
LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY
AUTHOR/FILING TITLE

--- -_________ .M .HC~9~_,. ___ Q:_~ ___ ~ _______ ~ __

--- -- - -------------------------- --- ----- - - ------~
ACCESSION/COPY NO.

-VOL~NO~-----,-D-~~A~-i~L~;f_=-------- -- ----~ ---

""'?£.. - l 0 A-t-l C.l·-e1· ~ "'AoJ""

FIBS 13 F 1991
~~:SV

001 "4519 02

III ~IIIIIIIIIIIIIII ~ ~ 1111 ~I ~ 1111111 ,,~~ IIIII~ : !

,I

,

I

I

I

I

I

I

I

I

I

I

I

I

NOVEL ALGORITHMS FOR THE

SOFT-SYSTOLIC PARADIGM

BY

GRAHAM MARTIN MEGSON, B,Sc,(HoNS,)

A Doctoral Thesis

submitted in partial fulfilment of the requirements

for the award of Doctor of Philosophy

of the Loughborough University of Technology

1987.

Supervisor: PROFESSOR D.J. EVANS, Ph.D.,D.Sc.

Department of Computer Studies.

~ GRAHAM MARTIN MEGSON, 1987.

L.ug/lhoroUJ.l. Unlve..,1tiy

of TtH·h,"l./, . " L>i",.,ry

C;;:---N";;:""* =r
f"-:--'-~--- ._" .. ,-" .
C!~1J _ . '._-.

A.oc.
D I 'I-~_I~ 2-N •.

DECLARATION

I declare that this thesis is a record of research

work carried out by me, and that the thesis is of my own

composition. I also certify that neither this thesis

nor the original work contained therein has been submitted

to this or any other institution for a higher degree.

GRAHAM MARTIN MEGSON.

DEDICATED TO

My Wife and Love HeZena,

for her aonstant support during

the aourse of this work.

ACKNOWLEDGEMENTS

The author wishes to express his thanks to Professor

D.J. Evans for his guidance, suggestions and advice throughout

the preparation of this thesis and in the context of research

generally.

The author also acknowledges the Science and Engineering

Research Council (S.E.R.C.) for their financial support.

Thanks also to my parents for giving me the incentive

to start and complete this project.

Finally, thanks to Mr. R.P. Stallard for his constant

revision of the Loughborough OCCAM compiler and supplying the

docUmentation in Appendix 11.

APOTHEGM

Quarendo invenietis

"By seeking, you wiZZ disoover"

CONTENTS

ACKNOWLEDGEMENTS

VOLUME I

PART I: INTRODUCTORY CONCEPTS AND DEFINITIONS

CHAPTER 1: INTRODUCTION

1.1 Origins of Systolic Arrays

1.2 Applications of the Systolic Principle

1.3 Topics of Discussion

1.4 Overview of the Thesis

CHAPTER 2: BASIC MATHEMATICS

2.1 Vectors

2.2 Matrices

2.3 Direct Methods for Solution of Linear Systems

2.3.1 Forward/Backward Substitution

2.3.2 Matrix Triangularisation

2.3.3 Matrix Factorisation

2.4 Iterative Solution of Linear Systems

2.4.1 Simultaneous Displacement Methods

2.4.2 Successive Displacement Methods

2.4.3 Convergence of Iterative Schemes

2.5 Partial Differential Equations

2.5.1 Solution of P.D.E.'s Using Finite
Differences

PAGE NO.

2

9

15

19

22

27

38

40

41

45

47

48

49

50

56

60

2.5.2 Convergence, Stability and ConSistency 66

PAGE NO.

2.6 Miscellaneous Items 69

2.6.1 Convex Sets 69

2.6.2 Rings and Fields 70

2.6.3 O-notation 71

CHAPTER 3: FOUNDATIONS OF SYSTOLIC ALGORITHMS

3.1 Systolic Spaces and Structures 73

3.2 Standard (or Traditional) Arrays 85

3.2.1 Matrix and Vector Multiplication 87

3.2.2 Arrays for Direct Solution of Linear
Systems 101

3.2.3 Arrays for Iterative Solution of
Linear Systems 109

3.3 Theoretical Concepts for Manipulating
Systolic Arrays

3.3.1 Systolic Array Model

3.3.2 Transformation Rules

3.4 Practical Considerations and VLSI

113

114

123

132

3.4.1 The Grid Model 132

3.4.2 Area/Time Tradeoffs 135

3.4.3 Fault Tolerance 139

3.4.4 Synchronous vs. Asynchronous Array
Operation 147

3.5 Generic Architectures l~

3.5.1 The WARP Architecture 150

3.5.2 The Wavefront Array Processor (WAP) 153

3.5.3 INMOS Transputers and OCCAM 155

3.5.4 Simulation of Systolic Arrays 157

3.6 The Soft-Systolic Paradigm

3.6.1 3-D VLSI

3.6.2 Optical Computing

PART 11: IMPROVEMENTS TO SYSTOLIC ARRAYS FOR LINEAR ALGEBRA

CHAPTER 4: SOFT-SYSTOLIC PIPELINED MATRIX ALGORITHMS

4.1 Additive Splittings and Double Pipes

4.2 Block Schemes for Systolic Arrays

4.2.1 Block Matrix Multiplication

4.2.2 3*3 Block LU Factorisation

4.2.3 Complex Matrix Problems

4.3 Matrix Inversion by Systolic Rank
Annihilation

PAGE NO.

163

164

166

172

197

200

205

220

226

4.3.1 Mesh Connected Schemes 229

4.3.2 Highly Pipelined Rank Annihilation 239

4.3.3 Choice of Schemes 254

4.4 BATS: A Banded and Toeplitz System Solver 257

4.4.1 A Pipelined Solver 261

4.4.2 A Linear Array Scheme 271

4.4.3 P-cyclic and Double Pipe Schemes 27B

4.4.4 Comparison of Methods 2BB

4.5 Summary 296

CHAPTER 5: SYSTOLIC QUADRANT INTERLOCKING (QI) METHODS

5.1 Systolic QUadrant Interlocking
Factorisations (SQIF) 301

5.2 A Modification of the QIF Method 310

5.3 Restricted Forms of Systolic QI Schemes 317

PAGE NO.

5.4 Interlude: The BATS Cell Revisited 323

5.4.1 Improvements to the O(n) BATS Cell 323

5.4.2 A Stable p-cyclic Cell 331

5.5 Systolic Quadrant Interlocking Elimination
(SQIE) 341

5.6 Systolic QUadrant Interlocking Iteration
(SQII) 348

5.7 Summary 359

CHAPTER 6: SYSTOLIC PRECONDITIONING AND INCOMPLETE ARRAYS

6.1 Basic Preconditioning Methods 361

6.2 Hexagonal Matrix Power Generation 369

6.3 Compact Systolic Arrays for Incomplete
Factorisation Methods 386

6.4 Systolic Arrays for Incomplete Eliminations 412

6.5 Iterative Arrays for Preconditioning 425

6.5.1 Implicit Preconditioning Arrays 427

6.5.2 Explicit Preconditioned Arrays 431

6.6 A Fast Array for Solution of Tridiagonal
Linear Systems 446

6.7 Summary 455

VOLUME 11

PART III: ALGORITHMIC vs GEOMETRIC DESIGN AND THE PRINCIPLE
OF ARRAY UNIFICATION

CHAPTER 7: SYSTOLIC TABLE GENERATION

7.1 Romberg Integration Using Systolic Arrays 459

7.2 The Construction of Generic Arrays for
Extrapolation Table Generation 469

7.3 The Unification of Systolic Differencing
Algorithms 487

7.4 ASystolic Array for the Quotient
Difference Algorithm

7.5 ASystolic Simplex Algorithm

7.6 A Systolic Cylinder for the Revised
Simplex Algorithm

7.7 An Orthogonal Design for the Assignment
Problem

7.8 Sunnnary

CHAPTER 8: THE SOLUTION OF CERTAIN PARTIAL DIFFERENTIAL
EQUATIONS (PDE'S) BY SYSTOLIC MARCHING TECHNIQUES

8.1 Introduction to Asymmetric and Group

PAGE NO.

502

514

539

553

571

Explicit Methods 583

8.2 Algorithmic vs. Geometric Solution of
P.D.E.'s 603

8.3 Linear Asymmetric Marching Processor
(LAMP) Arrays 606

8.4 A Generic l-D Group Explicit Array 625

8.5 A Unified Group Explicit Parabolic Solver
(UGEPS) 644

8.6 A Fast Alternating Group Explicit (AGE)
Array

8.7 Systolic Hopscotch Schemes

8.8 A Hard-Systolic Hopscotch Solver

8.9 Systolic Group Explicit Methods for
Hyperbolic Equations

8 ~ 10 Summary

CHAPTER 9: TOWARDS A GENERAL SYSTOLIC COMPUTER

659

668

680

694

710

9.1 The Instruction Systolic Array 717

9.2 The n-Space ISA and Multi-Tasking of Soft-
Systolic programs 726

9.3 The Soft-Systolic Program Simulation System
(SSPS) 745

PAGE NO.

9.4 Simulation of Arrays with Boundary and
Special Processing Elements 767

9.5 The Linear Instruction Systolic Array (LISA) 781

9.6 Summary 791

CHAPTER 10: CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 794

REFERENCES 803

APPENDIX I:

APPENDIX II:

OCCAM SUMMARY

LOUGHBOROUGH OCCAM COMPILER VERSION 5.0
DOCUMENTATION

APPENDIX III: SELECTED PROGRAM LISTINGS

820

827

836

PART III

ALGORITHMIC vs GEOMETRIC DESIGN

AND THE PRINCIPLE OF ARRAY UNIFICATION

CHAPTER 7

SYSTOLIC TABLE GENERATION

"All for one, and one for all"

The Three Musketeers.

459

So far this thesis has been concerned with the improvement of

systolic arrays for fundamental problems in Matrix and Linear Algebra.

These problems in the form of differential equations, as well as signal

and image processing applications account for approximately 70% of

numeric computation.

In this chapter we focus attention on systolic arrays for table

based algorithms such as Interpolation and Extrapolation. Mckeown [84]

shows that Aitken's Iterated Interpolation algorithm can be performed

by a systolic array in O(n) time, where n is the size of the table.

By extension Neville's Iterated Interpolation method can also be solved

in O(n) time on a similar array.

Interpolation and extrapolation techniques also have wide uses in

numerical computation and often produce results in tables of a triangular

form. This triangular structure and the manner in which table elements

are constructed indicate that systolic techniques for matrix problems

may carry over to table based methods. Indeed, a table of elements is

often represented as a matrix for easy and efficient manipulation on a

computer system. Below certain similarities between matrix computations

and extrapolation tables are developed to characterise table generation

algorithms. The principles are then extended to table manipulation

techniques for the more sophisticated simplex and assignment problems.

7.1 ROMBERG INTEGRATION USING SYSTOLIC ARRAYS

As an informative introduction to table based systolic computation

we present an array to improve numerical approximations to integrals

using Richardson's extrapolation procedure in the form of Romberg

integration. Two designs are presented, the first an intuitive linear

460

array, the second, a systolic ring using approximately 1/3 the cells

of the first. Both arrays have a computation time of 3n cycles (for

2
a table of size n), a significant improvement on the O(n) steps

required to construct the extrapolation table sequentially.

The Romberg integration algorithm is well known, and is based on

the Newton-cotes formula (see Burden, Faires & Reynolds [81], Johnson

and Reiss [77]). We use the particular Newton-cotes formula known as

the Trapezoidal method, which is one of the easiest to use but is usually

not as accurate as required. The Romberg algorithm is widely applicable,

and uses this easy-to-apply formula to obtain initial approximations to

integrals, and Richardson's extrapolation to improve these approximations

to gain a required accuracy.

Thus to evaluate the integral,

I (f(x).dx ,

a

(7.1.1)

for some integrable function f(x), we select an integer n>O and apply

the sequential procedure.

/*INPUT a,b, and integer n*/
/*OUTPUT an array R, R is the approximation to 1,*/

nn /*computed by rows*/

ROMBERG(a,b,N,f(x»h
{ h=b-a; Rl,l= 2(f(a)+f(b»;

OUTPUT (RI 1);
, i-2

FOR i=2 to n 2

}.

{ R
2l

=![R
ll

+h I f(a+(k-O.5)h];
, k=l

/*approximation using trapezoidal

FOR j=2 TO i
{ R2 .

j-l
4 R2 · I-RI . 1

I)- ,]-
= ---=: -:-=---="-"'---'"

,)

}; OUTPUT(R 2 , j);

h=!h

4 j - l _l

FOR j=l TO i {Rl ,j=R2 ,j};

rule*/

which outputs the triangular table of approximations given by,

R31 R32 R33
I
I

R44 , , ,
I

, , , , I
,

R' Rn2 R - R
n1 n3 nn

and known as the Romberg Extrapolation table, where R, l' i=l{l)n
~,

(7.1.2)

are

approximations from the trapezoida1 rule and the diagonal entries Rii

i=l{l)n are terms converging to an improved estimate of I in (7.1.1).

~ ~

In general, the sequence {R, ,}, 1 converges much faster than {R }
11 1= m,l m=l

and we stop when IRii-Ri_1,i_11<to1, where to1=required accuracy. For

the systo1ic array these factors have important consequences, firstly

there must be a fixed number of cells in the array (for fabrication)

and second there must be enough cells to ensure sufficiently accurate

approximations. We adopt a general approach to the array and construct

a finite sized table of n rows. For some problems convergence of the

Rii will occur before the full size n table is completed and introduces

the additional problem of closing down the array prematurely, on the

other hand, large problems may not converge. For the moment we assume

that differences between the convergence rate of R" and R'l' i=l{l)n
~~ ~

are large enough to ensure that n can be chosen to always achieve

convergence subject only to area restrictions. {Later we develop a

more flexible approach.

The systolic array computation is derived by partitioning the

Romberg procedure into two basic steps:

(i) approximate I using the trapezoida1 rule with m
1
=l, m

2
=2, m

3
=4, •••

462

n-l k-l
.••• m =2 for an integer n>O and stepsize h =(b-a)/m =(b-a)/2

n k k

to derive Rk,l neglecting error terms O(h~).

(ii) generate table (7.1.2) using the general extrapolation relation.

4 j - 1R -R
i.j-l i-l.j-l i=2(1)n (7.1.3)

j=2(1)i

which define a natural allocation of computation between host machine

and the systolic array as follows. The host computes the terms ~.l'

k=l(l)m for m~n before waking the array, and the array constructs the

table elements R .. , i=2(1)m, j=2(1)i in parallel using (7.1.3) and the
~J

evaluation ordering (for n=S),

r
elements on same line
computed in parallel

precomputed 1
/

l
,

"
R32/ "R33,,"

" "
R;2 ,R43 /"R41,"

" "
,

RS4/ RSS"
/ "

R64 , R6S /,R66/

RS2 ,R;3
/ "

R
62

" " R63 , / ,
/ " ~74 ,R7S "R76

/ / '
/

RS4 Ra'S RS6

" " Rn R73 ' R77 ,
"

RS'7 RSS

This division is natural because step (i) involves evaluating the

(7.1.4)

arbitrary function f(x) (within the constraints of being integrable

and continuous, etc.). and including it as part of the array would

require an arbitrary number of complex basic array cells. Step (ii)

and (7.1.4) can be constructed using a set of unidirectional linearly

connected cells which implement the Richardson Extrapolation procedure

(REP) of (7.1.3). The array is shown in Fig.(7.1.1) and consists of

n-l REP cells each with two inputs and three outputs. two outputs

4

FANIN NETWORK

r-------~--------~---- - - - - "1 - - - - - - - -,- - - - - .. , ,

REP
(01

REP
(ll

REP
(21 •••

,

REP
(n-$

FIGURE 7.1.1: Romberg linear systolic array

REP
(n-2)

463

connecting to the right hand adjacent cell and the third to a fanin

network. The fanin network is used for filtering out the results Rii ,

i=2(1)n which the host can use to determine convergence. Each REP cell

computes a single column, with cell i evaluating column i+2, and

consequently outputs only a single diagonal element. If c is the cell

latency outputs on the fanin line from different cells occur at c,2c,

3c, etc. hence only a single line is required for output.

The REP cell is shown in Fig.(7.l.2) and consists of a single ips,

a multiplier, subtractor and divider. The latency of the cell is c=3

ips cycles taking into account the delay through arithmetic elements and

delay registers, and computes using a two-level pipelined organisation

similar to H.T. Kung & Lam [84] bu~ at a higher level of abstraction.

Each cell performs (7.1.3) and also generates the power 4 j for the next

cell, hence the two input and output lines. The leftmost cell of Fig.

(7.1.1) accepts the elements Rll,R2l, ••. ,Rnl on one input line and on

the second the value 4 (which can be hardwired using a permanently

register stored value). This permits the construction of the 4
j

Rio 1-'

4'-'

TO FANIN NETWORK

(I

4-.....><j

REP CELL ILA TENCY • 3)

1 ,
REP CELL SYMBOL

1 1 , ,

a R;+l.J-' a

a 41-' 6

.+1

FIGURE 7.1.2: Cell operation

1 , , ,

.----4' '"

X", current input

Y "" delay input - OX

Z "" 4i-' (extrapolation parameter'

1 ,

R1+2.j_l Ril

4 '-' 4'

.+ 2

464

systolically rather than sequentially by the host, and although the

additional multiplier in each cell appears extravagant we show later

that it can be justified.

Remark: We could precompute the 4j powers and preload them before the

start of the computation, replacing the multiplier by a loadable register.

The operation of the REP cell is clear f~om Fig.(7.l.2), and a single

control bit is tagged to the R
ii

, i~l(l)m such that:

control ~ {
o normal output only

1 send cell result onto fanin network

The control tag moves systolically from cell to cell using the natural

cell delay for synchronisation with newly created Rii values ensuring

465

that cells use the fan-in line in mutually exclusive fashion. Fig.

(7.1.3) illustrates the array operation as snapshots for the first seven

steps of the table construction when n=6, and motivates the following

theorem.

t - ,
r-----~------~------r-----'-----

R"

t=l-----,------,------r------r----
R ..

t,.. r3 __ R22 __ 1 ___ ---.,- _____ , _ _ -- -- T ____ _

I-~-----,------T------r------r----

t ,.. ; ______ • ______ T __ ~ ___ r - - - - - -r - - --

FIGURE 7.1.3: Snapshots of array operation

466

Theorem (7.1.1): A Romberg extrapolation table of size n can be

computed in T=3(n-l) ips cycles using n-l REP cells.

Proof:

The total time is given by,

T = (cell latency) * (number of cells) = c(n-l) = 3 (n-l),

as only (n-l) columns hence cells are required to construct (7.1.2).

If a problem converges before all the rows of the maximum allowable

table size by the array, we simply stop inputting Rjl values and

reading Rii values. Notice that if we run out of R. 1 values simply
) ,

pumping in zero values as neutral elements does not affect subsequent

calculations, hence any table of size m<n can be computed in T=3(m-l)

ips cycles. Finally, we remark that each REP cell can be considered

equivalent to 2.5 ips cells and the array requires 2.S(n-l) ips

equivalents.

NOW, from Fig. (7.1.3) the last input R6l enters the array just as ..

the second cell is about to output the value R
33

• Generally an output

lth
leaves the ~ cell when the value Rn,l is already in the first cell.

It follows that once the last input has entered the first cell successive

1
inputs will be dummy elements, consequently, only ~ REP cells will

perform useful computations at any particular time. Hence, the size of

the array can be reduced to m' = ftnl cells, by using the two level pipe-

lining of the REP (cell). When the last input R has entered the
n,l

first cell, the last cell computes a result in the divider, which on

the next cycle will be output. We wrap the output of cell n-l around

to the input of cell 1, so that the result of cell n-l is pipe1ined

behind the last input in cell 1. The result computed is incorrect,

but by preceding discussions will not affect results further down the

467

array, and will not appear on the fanin line because the control bit

associated with the cell (n-l) output has not propagated through to the

divider (it will arrive in another two cycles). On the next cycle cell

1 starts to compute the value which would have occurred in REP cell

1
(3n+l) of the linear array. It follows that the two cell systolic ring

in Fig.(7.l.4) will compute the same table as Fig.(7.l.3) but requires

1 3 the cells. As each REP cell is equivalent to 2.5 ips cells the ring

requires at most nips cells to implement it.

aiRing

0-6

ceU. '" 'hiS) - 2

b) Computation' ,

(il

(v,

(ix)

(xiii)

~ -tJ-LJ
(ii)

Ivl)

(x,

(xivl

NOTES: (I) we now load 4i- 1 into a register.
which is only loaded when the input
control signal is high (this I, associated
with RiI values)

(iil)

(viii

(Id)

(xvi

\

(lvI

(viii!

(xvi)

FIGURE 7.1.4: systolic ring for Romberg Integration Table n=6
a) array b) ring computation

468

From H.T. Kung & Lam [84] we note that the ring has a particularly

efficient cell layout depicted by Fig.(7.l.5) which requires a box of

RII" •••

- - - - FANIN LINKS

Systolic Ring for Romberg Inlegration n ~ 3m m 1 = 38 cells

FIGURE 7.1.5: systolic ring for Romberg Integration n=3m, ml=36 cells

side~ (where a unit measure is the side of a square bounding the

REP cell). The fanin network itself can be embedded inside the ring

3r;-
to minimise its length which is proportional to (z)/m', and is important

for controlling skew and latch mistimings in a hard systolic frame,

but not so important in a soft-systolic frame with electro-optic

heuristics. The tag bits controlling the cell outputs onto the fanin

network can also be utilised to the full with the ring design, as

follows. First, we can justify the additional multiplier in each REP

cell for computing the 4 j powers. Clearly in a systolic ring the 4
j

values cannot be preloaded by the host as they would be incorrect after

469

the first ring cycle. Instead, notice that the control tag bit is set

only with Rii values which for the linear array implies that an unused

cell is entered, making any previous 4
j

value invalid. Consequently

the tag bit can be used to set the new 4
j

values as it cycles around

the ring, by loading a register in each cell. The loaded value is

retained until the tag bit completes a ring circuit, when it is over~

written. The tag bit can also be used to control the connections

between the host input/ring, and the ring connections between cell 1

I
and cell m. On startup cell REP(O} in Fig.(7.l.5} accepts values

from the host, including the control. After a single cycle of the ring

the control bit leaves the dth cell switching in the ring connections.

On subsequent cycles no switching occurs.

Finally, we remark that the array in Fig.(7.l.5} has 36 cells,

allowing any table m<108 to be constructed, which would probably be

adequate for most applications. The ring also has the useful property

of 1 host input and 1 host output (with the value 4 hardwired) making

it attractive for a hard systolic approach to implementation. Soft-

systolic versions of the arrays can be found in the Appendix as programs

9 (linear) and 10 (ring). The designs both require O(3n} ips cycles

compared with o(n
2

} time on sequential machines, a significant improvement.

7.2 THE CONSTRUCTION OF GENERIC ARRAYS FOR EXTRAPOLATION TABLE GENERATION

It can be readily appreciated that the above Romberg integration

array is a special case of a generalised (or generic) table generating

array. For example, above we assumed only the diagonal table entries

were required for output simplifying the host/array interface and

allowing the use of the area efficient ring structure. In wider

470

applications part or all of the table interior may also be required, and

this demands a more flexible array structure. To develop our generic

array we consider the construction of extrapolation tables used in the

solution of Ordinary Differential Equations (ODEs) associated with

initial value type problems of the form,

initial condition yea} = ~ } (7.2.I)
y' = f(t,y}, a~t~b

The generalised method is examined first for a low order formula (i.e.

Eulers method) combined with a suitable extrapolation formula, and is

then extended to the Burlisch & stoer [66] method as an example of

array construction. Finally, before the development of any systolic

arrays two fundamental restrictions must be observed:

(i) The systolic array can only be applied to existing ODE's

by construction of extrapolation tables.

(ii) The array must be of fixed size, implying a limit to the

number of levels or step divisions allowable, in order to

keep the table size fixed and manageable.

The first point indicates that any portion of the ODE algorithm which

involves the evaluation f(t,y} must be placed outside the array. This

follows because in general f(t,y} can be arbitrary providing it is

integrable, and the systolic array would become arbitrarily complex if

it were included. (This is an extension of the restrictions of the

Romberg array). The second rule observes that the function values used

to estimate yet} at every level must be evaluated before the array can

be used. This appears to defeat the object of extrapolation, because

we would normally stop when convergence is reached, ignoring the

computation at lower levels altogether.

471

We now consider how an extrapolation procedure can be incorporated

into the solution of an ODE using an algorithm attributed to Gragg.

Although the algorithm is simple it provides a suitable vehicle by

which to illustrate the above points and relate extrapolation techniques

to matrix computations. Applying Eulers' method with stepsize h>O to

(7.2.1) the ODE solution is approximated as follows:

with

w = Cl o

wi +l = Wi+hf(ti,w
i
), i=O(l)n-l

n = (b-a)/h and ti = a+ih, i=O(l)n-l
) (7.2.2)

and the approximation error y(ti)-w
i

leads to a function o(t) such that,

Now let w(t,h) denote the approximation to y(t) with stepsize h. For

example, choose two step levels ho and hI «h
O

) and consider evaluating

y(b) with,

q = (b-a) /h o 0

applying (7.2.2) and (7.2.3) twice, once with h=ho and again with h=h
l

yielding,

y(b) w(b,h
o

) + hoo(b) + O(h;)

y(b) = w(b,h
l

) + hlo(b) + O(h~)

which after simple manipulation produces,

y(b) = O(h;)

} (7.2.4)

(7.2.5)

If the difference method like (7.2.2) has a particular type of error

expansion (see Burden, Faires & Reynolds [81]) it can be generalised

to construct an extrapolation table, with diagonal elements converging

to a good (accurate) approximation of y(t). For example, with three

472

which results in Gragg's extrapolation algorithm defined below, where,

INPUT; end points a,b, initial condition a, tolerance TOL,

and level limit p~8

OUTPUT; T,w,h, where w approximates y(t) at stepsize h or a

message indicating that the minimum stepsize was exceeded.

Gnq9
{ NK-(2,),4,6.B,12,16,18)1

T
O

=&; "'o·C/,J h-hmax,

FOR 1"'1 TO 1 2
(FOR j-I TO i (Qij'(NKi+I'Nkj)),),

WHILE (To<b) 00
{ k"'l; FLAG-o,

));

WHILE (k~p AND FLAG"'O) DO
(.. -h'''''k,T-to' W2 0 1

"'lKW2+HX*f(T''''2); /*Euler step·/

Ta;to+HK,

FOR j-I TO N
k

_l

{ "'1-"'2' "'2-"'3'
"'J-"'1+2*Bk*f(T,w3}; ,·mid point method·,

T-t +(j+l)*BK.,
), 0

Yk-[V
3

+V
2

+BK*f(T,w
3
»)/2,

'·smooth for Yt,l-/
IF k~2 THEN

{j-k, Y"'Yl' '-save Yk-l , k-l*/
WHILE (H2) 00

),

+ (y,-Y j - l '
(Yj-l'Yj °k_l,j_l-l

j-j-l,

),

IF ly1-vl<TOL THEN FLAG .. l

I*accept Yl as new v-I

k-k+l,
);

k-t-I,
IF FLAG~ THEN

{ h"'h/2, IF h<h i TBEN{oorPUT 'minimum h exceeded' J STOP}
ELSE m n

{ "'O·Yl' To·TO+h; OUTPUT(to''''O,h);

IF (kS3) AND (h<h /2) THEN h m2h
}; max

473

The extrapolation table can now be represented as a lower triangular

pxp matrix,

IYll I
IY21 Y22
I I I "- 0

y = (7.2.6)

I :
I "-
I "-

"-
I I ,

~l
,

Y - - - - Yp~ p2

Next we define a constant pxp lower triangular matrix Q with Q .. the
l.)

ratio of two step sizes squared.

Qll l Q21 Q22 0
I I

, ,
Q = I "- (7.2.7) ,

I ,
I I "- ,

61
Qp2 - - - - Q pp

and define E as an extrapolation operator. The extrapolation given by
p

the Gragg algorithm is then formulated by,

(7.2.8)

where, y =
1

such that,

1
= or Y11 =

and,
I1 1
l,Ypl

1 Y31-Y21
Y21

= Y3l
+

Q22-1

= , or
1 1

2 1 Y21-Yll
Yll

= Y21
+

Q21-1

... etc.

474

The form of computation is similar to dot product calculations, hence

using the same pipelining ideas developed in section (3.2) Fig.(3.2.l.2),

extrapolation can be interpreted as a matrix-vector type computation

Q y(l)
1 1

(2)
== Y1 '

Q y (p) =
p 1

(7.2.9)

(i)
with Qiorow i of Q and Yl ° column i of the extrapolation table, and

the non-commutative operation implied by jux~position the formula

associated with E rather than the inner (dot) product. Thus, we have
p

obtained a generic recurrence structure which leads directly to the

linear array in Fig.(7.2.l) which adopts a diagonal input format for Q,

and a column output form for y, and implements operator E as a basic
p

cell computation.

YP' ... Y:n V11

a,.. , , ,
Q" .. -,

I ,-
I

~33 au 0:11, ... "
an Q21

an

0,.,

Vp2 __ .. __ Yp3 .. ____ YP'I- _________________ .YPO
I ~
I
I
I
I
I

: -y ..

y22_ - Y33

Ep!! extrapolation cell, computes extrapolation procedure

Time unit"" latency Icost of! eldrapolation computation
for cell

Total time :;;; (P - 11 C

P ... number of step levels

C .. latency of Ep cell,

EXTRAPOLATION TABLE

FIGURE 7.2.1: Generic extrapolation array

475

The construction of Q must be performed before array operation

removing the explicit representation of the sequence h ,hl,···,h 1 o p-

for p steps in the array. Consequently for specially chosen sequences

simplification in Fig.(7.2.1) occurs. For example, the sequence,

produces the step size relation matrix, r2
):

(4) 0 l
Q ~ (7.2.10)

22 (p-2)

I ~(P-l) 22(p-2) ____ (4)2 (2)J
and with the Qij preloaded into array cells produces the array in Fig.

(7.2.2a). The Q .. in (7.2.10) are easily constructed 'on-the-fly'
~J

and we can save preloading expenses by augmenting the E cell with
p

additional hardware to generate the required power for the next cell

(to the right). If the E cell latency is c(>l) cycles (where a cycle
p

is some basic calculation like an inner product step) and the cell can

be structured to allow two level pipelining, values can be input on

basic cycles rather than every c cycles, and the total number of array

cells reduced to m~rP/.;j. This produces the systolic ring in Fig. (7.2.2b),

which by wrapping the mth cell output back to cell 1 generates the table

computation sequence in Fig.(7.2.3). Hence,

Theorem 7.2.1: The generation of an extrapolation table of level p can

be computed in T~c(p-l) ips cycles where c is the E cell latency in ips
p

equivalents, and requires at most p cells.

Proof: [see Fig. (7.2.1)).

EXTRAPOLATION TABLE

FIGURE 7.2.2a: Extrapolation array for ho,hl =

I
I ,

Y2m+' .2m+1

YP,m+-' , , , ,
Ym+I."'+1

v ..
I , , , ,

v ..
v"

V'm.'.2m+2_ --- -- -
YP,m+2 , ,

------ ------

,
.. V2m.:rm

Y~+2.m+2---------"----------- Y',m

v" ,
,

, , , ,
I .~ __ _ Ym+l.m I ___________ _

y:r:r_------- Ym,m

476

FIGURE 7.2.2b: Systolic ring computation of extrapolation table

v" ,
V2, · " · , · ' · " · , y- · ' • v_

l,,~
v ..

"" extrapolation table

~ Table elements not computed

Vmm V2m.2m

cells 2-m VP.tII

FIGURE 7.2.3: Cycles in systolic ring

Corollary 7.2.1: If the E procedure can be implemented with the
p

477

equivalent of c ips cells incorporating two level pipelining we require

m=IP/Ci E cells requiring area proportional to pips cells.
p

The array for Romberg integration using (7.2.10) and (7.1.3) as

the E operator follows trivially. With the further assumption that
p

only diagonal values are output Fig. (7.2.2b) reduces further to the

compact ring layout of Fig. (7.1.5) form. Likewise when formula (7.2.5)

is adopted as the E operator the following cell structure is obtained:
p

la.

latency - 3

Vi,'Yi-I,'
d

FIGURE 7.2.4: Gragg E operator cell structure
p

Hence with c=3, and a sub-cell assumed bounded by an ips equivalent theorem

(7.2.1) gives the timing T=3(p-l).

Next, we consider a more complicated E function derived from the
p

Bulirsch & Stoer extrapolation method using rational function approximations

to y(t). The motivation being that the function fin (7.2.1) can be

approximated by polynomials or quotients of polynomials (rational

functions) which not only give a wide range of approximating functions,

but also allow larger step sizes hence smaller tables and arrays than

preceding methods. In addition, polynomials can be evaluated efficiently

using Horners method reducing the time for a host machine to generate the

required starting values. The Bulirsch and Steer algorithm requires an

E function of the form,
p

(i+1)
= T

k
_

1
+

T(i+1)
k-1

_ T(i)
k-1

T (i+1) -T (1)
k-1 k-1
(i+1) (i+1)]-1

T
k

_
1

-T
k

_
2

478

(7.2.11)

T
(i+1) (i) (i+1) (i)

relating the elements k-2 ' Tk_1 , Tk_1 and Tk together by a

Rhombus rule. Fig.(7.2.5a) indicates an intuitive order of parallel

computation similar to (7.1.4) but with the key,

/1
, I

<,' t Values input to
...... I EPcells

, I
'.J

<)1 A is produced by <,""1
I A the cell with input : I _

Key to (7.2.5a)

The cell that results is unnecessarily complex involving strange delay

arrangements, non-planarity and three inputs to produce the correct cell

output sequence. A less intuitive ordering is the skew Rhombus rule

which requires just two inputs and two outputs and calculates according

to Fig. (7.2.5b) using the key,

An

A"

Au C

values A. B input to cell .

values in cell producing next
extrapolation value C

Key to (7.2.5b)

If we define A=T(i+l)_ (Hl) (i+l) (i) Q k-1 Tk_2 ' B=Tk_l -Tk_1 ,
h. 2

=(_1._)
h. k 1.+

(7.2.11) becomes,

479

,.(0)
,.(0) 2

,.(0) ,
,. (0) ,.(1)

,.(1)
,

,.(0)
,.U) ,.121 2 ,.(1) 4

,.111 4 2
1 ,. (2)

, , -1
,.U)

,.()) ,.(2)
,.141 ,.U) 2

,.U)
0

,.(4) 0 2
-1

,.141
1

-1 1
,.(4) 0

0

(i) (ii)

,.(1)
-1

,.(1)
-1

,.(0)
1 .

" (0) ,.(2) ,.(0) ,
,,(0)

-1 ,.
,.(0)

,.Ill 4 ,. (1) 4 ,
,.(2)

,
,.(2)

,.Ul 2 2

,.141
1

0

liiI) (iv)

"Ill
,.(0)

.,(0) 0 ,,111 0 ,.(0) -1 -1
,. (1) 1

,.(2) ,,(2)
,,(0)

0 2 -1 ,,(0) -1
,.U) 4

"U)
,,(0)

4 -1 -1
,,(4) ,.(4)

-1 -1

Iv) (vi)

,.111
,. (0)

,.(0) 0
-1

,,(1) 1
,.(0) .'.

,.(2) 0 ,,(1) 2 •• --,.(0).
-1

,.(2) 1 .-liJ ':
,.U) (2) <-.Ta (1):

,. (0)
0 4

-1
,.(3)

"1 ,., T3:

.,(4) 0 ,.U)
-1

,.141 1
0

(viii

FIGURE 7.2.Sa: Rhombus computation of the tableau

'rU)
-1

'I'm
-1

'rltl
-1

'f(3)
-1

'1'14)
-1

'I'll)
-1

'1'(2)
-1

'1'(3)
-1

'1'\11
-1

'1'12)
-1

.,m
-1

'1'14)
-1

'r10) 'r ll) 'r10)
1

'r10) -1 1
'r 101

'r III 2 'r10) ,,12) 'r 11) 2 ,,10)
1)

'r10) -1 1)
'r(2) 'rIll 'rill

'r 12) 2 "Ill
4

"U) '1'12) 2 'I'(l) 0
1 3 -1 1)

'r(3) 'r12) 'rU)
0 '1'(3) 2 '1'14) '1'(3) 2

1 -1 1 '1'(4) 'f14)
0 0

(i) (iil

'1'\1)
'1'10) -1 '1'10)

2 'r 10) 'r12) 2 '1'10)

'r 11)
)

'r10) -1 'fll)
)

2 'rIll 4
'1'(3) 2 'f\1)

'r12)
3 -1 'r 12)

)
'l'U) 'r(3)

0 ,,(3) 2 ,,14) 0 2

'1'14)
1 -1

'r 14)
0 0

(iIi' (iv)

'1'10)
,,10) 0

'1'111 0 '1'10 1
-1 1

'f101
'f\2)

.,111
'I' (11

'1'101
0 2 .,10))

'1'10) -1
'f(2)

1 3
'rIll 4

.,(3) 'f(2)
'1'\11

0 2 'f 11))
-1 1

'f(3) .,121 3
'1"41 0 'r(3) 2

-1
'f14)

1

0

Iv) (vi)

.,10)
,,10) 'f(0) 0

,,(1) 0 T'O)
'I'll)

1
-1

'I'll)
1

,,(0) 0 T (1) 'f10
,,(2) ,,(1) 0 2 ,,(0)

'1'(2)
1)

'r (0) -1
,,(2) 1 ,,'11 3

0 'r'1I 4
'f(3) 3 0 T(2) 2 T\1

'1'(3) -1
"U)

1
T(2) 3

0 '1'(3) '1'(4) 'f(3) 1 0 2
'1'(4) -1

,,(4).
1

0
0

(vii) (viii)

FIGURE 7.2.Sb: Skew Rhombus computation of the tableau
in parallel

480

,,10)
4

'f10)
4

.,101
4

,,(0)
4

STEP 1: read T~'~~' . TIIIII. then T~i:~'

compute B.A

STEP2:Zo·1-8JA

STEP3:1,· Oz o-1

STEP4:T .. III"T~~,1I + BlIt

n

SUB I

/"L-....I :
•

Q

latency ... 5

Extrapolation cell

L ___ ~'f-__ --::--L_---+-t- TII+1I I 11-' a: n~ __________ L __

-------------------1------ I
latency - 2 3 ~

T~':,z'

T~1!,"

I-O(IIP-l

FIGURE 7.2.Sc: Bulirsch & Stoer extrapolation cell

(i+l)
~ T

k
_

l
+ B

B
Q[l- -]-1

A

481

(7.2.12)

matching the form in the generic array, and yielding the E cell in
p

Fig.(7.2.Sc). Notice that the cell latency is c~S ips cycles and that

the hardware requirement is bounded by 5 ips cells. Thus Theorem (7.2.1)

and Corollary (7.2.1) are applicable yielding T~S(p-l) and m~rP/~E
p

cells for a ring structure. The addition of an extra input and output

for each cell is a trivial alteration to the array in Fig.(7.2.1) and

(i) does not complicate the host array interface as T_l ~O is usual (and

(Hl) can be hardwired) while the output T
k

_
l

of the last cell can be simply

discarded.

482

The extrapolation arrays so far have always assumed that:

a) The diagonal elements of the table converge to the required value

y(t) at point t.

b) Convergence is achieved for some level p'~p.

Now suppose we had an array of p E cells and for some table the
p

diagonal entries converged on level p'<p, we have no way of knowing in

advance that the table will converge early and must compute all p

starting values and their associated Q .. elements. Likewise, if the
1J

table elements diverge we can detect it (by monitoring diagonal

elements output) 'and close down the array prematurely, but still have

all the starting values to compute initially. The computation of unused

starting values, especially as they will tend to occur at lower levels

where more function evaluations are required, represents a significant

overhead. It follows that table generation would be more efficient if

we could compute only the necessary starting values. A naive approach

to solving this problem would be to try and pipeline the starting value

evaluations and array operation. Clearly for arbitrary f(t,y) functions

in (7.2.1) and only a small number of levels (hence table sizes) this

is impossible. Basically, the value of f(t,y) must be found during the

periodicity time of an E cell, for the above arrays this is a single
p

ips, as we move down the table more f(t,y) evaluations are required per

starting value providing a simple contradiction. Instead we consider

an 'Adaptive' systolic array for extrapolation based on the work in

Murphy [78] where more flexible sequential table construction algorithms

were considered. The array is based loosely on the systolic priority

queue (Leiserson [81]) for keeping real time order statistics, in which

starting values can be input at intermittent intervals with the array

483

having no real knowledge of when the next input will arrive. On

cycles between inputs the priority queues continue to compute, we

suggest a modified form in which no computation occurs between inputs

delayed by significant time. We define two measures of time, array

time and host time such that the total computation time T=(array time)

+(host time).
I

Now suppose we compute p starting values with an array

of size pI the full table is computed making host time zero. If we

compute p" <pI starting values we construct a table of size pI! decide

I " on convergence and freeze the array while the remaining p -p starting

I
values are computed which contributes to the host time giving T=c(p -1)+

(freeze time). Thus, freeze time is the cost associated with evaluating

starting values which were previously precomputed. The decision to

freeze the array must be made by the host on the basis of whether the

tables diagonal values are smoothly converging or not according to the

following criteria.

(i) The detection of smooth convergence: which by decreasing errors

decides:

a) To abandon the table because it is not converging

b) Convergence will occur with the already computed

starting values

c) The estimated size of table required to provide

convergence, using extra starting values.

(ii) In case of an incorrect prediction:

a) Whether to change the stepsize (increase or decrease)

b) To re-run the array with more starting values.

(iii) Closedown of the array, because convergence has already been

achieved.

484

(iv) Raise an exception: that no more starting values can be used.

(i.e. all array cells occupied).

From these conditions the freeze command can be generated. The

implementation of the freeze depends on the type of clocking mechanism,

for asynchronous control operation is essentially dataflow and stalling

the handshaking protocol in the host is sufficient. For synchronous

arrays freeze is implemented by gating the array cell cycle clock as

follows:-

clock

clock and control
signals for the 11 n 11 adaptive extrapolation

freeze---.J 1~.~==~f~re~.z~'~==~'1 L.J L-array

more values
required fOf
conver~ge:::n.::c:' __ J

FIGURE 7.2.6

Normally, gating a clock would be bad practice, but as the array is

globally affected no problems should be encountered.

Clearly for large tables results can be constructed by alternating

freeze/computation phases requiring a minimal number of starting values

to be constructed. A final warning to the practicality of the adaptive

array is that we must collect enough diagonal estimations to perform a

prediction. The Bulirsch & stoer E cell with latency c=5 requires 10
p

starting values to create two diagonal estimates. Consequently we may

have to compute more starting values than necessary. The problem arises

because of the two level pipelining of cells, and can be avoided by

redesigning the cell without pipelining at the expense of reduced

throughput.

485

•
8

• •

•

a) Straight forward partition

•

•

b) Overlapped partitions

Pass n Q known value

FIGURE 7.2.7: Multipass table construction

a"

T

Diagonal fani"
network

486

FIGURE 7.2.8: Internal memory extrapolation array

.1

Starting values
andQij

a, ---- -
MEMORY · •

• ARRAY.

bl

SIZE

Control
0(1"1

loading a;, with simple shifts

0"

Input

0" a" 0"
0" 0"

0"

· .
~ ~ L-

CHIP LAYOUT

0"

Shift left Shift down and input

0" a" 0" A.,

T

TABLE
MEMORY

0(1"1

0"
0"

Shift down and input

0 32 C"
0 22 0"
0"

Shift left

0.2 0..,

Table outputs and
diagonal values

Control

0" a" 0" 0" 0" 0" 032 03' ete.

<I

0" 0" 0" 0 22 0 21

0" 0"
Shift left Shift down and input Shift left

Memory structure

Control

0 0

0

0

r"
L.J Oelay

1 '
f' ... ,1 0
LT;: O;j storage register
, : ,."',.

tT:: o,j memoryp = 4with svstolic
,,1,: delay synchronisation -
1 11 Lt'J

FIGURE 7.2.9: Chip organisation

Action

Shift down loadQ;j

Shift tight

Shift left

Shift up ReadT

487

Next consider the problem indicated by case (iv) of the prediction

criteria, under these circumstances we need a table larger than the

array can compute. The solution is to use multipass table construction

on a fixed array of size p as illustrated in Fig(7.2.7). Notice that

not all the table values are computed, and could affect the convergence

(or its detection) forcing a larger table, hence more starting values,

to be evaluated than required if all the table elements were known.

As f(t,y) function evaluations increase for deeper· levels the rise in

host computation can be significant. This increase to some extent is

outweighed by the fact that we can compute a table of any size, and

where area is a premium a small array can be constructed. Figs.(7.2.8)

and (7.2.9) indicate the possible structure of a self-contained extra-

polation array which minimises the host/array interface by storing the

Q .. and (table) y .. values for sequential input and output. The feedback
l.] l.]

loop of the Qij memory allow the Qij to circulate once loaded to solve

a number of consecutive table problems. The table memory incorporates

a fanin line so that just the diagonals can be output, allowing the

table to be overwritten for consecutive problem solutions, as well as

full table output for single problems. Clearly a single chip device

will require a small p and multipass which requires constant reloading

of the Q .. memory. We conclude that a small compact extrapolation array
l.]

is feasible.

7.3 THE UNIFICATION OF SYSTOLIC DIFFERENCING ALGORITHMS

The above fast systolic arrays for extrapolation techniques have

shown that a certain correlation exists between table generation and

matrix computations. From these correlations it is possible to develop

488

the concept of array templating. The templating method allows the

fast derivation, (by a sequence of designs), of systolic arrays for

computationally related problems which freeze the abstract definition

of the array at a high level using a global method of calculation.

The subject of this section is twofold. Firstly, it defines templates

for the problem of differencing algorithms, indicating that the above

methods are special cases of a more general structure. secondly, we

introduce the concept of unification and illustrate the method by showing

that our differencing templates can be unified to fit a single array

the Qnified ~ystolic ~rray for £ifferencing (USAD).

A prototype template for table generation which has been used

implicitly in the previous sections consists of the following four

components:

(i) An ordering of table elements suitable for parallel

evaluation of the table, and a computational rule relating

elements in a partially constructed table to unknown elements.

{Usually a column is defined in terms of columns to the left).

(ii) A linear array is defined with basic cells mapped onto a

column of the table. Cell i computes column i and implements

the computational rule. (see Fig.{7.2.l».

(iii) A class of arrays for partial or full table generation {as

indicated by (7.2.2) and (7.l.l».

(iv) A generic timing given by,

T = (number of inputs) + (delay through array)

(n+l) + cn , (7.3.l)

for cell latency c and table of size n+l.

We have observed that c varies for the complexity of the computational

489

rule and when c>l we can save area by using a systolic ring. (7.3.1)

is a maximal timing and requires some explanation, intuitively, the

array time must be bounded by the time for the last starting value to

enter and pass completely through the array. To derive the timings

in theorems (7.1.1) and (7.2.1) we notice that the structure of the

table demands only one output (the last diagonal) from the last cell.

After all starting values have been input the diagonal element of the

rn/cl th cell has been computed, and requires the array delay c (n-I~l)
assuming n is divisible by c substitution into (7.3.1) yields T=cn+l.

We can now distinguish between the ideas of templating and

unification. The key point is that the template defines an array

structure which remains static, while the design of a basic cell varies

with the computational rule. We shall denote computational rules as a

function R defining the cell as a black box. For instance, a rectangle

rule of the form,
T (j -1)

i

T{j_2)<> T{j)
i+l i

T (j -1)
HI

R{T{j-l) T{j-l) T{j-2»
i+l 'i 'i+l (7.3.2)

is the computational rule for the Bulirsch and Stoer extrapolation

table. A number of rules R
l

,R
2

, etc. which fit the same template and

have similar geometric properties can be unified if a common cell

structure with minimal area can be identified.

Next we identify a class of R. functions which can be unified
l.

from common differencing techniques such as forward, backward, divided

differences, and rational function approximation. All the tables

considered can be used to extract co-efficient data for the construction

490

of polynomials P(x) and rational function approximation R(x) of a given

function y(x). Many formulas are available for approximation such as

the Newton forward/backward difference formulae and the continued

fraction representation for rational functions. It is the simplicity

and universal application of these methods which makes the generation

of their coefficients (or part of them) by fast systolic arrays

important.

Now given a discrete function, i.e., a set of arguments x
k

and a

corresponding value Yk such that arguments are equally spaced by the

distance h=xk+l-x
k

• The difference operator ~ is defined as,

1st difference

2nd difference

and generally
n-l n-l

= ~ Yk+l - ~ Yk

This gives rise to the table template in Fig.(7.3.la) and the cell

function R is derived from the computational rule

(7.3.3)

defining the ~-cell in Fig.(7.3.lb) consisting of a single delay

register and subtracter. The array operation is shown in Fig.(7.3.2)

and with cycle time 'l=cost of subtraction the cell latency c=2'1.

By normalising the cycle time to eliminate '1 (7.3.1) gives the maximal

timing,

T = (n+l)+2n = 3n+l , (7.3.4)

which can be reduced to 2n+l cycles when the diago~al output is observed,

and a systolic ring configuration requires only fn/i\ subtracters.

Similarly the backward difference (g) is defined by the simple

computational rule,

u

491

Xs

a) Finite difference table computation

b) Basic A-cell

c) Swltchable difference cell

FIGURE 7.3.1: Finite difference template

Cycle Actions

t

U1

t+2

t+3

u4

FIGURE 7.3.2: Successive cycles in forward difference table generation

492

(7.3.5)

producing a similar cell to Fig. (7.3.lb) and retaining the computation

time (7.3.4). This is expected as the template computation orders are

isomorphic requiring only the reversal of the starting input data, and

these trivial methods can be used to illustrate the principle of

unification. In a mathematical sense the cell functions Rl and R2

define R3 a new function and rule which unifies both methods on the

same minimal area architecture. We denote this,

R3 (Rl (Yk'Yk +l) , R2 (Yk-l,Yk» = R
3

(Z) , (7.3.6)

such that,

{ llYk
c.=l

R3 (Zj) = J j=l(l)n+l
'lY

k
c.=O

J
and

{ Yj
,c.=l

Z. = J j=l(l)n+l
J Y j l'c.=o n- + J

deriving the unified basic cell of Fig.(7.3.lc) controlled by a switch

c
j

to swap the input operands of the subtracter to select Rl or R
2

•

Notice that the input for R2 is reversed.

The differencing algorithms defining the current template arrays

have a significant drawback for they assume equally spaced arguments.

To develop the templating concept for more general table generators (and

hence wider applications) unequally spaced arguments must be considered

and, for purposes of illustration shall take the form of divided

differences which are defined as follows:-

1st divided differences

2nd divided differences

Higher differences

y(x
l

,x
2

)-y(x
O

'x
l

)

x
2
-x

O

y(Xl···x)-y(x ••• x 1) n 0 n-
y(x ,xl""'x) = o n x -x

n 0

493

which modifies the template computation to that shown in Fig(7.3.3a)

and uses the template function,

(7.3.7)

producing the cell in Fig.(7.3.3b). This time the arguments x. not
1.

just the starting values are represented explicitly in the cell function.

Furthermore, for two arguments Xi and Xj in (7.3.7), successive j values

for i fixed become spatially separated (i.e. d=li-jl increases). From a

systolic viewpoint as d increases the problems of synchronising the

correct element with purely non-stationary dataflows also increases.

Thus, attempting to use the template for equally spaced arguments is

disastrous and indicates the effect on array dataflow as the argument

representation changes from explicit to implicit. Operation of the

divided difference array is shown in Fig.(7.3.4), with each cell consisting

of two subtracters, a divider, two preloadable registers, and an

additional delay for x
in

' The cell computation is divided into two

parts i.e.,

i)

11)

preload cell i with x. and y. the starting values i=l(l)n
1. 1.

compute the next column element as follows:

a)

b)

evaluate a=x. -x., b=y. -y. in parallel
l.n 1. l.n 1.

set y.=b/a the new divided difference
1.

The linear array requires the preloading of the starting values, and

"0

"I

"2

",

"4

"s

.)

Vo
I

y{xo,X1'

VI ~ y(x
O

,X
1

,x
2

,
I

Y(X'
1 ,X2 ' I y(x

O
x

1
X

2
x

l
,

I

V2 I y(x
1

x2x), I Y(XOxIX2x3x4' I
I

Y(XIX~X3XiCsX6} Y(X~'X3) I y(x
1
x

2
X

3
x

4
, I

I I

V3 I y(x2x 3X 4 ' I y(xlx2x3x4xS'
I

y(x),x
4

, I y(x2X3X4xS'

V4 I Y(X 3 K 4 xs'
I

y(x4 ,XS'

Vs ---- elements on same I1ne
computed 1n parallel

Parallel divided difference table computation

D
I
V
I

1-----------r----r------------"'n

"

Ul!lt:l~[;---V'n

494

yout-~-----------------------------------J

b) Divided difference cell

Notesl ----- lines used for preloadinq.

FIGURE 7.3.3: Divided difference template

t "2 ' ", " x4 x)

V
2

y
" y Y4 Y3

"1
"J FIGURE 7.3.4:

6 y(4.3)
Dataflow/computation
in divided difference
array ,

"2
,

" t.2 , y(2,3

"

, '. , .. ,
6 y(1,2. ,

4

t.,

Key to state of divide~ difference cell

495

on successive cycles after preloading computes one complete column of

the table every cell cycle. Compare this to the row ordering of the

previous templates and we see a change from row sweep to column sweep

orientated calculation. Alternatively in the old template array each

cell computed a column, in the new template the same cell computes a

row. The timing of the divided difference array is given by,

T = (preload time) + (time through array) = n+c*n (7.3.8).

Notice that preload time replaces the length of input. It follows

that c=T
l

+T
2

, where T
2
=cost of a divide, so that T=2n after normalising

the cycle time (in this case c). No two level pipelining of cell sub-

calculations is possible due to the Yi feedback in Fig.(7.3.3b) and

this together with the preloading prohibits the use of systolic rings.

REMARK: notice that forcing the x. -x. subtracter to produce the result
~n ~

1 causes the divided difference array to form forward and backward

differences.

Although divided differences can be used as substitutes for

derivatives in formulas like the Taylor and Newton formulas only

polynomials can be approximated. Rational functions represent a much

wider class of functions as they are quotients of polynomials. A

function like tan(x) for example cannot be accurately approximated

around its asymptotes by a polynomial whereas with a rational function

it can. Generally, a rational function has the form R(x)=P(x)/Q(x)

with P(x) and Q(x) polynomials. When Q(x)=l we generate the class of

polynomial approximations. It follows that rational functions not only

have a wider range of applications but also incorporate other array

designs. The link with difference algorithms and rational functions is

via reciprocal differences. Rational functions can be represented

by continued fractions which themselves are composed of reciprocal

difference components. A continued fraction has the form,

y(x) =

where p. are reciprocal differences such that
'-

1 = =

496

Fig.(7.3.S) indicates the required table template and the basic cell

which has a similar R function to divided differences with the rule,

denoted,

(7.3.9)

The cell now requires an adder, divider, two subtracters, three pre-

loadable registers and a delay for the x. value, and computes as
l.n

follows,

t:

t+l:

t+l:

r=x -x· r-p-y o in i' 1- in i

Pout=Yi; Ptmp=Pin

Snapshots of array operation are shown in Fig.(7.3.6), again no

497

Xl Yl
" (X1x2'

• x2 Y2 I P(x1 X2X3 '

p (x
2

x), I P (x
1

x
2

x
J

x
4

, I
I I

I
P(xlx2X3x4xS' x3 Y3

I P (x2X3X4 ' I ,
P (x 3X4' I P (x2x3X 4xS) ,

x4 Y4 I Pb'3x4xS' ,
p (x4XS' ---- elements on same line

Xs Ys
computed in parallel

Al Reciprocal difference table qeneration

Pout.~----~--------------~::::~-1---(~t=J

b) Reciprocal difference cell

FIGURE 7.3.5: Reciprocal difference template

498

.- x2 xl I .. x) x2 x4 x) I .. Xs x4 4-.- I" 0 0 0 0

Y3
I .. Ys Y4 ~ .- Y2 Yl y) Y2 I"

Y4 rr

x) Xl I .. x4 x2 .. Xs x3 0 x4 .-t- I' Y4
..

Ys Y2 Y3

t- p(2,3) pCl;! 10. p(3,4) 1'(2,3 !.o p(4,5) p (3,4) 1.0 0 p (4,5) ~ I" rr

t- x4 Xl ~ Xs x2 0 x3 0 x4 14-(2,3) I' p (3,4) " p (4,5) I'" 0

+- p(2,3,4), .. p(3,4,5) I .. t..
0 0 It-:0- 6 p (3,4, I' p(I,2,3:

,
p (2,3,4)

Xs x I .. 0 x2 I. 0 x3 ... 0 x4
~ 1- p(2,3,4) I" p(3,4,5) I' 0 ~ 0

+- p(2,3,4,5) I .. I .. I .. ~ p (1,2,3,4) I' o p(2,3,4,S I" 0 0 I" 0 0

+- 0 I.
0 I. 0 x) 1.0 0 x4 ~ Xl I'

x
2 I' ~

1'(2,3,4,5) 0 0 0

+- o p(I,2,3, 0 0 0 0 I .. 0 0 I+-4,5) I' I' I'

Key to state of reciprocal cells

FIGURE 7.3.6: Dataflow in reciprocal difference array

499

systolic rings can be used and the computation time is T=2cn where

c='2+2'1 (with the cost of add equivalent to subtract).

We now have two templates for table generation, one orientated

to cell column generation the other to cell row generation. The final

algorithm we consider is the Epsilon algorithm (Wynn [62) a pcwerful

technique for accelerating a slowly convergent sequence of values.

The basic computational rule and cell function R6 is given by,

(m)
£s

e;~;')~
(m+l)

£

£m .. E: (m)
s+l s+l

= E: (m+ 1) + _...,.--,1:=-:-_,.....,_
s-l ((m+l) (m»

E: -E:
S S

S ((m+l) (m+l) (m»
R6 £ , £ 1,E: =

S s- S
or

(m)
E: s+l

(7.3.10)

and the associated table template shown in Fig.(7.3.7). Notice that
I

(0) ,
EO / ,

E{l} I /£(0)

-1 /.(1) 1 I .10l' I
I 0 I 2 I

.(2), 1.1ll ,.(0) /

-1 I (2) 1 ,'(1) l / (0)
£ I £2 £4

(. (3) 1
0

/ E (2) / E (1) / I
-1 , (3) 1 I (2) 3 (1)

/ EO / / £2 / I ' •
• (4) I /.(3) I 1.(2)

-1 I (4) 1 (3) 3
/ EO / I E2

.(5) 1.(4)
-1 (5) 1

'0

a) E-table generation

'--~ ___ ~_~O~l

INl-_+-__ -{=J
IN2---+-lL_H ~-----~O~2

b) £-cell structure

FIGURE 7.3.7: Epsilon £-algorithm template

500

due to the lack of x, arguments R6 fits the cell row oriented template,
l.

and that the associated cell structure is pipelined permitting systolic

rings. Yet the epsilon method has a very similar structure to reciprocal

differences and hence can be implemented by bcth templates. It follows

that the second unequally spaced argument template is more general,

with the equally spaced problems producing a special form of R function

which allows further pipelining. For completeness we state the

computation order for Fig.{7.3.7b).

t: 1Nl (a) IN2 E (a)
£-1 ' 0

1 IN2
(i) IN2 (i) (i) (O)

t~: e:. -1 I EO ' ro= '0 -E
0

t+l: 1Nl
(2)

£-1 ' IN2
(2)

EO rl=l/ro '
(2)

r =e:
o 0

-E
(i)
0

3 1Nl
(3)

IN2
(3) (l)

rl=l/ro '
(3) (2)

t~: IS -1 ' EO ' r 2=E_
l

+r
l

, r =£ -e:
o 0 0

This gives a latency of C=4T2 and a maximal timing T=5n after

normalisation. The systolic ring requires rn/41 E-cells.

Finally we are in a position to discuss a useful application of

unification the USAD array. The basic principle is to derive a cell

function of the form,

b

a c (7.3.11)

d

All the cell functions R3-R6 fit th~rhombus pattern. For instance

omitting vertex a) produces forward and backward differences, while

divided, reciprocal differences and Wynn's algorithm fit the full rule.

We require a minimal cell architecture which computes (7.3.11) using

a set of switches to control the type of computation rule. Careful

501

consideration indicates that the reciprocal difference cell contains

all the hardware necessary and only the controls need to be added.

We augment the reciprocal difference cell with three control bits, c
i

'

i~1(1)3 with the following interpretations.

Cl c2 c 3 CELL FUNCTION ARRAY FORMAT

0 0 0 rO/rl Divided difference

0 0 1 r l Forward "

0 1 0 - -
0 1 1 r l

Backward "

1 0 0 rO/rl + Pin Reciprocal "

1 0 1 l/rl + Pin £-Algorithm

1 1 0 - -

1 1 1 - -

where controls can be interpreted as commands to the reciprocal cell

such that,

{ 0 rO/rl { 0 Normal operand order

Cl ~ c 2
~

1 rO/rl + P. 1 switch operand order
1n

{ : rO output valid
c 3

~

set r ~l

while,
0

{ 0 inputs to divider unchanged
S ~ Cl A c 3

~

1 inputs to divider swapped

c
2

now performs the switching tasks for R
3

, while c 3 provides a neutral

value to mask out the divider for forward and backward differences, or

acts as a reciprocal cell for the epsilon method. Cl masks out the

adder, while the command S allows rl/r
O

to be computed when necessary.

502

The array preloading is trivial and is not discussed here, while the

timing of the array is identical to the reciprocal difference array.

The additional switching and hardware is simple combinational logic

and does not add significant time to the algorithm.

Although the algorithms discussed in this section are computation

ally simple, the unified array and the method by which they are analysed

(using templates) is important for future systolic array designs.

We have allowed a number of problems to be implemented on the same cell

architecture to produce a cost effective VLSI design from a soft

systolic starting point. Recent trends in systolic array development

(in particular the CMU WARP processor) are aimed at more flexible

systolic array design. The frequent use of the methods examined here

should make a USAD device an interesting alternative for fast computation

of approximating functions.

7.4 A SYSTOLIC ARRAY FOR THE QUOTIENT DIFFERENCE ALGORITHM

Finally, to finish this study of linear arrays for table

generation we consider another important area of numerical analysis;

finding the roots of polynomial equations. Many methods are available,

and the choice of technique depends upon whether all the roots are

required or only a few, whether roots are real or complex, simple or

multiple, or if first approximations are available. In all cases the

rapid production of the required roots is a primary concern. We

consider a systolic design for producing all the roots of a polynomial

by a table generating procedure called the quotient-difference (QD)

algorithm.

This new design complements the above arrays because firstly it

503

allows the analysis of the effect of triangular versus rectangular

table construction, and second it examines the problem of constructing

an open ended (potentially infinite) table on a finite sized array.

Now let,

n
p (x) = aox + ••• + a

n
(7.4.1)

be a polynomial with all its roots distinct (i.e. none with the same

absolute value), denote the dominant root r
l

• This root may be found

by computing the solution sequence of the associated difference equation,

and setting,

r = lim
1 k-

(7.4.2)

(7.4.3)

This follows because p(x)=O is the characteristic equation of (7.4.2)

and has a solution which can be written in the form,

k c r
n n

, (7.4.4)

where ri' i=2(1)n are the remaining roots of p(x). If C1FO simple

manipulation yields,

(7.4.5)

and as r
l

is the dominant root,

(7.4.6)

and (7.4.3) follows from (7.4.5) immediately. By extension of (7.4.5)
x

"f d f" 1 k+l d 1 we e 1ne qk------ an
xk

o
dk=O' and construct Table (7.4.1) using the

following rhombus rules:

(i) A rhombus centred in a q column

j-l
<'lk+l
~ ~~

j-l j
d +q
k+l k+l

(ii) A rhombus centred in a d column

d
j
k

j
dk+l

producing two alternative forms,

a)

a)

or

~ (qj *dj)/d j
k+l -k+l -k

j
b) qk+l ::;

or

respectively indicates that,

lim qj ~
k

rj , j~l(l)n •
k-

504

(7.4.7)

(7.4.8)

(7.4.9)

Furthermore when no two roots have the same absolute value, and provided

that no division by zero occurs in (7.4.8) during table construction,

(7.4.9) implies,

< 1 , (7.4.10)

and the ~ converge (geometrically) to zero. When ~ values do not

converge p(x) has some roots with equal absolute values and a more

complicated root finding procedure is required. Thus q~ approximates

r
j

, and d~ defines a measure indicating how close q~ is to the root.

'f j j+l j-l However, ~ d
k

is not convergent and <lk and d
k

do converge, the

presence of a complex conjugate root is indicated. In this special

circumstance the roots can be extracted by solving the quadratic,

(7.4.11)

where,

REMARK: Choosing x_n+l~·.·x_l~O' xo~l guarantees Cl 10 in (7.4.5). The

soS

proof of this and the above results is beyond the scope of the

thesis but the reader is referred to Rutishauser [51] •

1 2 3 4
qo

d
l

q-l
d2

q-2
d

3
q-3

0
1 0 2 -1 3 -2 4

ql

d
l

qo
i

q-l
d

3
q-2

0
1 1 2 0 3 -1 4

q2
d

l
ql

i
qo

d3
q-l

0
1 2 2 1 3 0 4

q3
1

q2
d

2
ql

d
3 %

0 d
3 1 2 2 3 1

4
q4 1 q3

d
2 q2

d
3 ql

0 d
4 3 2

1 2 3 4
qs q4 q3 q2

TABLE 7.4.1: Generalised quotient difference table

Next observe that the type of QD table depends on the choice of k.

(i) The 'column-by-column' (c-by-c) Table: results when k~O for all j

and produces an open trapezium structure, with the top boundary

enforcing the use of (7.4.7a) and (7.4.8a).

(ii) The 'row-by-row' (r-by-r) Table: results when k<O for some j and

causes the table to form an open ended rectangular structure by

the use of (7.4.7b) and (7.4.8b).

The c-by-c method is extremely sensitive to rounding error and requires

the construction of the x
k

terms as starting values. The r-by-r method

controls the error by the use of fictitious entries chosen to force the

correct behaviour onto the upper boundary of the c-by-c table. The

fictitious entries are introduced by filling the top two rows of the

table with the values,

row 1

row 2 o

-a la
1 0 o 0 o o

a la 1 n n-

506

o

o

Both methods are illustrated in Tables (7.4.2) and (7.4.3) for the

polynomial x
2
_x_l associated with the Fibonacci sequence xk+x

k
+

l
for

k>O. Notice the greater stability in the second root and the fact that

the xk values are not required by the r-by-r method which is a clear

advantage.

~
1

4
1 2 k "It qk k ~

0 1 0
1.0000

1 1 0 1.0000

2 2 0 2.0000 -.5000 -1.0000

3 3 0 1.5000 .1667 -.5001

4 5 0 1.6667 -.0667 -.6669

5 8 0 1.6000
.0250

-.5997

6 13 0 1.6250 -.0096
-.6240

7 21 0 1.6154 .0037
-.6226

8 34 0 1.6190

2 TABLE 7.4.2: Column by column method for x -x-l

~

-.0001

-.0001

.0005

.0007

-.0082

507

Table (7.4.4) illustrates a suitable ordering of elements for the

systolic construction of the QD-table. The pattern is similar to those

used previously indicating that the same techniques are applicable, and

suggest a linear systolic array of 2n cells for a QD-table with n roots

(but 2n columns). In this intuitive design we define two types of cells

corresponding to the two rhombus rules, and allocate Q-cells to odd

numbered columns and D-cells to even columns of the table. Next we

observe that a D-cell requires only multiply and diVides, and the Q-cell

only adds and subtracts. Thus applying the principle of unification we

merge pairs of adjacent odd and even cells to create a single unified

QD-cell with hardware equivalent to two inner product cells, producing

a linear array with n QD-cells. This new array utilises the observation

that the QD table can be partitioned by odd and even columns to yield

two distinct but related tables of size n, one for root approximations,

the second for indicating root convergence. Hence the QD array is

essentially a unified array which interleaves the construction of both

tables on the same linear array.

column 0 1 2 3 4 5 6 7 r-by-r
~----~r-~-,----~--~~~---

It' I I / 3/ / I 4
% q-2 / / q-3

I 1 / 3 /
/ / do / 3 / d 2 / 4/

/ 1 / I
/ ql I / I q-2

o

0/ / / d
l
l

/ d
0
2

d
3

/ 3 ;-1 '
I l " I q~ / / qo /

/ 2 1 I / d2 3 o / d / I d
/ 2 / 2 I 11 0 I

I

/

11/ /3,4
/ q3 I / q2 / ql / / qo /

1/2 3
o I / d 3 / I d 2 / / d I

/1 I 12 / /3 1/4
/ q4 I q3 I 2 I q2 / / ql

o I d
l

/ d / I d l /
/1/ 4 I1 2/ 3 / 31 2/ 4

I q5 q4 q3 q2

TABLE 7.4.4: Parallel evaluation of QD table entries

/

elements on
same line
computed in
parallel

upper boundaries
of tables for
differing QD
methods

508

The QD cell computation is determined by (7.4.7) and (7.4.8). notice

that (7.4.7) must be computed before (7.4.8) and demands a two level

pipelined approach to the cell design. Choosing (7.4.7a) and (7.4.8a)

produces the cell in Fig. (7.4.la) suitable for the c-by-c method. and

selecting (7.4.7b). (7.4.8b) the cell in Fig. (7.4.lb) is defined for

the r-by-r method. Tracing the data flow in the respective cells

reveals interesting relations regarding array data flow and the order

of table generation. The c-by-c QD-cell creates a stationary

array in the sense that every input q~'~+l to cell j produces an

"+1 "
output q~ .d~ tying columns 2j-l and 2j. j=l(l)n of the QD table to

cell j. Consequently the successive root approximations q~. k=1.2 •••••

to rj remain fixed in the same cell. and the array must contain n cells

to evaluate all the roots. Now in order to judge root convergence we

must obtain the values of ~ from the array. assuming a host machine

supplies values to and from the array. collection of the ~ implies a

fanin type network with an output associated with each cell. Once

convergence of roots is achieved we encounter the additional problem

of stopping the array and unloading the results. In contrast the r-by-r

" j j-l QD-cell produces a non-stationary array. with the Lnputs qk' dk+l of

j j
cell j producing the output qk+l'dk+l' It follows that successive

approximations to the roots r
j

• j=l(l)n are pumped systolically from

left to right along the array. Furthermore. this non-stationary array

requires z (>0) cells where z is the number of approximations to each

root on a single pass through the array. with results emerging from

the right hand end of the array without any special effort. Thus. the

fact that the r-by-r is more stable than the c-by-c scheme together

with the non-stationary QD-cell arrangement makesrow-by-row table

1

• j
<lk+l

rtI

A

B

~-i L

.....
R2 Lt to •

t =b-a
t

2
,..b+a

bO
tl -. " t2

t- -tl

a} Stationary c-by-c cell

R R

.....r 0 1
I 1

a -;r-I a
R2 Lt t =a+ 2

0 t
2

=b-a
b b

tl t3

L.tI

b) Non-stationary r-by-r cell

FIGURE 7.4.1: QD Cells

509

a •
t 3=·/t t

4
=a*b

rt -4 b b

"" 1-

• r
t4=a/b ts a

t6=a:t b
b

t3 rt b
,. outl

out2

1-
s o s

1

510

construction preferable. A sequence of snapshots for the non-stationary

QD-cell are shown in Table (7.4.5b) for the row-by-row orientated

solution to,

432
x - 10x ., 3Sx - SOx + 24 = 0 , (7.4.12)

in Table (7.4.5a~ Careful observation of the snapshot data reveals

k d q d q d q d q d
,0 .. 0 0

1 0 -3.5000 -1.4286 -.4800 0
6.5000 2.0714 .9486 .4800

2 0 -1.1154 -.6542 -.2329 0
5.3846 2.5326 1.3599 .7229

3 0 -.5246 -.3513 -.1291 0
4.8600 2.7059 1.5821 .8520

4 0 -.2921 -.2054 -.0695 0
4.5679 2.7926 1.7180 .9215

5 0 -.1786 -.1264 -.0373 0
4.3893 2.8448 1.8071 .9588

6 0 -.1158 -.0803 -.0198 0
4.2735 2.8803 1.8676 .9786

7 0 -.0780 -.0521 -.0104 0
.... 1955 2.9062 1.9093 .9890

8 0 -.0540 -.0342 -.0054 0
4.1415 2.9260 1.9381 .9944

4 3 2 "T~AB~L~E~7~.~4~.~5a~·:Row-by-row QD table for p(x)=x -lOx +3Sx -SOx+24=0
(Exact solutions x=l,2,3,4).

to t1 t2 t3 t4 t5 t6

a[ol 0.0 -'.5 -1.4286 -0.41 0.0 0.0 0.0
a[ll 0.0 0.0' -3.5 -1.4286 -0.48 0.0 0.0
a[21 0.0 0.0 0.0 -3.5 -1.4286 -0.4, 0.0

t[OI 0.0 6.5 -1.4286 -0.48 0.0 0.0 0.0
till 0.0 0.0 6.5 -1.4286 -0.48 0.0 0.0
t[21 0.0 0.0 6.5 2.0714 0.9486 0.48 0.0
tUI 0.0 0.0 0.0 6.5 2.0714 0.9486 0.48
t[41 0.0 0.0 0.0 -0.53846 -0.6897 -0.5060 0.0
t [51 0.0 0.0 0.0 0.0 -0.53846 -0.6897 -o.S060
t[61 0.0 0.0 0.0 0.0 -1.1154 -0.6542 -0.2429

0[01 0.0 0.0 0.0 6.5 2.0714 0.9486 0.48
0[11 0.0 0.0 ~o.O ,,0.0 iI' 6.5 l.oo2.0714 t,.o0.9486

-'
, , '"

, ,
A -3.5 -1.4286 -0.48 0.0 0.0 0.0 0.0

• • 10 0.0 0.0 0.0 0.0 0.0 0.0 et.c.
out 1 0 0 0 0.0 0.0 -1.1154 -0.6542

out 2 0 0 0 0.0 0.0 6.5 2.0714

TABLE 7.4.5b:snapshots of r-by-r cell operation for above problem

511

further improvement to the r-by-r array. First the cell latency is

c=4. Thus for z=n, after n cycles the 1nl cl = rn/4l QD-cell has

performed one complete computation, and the last a la 1 value of the
n n-

top two table rows has been input to cell 1. It follows that wrapping

the output of cell rn/4l around to cell 1 forms a systolic ring with

rn/4l QD-cells. This ring will generate an infinite table of root

approximations, with rn/41 rows of the table on each cycle of the ring.

Allowing a trade-off of two inner product cells for each QD-cell implies

that all the roots of p(x) in (7.4.1) can be found with only !n inner

product cells.

Timing of the r-by-r arrays is complicated by the fact that

convergence depends on the input polynomial. If we let i be the total

number of QD table rows required for convergence of all roots a linear

array of z cells requires [ii/zl passes of the root approximations

through the array. The approximation to r
l

on the first pass is output

after cz=4z cycles, and has to wait n-4z cycles for the remaining roots

of the pass to enter the array before the second pass can start. Thus,

the total computation time is

T = ["il ~ n + 4z , (7.4.13)

and for a systolic ring where z=n/4

T = r4vnl n + n < 2n + 4i . (7.4.14)

Finally, the generation of the first two starting rows in the r-by-r

table can be pipe lined with array operation by the addition of a simple

boundary cell consisting of a divider, negater and some switching logic,

as shown in Fig.(7.4.2).

~

H r 1"" tl ,. • •
to·a/b r =a

r- L- 2
t2

Lt H b
bt =b

to 2
L-

FIGURE 7.4.2: Boundary cell

512

A control bit cl tagged to the a i is used to select the correct

negator output according to,

c =0
1

c =1
1

and can also be used (with suitable delays) to control the switching

of the input data from host machine to the rn/4l th QD-cell in the

systolic ring.

We conclude that the non-stationary arrays incorporate better

systolic data flow and can be considered superior to the stationary

arrays as the computations are numerically more stable. Each non-

stationary array with the addition of a boundary cell requires as input

the polynomial coefficients a ,al, ••• ,a and produces an output sequence o n

of root approximations (q~) and a sequence of error indicators (~).

These sequences by convergence or divergence of the ~ values can

determine either:

(i) all the roots of the polynomial (where they are distinct)

(ii) the existance of multiple roots

(iii) the existance of complex conjugate roots,

and in the latter case the q~ sequence provides enough data for a

quadratic from which the complex roots can be extracted, (by standard

techniques}, to be constructed.

Clearly, the utility of the array is limited as a general root

finder (by (i)} , however, we suggest that it could be used as an

inexpensive 'add-on' extra to an existing machine to provide quick root

approximations and/or provide data to influence the choice or prime more

sophisticated root finding procedures. In this sense the array is a system

resource which could be called as a procedure, and a soft-systolic version

of the algorithm is given in the Appendix.

513

.) linear array

b) Systolic ring (with modified boundary cell)

FIGURE 7.4.3: systolic arrays for the QD algorithm

514

7.5 A SYSTOLIC SIMPLEX ALGORITHM

Next we consider more complex table generating algorithms for

linear programming and in particular the Simplex algorithm. Linear

programming techniques themselves are extremely useful in many

applications such as:

1. Agricultural applications - National and regional scale

2. Procurement of contract awards

3. Economic aids (Leontief inter-industry model)

4. Industrial applications (chemical, coal, airline, etc.)

5. Military applications (strategic and logistic)

6. Personnel assignment

7. Production scheduling and inventory control

8. Structural design

9. Traffic analysis

10. Transportation problems and network theory

11. Travelling/salesman problem

12. Statistics, combinatorial analysis and graph theory

13. Design of optical filters.

Thus a fast and efficient systolic design is well justified. A linear

programming (LP) problem consists of a linear function,

H = clxl + ••• + cnxn
(7.5.1)

which is to be minimised or maximised subject to certain constraints

ailxl+ •• ·+ainxn ~ bi , O~Xj' i=l(l)m, j=l(l)n. (7.5.2)

The problem can be written in matrix vector notation as,

() T .. b H x = C x = m1n1mum, Ax~ , O~x , (7.5.3)

and from linear programming theory it is known that the minimum (or

maximum) occurs at an extreme feasible point. A point (xl' •.• ,xn) is

515

feasible if its coordinates satisfy all (n+m) constraints, whereas an

extreme feasible point forces at least n of the constraints to become

equalities. By introducing slack variables x l' ••. 'x the constraints
n+ n+m

are converted to the form,

al..lxl + a i2x2 + ••• + a. x + x . = b., i=l(l)m
~n n n+1 1.

(7.5.4)

permitting extreme feasible points to be located by having n or more

variables (including the slack variables) zero. A solution point is a

minimum point of H, if there is more than one solution point, there is

more than one extreme feasible point and any such point can be used as

a solution.

To date systolic arrays for the LP problem have been limited to

least squares approximation for linear systems, where,

Ax = b , (7.5.5)

is the overdetermined mXn system (for m>n) in (7.5.3) and which

satisfies the equations approximately in some 'best' sense. Essentially

we calculate the residual,

r=b-Ax, (7.5.6)

and consider the function

T
~(x) = r r , (7.5.7)

and choose x to minimise ~(x) (i.e. the sum of the squares). It

follows that,

T TT T TT T
~(x) = (b-Ax) (b-Ax) = x A Ax-(bA x+x A b)+b b

T TT T
= x AAx-2x A b+b b (7.5.8)

T T
and (7.5.7) is minimised when the gradient vector grad(~(x)p2A Ax-2A b=O

hence,

(7.5.9)

Thus, forming ATA and ATb produces an nXn matrix problem which can be

516

solved by the arrays developed in the previous chapters. However the

solution does not solve (7.5.5) exactly and we consider the more

flexible simplex algorithm which solves the original system by table

manipulation.

The simplex algorithm is a method which starts at some extreme

feasible point and by a sequence of exchanges proceeds systematically

by steadily reducing H to other extreme points until a solution point

is found. The use of slack variables (which must be non-negative like

the other x.) allow the identification of extreme feasible points.
1.

Since the inequality in Ax~b implies a slack variable being zero, an

extreme point is one where at least n of the variables xl""'x are n+m

zero. Alternatively, an extreme feasible point is one where at most

m variables are non-zero. The matrix coefficients of (7.5.4) can be

expressed as,

!all a 12 - - - - - a 1n 1 0 - - - - - 01

a mn

o
I

o

1 0----·0
I" I

" " " "
" " ___ 0

I
o
1

(7.5.10)

with the last m columns corresponding to slack variables. Thus, the

(n+m) columns of the matrix can be written as v
1

,v
2

, •.• ,v and (7.5.4)
n+m

written as,
x

1
'vl +x

2
v2 + ... + x v = b ,

n+m n+m (7.5.11)

and if an extreme feasible point (say for simplicity) x
m

+
1

= ••• =xm+
n

=0

is known there are at most m non-zero variables, hence,

(7.5.12)

and (7.5.13)

517

If the vectors vl, •.• ,v
m

are linearly independent, all (n+m) vectors can

be expressed in terms of this basis, viz.

also let,
h

j
= vl,cl + •.• +v jC -c, , j=l(l)n+m.

J m m J

(7.5.14)

(7.5.15)

The Simplex method tries to reduce H by including some amount p~ for

k>m and p positive. Thus, in order to preserve the constraints we

multiply (7.5.14) with j=k by P and subtract (7.5.12) to get,

(7.5.16)

and from (7.5.13) and (7.5.15) the new His,

(7.5.17)

Clearly to reduce Hl ~>o, and p must be as large as possible without

making (xi-pv
ik

) negative hence,

x tV~k = min (x./v'k) = p , (7.5.18)
i l. l.

with the minimum taken over only the positive v
ik

terms. Clearly with

this choice of p the c~ coefficient must become zero, and as the

remaining points are non-negative we have created a new extreme

feasible point with a better result Hl=Hl-P~. The basis also needs

to be updated by exchanging v~ for vk ' which is performed as follows,

Solving for v~ and substituting into (7.5.14) yields,

where,

Vj = vljvl + ••. V~_l,j v~~+vkjVk+v~+l,j v~+l+···vmjVm'

vij = {
Vij-(V~j/v~k)Vik'

vi/v~k

Substituting for v~ in (7.5.11) gives,

xlvl+,··+x~_lv~_l + Xkvk+;~+lv~+l+··.+xmvm = b ,

(7.5.19)

(7.5.20)

with

Also,

with,

{

xi-(xi/vik)Vik'

x/vik

518

(7.5.21)
i=1.

The method is then iterated until either all the h. are negative, or
J

until for some ~>O no vik is positive. In the first case, the current

point is as good as any adjacent extreme point. In the second case, p

can be arbitrarily large and there is no minimum for H. For further

reading on LP problems, their applications and the Simplex method see

Chvatal [80], WU & Coppins [81], Llewellyn [64], Gass [691·

The Simplex procedure can be represented compactly by the tabular

form,

Xl Vu v12 - - - - -- -v l,n+m

x2 v
2l v22 - - - - - - - v2 ,n+m

I I I

I (7.5.22)

I

I I
x v

ml
vm2 ----

-v
m m,n+m

HI hI h2 - - - - - - h n+m

and summarized by the following six steps:

(i) Call v ik the pivot (i.e. P=xi/vik) the part to be added.

(ii) Divide the entries in the pivot row by the pivot.

(iii) The pivot column becomes zero except for 1 in the pivot

position.

(iv) All other entries are modified by the rectangle rule

(v)

a_-------o b

c d

with a=v
tk

and c=vik •

b d=d-(-) c
a

Find the largest new h .• j=l(l)n+m which is positive
J

(terminate if there are none).

519

(vi) Find the new pivot according to (7.5.18) with the column

indexed j. If none are positive then stop.

The global structure of a wave front orientated architecture is shown

in Fig.(7.5.l). and basically consists of an (m+l)*(n+m,l) orthogonally

FIGURE 7.5.1: Systolic array for the Simplex algorithm
(m=3, n=3)

~Data

---- Control

•

S20

connected array representing Table (7.S.22) and two boundary arrays

which are used for sorting rows and columns of the table. All the

connections are bi-directional except for the control lines which

consist of two 2-bit one-way connections. These two control lines per

link allow the specification of two superimposed and disjoint control

networks on the array of processing elements. One network is used for

row and column sorting, the other for the application of the rectangle

rule and pivot formation. The essential idea behind the array structure

is to keep different operations in fixed positions in order to simplify

cell definitions. This means positioning the pivot element by a sequence

of systolic operations so that it always resides in the (m,2) position

of the table, thus making row m the pivot row and column 2 the pivot

column. The pivot is chosen to maximise the H reduction so the first

step is to find the maximum ~ which in turn selects the vk (to be

swapped with v~) automatically. Clearly sorting the h" j=l(l}n+m into
J

descending order from left to right places hk and vk in column 2. Like-

wise we must sort rows to find the minimised p (after neglecting negative

and zero values) by sorting the quotients from (7.S.1S) into ascending

order from top to bottom with zero and negative values pushed to the

area above the largest p. In addition the row and column sorters

maintain indexes for rows and columns to keep track of vectors moved

in and out of the basis and the m variables in the current solution,

so that the final solution is easily recovered after termination of

the array. For any swaps generated by the sorters the corresponding

table elements must be realigned and this is achieved by control values

generated by the sorters and pumped south to north and west to east for

column and row sorting respectively. Hence after the two sorts the values

521

v~k and x~ must be in positions (m,2) and (m,l) making all the required

data for improving the extreme feasible point locally placed. Finally,

the column and sorters place the data necessary for the termination

tests in the vicinity of the controller which requires only four states

to control the whole iteration and,

State (i)

State (ii)

State (iii)

State (iv)

Exchange

Column sort

Form pivot contenders

Row sort,

to define a loose sequential structure on the Simplex iteration.

Individual cells cycle from (i)-(iv), while from a global viewpoint

the array can be in many different states simultaneously. The computation

is essentially performed by overlapping the computational wave fronts

generated by each state in a manner that prevents interference of

individual states and admits widespread parallelism. Alternatively we

can consider the whole Simplex iteration as a single wave front which

undergoes a series of reflections and refractions at array boundaries.

The practical value of this is that the controller needs only to prompt

the pivot cell to change state, using triggers from the row and column

sorters. Furthermore, the cost of each cell is bounded by the time of

a single inner product step. A row or column swap (i.e., the time to

swap'elements in adjacent horizontal or vertically aligned cells) is

also an inner product step the first half cycle we send the cell element

and on the second half cycle receive its replacement - which simplifies

communication when a processor switches from row or column state to

exchange or pivot forming states.

The global computation of the array can be easily understood by

522

tracing the wavefronts associated with each state as demonstrated in

Fig.(7.5.2). For simplicity t=l (in Fig.(7.5.2)) represents the

first cycle after the starting table has been loaded into the array, and

t=25 depicts the start of the next cycle. It follows that wave fronts

of different states never interfere and an estimate for the time of a

Simplex iteration can be identified.

Theorem 7.5.1: A single change of an extreme feasible point in the

standard Simplex algorithm with n unknowns and m constraints using an

orthogonally connected array of O«m+2) (n+m)) cells requires

T = (2n+4m+6) cycles.

Proof: (by observation of the data flow in Fig.(7.5.2)).

(i) The exchange state requires (n+m) cycles to reach the right

hand array boundary, and an extra cycle before the last

element can be loaded into the 'column sorter (1.e. n+m+l

cycles) •

(ii) If this last element is the largest h, it will take (n+m)
J

cycles to reach the ~ position in the pivot column, by a

sequence of interchanges.

(iii) On the next cycle the last swap enters the (m+l)st row of

the table going south to north and on the second cycle reaches

the pivot cell.

(iv) Thus, on the third cycle after the end of column sorting, the

pivots drop into 'form-pivot' state as the correct v
k

from

the pivot downwards have been formed.

(v) After a further m cycles the last pivot contenders enter the

row sorter, if this value is the smallest pivot (i.e. p) it

requires a further m cycles to reach the pivot row.

523

t'l

~
I
~

~
~ ~
~

~

t-l
~ r::0

rIl 11111

~
E

~
5 ~

I ~
t·25 I---+-~ ~flTmnl "rttttttttttttttttittllmr111

~

1=

~ Exchange Form
pivot

t=26 ~
~ ~ 11111

f0

[]I[]]]] Row- B
sort E3

Column
sort

FIGURE 7.5.2: Snapshots of the computational wave fronts
for simplex iteration

524

(vi) An additional 2 cycles sees the last row swap operations

pass the pivot column. Thus all the columnsto the left of

and including the pivot are correct column and row sorted

and the next exchange can start.

The H-cell also contains the improved minimum.

Summing these timings ensure the bound T=(2n+4m+6) for a single

Simplex update. The area bound 1s given by:

(i) The table elements require (m+l) (m+n) ips cells

(ii) Column sorting at most (m+n) ips cell equivalents

(iii) ROW sorting m ips cell equivalents

(iv) The unknown xi values and H-cell

a) 2 ips for H and pivot row cell

b) 2 (m-l) for remaining unknowns

yielding (m+2) (m+n) + 3m ips cell equivalents.

Corollary (7.5.1): A search of z extreme points requires T=z(2n+4m+6)+2m

cycles using the Simplex method.

Proof:

The loading and unloading of the starting and final tableaux

requires at most an additional time of 2m cycles, then repeating the

argument in Theorem (7.5.1) yields the timing immediately.

The Simplex array was simulated using OCCAM and the listing appears

in the Appendix, from which the cell definitions can be found using

the following key.

525

PIWT CELL
____ Cl PIVOT ROW OR

E COLUMN CELLS

s Co S Co
N , c2 N

,
I ,

cl

D __ cl PIVOT FORMING Cl. __ __ Cl 90° RarATION
W E + X-cELL W E

I
I ,

S Co
N

,c
2 I

I
I
I

cl ---
c) RECTANGLE cl ___ c) 180° RarATION

W E RULE CELL W E

I
I ,

S Co

N c
2

N c2
I
I
I
I

c l ---
c)

h
j

CELL
c

l
___ c) 270 0 ROTATION

W E
W E

I
I , ,

S Co

CELL DEFINITIONS: (see code Appendix for internal working)

Snapshots of the array operation on a test example are given below,

and the following pertinant remarks concerning array implementation

may be of use.

The idea of column sorting is to mcve the column associated with

the largest h
j

to the pivot column position, and as stated above the

problem reduces to sorting the h. into descending order from left to
J

right and performing the same swaps on the Vj column vectors. A linear

526

systolic array for sorting is shown in Fig.(7.5.3a) and implements

the well known odd-even transposition or parallel bubble sort and

consists of (n+m) cells. The sorting network is slightly different

from the standard array because our starting values must be loaded

sequentially and the sorting started systolically. The standard array

assumed cells were already loaded and that array cellS started

simultaneously. Our sorting network also generates an (n+m) control

bit vector on every cycle (pumped south to north through the table) to

control column swaps. Finally the cells must keep track of the index

j of Vj so that the row sorter can be informed which column is the

new pivot column and hence determine the variable introduced to the

solution. Fig.(7.5.3b) illustrates the sorter operation on the worst

case list for an array of 5 cells. The key values to watch are the

Cl and Cl control values because these determine the array operation

time. On the trip left to right Cl loads the h
j

values from the H

cells of the table portion of the array and starts the cells into odd

and even operation mode. Where two cells decide to swap elements

the control bit c2 in each cell is set pumped up into the table to

swap column elements. On reaching the rightmost sorting cell Cl loads

the last value and falls off the array, and a neutral element '-~' is

used to prevent erroneous swaps at the array boundary. Next the ~

signal enters and moves right to left pushing the final maximum·of h.
)

in front of it (by two cycles) and closing down the sorting cells.

Thus after 2(m+n)=10 (in this case) the maximum ~ resides in the

leftmost cell along with its index k and the last column swap data

is about to enter the tableau. After a further two cycles the Cl

filter bit completes the startup-closedown control cycle and the last

column swap has reached the pivot row (verifying the timing 2(n+m+l)

for sorting above). It follows that the filter bit falling off the

a) Odd-even sorter

t ARRAY CELLS

v 0 1/ 0 / 0 1/ 0 1/ 0

1 1 - - - -
3 4 1 2 5

0 0 0 1/ 0 1 1/ 0 V 0 V 0
2 1 1 2 - - -

3 3 4 1 2 5

0 0 0 0 0 0 1/ 0 1 1/ 0 / 0
3 1 2 1 2 3 - -

3 4 3 4 1 2 5
0 1 0 0 2 0 0 0 0 V 0 IV 0

4 2 2 1 3 1 3 4 -
4 4 3 1 3 1 2 5
0 0 0 0 1 0 0 2 0 0 0 0 0 0 1

5 2 3 2 3 1 4 1 4 5 ""

"
, " , 3 2 3 2 ~ 1/

0 1 0 0 2 0 0 1 0 0 2 0 0 0 0

6 3 3 2 4 2 4 1 5 1 ~

1 1 4 2 4 2 3 5 3 5
0 0 0 0 1 0 0 2 0 0 1 0 0 2 0

7 3 4 3 4 2 5 2 5 1 f.."" , ~ , ~ " " A " 0 r7
0 1 0 0 2 0 0 1 0 0 2 0 3 0 0

8 4 4 3 5 3 5 2 1 2 1

2 2 1 5 1 5 4 3 4 3
0 0 0 0 1 0 0 2 0 3 0 0 0 0 0

9 4 5 4 5 3 2 3 2 1 -""
2 5 2 5 1 4 1 4 1 1/

0 1 0 0 2 0 3 0 0 0 0 0 0 0 0

10 5 4 3 4 3 2 1 , ! ,

5 2 1 2 1 4 3 4 3

b) Snapshots

FIGURE 7.5 •3: Modified odd-even transposition sort

527

element
index

1C1 C2 Cl

~1 a El

r-"i2 J 11$2

528

array can be used to prompt the controller into 'form-pivot' state.

The row sorting mechanism works in an identical manner to the

column sorter and requires 2m cycles to complete sorting and an

additional 2 cycles to closedown all the cells (verifying the timing 2(m+l)

in Theorem (7.5.1) for sorting). At the end of row sorting the pivot

resides in cell (m,2) and the row label (i.e. the x£ index) has been placed

in the bottom row sorting cell along with the minimum p. Hence the filter

bit which has moved from top to bottom row closing down cells can be

used to load the index k from the column sorter leftmost cell (via

the controller) to overwrite the row label and set the controllers

Exchange state simultaneously. Further complications arise when we

consider sorting with negative p values, because under normal sorting

conditions these will bubble to the bottom of the sorter. A forced

swap for negative and zero p values implemented by a status flag set

by the comparator determining the swap solves the problem simply,

causing the undesirable values to bubble to the top of the array. If

the bottom row sorting cell still contains a zero or negative value

at the end of sorting, all the values in the sorter must be non-positive.

Hence the status bits of the bottom cell also flag a termination

condition as no improvement to H is possible, and can inhibit the

overwriting of the row label. Similarly a status flag in column sorter

cells can be adopted to flag ~<o and trap the second termination

condition. Finally some general remarks about table element swapping.

Fig.(7.5.4) illustrates the pipe lining of both column and row swapping

it should be clear that the control vectors output by the sorters

consist of the pairs (1,2) punctuated by pairs of zeroes where no

swapping occurs. The special null vector therefore corresponds to

no swaps, which can only be produced when a list is fully sorted or,

a sorter is switched off. It follows that even if some portion of

the array drops into a sorting state before the sorter begins row

and column data will remain undamaged. This preservation of data is

529
a) column sortlnq b) row sorUnq

V13 v
14 Vu v12 v

1S 2 v
13

v
14 Vu v12 v

1S
t

v23 v24 v
2l v22 v2S

~. 1 v
23

v24 v2l v 22 v 2S

v33 v34 vll v
l2

v
3S 2 v33 v34 v31 v

32 v"
t

v43 v44 v
4l

v
42

v
4S 1 t 43 v 44 v 41 v42 v 4.5

0 0 0 0 0

(1) (i)

V13 v14 v11 v12 v15 o v
23

2 v
14

f
Vu v

12
v

1S

• v23 v24 v21 v22 v2S 2 t13
1 v

24
v

2l
v

22
v

2S

v33 v34 vll vl2 v
3S

1 'tr
43

2 v
34

vll v)2 v
3S

0 0 0 0 0 t
•

v 43' I'v 44 v 4l<- I+v 4l- v4S < I-> v33 1 v 44 v
4l v42 v 45

_1 2 1 2 0
111) IH)

V13 v
14 Vu v

12 v
1S

o v
23

o v
24 2vU v

12
v

1S •
v23 v24 v2l v22 v25 o v 43 2 v

14
1·v

21 v 22 v25
0 0 0 0 0 t

v33 v34
v
ll vl2 v3S

1'· f+ 2 1" h 0 -.
oV

13 l"v 44 2v
31 v)2 v35

f
v44

v
4l

V
42

v
4l

V
4S o V33 o v

34 1 v 41 v42 v
45

0 1 2 1 2

IHi) (Hl)

V13 v14 v11 v12 v1S
0 0 0 0 0

o v
23

o v
24

o v
21 2;12

v15

v2) v24 v2,1 .. Vu v
2S ~ t" ~2 1 I- 2 0

o v
43

o v
44 2 Vu ~.

_f
1 v

22
v25

v34 v33 v
l2

V f+ v35
0 t'+ 2 i1 <- 2

oV
13

OV
14

~. 2 v
32 1 v 41

t
v35

v44 v v43 v v41 1-<- [-+ ~2 i-~ f--~S o •• '+
o v33 o v

34 o v3 l'v 42 v45

(Lv) (Lv)

V13 v
14 Vu v12 v

1S
-'> ~ ... f-+ 2 " '--2 o • 1

V:o.) v24 v2l v22
v15

0 0 0 0 2 f

v24 v23 r- v~2 vi1<-
v2S

0 1 i' 2
OV 43 OV44 OV41 2

v
12

.' 1 v 25

•
v

34
v
l2 v33 v

3S
v
ll f-> 1 [-02 1 ~+ [-+2 0<-

OV 13 OV14 OVU 1v~2 2 v35

t
v

42
v

44
v

4S
v

43
v

4l OV33 OV34 a
V
)l OV32

!
1 v 4S

0 0 0 0 0

Iv) Iv)

FIGURE 7.5.4: Control flow in sorting

530

important because it allows flexible state transitions, and the use of

column and row states as idling states between wavefronts. In particular

it allows the overlapping of row and column table modifications.

Next, we consider the exchange process - which rewrites the table

in terms of the new basis - essentially exchanging the vectors entering

and leaving the basis. We can define three basic types of operation

and by virtue of the static positioning of the pivot row and column

three basic cell types. The basic operations are a) find reciprocal in

pivot cell, b) divide pivot row by pivot element, c) zero out the pivot

column.

Using prompts from the controller the pivot cell in Fig.(7.5.l)

orchestrates the whole computation (including sorting) and is the

source of the starting wavefronts. The pivot cell controls operations

using the second control network by triggering cell states by pumping

control signals through the network. Fig. (7.5.5) illustrates the

exchange control flow from which the following actions are defined:

(i) Whenever a cell receives two true controls on the same cycle

it performs the rectangle rule.

(ii) If a single control value which is true arrives from the

north or south, output the table value and zero the register.

(iii) If a single value arrives from east or west perform a

division by the pivot.

(iv) If the cell is the pivot cell and the state is 'row-sort', a

control input sets state = 'exchange' and:

a) The reciprocal of the pivot is found, the result

sent east and west.

b) OVerwrite the pivot with 1, and set all control

outputs true,

which characterise the data flow.

Xl

x
2

(1)
x)

a

(H)
xlb

R(X
2

)

1
(Hi)

x3 0

1
RIB)

RI"l)
1

-'-

'2 d
(1v)

"oS d

0
H 0

Vu

v
21

b-1/p

h1

V
21

1

1

1
h1

Vu

,
0
0

1

0
0

,
1

0

0

1

0
0

v
12 v13

v
22 v 2)

v32 vn

h2 h)

lv3lb v))

I ~(v.,) ,
o v

32
1 V)3,i

1
1 Ru."l

1R(vd

o v22
lR(Vli

" I

o v32 o v33

Q.. 1

o h2 R(h'?

1

v
14

X
10

0

v
24

X2 0

0

v)4
(v) xl 0

0
h, -a 0

Xl 0

0

x
2

0

0
(vi)

v
34 x) 0

_0
a 0

v
34

Iv 3illi

0
1/12

0 0

0 v
22

0 0

1 v
32

0 0

0 P h2

0 o v12
0 0

0 o v
22

0 0

1 o Y32

0 0
0 o~

/'(Vd

1
-v23
0

o v33

0

o hl

+
1

o ~3
0

o v23
0

o v33

0
Oh)

lR(V~

1

b "3'

1
lR(h4)

pR(VU
0

b v
24

0

b ;;4

0

p~ ,
1

R(x) perform rectangle
rule wi th d~x.

FIGURE 7.5.5: Control wave front for exchange

531

532

(i) Control values falling off the southern boundary correspond

to the startup procedure for the column sorter.

(ii) A control value travelling horizontally or vertically

continues to do so until it falls off the array.

(iii) A control signal arriving in a pivot column cell is also

refracted east and west.

(iv) A control signal arriving in a pivot row cell is also refracted

north and south.

(v) Refracted signals continue in motion as for (ii).

Notice that this implies that exchange and column sorting can be over-

lapped.

At the end of column sorting the pivot cell gets pushed into

'form pivot' state, and the pivot column and column immediately to the

left must form all the contenders for (7.5.l8) which must then be loaded

into the row sorter. The control actions are shown in Fig.(7.5.6).

X, Vu Vu
1

x2
v ,2

x
2
/v

1 V
I2

0

1
1 0 0

x3 b=l/ 1+ x3 0 P 0 0

hi
0 u o u

0

V,2
X/V1 Vu

1
1 0

0
0

1·v
12 1+ X2 0 v I2 0 p

, n "'- o~ 0

X3
b

1 P P x3 c P 0 0

0 0 0 0 0

C hi 0

FIGURE 7.5.6: Pivot forming data flow

533

The control values falling off the left boundary are in the correct

form for loading and starting the row sorter. Clearly the control for

the cells left of the pivot column become more complex and indicates

the different cells of Fig. (7.5.1) described by the soft-systolic code

in the Appendix.

To conclude this section we consider some theoretical and comput-

ational issues regarding the standard Simplex method and the array

presented.

The problem of ties:

During the column sort phase we select the vector Vj corresponding

to max(h,)=h
k

to achieve the greatest immediate decrease in the objective
j J

function. A tie occurs when more than one j occurs with maximum h
j

.

The problem is resolved arbitrarily in the standard Simplex theory by

choosing the lowest (or highest) index j - which proves to be a good

choice. Although the current array description is adequate for breaking

ties, we can incorporate this strategy by performing a swap according to

(h.<h,) or «h,=h,) and (i>j»
J ~ J ~

in a column cell. This modification requires at most an additional

comparator in each sorter cell, and is justified by the fact that tie

breaking with this rule requires approximately m changes of basis to

find the minimum. Thus with z"m Corollary (7.5.1) gives a loose bound

for the full Simplex calculation.

Degeneracy:

A non-degenerate feasible solution is a feasible solution with

exactly m positive xi' if there are less than m positive xi the solution

is degenerate. If the above condition occurs at least one xi is zero

and it would be possible to choose p=O in (7.5.18), producing no

534

reduction in H. If this lack of improvement continued for a number of

Simplex iterations it is possible to repeat a basis and the solution

process breaks down (the array would become stuck in an infinite loop).

Degeneracy is indicated by less than m x. values being positive, or
L

(7.5.18) producing ties (and implying that more than one variable leaves

the solution on a single iteration). Fortunately, to date degeneracy

has only been exhibited by artifically constructed problems, and the

normal course of action is to use p=O when it occurs and break ties in

a similar manner to the column sorter solution.

Artificial Basis Techniques:

Throughout the array description we have assumed that a basis

(hence extreme feasible point) was known. When this is not the case

an artificial basis must be constructed which will produce a feasible

basis for the original problem. The details of artificial basis can be

found in standard texts on linear programming and are not discussed

here, but the array of Fig.(7.5.l) is easily upgraded to deal with them.

Essentially, we add an additional row of cells in the (m+2)ndposition

which contain their own h. type elements. The algorithm is then
J

controlled by two phases. In the first phase the h. values are sorted
J

and the table updated until all the elements are non-positive. If all

h.=O the resulting basis is feasible for the original problem, and if
J

all hj<O the original problem was not feasible. In the former case we

th
can continue by applying the sorting to the (m+l) row or true h.

J

values to obtain a minimum. For the latter case the table is abandoned.

Again, the extra hardware is justified by the fact that a full artificial

basis of m columns requires approximately z=2m iterations to find the

minimum feasible solution which otherwise would not be solvable.

TEST EXAMPLE

Minimise

subject to

H =
o ~
-xl

-2x -x 1 2
xl' 0 ~ x2 '
+ 2x2~2, xl + x2 ~ 4

Introducing slack variables we produce the following tables:

3 i 2 -1 2 1 0 0 3 3 0 0 1 -2

4 I 4
I

1 1 0 1 0 2 1 0 1 0 1

5 I 3 1 0 0 0 1 1 3 1 0 0 0

d-~-
2 1 0 0 0

. - -- -- .. --
1 2 3 4 5

-7 0 0 0 -1

1 2 3 4

535

3

-1

1

-1

5

As the first action of the array is a modification, and the correct pivot

is in the correct place variable xl is swapped with Xs so we load the

tableau with,

3 2 -1 2 1 0 0

4 4 1 1 0 1 0

1 3 1 0 0 O. 1

0 2 1 0 0 0

1 2 3 4 5

After a few iterations (2) we get the following result from the OCCAM program.

a) With trace=on b) with trace=off

1 3 1 0 0 0 1 Results

3 3 0 0 1 -2 3 [lJ = 3.000000

2 1 0 1 0 1 -1 [3J = 3.000000
[2J = 1.000000

-7 0 0 0 -1 -1
[HJ = -7.000000

1 2 3 4 5
[iJ = variable i

which is a row and column permuted form of the correct final tableau.

SNAPSHOTS OF CONTROL WA.VEFROO'T FOR THE TEST EXAMPLE

.. In Tableau

OUtput fOr1D4t:

(c
O

,c
l

,C
2

,c
3

)

Cc
O

,c
1

,C2,j)

(co,e! ,c2 , j)

(C
4

,Co ,c
2

,:1
1

)

Cc
O

,c
1

,c3,j)

(c
O

,c
1

,C
2

,O)

- ColW!U\ sorter

R
0
If

S
0
R
T -----
•

MERGE

a=dummy.a
b-dunmy.b

b •
•

- Row .orter

.. dummy ••

- du""Y.b

- merge

TABLEAU

COLUlfi SORTER

Pivot cell is marked on first snapshot.

Ihtt c)'c l.
((lC] rooD 0000 (100(1 DeaD , '00 ((Ioe
roe' OOOC (leoo C'(,oe ocC'o .00' UGc.
(OCt (1000 \)ooe oooe C,,"O'l 0(100 (lODe
('Co. (,0,.0 ''DO ~eoe ocoo oo~,) OHC
(",00 OGOO OC:;2 OG01 OCC] 1 :114 cocs

SUtt c)'ch
[('(I] (1000 "(1:0 'lOC;) eer') UOf'lt' 1100
HC' ('C(lC 0;:00 ,)01)" DC CO COOO CCOO
,,~,., [(-CC 'COI)O ~Cl.IC OC[D DC"" (1000
rrOc . .,., OO;)C Doer coca 01)00 OOtlC
f·GflD eor.c ('C':2 O)-:'~1 "rr! (~':I' let 5 . ,." c,ch
rcD] CI)OC DCOO OOl')t {lCCO OC(li!' ccoe
eCD' oooe '(,DC 11l0C- COtO cOO, (000
roo, 000('1 ;)OGC ;)O(lr (lQC!) eooo CGOC
","CC oooe 01)tJ0 oc(,c (COO oocO ('eoc
('(lCO .oo, 0002 0(101 (1(10 0')0' (CiOS

,tHt c,.rle
OC(l1 COOO 1(100 1~OC ;:(['0 Oli"O etCo
(.00' COOO OCOO I)C"~ OOo;~ ,:)(1)0 Moe .. " C-OC(I OOC:: .:.COC {rr.:'o O')~G OOC~

(:roo 0000 1)0,)')0)(,or ;)(-rC 'lOO(l ccro
rOOD (Doe' \)\"r.2 :'0(,1 1)0:] t'')?4. t1CS

rtlr' crcl.
C(lCl COOO 0000 coue (!(:ec COO: CGCC
r(lN (·000 0000 .'00':' ""C' oetO rOCt
rre, r.cce (I~"G Nh.it'! nc.c (eOC (C('O
reCO COOr. OCtO CO~C oeec COlOO 30CO
rcOO 0000 0')02 ·)001 ':;~C1 'H ')' ~COs

.. .,t crel •
(lCO 0000 ;)(100 0000 DeOO 0;)00
rOD' OCOO oceo OOCCi oc('o 0000 ooeo
(DC' (lC(lO 0000 oooe 0000 CO')O](;00
(\(100 COOO 0000 oooe ocoo 3000 0000
(000 0000 0002 ~t01 01')) coo, oeos

..." eJch
<'0<), 0000 ooco
tee 0000 "" , 0000
ccco 0000
tooo 0000 OOOt

U.rt 'Jeh
000) 0000 0000 CDOO tCOO
OeCt COOt 0000 (1000 0010 .". OOOt

.htt 'Jeh .. ., 0000 1000 ,001 0000 0000
0000 COll 0000 CDOO tOOl

It." 'Jch
000) 'DO' 0000 0000 0000 0000
100a 0000 OOOt

IUtt c)'ch 0000 0000
"01 , ... 0000
0000 0000
COOO ooeo 0002

I\"t c,ch "' .. O~OG oooc
[e04 ... 0 0000
(oC', ~O(lO teeD
((ICe (cet' ooo~ ,oe, COCG coo,

'ltr t crch
tlCO OOOG ,co,
(I(-N (.OGO e"DO
"Cl flOOD OO?O
(,OC(I (0"" 00"0
rero (CCC 01':12

surt cyct. .,'" (lCCO (I,)OC

"''' tc:o 'lODe
fec, (0':0 0'" fttO rr"]~(
rrre "l'~ 0,)002

It., t r,c it
fI:iCS CO::O 01)(10
r~r 4 (0('10 COCC
rec, c('Ice lOCO
UCl OCC'C OCG'
rH (! ro)C'c .,o~~

It" , rre lc
(CC) CO':O oO(le
t(C4 cc,,> !o(lt
r~01 rcor ~i)~G
r('c~ :;)1)[0 t:::oO
(.(lCO C(Oe "",

I"r, ere l.
COfl1 eooc);)00 "' .. ('-coo 1000
"DC' (OOt 0000
(lOCZ COOD 0000
('(lOQ 0000 ... ,

536

0000 0000 0000
0000 0000 0000 (000
0000 0000 0000
0000 0000 0000 0000
0002 0001 C004 OOOS

0000 0000 rOOD ~ODO
0000 0000 0000 0000 eooo 0000 0000 0000 0000 0000
OOOl 0(\01 0004 OOOS

0000 0000 0000 0000
1'00 0000 0000 0000 oleo 0000 0000
0,,0 0000 0000
0002 0001 000' 0005

noD 0000 0000 0000 1100 0000 COOO
0000 0000 0100 0000
DODO 0110 0000 0000
IOU 000] 0004 ODDS

0000 1100 ,00'
0000 0000 1100 eOOO
0000 C'OOO 00 .. 0100
0000 0000 0110 0000
0001 1013 0004 ODDS

oooe (lCC~ ,oo, (OCO
OCDe' D<::eC O'l·~O ~C'?O
oeoe C,(,C']OCC' (oce:
oooe "CO C,)~t (Coe
0'01 cc:) C(I?4 cc~s

"'" uceo ;),-)~]tC(I
Oo,),)C (GC)):;C orct
,Doe]ceo r-ere. {C·oe·
'O-:.C ,I'CI' 00'0 00(;(.
COO, NO ~I)), c.rrs

o~c" Oc,~Co ~o,,) eoct
OthlC' ,o'='~ '}e(l·' [:00(,
)OH' ~H'= ·:l"'~C e,ccc-
",ace =,orO oeo', r-O(,(,
1)001 eN·] c·)~, 1l0C~

~lOO(, lOCi) ;)0(10; ro~"
SOOt, OC'C:l ~~C~ 'le,,[
Ollt/I') "(1('(1 ':CO'lO CO~O
;OCO O('O=' 0')1); ,,'Ct
)0;;, er:) OJ;)' ores

H,CCI ,,')~:a r(('It,) ~"[C
Cl)~r! ~t;~,(I (Ieee (C~t

cooe C".'ft :lCC~ (.!:CC
OC~C !'oC''jC t;1:,10 CCCO
00C1 O(l~) C'':N {"CC~

OIlOC 00(10 0000 OOGO
0000 DeeD 0;)00 [0(\00 O~~O '''' .. " 0000 0000 oeoo DeeD
ODD' DOe) 0004 O~~S

537

• lit' '7,h • Ut t e),ch
C~O, {COO t 000 !loDe 0((,0 00,. rc"o or" coce 0)00 CltC; 0(1('0 Dooe 000(\
(lC04 (001 0000 0\.'0(' DeeD 0000 oeoe ('(\CS ('100 0000 .,'00 Olee oeroo c(eO
100' rOOD 01)00 0000 oor;? 0000 ('oCto (t04 tooo 0000 11000 0,00 0000 OOtO
(0(02 0('100 OOtO 0(00 ooeo OOO!) cooo < ... 00" 0000 Dote 0000 [·000
(\0(10 roOo 00('2 0001 o(ln 0004 cou (000 'oot COOl 0001 erO) 0004 DOC'S

.hrt eTch .Ut, c7elf
(\('('1, COO, OOOCl 0000 oeoo 0000 ('ocr r(lO, '00' 0000 0)00 C2~O ('0'0 COOD
'016 0000 0000 oeoe OOtO 0000 (ioeo eeo) coor ClOD 000(' Cote 0 0200 ('000
{O(l, '00' 0000 01)1)0 ooro 0000 rC04 (lJOO 00'0 0000 ooco o H)O coco
{'OO2: 0000 0000 0000 oceo 0000 GHQ 0111 oeoo MC!! oooe· OOC/O 0000 (lOCO
tcoo 0000 (002 0001 (lOO) 0004 '00' rOOo (loDe 0002 1)00, 000, 0004 coos , c)'c t .. .t.rt '7ch
tCU 0000 0000 oeoo 0000 0000 '00' COCt '000 0000 oooe 0300 UOO ,~C

C001 0000 0000 0000 0000 0000 0000 (0(') COOO 0000 aloe 0000 0100 0200
CrN 0000 oooe 0000 oeoo 0000 CoOeD ron oooe 0)00 0000 oceo eooo GtOO
co .. 0000 00" 0000 0000 0000 0000 COO 0 0000 0000 0000 00(>10 0000 0000
O('CO ['000 0002 0001 OOG] ODD", oe05 t010 .ooc 0001 OU01 . ,'" C ... 0005

.Urt c),ch turt c),ch 0000 0(>00 coDe 0000 0000 CoOO 0001 0000 0000 ,)000 0('110 0]00 OlOO
roD) 0200 0000 0000 0000 0000 OCOO 000) 0000 00110 oooe 0)00 0000 0100
0004 0100 0000 0000 oeoo 0000 [0000 r002 0000 0000 O)OG or 00 0000 0000
C-(!02 0000 0000 0000 coca Deoo oooe (1000 cooo 0000 0000 ooeo 0000 0000
('oeo 00(10 0002 00C.1 ooel ODD", COOS 0000 0000 0002 0001 OOCo) ODD", 0005

• hrt crcl • .t ... t c,ch
010t OlOO oeoo 0000 occo 0000 ooeo 0001 0000 0000 0000 ooeo 0000 0300

"" 0100 OlOO 0000 0000 0000 0000 , .. , cooo tOOO 0000 oeoo 0300 (1000
00 •• 0000 0100 oooe 0000 0000 (>000 (1002 0001 '00' 0100 Oleo 0003 0000
COOl 0000 0000 1100(1 0('00 0000 eooo 0000 0000 "'10 0000 0('00 (1000 0000
rooD 0000 OOOl 0001 000) 000. 0005 0000 0000 oooz 0001 000) (lOO", 0005

t " .. t c)'ch .urt c)'ch
CCOt 0)00 0200 oooe oe·c.o 000] 0000 (lC01 0000 , .. C 0000 OCOO 0000 0000
N(I' COOO 0100 HOC 00(10 000(1 OOOC (Oe3 1001 0000 UOD 0(100 0000 0300
r·(,c", 0000 0000 010Co 0000 0000 CoOO 00" 0000 DODO 0000 OHO \1'00 Oto~
('('oz 0000 vOIlO 000[0 ~OOO 00')0 0000 OCoo CO" OOIiC. 011C DeDO ('000 (0(10
(COO 0000 0002 0001 cc(') 0004 DC" 0(100 C·COO 1002 veOt ocn ODD", CGOS

Cl "t crc l~ • tt .. t c)'c l •
fW:t'1 1(101 COD(, 110G ooro ~OCO ('Oce OcO' CC'JO ooeo 1)0Ct O((0 :),)0 .. ceDO

erc! co CO I)t'ee. -:lGOe 11(·(1 !leoo COtie rt'o (leoe O(l<;C .)0(:[!Or:" (l1)~C elloe

(·':'''2 ell)"'; 0'::1)'l "[lve t1'1:J : tC~ c~eG CO~2 000(' ooo~ ')CO(UCC!' (10':'0 ,.VCC

1U'0 1'(100 ·)e ~e rei.(~11t,) 'l000 ccco r('(I(.'! COOO "':('(1 CC:l~ .:1('(11 ,HID .. 3CI)(I

(rl') [C~(I ')Ot"l
1 ""

("C. ! C·)(!", [(l0~ ro~o ccoe te[t)Ct< reo .. le", C(O~

.1., t c)'ch .1.rt c)'ch
(CC, CC,)G 'lO:r-- ~OO'. ,HO I;)OG ceOe- rCCl tooe O{"~G "OVC ·'''t~ .. -It·'l c.~~t

tl'C] C,="'.r.· ~;:.O(' OO(0((') tHle cote et(l) ('eoc· O~I)(I .jCotr{ ~('~I) ,,~I)O roce

(C-C,2 (DOt' {lQf)(I :::Oul t·t-CCo COtt CH'C rC"l OOC ocv(o)"tC ::eC"~ ·1Ne !OOO
r.c[~ coce o::{lo ;)OO'J (cr'! CUD cCtC GC")") teoe. 'I)~~ :!\.·:!tr ~tr;.1))1)(0 CO('(,

Cf'~" (O~" COC1 JO.i~ H1] ''''"' (oo~ cr(lo reoc 01)1!1 ':v·;, " ;>3 ,)~), (lGO~

,t., t c)'ch • t.rt .,(1_
e,oo {coo')

eer1 0,,'(1 'lCO!! .JttC "tCO t1!'0 Gc.G(I tt(l1 (·(."lC ~(I\,C "to:: «(('I)

tt-Cl C,)!'G v~')" etut !)!)C i) (lO'lt ,,'.n tCC3 COl)(' rce ;"ce(' :.~·rC ';C·)O 30Co('

teC2 (Ccr (,{'to .lC·CC reeD nt,'c DN'':- tt-tz ['01"[. COC!) ')C,"C 'H':C !!)OC (,CCot

(·eco 0000 HIC'; li)~C ttCt:l :::fI-:lr "'~ ('(0(11) ecn ""'tC JO';C)rt(l OC'lv '('(le

ro:!OIj (0.)(I)OZ' it.), 1)'.0 '016 reos rccl) (01)'; 1l0~1 nC2 ~,..~, on"4 CCC~

t t., t c,e. h- ,l.rt c,c t.
!O~C. (cn (COO Doer. \lOOt:. ;e~e Ol!rr 11C('l CO')1 co'): cellc ,:trC ~~=c ,,'::'It:

(CO] c·o'),=, 1l'l'!C ~('o(o:rto el)10 CW: (('It] (101)0 lo:'N Ci(lO:,~ ,,~"(I !!ll)": rccc

rcr. ~ co/)(' HOC l(IQ(C!lC" 0~·'Ji. (CCC ceCl (1)1)(, 1)1)':1; ,!CC(":c:1 "COC CCoOt

(Co (I co('C ':)(00'; ·)teC CoC(·o)eoe c.:c~ [r!lD C'lf)C ON'(I· l')("(:r~() !)voc rc.Co(

cr~o CtOC 00'l1 11", reo tt:), "15 (ICeD (looe- ':'1·',1 -)c.,)~ :.C ~! 3~)' [(,':: ~

, tttt c)'ch ,tut ()'c l.
cceCo

f'CC1 (01)0 OO·JC :c ~t· Of.(:I 'loce, ':0(,0 Ht 1 r·Goe ct:·"je :'(;OC NC")~').,

cr03 CG'Jo H'OC lOC.O Oce(\ r.oeo rtoc ((,03 eoor ,c~t')o,)c l(-O~ ~,)o., C.::O('

t'O(l2 cc-co 0000 ('I)OC JOc.o 00)0 0(&0 C·O~2 COOt ,"Cl)": 10'.c 0[·':;0 ONO ("·COt"

(rco CO co oo"c oooe 0<0< 03,)0 rtto (Ice (I eooe 30:1(1 VC;)t) ctvO (.000 cc 00

"" (1000 OO'lt voCol :or) ::00", 00(') O(lCO 7(10Co .. " CC~2 cco ~oe. e(.(iS

• urt c,c It correct t_t_ltI"tlon
[r01 rooo t 000 lOCO ooce ova", roDe

"(I' 001)0 0000 oeoc OCtO 0000 0000
feN CODO oO(le 0000 OGOO (0)"0 GOC(I
Heo eooe 00000 oo')r ooo~ CC·)O c(ooc·
rree oCooo OCOl ')002 (~('] 01)0. Cles

538

SNAPSHOTS FOR ARRAY CLOSEDOWN (6666;Dead cell)

'S'., , (ydp
~tlrt "ch (,CO~ coc.c. 1)0(10 ')00(, oroo 0000 3000 ccu thC tOOO 0000 oeoe 0000:. oroo

OCC) (JOOO 0000 0000 0(1('0 HCD OOOG 0065 U66 6660 6000 [·coo ?DOO 00(0<'
0('01 (000 0000 ::"1000)(-(10 0000 tOOO OtlO 6666 6666 6660 6(1CO (l00r. 0'"'' rcoo flOOD 0000 'oco oceo 0000 ooeD fOOO 66U uu 6666 6660 .,00 (C:lO
('('(10 CODO OH" '002 oee, 0006 tOGS ('660 000(1 oo.t 0062 oon 00640 rC6S

• un "e l • .hr, Ott. 0('05 0000 OO(lG 0000 0000 '000 0000 "" t66' 6660 .000 0000 1)000 C('t'C
00" ooeo 0000 0000 sooO (lOCO tOOO 0065 t6" 'Ut .660 6000 (::100 (lore.
11(102 0000 0000 HOO Coooo 0000 (,000 CC" UU 6666 666t '''0 6000 (-cc.('
(0(1(1 rOOG S:lOO 0000 oeoo 0')00 0000 "CO '66' 6666 •••• 6UO ,000
'1COO ."G 0001 0002 C('O) 0')06 OOOS (1660 ('000 00., 00.2 :le" 00'6 ODoS

It." e)'ch Itltt "cl.
00" 00" COOO 0000 0000 5000 0000 0000 0065 6"6 60 6000 ~0':tO

00" C 000 00(10 >000 00(10 0000 cooo (OH 6666 66" 6060 6000 (C(,t
0002 COOG 3COO 0000 OGeo 0000 OGOO 0061 6666 66U 6666 U66 6660 6COO
0060 6000 0000 0000 COCO 0000 cooo 0000 6666 6666 6666 6666 6666 '460
0660 000' DO" 3002 :1005 0004 :lOOS "60 0000 OOtt 00t2 ocn 00640 006S

,t.,. erel. ,ttf' erel.
OOOS ooot 0000 sooo (1000 0000 0000 0065 6666 "" "66 6660 ,tlOO 0:)00 roc, 0000 30?0 0000 0000 0000 (1000 0063 6666 Ut. 66U ,,66 '660 600e
0062 6000 0000 ')000 OOCO 0000 0000 0062 6666 "" 6666 6666 6666 666(,
COOO 6660 6000 0000 COOO 0000 0000 ('0(\0 6666 6666 6666 6666 6666 64"
(1660 000e. 0061 0062 oeo, 0004 0005 (1660 0000 00" 0062 Don 0.,,, OD6S

;.". erete • hf' e),cl •
"''' 0000 J(lOO 0000 0000 0000 0000 eC6S 6666 "66 6666 6666 6660 6OtO
lIe63 6000 0000 oeoo 0000 0000 0000 0063 6666 6666 6666 6666 6666 61660
"062 6660 6000 0000 0000 0000 DODO Otn (666 6666 6666 6666 6666 6666
COOO U66 6601J 6000 oeoo 0300 0000 coeo 1.666 6666 6666 6666 6666 6666

,0660 0000 0061 0062 0063 0004 coos (1660 COOO 0061 Don DC63 0064 e06S

.t.,t crclt Itut e)'cl.
6660 0065 6000 OOOCl 0000 0000 0000 0000 0065 6666 6666 6666 6666 6666

11065 6660 6000 0000 0000 0000 0000 (1063 t660 6666 6666 6666 6U6 6666
0061 6666 6660 600G 0000 0000 0000 r062 6666 6666 U66 6666 6666 Ut6 Deoo 6666 6666 6660 6000 ('1000 (lOCO reDo Ufl6 6U6 6666 6666 6666 66t.6
0660 rcao vc6t 0002 0065 0064 0005 cue oooe. 0061 0062 Den "64 ecos

539

7.6 A SYSTOLIC CYLINDER FOR THE REVISED SIMPLEX ALGORITHM

The above standard scheme is not the one usually chosen for

computer implementation, instead a revised form of the Simplex algorithm

is used. This new algorithm can be implemented in two ways:

(a) The general form of the inverse

(b) The product form of the inverse

The second technique is often used in practice because it minimises

the amount of information to be recorded using the products of

elemental matrices. Both techniques however reduce the amount of

computation required to update the basis and Simplex tableau, and size

of table recorded in the machine's main memory. This latter point of

data compact ion is important for large LP problems and we examine the

possibilities of transferring these characteristics to systolic arrays.

At the start of the standard algorithm extra vectors (at most m)

are added to the table to form a basis. The basis consists of m linearly

independent vectors and it follows that,

B = (v
l

,v
2

, ••• ,v
m

) , (7.6.1)

and that any other vector v, is a linear combination of vectors from B,
J

i. e. ,

then,

Vj ~ aljvl + a 2jv2 + ••• + amjvm

-1
B Vj a,

J

where, Cl
j

From (7.5.3)

= (Cl
l

" a
2

. , ••• , a .) .
J J m]

putting B as the first m vectors of A such that,

BXO = b, xO~O'

with xO=(xIO,x20' ••• 'xmo) gives the first basic feasible solution

-1
Xo = Bb,

(7.6.2)

(7.6.3)

(7.6.4)

and from (7.6.2) all the remaining vectors of A can be determined from

540

B. The pieces used to determine the vector to be moved into the basis

are given by, h. ,
)

j~l(l)n where,

a) h. ~ Zj-Cj } (7.6.5))

with b) Zj cl"'lj+C2C1 2 t + c Cl j mm

Thus, -1
j~l(l)n (7.6.6) z. =c(l::::cBv ,

) o j 0 j

with c ~(cl' ••• 'c) so with the feasible basis B we compute the o m

corresponding z., and a pricing vector ~. can be defined as,
) ~

-1
n ~ COB , ~ ~ (~1,n2'···'~m) (7.6.7)

hence for a vector not in the basis,

h. ~ nv. -c .•
)))

(7.6.8)

It follows that we have all the information to move from feasible

solution to feasible solution, using only the original A and C values.

The main idea is that rather than transferring all the elements of the

-1
Simplex tableau we need only to transform the elements of B • The

explicit form of B at each iteration can be constructed as follows.

basis B by a single vector,

Then,

and,
0-----

1

I
I
0-

(7.6.9)

Cl ------01
lk : I

Cl2k I
, I

- - - 0
I
I
I

~
(7.6.10)

541

-1
Thus, an element b

ij
of B can be transformed to b

ij
an element of

--1
B in the corresponding position, by,

bR,j =
bR,j

) CtR,k

b .. = b .. - bR,jCt ik , i#
1.J 1.J

(7.6.ll)

The revised Simplex method is then constructed as follows,

(i) introduce the additional variable x =-H(x} from (7.5.3)
n+m+l

(ii) allow for artificial vectors (using artificial basis techniques)

by the redundant equation,

a x + am+2 , 2x2 + ••• + a x +x m+2,l 1 m+2,n n m+n+2

where, m
a = - 2 a. j' j=l(l}n

)
m+2,j i=l 1.

m
b = 2 b

i m+2
i=l

and with a 1 j=c. we have the matrix problem,
m+, J

rall a 12---- a
ln

1
I

\

I ,\ a 2l \ I
I I \ I

I \
\

I \
aml \

\ a m+l,l \
\ I

a - - - -m+2,l - a m+2,n

A

with x.~O, i=1(l}n+m+2.
1.

l ~: l \
\ 0 I \ !

\ I \ I
x

0 \ n
\ x

\
n+l

\

'\~
,

Gn+m+~
U

=

=

b 2' m+

", l b
2 ,

I

I

I

b
m

0

bm+2 1
-,

b

(7.6.l2)

(7.6.13)

The revised Simplex procedure can now be completely defined. In

the algorithm definition we denote A. as the columns of A and u. the
J 1.

rows of the matrix ~ As the procedure progresses the u. represent the
1.

most recent update of the corresponding row. Row m+2 in A is used to

542

evaluate h
j

, while artificial variables are still in the solution,

row m+l when artificial variables have been removed.

'* revised simplex algorithm */

PHASE I (Artificial variables in the solution, and all positive)

WHILE Xn+m+2<O DO _

{FOR jzl TO n {OJ&Um+2Aj };

IF ALL 6 ,.0 THEN {x MAX NO FEASIBLE SOLUTION EXISTS}
j ~ n+m+2

ELSE {ok=mln(ojl}; _

FOR I-I TO m+2 {Xlk=Ui~}J

FOR 1 .. 1 TO n+m+2

(-x 'X Ix I -; "'x -; x Uk
XO to.t.k 1010 xOik

FOR j=l TO m+2

{Utj=Utj/Xlk' ~ij=Uij-UtjXlk i/t}

11
PHASE 11; (No positive artificial variables in solution)

{FOR j-l TO n h
j
=um+2 Aj };

WHILE Y j<O 00

{yk ",min(y j "

lr

FOR I-I TO m+2 {Xik·Ui~}'

Xto • (-l
x
lk

IF all Xik~O THEN {solution can be made arbItrarily large}

FOR i-I 1'0 n+m+2

{~o~XtO/XtkJ XiO·XiO-)CkOXik i#k,

FOR j",l TO m+2

{;;"tj=UtlX tk' ;ij-UifUtjXilt 11th

PHASE Ill: STOP; x is at its max value - optimal stop·
0+m+1

N.B.: to simplify the algorithm xt=XiO'

We now proceed to explain two systolic arrays for the general

form of the inverse, a method suitable for any m and n and a specialised

version for m>n. The more general algorithm has a regular connection

network when embedded in a cylindrical space, and leads to a volume

efficient design by folding the cylinder. The second design is

orthogonally connected, reduces the number of cells significantly and

can be represented in a plane. In addition to the improved efficiency

543

of the revised Simplex method these new algorithms recognize that the

pivot row and column can be located and moved within the array without

a full sort (or total ordering). A partial ordering to locate max or

min elements is sufficient and can be implemented with simplified cells.

The global view of the systolic cylinder is shown in Fig.(7.6.l)

and can be considered as three individual sections, PART A, PART Band

PART C, with data flow around the cylinder interpreted as wave fronts

across these sections.

PART A: is an n*(m+2) matrix of cells, with an additional column of n

boundary cells to the left. The array contains the elements of A stored

in the order of A. in the jth row j=l(l)n. The boundary cells are
J

initially empty except for the column index.

PART B: This is an (m+l)*(m+3) matrix of cells with a column of m

boundary cells to the right. The array contains the (m+2) * (m+2) basis

matrix initially V, and can be hardwired to start up with U=I. The

(m+l)st row contains two rows (m+l) and (m+2) for smooth dataflow,

while the (m+3)rd column contains the starting solution vector. The

column boundary cells on the right containing the indexes of the solution
)

variables.

PART C: This is a row of (m+5) cells which wrap around the top row of

Part B to the bottom row of Part A, forming the cylinder.

Notice that the two phases of the revised Simplex algorithm are

almost identical, except that we use u 1 instead of u 2 and allow m+ m+

additional termination conditions. Thus placing both u 1 and u 2 m+ m+

in the same row of part B reduces data flow problems to only a single

phase, with switching between phases controlled by the (m+l)st row

of part B. The boundary cells will be used to detect the remaining

termination conditions.

I
.11 I

A.
~n

~ 1 1-_1 L ___ I

~lr If
A out

B
out C

out
D

I

out
E
out

F.
~n

-r(
F out

544

G.
~n

LIt
G
out

FIGURE 7.6.1: Cylindrical systolic array for revised simplex method
(General m and n)

PART B

1

PART A

} PART C

545

The wave fronts for the cylinder computation are shown in Figs.

(7.6.2) and (7.6.3) and explained by the following commentary. At the

start of computation the cell H in Fig.(7.6.l) performs a check on

x and x to determine which row m+l or m+2 is to be used and n+m+2 n+m+l

hence selecting phase I or phase 11 of the algorithm. On the check

result a control signal is shifted left informing row m+l cells whether

to use u 1 or u 2' As the control moves left it generates a sequence m+ m+

of control signals moving down the columns of the part A array, together

with the associated value of the selected row (u 1 or u 2) elements.
m+ m+

A wave front (wl in Fig.(7.6.2)) spreads out from the top right of the

part A section generating 0j (Y
j

) depending on the phase, by accumulating

partial products from right to left. On reaching the left boundary the

0j (Y
j

) values are loaded into the rows' boundary cell where it picks

up its associated index j. w
l

is now reflected to form w
2

a wave front

o
o o
o

o
/

8 , ,
o "

/<
flj'

~,
,

, ,
V.

-K

o
o
o
o

, ,
rI

/
/

-- -r---7"-r ,
I ,/ I I

:./' I :

, ,

/
/

" ,

/

L,/
/

/
/

I\.

r
i
-- - -- --T , .,

. : : ! • •
t:m+6 t=n-tm+S

FIGURE 7.6.2: Wave front progression Part A

, , ,
L , , ,

. ,
I ,
L_

~~' I I ,
I"

I

I I I I I
I I I

t .. (nHD+S) +1

, I I

, , ,
,- I~ ,

, , ,
" ,

t-(n+m+5)+(m+4)+1

, , ,

I~
I', ,

t-(n+m+S)+(m+4)+(m+l)

I
I
I

d o
o

-

• I
I
I
t. a _

, I ,
, ,

, ,
,
~ ,-,

, , ,
,/ t- (n+m+S) + (m+4)

,
I),

,
" ,

,-> , ,

t- (n+m+S) + (m+z,.J +2

, , ,

I),
I '"

"'" ,
• , , ,

"

• r--,

"'2

" " , I
, I

I o
o o

, o
Q
d

o o
o

"'s
t-(n+m+5)+(m+4)+(m+l)+2

FIGURE 7.6.3: Wave front progression for Part B

546

moving from the top left to bottom right corner of A. w
2

computes the

partial ordering of 0j (y
j

) values pushing the minimum to the bottom

of the boundary cell column, and issuing a sequence of controls left to

right along each row of part A transferring a copy of the corresponding

A. column towards the part C array. It follows that on the (n+m+S)th
J

cycle the best o. (y.) and its associated index j are in the leftmost
J J

cell of the part C array. The next (m+2) cycles see w
2

load the part C

cells with the column A
j

. Thus, by the (n+m+S)th cycle we have identified

S47

k and have ~ moving systolically in the array. Next we must insert

x
k

into the solution vector and insert v
k

into the basis ejecting x~

and v~ from the solution and basis respectively. This is achieved

simply by using the cylinder arrangement to propagate w
2

from part A

to part B using part c. w2 continues into part B forming a top left

to bottom right wavefront (see Fig.(7.6.3)) which computes the xik

values by accumulating partial products from left to right. At the

same time the index k filters along the part C cells towards the

righthand boundary column of part B. At time t=(n+m+S)+(m+4) cycles the

first x
ik

associated with the first row of part B cells is delivered to

the first cell in column (m+3) and the value x. /x' k is computed, just
~o ~

as k reaches the rightmost part C cell. On the next cycle both xiO/xik

and k are loaded into the top right boundary cell. Successive cycles

sees the remaining results loaded into boundary cells as the value k is

shifted down to the bottom cell. w
2

is reflected on reaching the right

hand boundary cells to form w3 (moving top right bottom left) and

computes the partial ordering to locate the index ~ and the variable

to be eliminated. Accompanying w3 is a sequence of control bits issued

by the boundary cells which cause row interchanges moving the pivot row

to the mth cell row. Hence at time t=(n+m+S)+(m+4)+(m+l) the values,

k,t and p are known and reside in the bottom right boundary cell, with

x~k and x~O set in the cell immediately left, and the basis update can

start. The vector vk is introduced to the basis by reflecting w3 at

the (m,m+3) position to form two wave fronts w4 and ws.

Ws enters the H-cell at t=(n+m+S)+(m+4) + (m+l) +2 modifying its

values allowing the test of the modified x 2 and x 1 values to
n+m+ n+m+

decide the course of the next iteration, and triggering the overwrite of

S48

index ~ by k in the boundary cell. Ws then becomes w
l

on the next

iteration. This implies that modification of the basis can be over-

lapped with the calculation of the next iteration. Clearly w
4

(which

updates the basis) must leave the part B section before Ws propagates

through part A to enter part B, and demands that n>-m to yield an

iteration time of T=3m+n+12 cycles. When n<m, Ws and w4 interfere

causing Ws to compute with the wrong basis elements. The problem is

easily solved by adding m-n dummy (delay) part A cells to yield a timing

T=4m+12 cycles per iteration.

The cell definitions are easily constructed from the revised

algorithm and the wave front patterns. Clearly the boundary cells are

simpler than the previously designed sorting cells and use only uni-

directional dataflow to construct the partial ordering. Part A cells

are simply inner product cells augmented with control triggers and extra

switching for transferring A. data. Part B cells are also inner products
J

with addition row swapping and are closer to the cell definitions for

Fig.(7.S.l). Finally Fig.(7.6.l) is a point-to-point connected array

and we assume that wave fronts encroaching on other parts of the array

are cleaned up by the part C section or (m+l)st row of part B to preserve

computation on subsequent iterations. A more efficient layout of the

cylinder is achieved in 3-D by considering each column through the array

to be a systolic ring and using a variation of Fig.(7.l.S) as shown in

Fig. (7.6.4).

Although the cylinder provides an alternative and slightly faster

array than the standard Simplex method of Theorem (7.5.1) we require

O(mn) inner product type cells to store the A matrix which the revised

Simplex algorithm was designed to avoid. The compacted array in Fig.

549

I ./"
~~

/ 7 --- ~ /
1i il

I I
... -

~ t--

I 11 !

~ ~
. : ;1 , I ,----:

I----l :.- ~ ____ I 1- __ ---L ____ J

a) RiD9 segment of systolic cylinder (n~7, ~7)

I
a IT
II

b) Cross-section of folded cylinder

FIGURE 7.6.4

(7.6.5a) remedies this problem for m>n by folding Fig.(7.6.l) along

the part A, part B partition and mapping cells containing A .. elements
~J

into cells containing u .. elements of the basis inverse (see Fig. (7.6 .5b)1..
J~

The basic idea is to save O(nm) ips cells by adding extra control

registers and switching to the o(m
2

) cells already required for

recording the basis.

The start of an iteration, as before, begins in the H-cell, where

550

----I ,---, r--..., ----,
, ~ 1 ~ 1 .! r--ii
1 I 1 , 1 .. I .----, --- ----I 1----1 , --r.J 1 ,_' '-
~- r I -

I~~~~~r-~--~~~~

a) Array structure (n<m)

b) Initial loading of compacted array (m=3, n=3)

FIGURE 7.6.5: Compacted array for revised Simplex

551

we decide whether Phase I or Phase II is applicable. A control signal

is propagated left along the (m+l)st row to select u
m

+
l

or um+2 sending

it upwards with additional controls to generate a wave front w
l

moving

from the bottom right to top left corner of the array (see Fig.7.6.6).

As wl partial products of 0i (Yi) are accumulated from right to left

loading the values into their respective boundary cells on the left

where a label j identifying column Aj also resides. w
l

is reflected

by the boundary cells to become w2 which propagates the value ok (Yk)

to the top of the boundary column as it moves to the right top corner

of the array transferring column A. to the top boundary (formerly part
)

C) cells. On reaching the top left corner of the array w2 deposits

the value ok (Yk) and the index k into the top boundary cells, before

being reflected to form w3 (a wave front headed for the bottom right

corner). w3 pushes k along the top boundary'cells to the right column

of boundary cells, and produces control values associated with the A.
)

elements reflected by the top boundary back into the array to form the

partial products of xik being accumulated left to right. On reaching

the rightmost cell w3 is reflected forming w4 moving towards the bottom

left corner which shifts k to the bottom right boundary cell, while

forming the partial ordering xto/xtk , and producing control signals to

move Ut to the mth cell row. As w3 leaves the array, k,t and pare

known and the basis update can be overlapped with w4 replacing t by k.

The modification is performed by a wave front Ws propagated from bottom

right to top left while w6 modifies row m+2 of the array. Once the H

cell is modified the next iteration can start. Clearly the compacted

array dataflow is simply a folded version of the systolic cylinder,

which improves cell efficiency by interleaving wavefronts. The basic

,
[>"

" ")I ,/
l< vI~

~~

" "
" /

"

, ,
" , , ,

~

, , ,
~

v
4

,
" "

~
, w

2 '~

t=19

, ,

,

" " " /
H ,

/

'V ,-
,
"

, ,

/

" /< w)

/"
1/

w, ,
/

" /

v6 • f4,

,/

, , , ,
/ , ,

" " /

w,

I"
1'< , v

2
, , ,

1', , ,
/

~< w)

/ ~
1/

, ,
w4 ,"" , . "

t=21

,
w~ ,

, [><' , ,

wf , " (1) , , , / 1

w~ H~ j,;" • ,
t=16

FIGURE 7.6.6: Snapshots of systolic wave fronts
for the compacted revised simplex array

552

,,)I
w

2

,
"

,,< ..

553

timings of the algorithm can be summarised as follows:

(i) (m+2) cycles for w
l

to reach the left boundary (i.e. compute

the first 0i (Yi).

(ii) (m+2) cycles for 0k=min(oi) to reach the top boundary.
i

(iii) (m+3) cycles for the k value to reach the right boundary.

(iv) (m+l) cycles for k to move to the bottom right boundary cell

and produce p and £

(v) 4 cycles for w5 to enter the H cell and update its contents

so that the next iteration can begin.

Thus one iteration requires T=4m+12 cycles as in the cylinder arrangement.

The cell requirements are:

(i) (m+2)*(m+2) for basis cells

(H) 2m for left and right boundary cells

(Hi) m+4 for upper boundary cells,

giving a total of
2

(m+2) +3m+4 cells.

7.7 AN ORTHOGONAL DESIGN FOR THE ASSIGNMENT PROBLEM

Finally we present an array to implement the assignment problem

which is stated simply as follows.

Let there be n tasks which must be performed by n individuals,

the cost of individual i performing task j is denoted by c. " The
1.)

problem is to assign people to the tasks in a way that minimises the

cost of completing all the tasks. More formally,

let, 1 if person i does task j
(7.7.1)

o otherwise, i=l(l)n, j=l(l)n.

We minimise the total cost, according to the constra"ints that one

person is assigned one task, and each task is assigned to 1 person.

554

That· is minimise,
n n

f = I I c .. x ..
j=l ~J ~J

(7.7.2)

subject to

i=l

n
Ix .. = 1 i=l(l)n

j=l ~J
n
I Xi· = 1 j=l(l)n

i=l J

x .. = 0 or 1 i=l(l)n, j=l(l)n
~J

(7.7.3)

The problem can be represented by an nxn table or matrix C=c .. called
~J

the cost matrix, and solved by manipulating the table entries. An

efficient method of solution is the Hungarian algorithm (see WU &

Coppins [81]) which can be stated simply as follows:

STEP 1: [FORM A REDUCED COST MATRIX]

a) For each row in the cost matrix locate the smallest number in

the row and subtract it from each number in that row.

b) For each column in the resulting matrix locate the smallest

number in the column and subtract from each number in that

column.

STEP 2: [LINE DRAWING]

Find the minimum number of lines through rows and columns of the

reduced cost matrix, such that every zero has a line through it.

IF the number of lines is n THEN STOP (optimal solution found)

ELSE proceed to STEP 3.

STEP 3: [FORM A NEW REDUCED COST MATRIX]

(a) Locate the smallest number in the matrix without a line

through it.

(b) Subtract this number from all uncovered numbers.

(c) Add the number to all numbers on the intersection of two lines.

(i.e. twice covered).

GOTO STEP 2.

555

The final solution is then constructed by assigning a worker to a job

so that the reduced cost is zero. This is performed by first checking

rows and then columns for rows and columns with only a single zero, the

assignment is the (i,j) ordered pair locating the zero. This solution

technique exhibits a number of convenient items for systolic solution.

For instance, it involves only add/subtract operations implying simple

and compact basic cells, and produces a square array rather than

rectangular in the above Simplex algorithms producing tighter and

simpler control.

EXAMPLE: From Wu & Coppins [81]

Consider the following assignment problem cost matrix

Job
1 2 3 4 5

1 2 4 5 1 4

2 4 7 8 11 7

Worker 3 3 9 8 10 5

4 1 3 5 1 4

5 7 1 2 1 2

STEP 1: Preprocessing for initial reduced cost matrix

1

o
o

o
6

1

o

o
o
6

3

3

6

2

o

3

3

6

2

o

4

4

5

4

1

3

3

4

3

o

o
7

7

o
o

o
7

7

o

o

3

3

2

3

1

2

2

1

2

o

row pass

column pass

STEP 2: Drawing minimum number of lines

3

3

6

2

3

3

4

3

STEP 3: Smallest uncovered number is 1

STEP 2: (Repeat)

(

2

2

2

2

5 3

1 2

~

STEP 3: Smallest uncovered number is 1 giving

1

0*

o
o
8

1

1

4

0*

o

1

1

2

1

0*

0*

7

7

o
2

2

2

1

2

1

1

0*

1

1

556

which requires n~5 lines, solution assignment indicated by asterisks.

The systolic design is partitioned into two systolic arrays. The

first array is a linearly connected array of n cells computing the

reduced cost matrix of Step 1, and essentially performing a preprocessing

task. The second array is an (n+2)*(n+2) orthogonally connected mesh

performing STEPS 2 and 3, the core of the algorithm and. is termed the

Assignment Problem Iteration (API) Array. We could consider a third

array to recover the solution as post processing, but the task is trivial

and not pursued here.

The pre-processing array is shown in Fig.(7.7.l) and requires four

passes through the array to produce the reduced cost matrix.

557

C55
c54 c45

c53 c44 c35

- -- c52 c43 c34 c25

c51 c42 c33 c24 c15
c41 c32 c23 c14 c55

PASS4 c31 c22 c13 c54 c45
c21 c12 c53 c44 c35
c11 c52 c43 c34 c25

- - - --
c51 c42 c33 c24 c15
c41 c32 c23 c14 r55

PASS3 c31 c22 c13 r45 r54
c21 c12 r35 r44 r53
c11 r25 r34 r43 r52

- - --
r15 r24 r33 r42 r51
r14 r23 r32 r41 r55

PASS 2 r13 r22 r31 r45 r54
r12 r21 r35 r44 r53
r11 r25 r34 r43 rS2 - - - --
r15 r24 r33 r42 rS1
r14 r23 r32 r41 I

PASS 1 r13 r22 r31 I

r12 r21 I
r11 I

- - --

2 .. 21 •• 132 •• 21 •• 13

n n n n

FIGURE 7.7.1: preprocessing array (n=5)

558

P~S 1: Find minimum element of each row,
~

storing it in cell,.
~

PASS 2: Subtract the stored value from all the elements in the row.

PASS 3: Find minimum element in each column
i

storing it in cell, •
~

PASS 4: Subtract the stored value from all elements in the column.

This implies that the basic cell requires a subtracter and a comparator,

but if we include a status bit set by the subtractor to indicate negative

values the less than condition can be detected without the comparator.

(Essentially subtract the stored and incoming values, check the status

bit and switch to the correct output accordingly, the subtract result

is ignored). The change from pass 2 to pass 3 requires the matrix

input to be turned from row ordering to column ordering. As the matrix

is square the last column element leaves the array in a row pass, as

the first column element is required to enter the array, and there is

time to reorganise the data 'on-the-fly' by the host machine or a buffer.

The data output by the pre-processing array at each pass is looped back

to the array input forming a ring, on the last pass the ring can be

broken to form a suitable interface for loading the API. Hence the

total time for STEP I is T=5n cycles (where a cycle is the cost of

add/subtract) with the last n cycles overlapped with API timings.

The API is shown in Fig.(7.7.2) and has the same global structure

as the mesh used for rank annihilation Fig.(~3l,l) incorporating a

systolic control ring (SCR) tO'generate any ordering of wavefronts

across the grid. The boundary arrays and internal cell definitions

are of course different, and the Hungarian algorithm can be computed

by a number of phases as illustrated by Fig.(7.7.3).

PHASE 0: Loading of the reduced cost matrix, the SCR is not required

and the loading of square meshes of processors with data is well

understood.

~

C, I- HOST INTERFACE I- C2

1 t t ! - -
M R
I · · 0
N W

S
TABLEAU MESH

S
H · nxn · 0
I R
F T
T

· · I-- l-

t ! 1 1
C4 - COLUMN SORT H C3 J

a) Assignment procedure iteration (API)
array

FIGURE 7.7.2: Structure of assignment problem mesh

HOST INTERFACE
A

r \

.-L J~ J~ .-L ~L
I I I I I I I I I I

H H H t-I
I I I I I I I I
-~~ .. ~~,

b) API systolic array (n=5)

111
l11
I!)

560

PHASE I: (start of the iteration algorithm)

Two wave fronts w
l

and w
2

are generated as fo1lows:-

a) cl generates controls moving systo1ica11y along c
1
-c

2
and c

1
-c4

through the host interface and min shift arrays, producing w
1

• At

the start, the min shift cell immediately below cl contains the

smallest uncovered element in the current reduced cost matrix (zero

for the starting matrix of Step I). As w
1

moves across the tableau

it performs the reduced cost modification (of Step 3) according to

covered line positions.

b) On the next cycle after cl generated controls for w
1

a second control

c
1
-c

2
and cl -c

4
produces a wave front w

2
parallel to w

l
which counts

the number of uncovered zeros in each column.

PHASE II: On reaching c 2 and c
4

the controls associated with w
2

are

relayed along c
2
-c

3
, c

4
-c

3
• At this time w

2
and w

l
are half-way across

the tableau and the first column has completed its zero count or column

zero weight (CZW). Thus, as the control moves along c
4
-c

3
the CZW's are

loaded into the column sorter (in the same manner as the Simplex tableau

see Fig.(7.5.3)) and starts an ODD-EVEN transposition sort bubbling the

max CZW right and the min CZW left. As weights are swapped a wavefront

w3 of swap controls propagates across the tableau re-aligning column

elements.

PHASE Ill: When controls reach c
3

' w
1

and w
2

have left the mesh, and the

max CZN is in the sort cell immediately left of c
3

and w3 is halfway

across the grid. Controls now travel along c
3

c 4 and c
3

c
2

' the former

signals closing down the column sorter. Hence when controls reach c4

and c2 the CZw's are completely sorted and the last column swap

instruction has entered the mesh.

,
~,

[l
v

PHASE I

PHASE III

PHASE V

PHASE VIII

PHASE X (loop)

w,
w,

~
~
~
1=
I-

561

PHASE 11

PHASE IV

w, -I

PHASE VI

~
~
~
1=
I-

PHASE IX

FIGURE 7.7.3: API WAVE FRONTS

The computational phase for API phase
VII not shown,is the line drawing section.

S62

PHASE IV: To complete the control cycle signals move along c
4
-c

l
and

c
2
-c

l
and a wavefront Ws performing the same task as w

2
but collecting

the row zero weights (RZWS) by counting uncovered zeros in each row.

When the controls reach cl the bottom row has completed its count.

PHASE V: This phase is analogous to phase 11, and cl generates a new

signal c
l
-c

2
• As Ws continues to move right its controls (in the

absence of SCR values) are used to load the RZW weights from bottom to

top and start the sorter. Thus when the new SCR control reaches c
2

'

all the row weights have entered the row sorter and the minimum RZW is

in the cell immediately below c
2

• A wave front w6 generated by the sort

is propagated left to perform relevant row swaps, hence at the end of

the phase w6 is half way across the tableau.

PHASE VI: The control now moves c
2
-c

3
and c

4
-c

3
and closes down the row

sorter, while the remaining row swaps are carried out on the tableau.

At the end of the phase the row weights are fully sorted and the last

row swap has entered the table mesh. All sorting cells are off and the

max RZW and CZW reside in cells adjacent to c
3

•

PHASE VII: c
3

now takes control of the algorithm and initiates line

drawing. The basic technique for drawing the minimum number of lines

is given below and is only outlined here.

a) c
3

collects both maximum RZW and CZW values to select the

largest.

b) IF both values are zero THEN no uncovered zeros exist GOTO

PHASE VIII.

IF n lines have ·been drawn THEN optimal solution STOP

ELSE draw a line.

A line is drawn by zeroing the selected RZW (or CZW) and issuing a

563

control value along the last row (or column) of the table mesh setting

the cell elements line state (covered, twice covered, uncovered). Where

a cell element is zero and uncovered the associated RZW (CZW) in the

adjacent sorter cell must be decremented making the element disappear

from future line drawing. After a short delay to allow the marker

wavefront sufficient head start and to avoid interference, c
3

issues

controls along c
3
-c

4
and c

3
-c

2
to re-activate the sorters, which re

sort the modified RZW's and CZW's, while bubbling the marked row or

column away from the line marking area of the array. On reaching c
4

and c
2

the signals are returned to c
3

(along the reverse paths) closing

down the sorters. On reaching c
3

the row and column lists are re-sorted

and we return to a) above to draw another line.

PHASE VIII: If we reach this phase both the CZW and RZW lists have

been reduced to zero in less than n lines and a modification. of the cost

matrix is required. c
3

releases control propagating signals along c 3-c4

and c
3
-c

2
producing wavefront we which moves the minimum uncovered

element of each row left. When the control on c
3
-c

4
reaches c

4
the

minimum of the last table row is available.

PHASE IX: Signals are relayed by c
4

and c
2

to travel c
2
-c

l
and c

4
-c

l

and complete the second circuit of the SCR. As the signal for c
4

moves

to cl it loads the minimum row values (MRV) into the min. shift array,

which constructs a partial ordering on the MRV filtering towards cl.

When signals reach cl the minimum uncovered table resides in the cell

immediately below Cl. We now GOTO PHASE I.

STOP: If stop is reached in Phase VII the API is closed down and the

final tableau output.

REMARK: We assume that like the simplex array, sorting cells contain an

564

index for row and columns so that the final result is easily recovered.

The line drawing method uses a simple heuristic technique to decide

where to draw lines - i.e. try to cover as many zeros as possible with

each line. But can we be sure that we always draw the minimum number

of lines?

Theorem 7.7.1: The systolic API always draws the minimum number of

lines for a given reduced cost matrix.

Proof:

(i) If we do not cover all the zeros, on resorting the RZW, and

CZW lists c
3

will receive a non-zero value from a list and draw another

line.

(ii) Let k
min

be the minimum number of lines, and put k>k
min

such

that without loss of generality k~k . +1. From (i) and the heuristic
m~n

above we must draw a redundant line, whose zeros are all covered at the

time of drawing. This implies the elements of the CZW and RZW must be

zero hence c
3

cannot draw a line. This is a contradiction, thus proving

the theorem.

A program implementing the API mesh as described above is given

in the appendix and also defines the cell operations. The use of the

SCR control flow simplifies the array timing which is given as follows.

The control values travel around the SCR exactly twice to complete

steps 2 and 3 of the algorithm. On the second SCR cycle we perform

line drawing which has a variable time. If we denote the time spent

line drawing as Tld a single API iteration costs,

as the cost of a complete SCR cycle is 4(n+l} cell cycles. If we

perform z iterations the total time is,

z
L Ti =

i=l

z
L 8n +

i=l

z
= 8nz + 8z + L eiT

id i=l

565

(7.7.5)

The time to draw a single line is bounded by the cost of resorting the

CZW and RZW lists, and is equivalent to the time of traversing a side

of the API twice i.e.,

Tl = 2(n+l) + k , (7.7.6)

with k>O is a constant delay required for separating individual

wavefronts. Now if we assume that once a line is drawn it is never

removed,

(7.7.7)

as we can draw at most n lines, consequently, if we draw all n lines

on a single iteration we get the lower bound,

z=l
2

T i = 2n + (k+ 9) n + 8 , (7.7.8)

and if we draw one line every iteration the upper bound

T = lOn
2
+(k+ 9)n •

u
(7.7.9) z=n

(7.7.5) is verified by the test example given below with accompanying

program generated snapshots of control flow and table images.

In general, however, some lines will have to be removed, and could

increase the computation time. For example, consider the following 3*3

scenario, A
I f

0 2 1 2 1 (!) 1 0

H 5 7 0 ... -9-f'J- ... -i-~ -e- ... B

0 3 4 3 4 9 2 3

(i) (ii) (iii) (iv)

corresponding to the mesh operation as explained. In step (iv) the

algorithm uses three lines when just two will suffice, contradicting

566

Theorem (7.7.1). Clearly the line B is redundant and should be removed

after A is drawn. The problem occurs because lines are retained between

successive iterations on the API. Modifying w
l

in PHASE I to uncover

elements after performing the table update solves the problem because

c
3

always starts line drawing afresh on each iteration. Unfortunately

this means that not only redundant lines disappear hence,

z-l
I (n-l)T

l
+ nT

l
=

i=l

= Tl(z(n-l)+l)

z
I (n-l)Tl

i=l

(7.7.10)

as at most (n-l) lines can be drawn on the first z-l iterations and n

on the last, yielding the revised upper bound,

T
u

2
z(2n +n(8+k)+6-k)+2(n+l)+k

3 2
= 2n +n (8+k)+(8-k)n+(2+k) •

(7.7.11)

REMARK: To implement this procedure, the program code requires the line

state to be cleared after an update in t.cell, and n=O at the end of a

line drawing phase in controller.3.

A more flexible approach is to incorporate erasure of redundant

lines in the line drawing phase to yield,

z z
T = 8z(n+l) + I e. T'd + I ~. TE '

i=l L ~ i=l L

(7.7.12)

where O<~i~l and TE is the time spent erasing lines, and thus avoiding

redrawing the same lines on successive updates of the reduced cost

matrix. Removing lines, however, presents a number of problems.

(i) Identification: Clearly, a line is redundant if all its zeros lie

on the intersections with other lines, as on the next cost matrix

update they become nonzero.

(ii) Location: Redundant lines must be removed before we attempt to find

the table minimum otherwise an incorrectly updated table will result.

567

(iii) Implementation:

a) two wavefronts must pass over the mesh to identify redundant

lines one for rows and one for columns.

b) a further two wavefronts are required to erase the lines.

c) the count of lines must be modified to avoid premature

termination of the algorithm.

Line erasure can be implemented effectively as follows. Notice that c
3

selects the MAX(CZW,RZW) and hence only one list can be re-sorted, and

generate swap data. For instance, suppose the CZW is selected by c
3

,

the CZW list must be resorted, but the RZW is unchanged and already

sorted. Consequently, the column line which is to be drawn can only

product redundant row lines. It follows that the sorter start up signals

travelling c
3
-c

4
and in particular c

3
-c

2
can be used to generate a

redundancy status bit vector R such that,

R(i) =
{

1 for a redundant line occupying table row i

o otherwise.

The row sorter sets R(i)=l, i=l(l)n making all lines redundant initially.

The R(i) travel on the leading wave front of swaps generated by the

column sorter along with the new line column being bubbled away from c
3

'

thus ensuring that each R(i) meets all the elements of row i. We reset

R(i)=O whenever an uncovered or once covered zero element is encountered

Thus, when the column sort signal c
3
-c

4
reaches c

4
the last row is

identified as required or redundant. Next, as we closedown the sorters

can be used to reflect the R(i) incident on the minshift array tagging

them to the last wavefront of column swaps. As each R(i) is now set to

indicate redundant lines, the return trip can be used to erase lines, by

568

modifying each elements line state. It follows that when the sorter

stop signal returns to c
3

the c
4
-c

l
redundancy control reaches cl and

the last table row is completely erased, and the first row about to

start. Consequently, drawing of the next line can be overlapped with

erasure. Furthermore if we include an adder in the minshift cells, the

arrival of the R(i) bits can be used to count the number of redundant

row lines (say r). Thus moving the line count from c
3

to cl means that

the arrival of the redundancy control at cl can set the number of lines

as nd-r+l where nd is the total number of lines drawn (we remove rand

add 1 column line). A similar argument holds for resorting the RZW

list with the column redundancy vector C(i), i=l(l)n, except that c
2

uses a signal c
2
-c

l
and the host interface accumulates the column

redundancy count c, with nd-c+l the updated line count. The practical

point is that erasure is overlapped with line drawing and sorter close

down hence,
z
I ~iTE = 0 ,
~l

(7.7.13)

reducing (7.7.12) to (7.7.5) and yielding the timing bounds (7.7.8) and

(7.7.9).

Finally, we consider the complexity of the cells. Fig.(7.7.4)

indicates a loose structure for the table cell the most complex cell in

the mesh. Lines drawn are represented by a line. state variable (LS)

which can take three states:

(i) uncovered - no line

(ii) covered - by a single line

(iii) twice covered - by two lines at an intersection.

·In the program we have used general variables, but in hardware terms

line states require only three bits, where,

r-------------------·--------------I
! ! I
, ',11 i I
1-------------- ---------1

111~:r~~~~~~-:.-= s:.;~~~~
,-----h--.--..---'

Il E ~~L i
~ 8- !

I ~f--A !
I ~ L- ,I
1 ______ ------------------------

ls = Line State __ Control _ Data

FIGURE 7.7.4: Tableau cell arrangement

100 no line

001 single line

010 intersection

569

and line drawing or erasure is implemented simply by circulating shifts

left or right respectively. For the purposes of column and row swapping

we can consider these 3-bits tagged to the actual table element. By

the mechanics of the array the row and column of table cells next to

the column and row sorters are the only ones to receive line drawing

commands. As lines are marked on the tableau cells, the cells

containing previously unmarked zeros must generate a signal to modify

the associated RZW/CZW value in the adjacent sorter cell. The tableau

must therefore be able to detect a zero, which can be achieved by taking

the NAND of the element bits (or maintaining a zero-status flag also

tagged to the element). Additional hardware is also required to perform

the cost matrix update and calculation of the RZW'S and CZW's. Using

the line.state bits and the zero flag the calculations can be controlled

as follows,

570

Line state Zero Action

00 X Subtract minimum element from cell
element

01 X Add zero to Tableau element

10 X Add minimum to cell element

(a)

Line state Zero Action

00 1 Add 1 to row or column index

01 X Null (add zero) "

10 X Null (add zero) "

X=don't care.
(b)

TABLE 7.7.1

The last problem is the location of the minimum element, requiring

the comparison of the incoming minimum from the right with the cell

element, and the resulting minimum to be placed on the left output.

The comparison can be performed by subtracting the cell element from

the incoming element, the new minimum is then the cell element if the

result is positive and the input element if negative (recall that all

table elements must be positive). The result can be detected by the

sign bit of the adder/subtracter arrangement. We conclude that with

an adder or subtracter, and 4 bits (line. state and zero flag) together

with combinational logic for the control commands, the tableau cells

have a simple structure. By similar arguments we conclude that the

sorter cells and min. shift arrays can also be represented by adder/

subtracter or equivalent cell structures with SCR control logic. The

controllers themselves are simple state machines with c
3

the most

complex requiring a counter for line counting {with line erasure this

571

is moved to cl and requires an adder/subtracter). Consequently the

API area is bounded by the cost of (n+2)*(n+2) tableau cell arrangements.

Including the time (5n) for the preprocessing and 2n cycles to unload

2
the table produces O(n) adder/subtracter cells and the time bcunds,

2 2
2n + (16+k)n+8 ~ T ~ lOn + (16+k)n , (7.7.14)

with line erasure, and,

2 3 2
2n +(16+k)n+8 ~ T ~ 2n +n (8+k)+(15-k)n+(2+k) (7.7.15)

without line removal, giving the erasure procedure a distinct

computational advantage.

7.8 SUMMARY

In this chapter we have considered the application of systolic

arrays to table manipulating and generating algorithms. First asystolic

array for improving numerical approximations to integrals using

Richardson's extrapolation procedure in the form of Romberg integration

was considered. Two designs for generating a table of size n were

presented, the first a linear systolic array of n cells and the second

a systolic ring using only 1/3 of the cells. Both designs required 3n

ips cycles to construct the table, a significant improvement over the

o(n
2

) steps required sequentially.

Next the construction of extrapolation tables used in the solution

of Ordinary Differential Equations (ODE's) associated with initial'

value type problems was examined first for a low order

formula i.e. Eulers method which is combined with extrapolation to

improve" estimates of solution. The technique was extended to the

Bulirsch and stoer algorithm and a generic systolic array form given

to extrapolation table construction. A generic timing T=c(n-l) was

DESIGN TESTING

Examplec Consider the starting API matrh: (n-)}

~
0

~ 0

•
Then following sequence pro4uces

+

line drawinq modification termination

Below are snapshots of the APt-array simulated on a VAX 11/750 BSD 4-2

using Loughborough OCCAM (6). The above test requires (Z-)2 iterations

of the method, fully testing the array. TWo snapshots are present.

(1) COntrol wavefront, 1ndicatinq sYltollc oontrol flow. qenerated wavefronts.

Each entry is a quac!ruple of the forlD

a) (cO,c I ,c2 ,c)) Tableau cell

b) (1 ,Cl ,c2 ,co' Row sort cell

c) (j ,Cl ,c2 ,c)) COl sort cell

~) (min ,c
O

,c2 ,c)) Min shift cell

e) relevant signals for controllers.

(ii) Table outputl Indicates modifications, minimum uncovered elements,

colIputed row/column weights and SOrter generate sweeps. Each entry

is a single value

.l Telement ... Tableau cell

b) Row wei9ht ... row sort

c) Col weight ... col sort

d) Minimum row ... min shift

e) Zero except for controller I - collects minimum element for

modification.

REHARXl The above example is artificial in that a genuine reduced cost

matrix would have a zero in each row and column but it serves ita

purpose as a teat matrix.

Remarks on Tests

1. The total number of cycles frolD algorithm start to the beginning of

the OCCAM closedown is 96. This bound on k is essentially correct,

and verified by the above timing elements •

2. Control signals key for snapshots

Co cl c2 c 3 ACTION

1 Swap with right cell

2 Swap with left cell

1 COnstruct row weiqht

1 Construct col wight

3 3 Modify element

• Shift rov minimum left

3 Draw row 11,..

3 Draw col line

1 Load row weight •

2 Modify row wiqht •

• Null •

2 Stop sort cell

3 ·
• ·
1 Loa~ column weiCjlht •

2 Modify column we iqht •

• Null

1 Stop sort cell

3 ·
• ·

Load row minimum and test
2 with row below

, &~ Close thia I/O port

Tableau
0011

Row sort
Cell

col sort
Cell

} min shift

} OCCJ\M
Termination

N.B. other signals and controller codes pass through cell. unchan9'!d, cl

and c) modify control signals.

c.n
IV

0"\101 W __ hont .,...""»_
•• , U Us" n .. ",llIlt ,.t. , . ., " ",'. , ... ' h 'It' 2

It_rt c)'cl. • "rt crcl. It.,., c)'cl. I'e" crel •

•• 00']000 0000 0000 0000 0(000 0001 0000 0000 00" 0000 0001 0000 0000 0000 0(00 DO"
0000 • 0000 0000 0000 0000 1000 0000 0000 0000 0000 1000 0000 0000 (1000 00,"0 '000
0000 0000 0000 0000 2000 0000 0000 0000 0000 20'0 0100 0 ... 0000 0000 1000 0000 ODDI GOOD 0'00 'DID

0 0 , . 0000 0000 (0000 0010 noD 0000 0100 DODO ODD'" '000 DODO 0001 0000 0000 200.
0000 1000 1000 '00 0000 1000 1010 ,0'0 ,00' 0000 ,000 '00' 100G Ion 0000 '000 1000 1000 IDOl

.U,., c),c le .tlr, c)'ch "It" och ,"'r' c),cle 0000 0000 0000 0000 0000 0000 0000 0000 000' 0000 0000 0000 0001 0000 0000 0000 0000 01)11
0000 0000 00 •• 0000 1000 0000 0000 0000 1000 0100 0000 0000 0000 tOOO 0000 0000 0000 ~(,OO toOO
0000 0000 0000 1000 DODO 0000 00 .. ~OOO 1000 (1000 0'00 0000 0000 1000 ODDI 0000 0000 0000 '000 0000 0000 0000)(000 0000 0000 0000 0000 SO'O 0000 0000 0100 0000)000 0001 0000 '000 OtOO 1010
0000 '000 1000 SOOO 0000 0000 1000 2000 SO'O)OU 0(100)000 1000 2000 lOOS 0000 '000 1000 1000 2002

,ter, c),ch .hr' c,ch .u" c,ch ,t.,t c,ch
00" 0)00 0000 , ... 0001 0000 0000 COOO 0000 0001 1000 0000 0000 0000 00C1 0000 0000 0000 O~to)01 ,
00>0 0000 0000 '000 0000 0000 0000 'ODD 0000 OOOD I)OO~ 1000 0000 0000 0000 0000 1000
0000 0000 0000 2000 0000 0000 0000 \l000 2000 ceoo 0100 0000 lOCO 0000 0000 0000 0000)000
00(10 0000 0000 0000 '000 0000 0000 0000 OD .. SOOO GOOD 0000 0000 "'00 SOOO GOOD 0000 0000 .,000 1000 '00' 2000 , ... SODS 1000 3000 1000 son 0000)000 1000 2000 ZOO) 0000 '000 '000 2000 lOll

.t_,.t c,cl. It"t Cre" "", c,ch It.rt e,ch
0000 0100 OSOO 0000 000' 0000 0000 0000 000l 0000 0000 0000 0001 0000 0000 '00' 0000 00"
0000 ono 3000 OOOG 1000 0000 0000 0000 0000 1000 0000 0100 0000 to{'lO 0000 00(;0 0000 .,eoo 1000
OOSO 0000 0000 0000 1000 0000 0000 000000. 0000 0000 0000 0100 2000 0000 0000 0000 ,o00 SOOO
0000 •• 00 00" 0000 '000 0000 '00' 1000 .00.)000 0000 0000 0000 0000)100 0000 0000 0000 OC('O 1000
00 .. '00' 1000)000)00) 0000 SOOO '000 ZO'" 200' 0000 JOOO 1000 2000 lOOS 0000 SOOO 1000 ZOOO 2002

ata,., c,c le ,tert c,cl. ,t.r' C)'C le at.rt c)'cle
0000 0100 0'00 0001 0000 0000 GOOD 0000 0001 0000 0200 0000 0001 0000 0000 tOoo OCl<;O 0011
0000 0010 ono 0000 1000 0000 0000 OOOD 0< .. 1000 0000 000. 0000 0'00 1000 0000 0000 ('000 1COO tOOO
0000 ono 0000 0000 2000 0000 0000 1000 leOO 1000 00" 0000 0000 000" ltOO 0000 0000 0000 0000)000
CO)O '000 00 ..)000)OlO 0000 'ODD 2000 0000 SOOO 0000 0000 soeo 0000 OO~O 0000 0(00 2000 'ODD 1000 SOOO S(lO' 0000 3000 1001 2000 lOOS 0000 '000 '00' 200. UO) 0000)000 'ODD 20C3 2002

ata,., c),ch .tert cuh atart crch "a,.t crele
00 .. 00" 0100 0)e1 0000 0000 0000 0000 0001 0000 0000 0200 0001 0000 0000 '00' oeoo DOH 0000 DOlO :")0 1000 0000 0000 1000 lClOO 1000 0000 0000 0000 0000 ,,1i0 0000 DOlO 0000 ~OOO 1000
0000 .. 10 :uSO 0000 20CO 0000 1000 2000 0000 2000 0000 0000 '00')000 0000 0000 0000 OC·OO)000
.00. ono 0000 3000 3000 0000 0000 0000 , ... '000 0000 0000 0000 0000 2Cli0 0000 0000 0000 '000 2000
C'OU 1000 lOOO ,003 0000)00' 1000 .1000 lOOS 0000)000 1000 2000 200S 0000 SOOO 100 S 2'00 IDOl

.h" c),cl. ,t.rt e,cll lurt c,cl. ,ta" c,ch
00" 0000 0000 0101 0000 '000 2COO 000, (1000 0000 0000 0000 02U 0000 0000 (1000 OtOO 0011
tooo 0000 3010 noD 0000 '00' 2000 0000 1000 0000 0000 0000 0000 0000 "00 0000 'ODD
000. .000 0010 ono lOaD 0000 0000 0000 OClOO 2000 0000 0000 OOOl)000 0000 0000 0000 '000 '000
0000 0010 OSSO 0000)000 0000 OGOO 0000 .". SOOO 00" 00" 3001 2000 0000 0000 0000 0000 22040
0000 ,030 2000 SOOO lOOS 0001)000 1000 lOOO lOOl 0000 3000 1000 lOOO 2002 0000)00] 2000 1000 2002

,t.,t c,el. It'" crcl • ".,t c,cle .urt c,ch
noD 0000 0000 00e1 0000 '000 1000 0000 OOOt 00(10 0000 0000 0000 0011 0000 0000 0000 OC.OO DOH 0000 0000 0000 1010 0000 0000 0000 '00. COOO 0000 0000 000t' 1020 0000 0000 "000 JO(oO 1000
00" 0000 0000 DOlO 2300 0000 OMO 0000 OC'OO 2000 0000 0000 0002)000 SOoo 0000 0000 0000 OCOO U04
t'coo 0000 ossc .)C!OO 0100 0000 tOOO '000 3000 0000 0"'00 00 .. oooe 10CtO 0000 0000 1000 2:C"0 2000
eooo '0'0 lO,O 3000)eos 0000 ,000 1000 2000 zoos t'OlO .00. , ... 20GC 2002 0000)000 2000 1000 1002

In

" w

-.r 11 1tl'6 ,9,. .. •• lIlt "" ,
~.r 11 16,'6 , •• t ,,,"It '.,e 6

• urt c,cle It.r, crct •
ooto ... , .,." crct.e ."r, crell 0000 eooo 0000 0000 Don1 0000 .000 0000 eooo 0000 0000 SOOO)011 0000 0000 0000 0000 000' 0000 0000 0000 :1000 1000 UOO 0,)00 0000 0000 1000 0000 0000 HO, 0000 0000 0000 0000 tooo 0000 0000 0000 , ... SOOO 1000 0000 tODD 0000 SODa 1000 2000 SOOO 0000 0000 0000 0000 sooo (1000 0000 0000 :1000 1000 1000 0000 0000 0000 1000 0000 DODO 1000 DOOO 0000 S('DO 1000 0000 , ... 1000 1000 t041 0000 SOOO 1000 tOeD 1001 UOO tOOO 1001 0000 SOOO aDDs toOO , ...

u." c,cle . ,." crc Le
0001 Itlr' crcle ... r. crcle 0000 0000 0000 0000 00C1 1000 0000 0000 oeoo tOOD 0000 6001 0000 0000 DODO '00' COOO 0000 1000 1000 0000 0000 oeoo toOO 1000 1000 1000 0000 0000 0000 0000 1000 0000 0000 0000)000 10DO 0000 0000 0000)000 0000 0000 0000 SOOD 0000 0000 0000 SOOO SOOO 0000 0000 0000 0000 1000 2000 0000 0000 OeDO 1000 0000 0000 0000 1000 0000 0000 OCOO 210' 0000)000 1000 1000 lCOl 0000 SOOO 1000 1000 1001 0000)000 2)00 1001 0000)00) 1000 1COO 1001

It ... , creh .,,', cycle
0001

.tar' crete .tI" 'rcte COOO 0000 0000 9000 000' 0)(10 0000 0(100 0000 1000 1000 0001 0000 0000 DeaD OOot 0000 0000 0000 1000 to)O 0090 0000 0000 1000 0000 0000 0000 1040 0000 0000 JOOO 1000 (1000 0000 , ... JOOO 1000 0000 0000 0000 JOOO 0000 0000 0000 SO 00 0000 0000 0000 'GOD SlO' 0000 0000 0000 loaD 1000 0000 0000 0000 aooo 0000 0000 2000 COOO 0000 0000 0000 1000 ClOOO '00' 1000 1002 1001 0000 , ... lOOO , ... 100l]000 1000 noD· 1001 0000 sooO lOOO teoo toOl
I U, t erc te • • ar. er,t •

3001
.tl' • c,ch It.rt crete oeoo 0000 0000 0001 0000 {rl00 0)00 OCOO 0000 0000 0000 0001 0000 0000 0000 JOOO OOOt 0000 0000 1000 1000 ono eooo 0000 ,000 0000 0000 1000 0000 0000 0000 oeoo 1404 0000 0000 0000 0000)COO 10)0 0000 tooo oeoo SOOO 0000 0000 0000 0000)040 oooe 0000 3000 , ... 0000 0000 0000 4000 lOOO lOOO 0000 0000 ooeo 1000 0000 0000 0000 0000 1000 0000 0000 0000 OCOO 1000 0000 lOOO '000 1002 0000)000 lOOO 1eDO 1001 0000 , ... lOOO 1000 nol 0000 noD 1000 ICOO toOl

Ihrt erch lu,t crete
0001

.. ar •• ,ele Ihrt crete 0000 .00. 0000 0000 :1001 0000 0000 0100 OleO 0000 0000 :1000 0001 0000 0000 0000 :tcoo 4001 0000 0000 0000 0000 'OCtO '000 00'0 OSSO 0000 1000 00 •• 0000 0000 1000 0000 0000 0000 0000 1000 0(100 (1000 0000 400G lOOO 1000 cnD 11000 0000 sooo 0000 0000 0000 SOOO OOOG 0000 0000 0000 sooo 0000 4000 0000 1000 lO)O 0000 :)000 2000 0000 0000 l040 0000 0000 COOO oeoo lOOO GOOD 1001 1000 1000 l.DOl 0000)000 lOOO teOO 1 DOl "00 1000 '000 1 DOl 0000)000 UOO '000 1002
.u,. 'rete .t.,' cre Le

0)0, It." c,..te ., eret. 00 •• 0000 0000 0000 OOGl 0000 0000 0000 0100 0000 0000 0000 0000 oOOt 0000 0000 0000 'COO 0001 0000 0000 0000 4000 '000 '000 0000 DOlO 0))0 tOOO 0000 0000 0000 1000 0000 0000 GOOD oeoo 1040 0000 (1000 .000)000 SOliD 1000 ~OlO ono 00('0 SOOO 0000 0000 0000)000)000 0000 0000 0000 oeoo , ... 0000 4000 0000 0000 1000 1000 ono 0000 OOflO 1000 0000 '00. 0000 0000 2000 0000 0000 0000 0000 2000 COOl)000 1000 1000 10C'Z 00)0 SOOO 1000 "'00 1001 SOOO 1000 tOOO 1041 0000 SOOO 1000 UOO 1 DOl
.ta,. eret. ••• ,t crcte

0101
.te, t c,c\e .t.r. creta 01;00 0000 0000 4000 0001 oeoo 0000 0000 0000 0001 0000 0000 0000 oeoo 0001 0000 0000 4000 0000 '000 , DOe 0000 0000 0010 000 0000 0000 , ... tOOO 0000 0000 0000 0000 1000 0000 .000 0000 !l000)O!lO 1000 0000 (oOtO ossa)000 0000 0000 0000)000 0000 0000 0000 otoo)040 110.0 [1000 0000 0000 lOOO 2000 0010 (0))0 OOGO 1000 0000 0000 0000 0000 2000 0000 0000 0000 0000 2000 cooa)000 1000 1000 '002 0000 lO)O 2000 1000 1001 0000 JOOO 2000 1000 1002 0000)000 1000 UlOO nOl

It ... , e,.le .tart ercll
""" .. .'ar' e,e le .t.r. erel. 0000 0000 , .. , 0000 0001 tlftnn ~t;'t:'t;' ~~"e ==:1 0000 0000 0000 0000 3001 0000 0000 0000 nnftt\ """. 4000 0000 0000 101:'0 1000 0000 0000 0(00 10'0 tI{\{\~ ,,'" :::~ :~;:;ii iuuu 0000 0000 , ... 0000 1000 uoo 0000 0000 '00')030 1000 0000 0000 :)CtO))00 "00 0000 00 •• lOOO SOOO 0000 flOOD .,eoo SODa 2000 CtOOO 0000 0000 1000 1000 0000 0010 ono lOOO '}OOO 0000 0000 0000 2000 OC.OO 0\100 0000 0000 2040 0000 lOOO 1000 '000 1 DOt 0000)0'0 20S0 HOD 1 DOl 0000 3000 1000 100l tOOl 0000)000 lOOO 1000 1002

lJ1, ..

111.1' 2t "146 t ... r .. utl ,.,. , ." 11 1614' 19 utt "'" ,

ahrt c,ch .tlr\ c,ch .. ." c,ct. 0000 0000 0000 0000 '001 0000 0000 0000 0000 0001 .urt e,et.
1000 0000 000. 0000 1000 1000 0000 rooo 0000 1000 0000 0000 0000 0000 0001 0000 0000 0000)000 0001
1000 0000 000. 0000 1010 1100 0000 0000 0000 JOOO 1000 0000 0000 0000 1000 1000 0000 0000 0000 1404
2000 0000 0000 0010 ZJOO 1000 0100 0000 0000 lOOO 1000 ODDI 0000 0000 lOlO 1000 0000 0000 0000 1000

0000 1000 2010 10)0 1002 0000 zOOO 1000)000 '00' lOOO 0001 0000 :1000)000 2000 0000 0000 0000)000
0000 2000 1000 '00')00) 0000 UOO 1000)000 JOOJ

••• r. c)'ch It.rt c,c t •
It e,ch tOOO 0000 0000 0000 0001 0000 0000 0000 0000 0001 ".rt e,et.

1000 .00. 0000 0000 1000 1100 0000 0000 oeoo 1000 0000 0000 0000. 0000 '001 0000 0000 0000 0000 4001
'000 0000 0000 !l000 1000 1000 0100 0000 OflOO)000 , ... 0000 0000 0000 1000 ,000 0000 0000 0000 1000
2000 0000 0000 0000 2010 2000 0000 0100 0000 2000 tOOl 0000 0000 0000 lOOO 1000 0000 ClOOO 0000 2000
00., 2000 JOOO 1010 1001 0000 2000 1000 SOOO SOOl lOOl 0000 0000 !l000 SOlO 2000 0000 0000 oroo SOOO

cooo lOOO 1000 SOOO son 0000 2000 1)00 SOOO)00)

" ... , c,ete • t.rt c,ct • U.r' e,ct. 0000 000. 0000 0000 0001 tOOO 0000 0000 0000 0001 IUt't c,cl.

'00. .00' 0000 0000 1000 1000 0100 0000 0000 1000 0000 0000 0000 0000 0001 0000 0000 0000 !l000 0001
1000 0000 0000 0000 1000 1000 0000 0100 0000 , ... 1000 .000 0000 0000 1000 1000 0000 .00. 0000 1040
100O , ... 2000 0000 lOOO 2000 0000 0'" 0100 '00. 1000 00 •• 0000 2000 1000 0000 0000 0000 2000
... 0 2000 1000 SOOO 1012 0000 2000 1000 SOOO S002 2000 0000 0000 0000 JOOO lOOO 0000 0000 !tOOO JOOO

(00. 2000 1000 JOn 0000 2000 1000 noo lOO)

.t.r' .,et. '''r, c,ch Iurt c,cte 0000 0000 00.' 0000 0001 00.' 0200 0000 0000 000' It ... t e,ch
1000 0000 0000 0000 1000 1000 0000 0100 0~00 '00. 0000 0000 0000 0000 0001 0000 '00' 0000 0000 0001
1000 1000 2000 0000 JOOO 1000 0000 0000 0100 '00. 1000 0000 0000 •• 00 1000 1000 0000 0000 0000 1000
ZOOO 000' 1000 lOOO 2000 DODO 0000 .00' 2100 1000 0000 0000 0000 2000 '00' 0000 .00. 0000 l040

000' 2000 1000 JOOl]002 0000 2000 ,000 SOOO SOO2 lOOO 0000 0000 0000)000 2000 0000 0000 OcOO '000
00 •• 2000 1000 JOOO SOD) 0000 2000 1000 soDa)JO)

ltert n'ete Ihrt "cle ItaI'(e,-et • 0000 000' 0000 0001 0000 0000 0200 0000 000' ".rt e,eh
1000 '00' 2000 0000 1000 10eO 0000 0100 1000 .000 '00. !l000 '00' 0001 0000 0000 0000 0000 0001
'000 0000 1000 2000 1000 1000 0000 0000 0000 "00 1000 0000 0000 .000 1000 1000 00.' 0000 0000 1300
2000 0000 0000 0000 lOOO 2000 0000 0000 O~OO 2000 1000 0000 0000 0000 20CtO 1000 0000 .00. 0000 2000
0000 '00. ,00' , ... S002 0000 2000 1000 JOOO)002 lOOO 0000 0000 .00. SDOO lOOO 0000 0000 0000 S040

0000 '00. 1000 SOD) SODS 0000 .00' '000 JOOO SOD)
.t.rt cych ",1" crete c,eh ... 0 '000 ZO •• 0000 0001 0000 0000 0000 0200 0001 ., ... , It." c,cl.

1000 0000 ,00. lOOO 1000 1000 0000 0000 .000 1100 0000 0000 0000 0000 0001 0000 0000 0000 0000 0001
'000 0000 0000 0000 sOOO , 000 0000 0000 0000 2000 tOOO 0000 0000 0000 1000 1000 0000 0000 0000 1000

'ZOOO 0000 0000 2000 lOOO 0000 0000 oeoo)000 1000 0000 0000 0000 2000 1000 0000 0000 .00. 2000
00.' 2001 'ODD)000)002 0000 2000 'ODD JOOO SOO2 lOOO 0000 0000)000 SODO 2000 0000 0000 0000)000

0000 2000 lOO))000 SOD) 0000 2000 1000 SOOO S04)
It.r, .ych ••• r. creh

0000 000. 1000 lOOO 000' 0000 0000 0000 0000 Ol01 .t'" c,cle .ur •• ,cte
'000 0000 0000 0000 , 000 1000 0000 .000 0000 1000 0000 0000 0000 0000 0001 0000 '00' .00. OCtDO 0001
1000 0000 0000 0000 SOOO 1000 0000 0000 0002 2300 1000 0000 0000 .00. 1000 1000 0000 0000 0(100 1000
2000 .00. 0000 0000 2000 2000 0000 ClOOO 0001)000 1000 0000 0000 SOOO 2000 ,DOe; 0000 0000 '00' 2000 ... , 1000 '00. 5002 0000 1000 1000 JOOO)003 lOOO 0000 ... 0 0000 H04 2000 0000 0000 OO~O SOOO

... 0 ... , 1000 SOOO 5001 0000 lOOO 1000 SCOO SODS
.ht't c,ct. .hrt e,c Le00. 000. 0000 0001 0000 0000 0000 OCOO 0001 lurt cy.te '''1'' c,cle

1000 000. 0000 0.00 1000 1000 0000 0000 0000 1010 000000. 0000 0001 .000 0000 OCOO OOOS
tona "" ,nnn tona oooa nOOl oeon)nnG 1000 0000 00 •• '.00 1000 ,000 0000 0000 0('00 '000
2'00 ... 0 .00. 0000 lOOO lOaD 0000 0001 0000 JOOO 1000 .00. 000. 24004 1000 0000 0000 0000 lOOO
0000 ZOOO 1000 SOOO)002 0000 2000 1000)000 SOOl 2000 0000 0000 0000)000 2000 0000 0000 0000 SOOt 2000 '000 '00' JOo) 0000 2000 1000 JOO, SOD)

<n ...,
<n

"at>l. 0IItr"! Ill!f!hot.

'm .ur. c~cl. 1"1" crcl. ltart crcll
.t.rt crele et.rt eyeh • 0 • 0 • 0 • 0 0 0 • 0 • 0 0 lurt cye t, u.rt ,t, h · , • , • , • 0 , • 0 0 • , • 0 , 0 • • 0 0 • 0 • 0 0 • • 0 • • • • • • , o 0 0 1 0 • • • I • • I • • • • , 0 • , • , , • • • , • • • • , • , • • , • • , • • • , • • , • • • • I • • • • , • • , • , • 0 , • , • • • • , • • , o 0 0 0 • • • • • • • • I • • • • • 0 , • • • , • • • • , , • • • • • • • • , • • 0 • 0 • 0 • 0 0 0 0 0 0 • • 0 • • , .t.,t e,eh .tert creh It.,t cycl. Uert ereh
et"" ercla u"" ereh 0 0 0 0 0 0 • 0 0 • • 0 • 0 • • • • 0 • .hrt &ye" lu,t e,el.

• , 0 , • • • • , • • , • • • • , , 0 , • • • • • • • • • 0 0 • • 0 • • 0 • • (

• 0 0 I 0 • 0 • I • • • • 0 • • , • • , • , • , 0 , , • , • • , • , 0 • , • , ,
0 • , , • • • • , 0 • , • • • • • • • • • , • • , • , • • , 0 , • • • • , • 0 C
0 • • • • • • • • • • • • • • • • • • 0 • • • • , • , • • 0 • • 0 • • • , • • , • • • • • • • • • • • • • • • • • • • C

•• "'. e,cl. ".rt ereh lur, e),e la u e,eh • It"" e,cl, et.,t e,eh eU,t c),e t. ,U,t e,ch

• , • , • • • • , 0 • , , • • • , , • , • • • • • • • • • 0 • • 0 • • • • • 0 • • 0 0 I • • 0 • I 0 0 I • 0 • • , • • , , , • , • • , • , • C , 0 , • , , • • 0
0 • , , • • • • , • • , • • • • • • • • • , • • , , , • • • • , • 0 • • , • • , • • • • • • I • • 0 • • • • 0 • • I I • • • 0 • , • I • • 0 0 • • • 0 • • • • C • • • • • • • • • • • • 0 0 • • 0 • • , I •• n ereh eter, creh • U,' e),ch .u,t e"l • • • • 0 • • 0 0 • • • 0 • • • • • • • • I • .,t e,eh u"'. etcla It.,. e,ell It.'" e,ch • , • , • 0 , • , 0 • , , • • • , • • , • • • • • • • • 0 • • • 0 • • • • • • • • • • I' • • • • • 0 • I • • • • , • • , • , • , • • , • , • • , • , • , I • , , • • • , • • • , • • • , • • , • I • 0 I • , • • , • , • • • • , • • • , , • • ,
0 • • 0 • 0 • • • • • • • • • 0 0 • • 0 0 • 0 0 , • • 0 • 0 0 • • • • , , • • C • • • • • • • • • • • • • 0 • • • • • , It.,. c,cle I"" c,cl. u.,t erela "". c,cl. • • • 0 • • 0 • • • • • • • • • • • 0 • ... ,. e,c'. .t.rt c,ela e •• r. cyct. "crt e,el.

• , • , • • • • , • • , , • • • , , • • 0 • • • • • • • 0 • 0 • 0 • • • • • • C

• 0 • I • 0 0 , • • • I • • • • , • • , 0 , • , • • , • , 0 0 , 0 • 0 , , • • • • 0 • • • • , 0 • • • , • • , 0 I • 0 I • , • 0 , • , • 0 0 • , • • • • • • • 0
0 0 • • • 0 0 • • • • • • I • • 0 • • • • • • • , • • • • • • I • • • , • • • • • • • • • • • • • 0 • • 0 • • • • • • , e .. rt c,cl. .t.,t c,cla ... rt eyell "'1" c,c"
0 • • 0 • • • • • • o 0 0 0 • 000 0 0 •• .,. eyete It". enla ... ". c,ch , .. ,t crct.
0 • • , • , • , • • • , , • , • , • • , • • • 0 • • • • • • • • • • • • • • • • • • 0 I • • • • • • • • • • , • , • • , • , • • • 0 , 0 , • • , • , • • • • • ,
0 • • , • 0 , 0 • 0 • , • • I • I • • • • , • • , • , • • • • , • • • • • • • , 0 • • 0 • • • • • • • • • I • • • I • 0 • • • • • • I • • • • • • 0 • • , • • • • • • • • , • • • • • • • • • • • • • , .ter, nel. Itl" "cl. Ita,. cych t ercl.
0 • • 0 • • • • • • • • • • • • • • • • ,tart erela ... " eych et", e,cla tU,t c,el.

• • • , • • , , • • • , , • , • , • • , • • • 0 • • • • • 0 • • • • • • • • • C

• 0 • • • • I • • • 0 • • • , • • • • , • , • • • • , • • 0 • , • • • , • • • , 0 0 • , • 0 , 0 • • • , • • • • • 0 • • • , • • • • , • • • • , • 0 • • • • • 0

• • • • • 0 • I • • • • I • • • • • • • • • • • , • • • • • • • • • • • , • • • I • 0 , • • , • • • • • 0 • 0 • • • • • (

,t.", .yela .t.r. cyeh ".,t e,ela It"'.t c,eh • • • • • • 0 0 • • • • • 0 • • 0 0 0 0 ""t cyela .. ,,. e,eh .tart eye l, ,t.,t c,etl

• , • , • • , • • 0 • , , • , • , • • , • o • 0 • • • • • 0 • 0 0 0 • • • • • 0

• • 0 • • • • • • • • • • • , • , • • , • , • • • • , • • 0 • , • , • , • • • • · • • • • , , • • • • , • • • • I • • , • , • • , • , • • • • , • • • • • • • C

• • • • • • 0 , · ; , • • • • • • , • • • , • • • • • 0 • • • • • , • • C U1

• • • • • • • • • • • • • • • • , • • • ...,
0'1

.Ut' erch I,.t' crc\, aun crch ",t' crcl.

• • • • • • • • • • • 0 • 0 • • 0 • • • , , 0 • 0 , • • , • , • • , • , 0 • , 0

• • • • • 0 • • • • • • • , • , 0 • , • • , • • • • 0 • I • • • • • I • , • • • • , • • • • • • , • • • • , • • • • • •
"." c)'cl. a,.t, creh at.rt erc\. IUt' cycl.

• • • • • • • • • 0 • • 0 • • • • • • 0 , , • • • , • • , • , • • , • , • • , • • • , • • • , • • • • • • , • • • • , 0
0 , • • • • • • , 0 • , • • I • , • • • 0 • , • • , • • , • • 0 • , • • • • • •

".t t c),cla ".t, cyeh , "t' ere l. ,Ut' crcl.

• • 0 • • • • • 0 • • • 0 0 0 0 0 • • 0
I , 0 • 0 , 0 • , 0 1 0 • , 0 I • • , • 0 0 , 0 0 0 , 0 0 0 0 0 0 , 0 0 0 0 , 0
0 0 , 0 0 0 0 0 , 0 0 , 0 0 , 0 • 0 0 • 0 0 0 , 0 0 0 • , 0 0 0 0 , 0 0 0 0 0 0

"." erel. ,t.,t eyel. .,." cych "." cye t.
0 • 0 0 0 0 0 • • 0 • 0 0 0 0 0 0 0 0 0 , , 0 • , , 0 • , 0 , 0 • , 0 , 0 • , 0
0 • 0 0 0 0 • 0 0 0 0 0 0 , 0 0 • 0 I 0

• 0 0 , 0 , 0 0 , 0 0 • 0 • , 0 • 0 0 0

• 0 0 , • 0 0 • , • 0 0 0 , • • 0 0 0 0

".,t e)" l. ,t"t crcle ".tt erel. It.t' creh
0 • 0 • • • 0 0 • 0 0 0 0 0 0 0 0 • 0 0 , 0 , • 0 , • , , • , • • , • , • , , • • • • • • 0 • 0 • , • • • , • • • • , • • • 0 , • • • • , • • • 0 • , 0 • • • • • • • , • • • • , 0 • • • 0 • • • 0 0 •

• ,." ercl. ,'at' ,rc la IU;' cycl • , t.tt cycle

• • • • 0 • • • 0 • 0 0 0 • 0 • • • • • , • • • • , • • , • , 0 • , 0 , 0 • , • • • 0 0 0 0 • 0 • 0 0 0 0 , • 0 0 0 , 0
0 0 0 , 0 • 0 0 , , 0 • 0 0 , 0 • 0 0 0
0 0 0 , 0 , 0 0 , • 0 0 0 0 0 0 0 • 0 •

",,. t c),cll ,t,,.t eyeh ,tart er' l. ",,., eycl.
0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 , 0 • • 0 , 0 , • 0 , 0 • • 0 , 0 • , • 0 • 0 0 0 • • 0 , 0 0 0 • , 0 0 0 • I 0
0 0 • , 0 • • • 0 , 0 • 0 • 0 • , • 0 • 0 0 0 , 0 0 0 0 I 0 0 0 0 0 0 • 0 0 0 0

.,.r, cycl. It." cycte ",,., crch ,',rt crch • 0 • • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 • , • • , 0 , 0 • , 0 , 0 • , 0 , • , • 0 • • 0 0 0 0 • 0 , 0 • 0 0 , 0 0 • 0 , • C 0 0 , 0 , · n • 0 • 0 0 0 0 • 0 0 • 0 0 0 , 0 0 0 0 , 0 • • · , , , • 0 0

VI

" "

578

given with c the cell latency, and an area efficient systolic ring

constructed with rn/cl basic cells implementing the extrapolation

procedure. Various simplifications on the generic structure were

discussed indicating that arrays could be optimized depending upon

the special structure of particular problems and the ameunt of table

data to be generated (i.e. full table, diagonal entries only or final

improved result). Finally we introduced the idea of the adaptive

table generating array which could predict the convergence rate, and

hence minimise the number of starting values evaluated to achieve

convergence. This led to the problem of generating a table larger

than the array could accommodate in a single pass, and mUltipass table

generation was briefly considered to produce a fixed size array mere

suited to VLSI construction.

From these experiments it was clear that extrapolation table

generation with its recurrent form of table construction using simple

rules for relating table elements fitted many other table algorithms.

We investigated a method of array templating for the fast derivation

of systolic arrays for computationally related table algorithms (i.e.

differencing techniques). The concept of array unification was

introduced to combine similar systolic arrays by combining cell

functions to produce a minimal hardware arrangement. Two types of

templates were discovered indicating that the earlier work was a special

case of a general template. In particular, we showed that equally

spaced arguments produced tables which allowed the arguments to

be inferred by the cell function. Whereas, unequally spaced arguments

require arguments to be explicitly represented in the cell, restricting

the method of computation (and preventing systolic rings). Equally

579

spaced arguments produced a column-wise table generation, while

unequally spaced arguments generated a table row wise. Although the

problems considered were computationally simple the implications are

far-reaching. A number of algorithms implemented on the same cell

architecture will produce a very cost effective VLSI design. Indeed

recent trends in systolic array development and particularly the CMU

WARP processor (H.T. Kung [84a]) are aimed at more flexible array desing.

The Unified Systolic Array for Differencing (USAD) offers an interesting

alternative for fast computation of approximating functions.

Next we turned our attention to the problem of generating open

ended or potentially infinite tables, and examined the effect on table

construction by rules based on triangular and rectangular tables. As a

vehicle for discussion the Quotient-Difference (QD) algorithm for

producing all-the roots of a polynomial was used. Two designs were

produced, one where polynomial roots remained fixed in cells (or

stationary) and a second where root approximations moved systolically

(i.e. nonstationary). The former scheme requiring n QD-rule cells for

a polynomial of degree n. The latter with cells proportional to the

number of root approximations, forming a natural multipass array, and

by extension a systolic ring for generating an infinite sequence of

approximations.

Finally, systolic arrays for the more complex table based Simplex

and assignment problems were developed. This time the emphasis was on

table manipulation rather than construction resulting in larger and

more complex arrays. The resulting arrays used a combination of wave

front and systolic control movements. For the standard Simplex method

the time of the array was bounded by,

580

T ~ z(2n+4m+k}+2m

ips cycles for n unknowns, m constraints, and the examination of z

feasible points, where,

{

approx.

approx.

m for ordinary Simplex
z ~

2m for Simplex with artificial basis

and k~6 a small constant. The number of cells was given by,

{

(m+2) (m+n}+3m

A ~ (m+2) (m+n) +3m+ (m+l)

ordinary

artificial basis.

The arrays reduce the computation by an order of magnitude when

compared with the sequential algorithm requiring o (zm(n+m}). In

contrast to the above technique a second array computing the revised

Simplex method was considered using the general form of the inverse

technique. For m<n a systolic cylinder with a volume efficient layout

resulted and for m~n a compacted planar layout. These revised arrays

required,

T ~ z(4m+12} + O(2m}

ips cycles and the compacted array required only (m+2}2+3m+4 cells.

These results should be compared with the least squares array of

2
Gentleman & H.T. Kung [81] which requires T~O(6n) and O(n } cells

and is applicable for m)n, but requires the construction of normal

equations (omitted from the time) and the existence of (ATA}-l.

Clearly the new arrays require more area and time but are more general

extending easily to solve the Chebyshev (min-max) problem for over-

determined systems.

Last but not least we considered the assignment problem, a special

case of the more general transportation (LP) problem, which reduces to

an integer programming problem and requires a square (nxn) matrix

581

representation. In particular, we implemented the Hungarian algorithm

which allowed a reduction of cell complexity by using only integer

add/subtract operations. An orthogonally connected (n+2)*(n+2) wave-

front mesh incorpcrating a Systolic Control Ring (SCR) for generating

wave fronts and restricting special cells to the periphery of the array

was produced which required,

2 2
2n +(l6+k)n + 8 ~ T ~ lOn + (l6+k)n

cycles, where a cycle is the cost of add/subtract and control switching

time, rather than an inner product step.

We conclude that for table generating methods the number of cells

is proportional to the tables smallest dimension, and that often

designs can be optimised (depending on the table construction rule) to

produce multipass architectures with size independent of the problem

size. Thus together, with the ideas of templating and unification table

generating systolic arrays provide the possibility of cheap add-on

devices to bring parallelism to a sequential machine or off-load

computation of a parallel host in the form of chip-table generators,

akin to the standard mathematical tables used heavily before widespread

numeric computation.

For the more complex table manipulating problems, the size of

arrays is proportional to the number of table elements which are held

or stored throughout the computation. It is acknowledged that the

Simplex problems can be extremely large making the usefulness of a

hybrid or hard systolic realisation of these schemes questionable.

For Simplex problems the idea of decoupling can be applied to produce

a series of smaller problems which would limit the size of the array,

and permit a type of iterative/multipass solution to the whole problem.

~2

Unfortunately decoupling occurs only in limited cases and the

decoupled subproblems may still be large. The assignment problem

by virtue of its simple cell structure and control indicates some

possibilities in Wafer Scale Integration (WSI) schemes, where a wafer

API (WAPI) as shown in Fig.(7.8.l) might produce a large array.

Thus table generating arrays are suited to a hybrid, hard,

systolic approach, while table manipulating schemes remain (for the

present) purely soft-systolic in nature.

FIGURE 7.8.1: Mapping of API onto wafer

CHAPTER 8

THE SOLUTION OF CERTAIN PARTIAL DIFFERENTIAL

EQUATIONS (PDE'S) BY SYSTOLIC MARCHING TECHNIQUES

"Holism 01" l"eductionism fol" pal"aZZeZism?"

Definition: Hol-ism (philosophy)

Tendency in nature to form wholes that are more than

the sum of the parts by ordered groupings.

Definition: Reductionism

Analysis of complex things into simple constituents;

the view that a system can be fully understood in

terms of its isolated parts.

583

In this chapter we extend the ideas of table generation, manipulation

and array unification principles to derive geometric rather than

algorithmic interpretations of finite difference solutions to P.D.E.'s.

In particular, we consider the solution of l-D (heat conduction)

and 2-D (unsteady diffusion) parabolic P.D.E.'s by the asymmetric

approximations of Saul'ev [64] and the Group Explicit (GE) techniques

of D.J. Evans and Abdullah [83a,b] to derive a Linear Asymmetric Marching

Processor (LAMP) array and a unified Group Explicit Parabolic Solver

(UGEPS) •

Array compact ion techniques are employed in the form of Hopscotch

methods (Gourlay [70]) to provide area-efficient alternatives when

portions of the solution 'table' or region can be omitted, and fast

arrays where computational rules used to derive basic cells are optimised.

Finally, we briefly consider the extension of the schemes to a

group explicit technique for the solution of a hyperbolic equation of

first order (Sahimi [86]).

8.1 INTRODUCTION TO ASYMMETRIC AND GROUP EXPLICIT METHODS

Before discussing the construction of systolic arrays implementing

the numerical solution of parabolic P.D.E.'s we briefly review the

finite difference techniques involved with particular attention focus sed

on the following two problems. Firstly, the l-D parabolic equation for

the simple heat conduction problem,

a2
u

-2- , O~x~l,
ax

t~O , (8.1.ll

and secondly, the 2-D unsteady diffusion equation of the form,

, O~y~l, (8.1.2)

5S4

The first solution technique considered is the use of stable asymmetric

explicit finite difference equations of Saul'ev [64). It is well

known that generally an explicit type of method results in the simplest

computational procedures. Since simplicity is usually related to

computational cost and from a systolic point of view, to simple basic

cells and low cycle time it is desirable to retain an explicit type of

approximation procedure. The Saul'ev formulae are chosen in preference

to others (like the classical implicit and explicit schemes) because of

their attractive pipelining features and stability characteristics.

Equation (S.l.l) is one of the most frequently occurring parabolic

equations and can be approximated by the two-time level finite difference

approximation below. The range of the variable x is divided into equal

mesh points o=x <xl< ••• <x 1<X with step size h=l/m and x.=ih. i=O(l)m. ° m- m 1.

Similarly the range [o.tzl of the variable t is divided as O=tO<tl<"'~_l

<tk~tz in z equal parts, giving l=tz /Z and t k=kl, k=O(l)z. Finally we

introduce a set of Dirichlet boundary conditions,

a) u(O,t) = u(l,t) = ° , O~t~tz
and initial values, (S .1.3)

b) u(x,O) = f(x) , O<X<l •

Next, the approximations for the partial derivatives are chosen as

follows,

aUi,k u. k l-u' k
~

1., + 1. + O(h)
~t 1

, (S .1.4)

and, 2
- au.! k au._! k a u. k

+ ° (h 2) 1., .!!.(1.+, 1. ') Cl 2 h ax ax
ax

(S.1.5)

2
au. ! k aUi_!,k+l a u(x. ! t k+61)

1.- , ~ 1.- , , O~e::;l
ax ax - 1 axat

with,

using the Mean Value Theorem.

By substitution into (8.1.1) yields,

u -u
i,k+l i,k: au. 1 k

a (l.+"
i h ak

au
(l-a) (i+t ,k

h ax
2

ai a (xi_!,tk+ei)

h dxat

au.
l.-! ,k) +

ax

Thus, we can write (8.1.6) as,

u. k l-u. k 1., + 1.,
=

i

+

ex -tu -u -u +u)
h2 i-l,k+l i,k+l i,k i+l,k

(l-ex)
2 (u'_l k-2ui k+u . 1 k)+R. k ' h 1. I I 1.+ t 1.,

2
where R. k=O(ex/h + h +i) is the error of approximation.

l.,

585

(8.1.6)

(8.1.7)

We obtain the final equation with multiplication by h
2

and neglecting

the error term h
2
Ri ,k' if h is chosen to be small, as,

with

1
ui,k+l = w+ex [exui_l,k+l+ (l-ex)ui _l ,k+ui+l,k-(2-w-a) ui,k]

h2
Wtt

(8.1.8)

This formula leads to a number of asymmetric formulae attributed to

Saul'ev [64]. We are particularly interested in the case when ex=l, which

produces the equation,

(8.1.9a)

and a related equation yields,

1
u ... = -.- [u,., ,.,,+u, , ,,-(l-W)u. ,.1

1.,K+.L l.TW ..1.T..L,hT - ,.. !.;It
(8.1.9b)

2
denoting r=i/h and w=l/r we obtain,

(8.1.lOa)

(8.1.l0b)

5S6

and when r=l, the simple equations,

ui ,k+1 = ![ui _1 ,k+1+ui+1,k1

ui ,k+1 = ![ui +1 ,k+1+ui_1,k1 •

(S .1.11a)

(S .1.11b)

Alternatively, (S.1.10) in their implicit form represent the computational

molecules.

a)
k+1

b) 8 '-----+ l+r

o-----{ 1-r k

i-1 i H1 i-1 i i+1

(S .1.12)

and the solution to (S.l.l) is obtained by applying these molecules to

an infinite rectangular grid similar to Fig. (2.1a) with boundary initial

conditions described by (S.1.3). Solutions can be obtained in a number

of ways:

(i) Use (S.1.10a) (or (S.1.12b» only proceeding level by level

using a Left to Right (LR) movement on each level along the

x-direction in which case the formula becomes explicit.

(H) Use (S.1.10b) (or (S.1.12a» in the same way as (i) but move

from Right to Left (RL) on each level and again the formula is

explicit.

(iii) Alternate between LR and RL on successive levels.

(iv) Perform LR and RL (or RL then LR) on the same time level

producing two results for each mesh point on the level. Take

the average of the estimates to produce a more accurate result

due to the cancellation of truncation error terms emanating from

opposite signs.

k+1

k

587

These alternative strategies illustrate the concept of marching, where

the computational molecules representing the formulae on the grid can

be considered as marching from point to point along the x-direction

gradually moving up the time levels. From a numerical viewpoint the

marching can be formulated as a triangular linear system by numbering

the points on level k+l from left to right, or vice versa to yield,

Au(k+l) = (A+C)u(k) , (8.1.13a)

and, T (k+l) (T) (k) Au =A+Cu, (8.1.l3b)

where,

o

1-=2 1 r+1l

-ex. w+cx. 1

A = I C =

o 1

w+~ -2

Next consider the unsteady diffusion equation (or 2-D heat conduction

problem) (8.1.2), the region to be considered is a rectangular domain

like Fig. (2.lb) with boundary and initial conditions,

and

u(O,y,t) = fl (y,t), u(x,O,t) = f 3 (x,t)

u(l,y,t) = f 2 (y,t), u(x,l,t) = f 4 (x,t)

u(x,y,O) = f 5 (X,y) • (8.1.14)

Asymmetric equations can be described in a similar way to the l-D

case. Let u, 'k=u(ih,jh,k,O so that the region is square for simplicity,
~/J,

the analogous equation to (8.1.7) is,

u, 'k l-u, , k 1,J, + 1,],

R.
= .J!...(u, , -u, -u" +u, ,)

h2 ~-l,J,k+l i,J,k+l ~,J,k ~+l,J,k

(l-Il)
-='--"'2"-- (ui 1 'k-2u , 'k+u , 'k) h - ,J, 1.,), 1.+1,),

+

+..L2 (u, , 1 k l-u, 'k l-u, 'k+u , , 1 k) h 1.,J+, + 1.,), + 1.,J, 1.,)- I

588

(l-S)
2 (u, , 1 k-2u , , k+u , , 1 k) +R, , k ' h 1.,J+ I 1.,), 1,J- I 1,J,

+ (8.1.15)

2
R, , k=O (ah+Sh+R.+h), O~a, S~1.
1,J, .

where

By neglecting the Ri,j,k term with some manipulation the formula

becomes,

(l-S)u, '+1 k-(4-w-a-S)u, , k+u'+l ' k+ui '-1 k 1.,J I 1.,J, 1. ,J, ,] I

(8.1.16)

and with a=S=l

Ui,j,k+l
1 = --[u, ,+u -(2-w)u, +u, +

w+2 ~-l,J,k+l i,j+l,k+l ~,j,k ~+1,j,k

u, , 1 kl 1.,J- I
(8.1.17)

1 and with -cr, we have,
w

u .
i,j,k+l

1
= 1+2 [ru'_l ' k+1+ru , '+1 k+1+(1-2r)u, , k+ru , 1 ' k r 1. ,J, 1.,J I 1.,3, 1.+ ,l,

+ru, , 1 kl
1.,)- ,

(8.l.l8a)

Likewise, the following similar equations can be deduced,

and,

Ui,j,k+l
1

= --[ru, , +ru" +(1-2r)u, +ru, ,
1+2r ~+l,J,k+l ~,J+l,k+l i,J,k ~-l,J,k

+ru, , 1 kl 1.,J- ,
(8.1.l8b)

1
u, , k 1 = -1 2 [ru, 1 j k l+ru, , 1 k 1+(1-2r)u, , k+ru , 1 ' k 1.,J, + + r 1.-" + 1.,)-, + 1.,J, 1.+ IJI

u, , k 1 1.,J, +

+ru, , 1 kl 1.,J+ I
(8.1.l8c)

1
= -1 2 [ru, 1 ' k l+ru, , 1 k 1+(1-2r)u, , k+ru , 1 ' k + r 1.+ ,J, + 1.,J-, + 1.,J, 1.- IJ,

+ru, '+1 kl
1. , J ,

(8.1.l8d)

Like the l-D problem the implicit forms of (8.1.18) can be represented

by computational molecules, viz.

I . 1 k' 1 1+1.1+1.k+1 .1+ ~. :.:.+.:-__

I.J.k+1

... ___ J'

, , ,
,1.j+2.k

1-1.J+1.k I.J+ 1.k

l.j+1.k+1

I.J.k+1i----
1+ 1.1.k+ 1

----J1.1.k
1-1.J.ki

1.1-1.k

5S9

1.1+1.k+1
1+1.1+ 1.k+ 1

1+ 1,j+2,k

1+1.1.k+1

1+ 1.j+ 1.k 1+2.J+1.k

1+1.J+1.k+1

-------{i+1.1.k+1
I.J.k+1

(S.1.l9)

i+1.j.k i+2.j.k

1+1.j-1.k

and the solution to equation (S.1.2) under the constraints (S.1.14) can

be achieved by a variety of techniques:

(i) Use equation (S.1.1Sa) starting with (i=l,j,.m-l,k=O) moving

from left to right (LR).

(ii) Use equation (S.l.lSb) starting at (i-m-l,j=m-l,k=O) moving

right to 'left (RL).

(iii) Use equation (S.l.lSc) starting at (i=l, j=l,k=O) moving left

to right (LR).

(iv) Use equation (S.1.1Sd) starting at (i·m-l,j=l, k=O) moving

right to left (RL).

(v) Alternating schemes are given by:

(a) Using (i)-(iv) on successive cycles starting again every

four cycles.

590

(b) Select two formulas e.g. (ii) and (iii) and alternate

cycling every two time levels.

(vi) Averaging schemes: Use two schemes on the same level and

average the results for each grid point to obtain improved

results.

These are also marching type algorithms, and for a suitable ordering of

mesh points we obtain the following linear systems,

AU(k+l) = BU(k) , (S.I.20a)

for (S.I.ISa,b) and,

for

and

B =

T (k+l) T (k)
Au =Bu ,

(S .1.1Sc ,d) where,

la
-b T l a

A =

0

re
I

e

(e-b) T
c

0

0

b =

e
0

(e-b)

T
a

s

I
I

(S :1.20b)

y

-<l y

, a = l o

o
-a

o

0
s

l{y-4) I l I I

(I-a) (y-4) I
0

c =

o
(I-a)

591

1 l
o

e =
y=w+a+S

L
o

1
2

such that A and B are square matrices of order (m-l) and a,c of order

(m-l). Thus, the bandwidth of A and B are m and 2m-l respectively for

m internal mesh points over the region.

Now there are many formulations and molecules which can be adopted

for the solution of P.D.E.'s which are divided into explicit and implicit

techniques. Explicit methods tend to restrict the time step to small

values in order to retain numerical stability, while implicit methods

involve the solution of large linear systems of equations but allow

greater stepsizes. A small stepsize ~t=k requires a large number of

time steps implying an enormous amount of computational work to reach

level t and previously has produced a bias towards implicit rather than
z

explicit methods. The asymmetric approximations of Saul'ev are semi-

explicit because they produce an implicit method whose associated linear

systems (B.l.13) are easily solvable (A is lower triangular). Recently

Evans & Abdullah [B3a,bl produced a new variation on the use of asymmetric

equations and introduced the Group Explicit (GE) methods allowing a simple

explicit method with no upper limit on the stepsize. Their work indicated

that the method compared favourably with other numerical methods. We

consider GE methods for our two sample problems (B.l.l) and (B.l.2).

For the I-D heat conduction problem we combine the molecules of

(B.l.12) by coupling them in groups of 2 adjacent points along the x-

direction of the grid to produce implicit equations which are easily

592

converted to explicit form. The essential idea being to retain the

accuracy and large stepsize of the implicit method with the computational

simplicity of the explicit technique by utilising truncation error

cancellations and alternating strategies on the gridpoints to produce

unconditional stability. To achieve this goal we produce a hybrid or

unified computational molecule of the form,

k+1

(8.1.21)

k

i-l i i+1 i+2

D eqn (8 .1.1Ob) o eqn(8.1.10a)

which can be represented by a 2x2 linear system as,

rl+r -r ui,k+l l-r

,-~
u. k 1 ~"'-'.' l.,

=

Ui+l,J+

(8.1.22)

-r l+r ui +1)<f-l 0 rUi +2 ,k L
or in explicit form,

fi ,k+1 1 1
=

l>-l,k+J

(1+2r)

(8.1.23)

593

For the ungrouped (or single) points that could occur near the left

or right boundary we use the asymmetric formula,

u = m-l,k+l (1) [ru k l+ru 2 k+ (l-r) u 1 kl +r ro, + m-, m- I

1 (8.1.24)

for the right boundary and,

ul,k+l = (l+r)
1

(8.1.25)

for the left boundary, where we assume III eC'Ual interv['.ls. When

m is even the number of internal points is odd ~.e. (m-l)odd)and produces

a single ungrouped point, and a variety of GE schemes result. First

define,

G (i) = ~l -~
~

, i=1(1)!(m-2), j=O,l, ••• (8.1.26)

and put,
[G (1)

l I 1 G (2) G (1)

" " " C
"-

,
0

Gl=1 ' G2 = ,
" " " "

0 " ,
" "-, G! (m-2) 0 "

L
,

L 1 G!(m-2)

then,

Even Number of Intervals

t t t
I I
ungrQup.d

r-' It roup IIlm-21-r-. point f-
grouP\

t ... I-~ f" .- .

_ ..
G.E.R. (Group Explicit with Right ungrouped point' method

I I I I I I I I I r r

I I I I I I ungrouped
point ;'It group . Mfm-r iroup --

I- _

.. ------ ..

..
G.E.L (Group ExpliCI1 With left ungrouped point) method

I , ,. I , , , I ' , ,

I
I i-- I
I 1-. - - \---.. 1"- ..
I ,

f-... l- .. -r- ... _. .1--

F=
_. t= - 1-=. -~

-
S.A.G.E. (Single Alternating Group Explicit, method

I I 1 I I I I I I ,

.-+-+-+-+-+-+-+-+-+-+-+-+-

D.A.G.E. (Double Al1ernating Group Explicit) method
I , 1 , 1 I , , I ,

594

(I+rG
1

)uk+l • U-rG
2

)u llt ... b1

bi • (ruo, k'O, ••• ,O,rulD,k+l)

(l+rG
2
,u k+2 & U-rG1)uk+l ... b2

(l+rG~)UI..t-3 • n-~1~'.!k"'2~b2

U+rG
1,u k+4 • (I-rG2''\.+3+bl

(8.1.27)

(8.1.28)

(8.1.29)

(B.l.30)

595

and for an odd number of intervals the number of internal points (i.e.

m-l) is even so at each time level we have either i(m-l) complete groups

or t(m-3) groups and two ungrouped points, one adjacent to each boundary.

We then define,

f
G (1)

l G (1) G(2)

G (2)
,

0 , 0
/\ "- ,
Gl = , G2 = , , , , , , ,

l
,
'G! (m-3)

,
0 0

, ,
1

' t (m-l)
G

and produce the following group explicit methods:

Odd Number of Intervals

I I 1 }-I I ' , ungrouped ungfouped
point __ _ - %(m-3)th point --'+.P ., .. p - .- -- ~_I\ .-- f---

.. .. ·--G.E.U. (Group Explicit with Ungrouped ends) method
I , t I I I I I , I (8.1.31)

I I I 't , %lm-1Ith

-- ~-·,"t roup Tm-- -I L J L
bT • (ru ,,0, ... ,O,ru ,)
~": m.

J 1
G.E.C. (Group Explicit Complete) method

• • , • .' I I , (8.1.32)

! - -i--- - -- .. - _ .. -_ ..

S.A.G.E. ISingle Alternating Group Explicit) method
I , I I I I , I 1 I

f- e-- .--- --
-
-

- . -D.A.G.E. {Double Alternating Group Ellphclt, method
, , , I , I I I I I

(I+rG1''\+1 • Cl-rGZ)uk+b3

U+rGZ''\.2· U-rG1)uk+1+b4

(I,,.$2)'\.) • (I-rG
1
)uk,2,b.

596

(8.1.33)

(3.1.34)

The group explicit technique is extended to the 2-D problem (8.1.2)

by unifying the molecules (8.1.19) to produce a group of 4-points

(i,j,k), (i+l,j,k), (i,j+l,k), and (i+l,j+l,k) of the form,

,
• I

~ , , ,
" .,

1.1+2.k

"'---of··· -,,-------------
i-1.1+1.k ,'1.J+1.k

i-1.J.k

, , ,
I.J.k+11---i-------{

1.1-1.k

, , , , ,

l ,

i+1.1-1.k

1+ 1 .1+2.k

i+2.j.k

(8.1.35)

597

approximating (B.l.2) at these points using a finite difference

formulation produces after some manipulation,

au = cu ,+bu +gu +du" +bu, ,
i,j,k+l i,],k i-l,j,k i+l,j,k 1+2,],k 1,]-l,k

+du, ,+eu +fu, +gu, ,
1+1,]-l,k i-l,j+l,k i,]+l,k 1+1,]+l,k

+du , +eu, +du
i+2,]+l,k i,]+2,k i+l,j+2,k

(B.1. 36)

where the coefficients a-g (defined in Fig.B.l.l) are small degree

polynomials in r. Similar relations hold for u, , 1 k l' u, 1 j k 1 1,J+ , + 1+ I , +

and u , , producing a fully explicit result. Like the l-D case,
i+l,]+l,k+l

additional explicit relations can be derived for partial groups on the

edges of the x-y region and corners yielding the equations below.

TYPE 1: SOUTH BOUNDARY:

a u = c u, +b u +c u +b u +d u
1 i,l,k+l 1 1,O,k+l 1 i+l,O,k+l 1 i-l,l,k 1 i+2,l,k 1 i,l,k

+e tl, +c u +b u
1 1+1,l,k 1 i,2,k 1 i+l,2,k

a u = b u +c u. +b u. +c u +e u.
1 i+Ll,k+l 1 i,O,k+l 1 1+1,O,k+l 1 1-1,l,k 1 i+2,l,k 1 1,l,k

+d u +b u, +c u
1 i+l,l,k 1 1,2,k 1 i+l,2,k

(B.1.37)

TYPE 2: EAST BOUNDARY:

a u = c u +b u . +d u +e u
1 m-l,j,k+l 1 m-2,j,k 1 m-2,j+l,k 1 m-l,j,k 1 m-l,j+l,k

+c u , +b u +c u +b u ,
1 m-l,]-l,k 1 m-l,j+2,k 1 m,j,k+l 1 m,]+l,k+l

= b u +c U , +e u +d u ,
1 m-2,j,k 1 m-2,]+l,k 1 m-l,j,k 1 m-l,]+l,k

+b u , +c U , +b u, +c U ,
1 m-l,]-l,k 1 m-l,]+2,k 1 m,],k+l 1 m,]+l,k+l

(8.1. 38)

TYPE 3: NORTH BOUNDARY:

a u = c u, +b u, +d u +e u
1 i,m-l,k+l 1 1,m-2,k 1 1+1,m-2,k 1 i,m-l,k 1 i+l,m-l,k

+c u, +b u +c u, +b u
1 1-l,m-l,k 1 i+2,m-l,k 1 1,m,k+l 1 i+l,m,k+l

a u = b u, +c U, +e u +d u
1 i+l,m-l,k+l 1 1,m-2,k 1 1+l,m-2,k 1 i,m-l,k 1 iTl,m-l,k

+bu, +c u +b u +cu
1-l,m-l,k 1 i+2,m-l,k 1 i,m,k+l i+l,m,k+l

(8.1.39)

1,j+l,k+l
(1)

(111)
'+2 (Lv)

,-1
1-1 1 1~1 1+2 2 2

.-(1+2r) (1+4r) b-r(1+4r+2r) c-(1-2r) (1+4r+2r) d-r (1+2r) .-2r

FIGURE 8.1.1: Molecule for a 4 point group (Type 0)
U1

'" ro

599

, , , , , ,
'·0 -'---- ... /~ " ' .. ' ',

/ , " ,
I "

, .c.. , _

10)" ___ :0 ,
'.... '-/

~

~ .~

9:
b1

- - . ~ -.
" ,

I, 0 I ' -' ,
I I

I I . ,
- _ ... -I ,

' ..
6)

!n>:!.2

r 1 ~ ~ "1 "1
" , , .

t" 0 I - - - I 0 -, I 0 '"- - : 0 j
I .. ,...; '_ I i' /

I I
, I

FIGURE S.l.l: (cont.) Boundary 2-point molecules

!l'E!...!1
b

1

l
·1

1 , ~

f ,

10 , __

',_I
I

f

I 0) . - -.
'-

FIGURE 8.1.1: Two-point boundary molecules (cont.)

-,
I b2 I \ ", ... ,

.1,0 J

o

,-
f

I
I

~

I
I

("

\ 0 f
'-

!

...... \ I
f -

FIGURE 8.1.1: (cont.) One-point corner molecules

I
I

600

601

TYPE 4: WEST BOUNDARY

a u = c u +b u +c u +b u
1 l,j,k+l 1 O,j,k+l 10,j+l,k+l 1 l,j-l,k I 1,j+2,k

+d u . +e u +c u +b u .
1 l,),k 1 1,j+l,k 1 2,j,k 1 2,)+1,k

a u. = b u. +c u. +b u +c u .
1 l,)+l,k+l 10,),k+l 10,)+1,k+l 1 l,j-l,k 1 1,)+2,k

+e u +d u +b u +c u
1 l,j,k I l,j+l,k I 2,j,k I 2,j+l,k

(8.1.40)

TYPE 5: BOTTOM LEFT CORNER

a u = b u +b u +b u +c u +b u
2 1,1,k+1 2 O,l,k+l 2 1,0,k+l 2 1,2,k 2 1,I,k 2 2,1,k

(8.1.41)

1YPE 6: BOTTOM RIGHT CORNER

a u = b u -b u +b u +c u
2 m-l,l,k+l 2 m-I,O,k+l 2 m,l,k+l 2 m-l,2,k 2 m-l,l,k

+b u
2 m-2,1,k

(8.1.42)

TYPE 7: TOP RIGHT CORNER

a u = b u +c u +b u +
2 m-l,m-l,k+l 2 m-2,m-l,k 2 m-l,m-l,k 2 m-l,m-2,k

b u +b u
2 m,m-l,k+l 2 m-l,m,k+l

(8.1.43)

TYPE 8: TOP LEFT CORNER

a u = b u +c u +b u +b u
2 l,m-l,k 2 2,m-l,k 2 l,m-I,k 2 1,m-2,k 2 O,m-l,k+l

+b u
2 l,m,k+l

(8.1.44)

The computational molecules and coefficients for the above cases are

given in Fig.(8.l.l). The GE methods follow directly from these molecules

depending on whether the x-y region is divided into an odd or even number

of parts in each direction. Fig.(8.l.2) indicates the various schemes

that can be derived.
2

If we use molecules of type ° for the first [!(m-2)]

groups of 4 points anchored at (l,l,k) and molecules of type 2 at (m-l,j,k)

j=l(1)m-2, molecule type 7 at (m-l,m-l,k) and type 3 for (i,m-l,k),

i=I(1)m-2, the GER(x) or Group Explicit with ungrouped right points in

GELly) GER(x)

• • • • •• • • • • • • • • • • ••

OOWNJJ 1/'UP
• • • • • • • • • • • • • •••••

m

RIGHT

GEL (x) GER(y)

FIGURE B.l.2: Shift cycle for four basic GE schemes indicating
molecule types and groups (m=9).

602

the x-direction results. Similarly Group Explicit with left ungrouped

point in the x-direction GEL(x} and GER(y}, GEL(y} are derived as shown

in Fig.(B.l.2}. The GER and GEL schemes are conditionally stable for

r~l while the introduction of an alternating strategy produces

unconditionally stable procedures. Once again from Fig.(B.l.2} a

Single Alternating Group Explicit (SAGE) scheme can be constructed by

alternating GER(x} and GEL (x) on successive cycles. While a Double

Alternating Group Explicit (DAGE) scheme is produced by GER(x}, GEL(x},

GEL(x}, GER(x}. Similar methods involving y and x,y combinations are

easily derived. Notice that SAGE schemes correspond to a (Anti-)

clockwise shift of two places, while a DAGE (x or y) is achieved by two

clockwise shifts followed by two anti-clockwise shifts around Fig.(B.l.2}.

Alternation is achieved by a simple cyclic rotation.

603

8.2 ALGORITHMIC VS GEOMETRIC SOLUTION OF P.D.E.'S

The use of finite difference methods in which a grid of points is

superimposed over a region to be solved leads naturally to the solution

of approximations to P.D.E.'s by linear systems. Indeed, a matrix

representation exhibits (as we have seen), for certain orderings of the

points, useful Linear Algebra properties such as diagonal dominance,

positive definiteness, and sparse banded matrix structures. As the

solution process for a series of time levels is essentially iterative,

with an application of the explicit or implicit solution procedure

applied on each iteration, the theory of convergence of iterative matrix

methods can be applied in an analogous manner to the stability problems

of finite difference methods.

A brief survey of systolic arrays indicates that the pre-occupation

with Linear Algebra and specifically matrix techniques is also prevalent.

This attitude is understandable in both applications. In the former case

stability is an important aspect of the applied technique, without a

matrix notation the theory would be difficult to analyse. The latter is

justified by the recurrence relations exhibited in matrix formulations

and the reduction in most cases to a few primitive arithmetic operations,

permitting parallelism on locally connected basic cells of simple

structure. Systolic arrays have further captured the imagination by

creating designs which have area proportional to the bandwidth of the

matrix considered. However, for problems where the bandwidth is related

to problem size, the band itself may also be sparse and a source of

redundant cells. Such cells under special circumstances can be replaced

by simple delays to compact the design.

We shall consider systolic arrays for the sample problems under two

circumstances:

(i)

(U)

when only the final time level t is required
z

when each level t k , k=l(l)t
z

is required,

604

and compare the designs with the intuitive cascaded iteration array (CIA).

For instance, a single iteration of the l-D problem in (8.1.13) requires

a tridiagonal array of 3 cells computing (A+C)u(k), and a back substitution

(k+l)
array of two cells to produce u as shown in Fig.(8.2.la). Using

Theorem (3.2.3.1) with p=2 and allowing an extra cycle in the back-

substitutor gives T=2m+4t cycles for computing t levels (see Fig.(8.2.lb)). z z

• A~

~

~ 1-0
~

:::!,O
... 0-2 w·. ,!Ck) 1 H
... ;:2

a) cascaded linear iteration array (i-D) case

1,1(0) A.c

b) Cascaded Scheme for three levels

FIGURE 8.2.1

605

Each iteration requires 5 IPS equivalent cells and sandwiched between

each level are 3 delay registers per ips for synchronising data on

different levels. It follows that we require a total of 5 tIPS cells z

and 15 (t -1) registers to reach level t. For the 2-D problem the z z

bandwidth of A and B are m and 2m-l respectively. Hence each linear

array requires 3m-l cells, and has latency 2m cycles, yielding T=2m
2

+2mt z

cycles, (3m-l)t IPS cell equivalents and (t -1) (3m-l) (2m-l) synchronizing
z z

delay registers between iterations. Notice that this latter problem has

internal band sparsity which can allow reductions in hardware. Further-

more if we allow multipass computations with only t <t linear arrays, z z

hardware can be minimised with,

r ~~1{2m+4tz} 1-0 case

T =

1
(8.2.1)

~~ z 2 - 2-D case t
z

{2m +2mtz }

These designs based on the matrix or algorithmic expression of the

asymmetric approximations are intuitive, but we intend to show that they

are not necessarily the best. For instance, from a theoretical viewpoint

the parameters w and r indicate that i is restricted by h. This

restriction often means a large number of levels to achieve good accuracy

and the above intuitive computational approach although suited to sequential

machines translates to a systolic design with cells proportional to t • z

When t >m we may be better with a design where cells are proportional to z

m, permitting fast computation of many levels. To facilitate this work

we discard the explicit use of a matrix representation, and base the

systolic design on the use of computational molecules and templates

describing primitive operations for constructing successive time-levels.

606

Essentially, we question the algorithmic matrix notation for the

derivation of systolic arrays in preference to a direct mapping (or

geometric) approach to the problem. Naturally the designs produce

systolic marching arrays. Finally to keep our techniques in context

we remark that the matrix representation is still indispensible for

theoretical studies of stability but can be neglected for actual

computation by the systolic array.

S.3 LINEAR ASYMMETRIC MARCHING PROCESSOR (LAMP) ARRAYS

The marching processors we develop avoid the 'Linear Algebra' trap

by considering the mesh points of the solution as elements of tables.

For the 1-0 case an open ended table is applicable implying table

generating techniques, whereas the 2-0 problem has a fixed sized table

indicating a table manipulation approach to design.

Consider again the 1-0 equation (S.l.l), its initial and boundary

conditions (S.1.3), and recall the table construction techniques from

Chapter 7. The order of computation as shown in Fig.(S.3.l} is similar
t =s z

~

U ' U 0,7.. 1,7
~

u u 'u u I 0,6..... 1,6 2,6 3,6
u u u...... ""

...... 0,5 1,S ... 2,5 u 3 5'" u4 5 Us 5
...... " '.....' '

... u u u u u u u
0,4... 1,4 2,4 3,4 4,4 5,4 6,4 7,4

Uo 3 u1 3 oU2 '3 u 3 3' u4 3' Us 3'" u6- 3 u u u
.... ~..... ' '..... '..... I '..' 7,3 8,3 9,3 --..

0,2 u1 ,2 u2 ,2"'" u 3 ,2 u4 ,2 uS ,2 u6 ,2 u7 ,2 tJS ,2 u~i' u u..... ~
o 1 1 1 ... u2 1"'" u 3 1""" u4 1 Us 1 u6 1 u7 1- Us u g 1'"

, , ' ' , , , , ,J. ,
--u _u ___ u...-.-u ___ u ----u ..:.....u .::::......-u:..-u

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7 ,0 - 8,0 9,0

----I LR

values on same - .. _. line are computed in parallel

FIGURE S.3.l: Computation order for multiple level LR scheme

607

to that in the extrapolation table generation, implying an allocation

of cells to columns such that cell i computes column i of the regions

mesh points. Thus a linear array of (m-i) cells will compute all the

levels to to t
z

' The LR version of the marching array with operation

snapshots is shown in Fig.(S.3.2) with the basic cell derived from the

molecule rule (S.1.12b) resulting from (S.l.lOa).

u· C.+I, 'M

U
i, 1\

t 1 a _!:.... l-r
---- con ro, - l+r' 8 = 'i'+r

IF
control THEN

[(i) t1=aui_1,Ml

t 2=aui +1 ,1(

t3=aui,~

(H) u i , ~=tl+t2+t3

u =U =t +t +t
out

l
out2 1 2 3

ELSE
[u =u .

outl i, ~
u =u

J out2 i, tc'

} a cells

} a cells

(S.3.l)
the array operation proceeds as follows:

(i) At startup the cells are loaded with the initial values of

(S.1.3b) for level to'

(ii) on the first cycle of operation the leftmost cell receives an

input from the host corresponding to the left boundary value

of (S.1.3b) for level t
l

, and an associated control tag bit.

The cell performs the molecule rule producing the value ul,l

and overwriting the old result.

(iii) On the next cycle, the control tag shifts right with the new

level value triggering cell 2, which accepts the cell 3 output

to execute the molecule rule and overwrite its stored value.

Meanwhile cell 1 is idle, waiting for the cell 2 result.

(iv) Thus, dataflow of the LR array forms an eddy type wavefrDnt

pattern similar to the odd-even sorter, in Chapter 7, in which

608

:j u1,o ~U2'O ~U3'O ~ u4 ,0 ~ uS,o ~
U
O'11

u1,o W u2,o I GJ Q [;]
u2 ,Q

U

ul,l !lU2,o WU
3'O I Gd Q

u3 ,o

WU
2'l

u2 1

U
O'21

ul,l Hu3,o W u4 ,O I [;]
u2 ,1 4,0

U u3 1

I U1 ,2 1
1

'21 U2,l U U3,l H u4 ,o U Us,o I
U 3 ,1 Us,o

uO'31 H A ",.ol-~IU2'2 8 U1 ,2
' U

3
,l U4 ,1

u6 ,O u2 ,2

I ul ,3

U U

1
1

' 31 U2 ,2 WU3
'2 11 u4 ,1 WUS'l I

u3,2 5,1

U
O'1

u2 3 u4 ,2

~IU2'3 HU3'2 L-I u4 ,2
MUS'l ~U6'l u l ,3

u2 ,3 u4 ,2

FIGURE 8.3.2: Systolic computation of the LR solution

odd and even cells are active on alternate cycles. In

general cell i collects ui_l,k+l from its left, ui+l,k from

its right, contains ui,k and produces ui,k+l

Also notice that the first right boundary value is required when the

tag bit reaches the rightmost cell. Consequently the complete array is

609

controlled by the left boundary input with the form,

DATA

TAG BIT 1 o o 1 o

u
0,2

1 o

u
0,1

1 - (8.3.2)

with cells started and controlled by the tag bit. The cell (8.3.1) is

a simple intuitive mapping of the computational rule into a cell

structure requiring 3 multipliers and 2 adders. By combining the ~

cells into a single inner product cell we require just two ips equivalents

and the basic cell cycle time is bounded by 1 ips + 1 add or 1.5 ips

cycles. It follows that after 3t ips cycles the leftmost LR cell has
z

received its last boundary value and computed its t level value.
z

Allowing the last control value to march across the array gives the

upper bound,
T = 1.Sm + 3t ips cycles ,

c z
(8.3.3)

for array computation time, neglecting loading and unloading. If only

the level t is required, cells can be loaded and unloaded from the
z

left and right edges of the array. We need at most 1.S*(m+2) cycles

to pipeline ~,8 and u. 0 into the cells for loading, and 1.Sm cycles
~,

to unload level t. Thus,
z

T = 1.Sm+l.S(m+2) + 1.Sm + 3t = 4.Sm + 3t + 3
s z z

(8.3.4)

is the total computation time including input/output. When all the

levels are required (like the extrapolation tables) an output for each

cell is added, and loading and unloading is performed in parallel adding

only 4(1.5) cycles to (8.3.3) yielding,

T = 1.Sm + 3(t +2)
p z

(8.3.5)

Comparing these timings with the cascaded scheme of (8.2.1) yields the

speed-up relations,

610

r~~ {2m+4tZ }

S z =
p 4.5m+3t +3

z

hence for S >1 and t divisible by t
P z z

t > { 4.5m+3 }tz z
2m+t

(B.3.6)

z

for the sequential loading scheme to compute the t level faster than the
z

cascaded scheme with t linear arrays. Likewise for the parallel loading
z

scheme,

s =
p 1.5m+3t +6

z
=>t

z
(1.5m+6)

>
(2m+t)

z

t
z

(B.3.7)

In terms of cell count the LR array requires 2(m-l} ips equivalents

while the cascaded form requires

5t > 2 (m-l) .. t z z

5t , hence
z
2 > S(m-l} •

for a cell saving,

(B.3.B)

Substituting in (B.3.6) and (B.3.7) for (B.3.B) yields,

!
(4 .5m+3) (m-l)

for (B.3.6)
(Gm-i)

t > z
(1.5m+6) (m-l)

(6m-l)
for (B.3.7)

(B.3.9)

to produce both cell savings and speed-up using the LR marching array.

For example, if m=lO ! ".9 = 7.32
t > 59 (B.3.10)

z 21x9
= 3.20

59

which is easily satisfied, provided we solve long narrow regions. Where

the arrays are used repeatedly for different stepsizes h,h/2,h/4, etc.

the cas cased iterative scheme has a clear advantage as its array size

is independent of m the number of mesh point columns. The LR array

611

must be redefined with more cells 'to accommodate the extra points.

Next, observe, that although the molecule rules are asymmetric

the molecules themselves are simple reflections of each other, hence

the above array is a unified array for the LR and RL computations. To

produce an RL scheme simply load the initial values in reverse order

and interchange the left and right boundary inputs. The control tag is

still input on the left.

Finally for the I-D case, consider the problems of alternating

and averaging LR (RL) sweeps. An array to perform an alternating scheme

is easy to construct as indicated by Fig.(8.3.3a). The array consists

of two tiers, each of m-l cells which are modified versions of (8.3.1).

Operation of the array is simple with each tier representing an LR or

RL sweep. Initially the top tier is loaded with starting values and

the bottom tier cleared, the order of loading depending on the type of

alternation, LR/RL or RL/LR. In the case of LR/RL the top tier starts

computation like an LR scheme, except that there is only one control

tag bit set (corresponding to uO,l in (8.3.2)), and molecule rule

results are stored in the cell immediately below the active cell, on

the second tier. On leaving the rightmost top tier cell the control bit

is fed back into the bottom tier which is by now loaded with first tier

results, and initiates an RL sweep. The bottom tier results are loaded

back into the top tier and on emerging from the leftmost bottom tier cell,

the control completes an alternation cycle and can be piped back into

the top tier, forming a primitive Systolic Control Ring (SCR).

Notice that only a single cell in the whole array is active on a

particular cycle, consequently the array can be compacted to a single

tier of m-l LR-cells modified to accept a triggering tag bit signal

612

from either direction and perform the correct molecule rule. The

circulating tag bit picks up the correct boundary values as they enter

and leave the ends of the array. It follows that the total time to

compute and output t levels is,
z

Talt = 1.5(m-l)tz + 4(1.5) (8.3.11)

Comparing this to the cascaded form we observe that the LR/RL switch

requires the reversal of the vector u between successive iterations,

preventing cascading, and forcing t =1, and a time,
z

T = (2m+4)t (8.3.12)
z

from which a speedup is immediately observed. However, the cascaded

form requires only a single array of 5 ips cells with greater efficiency

than the m-I LR- cells required by the LR/RL version. Consequently the

speed-up does not compensate for the hardware increase.

An array for averaging LR and RL sweeps on the same time level is

shown in Fig.(8.3.3b). This time we have three tiers, the top tier

acts like an LR sweep and the bottom tier like an RL sweep, and are

operated in parallel. The central tier is a row of independent cells

which are initially empty, but collect a result from each tier, finds

the average and returns resulrnto the adjacent top and bottom tier cells.

As results are calculated left to right in the top tier and right to

left in the bottom tier, it follows that the central averaging cell

when m-I is odd and the two central cells when m-I is even compute the

first average. Thus, the time for an averaging sweep with parallel

loading is,
T = 1.5t m + 4(1.5)) avg z

(8.3.13)

allowing an extra cycle for the final averages in the left and rightmost

cells of the top and bottom tiers to be loaded. Again the low cell

613

o o o o o

a) Alternating LR/RL or RL/LR array

-.

b) Averaging LR/RL array

FIGURE 8.3.3: Alternating and averaging schemes

efficiency implies that tiers can be merged, as long as the LR and RL

controls do not trigger the same cell on the same cycle and the stored

level values are only overwritten by the averaging cell. A compacted

two tier design with m-l modified LR cells and m-l averaging cells is

easily formed. The algorithmic version of the array cannot be cascaded

yielding tz=l again, but by filling the synchronising neutral elements

of the matrix and vector inputs in Fig.(8.2.l) with AT,AT+C and reversing

the ordering of the u
k

vector, calculations of LR and RL sweeps can be

interleaved. The real problem, however, is the formation of the average,

and makes the method impractical, because it must be performed after all

the RL and LR values are computed.

614

Next, consider the 2-D unsteady diffusion equation (8.1.2) with

boundary and initial conditions (8.1.14). Again the comparison with the

cascaded iterative array will be considered, only this time each of the

t linear array requires 3m-1 cells due to the form of (8.1.20). z

Although the sparse structure of B in the 2-D case can be used to

limited effect by replacing full processors with delay cells the band-

width, hence linear iteration arrays, are still proportional to the size

of the solution region. For this reason we expect better area/time

trade-offs with marching processors for the 2-D problem.

NOw, the addition of an extra space dimension introduces a greater

number of permutations to the variety of starting positions and

alternating strategies employed. For simplicity, we examine computations

on a square grid employing the equations (8.1.18). The first step is

to abandon the matrix organisation of the problem treating the

discretized x-y plane as a table of values to be modified. The immediate

2
consequence of such a tabular approach is a dense table of (m+1) elements

Qo,a,o . - - - - - -
uO,ID-l,O u1 ,m_l,0 - - -, I

I I
I I
I I
I I

I I
uO,l,O uI,l,a - - -
uo,o,o UI,O,Q - - -

- - -a.-1,1II0

- - - u.1,"1,0 ,
I

I
I
I
I

- - - a._l,l,a

- - -u
111-1,0,0

u.,.,o
U •
.,a-l,O ,

I

I
I
I , ,
I

a.,o,o

t-o level

and 111,- (n-1).

The outer rows and columns corresponding to the boundary values, and

the embedded (m-l)*(m-l) elements the initial conditions. In an

analogous manner to the derivation of LR(RL) 1-0 arrays, a 3-D table

updating wavefront is apparent (Fig.(8.3.4», which maps the computation

onto a wave front array processor.

615

t

.~
FIGURE S.3.4: 3-D Wave front

The processor arrangement for (S.l.lSc) is shown in Fig.(S.3.5)

together with the basic processor cell using 3 ips and an adder, with

a cycle time of 1 ips + 2 adds. The processor requires (m_l)2 basic

2 2
cells or 3(m-l) ips + (m-I) adders, and boundary values are input on

each boundary of the array in a skewed fashion to match wave front

progression. It follows thac each wave front requires2(m-l) cell cycles

or 4(m-l) ips cycles to complete a single pass over the array, and that

successive wave fronts are separated by a single cell cycle. In Fig.(S.3.5a)

W
l

is a computation wave, W
2

a dummy wave and W3 (the next wave) starts

computation for the next level. Hence, a close connection between the

odd-even operation of the 1-0 implementation and the 2-D extension is

apparent. Thus, to compute t with no intermediate level output, z

T = 2t +2(m-l) cell cycles or 4t +4(m-l) ips cycles (S.3.14)
z z

Compared to o(m
2

) time in (S.2.1) required by the cascaded scheme.

Recall, however, that the cascaded form uses only t (3m-l) ips cells, z

ignoring the cost of additional delay registers. Hence approximately

2
t z > ~ arrays must be used before the wave front model competes on

hardware terms.

oooul ,O,2

oo.u2 ,o,2

.o.u3,O,2

... u4 ,o,2

UO,l,l uO,2,1 U",3, I Uo. 4 , I
. ·2

,
" "1 " ,-

u1,O,l u1,S,O '"

u2 ,O,1 u2 ,S,O ...

u3 ,O,1 u3,S,O ...

u4 ,O,1 u4 ,S,O ...

uS,l,O uS ,2,O uS ,3,O uS,4,O

.) Wave front processor arrangement of 2-D problem (n-6)

r--
1

- ----- --.,
N u(1-l,j ,k+l) 1

1
1
1
1

E 1
U (i, j.1, ~'It-----1I. .JJr-,

k) I

5 uU+l,j,k)

I
I
I
I L ______ _

1
I _ __ I

I a cell

S cell

computation: (1) t _ClT U +u)
1 . i-l,j,k+l i,j-l,k+l

t;Cl[U +u 1
2 i+l .. j,k i,j+l,k

t 2",SU1 ,j ,k
(11) u -t +t

2
.t

3
(overwritin;J u. j k)

i,j,k+l 1 1, ,

FIGURE 8.3.5: 2-D Wavefront computation

616

617

REMARK: The timings above omit the 0 (m) time required to load a, a

and the initial values but as the cascaded array also uses O(m) time

to synchronise the first iteration, this is not significant.

Next we reduce the number of processors in the wave front model

while also coping with the problem of outputting all the intermediate

time level results. First, notice that like the LR(RL) schemes (8.1.18)

all have the same molecule structure with different degrees of

rotation, and so rotating the table data allows any molecule to be

computed, (e.g. for (8.1.18c) an implicit rotation of 90 0 was used).

Second, generating output for each level converts the problem from

compute bound to input/output bound. Whereas the cascaded scheme

requires only a single output line for each t and no modification to z

computation time. The wave front processor demands O(m) cycles for

output between e"ach wave front and at least m-l outputs. It follows that

only a single wave front can be active on the processor at any instant

in time, and at most (m-l) cells can be active giving a very poor

efficiency. Fortunately, a single wave front progression can be simulated

by a linear array of cells (see Yang & Lee [86]), and such an array of

2m-3 cells is shown in Fig.(8.3.6). The basic cell implements a universal

molecule template,

i,j-l,k+l i-l, j ,k+l

(8.3.15)

i+l,j,k i,j+l,k

0

0

u3•1,1

u4 ,2,O

U),l,l

u4 ,2,Q

.1

or
bl

U1 ,l,1

U2 ,1,1

u2 ,2,1

u3 ,2,1

u3 ,3,1

u4 ,3,0

U4 ,4,O

U1,1,1

U2 ,1,1

U 2 ,2,O

u),2,O

u 3 ,),Q

u4 ,3,0

u4 ,4,O

618

u l ,2,1

ul,l,l

u2 ,3,1 Otn'Ptrr

u2 ,4,O

u3,4,o

1
U l ,2 , 1

U1 ,3,1

u2 ,3,o !
INPIJI'

u2 ,4,O

u 3,4,O

BASIC CELLS

FIGURE 8.3.6: Linear asymmetric marching processor (LAMP) array n=4

DD D
1"1.:.1 I

DD
o

\"4:2.0 1

D

D
h1

•
1 1

I "4.~.1 1

c) Computation on LAMP array (n+l=4)

*

o
D
1"1'~'1 1

I "2.~.O 1

D

619

•

Disable the array here as last value is computed on previous
cycle

FIGURE 8.3.6: (cont.)

for the formulas (8.1.18), the first cell Fig. (8.3.6a) is an intuitive

mapping, the second Fig. (8.3.6b) an optimised version. For convenience

and ease of explanation the table element indices are re-numbered to

give a standard table form,

u 1,1,1 u 1,2,1

u 2,1,1 u 2,2,0

u n-l,l,l

u n,l,l
(
n,2,0

u 1,3,1 u 1,n ,1

u 2,n,0

u n,n,O

REFORMATTED
LAMP TABLE

620

Now the operation of the LAMP array is clear. Computation starts in

the central cell after three synchronising cell cycles (6 ips cycles).

On the fourth cell cycle the centre cell and its two adjacent neighbours

contain values which line up to form a molecule. Thus, the central cell

modifies its value overwri ting the central molecule element with u. . k 1
1. , 1., +

The next cycle sees the two adjacent cells become the active centres

of molecules and perform a table update. It follows that cells work

on alternate cycles like the l-D case with start-up controls coming

from the centre cell. In general, when cell w contains a value in the

a-cell the neighbouring cells w-l and w+l contain kth level values in

Rl and (k+l)th level values in R2. After n cycles all the cells must

be activated and the LAMP array computes with efficiency e=! (or 50%)

the same as the cascaded scheme. Furthermore, we observe that only a ,a

need to be loaded, and that the length of input data is 2n. Allowing

3 cycles to load a,a and 3 cycles for start-up on each wave front pass.

The LAMP array simulates the wavefront processor in

T = 2t (2n+3)+3 ips cycles,
z

(8.3.16)

and requires at most 2(n-l)-1 LAMP cells or 6(n-l)-3 ips cells, (i.e.

the bandwidth of the table neglecting the two corner elements never

modified). Comparing this to the cascaded timing (8.2.1) the LAMP

621

2
array is significantly faster with O(nt) rather than O(n t) ips z z

cycles, while in terms of cells uses O(n) rather than O(t n) ips
z

equivalents.

The LAMP array can be improved further by using a mixture of

molecules for the same level. As an illustration we adopt (8.l.l8a-d)

computing them in parallel to reduce computation time. All the formulas

have the same truncation error terms so no errors due to differences

in approximation accuracy should occur. Consider the case when there

is an even number of internal points in the x-y plane. The tabular

representation is partitioned into 4 u
ij

blocks of size !m, e.g. for

m=6

• • • '. • •
• • • ,

, • • • • 1-- - - --
• • • • • • • • • • • •
• • • • • • • • • • • •

ull partition u
12

partition

• • • • • • • • • • • •
• • • • • • • • • • • • ------ -- • • • •

• • • .,
• • • .1

• • •
u2l

u22

Each block requires the sharing of points around its boundaries. It

follows that by sharing (or duplicating) a little data all the blocks

can be computed in parallel. A single block requires 2(!m)-1=m-l LAMP

cells or 3(m-l) ips cells, and pipelining the 4 blocks through the array

622

gives a time,
T = 8t {2(!m)+3}+3 = 8t (m+3)+3 ips cycles, z z (8.3.17)

which is still a significant improvement over the cascaded scheme but

uses half the area of the original LAMP array. Computation time can be

further compressed by observing that a cells idle cycle uses the neutral

molecule,

o o

(8.3.18)

o o

producing a zero result (which incidentally explains why no explicit

control structure is discussed). This neutral molecule can be brought

into play by interleaving two partitions as shown in Fig.(8.3.7) to

produce a time,

T = 4t (m+3)+3 ips cycles,
z

comparable to the full LAMP array time (8.3.16), with n=!m.

(8.3.19)

REMARK: When the tables' internal points are odd, partitioning requires

some pOints to be calculated more than once from different directions.

We then have the problem of deciding which estimate is best, and

implies some kind of averaging scheme.

NOW more accurate solutions are obtained if different molecules

are alternated on different time levels (due to truncation.term

cancellations). For the l-D case alternation introduced a sequential

bias to computation making the marching arrays grossly inefficient. In

the 2-D case problems with alternation disappear. The LAMP array in

Fig.(8.3.6) is operated in a mUltipass mode with t passes for t levels.
z z

Consequently the only problem is rotating the data to fit the correct

623

DDDDD
UU1

\1
211 "U1 u121

u
311 "651 u220

u
561

a
131

\1
641 \1320 usso "230 \1461

n+2
\1420 u

540 "llO u
450 \1240

"SlO ".lO \1
440 \1340 "lSO

"4lO "440 "340

"llO
\1

611
u

511 u
161

\1
621

\1
411 \1261 uS20

u
151

\1
631

\1
361 \1420 "2SO "530

u l41 n+2

\1320 \1
350 ".lO \1240 u540

\1
450 "llO \1340 \1

440 "2lO
\1

440
\1 340 "330

".lO

n-1
T:2 (n+2) ... 6

FIGURE S.3.7: Compressed LAMP array input (n=6)

molecule on subsequent passes. Suppose the molecules are chosen in a

strictly clockwise (or anticlockwise) sequence the data re-ordering is

simplified as the points needed to start the next pass begin to output

after only (m+4) cell cycles. Further analysis reveals that the current

level has at most m cycles left to run and so data can be interleaved.

At the end of the current level the interleaved next level will have

computed (m-3) cycles. We conclude that every new level can be started

after a delay of only (m+l) cycles reducing the array operation time to

or

T = (t +1) (m+l)+3+3 cell cycles
z

T = 2(t +1) (m+l)+12 ips cycles.
z

(S.3.20)

The data pipelining is shown in Fig.(S.3.S). In contrast the cascaded

scheme is again restricted to t'i producing a good area comparison but
z

requires a re-ordering of the solution vector 'on-the-fly' and is not

624

possible.
.2

Even if interleaving was possible T=O(tm) making the LAMP
z

scheme superior anyway.

Finally we remark that like the 1-D scheme averaging cannot be

implemented by either 2-D arrays, because we must wait for the results

of two passes over the same level. Although the time for passes can be

reduced by interleaving, output elements of the passes to be averaged

are physically separated and must be re-ordered by the host machine to

produce nearest neighbour relationships. We conclude that marching and

alternating techniques can be adequately implemented by arrays, averaging

is not such a good scheme from a systo1ic point of view.

LAMP

1 complete
alternation cycle

c
2

..... -------_ cl An alternation cycle consists
of computing 4 levels starting
at c

i
' 1=1(1)4 and moving to

j~(i+llmod4 (clockwise) or
j=ABS(!-1)mod4 (anticlockwise).

FIGURE 8.3.8: Alternating of successive levels using the LAMP array

625

8.4 A GENERIC 1-0 GROUP EXPLICIT ARRAY

The idea behind the application of systolic arrays to asymmetric

approximations is that they are:

(i) Computationally simple

(ii) The rapid evaluation of levels can be used to offset the

improved accuracy of implicit schemes by reducing ~t and

evaluating more intermediate levels.

Essentially we improve on more accurate slower formulas by balancing

accuracy and computation speed of the systolic array.

The above arguments assumed that m, the division along the x-

direction remains constant while t varies, making the marching arrays
z

attractive. But we can also vary the parameters rand h too. Suppose

r is fixed, halving the step size h gives,

r = .i:J:. =>T = !
h2 4

(8.4.1)

That is, introducing twice as many x-points produces four times as many

time levels. Thus, when t =n the number of initial points m is doubled
z

to 2m producing t =4n levels, requiring a doubling in marching cells
z

from m-l to 2(m-l) in the 1-0 case, and 2m-3 to 4m-6 in the 2-0 case.

The computation time of the marching processors is doubled, but if we

assume fixed hardware for the cascaded scheme the time is quadrupled.

Furthermore h=l/m, ~=l/z, by definition, hence,

r
2 m

2
= m /z for r~2 .. z = 2 (8.4.2)

Hence for practical purposes where most explicit formulas remain stable

the number of levels t =o(m
2

) making the marching processors extremely
z

attractive compared with the cascaded scheme with fixed array size t •
z

However if r is varied (which occurs for unconditionally stable

formulas} with either the number of levels or number of pOints

increased it follows:-

that with r = ~ reducing
h

1 1 R.
r yields -r = for a>l •

a a h2

626

Thus fixing h implies that ~ is reduced creating more intermediate

levels, if ~ is fixed h=lah is increased, requiring smaller arrays·

hence faster times. This implies that the cascaded scheme loses the

tradeoff again. Alternatively when r is increased ar=a~ for a>l

h h
producing I=a~ (reducing the levels) or h = -- (increasing the points)

la:
which favours the cascaded scheme.

It is clear that to produce further benefits from a geometric

approach to P.D.E. solution we must select new methods (and hence new

arrays) which solve at least some of the following problems.

(i) Modify computation time:

a} increasing r to reduce the number of levels calculated

b) admit more parallelism to speed-up the arrays

c) simplify basic cells

(ii) Control the output of results easily

(Hi) Control array size: by attempting to divorce size from both t and m.
z

To develop improvements along the lines of (i) and (ii) we consider

the Group Explicit (GE) techniques. The GE method has a certain appeal

because it allows unconditional stability in the form of SAGE and DAGE

schemes, and provides 2x2 decoupled linear systems with weakened

computational relationships which admit parallelism. From a geometric

viewpoint the methods provide molecules which can be applied simultaneously

on the grid, simplifying alternation and averaging schemes.

From the calculations in (S.1.27), (S.1.2S), (S.1.31) and (S.1.32)

a simple and intuitive basic GE-cell solving the 2x2 system (Bl.23)

627

GER ARRAY':

GEL ARRAY:

GEU ARRAY:

GEe ARRAY:

FIGURE 8.4.1: Basic GE array formats

62S

using the unified molecule (8.1.21) suggests itself. Ungrouped points

naturally represent a second type of boundary cell, using (S.1.12a) on

the right and (S.1.12b) on the left. Using both cells linear arrays

for GEL, GER, GEU and GEe as shown in Fig.(S.4.l) are obvious, with

the general dataflow of the form,

U1_2 ,k. \11,k u1+ 2 ,)(
t·k

u1_1 ,k u1+1,k u1+3,k

u1- 2 ,k+1 u1_1 ,k+1 u1,k+1 u1 ... 1 ,k+1 u1+2 ,k+1 u1+ 3,k+1

u 1+ 3 le: u1,_3,k u1_1 ,k' u1+1 ,k
u1 ,k+1 u 1+2 ,k+

t=k+l
u1_2 ,k u1_1 ,k+ u, •

u 1+1 ,k+1
u1+ 2 k u1+),k+

u1+4 k

,:~~iU~':::-:l ~,k~+:l...;r:~~l-u~'~'~l~,k~+~l~[u"~~~ u 1
+

3
,k+1 IU'_2,'+2 u"k+2 u1+ 2 ,k+2 u u t=k+2

u. k+1 u 1+2,,,+1 u 1+4,k+1
u1_1 ,k+2 1.. 1+1,k+ 1+3,k.2
L---J~--i }--t.=.:J

D)'TAFLDW FOR EDDY WAVEFRON'I'

which produces a "one time level, one cycle" approach to generating the

solution region.

t=2

FIGURE S.4.2: One time level one cycle table generation

629

From the data flow and GE equations (8.1.23}-(8.1.2S) and the partitioning

of the unified molecule (8.1.21) into the explicit form,

r (l+r)
1+2r

1-1

C~~2r
1-1

the GE-cell

1

)--(r(l-r)
1+2r

1

computation

t1 = uik-ruik

t2 = t 1+rui _1 ,k

t3 = t
2
+rt

2

t4 = t 3+rP2

ts = t/IA I =ui , k+1

}

r(l-r)
1+2r

1+1

1-r
2

1+2r

1+1

P1 =

P2 =

P3
=

P4 =

1+2

r (l+r)
1+2r

1+2

ui+l,k -rui +1 ,k

P1+rui+2,k

P2+rP2

P3+rt2

Ps = P4/IAI=ui+1,k+1

k+1

k

(8.4.3)

k+1

k

(8.4.4)

where IAI=1+2r, is defined, and the symmetrical cell structure of Fig.

(8.4.3a) is apparent. Likewise from (8.1.2) boundary cell computation

is arranged as

RIGHT BOUNDARY: u -ru
m-1,k m-1,k

t2 = t1 +rum_2 ,k

t3 = t 2+rum,k+1

1
u = -- t m-1,k+1 l+r 3

(8.4:5)

.... -- ---.,
I I
I I
I I
I I

a) GE-cell

b) Boundary cell

I
J

I .-1 I
L __ -!
I r I
I I
1---"'1
J -r I

I

A-l+2r

FIGURE 8.4.3: GE cells structure

630

LEFT BOUNDARY: tl = ul,k-rul,k

t z = tl +ruZ,k

t3 = tZ+ruO,k_l
1

u = -- t
l,k+l l+r 3

yielding the cell structure Fig.(8.4.3b).

631

(8.4.6)

Observe that only the

-1 -1
parameters -r, r, and A must be loaded into GE cells and -r,~(l+r)

into boundary cells, along with the associated initial values before

computation begins. Cell operation is trivial when we assume a five

state control program to select the operands for the accumulating ips

cell at each step and to circulate the parameter list correctly in each

cell. Each level is then computed after 5 ips cycles which denotes a

single GE cycle, and an array requires at most

T = St + (m-l) + 3 ,
z

(8.4.7)

ips cycles to load the parameters, initial conditions (in pipelined

fashion), and compute t levels. The timing is reduced to St +4 cycles z z

if parallel loading is adopted. A typical array requires Um-l) 12J GE

cells and a boundary cell, except for the GEU which uses two boundary

cells and L<m-l)/ZJ-l GE cells, and the GEC which requires no boundary

cellsat all. Consequently, as a GE cell ,requires 2 ips cells and a

trivial switching program a full GE array uses at most m ips cell

equivalents, giving good area savings over the asymmetric marching

processor.

In order to incorporate unconditional stability (with r~l) we

must use the Alternating Group Explicit (AGE) form of calculation. Using

the basic GER and GEL components in Fig.(8.4.l) the SAGE and DAGE methods

of (8.l.Z9) and (8.1.30) can be implemented as shown by Fig.(8.4.4)

• • •

• • •

al SAGE systolic:: array

r--·
1 :

• ••

• ••

• • •

• • •
I I

I I I I '
I I I I ' L...J '-_l ___ 1

bl OAGE systolic array

FIGURE 8.4.4: Alternating Group Explicit schemes

(similar arrays exist with (8.1.33) and (8.1.34) using GEU and GEC

arrays). The SAGE scheme uses two tiers, the first a GER array, the

second a GEL array,. which are connected in a straight forward manner to

ensure data is shuffled right for the 2nd tier and left for the first

tier (the lines are bi-directional). Alternating the use of the arrays

then creates ungrouped points at, the right and left positions respectively

on alternate GE cell cycles. Thus, tiers accept the boundary values

associated with even k on the left side, and k odd on the rightside.

Consequently every alternate boundary value is not required. Finally,

633

the two tiers (like the LR/RL scheme) operate in mutually exclusive

fashion such that tier 1 produces only the odd time levels, tier 2 only

the even numbered levels. If we compare this with the asymmetric

alternating scheme Fig.(S.3.3a) we have improved efficiency because in

the SAGE scheme all the cells of a single tier operate every alternate

cycle. However, further improvements are still possible by unifying

the GER and GEL schemes. This is achieved by merging both arrays and

using a logical toggle in each cell which selects the type of array

used. For example, if we set

{ 0 select tier 1 = GER
Toggle =

1 select tier 2 = GEL

alternating is controlled by Toggle=NOT Toggle performed at the end of

every cycle. Analysis of the dataflow in the SAGE schemes also indicates

that different tier calculations can be performed by the same GE-cell

structure using simple shifts of data right or left. For instance,

the operation of a 4 cell merged array is,

U U U
.- -----1

l,k+l 3,k+l 5,k+l : u, ,k+l I
I GER

u2,k+l U u 6 I

4,k+l 6,k+l ______ 1

6 u2,k+l u 4,k+l U 6,k+l SHIFT RIGHT 1

u1,k+l U 3,k+l U 5,k+l U 7,k+l
I ------6 I

u2,k+2 U U GEL I 4,k+2 6,k+2
I
I U U U U
I 1,k+2 3,k+2 5,k+2 7,k+2 - - - ---

u1 ,k,+2 U 3,k+2 U 5,k+2 U 7,k+2 SHIFT LEFT 1

U U U 6 2,k+2 4,k+2 6,k+2

where the shuffling of data is achieved by the calculations

t6 = O+(l*ui_l,k+l) P6 = O+(l*tS) shift right

}(S.4.S)
t6 = 0+ (l*pS) P6 = 0+ (1 *ui +2 ,k+l) shift left

634

which add an extra ips cycle to each GE-cell and are implemented by

adding the constant 1 to the parameter list, and using

Toggle = 1: shift right

shift left

to control the multiplier and operand switching. A significant problem

is encountered at the array edges where boundary cells must be unified

with GE-cells, as the boundary computation requires only half the

hardware. The problem is resolved by using the right portion of the

GE-cell for the left boundary, and the left half of the cell for a

right boundary. Inserting a dummy calculation t
3

=O+1*t
3

in (8.4.S) and

(8.4.6) ensures that the boundary cell uses as many cycles as an ordinary

GE-cell. The unused portion of the GE-cell is then loaded with

appropriate boundary values, and the computation preserved by modifying

the cell control. For instance, a boundary cell on the left is simulated

by the GE-computation,

tl = u PI = ul ,k -rul ,k O,k+l

t2 = u P2 = Pl+ru2 ,k O,k+l

t3 = u P3 = O+l*P2 (8.4.9)
O,k+l

t4 = uO,k+l P4 = P3+rt2

ts
1

= uO,k+l Ps = --0
l+r ·4

(a similar formula is available for the right boundary) • Observe that

require
. -1

in the boundary cells we the parameters -r,r,A, (l+r) , and 1

with control switched by the toggle from (8.4.8) to (8.4.4) to achieve

alternation.

The same approach for SAGE is applied to the DAGE scheme producing

the intuitive array of Fig. (8.4.4b) • This time we have a four tier

array arranged as GER, GEL, GEL, GER and the array becomes non-planar by

635

incorporating a feedback loop to wrap tier 4 to tier 1. In addition,

it is no longer possible to output all result levels directly. Clearly

the property of mutual exclusive tier operation still applies and some

compaction is possible. From the DAGE array structure it follows

immediately that the middle two tiers can be combined by performing two

GEL steps sequentially, yielding,

r- -,
J J ,

,
• I
.--~-'

, , ,
'_J

• • •

• • •

• • •
, ,
L...J

FIGURE 8.4.5: Merge of DAGE array

The new tiers land 2 correspond to a SAGE array which can be merged by

the preceding SAGE discussion. A single unified array is derived by

observing that a DAGE scheme is a cycle of the form,

(i) compute GER for two GE-cycles

(ii) shift right

(iii) compute GEL for two GE-cycles

(iv) shift left

where the array is started on the second GE-cycle of (i) or (iii) , by

using a two-bit toggle in the merged SAGE array such that,

636

0 0 GER

0 1 GER and shift right
toggle =

1 0 GEL

l 1 1 GEL and shift left

with the shift commands implemented by (8.4.8) and no shift to the left

side of (8.4.9).

In a soft-systolic frame these designs are simple to simulate and

results from OCCAM programs given in the Appendix (where aGE-cell

cycle is constructed from sequential execution of the control programs)

are shown in Fig.(8.4.8). However the designs are simple enough to

indicate a hard/hybrid systolic frame implementation. So far we have

considered only the simple parabolic form of (8.1.1), a more general

is given by,

au -=
at

2
..a....!:!. +

2
ax

g (x,t) , O:;:x:;:l, t?;O , (8.4.10)

where g(x,t) is a given function which must be calculated by the host

for all levels before array operation. By analogous reasoning to the

derivation of (8.1.23), a similar formula incorporating a modified

function g(x,t) suitably multiplied by terms involving r is produced.

Modifying the GE-cell (8.4.4) by replacing ts and PS by,

(8.4.11)

generalises the unified GE-array (with boundary cells ungraded similarly) •

It follows that the unified array with control programs of six

instructions (incorporating shifting for a cell can simulate any of

the l-D GE methods (8.1.27)-(8.1.34) with an array of at most !m GE-

cells. For a chip based implementation we also have to consider the

problem of the large host-array interface - requiring m inputs

637

and outputs (2 in and 2 out for each cell) to supply the g(x,t) and

read the resulting level t values at each GE step. This is achieved

by buffering data in a similar manner to the adaptive extrapolation

table generator in Fig.(7.2.9), viz.

boundary values

Memory loa

Pre10ad
initial va

Control

"-

lues

•
•

g(x,t)

Memory

t ,

I
r"'-

~A=:
• R •
• R •
• A •

y

~ =: 'Tt .
11

boundary value

FIGURE 8.4.6: GE-array chip scheme

level
table
memory

'.

.. Table output
r

..
~
~

The 'freeze' command used in the former table generator to evaluate

more starting values, can be used simply to unload the computed levels

and refill the g(x,t) memory allowing the computation of any number of

levels. The time of the generic GE-array is then,

T = 6t +(t +1) (freeze-time) + m + 3 , z z
(8.4.12)

ips cycles, where the freeze-time is the cost of loading/unloading

memory buffers, m+3 is the cost of loading starting parameters and

initial values, and t =t /(buffer size). z z

Finally, we remark that the above arrays are applicable only for

Dirich1et boundary conditions, where periodic boundary conditions

prevail the coefficients matrices for (8.1.27)-(8.1.34) will be different.

For example, if the number of intervals along x is even, the number of

unknown points is also even, and defining,

638

GEe

GEU

GER

GEL

FIGURE 8.4 . .7: Various arrays for periodic GE methods

639

1 -~
G (l)

I G (2) 0 A "-
A " G
l = "-

"-
"-

"-
"-

0 "-
"-

'- G! (m-2) I

-1 lJ

using G in (S.1.26) the GEC and GEU schemes are given by,

A ~
(I+rG2}~+l = (I-rG l) ~ (S.4 .l3)

~ "-and (I+rGl}uk +l
= (I-rG2) ~ (S.4.l4)

respectively. Thus periodic boundary conditions imply asystolic

ring type structure as shown in Fig.(S.4.7), and by analogous reasoning

to that above a generic perioC:ic GE-array is easily derived. Finally

Test Example:

Initial conditions

u(x,O} = 4x(1-x}, O~x~l

boundary conditions

u(O,t} = u(l,t} = 0, t>-O.

The exact solution is,

u(x,t} = 32

h
3 I

k=1,3,S •.•

2 2
1 -k 7T t
-e
k

3
sin (k1[x)

Results of the OCCAM program are given below in Fig.(8.4.8}.

... •• 0.100000

0.3S20OO 0."2000 0.8:12000 O.'~2000 0.991000 O • .,}OOO 0.132000 0.632000 0.352727 640
O.3'U33 0.'2'0.7 0,.'2'000 0, •• "000 0.9"000 0, •••• 000 O.':UOOt 0.62'.67 0.'''0,0,
0,.331.77 0,.6162" ••• 1600. •• '34 •• 1 O.n60()O •.• ,.000 •• '.'.27 •• 6"2" .. ,,., .. ,
0,.331'32 0,.6."" 0, •• 0 •• 27 0,.'210,.' 0,.".000 .,.2'003 •••••• 73 •. '.15" G.3:U."

0,.32621' •• 6.'0,23 .,'0,007. G."."' ..'6000 • O.'2~ •.•• 0,,,, •• 6.1.23 O.3Uj,72
0,.32 •• 75 0."3,,, O.7Ut" •• '12.22 •• "2004 •• '12022 G.n227, .. ,.,,,. 0.32"'2
0.31'"'' 0.S 2 O. '101'" 0.'0'." 0 00. 0.'0.0., O.1IUSO O."UU 0.', ••• ,
o. :1110'2 o.s,.,., 0.7'"'' 0."607. O"l4011 0,"6.7, 0.71"10 0."':':" 0.3"on

0.30'S" 0.572'0' 0."'''' o."tl2' O.'~O34 O.8"1~ 0.7'"71 o."'!JOt O.:snU2 0.0000000
O.loan' 0."'117 0.761)99" o.teOI" 0"200'7 O."Olfl 0.'613U 0.'''777 0.:505311 O,fIOOO4O
0,2"1'1 o,'~n.' 0.1'3361 0.1722" 0.'120'2 0.'72H2 O. 7~:J1'3 0,"'1'. 0.3012'92 ~ 0.2"1" 0."2,,,' 0.1""1 O."UI2 0.'0"3' 0 U2 0.'''''' 0.,,2n, 0.21'730

0.2"0371 0,54"" 0.13132' 0.""62 0.lh202 0."6541 0.1"", 0.~16"3 0.2"35"
0.21"6'1 0."02U 0.730'23 0.'."" 0 2 •• 0 '" 0.731"2 0."0212 0.2"'U
0.n3l" 0.'31236 0.72"'~ 0 ... 0'6' 0 ••• 03.7 O"'~'I O.12U" 0."'236 0.2"260
0.2796'7 O.~nSlO 0.7163U 0.133217 O"7;2:stS O.U3217 0.717022 0.521310 0.2U7I0

0.276'" 0.5""7 0.70.17. 0.'2"'3 0 0 •• 2'5., 0.709 .. , 0.522"7 0.27"93
0.273013 0.SI67'3 0.70208' 0.''''152 O."U,,, 0.U"'2 0.'021'6 0.Sl67" 0.2760"
0.269'" 0.'111'2 0."'072 0.el0236 0 010 0.110235 0."''', O.'UI'3 0.272177
0.26'7~ O.SO" .. 0.6'1137 0.'026', 0."U21 0.eo2'", 0 0.50'''' 0.2"135

0.263767 0.'5002" 0.6112" O. "'U! 0 •• 3140. O.,., .. ! 0.'.2170 0,'0028. 0.26666. ~
0.260807 0 ••••• '7 0.,7"'7 0.7'76" 0.'2'." 0.717676 0.6"U2 0.'.'.67 0.2"'660 0.000000
0.2"'0' 0."9737 0.6677'0 0.710". O.IIAlO!:!' 0.7t02Sa 0.'68766 0,,7 0.2'07'. 0.\.000000
0.2"070 (t •••• , •• 0.6'11" 0.712"6 0.tlO717 0.772"6 0.6621'2 0 •••• ". 0."7131 ~

0.2"217 0 ... 7.:12' 0."'''1 0.7""2 0.'0:'["3 0.""72 0."'560' 0.''''2' 0.2"0,S ~
0.2""6 0.".,33 0 111 0."'312 0.'.'677 0.7:11312 0.6"1" 0 • .,..,3, 0."2239
0.""" 0.'6'617 0.6"'" 0."1'07 0.""2' 0.~1I07 0 2717 0 " 0.2 • .,,16 ~
0.2"'210 0 •• ,.77. 0.6"3.' 0.'.3'" 0."oe2. 0.7'3'5' 0."".1 0 771 0.2 2 ~

All results for Ax-O.l, zeros indieate inactive cell. of the array.

~t' • • 0.100000

~ 0.3502117 0.632000 0.132000 0.95200<1 0 ... 2000 0."2000 0 •• 32000 0.U2000 0.~20-OO

.0000(10 0."60'0 0.62'067 O.U.OO' 0,00 0."'''000 0 •••• 000 0.12'000 0.62.067 0.301"'3

.000000 0.33"" 0.6162'3 0.'16027 0."6000 0.".000 0.'36001 0."'006 0.61.213 0.331071

~ 0.33'0" 0,60',,, 0."'073 0.91.003 0., .. 1000 0.928003 o.tolo21 0.60"" 0.331'''1

0.32167'2 0.601023 0.'00153 0.92000't 0.'6000. 0.'20009 0 •• 0001. 0 1023 0.'U21'

0.323552 O. "'6" O. "2276 0.'Uf.l22 0.~2004 0.'t2022 0.792." 0.,.,3651 0.320'''5

0.3""3 0.'''''2 0.""'0 0.'0'0'3 O ~ O •• O.Oa.. 0.' .. 211 0.516"'2 0.'13'.'
o.,.eon 0."93" 0.716610 0."607' 0 •• S6011 0 ... 6011 0.776." 0.'7':S~ 0.3UO'2

0000('19 0.30'612 0."2,0' 0.''''71 0.11*12" O.'2eQU 0.88112'9 0."'6" 0.572501 0.3065""

000000 0.30"" 0."'717 0.76133' 0.'801" 0.'20057 O."OIH 0.160"7 0.S.'717 ~~022 ••

000000 0.3012'2 0.""" 0.'53'63 0.1722'2 0."20'2 0.8122'13 0.7"S61 0." 0.2.".7

~ o.n"" 0."2'" 0.'1626' 0.86"12 0 ,3. 0 2 O. "'"1 0."27" 0.2'.'"

0.2'3531 0.'''''' 0."".' 0.'56'''' 0 202" 0.156562 0.73132' 0.'''''3 0.21'037t

0.289'12 0.5&0212 0.131'" 0 •••• 7.' 0 •••• 2 •• 0 ,. .. 0.730'2S 0.s.t.02.2 0.Ht6'1

0.2'6260 0.53",. 0.1212" 0 ••• 0 0."03,1" 0."0.61 0.7235" 0.S31236 0.,..3'"
0.212'7'0 0.'2"10 0.717022 0.133217 O."~" 0.133211 0.7163'" 0.'21310 0.21'687

CI.27"" 0.'22"" 0.70"01 0.'2:'51' 0 6 ... 0.'2'~US 0.10911 .. 0.5,2 ... 7 0."633.

0.2760" 0.516793 0.702856 0.81'7'52 0."615' 0.117"2 0.70208S 0.5,,7.' 0.213073

0."2'71 0.SlII'3 0."'''6 0.1I023~ 0 •••• 0'0 0.110236 0.6.,072 0.511192 0.26 '

0.2"73' 0.'05691 0.' ' 0 •• 0266. 0.'11321 0 •• 02 0., •• 137 0.~0'6.1 O.2.67.~

0.2666" 0.'002" 0.612170 0.7.~1.~ 0.13360' O,"5U' 0 ... 12" 0.5002" 0.2637.7

(1.263660 0 67 0.61'122 0,7,7.7 .. 0.12~'36 0.7'7'" 0 •• ,. .. 7 0 67 0.260'07

0.U071. 0.· .. 731 0.66'''. 0.7'02'" 0.11"0~ 0.7102" 0.6417'0 0 '37 0.2,,.0'

0.257131 0 ". 0.'UIl2 O."'~ •• 0.110711 0.712'''' 0.661151 O ~ •• 0.2'5,o70

0.2"011 0.17.52' 0."5 .. 0' 0.76!5~72 0.103173 0.7.'''2 0.".'" 0 •• n~2. O.~22'"

0.2:12239 o •• "':I:sJ 0 3 0.7:1.312 0.7'5677 0.7:18312 0.6'"11 0.",.",3 0.2."'~6

0.2"~U 0 " 0.612717 0.751107 0.7'12H 0.75.107 0 '6 •• 0 617 0.2, ..

(1.2"'12 0 17' 0.636." 0.7'3'''. 0.7101" O. ft.3'" 0.""'" 0 771 0.2.""0

FIGURE 8.4.8: OCCAM program test results

, .. . -0.'00000

0.320000 0.'00000 0.100000 0.'20000 0."0000 0.'20000 0.800000 0"00000 0.""" 641 O.2":lO~ 0""000 0."60000 0."0000 0.'20000 0."0000 0,".1 .. 7 0,"'000 0.3 .. 11.
O.27U~O O."37~ 0.721175 O."oU' 0,"0201 0"'06n O.7nl3' O.'l:Sno O.~2037
0.260'''' O.50Snl 0 •• ."" o.lonu 0."'033 0.'02266 0."0'" O'~'::Sfl 0.2"262

0.21662' 0.1."'326 0,"2170 0.7"1',. O •• OHI' 0.76"" 0."'326 0."'326 0.2602" ~
O.23:SUI 0,."'3' 0.62030' O.72'UI 0.165101 0.1211'2' 0.62".,. 0 • ."". 0.2""5 O.t.lOOOOO
0.22215. 0.U2,,3 0.'.01" O ... 'U2 0.730123 O.",uz o.,~t., 0.'32'" 0.23'''' 0.000000
0.21t1" (1.'112'2 0."1"2 o .•• nu 0."5111.0 0.6U31. 0''''''0 0."12'2 o.noun ~

0.200102 O.:nI2'" 0"'''37 0 •• 30.,. 0 '03. O.'3O't31 0."0,., O.39ln, 0.2111U
0."103' 0.,7231. O.SOU,. O"O~7' 0 •• " ... ,. 0.600'''' 0.".'" 0.37231' 0.2OOe0l
0.1'''''' 0."413" 0 •••• '" 0.S7U.S 0 •• 01." 0.S723" 0 •••• ..,' 0.3:Mn. 0,'.'037
O. I n03. 0.3'''', 0."1350 0.5UUO 0.,7'070 o.,.,uo 0 "' 0.3373" 0.1117.'

0.".723 0.321130 0 •• 392" 0.'''''2 0.,.,7.0 O.".IU 0 275 0.321130 0.17303.
0 •• '.122 0.30'".2 0 •• "271 0 ••••• 0. 0.'1'7'7 0 ••••• 0. 0 •• 230.0 0.3OS7U 0.164723
O.U.:JlO 0.2'''0' 0.3.127. 0 •• 70t2, o •• ~ 0.'701n 0 •• /)2.,. 0.,. •• ot o.lsun
0.U21.' 0.277". 0.3"2" O UO 0 •• 713.7 0 3'" 0.3t3'22 0.2""' 0 •••• 3.0

0.1353" 0.263'" 0.36'132 O.U'.63 0.""07 0.62"63 0.3."0' 0.2"'33 0.162'" ~
0.12'''' 0.251320 0.3413'" 0 •• 0., .. 0 • .,,.., o •• o.'n. 0.3'7"3 0.251320 0.135'" 'W!22229
0.122'" 0.2:snI3 0.32"'0 0.:s.71" 0.6070'2 0.'17". 0.»12'3 0.2393U 0.12ft., O,OQ()OOO
0.'1.,1'3 0.221812 0.311'22 0.36 O.:S17foS, 0.36a'.3 0.3':M37 0.2271" 0.122736 ~

0.11 11.0 0.2"'" 0.2"'32 0.3"0'2 0.'69'" O.35IOff 0.300'" 0.2 •• n, 0.116113
0.10"7' 0.20"3' 0.282'" 0.3341330 0.''''2' 0.33'330 0.n60u 0.20 .. " 0."12'90
0,,00 ... 0 •••• 76' 0.26'92:52 0.3113 •• 0.33.760 0.3 .. ,.. 0.272377 0.1"'" 0.105'75
o.ono" 0 •• 11312 0.2'"" 0.3031" O. 3I"1'~" 0.303 ... 0.2,n73 0.'17312 O •• 000l.

0.0'1501 O. I"'" 0.2 .. .,. o.n 0.30$5'0 o.n 0.2"'" 0.171." o.Ot.on
0.081131 O. "''0' 0.232'.' 0.27"10 0.2"0.' 0.""'0 0.23"" 0 90' 0.0'9'1'507
0.082917 o.14"n 0.2213.' 0.2617" 0.21':", 0.26.'" o.un .. o.,,"n 0.0'7137
0.07.0.' O. "'0" 0.21012' 0.2'.214 0.26210, 0.2"214 0.213273 O.IS40 .. 0.0I~17

,., • • 0.'00000

~ O.:S:S:S:S3'S 0.600000 0.'00000 0.920000 0.960000 0 •• 20000 0.'00000 0.600000 0 • .J20000
0.000000 (1.311111 0."'000 0.7.1 •• 7 0.810000 0.'20000 0."0000 0.760000 O.~'OOO 0.,.5000

:;~~g~~: 0.2'20" 0.'''''0 O.12'U' O ••• o.r.:n 0 ... 020. 0."062' 0.721'" 0.533150 0.2762$0
0.27'262 0.50"" 0."03" 0 •• Ol2 .. 0.8'1033 0.'022 .. 0."'." 0.~3" 0.2.0,.7

0.2.0211 0.".,,, 0 • .,132' 0.7''51', O.'OHII 0.""" 0.452170 0 •• 7.", 0.2 ••• 2.
0.2"'" 0.'''13' 0 •• "'" 0.72"2' 0.7"'01 0.12'''' 0.62030' 0 •• 5'13' 0.233nl
0.23,.n 0."2'533 0.5.'''' 0."'51 '2 0.73012S O •• tSl62 O.'~." 0.'32'3S 0.222'"
0.222U' 0.'112.2 0.'''660 0.6423'16 0 ... 9.0 0 ••• 23., 0.5616'2 0 •• 1I~2 0.2111"

0.0000(10 0.2111U 0.3.12" 0."03'5 0.630'" 0.66303' 0.630'lI 0.""" 0.3"125' 0.200802
~ 0.200801 0.312311 0."'53' 0.,00"171

0 •• '""
0 •• 00.,. 0.,o8tS. 0.37231& 0,,"031

Q.OOOOCX) 0.1.1031 0.".3" o •••• tS, 0.5123-" 0 •• 0.6" 0.'123.' 0 •••• '" 0."U'6 o.tI.".
~ 0.1117" 0.337316 0.'66'" 0."'''0 0."'070 0.""'0 O."U50 0."731. 0.1730"

0 •• 730ll 0.321130 0.""" 0., •• "2 0.'.'790 0."'162 O.n'''''' 0.321130 0.16"23
0.16&123 0.30"62 0."'060 0 •• ".01 0"'.'17 o oe 0 •• 11211 0.30'7.2 0.HS.122
0 •• '''22 o.nllo, 0 •• 028,. 0,"01)2' 0 •• 'S006 0."082' 0."'27' 0'~'10' 0 310
0.16.,.0 0.2"11' 0.313622 0 "0 0.'"n7 0,.0 0.,,.2" 0.27711' 0.""6'

0.14121" 0.2"'" 0.3":S0' 0.'240.'3 o ... ttO, 0."'.'3 0.361131 0.2".33 0.'''3''
0.13'3" 0.2'1320 0.3'''.3 0.'0","1' 0.'27'" 0.'0"" 0.3.'''3 0.:r.n3l0 0.1' '
o.u ... , 0.23.,13 0.331253 0.381'116 0.ao1oe2 0.38111' 0.321660 0.:2'3.313 0.12213.
(1.12213. 0.2""2 0.''''31' 0.36"'.3 0.317'" 0.36 0.311122 0.221"2 O.U""

0.116'" 0.2" •• ' 0.30037' 0.3"0"2 0.369'" 0.3"0'2 0.2'9'''2 0.2 O.JlI2~

0.1112'0 0.206635 0.286>03' 0."&330 0.""23 0.33&"0 0.H2'" 0.20463' 0.105'"
0.10'." 0.1"'" 0.212317 0.3"'~" 0.33""0 0.31836' 0.24'2'52 0 •••• ,., 0.10

0.100'" 0.111312 0.2'."S 0.30'161 0.31'75' 0.30316' 0.n.3" O. "7372 0.0 ... 0.'

).000000 0.0.60" O. " .. " 0.2"' 0.2h~'" 0.303"0 0.2 0.2"151 0.118'" 0.&91'07
).000000 0.0 • .,07 0.16 •• 0' 0.2351 .. 0.21"'0 O.28tOf. 0.21'.10 0.232'" 0.16"0' 0.011137
: .000000 0.081'" 0.1611.3 0.223'96' 0.261'" 0.2"2&1 0.2."" 0.22:13" 0.1617.3 0.082 .. 17

~ 0.012'911 O. "'061 0.213'21'3 0.2"2.' 0.2.210. 0."'28' 0.210'" 0.1540" 0.01.01'5

FIGURE 8.4 .8 (cont.)

642

•••• • • • 0.100000

0.'52000 0.632000 0.'32000 0."2000 0."2000 0.'52000 0.t3'20oo 0.63200.> O.l~2127 Il.J!OOAQlI
...".,.... 0.3"", 0.'2'000 ,'0.'2'000 0 000 0 •••• 000 0.'''000 0.12.000 0,62'12' 0."'333
0.338'" 0,"'212 0.11'000 0,'36000 0,'''000 0 •• ,.000 0.'16020 0.616222 ft. 3392"" ----~ 0.33311' 0 •• 0 0.'0'0'0 0,'28000 0."'000 0.92'003 0.'Oeo37 0 •• 01.:S1 0.332'2'

0.327'" 0 •• 01020 0.'0007, 0,'20007 0,.'0000 0.'2000, 0 •• 0011. 0.,00't75 0.32772. ...""...
........oQ O.:S22:sn 0.":150' 0.7'2'" 0.91201:1 0."1002 0.912022 0.79210 ft.,U72' 0.322. U
0.3170" •. 5"'" 0.'14:S02 0.'0'03' 0 00 • O,'fO'Ol' o., .. na O,' .. S47 0.,..,.,22,..,. O.3U710 0,57'22' 0.77"" 0 •••• 0', 0.,,.01. 0 07. 0.77.52. 0"7",, 0.312'70

0.'07'" '0.571'" 0.'61'" O •••• llt 0.'21027 o tU 0.7"'" 0.'72'" 0.3:0.33'".. o.,onn 0.56"" 0.7611:12 1)."016. 0 •• 200" o.non. o.""os O."~'l 0.303'15
0.2 •• ':U 0.".'" 0.7'3.~ 0.,7227' 0 •• 12079 0.1722" O.~"" 0.559077 0.2"''' "-""""""
"-"""""" 0.29'90. 0."2'" O.U'." 0,"13 .. 0.9OCl22 O."UO. 0.7., •• , 0."2"10 I).~''',

0.:H11" 0.5 .. &3. 0.731"2 1) • .,,,37 n I" 0.'5"2' 0.73"" 0.'''32' 0.n21~'"..,... O.2IUO, 0."0011 o.n'I'. 0.U"8' 0 25. 0 730 0.73"., 0."0129 0.2'"''
0.28")& O."U20 0.7237'. 0 •• "0.2. a •• '03,7 0.'.0.'3 0.723'.' 0.'3"01'3 0.2e'4~' ~
Q..AllJlJlJ!O 0.211366 0.'2UO .. 0.716632 0."3'" 0.172017. 0 •• 33 •• 5 0.71'57' a.':83!j;0 0.2'1121

0.277707 0.522"'0 0.70.317 0.'25"0 o .•••• a 0 •• 25." 0.70.52. 0.5223.' 0.2780'0 ~
Q.Ol!WIO 0.2U7U 0.5"'" 0.702.13 O. U77,. 0.""0' 0 •• 17.22 0.70235. O." ... :t7 0.2"'"
0.2712JS 0.51117& 0.'.'317 0.110113 O.:U.OI. 0 ... 0 •• 0 O.'."'~ 0."1033 0.27'1'52,....,. (1.261390 0.50"12 0,0. 0.'02'" 0 •• U2 •• 0 •• 02.2. 0 •••• 0133 0.5057,. 0.268"3

0.26507, 0.5002" 0.'''''3 0."50'3 0.,,,,.3 0.7.'056 0.611'''' 0.500120 0.2.'::'i372,..,.
a..AQQO<!O 0.262355 0 &7'. 0 •• 7'''''2 0.717'540 0.12" ... 0.7'8762' 0 •• 7 0 0 0.262122
0.25.'7" 0 •••• 7 .. 0 0 .. 0.7'0.t, 1) •• ,122' 0.7'0151 O.UU32 0 ••• .,70 0.2' 3 ~,. 0.25"7'1 0 ••• 13., 0.'61'" 0.772"" 0."0631 0.17:ze~ 0 0 • .,(11'-\00. 0.2563'3

0.2'3'13 0.""03 0,'''.'6 0.7"'" 0.8030" 0.7654" 0.'5"''' 0."."3 0.:537'9'0 ..--
~ 0.25101, 0.&7&'2' O.""Sl 0.7'"7'2 0.7.,,,. O.TSU'" 0."'&67 0 •• 7., •• 0.2'071'
0.2.'0.3 0.".'.' 0."2027 O. '5101& 0.""23 0.750.7. 0.'&2172 0 ' 0.2.0330 ~,..,. 0.2""1 0.01"5" 0."'102 0.7&3'06 0."0717 0.7U.7. 0 • .,57" o.u,t7n 0.2.~'32

•••• I •• 0.500000 ''''
0.326000 0,'00000 0.I000<>0 0.'20000 0 •• 66000 0.920000 O.tOOOoo 0 •• 00000 0.313113 0.30666' 0.560000 0.7'60000 0."0000 0 •• 20000 o •• toOOO 0.760000 0.5 ' 0.300000
0.2'0000 0.,333J3 0.720000 o ••• C)()OO 0."0000 0.'.0000 0.7'23133 0.530000 0.2."". """""""" 0.271111 0.500000 0 7 0,'00000 0.'.0000 0 •• 01 •• 7' 0.615000 0.5061 It 0.2.,000

0.230000 0.&7'''. O •• ~ 0.763333 O.'oo.JoI o.7":noo 0.6"'" 0.&75000 0.257037 -.-...,.... 0.2'29'3 0.'50000 0.'21111 0.72,.,7 0.762917 0.727361 0.61'750 0.&'''''' 0.23"00
0.22'OttO 0.U2037' 0.51770. 0.69201& 0.72"" 0.,"0.3. 0.,,,U2 0.&28125 0.2301'11' """""""" 0.2,.012 0.&0"" 0.,.202. 0.,'70'. 0 2& 0.""01 0.".'79 0.&11200 0.2UO.3

0.203177 0.3'051' 0.531702 0.626725 0 • .,197S 0.'''.'2 0.SlS050 0.316771 0.2011"1 -.-... 0."".' 0.3.7&3' 0.'01622 0.,'&1" 0.62.0" 0."".3 0.,o6111 0.371736 0 ... 33'5
O •• '37H 0.»3:'0 0 13. 0.,.7355 0.,."7S 0.'''100 0 2. 0."'''7&' 0.1.1137'& o..QOOOOD

CWlO.O.Ql>O O.U ... , 0.332.2. 0.&6030' 0."'&07 0.,.672. 0.53"00 0.&':192' 0.331,2" O.U"'"

0.1662" 0.3 •• 65. O.U'&1' 0.,.3',. 0.'''15& 0.512U' 0.U807& . 0.3."" 0.17037' "-""'>J>QO,... 0.1"." 0.300'16 0.""" 0.&,72 •• 0.'12.22 0 ••••• '. 0.UU.3 0.30.72. 0.158200
0.150.0. 0.2n270 0.3 •• 0', 0 n3 0.&87"0 0.01'3'&2 0.3'.". 0.2 •• 2 •• 0 •• 5., •• ~
a..oAl>JIlIlI 0.'&65'. 0.272230 0.377'011 0.&"'001 0 ' •• 0.'''''' 0.37 2 0.27'5240 0.1&31&'

0.136115 0.26("5 0."66.' O.UO.O& 0.& .. 5.3 0.&,,"0 0.3':1"32 0.25.0,. 0 •• 3 •• 7& CWIO<lOOO

"-"""""" 0.132633 0.2"''''5 0.' •• 1" 0.3'''0' 0.&200"2 0.'00163 O.ll"ll5 0.24.'03 O.'~~:'

O.1231U 0.23 •• " 0.32273& 0.3'06&. 0.~"633 0.31970. 0.'2'633 0.23&&20 0.126210 """""""" "-"""""" 0.120032 0.222.5. 0.30'779 0.361". 0.3.0"& 0.362U3 0.3070'2 0.22~'21 0.1172'0

0.11"79 0.21U06 0.292071 0.3U&76 0.361'" 0.3&3611 0.293777 0.2t21U 0.11&210 "-""""OD 0.10162' 0.201771 0.27t&U 0.326'" 0.3'.0n o.n"" 0.277'77 0.2<13,. ... 0.10.06'

0.'00'" 0.' •• 0'5 0.26&320 0.3117" 0.3272" 0.31~62 0.2'"'' 0.'."" 0.10335& ..-....
........". 0.098307 0.11260. O.2S28" 0.2~'0' 0.31135' 0.294'" 0.2,,"7 0 0' O.O.~·"

0.0.)302 0.17',., 0.23'205 0.282121 0.2 •• ,.0 0.2"410 0.2&05" 0.173127 0.093'5:'0,...
~ 0.0 •••• 7 0.'.'253 0.22'140 0.2.7"7 0.211766 0.2U3 •• 0.22756. 0 ••• 70.0 0.0 3
0.OUU7 O.IS"" 0.2' •• 7S 0.2"313 0.2 •• 0&3 0.2''''7 0.21772' 0.1'72,. o.oa ~ (I.080S" 0 ... "" 0.20711' 0.2.22'. 0.25.'.0 0.2&2 ••• 0.20StU O.I5IH'I, 0.07'.0.

FIGURE (8.4.8) cont.

643

.. ,. . • ·0.100000
.. ,

0.351000 0.'32000 0.132000 0.9'2000 0."2000 0.'52000 0.1:52000 0.632000 O.S·U12'7 ~
~ o.s.,," o.u.ooo o.u.ooo 0."'1)00 0 •••• 000 0 •••• 000 0.12'000 0.n'12. o.,l':u;,;s
~ O. '''''12 0.6'6133 0.116012 0.t3"'000 0.""6000 O."~I 0.116011 0."U33 0,,1''''''
O.332'U 0 •• 01,.. O.'O'O2~ 0.':8002 0",'000 0,"1002 o •• o.~ 0.'0"12 O.333~" ~

0.3170" 0.601108 0.'00070 0.'2000' O.'UOOI 0.'20064 0.100126 0.600H' 0.",..12 ~
........" 0.3222'" O.StlS70 0.71'2201 0.,,'013 0."'002 0.'12022 0.7"21" 0.,,,, ... 0.32217'
....,...", 0.317.,5 0.''''52 o.nu'o 0.'0'02' 0 007 0.'04046 0.7"301 0.".,,. 0.316'1'
0.lI2'" 0,'19," 0.17., •• 0."'07. 0,"60" 0 061 0.77"" 0.S"31S 0.312"5
0.307112 0.S726" 0.'4873' 0 127 0.'21)021 0 0. 0.'''"' 0."2301 0.30 ~,.. 0.30"7' 0.""" 0.761132 0.,,011' 0.'%00.' O.HOI'2 0.7'"07 0.,.,7400 G.30Jloo,.,... 00.300052 G.'''''' 0.75351, G • .,2n. 0."'20'0 0.'12l'3 00.,.,3.'. 00.""305 G.~""G
0.2.,7" 0,~'2'20 0.,.,..,. 0."4393 O.fO'''' 0 3 •• 0.'''006. 00."2651 G,~"7 ~

0.2"'" G.'.'~ O. " •••• 00.'5'''' 0 3 o •• 's.s" 00.'31.03 00.'5"2007 0.2"2273 "-""""""
4.AIlilOllO 0.nU17 0."00\6' 00.7311" 00 700 0 •••• 260 0 •••• 7200 G.73112S 00.,.002.7 0 2&.
CW>QOOOC 00.2"002 0.'33'7. 0.723'" 00."0"2 0.,,00'" o."G~ 0.7237" 00.'3., •• 0.,"4140 ••
0."12007 0.'2un 0.716"2 G.n3'" 0.17':'" o.n,.,. 00.".63. 00.'2"'3 0.211279 CW><IOOOO

0.27"" 0.'22,.. 00.70"63 0.12'''' 0 3. 0 •• 2S'32 0.700t"3 0.'22233 0.2"1~',...,.
...,."..,. 0.27 •• n 00.'16 ••• 0.702'03 0.11"15 o.,,..O't G •• t7toe 0.7023., 0.'167.' 0.27.",
~ 0.27 ... 3 0.'100 •• ' G.'."" G.ttO'" 0."9020 00.'1021' 0.""'" O.SlIl" 0.,7111'
0.2"236 G.SOS63' G 0 •• 02.07 0 •• U2 .. 0.'02"1 0.'"'" 0.'0"" 0.2.nG. ~

0.2 • .,,, 0.~0<I37& 0.""22 O. ,., ••• G.131S" 0.7~33 0."1732 0.'00012 00.2"'" ---.."....., 0.262270 00 37 00.67'177 0.7,7,.3 G •• n"7 0.7"607 0.""" 0.'"'''' 0.'62206
~ 00.25'''' 0 0 0,"1261 0.7tol2' 0.'11231 00.7'0217 0 0.0 o •• "'n 00.25'0.2
00.2"&2' 0 •••• S3G 00.6." •• 0.77210' 00.,,063' 0.77,,., 0 ," 0 3 00.25"'00
00.253.02 00.""0' 0.""" G.'''''' 00 •• 00300 .. 0.74S.30 00,,"1003 0 • .,9251 G.n,,,,,...,..... G.2S0'H 00.'''.01 00 '32 0.".'" 0.7~"2 0.7"222 0 ••••••• 0 •• 7 •• ,., 0.2,0'",.,... 0.2.'." G •• ",., 0 •• U2.2 0."00 0."'12' G.n'053 0 •••• ..., 0,02 00.2.""
0.2."10 00 •••• 70. o.u"n 0.7un, 00.710722 0.14"36 0.""" 0 2 0.2.""

cfa,. I • • 00.'00000 ,.0
0.3:0000 (1,'00000 0.'00000 00.'20000 00.'60000 0.'20000 00.100000 0,'00000 0.33'333 D: ~Qg;
~ 00.306667 00."0000 00.76('1000 00."0000 0.'20000 G.,toooO 00.7..0000 00.' 7 0.300000 4>.2"'" 0.'30000 00.713333 0."0000 O.,toOOO 0.'.00.33 0.722500 0."5000 0.271333
0.2"000 0.'0061" 0."'000 G •• OIU7 00."0&17 00.1001250 0.6'''" 0.500'17 0.211111 ~

0.2 .. 2 .. 00 •• 7'"2 Oo"~JI'27 0.76"'0 0.101927 0.7636" 0 •• , .. " 0 •• ', ... 0.25717,,...,.. 0.2'2'., 0.'500". 0.6222:11 0.726"27 0.7"1'" G.7H.O, 0.61"':S 0."6027 0.2l77U
~ 0.230'27 0 •• Z,.3. O.~'2532 0."'2'01 0.72.3., 0 "2 0.""'7 0.&33071 0.223602
0.21&21' 0 7300 00.:160." 0 •• '0'" 0.'''3.0 0.6" 0.~.362. 0 •• 0"" 0.""91 ----
0.20"'" 0.391:JSS 0."" .. , 0.'2"" 0 ... 0'" 0.62"6' 0.53.7., 0.:S.7'.7 0.20"'2 ~ -.-.... 0,"7737 0.36"21 0.,.02'7' 0.""'" 0 •• 2 •• ,. O.' .. UI 0.,0'''' 0.3'26.' O. a~37:J3
~ 0.".522 0.350:116 0"'''''3 0."'"'' 0.' • .,,, O.~YOI" 0."3"7 0.3'&31:1 0.1826'3
0 •• 752'. 0.3372'2 0 •• ", •• o.,un. o.,n'" 0.,.10.1 0 •• 62237 0.3'30" 0 •• ".'" ~

0 •• 6532. 00.320072' G.U"" 0.51"03 00."2310 0.,.'203 0 ... 02.' 0.:51"" G.1704~
1:1 QQD:Qs:tO 0.162011 00.301"6 O.CI'''. 0.''00'7 0.51"'3 00."1211 O ... "U 0.'0"71 0.1:18722
o....otlllllllO 0.""2' 0.217423 0.3"''''' o n 00."1257 0.'"'''' 0.'''' .. O. l'OSl 3 O.U"45
0.1'3711 0.nU10 0."'031 0 "6 0 ... 72 .. O.U3911 0.37'10. 0.2731" 00,'''753 .<Wl!lOOQO

O.U"" 00.2630'"' 0.3"146 O. '23,., G " 0 •• 226" 0.3411" 0.260'" 0.""'9 ---Q.OQQOlIO 00.1'2 ... 2 0.2"371 0.3U'" 0.'021)6. 0 •• 232 ... 00.'030" 0.''''21 00.250563 0 • .,0177
I!..Oll<W>O 0.12"" 0.2,,,,7 00.3270" 0.3U~~' 0 •• 030'7 0.3.n.0 0."'32. 0.23130" 0.t22tH
00.1'71" 0.22"2' 0.'OU20 0.3"07, 0.313347 0.3"'90 0.'llOt3 0.22.07. 0.12037',....
0.1112" 0.2t"" 0.2 7 0.3"'" 0.36'00"'17 0., •• ,.7 0.2'.2 •• 0.213'" 00.11,...., 00.10'0023 0.202'.' 00.2,.", 0.32","2 0.3.72.2 0.3300"2 0.2'0". 0.20'553 0.10".0
Cl..OWlOOO 00.10' 0.n3'" 0.21013" G.3IUoo 0."00"75 O.'ICU' 0.2""2 00,'''''00 0.100763
0.0'.720 0,""72 00.2""0 0.2"515 0.' .. ,,, 0.2"7U 0.2"2" O •• ln2. 0.~'7S •
0.0'tl263 O.I71o.t 0.2'1133 0.21'''' G.,."., 0.2",0' 0.2.'00" G.'752tt 0.O't,....
~ O.OH". G 0.231162 0.270~2:S 0.28a .. 0 0.271H3 0.22'''2 0.,,,,,, 0.0,760'
~ 0.0"31' 0.1'''01 0.220'62 0.2,,,9, 0.211288 0.251'77 0.211'" 0.160'" 0.to82'"
0.007"" 0 •• :1273' 0.20"" 0.2.,72' 0.258034 0.2n123 0.20"312 0 • .,0812 O.OtlOIl ~

FIGURE(8.4.8)cont.

644

8.5 A UNIFIED GROUP EXPLICIT PARABOLIC SOLVER (UGEPS)

Next consider the GE solution to the 2-D equation (8.1.2) defined

by (8.1.35)-(8.1.44) and the molecules in Fig.(8.1.1). Fig.(8.1.2)

represents an intuitive mapping of x-y points onto a mesh connected

processor. Each mesh point representing a processor containing the

current approximation to that grid point. Initially processing elements

are loaded with u, , 0 values (with processor i,j receiving u, '0) and
1,), 1,J,

after k cycles element i,j holds u, 'k
1,J,

The mesh is orthogonally

connected and for a single scheme like GER(x) the points remained fixed

in processors throughout the computation. Each processor must be loaded

with the coefficients of the molecule it computes, and on each GE-cycle

executes a formula of at most size (8.1.36). Normalising (8.1.36) by

dividing by a, and loading the resulting coefficients a single ips

cell computes the most complex molecule in 12 ips, which is the cost of

producing a complete time level. Thus t time levels of a scheme like z

GER(x) , GER(y) , GEL(x) or GEL(y) requires T=12t cycles neglecting the
z

O(m) time for loading coefficients and initial data. Considering the

mesh in more detail reveals similar problems to the 2-D asymmetric wave-

front mesh. Firstly, the array performs well only if the final time level

is to be output as previous levels can be overwritten. Second a molecule

of type 0 has twelve points associated with it, and it is possible for

only four of them to be adjacent to the processor requiring them. The

remaining points located in second nearest neighbour cells. This

complicates systolic design as each cell in addition to its own calculations

must route approximations to the correct processor. As a result the

control of a cell is context sensitive with the (i,j) position determining

the control sequence. Thus a non-alternating group explicit method requires

645

Reduced Instruction set processors which can be preloaded with a control

program. Alternating Group Explicit (AGE) schemes are implemented by

shifting the approximated points in one of four compass directions (N,E,

S,W) and modifying the control program to execute different types of

molecule in the required sequence. This requires loading each processor

with coefficients of all relevant molecules increasing cell memory size,

which must be offset against the unconditional stability of the AGE

calculation with larger step sizes.

An alternative approach to single point, single processor is to

allocate processors to groups. This immediately reduces the number of

processors to Lm/2J 2 and alleviates the communication problem as each

processor contains 4 grid-points with the remaining 8 of 12 points in

nearest neighbour processors (two each). The processor is now context

free except for calculations on the boundaries which will be dealt with

shortly. First, consider a Type 0 processor: its job is to compute the

four molecules associated with the four points it contains. These

molecules have the same coefficients but distributed differently, thus

by sharing values the storage associated with a group is reduced by 75%.

However this is offset against the increased program size which for a

single ips cell per group requires 48 ips cycles to compute the 4 type 0

molecules sequentially. It follows that the processor must contain at

least 48 instructions for selecting operands and coefficients. The Type

o cell is the most complex and serves as a cost bound for all molecules.

Alternating schemes are much simpler to implement with a group

processor correspondence if we permit simple shifting of points internally

and externally between processors. For instance, imagine each Type 0

cell to contain 4 registers holding the values u .. k' ui 1 . k'u. ·+1 k 1,J, :+ ,], 1.,] I

646

and Ui+l,j+l,k. A cycle of shifts corresponding to Fig.(8.l.2) is

achieved as an anticlockwise rotation of the form,

Ui+1,j+l,k+ u1+2,j+l,k+ [;J Uh1,j+l,k

-
ui+1,j,k+l uiT2 , j .k.l GJ g

I t

ui +1 ,j+2,k+ ui +2 ,j+2,k+ Ui ,j+2,k.,.3 u1+1 ,j+2,k+3

•

ui+1,j+l,)c.+ u1+2 • j +1 ,k+ U i ,j+l,k+) ui+l,J.+l,k+3

FIGURE 8.5.1: Rotation of parameters on a mesh

Now as the Type 0 molecule is the most complex, the above cycle is the

longest possible for an AGE scheme. It follows that there can only be

a total of four computing sequences to make up the 48 instruction

program. Similarly, it follows that processors on the periphery of

the design can only change into 4 types of molecule also demanding 48

instructions. Thus each processor requires a single ips cell, 15 co

efficient registers (see molecule diagrams), 4 registers for approximations

and in addition enough memory for the program. This latter scheme

saves processors and reduces the memory size but still requires a

program store.

Now consider the templates of the computational molecules shown

in Fig.(8.s.2), which are the 2-D representations of molecules in Fig.

(8.1.1) with the following key:

647

co-efficient z, is mUltiplied with the value at the grid

point it covers on level k.

as above but the result of the molecule computation produces

the value on level k+l at this grid point.

imaginary point haVing no effect on the computation.

the co-efficient z is multiplied by the approximate value on

level k+l.

Key to 2-D Computational Molecule Templates

All the molecule types can be represented by a single unified molecule

structure or template with coefficients determining the type. Further,

a particular grid point can be computed from one molecule for a single

level, and by rotation for AGE schemes only four possible template

instances are used by a particular grid-point. Arranging the resulting

four sets of coefficients in a cyclic queue implicitly defines the

control program at each point. Thus, each grid point processor and

hence each group processor is context free and contains four cyclic

queues one for each grid-point. Combining the two ideas of a basic

grid point processor and a group processor a macro-GE cell can be derived

(see Fig.(8.5.3». A macro-GE cell consists of four basic ips type cells

one for each grid point, and has the same input/output organisation as

a group cell. Each basic cell consists of 2 multipliers and 3 adders

plus registers for th.e approximated grid point and cyclic queues for

coefficient data (12 registers in each). Hence a macro-cell has 12

adders and 8 multipliers, 48 coefficient registers and 4 point

approximation registers but no program store. The operation of the

basic grid-point cell is easily derived from the templates by dividing

them into quadrants. Each quadrant is represented by only two coefficients

TYPE 0 (1)

TYPE 0 (1U)

TYPE 1 (1)

~-
I 0 "\ ,

TYPE '2 (1)

1

:8

.... ,
~ 0 \
'. /

TYPE 0 (11)

C0:~)
1

C0'~}~0
- - - - - 1- _- --

881()8
r; \ 1 -

~:~)

/-
1 0 \

,~
I

TYPE 2 (i1)

Q
GJ(@

- - - -

QQ
6)

1(;"\
1\2)

~'\
(0
\
,-

1 (
.. 0

\

,

le \. '~ I \~

© Ib I
,~

1 (0 \
\

~,

1 0 I
\~

- -,..- .
1 0 '
\ I

648

-

FIGURE 8.5.2: Molecule templates for macro cell register loading

TYPE 3 (1)

TYPE 4 (1I

, ... "
, 0 I , _/

- ;:-7
: 0 '
-'

" 0 ,
J

--~
~-

, 0 \ , /

!!!:U

I ,
0

\ -. I

" \ , 0
I

.' -\
,0
' .. J

; 0 , I

-, , ,
: 0 I
' .. . ,,' I
,- , I , 0

) I \ _.'
I

@I

/ \
10 J , .-

'--J 0 , ,
.... -/

.- --,
0 I ,
'-

- - - - 1- -

Q~\~J
6): ' 0

,
\ I
J

I
.... ,

-

, .'

(- \
I 0 J ,

_J - -" -, ,
0 ,

, -

tYPE 3 UU

I' ,

'0) ,_/
,-

b2 ' 0 \ ~
,-

I \ ~ _,

G)~:~':~) ----,---
1'-- ©- "'\"'-, I 0 . ,.~\ I \ 0 f 0 I
...' ~ .. / \ _ t - _

/- ~"
\ ('.

I 0 \ 0
J ,

'J ,-
~ . ,

I r- \ ,
: 0 \ \ 0 ,
,_/ i ...

, , ,- ,

'Q --. \
' 0) '0

1 ~~ I 0 I ,- I
\ , ,~

' . - - - - -

:'~'l® ,,' ~-
:©G)
I

,-,

'(0 '0 \
\._/ I 2

FIGURE 8.5.2: Molecule templates continued

649

-

a) Macro-GE cell

Accumulate OU'I'

,---,
:'\, ~k!-' -lI"*+-----j(-
1,.; __ :1

b) Basic point/molecule cell

r--'
i,j-tl,k l ~-'(:","-)-~

L~J
L ________ ~

I
I

I
Accumulate IN

:--------..,
r

W

')l-1~1\:-i<c-i I
I.. __ J

i+l,j,k

FIGURE 8_5.3: Area efficient macro-cell layout

650

651

and if the point cell contains a point approximation all values are

nearest neighbour. Now assign the computation such that a point cell

computes only the portion of the molecule associated with the quadrant

fitting its position in the macro-cell. Molecule computations require

the accumulation of all parts of the template which is performed as a 4

step systolic ring computation around the basic point cells. For

purposes of illustration evaluating all four Type 0 molecules

simultaneously,

G 8 B G
+

8 8 B B
t t

6 B B g
+

G B B Q
~cumulation of molecule terms on systolic ring

Thus after 4 steps all the molecules have accumulated all their template

parts. On the fifth step the point approximation registers can be over-

written and the systolic ring values cleared. Fig.(8.5.3b) shows the

coefficient ordering for the top left point cell, notice the dummy value

for loading and an additional delay which is used later. The delay

through a basic point cell is 2 mults + 1 addition = ips + mult, and

allowing 6 steps per group we require at most 12 ips cycles. Fig.

(8.5.3c) illustrates an area efficient layout for the macro-cell.

Now consider the solution of the 2-D problem using this new cell.

652

Fig.(8.5.4) illustrates a linear array of macro cells or a bi-linear

array of basic cells for m=8, together with additional connections for

- .-- --- -, ,..- -., r- - --~ ~-- -r , , I I I I . I I

I --

__ I

I I I I

~~:
I I

--)?P I
, , ____ J - .J L_ _J

Macro cell

FIGURE 8.5.4: A four cell (m=8 point) array for approximation of the
2-D parabolic problem.
N.B. additional links included for register load/unload

operations.

input and output and communication with other cells and are trivial to

include. Using the array we can compute two lines in the x or y

direction every 12 ips cycles (including loading time), a new time level

every !m(12)=6m ips cycles, and t levels in,
z

T = 6t m (8.5.1)
z

The application of the array resembles the marching principle applied

by the LAMP array (Fig. (8.3.6» where the processing array is viewed as

marching systolically up the rows (y-direction) or along columns (x-

direction). A slight problem occurs when different types of molecule

are encountered during the marching process. For instance, if we

compute GER(x) initially we load the array with coefficients for

molecules of Type 0 and 3, and march left to right (columnwise) until

we reach the last two columns when we must reload the coefficients with

Types 7 and 2. Likewise with GEL(y) we load initially with Types 4 and 0

? Maero--cell

,

t·l c:J [J [J [J
t·2 GJ [J [J [J

t·3 Q D [J []

t·4 [J [] 0 []

(load parallleters)
rov 1,2

rov J,4

rov 5,6

(load parameters)
row 7,8

Successive IIlacro-cycles (6 bAsie cycles each) for GER(x)

t-l D [J [J [J load parameters
~lumn 1,2

t·2 D [J [J [] column 3,4

t·3 [J-[J [J ~ column 5,6

t-4 [J 0 G~ load parameters
column 7,8

Successive macro-cycles for GEL{y)

653

FIGURE 8.5.5: Cell typing for row and columnwise systolic marching
in 2-dimens1ons

654

and march row-wise bottom to top reloading with Types 8 and 3 on the

last row. Consequently, any of the basic schemes can be computed with

only two loads which requires only constant time (each cell loaded in

parallel) hence,

T = 6t m + c (8.5.2)
z

with c>o a constant accounting for loading delays. Alternating schemes

require no special treatment, and are selected by loading the correct

cell type coefficients at the start of a pass through the region.

Throughout the descriptions we have assumed a row-wise march, for

a column-wise march the templates must be rotated 90· clockwise before

deriving the loading scheme.

A program simulating the bi-linear array is given in the Appendix.

Testing was performed using specially constructed mesh points which test

cell operation but are not true 2-D problems. In order to run the

program two files "odds" and "evens" are required. "odds" contains the

molecule coefficients for loading the bottom tier of the array with

data corresponding to odd rows of the test grid. Likewise "evens"

contains coefficients for the top tier cells and even row data. Each

line of the files has the form,

c

)

size elements

where c is a control value

1 load meml } 2 load mem2
coefficients

c =
0 load groups and compute molecules

6 stop

An example grid was tested for two cases:

1. A molecule with constant coefficients

(testing ring accumulation)

2. A molecule with different coefficients

(testing coefficient shifting on grid cells)

The results are given below.

TEST EXAMPLE

Q:,nslder the axs grid

row

8 1 1 1 1 1 1 1 1

7 1 2 2 2 2 2 2 1

6 1 2 3 3 1 3 2 1

5 1 2 3 4 4 3 2 1

4 1 2 3 4 4 1 2 1

3 1 2 3 1 1 1 2 1

2 1 2 2 2 2 2 2 1

1 1 1 1 1 1 1 1 1

SI .. -Ssize2 4

TEST 1; Constant coe ffic1ent.

Each point cell computes the same tetDplate of for'lll

Thus testin9 the nearest neighbour communication between macro-cells

and the systollc ring accumulation.

655

TEST 2, Variable coefficient.

~s51c,n a different molecule to each point cell 1n a macro-cell. Each

cell computes the molecule associated with its macro-cell position below.

Givi.ng a coefficient ordering which ensures that meml and mem2 (see program)

nevfr have the same coefficient simultaneously. Thus ensuring that

coefficients are loaded and referenced correctly.

656

TE8T 1

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
o 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
o 1.0 2.0 3.0 3.0 3.0 3.0 2.0 1.0
o 1.0 2.0 3.0 4.0 4.0 3.0 2.0 1.0
o 1.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0
o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
o 1.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0
o 1.0 2.0 3.0 4.0 4.0 3.0 2.0 1.0
o 1.0 2.0 3.0 3.0 3.0 3.0 2.0 1.0
o 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

'n!ST 2

1 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0
1 4.0 2.0 4.0 2.0 4.0 2.0 4.0 2.0
1 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0
1 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0
2 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0
2 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0
2 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0
2 2.0 4.0 2.0 4.0 2.0 4.0 2.0 4.0
o 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
o 1.0 2.0 3.0 3.0 3.0 3.0 2.0 1.0
o 1.0 2.0 3.0 4.0 4.0 3.0 2.0 1.0
o 1.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0
o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0
1 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0
1 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0
1 2.0 4.0 2.0 4.0 2.0 '.0 2.0 4.0
2 3.0 4.0 3.0 4.0 3.0 4.0 l.O 4.0
2 4.0 2.0 4.0 2.0 4.0 2.0 4.0 2.0
2 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0
2 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0
o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
o 1.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0
o 1.0 2.0 3.0 4.0 4.0 3.0 2.0 1.0
o 1.0 2.0 3.0 3.0 3.0 3.0 2.0 1.0
o 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

"""""

..

OCCM - .tart r\l.
0.00 0.00 0.00
'.00 '.0' 0.00

0."
, •• 0

0.00
0.0'

0.0'
O.OD
0.00

0." •••• '.00
0.00 • ...
0.00 • ...

....
0.'0

0.00
0."

'.00
'.OD
0.00 0."
0.00
0.00

0.'0
0.00

0."
'.00

0.00
0.00

0.00
0.00

I." 0.00 LOAD MUll

0.00
0.00

0.00
0.00

0.00
0.00

0."
'.00

0.00
0.00

'.00
0.00

•• 00
2.00

, •• 0

••••
0.00
0.00

0.00
0.00

0.00 '.00
0.00
0.00

0.00
0.00

0.00
'.00

'.00
'.00

0.00
O.OD

0.00
0.00

0.00
0.00

0.00
0.00

0.00
'.00

0.00
0.00

0.00
0.00

4.00
2.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.0'

0.00
O.OD

0.00
0.00

1.0' '.0'

'.00 '.00

•••• '.00
0.00 • ...

0.00 '.00 t.OO
0.00 0.00 '.00

0.00 0.00 '.00
0.00 0.00 '.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
'.00

4.00
2.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
•• 0'

1.00
'.00

'.00
'.00
1.'0
'.00

0.00
'.00

'.00 '.0'
•• 00
2.00

....
'.00

0." ••••
0.00
'.00

'.00
0.00
•• 00

t.OO
0.0'

t.OO
'.00

""" ..",

1." 2.00 2.00 2.00 2.00 2.0' 2.00 1.00 LOAD JIOWS 1 ,.,..., J
1.00 1.00 1.00 1.00 1.00 I." 1.00 1.00

n.DO 11." JO.OO 11.00 lO.OO 11.00 n.oo ",00
It.OO SI.OO 2 •• 00 ... 00 24.00 ".00 It.OO ".00 II1t.

1.00 2.'0 J.OO 4." 4.00 1.00 2.00 1.00
1.0' 2.00 '.00 1.,0 '.00 J.OO 2.00 1.00 lDNIIlIOW).., 4

'0.00 ".00 51.00 121.00 5'.00 12'.00 '0.'0 ".'0
24.00 '0.00 41.00 111.00 4'.00 111.'0 24.'0 10.00

1.00
1.00

2.00
2.00

S.OO
1.00

) •• 0
4.00

'.00
4.00

).00
'.00

2.00
2.00

I." ~ _cws ~ aMI) ,
1.00

)0.00 CC." S,.OO 127.00 57.00 121.00 10.00 ".0' \lle.
24.'0 10.'0 .,.00 111.00 4'.00 11'.00 24." 10.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 2.00 2.00 2.00 2." 2.00 2."

11.00 19." 30." ".00 ".00 16.00 n.oo
It.oo , 24.00 60.00 24.00 ".00 11.00

OCCAlt - bill fllllhhed

1.00
1.00

It.OO
)1.00

SNAPSHOTS OF ARRAY OUTPUT FOR TEST 1

O('CM - .h.t IIIIft
••• 0 0.00
'.00 '.00

••• 0 0.00
0.00

..00
' •• 0

0."
'.00

....
'.00

.... '.00 '.to ' .• 0

'.00
0."

0.00
••••

'.00' 0.0'
0.00 0."

, •• 0
'.to
'.00

0.00
0.00

'.00
'.00

....
'.to 0.00

0.00
•••• LOIoD MDQ

0.00
'.00

0.00
0.00

0.00
0.00

0.00
0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
'.00

....
'.00 '.00

'.00 '.00
'.00 '.00

0.00 '.00
'.00 •• 00

0.00
'.00

'.00
0.00

0.00
0."

....
0."
0.00

0.00
0.00

0." '.00

.... •••• 0."
0.00
'.00
0.00

""" -0.00
0.00

0.00
0."

0.00
'.00

0.00
0.00

2.00
2."

0.00
0.00
'.00

'.00
'.00

0.00
0.00

2.00
2."

'.0' 0.00

0.00
'.00

'.00
2.00
2.00

0.00
0.00

0.00
0.00

0.00
'.00

0.00
0.00

2.00
2.00

'.00
'.00

1.00
'.00

'.00 '.00
'.00
2." 2."

....
0.00 ••••
'.0' •• 00

'.00
'.00

2.00
2.00

0.0'
0.00

0.00
'.00

'.00 '.00
0.00
0.00

2.00
::1.00

'.00 0."
0.00
'.00

0.00
0.'0
0.00

2.00
2.00

1.00 2.00 2.tO 2." 2." 2.00 2.00 1,·· •• 0 ~ JtOIII 1 "'1
1.00 1.00 1.00 1.00 1.00 1.00 1.00 •

11.00 n.oo 11." 11.00 11.00 11." n.oo n.'O
U.OO 11.00 St.OO U." 11.00 11." 11.00 11." vJ,\

1.00 2.00 '.00 4.00 4.00)... 1.00 1.00 LOAD IOIJ) Ne,..
1.00 2.00 I.tO '.00 '.00 I." 2.00 1."

11.00 11.00 n." n." IS.OO n.tO 11.00 11.10
11.00 1'.00 JS.'O JS.O' '5.00 J5." It.O' 1'.'0

1.00
1.'0

2.00
2.00

1.00
J.OO

'.00
•• 00

1.00
'.00

I." , ... 2.00
2.00

11." 11.00 15.'0 n.'o 15.'0)5.00 11.00 11.00
" •• 0 ... 00 15.00 n." 11." 15." 11.00 11.00 tale.

1.00 1.0' 1.00 1.00 I." 2." 2." 2.00

11.00 11.00 11.00 It.OO
11.00 11.00 11.00 11.00

OCCM - a\ln f1l11hh ..

1.00 1.00 1."
2.00 2.00 2."

11.'0 ".00 11.00
11.00 ... to 11.00

SNAPSHOTS OF ARRAY OUTPUT FOR TEST 2

1.00
1.00

11." 11."

'" V1
Cl

659

8.6 A FAST ALTERNATING GROUP EXPLICIT (AGE) ARRAY

It can be shown that the finite difference approximations (8.1.10)

are unconditionally stable for all r>O (see Saul'ev [64]). Analysis on

the group explicit methods (Evans & Abdullah [83b]) indicates that

(8.1.21) is stable for r~l as are the GER, GEL, GEU, GEC schemes, while

the alternating schemes SAGE and DAGE are unconditionally stable for

all r>O. So far the designs presented have attempted to improve array

cell efficiency by adapting the decoupled structure of the GE matrices.

Observing the above stability properties we can consider a choice

of grid spacings h=~x, £=~t such that the number of arithmetic operations

involved in computing the molecules (8.4.3) is reduced. Thus creating

an accelerated (FAST) AGE scheme with optimised basic cell schemes.

For the l-D case a useful choice of r=l, reduces (8.1.22) to the system,

~ -:] ~i'k+l 1 rui-l'~l =
-1 Li+l'k+~ ti+2'~

or in explicit form,

'" J 1 f ~ ,"H'~ I i,k+l =
3

11 J b+2'k Li+l,k+l L
with the right boundary,

um-l,k+l = !{um,k+l+um-2,k} ,

and left boundary,

(8.6.1)

(8.6.2)

(8.6.3)

(8.6.4)

The various GE schemes are then constructed by substituting r=l in

(8.1.27)-(8.1.34). It follows that the generic structure of the AGE

array in Section (8.4) remains unchanged for the FAST AGE except for

internal arrangements of the basic cell.

660

A new basic GE-cell is shown in Fig.(B.6.1), and must compute

(B.6.2). Observe that the cell contains registers to hold u, k and
~,

ui+l,k values) even though they play no role in the cell computation,

but are passed to adjacent cells for inclusion in the computation there.

Ut_I, K

HEMl

2

IPS

3

2

G.E. CELL

------+ enabled for pre-loading starting values

FIGURE B.6.1: Fast AGE cell

c--- ---1
I I
I I

'--'TA':
I
I
I
I
I

HEM

IPS

HEM

LEFT BOUNDARY CELL RIGHT BOUNDARY CELL

FIGURE B.6.2: Boundary cells

IPS

661

Also notice that the matrix coefficients can be hardwired into each half

of the cell, and that results u. 1 k and u. k of the previous step are
1.+ , ~,

latched to avoid overwriting of inputs before calculations are completed.

The multiplier (for fixed point arithmetic at least) can be implemented

by a simple bit shift operation and hence consumes negligible area.

Consequently, the half cell requires a single adder and divider (= inner

product cell) and has a cycle time of a single ipso Comparing this to

Fig.{S.4.3) indicates that we have a simpler structure requiring no

control program or coefficient store, and only a single non-planarity.

The cell time of a single ips is also a significant improvement over

the 5 ips required previously, and offers an immediate speedup by a

factor of 5. An extra connection is added to facilitate preloading and

is enabled by a control value broadcast to the array. For a GER scheme

the pre-loading consists of two sequences of starting values,

u l ,u3 ' .•• ,U 1 ,0,0 m- ,0
entering and moving left +

u 2 ,u4 , •.. t U -2 0 ,0,0 m I
entering and moving right ~

yielding the timing,

ips cycles (S.6.S)

for computing t levels. Adopting the buffered scheme in Fig. (S.4.6)
z

requires an extra adder to include the g{x,t) and with the buffer controls,

Cl c
2

GE and buffer control

0 0 Normal cell computation

0 1 Preload value (shift left and right)

1 0 Freeze array + output row of memory

1 1 Freeze array + shift up memory

where cl=l relates to a stopped array, cl=O to a computing array,

T = 2t +(t +1) (freeze-time) + im •
z z

(S.6.6)

662

yielding a speedup S =3 over (8.4.12) for the general equation (8.4.10).
p

Finally for completeness the boundary cells associated with (8.6.3) and

(8.6.4) are implemented as shown in Fig.(8.6.2) (a method of combining

GE and boundary cells is discussed shortly).

Now consider the SAGE method, which requires shifting of data right

and left to alternate between GER(GEL) and GEL(GER). In the previous

schemes for general r an extra cycle had to be added to achieve shifting.

For the FAST AGE the shift can be hardwired, by tracing the input/output

paths of a cell on successive cycles as shown in Fig.(8.6.3) which

produce the cell in Fig.(8.6.4). Marked on the cell are switching points

A and B, which indicate where a switch between data paths implements a

shift. For instance, the SAGE cell switches have the following

interpretations,

A =

, " 1

ON act as feedback of latch contents, and

send ui,k left

OFF read ui-l,k into left ips arrangement

ON act as feedback loop for u, 1 k' and send
~+ ,

ui+l,k right

OFF read u, 2 k into right ips arrangement
--- ~+ ,

As A and B are mutually exclusive a l-bit control can implement SAGE

shifting.

REMARK: The switches allow erroneous calculations, not part of the

algorithm, as these values never affect computation they can be ignored

and allow the above simplified control structure.

The final task is to develop a generic boundary cell which

alternates between ordinary GE calculations and the modified asymmetriC

forms (8.6.3) and (8.6.4). Unfortunately the hardwired nature of the

LATCH

1 i
IPS ~ DIV

DIV
~

IPS

J.
.-- Lj LATCH I

MODEL

t-l: Ut, k:

u1 i-I,k

Ut, KH

t,

u
1+1, K+l

u
1+3, K+1

GEL GE CHANGES TO GER GE

1
IPS ~

DIV -t

J.
Y LATCH

MODEL

ut,1e
t-l, uti-l, I(

Ui,tc.+l

t,

GER GE CHANGES TO CEL GE
a) SAGE GE CELL INTERNAL SWITCHING

LATCH

T
DIV

IPS

'" '" w

MODEL:

t-l:

1
IPS

DIV

1

lIPS I

I*-

G

I LATCH

l'
DIV

Y IPS

T

6 U3 • 1Ci-1

LEFT BOUNDARY CHANGES FROM
(;1':1. 1I0tJNf)I\HY '1'0 (j~: CF.r.r.

bl

MODEL:

t-l:

t.

LEFT BOUNDARY SAGE CELL INTEHNAL

SW_l~H}~_~

•

I LATCH I .,.
I IPS I

T

I LATCH I
1

IPS

~ DIV IPS

H.LATCH

'-U- ---
I 2,,k'+1
I

L U~:!:l_
LEM' BOUN CHANGES FROM CER CE
TO GEL LEFT BOUNDARY CELL

CELL

4--

MODEL;

t-l:

t,

..

I LA"'" I
'!"

I [PS I

LA"'"
'f

8a D[V

D[V [PS

-l LA"'" I

Urn,1C.tl
RIGHT BOUNDARY CHANNEL FROM GEL
(;1-: n:I.J, 1'0 m:ll HOUNOAHY CEI.I.

c)

L-..

RIGHT BOUNDARY SAGE CELL

INTERNAL SWITCHING

FIGURE 8.6.3: Cell switching diagrams

I
MODEL:

t-l;

t,

'----.1 LA"'"

1
IPS

DIV

J.
I LA"'H
I

..

8
u
m-l.k.+l

Y

GER BOUNDARY CELL CHANGES TO GEL
CE Ct:l.L

LA"'H

l'
DIV

IPS

T

""",1 M£>!2

2

3

3

2

__ _ links enabled for preloading

mutually exclusive links for shift left
and shift right

FIGURE 8.6.4: SAGE GE cell

666

FAST AGE cell means that the unification is not possible and a hybrid

cell which switches between the two cell types as shown in Fig.(8.6.5)

must be adopted.

We conclude that the FAST AGE scheme including the SAGE algorithm

produce a significant reduction in the complexity of basic cells,

removing micro-program control and internal coefficient registers, when

compared with the general algorithms with r>O. The main advantage of

these arrays is that they are closer to hard-systolic frames than

previous proposals. While the general arrays allow any value of r,

we point out that it is often the case that r~4,5 is chosen. consequently

if the number of intervals in the x-direction is held constant, the FAST

667

M"'I M"'2 , ,

B t !A~H J
-'L

l'PS J
T L

-- !A~. ---
I-._i J .~ !

!t- OIV

I IPS

OIV 4 IPS !
J. I

--- H LATCH -- i

RIGHT BOUNDARY CELL

HEMI , p<2

I !A~·l A

T

l IPS J
1

-- LATCH --
I-._i J -.,. i

IPS !t- OIV I
-

OIV L...j IPS I
~

, I
HLATCH - - i --

LEFT BOUNDARy CELL

----- preloading links enabled to load startin9 values

--0-- feedback loops for AGE cell not used by boundary cells

FIGURE 8_6_5

668

AGE must compute an extra 3 or 4 levels for each time level of the

unconditional scheme. It follows that we can use the FAST AGE speed-up

to offset the extra levels being calculated. For equation (8.1.1) a

factor of five speed-up is obtained using the FAST AGE indicating that

the required extra levels can be accommodated while for equation (8.4.10)

the speed-up of 3 is less dramatic. An additional problem is the use of

buffers to control host interface complexity, which implies that the

FAST scheme requires more freeze time than the unconditionally stable

arrays. A possible solution to this is to adopt the fractional splitting

technique with the form,

SAGE: (I+rGl)uk+
t

~ (I-rG
2

)u
k

+ b
l }

(I+rG 2) uk+ 1 ~ (I-rG
l

) u
k

+
t

+b
2 or

(8.6.7)

SAGE: (I+rGl)uk+l/4
~ (I-rG

2
) u

k
+ b

l
)

(I+rG2) u
k

+
t

~ (I-rGl) uk+l/4
+ b

2 (8.6.8)

(I+rGl)~+3/4 ~ (I-rG2)~+t + b
l

(I+rG2)u
k

+l ~ (I-rGl) ~+3/4 + b
2)

For 1 and 3 artificial levels respectively, inhibiting the cell buffer

output for intermediate levels by simply overwriting the cell results

internally.

8.7 SYSTOLIC HOPSCOTCH SCHEMES

Now so far in this chapter we have introduced the concept of

systolic marching with the relatively complicated asymmetric and group

explicit molecules. In this section we examine the possibility of

reducing array computation time by the use of simpler computational

molecules which possess similar features to the GE methods for parallel

669

evaluation of time levels. We also examine the possibilities of array

compaction derived from methods which produce only partial solutions to

the problem.

Recall the definitions of the classical implicit and explicit

finite difference formulas used in the definition of (2.5.1.14) and

(2.5.1.15) for solving (8.1.1) which have the molecule definitions:

a) explicit

k+l

1-2rl-----i k

i-l i i+l

(8.7.1)

b) implicit

l----I l +2r }-----+ k+l

k

i-l i i+l

-ru'_l k 1+(l+2r)u, k l-ru, 1 k 1
~ I + 1, + ~+, +

(8.7.2)

(8.7.2) is unconditionally stable for all r>O, while (8.7.1) is stable

only for r~l. It is known that both schemes have truncation error

2
Rik =O(t+h).

670

Using the implicit and explicit formulas together in an

alternating fashion removes the stability problem and implies a hybrid

molecule of the form,

k+l
(8.7.3)

k

i-l i i+l i+2

Compared with the GE molecule (8.1.21). Equation (8.7.3) has three

unknowns and two defining equations, and produces a 3x3 under-determined

linear system (in contrast to the 2x2 system (8.1.22». It follows that

(8.7.3) cannot be easily converted to explicit form and demands that

the component molecules are evaluated sequentially. Converting (8.7.2)

to explicit allows (8.7.3) to be expressed algebraically as,

b) ui+l,k+l

rui _l ,k+(1-2r)ui ,k+rui+l,k

= __ 1_ {u +ru +ru }
1+2r i+l,k i,k+l i+2,k+l

} (8.7.4)
a)

or

a) u = A u +A u +A u, +E
i,k+l 1 i-l,k 2 i,k 3 1+1,k i } (8.7.5)

u = B u +B u +B u +E
i+l,k+l 1 i+l,k 2 i,k+l 3 i+2,k+l i+l b)

1 r
where Al =A3=r, A2=(1-2r), Bl - l +2r , B2=B3-1+2r and Ei,k and Ei+l,k are

terms involving g(Xi,k) or g(xi+l,k) for the more general form (8.4.10).

Thus cell computation is derived as follows,

tl A2U, k+ E, k
1., 1.,

tl = A3u i+l,k +tl
1st molecule

tl = (Al ui_l,k +tl) = ui,k+l (overwriting u, k)
1,

t2 = B1U, 1 k+E , 1 k 1.+, 1.+ I

t2 = B2Ui ,k+l+t 2 2nd molecule

t2 = B3
ui+2,k+l +t2 = ui+l,k+l (overwriting u, 1 k)

1+ ,

671

and the array operation is indicated by snapshots in Fig.(8.7.1).

t

t
--If-- - ->'\<--

I 0
0 --t'f-- --~-

0 0
0 0

. --~- --0--
0

0 0

1-1 1

0 1 2 3 4 5

u
0,0

1
st

st.ep u1 ,1

-*-- --lp:--,
I 0

0 I

-~- -~-
0 0
0 0

--$-- -4--
0 0

1+1 1+2

6 7 8

x

9 10

u9 ,1

Explicit o molecule

X Implicit
molecule

• Unknown
point

u10 ,0

RIGHT MOST
CELL INACTIVE

u10 ,1

RIGHT MOST
CELL INACTIVE

u10,2

FIGURE 8.7.1: Systolic array for alternative explicit/implicit scheme

672

We require 6 ips cycles to overwrite the two points contained by each

cell the same as an AGE scheme. Notice however that AGE cells require

two ips cells, the scheme here only one, which halves the hardware

requirements (to ;m ips cells). The ODD-EVEN cell (Fig.8.7.2) requires

a single inner product cell with additional switching logic and a cyclic

queue of six coefficients which can be tagged with control bits to select

the correct ips input operands. The above technique of alternating

formulas on the grid is termed the ODD-EVEN hopscotch method, we conclude

that it is superior to the AGE schemes from a systolic viewpoint.

Ui,k+ r- -,
ui +2 ,k+l I I I I I IPS I I

I I
L_ --'

"1_I,.--------..J

FIGURE 8.7.2: ODD-EVEN hopscotch cell

* The idea of hopscotch was expanded by Gourlay [70] and works on

the principle that not all the points in a region need to be calculated.

* From earlier work by Gordon, "Non-sYTmletria differenae equations",
J.Soa.Indust.AppZ.Math., 1973.

673

The points omitted are placed in areas where they are easily obtainable

later from the values already computed. Using this idea a number of

strategies can be concocted according to the way formulas are applied

and the number of points omitted. We concentrate on two simple forms,

the I-point and 2-point hopscotch methods.

I-point Hopscotch

Notice that like the FAST AGE for r=! the classical explicit

formula (8.7.1) simplifies to,

(8.7.6)

or generally,

(8.7.7)

with D
ik

=2g(x,k). Fig.(8.7.3) illustrates the application of this

modified molecule to the solution region and the associated array

snapshots. Clearly the new array cell consists of only a single adder

and a shifter arrangement (for divide by 2), demands a cycle time of

approximately! ips cycle, and still covers two grid points. It follows

that the I-point scheme requires a time,

T = O.St + m, ips cycles ,
z

(8.7.8)

inclUding preloading time, and yields a speed-up over the ODD-EVEN

scheme of S =6/0.5=12. Like the FAST AGE we have lost the desirable
p

property of unconditional stability, but fixing r=! and m,

! = ~/h2 , with h fixed,

and (8.7.8) implies that we can compute at most 11 extra intermediate

levels before the ODD-EVEN scheme competes time-wise. Hence,

r = l2(!) = (lU)/h2 (8.7;9) max

implying that the unconditional method must use r>6 to out-perform the

I-point hopscotch. As r=4,5 is usual we conclude that the simplified

Complete scheme (odd number of internal points)

t

I
-.. --

i-I 1 1+1

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

"'Cell not active.

674

• not
calculated

FIGURE 8.7.3: Systolic array for I-point hopscotch scheme

675

Ungrouped points (Even number of internal points)

t

I I

.- .~-. -.. ~-

1-1 1 hl

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Systolic array for l-point hopscotch scheme

FIGURE 8.7.3: (cont.>

676

array is extremely desirable. There is, however, a small problem with

the l-point scheme which can be explained simply from the snapshots in

Fig.(8.7.3). When the number of internal points in the x-direction is

even, all the cells compute all of the time and apart from shifting,

the distinction between steps disappears. When the number of internal

points is odd the rightmost cell must be inactive on alternate cycles.

The shifting of data left and right is useful because it provides a

natural method of input boundary values, but when the array shifts left

the right boundary must be input even though it is not used until the

array shifts right. The difficulty is removed by adding a control tagged

to the boundary input which disables the cell while loading the boundary

value - and adds negligible hardware.

2-Point Hopscotch

Although the l-point hopscotch is inherently simpler than the AGE

or even the FAST AGE the value r=! is required rather than r=l to retain

stability. A relevant question is to ask if the hopscotch can be used

to reduce hardware in the FAST AGE scheme? The answer is yes, and the

array uses the so-called 2-point block hopscotch shown in Fig.(8.7.4) ,

(two more starting positions can be derived by interchanging circles

and crosses on each time level). The immediate consequences of the array

is the reduction to m/4 cells or !m ips cells compared with !m (or m ips)

cells used in the FAST AGE, while computation time remains unchanged.

The communication characteristics are also simplified and if we allow

bidirectional links the simplified FAST AGE cell of Fig.(8.7.5) is

apparent. Finally, when we have an ODD number of internal points

boundary cells must be incorporated into the array, and have a form

START CYCLE

•

o 1 2
1-1 1

345

i

1+1 1+2
6 7 e 9

cell P\A.!;S u
ll

,2 into register not active for AGE

10 11

;

677

O} APPLICATION

)(OF FAST AGE

• NOT

CALCULATED

FIGURE 8.7.4: Complete 2-point block hopscotch (even internal points)

678

t
~ .. ~.~-.

I I I I ~
I I t I I I

r'L_-"'~_.~ ~_ •• 6 ~_ _. ~_.

i-1 1 1+1 1+2
o 1 2 3 4 5 6 7 8 9 10 11 12 13

1f----iI U8 ,O

UU,O

N.B. no inactive cells at any time.

FIGURE 8.7.4: ungrouped point 2-point block hopscotch

B A

l

Control switehinq

e1 e2 A B C DATA DIRECTION

0 0 X X X "FREEZE"

0 1 X , , RIGHT

1 0 ,
X

,
LEFT

1 1 X X
, "PRELOAO" (LEFT OR RIGHT)

N.B. C switch 1n combination with A and 8

If "A i ... c
AI\SJ\C

AAio81\C

C

COMect Ui-1,K and U1*1,K'

connect DIV2 to Ut-l,le:

connect DIYl to u1+.2.r.

Isolated ui _1 ,lc,Ut"'2,l< while unloadin9.

679

FIGURE 8.7.S: Simplified FAST AGE cell for 2-point block hopscotch

similar to a l-point hopscotch cell.

The area efficiency of the hopscotch designs is achieved by omitting

some calculations and are in a sense incomplete systolic arrays. The

speed-up associated with the simple and compact design is used to offset

the cost of extra level computations due to the loss of unconditional

stability. But suppose we need all the solutions. Notice that not all

the initial conditions and boundary values are incorporated into a

680

Hopscotch scheme. It follows that for each hopscotch method there are

a number of starting positions (or loading orderings) for the array.

If we select two starting positions which if used generate all the points,

the arrays described can be used in multipass to compute the whole grid.

Notice however that only speed-up is then halved. Alternatively, we can

define two separate arrays and operate them in parallel retaining the

speed-up but doubling the hardware. As hopscotch method reduces

hardware over the complete schemes this is a particularly attractive

tradeoff.

8.8 A HARD-SYSTOLIC HOPSCOTCH SOLVER

The arrays produced in the previous sections have improved speed

and reduced cell complexity edging the designs from soft-systolic to

hybrid and finally hard systolic frames. In this section we propose

methods for actual VLSI implementation. The simplest formula is the

l-point hopscotch and attention is focussed on this array. Discussions

so far have proposed the chip organisation of Fig. (8.4.6) for solving

(8.4.10) reducing input/output connections by a buffering strategy. The

buffers are emptied and loaded during an array freeze operation and

operate in mutually exclusive fashion. Clearly the double buffer method

is highly inefficient, but is useful for the complex AGE strategies by

simplifying non-planarity problems at the array buffer interface. For

the simpler hopscotch schemes it is possible to combine the two buffers

reducing memory requirements by half, and ensure that the combined

memory is always full. A 4-cell example of the new array is shown in

Fig. (8.8.1), the buffer can be interpreted as a collection of horse-shoe

segments, with one segment allocated to each cell. After buffer loading

.

BUFFER
CELL 1

rl ~

r -.
--- - --

CELL
1

BUFFER .IN

t-.--~
i

BUFFER
CELL 2 --

'- ..

~
CELL

2

BUFFER
CELL 3
-~-

.'- " ----

~
CELL

3

-
s
H

BUFFER
CELL 4
-~

L...

~
CELL

4

BurFER.OlrI' ,

681

---- •

c C
2

Action
-=..1_-"-1 __ _

o
1

Freeze A
o
o
E
R

I---I~ -
o
o
1

1

Shift left

Shift right

Preload
T
E
R

'---

C
B

I

o
1

BASIC CELL (FOR GENERAL CASE BUFfER.IN=g(x,t)

FIGURE 8.8.1: Example 4-cell arrangement

the segment of cell i contains the g(ih,t) values in the correct order

for the computation of k time levels (where k is the buffer segment size).

As computation progresses 9i(ih,t) values are fed into the cell creating

holes at the end of the buffer queue which are filled by cell results

being output. Hence, the buffer'stays full throughout the computation.

After the last g(ih,t
k

) value has left the segment the array is frozen

(isolating the new starting values inside the cell) and the inter segment

682

connections are enabled creating a giant shift register. The results

of k time levels and the g(x,t) of the next k levels are output and

loaded in pipeline fashion from right to left. Once the lead g(x,t)

value reaches the leftmost buffer register all results have been output,

the gr(x,t) are in position and the array is unfrozen.

In a VLSI design we must decide at the outset the type of the

final packaged chip. For purposes of illustration, we shall consider a

64-pin chip and use 28-bit fixed point arithmetic. This allows easy

specification of bit-parallel computation and implies the following pin

assignments:

TOTAL

28 pins

28 pins

VDD

GND

CLK

c
l

,c
2
,c

3

62

INPUT

OUTPUT

CONTROL

PINS

using Fig. (8.8.1) as a basis for the design a floorplan and GND,VDD,CLK

network arise naturally. We require some random logic to control the

chip, and adopt a control broadcast strategy (as pipelining is not

possible). Fig.(8.8.lb) illustrates the I-point hopscotch cell and

allows the definition of the following controls.

Freeze = cl A c 2 ' Freeze = cl v c 2

sh~ = c
2

(shift left), shr = cl A c
2

(shift right)

preload = cl A c
2

LD = freeze A preload, LD = freeze v preload

Disable = preloadv c
3

(for rightmost inactive cell)

We assume that the reader is familiar with material in Mead & Conway [79)

683

MEMORY BUFFER

~ '" ~
!;

~

" .. ~ ~
~

BUFFER INTERFACE

SYSTOLIC ARRAY

a) F!oorplan

eLK VDO •

I • ~

3]
,.... r'- ...-; ?-

1<

i~ ~ ..
'r- ,- T '-r T 'T

,. T

ADDER ADDER ADDER ADDER
BLOCK BLOCK BLOCK BLOCK

I I • ~

, 11
CND

hi veo, GND, AND eLK NET for 1-point hopscotch

FIGURE 8.8.2: VLSI structure of l-point hopscotch scheme

684

and Ullman [84) and adopt a two phase non-overlapping clock ~l and $2

(such that ~l A ~2 = false) and generate the signals from a single

clock input eLK. (Standard circuits are available for this). The basic

adder block is formed from half adders as shown in Fig.(8.8.3) with the

divide by two implied by the output connections. The buffer segment cell

interface is shown in Fig. (8.8.4a) and a complete I-bit slice of the cell

given in Fig. (8.8.4b) • We consider 2's complement arithmetic so that no

end around carries are required (which occur with l's complement). The

cell operation is simply two full adders where Bi=O for (8.1.1) and Bi#O

for (8.4.10). The feedback from latch to adder is implemented on a bit-by

bit basis avoiding nasty corner turning layouts to run around the adder

(we go through it). The slice is area efficient as all control lines

run vertically and data horizontally, except for carries and the adder

result shift. The two data paths in Fig. (o.8.1b) are compressed, running

through the adder/shifter and combine with the buffer interface. Notice

that when the array is in freeze mode no shifting between cells is

necessary. The starting value is isolated in the latch, it follows that

the buffer can borrow the intercell connections removing the need for an

additional path. Fig.(8.8.S) illustrates a complete 4-bit cell with a

10 stage buffer. Each adder block uses 4-bit slices, in a full design

we would require 28 slices. This raises the questions 'how many cells

could we place on a chip?',· 'how many cells will we be satisfied with?'

Assuming a four cell design covers 2 points in the x-direction, allowing

8 points per chip, an arbitrarily large solver could be constructed by

chaining chips together using comb layouts to bound the clock and control

wire length([Fisher [84).

NOW, a constant conflict in the design of systolic arrays is the

685

.-----~---+- "i'i
...,.--..... -

BA =: H1.LF ADDER

R • latch input
i'i

R • result shifted
out! I-bit

a) l-bit slice of 3-input adder
c
i·o

c
i·o

r

AO
i·o

80 routo

r

Al
i'l

81
r out1

r
A2

in2

8
2 r out2

r
A) i.)

r
8)

out
J

ADDER SHIFTER

b) 4-bit 3-input adder/shlfter design

~ loqical OR

FIGURE 8.8.3: Single adder block

Freeze

28

auFOUT aUFIN

a) Switching for data paths for buffer output and array computation

BUFIN

LEFT r' F'

~ \ ~
'-

~~ FL
HA t--

1

Freeze f6l.shr (lIl.ahl ~

L
HA '-- HA

'J

c
1n

2

'-

r-- r---1 F.
HA

~

~--------~I~I----------------------------------~ BUFFER IN CELL ADDER/SHIFTER
LEFT/RIGHT DATA

b) l-bit slice of l-point hopscotch cell

Rightmost cell exchanges i1t
2

.preload for i1t2 disable.

FIGURE 8.8.4, Buffer interface and I-bit adder slice

r)"

~
j

1
~

"2·LD

LATCH

r ~ RIGHT

>
~

Freeze Freeze

RESULT OUT
LEFT/RIGHT
CELL DATA

'" 00

'"

~2
VD 'U

GNO

~l

VDD
shr

sh(
Freez

LD
Preloa ,A

LD

Freez

, , , ; ,
I , ,
I

, ,
,j ,

r-t
~ I : I ~ I : I'

H
II i, I 'Wl

f-i
!I' I: la'

t--1
: I' Itill'

'---l , , , , ,

i - . . ._ .

I I...-

I
I

I ,
I
c. -.----

,
, , , , , ,
, ,

I'
,

4-BIT REG.]--

i Ii 1 ' I : ,
I-

it: I' I: U
I-

il:I:liU
~

, I' 'I: II
f-

i , , , ,

I I
I I I I . - -, - ., ,
l-bi t adder !LA'OCH

I--- I _________ L. __

I , , ,
I I -- - - - - - - -- - - r - -- , , , ,

I - - - ------- .. --- , , , , , -r-' •• J

.1 11
I I j j

N.B. control inside adder block not shown for clarity see l-bit slice.

FIGURE 8.8.5: Connections for a 4-bit, hopscotch cell

uses 10 register buffer

687

choice of bit serial or bit parallel computation. Bit parallel is the

best regarding speed, while bit serial reduces pin requirements. In the

hopscotch schemes the conflict appears in the form of an I/O bottleneck

caused by data buffering. The buffer allows the array to compute at full

speed until the buffer is empty, and keeps the number of pins to an

688

acceptable level. However, the freezing of the array while results are

output and the buffer re-loaded makes the hopscotch pay an increasingly

heavy price as the number of chained chips increases. We remove the I/O

bottleneck by considering a bit serial design for the I-point hopscotch

cell.

The bit serial cell is shown in Fig.(8.8.6), all the lines are I-bit

wide and the main switching is illustrated, there are additional control

Signals which are discussed later but omitted for clarity. The cell

requires one input for g(x,t) one output for the new time level and four

connections are introduced to simplify intercell shifting. Register u

holds the starting value and overwrites its contents with the new result

which is also sent to the output. The g(x,t) line doubles as the pre

loading connection, at start up time the adders are disabled while u is

filled (using the st.ld control) from g(x,t). In addition the g(x,t) line

is used to set a Cell Status Bit (CSB) which is discussed later.

Suppose that the fixed point numbers have 1-bits, at start of a

cycle u contains the current level value of cell i with the lowest

significant bit (lsb) at the bottom and the most significant bit (msb)

at the top. Computation is achieved as follows:

(i) The Isb of u loops back to FA2 where it is delayed, at the same

time the Isb of cell i-I or i+l enters FAl together with the

correct Dik accUmulating part of (8.7.7).

(ii) The Isb of FAl result enters FA2 with the delayed Isb of u

from cell i completing the summation in (8.7.7).

(iii) After a further £ steps the msb of the sum enters u leaving

only the divide by 2.

(iv) The adders carries are cleared and the lowest Significant

689

shr

1 I
RIGHTOtrr L ______ RIGJ:ITIN

n~delay

u

UFTIN .---+ LEFI'OUT

T T
sh1 shr

C, C
2 COI'>JWID LABEL

0 0 Load starting values ST.LD

0 1 Shift left .h1 FA-l-bit full adder

1 0 Shift right .hr u-register

1 1 Load cell status bit CS8

COln'ROL TABLE

FIGURE 8.8.6: Bit serial I-pt. hopscotch cell

690

£-1 bits of u are shifted down, with the msb (sign bit) over-

writing itself. Finally, the left/right shift is switched

ready for the next cell cycle. It follows that a single cell

cycle requires £+3 bit cycles, where a bit cycle is the delay

through FAl or FA2.

Shifting is easily implemented by the monitoring changes in the

shl (or shr) command and generating the start cycle command using the

status signal
old cl r---,

}----- start.cycle
-'

Furthermore by pipelining the start-cycle command through FAl and FA2 the

adders can be neatly reset.

A simple 4-bit example is shown in Fig.{8.8.7) where,

ui,k+l ~ !(Ui_l,k+ui+l,k) + g{x,k)

~ ([]/~ + 2/2 + 1) ~ 3

using integer arithmetic for convenience. Note that after £+3~7 cycles

the u register contains OOl12~3 and at the start of the next cycle is

divided by 2. Thus, the output results must be multiplied by two to yield

correct results or alternatively the bit shifted out during the divide

collected.

The command table in Fig.{8.8.6) includes the instruction load cell

status bit (CSB) , it provides a more flexible array. When the l-cell

cycle l-time level designs are used the number of points along the x-

direction must be chosen to fill the array, otherwise the boundary values

input to the ends of the array will be out of synchronisation and produce

691

0
0
0
1

DJ m
e
1'0

~ IT]

~

[]
delay

0
0
0
1

1) end of shift left 11) start shift right shift u
(retaining sign bit)

6 6
0 6
0 0
0 0

B [D B CL)

B CO B Gi:J

[CJ [D

[J [J w W
Hi) clear FAl, start cycle carry 1v) clear FA2 carry

6 ~ 6 6 6 6 0

EJ [£J B c;::]

6 ~ G [LJ

GJ [LJ

DJ [J DJ DJ
v) compute vi) compute

FIGURE 8.8.7: Bit serial computation 4-bit integers

692

erroneous results. The CSB indicates whether a cell is active or passive

(i.e. used or not). An active cell will receive initial values and

compute normally, a passive cell plays no part in calculation and is used

to filter boundary results through the passive cells. To simplify the

control it is best to left justify active cells and cause passive cells

to always shift left. This added flexibility allows any sized problem

up to and including the capacity of the array constructed to be solved.

Extra control is required but to prevent the adders from modifying

boundary values these can all be derived from the CSB.

In Fig.(8.8.8) the layout of a bit serial array is indicated for a

FIGURE 8.8.8: Floorplan

64 pin chip and the following pin allocations,

3 VDD, GND, CLK

3 c
l
,c

2
,c

3
2 left boundary input/output

2 right boundary input/output

27 g (x, t) input

27 result output
TOTAL 64 pins.

693

A 27 cell chip is feasible - allowing up to 54 grid point columns by

a single chip.

Finally, consider the tradeoff between bit serial and bit parallel

hopscotch arrays - when is the bit serial faster? The bit parallel case

has a timing tl as follows,

tl = levels + {!"ieve7s] + l}
Ibufs~zel

(Bufsize*cells) (8.8.1)

because we must:

(i) Load the buffers with starting values. If Bufsize=number of

(ii)

(iii)

buffer registers in a single segment, because shifting occurs

right to left, the total loading/unloading time is (Bufsize*cells)

cycles.

The results of levels are stored before output, thus ~evels :'='="-j +l
Bufsize

is the number of times buffers· must be loaded/unloaded.

Each level computed requires a single cell cycle.

For the bit serial case we have,

t2 = t(levels*word length) (8.8.2)

where the wordlength is t+3, and one level is produced every t+3 cycles.

REMARK: The bit parallel cycle time is two additions the bit serial using

two level pipelining only 1 hence the t in (8.8.2). Next put L=levels,

B=Bufsize, W=wordlength, C=no. of cells. For bit serial to outperform

bit parallel,

t (L*W) ~ L + {r~l + l} (B*C)

or (L*W) L {r~l + l}B ~ -+
2C C

L*W L L
2)B

2C C ::: (- +
B

LW
+ 2B (8.8.3) -(- -1) ::: L

C 2

694

and fixing the wordlength at W=36 we have after some manipulation

~(17 _ 1)
2 C (8.8.4)

17
Consequently if c: ~O the bit serial is always better than bit parallel

and the following table illustrates the effect of C>O

I~ 2 4 6 8 10 12 14

2 8 4 2 2 1 1 1

4 15 7 4 3 2 1 1

6 30 13 8 5 3 2 1

8 60 26 15 9 6 4 2

16 120 52 30 18 12 7 4

32 240 104 59 36 23 14 7

64 480 208 118 72 45 27 14

128 960 416 235 144 90 54 28

512 1920 832 469 288 180 107 55

MAXIMUM NUMBER OF BUFFER REGISTERS PER CELL BEFORE BIT SERIAL

BECOMES BE'I'TER THAN BIT PARALLEL

8.9 SYSTOLIC GROUP EXPLICIT METHODS FOR HYPERBOLIC EQUATIONS

16

1

1

1

1

1

2

4

8

16

It should be clear that the techniques discussed above for parabolic

equations carry over to other P.D.E.'s like elliptic and hyperbolic

equations, provided that suitable hybrid molecules can be found. Recent

developments by Sahimi [86] have extended the Group Explicit (GE) principle

to simple first order hyperbolic equations, and indicate more flexible

array deSigns which are briefly outlined below.

The basic hyperbolic equation we shall consider is of the form,

au au at + ~ =0, O~x~l , t~o • (8.9.1)

As before, we consider the solution in the infinite rectangular strip

695

bounded by O~x~l, with finite difference approximations made at the

intersecting points on a grid superimposed on the region with spacing

~x=h along the x-axis, and t=~t along the t axis. We shall only briefly

discuss the derivation of the new GE form for hyperbolic equations, the

interested reader is referred to Sahimi [86].

The hyperbolic form (8.9.1) is expressed as a weighted finite

difference analogue equation at a particular grid point, say (xi,tj+e)=

(i~x,(j+e)~t) O~e~l as follows,

-A[e{(l-w)ui 1 '·1+(2w-l)u, , l-wu
i

1 ' l}+(l-e){(l-w)u, 1 ,+ + ,JT 1.,J+ - ,J+ 1.+ IJ

(8.9.2)

When w=l we produce the equation,

(l+Ae)u, '+1-A6U, 1 '+1 = (l-A(l-e))uij+A(l-e)u, 1 ' (8.9.3) 1,) 1- ,) 1- ,)

and with w=O

At the point ((i-l)~x,(j+6)~t) (8.9.4) becomes,

Aeui j l+(l-Ae)u, 1 ' 1 = -A(1-6)u, ,+(l+A(l-e))ui 1 '
,+ 1.-,J+ 1.J -,J

(8.9.5)

coupling equations (8.9.3) and (8.9.5) in groups of two adjacent points

(i-l,j+l) and (i,j+l), etc., leads to the group explicit form,

where,

[-Ae (l+AeJ
A

= (1-A6) Ae

uj+l = ~~-~,j+~ , u,
1,)+1)

which in explicit form yields,

= Bu,
J

B

=

r(l-e) l-A(l-e

J =
1+A (I-e) -A (I-e)

~i-l'~
Ui,j J

(8.9.6)

696

-1
(8.9.7) u. 1 = A BU

j J+

where,

A-1B
n1+l)

-lJ =

L l (1-;1.)

representing the molecule rules,

a)

j+1
1 j+1

(8.9.8)

l+l j j

i-I i i-I i

and the equations:

a) Ui - 1 ,j+l = (1+;1.) u
i

_1 , j -luij
) ,

} b) u = 1U. 1 ,+(1-1)u'j
(8.9.9)

i,j+1 1.- ,J 1.

Thus, in a similar manner to (8.1.27)-(8.1.34) we can define various GE

schemes. If there are m points in the region along x including the right

boundary ungrouped points occuring in the (m-1)th or 1st positions and

are computed by,

a) um- 1 ,J'+1 = [(l+l(l-S»u 1 .-l(l-S)u ,-l8u '1)/(1-18) m- ,) m,) m,J+

b) U1 ,j+1 = [l(1-8)uO,j+(1-l(1-8»U1,j+18UO,j+1)/(1+18) (8.9.10)

Next define (m-1)*(m-1) matrices,

r(~) 1- - - - - - --~ IG(2)

I ',,- 0
G = I ,

, G
2

= ,
1 I "-

o l 1

I 'G (! (m-2))

~j I 0
I
I

o

697

r 1
iG (1)

G (1) G(2)

" 0
\

0 I
"- A " I "- G

2
= \

" \
"- " I
" ,

" (1(m-3» 0 ,
G I 0

-J L L
'G(Hm-l)j

with,

G (i)
Cl J =
-1

and the following schemes can be derived

m Even:

There are (m-l) internal points - an odd number requiring boundary
cells hence we have,

(i) Group Explicit ungrouped Right point (GER) scheme

(I+A6G
l

)U
j
+

l
= (I-A(l-e)Gl)u

j
+ b

l
'

T
b

l
= (0,0, ••• ,-A (1-6)u .-A8u . 1)

m,) m,J+

(ii) Group Explicit ungrouped Left point (GEL) scheme

(iii) Single Alternating Group Explicit (SAGE) scheme

(iv)

(I+A6Gl)U
j
+l

(I+A8G2)U
j

+2

Double Alternating Group Explicit (DAGE) scheme

(I+A6G
l)U

j
+l = (I-A(1-6)G

l
)u

j
+ b

l

1 (I+A6G2)U
j
+2

= (I-A(1-6)G
2

)U
j
+

l
+ b

2

(I+A6G2)U
j

+3
(I-A (1-6)G

2
)U

j
+

2
+ b

2)'""" ...
(I+A6Gl)U

j
+4

= (I-A(1-6) Gl) u
j
+3

+ b
l

(8.9.11)

(8.9.12)

(8.9.13)

(8.9.14).

698

pdd Num"'. of fn,,, .. f,

FIGURE 8.9.1: GE computation for hyperbolic equations

699

[\fen Number 01 Interv.l.

FIGURE 8.9.1(cont) •

700

m Odd:

There are (m-I) internal points which this time is even, yielding,

(i) Group Explicit Ungrouped points (GEU) scheme

T
b3 = (A(l-a)uo ,+Aau

o
'l,o, ••• ,O,-A(l-a)u ,-AaU '1)

,J ,J+ m,] m,J+

(ii) Group Explicit Complete (GEC)

(Hi) SAGE

1\ "

1
(I+AeGl)U j +l

= (I-A (l-e)Gl)U
j

+ b
3

1\ 1\ j=O(2) •••
(I+AeG2)Uj +2

= (I-A(1-a1G21u j +l
)

(iv) DAGE
1\ 1\

(I+AeGl)Uj +l
= (I-A(1-e1Gl)uj

+ b
3

1\ " (I+AeG2) Uj +2
= (I-A(1-e)G

2
)uj +l

1\ 1\ j=O(4) •.•
(I+AeG2)Uj +3

= (I-A(1-e1G
2

)uj +2
1\ 1\

(I+AeGl)U j +4
= (I-A(1-e)Gl)uj +3

+ b
3

)
(8.9.151

(8.9.16)

(8.9.17)

(8.9.18)

An example of the group computation ordering is given in Fig.(8.9.1)

illustrating the independent nature of non-alternating GE schemes, which

is attractive from a systolic viewpoint.

First we develop a basic cell for our design, based like the

parabolic scheme on a single level single cycle implementation using a

linearly connected array of !(m) GE cells. Clearly (8.9.9) can be

expressed as,
u, 1 ' 1 = Ui_l,j + Ar

1
1.- ,J+

Ui,j+l = U
ij

+ Ar (8.9.19)

r = u, 1 ,-U'j 1.-,J 1.)

resulting in the simple arrangement of Fig.(8.9.2a), from which a number

BUFFER 701

Ips

f---- preloadinq links

a) GER, GEL, GEU, GEe cell

lPS

b) SAGE, DAGE cell

FIGURE 8.9.2: Hyperbolic GE-cell

of immediate benefits over the parabolic GE-cell are apparent:

(i) The GE cell requires a single ips cell and two adders

(rather than two ips used in the parabolic scheme).

(ii) No control program is required for queueing up the cell

operands.

(iii) Only a single register is required to hold coefficient data.

(iv) No points are borrowed from adjacent GE cells.

702

The cell modifications are due mainly to simplifications in the finite

difference formula (hyperbolic rather than parabolic) and saves hardware

and time. For example, the hyperbolic scheme requires only 2 ips cycles

to compute a group compared with at most 6 ips for the parabolic case

yielding the immediate speedup S =3.
P

REMARK: Remember that these comparisons indicate only the suitability of

the GE problem to systolic arrays, not the choice of hyperbolic or

parabolic equations for a problem.

Thus the hyperbolic GE method seems better suited to systolic

computation. The amount of area consumed by the hyperbolic cell for data

routing is also less than that of the parabolic form. Consider the GER,

GEL, GEU, and GEC schemes for both hyperbolic and parabolic methods. In

the hyperbolic schemes the individual groups are disjoint, i.e. there are

no overlapping points in adjacent groups, whereas the parabolic schemes

computation can only proceed with point sharing. Consequently the

hyperbolic array requires only single uni-directional connections which

are activated only in loading (starting values) and unloading results.

The removal of left and right data shuffling also removes all dataflow

control yielding a simple and compact cell.

We still have the problem of boundary cells, and a trivial observation

of (8.9.10) shows that ungrouped point calculations require more time

·than full groups. In a parabolic array this degrades performance as

ungrouped points supply data to adjacent group cells. However the

independent nature of the hyperbolic scheme, together with the concept

of an incomplete array suggests an alternative partition of calculations

between host/array. By assigning the boundary calculations to the host

machine the GE-array is reduced to a GEC scheme again simplifying the

703

design. In particular:

(i) The array can be built with a fixed number of cells (on a chip)

(ii) The rectangular solution strip can be decomposed into k strips

which fit the array in (i) and computed sequentially by multi

pass.

(iii) We can linearly connect k chips tc solve the complete problem

in parallel.

(iv) If a strip has k'<k groups, unused cells can be padded with

dummy values, and the independence property ensures adjacent

(true groups) are not contaminated by invalid computations.

These advantages are far superior to those for parabolic schemes, which

force the array to be proportional to the width of the solution strip.

Indeed the hyperbolic GE schemes produce an array independent of both

the time levels and number of points along the x-axis spawning a number

of alternative connection strategies varying speed against area.

Snapshots of array operation for a buffer GE-array are shown in

Fig.(8.9.3). We consider the computation of simple hyperbolic schemes

using a "bag-of" approach. Essentially we suppose a finite number p of

GEe chips each implementing a k cell array. We examine the computations

associated with applying a single chip, or a parallel connection of p

chips using buffered or unbuffered array designs. Apart from the case

when only the final time level is required (and buffers can be removed)

buffering implies bit parallel and non-buffering bit serial schemes

respectively. A k cell chip can compute a strip k groups wide containing

2k points, a region wider than this uses a number of strips each k cells

wide. our "bag of" chips must therefore contain at least,

BUFFER

m-ll

.... - buffer out links

.) GEe array (with starting values) for producing all results

1 EJ
2[0 u2 ,2

lE]
u2 l

4

5

[J u2 ,4

B
b) Five

REMARK:

EJ EJ EJ r;:J
[IJ GIJ [D u9 ,2

u4 ,2 u6 ,2 u8 ,2 u10,2

CS] u4 ,3 ~ u6 ,3 8TI uS ,3 ~ u10 ,3

[8 [J [J u9 ,4

u4 ,4 u6 ,4 u8 ,4 u10 ,4

~ D G u9 ,3

u4 5 u6 5 u8 ,S u10 ,5

cycles of the hyperbolic GEe scheme

Notice the independence of the computation

FIGURE 8.9.3: Operating hyperbolic GE array

p = of
k
group~

704

identical GEe chips, to solve the whole region in parallel. We consider

the i-chip versus p-chip bag under five cases:

(i) A GEe array with bUffers

(ii) A GEe array without buffers

(iii) A one chip arrangement of (i) and (ii)

705

(iv) A p-chip arrangement of (i) and (ii)

(v) A single time level approach.

We further suppose that for the various schemes the number of groups is

GER } __
! (m-I) ,

GEL
GEU = !(m-3), GEC = Hm-2)

Buffered GEC:

a) I-chip sequential (multipass) scheme

The cost of the array is derived as follows:

loading A parameter into k cell chip 2k cycles

loading initial values into k cells 2k cycles

time to fill buffer with 2b registers b cycles

The strip is computed to time level t=t by filling the buffer rt/bl times
z

and consequently emptying this many times, and the buffer segment of each

cell uses 2b cycles to empty. Thus, for k cells the time is 2bk for buffer

load/empty;

REMARK: Cost unit time is equivalent to two ips cycles, thus ips timings

are obtained by multiplying by 2 to yield an ips cycle timing. A single

group strip therefore has a time

T = (load time) + (number of times buffer empties)* o
[cost of buffer empty + cost of filling buffer]

4k + It/b] {2bk+b}

~ t(2k+l) + 2k(2+b) + b

Thus for a multipass buffered scheme,

Tsb ~ p[t(2k+l)+2k(2+b)+b]

b) p-chip parallel scheme

There are two ways to connect the p chips in parallel.

(8.9.20)

(8.9.21)

706

Case (a): p-chips are chained together creating a multi-chip GEC array.

This is equivalent to a single chip with kp cells. Thus,

T = 4kp + rt/bj {2bkp + b} (8.9.22)
PCB

follows from (8.9.20).

Case (b): Each strip is solved in parallel on its own chip isolated

from the rest yielding,

T = T ~ t(2k+l)+2k(2+b)+b
PIS 0

(8.9.23)

Unbuffered GEC:

In this set up we assume enough chip pins to carry the results of

k cells directly off the chip.

a) Multipass scheme:

No buffer loading is required, and starting values can be loaded

in parallel, hence,

Tl = (time for loading) + t

= 2 + t

Applying a single chip p times gives,

T = p(2+t)
sub

b) Parallel scheme:

Case (i)

Case (ii)

with chips connected serially (sequential loading)

T ub = 4kp + t pc

with chips isolated

(8.9.24)

(8.9.25)

(8.9.26)

Tpiub = 2 + t (8.9.27)

As noted earlier unbuffered schemes imply bit serial computation. If

we substitute s cycles for each cycle of a bit parallel scheme where s

is proportional to the word length (8.9.25)-(8.9.27) are revised to yield,

T sub = sp(2+t), T ub = s(4kp+t) and T . b = s(2+t).
pc ~u

707

Single time level:

In this case no buffers are required for the bit parallel scheme

and a bit serial scheme uses its output pins only once. By shifting

results sequentially left or right off the array the computations require

T2 = (time for load) + (computation for t levels) + (time of unload)

= 4k + t + 2k = 6k+t

Hence mUltipass (T
sol

), parallel (T
pcol

) and parallel but independent

(T . 1) are given by,
P10

Tsol = p(t+6k)

T = t+6pk
pcol

T = t+2
piol

cycles respectively.

(8.9.28)

The isolation of groups computing ~olumns up the solution region

admits many strategies for interleaving different hyperbolic problems on

the same hardware. The p-chip 'bag of' is the simplest approach which

allows p problems to be solved simultaneously with different A parameters

in each chip - and solving problems with greater than k groups in multi-

pass. A more interesting problem is interleaving on a single chip or

serially connected group of chips, as indicated by Fig.(8.9.4). A

straightforward approach is simply to queue problems one behind the other

in multipass, or along the cells, filling as many cells as possible.

The problem here is that the last user (problem) has to wait' for other

problems in front to be filtered through. A more flexible approach

would be a simple interleaving strategy to give all users a reasonable

response time. Clearly the time of array operation is computed by

substituting k=(sum of all groups) in the above timings.

The hyperbolic scheme is also well suited to fault tolerance as

708

Fig.(8.9.S) demonstrates. For buffered and serial loading schemes there

is only a single unidirectional line used only in preloading. This

single line makes re-routing around faulty cells simple, and allows chip

performance in conjunction with multipass computation to degrade

gracefully. For a bit serial or unbuffered approach where loading/

unloading proceeds in parallel no re-routing is required, and faulty

cells can simply be discarded.

Finally we consider the Alternating Group Explicit forms of the

hyperbolic GE method. Like the parabolic AGE the hyperbolic forms can

be implemented with linear arrays that shift group data left or right,

overwriting points in adjacent cells to provide alternation. A simple

cell for hyperbolic AGE is shown in Fig.(8.9.2b), clearly the alternation

of GER and GEL schemes provides a patchwork pattern across the region

(see Fig.(8.9.1)). This re-establishes the group dependency relationships

demanding that:

(i) All level t is computed before level t+l can start.

(ii) Boundary calculations must be included in the array

(requiring a larger cell cycle time)

and preventing:

(i) Interleaving of problems

(ii) Multipass computation

The latter 'features an extremely a~tractive. implementation character

istics. A final design must balance the use of flexible, fast, and fault

tolerant non-alternating GE arrays against the restrictive AGE method

with unconditional stability (larger stepsizes) hence reduced cells and

level calculations. We conclude that hyperbolic GE methods offer greater

opportunities forhard-systolic devices than the corresponding parabolic

problems.

709

~IIIIIIIIIDII=~
>

4

2 Pi = k
i=l

a) QUeueing of multiple problem instances

b) Interleaving of problems

FIGURE 8.9.4: Problem interleaving

a) Faulty cells

b) Routing around a faulty cell

FIGURE 8.9.5: Fault tolerance

710

8. 10 SUMMARY

The main objective of this chapter has been to challenge two basic

premises currently adopted for solving P.D.E.'s, which can be summarized

in the form of the following two questions:

(i) Is the algorithmic or geometric interpretation of an algorithm

the best approach to solving a P.D.E. in parallel (in particular

by systolic arrays)?

(ii) Can a fast, area efficient parallel and conditionally stable

design outperform slower unconditionally stable alternatives?

To illustrate the discussion we considered the solution of the l-D (heat

conduction) and 2-D (unsteady diffusion) parabolic problems, with particular

emphasis placed on the l-D case due to its simpler form.

In order to answer the first question we discarded a linear algebraic

formulation of the P.D.E. problem interpreting the grid points of the

solution region as a tableau of elements to be generated or modified .. by

use of computational molecules relating the grid elements. In the case

of the l-D problem an open ended table was apparent, implying table

generating techniques (from Chapter 7) were applicable and gave rise to

three main types of array.

(i) Non-stationary array: A design using a cascaded linear array based

on the intuitive iterative algorithmic solution of linear systems, and

which acted as a benchmark for other l-D designs. The principle attribute

of the array being the non-stationary movement of successive time-level

approximation from the same grid column through the array.

(ii) Column-by-column array: Here column i of grid point approximations

remained stationary and tied to cell i of the linear array. The problem

was similar to the generation of an open ended trapezium type table.

711

Basic cells used the asymmetric molecules of Saul'ev [64J, to implement

a systolic marching technique.

(iii) Row-by-row array: Again a stationary array with columns 2i-l and

2i, i=l(l)!(m) tied to cell i of the array. The problem used a rectangular

table generation pattern producing a single table row (or time level)

every cell cycle. Basic cells utilised the unified Group Explicit (GE)

molecule of Evans & Abdullah [83bJ. Similarly for the 2-D case three

types of design were considered for manipulating the regions grid points.

(i) A non-stationary array: Another cascaded iteration array derived

from the algorithmic formulation of an iterative matrix problem derived

from the 2-D finite difference approximation and used for benchmarking 2-D

systolic designs.

(ii) A wavefront processor: Using the 2-D asymmetric approximations and

occurrring in two forms:

a) A 2-D mesh with highly efficient pipe lining of wavefronts, and

useful for fast calculation up to a certain level t with no
z

intermediate output.

b) A 1-0 linear asymmetric marching processor (LAMP) which reduced

hardware by mUltipass simUlation of a) with each pass a single

wavefront. This array had the natural capability of outputting

all intermediate time levels up to and including t •
z

(iii) A mesh scheme: which adapted the Group Explicit molecules to

achieve full parallel operation of processors, and appeared in two forms:

a) A 2-D mesh of reduced instruction set p+ocessors, evaluating

a single table update in one cell cycle.

b) A 1-0 array of macro GE-cells (incorporating a systolic ring)

and computing molecules according to a generalised molecule

712

template. Table updates were achieved by multipass with one

update per pass.

For t levels and m divisions along the x and y-directions the I-D case
z

2
had m-l and the 2-D case (m-I) initial values. The cascaded schemes

required O(m+t) ips cycles and O(t) basic ips cells in the I-D case,
z z

2
and O(m +t) ips cycles and O(mt) basic ips cells (neglecting synchronising

z z

delay cells) for the 2-D case. In contrast the asymmetric molecule arrays

required O(m) and o(m
2

) basic ips cells for the 1-0, 2-D (LAMP) and 2-D

wavefront scheme respectively, and apart from the LAMP array with O(mt) z

time had the same order of magnitude in timings. Thus, the algorithmic

schemes favoured wide regions with few time levels, the geometric forms

narrow regions with many levels to optimise the array speed/area tradeoff.

Consequently, by fixing m, for any substantial calculations with a

significant number of time levels and adopting a geometric approach area

savings followed immediately. The actual cell savings depended upon the

number of iteration arrays included in the cascaded array. For a fixed

:':[:;j(::,:::<:::o:([~]::,::::~) ,::"'::';::':"':.,::':::::."::',::::::
that for finite hardware the geometric schemes run faster and seriously

challenge the intuitive algorithmic arrays.

Now having established the answer to our first question above the

next logical step was to produce the 'best' geometric array. For

purposes of argument we define the 'best' array to be one which:

1. improves the accuracy of grid point approximations

(i.e. reduces approximation error)

2. reduces computation time and array area further.

1. is controlled by the truncation error terms associated with the finite

713

difference approximation used to model the P.O.E. For instance the

1 2 2
asymmetric forms had truncation errors o(at+h +~) and O(ah+Sh+~+h) for

the 1-0 and 2-D problems respectively, where h=stepsize in the x-direction

and ~ the time step, a,S suitably chosen parameters. 2. is dictated by

the simplicity of the computational molecule and the sizes of t and m.
z

Clearly reducing t and m to speedup and compact the arrays requires
z

increases in ~ and h which in turn increases the approximation error of

the asymmetric computations. Likewise reducing h and ~ to provide more

accurate results increases array time and area. Hence 1. and 2. provided

conflicting goals. We resolved the problem by alternating the application

of asymmetric formulas which retained the simple molecule-cell structures

and improved accuracy because. of truncation error term cancellations

(due to opPOsite signs). For the 1-0 case alternation had the unfortunate

effect of sequentialising array computations yielding low processor

efficiency and making the algorithmic scheme attractive again. To over-

come this difficulty the Group Explicit (GE) methods of Evans & Abdullah

[83b] were adopted and new arrays developed, using a hybrid molecule

consisting of unified asymmetric molecules. The loosely coupled structure

of the GE methods allowed parallel operation of array cells yielding high

efficiency while retaining truncation term cancellations to maintain

accuracy, at the expense of a more complex basic cell. Various types of

array corresponding to positioning of grouped and ungrouped mesh points

were developed, and alternating Group Explicit (AGE) arrays devised

implementing an unconditionally stable method. Simple data shuffling

and cycling operations were then introduced and the principle of cell

unification applied to derive generic 1-0 and unified 2-D arrays,

implementing all the GE techniques. The former 1-0 scheme adopted simple

714

left/right data shifts, the 2-D method adopted a universal molecule

template evaluated by accumulating terms on a systolic ring. As the 1-0

molecule fitted the 2-D molecule the unified array could also be used to

simulate the 1-0 computation.

Next we produced FAST arrays based on restricted choices of t and h,

2
with r=i/h , the above asymmetric formulae can be shown to be unconditionally

stable for r~O. Likewise the simple GE schemes are conditionally stable

for r~l, and the AGE methods again unconditionally stable. By restricting

r=l approximating equations and hence molecules are simplified with

terms disappearing altogether and coefficients involving r becoming

constant. The FAST AGE array followed naturally, yielding a speedup

S =6 over the general arrays, from simplifying cell computation. However
p

fixing r also fixed the truncation error. Consequently the array speed

increase was used to offset the larger stepsizes achieveable by the

general scheme by constructing more accurate approximations to a number

of intermediate levels. It followed that for r~S the FAST AGE out-

performed the general AGE array.

Fixed r values, where molecule terms disappeared also gave rise to

incomplete versions of the P.D.E. solvers, using the hopscotch technique

(Gourlay [70]), in which only part of the whole solution region was

produced. Omitted grid-points being placed in positions where they

could be easily derived from array results. The technique was discussed

and arrays described for the ODD-EVEN, l-point and 2-point (FAST AGE)

hopscotch schemes. The ODD-EVEN method produced an unconditionally stable

array by using a unified 2-point molecule derived from sequential

application of the classical explicit and implicit formulae. The array

computed at the same speed as the AGE array but had truncation error of

715

2
O(~+h) making it less accurate. The l-point scheme adopted the classical

explicit molecule (conditionally stable for r~l) with r=l and truncation

2
error O(~+h), and produced a speedup of S =12 over the ODD-EVEN and AGE

p

arrays while using only lm inner product cells. The speed-up was again

interpreted as a method of computing more accurate intermediate levels

allowing the conditionally stable scheme in some instances to outperform

the unconditionally stable schemes. The same array compact ion technique

was then applied to the 2-point or fast AGE scheme also saving half the

hardware.

Next the simple form of the l-point hopscotch scheme was exploited

to derive proposals for a hard-systolic implementation of the parabolic

solver by bit parallel and bit serial computation strategies using fixed

point arithmetic. The former scheme required buffering of input and

output •. The latter scheme producing an area efficient unbuffered cell

structure - suggesting a FAST chip based design was possible.

Finally we considered the extension of the method to a simple first

order hyperbolic equation which exhibited attractive VLSI design features.

The derived group explicit molecule produced a fully decoupled approach

to computation where pairs of individual table columns could be evaluated

independently. This resulted in a decoupled collection of GE cells

requiring communication only for the loading of initial values. It

followed that a hyperbolic equation could be solved by multipass on a

fixed sized architecture (independent of both t and m), and that a
z

collection of problems could be solved in parallel by interleaving group

columns of different instances on the same array. These attributes

together with a uni-directional loading strategy combined to indicate a

fault tolerant design which would degrade gracefully as individual cells

became faulty.

716

We conclude that the geometric approach to solving P.D.E.'s is

not only suited to soft-systolic frames but produces genuine proposals

for hard-systolic implementations.

CHAPTER 9

TOWARDS A GENERAL SYSTOLIC COMPUTER

"I couZd have done it in a much more complicated

way'~ said the Red Queen, immenseZy proud.

LEWIS CARROLL.

717

The recent trends towards the development of more general systolic

architectures such as the WARP system (H.T. Kung [84a), wavefront array

processor (S.Y. Kung [84) and the unified arrays of the previous

chapters emphasise the importance of developing soft-systolic algorithms

in the form of micro-programs and generic arrays, for related problems.

The aim of this chapter is to investigate the compatibility of

some well known computing structures, by use of simulation techniques

and virtual machines, to a common architecture. To this end a soft

systolic program simulation system (SSPS) is introduced as a working

model of a virtual machine (the Instruction Systolic Array (ISA» with

the power to simulate many hard-systolic, wavefront SIMD and some MIMD

algorithms.

The emphasis is not on producing special purpose systolic

algorithms which require restricted special purpose architectures, but

executing parallel programs on a fixed underlying architecture

systolically. Consequently, specially constructed algorithms are

devised for the virtual machine which map easily onto the real machine

environment.

9.1 THE INSTRUCTION SYSTOLIC ARRAY

In Lang [85) the Instruction Systolic Array (ISA) was proposed as

a new parallel architecture capable of exploiting VLSI technology.

Contrasting with conventional systolic arrays, the ISA pumps

instructions rather than data through a mesh connected array of

processors. Each processor is capable of executing instructions from

some instruction set. Consequently, while a systolic array realizes

only one special algorithm (or a collection of related problems in a

718

generic array}, an ISA can implement a wide range of parallel algorithms

defined as ISA programs.

Now, in the MIMD concept of parallelism, all the processors of a

given array (denoted PA) can execute different instructions. If the

2
array consists of n independent processors each containing a control

2
store, a PA program can consist of up to n different programs. These

programs must be distributed over the array before the PA program can

be executed, in contrast on an ISA the program is executed as it filters

through the array. Consequently it is easier to execute a.pipelined

sequence of programs using an ISA than a PA.

More formally, define a basic model for a parallel computer as a

2
mesh-connected array of n identical processors, synchronised by a global

clock. The processors execute instructions from the same instruction set,

with the execution time of all instructions bounded by the most complex

operation. In addition each processor contains some local memory and a

communication register (CR).

Fetch
Instruction i

read
data

An instruction cycle has the form,

Execute instruction

compute write
data

with communication occurring in mutually exclusive fashion to prevent

overwriting of the communication register before a processors' nearest

neighbours have had chance to read it. During the read phase, if a

processor requires data from one of its nearest neighbours it simply

takes the data from the relevant CR. Consequently only five processors

(including the PE containing CR) can read from the same register

simultaneously.

Three types of parallel machines which differ only in the way

719

control information reaches processors are now easily defined.

(i) The Processor Array (PA)

Where each processor has its own control store (as mentioned above) •

(ii) The Instruction Broadcast Array (IBA)

Processors use a simple control unit but no control store. Instructions

are broadcast to all the cells in the same column, and selector

information (0,1) is broadcast to processors of a row. If I, is the
J

instruction of column j, and Si is the selector of row i processor Pij

performs operations according to,

= {Ij iff si=l

no-op iff s,=O
1.

(iii) The Instruction Systolic Array (ISA)

Identical to the IBA except that instructions and selectors are retimed

so that they are pumped systolically through the array. Instructions

moving row-wise north-south, and selectors column-wise west-east, where

no-op is an operation contained in the instruction set I which does not

modify the processors memory contents.

Next, let PA , IBA and ISA be arrays with side n (see Fig.(9.l.l))
n n n

and define the concept of a program on each machine as follows.

(1) (2) (r)
A program on a PA : is a sequence p ,p , w • • ,p of nXn matrices

n

over I, such that for all i,j~n and t~r the instruction executed by

(t)
processor (i,j) at time t is Pij •

(1) (2) (r)
A program on an IBA: is a sequence p ,p , ••• ,p of n-tuples

n
(1) (r)

(vectors) over I and a sequence s , ••• ,s of n tuples (vectors)

over {O,l} such that for

broadcast to column j and

all i,j~n and t~r p~t) is the instruction
J

(t)
s, is the selector information broadcast

1.

to processors in row i at time t.

720

n

a) Processor array (PAn'

Instructions

n

b) Instruction broadcase array (IBA)

Instructions

n

c) Instruction Systolic array

FIGURE 9.1.1: Three models of parallel architectures

Alternatively processor p(i,j) executes according to,

p(i, j) = { p;t) iff sit)=l

NO-OP otherwise

721

(1) (r)
ISA : is again a sequence p , ••. ,p of n-tuples over

n
A program on an
-------("'"17) (r)
I and sequences s , ••• ,s of n-tuples over {O,l}. But for i,j~n and

t~r, p(t) is the row of instructions entering the ith row at t+i-l,

and s(t) is the column of selector information entering the jth column

of the ISA at time t+j-l. That is, processor p(i,j) performs as,
n

p(i,j) = {
(t+i-l) iff si(t-j+l)

Pj

NO-OP otherwise

1

at time t. Finally program execution terminates after the last row of

instructions p(r) has entered the first row of ISA processors. Thus if

(r)
p must filter through to the last row, n-l rows of ne>-ops must be

appended to the program.

REMARK: The definitions are easily extended to rectangular grids denoted

PA ,IBA and ISA with simple modifications to i,j indices, where
m,n m,n m,n

m;ln.

Now denote p as a program on a PA , IBA or ISA then the execution
n n n

time of p is equal to the length of the program and denoted by T(p).

Furthermore if C(k)=(c ..) is the nXn matrix where c~~)=eR contents of
L) L)

processor p(i,j), program p is simulated by a sequence of snapshots

c~~), k=O(l)r where e(O) is the starting state of the grid and e(r)=e(T(p))
L)

is the final result image.

Input and output to the grid occurs whenever processors read or

write to non-existant processors around the mesh boundary. The input

of a program is then defined as a sequence of 4n-tuples (an n-tuple for

each boundary) which are read during the execution of p. Likewise the

722

output of p is a sequence of 4n-l tuples output from the boundaries

during execution ofp. Observe that there can be at most T(p) input,

and T(p) output (4n-l) tuples.

TO conclude the descriptions of the machines we define the idea

of program equivalence. For two programs p and q on PA , IBA , or ISA
n n n

we can call programs equivalent if they contain one of the following

attributes.

(i) INTERNAL EQUIVALENCE: If for the same initial conditions c(O) ,

CT(p) CT(q) f id " 1" = or entlca lnput sequences.

(ii) X V f f th " " "1 d" i (0) ETERNAL EQUI ALENCE: I or e same ~n~t~a con ~t ons C ,

the boundary output sequences are equivalent.

(iii) STRUCTURAL EQUIVALENCE: The intermediate operations of p and q

can be mapped onto each other.

Using these definitions Kunde, Lang, Schimmler, Schmeck & Schroder

[85l have derived bounds on simulating a program on one architecture by

an equivalent program on another. For completeness we state these

results as properties characterising program equivalences, in the

following table.

723

Property
Program Transformation

Conunent
Length p on-t q on Time relation

i
I

T(p)=T(q) Generally 1 - ISA or PA no
IBAn n speed-up

n

2 - PA IBA T(q) ~ (n+l)T(p)

)
Worst

n n
case

3 r>O PA IBA T (q) >. (n+l) T (P) IBA
n n simulation

4 - IBA ISA T(q)>.3T(p)+ Asymptotic n n 2n-2
time

5 r>O IBA ISA T(q) is in
complexity

n n fl(T(p))
the same

6 - PA ISA T(q)~(n+2)T(p)

J
Bound on n n +2n-2 ISA simulation

7 r>O PA ISA T(q)~(n+2)T(p)
of PA

n n

8 - ISA IBA T (q) ~ (n+l)T (p)

I Reverse of n n 2 -n +n 4,5 does
not hold

9 r3n ISA IBA T(q)=fl(n)T(p)
n n

TABLE 9.1.1: Sununary of program transformations on PA , IBA and ISA
n n n

The main result is that an arbitrary program that runs on an nxn

mesh connected parallel computer in k steps can be transformed into an

ISA program with O(nk) steps. The basic technique to the proofs is to

simulate the PA program by the.IBA and then retime the equivalent IBA

program to produce the ISA version. An intuitive method for simulating

(t)
a program p on a PA by a program on the IBA is to simulate every p

step of p by n steps on the IBA. Generally for the ith step only the

ith row of the array is selected and the ith row of p(t) broadcast to

the array. However, if row i reads data from row i-I of the array it

724

is possible that the updated contents of the communication registers

instead of the old values will be used. Consequently, to preserve

computation it is necessary to save the contents of the old communication

register until all a processors neighbours have had a chance to read it.

The solution is to augment the IBA processors with a register Rand

flag F, such that results of calculations are placed in R and the Flag

F set at the end of an instruction cycle. A special copy (C) command

is introduced which copies R to CR and resets F. (t) Thus p is simulated

by n+l steps including a copy command at the end of the step to overwrite

all the communication registers.

REMARK: As the ISA is simply a re timed IBA, the copy command must also

be incorporated into ISA programs.

Fig.(9.1.2) illustrates the control flow for an ISA program •
.--

0

0 C

0 C pll

0 C p,(2) 0

C P2
121 0 C

P1
12 0 C p.11

0 C P,f1I

C P2111

P 111 ,,- l
, , S,'2 , , Is,'"

, , 52
121 , , 52

11

-+ , , $,'21 , ,
S3

C1

I ' , S.,21\ ' , S4"

FIGURE 9.1.2: Control flow in an ISA program

It should be clear programs transformed from PA or IBA are essentially
n n

intuitive mappings and that faster more efficient algorithms may be

derived by dealing with the ISA from the outset. Where special ISA
n

725

programs prove difficult to design or unwieldly it is comforting to

know that a straightforward program transformation from an existing

architecture is available.

Finally, to conclude this section we consider a simple example of

k transposing an nXn matrix where n=2 on the ISA (Lang[85). The
n

algorithm proceeds iteratively transposing 2jx2j-subarrays j=l(l)k, and

is defined as follows, for j=l, a 2x2 subarray is transposed by exchanging

elements in the upper right and lower left corners. This requires

three steps:

(i) swap 1st row elements

(ii) swap 1st col. elements

(iii) swap 1st row elements (again)

For j>l, a 2
j

X2 j block array is transposed in 4 steps:

(i)
j-l j-l

transpose the 2 x2 sub-arrays

(ii) exchange the two upper sub-arrays

(iii) exchange the two left sub-arrays

(iv) exchange the two upper sub-arrays.

Fig. (9.1.3) illustrates the development of an ISA program for transposing

an ax8 matrix, where,

read right (left) processors CR value and

place it in own CR.

as above except read upper (lower) processors

c==J : no-op

Thus ~ ~ are equivalent to swapping processor elements.

The program is easily generalised to the nxn case.

•

ISA prograJI tor exchangln& the two

upper _x_ subarrays ot an 8x8 array

ISA program for transposing

a 2x2 ~lrJx (e~pty instruction

boxes denote NOPs, empty selector

boxes denote O's)

•
ISA program tor transposing an 8x8 .atrlx

FIGURE 9.1.3: ISA transpose program

ISA

9.2 THE n-SPACE ISA AND MULTI-TASKING OF SOFT-SYSTOLIC PROGRAMS

726

If we consider the classification of parallel computers by Flynn

[72] the PA , IBA and'ISA have to be classed as MIMD machines. This
n n n

follows because a number of different instructions can be executed

simultaneously on different rows and columns hence data streams of the

727

mesh. Furthermore, since the processors in an IBA or ISA do not
n n

require central stores they lie closer to SIMD-type architectures than

MIMD machines. Thus, the ISA represents a type of hybrid machine,

somewhere between SIMD and full-MIMD. It follows that soft-systolic

programs and frames can be easily extended via the ISA to link with

these wide classes of problems, and from this viewpoint it is essential

to characterise the power of the ISA machine.

We can define a full SIMD-program on a PA as a sequence of

instruction matrices which consist only of identical instructions,

implying that these problems are easier to simulate on the IBA and ISA.

Hence,

Theorem 9.2.1a: (Kunde, Lang, Schimmler, Schmeck, Schroder [85])

For every full SIMD-program on a PA there is an equivalent program

on an IBA having the same time complexity.

Proof:

(t)
Each program vector p in the IBA program is a simple repetition

of the instruction in step t, with all selectors 1.

Theorem 9.2.lb: (Kunde, Lang, Schimmler, Schmeck [85])

For each full SIMD-program p on a PA or IBA there is an equivalent
n n

program q on the ISA with T(q)~3T(p)+2n-2.
n

Proof:

The simulation of SIMD-programs on an ISA introduces the same

problem for arbitrary program simulation, as instructions executed

simultaneously by neighbouring processors of the PA or IBA will be

executed consecutively on the ISA.

in Table (9.1.1) suffices.

Thus, the IBA ISA transformation
n n

Next we can define a PARTIAL SIMD-program on a PA or IBA, where

728

the instruction matrices consist of just two types of instructions,

a no-op and one from the processor instruction set I.

Theorem 9.2.2: For every r there is a partial SIMD-program p on a PA
n

with T(p}=r such that for any equivalent program q on an IBA ,
n

T(q}~(n+l}T(p}.

Proof:

A partial-SIMD program is a simplified MIMD-program and as such

requires a full transformation like property 3 of Table (9.l.l),

yielding the time immediately.

This implies that partial-SIMD programs cannot be simulated faster

on an IBA than arbitrary programs. However a subset of partial SIMD
n

programs can be simulated with the same speed as full SIMD-programs.

These problems are termed vector-orientated SIMD programs and like the

partial SIMD programs consist of just two instructions (including the

no-op). But in addition theno-opoccurs only in complete rows or

columns of the array.

Theorem 9.2.3: (Kunde, Lang, Schimmler, Schmeck [85)

For every vector-oriented SIMD-program on a PA there is an

equivalent partial SIMD-program on an IBA having the same time

complexity.

Proof:

(t) To transform a PA program step p with an instruction b/no-op

in it to an equivalent IBA step we set,

{ b if column j in (t)
is not a complete no-op column (t) p

Pj =
no-op otherwise

and put,

{ 1 if row i is not a complete no-op row (t)
Si

otherwise 0

729

Ho.1 Control Unit

Multiple Data Stream

4) 1-0 organization of SIMO computer

b) 2-D simple SIHD parallel computer c) Processing element

FIGURE 9.2.1: Organization of SIMD machines (from Umeo[82)

Next consider the class of simple-SIMD algorithms, defined in

Umeo [85a) as ones in which the SIMD processing surface is limited to

a linear array of processors. The class of simple-SIMD algorithms

consists of many interesting problems including sorting, image-

processing, and graph algorithms as well as other conventional SIMD

algorithms. In Umeo [82), Umeo & Sugata [82), Umeo, Morita, Sugata [82)

and umeo [85a,b) the mapping of simple SIMD and 2-D SIMD algorithms onto

730

systolic arrays has been investigated and characterized, the conclusion

was that SIMD algorithms can be simulated on systolic arrays without

much loss of efficiency. The complexity of the systolic array simulation

is measured by summing the systolic cycles required to load data,

execute the programs and output the results, and is achieved as follows

(for a simple SIMD algorithm).

Theorem 9.2.4: (Umeo (85))

For any simple SIMD machine M with time complexity T(n) there

exists a systolic array A which simulates M in 2T(n)+3n+0(1) steps.

Proof:

Without loss of generality we assume that M has n processing

elements (PE'S) each with a single data register (the method is easily

extended to more data registers). Let a
i

be the data preloaded into PE
i

and It the instruction broadcast to each PE by the SIMD machines control

unit. Then l~t~T(n) and the array is organised as follows:

(i) There is a buffer B=l input Bin and 1 output register Bout.

(ii) A total of n+l systolic cells c
i

' i=O(l)n containing:

(Ui)

(iv)

a)

b)

c)

d)

an address register R
a

working registers R., i=1(1)4
~

a processor to decode and execute It

auxiliary registers:

11 to pipeline the data instruction right

I
2
,I

3
book-keeping registers, with I3 doubling

up as the data output register shifting results

left.

c acts as a boundary cell
n

Data to A is supplied as a joint instruction, data format,

731

y=end of input

6=spacing dummy input

Data is input at the rate of 1 symbol per step through Bin' Initially

B =a, and each instruction is input at the rate of one every two steps.
in 0

The cells can be in one of three states loading, computing, or output,

and the current state is stored in R
4

• The state is controlled by

signals tagged to symbols moving into the cells. When the terminator

reaches cell c a reset symbol is propagated left to clear the array
n

for a new problem.

Pb ... UI (t. e+l. e+2 ••••• e ...)1 ":(1) " .0 .n' 1~"'(I) •• 0_11.

I t tta·· I
Pb ... (II) , (t. e+l. e+2 ••••• t+" 'IU) ".11 ••• 'I (I). ~T(n) •

fba .. (lll), (t. \+1. e+2 e+y)(':(1) .. is .n4-.!~+Y(l) • :: I.

~D.'.

Oulpul Oala .
•

s.~

S)/5tollc: Afra)/

IzO

'Tim~

Loading

Oulputling

FIGURE 9.2.2: Time-space diagram for the systolic simulation of
simple SIMD machine (Umeo [82]).

732

A primitive mask facility is provided by adding an address field to the

data. This address is compared with the cell addresses and if equal

masks out the cell for that cycle.

We can easily fit the simulation of the systolic array on a single

column of ISA cells as follows.

Theorem (9.2.5): Any simple SIMD machine M with time complexity T(n) can

be simulated by a virtual systolic array A on the ISA in 2T(n)+3n+O(1).

Proof:

Map the systolic array A in Theorem (9.2.4) onto a column of ISA

cells assuming the ISA has an nxn grid. Next set the selectors

permanently true for each row i=l(l)n and define the systolic array cell

as a virtual processor. For this we just implement the interpretations

of It and perform the address comparison, to implement the mask. The

column structure and data/instruction format is as shown below, the

instruction P sets the address register of the cell it enters to the
n

data input with P (i.e. 1 in cell 1) and the value incremented before
n

being passed on.

Thus each cell has its address register set before any of the real

instructions reach them.

From this theorem it is clear that no horizontal data movement

can occur, and the above result can be extended as follows.

Theorem (9.2.6): An nxn ISA grid can simulate n simple SIMD machines

M. with time complexities T.(n) for i=l(l)n in a total time
1 1

T=2 max(T.(n»+4n+O(1).
1

l~i~n

Proof:

Make an ISA program where each instruction column (including data
n

loading) represent a separate simple SIMD program. For an ISA grid it
n

VIRTUAL
SPOOLER

DATAlN. DATAOUT

selector 4x4 column of ISA

1 1

1 1

1 1

1 1

• ••

• ••

• • •

• • •

VIRTUAL
SPOOLER

DATA FORMAT

Here

Instructions

Data

p
n

• set address to datain
increment data in
set state dat;.a

Pn-l-P t '" read data, Po set state instructions

It tal(l)T(n) Instruction from processor instruction set

6 '" padding element

Hi • i=l(l)n address of cell to mask out (address zero disables mask)

y • terminator. set state output

FIGURE 9.2.3: Mapping of systolic array to ISA column

733

734

follows that the time must be bounded by the cost of the longest

running program plus an extra n cycles to push selector vectors through

all the columns of the grid before starting each simulated machine.

It also follows that Umeo's simulation of simple S1MD machines is

a special case of vector-orientated SIMD programs representing a single

task (program) systolic simulation theorem. Alternatively the columns

of no-ops in vector-orientated S1MD programs can be interpreted as

vacant columns not running a simulation. Thus Theorem (9.2.6) is a

multiple task (soft) systolic simulation theorem. Consequently the

results of Umeo [85] can be extended to the multi-tasking of simple

SIMD soft-systolic simulations to provide a multi-programmed environment

using the ISA.

Theorem (9.2.7): (The multi-sequential task systolic simulation theorem).

Let M,. i=l(l)k be any simple S1MD machines, each with time
~

complexity T, (n) with the same instruction set (or a subsetl then there
~

exists a systolic array A which simulates the M,'s, i=l(l)k in,
~

k
T = 2 L Ti(n) + 3kn + 0(1) steps.

i=l
Proof:

Simply produce large streams of column data and instructions with

the form,

1 1 1 1
aOal • •• a n_l 11 °

1 1;
12", OI

Tl
(n) 0 ••• °

2 2 2 2 2
aOal···an_1IloI2°···

~ "'---v--J . • ~
Ml 2n M2

000 ••. 0
k k k k k o ••• k

aOal
a

n
_l 11 01

2
I

3k(n)

2n Mk

Now each ISA column simulates a sequence of pipelined machines.

735

Theorem (9.2.8): (The multi-parallel task systolic simulation theorem)

Let M
ij

, i=l(l)k, j=l(l)n be any simple SIMD machine, each with

a time complexity Tij(n) with the same instruction set then the ISA can

simulate the Mij in a time,

T= m~

Proof:

k
(2 I T'j(n» + n(3k+l) + 0(1)

i=l ~

By extension of Theorem (9.2.6).

Clearly from Theorem (9.2.5) any machine is simulated in 2T(n)+3n+0(1) ,

thus a whole column of k machines requires,

k
I [2 T

ij
(n)1+3nk+0(1) = 2

i=l

k
I Ti,(n) + 3nk+O(1)

i=l J

for some l~j~n. Allowing n steps to filter selectors through the array

produces the timing,

T=m~

l~j~n

k
(2 I Ti,(n» + n(3k+l) +0(1).

i=l J

REMARK: Theorems (9.2.7) and (9.2.8) can be speeded-up by overlapping

input and output of machines and interleaving two machine sequences so

as to fill the neutral instruction elements.

We conclude that the instruction systolic array is at least as

powerful as SIMD-machines. Infact for many cases where the original

array machine simulated is of SIMD-type the ISA can simulate it with

0(1) delays. Clearly if the MIMD program can be re-written as a collection

of simple SIMD programs we can simulate the MIMD problem using multi-

tasking. This has repercussions for traditional systolic arrays with

a collection of cell types which can be partitioned to yield SIMD-type

procedures even though the array should be classed as MIMD (e.g. back-

substitution arrays with two cell types).

736

The ISA as described is capable of simulating only restricted

forms of the MIMD model which have simple control flow. For more

complex program traces allowing conditionals and loops whose terminator

conditions are set by internal loop calculations the ISA encounters

difficulties. This implies that the SIMD structure of the ISA is too

restrictive. However, the control information delivered to each

processor consists of two parts, the instructions propagated down

columns and selectors propagated along rows. A simple generalisation

of the control scheme is observed directly. Processor (i,j) can be

re-defined to execute composite instructions of the form aib
j

where a
i

is a prefix arriving along the row i and b
j

< along column j.

If A and B are two sets of instructions such that IAI=kl and IBI=k2

and 0 EA, 0 E B denotes AB=no-op then at most (kl-l) (k
2
-l)+1

instructions can be encoded. An ISA
n

(k
l

,k
2

) represents the modified

mesh array and ISA
n

(2,k
2

) is clearly the original ISA. The generalised

scheme gives a better opportunity for implementing MIMD algorithms,

because we can now implement simple conditionals by using vertical

instructions as true program branches and horizontal instructions as

false (else) branches. The increased number of no-op combinations

providing more flexible masking facilities. By logical extension we

can create more complex control arrangements, increasing the dimensionality

of the array, providing further directions in which to pump instructions.

For example, the 3-space ISA follows naturally by extending the 2-D mesh

to an orthogonally connected cube. A processor now contains 6 data

inputs, 6 data outputs, and three instruction input/output connections

as illustrated overleaf.

UP DATA I in

51 in- - - - -

W DATA

lout

5 DATA

52 DOWN DATA

out

N OATA

51 out

E DATA

l"Instruction
51 zSelectors 1

S{Selectors 2

737

Control flow occurs in three orthogonal directions, and instructions

are constructed from three sets Al ,A2 ,A3 with IAl i ;kl IA21 ;k2 and IA31 ;k3 ,

allowing at most kl .k
2

.k
3

different instructions (including no-ops).

These three sets could then be used to form composite instructions or

evaluate conditionals of the form,

IF CONDl THEN

{INSTRUCTION SEQUENCE}

ELSE

{IF COND2 THEN

{INSTRUCTION SEQUENCE}

ELSE

{INSTRUCTION SEQUENCE}

}

- Encoded by Al streams

- Encoded by A2 streams

- Encoded by A3 streams

Allowing more complex MIMD programs to be implemented.

Generalising the concept produces an n-space ISA with no geometrical

interpretation, but which produces control flow in n mutually orthogonal

directions defining instructions sets Ai'
n

i;l(l)n of size IAil;ki and

TTki instructions. Clearly the analysis of control flow for programs
i=l
becomes increasingly complex, as does the connection network of processors

738

- limiting the technique severely. The interesting thing about the 3-

space ISA is that it easily reflects the SIMD and MIMD type program

mappings. For instance, consider any plane of processors of the form

(i,c,k) where c is a constant, and i,k=l(l}n, choose IAll=IA21=2 to

produce selectors setting s2 to be a sequence of matrices containing

only l's - the 2-D ISA
n

(2,k3} is produced. Likewise restricting SI to

a matrix also full of ones and restricting the processors to (c
l

,c
2

,k)

where c
l

'c
2

>o are constants produces a simple SIMD simulator (or l-D

array).

A plane in the directions (i,j,c) for c>O and i,j=l(l}n and SI

and s2 full of l's produces the popular PAn model of an MIMD machine.

The PA program p then consists of a sequence of T(p} matrices extending
n

in the k direction and coincides with the program store of normal MIMD

machines.

Any other plane (or planes) will simulate an MIMD machine allowing

the grids to become triangular and rectangular. Notice however that

the orthogonal nature of the grid requires diagonal processor

connections to be simulated by passing values through adjacent processors.

By extending the theorems on multitasking soft-systolic simulation

it follows trivially that the 3-space ISA can simultaneously:

(i)

(ii)

2
execute n - simple SIMD programs

execute n 2-D or full SIMD programs

(simply put (i,c,k) c>O in Fig. (9.2.4) to produce n planes

of 2-D ISA machines}.
n

Thus from the relationships in Table (9.1.l) n PA programs can also be

executed in parallel.

3
Next consider the case when we have a 3-space PA (a cube of n

S21~, ~,\,,..,..,
," I ,,"

I . I ,," ".
------,..- - - - - 1- - - - -.;-~!----:;>\' ,,"

I
I

, , ,
,

L ___ J,?--- 3-space ISA

•

FIGURE 9.2.4: 3-space I5A
n

processors each with a control store). 3
There can be at most n

739

programs making up the PA program residing in the independent processors

and which must be distributed through the array before operation begins.

• (1) (2) (r)
On execut10n the array program is a sequence p ,p , ••• ,p of 3-D

arrays over I with processor (i,j,k) performing P~~k) at time t.
1)

Theorem (9.2.9): For every program p on the 3-space PA there is an
n

equivalent program q on the 3-space 15A requiring,
n

T(q)~(n+2)T(p)+3n-2 steps.

Proof:

First consider a step p(t) of the 3-space PA program p. This
n

1\
can be considered as a collection of 2-space PA programs p., i=l(l)n,

n 1

with a general program corresponding to the sequence of nxn matrices

1\ (1) 1\ (2) A (r) .
Pi 'Pi , ••• ,Pi over I correspcnd1ng to the mesh planes (i,c,k),

c=l(l)n. Using Table (9.1.1) each of these programs is simulated by

the 2~space I5A representing the (i,c,k) plane of the 3-space 15A in
n n

(n+2)T(~.)~T(q.)~(n+2)T(p.)+2n-2 steps, where ~., i=l(l)n is the
111 1

equivalent 2-space I5A program. Now to allow for the skew of the
n

second selector inputs 52 successive planes from top to bottom of the

cube in Fig.(9.2.4) are delayed to retain synchronisation producing

740

a time bound,
(n+2)T(p)+n~T(q)~(n+2)T(p)+3n-2.

Theorem (9.2.10): For every program p on the 3-space ISA there exists
n

an equivalent program q on the 2-space ISA requiring
n

T(q)~n(n+2)T(p)+3n-2 •

Proof:

The essential idea behind the proof is to interleave the computation

of the n 2-space ISA comprising the 3-space ISA on a single 2-space
n n

ISA. This is achieved by unifying the cuboid planes as follows. First
n

assume each 2-space ISA processor contains a vector CR(j), j=l(l)n of
n

registers for book-keeping. A single plane can simulate all the others

by defining CR(j) in processor (i,k), i,k=l(l)n as the communication

register of processor (i,j,k) of the 3-space cube. Notice that this

guarantees that a 2-D ISA can reproduce the communication with a

processors six nearest neighbours in a 3-D space design. We then simply

compute the 3-space ISA programs on Theorem (9.2.9) in the order,
n

,,(j) I'(j) A(j) I\(j)
PI ,P2 ,P3 , .•• ,Pn ,j=l(l)r,

using the copy command to overwrite the correct CR(j) registers. As

successive planes no-longer compute in parallel the 3-space ISA
n

increases to nT(p) in the 2-space ISA and direct substitution into
n

Theorem (9.2.9) yields,

T(q)~n(n+2)T(p)+3n-2

Finally, to complete the characterisation of the ISA and its
n

power to simulate various programs soft-systolically we consider the

wavefront array processor (S.Y. Kung [84], see Fig.(3.5.2.1». The

2
wave front machine is again a 2-D mesh of n processors with nearest

neighbcur communication, and the order of activation and subsequent

741

computation of processors act like waves propagating across the array.

For simplicity waves act on the Huygen's principle such that no two

waves can pass or interfere with each other from the same source and

prohibits backtracking of waves. S.Y. Kung has noted that the wavefront

processor is a trade-off between the general purpose dataflow multi-

processors and the dedicated systolic array. This implies that the

wavefront array processor is related strongly to the ISA. Indeed, the

input of selectors and instructions forms successive wavefronts across

the mesh (see Fig.(9.1.2». Furthermore if we suppose composite

instruction sets Al and B
l

, wavefront processor programs can be

interpreted as interference of horizontal and vertical component values

such that a diagonal wave is given by instructions,

{ a.b.
~ J

no-op

constructive

destructive

where a destructive wave is any composite instruction involving a no-op

instruction. Hence,

Theorem (9.2.11): For any wavefront array program p with time T(p)

and r wavefronts there is an equivalent program q on the 2-space ISA
n

which requires T(q)~3rT(p)+2n-l.

Proof:

Each wavefront processor wave requires 2n-l cell cycles to

propagate across the· mesh, and is mapped directly into n-tuples of

instructions and selectors such that each wave front is replaced by three

wavefronts of ilie form,

(t)
I,

(t+l) (t+2)
0

1
Pj = Pj = c, Pj =

j=l(l)n
(t) (t+l) (t+2)

= 1 s. = s. = s
J J j

on the ISA with I the instruction executed by wavefront processor cells.

742

TwO extra wavefronts are added to overwrite the communication registers

after each instruction wave producing 3rT(p) wavefronts to pass over

the ISA mesh. The timing follows immediately, with 2n-l additional

cycles to push the last wave off the mesh. The less than condition

results from the fact that for some wavefront algorithms the communication

. . (t+l) (t+2)
registers can be overwritten directly, dispens1ng with p and p

instruction n-tuples.

Notice that the converse argument that all ISA programs can be
n

simulated by a wavefront array processor does not apply. This follows

because in general the wavefront array processor executes only a single

instruction I, whereas the ISA in general must contain at least three

types of instruction (I,cPo-op) for partial-SIMD simulations.

Next consider the ISA simulation of multiple wave fronts in
n

different orientations. Intuitively, this corresponds to the embedded

wave front mesh and systolic control ring arrangement used for rank

annihilation, assignment, and simplex algorithms in previous chapters.

The multiple wavefront computation can be envisaged as a series of nxn

instruction matrices or snapshots as for the general PA program. The
n

simulation program for the ISA is then constructed in the same manner

as for arbitrary programs. It follows that multiple wave front programs

are simply special cases of partial SIMD algorithms and Theorem (9.2.2)

can be applied directly. Fig. (9.2.5) ·illustrates a backtracking

technique for deriving the ISA program form.
n

,
-~

, , ,-
l/i<-,

/ ,
/

, ,
" ,

t..."
,

- - -- - --- -. -_.

n~n

a) Single multiple wavefront
snapshot

1
15

114 1
25

113 124 135

112 1
23 134 145

'11 122 133 10'44 b
ISS

0
10000

121 132 143 I
0 Jo S4 P

10000

131 142 153
0 b 0

1 0 000

141 152 10000
I 0 0

151
0 le 0 0

1 0 0 0 0

c) 1st backtrack to skew selectors

IU '12 III

121 122 1
23

III 132 133

141 142 143

151 152 153

b) PA image
n

III

112 1
23

'u In 133

'21 132 143

131 142 IS3

141 IS2

151

114 1
15

124 1
25

134 135

144 145

154 155

I
15

114 1
25

124 135

134 145

144 155

IS4

d) ISA version of snapshot

743

2n-l

FIGURE 9.2.5: Simulation of multiple wavefront algorithms

SNAPSHOT 3

SNAPSHOT 2

SNAPSHOT 1

e) Multiple sequence of snapshots (i.e. simulate wavefronts)

n-I
+---->

1

(COMPRESSED
I SNAPSHOTS
,

)

f) Compacted form of ISA wavefront program

744

FIGURE 9.2.5: Simulation of multiple wavefront algorithms (cont.)

745

9.3 THE SOFT-SYSTOLIC PROGRAM SIMULATION SYSTEM (SSPS)

The basic design problem for a general systolic array simulator

is to provide a fixed architecture which is capable of simulating the

arbitrary graph structure of an array, while also mapping parallel

processors to achieve parallelism. Throughout this thesis we have

envisaged systolic arrays as soft-systolic programs written in OCCAM

with the implicit understanding that OCCAM can be executed effectively

on transputer networks to provide parallelism. The problem with this

scheme is that it may be better to write a dedicated transputer based

version of a method rather than simulate a systolic array version of

the algorithm. Thus as we accept the idea of programmable arrays the

effectiveness of the special purpose systolic approach to specific

algorithms falls off. The essential problem is the emphasis placed on

data flow which demands a different OCCAM program structure for each

design. The ISA on the other hand places emphasis on the systolic

movement of instructions fixing the data communication and processor

structure, and the chances of producing a fast and economic systolic

simulator, with an alternative perspective on the meaning of a 'systolic

computer'. In this section we consider a soft-systolic program simulator

implemented on the VAX machine running under UNIX, at Loughborough

University and solve a number of common problems to demonstrate its

. flexibility. The system can be used to develop special purpose

algorithms with a regular form and opens up the possibility of a soft

systolic design workstation for development of simple systolic processing

systems.

An overview of the system is shown in Fig.(9.3.l), and the main

sections are briefly reviewed below.

Instruction, (
data &@lector
file
qeneratlon

IS", +

processing element
library
(OCCAH progralllS) j
ISA 1-1 eorrespond- {
ence SEHI-LISA, LISA
MANY-l correspondence

SOf'"I'-SYS'I'OLIC PROGRAM PREPARATION

RISAI.. COMPILER

VIRTUAL SPOOLERS

VIRTUAL MACHINE

M1\PPING
(VIRTUAL TO REAL)

, " , ,

• •

746

I
Virtual machine proqram
development

}

1-1 processor correspondence
MANY-l processor correspondence

Transputer network I /
/ pARALLEL ARCHITECTURE \

\ 1
Static communication confiqured
architecture

HARDWARE

FIGURE 9.3.1: Organisation of soft-systolic program simulator

Program and machine preparation:

The soft-systolic preparation section comprises of the usual

operating system facilities for the creation and modification of files

during the development of new programs and ISA processor elements. We

allow any concurrent high level language to be used to model the soft-

systolic program.

RISAL compiler:

The RISAL compiler is adopted to transform the soft-systolic

program description into a form suitable for the virtual machine

(simulating the algorithm) to run.

Virtual machine:

The virtual machine consists of three basic sections:

747

a) An ISA network of data and control paths

b) A set of virtual spoolers for driving the ISA computation

and opening up the communication bandwidth of the array.

c) A collection of processing element (PE) descriptions for

creating specific ISA grids.

Virtual to real mapping:

Here we define a library of processor plugs which allow a number

of virtual processors to be essentially plugged into a single real

processing element of the underlying architecture. Thus, allowing a

large virtual grid to be mapped onto a smaller real grid.

The real architecture:

For simplicity we assume that this is a square orthogonally

connected grid of processors such as a transputer network, capable of

executing any of the virtual PE's and mapping plugs.

Now clearly the complete design and implementation of the proposed

system above would occupy a thesis by itself. Consequently, to

demonstrate the feasibility of the system we concentrate on the virtual

machine and the RISAL compile~which forms the core of the design.

To remain consistent with the rest of the thesis and to retain

the possibility of a straightforward mapping of virtual machine to real

processor architecture we implemented the ISA in OCCAM. Using the

powerful system features of Unix coupled with Loughborough OCCAM the

ISA was easily specified as a two part design consisting of:

1. PE library files

2. Grid architecture and virtual spoolers.

The virtual spoolers played the role of buffers for the ISA array

interface with higher levels of the system, allowing the bandwidth

748

of the input to meet that of the ISA. The grid architecture was a

simple specification of network connections between processors, the

PE libraries simply containing cell descriptions which responded to

ISA instructions with different characteristics. Loughborough OCCAM

allows the precomputation of library PE's and the grid connection

network, which could be simply linked when the virtual machine was

required to run - effectively plugging in the correct PE's. Thus a

user of the system can develop programs and new PE's with only an

abstract working knowledge of the ISA grid.

The virtual grid architecture is shown in Fig.{9.3.2) based on

the cell structure

I N<¥ta
\ NDATA = North input/output

E " = East " •
Sin

(

PE

Wdata .+--t..,..-".-....,.J

S • = South • • S out W " = West " •

) Edata
selector S = in and out

I = instruction in and out

•
Sdata

for a 4x4 case. The correct channels can be hooked up by a simple

computation using the grid PE position of the form,

PROC lOC{VALUE i,j, VAR r)=

SEQ

r:={{{i-l)*{n+l»+j)-l:

The PE to fit the locations is called as a library routine

EXTERNAL PROC PE{CHAN wn,we,ws,ww,rn, re, rs, rw, in, is, sw, se)=

and the library PE section uses the PE definitions

LIBRARY PROC PE{CHAN wn, we, ws, ww, rn, re, rs, rw, in, is, sw, se)=

-- code for cell here.

:g :g :g
~l r 1 '0 ~l '" '" '" .:: z ~ z

SELIO) ~ " SELIl) SEL(2) SEL(3)

AWE (0) 1.1 AWEll) 1.2 AWE(2) 1.3 AWED)

BWEIO) BWE 1 eWE 2

- -.:: ~ .:: ;:; ;Q

'" '" '" ~ .:: .:: z ~ z
~ " (8) IS) (6) (7)

2.1 2.2 2.3

- - - - ;:' ~ ~ ~ ;:: N

~ ~ ~ .:: .::
(10) Ill) (12) 1131

3.1 3.2 3.3

;:; ~ ;:; -~ ~ ~ ;:; .. '" '" '" e .:: .:: z ~ iri ~

(IS) (16) (17) (18)

4.1 4.2 •• 3

• - ~ ;; C; • ~ .:: .:: !2 '" ~ ~ ~
~ ~

FIGURE 9.3.2: Channel specification for ISA grid

1
1.4

2.4

3.'

.. '

SEL(4)

AWE(4)

[2] a

(14)

1191

INS-Inlltruc tion north aouti
AWS-'A'
BNS-'S'
SEL-selector vest east
AWE-'A'
aWE-'B'

750

The actual code is given in the Appendix. Included with the ISA grid

specification is the data and instruction spooler code. The spoolers

are concurrent processes representing buffers for data and instructions

input to the boundary cells of the grid. The spoolers also include data

output and instruction/selector garbage collection for values falling

off the grid. The interface between the virtual machine and the

program/PE development section is assumed to be of narrow bandwidth.

Infact all data and instructions are assumed to be placed in three

files DATA IN, SELECTOR, INSTRUCT, and output is dumped in DATAOUT to

represent virtual spool files. The virtual spoolers read these files

sequentially and convert the input into a parallel form for the ISA.

Likewise for the ISA output the spooler converts the output back into

a single stream output sequentially to DATAOUT. The reading of input

and writing of output data is performed in parallel with ISA execution.

Clearly this is the place where any bottlenecks are likely to occur

a) outplo4l: spool b) ;S:r'\fl,.l.l;

VIRTUAL SPOOLERS (for nz 4l

especially for large n. The spoolers can also be used to pad out unused

cells with dummy values, when the ISA program running is smaller than

the total number of virtual processors. Hence the system with a bounded

number of processors can simulate smaller networks without difficulty.

751

Next we consider the description of a very general processing

element which allows the simulation of a wide range of algorithms,

and also indicates the method of pumping instructions and selectors

through the array. By changing or reducing instruction definitions a

range of virtual PE's can be easily developed. The structure of the PE

is shown in Fig.(9.3.3} and consists of a central processing element

SELEC'I'ORIN

'w'DATA

Instruction NDATA

El
U

LN.BUF
E

'l1.J
J,

r-•
B Processor
U

c:...
Bu'

I
Il.BUF I I S.BOF

Instruction SOATA
out

Memory Organization

A R R
R C C N E

C 0 0

I

-
E

B

!..

I

R R

S •
0 0

o 1 2 3 4 5 6

SELECTOR OUT

1 J; I L 1; I ___ lL
A R R R

R ~ E
WORKING

eN • MEMORY
CO 0 0

., -
EDATA

Auxiliary memory for
temporary variables

+ data

msize

R • result register - holds result of computation until c has been read

C • c~unicatlon register

RNO • Register north data input

RED'

RSO-

RWO •

east

south

west

lnrtruction fo~t

Fe3

OP

f •

Fe2

PORT

Fol

OPDl

2 decimal digits

Instruction enable = (1<>0) AND select

FIGURE 9.3.3: Basic PE

FOO

OP02

752

enabled by the selector and any instruction (other than no-op), A

simple bus connects the port input buffers to memory, which contains

port value storage registers (RND, RED, RSD, RWD) as well as working

memory for data and results. R acts as the accumulator and is backed

up by ACC (a secondary accumulator for complex computations), and C is

the communication register. The processor embodies all the principles

of the ISA cell. Communication is achieved by first loading the output

buffers with C and then reading input and output in parallel. The input

buffers are then read sequentially to memory to complete the communication

phase. Various masks can be constructed for input buffers to prevent

overwriting of old buffers avoiding unnecessary movement of data in the

memory. The port mask is defined as part of the processor instruction

which comprises four fields each 2-decimal digits wide, allowing the

implementation of up to 100 instructions or internal memory addresses.

The port specification also allows lOO combinations of input/output

but only 16 have been used. One possible extension is to utilise the

extra slots to allow multiple communication registers in each cell.

REMARK: These operations can be implemented more effectively by using

bit logic and slices but Loughborough OCCAM is restricted in this

respect. Furthermore, a 2-digit field also allows a wide range of

Library PE's to be developed.

Fig.(9.3.4) indicates the operation codes and read masks for our

trial cell, (a high bit indicates that a value read will be sent to

memory, a low bit that it is not) •

The resulting instructions are easily decoded by the OCCAM code

SEQ j=[O FOR 4]

SEQ

fd[j] :=i\100

i:=i/100

i=instruction integer

Processor Operation Code.

OP CODE CO_1lI'

00 NULL No operat ion

01 COPY fobv R to C

02 ADD R; ~A"B

Ol SUB R~·A-8

04 MULT Rz""·B

oS DIV ',:A/s

06 MIN Rz"'HIN(A,B)

07 MAl< R:=M.a.X(A,8)

08 DATA C,-A

09 ..,., Mem[rOO) :"A

8~MEM{FOOl

Port Controllezl

N S E N INPl1rS VALID

0 0 0 0 No valid data

0 0 0 1 N valid

0 0 1 0 E valid

0 0 1 1 N,E valid

0 1 0 0 S vaUd

0 1 0 1 S,N valid

0 1 1 0 S,E valid

0 1 1 1 StE,N valid

1 0 0 0 N valid

1 0 0 1 W,N valid

1 0 1 0 N,E valid

1 0 1 1 W,E,N valid

1 1 0 0 W,S valid

1 1 0 1 tI,S,N valid

1 1 1 0 ",S,E valid

1 1 1 1 ",S,E,N valid

FIGURE 9.3.4

and the port mask with port:=fd[2]

SEQ i= [0 FOR 4]

SEQ

P[i] : =PORT\ 2

PORT:=PORT/2

The full PE is given in the program appendix.

753

Having defined a general PE definition, some simple test programs

were developed using a format akin to machine code - making the ISA

754

program difficult to modify or relate to the abstract algorithm.

Consequently the Replicating Instruction Systolic Array Language (RISAL)

was devised to provide a very primitive program environment but adequate

for testing. RISAL accepts instructions in an assembler like form, but

is fairly permissive about the format of statements, subject of course

to syntax (the core of which is shown in Fig.(9.3.5)~ RISAL also

performs a proportion of semantic rules which permit selectors,

instructions and data to be converted to ISA form by the same program.

Each instruction, selector or data command can be prefixed by a

replicating command which generates the following instruction a specified

number of times. Checks are performed to ensure that enough data,

instructions, or selector inputs are generated for the correct virtual

grid size. As a simple example,

DATA n,03,OO

reads the north data port and moves the value into the communication

register for the PE defined previously.

DATA n,03,OO; DATA n,03,OO; DATA n,03,OO; DATA n,03,OO:

issues the same command to 4 columns of a 4x4 grid simultaneously and

is equivalent to the replicated form,

REP(4) DATA n,03,OO:

More complex test examples are given below to clarify the syntax

and usefulness of the REP command for large arrays.

The structure of a file input to RISAL must identify the following

properties for the simulation:

(i) instruction (p), selector (s), or data (d) file.

(ii) the size of the grid - the instruction and selector values

can be different for rectangular grids.

1. RISAL FILE

2. SETUP

: -=r'<setUPI -"t--II LINE __ --_-_-_-;-11 END

S

----....:.----+9 GRID SIZE ----t J ---+, NUMBER OF LINES ---..

3. LINE ,

E INSTRUCTION r
DATA LINE ---~:
SELECT LINE ---'

4. INSTRUCTION

---'r'--'-L _..,'_RE_P_----t ___ <-> __ V_AL_UE_--> __ I_ -_-_-_-_-Jr...---I· ILlNE -,---..,.

5. ILINE

.,. OPERATIONIL ___ ._._TJ...._PO_RT_~ ____ ._=r-l OPDl
---t , -40PD2 ---'Jo

6. DATA LINE

DUne ---r--..---'"

NONE

7. DUne

-'rrT LI==:'_RE_>----+ ___ <_-___ V_AL_UE_~ ___) __ --_-~T ' DATA ITE."

I -------------------~

8. SELECT LINE

"'T"'-'-~' REP ___ <--of' VALUE_) T C~ __JT
L-________________ ,

9. VALUE=lnteger<gridsize

10. Grid size=Maximum number of columns or rows of processors

11. DATA ITEM=REAL (but can be extended to other more complex types)

12. OPERATION=RESERVED (Mnemonic) keyword for.operation

13. PORTS

14. OPD1}
OPD2

N

E

s

w

,
'----, .
Integers in range 0 ••• msize-l

(msize=size of PE private memory)

FIGURE 9.3.5: RISAL syntax diagrams

•

,

755

756

(iii) the program length - which provides the OCCAM ISA with a

primitive shut down facility.

The choice of p,d, or s directs the RISAL compiler to fix the syntax

for the particular type of file. The data file is more complex than

the rest, as it requires the specification of all four boundaries on

the ISA grid. We could define a single file for each boundary but this

complicates checking for missing data. Instead we define a single file

and sequentially buffer boundary input/output to allow input data to be

more easily matched with the ISA instruction sequence. For large grids

this method becomes impractical and adding a preprocessor to separate

data out into temporary files appears to be the best alternative.

Finally, a special data command NONE is included to mask out a

complete boundary, e.g.

n 1.0,1.0,2.0,3.0;

e 3.0,rep(3) 0.0;

s rep(4) 0.0;

none

inputs (1.0,1.0,2.0,3.0) to the north grid boundary, (3.0,0.0,0.0,0.0)

and (0.0,0.0,0.0,0.0) to the east and south boundaries respectively with

west masked out and defaulting to (0.0,0.0,0.0,0.0).

REMARK: Data must always be read in the order n,e,s,w. RISAL checks

this,

ISA programs are produced and executed as follows:

(i) Develop three files

Il = instructions

Sl = selectors

Dl = data

(ii) Run RI SAL to check syntax and generate the files

'Instruct', 'Selector', 'Data in'

757

(iii) All bugs are now semantic errors in the instruction

flow of the ISA program,

Compile ISA.occ (virtual grid + spoolers)
if not

Compile PEm.occ (m=library element number) 1
compiled
already

Link two programs (plug in PErn)

(iv) Execute virtual rSA, results placed in file 'dataout'

It is up to the user to ensure that RISAL places its output in the

required files and that PEm.occ exists.

The procedure above is quite simple, and was used successfully to

produce the following test examples which perform correctly on the

virtual grid. The first two examples are quite straightforward, the

second two are more involved.

EXAMPLE 1: Sorting a list of 4 numbers

Given

(i) I

(ii)

BIN MAl(MIN MAX
,I. +: ~+: 4 I I

NULL
!
3

lUN MAl(

J, !
NULL

.L

2

ISA PROGRAM - Sorting a list of 4 numbers

(i) Program

p(4, 14)
rep(4) null ,0,0:
"rep(4) null ,0,0:
rep{4) null ,0,0:
rep(4) data n,3,0:
min e.4,I, max w,6,1; min e,.,1; max w,6,1:
rep(4} copy ,0,0:
null ,0,0, min e,4,1; max w,6,1; null ,0,0:
rep(4) copy ,0,0:
min e,4,!, max w,6,1; min e,4,1; max w,6,1:
rep{4) copy ,0,0:
null ,0,0; mln e,4,!; max w,6,1; null ,0,0:
rep(4) copy ,0,0:
rep(4} copy ,0,0:
rep(4) null ,0,0
end

MIN MAl(MIN MAl(

.l< :It * k

(Hi) I 3 + 1 I 4 +2
NULL MIN MAl(NULL

,J, J. J, *
(iv) 1 4

(v) 1 2 3 4

I

(H) Data (Hi) Selector

d(4,14)
none;none;none;none
none;none;none;none
none;none,none;none
n 4.0,3.0,2.0,1.0,
none,none,none:
none;none,none;none:
none;none,none;none:
none;none;none;none:
none;none,none;none:
none;none;none;none:
none;none;none;none:
none;none;none;none:
none;none;none;none:
none;none;none;none
end

0(4,14)
l,rep(3)0
l,rep(3)0
1, rep(3)0
l,rep(3)0
l,rep(3)0
1,rep(3}O l
l,rep(3)0
1,rep(3)O :
l,rep(3)0
l,rep(3)0
l,rep(3)0
l,rep(3)0
l,rep(3)0
l,rep(3)0
end

EXAMPLE 2: 2x2 matrix transpose (see Fig.(9.l.3))

(i) Program

(H)

p(4,13)
(load matrix I
data 0,03,0, rep{3}null n,O,O:
rep(2)data 0,03,0; rep(2)null n,O,O:
null n,O,O;data 0,03,0; rep(2) null n,O,O:
(tranpo.e I
data 8,04,0; data w,06,O, rep(2) null n,O,O:
data 0,03,0, rep(3) null 0,0,0:
data s,05,O, rep(3) null n,O,O:
data e,04,O;data w,06,OO; rep(2) null n,o,o :
{ read out }
data s,05,00; data 5,05,00; rep(2)null n,O,O:
rep(4) null n,O,o:
rep(4) null n,O,O:
rep(4) null n,O,O:
rep(4) null n,O,O:
rep(4) null n,O,O
end

Data (Hi)

d(4,13)
n 6.0,rep(3)0.0;
none; none; none:
n 8.0,2.0,rep(2)O.0;
none; none; none :
n 0.0,5.0,0.0,0.0 ;
none; none; none
none: none; none none
none;none;none none
none; none; none none
none;none;none none
none; none; none none
none;none;none none
none;none;none none
end

Selector

s(4,13)
l,rep(3)0 :
rep(2)l, rep(2)0
1, rep(3)0 :
1, rep(3) 0 :
rep(4) 0 I
rep(2)l, rep(2)0
l,rep(3) 0 :
rep(4) 0 :
rep(2) 1, rep(2)
1, rep(3) 0
1, rep(3) 0 :
1, rep(3) 0 :
rep(4) 0
end

758

0:

759

EXAMPLE 3: 4x4 matrix transpose

This is a more complex transposition problem incorporating the

use of the 2x2 problem defined earlier. Trace the programs through

to ensure that,

1 2 3 4T fl 5 9 13

5 6 7 8 2 6 10 14
=

9 10 11 12 3 7 11 15

13 14 15 lJ 4 8 12 16

EXAMPLE 4: 4x4 LU decomposition

Trace through the program to show that:

2 3 3 ~ ~ l 4 1 2

~
1

=

J 2 2 5

~.5
0.2 1

II 4 1 0.1 -1.107143

r 3 3 2 l l
-5 -4 -1

2.8 -0.8 J
-1. 785714

REMARK: If an extra column was used to supply the r.h.s. of a linear

system the factors can be ignored producing the Gaussian

Elimination solution.

p(4,34)
data 0,3,0; rep(3) null ,0,0:
rep(2) data n,3,O~ rep(2) null ,0,0:
rep(3) data n,3,0; nulll ,0,0:
rep(4) datA n,3,0 :
null ,0,0, rep(3) data n,3,0:
rep(2) nul1,0,0; rep(2) data n,3,0:
rep(3) null ,0,0; data n,3,0:
rep(4) null ,0,0:
data e,4,0; data w,6,O; rep(2) null ,0,0:
data n,3,0; rep(3) nul1,0,0:
data 8,5,0; nu11,0,0, data e,4,0; data w,6,O:
data e,4,0; data w,6,O; data n,3,0; null ,0,0:
rep(2) nu11,O,O; data 5,5,0; null ,0,0:
data e,4,O, datA w,6,O; datA e,4,0; data w,6,O:
null ,0,0; data e,4,0; data w,6,O; null ,0,0:
data e,4,0; data w,6,O; data e,4,0; data w,6,O :
data n,3,0; data e,4,O;data w,6,O; null ,0,0:
data 6,5,0; data n,3,0; data 8,4,0; data w,6,O:
data n,3,0; data 6,5,0; rep(2) null ,0,0:
data 5,5,0; data n,3,0; rep(2) null ,0,0:
null ,0,0; data 6,5,0; rep(2) null ,0,0:
data e,4,0; data w,G,O: rep(2) null ,0,0:
null ,0,0; data e,4,0; data w,6,O; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0:
null ,0,0; data e,4,O; data w,6,0; null ,0,0:
data 8,5,0; null ,0,0; data e,4,O, data w,6,0:
rep(2) data 6,5,0; rep(2) null ,0,0:
rep(3) data 6,5,0; null ,0,0:
rep(4) data 5,5,0:
rep(4) data 6.5.0:
null ,0,0; rep(3} data 8,5,0:
rep(2) null ,0,0; rep(2} data 6,5,0:
rep(3) null ,0,0; data 6,5,0:
rep(4) null ,0,0
end

(i) Program

EXAMPLE 3: 4x4 matrix transpose program

d(4,34)
n 13.0,0.0,0.0,0.0;
none;none;none:
n 9.0,14.0,0.0,0.0;
none;none;none:
n 5.0,10.0,15,0,0.0;
none;none;none:
n 1.0,6.0,11.0,16.0;
none;none;none:
n 0.0,2.0,1.0,12.0;
none;none;none:
n 0.0,0.0,3.0,8.0;
none;none;none:
n 0.0,0.0,0.0,4.0;
none;nonejnone:
none;none;none;none:
noneinone;none;none:
none;none;none;none:
none;none;none;none:
nonejnone:nonejnone:
none;none;nonejnone:
none;noneinone:none:
none;none;none;none:
none;none;none;none:
none;none;none;none:
none;none;none:none:
none;none;none;none;
none;none,none;none;
none,none;none;none:
none;none;none;none:
none;none;none;none;
none;none;none;none:
noneinone;none;none:
none;none;none;none:
nonejnonejnone;none:
none;none;none;none:
none;none;noneinone;
none:nonejnone;none:
noneinone;noneinone:
nonejnone;none;none:
nonejnone;none;none:
noneinone;none;none
end

(H) Data

8(4,34)
1,0,0,0:
1,1,0,0:
1,1,1,0:
1,1,1,1:
0,0,0,0:
0,0,0,0:
0,0,0,0:
1, rep(3) ° :
1, rep(3) 0:
0,0,1,0:
rep(3) 1, 0:
1, rep(3) 0 :
1,0,1,1:
rep(3) 1, 0:
1,1,0,0:
1,1,0,0:
0,1,0,0:
1,1,0,0:
0,1,1,0:
rep(4)1:
rep(3) 1,0:
rep(4) 1
1,1,0,0:
1,1,0,0:
1,1,0,0:
rep(4)0:
rep(4)0:
rep(3) 1,0:
1,1,0,0:
1,0,0,0:
rep(4) 0:
rep(4) 0:
rep(4) 0:
rep(4) 0
end

(Hi) Selector

{ 4*4 lu decomposition}
p(4,39)
{ load matrix}
data n,3,0; rep(3) null n,O,O
rep(2) data n,3,0; rep(2) null n,O,O:
rep(3) data n,3,0; null n,O,O :
rep(4) data n,3,0:
(start factorisation)
mov &,1,7; rep(]) data n,3,0:
data n,3,0; moy s,1,7; rep(2) data n,3;0:
diy ,7,3; data n,3,0; moy 5,1,7, data n,3,0:
copy ,0,0; null ,0,0; data n,3,0; moy s,1,7:
null ,0,0; data w,6,O, null ,0,0; data n,3,0
null ,0,0; mult ,3,6; data w,6,O, null ,0,0:
null ,0,0; sub ,7,0 I mult ,3,6: data w,6,0
null ,0,0: copy ,0,0; sub ,1,0; mult ,3,6 :
null ,0,0; moy s,1,1; copy ,0,0; sub ,1,0 :
null ,0,0; data n,3,0; moy s,1,1: copy ,0,0
null ,0,0; diy ,7,3; data n,3,0: moy 5,1,7:
null ,0,0: copy ,0,0; null ,0,0; data n,3,0:
rep(2) null ,Q,O; data w,6,O; null ,0,0:
rep(2) null ,0,0; mult ,3,6; data w,6,0~
rep(2) null ,0,0; sub ,7,0; mult ,3,6:
rep(2) null ,0,0; copy ,0,0; lub ,7,0:
rep(2) null ,0,0; moy B,1,7; copy ,0,0:
rep(2) null ,0,0; data n,3,0; moy 5,1,1
rep(2) null ,0,0: diy ,7,3; data n,3,0
rep(2) null ,0,0; copy ,0,0; null ,0,0
rep(3) null ,0,0; data w,6,O:
rep(3) null ,0,0; mult ,3,6:
rep{3) null ,0,0; sub ,7,0:
rep(3} null ,0,0; copy ,0,0:
(read result)
data 6,5,0 ; rep(3) null· ,0,0:
rep(2) data 6,5,0; rep(2) nul1,0,0:
rep(3) data 5,5,0; nul1,0,0:
rep(4) data 6,5,0:
rep(4) data 5,S,0:
rep(4} data 5,S,0:
null ,0,0; rep(3} data 5,5,0:
rep(2) null ,0,0; rep(2) data 5,5,0:
rep(3) null ,0,0: data 6,5,0:
rep(4) null ,0,0
end

(i) Program

EXAMPLE 4: 4x4 LU decomposition program

(H)

0(4,39)
1, rep(3)0
rep(2)l, rep(2)0:
rep(3)!, 0:
rep(4)1 :
rop(4)0 :
o ,1.,rep(2)0:
o ,l.,!,O:
0, rep(3)!:
0, rep(3)1:
0, rep(3)1:
0, rep(3)1:
0, rep(3)!:
rep(2) 0, rep(2)1:
rep(2) 0, rep(2)1:
rep(2) 0, rep(2)1:
rep(2) 0, rep(2)!:
rep(2) 0, rep(2)1:
rep(2) 0, rep(2)1:
rep(2) 0, rep(2)1:
rep(2) 0, rep(2)1:
rep(3) 0, 1:
rep(3) 0, 1:
rep(3) 0, 1:
rep(3) 0, 1:
rep(3) 0, 1:
rep(3) 0, 1:
rep(3) 0, 1:
rep(3) 0, 1:
rep(4) 0:
rep(4) 0:
rep(4) 0:
rep(4) 1:
rep(3) 1,0:
rep(2) 1, rep(2) 0
l,rep(3) 0:
rep(4) 0:
rep(4) 0:
rep(4) 0:
rep(4) 0
end

Selector

d(4,39)
n 3.0, rep(3) 0.0 ,
none; none; none:
n 2.0, 4.0, 0.0, 0.0
none; none; none:
n 4.0, 2.0, 1.0 ,0.0;
none; none; none
n 2.0, 1.0, S.O, 2.0;
none; none; none
n 0.0, 3.0, 2.0, 1.0;
none; none: none:
n 0.0, 0.0, 3.0, 3.0;
none1 none; none:
n 0.0, 0.0, 0.0, 2.0;
none, none, none:
none;none;none;none:
none;none;none;none:
none;noneinone;none:
none;none:none;none:
none;none;none;none:
none;none;none;none:
none;nonelnone;none:
none;none;none,none:
none;none;none,none:
none;none;none;none:
none;none;none;none:
nonelnone,none,none:
none,none,none;none:
none;none,none;none:
none;nonelnone;none:
noneJnoneJnone;none:
nonOJnOnelnone;none:
none,nonelnone;none:
none;none;none:none:
none:none;none,none:
none,none;none;none:
none;none;none;none:
none;none;none,none:
none;none;none;none:
none;none;none;none:
none;none;none;none:
none;none;none;none:
none;none,none;none:
nono;none;none;none:
none:nonelnoneinone :
none;none;none;none:
nonel none;none:none
end

(Hi) Data

34 34
8010300 0 0 0 1 0 0 0
8010300 8010300 0 0 1 1 0 0
8010300 8010300 8010300 0 1 1 1 0
8010300 8010300 8010300 8010300 1 1 1 1

0 8010300 8010300 8010300 0 0 0 0
0 0 8010300 aOl0300 0 0 0 0
0 0 0 aOl0300 0 0 0 0
0 0 0 0 1 0 0 0

8020400 80a0600 0 0 1 0 0 0
8010300 0 0 0 0 0 1 0
8040500 0 8020400 8080600 1 1 1 0
8020400 8080600 8010300 0 1 0 0 0

0 0 8040500 0 1 0 1 1
8020400 8080600 8020400 80a0600 1 1 1 0

0 8020400 8060600 0 1 1 0 0
S020400 S060600 8020400 S080.00 1 1 0 0
8010300 8020400 8080600 0 0 1 0 0
8040500 S010300 8020400 80S0.00 1 1 0 0
8010300 8040500 0 0 0 1 1 0
a040500 aOl0300 0 0 1 1 1 1

0 S040500 0 0 1 1 1 0
a 020400 a080600 0 0 1 1 1 1

0 8020400 8080600 0 1 1 0 0
a020400 S080600 8020400 l080600 1 1 0 0

0 S020400 soa0600 0 1 1 0 0
8040500 0 a020400 S080600 0 0 0 0
a040500 8040500 0 0 0 0 0 0
8040500 8040500 8040500 0 1 1 1 0
8040500 8040500 8C40500 !040500 1 i 0 0
S040500 8040500 a 040500 8040500 1 0 0 0

0 a040500 8040500 8040500 0 0 0 0
0 0 8040500 S040500 0 0 0 0
0 0 0 8040500 0 0 0 0
0 0 0 0 0 0 0 0

(i) Program (H) Selector

EXAMPLE 3: Matrix transpose ISA machine code

39 H
80'0300 '0000 '0000 '0000 , 0 0 0
80'0300 80'0300 '0000 '0000 , , 0 0
80'0300 80'0300 80'0300 '0000 , , , 0
80'03 60'0300 80'0300 80'0300 , , , ,
9040'07 80,0300 80'0300 80'0300 LOAD MATRIX 0 0 I 0
80'0300 9040'07 0'030 80'0300 0 1 0 0
5000703 80,0300 9040' 07 0'0300 0 , , 0
'000000 0 30'0300 9040'07 0 , , ,

0 6080600 0 80'0300 0 , , ,
0 4000)06 I!'Oa0600 0 FIRST PHASE 0 , , ,
0 3000700 4000306 8080600 0 , , ,
0 lOO0700 4000306 0 1 , ,
0 9040107 '000000 3000700 0 ~ 1 ,
0 50'0100 04 107 0 C 1 1
0 5000701 5010300 9040107 0 0 1 1
0 1000000 0 8010100 0 0 , 1
0 0 5080600 0 0 0 , ,
0 0 4000306 6080600 SECOND PHASE 0 0 1 1
0 0 3000700 4000306 0 0 1 ,
0 0 100 000 3000700 0 0 , ,
0 0 9040'07 '000000 0 0 0 ,
0 0 B010300 04 107 0 0 0 1
0 0 5000703 aO'0300 0 0 0 ,
0 0 1000000 0 0 0 0 ,
0 0 u '080tOO 0 0 0 ,
0 0 0 4000306 THIRD PI!ASE 0 0 0 1
0 0 0 3000700 0 0 0 1

0 0 1000000 0 il 0 ,
8040500 0 0 0 Q 0 0 0
8040500 604 500 0 0 0 0 0 0
8040500 e040500 6040500 0 0 0 0
S040500 8040100 S040~OO 80<0500 1 1 1 ,
8040~00 6040500 B040500 80,0500 , 1 1 0
8040500 8040100 8040500 8040 soa 1 1 0 0

0 a040500 8040500 80lwOSOO , 0 0 0
0 8040500 8040500 FOURTH PHASE 0 0 0 0
0 0 0 a040500 (OUTPUT RESULT) 0 0 I Q 0
0 0 0 0 0 0 0

0 0 0 0

(i) Program (11) Selector

EXAMPLE 4: LU-decomposition ISA machine code

764

Although RISAL is very primitive it has been useful in

illustrating the ISA's capabilities and has suggested Some improvements

to the design of PE's, the interfacing arrangements such as spooling

for the virtual grid and a number of additional features to produce a

more robust version of RISAL itself.

To allow a wide flexibility in PE development it was observed that

reading operation definitions from a file (in alphabetical order)

including operation codes allowed new commands to be enlisted easily

inside RISAL and permitted the same codes for different operations in

alternative PE's. We remark that care must be taken in using duplicate

codes but no real problems were encountered.

For RI SAL three main constructs suggested themselves and can be

listed as follows:

(i) Replicated line instruction (REPL): of the form REPL(count) [Line]

where the line enclosed by [,] is repeated count times e.g.

REPL(7) [data n,03,OO; rep(3) null,O,O]

This appears simple to implement with a stack to maintain nested REP

operations and storage to hold the full line statement. For large grids

this may pose a significant problem.

(ii) Replicated line section (REPS): For example,

data n,03,OO; REPS (count) [null,o,O; data n,03,OO]; null,O,O:

which would repeat the section of the line in brackets count times.

The main difficulty in implementing this statement is keeping track of

REP nesting and checking that the correct number of instructions is

generated.

(iii) Replicated line shift (REPLS): of the form,

REPLS(count,shift) [line]:

765

Here a specified line is replicated count times and on each replication

is shifted right or left. 'Shift' places according to the sign of

the shift. Instructions falling off the end of a line must be neglected

and spare places filled with a default operation like null.

Many variations to these basic constructions such as cyclic line

shifting, shifting of line sections, and conditional line shifting are

also apparent - but amount only to improving the readability of the

ISA program.

Next consider the mapping of the design onto some real underlying

mesh architecture which preserves operation of the virtual grid. There

are basically two types of mapping we can consider with 1-1 or many-l

processor correspondences.

(i) 1-1 correspondence:

This is the simplest mapping, in which each PE in the virtual

grid maps onto a single real processing element (e.g. a transputer) •

Some modifications to the ISA program are required to ensure only 4

outgoing and 4 incoming channels. Notice however that the PE is

designed to allow instructions and selectors to be processed sequentially

before data communication allowing multiplexing of instructions and data

on the same channels.

(ii) MANY-l correspondence:

For large virtual grids we can consider mapping a number of virtual

PE's onto a single PE, to reduce the total number of real PE's and

reduce the actual mesh bandwidth. The many-l mapping is implemented

by a special virtual PE definition which acts like a plug adapter.

fixing onto a real PE and essentially simulates a block of virtual

processors. The structure of a plug is shown in Fig.(9.3.6) , together

j 1 [""-----7 -- ---\-----l ,
I PLUG SPOOLER , ,

I I 4 ,
~rp E 'fN I L 1 2 3 4
I U u I

G 4 5 6 7 6 4 G
I S s I
I p p I I 9 la 11 12 8 0 I
~O ~~ it 13 14 15 16 LL,
I I
I PLUG SPOOLER I

I L ____ ~ ___ _ _ L- ____ J

f
1 i

I PLUG SPOOLER

PLUG FOR

16-1 mapping

(LISA PE)

J. f .Lf 'NO PLUG LEVEL MAPPING

virtual grid to a
le real processor

re p 16-1 16-1

~ ~ plug '--" plug -L
0-- t-U

G G
S if 11 s
p p
0 0
OH 16-1 f--' 16-1 r~ L~ plug ~ plug rE E

W!.
1 T JT

~

PLUG SPOOLER J

r
I
I

1 1

_Jl ____ ,
TRANSPUTER I

PLUG I

6-6
sing

4-1 plug

I
I

I ~PPING TO
I REAL ARCHITECTURE

---lI
..--{

I
I
I

VIRTUAL
PE
BLOCK

~

r
I

I I L----Ir----J

FIGURE 9.3.6: ISA plugs

766

767

with nested plug connections. The plug idea solves the spool er problem

for large meshes by producing virtual fan-in and fanout communication

trees with heights proportional to the number of recursive plugs

adopted. The only problem is the reduced efficiency of the real array

having to simulate all the plugs and virtual PE's. A second solution to

the many-l mapping is to rewrite the plug definition to accept a modified

ISA program. Notice that a plug implies some multiplexing of instruction

and selector information on a single cell input. In Section (9.5) we

discuss an efficient alternative to virtual plugs.

9.4 SIMULATION OF ARRAYS WITH BOUNDARY AND SPECIAL PROCESSING ELEMENTS

The SSPS uses a virtual instruction systolic array to simulate

SIMD, MIMD and systolic algorithms using RISAL. Linear pipeline

algorithms are the simplest to implement using only a single ISA row,

and a range of simple PE's can be developed to provide efficient

implementations of basic cell operations. Systolic arrays with

homogeneous cells require the development of a PE with only a single

instruction. These algorithms extend easily to I-D and 2-D SSPS

simulations due to their close relation to SIMD algorithms.

More general systolic algorithms have a few different cells making

them partial SIMD algorithms, computing multiple instructions on multiple

data streams but with instructions fixed over time. In this section we

develop the idea of Dynamic Instruction Modification (DIM) which allows

a class of systolic algorithms to be simulated in the same time as full

SIMD ISA programs. As examples, we consider the familiar triangular

Gaussian Elimination, and hexagonal LU decomposition arrays.

Before examining these algorithms we consider the simpler problem

768

of simulating linear arrays on the SSPS. For simplicity we consider

two separate cases:

(i) arrays with only a single cell type

(ii) arrays with multiple cell types.

Single cell types:

Ths mapping is quite simple. Define the virtual ISA where n is
n

the number of cells in the linear array, and develop a library PE to

accept a single instruction 11 equivalent to that cell type.

Theorem 9.4.1: If A is a linear array with one cell type and n-cells

which computes in a time T(n), it can be simulated on the virtual ISA
n

in T(n)+n steps.

~: (By construction of the ISA program)

Without loss of generality let n~4, then,

(i) Select a 4x4 ISA grid with PE:cell then the ISA
4

program below

simulates A.

,
'1 '1 '1 1

'1 '1 '1 '1 T(n)

'1 '1 '1 '1

'1 '1 '1 '1

1 .0. 1 1 1 1 ci=cell 1-1(1)n.

o .0. 0000

o '0' 0000

o .0. 0000

T(n) n

FIGURE 9.4.1: ISA simulation of single cell type I-D arrays

769

(ii) placing selectors in the first row of the grid requires n=4 PE

cycles.

(iii) the algorithm requires T(n) array/PE cycles hence T(n)

instructions and selectors yielding the total time T(n)+n steps.

During the selector setup period no-ops instructions are pumped into the

grid. Data can be input from north, west, and east, making the

simulation sufficiently general for many pipeline problems. The only

significant drawback being the inefficient use of processors. Later we

show how to improve efficiency.

Multiple cell types:

As a simple example consider the back substitution array

where two types of cell are required, and prove the following theorem.

Theorem 9.4.2: If A is a linear systo1ic array of n cells with multiple

cell types and computation time T(n), it can be simulated on the ISA in

T(n)+n steps on the ISA.

Proof:

Without loss of generality we can consider just two cell types and

proceeding in a similar manner as for Theorem (9.4.1) to derive the ISA

program structure

1 ••• 1 1

0'0' 00

0.0. 00

o _0. 00

FIGURE 9.4.2: ISA simulation of multiple cell type 1-D arrays

770

yielding the identical timing.

As before we have a large inefficiency, and we assume that the

number of input and outputs fit the ISA grid. For more complex examples

the PE definition must be rewritten to multiplex data on the available

channels, altering the algorithm time to,

cT(n) + n = O(T(n» •

The extension of the proof to many cells is trivial, when each PE is

capable of executing any of the cell functions.

For 2-D systolic arrays simulation is split into two types:

i) arrays with a single cell type

ii) " " multiple cell types.

Single cell type 2-D arrays:

Arrays of this type include problems like matrix multiplication

and speech recognition (Frison & Quinton [85]), and 'can be easily

simulated by a natural extension of linear single cell techniques.

Theorem 9.4.3: A 2-D systolic array using a single cell type can be

simulated by the ISA grid in T(n)+2n where T(n) is the time of the
n

original array.

Proof:

Again without loss of generality put n=4, and define a grid with

a PE implementing three operations, Il=cell operation, Io=the no-op

instruction, I2=a setup operation. 12 reads data from north to south

and decides using the associated input data if the cell is to be switched

on (as opposed to selected), e.g.

read North A

IF A=O THEN {change instruction to I }
1

ELSE {A=A-l}

Next we develop the set up phase of a program using Fig.(9.4.3).

771
1, 1, '1 1,

1, 1, '1 '1
T(n)

1, 1, 1, '1

1, '1 1, 1,

12;0 12 ,0 1
210

1
210

12,1 12 ,1 1211 1211 n

12,2 1212 1212 1212
1

213
1

213 12;3 12;3

10 10 10 10

1 •.. 11. •• 11 1 1 1 1

10 10 10 10

1 ... 11. .. 11 1 1 1 1

10 10 10 10

1 ... 11. .. 11 1 1 1 1

10 10 '0 10

1 ... 11. .. 11 1 1 1 1

~~ ~--------------------~
T(n) n

n

I
2

;A E 12 with associated data value A

FIGURE 9.4.3: ISA simulation of single cell type 2-D array

as follows:

a) we require n steps to filter selectors and 10 into the array

b) after a further n steps, all the 12 associated with address data

get modified to 11 and the array starts computing.

c) compute normally, Illc now has real data c associated with it

on the north port.

Thus the total time is given by T(n)+2n.

Theorem (9.4.3) allows 2-D Single cell type systolic algorithms

which do not have a refracted wavefront input format to be setup and

run on the ISA. This application is particularly useful if a suitable

dummy input to convert algorithms to the refracted form is not available.

In addition, Theorem (9.4.3) also illustrates the concept of dynamic

772

instruction modification (DIM) where essentially instructions moving

through the array systolically can be modified. This idea is essential

for simulations with multiple cell types.

Multiple cell type 2-D arrays:

Like the linear (I-D) arrays multiple cell type 2-D arrays are

simulated in the same manner as the single cell 2-D arrays except that

each ISA PE is capable of implementing each cell type. It follows that

the simulation time is the same, and we consider here just two examples

to illustrate the technique.

The first problem we consider is the triangular Gaussian Elimination

array (of Gentleman & H.T. Kung [81]) which represents a significant

simulation problem. Notice that if the ISA is to be used, the lower

triangular part of the grid will be inactive throughout the computation.

The data values flow from·north to south, the same direction as

instructions, but the distribution of cell types is far from ideal.

The different cell types inside each column mean than an instruction

flow of a standard ISA cannot possibly mimick the operation of the array

without increasing execution time using an arbitrary PA program

simulation or modifying dataflow. Here we show that the algorithm can

be preserved in time, structure, and data flow with only the addition

of ISA set up time, using DIM. If the array is to be used with high

throughput i.e. one problem instance after another, the setup time is

an acceptable overhead. The DIM technique is used this time to set

the cell type and control the individual cells encountered by entering

different instruction states as the instructions move through the array.

To understand the DIM operation we need to recall the virtual ISA

instruction format, where 4 fields (2 digits wide) were adopted. We

773

construct a new PE in which the op"Code part of the instruction is

either active or inactive (no-op) making it similar to a selector.

The opdl and opd2 which normally reference data inside a PE now carry

data which can be interpreted as true data or an instruction. For this

simulation the nested DIM instructions have the form:

'0 '0 '0
1 0 0

1 0 0

0 0

0 0

a) Setup

0 0 ~
's 12 '1

1 1 1

'0 '0 '0

1 1 1

1 1 1

c) Full row active

1
's IS

1

e) Third row

IS

'0 12 11 11
0 1 1

10 '0 10
0 1

0

0 1

b) Create boundary cell

~ (0) [a []
11

1 ~ G GJ ~
'0 's 's '2

1 1 1 1

10 10
,

0
1 1 1 1

d) Create second row

f) Complete array

'1

10

~
GJ

11

1

'0
1

FIGURE 9.4.4: DIM startup procedure for triangularisation array

774

OPD2 =

r
5 null cell

4 shift data north to south

1
3 execute cell

2 select cell type divider

l 1 select cell type IPS

1 an execute cell load north input into save
OPDl =

1
registers

otherwise perform cell operation

{ 8 read data

0 null.
OP =

we now configure the array on the ISA grid, with instruction

modifications part of the virtual PE plugged into the grid, with the

format,
13 ,1 = DATA NW,l,O

13 ,0 = DATA NW,O,O

and data for the matrix to be eliminated tagged to instructions the

array setup is performed as shown in Fig. (9.4.4) yielding the total

timing T(n)=3n+(n+2) steps as follows:

(i) setup =2 steps (as pipelined with computation)

(ii) elimination = 3n steps

(iii) readout result = n.

Notice that the number of steps is the same as for the original

systolic array during computation. Even the dedicated array must

include n-steps to output the triangularized matrix.

The hexagonal LU-decompcsition array represents a similar problem

requiring only two cell types. However some cells of the same type are

orientated differently and for purpcses of simulation must be treated

as different cells. In addition the hex array uses a diagonal link

which requires special consideration. Fig.(9.4.S) shows the

correspcndence between hex cells and the grid processors of the ISA.

Type 2:

c .
out

~e 3:

a out

c
out

A
out

b
out

c
out

tmp 11----'
OUt;

'-.r-"'..-'

tnp b
in out

A c ou in

~

•
4- ~-ut

n

out

tmPi c t n ou

b a
out ".n

..
tmPin 'lout

t1 :west :=south 775
east:=save1
south: =save2

t1 :west:=south
east:=save1

bout south:=save2

Ain t2:cout=cin + (Ain*bin)

north:=Ain
savel:=bin
save2 :=c t ou

t1 :west:=south
c east:=save1
out south:=save2

bin t2:cout:=cin+(Ain*bin)

north:=c t
DU

savel :=cin
save2:=ain

t1 :west:=south 1--. bout east:=savel

a out b .
out

Mapping of hex cells to ISA grid

TWo cycle computation

(i) cycle 1 move c
out

up and left

(ii) cycle 2 real computation

!
a out

west:=save2

t
2
:If

c =0
in

A :=1 out
true·

4 t:=l/Ci ou n
north:=cin
save1:=-1 (bout)

save2 :=4 t ou

FIGURE 9.4.5: Cell types for hexagonal LU-decomposition

The reciprocal cell of the hex array is placed in the top left

(position 1,1) PE, which automatically defines the layout of the

other processors. Hex cells rotated by 120· anti-clockwise appear

776

in the first row, and hex cells rotated by 120· clockwise in the first

column of the ISA. The remaining (n-l)*(n-l) 'normal' cells occupying

the (n-l)*(n-l) ISA grid consisting of (i,j) i,j=2(1)n ISA rows and

columns. Diagonal links are simulated by adding an extra cycle to

each basic computation used solely for data movement. A diagonal

movement is then achieved by shifting elements north and then west,

hence the extra cycle. As a result the normal algorithm time 3n+min(p,q)

for a matrix of bandwidth w=p+q-l is increased to 2(3n+min(p,q)).

Using the DIM technique all the cells must be setup and started

simultaneously, requiring 2n steps as illustrated by Fig.(9.4.6). The

setup time appears extravagant but for repeated use of the array is

extremely efficient.

Both the designs were tested using RISAL and the resulting

programs are given below, the virtual PE definitions appear in the

program appendix with the ISA. Finally, for a banded matrix the LU

scheme is easily modified to incorporate more than one null operation

code to mask out cells above and below the main grid diagonal.

To conclude this section we return to the inefficient cell usage

of linear array schemes, where only a few rows of· the ISA grid were

used. Fig.(9.4.7) illustrates some efficient linear array layouts

for our 4x4 test grid. It should be clear that cells with different

orientations of communication but the same cell type can be modelled

using a DIM setup scheme to improve processor utilisation. Hence we

have shown that systolic arrays with different cell types can be

'4 '0 '0 '0
1

If '\
1~1 '2

'3

0 1 0

0 0 0

0 h

a) b)

/''\ ~,~ ,
'2

\.1 0..J 1 Q 100 f\ '':j '2
\.1 1

K9 '1
1 0

r:-\ 18 '1
~O~ 1 0

'3

1 0 0 G '1
1 0 0

'3

0 0 0 1 0 0 0

c) d)

e) f) u

L

g)

11 :: 10 ,1 .. DATA N,E,S,..."O,l
INPtrr

DATA N,E,S.W,j,l

FIGURE 9.4.6: DIM setup procedure for hex LU decomposition
simulation

777

p(4,17)
rep(4) null ,0,0 :
data ,0,2; rep(3) d3ta ,0,1 :
data n,1,3, rep(3} null ,0,0 :
data n w,O,3; data n,1,31 rep(2) null ,0,0:
rep(2) data n w,O,3; data n,1,3; null ,0,0:
rep(3) data n W,Q,); data n,1,3:
data 8,0,4; rep(3} data n w,0,3:
rep(2} data 6,0,4; rep(2) data n w,O,l
rep(3) data 8,0,4; data n w,O,l:
rep(4) data 6,0,4:
rep{4) data &,0,4:
rep(4) data 6,0,4:
null ,0,0; rep(3) data 6,0,4 :
rep(2) null ,0,0; rep(2) data 8,0,4
rep(3) null ,0,0; data 8,0,4 :
.rep(4) null ,0,0:
rep(4) null ,0,0
end

RISAL PROGRAMS FOR TRIANGULAR

AND HEXAGONAL ARRAY USING DIM

d(4,17)
noneinonelnone,none
none;none,none;none
n 2.0,0.0,0.0,0.0 I
none,nonernone :
n 4.0, 3.0, 0.0,0.0
none,none;none :
n 2.0, 1.0, 3.0, 0.0;
noneinon.,none :
n 3.0, 2.0, 2.0, 2.0;
none,noneinone :
n 0.0, 4.0, 5.0, 3.0;
noneinonelnone :
n 0.0, 0.0, 1.0, 1.0,
none,none,none :
n 0.0, 0.0, 0.0, 2.0;
none,none,none :
none;none,none;none
none;none,none;none
none;none,none;none
none;none,nonelnone
none;none, none; none
none;none,none;none
none;nonelnonelnone
none,none;none,none
end

6(4,17)
1,1,1,1 :
1,1,1,1 I
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
0,1,1,1
0,0,1,1
0,0,0,1
1,1,1,1
1,1,1,0
1,1,0,0
1,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
0,0,0,0
end

2. LU-DEC'OMPOSITION

p(4,39)
(hex LU I
data ,0,4; rep(3) null,O,O:
null,O,O; data,0,2; rep(2} null,O,O:
rep(2) null,O,O; data ,0,21 null ,0,0:
rep(3) nu11,0,0; data ,0,2
{ switch on cella}
rep(4} data n e s v,3,0
rep(4) data n e s v,2,O
rep(4) data n e 8 v,l,O
rep(4) data n e s w,O,S
{ start computation }
rep(4) data n e s v,O,S
rep(4) data n e w,O,S
rep(4) data n 8 w,O,S
rep(4) data n e w,O,S
rep(4) data ne w,O,S
rep(4} data n e w,O,S
rep(4) data n e w,O,S
rep(4) data n e w,O,S
rep(4) data n e w,O,S
rep(4) data n e w,O,S
rep(4} data n 8 w,O,S
rep(4) data n e w,O,S
rep(4} data n e w,O,S
rep(4} data n e w,O,S
rep(4) data n e s w,O,S
rep(4} data n e s w,O,S
rep(4) data n e a w,O,S
rep(4) data n e s w,O,S
rep(4) data n e s w,Q,S
rep(4) data n e s w,O,S
rep(4) data n e 6 w,O,S
rep(4) data n e s w,O,S
rep(4) data n e s w,O,S
rep(4) data n e s w,O,S
rep(4) data n e s w,O,S
rep(4) data n e s w,O,S
rep(4) data n e & w,O,S
rep(4) data n e & w,O,S
rep(4) data n e s w,O,S
rep(4) data n e s w,O,S
rep(4) data n e a w,O,S
end

8(4,39)
1,0,0,0
1,1,0,0
1,1,1,0
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
1,1,1,1
end

d(4,39)
none;none;none;none
none;none;none;none
none;none;none;none
none;none;none;none
none;none;none;none
none;none;none;none
none;none;none;none
none; e 0.0,0.0,0.0,2.0 ; none; none
none;none;s 0.0,0.0,0.0,0.0; none:
none;none;none;none :
none;none;s 0.0,0.0,0.0,4.0; none :
none; e 0.0,0.0,3.0,0.0; none; none
none;none;none;none :
none; e 0.0,0.0,0.0,1.0; none; none
none;none;s 0.0,0.0,2.0,0.0; none:
none, e 0.0,3.0,0.0,0.0; none;none :
none,none;s 0.0,0.0,0.0,2.0; none:
none; e 0.0,0.0,2.0,0.0; noneinone
none;none;s 0.0,3.0,0.0,0.0;none :
none, e 2.0,0.0,0.0,5.0; noneinone
none;none;s 0.0,0.0,4.0,0.0;none :
none; e 0.0,3.0,0.0,0.0; none;none
none;none;s 0.0,0.0,0.0,1.0;none :
none;e 0.0,0.0,1.0,0.0;none;none:
none;none;none;none :
none; e 0.0,0.0,0.0,2.0; none;none
none;none;none;none
none;none;none;none
none;none;none;none
none;none;none;none
none;none;none;none
none;none;none;none
none;none;none;none
none;none;none;none
none;none;none;none
none;n9ne ;none;none
none;none;none;none
none;none;none;none
none;none;none;none
end

(1) SNAKE PIPELINE LAYOUT
(NO VERTICAL INPtrr)

(1Ii) CASCADE SYSTOLIC SYSTEMS
(EG. ITERATIVE TECHNIQUES)

(11) SYSTOLIC RING
(EACB CELL TO BE CONNECTED
EX'I'ERNALL y)

(1v) SYSTOLIC RING
(NO £X'TERNAL CELL INPUTS
OR OUTPUTS)

wasted processors

,- - - - ,
I ,linear connected systolic array '- ____ 1

FIGURE 9.4.7: Configuration of arrays on ISA to
improve processor utilisation

780

781

simulated on the ISA more efficiently than SIMPLE and PARTIAL SIMD

programs. For many problems where communication links map directly

onto the ISA grid data flow and the number of steps can be preserved.

The overall computation time of the array is increased when extra steps

are added to multiplex data for more complex communication patterns.

Simulations themselves require a setup phase where the systolic array

is con figured and started on the ISA grid using a Dynamic Instruction

Modification (DIM) program. DIM allows an instruction inside the ISA

grid to be modified as it passes through a processor. The modifications

are predetermined by a virtual processing PE plugged into the ISA grid

at run time. DIM offers an additional flexibility to the ISA, by

allowing portions of the grid to be allocated to different arrays which

can run simultaneously on the grid, or to re con figure the systo1ic array

'on the fly'.

9.5 THE LINEAR INSTRUCTION SYSTOLIC ARRAY (LISA)

We now return to the spoo1er problem of expanding the input and

condensing the output interface of the ISA. The method of plugs which

establishes a hierarchical many-1 correspondence between virtual

processors and the real grid processors produces fan in and fanout

spoo1er trees and is rather naive. The execution time of simUlation

will increase as the size of the plug and hence number of virtual PE'S

that are simulated by a single real processor increases. TO solve

virtual mapping problem we apply the technique of Yang and Lee [86]

used to transform a wavefront processor and architecture into a 1-D

(i.e. linear) array. This mapping was applied only to single wavefront

algorithms involving no backtracking (i.e. Huygen's principle) such that

at time cycle i, only the PE's on the diagonal w(i) are activated

(see Fig.9.s.l). We extend Yang and Lee's technique to multiple

n

, ,

, ,

, ,

W" , W" , W" , ,

, , , ,-" , , , , , , , , , , ,

, , , , , , ,

W" , w .• ,. ,

'-----8

8
',,' ,/'

, , , , , , ,

" , , , , , ,

~--------------------------------~

FIGURE 9.5.1: Wavefront array processor

782

wave front algorithms involving no backtracking using the ISA. This

forms the basis of a more general mapping technique of ISA programs
n

to linear systolic arrays. Clearly the existance of such a mapping

can be used to simulate plug definitions by linear arrays, hence

reducing the overall number of virtual and real processors in the

simulator hopefully minimising simulation time.

The mapping proceeds in two phases as follows:

a) convert the wave front processor to an equivalent ISA

b) k-slow the ISA program mapping the ISA onto a linear array.

First consider a single wavefront algorithm. At any time t there is at

most one active wavefront on the wave front processor. The single

783

wavefront algorithm is simply encoded as an ISA program with only one

instruction triple followed by 2n-l no-op instructions pushing the

wavefront across the processor mesh. That is,

(1)
<Il,Il,···,Il >

(1)
<1,1, ••• ,1> P = s =

p
(2)

= <c,e, ... ,e> s
(2)

= <1,1, ••• ,1>

(2+i)
<0,0, ... ,0>

(2+i) <1,1, ... ,1>, i=1(1)2n-l. p s

The progression of the single wavefront pattern is shown at times

t=1,4,8 for n=4 in Fig.(9.5.2b). Three more inputs are required to

(3)
push p off the array and terminate the program under normal ISA rules.

To apply Yang & Lee's mapping technique the ISA must be converted to a

slowed or Delayed Wave front Program (DWP).

The DWP is an ISA program which ensures that only a single wavefront

is active at t=1,4,8 (Fig. (9.5.2b» • This implies that processors behind

the wave must execute a no-op instruction or be de-selected for 2n-l

cycles between each instruction making the DWP extremely large. Next

we convert the ISA into a Linear Instruction Systolic Array (LISA) by

defining a new processor structure or LISA cell. Fig. (9.5.2a)

illustrates the ISA+LISA conversion. For the simulation of an nxn,

2
N=n 2-D ISA we use just n-LISA cells connected in a pipeline as shown

in Fig. (9.5.3)

Each LISA cell contains 4 bi-directional input/output lines for

data and a select line passing horizontally through the cell from west

to east, and an instruction line north to south. It follows that:

(1) LISA(i) corresponds to the ith row of the original 2-D

ISA array.

(a)

4 x 4 delayed ISA 4-LISA

Equivalence of (4 x 4l mesh and 4 processor USA

(b) pm

/

,

"
.0'000
0000
0000
0000

1- 1

P'H ,-
8000
'0000
0000
0000

t:;;; ,

• pi'" , pf:)1 • pl2l • pIU

.121/ .l21' E{ [(, , , ,
'J2fdelo
/.12(8' 0 0
/.121/0 0 0
/

1=4

Multiple wavefront

000.0 ,
0000
00/0 0
.0/000

,.' t::4

Single wavefront

pm ,.
0000
0000
o 0 0 O.P'" ,
0000'

t = 8 "

FIGURE 9.5 .2: ISA to LISA mapping

784

I ,

I ,
NI NOATA

NI ,. North Instruction port

SI '" South Instruction port

WSEl = West Select port

ESEL "" East Select port

FIGURE 9.5.3: Linear instruction systolic array

785

(2) If LISA(i) acts as the (i,j)th ISA processor then LISA(i-l)

and LISA(i+l) act as the (i-l,j+l)th and (i+l,j-l)th ISA

processor respectively.

(3) If LISA(i) acts as the (i,j)th processor of ISA at time t,

then at time t+l the same processor acts as the (i,j+l)th ISA

processor.

(4) Since each ISA cell can communicate in four directions we

have to consider communication problems in the linear array.

The north direction is omitted because the processors behind

786

the wave front execute no-ops. Since LISA(i) simulates row i

of the ISA east and west data is easily obtained. This leaves

communication south, as LISA(i) acts as (i,j)th ISA processor

at time t the data moved to LISA(i+l) at time t+l is the data

required by ISA processor (i+l,j).

Considering these factors the following cell is produced,

lnSI ruetion NORTH DATA

D ATA WEST Bus EAST DATA

• + -------,...,1-

--1
CR, CR, CR.

Control Unit R, R, ~
~

+ F, F. ~
Processor ...- AUX, AUXz AUXn

Selector),fI fI ------~fI

SOUTH DATA

FIGURE 9.5.4: General LISA cell nxn mesh

Each cell contains sufficient memory for each cell in a row of the ISA

array, and,

CRj = communication register of jth cell intlle row

Rj = computation save register of jth cell in the row

Fj = flag of jth cell in row indicating overwrite of CR
j

AUX, = auxiliary memory for storing extra'data and book-keeping.
J

It follows that only one section of the memory (CR"R"Fi,AUX,) can be
~ ~ ~

used at a particular time for a single wave front algoritllm, hence bus

selection of memory is performed by the delay of the selector signal

pumped through the array. The instruction signal enables the

communication directions.

787

The resulting LISA array is much more area efficient as only n
n

2
control and processor units are required in contrast to the n used by

the ISA. Observe that memory requirements remain the same.
n

Returning now to the mapping problem it is trivial to see that the

single wavefront ISA program is simulated by LISA • leaving only the
n . n

problem of placing the next wavefront of a DWP onto the array while it

retains the same values. clearly at time t+l=n+l the wavefront has

passed the anti-diagonal of ISA PE's consequently LISA(l) of the LISA
n

array must be free. So rather than waiting for the current wavefront

(2) to leave the array altogether we can start the next command p (the

(3) copy command) after another (n+l) cycles we can enter p etc.

Now the DWP is produced easily from consideration of the LISA

dataflow and the instruction/selector paths to produce the format in

Fig. (9.5.5).

eg.n = 4
.=4

... 0 ... 051"0 ... 051"

, , , , ,
... 0 ... 051" 0 ... 0 51" : ----, n n, , ,

• , ,
... 0 ... 051210 ... 051'1,'
--- ---I n n,

• , , , ,
... 0 ... 0 S~21 0 ... 0 S~II"

--' n n,

total input length = rn
& = dummy input

FIGURE 9.5.5:

DWP format for LISA pipeline

788

illustrating that any ISA program can be translated into a DWP for the

LISA pipeline. Clearly if we have a large mesh size n and a long

program (r) the DWP becomes very long and simulation slow making the

method impractical. From a theoretical viewpoint an additional trans-

formation applied to ISA results of Table (9.1.1) produces a timing for

LISA by substituting nr for r or nT(p) for the length of a program p on

an ISA. Also observe that the size of a LISA cell is dependent upon n the
n

mesh size for defining the amount of simulation storage.

A flexible and expandable ISA architecture can be constructed by

using LISA building blocks. Considering the nXn ISA mesh as a matrix
n

of PE's we choose a block size k and partition the mesh into kxk blocks

as follows:

: ,
, ,

---'---,
I ,
:
I

I
I

___ loo_-
I
I
I

,
I

k=2

__ 1 _____ _ ,
I
I

I
I __ ..1 __

I
I
I

k=4
•

n-8

Partitioning of block -ISA mesh

The essential idea being to maximise the block size and minimise area

by trading the number of additional instructions to the DWP, with the

size of the LISA pipeline. Notice that the number of vertical LISA

inputs is independent of the block size while the horizontal (selector)

lines are related to k, an additional design constraint. In the example

above choosing k=4 produces an ISA
n

with four LISA
4

pipelines simulating

a N=64 processor mesh. The choice of k=4 is arbitrary, but based on

restricting the simulation storage of each LISA cell, while removing 3/4

7S9

of the processor and control units of the original grid. Furthermore we

would like to retain the possibilities of chip based LISA implementations.

-r'
4

LISA
CHIP USA chip format

:r ~ selectors

'-n--' 4
I

t

LlSA
CHIP

LlSA
CHIP

LlSA
CHIP

LISA
CHIP

I I

t t

k "" 4~4 -chipsto implement
64 - processor ISA

FIGURE 9.5.6: LISA-based construction of ISA mesh

For a single LISA pipe we use only one data input and one data output

line horizontally and vertically. The immediate objection to this policy

is that perhaps more than one PE will communicate across a block

boundary at the· same time. Simple analysis shows that at most two ISA

processors can be active across horizontal or vertical block boundaries

in the same instance. Furthermore they are always in adjacent rows or

columns and can be easily resolved ,by an additional delay in the DWP.

Fig.(9.5.7) illustrates the DWP data movement, and it is trivially

observed that the maximum delay between instructions is dependent on

the block size k. Any program on the ISA has an equivalent DWP on the

block ISA which is at most k times as long as the ISA program, or k-

slowed. (1) (1) (1) (1)
For example, the instruction p =(Pl ,P2 , •.. ,PS) is

partitioned into n/k, k sized components and input into the block

partition ISA as illustrated by Fig.(9.5.S).

(il

(ii)

pUl

000 ~
oo~D

o~oo

~ooo

0000
0000
0000
0000

pm 1 st block

iD 0 0
ooo~

oo~o

o~oo

~oDo

0000
0000
0000

1-chip

---------DODO
0000
0000
0000

...

pm 2nd block

'000
DODO
DODO
DODO

....

1=4

....

t = S

N.B. Each 4 x 4 block is a
single 4 -USA array

FIGURE 9.5.7: Block - ISA wave fronts

FIGURE 9.5.8: Instruction input format for block ISA

790

791

It follows that the LISA design can be used in two roles for our

simulator,

(i) As a hardware component to minimise the total number of real

processors required to simulate the full ISA grid.

(ii) As a software plug which minimises the additional simulation

time by running a collection of virtual PE's on a single real

PE.

It should be clear that a k=4 block partitioning corresponds to a 2x2

matrix or LISA
4

which act as 16-4 plugs.

9.6 SUMMARY

In this chapter we have described and characterized the instruction

systolic array a flexible and powerful parallel architecture, capable of

simulating full, partial and vector orientated SIMD programs, the wave

front array processor of S.Y. Kung and many dedicated systolic arrays.

A number of theorems were presented relating program size and complexity

of MIMD-type mesh machine algorithms and the ISA by a series of program

transformations.

Using this flexible architecture as a virtual machine programmed

in OCCAM we developed a soft-systolic simulator where the emphasis was

on executing programs systolically rather than systolic movement of data.

An overall system structure was defined and the virtual machine discussed

in detail. A primitive assembler/compiler for a speCial language the

Replicating Instruction systolic Array Language (RISAL) was devised for

experimentation with the machine.

Using RISAL a number of simple test examples were constructed

suggesting extensions to the language and highlighting potential problems

792

with the structure of the virtual machine. In particular the difficulty

of expanding the machines interface from the limited host machine

bandwidth using a spooler arrangement.

We indicated that the virtual ISA could be used directly for multi

tasking simulation using vector orientated programs and a systolic array

simulation (Umeo [85]). For dedicated systolic arrays like the matrix

triangulariser (Gentleman & H.T. Kung [81]), and the hexagonal LU

decomposition array (Leiserson [81]) where cells consisted of multiple

types (including single cell type arrays as a special case), the method

of Dynamic Instruction Modification (DIM) was introduced. A DIM ISA

program allowed instructions to be modified as they were pumped

systolically through the grid permitting the setup and stationary

operation of instructions forming dedicated arrays on the ISA grid.

The above examples were tested using RISAL programs.

Finally we considered a further program transformation from ISA

to a Linear ISA (LISA) a I-D array of processors. The essential idea

was to minimise hardware by arranging for only one ISA program wavefront

to be active on the mesh at a time, using a delayed wave front program

(DWP). The cost of additional delay instruction wave fronts produced

large simulation programs but was offset by block partitioning of the

virtual grid. For kXk blocks a k-cell LISA was used to simulate each

block, and a k-slowed DWP equivalent to an ISA program produced. For

k=4, 4x4 block partitioning saved 75% of the processors (excluding their

internal memory) and introduced only a constant delay factor over the

ISA for program execution.

To overcome the host/array interface spooling problem and to achieve

the mapping of large virtual grids to a finite real machine architecture

793

the concept of processor plugs was introduced, using a many-l mapping

of portions of the ISA to a single PE. The nested use of plugs

created fanin and fanout spooling trees for distributing instructions

from a sequential host to the parallel ISA. Unfortunately, for large

virtual grids simulation time increased as more plugs were introduced

to simulate portions of the virtual grid. Finally we swapped the plugs

for the LISA design to produce efficient grid mappings, providing the

capability to simulate any (reasonably) sized virtual ISA.

We conclude that the principles discussed briefly here can form

the basis for a soft-systolic simulator using an orthogonal connected

mesh of processors. The wide range of algorithms which the ISA can

simulate make it suitable for a virtual simulating grid, while the use

of RISAL, DIM and DWP permit the implementation testing of ISA programs

and dedicated systolic arrays (with regular communication structures).

Future work would include the implementation of the ISA program on a

fixed network of transputers (possibly a meiko computing surface) and

the much needed development of a robust version of RISAL.

CHAPTER 10

CONCLUSIONS AND SUGGESTIONS FOR

FURTHER WORK

"There is nothing so powerfu~ as an idea whose time has come"

DORIS GRANT.

794

This thesis has concentrated on the introduction of the soft

systolic paradigm for the development of novel systolic algorithms,

resulting from the relaxation of constraints imposed on array designers

by VLSI technology. The algorithms and concepts presented have been

discussed in a semi-formal manner which partitions neatly into three

distinct but related parts. In this final chapter, rather than

enumerating the results, advantages and disadvantages of each design,

we take the opportunity to stand back from detailed descriptions, and

characterise the major properties of these parts and the relationships

between them.

PART I consisted mainly of survey and background (mathematical)

material necessary for the ready comprehension of the thesis and provided

a stock of accepted designs to act as benchmarks for new arrays. In

addition, the concept of a systolic frame was introduced. Systolic

frames are intended to lend a semi-formal structure consisting of axioms

and heuristics to characterise classes of systolic designs and their

interrelationships. A single algorithm/array is a single element of a

frame, whose abstract computational capabilities are characterised by

the axioms and its implementation by technology based heuristics.

Different elements (designs) of a frame are imagined as different

arrays/algorithms produced by re-timing, re-placement or synthesis

operations. A subframe is simply a collection of designs ·over the same

axioms and heuristics which solve the same problem (and are clearly a

subset of a more general frame). Closed subframes follow naturally as

collections of designs for the same problem, such that applying re-timing,

replacement or synthesis techniques to a particular design produces

another design in the same subframe. Additional frame types can also

795

be identified such as an anchored subframe (where at least one design

is formally verified as correct), free or constrained frames (where

heuristics are omitted or defined respectively), and finally regular

or irregular frames (where axioms dictate the degree of structure in

the connection topology). For our purposes we classified systolic frames

into three main groups, soft-, hybrid- and hard-systolic according to a

single heuristic 'programmability'. Consequently all the designs

presented in this thesis are members of constrained frames with definition

soft, hybrid, or hard prefixed to determine the degree of programming

required to implement the design; soft-systolic algorithms requiring

simulation (or total programming), hybrid a mixture of micro-programming

and special hardware, and hard-systolic implicitly programmed by circuit

connections.

Recent trends in the literature towards formal transformational

approaches to deriving systolic algorithms indicate that the days of ad

hoc design are numbered. From this viewpoint we believe that the formal

definition of the systolic frame concept will play an increasing role

in determining classes of systolic algorithms and legal transformations

between them. In particular relationships between soft, hybrid and

hard frames must be explored to determine if simulated arrays map easily

into real implementations. If nothing else this thesis has tested the

viability of adopting these more flexible (but controlled) attitudes to

defining new systolic schemes. Adequately defining the frame concept in

itself is non-trivial and represents a sizeable amount of further

research into systolic algorithm properties, we have contented ourselves

with a less formal outline of frames by which investigations could be

directed.

796

PART 11 concentrated on improvements to linear algebra arrays,

using a soft-systo1ic frame under 3-D (flexible layout) and optical

processing (long wire) heuristics. Improvements to existing designs

as well as new arrays were introduced and theorems about them presented

which compared favourably with corresponding results for traditional

architectures of chapter 3. The essential point to observe is that all

the designs are members of linear algebra subframes with new arrays

produced in three main ways:

1. Changing the length of input data streams: by

a) filling dummy or neutral elements

(e.g. double pipes, and problem interleaving)

b) modifying the host/array interface

(e.g. block partitioning, DZ-pipes (z>O)).

2. Re-organising the underlying array structure: by

a) Partitioning the problem or array into loosely coupled or

decoup1ed subsections which can run sequentia11y or in parallel

using mu1tipass or mu1ti1ayer configurations.

b) Modifying internal cell structures to improve array efficiency

(i.e. multi-layer tree layouts, two-level pipe1ining, b10ck-ips

arrangements).

3. Deriving new arrays from new algorithms:

a) Increasing the parallelism of the solution technique

(Rank-annihilation, circu1ant system solvers (BATS)).

b) Incomplete Arrays with minimal area and time providing fast

approximations to a problem solution which are 'cleaned up'

outside the array. (Preconditioning preprocessors) •

1. and 2. correspond to the application of retiming and replacement to

797

existing designs to produce additional members of the subframe.

Clearly the method is ad-hoc and exhaustive depending on the ability

to permute data (e.g. QI-methods) or instructions (block partitioning,

multi-pass etc.) Already there are signs that the rate of improvements

to existing arrays is declining indicating that designs are settling

to form a few standard arrangements. We suggest that these 'standard'

arrays are elements of closed subframes, which by varying heuristics

we have re-opened. Clearly, the amount of design possible by the sole

use of techniques 1. and 2. is limited and the frame will eventually

close again under the new constraints. On the other hand 3. is a more

systematic approach based on improved algorithms arising from theoretical

developments, and creates subframe elements directly without recourse

to 1. and 2. Although once the element is established 1. and 2. can be

applied to produce additional possibly improved designs. For example,

this is what occurred with the rank annihilation Toeplitz solver, and

the BATS array using the Audish & Evans factorisation. In contrast,

incomplete arrays result from the relaxation of axioms in asystolic

frame and in particular the requirement that exact solutions (within

the bounds of rounding errors) are produced by the array. This approach

immediately circumvents the AT2 (Savage [SI]) lower bound argument on

area and time of arrays used to determine optimum array designs, producing

dramatic cell reductions (e.g. >7S%) and decreased computation time. The

essential feature of an incomplete array is the redistribution of

computation between host and array, according to some percentage

weighting. For example, a compacted area efficient and fast array may

produce an approximation very close to the correct answer, which is then

refined by the host to produce the exact solution. Thus emphasis is no

798

longer on full array calculation but accelerated accurate approx

imations to a problem, which allows a single array to be adopted for

a range of problem instances. This is in contrast to a mUltipass

scheme which satisfies the AT2 bound and reduces area by iterating

calculations, thus increasing computation time to supply an exact

answer. We described incomplete schemes mainly for iterative solutions

to linear systems in the form of preconditioning, where the fixing or

refining method was clearly defined and supported by theoretical

arguments. Clearly incomplete techniques should be extended to other

methods and arrays. We might also conjecture that as the number of

iterations associated with good preconditioners continues to drop, that

compacted and fast incomplete arrays may outperform direct (complete)

designs from the viewpoint of economic viability, where the solution of

large linear systems is concerned.

The purpose of PART III of the thesis was twofold, but was chiefly

about producing generic arrays which trade-off speed vs. power, speed vs.

area, functionality vs. area, memory tradeoffs and the number of external

connections. As a secondary issue to produce examples and support

discussions we considered the use of computational molecules or rules

for deriving systolic forms using an alternative recurrent formulation

to that explicit in linear algebra. Indeed, we characterized by means

of templates,arrays for generating and manipulating tables of elements,

creating different arrays based on row-by-row or column-by-column and

combined non-stationary schemes (e.g. QD-array). These can be likened

to the row, column or diagonal ordering of matrix inputs in traditional

linear algebra schemes. In the guise of algorithmic vs. geometric

interpretations of P.D.E. problems we implicitly defined relations

799

between linear algebra arrays and computational rule (or Table) arrays

and indicated that a wide class of useful new arrays existed. A number

of new table based designs were discussed, including the more complex

simplex, revised simplex, and assignment problem which graphically

illustrated the difficulties of manipulating large tables. This problem

was not unlike the dense matrix problems encountered with arrays based

on linear algebra.

From the viewpoint of systolic frames the emphasis in PART III

shifted from identifying particular subframe elements and instead

addressed the relations between collections of similar designs which

formed similar sub-frames belonging to different global frames. That

is, the correspondences between designs for the same problems in soft,

hybrid and hard systolic frames. To meet the demanding tradeoffs above

two opposing forces are readily observed. In one direction many simple

hard designs map to a single generic array increasing the programmability

factor of a design shifting it from hard, through hybrid to soft

systolic subframes. In the other direction restricting the generality

of a problem constrains the array, mapping it from soft, to hybrid, and

hard subframes in a one to many transformation increasing the options

for implementation. We attempted to cancel these two forces by the

principle of array unification producing a hybrid type device which

attempted to minimise cell hardware whilst increasing programmability

using a set of simple control switches. In the Unified Systolic Array

for Differencing (USAD) we achieved this balance although this was a

result of the simple structure of the problems selected. A similar

balance with less success was developed for the systolic marching and

Alternating Group Explicit (AGE) arrays. Here the optimisation of

800

hardware and increased programmability by use of switches was offset

by the complexity of the computational rule employed (and its coefficients)

which complicated cells particularly when alternating was necessary to

retain stability. When unbalanced the two opposite forces migrate

designs to one extreme or the other in terms of programmability. For

generic arrays ultimately all hard, hybrid designs collapse onto a single

unified array. Such a case is illustrated by the soft-systolic simulator

in which the highest factor of programmability where arrays are simulated

by programs executed systolically is achieved. For hard systolic designs

a generic array maps onto a single well-defined and restricted special

array. This was illustrated by the mapping of the generic P.D.E. solver

down to the bit serial Hopscotch scheme. In this case even the solution

method had to be modified along the way, to achieve a Simple cell form

with a low programmability factor. The mechanics of these shifts between

soft, hybrid, and hard frames is further complicated by the collusion of

improvement methods like problem interleaving and incomplete techniques

identified in PART II. Indeed the PDE solvers adopted interleaving for

asymmetric marching, while FAST AGE and HOPSCOTCH arrays used incomplete

techniques to balance partial table production and approximation

accuracy against cell area and array speedup.

To conclude, the lesson to be learnt from these observations is

that a successful general purpose systolic computer must rely on a

balance between the two extremes - implying a hybrid-systolic structure

with limited programmability supported by specialist hardware. This makes

it promising to investigate new MIMD architectures which incorporate VLSI

structures into architectural design perhaps orientating them to

particular problem domains. Based on the work in this thesis such a

801

\ONrROLLT ••• I ... I I / ~~~~ BACK PLANE

~+-+---------Ir---------+-4-,
~ ~- I . • : Ir'

f- !! ... l .,. I kF-
, I '-,_.....--11 -- -- If--;+ -":. :::::: -=.-:.:.:-: :-7.~~ 1-~_7: __ =+-_

-~--- -HII-'II,-+-~-- - - __ ~ -- __ -- +~: I- -----.~---
1 , 1 , 1 : 1

•
•
•

•
•
•

I" : l':
I ' , 1 , : 1

I 1 , 1 ,
, I , , I , ,

• •
•
• •

1 1 1 : : ' ,

, : ' " I 1

GENERIC
ARRAY -~-~

I, , , I , 1 1
f.J- t+ - - -- - -.. - - - -- -. -t- 1-1-----1-----
1 I 1 1 I i 1
, 1 1 1 1 1 1 •
I 1 , , I 'I •
1 1 1 I I 'I •
1 : 1 1 I : 1

f.;- •-------.- --- - --i-.. -1- -----1--
J-t' .--- - -- .. -- --- --r" -I - ------
1 1 : I 1 I 1
l-~-i- - - - - -i-- -- - - --_T_.1

- -----
•

•
----_. ------

•

•
•

I 1 ! I
-!i ... : ... ::~
~- 1 I I 1 , .c_ \

~--~ L-tl-TI---------;I----------;I-;I~ ~ __ ~ I I 4 •• I . .. I I \ ISA GRID

a) Systolic Control Ring Architecture

....----- ISA GRID

,-- -- ---------- ----- - --I
1 CROSSBAR ! ~

, ,
1 I L __ ______________________ J

CONTROLLER

~
GENERIC ARRAY

b) Sideview of back plane organisation

FIGURE 10.1: SCRIP machine organisation

802

machine may take the form of a Systolic Control Ring Instruction

Processor (or SCRIP) machine illustrated by Fig.(IO.I). SCRIP

incorporates an ISA mesh inside a Systolic Control Ring composed of
n

simple controllers and generic linear arrays. Thus the ISA using RISAL

programs can be adopted for general systolic simulation, the Control

Ring to implement optimised multiple wave front algorithms (like rank

annihilation, Assignment problems, etc.) while the boundary arrays

provide high performance computation of specified problem classes. A

back plane crossbar is added to allow the flexibility of implementing

toroidal networks and the independent use of boundary arrays and the

ISA mesh, thus increasing parallelism and allowing a mUlti-user

environment. Hence SCRIP is simply a 'bag' of useful arrays on a single

architecture. The development of SCRIP type machines poses interesting

and "exciting problems for the future, and presents an attractive alternative

to the SYS-PACK type machine of Chapter 1.

REFERENCES

803

ATHALE & LEE [84], "OpticaL processing using outer produat concepts",

Proceedings IEEE, vol. 72, No. 7, July 84, pp .931-94l.

AUDISH [81], "The numericaL soLution of banded Linear systems by

generaLized factorisation procedures", Ph.D. Thesis 1981,

Loughborough University of Technology, (LUT).

AUDISH & EVANS [8Sa], "On the paraUeL soLution of certain airauZant

banded Linear systems", Int.Jour.Comp.Math. 18 (198S),pp.83-90.

AUDISH & EVANS [8Sb], "A paraUeZ airauZant Linear soZver", comp .Stud.

Report 238, L.U.T. 1985.

BARRODALE & ROBERTS [73], "An improved aZgorithm for disarete L1

Linear approximation", SIAM J. Numer.Anal. Vol.10, No.S, oct.1973.

BARRODALE & ROBERTS [78], "An efficient aZgorithm for discrete L1

Linear approximation with Linear constraints", SIAM J.Numer.Anal.

Vol.1S, No.3, June 1978,pp.603-61l.

BERZINS, BUCKLEY & DEW [83], "SystoLic matrix iterative aZgorithms",

Parallel Computing 83, pg.483-488, Eds. Feilmeier, Joubert &

Schendel.

BOCKER [84], "AZgebraic operations perfomrzbZe with eZectro-opticaZ

engagement processors", SPIE, 1984, pp .212-220.

BRENNER & LOHMANN [86], "The digitaL opticaZ aomputing program at

ErZangen", CONPAR 86 - Proceedings of Conf. on Algorithms &

Hardware for Parallel Processing, Sept. 1986, pp.69-76.

Springer Verlag Lecture Notes in Computer Science 237.

BRENT, KUNG, H.T., LUK [83], "Some Linear time aLgorithms for systoLia

arrays", CMA-ROl-83 and invited paper 9th World Computer Congress

Paris, 1983.

804

BRENT & LUK [84], "A systoUe array for the linear time solution of

ToepZitz systems of equations", Jour. VLSI & Computer Systems,

Vol. 1, Part 1 pp.. 1-22 1984/5.

BRUDARU [85], "Systolie algorithms to solve linear systems by

iteration methods", Analele stiintifice ale universitatii,

'Al.I.Cuz.' din Iasi Timul XXXI S la, Matematica 1985,pp'.301-306

BURDEN, FAlRES & REYNOLDS [81], "Numerieal Analysis", 2nd Edition,

Prindle, Weber & Schmidt Publishers 1981.

BURLISCH & STOER [66], "Numerieal. treatment of ordinary differential

equations by extrapolation methods", Nurnerische Mathematik, Vol.

8, pp'.1-13 1966.

CAULFlELD, GRUNINGER & CHENG [84], "Using optieal proeessors for linear

algebra", SPlE, 1984, pp'.190-196.

CAULFlELD, RHODES, FOSTER, & HORVlTZ [81], "Optical implementation of

systoZie array proeessing", Optics Communications Vol. 40, NO.

2 1981, pp. 86-90.

CHANDY & MlSRA [86], "SystoUe algorithms as programs", Distributed

Computing 1986, Vol. 1,pp .177-183.

CHEN [85], "On the solution of a class of ToepZitz systems", Report

yaleu/DCS/RR-417 Aug.1985 Dept.Comp.Stud. Yale Univ. New Haven.

CHVATAL [80], "Linear programming", 1980, W.H. Freeman & Company

Publishers.

CIEPIELEWSKl & HARIDl [84], "Exeeution of bagof on the OR parallel.

Token m:lehine", Proc. lnt.Conf. on Fifth Generation Computer

Systems 1984 ed. lCOT, PP. 551-560.

CODENOTTl [86], "The rmtrix equation UX+XN=lJ in the VLSI model",

lnt.Jour.Comp.Math. 1986. vol. 19, No. 1, pp.93-98.

805

DEW [84] "VLSI arahiteatu:t'es for problems in numerwal aomputation",

Workshop on Progress in the Use of vector and Array Processors,

eds. Paddon D.J. & Pryce, J.D., pp .1-24.

DEW, DODSWORTII, MORRIS [85], "Systolia array arahiteatures for high

perform::mae CAD/CAM workstations", NATO Advanced Study Institute

on Fundamental Algorithms for Computer Graphics, 1985, pp. 659-694.

DEW, MANNING, MCEVOY [86], "A tutorial on systolia array arahiteatu:t'es

for high performanae proaessors", 2nd Int.E1ectronic Image Week,

Nice 1986 and Report 205, Leeds University.

EVANS, HADJIDlMOS & NOUSTOS [79], "The parallel solution of banded

linear equations by the ne~ quadrant interloaking faatorisation

(QIF) method", Tech .Report No. 26 April 79, Dept. Maths. University

Ioannina, Greece.

EVANS & HATZOPOULOS [79], "A parallel Zinear system solver", Intern.

J.Comp.Math. 1979, section B, Vol. 7, pp.227-238.

EVANS & LIPITAKIS [79], "On sparse LV faatorization proaedures for the

solution of parabolia differential equations in three spaae

dimensions", Intern.J.Comp.Math. 1979, Section B, Vol. 7, pp .• 315-338.

EVANS [80a], "On the solution of aertain symmetria quindiagonal linear

systems", Intern.J.Comp.Math. Vol. 8, pg.271-284, 1980.

EVANS [Bob], "On the solution of aertain ToepZitz tridiagonal linear

systems", SIAM J • Numer .Anal., Vol. 17, No.5, Oct. 1980 J pg. 675-680.

EVANS & HADJIDIMOS [80], "A modifiaation of the quadrant interloaking

faatorisation parallel method", Intern.J. Comp.Math. 1980,

Sect. B, Vol. 8, pp.149-166.

EVANS & OKOLIE [81], "A reaursive deaoupling algorithm for solving

banded linear systems", Intern.J.Comp.Math., Vol.10, pp.139-152.

806

EVANS & SOJOODI-HAGHIGHI [82], "ParaLlel iterative methods for solving

lineal' equations", Int.J.Comp.Math. 1982, Vol. 11, pp.247-284.

EVANS [83a], "On the solution of oertain ToepZitz quindiagonal Zinear

systems", Intern.J.Comp.Math. 1983, Vol. 14, pp.305-324.

EVANS [83b], "New paraLlel algorithms for partial differential

equations", Parallel Computing 83, pp.3-56, eds. Feilmeier,

Joubert, Schendel, pub. North-Holland 84.

EVANS [83c], "On preoonditioned iterative methods for partial

differential equations", Preconditioning Methods, Theory &

Applications, ed. Evans, D.J., Gordon & Breach Publishers 1983.

EVANS [83d] , "Preoonditioning methods, theory and appZioations",

Gordon & Breach Publishers 1983 (General reading) .

EVANS & LIPITAKIS [83], "An approxim2te QIF method for paraZZel

oomputers", in EVANS [83d].

EVANS & ABDULLAH [83a], "A new expZioit method for the solution of
2 2

au = ~ + ~" Intern.J. Comp.Math. 1983, Vol. 14, pp.323-353.
at ax2 a/ '

EVANS & ABDULLAH [83b] , "Group explioit methods for paraboZio

equations", Intern.J.Comp.Math~ 1983, Vol. 14, pp.73-105.

EVANS [85], "Group expZioit iterative methods for solving large lineal'

systems", Intern.J.Comp.Math., Vol. 17, pp.81-108.

EVANS & MEGSON [85a], "Romberg integration using systolio aI'I'ays",

Intern. Report Comp.Stud. 250, Oct. 1985, L.U.T.

EVANS & MEGSON [85b], "Construction of extrapolation tables by systoZio

arrays for solving ordinary differential equations", Internal

report Comp.Stud. 252, Nov. 1985, L.U.T.

EVANS & MEGSON [85c], "A systoZio array for the quotient differenoe

algorithm", Int.Report Comp.Stud. 254, Nov. 1985, L.U.T.

807

EVANS & AUDISH [86], "The factorisation of constant circulant rmtrices

into cyclic matrices", Int. Report Comp.Stud. 266, L.U.T.

EVANS & MEGSON [86a], "Compact systoUc arrays for incomplete

factorization methods", Int. Report Comp.Stud. 321, Sept.86,

L.U.T.

EVANS & MEGSON [86c], "A highly pipe lined systoUc array for solving

Toeplitz systems", Int.Report Comp.Stud. 332, Dec. 86, L.U.T.

EVANS & MEGSON [86d], "A systoUc norm generator", Int. Report Comp.

Stud. 316, Sept. 1986, L.U.T.

EVANS & MEGSON [86e], "Matrix inversion by systoUc rank annihilation",

Int. Report Comp.Stud. 295, July 86, L.U.T.

EVANS & MEGSON [86f], "Systolic arrays for the modified quadrant

interlocking factorisation (QIF) method for lineal' equations",

Int. Report Comp.Stud. 286, Jun" 1986, L.U.T;

EVANS & MEGSON [86g], "Hopscotch schemes for the solution of parabolic

equations on area efficient systoUc arrays", Int. Report Comp.

Stud. 269 Mar. 1986, L.U.T.

EVANS & MEGSON [86h], "Improving systoUc array efficiency by block

partitioning of matrices", Int. Report Comp .Stud. 271 Mar .86,

L.U.T.

EVANS & MEGSON [86i], ,~ systolic array for the FAST AGE (Alternating

Group Explicit) method for parabolic equations", Int. Report

261, Feb. 1986, L.U.T.

FISHER, KUNG H.T., MONIER, WALKER, DOHI [83], "Design of the PSC:

a programmable systolic chip", Proc. ~f 3rd Ca1tech Conf. on

VLSI, ed. Bryant R. Comp.Science Press, pp.287-302.

FISHER [84], "Implementation issues for algorithmic VLSI processor

arrays", Ph.D. Thesis, 1984, CMU, Pittsburgh.

808

FISHER, KUNG H.T., SCROCKY (84), "Experience with the eMU p!'Ograrrmab~e

chip", CMU-CS-85-16l. CMU, Pittsburgh.

FOSTER & KUNG H.T. (80), "The design of specia~ purpose VLSI chips",

IEEE computer 13(1), 26-40, Jan, 1980.

FRISON & QUINTON (85), "An integrated systoZic machine for speech

recognition", VLSI: Algorithms and Architectures, Eds. P.

Berto1azzi & F. Luccio, North Holland pg. 175-186, 1985.

FLYNN (72), "Some computer organisations and their effectiveness",

IEEE Trans. Comp. C-21, 9(1972), pg. 948-960.

GASS (69), "Linear programming ;Srd edition", McGraw-Hill Pub. 1969.

GENTLEMAN & KUNG H.T. (81), "Matrw; triangu~arization by systoZic

armys", SPIE, Vol. 298, Real-time Signal Processing IV, 1981,

pg.19-26.

GOODMAN, LEONBERGER, KUNG S. Y., RAVINDRA (84), "Optica~ interconnections

for VLSI systems", Proc. of IEEE Special Issue, Vol. 72, No. 7,

pg. 850-866.

GOURLAY (70), "Hopscotch, a fast second order partia~ differentia~

equation so~ver", JIMA 6 (1970), pg. 375-390.

GUERRA (86), "A unifying framework for systoZic designs", Aegean

Workshop on Computing July 1986, Springer Ver1ag Lecture Notes

in Comp.Sci., No. 227 - VLSI Algorithms & Architectures, eds.

G.oos & Hartimanis, pg.46-56.

GUIBAS & LIANG (82), "SystoZic stacks, queues and counters", Conf. on

Advanced Research in VLSI, MIT, Jan.1982, pg.155-164.

HAYNES, LAU, SIEWIOREK, MIZELL (82), "A survey of high~y paroUeZ

computing", Computer Jan. 1982, pg.9-23.

HEHNER & HOARE (83), "A more compZete modeZ of corronunication processes",

pg.105-120, Theoretical Comp.Sci. 26, 1983, pp.105-120.

809

HELLER [85], "Partitioning big rrrztrices for srmU systoUc arrays",

VLSI & Modern Signal Processing, pg.185-199, eds. Kung S.Y.,

Whitehouse, Kalaith, Prentice-Hall, 1985.

HELLER & IPSEN [82], "SystoZ-ic networks for orthogonaZ equivaZence

transforrrrztions and their appUcations", Proc. Advanced Research

in VLSI, pp.113-122.

HOARE [78], "Cormrunicating sequentiaZ processors", Comm.ACM, 21, pg.

666-677 (1978).

HOPCROFT & ULLMAN [79], "Introduction to automata theory fol'm:2Z

Zanguages and computation". Addison Wesley, 1979.

HOROWITZ & SAHNI [78], "FundamentaZs of computer aZgorithms". pitman

Publishing Limited, 1978.

HSU, KUNG H.T., NISHIZAWA, SUSSMAN [84], "LINC: the Link and inter

connection chip", CMU-CS-84-159, Pittsburgh.

HUANG [84], "ArchitecturaZ considerations invoZved in the design of an

opticaZ digitaZ computer~ Proc. IEEE, Vol. 72, NO. 7, July, 1984

pg. 780-786.

HUANG & ABRAHAM [84], "AZgorithm based fauZt toZerance for matrix

operations", IEEE Trans. on Computers, Vol. C-33, No. 6, 1984,

pg. 518-528.

HWANG & CHENG [82], "Partitioned rrrztrix aZgorithms for VLSI arithmetic

systems", IEEE Trans. on Computers Vol. C-31, No.12, 1982, pg.1215-1220.

INMOS [84], "OCCAM prograrruning manuaZ", Hoare, Series Editor, Prentice

Hall, (International Series in Computer Science".

INMOS [85], "Transputer reference manuaZ", 1985, INMOS.

INMOS [86], "The Transputer fami Zy", 1986, INMOS.

IPSEN [84], "StabZe matrix computations in VLSI", Ph.D. Thesis, 1984,

Ann Arbor, Michigan.

810

JOIINSON & REISS [77], "Numeriaa~ Ana~ysis", Addison-Wes1ey 1977, Ch.5.

JOU & ABRAHAM [86], "Fault to~erant matr-w: aritlunetia and signa~

proaessing on high~y concurrent aomputing struatures", Proc.

IEEE Vol. 74, No.5, May 1986, pg.732-741.

KATONA [82], "StPing pattern rmtahing a~goritluns for aeUu~ar proaessors",

pg.431-436, Parallel Computing 83,eds. Fei1meier, Joubert,

Schendel.

KATONA [85], "A programming ~anguage for aeUuwr proaessors", Parallel

Computing 85, eds. Fei1meier, Joubert & Schende1, pg.371-376.

KOREN & PRADHAN [86], "Yie~d and perfo:mrmce enhanaement through

redundanay in VLSI and WSI multiproaessor systems", Proc. IEEE,

Vol. 74, No.5, May 1986, pg.699-711.

KUNDE, LANG, SCHIMMLER, SCHMECK, SCHRODER [85], "The instruation

systo~ia array and its re~ation to other mode~s of para~~e~

computers", Parallel Computing 85, pg. 491-498, (see above).

KONG H.T. [86], "The struature of paraUe~ a~gorithms", Advances in

Computers, Vol. 19, pg.66-112.

KONG H.T., RUANE, YEN [81], "A two-~eve~ pipeUned systoUa array for

convo~utionB", in 'VLSI Systems and Com~utations', Ed. H.T. Kung,

Sprou11, Stee1e, 1981, pg.255-265.
KUNG H.T. [82a] , "Notes on VLSI aomputation It, Parallel Processing

Systems, ed. D.J. Evans, Cambridge University Press, 1982,

pg.339-356.

KONG H.T. [82b] , "Why systoZic arahitectures?", Computer Jan. 1982,

pg. 37-45.

KONG H.T. & SONG [82] , "A systoZia 2-D aomvoZution chip", extended

abstract in IEEE Proc. 1981 or computer Society Workshop on

Computer Architecture for Pattern Analysis & Image Database

Management 81, pp.159-160.

KUNG H.T. & LIN [83], "An algebra foro VLSI algoroithm design",

CMU-CS-84-100, Apr. 1983 CMU, Pittsburgh.

KUNG H.T. [84a] , "SystoZia algoroithms foro the eMU WARP prooaessoro",

CMUC-CS-84-l58 (7th Int.Conf. on Pattern Recognition also).

KUNG H.T. [84b] , "SystoZia algoroithms", Large Scale Scientific

Computing, Academic Press, pg. 127-139.

8ll

KUNG H.T. & LAM [84], "Wafero saale integration and two level pipeZined

implementations of systoZia arorays", Jour. of Parallel and

Distributed Computing 32-63 (1984).

KUNG S. Y., ARUN, RAO, HU [81], "A rratroix datafiow language/aroahiteaturoe

foro paroallel matroix operation based on aomputational wavefroont

aonaept", in VLSI Systems & Computations, eds. Kung H.T.,

Sprou11, Stee1e, 1981, pg. 235-244.

KUNG S.Y. & HU [83], "A highly aonauroroent algoroithm and pipeZined

aroahiteaturoe foro solving ToepZitz systems", IEEE Trans. on

Acoustics, Speech & Signal Processing, Vol. ASSP-31, 1983, pg.66-75.

KUNG S. Y. [84], "On superoaomputing with systoZia/wavefroont aroroay

prooaessoros", Proc. of IEEE, Vol. 72 (7) I pg.867-884.

KUNG S.Y. [85], "VLSI aroroay prooaessoros", pg.4-22, IEEE ASSP July 1985.

KUNG S. Y ., WHITEHOUSE, KAILATH [85], "VLSI and modern signa l

prooaessing", Part II pg. 178-200, Kuhn, He11er (in particular).

LANG [85], "The instrouation systoZia arroay, a paraUeZ aroahiteaturoe

foro VLSI", 1985 report 8502, Institute fur Informatikand

Pracktische Mathematik - Christien A1brechts Universitait, Kie1.

LEISERSON [81], "Aroea effiaient VLSI aomputation", ph.D. Thesis, Oct.

1981, CMU, Pittsburgh.

LEISERSON & SAXE [83], "Optimizing synahroonous systems", J. VLSI &

Computer Systems 1(1), pp.41-67, Comp.Sci. Press 1983.

812

LEVIN & EVANS (85), "ParaUel rrotrix inversion algorithms", Comp.

Stud. 231, May 1985, L.U.T.

LIN & WU (85), "Area-period tmdeoffs for multiplication of rectangular

matrices", J.Computer & Systems Sciences 30, pg.329-342. 1985.

LIPITAKIS (78), "Computational and algorithmic techniques for the

solution of elliptic and parabolic partial differential equations

in two and three space dimensions", Ph.D. Thesis, 1978, L.U.T.,

Comp.Stud.

LIPITAKIS & EVANS [80], "Solving non-linear elliptic difference

equations by extendable sparse factorisation p1'OcedUI'es",

Computing 24, 325-339 (1980).

LIPSCHUTZ [74], "Linear Algebra", Schaums Outline Series McGraw-Hill.

LJUNG [80], "Fast algorithms for recursive estimation and identification",

Numerical techniques for Stochastic Systems, eds. F. Archelti &

M. Cugiani, North-Holland, 1980, pg.43-49.

LLEWELLYN [64], "Linear programming", Holt, Rinehart & Wins ton

Publishers 1964.

LUK [86], "An analysis of algorithm based fault tolerant techniques",

EE-CEG-86-11, Technical Report Engineering Group, Comell

University (to appear in Advanced Algorithms & Architectures for

Signal Processing, Proc. SPIE, Vol. 696).

MCCANNY & MCWHIRTER [82], "Implementation of signal processing functions

using I-bit systolic arrays", Electronics Letters 18(6), pg.241-

243, 1982.

McCANNY & MCWHIRTER [83], "Yield enhancement of bit level systolic

array chips using fault tolerant techniques", Electronics

Letters 19(14),2, pg.525-527, 1983.

813

MCKEOWN [84], "Iterated interpolation using a systoUc army", Report

csA/21/1984 UEA Norwich, Mathematics & Algorithms group 7.

MCKEOWN & RAYWARD-SMITH [84], "A note on the use of systoUc arrays

for solving network problems", Report CSA/22/1984 UEA, Norwich,

Mathematical group 8.

MEAD & CONWAY [79], "Introduction to VLSI design", Addison-Wes1ey

(particularly Ch.8).

MEGSON [84], "Simulating systoUa arrays using OCCAM", B.Sc.

Dissertation, Leeds University, 1984.

MEGSON & EVANS [85a], "SystoUc arrays for finite differences and

rational function approximation", Int. Report, Comp.Stud. 255,

Dec. 85, L.U.T.

MEGSON & EVANS [85b] , "LISA: A parallel proaessing architecture",

Int. Report Comp.Stud. 253, Nov. 1985, L.U.T.

MEGSON & EVANS [85c] , "A stable O(V) BATS ceU", Int. Report Comp.

Stud. 249, Oct. 1985, L.U.T.

MEGSON & EVANS [85d] , "Improvements to the O(n) BATS aeU", Int.

Report Comp.Stud. 246, Sept. 1985, L.U.T.

MEGSON & EVANS [85e] , "BATS: Banded and ToepUtz systems systolia

array", Int. Report 243, July 1985. L.U.T.

MEGSON & EVANS [85f] , "Survey of systoUc algorithms for banded linear

systems", Int. Report Comp.Stud. 241, July 85, L.U.T.

MEGSON & EVANS [85g] , "A recursive decoupUng algorithm for the

solution of certain airaulant linear systems", Int. Report

Comp.Stud. 242, July 85, L.U.T.

MEGSON & EVANS [85h] , "Soft-systoUa pipeUned matrix algorithms",

Int.Rep.Comp.Stud. 234, June 85, L.U.T.

814

MEGSON & EVANS [85i], "The desi{;n and simulation of systoUc arrays",

Int. Repart Camp.Stud. 230, May 1985, L.U.T.

MEGSON & EVANS [86a], "The unification of systoUc differencing

algorithms", Int. Report camp.Stud. 86, L.U.T.

MEGSON & EVANS [86b], "A systoUc simplex algorithm", Int. Rep. Camp.

stud. 288, June 86, L.U.T.

MEGSON & EVANS [86c] , "A systoUc cyUnder for the revised simplex

algorithm", Int.Rep.camp.Stud. 304, Aug. 86, L.U.T.

MEGSON & EVANS [86d], "An orthogonal design for the assi{;nment problem",

Int. Repart. Camp.Stud. 294, July 86, L.U.T.

MEGSON & EVANS [86e], "systoZic preconditioning algorithms", Int.Rep.

Camp.Stud, 319, Sept. 86, L.U.T.

MEGSON & EVANS [86f] , "Incomplete eUmination systoUc arrays", Int.

Rep. Camp.Stud. 325, Oct. 86, L.U.T.

MEGSON & EVANS [86g] , "Matrix power generation using an optical

reduced bandWidth systolic array", Int. Rep.Camp.Stud. 314,

sept. 86, L.U.T.

MEGSON & EVANS [86h], "On systoUc arrays for complex matrix problems",

Int. Rep. Camp.Stud. 329, Nav. 1986, L.U.T.

MEGSON & EVANS [86i] , "A systoUc group explicit method for 2-D

parabolic problems", Int. Rep. Camp.Stud. 323, Oct. 1986, L.U.T.

MEGSON & EVANS [86j], "The solution of pambolic partial equations by

systolic marching techniques", Int.Rep.Camp.Stud. 317, Sept.

1986, L.U.T.

MEGSON & EVANS [86k], "Simulation of soft-systoUc arrays OJ'ith boundary

and special processing elements", Int.Rep.Camp.Stud. 309, Aug.

1986.

815

MEGSON & EVANS [86,q,] , "G1'OUP expliait systoZia arTays for a hyperboZia

equation of first order". Int. Rep .Comp .Stud. 293, July 1986.

MEGSON & EVANS [86m], "3*3 bZoak matrix sahemes for systoZia arrays".

Int.Rep.Comp.Stud. 278, Apr. 1986.

MEGSON & EVANS [86n] , "The 3-space ISA and muZtitasking of soft

systolic programs". Int.Rep.Comp.Stud. 273, Apr. 1986.

MEGSON & EVANS [860], "Pipe lining of systolic Hopscotch sahemes".

Int.Rep.Comp.Stud., 270, Mar. 1986.

MEGSON & EVANS [86p], "The soft-systolic program simulation system (SSPS) ".

Int. Rep.Comp.Stud. 272, Mar. 1986.

MEGSON & EVANS [86q], "The alternating group explicit (AGE) systolia

array for the solution of large lineal' systems". Int. Rep.

Comp.Stud. 265, Feb. 1986.

MEGSON & EVANS [86r] , "Systolia arrays for group explicit methods for

solving parabolia equations". Int.Rep. 259, Jan. 1986.

MELHEM & RHEINBOLDT [84], "A matherratiaal model for the verifiaation

of systolic networks". SIAM J. Comp. Vol. 13, No.3, Aug. 1984,

pg. 541-565.

MINSKY [67], "Computation: finite and infinite rraahines". Prentice

Hall, 1967.

MURPHY (78), "Numeriaal methods for solving ordinary and partial

differential equations". ph.D. Thesis, 1978, L.U.T.

PICKERING [84], "Solution of quasi-tridiagonal systems of lineal'

equations". Int.Jour.Comp.Math., 1984, Vol.15, pg.181-191.

QUINTON, JOINNAULT, GACHET [86], "A new matrix muZtiplioation systolic

array". Parallel Algorithms and Archi tectures, Cof"ard et a1,

E1seiver Science publishers, North-Holland, 1986.P,l1.:>'I-261f

816

RALSTON & WILF [60], "Mathermtioal methods for digital oomputers",

Wiley & Sons Inc., 1960, USA, pg.73-77.

ROBERT & TCHUENTE [84], "Parallel solution of band triangular systems

on VLSI ar~ys with limited fanout", International Workshop on

Modelling and Performance evaluation of parallel Systems, Ed.

Becker, 1984, Grenoble, pg. 209-229.

ROBERT [85], "Blook LV deoomposition of a band matrix on a systoZio

array", Intern. J.Comp.Math., Vol. 17, pp.295-315, 1985.

ROBERT & TCHUENTE [85], "Reseaux systoliques pour des problemes de

mots", MIRO Informatique Theorique Theoretical Informatics,

Vol. 19, No.2, 1985, pg.107-123.

ROBERT & TRYSTRAM [85], "An orthogonal systoZio array for the algebraio

path problem", Report 553 IMAG 1985, France.

ROBERT [86], "Algorithmique paraZZele: reseaux d'autom:ztes, al'ohiteotures

systoliques, maohines SIMD & MIMD", Doctor of Science Thesis,

L'institut National Poly technique de Grenoble, L'universite

Scientifique et Medicale de Grenoble.

ROSENBERG [83], "Three dimensional VLSI: A ease study" ,J .ACM, Vol. 30,

No.3, July 1983, pp.39"i-416.

ROTHE [85], "A systoZio array for the algebraio path problem",

Computing 34, 191-219 (1985).

ROTHE [86],· "On the oonneotion between hexagonal and unidireotional

reotangular systolio arrays", Proc. Aegean Workshop on

Computing (AWOC 86), to appear 87.

RUTIHAUSER [51], "Solution of eigenvalue problems with the LR

transformation"; Nat .Bur. Standards, Appl.Math. Ser. 49, 1958,

pg .47-81.

817

SAHIMI [86], "NumericaL methods for soLving hyperboUc and paraboUc

partid differentiaL equations", Ph.D. Thesis, 1986, L.U.T.

SAMEH & KUCK [circa 78], "On stabLe paraUeL Unear system soLvers",

J.ACM, 25, 1 (1978), pg.81-9!.

SAMI & STEFANELLI [86], "Reconfigu:rabLe architectW'es for VLSI

processing arrays", Proc. IEEE, Vol. 74, No.5, May 1986, pg.712-722.

SAUL'EV [64], "Integration of equations of paraboUc type by the method

of nets", International Series of Monographs in Pure & Applied

Mathematics, Pergamon Press Ltd. 1964.

SAVAGE [81], "Area time tradeoffs for matr-w: muUipUcation and reLated

probLems in VLSI modeLs", J .Computer & System Sciences 22, pg.

230-242, 198!.

SCHREIBER [83a], "Computing generaUsed inverses and eigenvaLues of

symmetric matrices using systoUc arrays", NA-83-o3, NOv. 1983,

Stanford University, California.

SCHREIBER [83b], "On systoUc array methods for band matriJ: factor

isations", TRITA-NA-8316, Dept. of Numerical Analysis and Computing

Science, The Royal Institute of Technology, S-lOO 44, Stockholm

Sweden.

SHAPIRO [84], "SystoUc prograrrming a paradigm of paraUeL processing",

Proc. of FGCS, 84, and TR CS84-16 Weizmann Institute Applied Math •

. SMITH [85], "NumericaL soLution of partiaL differentiaL equations:

finite difference methods", Oxford Applied Mathematics and

Computing Science Series, Oxford Univ. Press.

SNYDER [82], "Introduction to the configu:rabLe highLy paraUd computer",

Computer Jan. 1982, pg.47-56.

SOJOODI-HAGHIGHI [81], "The numericaL soLution of eLUpticaL and

parabolia partial differential equations by novel bloak

iterative methods", ph.D. Thesis, 1981, L.U.T.

818

SORENSEN [85], "AnaZysis of paiMse pivoting in Gaussian Elimination",

IEEE Transactions on Computers, Vol. C-34, No.3, pg. 274-218.

SPEISER & WHITEHOUSE [81], "ParaUeZ proaessing algorithms and

arahiteatures for real-time signal proaessing", SPIE Vol. 298,

Real-time Signal Processing IV (1981). pp.2-9.

STONE [73], "An effiaient paraUel algorithm for the solution of a

tridiagonal Unear system of equations", J .Ass. Computing

Machinery, Vol. 20. NO. 1, pg.27-38.

SWEET [84], "Fast ToepZitz orthogonaZization", Numer.Math. 43, pg.

1-21, 1984.

THOMPSON & TUCKER [85], "Theoretical aonsiderations in algorithm dssign",

NATO Advanced Study Institute on· Fundamental Algorithms for

Computer Graphics. (Also Leeds Univ.Comp.Stud. Report 200).

TURKEDJIEV [86], "Synthesis of systoUa algorithms and proaessor arrays",

pg.165-172, Springer Ver1ag Lec. Notes in Comp.Science 237,

(CONPAR 86) •

TYLAVSKY [85], "Quadrant interloaking faatorisation, a form of block

LU faatorisation", IEEE; :to appear.

UMEO & SUGATA [82], "SystoZia simulation of synahronous SIMD paraUel

aomputers". Faculty of Engineering, Osaka Univ. Japan Report.

AL-82-21.

UMEO [82], "Two dimensional systoUa implementation of array algorithms",

Report AL-82-32 (as above) •

UMEO, MORITA, SUGATA [82], "Deterministia one-'Wa!J simulation of two

my real-time aeUular automata and its related problems",

Information Processing Letters, Vol. 14 No.4, 1982, pg.158-161.

819

UMEO [85a] , "A class of SIMD m:whines simulated by systolic VLSI

arrays", VLSI Algorithms and Architectures, eds: Berto1azzi &

Luccio, 1985, pg.39-48.

UMEO [85b], "Time optimum paraUel binary address setting schemes for

ceUular computers", IEEE computer Society Symposium on New

Directions in Computing, pg. 293-299.

ULLMAN [84], "Computational aspects of VLSI", Computer Science Press,

1984, Ch.1, Ch.2, Ch.5.

VARGA [62], "Matrix itemtive analysis", Prentice-Hall Series in

Automatic Computation, 1962.

WANG [81], "A paraUel method for tri-diagonal equations", ACM Trans.

on Mathematical Software, Vol.?, No.2, 1981, pg.1?O-183.

WEISER & DAVIS [81], "A LXlvefront notation tool for VLSI array design",

VLSI Systems and Computations, ed. KUng H.T., Sprou11, Stee1e,

pg.226-234.

WESTLAKE [68], "Numerical matrix inversion and solution of linear

equations", Wiley & Sons, Inc. 1968, USA, pp.23-24.

WHITEHOUSE, SPEISER & BROMLEY [85], "Signal processing applications

of concurrent array processor technology", pg. 25-41 of VLSI &

Modern Signal Processor, prentice-Ha11, 1985, eds. Kung, S.Y.,

Whitehouse, Kai1aith.

WU & COPPINS [81], "Linear programming and Its Extensions", McGraw

Hill Book Co. 1981.

WYNN [62], "Acceleration techniques for iterated vector and matrix

problems", Math. & Comp. 16, pg.301-322, 1962.

YANG & LEE [86], "The mapping of 2-D array processors to 1-D array

processors", Parallel Computing, 1986, 3, in press.

ApPENDIX I

OCCAM SUMMARY

820

In OCCAM processes are connected to form concurrent systems, each

process can be regarded as a black box with an internal state which can

communicate with other processes via point to point communication

channels. The processes themselves are finite. Each process starts,

performs a number of actions then terminates. An action may be a set

of parallel processes to be performed at the same time. As a process

is itself composed of processes which may themselves be executed in

parallel a process allows internal con currency which varies with time.

Processes:

All processes are constructed from three primitive processes,

assignment, input and output.

Assignment: An assignment is indicated by the symbol :=, for example,

v:=e sets variable v to the value of the expression e and then terminates.

Input: An input is indicated by the symbol ?, for example, c?x inputs a

value from a channel c aSSigning it to x and then terminating.

Output: An output is indicated by the symbol I and cle outputs the

expression e to channel c, and then terminates.

A pair of concurrent processes communicate using a one way channel

connecting the two processes. One process outputs a message to the

channel, the other process inputs the message from the channel. A

particular process can be ready to communicate on one or more of its

channels any time between its start and termination, but a communication

only takes place when both it and the process sharing one of its

channels is ready. Where a number of connected processes are ready

simultaneously communication can occur in parallel.

Constructs:

A number of processes can be combined to form a construct which is

821

itself a process and can be used as a component for other constructs.

Each component process is indented by two spaces from the left hand

margin indicating which construct it is part of. There are only four

basic construct types, sequential, parallel, conditional, and alternative.

SEQ: is the keyword for a sequential construct denoted

SEQ
pl
p2
p3

where the component processes Pl,P2,P3, ••• are executed in strict

sequence with process Pi finishing before Pi +l starts and after Pi - l

terminates. Sequential constructs are similar to programs written in

conventional programming languages.

PAR: is the keyword for a parallel construct of the form

PM
pl
p2
p3

and in contrast to SEQ, here all the component processes Pl,P2,P3, •.. are

executed concurrently. The PAR construct terminates when all the

component processes have finished.

IF: is the keyword for a conditional construct with the appearance

IF
condition 1

Pl
condition 2

P2

This means that pl is executed iff condition 1 is true, otherwise p2

iff condition 2 is true, etc.etc. Notice the strict sequential ordering

of tests. Only one of the processes P, is executed and the IF construct
~

terminates when the process finishes.

ALT: is the keyword for the alternative construct

ALT
input 1

PI
input 2

P2

822

This construct waits until one of input 1, input 2, input 3, ••• is

ready. If input 1 is ready first, input 1 is performed and on completion

PI is executed. Similarly if input i is ready first input i is performed

and Pi executed. Only one of the inputs is performed and its corresponding

process executed before the construct terminates. If more than one input

becomes ready at the same time the one executed is chosen arbitrarily.

Repetition:

There is only one explicit construction for repetition denoted by

WHILE condition
P

which repeatedly executes process P until the value of the condition is

false. Observe that P itself can be a composition of sequential and

parallel constructs.

Replication:

A replicator is used with a constructor to replicate the component

process a number of times. With SEQ a standard for loop

SEQ i=[O FOR n)
P

is created executing process P sequentially n times. When used with

PAR an array of concurrent processes with the form

P~ i=[O FOR n)
p .
. ~

is created such that n similar processes P ,Pl, ... ,P I are executed o n-

in parallel. Notice that i=O(l)n-1 not n, thus if generally i=[base FOR count)

823

there are base+count-l values i takes starting with i=base.

Declarations:

A declaration introduces a new identifier for use in the process

that follows it, and defines the meaning the identifier will have within

the process. If the new identifier is the same as one already in use,

all subsequent occurrences of the identifier in the process will refer

to the meaning of the most recent declaration. Declarations are of

four basic types VAR, CHAN, DEF and PROC linked to a following process

by a colon (:) at the last line of the declaration. The process

follows on the next line at the same level of indentation as the keyword

declaration. For example,

VAR x:
P

declares variable x to be used in process P, and

CHAN C:
P

defines a channel C to be used in communication for P. A variable

vector declaration introduces an identifier to be used as a vector of

variables, viz.

VAR list [16]:
P

for a vector named list of 16 variables indexed as list[O] ,list[l] , •.•

list [15]. Likewise a channel vector declaration introduces a new

identifier as a vector of channels for communicating between concurrent

processes

CHAN C[n] :
P

DEF associates a name with a constant value, or with a table of

constant values, e.g.

824

DEF a=l, b=2:

associating a with 1 and b with 2, using these identifiers within a

process yields the associated values.

The PROC declaration introduces an identifier to name the process

which follows, indented, on the succeeding lines. The process is termed

the named process and is itself followed by a process in which the named

process will be used. The named process can have parameters wnich are

declared with the declaration of the named process and are called formal

parameters. The named process text will be substituted for all

occurrences of the process name in subsequent processes, the var and chan

variables substituted in place of the formal parameters are called

actual parameters. For example,

PROC buffer(CHAN in, out) -
WHILE TRUE

VAR x :
SEQ

in?x
outlx

CHAN c,cl,c2 :
PAR

buffer(cl,c)
buffer(c,c2)

declares two buffer processes executed concurrently. buffer is the named

process with formal channel parameters in and out. In the following

process C.cl.C2 are actual parameters and on execution the WHILE loop

will be textual substituted for occurrence of the name buffer and C.Cl.C2

substituted for in and out respectively. The size of a vector is not

specified in the formal parameters of a named process and different

sized vectors may be used as actual parameters on different substitutions.

In addition to the standard declarations VAR and CHAN, a VALUE parameter

may also be used, as either an ordinary or vector formal parameters and

cannot be changed within a process by assignment or input.

825

Finally an identifier which is used but not declared in a named

process is termed a free identifier. Any free identifier in use when

a named process substitution takes place must be the same as a variable

already in use. The free variable then takes on the most recent

of the variable at the point where the process substitution incarnation

takes place.

Program Format:

In OCCAM indentation from the left hand margin indicates program

structure. Each process starts on a new line, at an indentation level

indicated by the following rules.

Constructs

The construct keyword (and the optional replicator) occupies the

first line. Each of the component processes start on a new line and

are indented by two spaces more than the keyword.

Conditionals

The condition expression occupies the first line, and the component

process starts on the next line indented by two more spaces.

Alt inputs

The expression and its associated input occupy the first line and

the component process starts on the next line indenting two more spaces.

Declarations

Each declaration starts on a new line, at the same level of

indentation as the process it prefixes, the final line of the declaration

being terminated by a colon. Blank lines can be inserted anywhere and

are ignored.

A construct can be broken to occupy more than one line, with line

breaks occurring after comma, semicolon and before the second operand

826

of an operator (requiring two operands). The continued line must be

more indented than the first line of the construct.

Comments:

Comments are denoted by double hyphen (--) and terminate at the

end of a line. All characters of a comment are ignored. A comment may

follow an OCCAM construct on the same line or be on a line by itself

This summary of OCCAM is taken from INMOS [84,85] and implements

'proto-OCCAM'. A more sophisticated version OCCAM 2 is now available

providing Real, Integer, and Boolean types. We remark that the

programming in this thesis was performed on a VAX machine under UNIX

using Loughborough OCCAM as implemented by R.P. STALLARD. Appendix 11

discusses the Loughborough version of OCCAM and particularly its

extensions of proto-occam to allow real variables and non-standard

OCCAM features. We point out that the programs listed in Appendix III

where possible have avoided these non-standard characteristics.

ApPENDIX 11

Loughborough Occam™ Compiler
Version 5.0 Documentation

UNIX is a trademark of A.T. & T. Technologies Incorporated, occam is a trademark of Inmos
limited

Help tor running the occam ocmpiler

A source 'occam' tile (OCCAII aDd INIIOO are tradeno.rks ot the INIIOS group of
canpanles) must be of the fom ' •• occ', to ocmpUe it to tonn an 'a.out'
ocmnand tile use the detault options. For example to ocmpUe 'lIIY_f1rat.occ' :_

occam lQ)'_firat.occ

An executable object 'a.out' is produced. As a shortcut you can anlt the
'.occ' affix and just say 'occam my first'. the canpller w1l1 add on the
atfi. tor you. -

If a program Is split into several files these can be separately canpUed aDd
linked together USing the occam canpller and built lit linker.

Ellch previously canpUed occam program Is specified In the ocmnand line ID
the form ' •• 0' e.g. ;-

occam maln.occ oumerlcllb.o screenllb.o

This will canpUe the source of 'mln' aDd Unk It 10 with the pre ccmplled
Ilbraryoccam files 'numerlellb.occ' 'screeollb.occ'. Tbe -1 option Is used
to generate new veralons of library fUe objects.

Various swltcb options are provided, IIIl1nly tor canpUer debugging. Flags
can either be put separately ('-g -I') or together and ID any order ('-I,'
'-gl'). Tbe following switches nay be U8!'ful :- '

-g :
occam -g fast.occ

OlnpUe the oec.am program as before but run the resulting program imnedlately
(a canplle,load and go option). It flag options are specified that apply to
the run of the program these will be passed on as in 'oecam -gqc fast'.

-I :
occam -I ne" lib

<hnpUe the program and produce object but do not 1I0k the object tiles
together to produce an object program. Tbls option la used for buldlng up
libraries of routines or to cut down the ocmpilatlon time for ocmplllng one
long program.

-0 :

<hnplle the program as normal but place the object program in the fUe
'savenm' rather than the default 'a.out'. Useful tor saving several
occam object fUes at the same time.

-x :
occam -. old_fashloned.occ

<hnplle according to the strict IIlIOOS occam specification. wr e.tenslons
(see file 'occamverslon') currently Include :

Multiple source tUe croos linking.
Dynamic tea tures.

-c :

Variable PAR repllcator counts.
floating point arl tlwetic.

a.out -c

Run the object program with cursor addressable facilities enabled, the
standard library procedures 'goto ••• y' and 'clear. screen' require these
tacllities.

-{): occam -{) error yrone

<hnplles the tile as nonnal but generates a symbol file as ",,11 (In this
case It wuld be 'erroryrone.sym'), this Is used by the run-time syst ... to
inspect the values of variables.

-q:
a.out -q

Run the object program without producing any characters to the screen other
than those output by the prosram (unless cnu. 0 used). This enables ocean>
programs to dllllP output that can be processed by other ocoam programs.

-F and ~ :
occam -P n\ID.occ

'-F' Includes the floating point library routines to provide a simple real
Rllllber arltlwetlc capability. '-M' Includes both the floating point and
IIIlthenatlcal library routines to provide mathematical library routines.

-I :

Thla provides the features ot the IMlOS proto-cccam definition (see
'occam version') such as STOP and TIME, It should be used "here possible
as It Ta closer to the occam-2 definition.

Full list of compiler option flags

The tull (often cryptic) range of switch options are as follows. Several
swi tch flags can be given, in any order and either separately or together.

The mn<m:mic character giving the switch is highlighted by a capital letter.
They are divided into sections - user defined flags, and systEm defined

options, which are selected by prefUing with '$'.

User Flags

-f

-g

-h
-i

-1

-0

The next flag(s) are systEm flags - switch flag mode.
Run the program with Cursor addressable options enabled.
The library routines 'clear.screen' and 'goto.x.y' need this flag set.
It used for the canpUer must also give the -g option.
Produce object/run object for Execution tracing. The resulting object
fUe is then run wlth the '-e' option. This utility Is described
in'tracerinfo'.
Force full occam semantic check on use of variables.
A variable (not vectors though) can not be set within a PAR
construct it the declaration is outside the PAR. This applies
equally to procedure calls that change global variables.
Run the resulting object file if canpilation succeeded.
The program Goes 1mnediately it is ready to.
Print out this '''elp' infornation:
Force an Interrupt 1mnedia tely before start of execution -
imnediately displays the debug help menu. This enables break and
trace points to be setup prior to anything being executed.
Q:rnpUe but do not link the occam oource. Needed when using
multiple occam source Library files.
Check that every channel Match properly on execution, channels can
have only one input and one output process during execution.
Produce an Cbject program with name given by the non-switch
arglJDent following this swi tch. Enables you to choose an
object fUe name other than 'a.out'.
Run the program without outputting sane non oocam program produced
messages - e.g. 'OXA/d Start Run'. Must give -g option as well
'q' stands for ~et. Useful when producing output to be piped
or processed by other programs.

....., SUppress the Warning messages fran the canpiler - when you have
seen these warnings once you may find it less irritating to suppress
thEm on subsequent canpilations - does not affect error reporting
or any other compiler action.

-x D:l not penni t any local urr eXtensions in the source text.
See 'oocinfo' for infornation about these - for example recursion
and EXl'FllNAL procedure definitions. Useful it moving an occam
program for use on another oocam canpiler systEm.

-F Include the standard Floating point library routines.
Provides routines to read or write floating point routines to
channels.

-<l Produce a symbol table file (with dfu '.sym') for use with the 'm'
option in the dynamic debugger for symbol value examination.

-I funn1t the use of INMa3 proto-occam version 2. These changes include
the use of 'TIME' instead of 'NOW', the 'STOP' primitve and the use of
'Stopping lP' - an alternative without any TRUE conditions will STOP.

-L Use Long winded load, all the 'C' libraries are added at the last
nmment rather than using the pre-linked object, this my be useful it
a user oocam/C library calls a 'C' routine that is not used in the
occam run time system. See 'libraryhelp' for more info.

-Id Include the MathEmatical library and floating point routines.
-0 Produce optimized object. May improve run time by 20$.
-R Use Randanized scheduling when running the program - the same

scheduler choices will not be made on sejllrate executions.
This gives non-detenn1nistic execution and will be slightly slower
but may be useful occasionally.

-S D:l not include the Standard I/O routines with the object. This
library is included by default, there is no reason not to want
to include it unless you want to devise a totally new one.

. -T n,e next arglJDent is a Timing definition file built by the· 'timebuild'
utility to be used in conjuntion with the ,~, option, supplying '-T'
autamtically selects '-e'. If this option is not selected the executiOl
timings are taken fran the source library file 'times'. Look at the
'timerinfo' help file for more details.

-V The canpiler will nonnally desist reporting errors and warnings after
the first fifty or SO, with this option all the errors will be
reported. May produce Very Verbose output.

-W Give Warning IOOssages about declarations that turn out not to have
been used at all. This may highl1~ht misspelt declarations or
existence of no longer used procedures.

ex>

'" ex>

SystEm Flags

-s
-a

-n

-t

-v

-A

-C

-0

-11
-L

-11

-x

-y

-z

SWitch back to expecting 'user' mode flag options.
This means you can replace -<;%v by -~v%G.
Enable Analysis of the usage of channels - thls faclllty ls stlll
under test.
Oleck the source occam for syntu:: errors, but do Not produce any
object data fraJI it.
Print out the program in the fOnD just after it""" Transfonoed.
Ibt generall t useful as the program has changed so mucb.
Give Verbose infonnation at each stage when running the compiler -
will print out a /OOre accurate description of the systeo camands
it is calling and all the files it accesses.
Also sw! tches on a full print out of the occam link infonnation.
Produce the object code ('C' or Assembler) in a pemanent fUe
90 that it can be inspected.
Pro:luce 'C' rather than assembler output fraa the occam canpller
then compile and link it. There will be -.0 and -.c containing
the object and compiler generated 80urce created in the directery;
The 'C' and assenbler code produced will be similar and there is
little point in producing 'C' unless te waste time I (as the 'C'
oanpilation phase takes a long time). If the oanpiler is ported te
a non-VAX systEm then this option will autanatically be selected.
SW! tch on variable name and line nunher D.Jnping in the Cl AssaNJler
'object' fUe 80 that the object can be tied in with the source.
Undocunented feature under test.
Produce an occam-'C' interface Library, the two fUes ending '-e.c' and
'.occ' are 11nked together, the occam can refer directly to the 'C'
routines.
Run the compUer showing the stepe it would executa but without
actually doing anything - like '-R' In the UNIX 'oake' caIIl'and. Useful
when options start getting complicated. A Ib operation facility.
Undocunented feature under test.
n, not apply some Simplifying transfonnations on the program. These
currently relOOVe constructs with no processes in then and redundant
~ and PAR headers. These save a snall aJOOuot of spece and time
at run and canpUe time and there is little point in turning ott
this option.
Print out the procedures that have been defined in the link files
but has not been referenced - detects eXtra procedures defined
across files but not used.
Produce the 11nker assembler output in a pennanent file rather than
in a tenporary fUe on 'Imp'. Enables the output fraJI the Unker
to be debugged.
Get the linker te print out all the definitions it is told about.

Description ot the library routines

Standard Library

Provide conmonly used routines te read and write te the keyboard and screen
chaMels. 'lbe routines are written In 'Cl and occam and use standard C or
'curses' I/O routines. 111ere ue also general routines tor use to ,pI.use or
abort a program as well as to use the 'C' randau nunber routines. They are
available by default te &11 prcg unless the -S canpiler nag is used te
override their Inclusioo.

ElmllNAL nlCX: str.te.screen (VALUE s (» :

Output the string a (a byte array with byte 0 as the length).
The whole string is guaranteed to be printed in one sequence, two
concurrent calls to str. to.screen will DOt interleave.
Fquivalent te the program frag)DOOt :-

PROC str.to.screen (VALUE s (I) •
~ n • (1 for s (BYrE OJ)

screen I s (BYTE nl :

FXI'ERNAL nlCX: n te.screen (VALUE n)

ClItput a D\!Dber to the screen. '!be nunber caD be signed, aDd uses the min1n:A.m
nunher of characters (no leading spaces). Fquivalent te the 'C' language
t pr1ntt (''%dot ,n); I statanent.

EXTfllNAL PROC str. te.chan (CllAN c, VAUJE a (»
OJtput the string s to a channel 'Cl. 1he call 'str.to.chan (screen,lttred"),

Is identical to 'str. to. screen erred)'. Useful tor string output to fUes.

FXI'ERNAL nlCX: nun. te.chan (OIAN c, VALUE n) :

OJtput aseU string tor the nllDber 'n' to channel 'e'. U.ke 'str.to.c.ha.n' but
tor nunbers not channels.

ElmllNAL moo m..m.to.screen.t (VALUE D,d) :

Output a nlDlber to the", screen in a field of width Id'. It the nunber is too
btg tor the tield the nU1lber Is written out in tull regardless, tbe routine
call nun.to.screen.t (D,l) Is equivalent to n1.lll.to.screen (D). 'Ibe routine uses
the 'Cl language printt torn:at lod where n is the tield width.

CD

'" '"

ElrnllNAL ffiCC goto.x.y (VAUJE x,y) :

Use the t curses' .PiCkage to implement a cursor 'goOO' facUity. No error
checking is mde that the lIX)Ve Is w1 thin the screen area. 'Ibe x-axis la across
the screen and y-tUl;ls down, co-ordioate (0,0) Is In the top left hand corner ot
the screeo. 'Ibe first l1De Is used by the run time syst911 to print meSS8.&e8.

EXTmNAL PRO::: clear. screen :

Use curgeS to clear the screen,if cursor addressable option Dot used this
will still try to clear the screen using the eurses "CL" teITOCaJ) defined
string.

=ElINAL rnoc tran.kcyboard (VAR n)

Read a nunber trau the keyboard and assign to variable 'n'. 'Ibe routine Is
not very oophisticated. It will reed negative ntJDbers (start '-') and ignore
any leading 'sjllCe' characters. The ntJDber must be tollowed by a non-digit,
this character Is read by the routine and not avaU .. ble on a subsequent
'KeyboArd? ch' process. There Is no check that the nunber Is too btg for the
ntJDber range. It will expect at least one digit otherw1ae it .. 111 give an error
message.

EXTUlNAL rnoc nllD.trcm.chaD (OWl e,VAR D)

Read a ntJDber traD a channel 'c'. It 'c' is the keyboard th1s is equivalent
to calling 'nlJD.traD.keyboard'.

EXTUlNAL rnoc abort.program :

Force the program to abort execution. An explanatory message is printed 80
that the cause Will be known.

E>IT»INAL rnoc torce.break :

Perform the same action as it 'C'l'RL-C' was pressed at the tenninal. The user
interface routines can then be run under the menu selection facUity provided.

EXTUlNAL rnoc rand"" (VAUJE d, VAR n) :

Return a pseudo randOOl ntJDber 10 the range 0 to d-l by using the 'C'
'randaa ()' tunction in the variable n. 'Ibe vAilJE of d must not be zero.
n.. sequence ot randan ntJDbers will he modified it the '-R' run opt100 is used.

EXTUlNAL rnoc init.randan (VAWE D) :

Initialise the seed tor the randan ntrnber generator tor subsequent calls to
the procedure 'randau'. Uses the 'Cl language routine 'srandcm ()'.

EX'l'rnNAL rnoc trace. value (VAUJE n) :

Print out the integer value ot In' on the screen with the prefix string
'Trace value: I - tl11s makes debuggtcg a little easier.

Connect the channel 'io.chan' to a UNIX t11e. '!be procedure must be provided
with the pithnam8 ot the tUe as a string, and. the access mode ("r" read
access ,''w'' write access,lIa" append access). SUbsequent input or output 00
'io.char.' will fetch/put a single character frm/to the Ule. Attempts to input
past the eDd ot file wUl receive the value -1-

=ElINAL moc close.tUe (OIAN 10.chan) :

Cease connection of the channel with its currently open tUe.

EXTUlNAL moc open.pipe (VAWE eooma.nd.name [[,access [) ,OIAN io.chan)

Connect the channel 'io.chan' to a UNIX pipe running CClmand ,c.<lt'Il'l\nd.naroe'.
'!be procedure must be provided w1 th the UNIX ocmnand name and 'r' to read traa
it, or 'w' to write to it). Subsequent input or output OD 'io.chan' will
tetch/Plt a single character iran/to the tUe. Att_ts to inp.lt past the end
ot tUe will receive the value -1.

ElCI'ffiNAL moe close.pipe (OIAN 10.chan) :

Cease connection ot the channel with its currently active ccmnand.

ElITEMAL moc systen.call (VAWE eamand [), VAR code) :

Rltecute the UNIX C(J'[JMnd contained In the string 'carmand' and return the
value iD 'code' '!RUE it the C01Jl'Iand succeeded without error and FAlSE
otherwise.

EXTflINAL moc set.timers (VAUJE init.value) :

Set up the interval timers ITIMm REAL,IT:o.Gl\ VIR'ruAL to the given start
value. 1hese are used tor tWng seCtions ot coa-e on the VAX. Uses 'setit1mer'
call. fbte that using 'WAIT' pr1m1Uve w111 reset the timer 00 it can only be
used tor simple sections ot code. It should also be noted that it times the
.. hole program and not a single oceam process.

ElITEMAL rnoc get.real.timer (VAK secs,mcro.secs) :

Get the current elapsed timer values 1n secoods and mcroseconds. Timers
count down ... rds and are not especially accurate. Uses 'geUtimer' call.

ElITEMAL mcx: get.cPl. timer (VAR secs,mcro.secs) :

Get the current executed cro timer values in secoads and microseconds. Timers
cxrunt downwards and are not especially accurate.

ro
w o

Floating ~lnt Library

Routines to pertonn floating point input/output. 'lbey are available by
giving the canpUer flag '-F' when linking an occam program.

Floating p:>lnt value can be assigned and tran9D1tted via channels just
l1ke DOnm.l integer values, see the tile 'occamversloo' tor details ~ to the
language extensions introduced to suppJrt ;thEID.

Input/OUtput Routlnes

EICl'ERNAL rnoc fp.nllll. to.screen (VALUE FLOAT f)

Print out the floating point n\lllber in 'C' language float tonzat ''%6.6t''. If'
the ntJDber Is too s:aaU or too big the standard 'Cl action will be taken.

EICl'ERNAL rnoc fp.nllll.to.screen.f (VALUE FLOAT f,VALUE _,d) :

Print out the floating point mmber 10 'Cl real toroat ''Sw.dtu• It the mrnber
Is too srall or toO big problEmS will arise.

El<TERNAL FROC fp.ml1l.to.screen.g (VALUE FLOAT f) :

Print out the floating point mJ'Dber io 'Cl real tOl"mlLt ''%g''. 'Ibis will use
the moat appropriate torma.t - e"r.onent form it necessary.

El<TERNAL rnoc fp.n to.chan (OIAII c,VALUE FLOAT f) :

Write & nunber to a channel. It channel Is 'screen' this Is equivalent to
'fp.DUII.to.screen' • Useful tor writing data to tiles.

EXTElINAL FROC fp.nll1l. fran.keyboard (VAR FLOAT f) :

Read in a floating point nunber. 'lbe nl.lllber Is expected to begin with a digit
or '.' (indicating 0.), leading spa.ees are ignored. 'Ibe nlJl1ber eDds OD a
non-<Ilglt and thla character will not be avallable to subeequent reads frau the
ke)'board channel. '!be following are valid input nunbers follOll'lld by the
interpreted value for tbe lnput.

45.35 (45.35) 0.0004 (0.0004) .0 (0.0) 1. (1.0) 124 (124.0)

EXTElINAL rnoc fp.nllll.fran.chan (ClIAN c,VAR FLOAT f)

Read a floaUng polnt nlJ1lber fran & channel 'c'. If channel ls keyboard thls
is equivalent to 'tp.DlID.trau.keyboaJ'd'.

MathEmltical Routine Library

Itlthenatical routines tran the UNIX '-lm' library. '1bese are incllded by
specifying the '-u' flag. 'nley are all in single precisioD eveD though
double precision 'e' routines are called.

Return the sine of 'a' in 'res'. Angles are in radians.

EXTmNAL PROC fp.0081ne (VALUE FLOAT., VAR Fl.Q\T res) :

Return the cosine of 'a' in 'res', Aogles are in radians.

EICl'ERNAL PROC fp.are.slne (VALUE FLOAT., VAR FLOAT rea) :

Return the arc sine of 'a' in 'res'. Angles are in radians.

EXTmNAL rnoc fp.arc.0061ne (VAllJE FLOAT., VAR FLOAT res) :

Return the arc coeine Of " 'a' in 'res', Angles are in radians.

EXTmNAL PROC fp. are. tan (VALUE FLOAT &, VAR Fl.Q\T res)

Return the arc ta.ogent of 'a' in 'res'. Angles are in radians.

EX"J'FmW., moc fp.exp (VALUE P11lAT a , VAK n.DA.T res)

Return e to the power 'a' in 'res',

EXTmNAL FROC fp.log (VALUE fLOAT., VAR FLOAT res)

Natural logarithm of 'a' iD 'res',

EXTmNAL FROC fp.sqrt (VALUE FLOAT ., VAR FLOAT res)

Square root ot 'a' in 'res'. Returns an occam error it 'a' ls negative.

(l)
w

'Ibe run time systEm

As you might hope .men an occam program is executed it will tollow the
program execution until one ot three things happen.

1) '!be program tenninates
2) emIr<: is pressed on the keyboard
3) An error is detected.

In the case ot (2) and (3) a debug option will be displayed, this allows you
to abort the program, ignore the interrupt (continue), and to restart the
program again. Other options control the '-e' trace output, provide a 'system'
debug option (which is only really usetu1 to saneone who knows their way
around the COOIpller), an option to specify which source tUe you want to debug
and the 'screen animated debug'. 'Ibis later option should be ot JlX)St use and is
described in detail in the next section.

Errors cane in two types 'Fatal Errors' and just 'Errors', it is not possible
(or wise) to continue execution atter the tonner, but the latter my be ignored
if the S)'IDptan is expected.

'!be run time display debugger

'Ibis utility that runs under the run time system enables users to look at the
status of the processes during execution ot a program.

'!be utility requires the use of a cursor addressable tendnal. '!be system
provides selective display ot the source fUe(s) that were canpiled to fonn
the program together with a column showing the currently existing processes
OD thooo particular llnes of the source file.

lihen initially entered by pressing 'C'l'Rlr<;' the program execution ",111 be
halted, the execution can be restarted in 'stepped JOOde' so that the display
will be updated every occam scheduler action.

Breakpoints and trace points can be added at oolected line nunbers. Break
points cause the debug display to be autanatically entered .men any of
the process executes any of the source lines OD which a break point is oot.
Trace points cause temporary entry into the debug display before resun1ng
nonnal execution after five seconds pause.

If a file has been canpiled with the '-G' flag then the value of occam
variables and the status of channels can be printed. Because an occam program
can have several processes running witll different values to the same
identifiers (e.g. within PAR n - (0 F(l! 7), 'n' has a difterent value for each
ooparate process) a single process must be selected as before this tacility can
be used. When selected a second window ",i thin the debug display is opened and
the values printed by the program are placed within it.

Straightforward use of the debug display will nonnally entail running a
program and pressing CllUrC when a dubiOUS section of code is about to be
executed and entering the debug display (' z' cannand). 'Ibereafter the connands
'p' to find the next process, 't' and 'b' might be used to see whereabouts
the process IS executing. '!be program can then be Single stepped through
USing the 'r' ccmnand to start execution and's' c<mnand to stop execution.
Eventually exit ot the debug displayer can be made with the 'x' ccmrand.

'Ibere are two special markers that are used, '>, on a line indicates the
currently selected line and '-' the currently selected process.

'Ibe CQIIIWlds where practical have been made similar to those in UNIX 'vi'.
(UNIX is a tradenark of A.T. "T.).

Available commands

),bving about within the flle

11>- J,bve torward halt a page ot source text.
t 1'- Move forward a page ot source text.
1 U-),bve backward halt a page of source text.
tB-Move backward a page of source text.
:<nunber> - Move to glven line <number> in file.
k - (or fK) Move down one Hne.
j - (or tJ) Move up one Une.
/<string> - Flnd glven <string> in file trom current position.
n - Find next string occurrence for mtch strlng selected by'/, <XJIIIand.
P - Find the next process in the tile.

Trace/Breakpoints

b - Md breakpoint at currently selected Une.
t - Md tracepoint at currently selected Une.
d - Delete the trace/break point at the selected Une.
c - Delete all the points in the current file.
C - Delete all the points in all the files.
P - Print process status ot the currently selected process
o - Oeselect the current debug occam process.
S - Select the current debug occam process.
N - Select next process on the same lIne, if there are several processes that

are shown as executing on the same line then'S' will mke an arbitrary
choice, 'N' can be used to override this and step through the processes
until the one that is desired is selected.

ro
w
'"

Symbol inspection

m - Select a symbol to display, if no symbols have been selected before then
the symbol window is opened and the value of the variable or the status of
a channel. '

11 _ Repeat the previous 'm' ocmnand. To find the value of the same variable
name again.

Execution control

a - Abort the run.
r - Run debug display if a debug process is selected the debug display will

be re-entered every time that process is run, otherwise the debug display
will be run each time any process is run.

> _ Execute in single step mode. Only a single step is executed.
s - Stop the debug display tran running temp::u"arUy after a 'rt or 'x'·

u - =ciisPlay step interval (initial step interval is 1), this pennits
the location of processes to be seen after 'n' steps rather than after
eacb and every time it is executed. Not jIlrticularly useful.

x - Exit display debugger, program will proceed DOl'IlIIlly until a trace/break
point is found or 'fe' is pressed.

X - Exit to !Min .. menu so that program restart,abort,fUe selection
or system debug can be done. Used .men you wish to debug a different
file or to set things going again after setting up breakpoints.

Iliscellaneous

? - Print out this help information.
tU- (or tR) Redraw the current displayed infonnation.
1 - Buffer keyboard channel input text for the program.
o - Print overall data about the processes currently executing -

how many are in each process status, stack use and clock t1Jne.
V - Display the ocC8JD program's current screen output tanporarlly
v - Invoke the 'view' oannand on the occam source file (this is just like

'vi' but with read only access to the file - 'lhls can be used to provide
more powerful string search facilities men debugging.

Display key

'lbe collllll'l between the line number and the text is used to display the number
and status of processes executing on that line. Because of the canpilation
these may be out by a line or two in some circ\JllStances. Most "'1Quential code
will be executed as a single block - so a process will not move through a ~
block one step at a time necessarily.

'lbe special symbol 'P' does not represent a process, it indicates that a
procedure has been called at that point. 'P' therefore represents the 'call
point' of the procedure.

'lbe following symbols are used to represent the various process statH :

• - An active process - nay be chosen for execution at any t1Jne.
a - Process waiting for one or more ALT guards to becane TRUE.
" - Process waiting for a clock time or for input/output.
c - Process is waiting for one or more child PAR processes to tenninate.

In addition break and trace points are indicated in the colllM by giving a
'T' tor a trace point and 'B' for a break point.

So a display of :-

316:3* .. : occam, s ? razor

Indicates that there are three active processes and one process ""iting input
on Une 316.

Keyboard and Screen input/output

Because the debug display routine is fully interactive the screen and
keyboard data fron the program can not be handled in the same nanner as nonnal.
Input for the keyboard must be input using the 'i' C01IIlaIld - a .mole line can
be input and will be buffered up for program input in this ""y. Screen output
should be displayed as it is produced (but a copy of it will be sent to the
screen inage that .. ill redlsplayed on exit trom the display debugger) or the 'V'
cattnand. Strings can have escapes In them Itn' means newline,'*r' carriage
return and I •• I space.

ro
w
w

Non standard occam features

This canpUer to the best of my knowledge (Mr.R,P. Stallard of the ~JB.rtment
of O::rnputer Studies, Loughoorough University ot Technology, U.K.) i.mplenents
the 0CCIlID language as defined in the occam progranming manual published by
I1f,f()S 11m1ted subject to a few restrictions and extensions that are described
in this fUe. 'Ibese differences are intended to II1lke transfer ot occam prosrams
tran different iJnpleuentations feasible.

It is intended to be comPlUble to the ItMlS booklet versIon and the
PrenUce Hall book defini tion. <:x:X:AU, I~ and Transputer are registered
tradEfl'l8.rks of the Itf.Kl3: Group of Compulies.

llUlS proto-occanl language reviSions

'llle fol1O'1f1ng additional features introduced into INtd('6 occam products eau
now be selected by the CCItIpller flag optioa '-I'.

SI'OP prim1 t1 ve.
TIME channel.
IP on findIng none of the conditions TRUE S'roPs.

Restrictions

These restrIctions are either optional features as described 10 the published
language definition or compiler restrictions unlikelY to Umlt ordinary use ot

""""" .
No configuration section rules.
'!be operator '»1 uses YAX shift right operator.
tb prlorit1zed PAR. all lllrallel prooosses have equal priority.
Ntmber of arguoents to a procedure I1m1 tee! to 255 lJIUtimuD.
AFl'fll returns a time difference not a boolea.n value.

Extensions

PAR repl1cator count and base can be variables
A variable nu"OOer of processes can be created by replicated. PAR.

Recursive calls to procedures ,pannitted
A procedure caD call itself.

Screen chaMel can be used. by ClX)re than one process
The special screen channel can be accessed by any nunbar of

different occam processes. Thls facilltates debugging ot oceam
programs and is not dllflcul t to implement.

Wultiple source file compilation
Procedures and variables can be defined in one tUe and referenced in

another.
The definition is preceded by the new keyword I LIBRARY' before 'PRO:

I

and the definition must be at the outer level of program nesting.
References to procedures in other files are defined by preceding

IPROCI by 'EXTrnNAL' and replacing the I.' start of procedure definition
by ': I to indicate end of definition.

e.g.
File nain.occ Pile sub.occ

EXTERNAL PROC f (value n)
S"l

LIBRARY PRCX: t (value n) -
SIQ

nun. to. screen (0·102)
str.to.screen ("&.Iter next"):

t (27)

'n)e two files can be canpiled by :-

OCCMI nain.ace sub.occ
occam sub.occ -I
occMl min.ace sub.o

to canplle both together
to oanp1le sub.occ separately
to lInk in the pre-compl1ed sub.acc file

j,1I ;).V l.1I1'=' Ila,=, tx.>cu t!xlcnc.h..>d to variables and channels, in the case of
vectors of variables and channels the size need not be specified but the
type must be :-

Defining tile :-

LIBRARY CHAN network,C0TJT'6 (56) :
LIBRARY VAR blot (BYTE 4).spot (42) :
LIBRARY VAR I1.DAT hyper.bol1c (2(.act1ve (17)

Referring file :-

EXTEllNAL CllAN network,cCJD1\9 11 :
EXTERNAL VAR blot (BYTE).spot ().bol1c (FLOAT)
EX'I'flUW.. VAR FLOAT hyper ,active I J :

Floatinc point arIthmetic

1be canpUer penoits the use of floating: point n\Jnbers and arUtroetlc
operators. The caopl1er uses 32 bit VAX floating point throughout.

Floating point nlJDbers are declared by following VAR by the new keyword
float :-

VAA FLOAT x ,y, factor
YAR mm.ply :

- Floating point nlDber declaration
- lbrnal occam variables.

(Xl
w ...

Floating p:>int n\.1Tlber constants are supported these rray be in tfoOO forms
with dec1nal p)iot or with dec1nB.l point and exponent :-

x :- 1.45
y :- 2.3&-23 + 3.4e+l - Note that the exponent must be given a sign

'lbe following operators DBy be used on floating point nuobers (both
operandS DlSt be floating point)

+ - • I (> (- >- - <> - (monodic minus)

x :- 1.3 + (y • factor)
IF

• > 67.S
y :- -3.4 - Note use of rronadlc minus.

Parameters to procedures must I.lso have type set to VAR Fl.Q\T or
VALUE FI..Q\T - the act~l pa.rameters must be of the same type.

mx: SUD (VALUE FlLI\T a II.b II,VAR FU)AT res IJ.VAUJE n) -
PAR 1 - 10 Fa! nl

res 111 :- a I1I + bill:
VAR F1.G\T t 1231,8 1451,_ 1321

BI.IIl (t,s,w,12)

Floating values may be transn1tted along channels - but there are
no checks that the sender aDd receiver both expect floating p)int values.

Input of floating point mmbers can be carriec1 out by calling the
library routine 'tp.num.trom.keyboard' and output by the routine
'tp.num.to.screen'.

Interconverslon of floating p)lnt and integers Is perfonood by the
asslgrment operator :-

nun :- x - Convert tlOlltlng 'x' to integer 'm.m'
y :- mID - Cbnvert integer 'mID' to floating 'y'

Attenpts to use logical and shift operators on floating point nll1lbers
are flagged as errors.

00
W
111

APPENDIX III

SELECTED PROGRAM LISTINGS

program 1 :

solution of a linear system: occam coding of systolic array.

The array encoded solves a linear system prsented as a lower
triangular n by n band matrix with band width q. Total compu
tation time 2n + q; with an extra cycle to close down the
system. Unit time is, the cost of execution for an ips cell

array dependant parameters and communication channels

def n-4, q-3, total.time - (2*n)+{q+1) :
var xval[n}, yval[nJ, aval[n*n), bval(nJ

chan x(q+1), y[q], a[q], b :

proe celll(chan xin, xout, yin, yout, ain) -
inner product cell definiton.

var a[lJ, x(l), y(ll, xsave, ysave :
seq

-- startup values
seq

xsave :- 0
ysave :- 0

-- run the cell
seq i-(1 for total.time]

seq
par

-- perform i/o
.In?.[OI
yin?y[OI
oln?o[OI
xoutlxsave
youtlysave

.eg
-- inner product
ysove :- y[OI + (x[O[*a[OI)
xsave :- x(OJ :

proc ce112(chan xin, xout, yin, bin, ain) -

solve for x cell.

var a[l), x[lJ, y[l), b(ll, xsave
seq

xsave :- 0
seg 1-[1 for total. time

seq
par

-- perforll 1/0
xin1x(OI
yin?y(OI
bln?b(0 I
ain1a[0}

xoutlxsave
compute solution

xsave :- (b[OI I y[OI)+a[OI

proc sourcea(chan outpt, value mem(I, zl, z2, delayl)

matrix values pumped into systolic array by this
control mechanism.

var toggle, dl, d2, delay2
seq

-- set starting valuesl
seq

toggle :- true
dl : - 01
d2 :- z2
if

dl > d2

dummy or real value switch
delay of data stream.

delay2 :- delayl + (dl - d2)
true

deloy2 :_ delayl + (d2 - dl)
start pumping

seg i-[1 for total.time
if

(1 <- delay2) or (dl>n) or (d2 > n)
outptlO

true
if

toggle
seq

true

pump in next value, and
locate next item.

outptlmem[(((dl-lj*n)+d2)-11
.eq

dl :- dl + 1
d2 : _ d2 + 1
toggle :- false

seq
-- pumpin dummy seperator.
outpt 1 0
toggle :- true :

proc source(chan out, value memout[], delay) -

generic source definiton for b,x,y data streams.

var toggle, j :
seq

-- setup values
toggle :- true
j :- 1
-- pump data until done
seg i-(1 for total.time

0)
w

'"

seg
if

(i <- delay) or (j > n)
-- pass dummy values
-- for synchronisation.
seg

outlO
toggle

seg

true

-- send memory value
outlmemout[j-l]
seg

j :- j + 1
toggle : - false

seg
-- send dummy seperator
outlO
toggle :- true :

proc sink(ch an in, var memin(], value delay) -

generic sink : collects garbage values
and stores results in memory.

vat toggle, j, tmp
seg

-- setup values
seg

j :- 1
toggle :- true

-- start running
seq i-I 1 for total.time]

seg
--decide on type of data recieved
-- e.9 garbage or result.
if

(i <- delay) or (j > n)
-- synchronise
in?tmp

toggle
seg

true

-- store a result
-- next vacant area
in?memin[j-lj
seg

j :- j + 1
toggle :- false

seg
-- garbage throwaway
in?tmp
toggle :- true :

peoe system(chan at], xl}, y(l, b, vac xval[J, yval[], avaIl), bval[J) -

systolic system definition interms of basic ips cell
and sources.

par
par i- (1 for q-1)

par
-- matrix sources and Ips cells
sourcea(a(i), avaI, 1+1, 1, q-l)
colll(x(i-1), xli), y(iJ, y(i-1J, a(i))

reciporcal cell
cel12(x(g), x(O), y(O), b, 0(0)
-- periphery sources and sinks
sourcea(a(O), avaI, 1, 1, q-l
source{ x(q), xval, q-l)
source{ b, bval, q-l)
source(y(q-l], yval, 0)
sink(x[q-l], xval, (2·q)-l

proc getdata(var xval [], yval (J, bvall], aval ()) -

primitive routine to read in data from terminal

var tmp :
seq

screenl'l';'s' ,'.n'
-- read in lower triangular matrix
seq i-I 1 for nJ

seq
screenl'·n','('
seg j-(1 for n)

seq
keyboard?tmp
screenl tmp;'.s'
ovo1((i-1)·n)+j)-1) :- tmp - '0'

screenl') ,
screenl'*n';'b';'*n';'*n','('
-- clear x,y vectors for startup
seq i-I 0 for nJ

seq
keyboard?tmp
screenttmp;'·s'
bval(i] :- tmp - '0'
yval(i) :- 0
xvo1(i) :- 0

screenl')';'*n';'*n'

proc putdata{ var xval(]) -

primitive routine to write data to terminal

seq
screenl'*n','x','('

(»
w ...,

seq

seq i-I 0 for nJ
screen!xval(i] + '0' ;'*s'

screen!' l' :

main program section

performs reading and writing of data to Host computer
in this case the user terminal.

also creates and starts the system running.

getdata(xval,yval,bval,aval)
system(a, x, y, b, xval, yval, aval, bval)
putdata(xval }

program 2

Band matrix-vector multiplication

Systolic array to multiply an n by n band matrix with an
n component vector. the matrix has bandwidth w-p+q-l.

problem dependent constants and channels

def n-4,p-2,q-3, w-(p+q)-l :
def totaL time - ('2*n)+w :

var xval(n], yval[n], aval(n*n)
var delay.a, delay.x, delay.y

chan x[w+ll, y(w+l), a(wJ :

proc setup -

setup : calculates the delays of inputs
entering the array. Although p and q are constants
if they are modified to create a larger system,
synchronisation delays change

var xt,yt :
seq

delay.a computes time cycles
-- that matrix elements wait
-- until entering the array
seq

xt :- p-l
yt :- q-l
if

xt) yt
seq

true

-- x has longest distance to travel
delay.x :- 0
delay.y :- xt - yt
delay.a :- xt

seq
-- y has longest distance to travel
delay.y :- 0
delay.x :- yt - xt
delay.a :- yt :

proc cell(chan xin,xout, yin,yout, ain) -

inner product cell

var a(l),x(l),y(l],xtmp,ytmp
seq

-- dummy values for
-- startup
seq

Cl)
w
Cl)

xtmp :- 0
ytmp :- 0
-- run the cell
seg i-[1 for total.time]

seq
par

1/0
xln1x[O)
yln1y[O)
aln10[O)
xoutlxtmp
youtJytmp

seq
-- perform inner product
ytmp:- y[O) + (a[O)*x[O))
xtmp :- x[O) :

proc source(chan out ,value mem[), delay) -

generic source .•
references area of memory belonging to
host, and pumps required data placed there into
systolic array suitably delayed.

var j,toggle :
seq

-- intialisation
j :- 1
toggle :- true
-- while running
seq i-(1 for total.time)

If
(I <_ delay) or (j>n)

outlO
toggle

seq

true

-- fetch memory contents
-- locate next location
outlmem[j-l)
j :- j + 1
toggle :- false

.eq
-- dummy spacers
outlO
toggle :- true :

~roc sink(chan in, var mem[), value delay) _

generic sink :
performs data collection; reading out
garbage elements wheqre necessary and placing
valid data back into host memory in correct
position.

var j,toggle ,tmp :
seq

-- intialisation
j :_ 1
toggle :- true
-- while running
seq i-(1 for total.time)

if
(I <- delay) or (j > n)

in?tmp
toggle

seq

true

-- result to host memory
In1mem[j-l)
j ,- j + 1
toggle :- false

seq
-- collect garbage result
in?tmp
toggle :- true:

proc sourcea(chan outpt,value mem[],zl,z2,delayl)-

alternative source :
locates ,fetches, and pumps data from band matrix into
the systolic array. Addressing of host memory is more
complex as we need extra delays for matrix inputs

var delay2,toggle,dl,d2
seq

-- intlalisation
s.q

toggle ;- true
dl :- zl
d2 :- z2
if

dl > d2
delay2 :- dl - d2

true
delay2 :- d2 - dl

while running
seq i-[1 for total.time)

if
(I <- (delayl + delay2)) or (dl > n) or (d2 > n)

-- pad with dummy elements
-- until data arrives
outptlO

true
If

toggle - true
.eq

fetch data, locate next, pump

Cl)
w

'"

true

outptlmem««d1-1)'n)+d2)-1)
seq

d1 :- d1 + 1
d2 :- d2 + 1
t09gle :- false

seq
-- dummy spacer
t09gle :- true
outptJO :

proe alloc.sources.sinksCchan x(J, ylJ, er I, vac avall), yval[J,xval(J).

allocation routine : provides the mapping between cells, communication
channels to host environment and systolic array.

par
create matrix inputs

par i-I 1 for vI
if

i <- P
sourcea(afi-l),avaI, 1, (p-i)+!, delay.a)

true
sourcea(a(i-l},aval,(i-p)+l,l, delay.a)

x-vector and result y-vector
inputs and outputs

sourceCy[wJ,yval,delay.y)
source(x(O],xval,delay.x)
slnk(y[O),yval,w+delay.y)
slnk(x(w),xval,w+delay.x)

)roc getdata(vac xval(J ,aval(I ,yval()) -

very primitive input routine : reads in the data from user
terminal in.arting it into simulated hoat m.mory, in this ca ••
simple arrays
n.b great savings can be made by omitting known zeroes

in the matrix structure this not pursued for simplicity
the main aim was to test the array; not an exercise in data
structuring.

var tmp :
seq

screenl 'h' I 'a'; 'n'; 'd' I '-' ;w+'O';' *s'; 'p'; '-'; 'p+'O';' *s'; 'q'; '-' ;q+'O' l' *n'
screen I 'b'; 'a'; 'n'; 'd'; '-' iW+' 0' ;' *s'; 'p' ;'-' ;p+'O'; '*s'; 'q'; '-' ;q+'O';' *n'
screenl'n';'-';n+'O' ;'*0'
-- read the band matrix
seq i-(1 for n)

seq
screen t ' *n' 1 ' (,
seq j-[1 for nJ

seq
keyboardltmp;'*s'
aval««i-1)*n)+j)-lJ :- tmp - '0'

screenl'l'
screen I ' *n';' x';' *n' i' l'
-- read x and clear y vectors
seq i_[0 for n]

seq
keyboard?tmp
screen! tmp;' *s'
xval[iJ :- tmp - '0'
yval(i) :- 0

screenl']';'*n' :

proc putdata(var yval(J) -

another primitive i/o routine this time to
output data. Note; both input and output deal only
with single digit values; restrictive but adequate
for test purposes.

seq
screenl'*n'i'y'i'*n'i'['
seq i-I 0 for n)

screenlyval[i)+'O' ;'*s'
screenl'}'

main

allocation and setup of the system;

seq
setup
getdata(xval,aval,yval)
-- the array
par

alloc.sources.sinks(x,y,a,aval,yval,xval)
par i-Cl for wl

cell (x (i -1) ,x (i) ,y(i). y(i-1) ,. (i-1))
-- computation complete
putdata(yval)

0) o

pr09ram 3

band matrix multiplier

pr09ram to multiply two n by n band matrices
usin9 a hex connected systolic array .

matrices have band widths wl - pI + ql - 1 and w2 - p2 + q2 -1

problem dependant constants

let n-4, pl-2, ql-3, wl-(pl+ql)-l
let p2-3,q2-2, w2- (p2+q2)-1 :
1ef maxchan • «(wl+1)~(w2+1»~3)+3, w3 • (wl + w2) -1
lef don -true, doff - false :

,ar delay.a, delay.b, delay.c, total.time, min, strtc
,ar a(n~n], b(n*n], c(n*n]

:han pool (maxchan] :

lroc setup(var c[))

setup routine ; calculates delaysof input data for
synchronisation inside the array ; and total computation
time.
also sets some varibles e.9 strtc required to setup the
connection network.

var ctime :
seq

-- computation time
seq t-(1 for n*nJ

c[i-l) : - 0
if

w1 < w2
seq

true

total.time :- (3*n}+wl
min :- wl

seq
total.tlme :- (3*") + w2
min :- w2

offsets and delays
strtc :- w2 + 1
ctime :- ql-l
if

if

ql > p2
seq

strtc :_ strtc + (ql - p2)
ctlme :_ ctime - (ql - p2)

delays of sources

(ctime >_ (q2-l» and (ctime >- (pl - 1»

seq
delay.c - 0
delay.a - ctime - (q2 - I)
delay.b - ctime - (pl - 1)

(q2 - 1) > ctime) and (q2 >
seq

delay.a :- 0

pl)

delay.c :- (q2-1) - ctime
delay.b :- q2 - ql

(pi - 1) >- ctime) and ((pl-l) > (q2-1»
seq

delay.b :- 0
delay.c :- (pI - 1) - ctime
delay. a :- pl - q2 :

proc allocpool(value x, y, r, var c) -

seq

the array is built onto a rectangular grid; with processors
at intersections; channels are connected by indexin9
processo,rs by underlyin9 grid points

c :- (((((x - 1) • (w2 + 1» + y) • 3) + r)-l

proc cell(chan ain, bin, cin, aout, bout, cout) -

inner product cell
(hex in the array)

var all), bll), c(l), atmp, btmp, ctmp
seq

-- intialisation
seq

atmp :- 0
btmp :_ 0
ctmp :- 0

-- while running
seq i-[l tor total. time)

seg
par

I/O
ain1a(0)
bin1b[0)
cin1c(0)
aoutlatmp
boutlbtmp
coutlctmp

seq
-- inner product
ctmp :- c[O) + (a[O)-b[O)
btmp :- bIOI
atmp :- a[O) :

proc source(value mem(], zl, z2, delay, flag, chan outpt) -

Cl)

generic source
locates, fetches , and pumps data into the array
for simplicity c is as summed to be a zero array
at start of computation.

var toggle, togglel, delay2, dl, d2
seq

-- intialisation; and computation
-- of source delays
toggle :- true
togglel :- false
dl :- zl
d2 :- z2
if

dl > d2
delay2 :- (dl - d2)

true
delay2 :- (d2 - dl)

if
flag

delay2 :- (delay2*2) + delay
true

delay2 :- delay2 + delay
-- while running
seg i-I 1 for total. time

if
(1 <- delay2) or (dl > n) or (d2 > nJ

outptlO
true

If
togglel

seq
-- sceond dummy value
outptlO
toggle :- true
togglel :- false

toggle
seq

true

-- fetch , locate next and pump data
outptlmem((((dl-l)*n)+d2)-lJ
.eq

dl :- dl + 1
d2 :- d2 + 1
toggle :- false

seq
-- first dummy value
outptlO
togglel :- true :

proc sink(var mem[), value zl, z2, delay, flag, extra, chan inpt) •

generic sinkJ

almost identical source except that data is
collected and inserted into memory as results
garbage values are removed from the array

var toggle, togglel , delay2, dl, d2 :
seq

-- intialisation
toggle : - true
togglel :- false
dl : - zl
d2 :- z2
if

dl > d2
delay2:- (dl - d2)

true
delay2 :- d2 - dl

if
flag

delay2 :- (delay2 * 2) + (delay + extra)
true

delay2 :- delay2 + (delay + extra)
-- while running
seg i-I 1 for total.time

if
(1 <- delay2) or (dl > n) or (d2 > n)

inpt?any
true
if

togglel
seq

-- dummy value
inpt?any
t09gle t- true
togglel :- false

toggle
seq

true

-- insert result into memory
inpt?mem((((dl-l)*n)+d2)-lJ
seq

dl :_ dl + 1
d2 :- d2 + 1
toggle :- false

seq
-- dummy value
inpt?any
toggle! :- true

proc allocsources(chan pool[It value strtc) -

allocation of sources to
ends of systolic array

def xlim - wl + 1, yIim - w2 + 1

CD ..
'"

par
allocate a(l,j) sources

par x-I! for wlJ
var idx :
seq

allocpoolex+l, yllm, 0, idx)
if

x <- ql
source(a, ql - (x - 1), 1, delay.a, doff, pool(idx)

true
source' a, 1, (x - ql) + 1, delay.a, don, pool[idx])

allocate b(i,j) sources
par y - (1 for w2)

var idx :
seq

allocpool(xlim, y+l, 2, Idx)
if

y <- p2
source(b, 1, p2 - (y - 1) , delay.b , doff, pool[ldx)

true
source(b, (y - p2) + 1, I. delay.b, don, pool[ldx)

allocate c{l,j) sources
par i-I 1 for w3)

var Idx:
s.q

if
i <- (w2 - 1)

allocpool{ 1, (w2 - i) + 1, 1, idx)
i - w2

allocpool(1, 1, 1, idx
i > w2

allocpool«l - w2) + 1, 1, 1, idx)
if

(Istrtc - i)+I) > 1
seq

source(c, strtc - i, 1, delay.c, don, pool[idx)}
true

seq
source (c, 1, (i - strtc) + 2, delay.c, don, pool{idx) :

proc allocsinks(chan pool[), value strtc) -

allocation of sinks to periphery of array
almost the same as the source allocations
and could make one routine but the lack of clarity
in the latter proved a heavy cost in debu9gin9

def xlim - wl + 1, ylim - w2 + 1 :
par

-- allocate a{i,j) sinks
par x-I 1 for wl)

var idx :
s.q

allocpool(x+l, 1, 0, idx)

if
(x <- ql)

sink(a, ql-(x-l), 1, delay.a, doff, 0, pool[ldx])
true

sink(a, 1, (x - ql) + 1, delay.a, don, 0, pool[idx)
allocate b(i,j) sinks

par y-(1 for w2)
var idx :
seq

allocpool(l, y+1, 2, idx
if

(y <- p2)
sink(b, 1, p2 -

true
y - 1), delay.b, doff, 0, pool[idx)}

sink(b , (y-p2)+I, 1, delay.b, don, 0, pool[idx)
allocate c(i,j) sinks

par i-(1 for w3)
var idx, tmp
seq

if
i <- Iw1 - 1)

if

allocpool(i+l, ylim, 1, idx }
i - wl

allocpool(xlim, ylim, 1, idx
i > wl

allo~pool(xlim, «w3 - i)+2)

«(strtc - i) + 1) > 1
seq

1, idx)

sinke c, strtc - i, 1, delay.c, don, i, pool(idx)
true

seq
if

i > w2
tmp :- (w3 - i) + 1

true
tmp :- min

sink(c, 1, (i strtc)+ 2, delay.c, don, tmp, pool[ldx)

proc alloc.cells(chan pool()

placement of inner product cells
onto the rectangular grid, and connection with
sources and immediate neighbours

par i - (2 for wl)
par j - (2 for w2)

var idl, id2, id3, id4, idS, id6
seq

allocpool(i, j, 0, idl)
allocpool(i, j, 2, id2)
allocpool(i, j, 1, id3)
allocpool(i, j-1, 0, id4)
allocpool(i-l, j, 2, idS)

a11ocpoo1(1-1. j-1. 1. 1d6)
ce11(poo1(1dll. poo1(1d21. poo1(1d6). poo1(1d4). poo1(1dS). poo1(1d3))

proe getdata(var mem()) •

primitive input routine toread single digit postlve
numbers ; restrictive but good enough for test purposes

vac tmp :
.eg

screenl'·n'
seq i- I 1 for n)

.eg
screen!' "n';' ('
seq j-(1 for nJ

.eg
keyboard?tmp
screen! tmp;' *s'
mem((((1-1)*n)+j)-1) :- tmp - '0'

screen!') ,
screenl '*n' :

peoe putdata(value mem(]) -

primitive routine to output data

.eg

.eg

seg 1 -I 1 for n)
seg

screenl'*n';'['
seg j-I 1 for n)

screenlmem((i-l)*n)+j)-l) + '0';'.6'
acreenl')' :

main routine

allcates and creates running array

getdata(a
getdata(b
setup(c)
par

allocsources(pool, strtc)
a11oc.ce11s(poo1)
allocsinks(pool, strtc)

putdata(c)

program 4.

Systol!c array performing lu-decompostion of an n*n
Matrix

notes: This program is based on a simulation or soft-systolic
implementation of the Hexagonal array presented by h.t. kung
and c.e. liserson •
esssentially the program is the' same as program 3 for
band matrix multiplicatIon. the inner product step (Ips) cell
has been made programmable, in the sense that the various
orientations e.g 120 deg rotations can be selected

problem dependant constants

def n-4, pI-2, ql-3, wl-(pl+qI}-l :
def p2-3.g2-2. w2- (p2+g2)-1 :
def maxchan - «(wl+l)*(w2+1))*3)+3, w3 - (wl + w2) -1
def don -true, doff - false

-- synchronisation and data storage

var delay.a, delay.b, delay.c, total.time, min, strtc
var aln*n), b[n*n), cln*n) :

-- pool of communication channels

chan pool(maxchan] :

proc setup(var cl). dl J) -

routine to perform necessary calculations for
delay of data on input channels, and the
spec tication of the array as virtual processors
on a rectangular processing surface.

var ctime :
seg

-- clear vectors
seq i-I 1 for n*n)

seg
dI1-1) :- 0
c(i-l) :- 0

-- computation time
if

wl < w2
seg

true

total.time :- (3*n)+wl
min :- wl

seg
total.time :- (3*n) + w2

min :- w2
offsets and delays

strtc :- w2 + 1
ctime :- ql-l
if

if

ql > p2
seq

strtc :- strtc + (ql - p2)
ctime :- ctime - (ql - p2)

delays of sources

Ictime >- Iq2-1)) and ctime >- Ipl - 1))
seq

delay.c :- 0
delay.a :- ctime - Iq2 - 1)
delay.b :- ctime - Ip1 - 1)

Iq2 - 1) >- ctime) and Iq2 >- pI)
seq

delay. a :- 0
delay.c :- Iq2-1) - ctime
de1_y.b :- q2 - q1

Ip1 - 1) >- ctime) and Ilpl-l) > Iq2-1))
seq

delay.b :- 0
delay.e ,- Ipl - 1) - ctime
delay.a :- pI - q2 :

proc allocpool(value x, y, r, var c) -

address calculation of pool channel

seq
c :- 1IIIIx - 1) , Iw2 + 1)) + y) • 3) + r)-l I

proc cell(chan ain, bin, cin, aout, bout, cout, value type) _

definition of inner product cell

the cell is programmable ; the type selects if the cell
is true ips, rotated by 120 deg clock wise ,anticlockwise
or reciprocal cell

var a[l), bill, ell], atmp, btmp, etmp
seq

seq
setup start values

atmp :- 0
btmp :- 0
ctmp :- 0
if

type - 3
seq

atmp :- -1
btmp:- 1

-- while running
seq i-[l for total.time]

seq
-- perform ilo
par

ain1a(0)
bin1b(OJ
cln1c(OJ
aoutlatmp
boutlbtmp
cout!ctmp

-- do computation
-- depending on type of cell
seq

if
Itype - 0) or Itype - 2)

seq
ctmp :- c(OJ + I aJOJ'b(OJ
atmp :- a(OJ
btmp :- b(OJ

type - 1
seq

ctmp :- c(OJ + I a(OI'b(OI)
btmp :- ctmp
atmp :- a(OI

type - 3
seq

if
c(01 - 0

btmp :- 1
true

btmp .- l/c(OI
atmp :- -1
ctmp ,- c(OJ

proc source(value mem[J, zl, z2, delay, flag, ehan outpt) -

generic source
pumps data into the array, zero values except
where matrix values are to enter

var toggle, togglel, delay2, dl, d2 :
seq

-- set switches
-- calculate number of
-- dummy inputs
toggle :- true
togglel :- false
dl :- zl
d2 :- z2
if

dl > d2
delay2 :- Idl - d2)

true

delay2 :- (d2 - dl)
if

flag
delay2 :- (delay2*2) + delay

true
delay2 :- delay2 + delay

-- while running
seq i-[1 for total.time I
if

(I <- delay21 or (dl > nl or (d2 > n)
-- pad with dummy value
outptlO

true
if

togglel
seq

-- send dummy value
outptlO
toggle :- true
togglel :- false

toggle
seq

true

-- send data element
outptlmem((((dl-l)*n)+d2)-ll
seq

dl :- dl + 1
d2 :- d2 + 1
toggle :- false

•• q
-- send dummy value
outptlO
togglel :- true :

proc sink{ var mem[I, value zl, z2, delay, flag, extra, chan inpt) _

generic sink
opposite of the generic source; collects I and u factors
I:'esults storing them in the corl:'ect place in host memory
dummy values and garbage results are disposed of cleanly

vac toggle, toggle 1 , delay2, dl, d2 :
seq

-- set switches
toggle :- true
togglel :- false
dl :_ zl
d2 ;- .2
if

if

dl > d2
delay2:- (dl - d2)

true
delay2 :- d2 - dl

flag
delay2 :- (delay2 - 2) + (delay + extra)

true
delay2 :- delay2 + (delay + extra)

-- while running do computation
seq t-[1 for total.time)

if
(i <- delay2) or (dl > n) or (d2 > n)

-- pad dummy values
inpt?any

true
if

togglel
seq

-- dummy or garbage
inpt1any
toggle :- true
t0991e! :- false

toggle
seq

true

-- store this value; and
-- locate next free space
Inpt?mem((((dl-l)*n)+d2)-ll
seq

dl : - dl + 1
d2 :- d2 + 1
toggle :- false

seq
-- dummy or garbage value
inpt?any
toggle! :- true

proe allocsources{ chan pool(}, value strtc) _

assign source processors to grid positions

def xlim - wl + 1, yIlm - w2 + 1 \
par

-- allocate a(i,j) sources
par x-(1 for wl)

val:' idx :
seq

allocpool(x+l, ylim, 0, idx)
if

x <- ql
source(8, ql - (x - I), I, delay.a, doff, pool[idx})

true
source(8, 1, (x - ql) + 1, delay.a, don, pool(idx})

allocate b(i,j) sources
par y - [1 for w2]

var idx :
seq

allocpool(xlim, y+l, 2, idx)

(Xl ..
'"

if
y <- p2

source(b, 1, p2 - (y - 1) , delay.b, doff, poollidx)
true

source(b, (y - p2) + 1, 1, delay.b, don, pool[ldx)
allocate c(i,j) sources

par i-I 1 for w3]
vac idx
seq

if

if

i <_ (w2 - 1)
allocpool(1, (w2 - i) + 1, 1, idx)

i - w2
allocpool(1, 1, 1, idx

i > w2
allocpool«l - w2) + 1, 1, 1, idx)

((strtc - i)+l) > 1
seq

source(c, strtc - i, 1, delay.c, don, pool[ldx)
true

seq
source(C r 1, (1 - strtc) + 2, delay.c, don, pool[ldxJ)

peoe allocsinks(chan pool[]. value strtc) -

allocate sink processors to grid positions

def xlim - wl + 1, yllm - w2 + 1 :
par

-- allocate a(l,j) sinks
par x-[1 for wlJ

var idx :
seq

allocpool (x+l, 1, 0, idx)
if

(x <- q1)
sink(a, ql-(x-l), 1, delay.a, doff, 0, pool(ldx)

true
sink(a, 1, (x - ql) + 1, delay.a, don, 0, pool(idx)

allocate b(l,j) sinks
par y-(1 for w2)

var idx :
seq

allocpool(l, y+l, 2, idx
if

(y <- p2)
sink(b. 1. p2 - y - 1). de1ay.b. doff. O. poo1(idx)

true
sink(b, (y-p2)+1, I, delay.b, don, 0, pool(idx)

allocate c(i,j) sinks
par i-(1 for w3)

var idx, tmp :
seq

if
i<-(w1-1)

if

allocpool(1+1, yllm, 1, idx)
i - wl

allocpool(xlim, yllm, 1, idx
1 > wl

allocpool(xlim, «w3 - 1)+2) 1, idx)

« strtc - i) + 1) > 1
seq

sink(c, strtc - i, 1, delay.c, don, i, pool[idx)
true

seq
if

i > w2
tmp :- (w3 - i) + 1

true
tmp :_ min

sink(c, 1, (i strtc)+ 2, delay.c, don, tmp, pool[idx)

proc alloc.cells(chan pool(l)-

allocate Ips processors to grid positions

def xlim - wl + 1, ylim - w2 + 1
par i - (2 for w1)

par j - (2 for w2)
var idl, id2, id3, id4, idS, id6
seq

allocpool(i, j, 0, idl)
allocpool(i, j, 2, id2)
allocpool(i, j, 1, id3)
allocpool(l, j-l, 0, Id4)
allocpool(i-l, j, 2, ldS)
allocpool(l-l, j-l, 1, Id6)
if

(i - x1im) and (j - y1im)
ce11(poo1(id1). poo1(id2). pool(id6). poo1(id4). pool(idS).

poo1(id3). 3)
(j - ylim)

ce11(pool(id2). poo1(id6). pool(id1). poo1(idS). pool(id3).
poo1Iid4). 1)

(i - xlim)
ce11(pool(id6). poo1(id1). poo1(id2). poo1(id3). poo1(id4).

pool(idS). 2)
true

cell(pool(id1). pool(id2). pool(ld6). pool(id4). pool(idS).
pool(id3), 0) :

proc getdata(var mem()) -

read in the array to be tactored
primtive routine integer values >0 and <-9
but adequate for testing_

var tmp :
seg

screen l' *n'
seq i- [! for n J

seg
screenl '*0';' ('
seg j-[1 for nl

seg
keyboard?tmp
screeoltmp;'*s'
mem[(((I-ll*n)+j)-ll :- tmp - '0'

screenl' J'
screen! '*n' :

proe putdata(value mem[J , value flag) -

write out the factors to the screen

primitive routine uses only integer values
but sufficient for testing

seg

seg

seg i -[1 for n 1
seg

screen!'*n';'('
seg j-[1 for nl

seg
if

(1 > j) and (flag - 1)
screenl '0' J ''lis'

(1 < j) and (flag - 2)
screen 1 ' 0' I' 'lis'

(1 - j) and (flag - 2)
screenl'l';'*s'

true
screenlmem({«i-1)*n)+j)-1] + 'O';'*s'

screen!'} ,

main program

read data; allocate system; run it; write results

getdata(c)
setup(a, b)
par

allocsources(pool, strtc)
alloc.cells(pool)
allocsinks(pool, strtc}

screenl'u';'-' ;'*n'
putdata(c, 11
screenl'*n';'l';'-';'*n'
putdata(c, 2)

program 5.

systolic array

notes

Double pipe implementation of Matrix Vector
Multiplication algorithm.

The Array is based on the Soft-Systolic approach
to simulating systolic arrays.

problem dependent constants
def n-S, p-4, q_4, w-(p+q)-l, max.cells - (w/2)+!, total. time - (n+(w/2)+3)

-- setup and communication variables
var delay.x, delay.y, no.cells.l, no.cells.2
var x.vecl n }, a.mem(n*n J, y.vecl n), null.vecl n] :

-- Interface and Floating point Arithmetic Library Routines.
EXTERNAL proc fp.float(value int, var float)
EXTERNAL proc fp.add(value f1, f2, var f3)
EXTERNAL proc fp.mult(value f1, f2, var f3)
EXTERNAL proc fp.num.to.screen(value f) :
EXTERNAL proc fp.num.from.keyboard(var f) :
EXTERNAL proc str.to.screen(value sI]) :

proe setup -

calculation of synchronisation parameters
and number of cells in each pipe.

seg
if

if

if

if

(p - (2*(p/2))) _ 0
delay.x :- (p/2) -1

true
delay.x :- p/2

(q-(2*(g/2))) - 0
delay.y :- (g/2)

true
delay.y :- q/2

(w -(2*(w/2))) -seq
no.cells.l :-
no.cells.2 :-

true
seg

no.cells.l :-
no.cells.2 :-

delay.x > delay.y
seq

0

- 1

w/2
w/2

(w/2)
w/2

+ 1

delay.y :- delay.x - delay.y
delay.x :- 0

true

co ..
CO

•• q
delay.x :_ delay.y - delay. x
delay.y :- 0 :

peoe ipa chan xin, yin, xout, yout ,ain) •

basic inner product step cell

vat a(l), x(1), y(l), xtmp, ytmp, tmp
seq

-- startup values
fp.float{O,xtmp)
fp.float(O,ytmp)
fp.float(O,a[O)
fp.float(O,x[O)
fp.float(O.y[O)
-- while running do
seq i -(1 for total.time]

seq
-- 1/0
par

x1n1x(0)
y1n1y[01
a1n1a(0)
xoutlxtmp
youtlytmp

-- computation
seq

fp.mult(x(O],a(O],tmp)
fp.add(y[O), tmp, ytmp)
xtmp :_ x[O) :

proe delay(chan in, out) -

simple one cycle delay cell

vat tmp(l], t:
seq

fp.float(O,t)
seg i -(1 for total.time)

seq
par

1n?tmp[0)
out!t

t :- tmp[O)

peoe adder (chan inl, in2, res) -

two input adder

var opdl[l), opd2(1). c :
seq

fp.float(O,c)
seq 1 -[1 for total.t1me)

.eq
par

1nl?opdl(0)
1n210pd2(0)
reslc

fp.add(opdl[O). opd2(0), c) :

proc store(chan reS, var result{], value delay) -

Collection and storage of Data

var j , tmp
seq

j :- 1
seq i -[1 for total. time)

if
(1 <- delay) or (j > n)

seq
res?tmp

true
seq

res?result(j-l)
j :- i + 1 :

peoe source (value type, mem(], 11, 12, delay, chan out) •

Gene ri c Sou ree pump data into array

var dl, d2 , delay2
seq

dl :- 11
d2 : - 12
delay2 :- delay
if

d2 > dl
delay2 :- (d2 - 1) + delay2

seq i -[1 for total.time)
seq

if
(dl > n) or (d2 > n) or (1 <- delay2)

-- shift
outlO

type - 1
-- Matrix Source
seq

outlmem[(((dl-l)·n)+d2)-1)
dl : - dl + 1
d2 :- d2 + 1

type - 2
-- vector source
seq

outlmem[dl-l)
dl :- dl + 1 :

proc sink (chan in) -
-- garbage signal collector
seq i _[1 for tota1.time)

in?any :

proc alloc.sources(value pipe, size, mem.mat[), ch an a[)) -

allocation of Sources to grid points in
Virtual processing space

vae k, delay:
seq

delay :- delay.x
if

pipe - 1
k :- p

pipe - 2
k :- p - 1

-- make enough sources for
-- all cells in pipe
par i -(1 for size)

var delay2, kl:
seq

kl :- k - (2*(i-l))
delay2:- del.y + (i - 1)
if

kl <- 0
source(1, mem.mat, 2-k1, 1, delay2, a[i-1))

true
source(1, mem.mat, 1, k1, delay2 , a(i-1)) :

proc bandvec (var mem.mat(), mem.vec(), mem.null(), value size,
delay.l, delay.2, pipe, chan yout) -

Abstract definition of the Single pipe band vector array
recall that two such vectors are required for Double pipe

chan x[max.cells+l), y[max.cells+l), a(max.cells) :

par
pipe

ips(xIO). yll). xII). yout. '(0))
par i-[2 for size -1)

ips(xli-I). yli). xli). yli-l). ali-l)
-- matrix and vector sources
alIoc.sources(pipe, Size, mem.mat, a)
source{2, mem.vec, 1, 0, delay.x, x(O] }
source(2, mem.null, 1,0, deIay.y, y(size))
-- collection of garbage falling off the pipe ends
sink(xlsize)) :

)roc getdata(var mat[), vec[), res(), nu11()) -

-- read matrix and vector data from terminal/Host

var tmp
seq

str.to.screen(".n band matrix multiplier ·n")
ste.to.screen(".n.n using double systolic pipe .n")
str.to.screen("*n.nband width w - P + q - 1")
str.to.screen(".np - ")
str.to.screenCn·nq - ")
str.to.screen(".n enter matrix ")
seq i -(1 for nJ

seq
str.to.screen("·n{")
seq j -11 for n)

seq
fp.num.from.keyboard(tmp)
str.to.screen("*s")
fp.num.to.screen(tmp)
m.tl(((i-l)*n)+j)-l) :- tmp

str.to.screen(")·n"}
str.to.screen("*n.n enter vector *n[.6")
seq i -11 for n)

seq
-- clear auxiliary vectors here
resli-l) :- 0
nul1Ii-l) :- 0
fp.num.from.keyboard{tmp)
str.to.screen("*s")
fp.num.to.screen(tmp)
veeli-l) :- tmp

str.to.screen("J·n") :

proc putdata{ value vec[)) -

read out results to Host/Terminal

seq
str.to.screen("·n.n·n result vector .n(")
seq i-Il for n)

seq
str.to.screen("*s")
fp.num.to.screen(vec(i-l)

str.to.screen{"·sJ·n") :

main
chan yout!, yout2, d.yout2, res

seq
setup
getdata(a,mem, x.vec, y.vec, null.vec)
-- Double pipe
par

bandvec(a.mem, x.vec, null.vec, no.cells.l, delay.x,
delay.y, 1, youtl)

ro
~ o

bandvec(a.mem, x.vec, null.vec, no.cells.2, delay.x,
delay.y, 2, yout2)

delay(yout2, d.yout2)
adder(youtl, d.yout2, res)
store(res, y.vec,(no.cells.l + 1) + delay.y)

putdata(y.vec)

program 6.

systolic Array: for Quadrant Interlocking Iterative (XWZ) scheme
for the soluiton of Linear Systems.

Notes: The method is a parallel implementation using a Double pipe Array
no Over relaxation is used, as we cannot gurantee that every
instance of the array will be able to use it.

problem dependent constants
def n-4, n2-n/2, p-n2, q-n2, w-(p+q)-l, max.cells - (w/2)+1
def m - 12 ,total. time - (n2+{w/2)+S) :

-- Vector and Matrix storage
var delay. x, delay.y, no.cells.I, no.cells.2 :
var x1[n2), x21n2J, null.vecln2), xcl[n2J, xc2[n2), xc31n2J, xc4[n2) t
var pll(n2*n2J, pI2(n2*n2], p2![n2*n2J, p22[n2*n2] :
vat b1(n2). b2(n2) :

-- Host Interface and Floating point Library routines
EXTERNAL proc fp.float(value int, var float)
EXTERNAL proc fp.add(value £1, f2, var f3)
EXTERNAL proc fp.sub{ value £1, f2, v8r £3)
EXTERNAL proe fp.div(value f1, f2, var f3 }
EXTERNAL proe fp.mult(value f1, f2, var f3)
EXTERNAL proc fp.num.to.screen(value f } :
EXTERNAL proc fp.num.from.keyboard(var f) :
EXTERNAL proc str.to.screen(value s(J) :

proe setup -

calculation of synchronisation and
array pipeline positioning parameters

.eq
if

(p - (2*(p/2))) - 0
delay •• :- (p/2) -1

true
de1ay.x :- p/2

if

if

(q-(2*(q/2))) - 0
delay.y :- (q/2) - 1

true
delay.y :- q/2

(w -(2*(w/2))) - 0
.eq

no.cells.! :- w/2
no.cel!s.2 :- w/2

true
.eq

no.cells.l :- (w/2)
no.ce11s.2 :- w/2

+ 1 .

if
delay.x > delay.y

seq

true

delay.y :- delay.x - delay.y
delay.x :- 0

seq
delay.x :- delay.y - delay.x
delay.y :- 0 :

peoe ips chan xin, yin, xout, yout ,ain) -

basic Inner product Cell

var a(1), x(l), y(l), xtmp, ytmp, tmp
seq

-- intialisation
fp.floatIO,xtmp)
fp.float(O,ytmp)
fp.float(O,aIO))
fp.float(O,xIO))
fp.float(O,yIO))
-- while running do
seq i -I 1 for total.time[

seq
-- 1/0
par

xin?xIO)
yin?y[O)
ain?aIO)
xoutlxtmp
youtlytmp

-- computation
•• q

fp.mult(x{O),a(O),tmp)
fp.sub(yIO), tmp, ytmp)
xtmp :- xlO) :

proc delay(chan in, out) -

single delay cycle

var tmp(l), t:
seq

fp.float(O,t)
seq i -(1 for total.time)

seq
par

in?tmpIO)
outlt

t :- tmplO)

proc ddivide{ ch an inl, In2, In3, out!, out2)_

-- Double Division cell
outl • in1/1n3, out2 - In2/in3

var tell], el, e2
seq

intlalise
fp.float(O, e1)
fp.float(O, e2)
-- while running do
seg i -(1 for total. time]

seq
-- i/o
par

inl?teIO)
in2?tell)
i n3?te (2)
cutlle!
out21e2

-- divide by zero test
if

te(2) - 0
-- default result
par

el :- 1
e2 :- 1

true
par

fp.div(teIO), te(2), el)
fp.div(tell), te[2), e2)

proe determinant(chan 1nl, In2, in3, 1n4, out!, out2, out3,
out4, DutS, out6, value type } -

determinant cell : calculates determinant of 2*2 system
outputs two copies of result and operands

vac te(4), e(5), tmpl, tmp2 :
seq

-- intialise
seq i -I 0 for 4)

fp.floatIO, eli)
fp.float(l, e(4))
-- while running do
seg i -(I for total. time]

seq
-- i/o
par

inl?teIO)
in2?tell)
in3?tel2)
in4?te(3)
if

type - 0
pass operands' copy result

<Xl
1I1
N

par
out11eIO)
out21ell)
out31e(2)
out4!e[3J
out51e(4)

out61e(4)
-- computation
par

par i -I 0 for 4)
eli) :- teli)

fp.mult(teIO). tell). tmp1
fp.mu1t(te(2). te(3). tmp2

fp.sub(tmpl, tmp2, e(4)) :

peoe adder (chan in1, In2, in3, 1n4, outl, cut2) -

4-input adder: delivers two copies of result

var tetS], el :
seq

fp.f1oat(O.e1)
seq i -11 for total. time)

seq
par

in1?teIO)
in2?te(1)
in3?te(2)
in4?te(3)
out11e1
out2lel

par
fp.add(teIO). tell). e1)
fp.add(teI2). te(3). te(4))

fp.add(e!, te[4], e1) :

peoe store{chan res, var result(), value delay) •

store result vector

var j , tmp
seq

j :- 1
seq i -[1 for total. time)

if
(i (- delay) or (j > n2)

seq
res?tmp

true
seq

res?resultlj-1)
j :- j + 1 :

proc source (value type, mem[], il, i2, delay, chan out) _

Generic Source : pumps data into array

vac dl, d2 , delay2
seq

d1 :- 11
d2 : - i2
delay2 :- delay
-- compute overall de!ay(shlft)
if

d2 > d1
delay2 :- (d2 - 1) + de1ay2

seq i -(1 for total.time]
seq

if
(dl > n2) or (d2 > n2) or (i (- delay2)

-- sh! ft
outlO

type - 1
-- Matrix Source
seq

outlmeml«(dl-1)*n2)+d2)-1)
d1 : - d1 + 1
d2 :- d2 + 1

type - 2
-- Vector Source
seq

outlmemld1-1)
d1 :- d1 + 1 :

prae sink (chan in) _
-- garbage sIgnal collector
seq 1 -(1 for total.time)

1n1any :

peae alloc.sources(value pipe, size, mem.mat(], chan a(]) -

allocation of Sources to 9rid points in
Virtual processinq space

var k, delay :
seq

delay :- delay.x
if

pipe - 1
k :- p

pipe - 2
k :- p - 1

-- make enouqh sources for all
-- cells of pipe
par i -I 1 for size)

var delay2, kl:
seq

k1 :- k - (2*(i-1))

co
en
w

delay2:- delay + (i - 1)
if

kl <- 0
source(1, mem.mat, 2-kl, 1, delay2, a(l-11 }

true
source(1, mem.mat, 1, kt, delay2 , a[l-11) :

proc bandvec (var mem.mat(I, mem.vec[J, mem.null(), value size,
delay.I, delay.2, pipe, chan yout) -

Abstract definition of the single pipe band veetor array
recall that two such vectors are required for a Double pipe

chan x[max.cells+l], y[maxocells+lJ, a(max.cells) :

par
pipe

ips(x[OI. y[ll. x[ll. yout. a[OI)
if

size <> 1
par i-[2 for size -1 I

ips(x[i-1), y[i). xli). y[i-l), a[i-l)
-- matrix and vector sources
alloc.sources(pipe, size, mem.mat, a)
source(2, mem.vec, 1, 0, delay.x, x(O])
source(2, mem.null, 1,0, delay.y, y(size])
-- collection of garbage falling off the pipe
slnk{ x(size)) :

peoc x2.so1ver{ chan lin[), elnl], xl), out1, out2) -

2*2 system solver : By Cramers rule without pivoting

chan e(181 • dum(101
par

determinant(x(O), x(I], x(2), xC3}, e[O), e[lJ,
e(21. e(31. .[41 •• (17[. 0

ddivide(.[OI. e(21 •• (41. e(lll. e[121 I
ddivide(e[ll. e[31. e(171. e[131. e(141)
delay(1in(11. e(51)
de1ay(1in(3). e(6))
delay(rin[l). e(8))
de1ay(rin[31. e(7))
adder(lin[O). 0(5). rin(O). e(81. e(10). e(16))
adder(lin[2). e[61. rin(2). e[71. e[91. e[151)
determinant(e[101. e(lll. e(121. e[91. dum(OI. dum(ll.

dum[21. dum(31. dum[41. out1. 1)
determinant(e(151. e[131. e(141. e(161. dum(51. dum(61.

dum[7], dum(S], dum(9), out2, 1)

proc system -

-- Single Iteration of the XWZ-QI scheme

ch an yout.l[4], yout.r(4), res!, rea2, x[4)
par

-- right p11 pipes
bandvec(pII, xl, bI, no.cells.I, delay.x, delay.y, 1, yout.I(O])
bandvec(pII, xl, null.vec, no.cells.2, delay.x, delay.y, 2, yout.lll))

-- right p21 pipes
yout.1(2)) bandvec(p21, xl. null.vec, no.cells.I, delay.x, delay.y, 1.

bandvec{ p21, xl. null.vec, no.cells.2, delay.x, delay.y, 2. yout.1(3))

-- left p12 pipes
no.cells.l, delay.y, 1. yout. r[0)) bandvec(p12, x2. null.vec, delay.x,

bandvec(pI2, x2. null. vec, no.cells.2, delay.x, delay.y, 2. yout. r[1))

-- left p22 pipes
bandvec(p22, x2, b2, no.cells.I, delay.x, delay.y, 1, yout.r(2)
bandvec(p22, x2, null.vec, no.cells.I, delay.x, delay.y, 2, yout.rll)

-- 2*2 system solver
x2.solver(yout.l, yout.r, x, resl, res2)
source(2, xcI, 1, 0, no.cells.1 + (delay.y - 1), x(OJ
source(2, xc2, 1, 0, no.cells.l + (delay.y - 1), x(l]
source(2, xc3, 1, 0, no.cells.l + (delay.y - 1), x(2)
source(2, xc4, 1, 0, no.cells.! + (delay.y - 1), x(3)

-- data collection
store(resl, xl, (no.cells.l + delay.y) + 2)
store(res2, x2, (no.cells.l + delay.y) + 2)

proc getdata(var null()) -

read in matrix and vector data from terminal/Host

var tmp
seq

str.to.screen("*n xwz- iterative system solver *n")
ste.to.screen("*n*n using double systolic pipe*n",
str.to.screen("*n*nband width w - P + q - 1"'
str.to.screen("*np - H,
str.to.screen("*nq - H)
str.to.screen{H*n enter matrix "'
seq i -(1 for nl

seq
str.to.screen("*n[")
seq j _(I for nl

seq
fp.num.from.keyboard(tmp)
str.to.screen(H*s")
fp.num.to.screen(tmp)
-- construct permuted data matrices
if

(i<-n2) and (j<-n2)

pll««1-1)*n2)+j)-I) :- tmp
(1)n2) and (j<-n2)

p21««n-1)*n2)+j)-I) :- tmp
(1<-n2) and (j>n2)

pI2«(1-1)*n2)+(n-j)) :- tmp
(1)n2) and (j>n2)

p22«(n-1)*n2)+(n-j)) :- tmp
str.to.screen("]*n")

intialise starting approximation vector
and auxiliaries vectors

seq 1-(1 for n2)
var addr :
seq

addr :- «(1-1)*n2)+1)-1
xc2(1-1) :_ pll(addr)
pll(addr) :- 0
xc4(1-1) :- p21(addr)
p2l(addr) :- 0
xc3(1-1) :- pI2(addr)
pI2(addr) :- 0
xcl(i-I) :- p22(addr)
p22(addr) :- 0

str.to.screen(tt*n*n enter vector *n(*8")
seg i -[I for nJ

seq
fp.num.from.keyboard(tmp)
str.to.screen("*s")
fp.num.to.screen(tmp)
if

i <- n2
bl(i-l) :- tmp

true
b2[n-1) :- tmp

str .to.screen(")*n intial solution vector. *n(")
seq 1 -(1 for n)

seq
fp.num.from.keyboard(tmp)
str.to.screen("*s"'
fp.num.to.screen(tmp)
if

i <- n2
seq

null(1-1) :- 0
xl(i-l) :- tmp

true
x2[n-i] :- tmp

str.to.screen("]*n") :

proc putdata(value xl(], x21J) _

read out the result vector to the Host /terminal

seq
str.to.screen{ftresult vector *n[ft)

seq i-I 1 for nJ
seq

str.to.screen("*s")
1f

i > n2
fp.num.to.screen{x2In-i)

true
fp.num.to.screen(xl[i-1J)

str.to.screen("*s)*n") :

main

seq
setup
getdata(null.vec)

run the system for m iterations
-- n.b sequential here in real scheme should be
-- a parallel loop , current execution very slow for
-- full parallel execution
seq i -I 1 for m I

seq
system
putdllta{ xl, x2

co
V1
V1

program 7

Systolic Array For BATS Pipeline using O(n) cell

Notes

(using Pickering's Algorithm.)

The Cell described uses (L/FIIFO storage
operation is controlled by hardwired control bit
cl (in chip definition). The Chip itself is a
sequential process; it simulates the parallel chip
design using extra variables, recall each assignment
in OCCAK can be interpreted as a communication. Using
this method allows easy termination of the soft-systolic
pipe, using existing pipeline controls •

problem dependent constants
maxsize - upper bound on chip memory

def maxsize - 50, r - 2 :
var 0, type:

-- library routines
EXTERNAL proc str.to.screen(value" st J) :
EXTERNAL proc fp.float(value int, var float)
EXTERNAL proc fp.num.from.keyboard(var f)
EXTERNAL proe fp.num.to.screen(value f)
EXTERNAL proc num.to.screen{value n)
EXTERNAL proe num.from.keyboard(var n) :
EXTERNAL proc fp.mult(value fl ,f2, var f3) :
EXTERNAL proe fp.sub(value fl, f2, var £3) :
EXTERNAL proc fp.div(value fl, £2 ,var f3) :
EXTERNAL proc fp.add(value fl, f2 , var f3) :

proc chip (chan in, cntrl, tag. in, out, cntrl.out, tag.out , value cl) -

Definition of the O(n) BATS Cell :
1.f.1 and 1.f.2 : L/Fifo stores controlled by cl, and tag
c.fifo pipelining of control signals
tag bits associated with data as End Of Data etc
switch.1 L/F storage and tag control set by cl and tag
switch.2 : switches cell out of pipeline and forces close-down
others simulation of parallel communication internal to cell

var c.fifo[maxsize}, l.f.l[maxsize}, l.f.2[maxsizeJ, tag[maxsizeJ
var u, v, v2, a, yn, tag.a, tag.c, c.out, c , d :
var usave, vsave, vsave.2, ysave, csave, asave, un, alpha :
var running, switch.!, switch.2
var one :
seq

-- switch on
fp.f1oat(l,one}
running :- true
switch.l f- true
switch.2 :- true

-- cell
while running

seq
if

if

switch.2
cntrl?csave

(csave - 6) and switch.2
-- switch off cell input
switch.2 :- false

c.out - 6
-- close down cell
running :- false

-- ilo
cntrl.outlc.out
par

if

if

if

switch.2
-- input
par

in?d
tag.in?tag.a

running
-- output
par

outlu
tag.outltag.c

forward recursive cell

csave - 3
-- clear cell and load alpha
-- L/F - FIFO
seq

alpha :- d
fp.float(O,vsave)
vsave.2 :- d
switch.l :- true
fp.float(l,asave)
fp.sub{vsave,asave,asave)

csave - 2
-- simple reset
seq

true

fp.float(O,vsave)
fp.float(l,asave)
fp.sub(vsave,asave,asave)

-- normal forward substitution
seq

fp.mult(alpha,vsave,vsave)
fp.6ub(d,vsave,vsave)
vsave.2 :- vsave
fp.mult(a,alpha, asave)
fp.sub(O,asave, asave)

-- D-cell
fp.add(one,a,ysave)
if

ysave <> 0
fp.div(Y,ysave,ysave)

-- backward recursive cell
if

c.fifo[n+11 - 3
-- pass alpha, load u(n)
seq

useve :- 1.f.1(n+1)
un :- yn

tag[n+11 - 1
-- pass u(n) unknown result
usave :- un

true
-- normal backward substitution
seq

fp.mult(un, 1.f.2(n+lJ, usave)
fp.sub(l.f.1(n+11, useve, usaye}

next output control and tag signals
tag.c :- tag(n+11
c.out :- c.fifo[n+1J
-- simulated internal cell communication
tag[n+11 :- tag[nl
c.fifo(n+11 :- c.fifo(nl
1.f.1[n+11 :- 1.f.1(nl
1.f.2[n+11 :- 1.f.2[nl
u :- usave
v :- ysave
a :- asave
c :_ csave
v2 :- vseve. 2
yn :- ysave
-- L/F .&torage
if

switch.1
-- FIFO input/ouptut
-- input enters 1.f.1(0)
-- output in 1.f.l(n)
seq

true

seq i -[0 for nl
seq

1.f.1(n-il :- 1.f.1[(n-i)-11
1.f.2[n-il :- 1.f.2[(n-i)-11
tag(n-il :- tag[(n-i)-11

1.f.1(OI :- v2
1.£.2[01 :- a
tag(OI :- tag.a

-- LIFO output
-- output value is left in 1.f.1[nl
seq

1.f.l[nl :- 1.f.1[01

1.f.2[nl :- 1.f.2[01
tag[n) :- tag[OI
seq i -[0 for nl

seq
1.f.1(11 :- 1.f.1[i+l1
1.f.2(11 :- 1.f.2[i+l1
tag[il :- tag[i+11

control FIFO
seq i -(0 for n}

c.fifo[n-II :- c.fifo((n-i)-11
c.fifo[OI :- c

until end of data L/F 's act as FIFO
-- use tag and cl to choose output mode
-- LIFO or FIFO
if

cl and (tag.a - 1)
switch.l :- false

-- Multiplexor swap of tag bits
If

(cl - 1) and (tag.c - 21
tag.c ;- I

(cl - 1) and (tag.c - 1)
tag.c :- 2

proc getdata(chan out, cntrl.out , tag.out) -

Host input routine :
Reads RHS data and control from Host, automatically
constructs tag bits aSSOCiated with RHS, and pumps
signals input Array.

vat j,tag(maxsizel, d,c, running:
seq

running :- true
while running

seq
-- control
str.to.screen("*ncontrol .")
num.from.keyboard(c)
num.to.screen(c}
if

c - 6
-- close down array
seq

running :- false
c - S

-- size of system and tag setup
seq

str.to.screen{".n order of system - .}
num.from.keyboard{n}
num.to.screen(n)
seq k -(0 for nl

0>
lJ1 ...,

taglk) :- 0
tag[O) :- 2
tagln-l) :- 1

c - 3
-- reset tag outputs
seq

j :- 0
get RHS value

str.to.screen("*nd-value - "}
fp.num.from.keyboard(d)
fp.num.to.screen(d)
-- Pump into array
cntrl. out I c
if

running
par

outld
if

c <> 0
taq.outlO

true
•• q

tag.outltaglj)
j :- j + 1
if

j - n
j :- 0

proc putdata(chan In, cntrl.in, tag. in) -

Host Output Interface :
collect array output, seperate control and tag signals
output the result .

var c, res, tI, switch, running:
seq

running :- true
while running

.eq
-- control
cntrl. in?c
if

c - 6
-- array has stopped
seq

running :-false
str.to.screen("*nQUIT*n"}

true
-- collect result
par

in?res
tag.innl

output

if

if

switch and running
seq

ste.to.screen("*nresult - ")
fp.num.to.screen(res)

use tag bits and setup control to
remove garbage between pipellned problem
instances

c - 3
switch :- true

tl - 1
switch :- false

-- main

-- input and output vector are in same order
seq

-- choose type of array
str.to.screen("type of array ")
num.from.keyboard(type)
num.to.screen(type)
if

type _ 1
-- single chip/Cell test
chan cntrl(2], tagI2], datal2]
par

getdata(dataIO). cntrlIO). taglO)
chip(data(O), cntrl(O), tag(O],

datall), cotrlll), tagll), 1
putdata(datall).cntrlll). tagll))

type • 2
-- Trl-dlagonal case
chan cntrl(3), tag(3), datal31 :
par

getdata(dataIO). cntrlIO). tag[O)
chip(dataIO). cntrlIO). tagIO).

datall). cntrlll). tagll). 1)
chip(data[l). cntrlll). tagl1J.

data(2). cntrl(2). tagl2J. 1)
putdata(dataI2). cntrl(2). tagI2))

type - 3
-- general case with bandwidth - 2r + 1
chan cntrll(2*r)+l), tag(2*r)+l], data(2*r)+11
par

getdata(dataIO). cntrl[O). taglO))
par i -(1 for rl

var cl
.eq

-- set hardwired L/F control
cl :- 0
if

i - r
cl :- 1

ro
'" ro

ch!p(data(!-l), cntr1(!-1), tag(!-l),
datal!], cntrl(i], tAq(l), cl)

par i -[1 for cJ
vac cl :
seq

-- set hardwired control
cl ;_ 0
!f

! - r
cl :- 1

ch!p(data«r+!)-l), cntr1((r+!)-l), tag«r+!)-l)
data[r+!), cntrl[r+i), taq[r+i], cl

putdata(data(2*r), cntrl(2*rJ, tag(2*r])

program 8

Systolic Array Alternative implementation of the BATS pipeline
using the P-Cyclic a(v) cell.

Notes In this method we compute the nth unknown of the
particular factor the cell represents by evaluating
the vth-order polynomial.

The internal cell communication is simulated by
assignment to facilitate 'easy pipeline close-down

problem dependent constants
def v - 40, r - 2 :
vac type :

-- library routines
EXTERNAL peoe str.to.screen(value sf]) :
EXTERNAL proe num.to.screen{ value n) :
EXTERNAL peoe num.from.keyboard(var n) :
EXTERNAL proc fp.num.to.screen(value f) :
EXTERNAL proc fp.num.from.keyboard(var f)
EXTERNAL proc fp.mult(value fl, f2 , var £3
EXTERNAL proc fp.sub(value f1, £2 , vac f3)
EXTERNAL proc fp.add{ value f1, £2, vac £3) :
EXTERNAL proc fp.div{ value f1, £2, var £3) :
EXTERNAL proc fp.float(value int, var float) :

proc chip(chan din2, dinl, control,
dout2, doutl, control. out) -

Cell Definition :
dl.fifo - delay for first n/2 terms of RHS
d2.fifo - delay for last n/2 terms of RHS
c.fifo - pipelining of control signals

var tl, t2, switch, xl, x2, running:
var dl.fifo(v+1J, d2.fifo[v+l), c.fifo[v+2) :
var a, alpha[3], xn :
seq

-- switch on
switch :- true
running :- true
fp.float(l,alpha(l»
-- cell
while running

seq
-- perform FIFO operation
c.f!fo(v+1) :- c.f!fo(v)
seq ! -(0 for v)

seq
c.f!fo(v - !) :- c.f!fo«v - ;)-1)

!f

!f

dl.f!fo(v - !) :
d2.f!fo(v - !) :

input/output

switch
control?c.flfo(O]

dl.f!fo((v - !) - l(
d2.f!fo((v - !)-l)

(c.f!fo(O) - 6) and switch
-- switch of cell inputs
switch :- false

c.fifo(v+l) - 6
-- close down cell
running :- false

control.outlc.flfo{v+l)
par

if

!f
switch

-- input
par

d!nl?dl.f!fo(O)
d!n2?d2.fifo(0)

if
running

-- output
par

doutllxl
dout21x2

Pre-FIFO control

c.f!fo(O) - 1
-- reset and load alpha
seq

fp.sub(O,dl.f!foIO),alpha(O))
a :- alpha(O)
fp.float(l,t2)
-- intial value of iterative sequence
fp.d!v(t2,dl.f!fo(0),alpha(2))
xn :- 0

(c.f!fo(O) - 0) or (c.f!fo(O) - 6)
-- normal computation
seq

-- post FIFO control
if

c.fifo(v) - 1
-- pass alpha and setup

!ps(2) and d-cell
seq

xl :- dl.f!folv)
x2 :- dl.f!folv)
alpha(l) :- -alpha(O)

c.fifolv) - 2
-- load polynomial result
-- reset polynomial cell
seq

true

fp.mult(alpha(l], xn, tl)
fp.6Ub(dl.flfo[v),tl, xl)
x2 :- xn
fp.float(O,xn)

-- Ips(2) and O-cell
seq

fp.mult(alphatl], xl, tl)
fp.sub(dl.flfo[v], tI, xl)
fp.sub(d2.f!fo(vl. x2, tl)
fp.mult(tl,alpha(2),x2)

normal polynomial cell computation
next polynomial term

fp.mult(a, d2.flfo(O), tl)
fp.add(tl ,xo, xn)
-- next power of alpha
fp.mult(a,alpha[O), a)
fp.mult(alpha(2],alpha[O],tl)
-- iterative evalutaion of l/alpha
-- for stability
fp.add(t2,tl,tl)
fp.mult(tl,alpha(2).tl)
fp.add(alpha(2I,tl,alpha(2))
fp.num.to.screen(alpha(2)

c.f!fo(O) - 2
-- load first polynomial term
seq

xn :- d2.f!fo(0)

proe getdata(chan dinl, din2, cntrl) -

Host Input Interface :
Reads control and Rhs values

var running, dl, d2, cl, alpha:
seq

running :- true
while running

seq
str.to.screen(tI*ncontrol - 11)
num.from.keyboard(cl}
num.to.screen{cl)
if

cl - 6
-- close down array
running :- false

cl - I
-- alpha value
seq

str.to.screen("*nalpha _M)
fp.num.from.keyboard(alpha)
fp.num.to.screen(alpha)
dl :_ alpha

d2 :- alpha
true

RHS 2-values
seq

str.to.screen("*ndl- value - ")
fp.num.£rom.keyboard(dl)
fp.num.to.screen(dl)
str.to.screen("*nd2- value - ")
fp.num.from.keyboard(d2)
fp.num.to.screen(d2)

output
cntrll cl
if

cl <> 6
par

dlnlldl
dln2ld2

peoe putdata(chan ul, u2, cnte!) -

Host Output Interface ;
Collects Array results and outputs solution to
Host.

var running, rest, res2, cl :
seq

running :- true
while running

seq
cntrl 1cl
If

cl - 6
-- array has stopped
running :- false

true
-- next results
par

ul?resl
u2?res2

output to Host
str.to.screen("*n ul-value - ")
fp.num.to.screen(resl)
str.to.screen("*n u2-value - ft)
fp.num.to.screen(res2)
str.to.screen{"*n"}

str.to.screen(nbye In} :

main
seq

str.to.screen("*n type of array - ft)
num.from.keyboard(type)
num.to.screen(type)
if

type - 1

-- single chip/cell test
ch an dl(21. d2(21. cntrl(21
par

getdata(dl(OI. d2(OI. cntrl(OI
chlp(d2(OI. dl(OI. cntrl(OI.

d2(11. dl(ll. cntrl(ll)
putdata(dl(ll. d2(11. cntrl(ll

type • 2
-- Tri-diagonal case
chan dl(31. d2(31. cntrl(31 :
par

getdata(dl(OI. d2(OI. cntrl(OI
chlp(d2(OI. dl(OI. cntrl(OI.

d2(11. dl(ll. cntrl(ll)
chlp(dl(ll. d2(11. cntrl(lJ.

dl(21. d2(21. cntrl(2J J
putdata(dl(21. d2(21. cntrl(2J

type - 3
-- general case with Bandwidth - 2t + 1
chan dl[(2*r)+l], d2[(2*r)+11, cntrl[(2*r)+1]
par

getdata(dl(OJ. d2(OJ. cntrl(OJ J
par I - (1 for r I

chlp(d2(1-lJ. dl(I-11. cntrl(l-ll.
d2(1J. dl(ll.cntrl(IJ)

par i - [1 for r J
chlp(dl(r+IJ-11. d2(r+I)-11. cntrl(r+IJ-1J.

dl(r+!)I. d2(r+I)J. cntrl(r+IJJ
putdata(dl(2*rl. d2(2*rl. cntrl(2*rl)

program 9

Systolic Array: To construct the extrapolation table in
Romberg's Integration algorithm.

The basic cell is the REP or Richardson's Extrapolation cell
which computes the extrapolation values

Table size
def n - 5:

-- library routines
EXTERNAL Proc str.to.screen(value s[J) :
EXTERNAL Proc num.to.screen(value n) :
EXTERNAL Proc fp.num.to.screen(Value float f):
EXTERNAL Proe fp.num.from.keyboard(Var float f)

Proc REP(Chan inl, outl, in2, out2, out3, cntrlin, cntrlout) _

Richardsons extrapolation cell

var float tl, t2, p.4, p.res, rnew, rold, res
var switch, running, toggle, c.flfo[4] :
seq

-- intialisation
p.res :- 0.0
rold .- 0.0
res :- 0.0
tl .- 0.0
t2 .- 1.0
.eq 1 -(0 for 3)

c.f1fo(l) .- 0
switch :- true
running :- true
toggle :- true
-- cell
while running

seq
-- control input
If

switch
cntrlln7c.flfo(0)

-- decide on input/output
If

(c.flfo(O) - 6) and switch
-- close input
switch :- false

c.fifo(3) - 6
-- destroy cell
running :- false

cntrloutlc.flfo(3)
-- 1/0
if

switch

if

par
inl?rnew
ln2?p.4

running
par

outl! res
out2J (p. res)
-- output to fanin network
if

c.f1fo(3) - 1
seq

toggle :- false
out31res

toggle
out310

extrapolation formula
res :- tl/t2
tl :- (p.4*rnew)- rold
t2 .- p.4- 1.0
rold :- rnew
p.res :- p.4 * 4.0
-- shift control fifo
seq 1 -(0 for 3)

c.flfo(3-1) .- c.flfo(3-1)-1)
if

c.f1fo(O) - 6
c.f1fo(O) .- 0 •

proc fnet(chan gather[], var float vecl J, var k) _

fanin network: primitive routine to collect values

seq
par j -(0 for nJ

-- check all processes
seq

if
j > k

-- those still to output
gather(j)7any

j - k
var float tmp :
-- current output
seq

gather(k)7tmp
if

tmp <> 0.0
seq

vec(k) .- tmp
k :- k + 1 :

proc getdata(chan outl,out2, cntrl) _

-- read starting values , and pump into
-- array then close down array systolically

var float four, vec(n+lJ
seq

four :- 4.0
str.to.screen("*nEnter Romberg Starting values")
seq i-IO for (n+1)J

seq
str.to.screen("*nR(")
num.to.screen(i)
str.to.screen("] _M)
fp.num.from.keyboard(vec(i)
fp.num.to.screen(vec(iJ)

str.to.screen("*n*n*n")
-- start pumping
seq i-IO for (n+1)J

par
if

i - 0
cntrlll

true
cntr110

outllveeliJ
out21four

close down
cntrl16 :

proc putdata(chan inl, in2, fanin(], cotrl) _

collect garbage fallIng off array, and
call fanin to collect next result and print out
diagonal entries

var float vec(n] :
var running, cl, k
.eq

k :- 0
running :- true
-- collect results until stopped
while running

.eq
cntrl?cl
if

cl - 6
running :- false

true
par

inl?any
in2?any
fnet(fanin, vec, k)

-- output diagonal approximations.
str.to.screen("*n*n Diagonal Table Entries")
seq i -(0 for nl

seq

-- main

str,to.screen("*n")
fp.num.to.screen{vec{i])

-- The Romberg array
chan Inlln+l), 1n2In+l], fanin[n], cntrl[n+l)

par
getdata(in110J, in210J, entrllOJ)
par i -11 for nJ

REP(in1Ii-1j, in1liJ, in2Ii-1J, in2liJ, f.ninli-1J, entr1Ii-1j, entr1lij)
putdata(in2(n], inl(n), fanin, cntrl[n])

(Xl
Cl)
w

program 10

Systolic Array A Systolic Ring implementation of the Romberg
table construction.

Ring size and Table size respectively
def n _ 2, m_ 6 :

-- library routines
EXTERNAL Proc str.to.screen(value s[}) :
EXTERNAL Proc num.to.screen(value nJ t
EXTERNAL Proc fp.num.to.screen(Value float f):
EXTERNAL Proc fp.num.from.keyboard(Var float f)

Proc REP(Chan inl, outl, in2, out2, out3, cntrlin, cntrlout) -

Modified Extrapolation cell (see report)

var float tl, t2, p.4, p.res, rnew, rold, res
var switch, running, toggle, c.fifo(41 :
seq

-- intialisation
p.res :- 0.0
rold :- 0.0
res :- 0.0
tl :- 0.0
t2 :- 1.0
seq i -10 for 3)

c.flfoli) :- 0
switch :- true
running :- true
toggle :- false
-- cell
while running

seq
-- control 1/0
par

if
switch

cntrlin?c.fifo{OJ
cntrloutJc.fifo(3)

-- decide on data I/o
if

(c.fifolO) - 6) and switch
switch :- false

c.flfol3) - 6
running :- false

-- switch on fanin output line
if

c.fifolO) - 1
toggle :- true

-- 1/0
par

if
switch

par
inl1rnew
if

c.fifolO) - 1
in21p.4

if
running

par
ouUl res
if

c.fifol3) - 1
seq

toggle :- false
par

out3lres
out21p.res

toggle
out3! 0

computation
res : _ tl/t2
t1 :_ (p.4*rnew)- rold
t2 :- p.4- 1.0
rold :- rnew
p.res :- p.4 * 4.0
-- shift control fifo
seg i -(0 for 3)

c.fifoI3-i) :- c.fifoI13-i)-l)
if

c.fifolO) - 6
c.fifolO) :- 0 :

proc fnet(chan gather[It var float vec(), vac k,z) -

Modified fanin simulator.
Sequentially poll ring cells looking for outputs
and accept them if non-zero

Note z - index of diagonal entry next output;
k - index of next ring cell expected to output diagonal.

seq j -10 for n)
seq

if
j - k

var float tmp :
seq

9a therlk)?tmp
if

tmp <> 0.0
seq

vec[z) :- tmp
z :- z + 1

k :- k + 1 :

proe host(chan outl,out2, cotrlin, In1,ln2, £a01n(J, cntrlout) -

Combined getdata and putdata to act as ring arbiter, to switch
from Host input to ring input and collect fanin results

chan link t
par

equivalent process to getdata, uses link to
create switch from Host to rIng input

var float four, vec[m] ;
seq

four :- 4.0
str.to.screen("*nEnter Romberg Starting values")
seq i-tO for m)

seq
str.to.screen("*nR("}
num.to.screen(!)
ste.to.screen("] ."'
fp.num.from.keyhoard(vec[i])
fp.num,to.screen(vec(i)

str.to.screen("*n*n*n"}
-- pump host inputs into ring
seq i-tO for m)

par
link I 0
if

i - 0
par

cntrlinll
out21four

true
cntrllnl0

outllvec(iJ
swi teh to rin9

linkl1

-- equivalent to putdata, but augmented with
-- control to wrap around ends of ring
-- when link - 1
var float vec(m) :
var running, switch, cl, k, z, 11, rl, r2
var cs1, rs2, cs1
seq

-- intHaise
z :- 0
k :_ 0
cs1 :- 0
running :- true
switch :- false
-- collect and pump till all values
-- received
while running

seq
switch?

if
not switch

link?l1
cntrlout?cl
-- ring wrap around
if

if

11 - 1
seq

first value
11 :- 0
switch :- true
cntrlin!cs1

switch and {z <- (m-1»)
seq

-- rest
cntr1inlcs1

switch and (11 - 0)
seq

-- close down ring
11 :- 2
cntrlin!6

cl - 6
-- kill this process
running :- false

true
seq

-- collect garbage and results
seq

in17r1
if

cl - 1
1n27r2

fnet{fanin, vec, k, z)
-- ring 1/0
if

switch and (11 <> 2)
seq

out1!rs1
if

cs1 - 1
out2!rs2

-- re-sync ring data and control
rsl :- r1
rs2 :- r2
csl :- cl
if

(cs1 - 1) and (z <- (m-1))
k ,- 0

print results for user, vec - memory in Host
str.to.screen("·n·" Diagonal Table Entries")
seq i -(0 for (m-1))

'" '" V1

-- main

seg
str.to.screen("*n")
fp.num.to.screen(vec[i))

-- Systolic Ring definition
chan In1[n+l), In2(n+1J. faninln), cntel[n+!) :

par
host(inl[O), 1n2(O). cntrl{O), in1[n). 102(n), fanio, cntrl(n)}
par i -(1 for nJ

REP(inl[i-l), In1[lJ, 1n2(1-1J, In2(1), £an1n[1-1), cntrlll-1), cntrl[l])

program 11

Systolic Array An Array for the Generic Group Explicit
Methods (GER, GEL. GEe, GEU) for
Parabolic Differential Equations.

Number of groups (cells) and starting values
def m - 5 • n _ 4 :
chan ptr :

-- library routines
EXTERNAL proc num.to.screen(value n) ~
EXTERNAL proc num.from.keyboard(var nJ :
EXTERNAL proc fp.num.to.screen(value float f) :
EXTERNAL proc fp.num.£rom.keyboard(var float f)
EXTERNAL proc str.to.screen(value si]) :
EXTERNAL proc open,file(value path.namel], access(], chan io.chan)
EXTERNAL proc close.file(chan io.chan) :
EXTERNAL proc str.to.chan(chan c, value si]) :
EXTERNAL proc fp.num.to.chan(chan c, value float f) :

proc boundary(var float tl, value float a, I, Ul, u2) -

Boundary cell computations using Asymmetric
approximations.

seg
tl ,- tl - (r*tl)
tl ,- tl + (r*u2)
tl ,- tl + (r*ul)
tl ,- tl/(a- r) ,

proc group(var float tl, value float A, r, u, chan linkO, link!) -

solution fOr half of 2*2 system of
internal group points. Note communication/parallelism

var float t3
seg

tl :- tl - (r*tl)
tl :- tl + (r*u)
par

l!nkOltl
linkl?t3

tl :- tl + (r*tl)
tl :- tl + (r*t3)
tl :- tl/a

proc memory(chan memint), memout, cntrl) -

Simulation of the memory Buffer
general case with g{x,t) not.included for
simplicity

var float mem[(Z*m)*nJ
var running, cl :
.eq

running :- true
while running
-- start memory

seq
cntrl?cl
if

cl - 6
running :- false
-- shut down

cl - 5
seq i-[1 for nJ
-- Freeze/Empty Buffer

seq j-[l for (2*m))
memoutlmem[«(i-l)*(2*m))+j)_lJ

true
seq
-- normal array operation
-- cQllect result

seq i-[2 for (n-l))
par j-[1 for (2*m))

mem[«(i-Z)*(Z*m))+j)-l) :- mem[«(i-l)*(Z*m))+j)-lJ
par j-[1 for (2*m))

memin[j-l)?mem««n-l)*(2*m))+j)_1)

proc ge(chan inl,outl,in2,Qut2, meml, mem2, cntrl!n, value float vl,v2,r,
value type) -

Generic Group Explicit cell

vac float uO, ul, tl, t2, a :
var running, cl :
chan l1nk(2J
.eq

-- preload
tl :- vI
t2 :- v2
a :- 1.0 + (2.0*r)
running :- true
-- start up
while running

seq
cntrlin?cl
if

cl - 6
-- close down
running :- false

cl <> 5
seq

-- i/O
par

outllt2

out2!tl
in11uO
1021ul

-- run correct cell
if

type - 0
-- A group
par

group(tl,a,r,uO,llnk(O],llnk(l)
group(t2,a,r,ul,11nk{1),link(O})

type - 1
-- right Boundary
seq

t2 :- 0.0
boundary(tl,a,r,uO,ul)

type - 2
-- left boundary
seq

tl :- 0.0
boundary(t2,a,r,uO,ul)

buffer result
par

meml!tl
mem21 t2

proc getdata(chan outl, out2, in1, In2, cntrl[J, mem!n) _

Host interface : also generates starting values
for test Boundary conditions.

vac float bvalue
var tmp :
Beq

bvalue t- 0.0
str.to.screen(n~nnext ")
num.to.screen(n}
str.to.screen(" values")
num.from.keyboard(tmp)
-- rill and output Buffer
while tmp - 0

seq
-- x-O and x-n conditions
seq i -(1 for nJ

par
par j-(O for (m+l))

cntrl(j) 10
inl?any
in27any
outllbvalue
out21bvalue

Freeze
par j-(O for (m.l))

cntrl[j)IS
-- File dump of Buffer
seq i-(l for n)

seq
str.to.screen("*n")
str.to.chan(ptr,"*n")
seq j-[I for (2*m))

var float res :
seq

memin?res
fp.num.to.screen(res)
fp.num.to,chan(ptr,res)
str.to.screen(" ")
str.to.chan(ptr," ft)

str.to.chan{ptr,"*n*n*n")
str.to.screen{"*nnext")
num.to.screen(n)
str.to.screen{" values ")
num.from.keyboard(tmp)

closedown
par j-[O for (m+I))

cntrl[j)16

main

Array channel and memory details
chan memin[2*m), ullm+l), u2[m+l), cntrl(m+l), mout
var tp, j :
var float x,r,h, sv(2*m)+2)

seq
get array characteristics from Host

open.file("result","w",ptr)
str.to.screen{".n a-ger, 1-gel, 2-geu, 3-gec")
str.to.screen("*ntype of array - ")
num.from.keyboard(tp)
num.to.screen(tp)
if

tp - 0
str.to.chan{ptr,"ger ")

tp - 1
str.to.chan(ptr,"gel ")

tp - 2
str.to.chan(ptr,"geu "l

tp - 3
str.to.chan(ptr,"gec ")

-- problem parameters
str.to.screen(".n r - ")
fp.num.from.keyboard(r}
fp.num.to.screen(r}
str.to.chan(ptr," r - ")
fp.num.to.chan(ptr,r)
str.to.chan(ptr,"*n*n")
h :- 0.1
x :- 0.0
-- Test Boundary conditions
seq i-[1 for «2*m)-I))

Beq
x :- x + h
Bv{i1 :- (4.0*x)*(1.O-x)

.v[O) :- 0.0
sv[2*m] :_ 0.0
-- Shuffle trick for easy specification

of array inputs
if

(tp-O) or (tp-3)
j :- 1

(tp-I) or (tp-2)
j :- 0

The Generic Array.

tp forces a creation of a specific
instance of the an array

par
getdata(ul[O), u2(m), u2(O], u1[m], cntrl, mout)
memory(memin, rnout, cntrllm)
par i-(1 for mJ

var float tl, t2
var set :
Beq

if
«tp-O) or (tp-2)) and (!-m)

set :_ 1
«tp-I) or (tp-2)) and (i-I)

set : _ 2
true

set :- 0
tl :- sv[«!-I)*2)+j)
t2 :- sv[«(!-1)*2)+j)+1)
ge(ul[i-I). u1[!). u2[!). u2[!-I). memin[(i-l)*2). memin[«!-I)*2)+I)

cntrl(i-l), tl,t2,r, set)
close.file(ptr)

ro

'" ro

program 12

Systolie Array Implementation of the SAGE algorithm for
Parabolic Equations.

Group and Boundary value points
def m - 5 , n _ 4 :
ehan ptr :

-- library Routines
EXTERNAL proc num.to.sereen(value n) :
EXTERNAL proc num.from.keyboardCvar n) :
EXTERNAL proe fp.num.to.screen(value float f) :
EXTERNAL proe fp.num.from.keyboard(var float f)
EXTERNAL proe str.to.screenC value si]) :
EXTERNAL proc open.fileCvalue path.name(], accessl], chan io.chan)
EXTERNAL proc close.file(chan io.chan) :
EXTERNAL proc str.to.chan(chan c, value si]) :
EXTERNAL proc fp.num.to.chan(chan c, value float f):

peoc boundary(var float tl, value float a, r, ul, u2) -
-- Boundary Equations (Asymmetric)
.eq

t1 :- t1 - (r*t1)
tl :- tl + (r*u2)
tl :- tl + (r*ul)
tl :- tl/(a-r) :

proc group(var float tl, value float a, r, u, chan linkO, linkl } _
-- Group computation
var float t3 :
.eq

t1 :- t1 - (r*t1)
tl :- tl + (r*u)
par

linkOltl
link1?t3

t1 :- t1 + (r*t1)
t1 :- t1 + (r*t3)
tl :- tl/a

proc memory(chan meminl], memout, cntrl) -
-- memory Buffer
var float meml(2*m)*n)
var running, cl :
seq

running :_ true
while running

.eq
cntrl?cl
if

cl - 6
running :- false

cl - 5
seq i-I 1 for nJ

seq j-Il for (2*m»)
memoutlmem((i-l)*C2*m»+j)-1)

true
seq

seq 1-[2 for (n-1))
par j-I 1 for (2*m»)

mem[(((1-2)*(2*m))+j)-1) :- mem[(((1-1)*(2*m))+j)-11
par j-[l for (2*m)1

memin[j-11?mem[(((n-1)*(2*m))+j)-11 :

proc ge(chan inl,outl,in2,out2, meml, mem2, cntelin, value float vl,v2,r,
value type) -

Generic SAGE cell : Using Toggle to control computation

var float uO, ul, tl, t2, a, tmp :
vac running, toggle, cl :
ch.n link 1 2 1
seq

-- peeload
tl :- vI
t2 :- v2
• :- 1.0 + (2.0*r)
toggle : _ true
running :_ true
-- start up
while running

seq
cntrlin?cl
if

cl - 6
-- close down
running :- false

cl <> 5
.eq

-- select
if

GER or GEL

toggle
seq

shift data
par

out21 t1, t2
in2?tmp;ul
align

uO :- t1
tl : - t2
t2 :- tmp
-- use correct computation
If

type - 1
seq

inl?uO

true

par
group(tl,a,r,uO,link[O),llnk[l)
group(t2,a,r,ul,linkll),link[O)

type - 0
par

qroup(tl,.,r,uO,llnk(O),llnk(l)
group(t2,a,r,ul,link[l),link[O}

type - 2
boundary(tl,a,r,uO,ul

seq
-- shift data
par

outllt2;t1
in17tmp;uO
Align

ul :- t2
t2 :- tl
tl :- tmp

if
correct computation

type - 1
boundary(t2,a,r.uO,ul

type • 0
par

groupltl,a,r,uO,link(O),link(l}
group(t2,a,r,ul,link[l],link(O]

type - 2
seq

in27u1
par

group(t1,a,r,uO,11nk(O],11nk(1)
group(t2,a,r,ul,11nk(1),11nk(O)

-- switch array type
toggle :- not toggle
-- buffer data
par

memlltl
mem21t2

proc getdata(chan outl, out2, inl, 1n2, cntrl[J, memin).

Host array Interface and communication

var float bvalue
var tmp,to9gle :
seq

bvalue :- 0.0
str.to.screen("*nnext ")
num.to,screen(n)
str.to.screen(" values")
num.from.keyboard(tmp)
toggle :- true
while tmp - 0

vac float junk :
seq

seq i -(1 for nJ
seq

par j-(O for (m+l)]
cntrl(j]IO

-- decide type of Array inputs
if

toggle
par

true

in1 ?junk; junk
outllbvalue
out210.0;bvalue

par
in2?junk;junk
out21bvalue
outlIO.O;bva!ue

switch array type
toggle :- not toggle

Freeze/empty buffer
par j-(O for (m+l))

cntrl(j)IS
-- dump buffer output (file/screen)
seq i-(1 for nJ

seq
str.to.screen("·n")
str.to.chan(ptr,"*n")
seq j-(1 for (2*m)]

var float res :
seq

memin?res
fp.nurn.to.screen(res)
fp.num.to.chan(ptr,res)
str.to.screen(" ")
str.to.chan(ptr," ")

unfreeze array
str.to.chan(ptr,"*n*n*n"}
str.to.screen("*nnext")
num.to.screen(n)
str.to.screen(" values ")
num.from.keyboard(tmp)

closedown
par j-(O for (m+l)]

cntrl(j]!6

main

Array channels
chan memin[2*m], ul(m+l], u2[m+1J, cntrl[m+ll, mout
vac float x,r,h, sv(2*m)+21

seq
problem setup

CXl ...,
o

open.flle("result","w",ptr)
str.to.screen(".n r - ")
fp.num.from.keyboard(r)
fp.num.to.screen(r)
str.to.chan(ptr,"S8ge : r - ")
fp.num.to.chan(ptr,r)
str.to.chan(ptr,"*n·n")
h :- 0.1
x :- 0.0
-- Test case
seq i-[l for «2*m)-1»)

seq
x :- x + h
sv[i) :- (4.0*x)*(1.0-x)

sv[0) :- 0.0
sv[2*m) :- 0.0
-- The array
par

getdata(ul(O], u2(m]. u2(0], u1(m], cntrl, mout)
memory(memin, mout, cntrl[m)
par i-(1 for Ill]

var float t1,t2
vac set
seq

if
i-m

set :- 2
i-1

set :- 1
true

set :- 0
t1 :- sv[(i-1)*2)
t2 :- sv[«i-1)*2)+1)
ge(u1[1-1), ul(1), u2(i), u2(i-1), memin({1-1)*2], memin{«i-1)*2)+1],

cntrl[i-1), t1,t2,r , set
close. filet ptr)

program 13

Systolic Array

def m - S , n _ 4 :
chan ptr :

-- library routines

To compute the DAGE method for Parabolic
Equations.

EXTERNAL proc num.to.screen(value n) :
EXTERNAL proc num.from.keyboard(var n) ;
EXTERNAL proc fp.num.to.screen{value float f) :
EXTERNAL proe fp.num.from.keyboard(var float f)
EXTERNAL proe str.to.screen(value 51) :
EXTERNAL proe open.file(value path,name(), access(), ehan io,chan)
EXTERNAL proe close.file(ehan io.chan) :
EXTERNAL proc str.to.chan(chan e, value si) :
EXTERNAL proe fp.num.to.chan(chan c, value float f) :

proc boundary(var float t1, value float a , r , u1, u2) _
-- boundary computation (Asymmetric)
seq

t1 :- tl - (r*tl)
t1 :- tl + (r*u2)
t1 :- tl + (r*ul)
tl :- tl/(a-r) :

proc group(var float t1, value float a, r , U , chan linkO , linkl) _
-- Group computation
var float t3
seq

t1 :- t1 - (r*t1)
tl :- t1 + (r*u)
par

linkOlt1
link1 ?tJ

tl :- tl + (r*t1)
t1 :- t1 + (r*t3)
tl :- t1/>

proe memory(chan memin[J, memout, cntrl) _
-- Memory Buffer
var float mem(2*m)*nJ
var running, cl :
seq

running :- true
while running

seq
cntr11cl
if

cl - 6
running :- false

cl - 5
seq i-I 1 for nJ

seq j-[1 for (2'm)[
memoutlmem[«(i-l)*(2*m»+j)_1]

true
seq

seq 1-[2 for (n-1)[
par j-[1 for (2'111) [

mem[((1-2)'(2'm))+j)_1(:_ mem((((1-1)'(2'm))+j)_1(
par j-[l for (2'111)(

l1IeI1l1n[j-1(?mem[((n-1)'(2'm))+j)_1(:

peoe qe(chan inl,outl,in2,out2, meml, mern2, cnte!!n, value float vl,v2,r,
value type).

Group Explicit Cell for DAGE computation
Toggles and steps used to change between GtR and GEL type
computations.

vac float uO, ul, tI, t2, a , l[4} :
vac running, toggle, step, step. no, cl
chan llnk[2(
seq

preload
t1 :- vI
t2 :- v2
a :- 1.0 + (2.0*r)
-- setup start position
step. no :- 4
toggle :- false
step :- 0
running :_ true
-- start
while running

seq
cntrlin?cl
if

cl - 6
-- close down
running :- false

cl <> 5
seq

-- 1/0
par

in1?l[0[,1[1(
1n2?l[2(,1[3(
outllt2;tl
out2ttl;t2

if
toggle

seq

if

u1 :- 1[2[
uO :- 1[0(

(step - 0) or (step _ 3)
-- act as GtR

seq

true

if

if

align data

not toggle
seq

uO :- tl
t1 :- t2
t2 :- 1(2(
u1 :- 1(3[

select correct

type - 1
seq

uO :- 1[1(

cell computation

par
groupCtl,a,r,uO,link[O),link(l)
group(t2,a,r,ul,link(l],link{O]

type - 0
par

group(tl,a,r,uO,link(O],llnk[l)
group(t2,a,r,ul,link(l],1Ink(O]

type - 2
bo~ndary(tl,a,r,uO,ul

act as GEL
seq

-- align data
if

if

not toggle
seq

ul : - t2
t2 :- t1
t1 :- 1(0(
uO :- 1(1[

choose correct computatIon

type - 1
boundary(t2,a,r,uO,ul

type - 0
par

group(tl,a,r,uO,llnk[O],llnk(l)
group{t2,a,r,ul,link(1),llnk(O)

type - 2
seq

u1 :- 1(3[
par

g[oup(tl,a,r,uO,link(O],link(l]
group(t2,a,r,ul,llnk(l],llnk(O]

-- next step modulo 4
step :- (step + 1) \ step.no
-- set toggles
if

«step-2) or (step-O))
toggle :- true

((step-l) or (step-l»
t099le :- false

-- output to buffer
par

meml! tl
mem2lt2

peoe getdata(chan out!, out2, in1, In2, cntel[J, rnernin)-
Host Interface

var float bvalue
var tmp :
seq

bvalue :- 0.0
str.to.screen("*nnext ")
num.to.screen(n)
str.to.screen(" values")
num.from.keyboard(tmp)
while tmp - 0

var float junk, junkl
seq

seq I -[1 for n)
seq

par j-(O for (m+l»
entrl(j)l 0

par
inl?junk;junk
in2?junkl;junkl
outllO.O;bvalue
out210.0;bvalue

Freeze
par j-(O for (m+l»

cntrl(j)15
-- Dump Buffer (file/screen)
Beq I-(l for n)

seq
str.to.screen("*n")
str.to.chan(ptr,"*n")
seq j-(1 for (2*m»

var float res :
seq

memin?res
fp.num.to.chan(ptr,res)
fp.num.to.screen(res)
str.to.chan(ptr," ")
str.to.screen(" "I

str.to.chan(ptr,"*n*n*n")
str.to.screen("*nnext")
num.to.screen(n)
str.to.screen(" values ")
num.from.keyboard(tmp)

close down
par j-(O for (m+l»

entrl(j)16 :

-- main

chan memin(2*m], ul(m+l], u2(m+l), cntrl(m+l], mout
vac float x,r,h, sv(2*m)+2]

seq
setup details

open.flle{"resultl","w", ptr)
str.to.screen("*n r - ")
fp.num.from.keyhoard(r)
fp.num.to.screen(r)
str.to.chan(ptr,"dage : r • ")
fp.num.to.chan(ptr,r)
str.to.chan(ptr,"*n*n")
-- test case
h :- 0.1
x :- 0.0
seq 1-[1 for ((2*m)-1»

seq
x :- x + h
sv(i] :- (4.0*x)*(1.O-x)

sv[O) :- 0.0
sv[2*m] :- 0.0
-- The array
par

getdata(ul(O], u2[m), u2[O), ul(m), cntel, mout)
memory(memin, mout, cntrl(m)
par 1-(1 for m)

vac float tl,t2
vac set
seq

if
I - m

set : - 2
1-1

set : - 1
true

set :- 0
tl :- sv[(i-l)*2)
t2 :- sv(((I-l)*2)+1)
ge(ul(l-l), ul(i), u2(1), u2(I-l), memln((I-l)*2), memln(((I-l)*2)+1),

cntrl[i-l), tl,t2,r, set)
close,file(ptr)

<Xl
.....
w

program 14

Systolic Array

NOTES

To find all the roots of a polynomial
using the QD algorithm.
rails for non-distinct roots and indicates
existance of complex roots.
With 1 cell is equivalent to Bernoulli's method
for dominant root

The basic cell is the QD or Quotient Oifference cell
which computes the Rhombus rules values

Table size
def n - 16:
chan ptr :

-- library routines
EXTERNAL Proc str.to.screen(value s() :
EXTERNAL Proe num.to.screen(value n) :
EXTERNAL Proe fp.num.to.sereen(Value float f):
EXTERNAL Proe fp.num.from.keyboard(Var float f) :
EXTERNAL Proe open.file(value pathname(), access(),chan io.ehan)
EXTERNAL Proc close.file(chan io.ehan):
EXTERNAL Proe str.to.chan(·chan c, value sl}) :
EXTERNAL Proc fp.num.to.chan(ehan e, value float f)
EXTERNAL Proc num.to.chan(chan c, value n) :

Proc QD(Chan inl, outl, in2, out2, cntrlin, cntrlout) -

var float a, b, r(3), s(2), tl71 :
var switch, running, toggle, c.fi£0(5)
seq

-- intialisation
seq i-[O for 3)

r[i) :- 0.0
seq i-[O for 7)

t[i) :- 1.0
_(0) :- 0.0
s[l) :- 0.0
_eq i -[0 for 5)

c.fifo[i) :- 0
switch :- true
running :- true
-- cell
while running

seq
-- control input
if

switch
cntr1in?c.fifo[O)

-- decide on input/output
if

[c.fifo[O) - 6 1 and switch

--------------__ 1

-- close input
switch :- false

c.fifo(4) - 6
-- destroy cell
running :- false

cntrlout!c.fifo(4)
-- i/O
if

switch
par

inl1a
in2?b

if
running

par
outll t[6)
out21_[l)

qd formula
,(2) :- ,[1)
,[1) :- ,(0)
s[l) :- _(0)
t[l) :- t[O)
t(3) :- t(2)
t[S) :- t(4)
par

,(0) :- a
s[O) :- t[3)
t[O) :- a + b
t(2) :- t[1) -
if

t(3) - 0.0
t(4) :- 0.0

true

,[2)

t(4) :- r[2I/t[3)
t(6) :- t[S)*t[3)

-- shift control fifo
seq i -[0 for 4)

c.fifo[4-i) :- c.fifo[(4-il-1)
if

c.£1fo[O) - 6
c.f1£o[O) :- 0 :

proc getdata(chan outl,out2, cntrl) -

read starting values , and pump into
array then close down array systolieally

var float vec2(n), vecl{nJ :
seq

str.to.screen("*nEnter Qd Sta,rting values·)
seq i-[O for n)

seq
str.to.screen("*nQO('"

num.to.screen(i)
str.to.screen(") _H)
fp.num.from.keyboard(vec1[i)
fp.num.to.screen{vec1[i)
str.to.screen("--")
fp.num.from.keyboard(vec2Ii)
fp.num.to.screen(vec2Ii))

str.to.screen("*n*n*n")
-- start pumping
seq 1-[0 for n]

par
cntr111
outllvec1[i]
out21vec2[i)

close down
cntrll6 ;

proc putdata(chan inl, in2, cntrl) -

collect 9arbage £all1n9 off array, and
collects next result and print out
root and d entries

var float veel(n], vee2ln]
var runnin9, cl, k
seq

k :- 0
running :- true
-- collect results until stopped
while running

seq
cntrl?cl
!f

cl - 6
runnin9 :- false

cl - I
seq

par
inl?vecl[k]
in2?vec2[k)

k :- k + I
true

par
inl?any
in2?any

output root approximations.
str.to.screen("*n*n root Table Entries")
str.to.chan(ptr,"*n*n root Table Entries")
seq ! -(0 for nJ

seq
str.to.screen{"*n")
str.to.chan{ptr,"*n")
fp.num.to.screen{vecl(i)
fp.num.to.chan(ptr,vecl[i)

str.to.screen(" ")
str.to.chan(ptr," ")
fp.num.to.chan(ptr,vec2[i)
fp.num.to.screen(vec2[i]) :

-- main

-- The QD array
chan inl(n+l], in2(n+1), cntrl(n+l]

seq
open.flle{"proot","w", ptr)
str.to.screen("*nQD with pipeline len9th n _H)
num.to.chan(ptr,n)
str.to.chan(ptr,"*n*n")
par

getdata(!n1rOJ, !n2(OJ, cntrl(O])
par i -[1 for n)

OO(!nl(!-IJ, !n1(lJ, !n2(1-1], !n2(!J, cntrl(l-IJ, cntrl(!])
putdata(in2[n), inlln), cntrl(n)

close.file(ptr)

program 15 a

Instruction Systolic Array (ISA)

Notes implements an orthogonally connected grid of processors
each processor can be plugged into the system or a group
of processors can be plugged into the same grid point
programs and data are read from files and buffered into the array
Results are read from any of the four boundaries as dictated by the
program. The grid cannot be closed down systolically the program
termination is performed by an abort at the end of the user program.

dimensions of array and interface routines
OEF n - 4 :

EXTERNAL proc abort.program :
EXTERNAL proc open.file(value path.name[], access(), chan io.chan):
EXTERNAL proc close.file(chan io.chan)
EXTERNAL proc str.to.chan(chan c, value sf)~ :
EXTERNAL proc fp.num.to.chan(chan c, value float f)
EXTERNAL proc fp.num.from.chan{chan c, var float f)
EXTERNAL proc num.to.chan(chan c, value n) :
EXTERNAL proc num.from.chan(chan c, var n)
EXTERNAL proc str.to.screen(value s(J) :
EXTERNAL proc fp.num.to.screen(value float f)
EXTERNAL proc num.to.screen(value n) :
EXTERNAL proc fp.num.from.keyboard(var float f)
EXTERNAL proc num.from.keyboard(var n) :

-- plug to expand system -each plug point can be an m*m isa grid

EXTERNAL proc plug(chan wn,we,ws,ww,rn,re,rs,rw,
in,is,sw,se) :

-- plug/processor grid allocation function

PRDe loc(VALUE i,j, VAR r) -
SEO

r :- ((i-l)'(n+l»+j)-l

-- sequential to parallel program bus expander

PRoe source(CHAN out(], link, VALUE t)-
VAR k,i,j,buffer[n]
CHAN ptr :
SEO

IF
t - 0

open.flle("selector","r",ptr)
TRUE

open.file("instruct","r",ptr}
num.from.chan{ptr,k)
l!nklk
SEO i-[l for kJ

SEO
IF

i > k
PAR j-[l for nJ

VAR t1 :
SEO

loc(j,l,tl)
out(t1)IO

TRUE
SEO

SEO j-(l for nJ
num.from.chan(ptr,buffer(j-l»

PAR j-[1 for nJ
VAR tl :
SEO

loc(j,l,tl)
out[t1)!buffer[j-l)

close.file(ptr)
str.to.screen("*n source closed")
linklO

-- Garbage collector

PROC sink(CHAN inl), link) -
VAR i,j, k
SEO

link ?k
SEO i-[l for k)

PAR j -[1 for n)
VAR tl :
SEO

loc(j,n,tl)
in(tl+l)?any

str.to.screen{"*nsink closed")
link?any :

data bus expander

PROe data.source(CRAM ans[],bns(],awe(J,bwe[],link) _
DEF n2-2*n,n3-3*n :
VAR k,i,j,t :
VAR FLOAT bufferI4*n] :
CHAN ptr :
SEO

open.file("datain","r",ptr)
num.from.chan(ptr,k)
linklk
str.to.screen("*nk - ft)
num.to.screen(k)
SEO i-[l for k J

SEO
str.to.screen("·ni - ")
num.to.screen(i)

SEO i-I 0 for 4)
IF

i (- k
SEO

num.from.chan(ptr,t)
IF

t (0
SEQ z -10 for nJ

buffer[{j*n)+ z] :- 0.0
TRUE

SEO z -(0 for nJ
fp.num.from.chan(ptr,buffer[(j*n)+z)

TRUE
SEO z-IO for nJ

buffer(j*n)+z) :_ 0.0
PAR i-l1 for nJ

VAR tl.t2 :
seo

loc(j,l,tl)
loc(j,n,t2)
t2 :- t2 + 1
PAR

bnslt1)lbuffer[j-1)
bwelt2)lbuffer[n+(j-1)J
aweltlJlbufferln3+(j-1JJ
anslt2)lbuffer[n2+(j-1))

c1ose.fUe(ptr)
str.to.screenC"·n Data Source closed")
linklO :

parallel to sequential bus condenser

PROC data.sink(CHAN ans[),bns(),awe(),bwe[J, link) •
DEr n2-2*n, n3-3*n :
VAR k,i,j :
VAR FLOAT buffer(4*n) :
CHAN ptr :
SEO

open.file(-dataout-,"w-,ptr)
num.from.chan(ptr,k)
link?k
SEO i-[1 for k)

SEO
PAR j-[l for n)

VAR tl,t2 :
SEO

loc(i.1,tl)
loc(j,n,t2)
t2 :- t2 + 1
PAR

anslt1)?buffer[j-1)
awe[t2)?buffer[n+(j-1))
bns[t2)?bufferln2+(i-l))
bwelt1)?bufferln3+(j-1))

----------------------.......
SEO

SEO j-10 for 41
SEO

str.to.chan(ptr,"*n")
SEQ z-{O for nJ

SEO
fp.num.to.chan(ptr,buffer[(j*n)+z)
str.to.chan(ptr," "l

str.to.chan(ptr,"*n",
close.file(ptr)
str.to.screen("*n Data sink closed")
link?any
abort.program :

main
setups and starts the 16a grid

DEF size - n*(n+1) :
CHAN ans(size),bns[size), awe(sizel,bwe[size),sel[slze), inslsizeJ
CHAN linkl3J :
VAR i, j :
PAR

-- The grid
PAR i-[l for n)

PAR j-ll for n)
VAR tl,t2,t3,t4
SEO

loc(i.j.tl)
loc(j,i,t2)
t3 :-tl+1
t4 :. t2 + 1
plug(ans(t2],awe(t3),bns(t4],bwe(tlJ, bns{t2),bwe(t3],

ans(t4J,awe(tlJ, ins[t2],ins[t4),sel(tl) 8el(t3])
program interface '

source(sel,link(O), 0)
sink(sel,link(O)

source(ins,link(l],l)
sink(ins,link[I)

-- data input/output
data.source{ans,bns,awe,bwe,link(2])
data.sink(ans,bns,awe,bwe,link(2J)

program 15 b

single processor plug

EXTERNAL proc PE(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se)

LIBRARY PROC plug(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se) _
SEO

PE{wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se) :

program 15 c

plug for a grid of processors

EXTERNAL proc str.to.screen(value s()) :
EXTERNAL proc PE(CHAN wn,we,ws,ww, rn,re,rS,rw, in,is,sw,se)

PRoe i.o.port(CHAN in,out, VALUE type) _
-- plug bus expander
VAR float tmpl :
VAR tmp2
SEO

IF
type - 0

SEO
in?tmp2
out! tmp2

type - 1
SEO

in?tmpl
out! tmpl

LIBRARY PROe pluq(CHAN wn,we,ws,ww,rn,re,rs,rw,
in,is,sw,se) _

-- sqr(p.size) to 1 plug
DEF p.size - 2, size - p.size * (p.size + 1):
CHAN anslsize), bns(size), awe(size), bwe(sizeJ, sel[size), ins[size)
SEO

-- virtual processor grid
PAR

PAR i -(1 for p.size)
PAR j - I 1 for p •• lz.1

VAR tl,t2,t3,t4 :
SEO

-- plug
WHILE

PAR

tl :- (((i-ll'(p.slze+l»+j)-l
t2 :- (((j-l)*(p.size+l»+I)-l
t3 :- tl + 1
t4 :- t2 + 1
PEt ans[t2), awe[t3), bns[t4), bwe[tl), bns[t2), bwe(t3],

anslt41. aweltll. Inslt2J. Inslt41. selltll. sellt31)
spoolers
true

SEO j -I 1 for p.sizel
VAR tl,t2 :
SEQ

tl :- (j-l)*(p.size+l)
t2 :- ((Ij-l)*(p.slze+l»+p.size)-l
t2 : - t2 + 1
PAR

i.o.port(in,ins(tl),O)
i.o.port(sw,sel[t1),O)
i.o.port(rn,bns(tl],l)
i.o.port(re,bwe[t2),1)

i.o.port(rs,ans(t2],1)
1.o.port(rw,awe[tl],1)

SEQ j - [1 for p.slze)
VAR tl,t2 :
SEQ

t1 :- (j-1)*(p.slze+1)
t2 :- «(j-1)*(p.slze+1))+p.slze)-1
t2 :- t2 + 1
PAR

i.o.port(ins[t2],ls,0)
i.o.port(sel[t2],se,O)
i.o.port(ans(t1],wn,1)
i.o.port(awe(t2],we,1)
i.o.port(bns(t2],ws,1)
i.o.port(bwe[t1],ww,1)

program 15 d

general processor to illustrate the development of a PE for
the ISA grid, it is placed in the grid by a plug procedure
which allows the same defintion to implement a grid of processors
and is control by a Assembler program generated by the risal.p compiler

LIBRARY PROC PE(CHAN wn,we,ws,ww,rn,re,rs,rw,
in,ls,sw,se)-

DEF msize - 10:
VAR FLOAT a,b, mem[msize),c, i.o.buf[4) :
VAR i,j,s,port,p(4),fd(4),op,old.i,old.s
VAR running :
SEQ

running :- true
mem[l) :- 0.0
mem[O) :- 0.0
old.1 :- 0
old.s :- 0
WHILE running

SEQ
-- Fetch Instruction
c :- mem[l)
PAR

in?i
islold.i
sw?s
selold.s
wnlc
wele
wslc
wwlc
rn?i.o.bufIO)
re?l.o.buf[l)
rs?i.o.buf(2]
rwH.o.buf(3)

old.s :- s
old.i :- i
-- Decode intstruction
SEQ

SEQ j -[0 for 4)
SEQ

fd) j) :- 1\100
1 :- 1/100

port :- fd)2)
op :- fd(3)

-- Communication enable
SEQ

SEQ i-tO for 4)
SEQ

p(I) :- port\2
port :- port/2

SEQ i-tO for 4)
IF

p(i} - 1
memfi+3J :- La.buf[i]

Execute instruction
a :- mem(fd(l}}
b :- mem(fd(O}}
IF

(6<>0) AND (op <> 0)
IF

op - 1
mem(l) :- mem(O)

op - 2
mem(O) :- a + b

op - 3
mem(O) :- a - b

op - 4
mem(O) :- a • b

op - 5
mem(O) :- a / b

op - 6
SEQ

IF

op - 7
SEQ

IF

op - 8

a < b
mem(O) :- a

TRUE
mem[O) :- b

a > b
mem(0) :- a

TRUE
mem(O) :- b

mem(l} :- mem(fd(l))
op - 9

mem(fd(O)):- a

program 15 e

special processor for the simulation of the gentleman & kung
gaussian elimination algorithm used in Least squares approximation

LIBRARY PROe PE(CHAN wn,we,ws,ww,rn,re,rs,rw,
in,is,sw,se)_

OEF msize - 10:
VAR FLOAT a,b, mem(msize],c, i.o.buf(4] :
VAR i,j,s,port,p(4),fd[4],op,opdl,opd2,old.i,old.s
VAR type ,toggle :
SEQ

type :- 0
mem(l} :- 0.0
mem(O} :- 0.0
old.l :- 0
old.s :- 0
e :- 0.0
t099le :- false
WHILE true

SEQ
-- Fetch Instruction
c :- mem(1J
PAR

in?1
iSlold.!
sw?s
se!old.s
wnle
welmem(4]
wSlmem(5)
_le
rnH .o.buf(0)
re?i.o.buf(l)
rsH.o.buff 2)
[wH.a.buf(3]

old.s :- s
old.l :- i
-- Decode intstruction
SEQ

SEQ j -(0 for 4)
SEQ

fd(j) :_ i\lOO
i :- i/100

port :- fd(2)
op :- fd(3)
opdl :- fd(1)
opd2 :- fd(O)

-- communication enable
SEQ

SEQ 1-(0 for 4)
SEQ

p(1) :- port\2
port : - port/2

00
00 o

IF

SEQ i-(O for 41
IF

p(ll - 1
mem[i+3] :- i.o.butli]

Execute instruction

(s<>O) AND (op <> 0)
IF

op - 8
SEQ

IF
opd2 - 3

SEQ
IF

opdl - 1
SEQ

old.l :- old.l + 100
toggle :- true
mem(7]:- mem(3]

opdl - 0
SEQ

IF
type - 0

mem(31 :- mem(31 - (mem(7)*mem(61)
type - 1

meml6 I :- mem(3 l/meml7 I
IF

toggle
SEQ

old.l :- old.l + 100
toggle :- false

memlSI :- mem(31
co mem(4) :_ mem[6]

opd2 - 2
SEQ

type :- 1
old.l :- old.! + 3

opd2 - 1
SEQ

old.l :- old.l + 1
type :- 0

opd2 - 4
SEQ

meml71 :- meml5]
opd2 - S

type :- 3 :

program 15 f

generic PE for testing ISA grid

NOTES : specialized processsor for performing LU-Decomposition
on an hexagonally connected array of kung & leiserson
which is simulated on an orthogonally connected ISA

LIBRARY PRQe PE(CHAN wn,we,ws,ww,rn,re,rs,rw,
In,is,sw,se)-

-- small 10 location memory
DEF msize - 10:
VAR FLOAT a,b, mem[msizeJ,Lo.buf14] :
VAR i,j,s,port,pI4),fd[4],op,opdl,opd2,old.i,old.s
VAR type ,toggle :
SEQ

-- intiallsation
type :- 0
memlll :- 0.0
mem(O] :- 0.0
old.i :- 0
old.s :- 0
toggle :- false
-- start processor
WHILE true

SEQ
-- Fetch Instruction
PAR

in?i
islold.l
sw?s
selold.s
wnlmem[3)
welmem{4J
wSlmem[S)
wwlmem(6J
rn?i .o.bufl 01
re?i.o.buflll
rs?i.o.buf(21
rw?i.o.buf[3)

old.s :- S
old.i :- i
-- Decode intstruction
SEQ

SEQ j -10 for 41
SEQ

fd(j] :- i\lOO
i :- 1/100

port :- fdl2)
op :- fdl31
opdl :- fdll I
opd2 :- fd(0 I

-- communication enable
SEQ

(X)
(X)
I-'

IF

SEQ i-tO for 4)
SEQ

p(i) :- port\2
port :- port/2

SEQ i-tO for 4)
IF

p(i) - 1
.em(i+3) :- Lo.buf(!)

Execute instruction

(s<>O) AND (op <> 0)
IF

op - 8
SEQ

IF
opd2 - 5

SEQ
IF

toggle
SEQ

mem! 6] :- mem! 5J
mem(4) :_ mem(7)
mem(5) :- mem(8)

type - 1
SEQ

mem[7] :- mem(6)
mem(8) :- mem!3]
mem!3] :- mem(4] + (mem(8J*mem[7J)

type - 2
SEQ

mem(7) :- mem(6)
mem(8) :- mem!3] + (mem(41*mem[7])
mem(3) :- mem(4)

type - 3
SEQ

mem(7) :- mem(6) + (mem(3)'mem(4)
mem(6) :_ mem(3)
mem!3] :- mem!7]

type - 4
SEQ

IF
mem(4) - 0.0

mem(6) :- 0.0
true

mem(6) :- 1.0/mem(41
mem(3) :- mem(4)
mem(71 :- -1.0

toggle :- not t09gle
opd2 - 4

SEQ
old.! :- old.! -1
type :- 4

opd2 - 3
type :- 3

opd2 - 2
SEQ

old.! :- old.! - 1
type :- 2

opd2 • 1
type :- 1

(opd2 - 0) and (opd1 > 0)
SEQ

IF
(opd1 -1 - 0

old.! :- (old.i - 100) + 5
true

old.! :- old.i - 100 :

ro
ro
'"

program 16 a

Implementation of Systolic Simplex

Notes : The systolic array implements a tableau method in which
basic cells correspond to elements in the Simplex Tableau.
The array is expressed in top down fashion with three files
the current files sets up Host interfacing and the basic simplex
array, the remaining program files define basic cell definitions
and represent logical partitions of the design into subarrays.
The program partitioning allows the computation and control of
indivdual cells to be assessed without recourse to the lengthy
array setup procedures.

Problem dependent constants - the tableau dimensions
DEF dl -6, d2 -4, size.! - (dl+I)*d2, size.2 - (d2+1)*d!
CHAN linkIS), portl(dl+l)*(d2+l» :

-- Interfacing routines for input/output

EXTERNAL peac abort.program :
EXTERNAL peoe open.file(value path.name[), access[], chan io.chan)
EXTERNAL proc close.file(chan io.chan)
EXTERNAL proc fp.num.to.chan(chan c,value float f) :
EXTERNAL proe num.to.chan(chan c, value n) :
EXTERNAL proc str.to.chan(ehan c, value s(])
EXTERNAL peoe str.to.screen(value s[J) :
EXTERNAL peoc num.to.screen(value n):
EXTERNAL proc num.from.keyboaed(var n) :
EXTERNAL peoe fp.num.to.sceeen(value float f) :
EXTERNAL proe fp.num.to.screen.f(value float f, value w,d):
EXTERNAL peoe fp.num.from.keyboaed(var float f)

-- The required basic cells, and some extra procedures to
-- keep data flowing in Occam

EXTERNAL proe

EXTERNAL proc

EXTERNAL proc

row.sort(ehan Nin,Sout,Nein,Scout,
Nout,Sin,Ncout,Scin,
Eout,Ein,Ecout,Ecin,poet,

value type, var j) :
col.sort(chan Win,Eout,wcin,EcQut,

Wout,Ein,weout,Ecin,
Nin,Nout,Ncin,Neout,port,

value type,j) :
dummy.a(chan Nin,Ncin,Nout,Ncout,

EXTERNAL proe dummy.b(ehan
Eout,Ein,Eeout,Ecin, link(),port)
Eout,Ecout,Ein,Ecin,
Nin,Nout,Ncin,Neout, link[],port)

EXTERNAL
EXTERNAL
EXTERNAL

proc
proe
proc

EXTERNAL proc

t.anchor(chan Nout,Nin,Ncin,Ncout)
r.anchor(ehan Eout,Ein,Ecin,Ecout) :
x.cell(CHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,Ein,

VAR cl), c.barl), flagl),
VAR FLOAT a,b,d) :

pivot.row.I(CHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,!in,

EXTERNAL proc

EXTERNAL p['oc

EXTERNAL proe

EXTERNAL proc

EXTERNAL proc

VAR cl), c.bar[], flag[),
VAR FLOAT a,b,d):

h.cell(CHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,Ein,
VAR cl], c.bar(), flag!),
VAR FLOAT a,b,d):

pivot.col.b(CHAN Nin,Sout,Nout,Sin,win,Eout,Wout,Ein,
VAR cl), c.bar(), flagl),
VAR FLOAT a,b,d) :

pivot(CHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,Ein, link,
VAR cl), c.barl) ,flagl)'
VAR FLOAT a,b,d) :

pivot.col.a(CHAN Nin,Sout,Nout,Sin,win,Eout,Wout,Ein,
VAR cl), c.barl), flagl)'
VAR FLOAT a,b,d):

h.j.cell(CHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,Ein,
VAR cl), c.bae(), flag[J,
VAR FLOAT a,b,d):

EXTERNAL proc pivot.row.r(CHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,Ein,
VAR cl), c.bar(), flagl],

EXTERNAL proe
VAR FLOAT a,b,d):

mat.celllCHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,Ein,
VAR cl], c.bar[], flagl],
VAR FLOAT a,b,d):

-- Procedures concerned with setti"ng up the Tableau

PROC PEt CHAN Nin, Sout, Ncin, Scout,
Nout,Sin , Ncout,Sein ,
Win ,Eout, Wcin ,Ecout,
Wout,Ein , Wcout,Ecin , port,

VALUE p,q,VAR FLOAT a) -
the basic grid processing element, the eelltype is
fixed by paSSing the grid pOSition to the PE

variables :
flag - defines the state (flagI2]) of computation and

provides auxilary variables for staggered cell I/o
c,c.bar - the input and output control values
test - as for all other procdeures allows the inclUsion

of s.mix for trace purposes

VAR running,cI4],c.barI4],flag(3],k,test
VAR FLOAT b,d
SEO

test :- true
running :- true
SEO k -10 FOR 3)

flaglk) :- 0
SEQ k-IO FOR 4)

c.bar[k) t- 0
WHILE running

SEO
portla,c(0),cll),cI2),cI3)
-- control i/o

ro
ro
w

IF
test

PAR
IF

IF

IF

IF

c.b.r(3) <> 6
PAR

Wcin?c[l)
Wcoutlc.bar(lj

c.b.r[Z) <> 6
PAR

Scin?c[O)
Scoutlc.bar[O]

c.b.r[l) <> 6
PAR

Ecin?cl3)
Ecoutlc.bar(31

c.barlO) <> 6
PAR

Ncin?c[Z)
Ncoutlc.bar(2)

-- decide for closedown
IF

c.b.r(3) _ 6
c[3) :- 6

IF
c.b.r[Z) - 6

c(2) :- 6
c.b.r(2) :- c[O)
-- evaluate new output controls
-- and if ready to stop
c.b.r(3) :_ c[l)
c.b.r[O) :- c(2)
c.b.r[l) :- c(3)
test :- [c.b.r(2)-6) AND (c.b.r[3)-6)
test :- NOT«([[c.b.r[O)-6)AND[c.b.r[l)_6»AND
running :- test
IF
-- select the correct cell
-- type

q - 1
SEQ

test))

IF
P < (d2 - 1)

x.cell(Nin,Sout,Nout,sin,Win,Eout,wout,Ein,c,c.bar,flag,a,b,d)
p - [dZ - 1)

q - Z
SEQ

pivot.row.l(Nin,Sout,Nout,sin,Win,Eout,wout,Ein,
c,c.bar,flag,a,b,d}

p - d2
h.cell(Nin,Sout,Nout,sin,Win,Eout,wout,Ein,c,c.bar,flag,a,b,d)

IF
P - dZ

pivot.col.b(Nin,Sout,Nout,Sln,Win,Eout,Wout,Ein,
c,c.bar,flag,a,b,d)

[p - (dZ -1)) AND (fl.g(Z) <> 4)
plvot(Nin,Sout,Nout,Sln,Wln,Eout,Wout,Ein,

link(2),c,c.bar,flag,a,b,d)
p < [dZ - 1)

pivot.col.a(Nin,Sout,Nout,Sln,Win,Eout,Wout,Eln,

q > Z
SEQ

IF

c,c.bar,flag,a,b,d)

P - dZ
h.j.cell(Nin,Sout,Nout,Sln,Win,Eout,Wout,Ein,

c,c.bar,flag,a,b,d)
p - (dZ - 1)

pivot.row.r(Nin,Sout,Nout,Sin,Win,Eout,wout,Ein,
c,c.bar,flag,a,b,d)

p < [dZ - 1)
mat.cell(Nin,Sout,Nout,Sin,Wln,Eout,WQut,Ein,

c,c.bar,flag,a,b,d) :

proc s.mix(CHAN port(J) _

screen mixer for tracing

provides a series of tableaus one for each
cell cycle. when s.mix is not used the port channel
used in other procedures is commented out

chan fptr :
var float a:
var c(4],z,b,running,flag
seq

-- output to screen and file "result"
-- produces a control wavefront or
-- a record of the updated table
open.file("result","w",fptr)
str.to.screen("*n options")
str.to.screen("*n1: Table *n2: control wavefront")
str.to.screen("*n*n Enter option :")
num.from.keyboard(b)
num. to. screen(b)
running :- true
flag :- 0
-- for all cycles
while running

seq
z :- 0
str.to.screen("*nstart cycle*n")
str.to.chan{fptr,"*nstart cycle *n")
seq i -[0 for (d1+1).[dZ+1»

seq

CD
CD ...

if

z :- z + 1
port(i)?a,c(0),c(1),c(2),c(3)
str.to.screen(" ")
str.to.chan(fptr," ")
IF

b - 1
seq

fp.num.to.chan(fptr,a)
fp.num.to.screen.f(a,8,4)

true
seq j-[O for 4)

seq
num.to.screen(c(j})
num.to.chan(fptr,c(j])

str.to.screen(" ft)
str.to.chan(fptr," ")
if

if

z - (d1.1)
seq

z :- 0
str.to.chan(fptr,"*n")
str.to.screen("*n")

termination conditions

c(0) - 7
flag :- 1

c(O) - 8
flag :- 2

termination is produced by
the tableau itself

flag - 1
seq

str.to.screen("*n correct termination")
str.to.chan(fptr,"*n correct termination")
running :- false

flag - 2
seq

str.to.screen("*n all pivot contenders invalid")
str.to.chan(fptr,"*n all pivot contenders invalid")
running :- false

-- rather primitive but
-- effective program stop
close.file(fptr)
abort. program :

PRoe sink(CHAN Eout,Win,Ecout,Wcin, VALUE type) _

As with all occam programs for systolic arrays
we must collect used signals on the array bounadries.

VAR running, c, flag:
SEO

flag :- 1

running :- true
the type of cell dictates

-- the signals it will recieve
-- inturn dependent upon position in the
-- array.
WHILE running

SEO
PAR

Ecout?c
WcintO

IF
c - 6

running :- false
(c-1) AND (flag - 1)

SEQ
Eout?c
IF

type - 0
flag :- 2

(c-3) AND (flag - 2)
SEO

flag :- 1 :

PRQe source(CHAN Nin,Nout,Ncin,Ncout,VALUE type) _

The source routine also does the job of a sink
but can also be used for the systolic loading
of data in the minimum time. This is not
implement here but is trivial

VAR running ,c, flag
SEO

flag :- 1
running :- true
WHILE running

SEO
PAR

NcinlO
Ncout7c

IF
C • 6

running :- false
(type-O) AND (c-1)

SEO
Nout?any

type - 1
IF

(c-l) AND (flag-l)
SEO

Nout?any
flag :- 2

(c-3) AND (flag-2)
flag :- 3

(c-1) AND (flag-3)

ro
ro

'"

SEQ
Nout?any
flag :- 1

type - 2
IF

(e-l) AND (flag - 1)
SEQ

Nout?any
flag :- 2

(e-3) AND (flag - 2)
flag :- 1 :

Simple 2-0 to 1-0 vector mappings useful
for locating data elements, PE'S and channels
in the desi9n

PRCe loc.r(VALUE i,j, VAR r) •
SEQ

r :- (((i-1)*(d1+1))+j)-1 :

PRoe loc.C(VALUE j,i, VAR r) •
SEQ

r :- (((j-1)*(d2+1))+i)-1

PRCe loc.m(VALUE i,j, VAR r) •
SEQ

r :- (((i-1)*dl)+j)-1

PROC setup (VAR FLOAT mem(I. VAR eind(I.rlnd(I) -

Host interface to read the tableau to be used
also collects the rowand column indices

VAR tl :
SEO

-- constraint and basis matrices
str.to.screen(".n Enter Tableau.n")
SEQ i-[l FOR d2J

SEQ
SEQ j - [1 FOR d11

SEQ
loc.m(i,j,tl)
fp.num.from.keyboard(mem[tl)
fp.num.to.screen(mem[tl])
str.to.screen(ft ft)

str.to.screen("*n")
column vectors index

str.to.screen(".n*nEnter Column Indices")
SEQ i-tO FOR d1-11

SEQ
str.to.screen("*n[")
num.to.screen(!)
str.to.screen("] _ft)
num.from.keyboard(cind(i]}

num.to.screen(cind[i)
indexes of unknowns in solution

str.to.screen("*n*nEnter Row Indices"}
SEQ i-tO FOR d2-11

SEQ
str.to.screen("·n(")
num.to.screen(i)
ste.to.screen("] - ")
num.from.keyboard{rind(i})
num.to.screen(rind(lJ)

str.to.screen("·n") :

PRQe putdata{VALUE FLOAT mem[], VALUE rind(J) •

Host output interface
simply writes final value of objective function(H)
and unknowns in solution with optimal values
output to file and screen

CHAN fptr :
VAR t1 :
SEQ

open.file("ftab","w",fptr)
str.to.screen("*n results")
str.to.chan(fptr,"*n results *n")
SEQ i-I 1 for d21

SEQ
str.to.screen("·" [")
str.to.chan(fptr,"·n [H)
IF

i - d2
SEQ

TRUE

str.to.screen("H ")
str.to.chan(fptr,"H ft)

SEQ
num.to.screen(rind(i-1])
num.to.chan(fptr,rind(i-1)

str.to.screen(") - ")
str.to.chan(fptr,ft) - ft)
loc.m(i,l,tl)
fp.num.to.chan(fptr,mem[tl])
fp.num.to.screen(mem[tl)

close.file(fptr) :

PROC merge(CHAN llnk[l.port) -

The computation can terminate because of
a) optimal solution
b) failure to find optimal solution

also
c) another iteration

the control signals to the pivot are merged here
from row sorting and column sorting

----------------------..........
VAR FLOAT d :
VAR running. c[3],test
SEQ

d ,- 0.0
e[2J ,- 1
running :_ true
test :- true
-- computation
WHILE running

SEQ

main

str.to.screen("c")
portld;e[OJ,e[lJ;e[2J;0
-- 1/0
IF

IF

test
PAR

IF
(e[OJ <) 6) AND (e[lJ <) 6)

PAR
link[OJ?e[OJ
link[lJ?e[l)

link[2I1e)2)
decide pivot signal

e[2) - 6
SEQ

test :- false
running :- false

(e[O)-l) OR (e[l)-l)
e[2) ,- 1

(eI0)-6) OR (e[1)-6)
e[2) ,- 6

TRUE
e[2) ,- 0

Specification of the whole Tableau
channels are for two communication north-south(ns) and east-west{ew)
procedure call s.mix can be uncommented to produce trace

CHAN ns.l[size.2], ns.2(size.2], cns.l[size.2], cns.2[size.2]
CHAN ew.l[size.l], ew.2(size.l], cew.l(size.l], cew.2(size.l]
VAR FLOAT mem[dl*d2) :
VAR e.lndex[dl-l), r.lndexld2-11
SEQ

setup(mem,c.index,r.index)
PAR

-- tableau
VAR I,j :
PAR 1- [1 FOR d2)

PAR j- [1 FOR dl)

VAR tl,t2,t3,t4,tS,t6
SEQ

loc.m(i,j,t5)
loc.r(i,j,tl)
loc.r(i.j+l.t6)
loc.c(j,i,t2)
t3 :- tl + 1
t4 :- t2 + 1
PE(ns.l[t2], ns.l[t4],

ns.2[t2), ns.2[t4),
ew.l(tll. ew.l(t3),
ew.2(t11. ew.2(t31,
i, j , mem(t51)

merge(llnk,port[d2*(dl+l)))
-- s.mix(port)
-- clear boundary channels
VAR I :
PAR 1-11 FOR d2)

VAR tl,type
SEQ

type :- 0
IF

I - d2
type :- 1

loc.r(i,dl+l,tl)
sink(ew.l[t11, ew.2[t11,

TOp Boundary Sources
VAR j :
PAR j -[1 FOR dl)

VAR tl, type
SEQ

type :- 2
IF

j - 1
type :- 0

j - 2
type :- 1

loe.e(j,I,tl)

cns.llt21. cns.l[t4],
cns.2[t2], cns.2(t4],
cew.l[t11. cew.l[t3].
cew.2(t11, cew.2(t3]. port(t6],

cew.l(tl], cew.2Itl). type)

source(ns.l(tll, ns.2[tl], cns.1Itl], cns.2[tl],type)
Row Sorter

VAR i :
CHAN ns.3(d2], ns.4[d2], cns.3[d2],cns.4(d2] :
SEQ

PAR
PAR I -[1 FOR d2)

VAR tl,type
SEQ

type :- 1
IF

I - 1
type :- 2

I - (d2-1)
type :- 0

loco r(i, 1, tl)

----------------------..........
IF

i - d2
dummy.a(ns.3(d2-1],cns.3{d2-1J,

ns.4[d2-1),cns.4[d2-1),

TRUE
ew.l[tl), ew.2Itl], cew.l[tlj, cew.2[tl), link,port(tl])

row.sort(ns.3(i-l),ns.3[i],cns.3Ii-l),cns.3[i),
n8.4[1-1),n8.4[1],cn8.4(1-1),cn6.4(1),
ew.l[tl]. ew.2(tl), cew.l[tl],cew.2(tl],portltl],
type,r.index(i-lJ)

t.anchor(ns.3(O],ns.4(O),cns.3[O],cns.4(O)
Column sorter

VAR j :
CHAN ew.3[d11. ew.4[d11. cew.3[d11. cew.4[d11 :
SEO

PAR
PAR j-[1 FOR d1)

VAR tl, t2, type
SEO

type :- 1
IF

j - 2
type :- 0

j - d1
type :- 2

loc.c(j,d2+1,tl)
loc.r(d2+1,j+l.t2)
IF

j - 1
dummy.b(ew.3(OJ,cew.3(O],

e",.4[O),ce",.4(0),

TRUE
ns.l(tl),ns.2[tl),cns.l(tlJ,cns.2(tlJ, link.port[t2J)

col.8ort(ew.3[j-2J,ew.3(j-1 1,cew.3(j-2J,cew.3[j_lJ,
ew.4(j-2J,ew.4[j- 1 l,cew.4(j-21,cew.4(j_l),
ns.1It11. ns.2[t11. cns.1[t1). cns.2[t11.port[t21.
type.c.indexlj-21)

r.anchor(ew.3[dl-l1,ew.4ldl-1 l,cew.3(dl-lJ,cew.4[dl_lJ)
putdata(mem, r.index)

program 16 b

Column and Row sorter cell defintions

Notes : The systolic Simplex design is split into
three sub arrays the tableau, column , and row sorters
here the cells for the latter two are specified

EXTERNAL peoe str.to.screen(value s[]) :

LIBRARY prae col.sort(chan Win,Eout,Wcin,Ecout,
Wout,Eln,Wcout,Ecln,
Nin,Nout,Ncin,Ncout,port,
value type,k) _

Column sorter cell finds the maximum piece
which will reduce the objective function the most
also generates a control value which will swap
columns of the tableau as neccesary to place the vector
corresponding to the varibale to be introduced into the
solution into the pivot column of the tableau

VAR float a,b :
VAR flag,to9gle,running,left,right,j,i,test
VAR c.barI31. cl31 :
SEO

-- setup
j :- k
left :- (type-O) OR (type-1)
right :- (type-2)OR (type-1)
flag :- 0
running :_ true
test :- true
toggle I- falae
SEO j -10 FOR 31

c.har[i) :- 0
-- computation
WHILE running

SEO
portla;c(O);cll);c(2);j
-- i/o
IF

IF

test
PAR

NCin?c[OI
Ecin?c(l)
Ncoutlc.bar(O]
Ecout!c.barll)
IF

c.ba,[11 <> 6
PAR

Wcin?c(2)
Wcoutlc.bar(2)

0>
0>
0>

Itype - 0) AND Ic.barll)<>6)
SEO

Wautla:j
c.barll) _ 6

SEO
test :- false
running :- false

c.barIO) :- 0
c.bar(l] :- 0
c.bar(2) :- c[l)
-- cell computation
IF

(flag-D) AND (cIO)-l)
-- load cell
SEO

Nin?a
toggle :- true
c.bar[l) :_ 1
flag :- 1

flag - 1
-- sorting
IF

c[1) - 1
-- stop 60rting
SEO

flag :- 0
c.bar[O) :- l

toggle AND left
SEO

Ein?b,i
IF

(b>a)OR((b-a)AND(i<j))
SEO

Eoutla;j
a :- b
j :- I
c.bar[O) :_ 1

TRUE
Eoutlb;i

(NOT toggle) AND right
SEO

Woutla;j
Win?a,l
IF

c(2) - 6

I <> j
SEO

j :- i
c.barIO) :- 2

-- closedown cell
SEO

c.barIO) - 6
c.bar(1) - 6
c.bar(2) - 6

toggle :- NOT toggle :

LIBRARY peoe row.sort(chan Nin,sout,Ncln,Scout,
Nout,Sin,Ncout,Scin,
Eout,Ein,Ecout,Ecin, port,
value type, vac j) _

Row sorting cell identifies a minimum pr from
positive values. Ensures that row of tableau
corresponding to index of variable ejected from
solution is pivot row of cells

VAR FLOAT a,b :
VAR t0991e,running,top,bottom,flag,i,test
VAR c.bar[l).c[l) :
SEO

setup
top :- (type-2)OR(type-1)
bottom :- (type-1)OR(type-0)
flag :- 0
running :- true
test :- true
toggle :_ false
SEO 1-[0 FOR l)

c.barl i) :- 0
-- computation
WHILE running

SEO
portIa;e(0) ;e(l) :e(2);j
-- ilo
IF

IF

test
PAR

Ecin?c[O)
Ncin?c[l)
ECQutlc.bar(O)
Ncoutlc.barll)
IF

c.bar[l) <> 6
PAR

Scin?c(2)
Scoutlc.bar(2)

(type -0) AND (c.bar[l) <> 6)
SEO

Soutla;j
c.bar(1) - 6

SEO
test :- false
running :- false

c.bar[0) :- 0
c.bar[l) :- 0
c.bar(2) :- ell)

sorter
IF

CD
CD
<D

(flag - 0) AND (c(O)-l)
SEO

-- load
Ein?a
toggle :- true
c.bar(l) :- c(O)
flag :- 1

flag - 1
IF

c(l) - 1
SEO

-- stop sort
flag :- 0
c.bar(O) :- 3

toggle AND bottom
SEO

Nin?b;i
IF

((((b-a)AND(l<j»OR(b<a»OR(a<_O.O»
SEQ

Noutla;j
a :- b
j :- I
c.bar(O) :- 1

TRUE
Noutlb;i

(Not toggle) AND top
SEO

Soutlaij
81n1a;i
IF

I <> j
seo

c.bar(O) :_ 2

c(2) - 1
j :- I

-- new varibale index
Sin?j

c(2) - 6
-- kill cell
SEO

c.bar(O) :- 6
c.bar(l) :- 6
c.bar(2) :- 6

toggle :- NOT toggle

LIBRARY proc dummy.a(chan Nin,Ncln,Nout,Ncout,
Eout,Ein,Ecout,Ecin, link[J ,port) _

This procedure recives siqn~ls from
column sorter with dat~ on the index of
the new variable to be introduced to the
solution. Also takes data from row sorter

-- to determine a termination condition which
-- is sent to pivot cellvia merge

VAR running, flag, c[7],i,j,jl,k, test:
VAR FLOAT a,b :
SEO

-- setup
SEO z-(0 FOR 7)

c(z) :- 0
flag :- 0
running :- true
test :- true
-- computation
WHILE running

SEO
porttalc(4];c[O];cll);jl
-- I/o
IF

test
PAR

Ecoutlc[S)
Ecin?c(4)
Nin?a;i
IF

c(3) <> 6
PAR

link(3)?c(3)lj
link(4)!c(6)
link(0)!c(2)

Neln?e(O)
Ncoutlc(l)

e(1) :- 0
e(2) :- 0
IF

c(4) - 1
Eln?b

-- book keeping
IF

c(5) - 6
SEO

running :- false
test :- false

c(3) _ 1
j1 :- j

(c(O)-l) AND (a>O.O)
-- new solution
SEO

c(2) :- 1
c(l) :- 1
flag :- 1

flag - 1
-- swap unknowns
SEO

Noutljl

CD
ID o

j1 :- 0
flag :- 0

(c[OI-l) AND (a(-O.O)
-- error
SEQ

str.to.screen{"*n Termination on Vijn)
c[l) :- 6
c[51 :- 6
c[6) :- 6
c[2) :- 6
c[4) :- 8

c[3) - 6
SEQ

e[51 :- 6
e[11 :- 6
c[2) :- 6

LIBRARY proe dummy.b(chan Eout,EcQut,Ein,Ecin,
Nin,Nout,Ncin,Ncou't, Unk(1, port) _

Similar routine to dummy.a except for
column sorting_ Decides if optimal soultlon is found
and terminates tableau. the value 6-closedown

VAR runninq,c(7), i,j,jl,k,test :
VAR FLOAT a :
SEQ

-- setup
running:_ true
test :- true
SEQ z-[O FOR 7)

c[z) :- 0
-- computation
WHILE running

SEQ
portla;c[0);cI1);cI3);j
-- 1/0
IF

test

cl11
c(2)
c(3)

PAR
Ncin?c(4)
Ncoutlc(S]
IF

c(6) <> 6
SEQ

link(4)?cI61
linkI3J1c(2);k
linkl1J1c(3)

E1n1a;1
Ecin?c[O)
Ecoutlcl11
- 0 o
- 0

----------------------.........
-- book keep! 09
IF

cl51 - 6
SEQ

running :- false
test :- false

(cIO)-l) AND (a>O.O)
-- best contender found
SEQ

k :- i
cl21 :- 1
cl31 :- 1

(cIO)-l) AND (a (-0.0)
-- optimal soulution
SEQ

str.to.screen("*ncorrect termination")
c(3) :- 6
c(2) :- 6
c(5 1 :- 6
c(1) :- 6
c[01 :- 7

cl61 - 6
kill the cell

SEQ
c(1) :- 6
c(5) :- 6

-- additional routines to maintain data flow and
-- easy specification of the array

LIBRARY proc t.anchor(chan Sout,Sin,Scout,Scin) _
-- associated with row sorter
VAR running, csavel, csave2 :
SEQ

csave2 :- 0
running :- true
WHILE running

SEQ
PAR

Scin?csavel
Scoutlcsave2

IF
csavel - 6

running :_ false
csave2 :- csavel :

LIBRARY proc r.anchor(chan Wout,Win,wcin,Wcout) _
-- associated with column sorter
VAR running, csavel, csave2 :
SEQ

csave2 :- 0
running :- true
WHILE running

SEQ

CD

'"

PAR
Wcin?csavel
wcoutlcsave2

IF
csavel - 6

running :- false
csave2 :- csavel :

----------------------.........
program 16 c

8asic cell computation defintions:

--Notes these procedures are the basic cell defintions of the
array and will not be detailed here see accompanying report

two auxiliary procedures to swap tableau columns and rows

PRoe column.swap(CHAN Ein,Eout, Win,Wout, VAR c,flag, VAR FLOAT a) _
VAR FLOAT b :
SEa

IF
c - 1

SEa
PAR

Ein?b
Eoutla

a :- b
c - 2

SEa
PAR

Win?b
Woutla

a :- b
c - 3

SEa
flag :- 2

PRDe row.swap{ CRAM Nin,Nout,Sin,Sout, VAR C, flag,vAR FLOAT a) _
VAR FLOAT b :
SEa

IF
c - 1

SEa
PAR

Nin?b
Noutla

a :- b
c - 2

SEa
PAR

Sout!a
Sin?b

a :- b
c - 3

flag :_ 0

-- The main computational procedures

LIBRARY peae mat.cell{CHAN Nin,Sout,Nout,Sln,Win,Eout,Wout,Ein,
VAR cl l,e.bar[], f1agl], VAR FLOAT a,b,d

SEa) -

IF
(f1agI21-0) AND «cI01-1) AND (clll-l))

SEQ
flagl21 :- 1
PAR

Sin?b
Win?d

a :. a - (b*d)
floglOI :- 1

flaglOI - 1
SEQ

PAR
Noutlb
Eoutld

flaglOI :- 0
f1agl21 - 1 .

column.swap{Eln,Eout,Win,wout,c[O),flagI2],a)
flagl21 - 2

flagl21 :- 3
f1agl21 - 3

row.swap(Nin,Nout,Sin,Sout, c(1),flag[2),a) :

LIBRARY PROe h.j.cell(CHAN Nin,sout,Nout,Sin,Win,Eout,Wout,Ein,
VAR cll,cobarll,flagll,VAR FLOAT .,b,dl -

SEQ
IF

(f1ag121 - 0) AND «(cI21-1)AND(cl11-1))
SEQ

fla9121 :_ 1
PAR

Nin?b
Win?d

o :- 0 - (bOd)
fl09101 ,- 1

floglOI - 1
SEO

PAR
Eoutld
Soutla

fla9101 :- 0
flogl21 - 1

SEQ
column.swap(Ein,Eout,win,Wout,c(OJ,flag(2],a)

flogl21 - 2
flogl21 :- 0 :

LIBRARY paoe pivot.col.a (CHAN Nin,Sout,Nout,Sin,Win,Eout,WQut,Ein,
VAR cl J, c.bar[I, flag[J,

SEQ
IF

VAR FLOAT a,b,d) •

(f1ag121 -0) AND (cI01-1)
SEQ

Sin?b

----------------------..........
flaglOI :- 1
flagl21 :- 1
cobarl31 :- 1
cobarl11 :- 1

flaglOI - 1
SEQ

PAR
Noutlb
Eoutla
Wout!a

a :- 0
flaglOI :- 0

flagl21 - 1
column.swap(Ein,Eout,Wln,wout, c(O),flag[2),a)

(f10g121 - 2) AND (cI01-1)
SEQ

Sin?b
IF

o - 0 0 0
d :- 000

TRUE
d :- 000 +(100/a)

flagl11 ;- 1
flagl21 :- 3
cobarl11 ;- 1

flagl11 - 1
SEQ

Noutlb
woutld
flogl11 ;- 0

(flagl21 - 3)
row.swap{Nin,Nout,Sln,Sout,c(1),flag(2),a)

LIBRARY PROe pivot.row.l(CHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,Ein,
VAR cl), c.barl I ,flag[J,

SEQ
IF

VAR FLOAT a,b,d) -

(flagI21-0) AND (cI31-1)
SEQ

Ein?b
a :- 0.0 + (a*b)
flaglOI :- 1
flagl21 ;- 2
coborl21 :- 1
cobarl11 :- 0
cobarlOI :- 1

flag I 0 I - 1
SEQ

PAR
Noutla
SoutJa

floglOI :- 0
(f1ag121 - 2) AND (c131 - 1)

ID
ID
W

SEO
Ein?b
d :- 000 + (a-b)
flagl1J :- 1
flagl2J :- 3

flagl1J
SEO

Woutld
flagl1J :- 0

(flagl2J - 3)
row.swap(Nln,Nout,Ein,Eout,cll),flag[2),a)

LIBRARY PROe pivotoco10b(CHAN Nin,Sout,Nout,Sin,Win,Eout,WQut,Ein,
VAR cl J, c.bar(J, flag(I,
VAR FLOAT a,b,d) -

vat zero :
SEO

zero :- 0.0
IF

(f1agl2J - 0) AND (cI2J-1)
SEO

Nin?b
£1aglOJ :- 1
£1ag(2J :- 1
cobarl1J :- 1
cobarl3J :- 1

£1aglOJ - 1
SEO

£laglOJ :- 0
PAR

Wout!a
Eoutla
Soutlzero

a :- 0.0
flagl2 J - 1

column.swap{Ein,Eout,Win,Wout,c[O],flag[2J,a}
(fl.gI2J - 2)

SEO
flagl2J :- 0 :

LIBRARY PROC pivot.row.r(CHAN Nin,sout,Nout,Sin,Win,Eout,Wout,Ein,
VAR cf), c.bar(], flagf},

SEO
IF

VAR FLOAT a,b,d) •

(f1ag[2) - 0) AND (c[ll -1)
SEO

Win?b
• :- 0 0 0 + (a-b)
cobar[2J :- 1
cobar[OJ :- 1
f1ag[2J :- 1
f1agIO) :- 1

flaglOJ - 1

SEO
PAR

Noutla
Sout I a
Eoutlb

flaglOJ :- 0
(flagl2J -1)

column.swap(Ein,Eout,Wln,wout,c[Oj, flag(2),a)
flagl2J -2

flagl2J :- 3
(£1agl2J - 3)

row.6wap(Nln,Nout,Sin,Sout,c(1),flag(2],a)

LIBRARY PRQe x.cell(eHAN Nln,Sout,Nout,Sin,Wln,Eout,Wout,Ein,
VAR cl], c.barl], flag!),
VAR FLOAT a,b,d) _

SEO
IF

(f1agl2J -0) AND ((cI01-1) AND (cI31-1))
SEO

PAR
Sin?b
Ein?d

a :- a - (b.d)
flog12J :- 1
fl.glOI :- 1
cobarl1J :- 0

flaglOJ -1
SEO

Noutlb
fl.glOJ :- 0

flagl2J - 1
flagl2J :- 2

(f1agl2J - 21 AND (c131 - 1)
SEO

Ein?b
d :- 0 0 0 + (.-b)
flagl2J :- 3
fl.gl1J :- 1

flag[1 J - 1
SEO

Woutld
fl.g[lJ :- 0

(flag[2J - 3)
row.5wap(Nin,Nout,Sin,Sout,c[l),flag(2),a)

LIBRARY PRCe h.cell(CHAN Nin,Sout,Nout,Sln,Win,Eout,Wout,Ein,
VAR cl], c.bar(], flag(],

SEO
IF

VAR FLOAT a,b,d) _

(c[2J-1) AND (c[3J -1)
SEO

PAR

Nin?b
Ein?d

a :- a - (b*d)
flag[O[:- 1

flag[OJ - 1
SEa

Woutta
flag[OJ :- 0 :

LIBRARY PROe pivot(CHAN Nin, Sout, Nout,Sin, Win,Eout, Wout,Ein,llnk,
VAR cl J,e.bar(), fla9[], VAR FLOAT a,b,d)-

VAR con:
SEO

link?con
IF

con - 6
flog[2) :- 4

(f1ag[2J-0) AND (con-1)
SEO

flag[2J :- 1
c.bor[O) :- 1
c.bor[lJ :- 1
c.bar[21 :- 1
c.bor[3J :- 1
IF

a <> 0.0
a :- 1.0/a

flag[OJ :- 1
flag[0 J - 1

SEO
PAR

Noutla
Woutla
Eoutla
Soutla

flag[O) :- 0
a :- 1.0

flag[2J - 1
SEO

column.swap(Ein,Eout,win,wDut,c[O),flag[2},a}
(f10g[2J - 2) AND (con-1)

SEa
IF

a - 0.0
d :- 0.0

TRUE
d :- 1.0/.

c.bar[OJ :- 0
c.bar[lJ :- 1
c.bar[2J :- 1
c.bar[3J :- 0
flog[2) :- 3
flag[l) :- 1

flag[lJ - 1

------------------..........
SEa

PAR
Noutld
woutld

flag[lJ :- 0
(flag[2)-3)

row.swap(Nin,Nout,Sln,Sout,c(l],flag(2},a)

(»

'"' VI

--------------------.............
program 17

Implementation of the Systolic Assignment Problem Iteration(API)

Notes : The program implements the API orthogonally connected mesh of
of (n+2).(n+2) incorporating a n*n tableau mesh embedded in
a Systolic Control Ring (SCR). The array computes the final
reduced cost matrix from which an answer to the Assignment
problem can be produced. A trace can be included producing
Snapshots of computational wavefconts or the reduced cost
matrix including the row and column weights. The trace can be
used by commenting out assignments to running inside the cells
main loops. and including s.mix routine and the port commands
from each cell. The trace is removed by the reverse procedure.
All screen output is duplicated in files result for trace and
ftab with trace off.

Sorting is by Parallel bubblesort - or ODD-EVEN Trans
position sort which requires O(n} cycle for a list of size
n to be sorted into ascending or descending order.

Problem dependent constants - the tableau dimensions
DEr n - 3, size - (n+2)*(n+1) :
CHAN port((n+2)*(n+2») :

-- Interfacing routines for input/output

EXTERNAL proc abort. program :
EXTERNAL proe open.file(value path.name[J, access! J, ch an io.chan)
EXTERNAL proe elose.file(ehan io.chan) :
EXTERNAL proe fp.num.to.ehanCehan e,value float f) :
EXTERNAL proe num.to.ehan(ehan e, value n) :
EXTERNAL proe str.to.chan(ehan e, value s[I)
EXTERNAL proe str.to.sereen(value s[J) :
EXTERNAL proc num.to.sereen(value n):
EXT~RNAL proe num.from.keyboard(var n) :
EXTERNAL proe fp.num.to.sereen(value float f) :
EXTERNAL proe fp.num.to.screen.f(value float f, value w,d):
EXTERNAL proe fp.num.from.keyhoard(var float f)

-- cell definitions

PRCC row.sort(CHAN Nin,Nout, Sout,Sin, Win,wout, port, VAR i) _

Row sorting cell : Filters SCR signals when not in use
contains the row zero weight, and maintains a
sorted list of row weights when not activated.
When activated generates row swap controls for
the Tableau and swaps weights accordingly.

VAR running,toggle,test,flag,type :
VAR c.bar(4),c(4], w[2),nd(4),s(4),weight
SEQ

-- setup
type :- 1

flag :- 0
running :- true
test : - true
SEQ 1-[0 FOR 4)

c.bar(l) :- 0
-- run cell
WHILE running

SEQ
-- input output and trace
portlweight;i;c[1];c(2];c(O]
IF

test
PAR

IF

IF

c.bar(O) <> 6
PAR

Win?c[1);w[O);w[1)
Woutlc.bar(l)jO;O
Nln?c[2);nd(0);nd(1)
Noutlc.bar(2);nd(2);nd(3)

c.bar(2)<>6
PAR

Sin?c(O);s(O);s(l)
Soutlc.bar{O);s[2)iS[3)

-- decide on closedown
IF

c.bar(2) - 6
c(2) :- 6

c.bar(l) :- 0
c.b.r[O) :- c(2)
c.bar(2) :- c(O)
test :- NOT((c.bar(0)-6) AND (c.bar(2)-6»
-- running :- test
-- computation
IF

(flag -0) AND (c(0)-3)
SEQ

-- zero weight during
-- line drawing
IF

type - n
SEQ

weight :- 0
c.bar(l) :- 3

c.bar[2) :- 3
flag :- 1
toggle :- true

(flag -0) AND ((c(l) - 2) OR (c(1)-4)
SEQ

-- modify row weight
IF

c(l) - 2
weight :- weight - 1

toggle :- true
flag :- 1

(flag - 0) AND(c(l) - 1)
SEC

-- load row weight
weight :- w(0)
toggle :- true
flag :- 1

flag - 1
-- sort
IF

«c(2)-2) OR (c(2)-3)) OR (c(2)-4)
-- stop sort
flag :- 0

toggle AND (weight < nd(O))
SEC

c.bar(l) :- 1
weight :- nd(O)
i :- nd(l)

(NOT toggle) AND (weight> 5(0))
SEC

c.bar[l] :- 2
weight :- 5(0)
i :- 5(1)

c(0) - 6
-- kill cell
c.bar(l) :- 6

-- set up next i/o
nd(2) :- weight
s(2) :- weight
nd(3) :- i
s(3) :- i
-- change sorting state
toggle :- NOT toggle

PROC col.sort(CHAN Nin,Nout, Eout,Ein, Win,Wout, port, VAR j) _

Column. sorting cell : Filters seR controls when not sorting
Maintains list of column weights in sorted
order when inactive.
When active gene'rates column swapping controls
to tableau cells

VAR flag, toggle, running, test, type :
VAR c.bar[4),c[4], nd(2),w[4),e(4), weight
SEC

-- setup
type :- j
running :- true
test :- true
SEQ i- (0 FOR 4)

c.bar(i) :- 0
toggle :- false
flag :- 0

-- cell
WHILE running

SEC
-- input/output and trace
portlweight;j;c(l);c(2);c(3)
IF

test
PAR

IF

IF

c.bar(3(<> 6
PAR

Nin?c(2);nd(O);nd(l)
Noutlc.bar(2);O;O
Win?c(l);w(O);w(l)
Wout!c.bar(1);w(2);w[3)

c.bar(l) <> 6
PAR

Ein?c[3);e[O)i e (1)
Eoutlc.bar(3);e[2],e(3]

-- test closedown and set next
-- cycles control output
IF

c.bar(l) -6
SEC

c(l) :- 6
c.bar(l) :- c(3)
c.bar(2) :- 0
c.bar(3) :- c(l)
test :- NOT«c.bar(3)-6) AND (c.bar(l)-6))
-- running :- test
-- compu ta t i on
IF

(flag - 0) AND (c(3) - 3)
SEC

-- zero weight for line
-- drawing
IF

type - n
SEC

c.bar(2) :- 3
weight :- 0

c.bar(l) :- 3
toggle :- false
flag :- 1

(flag - 0) AND «(c(2) - 2) OR (c(2)-4))
SEQ

-- modify column weight
IF

c(2) - 2
weight :- weight - 1

toggle :- false
flag :- 1

(flag - 0) AND (c(2) - 1)

SEQ
load column weight

weight :- nd(O)
toggle :- true
flag:- 1

flag - 1
-- sort
IF

(c(l) - l) OR «c(l) - 1) OR (c(l) - 4))
-- stop sort
flag :- 0

toggle AND (weight> e(O))
SEQ

c.bar(2) :- 1
weight ;- e(O)
j :- e(1)

(NOT toggle) AND (weight < w(O))
SEQ

c(3) - 6

c.bar(2) :- 2
weight :- w(O)
j :- w(1)

-- kill cell
c.b.r(2) :- 6

c(l) - 2
c.b.r(2) :- 4

-- set 1/0 of data
w(2) :- weight
e(2) :- weight
w(l) :- j
e(l) :- j
-- change stateof sorting
toggle :- NOT toggle

PRoe t.cell(CHAN Nin, Nout, Sout, Sin,
Win,wout , Eout,Ein • port, VAR Telement) -

Tableau cell

VAR runnlng,c(4),c.bar(4),test :
VAR n(4),e(4],s[4],w(4],11ne.state
SEQ

-- setup
test :- true
running :- true
SEQ j-(O FOR 4)

SEQ
n(j) :- 0
e(j) :- 0
s(j) :- 0
w(j) :- 0
c.bar(j) :- 0

line.state :- 0

-- run cell
WHILE running

SEQ
portITelement;c(01iC[1)i C(2)i C (3]
-- control 1/0
IF

test
PAR

IF

IF

IF

IF

c.bar(l) <> 6
PAR

Win?c(l),w(O),w(l)
Woutlc.bar[1];w(2];w(3)

c.bar(2) <> 6
PAR

Sin?c(O),s(O),s(l)
Soutlc.bar(O);s(2),S[3)

c.bar{l) <> 6
PAR

Ein?c(l),e(O),e(l)
Eoutlc.bar(l),e(2),e(l)

c.bar(O) <> 6
PAR

Nin?c(2) ,n(0) ,n(1 I
Noutlc.bar(2);n[2);n(3)

-- decide for closedown
IF

c.bar(l) - 6
c(1 I :- 6

rr
c.bar(21 - 6

c(21 :- 6
-- evaluate new output controls
-- and if ready to stop
c.bar(21 :- c(OI
c.bar(ll :- c(ll
c.bar(OI :- c(2)
c.bar(ll :- c(31
test :- NOT««(c.bar(01-6IAND(c.bar(1)-6)1

AND(c.bar(2)-6))AND(c.bar(ll-6)))
-- running :- test
-- computation
IF

-- column sorting
c(0 I - 1

SEQ
Telement :- et01
line.state :- e(ll

c(O) - 2
SEQ

Telement :- w(O)

line.state :- wllJ
generate weight modify control
and mark line

(c!O) - 3) OR (c!3) - 3)
SEQ

IF
(Telement - 0) AND «c!3) - 3) AND (line.state - 0))

c.bar!O) :- 2
(Telement - 0) AND ({cIO] - 3) AND (line.state - 0»

c.barI3] :- 2
c(3) - 3

c.bar!O) :- 4
c!O) - 3

c.bar(3) :- 4
line. state :- line.state + 1

row sorting
c(3) - 1

SEQ
Telement :- n(OJ
line.state :- n(lJ

c! 3) - 2
SEQ

Telement :- s(O)
line.state :- s(l)

output for next cycle
wl21 :- Te1ement
wl3l :- line.state
e[2J :- Telement
e(3J :- line.state
n[2) :- Telement
n[3) :- line. state
s(2) :- Telement
s(3) :- line. state
-- modification of output
IF

c(2) - 3
SEQ

-- update reduced cost matrix
IF

line.state - 0
Telement :- Telement - w[O)

line. state - 2
Telement :- Telement + w[O)

e(2) :- w!O)
c!O) - 4

-- shift minimum left
IF

(line.state <) 0) OR «e!O) < Te1ement) AND (eIO)) 0))
w(2) :- e!O)

TRUE
wl2l :- Telement

c11) - 1
accumulate row weight

IF

----------------------..........
(line.state - O) AND (Telernent - 0)

e!21 :- w!OI + 1
TRUE

e(2) :- wlO)
cl 2) - 1

-- accumulate column weight
IF

(line.state - 0) AND (Telement - 0)
s12) :- nlO) + 1

TRUE
s12) :- nlO)

-- simple trick for
-- output of line. state and cell data
IF

line.state > 0
Telement :- Telement + (line.state*IOOO)

PROe controller.l(eHAN sout,Sin. Eout,Ein, port) -
VAR running. test, state :
VAR c14], c.bar[4],sI2]
SEQ

-- setup
test :- true
running :- true
state :- 1
-- cell
WHILE running

SEQ
portI0;cI0);cl1);cI2);cI3)
IF

test
PAR

Sin?cIO);sIO)
Soutlc.bar[O);s[l)
Eoutlc.bar(3)
Ein?cI3)

c.barI3) :- clO)
-- str.to.screen("c")
-- seR controls
IF

c13) - 6
SEQ

test :- false
-- running :- test

(state - 1) OR IcIO) - 2)
SEQ

c.barIO) :- 3
c.bar(3) :- 3
s(l) :- s(O)
state :- 2

state - 2
SEQ

c.bar(O) :- 0
c.bar(3) :- 1

co
lO
lO

state :- 3
(otate - 3) AND (c[O)-l)

SEQ
c.bar(3) :- 2

TRUE
c.bar[3] :- 0

PROC controller.2(CHAN Sout,Sin, Win, wout, port) -
DEF minus.1 - -1 :
VAR test,running,c.bar(4),c[41
SEQ

test :- true
running :- true
WHILE running

SEQ
-- 1/0
portI0;c[O];c[l];c[2];c[3]
IF

test
PAR

IF

IF

c.bar[l] <> 6
PAR

Sln?cI0],c[2];cI3]
Soutlc.bar[O};minus.1;O

c.barIO] <> 6
PAR

Woutlc.bar(l)
Wln?cll]

teot :- NOT((c.barll]-6) AND (c.barI0]-6))
-- running :- test
-- filter controls signals recieved
IF

c.barI1] - 6
c.barIO] :- 6

c[I] - 2
c.barIO] :- 2

c[I] - 1
c.barIO] :- 1

clO] - 6
c.bar[l] :- 6

(cIO] - 3) OR (cIO] - 4)
SEQ

c.barll] :- 0
c.barIO] :- clO]

TRUE
c.bar[O] :- 0

PRDe Host.interface{CHAN Sout, Sin, Eout,Ein, Win,Wout, port) -

Host routine : in this design only the seR properties are
implemented. The routine can be extended for
Host loading and unloading of results

--------------------...........

VAR cl4J, c.bar[4],s[2), test, running
SEQ

-- setup
test :- true
running :- true
-- cell
WHILE running

SEQ
-- 1/0
portIO;c(O);c(1];c(2);c(3)
IF

test
PAR

IF

IF

c.barll] <> 6
PAR

Ein?c[3]
Eoutlc.bar(3)
Soutlc.bar[O);O;O
Sln?cIO];oIO];oll]

c.barI3] <> 6
PAR

Wln?cll]
Woutlc.bar(l)

test :- NOT«c.bar[l] - 6)AND(c.barI3] - 6))
running :- test

-- pass and filter control
-- signals
IF

c.barll] - 6
ell] .- 6

(c(l] - 1) OR (ell] - 3)
e.barIO] :- ell]

TRUE
e.barIO] :- 0

c.barI3] :- ell]
c.barll] :- c13] :

PROC controller.4(CHAN Nin,Nout, Eout,Ein, port) _
OEF minus.l - -1 :
VAR test,running,c[4],c.bar[4), e[2),n :
SEQ

-- setup
test :- true
running :- true
-- cell
WHILE running

SEQ
-- 1/0
portI0;e[O],c[l];cI2];cI3]
IF

test

'" 8

PAR
IF

IF

c.bar[2J <> 6
PAR

Ein?c[31;e[OJ;e[lJ
Eoutlc.bar(3);minus.l:0

c,bar(3 J <> 6
PAR

Noutlc.bar(2);minus.l
Nin?c(2);n

test :- NOT«c.bar[2J-6)AND(c.bar[3J_6»
-- running :_ test
-- filter SCR signals
IF

c.bu[21 - 6
c.bar[3J :- 6

(c[3J - 3) OR (c[3J - 4)
SEQ

TRUE

c.bar[3J :- c[3J
c[3J :- 0

c.bar[3J :- 0
c.b.r[21 :- c[3J :

PROC controller.3{CHAN Nin,Nout, Win,Wout, port) •

controller.3 : line drawing controllers. Keeps count of
lines drawn , and issues weight clearance
signals to sorters.
Issuses API closedown signal.
Filters some seR controls.

DEF maxval - 1000
VAR teat,runnlnq, ~(4J,c.bar(4J,out(4J,a,b,8tate,nlineB I
SEQ

-- setup
nlines :- 0
running : - true
test :- true
state :- 1
-- cell
WHILE running

SEQ
-- I/O
portI0;c(0);c[lJ;c[2J;c[3J
IF

test
PAR

Nin?c(2);a;c[3J
Noutlc.bar(2);out[O];out(2]
Win?c[ll;b;c[OI
Wcutlc.bar[l);out(l];out[3]

set next data output

--------------------............
out(0 J :- maxval
out(lj :- maxval
out[21 :- c[31
out[31 :- c[OI
-- decide if cell dead
IF

c.bar[ll - 6
SEQ

test :- false
-- running :- false

c.bar[ll :- 0
c.bar[21 :- 0
-- line drawing control
IF

state - 1
-- wait for row and column
-- weights to be loaded and
-- sorted
SEQ

c.bar[21 :- 0
IF

c[21 - 2
state :- 2

TRUE
c.bar[ll :- c[21

state _ 2
SEQ

-- draw lines
IF

nlines _ n
SEQ

stop enough lines
c[01 :- 7

c.bar[ll :- 6
c.barI2) :- 6

(a - 0) AND (b - 0)
SEQ

-- all zeroes covered and
-- < n lines. Modify cost
-- Tableau.
c.bar[ll :- 2
c.bar[21 :- 0
state :- 1

(b < a)
SEQ

-- draw column line
c.b.r(2) :- 3
nlines :- nlines + I
out[OI :- 0
state :- 3

(b >- a)
SEQ

-- draw row line
c.bar[ll :- 3

nlines :- nlines + 1
outll) :- 0
state :- 5

-- delay next control for
-- synchronisation purposes
state - 3

state :- 4
state - 4

SEO
state :- 7
cobarll) :- 4

state - 5
state :- 6

state - 6
SEO

cobarl2) :- 4
state :- 7

-- wait for new row and column weights
-- to be resorted
(state - 7) AND «cI2)-3) OR (cll) _ 3))

state :- 8
(state - 8) AND IlcI2)-4) OR (cll) - 4))

stllte :- 2 :

PRcC min.shift(CHAN Nin,Nout, Sout,Sin, Eout,Ein, port) -

Min.shift : collects minimum uncovered element in each tableau
row and pushes overall minimum up to controller.!

VAR test, running,c(4) ,c.bar(4) ,e(4) ,a,b;d
SEO

-- setup
test :- true
running :- true
-- cell
WHILE running

SEO
-- I/o
portld,b,cI0),cI2),cI3)
IF

test
PAR

IF

IF

cobarl2) <> 6
PAR

SoutlcobarI0),eI3)
Sin?c[O);a
Eoutlc.bar[3);e(2);O
Eln?cI3),eI0),ell)

cobarl3) <> 6
PAR

Nin?cI2),d
Nouttc.bar(2);b

-- SCR filtering
IF

cobarl2) - 6
c12) :- 6

cobarl2) :- c[O)
cobarlO) :- c12)
cobarl3) :- c12)
test :- NOT«cobarI2) -6) AND (cobar[3) -6))
-- running :- test
-- shuffle minimum available
e13) :- 0
IF

c12) - 3
SEO

e12) :- d
e13) :- d

cl 0) - 1
SEO

cobarl3) :- 1
e12) :- 0

clO) - 2
IF

(a> 0) AND «a < eIO))AND (e[O) >0))
SEO

TRUE
SEO

b :- a
e12) :- 0

b :- el 0)
e12) :- 0

procedures related to the set up and running of the APt

mapping functions to locate grid elements and channels

PRDe lOC.p{VALUE i,j, VAR r)-
SEO

r :- «(I-l)'(n.l)).j)-l

PRDe loc.d{VALUE i,j, VAR r) -
SEO

r :- «(i-l)'n).j)-l :

PROC loc.t(VALUE i,j , VAR r) -
SEO

r :- «(i-l)'(n.2)).j)-1 :

-- input output interface routines
PRoe getdata(VAR mem(J, r.index(J, c.index() -

SEO .
str.to.screen("*n enter reduced cost matrix·)
SEO I -11 fOR n)

SEO
str.to.screen("lIIn(")

\D
o
I\.)

SEO j -(1 FOR n)
VAR t1 :
SEO

loc.d(I,j,t1)
num.from.keyboard(mem(tl])
num.to.screen(mem(tl))
str.to.screen(" ")

str.to.screen(")")
r.lndex(I-1) :- 1
c.lndex(I-1) :- 1

atr.to.screen("·n·n")

PROC putdata(VALUE mem[], r.index[], c.index(J) -
CHAN fptr :
SEO

open.fl1e("ftab","w",fptr)
str.to.chan(fptr,"*n solution tableau"}
str.to.screen("*n solution tableau")
SEO 1-(1 FOR n)

SEO
str.to.chan(fptr,"*n{ "}
str.to.screen("·n[")
nurn.to.chan(fptr,r.index(i-l)
num.to.screen(r.index[i-l)
str.to.chan(fptr,":")
ste.to.screen(":")
SEO j _(1 FOR n)

VAR tl ;
SEO

loc.d(1 ,j, t1)
nurn.to.chan(fptr,mem(tl)
num.to.screen(mem[tl)
str.to.chan(fptr," ")
str.to.screen(" ")

str.to.chan(fptr,"J")
str.to.screen("]")

str.to.chan(fptr,"*n(")
str.to.screen("*n[")
SEO 1 -(1 FOR n)

SEO
num.to.chan(fptr,c.lndex[I-1))
num.to.screen(c.index[i-1J)
str.to.chan(fptr," ")
str.to.screen(" 01)

str.to.chan(fptr,"}*n")
str.to.screen("J*n")
close.fl1e(fptr) :

proc s.mlx(CHAN port() -

screen mixer for tracing

provides a series of tableaus one for each
cell cycle. when s.mix is not used the port channel
used in other procedures is commented out

chan fptr :
var a :
var c(4J,z,b,running,flag
seq

open.file("result","w",fptr)
str.to.screen{"*n options")
str.to.screen{"*nl: Table *n2: control wavefront")
str.to.screen("*n*n Enter option :")
num.from.keyboard(b)
num.to.screen(b)
running :- true
flag :- 0
-- for all cycles
while running

seq
z :- 0
str.to.screen("*nstart cycle*n")
str.to.chan(fptr,"*nstart cycle *n")
seq i -(0 for (n+2)*(n+2)J

seq
z :- z + 1
port[i]?A;C(0) ;c[1 J ;cl 2] ;c(3)
str,to.screen(" ")
str.to.chan(fptr," "l
IF

b - 1
seq

num.to.chan{fptr,a)
num.to,screen(a)

true
seq j-(O for 4)

seq
num.to.screen(c(j)
num.to.chan(fptr,c(j)

str.to.screen(" ")
str.to.chan(fptr," ")
if

if

z - (n+2)
seq

z :_ 0
str.to.chan(fptr,"*n")
str.to.screen("*n")

termination conditions

c(O) - 7
running :- false

rather primitive but
effective program stop

close.flle(fptr)
abort.program :

'" o w

main

Specification of the whole Tableau
channels are for two communication north-south(ns) and east-west{ew)
procedure call s.mix can be uncommented to produce trace

CHAN ns.1[61ze), ns.2[size), ew.l[size),
VAR mem[n*n], c.index[n), r.index[n)
SEO

ew.2(sizej :

getdata(mem,c.1ndex,r.index)
PAR

s.mlx(port)
-- tableau
VAR i,j :
PAR 1- (1 FOR (n+2))

PAR j- (1 FOR (n+2))
VAR tl,t2,t3,t4,tS,t6
SEO

loc.pO,j,tl)
loc.p(j,I,t3)
loc.t(I,j,tS)
t2 : - tl - 1
t4 :- t3 - 1
IF

i - 1
IF

j - 1
contro11er.l(ns.l(t3],ns.2[t3],ew.l[tlJ,ew.2(tll,port(tSJ)

j - (n+2)
controller.2(ns.l[t3J,na.2[t3J,ew.llt 21,ew.2It2J,portltS)

TRUE
Host.interface(ns.l(t3],nS.2(t3],ew.l(tl],ew.2(tl),

i - (n+2)
IF

ew.1(t2),ew.2(t2),port(tS))

TRUE

j - 1
controller.4(ns.l(t4J,ns.2(t4J,ew.l(t1 l,ew.2(tlJ,port[tS])

j - (n+2)
controller.3(ns.1(t4),ns.2(t4),ew.1(t2),ew.2(t2),port(tS))

TRUE
col.sort(ns.l[t4J,ns.2[t4],ew.lltl],ew.2(tl],

ew.1(t2),ew.2(t2),port(tS), c.index(j-2))

VAR t6 :
SEO

loc.d(i-1,j-1,t6)
IF

j - 1
min.shift(ns.1(t4),ns.2(t4),nS.1(t3),nS.2(t3),

ew.1(t1),ew.2(t1),port(tS)
j - (n+2)

row.sort(ns.1(t4),ns.2(t4),ns.1(t3),ns.2(t3),
ew.1(t2),ew.2(t2),port(tS), r.lndex(I-2))

TRUE
t.ce11(ns.1(t4],ns.2[t4),ns.l(t3],ns.2(t3],ew.1(t2),

ew.2(t2),ew.1(t1),ew.2(t1),port(tS),mem(t6))
putdata(mem,r.index,c.index)

'" o ...

program 18

A Systolic Rank Annihilation Network

NOTES : The program implements the Sherman-Morrison Rank Annihilation
formula for the computation of the inverse of a matrix S, which
differs from a matrix A of known inverse by only a single row
column or single element. The array can be used as a building
block for cascaded matrix schemes for arbitray matrix inversion.
The array itself consists of three Linearly connected arrays,

seperated by a 2-D grids of delay elements implementing matrix
transposition operations. Pipelining occurs within each Linear
Array and also globally through the whole system. As the directions
of pipelining are at right angles this is called Orthogonal
Pipelining. -
The array expects the known inverse and the modification data

in in two vectors input from a file called stream.

starting parameters, w-2n-1 the bandwidth of a dense n*n matrix.

DEF w - 5,pipe.length-2

-- Interfacing routines for input/output

EXTERNAL proc fp.num.to.chan(chan c, value float f)
EXTERNAL proc num.to.chan(chan c, value n) :
EXTERNAL proc str.to.chan(chan c, value sI)~ :
EXTERNAL proe fp.num.from.chan(chan c,var float f):
EXTERNAL proe num.from.chan(chan c,var n) :
EXTERNAL proc open.file(value path.name{ },access[J,chan io.chan):
EXT~RNAL proc close.file(chan io.chan) :
EXTERNAL proc fp.num.to.screen.f(value float f,value w,d) :
EXTERNAL proe num.to.screen(value n) :
EXTERNAL proc str.to.screen(value s(l)

-- include cells to construct Transposition Network

EXTERNAL proc trans.net(Chan nin(l,sout(],port) :
EXTERNAL proc t.cell(chan n,s,win,eout,ein,wout,clk)
EXT!RNAL proc loc{value i,j, var r) :

-- include cells for Outer Product array

EXTERNAL proc m.t.m.b(CHAN Nin[I.Sout(I.Left[I.Right[l.portl
EXTERNAL proc ips.b(CHAN Nin,Sout,win,Eout,Ein,Wout,clk)
EXTERNAL proe z.cell(CHAN nin,sin,ein,eout,clk) :
EXTERNAL proe router(CHAN nin,win,wout,clk)

-- include cells for Update old Inverse

EXTERNAL proc modifier(CHAN Nin[I.Sout(I.Left[I.Rlght[I.port)
EXTERNAL proc ips.c(CHAN Nin,Sout,Win,Eout,Ein,wout,clk) :

-- include cells for "matrix vector and transposed matrix vector

EXTERNAL proc m.t.m.a(CHAN Nin[l,Sout[1,Left(l,Right(l,port) :
EXTERNAL proc ips(CHAN Nin,Sout,win,Eout,Ein,Wout,clk) :

PROC rank .a(CHAN north[I • south[I .left.l [I. right.l [I .left. 3 [I. right. 3 [I. port) -

High level definition of the Rank Annihilator

CHAN link1(wj ,link2(wJ ,link3(w] ,link4(wJ:
CHAN left.2[21.right.2(21.clk[71 :
PAR _

m.t.m.a(north,linkl,left.l,right.l,clk(O)
Trans.net(linkl,link2,clk(1)
m.t.m.b(link2,link3,left.2,right.2,clk[2])
z.cell(left.l[11.1eft.3[01.left.2[11.1eft.2[01.clk[31)
router(right.l[01.right.2[01.right.2[11.clk[41)
Trans.net(link3,link4,clk[5])
modifier(link4,south,left.3,right.3,clk(6})
-- local clock distributor
VAR running :
SEQ

running :- TRUE
WHILE running

SEQ
port?running
PAR i-CO FOR 71

clk(i) I running

main

Themain section calls the Annihilation procedure
and provides a global Source and Sink routine for
reading input and outputting the result to the Host.

CHAN north(w], south[w]:
CHAN left.l[21.ri9ht.l[21 .left.3(21.right.3[21
CHAN linkl[wl.link2(wl.link3[wl.link4[wl :
CHAN clk[pipe.lengthl
SEQ

PAR

rank.a(north,south,left.l,right.l,left.3,right.3,clk[lJ)

-- Source

VAR running,n,k,cveclw+2}
VAR FLOAT veclw+2},zero
CHAN ptr :
SEQ

zero :- 0.0
running:_ TRUE
k :- 0

'" o
'"

-- matrix comes from file stream
open.file("stream","r",ptr)
num.from.chan(ptr,n)
WHILE running

SEQ
clk(O)?running
IF

Sink

running
SEQ

IF
k - n

.SEQ
file empty

close.file(ptr)
k:- k+l
SEQ 1-10 FOR w+21

SEQ

k (- n
SEQ

veclll :- 0.0
cvecll} :- 0

get next input line
k :- k+l
SEQ 1-10 FOR w+2)

SEQ
fp.num.from.chan(ptr,vec(i)
num.from.chan(ptr,cvec(i)

-- send inputs
PAR

PAR i-Il FOR wl
northli-lllveclil;cveclil

left.llOllveclOI
right.l(l)lvec(w+l);cvec(w+l)
right.3(1)lzero;zero

VAR running,cvec(w+2)
VAR FLOAT vec[w+21
CHAN fptr :
SEQ

running :- TRUE
-- results in file result
open.file("result","w",fptr)
WHILE running

SEQ
-- stop when last
-- result read
IF

cvecl(w+l)/21 - 2
running :- FALSE

-- distribute clock
PAR i-IO FOR pipe.length}

clkl i II running

IF
running

SEQ
-- get output
PAR

PAR i-Il FOR wJ
southll-ll?veclll;cveclil

left.3111?vecI01;cvecI01
rlght.310l1any

-- send to Host
. SEQ 1-10 FOR w+21

SEQ
fp.num.to.screen.f(vec(i),lO,3)
fp.num.to.chan(fptr,vec(i)
str.to.chan(fptr," ")

str.to.screen("~n")
str.to.chan(fptr,"~n")

close.fllelfptr)

'" o
'"

program l8a

A simple Linear Array interlevaing of two matrix vector problems
on the same array.One problem is Au-x and the second (vt)A-(yt),
where vt andyt are transpose vectors v and y. Both problems use
the matrix A, which is only input once

size of the array - Bandwidth of matrix A

DEFwO-S

LIBRARY PROC ips(CHAN Nin,Sout,Win,Eout,Ein,Wout,clk)-

-- basic cell :alternates between problems on succesive cycles.

VAR FLOAT aout,a,tl,t2,outl,out2
VAR c,cl,c2,c3,running
SEO

-- setup
running :- TRUE
aout :- 0.0
outl :- 0.0
out2 :- 0.0
-- cell
WHILE running

SEO
clk?running
IF

running
SEO

-- 1/0
PAR

Nin?a;c
Win?tl
Ein?t2;cl
Soutlaout;c2
Eoutloutl
woutlout2:c3

computation
c2 :- c
c3 :- cl
IF

c - 1
SEO

out2 :- t2 + (o*tl)
out! :- tl

c - 0
SEO

out2:- t2
outl :- tl + (aout*t2)

aout:- a:

LIBRARY PROC m.t.m.a(CHAN Nin(I.Sout(I,Left(I,Right(I,port) _

The Linear Array Specification

CHAN we(wO-ll,ew(wO-11,clk(wOI :
PAR

ips(Nin(O),Sout(O),Left[O),we[O),ew[O),Left(l),clk[O)
PAR i-(l FOR wO-21

ips(Nin(i),Sout(i),we[i-l),we[il,ew[i),ew(i-l),clk(i)
ips(Nin(wO-l),Sout(wO-l),we(wO-2),Right[O),Right(1),ew[wO-2),clk(wO-l)
-- local clock distributer
VAR running :
SEO

running :- TRUE
WHILE running

SEO
port?running
PAR i-(O FOR wOI

clk[i)lrunning

<D o ...,

program lSb

Linear Array for computing the Outer Product x(yt) with yt a
vector which isthe transpose of y

bandwidth of matrix x(yt).
DEF w2 - 5 :

LIBRARY PROC ips.b(CHAN Nin,Sout,Win,Eout,Ein,Wout,clk)-

Basic cell: reads amatrix from north inputs in typical systolic
format x and y fromleft and right respectively.
computes xli) • y(j) i,j-l(l)n inserting behind the
matrix input outputting south.

VAR FLOAT aout,a,tl,t2,outl,out2
VAR c,cl,c2,c3,running
SEQ

-- setup
running :- TRUE
aout :- 0.0
outl :- 0.0
out2 :- 0.0
-- cell
WHILE running

SEQ
clk?running
IF

running
SEQ

-- i/o
PAR

Nin?a;c
Win?t1
Ein?t2;cl
Soutlaout;c2
Eoutloutl
Woutlout2;c3

computation
c2 :- c
c3 :- cl
IF

c - 1
SEQ

aout :- a
c - 0

SEQ
aout :- outl*out2

outl :- tl
out2 :- t2

LIBRARY PROC m.t.m.b(CHAN Nin[I,Sout[I,Left[I,Right[J,port) _

-- Specification of the array

CHAN we(w2-11,ew(w2-1],clk(w2J
PAR

ips.b(Nin[O[,Sout[OJ,Left[OJ,we[OJ,ew[OJ,Left[lJ,clk[OJJ
PAR i-[l FOR w2-2J

ips.b(Nin{i],Sout[i1,we[i-l],we(i],ew[i],ew[i-l],clk[i])
ips.b(Nin[w2-1J,Sout[w2-1J,we[w2-2J,Right[OJ,Right[lJ,ew[w2-2I,clk[w2-11)
-- local clOCk distributer
VAR running :
SEQ

running :- TRUE
WHILE running

SEQ
port?running
PAR i-[O FOR w21

clk[iJlrunning

LIBRARY PROC z.cell(CHAN nin,sout,ein,eout,clk) •

Scalar cell : Computes x*v inner product of vectors,and
delays xCi) i-l(l)n to synchronise with
y(j) j-l(l)n in the outer product array

VAR FLOAT total,result,x,xout,tl
VAR c,cl,running :
SEQ

-- setup
running :- TRUE
total :- 1.0
xout :- 0.0
-- cell
WHILE running

SEQ
clk?running
IF

running
SEQ

-- i/o
PAR

nin?x;c
eout!xout
ein?tl;cl
soutlresult

-- computation
IF

c - 1
SEQ

total :- total + (x*xout)
xout :- 0.0

c - 2
SEQ

result :- total + (x*xout)
total :- 1.0

'"' o
ro

xout :- 0.0
TRUE

xout :- X

LIBRARY PROC router{CHAN nin,win,wout,clk) _

-- link cell : simplifies specification details

VAR FLOAT Y
VAR running
SEQ

-- setup

of global network,performs no computation.

y :- 0.0
running :- TRUE
-- cell
WHILE running

SEQ
clk?running
IF

running
SEQ

-- route
-- data
PAR

nin?y
win?any

woutly;O :

Program 18c

Linear Array for updating a Known inverse to inverse of target
matrix. Requires input of a scalar z+l from the left, and known
inverse interleved with x*{yt) outer product.

Maximum Bandwidth two interleaved matrices

OEF w3 - 5

LIBRARY PROC ips.c{CHAN Nin,Sout,win,Eout,Ein,wout,clk)

-- basic cell : Performs divide and subtract

VAR FLOAT aout,a,tl,t2,outl,out2,tmp
VAR c(6J,running,flag
SEQ

-- setup
flag :- FALSE
running :- TRUE
SEQ i-tO FOR 61

e(i I :- 0
aout :- 0.0
outl :- 0.0
out2 :- 0.0
tmp :- 0.0
-- cell
WHILE running

SEQ
clk?running
IF

running
SEQ

-- i/O
PAR

Nin?a;c[OJ
Win?tl
Ein?t2;c(1]
SoutJaout;c[4J
EoutJoutl
woutlout2;c(S)

-- computation
e[4J :- e(2J
e[5J :- e(3J
e(2J :- e[OJ
e(3J :- e[ll
IF

e(0 I - 2
aout :- 0.0

flag AND (outl <> 0.0)
-- modify
SEQ

\1)

o
\1)

aout :- tmp -(a/outl)
flag :- FALSE

(c[OI - 1)
-- prepare
SEQ

aout :- a
tmp :- a
flag :- TRUE

(c[OI - 0) OR (outl - 0.0)
bout :- 0.0

outl :- t1
out2 :- t2 :

LIBRARY PROe modifier(CHAN Nin[),Sout[).Left[),Right[J,port} _

-- Specification of the Array

CHAN we[w3-11,ew[w3-11,clk[w31
PAR

ips.c(Nin[OI,Sout[OI,Left[OI,we[OI,ew[OI,Left[ll,clk[OI)
PAR i-[l FOR w3-21

ips.c(Nin[il,Sout[il,we[i-11,we[il,ew[il,ew[i-11,clk[iI)
ips.c(Nin[w3-11,Sout[w3-11,we[w3-21,Right[01,Right[11,ew[w3-21,clk[w3-11)
-- loeal clock distributer.
VAR running :
SEQ

running :- TRUE
WHILE running

SEQ
port?running
PAR i -[0 FOR w31

clk(i)lrunning :

Program led

A 2-D array of delay/swap cells for Transposing a matrix with
bandwidth wl. Each cell is either a simplr delay cell or capable
of passing and recieving data from the left or right adjacent
neighbours.

define number of processors and channels
D£F wl- 5, size _ wl*(w1+1)

proc loc.p(value i,j,var r) _
-- locate cells
seq

r:- «(i-1).w1)+j)-1

LIBRARY PROe 10c(VALUE i,j, VAR r) _
-- locate channels
SEQ

r :- «(i-1).(w1+1))+j)-1

LIBRARY PROe t.cell(VALUE type, CHAN n,s,win,eout,ein,wout,clk) _

-- Basic cell : Type dictates whether right swap or left swap
cell or just a plain delay cell

DEF left - 1, right - 0:
VAR FLOAT tsave,t :
VAR running,c,cl
SEQ

-- setup
running:- true
tsave :- 0.0
-- cell
WHILE running

SEQ
clk?running
IF

running
SEa

-- I/o
PAR

n?t;c
sltsave;cl

-- compute
IF

type - left
PAR

woutlt;c
win?tsave;cl

type - right
PAR

eout!t;c
ein?tsave;cl

\D'
o

TRUE
SEO

cl :- c
tsave :- t :

LIBRARY PRoe trans.net(CHAN nln(1, sout(1 ,port) -

-- Define 2-D grid of t.cells

DEF left-I, right-O, delay-2 :
CHAN ns{size), ew(size),we(size),clk(wl*wIJ
SEO

PAR
-- Array inteface
VAR running :
SEO

runni ng : - true
WHILE running

SEO
-- local clock
port?running
PAR i-tO FOR (wl*wl»)

clk{i)lrunning
-- i/o interface
IF

running
PAR

-- input north
PAR j-Il FOR wlJ

VAR tl,x,c :
SEO

loc(j,l,tl)
nin(j-l)?xlc
ns{tl)!x;c

output south
PAR j -11 FOR wlJ

VAR tl,x,c :
SEO

loci j ,wl, tl)
ns{tl+l)?x;c
sout(j-l)!x;c

layout cells
PAR i-Il FOR wlJ

PAR j-Il FOR wlJ
VAR tl,t2,t3,t4,t5 :
VAR even.i,even.j,type
SEO

-- locate cell channels
even.l :- ««I/Z)*Z)-I) - 0)
even.j :- ««j/Z)*Z)-j) - 0)
10c(I,j,tl)
tZ :- tl + 1
10clj,I,t3)
t4:-t3+l

10c.p(I,j,tS)
-- decide type
IF

NOT even.i
SEQ

IF
even.j

type :
j - wl

type :
TRUE

type :-
even. i

SEO
IF

j - 1

left

delay

right

type :- delay
NOT even.j

type :- left
j - wl

type :- delay
TRUE

type :- right
create cell

t.cell(type,ns(t3),ns[t4),we(tl),we(t2),ew(t2),ew(tl],clk(t5])

program 19

Bi-Diagonal Triangular (Toeplitz) Inverter

Notes : This systolic Array computes the inverse of a triangular
matrix with constant elements on the diagonals. It expects
loading controls for loading a parameter corresponding to
diagonal element and a choice of lower or upper triangular
inversion.Parameters are loaded sequentially,and the
resulting inverse is output in standard diagonal format
for Linear systolic Arrays. A control signal accompanies
the output matrix for use with other Systolic Designs.

bandwidth of inverse
DEF w - 5 :

-- input/output routines
EXTERNAL proc fp.num.to.screen(value float f) :
EXTERNAL proc num.to.screen(value n)
EXTERNAL proc str.to.screen(value s[]) :
EXTERNAL proc fp.num.from.keyboard(var float f)
EXTERNAL proc num.from.keyboard(var n)

PROe b.cell(CHAN wln,sout,ein,wout,clk) _

Boundary cell

VAR running,toggle,flag,coutl,cout2,c
VAR FLOAT y,x,p,a
SEO

running :- TRUE
toggle :- FALSE
y :- 0.0
WHILE running

SEQ
clk1running
IF

running
SEO

-- 1/0
PAR

win?y
ein?a;c
soutlx;cout2
woutlx;coutl

cout! :- c
-- loading and computation
IF

c - 2
x :_ a

c - 1
SEO

load
p :- a

coutl :- 0
flog :- TRUE
toggle :- TRUE

(c-O) AND flag
SEO

-- start computing
IF

(p - 0.0) OR (NOT toggle)
x :- 0.0

toggle
x :- (l.O-y)/p

toggle :- NOT toggle
cout2 :- 1
flag :- FALSE

c - 0
SEO

IF

simulate systolic
input

(p - 0.0) OR (NOT toggle)
x :- 0.0

toggle
x :- (O.O-y)/p

toggle :- NOT toggle
cout2 :- 0 :

PROC i.cell(CHAN win,eout,ein,wout,clk) _

inner product cell

VAR running,toggle,c,cout
VAR FLOAT y,x,xout,yout,p
SEQ

running :- TRUE
toggle :- rALSE
yout :- 0.0
xout :- 0.0
WHILE running

SEO
clk?running
IF

running
SEO

-- 1/0
PAR

IF

win?y
ein?x;c
woutlxout;cout
eoutlyout

c - 2
-- load
SEO

p :- x

cout :- 0
toggle :- FALSE

c - 0
SEO

-- compute
IF

toggle
yout :- y + (p.x)

TRUE
yout :- 0.0

toggle :- NOT toggle
xout :- x
cout :- 0 :

PROC g.cell(CHAN win,eout,ein,wout,sout,clk) _

Generating cell : stores implicit form of inverse
and generates true inverse in standard systolic diagonals
format.

VAR running,coutl,cout2,cout3,cl,c2,on,toggle
VAR FLOAT r,tmp[3],xout,x,save
SEO

-- intialise
running :_ TRUE
r :- 0.0
tmp[O] :- 0.0
tmp[l] :- 0.0
coutl :- 0.0
cout2 :- 0.0
cout3 :- 0.0
on :- FALSE
-- start cell
WHILE running

SEO
clk?runninq
IF

running
SEO

-- 1/0
PAR

win?c2
ein7x;cl
eouttcout2
wouttxout;coutl
souttr;cout3

-- book-keeping
tmp[2] :- tmp[l]
tmp[l] :- tmp[O]
tmp[O] :- x
cout2 - c2
coutl - cl
xout - x
IF

cl - 3
SEO

cell off
on :- FALSE
r :- 0.0
cout3 :- 0.0

c2 - 2
SEO

-- wake cell
r :- tmp[2]
toggle :- FALSE
on :- TRUE
cout3 :- l.0

toggle AND on
SEO

-- output dummy element
cout3 :- 1.0
r :- save
toggle : - FALSE

(NOT toggle) AND on
SEO

-- output true element
cout3 :- 0.0
save :- r
r :- 0.0
toggle :- TRUE.

PROe border.I(CHAN einl,eoutl,ein2,eout2,clk) -

relay cell: keeps data moving in generater
array, times controls

VAR cl,c2,coutl,cout2,running
VAR FLOAT tl,t2,outl
SEO

-- intialise
running :- TRUE
outl :- 0.0
cout!:- 0
cout2 :- 0
-- start cell
WHILE running

SEO
clk7running
IF

running
SEO

-- 1/0
PAR

ein17tl;cl
ein27t2;c2
eoutlloutl
eout2Jcout2

-- start inverse output

IF
c2 • 1

SEQ
str.to.screen{"here")
cout2 :- 2

TRUE
cout2 :- 0 :

PRoe border.r(CHAN nin,win,wout,clk) -

connector between substitution array
and generator array, modifies control
values and identities end of inverse output

VAR running,c!,c2,CQut
VAR FLOAT outl,tl
SEQ

-- start cell
running :- TRUE
WHILE running

SEQ
clk?running
IF

running
SEQ

-- i/o
PAR

nin?tl;cl
win?c2
woutloutl:cout

-- move data
IF

c2 - 2
SEQ

out! :- 0.0
cout :- 3

TRUE
SEQ

out! :-tl
cout :- cl

PROC tri.inv(CHAN south[),input,port) _

The Triangular Inverter

Notes: consists of a substitution array
and a generating array torthe triangular
matrix inverse. substitution array is given
toeplitz parameters andcontrols on input,matrix
output on south.

CHAN we[w+l],ew[w+l],clk[w+4],ltS)
PAR

-- substitution array

b.cell(1[0[.1[11.input.l[21.clk[01)
i.cell(1[31.1[01.1[21.1[41.clk[11)
-- generating array
border.l(1[41.1[31.ew[01.we[01.clk[21)
border.r(1(11.we(wl.ew(wl.clk(3[)
PAR i-[O FOR wl

9. ce11 (we(il.we(i+ll.ew(i+l[.ew(i).south(i).clk(i+4))
-- interface spooler
VAR running :
SEQ

running :- TRUE
WHILE running

SEQ
port?running
PAR i-tO FOR w+41

clk(l}lrunning :

PROC inverter(CHAN input,southt),port) -

Full Inverter : consists of two triangular
inverters and communication

interface. One inverter produces upper triangular
inverse the other Lower triangular. Parameters are
loaded by input channels and split by interface to
correct inverter. Output is via south channel and
retains position in full matrix output

CHAN south.llw),south.rlw],inI2),clk[2)
PAR

-- inverters
tri.inv(south.l.in(O).clk(OI)
tri.inv(south.r,in(l),clk[l])
-- interface
VAR running,tl,c,cl,c2,x
VAR FLOAT a :
SEQ

running :- TRUE
WHILE running

SEQ
port7runnlng
PAR i-[O FOR 21

clk[i 11 running
IF

running
SEQ

-- parameters
input?a;cl;c2
PAR

-- upper or lower
IF

c2 - 1
PAR

in(O)la;cl

-- main

in[l)IO.O,O
TRUE

PAR
in[l] la;cl
inIO)IO.O,O

distribute input
PAR i-Il FOR w-l)

VAR FLOAT x :
VAR c :
SEQ

south.l(iJ?x;c
south(w-(l+i»)lx;c

-- collect output
PAR i-Il FOR w-l)

VAR FLOAT x :
VAR c :
SEQ

south.rli)?x;c
south(i+(w-l»)!x;c

-- merge leading diagonal
IF

c2 - 1
VAR FLOAT x :
VAR C :
SEQ

TRUE

PAR
south.l[O)?xlc
south.r(OJ?tl;cl

south(w-l]!x;c

VAR FLOAT x ;
VAR C :
SEQ

PAR
south.l(O)?tl;cl
south. cl 0) ?x;c

south(w-lJ lx;c

CHAN south[2*w] ,elk, in :
VAR FLOAT pl,vec[(2*w)-l)
VAR p2,p3,evec(2*w}-11 :
PAR

inverter(in,south,elk}
-- Host Interface
VAR running :
SEQ

running :- TRUE
WHILE running

SEQ
str.to.screen("*n parameters >")
fp.num.from.keyboard(pl)
fp.num.to.screen(pl)
str.to.screen(" ")

num.from.keyboard(p2)
num.t~.screen(p2)
str.to.screen(" ")

. num.from.keyboard(p3)
num.to.screen(p3)
str.to.screen("*n")
if

p3 - 6
running :- FALSE

clklrunning
-- collect result and
-- output
if

running
SEQ

inlp1 iP2;p3
PAR i -10 FOR (2'w)-1)

southli)?vecli),cvecli)
SEQ i-/O FOR (2'w)-1)

SEQ
fp.num.to.screen(vec(i)
str.to.screen(" H)

str.to.screen("*n")
SEQ i-/O FOR (2'w)-1)

SEQ
num.to.screen(cvec(i]1
str.to.sereen(" "}

program 20

Bi-linear array for 2-D Group Explicit methods :

Notes : The systolic Array implements a marching technique
on a 2-D region R-(x,y).Marching can take place in
the y-direction (row wise) or in the x-direction
(column-wise) •
The Array consist of a linear array of Macro ipa cells
which contain two tiers of basic point cells. Point cells
are connected into a systolic ring allowing computation
of four points (a group) in parallel. Hence minimising
cycle time.
The program assummes communication with an external host
and expects input from two files called "odds" and "evens".
"odds" provides co-efficients for bottom tier point cells
and known points in R from odd rows(columns). Likewise
"evens" supplies co-efficients for top tier cells and even
row(column) data from R.

size- number of grid points along marching axis, size2 number of
macro cells required. port used for tracing and debugging only

DEF size-S,size2-4 :
CHAN port[2*size] :

-- necessary communication procedures for i/o

EXTERNAL proe fp.num.to.screen.f(value float f,value w,d)
EXTERNAL proe fp.num.from.keyboard(Var float f) ;
EXTERNAL proe num.to.screen{value n) :
EXTERNAL proc num.from.keyboard(var n)
EXTERNAL proe str.to.screen(value s()
EXTERNAL proe open.file(VALUE path.name[], access(), CHAN io.chan)
EXTERNAL proc close.file(CHAN io.chan) :
EXTERNAL proe num.from.chan(CHAN ptr, VAR n) :
EXTERNAL proc fp.num.from.chan(CHAN ptr, VAR FLOAT f) :

PROC point.ips(VALUE pos, CHAN inl,outl,in2;out2,accin,accout,clk,port)_

Point ips cell :
permits loading of grid values, coefficients of molecule
portions covering the point, and operation of internal
macro cell ring. Switching is achieved by control c.

VAR FLOAT meml(6],mem2(6},uvalue,tl,t2,rl,r2,a
VAR c I running
SEQ

-- setup
r1 :_ 0.0
r2 :_ 0.0
uvalue :- 0.0
running :- TRUE

-- start cell
WHILE running

SEQ
-- clock and trace
clk1running
portlrunning;uvalue
-- compute
IF

running
SEQ

-- local I/o
PAR

inl1tl
in21t2;c
outlluvalue
out21uvalue

-- decode command
IF

coO
-- compute molecules
-- using ring
SEQ i-tO FOR 51

SEQ

col
SEQ

PAR
accin?a
accoutlrl

IF
i-4

-- result
SEQ

uvalue :- a
TRUE

SEQ
-- accumulate
PAR

r2 :- (tl+t2)*mem1(il
r1 :- (uvalue*mem2[i)+a

rl :-,r1 + r2

load local coefficients
SEQ i-[O FOR 51

mem1[5-il :- mem1((5-i)-11
meml(OI :- t2

c-2
SEQ

load neighbour co-effs
SEQ i-tO FOR 51

mem2[5-i I :- mem2[(5-i)-1 I
mem2[01 :- t2

c-3
SEQ

load grid-point
r1 :- 0.0

PROC macro.ips(CHAN

uvalue :- t2 :

n1n.l,nin.2,sin.1,sin.2,
nout'.1, nout. 2, sout.1, sout. 2,
ein.1,ein.2,win.l,win.2,
wout.1,wout.2,eout.1,eout.2, clk,value i) -

Macro cell defines group of point cells connected
by a systolic Ring

CHAN ring[41. clks[41 :
PAR

point.ips(O,ein.2,eout.2,sin.1,sout.1,ring[3J,ring[O],
elks[01.port[(2<1)+slzel)

point.ips(1,ein.l,eout.l,nin.1,nout.l,ring(O),ring(lJ,
elks[ll.port[2<11)

point.ips(2,win.l,wout.l,nin.2,nout.2,ring(lJ,ring(2J,
elks[21.port[(2<1)+lll

point.ips(3,win.2,wout.2,sin.2,sout.2,ring[2],ring[31,
clks[31.port[«2<1)+I)+sizel)

-- clock distribution process
VAR running :
SEQ

running :- TRUE
WHILE running

SEQ
clk?running
PAR i-[O FOR 41

clks[i] I running

PRoe boundary(CHAN Inl,in2,outl,out2,clk) _

neat disposal of comunication on
ends of at'ray

VAR running :
SEQ

running :- TRUE
WHILE running

SEQ
clk?running
IF

running
PAR

inl?any
inn.ny
outllO.O
out210.0

PROC bl.llnear(CHAN nl[1 .sl[1 .n2[1 .s2[I.elk) _

-- An Array of Macro.cells

CHAN east.llsize2+IJ,east.2(size2+1J,west.l[size2+1J,west.2(size2+1J
CHAN elks[slze2+21
SEQ

PAR
The array

PAR i-[O FOR size2J
VAR 12 :
SEQ

i2 :- 2*i
macro.ips(nl[i2),nl[i2+1),sl[i2),sl[i2+1J,

n2[12 1.n2[12+11.s2[121 •• 2[12+11.
west.lli),west.2(i),east.l[i+l],east.2(i+lJ,
west.l(i+l],west.2(i+l],east.l[i],east.2(iJ, elks[!),i)

boundary{east.l(O],east.2(OJ,west.l(O],west.2[O],clks[s!ze2])
boundary(west.l[size2],west.2[size2J,east.l[size2J,east.2[size2],

elks[slze2+11)

-- clock distribution process
VAR running :
SEQ

running:_ TRUE
WHILE running

SEQ
elk ?running
PAR 1-[0 FOR slze2+21

clks[i] 1 running

PRoe s.mix(Chan port(J) _

screen mixer for er.bugglng
and trace

VAR FLOAT P :
VAR running :
SEQ

running :- true
WHILE running

SEQ

-- main

--prod point cells
SEQ 1-[0 for 2<slzel

SEQ
port(i]?runnlnglP
fp.num.to.screen.f(p,8,2)
if

1 - (.lze-l)
str.to.screen("*n")

display contents
str.to.screen("*n*n") :

setup and running of the array including
Host interface. Procedure s.mix is included
for tracing.To switch off trace remove comments
on lines below and comment out s.mix, and the port
communication in point.ips cells.

The routine belowallows computation of only a single
level over R.lt assummed that the Host presents a
modified set of files for subsequent passes using data
output by the array, and coefficients for altering cell
molecule types.

Alternatively a much extended main program can be
added to modify inputs as output occurs. This is not

-- presented as a general 2-D problem can involve function
-- evaluations not supported directly by occam.

CHAN fptrl,fptr2,north.l[size),north.2(size)
CHAN south.l(size],south.2[slze),clk :
PAR

s.mix(port)
bi.linear{north.l,south.l,north.2,sauth.2,clk)
VAR cl,c2,running :
VAR FLOAT buf.l(size],buf.2(size],sbuf.l(size),sbuf.2(size]
VAR FLOAT rbuf.l(sizeJ, rbuf.2(sizel
SEO

-- open data files
open.file("odds","r",fptrl)
open.file{"evens","r",fptr2)
running :-TRUE
-- until stopped
WHILE eunning

SEO
-- read controls
num.from.chan{fptrl,cl)
num.from.chan(fptr2,c2)
IF

(cl-6) AND (c2-6)
SEO

TRUE

-- stop
running :- FALSE
clklrunning

SEO
-- synchronise cells
clktrunning
-- read next input vectors
SEO i-[O FOR size)

SEO
fp.num.from.chan{fptrl,buf.lfiJ)
fp.num.from.chan(fptr2,buf.2Ii)

-- process
IF

(cl-D) AND (c2-0)
SEO

load and compute

TRUE

PAR i-(O FOR size)
PAR

north.1[illbuf.2[i);3
north.2[i)?rbuf.l[i)
south.l[i)lsbuf.l[il;3
south.2[i)?rbuf.2[i)

SEO i-(O FOR size)
fp.num.to.screen.f{rbuf.l(i],8,2)

str.to.screen{"·n")
SEO i -(0 FOR size)

fp.num.ta.screen.f{rbuf.2(i],8,2)
ste.to.screen{"·n·n")

clklrunning
PAR i-[O FOR size)

PAR
north.l[i)lbuf.l[i);cl
north.2[il?rbuf.l[i)
south.l(i]!sbuf.2(i];c2
south.2[i]?rbuf.2[i)

shuffle far easy input to array
SEQ i-[O FOR size]

SEO
sbuf.l[i) ,- buf.l[i)
sbuf.2[i) ,- buf.2[i)

load coefficients
PAR i-[O FOR size)

PAR
north.l[i)lbuf.2[i);cl
north.2[i)?rbuf.2[i)
south.l[i)lbuf.l[i);c2
south.2[i)?rbuf.l[i)

output if no trace
SEO i-[O FOR s1ze)

fp.num.to.screen.f(rbuf.l(il,8,2)
str.to.screen("*n")
SEO i-[O FOR size)

fp.num.to.screen.f(rbuf.2[1),8,2)
str.to.screen("*n·n")

I ..-

\

~\

LIST OF PUBLISHED PAPERS

1. "Soft-systolic Pipe lined Matrix AlgoPithms",

G.M. Megson & D.J. Evans, Parallel Computing 85, ed. Feilmeier,

Joubert & Schendel, Elsevier Science publishers, 1986.

Int.Conf. Parallel Computing 85.

2. "Romberg Integration using Systolic Arrays",

D.J. Evans & G.M. Megson, Pa1;.;lllel Computing 3(1986), 289-304.

3. "Construction of Extrapolation Tables by Systolic Arrays for

Solving Ordina1'!f Differelitial Equations",

D.J. Evans & G.M. Megson, Parallel Computing 4(1987), 33-48.

4. "The Unification of Systolic Differencing Algorithms",

G.M. Megson & D.J. Evans, to appear in the Computer Journal,

Vol. 30, No.3, 1987.

5. "Matrix Inversion by Systolic Rank Annihilation",

D.J. Evans & G.M. Megson, Intern.J.Computer Math. 1987, Vol. 21,

pg. 319-358.

6. "The Solution of Ft2rabolic Partial Differential Equations by

Systolic Marching Techniques",

D.J. Evans & G.M. Megson, to appear, 6th IMACS International

Symposium on Computer Methods in P.D.E.'s, Lehigh University 1987.

7. "Matrix Power .Generation Using An Optical Reduced BanCMidth

Systo lic Array",

G.M. Megson & D.J. Evans, to appear, 7th International Congress

of Cybernetics & Systems, Sept. 1987.

, , ..

8. "LISA: A ParaUe~ P'l'oaessing ArchiteatU'l'e",

G.M. Megson & D.J. Evans, "CONPAR 86", Lecture Notes in Computer

Science 237, Springer Verlag, eds. G. Goos & J. H.artimanis

9. "A SystoUa Matrix Nom Generator",

D.J. Evans & G.M. Megson, to appear in Major Advances in Parallel

Processing, Gower Publications 1987, p.291-299.

10. "The AUernating Group ExpUait (AGE) SystoUa Army for the

So~ution of Large Linear Systems",

D.J. Evans & G.M. Megson, to_appear in 1st International Conf.

on Industrial & Applied Mathematics, ICIAM 1987.

