.6.8) 

Then the simultaneous (or Jacobi) QI iterative method is then defined 

by, 
E = X and F = W + Z , (5.6.9) 

and the vector x (k+l) can be determined by solving the ~ 2 systems, 

b
' i~ 

an-i+l,i 
a ] 
i,n-i+l 

an-i+l,n-i+l 

(5.6.10) 

where, 
= 

n 

L a x(k) + b 
ij j i ' j=l , j#i and n-i+l (5.6.11) 

(k) 
cn- i +1 = 

n 

L 
j=l 

a X (k) + b 
, 1 ' , 1 n-~+ ,J j n-~+ 

By introducing an acceleration parameter w the simultaneous over-

relaxation version of the Jacobi QI iterative method is given when, 

b 
a
ii 

a. . n-l.+l,l. 

ai,n-i+l J ~i l (k+l) __ 
I (l-w) 

an-i+l,n-i+l xn-i+:J J 
(k) 

a 
i,n-i+l 

an-i+1,n-i+l *-

replaces (5.6.10) and, 

-(k) 

xi I +w 

~n-i+~ ~ J 
(k) 

:i , (5.6.12) 

n-~+l 

where 
(k) (k) 

c
i 

and c
n

_
i
+

l 
are defined in (5.6.11). 

The successive (or Gauss-Seide1) QI iterative method is defined by 

E = (X-W) and F = Z (5.6.13) 

and the x(k+l) values are given by (5.6.10) with, 



(k) 
c, 

1. 
= 

(k) 
Cn- i +l 
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i-l 

2 
j=l 

(k+l) 
a x -
ij j 

n 

2 
j=n-iT2 

n-i 
(k+l) '\ (k) 

a x - L. a x +b 
ij j j=i+l ij j i 

i-l (k+l) 
2 a '1 ,x 

j=l n-J,+ ,J j 

n 
'\ (k) 
L. ail ,x, -

j=n-i+2 n- + ,J J 

n-i 

2 (k) 
a '1' x, +b '+1' jFi, jFn-i+l 
n-~+ ,J ) n-1 j=i+l 

(5.6.14) 

By introducing the acceleration parameter w produces the successive 

overrelaxation (extrapolated Gauss Seidel) QI iterative method results 

when (5.6.14) is substituted in (5.6.12). Applying the QI permutation 

to the above iterative algorithms illustrates that they are simply 2x2 

block forms of the more familiar point Jacobi and Gauss Seidel methods. 

It follows that the normal conditions of diagonal dominance or positive 

definiteness of A ensures that the iteration matrix derived from (5.6.9) 

and (5.6.13) converges. Thus, for any initial starting vector x(O) the 

QI methods converge to the solution x of (5.6.1) and also implies, 

[~" ai' 1 Jl det 1.1. ,n-l.+ F 0 , 

an-i+l,i an-i+l,n-i+l J 
i=l (1) 1n/21 

-1 
to ensure that X exists. The corresponding overrelaxation QI forms 

are convergent when O<w~l and O<w<2 for the Jacobi and Gauss-Seidel 

respectively provided the original method converges. Proofs of these 

statements can be found in Evans & Sojoodi-Haghighi [84), but are 

special cases of the more general group iterative results. 

The systolic implementation of the QI schemes adopts the same 

cascaded form Fig.(3.2.3.1) and uses 2x2 block calculations in the 

linear arrays. If we represent the general QI scheme by, 
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-{k+ 1) -(k) d x = Bx + , (5.6.15) 

--1-
where B=E F is the QI permuted form of the iteration matrix such that 

~l -1 
B=X (W+Z) for the Jacobi form and B=(X-W) Z for the Gauss-Seidelscheme 

-1 
and d=E b. The 2x2 block form of Theorem (3.2.3.1) is easily 

derived. 

Theorem 5.6.1: For r iterations of the form x(k+l)=BX(k)+d where B is 

an nxn matrix with block bandwidth >i=p+q-l, and d is an nxl vector 

requires a time of T~2{2rn/21+r(2p-l)+MAX(p-l,q-l)-p+l} ips cycles and 

takes 4rw equivalent ips cells. 

Proof: 

The basic linear array in the cascaded form Fig.(3.2.3.1) is a 2x2 

block matrix vector array, thus using similar reasoning to that given in 

Theorem (5.1.1), gives the input length 2 jfl/21 and the number of block 

ips cells as w, where p= [p/2] and q= rq/ij. Each block ips requires 4 

point ips cells for its implementation and 2 point ips cycles for 

calculation. Applying this information to Theorem (3.2.3.1) produces 

the required T and cell count. 

The QI Jacobi array is derived directly from Fig.(3.2.3.2), by 

simply substituting 2x2 blocks for the input data elements and adopting 

the 2x2 block ips definition of (5.1.20b) and the revised form of (5.1.20c) 

below. 

D=ad-bc 

a=a/D, b=b/D, c=c/D, d=d/D 

g=e,h=f 

e=ag-hb 

f=cg-hd 

(5.6.16) 
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Using pipe lining to overlap the 2x2 inversion produces a boundary cell 

with the same cycle as a block ips and Fig.(3.2.3.2) implies that the 

Jacobi scheme has the same timing as a 2x2 block matrix vector problem 

of bandwidth W+l. Thus, substituting p+l for p in Theorem (5.6.1) 

yields the time of the Jacobi form. Likewise, the QI Gauss seidel 

form is constructed from a 2x2 block lower triangular solver, and an 

upper triangular array of bandwidths q and p-l respectively. As the 

lower triangular part introduces a delay of a single block ips cycle, 

the timing is derived from Theorem (5.6.1) with bandwidth w=p. Notice 

however that the cell counts produced by the Theorem are invalid due 

to the overhead of extra ips equivalents in the boundary cell, and that 

the bandwidth in the Gauss Seidel form represents only timing not the 

true bandwidth of the matrix (hence array). In our original estimate 

(5.1.20c) contained at most 10 ips equivalents, consequently, for r 

iterations the Jacobi scheme requires r(4w+lO) ips equivalents and the 

Gauss Seidel method r(4w+6) ips equivalents. 

Now the overrelaxation forms of these QI arrays are easily derived 

by writing (5.6.12) in the form, 

, J(k+l) Xi 

x 
n-i+l 

= 

which reduces to, 

(l-w) :i. 
n-l.+l b J

(k) 

rH 
b-i+l'i 

i,n-i+l 
a J 
an-i+l,n-i+l *' 

(5.6.18) 



From which we notice that the term , 

a 
i,n-i+l 
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-1 

i=l (1) 1n/2) (5.6.19) 

an-i+l,n-i+l 

can be precomputed before entering the cascaded iteration array. 

Definitions (5.6.16) and (5.1.20c) can then be revised to give more 

general block Jacob1 and Gauss-Seidel arrays. For instance (5.6.16) 

becomes, 

-;: bl 
c d t 

t 
[e,f] ----V 
[;,fj t ~( __ -\ 

--t 
'I--~) [g ,h] 

r=(l-w)r, s=(l-w)s (5.6.20) 

g=e, h=f 
t [g,h] 

and (5.1.20c) 

l-w ~ ~ [r,s] 

t~ --t [~'':] t "> [g ,h] 

[g,h] ( _ -- [g,h] 

where the 2x2 input is equivalent to 

e:r+ (ag-hb) 

f=s+ (cg-hd) 

r=(l-w)r, s=(l-w)s 

k=(e-g),p=(f-h) 

g=r+(ak+bp) 

h=s+ (ck+dp) 

(5.6.19) • The calculation 

rand s values requires the x 
(k) 

vector to be delayed while the 

(k) 
values are computed. Consequently r,s 

(k) (k) 
c . 1 and c. , cn_

i
+l n-~+ l. 

(5.6.21) 

of the 

(k) 
c. and 

l. 

calculations can be overlapped. It follows that the most complex 

computation is the evaluation of 9 and h in (5.6.21) which is performed 

in 2 ips cycles, that is, 

t+l: 

3 
t t--· 2' 

t+2: 

k= (e-g) , p= (f-h) 

t =a*k, t =c*k o 1 

t2=r+to' b 3=s+tl , to=b*p, tl=d*p 

g=t +t , h=t +t 
2 0 3 1 
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Consequently the above array timings are unchanged. This is an 

intuitive result, because when w=l overrelaxation methods become the 

standard Jacobi and Gauss Seidel schemes. As (l-w) is known we 

require at most six point ips cells for the new boundary cells, this 

produces revised cell counts of r(4w+6)+10 and r(4w+2)+10 for over

relaxation Jacobi and Gauss-Seidel. The additional 10 ips account for 

the preprocessor ev~~uating (5.6.19). 

These results on block iterative (or SQII) arrays are disappointing 

because we require approximately the same time and cover twice as much 

hardware as the point-orientated schemes. Some improvements for the 

Jacobi scheme is obtained if we adopt the pipelining strategy for 

(5.l.20b) which was used to reduce a block-ips cell requirement to two 

point ips cells. Recall that the cell count of Theorem (5.1.1) was 

roughly halved due to this pipe lining effect, but that computation time 

remained unchanged, even though the pipe lined block ips had an apparent 

cycle time of a single ipso The problem was the feedback loop associated 

with the boundary cell, which forced a two ips cycle time. In the Jacobi 

scheme the boundary avoids these feedback problems. Thus, by virtue of 

the fact that each Jacobi iteration appears like an extended matrix 

vector computation which utilises both speed up and reduced cell count 

to give a factor of 2 improvement in performance over the point schemes 

in Berzins, Buckley and Dew [83]; Closer analysis indicates that this 

optimised 2x2 explicit block matrix vector calculation (with two point 

ips cells per block cell) is a variation of the D-pipe (of Section (4.1». 

We conclude that the D-pipe is simply an implicit block version of 

explicit block calculations. Furthermore from the simple observation 

that F in (5.6.9) is an X band matrix with null forward and backward 
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diagonals. It follows that a factor of 4 speedup can be achieved using 

2 the D -pipe arrangement for the Jacobi iteration as shown in Fig. (5.6.1) , 

where the P .. inputs are derived from the partitioning of (4.1.10)
l.J 

(4.1.15) applied to F. Tracing the operation of the D
2
_PiPe Jacobi 

iteration we can derive the following theorem. 

Theorem 5.6.2: For r iterations of the QI Jacobi method applied to the 

nxn system Ax=b where A has forward and backward bandwidths w
l 

and w
2 

can be computed in T=!n+ (r-l) (p+l) +MAX ( Lp/~ .[3/~ ) + /p/2] +l, where 

w=p+q-l=MAX(W
l

,w
2

) and uses r(4w+10) ips cells. 

Proof: 

From Theorem (4.1.3) the timing of a single Jacobi iteration is 

2 
given by T=n/2+w/2+c where c=3 is the combined latency of the D -pipe 

adders and the 2x2 solver in Fig.(S.6.l). 
2 

It follows from the 0 -pipe 

arrangement that the latency of each iteration is p+l ips cycles. 

Allowing MAX ([y/~ , Lq/~) cycles of synchronisation on the first 

iteration, the rth iteration starts computing after (r-l) (p+l)+MAX(LP/~I, 

~/~) cycles. The total output length is !n (see 2x2 solver input) 

and the first output is delayed by rp/21+l cycles while c~k) and c(k~ 1 11: ~ I l. n-l. + 

accumulate their terms. The timing follows. The area bound is simply 

found by observing that the left and right o2_PiPes of a single 

iteration require 2w ips cells each, and that the 2 x2 solver uses at 

most 10 ips equivalents, giving a total of 4w+10 ips cells per iteration. 

Notice that the o2_pipe symmetry not only reduces the input output 

data length but minimises the latency of each iteration. For example, 

when wl=Pl+ql-l and w2=P2+q2-l applying the QI permutation produces a 

2x2 block form with w=(Pl+P2)+(ql+q2)-1 and iteration latency (Pl+P2)+1, 

whereas the o2_pipe has latency MAX(Pl,P2) +1. 



~ p~~) p:~ ,~) ':' p~',:, p~!' '1~' 

b, 0 0 p,I:' ,:" P::' p~' () 0 

~ 

li li X,'14 

li li X,"" 

~~~L~~"~------~iL~~":r------------J 

x 

x,"+1I x.,,+1, 
Xa(ll+1, .. (11+1' 

X,(II+11 Jet"+') 

0("'., Single Iteration of XWZ Double IPS Pipe 

ab cd 

e d 

FIGURE 5.6.1a 

(k+l) 
xi 

ti .. 

t 

t+1 

t 

t+l 

It) 
Xz 

z-n-i+l 

n- delay 

read a,b,c,d 

output e .. ac-bd 

read a,b,. 

output c-a/e, d .. b/e 

FIGURE 5.6.lb: 2x2 system solver 

357 

XoI14 

..... , 

.. Itd 

right 
hind 
lid. 
Amy 



358 

The 02_pipe iteration is easily extended to Jacobi overrelaxation 

methods, but cannot be applied to Gauss-Seidel forms. The reason 

is simple, the feedback loop associated with the triangular solver 

portion of an iteration prevents the application of the 02_Pipe 

partitioning. Consequently, an improvement can only be made if the 

permuted form of (X+W) has a null first subdiagonal block, so that a 

block version of Fig.{4.2.l) can be constructed. 

Finally we consider the input format of the last solution of (5.6.l0) 

when n is odd and the system reduces to a single equation. The computation 

i 1 i (k) (k) i '1 bl . nvo v ng ci or c . 1 s preserved eaS1 y with ock cell 1nputs of n-1.+ 

the form, 

[:] = [:] + fa ~ [cl 
19 ~ dJ 

and 

~~ ~~ C d [:] 
for block sub- and super-diagonal blocks respectively. If we also 

represent the last equation of (S.6.l0) by the system, 

it follows that the boundary cells of each iteration produce, 

= 

which also preserve computation. Consequently only changes to input 

format not the cell operation are required when n is odd. 
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5.7 SUMMARY 

In this chapter we examined the suitability of Quadrant Interlock-

ing methods for the systolic solution of linear systems. The QI perm-

utation which can be formalised as a matrix P with elements Pij given 

by, 

1 
i~l (1) (n+l) 

Pi,2i-l 
~ 1 

2 

Pij 
~ 

p i~l (1) (n-l) n+l,. 2' 1 ~ 1 
""'- J. + 2 2 

(5.7.1) 

for n odd and 

IP. 2' 1 ~ 1 .1., ~-

Pn = 1 
z+i,n-2i+2 

(5.7.2) 

i=1(1)n/2 

for n even, 

was utilised to solve data localisation problems in array dataflow. 

A side effect of this indicated that, 

T X ~ PDP , T W = PLP , and Z = pUpT (5.7.3) 

where L,D and U were 2x2 block lower, diagonal and upper triangular 

matrices respectively. Consequently all QI arrays were special block 

forms of traditional systolic arrays which utilised pre- and post-

permutations according to (S.7.3) to maintain sparsity patterns. 

For QIF methods the ordinary scheme reduced immediately to the 2x2 

block scheme of Robert [85] with computation time T~2n+min(p,q} for a 

matrix of bandwidth w=p+q-l and efficiency e=!. The idea of implicit 

block calculations was introduced with the modified QIF form which 

allowed the ordinary point oriented calculations to be performed on 

block structured arrays, retaining their improved efficiency and 

computation time without introducing the problems of solving block 

structured coupled systems after factorisation. This concept was 
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extended to produce an orthogonally connected triangular array with 

computation time T=2.5n+s (where s was the block bandwidth) and a 

reduced number of processors for the root free Choleski factorisation. 

From these experiments it was established that the QI permutation 

could be used most effectively to minimise the bandwidth hence cell count 

of factorisation arrays for the X-band matrix. Thus the QI methods are 

most suitable for solving periodic and circulant type matrices systolically. 

With this knowledge the O(n) and p-cyclic BATS cells in Chapter 4 were 

redesigned to improve throughput and in the latter case stability, 

producing a faster circulant system solver. 

Block Gaussian Elimination was considered next, but proved less 

successful. The 2x2 block form gave rise to an elimination array with 

T=2.5n and improved efficiency which resulted from the fact that the 

equivalent of two rows of point ips cells were started in parallel 

rather than sequentially. A preprocessor was also defined which re-

formatted the standard elimination input 'on the fly' to neatly expand 

the bandwidth of the host to the size of the block array. 

Finally 2x2 block forms of the Jacobi and Gauss-Seidel iterative 

schemes were considered and shown to use twice the number of cells of 

the ordinary point schemes without improving computation time. The use 

of a pipe lining trick produced the same cell count as the point arrays 

and established a relationship between the 2x2 block matrix vector arrays 

and double pipes. 
2 

Using this correspondence a fast D -pipe Jacobi 

iteration was defined which minimised iteration latency and produced a 

factor of four speed-up over the point version while using only twice 

the number of cells. 



CHAPTER 6 

SYSTOLIC PRECONDITIONING AND INCOMPLETE ARRAYS 

"Mlking Workable choices occurs in a crucible of Inform::ltive mistakes. 

Thus intelligence accepts fallibility. And when absolute (fallible) 

choices are not known, Intelligence takes chances with limited data 

in an arena where mistakes not only are possible but necessary". 

- Darwi Odrade 

extract from "CHAPTER HOUSE 

DUNE", by Frank Herbert. 
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In this chapter we are concerned with systolic algorithms and 

arrays for preconditioned iterative procedures used in the solution 

of systems of linear finite difference equations derived from partial 

differential equations. For boundary value problems the resulting co

efficient matrix is large and sparse (i.e. narrow bandwidth). The so

called preconditioned methods are primarily aimed at increasing the 

convergence rate of iterative techniques used to solve these linear 

systems by pre(post)-multiplication of the system by a suitable 

additional preconditioning matrix. Hence the use of preconditioning 

increases the arithmetic work in the solution process, which must then 

be offset against the greatly improved convergence rate to produce a 

faster algorithm. 

With respect to systolic arrays we are mainly interested in the 

representation of this additional computation associated with pre

conditioning which may offer overall reductions in cell count and 

computation time due to a reduced number of iterations for existing 

systolic designs. Relevant reading on preconditioning can be found in 

Evans & Lipitakis [79), Evans [83c), Evans & Lipitakis [83), Lipitakis 

& Evans [80), Lipitakis [78). 

6.1 BASIC PRECONDITIONING METHODS 

Let 
AU = d , (6.1.1) 

be a system of n linear equations, where A is positive definite, non

singular, banded, and of large order. Such problems arise from the 

application of finite difference techniques to the solution of partial 

differential equations. Now, clearly if A is easily invertible (61.1) 

is trivially solved by, 
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-1 
u = Ad. (6.1.2) 

However, it is often the case that difficulties arise in the 

-1 
construction of A ,especially when A results from the discrete 

approximation of P.D.E.'s on a grid. The key concept of preconditioning 

-1 
is to select some nonsingular matrix R, where R approximates the 

inverse of A but whose construction is much simpler than forming A-
l 

itself, (6.1.1) is then easily preconditioned by the premultiplication 

-1 
of R to give, 

where R is termed the conditioning matrix. From (6.1.3) the general 

iterative procedure, 

(6.1.4) 

follows naturally and is consistent with (6.1.1) provided a#o and R 

is nonsingular. Now if a=l and R-l=D-l (where D is the diagonal matrix 

of A) (6.1.4) corresponds to (2.4.1.3), or the Jacobi method. 

-1 
Consequently, a careful choice of a and R can produce many of the 

basic iterative methods. For a>l we produce the simultaneous displace-

ment method of (2.4.1.4) and application of Theorems (2.4.1) and (2.4.4) 

indicates that the asymptotic rate of convergence is given by, 

(6.1.5) 

which after some further manipulation produces, 

2 
Roo = P I (6.1.6) 

where P is the P-condition number from definition (2.2.8). Equation 

(6.1.6) indicates that the rate of convergence is inversely proportional 

to the condition number of A, a result which generalises to many other 

iterative techniques, see Evans [83c]. Consequently an improved 

-1 
convergence rate is achieved if the condition matrix R approaches A 
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such that the condition number of R-lA is much less than the 

corresponding value of A. Furthermore the parameter n can be chosen 

according to Theorem (2.4.4) to minimise P and the number of iterations 

(i.e. maximise the convergence rate) . 

Using this basic preconditioning principle we can define two main 

classes of preconditioned iterative methods for the solution of (6.1.1) 

termed implicit and explicit preconditioning respectively. The main 

difference between the two schemes being the choice of the precondition-

ing matrix. If R is known or easily found (6.1.4) must be re-arranged 

to produce the implicit scheme, 

R( (i+l) (i» (d A (i» u -u :::: ex. - u , (6.1.7) 

(i+l) (i) (i) 
If we denote ~u=u -u and e=(d-Au ) (6.1.7) is then equivalent 

to the solution of the linear system, 

R~u = ne. (6.1.8) 

Using (6.1.8) implicit schemes can be further subdivided into compact 

and sparse forms. 

In a compact form R in (6.1.8) is based on a factorisation of A 

into easily invertible (i.e. solvable) matrices such as lower and upper 

triangular type factors. However a direct factorisation of A especially 

with sparsely banded matrices leads to fill-in increasing memory 

requirements of conventional algorithms. Compact preconditioning controls 

the fill-in problem by the production of incomplete factors Land U , 
s s 

where R=L U "A such that the error norm (A-R) is kept to a minimum. 
s s 

Table (6.1.1) lists some of the factorisation strategies which have 

appeared in the literature to date, and are not discussed in detail 

here, except for the following remarks. First it must be clear that 

each method (in Table (6.1.1» adopts its own strategy for retaining the 
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.Exact Method 

R conditioninq 
Iterative Method matrix 

1 Caussian !!van. (1974) 

E~n8flon [£-16/1 
A .-1 • • 

2 Trianqular Stone (1968), 

=:!if~8atlon [£6/1 !!van. , Lipitaki., (1979) 

• • 
3 Choleski Square Dupont (1968), Meijerink 

Root T & Van der Vorst (1977), 
AOW

T 2.2. Gu.tafs,on (1978) 

4 Root Free !!van. & Llpltaklo (1982) 
Factorisation [£.,P.6/J. A{f! DOlI 

5 Root Fre,e Kershaw (1978) 

Ch!le.~ 
A~ D !1!sD. a: 

6 Normalised 
D T TTD 

Varqa (1960), !!van. & 
Symmetric Lipitaki. (1980) 
Factorisation 

s s s s 

A=DTTTD 

TABLE (6.1.1): Approximate factorisation methods· 

a R Iterative Method 

1 I Jacobi (J) 

2/(a+b) I Simultaneous Displacement (SO) 

1 (I-L) Gau9s-Seidel (CS) 

10 (I-wL) Successive OVerrelaxation (SOR 

.,(2-10) (I-OIL) (I-wU) Symmetric SOR (SSOR) 

1 • Preconditioned Jacobi(PJ) 

2/(a+b) • Preconditioned Simultaneous Displace-
ment (PSD) 

.r (I+rH) (I+rV) Douqlas-Rachford ADI (OR-ADI) 

2r (I+rB) (I+rV) Peaceman-Rachford ADI (PR-ADI) 

.2/(a+b) (I+rB) (I+rV) Alternating Direction PreconditIoning 
(ADP) , (or EADI) 

TABLE (6.1.2): Iterative methods 

-1 
where a,b are the smallest and largest eigenva1ues of R A. 
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365 

matrix. Second, the amount of work saved by producing the incomplete 

factors may not be large, consequently a valid criticism of compact 

preconditioning is that it may be better to produce a direct factor-

isation to solve (6.1.l)and avoid the iterative form (6.1.4) altogether. 

In contrast, sparse preconditioning avoids the large amount of 

work of compact preconditioning by adopting factors based on a simple 

splitting of A. If we assume without loss of generality that the system 

(6.1.1) is normalized (6.1.4) represents all known first degree linear 

iterative schemes for suitable choices of a and R, indicated in Table 

(6.1.2) where A is assumed to have the form, 

a) A = I-L-U or b) A = H + V , (6.1.9) 

with L and U strictly lower and upper triangular matrices respectively 

and H,V are symmetric, positive definite matrices that commute (see 

Varga [62]). Thus if A can be suitably split into two matrices, the 

general form of R can be expressed as the product of these two matrices. 

That is, 
R = (I-wL) (I-wU) = L U 

s s 

for (6.l.9a) and, 

R = (I+rH) (I+rV) = L U s s 

(6.1.10) 

(6.1.11) 

for (6.l.9b) where wand r are acceleration parameters associated 

with the method. we conclude that all known convergent iterative 

methods can be interpreted as improvements on the "condition" of the 

system (6.1.1) by a different choice of condition matrix R. 

Explicit preconditioning provides a further alternative form to 

(6.1.3) where (6.1.1) is premultiplied by a matrix Q to yield, 

QAu = Qd , (6.1.12) 

such that QA is a matrix with a simple splitting which produces a 



366 

novel iterative method. For instance, the Jacobi form of the explicit 

preconditioned method is given by the following formulation where 

(6.1.1) is assumed normalized. We set, 

A = I - B , (6.1.13) 

and precondition with Q=(1+B) to obtain, 

2 
(1-B )u = (1+B)d , 

which yields the iterative formula, 

(6.1.14) 

u(i+l) = B2u(i) + (1+B)d , (6.1.15) 

Likewise the Gauss-Seidel iteration with the splitting (6.1.9a) is, 

(1-L)u = Uu + d , (6.1.16) 

and using the preconditioning matrix Q=(1+L) yields the iterative 

formula, 

U(i+l) = L2U(i) + (I+L) (uu(i) + d) • (6.1.17) 

Notice that both these methods lack a parameter a which appears in 

(6.1.4) and in conjunction with the choice of R is used to control the 

condition number. Furthermore if we denote the eigenvalues Ai' i=l(l)n 

of B in (6.1.13) such that, 

where a and b are the smallest and largest eigenvalues respectively, 

and B is convergent. 
2 

The iteration matrix B of (6.1.15) has eigen-

2 
values ~i=Ai' i=l(l)n satisfying, 

2 2 
a ~1~.I::b <1 

~ 

implying that the P-condition number is increased! From (6.1.6) this 

indicates that the rate of convergence of the preconditioned method is 

slower than that of the un-preconditioned form. This apparent 

contradiction in improving convergence rates by preconditioning methods 

can be resolved by considering the norm of the iteration matrix and its 

relation with the Neumann expansion. Let the linear system, 
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Cu = b , (6.1.18) 

have the matrix splitting C=G-H and the generalised iteration form, 

(i+1) (i) 
U =Mu +z, (6.1.19) 

-1 . -1 
where M=G H, and Z=G b. When (6.1.19) converges I IMI I <1 and from 

(2.4.3.10) , 

(r) r (0) r-l r 
u = Mu + (M +M + ••• +M+I)z (6.1.20) 

with u(O) the initial starting vector. On convergence Mru(O) =0 and 

u = r-l Mr 
(M + + + M+I)z (6.1.21) 

thus (6.1.22) 

Indicating that convergence is accelerated if more terms in the 

Neumann expansion of the iteration matrix are constructed on each 

iteration. For example, repeated substitution in (6.1.15) yields, 

u 
(1) 

= (I+B)d 

(2) 3 2 
u = (B +B +B+I)d (6.1.23) 

(3) 5 4 3 2 
u = (B +B +B +B +B+I)d 

compared with, 

u 
(1) 

= d 

u 
(2) 

= (B+I)d (6.1.24) 

(3) 2 
u = (B +B+I)d 

in the unpreconditioned Jacobi method. Notice that (6.1.23) collects 

two terms of the expansion every iteration compared with only one 

term per iteration for (6.1.24). Alternatively, the explicit nature of 

the preconditioning is exposed if we substitute R=L U and (6.1.18) into 
s s 

(6.1.8) to yield, 

L U 6u = b_Cu(O) , 
s s 

with /:;u=u(l)_u(O) and a=l, which on re-arrangement gives, 

, U-1L-lb -1 -1 (0) '-'u = - U L Cu , 
s s s s 

(6.1.25) 

(6.1.26) 
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-1 -1 -1 r-l defining L ;G and U ;(M + ••• M+I) yields, 
s s 

-1 (0) -1 (0) 
~u ; C b - u ~ Cb; u +~u (6.1.27) 

-1 
indicating that if C is known the solution u can be found directly, 

but more importantly that if some powers of M are known the explicit 

-1 -1 -1 
preconditioning method is accelerated by choosing U L ;R ,such that 

s s 
-1 -1 it forms a closer approximation to C (or A in (6.1.1)). 

In the following sections systolic arrays for the above preconditioned 

iterative schemes are developed. The arrays themselves correspond to 

a global array structure (see Fig. (6.1.1)), consisting of two stages, 

a pre-processing stage for preconditioning and an iteration stage for 

solution. Now, from a computational viewpoint the basic aim of pre-

conditioning is to offset the increased arithmetic work introduced to 

u 

A d 

{y 
SYSTOLIC 

PRECONDITIONING 
PREPROCESSOR 

(0) M'\) v 

CASCADED 
MATRIX ITERATION 

(r-l) 
u 

ARRAY 

~ 

M 

Y 

v 

. 

FIGURE 6.1.1: Global structure of a preconditioned solver 
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the solution process (due to ill-conditioning) against the greatly 

improved convergence rate of the method to produce a faster design. 

Thus the essential motivation of systolic preconditioning is a tradeoff 

of cells introduced to the preconditioning preprocessor against those 

removed from the iteration section of the array. To this aim appropriate 

pre-processing arrays must be developed which maximise overall cell 

reduction while retaining convergence rate improvements. Hence systolic 

preconditioners place an additional constraint on the choice of R. 

6.2 HEXAGONAL MATRIX POWER GENERATION 

The first preprocessor we consider is a pipe lined array for 

generating the powers of a matrix. This problem has a certain intuitive 

appeal because in addition to facilitating the construction of (part or 

all) the Neumann expansion and performing explicit preconditioning, it 

also has much wider applications. For example the exp(A) , sin (A) , 

cos (A) and log (A) of a matrix A can all be expressed as matrix power 

series. The power generator also incorporates a recurrence type 

formulation which makes it attractive for systolic implementation, 

because the traditional matrix product array of Fig.(3.2.l.6) can be 

applied directly using a mUltipass formulation to yield, 

C ~M o 
for i~l TO k DO 

{A~Ci_1,B~Ci_l 

C.~Z+(A*B) 
~ 

} 

(6.2.1) 

2i 
when z~O, (6.2.1) generates the sequence M of successive matrix 

i+1 . squares, by setting B~M the sequence M ~s produced, and when in 

addition CO~Z~I the Neumann expansion. The start matrix M is also 
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banded, so each pass produces an increase in the bandwidth of C., 
~ 

i=l(l)k, and hence the number of cells on the next pass affects both 

area and time. To produce a fixed sized design the array must be big 

enough to allow the growth of the bandwidth on each pass. Suppose M 

has an initial bandwidth w
o

=po+qo-1, where po=number of super diagonals 

and qo=the number of subdiagonals (including the main diagonal). A 
. 2 

simple analysis gives the bandwidth of M as wl=W0+(po-l)+(~-1)=2wo-1, 

and so generally, 

2w. 1 -1, i=l(l)k , 
~-

(6.2.2) 

is the bandwidth of It follows by repeated substitution in (6.2.2) 

that, 

k k-l k-2 0 = 2 w
o

-(2 +2 + ••• 2 ) 

which after the summation of the geometric progression produces, 

(6.2.3) 

i+1 
Alternatively if the sequence M is computed the bandwidth grows 

much more slowly according to, 

w: = (i+1) [;- -1] + 1 , 
~ 0 

which follows from induction on i with w =w , i.e., for i=l, o 0 

and generally,_ 
w

i 

= 2" -1 = o 

= wi_l+(PO-l) + (qo-1) 

= i (wo-l) +1+ (wo-l) = (Hl) (wO-l)+1 

and when (i+1)=2 j substitution in (6.2.2) yields the result, 

(6.2.4) 

directly. Now as w.<w. the maximum number 
~ ~ 

of hex cells required to 

compute all the powers up to and including 
2k 2 

M is w
k

_
l

' as the bandwidths 
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of A and B are both at most w. 1 on each pass of (6.2.1). When the 
1-

(Hl) . . -sequence M 1=1(1)k is computed A can have bandw1dth w. and B has 
1 

2 
constant bandwidth Wo on each pass, so that only [(k+l) (wo-l)+l)wO<wk _l 

cells are required and produce an increasingly skewed hex array as the 

bandwidth expands. Clearly these cell bounds hold only for small k 

which ensures that the last matrix in the sequence is also banded. 

However, if k is increased wk and wk approach 2n-l and the matrix fills. 

Since the bandwidth of successive powers cannot exceed that of a full 

2 2 
matrix an upper bound of w =(2n-l) hex cells is established. It follows 

that this dense array can compute an infinite sequence of powers by 

multipass and from Theorem (3.2.1.6) k passes require T=k(5n-l) ips 

cycles. 

REMARK: An orthogonal array for multipass powering has recently 

appeared in Quinton, Joinnault and Gachet [86) and indicates that 

'Corollary (3.2.1.3) carries over to matrix power generation. 

Finally, we can determine the maximum matrix power that can be 

computed for a given matrix before we use more hardware than the dense 

case, by the relations, 

2 2 w
k

_
l 

l; (2n-l) 

k-l 
2 (wo-l) l; 2(n-l) 

for the 

kl;fiog(n-l)-log(w -1)+21 
. 0 

21 
sequence M ,i=l(l)k and, 

(6.2.5) 

l; 
(wO -1) Wo 

(6.2.6) 

for the sequence Mi +l , i=l(l)k. 
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The above relations completely define the behaviour of systolic 

matrix power generation and a number of drawbacks can be identified 

. 
which can help to characterise the type of preprocessor we should 

attempt to produce: 

(i) The matrix square operations duplicate the matrix input 

(11) 

bringing each element from the host memory more than once. 

2 
For the early powers of the banded matrix the bound of wk _l 

cells results in unused cells which reduces efficiency, and 

delays output of the array unnecessarily. 

(iii) The total number of host input output lines is 3 (wl +w2) , 

where wl =w2=wk_l for repeated squaring, wl=wk_l ' wZ=wo for 

HI the sequence M ,and w1=wZ=Zn-l for the dense matrix, when 

wl and Wz are the bandwidths of A and B respectively. 

(iv) The array inputs from North West, North East, and South in 

Fig.(3.2.1.6) make pipelining difficult, and multi-pass 

iterations reduce throughput. 

Below we describe a reduced bandwidth array for a matrix product, which 

can be pipelined and which incorporates optical concepts of a soft-

systolic frame to avoid duplicate inputs by bringing the matrix M from 

the host only once. Figure (6.2.1) shows the global input structure of 

the reduced bandwidth array with data movement through the modified hex 

being shown as a ray diagram; using the principle of wavefront reflection 

(from optics). The main principle of the array is to add an upper 

2 boundary of cells on the north edge of the existing hex (of wk _l cells) 

which act as reflectors and mirrors for individual data sequences and 

wavefronts respectively. Tracing dataflow as illustrated by the snap-

shots of Fig. (6.2.2) indicates that data moving south to north as it 
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FIGURE 6.2.1: Reduced bandwidth input format 

leaves the hex is incident on the mirror-like boundary and reflected 

back into the-hex. The reflected data waves appearing on the NE and 

NW boundaries from the arrays viewpoint to emanate from two virtual 

sources A and B , mimicking the traditional hex.input. This array, 
v v 

however, requires less host input/output connections as the NE and NW 

inputs are part of the array. 

Now from the input format the result matrix C and real matrix 
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FIGURE 6.2.2: Reduced array snapshots 
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FIGURE 6.2.2: continued 
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inputs A ,B must be multiplexed on the same south-north inputs. The 
r r 

key to the data multiplexing is the manner in which neutral elements or 

the holes of the C input are filled. To preserve computation, the data 

elements once inside the array must constructively interfere. In fact, 

we can identify just four types of interference for this particular 

problem, which are given below. 

(i) 

(H) A) 

(iii) A) b) 

(1v) A) b) 

constructive 
Interference 

Neutral 
Interference 

Neutral 
Interference 

Destructive 
Interference 

Case (i) is the true inner product step necessary for correct matrix 

production operation. Cases (ii) and (iii) represent the two possibilities 

of data moving SW and SE meeting an A or B element on its trip to the 
r r 

mirror section before reflection. This is a potentially disastrous 

situation; but the inner product (y=y+O*x) indicates that computation is 

neutral and preserves all inputs. This leaves only case (iv) where three 
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data elements meet in the same cell like case (i) but where no c
ik 

value is present. Clearly this type of operation would modify the A 
r 

or B elements before reflection generating an incorrect product. But, 
r 

the reflection in Fig.(6.2.l) is made so that virtual data inputs are 

the same as those in the traditional hex. It follows that only cases 

(i)-(iii) are possible, otherwise the original hex would miss the 

accumulation of at least one full partial product, and this is impossible 

because the traditional array is formally verified in Melhem & Rheinboldt 

[84]. However, closer analysis of the dataflow in Fig.(6.2.2) indicates 

that a situation similar to case (iv) can occur if A and B data is not 
r r 

placed correctly. The data elements are placed in the south input in a 

manner related to the bandwidths of A and B. When the matrix bandwidths 

are different the array becomes rectangular and skewed in the direction 

of the largest bandwidth, and the A,B inputs take different amounts of 

time to synchronise with C. Consequently, it becomes possible for a 

clash (where two inputs require the same slot) to occur. The south 

boundary of Fig.(6.2.l) has w
l

+w
2
+2 inputs and can be partitioned into 

non-overlapping regions which prevent A and B inputs from colliding, 

reducing the problem of clash resolution to the examples in Fig.(6.2.3). 

In case (i) A" elements clash with C,' entries, case (ii) indicates a 
1J 1J 

similar clash with the Bij elements in an alternative non-clash position, 

and case (iii) indicates the simultaneous collision of A'j' B, , values 
1 1J 

with C,' elements. A simple observation on dataflow shows that shifting 
1J 

the C,' elements back along the input stream by a sufficient number of 
1J 

spaces resolves all clashes. Unfortunately shifting destroys the 

synchronisation necessary for constructive interference, and the Aij 

and Bij elements must be delayed somewhere in the array to resynchronise 
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data. The most likely place for delays is the mirror boundary. 

Reflecting cells are trivial to construct and consist of a small delay 

queue for resynchronisation and a switch for reflecting and non-reflecting 

states controlled by a single bit tagged to the south input elements 

which operates as follows: 

Sin 

N 
out 

SE 
out 

IF TAG THEN SE =0 
out 

ELSE SE =Front-of-Queue 
out 

Back-of-Queue=S. 
~n 

N =Front-of-Queue 
out 

Thus, setting the tag bits of C
ij 

elements true prevents them from re-

entering the array by reflection and upsetting subsequent computations. 

Theorem 6.2.1: The product of two nxn matrices A and B with bandwidths 

w
l 

and w
2 

respectively can be computed on a Reduced Communication Band

width Hexagonal array of wl*w2 inner product cells and w
l

+w
2
-1 

reflecting cells in T=3n+(w
l

+w
2

}+2q ips cycles where q>O is a small 

constant. 

Proof: [By generalization of the snapshots in Fig.(6.2.2}]. 

The delay for positioning A or B depending on which has the longest 
r r 

distance to travel to the reflectors is min(w
l

,w
2

} (the longest vertical 

distance from south to north boundary). Reflected elements are delayed 

q cycles in the reflecting cell, and require at most max(w
l

,w
2

} for the 

c
ll 

element to meet the reflected elements and accumulate its final value. 

After a further delay of q cycles through the mirror boundary c
ll 

is 

output giving an array latency of (w
l

+W
2

}+2q cycles. As the output 

length is 3n the theorem time follows immediately. The design requires 

an additional w
l

+w
2
-1 reflecting cells for the mirrored upper boundary 
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and the same ips cells as Theorem (3.2.l.6) producing the area bound. 

Finally the former hex required 3(w
l

+w
2

} input and output connections 

compared with 2(w
l

+w
2

} for this design saving a third of the host 

connections and reducing the communication bandwidth. Finally experi-

ments with clash resolution indicates that q is small (i.e. 2,3) making 

the reflecting cell overhead negligable. 

Next, to improve throughput and reduce input duplicat~we introduce 

a preprocessor to convert the above general matrix product array into a 

pipelined power generator. The structure 

squaring and its pipeline arrangement for 

of a preprocessor for matrix 
2i 

the sequence M i=l(l}k are 

shown in Fig.(6.2.4}, and consists of three major sections, a collector, 

transmission gap, and reformatter. The collector accepts a single 

matrix input in standard hexagonal matrix input representation and 

creates a duplicate. The transmission gap then separates the two 

representations into non-overlapping regions of the input to form a 

basis for the A and B inputs. Finally, a set of delay queues reformat 
r r 

the data to resolve any clashes, synchronisation, and tag bit alignment 

problems before input to the reduced hex array. Assuming a hex array 

of w~_l ips cells produces a fixed sized pipeline component and computing 

the matrix square operation simplifies data re formatting as the hex is 

more symmetrical than skewed because A and B have the same bandwidth. 
r r 

Furthermore, considering the detailed operation of the preprocessor 

indicates that with slight modifications it can also generate the 

i+l 
sequence M , i=l(l}k and sum the first k+l terms of the Neumann 

expansion. A detailed example of the preprocessor for some stage i in 

the pipelined generator is shown in Fig.(6.2.S}. For simplicity the 

preprocessor can be partitioned into left, centre, and right sections, 
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FIGURE 6.2.5: Detailed preprocessor design for pipelined pcwer 
generation (using w

k
_

l
=5) 

where operation of the left and right parts is similar. It follows that 

by denoting the inputs and outputs of stage i by A;i) 'B;i) and c!i) 

respectively, that the preprocessor operation is described fully by the 

left and centre sections. 

Now the first non-zero elements to leave stage (i-l) and enter the 

stage (i) preprocessor are the A(i-l) and B(i-l) values, which if allowed 
r r 
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to reach the stage (i) hex array could interfere with later computations 

and consequently must be removed. Removal of these elements is achieved 

by an array of scratch pad (SP) cells which checks the tag bit of each 

input element, resetting the data elements (to zero) for false bits, and 

the tag bit itself for true bits. This scrubs the stage (i-I) output 

(i-I) to leave only C values non-zeros. The re formatting section then 
pq 

(i) (i-I) (i) reformats this scrubbed input stream to generate A from C (B 
r r 

in the right section) by delay queues organised to create the correct 

amount of skew. The next step is to re-generate the tag bit structure 

to identify the c(i) elements which will accumulate the partial products 

of stage (i). Fortunately assuming that each stage of the pipeline has 

cells simplifies identification of the new c(i) elements, because 

and B(i) can be given the same bandwidth (by a suitable padding of 
r 

zeroes) at each stage. Hence the number of cycles between the 'leading 

elements A(i) (1,1), B(i) (1,1) and C (i) is always the same. Once the 
r r 11 

(i) (i) 
Cll position is identified the remaining C

pq 
elements are easily 

located using the regular chevron structure portrayed by Fig.(6.2.1). 

The tag bit alignment for stage (i) is then easily generated by a linearly 

connected unidirectional array of tag realignment cells, which pump 

control bits from right to left (left to right in the right preprocessor 

section) setting the tag bits of the re formatted A(i) (B(i)) data as they 
r r 

pass vertically through the array. Deriving the control bit sequence 

from the suitably delayed tag bit sequence associated with c(i-l) 
pp 

generates the correct chevron input for c(i). Thus, the centre section 

of the preprocessor consists simply of a special scratch pad cell which 

clears all elements but leaves tag bits unchanged, and a delay queue of 

size d
q

, where, d
q 

is the number of cycles between A;l) (1,1) or B;l) (1,1) 
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and ci~). The choice of measurement from A;l) (1,1) or B;l) (1,1) 

determined by the original input format and bandwidth of the starting 

matrix (M). 

i+l . TO produce the sequence M the r~ght preprocessor section must 

be modified to allow the B(i-l) matrix to be re synchronised in stage (i). 
r 

This is achieved by allowing data to pass straight through the collector 

and transmission gap (see Fig.(6.2.6)), modifying scratch pad cells to 

zero data elements with true tag bits and adding additional delays in 

I 
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i rr, r1 
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:"~[~ J: rf. 

o J 0 
I- L,fo" 

,l, 
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r ' 
:( 
~( 
• 0 
L. 

)

SynChrOnlSin9 
delay for 
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B -B J r r 

FIGURE 6.2.6: Alternate right section for producing Neumann expansion 
(d ~3) 

q 

(i) (i-l) the reformatter delay queues so that B ~B • The essential idea 
r r 

(i-l) being to replace the C values which would normally become B(i) by 
r 



B (i-l) • 
r 
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(1) (2) (k) . 
Thus B =B = •.• =B =M and by definit1on, the Neumann 

r r r 

expansion is also accumulated if the centre realignment cell is modified 

to set the data elements to one as well as tag bits, and with A(l)=I, 
r 

B(l)=M initially. We conclude that our pipeline computes all the multi
r 

pass forms of (6.2.1) and state the following generalised theorem. 

Theorem (6.2.2): k powers of an nxn matrix M of bandwidth w can be 

generated (and accumulated) using a k-stage pipeline of reduced band-

width hex arrays of . 2 h S1ze w
k

_
l 

were w
k

_
l 

is the bandwidth of the largest 

power in T=3n+k[2w 1+2q+3) 
k-

for q a small delay constant. 

proof: 

Using Theorem (6.2.1) we note that the output delay of a single hex 

array is 2w
k

_
l

+2q, and from the preprocessor of Fig.(6.2.5) the delay 

for reformatting is at most 3 cycles. Hence for k stages the total 

output delay is k(2w
k

_
l

+2q+3), and as there are 3n results T follows 

directly. The area estimate follows from the assumption that each array 

contains w!_l ips cells, and that the preprocessor is made up only of 

switchable delay registers. 

Finally we conclude this section with a few simple observations. 

First, the pipeline can be optimised by selecting smaller hexes in the 

earlier stages where the bandwidth is small. This complicates pre-

processor reformatting at each stage but reduces cell count and improves 

pipeline latency. Second, the duplication of input matrix in the pre-

processor can be implemented easily using electro-optical concepts. The 

idea being to convert the data from electrical to optical and back to 

electrical signals as it passes through the collector, across the 

transmission gap and back into the scratch pad array. The unpleasant 

non-planar part of the design in the transmission gap would then be 
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reduced to freespace or waveguided (via a glass wafer) transmission 

in which intersecting signals would not interact. 

6.3 COMPACT SYSTOLIC ARRAYS FOR INCOMPLETE FACTORISATION METHODS 

A preprocessor for implicit compact preconditioning relies on 

direct methods for the production of Land U factors, which are able 
s s 

to control the fill-in factor associated with large sparse system 

solution, so that the number of non-zeros created is small when compared 

with the nonzeros of the original coefficient matrix. From a numerical 

viewpoint this control must also produce an easily specified algorithm 

which uses available machine memory efficiently. A number of methods 

for omitting fill-in elements are available, for example: 

a) restricting specified locations of the coefficient matrix to 

be filled in. 

b) distributing storage equally among the rows of a matrix. 

c) neglecting small elements - on the basis that they will not 

affect the result significantly. 

d) fill the available storage then forget any fill-ins that cannot 

be accommodated. 

We can translate fixed storage to fixed area and consider the implement-

ation of an incomplete (or approximate) factorisation process on a 

systolic array with dataflow an added constraint on the type of fill-in 

strategy adopted. We shall concentrate on the Extended to the Limit (EL) 

factorisation of Lipitakis & Evans [80], a method of type a), which 

restricts fill-ins to certain diagonals of the matrix. In particular 

we develop the concept of EL architectures for producing compact systolic 

factorisation arrays. Clearly the success of the incomplete strategy 
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depends upon the structure of the coefficient matrix to be factorised. 

In order to asses the compact (incomplete) systolic arrays produced 

we consider the system (6.1.1) with the coefficient matrix derived 

from the 2-D and 3-D parabolic and elliptic equations given by (2.5.1.17), 

(2.5.1.20), which for convenience we denote as problem I, and as 

problem II. These systems are not only large and sparse but have also 

been subject to a detailed study regarding EL factorisation in Lipitakis 

[78], providing a good assessment of new systolic EL type algorithms. 

The EL factorisation procedure produces various approximate and 

exact factorisations of A in (6.1.1). Essentially, an approximate 

method is obtained if A is replaced by (A+R) such that, 

A+R=LU 
s s 

(6.3.1) 

with Land U sparse lower and upper triangular factors, whose product 
s s 

approximates· A with error Ft. The concept of a limit is introduced by 

generating a sequence of algorithms (denoted by FACTOR (i)), 

A + R = L U ~ FACTOR(i) , 
i si si 

(6.3.2) 

which produce a corresponding sequence of decreasing residua1s, such 

that, 

lim (A-L U ) = 0 , (6.3.3) 
k-+z sk sk -

where FACTOR(z) is the complete algorithm, with R =0. A global z-

algorithm which embodies a particular sequence of FACTOR(i) algorithms 

is the ALUBOT algorithm (see Lipitakis [78], and Lipitakis & Evans [80]), 

which is stated below for completeness. 



REMARK 

ALUBOT(N,ID,r ,A) ( '* Tri-dlagonal Factorisation " 
"labl , 41-42 , 91- C1/Vl 

FOR 1-2 TO 11-2 

(v J,-bJ,--d1_1*91_1' dtal+1' 9lee!',,!) 

v._1-b._1-dm-2*9m_2 
/* Rest of Factorisation *' 
FOR j-l TO N-m+l 

{e1,,-v j +m_1, h1,,·uj/"j 
9 ·c Iv , cS ·a 111+,-2 1D+,-2 m+,"'2 111+,-2 ID+,-1 
IF t-,+l )-2 THEN 

{FOR 1-2,r-j+l 

(eij·-91+,_2*el_1,,' 
h __ cI *h Iv 

) 1j 1+j-2 1-1,j 1+j-l 
) 

ELSE IF NOT ((jol) OR (r-l)) THEN 

{IF j>r THEN IP·2 ELSE IP:r-j+2, 

rl"'r+l 

FOR !.IP to r 

(zaO, 

FOR k-l TO 1-1 (z.z+ekj·~_i+r , i.'-r ); 
1 1 

11 

FOR k-l TO i-I {z.z+ek-l+rl,l+j-rl·~,j} 
hlj·<-Di+,_2*hi_l,j-Z)/Vi+,_1 

h 

t-r, z-o 
FOR. t-l TO i {zaz+ek *hk ) . 
" -b -4 2h La *e -4 *9 -z 

) .+j-I .+j-l 1+j-1 1j 1+j-1 1j 1+j-1 1+j-l 
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To illustrate the method a coefficient matrix A derived from problem I 

gives a complete factorisation of the form, 

= 

A = L 
s 

z 



Cl
l 

* 

o 

u 
s. z 
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(6.3.4) 

2 
where N =n and m=n+l. For the incomplete factorisation, a value r is 

specified which dictates the number of non-zero diagonals to be retained 

(for fill-in) moving left from the outermost diagonals ei,f
i

• Applying 

the ALUBOT produces, 

* 

~---r---..., 

o 

:ll~o I 
h . 
r,l 

~il'N-m+l 
h r,N-m+l 

(6.3.5) 

~ , 
r 
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and for r=1(1)m-2 the FACTOR(r) sequence defines arbitrary approximations 

to A. An approximate solution to (6.1.1) is then found using the 

coupled systems, 

L Y = d , 
s 
r 

U u =~ 
s 

r 
(6.3.6) 

and by logical extension the preconditioned form (6.1.8) can be solved 

by repeated application of similar coupled systems. Thus for simplicity 

the l:')ICTOf«i) algorithms can be encoded as the procedure calls, 

SEQ 

ALUBOT(N,m,r,A) 

FBSUBS(N,m,r,L ,U ,d) 
s s 

r r 

(6.3.7) 

where the parameter r defines arbitrary approximations to the solution 

of (6.1.1) and is used to tradeoff storage requirements, computation 

time and accuracy. The method generalises easily to cases with more 

bands and for problem II an alternative algorithm yields, 

SEQ 

ALUBOT-2(N,m,p,r
l
,r

2
,A) (6.3.8) 

FBSUBS-2(N,m,p,rl ,r2 ,L
s 

,Us ,d) 

3 2 r l ,r2 r l ,r2 where N=n , m=n+l, p=n +1 and, 

l 
~ 

~ 
la l gl 

>S: 0 
I 

L = 11---'1.'1 U = s 

I 
s r l ,r

2 
r

l
,r

2 

i 0 'n·'". ~ 
wJ 

I 
gN-l ~. SN_l I 

L N 

(6.3.9) 

and two parameters are available for optimising space/time/accuracy 

tradeoffs. 
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Systolic 'Extension to the Limit' (SEL) Architectures are created 

easily in a soft-systolic frame by replacing algorithm code in (6.3.7) 

and (6.3.8) by code describing the data structure of a hexagonal 

factorisation array. It should now be self-evident that the above 

incomplete factorisations admit the possibility of large cell savings, 

and defines a sequence of systolic architectures which trade accuracy 

against cell count. This view of systolic array derivation is similar 

to that in Thompson & Tucker [851 in which a semi-formal model of 

algorithm design suggests a sequence of draft designs, formalised by 

algorithm transformations as a result of design decisions. In the 

present context we view draft algorithms as systolic arrays and algorithm 

transformations as movements up and down the approximation sequence 

(6.3.2), and across soft, hybrid and hard-systolic frames, with design 

decisions based on the technology constraints. 

A generalized incomplete array corresponding to the FACTOR(i) 

algorithm can be derived as a series of cell compactions as follows. 

First Level Compaction: 

Let Ws be the semi-bandwidth of A (for problems I and II), and w
I 

the interior bandwidth of the central band. From close observation of 

the standard hex (Fig.(3.2.2.3» the following features are evident: 

a) The matrix A is input in diagonal format 

b) Accumulation of the Land U entries of a diagonal occur in 
s s 

cells of the same column 

c) A fill-in entry for an initially empty diagonal can only occur 

in a cell belonging to the same column as the boundary input 

cell for that diagonal. 

Consequently, if we prevent an initially empty diagonal from filling in 
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none of the cells in the associated column can produce a non-zero result. 

It follows that each column of cells where fill-in is prohibited can be 

replaced by delay cells, as depicted in Fig.(6.3.l). As delay cells 

consist only of registers it follows that the array must consume less 

area - i.e. more compact. Furthermore the delay cell columns need to 

pass data only SW and SE, allowing vertical connections to be removed 

altogether producing a sizeable reduction in the host/array interface. 

One further useful attribute is that increases in r (or generally r.) 
J. 

minimise the number of additional hex ips cells introduced. This follows 

from the tapered structure of the array and the fact that fill-in 

diagonals are retained inwards from the outermost diagonal (column size 

increases as we move inward) . 

Now the total number of cells saved (or delay cells) is given by, 

2 
S = W -C , (6.3.10) 

s 

where C=number of true cells in the compacted design. For Fig.(6.3.lb) 

C = (cells in central band) + 2*(cells in retained columns) 

with 

when 

= Cl + 2*C2 
W 

Cl = W +2 L (W -i) = 
s i=l s 

w=t~-j and, 

r 

W +2W W-W(W+l) 
s s 

L {(W -t+l)-i+l} = 
s 

i=l 

(6.3.11) 

(6.3.12) 

(6.3.13) 

where t is the column index of the first retained column (in this case 

t=5). Using Fig. (6.3.lc) the assessment is generalised to give, 

C = Cl + 2* (sum of cells in retained column bands) 

= Cl + 2*C3 

and with ri' i=l(l)k denoting the number of retained columns in k 

(6.3.14) 
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0) Larger coupactedi hex for 3-D problem II (111-6, P-g. r 1"'2, r
2
-!) 

• .. true hex cell, • .. delay (dummy) hex cell 

FIGURE 6.3.1: Cell replacement and compaction for EL algorithm 

individual bands, and t
i

, i=l(l)k the column index of the first retained 

column of each band from the central (or principal diagonal) column. If 

a single column band contributes 6r
i 

cells 

= 

and, 

Hence we have, 

k 
L I1r. 

j=l J 
(6.3.l5a) 

r. 
{(W -t +l)-i+l} = (W -t.+2)r - -22 (r

j
+l).(6.3.l5b) 

s j s J j 

k 
L (W -t

j
+2)r

j 
- ! 

j=l s 

k 
L rj (rj+l) 

j=l 
(6.3.l5c) 
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Thus for problem I, W =n+l, 
s 

W =3, 
I 

t=n-2, r=4, 

Cl = (n+l)+2(n+l-l) = 3n+l , 

C
2 

= 
4 

((n+l)-(n-2)+2)4- 2(S) = S*4-2*S = 10 

C = C
l

+2*C
2 

= 3n+l+20 = 3n+21 , 

producing the saving, 

2 2 
S = (n+l) -3n-21 = n -n-20 , (6.3.16) 

over the complete array. 

2 2 2 
Cl = (n +1)+2n = 3n +1 

C3 
= t.r

l
+t.r

2 
2 2 

t.r
1 

= ((n +1)-(n-2)+2)4-2(S) = (n -n+S)4-10 

2 2 
t.r

2 
= ((n +1)-(n -2)+2)4-10 = 10 

C = 
2 

Un -Sn+21 

yielding a saving of, 

S 
4 2 = n -9n +Sn-20 , (6.3.17) 

over the cells required for the complete array. 

The principle is easily extended to matrices in which the band 

structure is not symmetric (as opposed to symmetric elements), for 

example in Fig.(6.3.2) where W=p+q-l. 

/. • • • • 
• • • • • • • • • 

• • • • • , 
• , • • 

5 4 3 2 1 2 3 4 

1 2 

.) Hex skewed right 

• 
• 

• • 

5 6 

3 4 

• 

7 

5 

Initial ordering 

reorderinq for right side 
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partition Une- • ~ q • 
• • • • • 
• • • 

• • • • • • • • • • • 
• • 

• • 

7 6 5 4 3 2 1 2 3 4 5 Initial order in9 

5 4 3 2 1 reorderin9 for left side 

b) Sex skewed left 

FIGURE 6.3.2: Non-symmetric array compaction 

Now, C = (cells in bands from left of array)+(cells in central band)+ 

(cells in bands from right array) 

= Cl + C2 + C3 • 

Putting W =min(p,q) gives, 
s 

W - -
C2 = 2W + L (W -i) = 2W +W W - !W(W+l) 

s i=l s s s 

k k k 
0 0 0 

Cl = L tor j = L (W -t
j
+2) r. -! L r. (r +1) 

j =1 j=l s J j=l J j 

(6.3.18) 

(6.3.19) 

(6.3.20) 

for Fig. (6.3.2a) with kO the number of bands on the left side. TO compute 

C
3 

a partition line is added such that columns to the right of the line 

are strictly descending in cell count, and cells to left between the 

partition and centre column contain W cells each. 
s 

C
3 

= (total cells left of partition) + (total cell right of partition) 

= C4 
+ Cs (6.3.21) 

where, kl 

C = L /;r. and tor. = r W 4 
i=l 

1. J j s 
(6.3.22) 

Now renumber the columns to the right of the partition with the column 
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coincident with the line having index 1, and adjust the starting places 

from tj to tj and modify number column rj accordingly. Then, 

k2 

L (W -to +2) r. 
j=l s J J 

- ! 
k2 

L r. (rj+l) 
j=l J 

(6.3.23) 

where k
l

+k
2

=number of retained bands in right-hand partition of array. 

The formula for Fig. (6.3.2b) is derived similarly with the partition 

line on the left. 

First level compaction shows that large area savings can be made 

when the number of retained diagonals is small compared with n. In the 

sample problems we choose r.=4. The analysis in Lipitakis [78] suggests 
~ 

that a large error reduction occurs for r.~4, and that keeping more bands 
~ 

for r.>4 does not significantly improve this initial reduction in the 
~ 

approximation error further. Hence the results of (6.3.16) and (6.3.17) 

are quite realistic. 

Second Level Compaction 

If the delay cells introduced in the first level compaction are 

termed primary neutral cells, second level compact ion identifies secondary 

neutral cells arising from data flow side-effects due to the creation of 

primary cells. To identify these secondary cells we trace out the path 

of an element input to a column of primary cells, which in general 

consists of two stages. 

Stage 1: A vertical movement to the upper hex boundary. (It is clear 

from first level compaction that only zero values make this journey). 

Stage 2: On the hex upper boundary, cells to the left of centre compute 

multipliers, and cells on the right perform a simple negate (see Fig. 

(3.2.2.3}) and the results are reflected to travel SE and SW respectively. 



397 

Results of cells at the top of a primary cell column must be zero, 

hence any cells on the SE or SW paths never modify values moving 

vertically. 

Figs.(6.3.3) and (6.3.4) illustrate the compaction of the hex array 

for problem I and 11, the cuts will be explained shortly. As no 

modification occurs in secondary neutral cells, like primary cells they 

can be replaced by delay cells. It is then trivial to deduce that the 

number of true hex cells is given by (iW; l +r-l) 2 for problem I, and more 

IW~ k 2 
generally (I:rl + ,I rk-l) for k bands of widths ri' i=l(l)k 

~=l 

respectively. More intuitively the number of true hex cells is 

proportional to the number of non-zero diagonals of A plus any diagonals 

retained for fill-in. 

Third Level Compaction: 

The first and second level compactions modify area but leave array 

computation time unchanged. In a normal numerical algorithm the 

decrease in calculations for incomplete compared with complete factor-

isations, would be expected to achieve a corresponding decrease in 

algorithm computation time. This attribute is transferred to our 

incomplete array using a third level compaction, which identifies a 

series of cuts to reduce array latency. A cut is identified by marking 

out regions of primary and secondary cells which partition the array 

into disjoint regions of three types: 

1. A region consisting only of true hex cells 

2. A region consisting only of neutral cells 

3. A region with both true hex and neutral cells. 

Compaction is then achieved by removing all type 2. regions, to leave 

tesselating disjoint regions which when compressed form a smaller hex array. 
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2 
This array has W cells where W is the sum of the semi-bandwidth and 

retained (sub)-super diagonals for fill-in. In fact after third level 

compaction we can generally expect a saving of over 75% of the original 

number of hex cells. However making cuts and removing cells in this 

way affects the factorisation process by destroying synchronisation 

between the central band and retained outer diagonals. It follows that 

third level cuts are weak variants of cuts used in H.T. Kung & Lam [84], 

which due to the approximate nature of incomplete calculations do not 

demand that dataf10w must be retimed as delays are removed. 

Now in order to utilise the cut array we must answer two questions: 

1. What kind of factorisation does the cut hex compute? 

2. Is this factorisation a good incomplete method for the given problem? 

Simple observation on the cut hex dataf10w answers 1. immediately 

For the model problems A in (6.1.1) becomes transformed as follows: 

-2+r1 
b1 

a
2 

A = 

fm~ 
fN 

0 , 

and 

A 

e1 

~O 
e 

"-
" , 

N-m+l 

" " " 

" 
aN :~ 

t1 ('1 

~~+1 
t " N-m+l ... "-

" " " 

for problem I (6.3.24) 

" for problem II (6.3.25) 
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But factorising these matrices and solving the associated coupled 

systems produces a solution to a totally different system to the 

original one, consequently we would expect poor approximate solutions. 

A further complication arises when we notice that the shifting of outer 

diagonals inwards creates unknown entries (dashed lines in (6.3.24) and 

(6.3.25». The choice of these elements could be crucial to a good 

approximate factorisation. 

Careful consideration of the incomplete method described by the 

ALUBOT algorithm allows the derivation of a new algorithm, the SYSTOLIC 

INCOMPLETE FACTORISATION (SIF) method. Here the incomplete method is 

performed as a two step process. 

(i) Form a new matrix A from A by shifting outer diagonals inwards 

(ii) 

to remove diagonals not retained for fill-in (i.e. (6.3.24) 

and (6.3.251. 

U • 
s 

Factorise using the cut hex to produce Land 
s 

Derive two matrices L and U from Land U by shifting 
s s s s 

retained diagonals outwards, and inserting zero diagonals to 

recover the original sparsity pattern of (6.3.5) and (6.3.9) 

and solve the new coupled systems corresponding to (6.3.6). 
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and can be summarized as, 

SEQ 

ALUBOT(N,r+2,r,A) 

FBSUBS(N,r+2,r,L ,U ,d) • 
s s 

r r 

The extension to problem II is trivial and yields, 

SEQ 

ALUBOT-2(N,r+2,r
l
+r

2
+2,r

l
,r

2
,A) 1 _ 

FBSUBS-2(N,rl+2,rl+r2+2,rl,r2,Ls ,Us 
r

l
,r

2 
r

l
,r

2 

(6.3.26) 

(6.3.27) 

,d) 

The essential idea behind the SIF is to compensate for the initial shift 

in of diagonals (so the cut hex can be employed) by shift out in between 

factorisation and solution. This has two advantages, firstly the 

coupled systems solve a problem with similar structure to the original, 

second the fill-ins associated with the newly created elements are moved 

out of the matrix to reduce their effect on the final approximate solution. 

The method was tested for various values of m, with N fixed, and with 

m fixed and N varied, and the number of retained diagonals r plotted 

against the Euclidean error vector norm. Tests were carried out for 

t t 
problem I with d=(l,l, ••• ,l) and repeated with u=(l,l, ••• ,l) with 

d., i=l(l)N simply the sum of the coefficient from row i of A. The 
L 

results are shown in Graphs (Al)-(A6) of Fig. (6.3.6) and can be 

compared with the approximate method results of Lipitakis [78] in 

Fig.(6.3.5). The label EXT-l and EXTO indicates that values created 

by the shifting in of diagonals were set to -1 or 0 respectively. 

The results indicate that the cut hex with the shifted solution 

process retains the desirable property of rapid approximation, error 

reduction for the retention of the first few fill-in diagonals. 

Results were not as good as the EL algorithm, and we have to consider 

retaining r=7 diagonals rather than r=4. The cases for M=40 and N=50 



.. 

, .• 

... 

... 

r 
i 

... 
I 
1 ... 
j 

'-0 

, .. 

... 

, .. 

... 

..• 
"-. , 
; ... 
i 
! , 
I ... 
I 

... 

... 

All an ftlI _1111 ._!IO. 11 ' .... no 
PT-I ".(1.1, .•.• 11 

.. ~ 

lOUI21l1'U16 

r • ..-r of <11_1. utal_ 

Ut CUT RlI MM' "1'1'11 .. _loO, 11 V""IEl> 

. ~ . 

lOUUlJI'UI6 

n.o 

!t.0 

n.o 

n.o 

n.o 

" .. 
1'.0 

11.0 

11.0 

16,0 

15.0 

:_14.0 
;'\).0 , 
~u.o 

111 .0 

210,0 • 
I'" x '.0 

'-0 

... 

... 

.., . .. 

403 

,,', an UlI IIlnI ... !IOt " , ..... IED 

UT-I 40U,l, .••• 11 

"'L~~~ , .. 
10UU111'1516 

-. 
~ 
I 
I 
I 
j 

" 
" 
" 

" 
" 
" 
" .. .. 
u 

" 

• 

"', M !IQ AlUl.\Y , .. SO, 11 YAIIIED 

IXn:I •• 11.1 •..•• 11 

1011121)141516 

FIGURE 6.3.6: Cut hex experiments 



" 
u 

.. 

'-. 
!~ • 

-T'< 
l 
! 

1 
i 

-. 
~ 
i 
i 
! 
j 

, 

• 

:1 
. :~ 

, , , , , 

A~' CV!' ROE A.n.>,y 11.)0, 11 \",10111:0 

UT-I "'11.1 ....• 11 

"'----~-~ .... 
"" I)ELt,ltll M IU •• ~, 11 VMIID 

.·11.1. .•.• 11 

"-- ,,'15 

'--- 11')0 

----------.-----.----------------------------.. ~ 
---------------------------------------------•• 0 

• • .. 101112131415 

" 

" 

u 

.. 

.--. 
! 

-1'< 

I • .. 
; 
; 

I 

~. 

i '-
j • 
j 
i 

------
'----. 

FIGURE 6.3.6(cont.) 

404 

tx1'O y.II,I •...• 1I 

10 11 11 U' 14 15 16 

~ . II_~ of u"lM4 tnl-1ft 4.Ia_b 

".(1.1 ••..• 11 

~ .. 

~ .. 
~0 

~~ .. ~ 

IOllllUl4U 

r • n_r 01 U" ..... flU-I .. dl"'9ON1h 



.. 
0.' 

N!~ 0.' 

;; 
"I~M 

I 
l 0.' , 
: 0.' 
! 

j 0.' 

0.' 

0.' 

o. 

0.' 

0.' 

.: 

r 
o. 

0.' 

0.' 

<. 

II'~ 

.'100 

At, onArm evr Ma ".)0, 11 YAAlfO 

11" 41.1 •...• 11 

'-----

.. " 
'---

l0l1UUUlS16 

~ • n_r ot nU1/1od hll-Ift 4UPld, 

All • .",,~ CO-oII\CiOtlI'ol.ll IItU oon:a. D1A/Xlto\U 

[.aI w..otOUl SOQ:I\EII 

•• ~ 11-10 

10 11 UU14 

r • _r ot .nd"*'l1 UU-h ,1I'90nall 

"0 

0.' 

0.' 

i- o. 

~ , 
i 0.' 

! 
l 

0.' 

! o. 

0.' 

0.' 

0.' 

" 

FIGURE 6.3.6(cont.) 

405 

"""" 

AID, IItAIt eo-oUQ;"A,l.S ~ 0lI!'U DI.t.a:II.\U 

.... VU)"'-- t('1n:MU 

,,·to ... 10 

I-GUUU1415 
• .. n_. of ntUMd fill-In 41 __ 11 

All, S'TA/CIAItD CA.$t I'Oa V .... I~ SCllDIES 

"-!IO.II-IO 

'IOUUU14U16 



406 

indicate that the approximation may grow as the bandwidth relative to 

N increases. Further tests with large N and m fixed indicated that if 

the error did diverge, it did so at a much slower rate than the initial 

error decrease associated with a small number of retained bands. In 

fact by including more diagonals the error divergence rate became 

slower, with N=200, m=lSO, for example 10 extra diagonals were required 

to alter the error norm by 0.1. Additional experiments also showed that 

the divergence became observable generally when m~N/2, and can be 

explained by the interference caused by the distance that the diagonals 

must be moved in order to use a cut hex. As problems I and 11 always 

have m<N/2 no problems should be encountered with the SIF method. 

In contrast to the SIF algorithm an alternative factorisation which 

incorporated some data re-timing and cut hex modifications was considered. 

This new meth04 the delayed cut hex algorithm. is given below. 

b) Delayed cut. hex algorltt. 

DCHEX (N,.,r ,A) 

/* Trl-dlagonal Factorisatlon-' 

"'labl , d1-a2, 91-Cl/Wl' 

FOR 1-2 TO N-l 

{"'1-bl-d1_1 *91_1' 4 1-a1+1, 9 1
aC /"'1} 

"'N-bN-dN_l*9N_l 

FOR j-1 TO N-m+l 

{e1j·Y,+m_l' h1,,·u,/"',' 
FOR ka2 TO r+l 

{~.j·-~_1.j·~'j_2/wk'j_l' 
ek ,,·-ek_1,,·9k+,_2 , 

The essential idea is to prevent fill-in entries from modifying the 

central band elements by a re-synchronising column of delay cells 

placed in between adjacent columns of cut hex cells which belong to 

different fill-in bands of problem I and 11. 
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Thus central band elements are factorised as a tridiagonal form, 

and fill-in diagonals are computed using the multipliers generated for 

each row. The basis for this idea is that the multipliers of problems 

I and 11 have the same order of magnitude and so may produce a good 

approximation. The results in Fig. (6.3.6) graphs (A7)-(A9) indicate 

that virtually the same error of approximation occurs, irrespective of 

the number of retained diagonals. However if we get an initially large 

error, there is no chance of decreasing it by retaining more diagonals. 

Finally, the effect of the element sizes on the codiagonal and 

outer diagonals on the error was considered for three cases, i.e., 

(i) Codiagonals strong, outer diagonals weak 

(ii) Both co- and outer diagonals of the same order 

(iii) Codiagonals weak, outer diagonals strong. 

These results are shown in Fig.(6.3.6) (AIO-A12), where we can observe 

that divergence can occur with the cut hex when EXTO, while with EXT-l 

errors are always reduced, and the delayed cut hex maintains the same 

initial error. The results indicate that the SIF algorithm with EXT-l 

should be adopted when cases (i) and (iii) occur, and EXTO for case (ii) . 

A more general form of the SIF method then follows easily by selecting 

EXTa with a chosen according to some averaging (e.g. min, max, etc.) 

criterion. 

Now although the SIF algorithm gives higher approximation errors 

than the EL method the reduction in cell count clearly compensates as 

Table (6.3.1) shows. 

SIF PROBLEM I SIF PROBLEM II COMPLETE LU 

n m p r=7 r=4 r =r =7 1 2 r =r =4 
1 2 

I 

10 11 101 81 36 256 100 121 
20 21 401 .. .. " .. 441 
30 31 901 " .. " " 961 
40 41 1601 .. .. .. .. 1681 
50 51 2501 .. .. .. to 2601 

100 101 10001 .. .. .. .. 10201 

TABLE 6.3.1: Cell requirements for cut hex(SIF) and complete 
factorisation hex arrays 

II 

10201 
160801 
8118016 2.5)(10

6 6.2)(108 
1.0"10 
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Indeed it would be impractical to build some of the large arrays but 

extremely attractive to construct a fixed sized SIF hex. A cut hex 

of 256 hexes could solve both problems I and 11 by allowing r=7 for I 

and r
l

=r
2

=7 for 11, giving a fixed sized- array and variable accuracy 

for a range of bandwidths. 

It should also be clear that array operations can be accelerated 

by applying double pipe and block partitionings of the previous chapters. 

In particular the double pipe substitution array of Robert & Tcheunte [841 

(Fig.(4.2.l» can be applied directly with a simple modification to the 

production of Land U to yield, 
s s 

L 
s 

o 
u = 

S 

The results are shown in graphs (B~-(B9) of Fig.(6.3.7), from which we 

observe that EXT-l reduces the error by a small amount, EXTO increases 

the error and the delayed cut hex has approximately the same results, 

as the ordinary SIF method. Thus adopting the double pipe substitution 

with EXT-l actually reduces the approximation error further, while the 

effect on timing is as follows, 

T = (3N+W )+2*(2N+q) 
s 

using the ordinary single pipe solver and no pipelining between hex and 

solver arrays and where, 



N = { 

and 

W = 

2 
n 

3 
n 

n+l 

2+r 

problem I, 
q = { 

n+l , problem I 

problem II, 
2 n +1, problem 11 

complete 

} problem I 

incomplete 

s 2 n +1 complete } problem II 

2+r
l

+r
2 

incomplete 

and with double pipe solvers, 

T = (3N+W )+2(N+jq/2l+l) s 
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Thus we conclude that an incomplete factorisation reduces the area by 

>75% and also reduces the computation time significantly when double 

pipe solvers are applied. 

6.4 SYSTOLIC ARRAYS FOR INCOMPLETE ELIMINATIONS 

The above compact ion technique is easily extended to produce a 

third type of systolic preconditioning preprocessor based on incomplete 

elimination methods. 

To illustrate this technique we shall consider solving (6.1.1) with 

A the coefficient matrix associated with problem I of Section (6.3). 

An exact elimination yields, 

Uu = d , (6.4.1) 

where U is an upper triangular matrix of the form, 

x x x 0 

\. U = I \ (6.4.2) 

x 
0 

x NXN 
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with x=non-zero, the shaded area marking the fill-in zone, and d the 

modified right hand side of (6.1.1). An incomplete elimination scheme 

retains the sparsity of the original system by selecting a number of 

diagonals to fill-in and leads to, 

or 

with, 

u = s 

x x 

LA : 
s 

U u = 
s 

U s 

L d 
s 

, 

x 

which can be performed as follows: 

GAUSS (N,p,r,A,f){ 

9t-Cllbl' h1,p-e1/bl' f1-d1/bl' 
G DV, D lab, 9 -c ,F lad I 
ptl P Pt P P P P, P 

FOR 1-2 ro p-l 

vt=bl-ai9i_l' 91
8e

1!"'1' fL-{dl-aifi+l)/Vl' 

FOR k-!+p-r TO 1+p-2{hi,k--aihi_l,k/Vi}; 

h 

hi ,p_1+1-e/"'i' 
G"0:-9 G ",O·D -G hi1 , 
Pr! 1-1 p,1-1 Pr! p,i-l p,i-l -,p 

Fp,iZFptl_1~p,i_lfi_l' 9p·9p-GP,1_1hi_l,P+l' 

FOR ksp-r TO i{hp,P+k-hp,p+k-GP,i_lhl_1,P+k); 

9 "'9 +h ; h -0, p-l p-l p-l,p p-1,p 

D -D - {G +a)(q +h ) J p,p p,p-l p,p-l P p-l p-l,p 
f a[l l-(G 1+a )f 11/0 , P p,p- p,p- p p- pp 
9p·(9p-(Gp,p_l+&pJhp_l,P+11/Dpp' 
FOR k;p-r+l TO P-l{hp,P+k_l=lhp,P+k_l-<Gp,P_l+Aplhp_l,P+k_lJ/Op,p} 

b -e/D; 
p,2p-l p. p,p 

FOR iap+l TO N 

{Gi ,i_p+l-V1' Di,i_p+lDbt , Fi,i_p+l~di; Gi=C i ' 

FOR j-i_p+2 TO i-1 

Gij'"ij"(9j_l+hj_1,j)Gi,j-l' 

Ai=Ai-Gl,j_lhj_l,i_l' 

F 1 ,j"F 1 ,j_1-G 1, j_1f :1-1' 9 i -9 ('<;1 ,j-1 h j _1 ,1+1' 

Dlj·Dl,j_1-Gl,j_19j_1,I' 
FOR k=j+1 TO 1-2{Gl,k-Gl,k-Gl,j_lhj_l,k)' 

FOR k=p-r'TO p-l{b i ,l+k=hl ,l+k -Gl ,j_1hj _1 ,i+k}' 

1 

(6.4.3) 

(6.4.4) 



DI1-Dt,i_l-CG1,i_l+ai' (91_1,+ht _1,t'J 

ft-[Ft,1-1-CG1,i_l+At'fl_1J/Dii' 

9i-[91-CGt,i_l+at'hi_l,1+1J/Dl1' 
FOR k·p-r+l TO p-l 

(ht,1+k-l-[ht,i+k_l-(Gt,i_l+At)ht_l,1+k_lJ/D11); 

ht,l+p_l-etlbiil 

Taken from Evans [S3cl, 
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where v=f in (6.3.4) and Us is normalised with Hij the elements in the 

shaded part of (6.4.2) and g the co-diagonal elements, which plays the 

same role as the ALUBOT algorithm for factorisation but produces a 

sequence of approximate elimination algorithms satisfying 

lim (A_L-1U ) = 0 , 
k+z sk sk 

and yielding the algorithmic specification, 

SEQ 

GAUSS (N,m,r,A,d) 

SUB(N,m,r,U ,d) 
s 

(6.4.5) 

(6.4.6) 

with SUB a simple backward substitution routine modified to take account 

of the sparsity in U. To derive an incomplete array we must first 
s 

find a systolic architecture which can be substituted soft-systolically 

for the above numerical procedure. Arrays for triangularising a matrix 

are discussed by Gentleman & H.T. Kung [Sll and provide a basis for 

our discussions. A triangular array for reduction of a full matrix 

and which incorporates nearest neighbour pivoting is given in Fig. 

(3.2.2.2). An alternative array based on orthogonal reduction using 

Sameh & Kuck's elimination·scheme, 

* 
7 * 
6 8 * 
5 7 9 * (6.4.7) 
4 6 8 1O * 
3 5 7 9 1 I * 
2 4 6 8 1O 12 * 
1 3 5 7 9 " 13 * 
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and suited to banded matrices is given in Fig.(6.4.1). 

"32 

"42 

"43 

"52 "4. 

'53 

~R . ' 
I J I ;-'( ,-

=:R-
I I I '--"-

-,. , \ I 

'( .... / 

FIGURE 6.4.1: Systolic array for triangularising a band matrix 

The latter array is more relevant for our discussions, but we mention 

the former to characterise the type of array applicable to incomplete 

eliminations. Fig.(3.2.2.2) accepts inputs in a column ordering 

rather than the diagonal ordering used by Fig.(6.4.1) and the incomplete 
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factorisation array compacted in Section (6.3). Thus, a candidate for 

compact ion and hence area/time reduction must have a diagonal input 

format, and we can confine our attention to the array in Fig.(6.4.1). 

If the semi-bandwidth of A is W , the array requires W lineararrays 
s s 

separated by two rows of delay cells between each array, with 2W +1 s 

cells in each row. Each linear array consists of a boundary cell on 

the left for computing row modification data and modifying cells to 

update rows using the definitions (3.2.2.6)-(3.2.2.7). Modifications 

to these basic arrays for general bandwidths follow naturally, and 

special versions which utilise special properties such as symmetry are 

considered in Heller and Ipsen [82]. It should be clear that for 

matrices with a dense band the array structure of Fig.(6.4.1) can be 

used for either Gauss elimination or an orthogonal reduction approach 

with eliminations occurring in the order of (6.4.7). However for the 

matrix associated with problem I the band is not dense and some 

multipliers associated with elimination are inconsistent requiring a 

divide by zero. Consequently to utilise the array which can be 

compacted we must concentrate on triangularisation using rotations. 

But, the incomplete strategy is based on eliminations and the behaviour 

of the Gauss method, changing to the orthogonal method could seriously 

affect the final approximation error. The orthogonal scheme certainly 

creates additional fill-in outside the main band, which is not present 

in the elimination method. putting these problems aside for a moment 

and considering (6.4.4) in conjunction with Fig.(6.4.1) the array 

compaction procedure can be applied as follows. 

(i) Identity neutral cells: because the input to the array is in 

diagonal form tracing the path of a single element in each diagonal 
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not retained for fill-in marks the neutral cells. An example for W =6 
s 

and r=l (only the outer most diagonal retained) is shown in Fig. (6.4.2a) 

These neutral cells can be replaced by delay cells. 

(ii) Define array cuts: For purposes of illustration suppose r=3, then 

Fig. (6.4.2b) defines a cut set which identify the regions of delay cells 

which can be removed to leave tessalating disjoint regions. 

(iii) Compaction: The tessalating sections are fitted back together 

to make a smaller array, allowing further redundant rows to be omitted 

(see Fig.(6.4.2c). 

I I I I I 

• • L-I--l- ... J--t • • • • • • •.• ,.}+ •••••• · · · " t······ fl : ~T • -f~-1 : : : : . 
! .., + t····· 

• • 
• •• • • 

• • • 

• • • • • • • • • ••••••• • • • • • • • * • • • • • 
• ••••• • • • • • • • * • • • 

• • • • • • • • • • • ; II : :-rin : : : : r-r--rl· 1.. -+-r--t ••• 
t.Lt -~; J.Jl~:: 
• ~, ••• ~ t • t • • ·",····ttt·· • r--l--t-+-f • L-t--t--f-"f • 

• • • • • • • • 

.~ .. • • • • • • 
• • • • • • • • • 

• • • • • • • • • • • 
• • • • • • • • • 

I : : I; 'I I : 
(Q.) Identify neutral cell. (b) PartItion for cuts and: compact ion 

• • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • • • • • • • • 
• • • • • • • • • * ... True processor • • • • • • • • • 
• • • • • • • • • 

• • Unit delay cell • • • • • • • • • • • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • 
• • • • • • • • • 
( e) Compacted array form 

FIGURE 6.4.2: Systolic compact ion for incomplete elimination 

As before the compacted array solves a similar problem to the original 

but with a reduced bandwidth given by, 
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-~ Au = d , (6.4.8) 

with A the matrix in (6.3.24) where rl=r, and ~ is an Nxl vector of 

unknowns. After passing A and d through the array we solve, 

-~ ~ 

Uu = d , (6.4.9) 

'" with U the modified upper triangular form of A and d the updated 

form of d to yield the exact (complete) solution of (6.4.8) and the 

approximation error, 

E = 1 lu-~I 12 (6.4.10) 

as in incomplete solution to (6.1.1) for problem I. A compensating 

factor for controlling the distance between (6.1.1) and (6.4.8) by the 

use of shifting diagonals can then be applied as follows: 

(i) triangularise A to produce li 

(ii) shift the outer and retained fill-in diagonals of U to form 

(iii) 

A 
U which has the same structure as U in (6.4.4). 

s 
A -solve Uu=d using backward substitution. 

This defines the Systolic Incomplete Elimination Algorithm (SIEA) with 

the definition, 

SEQ 

GAUSS (N,r+2,r,A,d) (6.4.11) . ~ 
SUB(N,m,r,u,d) 

which allows the use of the compacted array. Notice that we have 

assumed that a Gaussian elimination can be performed on a compacted 

version of Fig.(6.4.l), generally this is not the case because null 

diagonals retained for fill-in prevent the formation of some multipliers. 

However from a numerical viewpoint an algorithm like (6.4.11) can be 

implemented where the normal elimination ordering rather than (6.4.7) 

is adopted. 
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To date incomplete methods have been applied only to elimination 

algorithms due to the fact that the orthogonal versions require more 

arithmetic operations and permit fill-in entries beyond the outer 

diagonals. This fill-in defeats any attempt to reduce storage or time 

requirements, as the additional fill-in is proportional to the number 

of subdiagonals. In the case of the SIE algorithm the compacted 

triangu1arisation array reduces both area and time. Area is reduced 

because of cells removed by the cuts, and time because of the decreased 

latency for data to pass through the compacted array. This leaves only 

the problem of minmising the approximation error. Below we test two 

algorithms for both elimination and orthogona1 triangu1arisation referred 

to as the shifted and unshifted SIEA forms corresponding to (6.4.9) and 

(6.4.11) respectively, under two conditions: 

(i) fixed ·system size (N) with semi-bandwidth m varied 

(ii) fixed m and variable system size (N). 

The results are shown in Fig. (6.4.3) Tl-T8, notice that when m=10 for 

example only 8 results are given, this is because only 8 diagonals can 

be retained for the fill-in (the diagonal and co-diagonal making 10). 

The tables can be compared sensibly USing the following cases: 

(i) Elimination schemes (shifted vs unshifted) 

(ii) Orthogonal schemes " " " 

(iii) Elimination vs orthogonal 

First consider Tables TI-T4, T1-T2 examine elimination schemes T3-T4 

~ ~ 

orthogonal versions, where x =u for the unshifted case, x =u for the 
r r 

shifted case, and x=u, with N=50 fixed. 

Case (i): Elimination methods compared 

The first valuable piece of information is that both the shifted 
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FIGURE 6.4.3: Test case for SIE algorithm 
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FIGURE 6.4.3: (cont) 
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and unshifted versions (in Tl and T2) preserve the preconditioning 

property of error reduction as r+m. The shifted case also exhibits a 

steeper error reduction for the inclusion of only a few diagonals when 

compared with the unshifted case, but this is offset by the larger 

initial error when r=l. Notice also that the two tests exhibit 

opposing characteristics as m increases, with the initial error 

increasing in the un shifted test, but decreasing in the shifted test. 

consequently as m increases the diagonal shift before substitution 

makes it superior to the unshifted scheme. 

Case (ii): Orthogonal methods compared 

For the orthogonal case both methods produce increasing initial 

errors (for r=l) which increase as m increases, and which are 

significantly higher than the elimination schemes. Again the initial 

error of the unshifted test is much less than that of the shifted 

method, but the latter exhibits a much steeper error reduction curve 

between r=l and r=2. Consequently retaining only a few diagonals 

(which minimises array size) minimises the error when the orthogonal 

SIEA is adopted. 

Case (iii): Orthogonal vs elimination methods 

For the two unshifted schemes the behaviour is similar with 

elimination superior for small m but replaced by the orthogonal form 

when r·m. With the shifted schemes, the orthogonal method has a higher 

initial error but its steeper error reduction compensates to produce 

better approximations than the elimination for small r. 

Next we consider the effect of matrix size with bandwidth (m=20) 

fixed as shown by TS-T8. 
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Case (i): Elimination method comparison 

The first remarkable feature is that increasing N causes a number 

of peaks to develop where approximation error increases even for a 

significant number of retained diagonals. The larger N is relative to 

m the more peaks appear causing the approximation error to be more 

erratic. Both the shifted and un shifted cases give increasing initial 

errors as N grows, but the latter controls the error better and this 

shows up in the oscillating peak values as errors develop. 

Case (ii): Orthogonal method comparison 

In both the shifted and unshifted methods the initial error (for 

r=l) is often very large and is neglected in some of the tables. The 

error for r=2 in the unshifted method is small and increases with N, 

while the error of the shifted form is even smaller (and can actually 

decrease). However the most interesting feature is that the unshifted 

form retains the 'idealized' error reduction form while the shifted 

form develops a single peak, as N increases. As this peak develops it 

becomes apparent that the best approximation useS r<3. 

Case (iii): Orthgonal vs Elimination schemes 

It is clear that the orthogonal schemes outperform the elimination 

schemes. In both the unshifted cases the determining factor is the 

error growth at r=2, and the subsequent approximations as r+m. The 

orthogonal methods provide a much more predictable error pattern which 

allows a reliable estimation of the value r and hence the size of the 

compacted array. Choosing r<8 and r<3 in the unshifted and shifted 

orthogonal schemes gives a reasonable approximation error. 

A theoretical explanation of the behaviour of these systolic 

incomplete methods has proved to be problematical. The main difficulty 
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arises from the fact that the incomplete algorithms were modified to 

satisfy minimal area constraints of systolic arrays. This constraint 

is essentially non-mathematical and making its effect on changes on 

the numerical method difficult to trace in a logical manner. However 

an intuitive understanding of the results can be gleaned from the 

analysis in Lipitakis [78] giving a justification for the original 

approximate (or incomplete) methods. Essentially we require just one 

theorem which is stated without proof. 

Theorem 6.4.1: Let A be an NXN matrix of bandwidth m (like (2.5.1.11» 

and consider the factorisation A=DTtTD where DTt=L and TD=U with D 

a diagonal matrix. 

s s 

Let t, j' i=l(l)m, j=l(l)N-m+l be the elements of 
L, 

T with r the number of diagonals retained in the bandwidth. Then the 

elements t, j are monotonically decreased i=l(l)m-r, (i.e. the sequence 
L, 

tl "t
2 

" •.• ,t "j=l(l)N-m+l decreases monotonically). 
,J,J m-r,J 

It follows that the elements on diagonals moving away from the 

outer diagonals of A have less and less effect on the method, and can 

be omitted. However, under certain circumstances the monotonicity 

relationship breaks down. For instance with narrow banded matrices 

the values in T are not monotonic after i>m-r. This fact is unimportant 

for the numerical versions of incomplete methods for problem I always 

satisfy Theorem (6.4.1). But narrow banded matrices are ideal for 

systolic arrays and the compaction technique is aimed at deriving a 

new procedure which satisfies this criteria. consequently, the shift 

in technique used in compaction creates an artifically narrow band 

which may contradict Theorem (6.4.1), and explains why the SIF and 

SIE errors are generally higher and more erratic than those of 

Lipitakis. In the case of the SIF method the shift inwards is balanced 
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by the shift out of the Land U matrix elements which effectively 
s s 

smooths the error approximation. For the Elimination based technique 

this smoothing is unbalanced because the shift in of subdiagonal 

parts of A are used as multipliers to modify the righthand side d 

directly, with only the super diagonals of the triangularised U 

creating an error smoothing effect on the shift out. A possible 

solution to this problem is to simulate a shift of multipliers by 

suitable operations on the modified vector d before backsubstitution. 

In the case of the orthogonal method we have two favourable character-

istics. First the rotation matrices involved in triangularisation 

provide inherently stable computations. Second, the additional fill-

in outside the main band compensates to some extent for the effects 

of righthand side modification after shift in. (TB indicates that the 

effect of this additional fill-in is most detrimental when r.m!2). 

Finally, we remark that the errors produced by incomplete 

triangularisation are larger than those for factorisation, which in 

turn are worse than the original incomplete schemes. We have examined 

only one shifting strategy for smoothing the error associated with the 

monotonicity break down and there may be more suitable ones. Further-

more our designs have been restricted to matrices for problems I and 

11, other forms may also benefit from the array compaction technique, 

and produce. much smoother error approximation curves. 

6.5 ITERATIVE ARRAYS FOR PRECONDITIONING 

Let us recall the global structure of the proposed preconditioned 

solver in Fig.(6.1.1). From our experiences of previous preprocessors 
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we are now in a position to develop the cascaded iteration array or 

CIA, with respect to the preconditioning schemes described in section 

(6.1). Intuitively the ideal CIA is a sequence of pipelined linear 

arrays with each array computing a single iteration, and r arrays 

producing r iterations. Fig.(3.2.3.l) illustrates the structure more 

clearly and was adopted by Berzins, Buckley and Dew [83] to develop 

unpreconditioned Jacobi and Gauss-Seidel iterative schemes. Below we 

shall compare these unpreconditioned arrays with new preconditioned 

arrangements for the following cases: 

(i) Unlimited amount of hardware:- the CIA can have as many 

iterations as required for convergence. 

(ii) A finite number of iterations:- the length of the CIA is 

bounded. 

(iii) "Bag of" approach:- a collection of arrays such as the CIA 

and preconditioning preprocessor hang on the same host bus 

and compute sequentially. (Small granularity in sys-pack). 

These cases allow the effectiveness of preconditioned strategies to 

be assessed with realistic restrictions on actual implementation. 

For instance using Fig.(3.2.3.l) and Theorem (3.2.3.1) the minimum time, 

TO = 2N+2r(p+l)-1 , (6.5.1) 

is obtained for the unpreconditioned overrelaxed Jacobi iterative 

scheme, and provides a suitable base time for comparisons using Case 

(i) • 

REMARK: The latency of each iteration is taken as 2(p+l) rather than 

2(p+l)-1 to allow time for the overrelaxation calculations. 

To apply case (ii) we define r
l 

as the total number of iterations 

required for convergence, and r (fixed) the number of arrays in the CIA. 
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Full convergence is achieved by a mUlti-pass arrangement yielding, 

Tl = 
r-r ~ rr ~ rr ~ 

2 ;IN + 21 ;lr(P+l) -I ;1 
or r r

l 
Tl = 2 -1. N + 2r

l 
(p+l) (6.5.2) 

r r 

when r
l 

is divisible by r. This result gives a better assessment of 

time for a real implementation. 

6.5.1 Implicit preconditioned Arrays 

The first task is to illustrate how restrictive the systolic 

constraints are on the preconditioning problem. Assuming we apply 

the incomplete arrays to produce the Land U factors the additional 
s s 

hardware and latency associated with the preconditioner of Fig.(6.1.1) 

is minimal. The effect of improved convergence rate can be applied 

directly to the CIA to balance cell and time reductions and produce 

an improved area/time trade-off. 

However due to the implicit nature of (6.1.7) the CIA cannot in 

general acquire the cascaded form necessary for high throughput. To 

see this we arrange (6.1.7) into the following procedure, 

STEP 1: Z = d_Au(i) 

STEP 2: L U lIu 
s s 

= (lZ (1. e. (6.1.8» 

STEP 2: 
(Hl) ( i) 

+lIu IF not converged THEN GOTO u = u : 

where step 2 demands the solution of coupled systems, 

L Y = (lZ 
S 

U lIu = Y 
s 

} 

1 
~6. 5 .1.1) 

STEP 1) 

(6.5.1.2) 

which reveals the problem of cascading iterations immediately. L 
s 

and U are sparse lower and upper triangular matrices which requires 
s 

a switching of vector orientation for forward and backward substitution 
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to solve (6.5.1.2) making (6.5.1.1) a sequential task. From (6.1.7) 

a linear array for the CIA can be produced with the form of Fig.(6.5.l), 

which contains the undesirable feature of LIFO's whose size is related 

to N not the bandwidth of the matrix. Apart from the difficulty of 

pipe lining iterations, for large systems the size of each linear array 

now prohibits cascading. Simple analysis of the standard matrix-vector 

and substitution arrays produces an iteration latency of 4N+(2p+3) 

giving, 

T2 = 4Nr + (2p+3)r , (6.5.1.3) 

for r iterations. It follows that under the case (i) assumptions 

the unpreconditioned scheme is superior for any rate of convergence. 

For case (ii) assumptions, we define r
l 

and r
2 

as the number of un-

preconditioned and preconditioned iterations required for convergence. 

As cascading is difficult in (6.5.1.1) we fix r=l for (6.5.1.3) which 

also minimises area, and derives a computation speed-up by 

2r
1 

-- + 
2r

l 
(p+l) _ r l 

S 
r N rN = (2p+3) r

2 p 
4r

2 
+ N 

u (k) 

A 

'-, I' 
z 
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--t H 

Y 

LIFO (size 21) . 
~ . 
~ 

LIFO (size 2N) • llu \k) 

p 

... ..: 

II 
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s 
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BACKWARD 
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,(l' 
it (k) 
u 

s 

FIGURE 6.5.1: Implicit preconditioned iteration 

.. ... 

(6.5.1.4) 

(k+l) 
u 



neglecting small terms with n»r
l
,r

2
,p we have, 

2r
l 

2r
l

(p+l) (2p+3)r
2 -- + -=::--- > 4r + ---,::--=-

r N 2 N 

r 
and since 2NfO as N+oo because r is fixed, the final result is, 

consequently a speed-up occurs if the unpreconditioned scheme 
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(6.5.1.5) 

requires 2r times the preconditioned iterations for convergence. 

In the cases where r is small this is easily satisfied, and the only 

way for the unpreconditioned method to compete is on area terms. From 

Theorem (3.2.3.1) the unpreconditioned form requires rw ips cells and 

approximately 2(r-l)wp synchronising delay registers between iterations. 

Thus, 
2(2N+w) > 2(r-l)wp+rw 

which after some manipulation yields 

.::2,:-N +.:...w::.,(:,p:.;+,::.l'.!..) 
w(p+O.5) 

> r , (6.5.1.6) 

giving the unpreconditioned scheme less area for reasonable values of 

Nand r. It follows by substitution of (6.5.1.6) into (6.5.1.5) that 

the implicit preconditioners save area and time iff 

> 2{ 2N+W(p+l) 1 
w(p+O.5) r2 

which is unlikely with N large. 

(6.5.1. 7) 

An alternative approach, which allows cascading, is to use the 

incomplete arrays to produce a better initial starting vector as an 

input for an unpreconditioned CIA. This idea is reminiscent of the 

iterative refinement technique where a system is solved directly and 

rounding errors cleaned up by successive improvements. In our case 
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the initial solution is only approximate (from the SIF or SIE methods) 

and we can employ more general iterative methods to achieve convergence. 

Now allowing 4N+c cycles for the full incomplete solution, where c>O 

is the latency of the incomplete array plus delays for the forward and 

backward solvers and 4N is the time to fill vector reversal LIFOs 

similar to those in Fig.{6.S.1), the timing for this method is, 

T = {2r2 N 
3 r 

r2} + 2r (p+l) - -- + 
2 r 

4N + c. 

So for a speed-up on the unpreconditioned form, 

2r
l + 

2r
l

{p+l) r
l 

S r N rN 
= 

p r:2 + 2r2 {p+l) _ r2} c +4+ 
N rN N 

and after neglecting smaller terms yields, 

r
l 

r 
(p+l) > ~ + [r

2
- r

l
l + 2 

r r N 

or r
l 

> r
2 

+ 2r , for large N) 

(6.S.l.S) 

(6.S.l.9) 

which is a weaker condition for the reduction in the total iterations 

necessary for the alternative method to improve the speed. Notice, 

however, that (6.S.1.1) ensures a larger modification 6u on each 

iteration, rather than one large jump before iteration starts in the 

alternative arrangement. Consequently, the difference between r
l 

and 

r
2 

may not be as great, as for (6.S.1.1) giving poorer performance. 

Result (6.S.1.9) also relies on the assumption that both CIA forms 

contain the same amount of hardware, and ignores the preprocessor 

overhead. A more rigorous set of relations can be derived by 

introducing additional parameters for each CIA, allowing a trade-off 

between speed-up and array sizes. TO develop these relationships 

further we examine explicit preconditioning techniques. 



431 

6.5.2 Explicit Preconditioning Arrays 

Consider the preconditioned Jacobi scheme in (6.1.15) which is 

easily formulated as the two step process, 

1: 
2 (I+B)d 

1 
STEP M = B , z = 

STEP 2: 
(i+l) ( i) 

(6.5.2.1) u = Mu + z 

IF NOT converged THEN GOTO STEP 2 J 

which partitions naturally onto the preconditioned array format of 

Fig.(6.1.l) as illustrated in Fig. (6.5.2), where the CIA consists of 

pipelined (cascaded) matrix vector arrays. The preprocessor is comprised 

of three separate sections, a modified matrix vector array for computing 

z, the reduced hexagonal array of Section (6.2), and a reformatting 

array for modifying the hex output, for correct CIA input. Operation 

of the preprocessor is trivial but we point out the salient features. 

( 1) 
The vector z is computed as z=d+Bd (i.e. set xi=Yi =d

i 
in (3.2.1.4» 

so that explicit knowledge of I+B is not required and B can be pipe lined 

directly into the reduced hex. The expander is simply the preprocessing 

described by Fig.(6.2.5) and the hex array computes with dataflow like 

Fig. (6.2.2) with A =B =B. Consequently the latency of the hex output 
r r 

is determined from Theorem (6.2.2) with k=l, i.e. 2w +2c +3 where c >0 o 0 0 

is a small constant and Wo is the bandwidth of B. This leaves only 

the reformatting array which is essentially a linear array of delay 

2 
queues adding the right amount of skew to the B hex output arid 

(0) 
synchronises it with vectors z and u for input to the CIA. To 

complete the picture of the preprocessor consider the data flow and 

input format B. In order to use the reduced hex B must have the 

standard hex format with two delays to separate successive input 

elements of the same stream, and is incompatible with the standard 
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FIGURE 6.5.2: Systolic preconditioned Jacobi iteration 

linear array format of Fig.(3.2.l.3). Adjusting the number of dummy 

elements or retiming data 'on-the-fly' is both difficult and messy so 

to overcome the problem we define a special matrix vector array which 

accepts hex input format. The array and operation snapshots are shown 

in Fig.(6.5.3). Notice that the inputs on the left side of the array 

are skewed slightly, the expander must remove this skew for hex input, 

and the reformatter must restore it for hex output. Both tasks are 

achieved by simple data delay queues. 
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Theorem 6.S.2.1: The delayed matrix vector product Ax=y for an nxn 

matrix A of bandwidth w=p+q-1 requires T=3n+2w-1 ips cycles, w ips 

cells and w-l delay registers. 

Proof: [Observe the array and dataf10w in Fig.{6.S.3). 

The delayed matrix vector must also be used as an iteration 

component in the CIA and the cascaded timing analogous to Theorem 

(3.2.3.l) is derived as follows: 

(i) The initial delay to synchronise x and y (above) in the first 

iteration is MAX{p-l,2{q-l)). 

(ii) the ith iteration starts 2{p-l)+p cycles after the start of 

iteration (i-l) , for i=2{l)r. 

(iii) hence the rth iteration starts after (r-l) [3p-2]+MAX{p-l, 

2{q-l)) cycles and begins outputting after a further delay 

of 2{p-1)+1 cycles. 

As the length of output is 3n the total CIA time is 

T = 3n+{r-l) [3p-2]+MAX{p-l,2{q-l))+2 (p-l) +l 

= 3n+r[3p-2]+MAX{p-l,2{q-l))-p+l • (6.S.2.2) 

For the NXN matrices considered in problems I and 11 discussed 

previously p=q thus producing, 

T = 3N+r[3p-2]+p-l (6.S.2.3) 

2 
Now the input to the CIA in Fig.{6.S.2) is B , and if B has bandwidth 

wO' from (6.2.3) has bandwidth 2w6l. Consequently substituting 2{p-l) 

for p in (6.S.2.3) yields the true CIA time 

T = 3N+r[6p-8]+2p-3 (6.S.2.4) 

From Theorem (6.2.2) the latency of the preprocessor is at least 

{excluding the delays of the matrix vector and reformatter which are 
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also proportional to p). Thus the preconditioned Jacobi iterative 

method gives a total time of 

T2 = 3N+r[6p-8] + c , (6.5.2.5) 

where c is the total preprocessor delay. Although the scheme uses 

cascaded arrays it still contains a number of undesirable features: 

(i) The computation time for matrix vector has increased from 

O(2N) to O(3N) cycles. 

(ii) Each iteration requires twice as much hardware in the pre-

conditioned case than for the unpreconditioned case. 

(iii) There is a hardware overhead for the preconditioning. 

HOw does this affect array performance? 

case (i): Unlimited hardware 

Using (6.5.1) and (6.5.2.5), 

s 
p 

= = 
2N+2r

l
(p+l)-1 

3N+r
2 

(6p-8) +c 

which for a speed-up demands S >1 implying, 
p 

2N+2r
l 

(p+l)-l > 3N+r
2

(6p-8) + c 

or, 

(6.5.2.6) 

where r
l 

and r
2 

are the number of unpreconditioned and preconditioned 

iterations respectively. If N»r
l
,r

2 
and B is really banded the 

unpreconditioned schemes always outperform the preconditioned schemes. 

But if rl"N, or rl>N a speed-up becomes likely as by definition r
l
>r

2
• 

Irrespective of whether a speed-up does occur we can still save 

hardware provided the weaker condition r
l

>2r
2 

is satisfied. Each 

iteration of the ordinary method uses w ips cells compared with 2w-l 

in the preconditioned form, giving a saving, 
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(6.5.2.7) 

and with r
l
=2r

2 
we save s=r

2
• This saving can be used to offset 

the preprocessor cost and the additional delay registers associated 

with the modified matrix vector array and compensates in a small way 

for a lack of speed-up when r
l 

is large. 

Case (ii): Fixed length CIA's 

Let r
l 

and r
l 

be the number of iterations and number of arrays 

in the CIA for the unpreconditioned Jacobi form, and r
2
,r

2 
the 

corresponding numbers for the preconditioned Jacobi method. We now 

define the speed-up as, 

s 
p 

= 

_{2N r - + 
1 r

l 
2 (p+l) -....!...} 

r
l 

2(3p-4) + ...£..} 
r 2 

and for S >1 we must have, 
p 

or 

giving, 

2(3p-4) 

2 (p+l) -

> 
r 

~(~) for N sufficiently large, 
r

2 
2 

3 r l -
r

l 
> -(-)r

2 2 r
2 

Now suppose r1=~r2 for ~>l the saving in hardware is given by, 

which relates the convergence rates to array speed-up, and the 

(6.5.2.8) 

(6.5.2.9) 

(6.5.2.l0a) 

(6.5.2.l0b) 

saving in cells to the relative sizes of the two CIA's. It follows 

that if bounds on the rates of convergence of the ordinary and pre-

conditioned iteration matrices are known, a bound, 



437 

> Cl (6.5.2.lOc) 

on Cl can be derived and the maximum cell savings which still achieve 

a speed-up located. Furthermore from (6.5.2.10b) if CI>2 and r
2

>W 

(which is perfectly feasible for narrow banded systems and a good 

preconditioning) we obtain the saving s;O(w
2
). Now, the reduced hex 

requires w
2 

cells and the delayed matrix vector array in the pre-

processor an additional w cells. Thus the cell savings compensate 

for the additional preprocessor cells and still achieves a speed-up. 

Case (iii): The 'bag of' approach 

The 'bag-of' approach is attractive from the following Viewpoints: 

(i) A fixed sized array like Fig.(6.5.2) operated in a multi-

pass mode requires the preconditioning to be performed again 

and again needlessly. 

(ii) If we perform preconditioning and iteration sequentially 

rather than pipelining, the preprocessor. output could be 

re formatted in the host to allow the faster standard matrix 

vector array to be used in the CIA. 

With the latency of the preprocessor denoted by c, the time for 

the sequential operation of the precondition er is, 

(6.5.2.11a) 

and for the CIA is given by, 

T; 2N+r(2p-l) , (6.5.2.11b) 

using Theorem (3.2.3.1) and 2p-l substituted for p. Consequently, for 

a fixed sized CIA, 

- {2N l} r l r
l 

+ 2(p+l) - r
l 

S ; -----=----,-;:;::---=----,.-
p - {2N } (3N+c) + r - + (2p-l) 2 r 2 

(6.5.2.11c) 
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which for a speed-up yields, 

r
l 3 

r
2 -> 

2 
+-

r
l 

r
2 

or 

r ~ + r2J r
l 

> 
I 2 . r 2 

(6.S.2.12a) 

with the cell savings still given by (6.S.2.10b), and the bound on a 

now of the form, 

(6.S.2.12b) 

Thus for the 'bag of' approach to be faster than pipelining we must 

have, 

-{3N c} -{2N } r 2 r
2 

+ 2(3p-4) + r
2 

> (3N+c) + r 2 r
2 

+ (2p-l) 

which after some manipulation and rejection of small terms yields, 

r 2 > 3r2 '. (6.S.2.l3) 

which by substituting into (6.S.2.l2b) for 3r
2 

gives, 

r 
~(~) > a , 
3 -

r 2 

for the speed-up and area savings as before. 

Given this success in relating the preconditioning strategy 

convergence rate to speed-up and hardware savings we may attempt 

further improvements by more preprocessing. For example, the Jacobi 

scheme in (6.1.15) can be modified·to perform two iterations for every 

linear array of the CIA. Two successive iterations can be written as, 

(i+l) 2 (i) 
u = B u + (I+B) d 

(i+2) 2 (i+l) 
u = B u + (I+B) d } (6.5.2.14) 

and on substitution produces, 

(i+2) 4 (i) 2. 
u = B u + B (I+B)d+(I+B)d (6.5.2.15) 

which has the form, 
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STEP (i) compute 
2 

B and v=(I+B)d 

STEP (H) compute M=B
2

'B
2 2 

and w=(B +I)v 

STEP (Hi) 
(i+2) (i) 

u =Mu +w 

IF not converged THEN GOTO STEP (iii) 

Steps (i) and (ii) now form an extended preprocessor as shown in Fig. 

(6.5.4) which uses two pipelined reduced hex arrays separated by 

delayed matrix vector arrays. The delay through the reduced hex is 

4w
l

+4c
O

+6, where w
l

=2w
o
-l, and co>O is a constant derived from Theorem 

(6.2.2), with further delays for the delayed matrix vector arrays (2 

cycles) and reformatting, we conclude that the total preconditioner is 

again proportional to the bandwidth of B and not very significant. 

From (6.2.3) B4 has the bandwidth w
2

=4W
o
-3=4(2p-l)-3 for problem I. 

Thus each compressed linear array of the CIA useS approximately four 

times the hardware of the unpreconditioned array. The time of this 

new compressed iterative pipeline can be derived directly from (6.5.2.3) 

by substituting 4p-3 for p giving, 

T = 3N + r(12p-ll)+4(p-l) , 

and with c
2

>0 the delay of the preprocessor is, 

T4 = 3N + r(12p-ll) + c
2 

• (6.5.2.16) 

Observe that as each compressed array performs two iterations (6.5.2.16) 

is the time for 2r iterations. The array speed-up over the ordinary 

scheme is given 

S 
P 

= 

by, 

- {2N 2r
l 

r
l 

+ 2 (p+l) 

r
2 

_ 
r 

as the compressed method requires only (~) 

we must have, 

(6.5.2.17) 

passes, and for S >1, 
P 
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8 

FIGURE 6.5.4: Preprocessor for compressed Jacobi iteration 

M 
A 
T 
R 

---I' 
L""I+L x 
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~ 
o 
R 

(l+L)d 

FIGURE 6.5.5: Gauss-Seidel preprocessor 
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2r;. (12p-ll) 

(6.5.2.18) > 
(2p+l) -

or, 

(6.5.2.l9a) 

for N sufficiently large. With r
l
=ar

2 
the cell saving is defined as, 

s = wr
l
-(4w-3)r

2 
= r

2
w(a-4)+3r

2 
' 

and yields the bound, 

(6.5.2.20b) 

(6.5.2.21) 

We conclude that the minimum saving occurs when a=4, implying that the 

preconditioning must reduce the number of iterations by at least a 

third. 
2 

The preprocessor requires 2(2w-l) hex cells in the reduced 

hex arrays, and 3w-l cells for the modified matrix vector arrays which 

is a considerable increase. Consequently significant saving must occur 

in the CIA. putting r
2

=w and a=8 saves enough hardware to cover pre-

1_ 
processor costs and demands that after preconditioning only 6rl iterations 

are required for convergence. The speed-up can be maximised by adopting 

the 'bag-of' approach replacing (6.5.2.llb) with, 

T = 2N + r(4p-3) (6.5.2.22) 

Then by re-evaluating (6.5.2.llc), (6.5.2.12) and noting that if, 

r 2 {3N c 2} - - + (12p-ll) + - > (3N+c) 
2 r

2 
r

2 
+ - ~ + (4p-3) r 2 {2 } 

2 r
2 

or, 
r 2 > 6r2 ' (6.5.2.23) 

then a speed-up of the compressed pipelined form is guaranteed (for 

N sufficiently large) • 
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EXAMPLES OF PRECONDITIONING 

Below are some experimental results from Evans [a3d] which provide 

realistic estimates of r
l 

and r
2 

for the discussions in this section. 

Two problems are considered. 

I. LAPLACE 

over the unit square with boundary conditions 

u(O,y) = u(l,y) = 0, u(x,l) = 0 u(x,O) = 1 

II. BIHARMONIC 

again over the unit square with values u 
.2U 

and --2- specified along 
• n 

boundaries, n is the direction of the outward normal producing 

striped matrix structures suitable for incomplete methods. 

I. 11. 

Both are positive definite, sparse and ill conditioned and provide 

important preconditioning theory tests. 

S.O.R. 

1~--------~-------7~-----
~ . 
,g 6 
~ 5 
:'; ,,' 
~ 3 
: 
~ 2 

Pt.tOllet 
aim. ilrrC'"OII 

110---/-,' :"'--=-,~""''-------------
• • • , 
L-~~~.~~~ __ ~2~O~---------

h ~"h Ill.r 

FIGURE 6.5.6: preconditioning for Laplace equation 

/ 
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We now consider the Gauss-Seidel preconditioned form in (6.1.17) 

which produces the following algorithm: 

STEP (i): compute 

a) 

b) 

(I+L)b=v 
2 

(6.5.2.24) 
Ml=L and M

2
=(I+L)U 

Form M=M
l

+M
2 

c) 

STEP (H): 
(i+1) (i) 

u =Mu +v 

IF NOT converged THEN GOTO step (ii) 

Again step (i) forms a preprocessor with step (ii) the CIA. The pre-

processor is shown in Fig.(6.5.5) which is a delayed matrix vector array 

and a normal hex with two problem instances interleaved as shown in Fig. 

(6.5.7). 
o 

o 
o 

o 

MIl) 
12 

M(l) 
31 

M (2) 
12 

M(l) 
13 

M(1) M (2) M (1) - M (2) M (1) 
41 31 22 13 14 

(1) M(2) M(l) M(2) (1) M (2) (1) 

M51 41 32 22 
M

23 14 
M

15 

M (2) M(1) M(2) (1) (1) (2) 
M

23 M24 - M
15 

51 42 32 
M(l) M (2) M(1) (2) (1) - M24 M25 52 42 33 

M(l) M(2) M(l) M(2) (1) (2) (1) 

62 52 43 33 M34 M
25 

M
26 

M (2) M(l) M(2) (2) (1) (2) 

M34 M35 - M
26 

62 53 43 

FIGURE 6.5.7: Hex input for preconditioned Gauss-Seidel 
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An extra boundary of cells is added with a special function of simply 

adding the interleaved results of Ml and M2 to form M and which 

contributes only a single cycle to the preprocessor delay. The use 

of the Land U matrices in different products compels the uni-

directional flow of the Jacobi preprocessor to be discarded losing a 

good systolic feature. However the Gauss-Seidel method produces-

superior area trade-offs when the speed-up analysis is applied. The 

latency of the preprocessor is caw+2 where the cost of reformatting is 

2 
ignore~ where the hex requires (w+l) cells and the matrix vector q 

cells (for q subdiagonals in L, and q=p in problem I). Notice that 

only the lower triangular part of A, equation (6.l.l), is squared 

producing a preconditioned matrix with bandwidth w
l

=w+q-l=3p-l for 

problem I. But the latency of each CIA array is controlled by the 

upper triangular portion of A, so adjusting for the delayed matrix-

vector computation yields, 

T4 = 3N + r(3p-2} + c , 

which yields the speed-up relation, 

or 

> 

r
l -> 

r 2 

(3p-2) 

2 (p+l) 

for N sufficiently large. 

The saving in hardware is computed simply, by, 

for r
l
=ar

2 
and produces the bound, 

3-
r l > 2 r 2 ' for a=l , 

(6.5.2.25) 

(6.5.2.26a) 

(6.5.2.26b) 

(6.5.2.26c) 



446 

which achieves a saving of r
2

(q-l) cells. 
w-q+l 

Also notice that when a , w 

s=O. Consequently a~l guarantees a saving, and if r
2

>w preprocessor 

hardware can be offset against CIA reductions. These results confirm 

that the Gauss-Seidel method saves more hardware than the Jacobi method 

when both have the same number of iterations r
2 

with respect to the 

unpreconditioned schemes. But by the fact that the Gauss-Seidel method 

uses the most recently computed u. values it attains a faster convergence 
J 

rate than the Jacobi method. Hence the bounds in (6.5.2.26) are more 

easily satisfied, and it becomes possible to scale the computation time 

so that both methods compute at approximately the same speed, but with 

the former scheme using considerably less hardware. Applying the 'bag 

of' principle yields even more savings. 

6.6 A FAST ARRAY FOR SOLUTION OF TRIDIAGONAL LINEAR SYSTEMS 

TO complete this chapter we consider the fast systolic solution 

of (6.1.1) where A is an nxn tridiagonal matrix. The design draws 

together the main themes of double pipes, QI permutations, block 

partitioning, and incomplete arrays discussed in this and previous 

chapters. 

A simple Gaussian elimination array can be derived easily from 

Fig.(6.4.1) and adopts a standard matrix vector input format. The 

array is shown in Fig.(6.6.1) and consists of three cells, a boundary 

cell to the left and two simple inner product cells to the right, 

augmented with a row interchange facility (for nearest neighbour 

pivoting). The boundary cell decides on the next pivot row setting a 

flag c to indicate interchanges and also computes a multiplier (m) to 

update the adjacent (non-pivot) row. Snapshots of the array operation 
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P, 

P2 
~, ~, c, ., 
~2 .r2 c2 "2 

qn~l r 
n-l c n-2 mn _2 

'" I 
I 
I 

~ I 
I ___ J 

b, ~l c, 

"2 c2 
b2 

'3 

b 
n-l • c

n
_

1 n 

FIGURE 6.6.1: General tridiagonal Gaussian elimination 

are shown in Fig.(6.6.2) and operates according to the following 

cell definitions. 

W 
out~-...., 

Cin 
W' :tn 

N 
out 

i 
if--- Ein 
- •. - - Cout 

E out 

Modifier cell 

Nout-rold1 , wout-rold2 
Sin-r 2' Ein-rl 

Eout -mold' Cout -Cold 

Win m , Cin-c 
IF c=l THEN 

{tl:=r2, t2:=~ll 
ELSE 

{tl:=rl, t2:=r2l 
rold

2
: =t2-m*tl 

roldl:=tl 

cold:=c 
mold:=m 
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"(-____ E
in 

Cout 

~ ____ ~Eout 

REMARK: SIGN(x) = 
{ 

0 if x 

1 if x 

+ve 

-ye 

Boundary cell 

NO ut -POldl,Eout -m,Couic 

Ein-Pl , Sin-P2 
a=P

l
/P

2
, S=P

2
/P

l 
F=a-S· 
IF (F(O) AND (SIGN (Pll G) SIGN (p2» TllEN 

{c=l, m=a, Pold=P
2

} 
ELSE 

{c=o, m=S , Pold=P
1

} 

and F<O and sign (x) can be simply noted by checking the sign bits 

of the numbers in question. The IF condition is simply a 

combinational logi~ expression with a negligable propagation delay. 

01 
(H) b 

1 , DD 
a, 

(iWO 
Cl r=J D "l 

"2 

h1 

CD D Cl [J (iv) b2 ml 

"2 0 0 

(v) Qc2 CJ D Cl 
o m2 a m

1 3 

(vi) 

FIGURE 6.6.2: Snapshots of symmetric elimination 
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The computation of the boundary cell is easily justified as follows. 

First, we must compute c and m where, 

c = 
otherwise 

and 
P2 when c=O 
Pl 

m = 
Pl when c=l 
P2 

Now, 2 2 
Pl P2 Pl -P2 F = = 
P2 Pl P2Pl 

consequently, if, 

Pl - ve and P2 . ~) 
or 

+ ve and P2 -
F<O iff P~-P~<O • 

Pl ve 

and w~en, 

Pl - ve and P2 - .. ) 2 2 
F<O iff Pl -P

2
<0 .. 

P
l 

+ ve'and P2 + ve 

It follows that, 

1 for m 

and 
(F<O) AND (sign{P

l
) 0 sign (P

2
) ) = 1 for m 

requiring the cell structure in Fig.{6.6.3). 

----,------- --, 

iP1 i>iP2 i 

iP2 i>iPl i 

P2 
= - and 

Pl 
Pl 

= - and 
P2 

c=O 

c=l, 

FIGURE 6.6.3: Boundary cell 
organisation 

I 
I 
I 

sign(P2) I 

L----1---------- J 

neqligable 
time delay 

m 
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This ensures that both the boundary and modifying cells have a basic 

cycle time equivalent to a single inner product step. Also, with no 

interchanges the array generates only two columns of output data, but 

when interchanges do occur three outputs are needed as the second super-

diagonal fills in. Hence the eliminated upper triangular matrix U 

takes the general form: 

U = (6.6.1) 

L 
The c

i 
and mi , i=l(l)n-l move rightwards eventually leaving the array 

to be stored (for identification of interchanges) or can be used directly 

to modify the righthand side of (6.1.1), but requires the addition 

of an extra modifier cell to Fig.(6.6.1). 

The array timing is trivially observed to be T=2n+k
l 

with kl a 

constant derived from the delay of the first output, and from Fig. 

Next we apply the QI-permutation to give the problem an implicit 

2x2 block structure. For example, when n=8 and n=7 the tridiagonal 

form of a symmetric matrix becomes: 



1 2 3 4 

4 

5 

6 

7 

8 

3 4 

4 

5 

6 

7 

5 6 7 

b
4 

as b5 

b
5 

a
6 

b
6 

b
6 

a
7 

b
7 

5 6 7 

8 

1 

1 8 2 7 3 

1 7 

I 
I 
I 

2 6 
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6 4 5 

3 (6.6.2a) 

(6.6.2b) 

(Notice that the permutation produces a 2x2 block symmetric matrix) . 

The distribution of zeroes in the above forms allows implicit block 

calculations to be performed using a double pipe version of Fig.(6.6.1) 

where the essential idea is to compute the elimination by modifying 

rows starting at the 1st and last row of the unpermuted form and 

moving inwards to the center. (Hence the similarity with QI methods) . 

Figs. (6.6.4) and (6.6.5) illustrate the data flow for the odd and 

even cases, and reveals the starting input formats: 
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(1) 0 CJ D 
(il) eD 

bl D [J 0 0 D 
(ill)eD clCJ [J CD CJ CJ b

7 1111 42 
bl 

0 C7 [J Cl [J (JCl IT] GJ (iv) 
b

2 1117 47 :all 
b 6 'I't ·2 

0 c2 CJc CJ O~6 wCl CJ (v) 

ID2 43 . Ill, b
2 

do6 .§ "1 

0 c6 CJ c2 CJ OC2 DC6 D (vi) b 
1116 46 1112 

b 1:12 4). -6 b_ 

0 c) [JC6 CJ (Dcs C]C2 D (vii) 

~: as .: m2 b) 

bS 1113 air 1116 

C) CSOC) D 0~ [JcCJ ~: Ill: Q 

(viii) 0 

1115 as Ill) o m • 
FIGURE 6.6.4 FIGURE 6.6.5 

Implicit block symmetric elimination Implicit block symmetric 
(n=even) elimination, (n=odd) 
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a
l 

~r b
l as 

a
l 

~l a
7 

b
l 

b7 
a

2 
b

7 b6 
a

2 
b

6 

b
2 

a
7 

b
2 

b
2 

a
6 

b
2 

b
6 a3 b

6 bS 
a

3 
b

S 

b
3 

a
6 

b
3 

b3 as b
3 

bS 
a

4 
b

S 
a

4 

as 

n=S n=7 

The data is size n and as everything else is unchanged apart from 

dataflow, it follows that the array computation time is T=n+2, and 

T=n+3 if a cell is added for the righthand side modification. Observe 

that nearest neighbour pivoting is still possible due to the sparsity 

pattern in (6.6.2). When the computation reaches the bottom right 

corners of the permuted matrices the zero pattern breaks down as the 

two interleaved eliminations collide and interfere with one another. 

Notice that the input data pattern above omits the b
4 

values to avoid 

interference, and this introduces an incomplete calculation as the 

array only approximates the matrix U in (6.6.1). 

The additional modifications to the array output for the even 

case (n=S) can be summarized as follows. On step (vi), (c
3

,m
3

) is 

computed by the boundary cell eliminating b
3

• On the next cycle (b
3

,a
4

) 

are modified leaving (O,b
4

) to be updated to complete the elimination 

step. Likewise on step (vii) (cS,m
S

) are evaluated and eliminates b
S

' 

and on the next cycle (bS,a
S

) are modified leaving (O,b
4

) to be updated 

using (cS,m
S
). Thus, when the array computation is finished we must 

perform these two additional modifications to produce a complete 
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elimination of (6.6.1). Since all the interchange and multiplier data 

is available this presents no problem. For purposes of argument the 

fixing procedure produces the 2x2 block form, 

and b
4 

is eliminated using the correct multipliers, (b
4

,a
S

) must be 

updated and the righthand side part modified. 

REMARK: For simplicity we have assumed that no interchanges occur, 

the argument is similar if they do, or when n is odd. 

We argue that the saving of n cycles in the elimination, outweighs 

the five additional cycles (including multiplier evaluation) which is 

negligible and can be delegated to the host machine. 

Notice that this fixing strategy leaves a 2x2 block in the bottom 

right corner, and by adding an extra two modifications can be 

converted to an upper triangular block giving the permuted form of 

(6.6.1) the appearance, 

U = 

I 
1-
I 
L 

(6.6.3) 

o 

for n=8. The solution of (6.1.1) can now be written as a backward 

substitution, 
-~ U u = d , (6.6.4) 



455 

where ~ is the permuted unknown vector and d the modified and permuted 

righthand side vector. As (6.6.3) has a null first subdiagonal "le can 

apply the double pipe substitution array of Robert & Tchuente [84] as 

illustrated in Fig.(4.2.l). This array requires 6 ips cells and a time 

T=n+3+l=n+4 cycles to solve (6.6.4), and by noting that the bottom tier 

corresponds to zero subdiagonals can be compacted to use only 3 cells. 

Furthermore, the elimination and substitution by virtue of the output 

ordering have to be computed sequentially giving a total time, 

T = (n+3) + (n+4) + 7 = 2n+l4, (6.6.5) 

which includes the time for fixing the incomplete elimination. 

In contrast a straightforward complete elimination requires the time 

T = (2n+3) + (2n+3) = 4n+6 , (6.6.6) 

using an elimination as shown in Fig. (6.6.2) and a traditional 

substitution array. Thus a factor of two speed-up and increase in 

cell efficiency results from our double piped, implicit block structured 

incomplete array, provided some calculations are performed by the host 

machine. This reliance on the host is acceptable in this case because 

the output of the eliminator cannot be pipelined directly into the 

substitution array, and for the sake of <10 ips the saving is dramatic. 

6.7 SUMMARY 

In this chapter, the systolic design for preconditioned iterative 

procedures was developed. The global design consisted of two component 

arrays, a preconditioning preprocessor, and a cascaded iterative array 

(CIA) for pipelined iterations. Three types of preprocessor were , 
developed suitable for both implicit and explicit types of preconditioning. 

For explicit methods we considered the problem of repeatedly 
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squaring a banded matrix (M) using a pipelined arrangement which 
2i . 

permitted the evaluation of the sequences M ,M~ and accumulation of 

the Neumann expansion. A modified (reduced) hexagonal array for matrix 

products was described which compressed both input and output into a 

single direction and reduced the communication bandwidth of the 

systolic array compared with the usual matrix product arrangement. 

The increase in computation time for the new array r.elated to the . 

matrix bandwidth rather than its order. A pipeline component for 

power generation was then constructed by the addition of a preprocessor 

which accepted a single copy of the input matrix (M) and produced 

separate duplicate copies providing a neat expansion of the host inter-

face. A systolic preprocessor of this form will be useful in the 

future for similar roles in other problems, and we suggested optical 

preprocessing as a cheap way of producing large array inputs from a 

relatively small number of host connections, using the properties of 

waveguided and low signal interaction to avoid non-planar wiring. 

For implicit preconditioning methods we developed preprocessors 

based on the so-called incomplete techniques applied to the solution 

of linear systems derived from certain 2-D and 3-D partial differential 

equations. These techniques control the fill-in associated with the 

solution process by selecting certain diagonals to be retained in the 

calculations, to yield approximate answers. The idea of a sequence of 

arrays with varying hardware providing an exact solution and a range 

of approximate results led to a method of array compaction. The 

essential concept being the identification of primary neutral cells 

which played no part. in the calculation, which in turn identified 

secondary neutral cells that could be replaced by synchronising delay 



457 

cells. The technique was applied to matrix factorisation and tri

angularisation methods giving rise to optimal area arrays and the 

Systolic Incomplete Factorisation (SIF) and Elimination (SIE) 

algorithms respectively. For the model 2-D and 3-D problems 

considered, the SIF design required cells propcrtional to the semi

bandwidth of the non-zero diagonals plus the diagonals retained for 

fill-in. This is compared with cells propcrtional to the semi-bandwidth 

of the smallest band enveloping all non-zero diagonals in the original 

methods. A similar result holds for the SIE method, and in general a 

cell reduction of >75% was observed. The approximate solution errors of 

the systolic methods were generally higher than the original schemes 

with the SIF better than the SIE methods. The variations in 

approximations being attributable to a balanced shifting process 

introduced to allow optimal array compaction, which become unbalanced 

in the SIE algorithm. The compact arrays used considerably less area 

than uncompacted forms making them more practical to construct. Future 

consequences for systolic applications are clear. We can define a 

sequence of designs which trade accuracy against circuit area to 

produce fast, economic, and practical parallel devices for quickly 

approximating solutions to given problems. Such low cost devices 

could make· suitable add-ons for existing architectures. 

The preconditioning preprocessors were then considered in 

conjunction with cascaded iterative arrays (CIA's) to assess both 

speed-up and area savings over existing iterative schemes. It was found 

that most of the methods considered reduced the CIA to a series of 

simple matrix vector arrays rather than forward substitution and matrix 

vector used by the unpreconditioned Gauss-Seidel form. Relationships 
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between the convergence rates of unpreconditioned and preconditioned 

schemes and the finite size of their CIA'S were established and 

conditions for speed-ups and area savings derived. We concluded that 

for reasonable preconditioners enough hardware could be saved to account 

for the preprocessors while still achieving a speed-up. The 'bag of' 

methods which performed preconditioning and iteration sequentially 

proved to be the fastest variation of all and the preconditioned Gauss

Seidel gave the best area saving. 

Finally we described a fast tridiagonal solver which illustrated 

how double pipes, block structuring by QI permutations, and incomplete 

methods could be combined to derive fast area efficient designs for 

more general problems. 






