

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

I AUTHOR/FILING TITLE

_____________ t"_ €~~ ~~_>_ __ ~_~~ ____________ ~ __

------ -------------------------- --- ----- - ---.----~
ACCESSION/COPY NO.

__________________ QJ~~l:sl.t>2....---------- - ---- -- .
VOL. NO. CLASS M>O.RK

3 0 Jlm 1989

------" ':--6 J¥ 1990

26 JUt ~

::J..WH9S1 28 JUN 1996

2 7 JU~ 1997

001 4518 02

~IIIIIIIIIIIIIIII~~I\~III\\IIII\\~I~III~III~

, .1

NOVEL ALGORITHMS FOR THE

SOFT-SYSTOLIC PARADIGM

BY

GRAHAM MARTIN MEGSON, B.Sc.(HoNS.)

A Doctoral Thesis

submitted in partial fulfilment of the requirements

for the award of Doctor of Philosophy

of the Loughborough University of Technology

1987.

Supervisor: PROFESSOR D.J. EVANS, Ph.D.,D.Sc.

Department of Computer Studies.

© GRAHAM MARTIN MEGSON, 1987.

DECLARATION

I declare that this thesis is a record of research

work carried out by me, and that the thesis is of my own

composition. I also certify that neither this thesis

nor the original work contained therein has been submitted

to this or any other institution for a higher degree •

. ' -. .
GRAHAM'MARTIN MEGSON.

/

DED I CATED TO

MY Wife and Love HeZena,

for her constant support during

the course of this work.

ACKNOWLEDGEMENTS

The author wishes to express his thanks to Professor

D.J. Evans for his guidance, suggestions and advice throughout

the preparation of this thesis and in the context of research

generally.

The author also acknowledges the Science and Engineering

Research Council (S.E.R.C.) for their financial support.

Thanks also to my parents for giving me the incentive

to start and complete this project.

Finally, thanks to Mr. R.P. Stallard for his constant

revision of the Loughborough OCCAM compiler and supplying the

documentation in Appendix II.

APOTHEGM

Quarendo invenietis

"By seeking. you wiU discover"

NOVEL ALGORITHMS FOR THE SOFT SYSTOLIC PARADIGM

a.M. Megson

ABSTRACT

The soft-systolic paradigm, a framework of semi-formal axioms and

heuristics, is introduced and used to develop a variety of novel systolic

arrays and architectures for new and innovative numerical algorithms.

Designs presented include systolic arrays based on the so-called

Quadrant Interlocking (QI) methods, Systolic Preconditioning strategies,

Incomplete methods (for matrix factorisation and triangularisation),

Table generation (including Interpolation, Extrapolation, Simplex and

Assignments problems) and Systolic Group Explicit (GE) methods for

Partial Differential Equations (PDEs).

A number of themes tie the different designs together within the

new paradigm and illustrate its extensions over traditional methods of

array construction. For instance, systolic arrays are represented as

OCCAM programs whose execution and output implicitly confirm the

correctness of the design. This adds flexibility, allowing formal

(explicit) verification by already well developed program proof

techniques. The systolic incomplete schemes allow optimal array

structure to dictate the numerical method, while the QI methods use

block partitioning strategies to improve array efficiency. The Table

and GE arrays expose the close relationship between the algorithmic

and geometric form of a problem and the use of templates or computational

molecules (in the case of PDE's) for area efficient designs. While,

preconditioning arrays illustrate that theoretically well-founded

additional computation in the form of systolic preprocessing elements

can be used to produce overall area reduction with an accompanying

speed-up of array operation.

The problems considered provide examples in which existing

systolic arrays can be considered deficient in some respect, be it

area, computation or efficiency and, for the most part these new

methods and arrays provide some improvement.

Finally, a more general architecture is discussed in which

systolic algorithms are considered purely as programs. A basic

specification language is defined and a primitive simulator developed

and tested with elementary examples. Hence bridging the gap between

the soft-systolic paradigm and more general notions of parallel

computation.

CONTENTS

ACKNOWLEDGEMENTS

VOLUME I

PART I: INTRODUCTORY CONCEPTS AND DEFINITIONS

CHAPTER 1: INTRODUCTION

1.1 Origins of Systolic Arrays

1.2 Applications of the Systolic PrinCiple

1.3 Topics of Discussion

1.4 Overview of the Thesis

CHAPTER 2: BASIC MATHEMATICS

2.1 Vectors

2.2 Matrices

2.3 Direct Methods for Solution of Linear Systems

2.3.1 Forward/Backward Substitution

2.3.2 Matrix Triangularisation

2.3.3 Matrix Factorisation

2.4 Iterative Solution of Linear Systems

2.4.1 Simultaneous Displacement Methods

2.4.2 Successive Displacement Methods

2.4.3 Convergence of Iterative Schemes

2.5 Partial Differential Equations

2.5.1 Solution of P.D.E.'s Using Finite
Differences

PAGE NO.

2

9

15

19

22

27

38

40

41

45

47

48

49

50

56

60

2.5.2 Convergence, Stability and Consistency 66

PAGE NO.

2.6 Miscellaneous Items 69

2.6.1 Convex Sets 69

2.6.2 Rings and Fields 70

2.6.3 O-notation 71

CHAPTER 3: FOUNDATIONS OF SYSTOLIC ALGORITHMS

3.1 Systolic Spaces and Structures 73

3.2 Standard (or Traditional) Arrays 85

3.2.1 Matrix and Vector Multiplication 87

3.2.2 Arrays for Direct Solution of Linear
Systems 101

3.2.3 Arrays for Iterative Solution of
Linear Systems 109

3.3 Theoretical Concepts for Manipulating
Systolic Arrays 113

3.3.1 Systolic Array Model 114

3.3.2 Transformation Rules 123

3.4 Practical Considerations and VLSI 132

3.4.1 The Grid Model 132

3.4.2 Area/Time Tradeoffs 135

3.4.3 Fault Tolerance 139

3.4.4 Synchronous vs. Asynchronous Array
Operation 147

3.5 Generic Architectures 150

3.5.1 The WARP Architecture 150

3.5.2 The Wavefront Array Processor (WAP) 153

3.5.3 INMOS Transputers and OCCAM 155

3.5.4 Simulation of Systolic Arrays 157

3.6 The Soft-Systolic Paradigm

3.6.1 3-D VLSI

3.6.2 Optical Computing

PART II: IMPROVEMENTS TO SYSTOLIC ARRAYS FOR LINEAR ALGEBRA

CHAPTER 4: SOFT-SYSTOLIC PIPELINED MATRIX ALGORITHMS

4.1 Additive Splittings and Double Pipes

4.2 Block Schemes for Systolic Arrays

4.2.1 Block Matrix Multiplication

4.2.2 3*3 Block LU Factorisation

4.2.3 Complex Matrix Problems

4.3 Matrix Inversion by Systolic Rank
Annihilation

PAGE NO.

163

164

166

172

197

200

205

220

226

4.3.1 Mesh Connected Schemes 229

4.3.2 Highly Pipelined Rank Annihilation 239

4.3.3 Choice of Schemes 254

4.4 BATS: A Banded and Toeplitz System Solver 257

4.4.1 A Pipelined Solver 261

4.4.2 A Linear Array Scheme 271

4.4.3 P-eyclic and Double Pipe Schemes 278

4.4.4 Comparison of Methods 288

4.5 Summary 296

CHAPTER 5: SYSTOLIC QUADRANT INTERLOCKING (QI) METHODS

5.1 Systolic Quadrant Interlocking
Factorisations (SQIF) 301

5.2 A Modification of the QIF Method 310

5.3 Restricted Forms of Systolic QI Schemes 317

PAGE NO.

5.4 Interlude: The BATS Cell Revisited 323

5.4.1 Improvements to the O{n) BATS Cell 323

5.4.2 A Stable p-cyclic Cell 331

5.5 Systolic Quadrant Interlocking Elimination
(SQIE) 341

5.6 Systolic Quadrant Interlocking Iteration
(SQII) 348

5.7 Summary 359

CHAPTER 6: SYSTOLIC PRECONDITIONING AND INCOMPLETE ARRAYS

6.1 Basic Preconditioning Methods 361

6.2 Hexagonal Matrix power Generation 369

6.3 Compact Systolic Arrays for Incomplete
Factorisation Methods 386

6.4 Systolic Arrays for Incomplete Eliminations 412

6.5 Iterative Arrays for Preconditioning

6.5.1 Implicit Preconditioning Arrays

6.5.2 Explicit Preconditioned Arrays

6.6 A Fast Array for Solution of Tridiagonal
Linear Systems

6.7 Summary

v 0 L U M E I I

PART Ill: ALGORITHMIC vs GEOMETRIC DESIGN AND THE PRINCIPLE
OF ARRAY UNIFICATION

CHAPTER 7: SYSTOLIC TABLE GENERATION

425

427

431

446

455

7.1 Romberg Integration Using Systolic Arrays 459

7.2 The Construction of Generic Arrays for
Extrapolation Table Generation 469

7.3 The Unification of Systolic Differencing
Algorithms 487

•

PAGE NO.

7.4 A Systolic Array for the Quotient
Difference Algorithm 502

7.5 A Systolic Simplex Algorithm 514

7.6 A Systolic Cylinder for the Revised
Simplex Algorithm 539

7.7 An Orthogonal Design for the Assignment
Problem 553

7 .8 Sununary 571

CHAPTER 8: THE SOLUTION OF CERTAIN PARTIAL DIFFERENTIAL
EQUATIONS (PDE'S) BY SYSTOLIC MARCHING TECHNIQUES

8.1 Introduction to Asymmetric and Group
Explicit Methods 583

8.2 Algorithmic vs. Geometric Solution of
P.D.E.'s 603

8.3 Linear Asymmetric Marching Processor
(LAMP) Arrays 606

8.4 A Generic 1-0 Group Explicit Array 625

8.5 A Unified Group Explicit Parabolic Solver
(UGEPS) 644

8.6 A Fast Alternating Group Explicit (AGE)
Array

8.7 Systolic Hopscotch Schemes

8.8 A Hard-Systolic Hopscotch Solver

8.9 Systolic Group Explicit Methods for
Hyperbolic Equations

8.10 Sununary

CHAPTER 9: TOWARDS A GENERAL SYSTOLIC COMPUTER

659

668

680

694

710

9.1 The Instruction Systolic Array 717

9.2 The n-Space ISA and Multi-Tasking of Soft-
Systolic Programs 726

9.3 The Soft-Systolic Program Simulation System
(SSPS) 745

PAGE NO.

9.4 Simulation of Arrays with Boundary and
Special Processing Elements 767

9.5 The Linear Instruction Systolic Array (LISA) 781

9.6 Summary 791

CHAPTER 10: CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 794

REFERENCES 803

APPENDIX I: OCCAM SUMMARY

APPENDIX II: LOUGHBOROUGH OCCAM COMPILER VERSION 5.0
DOCUMENTATION

APPENDIX III: SELECTED PROGRAM LISTINGS

820

827

836

PART I

INTRODUCTORY CONCEPTS AND DEFINITIONS

,

CHAPTER 1

INTRODUCTION:

THE ORIGINS OF SYSTOLIC ARRAYS

"A morseZ of genuine history is a thing so

rare as to be always valuabZe".

Thomas Jefferson.

1

The initial revelation of H.T. Kung and C.E. Leiserson (Circa 1979)

indicated that highly parallel architectures and algorithms for

computationally intensive and regular problems, could be implemented by

area efficient, cost effective circuits; in a manner which permitted

regular communication geometries and replicatable sub-circuits (or cells).

Since then a tremendous volume of research in a variety of areas from

signal and image processing, pattern matching, linear algebra, and

recurrence-evaluation, to graph algorithms, sorting, searching, and on

to real time priority queues and relational data operations has occurred.

Supporting the claim in Leiserson [81] that systolic systems had the

desirable properties necessary to capture concepts of parallelism,

pipe lining and interconnection structures, in a unified framework which

is known today as the systolic paradigm.

The relative youthfulness of the subject means that researchers

entering the field, have more or less a free hand in the way they develop

their ideas. A rough skeletal framework for systolic computation does

exist, but sometimes it is difficult to define, and depends largely upon

one's interests as to how restrictive it appears when encountered.

H.T. Kung [80], Leiserson [81], Mead and Conway [79], Dew, Manning,

Mcevoy [86] provide excellent introductory material and references,

however one finds that a few simple designs have been developed before

a more serious study is conducted~ A version of the framework relevant

to our discussions is given in Chapter 3.

More tangible and difficult to grasp are the philosophical and

pragmatic threads that bind the framework together. Although, once

understood a guiding philosophy provides exciting research opportunities,

and denying or extending key assumptions to provide broader based

2

systems of design rules with wider applications is a worthy objective.

By introducing the soft-systolic paradigm I feel we have moved some

way towards this aim.

The aim of the current chapter however, is two-fold. Firstly, a

brief historical review of the origins of systolic arrays is given,

which is a fitting introduction to basic principles and requirements

complementing the more detailed definitions in Chapter 3. Secondly,

the structure of the thesis is outlined in relation to the themes

followed throughout the work.

1.1 ORIGINS OF SYSTOLIC ARRAYS

We shall begin the journey into the soft-systolic paradigm with an

informal analogy between the human body and systolic systems. The

analogy is useful for two reasons, firstly it allows identification of

the main characteristics of systolic computation in a simple and

intuitive way, and second such a simple relation also implants in the

mind a vivid picture of the mechanics inVOlved, which can be embellished

to support more complex discussions. Furthermore, the environment in

which we live is inherently parallel in nature and our activities in

some respects model the processes involved in systolic computation.

In fact, the development of parallel systems in general, has been

motivated by the difficulties encountered in implementing so-called

Natural problems from the real world, on sequential (Von-Neumann)

machines.

Consider the human body broken down to a simple circulatory and

control system consisting of nerves, arteries and major organs. Each

organ performs a unique function in parallel with the rest which is

3

necessary to keep the whole body alive. Organs co-operate and in a

sense communicate with each other making the body a parallel system

based on communication. The whole system is co-ordinated by a

controller (the brain) and a pumping mechanism (the heart) driving

blood around the circulatory system. Under normal circumstances the

brain issues controls as nerve impulses and blood is pumped rhythmically

at correct intervals and arrives at the required organs when necessary.

The simpler functions of the organs complement each other to achieve the

more complex goal of healthy life for the body. Taking the analogy

further, we can dissect each organ which reveals that it too is a

parallel system constructed from a vast number of simple cells, co

operating and communicating to achieve the function of the individual

organ. Now, if nerve impulses are sent incorrectly or at wrong times,

or blood is pumped erratically then an organ fails to produce the

correct response. Alternatively individual cells within an organ can

develop faults resulting in sickness of the organ, then the whole body,

and ultimately death. Furthermore, the body includes built-in redundancy

among the vital organs, so if,one organ fails (e.g. kidney, lung) a

second identical organ can cover for it but at a cost of reduced

efficiency to the body. The process of failures may continue in some

caSeS until faults are so numerous that the body dies.

Now, consider systolic systems, the above discussion illustrates

all the essential features of systolic computation. The body becomes

a machine, nerves and arteries, control and data paths, while, major

organs are systolic array components performing dedicated or special

purpose computations. The heart and brain form a host computer which

orchestrates calculation according to control and data signals pumped

4

continuously around the system, arriving at the place required at the

precise moment in time when they will be used, before eventually

returning to the host. This pumping action is the origin of the word

systolic, derived from the word systole or 'contraction of the heart'

borrowed from physiology. At a high level any system which preserves

this attribute may be termed systolic, our analogy however is closer

than that. First of all, systolic systems retain the concept that a

number of independent systolic components (or arrays) can be connected

to achieve more complex tasks. Individual components can be further

broken down into networks (arrays) of simple self-contained circuits

(cells), which are replicated to construct the complete component. The

cell collections work in parallel to fulfil the special function of the

component, if controls are issued incorrectly or data arrives at the

wrong speed, erroneous values are produced making the whole system

faulty. On the lower cell level individual cells may develop faults

with time, and in a normal computing system the machine would grind to

a halt. However, an interesting feature of modern systolic arrays is

the inclusion of fault tolerance, which like the body introduces

redundancy and checking procedures so that system performance degrades

gracefully as faults develop. Also, like the body systolic systems

limit the major portion of memory to the host machine (brain), with

cells confined to simple functional arrangements. In the case of cells

in the lung the function is a chemical reaction, replacing carbon

dioxide (C02) with oxygen (02) in the blood as it flows through the

cells. Similarly, in a systolic array data flows through the cells

which modify it according to simple computational rules akin to the

reaction.

5

NOw, the immediate task is to trace the origins of systolic arrays

so that the constraints imposed by the framework may be better

appreciated, and indirectly our extensions. The correlation above

between body and machine although useful should not be taken too

literally, because systolic arrays abstract away the overwhelming

details of physiology. For instance, true systolic arrays exhibit

severe restrictions on the regularity and dimension of the cell network,

betraying the roots of systolic design but which are not apparent in

the above analogy.

CELLULAR AUTOMATA: From a theoretical viewpoint, systolic arrays

can be traced back to cellular automata of Von-Neumann, the Mealy

machine (G.F. Mealy, 1955) and Moore Machine (E.F. Moo re , 1956, from

his Gedanken experiments on sequential machines in Automata Studies) ..

During the development of the systolic framework, work has progressed

independently on automata studies by Katona [83] and more recently

Umeo [85a]. Automata theory is basically a mathematical theory about

machines and what they can accomplish at a low level of computation;

it has mainly been applied to the design of electrical circuits with

digital hardware, the logic of nervous systems in man and animals, and

the underlying logic of protein synthesis in cells. Hence, it is not

surprising that our body analogy is a good one, and general reading

about automata studies can be found in Hopcroft & Ullman [79], Minsky [67].

Automata theory is tremendously important for the comprehension of

systolic arrays because it lends a ready-made theory about what such

machines might achieve. Automatons themselves can be represented by

labelled directed graphs, with machine states represented as nodes, and

arcs defining state transitions. Consequently a simple cell function

6

(with little or no memory) can be represented by a simple graph.

Responses to inputs (i.e. outputs) can also be encoded on arcs, and

from here it is a small step to connect inputs and outputs of a number of

(possibly identical) machines, and operate them in parallel to create a

systolic array (see Leiserson [81]). The formal specification of such

parallel networks involves the breakdown of the array to its constituent

machines, which are then formally defined, and linked by connecting

equations. For even small arrays formal specification and hence

verification is both tedious, messy, and error prone. Consequently

systolic arrays have their own simpler and relatively abstract graph

specification, which collapses whele machines to nodes and input/output

histories to sequences on arcs. See Weiser & Davis [81], I~elhem &

Rheinboldt [84], H.T. Kung & Lin [83]. Thus, obviating the need for

detailed understanding of automata theory. Notice, that a well

established theory about machines lends some formality to the discussion,

expanding nodes to smaller machines presents a hierarchical structure to

the design process allowing us to fix the abstract level of design, see

Thompson & Tucker [85] while a theoretic description of arrays keeps

the analogy with the body quite realistic as no claims on the dimension

ability or regularity of arrays are made.

VERY LARGE SCALE INTEGRATION (VLSI): The second thread of systolic

array realisation was the desire to construct fast, highly parallel

computing structures at low cost, H.T. Kung first realised that rapidly

developing chip industry and automaton theory together could achieve

this. Until the advent of VLSI, the development of parallel computers

with large numbers of processors had been limited by the prohibitively

high costs of manufacture. Existing machines had been improved by

7

tinkering with the traditional Von-Neumann architecture, for instance

cycle stealing, direct memory access (DMA) , and pipe lining of fetch

and execute operations. Parallel machines were left as mainly special,

one off productions, primarily for research interests.

The development of new manufacturing techniques for fabrication of

small, dense, and inexpensive, semi-conductor chips created a revolution

in the computer industry. with the use of VLSI in circuits, size and

cost of processing elements and memory was reduced, and it became

feasible to combine the principles of automata theory with the pipeline

ideas of traditional architectures. The combination was especially

attractive because device manufacture cost remained constant relative to

circuit complexity, with most time and money invested in design and

testing.

NoW, if we endeavour to sketch a complex automata arrangement one

is immediately confined to the two dimensional (2-D) plane defined by

sheets of paper. In fact VLSI is achieved in a similar manner by a

combination of circuit design with high resolution photographic techniques

(Mead & Conway [791), where it is convenient to place wires on rectangular

grids, and limit the number of parallel layers of semi-conductor material

containing wires and circuit elements. Hence, the problem of collapsing

a three dimensional (3-D) graph structure onto a 2-D plane or chip, is

simplified if the graph is as close to 2-D as possible. (A 2-D graph is

termed planar if it can be drawn in the plane with no arcs intersecting

at places other than nodes). Furthermore, an 'almost' planar graph

based circuit is easier to design if it is modular - i.e. composed of

many replicatable components (like cells), and reduces overall production

time as only a single or few cells must be designed. VLSI presents

8

additional problems, as the size of wires and transistors approach the

limits of photographic resolution, for it becomes impossible to achieve

further miniaturization and actual circuit area becomes a key issue.

Add the fact that chip area is limited in order to maintain high chip

yield, and the number of connections to the outside world (pins) is

limited by the finite size of the chip perimeter, and a highly restrictive

set of constraints is imposed on the theoretical systolic array model.

These restrictions form the basis of the systolic paradigm - and cull

the large number of algorithms available to a select few for implementation.

See Savage [81], Ullman [84] and Kung [82] for VLSI models and area

considerations.

TIMELINESS: So far we have combined a theoretical idea of parallel

computation on regular connection geometries, with the physical constraints

necessary for cost effective manufacture. A final third thread remains,

that of applicability. It is rare in a competitive industry for a

methodology or product to survive unless there is sufficient demand for

it. The emergence and consequent success of systolic arrays is not due

only to H.T. Kung's foresight but also the timing. At the same time

Kung revealed the systolic concept, the idea of using VLSI for signal

processing was the major focus of attention in governmental, industrial,

and university research establishments as a means of bridging the gap

between theory, algorithms and implementation. The constantly increasing

demands for high performance real-time signal processing illustrated the

need for a vast computation capability in both volume and speed. Clearly,

fast, low cost, high density VLSI devices promised practical cost

effective, high speed parallel processing for large volumes of data

with ultra-high throughput rates. Furthermore, the algorithms used

9

relied heavily on the solution of linear equations, and as Leiserson

[81) demonstrates such computations are well suited to systolic arrays.

The demand ensured the survival of the systolic concept at least for

the present and near future.

1.2 APPLICATIONS OF THE SYSTOLIC PRINCIPLE

Virtually a decade has passed since the first systolic principles

were introduced and in hindsight a number of important events have

occurred to shape the field.

After the initial concept, what can only be described as a frenzy

of research activity followed, in which the principle was applied to

any algorithm or area with similar properties. The commotion propagated

a wave through computer science, and although not all designs or areas

considered were successful, many contributed to the rules of systolic

design. For instance, it was soon found that systolic arrays work best

for computationally intensive tasks with a recurrence type formulation

(e.g. matrix multiplication), such problems are called compute-bound,

and are measured by the amount of computation versus host communication.

In contrast problems with a high ratio of communication to computation

are termed Input-output (I/O) bound (e.g. matrix addition) and the

systolic principle is difficult to apply efficiently in these areas.

Attempts at implementing a wide variety of algorithms (see Table 1.2)

have identified a small number of 'standard' networks, the most famous

being the hexagonal array of H.T. Kung & Leiserson. Broadly speaking

the development of systolic principles has remained polarized around the

three threads of its inception, Theory, Implementation and Applications.

10

Signal processor for recursive

SIGNAL filtering, Implementation of Kalman

PROCESSING filters, Discrete Fourier Transform
(DFT) , Convolution (multi-dimensional),
Linear algebra machines in digital
processing.

Finite element analysis, Singular value

NUMERICAL decomposition, Linear till>'! solution of

PROBLEMS Toeplitz systems, Orthogonal equivalence
transformations, Least-squares (adaptive
beam forming), Eigenvalues and generalized
inverses, (symmetric matrices), Iterative
algorithms.

SHAPES &
Pattern matching, Feature extraction and

PATI'ERNS pattern classification, Stereo matching,
Algorithms for recti-linear polygons.

WORDS &
Largest common s~bsequence problem,

RELATIONS Dictionary machines, Relational Database
operations, Connected word recognition.

Tree acceptors, Trellis automata,
AUTOMATA Binary tree automata, Design rule

checker.

Shortest path problem, Algebraic path
problem (including matrix inverse),

GENERAL Fundamental sorting problems, Linear-
time Greatest Common Divisor (GCD)
computation, Priority queues.

TABLE 1.2: Selection of systolic applications.

11

On the theoretical side relationships between other forms of

parallel computation and architectures have been examined. For Single

Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data

(MIMD) machines, Kunde, Lang, Schimmler, Schmeck and Schroder [85],

S.Y. Kung [84], Umeo [85], Saxe & Leiserson [83] have considered the

mapping (or systolization) of existing algorithms into systolic arrays.

Producing the concept that systolic systems are special cases of Reduced

Instruction Set Computers (RISes), and that the range of applications

solvable on a particular architecture, in parallel, is a trade-off

between general purpose data-flow multiprocessors and dedicated

architectures (like systolic arrays). Graph theoretic models of systolic

arrays have been developed as aids for formal verification but remain

unwieldly and fraught with difficulties. Problems arise from the lack

of ability to specify cells with complex internal arrangements, and the

derivation of systems of mutually recursive equations - which are

unsolvable, even for intuitive and obviously correct arrays. See

Melhem & Rheinboldt [84]. ;/hile Turkedjiev [86] has examined methods for

enumerating all the possible systolic networks for a given problem using

the idea of cluster graphs derived from the necessary data flow of the

problem, again even simple problems require detailed analysis, and so

far only l-D convolution and hexagonal matrix product have been examined.

thoroughly. This illustrates the fact that the inherently special purpose

nature of systolic arrays, so far can only be captured in special theories

for certain applications. What is lacking is a general intuitive feel

implicit in the theory for what a systolic algorithm is - but systolic

algorithms today are confined by the constraints of VLSI and so we must

be certain that we are studying systolic computation not VLSI computation.

12

The ultimate aim of systolic theory is the automatic synthesis of

systolic arrays. That is, given a problem encoded in some high-level

(parallel) language, can we automatically choose the best (Le. area

efficient, fastest) array in a suitable form to produce a chip

specification which can then be manufactured. This is a formidable

and long term task and is related to the concept of a silicon compiler

which given a high level description of a circuit produces the 'best'

chip. In this context, a systolic array synthesizer forms the front

end to the silicon compiler. However, until a strict and automatic

theory for verifying systolic arrays is developed it is often easier

to adopt a simple 'dry run' technique or some form of simple simulation

for testing.

Allied to the theoretical side is applications where the search

for new arrays is conducted informally, at present. This field attracts

experts from different specialist fields eager to try systolic design,

but only a limited number appreciate the underlying necessity for the

constraints of the systolic paradigm. Consequently there is a widening

gap between new proposed systolic algorithms and the means to implement

them. Designers in an attempt to apply systolic principles adopt large

numbers of cells, of increased complexity and allow complex data and

control movements. This neglect, or lack of concern for implementation

issues is worrying because if it continues could make systolic array

design an abstract principle largely of academic interest, divorced

from any means of implementation.

The implementation side has progressed slower than theory or

applications, but perhaps in terms of real achievements and the

establishment of a hard core of practical knowledge, is the leader.

13

Very few of even the earliest systolic algorithms have been

implemented as chips. The first attempt at implementation was the

pattern matcher of Foster & H.T. Kung [80], followed by the systolic

2-D convolution chip, H.T. Kung & Song [82], the pipelined Lattice

Processor (PLP) S.Y. Kung & Hu [83] for Toeplitz systems and the

programmable systolic chip (PSC), Fisher, H.T. Kung, Monier, Walker &

Dohi [83]. With commercial companies taking up the challenge only

recently with NCR'S Geometric Arithmetic Parallel Processor (GAFP),

a 6x12 arrangement of single bit processing cells (each with ALU) , and

Marconi's SOS systolic array (a CMOS radiation hard bit-slice correlator),

with applications in radar/sonar systems, beam forming, FIR filtering

and medical electronics. Problems with implementations arise for a

number of reasons, such as heat dispersion when the chip is densely

packed and mistiming problems due to propagation delays down wires

particularly as feature size diminishes. More complex designs may

benefit from a two level approach for metal lines as used in the INMOS

transputer (INMOS [85]). Systolic arrays however reduce the effectiveness

of cheap implementation as they can only be used on a narrow set of

problems, and design cost cannot be spread over large numbers of devices.

While effective parallelism often is only achieved by expanding the host

array interface, demanding a high number of wires (pins). Both cell

area and pin count can be modified by serializing some of the computation

i.e. essentially chopping it up into identical steps and performing

them serially on small hardware, see Fisher [84]. Bit-serial or byte

serial implementations have potential because hardware is easier to

design, allows flexible word lengths and smaller cell cycle time (due

to increased clock speed), but has the disadvantages of additional area

14

for latches and reduced opportunities for optimization and trade-offs

at the cell level. And, unless pipe lining is used in conjunction" with

serialization throughput of data is often reduced. For examples of

bit serial signal processing applications see McCanny & McWhirter ([821,

[831).

Because of the narrow range of problems for which systolic arrays

can be implemented successfully, and the growing gap between abstract

arrays and implementation capability, emphasis has been placed on

programmability. In generic arrays a number of related problems .can

be solved by a more general cell type, and usually the individual arrays

have a common structure. The leading development in programmable systolic

arrays is the WARP processor at Carnegie-Mellon University (CMU)

Pittsburgh (H.T. Kung [841) and is based on the PSC, plans are to

incorporate the array in a general purpose systolic array computer.

But, Kung himself has noted, producing generic arrays allows memory

to creep into basic cells, which then are no-longer simple. Problems

also occur in defining a suitable programming language - as systolic

arrays have difficulty with structures like while-loops which can run

indefinitely until some test is satisfied. The design of a suitable

generic cell component is crucial and still an active area of research.

The INMOS Transputer (a true microprocessor) has a wider range of

applications, being more general purpose in nature, and a simple"MIMD

array can be constructed quite easily from transputer components. The

transputer itself is a language (OCCAM) based design, providing

concurrency and communication as a basic feature and is an example of

a RISC architecture. Hardware links contain built-in hand shaking

circuits and represent the software construct of a communication channel.

15

This makes it possible to represent abstract array designs via the

language OCCAM as networks of transputers. In general a loss of speed

will be expected in an algorithm over its dedicated counterpart, due

to the generic nature of the processor/cell, but allows networks derived

theoretically to be implemented almost directly.

1.3 TOPICS OF DISCUSSION

The individual chapters of this thesis are bound together by a

number of themes and arguments which raise important questions concerning

the design of systolic arrays and their future.

Our first task at the end of Chapter 3 is to define the soft

systolic paradigm a more general set of rules and heuristics. This

new paradigm replaces the old framework, and relaxes the more rigid

constraints in a controlled manner which is sensitive to technological

advances. To illustrate the point recall the analogy in (l.l). The

organs of the body are essentially 3-D conglomerates of cells, so why

not relax the 2-D constraint permitting 3-D systolic arrays? Such

proposals are in line with technology research as Rosenberg [83] presents

,a case study of 3-D VLSI, indicating that overall wire length and design

volume savings will be made over existing 2-D approaches, where,as in

optical computing (Caulfield, Rhodes, Foster & Horvitz [81], and

Goodman, Leonberger, S.Y. Kung, & Athale [84]) illus'trate that free

space and wave guided transmission of light can be used to overcome pin

and long-wire restrictions with data and clock transmission at the speed

of light, to implement systolic arrays.

A particularly strong theme throughout the work is the

representation of systolic algorithms/arrays as OCCAM programs. The

16

OCCAM language (see Appendices for synopsis of syntax) contains some

useful features for mapping directed graph structures to parallel

programs. OCCAM also doubles as a semi-formal verification tool;

by semi-formal we mean that the usual error-prone hand testing of

arrays is performed by program execution, hence reduced testing time

facilitating quick debugging. We must be careful at this stage and

observe Dikjistra's old adage - that program testing reveals only the

presence not the absence of bugs. Program representation does more

than correct initial design problems, it side steps the complex and

problematical formal verification techniques mentioned above, while

retaining a vestige of formality. TO elaborate, OCCAM is based on the

language CSP (Communication Sequential Processes) Hoare [78], Hehner &

Hoare [83] and developed by David May at INMOS. The proof of correct

ness of programs is achieved by the use of invarient arguments, and

these ideas can be extended via CSP to provide correctness proofs of

OCCAM programs. Hence, the correctness of a systolic array can be

defined implicitly, although this is not pursued in the text. Instead

we adopt a semi-formal method where correct output of the program indicates

array 'correctness', a selection of programs for major designs appears

in the Appendices. The use of programs to represent systolic algorithms

is extended in Chapter 9, to define a more general purpose architecture

and its extensions, where, the role of·the rhythmically recurrent

pumping action is retained only at a low architectural level,

facilitating program execution.

Emphasis is also placed on defining new efficient algorithms

using relaxed constraints, as well as improving or redesigning arrays

which suffer certain difficulties under the old paradigm. The general

17

theme is the improvement of systolic array efficiency and computation

time. In this context, efficiency is taken to be the propcrtion of

cycles a cell is active during the computation, or the number of cells

used by different systolic designs. In order to achieve a measure of

improvement, where possible new arrays have been compared with old ones.

As the thesis develops it becomes apparent that efficiency improvement

is related to algorithmic and geometric implementations of arrays

together with various assumptions about the type of hardware available.

In particular, new arrays are developed from cells based on simple

computational rules and molecules implicitly defining the geometry of

a problem, rather than the recurrence relations on which algorithmic

array forms have been based to date.

The third strand running through the thesis, is the special purpcse

nature of systolic arrays. As arrays are inherently application

dependent the philosophy for design must be decided at the outset, in

the main we attempt to introduce generic arrays where pcssible. However,

general purpcse design is problematical because applications dictate

structure. As a basic model to unify the deSigns, which are mainly

numerical, it is appropriate to regard the thesis as an attempt to

produce a systolic hardware library of compcnents. Each compcnent can

be considered akin to a routine called from LINPACK or EISPACK, and

we might call our component machine SYSPACK for reference. The

structure of the hypothetical machine is shown in Fig. 1.1 and also

defines the structure of the thesis.

The use of compcnents raises the issue of granularity in systolic

design. Granularity of an algorithm refers to the maximal amount of

computation a typical module can perform before having to communicate

result bus r----------,--- -"T -- --;- ---,-----T-- -- -r----"T ----,
I I I I I I I I I
I I I I I I I I I

• I • I

Al A2 A3 Bl B2 B3

.
!.

HOST

i
I
I
I E4 E3 E2 El D3 D2

I • •
I I

I I I J I I L ______ ~ ____ L ____ ~ ____ L ____ L ____ ~ ___ _

KEY: AI: Block hexs and double pipes
A2: Rank annihilation
A3: Banded and Toeplitz solver (BATS)

Bl: Matrix power generator
B2: Systolic preconditioning
B3: Incomplete factorisation
B4: Incomplete elimination

FIGURE 1.1: Structure of the Syspack Machine

Cl:
C2:

Dl:
D2:
D3:

Direct }
Iterative QI

Table generators
Simplex -
Assignment

B4 Cl

Dl C2

I • J
I I .L _____ J

El:
E2:
E3:
E4:

Systolic marching

I-D} 2-D GE methods

l-D hyperbolic

t-'
ro

19

with other modules. Furthermore, the choice of granularity is often

critical for the performance of an algorithm. The module size in Fig.

1.1 can be classed as medium sized, as each component solves a

relatively complex task, using a collection of pipe lined systolic

arrays. A finer grain setup is to use a small set of common arrays

which reduces the total number of arrays, but loses pipe lining

features due to increased communication requirements. This fine grain

will be referred to as the 'bag-of' approach derived from the idea of

having a bag of useful components from which you extract the most

appropriate for each stage of a calculation. A larger grain size is

exhibited in Chapter 9 where systolic algorithms are partitioned into

blocks of program instructions on a general architecture.

1.4 OVERVIEW OF THE THESIS

The structure of the sys-pack machine gives a global view of the

work contained in this thesis.

CHAPTER 2: here sections of basic mathematical definitions and

concepts necessary for the description of algorithms are given.

CHAPTER 3: gives a broad foundation of the basic techniques and

definitions for the design of systolic algorithms/arrays. Included is

a treatment of the representation of arrays by a computational graph

model together with a method for mapping graphs to OCCAM programs.

Basic quantities such as area, cycle time, efficiency and the structure

of common networks are given. Various trade-offs are examined in

relation to area, efficiency and time, and the concept of two-level

pipelining for improving the throughput introduced.

CHAPTER 4: presents the concept of double pipes for improving

array efficiency by extending layout to a small number of layers in

20

which circuits remain planar on individual slices. The technique

is modified to introduce block partitioning for traditional hexagonal

patterns and basic theorems about the best block size and efficiency

constructed. Finally, a stable and efficient systolic pipeline is

developed for the solution of circulant matrices, using first the

method of rank annihilation and second a novel factorisation scheme.

CHAPTER 5: considers the Quadrant Interlocking (QI) methods for

factorisation, elimination and iterative methods and systolic arrays,

based on the previous chapters, derived. It is shown that block

partitioning affects efficiency only on systolic arrays with certain

input formats. Applications of the arrays for periodic matrices are

shown to be superior than those of existing designs.

CHAPTER 6: examines the theory of preconditioning, incomplete

factorisation, and matrix triangularisation to produce area efficient

designs. In preconditioning a new hex array pipeline, for repeatedly

squaring a matrix is described and used as a preprocessing array to

reduce the number of iterations, hence hardware required by systolic

iterative methods. Whereas, the incomplete theory is used to derive

new numerical algorithms based on optimal systolic arrays, which can

take advantage of sparsity within the band of a matrix and for Which

standard systolic arrays produce fill-in and high area usage.

CHAPTER 7: extends the use of systolic arrays to the parallel

construction of tables. The idea of a table template is introduced

and used to derive arrays for extrapolation, solution of ordinary

differential equations (ODE's), and an area efficient ring design

produced. The main concepts are used to develop a unified generic

array for differencing operations like rational function approximation

21

and Wynn's £-algorithm (for converting slowly converging sequences

to rapidly converging ones). The Quotient Difference algorithm for

root finding is implemented, before more complex table algorithms like

the simplex, revised simplex and assignment problems are discussed.

CHAPTER 8: extends the ideas of templating to computational

molecules and representation of a problem in its geometric form.

Systolic marching techniques based on asymmetric approximations of

Saul'ev [64] are introduced for I-D and 2-D parabolic partial differential

equations and compared with iterative forms derived from purely

algorithmic implementation. The group explicit methods are then used

to develop fast arrays and the best is used to examine bit serial

implementation with fixed point arithmetic. Area efficient versions

of the arrays are introduced based on hopscotch techniques before the

ideas are extended to I-Dhyperbolic equations.

CHAPTER 9: limitations of the syspack structure are discussed and

as already indicated, a more general architecture for simulating

systolic algorithms and its operation and extensions are described and

illustrated with examples. In particular an area efficient design for

the implementation is discussed based on collapsing 2-D arrays to I-D

alternatives, and program transformations to the new arrays with

respect to SIMD and MIMD algorithms considered.

CHAPTER la: concludes the thesis and gives an overview of techniques

developed during the work and outlines areas of further study. In

particular the Systolic Control Ring Instruction Processor (SCRIP) is

proposed as a conglomerate of designs to replace the syspack machine

and provide a general purpose systolic computer.

CHAPTER 2

BASIC MATHEMATICS

"A good Notation has a subtlety and suggestiveness

whiah at times make it seem almost like a live

teaaher".

BERTRAND RUSSELL.

22

In this chapter basic definitions and theory about Linear Algebra,

Linear Systems and Partial Differential Equations is given. The

material presented is necessary for the ready comprehension of the

Systolic Algorithms in later chapters.

Linear Algebra deals with the specification and solution of linear

systems (of equations) which can be derived from a variety of problems

in Engineering, Mathematics, Business and Economics. In fact differential

equation problems themselves can be written in terms of Linear systems.

Furthermore the recurrence relations inherent in matrix formulations

and subsequent computations make them suitable for Systolic Array

applications. Consequently, matrix notation can be used as a cipher

to translate numerical algorithms to systolic arrays.

The interested reader is referred to more advanced texts such as

varga[62] and Evans[83] , while introductory material is given in Burden,

Faires & Reynolds [81], Smith [85], Lipschutz [74] and Wu & Coppins [81].

First of all the chapter defines vectors and matrices together

with relevant properties and relations. This base is then used to discuss

direct and iterative methods for solving linear systems. Partial

differential equations are defined next, and by the use of the finite

difference technique the corresponding linear systems are derived.

Finally, some brief definitions of convex sets are provided for discussion

of topics in Chapter 7.

2.1 VECTORS

In mathematical terms a vector is an ordered n-tuple which can be

represented as either a row or column of elements, viz,

23

a = (2.1.1)

whether row or column forms are used depends largely on the context in

which the vector appears. For instance, it is quite acceptable to

t t
write a=b (or b=a), where the superscript 't' denotes transposition,

and indicates that a row vector can be converted to a column vector (and

vice versa) • The values a" i=l(l)n are termed components and throughout
l.

the thesis we shall denote vectors by Roman lowercase letters, and their

components with the same letter but sub scripted to indicate position

unless the meaning is clear. The vectors in (2.1.1) are said to be from

n-space and we further define lR to be the set of real numbers, with lR
n

the n-space of vectors with components from lR. Consequently (2.1.1)

would be defined as a ,b E lR n and a, E lR for i=l (1) n. Values like Cl E lR
l.

which are not vector components in a problem specification are termed

scalars and will be denoted by lowercase greek letters where confusion

would otherwise occur. vectors and the operations on them form vector

spaces which are Algebraic structures involving fields (or commutative

rings, see Section 2.6). The main operations are defined below and are

used with the proviso that the vectors in an operation are all from the

same space.

EQUALITY: if a,b E lR
n

then a=b if a,=b" i=l(l)n
l. l.

ADDITION: for a,b,c (: lR n,

SCALAR

t
c = (al+b

l
, a

2
+b

2
, ... ,a

n
+b

n
)

MULTIPLICATION: for a E lR
n

and a ElR

t t
aa = a(al, ••• ,a

n
) = (aa

l
,aa

2
, ••• ,aa

n
)

(2.1.2)

(2.1.3)

(2.1.4)

n
SUBTRACTION: for a,b E lR and a E lR

set a=-l form ab then add to a, a+ab=a+(-l)b

INNER PRODUCT: for a,b,c E lR n and a E lR

and also observes the following rules,

(i) (a+b).c = a.c+b.c = c.(a+b)

(ii) (aa~b = a(a.b)

(iii) a.b = b.a

(iv) a.a >- 0 and a.a=O iff a=o

(v) (a+b).(c+d) = a.c+a.d+b.c+b.d

+a b =
n n

n
z: a,b

j=l J j

BASIC ALGEBRA:for a,b,c E lR n and scalars a,S E lR

(i) (a+b) +c = c+(a+b) (v) a (a+b) = aa+ab

(ii) a+O = a (vi) (a+Sl a = aa+Sa

(iii) a+ (-a) = 0 (vii) (as) a = a (Sa)

(iv) a+b = b+a (viii) La = a

using these basic formulae a number of basic definitions

can be constructed, for the simpler formulas and choosing

a geometric interpretation.

24

(2.1.5)

1

(2.1.6)

1 (2.1.7)

J
and concepts

k
lR ,k:;3 gives

n Definition 2.1.1: Vectors a,b E lR are said to be ortiwgonat (perpendicular)

if a.b=O.

Defini tion 2.1. 2: A Vector Norm is a mapping of a vector in lR n to an

element of lR and is denoted 11.11. Intuitively,. the norm measures the

size (length) of a vector and satisfies the properties below:

(i) 11 all >-0 for all a E lR n

(ii) Ilall=o iff a=(O, .,. ,0) t = 0

(iii) 11 aa 11 = 1 alii all for all a E lR, a E lR n

(iv) Ila+bll:;llall+llbll for all a,b ElR
n

(2.1.8)

25

Any computation rule connecting components of a and satisfying (2.1.8)

is a norm, different norms are denoted by a subscript e.g. L =11 ai I p p

'for the p-norm and from a practical viewpoint the most useful norms are

given by

Definition 2.1.3: The L
l

, L~, and L2 norms for all a E mn are defined

respectively as,
n

L
l

: I1 aliI = la
l l+l a

2 1+ +Ia 1= L la.1
n i=l l.

(2.1.9)

L : 11 all~ max la. I (2.1.10)
l.

i 2 2 2 ! n
L

2
: 11 al1 2 = (I all + I a21 + .•• + I ani) = [L I a .1

2
) ! (2.1.11)

i=l l.

k
The L2 norm gives the geometric interpretation of vector length (for m ,

k~3). Consequently the distance between two vectors a,b in general is

given by the length of the vector between a and b or I la-bl 12 and

motivates the following result.

Definition 2.1.4: A sequence {a (k) t of vectors from lR n is said to
k=l

be convergent (or converges) to a vector a in the same space under norm

11.1 I if for £>0 and some integer N ,
£

I1 a (k) -a I1 < £ for all k>N
£

(2.1.12)

The relation (2.1.12) indicates an error bound on the approximation,

and due to the finite arithmetic in computers which introduce rounding

errors, is often used as an algorithm termination criterion. In iterative

algorithms the value £ is termed the tolerance representing the accuracy

of solution, when (2.1.12) is satisfied the distance between an

approximate and exact vector are considered close enough and the

algorithm terminates having satisfied the tolerance. All norms on space

n
lR are equivalent with respect to convergence, meaning, that if the

sequence converges for one norm, it does so for all the others, but

pcssibly at different rates.

26

Extending the ideas of the inner product, results in the following

important relationships.

n
Definition 2.1.5: A linear combination of vectors al, ••• ,a

m
E m and

scalars a1, .•• ,a
m

E m not all zero is a set of vectors which when

combined by vector addition and scalar multiplication form a new vector

n
alE m m+

a =
m+l

m

2 a.a.
i=l l. l.

(2.1.13)

If no ai' i=l(l)m can be formed as a linear combination of the others

the set is termed LinearZy Independent otherwise LinearZy Dependent.

In particular, linear independence implies orthogonality from

(2.1.6) as,
m

2
m

= 0 otherwise -a.a. = '2 aia
i)) i=l

iFj

(2.1.14)

1 2 3
Definition 2.1.6: A vector space (e.g. m , m , m , etc.) is any set

of vectors closed under addition and scalar multiplication. In this

context closed means that any operation performed on the vectors results

in a vector from the same space.

A subspace of a vector space is simply a set of vectors contained

in the vector space, and which are also closed.

Definitions (2.1.5) and (2.1.6) combine to form the concept of a

basis.

Definition 2.1. 7: A set of vectors a
l

, .•• ,am Em n form a spanning set

for m n if every vector in m n can be written as a linear combination

of the ai' i=l(l)m. If the a
i

are also linearly independent the spanning

set is termed a Basis.

It can further be shown (see Lipschutz[74) that a Basis contains

only n vectors to span the space m n
, and that this set is a minimal

27

spanning set. That is, the smallest possible set of vectors which

still spans the space.
3

As a simple example, a Basis for lR (3-D) is

the set s~{(l,O,O},(O,l,O},(O,O,l}} and a linear combination

a ~ "1 (l,O,O) +<>2 (O,l,O) +"3 (O,O,l) , "i E lR

generates any vector in lR
3

(hence s is a spanning set), now remOve a

vector to give sl~{(l,O,O},(O,l,O}} and

b ~ "1 (l,O,O) + "2(O,1,O} ,

which generates vectors restricted to a 2-D space (lR
2
), indicating

(but not proving) that s has the minimal number of vectors for a spanning

3
set of lR •

2
Incidentally sI is a Basis for lR , and we note that any subset of

a linearly independent set must itself be a linearly independent set.

2.2 MATRICES

Matrices are important to Numerical Analysis because they provide

a concise method for specifying and manipulating large numbers of linear

equations. The collection of equations and their unknowns is called a

linear system if each one can be expressed in the form,

alxl
+ a

2
x

2
+ ... + a x ~

mm
b , (2.2.1)

with x. I ai,b E JR, i~l(l}m. The x.,
~ ~

i~l(l}m are the unknowns I a.
~

the coefficients and b the constant or right hand side (RHS) term.

Hence, for·an n equation system we write,

allxl + a
12

x
2

+ +almxm
~ b

l 1
a

21
x

l
+ a

22
x

2
+ +a x ~ b

2
I

2m m

f
(2.2.2)

;

anlxl
+ a

n2
x

2
+ +a x ~ b I ... J nm m m

Definition 2.2.1: An n by m (or n*m) matrix is a rectangular array of

28

elements (or scalars) from lR, with n rows and m columns in which not

only the elements value is important but also its position. When m=n,

the matrix is square, and said to be order n (or m) when m=l reduces

to a column vector or when n=l a row vector and with m=n=l produces a

single scalar value. Throughout the text we shall denote matrices by

upper case Roman letters, pictorially or as a row vector of column

vectors as illustrated below,

all
a ________ a

12 lm

a
2l

a
22

- - - -- --- a
2m

A = (a
ij

) = I I I
I I

(2.2.3)

I I

~~l
I I
I I a - ----a
n2 nm

t
where ci=[ali,a2i, ••• ,anil , aij E lR for i=l(l)n, j=l(l)m and aij

locates the element at the intersection of the ith row and jth column.

Thus, a linear system can be formally specified by matrices and vectors

as,

Definition 2.2.2: A Linear System of equations can be represented by,

Ax = b , (2.2.4)

with A an nXm coefficient matrix, and x,b vectors. The system is

homogeneous if the components of b,b,=O, i=l(l)n and always has a triviaZ
l.

solution with x,=O, i=l(l)m (the components of x), any solution with
l.

some x,~O is termed a nontriviaZ solution. A non-homogeneous system has
l.

a particular solution if u E lR
n

satisfies (2.2.4) when substituted for

x, and the set of all vectors satisfying (2.2.4) gives the generaZ solution.

In fact we shall restrict our attention to linear systems with

mainly square coefficient matrices, and which often arise from physical

problems. Fortunately such systems if solvable produce only a single or

29

unique 8o~ution obviating the need to deal with general solution sets.

Similar to vectors, matrices observe rules from an algebraic

structure, this time a non-commutative ring. Many matrices have

elements whose positioning form special structures and together with

the value of the entries produces certain properties. Such quirks are

essential for deriving relationships between matrices and identifying

classes of matrices which in some sense are easier to solve than others.

Special structures and properties are detailed below, but the solution

of large and intricately related equations often needs some manipulation

before a form corresponding to (2.2.4) is produced, consequently basic

operations on matrices are required.

EQUALITY:Two n":m matrices A and B are equal iff a.j=b .. for i=l(l)n,
l. l.J

j=l(l)m and is denoted A=B.

ADDITION: For two nxm matrices A=(a
ij

) and B=(b ..) is written
l.J

C = A+B = (aij+bij) = (c
ij

) for i=l(l)n,j=l(l)m

t and obeys the rules
(2.2.5)

J A+B = B+A and (A+B)+C = A+ (B+C)

SCALAR MULTIPLICATION: Let A,B be nXm matrices and a,SEm.

then

and

aA = a(a
i

.) = (aa ..) i=l(l)n, j=l(l)m
J l.J

a (A+B) = aA+aB, (a+S)A = aA+SA } (2.2.6)

MATRIX MULTIPLICATION: is possible for two matrices A and B only if A

has the same number of columns as rows of B. Let A be an mxp and B a

pxn matrix the product,

C = (c . .l
l.J

is an mxn matrix.

AB= , i=l(l)m, j=l(l)n

BASIC ALGEBRA: for compatible matrices A,B,C,

(2.2.7)

30

(i) ABIBA)

(ii) A(BC) = (AB)C

(iii) (A+B)C = AC+BC, C(A+B) = CA+ CB (2.2.8)

(iv) a(AB) = (aA)B = A(aB) J
Notice that for A and B nxm matrices setting n=l or m=l reduces scalar

multiplication to the same definition as for vectors. Selecting B to

be mxl defines matrix vector multiplication, and with A also lXm produces

the inner product operation.

As mentioned earlier certain matrix structures are useful, below

are some which recur throughout Linear Algebra problems.

so: NULL (or zero) matrix denoted 0, with a, ,=0 for all i,j
kJ

SI: IDENTITY matrix denoted I, a square nxn matrix with

{ .:
ilj

i,j=l(l)n
i=j

S2: DIAGONAL matrix (usually denoted D), nXn square matrix

o ilj
i,j=l(l)n

non-zero i=j

(2.2.9)

(2.2.10)

when a diagonal matrix has aii=a, a E lR it is sometimes called a sca~p

matrix. Non-zeros are situated on the main diagonal.

S3: UPPER TRIANGULAR MATRIX (U) is an nxn matrix in which all the

elements below the main diagonal are zero.

S4: LOWER TRIANGULAR MATRIX (L) same as structure S3 but with zeros

above the main diagonal, non-zeros below.

When the main diagonal is zero, S3 and S4 are termed stpictZy upper

(lower) triangular respectively.

Ss: a BAND MATRIX is an n<n matrix together with integers p and q

l<p,q<n such that a, ,=0 for i+q~j or j+p~i the
kJ

bandwidth w=p+q-l. (2.2.11)

31

Common matrices arising from this structure are the TridiagonaZ matrix

(p=q=2) and QuindiagonaZ matrix (p=q=3).

A subdiagonaZ is defined as a line of elements parallel to the

main diagonal with a
ij

for j<i, in the above structure there are q-l

subdiagonals. For a
ij

with i<j we define SuperdiagonaZs (in a band

matrix there are p-l). Notice that a band matrix restricts only the

positioning of non-zero elements. Individual sub(super)diagonals can

also contain zeros and adjacent groups of such diagonals allows the

construction of striped matrices.

S6: .. a SPARSE MATRIX is produced when the elements are predominantly zero.

Consequently band matrices of high order tend to be sparse e.g. the

tridiagonal matrix. Usually however, no restrictions on the placement

of the minority non-zeros are assumed, if a pattern exists (like a

banded fO~TI) the matrix is termed reguZarZy sparse otherwise irreguZarZy sparse.

S7: a DENSE MATRIX in constrast to S6 contains predominantly non-zero

elements and only a few zeros.

S8: a SYMMETRIC MATRIX is a square matrix of order n which is symmetric

about the main diagonal, that is a,,=a'j' i,j=l(l)n. A square matrix
J1. ~

symmetric about the opposite diagonal is termed per-symmetric.

Alternatively, a matrix which is symmetric with aji=-a
ij

, i,j=l(l)n is

termed skew symmetric (or ToepZitz).

S9: a CIRCULANT MATRIX A of order n has the form,

A = I
I

~l

"--------,, ~ 1 n-ll

, "i E lR, i=O(l)n-l
(2.2.12)

32

related to the circu1ant form is a Periodic Matrix which is often a

band matrix form of A.

S10: the TRANSPOSE of a matrix A is denoted At (or AT) of a rectangular

matrix and is formed by interchanging the rows and columns, that is

T (a, ,)= (a, j) and satisfies the following rules,
) l. l.

(i)

(11)

(Hi)

(At) t = A

(A+B)t = At+Bt

(AB)t = BtAt

(iv) IF A-1 exists (A-1)t = (At)-l (A-1 see later)

(v)
t

det(A) = det(A) (de~)a1so later)

Notice that if A=A
T

the matrix is symmetric.

1
(2.2.13)

)

Sll: PARTITIONED (BLOCK) forms of a matrix are constructed by dividing

the elements into non-overlapping submatrices, if the submatrices are

square kxk matrices the matrix is said to be in.kxk block form and

regularly partitioned, if submatrices are of different size we have an

irregular partition.

S12: a PERMUTATION MATRIX (usually denoted P) is a square matrix which

has precisely one entry in each row and column, with all other entries

zero. e.g. 3x3 permutation matrix

1

P o (2.2.14)

o

S13: a ROTATION MATRIX (R) is a matrix differing from the identity

matrix (I) in at most four elements which have the form,

rl.'l.' = r = case jj
and rji = -r

ij
= sinS

for given angle S. Sometimes the elements are adjacent where j=i+1

and the matrix can then be partitioned to produce a 2x2 submatrix

33

containing the elements for which the special notation below is often

used,

(2.2.15)

Accompanying the structures SO-S13 are a number of properties but before

these are given some additional concepts are required.

The idea of a vector norm (definition 2.1.2) can be extended to

matrices yielding,

Definition 2.2.3: A Matrix Norm for a Real nxn matrix is a real valued

function denoted I 1.1 I defined for all matrices A,B and a scalar a E lR

satisfying

(i) IIAI ha

(H) IIAII=o iff A is a null matrix

(Hi) IlaA11=la111A11

(iv) II A+B II ~ II All + II B II

(v) IIABII~IIAII IIBII

1

(2.2.16)

J
The left-hand side of (2.2.4) uses matrix vector multiplication and

indicates that both vector and matrix norms may appear together, in

such situations it is imperative that the two norms are compatible or

consistent. Compatibility means satisfying the condition,

(2.2.17)

Now, if we take x from a set S (with x E S iff Ilxll=l), and further

denoted Xo E s as the vector which makes I lAx II a maximum, then,

IIAII = IIAx II=max IIAxl1
o Ilxll=l

(2.2.18)

a matrix norm satisfying this stronger condition is termed a subordinate

norm. The condition is stronger than (2.2.17) because if ensures

compatibility as,

Definition 2.2.4: A is a convergent matrix when,

lim (k = A) ij k __ o for i,j=l(l)n O=null matrix

34

(2.2.20)

As the coefficients of A are used to construct norms it can also be

shown that limllAllk=o when A is convergent. k __

Definition 2.2.5: The determinant of a square matrix A, det(A), is

given by,

(i)

(ii)

(iii)

(iv)

If A=[ul is a lxl matrix det(A)=u u E E

The Minor M .. is the determinant of the (n-l)x(n-l) submatrix
~J

of A obtained by deleting the ith row and jth column

_ i+j
The Cofactor Aij associated with Mij is Aij-(-l) Mij

Thus the determinant of A for n>l is

n
det(A) = I aijAij , i=l(l)n

1
j=l

or (2.2.21)
n

det(A) I aijAij , j=l(l)n
i=l

depending on Whether the rows or columns are expanded.

An interesting question, (which leads to a very useful branch of Linear

Algebra) is whether the matrix A in a system can be substituted by a

simple scalar A EE. Formally, can some A for x;o!O be found for which,

Ax = AX, (2.2.22)

and is termed the eigen-problem. Alternatively we can use the following

definition relating the eigen-problem to the matrix determinant.

Definition 2.2.6: If P(A)=Det(A-~I) is a polynomial, with A an order n

matrix and A a scalar, the zeros (roots) of P are called eigenvaZues,

and associated with each value is an eigenvector x;o!O satisfying (2.2.22).

35

As A is of order n, P(A) can have at most n roots or eigenvalues

Ai' i=l(l)n and hence n eigenvectors, from Definition (2.2.2) each

vector is the non-trivial solution of the homogeneous system (A-AI)x=O.

P(A) is often termed the characteristic poZynomiaZ and A the character-

istic value.

Definition 2.2.7: The spectral radius p(A) of any nXn matrix A is defined

as the maximum eigenvalue associated with A. , i.e.,

p(A) = max IAil
l~i~n

(2.2.23)

Definition 2.2.8: The P-condition number of the matrix A is defined as,

P = b/a ,

where a,b E m satisfy a~IA.i~b, i=l(l)n and are the largest and
l.

smallest eigenvalues respectively.

(2.2.24)

The spectral radius is extremely useful (particularly in iterative

solution of linear systems) b~cause it allows the structure and properties

of a coeffiCient matrix via the eigenvalues to influence the performance

of the solution technique. ·To develop the use of the spectral radius more

definitions are required including the most common matrix norms.

Definition 2.2.9: The L
l

,L
2

and L~ matrix norms for an nxn matrix A are

given by, n
i jAll l = max L la .. i

l~j~n i=l l.J

maximum column sum (2.2.25)

n
IIAII~ = max L la .. 1

l~i~n j=l l.J

maximum row sum (2.2.26)

IIAI12 = P(ATA)t Euclidean Norm (2.2.27)

is the Hermitian or complex conjugate transpose of A.

These norms can be used to place bounds on the eigenvalues of a co-

efficient matrix by using the following theorems.

Theorem 2.2.1: p(A)~i IAI I for the nxn matrix A.

Proof:

Let A., i=l(l)n be the eigenvalues of A and x., i=l(l)n the
~ ~

associated eigenvectors, then,

and

hence for compatible norms,

IAil Ilxill = 11 Axil I:; IIAi I Ilxill

IAil < IIAII

36

for an eigenvalue of A, and in particular the largest, thus by Definition

2.2.7,
p (A) ~ I i All (2.2.28)

Corollary 2.2.1: If I IAI 1<1 by definition (2.2.4) A is convergent and

as p(A)<l must be true limp (A)k=o. Now I IAI 1<1 is a necessary and k __

sufficient condition for convergence but with p(A)<l this does not

follow as I IAI 1>1 could be true. Consequently p(A) is a tighter bound

on the convergence rate of A.

Theorem 2.2.2: (Gerschgorin Disk theorem)

Let D be the sum of the absolute values of elements along the sth
s

row excluding the element a of an nxn matrix A. Then each eigenvalue ss

of A lies inside or on the boundary of at least one of the n circles

with centre a .. and radius D., i=l(l)n.
~~ ~

Proof:

Let Ai be an eigenvalue of A then,

AAi = \xi
t and with xi =(Sl,S2, ••• ,Sn) and expanding to the form in (2.2.2) row s

37

has the appearance,

giving,

A.-a
l. ss

+ •••
I>s_l I>s+l

a l(-O-)+a 1(-0-)+'"
8,5- ~ sa+ ~

Thus,

I>n
+ a (-)

sn I>
s

1>1
1 A. -a 1 = 1 a 1 (Q) + •.. + 0 +

1. ss S I-l
S

s s

I>n
+ a (-) 1

sn I>
s

and if s has the largest row sum,

< 1, i=l(l)n iFs.

Hence,

IA.-a 1 E lasl+ '" + 0 + ••. a 1 = D
1. ss sn s

(2.2.29)

Corollary 2.2.2: If r of the circles form a connected region isolated

from all other circles the region contains exactly r eigenvalues.

Finally, one special bound for a matrix with special structure

Theorem 2.2.3: A symmetric matrix A satisfies p (A) =max 1 A. 1= 11 A 11
1 . l. 2
~l.~n

proof:

(2.2.30)

Indicating that p(A)<l is a necessary and sufficient condition for

convergence of A for a symmetric matrix.

We can now consider some special properties of matrices

-1
po: the INVERSE of a square matrix A is a square matrix A such that

AA-l=A-1A=I (i.e. commutative matrix product). Matrices with inverses

are termed nonsingular those without singular. A matrix is singular if
. -1

det(A) =0. Also det(A)det(A)=det(I).

plo Cramer's Rule. The inverse of a 2x2 matrix is given as follows,

38

A = =
1

ad-bc

and det(A}=ad-bc, so A is singular if a=c=O or d=b=O, etc.

REMARK: Although similar rules are available for large matrices for n>3

they are very complex and faster methods are available.

P2: a DIAGONALLY DOMINANT nxn matrix A is one where,

i,j=l(l}n.

If ~ is replaced by>, A is strictly diagonally dominant.

P3: a POSITIVE DEFINITE matrix A, is a real symmetric matrix for which

t n
x Ax>O for every x;lo from lR •

P4: an IRREDUCIBLE nxn matrix for n~l and two non-empty disjoint subsets

Sand T of W (a set comprising the first n positive integers) such that

S+T=W satisfies a, ,;lo with i E s, JET.
~J

PS: ORTHOGONALITY a matrix A is orthogonal if A-l=A
T

•

p6: SIMILARITY. Two matrices A and B are said to be similar if a non-

-1
singular matrix S exists such that A=S BS.

If we denote A and eigenvalue of A and x the corresponding eigen-

vector,
Ax = AX ,

and
-1

SAS Sx = A sx

B (sx) = A (Sx)

Thus if B is similar to A, it has eigenvalue A and eigenvector Sx.

2.3 DIRECT METHODS FOR THE SOLUTION OF LINEAR SYSTEMS

The previous two sections have introduced a mathematical basis for

Linear Systems of the form given in (2.2.4), i.e.,

39

!Ix = b • (2.3.1)

We now turn to methods of constructing the solution of the system,

-1
and assume for convenience that A is non-singular (A exists) so

that the solution is unique. The methods discussed are intended for

use on computers and so the solution of a system is generally only

approximate due to rounding errors introduced by the finite word (length)

calculations. However, the growth of errors is bounded in practice and

results are acceptable especially if double precision arithmetic is used.

The choice of solution method depends on a number of factors

including structure and size of the matrix A, the number of arithmetic

operations required to construct the solution, the amount of storage

available/required for (2.3.1), and the control of rounding error growth

(or stability) •

In this section direct methods of solution are considered, which

are applicable to small dense matrices, and have the advantage of

producing a solution after a fixed number of operations proportional to

the matrix order. Furthermore, in most cases the accuracy of the solution

is usually stable and adequate for our purposes.

Equation (2.3.1) is an example of an impZicitsystem, the solution

vector cannot be derived without modifications to the system, which

preserve the solution, and also give access to the unknowns.

A brute force approach is to solve (2.3.1) by converting it to an

equivalent expZicit form, ~sing the fact that A is non-singular. This

yields, -1
x = Ab, (2.3.2)

and x is constructed explicitly by matrix vector multiplication. This

implicit-explicit conversion is fine if A-I is already known, or easily

constructed but generally this is not the case. Instead direct methods

40

are aimed at a compromise which manipulates A and b to produce a

semi-expZiait form,
(2.3.3)

where x can be derived from an ordered substitution process, and A is

a matrix with an easily solvable structure, and b is a modified RHS.

2.3.1 Forward/Backward substitution

Linear systems which have upper or lower triangular matrix

structures (i.e. S3 and S4) automatically form semi-explicit solution

schemes and so are easily solvable. With A=L we write,

Lx = b , (2.3.1.1)

and with A=U
Ux = b (2.3.1. 2)

and the process of forming x is termed forward substitution for (2.3.1.1)

and backward substitution for (2.3.1.2~ As an example in the latter

case, the problem can be expanded to give a coefficient form,

u --12
"-

"-
"-

" "-
" o

L
u

'- I '- IJ " I '- u
nn

and the backsubstitution formula is,

x
n

= b /u
n nn

I

I

~nJ
x b

}
, i=n-l, ... ,l.

(2.3.1.3)

(2.3.1.4)

The method could fail if some uii=O' i=l(l)n, but implies from Definition

(2.2.5) that Det(U)=O which with property PO contradicts the assumption

41

that A was non-singular. The amount of work involved in back-

substitution is assessed by counting the number of scalar operations,

and from (2.3.1.4) this is,

Mults/Divs

Adds/Subs

n-l
1 + I «n-i)+l)

i=l

n-l
I «n-i-l)+l)

i=l

n
= -(n-l)

2

(2.3.1.5)

A similar formula with the same operation counts can be derived for the

forward substitution process (with A=L).

Given this simple technique of solving triangular systems, direct

methods are developed from the simple supposition that converting a

general matrix to an easily solvable triangular form, by operations

preserving the solution will minimise the amount of computational work.

Consequently direct methods are divided into two forms:

(i) Triangularisation Methods: which convert A to L or U form.

or (ii) Factorisation (or decomposition) Methods: which replace A

by a product of Triangular matrices.

2.3.2 Matrix Triangularisation

The most popular method for triangularising a matrix is Gaussian

Elimination which is based upon the use of three operations on the rows

of A with form like (2.2.1) which preserve the solution vector. The

rules are:

(i) row
i

can be multiplied by any non-zero constant ~ and the

result used in place of row
i

(i.e., scalar multiplication of

a row vector).

42

(ii) Two rows, row, and row, can be added together and used to
~ J

replace one of the rows, that is, rowi=row,+row" or row =
~ J j

row,+row, (alternatively vector addition).
~ J

(iii) Two rows can be interchanged.

The rules are applied to an augmented matrix A,(which is an nxn+l

matrix constructed by making b an additional column of A), to form a

-(1) -(2) -(k)
sequence of modified matrices A ,A , ••. ,A for k=l(l)n and when

k=l, "A(l) =A

k>l, o
~J

)
i=l(l)~,j=l(l)n+l

i=k(l)n, j=l(l)k-l (2.3.2.1) 1
a ~~-l)

(k-l)
a
ij

(k-l)
a

_ (i,k-l)a(k-l)
(k-l) k-l,j

i=k(l)n, j=k(l)n+l J
a
k-l,k-l

-(k)
when k=n,A is upper triangular, when the (n+l)th column the

modified b vector is removed.
(k-l)

a,
The

~,k-l
value «k-l) is termed the mu Uip Uer and there is a separate

a
k-l,k-l

value associated with each element set to zero. Thus, multipliers can

be stored in the strictly lower triangular portion of A assumed zero,

this is particularly useful when the same matrix is to be used to solve

a number of different right hand sides, as only the new vector has to be

modified.

Generally, the A(k) matrix has the form,

t(l)
(1)

all a
12

0
(2)

a 22

~

(1) (1)
a 1 ,k-1

_________ a
l,n

~ (k-1)
a k-1,k-l

0

I
0

(k-l)

ak_l,k
(k-I)

-----ak_1 ,n
(k)

a
kk

(k) ------akn

I (k)
a
n,k

I (k) ----------ann

(1) "1
a 1 ,n+1 I

(k-I) I
ak_1 ,n+lI (2.3.2.2)

(k)
ak ,n+1

a~~~+l J

43

at the end of the modifications in (2.3.2.1), and it is trivially

observed that if any a~:)=o, i=l(l)n the method breaks down as multipliers
~~

are impcssible to form.
(k)

The element a
kk

of (2.3.2.2) is the crucial

value in forming A(k+l) and is termed the pivot, it follows that if the

pivot is zero the method fails, and the use of methods to avoid failure

are termed pivoting strategies. Notice also, that (2.3.2.1) requires

the application of only the first two solution preserving rules, the

essential idea of pivoting is to replace zero pivots by non-zero values,

using the third rule to interchange rows. Adopting pivoting ensures that

Gaussian elimination fails only if A was originally singular, and we

assumed A was non-singular. The extensions of the pivoting strategy can

be used to control the stability of the method, in this case the pivot

value is swapped if a better one (i.e. compresses rounding error more)

can be found, and gives rise to a number of pivoting strategies.

(i) MAXIMAL COLUMN (or PARTIAL) PIVOTING:

This is the simplest method and selects an element in the same

column as the pivot but below it with the largest absolute va'lue, and·

swaps its associated row with the one containing the pivot.

(ii) SCALED COLUMN PIVOTING:

This is the same as (i) but scales the rows first by dividing the

row entries by the maximum row element before choosing the element.

(iii) MAXIMAL (total) PIVOTING:

This is the most general method, selecting an element by scaling

the remaining rows, and then using row and .column interchanges to produce

the best pivot value.

Although pivoting is useful for avoiding breakdown and controlling

rounding error they involve extra work and it is desirable to keep this

44

to a minimum, hence the simplest strategy that can be used is adopted.

The total number of operations for Elimination without pivoting is

Adds/subs

n-l 3 2

1 L (n-i) (n-i+2) 2n +3n -Sn
=

6
i=l

J

(2.3.2.3)

n-l n 2
L (n-i) (n-Hl) = -(n -n)

i=l 3

Mults/divs

Thus, the total number of operations to solve (2.3.1) requires the

addition of (2.3.1.S) and (2.3.2.3) yielding the expressions,

Mults/divs
3 2

n +3n -n
3

Adds/subs
3 2

2n +3n -Sn
6

) (2.3.2.4)

A number of variations to Gaussian Elimination are available which

minimise time and storage by making use of the special structure of the

matrix. The above method works for general non-singular matrices,

matrices with banded structures for instance rarely use as many operations

as (2.3.2.4).

Other methods for general problems include the Gauss-Jordan

algorithm and the Givens (orthogonal) Rotation method. The former

scheme follows (2.3.2.1) by a second sequence of matrices which eliminate

in the reverse direction to produce a diagonal matrix, which .is trivially

solved by n divisions and requires a total .of

3
2 Mults/divs n n

-+ n -2" 2
3

Adds/subs
n n
2 2

) (2.3.2.S)

operations. The Givens orthogonal triangularization method is identical

to Gaussian Elimination except that the equation,

(k)
a, ,

l.J

(k-l)
= ai,j

(k-l)
a, k 1 l., -

(k-l)
a
k-l,k-l

a(k-l) in
k-l,j

is replaced by the 2x2 rotation matrix operation

with

and

~ -1 ak_l,j ~ (k-l]
~ (k) 1
:k-l,jJ =

(k-l)
~ a,

- l., j

(k-l) (k-l)
0 sak 1 ' + ca,. =

- ,J

2 2
= 1 s + c

(k-l)/A c=a
kl

,,,
- ,J

l.J

s = (k-l) /6 a
ij

A = {[(k-l)j2 [(k-l)j2}I
" a ij + ak_l,j

45

(2,3.2.1)

1

(2.3.2.6)

which requires more basic operations than the elimination scheme, but

requires no pivoting to remain stable.

2.3.3 MATRIX FACTORISATION:

Factorisation is an alternative to triangularisation which avoids

modification of the rhs of (2.3.1) and so is more convenient for multiple

rhs solutions. Generally it also avoids pivoting. The idea is to

replace A by the product of a lower and upper triangular matrix,

A = LU , (2.3.3.1)

which on substitution for A and the introduction of an auxiliary vector

y produces an answer by solving the two coupled systems,

a) Ly = b } b) Ux = y
(2.3.3.2)

by forward and backward substitution respectively. A number of methods

for producing Land U factors which satisfy (2.3.3.1) are known and can

be classified according to whether the diagonal element tii or u
ii

are

set to 1 or equal (tii=uii), they are:

(i) Doolittles' method which (~ii=l, i=l(l)n) formulated as

a,. -
1J

1
[a .. -

J1

~ikUkj j~i

i-l
~ ~jkUkil j>i , i=l(l)n

k=l

(ii) Crouts' method with (u .. =1, i=l(l)n) given as,
11

1
= ~ii

i-l

[a. j - 2 ~1·kukJ·l
1 k=l

j>i, i=l(l)n

(iii) Choleski's method (~ .=u .. effectively)
i1 11

= (a
ii

-
k=l

i=j

i-l

~ij = (a
ji

- 2 ~ik~jk) /~ii , i>j,
k=l

j=l(l)n

I

1
J

Note that if any ~ .. or u .. is zero the methods breakdown.
J.1 11

46

(2.3.3.3)

(2.3.3.4)

(2.3.3.5)

The formulae

(2.3.3.3) and (2.3.3.4) are general methods for non-singular matrices,

while (2.3.3.5) is applicable only for symmetric positive definite

matrices and A=LLT. A root-free form of the Choleski with A=LDL
T

(D

a diagonal matrix) is also possible. Due to the fact that only the

entries of L are computed in (2.3.3.5) savings in memory and computation

time can be made .over Gaussian Elimination. The number of operations are,

square roots n 1 3 2
Mults/divs

n +9n +2n

I 6 (2.3.3.6)
3 2

Adds/subs
n +6n -7n

6)

but requires the relatively complex square root calculation, while

Doolittle's and Crout's method use approximately the same amount of

computation as Gaussian Elimination.

To define the types of matrices which can be solved using

triangularisation and factorisation methods consider the following

two theorems.

47

Theorem 2.3.1: If A is an nxn strictly diagonally dominant matrix or

positive definite A is non-singular and Gaussian Elimination can be

performed without pivoting and remains stable against the growth of

rounding errorSa

Theorem 2.3.2: If Gaussian elimination can be performed on a system

Ax=b without row interchanging, A can be factorised into the form A=LU.

Further improvements can be made to the methods if A has a regular

structure (like symmetry) or is banded. But as A becomes larger and

less dense the above methods produce fill-in (replacing zeros by non

zeros) increasing the amount of computation and storage. If the matrix

structure is irregular fill-in occurs in predictable places and we look

for alternative optimised methods of solution.

2.4 ITERATIVE SOLUTION OF LINEAR SYSTEMS

Iterative methods preserve the sparse structure of a matrix, but

do so by computing a sequence of approximations which converge

(Definition (2.1.4)) to the solution. The methods can provide

arbitrary accuracy depending on the number of iterations performed,

and are terminated usually when the difference between successive

approximations satisfies some tolerance.

To form an iterative scheme we split A (from (2.3.1)) into

matrices E and F such that,

A = E-F , (2.4.1)

48

which produces, Ex = Fx + b • (2.4.2)

Now if x(O) is some arbitrary selected start vector, and x(n) denotes

th
the n approximation to x (the exact solution), the iterative scheme

is,
(2.4.3)

-1 (n)
and providing E exists, x can easily be found. The amount of

(n)
work to construct x depends on the structure of E and F, in the

light of Section 2.3, the sensible thing to do is to restrict E and F

to easily solvable matrices. If E is a Diagonal matrix the so-called

simultaneous displacement methods (e.g. Jacobi, Richardson) result,

when E is lower triangular successive displacement methods (e.g. Gauss-

Seidel, SOR) are produced. In the simultaneous case the order that the

(n)
components of x are updated is unimportant, while in the successive

case a sequential modification order is imposed.

2.4.1 Simultaneous Displacement Methods

Consider the system A=D-L-U=D-B with B=L+U, put E=D and F=B and

substitute in (2.4.2)

DX(n) = BX(n-l) + b

and x(n) = D-IBX(n-l) + D-lb (2.4.1.1)

The Jacobi method. Now substitute for B=D-A to give,

(n) -1 (n-l) -1
x = (1-0 A)X. +D b (2.4.1.2)

which is also;
(n) (n-l) -lIb (n-l» x -x = D -Ax (2.4.1.3)

illustrating that the difference between successive approximations is

proportional to the difference between the true solution (x) and the

(n-l) .
x estl.mate. If we define CL (lR a scalar and r (n-l) =D -1 (b-Ax (n-l))

convergence to x can be accelerated by the formula,

49

(n) (n-l) (n-l)
x = x +Clr (2.4.1.4)

known as the Simultaneous Displacement method. Choice of the

acceleration parameter Cl is clearly important, and for some types of

matrices derived from differential equations bounds can be placed on

it. An alternative to (2.4.1.4) which is more sensitive to the errors

in approximation is to define Cl
i

E lR for each iteration giving

Richardsons method,
(n) (n-l)

x = x
(n-l)

-1- a r
n

(2.4.1.5)

The simultaneous method (2.4.1.4) is termed stationary because the

error of approximation is always affected by the same amount (Cl),

while (2.4.1.5) is nonstationary as the error at each iteration is

affected differently due to the changing Cl., Consequently the choice
l.

of Cl
i

is generally more difficult than in the stationary case.

2.4.2 Successive Displacement Methods

To derive the Gauss-Seidel method set A=D-L-U and E=D-L with F=U

to give,
(n) (n-l)

(D-L) x = Ux + b , (2.4.2.1)

consequently,
(2.4.2.2)

This is superior to the Jacobi form because (D-L) is lower triangular

and so the latest estimates of components in x(n) can be incorporated

to produce the remaining components. Implicitly using the most recent

values implies that x(n-l) can be overwritten with x(n) and hence

requires storage of only one approximation vector instead of two needed

by the Jacobi method.

As for simultaneous methods, an acceleration parameter w E lR can

be introduced deriving the Successive OVerrelaxation (SOR) scheme

so

from (2.4.2.1)

((n) (n-l)) (n) U (n-l) b D (n-l) D x -x = Lx + x + - x

so
((n) (n-l)) -1 [(n) (n-l) b (n-1)]
x -x = D Lx +Ux + -Dx

introducing the acceleration parameter gives,

(x(n}_x(n-1}) WD-l [LX(n}+ux(n-1}+b_DX(n-1}]

-1 (n) -1 -1 (n-l) -1
(I-wD L}x = wD (U-D+w D}x +wD b

2.4.3 Convergence of Iterative Schemes

NoW (2.4.1.1), (2.4.2.2) and (2.4.2.3) can be represented by the

general iterative form,

(n) (n-l)
x =Mx +c, (2.4.3.1)

where M is called the iteration matrix and c is a vector, which for

the above schemes take the forms,

-1 -1 -1
Jacobi M = (I-D A) = D B, c=D b

-1 -1
Gauss-Seide1 M = (D-L) U c= (D-L) b

M = (I_WD-1L}-1{WD-1U+(1_W}}, C=(I_WD-1L}-lWD-lb SOR

(i) (.)
The error vector e associated with the ith iterate x ~ is

(i) (i)
e = x-x

and with x the exact solution substituted in (2.4.3.1) we have,

x = Mx + c ,

Subtraction of (2.4.3.1) from (2.4.3.3) produces,

x_x(i} = M(X_x(i-l}}

Hence, e (i) = Me (i-1)

and consequently

(2.4.3.2)

(2.4.3.3)

(2.4.3.4)

51

(n) (n-l) n (0)
e = Me = ••• = M e

using consistent and compatible norms produces,

11 e (n) 11 ~ 11 M (n) 11 lie °11

~ IIMllnlleoll (2.4.3.5)

Thus from Definition (2.2.4) and Corollary (2.2.1) I IMI 1<1 for the

(i)
error to decrease and the sequence of approximations x to converge

(0)
to x for an arbitrary starting vector x

The error vectors of (2.4.1.4) and (2.4.1.5) satisfy,

(n) n (0)
e = (I-etA) e

and
(n+1)

e =
n

IT (I-a .A) e (0)

i=O l.

}

indicating the stationary and non-stationary nature.

(2.4.3.6)

Different methods produce different rates of convergence and this

together with the amount of work required for each iteration dictates

which method is used for particular problems. For instance, a more

complicated iteration method may converge significantly faster than a

simple one, but involve much more work per iteration; unless the amount

of work in two competing methods is approximately the same a simpler

iteration scheme could out-perform a complex one in terms of total

number of operations. Choice of iterative method is further

(0)
complicated by the selection of a good initial approximation x a

bad choice, some distance from x can force even an efficient method

to perform large amounts of computation. The definitions and theorems

below formalise these concepts allowing a numerical method of analysis.

Definition 2.4.1: Average Rate of Convergence

Let A and B be two nXn matrices. If, for some positive integer

52

is the average rate of convergence, for m iterations of A. If R(A
m

} <

R(B
m

} , B is iteratively faster for m iterations. Note also that the

number of iterations is inversely proportional to the average rate of

convergence. We can also distinguish which methods are better for large

numbers of iterations when ~ by

Theorem 2.4.1: Let A be a convergent nxn matrix. For all m sufficiently

large the average rate of convergence for m iterations R(A
m

} satisfies,

m
liro R(A } ~ -~np(A} = R (A)

'"
(2.4.3.8)

~

where R (A) denotes the Asymptotia Rate of Convergenae.
'"

Proof: m

R(A
m

} ~nllAmll
"

~nv ~n (p-l) m-p+l
- - --- [1 ~np (A)

m m m m

(m) m!
and

~n (P~l)
= -+ 0 as D)-k'O.

p-l (p-l) I (m-p+l) I m

with

m
-~np (A) lim R(A } = " R (A)

'"

Thus,

or-

Furthermore

An indication of the relationship between (2.4.3.1) and (2.3.2) the

explicit solution of (2.3.l) is contained in the following proofs:

Theorem 2.4.2: If the spectral radius of an nXn matrix M satisfies

-1
p(M}<l then (I-M) exists and

-1 2
(I-M) = I+M+M + (2.4.3.9)

(the righthand side of (2.4.3.9) is called the Neumann expansion.)

Proof:

(i) Let A be an eigenvalue of M then l-A is an eigenvalue of I-M.

(ii) If IAI~p(M}<l then I-M can have no zero eigenvalues and hence is

nonsingular (see characteristic polynomial Definition (2.2.6) and

property PO).

(Hi)
2 m

Put S =I+M+M + ••• +M
m

and (I-M)S
m

m+l = I-M

as p(M)<l, M is convergent (Definition 2.2.4) hence,

lim
m-><o

. m+l
(I-MlS =lJ.m (I-M) m

m--

lim S = (I_M)-l
m->a> m

= I

53

(iv) NOW (k) (k-l)
x = Mx + C

and

k
for k large enough M =0 hence,

x "S c = (I-M)-lc
k-l

(2.4.3.10)

(2.4.3.11)

using (2.4.3.5) a rough bound on the number of iterations is

given by,

11 x-x (k) 11 ~ 11 Mk 11 11 x-x (0) 11

and with p (M) ~ 11 M 11

Ilx-x(k)ll" p(M)k11x_x(0)11

(0)
and with the initial guess x =0 the relative error is derived

11 x-x (k) 11

Ilx 11 -t
and with a tolerance of 10 defining the error of approximation

k -t
termination occurs with p(M) ~10 and

-t
(2.4.3.12)

Consequently if the iteration matrix is convergent, it will converge to

the correct solution for x(O)=o, which gives a simple starting vector.

From (2.4.3.12) we conclude that the smaller the spectral radius the

faster convergence will be. For the Jacobi and Gauss-Seidel methods we

can prove the following.

Theorem 2.4.3: If A is strictly diagonally dominant then for any choice

of x(O) both Jacobi and Gauss-Seidel methods give vector sequences

(x(k)}~ which converge to x the solution of Ax=b.

Proof:

(i) Jacobi: Iteration matrix M=D-l(L+U) and for convergence I IMI 1<1

thus,
110-

1
(LtU) 11 ~ 110-

1
11 I i (L+U) 11 < 1

'and,
IIL+ull < \

110- 11

11 L+U 11 < i I D 11 as 11 0 11 I i 0-
1

11 > 11 I I i = 1

and this is a norm representation of property p2.

(ii) Gauss-seidel: M=(D-L)-lU so for I IMI 1<1

hence,

11 (D-L)-lull ~ 11 (D_L)-lll Ilull < 1

11 U 11 < 11 (O-L) 1I < 11011-11 L 11

IIL+ull ~ IILII + Ilull < IIDli

S4

Thus from Theorem (2.4.2) part (iv) both methods converge for any

(0)
x

Finally the last few theorems indicate bounds on the acceleration

parameters of (2.4.1.4) and (2.4.2.3).

Theorem 2.4.4: The optimal value a for the simultaneous replacement

method x(n) = x(n-l)+ar(n) with r(n)=D-l(b_Ax(n-l)) is a=2/(a+b) where

a and b are the largest and smallest eigenvalues of A.

Proof:

Assume (I-0-1A) has n-linearly independent eigenvectors vi

associated with n distinct eigenvalues A. and let ~. be eigenvalues of
l. l.

-1 -1
o A, for i=l(l)n. Then the method converges with p(I-aD A)<l and by

definition a~~.~b and A.=l-a~. for i=l(l)n.
l. l. l.

Consequently,

and o < a < ~
b

55

(2.4.3.13)

-1
Now to achieve optimal convergence we minimise p(I-aD A} resulting

in 2
Il-aal = -Il-abl ~ a = a+b

(2.4.3.14)

and so, b
b-a (-}-l

Il-allil
a

< 1 ~ b+a
(E.) +1

,

a

(2.4.3.l5)

and from Definition (2.2.8) minimising the spectral radius is related

to the p-condition number of the iteration matrix. For the SOR method

w is characterised by the results.

Theorem 2.4.5: (Kahan) If aii#o i=l(l}n for a matrix A and iteration

matrix M ,p(M }>Iw-ll hence,
w w

Proof: (omitted).

p(M) < 1 iff O<w<2
w

Theorem 2.4.6: (Ostrowski-Reich) If A is a positive definite matrix and

(O)
O<w<2 the SOR method converges for any initial approximation x

Let M, and M be the iteration matrices of (2.4.l.l) and (2.4.2.2)
J g

respectively.

2
Theorem 2.4.7: If A is a positive definite tridiagonal matrix p(M }=[p(M,}] <1

g J

and the optimal value of w in SOR is,

with p(M }=w-l,
w

w = 2

I 2
l+il-p (M,)

. J

which indicates that the Gauss-Seidel method is iteratively faster than

Jacobi's method.

Theorem 2.4.8: (Stein & Rosenberg) If aij~O for i#j and aii>o for

i,j=l(l}n then one and only one of the following is true:

(i) O~p(M } < p(M,} < 1
g J

56

(ii) 1 < P (M.)
J

< p(M)
g

(Hi) P (M.) = P (M) = 0
J g

(iv) P(M
j

) = P (M) = 1
g

Finally, we have made one critical and implicit assumption about the

iterative schemes discussed, and which is termed the 'consistency

condi tion I •
.. (n) (n+i).

That is, when x 1S subst1tuted for x , x 1>,1 are

also solutions. Consequently, when the method converges it is assumed

that it does not diverge on subsequent iterations.

2.5 PARTIAL DIFFERENTIAL EQUATIONS

Almost all problems involving rates of change of two or more

independent variables representing some physical quantity (e.g. time,

length, etc.), leads to a partial differential equation (PDE) which can

be written in a general form as,

d ~~ + e ~~ + fu + g = O. (2.S.1a)

The variables a,b,c,d,e,f and g are called coefficients and can be

zero, or functions of the independent variables x and y and also the

dependent variable u. When coefficients are composed only of functions

involving x and y (2.5.la) is termed linear, but if they also contain

terms with u or its derivatives they are called non-linear equations.

It is possible to classify PDE's further and (2.5.1~ is termed,

elliptical when b
2
-4ac < 0

parabolic when b
2
-4ac = 0

2
hyperbolic when b -4ac > 0

1

J
(2.5.1b)

We also make the implicit assumption that all terms in (2.5.1) can be

formed and this implies that the solution function u is twice

57

differentiable and continuous in a bounded space called a region

(denoted R). Associated with R is a boundary (denoted C) which

defines the limits of R, and generally we are not interested in solving

(2.5.1) beyond the boundary. Corresponding to (2.5.1) in R, a set of

boundary conditions are attached to C which are functions describing

the behaviour of u at the periphery of the region. The two main types

of boundary conditions are specific and generaZ boundary conditions.

With specific boundary conditions, the dependent variables can be

assigned specific values at specific points on C, and can be further

partitioned into homogenous and non-homogenous types. Specific homogen

ous boundary conditions are such that if U=f
l

, (where fl is a function

on the boundary) au=af
l

is satisfied for some parameter a, any other

specific condition not obeying the relation is non-homogenous. on the

other hand, general boundary conditions arise when the behaviour is

unpredictable on C. For instance, we might want a solution to u in R
3

,

a region made up of two subregions Rl and R2 which in physical terms

constitute different mediums, the boundary between Rl and R2 may be

uncertain but usually functions can be derived using values not on but

adjacent to the boundary in both regions, these functions are then

interpreted as C. In this thesis the partial differential equations

will possess specific boundary conditions.

Given a partial differential equation we can define four main

types of boundary value problems (which amount to solving the equation

under different boundary conditions), they are:

(i) Dirichlet problem where u is specified at every point on C

(ii) Neumann problem where only values of the normal derivative are

given on C.

58

(iii) Robbins problem where a linear combination of u and its

derivatives is given on C.

(iv) Mixed problem where u is given for part of C and the normal

derivative for the remainder leading to a discontinuous solution

near the boundary.

In addition to the boundary conditions many problems also define

initial oonditions which describe the state of the physical problem at

some stage. In problems where time (t) is one of the independent

variables, t=o (zero-time) is adopted for the instant when the initial

conditions are valid, and is the starting point for the solution of

the equation. The boundary and initial conditions arise from the

physical constraints of the problem rather than from the form of eqn.

(2.5.1) and are sometimes termed 'auxiliary conditions'.

Definition 2.5.1: A partial differential equation is said to be well-

posed if its auxiliary conditions are specified in such a way that there

exists a unique solution, and that small changes in the auxiliary

conditions transmit only small changes to the solution.

Parabolic and hyperbolic equations are derived mainly from problems

which can·define time as an independent variable and so possess initial

conditions. For instance, the simplest parabolic problem is,

au
at (2.5.2)

derived from the theory of heat diffusion, u is the temperature at a

distance x units from one end of a thermally insulated metal bar with

length (£) at time t. The initial conditions are clearly the temperature

of the rod at t=O, and the boundary conditions the temperature at the

ends of the bar (x=O, x=£ say).

59

The simplest hyperbolic equation is that of a vibrating string

more generally the wave equation given by,

(2.5.3)

where u is the transverse displacement (of the string) at distance x

units from one end of the vibrating string again of length £ at time t.

This time initial conditions are the initial displacements of the string

and its shape and velocity at various points from x=o to x=£ given by

au
u and at' the boundary conditions are the displacements of the string at

its ends (i.e. x=O, x=£).

REMARK: Hyperbolic equations arise generally in vibration problems where

there are discontinuities over time (e.g. shock waves with discontinuities

in speed, pressure and density).

The simplest and best known elliptic equations are the two-

dimensional Poisson and Laplace equations given by,

a) a
2
u

2
+ l...!! + g(x,y) = 0

ax
2

a/
and (2.5.4)

a
2
u

2
b) + l...!! = 0

ax
2 a/

and associated with steady state or equilibrium problems. The standard

physical examples being:

(i) velocity potential for the steady flow of an incompressible

non-viscous fluid (modelled by (2.5.4b))

(ii) The electric potential associated with a two-dimensional

electron distribution of given charge density (modelled by

(2.5.4a)) •

Throughout the text we will assume that our problems are well-posed.

60

The usual requirement for hyperbolic/parabolic equations to be well

posed is that the region R is open in the direction of one of the

independent variables (for our purposes t), giving an infinite region.

While for elliptical equations all the points on the boundary must be

specified and R must be a closed region (see Fig.2.1).

2.5.1 Solution of PDE's Using Finite Differences

In solving an equation of the form (2.5.1) we integrate to produce

the function u which is twice differentiable and continuous, and when

suitably differentiated produces (2.5.1). There are two main ways to

recover the function - the Analytic and Numeric approaches. A purely

analytical method is symbolic and attempts to derive an exact finite

mathematical formula. The numeric approach, approximates the function

with numeric values at various points in R. A cross between purely

analytic and numerical approximations are the approximate analytic

methods, these replace the finite exact formula of analytic methods by

an easier derived formulation often an infinite series, the methods then

become approximate as some terms in the series must be neglected

producing truncation errors. Analytical methods have the advantage that

the character of the solution (at key positions in R) can be easily

extracted but are hampered by difficulties in representing boundary

value information as regions and boundaries become more complex. We

shall use only numerical methods and in particular the finite difference

technique, where the solution for a number of points in R is written

in tabular form.

The first step towards a finite difference solution is to

discretize the region R, this means selecting specific points at which

61

(2.5.1) will be solved numerically, the solution is then discrete

rather than continuous as in the analytic approach. The easiest

method of specifying points which cover the whole region is to

envisage R as a Cartesian space with independent variable axes (of the

space) as illustrated in Fig.(2.1a). Partitioning the axes into

uniformly spaced points separated by distances 6x (in the x direction)

and 6t (in the t direction) produces a discrete set of points, with

x =t =0
o 0 = xo +i6x i=O (l)R, } x.

l.
(2.5.1.1)

t. = to+j6t j=O,l, .••
J

Drawing the abscissa and ordinates of all these points defines a

rectangular grid over R, and the set of solution points are simply

the intersecting points of horizontal and vertical lines, and termed

grid (nodal or pivotal) points.

The next step is to approximate the solution of each grid point

in R, the most popular method is to employ the Tay10r expansion. When

a function u and its derivatives are single valued, finite and

continuous values of x, the Taylor expansion is,

u(x±h) = u(x) ± hu'(x) +

and for a value t

u(t±k) = u(t) ± ku'(t) +

h 2
- u"(x) ±
21

k2
- u" (t) ±
21

au
with h=6x, k=6t, and u' (x)=--, ax

3
h "' -u
31

3
k .It

~

(x) + •••

(t) + .,.

etc.

(2.5.1.2)

(2.5.1.3)

Forming u (x+h) +u (x-h) and rearranging to isolate u" (x) produces,

u"(x) = ~U(X+h)-2U(X)+U(X-h)} + T

b) T = {
2h2 (4) 2h4 (6)

- -- u (x) + -- u (x)
41 61 + ••• }

) (2.5.1.4)

a)

with

known as the central difference formula. Considering u(x+h) and u(x-h)

t

lit I

o

r open direction

R

~

lIx
Initial conditions

'" Q)

"
'" >
:>. ...
'" 'g

" 0
<'l

level

level

-"

FIGURE 2.la: Open region for parabolic/hyperbolic equations

y
•

Boundary values

'" Q)

" R
'" >
17
'" '0 s::
" 0
<'l

P21

PH P
l2

--"
o x

Boundary values

FIGURE 2.lb: Closed region for elliptical problems

62

j+l

j

x

individually we have the forward and backward differences

a)

b)

and

1
u' (x) ~ h'lu(x+h)-u(x)} + T

h h
2

(3)
T ~ -{ 2j""'1" (x) + 31 u (x) + ••• }

1
u' (x) ~ h'l u (x) -u (x-h)} + T

T ~ {!!....u" (x)
2!

2
h (3) () + - u x
3!

+ ••• }

are derived.

I
I

63

(2.5.1.5)

(2.5.1.6)

The partial derivatives are formed by applying (2.5.1.2) in the x-

direction and (2.5.1.3) in the t-direction. If P
ij

is the grid point

at coordinate (ih,jk) then the approximation of u at this point is

U(ih,jk)~Uij and it follows that,

2 a u
(-2) 'j
ax l.

, 12 {u((i+l)h,jk)-2u(ih,jk)+u((i-l)h,jk)}
h

• h12 {ui+l,j-2ui,j+ui_l,j} , (2.5.1. 7)

neglecting the T term from (2.5.1.4) makes the formulation approximate

and T is called the Trunaation error. We denote the error above as

O(h
2

) indicating that the largest (or principal) term in the truncated

part is dominated by h
2

This assumes that the higher derivatives are

small relative to powers of h. Likewise,

au •
(ax) ij with O(h)

1
-¥ui j l-2u, j+u, '-l} k I + 1., 1.,)

au
(at) ij

~ lr } "k ui '+l-u, , with O(k)
,J 1.,)

error

2
with O(k) error

error

Now consider the parabolic equation of the form,

au
-~

at 1

(2.5.1.8)

(2.5.1.9)

(2.5.1.10)

64

Initial condition u(x,O) = f(x)

f
)

(2.5.1.11)

Boundary conditions u(x,O) = u(~) = °
At point P" (2.5.1.11) is approximated by substituting (2.5.1.10) and

~J

(2.5.1.7) for the partial derivatives, yielding,

1 1) 3u, j l-u, ,} = --'2'!u, 1 ,-2ui ,+u, 1 j} + Tij k 1., + 1.J h ~+ ,J J ~-, I
h 2 4 2

J
(2.5.1.12)

a u k a u T, , = (4) '+6 h ' (2)i '+<1> k + ...
~J 12 ax ~ i' J 2 at ,J j

T" is the Local Truncation error, neglecting
~J

this term gives an approximate value for u,' at the point P, , and after
~J ~J

re-arrangement and with r=k/h
2

, we have,

Ui,j+l = rUi +l ,j+(1-2r)uij + rui_l,j , (2.5.1.13)

known as the classical explicit formula, its structure is shown by the

molecule on Fig. (2.1a) and it follows that given three points on the

jth abcissa (the jth time level) then one point of the (j+l)th level

can be computed. The initial conditions of (2.5.1.11) gives us all the

points on t=o hence we can compute all the points on t=1,2 etc. by

repeated application of (2.5.1.13). Further suppose that there are n

internal points along t=o (i.e. not counting x=O, x=2) then a complete

time level can be formulated as n applications of (2.5.1.13). Numbering

the points from left to right on the jth time level produces the n

linear equations,

(1-2r)u
l

,+ru
2

'
,J ,J

= u -ru
l,j+l O,j

rU
l

,+(1-2r)u
2

,+ru
3

'
,J ,J,J = U2 ,j+l

ru 1 ,+(1-2r)u j = u -ru n- ,J n, n,j+l n+l,j

65

and as u .=u 1 .=0 (boundary conditions) this yields a linear system
O,J n+,J

of the form (2.4.3.1) given by,

(j+l)
u, =

l.
+ b , (2.5.1.14)

with,

r 1-2r r l h jl r 1

0 IU2j

l,j+ll

u ~j) (j+l)
U2 ,j+l

= u
i

=
l.

1T-2r r

A =

r

r 1-2~ t'nj ~n,j+=l nxn -

o

r-ruo,j l
0

C:Un+l,jJ

From the structure properties SO-S13 and for large nJA is symmetric

sparse banded and tridiagonal and is already in explicit form and

solved simply by a matrix vector multiplication. Successive levels

are constructed by repeatedly solving (2.5.1!~) replacing the old

level by the new at each iteration. If (2.5.1.10) had been a backward

difference, substitution into (2.5.1.11) would have produced the linear

system,

with,

(j+l)
Au.

l.

(.)
= u J

i
+ b , (2.5.1.15)

66

r2r -r l r' l o,J
-r 1+2r -r

~
0

A = b =

l 0 -r~ 0

bn+l,jJ
-r 1+2r

which is diagonally dominant, symmetric, sparse and tridiagonal, but

yields an implicit system which requires direct or iterative solution

techniques at each level. The formula corresponding to (2.5.1.12) is

called the aZassiaaZ impZiait formuZa.

2.5.2 Convergence, Stability and Consistency

Given a solution method, how can we be sure that the approximations

at successive levels will stay close to the true solution of the problem.

Convergence: Suppose U is the exact solution of the PDE, and that u is

the exact solution of the finite difference formula. If u approaches U

along a time level or at a point as 6x and 6t tend to zero the method

is convergent. This corresponds to introducing more and more points,

and hence finer and finer grids, and at some stage the points will be

so close together that the discretized solution will look very much like

a continuous one. Consequently, the difference U-u is termed the

disaretization (or global trunaation) error. The choice of grid size

is critical to the success of the approximation, and can be analyzed

using local truncation terms, we might also consider improving the

result by estimating the error but this usually involves evaluating

unknown derivatives leading to a more complicated process.

Stability: We actually solve the difference equations on a computer

67

with inherent rounding errors. The initial conditions themselves

introduce additional errors associated with the gathered data from a

physical process. Now if the finite difference formula was solved

exactly (i.e. no rounding errors) and they limited the amplification

of errors in all components of the initial conditions the formula would

be stable. Successive time levels can consider the previous level as

initial conditions and so limiting error growth also limits rounding

error.

If we assume that h+O and k+O convergence and stability can be

related using,

Theorem 2.5.1: (Lax's equivalence theorem)

Given a properly posed linear initial-value problem and a linear

finite-difference approximation to it that is consistent, stability is

a necessary and sufficient condition for convergence.

Now suppose that U
o

is the exact and U
o

the estimated initial

conditions given that e.=uj-u, is the error on the jth time level,
J J

substitution into (2.5.lli) yields e,=Ae, 1 which by repeated substitution
J J-

produces ej=Aje
o

and using (2.4.3.2)-(2.4.3.5) indicates that convergence

and stability of the methods occur if IIAI 1<1. Likewise (2.5.1.15) is

diagonally dominant and symmetric indicating that solution by direct

or iterative methods at each level will also provide a stable hence

convergent method.

This leaves only the problem of consistency. A finite-difference

method may be stable but may converge to the solution of a different

differential equation than the one intended as k~ and h+o, such a

method is said to be inconsistent. We assume throughout the work

that equations are consistent and so matrix theory and convergence can

68

be applied to finite difference methods using Theorem(2.5.l2

Finally the technique described for solving the parabolic form

(2.5.1.11) can be applied to other equations deriving other structured

coefficient matrices and corresponding solution methods.

For the 2-D elliptic P.D.E., i.e. Laplace equation (2.5.4b) with

Dirichlet boundary conditions u(x,y)=O on C, corresponding to Fig. (2.lb)

a five point formula,

4u ,-ui 1 ,-u, 1 ,-ui ' l-u, , 1 = ° , i,] + IJ 1.-,J ,J+ 1.,J-
(2.5.1.16)

2
is derived and assuming n internal grid points with a columnwise

ordering (Pij~(j-l)n+i) of points and hence equations produces a co-

2
efficient matrix A of order n of the form,

< n+l)

-1 ""1

A =
C~

-1 , b=O , (2.5.1.17)

-1

~ L -1

-1

-1 ~

a symmetric sparse banded matrix which illustrates simple striped

features. Similarly, the 3-D problem of the form,

(2.5.1.18)

(x,y,z) E lR =- (O,l,)x(O,l)x(O,l)

and boundary conditions,

u(x,y,t) = °
produces a cube dissected by a three-dimensional grid with spacing

~x,~y,~z and when ~x=~y=~z produces a seven-point finite difference

formula,

69

6u, , k-ui 1 ' k-ui 1 ' k-u , , 1 k-u , j 1 k-u , 'k -U, j k 1 ~/J, + ,J, - ,), 1.,)+, 1., -, 1.,), +1 1., , +
= 0

(2.5.1.19)

3
specified at the n grid-points in Rwith u(Ux, jlly, klIz)=u, , k

1. , J ,

ordering these points produces the linear system,

-I

A =

-I

with,

rj +l

-J

-J

o

L

1

-I

A I 3 3
~n Xn

o

-J

-J

Bj+n 2 2
n xn

i=l(l)m

B. =
J

j= (i-I) (l)m.

(2.5.1.20)

2 2
with I and J the n Xn and nxn identity matrices respectively, and u,d

3
n x 1 vectors.

Clearly, when n is large these matrices produce large sparse

banded matrices, where even the band is sparse in structure.

2.6 MISCELLANEOUS ITEMS

2.6.1 Convex Sets

Defini tion 2.6.1.1: A convex combination of points aI' a
2

, ... , an E lR n is

a linear combination a=alal+a2a2+ ••• +anan where a i E lR non-negative
n

and satisfy 2 ai=l.
i=l

70

Definition 2.6.1.2: A vector space (or a set of points) A is convex

if for all pairs of points a
1

, a
2

E A and scalar Cl E lR then any convex

combination a
3

=aa
1

+(1-Cl)a
2

E A, (i.e. closed under convex combination).

A point is called an extreme point of a convex set if it cannot

be represented by more than one pair of points in A.

Definition 2.6.1.3: A convex polyhedron is the set of all convex

combinations of a finite number of points. A Simplex is a convex

polyhedron generated by n+1 points which do not lie in a plane formed

from point vectors in lR n, e.g. a Simplex in lR 2 is a triangle, in

lR 3 it is a tetrahedron.

2.6.2 Rings and Fields

Let K be a non-empty set with two binary operators, say addition

denoted + and multiplication by juxtaposition, K is a ring if it

satisfies the axioms:

1. For any a,b,c E K (a+b) +c=a+ (b+c)

2. There is an element 0 E K called the zero element and a+O=o+a=a

for a E k.

3. For each a E K there is an element called the negative of a, denoted

-a E K such that a+(-a)=(-a)+a=O.

4. For any a,b E K a+b=b+a

5. For any a,b E K (ab) c=a (bc)

6. For any a,b,c E K, a (b+c) =ab+ac and (b+c)a=ba+ca

K is called a commutative ring if a.b=b.a for all a,b E K, and a

with a unit element has 1 E K such that a.1=1.a=a for all aE K.

field is a commutative ring with a unit element if every

non-zero element has a multiplicative inverse a -1 E R such that

-1 -1
a.a =a. a=1.

ring

A

71

2.6.3 O-Notation

We use a technique involving asymptotic notation to compare two

competing algorithms which concentrates on the basic number of

operations or component cells in an array design. The notation we

adopt is the O-notation.

Definition 2.6.3.1: f(n)=O(g(n» is used to represent the relationship

If(n) I ~ clg(n) I for all n~no' where c and no are constants.

For operation counts (2.3.2.4) and (2.3.2.5) we can put,

3 2 3 2
fIn) = [n +3n -nj and gIn) = [n +2n -nj

for mults/divs

hence I f (n) I ~ cl g (n) I 3
c~ n =2

2 0
3 3

as n- f(n)->n g(n)"'n consequently g(n)=O(f(n» and f(n)=O(g(n» and

the methods are asymptotically equivalent.

3 3
Futhermore f(n)=O(n) and g(n)=O(n) and we say the algorithms

have o(n
3

) complexity. Backsubstitution is an o(n
2

) complexity problem

from (2.3.1.5) and as o(n
2

)<o(n
3

) solving an upper/lower triangular form

is always computationally easier than a general matrix.

We can now substantiate the claim that converting a linear system

to its explicit form (2.3.2) requires more computation than triangular-

isation.
-1

If A exists implying A is a non-singular matrix, say of

order nXn,
-1

AA' = I I (2.6.3.1)

-1
taking each column of A as an unknown vector with the corresponding

column of I as the rightside produces n linear systems. Each system

requires o(n
3

) operations and so forming A-I and solving (2.3.2) has

434
O(n) complexity, it follows as O(n)<O(n) that Gaussian Elimination

is better.
4

O(n) is a very rough bound, by making use of the sparsity

72

in I and saving multipliers on the first solution, with subsequent

solutions obtained by modifying rhs and back substitution operations,

the time can be reduced to 0(n
3
), this makes the two methods asymptotically

equivalent but is rather misleading.
-1

In practice, when A is unknown

and A is a general matrix Gauss elimination or Factorisation is preferred,

asymptotic analysis ignores the value of c which in this case is large

enough to affect the choice of method. For parallel algorithms extra

processors are incorporated to perform some operations simultaneously,

and although the same notation is used the number of processors and

value of c become important. In comparing parallel with sequential

algorithms an order of magnitude drop in complexity is expected due

to simultaneous operations, while comparison of two parallel algorithms

with the same asymptotic number of processors indicates changes in c.

Consequently improvements to eXisting parallel algorithms seem less

dramatic.

CHAPTER 3

FOUNDATIONS OF SYSTOLIC ALGORITHMS

"You can observe a tot just by watching"

Yogi Berra.

"This is the awe-inspiring universe of magic:

There are no atoms, onty waves and motions

a U around •.. "

-The Atreides Manifesto
extract from "Heretics of
Dune", by Frank Herbert.

73

In this chapter the focus of attention shifts to systolic

algorithms and their corresponding arrays. Section 3.1 defines basic

concepts such as systolic spaces/processor geometries, wavefronts and

types of systolic arrays. A basic set of axioms is given for systolic

design which play a similar role to the algebraic structures in the

previous chapter. Complementing these 'systolic' structures is a set

of technology conscious heuristics which define practical design limits.

Common networks are identified, and in Section 3.2, are used to illustrate

systolic principles for the basic numerical methods from Chapter 2 forming

a reference set for later discussions. The snapshot method for tracing

systolic array operation is adopted for hand testing, before more

theoretical techniques for manipulating systolic spaces and structures

by means of re-timing and replacement are examined in Section 3.3. A

mapping technique is used to translate abstract designs into OCCAM code

providing automatic snapshot generation by program execution and implicit

algorithm verification. Section 3.4 considers constraints imposed by

VLSI technology validating the existing design heuristics and briefly

examines area/time tradeoffs. Finally in Section 3.5 we propose new

design heuristics in the light of recent innovations in 3-D VLSI design

and optical computing and propose an alternative framework, the soft

systolic paradigm, used in later chapters.

3.1 SYSTOLIC SPACES AND STRUCTURES

At the most abstract level systolic computation demands only that

moving data and instruction sequences interact to achieve some

computation in parallel, while preserving a pumping action. This high

level view motivates the following definitions which define hierarchical

74

levels of design complexity, illustrating that technological constraints

imposed on systolic arrays limit systolic algorithms to a narrow design

domain, and consequently small problem space.

Definition 3.1.1: A Data (fZow) sequence (D) is a sequence of data
s

elements all of the same type which has direction and speed.

The sequence can be represented by a triple D =(a,b,B) where
s

a=<a
l

,a
2

, •.• ,a
m

> is a sequence of length m, bEEn is an n-space

direction vector and B is a speed (velocity) parameter.

Definition 3.1.2: An Instruction (fZow) sequence (I) is a sequence of
s

instruction procedures consisting of instructions from some finite set

of instructions, which has direction and speed.

Instruction sequences are also represented by triples I =(p,b,S)
s

where P=<Pl,P2, •.• ,Pk> is a finite sequence of procedures and b,B have

the same meanings as above. Individual procedures are considered

similar to communicating sequential processes (Hoare (781). For a

systolic computation to occur data and instruction sequences must move

in a common space.

Definition 3.1.3: A systoZic space is a cartesian space of dimension m,

where m is greater than or equal to the maximum dimension of direction

vectors taken over all data and instruction sequences flowing in the

space.

By the property that the systolic space is cartesian it can be

discretized to produce points (locations, sites or co-ordinates) by

using vectors with integer components. Because the space is at least

as large as the space required by flow sequences, they can be mapped

into it by assigning sequence elements to contiguous points in the

direction of the direction vector. The velocity parameter preserves

75

the pumping action by defining a beat or pulse.

Definition 3.1.4: A systolic beat or pulse of a sequence (a,b,e) is

the number of points it moves in unit time along direction b. If we

assume a uniform notion of time throughout the space all the beats of

sequences can be normalized to give a global or synchronous clocking

mechanism. This mechanism can be used for timing systolic computations.

Now imagine we have a number of data sequences passing through

the same space (S) then two pcssibilities are apparent, either:

(i) Some sequences collide, that is elements of the sequences occupy

the same point in S at the same beat, or

(ii) No elements of sequences occupy the same point in S on the same

beat.

In the first case it is clear that co-habiting elements may interact

while in the second case no interaction is pcssible. Yielding

Definition 3.1.5: A potentiaL computation site is produced at a pcint

in a systolic space where elements from different data sequences occupy

the same pcint at the same instance in time. Hence a collection of data

sequences can be assigned a 'computational potential' according to the

number of sites formed from the time they enter the space to the time

when they leave it and this in some way measures the implicit parallelism

of the dataflow. In order to fulfil this computational pctential a

catalyst is required and takes the form of instruction sequences.

Instruction sequences are assigned to the systolic space just like data

sequences with procedure elements occupying pcints. A single systolic

beat is then divided into a systole phase for movement between pcints

and diastole phase where the procedure in the node is executed. The

cycle time is the total number of global beats required to complete the

76

most complex procedure in the space.

Definition 3.1.6: The union of a systolic space, data and instruction

sequences which preserve a pumping action, with instruction sequences

passing through potential computation sites is termed a systolia

aZgorithm.

Some simple characteristics of systolic algorithms follow from

this general definition. Firstly, the pumping action is only preserved

if at least one (possibly an instruction) sequence has non-zero velocity.

Second, elements of distinct instruction sequences cannot occupy the same

point at the same time. Otherwise distinct procedures could interfere

with each other's computations on the co-habiting data elements generating

erroneous results. We shall call systolic algorithms possessing these

qualities well-posed and otherwise ill-posed. The computation performed

at points in systolic space by a well-posed algorithm are unique, with

data modified according to the procedures residing at each point. The

time of a systolic algorithm T can then be measured by the number of

cycles from the first creation of a computational site to the last.

To simplify discussions about systolic algorithms it is useful to

consider whole collections of sequences together motivating the

definition below.

Definition 3.1.7: A data or Instruction (flow) group is a group of

sequences which share a common direction and speed and also occupy non

overlapping regions of points in a systolic space.

Notice that once elements of a group are assigned points in space

they remain stationary with respect to each other. The task of

reasoning about groups is then simplified if their elements are

regarded as wavefronts.

77

Definition 3.1.8: Let di=(ai,b,S) i=l(l)k define k sequences forming a

(k-ary) group. A systoZia wavefront is defined by connecting points

containing the elements with the same location in different sequences,

i.e. ai(j) j=l(l)m for sequences of length m. When j=l the principal

or leading wavefront is defined.

The stationary property of groups ensures that wave fronts move and

act according to the Huygens principle whereby no two waves from the

same source (group) can interfere or cross one another. Borrowing

further ideas from Wave Theory in Physics provides a natural terminology

for data and instruction flow in systolic algorithms. For instance, the

concept of wave duality can be adopted for flow sequences. During the

systole or flow phase of a beat data and instructions become

indistinguishable, but in the diastole phase take on different properties

with instructions capable of performing actions and data only capable

of being acted upon. Systolic wave duality is strengthened if we

consider a uniform (e.g. binary) representation for both data and

instructions and further limit instruction procedure elements to single

operations. We might also consider coupling different systolic designs

by methods such as pipelining. For two algorithms sl and s2 boundaries

between the systolic spaces exist where changes in beat and direction

of flow could occur. In a similar manner to the refractive index for

the change in the speed of light and Snell's law for the angle 'of re

fraction in physics we might define a systolic index for coupled

algorithms defining changes in wave speed and direction. Generally,

however, it is a non-trivial task to speed up or slow down waves already

flowing in a space and re-scaling the global beat mechanism over both

algorithms is often wiser.

78

Systolic computation itself can be envisaged as the interaction

of systolic wavefronts and leads naturally to the idea of computationaL

interference. Individual elements of sequences arriving at the same

point are portions of their respective wave fronts and must satisfy these

restrictions:

(i) waves must be coherent: data sequences must be of the same

type, which instruction sequences must be capable of

manipulating.

(ii) speed of waves must be consistent that is the same speed or

multiples or simple fractions of each other.

(iii) sequences at a point must be compatibki.e. data and

instruction sequences cannot be combined to yield valid data

or instructions.

This latter point is interesting because the duality of systolic waves

means that sequence flow can fool a point into modifying an instruction

sequence interpreted as a data sequence; by using a second instruction

sequence to carry out modification. Thus systolic arrays which modify

instructions are also well-posed.

Wavefronts satisfying the above properties lead to three types of

computational interference

(i) Constructive Interference: Instruction and data elements combine

to modify data creating true computations.

(ii) Neutral Interference: Data sequences are preserved and a null

computation is achieved.

(iii) Destructive Interference: Instruction and data elements combine

to produce erroneous results or fallacious computations.

The most difficult and exciting part of systolic algorithm design is the

79

arrangement of data and instruction sequences to form waves that

constructively interfere to produce recognizable computations.

Reasoning about systolic algorithms at this abstract level is further

complicated by the limited processing power of the human brain. In

order to picture any real examples we immediately place restrictions

on the dimensionality of the systolic space as well as the number,

direction and speed of sequences in the space.

Definition 3.1.9: A proaessor geometry is a directed graph whose nodes

correspond' to potential computation sites and whose arcs are defined by

direction vectors of sequences; and which itself has direction and speed.

By allowing the geometry direction and speed, computation can be

achieved by a smaller processor graph than the total number of potential

computation sites providing that all the sites yielding constructive

computations are visited during the course of the calculation.

Consequently an alternative definition of algorithm computation

time can be given as the number of cycles required by the geometry to

traverse the locus of constructive computation sites. As sequences and

geometry move relative to each other it is usually possible to give the

geometry zero speed and modify sequence flow to preserve computation.

The task of adjusting data and instruction sequences is simplified if

we allow variable direction sequences.

Definition 3.1.10: A variable direction (flow) sequence is a sequence

whose direction vector can vary with time, e.g.

for d =(a,b,S) from Definition(3.1.U, a variable direction equivalent
s

is ds=(a,bt'~ for t=1,2,3, ••. with bt direction vectors in the

systolic space.

Definition 3.1.11: A systoZia array is a processor geometry with zero

velocity covering all constructive computation sites together with a

set of data and instruction sequences.

80

The processors of the geometry are assumed capable of performing any

of the operations in the instruction sequence procedures. consequently

if an instruction group is homogeneous meaning that all the procedure

elements are identical, it can be made stationary such that elements

and processes coincide producing a dedicated systolic array. Furthermore,

if instruction sequences are composed only of a few types of simple

operations the complexity of processors is significantly reduced

producing simple cells. As a result it is often the case that the

terms systolic algorithm and systolic array are used interchangable in

the context of array diagrams and operation, this arises from the need

to visually represent algorithms in order to understand their dataflow.

Combining all the above features permits the following definition

of a systolia frame over a systoliC space:

R[l]: There must be an underlying structure of processors with

connections

R[2]: Data and instructions must flow through the processors like

waves (pumping action preserved) •

R[3]: Processors perform only simple operations.

R[4]: Flow of data and instruction should be simple and regular

R[S]: Connections are nearest neighbour

R[6]: The processor geometry consists of only a few types of

simple cells.

We can refer to systolic frames satisfying R[I-3] as irregular frames

and those also including R[4-6] as regular frames. A systolic semi-frame

can then be defined as a regular frame in which R[S] is relaxed to allow

almost or next nearest-neighbour and limited fanout connections.

Furthermore, we can say that a systolic frame (F) is a frame with a

neutral element preserving the real data operands - i.e. neutral

interference.

81

Defining systolic arrays to have zero-speed has practical merit

because they can then be mapped onto physical computing structures.

Assuming that processors provide methods of performing operations

implies some physical structure, and consequently, the geometry

consumes area or volume. By using VLSI technology as a means to

restrict systolic algorithms/arrays to semi-conductor or chip surfaces

further heuristics can be defined to facilitate easier implementation.

H[l): The systolic space hence frame is restricted to 2-D

H[2): The processor geometry is planar or almost planar

H[3): The number of input and output sequences to a point

is limited (this ensures fixed sized processors)

H[4): Broadcasting to a number of processors simultaneously

is avoided.

H[5): Longwires are undesirable as for wires over a certain

length propagation delays can become significant,

causing mistiming.

Systolic frames also possessing these properties will be termed

constrained frames. Notice that usually designs in regular frames

contain designs in constrained frames as a subset, it follows that

it may not 'be feasible to implement designs from an unconstrained

frame in VLSI technology.

We may attempt to map designs in a regular frame with a high

dimensional systolic space into designs for a space of lower dimension

to create a constrained frame for implementation. There is no guarantee

however, that the resulting designs fit a regular or constrained frame

of the smaller space.

82

The definition of a systolic array implies that designs in a

systolic frame can be further classified according to their sequence

movement and processor geometry.

(i) Sequence Flow Patterns:

The number, speed, direction and structure of sequences and

groups of sequences can all be used to characterize a systolic design.

When instruction sequences are homogeneous and have zero speed emphasis

is placed on systolic dataflow, and designs are divided into stationary

and non-stationary arrays. An array is stationary if a selection of

data sequences has zero speed, if no sequences have zero speed the array

is non-stationary. Normally a result sequence or group is present in

a design whose purpose is to collect partial and complete results as

it moves through the array. These result sequences are often the ones

made stationary, in principle however, any set of sequences can be made

stationary, but can result in larger geometries. These two categories

can be further sub-divided according to the direction of flow. For

instance, there are uni-directional arrays with data flow in only one

direction, and bi-directional (two-way) flow in two directions, and in

general k-directional with flows in k-directions. Structure of groups

and sequences can be assessed according to the position of neutral

elements (if any) and the sequence elements. Many problems are given

in terms of matrix computations with groups representing matrices and

sequence vectors, in these cases the complexity of the function for

producing subscripts for successive sequence elements is a useful

measure of flow complexity.

(ii) Processor Geometries:

A static processor geometry implicitly defines the number of data

83

sequences and their direction by the inputs/outputs on the boundary of

the geometry and interconnecting arcs. If we assume a regular

constrained systolic frame three types of array topology can be used.

They are:

(i) Two dimensional (2-D) geometries:- a selection of commonly

used forms is shown in Fig (3.1).

(ii) Collapsed (or degenerate) 2-D geometries:- These are obtained

from full 2-D forms like Fig~3.lb)and c by collapsing the

array onto only a single row and column.

(iii) Linear (1-0) geometries:- obtained from collapsed geometries

by restricting input/output to the left most and right most

cells only.

FigJ3.lc) indicates an array using boundary cells, these cells are added

to an otherwise homogeneous network'to perform on different and often

more complex tasks than the other processors. Clearly a two cell

stationary geometry requires two stationary instruction groups. A

final criteria for assessing geometries is the ratio of computation to

communication (input/output). Suppose the design in Fig(3.l~has n

cells, there are Irl connections on each of the four boundaries. Hence

on a particular cycle there can be at most 4~ inputs/outputs and n

computations giving a ratio of Vn or 0 (Irii. For a collapsed form

of Fig.(3.lb) there are In computations a~d O(/n) communications giving

a ratio 0(1), while for a linear array with n cells only a constant

number of communications occur on the boundary giving a ratio of O(n) •

Notice that these geometries are produced by a 2-D systolic space and

satisfy properties of a regular constrained systolic frame and so are

considered amenable, to VLSI implementation.

a) Hexagonal b) Orthogonal

d) Triangular e) Binary H-Tree

FIGURE 3.1: Selection of common 2-D processor geometries

c) Orthogonal triangular

m ..

85

Finally, the contribution of this section can be enumerated as

follows:-

1. A simple terminology is defined for describing and relating

different systolic designs.

2. systolic algorithms are described as abstract objects which

sit on processor geometries to create systolic arrays.

3. Constructive interference of wavefronts is defined as a

necessary condition for recognizable computation.

4. The systolic structure of frames is introduced to define

designs satisfying certain properties and constrained frames

for designs sensitive to implementation problems.

We will see in the next section that a sufficient condition for useful

computations is a mixture of neutral and constructive interference,

where designs have a neutral element (zero).

3.2 STANDARD (OR TRADITIONAL) ARRAYS

Now consider some real systolic algorithms/arrays derived from

constrained regular systolic frames over a 2-D systolic space. The

designs are well publicised and can be found in a number of references

such as Leiserson [81] and Mead & Conway [79] with the latter also

providing basic VLSI knowledge. This reference set illustrates how

the traditional numerical methods for solving linear systems (in

Chapter 2) can be implemented as systolic arrays. Designs from the set

will be referred to as traditional arrays and accompanying theorems on

computation time and cell count can be used as a benchmark for neW

designs. In addition, the traditional arrays form a fine grain set

of components which allow a 'bag-of' approach to more complex problems,

86

whereby a computational task is broken down into smaller tasks which

are solved by selecting the most suitable array for each subtask, from

a bag of standard arrays.

The fundamental unit of computation for these designs is the inner

product step (y=y+a*x, with y,a,x E lR scalars) the internal structure

of the basic cell (processor) for different geometries are shown in

Fig. (3.2) below.

.--.

t:s
~[J
~

a) Hex IPS b) Three-way IPS

cl Acculllulating IPS d) One-way instant IPS

FIGURE 3.2: IPS geometries

The small empty boxes indicate latches preventing overwriting of data

values before their replacements are valid. Circles indicate operations

and where necessary are latched internally. Fig. (3.2ru and(3.2B occur

most frequently and define unit area and unit (cycle) time (i.e. the

area and time required by one multiplication and one addition) for all

designs.

87

As new cell designs are introduced their complexity will be graded

according to the number of IPS equivalents required to implement them.

This means counting additions and multiplication circuits and denoting

cycle time by the proportion of IPS cycles required for cell operation.

As the arithmetic portions dominate the cell area latches are omitted

from calculations and for simplicity multipliers and dividers, adders

and subtractors are considered to have equivalent area.

In general, the definition of a new cell can be achieved in two

ways:

(i) A shape with labelled inputs and outputs is given together

with a procedure defining its internal computation.

(ii) A sketch of the internal structure is shown.

(ii) is used for relatively simple cells with very little control but

is replaced by (i) as the complexity of the cell increases. Sometimes

(i) and (ii) are adopted simultaneously to illustrate special features

of cells which can be used to reduce overall area or time, using

techniques like the pipelining of internal operations.

3.2.1 Matrix and Vector Multiplication

We start with some very simple designs which illustrate stationary

and non-stationary arrays, wavefronts, and why an IPS cell is adopted

as the basic unit of computation for matrix orientated calculations.

Consider the inner product of two n-component vectors defined by

(2.1.6) we require three data flow sequences one for each vector and a

third for results, hence a design stationary with respect to results

has flow sequences,

(1)
d

s
= «a

l
,a

2
,···,a

n
>,(O,-1),S)

88

d (2) = «bl ,b2
, ••• ,b n> , (-1,0) ,B))

s

and, } (3.2.1.1)
d (3) = «(1>, (0,0) ,0)

s

direction vectors are from 2-D due to the assumed constrained frame.

d(3) is the stationary result sequence and its direction is irrelevant,
s

while d(l) and d(2) are orthogonal and hence must collide with each
s s

other, creating a single potential computation site. Embedding a

single accumulating IPS processing element into this site defines a

dedicated stationary processor geometry as the corresponding instruction

sequence is homogeneous. The systolic array is given in Fig.(3.2.l.l)

and is essentially sequential •

• n

••• b
n

FIGURE 3.2.1.1: Stationary inner product

The 2-D systolic space is defined by the plane of the paper and moving

sequences have the same velOCity B equivalent to a single IPS cycle.

Observing the array over a number of cycles proves the following theorem.

Theorem 3.2.1.1: The inner product of two nxl vectors, a,b E lR
n

can

be computed using a single accumulating inner product cell in T=n IPS

cycles.

The result is not very exciting, we hardly need an elaborate

framework to extract this type of behaviour from (2.1.6), more

89

interesting properties are observed by constructing a non-stationary

version. For the non-stationary case redefine vectors a and b to be

groups and make result a a non-stationary sequence as follows, let,

= <a.>,
1.

<b.>,
1.

b = (O,-l),a }
i=l(l)n

b = (0,1),8
(3.2.1.2)

be the component sequence of the groups common direction, and speed

of the two groups with the result sequence,

r = «a>, (-1,0) ,a) (3.2.1.3)

where a=l is the IPS cycle time. This design is shown in Fig. (3.2.1.2a)

and consists of n one-way instant IPS cells, connecting all the

components of vectors a or b defines the principle wave fronts for the

two groups. Notice 'how sequences in the group are delayed in time to

synchronise with the result sequence moving right to left accumulating

a single term of the result at each cell. The dashes signify don't

care or neutral elements, after the principal wave front computational

interference can be neutral or destructive and due to Huygens principle

will not affect the result. Thus the following theorem is valid.

Theorem 3.2.1.2: The inner product of two vectors a and b can be

computed by n one-way instant IPS cells in T=n cycles. Now comparing

the two schemes we immediately notice that computation time is the same

but the non-stationary scheme requires an additional n-1 cells.

Furthermore, the stationary case requires only 3 boundary inputs/

outputs (allowing one for the result output) while the non-stationary

version uses 2(n+1). Finally, the stationary array computes a

constructive calculation every cycle, but in the non-stationary case

each cell produces only one constructive computation.

a) Non-stationary inner product (n=4)

........... a4
1'"', I "3

I "I
I I &2
I I

I I
I I ',
1 I

I 11 ~~ b
~ 1 I I

I)~
I ,.- b2
.1-

~'
.......... b)

~~
J.~

.... b.

b) Non-stationary matrix vector (n:4)

:

90

FIGURE 3.2.1.2: Matrix vector and inner product arrays

91

Definition 3.2.1.1: The number of constructive computations a typical

or representative cell of an array performs during the course of an

algorithm is termed the efficiency denoted e.

Normally O<e~l holds and for the above designs the stationary

case has e=l (the ideal value) while the non-stationary case is e=l/n

indicating that its efficiency decreases as the problem size increases.

It appears that the one cell design is best, and is not surprising

due to the inherent sequential nature of equation (2.1.6).

Now consider the matrix vector multiplication problem Ax=y from

(2.2.7) when Band Care reduced to nxl vectors x,y respectively. Each

component of y is produced by computing the inner product of a row

from A and the vector x. More formally in recurrence notation,

(1)
Yi = °

(3.2.1.4)

For a non-stationary solution, groups for A and x are formulated with

component sequences,

a, «al" ... ,a ,>,(0,-1),1)
1. 1. nl. } (3.2.1.5a)

i=l(l)n
(3.2.1.5b)

and the result sequence is,

(1) (1) (1)
c = «Yl 'Y2 '''''Yn >,(-1,0),1) (3.2.1.5c)

The systolic array is given by Fig. (3.2.1.2b) for n=4. As the yi
l

)

values shift left each one collects a term for its inner product, and

the computation of the components of y are pipelined. Tracing

successive cycles of the array operation yields the following result.

92

Theorem 3.2.1.3: The matrix vector problem Ax=y for an nxn matrix A

and nxl vectors x and y can be computed in T=2n IPS cycles using n

one-way instant IPS cells.

Proof:

Using Fig!3.2.l.2~, after n cycles yi l) has collected all its

terms and is about to leave the array at the same time y(l) sits in
n

the rightmost cell. Hence an additional n cycles are required for

all the results to leave the array, giving T=2n.

The efficiency of the array for the new algorithm is e=! as each

cell performs a total of n constructive computations, a great improve-

ment over the single inner product computation as e is now independent

of n.

Corollary 3.2.1.1: An array of n one-way instant IPS can outperform

a single accumulating IPS for multiple inner products even though it

is twice as efficient.

Proof:

(i) The matrix vector problem is a sequence of n independent

inner products requiring T=2n.

(ii) From Thm.(3.2.l.Da single inner product on a one cell array

requires T=n, as the cell has e=l the n problems must be

computed sequentially giving T=n2 in total.

This Corollary illustrates the power of systolic arrays for utilising

pipeline and parallel computations, the difference in cell count is

out-weighed by the improvement in computation time.

A number of variations on the structure of Fig.(3.2.l.2b) which

preserve the timing but modify the dataflow exist, two possibilities

are:

(i) Each of the xi' i=l(l)n sequences are homogeneous thus a

stationary design w.r.t. x can be constructed with x 's
i

93

pre10aded into cells (the typed cell of Fig.(3.2) is augmented

with a loadab1e register.)

(ii) The result sequence c is made stationary, and a non-

stationary sequence X=«x
1

x
2

••• x
n

>,(-1,O) ,1) for vector x

instead of a group is defined and the group for A is modified

to give,
a, = «a'l" .a, >, (0,-1) ,1) •

.... ~ l.n

Each cell is now an accumulating IPS, with x using the former

input for c:. Both these arrays have the same timing and efficiency as

Thm.(3.2.1.3) but reduce the number of boundary input/outputs. The

original matrix vector scheme demanded that the x vector components

were repeatedly pumped into the array, the latter schemes require that

they are input only once and from this viewpoint are superior.

REMARK: It is generally considered good practice to avoid repetition

of inputs wherever possible.

Returning to the sigg1e inner product 1 cell design for a moment

observe that not only does the cell have efficiency e=l but that the

array size is also independent of problem size n. On the other hand,

the matrix vector (pipe1ined inner product) array is dependent on the

problem size, changing the order of the matrix alters the size of the

array. Fortunately, a problem size independent array can be derived

by considering A to be banded.

The new banded array is constructed by considering another

ordering of the coefficients in A as a flow group. The first design

(Fig.3.2.1.2b) allocated coefficients to sequences in a column order

94

forming a row ordered wave front pattern, and the stationary result

scheme would require a sequence row ordering with column ordered

wavefronts. A final possibility is to allocate coefficients in

diagonal order such that each flow sequence contains elements from

the same sub(super) diagonal which are separated by neutral elements.

Using this diagonal group format allows the modification of the array

stationary w.r.t. to x to make a non-stationary array with X:=«x
1

x2 , ••• ,xn

(1,0) ,1) a moving sequence for x. The array is pictured in Fig.(3.2.1.3),

its operation is slightly more complex incorporating a three-way IPS

cell giving two-way flow of x and y.

The first 6 cycles of array operation are shown in Fig.(3.2.1.4)

and a full trace gives this theorem.

Theorem 3.2.1.4: The matrix vector problem Ax=y for an nXn bandmatrix

A with bandwidth w=p+q-1 and nX1 vectors x and y requires T=2n+w IPS

cycles and w IPS cells.

Proof:

(i) From structure property S5 (Chapter 2) diagonals outside the

band are all zero, hence cells with these inputs can be

removed as they perform neutral computations leaving only w

cells for necessary constructive computations.

(ii) The longest sequence in the flow group has length 2n, all

these elements must be input giving lower bound T=2n.

(iii) The results of y. are accumulated right to left giving an
L

additional delay of w cycles for the first result to emerge

hence T=2n+w.

95

FIGURE 3.2.1.3: Banded matrix vector array (w=4, p=2, q=3)

In this design wave fronts are defined by a row ordering on the

left of the main diagonal sequence and column ordering on the right.

By definition neutral elements preserve operands and results and their

use is extended to act as synchronising delay elements to permit the

non-stationary sequence for x. The efficiency of the array is e=i

but the distribution of constructive computations is much more balanced

than in Fig.(3.2.l.2b). In the latter scheme cells compute in a

contiguous block of n constructive calculations and the portion of

active or constructive cells moves left with time, in the new scheme

active cells spread out from the main diagonal and alternate between

constructive and neutral computations. Hence by nature of its problem

size independence the band scheme appears superior - the Corollary below

indicates a significant restriction.

96

t=4

FIGURE 3.2.1.4: Snapshots of matrix vector computation

Corollary 3.2.1.2: A band matrix vector array independent of problem

size is superior to an equivalent problem dependent array only when.

w<<n, where w is the bandwidth of A an nxn matrix.

Proof:

(i) When w«n e.g. tri- or quin-diagonal w is constant the

additional cycles in T for the banded case are negligible

for large n, making cell count the main consideration. Thus

97

the banded array is superior.

(ii) When A is full w~2n-l and banded scheme requires T~4n-l and

2n-l cells compared with T~2n and n cells for the problem

dependent case.

The result w«n follows immediately.

The band matrix vector scheme can be improved by taking into

account additional properties of the matrix coefficients. For instance

in Toeplitz matrices of FIR filtering and symmetric matrices from

discrete Fourier transform (DFT) matrices with constant diagonals (i.e.

the same value in each location) or simple powers of each other are

produced. The flow group associated with the matrix can then be made

stationary w.r.t. A by preloading the constant values, and leads to

the well studied convolution arrays of H.T. Kung [82b] •

In the above cases we adopted a hand testing method for tracing

the array operation, essentially the image of the array is drawn on

each cycle giving snapshots of the dataflowover time. This snapshot

method is adopted throughout the thesis to support timing and data flow

arguments. So far, however snapshot traces have been simple but

considering a more complex problem like matrix multiplication is more

difficult.

From (2.2.7) the matrix product of two nXn matrices A and B can

be formulated as recurrences,

(1)
c,' ~ 0

l.J

(k+l) (k)
cij ~ cij + aikbkj

(n+l) c
ij

~ c
ij

(3.2.1.6)

)

for i~l(l)n, j~l(l)n. This formula can be manipulated in a similar

98

way as the simple matrix vector scheme to derive 2-D orthogonal and

hexagonal arrays using geometries a) and b) in Fig.(3.1) and are

illustrated in Fig.(3.2.1.5) and Fig.(3.2.1.6) respectively. A hint

to deriving these arrays is to notice that a matrix product is a

sequence of n independent matrix vector computations using A and the

columns of B as the x vectors. Using the matrix vector array stationary

- - - - - - - - - - - - - - - - - - -.- '1--tI
a14 a13 a12 aUI

I
I

I
I a23 al2 a2y ---

I
I

I
a a a I 33 32 31/ _____ _

I
I

I

a44 a43 442 441 I
------------,--------

b
43

b
42 b

33

Ib41 b)2 b
23

Ib
31

b
22 b~J..o ,.

I
Ib2l b12

..-,. I
I " I
Ibll

,.-<
I ,. I

I I

FIGURE 3.2.1.5: Stationary matrix product array (n=4)

I
I

I
b 44 1

I b
341

b
24

1
I

bl-~
,. I

I

99

c

I I
I I
I I I I / I I V Cn c

12 I I / I
I / c3l I I
1/ , I

, I
/"1 e4l c

22 Cl}"
(c

32
c

23 - ,
)

c'2 c
24

c52 c
33 c

25

c'3 C3•

c
53 c

J5

I
c63 c" c

36 I c
54 c' 5

FIGURE 3.2.1.6: Band matrix multiplication <w
l

=w
2

=4)

100

w.r.t. results replicated n times will lead to the orthogonal array

which is problem size dependent. The hexagonal array is problem size

independent and based on the banded array. By tracing snapshots the

following theorems corresponding to those for matrix vector arrays can

be derived.

Theorem 3.2.1.5: The product of two dense nxn matrices A and B can be

2
computed on an orthogonally connected mesh of n cells in T=3n IPS

cycles.

Proof: (from Fig~3.2.1.5)data flow)

(i) After n cycles the result cll is completed.

(ii) After 2n cycles all the results on and above the anti-

(Hi)

diagonal are complete and all inputs have been read.

After 3n cycles the last result c is completed and the
nn

product resides in the mesh.

Note: An extra n cycles will be required to read out the result but

this is omitted.

Theorem 3.2.1.6: The product of two nxn band matrices A and B with

bandwidths w
l

and w2 respectively can be computed on a hexagonally

connected network of wl w2 hex IPS cells in T=3n+min(w
l

,w
2

) cycles

including input output time.

Proof: (From Fig.(3.2.1.6»

(i) The length of the longest input sequence is 3n giving a

(11)

lower bound of 3n, as all elements must be input and output.

The c .. results move north through the array and the first
~J

result cll is delayed by min(w
l

,w2) cycles.

Corollary 3.2.1.3: A hexagonal band matrix product array is superior

to a dense mesh connected array only when w
l

or w
2

<<n.

101

Proof:

is negligible and we save n cycles because no output time is

required in the hexagonal case and require only w
l
w2 cells.

(ii) when one matrix is full w
l

=2n-l or w
2

=2n-l hence time is

unaffected due to minimum condition and requires w(2n-l) hex

2 cells compared with n orthogonal cells (w is the bandwidth

(Hi)

of the sparser matrix) •

2
when wl =w2=2n-l both A and B are full T=5n-l and we use (2n-l)

hex cells making the orthogonal scheme superior.

Finally notice that both the orthogonal and hex scheme have e=1/3 but

that the distribution of constructive computations is more balanced in

the hexagonal array, as each cell works once every 3 cycles. In the

orthogonal case cells perform constructive computations· in a block of n

cycles spreading out as a wave front from the top left to bottom right

corner. In fact for dense matrix multiplication the orthogonal scheme

is the most efficient scheme known.

3.2.2 Arrays for Direct Solution of Linear Systems

Now consider systolic arrays corresponding to the equations

(2.3.1.4) (2.3.2.1) and (2.3.3.3) which are back substitution, matrix

triangularisation and LU-factorisation procedures respectively.

For backsubstitution (2.3.1.4) can be reformulated as the recurrence,

(1)
Yi = 0

(k+l)
Y

i
:::. (3.2.2.1)

= (i) (d. -y.) la ..
~ ~ 1.1.

102

using yi
k

) as an extra sequence collecting partial results. The array

is shown in Fig~3.2.2.1)below for a lower triangular matrix with band-

b
4

14
44

I
"53

1 - "43 "52

b
3

,
,"" '42 .:4lr
1- ~

"32 ~~

I
a

31
",- ,.

b2 I a"'2 ~ ... '
1 • ~~~ I , .

~}1'"

~~
1

I ~~ I 1
b

1 I.\l..-- I 1
I I

FIGURE 3.2.2.1: Backsubstitution (q=4)

and consists of the three-way IPS and a boundary cell on the left

with the following cell definition,

Shape
a,
~n

x
\--~ outl
j(--- Yin

Procedure

Notice that x relies on y, and forms a feedback loop.
outl ~n

It follows that y, values can arrive only once every two cycles,
~n

)
(3.2.2.2)

otherwise it would be impossible for them to collect all their required

terms, and explains the positioning of synchronising neutral elements.

Theorem 3.2.2.1: A nXn band triangular system A with bandwidth w=q can

be solved in T=2n+q IPS cycles using q IPS cell equivalents.

103

Proof: [Tracing data flow of Fig.3.2.2.Dl

(i) The length of the longest data sequence is 2n requiring 2n

(ii)

IPS cycles to output results.

Each y. moves left picking up one term per cell and on
L

reaching the boundary cell has accumulated the expression

which has at most q-l terms. An additional delay occurs in

the boundary cell producing x. giving a total delay of q
L

cycles for the first output.

In this proof we have invoked the assumption that subtract and divide

has the same cost as an inner product cell in area and time.

Modifications to the design are more difficult due to the feedback

loop and the relations between successive Xi elements. A minor

improvement is to write (3.2.2.1) as,

(1)
~ = b.

L

(k+l) (k)
Yi = Yi -aik~' i=l(l)n

Xi = Yi/aii

(3.2.2.3)

which simplifies the boundary cell by removing the subtraction and

bin input.

Matrix triangularisation can be performed by using the array

in Figi3.2.2.2)which consists of an orthogona1 triangular array for

triangularizing the matrix and a collapsed (linear) array to modify

the righthand side vector, the whole array computes using the augmented

coefficient matrix A from (2.3.2.1).

Row 1 of the array forms the input boundary and accepts every row

of A. every row that arrives has its first entry set to zero and the

104

Triangularisation part rhs uodifier

FIGURE 3.2.2.2: Array for matrix triangularisation

rest of the row updated, this corresponds to removing the first column

of A. Likewise row 2 of the array accepts the resulting modified rows

from row 1 of the array and zeroes their first entries corresponding

to removing column 2 of A. In general, row i accepts modified rows

from row i-l and zeroes their first entries - corresponding to removing

column i of A. Notice that the data sequences are skewed so that

modification information in the form of a multiplier can be pumped

right and meet with all elements of a particular row. A limited

105

pivoting strategy known as pairwise pivoting can be incorporated

which only interchanges adjacent rows and is still numerically stable

(Sorenson [85J). When pivoting is used during the computation row i

of the array holds only the current row i of A and final placement of

rows is obtained only on the last step of the algorithm. The basic

cells for Gaussian elimination are defined below,

Shape

x
in

r--'
I

I x 1
L __ -'

x
out

(m c)
out out

Procedure

IF c. THEN
1n

{x =x+m. x.
out l.n 1.0

X=X.

}
1n

ELSE

x =X. +m. X out 1.0 1.n

IF IXinl~lxl THEN

{IF x. <>0 THEN 1n

}

ELSE 0

x=x, I
1n

ELSE

c =1 out

(3.2.2.4)

m =-x/x out in

(3.2.2.5)

{m =-x. Ix, c =O} out 1n out

and corresponding cells for the orthogonalisation process in (2.3.2.6)

are given below with pivoting no longer necessary as

Shape Procedure

xin

} X =c x -s x out in in in
x=s. x. +c i x •

r--' 1.n 1.n n

(cin,sin I x 1 (cout,Sout) IF =0 THEN

1
1 I xin L __ -1

{c t=l, s =O} ou out
I x ELSE

out
2 2 ! i

{1I=(x +x.) r 1n
c t =xlll x OU in
S t=x. III

OU 1n

X=1I I ~ }
(\)
\ x) (Cout,Sout)

-

(3.2.2.6)

(3.2.2.7)

106

Notice that only (3.2.2.4) can be computed in a straightforward IPS

cycle. For (3.2.2.5) we must assume that we can negate x. in parallel
~n

with the test I x. 1)1 X I, and that the comparison takes the same time
~n

as addition/subtraction, before the cycle time for elimination is equal

to an IPS cycle. For the Givens rotation cells, (3.2.2.6) is bounded

by 2 IPS cycles but (3.2.2.7) requires the complicated square root.

Hence a basic cycle is bounded by the cost of the boundary cell

computation.

Theorem 3.2.2.2: The triangularisation of an augmented matrix A consisting

of a full nXn matrix A and nxl vector d requires 0(n
2

) basic cells and

T=3n basic cycles.

proof: [from Fig.(3.2.2.2)]

(i) After n cycles the first column has been eliminated.

(ii) After 2n cycles the last rhs component enters the array and

filters down to the last cell hence,

(iii) After 3n cycles the final modification of the rhs occurs.

An additional n cycles for outputting results is neglected

as they play no part in computation.

A second array which is suitable for triangularising a band matrix can

also be constructed and is given in Gentleman & H.T. Kung [81], it is

based on a diagonal sequence ordering like the arrays for matrix vector

and product operations given above and a version appears in Chapter 6.

Next consider matrix factorisation defined by (2.3.3.3) and in

equivalent recurrence form is given by,

107

0 i<k

~ik = 1 i=k

(i)
i>k a lk /~k (3.2.2.8)

t{k)
k>j

~j =
akj k~j

Schematically the order of formation for ~ik and ukj is

. , .. ,
• •

......
......

..........
.....

.....
.....

with ~ik represented as columns and ~j as rows. The factorisation

(k)
procedure computes a row and column then updates the submatrix of a ij

left, before starting the next row and column. A corresponding

systolic algorithm uses a 2-D systolic array shown in FigO.2.2.3).

The circular cell receives ~k from the south and sends it north and

computes the reciprocal l/ukk outputting it south west, and represents

the '.' in the above sketch. The remaining cells are all hex IPS cells

except for those on the upper boundary which are connected differently.

On the upper boundary left of the circule hex cells are rotated by

120 0 clockwise and perform the ~ik computations denoted by the vertical

lines, hex cells on the upper boundary right of the circle are rotated

120 0 anti-clockwise and form -~j terms denoted by horizontal lines in

the sketch. The wave fronts of the input data correspond to the chevrons

formed by the horizontal and vertical lines together. Thus, the upper

boundary computes the factors with the rest of the hex modifying the

108

L U -----

• ~ f- A ~ ~ I
I I I I I I I I
I I I

I
I
I
I
I
I

0 0

FIGURE 3.2.2.3: Systolic array for matrix factorisation

109

submatrices. Tracing the wave fronts from the array shows that

successive row and column factorisation is overlapped pipe lining sub-

matrix modifications and producing:

Theorem 3.2.2.3: Let A be an nxn band matrix with w=p+q-l, asystolic

array with pq hex IPS equivalents can form the LU factors in T=3n+min(p,q)

IPS cycles which includes input output time.

Proof: [From Fig.(3.2.2.3~

(i) From the diagonal input sequences the total number of inputs

is wand this defines the array dimension to be pq.

(ii) Computation starts when all reaches the circular cell, this

takes min(p,q) cycles.

(iii) The 'length of the a .. sequence (which is the longest) is 3n
11

and this is the maximum number of outputs for a single stream.

At one output per cycle the timing follows.

Notice that when A is dense we use 2 only n cells and 4n cycles, an

equivalent orthogonal mesh preloaded with A would require similar area

and time. In the case of a symmetric matrix only the rows or columns

of the sketch need to be explicitly constructed and this can reduce

the hex cell count by half. Finally we note that once the triangular

forms are found they can be pipelined into back and forward substitution

arrays to solve the system. The method for triangularisation is utilised

in least squares calculations as illustrated in Gentleman & H.T. Kung [81).

3.2.3 Arrays for Iterative Solution of Linear Systems

Systolic arrays for iterative solution of equations were first

reported in Berzins, Buckley & Dew [83) and Dew [84). The basic

principle is to devise a linear systolic array for performing a single

110

iteration and then cascade a number of them to pipeline successive

iterations. This cascaded iterative pipeline or array is illustrated

in Fig.(3.2.3.1) the solution vector is successively approximated by

cascading it through r linear arrays to output finally the rth iteration.

The coefficient matrix A is pipelined through the r arrays and synchronised

(i)
with x on each level as is the righthand side vector d. We assume

that A has a simple splitting so that the E and F matrices in (2.4.3)

can be formed 'on-the-fly'.

Now if the iteration matrix M and vector c from (2.4.3.1) were

known and M was banded, each linear array would simply be a matrix

vector array like Figi3.2.1.3)except that M would have to flow south

out of the cells and the recurrence (3.2.1.4) would be initialized

with y!l)=c" i=l(l)n where c, are the components of c. For a band
~ ~ ~

(i) matrix with bandwidth w=p+q-l the first component of xl would emerge

(i-l)
2p cycles after xl entered the array and p cycles after it met mll ,

the first matrix input to the array. It follows that matrix elements

(and hence data sequences) must be delayed by 2 (p-l) cycles between

corresponding cells in array i and i-l for successive iterations to

synchronise. Hence each IPS cell must be augmented with a delay queue

of 2(p-l) delay registers for the south output. The righthand side

vector c (in this case) also has to synchronise but this is dependent

on the sizes of p and q and can be derived in a similar way, thus the

boundary cells at the right in Fig!3.2.3.D are simply delay queues.

(i) (i-l)
Theorem 3.2.3.1: r iterations of the form x =Mx +c where M is

an nXn band matrix with bandwidth w=p+q-l and c is an n<l vector

requires rw IPS cells (augmented with delay queues) and time T=2n+r(2p-l)+

MAX(p-l,q-l)-p+l.

x

x

III

121

• • •

Irl x

A

LINEAR ARRAY 1

LINEAR ARRAY 2

• • •

LINEAR ARRAY r

FIGURE 3.2.3.1: Cascaded iterative pipeline

Proof: [using Fig~3.2.3.1)and Fig~3.2.1.~1

111

d

• • •

(i) Initialisation for first array is max(p-l,q-l) and first

component is output in an additional p cycles.

(ii) Each array has latency of output 2p-l thus the 1st result

is ready to emerge from the pipeline after (r-l) (2p-l) cycles.

(iii) There are 2n cycles required to output all components.

If M and c are unavailable alternative linear arrays can be considered

for the Jacobi and Gauss-Seidel schemes using modified inputs.

The Jacobi iteration scheme is illustrated in Fig.(3.2.3.2) and

consists of a matrix-vector array which forms Z=Bx(i-l)+b and a boundary

. (i) -1
cell wh~ch gives x =D z. Thus computing (2.4.1.1).

112

1
1
1
1
1
I

I -°45 -4
54 - 1

°33 I - -°531 1
I -'34 "443 - 1

'22 1
-a

42
,

I -'23 -4
32

- I
I

I 1
all I - -'31J

I _r' -- I
l-o'2 -a

21
_ - I

"t ... - I
-1' I -... I I I I I :_x-:

~
1

X
2

~
x,

~ D---1 Y, Y2 ---{]-
L ___ .J

FIGURE 3.2.3.2: Array for single Jacobi iteration (w=4)

The cell in the matrix vector array associated with the zero

main diagonal of B can be replaced by a simple delay cell performing

no computation, and the boundary cell consists of a divider and accepts

the elements of D. The timing for the array can be easily derived from

Theorem (3.2.3.1) by substituting p=p+l for p to take account of the

extra delay through the boundary cell.

For the Gauss-Seidel method (2.4.2.1) a single iteration is a

composite array constructed from an upper triangular matrix vector

(i-I) (i)
array for z.ux +b and a back substitution array for (D-L)x =z.

Theorem 3.2.3.2: r iterations of the Gauss-Seidel iterative method for

an nXn band matrix A with bandwidth w=p+q-l requires rw ips cells

113

(augmented with delays) and T=2n+r(2p-l).

Proof: [from Fig.(3.2.l.3) and Fig.(3.2.2.l) and Fig.(3.2.3.l)]

(i) The upper triangular matrix vector array has p-l cells

and thus a component input to a linear array for iteration

takes 2(p-l) cycles to produce the equivalent z component

from Ux (i-I) +b.

(ii) The backsubstituter can be arranged so the z vector enters

as the righthand side requiring only a single delay to produce

(i) the x component.

(iii) The total delay is 2p-l cycles between input and output of

components the 1st result arrives at output of the rth linear

array after r(2p-l) cycles.

(iv) There are 2n cycles to output all the result components hence

T=2n+r (2p-l) •

Improvements to these basic schemes will be introduced later in the

text, but for the moment we can observe that as long as w<<n r iterations

of an iterative scheme of form (2.4.2) can be computed in O(2n) IPS

cycles.

3.3 THEORETICAL CONCEPTS FOR MANIPULATING SYSTOLIC ARRAYS

So far the mapping of a systolic algorithm into a processor

geometry has been achieved in an ad-hoc manner. As designs become

more complex this task becomes more difficult and error-prone, and a

systematic methodology to synthesize systolic designs can save

considerable time and effort. For the restricted class of algorithms

from the 2-D systolic space and a regular constrained frame, namely

algorithms with highly regular structures expressed as recurrence

114

relations, transformational methods based on data dependencies provide

powerful manipulation tools. In this section we concentrate on two

representations of the systolic algorithm, firstly, by a computational

graph (implicit in the examples of the previous section) and second an

algebraic form. The former pictorial representation is useful when

combined with a geometry for deriving hardware specifications and the

latter for algebraic transformations on a design. These approaches

have a number of attractive features as they:

1. Indicate an automatic method of manipulating existing and

complex designs by so-called "symbol pushing" techniques used

in algebra to prove theorems.

2. Permit reasoning about systolic designs without recourse to

detailed sketches and traces.

3. Admit the possibility of formal verification of design

correctness.

4. Identify and derive sequences of transformations to produce

alternative designs which may be better than existing ones.

The starting point is a formal mathematical model for the data sequence

processor geometry combination of the systolic array.

3.3.1 Systolic Array Model [cf. Melhem & Rheinboldt [8411

The model is based on a strict formalisation of the intuitive and

informal representation used above expressing data sequences as wave

fronts the main characteristics are:

a) Data items on communication channels = data sequences

b) Computations of cells are modelled by systems of difference

equations (involving operations on data sequences) •

115

c) Input/output descriptions indicate the global effect of

the network computations and are deduced by solving systems

of difference equations.

d) The resultant output descriptions verify correct network

operation.

The model itself can be further subdivided into models for the data and

geometry.

Abstract Model of Data:

Notation: IN = set of integers, lR = set of rea1s,

o = "don't care elements"

A data sequence is an infinite sequence whose elements are members of

Definition 3.3.1.1: Operations on data sequences are logical extensions

of operations on elements of IR and subdivided into:

(i) o-reguZar operators: where o"op" x=x"op" 0=0 for all x E lR 0

and model destructive interference. (3.3.1.1a)

(ii) non o-reguZar operators: where x"op"y=y"op"x if X,YFO and

X"OpIlO=O"Op"X=X (3.3.1.1b)

which models constructive and neutral interference respectively.

Definition 3.3.1.2: Any data sequence D can be defined as a mapping

IN ... IRo whereby n(i) for i EN is the ith element in the sequence.

The set of all data sequences lR'6 = {n ID: IN ... lR 0 J.

Hence an operation on two sequences n
1

,n
2

E lR6 produces a third

sequence D3 according to

= { :1 (i) "op"

otherwise,

116

and soalar produot for sequences is similar to that of vectors with

n E IRt and wEIR yielding, ~=wn E IR 6.
Definition 3.3.1.3: The set of bounded data sequenoes IR C lR6 with

only a finite number of non c elements. The end of the sequence is

defined by a Termination funotion T: iR c IN such that for nE lRc'

T(n} is the position of the last non-c element.

Actions on collections of bounded data sequences can then be

formalized by an n-ary sequence operator.

Definition 3.3.1.4: An n-ary sequence operator r is a transformation

- n - n- -r: [Rc] Rc where [Rc] =RcXRc'" Rc the cartesian product of n copies

For instance, the basic inner product cell structures a} , b) in

- 3 -Fig. (3.2) effect a transformation r: [Rc] Rc which could be written

r. (I;,n,~) = n[l;+n .~]
1pS

(3.3.1.2)

for I;,n,~ ER<I' where "(" enclose arguments and "[" signifies grouping,

and n is a delay symbol defined below.

Definition 3.3.1.5: The shift (n) and spread (e) operations for

k r sequences I;,n,~ are given by n I;=n and ~=e I; where

n(i) = {

~ (i) = {

I; (i-k) i>k

~ (Hr)
~(r+l) ,i=1,r+2,2r+3, •.• ,(n-l}r+n •••

<I otherwise.

(3.3.1.3)

(3.3.1.4)

and for bounded data sequences S, SI and S2 satisfy the properties:

(i)

(ii)

(iii)

(iv)

nrnkS=nr+kS

n(r+l}kere=ernke

k k k k
w[e e]=e [we], w W e]=n [we]

k k k k k k
n [e "op"e]=n e "op"n e e [e "op"e]=e e "op"e e 1 2 1 2' 1 2 1 2

117

Shift and spread operations can be applied to individual sequences and

permit the addition of a-elements to achieve synchronisation, nO

signifies no delay and will be useful later.

The following example illustrates the use of nand e. Let

i=l(l}T(S}'

a
4

,Q,a.

Finally an n-ary sequence operator is termed a causal operator if

the ith elements of its input sequences affect the jth element of its

result or output sequence for j>i, and weakly causal if the ith output

element relies on the first i elements of the input sequences.

Abstract Model of Geometries:

The processor geometry is represented as a loopless multigraph

G(V,E,f ,f }
+ -

where V=set of nodes (processors) , E=set of arcs (communication paths)

and f ,f : E+V are two functions mapping arcs to nodes defining the
+ -

direction of communication. Any two nodes can be connected by a number

of arcs as G is a multigraph and f (e}if (e) for any e € E prohibiting
+ -

direct loops. The set of nodes V can be further partitioned ~nto three

disjoint subsets such that V=VSUVIUV
T

with the definitions below,

Vs a set of source nodes (with no arcs directed into the nodes)

VI = a set of interior nodes defining the geometry

V
T

= a set of sink nodes (with no arcs directed out of the nodes)

An arc e is directed into a node V iff f (e}=V and directed out if
+

f (e}=V, consequently sources define points at which data enter a

systolic space and sinks points where data leaves ardinterior nodes

potential computation sites. Finally we define a colouring function

118

col:E+C
E

mapping arcs to a finite set of colours (C
E

); such that each

arc has a colour, and all the incoming edges of a node have different

colours, and likewise different outgoing edges also have different

colours. Corresponding incoming and outgoing edges can be allocated

the same colours if required.

A systolic array is then simply constructed by assigning a

sequence ~e E Ra to each arc e E E, and for each node v with n incoming

i i 1 n
arcs and m outgoing arcs a set of m,n-ary sequence operators ~ =r (n , ••• ,n)

v

i=l(l)m defining how input sequences affect output sequences and

consequently processor structure. It is clear that nodes from VI

represent geometry processors and sources/sinks act as pumping stations,

with each arc a uni-directional communication link.

Definition 3.3.1.6: A subset VIcV
I

of interior nodes is homogeneous

if:

(i) All nodes in VI have the same number of incoming and outgoing

arcs say n and m respectively.

(ii) The colours of the n incoming edges and m colours of the

outgoing arcs are identical for every node.

(iii) The n-ary sequences defining a node are generic in the sense

that every node is described by the same set of sequences

denoted,
i i 1 2 n

~ = r (n ,n ,.··,n) i=l(l)m, v v v v

and so are independent of any node.

It follows that if V =v(l)U v(2)U v(3) .. v(k) are k disjoint
I I I I • I

homogeneous subsets of VI that the graph can be termed k-partially

homogeneous. As examples the matrix factorisation of Fig~3.2.2.~ is

4-partially homogeneous (due to rotations of hex ips) and backsubstitution

119

in Fig.O.2.2.~ is 2-partially homogeneous. Implicitly part (3) of

Oefinition{3.3.1.6)defines a stationary instruction group hence

dedicated array.

The above definitions are sufficiently powerful to provide a

limited verification capability for arrays which have a repetitive

pattern and so fit our regular frame. To illustrate the verification

we consider only a single simple example from Melhem & Rheinboldt [84]

where more complex examples are also given.

The problem is the 1-0 convolution problem derived from a 4-tap

Finite Impulse Response (FIR) filter with coefficients w
l

,w
2

,w
3

and w4 '

which produces the matrix vector problem,

w
l

w
2 ~

w
4 r' Yl

w
l

w
2 w3 w

4
0 x

2 Y2 , , , , , , , , , , , , , , , , ,
(3.3.1.5) , , , ~ , , , , ,

0 'w 'W w3 1 2

~n
normally we are interested in only the first n-k+l y components in

this case k~4, and the w
i

' i~l{l)k are termed weights. A systot;c

array can be derived easily from Fig.{3.2.1.3) (as mentioned previously)

by making the matrix input stationary but requiring the preloading of

the w. values. The network is shown in Fig.{3.3.1.1a) on the start of
L

the first computation cycle, each cell is a simple three-way IPS

modified to contain a register holding the w. value thus removing the
L .

vertical connection. Fig.{3.3.1.lb) shows the equivalent multigraph

using two colours P and S augmented with a subscript label to identify

120

:=j~. ~r
x - x

3 2

a) Two-way convolution

Ut Pl-1 P2
node .. .

i .. .

81+ 1 Si 53 c

b) Coloured computational graph

y.
I" l

Y3 r w l Y2 r l Y1 r " l • 3 "2 1

rx -j ~ -1 x3 f- 1 I- 1 X
7 6 x, x. x2 xl

L J L J L J L J

cl Unl-directional convolution

FIGURE 3.3.1.1: Representations of 1-D Convolution

121

different arcs, square boxes represent sources and sinks,circles

interior nodes, and the graph is homogenous. Verification of the

design is as follows:

(i) The input sequence definitions

k-l
o = 0 611

1
(for initial values of y associated

and with P)

(for x associated with S) 1Tk = 6~

with T(~) = n, T(ll) n-(k-l) and ~(t)

(ii) n-ary sequence operators are given by,

1T
i

_
l

= 01T
i

0i+l = O[Oi+wi 1Ti l

(3.3.1.6)

(3.3.1. 7)

(3.3.1.8)

(3.3.1.9)

This definition is generic as the graph is homogenous, the cell

is a simple IPS.

(iii) Derivation of output sequences:

By repeated substitution
k-i

1T i = 0 1Tk (3.3.1.10)

and substituting (3.3.1.10) in (3.3.1.9) yields,

n [nk - i +l I °i+l = .. oi + wi .. 1Tk (3.3.1.11)

Now (3.3.1.11) has the form 0i+l=OOi+~i i=l(l)k+l its solution is

r-l r-l .
0 o 0

1
+ L n)-l~ . , r=2(1)k+l

r j=l r-)

The proof of this fact follows by induction,

for i=l O
2

= 001+~1 ' which satisfies (3.3.1.12) for r=2

assume (3.3.1.12) is true for r=l(l)k, then,

for r+l
r-l

o = 00 + ~ = 0 [il 0
1

+
r+l r r

r-l

L
j=l

r-l
oj~ r I o 0

1
+ + ~

j=l
r-j r

r
r I nj-l~ = o 0

1
+

. r+l-j
)=1

(3.3.1.12)

122

It follows that (3.3.1.11) is solved by applying (3.3.1.12) with r=k+l

_ k-{k+l-j)+l
on t.k+l_j-wk+l_j [n "kl

k k
ck+l = n cl + L

j=l

producing,

(3. 3 .1.13)

substituting for (3.3.1.6) and (3.3.1.7) the original input sequences,

2k-l ~
ck +l = n 811+ L

j=l

2j-l
n [wk' l·e~l -J+ (3.3.1.14)

and on further manipulation using the properties of Defn.{3.3.1.S)

equation (3.3.1.14) becomes,

j-l
Q [wk_j+l ~l (3.3.1.1S)

From the ordering of the w
i

coefficients in the graph it follows

that

(3.3.1.16)

where S.{t)=w
k

. l~{t) and as l1{t) =0 i.e. initial results of
J -J+

accumulation zero

with T{S) = n-k+l and,

S{t) =
k
L SJ.{t+k-j)

j=l

k

= .L Wk_j+lXt+k_j =
J=l

and this is the algebraic form of (3.3.1.S).

k
\' w x
L q t+q-l

q=l
t=l{l)T{S)

Finally Fig.{3.3.1.1c) indicates an alternative systolic array

for the same problem where both streams move in the same direction, and

y~s moving twice as fast as the x~s, and the padding neutral elements
L L

have been removed. This is desirable because only n cycles would be

required to read the n-components of the solution vector instead of 2n

123

cycles in the former case. The cell is another variation on the IPS

cell and is given later. The above proof is significant because it

illustrates that systolic arrays can be verified algebraically.

3.3.2 Transformation Rules

The two main objectives of transformation rules are:

(i) To modify existing and correct systolic designs to produce

new designs which have improvements over the old ones.

(ii) To convert non-systolic algorithms into equivalent

systolic designs.

For purposes of discussion it is necessary to assume that the

design to be modified is correct, in (i) this is achieved by using the

verification technique of the previous section while for (ii) an

alternative method must be found. In the case of systolic designs an

essential feature of transformations is that they preserve the 'systolic

property' or pumping action. In its weakest form this means that a

single data or instruction item must reach different nodes of the graph

at different times, for non-systolic designs a graph must be modified

to give it this property before further improvements can be made. Once

a transformation is validated it can be used as a legitimate rule in

all designs with similar arrangements. In this sense validated means

that the rule preserves the systolic property and· the correctness of

the computation. It follows that sequences of validated transformations

applied to a verified design result in a new ar~ay which is implicitly

verified. Hence verification can take place only on arrays which suit

the proof techniques.

We can assess the validity of transformation by considering their

124

effects on three quantities (Ullman [84]) which are:

D = the delay of data to propagate through a cell

S = the spacing of elements within a sequence (i.e. the effect

of the spread operator)

P the period or cycles between real inputs in a sequence arriving

at a cell.

The aim of a transformation is to modify D,S or P, such that DS=P is

preserved, which usually indicates that the array continues to operate

correctly.

Definition 3.3.2.1: Two given designs are equivaZent if for initial

values given for one design there exist initial values for the other

design with the same input function and the two designs compute

essentially the same output function.

One final quantity termed latency is also useful and defined as:

Definition 3.3.2.2: The Zatency of a systolic array is the number of

cycles between the first input and the first output.

or

Now, there are two main types of transformations we can consider.

1) Re-timing of data flow around the network by adding or

removing delay elements (0).

2) Re-placement of cells which can detect isomorphisms

between data flow in different designs to simplify

processor geometries.

The principles of re-timing can be summarised by the following

lemmas and theorems which use a timing graph notation called the n-graph

representation (modified from the z-graph representation of H.T. Kung &

Lin [83]) which is simply a geometry graph whose arcs indicate delays

with a label nk
for k delay cycles.

125

Lemma 3.3.2.1 (k-slowing)

If all the delays on arcs of a timing graph are multiplied by k>l

then the cells can be redesigned so the array network will work

correctly but a l/kth speed (i.e. k-slowed).

Proof:

(i) The network will perform the same function if the period of

all streams at all nodes are multiplied by a constant, and is

simulated by all processors taking k cycles instead of one,

with k-l idle cycles.

(ii) The equation DS=P is modified to (kD)S=kP

(iii) Two data streams a,b which travel between nodes u and v and

have delay nR. and nm arrive at v by times that differ by I R.-ml.

Multiply by k and they arrive at times differing by klR.-ml

so if the process is k slowed operation is preserved.

Note: If k delays are added to each arc timing is no longer preserved.

Lemma 3.3.2.2 (timing shift)

Suppose k>O, and that v is a node whose outgoing arcs all have

delay greater than k, we can add k delays to each incoming arc and

subtract k from all outgoing arcs. Provided processors are modified

correctly the network will perform correctly. The reverse procedure

applies if all incoming edges have delays greater than k, and k is added

to outgoing edges and subtracted from incoming edges.

Proof:

(i) Intuitively delays before and after a cell provide a certain

amount of slack time and k represents the largest shift in time

that the cell can make and still produce its result before or

at the time required by other cells dependent on its output.

126

(ii) If u is a processor node and some arc leaving u has delay 0,

and u needs 0 cycles to compute its result before the theorem

can be applied the cycle time must be changed so that

computation completes in at most 0-1 cycles.

(iii) To preserve 05=P, the change in 0 must be compensated by 5 or

P. It is not easy to change P locally or globally, and so

changing delays from 0 to 0-1 make 5 change to 05/(0-1).

Using these two Lemmas and the assumption that there are no loops of zero

o
delays (n) the re timing theorem for general graphs follows:-

Theorem 3.3.2.1 (retiming): Any finite network with cycles consisting

only of zero-delay arcs can be transformed into a network performing the

same function whose delays are at least 1.

Proof:

Let N be the original network with no zero-delay cycles, define

lag(v) of every node to be the longest path consisting of zero-delay

arcs ending at v.

(i) lag(v) is finite and the amount v must lag behind nodes of

lag zero.

(ii) There is at least one node with lag zero otherwise tracing

back arcs would locate a cycle of zero-delay because N is

finite and we eventually repeat nodes.

(iii) An arc from u to v with delay 0 in N will be given a delay

lag(v)-lag(u) as the largest path to u must be shorter than

the largest path of v making the delay positive.

(iv) A likely problem is that v may be the source of an arc with

delay d>O to a node w with lag much less than v and we would

have to subtract lag(v)-lag(w) from arc with delay d. In this

case apply Lemma (3.3.2.1) to select k such that,

dk>lag(v)-lag(w)

127

where v and ware taken over all nodes so d>O for v to w.

The network is now reconstructed in a two stage process. First,

select k and apply Lemma(3.3.2.1). Second, delay each node of lagt by t

cycles and for all arcs from nodes u to v with delay d~O replace with

delay lag(v)-lag(u), for arcs with d>O replace with dk+lag(v)-lag(u).

These three mechanisms constitute the famous re-timing Lemmas of

Leiserson and Saxe [83], the problem with these techniques is that for

large designs they can become quite complex. In H.T. Kung & Lin [83] and

H.T. Kung and Lam [84] alternatives have been suggested but the latter

is the simplest and can be summarized as:

Theorem 3.3.2.2: [Cut Theorem]

For any design, adding the same delay to all the edges in a cut and

to those pointing from sources to sinks set of the cut will result in an

equivalent design.

Recently, Dew, Manning, & MCEvoy [86] presented a more general notion

of a cut which allowed delays on all arcs of the cut set, a cut partitions

the nodes of a graph into two sets with undirectional dataflow between them.

Retiming methods can also be used to derive new arrays as shown in

Fig. (3.3.1.2), part a) is the timing graph of Fig. (3.3.1.1a) and part d)

is the equivalent timing graph for Fig.(3.3.1.1c). In part b) the point

to point connections of the x input are turned into broadcasting wires

by using additional delays preserving computation. In part c) the

direction of the y stream is reversed and by collecting terms in reverse

order the unidirectional form is produced by observing the delays

necessary on x to synchronise with y as it filters through. The broadcast

128

a) ./l, -graph representation of t'Wo-.... ay convolution

b) semi-systoliC convolution

c) Uni-directional serni-systolic convolution

d) Uni-directional convolution

FIGURE 3.3.1.2: Retiming of convolution scheme

129

line is then removed by sharing delays producing point to point

connections.

An analogous method to retiming aimed at processor geometries is

replacement. The general technique is to modify the design by allowing

the processor geometry to move identifying isomorphisms between data-

flows of different designs and determining a path or locus of computation

sites which a smaller network could visit to achieve full computation.

In practical terms this often means folding the data streams to fit a

stationary but reduced network. We shall only consider a simple

example comparing the two matrix multiplication arrays of Fig.(3.2.1.5)

and Fig.(3.2.1.6). The orthogonal array has two-directions of dataflow

and is stationary allowing data to be stored in cells between steps.

The hexagonal scheme has three-way data flow and is non-stationary with

no data residing in the cells between steps. In the latter case the

dataflow splits into three disjoint sets as illustrated by Fig.(3.3.1.3)

FIGURE 3.3.1.3: Rote transformation

with circles, triangles and squares. A data element participates in

constructive computation by passing from circle to triangle to square

then back to circle. This fact and the Huygens principle ensure that

the three data sets never meet and indicates that these problems could

130

be interleaved on the same array. The argument in reverse implies

that each matrix multiplication on a hexagonal array is really three

problem instances interleaved. Now embedding the hexagonal grid into

an infinite grid representing the systolic space as shown by Fig.(3.3.1.4a)

with normal data flow. If we move the grid relative to the data in the

direction shown by Fig. (3.3.1.4b) the dataflow appears to have changed

with one data path becoming stationary. Drawing the relevant part of

a) Hex dataflow

b) Shifted dataflow

cl Rectangular form

FIGURE 3.3.1.4: Relationship between hex and orthogonal geometries

131

the grid in Fig.(3.3.1.4c) indicates that connections between only the

circular (or star or triangles) are possible producing a rectangular form

and hence uses only a third of the original cells. A simple reorganisation

of the dataflow and rotation of the rectangular grid gives the form in

Fig.G.2.l.s1.

For general replacement strategies three steps are necessary once

a structure on the infinite grid has been found.

1. The bounds of the array are located:-

As the grid moves the union of all the visited locations is

the new array, and it may occur that data movement operations

in the old algorithm fall outside the new design saving time.

2. The place of input and output are located:-

This is trivial if arrays have an initial position for input

and satisfy simple and regular dataflows.

3. Processor actions:-

By moving the processor grid the instruction groups become

non-stationary and so processors may no longer be stationary

and will require some type of control mechanism.

Note: If we start with a rectangular array we can also develop a

hexagonal scheme.

Using retiming and replacement strategies a better hexagonal matrix

multiplier which uses T.n+wtime can be derived by reversing the direction

of the result connections, a version of the array appears in Huang &

Abraham [84].

Finally re timing and replacement can be viewed as operations on

elements (designs) of a systolic frame. A sub-frame can then be defined

as the set of all designs for the same underlying algorithm, and an

132

Anchored sub-frame as a sub-frame with at least one formally verified

design. Furthermore, a closed subframe is a subframe, such that for

any design from it, application of retiming and replacement methods

always produces an alternative design in the subframe. Clearly the l-D

convolution problem is an anchored subframe and is probably the closest

to being a closed subframe in existing literature. From the designers

point of view an anchored sub-frame is useful because there is no need

to verify designs formally just apply the timing and placement rules.

When a sub-frame is shown to be closed there is no pOint investigating

its systolic algorithms further in a mathematical sense, only implementation

methods can improve their operation.

3.4 PRACTICAL CONSIDERATIONS AND VLSI

In this section we examine and justify the heuristics used to

derive a constrained systolic frame, which are applicable to chip

implementation of arrays. The first step in the argument is to restrict

the systolic space model to a more formal set of constraints which back

up experience in circuit production, and allow reliable reasoning about

practical implementation problems.

3.4.1 The Grid Model

For VLSI implementation purposes the systolic model is' constrained

into a 2-D space and gives rise to a variety of circuit models attributed

to Thompson and Brent & Kung among others, and discussed in Savage [81].

The grid model we use has many common features with these models and is

a modified version of the one given in Ullman [84] and has the following

components:

133

1. The systolic space is constrained to a 2-D rectangular grid

which is further stratified into a number of layers fixed

before we start a design.

2. Wires run horizontally or vertically, and on the same grid

line there can be at most one wire in each layer.

3. Circuit elements occur only at grid points, wires entering

grid points are inputs, those leaving outputs.

4. If the number of inputs to an element are >4 a shape can be

placed over a number of grid points to provide the correct

number.

5. There is limited fan-in, that is a small finite number of

inputs to a circuit element.

These definitions cover heuristics H[l] and H[3] with H[2] following

almost immediately. The grid model itself is representative of VLSI

processing techniques because the manufacturing process requires three

layers for wires in different materials (polysilicon, diffusion and

metal) see Mead & Conway [79] and while 2. appears restrictive it is a

method often used in real manufacturing techniques and is supported by

the following theorem.

Theorem 3.4.1.1: If C is a circuit in the grid model that uses k layers

in which to run wires. A second circuit C can perform the same function

2
as C in the same time using 2 layers but k times the area of C with

wires in one layer running only horizontally or vertically.

Proof: [Ullman [84] pg.37]

Notice that diagonal connections can be implemented by a staircase

arrangement of horizontal and vertical wires passing through a number

of grid points which contain no circuit elements. Thus it becomes

134

possible to embed a timing graph or processor geometry for arrays given

in the previous sections on to the grid. The geometries are planar and

so require only a single layer of the grid to accommodate its wires.

It should be clear that if ~x and ~y are the grid lines spacing in the

two available directions the area of the circuit is bounded by the

smallest rectangle which contains all the grid points. If we further

assume that these points form a convex set the area is only over

estimated by a factor of two at the most - this is termed the convexity

assumption and the extra area is asymptotically negligible. Once the

geometry is embedded we can reduce 6x and ~y to provide a finer grid

creating a number of grid points inside each cell. In the case of the

hexagonal array of Fig.(3.2.1.6) the circuit in Fig. (3.2a) would be

added to the smaller grid covering points bounded by the hex's. The

refinement continues until finally basic fabricable logic elements are

allocated to grid points. Now the internal arrangement of the hex IPS

involves wires that cross and is avoided on the grid by using the

additional layers. Consequently, if the systolic array geometry is

planar (H[2]) the complexity of wiring using different layers is

controlled and often implies regular geometries.

To justify the remaining heuristics the notion of timing must be

examined in more detail. So far the notion of time has been given by a

cycle which implicitly assumes that:

1. A computation is a discrete computational step marked by a

series of beats or clock pulses.

2. There are a limited number of logic elements through which

signals propagate in one time step, and the transmission of

signals on wires is instantaneous.

Thus H[3] is justified because if no limit was placed on inputs to a

135

grid point the size of the basic cell could be unlimited, hence

propagation delay through its circuit elements would be variable and

length of a time step difficult to derive. Furthermore we have defined

a cycle to be the time to complete an inner product step of one

multiplication and one addition, the circuits to perform these operations

are made up of logic elements which themselves must be switched on and

off to compute results. So the basic cell cycle consists of a number

of smaller cycles or clock ticks defined by the basic switching time

. of logic components. The time between ticks (or pulses) is dictated by

.
the properties of the materials used to implement the components and

control the speed at which electrical signals can propagate through

logiC elements and down wires. Even for the fastest devices propagation

delays must be given serious consideration. H[4] and H[5] are now easily

justified because as a wire gets longer the more time a signal takes to

travel its length; eventually wires will be so long that data arrives at

the wrong clock tick and computation is invalid. This phenomenon is

called data skew, a solution is to increase the period between clock

ticks slowing down the computation, or to limit the length of wires to

allow time for the signal to arrive. The situation is further

exacerbated by the fact that the clock tick itself must be broadcast to

components in all the cells of the geometry and so tend to be long wires,

an added constraint on the clock period. It follows that broadcast of

data should also be avoided.

3.4.2 Area/Time Tradeoffs

In the examples given so far the theorems have graded designs

according to cell count and computation time. These seem quite natural

136

measures but also have practical significance.

During the factorisation process of a cricuit many opportunities

arise for a flaw to appear in a chip making it useless. In fact the

largest feasible circuits have a very low probability of producing and

unflawed chip of about 0.1 (or 10%). The total cost of manufacture

must be spread over all the 'good' chips making the cost inversely

proportional to yield. If we multiply the area of a chip by a constant

C>l the probability of a good chip is (O.l)C and costs increase by lOCo

Consequently designs with small area are of paramount importance.

Minimising computation time is also important, because existing

problems can be solved faster, and bigger problems previously impractical

may become solvable. Furthermore, in real-time applications like signal

and image processing the ability to provide results for time dependent

processes is crucial.

The selection of a particular algorithm for a problem is a complex

tradeoff between area (A) and computation time (T) which is inherently

problem dependent. An idea of the best possible tradeoff can be derived

theoretically from the grid model using lower bound arguments on area

and time, when a bound is achieved it indicates that our design is in a

sense optimal. Three basic bounds which have had some success use an

area-time solid which can be formed by taking all the snapshots of an

array and stacking them on top of one another. First we can argue about

the volume of the solid giving us a lower bound on AT, second we can

argue that a certain amount of information must flow temporally across

the boundary between two snapshot levels. And, thirdly consider the

amount of information flowing across a line (partitioning the grid by

cutting its sides of smallest length) during execution of the algorithm

137

and which gives us a lower bound according to AT2 The strongest or

2
these three bounds is the AT result, because it represents a bound

which matches the best circuits that can be constructed, results for

hexagonal matrix multiplication and related problems using AT2 can be

found in Savage [81] and extensions in Lin & Wu [85]. In our case,

the importance of lower bounds is that they indicate room for manoeuvre

between existing designs and the optimal bound betraying the possible

existance of a new design. These new designs can then be created by

2 modifying A and T to produce an overall reduction in AT •

There are basically two levels at which we can attempt to modify

A and T, first at the array level by re-timing and re-placing cells or

using fundamentally different algorithms for the same problem, and second

modifying the techniques of implementation. The former technique is

adopted throughout the thesis and is not discussed here, while the latter

idea has been considered in detail by Fisher [84]. For area reduction

we can consider re-arranging the cell changing it from a bit parallel

implementation to a byte or bit serialized version. Serialization

attempts to reduce the area by replacing parallel logic by a smaller

piece of logic performing the same task but requiring a larger number

of steps. The problem here is that additional circuitry in the form of

latches for data and logic for controlling the serialized calculation

must be added and offset the initial reduction. serialization also

affects the cycle time of a cell due to the increased number of stepsl

but this is also offset by a reduction in the circuit clock period due

to smaller propagation delays through the cell logic. Related to

serializing a parallel computation is pipe lining which breaks up the

computation into a number of not necessarily identical stages with the

138

same delay. All the original logic is used with the addition of delay

registers between each stage to allow successive problems to be over

lapped. This technique gives rise to the term two-tevet pipetining in

systolic arrays, where the first level is the global pipe lining between

array cells, and the second level the pipelining of computations within

a cell. An example is shown in Fig.(3.4.2.1) for the unidirectional

convolution algorithm.

FIGURE 3.4.2.1: Two level pipelining of convolution

Two levels are useful because only the propagation delay of

individual stages is important allowing a reduction in clock period,

but limited because the individual problems pipelined cannot depend on

the results of closely preceding problems as results will still be in

the pipe. Thus, the technique encounters problems with arrays with

feedback like backsubstitution (see H.T. Kung & Lam [84]).

Another significant problem in implementing a systolic array as a

chip is communication with the outside world. A bit parallel approach

is expensive on pins (off chip connections) as each input or output

requires enough pins for accommodating the word length. Serialization

has the advantage of producing hardware independent of word length and

139

thus reducing pin count, an attractive feature as the chip perimeter

is fixed by its area. Finally, when area considerations are not so

important we can combine serialization and pipelining to increase the

throughput of the system, as the convolution example indicates. However

the parallelism in the algorithm must be sufficient to keep the pipelines

full, otherwise the possibility of interleaving problem instances must

be investigated to maintain efficiency of cells.

3.4.3 Fault Tolerance

Serialization and global redesign of the algorithm are not the

only ways to cope with manufacturing problems. Another intuitive

approach is to design a complex circuit and then increase the resolution

of the implementation technique to scale down the feature size (which

defines basic dimensions of wires and logic elements), and 'stuff' the

circuit into a smaller area. The problem with this is that scaling down

cannot continue for ever and eventually a circuit will be produced for

which there is no alternative but to increase area. Furthermore as

resolution approaches its limits the electrical properties of wires and

components limit performance. For instance, the propagation delay as

basic elements shrink is reduced but the corresponding delay on inter

connections remains the same, so eventually transmission of signals

dominate the speed of operation creating a lower bound on the clock

period.

A more devious approach to solving the area/yield problem is to

increase yield significantly so that area is no longer a good measure

for cost. For instance, if yield (i.e. probability of an unflawed

chip) was 0.9 (90%) then increasing area by a constant C>l would produce

140

a yield of (0.9)C, hence yield decreases slowly which in turn raises

cost slowly, making it less sensitive to chip area. This approach is

adopted by fault tolerence techniques aimed at producing more reliable

and robust chips; and essentially designs a circuit so that it can be

restructured after fabrication. Restructuring avoids the flaws in a

chip by routing around faulty elements allowing a defective chip to be

used. Circuits employing fault tolerance can be envisaged as a four

part design (Sami & Steffanalli [86):

1. An original array of cells/processors.

2. Spare cells/processor (preferably arranged in simple patterns)

3. An interconnection network (usually a grid) consisting of

data paths, switches and control paths for reconfiguration.

4. A control algorithm performing a fault tolerance algorithm.

Using ~~is model fault tolerant circuits and strategies can be designed

to cope with two types of failure:

1. FToduation defeats:- which are high with current fabrication

technology.

2. OperationaZ defeats:- which occur while the device is operating

inside a real system.

The corresponding fault tolerant strategies are termed static and

dynamic respectively. Static schemes test and fix defects before the

chip is packaged and contribute only to production costs and are performed

just once. Dynamic schemes cater for operational defects and must be

applied many times in a real computing environment consequently static

schemes generally use less hardware than dynamic schemes which require

programmable switching elements and additional control networks so

restructuring can be performed automatically. Where the area of a basic

141

cell is not significantly more than the extra connections and switches

to implement fault tolerence dynamic schemes are questionable.

The reconfiguration or restructuring whether static or dynamic

is not usually performed as a direct one-to-one substitution of faulty

cells for spare ones, but depends upon the components of the model

present. For instance, if 1. and 3. are available but 4. is omitted

there are no spare cells and 3. is reduced to a fixed set of paths which

must be reconfigured manually, for instance by laser programmable links

(e.g. VLSI RAMS) making the scheme static. The lack of spare cells means

that a smaller network is produced and consequently can only solve smaller

problems. When all the models components are present the spare cells

can be used by re-configuring the network around faulty cells. In these

cases the control algorithm and network are simplified if the whole row

or column containing faulty cells is switched out of the network, resulting

in a number of perfectly good cells being wasted. These wasted cells

can be recovered by a more complex control algorithm which incorporates

a global re-naming procedure mapping the structure of the array onto

the available working cells. Renaming introduces additional problems

over and above the complexity of the control algorithms as it requires

a highly flexible communication network and may introduce long wire

connections for large number of cell failures. Many variations are

possible on these dynamic schemes such as fault stealing structures

where rows and columns can steal good cells from adjacent rows and

columns, but all trade hardware and complexity for increased reliability

and flexibility.

As well as error detecting and correcting tolerance schemes there

are also error masking schemes. For example, in Triple Module

142

Redundancy (TMR) only 1., 2. and 4. of the model are retained, but each

original cell has two spares with it. The control algorithm is built

into these cells which can check for faults and switch in a spare cell

if necessary to mask the error. An alternative is to redesign the

original network to incorporate 4. with only a few extra cells to

compute where errors occur but fix the results rather than modifying

the cell network.

An implicit assumption in all these fault tolerent systems is that

the extra hardware incorporated cannot be faulty, or at least has a

significantly less chance of failure than the original cells. As fault

tolerence techniques become more complex they may contradict this basic

premise.

Fault tolerence techniques can be tailored to systolic arrays by

using the additional information about the regularity of data flow, and

produce effective low-overhead schemes. Briefly the salient features

of the systolic fault tolerance schemes are as follows. The above model

is restricted to 1. and 3. with the communication network further

confined to nearest neighbour communication. Attention is then

restricted to unidirectional arrays and basic cells are augmented with

simple bypass registers and switches, as illustrated by Fig.(3.4.3.l)

when a faulty cell is detected it is switched out using these extra

connections and registers to maintain throughput but reducing the range

of problems that can be solved. For instance, in the convolution example

of Fig. (3.3.l.lc) a fault in a single cell would mean only three co

efficients could be used instead of four. Notice that a series of faulty

cells will not produce a long wire as the data will be fed from bypass

register to bypass register of successive faulty cells maintaining

143

nearest neighbour dataflow. The amount of extra hardware is trivial

and we can reasonably assume that the extra wires and registers will

not be faulty. For 2-D arrays and arrays with feedback the problem

is more complex and throughput is reduced rapidly as faults occur. A

solution to the feedback problem is to convert feedback arrays into

unidirectional ones, this is done by re-timing the array to create a

systolic ring architecture, which mixes stationary and non-stationary

dataflow. A systolic ring for back substitution is shown in Fig. (3.4.3 .2)

described below. The q-l term recurrence of Fig.(3.2.2.1) can be

implemented using only q/2 cells in the systolic ring, and is operated

as follows. The q/2 most recently computed results are stored in the

cells (one in each), while the partial results of the next q/2 results

cycle around the ring meeting the stored values. Every two cell cycles

rl
r - - - -.,f l- - - -''--- bypass link

I L~ I
I I

1 • r 1 1 • -,
~

~ 1
• .. .- --. i ~

I L .J
I I
I
I rl I L---1 }- ___ J

L.J

FIGURE 3.4.3.2:

Systolic ring for back
substitution (q=7)

FIGURE 3.4.3.1: Fau~tolerant
convolution cell

144

a result is completed and gets loaded into a cell. The output period

is the same as the feedback array but now cells work all the time

improving efficiency and require only half as many/loading and

unloading of values complicates the cells and requires an extra line

for output on some problems but this is compensated by reduced cell

count and increased fault tolerance. The division required by the

former two-way array is now performed outside the array to avoid placing

a divider in every cell. In addition to the backsubstitution ring 2-D

ring arrays for triangu1arising and factorising a matrix requiring only

a half and a third of the original cells and the same computation time

exist. (The methods can be found in H.T. Kung & Lam [84]). In conclusion,

the basic characteristics of the above schemes are that throughput is

unaffected, interconnection length is not increased so clock period is

unaffected and the arrays degrade gracefully as more faults are

encountered.

In contrast to the prinCiple of routing around bad cells is

algorithmic fault tolerance (Huang & Abraham [84]). This technique is

used to detect and correct errors resulting from permanent and transient

errors, and is not generally applicable but for specific cases can be

achieved with a very low overhead. Rather than tailoring the correction

technique to architectures, algorithm-based tolerance is tailored to

specific algorithms and consists of three parts:

(i) The input data is encoded

(ii) The algorithm is redesigned to operate on encoded data

(iii) The new algorithm is distributed onto the architecture.

For a low overhead the unencoded result or information part must be

easy to recover, and enough redundancy must be available for the detection

145

and correction of errors.

One particular encoding is the checksum method which is applicable

for many common matrix operations.

Definition 3.4.3.1: The row, column, and full checksum matrices for an

nXm matrix A-(a ..) are defined as follows:
1J

(i)

(ii)

(iii)

The coZumn checksum matrix A of A is an (n+l)xm matrix
c

n
consisting of A and the extra row al' - I a. j , j-l(l)m.

n+ ,J i-l 1

The row checksum matrix A of A is an nX(m+l) matrix consisting
r

of A and the extra column a
i

1 ,m+

m
- I a .. , i-l(l)n.

j-l 1J

The full checksum matrix Af of A is the (n+l)x(m+l) matrix is

the column checksum matrix of the rOw checksum matrix of A.

Each column of Af is an encoded vector, and the following results hold

for nXn matrices,
AB - C c r f

(3.4.3.1)

C -f
L U

c r
(3.4.3.2)

Af+Bf - Cf
(3.4.3.3)

Once a computation has been performed the fault tolerance scheme

is as follows:

1. Detect error:

a) Compute sum of information element of each row + column

b) Compare results with corresponding check sums

c) "Errors are indicated by inconsistent values.

2. Locate error:

Errors lie on the intersections of inconsistent rows and

columns.

3. Correct error:

(i) Add difference between computed row or columns sum

and its corresponding checksum.

146

or (ii) Replace checksum by computed value.

Note: A small tolerance for round-off error should be allowed to avoid

detecting a faulty cell incorrectly.

Additional cells are required to compute the checksum parts of the

problems, but there is no need to route around faulty cells because

error correction can be performed outside the array. Thus, the same

type of problem can be solved even in the presence of errors.

Unfortunately the scheme has only limited correction capability, and

for certain configurations of errors the technique can be fooled. A

more powerful method is the ~eighted checksum scheme reported by Jou

& Abraham [86] and extended by Luk [86].

¥ ~ / X l~

I X r-- ¥
~ ~ ~ ~ -~

~ ~, X ~

FIGURE 3.4.3.3: Uncorrectable faults in checksurn scheme (for cf. n=4)

The normal procedure in chip manufacture is to fabricate a number of

identical circuits simultaneously on a wafer of silicon. Once the chips

are completed the wafer is diced and the individual chips tested, without

fault tolerance the faulty chips are discarded at this stage. With fault

tolerance virtually all the chips will be used and it becomes feasible

to use the whole wafer as a single circuit. This process is termed Wafer

Scale Integration (WSI) and is an active area of research. The larger

area makes it possible to connect larger and separate subcircuits which

ordinarily would reside on separate chips on the same wafer and removes

the communication bottleneck caused by pin restrictions. Fault

147

tolerance is of course essential because the probability of producing

on unf1awed wafer are very remote. WSI also adds to our problems of

signal propagation because the potential for longwires and large number

of components through which signals must be driven increases dramatically.

By using the grid model and consequently designs from constrained and

regular systo1ic frames dataf10w and cell complexity can be controlled.

The global clocking mechanism however is another matter, clock skew is

a key factor even for single chips, for WSI it could present a

significant problem. Fortunately work by Fisher [84) indicates clocking

these large systems is practical.

3.4.4 Synchronous Versus Asynchronous Array Operation

The essential feature of the systo1ic array is the mapping of data

flow into a simple and regular pattern implying communication between

cells. In the examples so far it has been convenient to envisage cells

computing in lock step or synchronisation. This view arises from the

definition and structure of snapshot tracing making computations easy

to follow, as computation is chopped up into discrete steps, and produces

a global clocking mechanism. If we assume that the circuit has bounded

communication delay and an ability to pipeline Signals the clock pulse

can be broadcast to cells in two ways:

1. For l-D arrays the clock period is made independent of array

size by repeatedly folding the cell structure to bound clock skew.

2. In 2-D arrays a H-tree layout is used making all cells equi

distant from the root (clock source) of the tree again

controlling clock skew.

AS systolic arrays satisfy these assumptions global clocking even for

VLSI is controllable.

148

An alternative method which avoids global clock distribution is

self-timing or asynchronous communication. In a synchronous scheme,

the clock signal tells cells when data is available and transfer

between all cells is essentially simultaneous. In contrast, asynchronous

schemes communicate by a predetermined handshaking protocol that allows

cells to start computation as soon as its inputs are ready. The absence

of a global clock avoids clockskew and allows variations in component

speed to take advantage of data cependencies. The cost of this extra

flexibility appears in additional hardware for handshaking and increased

difficulty in testing of the synchronisation logic. This overhead is

further compounded by the regular structure of arrays using uniform

cell structures with a high dependency on input and output relationships

which force the asynchronous scheme to run at its worst case speed.

Consequently the tendency is to choose synchronised schemes.

Where the size of a circuit is unbounded - for instance in the

case of extendable arrays a trade-off between asynchronous and synchronous

can produce a hybrid clocking scheme. Here, the circuit is partitioned

into chunks of bounded size and each chunk given a clock node.

Synchronisation between chunks is performed asynchronously and the clock

nodes are then used to broadcast a clock pulse to all the cells in the

chunk.

We conclude that the use of constrained and regular systolic

frames to derive systolic arrays will produce designs suitable for

possible VLSI implementation provided cell count and global input and

output is limited.

(I) d""

clOCk~ (b)
datl

a) Ideally synchronised one-dimensional array

b) Corresponding clocked array

cl Array folded to bound clock skew

host

do) Comb layout of one-dimensional array

FIGURE 3.4.4.1: Bounding of clock skew using foldi~g

FIGURE 3.4.4.2:

(a) (b) (c)

H-tree layouts for clocking usin9 a) linear arrays
b) square arrays c) hexagonal connected arrays

d) Hybrid synchronisation scheme

H-tree clocking strategies

149

150

3.5 GENERIC ARCHITECTURES

For large applications it may not be feasible to design a single

chip implementation of an array, especially when balance between

flexibility, efficiency, performance and implementation costs is

essential. An alternative implementation strategy is to implement

basic cells at the board level using a collection of "off-the-shelf"

components which are widely available as chip sets from various

manufacturers.

Systolic arrays achieve high performance and efficiency by

considering only restricted problem classes, at the expense of

flexibility and some times implementation cost. A more economic

solution results if arrays can be constructed which incorporate

features for a number of systolic algorithms. These more flexible

systolic forms are called generic systolic arrays, and in this section

we shall briefly review the main contenders which have received attention

to date.

3.5.1 The Warp Architecture

The Warp Architecture developed at Carnegie Mellon University

(CMU) by H.T. Kung and his associates is the most advanced generic

design for purely systolic algorithms. Its design began with a study

to identify architectures of general purpose micro-processors which

could implement a variety of systolic algorithms efficiently. The

study resulted in the Programmable Systolic Chip (PSC) discussed in

Fisher [84] and Fisher, H.T. Kung & Sorocky [84] and prompted research

into cell structures for high performance systolic arrays in a particular

area (in this case signal processing).

151

The Warp architecture is a l-D linear systolic array with data

and control flowing in one-direction with input at one end of the

array and output at the other. From the preceding discussions we

observe that the design allows easy implementation allowing synchron

ization by a simple global~clock mechanism, minimum input/output

requirements and the use of efficient fault tolerance techniques for

faults. The basic Warp cell is constructed from a collection of chips

as is illustrated in Fig. (3.5.1.1) , its main characteristics being the

pipelining of data and control. Weitek 32-bit floating point multiplier

(MPY) and ALU perform operations and can be used in pipeline mode to

improve throughput by two-level pipelining. The MPY and ALU register

files use Weitek register file chips and can compute approximate

functions like inverse square root using look-up facilities. The x,y

and addr-files are also register files but this time used to implement

delays for synchronising data paths, and can be used as extra registers

for book-keeping operations, while the data memory is used to reduce

the input/output band-width by implementing tables of data and storing

intermediate results, it can also be used to implement multiple cells

on the same processor and hence 2-D arrays. The crossbar and input

multiplexors (muxes) provide communication between the, individual

elements and can be re-configured by control signals. The muxes

permit two-directional data flow and ring setups (using wrap around).

A lO-cell prototype has been built at CMU and tested on a number of

example arrays discussed in H.T. Kung [84aj.

l
3:1
Mux

'-tI 2: 1
r Mux

addr 1-1

Mcode
--i

H Y-FILE j-l
C

X-FILE f-i R

0
S
S

--'" ~ :J HPY
I ADOH-t-'lU; B RJ::G FILE 'I A 'I

R
r--

.---- 3:1
Mux
~

:I ALU
I REG FILE

f-l DATA
MEMORY

FIGURE 3.5.1.1: Data paths for the Warp cell

HPY r-

ALU f-

r addr i

....
'" N

153

3.5.2 The Wavefront Array Processor (WAP)

The WAP was introduced by S.Y. Kung and consists of an NXN

processing element with regular connection structure, a program store

and memory buffering modules as illustrated in Fig.(3.5.2.l). The

processor grid acts as a wave propagating medium and timing is

asynchronous, using handshaking protocols, thus no global clock is

needed.

Each processor can perform a limited number of operations and is

controlled by a program loaded from the program store. Data for

problems is stored in memory modules around the boundary and extra

time must be allowed to set up a computation. An algorithm is executed

by a series of wavefronts moving across the grid with processors

computing whenever its data and instructions are available. processors

are assumed to support pipelining of waves and the spacing of waves (T)

is determined by the availability of data and the execution of the

basic operation. The speed of the wave front ~ is equivalent to the

data transfer time.

Different algorithms are computed by changing the control program

which is written in a special Matrix Data Flow Language (MDFL) (see

S.Y. Kung, Arun, Bhasher, Rao & Hu [8l) .. which exploits the principles

of waves acting according to Huygens principle. Non-wavefront

algorithms can be converted (or systolized) to wave front version using

similar re-timing and cut theorems based on a signal flow graph, to

those in Section 3.3.

To compare the WARP and WAP we can consider pipelining ability,

architectural extendibility, programming simplicity and fault tolerance.

The Warp is essentially a pipelined architecture and can use two level

Program
Code
Memory

Memory modules

t:26+T

/ t=26
...--""..."

/

i4----.t / / If----t!
/

/
/ /

//
//

///

t:. • unit time of data transfer

T • unit time of arithmetic operation

FIGURE 3.5.2.1: The Wavefront Array Processor

154

t'ESA+T

r-'''r7'' t-56

t:66+T
r--r', t:6t.

pipelining to improve throughput, as well as having the ability to

perform stationary and non-stationary algorithms with special control.

On the other hand the WAP being asynchronous can take advantage of data

dependencies in problems which may result in significant speedups.

In terms of extendability the WAP is quite flexible, its lack of

global clock allows the array size to be extended to very large sizes,

whereas the synchronous warp must use folding arguments to bound clock

skew requiring re configuration on each upgrade of cells. The WAP is

simpler to program too, having an architecture structure already well

studied in SIMD and MIMD machines and supporting the MDFL language.

The WARP on the other hand requires the pipeline of control and the

155

choice of a suitable language for performing while and repeat loops

is still problematical. But in fault tolerance the WARP processor

has an advantage as it can cope with faults quite easily whereas

hardware recovery is quite difficult on the WAP without additional

processors. A neat solution would be to modify wavefront algorithms,

use the check sum procedures by simply adding an extra row and column

of processors, but this would require extra computation stages to set

up the checksum and fix the error.

3.5.3 INMOS Transputers and OCCAM

A third possibility is the INMOS transputer, a single chip micro

processor containing a memory, processor and communication links for

connection to other transputers, which provides direct hardware support

for the parallel language OCCAM. The structure of a transputeris

given in Fig.(3.5.3.1).

The transputer and OCCAM were designed in conjunction and all

transputers include special instructions and hardware which provide

optimal implementations of the OCCAM model of concurrency and

communication. Different types of transputers can have different

instruction sets depending on the required balance between cost,

performance, internal concurrency and hardware, without altering the

users view of·OCCAM. Hence the transputer is a Reduced Instruction

set Computer (RISC)

The processor contains a scheduler which enables any number of

processes to run on a single transputer sharing processor time, while

each link provides two uni-directional channels for point to point

communication synchronised by a handshaking protocol. Communication

RESET
ANALYZE:
ERROR
BOOT FROM
.a<
CLX
.CC
GND

NOT MEM (5.
BITS)

NOT MEM wr (.,..---,
NOT MEM RD
NOT MEM Rf

HEM WAIT
MEH CONF.

SYSTEM
SERVICES

ON-CHIP

(2K-BYTES)

APPLICATION +

SPECIFIC
HiTERFACE

32

32

FIGURE 3.5.3.1: Transputer architecture

PROCESSOR

32-BIT

LINK
INTERFACE

LINK
niTERFACE

LINK
I NTERF ACE

LINK
INTERFACE

156

'NO
OUTO

1Nl
OUTl

IN2
OUT2

IN3
OUT3

on any link can occur concurrently with communication on other links

and with program execution.

OCCAM itself is based on communicating sequential processors

(Hoare [78]) where parallel activities are viewed as black boxes with

internal states called processes and which communicate with each other

using a one-way channel. Communication is achieved by sending a

message down a channel between two processes, one process sends a

message and the other reads it from the channel.

As every transputer implements OCCAM, an OCCAM program can be

executed on a single transputer or a network of transputers. In the

157

former case, parallel processes share the processor time and channel

communication is simulated by moving data in memory. For a transputer

network processes are distributed among transputers and channels

allocated to links. Thus, the OCCAM program can be implemented in a

variety of ways. One transputer network can be used to minimise cost,

another to optimise performance, or a third to balance the two. It

follows that an approximation to both the WARP and WAP machines can be

made using transputers. We say approximation because the general

purpose nature of the transputer must pay some penalty in performance

over a dedicated network. In the case of a WAP, OCCAM is particularly

useful for implementing wavefronts.

The definition of the transputer architecture divides neatly into

logical aspects defining network interconnections and programs, and

physical aspects defining how transputers are connected. For systolic

algorithms we can liken this to the separation of dataflow and the

processor geometry.

3.5.4 Simulation of Systolic Arrays

We use the fact that OCCAM programs can be divorced from, trans

puter configurations by using the language as a simulation tool

throughOut the thesis, for testing designs. A brief summary of the

OCCAM language is given in the Appendices, together with selected

simulation programs. Fig.(3.5.4.l) indicates the general structure of

the programs, where branching indicates parallel execution. The

construction of programs follows ideas developed by the author in

Megson [84] but is modified to take advantage of the formal model

developed in Section 3.2.1. Consequently OCCAM programs simulate the

Gl"TDATA

SETUP

ALlOCATOR

SOURCES /t----fj CELLS ~_~ SINKS

PUTDATA

,- -,
I I

---~ DEBUG I
I I L ___ ...J

158

FIGURE 3.5A.l: structure of OCCAM program for simulating systolic arrays

the formal proofs by replacing input output descriptions by actual

results. Although the simulation does not guarantee correctness it is

nevertheless a less time consuming approach which does not result in

un solvable equations. Furthermore, a working OCCAM program retains

the possibility of actual transputer implementation and so solves two

problems in one attempt.

The getdata and putdata sections of Fig.(3.5.4.1) represent the

host machine interface and are responsible for receiving and sending

159

data and control to and from the program. Each routine contains

enough memory to store the initial array input data and the final

output data corresponding to the global input and output sequences of

the model. The amount of storage is easily calculated by summing the

termination functions of the bounded data sequences of each input output

sequence. In principle the two routines can be run in parallel with each

other and the array, and for some of the examples this is the case, but

generally they are sequential, in order to emphasize the parallel

operation of the array. The actual host can be predefined input and

output files or simply the terminal, the former method is useful for

buffering and throughput testing, while the latter helps with debugging

and interactive array performance. The routines can be augmented with

user friendly features directing the program use, the collection of

data necessary for the array construction and formatting of results.

The setup routine is a key section of the algorithm which computes

array dependent quantities. For instance, in the matrix vector array,

Fig.(3.2.1.3) depending on the size of p and q the x,y and A data streams

must be delayed in order for them to synchronize. The setup performs

these calculations and in addition computes certain values useful in

defining the structure of the array. These latter structural values are

more important as the array becomes more complex.

Sources, sinks and cells are OCCAM procedures corresponding to

nodes in V , V and VI of the network model. A source is loaded
. S T

initially with a vector from getdata representing its associated bounded

data sequence, together with additional values from the setup routine.

The values from setup are used to create the shift and spread of a

sequence before inputting it to the VI procedures. Sinks are analogous

160

to sources except they work in reverse, using shift and spread data to

cut out neutral elements and placing real values into data vectors

which are then passed to putdata for output. The cell procedures

implement the n-ary sequence operators associated with nodes in VI

Generally there is one procedure for each type of cell, and the

programming task is simplified for homogeneous networks. The input

and output sequences are represented by OCCAM channels appearing as

actual parameters in the procedure headings. Where cell definitions

are only marginally different extra switches and flags can be added to

a procedure heading so it can set up the correct cell type. This

collapses a number of definitions onto a single generic one. Extra

parameters can also be used for preloading array values, such as

convolution weights. A cell definition is divided into three sections,

initialization, communication and computation. Initialization is

performed only once and allows cells to be cleared before use or pre

determined values to be set up. In particular, initialization defines

neutral element quantities which can be used in communication before

real data reaches the cell, and is essential to maintain dataflow in

OCCAM programs. The communication and computation sections of the cell

are performed many times and are enclosed in a loop for iteration,

and are performed sequentially one after the other. All communication

is performed in parallel and computation is mainly sequential. The

loop control depends on the type of algorithm, if the execution time

can be computed in advance by a simple setup calculation a for-loop

can be used where the operation is uncertain a while-loop can be used.

The while-loop is more flexible because it allows successive problem

instances to be pipelined, whereas the for-loop scheme runs an algorithm

161

a fixed number of times. The two loop schemes also have differences

in the way they terminate but to follow this the allocation de

allocation procedures must be discussed.

The Allocator routine is called after setup and is supplied with

parameters about the array dimensions, synchronisation details (shift,

spread, etc.) and the total number of cycles in the algorithm if a loop

scheme is used, and data sequence sizes. The allocator is simply a

set of parallel loops which specify and startup the computational graph

by connecting VS'V
T

and VI procedures using OCCAM channels as arcs and

allocating channels according to the colour set CE' To achieve setup

the graph is mapped onto a grid of points whose points and hence arcs

can be recovered from a simple address type calculation. The simpler

the array the easier are the mapping functions, and the result is an

allocation similar to the VLSI grid model. Once started the sources

and sinks control computation, and the allocator only terminates when

all the graph cell procedures have terminated. Termination of procedures

is assumed to be globally synchronised if a for-loop is used in cells

and asynchronous if while-loops are incorporated. As OCCAM is an

asynchronous communication language for-loops tend to be messy requiring

some additional computation after the loop to clear all the channels -

hence avoiding deadlock. While-loops are better suited to the model of

concurrency and when augmented with systolic control sequences can be

used to selectively closedown a cells input and output channels.

consequently array cells can be switched off or de-allocated by a wave

front progression or pipelined approach from sources to sinks.

An additional procedure for debugging purposes can be added which

runs in parallel with graph network, and is mainly a screen/file mixer

162

routine. The allocator sets up the procedure and network cells are

augmented with an additional channel each which the debug routine uses

to analyse cells. Debug channels are allocated from a pool of channels

all of the same colour and require an ordering of network cells for

correct indexing. When the indexing function is simple debug can be

used to output snapshots of array operation so data flow can be easily

verified. Snapshots are output in a sequential cell-ordering and the

additional debug channel communication must be placed carefully· in cell

definitions. It should be clear that a globally synchronised scheme can

always be simulated by an asynchronous network and placing the debug

channel operation as the first statement in a loop acts as a synchronising

and ordering mechanism for cell computation rather than computations.

Although we cannot force OCCAM procedures into lock step execution a

similar idea to the debug scheme can be used to distribute cell

termination controls for while-loop schemes when controls are themselves

complex. Such a scheme has merit because it lends an intuitive synchronous

outline to the algorithm construction even though it is executed

asynchronously.

Finally, the techniques described above have been used successfully

throughout this thesis to implement designs in OCCAM but can in principle

be extended to any parallel language provided channels and cel~can be

modelled. In fact Brent & H.T. Kung & Luk [83] used an extended version

of PASCAL, ADA also seems a likely candidate as ADA rendezvous is very

similar to channel communication both being based on CSP. We adopt

OCCAM because it offers more direct hardware support for special purpose

designs as well as common architectures.

163

3.6 THE SOFT-SYSTOLIC PARADIGM

To c~~t~j~this chapter we shall attempt to unify the systems of

the previous sections into a unified framework which we term the soft

systolic paradigm. This new paradigm incorporates the old version

allowing the systolic principle to be exploited to the full. In

particular, we define three types of systolic algorithm, hard, soft

and hybrid which lead to new types of systolic design frames, and

which can adapt to changing technology conditions over time to evolve

new constrained frames.

Hard systolic algorithms (SH) are the so-called traditional

algorithms discussed in Section 3.2 which form regular frames and also

obey additional heuristics of constrained frames. In essence, these

algorithms should be designs which can be implemented using current

technological practices without programming.

In contrast soft-systolic algorithms (SS) are the most general

algorithms which are not constrained and may even be irregular.

Intuitively such algorithms are not suitable for direct hardware

implementation and can only be realised in a simulated environment

using a programming language executed on some parallel architecture

(which may be is a general purpose systolic architecture) see Shapiro

[84]. Soft-systolic algorithms map the systolic space onto the memory

structure of the machine and array architectures and processor geometries

form data structures for controlling the parallelism within the machine.

Such algorithms are clearly possible and supported by the OCCAM

language and architectures such as the Meiko computing surface.

Hybrid systolic algorithms fill the gap between hard and soft

algorithms allowing the marriage of limited programming and hardware to

164

achieve satisfactory cost/performance relationships for well defined

areas of computation. A current contender for hybrid classification

is the WARP architecture which is aimed at generic problem solving but

will be incorporated into a more general purpose machine.

This framework neatly partitions designs meant for direct

implementation and those which are programmed, allowing algorithm

designers the choice to develop designs based on a different trend in

technology. Consequently systolic algorithms can be considered in a

state of flux or migration through soft, hybrid and finally to hard

designs as technology develops. At the soft end new systolic frames

can be devised together with manipulation rules to enumerate all the

possible systolic designs for a particular problem. Closed frames will

result in a finite set of designs which can then be considered to

produce a few hybrid and hard architectures. Such techniques will be

essential for examining connections between systolic and existing

algorithms as well as generalising the systolic concept. In particular,

the goals of fifth generation computing projects requiring massive

parallelism and high performance would greatly benefit from an approach

which explicitly incorporates a technology sensitive migration of

algorithms.

To illustrate these ideas we can point to two main trends in

manufacturing technology which could provide alternative definitions

for systolic frames in the near future.

3.6.1 3-D VLSI

Rosenberg [83] presents a case study in 3-D VLSI which is relevant

to our purposes. The main concept is to extend the grid model of Section

165

(3.4.1) so it forms a rectangular solid of grid points and allows

vertical wire connects as well as in the plane of each horizontal

level of grid points. Each level or laminar also consists of enough

layers to run wires as in the original model but only a single wire

can occupy a vertical connection. The immediate consequences of such

an arrangement are listed below.

1. Wire routing should become easier due to the extra dimension

for avoiding crossovers.

2. An overall volume reduction should occur due to reduction in

area used to route around processors.

3. Shorter wires will reduce clockskew bounds and cycle time.

4. An increased surface area for input and output pins.

Fig.(3.6.1.1) illustrates a 3-D chip arrangement.

,
___ .1 __

I
I ------
I
I -,

PINS

circuit layers

routinq l~.y;;:e:;r:;;s-~--ll---_J

FIGURE 3.6.1.1

TO keep production costs low only a finite number of extra laminars

should be adopted and schemes based on this model are easily derived.

The simplest scheme would be a two-layer design, with one-layer for

circuit elements and the other for wire routing. A more complex

arrangement would be 3 laminars forming a sandwich with circuit elements

on the middle layer with data and control separated onto the remaining

166

two layers. Advanced techniques would permit more layers with a

mixture of circuit element layers and routing planes. Unfortunately

such ideas are non-trivial and will require a great deal of time and

effort. CUrrent technology is just beginning to introduce two layer

schemes in which the second layer is used for metalisation for power

and ground lines. Significant problems in future development are:

(i) The alignment of successive layers - this must be precise

if all inter-layer connections are to be formed. An

additional problem is the alignment and bonding of pins on

each layer.

(ii) The sinking of shafts for wires between layers - difficulties

arise due to diffraction of x-rays and the non-uniform

exposure to solvents used in etching the shaft, and increase

with depth.

(iii) Cooling of densely packed chips is already a significant

problem circuits layers sandwiched between other layers

only have the perimeter of the layer to lose heat.

The two layer design with wires on one layer reduce these problems

particularly when we assume that wires give off less heat than circuit

elements.

3.6.2 Optical Computing

3-D VLSI avoids clockskew and area problems by stacking circuits

on top of one another in the same way sky-scrapers solve space problems

in urban areas. Optical computing on the other hand is aimed at

replacing the limitations imposed on computing circuits due to electrical

properties of materials. In optical computing, electrical signals are

167

replaced by streams of photons and electrical logic elements replaced

by optical counterparts. Introductory material to optical computing

can be found in Goodman, Leonberger, S.Y. Kung, Athale [84], Athale &

Lee [84] and Huang [84]. Some immediate benefits of this approach are

apparent:

(i) Clockskew: is avoided due to communication at the speed of

light.

(ii) Crosstalk: the interference of electrical Signals by mutual

inductance in closely placed wires is reduced due to

relative difficulty in making streams of photons interact.

(iii) Radiation hard: Transient errors in computation due to radiation

(e.g. cosmic rays) incident on the chip surface is reduced.

(iv) Non-planarity: Circuits can be-non-planar as photon streams

crossing at an angle of >10% suffer no crosstalk occurance

and separate signal lines can intersect, with no ill

effects.

There are three kinds of optical computing which can be defined.

Acousto-optical is essentially analogue and has been used in optical

signal processing to produce moving data streams for multiplications.

The same principle is easily adapted for systolic arrays and is

discussed in Caulfield, Rhodes, Foster and Horvitz [81]. However

acousto-optics is limited by low accuracy inherent in its analogue

representation and flexibility in terms of the types of operations to

which it can be applied. Digital optical computing on the other hand

is involved with the development of optical logic elements to complement

optical signal transmission. In principle, this method will be as

168

accurate as current digital machines, but problems arise because

components so far accept inputs in one form such as intensity and

output in another like phase and so cannot be cascaded to form circuits.

There are also doubts about the best representation of the binary units

'0' and '1'. Some favour pulses while others prefer methods of

polarization (see Brenner & Lohmann (86)}. It follows that full digital

optical computing requires a great deal of time, money and effort to

get it working. A third alternative and perhaps the best in the short

term is electro-optical computation which combines electronics and

optics. Optics take the role of signal transmission, electronics

providing well established cascadable logic elements. Optical signals

arriving at logic is converted to electrics processed and then converted

back to optics for further transmission. On a straight comparison purely

electronic components would appear to be faster due to the extra over

head of signal conversion, but as feature sizes shrink and resistance

and capacitance of wires conspire to make propagation the key factor in

speed the conversion is justified, with optics used mainly for data and

control transmission a number of schemes can be envisaged and illustrated

in Fig.{3.6.2.l}.

1. Waveguided: A waveguided signal can take two forms, first, as optical

fibre transmission for connection chips and second a guide {such as

glass} integrated onto the chip, for internal chip communication

waveguides are restricted by the constraint that they must be kept

as straight as possible otherwise radiation and signal loss occur.

Consequently, a network of orthogonal gUides must be used on chip,

and we could use a variant of Fishers' hybrid clocking scheme where

light is used for global synchronisation of clocks distributed

electrically for subcircuits.

source

COUPLERS

DETECTORS SOURCES

a) Clock distribution using fibres b) Use of optical waveguides (on-chip)

6 SOURCE

HOL(x;RAM
~

DETEcr'ORS

LENS

o

o

DETEcr'ORS

c) Unfocused clock broadcast

HOLOGRAPHIC ROUTING
ELEMENT

~SOURCES

d) Focused distribution of clock signal e) Oata communication in free space

FIGURE 3.6.2.1: Optical signal transmission

...
Cl
W

1";0

2. Free-Space Transmission: In free-space transmission light is not

guided but controlled by the laws of propagation of light in free

space, and is further subdivided into focussed (or imaging) and

unfocussed. In unfocussed schemes optical signals are broadcast to

the whole chip (i.e. collineated light illuminates the chip at

normal incidence) and is detected by sensors distributed around the

chip. The problem with this is its inefficiency as only a small

amount of light falls on the required area, and the need for a

blocking layer to avoid transient errors in other parts of the

circuit. Focussed light avoids these problems but uses a hologram

to focus the signal to all the sights required but as with 3-D VLSI

it requires a high accuracy of alignment. Finally for data signals

inputs to pins can distribute signals into the middle of the chip by

reflecting them from a routing holograph.

Alot of development is required for all these techniques but research is

progressing into waveguides on chip with some success and fibre optics

is already well developed. Furthermore electro-optics by marrying the

existing abilities of chip technology with optical developments will

provide a transient technology until true digital optics becomes

achievable.

3-D VLSI and optic$ represent two of the most realistic improve

ments in implementation technology for the near future, their basic

philosophy is to remove some of the limitations listed as heuristics for

a constrained systolic frame. We can also modify the basic rules of a

systolic frame to accommodate the soft-systolic approach. A revised list

of rules defines a soft-systolic frame as follows:-

R[1-3] unchanged, these are the essential features of systolic

algorithms.

R[4] flow of data should be regular, and complex data

movements must be constructed from simple ones in a

controlled manner.

171

R[S] The majority of connections should be nearest neighbour

or to local cells but long connections are permitted.

R[6] Unchanged.

The heuristics are modified as follows:-

H[l] The systolic space can be multi-dimensional

H[2] The processor geometry is non-planar in a limited sense,

that it can be stratified into a series of planar layers.

H[3] Unchanged.

H[4] Local broadcasting is permitted to cells on the same layer

or between adjacent layers.

H[S] Long wires are permitted but should be omitted if possible.

In the following chapters we will examine new algorithms which make use

of these properties as well as the original restrictions, emphasis is

placed on a limited and controlled expansion of rules of systolic

design based on current research trends. As the technology is not yet

available our designs are limited to OCCAM testing and so are essentially

soft-systolic.

PART 11

IMPROVEMENTS TO SYSTOLIC ARRAYS

FOR LINEAR ALGEBRA

CHAPTER 4

SOFT-SYSTOLIC PIPELINED MATRIX ALGORITHMS

" ... or an Opus Of tunes based on canons and fugues"

Definition: Ca'non (Music)

piece with different parts taking up the same

subject sucessively in strict imitation.

Definition: FUgue (Music)

Polyphonic composition in which short melodic

theme ('subject') is introduced by one part

and sucessiveZy taken up by others and

developed by interleaving the parts.

An allegory of systolic computation.

172

In Hwang & Cheng [82] the idea of partitioning matrices to solve

arbitrarily large linear systems using iteration was considered, while

Heller [85] considers partitioning large matrices for small systolic

arrays. The motivation behind these techniques is the technological

constraints imposed by the physical realization of devices. In this

chapter we have suggested some new arrays which use the relaxed

constraints of a soft-systolic frame and which improve efficiency and

possibly computation time. Two main themes are the combination of

multi-layer and multi-pass arrays and the use of block partitioning

to improve efficiency.

4.1 ADDITIVE SPLITTING AND DOUBLE PIPES

Additive splittings take the form,

A. + ••• A , i=l(l)m ,
l. m

(4.1.1)

for an nxn band matrix A with bandwidth wand have been applied

successfully to matrix multiplication problems in order to reduce

the effective bandwidth of A used in computation. Now, the size of

many systolic arrays (for matrix problems) are independent of n but

dependent on w; thus reducing w to w implies that a smaller array can

be employed. For a splitting this reduction is achieved by choosing

the Ai to have bandwidths ~i~;' i=l(l)m. Hence, the original problem

can be solved by solution of the A. subproblems by repeated use of an
l.

array of size ". As an example, the matrix vector problem,

Ax = Y , (4.1.2)

is solved for ">.1 using the splitting form of (4.1.1) by the procedure

y = 0

for i=l to m do y=y+AiX , (4.1.3)

173

where the inner loop is computed by a matrix vector array of the

form Fig.(3.2.1.3) with w cells, whenw=l, m=w and the solution of

(4.1.2) is achieved by a sequence of single elemental diagonal type

matrices, and the array consists of a one cell non-stationary

arrangement similar to Fig.(3.2.1.1). Alternatively, when w=n and m=2

dense matrix product can be computed by applications of lower and upper

triangular matrix vector problems. When W""'N and m=l we have the normal

systolic array which is applied only once. Computations using (4.1.3)

for m=l are called single-pass methods and when m>l multi-pass schemes;

in the former case data is passed through the array only once, whereas

in the latter case data passes through m times. Consequently multipass

computations have the disadvantages of repeatedly pumping x and y data

from the host and increased computation time for extra passes. But

this is offset by the advantage of fixed sized hardware which can be

used to solve problems of arbitrary bandwidth by using a variable number

of passes.

Splitting techniques can also be used to avoid redundant

computations (e.g. symmetry properties), increase effective band density

and improve efficiency. For instance, in the case w=n, m=2 above with

the array of Fig. (3.2.1.3) with W cells, upper and lower triangular

computations can be interleaved by filling neutral elements occurring

in the original input data sequences. Hence, two passes are reduced to

only one and array efficiency is increased from e=1/2 to e=l.

The use of additive splittings for mUltipass computations is

optimised when a balance between the number of passes and the time for

a single pass is achieved. The number of passes are reduced only by

increasing w, while the duration of a single pass is only affected by

174

array design. In this section, we propose a splitting which addresses

both problems simultaneously. This is achieved not by reducing the

bandwidth of the A" but producing forms which allow the array to be
L .

split into disjoint groups of cells which can be mapped onto a multi-

layer layout. As a result more cells can be placed in the same

effective area by stacking layers, so increasing wand producing

decrease in m, a side-effect is improved array efficiency and reduced

computation time for a pass.

To introduce the splitting, consider the simple problem of

multiplying an nxn lower triangular matrix L with bandwidth q with a nxl

vector x, i.e.,
(4.1.4)

which from Theorem (3.2.1.4) requires q ips cells and time T=2n+q.

We define an additive splitting with m=2 of the form,

such that,

,
o "

? R.42 : ...

I "

... ... ,

" ,

,

... ...

-" ,

0 ' "

o

... , ... l'" "-
... R,'
,--- n,n-2

, , ,
o

1

R.
nn

+

(4.1.5)

I o

, ,

Ll contains rq/2l subdiagonals and L
2

, q-rq/i[subdiagonals. Hence when

q is even Ll and L2 contain equal numbers of subdiagonals and when q is

odd, Ll has one more subdiagonal than L
2

• Substituting for L in (4.1.4)

175

produces two subproblems of bandwidth q containing some sparse

diagonals, written as follows with Yl and Y2 auxiliary result vectors,

(4.1.6)

This problem can be solved by two passes using (4.1.3) or 1 pass

using interleaving which produces the original array timing. A

superior array is derived by noticing that Ll requires only the odd

subdiagonals and L2 the even ones, so that each solution of Yl and Y2

needs to collect only rq/il terms at the most. Consequently the data

flow can be re-timed to remove all the neutral synchronising elements

and (4.1.6a) and (4.1.6b) can be solved on arrays with Iq/2i and q-Iq/il

cells respectively with times bouridEidby T=n+[q/21 as illustrated in

FigJ4.1.1) for q=5. The time for a single pass is then reduced by

solving (4.1.4) using two arrays computing in parallel arranged in a

double pipe format shown in Fig. (4.1.2a). As the timing of the whole

array is bounded by the cost of (4.1.6a) we have proved the following

theorem.

Theorem 4.1.1: An nXn lower triangular matrix vector multiplication

problem of bandwidth q can be solved using a double pipe in time

T=n+rq/2l+1 using q ips cells, an adder and one delay cell.

A simple corollary follows immediately and is stated for

completeness:-

Corollary 4.1.1: A nXn upper triangular matrix vector problem with

bandwidth p is solved by a double pipe in T=n+G?/il+1 using pips an

adder + delay cells.

The extension to banded matrix vector multiplication follows

naturally and is illustrated in Fig. (4 .1.2b) . with the corresponding

theorem.

176

t 1 2 3

1 R,l1x1 0 0

2 .I', 22x2 R,31X1 0

3 R,33x3+R,31x1 R,42 x2 l',Slx1

4 R,42x2+R,44x4 R,53x3+R,51x1 -
5 R,53 x3+R,51X1

- -
+R,55xS

.1',54

.1',43 .1',52

.1',32 .1',41

.1',21 --, - I
~ ,

x3 x2 xl

Y1 Y2
-

t 1 2

1 R,21x1 0

2 R,32x2 R,41x1

3 R,43x3 + .1',41 xl R,52x2
4 R,54x4+R,52x2 R,63X3
5 R,65x5+R,63x3 -

FIGURE 4.1.1: Double pipe dataf10w

177

a) L~ = d q=5
155

144 154 153

133 143 . 142 152

122 132 13, 14,
.... ----,

I" 1
2

, ,/'r------' x J ---
!! 1'["\ r-

1 2 3

" V
v,

r --, ~

I I 4 5
V2 L __ J

b)Ax= d 0 0 0 855
X5 835 845 844 854 853

Xc 824 834 833 843 842

X3 813 823 822 832 83'
X2 0 8'2 8" 82' 0
X, 0 0 0 0 0
r-t--- -, ~ !

I'r'\ ~
_1

I ,
~ 11 I

I Ll r- -, I
I I

I I
cJ> L __

I I

I I
Double IPS Cell L ______ .J

FIGURE 4.1.2: Double pipe arrays

178

Theorem 4.1.2: The multiplication of an nxn band matrix A with

bandwidth w=p+q-l can be solved on a double pipe with T=n+rw/i1+1

using w ips cells, one adder and a delay cell.

Proof: [by construction of the array].

The band matrix problem,

Ax = d , (4.1. 7)

can be rewritten as a lower triangular problem,

(4.1.8)

where L is an (n+p-l) * (n+p-l) lower triangular matrix of bandwidth

wand x,a: are n+p-l component vectors. Applying Theorem (4.1.1) gives

T=(n+p-l)+~/2]+l and requires w ips cells an adder and a delay cell.

Now (4.1.8) has the form,

1
~ l r~~
!~,~_." 0 II! I

J I... P I
q I'" ...

I.......... If

l I ...'" x a1 ""', Ion

q '" '<'-'-'-'-"U~ 0] J J
~ __________ ~ ______ -J' •

n p-l

p-l

0

l p-l 1
0

d
l

I
= (4.1.9)

L has its first p-l rows zero and the splitting (4.1.5) produces two

similar triangles of size (p-l)/2 as the leading inputs to the

component arrays of the double pipe which produce only zero results.

By virtue of the fact that ~/21>(p-l)/2 these preliminary values can

be overlapped with the initialisation of the array absorbing the

additional (p-l) cycles and producing the exact theorem timing.

Comparing the double pipe arrays with their corresponding

179

traditional arrays indicates that double pipes are twice as fast and

twice as efficient with a negligible hardware overhead of one adder

and delay register. The double pipe can be represented by a two-layer

design with one pipe in each layer and x values broadcast between

layers. All the connections are in this sense regular and each layer

contains a planar layout, consequently the double pipe is a design from

a soft-systolic frame (an OCCAM program is given in the Appendix).

Each layer contains at most half the cells of the traditional 1 layer

design, so we have produced a design with half the effective area or

alternatively we can double w to use the same area. The number of

matrices in an additive splitting like (4.1.1) is then reduced and

pass time is smaller because we apply the larger double pipe as the

inner loop of (4.1.3). An additional property is that a I-layer

design as depicted by Fig.(4.1.2~ could be made using waveguides if

electro-optical implementation was considered. No cross talk would

occur because all intersecting lines are orthogonal.

Let us now consider a more difficult matrix-vector problem

consisting of a matrix banded about its diagonal and anti-diagonal.

For reference purposes, the matrix will be termed the X-band matrix

which reflects its structure, indicated below,

f PI ~ (
P2 •

ql I r 0 II q2 ~
P12

X = 0 C = (4.1.10)
------- .. - - - - --

I
I

l
P21 I

I

0 I

j I

nXn I

180

where wl=Pl+ql-l and w2=P2+q2-1 are the forward and backward band

widths respectively. Many problems give a matrix this structure if we

are willing to allow some sparseness to be included in the bands. For

instance constant quindiagonal Toeplitz linear systems derived from

non-linear partial differential equations under Dirichlet or periodic

boundary conditions (Evans,[80~) and symmetric linear systems in initial

and boundary value problems containing fourth order parabolic and

elliptic partial differential equations again under periodic and

specified conditions (Evans ~3aD. To solve the X-band matrix-vector

problem a single pass systolic array must have w=2n-l and T=4n-l.

Furthermore, the selection of a suitable splitting for a multi-pass

scheme is more difficult as some diagonals will possess a proportion

of zero and hence redundant elements. The task is simplified if some

of the sub(super) diagonals crossing P21 and P12 in (4.1.10) contain

only zeroes (as is the case in the examples mentioned above). In the

single pass case, the zero diagonals can be used to replace true cells

by delay cells as in Fig.(3.2.3.2), but do not affect computation time.

For multi-pass schemes zero diagonals reduce the number of matrices

(in a splitting) reducing the number of passes. However by applying

the double pipe splitting in conjunction with a simple partitioning

for which an efficient solution to the X-band is easily derived.

Without loss of generality assume n is divisible by 2 then X can

be partitioned into four mXm submatrices as indicated by (4.1.10) with

m=n/2. The matrix vector problem,

Xu = d , (4.1.11)

is then given by,

a)

b)

with

a)

b)

c)

d)

and

e)

f)

with

181

} (4.1.12)

(2)
d = (d , d) or,

(1) (1)
Pllu = c

(2) (2)
P12u = c

(1)
P2lu =

(3)
c

(2) (4)
P22u = c

d (1) (1) (2)
= c + c

d (2) (3)
+ c

(4)
= c

(1) t (2))t.
u =(ul ,···,un/2), u =(un l, ••• ,un

2'

.!4l n
2

1

~
I

Each subproblem (4.1.13) a-d corresponds to a simple matrix

(4.1.l3)

vector problem of bandwidth w
l

or w
2

' and the simple permutation of

elements,
Pll(i,j) = Pll{i,j)

P12(i,j) = P12 (i,n-j+l) i=l(l)m
(4.1.14)

P2l (i,j) = P21(n-i+l,j) j=l(l)m

P22(i,j) = P22(n-i+l,n-j+l)

with u (1) (i) = u (i) , -;;(2) (i) = u (n-i+l) } dIll (i) d(2) (i)
i=l (1) m (4.1.15)

= d(i), = d(n-i+l)

'" where a denotes a vector reversed in order. This allows the X-band

problem to be solved using four passes on a traditional or double

pipe array with ~max(wl,w2) ips cells. More importantly, the usual

splitting techniques can be applied to each permuted submatrix

problem to introduce more passes and reduce hardware. As a result,

choOSing .r=min(w
l

,w
2

) requires the splitting of only Pil and P22 or

P2l and P12 depending on which have the largest bandwidth, thus

minimising the number of additional passes introduced.

if w=w2 we split I\l and P22 to give,

- (1) - (m)
PH = PH + ... + PH

and P22
-(1)

= P22 + ... +
_ (m)
P22 , with bandwidths

Then solve according to the multi-pass procedure,

Y = 0

{ -(i) (I)}
FOR i=l TO m DO Y=Y+Pll u

(1) - ""(2)
dl =Y+P12u2

'" Y = 0

{ ~.., -(i)~(2)} FOR i=l TO m DO Y=Y+P22 u

"'(2) ""- (1)
d =Y+P21u •

I

j

182

For instance

<w2 '

(4.1.16)

An alternative approach which utilises a multi-layer approach to

the full is shown in Fig.~.l.l.
2

This design is a double-double or D -

pipe and can be separated out onto two or four layers depending on

implementation details. If we assume w=w
l

=w
2

then a straight forward

3-D approach produces a four layer design with a maximum of 2 rw/21 ips

cells on each layer and u broadcast to all the layers. If waveguides

and electro-optics are adopted to make a double pipe planar, the design

reduces to two layers with 2w ips cells on each and the local broad-

casting of u.

Theorem 4.1.3: The matrix vector multiplication problem for an nxn

X-band matrix with forward and reverse bandwidth w
l

and w
2

respectively

b d . i n w 2 D2 . i i t t 4 can e compute Ln a t me T-
2

+2 + on a -pLpe requ r ng a mOs w

ips cells six adders and four delay cells (where w=max(w
l

,w
2
».

Proof: Trace the array operation.

Assuming all pipes have w cells simplifies synchronisation, but

if w
l
«w

2
or vice versa a large number of cells could be wasted. These

0)

• d

~(3)

b)

(4.1.13b)

(4.1.13d)

183

(2)
c

.... (4)
c

FIGURE 4.1.3: D
2

_Pipe arrangement a) planar b) multi-layer layout.

.184

redundant cells can be exchanged for delay cells to retain

synchronisation if necessary but a typical periodic matrix will often

satisfy w
1

=w
2

+2 and the main concern is not the redundant cells but

utilisation of cells for the sparse anti-diagonal band.

The D
2

_PiPe design can also be used for multi-pass computation,

allowing the number of cells to be fixed at 4wfor w<w. In this scheme

each of the subprob1ems of (4.1.13) are themselves split and in

permuted form for array input produce,

-(1) _(m
l

) _ (1) _(m
2

)

PH = PH + ... + PH P12 = Pl2 + + P12

(1)
(m

3
) - (1) (m4)

P21 = P21 + + P21
P22 = P22 + • •• + P22

extra null matrices to produce the multi-pass procedure,

d (1)

"'"'(2)
d

o

o

FOR i=l TO m DO

{

d (I)_d(l) -(i) (1) -(i)~(2)
- +P11 u +P12 u

aY) _dN (2) -(i) (1) - (ih(2)
- +P21 u +P22 u

}

1

J

(4.1.17)

with Fig.(4.1.~ corresponding to the inner loop allowing simultaneous

processing of the four splittings, and the total number of passes

required to solve a general X-band problem of (4.1.11) is reduced.

A natural question which arises from these experiments is,

"how far can we decompose a linear systolic array into parallel pipes?"

The answer is a complex one depending upon the number of layers and

additional cells we are willing to admit. The use of multi-layers is

an argument based on the principle that a large design can be folded

185

(or stuffed) into the same effective area. Consequently, a birds-eye

view of the design reveals only the area of the top layer with

additional cells hidden on subsequent levels. From an implementation

viewpoint additional layers can be added so that the effective area

of each layer is less than the original design, this improves yield

for a single layer. But now we have to be able to make and stack a

series of these layers, the effect on yield can only be assessed with

any accuracy from practical experience which is not yet attainable.

Intuitively a small number of layers would limit the opportunities

for further flaws. From a theoretical standpoint the basic principle

of partitioning in (4.1.10) can be applied recursive1y to each submatrix

to develop arbitrary depths of parallel pipes. Oifferent types of

pipe can be related using the On_pipe expression, with 0=2, 0°,01 and

02_Pipes being the original, double and double-double pipes

respectively. The next level of recursion after 02-Pipes produces the

partitions below creating ~x~ submatrices,
4 4

I
P12l

t (1) I (1) (2) (2)
Pll 1 P12 Pn 1 P12
- (1)- T - (1)-

~ ""I - ---
PU 1 (2) (2)

1 I _ I=~l_ ~ _ P}2_
I P21 P22

1 (4.1.18) - - - ,-- -j - .., -

~ ''', '" (4) (4)
Pll I P12 PU

L
P12

P21 P22 ---r--- -,- - -

L (3) 1 (3) (4) (4)
nxn P2l I P22 P21 P22 nxn

Recursion stops when lxl submatrices occur and there can be at most

IIog2nl recursion levels. For a dense matrix the starting bandwidth

is wo=2n-l, and the bandwidth of subsequent submatrices are wl=Lwo/~'

w2=Lw/2J and generaUy wi+l=Lw/~. The array for recursion level

i+l is constructed from the array of level i by replacing each ol_pipe

in the 02_pipes corresponding to each submatrix of level i, by 02-PiPes

186

for the submatrices of level i+l, and inserting extra adders to

filter the results out of the network. Each ol_pipe of the

substituted 02_Pipe contains w
i

+
l

ips cells, 1 adder and a delay.

2
Consequently when 2x2 blocks are reached there are (n/2) submatrices

and corresponding 02_pipes consisting of ol-Pipes with 3 ips cells, 1

adder and delay, because 4x4 blocks have bandwidth w~7. Thus, lxl

submatrices have ol_pipes with 2 ips cells implying oD-Pipes of 1

cell allocated to separate levels. The technique is illustrated by

Fig.(4.1.4) from which it is clear that at the end of recursion an

n-layer design results such that one compcnent of the right hand side

in (4.1.2) with A, a general matrix, output on each layer. There are

nips cells on each layer which form the leaves of a binary fanin

adder tree of height h~fiog2nl and containing 2h_l adders. An area

efficient design is produced by using H-tree layouts for each layer

and ips cells can be arranged so that the same x" i~l(l)n component
~

is broadcast to leaf cells aligned in the same column through all the

layers. The leaf cell of layer i also require the elements of row

i of A which present a Significant communication problem. To

construct a systolic solution a 3-0 structure like Fig.(S.6.1.1)

(without routing layers), is required. Each H-tree level is rotated

to form a column and data communication is achieved by pumping the

vector x horizontally in one direction and the rows of A in the other,

such that a complete row or the whole of x enter all the tree leaves

of a column every cycle. Wherever a row meets x the column tree

outputs their vector product rlog2nl cycles later, and for all the

rows to meet x they must be input every alternate cycle. The array

operation is indicated in Fig.(4.1.5)and the timing is clearly

a)

b)

c)

D
2

_Pipe

r-
I
I
I
I
I L __

Expansion and additional adders

---, r---

$
.J-,....---

$
L ____ .J L ____

---, 1---
I I

($
-¥

Second level expansion of top row of b)

FIGURE 4.1.4: D
2

_Pipe expansion in recursive pipe application

187

188

~./ / / / / / //
// / ,/ // ~ L/ L/

~
x

~

0 "3 0 "4 0 "5 0 "6 V
a) Column layout and dataflow of (Ax-d) for naB

bl Structure of hex-tree column with input (for column 4 above)

cl Active processors on fanin of result

FIGURE 4.1.5, Full tree organisation of recursive method

189

T=2n+llog
2

i11 ' with 2n cycles for all the rows of A to be input and

jlog 2i11 for the last result to be output. Notice, that each columns'

leaf cells are active on only one cycle, and that results on the fanin

tree can be pipe1ined. Thus, the n-column design can be reduced to a

single H-tree requiring nips cells and n-1 adders to form dense

matrix vector product in T=n+rLog2n! cycles.

REMARK: notice that the fanin tree must be a complete binary one to

accumulate results correctly, consequently when n is odd, A

must be padded with a zero row and column.

This latter systo1ic tree technique for computing linear

recurrences is. well known, and indicates that re timing and re-placement

procedures can be used to derive arbitrary sequentia1ized and oi_piPe

schemes for matrix vector problems. Thus, the original 0°_pipe systo1ic

array is shown to be a special case of the general tree method and

adopting mu1tipass schemes for 0
1

and 02-Pipes with w=1 produces trees

of height h=l and h=2 respectively.

The double pipe splitting extends in a straightforward manner to

matrix product computations. In this case the general additive

splitting is written as,
m

c = AB = I
i=l

A.B. ,
1. J

j=l(l)m , (4.1.19)

for two nxn band matrices A and B of bandwidths w
l

and w
2

respectively.

The double pipe splitting has m=2 and,

(4.1.20)

where Ai and B
j

for n=6 have the forms,

190

rll 0 a
l3

0 a
lS

,;~ 10 a
12

0 a14 0 al~
0 a

22
0 a 24

0 a21 0 a
23

0 a
2S

0

a 3l
0 a

33
0 a

3S
0 a

32
0 a

34 0 a
36

Al =
a46 / A2 = (4.1.21)

0 a
42

0 a44 0 a
4l

0 a
43 0 a

4S
0

aSl 0 a
S3

0 aSS 0 0 a
S2

0 a
S4 0 a

S6

0 a
62

0 a 64 0 a
66

a
6l

0 a
63 0 a

6S
0

L J J
and

fbll
0 bl3 0 b

lS
~ ro b

l2
0 b14 b~1

01 0

I 0 b 22
0 b 24 0 b

26
b2l 0 b

23
0 b

2S
I
b
3l

0 b
33

0 b
3S

0 I 0 b
32

0 b
34

0 b
36

Bl =
B2 =!b

4l

(4.1.22)
0 b

42
0 b44 0 b

46
0 b

43
0 b

4S
0

bSl
0 b

S3
0 b

SS
0 10 b

S2
0 b

S4
0 I

I
b

S61

I 0 b62
0 b64 0 b6~ L6l

0 b
63 0 b

65 0-' L
and

C = Cl + C2 + C3 + C4
where,

a) Cl = AlBl b) C
2

= AlB2 } (4.1.23)
c) C

3 = A2Bl d) C
4

= A2B2

Now consider that the result of product (4.1.23a) has the form,

cll 0 c
l3

0 c
15 °l

0 c22 0 c
24

0 c 26

c3l
0 c 33

0 c
35 0

Cl = (4.1.24)
0 c

42
0 c44

0 c
46

c
Sl

0 c
S3

0 c
S5

c:J Lo c62 0 c
64

0

and taking advantage of the zero patterns of Al,B l and Cl produces

a special hex array with re-timed dataflow as illustrated in Fi~(4.1.6),

191

e.q. AB-C with A and B matrleee from spUttinq of form (4.1.20)

t-l a13 bll

FIGURE 4.1.6: Double pipe hex single layer, standard form
matrix product

192

FIGURE 4.1.6: Cont.

193

FIGURE 4.1.6: Cont.

194

3 IWl~1 rW;1
which requires at most T- ;,min(l:r '/:2/) ips cycles. This timing

follows from the facts that only a single neutral element is

associated with every two genuine input data elements, and the

effective bandwidths of Al and Bl are bounded by r-:~ and r-:2~
respectively. As a result the hex array for producing Cl requires

only approximately w
l
w

2
/4,cellsquarter that of the normal hex for a

matrix product and improves efficiency from e=1/2 to e=2/3 and

computes twice as fast. These advantages are retained for the partial

products (4.1.23b-d) by converting them to a normal form with the

same matrix structure as (4.1.23a) using simple computation preserving

row and column interchanges.

For (4.1.23b) C
2

and B
2

, interchanges are performed swapping

columns i and i+l for i=1(2)n-l producing matrices C
2

and B
2

• In

- -(4.1.23c) C
3

and A2 produce C
3

and A2 by interchanging row i and i+l

for i=1(2)n-l, while for (4.1.23d), A
2

,B
2

and C
4

are permuted to

A" " produce A
2

,B
2

and C
4

by a two step process, first interchanging rows

i and i+l of A2 and C
4

, and second swapping columns i and i+l of B2

and C
4

for i=1(2)n-l. The resulting normal form of (4.1.23),

a) Cl = AIBl

c) C3 = A2Bl
} (4.1.25)

can be solved on the same arr~ used for (4.1.23a) using four passes

and a time T=4(32n)+4min(r-w2~'i:~)""2(3n+min(Wl'W2». That is, using

twice the time of the original hex scheme, but a quarter of the cells,

and has the interesting quality of preserving the bound AT2 , as (~) (2T)2=
4

2
AT , where A and T are the area and time requirements given in Theorem

(3.2.1.6) .

A Dl_pipe hex design using two layers is constructed by placing

195

these smaller hexes on separate layers and noticing that Cl and C
4

have the same structure, as do C
2

and C
3

• Hence two passes form

the full matrix product by computing Cl and C
4

on separate layers on

the first pass and C
2

'C3 on different layers on the second pass.

Like the double pipe for matrix vector the final results C
l

+C
4

and C
3

+C
2

can be ove!lapped with hex operations by introducing an upper

boundary of r-w;~ + r-w; 1-1 adders to each hexagonal array. Because the

arrays actually compute using (4.1.25) the order of the matrix elements

must be restored before the addition takes place. Fortunately the

localised permutations used to derive (4.1.25) keep the recovery

- - "-simple, as C
2

'C
3

and C
4

have the forms,

and

A

C
4

=

1c22
o IC24 ,

0 c ll ' 0 ____ l_
C
42 o :c44

f21 0; c 23 0: C2S °l
I 0 c12 ' 0 c14 : 0 c16

J~4~ -<;4~ -0 :c:s-·~-
o c 32 ; 0 c34 : 0 c36

- ,- - ,-
c6l 0 ,c63 0 :C6S 0

, , J
o c s2 ' 0 c s4 ' 0 c s6

o :c26 °l ,
cl3 , 0 clsl
--+----

0 ,c
46

0 ,
0 c 3l ' 0 c33 ' 0 C3S

- - - - '- - --' - -- -
c

62
o IC

64 o : c66 0 J ,
Lo CSl : 0 CS3 : 0 css

Simply swapping the diagonal elements of each 2x2 block in C
3

and

1\
C

4
and adding to Cl and C

2
(or vice versa) produces the correct

result, and can be achieved using only a single delay with each adder

(see Fig. 4.1.7).

Cin layer 1

Cin layer 2

a) Adder delay arrangement

----,
I I)

I I
r---'1
I I)

___ J

r-=--,
I

c22 I
I-----t
I - I

cll
L ___ .J

--r-r-_=-_ ,---IEf
c

I 33 I
r ----I

- I
I c

44 ___ ...1

c
22

c
33

cll c
44

1-:,--,
I cll I
1--- ---I
I - I
I

r---,

r=--,
I c 44 I
1-----1
I I
I I

b) Production of full result for main diagonal column

196

FIGURE 4.1.7: Snapshots of double pipe hex adder/delay arrangement

197

Theorem 4.1.4: The matrix product of two n<n bandmatrices A and B

of bandwidth w
l

and w
2

can be

T=3n+min(wrw
2

)+2 cycles using

adders and delay cells.

Proof:

the two layer design with

h 1 . 2 (3n on eac ayer g~ve T= :2

and

An extra two cycles are added for delays through the adders.

It also follows that a n2
_PiPe hex can be formulated using four

layers with a quarter size hex array on each layer and using a single

rw l rw~
pass to give a time T-3; +min(J:f-J ' I ; I) cycles. The main result

however is the above theorem indicating that a nI-PiPe can compute

just as fast as the ordinary scheme with only half the hardware, and

improved efficiency.

4.2 BLOCK SCHEMES FOR SYSTOLIC ARRAYS

The double pipe splitting relies on the fact that matrix

multiplication problems can be partitioned into independent subtasks

which fall neatly into multi-layer arrangements. Arrays involving

feedback such as the LV factorisation hex of Fig.(3.2.2.3) and the

substitution array in Fig.(3;2.2.1) do not partition or split directly,

and create difficulties in allocating cells to layers and retiming

dataflow, anti alternative methods must be sought to improve efficiency.

For the substitution array double pipes can be applied indirectly,

by solving a modified form of the problem discussed in Robert &

Tchuente [841, and summarized below. If L is an nxn lower triangular

198

matrix of band width q, and D is the diagonal matrix formed from L,

then the substitution process,

Lx = b , (4.2.1)

is modified by putting,

-1
x = D Y (4.2.2)

and,
-1

By = LD Y = b , (4.2.3)

essentially dividing columns by their corresponding diagonal values

to normalise L, and then,

with,

p =

L

y = PZ ,

Cz = BPZ = b

1

o

o~
-b n,n-l

l

I

I
I
J

(4.2.4)

(4.2.5)

(4.2.6)

Thus, C has a unit diagonal and null first subdiagonal and is solved

using the double pipe shown in Fig.(4.2.l). Fortunately the above

procedure can be overlapped with array computation by the use of

additional preprocessing cells (see Robert & Tcheunte [84]).

In the case. of LU factorisation Robert [85] proposed an explicit

2x2 block form of computation and a modified hexagonal array yielding:

Theorem 4.2.1 [2x2 block LU]: If A is an nXn band matrix with band-

width w=p+q-l, an array with no more than pq processors can compute

the 2X2 block LU factorisation in T=2n+min(p,q) cycles including

input/output time with efficiency e=1/2.

199

a
64

a
74

a
73

a S3 a
63

a
62

a42 a
S2

a
S1

a
31

a
41

· '. ,..-.;/'-..,

V /~---.
'i'
•

a
S3

a
S2

a
92

an an a S1
a

61

r rL-_

· , r- - L -1 l ___ ..r-..J'."-l-__ .r.....31~ -" ••
I I • • I-__ ~.

: ~------~ ~---. ~--- ~--L _ - _ L-_~ '-_--' L-_...J

b

Y; Y~ Y~ Y~=O

Yout ...
I

r-L-"\ . :

1
Y =0

4 6

t i4--y
' ___ --' in

I
I
2

Y

1 2 x =b-(y +y }
out

FIGURE 4.2.1:

Yout=Yin

Solution of Ly=b by a double pipe

(from Robert [SS])

200

In this section we extend ideas of explicit block computation

to examine higher block strategies and multi-layer arrays. This is

accomplished by introducing the block hex cell which implements a

block inner product using kxk point inner products for a kxk block,

with the hardware equivalent to kXk inner product cells. The double

pipe schemes improved efficiency by removing the neutral elements in

input sequences, here the underlying architecture is adjusted to give

better hardware performance and decreased computation time. To

illustrate the method consider matrix multiplication again.

4.2.1 Block Matrix Multiplication (BMM)

Fig(3.2.l.6) and Theorem(3.2.L6) give the structure, timing and cell

requirements of banded matrix multiplication for the lXl block or

point case. The same architecture is easily generalised to the BMM

methods creating a generic block array form by interpreting each

point hex cell as kxk block-hex containing kxk ips cells. Each data

element of the input is replaced by a kXk block of elements read in

unit time (an ips cycle); and for k~3 blocks are separated by k-l

synchronising neutral blocks. A corresponding generic timing theorem

is then given by:

Theorem 4.2.2 [kxk blocks BMMJ

Let A and B be two nxn matrices, partitioned into kXk blocks with

block bandwidths W
l

and W
2

respectively. Then using a network of w *;/ 1 2

hexagonally connected block-cells the product A"B can be found in,

{

k (n/k)

3 (n/k)

+ kmin(w
l

,w
2

) + k-l

+ kmin(w
l

,w
2

) + k-l

k>3
(4.2.1.1)

k{:3.

201

Proof: (By construction)

(i) With k=l, T=3n+min(w
l

,w
2

) and requires wl*w2 cells the result

of Theorem (3.2.1.6).

(ii) When k=2 (2x2 blocks). The block ips computation has the form,

rl c;J 101 o~ lal a~
-*

ft.l

"J cJ

=

b
+ I a~ t3 t3

c
4 L3

b
4

(4.2.1.2)

cl and c
3

are generated using a pipelined tree arrangement

equivalent to two point ips cells and three point ips cycles.

a
3

a
l

*
b

l
b

l
+ t

a4 . a
2 * +

b
3

b
3

c
3 cl

FIGURE 4.2.1.1: 2x2 block ips segment

Le. cycle 1 to = al b l +a
2
b3 tl=o

cycle 2 tl = to+c l , to = a 3b
l

+a
4
b3, result cl

cycle 3 tl = to+c3
result c

3
•

The latency of the cell is two point ips cycles and a second tree

segment is operated in parallel to form c
2

and c
4

giving a final cell

hardware requirement of 2x2=4 point ips cells. Now consider a column

of block hex cells running vertically through the array and numbered

from bottom to top. The computation of cell i can be overlapped with

the start-up of cell i+l and the result sequence re-synchronised by

delaying c
ij

blocks by one cycle. It follows that the delay through

the array is 2min(w
l

,w
2

) ips cycles and a total of 3rn/2l+l cycles are

required to output the rn/2l c
ij

blocks. Hence,

(4.2.1.3)

202

(Hi) For k=3 (3x3 blocks), a 3x3 block-hex cell is formed from 9

point ips cells using three pipe lined tree segments each

equivalent in hardware to 3 point ips cells. The block hex

computes,

fl
c

2
c

3 rl c
2

c
3

a
l

a
2 a;l b

l
b

2
b

3
I

~. Cs c
6

= c
4 Cs c

6 + a
4 as a

6 *"
b

4
b

S
b

6

C
7 ca c

9
c

7 ca c
9

a
7 aa a

9
b

7
b

a
b

9 L L :J :J

and c l ,c4 and c7 are computed on a single segment structure.

*

*

*

FIGURE 4.2.1.2: 3x3 block ips segment

with c 2,cS,ca and c 3 ,c6 ,c
9

evaluated on the remaining segments. Each

segment requires a total of five point ips cycles, viz.,

Step 1 t (0) = a *b + a
2

*b
4

, t (1) = a *b 0 1 1 0 3 7

Step 2 tl = t (0) +t (1) t(O) = a *b +a *b t (1) = a *b o 0' 0 4 1 S 4' 0 6 7

Step 3 t2 = tl+cl , tl = t (0) +t (1) (0)
a

7
*b

l
+a

a
*b

4
, o 0' to =

(1)
a

9
*b

7 to =

Step 4 t2 = t
l

+c
4

, tl = t(l)+t(l)
o 0

Step S t2 = t
l

+c
4

203

From which we conclude that every k=3 cycles, the hex is ready to

receive its next block input. For a column of cells numbered bottom

to top when cell i completes Step 3, cell i+1 can be finishing Step 2,

and requires cl on the next step. Hence operation of cell i and i+l

can be overlapped, with cell i+1 starting only a cycle after cell i.

As cells have latency of three cycles and c
ij

blocks must be delayed

by two cycles initially,

(4.2.1.4)

(iv) kxk blocks (for k>3). Again, a block hex with equivalent

hardware of kxk point ips cells is constructed from k pipe1ined

tree segments using k point ips cells. The latency of the block

hex is at most k cycles. Results are output on successive cycles

giving a total computation time of 2k-1 point ips cycles and the

multipliers of the tree are free after k cycles. C
ij

blocks

must therefore arrive every k cycles with k-l neutral blocks

between inputs. Cell i+1 can still start only a single cycle

after cell i starts, and the c
ij

must be delayed initially by

k-1 cycles. Hence the timing

Tk = krn/kl + kmin(w
1

,w
2

) + k-1 ,

[End of Proof].

(4.2.1.5)

Using this result and additional properties of the generic BMM

array the optimal block size for a matrix product is determined as

follows:

Block Efficiency: the point scheme has e=1/3 and a point hex computes

once in every three cycles. By counting cycles requiring ips

204

computations and overlapping successive block computations in a single

block-hex, 2x2 blocks have e=2/3 and 3x3 blocks e=3/3=1. For kxk

blocks when k>3 only the number of cycles required to start up all the

array cells is reduced, as the block bandwidths w
l

and W
2

are rwl/kl

Iw
2
/kl, with w

l
and w

2
the bandwidths of the point case,

(4.2.1.6)

is the minimum time we can hope for when the matrices are really

banded, producing an O(n) scheme in contrast to 0(3n).

Block hexs with balanced binary tree segments can be introduced to

reduce propagation delay through the cell and improve overall array

performance. However, for k~4 a binary tree will have latency Ilog2kl+l

and produces,

T 4 = k [n/kj+ (fiog
2
k1+l) min(w

l
,w

2
) + k-l •

As fiog41=2 it follows that the term containing min(w
l

,w
2

) is

reduced even though cell latency in T3 and T4 are the same. For

large n and really banded systems the saving is asymptotically

(4.2.1.7)

negligible, for dense systems binary tree arrangements can reduce

time significantly but at the cost of increased block cell complexity.

Generally, however 3x3 blocks tend to outperform higher blocks even

with balanced trees.

Array layout can be achieved in a multi-layer arrangement in two main

ways. A natural method is to allocate each tree segment to a

separate layer so that only the a
i

have to be broadcast between levels.

Alternatively, each segment can be aligned vertically with one leaf

multiplier on each level. Both schemes produce an effective area on

th
each layer l/k that of the point case but the latter restricts

205

broadcasting to the plane of each layer and requires only local inter-

layer connections for tree fan-in.

A further drawback is the increased number of inputs and outputs.

For a kxk block input to be read in unit time we require kxk inputs,

and although more connections are available in a multi-level approach

small block size simplifies matters. Fortunately, requirements can be

reduced to only k connections for each block input by utilising the

tree pipeline features. At anyone time there are only k c .. elements
l.J

inside a block hex, thus k groups of k inputs can be pipelined by

filling the neutral block spaces with the k-1 gaps left after the first

row. A similar argument is used for A .. , but the B .. must all be present
l.J l.J

at the start of cell computation, and so must be retimed to input the

first (k-l) groups before the Aij elements start to arrive. When k~3

these folding arrangements follow naturally from the dataf10w of the

point array supporting the efficiency argument, for k>3 folding is

less intuitive. We conclude that the optimal area time trade-off

occurs for 3x3 blocks for BMM.

4.2.2 3*3 Block LU Factorisation

Theorems(3.2.2.3) and (4.2.1) give timings for point and 2x2 LU

factorisation in the light of Theorem(4.2.2) and with a choice of 3x3

blocks for BMM arrays, does a similar relationship hold for block LU

factorisation (BLUF) arrays? To answer this question we develop a 3x3

BLUF array.

Assuming that A is an nXn irreducible diagonally dominant or

symmetric positive definite band matrix of bandwidth w=p+q-l, a 3x3

BLUF scheme is derived as follows. First A is partitioned into a 3x3

206

block matrix with bandwidth >i=r+s-l with p~3r and q~3s and when n=3m

has the form,.

fAll A12 AIr
0

A21

I
A ; ASl

L~ AmmJ

Choosing All as the first pivot we produce,

A =

I
L

------J

nxn

I sI I

L~.- ,J l ;~
where the blocks in A(2) have been modified and,

LilAll = -Ail i=2(1)s •

(4.2.2.1)

(4.2.2.2)

(4.2.2.3)

Continuing the process on the submatrices A(i) for i=2(1)m-l produces

the required block LU form. For purposes of illustration, let A be a

6x6 matrix then,

II ~

Al;1 r~l l 0

~u A12

bl A2~ = (4.2.2.4)
I A21 A22+L21AI~1
J L

with each A, .,
~J Lij 3x3 blocks,

L21All = -A21 + L21 =
-1

-A
21

A
ll

(4.2.2.5)

and

207

t'
b

l ~ -1
= %; a2

1
All b

2
C

2
= -X (4.2.2.6)

D

a 3
b

3
c

3
where, L _I

D = allal+a12a2+a13a3

and a
l

= (a22a33-a23a32), a
2 (a23a31-a21a33) , a

3
= (a~1 a 32 -a22a 31)

b l (a13a32-a12a33), b
2

= (a11a33-a13a31) , b
3

= (a12a21-alla32)

Cl = (a12a23-a13a22), c2
= (a13a21-alla23) , c

3
= (all a 22 -a12a21)

and r4l a4~ b
l

~

a
42

a
l Cl

D.L21 = a
sl

a
s2 as3 1 a

2
b

2
c

2
(4.2.2.7)

a61 a
62 a63 1 a

3
b

3
c

3 L .::J L _I
to compute the modified A22 we form,

(4.2.2.8)

which can be computed in six steps,

Step 1

Step 2

Step 3

Step 4

Step 5

compute bl , b 2 , b3 , D = allal+a12a2' tl = a13a 3

D·~41 = a41al+a42a2' t2 = a43a 3

(and D.ts1 ' D.~61 similarly).

compute Cl' c2 ' c 3 ' a14 = a14/(D+t1), D·~41 = D·~41+t2

D·~42 = a41b1+a42b2' t2 = a43b3

(D·~s2' D·~·62' "'ls,a16 similarly).

compute a 24 = a
24

/(D+t
1
), D.t

42
= D.t

42
+t

2

a 44 = a44-D·~·41*a14' a4s = a4s-D·~·41*a1s' a 46 = a46-D·R..41*a16

(D·~s3' D·~63' a2s,a26,as4,ass,as6,a64,a6s,a66 similarly)

compute a34 = a 34/(D+tl)' D·~43 = D·~43+t2

Step 6

208

a44 = a44-0·~42*a24' a 45 = a45-0·~42*a25' a46 =a46-0·~42*a26

(and others)

a 44 = a44-0·~43*a34' a 45 = a45-0·~43*a34' a46 = a46-0·~43*a36

(and remaining elements of A
22

) •

Thus, six point ips steps are required to update a single 3x3 block

assuming computations of a single step are performed in parallel. On

the seventh cycle, A22 becomes the new pivot and defines the feedback

cycle time of the systolic array. Hence All and A22 must be separated

by six cycles, and after 6(m-l) cycles block A becomes the pivot.
nun

The overall structure of the array is shown in Fig.(4.2.2.1) and

is a modified version of the array in Robert [851, extra cells can be

added to the right upper boundary to compute LOU instead of LU. As a

guide cells compute as follows:-

(i)

(ii)

The upper boundary to the left forms Li' from O.L" (i<j)
J 1J

The second line of cells on the upper boundary and to the

left compute O.L
ij

, cells to the right (1/0) (Ai~)) for i~j
-1

and the centre Aii and o.

The remaining cells are block ips containing the equivalent of 9 point

ips cells each, and are described below.

Cell Definitions

OUT-N

OUT-E

OUT-SW

IN-S

OUT-N

OUT-E

OUT-SW
IN-S

209

Center lDeterminant) Processor

t: INS a1 ,a2 ,a3 ,.a 4 ,as ,a6 ,a7 ,as ,ag

t1=aSa9-a6aS' t2ca6a7-a4a9' t3=a4aS-aSa7

t+11 OUTSW t 1 ,t2,t3
t1=a1t1+a2t2' t2~a3*t3

t 4=a3aa-a2a9 , tS=a1a9-a3a7' t6=a2a4-a1aS

t+2: OUTN a1,a2,a3,t1,t2

OUTSW t
4
,t

S
,t

6
- OUT E t

1
,t2

t7=a2a6-a3aS' ta=a3a4-a1a6' t 9=a1aS-a2a

t+3: OUTSW t 7,ta ,tg
OUTN a4 ,aS,a

6
t+4: OUTN a 7,aa,ag
t+S:

t:

t+l:

t+2:

Right Processor IUpper Boundary)

INS a1,a2,a3,a4,aS,a6,a7,aa,ag

INW b,c

a1=a1/b+c, a 2=a2/b+c, a3=a3/b+c

OUTN a
1

,a2,a
3

OUTE b,c

OUTSW a1 ,a2 ,a3
a4=a4/b+c, as=aS/b+c , a6=a6/b+c

t+3: OUTN a4 ,aS,a6
OUTswa4 ,aS,a6

a7=a7/b+c, aa=aa/b+c, ag=b+c

t+4: OUTN a7 ,aa,ag
OUTSW a 7 ,aa,ag

t+S:

Left 12nd Line Upper Boundary)

t: INS a1,a2,a3,a4,aS,a6'~7,aa,ag

INNE b,c,d

t ll) - d 1 -a3

t ll) d 2 =a6

t ll) d
3 =ag

OUT-N

IN-NE

OUT-SW

ru-s

210

t+ll OUTSW b,c,d

t+2:

t+3:

t+4:

t+S:

INNE e,f,g

(0)
t4 "ea1 +fa2 ,

(0)
ts =ea4+faS '

(0)
t6 =ea7 +faS'

OUm.. t(2) t(2)~(2)
... 1 ' 2 1'-3

OUTSW e,f,g

INNE h,i,j

OUTE t (2) t(2) t(2)
1 ' 2 ' 3

t(2)"t(0)+t(1)
1 1 1

t(2)=t(0)+t(1)
222

t(2)=t(0)+t(1)
333

(0) h i t(l)=ja t(2)=t(0)+t(1)
t7 = al + a2 , 7 3' 4 4 4

(0) i (1) t(2)=t(0)+t(1)
ts =ha4+ as' ts =ga6 , S S S

t (O)-ha +ia t(l)=ga t(2)=t(0)+t(1)
9 - 7 S' 9 9' 5 S S

OU'I'N t(2) t(2) t(2)
4 ' S ' 6

OUTSW h,i,j

OUTE t(2) t(2) t(2)
4 ' S ' 6

t (2) =t (0) +t (1)
777

t (2) =t (0) +t (1)
S S s

t (2) =t (0) +t (1)
999

OU'I'N t(2) t(2) t(2)
7 ' s ' 9

OUTE t(2) t(2) t(2)
7 ' S ' 9

OUT-N

IN-NE

IN-W OUT-E

OUT-SW
IN-S

OUT-N

OUT-SW
IN-S

211

Block IPS

- - - - - - - - -t:

t+l:

t+2:

OUTN Al,A2,A3,A4,AS,a6,a7,ae,ag

INS al,a2,a3,a4,AS,a6,A7,ae,Ag

OUTE b
3

,b
6

,bg
OUTSW c

7
,Ce ,cg

t+31 INW b
1

,b4 ,b7
INNE c

l
,c2 ,C

3
A1=a1+b1c1 , A2=a2+b1c2 , A3ca3+blc3

a
4

=A
4

+b
4

c
1

, A
S

=a
S

+b
4

c
2

, A
6

=A
6

+b
4
c

3
A

7
=A

7
+b

7
c

1
, a

e
=A

e
+b

7
c

2
, Ag=ag+b

7
c

3

t+4 I INW b
2

,b
s

,be

INNE c
4

,c
S

,c
6

OUTE b
1

,b
4

,b
7

OUTSW c
4

,cs ,ce
A

1
=a

1
+b2c

4
, a

2
=a2+b2c

S
' a

3
=a

3
+b2c6

a 4=a4+bsc4 , as=as+bscs ' A6=a6+bs c6
a7=a7+bec4 , a8=~e+becs' 8 g=ag+bec6

t+s: INW b
3

,b
6

,bg
INNE c

7
,ce,cg

OUTE b
2

,b
s

,b
e

OUTSW c4 ,cs ,c6 '

a 1=al +b
3
c 7 , a

2
=a2+b3ce , A3=a

3
+b

3
c!

a 4=a4+b4c7 , a s=as +b4ce , ~6=a6+b4c!

a 7=a7+bgc 7 , ae=ae+bgce , ag=ag+bgc!

Center cell (1st Line Upper Boundary)

t:

t+l:

t+2: INS al,a2,a3,tl,t2

D=tl +t2
t+3: OUTN a

l
,a

2
,a

3
OUTSW D
INS a

4
,a

S
,A

6
t+4: OUTN A

4
,a

S
,A

6
INS a

7
,ae,ag

t+S: OUTN a 7 ,ae,ag

OUT-sW

OUT-N

IN-NE

IN-S

212

Left Processor (1st Line Upper Boundary)

t:

t+l:

t+2: INNE 0

INS 4
1

,42 ,43
4

1
=a

1
/0, a2=4

2
/O, a

3
=a3/0

t+3: INS a
4

,a
5

,a6

t+4:

OUTN 4
1

,a
2

,a
3

a
4

=a
4
/o, a s= a

5
/o, a

6
=a

6
/0

a
4

,a
5

,a
6

a
7

=a
7
/o,

OUTN a
7

,as ,a9

The input format for the array is given in Fig.(4.2.2.2), where

each data entry is a 3x3 block of elements. Computation starts when

All reaches the determinant cell, requiring a delay of 3min(r,s) for

it to filter up through the array. As the last pivot block A leaves
mm

the determinant cell after 6m=6(n/3) cycles, the total computation

time is T=2n+3min(r,s) and when p=3r and q=3s T=2n+min(p,q). We also

see from the cell definitions that each cell computes fully for

approximately three cycles in six, produCing an efficiency of e=1/2.

Theorem 4.2.2.l:[3x3 BLUF] The 3x3 block LU factorisation of an nxn

band matrix A can be computed in T=2n+min(p,q) with efficiency e=l/2

using rs block ips cells, where p=3r, q=3s.

Comparing this theorem and theorem (4.2.1) we find that changing

from 2x2 BLUF to 3x3 BLUF has no benefits in computation time or

efficiency. The result is interesting because it indicates that the

increases in efficiency and computation apparent in BMM arrays do not

left centre right
__________ -A _________ ~

~------.------~------

D first line processor

o second line processor

o block IPS cell

FIGURE 4.2.2.1: Arrangement for 3*3 block LU factorisation

{with p=12, q=12, w=23}

213

Array

4.2.2.1

- A -33

Aij = 9 elements corresponding to block Aij

(can be input in parallel or sequentially

depending on bandwidth of the array and

cell structure)

214

N.B. cell structure design implies parallel I/O i.e. 9 input lines per block.

FIGURE 4.2.2.2: Input format for 3*3 LU systolic array

215

carry over to the BLUF methods, even though the modification part of

the BLUF hex is essentially a matrix product form. This mismatch in

timings results from feedback in the array and can be understood by

considering the smallest feedback loop of the array denoted by the

directed graph

NODE A = computation of determinant and inverse of a kXk matrix

NODE B = computation of D.L
ji

part of new multiplier matrix

NODE C = computes (l/D) Aij part of modification matrix

NODE D actually computes A, ,=Aj ,-D(L 'i)*(l/D)A"
JJ J J ~J

The times TABD and T
ACD

represent the number of point ips cycles needed

to traverse the cycle ABD or ACD and return to A, hence the minimum

time for a complete block modification, is

~ = MAX(T ,T) = TABD ABD ACD
(4.2.2.9)

This is also the time between block inputs, and directly determines

array performance. To improve on the point LU scheme we must satisfy,

1!! < 3n -> .1 < 3
k k

(4.2.2.10)

For the 2x2 block scheme k=2 and ~=4 giving 4/2=2<3 and for 3x3 blocks

k=3, $=6 giving 6/3=2<3, thus to improve on the 2x2 block scheme $/k<2

must hold.

216

Now suppose the computation starts at node A, then this node must

compute:

(i) The first column of the product D.X where (l/D)*D.X is

the inverse of the pivot block

(ii) As many terms of D as possible

before nodes Band C can start and denote this time by ~l' Node B

must compute the first column of D.L
ji

before Node D can begin

operation. If each column of D.L .. is computed in parallel using a
J~

binary tree layout the latency of the node is ~2= iiog2kl.

Then Node D requires an entire block ips operation to be performed,

and takes ~ =k cycles as a binary tree format cannot be used (observe
3

the operation in the 3x3 case).

Consequently for kxk blocks,

TABD = ~l +~2 +~3 = ~/ liogll +k

It follows from (4.2.2.10) that,

TABD
k

(4.2.2.11)

(4.2.2.12)

for an improvement on 2x2 block schemes. If we consider 4X4 blocks

k=4 then (4.2.2.12) yields,

TABD
-k-= (4.2.2.13)

implying that ~1<2 or ~l=l for a whole number of cycles. Computing

the algebraic form of the 4x4 D.X matrix confirms that a single D.X

element, even when binary fanin trees are used, requires at least two

sequential multiplications. Thus, ~1~2 and 4x4 BLUF schemes cannot

improve on 2x2 schemes. Notice that this statement is valid even if

unlimited hardware is allowed in the computation of D.X by node A.

217

Corollary 4.2.2.1 BLUF arrays for kxk blocks where k~4 cannot improve

timing and efficiency over 2x2 or 3x3 BLUF arrays.

Finally we consider the hardware requirements for 2x2 and 3x3

BLUF arrays. In the following discussion the array architecture in

Fig. (4.2.2.1) will suffice as a generic block LU matrix architecture.

For the 2x2 scheme we assign hardware requirements of cells as

follows:-

(i) block ips cell = 4 point ips cells

(H) processors of 2nd line-to left = 4 " " "

(Hi) processors of 2nd line-to right = 2 " " "

(iv) processors of 1st line-to left = 2 " " "

(v) centre processor (2nd line) = 2 " " "

(vi) centre processor (1st line) = none (delay cell)

Notice that omitting the processors of the first line Fig.(4.2.2.1)

is a skewed rectangle with dimensions rand s. Hence amalgamating

(iii) and (iv) gives a simple hardware bound on 4rs. NOW, the nxn

matrix A has bandwidth w=p+q-l and rand s must be the smallest

integers such that:

(2r A full
r

26 A full

I
p = i 2r-l p odd q = i 2s-1 q odd

2r-2 p even 2s-2 q even t t

giving block bandwidth ~r+s-l. From Theorem (3.2.2.3) the point

case requires pq point ips cells, so to save or use equal hardware

in 2x2 schemes,
pq ~ 4rs (4.2.2.14)

It follows immediately that when A is really banded and p=2r-l, q= 2r-l

that an extra 2r+2s-1 point ips cells are required in the 2x2 case, and

218

Table(4.2.2.l) indicates overheads for general rand s.

Similarly for 3x3 blocks hardware requirements are assigned as

follows:-

(i) Block ips = 9 point ips

(ii) 2nd processor line (left) = 9 " "

(iii) 2nd line processor (right) = 3 " "

(iv) 1st line processor (left) = 3 " "

(v) centre processor 2nd line = 9 " "

(vi) centre processor 1st line = 1 adder

(amalgamated with (v»

This time when (iv) and (iii) are amalgamated they produce a count of

6 point ips, to simplify the argument we add an additional 3 ips to

give uniform cell allocation. For 3x3 blocks rand s must be the

smallest integers such that,

3r A full 3s A full

3r-l 3s-l
p = , q =

3r-2 3s-2

3r-3 factor of 3 35-3 factor of 3

consequently pq ::: 9rs , (4.2.2.15)

and Table(4.2.2.2)gives hardware overheads for different rand s.

Intuitively the additional hardware occurs because the addition

of a sub (super) diagonal adds a column or row to the rectangle of cells.

For the point case, these additions are rows and columns of point ips

cells, whereas in the 2x2 block scheme 4-point ips cells are incorporated,

and 9-point ips cells for 3x3 blocks. This applies even when the

outer blocks of the band include some zero sub (super) diagonals which

the point scheme exploits. Also, notice that the values in Table

219

(4.2.2.1) are weak lower bounds as the amalgamation of the 1st line cells

is only exact for r=s. Generally when s>r and extra 2(s-r) point ips

cells are required to fill out the remaining processors on the 1st

line to the left, and for s<r,2(r-s) point ips cells must be removed.

The bounds in Table(4.2.2.2)are weak upper bounds as we introduced an

extra 3(r-l) point ips cells to simplify calculations. It follows

that the boun:lS holds for 2r~s, and for s>2r 3 (s-2r) point ips cells must

be added to the architecture. Fortunately s"r is often the case and

the bounds are quite accurate, and we can conclude from the tables

that BLUF schemes only use the same hardware as the point scheme when

the matrix A is full. In fact the 3x3 case saves n-3

point ips cells and so uses less hardware than the 2x2 case; but for a

full matrix o(n2) point cells are required and the saving is negligible.

2x2 blocks

~ 2s 2s-1 2s-2

2r (IJ 2r 4r

2r-l 2s 2r+2s-1 4r+2s-2

2r-2 4s 2r+4s-2 4r+4s-4

TABLE 4.2.2.1: Lower bound on additional point ips hardware in 2x2

block LU array than in point scheme

3x3 blocks

~ 3s 3s-1 3s-2 3s-3

3r (Il 12r 6r 9r

3r-l 12s 12r+12s+8 6r+12s-2 9r+l2s-3

3r-2 6s l2r+6s-2 6r+6s+4 9r+6s-6

3r-3 9s 12r+9s-4 6r+9s-6 9r+9s-9

TABLE 4.2.2.2: Upper bound on point ips hardware added for 3x3

block LU than for point LU scheme

220

4.2.3 Complex Matrix problems

To conclude this section on block partitioning we briefly

consider systolic arrays for complex matrix product and LU factorisation,

where matrix elements have the form,

I
(1) real

a
kj

=
a
kj (4.2.3.1)
(1) i (2)

akj + ~j complex

(1)
where akj

(2)
,a

kj
ElR, and i=r-I, and the basic complex inner product

for complex numbers (e+fi), (a+bi) and (c+di) is the 2x2 form,

(4.2.3.2)

(e+fi) = (e+fi) + (a+bi) * (c+di)

Hence a nXn complex matrix product is translated to an (2n)x(2n) real

matrix product by expanding each complex element to a 2x2 real matrix.

A further re-ordering of rows and columns in the (2n)x(2n) matrix

gives a partitioned form,

[~_L~BJ
CB : A-J

(4.2.3.3)

(1)
with A,C and AC-BD corresponding to the a

kj
(or real) components of

the matrix elements and B,D and BC+AD the a~~) (or imaginary)

components. Using the symmetry property only AC-BD and BC+AD need to

be calculated and can be performed with only 3 nxn real matrix

multiplications of the form,

a) Ml = p(l)c, b) M2 = BP(2), c) M3 (4.2.3.4)

where pIll = A-B, p (2) = C-D, p (3) = A+B (4.2.3.5)

From the construction of (4.2.3.3), A,B and C,D have the same

221

bandwidths of their corresponding complex matrices, i.e. w
l

and w
2

respectively. As matrix addition and subtraction do not affect the

bandwidth p(l), p(2) and p(3) have bandwidths w
l

and w2 •

Consequently construction of Ml , M2 and M3 can be interleaved on a

point hex array described by theorem (3.2.1.6) to give efficiency e~l

without increasing computation time significantly when the

construction of p(l) , p(2) and p(3) is overlapped with the array

calculation.

Theorem 4.2.3.1: The matrix product of two nXn matrices A and B with

bandwidths w
l

and w
2

is performed in T~3n+min(wl,w2)+4 ips cycles

using w
l
w

2
ips cells and w

l
+w

2
-l pre(post) processing cells.

Proof: (the array is shown in Fig. (4.2.3.1».

From the above discussion M
l

, M2 and M3 are computed in T~3n+

min(w
l

,w
2

) using interleaving and w
l
w

2
point ips cells. It remains

(1) (2) (3)
only to explain how P ,P and P are produced, and the final

output results generated. we start by adding w
l

+w
2
-l pre(post)

processing cells to the upper boundary of the hexagonal array, which

act as pre-processors for the matrix inputs and post-processors for

the result matrix outputs, these compute as shown below, where unknown

(1)
values are assumed zero, and the inputs of Fig. (4.2.3.1) are P ~A,

(2) (3) .
p ~D, P ~O (null matr~x) initially. Thus, pre-processing and

post-processing delays are identical at 2 ips cycles, and results

from Ml+M2~AC-BD and M2+M3~BC+AD begin to leave the array pre(post)

boundary cells after min(w
l

,w
2

)+4 cycles producing the correct

theorem time.

LEFT PRE (POST) CELL

Ol1l' N

J IN NE
IN~r '~

()

~'-'f -J~
OUT SW I Ol1l' SE

IN S

222

C "C tABi out in in n
B " B out in
A " A out in

t: IN S A

Ol1l' N BfC

t+l: IN S B

Ol1l' N ZERO

t+2: IN S C

Ol1l' N AtB

t: IN NW A

IN S r
1

Ol1l' SE B
Ol1l' N r

2
+r

3
t+l: IN NW B

IN S r
2

Ol1l' SE' A+8
Ol1l' N ZERO

t+2: IN S T3

Ol1l' SE A-B

Ol1l' N r 1 +r 2

A~A B=B

RIGHT PRE(POST) CELL

Ot1l' 1 IN NE

IN~r '

{ }

~ ... \·l-"
OUT SW "OUT SE

""IN S

t: IN NE C

IN S"r
l

Ot1l' SW C-D

Ot1l' N r
2

+r
3

t+l: IN NE 0

IN S r2_

Ot1l' SW 0
Ot1l' N ZERO

t+2: IN S r3

Ot1l' SW C

Ot1l' N_rl+r2
C'''C, 0,,0

223

r values denote postprocessing and start when first values arrive.

[end of proof].

Because the array efficiency is e"l and pre(post) processors are

relatively simple (consisting of only adders/subtractors and delays),

it completes the computation with only four extra ips cycles over the

real matrix computation; we conclude that complex calculations are

better suited to the traditional hex design. H.T. Kung [84a] considers

a linear array implementation using two-level pipelining which requires

five instead of three cycles between inputs and adopts a similar

strategy to fill some, but not all the wasted cycles.

For matrix factorisation the reCiprocal of a complex number is

required in addition to the inner product, and is given by,

I ra bl- l
I ra bl = -b = (4.2.3.6)

(a+bi)
~ ~ 2 b2 tb ~ a +

It follows that the (2n)X(2n) matrix obtained by replacing each

complex number of the nxn complex matrix by its 2x2 form allows the

2x2 BLUF scheme of Robert [85] to be employed, giving,

224

Theorem 4.2.3.2 (2x2 complex matrix factorisation)

An nXn complex matrix of bandwidth w can be factorised on a

hexagonally connected array in time T=4n+min(2p,2q} and requiring

approximately 4pq point ips cells.

Proof: The complex factorisation is equivalent to a real 2x2 block

factorisation on a (2n}x(2n) matrix of bandwidth ~2p+2q-l.

An alternative approach to complex factorisation is to utilise

interleaving in a similar manner to the complex product form above.

If
Ax = b , (4.2.3.7)

is a complex nxn linear system then its (2n}x(2n) real equivalent is,

(4.2.3.8)

where C and Dare nxn real matrices and x=(y+iz}, b=(c+id}.

After some manipulation this can be written in the form,

a} Zy =
-1 D c + C-ld 1

b)
-1 -1 I (4.2.3.9) Zz = D d + C c

-1 -1 c) Z = D C + C D J

which are all subproblems involving nxn real matrices. The factorisation

of Z is then a three step process:

(i)
-1 K(l}

1
compute D C =

-1 K (2) (H) Compute C D =

t
(4.2.3.lO)

(Hi) Factorise Z = k(l} + k (2)
J

AS noted in Leiserson [81] a factorisation array can be embedded into

a matrix product array, consequently (4.2.3.10) can be solved by

(I) (2) . .
interleaving k ,k and Z, and making use of the matr1X ~nput

structure to overlap the summation k(l} + k(2} and the factorisation

225

t t

FIGURE 4.2.3.1: Hex connected complex matrix product

226

of Z. The array is described in Megson & Evans [8Eh] but relies on

. -1 -1
the ability to easily form C ,D and the right hand sides of

(4.2.3.9) a and b,-and the assumption that A is full, which are

usually contradictory requirements.
-1 -1

When A is banded C and D

would tend to be full and because matrix multiplication is not

commutative the summation k(l) + k(2) in conjunction with interleaving

requires the maximum size hexagonal array. Hence we have the

following theorem.

Theorem 4.2.3.3:

The LU factorisation of an nXn complex matrix with bandwidth w

can be performed using point ips computation in time T=3n+(2n-1)+2

2
cycles and requires (2n-1) ips cells.

Proof: (Megson & Evans[86h]).

We conclude that 2x2 block computation is both faster and more

area efficient, for banded systems and does not require additional

matrix vector arrays for extra computations to modify the righthand

side vector of the complex system like (4.2.3.~).

4.3 MATRIX INVERSION BY SYSTOLIC RANK ANNIHILATION

Recently, systo1ic arrays for arbitrary matrix inversion using

hexagonal and orthogona1 processor grids requiring O(7n) and O(5n)

2
respectively and O(n) processors have been presented (see Rote [85],

~ Robert & Trystram [85]). The latter scheme is almost optimal differing

from the theoretical lower bound for matrix inversion by only a few

cycles. However, because of their generality, these arrays are often

less adaptable to small changes to a coefficient matrix occurring in

227

iterative type processes. Hence on each iteration a full matrix

inverse must be computed. On the other hand rank annihilation

techniques are aimed at updating a known inverse when local changes

in the coefficient matrix produce global changes in its resulting

inverse. AS a result rank annihilation is important in a large number

of application fields, for instance:

(1) STATISTICS: for updating correlation matrices

(2) GRAPHICS: in spline approximation and refinement

(3) NUMERICAL ANALYSIS: in the repeated solution of problems for

which only minor modifications occur in boundary conditions

(4) OPTIMISATION: for solving non-linear systems, and updating

the Jacobian matrix.

To employ the rank annihilation technique we require a matrix A with a

-1
known inverse A ,and a matrix B whose elements are only partially

different from those of A.
-1

The inverse B of B is then found by a

simple relationship between A-l and B-1 • For example, if A and Bare

nxn matrices and u,v are n component vectors, and B differs from A only

by changes in elements along a single row or column then with u and v

suitably chosen, B can be written in the form,

and

T B = A+uv

-1 T -1
B = (A+uv) ,

(4.3.1)

(4.3.2)

which after some manipulation·(Westlake [68]) yields the Sherman-Morrison

or RANK-l formula,

T -1 -1
(A+uv) = A

-1 T -1
(A u) (v A)

T -1
l+v A u

(4.3.3)

The basic idea can be extended to produce a relationship between the

inverses when A and B differ by changes in m rows or columns producing

228

the Sherman-Morrison-Woodbury formula or RANK-m method,

T -1 -1 -1 T -1 -1 T -1
(A+uv) ~ A -A u(I+v A u) v A , (4.3.4)

withu and v nxm matrices. Clearly when m~l (4.3.4) reduces to

T -1
(4.3.3) with I+v A u a scalar. When m~2 we derive the RANK-2 method

T -1
and (I+v A u) is an easily invertible 2x2 matrix. From section (4.2)

the difficulty of producing a systolic rank annihilation scheme

increases as m becomes larger, because the complexity of forming the

T -1 -1
rnxm matrix (I+v A u) rises significantly. Consequently, we restrict

our attention to RANK-I and 2 schemes and investigate two contrasting

designs, i.e., a mesh connected wavefront scheme and a highly concurrent

pipe lined scheme.

To simplify the discussion we partition the RANK-l and RANK-2

formulas as follows:

when m~l,

where

and

and for m~2,

where

and

Thus,

with,

a)

b)

e)

a)

b)

B
-1 -1

= A

t
p = xy ,

T
Z=V"X=

1 -,-::-=--,... p
(l+z)

-1
c) A u ~ x,

n

I
i~l

T -1
d) v A

-1
B

-1 T
= A -Py

-1
or B

-1 -= A -xP

-1
P = xC

-1 T
or P ~ C Y

T
~ Y (4.3.5)

c)
-1

A u = x,
T -1 T

c)
-1 T -1

d) v A = Y I C = (I+v x) •

-1 1
C ~--==-

ad-bc [~c
-b l
aJ

n
a) a = 1 + I vlixil

i~l

n
c) c ~ I v2,x'l

i~l 1. 1.

(4.3.6)

n
b) b ~

it vlixi2

(4.3.7)
n

d) d ~ 1+
iIlv2ixi2

229

4.3.1 Mesh Connected Schemes

To define a wavefront model for rank annihilation we introduce a

special kind of wavefront processor. The processor is an orthogonally

connected square mesh of (n+2)*(n+2) reduced instruction set processing

elements.
-1

The known inverse A is loaded into the nXn mesh of elements

embedded inside a Systolic Control Ring (SCR) formed from the first and

last rows and columns of the mesh. The processors at grid positions

(1,1), (1,n+2), (n+2,n+2) and (n+2,1) are simple controller units

capable of generating a number of control signals in the horizontal

and vertical directions. The remaining processors perform book-keeping

and auxiliary operations as well as relaying control signals. This

architecture is shown in Figure(4.3.l.~. The input/output interface

consists of cells in the SCR along the first row and column, and the

-1
controller initiates computation after A ,u and v have been loaded into

their correct cells.

The last row and column provide auxiliary storage and collect the

partial results of (4.3.Sb-e) and (4.3.6b-e) for RANK-I and RANK-2

respectively. Finally the wavefront mesh consists of identical

processors receiving a SCR wave front control from North, South, East

or West and performing appropriate inner product operations and data

outputs. Consequently the SCR can generate multiple wavefronts in

different orientations using only point to point connections around

the ring. As variations in processor type are restricted to the

boundaries the mesh is also suitable for a VLSI approach to

implementation.

For RANK-l annihilation, and a preloaded mesh, (4.3.Sa-e) imposes

a strict regime on the computation easily translated to control

C, ~

* -V

V
E
C
T
0
R

I
N
T
E
R
F
A
C
E

-,
C.

U - VECTOR INTERFACE ~ e.

I , ~
l-

X

V
E
C
T
0

A-' R

WAVEFRONT A
R

MESH
R .
A
Y

-, , ,
Y - VECTOR ARRAY '- e.

GLOBAL ARRANGEMENT OF RANK ANHILATlON
SYSTOLlC MESH

C, - u, r- v, - V3 I- C,

I I I I I
v, ;'

I- I- - I-
/

I I I 1 I
/ v, - I- - I-

/
I I I I I
V3 - I- - l-

V
/

I I I I I
c. r- r- r- r- e.

FIGURE 4.3.1.1: 3x3 examp1~ mesh connections

230

231

wave fronts on the mesh given by the following control algorithm.

RANK-I MESH CONTROL ALGORITHM:

STEP 1:

a) SCR cell Cl generates a control signal moving right Cl~2, as the

control passes through the u
i

cells, the value u
i

and a control is

propagated south down column i. At the same time, a signal Cl~4 is

issued causing a zero and control to be propagated from left to right

along row i, as it passes through cell vi' These two wavefronts

constructively interfere producing a wavefront Wl moving diagonally

-1
from Cl~3, and collecting the partial results xi' i=l(l)n of X=A u

systo1ically from left to right on row i.

b) on the cycle immediately after a) starts another set of signals

C1~2 and C1~4 are produced reversing the roles of ui and vi SCR cells

producing a wavefront W2 parallel to Wl and accumulating y., i=l(l)n
1

T -1 T
for v A =y along column i of the mesh.

c) Wl and W2 travel at unit speed with w2 one cycle behind W1,

consequently the xi and vi values are adjacent to each other with vi

one cycle behind X.'
1

STEP 2:

On the (n+1)st cycle the first C1~2, and Cl~4 signals enter C2 and

C4 and xi on row i has i terms left to accumulate and Yj in column j

has j+1 terms left to accumulate. On cycle n+2, xl is complete and Y1

has one term left to compute, consequently pushing the control values

along C2~3 and C4~3 allows the xi and Yi to be loaded into the x

vector and y-vector arrays, with the yis one cycle behind the xis. The

close proximity of the x. and v. values implies that the second control
1 1

value reaching C2 from Cl~2 on cycle n+2 can be employed in computing

232

(4.3.Se) on its trip C2~3. If C2 is allowed to initiate the summation

with starting result of one, z+l is computed. After 2n+3 cycles all

SCR control values have reached C3, all the y. and x. have been stored
~ ~

in vector arrays and C3 contains z+l.

STEP 3:

-1
C3 now takes control, and updates the A mesh elements. Control

values are sent along C3~2, and c3~4 (accompanied by the value z+l).

Controls moving along the y-vector array formy.=O-y./(l+z), j=n(-l)l
J J

as they pass through cell j, outputting the control up into column j

of the mesh. Likewise controls along the x-vector array simply push

x. into row i of the mesh for i=n(-l)l. The two resulting wave fronts
~

constructively interfere to produce a wavefront W3 travelling

-1
diagonally along C3~1 performing the modification A.j-X. Y. as it moves.

~ ~ J

STEP 4:

After 3n+4 cycles SCR controls have reached C4 and C2 and w3 is half-

way across the mesh. Pushing controls along C4~1 and C2~1 meanS that

all controls arrive back at Cl after 4n+S cycles and the algorithm

terminates.

[End of RANK-l algorithmJ.

Now a sequence of r updates can be written as,

B = A

and in recurrence form,

r T
+ L uiv .•

i=l ~
(4.3.1.1)

(4.3.1.2)

-1
Theorem 4.3.1.1: r updates of A the inverse of nXn matrix A can be

2
performed on a wave front mesh of (n+l) cells incorporating asystolic

233

control ring in T=2(n+l)+r(4n+5) ips cycles.

Proof:

-1
A can be loaded or unloaded in (n+l) cycles, so input/output

consumes 2(n+l) cycles altogether.

From (4.3.1.2) when all updates are to distinct rows or columns

the U i , vi

A(i),s

for i=l(l)r can be pre-computed without having to calculate

the explicitly. The successive loadings of u
i

and vi can be

overlapped with a modification in step 4 (above algorithm) using C4~1

and C2~1 as loading signals, hence r updates require r(4n+5) cycles

giving a total time of T=r(4n+5)+2(n+l) cycles.

Where updates occur on the same row or column more than once the

A(i) must be calculated explicitly in order to compute u. and v.' If
~ ~

we assume some host machine which supplies u. and v. to the mesh exists
~ ~

it must calculate A(i) in the 4n+5 cycles associated with each inverse

update. As a row modification is typically of the form,

I']
0 0 °l T

uv =

~
[v 1 v 2 v 31 = v l v2 v31

(4.3.1.3)

[g 0 O..J

only n additions are required, and the assumption is valid even for a

sequential host machine (the same holds for column modifications) .

[End of Proof1.

Corollary 4.3.1.1: The inverse of an arbitrary matrix B can be computed

2
in T=4n +7n+2 cycles using the SCR wavefront mesh.

Proof:

(0) T
Simply put A =1 and r=n in (4.3.1.2) and choose uiv

i
to be

distinct rows (or columns) of B.

234

Finally, consider the structure of mesh cells, it is clear from

the algorithm that all cells compute in a single inner product cycle.

The SCR controllers Cl, C2, C3 and C4 are simple combinational logic

units, while u and v interfaces are registers with additional logic to

suppcrt the SCR. The x-vector arrays require a register to save xi and

an inner product form to add the partial product term to z+l as it passes

through. Similarly, the y-vector array contains a register for Yi and a

subtract/divide cell for modifying y.
~

using z+l; while the wave front

mesh cell contains a register for -1
A ..
~J

and performs,

E = W+N*A wave front Wl

S = N+E*A " W2

A = A+S*E " W3

-1
where A=A

ij
, and N,E,S,W are compass directions for input/output

controlled by the SCR. Consequently the area of basic cells is bounded

by the cost of an inner product cell plus some additional switching logic.

The results indicate that Rank Annihilation for a single update

requires more cells and has an intermediate time between the arbitrary

inversion schemes of Rote and Robert & Trystram [85]. From Corollary

(4.3.1.1) it is evident that general inversion by rank annihilation does

not compete with these arbitrary schemes. The explanation is simple

and is illustrated by Fig.(4.3.l.2). A RANK-I update generates only

three wavefronts in 4n+5 cycles yielding a low processor efficiency,

while the positioning of waves indicates that successive updates cannot

be overlapped. In contrast, the arbitrary schemes are based on the Gauss-

Jordan algorithm, and like Gaussian elimination in Fig.(3.2.2.2) have

successive modifications pipe lined to give high processor efficiency.

In an attempt to improve processor efficiency and consequently the

Ct Ut Ut ••• u,

c.

Y,Vz ••• Yn

w,

p"

Y.

x •

•

•

y"
y"

•

•

235

x.

•
•
•

...
y, • • • y, Z+1

FIGURE 4.3.1.2a: RANK-l Wavefronts

l1X'1
X21)(~

• •
• • · •
...... . • • Y •• C-.

• • · y"

FIGURE 4.3.1.2b: RANK-2 Wavefronts

236

number of wavefronts generated in a complete circuit of the SCR, the

RANK-2 scheme can be implemented on the same mesh with modified boundary

cells. The u and v interface cells contain two registers instead of one,

while the y-vector array swaps its subtract/divide for two multipliers

and an adder and the x-vector array swap requires an extra ipso The

controller C3 is no longer a simple logic unit, but implements Cramer's

rule to compute the 2x2 inverse in parallel with six ips cells. Now

bounding the Y-vector array cells by the cost of two ips cells gives a

2 cell requirement of n +4n+6 cells for the mesh. More wavefronts can now

be introduced by using a partitioned form of (4.3.6) where,

a) A-lu(l) = x(l) b)
-1 (2) (2)

A u = x

.. (l)TA-l (l)T (2)T -1 (2)T } (4.3.1.4)
c) v = Y d) v A = Y

and u=[u(l) ,u(2)], vT=[v(1)T,v(2)T], x=[x(l) ,x(2)], yT=[y(1)T,y(2)T]

A-l , u(l), u(2), vel) and v(2) are loaded into the mesh and the

computation proceeds as follows:-

RANK-2 MESH CONTROL ALGORITHM:

STEP 1:

Cl starts the algorithm by pipelining four control signals along

Cl4C2 and Cl~4 on successive cycles. On cycle 1 signals entering

interface cells u
i

and Vi propagate u~l) down column i and zero along

row i. These component waves constructively interfere producing a

resultant wavefront Wl moving diagonally· in direction Cl+C3, and

accumulating x~l) from left to right on row i. Similarly cycle 2
l.

signals produce a wave front W2 one cycle behind Wl accumulating x~2)
l.

on

row i from component waves involving u~2). on cycle 3 the roles of u.
l. l.

(1)
and Vi cells are reversed with cell Vi sending Vi along row i and ui

propagating zero down column i producing wavefront W3 one cycle behind

237

W2 accumulating y~l) down column i. Likewise cycle 4 produces wavefront
1.

(2) (2)
W4 from components vi and zeroes accumulating the Yi values.

STEP 2:

After n+l cycles, the first SCR controls reach C2 and C4. xiI) and

x~2) have i and i+l terms, and y~l) , y~2) have i+2 and i+3 terms left
l. l. 1.

to accumulate. Hence the signals associated with cycles 1 and 2 of

(1) (2) .
step 1 are used to load x. and x. l.nto the x-vector array, while

l. 1.'

(1) (2) .
cycles 3 and 4 are used to load Yi and Yi l.nto the y-vector arr~y

(1) (2)
and v. ,v. into the x-vector array. consequently the signal leaving

l. l.

C2 on cycle n+5, is used to form the values (4.3.7), with a=l, b=O,

c=O and d=l initially.

STEP 3:

After 2n+5 cycles the last control signals and the 2x2 matrix C

-1
have been collected by C3, which takes control computing C by Cramer's

rule in 2 ips cycles. Now on cycle 2n+8 C3 outputs controls along the

SCR in directions C3~4 and C3~2. The signal on C3~4 is accompanied

by the first row of c-l and Y-vector array cell i computes OUT(l)=
i

* (1) * (2) (1) cll Yi +c
12Yi and propagates OUT

i
into column i. At the same time

(i) xi is pushed out into row i, and the two components for wavefront W5

moving in direction C3+Cl. On the next cycle C3 issues a similar signal

d 11 (2)_ * (1)+ * (2) (2) d (2) an y-vector ce s compute OUT. -c2l y. c
22

y. ,x. an OUT.
1. 1. 1. 1. l.

move along row i and column·i one cycle behind W5 forming wavefront w6.

The inverse elements are modified in two steps by W5 and w6 using

-1 A~\x~l)OUT~l) Aij =
l.J 1. J

and -1 A~:-x~2)OUT~2) Aij =
l.J l. J

STEP 4:

On reaching C4 and C2 signals are sent back to Cl along C2~1 and

238

C4+el, and the interface section can be re-loaded with new u and v

matrices, in parallel with the inverse modification. The last signals

arrive back at Cl after 4n+lO cycles. STOP.

[End of RANK-2 algorithmJ.

Analogous arguments to the RANK-I problem produce:

-1
Theorem 4.3.1.2: r RANK-2 updates on the inverse A of an nxn matrix A

can be performed on an SCR wavefront mesh of O«n+l)2) cells in time

T=2(n+2)+r(4n+lO), and,

Corollary 4.3.1.2: The inverse of an arbitrary nXn non-singular matrix

2
A can be found by RANK-2 annihilation in T=2n +7n+4 ips cycles.

Proof:

Put r=n/2 and A(O)=I in (4.3.1.2) and update two rows at a time.

We conclude that RANK-2 is twice as fast as RANK-l for k updates

as r=k in Theorem (4.3.1.1) and r=[k/2] in Theorem (4.3.1.2). The

intuitive idea behind rank annihilation is that successive updates of

RANK-M will take less time than computing the full inverse of the

modified matrix at each stage. Theorem (4.3.1.1) and (4.3.l.~ support

this argument as we can write,

2(n+l)+rl (4n+5) < 5rl n , for rl~3 (4.3.1.5)

and (4.3.1.6) 2(n+2)+r2 (4n+10) < 5r
2

n , for r2~3

-1
These timings result from the assumption that A can be left inside

the mesh from one update to another. A typical iterative process using

-1
rank annihilation, would use A in a computation, determine u and v and

-1 -1
tbenupdate A • This requires A to be loaded and unloaded on every

update giving the revised relations,

and

r
l

(6n+7) > 5r
l
n , for all r

l

r
2

(6n+14) > 5r2n, for all r
2

(4.3.1.7)

(4.3.1.8)

239

These relations indicate that it is better to invert each of the A(i)

in (4.3.1.2) rather than modify the already known inverse of A(i-l).

Remark: Corollaries (4.3.1.1) and (4.3.1.2) are still valid because

-1
general matrix inversion is a special case where each A is not used

outside the mesh.

4.3.2 Highly Pipelined Rank Annihilation

The above result seems contradictory and arises from the repeated

-1
loading/unloading of A • A more satisfactory result would be achieved

if input, output and updating could be overlapped, and the communication

overhead of 2n cycles removed from the left hand sides of (4.3.1.7) and

(4.3.1.8). This implies some kind of pipelined scheme capable of

computing (4.3.5) and (4.3.6) in parallel. For RANK-l we notice that

(4.3.5b,c,d and e) comprise only of matrix-vector, outer product, and

inner products respectively, and define the ordering of computations in

the pipe. For instance, (4.3.5c and d) can be computed in parallel but

must begin before (4.3.5b and e), which in turn must start before

(4.3.5a). From this ordering the pipeline in Fig. (4.3.2.1) is derived

for RANK-l annihilation.

The matrix transpose matrix (m.t.m.) array performs (4.3.5c and d)

on an array of 2n-l special ips cells described below. Using the standard

-1
matrix vector array in Fig.(3.2.l.3) and assuming A is full Fig.

(4.3.2.2) illustrates the dataflow for solving AX=y and XtA=Y. The

cells in Fig. (4.3.2.2b) are obtained from the standard cell in Fig.

(4.3.2.2a) by a rotation of 1800 and a modification of the matrix input

connection. Hence from Theorem (3.2.1.4), (4.3.5c and d) can be

computed in parallel in 4n ips cycles using 4n-2 ips cells. Assuming

u
.

x;v

z- x

Z+1

Z+1

A-'

~y
M.T.M. ARRAY

~~

MATRIX

TRANSPOSITION

NET'!IIORK

'7
OUTER PRODUCT ARRAY

~~

MATRIX

TRANSPOSITION

NETWORK

MODIFIER

A-1 modified

240
y:u
~

V

•

.

M·T·M = MATRIX - TRANSPOSE -

MAmlX

~

FIGURE 4.3.2.lf 'On the Fly' rank annihilation

a ..
a .. 0 a ..

a,. 0 a" 0 a ..
a,. 0 a23 0 a32 0 a.,

a,. 0 a22 0 a3'
a,. 0 a.,

a"

1 1 1 1 1 1 1
x. 0 X. 0 - X2 0 x, - y, 0 Y. I- o Y3 0 Y.

a) ARRAY COMPUTING Ax = y

...
8 .. 0 ...

a2. 0 a .. 0 a.2 .,. 0 ·23 0 a .. 0 I., ,
a,. 0 an 0 a3'

a,. 0 a.,
0"

Y. 0 Y. 0 0 y,
x, 0 X2 0 X, 0 X.

IV
b) ARRAY COMPUTING x'A = y'

FIGURE 4.3.2.2: Matrix vector arrays for (n=4)

242

-1
that A is full (for generality) and pipe1ined between the two arrays

to avoid bringing it from the host more than once. The number of cells

could be reduced to 2n-1 if the data in Fig.(4.3.2.2b) was rotated about

the axis formed from the a .. diagonal inputs and interleaved with inputs
l.l.

of Fig.(4.3.2.2a). However we consider an alternative arrangement which

-1
amalgamates both arrays preserving the neutral elements of the A input

but filling the horizontal ones. This arrangement requires modifications

to the internal structure of the cell, so that on one cycle it computes

a term from (4.3.5c) and on the next a term from (4.3.5d). In the former

case inputs are from the left and outputs to the right, for the latter

the reverse is true. Consequently simple switching logic and a delay

register to hold the matrix elements inside the cell for two cycles

must be added to the basic ips cell. Switching can be implemented by a

single control bit tagged to the matrix inputs and is of further value

later. Fig.(4.3.2.3) illustrates the array operation and reveals the

reason for the more complex cell design. The vectors x and v have been

interleaved so that x and v. for i=l(l)n are adjacent. Now z+l can be
i l.

easily computed by a simple accumulating inner product cell connected

to the left end of the m.t.m. array, a control tagged to the xl value

can be used to reset the cell to I forming z+l in 2n ips cycles. This

leaves only (4.3.5a,b) to calculate. (4.3.5b) is an outer product form

which produces a matrix of the form

x y - --
1 2 --x{nl 1 n

I .. --
I

p = (4.3.2.1)

243

0

'" 'M 0 ' ..
'" 0 0" 0 '" 0,. 0 I" 0 I" 0 '.,
I .. 0 I .. 0 I"

'" 0 0 ..

'n

.•• U, y,

X, v, ..

.. v,

y.
v,

u, .
x,

x, v,

BASIC CELL

•

FIGURE 4.3.2.3: -1 t -1 t
Systolic computation of A u=x and v A =y
using interleaving

244

and can be computed by a linear array of 2n-l multipliers in 2n cycles

with a cell producing all the elements of a particular sub (super)

diagonal.
-1

Notice that in order to compute (4.3.5a) the elements of A

and P must be locally placed with respect to each other. Ideally we

-1
would like to pipeline the A input and results from the m.t.m. array

into the solver for (4.3.2.1) and this is achieved by the arrangement in

Fig. (4.3.2.4). -1 We make use of the retained neutral elements in the A

data stream by filling them with the p .. values. The control used for
l.J

switching input and output directions in the m.t.m. can now be utilised

again to overwrite the neutral value with the x.y. result. The outer
l. J

product array requires the values of Xi and Yj which must be synchronised

-1 -1
with Aij to produce correct interleaved output of A and P. The total

-1
time for Xl after meeting all in the m.t.m. to reach the centre cell

of the outer product array by passing through the z+l accumulating ips

-1
is 2n cycles, consequently all must be delayed 2n-2 cycles between m.t.m.

and outer product arrays to retain synchronisation. However, an added

T -1 constraint is that the outer product generates P , when compared to A

and the intermediate delay time must be utilised to form (A-l)T, so

interleaved elements remain adjacent.
-1

Clearly the transpose of the A

inputs is formed by a 1800 rotation of elements about the main diagonal

-1
inputs (a ..), and can be achieved in a number of ways shown in Fig.

l.l.

(4.3.2.5). Intuitively the time for transposition is bounded by the

number of cycles required to swap the outer sub (super) diagonal inputs.

Assuming a diagonal element shifts its location by one diagonal per cycle

transposition requires W cycles for a matrix of bandwidth W, and the area

2 -1
is bounded by W exchange-delay cells. Thus, for A full we require

2 (2n-l) cells and time 2n-l cycles. Hence synchronisation in the outer

81 INPUT FORMAT

I ..
I .. 0 a,.

I" 0 a .. 0 a,.
a., 0 " .. 0 a" 0

I" 0 "22 0 a,.
a2' 0 a"

an

x, Y,

bl OUTPUT FORMAT

x.v.
x.Y. a .. X3V.

x.v, a .. X3V, IM x'v.
x.Y, a., X3VZ I .. X2Y' I,.
a., X3V, a32 X,V2 " .. X'Y3

a., X2V, a22 X,V2 a,.
a" x,y, . "2

an

REMARK: BASIC CELL IS A MULTIPLIER WITH EXTRA CONTROL
TO INSERT xlVI 1.1 = 1(11n INTO VERTICAL DATA STREAM

t FIGURE 4.3.2.4: Computation of P=xy

245

a,.

Y2

x,v.
a,.

246

D

a) intuitive non-planar version

b) array from Ipsen [84 1

FIGURE 4.3.2.5: Transposition networks

247

product array is achieved by placing a transposition network between

m.t.m. and outer product arrays and adding an extra delay to the xi

data stream. As A is full the m.t.m. array is symmetrical and Yi values

must also be delayed by a cycle.

-1
The only task remaining is the final modification of A by (4.3.5a)

-1 T
requiring z+l, and the interleaved form of (A) and P. z+l accumulates

-1 T
one term every two cycles, so that by the time (all) enters the outer

product array, at most rn/il+l terms have accumulated. Now for z+l and

-1 T (all) to meet in the centre cell of the modifier array of Fig.(4.3.2.l)

as indicated by Fig.(4.3.2.6), a delay of at most 2n-l cycles is required.

n cycles to accumulate the rest of z+l and n-l cycles to filter z+l to

the centre cell of the modifier. This delay time can be utilised

effectively by transposing the interleaved data, so that the final

output is in the Same form as input. The modifier array consists of

2n-l divide and subtract cells with a loadable register to store z+l.

A control value tagged to z+l can be used to load the register and the

-1 -1 -1 1
control tagged to a ij elements to form aij=aij- (z+l) Pij as data passes

through.

The timing of the array is then derived from the formula,

T = (start-up time) + (pipeline latency) .. (output time)

-1
From Fig.(4.3.2.3) the start-up time to synchronise A ,u and v is

simply n-l cycles. Pipe tine latency is the total number of cycles

-1
required for all to pass through the whole array, and is given by,

(i) delay through m.t.m. array 2 cycles

(ii) " " outer product array 1 cycle

(Hi) " " modifier array 1 cycle

(iv) " " transpose network 2n-l cycles,

248
p ..

P,.. a .. p ..
P,. a,.. P33 ... p.,

P,. a,. P'3 a33 P,. a., p.,
a,. P" 8'3 P" a" P" a.,

a" P" a2' P" a"
a" P" a"

a"

z z

- a" I---
- z z z z I---

- a" P" 8" I--
- z z ·Z a" Z I---:-z

- a" P" a" P" 8" f--

- Z Z a" P" a" Z f--z z z

J
6"

- P" a23 P" a32 '. P31 a., I---
- Z 8" ~" a" 15" a" Z f--z z z z z

1 I 1
1'"

WHERE A = A --}P
P = H(y') = l-P

FIGURE 4.3.2.6: Systolic generation of new inverse

•

249

u, RANK 1 ARRAY 1
_ V,

u. RANK 1 ARRAY 2 - V.

•
•

u, RANK 1 ARRAY r
_ (V,

FIGURE 4.3.2.7: A cascaded RANK-I scheme

giving a total of (4n-2)+4=4n+2 cycles. An extra 2n cycles is required

to output all the modified matrix elements, yielding the result.

Theorem 4.3.2.1

-1 The RANK-I update of A the inverse of an nxn matrix A can be

performed on a systolic pipeline in T=(3n-l)+(4n+2) cycles. The design

2
requires 3 (2n-1) +1=6n-2 ips cells and 2 (2n-l) delay cells from the

transposition networks. Comparing this with Theorem (4.3.1.1) for r=l

indicates that the mesh scheme is faster for a single update. However

2
the pipelined scheme uses only 0(6n) true ips cells compared with O(n)

2
and the O(n) delay cells permit a more compact design. Indeed, Fig.

(4.3.2.1) admits a natural two layer design by folding the pipeline in

half, and placing one transposition network on each level. Furthermore,

the efficiency of cells in this new scheme is much improved. In the mesh

250

case, computation is charted by wave fronts with only those processors on

the wavefront active giving poor efficiency. In the pipeline case, the

m.t.m. and modifier arrays mimic the wave front movements of Wl, W2 and W3

-1
respectively as A pass through their elements producing high efficiency.

High throughput can also be achieved by overlapping computation of

different problem instances, which is not possible with the mesh scheme.

In fact when the u
i

and vi of (4.3.1.2) can be precomputed r copies of

the pipelines can be cascaded to allow both problem instances and

successive updates to individual cases to be overlapped. A drawback to

cascading is that it increases hardware by a factor of r, which can be

significant for large n or r. An alternative, which reduces throughput

of distinct problem instances but uses constant hardware is asystolic

ring. The ring is formed by noticing that pipeline latency is 0(4n) and

data length 0(2n), as a result the modified inverse elements can be

wrapped around to the pipeline inputs for the next update. Even with

the ring only half the cells are used at anyone time, and so two

problems can be interleaved to achieve good cell efficiency. Hence,

Corollary 4.3.2.1:

r RANK-l updates of A- l the inverse of an nxn matrix A can be

performed in T=(3n-l)+r(4n+2) cycles using a RANK-l pipeline.

The RANK-l pipeline is easily extended to RANK-2 updating, and for

the sake of completeness we briefly outline its operation. Fig.(4.3.2.8)

shows the global connection structure. The two m.t.m. arrays compute

as shown in Fig.(4.3.2.9). The first array computes the first columns

of X and y,the second the last columns. The output results of M.T.M.l

are delayed by a single cycle to synchronise with M.T.M.2 results,

allowing the first row of X to enter C on the same cycle. The locality

C

D
E
L
A
Y

X

XC-'

Y23 y"
U32 U"

Y22 Vu
U22 U21

Y:n VU
U,2 U11

o Loot

y

,/~

M:r.M. ,

~k
M:r.M.2

"(y

TRANSPOSE

A-'

~y
SYNCHRONISATION

DELAY

""- ~

MODIFIER

~

FIGURE 4.3.2.8: RANK-2 systo1ic inverter

251

Vt3 Vu

X3' X32

Vu Vu'
X" Xu

. Vu ,V21

X" X,2.

I-

I

0

0

D
E
L
A
Y

Y

0

n = DELA

• •
• • a .. • •
• • a"" 0 a .. • •
• V"

a,. 0 a33 0 842 V" • V .. V,. a,. 0 a,. 0 a" 0 a •• X" V ..
V .. VIZ a" 0 a,. 0 a" VIZ X ..

a" 0 a"
a,.

l J l l l l l
..........

V21 V" . Ut, X,. V,. X21 ,-
V21 I- V" X" V ••

~ l l , , , ,
FIGURE 4.3.2.9: RANK-2 M.T.M.l and M.T.M.2 arrays in starting positions

a ..
a .. 0 a""

a •• 0 a33 0 a,.

a •• 0 a" 0 a" 0 a,.

a" 0 a,. 0 a"
a21 0 a"

a,.

'" [Il D [I] 0 y" 0 v,. In x.. 0 ·)(~, 0

~ ~ '" x" y" 0 y,. 0 y,.
x •• 0 X32 0

FIGURE 4.3.2.10: RAIlK-2 modifier array

253

of X and V is used again to compute (4.3.7) in cell C using four inner

products and 2n cycles, with an extra two cycles added for C-l to be

-1
computed before it is output to the XC cell. Incoming X values are

delayed a single cycle in C resynchronising them with Y, before they

-1
enter delay queues long enough for C to be produced. On leaving its

delay queue X is used in the XC-l cell to compute the products,

Pil = xilcll + xi2c2l

Pi2 = x
il

c
12

+ x
i2

c
22

, i=l(l)n,

in a single cycle, using four multipliers and two adders, and delaying

the Y values an extra cycle, for synchronisation. The matrix update

-1
Bij = Aij-[lll 'ylj + Pi2Y2j] , i,j=l(l)n,

is then made in the modifier array of Fig.(4.3.2.l0) using a multiplier

-1 and subtracter in two ips cycles, with the dummy element in the A

data stream covering the extra computation time. In a similar manner

T to xy in the RANK-l scheme PY produces a transposed output requiring

formation of (A-l)T while c-l is computed and P and yT filter into the

modifier for synchronisation.
-1 computation of C starts n+l cycles

-1
after all leaves M.T.M.l, and requires 2(n+l) cycles, synchronisation

-1
of P and Y requires n cycles (allowing an extra cycle for delay in xc).

Thus, a total of 4n delays are required to synchronise a~i with P and Y.

-1
Consequently the transposition is easily computed before all reaches the

modifier. Now allowing two cycles in the m.t.m. arrays and two cycles

in the modifier the total delay through the pipe is 4(n+l), initial

synchronisation requires n-l cycles and output of modified inverse

consumes 2n cycles hence,

254
Theorem 4.3.2.2

-1
The RANK-2 update of the inverse A of an nxn matrix A using a

RANK-2 pipeline requires T=(3n-l)+4(n+l).

Corollary 4.3.2.2,

r RANK-2 updates can be performed with a RANK-2 pipeline in

T=(3n-l)+4r(n+l) •

The cell count is simply computed as follows,-

(i)

(ii)

(iii)

(iv)

M.T.M. arrays

C cell (at most)

-1
XC

modifier 2 ips per cell

4n-2 ips

Sips

4 ips

(4n-2) ips

giving a total count of Sn+S ips with 4n delay between m.t.m. and modifier

4n(2n-l) is an approximate count of delay registers neglecting X and Y

delay queues.

In comparison with the RANK-l scheme RANK-2 requires 2n+6 more ips

cells and at least 4n additional delay registers, but modifies two rows

or columns in a single update for the loss of only two cycles. The

RANK-2 pipe retains the advantages of high efficiency and throughput,

but loses the natural partitioning on to two layers. The systolic ring

arrangement is also move involved because the modifier outputs the updated

matrix in transposed form requiring u and v inputs to be switched on

alternate ring cycles.

4.3.3 Choice of Schemes

The choice of scheme depends upon whether a general matrix inverse

-1 -1
A is required or an update to A based on local changes in A.

For a general inverse the sequences of modification encoded by u

255

and v can be precomputed because changes in A occur on distinct rows,

and the intermediate updates are not incorporated in a larger comput-

ational process. Consequently mesh schemes do not have to be repeatedly

unloaded and the ring pipeline schemes can be adopted. The general

inversion methods based on Gauss-Jordan permit much more pipelining of

successive computations producing O(5n) time which out performs the

2
rank-annihilation schemes using O(n) time. From the view point of

2
area, general schemes use O(n) cells highly efficiently, while wave-

front mesh schemes use o(n2) inefficiently. In contrast, the rank

pipeline systolic rings use O(n) cells and o(n
2

) registers with high

efficiency, but do not compensate for the increased time.

In the cases when a large number of matrix updates are made, where

modification data is derived by using the modified inverse of the previous

step, choice of array must be made by comparing the time of a single

update by annihilation with that of general inversion. The time trade-off

is O(5n)-O(7n) for arbitrary inversion, O(6n) for mesh annihilation

and O(7n) for pipe lined inversion, giving a much better time relation-

ship. The lack of cell efficiency would favour arbitrary methods over

mesh schemes; but reduced cell count and improved throughput of pipe-

lined schemes is preferable to general inversion schemes as two

independent updates can be performed simultaneously. (The general

scheme requires O(lOn) for two updates). Finally the systolic ring

idea is easily extended to incorporate more components for an iterative

-1 process where computation involving A and u,v generation could also

be pipelined. The increased delay may permit more problem instances

to occupy the ring simultaneously.
-------- ~---.- .. ----- ~-.-----,--------

Pipelining or separate problem instances. OUlpul or modified and original inverses interleaved.

OCCAM-Slarl run OCCAM-Start run
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Time
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 Time 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000-I.~O.OOO 0.000 0.000 0.000 0.000 0.000 _-.. J.~O.OOO 0.000 0.000
0.000 O.~.OOO __ A.lOO.., ,2.~ 0.000 0.000 0.000 O.~.OOO __ -O.soo... _2.000___. 0.000 0.000
0.000 - 1. --.:::0.500 1.000 . I.~ 1.000 0.000 0.000 -1. -0.500 1.000 1.000. -1.000 0.000
0.000 -3.500~. 1.000~.000 -.0. __ ::::..0.500 0.000 0.000 -).500~:'_ .000-....:::.4.000 0.~0.5OO 0.000
0.000 0.000 -"4.000 .000 2.500 0.000 0.000 0.000 0.000 -~.OOO_. 2.~2.5OO 0.000 0.000
0.000 0.000 0.000' - -4.500- - '0.000 0.000 0.000 0.000 0.000 0.000 -4.500- 0.000 0.000 0.000
0.000 0.000 0.000 0.000 ·0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000

OCCAM-Run finished. 0.000 0.000 0.000 /.~.OOO 0.000 0.000
0.000 0.000 /..000 __ 0.500_ .~O.OOO 0.000 - -, 0.000 0.000 -1.000~.5OO 1.000 1.000~I.000
0.000 -3.500, .000 -4.000 0.000 ~0.500 0.000
0.000 0.000 -.:-4.000---.2.000--'2.500- - 0.000 0.000
0.000 0.000 0.000' - '4.500- - 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 FIGURE 4.3.2.11: Example OCCAM runs 0.000 0.000 O.~.~OOO 0.000 0.000
0.000 0.000.......!n. _,-0.500_ •. 000___.0.000 0.000
0.000 0.000 '" -1.000X .5OO 1.000 1.000;:..<1.000

'" 0.000 -).500, I.~.OOO 0.000 ~0.5OO 0.000 '" , 000-- -' 0.000 0.000 0.000 -"4.000... _ .. 2.500 0.000
0.000 0.000 0.000 -4.SOO- 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000

OCCAM-Run finished.

257

Finally we conclude this section with some remarks about

implementation. Fig.(4.3.2.l) incorporates long wires of length

proportional to n making the design soft-systolic under current

technology. Use of waveguides for optical data transmission, and

multi-layers make the RANK-l pipeline an attractive design, and

program 18 in the Appendix is an OCCAM simulation of Fig.(4.3.2.l).

The program was tested on a variety of cases and a simple 3x3 example

is given below.

Let
-2 5 -1 1 2 -1

1 4 -1 2 -1 2 1 A = , A :: 0 9

-3 3 3 -1 1 2

and put
6 14

'~
0.5 -0.5 -,.~ 1

4 -1 -1 -4.0 -4.0 B = , B = 1 9

-3 3 .5 2.5 4.5
t then u=(l,O,O) , t v =(2,1,3) in (4.3.1) • The results of the program

output are shown in Fig.(4.3.2.ll) verifying theorem (4.3.2.1), and

indicating that k successive problem instances require T=(n-l)+(4n+2)+

k (2n+3) cycles.

4.4 BATS: A BANDED AND TOEPLITZ SYSTEM SOLVER

Section 4.1 considered the X-band matrix vector multiplication

problem and the use of D
2

-piPes to take advantage of sparsity. In this

section we consider the solution of a linear system like (4.1.11) with

an X-band coefficient matrix. X-band system solution is a non-trivial

task because both triangularisation and factorisation techniques allow

258

fill-in of zero elements which destroy sparsity and increase bandwidth.

As already noted the solution of P.D.E.'s with periodic boundary conditions

using finite difference techniques leads to an x-band form matrix, i.e.,

a
O

a
l

a a a
l p p

a l 0 ~I I a
p

a p
A = (4.4.1)

c
a p

a

I p

I~O a
l

a l
a a a

O nxn p p

Factorising this matrix produces fill-in along the last p rows of the L

factor and last p columns of the U factor and'a hexagonal systolic array

Fig. (3.2.2.3) must treat Ac as a full matrix. Consequently the solution

of Toeplitz systems such as circulant, symmetric and skew-symmetric forms

like (4.4.1) have received much attention. The most successful designs

to date from a systolic view point are the PLP (S.Y. Kung & Hu [83]) and

a linear array of Brent and Luk [83]. Both designs have O(n) time and

the latter is also sensitive to band structure and can solve both

symmetric and skew symmetric forms. The PLP consisting of three tiers

of n inner product cells each, and a LIFO structure of o(n2) cells, is

based on Levinsons algorithm and requires O(2n) time. The linear

array is based on the Bariess algorithm and consists of r¥l super cells

each with a control algorithm and requires O(4n) time with six ips

per cell and is essentially soft-systolic.

In contrast our technique is based on new factorisation methods

developed in Chen [85] and Audish & Evans [85a,b] and permits the

259

pipelining of solutions to more than one system through the array.

The previous schemes cannot pipeline successive instances and for a

dedicated Toeplitz solver our method should improve throughput

significantly.

We consider the solution of the nxn system.

A x = f.
c

(4.4.2)

where x=(X
l
.x

2
•••.• x

n
)t is unknown and f is the known right hand

side. Chen [85] shows that if A is strictly diagonally dominant it
c

can be factorised into the form,

-1 "" ~T
A = 80

L L •
c

(4.4.3)

where,

ISo
~~i~ 1

81

11
IIp

'" IIp
L =

o~
(4.4.4)

(4.4.2) is then solved by the coupled systems.

a) '" Ly = d. b)
"'T
L x = Y • (4.4.5)

Now put.

0
t3p t3~

and R = ~Il
L PJ pxp

IIp--1l1 1l£J
nxn

(4.4.6)

260

then,
(4.4.7)

where I = pth order identity matrix, and 0 the (n-p)*p null matrix.
p

We now apply the rank annihilation formula (4.3.4) to yield,

1.-1 = L-l_L-l [:]{I+[OT IplL-l [~}-l[OT IplL-l ,

and the coupled system (4.4.5) is solved explicitly viz,

a)
"'-1

Y = L d and
"'-T

b) x = L Y .

(4.4.8)

(4.4.9)

The method extends easily to the simple banded Toeplitz matrix At

where,

A = A
t c [

I-j T rOl
- Plu[O I 1 - l

o J p I j
P

and the corresponding linear system,

is given by,

. _l~pl T x - A i u [0
c OJ

with,

I lx - A-l
P c

rO l T T I. I U [I 0 1 x =
~pl p

-1
A f

c

-J"Ipl -1 [0 1
Ac I !' and B3 = Ac I. '

LOJ p

(4.4.10)

(4.4.11)

(4.4.12)

(4.4.13)

X
(2)=(x T (3) T , ••• ,x) andx =(x l' ••• 'x) p+l n-p n-p+ n

(1) T
where x =(Xl, .•• ,x

p
)'

and U is a pth order matrix like R but with elements al, ••• ,a
p

•

solution is then determined by premultiplying (4.4.13) by (I ,OT)
P

(OT,I) to produce the system,
p

The

and

(1)
y } (4.4.14)

= Y
(3)

261

-1
where Mll and Mlp are the pth order submatrices of Ac at the northwest

(1) (3)
and northeast corners. We then find x and x using (4.4.14) and

(3)
x with (4.4.13). This latter scheme is more computationally complex

than existing systolic schemes for At matrix structures but shows that

the solution of At is simply a linear combination of the solution to

-1
(4.4.2) and the first and last p-colurnns of A •

c

4.4.1 A Pipelined Solver

A solution to (4.4.2) can be constructed by a simple pipeline

arrangement illustrated in Fig (4.4.1.1), and consists of a triangular

-1 -T
inverter for finding Land L ,a rank annihilation pipeline for

(4.4.8) and a matrix vector array for the coupled systems (4.4.9).

The only new component is the inverter and its operation requires some

explanation.

TRIANGULAR
INVERTER

'~v
u

RANK
ANNIHILATOR

'''-../v
MATRIX VECTOR

I I

1,0,0, ...

T
v

FIGURE 4.4.1.1: Pipelined Topelitz solver

262

The inverter itself comprises two back to back triangular

T
inverters, one on the left producing upper triangular inverses (or L)

and one on the right for lower triangular inverses. These two components

are operated in mutually exclusive fashion so no conflicts occur in

later stages of the pipe and make use of the special form of A. Since
c

-1
A is a symmetric circulant matrix so is A and is uniquely defined by

c c
-1

its first column hence L is found by,

Ly T
= (I,O,O, ... ,0) I (4.4.1.1)

and can be computed on a p-cell back substitution array in T=2n+p

cycles, producing the solution sequence YO 0 Y
l

0 ... o Y l' n-
However,

the rank annihilation array accepts input in standard diagonal format,

YO

0 Yl

0 YO Y2
0 0 Yl Y3

0 0 YO Y2 Y4 (4.4.1.2)

0 0 Yl Y3

0 YO Y2
0 Yl

YO

for
-1 .

Land n=5, and a transposed form for L
-T

Each inverter

component is a bi-linear array, shown in Fig.(4.4.1.2). The top tier

is a modified backsubstituter which preloads the constant diagonal

values S., i=O(l)p, and the bottom tier contains n cells to generate
~

the non-zero portion of the above diamond input. As the don't care

slots ('-') can be replaced by the neutral element zero, and the

components are operated in mutuallY exclusive fashion. The off-state

of a component generates the zero side of the input automatically.

263

.) Lower triangular inverter (n-6, pa2)

b) Two back-to-back components (n-3,p-i)

FIGURE 4.4.1.2: Triangular inverter

Second tier generating cells consist of loadable registers and

simple control logic as defined below.

Cell

out

Procedure

mem=O

If r. THEN{mem=y. ,toggle=TRUE}
l.n l.n

If F. l.n
THEN mem=O

If toggle THEN Qut=mem

ELSE out=O

Fout =Fin ,rout =zin' Yout'·=Yin
Toggle:=NOT Toggle

As the backsubstituter produces the y. values, they are pumped from
l.

right to left along the second tier. Associated with and travelling

one cycle in front of, Y
o

is a control value (F). This forward control

signal on the right to left journey resets cells by putting mem=O, and

when F drops off the left end of the array it is immediately input as

264

a return signal (r). By virtue of the Y
i

spacing and its lead on YO'

r meets each y., i=O(l)n-l, as it moves left to right loading them
~

into generating cells, and locking the cell into an alternating output

cycle (see Fig.4.4.l.3) •

which is output only once.

On reaching the rightmost cell, r loads Y 1
n-

consequently on leaving the array r is

pumped back in as F to reset cells forming the remaining input pattern

of (4.4.1.2). The control travels in cyclic fashion forming a control

ring and indicates that the next solution sequence can be fed right to

left along the second tier while the current inverse is still being

output. If we allow2~+1) additional cycles to load the new parameters

into the first tier and output the first result y , the reset control
o

is 2(p+l) cycles in front, causing erroneous loading of the next

inverse coefficients. Hence the overlapping of different instances

on the same inverter component requires a modified control arrangement.

A working version of this modified form is given in the Appendices

(program 19) and yields the following theorem.

Theorem 4.4.1.1:

The lower triangular inverter of a symmetric Toeplitz matrix L

of bandwidth p requires T=3n+2(p+l) cycles to generate a diagonal

input format.

Proof:

We require p+l cycles to load the parameters representing L, and

a further p+l cycles for the first result to emerge from tier 1 of

Fig.(4.4.l.2). This first result requires n cycles to filter through

the second tier to its correct position. As the element corresponds to

the diagonal and hence longest data sequence in (4.4.1.2) containing 2n

elements, T=2n+n+2(p+l) follows immediately.

265

FIGURE 4.4.1.3: Snapshots of inverse output generation

* = control signal.

*

266

Corollary 4.4.1.1: Successive matrix outputs of the same inverter

components are separated by at le9st 2(p+l) cycles.

Proof:

Computation in tier 1 is complete after 2(n+p+l) cycles, and tier

two cells begin to switch off. Allow 2(p+l) cycles for paramater

loading and the computation of the first result of the next instance

on tier 1, switch off controls are 2(p+l) cycles in front of the new

data. As the leftmost cell of tier 2 is the first and last to output,

successive matrix diamond patterns must be separated by 2(p+l) cycles.

This completes the description of the inverter.

We can now consider the operation of the pipeline in Fig.(4.4.1.1).

Initially the parameters 8
i

, i=O(l)p are loaded into the right component

-1
of the inverter and after n+2(p+l) cycles L begins to emerge. These

values' are pipe lined onto the rank annihilator which for simplicity is

assumed to be a RANK-l pipe with a ring capability.
-1

Converting L to

"'~l L requires p column updates to distinct columns and the vectors u
i

and Vi corresponding to (4.3.1.2) can be precomputed. It follows that

--1
L is computed by p cycles around the ring requiring p(4n+2) cycles

using corollary (4.3.2.1) and the fact that initial synchronisation and

output are overlapped with other pipe segments.
"'-1 Finally L is pipelined

onto the matrix vector array to produce (4.4.9a). NOW using the left

component of the inverter L-
T

and its first update computations can be

~-l
overlapped with the last modification of L producing an additional

",,-T
time of (p-l) (4n+2) cycles to complete L Feeding y back into the

~-T
matrix vector array to synchronise with L produces the result (4.4.9b).

Theorem 4.4.1.2:

The solution of k nxn circulant symmetric matrix systems of the

267

form A x=f with semi-bandwidth p+l is computed on a Toeplitz solver
c

in T=(6-4k)n+8kp(n+l)+2 cycles.

Proof:

T = Tl + T2 + T3 (4.4.1.3)

where Tl = initialization and output latency delays

T2 = total length of input/output sequence

T3 = additional delays spent cycling in rank annihilator.

Now T
l
=2(n+p+l) as the inverter requires n+2(p+l) to produce the first

-1
element of the first L ,and the first output is delayed by n cycles

on its way out of the matrix vector array.

There are k systems and allowing for the inverter delay, each one

is represented by two diamond forms like (4.4.1.2) of length 2n separated

by 2(p+l) cycles.
-1 -T

One diamond represents L the other L Thus, a

single system has input length 4n+2(p+l) generated by the inverter.

Furthermore to retain synchronisation each system must be separated

by 2(p+l) cycles. Thus the total input length to the rank annihilator

is,
T2 = 2k(2n+p+l) + 2(k-l) (pH) • (4.4.1.4)

NoW for a semi-bandwidth p+l the rank annihilator performs p

-1 -T
modifications to Land L of each system. Cycles of the rank

annihilator introduce additional delays effectively lengthening the

input incident on the matrix vector array. For the first system as

described above this delay is p(4n+2)+(p-l) (4nT2)=(2p-l) (4n+2). Using

the fact that the
--T

production of L of the ith system can be overlapped~

'" -1 with L of the (i+l)th system for subsequent solutions add a delay

2(p-l) (4n+2) each hence,

T3 = (2p-l) (4n+2) +2 (k-l) (p-l) (4n+2) , (4.4.1.5)

268

forming the summation (4.4.1.3) and some algebraic manipulation produces

the theorem time.

Corollary 4.4.1.2, The solution of a single nXn circulant symmetric

matrix system A x=f of semi-bandwidth p+l requires T=2(4p+l) (n+l)
c

cycles using the Toeplitz solver.

Proof, Use k=l in Theorem(4.4.1.2).

Further improvements to these timings are possible by using a

RANK-2 pipeline and by noticing that for p>l the 2(p+l) delay associated

with the inverter can be overlapped with the last update in the rank

annihilator. An alternative scheme is to try and interleave

~-l N-T
the computation of Land L using the fact that a cycle length is

4n+2 cycles and data length is 2n; thereby halving the delay associated

with the rank annihilation. But from Corollary (4.4.1.1) the input

-1 -T
diamonds of Land L are separated by 2(p+l) cycles giving a

combined input length of 2n+2(p+l) cycles. Hence even with p=l inter-

leaving is not possible.

Now p=l is an interesting problem because A becomes a circulant
c

-1 -T
tridiagonal and only a single update is required to Land L

Consequently terms in (4.4.1.4) and (4.4.1.5) associated with cycling

disappear, improving throughput and decreasing computation time. These

attributes can be retained for general A bandwidths by considering an
c

alternative factorisation method due to Audish and Evans [85b). The

idea is to factorise A such that,
c

where,

A
c

(4.4.1.6)

269

1 Cl!"

Cl. 1 0 J.

Q
i

= , i=l(l)p

0
Cl

i J
substituting for A in (4.4.2) allows x to be computed using the c

coupled systems,

i=l, Q1Yl=f 1
l<i~p, QiYi = Yi - l ' ~
p<i~2p, Q~P-i+1Yi = Yi - l ' J

where Y
i

' i=1(1)2p are auxiliary vectors and x=y •
2p

By a simple

(4.4.1.7)

(4.4.1.8)

extension of the solution method in (4.4.7)-(4.4.9), (4.4.1.8) reduces

to 2p matrix-vector multiplications. It follows that (4.4.2) is

solved by interpreting A as 2p special circulant problems of semi
c

bandwidth p+l (with p=l). Hence,

Theorem 4.4.1.3:

The solution of A x=f where A is an nxn symmetric circulant
c c ~

matrix of semi-bandwidth r requires, T=2(2r+3)n+8r+2 using the Toeplitz

solver, and the factorisation (4.4.1.6).

Proof:

Using the factorisation above we have 2r problems with semi-

bandwidth p=l. So the inverter latency is n+2(p+l)=n+4, and a single

pass through the rank-l pipe costs 4n+2 cycles. For 2r problems, the

input length is 2r(2n)+(2r-l)2(p+l)=4rn+4(2r-l). All these values pass

through the matrix vector array generating the same number of outputs

which filter out of the array with an additional n cycles delay.

Summing these delays gives T=2(2r+3)n+8r+2. This answer is verified

270

by applying Theorem (4.4.1.2) with k=r and p=p+l. Note that k=r not

2r because the proof of Theorem (4.4.1.2) assumes each system computes

-1 -T
Land L but the solutions in (4.4.1.8) .are a special case using

-1
only L consequently 2r problems can be compressed into the space

-T
and time of r problems by using the spare L places. Now solving k

problems of semi-bandwidth r+l using the old factorisation is equivalent

to solving rk problems of semi-bandwidth 2 with the new factorisation,

and Theorem (4.4.1.2) yields the speed-up inequality

(6-4k)n+8kr(n+l)+2 > (6-4kr)n+8kr(n+l)+2 (4.4.1.9)

It follows that for r>l the new factorisation is faster. Furthermore

the method can be applied to different problems of varying bandwidth.

For example, the time to solve k problems of

i=l(l)k is given by Theorem (4.4.1.2) with k

semi-bandwidth r.+l,
k ~

= L r. and p=l.
i=l ~

Throughout the discussions so far we have assumed that successive

matrix inputs arriving at the matrix vector array in Fig. (4.4.1.1)

synchronise. For a p>l column rank annihilation strategy this is

trivial to arrange using (4.4.9) because there is plenty of time for y

in (4.4.9a) to filter out of the array and then be pumped back to

~-T
synchronise with L in (4.4.9b). For (4.4.1.8) the arrival of

successive Y., i=1(1)2p is a time critical problem. The typical
~

structure of two solutions Q
i

and Q
i

+
l

is given by,

271

where the shaded regions are zero elements used solely for synchronisation

and AB=AC=BD=EF=n as the matrix vector array has 2n-l cells. In general,

-1
the computation of Yi=Qi Yi - l starts when the element at A enters the

array. After a further n cycles elements along BC have entered implying

that the last component of Yi-l has been input and the first component

of Yi has been output. Now the elements of BDEF have the property of

never modifying results (i.e., neutral computation). Consequently the

synchronisation of known elements of Yi with Q
i

+
l

can be overlapped

with computation of unknown y. values, by a simple feedback loop with
1 .

a delay 2{p+l)+1=5 cycles as p=l. Note that the loop must be switchable

to allow the input of the initial vector (Yl) of a new problem. A

similar argument verifies that successive rank annihilations can start

in the same way, and we conclude that no additional delays are required

over those incorporated into the theorems.

4.4.2 A Linear Array Scheme

An alternative method for the solution of (4.4.l.8) is a linear

array of the form shown in Fig.{4.4.2.l) which makes use of the

symmetry in A and the simple structure (4.4.1.7). The array itself
c

consists of 2r BATS cells and computes in a time T=~+2rc where

~=total input length of data and c=cell latency. Each BAT cell is made

up of a computation part solving one Q.Y.=Y. 1 problem and a parameter
~ 1 ~-

part which is responsible for loading and saving the correct ~i associated

with each cell. Finally, two trivial switching networks are used to

route data between cells and cell components.

The computation part of the BATS pipeline solves the generic

problem of the form,

with y

form,

DATAl

CNTRL --

DATA2

BATS
CELL

1

BATS
CELL

2

a) BATS linear array

r-

H PROGAAH
LOADING

---I="-
8

1 r-
,. ~- SOLVER

r-
'--

51,82 simple switching networks

b) BATS cell structure

FIGURE 4.4.2.1: BATS pipeline

By = v ,

unknown and v known nxl vectors

1 a

a 0
B =

o
a 1

I--

I---
r-

BATS
CELL

1

r----

8
2

~

..
r

---I:>

BATS
CELL
2r

272

respectively, while B has

nxn

the context of the problem determined by the substitution a = a,
~

(4.4.2.1)

the

(4.4.2.2)

depending on cell, thus it is necessary only to discuss the solution of

(4.4.2.1). From pickering [84] we can write,

- - --1
B = (B+P) = B(I+B p) • (4.4.2.3)

273

where B is lower triangular and,

0 ~ 1 ex

0 2
-ex

--1 3
0 ex p = , I+B P = r

I
I

0 I

n
0 0 1+ (-ex)

and solve the coupled system,

a) Bu = v b)
--1

(I+B p) Y = u , (4.4.2.4)

instead of (4.4.2.1).

Now using only the value ex the solution of (4.4.2.4a) and construction

--1
of (I+B p) can be computed in parallel by the structure in Fig.(4.4.2.2}.

The design consists of three cells and two memory sets of n bi-directional

delay registers each. The cells are controlled by two tag bits associated

with the input v, and memory by a single control bit Cl which remains

constant during computation. The tag bits mark the start and finish of

data and can be used to generate" cell controls during computation as

summarized below.

tl t2 Action

0 0 Normal computation

0 1 Reset cells/disable Cl
1 0 Enable Cl and load y

n
1 1 -

where data is input in the order

DATA v v3 v
2 VI n

tl 1 0 0 0 ~ (4.4.2.S)

t2 0 0 0 1

Now the BATS cell computes as follows:- The LIF stores act as FIFO queues

•
F F

y

x
F

z

L/F 1
r---

• I n n
'1

~

D B

.. I
,4,

'--
L/F 2

(i) y:x-ag.
l.

i:l (1) n

gi=Y

(H) a=O-aa

Initially g :0,

°
a=-l

z = x/(l-y)

IF tl THEN ysave:y

IF. tl THEN w:ysave

ELSE w=x-(z*ysave)

274

'" r

where tl is tag bit control before entering L/F, tl controls

generated after leaving L/F store.

FIGURE 4.4.2.2: O(n) BATS cell structure

275

initially. --1 The F-cell computes (4.4.Z.4a) and generates (I+B p) by

Z n
the sequence -a,~ , ... ,(-~) piping the results into the L/F memory,

while the D-cell continually performs subtract/divides to find y •
n

The D-cell result is valid only after n+l cycles at which time u and
n

its associated tag bits from v have been stored. Now the method of
n

solution for (4.4.2.4b) depends on the BATS cell position in the array,

which in turn depends on the computation in (4.4.1.8) to be performed

If we are computing Q y =y 1 the next calculation is QTy l=y
P P p- P p+ P

next.

and output must be in a reversed order to input, otherwise it is in the

same order. It follows that when the tag enables Cl' if cl=l then L/F

stores act as LIFO and if cl=O they act as FIFO. Consequently we use

tag t2 to reset the F-cell and B-cell before computation and tag tl to

load Yn from the D-cell into B-cell. Thus, the control Cl is sufficient

to switch the direction of vector output computing (4.4.Z.4b) by forward

or backward recursion as necessary. The B-cell can then use the tag

bits to decide whether to send Yn as first or last output, tl A t2

implying first and t2 A tl last. Finally when the vector is reversed

the role of the tag bits must also be reversed to prevent incorrect

control signals, this is achieved by the formula,

tl = (tl A Cl) V (t2 A Cl)

t2 = (tZAcl) V (tl AC1) }
and is implemented by trivial combinational logic. Fig.(4.4.2.3)

(4.4.2.6)

indicates the necessary Cl assignments and data reversals. The latency

of the BATS cell is clearly c=n+2 allowing n cycles to fill the L/F

stores and two cycles for the delay through the F- and B-cells. In

terms of area the BATS cell requires 2n L/F registers and a total of

four ips cell equivalents for F-, D- and B-cells with extra logic for

• ----..
•

f
n

Q
'~ ..
0 -- --.;

.,

Q '2 ..
0 --~

. . .
r

(2)
--~) Y

l
. . .

• (2)
--~l' Y ,"

n
'(r-l)
Yn

Q

1

Cl value

T
Qr Q~

0 --> ~ 0 r--~
(r+l) --"'>' Yn •••

(2r-2) ___ ~ (2r-l)
Yn) Yn

. (r+l) • (2r-2.,,-) __ ~.. y'
l
(2r-l)

--~~ Yl .. ' Yl - 7

FIGURE 4.4.2.3: Data reversal and LIF control allocation in BATS pipe

T
Ql

1 ~

'(2r)
Yn

277

loading parameters and reversing tags assumed negligable. Consequently

the design is termed an O(n) BATS cell. The latency of the BATS pipe

in Fig.(4.4.2.l) using this O(n) cell is 2r(n+2) giving a computation

time T=~+2r(n+2), where ~ is determined by the size of the problem n

and the cost of loading the a
i

• i=l(l)r parameters. Adopting a simple

addressing scheme modified from Umeo [85] and using the fact that

computation uses only a single data input line a. loading is achieved
1

as follows. The right handside f in (4.4.1.8) and the a. parameters are
1

input to the left boundary of the linear array in the form.

. .. a
r

(4.4.2.7)

using a single connection. while a set of addresses associated with

each a
i

is input on the remaining connection with the form.

ADDR " 0 Ol.2 ••.• r. (4.4.2.8)

n
The parameter section of each BATS cell contains an address describing

its position in the array and a comparator. The parameter section checks

each input address with its stored address, loading the a. when they
1

match. Synchronisation for a number of problems is then achieved by

piping the DATA and ADDR through the L/F stores and utilising the unused

tag bit combination (t
l
=t

2
=1) to disable the cell computation as a

i
and

the addresses pass through. The f. and zero addr values are replaced by
1

i
true results of u

i
and (-a) respectively as explained above. We

conclude that k problems have input length ~=k(n+r)+(k-l)n provided

each address and hence its associated parameter is allocated to two

different cells; for example by numbering cells from left to right for

i=l(l)2r and allocating cell i with address i for i~r and with addres·s

2r-i+l for i>r.

278

Theorem 4.4.2.1:

The solution of k systems of the form A x=f where A is an nxn
c c

symmetric circulant system of semi-bandwidth r+l can be computed on a

linear array of 2r O(n) BATS cells in T= (2k+2r-l)n+r (4+k) •

Proof: [summation of timings in the above discussion] •

Where the extra (k-l)n delays are required to allow for the

emptying of a cell LIFO, a simple comparison using Theorems (4.4.1.2)

and (4.4.2.1) gives the relation,

(6-4kr)n + 8kr(n+l) + 2 > (2k+2r-l)n + r(4+k) • (4.4.2.9)

indicating that the O(n) BATS cell and array is faster than both previous

methods using the relation (4.4.1.9).

4.4.3 P-Cyclic and Double Pipe Schemes

There are many variations on the O(n) BATS cell which utilise further -

features of the special factorisation of Evans & Audish [86]. In

particular the condition o<la. 1<1, i=1(1)2r is often satisfied in
1.

practice. Consequently if a bound a=maxla. 1 can be found for a special
1.

set of problems the BATS cell can be modified to improve speed and

throughput using the P-cyclic properties of (4.4.2.2).

Now consider (4.4.2.1) where B is a block p-cyclic matrix with p=n

and lxl block sizes.

form,
0

The block Jacobi iteration matrix is B =L+U with
J

a

B
J

= "~ , O<a<l , (4.4.3.1)

a 0

and Land U strictly lower and upper triangular matrices. We can choose

a matrix,

and

such that,

o

Sa

o

279

-(n-l)
S a

c (4.4.3.2)

Sa 0

(4.4.3.3)

(4.4.3.4)

Implying that BJ(S) has eigenvalues independent of S making Bp-cyclic

and consistently ordered. Now,

Theorem 4.4.3.1

Let an nxn matrix A be a consistently ordered p-cyclic matrix with

non-singular diagonal submatrices. If wio and A is a zero eigenvalue of

-1
L =(I-wL) {wU+(l-W)L} and if ~ satisfies,

w

(A+w-l)P = AP-lwP~P, (4.4.3.5)

then ~ is an eigenvalue of BJJand conversely) if ~ is an eigenvalue of

BJ and A satisfies (4.4.3.5), A is an eigenvalue of Lw

proof: [see Varga [62] pp.106-l07].

With w=l, L is the iteration matrix in the Gauss-Seidel algorithm
w

and a simple relationship between the eigenvalues of B
J

and Ll when p=n

is given by
A (n-l) ~n or n

A=~ ,

thus from (4.4.3.2),

and

IIBlloo = lal p(B)~lal<l

I/BI/2 =;J:i2 =lal J p(BH;/al<l,

(4.4.3.6)

and using (4.4.3.6) P(Ll)<p(B) implying that each coupled system in

(4.4.1.8) can be solved by iteration. Considering the relative error

280

of successive approximations to (4.4.2.1) gives.

Ily(k)_yll : P(Ll)k11y(0)_yll

for k iterations. and using (2.4.3.12) with P(Ll)=P(A)<lal

(4.4.3.7)

Thus k>.l for n»t implying that 1 or 2 iterations of the Gauss-Seidel

method are the minimum number of iterations.

The Gauss-Seidel iteration can be written in the form.

a) (k) (k-l)

} Yl = v -ay
1 n (4.4.3.8) (k) (k) b) Yi = v,-ay, 1 i=2(1)n
1. 1.-

and by repeated substitution in (4.4.3.8b)

2 n-i n-i n (k-l) = v -ay +a v ••••• (-1) a v,··,,+(-a) y
n n-l n-2 n-l. n (4.4.3.9)

now if Yn is the exact solution of the nth unknown and rn is the error

term, (k-l)
Yn = y +r

n n

and (4.4.3.9) is.

(k) n-i n-i n
Yn =v-av ..• (-1) a v i ••••• (-a) (y+r) n n-l n- n n (4.4.3.10)

but as o<lal<l and sufficiently large n~. lasl=o truncating (4.4.3.10).

(k) 2 i i s-l
Hence y =v -aY l+a v 2'" •• (-1) a v, ••••• (-a) vn_s+l n n n- n- l.

(4.4.3.11)

(1) It follows that y =y after only a single iteration. and yields a
n n

direct method of solution involving two steps.

(i) compute (4.4.3.11)

(ii) construct the forward recurrence (4.4.3.8)

T A generic cell capable of computing both the Q and Q forms in (4.4.1.8)

is given in Fig.(4.4.3.l). Notice that data is split into two input

• FIFO s

IPS(1)

f
MULT

1---- -Cl

• FIFa s n Vc: ~ •• y lV
1%1+1 n-

CELL

a IPS (1) b

EJ MULT
-Cl

b

a O-CELL c

a --11 IPS (2) I-~b

c

281

IPS(2
Yr7l' .

• r

.~

y ~ril ...
21+1

• . ~

• D-CEL r

COMMENT

(accumulate Yn)

b=a-b*c
t=b

(initially t=O)

Cl is preloaded, and a=l
initially
a=O-Cla
out=a

IF tl THEN {bsave=b,c=bsave}

ELSE c=(a-bsave)/Cl

IF tl THEN {csave=c}

b=a-b*csave

t=b

FIGURE 4.4.3.1: P-cyclic BATS cell

282

assumption that s~ rn/2l which is reasonable for large n. Operation of

the cell is simple. The FIFOs act as delay queues for both data and

control tags while y is computed. On emerging from the queues IPS(2)
n

computes half the results using the forward recurrence, and as y is
n

available the D-cell computes the remaining terms by a backward

recursive procedure. Calculation of y is performed by two cells, the
n

i
multipliers form the powers a reducing (4.4.3.11) to a simple dot

product accumulated by IPS(l). As only s terms must be accumulated we

need to delay the substitution phase by s cycles giving the size of the

FIFO queues. By pipelining control tags associated with data through

the FIFOs control can be divided into pre and post-FIFO processing, and

controls the IPS(l), Mult, IPS(2) and D-cell as summarized below.

Pre-FIFO control

tl t2 Action

0 0 Normal computation (next polynomial term)

0 1 Initialise Mult and IPS(l)

1 0 Load first polynomial term in IPS (1)

1 1 Null

Post-FIFO control

tl t2 Action

0 0 Calculate Y"Y'+l 1. n-l.
in IPS (2) and D-cell

0 1 Copy a to IPS(2) and D-cell

1 0 Load y into IPS(2) and D-cell (set Yn n for output)

1 1 -

as in the O(n) BATS cell tl~t2~1 can be used to disable cells while

283

parameter data pass through the cell. The two level pipelining of

control and data in FIFOs increases throughput, as total input length

i=k(~/21+r) for k problems. While the latency of the P-cyclic cell

is c=(s+l) hence,

Theorem 4.4.3.2:

The solution of k circulant symmetric systems of form A f=x where
c

TT. .
A =Ql".Q Q .. ·Ql 1S an nXn matrix with semi-bandwidth r+l 1S solved in c r r

T=k(n+r)+2r(s+1) using 2r p-cyclic cells, where,

s for

1~/21

and Cl s =0 when Cl=max (I Cl i I) is
1~i~2r

Proof:

otherwise

selected from the Q. in (4.4.1.7).
1

Generally data is split into two streams v
l

,v2 ,··.,vn and v
n
"'"

vn_n+1 When n>rn/21 some data is repeated for input but retains smooth

data flow. For n~rn/21 argument is the same as the above discussion.

In hardware terms each cell requires 2s registers in the FIFO queues

and the equivalent of four inner products for the computation, giving a

total of 4rs registers and Br ips equivalents for the full array.

The basic idea of the p-cyclic cell can be extended to produce a

double pipe scheme for solving circulant systems, and more generally, a

recursive decoupling scheme producing a systolic tree arrangement

(similar to Section 4.1). The double pipe is derived by considering the

system,
Tx = Z I (4.4.3.12)

of the form,

1 ex xl

1

0
ex I

1 I ex Xn/2
- -- - - - - - I- - - - - - -

1 ex x

~,
~1 2

0
I

ex 1 x nXn n

where O<ex<l as before. We partition the system so,

which after some simple eliminations yields,

a)
-1 "V -1 '" (P-BP B)X

1 = zl-BP z2

b) -1 '\..- -1
(P-BP B)X2 = z2-BP zl

denoting

- -1
a) P = (P-BP B)

b)
...., -1....,J

zl = zl-BP z2

c)
-./ -1"'"

z2 = z2:-BP zl

representing the decoupled system,

where,

P =
':~
~ex

<-<x) 1

}

284

zl

zn/2
= (4.4.3.13)

z
~1
2

I
z
n

(4.4.3.14)

(4.4.3.15)

(4.4.3.16)

(4.4.3.17)

(4.4.3.18)

now denoting,

a) PI (n/2) ~ a (z
n z+1

n
2-1

-<Xz , ••• ,+(-<X) Z)
!42 n
2

n

b) P2(n/2) ~
2-1

a (zl-<Xz2, ••• ,+ (-cd Zn)

2

285

) (4.4.3.19)

We conclude that there is no need to compute p-
l explicitly and that

(4.4.3.17) has the strictly upper triangular form,

I:~ I

~:I
o

- - - - - 1- - - - - - -

'~o
1

o

~'
~~/}-
x
!!..l
2

x -n

~

(4.4.3.20)

when the vanishing point aS~O satisfies s~n/2. Now using the principle

of the p-cyclic cell to solve a system of the form,

1 a

1 c
~ (4.4.3.21)

c a

1

repeated forward substitution yields,

2 s-l
xl ~ zl-az2-a z3,···,(-a) Zs (4.4.3.22)

Hence,
(4.4.3.23)

consequently, (4.4.3.21) is solved by a backward recursive scheme

286

producing x /2""'x and a forward recursive procedure producing
n !4l

4
xl, ••• ,xn ' With analogous reasoning

4

and

= Z -aZ

.!41 !42
2 2

PI (n/2) = cxx
.!4l
2

2 s-l
+cx z , ••• ,+(-cx) z

~3 ~S-l
(4.4.3.24)

(4.4.3.25)

giving X I •• • IX3 '
n 41

and X I ••• IX
3

•
!4l ..E..

Thus using two modified BATS

4 2 4

cells as shown in Fig.(4.4.3.2) a double pipe BATS solver is produced.

We use one cell for each de coupled system, and modify the cells to

produce PI or P2 (depending on input data) and to pass the results

between each other. The first action of the cell is to compute the

modification to the righthand side of (4.4.3.13), and it is clear that

Xl and x are available one cycle before PI and P2 • Consequently an
!4l
2

additional delay is added to synchronise the loading of xl and x into
!4l

of PI and P2 into the IPS(2) parts ~f the the D-cells with the loading

respective BATS cells. The timing of the double pipe BATS array is

derived directly from Theorem (4.4.3.2) by substituting s+l for s and

putting,

n = { s, [n/4J < s ~ rn/21

rn/41 s ~ rn/41
(4.4.3.26)

Clearly data is not repeated when 0=01/41, and gives the best results.

In terms of IPS equivalen~the double pipe requires twice as many cells,

doubling the hardware requirements to 16r ips cells. 4s FIFO registers

are also required.

v
!4l
4

vn/4

v
.!4l
4

v
~n'l

v3n
4

vn/4

v
!4l
4

v
3n'l
4

v3n
4

a) Modified cell

v
n

v
l

/L

I S-FIFO

• • xl

'T
1----. Mult

-<l

• S-FIFO ,

b) Inter-cell connections
Q.

vI
BATS

vn/2

v
n BATS

v
~l
2

Q

vI
BATS

vn/2

v
n

BATS

... v
!4l
2

FIGURE 4.4.3.2, Modified P-cyclic cell

287

n y n/4' . • :
r D-CEL r

-. aX
l

y , •
n • IPS(2) g.+l • ..

•• ,y n/2

.~

. .,
PI (n/2) P

2
(n/2)

Q +

BATS Yn/4 Yl

Y Yn/ 2 !4l
4

Y3n Yn
BATS 4"1

Y3n Y
-'41

4 2

T
Q

r

Yn/ 4 Yl

Y Yn/ 2 !4l
4

Y3n 'l
Yn

BATS 4

Y3n Y
-'41

4 2

288

4.4.4 Comparison of Methods

A summary of timings and hardware requirements for solving (4.4.2)

using the arrays discussed above are listed in Table (4.4.4.1). From

this table it is clear that the Toeplitz pipe using rank annihilation

is slowest and uses most hardware. While the D(n) BATS cell pipeline

and its modification using the P-cyclic properties of A make them
c

comparable to the Brent and Luk (BL) and S.Y. Kung and Hu (KH) schemes.

For instance, when k>2r-l the D(n) BATS cell has a time bounded above

by that of the BL method and from below by the KH scheme. In terms of

IPS cell equivalents the D(n) BATS cell is far superior to both BL and

KH, and for register usage bounded below by BL and above by KH.

Consequently the D(n) BATS scheme gives intermeaiate performance

between the two methods.

The results for the Toeplitz pipe are disappointing but easily

understood. First consider Chen's factorisation yielding the coupled

/
systems (4.4.5), which are more jifficult to solve than straightforward

lower and upper triangular factors. The motivation behind the method

is to quickly invert the special forms using rank-annihilation converting

the solution to simple matrix-vector problems which are easily pipelined.

This breaks the sequential dependency of solving by forward and backward

substitution which is normally associated with factorisation methqds.

Hence throughput should increase hopefully bringing overall computation

time down. However the latency of the RANK-l scheme is more than the

computation time for both the BL and KH methods making a speedup

impossible. Tracing the computation further shows that the computation

of (4.3.5e) (an inherently sequential task) is the root cause of the

problem. Notice that throughput is increased over the BL scheme as a new

289

problem can be input every 2(n+p+l) cycles in the Toeplitz pipe rather

than 4n cycles in BL, and is also comparable to the KH method for small

p. Consequently, the delay and extra hardware associated with rank

annihilation creates overheads which destroy any advantages from

pipelining. The new factorisation of Audish & Evans [8Sb] simplifies

the data flow through the Toeplitz pipe and improves the cell efficiency,

and timing. The improvement is due to the factorisation structure which

demands that only a single RANK-l elimination occurs on each component

coupled system, before its solution. A itself and hence its factors
c

can be encoded by a small number of parameters. The Toeplitz pipe

expands this compact form into a full matrix format increasing hardware

and computation time due to the increases in component pipe latencies.

Again, this traces back to the rank annihilator which makes no assumptions

about matrix structure. The O(n) BATS cell and linear array is a design

specifically aimed at the Audish & Evans [8Sb] factorisation. The

compact representation of the factors is retained by using a parameter

loading scheme, and a modified method for solving the quasi-tridiagonal

form in Pickering [84]. The minimum amount of additional data required

is produced reducing design area and simplifying systolic data flow, ~

while retaining the throughput of the Toeplitz pipe and KH schemes. As

the solution of each component system in (4.4.1.8) uses a single BATS

cell the pipeline size is related to the semi-bandwidth r+l rather than ~

n in the other schemes, a vital attribute of systolic arrays. The only

drawback being that each cell contains O(n) registers. -
The p-cyclic cell produces a truly problem size independent array

but relies on special features of the factorisation process (discussed

below), which may not always be satisfied. In particular we assume that

METHOD TIME

Brent & Luk 4nk

S.Y. Kung & Hu 2nk
(PLP)

Toeplitz pipe (6-4k)n+
(Chen's method) Bkr(n+l)

Audish & Evans (6+4kr)n+
method Bkr+2

.
O(n) BATS (2k+2r-l) n
pipe r (4+k)

P-cyclic cell k (rn/2l +r) +

2r(s+1)

k=number of consecutive problems
r+l=semi-bandwidth
n=problem size
s=vanishing point as=o for 0< la/<l

CELLS REGISTERS

3n 2n

3n 2
O(n)

10n+r-3 2(2n-l)

" "

8r 4rn

Br 4rs

Times and cell counts multiples of IPS equivalents

TABLE 4.4.4.1: Timing and hardware for Toeplitz solvers

I:'Z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
i

2 2 3 4 6 7 10 13 21 44

4 4 6 8 11 14 19 26 42 88

5 5 8 10 13 17 23 33 52 110

6 6 9 12 16 20 28 39 62 132

7 7 11 14 18 24 32 46 73 153

8 8 12 16 21 27 37 52 83 175

9 9 13 18 23 30 41 59 93 197

10 10 14 20 26 34 46 65 104 219

11 11 16 22 28 37 50 72 114 241

12 12 18 23 31 40 55 78 124 263

13 13 19 25 33 44 59 84 135 285

14 14 21 27 36 47 64 91 145 306

15 15 22 29 38 50 68 97 155 328

16 16 23 31 41 54 73 104 166 350

2

TABLE 4.4.4.2: Tabulation of vanishing
decimal places t
s -t

a <£ where £=lxlO and

point s for values of a and

loglO£
s =

log lOa

290

the a" i=l(l)r parameters satisfied o<la, 1<1. To derive a fixed
~ ~

sized cell we then chose a=max(a,), with cell design based on the
~

291

principle that as=o for s sufficiently large. This vanishing point(s)

clearly depends on the word length of calculations and Table (4.4.4.2)

gives an indication of its value. As the systems considered are

normally of the order n>lOOO, s<rn/2l is a reasonable assumption when

o<lal<l. Thus, the p-cyclic scheme is a fast area efficient design

superior to all the others when n»r and s. The only problem with the

p-cyclic cell and its double pipe modification is that the backward

recursive procedures adopted are unstable due to the division by a.

In order to derive a stable p-cyclic cell further concepts developed

in the next chapter are required.

Now so far we have been quite vague about the methods of factor-

ization to produce (4.4.3) and (4.4.1.6). The BL and KH methods

operate on the matrix A directly, whereas the techniques investigated
c

here assume a factorisation has been completed before the solution

starts. In Chen's method multiplying out (4.4.3) produces the non-

linear system of equations,

2 2 2 2
S +Sl + ••• S l+S o p- P

SOSl+SlS2+ "'+Sp_2Sp_l+Sp_1Sp = a l

SOS2+S1S3+ "'+Sp_3Sp_2+Sp_2Sp = a2

= a
p

1
(4.4.4.1)

which must be solved to produce Si' i=l(l)r. Likewise in the Audish

,& Evans factorisation the form,

(4.4.4.2)

292

with Ak;Ac ' k;p+l and A
k

_
l

a modified matrix of semi-bandwidth k-l such

that,

and

~-l ;

rl Y2 ---Yk - l

Y2 ,
I

I
Yk- l

multiplying out (4.4.4.2) yields the nonlinear system,

{Y 2+Y 1Yk)Yk + (Y l +Y 2Yk) ; a
l

1 {Y l +Y 2Yk)Y
k

+ (Y 2+Y 3Yk) ; a
2

..

~ (Yk-3+Yk-2Yk)Yk+{Yk-2+Yk-1Yk) ;

~-2

{Yk- 2 +Yk- l Yk)Yk + Yk- l
; a

k
_

l

J Yk-1Yk
; a

k

(4.4.4.3)

(4.4.4.4)

(4.4.4.S)

relating the coefficients of ~ to the elements of Q
k

and ~-l. Solving

(4.4.4.S) and repeating the process on ~-l yields a sequence of k-l

factorisations producing (4.4_l.6) according to,

A - Q A QT z;l{l)k-l.
~k-z+l - k-z+l k-z k-z+l ' (4.4.4.6)

requiring the solution of a non-linear system at each step.

293

Audish (81) discusses an iterative procedure to solve (4.4.4.1) by

repeated computation of a (p+l)*(p+l) matrix vector problem, and

(4.4.4.6) is solved by the Newton Raphson method using a (k-z+l)*(k-z+l)

Jacobian matrix at each step. (See Audish & Evans (86). Both methods

converge quite quickly from good initial approximations, and the

solutions of the coupled systems in (4.4.1.8) are stable as long as

the k matrices are all strictly diagonally dominant. --k-z

For example put,

where a
l

= 52614328,

a
5

= 1501038,

34066223,

so A6 is factorisable yielding,

A6 = Q6Q5Q4Q3Q2Q~Q~Q~Q~Q~
The values of the Q k 1 are given by,

r- +

a
3

= 10825702, = 1801441

with each non-linear solution requiring five iterations. Normalizing

(4.4.4.3) yields,

a
6

= 1/8, a
5

= 1/7, a
4

= 1/6, a
3

= 1/5, a
2

= 1/3 ,

hence a=ma~)=1/3 and the number of s registers in the p-cyclic cell is
l.

obtained from Table (4.4.4.2) for some accuracy t.

A more realistic example is,

A3 = (34,-16,1)

and

yields Y3 = -1.7819687, Y
2

= -0.2032583, Y
l

= 2.7609056,

with Y2 and Yl the coefficients of A2 requiring seven iterations. Using

(4.4.4.9) with aO=Yl and a
l

=Y
2

and (4.4.4.10) indicates that o<lail<l

in our standard form (4.4.1.7).

294

When A has a quin or tri-diagonal circulant form the resulting non
c

linear equations are reduced to a special form which can be solved

directly. For instance to produce (4.4.3) for a quindiagonal A (in
c

compact form
!-v .

Ac=(aO,al,a2}},80L 1S given by,

a
O

= 8
2

+8
2

+8
2

1 o 1 2

a
l

= 80 8
1

+8
1

8
2 ~ a

2
= 80 82 J

and from Evans & Hqdjidimos [80] it follows that,

where,

8
0

= d+e+f

8
1

= 2 (d-e)

8
2

= d+e-f

4d = (a
o

+2a
l

+2a
2

)!

4e = (a -2a +2a)!
012

1

J

. 2 2 i !
4f = [2 (ao -6a

2
) +{(ao +2a

2
) -4a

l
}] •

Similarly, for tridiagonal systems,

a} a
O

= 8
2

+8
2

} o 1

b) a
l

= 80 8
1

and substituting for 81
in (4.4.4.9a) gives,

4 2 2
8 -a 8 +a = o , o 00 1

with the trivial solution,

2 2! i 8
0

= [0.S{ao±(ao-4a
l

} }]

with 81 given by (4.4.4.9b).

(4.4.4.7a)

(4.4.4.7b)

(4.4.4.8)

(4.4.4.9)

(4.4.4.le)

From (4.4.4.7) it follows that a quindiagonal A has the factorized
c

form,

with,

T
Ac = QQ , (4.4.4.11)

o
Q =

o

and factorising Q such that,

and,
1 Y~
Y2

~, Ql = , Q2

j 2

gives,
a) So = Yo

b) Sl = Yl +Y2Yo

c) S2 = Y2Yl

substituting for Yo and Y2 in (4.4.4.14)

2
Yl-Y1Sl-SOS2 = 0 ,

giving,

substituting in (4.4.4.14) a,c produces,

TT
Ac = Q1Q2Q2Ql

295

(4.4.4.12)

(4.4.4.13)

, 'I Yl 0

~ =

L o Yl Yo
~

(4.4.4.14)

yields the quadratic,

(4.4.4.15)

(4.4.4.16)

(4.4.4.17)

which after normalising Q
2

produces the Audish & Evans factorisation.

Likewise the Chen factorisation on a tridiagonal given by (4.4.4.9)

produces an Audish & E~ans form directly. We conclude that for restricted

bandwidths the BATS pipeline competes very favourably with the BL and

KH schemes, but for general bandwidths the overhead associated with the

factorisation creates a serious disadvantage. This problem is compounded

296

by the difficulty in extending the techniques to skew-symmetric matrices,

of the form,

A = -c

a
p

a
,-p

a --- a
-1 -p

:~O
a 1- -_ a - -p

a
-1

a a a
p' -'. 1 0

(4.4.4.1S)

which the BL and KH schemes solve easily. Again limited Chen type

factorisations for quindiagonal and tridiagonal by direct methods are

possible see Evans [S3a] ,[SOb], which extend to Audish and Evans type

forms by a similar argument to that above. But generally a factor-

isation of the form (4.4.1.7) is not available.

Finally, the real advantage of these new factorisations is their

utilisation of hardware. We have already seen that the O{n) and p-

cyclic arrays are sensitive to bandwidth. But the Audish & Evans

factorisation with the form (4.4.1.S) is also suitable for mUltipass

computation, permitting an arbitrary number of cells to be used.

Consequently when systems of order n>looo are considered, and area

usage is a premium the overhead in factorisation is compensated by the

fact that BL and KH schemes require O{n) cells.

4.5 SUMMARY

In this chapter the concept of a soft-systolic algorithm and OCCAM

simulation has been introduced by considering new designs for traditional

algorithms which map easily into multi-layer environments. Section 4.1

297

introduced the double pipe a natural two layer design with planar sub

arrays on each level with local broadcasting between layers. The

extension to general Dn-pipe and n level arrangements was dicussed,

proving that systolic matrix vector computation was a limited version

of a parallel tree arrangement already well known. In the form of a

matrix product array the double pipe mapping extended to 2-D arrays

illustrating that a two layer design reduced hardware while retaining

the computation time of the traditional array.

Section 4.2 examined methods for overcoming feedback loop problems

in factorisation and substitution (forward, backward recursive) schemes

for solving linear systems. This led to block partitioning of array

cells and explicit block computation. Block hex cells and inner products

were introduced and shown to utilise hardware more efficiently than

traditional schemes, while multi-layer layout was achieved at the

internal cell level rather than global array organisation. While

examination of the feedback loop length determined the optimal block

size to be 3x3, showing that no improvement in computation could be

gained for higher block sizes. An assessment of additional hardware

required in arrays due to the inclusion of zero sub(super) diagonals of

outer block diagonals was also considered. Finally, block schemes

were used to produce efficient matrix product and factorisation arrays

for complex matrix problems utilising implicit and explicit block

computations respectively.

Section 4.3 considered the more difficult problem of matrix

inversion and in particular rank annihilation. A special form of

wave front processor incorporating a Systolic Control Ring (SCR) was

used to examine RANK-l and RANK-2 wave front schemes. Then a dedicated

298

systolic pipe utilising soft-systolic long wire heuristic was developed,

which folded naturally into two levels to form a point to point

systolic ring for repeated inverse updates. The new array reduced the

number of true ips cells by trading them for delay cells, but could not

compete with existing arrays for arbitrary matrix inversion in terms

of speed. Arbitrary schemes requiring O(n) time for full inversion and

the rank annihilator O(n) for a single update and o(n
2

) time for

arbitrary inversion. However the rank annihilation array was well suited

to mul tipass type computation while reducing hardware.

Section 4.4 considered the solution of circulant and Toeplitz

matrices. These systems are interesting because fill-in during the

factorisation process forces traditional arrays for dense matrices to

be used even though the matrices have well defined sparsity. The rank

annihilation array was adopted to construct a pipelined solver based on

a new factorisation method rather than the Levinson and Bariess schemes

already investigated. The main idea being to factorise the circulant

matrix into a number of easily invertible circulant factors. Two

algorithms were considered, the first producing circulant lower and

upper triangular factors, the second replacing the triangular forms by

a sequence of r bi-diagonal circulant matrix factors. Both methods

could be solved on the same systolic pipeline with the latter scheme

improving efficiency, throughput and computation time. An alternative

was then developed removing the rank annihilator and making use of the

special bi-diagonal structure of the second factorisation. This new

array retained the throughput of the pipelined scheme, decreased

computation time, and required a number of cells proportional to the

matrix semi-bandwidth. Some simple modifications to this array using

299

special properties of the matrix yielded a more compact and faster

array and extended to double pipe implementation. Finally, the new

arrays were compared with existing methods. A significant factor in

the comparison was that existing methods used the subject matrix

directly while the new schemes required a factorisation before

computation. The factorisation itself required the solution of non

linear systems of equations, making it difficult for the new arrays

to compete even though the linear array was faster and used less ips

cells. However the new arrays were suitable for mUltipass computations

where area is the main consideration,(with computation time secondary,)

the effects of the factorisation are not as significant making the new

methods attractive.

CHAPTER 5

SYSTOLIC QUADRANT INTERLOCKING (QI) METHODS

"I SazJ four AngeZs standing at the four corners of

the Earth ••• "

Book of Revelations

(New Testament) •

300

The recent rapid development of systolic arrays for problems in

Linear Algebra has uncovered a variety of algorithms which produce

different area time tradeoffs. However, this development of systolic

algorithms has to date been largely restricted to existing sequential

algorithms like the LU factorisation, Gaussian Elimination and QR

decomposition. There is no fundamental reason other than simplicity

which indicates that a sequential to systolic algorithm conversion

gives the best systolic array. Indeed, the BATS pipeline in Chapter 4

questionedithis implicit assumption of array designers.

In this chapter we pose the following question 'are the Quadrant

Interlocking (QI) methods better suited to systolic computation than

basic sequential methods already employed?'

Intuitively QI methods are divided into three groups for solving

linear systems;

I} Quadrant Interlocking Factorisations (QIF)

2} Quadrant Interlocking Eliminations (QIE)

3} Quadrant Interlocking Iteration (QII),

and have a number of advantages. Firstly, they are aimed at a parallel

machine from the outset, and secondly, they have improved performance

over other parallel implementations for solving linear systems. The

QI algorithms themselves have been well studied, see Hatzopoulos (79),

Shanehchi (80), Evans & Hadjidimos (80), Sojoodi-Haghighi (81), Evans

& Sojoodi-Haghighi [82), Evans & Levin (85). Our task here is to

transfer these improvements to systolic array implementations.

301

5.1 SYSTOLIC QUADRANT INTERLOCKING FACTORISATIONS (SQIF)

Consider the linear system,

Ax = b , (5.1.1)

where A is a non-singular nxn matrix and x and bare nXl vectors with

x unknown and b known. The basic idea of the QI factorisation is to

factorise A such that,

A = WZ , (5.1.2)

where it is observed that matrices Wand Z have a Quadrant Interlock-

ing structure defined by the relationships,

1 i=j

o i=l (1) Ln/2J, j= (i+l) (1) (n-i+l)
(5.1.3)

o i=m(l)n, j=(n-i+l) (1) (i-I)

w. . otherwise,
1.J

and

Zij i=I(I) L(n+l)/2J, j=i(l) (n-i+l)

i=m(l)n, j= (n-i+l) (1) i (5.1.4)

o otherwise,

where m=n+l- Ln/;U and LtJ denotes largest integer <R.. For example,

when n=5,

1

W =

and when n=4

W =

o
1

o

o
1 0

o 1

o

o
o

I Z =

Z =

302

(5.1.1) is then solved by substituting for A and solving the coupled

systems,

a) Wy ~ b , b) Zx ~ y • (5.1.5)

Now assuming no pivoting is required the computation of Wand Z can

be described as follows.

with,

and

Thus,

Let,

[O, ••• p,l,w. 1 ., ••• ,w . i,o, ••• ,O]T i~1(1)ln2-ll ~+ ,1 0-1., [J
, ~

i-1

T
[0, ••• ,0,1,0, ••• ,01 i~ {~ n-even, i~ -n_2+1_ n-odd,

n+2
2 i-1

T
[0, ••• ,0 w i 2 ., ••• ,w. 1 .,1,0, ••• ,01

~ n- + ,1. 1.- ,l.
~-.--~

n-i+1

. In+41 1T-2-J (l)n,

[.]T
~ I 0, .•• ,0, zii,···,zi,n_i+1'0, ••• ,0

zi i-1

T
[0, ••• ,0 z. . 1, •.• ,zi"0, ••• ,0]

, l.,n-1.+ l.

i~l (1) ~;~

In+~1
i~[-2-J (1)n.

~-.--~

n-i

A ~ WZ ~
n T I W.Z.
i~l 1 1

, (5.1.6)

consequently A is factorised using at least L(n-2) /2J stages consisting

of computing two W. and two Z. vectors and updating a submatrix of A
1 1

at each stage as follows. At the kth stage, the vectors,

are known and we denote,

~ ~ A - (5.1.7)

it follows that the first and last k-l rows and columns are zero hence,

and

hence,

(k)
zn_k+l,j = an_k+l,j

Z J n-k+l,k

zn-k+l,n-k+l

T T

j=k+l (l)n-k

A. = A. -to: Z -w Z -1<+1 -1<'X k n-k+l n-k+1 •

303

(5.1.8)

, (5.1.9)

(5.1.10)

After factorisation the coupled system (s.l.sa)
n

is solved as follows:

and

where,

Wy = b .. l: y.W. = b(l)
i=l 1. 1.

y = b (k)
k k

= b (k)
n-k+1

(k-l)
= b -Yk-lwk-l-Yn-k+2wn-k+2

Similarly, (s.l.sb) is given by solving the 2x 2 system,

~'-'H"-'H Z1,-k+l,n-1,+~ b'-"j ~'-'~ =

Zn-1,+k,n-1,+~ Yn-1,+k n-1,+k,1,-k+1 n-1,+k

where tn-~ 1,= -2- , and setting

for j=l(l)1,-l and j=(1,+k+l) (l)n.

(5.1.11)

(5.1.12)

(5.1.13)

(S.1.14a)

(s.1.Mb)

Now the construction of a systolic array for this problem requires

the representation of dataflow for the various 2x2 systems to be arranged

to retain a regular communication structure. A natural type of basic

cell based on 2x2 system operations suggests itself. However, the

304

locality of data varies from stage to stage during the factorisation.

The first stage uses data in the four corners of A, and the last stage

up to four adjacent neighbours at the centre of A. Consequently a data

permutation is required to smooth out these locality variations.

Tylavsky [85] introduces a permutation on rows and columns of A

which is admirably suitable for our intentions, and is illustrated

below. When n=6

1 6 2

1 1 0 I

6 o 1 I
- - - - - 1-

2 w2l w
261

1

w5l W561 0
----~--

5

3

4

and for n=5

1 0

5 3 4

--"--
o 1

1

1 1

-1- --

w35 11 0
1

w45 10 1

o 1 1

- --1----
1
-

1 6 2 5 3 4

Zll z16 1 z12 Z15: z13 z14
1 I

z61 z66 1 z62 z65 1 z63 z64
- - - -1- - - -I - - --

1 z22 z25 1 z23 z24

1

____ : ~52_ z551 ~3 _~5~
1
1 z33 z34

z43 z44

z14 1 z13
1

z54 1 z53 --, -

--= WZ = A

(5.1.15)

w2l w25 1 1 0 1 z24 1 z23 = WZ = A(5.1.l6)
1 1

~4!. ~5_1 ~ _1_1_ z44 1 z43 _:.1
w3l w35 IW32 w34 1 1

1 1
1 z33

-- -where W,Z and A are permuted forms of W,Z and A •

It immediately follows by multiplying out W and Z, to produce A

that the QIF method is a permuted form of 2x2 BLUF. Consequently the

SQIF algorithm can be described by three steps:

Step (i) Permute A to A

Step (ii) Pass A through 2x2 block array of Robert [85] to

produce W,Z

Step (iii) Permute W and Z to produce Wand Z.

305

As only simple row and column permutations are employed steps (i) and

(iii) constitute host pre- and post-processing. This allows step (ii)

to dominate computation costs when array input data is generated using

pointers rather than explicit row and column interchanges in the host

memory. Furthermore, the equivalence of 2x2 block schemes and QIF

methods allows the use of the block partitioning theorems in Chapter 4.

It follows that the improved performance of QIF schemes carries over

to SQIF implementations.

The permutation technique also suggests that a variety of

patterns other than the QI structure exist. Different patterns being

produced by different permutations or by selecting larger block sizes.

It is evident from Chapter 4 that increasing block size will not

improve array performance for a SQIF method. New permutations on the

other hand could yield new arrays but the SQIF form produces nearest

neighbour data orderings which minimise communication problems and

maximise efficiency. Soft-systolic arrays at present would be the

only way of utilising non-local data orderings while maintaining array

efficiency.

In establishing the above relationships we assumed that no

pivoting was required during factorisation. From (5.1.8)-(5.1.10)

it follows that the factorisation breaks down

,., [~~n_'.'
or equivalently,

zn-k+l,k 11
Zn_k+l ,n-k+':' J

(k) a (k) -a (k) (k) = 0
~k n-k+1,n-k+l n-k+l,k~,n-k+l

as det(W) .det(Z) = det(W).O = 0 = det(A)

only if any of the values,

= 0 (5.1.17)

(5.1.18)

(5.1.19)

follows by applying definition (2.2.5) to the 2x2 block upper

306

triangular matrix Z. Evans and Hatzopoulos [79] prove that a

contradiction to (S.1.17) is always found by using pivoting as long

as A (and hence l\' k=l (I) Un-I) /~} is non-singular. Furthermore if

A is diagonally dominant (S.1.17) never occurs and no pivoting is

required. Applying the permutation method to yield a 2x2 block LU

factorisation and extending Theorem (2.3.1) the uniqueness of the LU

form yields the same results directly.

Now consider the solution of the coupled systems (S.l.S). The

permuted form (S.l.lS) indicates that W and Z are 2x2 block lower

triangular and upper triangular forms respectively. It follows that

(S.l.S) can be solved by a substitution array of the form in Fig.

(3.2.2.1) incorporating 2x2 block ips cells. Modifying the recurrence

(3.2.2.1) for block computations yields.

y~l} = [O,O]t
~

yt+l} = y t} +LikXk ' i=l (l) rn/2J
-1 (i)

Xi = Lii (Bi-Yi)

(S .1.20a)

where
t t

Bi=[b2i_l,b2i] , Yi =[Y2i-l'Y2i] , and Xi=[x2i_l,x2i] and the

block ips is defined by,

t
[g ,h]

--t
[e ,f] , t

~- [e,f]

and the boundary cell by,

e=e+ (ag+bh))

) f=f+ (cg+dh) (S .1.20b)

g=g, h=h

307

~ ~ t.: -1
1 6

D; (ad-bc)
t - - t

~
[e ,f]) [g ,h) k;e-g, p;f-h
- - t t (5.1.20c) [g ,h] ([g ,h]

g;D (dk-bp)

h;D (ap-ck) J
These operations can be implemented in a number of ways. The boundary

cell is the most complex, but assuming the elements a,b,c,d are input

on the same cycle its calculation can be pipelined to produce a cell

cycle time bounCied by a two point ips cycle, as follows,

t: D;ad-bc

t+l: a;a/D, b;b/D, C;C/D, d;d/D, k;e-g, p;f-h

t+2: g;dk-bp, h;ap-ck

and has area bounded by 10 point ips cells. The block ips cell can be

implemented using the equivalent of 4 point ips cells using a single ips

cycle plus the time for addition (giving a cycle bounded by two point

ips cycles).

Theorem 5.1.1: A 2x2 block triangular solver computes Lx;y where L is

a nxn lower triangular matrix of bandwidth q, in a time T<2{2rn/2l+[q/2l+l}

point ips cycles using at most 4 [q/2] +6 point ips cells.

Proof:

Using Theorem (3.2.2.1) and substituting [n/2] and [q/2l for the

block form of L, and adding a cycle to allow D to be formed initially

in the boundary cell gives 21n/21+rq/2J+1. Multiply this timing by 2

as each cell requires at most two point ips cycles yields the upper

bound T. There are jq/2l block ips cells including the boundary cell.

Allowing 4 point ips cells per block cell and an extra 6 for the boundary

gives the area bound.

308

Overlapping block ips computations produces a further improvement.

Notice that steps t+l and t+2 of the pipelined boundary cell

constitute the two ips cycles necessary for synchronisation. As a

single point ips consists of multiply and add, two sequential additions

or subtractions can be performed on one ips cycle. Now, staggering

the calculation of k and p, such that k occurs in the first half

cycle and p in the second half cycle, allows e and f block ips

computations to be pipelined. That is,

t: to=ag+bh

t+l: e=e+to ' tl=cg+dh

t+2: f=f+t l

at the end of the second cycle e is ready and half a cycle later f is

available. It follows that a,b and c,d as well as e,f can be input

sequentially. Notice that g and h must be output in parallel and as k

and p are available at the end of the same cycle is possible. This new

arrangement does not alter the computation time of Theorem (5.1.1)

but reduces cell count to 2f<i/21+8 as only two point ips cells are

required in a block ips cell. Consequently a 2x2 block solver uses

approximately the same hardware as the point case (with an overhead

for the boundary cell), and computes with almost the same time.

An alternative approach to solving (5.1.5) is to notice that the

inverse ·of the 2x2 system in (5.1.9) is computed explicitly during

the factorisation. Using the permuted form of A this known inverse

is utilised to generate the 2x2 block form,

A = LDU (5.1.21)

where for n=6,

309

fl 0 l Idll d
16

I

-!-_J I
d

66 0 1 , d6l
- T - - - -,- -I-

w2l
w

26
1 0 I d22 d2S ,

1 A =. wSl wS6 0 1 dS2 d55 I
I --.J

d3~ - - -- - - - 1-- - -- - -- T
w3l w36 I w32 w35 I 1 0 I d33

I I

bl
w

46 I w42
w

45
I 0 j L I d43 d4~ I I I

L 0

rr 0 I z12 z15 I z13 z14 1

I I
0 1 I z62 z65 I z63 z64

1-
11

--1----
o I z23 z24

10 1 I zS3

':J /- I -I
1

1-
I

0

U

--1-. -and 0 is composed of the diagonal blocks of Z and U=D Z w~th L=W.

Substituting (5.1.21) in the permuted form of (5.1.1) then yields the

coupled systems,

b) Ds=y, c) Ux=s (5.1.22)

and the simple point ips substitution array in Fig.(3.2.2.l) can be

used directly to solve (5.l.22a, and c). (5.l.22b) is simply solved

by inverting 0, which is known from the generation of U, and performing

2x2 matrix-vector calculations.

Finally we remark that (5.1.21) must not be confused with the

alternative factorisation

A = WDZ (5.1.23)

in Shanehchi [80] where (5.1.9) is replaced by the relations,

~
(k)

a
kk

(k)
a

Lk,n-k+l

a(k)
n-k+l,k

(k)
a n-k+ 1 ,n-k+ 1

(k)1 (k)
Zkj = a kj a kk

310

r: (k) l
~

jk

(k)

a j ,n-k+J

(5.1.24)

jj=k (1) n-k+l (5.1.25)

= a (k) la (k)
n-k+l,j n-k+l,n-k+l

and

I (5.1.26)
d = a n-k+l,n-k+l n-k+l,n-k+l

Here D is a true point diagonal matrix. Applying the QI permutation

produces, -,,-
A = WDZ (5.1.27)

" where W has the same structure as in (5.1.15), D is a permuted point

diagonal matrix and Z has a similar form to that in (5.1.15) except

that zii=l i=l(l)n. Hence solving the associated permuted coupled

system,

"- -a) Wy=b, b)DS=y, c)Zx=s (5.1.28)

requires a 2x2 block triangular solver and no advantage is gained over

the original QIF method of (5.1.2). Indeed the solution process is

more complex and is not offset by hardware savings which utilise the

property z .. =l for i=l(l)n.
:n

5.2 A MODIFICATION OF THE QIF METHOD

Now consider an alternative method

QI factors in (5.1.2) have the form,

1"1 0 0 0

w2l 1 0 w24 W = Z =
w3l w32 1 w34
w
4l 0 0 1

for solving (5.1.1) where the

zll z12 z13 z141
0 z22 z23 0

0 0 z33 0

Z4J 0 z42 z43

311

for n=4 and,

r- 0 0 0 0 1
zll z12 z13 z14 ZlJ

w
21

1 0 0 w
2S

0 z22 z23 z24 0

W = w
31

w
32

1 w
34

w
3S ' z = 0 0 z33 0 0

w
41

w
42

0 1
W:j ~

0 z43 z44 0

b1
0 0 0 zS2 zS3 zS4 zsJ

for n=S. More formally let,

W = [w1 ,W2 '··· ,wn] and ZT = [zl ,z2"" ,zn]

as before and,

applying

(.[0,.:~1
t

i=l(l) Ln/~ w. 1 ,W . 1 i 0, ••• ,0]
1+ ,1. n-1+ ,

i-I

T
[0, ••• ,010, ••. ,0]
'-----.---'

i= Ln/2J +1

T
[0, ••• ,0 W • 2 i""'w, 1 . 1 0, ••. ,0] i=I.!'/~+2(1)n . . ~ n-].+ , 1.- ,1.

n-i+1 (S.2.1)

T
[0, ••• ,0 z·i,···,zi i l' 0, •.• ,0]

1. ,n- +

i-I

T
[0, ... ,0 z. '+2' ... 'z .. ,o, ... ,0]

. ' w ~ 1. ,n-l. .1.l.

n-i+1

i=l(l) t;~

i=C
n;J11 (1)n.

(S.2.2)

(S.1. 6) yields the relation,

Al = A } k-1
T n T

k=2 (1) E;:J (S.2.3)

~ = A I wizi - I w.z.
. k2l.l. i=l l.=n- +

as before and the elements of the kth stage in the kth and n-k+1 st

column can be found by the procedure,

a}

b)

c)

Zk . ,J
(k)

~ ~j , j~k(l}n-k+l

(k)
wj,k ~ a jk /zkk' j~k+l(l}n-k+l

(k)
zn-k+l,j ~ an-k+l,j-Wn-k+~tkj' j~k+l(l}n-k+l

312

(k)
(S.2.4)

d) Wj ,n-k+l ~ (aj,n-k+l-WjkZk,n-k+l}/zn-k+l,n-k+l'

and e)
T T

A- ~A--WZ-W Z
~k+l k k k n-k+l n-k+l

j~k+l(l}n-k I
Now applying the QI permutation produces locally placed elements for

simplified data flow and yields the following interesting 2x2 block

partitioning.

1

6

2

W ~S

3

4

For n~6

1

1

6

o

1

2

I

1

.1_
W

26
1l
1

wS6 I wS2
- -I -
w36 1 w32

I
w

46
,w

42
1

5

I

1

1

o I

3

1 0

-T
w

3S1
1

I
w4S ' w43 ,

4

Z ~

o

1

1 6 2

Zll z16 I z12

o z66 1 z62
- __ L

1 z22

1 0
1
1

5 3

Notice that the diagonal blocks contain extra sparsity. The above

4

block partitioning can be termed implicit because without the partition

lines the permuted Wand Z appear to be simple L and U factors. As the

point LU factorisation is unique, it follows that the hexagonal (point)

array of H.T. Kung and Leiserson (see Fig.3.2.2.3) can be applied to

find the modified QIF of a matrix by applying simple pre- and post-

permutations on the input and output. Likewise, the form of the permuted

coupled systems,

313

a) Wy = b b) Zx = y , (S.2.S)

corresponding to the point systems in (2.3.3.2) allows normal point

triangular solver arrays like Fig.{3.2.2.1) to be employed to solve

(S.l.l). Comparing Theorems (3.2.2.3) and (4.2.2.1) it appears that

the modified QIF has no advantages in speed or efficiency over the

ordinary QIF (or explicit block computation) regarding the application

of systolic arrays. However this argument is based on a comparison of

point and block methods using point-{ips) on block-{ips) structured

arrays. The essential feature of the modified QIF is its implicit block

structured nature which allows a block structured array to perform

point-like computations on implicitly block structured data; thereby

retaining the improved efficiency and reduced computation time of the

explicit block schemes but producing point (or implicit block)

structured outputs. This resolves the difficulties associated with

the ordinary QIF scheme, which requires an explicitly block structured

triangular solver, or the more complex LDU factorisation (requiring the

solution of three coupled systems) using implicit block (point) structured

solvers.

The implicit block structured array for the modified QIF uses the

same principles as the 2x2 block array in Robert [85] but utilises the

structure of Wand Z diagonal blocks to adjust hardware and computation

within each block ips cell. For the development of the array we make·

the following simple assumptions:

(i) The nxn permuted input matrix A does not cause a breakdown

in the factorisation process (i.e. diagonally dominant or

positive definite) •

(ii) n=2m for m<n (i.e. ensures an even partitioning) •

(iii) A is banded with bandwidth w=p+q-l.

314

The global structure of the array is shown in Fig.(5.2.l) and contains

rs 2x2 implicit block ips cells where,

p =
{

2r-l

2r-2
, q =

{

25-1

25-2
(5.2.6)

left right centre
tj. ~I

r-l s-l

u .

L

(Input format same as Fig.(4.2.2.l)

FIGURE 5.2.1: Implicit block array for modified QIF method

Each implicit block cell contains the equivalent of 2x2=4 point ips

cells and computes as follows:-

316

Implicit Block Cell

OUT N
INiIE

tl IN S a,b,c,d

OUT N a,b,c,d

t+la

IN W --11 1--. OUT E t+21 IN W W
1

,W
2

OUT SW
IN NE Zl,Z2

INS

~ ~ = G ~ [:~ [Zl Z2)

t+3: OUT E W
1

,W
2

OUT SW zl,z2

IN NE Z3,z4

IN W w
3

,w
4

~ ~= ~ J- C:l [Z3 ,Z4)

Each cell receives four inputs corresponding to an implicit block every

four point ips cycles, this being the longest period of any block cell.

As there are m=n/2 implicit blocks of input data the total output time

for data is 4m=2n point ips cycles. Output/computation starts after

the first implicit block has reached the center processor. As each

implicit block cell requires two point ips cycles for computation data

is shifted into its initial starting position in at most 2min(r,s~

min(p,q). Hence we have the following theorem.

Theorem (5.2.1): The modified QIF of an nXn matrix A whose QI permutation

matrix A has bandwidth w=p+q-l can be computed in T=2n+min(p,q) ips

cycles using approximately pq point ips cells.

This is identical to the result in Robert [85), and arises from

the fact that the global data flow of the two arrays are the same.

317

Examining the computation of the implicit cells, reveals that

calculations occur two cycles in four and the efficiency e=1 achieved

in Robert [85] is also preserved.

5.3 RESTRICTED FORMS OF SYSTOLIC QI SCHEMES

If the matrix A in (5.1.1) is a real symmetric positive definite

matrix a better factorisation of the form,

(5.3.1)

exists, and by use of symmetry the modified SQIF method is reduced

to the following procedure:

a)

b)

c)

= (k)
'\ akk

(k)
wjk = a jk Idk ' j=(k+l) (l)n-k+l

(k) (k)
d = a -w a

n-k+l n-k+l,n-k+l n-k+l,k n-k+l,k

1

d)
(k) (k) (5.3 ;2)

= (a -w a) Id , j=k+l (1) n-k Wj ,n-k+l j,n-k+l jk n-k+l,k n-k+l

e)
T T

~+l = Ak-'\WkWk-dn_k+1Wn_k+1Wn_k+l

substituting (5.3.1) for A in (5.1.1) produces the three coupled systems,

a) Wy = b, b) Du = y,
T

c) W x = u , (5.3.3)

where W has the form in (5.2.1) and D is a diagonal matrix. After

applying the QI permutation (5.3.1) can be written as,

-T
A = LDL (5.3.4)

where L=W and iJ=D the permuted forms of Wand D respectively. The

associated coupled systems,

a) Ly = b, b) Du = y,
-T- _

c) L x = u , (5.3.5)

complete the conversion indicating an implicit block form for the root-

free Choleski factorisation. The global structure of the array is shown

in Fig.(5.3.l) and computes according to the following cell definitions.

Cell Oefinitions

OUTN

OUT SW'

INS

OUTN
III NE

OUT E

OUT SW

IN S

OUTN

INW ~ -\ OUT E

IN S

318

tl IN S a,b,c,d

w-c/.

t+11 OUT SW a,c

t+2:

t+3:

t;

t+1:

t+2:

OUT N a,v

O=d-wc, t=t*.·

OUT NO

OUT SW 0

t=t*d

OUT N d

IN S a,b,c,d

IN E d1,x

"l=a/d, "2cc!d1
OUT SW d

l
,x

OUT E a,c

IN NE 0

"3= (b-"lx)

"'4c (d-"2x)

OUT N "1 '''2
OUT SW 0

OUT E "1'''2'''3'''4

"3=~!O
"4=w4!O

t+3: OUT E "3 '''4

OUT N "3 '''4

t: IN S a,b,c,d

OUT N a,b,e-,d
t+1:

t+2: IN W e,f

319

D

w

5n
T = :2 +2s s=n/2 for a full matrix

NOTE: the orthogonal connections

FIGURE 5.3.1: Implicit block array for symmetric positive
definite factorisation

320

The array input format is easily derived from the minimum path length

of the feedback loop passing through cells 1,2 and 3, which implies

that successive data blocks are separated by five cycles. Adopting the

same assumptions as the modified SQIF and using the symmetry of A gives

s A a bandwidth of w=2q-l, and from (5.2.6) the array contains 2(S+1)

implicit block cells. Finally, using analogous reasoning to that

producing Theorem (5.2.1) we derive,

Theorem (5.3.1): The modified QIF of a real symmetric positive definite

nxn matrix A can be formed by computing a root-free Choleski factorisation

of the QI permuted matrix A of bandwidth w=2q-l on a 2x2 implicit block

array with t(q+u) (q+u+2) ips cells in T=2.5n+(q+u) point ips cycles where

3>1D,0.

Proof:

From the assumptions in Section (5.2) m=n/2, giving a total block

data length of 5m=2.5n. computation begins when the first block reaches

cell 1 in Fig.(S.3.l) adding an additional delay of 2s ips cycles.

Summing these times and employing (5.2.6) yields T=2.5n+(q+u), where u=o

when q=2s, u=l for q=2s-1 and u=2 when q=2s-2.

Each implicit block cell has four point ips equivalents giving

2s(s+1) point ips cells in all. Now when q=2s we require tq(q+2) point

. (q+l)
cells, w~th q=2s-l, 2 (q+3) cells and for q=2s-2!(q+2) (q+4) cells.

Thus !(q+u) (q+u+2) is a generalised area estimate.

We are now in a position to justify our initial assumptions in

array construction. First of all we assumed no breakdown during

factorisations. Evans & Hadjidimos [80] derive these conditions from

the QIF methods and support the results for point LU factorisations given

in Theorems (2.3.1)-(2.3.2). Next we assumedn=2m m>O this was convenient

321

because it avoided partitionings which produce isolated rows and

columns, for example when n is odd. The single elements associated

with these special rows and columns requires separate treatment and

consequently requires cell modifications. For instance, cells must

be able to detect the special elements and switch to point orientated

calculations using extra switching hardware (or program code).

Fortunately, the task is simplified by the QI permutation which pushes

the special elements to the end of the input stream where they can be

represented by implicit blocks of the form,

: cJ ,x=matrix element

for row, diagonal and column elements respectively. Neutral elements

can then be used to good effect in simplifying internal cell changes,

and a control tag adopted to mark the blocks.

Finally consider the effect of the QI permutation on the matrix

structure. We assumed A was banded and the examples below show this

is a reasonable assumption.

Case (i) : When A is banded with bandwidth w, A has bandwidth 2w+l, e.g.

1 2 3 4 5 6 7 8 1 8 2 7 3 6 4 5

1 X X X l 1 X 0 X 0 X 0 0 Cl
2 X X X X 8 0 X 0 X 0 X 0 0

3 X X X X X 2 X 0 X 0 X 0 X 0

4 X X X X X 7 0 X 0 X 0 X 0 X ..
5 X X X X X 3 X 0 X 0 X 0 X X

6 X X X X X 6 0 X 0 X 0 X X X

7 X X X X 4 0 0 X 0 X X X X

8 X X X 5 0 0 0 X X X X X

A A

322

Case (ii): When A is full. A is full and the permutation is a special

case of banded systems where the dense bottom right corner extends

over the whole matrix.

Case (iii): If A is an X-band matrix of forward bandwidth W
l

and backward

bandwidth W2 ,A has bandwidth W=W
l

+W
2
+l, e.g.,

12345678 18273645

1

2

3

4

5

6

7

X X X

X X X o X

X X X X

X X X

o X X X 0

X X X X

X o
8· X

X X X

X X

A

1

8

2

7

3

6

4

5

X X X

X X 0 X

X 0 X X X

X X X 0 X

o

X 0 X X X

X X X 0 X

X 0 X X

X X X

A

REMARK: Observe that in each case if A is symmetric so is A which

colloborates the results of Theorem (5.3.1).

It is trivial to see that any matrix form fits into one of these

categories by allowing bands to contain some zero entries.

Case (i) indicates that applying the QI permutation to an already

banded system extends the bandwidth which increases the number of block

cells in the SQIF array (by a factor of 4). Optimising internal cell

requirements using the extra sparsity of permuted blocks does not

compensate. However the relation between QI and LU factorisations

indicates that A can be passed through the SQIF arrays to yield the

2x2 or point LU factors directly; thus retaining minimum bandwidth

and array dimensions. By extension when A is full, both permuted and

323

unpermuted schemes can be employed on the same array. Finally in

case (iii) the factorisation of A requires an effective bandwidth of

w=2n-l to allow for the fill-in of the matrix factors, producing a

large SQIF array. Applying the QI permutation folds the fill-in into

a reduced effective bandwidth of w=wl +w2+l allowing a compact SQIF

array to be employed. We conclude that it is necessary to form the QI

permutation only when A has a X-band form. Thus, the QIF methods are

factorised counterparts of the double pipe methods in Chapter 4.

5.4 INTERLUDE: THE BATS CELL REVISITED

At the expense of a slight digression recall the Audish & Evans

(85) factorisation in (4.4.1.6) and the associated coupled systems of

(4.4.1.8), for solving a circulant matrix. Each coupled system required

T the solution of a matrix A or A where,

~ ~

A = L~, (5.4.1)

1

In Section(4A) two constrasting cell designs were developed; the O(n)

and p-cyclic cells respectively, and incorporated into a pipelined

linear array solver (BATS). Clearly (5.4.1) has the X-band structure

indicating that the QI permutation can be applied effectively. In'this

section we suggest improvements to the O(n) and p-cyclic BATS cells to

improve throughput and stability using the QI methods.

5.4.1 Improvements to the O(n) BATS Cell

Principally there are two main drawbacks with the existing O(n)

BATS cell:

324

(i) All the data is entered on only one input line, even though

two are available (see Fig.(4.4.2.1a».

(ii) The combinations of LIFO and FIFO storage reduces throughput

and restricts problem size.

In the first case data and parameters defining the coupled system

travel on one input, while cell addresses for loading parameters

travel on the other. As computation is mainly sequential the right

hand side vector of the circulant system (4.4.2.2) cannot be shared

between the two lines. In the second case L/F storage is LIFO or FIFO

depending on a hardwired control, and the size of storage (say n) places

an upper bound on the maximum problem size solvable as follows. If A

in (5.4.1) was an nxn matrix with n>n and a particular BATS cell L/F

stores operated in LIFO mode at the end of input nI-n stored elements

would have been overwritten. The LIFO operation also determines

throughput as the store requires at least 2n cycles to fill up and

then empty. The pipelined loading of parameters on the other hand

determines a lower bound on problem size. For example when the L/F

stores and problem are both of size n the parameters are piped through

the store and output before a LIFO or FIFO mode begins. But, when the

problem size is n<n and a LIFO or FIFO operation begins some parameters

are caught in the stores. Consequently the cell generates erroneous

results and destroys parameters, causing subsequent cell computations

to be invalid. It follows that the O(n) BATS cell can compute most

efficiently for only one problem size (i.e., n). For problems with

n<n input data must be padded with dummy parameters, placed between

the real parameters and right hand side data, to achieve the correct

synchronisation. In addition, the dummy parameters must have invalid

325

addresses associated with them to prevent erroneous loading of cells.

These problems can be overcome by converting all FIFO type data

movements into LIFO operations, and throughput is increased by reducing

the individual LIFO sizes. To achieve this we apply a pseudo-QI

formulation on the system,

Au = d , (5.4.1.1)

by interpreting the factorisation (4.4.2.3) as the system,

PWu = d , (5.4.1.2)

and solving the coupled systems,

a) Pv = d , b) wu = v , (5.4.1.3)

where P is unchanged but W is interpreted as a sparse 'butterfly'

matrix of the form,

rr a l 0 0 2
1 / -a

/

/ a 3
W = 0 / 0 (5.4.1.4)

/
/

/
/ 0 n-l 0/ 1+ (-a)

(5.4.l.3a) is then solved by the forward recurrence,

a) vl = d
l } b) v. = d . .,;tV. 1 i=2(1)n

l. l. l.-

(5.4.1.5)

and (5.4.1.3b) by the form,

a)

~ ~~ rv~l
)

a ~ l = n-l
1+(-a) lVnJ J (5.4.1.6)

~ ~ ~:-"J
- i+1 i] v.-(-l) a u ,

I = [;'. _(_"n-~.' n-"'n
n-l.+l a '1

i=2(1) ~/~

b)

326

(5.4.1.6) retains the desirable QI property of producing two results

on each step, which are the inputs of the next cell. By a careful

use of LIFO storage the cell can accept data in this format and

sequentialise it for (5.4.1.5).

Fig.(5.4.l.l) illustrates the structure of the new O(n) cell,

which consists of seven LIFO stores each of size t~, combinational

cells for (5.4.1.5), a 2x2 solver arrangement for (5.4.1.6), and a

simple logic controller to orchestrate LIFO switching. Now assuming

A n is even we define two data streams of length n=t(n+2r),

SdI = "1"2 •• ·"r d1 d2 .•. dtn

and (5.4.1. 7)
'" sd2 = Yl Y2 • ··Yr dn dn _l •• .dtn+l

where Cl. and y. i=l(l)r are the parameters of the circulant factor-
l. l.

isation and associated addresses for loading. The solution to (5.4.1.1)

is then found in three stages:

STAGE 1:

(i) The parameters of sdI pass through the forward solver without

modification into LIFO 2, while LIFO 7 collects addresses

from sd2 , and the correct cell parameter is selected.

(ii) Computation starts when d l reaches the forward solver, with

the already selected parameter loaded into the" cell, and

the term (5.4.l.5a) produced. On subsequent cycles the PIPS

cell generates terms in (5.4.1.5b) depositing them in LIFO 2,

while the WIPS cell generates the last column of W inserting

it into LIFO 1.

STAGE 2:

(i) Stage 2 begins when all the elements of sdI and sd2 have been

input. LIFO's 1,2,7 are switched to output and LIFO's 3,4,5

327

LIFO 1 LIFO 2 LIFO LlFO 4

R "" • vI • "I • , o , I • , 0

I j" T
~r;;.L

'-t .
r , 2.2 SOLVER

• •
L J ,

WIPS

'-- , N , 0 I 0 d2 LIro 7
• • v2

LIFO 5 LIFO •

a) Global cell layout

.... v
i

0""1
Xi

"I
zn 0t1l'2

xn_1+1

CELLS AC'TIQNS

:~c
IF CONTROL THEN

c-b/(l-a)

ELSE c-l
::O-c d .. a-{b·c}

b c
IF C<:NI'ROL THEN t}d load xn

,n J
ELSE

• d-a-(b*c} b)
2-2 solver

FIGURE 5.4.1.1: Improved O(n) BATS cell

328

and 6 to input. The last ,n terms of (5.4.1.5) and Ware

computed by PIPS and WIPS and deposited into LIFO's 5 and 6

respectively.

(ii) The forward solver is switched off when the addresses begin to

leave LIFO 7 and pass through PIPS into LIFO 6 unchanged.

STAGE 3:

(i) At the start of stage 3, LIFO's 3,4,5 and 6 are full, and

switch to output. LIFO's 1,2 and 7 are empty and switch to

input. The parameters and addresses then filter out through

the 2x2 solver unchanged to the next cell.

(ii) 2x2 solver starts up computing u
l

and un in (5.4.1.6a)

sequentially.

(iii) Finally the recurrence in (5.4.1.6b) is evaluated using the

2x2 solver.

The operation of the 2x2 solver requires some further explanation, and

its structure is shown in Fig. (5.4.1.1b). Cells 1 and 2 compute u
n

and u
l

while cells 3 and 4 evaluate u
i

and un_i+l i=2 (1) [P/;U. Notice

that the inputs of cell 2 are delayed by one cycle so that u is
n

available when they arrive. Consequently the output line for u is
n

also delayed to synchronise the final parallel output of u
l

and un.

While ul is calculated, cells 3 and 4 load un and compute u
2

and Un_I.

Thus, outputs of cell 3 and cell 4 are delayed a single cycle to avoid

a clash of u
l

and un with Uz and un_Ion output. Successive cycles

then sees u, and u '1 generated by cells 3 and 4 with cells 1 and 2
~ n-l.+

redundant.

Now consider the signals required to control the new cell. These

can be generated by the controller using triggers from a pair of tag

bits associated with the input data summarized below.

tl t2

0 0

0 1

1 0

1 1

The sequence of tags for

{ 1 1
control =

1 1

r

and define,

a PIPS c

b

Action

Normal computation

Reset solvers

LIFO toggle

Disable solver to pass
parameters and addresses

(5.4.1.7) is

100

1 1 0
....

n/2

c=a-b*ctmp

ctmp=c

given by

0 10 1

000 0
. .

n
r+ -

2

b

WIPS

329

(5.4.1.8)

a a=O-ba

(a=-l initially)

with the a cell a simple register. To control the cell tag bits are

interpreted differently at each stage in the computation by using the

tags stored in the LIFOs. Denote the tags associated with LIFO i output

as t(i) and the tags associated with cell input as tl and t
2

• Also

define L
l

={1,2,7} and L
2
={3,4,5,6} and notice that any two LIFOs i ELl

and j E L2 are mutually exclusive because if LIFO i is inputting LIFO j

must be outputting and vice versa. Thus,

{ 0 Ll
input

cl = tl A t2 =

1 L2 input
(5.4.1.9)

is sufficient to control all LIFOs and,

330

(5.4.1.10)

disables the forward cell to pass parameters and addresses (this is

achieved by zeroing the a register) , while,

c = t(4) "t(6) ,
3

is used to disable the 2x2 solver, this is a simple task as the

(5.4.1.11)

output of LIFOs 3 and 5 associated with parameters and address are

zeroes due to disabling of the forward solver. So using cells 3 and 4

of the 2 x2 solver is sufficient. The 2x2 solver itself can be started

with the code,

c = t(4) " t(6) 4
(5.4.1.12)

and it follows that only simple combination logic is necessary for

cell control.

Next consider the case when n is odd sdl and sd2 in (5.4.1.7) are

of different lengths. Nominating sd2 as the shortest sequence unit

delays must be added to the input of LIFO 7 and the outputs of LIFOs

1 and 2. These delays allow a smooth switch over from sdl input to

the input from LIFO 7 to the forward solver and re-align data for

input to the 2X2 solver. A third tag bit t3 must be added to the input

controls to mark data streams when n is odd, and to control switching,

in and out of these additional delays.

Finally by tracing the longest path through the cell we derive

the following result,

Theorem 5.4.1: The solution of the system A x=b where A is an nxn
c c

matrix of semi-bandwidth r and x and b are nxl vectors can be found

by' the Audish & Evans factorisation using 2r improved O(n) BATS

cells in,

" " A T = !n+2r(n+5)ips cycles where n=n+2r.

331

Proof:

The timing T is given by T=~+2rc where ~=total input length and

c is the cell latency. From (5.4.1.7) ~=tn+r, and by summing delays

through the cell c=(n+2r)+S, where we allow two delays for the forward

solver and three delays in the 2x2 solver, and assume n is odd. As

there are 2r cells, output is delayed by 2rc cycles in total.

This improved timing results over that of Theoremt4.4.2.l) from

the increased throughput of the array, analysing LIFO operations shows

"'-that the next problem instance can be input after n cycles, rather than

the 2n required previously. The new design requires 6 ips equivalents

and at most ~ FIFO register, compared with 4 ips and 2n LIF registers

in the old O(n) cell. Thus speed increase and throughput are offset

by an increase of 1.S-2 times the hardware, which for large n is

significant. Notice however, that the new cell is capable of solving

any problem of size n<n without modification giving added flexibility.

S.4.2 A Stable p-cyclic Cell,

The p-cyclic cell was developed in Section (4.4.3) and solved the

alternative nxn system,

t
A u = d , (S.4.2.l)

t s+l
using the p-cyclic properties of A and the fact that a =0 for s<n

and o<lal<l. The resulting procedure consisted of evaluating a

polynomial of s terms to generate u
l

' a forward recursive scheme to

calculate u. i=l(l)tn and a backward recursion for u . 1 i=l(l)tn.
~ 0-1+

This latter recursive scheme was unstable against rounding error,

involving division by a.

In the new cell we factorise At using the QIF method. The special

332

form of A
t

allows factors to be constructed by inspection and generated

'on-the-fly' by the cell, consequently,

At = WZ , (5.4.2.2)

where for n=even, •

iT 0 1 Cl 0
/

/ /
1 / 1 Cl /
"- 0 /

/ / "- 1, Cl /
"- / ,

"- o / " "- 0/ 1 "- Cl

"- ,
1 0 1 Cl

n-2 0 n-l 0
W= -Cl 0 I Cl Z= Cl 1

/ / " / I n-3 ,
I I Cl, Cl

"-
/ I , , I ,

4 /
, , I ,

-Cl 0
,

'Cl I I
/ , /

2 /
'1

3
0 Cl Cl 1

0 I Cl 1

(5.4.2.3)

and n=odd,

I 0 I Cl 0

I 0 1 Cl 0
"- / , /

"- 0 / , /

'" / 1 "-,
/ "- / , "-

'"
, , " / , ,

" 0 I Cl 0'
n-I"-

-Cl 1 Cl

C n 0 W= "- I Z= l+a
/ 0 1 "-

/ "- n-2
1 I

,
Cl

/ , , ,
/ "- "- / , 4

-Cl I '" Cl / " I C "- 3/ " 2 / ,
'1 -Cl 0 1 Cl Cl

0 I Cl 1

(5.4.2.4)

333

which after substitution in (5.4.2.1) yields the coupled systems,

a) Wv = d and b) Zu = v , (5.4.2.5)

Applying the QI permutation produces the simple 2x2 block LU form which

for n=8 has the form,

1 8 2 7 3 6 4 5 1 8 2 7 3 6 4 5

T 01 I 1 01 a 0 I
I I

I I
0 1 a 11 0 0 ___ L .L __ .1 T- --I -+-
0 0 1 01 I I 1 0 la 0 I

2 I I I
'a

3 10
I

-a a I 0 1 I I 1 0 I
-1-

0
- -,- - - I" -1- -I -1--

o 1 0 I I 1 o I a 0
L = I I I , U = I

I-a
4 I 1 I la

5
1 10 0 a 0 I

-I - - -1- - --j I" t- - -1-
I 1 0 0 I 1 0 I I 1 a

I 6 I I
7 la I-a a 10 1 I 1

(5.4.2.6a)

and for n=7,

1 7 2 6 3 5 4 1 7 2 6 3 5 4

~
0

---i~
1 o I a 0 I

I
1 I a 1 I 0 0

1- - 1 I --, - - --
I I

0 0 1 0
I

1 0 la ° I

2 I 3 I I
-a a I 0 1

--1 .: _1_: 0 _ 0_ 1- --I L = - 1- _ .!... + , U =
10 0 I 1 01 11 ° I a
I 4 I I 5 I
I-a a LO

_ !~ la 1 10
-1- -- -r -t- t- --

I I 6 J I 7
I-a a; 1 I l+a.J

I I I

(5.4.2.Gb)

n 7 now for n large enough a =0 thus a =0 and in general the last diagonal

block of U has the form,

~ J' n=even, 1 n=odd.

334

Now as 0<1 a 1 <1 and Z is diagonally dominant, it follows that the block

co-diagonal of U can be eliminated using implicit block calculations

without pivoting and with the modifications restricted to the permuted

rhs of (S.4.2.Sb). This leads to the elimination recurrences,

e = v -exV 1 q q q-l

e
q-l v 1 +ae

J

q- q

and generally,

e
q-i

= v . -exe
q-i+l

, i=O{l)q-l
q-~ .

(S.4.2.7)

which produce the modified vector e in polynomial form,

2 3 q
e l = v 1 -a v 2 +a v 3 -ex v 4 + •.• + (-ex) v q+ 1

2 3 q-l
e2 = v 2 -exv3+a v4 -a Vs + ••• + (-ex) Vq+l

2 {)q-i+l e, = v. -aV. l+a v. 2 + ••• + -a v
~ ~ ~+ ~+ q+l (S.4.2.8)

e = v -aV
q q q+l

and
e . =v ., j=1(1)qwhereq=~/21.
q+J q+J :.J

After elimination the permuted form of (S.4 .2.Sb) is a 2x2 block diagonal

matrix. Hence the solution of (S.4.2.1) can be found using a stable

three stage process:

STAGE 1: SOLVE (S.4.2.Sa)

"" STAGE 2: CONVERT (S.4.2.Sb) into the system Zu=e by elimination

'V

where Z is a matrix with a W type format.

'" STAGE 3: SOLVE Zu=e for u.
~

It follows, from the fact that Wand Z fit the same global format

that the three stages can be pipelined to achieve high throughput

yielding the new BATS cell form,

sdl

sd2

335

...
w r- z .. .

--- -! SOLVER Cl POLYNOMIAL

r:t
SOLVER ---, f-i GENERATOR

FIGURE 5.4.2.1: Stable p-cyclic cell

'V

where Wand Z have the following definitions:

:---j ,~ ~ ::

on start up S=l, cold=O,dold=O

cold=c, dold=d

c=a, d=b+(S*cold)-(a*dold)
2

S=S*(a)

f=a

on start up S=a

c=a, d=b-(S*a)
2

S=S*(a)

The polynomial generator is a linear array of q cells which produces

the polynomials of (5.4.2.8) according to the general recurrence,

(0)
e i = vi

r

(k+l) _ (k) ()k
e. - e. + -a v. k ' k=l(l)m (5.4.2.9)

1. 1. 1+

_ (q-i+2)
e

i
- e

i

where m=q-i+l and i=l(l)q,

and uses cells of the form,

e
1

a ~

f Sign ---- - --
b

~

c

g

d

c=a± (e*f) (sign dictates + or -)

g=af

d=b

x '!'x q+

336

The basic idea is to pump the e~O) values from left to right through
1

the array as they emerge from the W solver. From (5.4.2.9) it follows

that at the end of the qth cycle of array operation the (q-i+1)th

generator cell contains the completed e
i

polynomial. Thus, on the

(q+1)th cycle the generator must be disabled to preserve the results

and cells reduced to simple FIFO type operations, pipelining data into

'" the Z solver. Snap-shots of generator operation are given in Fig.

(5.4.2.2), notice that the values v ., j=l(l)q are also queued by the
q+]

cells to maintain synchronisation.

Control of the new BATS cell and in particular the generator sub-

array is achieved by adopting the tag bit method used in the O(n) cell

improvement. First we revise the tl and t2 tag bit definitions as

follows:

t1 t2 Action

0 0 Normal computation

0 1 Data switch

1 0 Start up the cell

1 1 Disable cells

and define the tag bits entering different cells of Fig.(5.4.2.l), as

t1 (i) and t 2 (i) for i=0(1)q+1, such that the input tags of cells Wand

--Z are t1 (0), t 2 (0) and t
l

(q+l),t
2

(q+1) respectively. Also let polynomial

generator cell i receive tag bits t
1
(i), t

2
(i), i=l(l)q and tl (b) ,t

2
(b)

which define the tag bits associated with the broadcast line. The

generator array is then easily switched from polynomial generator to

FIFO mode and vice versa using two mutually exclusive states defined by,

OFF
i

= (t
l

(b) A t
2

(b» V ON
i

ON
i

= (t
1

(i) A t
2

(i» V OFF
i

} (5.4.2.10)

337

Y1 I I * * t ;:~
Y1
~

Y1
~

Y1
~

Y1
~ (-) (+) (-) (+)

Y2 I I I J-
Ul ::~:1 Y2y:'~

Y
2

~
Y

2

~
Y2

~
Y3

Y3 V
2

V3 8 2
81 V3 el

Y
3 Y

3
t+2 a--.. • .2

Y6
Y7 Ye

Y4

t+3
Y

4
Y -

1 4 8 1
Y4

Y
6

Y7
.3

Y
s

Ys

v4 Vs 8 4
Ys -U4 6 °2 Y -2 8

1
5 e

1 • --- Cl 3
6 Y7 .4 YS Y6 Ye

uS Disabled (Act as FIFO)

FIGURE 5.4.2.2: Snapshots of polynomial generator (for n=8)

for cell i, with OFF and ON indicating FIFO and polynomial modes

respectively. Clearly the requirement that all cells should be switched

OFF simultaneously on completion of the polynomials is satisfied by the

use of broadcast tags. Notice however that cells can only be switched

ON again in a strict left to right order, which preserves data already

in the array, but also achieves high throughput by allowing different

problem instances to be pipe lined. Thus preserving the attributes of

the original but unstable BATS cell.

338

A further area of concern is the passing of parameters and

addresses (for setup) through the array unharmed, and is solved by

adopting the input format,

!~
I

cx2 CX d
l

d2 d 'a cx2 ••• data r ql I
sdI = I

I I I 0 ••• 0 I I I ••. tl ,
I

1st problem 2nd problem

and,

h Y2 Yr
d2q d

q+l YI Y2 data

sd2 =

1 1 1 ... I 0 o ... 1 1 1 . .. t2

where q=n/2 from above. Tracing through the array operation shows

that this sequence also controls the polynomial cells using (5.4.2.10)

'" and that the wand z cells are easily disabled by setting and holding

cold=dold=O and S=O respectively.

Next consider the data switch command (t
l

A t
2
). This is a

special control which provides a neat solution to the construction

of e. From (5.4.2.8) e is the smallest polynomial and enters the
q q

generator last and accumulates only one term using v and v I occurring
q q+

on different input lines whereas the values used in evaluating all

other e. polynomials are derived from a single input line. Consequently
1.

to preserve computation the broadcast value is selected from the correct

. line using a multiplexor controlled by the data switch tag code. A

further complication arises when n is odd and the WZ form of (5.4.2.4)

must be used. Here q=~/~ producing data sequences of different

lengths which must be padded as follows:

d
l

d
2

d 1-

{
cxI cx2 cx clcxl r q

sdI = I

I I ••• I 1 o ... 0 01 I
I

and
= {Yl Y2 ••• Yr dn dn _l

11 ... 100

d q+2

o

d I
q+ll Yl

I
I

1 I 1 ...
I

339

From (5.4.2.6) it follows that the W cell computes correctly with no

~ n
further control, as does the Z cell under the assumptions that a =0

and the dummy element 0=0. The only significant problem is the correct

synchronisation of elements for the calculation of e : this is solved by
q

further use of the data switch and an additional tag bit t3 to

differentiate between problems with odd and even n. Thus the interface

between the W cell and polynomial generator which produces the broadcast

signal has the form,

W
CELL

HI-__ -;r-,
L-~ 1

broadcast line
./ ••• . .

...

...
'\. •

polynomial cell

FIGURE 5.4.2.3: w-cell/generator interface

s+l Finally, when a =0 where s<q the value m of (5.4.2.9) can be

redefined as,
m = min(q-i+l,s) , (5.4.2.11)

from which it follows that each e i , i=l(l)q polynomial contains at

most s terms. Consequently the polynomial generating array can be

truncated to s cells reducing area and cell latency. We can now prove

the following timing theorem for the solution of the circulant problem

(4.4.1.8) using the improved cell.

340

Theorem S.4.2.1: The solution of the linear system A x;b where A is
c c

a nXn circulant matrix of semi-bandwidth r, and x and bare nXl

component vectors, can be found using the Audish & Evans factorisation

and 2r stable p-cyclic BATS cells in at most T=n+r(4s+14)+2 ips cycles,

s+l where a =0 for a=max (a.).
1.

l~i:;;r

Proof:

The timing of the BATS pipeline using the new p-cyclic cell is

given by,
(S.4.2.12)

where ~= rn/2] +r~! (n+2) +r and is the maximum data input (hence output)

length, c is the new cell latency and k is the number of ips cycles

equivalent to the maximum cycle of the cells in Fig.(S.4.2.1).

Observation of the above cell definitions shows that the W-cell is the

most computationally complex cell, and a lower and upper bound for T

can be derived according to whether the value a
2

is known or not.

Case (i): Lower bound

Wh 2·k h . en a 1.S nown t e W-cell computation can be pipelined, US1.ng

the two stage calculation:

t: dO = b+8co 'co=
2

a, B ; B*a ,

t+l: d01d = d, d = do-adold' c ; Co

Thus by introducing an extra cycle to the cell latency a single ips

cycle is the cycle time of the internal p-cyclic cell hence k=l. The

latency is c=s+4, allowing 2 cycles for W-cell, 5+1 for polynomial

array (and interface) and 1 for Z-cell. Hence, we have,

T ; !n+r(2s+9) + 1 . (5.4.2.13)

Case (ii): Upper bound

When a
2

is unknown the term 8=8*a
2

, must be calculated by

341

two sequential operations,

S = S*cx, S = S*cx;

the pipelining of W-cell computations is no longer possible and k=2

results. The latency is determined as c=s+3 hence,

T = n+r(4s+14)+2 (5.4.2.14)

giving the theorem time.

The area estimate of the design in ips equivalents is determined

"" as follows. Assign 3 (or 4) 2 (or 3) and 2 ips equivalents for the W,Z

and polynomial cells respectively depending on whether cx
2

is known or

not. The area is then at most (2s+7) ips cells per BATS cell and

2r(2s+7) for the full pipe. By comparison with the original p-cyclic

cell and the intuitive assumption that a
2 is unknown (i.e. simpler

set up procedure), we conclude that the former scheme waS faster and

more area efficient. However the new design would be more desirable

in practice due to its inherent stability which outweighs the lower

speed and area estimates of the unstable cell.

5.5 SYSTOLIC QUADRANT INTERLOCKING ELIMINATIONS (SQIE)

The close relationship between Gaussian Elimination and the

factorisation of matrices embodied in Theorems (2.3.1)-(2.3.2), implies

that if a QI factorisation exists intuitively there should also be a

corresponding QI form of Gaussian elimination. The essential idea of

a QI Elimination (QIE) is to replace (5.1.1) by the more easily solved

system,

where,

and

Zx = b ,

ZT = [zl,z2, .•• ,zn1

(5.5.1)

[0 ••. 0 zii

i-I

~O.: .0, zi,n-i+l

n-i

Z. • 1 0 ••• 01 l.,n-l.+

342

T
i=1(l) ~;~

(5.5.2)

and permuted form of the nXl vector b in (5.1.1) is b.

Now by employing the QI permutation the permuted matriz Z of z

has a 2x2 block upper triangular form. Consequently by extending

(2.3.2.1) to the 2x2 block case, Z is constructed from a sequence of

. (1) (2) (k) ,.... ;;1
modified matrLces A ,A , .•. ,A for k=l(l) jn/2jas follows:-

when k=l

k>l

where,

A (1) = A (the QI permuted form of A)

A(k)
IJ

A (k) =
ij

A(k-l) , i=l(l)k-l, j=l(l) ~/21

, i=k(l) rn/21, j=l(l)k-l = 1
O

ij

(k-l) (k-l) 1- ;;1 r:1 A. . -M. k lA-' 1 ., i=k(l) n/2j. j=k(l) n/2 J
l.J 1., - k- ,]

~
(k)

a
ij

(k)
an_i+l,j

(5.5.3)

1 (k)
a. . 1 l.,n-]+

(S.S.4a)
(k) J

an-i+l,n-j+l

are 2x2 submatrices and the M. k 1 are multiplier matrices with the
L, -

form,

(k-l) (k-l) -1
Mi,k-l = Ai,k-l [Ak-l,k-11 , (S.S.4b)

finally, (k)
Z = A ,when k= 1n/2J .

The corresponding rhs modification sequence follows trivially as,

b (1)
= b (QI permuted form of b) } ti ~k) "(k-l) '"

(S.S.4c)
= b -M b i=k (1) rn/2]

where, L i i,k-l k-l

'" T b
j

= [b"b j 11 J n- +

343

Tracing the elimination sequence shows that the Mi,k_l matrices form

a 2x2 block lower triangular matrix which produces a W format matrix

M and (5.5.1) becomes,

Zx = Mb (5.5 • .5)

The systolic QIE (SQIE) therefore reduces to a 2x2 explicit block

structured Gaussian elimination array. The new array is easily derived

using the global structure in Fig.(3.2.2.2), by re-defining the cells

of (3.2.2.4) and (3.2.2.5) and reformating data inputs, as follows:

first assume that no pivoting is necessary, (i.e. A is diagonally

dominant or positive definite) in order to simplify block 2x2 cell

definitions. Next from (5.5.4b) with k=2

(1) (1)-1
Mi,l = Ail [All 1

and for i=2 (the first modification) it follows that,

(5.5.6)

(5.5.7)

The first 2x2 block row update in (5.5.3) has the form,

and can be computed in pipelined fashion as follows.

of illustration let j=2 then (5.5.8) becomes,

Now letting,

(2) (1) (1)
A22 = A22 -M2lA12

M2l
-1

= 1:. A (1) *X
D • 21

where X = D.All '

and substituting for (5.5.10) in (5.5.9) yields,

(5.5.8)

For purposes

(5.5.9)

(5.5.10)

(5.5.11)

Notice that.X is easily constructed by simply swapping diagonal

elements and negating anti-diagonal elements. Likewise i.A~i) is

simple to compute requiring the formation of D=allann-alnanl and

344

simple divisions. With these values known (5.5.11) is constructed

1 (1)
by assigning E-

D
A2l and

Y = XA (1)
12

A(2) = A(l)_(E*Y)
22 22

}
producing simple block ips calculations of the form,

which yields the pipeline procedure,

t: compute X

t+l: evaluate D, and y(!) using (5.5.12a)

t+2: evaluate 1st column of

(5.5.12)

a ~ (1) 17

a
S7

(5.5.l2a)

a ~l) 17

a
S7

(5.5.l2b)

(5.5.l2c)

(5.5.l2d)

t+3: evaluate 2nd colunn of

E and y(l) using (5.5.l2b)

(1+;)
E and A22 using (5.5.l2c)

t+4:
(2)

evaluate A22 using (5.5.l2d)

From which the new cell definitions follow immediately.
N,
~n

S out

I---~ (E, ,C t)
~n Oll

IF c
in

THEN

{PHASE 1 : STARTUP

t:N
in

r
l
,r

2
,r

3
,r

4
Win xl ,x2 ,x3 ,x4
Yl=o+xlr1 , Y2=o+xl r 2
Y3=o+x3r l , y 4=o+x4r 2

" " "-
~ sync

t+l:

}

ELSE

345

E
out

x
l

,x
2

,x
3

,x
4

y
l

=y
l

+x
2

r
3

, y
2

=y
2

+x
2

r 4
y

3
=y

3
+x

4
r

3
, y

4
=y

4
+x

4
r

4

{PHASE2: COMPUTATION

}

t: N
in

r
l
,r

2
,r

3
,r

4
Win e l ,e3
E
out

e
2
,e

4
Sout r l ,r2 ,r3 ,r4
rl=rl-elYl' r2=r2-elY2

r3=r3-e3Yl' r4=r4-e3Y2

t+l: Win e2 ,e4
E
out

e
l

,e
3

rl=rl-e2Y3' r2=r2-e2Y4

r3=r3-e4Y3' r4=r4-e4Y4

IF C, THEN
l.n

{PHASEl: SETUP

}

ELSE

t: N
in

r
l
,r

2
,r

3
,r

4
x

2
=o-r

2
, x

3
=o-r

3
, x

l
=r

4
,x

4
=r

l

t+l: E
out

x l ,x
2

,x
3

,x
4

D=r r -r r
1 4 2 3

{PHASE2: COMPUTATION

}

t: N
in

e
l
,e

2
,e

3
,e

4
E
out

e
2
,e

4
i:\=e/D, 93=e/D

t+l: Eout el ,e3
e2=e/D, e4=eiD

Notice that each cycle of a phase is a single ips cycle, and that the

control value C, moves independently of computation. For instance,
l.n

346

the horizontal signal (C t/Ci) moves one cell every cycle starting ou n

up cells left to right, while the diagonal signal sync initiates row

computation and moves from boundary cell to boundary cell every 5 ips

cycles. This is clarified by tracing array operations shown in

Fig. (5.5.1) which also indicates the data input format. Each input

A44

A43

A42 A34

A4l A33

A32 A24

A3l A
23

A22 A14

A2l Al3

A12

All

1

I r: -.
In/21

A
ij

=2x2 block input

FIGURE 5.5.1: 2x2 Block eliminator

is a 2x2 block of four inputs, and the block Bi have the special form,

fi
I~n-i+l

347

derived from (S.S.6) which preserves computation at the expense of

extra hardware in the last column of cells. The corresponding result

to Theorem (3.2.2.2) now follows immediately.

Theorem (S.S.I): The 2x2 block Gaussian elimination (or QIE) of a

matrix A can be found using a block structured triangular array in

T=S rn/21 ips cycles and uses o{n
2

) point ips cells.

Proof:

The array contains 1n/21 rows of block ips cells with each cell

equivalent to 4 point ips cells. The synchronisation signal starts

a new row computing every 5 point ips cycles and when it leaves the

array all modifications must be complete. It follows that T=si~/21

is the total computation

The array requires

time.
i~/2l
I i=t rn/2i{ rn/il +1)

i=l
block ips cells, and

2i~/21 (ln/il+1) point ips cell equivalents, compared with tn{n+l) in

the ordinary point elimination case. We conclude that the block

elimination method is faster but requires more hardware than the

point case. Efficiency is also improved in the block case but this

results from effectively starting up two adjacent rows of point cells

for each block row at a time in the new design when compared with a

single row in the old method.

Finally, Fig.{S.S.2) indicates that the input format for the new

array can be derived from the input of the original point version of

the array. The idea is to employ a re formatting preprocessor consisting

of a linear array of 1n/21 + 1 reformating cells. Each cell of the

processor consists of delay registers and whose output is controlled by

a simple bit signal travelling left to right. The preprocessor also

provides a suitable method for expanding a small host interface to a

large enough bandwidth for array input.

10100
Preprocessing Array

471472&81&82 0 ·SS·S64 6S·66 0

0 .53.544 63464 0 437438447448

451452461462 0 435.36445446 0

0 433434443444 0 &17 8 184 21 4 28

431432441&42 0 415.16425.26

0 413414423424

4 11412&21422

.) Input/output format of the preprocessing array (n::S)

ENABLE

INPUT

Or
~ ..,
, I
I I
L. ...

all a12
b) Basic preprocessing cell

ENABLE
OUTPUT

348

FIGURE 5.5.2: Reformatting of data for 2x2 block eliminator

5.6 SYSTOLIC QUADRANT INTERLOCKING ITERATION (SQII)

To complete this chapter we now briefly consider Quadrant Inter-

locking Iterative (QII) schemes as introduced by Evans & Sojoodi-

Haghighi [821. The idea here is to take the linear system,

Ax = b (5.6.1)

and apply a QI splitting of the form,

A = X-W-Z , (5.6.2)

where,

x = [x
1

,x
2
"",xn]

T
-W = [W

1
'W

2
""'W

n
] and -Z = [z1,z2, ••• ,zn]

such that,

[0 ••• 0 a
ii

0, •.• 0, a
n

- i +
1
,i 0, ••• ,0] T i=l (1) f;~

i-I

T ~+3J
[0, ••• ,0 a n - i +1 ,i 0, •.• ,0 aii 0, .•• ,0] i=I--2--1 (l)n

and for n odd

w =
i

Z =
i

r [0 ° ° O] T '=1(1)n-1 , ..• , a' l " ... ,a ., 2
1+ ,1 n-1,1

~-.----'

i

[O, ••• ,O]T i=t(n+1)

[0, ••• ,0 a .2 .••• a. 1 . o, ... ,O]T i_
n

2
+

3
(1)n

.. . . n-l.+,1. 1.-,l.

n-i+1

T .. n-1
[0, .•• ,0 a .. 1, ••• ,a. .,0, ••• ,0] i=1(1)--2-

1.,1.+ l.,n-l.
~-y--~

i

T . n+1
[0, ... ,0] 1.2 -

[0 ° ° O] T ,_n+3(1)n
, .•• , a. . 2,···,ai i l' , ••• , ~ 2

'___ __ -' 1.,n-1+ , -

n-i+1

and "for n even,

w =
i

Z =
i

[0, ... ,0 a i 1 " ... /a . it
"'---...,---_ +, 1. n-l. I

[
~ T . n

0, ••• ,0] i=n/2, ~1

O, ••. ,O]T i=l(l)~l
2

T n
[0, ••• ,0 a .2 ., ••• ,a. 1 .,0, ••• ,0] i-

2
12(1)n

n-l.+ ,1. 1.- ,1.
~~~ 

n-i+1 

[0, ... ,0 a .. 1, ... ,a, 0' 
___ -' 1.,1.+ l.,n-l. 

~ 

T n n 
[0, ••. ,0] i-2,~1 

O, ••• ,O]T i=l(l)~l 
2 

T n 
[0, ••• ,0 a

i 
-i 2,···,a

i 
·_1,0, ••• ,0] i- 2

12(1)n. ____ - In + ,1. 

n-i+1 

349 

(5.6.3) 

(5.6.4) 

(5.6.5a) 

(5.6.5b) 

(5.6.6a) 

(5.6.Gb ) 



350 

substituting for A in (5.6.1) yields the various QI iterative schemes, 

by an analogous reasoning to that given in Section (2.4). First we 

replace the system (5.6.1) by the equivalent system, 

EX(k+l) = FX(k) + b . (5.6.8) 

Then the simultaneous (or Jacobi) QI iterative method is then defined 

by, 
E = X and F = W + Z , (5.6.9) 

and the vector x (k+l) can be determined by solving the ~ 2 systems, 

b
' i~ 

an-i+l,i 
a ] 
i,n-i+l 

an-i+l,n-i+l 

(5.6.10) 

where, 
= 

n 

L a x(k) + b 
ij j i ' j=l , j#i and n-i+l (5.6.11) 

(k) 
cn- i +1 = 

n 

L 
j=l 

a X (k) + b 
, 1 ' , 1 n-~+ ,J j n-~+ 

By introducing an acceleration parameter w the simultaneous over-

relaxation version of the Jacobi QI iterative method is given when, 

b 
a
ii 

a. . n-l.+l,l. 

ai,n-i+l J ~i l (k+l) __ 
I (l-w) 

an-i+l,n-i+l xn-i+:J J 
(k) 

a 
i,n-i+l 

an-i+1,n-i+l *-

replaces (5.6.10) and, 

-(k) 

xi I +w 

~n-i+~ ~ J 
(k) 

:i , (5.6.12) 

n-~+l 

where 
(k) (k) 

c
i 

and c
n

_
i
+

l 
are defined in (5.6.11). 

The successive (or Gauss-Seide1) QI iterative method is defined by 

E = (X-W) and F = Z (5.6.13) 

and the x(k+l) values are given by (5.6.10) with, 



(k) 
c, 

1. 
= 

(k) 
Cn- i +l 

351 

i-l 

2 
j=l 

(k+l) 
a x -
ij j 

n 

2 
j=n-iT2 

n-i 
(k+l) '\ (k) 

a x - L. a x +b 
ij j j=i+l ij j i 

i-l (k+l) 
2 a '1 ,x 

j=l n-J,+ ,J j 

n 
'\ (k) 
L. ail ,x, -

j=n-i+2 n- + ,J J 

n-i 

2 (k) 
a '1' x, +b '+1' jFi, jFn-i+l 
n-~+ ,J ) n-1 j=i+l 

(5.6.14) 

By introducing the acceleration parameter w produces the successive 

overrelaxation (extrapolated Gauss Seidel) QI iterative method results 

when (5.6.14) is substituted in (5.6.12). Applying the QI permutation 

to the above iterative algorithms illustrates that they are simply 2x2 

block forms of the more familiar point Jacobi and Gauss Seidel methods. 

It follows that the normal conditions of diagonal dominance or positive 

definiteness of A ensures that the iteration matrix derived from (5.6.9) 

and (5.6.13) converges. Thus, for any initial starting vector x(O) the 

QI methods converge to the solution x of (5.6.1) and also implies, 

[~" ai' 1 Jl det 1.1. ,n-l.+ F 0 , 

an-i+l,i an-i+l,n-i+l J 
i=l (1) 1n/21 

-1 
to ensure that X exists. The corresponding overrelaxation QI forms 

are convergent when O<w~l and O<w<2 for the Jacobi and Gauss-Seidel 

respectively provided the original method converges. Proofs of these 

statements can be found in Evans & Sojoodi-Haghighi [84), but are 

special cases of the more general group iterative results. 

The systolic implementation of the QI schemes adopts the same 

cascaded form Fig.(3.2.3.1) and uses 2x2 block calculations in the 

linear arrays. If we represent the general QI scheme by, 



352 

-{k+ 1) -(k) d x = Bx + , (5.6.15) 

--1-
where B=E F is the QI permuted form of the iteration matrix such that 

~l -1 
B=X (W+Z) for the Jacobi form and B=(X-W) Z for the Gauss-Seidelscheme 

-1 
and d=E b. The 2x2 block form of Theorem (3.2.3.1) is easily 

derived. 

Theorem 5.6.1: For r iterations of the form x(k+l)=BX(k)+d where B is 

an nxn matrix with block bandwidth >i=p+q-l, and d is an nxl vector 

requires a time of T~2{2rn/21+r(2p-l)+MAX(p-l,q-l)-p+l} ips cycles and 

takes 4rw equivalent ips cells. 

Proof: 

The basic linear array in the cascaded form Fig.(3.2.3.1) is a 2x2 

block matrix vector array, thus using similar reasoning to that given in 

Theorem (5.1.1), gives the input length 2 jfl/21 and the number of block 

ips cells as w, where p= [p/2] and q= rq/ij. Each block ips requires 4 

point ips cells for its implementation and 2 point ips cycles for 

calculation. Applying this information to Theorem (3.2.3.1) produces 

the required T and cell count. 

The QI Jacobi array is derived directly from Fig.(3.2.3.2), by 

simply substituting 2x2 blocks for the input data elements and adopting 

the 2x2 block ips definition of (5.1.20b) and the revised form of (5.1.20c) 

below. 

D=ad-bc 

a=a/D, b=b/D, c=c/D, d=d/D 

g=e,h=f 

e=ag-hb 

f=cg-hd 

(5.6.16) 



353 

Using pipe lining to overlap the 2x2 inversion produces a boundary cell 

with the same cycle as a block ips and Fig.(3.2.3.2) implies that the 

Jacobi scheme has the same timing as a 2x2 block matrix vector problem 

of bandwidth W+l. Thus, substituting p+l for p in Theorem (5.6.1) 

yields the time of the Jacobi form. Likewise, the QI Gauss seidel 

form is constructed from a 2x2 block lower triangular solver, and an 

upper triangular array of bandwidths q and p-l respectively. As the 

lower triangular part introduces a delay of a single block ips cycle, 

the timing is derived from Theorem (5.6.1) with bandwidth w=p. Notice 

however that the cell counts produced by the Theorem are invalid due 

to the overhead of extra ips equivalents in the boundary cell, and that 

the bandwidth in the Gauss Seidel form represents only timing not the 

true bandwidth of the matrix (hence array). In our original estimate 

(5.1.20c) contained at most 10 ips equivalents, consequently, for r 

iterations the Jacobi scheme requires r(4w+lO) ips equivalents and the 

Gauss Seidel method r(4w+6) ips equivalents. 

Now the overrelaxation forms of these QI arrays are easily derived 

by writing (5.6.12) in the form, 

, J(k+l) Xi 

x 
n-i+l 

= 

which reduces to, 

(l-w) :i. 
n-l.+l b J

(k) 

rH 
b-i+l'i 

i,n-i+l 
a J 
an-i+l,n-i+l *' 

(5.6.18) 



From which we notice that the term , 

a 
i,n-i+l 

354 

-1 

i=l (1) 1n/2) (5.6.19) 

an-i+l,n-i+l 

can be precomputed before entering the cascaded iteration array. 

Definitions (5.6.16) and (5.1.20c) can then be revised to give more 

general block Jacob1 and Gauss-Seidel arrays. For instance (5.6.16) 

becomes, 

-;: bl 
c d t 

t 
[e,f] ----V 
[;,fj t ~( __ -\ 

--t 
'I--~) [g ,h] 

r=(l-w)r, s=(l-w)s (5.6.20) 

g=e, h=f 
t [g,h] 

and (5.1.20c) 

l-w ~ ~ [r,s] 

t~ --t [~'':] t "> [g ,h] 

[g,h] ( _ -- [g,h] 

where the 2x2 input is equivalent to 

e:r+ (ag-hb) 

f=s+ (cg-hd) 

r=(l-w)r, s=(l-w)s 

k=(e-g),p=(f-h) 

g=r+(ak+bp) 

h=s+ (ck+dp) 

(5.6.19) • The calculation 

rand s values requires the x 
(k) 

vector to be delayed while the 

(k) 
values are computed. Consequently r,s 

(k) (k) 
c . 1 and c. , cn_

i
+l n-~+ l. 

(5.6.21) 

of the 

(k) 
c. and 

l. 

calculations can be overlapped. It follows that the most complex 

computation is the evaluation of 9 and h in (5.6.21) which is performed 

in 2 ips cycles, that is, 

t+l: 

3 
t t--· 2' 

t+2: 

k= (e-g) , p= (f-h) 

t =a*k, t =c*k o 1 

t2=r+to' b 3=s+tl , to=b*p, tl=d*p 

g=t +t , h=t +t 
2 0 3 1 



355 

Consequently the above array timings are unchanged. This is an 

intuitive result, because when w=l overrelaxation methods become the 

standard Jacobi and Gauss Seidel schemes. As (l-w) is known we 

require at most six point ips cells for the new boundary cells, this 

produces revised cell counts of r(4w+6)+10 and r(4w+2)+10 for over

relaxation Jacobi and Gauss-Seidel. The additional 10 ips account for 

the preprocessor ev~~uating (5.6.19). 

These results on block iterative (or SQII) arrays are disappointing 

because we require approximately the same time and cover twice as much 

hardware as the point-orientated schemes. Some improvements for the 

Jacobi scheme is obtained if we adopt the pipelining strategy for 

(5.l.20b) which was used to reduce a block-ips cell requirement to two 

point ips cells. Recall that the cell count of Theorem (5.1.1) was 

roughly halved due to this pipe lining effect, but that computation time 

remained unchanged, even though the pipe lined block ips had an apparent 

cycle time of a single ipso The problem was the feedback loop associated 

with the boundary cell, which forced a two ips cycle time. In the Jacobi 

scheme the boundary avoids these feedback problems. Thus, by virtue of 

the fact that each Jacobi iteration appears like an extended matrix 

vector computation which utilises both speed up and reduced cell count 

to give a factor of 2 improvement in performance over the point schemes 

in Berzins, Buckley and Dew [83]; Closer analysis indicates that this 

optimised 2x2 explicit block matrix vector calculation (with two point 

ips cells per block cell) is a variation of the D-pipe (of Section (4.1». 

We conclude that the D-pipe is simply an implicit block version of 

explicit block calculations. Furthermore from the simple observation 

that F in (5.6.9) is an X band matrix with null forward and backward 



356 

diagonals. It follows that a factor of 4 speedup can be achieved using 

2 the D -pipe arrangement for the Jacobi iteration as shown in Fig. (5.6.1) , 

where the P .. inputs are derived from the partitioning of (4.1.10)
l.J 

(4.1.15) applied to F. Tracing the operation of the D
2
_PiPe Jacobi 

iteration we can derive the following theorem. 

Theorem 5.6.2: For r iterations of the QI Jacobi method applied to the 

nxn system Ax=b where A has forward and backward bandwidths w
l 

and w
2 

can be computed in T=!n+ (r-l) (p+l) +MAX ( Lp/~ .[3/~ ) + /p/2] +l, where 

w=p+q-l=MAX(W
l

,w
2

) and uses r(4w+10) ips cells. 

Proof: 

From Theorem (4.1.3) the timing of a single Jacobi iteration is 

2 
given by T=n/2+w/2+c where c=3 is the combined latency of the D -pipe 

adders and the 2x2 solver in Fig.(S.6.l). 
2 

It follows from the 0 -pipe 

arrangement that the latency of each iteration is p+l ips cycles. 

Allowing MAX ([y/~ , Lq/~) cycles of synchronisation on the first 

iteration, the rth iteration starts computing after (r-l) (p+l)+MAX(LP/~I, 

~/~) cycles. The total output length is !n (see 2x2 solver input) 

and the first output is delayed by rp/21+l cycles while c~k) and c(k~ 1 11: ~ I l. n-l. + 

accumulate their terms. The timing follows. The area bound is simply 

found by observing that the left and right o2_PiPes of a single 

iteration require 2w ips cells each, and that the 2 x2 solver uses at 

most 10 ips equivalents, giving a total of 4w+10 ips cells per iteration. 

Notice that the o2_pipe symmetry not only reduces the input output 

data length but minimises the latency of each iteration. For example, 

when wl=Pl+ql-l and w2=P2+q2-l applying the QI permutation produces a 

2x2 block form with w=(Pl+P2)+(ql+q2)-1 and iteration latency (Pl+P2)+1, 

whereas the o2_pipe has latency MAX(Pl,P2) +1. 



~ p~~) p:~ ,~) ':' p~',:, p~!' '1~' 

b, 0 0 p,I:' ,:" P::' p~' () 0 

~ 

li li X,'14 

li li X,"" 

~~~L~~"~------~iL~~":r------------J 

x

x,"+1I x.,,+1,
Xa(ll+1, .. (11+1'

X,(II+11 Jet"+')

0("'., Single Iteration of XWZ Double IPS Pipe

ab cd

e d

FIGURE 5.6.1a

(k+l)
xi

ti ..

t

t+1

t

t+l

It)
Xz

z-n-i+l

n- delay

read a,b,c,d

output e .. ac-bd

read a,b,.

output c-a/e, d .. b/e

FIGURE 5.6.lb: 2x2 system solver

357

XoI14

..... ,

.. Itd

right
hind
lid.
Amy

358

The 02_pipe iteration is easily extended to Jacobi overrelaxation

methods, but cannot be applied to Gauss-Seidel forms. The reason

is simple, the feedback loop associated with the triangular solver

portion of an iteration prevents the application of the 02_Pipe

partitioning. Consequently, an improvement can only be made if the

permuted form of (X+W) has a null first subdiagonal block, so that a

block version of Fig.{4.2.l) can be constructed.

Finally we consider the input format of the last solution of (5.6.l0)

when n is odd and the system reduces to a single equation. The computation

i 1 i (k) (k) i '1 bl . nvo v ng ci or c . 1 s preserved eaS1 y with ock cell 1nputs of n-1.+

the form,

[:] = [:] + fa ~ [cl
19 ~ dJ

and

~~ ~~ C d [:]
for block sub- and super-diagonal blocks respectively. If we also

represent the last equation of (S.6.l0) by the system,

it follows that the boundary cells of each iteration produce,

=

which also preserve computation. Consequently only changes to input

format not the cell operation are required when n is odd.

359

5.7 SUMMARY

In this chapter we examined the suitability of Quadrant Interlock-

ing methods for the systolic solution of linear systems. The QI perm-

utation which can be formalised as a matrix P with elements Pij given

by,

1
i~l (1) (n+l)

Pi,2i-l
~ 1

2

Pij
~

p i~l (1) (n-l) n+l,. 2' 1 ~ 1
""'- J. + 2 2

(5.7.1)

for n odd and

IP. 2' 1 ~ 1 .1., ~-

Pn = 1
z+i,n-2i+2

(5.7.2)

i=1(1)n/2

for n even,

was utilised to solve data localisation problems in array dataflow.

A side effect of this indicated that,

T X ~ PDP , T W = PLP , and Z = pUpT (5.7.3)

where L,D and U were 2x2 block lower, diagonal and upper triangular

matrices respectively. Consequently all QI arrays were special block

forms of traditional systolic arrays which utilised pre- and post-

permutations according to (S.7.3) to maintain sparsity patterns.

For QIF methods the ordinary scheme reduced immediately to the 2x2

block scheme of Robert [85] with computation time T~2n+min(p,q} for a

matrix of bandwidth w=p+q-l and efficiency e=!. The idea of implicit

block calculations was introduced with the modified QIF form which

allowed the ordinary point oriented calculations to be performed on

block structured arrays, retaining their improved efficiency and

computation time without introducing the problems of solving block

structured coupled systems after factorisation. This concept was

3W

extended to produce an orthogonally connected triangular array with

computation time T=2.5n+s (where s was the block bandwidth) and a

reduced number of processors for the root free Choleski factorisation.

From these experiments it was established that the QI permutation

could be used most effectively to minimise the bandwidth hence cell count

of factorisation arrays for the X-band matrix. Thus the QI methods are

most suitable for solving periodic and circulant type matrices systolically.

With this knowledge the O(n) and p-cyclic BATS cells in Chapter 4 were

redesigned to improve throughput and in the latter case stability,

producing a faster circulant system solver.

Block Gaussian Elimination was considered next, but proved less

successful. The 2x2 block form gave rise to an elimination array with

T=2.5n and improved efficiency which resulted from the fact that the

equivalent of two rows of point ips cells were started in parallel

rather than sequentially. A preprocessor was also defined which re-

formatted the standard elimination input 'on the fly' to neatly expand

the bandwidth of the host to the size of the block array.

Finally 2x2 block forms of the Jacobi and Gauss-Seidel iterative

schemes were considered and shown to use twice the number of cells of

the ordinary point schemes without improving computation time. The use

of a pipe lining trick produced the same cell count as the point arrays

and established a relationship between the 2x2 block matrix vector arrays

and double pipes.
2

Using this correspondence a fast D -pipe Jacobi

iteration was defined which minimised iteration latency and produced a

factor of four speed-up over the point version while using only twice

the number of cells.

CHAPTER 6

SYSTOLIC PRECONDITIONING AND INCOMPLETE ARRAYS

"Mlking Workable choices occurs in a crucible of Inform::ltive mistakes.

Thus intelligence accepts fallibility. And when absolute (fallible)

choices are not known, Intelligence takes chances with limited data

in an arena where mistakes not only are possible but necessary".

- Darwi Odrade

extract from "CHAPTER HOUSE

DUNE", by Frank Herbert.

361

In this chapter we are concerned with systolic algorithms and

arrays for preconditioned iterative procedures used in the solution

of systems of linear finite difference equations derived from partial

differential equations. For boundary value problems the resulting co

efficient matrix is large and sparse (i.e. narrow bandwidth). The so

called preconditioned methods are primarily aimed at increasing the

convergence rate of iterative techniques used to solve these linear

systems by pre(post)-multiplication of the system by a suitable

additional preconditioning matrix. Hence the use of preconditioning

increases the arithmetic work in the solution process, which must then

be offset against the greatly improved convergence rate to produce a

faster algorithm.

With respect to systolic arrays we are mainly interested in the

representation of this additional computation associated with pre

conditioning which may offer overall reductions in cell count and

computation time due to a reduced number of iterations for existing

systolic designs. Relevant reading on preconditioning can be found in

Evans & Lipitakis [79), Evans [83c), Evans & Lipitakis [83), Lipitakis

& Evans [80), Lipitakis [78).

6.1 BASIC PRECONDITIONING METHODS

Let
AU = d , (6.1.1)

be a system of n linear equations, where A is positive definite, non

singular, banded, and of large order. Such problems arise from the

application of finite difference techniques to the solution of partial

differential equations. Now, clearly if A is easily invertible (61.1)

is trivially solved by,

362

-1
u = Ad. (6.1.2)

However, it is often the case that difficulties arise in the

-1
construction of A ,especially when A results from the discrete

approximation of P.D.E.'s on a grid. The key concept of preconditioning

-1
is to select some nonsingular matrix R, where R approximates the

inverse of A but whose construction is much simpler than forming A-
l

itself, (6.1.1) is then easily preconditioned by the premultiplication

-1
of R to give,

where R is termed the conditioning matrix. From (6.1.3) the general

iterative procedure,

(6.1.4)

follows naturally and is consistent with (6.1.1) provided a#o and R

is nonsingular. Now if a=l and R-l=D-l (where D is the diagonal matrix

of A) (6.1.4) corresponds to (2.4.1.3), or the Jacobi method.

-1
Consequently, a careful choice of a and R can produce many of the

basic iterative methods. For a>l we produce the simultaneous displace-

ment method of (2.4.1.4) and application of Theorems (2.4.1) and (2.4.4)

indicates that the asymptotic rate of convergence is given by,

(6.1.5)

which after some further manipulation produces,

2
Roo = P I (6.1.6)

where P is the P-condition number from definition (2.2.8). Equation

(6.1.6) indicates that the rate of convergence is inversely proportional

to the condition number of A, a result which generalises to many other

iterative techniques, see Evans [83c]. Consequently an improved

-1
convergence rate is achieved if the condition matrix R approaches A

363

such that the condition number of R-lA is much less than the

corresponding value of A. Furthermore the parameter n can be chosen

according to Theorem (2.4.4) to minimise P and the number of iterations

(i.e. maximise the convergence rate) .

Using this basic preconditioning principle we can define two main

classes of preconditioned iterative methods for the solution of (6.1.1)

termed implicit and explicit preconditioning respectively. The main

difference between the two schemes being the choice of the precondition-

ing matrix. If R is known or easily found (6.1.4) must be re-arranged

to produce the implicit scheme,

R((i+l) (i» (d A (i» u -u :::: ex. - u , (6.1.7)

(i+l) (i) (i)
If we denote ~u=u -u and e=(d-Au) (6.1.7) is then equivalent

to the solution of the linear system,

R~u = ne. (6.1.8)

Using (6.1.8) implicit schemes can be further subdivided into compact

and sparse forms.

In a compact form R in (6.1.8) is based on a factorisation of A

into easily invertible (i.e. solvable) matrices such as lower and upper

triangular type factors. However a direct factorisation of A especially

with sparsely banded matrices leads to fill-in increasing memory

requirements of conventional algorithms. Compact preconditioning controls

the fill-in problem by the production of incomplete factors Land U ,
s s

where R=L U "A such that the error norm (A-R) is kept to a minimum.
s s

Table (6.1.1) lists some of the factorisation strategies which have

appeared in the literature to date, and are not discussed in detail

here, except for the following remarks. First it must be clear that

each method (in Table (6.1.1» adopts its own strategy for retaining the

364
.Exact Method

R conditioninq
Iterative Method matrix

1 Caussian !!van. (1974)

E~n8flon [£-16/1
A .-1 • •

2 Trianqular Stone (1968),

=:!if~8atlon [£6/1 !!van. , Lipitaki., (1979)

• •
3 Choleski Square Dupont (1968), Meijerink

Root T & Van der Vorst (1977),
AOW

T 2.2. Gu.tafs,on (1978)

4 Root Free !!van. & Llpltaklo (1982)
Factorisation [£.,P.6/J. A{f! DOlI

5 Root Fre,e Kershaw (1978)

Ch!le.~
A~ D !1!sD. a:

6 Normalised
D T TTD

Varqa (1960), !!van. &
Symmetric Lipitaki. (1980)
Factorisation

s s s s

A=DTTTD

TABLE (6.1.1): Approximate factorisation methods·

a R Iterative Method

1 I Jacobi (J)

2/(a+b) I Simultaneous Displacement (SO)

1 (I-L) Gau9s-Seidel (CS)

10 (I-wL) Successive OVerrelaxation (SOR

.,(2-10) (I-OIL) (I-wU) Symmetric SOR (SSOR)

1 • Preconditioned Jacobi(PJ)

2/(a+b) • Preconditioned Simultaneous Displace-
ment (PSD)

.r (I+rH) (I+rV) Douqlas-Rachford ADI (OR-ADI)

2r (I+rB) (I+rV) Peaceman-Rachford ADI (PR-ADI)

.2/(a+b) (I+rB) (I+rV) Alternating Direction PreconditIoning
(ADP) , (or EADI)

TABLE (6.1.2): Iterative methods

-1
where a,b are the smallest and largest eigenva1ues of R A.

sparsity of its L ,U factors subject to the type of coefficient
s s

365

matrix. Second, the amount of work saved by producing the incomplete

factors may not be large, consequently a valid criticism of compact

preconditioning is that it may be better to produce a direct factor-

isation to solve (6.1.l)and avoid the iterative form (6.1.4) altogether.

In contrast, sparse preconditioning avoids the large amount of

work of compact preconditioning by adopting factors based on a simple

splitting of A. If we assume without loss of generality that the system

(6.1.1) is normalized (6.1.4) represents all known first degree linear

iterative schemes for suitable choices of a and R, indicated in Table

(6.1.2) where A is assumed to have the form,

a) A = I-L-U or b) A = H + V , (6.1.9)

with L and U strictly lower and upper triangular matrices respectively

and H,V are symmetric, positive definite matrices that commute (see

Varga [62]). Thus if A can be suitably split into two matrices, the

general form of R can be expressed as the product of these two matrices.

That is,
R = (I-wL) (I-wU) = L U

s s

for (6.l.9a) and,

R = (I+rH) (I+rV) = L U s s

(6.1.10)

(6.1.11)

for (6.l.9b) where wand r are acceleration parameters associated

with the method. we conclude that all known convergent iterative

methods can be interpreted as improvements on the "condition" of the

system (6.1.1) by a different choice of condition matrix R.

Explicit preconditioning provides a further alternative form to

(6.1.3) where (6.1.1) is premultiplied by a matrix Q to yield,

QAu = Qd , (6.1.12)

such that QA is a matrix with a simple splitting which produces a

366

novel iterative method. For instance, the Jacobi form of the explicit

preconditioned method is given by the following formulation where

(6.1.1) is assumed normalized. We set,

A = I - B , (6.1.13)

and precondition with Q=(1+B) to obtain,

2
(1-B)u = (1+B)d ,

which yields the iterative formula,

(6.1.14)

u(i+l) = B2u(i) + (1+B)d , (6.1.15)

Likewise the Gauss-Seidel iteration with the splitting (6.1.9a) is,

(1-L)u = Uu + d , (6.1.16)

and using the preconditioning matrix Q=(1+L) yields the iterative

formula,

U(i+l) = L2U(i) + (I+L) (uu(i) + d) • (6.1.17)

Notice that both these methods lack a parameter a which appears in

(6.1.4) and in conjunction with the choice of R is used to control the

condition number. Furthermore if we denote the eigenvalues Ai' i=l(l)n

of B in (6.1.13) such that,

where a and b are the smallest and largest eigenvalues respectively,

and B is convergent.
2

The iteration matrix B of (6.1.15) has eigen-

2
values ~i=Ai' i=l(l)n satisfying,

2 2
a ~1~.I::b <1

~

implying that the P-condition number is increased! From (6.1.6) this

indicates that the rate of convergence of the preconditioned method is

slower than that of the un-preconditioned form. This apparent

contradiction in improving convergence rates by preconditioning methods

can be resolved by considering the norm of the iteration matrix and its

relation with the Neumann expansion. Let the linear system,

367

Cu = b , (6.1.18)

have the matrix splitting C=G-H and the generalised iteration form,

(i+1) (i)
U =Mu +z, (6.1.19)

-1 . -1
where M=G H, and Z=G b. When (6.1.19) converges I IMI I <1 and from

(2.4.3.10) ,

(r) r (0) r-l r
u = Mu + (M +M + ••• +M+I)z (6.1.20)

with u(O) the initial starting vector. On convergence Mru(O) =0 and

u = r-l Mr
(M + + + M+I)z (6.1.21)

thus (6.1.22)

Indicating that convergence is accelerated if more terms in the

Neumann expansion of the iteration matrix are constructed on each

iteration. For example, repeated substitution in (6.1.15) yields,

u
(1)

= (I+B)d

(2) 3 2
u = (B +B +B+I)d (6.1.23)

(3) 5 4 3 2
u = (B +B +B +B +B+I)d

compared with,

u
(1)

= d

u
(2)

= (B+I)d (6.1.24)

(3) 2
u = (B +B+I)d

in the unpreconditioned Jacobi method. Notice that (6.1.23) collects

two terms of the expansion every iteration compared with only one

term per iteration for (6.1.24). Alternatively, the explicit nature of

the preconditioning is exposed if we substitute R=L U and (6.1.18) into
s s

(6.1.8) to yield,

L U 6u = b_Cu(O) ,
s s

with /:;u=u(l)_u(O) and a=l, which on re-arrangement gives,

, U-1L-lb -1 -1 (0) '-'u = - U L Cu ,
s s s s

(6.1.25)

(6.1.26)

368

-1 -1 -1 r-l defining L ;G and U ;(M + ••• M+I) yields,
s s

-1 (0) -1 (0)
~u ; C b - u ~ Cb; u +~u (6.1.27)

-1
indicating that if C is known the solution u can be found directly,

but more importantly that if some powers of M are known the explicit

-1 -1 -1
preconditioning method is accelerated by choosing U L ;R ,such that

s s
-1 -1 it forms a closer approximation to C (or A in (6.1.1)).

In the following sections systolic arrays for the above preconditioned

iterative schemes are developed. The arrays themselves correspond to

a global array structure (see Fig. (6.1.1)), consisting of two stages,

a pre-processing stage for preconditioning and an iteration stage for

solution. Now, from a computational viewpoint the basic aim of pre-

conditioning is to offset the increased arithmetic work introduced to

u

A d

{y
SYSTOLIC

PRECONDITIONING
PREPROCESSOR

(0) M'\) v

CASCADED
MATRIX ITERATION

(r-l)
u

ARRAY

~

M

Y

v

.

FIGURE 6.1.1: Global structure of a preconditioned solver

369

the solution process (due to ill-conditioning) against the greatly

improved convergence rate of the method to produce a faster design.

Thus the essential motivation of systolic preconditioning is a tradeoff

of cells introduced to the preconditioning preprocessor against those

removed from the iteration section of the array. To this aim appropriate

pre-processing arrays must be developed which maximise overall cell

reduction while retaining convergence rate improvements. Hence systolic

preconditioners place an additional constraint on the choice of R.

6.2 HEXAGONAL MATRIX POWER GENERATION

The first preprocessor we consider is a pipe lined array for

generating the powers of a matrix. This problem has a certain intuitive

appeal because in addition to facilitating the construction of (part or

all) the Neumann expansion and performing explicit preconditioning, it

also has much wider applications. For example the exp(A) , sin (A) ,

cos (A) and log (A) of a matrix A can all be expressed as matrix power

series. The power generator also incorporates a recurrence type

formulation which makes it attractive for systolic implementation,

because the traditional matrix product array of Fig.(3.2.l.6) can be

applied directly using a mUltipass formulation to yield,

C ~M o
for i~l TO k DO

{A~Ci_1,B~Ci_l

C.~Z+(A*B)
~

}

(6.2.1)

2i
when z~O, (6.2.1) generates the sequence M of successive matrix

i+1 . squares, by setting B~M the sequence M ~s produced, and when in

addition CO~Z~I the Neumann expansion. The start matrix M is also

370

banded, so each pass produces an increase in the bandwidth of C.,
~

i=l(l)k, and hence the number of cells on the next pass affects both

area and time. To produce a fixed sized design the array must be big

enough to allow the growth of the bandwidth on each pass. Suppose M

has an initial bandwidth w
o

=po+qo-1, where po=number of super diagonals

and qo=the number of subdiagonals (including the main diagonal). A
. 2

simple analysis gives the bandwidth of M as wl=W0+(po-l)+(~-1)=2wo-1,

and so generally,

2w. 1 -1, i=l(l)k ,
~-

(6.2.2)

is the bandwidth of It follows by repeated substitution in (6.2.2)

that,

k k-l k-2 0 = 2 w
o

-(2 +2 + ••• 2)

which after the summation of the geometric progression produces,

(6.2.3)

i+1
Alternatively if the sequence M is computed the bandwidth grows

much more slowly according to,

w: = (i+1) [;- -1] + 1 ,
~ 0

which follows from induction on i with w =w , i.e., for i=l, o 0

and generally,_
w

i

= 2" -1 = o

= wi_l+(PO-l) + (qo-1)

= i (wo-l) +1+ (wo-l) = (Hl) (wO-l)+1

and when (i+1)=2 j substitution in (6.2.2) yields the result,

(6.2.4)

directly. Now as w.<w. the maximum number
~ ~

of hex cells required to

compute all the powers up to and including
2k 2

M is w
k

_
l

' as the bandwidths

371

of A and B are both at most w. 1 on each pass of (6.2.1). When the
1-

(Hl) . . -sequence M 1=1(1)k is computed A can have bandw1dth w. and B has
1

2
constant bandwidth Wo on each pass, so that only [(k+l) (wo-l)+l)wO<wk _l

cells are required and produce an increasingly skewed hex array as the

bandwidth expands. Clearly these cell bounds hold only for small k

which ensures that the last matrix in the sequence is also banded.

However, if k is increased wk and wk approach 2n-l and the matrix fills.

Since the bandwidth of successive powers cannot exceed that of a full

2 2
matrix an upper bound of w =(2n-l) hex cells is established. It follows

that this dense array can compute an infinite sequence of powers by

multipass and from Theorem (3.2.1.6) k passes require T=k(5n-l) ips

cycles.

REMARK: An orthogonal array for multipass powering has recently

appeared in Quinton, Joinnault and Gachet [86) and indicates that

'Corollary (3.2.1.3) carries over to matrix power generation.

Finally, we can determine the maximum matrix power that can be

computed for a given matrix before we use more hardware than the dense

case, by the relations,

2 2 w
k

_
l

l; (2n-l)

k-l
2 (wo-l) l; 2(n-l)

for the

kl;fiog(n-l)-log(w -1)+21
. 0

21
sequence M ,i=l(l)k and,

(6.2.5)

l;
(wO -1) Wo

(6.2.6)

for the sequence Mi +l , i=l(l)k.

372

The above relations completely define the behaviour of systolic

matrix power generation and a number of drawbacks can be identified

.
which can help to characterise the type of preprocessor we should

attempt to produce:

(i) The matrix square operations duplicate the matrix input

(11)

bringing each element from the host memory more than once.

2
For the early powers of the banded matrix the bound of wk _l

cells results in unused cells which reduces efficiency, and

delays output of the array unnecessarily.

(iii) The total number of host input output lines is 3 (wl +w2) ,

where wl =w2=wk_l for repeated squaring, wl=wk_l ' wZ=wo for

HI the sequence M ,and w1=wZ=Zn-l for the dense matrix, when

wl and Wz are the bandwidths of A and B respectively.

(iv) The array inputs from North West, North East, and South in

Fig.(3.2.1.6) make pipelining difficult, and multi-pass

iterations reduce throughput.

Below we describe a reduced bandwidth array for a matrix product, which

can be pipelined and which incorporates optical concepts of a soft-

systolic frame to avoid duplicate inputs by bringing the matrix M from

the host only once. Figure (6.2.1) shows the global input structure of

the reduced bandwidth array with data movement through the modified hex

being shown as a ray diagram; using the principle of wavefront reflection

(from optics). The main principle of the array is to add an upper

2 boundary of cells on the north edge of the existing hex (of wk _l cells)

which act as reflectors and mirrors for individual data sequences and

wavefronts respectively. Tracing dataflow as illustrated by the snap-

shots of Fig. (6.2.2) indicates that data moving south to north as it

373

"11 - b
ll - "21 - b

12 -
"31 - - "12 - b21 - b

13

"22 - b
22

- "32 - b
23 -

"42 - - "23 c
ll

b
32 - b

24
a 33c 21 - c

12
b

33
- "43 c

31 - c
13

b
34

a
S3

e
41 - "34 c

22
b

43 - c
14

b
3s

c
sl - a44c32 - c

23
b

44 C
lS - "54 c

42 - c
24

b
4s -

&64 c S2 - a
45

c
33

b
s4 - c

25 b
46

c
62 - ·SSc43 - c

34 b
ss c

26

"65 cS) - C
3S

b
s6

~
etc.

A B r r

A "virtual source of A Ar=real source of A v
Bv·virtual source of B B -real

r
source of 8

FIGURE 6.2.1: Reduced bandwidth input format

leaves the hex is incident on the mirror-like boundary and reflected

back into the-hex. The reflected data waves appearing on the NE and

NW boundaries from the arrays viewpoint to emanate from two virtual

sources A and B , mimicking the traditional hex.input. This array,
v v

however, requires less host input/output connections as the NE and NW

inputs are part of the array.

Now from the input format the result matrix C and real matrix

374

FIGURE 6.2.2: Reduced array snapshots

ta12

r~"',
I ,

r L , (\) - \ .
I -

(,)
,- I

'-r'"
'5)

'54

375

FIGURE 6.2.2: continued

376

inputs A ,B must be multiplexed on the same south-north inputs. The
r r

key to the data multiplexing is the manner in which neutral elements or

the holes of the C input are filled. To preserve computation, the data

elements once inside the array must constructively interfere. In fact,

we can identify just four types of interference for this particular

problem, which are given below.

(i)

(H) A)

(iii) A) b)

(1v) A) b)

constructive
Interference

Neutral
Interference

Neutral
Interference

Destructive
Interference

Case (i) is the true inner product step necessary for correct matrix

production operation. Cases (ii) and (iii) represent the two possibilities

of data moving SW and SE meeting an A or B element on its trip to the
r r

mirror section before reflection. This is a potentially disastrous

situation; but the inner product (y=y+O*x) indicates that computation is

neutral and preserves all inputs. This leaves only case (iv) where three

377

data elements meet in the same cell like case (i) but where no c
ik

value is present. Clearly this type of operation would modify the A
r

or B elements before reflection generating an incorrect product. But,
r

the reflection in Fig.(6.2.l) is made so that virtual data inputs are

the same as those in the traditional hex. It follows that only cases

(i)-(iii) are possible, otherwise the original hex would miss the

accumulation of at least one full partial product, and this is impossible

because the traditional array is formally verified in Melhem & Rheinboldt

[84]. However, closer analysis of the dataflow in Fig.(6.2.2) indicates

that a situation similar to case (iv) can occur if A and B data is not
r r

placed correctly. The data elements are placed in the south input in a

manner related to the bandwidths of A and B. When the matrix bandwidths

are different the array becomes rectangular and skewed in the direction

of the largest bandwidth, and the A,B inputs take different amounts of

time to synchronise with C. Consequently, it becomes possible for a

clash (where two inputs require the same slot) to occur. The south

boundary of Fig.(6.2.l) has w
l

+w
2
+2 inputs and can be partitioned into

non-overlapping regions which prevent A and B inputs from colliding,

reducing the problem of clash resolution to the examples in Fig.(6.2.3).

In case (i) A" elements clash with C,' entries, case (ii) indicates a
1J 1J

similar clash with the Bij elements in an alternative non-clash position,

and case (iii) indicates the simultaneous collision of A'j' B, , values
1 1J

with C,' elements. A simple observation on dataflow shows that shifting
1J

the C,' elements back along the input stream by a sufficient number of
1J

spaces resolves all clashes. Unfortunately shifting destroys the

synchronisation necessary for constructive interference, and the Aij

and Bij elements must be delayed somewhere in the array to resynchronise

(i) - b
ll

- (H)

- all - b
12 - all -

a
21 - b

21
- - bl3 - a - b

ll 21
a

31
- a

12 - - b
22

a
31 - a

12
- b

12
- a

22 - b
23 - a 22 - b

21 - - bl3

a
32 cll b 32 - - b

24
a

32 cll - b
22

a
42

- X c
12

b
33

a
42 - X c

12
- b

23
X - c l3b34 X - b

32
c
l3 - b

24
x c

22
b

43
- c

l4
b

35
X - c

22 - b
33

c
14

x X c
23

b
44

- c
45

x x c
23

- b
34

c
l5

X - c
24

b
45

x - b
43

c
24 - b

35
X - c

33
b

54
- c

25
b

46
x c

33
- b

44
c

2S
x x c

34
b

55
c

26
X X - c

34
- b

45
c

26
X - c

35
b

56
- x - b

S4
c

35 - b
46

X = clash

FIGURE 6.2.3: Clash resolution

(Hi)

all

a
21

a
31

a
12 -

a
22

a
32 - cll

a
42

X

X

x - c
22

X x
X

x - c
33

X X

X

- b
ll
-

b
2l
- b

22
-

X

X

X

X

X

X

-
b

12
-

b
23
-

x

x

bl3

b
24

X

X

w ...,
(X)

379

data. The most likely place for delays is the mirror boundary.

Reflecting cells are trivial to construct and consist of a small delay

queue for resynchronisation and a switch for reflecting and non-reflecting

states controlled by a single bit tagged to the south input elements

which operates as follows:

Sin

N
out

SE
out

IF TAG THEN SE =0
out

ELSE SE =Front-of-Queue
out

Back-of-Queue=S.
~n

N =Front-of-Queue
out

Thus, setting the tag bits of C
ij

elements true prevents them from re-

entering the array by reflection and upsetting subsequent computations.

Theorem 6.2.1: The product of two nxn matrices A and B with bandwidths

w
l

and w
2

respectively can be computed on a Reduced Communication Band

width Hexagonal array of wl*w2 inner product cells and w
l

+w
2
-1

reflecting cells in T=3n+(w
l

+w
2

}+2q ips cycles where q>O is a small

constant.

Proof: [By generalization of the snapshots in Fig.(6.2.2}].

The delay for positioning A or B depending on which has the longest
r r

distance to travel to the reflectors is min(w
l

,w
2

} (the longest vertical

distance from south to north boundary). Reflected elements are delayed

q cycles in the reflecting cell, and require at most max(w
l

,w
2

} for the

c
ll

element to meet the reflected elements and accumulate its final value.

After a further delay of q cycles through the mirror boundary c
ll

is

output giving an array latency of (w
l

+W
2

}+2q cycles. As the output

length is 3n the theorem time follows immediately. The design requires

an additional w
l

+w
2
-1 reflecting cells for the mirrored upper boundary

380

and the same ips cells as Theorem (3.2.l.6) producing the area bound.

Finally the former hex required 3(w
l

+w
2

} input and output connections

compared with 2(w
l

+w
2

} for this design saving a third of the host

connections and reducing the communication bandwidth. Finally experi-

ments with clash resolution indicates that q is small (i.e. 2,3) making

the reflecting cell overhead negligable.

Next, to improve throughput and reduce input duplicat~we introduce

a preprocessor to convert the above general matrix product array into a

pipelined power generator. The structure

squaring and its pipeline arrangement for

of a preprocessor for matrix
2i

the sequence M i=l(l}k are

shown in Fig.(6.2.4}, and consists of three major sections, a collector,

transmission gap, and reformatter. The collector accepts a single

matrix input in standard hexagonal matrix input representation and

creates a duplicate. The transmission gap then separates the two

representations into non-overlapping regions of the input to form a

basis for the A and B inputs. Finally, a set of delay queues reformat
r r

the data to resolve any clashes, synchronisation, and tag bit alignment

problems before input to the reduced hex array. Assuming a hex array

of w~_l ips cells produces a fixed sized pipeline component and computing

the matrix square operation simplifies data re formatting as the hex is

more symmetrical than skewed because A and B have the same bandwidth.
r r

Furthermore, considering the detailed operation of the preprocessor

indicates that with slight modifications it can also generate the

i+l
sequence M , i=l(l}k and sum the first k+l terms of the Neumann

expansion. A detailed example of the preprocessor for some stage i in

the pipelined generator is shown in Fig.(6.2.S}. For simplicity the

preprocessor can be partitioned into left, centre, and right sections,

Preprocessor

M

M L ____ _

'\ ./
COLLECTOR REFORMA'ITER

TRANSMISSION
GAP

a) Single pipeline stage

M2

Mr -----I ------------ K2 ! n ~ : r-------- _____ ,M
4
_--- __ _ " ----_. " -----."

I

I
I
I
I
I
I I L __________________ J

I
I
I
I

I 1 L __________________ J

b) pipe lined power generator array

I
I
I
I
I

HEX

I , L _________________ ~

FIGURE 6.2.4: Pipelining of mUltipass power generation

w
CD

(
,- .. ",.

'-~ ;1,
I '
r~
~r,
~~
'[
r

I~--'
I I I J I I IL...... L._ L._.J
"------

-,
I
I
I
I
I
I
I

, I
, I

" I
" I

" I
" I

" I ,I I
/ I

r-l -, r-' I
I ,'L : I :1

_ ~ -~ _:: _':.:'J

REDUCED
"EX

TAG BIT
REALIGNMENT
ARRAY

SCRATCH PAD
ARRAY

TRANSMISSION

GAP

COLLECTOR

382

FIGURE 6.2.5: Detailed preprocessor design for pipelined pcwer
generation (using w

k
_

l
=5)

where operation of the left and right parts is similar. It follows that

by denoting the inputs and outputs of stage i by A;i) 'B;i) and c!i)

respectively, that the preprocessor operation is described fully by the

left and centre sections.

Now the first non-zero elements to leave stage (i-l) and enter the

stage (i) preprocessor are the A(i-l) and B(i-l) values, which if allowed
r r

383

to reach the stage (i) hex array could interfere with later computations

and consequently must be removed. Removal of these elements is achieved

by an array of scratch pad (SP) cells which checks the tag bit of each

input element, resetting the data elements (to zero) for false bits, and

the tag bit itself for true bits. This scrubs the stage (i-I) output

(i-I) to leave only C values non-zeros. The re formatting section then
pq

(i) (i-I) (i) reformats this scrubbed input stream to generate A from C (B
r r

in the right section) by delay queues organised to create the correct

amount of skew. The next step is to re-generate the tag bit structure

to identify the c(i) elements which will accumulate the partial products

of stage (i). Fortunately assuming that each stage of the pipeline has

cells simplifies identification of the new c(i) elements, because

and B(i) can be given the same bandwidth (by a suitable padding of
r

zeroes) at each stage. Hence the number of cycles between the 'leading

elements A(i) (1,1), B(i) (1,1) and C (i) is always the same. Once the
r r 11

(i) (i)
Cll position is identified the remaining C

pq
elements are easily

located using the regular chevron structure portrayed by Fig.(6.2.1).

The tag bit alignment for stage (i) is then easily generated by a linearly

connected unidirectional array of tag realignment cells, which pump

control bits from right to left (left to right in the right preprocessor

section) setting the tag bits of the re formatted A(i) (B(i)) data as they
r r

pass vertically through the array. Deriving the control bit sequence

from the suitably delayed tag bit sequence associated with c(i-l)
pp

generates the correct chevron input for c(i). Thus, the centre section

of the preprocessor consists simply of a special scratch pad cell which

clears all elements but leaves tag bits unchanged, and a delay queue of

size d
q

, where, d
q

is the number of cycles between A;l) (1,1) or B;l) (1,1)

384

and ci~). The choice of measurement from A;l) (1,1) or B;l) (1,1)

determined by the original input format and bandwidth of the starting

matrix (M).

i+l . TO produce the sequence M the r~ght preprocessor section must

be modified to allow the B(i-l) matrix to be re synchronised in stage (i).
r

This is achieved by allowing data to pass straight through the collector

and transmission gap (see Fig.(6.2.6)), modifying scratch pad cells to

zero data elements with true tag bits and adding additional delays in

I
I ' , l J

i rr, r1

I~~
:"~[~ J: rf.

o J 0
I- L,fo"

,l,
o 0
L •

r '
:(
~(
• 0
L.

)

SynChrOnlSin9
delay for

(1) (1-1)
B -B J r r

FIGURE 6.2.6: Alternate right section for producing Neumann expansion
(d ~3)

q

(i) (i-l) the reformatter delay queues so that B ~B • The essential idea
r r

(i-l) being to replace the C values which would normally become B(i) by
r

B (i-l) •
r

385

(1) (2) (k) .
Thus B =B = •.• =B =M and by definit1on, the Neumann

r r r

expansion is also accumulated if the centre realignment cell is modified

to set the data elements to one as well as tag bits, and with A(l)=I,
r

B(l)=M initially. We conclude that our pipeline computes all the multi
r

pass forms of (6.2.1) and state the following generalised theorem.

Theorem (6.2.2): k powers of an nxn matrix M of bandwidth w can be

generated (and accumulated) using a k-stage pipeline of reduced band-

width hex arrays of . 2 h S1ze w
k

_
l

were w
k

_
l

is the bandwidth of the largest

power in T=3n+k[2w 1+2q+3)
k-

for q a small delay constant.

proof:

Using Theorem (6.2.1) we note that the output delay of a single hex

array is 2w
k

_
l

+2q, and from the preprocessor of Fig.(6.2.5) the delay

for reformatting is at most 3 cycles. Hence for k stages the total

output delay is k(2w
k

_
l

+2q+3), and as there are 3n results T follows

directly. The area estimate follows from the assumption that each array

contains w!_l ips cells, and that the preprocessor is made up only of

switchable delay registers.

Finally we conclude this section with a few simple observations.

First, the pipeline can be optimised by selecting smaller hexes in the

earlier stages where the bandwidth is small. This complicates pre-

processor reformatting at each stage but reduces cell count and improves

pipeline latency. Second, the duplication of input matrix in the pre-

processor can be implemented easily using electro-optical concepts. The

idea being to convert the data from electrical to optical and back to

electrical signals as it passes through the collector, across the

transmission gap and back into the scratch pad array. The unpleasant

non-planar part of the design in the transmission gap would then be

386

reduced to freespace or waveguided (via a glass wafer) transmission

in which intersecting signals would not interact.

6.3 COMPACT SYSTOLIC ARRAYS FOR INCOMPLETE FACTORISATION METHODS

A preprocessor for implicit compact preconditioning relies on

direct methods for the production of Land U factors, which are able
s s

to control the fill-in factor associated with large sparse system

solution, so that the number of non-zeros created is small when compared

with the nonzeros of the original coefficient matrix. From a numerical

viewpoint this control must also produce an easily specified algorithm

which uses available machine memory efficiently. A number of methods

for omitting fill-in elements are available, for example:

a) restricting specified locations of the coefficient matrix to

be filled in.

b) distributing storage equally among the rows of a matrix.

c) neglecting small elements - on the basis that they will not

affect the result significantly.

d) fill the available storage then forget any fill-ins that cannot

be accommodated.

We can translate fixed storage to fixed area and consider the implement-

ation of an incomplete (or approximate) factorisation process on a

systolic array with dataflow an added constraint on the type of fill-in

strategy adopted. We shall concentrate on the Extended to the Limit (EL)

factorisation of Lipitakis & Evans [80], a method of type a), which

restricts fill-ins to certain diagonals of the matrix. In particular

we develop the concept of EL architectures for producing compact systolic

factorisation arrays. Clearly the success of the incomplete strategy

387

depends upon the structure of the coefficient matrix to be factorised.

In order to asses the compact (incomplete) systolic arrays produced

we consider the system (6.1.1) with the coefficient matrix derived

from the 2-D and 3-D parabolic and elliptic equations given by (2.5.1.17),

(2.5.1.20), which for convenience we denote as problem I, and as

problem II. These systems are not only large and sparse but have also

been subject to a detailed study regarding EL factorisation in Lipitakis

[78], providing a good assessment of new systolic EL type algorithms.

The EL factorisation procedure produces various approximate and

exact factorisations of A in (6.1.1). Essentially, an approximate

method is obtained if A is replaced by (A+R) such that,

A+R=LU
s s

(6.3.1)

with Land U sparse lower and upper triangular factors, whose product
s s

approximates· A with error Ft. The concept of a limit is introduced by

generating a sequence of algorithms (denoted by FACTOR (i)),

A + R = L U ~ FACTOR(i) ,
i si si

(6.3.2)

which produce a corresponding sequence of decreasing residua1s, such

that,

lim (A-L U) = 0 , (6.3.3)
k-+z sk sk -

where FACTOR(z) is the complete algorithm, with R =0. A global z-

algorithm which embodies a particular sequence of FACTOR(i) algorithms

is the ALUBOT algorithm (see Lipitakis [78], and Lipitakis & Evans [80]),

which is stated below for completeness.

REMARK

ALUBOT(N,ID,r ,A) ('* Tri-dlagonal Factorisation "
"labl , 41-42 , 91- C1/Vl

FOR 1-2 TO 11-2

(v J,-bJ,--d1_1*91_1' dtal+1' 9lee!',,!)

v._1-b._1-dm-2*9m_2
/* Rest of Factorisation *'
FOR j-l TO N-m+l

{e1,,-v j +m_1, h1,,·uj/"j
9 ·c Iv , cS ·a 111+,-2 1D+,-2 m+,"'2 111+,-2 ID+,-1
IF t-,+l)-2 THEN

{FOR 1-2,r-j+l

(eij·-91+,_2*el_1,,'
h __ cI *h Iv

) 1j 1+j-2 1-1,j 1+j-l
)

ELSE IF NOT ((jol) OR (r-l)) THEN

{IF j>r THEN IP·2 ELSE IP:r-j+2,

rl"'r+l

FOR !.IP to r

(zaO,

FOR k-l TO 1-1 (z.z+ekj·~_i+r , i.'-r);
1 1

11

FOR k-l TO i-I {z.z+ek-l+rl,l+j-rl·~,j}
hlj·<-Di+,_2*hi_l,j-Z)/Vi+,_1

h

t-r, z-o
FOR. t-l TO i {zaz+ek *hk) .
" -b -4 2h La *e -4 *9 -z

) .+j-I .+j-l 1+j-1 1j 1+j-1 1j 1+j-1 1+j-l

388

To illustrate the method a coefficient matrix A derived from problem I

gives a complete factorisation of the form,

=

A = L
s

z

Cl
l

*

o

u
s. z

389

(6.3.4)

2
where N =n and m=n+l. For the incomplete factorisation, a value r is

specified which dictates the number of non-zero diagonals to be retained

(for fill-in) moving left from the outermost diagonals ei,f
i

• Applying

the ALUBOT produces,

*

~---r---...,

o

:ll~o I
h .
r,l

~il'N-m+l
h r,N-m+l

(6.3.5)

~ ,
r

390

and for r=1(1)m-2 the FACTOR(r) sequence defines arbitrary approximations

to A. An approximate solution to (6.1.1) is then found using the

coupled systems,

L Y = d ,
s
r

U u =~
s

r
(6.3.6)

and by logical extension the preconditioned form (6.1.8) can be solved

by repeated application of similar coupled systems. Thus for simplicity

the l:')ICTOf«i) algorithms can be encoded as the procedure calls,

SEQ

ALUBOT(N,m,r,A)

FBSUBS(N,m,r,L ,U ,d)
s s

r r

(6.3.7)

where the parameter r defines arbitrary approximations to the solution

of (6.1.1) and is used to tradeoff storage requirements, computation

time and accuracy. The method generalises easily to cases with more

bands and for problem II an alternative algorithm yields,

SEQ

ALUBOT-2(N,m,p,r
l
,r

2
,A) (6.3.8)

FBSUBS-2(N,m,p,rl ,r2 ,L
s

,Us ,d)

3 2 r l ,r2 r l ,r2 where N=n , m=n+l, p=n +1 and,

l
~

~
la l gl

>S: 0
I

L = 11---'1.'1 U = s

I
s r l ,r

2
r

l
,r

2

i 0 'n·'". ~
wJ

I
gN-l ~. SN_l I

L N

(6.3.9)

and two parameters are available for optimising space/time/accuracy

tradeoffs.

391

Systolic 'Extension to the Limit' (SEL) Architectures are created

easily in a soft-systolic frame by replacing algorithm code in (6.3.7)

and (6.3.8) by code describing the data structure of a hexagonal

factorisation array. It should now be self-evident that the above

incomplete factorisations admit the possibility of large cell savings,

and defines a sequence of systolic architectures which trade accuracy

against cell count. This view of systolic array derivation is similar

to that in Thompson & Tucker [851 in which a semi-formal model of

algorithm design suggests a sequence of draft designs, formalised by

algorithm transformations as a result of design decisions. In the

present context we view draft algorithms as systolic arrays and algorithm

transformations as movements up and down the approximation sequence

(6.3.2), and across soft, hybrid and hard-systolic frames, with design

decisions based on the technology constraints.

A generalized incomplete array corresponding to the FACTOR(i)

algorithm can be derived as a series of cell compactions as follows.

First Level Compaction:

Let Ws be the semi-bandwidth of A (for problems I and II), and w
I

the interior bandwidth of the central band. From close observation of

the standard hex (Fig.(3.2.2.3» the following features are evident:

a) The matrix A is input in diagonal format

b) Accumulation of the Land U entries of a diagonal occur in
s s

cells of the same column

c) A fill-in entry for an initially empty diagonal can only occur

in a cell belonging to the same column as the boundary input

cell for that diagonal.

Consequently, if we prevent an initially empty diagonal from filling in

392

none of the cells in the associated column can produce a non-zero result.

It follows that each column of cells where fill-in is prohibited can be

replaced by delay cells, as depicted in Fig.(6.3.l). As delay cells

consist only of registers it follows that the array must consume less

area - i.e. more compact. Furthermore the delay cell columns need to

pass data only SW and SE, allowing vertical connections to be removed

altogether producing a sizeable reduction in the host/array interface.

One further useful attribute is that increases in r (or generally r.)
J.

minimise the number of additional hex ips cells introduced. This follows

from the tapered structure of the array and the fact that fill-in

diagonals are retained inwards from the outermost diagonal (column size

increases as we move inward) .

Now the total number of cells saved (or delay cells) is given by,

2
S = W -C , (6.3.10)

s

where C=number of true cells in the compacted design. For Fig.(6.3.lb)

C = (cells in central band) + 2*(cells in retained columns)

with

when

= Cl + 2*C2
W

Cl = W +2 L (W -i) =
s i=l s

w=t~-j and,

r

W +2W W-W(W+l)
s s

L {(W -t+l)-i+l} =
s

i=l

(6.3.11)

(6.3.12)

(6.3.13)

where t is the column index of the first retained column (in this case

t=5). Using Fig. (6.3.lc) the assessment is generalised to give,

C = Cl + 2* (sum of cells in retained column bands)

= Cl + 2*C3

and with ri' i=l(l)k denoting the number of retained columns in k

(6.3.14)

y' 393 s • •
• • •

• • • •
• • • • •

• • • •
• • •

• •
•

.) A complete hex NI
f--O-j

•
• • • • • • • • • • • • • •

• • • • • • •
• •

•
5 4) 2 1 2) 4 5

b) Compacted hex for 2 -D problem 1 (111"'5, r·l)

NI
1-----1

•
• •

• • • • • • • • • • • •
• • • • • •

• • • • • • •
• • • • • • • •

• • • • • • • • •
• • • • • • •

• r 2 r
2 • • • • • • •

• • • • • •
• • • • •

• • • • 1----1 f----l
r

1 • • • r
1 • •

•
9 8 7 6 5 4) 2 1 2) 4 5 6 7 8 9

0) Larger coupactedi hex for 3-D problem II (111-6, P-g. r 1"'2, r
2
-!)

• .. true hex cell, • .. delay (dummy) hex cell

FIGURE 6.3.1: Cell replacement and compaction for EL algorithm

individual bands, and t
i

, i=l(l)k the column index of the first retained

column of each band from the central (or principal diagonal) column. If

a single column band contributes 6r
i

cells

=

and,

Hence we have,

k
L I1r.

j=l J
(6.3.l5a)

r.
{(W -t +l)-i+l} = (W -t.+2)r - -22 (r

j
+l).(6.3.l5b)

s j s J j

k
L (W -t

j
+2)r

j
- !

j=l s

k
L rj (rj+l)

j=l
(6.3.l5c)

394

Thus for problem I, W =n+l,
s

W =3,
I

t=n-2, r=4,

Cl = (n+l)+2(n+l-l) = 3n+l ,

C
2

=
4

((n+l)-(n-2)+2)4- 2(S) = S*4-2*S = 10

C = C
l

+2*C
2

= 3n+l+20 = 3n+21 ,

producing the saving,

2 2
S = (n+l) -3n-21 = n -n-20 , (6.3.16)

over the complete array.

2 2 2
Cl = (n +1)+2n = 3n +1

C3
= t.r

l
+t.r

2
2 2

t.r
1

= ((n +1)-(n-2)+2)4-2(S) = (n -n+S)4-10

2 2
t.r

2
= ((n +1)-(n -2)+2)4-10 = 10

C =
2

Un -Sn+21

yielding a saving of,

S
4 2 = n -9n +Sn-20 , (6.3.17)

over the cells required for the complete array.

The principle is easily extended to matrices in which the band

structure is not symmetric (as opposed to symmetric elements), for

example in Fig.(6.3.2) where W=p+q-l.

/. • • • •
• • • • • • • • •

• • • • • ,
• , • •

5 4 3 2 1 2 3 4

1 2

.) Hex skewed right

•
•

• •

5 6

3 4

•

7

5

Initial ordering

reorderinq for right side

395

partition Une- • ~ q •
• • • • •
• • •

• • • • • • • • • • •
• •

• •

7 6 5 4 3 2 1 2 3 4 5 Initial order in9

5 4 3 2 1 reorderin9 for left side

b) Sex skewed left

FIGURE 6.3.2: Non-symmetric array compaction

Now, C = (cells in bands from left of array)+(cells in central band)+

(cells in bands from right array)

= Cl + C2 + C3 •

Putting W =min(p,q) gives,
s

W - -
C2 = 2W + L (W -i) = 2W +W W - !W(W+l)

s i=l s s s

k k k
0 0 0

Cl = L tor j = L (W -t
j
+2) r. -! L r. (r +1)

j =1 j=l s J j=l J j

(6.3.18)

(6.3.19)

(6.3.20)

for Fig. (6.3.2a) with kO the number of bands on the left side. TO compute

C
3

a partition line is added such that columns to the right of the line

are strictly descending in cell count, and cells to left between the

partition and centre column contain W cells each.
s

C
3

= (total cells left of partition) + (total cell right of partition)

= C4
+ Cs (6.3.21)

where, kl

C = L /;r. and tor. = r W 4
i=l

1. J j s
(6.3.22)

Now renumber the columns to the right of the partition with the column

396

coincident with the line having index 1, and adjust the starting places

from tj to tj and modify number column rj accordingly. Then,

k2

L (W -to +2) r.
j=l s J J

- !
k2

L r. (rj+l)
j=l J

(6.3.23)

where k
l

+k
2

=number of retained bands in right-hand partition of array.

The formula for Fig. (6.3.2b) is derived similarly with the partition

line on the left.

First level compaction shows that large area savings can be made

when the number of retained diagonals is small compared with n. In the

sample problems we choose r.=4. The analysis in Lipitakis [78] suggests
~

that a large error reduction occurs for r.~4, and that keeping more bands
~

for r.>4 does not significantly improve this initial reduction in the
~

approximation error further. Hence the results of (6.3.16) and (6.3.17)

are quite realistic.

Second Level Compaction

If the delay cells introduced in the first level compaction are

termed primary neutral cells, second level compact ion identifies secondary

neutral cells arising from data flow side-effects due to the creation of

primary cells. To identify these secondary cells we trace out the path

of an element input to a column of primary cells, which in general

consists of two stages.

Stage 1: A vertical movement to the upper hex boundary. (It is clear

from first level compaction that only zero values make this journey).

Stage 2: On the hex upper boundary, cells to the left of centre compute

multipliers, and cells on the right perform a simple negate (see Fig.

(3.2.2.3}) and the results are reflected to travel SE and SW respectively.

397

Results of cells at the top of a primary cell column must be zero,

hence any cells on the SE or SW paths never modify values moving

vertically.

Figs.(6.3.3) and (6.3.4) illustrate the compaction of the hex array

for problem I and 11, the cuts will be explained shortly. As no

modification occurs in secondary neutral cells, like primary cells they

can be replaced by delay cells. It is then trivial to deduce that the

number of true hex cells is given by (iW; l +r-l) 2 for problem I, and more

IW~ k 2
generally (I:rl + ,I rk-l) for k bands of widths ri' i=l(l)k

~=l

respectively. More intuitively the number of true hex cells is

proportional to the number of non-zero diagonals of A plus any diagonals

retained for fill-in.

Third Level Compaction:

The first and second level compactions modify area but leave array

computation time unchanged. In a normal numerical algorithm the

decrease in calculations for incomplete compared with complete factor-

isations, would be expected to achieve a corresponding decrease in

algorithm computation time. This attribute is transferred to our

incomplete array using a third level compaction, which identifies a

series of cuts to reduce array latency. A cut is identified by marking

out regions of primary and secondary cells which partition the array

into disjoint regions of three types:

1. A region consisting only of true hex cells

2. A region consisting only of neutral cells

3. A region with both true hex and neutral cells.

Compaction is then achieved by removing all type 2. regions, to leave

tesselating disjoint regions which when compressed form a smaller hex array.

.,

bl

•
• • •

•
•

•
•

Standard he. array

'. • • •
• • • • • •

•
•

• • •
• •

• •
•

•
•

• •
• • • •
• • • •

Non-retained 41a90nal celb raplaced (by cSebyJ

• •
•

e) Identify HCOn4&ry Mlltral eelt. (replace with dehya)

•

• •
•

•
•

• • •

cur ,

"'" •

.) c:o.p.c:t helC &I'I'.Y for approICluta fact.ori •• tiOn

FIGURE 6.3.3: construction of incomplete factorisation array

.,

bl

• •
• t·· •• . 1'0. ' .. . ,.... " ...
f ;/", ?',

...... '.,A /... ~,+ ·'0)/ ",
• ?1'-' '.' , ... " ~...-", ;..... .
&:'" .. i ... :/ . '.. '/ • I

~/"

• •
Identlty Hcondary nelltul ceUa

• •
Make aynchronbation cut.

•
• •

•
• • • • •
• • • •

• • •

• ,,/

'. •

•

IU!:MAlUl:I The or191nal hu required 9Il9-81 hea cella,
co.pactad array 5.5_25 he. ceU vln9 of 56 calb
whicb la .~n 75' are. lreduction.

FIGURE 6.3.4: Incomplete array construction for Fig.G.3.le

w

'" CD

399

2
This array has W cells where W is the sum of the semi-bandwidth and

retained (sub)-super diagonals for fill-in. In fact after third level

compaction we can generally expect a saving of over 75% of the original

number of hex cells. However making cuts and removing cells in this

way affects the factorisation process by destroying synchronisation

between the central band and retained outer diagonals. It follows that

third level cuts are weak variants of cuts used in H.T. Kung & Lam [84],

which due to the approximate nature of incomplete calculations do not

demand that dataf10w must be retimed as delays are removed.

Now in order to utilise the cut array we must answer two questions:

1. What kind of factorisation does the cut hex compute?

2. Is this factorisation a good incomplete method for the given problem?

Simple observation on the cut hex dataf10w answers 1. immediately

For the model problems A in (6.1.1) becomes transformed as follows:

-2+r1
b1

a
2

A =

fm~
fN

0 ,

and

A

e1

~O
e

"-
" ,

N-m+l

" " "

"
aN :~

t1 ('1

~~+1
t " N-m+l ... "-

" " "

for problem I (6.3.24)

" for problem II (6.3.25)

400

But factorising these matrices and solving the associated coupled

systems produces a solution to a totally different system to the

original one, consequently we would expect poor approximate solutions.

A further complication arises when we notice that the shifting of outer

diagonals inwards creates unknown entries (dashed lines in (6.3.24) and

(6.3.25». The choice of these elements could be crucial to a good

approximate factorisation.

Careful consideration of the incomplete method described by the

ALUBOT algorithm allows the derivation of a new algorithm, the SYSTOLIC

INCOMPLETE FACTORISATION (SIF) method. Here the incomplete method is

performed as a two step process.

(i) Form a new matrix A from A by shifting outer diagonals inwards

(ii)

to remove diagonals not retained for fill-in (i.e. (6.3.24)

and (6.3.251.

U •
s

Factorise using the cut hex to produce Land
s

Derive two matrices L and U from Land U by shifting
s s s s

retained diagonals outwards, and inserting zero diagonals to

recover the original sparsity pattern of (6.3.5) and (6.3.9)

and solve the new coupled systems corresponding to (6.3.6).

401

,.
3.8

0.9 N-1000
3 .•

3.0 \ ~O8

"7
N·soa

~
26

1 \\ \
,

....,!.... Q7

.~
IN

'! ,
'--'

~
~ Q6

W 2_2

N-IaO

N-300

!
£ 05

I.e

~ g ~

z t:

~ I.~

~ Q4

u 111 .. 10 ~ , t

~

..
1.0.

c 03

~

~
• •

c "
0

u

~ 0.6

, Q2
1ft .. IS

..
u ~ ol! :

111.20 ~

.!!
111 .. 30 0

0.'
m·.O

oX 01

N·200

N-/OO

"'"so

• 3 4 ~ • .. • 9
r .. Nl.mbcr of ienM rtloirwd in bOFld¥li4th /11

r .. Nl.nbcr Of tc""' rttoi /\Cd i" bondwidth 11\

4" ,r
~,
~

"'" 40.
IN
~

1'6
~ 32

cos. i
u ,
~
~2J
c eQU' ii

~ ~~ "'---oil

~ ~ • 1

eau Hi

r· Numbtr QI "nns fetoi ncd in bandwidth ft

FIGURE 6.3.5: Approximate factorisation resu1tS (Lipitakis (781)

402

and can be summarized as,

SEQ

ALUBOT(N,r+2,r,A)

FBSUBS(N,r+2,r,L ,U ,d) •
s s

r r

The extension to problem II is trivial and yields,

SEQ

ALUBOT-2(N,r+2,r
l
+r

2
+2,r

l
,r

2
,A) 1 _

FBSUBS-2(N,rl+2,rl+r2+2,rl,r2,Ls ,Us
r

l
,r

2
r

l
,r

2

(6.3.26)

(6.3.27)

,d)

The essential idea behind the SIF is to compensate for the initial shift

in of diagonals (so the cut hex can be employed) by shift out in between

factorisation and solution. This has two advantages, firstly the

coupled systems solve a problem with similar structure to the original,

second the fill-ins associated with the newly created elements are moved

out of the matrix to reduce their effect on the final approximate solution.

The method was tested for various values of m, with N fixed, and with

m fixed and N varied, and the number of retained diagonals r plotted

against the Euclidean error vector norm. Tests were carried out for

t t
problem I with d=(l,l, ••• ,l) and repeated with u=(l,l, ••• ,l) with

d., i=l(l)N simply the sum of the coefficient from row i of A. The
L

results are shown in Graphs (Al)-(A6) of Fig. (6.3.6) and can be

compared with the approximate method results of Lipitakis [78] in

Fig.(6.3.5). The label EXT-l and EXTO indicates that values created

by the shifting in of diagonals were set to -1 or 0 respectively.

The results indicate that the cut hex with the shifted solution

process retains the desirable property of rapid approximation, error

reduction for the retention of the first few fill-in diagonals.

Results were not as good as the EL algorithm, and we have to consider

retaining r=7 diagonals rather than r=4. The cases for M=40 and N=50

..

, .•

...

...

r
i

...
I
1 ...
j

'-0

, ..

...

, ..

...

..•
"-. ,
; ...
i
! ,
I ...
I

...

...

All an ftlI _1111 ._!IO. 11 ' no
PT-I ".(1.1, .•.• 11

.. ~

lOUI21l1'U16

r • ..-r of <11_1. utal_

Ut CUT RlI MM' "1'1'11 .. _loO, 11 V""IEl>

. ~ .

lOUUlJI'UI6

n.o

!t.0

n.o

n.o

n.o

" ..
1'.0

11.0

11.0

16,0

15.0

:_14.0
;'\).0 ,
~u.o

111 .0

210,0 •
I'" x '.0

'-0

...

...

.., . ..

403

,,', an UlI IIlnI ... !IOt " , IED

UT-I 40U,l, .••• 11

"'L~~~ , ..
10UU111'1516

-.
~
I
I
I
j

"
"
"

"
"
"
"
u

"

•

"', M !IQ AlUl.\Y , .. SO, 11 YAIIIED

IXn:I •• 11.1 •..•• 11

1011121)141516

FIGURE 6.3.6: Cut hex experiments

"
u

..

'-.
!~ •

-T'<
l
!

1
i

-.
~
i
i
!
j

,

•

:1
. :~

, , , , ,

A~' CV!' ROE A.n.>,y 11.)0, 11 \",10111:0

UT-I "'11.1• 11

"'----~-~
"" I)ELt,ltll M IU •• ~, 11 VMIID

.·11.1. .•.• 11

"-- ,,'15

'--- 11')0

----------.-----.----------------------------.. ~
---•• 0

• • .. 101112131415

"

"

u

..

.--.
!

-1'<

I • ..
;
;

I

~.

i '-
j •
j
i

'----.

FIGURE 6.3.6(cont.)

404

tx1'O y.II,I •...• 1I

10 11 11 U' 14 15 16

~ . II_~ of u"lM4 tnl-1ft 4.Ia_b

".(1.1 ••..• 11

~ ..

~ ..
~0

~~ .. ~

IOllllUl4U

r • n_r 01 U" flU-I .. dl"'9ON1h

..
0.'

N!~ 0.'

;;
"I~M

I
l 0.' ,
: 0.'
!

j 0.'

0.'

0.'

o.

0.'

0.'

.:

r
o.

0.'

0.'

<.

II'~

.'100

At, onArm evr Ma ".)0, 11 YAAlfO

11" 41.1 •...• 11

'-----

.. "
'---

l0l1UUUlS16

~ • n_r ot nU1/1od hll-Ift 4UPld,

All • .",,~ CO-oII\CiOtlI'ol.ll IItU oon:a. D1A/Xlto\U

[.aI w..otOUl SOQ:I\EII

•• ~ 11-10

10 11 UU14

r • _r ot .nd"*'l1 UU-h ,1I'90nall

"0

0.'

0.'

i- o.

~ ,
i 0.'

!
l

0.'

! o.

0.'

0.'

0.'

"

FIGURE 6.3.6(cont.)

405

""""

AID, IItAIt eo-oUQ;"A,l.S ~ 0lI!'U DI.t.a:II.\U

.... VU)"'-- t('1n:MU

,,·to ... 10

I-GUUU1415
• .. n_. of ntUMd fill-In 41 __ 11

All, S'TA/CIAItD CA.$t I'Oa V I~ SCllDIES

"-!IO.II-IO

'IOUUU14U16

406

indicate that the approximation may grow as the bandwidth relative to

N increases. Further tests with large N and m fixed indicated that if

the error did diverge, it did so at a much slower rate than the initial

error decrease associated with a small number of retained bands. In

fact by including more diagonals the error divergence rate became

slower, with N=200, m=lSO, for example 10 extra diagonals were required

to alter the error norm by 0.1. Additional experiments also showed that

the divergence became observable generally when m~N/2, and can be

explained by the interference caused by the distance that the diagonals

must be moved in order to use a cut hex. As problems I and 11 always

have m<N/2 no problems should be encountered with the SIF method.

In contrast to the SIF algorithm an alternative factorisation which

incorporated some data re-timing and cut hex modifications was considered.

This new meth04 the delayed cut hex algorithm. is given below.

b) Delayed cut. hex algorltt.

DCHEX (N,.,r ,A)

/* Trl-dlagonal Factorisatlon-'

"'labl , d1-a2, 91-Cl/Wl'

FOR 1-2 TO N-l

{"'1-bl-d1_1 *91_1' 4 1-a1+1, 9 1
aC /"'1}

"'N-bN-dN_l*9N_l

FOR j-1 TO N-m+l

{e1j·Y,+m_l' h1,,·u,/"','
FOR ka2 TO r+l

{~.j·-~_1.j·~'j_2/wk'j_l'
ek ,,·-ek_1,,·9k+,_2 ,

The essential idea is to prevent fill-in entries from modifying the

central band elements by a re-synchronising column of delay cells

placed in between adjacent columns of cut hex cells which belong to

different fill-in bands of problem I and 11.

407
Thus central band elements are factorised as a tridiagonal form,

and fill-in diagonals are computed using the multipliers generated for

each row. The basis for this idea is that the multipliers of problems

I and 11 have the same order of magnitude and so may produce a good

approximation. The results in Fig. (6.3.6) graphs (A7)-(A9) indicate

that virtually the same error of approximation occurs, irrespective of

the number of retained diagonals. However if we get an initially large

error, there is no chance of decreasing it by retaining more diagonals.

Finally, the effect of the element sizes on the codiagonal and

outer diagonals on the error was considered for three cases, i.e.,

(i) Codiagonals strong, outer diagonals weak

(ii) Both co- and outer diagonals of the same order

(iii) Codiagonals weak, outer diagonals strong.

These results are shown in Fig.(6.3.6) (AIO-A12), where we can observe

that divergence can occur with the cut hex when EXTO, while with EXT-l

errors are always reduced, and the delayed cut hex maintains the same

initial error. The results indicate that the SIF algorithm with EXT-l

should be adopted when cases (i) and (iii) occur, and EXTO for case (ii) .

A more general form of the SIF method then follows easily by selecting

EXTa with a chosen according to some averaging (e.g. min, max, etc.)

criterion.

Now although the SIF algorithm gives higher approximation errors

than the EL method the reduction in cell count clearly compensates as

Table (6.3.1) shows.

SIF PROBLEM I SIF PROBLEM II COMPLETE LU

n m p r=7 r=4 r =r =7 1 2 r =r =4
1 2

I

10 11 101 81 36 256 100 121
20 21 401 " .. 441
30 31 901 " .. " " 961
40 41 1601 1681
50 51 2501 to 2601

100 101 10001 10201

TABLE 6.3.1: Cell requirements for cut hex(SIF) and complete
factorisation hex arrays

II

10201
160801
8118016 2.5)(10

6 6.2)(108
1.0"10

"

t
• ,
! ••
j
i •

u

u

..

• . -
~~ 7

i .
!
j •

i

", CV!' lIa 11.50 lIoVUlm

~.,

IOllI2U14Ul'
r • n..-. of .eUI""" ,I_90Mb

I), CV!' IQ "'50, II_VUlm

~

------------~x

0/1 to

• t 0 1 ..
r • n_. of •• t.ln-.! <lta_h

"

U

"

.-
;"
~ •
-I~

I
i
! •
!
j

"

408

", CV!' IU 11010, 11 V IEII

~.,

lOUUU14
11 • __ r of •• tu,," .'.,.....11

1011U1U15

• ... _. of ret .. .o..d dl_h

FIGURE 6.3.7: Experiments for double pipe back substitution

"

409 ..
.. I.' -..... -... -

.. 0.'
~ . '----------~------------

.. rtfo.,
I
I .. '------------------
I 0.'

!
j 0.'

-"::::=::::::===::=::::::::=::::~~~'~I_- .. " •. , '------~----- ..
.. ,
•••

, • 1 • .. u .. • • 10 11 U U lS

... . ..
•••

• ••
... . ..

. -jloM •. ,
I ...
f •. 1

j ... >-
.., ..

.-
~ .. o.'

1':'
I J •.•

•. , j .. ,
.. , .. ,
... . ..

~ ..
, . •• U It 1.5 l' • 10UUU14U

FIGURE 6.3.7(cont.l

••

I
! • ,
I
i

,
!!, n_ tu. <'ODI.toOOtW.I _ 0\1rD Dl~

u.-. 19?'4

,-4, ___ ----__

'1011121) U 1101'
, • ft_r or rU.lt>o<I 41._1.

FIGURE 6.3.7(cont.)

410

411

Indeed it would be impractical to build some of the large arrays but

extremely attractive to construct a fixed sized SIF hex. A cut hex

of 256 hexes could solve both problems I and 11 by allowing r=7 for I

and r
l

=r
2

=7 for 11, giving a fixed sized- array and variable accuracy

for a range of bandwidths.

It should also be clear that array operations can be accelerated

by applying double pipe and block partitionings of the previous chapters.

In particular the double pipe substitution array of Robert & Tcheunte [841

(Fig.(4.2.l» can be applied directly with a simple modification to the

production of Land U to yield,
s s

L
s

o
u =

S

The results are shown in graphs (B~-(B9) of Fig.(6.3.7), from which we

observe that EXT-l reduces the error by a small amount, EXTO increases

the error and the delayed cut hex has approximately the same results,

as the ordinary SIF method. Thus adopting the double pipe substitution

with EXT-l actually reduces the approximation error further, while the

effect on timing is as follows,

T = (3N+W)+2*(2N+q)
s

using the ordinary single pipe solver and no pipelining between hex and

solver arrays and where,

N = {

and

W =

2
n

3
n

n+l

2+r

problem I,
q = {

n+l , problem I

problem II,
2 n +1, problem 11

complete

} problem I

incomplete

s 2 n +1 complete } problem II

2+r
l

+r
2

incomplete

and with double pipe solvers,

T = (3N+W)+2(N+jq/2l+l) s

412

Thus we conclude that an incomplete factorisation reduces the area by

>75% and also reduces the computation time significantly when double

pipe solvers are applied.

6.4 SYSTOLIC ARRAYS FOR INCOMPLETE ELIMINATIONS

The above compact ion technique is easily extended to produce a

third type of systolic preconditioning preprocessor based on incomplete

elimination methods.

To illustrate this technique we shall consider solving (6.1.1) with

A the coefficient matrix associated with problem I of Section (6.3).

An exact elimination yields,

Uu = d , (6.4.1)

where U is an upper triangular matrix of the form,

x x x 0

\. U = I \ (6.4.2)

x
0

x NXN

413

with x=non-zero, the shaded area marking the fill-in zone, and d the

modified right hand side of (6.1.1). An incomplete elimination scheme

retains the sparsity of the original system by selecting a number of

diagonals to fill-in and leads to,

or

with,

u = s

x x

LA :
s

U u =
s

U s

L d
s

,

x

which can be performed as follows:

GAUSS (N,p,r,A,f){

9t-Cllbl' h1,p-e1/bl' f1-d1/bl'
G DV, D lab, 9 -c ,F lad I
ptl P Pt P P P P, P

FOR 1-2 ro p-l

vt=bl-ai9i_l' 91
8e

1!"'1' fL-{dl-aifi+l)/Vl'

FOR k-!+p-r TO 1+p-2{hi,k--aihi_l,k/Vi};

h

hi ,p_1+1-e/"'i'
G"0:-9 G ",O·D -G hi1 ,
Pr! 1-1 p,1-1 Pr! p,i-l p,i-l -,p

Fp,iZFptl_1~p,i_lfi_l' 9p·9p-GP,1_1hi_l,P+l'

FOR ksp-r TO i{hp,P+k-hp,p+k-GP,i_lhl_1,P+k);

9 "'9 +h ; h -0, p-l p-l p-l,p p-1,p

D -D - {G +a)(q +h) J p,p p,p-l p,p-l P p-l p-l,p
f a[l l-(G 1+a)f 11/0 , P p,p- p,p- p p- pp
9p·(9p-(Gp,p_l+&pJhp_l,P+11/Dpp'
FOR k;p-r+l TO P-l{hp,P+k_l=lhp,P+k_l-<Gp,P_l+Aplhp_l,P+k_lJ/Op,p}

b -e/D;
p,2p-l p. p,p

FOR iap+l TO N

{Gi ,i_p+l-V1' Di,i_p+lDbt , Fi,i_p+l~di; Gi=C i '

FOR j-i_p+2 TO i-1

Gij'"ij"(9j_l+hj_1,j)Gi,j-l'

Ai=Ai-Gl,j_lhj_l,i_l'

F 1 ,j"F 1 ,j_1-G 1, j_1f :1-1' 9 i -9 ('<;1 ,j-1 h j _1 ,1+1'

Dlj·Dl,j_1-Gl,j_19j_1,I'
FOR k=j+1 TO 1-2{Gl,k-Gl,k-Gl,j_lhj_l,k)'

FOR k=p-r'TO p-l{b i ,l+k=hl ,l+k -Gl ,j_1hj _1 ,i+k}'

1

(6.4.3)

(6.4.4)

DI1-Dt,i_l-CG1,i_l+ai' (91_1,+ht _1,t'J

ft-[Ft,1-1-CG1,i_l+At'fl_1J/Dii'

9i-[91-CGt,i_l+at'hi_l,1+1J/Dl1'
FOR k·p-r+l TO p-l

(ht,1+k-l-[ht,i+k_l-(Gt,i_l+At)ht_l,1+k_lJ/D11);

ht,l+p_l-etlbiil

Taken from Evans [S3cl,

414

where v=f in (6.3.4) and Us is normalised with Hij the elements in the

shaded part of (6.4.2) and g the co-diagonal elements, which plays the

same role as the ALUBOT algorithm for factorisation but produces a

sequence of approximate elimination algorithms satisfying

lim (A_L-1U) = 0 ,
k+z sk sk

and yielding the algorithmic specification,

SEQ

GAUSS (N,m,r,A,d)

SUB(N,m,r,U ,d)
s

(6.4.5)

(6.4.6)

with SUB a simple backward substitution routine modified to take account

of the sparsity in U. To derive an incomplete array we must first
s

find a systolic architecture which can be substituted soft-systolically

for the above numerical procedure. Arrays for triangularising a matrix

are discussed by Gentleman & H.T. Kung [Sll and provide a basis for

our discussions. A triangular array for reduction of a full matrix

and which incorporates nearest neighbour pivoting is given in Fig.

(3.2.2.2). An alternative array based on orthogonal reduction using

Sameh & Kuck's elimination·scheme,

*
7 *
6 8 *
5 7 9 * (6.4.7)
4 6 8 1O *
3 5 7 9 1 I *
2 4 6 8 1O 12 *
1 3 5 7 9 " 13 *

415

and suited to banded matrices is given in Fig.(6.4.1).

"32

"42

"43

"52 "4.

'53

~R . '
I J I ;-'(,-

=:R-
I I I '--"-

-,. , \ I

'(.... /

FIGURE 6.4.1: Systolic array for triangularising a band matrix

The latter array is more relevant for our discussions, but we mention

the former to characterise the type of array applicable to incomplete

eliminations. Fig.(3.2.2.2) accepts inputs in a column ordering

rather than the diagonal ordering used by Fig.(6.4.1) and the incomplete

416

factorisation array compacted in Section (6.3). Thus, a candidate for

compact ion and hence area/time reduction must have a diagonal input

format, and we can confine our attention to the array in Fig.(6.4.1).

If the semi-bandwidth of A is W , the array requires W lineararrays
s s

separated by two rows of delay cells between each array, with 2W +1 s

cells in each row. Each linear array consists of a boundary cell on

the left for computing row modification data and modifying cells to

update rows using the definitions (3.2.2.6)-(3.2.2.7). Modifications

to these basic arrays for general bandwidths follow naturally, and

special versions which utilise special properties such as symmetry are

considered in Heller and Ipsen [82]. It should be clear that for

matrices with a dense band the array structure of Fig.(6.4.1) can be

used for either Gauss elimination or an orthogonal reduction approach

with eliminations occurring in the order of (6.4.7). However for the

matrix associated with problem I the band is not dense and some

multipliers associated with elimination are inconsistent requiring a

divide by zero. Consequently to utilise the array which can be

compacted we must concentrate on triangularisation using rotations.

But, the incomplete strategy is based on eliminations and the behaviour

of the Gauss method, changing to the orthogonal method could seriously

affect the final approximation error. The orthogonal scheme certainly

creates additional fill-in outside the main band, which is not present

in the elimination method. putting these problems aside for a moment

and considering (6.4.4) in conjunction with Fig.(6.4.1) the array

compaction procedure can be applied as follows.

(i) Identity neutral cells: because the input to the array is in

diagonal form tracing the path of a single element in each diagonal

417

not retained for fill-in marks the neutral cells. An example for W =6
s

and r=l (only the outer most diagonal retained) is shown in Fig. (6.4.2a)

These neutral cells can be replaced by delay cells.

(ii) Define array cuts: For purposes of illustration suppose r=3, then

Fig. (6.4.2b) defines a cut set which identify the regions of delay cells

which can be removed to leave tessalating disjoint regions.

(iii) Compaction: The tessalating sections are fitted back together

to make a smaller array, allowing further redundant rows to be omitted

(see Fig.(6.4.2c).

I I I I I

• • L-I--l- ... J--t • • • • • • •.• ,.}+ •••••• · · · " t······ fl : ~T • -f~-1 : : : : .
! .., + t·····

• •
• •• • •

• • •

• • • • • • • • • ••••••• • • • • • • • * • • • • •
• ••••• • • • • • • • * • • •

• • • • • • • • • • • ; II : :-rin : : : : r-r--rl· 1.. -+-r--t •••
t.Lt -~; J.Jl~::
• ~, ••• ~ t • t • • ·",····ttt·· • r--l--t-+-f • L-t--t--f-"f •

• • • • • • • •

.~ .. • • • • • •
• • • • • • • • •

• • • • • • • • • • •
• • • • • • • • •

I : : I; 'I I :
(Q.) Identify neutral cell. (b) PartItion for cuts and: compact ion

• • • • • • • • •
•
• • • • • • • • • * ... True processor • • • • • • • • •
• • • • • • • • •

• • Unit delay cell •
• • • • • • • • • • • • • • • • • •
• • • • • • • • •
(e) Compacted array form

FIGURE 6.4.2: Systolic compact ion for incomplete elimination

As before the compacted array solves a similar problem to the original

but with a reduced bandwidth given by,

418

-~ Au = d , (6.4.8)

with A the matrix in (6.3.24) where rl=r, and ~ is an Nxl vector of

unknowns. After passing A and d through the array we solve,

-~ ~

Uu = d , (6.4.9)

'" with U the modified upper triangular form of A and d the updated

form of d to yield the exact (complete) solution of (6.4.8) and the

approximation error,

E = 1 lu-~I 12 (6.4.10)

as in incomplete solution to (6.1.1) for problem I. A compensating

factor for controlling the distance between (6.1.1) and (6.4.8) by the

use of shifting diagonals can then be applied as follows:

(i) triangularise A to produce li

(ii) shift the outer and retained fill-in diagonals of U to form

(iii)

A
U which has the same structure as U in (6.4.4).

s
A -solve Uu=d using backward substitution.

This defines the Systolic Incomplete Elimination Algorithm (SIEA) with

the definition,

SEQ

GAUSS (N,r+2,r,A,d) (6.4.11) . ~
SUB(N,m,r,u,d)

which allows the use of the compacted array. Notice that we have

assumed that a Gaussian elimination can be performed on a compacted

version of Fig.(6.4.l), generally this is not the case because null

diagonals retained for fill-in prevent the formation of some multipliers.

However from a numerical viewpoint an algorithm like (6.4.11) can be

implemented where the normal elimination ordering rather than (6.4.7)

is adopted.

419

To date incomplete methods have been applied only to elimination

algorithms due to the fact that the orthogonal versions require more

arithmetic operations and permit fill-in entries beyond the outer

diagonals. This fill-in defeats any attempt to reduce storage or time

requirements, as the additional fill-in is proportional to the number

of subdiagonals. In the case of the SIE algorithm the compacted

triangu1arisation array reduces both area and time. Area is reduced

because of cells removed by the cuts, and time because of the decreased

latency for data to pass through the compacted array. This leaves only

the problem of minmising the approximation error. Below we test two

algorithms for both elimination and orthogona1 triangu1arisation referred

to as the shifted and unshifted SIEA forms corresponding to (6.4.9) and

(6.4.11) respectively, under two conditions:

(i) fixed ·system size (N) with semi-bandwidth m varied

(ii) fixed m and variable system size (N).

The results are shown in Fig. (6.4.3) Tl-T8, notice that when m=10 for

example only 8 results are given, this is because only 8 diagonals can

be retained for the fill-in (the diagonal and co-diagonal making 10).

The tables can be compared sensibly USing the following cases:

(i) Elimination schemes (shifted vs unshifted)

(ii) Orthogonal schemes " " "

(iii) Elimination vs orthogonal

First consider Tables TI-T4, T1-T2 examine elimination schemes T3-T4

~ ~

orthogonal versions, where x =u for the unshifted case, x =u for the
r r

shifted case, and x=u, with N=50 fixed.

Case (i): Elimination methods compared

The first valuable piece of information is that both the shifted

420

~~ 10 15 .. lO .. . il' 10 15 .. lO ..
1 n.1l l6.n SO • ., ".92 n,92 1 no.1S lIt,94 130." 111.65 ... ·'1
• 15.7, 26.12 36.10 51.49 '1.49 • 1l2.U 81.7, 71.11 63.9' 44."
• 11.013 It.6' 2'.ll 40.02 -40.02 • 127.7) S •• " so.n tl.)I 21."

• n.e2 22.71)loc, 12 .'1 • lO7.U 401.24)6.91)o.U :to." • 1.17 12.5 11." 27.1' n.l' • 102." n.U .1) •• 7 15.15

• ••• 10." 15.94 2"n 2).)5 • .. " n.7 u.n 19.06 12.12 , ••• n.81 20.43 20.'"
, 0." .. n.n 15 •• 2 lo.n

• ••• 7.89 n.l 11.11 11.17 • · n." 18.'4 1).5' ... ,
• · 6,17 10." 16.31 .6,31 • · 26,6. 11.17 11." .."

10 · 6.22 t." 14.89 14,'9 10 · 26.61 16,02 10.41 ••• 11 · 5.61 8.81 13.5. 13.5.
11 · n.n 14.91 9.4'

U · C." '.28 12.5' U.56 U · 2 •• , 14.26 I." •••
n · 4.31 '.98 11.7, 11.'18 11 · 0." U •. n
14 · · ., .62 10.98 10.98 14 · · n.d , ... 3,n
15 · · 6.92 10.17 10.17 15 · · 12.90 '.J2 .. · · 6,16 9,55 '.5' .. · · 12.'5 s.n 3.15

u · · s.n 9,11 ".1' U · · I.SI S.d 3.10
11 · · s.n ••• ••• 11 · · 0.00

~~ 10 15 IX 10 15 ,. lO to

1 !l.t 129.19 220.19 l43.' 343.' 1 7U.~ 1925.'4):)17.5' 4192.56 41~9.lJ

• n.M 6S.U 112.1 115 •• 175.4 , ,. " 15.15 21. .. 26.77 22.76

• 15.49)t.n 66.74 104." tCN." • .. " U.H 15." !J.)t

• 9,14 24." n.'3 6'.55 69.55 • '.H .. , 11.15 U." 10.11

• ••• 16. " lO." .,.2. 49.2' • 5.71 t.2' 10.44 U.52 .. "
• 11.n 22: H.st H.st • '.H 11.01
, 1." 16.89 ".09 21.09

, 1." 10.0) t.45 10.50
• 0." 6.39 12.96 22.1' 22.17 • 0." t.O) 10.16 7.n

• · 10.10 17.' l' ., • · '.0> t.91 10.15 7.75

10 · '.1' U.51 14.51 '0 · 4.9) t •• 5 , . .,
11 · 2.22 6.26 11.71 11." 11 · 2.4' '.45 '.26 '.K
" · 0." 5.1' t.1!I9 t." U · .. >0 , .4' I.t' '..n.'
n · 0." 4.72 ••• ••• n · 0
14 · · •• 00 7.0) 7.0) 14 · · 4.1' 7.5) 6.42

15 · · , .82 5.54 5.54 .. · · 2.42 '.1' '.10

" · · 1.49 4.61 4.61 .. · · ... 6.5'
" · · 0.71 4.11 4.1' U · · 0.' 6.1' '.00

U · · 0 ... ••• ••• .. · · 0.00 s.s • •••

FIGURE 6.4.3: Test case for SIE algorithm

•
IN. so ... lOO

1 n.14 .w.t1 :I6.U

• 15.15 n.s 12.19

I t.4" 5.91 .n.4'

• 6.19 1.1 6.27

• •• 1. 16.'1 179,2,

• 1.17 loll 6.07

• 2." 1.11 2.ll

• 1.12 •• 1 1.9'

• 1.43 ••• 1."
•• 1.16 I." 2.9.

II 0.88 t .• 11.66

" o.n 5'.01
" 0.67 1.82 .. 0.5' 2.12 3,89

IS ••• • •• 1.0)

" 0.21 0.92 1.16

" 0.' '.00
10 0.46 l.S6

~ so ... 200

• I I I

• n.es 17. '4 11.61

I '.44 10.S. 11.04

• ••• •• t 7.2)

• t.n '.02
• '.n '.$2 '.61
, 2.39 2.64 2. "

• '.02 2.01 •••
• 1.43 1.56 1.61

•• 1.16 1.24 1.29

II 0.19 0.99 .. "
" 0.13 0.11 0.81

" 0.67 0.63 0.63

" O.se 0.47 0.4'

U 0.' 0." 0.)]

16 0.21 0.22 0.'

" 0.' 0.' 0.'

It

"" ... X
)1,24)7.5 1

201.89 286.9t •
e." 1.02 I

S.,. . •
sun,)! . •

57,15 j60"" •. o • ~20.0) •
161.2 n251616 •
9.9.61 86278.6' •

),01 7411.61 ••
3)o.SS '))).06 II

n.n 1828.n "
n.n }836.94 " an.51 78144.91 ..
••• 6492.17 IS

7.17 8596.'4 ..
S.16 419.61 "
I.U 2720." "

"" ... [8
I I •

18.89 19.0) •
11.21 11.29 I

7.)) '.ll •
S.11 5.15 •
l." l.15 •
a .79 2.11 •
2.11 2.ll e t

l.lO ••• '0
1.03 1.Ol U

0." U

0.62 0.62 u

0.46 0.46 "
0." 0.32 IS

0.19 0.19 16

0.09 0.09 " "

421

so ... '00)DO ...
1 •.•• 61.1" 1120.97 211U.99 14t82."

11.06 SO.I 1'12.06 84016.91 514921

1.14 31.12 996.H U561.14 U'412.S

S.22 22." ISO." 25'81.51 115191.

•• 14 1I.OS SOO.24 193$1.06 5lSO).'1

) .. , n .•• " •• 29 17120.5' 7)813.11

1.01 n.t, UO.,4 11'15).11 26381.9.

2.6' 12." 414.U 1IIlS." 1003660.'

2.n 12.52 U).95 2290&:1.11 U7)O')1.2

2.'7 12.40 501.62 :19904.15 20919)0.5

2.11 12 .56 son.s U412.86 1584618.5 .. " 12.99 7.).18 65525.31 '23220.0

I. .. n.S9 979.89 111'n5.' 1544!1OO2

• •• 14.6) 1381.24 216S21,T US,,'5' .. " 16.19 US9.9S 499HI." •
'.Il 11.SI 1862.79 1489461 • ·
o.ll O.st 1.91 S.U 1408.0l

0." 0." 0." 0."

so . .. , .. ,.. ...
426.15 655437.75 I I I

I.o?"
1.14 2.79 11.14 63.0' 369. ,.

1.51 l •• ' n.12)82.95 4994.11

1.41 ".H 6l.N 1)06.n 29110.5)

1.39 4." 112 3219.se 1119 19

1.34 5 •• 2 176.19 6726.12 30011'494

l.ll 6.1" 2011.00 11994.11 599996.25

••• 2'4.12 16186.43 1019211.37

1.11 ••• 296.57 160116.61 10S98SJS

••• 6.5] 260." U15S.61 75124"62

>. .. 5.2' 115.15 1321.98)Sles.'"
0.06 l.U 89.0' 2664." I

0.59 2.1' 32.99 I I

0.'4 1.12 I." I I

O.U 0.50] 1.9. • •
0.13 0.25 0 • I

0.69 0.99 I I

* results too large to be outpU·

x values omitted.

FIGURE 6.4.3: (cont)

422

and unshifted versions (in Tl and T2) preserve the preconditioning

property of error reduction as r+m. The shifted case also exhibits a

steeper error reduction for the inclusion of only a few diagonals when

compared with the unshifted case, but this is offset by the larger

initial error when r=l. Notice also that the two tests exhibit

opposing characteristics as m increases, with the initial error

increasing in the un shifted test, but decreasing in the shifted test.

consequently as m increases the diagonal shift before substitution

makes it superior to the unshifted scheme.

Case (ii): Orthogonal methods compared

For the orthogonal case both methods produce increasing initial

errors (for r=l) which increase as m increases, and which are

significantly higher than the elimination schemes. Again the initial

error of the unshifted test is much less than that of the shifted

method, but the latter exhibits a much steeper error reduction curve

between r=l and r=2. Consequently retaining only a few diagonals

(which minimises array size) minimises the error when the orthogonal

SIEA is adopted.

Case (iii): Orthogonal vs elimination methods

For the two unshifted schemes the behaviour is similar with

elimination superior for small m but replaced by the orthogonal form

when r·m. With the shifted schemes, the orthogonal method has a higher

initial error but its steeper error reduction compensates to produce

better approximations than the elimination for small r.

Next we consider the effect of matrix size with bandwidth (m=20)

fixed as shown by TS-T8.

423

Case (i): Elimination method comparison

The first remarkable feature is that increasing N causes a number

of peaks to develop where approximation error increases even for a

significant number of retained diagonals. The larger N is relative to

m the more peaks appear causing the approximation error to be more

erratic. Both the shifted and un shifted cases give increasing initial

errors as N grows, but the latter controls the error better and this

shows up in the oscillating peak values as errors develop.

Case (ii): Orthogonal method comparison

In both the shifted and unshifted methods the initial error (for

r=l) is often very large and is neglected in some of the tables. The

error for r=2 in the unshifted method is small and increases with N,

while the error of the shifted form is even smaller (and can actually

decrease). However the most interesting feature is that the unshifted

form retains the 'idealized' error reduction form while the shifted

form develops a single peak, as N increases. As this peak develops it

becomes apparent that the best approximation useS r<3.

Case (iii): Orthgonal vs Elimination schemes

It is clear that the orthogonal schemes outperform the elimination

schemes. In both the unshifted cases the determining factor is the

error growth at r=2, and the subsequent approximations as r+m. The

orthogonal methods provide a much more predictable error pattern which

allows a reliable estimation of the value r and hence the size of the

compacted array. Choosing r<8 and r<3 in the unshifted and shifted

orthogonal schemes gives a reasonable approximation error.

A theoretical explanation of the behaviour of these systolic

incomplete methods has proved to be problematical. The main difficulty

424

arises from the fact that the incomplete algorithms were modified to

satisfy minimal area constraints of systolic arrays. This constraint

is essentially non-mathematical and making its effect on changes on

the numerical method difficult to trace in a logical manner. However

an intuitive understanding of the results can be gleaned from the

analysis in Lipitakis [78] giving a justification for the original

approximate (or incomplete) methods. Essentially we require just one

theorem which is stated without proof.

Theorem 6.4.1: Let A be an NXN matrix of bandwidth m (like (2.5.1.11»

and consider the factorisation A=DTtTD where DTt=L and TD=U with D

a diagonal matrix.

s s

Let t, j' i=l(l)m, j=l(l)N-m+l be the elements of
L,

T with r the number of diagonals retained in the bandwidth. Then the

elements t, j are monotonically decreased i=l(l)m-r, (i.e. the sequence
L,

tl "t
2

" •.• ,t "j=l(l)N-m+l decreases monotonically).
,J,J m-r,J

It follows that the elements on diagonals moving away from the

outer diagonals of A have less and less effect on the method, and can

be omitted. However, under certain circumstances the monotonicity

relationship breaks down. For instance with narrow banded matrices

the values in T are not monotonic after i>m-r. This fact is unimportant

for the numerical versions of incomplete methods for problem I always

satisfy Theorem (6.4.1). But narrow banded matrices are ideal for

systolic arrays and the compaction technique is aimed at deriving a

new procedure which satisfies this criteria. consequently, the shift

in technique used in compaction creates an artifically narrow band

which may contradict Theorem (6.4.1), and explains why the SIF and

SIE errors are generally higher and more erratic than those of

Lipitakis. In the case of the SIF method the shift inwards is balanced

425

by the shift out of the Land U matrix elements which effectively
s s

smooths the error approximation. For the Elimination based technique

this smoothing is unbalanced because the shift in of subdiagonal

parts of A are used as multipliers to modify the righthand side d

directly, with only the super diagonals of the triangularised U

creating an error smoothing effect on the shift out. A possible

solution to this problem is to simulate a shift of multipliers by

suitable operations on the modified vector d before backsubstitution.

In the case of the orthogonal method we have two favourable character-

istics. First the rotation matrices involved in triangularisation

provide inherently stable computations. Second, the additional fill-

in outside the main band compensates to some extent for the effects

of righthand side modification after shift in. (TB indicates that the

effect of this additional fill-in is most detrimental when r.m!2).

Finally, we remark that the errors produced by incomplete

triangularisation are larger than those for factorisation, which in

turn are worse than the original incomplete schemes. We have examined

only one shifting strategy for smoothing the error associated with the

monotonicity break down and there may be more suitable ones. Further-

more our designs have been restricted to matrices for problems I and

11, other forms may also benefit from the array compaction technique,

and produce. much smoother error approximation curves.

6.5 ITERATIVE ARRAYS FOR PRECONDITIONING

Let us recall the global structure of the proposed preconditioned

solver in Fig.(6.1.1). From our experiences of previous preprocessors

426

we are now in a position to develop the cascaded iteration array or

CIA, with respect to the preconditioning schemes described in section

(6.1). Intuitively the ideal CIA is a sequence of pipelined linear

arrays with each array computing a single iteration, and r arrays

producing r iterations. Fig.(3.2.3.l) illustrates the structure more

clearly and was adopted by Berzins, Buckley and Dew [83] to develop

unpreconditioned Jacobi and Gauss-Seidel iterative schemes. Below we

shall compare these unpreconditioned arrays with new preconditioned

arrangements for the following cases:

(i) Unlimited amount of hardware:- the CIA can have as many

iterations as required for convergence.

(ii) A finite number of iterations:- the length of the CIA is

bounded.

(iii) "Bag of" approach:- a collection of arrays such as the CIA

and preconditioning preprocessor hang on the same host bus

and compute sequentially. (Small granularity in sys-pack).

These cases allow the effectiveness of preconditioned strategies to

be assessed with realistic restrictions on actual implementation.

For instance using Fig.(3.2.3.l) and Theorem (3.2.3.1) the minimum time,

TO = 2N+2r(p+l)-1 , (6.5.1)

is obtained for the unpreconditioned overrelaxed Jacobi iterative

scheme, and provides a suitable base time for comparisons using Case

(i) •

REMARK: The latency of each iteration is taken as 2(p+l) rather than

2(p+l)-1 to allow time for the overrelaxation calculations.

To apply case (ii) we define r
l

as the total number of iterations

required for convergence, and r (fixed) the number of arrays in the CIA.

427

Full convergence is achieved by a mUlti-pass arrangement yielding,

Tl =
r-r ~ rr ~ rr ~

2 ;IN + 21 ;lr(P+l) -I ;1
or r r

l
Tl = 2 -1. N + 2r

l
(p+l) (6.5.2)

r r

when r
l

is divisible by r. This result gives a better assessment of

time for a real implementation.

6.5.1 Implicit preconditioned Arrays

The first task is to illustrate how restrictive the systolic

constraints are on the preconditioning problem. Assuming we apply

the incomplete arrays to produce the Land U factors the additional
s s

hardware and latency associated with the preconditioner of Fig.(6.1.1)

is minimal. The effect of improved convergence rate can be applied

directly to the CIA to balance cell and time reductions and produce

an improved area/time trade-off.

However due to the implicit nature of (6.1.7) the CIA cannot in

general acquire the cascaded form necessary for high throughput. To

see this we arrange (6.1.7) into the following procedure,

STEP 1: Z = d_Au(i)

STEP 2: L U lIu
s s

= (lZ (1. e. (6.1.8»

STEP 2:
(Hl) (i)

+lIu IF not converged THEN GOTO u = u :

where step 2 demands the solution of coupled systems,

L Y = (lZ
S

U lIu = Y
s

}

1
~6. 5 .1.1)

STEP 1)

(6.5.1.2)

which reveals the problem of cascading iterations immediately. L
s

and U are sparse lower and upper triangular matrices which requires
s

a switching of vector orientation for forward and backward substitution

428

to solve (6.5.1.2) making (6.5.1.1) a sequential task. From (6.1.7)

a linear array for the CIA can be produced with the form of Fig.(6.5.l),

which contains the undesirable feature of LIFO's whose size is related

to N not the bandwidth of the matrix. Apart from the difficulty of

pipe lining iterations, for large systems the size of each linear array

now prohibits cascading. Simple analysis of the standard matrix-vector

and substitution arrays produces an iteration latency of 4N+(2p+3)

giving,

T2 = 4Nr + (2p+3)r , (6.5.1.3)

for r iterations. It follows that under the case (i) assumptions

the unpreconditioned scheme is superior for any rate of convergence.

For case (ii) assumptions, we define r
l

and r
2

as the number of un-

preconditioned and preconditioned iterations required for convergence.

As cascading is difficult in (6.5.1.1) we fix r=l for (6.5.1.3) which

also minimises area, and derives a computation speed-up by

2r
1

-- +
2r

l
(p+l) _ r l

S
r N rN = (2p+3) r

2 p
4r

2
+ N

u (k)

A

'-, I'
z

MATRIX VECTOR a
--t H

Y

LIFO (size 21) .
~ .
~

LIFO (size 2N) • llu \k)

p

... ..:

II

L
s

,,)
FORWARD
SUBSTITUTION

BACKWARD
SUBSTITUTION

,(l'
it (k)
u

s

FIGURE 6.5.1: Implicit preconditioned iteration

.. ...

(6.5.1.4)

(k+l)
u

neglecting small terms with n»r
l
,r

2
,p we have,

2r
l

2r
l

(p+l) (2p+3)r
2 -- + -=::--- > 4r + ---,::--=-

r N 2 N

r
and since 2NfO as N+oo because r is fixed, the final result is,

consequently a speed-up occurs if the unpreconditioned scheme

429

(6.5.1.5)

requires 2r times the preconditioned iterations for convergence.

In the cases where r is small this is easily satisfied, and the only

way for the unpreconditioned method to compete is on area terms. From

Theorem (3.2.3.1) the unpreconditioned form requires rw ips cells and

approximately 2(r-l)wp synchronising delay registers between iterations.

Thus,
2(2N+w) > 2(r-l)wp+rw

which after some manipulation yields

.::2,:-N +.:...w::.,(:,p:.;+,::.l'.!..)
w(p+O.5)

> r , (6.5.1.6)

giving the unpreconditioned scheme less area for reasonable values of

Nand r. It follows by substitution of (6.5.1.6) into (6.5.1.5) that

the implicit preconditioners save area and time iff

> 2{ 2N+W(p+l) 1
w(p+O.5) r2

which is unlikely with N large.

(6.5.1. 7)

An alternative approach, which allows cascading, is to use the

incomplete arrays to produce a better initial starting vector as an

input for an unpreconditioned CIA. This idea is reminiscent of the

iterative refinement technique where a system is solved directly and

rounding errors cleaned up by successive improvements. In our case

430

the initial solution is only approximate (from the SIF or SIE methods)

and we can employ more general iterative methods to achieve convergence.

Now allowing 4N+c cycles for the full incomplete solution, where c>O

is the latency of the incomplete array plus delays for the forward and

backward solvers and 4N is the time to fill vector reversal LIFOs

similar to those in Fig.{6.S.1), the timing for this method is,

T = {2r2 N
3 r

r2} + 2r (p+l) - -- +
2 r

4N + c.

So for a speed-up on the unpreconditioned form,

2r
l +

2r
l

{p+l) r
l

S r N rN
=

p r:2 + 2r2 {p+l) _ r2} c +4+
N rN N

and after neglecting smaller terms yields,

r
l

r
(p+l) > ~ + [r

2
- r

l
l + 2

r r N

or r
l

> r
2

+ 2r , for large N)

(6.S.l.S)

(6.S.l.9)

which is a weaker condition for the reduction in the total iterations

necessary for the alternative method to improve the speed. Notice,

however, that (6.S.1.1) ensures a larger modification 6u on each

iteration, rather than one large jump before iteration starts in the

alternative arrangement. Consequently, the difference between r
l

and

r
2

may not be as great, as for (6.S.1.1) giving poorer performance.

Result (6.S.1.9) also relies on the assumption that both CIA forms

contain the same amount of hardware, and ignores the preprocessor

overhead. A more rigorous set of relations can be derived by

introducing additional parameters for each CIA, allowing a trade-off

between speed-up and array sizes. TO develop these relationships

further we examine explicit preconditioning techniques.

431

6.5.2 Explicit Preconditioning Arrays

Consider the preconditioned Jacobi scheme in (6.1.15) which is

easily formulated as the two step process,

1:
2 (I+B)d

1
STEP M = B , z =

STEP 2:
(i+l) (i)

(6.5.2.1) u = Mu + z

IF NOT converged THEN GOTO STEP 2 J

which partitions naturally onto the preconditioned array format of

Fig.(6.1.l) as illustrated in Fig. (6.5.2), where the CIA consists of

pipelined (cascaded) matrix vector arrays. The preprocessor is comprised

of three separate sections, a modified matrix vector array for computing

z, the reduced hexagonal array of Section (6.2), and a reformatting

array for modifying the hex output, for correct CIA input. Operation

of the preprocessor is trivial but we point out the salient features.

(1)
The vector z is computed as z=d+Bd (i.e. set xi=Yi =d

i
in (3.2.1.4»

so that explicit knowledge of I+B is not required and B can be pipe lined

directly into the reduced hex. The expander is simply the preprocessing

described by Fig.(6.2.5) and the hex array computes with dataflow like

Fig. (6.2.2) with A =B =B. Consequently the latency of the hex output
r r

is determined from Theorem (6.2.2) with k=l, i.e. 2w +2c +3 where c >0 o 0 0

is a small constant and Wo is the bandwidth of B. This leaves only

the reformatting array which is essentially a linear array of delay

2
queues adding the right amount of skew to the B hex output arid

(0)
synchronises it with vectors z and u for input to the CIA. To

complete the picture of the preprocessor consider the data flow and

input format B. In order to use the reduced hex B must have the

standard hex format with two delays to separate successive input

elements of the same stream, and is incompatible with the standard

U1r-.. 1:...1 __ -i

B

CASCADED

DELAYED

MATRIX VECTOR

ARRAYS

<
M
<J

432

FIGURE 6.5.2: Systolic preconditioned Jacobi iteration

linear array format of Fig.(3.2.l.3). Adjusting the number of dummy

elements or retiming data 'on-the-fly' is both difficult and messy so

to overcome the problem we define a special matrix vector array which

accepts hex input format. The array and operation snapshots are shown

in Fig.(6.5.3). Notice that the inputs on the left side of the array

are skewed slightly, the expander must remove this skew for hex input,

and the reformatter must restore it for hex output. Both tasks are

achieved by simple data delay queues.

433

.
! ! '33 ! !

"24 "42

"13 "32

"22

"12 "31

"21

"ll

xl

r-,
Y2

") array

X
2 D D Q D~~J D -, r-, "ll r-.... , , , , Y1 ' - , L.J L._ J l.._"

-0 D D Q D -, r-, r--, "21 r-,
I I LYJ,j I - , Y2 L - I L_. L._.J

_ J

-0 [3] D D Q r-, "12 a31y. r-' 1':--' ... -.,
I , Y1 ,- , I Y2 I

,_ ,
~ _.J L_.J '- _J lo_ ...

x

3D D G D Cl r-, r- &2! r-, ... -,
I Y1 I I _ I 1- , 'Y) ,
~_J '-.1 lo_. L_J

GJ D D Qr~~D al : r-' f-' r-,
I - I 2 I ,I _ I

~-. -~ L_J L_J

b} operation

FIGURE 6.5.3: Snapshots of delayed matrix vector computation

434

Theorem 6.S.2.1: The delayed matrix vector product Ax=y for an nxn

matrix A of bandwidth w=p+q-1 requires T=3n+2w-1 ips cycles, w ips

cells and w-l delay registers.

Proof: [Observe the array and dataf10w in Fig.{6.S.3).

The delayed matrix vector must also be used as an iteration

component in the CIA and the cascaded timing analogous to Theorem

(3.2.3.l) is derived as follows:

(i) The initial delay to synchronise x and y (above) in the first

iteration is MAX{p-l,2{q-l)).

(ii) the ith iteration starts 2{p-l)+p cycles after the start of

iteration (i-l) , for i=2{l)r.

(iii) hence the rth iteration starts after (r-l) [3p-2]+MAX{p-l,

2{q-l)) cycles and begins outputting after a further delay

of 2{p-1)+1 cycles.

As the length of output is 3n the total CIA time is

T = 3n+{r-l) [3p-2]+MAX{p-l,2{q-l))+2 (p-l) +l

= 3n+r[3p-2]+MAX{p-l,2{q-l))-p+l • (6.S.2.2)

For the NXN matrices considered in problems I and 11 discussed

previously p=q thus producing,

T = 3N+r[3p-2]+p-l (6.S.2.3)

2
Now the input to the CIA in Fig.{6.S.2) is B , and if B has bandwidth

wO' from (6.2.3) has bandwidth 2w6l. Consequently substituting 2{p-l)

for p in (6.S.2.3) yields the true CIA time

T = 3N+r[6p-8]+2p-3 (6.S.2.4)

From Theorem (6.2.2) the latency of the preprocessor is at least

{excluding the delays of the matrix vector and reformatter which are

435

also proportional to p). Thus the preconditioned Jacobi iterative

method gives a total time of

T2 = 3N+r[6p-8] + c , (6.5.2.5)

where c is the total preprocessor delay. Although the scheme uses

cascaded arrays it still contains a number of undesirable features:

(i) The computation time for matrix vector has increased from

O(2N) to O(3N) cycles.

(ii) Each iteration requires twice as much hardware in the pre-

conditioned case than for the unpreconditioned case.

(iii) There is a hardware overhead for the preconditioning.

HOw does this affect array performance?

case (i): Unlimited hardware

Using (6.5.1) and (6.5.2.5),

s
p

= =
2N+2r

l
(p+l)-1

3N+r
2

(6p-8) +c

which for a speed-up demands S >1 implying,
p

2N+2r
l

(p+l)-l > 3N+r
2

(6p-8) + c

or,

(6.5.2.6)

where r
l

and r
2

are the number of unpreconditioned and preconditioned

iterations respectively. If N»r
l
,r

2
and B is really banded the

unpreconditioned schemes always outperform the preconditioned schemes.

But if rl"N, or rl>N a speed-up becomes likely as by definition r
l
>r

2
•

Irrespective of whether a speed-up does occur we can still save

hardware provided the weaker condition r
l

>2r
2

is satisfied. Each

iteration of the ordinary method uses w ips cells compared with 2w-l

in the preconditioned form, giving a saving,

436

(6.5.2.7)

and with r
l
=2r

2
we save s=r

2
• This saving can be used to offset

the preprocessor cost and the additional delay registers associated

with the modified matrix vector array and compensates in a small way

for a lack of speed-up when r
l

is large.

Case (ii): Fixed length CIA's

Let r
l

and r
l

be the number of iterations and number of arrays

in the CIA for the unpreconditioned Jacobi form, and r
2
,r

2
the

corresponding numbers for the preconditioned Jacobi method. We now

define the speed-up as,

s
p

=

_{2N r - +
1 r

l
2 (p+l) -....!...}

r
l

2(3p-4) + ...£..}
r 2

and for S >1 we must have,
p

or

giving,

2(3p-4)

2 (p+l) -

>
r

~(~) for N sufficiently large,
r

2
2

3 r l -
r

l
> -(-)r

2 2 r
2

Now suppose r1=~r2 for ~>l the saving in hardware is given by,

which relates the convergence rates to array speed-up, and the

(6.5.2.8)

(6.5.2.9)

(6.5.2.l0a)

(6.5.2.l0b)

saving in cells to the relative sizes of the two CIA's. It follows

that if bounds on the rates of convergence of the ordinary and pre-

conditioned iteration matrices are known, a bound,

437

> Cl (6.5.2.lOc)

on Cl can be derived and the maximum cell savings which still achieve

a speed-up located. Furthermore from (6.5.2.10b) if CI>2 and r
2

>W

(which is perfectly feasible for narrow banded systems and a good

preconditioning) we obtain the saving s;O(w
2
). Now, the reduced hex

requires w
2

cells and the delayed matrix vector array in the pre-

processor an additional w cells. Thus the cell savings compensate

for the additional preprocessor cells and still achieves a speed-up.

Case (iii): The 'bag of' approach

The 'bag-of' approach is attractive from the following Viewpoints:

(i) A fixed sized array like Fig.(6.5.2) operated in a multi-

pass mode requires the preconditioning to be performed again

and again needlessly.

(ii) If we perform preconditioning and iteration sequentially

rather than pipelining, the preprocessor. output could be

re formatted in the host to allow the faster standard matrix

vector array to be used in the CIA.

With the latency of the preprocessor denoted by c, the time for

the sequential operation of the precondition er is,

(6.5.2.11a)

and for the CIA is given by,

T; 2N+r(2p-l) , (6.5.2.11b)

using Theorem (3.2.3.1) and 2p-l substituted for p. Consequently, for

a fixed sized CIA,

- {2N l} r l r
l

+ 2(p+l) - r
l

S ; -----=----,-;:;::---=----,.-
p - {2N } (3N+c) + r - + (2p-l) 2 r 2

(6.5.2.11c)

438

which for a speed-up yields,

r
l 3

r
2 ->

2
+-

r
l

r
2

or

r ~ + r2J r
l

>
I 2 . r 2

(6.S.2.12a)

with the cell savings still given by (6.S.2.10b), and the bound on a

now of the form,

(6.S.2.12b)

Thus for the 'bag of' approach to be faster than pipelining we must

have,

-{3N c} -{2N } r 2 r
2

+ 2(3p-4) + r
2

> (3N+c) + r 2 r
2

+ (2p-l)

which after some manipulation and rejection of small terms yields,

r 2 > 3r2 '. (6.S.2.l3)

which by substituting into (6.S.2.l2b) for 3r
2

gives,

r
~(~) > a ,
3 -

r 2

for the speed-up and area savings as before.

Given this success in relating the preconditioning strategy

convergence rate to speed-up and hardware savings we may attempt

further improvements by more preprocessing. For example, the Jacobi

scheme in (6.1.15) can be modified·to perform two iterations for every

linear array of the CIA. Two successive iterations can be written as,

(i+l) 2 (i)
u = B u + (I+B) d

(i+2) 2 (i+l)
u = B u + (I+B) d } (6.5.2.14)

and on substitution produces,

(i+2) 4 (i) 2.
u = B u + B (I+B)d+(I+B)d (6.5.2.15)

which has the form,

439

STEP (i) compute
2

B and v=(I+B)d

STEP (H) compute M=B
2

'B
2 2

and w=(B +I)v

STEP (Hi)
(i+2) (i)

u =Mu +w

IF not converged THEN GOTO STEP (iii)

Steps (i) and (ii) now form an extended preprocessor as shown in Fig.

(6.5.4) which uses two pipelined reduced hex arrays separated by

delayed matrix vector arrays. The delay through the reduced hex is

4w
l

+4c
O

+6, where w
l

=2w
o
-l, and co>O is a constant derived from Theorem

(6.2.2), with further delays for the delayed matrix vector arrays (2

cycles) and reformatting, we conclude that the total preconditioner is

again proportional to the bandwidth of B and not very significant.

From (6.2.3) B4 has the bandwidth w
2

=4W
o
-3=4(2p-l)-3 for problem I.

Thus each compressed linear array of the CIA useS approximately four

times the hardware of the unpreconditioned array. The time of this

new compressed iterative pipeline can be derived directly from (6.5.2.3)

by substituting 4p-3 for p giving,

T = 3N + r(12p-ll)+4(p-l) ,

and with c
2

>0 the delay of the preprocessor is,

T4 = 3N + r(12p-ll) + c
2

• (6.5.2.16)

Observe that as each compressed array performs two iterations (6.5.2.16)

is the time for 2r iterations. The array speed-up over the ordinary

scheme is given

S
P

=

by,

- {2N 2r
l

r
l

+ 2 (p+l)

r
2

_
r

as the compressed method requires only (~)

we must have,

(6.5.2.17)

passes, and for S >1,
P

440

8

FIGURE 6.5.4: Preprocessor for compressed Jacobi iteration

M
A
T
R

---I'
L""I+L x

V

~
o
R

(l+L)d

FIGURE 6.5.5: Gauss-Seidel preprocessor

441

2r;. (12p-ll)

(6.5.2.18) >
(2p+l) -

or,

(6.5.2.l9a)

for N sufficiently large. With r
l
=ar

2
the cell saving is defined as,

s = wr
l
-(4w-3)r

2
= r

2
w(a-4)+3r

2
'

and yields the bound,

(6.5.2.20b)

(6.5.2.21)

We conclude that the minimum saving occurs when a=4, implying that the

preconditioning must reduce the number of iterations by at least a

third.
2

The preprocessor requires 2(2w-l) hex cells in the reduced

hex arrays, and 3w-l cells for the modified matrix vector arrays which

is a considerable increase. Consequently significant saving must occur

in the CIA. putting r
2

=w and a=8 saves enough hardware to cover pre-

1_
processor costs and demands that after preconditioning only 6rl iterations

are required for convergence. The speed-up can be maximised by adopting

the 'bag-of' approach replacing (6.5.2.llb) with,

T = 2N + r(4p-3) (6.5.2.22)

Then by re-evaluating (6.5.2.llc), (6.5.2.12) and noting that if,

r 2 {3N c 2} - - + (12p-ll) + - > (3N+c)
2 r

2
r

2
+ - ~ + (4p-3) r 2 {2 }

2 r
2

or,
r 2 > 6r2 ' (6.5.2.23)

then a speed-up of the compressed pipelined form is guaranteed (for

N sufficiently large) •

442

EXAMPLES OF PRECONDITIONING

Below are some experimental results from Evans [a3d] which provide

realistic estimates of r
l

and r
2

for the discussions in this section.

Two problems are considered.

I. LAPLACE

over the unit square with boundary conditions

u(O,y) = u(l,y) = 0, u(x,l) = 0 u(x,O) = 1

II. BIHARMONIC

again over the unit square with values u
.2U

and --2- specified along
• n

boundaries, n is the direction of the outward normal producing

striped matrix structures suitable for incomplete methods.

I. 11.

Both are positive definite, sparse and ill conditioned and provide

important preconditioning theory tests.

S.O.R.

1~--------~-------7~-----
~ .
,g 6
~ 5
:'; ,,'
~ 3
:
~ 2

Pt.tOllet
aim. ilrrC'"OII

110---/-,' :"'--=-,~""''-------------
• • • ,
L-~~~.~~~ __ ~2~O~---------

h ~"h Ill.r

FIGURE 6.5.6: preconditioning for Laplace equation

/

443

Cl'id ,ncond- • ~recond.' t.loned 2nd Order 'n- 2nd.-Ordu Pre-
'robh. Iht lUoni()9 condition !1.ult .Dlspl. Con41 Uone-4 ConcUt.lon~

.-' Par_ate , .. ""'" lUehard.on Chebylhev

• • .."''''' M.""'"
5 • 9 .• '

Number of rtentlone

I. • 39,86 IS • IS

x..phce 20 • 161.4' 120). 10

operator • ..) l.6S ... " ••
I. .. 0 2.'1 8 8 7

20 "8 5.42 II I. 8 ..
" 13 I<

7 • 48 •• 9 '" 17 " I. • 286.4. 290 •• ..
Blha,..,nie •• • 1916.21 1432 .24 120
operAtol'

7 "f C.)) '8 8 8

•• ..0 ll,l! .. IS I<

20 .. 8 104.28 '" f.)6

TABLE 6.5.1: p-condition and number of
accuracy with basic (w=O)

-6
iterations for sxlO
and optimal preconditioning

Grid Pracon- P-condl Uon PrecondJ. t1o~d 'rec:onditloned
'robl ..

Sbe dlt1onlft9
n '

Iilradlent _thod Conjuque
puametar No.O' Cradient Hathod

• p itentlOona No.of

• • 9.47).
Herat.lena

I. • 39.86 '" 7
fuplace 20 • 161.47 2S8 19

• I.' .. OS ~ .)7

•• I.' 2.81 •
20 1.8 5.42 17 8

11
7 0 48.49 1<, 17

I. • 286.44 290 f.
I1h4lll."WlOhie ZO • 1916.21 >'100 12'

7 ... 4.l) 18 8
I. 1.0 ll.19 •• 15
20 1.8 104.28 '" 50

TABLE 6.5.2: p-condition and number of iterations for sX10-
6

accuracy for steepest descent and conjugate
gradient methods

ks1e_th04

... .,,"" .. , Aec.l, hctors No.of S~rs. Ellmlnation Preconditioned Method
0 Ittraticns Aecel.hetors "b.of • • tae • 0 SUrationl

ht. orde ..
11_ultan.oua I. ... • 120 1.18 • ,.
dlsplaee_nt

20 "0 • 120 1.45 •• th04 • JJ

2nd or&Or I. 1.53 0.53 "
0.98 1.0< I.

IUChardson
_th04 20 1.7) 0.73 •• 0.95 1.OS 30

2nd order I. 10 12
Chebyshev
.. th04 ZO •• ••

TABLE 6.5.3: Results for a sparse elimination algorithm on
the Laplace problem with unit square
(matric'es of order 99 and 361 respectively)

444

We now consider the Gauss-Seidel preconditioned form in (6.1.17)

which produces the following algorithm:

STEP (i): compute

a)

b)

(I+L)b=v
2

(6.5.2.24)
Ml=L and M

2
=(I+L)U

Form M=M
l

+M
2

c)

STEP (H):
(i+1) (i)

u =Mu +v

IF NOT converged THEN GOTO step (ii)

Again step (i) forms a preprocessor with step (ii) the CIA. The pre-

processor is shown in Fig.(6.5.5) which is a delayed matrix vector array

and a normal hex with two problem instances interleaved as shown in Fig.

(6.5.7).
o

o
o

o

MIl)
12

M(l)
31

M (2)
12

M(l)
13

M(1) M (2) M (1) - M (2) M (1)
41 31 22 13 14

(1) M(2) M(l) M(2) (1) M (2) (1)

M51 41 32 22
M

23 14
M

15

M (2) M(1) M(2) (1) (1) (2)
M

23 M24 - M
15

51 42 32
M(l) M (2) M(1) (2) (1) - M24 M25 52 42 33

M(l) M(2) M(l) M(2) (1) (2) (1)

62 52 43 33 M34 M
25

M
26

M (2) M(l) M(2) (2) (1) (2)

M34 M35 - M
26

62 53 43

FIGURE 6.5.7: Hex input for preconditioned Gauss-Seidel

445

An extra boundary of cells is added with a special function of simply

adding the interleaved results of Ml and M2 to form M and which

contributes only a single cycle to the preprocessor delay. The use

of the Land U matrices in different products compels the uni-

directional flow of the Jacobi preprocessor to be discarded losing a

good systolic feature. However the Gauss-Seidel method produces-

superior area trade-offs when the speed-up analysis is applied. The

latency of the preprocessor is caw+2 where the cost of reformatting is

2
ignore~ where the hex requires (w+l) cells and the matrix vector q

cells (for q subdiagonals in L, and q=p in problem I). Notice that

only the lower triangular part of A, equation (6.l.l), is squared

producing a preconditioned matrix with bandwidth w
l

=w+q-l=3p-l for

problem I. But the latency of each CIA array is controlled by the

upper triangular portion of A, so adjusting for the delayed matrix-

vector computation yields,

T4 = 3N + r(3p-2} + c ,

which yields the speed-up relation,

or

>

r
l ->

r 2

(3p-2)

2 (p+l)

for N sufficiently large.

The saving in hardware is computed simply, by,

for r
l
=ar

2
and produces the bound,

3-
r l > 2 r 2 ' for a=l ,

(6.5.2.25)

(6.5.2.26a)

(6.5.2.26b)

(6.5.2.26c)

446

which achieves a saving of r
2

(q-l) cells.
w-q+l

Also notice that when a , w

s=O. Consequently a~l guarantees a saving, and if r
2

>w preprocessor

hardware can be offset against CIA reductions. These results confirm

that the Gauss-Seidel method saves more hardware than the Jacobi method

when both have the same number of iterations r
2

with respect to the

unpreconditioned schemes. But by the fact that the Gauss-Seidel method

uses the most recently computed u. values it attains a faster convergence
J

rate than the Jacobi method. Hence the bounds in (6.5.2.26) are more

easily satisfied, and it becomes possible to scale the computation time

so that both methods compute at approximately the same speed, but with

the former scheme using considerably less hardware. Applying the 'bag

of' principle yields even more savings.

6.6 A FAST ARRAY FOR SOLUTION OF TRIDIAGONAL LINEAR SYSTEMS

TO complete this chapter we consider the fast systolic solution

of (6.1.1) where A is an nxn tridiagonal matrix. The design draws

together the main themes of double pipes, QI permutations, block

partitioning, and incomplete arrays discussed in this and previous

chapters.

A simple Gaussian elimination array can be derived easily from

Fig.(6.4.1) and adopts a standard matrix vector input format. The

array is shown in Fig.(6.6.1) and consists of three cells, a boundary

cell to the left and two simple inner product cells to the right,

augmented with a row interchange facility (for nearest neighbour

pivoting). The boundary cell decides on the next pivot row setting a

flag c to indicate interchanges and also computes a multiplier (m) to

update the adjacent (non-pivot) row. Snapshots of the array operation

447

P,

P2
~, ~, c, .,
~2 .r2 c2 "2

qn~l r
n-l c n-2 mn _2

'" I
I
I

~ I
I ___ J

b, ~l c,

"2 c2
b2

'3

b
n-l • c

n
_

1 n

FIGURE 6.6.1: General tridiagonal Gaussian elimination

are shown in Fig.(6.6.2) and operates according to the following

cell definitions.

W
out~-....,

Cin
W' :tn

N
out

i
if--- Ein
- •. - - Cout

E out

Modifier cell

Nout-rold1 , wout-rold2
Sin-r 2' Ein-rl

Eout -mold' Cout -Cold

Win m , Cin-c
IF c=l THEN

{tl:=r2, t2:=~ll
ELSE

{tl:=rl, t2:=r2l
rold

2
: =t2-m*tl

roldl:=tl

cold:=c
mold:=m

448

"(-____ E
in

Cout

~ ____ ~Eout

REMARK: SIGN(x) =
{

0 if x

1 if x

+ve

-ye

Boundary cell

NO ut -POldl,Eout -m,Couic

Ein-Pl , Sin-P2
a=P

l
/P

2
, S=P

2
/P

l
F=a-S·
IF (F(O) AND (SIGN (Pll G) SIGN (p2» TllEN

{c=l, m=a, Pold=P
2

}
ELSE

{c=o, m=S , Pold=P
1

}

and F<O and sign (x) can be simply noted by checking the sign bits

of the numbers in question. The IF condition is simply a

combinational logi~ expression with a negligable propagation delay.

01
(H) b

1 , DD
a,

(iWO
Cl r=J D "l

"2

h1

CD D Cl [J (iv) b2 ml

"2 0 0

(v) Qc2 CJ D Cl
o m2 a m

1 3

(vi)

FIGURE 6.6.2: Snapshots of symmetric elimination

449

The computation of the boundary cell is easily justified as follows.

First, we must compute c and m where,

c =
otherwise

and
P2 when c=O
Pl

m =
Pl when c=l
P2

Now, 2 2
Pl P2 Pl -P2 F = =
P2 Pl P2Pl

consequently, if,

Pl - ve and P2 . ~)
or

+ ve and P2 -
F<O iff P~-P~<O •

Pl ve

and w~en,

Pl - ve and P2 - ..) 2 2
F<O iff Pl -P

2
<0 ..

P
l

+ ve'and P2 + ve

It follows that,

1 for m

and
(F<O) AND (sign{P

l
) 0 sign (P

2
)) = 1 for m

requiring the cell structure in Fig.{6.6.3).

----,------- --,

iP1 i>iP2 i

iP2 i>iPl i

P2
= - and

Pl
Pl

= - and
P2

c=O

c=l,

FIGURE 6.6.3: Boundary cell
organisation

I
I
I

sign(P2) I

L----1---------- J

neqligable
time delay

m

450

This ensures that both the boundary and modifying cells have a basic

cycle time equivalent to a single inner product step. Also, with no

interchanges the array generates only two columns of output data, but

when interchanges do occur three outputs are needed as the second super-

diagonal fills in. Hence the eliminated upper triangular matrix U

takes the general form:

U = (6.6.1)

L
The c

i
and mi , i=l(l)n-l move rightwards eventually leaving the array

to be stored (for identification of interchanges) or can be used directly

to modify the righthand side of (6.1.1), but requires the addition

of an extra modifier cell to Fig.(6.6.1).

The array timing is trivially observed to be T=2n+k
l

with kl a

constant derived from the delay of the first output, and from Fig.

Next we apply the QI-permutation to give the problem an implicit

2x2 block structure. For example, when n=8 and n=7 the tridiagonal

form of a symmetric matrix becomes:

1 2 3 4

4

5

6

7

8

3 4

4

5

6

7

5 6 7

b
4

as b5

b
5

a
6

b
6

b
6

a
7

b
7

5 6 7

8

1

1 8 2 7 3

1 7

I
I
I

2 6

451

6 4 5

3 (6.6.2a)

(6.6.2b)

(Notice that the permutation produces a 2x2 block symmetric matrix) .

The distribution of zeroes in the above forms allows implicit block

calculations to be performed using a double pipe version of Fig.(6.6.1)

where the essential idea is to compute the elimination by modifying

rows starting at the 1st and last row of the unpermuted form and

moving inwards to the center. (Hence the similarity with QI methods) .

Figs. (6.6.4) and (6.6.5) illustrate the data flow for the odd and

even cases, and reveals the starting input formats:

452

(1) 0 CJ D
(il) eD

bl D [J 0 0 D
(ill)eD clCJ [J CD CJ CJ b

7 1111 42
bl

0 C7 [J Cl [J (JCl IT] GJ (iv)
b

2 1117 47 :all
b 6 'I't ·2

0 c2 CJc CJ O~6 wCl CJ (v)

ID2 43 . Ill, b
2

do6 .§ "1

0 c6 CJ c2 CJ OC2 DC6 D (vi) b
1116 46 1112

b 1:12 4). -6 b_

0 c) [JC6 CJ (Dcs C]C2 D (vii)

~: as .: m2 b)

bS 1113 air 1116

C) CSOC) D 0~ [JcCJ ~: Ill: Q

(viii) 0

1115 as Ill) o m •
FIGURE 6.6.4 FIGURE 6.6.5

Implicit block symmetric elimination Implicit block symmetric
(n=even) elimination, (n=odd)

4S3

a
l

~r b
l as

a
l

~l a
7

b
l

b7
a

2
b

7 b6
a

2
b

6

b
2

a
7

b
2

b
2

a
6

b
2

b
6 a3 b

6 bS
a

3
b

S

b
3

a
6

b
3

b3 as b
3

bS
a

4
b

S
a

4

as

n=S n=7

The data is size n and as everything else is unchanged apart from

dataflow, it follows that the array computation time is T=n+2, and

T=n+3 if a cell is added for the righthand side modification. Observe

that nearest neighbour pivoting is still possible due to the sparsity

pattern in (6.6.2). When the computation reaches the bottom right

corners of the permuted matrices the zero pattern breaks down as the

two interleaved eliminations collide and interfere with one another.

Notice that the input data pattern above omits the b
4

values to avoid

interference, and this introduces an incomplete calculation as the

array only approximates the matrix U in (6.6.1).

The additional modifications to the array output for the even

case (n=S) can be summarized as follows. On step (vi), (c
3

,m
3

) is

computed by the boundary cell eliminating b
3

• On the next cycle (b
3

,a
4

)

are modified leaving (O,b
4

) to be updated to complete the elimination

step. Likewise on step (vii) (cS,m
S

) are evaluated and eliminates b
S

'

and on the next cycle (bS,a
S

) are modified leaving (O,b
4

) to be updated

using (cS,m
S
). Thus, when the array computation is finished we must

perform these two additional modifications to produce a complete

4S4

elimination of (6.6.1). Since all the interchange and multiplier data

is available this presents no problem. For purposes of argument the

fixing procedure produces the 2x2 block form,

and b
4

is eliminated using the correct multipliers, (b
4

,a
S

) must be

updated and the righthand side part modified.

REMARK: For simplicity we have assumed that no interchanges occur,

the argument is similar if they do, or when n is odd.

We argue that the saving of n cycles in the elimination, outweighs

the five additional cycles (including multiplier evaluation) which is

negligible and can be delegated to the host machine.

Notice that this fixing strategy leaves a 2x2 block in the bottom

right corner, and by adding an extra two modifications can be

converted to an upper triangular block giving the permuted form of

(6.6.1) the appearance,

U =

I
1-
I
L

(6.6.3)

o

for n=8. The solution of (6.1.1) can now be written as a backward

substitution,
-~ U u = d , (6.6.4)

455

where ~ is the permuted unknown vector and d the modified and permuted

righthand side vector. As (6.6.3) has a null first subdiagonal "le can

apply the double pipe substitution array of Robert & Tchuente [84] as

illustrated in Fig.(4.2.l). This array requires 6 ips cells and a time

T=n+3+l=n+4 cycles to solve (6.6.4), and by noting that the bottom tier

corresponds to zero subdiagonals can be compacted to use only 3 cells.

Furthermore, the elimination and substitution by virtue of the output

ordering have to be computed sequentially giving a total time,

T = (n+3) + (n+4) + 7 = 2n+l4, (6.6.5)

which includes the time for fixing the incomplete elimination.

In contrast a straightforward complete elimination requires the time

T = (2n+3) + (2n+3) = 4n+6 , (6.6.6)

using an elimination as shown in Fig. (6.6.2) and a traditional

substitution array. Thus a factor of two speed-up and increase in

cell efficiency results from our double piped, implicit block structured

incomplete array, provided some calculations are performed by the host

machine. This reliance on the host is acceptable in this case because

the output of the eliminator cannot be pipelined directly into the

substitution array, and for the sake of <10 ips the saving is dramatic.

6.7 SUMMARY

In this chapter, the systolic design for preconditioned iterative

procedures was developed. The global design consisted of two component

arrays, a preconditioning preprocessor, and a cascaded iterative array

(CIA) for pipelined iterations. Three types of preprocessor were ,
developed suitable for both implicit and explicit types of preconditioning.

For explicit methods we considered the problem of repeatedly

456

squaring a banded matrix (M) using a pipelined arrangement which
2i .

permitted the evaluation of the sequences M ,M~ and accumulation of

the Neumann expansion. A modified (reduced) hexagonal array for matrix

products was described which compressed both input and output into a

single direction and reduced the communication bandwidth of the

systolic array compared with the usual matrix product arrangement.

The increase in computation time for the new array r.elated to the .

matrix bandwidth rather than its order. A pipeline component for

power generation was then constructed by the addition of a preprocessor

which accepted a single copy of the input matrix (M) and produced

separate duplicate copies providing a neat expansion of the host inter-

face. A systolic preprocessor of this form will be useful in the

future for similar roles in other problems, and we suggested optical

preprocessing as a cheap way of producing large array inputs from a

relatively small number of host connections, using the properties of

waveguided and low signal interaction to avoid non-planar wiring.

For implicit preconditioning methods we developed preprocessors

based on the so-called incomplete techniques applied to the solution

of linear systems derived from certain 2-D and 3-D partial differential

equations. These techniques control the fill-in associated with the

solution process by selecting certain diagonals to be retained in the

calculations, to yield approximate answers. The idea of a sequence of

arrays with varying hardware providing an exact solution and a range

of approximate results led to a method of array compaction. The

essential concept being the identification of primary neutral cells

which played no part. in the calculation, which in turn identified

secondary neutral cells that could be replaced by synchronising delay

457

cells. The technique was applied to matrix factorisation and tri

angularisation methods giving rise to optimal area arrays and the

Systolic Incomplete Factorisation (SIF) and Elimination (SIE)

algorithms respectively. For the model 2-D and 3-D problems

considered, the SIF design required cells propcrtional to the semi

bandwidth of the non-zero diagonals plus the diagonals retained for

fill-in. This is compared with cells propcrtional to the semi-bandwidth

of the smallest band enveloping all non-zero diagonals in the original

methods. A similar result holds for the SIE method, and in general a

cell reduction of >75% was observed. The approximate solution errors of

the systolic methods were generally higher than the original schemes

with the SIF better than the SIE methods. The variations in

approximations being attributable to a balanced shifting process

introduced to allow optimal array compaction, which become unbalanced

in the SIE algorithm. The compact arrays used considerably less area

than uncompacted forms making them more practical to construct. Future

consequences for systolic applications are clear. We can define a

sequence of designs which trade accuracy against circuit area to

produce fast, economic, and practical parallel devices for quickly

approximating solutions to given problems. Such low cost devices

could make· suitable add-ons for existing architectures.

The preconditioning preprocessors were then considered in

conjunction with cascaded iterative arrays (CIA's) to assess both

speed-up and area savings over existing iterative schemes. It was found

that most of the methods considered reduced the CIA to a series of

simple matrix vector arrays rather than forward substitution and matrix

vector used by the unpreconditioned Gauss-Seidel form. Relationships

458

between the convergence rates of unpreconditioned and preconditioned

schemes and the finite size of their CIA'S were established and

conditions for speed-ups and area savings derived. We concluded that

for reasonable preconditioners enough hardware could be saved to account

for the preprocessors while still achieving a speed-up. The 'bag of'

methods which performed preconditioning and iteration sequentially

proved to be the fastest variation of all and the preconditioned Gauss

Seidel gave the best area saving.

Finally we described a fast tridiagonal solver which illustrated

how double pipes, block structuring by QI permutations, and incomplete

methods could be combined to derive fast area efficient designs for

more general problems.

