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So far this thesis has been concerned with the improvement of 

systolic arrays for fundamental problems in Matrix and Linear Algebra. 

These problems in the form of differential equations, as well as signal 

and image processing applications account for approximately 70% of 

numeric computation. 

In this chapter we focus attention on systolic arrays for table 

based algorithms such as Interpolation and Extrapolation. Mckeown [84] 

shows that Aitken's Iterated Interpolation algorithm can be performed 

by a systolic array in O(n) time, where n is the size of the table. 

By extension Neville's Iterated Interpolation method can also be solved 

in O(n) time on a similar array. 

Interpolation and extrapolation techniques also have wide uses in 

numerical computation and often produce results in tables of a triangular 

form. This triangular structure and the manner in which table elements 

are constructed indicate that systolic techniques for matrix problems 

may carry over to table based methods. Indeed, a table of elements is 

often represented as a matrix for easy and efficient manipulation on a 

computer system. Below certain similarities between matrix computations 

and extrapolation tables are developed to characterise table generation 

algorithms. The principles are then extended to table manipulation 

techniques for the more sophisticated simplex and assignment problems. 

7.1 ROMBERG INTEGRATION USING SYSTOLIC ARRAYS 

As an informative introduction to table based systolic computation 

we present an array to improve numerical approximations to integrals 

using Richardson's extrapolation procedure in the form of Romberg 

integration. Two designs are presented, the first an intuitive linear 
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array, the second, a systolic ring using approximately 1/3 the cells 

of the first. Both arrays have a computation time of 3n cycles (for 

2 
a table of size n), a significant improvement on the O(n ) steps 

required to construct the extrapolation table sequentially. 

The Romberg integration algorithm is well known, and is based on 

the Newton-cotes formula (see Burden, Faires & Reynolds [81], Johnson 

and Reiss [77]). We use the particular Newton-cotes formula known as 

the Trapezoidal method, which is one of the easiest to use but is usually 

not as accurate as required. The Romberg algorithm is widely applicable, 

and uses this easy-to-apply formula to obtain initial approximations to 

integrals, and Richardson's extrapolation to improve these approximations 

to gain a required accuracy. 

Thus to evaluate the integral, 

I ( f(x).dx , 

a 

(7.1.1) 

for some integrable function f(x), we select an integer n>O and apply 

the sequential procedure. 

/*INPUT a,b, and integer n*/ 
/*OUTPUT an array R, R is the approximation to 1,*/ 

nn /*computed by rows*/ 

ROMBERG(a,b,N,f(x»h 
{ h=b-a; Rl,l= 2(f(a)+f(b»; 

OUTPUT (RI 1); 
, i-2 

FOR i=2 to n 2 

}. 

{ R
2l

=![R
ll

+h I f(a+(k-O.5)h]; 
, k=l 

/*approximation using trapezoidal 

FOR j=2 TO i 
{ R2 . 

j-l 
4 R2 · I-RI . 1 

I )- , ]-
= ---=: .... -:-=---="-"'---'" 

,) 

}; OUTPUT(R 2 , j); 

h=!h 

4 j - l _l 

FOR j=l TO i {Rl ,j=R2 ,j}; 

rule*/ 



which outputs the triangular table of approximations given by, 

R31 R32 R33 
I 
I 

R44 , , , 
I 

, , , , I 
, 

R' Rn2 R - R 
n1 n3 nn 

and known as the Romberg Extrapolation table, where R, l' i=l{l)n 
~, 

(7.1.2) 

are 

approximations from the trapezoida1 rule and the diagonal entries Rii 

i=l{l)n are terms converging to an improved estimate of I in (7.1.1). 

~ ~ 

In general, the sequence {R, ,}, 1 converges much faster than {R } 
11 1= m,l m=l 

and we stop when IRii-Ri_1,i_11<to1, where to1=required accuracy. For 

the systo1ic array these factors have important consequences, firstly 

there must be a fixed number of cells in the array (for fabrication) 

and second there must be enough cells to ensure sufficiently accurate 

approximations. We adopt a general approach to the array and construct 

a finite sized table of n rows. For some problems convergence of the 

Rii will occur before the full size n table is completed and introduces 

the additional problem of closing down the array prematurely, on the 

other hand, large problems may not converge. For the moment we assume 

that differences between the convergence rate of R" and R'l' i=l{l)n 
~~ ~ 

are large enough to ensure that n can be chosen to always achieve 

convergence subject only to area restrictions. {Later we develop a 

more flexible approach. 

The systolic array computation is derived by partitioning the 

Romberg procedure into two basic steps: 

(i) approximate I using the trapezoida1 rule with m
1
=l, m

2
=2, m

3
=4, ••• 
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n-l k-l 
.••• m =2 for an integer n>O and stepsize h =(b-a)/m =(b-a)/2 

n k k 

to derive Rk,l neglecting error terms O(h~). 

(ii) generate table (7.1.2) using the general extrapolation relation. 

4 j - 1R -R 
i.j-l i-l.j-l i=2(1)n (7.1.3) 

j=2(1)i 

which define a natural allocation of computation between host machine 

and the systolic array as follows. The host computes the terms ~.l' 

k=l(l)m for m~n before waking the array, and the array constructs the 

table elements R .. , i=2(1)m, j=2(1)i in parallel using (7.1.3) and the 
~J 

evaluation ordering (for n=S), 

r 
elements on same line 
computed in parallel 

precomputed 1 
/ 

l 
, 

" 
R32/ "R33,," 

" " 
R;2 ,R43 /"R41," 

" " 
, 

RS4/ RSS" 
/ " 

R64 , R6S /,R66/ 

RS2 ,R;3 
/ " 

R
62

" " R63 , / , 
/ " ~74 ,R7S "R76 

/ / ' 
/ 

RS4 Ra'S RS6 

" " Rn R73 ' R77 , 
" 

RS'7 RSS 

This division is natural because step (i) involves evaluating the 

(7.1.4) 

arbitrary function f(x) (within the constraints of being integrable 

and continuous, etc.). and including it as part of the array would 

require an arbitrary number of complex basic array cells. Step (ii) 

and (7.1.4) can be constructed using a set of unidirectional linearly 

connected cells which implement the Richardson Extrapolation procedure 

(REP) of (7.1.3). The array is shown in Fig.(7.1.1) and consists of 

n-l REP cells each with two inputs and three outputs. two outputs 
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FANIN NETWORK 

r-------~--------~---- - - - - "1 - - - - - - - -,- - - - - .. , , 

REP 
(01 

REP 
(ll 

REP 
(21 ••• 

, 

REP 
(n-$ 

FIGURE 7.1.1: Romberg linear systolic array 

REP 
(n-2) 
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connecting to the right hand adjacent cell and the third to a fanin 

network. The fanin network is used for filtering out the results Rii , 

i=2(1)n which the host can use to determine convergence. Each REP cell 

computes a single column, with cell i evaluating column i+2, and 

consequently outputs only a single diagonal element. If c is the cell 

latency outputs on the fanin line from different cells occur at c,2c, 

3c, etc. hence only a single line is required for output. 

The REP cell is shown in Fig.(7.l.2) and consists of a single ips, 

a multiplier, subtractor and divider. The latency of the cell is c=3 

ips cycles taking into account the delay through arithmetic elements and 

delay registers, and computes using a two-level pipelined organisation 

similar to H.T. Kung & Lam [84] bu~ at a higher level of abstraction. 

Each cell performs (7.1.3) and also generates the power 4 j for the next 

cell, hence the two input and output lines. The leftmost cell of Fig. 

(7.1.1) accepts the elements Rll,R2l, ••. ,Rnl on one input line and on 

the second the value 4 (which can be hardwired using a permanently 

register stored value). This permits the construction of the 4
j 



Rio 1-' 

4'-' 

TO FANIN NETWORK 

(I 

4-.....><j 

REP CELL ILA TENCY • 3) 

1 , 
REP CELL SYMBOL 

1 1 , , 

a R;+l.J-' a 

a 41-' 6 

.+1 

FIGURE 7.1.2: Cell operation 

1 , , , 

.----4' '" 

X", current input 

Y "" delay input - OX 

Z "" 4i-' (extrapolation parameter' 

1 , 

R1+2.j_l Ril 

4 '-' 4' 

.+ 2 

464 

systolically rather than sequentially by the host, and although the 

additional multiplier in each cell appears extravagant we show later 

that it can be justified. 

Remark: We could precompute the 4j powers and preload them before the 

start of the computation, replacing the multiplier by a loadable register. 

The operation of the REP cell is clear f~om Fig.(7.l.2), and a single 

control bit is tagged to the R
ii

, i~l(l)m such that: 

control ~ { 
o normal output only 

1 send cell result onto fanin network 

The control tag moves systolically from cell to cell using the natural 

cell delay for synchronisation with newly created Rii values ensuring 
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that cells use the fan-in line in mutually exclusive fashion. Fig. 

(7.1.3) illustrates the array operation as snapshots for the first seven 

steps of the table construction when n=6, and motivates the following 

theorem. 

t - , 
r-----~------~------r-----'-----

R" 

t=l-----,------,------r------r----
R .. 

t,.. r3 __ R22 __ 1 ___ ---.,- _____ , _ _ -- -- T ____ _ 

I-~-----,------T------r------r----

t ,.. ; ______ • ______ T __ ~ ___ r - - - - - -r - - --

FIGURE 7.1.3: Snapshots of array operation 
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Theorem (7.1.1): A Romberg extrapolation table of size n can be 

computed in T=3(n-l) ips cycles using n-l REP cells. 

Proof: 

The total time is given by, 

T = (cell latency) * (number of cells) = c(n-l) = 3 (n-l), 

as only (n-l) columns hence cells are required to construct (7.1.2). 

If a problem converges before all the rows of the maximum allowable 

table size by the array, we simply stop inputting Rjl values and 

reading Rii values. Notice that if we run out of R. 1 values simply 
) , 

pumping in zero values as neutral elements does not affect subsequent 

calculations, hence any table of size m<n can be computed in T=3(m-l) 

ips cycles. Finally, we remark that each REP cell can be considered 

equivalent to 2.5 ips cells and the array requires 2.S(n-l) ips 

equivalents. 

NOW, from Fig. (7.1.3) the last input R6l enters the array just as .. 

the second cell is about to output the value R
33

• Generally an output 

lth 
leaves the ~ cell when the value Rn,l is already in the first cell. 

It follows that once the last input has entered the first cell successive 

1 
inputs will be dummy elements, consequently, only ~ REP cells will 

perform useful computations at any particular time. Hence, the size of 

the array can be reduced to m' = ftnl cells, by using the two level pipe-

lining of the REP (cell). When the last input R has entered the 
n,l 

first cell, the last cell computes a result in the divider, which on 

the next cycle will be output. We wrap the output of cell n-l around 

to the input of cell 1, so that the result of cell n-l is pipe1ined 

behind the last input in cell 1. The result computed is incorrect, 

but by preceding discussions will not affect results further down the 
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array, and will not appear on the fanin line because the control bit 

associated with the cell (n-l) output has not propagated through to the 

divider (it will arrive in another two cycles). On the next cycle cell 

1 starts to compute the value which would have occurred in REP cell 

1 
(3n+l) of the linear array. It follows that the two cell systolic ring 

in Fig.(7.l.4) will compute the same table as Fig.(7.l.3) but requires 

1 3 the cells. As each REP cell is equivalent to 2.5 ips cells the ring 

requires at most nips cells to implement it. 

aiRing 

0-6 

ceU. '" 'hiS) - 2 

b) Computation' , 

(il 

(v, 

(ix) 

(xiii) 

~ -tJ-LJ 
(ii) 

Ivl) 

(x, 

(xivl 

NOTES: (I) we now load 4i- 1 into a register. 
which is only loaded when the input 
control signal is high (this I, associated 
with RiI values) 

(iil) 

(viii 

(Id) 

(xvi 

\ 

(lvI 

(viii! 

(xvi) 

FIGURE 7.1.4: systolic ring for Romberg Integration Table n=6 
a) array b) ring computation 
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From H.T. Kung & Lam [84] we note that the ring has a particularly 

efficient cell layout depicted by Fig.(7.l.5) which requires a box of 

RII" ••• 

- - - - FANIN LINKS 

Systolic Ring for Romberg Inlegration n ~ 3m m 1 = 38 cells 

FIGURE 7.1.5: systolic ring for Romberg Integration n=3m, ml=36 cells 

side~ (where a unit measure is the side of a square bounding the 

REP cell). The fanin network itself can be embedded inside the ring 

3r;-
to minimise its length which is proportional to (z)/m', and is important 

for controlling skew and latch mistimings in a hard systolic frame, 

but not so important in a soft-systolic frame with electro-optic 

heuristics. The tag bits controlling the cell outputs onto the fanin 

network can also be utilised to the full with the ring design, as 

follows. First, we can justify the additional multiplier in each REP 

cell for computing the 4 j powers. Clearly in a systolic ring the 4
j 

values cannot be preloaded by the host as they would be incorrect after 
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the first ring cycle. Instead, notice that the control tag bit is set 

only with Rii values which for the linear array implies that an unused 

cell is entered, making any previous 4
j 

value invalid. Consequently 

the tag bit can be used to set the new 4
j 

values as it cycles around 

the ring, by loading a register in each cell. The loaded value is 

retained until the tag bit completes a ring circuit, when it is over~ 

written. The tag bit can also be used to control the connections 

between the host input/ring, and the ring connections between cell 1 

I 
and cell m. On startup cell REP(O} in Fig.(7.l.5} accepts values 

from the host, including the control. After a single cycle of the ring 

the control bit leaves the dth cell switching in the ring connections. 

On subsequent cycles no switching occurs. 

Finally, we remark that the array in Fig.(7.l.5} has 36 cells, 

allowing any table m<108 to be constructed, which would probably be 

adequate for most applications. The ring also has the useful property 

of 1 host input and 1 host output (with the value 4 hardwired) making 

it attractive for a hard systolic approach to implementation. Soft-

systolic versions of the arrays can be found in the Appendix as programs 

9 (linear) and 10 (ring). The designs both require O(3n} ips cycles 

compared with o(n
2

} time on sequential machines, a significant improvement. 

7.2 THE CONSTRUCTION OF GENERIC ARRAYS FOR EXTRAPOLATION TABLE GENERATION 

It can be readily appreciated that the above Romberg integration 

array is a special case of a generalised (or generic) table generating 

array. For example, above we assumed only the diagonal table entries 

were required for output simplifying the host/array interface and 

allowing the use of the area efficient ring structure. In wider 
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applications part or all of the table interior may also be required, and 

this demands a more flexible array structure. To develop our generic 

array we consider the construction of extrapolation tables used in the 

solution of Ordinary Differential Equations (ODEs) associated with 

initial value type problems of the form, 

initial condition yea} = ~ } (7.2.I) 
y' = f(t,y}, a~t~b 

The generalised method is examined first for a low order formula (i.e. 

Eulers method) combined with a suitable extrapolation formula, and is 

then extended to the Burlisch & stoer [66] method as an example of 

array construction. Finally, before the development of any systolic 

arrays two fundamental restrictions must be observed: 

(i) The systolic array can only be applied to existing ODE's 

by construction of extrapolation tables. 

(ii) The array must be of fixed size, implying a limit to the 

number of levels or step divisions allowable, in order to 

keep the table size fixed and manageable. 

The first point indicates that any portion of the ODE algorithm which 

involves the evaluation f(t,y} must be placed outside the array. This 

follows because in general f(t,y} can be arbitrary providing it is 

integrable, and the systolic array would become arbitrarily complex if 

it were included. (This is an extension of the restrictions of the 

Romberg array). The second rule observes that the function values used 

to estimate yet} at every level must be evaluated before the array can 

be used. This appears to defeat the object of extrapolation, because 

we would normally stop when convergence is reached, ignoring the 

computation at lower levels altogether. 
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We now consider how an extrapolation procedure can be incorporated 

into the solution of an ODE using an algorithm attributed to Gragg. 

Although the algorithm is simple it provides a suitable vehicle by 

which to illustrate the above points and relate extrapolation techniques 

to matrix computations. Applying Eulers' method with stepsize h>O to 

(7.2.1) the ODE solution is approximated as follows: 

with 

w = Cl o 

wi +l = Wi+hf(ti,w
i
), i=O(l)n-l 

n = (b-a)/h and ti = a+ih, i=O(l)n-l 
) (7.2.2) 

and the approximation error y(ti)-w
i 

leads to a function o(t) such that, 

Now let w(t,h) denote the approximation to y(t) with stepsize h. For 

example, choose two step levels ho and hI «h
O

) and consider evaluating 

y(b) with, 

q = (b-a) /h o 0 

applying (7.2.2) and (7.2.3) twice, once with h=ho and again with h=h
l 

yielding, 

y(b) w(b,h
o

) + hoo(b) + O(h;) 

y(b) = w(b,h
l

) + hlo(b) + O(h~) 

which after simple manipulation produces, 

y(b) = O(h;) 

} (7.2.4) 

(7.2.5) 

If the difference method like (7.2.2) has a particular type of error 

expansion (see Burden, Faires & Reynolds [81]) it can be generalised 

to construct an extrapolation table, with diagonal elements converging 

to a good (accurate) approximation of y(t). For example, with three 
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which results in Gragg's extrapolation algorithm defined below, where, 

INPUT; end points a,b, initial condition a, tolerance TOL, 

and level limit p~8 

OUTPUT; T,w,h, where w approximates y(t) at stepsize h or a 

message indicating that the minimum stepsize was exceeded. 

Gnq9 
{ NK-(2,),4,6.B,12,16,18)1 

T
O

=&; "'o·C/,J h-hmax, 

FOR 1"'1 TO 1 2 
( FOR j-I TO i (Qij'(NKi+I'Nkj ) ),), 

WHILE (To<b) 00 
{ k"'l; FLAG-o, 

)); 

WHILE (k~p AND FLAG"'O) DO 
( .. -h'''''k,T-to' W2 .... 0 1 

"'lKW2+HX*f(T''''2); /*Euler step·/ 

Ta;to+HK, 

FOR j-I TO N
k

_l 

{ "'1-"'2' "'2-"'3' 
"'J-"'1+2*Bk*f(T,w3}; ,·mid point method·, 

T-t +(j+l)*BK., 
), 0 

Yk-[V
3

+V
2

+BK*f(T,w
3
»)/2, 

'·smooth for Yt,l-/ 
IF k~2 THEN 

{j-k, Y"'Yl' '-save Yk-l , k-l*/ 
WHILE (H2) 00 

), 

+ (y,-Y j - l ' 
(Yj-l'Yj °k_l,j_l-l 

j-j-l, 

), 

IF ly1-vl<TOL THEN FLAG .. l 

I*accept Yl as new v-I 

k-k+l, 
); 

k-t-I, 
IF FLAG~ THEN 

{ h"'h/2, IF h<h i TBEN{oorPUT 'minimum h exceeded' J STOP} 
ELSE m n 

{ "'O·Yl' To·TO+h; OUTPUT(to''''O,h); 

IF (kS3) AND (h<h /2) THEN h m2h 
}; max 
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The extrapolation table can now be represented as a lower triangular 

pxp matrix, 

IYll I 
IY21 Y22 
I I I "- 0 

y = ...... (7.2.6) 

I : 
I "-
I "-

"-
I I , 

~l 
, 

Y - - - - Yp~ p2 

Next we define a constant pxp lower triangular matrix Q with Q .. the 
l.) 

ratio of two step sizes squared. 

Qll l Q21 Q22 0 
I I 

, , 
Q = I "- (7.2.7) , 

I , 
I I "- , 

61 
Qp2 - - - - Q pp 

and define E as an extrapolation operator. The extrapolation given by 
p 

the Gragg algorithm is then formulated by, 

(7.2.8) 

where, y = 
1 

such that, 

1 
= or Y11 = 

and, 
I1 1 
l,Ypl 

1 Y31-Y21 
Y21 

= Y3l 
+ 

Q22-1 

= , or 
1 1 

2 1 Y21-Yll 
Yll 

= Y21 
+ 

Q21-1 

... etc. 
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The form of computation is similar to dot product calculations, hence 

using the same pipelining ideas developed in section (3.2) Fig.(3.2.l.2), 

extrapolation can be interpreted as a matrix-vector type computation 

Q y(l) 
1 1 

(2) 
== Y1 ' 

Q y (p) = 
p 1 

(7.2.9) 

(i) 
with Qiorow i of Q and Yl ° column i of the extrapolation table, and 

the non-commutative operation implied by jux~position the formula 

associated with E rather than the inner (dot) product. Thus, we have 
p 

obtained a generic recurrence structure which leads directly to the 

linear array in Fig.(7.2.l) which adopts a diagonal input format for Q, 

and a column output form for y, and implements operator E as a basic 
p 

cell computation. 

YP' ... Y:n V11 

a,.. , , , 
Q" .. -, 

I ,-
I ............ 

~33 au ........ 0:11, ... " 
an ...... Q21 ...... 

an ...... 

0,., 

Vp2 __ .. __ Yp3 .. ____ YP'I- _________________ .YPO 
I ...... ~ 
I ........ 
I ......... 
I ........ 
I .......... ... 
I ........ 

: ........... -y .. 

y22_ ......... - Y33 

Ep!! extrapolation cell, computes extrapolation procedure 

Time unit"" latency Icost of! eldrapolation computation 
for cell 

Total time :;;; (P - 11 C 

P ... number of step levels 

C .. latency of Ep cell, 

EXTRAPOLATION TABLE 

FIGURE 7.2.1: Generic extrapolation array 
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The construction of Q must be performed before array operation 

removing the explicit representation of the sequence h ,hl,···,h 1 o p-

for p steps in the array. Consequently for specially chosen sequences 

simplification in Fig.(7.2.1) occurs. For example, the sequence, 

produces the step size relation matrix, r2
): 

(4) 0 l 
Q ~ (7.2.10) 

22 (p-2) 

I ~(P-l) 22(p-2) ____ (4)2 (2)J 
and with the Qij preloaded into array cells produces the array in Fig. 

(7.2.2a). The Q .. in (7.2.10) are easily constructed 'on-the-fly' 
~J 

and we can save preloading expenses by augmenting the E cell with 
p 

additional hardware to generate the required power for the next cell 

(to the right). If the E cell latency is c(>l) cycles (where a cycle 
p 

is some basic calculation like an inner product step) and the cell can 

be structured to allow two level pipelining, values can be input on 

basic cycles rather than every c cycles, and the total number of array 

cells reduced to m~rP/.;j. This produces the systolic ring in Fig. (7.2.2b), 

which by wrapping the mth cell output back to cell 1 generates the table 

computation sequence in Fig.(7.2.3). Hence, 

Theorem 7.2.1: The generation of an extrapolation table of level p can 

be computed in T~c(p-l) ips cycles where c is the E cell latency in ips 
p 

equivalents, and requires at most p cells. 

Proof: [see Fig. (7.2.1)). 



EXTRAPOLATION TABLE 

FIGURE 7.2.2a: Extrapolation array for ho,hl = 

I 
I , 

Y2m+' .2m+1 

YP,m+-' , , , , 
Ym+I."'+1 

v .. 
I , , , , 

v .. 
v" 

V'm.'.2m+2_ --- -- ...... -
YP,m+2 , , 

------ ------

, 
.. V2m.:rm 

Y~+2.m+2---------"----------- Y',m 

v" , 
, 

, , , , 
I .~ __ .... _ Ym+l.m I ___________ _ 

y:r:r_------- Ym,m 
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FIGURE 7.2.2b: Systolic ring computation of extrapolation table 

v" , 
V2, .... · " · , · ' · " · , y- · ' • v_ 

l,,~ 
v .. 

"" extrapolation table 

~ Table elements not computed 

Vmm V2m.2m 

cells 2-m VP.tII 

FIGURE 7.2.3: Cycles in systolic ring 



Corollary 7.2.1: If the E procedure can be implemented with the 
p 
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equivalent of c ips cells incorporating two level pipelining we require 

m=IP/Ci E cells requiring area proportional to pips cells. 
p 

The array for Romberg integration using (7.2.10) and (7.1.3) as 

the E operator follows trivially. With the further assumption that 
p 

only diagonal values are output Fig. (7.2.2b) reduces further to the 

compact ring layout of Fig. (7.1.5) form. Likewise when formula (7.2.5) 

is adopted as the E operator the following cell structure is obtained: 
p 

la. 

latency - 3 

Vi,'Yi-I,' 
d 

FIGURE 7.2.4: Gragg E operator cell structure 
p 

Hence with c=3, and a sub-cell assumed bounded by an ips equivalent theorem 

(7.2.1) gives the timing T=3(p-l). 

Next, we consider a more complicated E function derived from the 
p 

Bulirsch & Stoer extrapolation method using rational function approximations 

to y(t). The motivation being that the function fin (7.2.1) can be 

approximated by polynomials or quotients of polynomials (rational 

functions) which not only give a wide range of approximating functions, 

but also allow larger step sizes hence smaller tables and arrays than 

preceding methods. In addition, polynomials can be evaluated efficiently 

using Horners method reducing the time for a host machine to generate the 

required starting values. The Bulirsch and Steer algorithm requires an 



E function of the form, 
p 

(i+1) 
= T

k
_

1 
+ 

T(i+1) 
k-1 

_ T(i) 
k-1 

T (i+1) -T (1) 
k-1 k-1 
(i+1) (i+1) ]-1 

T
k

_
1 

-T
k

_
2 
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(7.2.11) 

T
(i+1) (i) (i+1) (i) 

relating the elements k-2 ' Tk_1 , Tk_1 and Tk together by a 

Rhombus rule. Fig.(7.2.5a) indicates an intuitive order of parallel 

computation similar to (7.1.4) but with the key, 

/1 
, I 

<,' t Values input to 
...... I EPcells 

, I 
'.J 

<)1 A is produced by <,""1 
I A the cell with input ..... : I _ 

Key to (7.2.5a) 

The cell that results is unnecessarily complex involving strange delay 

arrangements, non-planarity and three inputs to produce the correct cell 

output sequence. A less intuitive ordering is the skew Rhombus rule 

which requires just two inputs and two outputs and calculates according 

to Fig. (7.2.5b) using the key, 

An 

A" 

Au C 

values A. B input to cell . 

values in cell producing next 
extrapolation value C 

Key to (7.2.5b) 

If we define A=T(i+l)_ (Hl) (i+l) (i) Q k-1 Tk_2 ' B=Tk_l -Tk_1 , 
h. 2 

=(_1._) 
h. k 1.+ 

(7.2.11) becomes, 
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1 
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,,(0) 
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,.U) 4 
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FIGURE 7.2.Sa: Rhombus computation of the tableau 



'rU ) 
-1 

'I'm 
-1 

'rltl 
-1 

'f(3) 
-1 

'1'14) 
-1 

'I'll) 
-1 

'1'(2) 
-1 

'1'(3) 
-1 

'1'\11 
-1 

'1'12 ) 
-1 

.,m 
-1 

'1'14) 
-1 

'r10) 'r ll ) 'r10) 
1 

'r10) -1 1 
'r 101 

'r III 2 'r10) ,,12) 'r 11) 2 ,,10) 
1 ) 

'r10) -1 1 ) 
'r(2) 'rIll 'rill 

'r 12) 2 "Ill 
4 

"U) '1'12 ) 2 'I'(l) 0 
1 3 -1 1 ) 

'r(3) 'r12 ) 'rU ) 
0 '1'(3) 2 '1'14) '1'(3) 2 

1 -1 1 '1'(4) 'f14) 
0 0 

(i) (iil 

'1'\1) 
'1'10) -1 '1'10) 

2 'r 10) 'r12) 2 '1'10) 

'r 11) 
) 

'r10) -1 'fll) 
) 

2 'rIll 4 
'1'(3) 2 'f\1) 

'r12 ) 
3 -1 'r 12) 

) 
'l'U) 'r(3) 

0 ,,(3) 2 ,,14) 0 2 

'1'14) 
1 -1 

'r 14) 
0 0 

(iIi' (iv) 

'1'10) 
,,10) 0 

'1'111 0 '1'10 1 
-1 1 

'f101 
'f\2) 

.,111 
'I' (11 

'1'101 
0 2 .,10) ) 

'1'10) -1 
'f(2) 

1 3 
'rIll 4 

.,(3) 'f(2) 
'1'\11 

0 2 'f 11 ) ) 
-1 1 

'f(3) .,121 3 
'1"41 0 'r(3) 2 

-1 
'f14) 

1 

0 

Iv) (vi) 

.,10) 
,,10) 'f(0) 0 

,,(1) 0 T'O) 
'I'll) 

1 
-1 

'I'll) 
1 

,,(0) 0 T (1 ) 'f10 
,,(2) ,,(1) 0 2 ,,(0) 

'1'(2) 
1 ) 

'r (0) -1 
,,(2) 1 ,,'11 3 

0 'r'1I 4 
'f(3) 3 0 T(2) 2 T\1 

'1'(3) -1 
"U) 

1 
T(2) 3 

0 '1'(3) '1'(4) 'f(3) 1 0 2 
'1'(4) -1 

,,(4). 
1 

0 
0 

(vii) (viii) 

FIGURE 7.2.Sb: Skew Rhombus computation of the tableau 
in parallel 
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STEP 1: read T~'~~' . TIIIII. then T~i:~' 

compute B.A 
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STEP4:T .. III"T~~,1I + BlIt 
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SUB I 
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Q 
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FIGURE 7.2.Sc: Bulirsch & Stoer extrapolation cell 
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(7.2.12) 

matching the form in the generic array, and yielding the E cell in 
p 

Fig.(7.2.Sc). Notice that the cell latency is c~S ips cycles and that 

the hardware requirement is bounded by 5 ips cells. Thus Theorem (7.2.1) 

and Corollary (7.2.1) are applicable yielding T~S(p-l) and m~rP/~E 
p 

cells for a ring structure. The addition of an extra input and output 

for each cell is a trivial alteration to the array in Fig.(7.2.1) and 

(i) does not complicate the host array interface as T_l ~O is usual (and 

(Hl) can be hardwired) while the output T
k

_
l 

of the last cell can be simply 

discarded. 
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The extrapolation arrays so far have always assumed that: 

a) The diagonal elements of the table converge to the required value 

y(t) at point t. 

b) Convergence is achieved for some level p'~p. 

Now suppose we had an array of p E cells and for some table the 
p 

diagonal entries converged on level p'<p, we have no way of knowing in 

advance that the table will converge early and must compute all p 

starting values and their associated Q .. elements. Likewise, if the 
1J 

table elements diverge we can detect it (by monitoring diagonal 

elements output) 'and close down the array prematurely, but still have 

all the starting values to compute initially. The computation of unused 

starting values, especially as they will tend to occur at lower levels 

where more function evaluations are required, represents a significant 

overhead. It follows that table generation would be more efficient if 

we could compute only the necessary starting values. A naive approach 

to solving this problem would be to try and pipeline the starting value 

evaluations and array operation. Clearly for arbitrary f(t,y) functions 

in (7.2.1) and only a small number of levels (hence table sizes) this 

is impossible. Basically, the value of f(t,y) must be found during the 

periodicity time of an E cell, for the above arrays this is a single 
p 

ips, as we move down the table more f(t,y) evaluations are required per 

starting value providing a simple contradiction. Instead we consider 

an 'Adaptive' systolic array for extrapolation based on the work in 

Murphy [78] where more flexible sequential table construction algorithms 

were considered. The array is based loosely on the systolic priority 

queue (Leiserson [81]) for keeping real time order statistics, in which 

starting values can be input at intermittent intervals with the array 
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having no real knowledge of when the next input will arrive. On 

cycles between inputs the priority queues continue to compute, we 

suggest a modified form in which no computation occurs between inputs 

delayed by significant time. We define two measures of time, array 

time and host time such that the total computation time T=(array time) 

+(host time). 
I 

Now suppose we compute p starting values with an array 

of size pI the full table is computed making host time zero. If we 

compute p" <pI starting values we construct a table of size pI! decide 

I " on convergence and freeze the array while the remaining p -p starting 

I 
values are computed which contributes to the host time giving T=c(p -1)+ 

(freeze time). Thus, freeze time is the cost associated with evaluating 

starting values which were previously precomputed. The decision to 

freeze the array must be made by the host on the basis of whether the 

tables diagonal values are smoothly converging or not according to the 

following criteria. 

(i) The detection of smooth convergence: which by decreasing errors 

decides: 

a) To abandon the table because it is not converging 

b) Convergence will occur with the already computed 

starting values 

c) The estimated size of table required to provide 

convergence, using extra starting values. 

(ii) In case of an incorrect prediction: 

a) Whether to change the stepsize (increase or decrease) 

b) To re-run the array with more starting values. 

(iii) Closedown of the array, because convergence has already been 

achieved. 
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(iv) Raise an exception: that no more starting values can be used. 

(i.e. all array cells occupied). 

From these conditions the freeze command can be generated. The 

implementation of the freeze depends on the type of clocking mechanism, 

for asynchronous control operation is essentially dataflow and stalling 

the handshaking protocol in the host is sufficient. For synchronous 

arrays freeze is implemented by gating the array cell cycle clock as 

follows:-

clock 

clock and control 
signals for the 11 n 11 adaptive extrapolation 

freeze---.J 1~.~==~f~re~.z~'~==~'1 L.J L-array 

more values 
required fOf 
conver~ge:::n.::c:' __ J 

FIGURE 7.2.6 

Normally, gating a clock would be bad practice, but as the array is 

globally affected no problems should be encountered. 

Clearly for large tables results can be constructed by alternating 

freeze/computation phases requiring a minimal number of starting values 

to be constructed. A final warning to the practicality of the adaptive 

array is that we must collect enough diagonal estimations to perform a 

prediction. The Bulirsch & stoer E cell with latency c=5 requires 10 
p 

starting values to create two diagonal estimates. Consequently we may 

have to compute more starting values than necessary. The problem arises 

because of the two level pipelining of cells, and can be avoided by 

redesigning the cell without pipelining at the expense of reduced 

throughput. 
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• 
8 

• • 

• 

a) Straight forward partition 

• 

• 

b) Overlapped partitions 

Pass n Q known value 

FIGURE 7.2.7: Multipass table construction 
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FIGURE 7.2.8: Internal memory extrapolation array 
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Next consider the problem indicated by case (iv) of the prediction 

criteria, under these circumstances we need a table larger than the 

array can compute. The solution is to use multipass table construction 

on a fixed array of size p as illustrated in Fig(7.2.7). Notice that 

not all the table values are computed, and could affect the convergence 

(or its detection) forcing a larger table, hence more starting values, 

to be evaluated than required if all the table elements were known. 

As f(t,y) function evaluations increase for deeper· levels the rise in 

host computation can be significant. This increase to some extent is 

outweighed by the fact that we can compute a table of any size, and 

where area is a premium a small array can be constructed. Figs.(7.2.8) 

and (7.2.9) indicate the possible structure of a self-contained extra-

polation array which minimises the host/array interface by storing the 

Q .. and (table) y .. values for sequential input and output. The feedback 
l.] l.] 

loop of the Qij memory allow the Qij to circulate once loaded to solve 

a number of consecutive table problems. The table memory incorporates 

a fanin line so that just the diagonals can be output, allowing the 

table to be overwritten for consecutive problem solutions, as well as 

full table output for single problems. Clearly a single chip device 

will require a small p and multipass which requires constant reloading 

of the Q .. memory. We conclude that a small compact extrapolation array 
l.] 

is feasible. 

7.3 THE UNIFICATION OF SYSTOLIC DIFFERENCING ALGORITHMS 

The above fast systolic arrays for extrapolation techniques have 

shown that a certain correlation exists between table generation and 

matrix computations. From these correlations it is possible to develop 
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the concept of array templating. The templating method allows the 

fast derivation, (by a sequence of designs), of systolic arrays for 

computationally related problems which freeze the abstract definition 

of the array at a high level using a global method of calculation. 

The subject of this section is twofold. Firstly, it defines templates 

for the problem of differencing algorithms, indicating that the above 

methods are special cases of a more general structure. secondly, we 

introduce the concept of unification and illustrate the method by showing 

that our differencing templates can be unified to fit a single array 

the Qnified ~ystolic ~rray for £ifferencing (USAD). 

A prototype template for table generation which has been used 

implicitly in the previous sections consists of the following four 

components: 

(i) An ordering of table elements suitable for parallel 

evaluation of the table, and a computational rule relating 

elements in a partially constructed table to unknown elements. 

{Usually a column is defined in terms of columns to the left). 

(ii) A linear array is defined with basic cells mapped onto a 

column of the table. Cell i computes column i and implements 

the computational rule. (see Fig.{7.2.l». 

(iii) A class of arrays for partial or full table generation {as 

indicated by (7.2.2) and (7.l.l». 

(iv) A generic timing given by, 

T = (number of inputs) + (delay through array) 

(n+l) + cn , (7.3.l) 

for cell latency c and table of size n+l. 

We have observed that c varies for the complexity of the computational 
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rule and when c>l we can save area by using a systolic ring. (7.3.1) 

is a maximal timing and requires some explanation, intuitively, the 

array time must be bounded by the time for the last starting value to 

enter and pass completely through the array. To derive the timings 

in theorems (7.1.1) and (7.2.1) we notice that the structure of the 

table demands only one output (the last diagonal) from the last cell. 

After all starting values have been input the diagonal element of the 

rn/cl th cell has been computed, and requires the array delay c (n-I~l ) 
assuming n is divisible by c substitution into (7.3.1) yields T=cn+l. 

We can now distinguish between the ideas of templating and 

unification. The key point is that the template defines an array 

structure which remains static, while the design of a basic cell varies 

with the computational rule. We shall denote computational rules as a 

function R defining the cell as a black box. For instance, a rectangle 

rule of the form, 
T (j -1) 

i 

T{j_2)<> T{j) 
i+l i 

T (j -1) 
HI 

R{T{j-l) T{j-l) T{j-2» 
i+l 'i 'i+l (7.3.2) 

is the computational rule for the Bulirsch and Stoer extrapolation 

table. A number of rules R
l

,R
2

, etc. which fit the same template and 

have similar geometric properties can be unified if a common cell 

structure with minimal area can be identified. 

Next we identify a class of R. functions which can be unified 
l. 

from common differencing techniques such as forward, backward, divided 

differences, and rational function approximation. All the tables 

considered can be used to extract co-efficient data for the construction 
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of polynomials P(x) and rational function approximation R(x) of a given 

function y(x). Many formulas are available for approximation such as 

the Newton forward/backward difference formulae and the continued 

fraction representation for rational functions. It is the simplicity 

and universal application of these methods which makes the generation 

of their coefficients (or part of them) by fast systolic arrays 

important. 

Now given a discrete function, i.e., a set of arguments x
k 

and a 

corresponding value Yk such that arguments are equally spaced by the 

distance h=xk+l-x
k

• The difference operator ~ is defined as, 

1st difference 

2nd difference 

and generally 
n-l n-l 

= ~ Yk+l - ~ Yk 

This gives rise to the table template in Fig.(7.3.la) and the cell 

function R is derived from the computational rule 

(7.3.3) 

defining the ~-cell in Fig.(7.3.lb) consisting of a single delay 

register and subtracter. The array operation is shown in Fig.(7.3.2) 

and with cycle time 'l=cost of subtraction the cell latency c=2'1. 

By normalising the cycle time to eliminate '1 (7.3.1) gives the maximal 

timing, 

T = (n+l)+2n = 3n+l , (7.3.4) 

which can be reduced to 2n+l cycles when the diago~al output is observed, 

and a systolic ring configuration requires only fn/i\ subtracters. 

Similarly the backward difference (g) is defined by the simple 

computational rule, 
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Xs 

a) Finite difference table computation 

b) Basic A-cell 

c) Swltchable difference cell 

FIGURE 7.3.1: Finite difference template 

Cycle Actions 

t 

U1 

t+2 

t+3 

u4 

FIGURE 7.3.2: Successive cycles in forward difference table generation 
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(7.3.5) 

producing a similar cell to Fig. (7.3.lb) and retaining the computation 

time (7.3.4). This is expected as the template computation orders are 

isomorphic requiring only the reversal of the starting input data, and 

these trivial methods can be used to illustrate the principle of 

unification. In a mathematical sense the cell functions Rl and R2 

define R3 a new function and rule which unifies both methods on the 

same minimal area architecture. We denote this, 

R3 (Rl (Yk'Yk +l ) , R2 (Yk-l,Yk» = R
3

(Z) , (7.3.6) 

such that, 

{ llYk 
c.=l 

R3 (Zj) = J j=l(l)n+l 
'lY

k 
c.=O 

J 
and 

{ Yj 
,c.=l 

Z. = J j=l(l)n+l 
J Y j l'c.=o n- + J 

deriving the unified basic cell of Fig.(7.3.lc) controlled by a switch 

c
j 

to swap the input operands of the subtracter to select Rl or R
2

• 

Notice that the input for R2 is reversed. 

The differencing algorithms defining the current template arrays 

have a significant drawback for they assume equally spaced arguments. 

To develop the templating concept for more general table generators (and 

hence wider applications) unequally spaced arguments must be considered 

and, for purposes of illustration shall take the form of divided 

differences which are defined as follows:-



1st divided differences 

2nd divided differences 

Higher differences 

y(x
l

,x
2

)-y(x
O

'x
l

) 

x
2
-x

O 

y(Xl···x )-y(x ••• x 1) n 0 n-
y(x ,xl""'x) = o n x -x 

n 0 
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which modifies the template computation to that shown in Fig(7.3.3a) 

and uses the template function, 

(7.3.7) 

producing the cell in Fig.(7.3.3b). This time the arguments x. not 
1. 

just the starting values are represented explicitly in the cell function. 

Furthermore, for two arguments Xi and Xj in (7.3.7), successive j values 

for i fixed become spatially separated (i.e. d=li-jl increases). From a 

systolic viewpoint as d increases the problems of synchronising the 

correct element with purely non-stationary dataflows also increases. 

Thus, attempting to use the template for equally spaced arguments is 

disastrous and indicates the effect on array dataflow as the argument 

representation changes from explicit to implicit. Operation of the 

divided difference array is shown in Fig.(7.3.4), with each cell consisting 

of two subtracters, a divider, two preloadable registers, and an 

additional delay for x
in

' The cell computation is divided into two 

parts i.e., 

i) 

11) 

preload cell i with x. and y. the starting values i=l(l)n 
1. 1. 

compute the next column element as follows: 

a) 

b) 

evaluate a=x. -x., b=y. -y. in parallel 
l.n 1. l.n 1. 

set y.=b/a the new divided difference 
1. 

The linear array requires the preloading of the starting values, and 
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yout-~-----------------------------------J 

b) Divided difference cell 

Notesl ----- lines used for preloadinq. 

FIGURE 7.3.3: Divided difference template 

t "2 ' ", " x4 x) 

V
2 

y 
" y Y4 Y3 

"1 
"J FIGURE 7.3.4: 

6 y(4.3) 
Dataflow/computation 
in divided difference 
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Key to state of divide~ difference cell 
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on successive cycles after preloading computes one complete column of 

the table every cell cycle. Compare this to the row ordering of the 

previous templates and we see a change from row sweep to column sweep 

orientated calculation. Alternatively in the old template array each 

cell computed a column, in the new template the same cell computes a 

row. The timing of the divided difference array is given by, 

T = (preload time) + (time through array) = n+c*n (7.3.8). 

Notice that preload time replaces the length of input. It follows 

that c=T
l

+T
2

, where T
2
=cost of a divide, so that T=2n after normalising 

the cycle time (in this case c). No two level pipelining of cell sub-

calculations is possible due to the Yi feedback in Fig.(7.3.3b) and 

this together with the preloading prohibits the use of systolic rings. 

REMARK: notice that forcing the x. -x. subtracter to produce the result 
~n ~ 

1 causes the divided difference array to form forward and backward 

differences. 

Although divided differences can be used as substitutes for 

derivatives in formulas like the Taylor and Newton formulas only 

polynomials can be approximated. Rational functions represent a much 

wider class of functions as they are quotients of polynomials. A 

function like tan(x) for example cannot be accurately approximated 

around its asymptotes by a polynomial whereas with a rational function 

it can. Generally, a rational function has the form R(x)=P(x)/Q(x) 

with P(x) and Q(x) polynomials. When Q(x)=l we generate the class of 

polynomial approximations. It follows that rational functions not only 

have a wider range of applications but also incorporate other array 

designs. The link with difference algorithms and rational functions is 



via reciprocal differences. Rational functions can be represented 

by continued fractions which themselves are composed of reciprocal 

difference components. A continued fraction has the form, 

y(x) = 

where p. are reciprocal differences such that 
'-

1 = = 
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Fig.(7.3.S) indicates the required table template and the basic cell 

which has a similar R function to divided differences with the rule, 

denoted, 

(7.3.9) 

The cell now requires an adder, divider, two subtracters, three pre-

loadable registers and a delay for the x. value, and computes as 
l.n 

follows, 

t: 

t+l: 

t+l: 

r=x -x· r-p-y o in i' 1- in i 

Pout=Yi; Ptmp=Pin 

Snapshots of array operation are shown in Fig.(7.3.6), again no 
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Xl Yl 
" (X1x2' 

• x2 Y2 I P(x1 X2X3 ' 

p (x
2

x), I P (x
1

x
2

x
J

x
4

, I 
I I 

I 
P(xlx2X3x4xS' x3 Y3 

I P (x2X3X4 ' I , 
P (x 3X4' I P (x2x3X 4xS) , 

x4 Y4 I Pb'3x4xS' , 
p (x4XS' ---- elements on same line 

Xs Ys 
computed in parallel 

Al Reciprocal difference table qeneration 

Pout.~----~--------------~::::~-1---(~t=J 

b) Reciprocal difference cell 

FIGURE 7.3.5: Reciprocal difference template 
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.- x2 xl I .. x) x2 x4 x) I .. Xs x4 4-.- I" 0 0 0 0 

Y3 
I .. Ys Y4 ~ .- Y2 Yl y) Y2 I" 

Y4 rr 
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.. 

Ys Y2 Y3 

t- p(2,3) pCl;! 10. p(3,4) 1'(2,3 !.o p(4,5) p (3,4) 1.0 0 p (4,5) ~ I" rr 

t- x4 Xl ~ Xs x2 0 x3 0 x4 14-(2,3) I' p (3,4) " p (4,5) I'" 0 

+- p(2,3,4), .. p(3,4,5) I .. t.. 
0 0 It-:0- 6 p (3,4, I' p(I,2,3: 

, 
p (2,3,4) 

Xs x I .. 0 x2 I. 0 x3 ... 0 x4 
~ 1- p(2,3,4) I" p(3,4,5) I' 0 ~ 0 

+- p(2,3,4,5) I .. I .. I .. ~ p (1,2,3,4) I' o p(2,3,4,S I" 0 0 I" 0 0 

+- 0 I. 
0 I. 0 x) 1.0 0 x4 ~ Xl I' 

x
2 I' ~ 

1'(2,3,4,5) 0 0 0 

+- o p(I,2,3, 0 0 0 0 I .. 0 0 I+-4,5) I' I' I' 

Key to state of reciprocal cells 

FIGURE 7.3.6: Dataflow in reciprocal difference array 
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systolic rings can be used and the computation time is T=2cn where 

c='2+2'1 (with the cost of add equivalent to subtract). 

We now have two templates for table generation, one orientated 

to cell column generation the other to cell row generation. The final 

algorithm we consider is the Epsilon algorithm (Wynn [62) a pcwerful 

technique for accelerating a slowly convergent sequence of values. 

The basic computational rule and cell function R6 is given by, 

(m) 
£s 

e;~;')~ 
(m+l) 

£ 

£m .. E: (m) 
s+l s+l 

= E: (m+ 1) + _...,.--,1:=-:-_,.....,_ 
s-l ((m+l) (m» 

E: -E: 
S S 

S ((m+l) (m+l) (m» 
R6 £ , £ 1,E: = 

S s- S 
or 

(m) 
E: s+l 

(7.3.10) 

and the associated table template shown in Fig.(7.3.7). Notice that 
I 

(0) , 
EO / , 

E{l} I /£(0) 

-1 /.(1) 1 I .10l' I 
I 0 I 2 I 

.(2), 1.1ll ,.(0) / 

-1 I (2) 1 ,'(1) l / (0) 
£ I £2 £4 

(. (3) 1
0

/ E (2) / E (1) / I 
-1 , (3) 1 I (2) 3 (1) 

/ EO / / £2 / I ' • 
• (4) I /.(3) I 1.(2) 

-1 I (4) 1 (3) 3 
/ EO / I E2 

.(5) 1.(4) 
-1 (5) 1 

'0 

a) E-table generation 

'--~ ___ ~_~O~l 

INl-_+-__ -{=J 
IN2---+-lL_H ~-----~O~2 

b) £-cell structure 

FIGURE 7.3.7: Epsilon £-algorithm template 
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due to the lack of x, arguments R6 fits the cell row oriented template, 
l. 

and that the associated cell structure is pipelined permitting systolic 

rings. Yet the epsilon method has a very similar structure to reciprocal 

differences and hence can be implemented by bcth templates. It follows 

that the second unequally spaced argument template is more general, 

with the equally spaced problems producing a special form of R function 

which allows further pipelining. For completeness we state the 

computation order for Fig.{7.3.7b). 

t: 1Nl (a) IN2 E (a) 
£-1 ' 0 

1 IN2 
(i) IN2 (i) (i) (O) 

t~: e:. -1 I EO ' ro= '0 -E 
0 

t+l: 1Nl 
(2) 

£-1 ' IN2 
(2) 

EO rl=l/ro ' 
(2) 

r =e: 
o 0 

-E 
(i) 
0 

3 1Nl 
(3 ) 

IN2 
( 3) (l ) 

rl=l/ro ' 
(3) (2) 

t~: IS -1 ' EO ' r 2=E_
l 

+r
l

, r =£ -e: 
o 0 0 

This gives a latency of C=4T2 and a maximal timing T=5n after 

normalisation. The systolic ring requires rn/41 E-cells. 

Finally we are in a position to discuss a useful application of 

unification the USAD array. The basic principle is to derive a cell 

function of the form, 

b 

a c (7.3.11) 

d 

All the cell functions R3-R6 fit th~rhombus pattern. For instance 

omitting vertex a) produces forward and backward differences, while 

divided, reciprocal differences and Wynn's algorithm fit the full rule. 

We require a minimal cell architecture which computes (7.3.11) using 

a set of switches to control the type of computation rule. Careful 
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consideration indicates that the reciprocal difference cell contains 

all the hardware necessary and only the controls need to be added. 

We augment the reciprocal difference cell with three control bits, c
i

' 

i~1(1)3 with the following interpretations. 

Cl c2 c 3 CELL FUNCTION ARRAY FORMAT 

0 0 0 rO/rl Divided difference 

0 0 1 r l Forward " 

0 1 0 - -
0 1 1 r l 

Backward " 

1 0 0 rO/rl + Pin Reciprocal " 

1 0 1 l/rl + Pin £-Algorithm 

1 1 0 - -

1 1 1 - -

where controls can be interpreted as commands to the reciprocal cell 

such that, 

{ 0 rO/rl { 0 Normal operand order 

Cl ~ c 2 
~ 

1 rO/rl + P. 1 switch operand order 
1n 

{ : rO output valid 
c 3 

~ 

set r ~l 

while, 
0 

{ 0 inputs to divider unchanged 
S ~ Cl A c 3 

~ 

1 inputs to divider swapped 

c
2 

now performs the switching tasks for R
3

, while c 3 provides a neutral 

value to mask out the divider for forward and backward differences, or 

acts as a reciprocal cell for the epsilon method. Cl masks out the 

adder, while the command S allows rl/r
O 

to be computed when necessary. 
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The array preloading is trivial and is not discussed here, while the 

timing of the array is identical to the reciprocal difference array. 

The additional switching and hardware is simple combinational logic 

and does not add significant time to the algorithm. 

Although the algorithms discussed in this section are computation

ally simple, the unified array and the method by which they are analysed 

(using templates) is important for future systolic array designs. 

We have allowed a number of problems to be implemented on the same cell 

architecture to produce a cost effective VLSI design from a soft 

systolic starting point. Recent trends in systolic array development 

(in particular the CMU WARP processor) are aimed at more flexible 

systolic array design. The frequent use of the methods examined here 

should make a USAD device an interesting alternative for fast computation 

of approximating functions. 

7.4 A SYSTOLIC ARRAY FOR THE QUOTIENT DIFFERENCE ALGORITHM 

Finally, to finish this study of linear arrays for table 

generation we consider another important area of numerical analysis; 

finding the roots of polynomial equations. Many methods are available, 

and the choice of technique depends upon whether all the roots are 

required or only a few, whether roots are real or complex, simple or 

multiple, or if first approximations are available. In all cases the 

rapid production of the required roots is a primary concern. We 

consider a systolic design for producing all the roots of a polynomial 

by a table generating procedure called the quotient-difference (QD) 

algorithm. 

This new design complements the above arrays because firstly it 
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allows the analysis of the effect of triangular versus rectangular 

table construction, and second it examines the problem of constructing 

an open ended (potentially infinite) table on a finite sized array. 

Now let, 

n 
p (x) = aox + ••• + a 

n 
(7.4.1) 

be a polynomial with all its roots distinct (i.e. none with the same 

absolute value), denote the dominant root r
l

• This root may be found 

by computing the solution sequence of the associated difference equation, 

and setting, 

r = lim 
1 k-

(7.4.2) 

(7.4.3) 

This follows because p(x)=O is the characteristic equation of (7.4.2) 

and has a solution which can be written in the form, 

k c r 
n n 

, (7.4.4) 

where ri' i=2(1)n are the remaining roots of p(x). If C1FO simple 

manipulation yields, 

(7.4.5) 

and as r
l 

is the dominant root, 

(7.4.6) 

and (7.4.3) follows from (7.4.5) immediately. By extension of (7.4.5) 
x 

"f d f" 1 k+l d 1 we e 1ne qk------ an 
xk 

o 
dk=O' and construct Table (7.4.1) using the 

following rhombus rules: 

(i) A rhombus centred in a q column 

j-l 
<'lk+l 
~ ~~ 

j-l j 
d +q 
k+l k+l 



(ii) A rhombus centred in a d column 

d
j 
k 

j 
dk+l 

producing two alternative forms, 

a) 

a) 

or 

~ (qj *dj )/d j 
k+l -k+l -k 

j 
b) qk+l ::; 

or 

respectively indicates that, 

lim qj ~ 
k 

rj , j~l(l)n • 
k-
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(7.4.7) 

(7.4.8) 

(7.4.9) 

Furthermore when no two roots have the same absolute value, and provided 

that no division by zero occurs in (7.4.8) during table construction, 

(7.4.9) implies, 

< 1 , (7.4.10) 

and the ~ converge (geometrically) to zero. When ~ values do not 

converge p(x) has some roots with equal absolute values and a more 

complicated root finding procedure is required. Thus q~ approximates 

r
j

, and d~ defines a measure indicating how close q~ is to the root. 

'f j j+l j-l However, ~ d
k 

is not convergent and <lk and d
k 

do converge, the 

presence of a complex conjugate root is indicated. In this special 

circumstance the roots can be extracted by solving the quadratic, 

(7.4.11) 

where, 

REMARK: Choosing x_n+l~·.·x_l~O' xo~l guarantees Cl 10 in (7.4.5). The 
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proof of this and the above results is beyond the scope of the 

thesis but the reader is referred to Rutishauser [51] • 

1 2 3 4 
qo 

d
l 

q-l 
d2 

q-2 
d

3 
q-3 

0 
1 0 2 -1 3 -2 4 

ql 

d
l 

qo 
i 

q-l 
d

3 
q-2 

0 
1 1 2 0 3 -1 4 

q2 
d

l 
ql 

i 
qo 

d3 
q-l 

0 
1 2 2 1 3 0 4 

q3 
1 

q2 
d

2 
ql 

d
3 % 

0 d
3 1 2 2 3 1 

4 
q4 1 q3 

d
2 q2 

d
3 ql 

0 d
4 3 2 

1 2 3 4 
qs q4 q3 q2 

TABLE 7.4.1: Generalised quotient difference table 

Next observe that the type of QD table depends on the choice of k. 

(i) The 'column-by-column' (c-by-c) Table: results when k~O for all j 

and produces an open trapezium structure, with the top boundary 

enforcing the use of (7.4.7a) and (7.4.8a). 

(ii) The 'row-by-row' (r-by-r) Table: results when k<O for some j and 

causes the table to form an open ended rectangular structure by 

the use of (7.4.7b) and (7.4.8b). 

The c-by-c method is extremely sensitive to rounding error and requires 

the construction of the x
k 

terms as starting values. The r-by-r method 

controls the error by the use of fictitious entries chosen to force the 

correct behaviour onto the upper boundary of the c-by-c table. The 

fictitious entries are introduced by filling the top two rows of the 

table with the values, 



row 1 

row 2 o 

-a la 
1 0 o 0 o o 

a la 1 n n-

506 

o 

o 

Both methods are illustrated in Tables (7.4.2) and (7.4.3) for the 

polynomial x
2
_x_l associated with the Fibonacci sequence xk+x

k
+

l 
for 

k>O. Notice the greater stability in the second root and the fact that 

the xk values are not required by the r-by-r method which is a clear 

advantage. 

~ 
1 

4
1 2 k "It qk k ~ 

0 1 0 
1.0000 

1 1 0 1.0000 

2 2 0 2.0000 -.5000 -1.0000 

3 3 0 1.5000 .1667 -.5001 

4 5 0 1.6667 -.0667 -.6669 

5 8 0 1.6000 
.0250 

-.5997 

6 13 0 1.6250 -.0096 
-.6240 

7 21 0 1.6154 .0037 
-.6226 

8 34 0 1.6190 

2 TABLE 7.4.2: Column by column method for x -x-l 

~ 

-.0001 

-.0001 

.0005 

.0007 

-.0082 
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Table (7.4.4) illustrates a suitable ordering of elements for the 

systolic construction of the QD-table. The pattern is similar to those 

used previously indicating that the same techniques are applicable, and 

suggest a linear systolic array of 2n cells for a QD-table with n roots 

(but 2n columns). In this intuitive design we define two types of cells 

corresponding to the two rhombus rules, and allocate Q-cells to odd 

numbered columns and D-cells to even columns of the table. Next we 

observe that a D-cell requires only multiply and diVides, and the Q-cell 

only adds and subtracts. Thus applying the principle of unification we 

merge pairs of adjacent odd and even cells to create a single unified 

QD-cell with hardware equivalent to two inner product cells, producing 

a linear array with n QD-cells. This new array utilises the observation 

that the QD table can be partitioned by odd and even columns to yield 

two distinct but related tables of size n, one for root approximations, 

the second for indicating root convergence. Hence the QD array is 

essentially a unified array which interleaves the construction of both 

tables on the same linear array. 

column 0 1 2 3 4 5 6 7 r-by-r 
~----~r-~-,----~--~~~---

It' I I / 3/ / I 4 
% q-2 / / q-3 

I 1 / 3 / 
/ / do / 3 / d 2 / 4/ 

/ 1 / I 
/ ql I / I q-2 

o 

0/ / / d
l
l 

/ d
0
2 

d
3 

/ 3 ;-1 ' 
I l " I q~ / / qo / 

/ 2 1 I / d2 3 o / d / I d 
/ 2 / 2 I 11 0 I 

I 

/ 

11/ /3,4 
/ q3 I / q2 / ql / / qo / 

1/2 3 
o I / d 3 / I d 2 / / d I 

/1 I 12 / /3 1/4 
/ q4 I q3 I 2 I q2 / / ql 

o I d
l

/ d / I d l / 
/1/ 4 I1 2/ 3 / 31 2/ 4 

I q5 q4 q3 q2 

TABLE 7.4.4: Parallel evaluation of QD table entries 

/ 

elements on 
same line 
computed in 
parallel 

upper boundaries 
of tables for 
differing QD 
methods 



508 

The QD cell computation is determined by (7.4.7) and (7.4.8). notice 

that (7.4.7) must be computed before (7.4.8) and demands a two level 

pipelined approach to the cell design. Choosing (7.4.7a) and (7.4.8a) 

produces the cell in Fig. (7.4.la) suitable for the c-by-c method. and 

selecting (7.4.7b). (7.4.8b) the cell in Fig. (7.4.lb) is defined for 

the r-by-r method. Tracing the data flow in the respective cells 

reveals interesting relations regarding array data flow and the order 

of table generation. The c-by-c QD-cell creates a stationary 

array in the sense that every input q~'~+l to cell j produces an 

"+1 " 
output q~ .d~ tying columns 2j-l and 2j. j=l(l)n of the QD table to 

cell j. Consequently the successive root approximations q~. k=1.2 ••••• 

to rj remain fixed in the same cell. and the array must contain n cells 

to evaluate all the roots. Now in order to judge root convergence we 

must obtain the values of ~ from the array. assuming a host machine 

supplies values to and from the array. collection of the ~ implies a 

fanin type network with an output associated with each cell. Once 

convergence of roots is achieved we encounter the additional problem 

of stopping the array and unloading the results. In contrast the r-by-r 

" j j-l QD-cell produces a non-stationary array. with the Lnputs qk' dk+l of 

j j 
cell j producing the output qk+l'dk+l' It follows that successive 

approximations to the roots r
j

• j=l(l)n are pumped systolically from 

left to right along the array. Furthermore. this non-stationary array 

requires z (>0) cells where z is the number of approximations to each 

root on a single pass through the array. with results emerging from 

the right hand end of the array without any special effort. Thus. the 

fact that the r-by-r is more stable than the c-by-c scheme together 

with the non-stationary QD-cell arrangement makesrow-by-row table 



1 

• j
<lk+l 

rtI 

A 

B 

~-i L 

..... 
R2 Lt to • 

t =b-a 
t

2
,..b+a 

bO 
tl -. " t2 

t- -tl 

a} Stationary c-by-c cell 

R R 

.....r 0 1 
I 1 

a -;r-I a 
R2 Lt t =a+ 2 

0 t
2

=b-a 
b b 

tl t3 

L.tI 

b) Non-stationary r-by-r cell 

FIGURE 7.4.1: QD Cells 

509 

a • 
t 3=·/t t

4
=a*b 

rt -4 b b 

"" 1-

• r 
t4=a/b ts a 

t6=a:t b 
b 

t3 rt b 
,. outl 

out2 

1-
s o s 

1 



510 

construction preferable. A sequence of snapshots for the non-stationary 

QD-cell are shown in Table (7.4.5b) for the row-by-row orientated 

solution to, 

432 
x - 10x ., 3Sx - SOx + 24 = 0 , (7.4.12) 

in Table (7.4.5a~ Careful observation of the snapshot data reveals 

k d q d q d q d q d 
,0 .. 0 0 

1 0 -3.5000 -1.4286 -.4800 0 
6.5000 2.0714 .9486 .4800 

2 0 -1.1154 -.6542 -.2329 0 
5.3846 2.5326 1.3599 .7229 

3 0 -.5246 -.3513 -.1291 0 
4.8600 2.7059 1.5821 .8520 

4 0 -.2921 -.2054 -.0695 0 
4.5679 2.7926 1.7180 .9215 

5 0 -.1786 -.1264 -.0373 0 
4.3893 2.8448 1.8071 .9588 

6 0 -.1158 -.0803 -.0198 0 
4.2735 2.8803 1.8676 .9786 

7 0 -.0780 -.0521 -.0104 0 
.... 1955 2.9062 1.9093 .9890 

8 0 -.0540 -.0342 -.0054 0 
4.1415 2.9260 1.9381 .9944 

4 3 2 "T~AB~L~E~7~.~4~.~5a~·:Row-by-row QD table for p(x)=x -lOx +3Sx -SOx+24=0 
(Exact solutions x=l,2,3,4). 

to t1 t2 t3 t4 t5 t6 

a[ol 0.0 -'.5 -1.4286 -0.41 0.0 0.0 0.0 
a[ll 0.0 0.0' -3.5 -1.4286 -0.48 0.0 0.0 
a[21 0.0 0.0 0.0 -3.5 -1.4286 -0.4, 0.0 

t[OI 0.0 6.5 -1.4286 -0.48 0.0 0.0 0.0 
till 0.0 0.0 6.5 -1.4286 -0.48 0.0 0.0 
t[21 0.0 0.0 6.5 2.0714 0.9486 0.48 0.0 
tUI 0.0 0.0 0.0 6.5 2.0714 0.9486 0.48 
t[41 0.0 0.0 0.0 -0.53846 -0.6897 -0.5060 0.0 
t [51 0.0 0.0 0.0 0.0 -0.53846 -0.6897 -o.S060 
t[61 0.0 0.0 0.0 0.0 -1.1154 -0.6542 -0.2429 

0[01 0.0 0.0 0.0 6.5 2.0714 0.9486 0.48 
0[11 0.0 .... 0.0 ~o.O ,,0.0 iI' 6.5 l.oo2.0714 t,.o0.9486 

-' 
, , '" 

, , 
A -3.5 -1.4286 -0.48 0.0 0.0 0.0 0.0 

• • 10 0.0 0.0 0.0 0.0 0.0 0.0 et.c. 
out 1 0 0 0 0.0 0.0 -1.1154 -0.6542 

out 2 0 0 0 0.0 0.0 6.5 2.0714 

TABLE 7.4.5b:snapshots of r-by-r cell operation for above problem 
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further improvement to the r-by-r array. First the cell latency is 

c=4. Thus for z=n, after n cycles the 1nl cl = rn/4l QD-cell has 

performed one complete computation, and the last a la 1 value of the 
n n-

top two table rows has been input to cell 1. It follows that wrapping 

the output of cell rn/4l around to cell 1 forms a systolic ring with 

rn/4l QD-cells. This ring will generate an infinite table of root 

approximations, with rn/41 rows of the table on each cycle of the ring. 

Allowing a trade-off of two inner product cells for each QD-cell implies 

that all the roots of p(x) in (7.4.1) can be found with only !n inner 

product cells. 

Timing of the r-by-r arrays is complicated by the fact that 

convergence depends on the input polynomial. If we let i be the total 

number of QD table rows required for convergence of all roots a linear 

array of z cells requires [ii/zl passes of the root approximations 

through the array. The approximation to r
l 

on the first pass is output 

after cz=4z cycles, and has to wait n-4z cycles for the remaining roots 

of the pass to enter the array before the second pass can start. Thus, 

the total computation time is 

T = ["il ~ n + 4z , (7.4.13) 

and for a systolic ring where z=n/4 

T = r4vnl n + n < 2n + 4i . (7.4.14) 

Finally, the generation of the first two starting rows in the r-by-r 

table can be pipe lined with array operation by the addition of a simple 

boundary cell consisting of a divider, negater and some switching logic, 

as shown in Fig.(7.4.2). 

~ 

H r 1"" tl ,. • • 
to·a/b r =a 

r- L- 2 
t2 

Lt H b 
bt =b 

to 2 
L-

FIGURE 7.4.2: Boundary cell 
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A control bit cl tagged to the a i is used to select the correct 

negator output according to, 

c =0 
1 

c =1 
1 

and can also be used (with suitable delays) to control the switching 

of the input data from host machine to the rn/4l th QD-cell in the 

systolic ring. 

We conclude that the non-stationary arrays incorporate better 

systolic data flow and can be considered superior to the stationary 

arrays as the computations are numerically more stable. Each non-

stationary array with the addition of a boundary cell requires as input 

the polynomial coefficients a ,al, ••• ,a and produces an output sequence o n 

of root approximations (q~) and a sequence of error indicators (~). 

These sequences by convergence or divergence of the ~ values can 

determine either: 

(i) all the roots of the polynomial (where they are distinct) 

(ii) the existance of multiple roots 

(iii) the existance of complex conjugate roots, 

and in the latter case the q~ sequence provides enough data for a 

quadratic from which the complex roots can be extracted, (by standard 

techniques}, to be constructed. 

Clearly, the utility of the array is limited as a general root 

finder (by (i)} , however, we suggest that it could be used as an 

inexpensive 'add-on' extra to an existing machine to provide quick root 

approximations and/or provide data to influence the choice or prime more 

sophisticated root finding procedures. In this sense the array is a system 

resource which could be called as a procedure, and a soft-systolic version 

of the algorithm is given in the Appendix. 
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.) linear array 

b) Systolic ring (with modified boundary cell) 

FIGURE 7.4.3: systolic arrays for the QD algorithm 
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7.5 A SYSTOLIC SIMPLEX ALGORITHM 

Next we consider more complex table generating algorithms for 

linear programming and in particular the Simplex algorithm. Linear 

programming techniques themselves are extremely useful in many 

applications such as: 

1. Agricultural applications - National and regional scale 

2. Procurement of contract awards 

3. Economic aids (Leontief inter-industry model) 

4. Industrial applications (chemical, coal, airline, etc.) 

5. Military applications (strategic and logistic) 

6. Personnel assignment 

7. Production scheduling and inventory control 

8. Structural design 

9. Traffic analysis 

10. Transportation problems and network theory 

11. Travelling/salesman problem 

12. Statistics, combinatorial analysis and graph theory 

13. Design of optical filters. 

Thus a fast and efficient systolic design is well justified. A linear 

programming (LP) problem consists of a linear function, 

H = clxl + ••• + cnxn 
(7.5.1) 

which is to be minimised or maximised subject to certain constraints 

ailxl+ •• ·+ainxn ~ bi , O~Xj' i=l(l)m, j=l(l)n. (7.5.2) 

The problem can be written in matrix vector notation as, 

() T .. b H x = C x = m1n1mum, Ax~ , O~x , (7.5.3) 

and from linear programming theory it is known that the minimum (or 

maximum) occurs at an extreme feasible point. A point (xl' •.• ,xn) is 
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feasible if its coordinates satisfy all (n+m) constraints, whereas an 

extreme feasible point forces at least n of the constraints to become 

equalities. By introducing slack variables x l' ••. 'x the constraints 
n+ n+m 

are converted to the form, 

al..lxl + a i2x2 + ••• + a. x + x . = b., i=l(l)m 
~n n n+1 1. 

(7.5.4) 

permitting extreme feasible points to be located by having n or more 

variables (including the slack variables) zero. A solution point is a 

minimum point of H, if there is more than one solution point, there is 

more than one extreme feasible point and any such point can be used as 

a solution. 

To date systolic arrays for the LP problem have been limited to 

least squares approximation for linear systems, where, 

Ax = b , (7.5.5) 

is the overdetermined mXn system (for m>n) in (7.5.3) and which 

satisfies the equations approximately in some 'best' sense. Essentially 

we calculate the residual, 

r=b-Ax, (7.5.6) 

and consider the function 

T 
~(x) = r r , (7.5.7) 

and choose x to minimise ~(x) (i.e. the sum of the squares). It 

follows that, 

T TT T TT T 
~(x) = (b-Ax) (b-Ax) = x A Ax-(bA x+x A b)+b b 

T TT T 
= x AAx-2x A b+b b (7.5.8) 

T T 
and (7.5.7) is minimised when the gradient vector grad(~(x)p2A Ax-2A b=O 

hence, 

(7.5.9) 

Thus, forming ATA and ATb produces an nXn matrix problem which can be 
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solved by the arrays developed in the previous chapters. However the 

solution does not solve (7.5.5) exactly and we consider the more 

flexible simplex algorithm which solves the original system by table 

manipulation. 

The simplex algorithm is a method which starts at some extreme 

feasible point and by a sequence of exchanges proceeds systematically 

by steadily reducing H to other extreme points until a solution point 

is found. The use of slack variables (which must be non-negative like 

the other x.) allow the identification of extreme feasible points. 
1. 

Since the inequality in Ax~b implies a slack variable being zero, an 

extreme point is one where at least n of the variables xl""'x are n+m 

zero. Alternatively, an extreme feasible point is one where at most 

m variables are non-zero. The matrix coefficients of (7.5.4) can be 

expressed as, 

!all a 12 - - - - - a 1n 1 0 - - - - - 01 

a mn 

o 
I 

o 

1 0----·0 
I" I 

" " " "
" " ___ 0 

I 
o 
1 

(7.5.10) 

with the last m columns corresponding to slack variables. Thus, the 

(n+m) columns of the matrix can be written as v
1

,v
2

, •.• ,v and (7.5.4) 
n+m 

written as, 
x

1
'vl +x

2
v2 + ... + x v = b , 

n+m n+m (7.5.11) 

and if an extreme feasible point (say for simplicity) x
m

+
1

= ••• =xm+
n

=0 

is known there are at most m non-zero variables, hence, 

(7.5.12) 

and (7.5.13) 
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If the vectors vl, •.• ,v
m 

are linearly independent, all (n+m) vectors can 

be expressed in terms of this basis, viz. 

also let, 
h

j 
= vl,cl + •.• +v jC -c, , j=l(l)n+m. 

J m m J 

(7.5.14) 

(7.5.15) 

The Simplex method tries to reduce H by including some amount p~ for 

k>m and p positive. Thus, in order to preserve the constraints we 

multiply (7.5.14) with j=k by P and subtract (7.5.12) to get, 

(7.5.16) 

and from (7.5.13) and (7.5.15) the new His, 

(7.5.17) 

Clearly to reduce Hl ~>o, and p must be as large as possible without 

making (xi-pv
ik

) negative hence, 

x tV~k = min (x./v'k) = p , (7.5.18) 
i l. l. 

with the minimum taken over only the positive v
ik 

terms. Clearly with 

this choice of p the c~ coefficient must become zero, and as the 

remaining points are non-negative we have created a new extreme 

feasible point with a better result Hl=Hl-P~. The basis also needs 

to be updated by exchanging v~ for vk ' which is performed as follows, 

Solving for v~ and substituting into (7.5.14) yields, 

where, 

Vj = vljvl + ••. V~_l,j v~~+vkjVk+v~+l,j v~+l+···vmjVm' 

vij = { 
Vij-(V~j/v~k)Vik' 

vi/v~k 

Substituting for v~ in (7.5.11) gives, 

xlvl+,··+x~_lv~_l + Xkvk+;~+lv~+l+··.+xmvm = b , 

(7.5.19) 

(7.5.20) 



with 

Also, 

with, 

{ 

xi-(xi/vik)Vik' 

x/vik 
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(7.5.21) 
i=1. 

The method is then iterated until either all the h. are negative, or 
J 

until for some ~>O no vik is positive. In the first case, the current 

point is as good as any adjacent extreme point. In the second case, p 

can be arbitrarily large and there is no minimum for H. For further 

reading on LP problems, their applications and the Simplex method see 

Chvatal [80], WU & Coppins [81], Llewellyn [64], Gass [691· 

The Simplex procedure can be represented compactly by the tabular 

form, 

Xl Vu v12 - - - - -- -v l,n+m 

x2 v
2l v22 - - - - - - - v2 ,n+m 

I I I 

I (7.5.22) 

I 

I I 
x v

ml 
vm2 ----

-v 
m m,n+m 

HI hI h2 - - - - - - h n+m 

and summarized by the following six steps: 

(i) Call v ik the pivot (i.e. P=xi/vik ) the part to be added. 

(ii) Divide the entries in the pivot row by the pivot. 

(iii) The pivot column becomes zero except for 1 in the pivot 

position. 

(iv) All other entries are modified by the rectangle rule 



(v) 

a_-------o b 

c d 

with a=v
tk 

and c=vik • 

b d=d-(-) c 
a 

Find the largest new h .• j=l(l)n+m which is positive 
J 

(terminate if there are none). 
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(vi) Find the new pivot according to (7.5.18) with the column 

indexed j. If none are positive then stop. 

The global structure of a wave front orientated architecture is shown 

in Fig.(7.5.l). and basically consists of an (m+l)*(n+m,l) orthogonally 

FIGURE 7.5.1: Systolic array for the Simplex algorithm 
(m=3, n=3) 

~Data 

---- Control 

• 



S20 

connected array representing Table (7.S.22) and two boundary arrays 

which are used for sorting rows and columns of the table. All the 

connections are bi-directional except for the control lines which 

consist of two 2-bit one-way connections. These two control lines per 

link allow the specification of two superimposed and disjoint control 

networks on the array of processing elements. One network is used for 

row and column sorting, the other for the application of the rectangle 

rule and pivot formation. The essential idea behind the array structure 

is to keep different operations in fixed positions in order to simplify 

cell definitions. This means positioning the pivot element by a sequence 

of systolic operations so that it always resides in the (m,2) position 

of the table, thus making row m the pivot row and column 2 the pivot 

column. The pivot is chosen to maximise the H reduction so the first 

step is to find the maximum ~ which in turn selects the vk (to be 

swapped with v~) automatically. Clearly sorting the h" j=l(l}n+m into 
J 

descending order from left to right places hk and vk in column 2. Like-

wise we must sort rows to find the minimised p (after neglecting negative 

and zero values) by sorting the quotients from (7.S.1S) into ascending 

order from top to bottom with zero and negative values pushed to the 

area above the largest p. In addition the row and column sorters 

maintain indexes for rows and columns to keep track of vectors moved 

in and out of the basis and the m variables in the current solution, 

so that the final solution is easily recovered after termination of 

the array. For any swaps generated by the sorters the corresponding 

table elements must be realigned and this is achieved by control values 

generated by the sorters and pumped south to north and west to east for 

column and row sorting respectively. Hence after the two sorts the values 
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v~k and x~ must be in positions (m,2) and (m,l) making all the required 

data for improving the extreme feasible point locally placed. Finally, 

the column and sorters place the data necessary for the termination 

tests in the vicinity of the controller which requires only four states 

to control the whole iteration and, 

State (i) 

State (ii) 

State (iii) 

State (iv) 

Exchange 

Column sort 

Form pivot contenders 

Row sort, 

to define a loose sequential structure on the Simplex iteration. 

Individual cells cycle from (i)-(iv), while from a global viewpoint 

the array can be in many different states simultaneously. The computation 

is essentially performed by overlapping the computational wave fronts 

generated by each state in a manner that prevents interference of 

individual states and admits widespread parallelism. Alternatively we 

can consider the whole Simplex iteration as a single wave front which 

undergoes a series of reflections and refractions at array boundaries. 

The practical value of this is that the controller needs only to prompt 

the pivot cell to change state, using triggers from the row and column 

sorters. Furthermore, the cost of each cell is bounded by the time of 

a single inner product step. A row or column swap (i.e., the time to 

swap'elements in adjacent horizontal or vertically aligned cells) is 

also an inner product step the first half cycle we send the cell element 

and on the second half cycle receive its replacement - which simplifies 

communication when a processor switches from row or column state to 

exchange or pivot forming states. 

The global computation of the array can be easily understood by 
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tracing the wavefronts associated with each state as demonstrated in 

Fig.(7.5.2). For simplicity t=l (in Fig.(7.5.2)) represents the 

first cycle after the starting table has been loaded into the array, and 

t=25 depicts the start of the next cycle. It follows that wave fronts 

of different states never interfere and an estimate for the time of a 

Simplex iteration can be identified. 

Theorem 7.5.1: A single change of an extreme feasible point in the 

standard Simplex algorithm with n unknowns and m constraints using an 

orthogonally connected array of O«m+2) (n+m)) cells requires 

T = (2n+4m+6) cycles. 

Proof: (by observation of the data flow in Fig.(7.5.2)). 

(i) The exchange state requires (n+m) cycles to reach the right 

hand array boundary, and an extra cycle before the last 

element can be loaded into the 'column sorter (1.e. n+m+l 

cycles) • 

(ii) If this last element is the largest h, it will take (n+m) 
J 

cycles to reach the ~ position in the pivot column, by a 

sequence of interchanges. 

(iii) On the next cycle the last swap enters the (m+l)st row of 

the table going south to north and on the second cycle reaches 

the pivot cell. 

(iv) Thus, on the third cycle after the end of column sorting, the 

pivots drop into 'form-pivot' state as the correct v
k 

from 

the pivot downwards have been formed. 

(v) After a further m cycles the last pivot contenders enter the 

row sorter, if this value is the smallest pivot (i.e. p) it 

requires a further m cycles to reach the pivot row. 
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(vi) An additional 2 cycles sees the last row swap operations 

pass the pivot column. Thus all the columnsto the left of 

and including the pivot are correct column and row sorted 

and the next exchange can start. 

The H-cell also contains the improved minimum. 

Summing these timings ensure the bound T=(2n+4m+6) for a single 

Simplex update. The area bound 1s given by: 

(i) The table elements require (m+l) (m+n) ips cells 

(ii) Column sorting at most (m+n) ips cell equivalents 

(iii) ROW sorting m ips cell equivalents 

(iv) The unknown xi values and H-cell 

a) 2 ips for H and pivot row cell 

b) 2 (m-l) for remaining unknowns 

yielding (m+2) (m+n) + 3m ips cell equivalents. 

Corollary (7.5.1): A search of z extreme points requires T=z(2n+4m+6)+2m 

cycles using the Simplex method. 

Proof: 

The loading and unloading of the starting and final tableaux 

requires at most an additional time of 2m cycles, then repeating the 

argument in Theorem (7.5.1) yields the timing immediately. 

The Simplex array was simulated using OCCAM and the listing appears 

in the Appendix, from which the cell definitions can be found using 

the following key. 
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PIWT CELL 
____ Cl PIVOT ROW OR 

E COLUMN CELLS 

s Co S Co 
N , c2 N 

, 
I , 

cl 

D __ cl PIVOT FORMING Cl. __ __ .... Cl 90° RarATION 
W E + X-cELL W E 

I 
I , 

S Co 
N 

,c
2 I 

I 
I 
I 

cl ---
c) RECTANGLE cl ___ c) 180° RarATION 

W E RULE CELL W E 

I 
I , 

S Co 

N c
2 

N c2 
I 
I 
I 
I 

c l ---
c) 

h
j 

CELL 
c

l 
___ c) 270 0 ROTATION 

W E 
W E 

I 
I , , 

S Co 

CELL DEFINITIONS: (see code Appendix for internal working) 

Snapshots of the array operation on a test example are given below, 

and the following pertinant remarks concerning array implementation 

may be of use. 

The idea of column sorting is to mcve the column associated with 

the largest h
j 

to the pivot column position, and as stated above the 

problem reduces to sorting the h. into descending order from left to 
J 

right and performing the same swaps on the Vj column vectors. A linear 
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systolic array for sorting is shown in Fig.(7.5.3a) and implements 

the well known odd-even transposition or parallel bubble sort and 

consists of (n+m) cells. The sorting network is slightly different 

from the standard array because our starting values must be loaded 

sequentially and the sorting started systolically. The standard array 

assumed cells were already loaded and that array cellS started 

simultaneously. Our sorting network also generates an (n+m) control 

bit vector on every cycle (pumped south to north through the table) to 

control column swaps. Finally the cells must keep track of the index 

j of Vj so that the row sorter can be informed which column is the 

new pivot column and hence determine the variable introduced to the 

solution. Fig.(7.5.3b) illustrates the sorter operation on the worst 

case list for an array of 5 cells. The key values to watch are the 

Cl and Cl control values because these determine the array operation 

time. On the trip left to right Cl loads the h
j 

values from the H

cells of the table portion of the array and starts the cells into odd 

and even operation mode. Where two cells decide to swap elements 

the control bit c2 in each cell is set pumped up into the table to 

swap column elements. On reaching the rightmost sorting cell Cl loads 

the last value and falls off the array, and a neutral element '-~' is 

used to prevent erroneous swaps at the array boundary. Next the ~ 

signal enters and moves right to left pushing the final maximum·of h. 
) 

in front of it (by two cycles) and closing down the sorting cells. 

Thus after 2(m+n)=10 (in this case) the maximum ~ resides in the 

leftmost cell along with its index k and the last column swap data 

is about to enter the tableau. After a further two cycles the Cl 

filter bit completes the startup-closedown control cycle and the last 

column swap has reached the pivot row (verifying the timing 2(n+m+l) 

for sorting above). It follows that the filter bit falling off the 



a) Odd-even sorter 

t ARRAY CELLS 

v 0 1/ 0 / 0 1/ 0 1/ 0 

1 1 - - - -
3 4 1 2 5 

0 0 0 1/ 0 1 1/ 0 V 0 V 0 
2 1 1 2 - - -

3 3 4 1 2 5 

0 0 0 0 0 0 1/ 0 1 1/ 0 / 0 
3 1 2 1 2 3 - -

3 4 3 4 1 2 5 
0 1 0 0 2 0 0 0 0 V 0 IV 0 

4 2 2 1 3 1 3 4 -
4 4 3 1 3 1 2 5 
0 0 0 0 1 0 0 2 0 0 0 0 0 0 1 

5 2 3 2 3 1 4 1 4 5 "" 

" 
, " , 3 2 3 2 ~ 1/ 

0 1 0 0 2 0 0 1 0 0 2 0 0 0 0 

6 3 3 2 4 2 4 1 5 1 ~ 

1 1 4 2 4 2 3 5 3 5 
0 0 0 0 1 0 0 2 0 0 1 0 0 2 0 

7 3 4 3 4 2 5 2 5 1 f.."" , ~ , ~ " " A " 0 r7 
0 1 0 0 2 0 0 1 0 0 2 0 3 0 0 

8 4 4 3 5 3 5 2 1 2 1 

2 2 1 5 1 5 4 3 4 3 
0 0 0 0 1 0 0 2 0 3 0 0 0 0 0 

9 4 5 4 5 3 2 3 2 1 -"" 
2 5 2 5 1 4 1 4 1 1/ 

0 1 0 0 2 0 3 0 0 0 0 0 0 0 0 

10 5 4 3 4 3 2 1 , ! , 

5 2 1 2 1 4 3 4 3 

b) Snapshots 

FIGURE 7.5 •3: Modified odd-even transposition sort 
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array can be used to prompt the controller into 'form-pivot' state. 

The row sorting mechanism works in an identical manner to the 

column sorter and requires 2m cycles to complete sorting and an 

additional 2 cycles to closedown all the cells (verifying the timing 2(m+l) 

in Theorem (7.5.1) for sorting). At the end of row sorting the pivot 

resides in cell (m,2) and the row label (i.e. the x£ index) has been placed 

in the bottom row sorting cell along with the minimum p. Hence the filter 

bit which has moved from top to bottom row closing down cells can be 

used to load the index k from the column sorter leftmost cell (via 

the controller) to overwrite the row label and set the controllers 

Exchange state simultaneously. Further complications arise when we 

consider sorting with negative p values, because under normal sorting 

conditions these will bubble to the bottom of the sorter. A forced 

swap for negative and zero p values implemented by a status flag set 

by the comparator determining the swap solves the problem simply, 

causing the undesirable values to bubble to the top of the array. If 

the bottom row sorting cell still contains a zero or negative value 

at the end of sorting, all the values in the sorter must be non-positive. 

Hence the status bits of the bottom cell also flag a termination 

condition as no improvement to H is possible, and can inhibit the 

overwriting of the row label. Similarly a status flag in column sorter 

cells can be adopted to flag ~<o and trap the second termination 

condition. Finally some general remarks about table element swapping. 

Fig.(7.5.4) illustrates the pipe lining of both column and row swapping 

it should be clear that the control vectors output by the sorters 

consist of the pairs (1,2) punctuated by pairs of zeroes where no 

swapping occurs. The special null vector therefore corresponds to 

no swaps, which can only be produced when a list is fully sorted or, 

a sorter is switched off. It follows that even if some portion of 

the array drops into a sorting state before the sorter begins row 

and column data will remain undamaged. This preservation of data is 
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important because it allows flexible state transitions, and the use of 

column and row states as idling states between wavefronts. In particular 

it allows the overlapping of row and column table modifications. 

Next, we consider the exchange process - which rewrites the table 

in terms of the new basis - essentially exchanging the vectors entering 

and leaving the basis. We can define three basic types of operation 

and by virtue of the static positioning of the pivot row and column 

three basic cell types. The basic operations are a) find reciprocal in 

pivot cell, b) divide pivot row by pivot element, c) zero out the pivot 

column. 

Using prompts from the controller the pivot cell in Fig.(7.5.l) 

orchestrates the whole computation (including sorting) and is the 

source of the starting wavefronts. The pivot cell controls operations 

using the second control network by triggering cell states by pumping 

control signals through the network. Fig. (7.5.5) illustrates the 

exchange control flow from which the following actions are defined: 

(i) Whenever a cell receives two true controls on the same cycle 

it performs the rectangle rule. 

(ii) If a single control value which is true arrives from the 

north or south, output the table value and zero the register. 

(iii) If a single value arrives from east or west perform a 

division by the pivot. 

(iv) If the cell is the pivot cell and the state is 'row-sort', a 

control input sets state = 'exchange' and: 

a) The reciprocal of the pivot is found, the result 

sent east and west. 

b) OVerwrite the pivot with 1, and set all control 

outputs true, 

which characterise the data flow. 
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(i) Control values falling off the southern boundary correspond 

to the startup procedure for the column sorter. 

(ii) A control value travelling horizontally or vertically 

continues to do so until it falls off the array. 

(iii) A control signal arriving in a pivot column cell is also 

refracted east and west. 

(iv) A control signal arriving in a pivot row cell is also refracted 

north and south. 

(v) Refracted signals continue in motion as for (ii). 

Notice that this implies that exchange and column sorting can be over-

lapped. 

At the end of column sorting the pivot cell gets pushed into 

'form pivot' state, and the pivot column and column immediately to the 

left must form all the contenders for (7.5.l8) which must then be loaded 

into the row sorter. The control actions are shown in Fig.(7.5.6). 
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The control values falling off the left boundary are in the correct 

form for loading and starting the row sorter. Clearly the control for 

the cells left of the pivot column become more complex and indicates 

the different cells of Fig. (7.5.1) described by the soft-systolic code 

in the Appendix. 

To conclude this section we consider some theoretical and comput-

ational issues regarding the standard Simplex method and the array 

presented. 

The problem of ties: 

During the column sort phase we select the vector Vj corresponding 

to max(h,)=h
k 

to achieve the greatest immediate decrease in the objective 
j J 

function. A tie occurs when more than one j occurs with maximum h
j

. 

The problem is resolved arbitrarily in the standard Simplex theory by 

choosing the lowest (or highest) index j - which proves to be a good 

choice. Although the current array description is adequate for breaking 

ties, we can incorporate this strategy by performing a swap according to 

(h.<h,) or «h,=h,) and (i>j» 
J ~ J ~ 

in a column cell. This modification requires at most an additional 

comparator in each sorter cell, and is justified by the fact that tie 

breaking with this rule requires approximately m changes of basis to 

find the minimum. Thus with z"m Corollary (7.5.1) gives a loose bound 

for the full Simplex calculation. 

Degeneracy: 

A non-degenerate feasible solution is a feasible solution with 

exactly m positive xi' if there are less than m positive xi the solution 

is degenerate. If the above condition occurs at least one xi is zero 

and it would be possible to choose p=O in (7.5.18), producing no 



534 

reduction in H. If this lack of improvement continued for a number of 

Simplex iterations it is possible to repeat a basis and the solution 

process breaks down (the array would become stuck in an infinite loop). 

Degeneracy is indicated by less than m x. values being positive, or 
L 

(7.5.18) producing ties (and implying that more than one variable leaves 

the solution on a single iteration). Fortunately, to date degeneracy 

has only been exhibited by artifically constructed problems, and the 

normal course of action is to use p=O when it occurs and break ties in 

a similar manner to the column sorter solution. 

Artificial Basis Techniques: 

Throughout the array description we have assumed that a basis 

(hence extreme feasible point) was known. When this is not the case 

an artificial basis must be constructed which will produce a feasible 

basis for the original problem. The details of artificial basis can be 

found in standard texts on linear programming and are not discussed 

here, but the array of Fig.(7.5.l) is easily upgraded to deal with them. 

Essentially, we add an additional row of cells in the (m+2)ndposition 

which contain their own h. type elements. The algorithm is then 
J 

controlled by two phases. In the first phase the h. values are sorted 
J 

and the table updated until all the elements are non-positive. If all 

h.=O the resulting basis is feasible for the original problem, and if 
J 

all hj<O the original problem was not feasible. In the former case we 

th 
can continue by applying the sorting to the (m+l) row or true h. 

J 

values to obtain a minimum. For the latter case the table is abandoned. 

Again, the extra hardware is justified by the fact that a full artificial 

basis of m columns requires approximately z=2m iterations to find the 

minimum feasible solution which otherwise would not be solvable. 



TEST EXAMPLE 

Minimise 

subject to 

H = 
o ~ 
-xl 

-2x -x 1 2 
xl' 0 ~ x2 ' 
+ 2x2~2, xl + x2 ~ 4 

Introducing slack variables we produce the following tables: 

3 i 2 -1 2 1 0 0 3 3 0 0 1 -2 

4 I 4 
I 

1 1 0 1 0 2 1 0 1 0 1 

5 I 3 1 0 0 0 1 1 3 1 0 0 0 

d-~-
2 1 0 0 0 

. - -- -- .. --
1 2 3 4 5 

-7 0 0 0 -1 

1 2 3 4 
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3 

-1 

1 

-1 

5 

As the first action of the array is a modification, and the correct pivot 

is in the correct place variable xl is swapped with Xs so we load the 

tableau with, 

3 2 -1 2 1 0 0 

4 4 1 1 0 1 0 

1 3 1 0 0 O. 1 

0 2 1 0 0 0 

1 2 3 4 5 

After a few iterations (2) we get the following result from the OCCAM program. 

a) With trace=on b) with trace=off 

1 3 1 0 0 0 1 Results 

3 3 0 0 1 -2 3 [lJ = 3.000000 

2 1 0 1 0 1 -1 [ 3J = 3.000000 
[2J = 1.000000 

-7 0 0 0 -1 -1 
[HJ = -7.000000 

1 2 3 4 5 
[iJ = variable i 

which is a row and column permuted form of the correct final tableau. 
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7.6 A SYSTOLIC CYLINDER FOR THE REVISED SIMPLEX ALGORITHM 

The above standard scheme is not the one usually chosen for 

computer implementation, instead a revised form of the Simplex algorithm 

is used. This new algorithm can be implemented in two ways: 

(a) The general form of the inverse 

(b) The product form of the inverse 

The second technique is often used in practice because it minimises 

the amount of information to be recorded using the products of 

elemental matrices. Both techniques however reduce the amount of 

computation required to update the basis and Simplex tableau, and size 

of table recorded in the machine's main memory. This latter point of 

data compact ion is important for large LP problems and we examine the 

possibilities of transferring these characteristics to systolic arrays. 

At the start of the standard algorithm extra vectors (at most m) 

are added to the table to form a basis. The basis consists of m linearly 

independent vectors and it follows that, 

B = (v
l

,v
2

, ••• ,v
m

) , (7.6.1) 

and that any other vector v, is a linear combination of vectors from B, 
J 

i. e. , 

then, 

Vj ~ aljvl + a 2jv2 + ••• + amjvm 

-1 
B Vj a, 

J 

where, Cl
j 

From (7.5.3) 

= (Cl
l

" a
2 

. , ••• , a .) . 
J J m] 

putting B as the first m vectors of A such that, 

BXO = b, xO~O' 

with xO=(xIO,x20' ••• 'xmo) gives the first basic feasible solution 

-1 
Xo = Bb, 

(7.6.2) 

(7.6.3) 

(7.6.4) 

and from (7.6.2) all the remaining vectors of A can be determined from 
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B. The pieces used to determine the vector to be moved into the basis 

are given by, h. , 
) 

j~l(l)n where, 

a) h. ~ Zj-Cj } (7.6.5) ) 

with b) Zj cl"'lj+C2C1 2 t + c Cl j mm 

Thus, -1 
j~l(l)n (7.6.6) z. =c(l::::cBv , 

) o j 0 j 

with c ~(cl' ••• 'c ) so with the feasible basis B we compute the o m 

corresponding z., and a pricing vector ~. can be defined as, 
) ~ 

-1 
n ~ COB , ~ ~ (~1,n2'···'~m) (7.6.7) 

hence for a vector not in the basis, 

h. ~ nv. -c .• 
) ) ) 

(7.6.8) 

It follows that we have all the information to move from feasible 

solution to feasible solution, using only the original A and C values. 

The main idea is that rather than transferring all the elements of the 

-1 
Simplex tableau we need only to transform the elements of B • The 

explicit form of B at each iteration can be constructed as follows. 

basis B by a single vector, 

Then, 

and, 
0-----

1 

I 
I 
0-

(7.6.9) 

Cl ------01 
lk : I 

Cl2k I 
, I 

- - - 0 
I 
I 
I 

~ 
(7.6.10) 
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-1 
Thus, an element b

ij 
of B can be transformed to b

ij 
an element of 

--1 
B in the corresponding position, by, 

bR,j = 
bR,j 

) CtR,k 

b .. = b .. - bR,jCt ik , i# 
1.J 1.J 

(7.6.ll) 

The revised Simplex method is then constructed as follows, 

(i) introduce the additional variable x =-H(x} from (7.5.3) 
n+m+l 

(ii) allow for artificial vectors (using artificial basis techniques) 

by the redundant equation, 

a x + am+2 , 2x2 + ••• + a x +x m+2,l 1 m+2,n n m+n+2 

where, m 
a = - 2 a. j' j=l(l}n 

) 
m+2,j i=l 1. 

m 
b = 2 b

i m+2 
i=l 

and with a 1 j=c. we have the matrix problem, 
m+, J 

rall a 12---- a
ln 

1 
I 

\ 

I ,\ a 2l \ I 
I I \ I 

I \ 
\ 

I \ 
aml \ 

\ a m+l,l \ 
\ I 

a - - - -m+2,l - a m+2,n 

A 

with x.~O, i=1(l}n+m+2. 
1. 

l ~: l \ 
\ 0 I \ ! 

\ I \ I 
x 

0 \ n 
\ x 

\ 
n+l 

\ 

'\~ 
, 

Gn+m+~ 
U 

= 

= 

b 2' m+ 

", l b
2 , 

I 

I 

I 

b 
m 

0 

bm+2 1 
-, 

b 

(7.6.l2) 

(7.6.13) 

The revised Simplex procedure can now be completely defined. In 

the algorithm definition we denote A. as the columns of A and u. the 
J 1. 

rows of the matrix ~ As the procedure progresses the u. represent the 
1. 

most recent update of the corresponding row. Row m+2 in A is used to 
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evaluate h
j

, while artificial variables are still in the solution, 

row m+l when artificial variables have been removed. 

'* revised simplex algorithm */ 

PHASE I (Artificial variables in the solution, and all positive) 

WHILE Xn+m+2<O DO _ 

{FOR jzl TO n {OJ&Um+2Aj }; 

IF ALL 6 ,.0 THEN {x MAX NO FEASIBLE SOLUTION EXISTS} 
j ~ n+m+2 

ELSE {ok=mln(ojl}; _ 

FOR I-I TO m+2 {Xlk=Ui~}J 

FOR 1 .. 1 TO n+m+2 

(-x 'X Ix I -; "'x -; x Uk 
XO to.t.k 1010 xOik 

FOR j=l TO m+2 

{Utj=Utj/Xlk' ~ij=Uij-UtjXlk i/t} 

11 
PHASE 11; (No positive artificial variables in solution) 

{FOR j-l TO n h
j
=um+2 Aj }; 

WHILE Y j<O 00 

{yk ",min(y j " 

lr 

FOR I-I TO m+2 {Xik·Ui~}' 

Xto • (-l 
x
lk 

IF all Xik~O THEN {solution can be made arbItrarily large} 

FOR i-I 1'0 n+m+2 

{~o~XtO/XtkJ XiO·XiO-)CkOXik i#k, 

FOR j",l TO m+2 

{;;"tj=UtlX tk' ;ij-UifUtjXilt 11th 

PHASE Ill: STOP; x is at its max value - optimal stop· 
0+m+1 

N.B.: to simplify the algorithm xt=XiO' 

We now proceed to explain two systolic arrays for the general 

form of the inverse, a method suitable for any m and n and a specialised 

version for m>n. The more general algorithm has a regular connection 

network when embedded in a cylindrical space, and leads to a volume 

efficient design by folding the cylinder. The second design is 

orthogonally connected, reduces the number of cells significantly and 

can be represented in a plane. In addition to the improved efficiency 
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of the revised Simplex method these new algorithms recognize that the 

pivot row and column can be located and moved within the array without 

a full sort (or total ordering). A partial ordering to locate max or 

min elements is sufficient and can be implemented with simplified cells. 

The global view of the systolic cylinder is shown in Fig.(7.6.l) 

and can be considered as three individual sections, PART A, PART Band 

PART C, with data flow around the cylinder interpreted as wave fronts 

across these sections. 

PART A: is an n*(m+2) matrix of cells, with an additional column of n 

boundary cells to the left. The array contains the elements of A stored 

in the order of A. in the jth row j=l(l)n. The boundary cells are 
J 

initially empty except for the column index. 

PART B: This is an (m+l)*(m+3) matrix of cells with a column of m 

boundary cells to the right. The array contains the (m+2) * (m+2) basis 

matrix initially V, and can be hardwired to start up with U=I. The 

(m+l)st row contains two rows (m+l) and (m+2) for smooth dataflow, 

while the (m+3)rd column contains the starting solution vector. The 

column boundary cells on the right containing the indexes of the solution 
) 

variables. 

PART C: This is a row of (m+5) cells which wrap around the top row of 

Part B to the bottom row of Part A, forming the cylinder. 

Notice that the two phases of the revised Simplex algorithm are 

almost identical, except that we use u 1 instead of u 2 and allow m+ m+ 

additional termination conditions. Thus placing both u 1 and u 2 m+ m+ 

in the same row of part B reduces data flow problems to only a single 

phase, with switching between phases controlled by the (m+l)st row 

of part B. The boundary cells will be used to detect the remaining 

termination conditions. 



I 
.11 I 

A. 
~n 

~ 1 1-_1 L ___ I 

~lr If 
A out 

B 
out C 

out 
D 

I 

out 
E 
out 

F. 
~n 

-r( 
F out 

544 

G. 
~n 

LIt 
G 
out 

FIGURE 7.6.1: Cylindrical systolic array for revised simplex method 
(General m and n) 

PART B 

1 

PART A 

} PART C 



545 

The wave fronts for the cylinder computation are shown in Figs. 

(7.6.2) and (7.6.3) and explained by the following commentary. At the 

start of computation the cell H in Fig.(7.6.l) performs a check on 

x and x to determine which row m+l or m+2 is to be used and n+m+2 n+m+l 

hence selecting phase I or phase 11 of the algorithm. On the check 

result a control signal is shifted left informing row m+l cells whether 

to use u 1 or u 2' As the control moves left it generates a sequence m+ m+ 

of control signals moving down the columns of the part A array, together 

with the associated value of the selected row (u 1 or u 2) elements. 
m+ m+ 

A wave front (wl in Fig.(7.6.2)) spreads out from the top right of the 

part A section generating 0j (Y
j

) depending on the phase, by accumulating 

partial products from right to left. On reaching the left boundary the 

0j (Y
j

) values are loaded into the rows' boundary cell where it picks 

up its associated index j. w
l 

is now reflected to form w
2 

a wave front 
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o o 
o 

o 
/ 

8 , , 
o " 

/< 
flj' 

~, 
, 

, , 
V. 

-K 

o 
o 
o 
o 

, , 
rI 

/ 
/ 

-- -r---7"-r , 
I ,/ I I 

:./' I : 

, , 

/ 
/ 

---

" , 

/ 

L,/ 
/ 

/ 
/ 

I\. 

r 
i 
-- - -- --T , ., 

. : : ! • • 
t:m+6 t=n-tm+S 

FIGURE 7.6.2: Wave front progression Part A 
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moving from the top left to bottom right corner of A. w
2 

computes the 

partial ordering of 0j (y
j

) values pushing the minimum to the bottom 

of the boundary cell column, and issuing a sequence of controls left to 

right along each row of part A transferring a copy of the corresponding 

A. column towards the part C array. It follows that on the (n+m+S)th 
J 

cycle the best o. (y.) and its associated index j are in the leftmost 
J J 

cell of the part C array. The next (m+2) cycles see w
2 

load the part C 

cells with the column A
j

. Thus, by the (n+m+S)th cycle we have identified 



S47 

k and have ~ moving systolically in the array. Next we must insert 

x
k 

into the solution vector and insert v
k 

into the basis ejecting x~ 

and v~ from the solution and basis respectively. This is achieved 

simply by using the cylinder arrangement to propagate w
2 

from part A 

to part B using part c. w2 continues into part B forming a top left 

to bottom right wavefront (see Fig.(7.6.3)) which computes the xik 

values by accumulating partial products from left to right. At the 

same time the index k filters along the part C cells towards the 

righthand boundary column of part B. At time t=(n+m+S)+(m+4) cycles the 

first x
ik 

associated with the first row of part B cells is delivered to 

the first cell in column (m+3) and the value x. /x' k is computed, just 
~o ~ 

as k reaches the rightmost part C cell. On the next cycle both xiO/xik 

and k are loaded into the top right boundary cell. Successive cycles 

sees the remaining results loaded into boundary cells as the value k is 

shifted down to the bottom cell. w
2 

is reflected on reaching the right

hand boundary cells to form w3 (moving top right bottom left) and 

computes the partial ordering to locate the index ~ and the variable 

to be eliminated. Accompanying w3 is a sequence of control bits issued 

by the boundary cells which cause row interchanges moving the pivot row 

to the mth cell row. Hence at time t=(n+m+S)+(m+4)+(m+l) the values, 

k,t and p are known and reside in the bottom right boundary cell, with 

x~k and x~O set in the cell immediately left, and the basis update can 

start. The vector vk is introduced to the basis by reflecting w3 at 

the (m,m+3) position to form two wave fronts w4 and ws. 

Ws enters the H-cell at t=(n+m+S)+(m+4) + (m+l) +2 modifying its 

values allowing the test of the modified x 2 and x 1 values to 
n+m+ n+m+ 

decide the course of the next iteration, and triggering the overwrite of 
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index ~ by k in the boundary cell. Ws then becomes w
l 

on the next 

iteration. This implies that modification of the basis can be over-

lapped with the calculation of the next iteration. Clearly w
4 

(which 

updates the basis) must leave the part B section before Ws propagates 

through part A to enter part B, and demands that n>-m to yield an 

iteration time of T=3m+n+12 cycles. When n<m, Ws and w4 interfere 

causing Ws to compute with the wrong basis elements. The problem is 

easily solved by adding m-n dummy (delay) part A cells to yield a timing 

T=4m+12 cycles per iteration. 

The cell definitions are easily constructed from the revised 

algorithm and the wave front patterns. Clearly the boundary cells are 

simpler than the previously designed sorting cells and use only uni-

directional dataflow to construct the partial ordering. Part A cells 

are simply inner product cells augmented with control triggers and extra 

switching for transferring A. data. Part B cells are also inner products 
J 

with addition row swapping and are closer to the cell definitions for 

Fig.(7.S.l). Finally Fig.(7.6.l) is a point-to-point connected array 

and we assume that wave fronts encroaching on other parts of the array 

are cleaned up by the part C section or (m+l)st row of part B to preserve 

computation on subsequent iterations. A more efficient layout of the 

cylinder is achieved in 3-D by considering each column through the array 

to be a systolic ring and using a variation of Fig.(7.l.S) as shown in 

Fig. (7.6.4). 

Although the cylinder provides an alternative and slightly faster 

array than the standard Simplex method of Theorem (7.5.1) we require 

O(mn) inner product type cells to store the A matrix which the revised 

Simplex algorithm was designed to avoid. The compacted array in Fig. 
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b) Cross-section of folded cylinder 

FIGURE 7.6.4 

(7.6.5a) remedies this problem for m>n by folding Fig.(7.6.l) along 

the part A, part B partition and mapping cells containing A .. elements 
~J 

into cells containing u .. elements of the basis inverse (see Fig. (7.6 .5b)1.. 
J~ 

The basic idea is to save O(nm) ips cells by adding extra control 

registers and switching to the o(m
2

) cells already required for 

recording the basis. 

The start of an iteration, as before, begins in the H-cell, where 
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FIGURE 7.6.5: Compacted array for revised Simplex 
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we decide whether Phase I or Phase II is applicable. A control signal 

is propagated left along the (m+l)st row to select u
m

+
l 

or um+2 sending 

it upwards with additional controls to generate a wave front w
l 

moving 

from the bottom right to top left corner of the array (see Fig.7.6.6). 

As wl partial products of 0i (Yi) are accumulated from right to left 

loading the values into their respective boundary cells on the left 

where a label j identifying column Aj also resides. w
l 

is reflected 

by the boundary cells to become w2 which propagates the value ok (Yk) 

to the top of the boundary column as it moves to the right top corner 

of the array transferring column A. to the top boundary (formerly part 
) 

C) cells. On reaching the top left corner of the array w2 deposits 

the value ok (Yk) and the index k into the top boundary cells, before 

being reflected to form w3 (a wave front headed for the bottom right 

corner). w3 pushes k along the top boundary'cells to the right column 

of boundary cells, and produces control values associated with the A. 
) 

elements reflected by the top boundary back into the array to form the 

partial products of xik being accumulated left to right. On reaching 

the rightmost cell w3 is reflected forming w4 moving towards the bottom 

left corner which shifts k to the bottom right boundary cell, while 

forming the partial ordering xto/xtk , and producing control signals to 

move Ut to the mth cell row. As w3 leaves the array, k,t and pare 

known and the basis update can be overlapped with w4 replacing t by k. 

The modification is performed by a wave front Ws propagated from bottom 

right to top left while w6 modifies row m+2 of the array. Once the H

cell is modified the next iteration can start. Clearly the compacted 

array dataflow is simply a folded version of the systolic cylinder, 

which improves cell efficiency by interleaving wavefronts. The basic 
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timings of the algorithm can be summarised as follows: 

(i) (m+2) cycles for w
l 

to reach the left boundary (i.e. compute 

the first 0i (Yi ). 

(ii) (m+2) cycles for 0k=min(oi) to reach the top boundary. 
i 

(iii) (m+3) cycles for the k value to reach the right boundary. 

(iv) (m+l) cycles for k to move to the bottom right boundary cell 

and produce p and £ 

(v) 4 cycles for w5 to enter the H cell and update its contents 

so that the next iteration can begin. 

Thus one iteration requires T=4m+12 cycles as in the cylinder arrangement. 

The cell requirements are: 

(i) (m+2)*(m+2) for basis cells 

(H) 2m for left and right boundary cells 

(Hi) m+4 for upper boundary cells, 

giving a total of 
2 

(m+2) +3m+4 cells. 

7.7 AN ORTHOGONAL DESIGN FOR THE ASSIGNMENT PROBLEM 

Finally we present an array to implement the assignment problem 

which is stated simply as follows. 

Let there be n tasks which must be performed by n individuals, 

the cost of individual i performing task j is denoted by c. " The 
1.) 

problem is to assign people to the tasks in a way that minimises the 

cost of completing all the tasks. More formally, 

let, 1 if person i does task j 
(7.7.1) 

o otherwise, i=l(l)n, j=l(l)n. 

We minimise the total cost, according to the constra"ints that one 

person is assigned one task, and each task is assigned to 1 person. 
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That· is minimise, 
n n 

f = I I c .. x .. 
j=l ~J ~J 

(7.7.2) 

subject to 

i=l 

n 
Ix .. = 1 i=l(l)n 

j=l ~J 
n 
I Xi· = 1 j=l(l)n 

i=l J 

x .. = 0 or 1 i=l(l)n, j=l(l)n 
~J 

(7.7.3) 

The problem can be represented by an nxn table or matrix C=c .. called 
~J 

the cost matrix, and solved by manipulating the table entries. An 

efficient method of solution is the Hungarian algorithm (see WU & 

Coppins [81]) which can be stated simply as follows: 

STEP 1: [FORM A REDUCED COST MATRIX] 

a) For each row in the cost matrix locate the smallest number in 

the row and subtract it from each number in that row. 

b) For each column in the resulting matrix locate the smallest 

number in the column and subtract from each number in that 

column. 

STEP 2: [LINE DRAWING] 

Find the minimum number of lines through rows and columns of the 

reduced cost matrix, such that every zero has a line through it. 

IF the number of lines is n THEN STOP (optimal solution found) 

ELSE proceed to STEP 3. 

STEP 3: [FORM A NEW REDUCED COST MATRIX] 

(a) Locate the smallest number in the matrix without a line 

through it. 

(b) Subtract this number from all uncovered numbers. 

(c) Add the number to all numbers on the intersection of two lines. 

(i.e. twice covered). 

GOTO STEP 2. 
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The final solution is then constructed by assigning a worker to a job 

so that the reduced cost is zero. This is performed by first checking 

rows and then columns for rows and columns with only a single zero, the 

assignment is the (i,j) ordered pair locating the zero. This solution 

technique exhibits a number of convenient items for systolic solution. 

For instance, it involves only add/subtract operations implying simple 

and compact basic cells, and produces a square array rather than 

rectangular in the above Simplex algorithms producing tighter and 

simpler control. 

EXAMPLE: From Wu & Coppins [81] 

Consider the following assignment problem cost matrix 

Job 
1 2 3 4 5 

1 2 4 5 1 4 

2 4 7 8 11 7 

Worker 3 3 9 8 10 5 

4 1 3 5 1 4 

5 7 1 2 1 2 

STEP 1: Preprocessing for initial reduced cost matrix 

1 

o 
o 

o 
6 

1 

o 

o 
o 
6 

3 

3 

6 

2 

o 

3 

3 

6 

2 

o 

4 

4 

5 

4 

1 

3 

3 

4 

3 

o 

o 
7 

7 

o 
o 

o 
7 

7 

o 

o 

3 

3 

2 

3 

1 

2 

2 

1 

2 

o 

row pass 

column pass 



STEP 2: Drawing minimum number of lines 

3 

3 

6 

2 

3 

3 

4 

3 

STEP 3: Smallest uncovered number is 1 

STEP 2: (Repeat) 

( 

2 

2 

2 

2 

5 3 

1 2 

~ 

STEP 3: Smallest uncovered number is 1 giving 

1 

0* 

o 
o 
8 

1 

1 

4 

0* 

o 

1 

1 

2 

1 

0* 

0* 

7 

7 

o 
2 

2 

2 

1 

2 

1 

1 

0* 

1 

1 
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which requires n~5 lines, solution assignment indicated by asterisks. 

The systolic design is partitioned into two systolic arrays. The 

first array is a linearly connected array of n cells computing the 

reduced cost matrix of Step 1, and essentially performing a preprocessing 

task. The second array is an (n+2)*(n+2) orthogonally connected mesh 

performing STEPS 2 and 3, the core of the algorithm and. is termed the 

Assignment Problem Iteration (API) Array. We could consider a third 

array to recover the solution as post processing, but the task is trivial 

and not pursued here. 

The pre-processing array is shown in Fig.(7.7.l) and requires four 

passes through the array to produce the reduced cost matrix. 
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C55 
c54 c45 

c53 c44 c35 

- -- c52 c43 c34 c25 

c51 c42 c33 c24 c15 
c41 c32 c23 c14 c55 

PASS4 c31 c22 c13 c54 c45 
c21 c12 c53 c44 c35 
c11 c52 c43 c34 c25 

- - - --
c51 c42 c33 c24 c15 
c41 c32 c23 c14 r55 

PASS3 c31 c22 c13 r45 r54 
c21 c12 r35 r44 r53 
c11 r25 r34 r43 r52 

- - --
r15 r24 r33 r42 r51 
r14 r23 r32 r41 r55 

PASS 2 r13 r22 r31 r45 r54 
r12 r21 r35 r44 r53 
r11 r25 r34 r43 rS2 - - - --
r15 r24 r33 r42 rS1 
r14 r23 r32 r41 I 

PASS 1 r13 r22 r31 I 

r12 r21 I 
r11 I 

- - --

2 .. 21 •• 132 •• 21 •• 13 

n n n n 

FIGURE 7.7.1: preprocessing array (n=5) 
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P~S 1: Find minimum element of each row, 
~ 

storing it in cell,. 
~ 

PASS 2: Subtract the stored value from all the elements in the row. 

PASS 3: Find minimum element in each column
i 

storing it in cell, • 
~ 

PASS 4: Subtract the stored value from all elements in the column. 

This implies that the basic cell requires a subtracter and a comparator, 

but if we include a status bit set by the subtractor to indicate negative 

values the less than condition can be detected without the comparator. 

(Essentially subtract the stored and incoming values, check the status 

bit and switch to the correct output accordingly, the subtract result 

is ignored). The change from pass 2 to pass 3 requires the matrix 

input to be turned from row ordering to column ordering. As the matrix 

is square the last column element leaves the array in a row pass, as 

the first column element is required to enter the array, and there is 

time to reorganise the data 'on-the-fly' by the host machine or a buffer. 

The data output by the pre-processing array at each pass is looped back 

to the array input forming a ring, on the last pass the ring can be 

broken to form a suitable interface for loading the API. Hence the 

total time for STEP I is T=5n cycles (where a cycle is the cost of 

add/subtract) with the last n cycles overlapped with API timings. 

The API is shown in Fig.(7.7.2) and has the same global structure 

as the mesh used for rank annihilation Fig.(~3l,l) incorporating a 

systolic control ring (SCR) tO'generate any ordering of wavefronts 

across the grid. The boundary arrays and internal cell definitions 

are of course different, and the Hungarian algorithm can be computed 

by a number of phases as illustrated by Fig.(7.7.3). 

PHASE 0: Loading of the reduced cost matrix, the SCR is not required 

and the loading of square meshes of processors with data is well 

understood. 
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PHASE I: (start of the iteration algorithm) 

Two wave fronts w
l 

and w
2 

are generated as fo1lows:-

a) cl generates controls moving systo1ica11y along c
1
-c

2 
and c

1
-c4 

through the host interface and min shift arrays, producing w
1

• At 

the start, the min shift cell immediately below cl contains the 

smallest uncovered element in the current reduced cost matrix (zero 

for the starting matrix of Step I). As w
1 

moves across the tableau 

it performs the reduced cost modification (of Step 3) according to 

covered line positions. 

b) On the next cycle after cl generated controls for w
1 

a second control 

c
1
-c

2 
and cl -c

4 
produces a wave front w

2 
parallel to w

l 
which counts 

the number of uncovered zeros in each column. 

PHASE II: On reaching c 2 and c
4 

the controls associated with w
2 

are 

relayed along c
2
-c

3
, c

4
-c

3
• At this time w

2 
and w

l 
are half-way across 

the tableau and the first column has completed its zero count or column 

zero weight (CZW). Thus, as the control moves along c
4
-c

3 
the CZW's are 

loaded into the column sorter (in the same manner as the Simplex tableau 

see Fig.(7.5.3)) and starts an ODD-EVEN transposition sort bubbling the 

max CZW right and the min CZW left. As weights are swapped a wavefront 

w3 of swap controls propagates across the tableau re-aligning column 

elements. 

PHASE Ill: When controls reach c
3

' w
1 

and w
2 

have left the mesh, and the 

max CZN is in the sort cell immediately left of c
3 

and w3 is halfway 

across the grid. Controls now travel along c
3

c 4 and c
3

c
2

' the former 

signals closing down the column sorter. Hence when controls reach c4 

and c2 the CZw's are completely sorted and the last column swap 

instruction has entered the mesh. 
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PHASE 11 

PHASE IV 

w, -I 

PHASE VI 

~ 
~ 
~ 
1= 
I-

PHASE IX 

FIGURE 7.7.3: API WAVE FRONTS 

The computational phase for API phase 
VII not shown,is the line drawing section. 
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PHASE IV: To complete the control cycle signals move along c
4
-c

l 
and 

c
2
-c

l 
and a wavefront Ws performing the same task as w

2 
but collecting 

the row zero weights (RZWS) by counting uncovered zeros in each row. 

When the controls reach cl the bottom row has completed its count. 

PHASE V: This phase is analogous to phase 11, and cl generates a new 

signal c
l
-c

2
• As Ws continues to move right its controls (in the 

absence of SCR values) are used to load the RZW weights from bottom to 

top and start the sorter. Thus when the new SCR control reaches c
2

' 

all the row weights have entered the row sorter and the minimum RZW is 

in the cell immediately below c
2

• A wave front w6 generated by the sort 

is propagated left to perform relevant row swaps, hence at the end of 

the phase w6 is half way across the tableau. 

PHASE VI: The control now moves c
2
-c

3 
and c

4
-c

3 
and closes down the row 

sorter, while the remaining row swaps are carried out on the tableau. 

At the end of the phase the row weights are fully sorted and the last 

row swap has entered the table mesh. All sorting cells are off and the 

max RZW and CZW reside in cells adjacent to c
3

• 

PHASE VII: c
3 

now takes control of the algorithm and initiates line 

drawing. The basic technique for drawing the minimum number of lines 

is given below and is only outlined here. 

a) c
3 

collects both maximum RZW and CZW values to select the 

largest. 

b) IF both values are zero THEN no uncovered zeros exist GOTO 

PHASE VIII. 

IF n lines have ·been drawn THEN optimal solution STOP 

ELSE draw a line. 

A line is drawn by zeroing the selected RZW (or CZW) and issuing a 
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control value along the last row (or column) of the table mesh setting 

the cell elements line state (covered, twice covered, uncovered). Where 

a cell element is zero and uncovered the associated RZW (CZW) in the 

adjacent sorter cell must be decremented making the element disappear 

from future line drawing. After a short delay to allow the marker 

wavefront sufficient head start and to avoid interference, c
3 

issues 

controls along c
3
-c

4 
and c

3
-c

2 
to re-activate the sorters, which re

sort the modified RZW's and CZW's, while bubbling the marked row or 

column away from the line marking area of the array. On reaching c
4 

and c
2 

the signals are returned to c
3 

(along the reverse paths) closing 

down the sorters. On reaching c
3 

the row and column lists are re-sorted 

and we return to a) above to draw another line. 

PHASE VIII: If we reach this phase both the CZW and RZW lists have 

been reduced to zero in less than n lines and a modification. of the cost 

matrix is required. c
3 

releases control propagating signals along c 3-c4 

and c
3
-c

2 
producing wavefront we which moves the minimum uncovered 

element of each row left. When the control on c
3
-c

4 
reaches c

4 
the 

minimum of the last table row is available. 

PHASE IX: Signals are relayed by c
4 

and c
2 

to travel c
2
-c

l 
and c

4
-c

l 

and complete the second circuit of the SCR. As the signal for c
4 

moves 

to cl it loads the minimum row values (MRV) into the min. shift array, 

which constructs a partial ordering on the MRV filtering towards cl. 

When signals reach cl the minimum uncovered table resides in the cell 

immediately below Cl. We now GOTO PHASE I. 

STOP: If stop is reached in Phase VII the API is closed down and the 

final tableau output. 

REMARK: We assume that like the simplex array, sorting cells contain an 
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index for row and columns so that the final result is easily recovered. 

The line drawing method uses a simple heuristic technique to decide 

where to draw lines - i.e. try to cover as many zeros as possible with 

each line. But can we be sure that we always draw the minimum number 

of lines? 

Theorem 7.7.1: The systolic API always draws the minimum number of 

lines for a given reduced cost matrix. 

Proof: 

(i) If we do not cover all the zeros, on resorting the RZW, and 

CZW lists c
3 

will receive a non-zero value from a list and draw another 

line. 

(ii) Let k
min 

be the minimum number of lines, and put k>k
min 

such 

that without loss of generality k~k . +1. From (i) and the heuristic 
m~n 

above we must draw a redundant line, whose zeros are all covered at the 

time of drawing. This implies the elements of the CZW and RZW must be 

zero hence c
3 

cannot draw a line. This is a contradiction, thus proving 

the theorem. 

A program implementing the API mesh as described above is given 

in the appendix and also defines the cell operations. The use of the 

SCR control flow simplifies the array timing which is given as follows. 

The control values travel around the SCR exactly twice to complete 

steps 2 and 3 of the algorithm. On the second SCR cycle we perform 

line drawing which has a variable time. If we denote the time spent 

line drawing as Tld a single API iteration costs, 

as the cost of a complete SCR cycle is 4(n+l} cell cycles. If we 

perform z iterations the total time is, 



z 
L Ti = 

i=l 

z 
L 8n + 

i=l 
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= 8nz + 8z + L eiT

id i=l 
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(7.7.5) 

The time to draw a single line is bounded by the cost of resorting the 

CZW and RZW lists, and is equivalent to the time of traversing a side 

of the API twice i.e., 

Tl = 2(n+l) + k , (7.7.6) 

with k>O is a constant delay required for separating individual 

wavefronts. Now if we assume that once a line is drawn it is never 

removed, 

(7.7.7) 

as we can draw at most n lines, consequently, if we draw all n lines 

on a single iteration we get the lower bound, 

z=l 
2 

T i = 2n + (k+ 9) n + 8 , (7.7.8) 

and if we draw one line every iteration the upper bound 

T = lOn
2
+(k+ 9)n • 

u 
(7.7.9) z=n 

(7.7.5) is verified by the test example given below with accompanying 

program generated snapshots of control flow and table images. 

In general, however, some lines will have to be removed, and could 

increase the computation time. For example, consider the following 3*3 

scenario, A 
I f 

0 2 1 2 1 (!) 1 0 

H 5 7 0 ... -9-f'J- ... -i-~ -e- ... B 

0 3 4 3 4 9 2 3 

(i) (ii) (iii) (iv) 

corresponding to the mesh operation as explained. In step (iv) the 

algorithm uses three lines when just two will suffice, contradicting 
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Theorem (7.7.1). Clearly the line B is redundant and should be removed 

after A is drawn. The problem occurs because lines are retained between 

successive iterations on the API. Modifying w
l 

in PHASE I to uncover 

elements after performing the table update solves the problem because 

c
3 

always starts line drawing afresh on each iteration. Unfortunately 

this means that not only redundant lines disappear hence, 

z-l 
I (n-l)T

l 
+ nT

l 
= 

i=l 

= Tl(z(n-l)+l) 

z 
I (n-l)Tl 

i=l 

(7.7.10) 

as at most (n-l) lines can be drawn on the first z-l iterations and n 

on the last, yielding the revised upper bound, 

T 
u 

2 
z(2n +n(8+k)+6-k)+2(n+l)+k 

3 2 
= 2n +n (8+k)+(8-k)n+(2+k) • 

(7.7.11) 

REMARK: To implement this procedure, the program code requires the line 

state to be cleared after an update in t.cell, and n=O at the end of a 

line drawing phase in controller.3. 

A more flexible approach is to incorporate erasure of redundant 

lines in the line drawing phase to yield, 

z z 
T = 8z(n+l) + I e. T'd + I ~. TE ' 

i=l L ~ i=l L 

(7.7.12) 

where O<~i~l and TE is the time spent erasing lines, and thus avoiding 

redrawing the same lines on successive updates of the reduced cost 

matrix. Removing lines, however, presents a number of problems. 

(i) Identification: Clearly, a line is redundant if all its zeros lie 

on the intersections with other lines, as on the next cost matrix 

update they become nonzero. 

(ii) Location: Redundant lines must be removed before we attempt to find 

the table minimum otherwise an incorrectly updated table will result. 
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(iii) Implementation: 

a) two wavefronts must pass over the mesh to identify redundant 

lines one for rows and one for columns. 

b) a further two wavefronts are required to erase the lines. 

c) the count of lines must be modified to avoid premature 

termination of the algorithm. 

Line erasure can be implemented effectively as follows. Notice that c
3 

selects the MAX(CZW,RZW) and hence only one list can be re-sorted, and 

generate swap data. For instance, suppose the CZW is selected by c
3

, 

the CZW list must be resorted, but the RZW is unchanged and already 

sorted. Consequently, the column line which is to be drawn can only 

product redundant row lines. It follows that the sorter start up signals 

travelling c
3
-c

4 
and in particular c

3
-c

2 
can be used to generate a 

redundancy status bit vector R such that, 

R(i) = 
{ 

1 for a redundant line occupying table row i 

o otherwise. 

The row sorter sets R(i)=l, i=l(l)n making all lines redundant initially. 

The R(i) travel on the leading wave front of swaps generated by the 

column sorter along with the new line column being bubbled away from c
3

' 

thus ensuring that each R(i) meets all the elements of row i. We reset 

R(i)=O whenever an uncovered or once covered zero element is encountered 

Thus, when the column sort signal c
3
-c

4 
reaches c

4 
the last row is 

identified as required or redundant. Next, as we closedown the sorters 

can be used to reflect the R(i) incident on the minshift array tagging 

them to the last wavefront of column swaps. As each R(i) is now set to 

indicate redundant lines, the return trip can be used to erase lines, by 
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modifying each elements line state. It follows that when the sorter 

stop signal returns to c
3 

the c
4
-c

l 
redundancy control reaches cl and 

the last table row is completely erased, and the first row about to 

start. Consequently, drawing of the next line can be overlapped with 

erasure. Furthermore if we include an adder in the minshift cells, the 

arrival of the R(i) bits can be used to count the number of redundant 

row lines (say r). Thus moving the line count from c
3 

to cl means that 

the arrival of the redundancy control at cl can set the number of lines 

as nd-r+l where nd is the total number of lines drawn (we remove rand 

add 1 column line). A similar argument holds for resorting the RZW 

list with the column redundancy vector C(i), i=l(l)n, except that c
2 

uses a signal c
2
-c

l 
and the host interface accumulates the column 

redundancy count c, with nd-c+l the updated line count. The practical 

point is that erasure is overlapped with line drawing and sorter close 

down hence, 
z 
I ~iTE = 0 , 
~l 

(7.7.13) 

reducing (7.7.12) to (7.7.5) and yielding the timing bounds (7.7.8) and 

(7.7.9). 

Finally, we consider the complexity of the cells. Fig.(7.7.4) 

indicates a loose structure for the table cell the most complex cell in 

the mesh. Lines drawn are represented by a line. state variable (LS) 

which can take three states: 

(i) uncovered - no line 

(ii) covered - by a single line 

(iii) twice covered - by two lines at an intersection. 

·In the program we have used general variables, but in hardware terms 

line states require only three bits, where, 
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100 no line 

001 single line 

010 intersection 
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and line drawing or erasure is implemented simply by circulating shifts 

left or right respectively. For the purposes of column and row swapping 

we can consider these 3-bits tagged to the actual table element. By 

the mechanics of the array the row and column of table cells next to 

the column and row sorters are the only ones to receive line drawing 

commands. As lines are marked on the tableau cells, the cells 

containing previously unmarked zeros must generate a signal to modify 

the associated RZW/CZW value in the adjacent sorter cell. The tableau 

must therefore be able to detect a zero, which can be achieved by taking 

the NAND of the element bits (or maintaining a zero-status flag also 

tagged to the element). Additional hardware is also required to perform 

the cost matrix update and calculation of the RZW'S and CZW's. Using 

the line.state bits and the zero flag the calculations can be controlled 

as follows, 
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Line state Zero Action 

00 X Subtract minimum element from cell 
element 

01 X Add zero to Tableau element 

10 X Add minimum to cell element 

(a) 

Line state Zero Action 

00 1 Add 1 to row or column index 

01 X Null (add zero) " 

10 X Null (add zero) " 

X=don't care. 
(b) 

TABLE 7.7.1 

The last problem is the location of the minimum element, requiring 

the comparison of the incoming minimum from the right with the cell 

element, and the resulting minimum to be placed on the left output. 

The comparison can be performed by subtracting the cell element from 

the incoming element, the new minimum is then the cell element if the 

result is positive and the input element if negative (recall that all 

table elements must be positive). The result can be detected by the 

sign bit of the adder/subtracter arrangement. We conclude that with 

an adder or subtracter, and 4 bits (line. state and zero flag) together 

with combinational logic for the control commands, the tableau cells 

have a simple structure. By similar arguments we conclude that the 

sorter cells and min. shift arrays can also be represented by adder/ 

subtracter or equivalent cell structures with SCR control logic. The 

controllers themselves are simple state machines with c
3 

the most 

complex requiring a counter for line counting {with line erasure this 
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is moved to cl and requires an adder/subtracter). Consequently the 

API area is bounded by the cost of (n+2)*(n+2) tableau cell arrangements. 

Including the time (5n) for the preprocessing and 2n cycles to unload 

2 
the table produces O(n ) adder/subtracter cells and the time bcunds, 

2 2 
2n + (16+k)n+8 ~ T ~ lOn + (16+k)n , (7.7.14) 

with line erasure, and, 

2 3 2 
2n +(16+k)n+8 ~ T ~ 2n +n (8+k)+(15-k)n+(2+k) (7.7.15) 

without line removal, giving the erasure procedure a distinct 

computational advantage. 

7.8 SUMMARY 

In this chapter we have considered the application of systolic 

arrays to table manipulating and generating algorithms. First asystolic 

array for improving numerical approximations to integrals using 

Richardson's extrapolation procedure in the form of Romberg integration 

was considered. Two designs for generating a table of size n were 

presented, the first a linear systolic array of n cells and the second 

a systolic ring using only 1/3 of the cells. Both designs required 3n 

ips cycles to construct the table, a significant improvement over the 

o(n
2

) steps required sequentially. 

Next the construction of extrapolation tables used in the solution 

of Ordinary Differential Equations (ODE's) associated with initial' 

value type problems was examined first for a low order 

formula i.e. Eulers method which is combined with extrapolation to 

improve" estimates of solution. The technique was extended to the 

Bulirsch and stoer algorithm and a generic systolic array form given 

to extrapolation table construction. A generic timing T=c(n-l) was 



DESIGN TESTING 

Examplec Consider the starting API matrh: (n-)} 

~ 
0 

~ 0 

• 
Then following sequence pro4uces 

+ 

line drawinq modification termination 

Below are snapshots of the APt-array simulated on a VAX 11/750 BSD 4-2 

using Loughborough OCCAM (6). The above test requires (Z-)2 iterations 

of the method, fully testing the array. TWo snapshots are present. 

(1) COntrol wavefront, 1ndicatinq sYltollc oontrol flow. qenerated wavefronts. 

Each entry is a quac!ruple of the forlD 

a) (cO,c I ,c2 ,c)) Tableau cell 

b) (1 ,Cl ,c2 ,co' Row sort cell 

c) (j ,Cl ,c2 ,c)) COl sort cell 

~) (min ,c
O

,c2 ,c)) Min shift cell 

e) relevant signals for controllers. 

(ii) Table outputl Indicates modifications, minimum uncovered elements, 

colIputed row/column weights and SOrter generate sweeps. Each entry 

is a single value 

.l Telement ... Tableau cell 

b) Row wei9ht ... row sort 

c) Col weight ... col sort 

d) Minimum row ... min shift 

e) Zero except for controller I - collects minimum element for 

modification. 

REHARXl The above example is artificial in that a genuine reduced cost 

matrix would have a zero in each row and column but it serves ita 

purpose as a teat matrix. 

Remarks on Tests 

1. The total number of cycles frolD algorithm start to the beginning of 

the OCCAM closedown is 96. This bound on k is essentially correct, 

and verified by the above timing elements • 

2. Control signals key for snapshots 

Co cl c2 c 3 ACTION 

1 Swap with right cell 

2 Swap with left cell 

1 COnstruct row weiqht 

1 Construct col wight 

3 3 Modify element 

• Shift rov minimum left 

3 Draw row 11,.. 

3 Draw col line 

1 Load row weight • 

2 Modify row wiqht • 

• Null • 

2 Stop sort cell 

3 · 
• · 
1 Loa~ column weiCjlht • 

2 Modify column we iqht • 

• Null 

1 Stop sort cell 

3 · 
• · 

Load row minimum and test 
2 with row below 

, &~ Close thia I/O port 

Tableau 
0011 

Row sort 
Cell 

col sort 
Cell 

} min shift 

} OCCJ\M 
Termination 

N.B. other signals and controller codes pass through cell. unchan9'!d, cl 

and c) modify control signals. 

c.n .... 
IV 
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• • 0 • • • • • 0 • • • 0 0 0 0 0 • • 0 
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0 0 , 0 0 0 0 0 , 0 0 , 0 0 , 0 • 0 0 • 0 0 0 , 0 0 0 • , 0 0 0 0 , 0 0 0 0 0 0 

"." erel. ,t.,t eyel. .,." cych "." cye t. 
0 • 0 0 0 0 0 • • 0 • 0 0 0 0 0 0 0 0 0 , , 0 • , , 0 • , 0 , 0 • , 0 , 0 • , 0 
0 • 0 0 0 0 • 0 0 0 0 0 0 , 0 0 • 0 I 0 

• 0 0 , 0 , 0 0 , 0 0 • 0 • , 0 • 0 0 0 

• 0 0 , • 0 0 • , • 0 0 0 , • • 0 0 0 0 

".,t e)" l. ,t"t crcle ".tt erel. It.t' creh 
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• ,." ercl. ,'at' ,rc la IU;' cycl • , t.tt cycle 
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given with c the cell latency, and an area efficient systolic ring 

constructed with rn/cl basic cells implementing the extrapolation 

procedure. Various simplifications on the generic structure were 

discussed indicating that arrays could be optimized depending upon 

the special structure of particular problems and the ameunt of table 

data to be generated (i.e. full table, diagonal entries only or final 

improved result). Finally we introduced the idea of the adaptive 

table generating array which could predict the convergence rate, and 

hence minimise the number of starting values evaluated to achieve 

convergence. This led to the problem of generating a table larger 

than the array could accommodate in a single pass, and mUltipass table 

generation was briefly considered to produce a fixed size array mere 

suited to VLSI construction. 

From these experiments it was clear that extrapolation table 

generation with its recurrent form of table construction using simple 

rules for relating table elements fitted many other table algorithms. 

We investigated a method of array templating for the fast derivation 

of systolic arrays for computationally related table algorithms (i.e. 

differencing techniques). The concept of array unification was 

introduced to combine similar systolic arrays by combining cell 

functions to produce a minimal hardware arrangement. Two types of 

templates were discovered indicating that the earlier work was a special 

case of a general template. In particular, we showed that equally 

spaced arguments produced tables which allowed the arguments to 

be inferred by the cell function. Whereas, unequally spaced arguments 

require arguments to be explicitly represented in the cell, restricting 

the method of computation (and preventing systolic rings). Equally 
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spaced arguments produced a column-wise table generation, while 

unequally spaced arguments generated a table row wise. Although the 

problems considered were computationally simple the implications are 

far-reaching. A number of algorithms implemented on the same cell 

architecture will produce a very cost effective VLSI design. Indeed 

recent trends in systolic array development and particularly the CMU 

WARP processor (H.T. Kung [84a]) are aimed at more flexible array desing. 

The Unified Systolic Array for Differencing (USAD) offers an interesting 

alternative for fast computation of approximating functions. 

Next we turned our attention to the problem of generating open 

ended or potentially infinite tables, and examined the effect on table 

construction by rules based on triangular and rectangular tables. As a 

vehicle for discussion the Quotient-Difference (QD) algorithm for 

producing all-the roots of a polynomial was used. Two designs were 

produced, one where polynomial roots remained fixed in cells (or 

stationary) and a second where root approximations moved systolically 

(i.e. nonstationary). The former scheme requiring n QD-rule cells for 

a polynomial of degree n. The latter with cells proportional to the 

number of root approximations, forming a natural multipass array, and 

by extension a systolic ring for generating an infinite sequence of 

approximations. 

Finally, systolic arrays for the more complex table based Simplex 

and assignment problems were developed. This time the emphasis was on 

table manipulation rather than construction resulting in larger and 

more complex arrays. The resulting arrays used a combination of wave

front and systolic control movements. For the standard Simplex method 

the time of the array was bounded by, 
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T ~ z(2n+4m+k}+2m 

ips cycles for n unknowns, m constraints, and the examination of z 

feasible points, where, 

{

approx. 

approx. 

m for ordinary Simplex 
z ~ 

2m for Simplex with artificial basis 

and k~6 a small constant. The number of cells was given by, 

{ 

(m+2) (m+n}+3m 

A ~ (m+2) (m+n) +3m+ (m+l) 

ordinary 

artificial basis. 

The arrays reduce the computation by an order of magnitude when 

compared with the sequential algorithm requiring o (zm(n+m}). In 

contrast to the above technique a second array computing the revised 

Simplex method was considered using the general form of the inverse 

technique. For m<n a systolic cylinder with a volume efficient layout 

resulted and for m~n a compacted planar layout. These revised arrays 

required, 

T ~ z(4m+12} + O(2m} 

ips cycles and the compacted array required only (m+2}2+3m+4 cells. 

These results should be compared with the least squares array of 

2 
Gentleman & H.T. Kung [81] which requires T~O(6n) and O(n } cells 

and is applicable for m)n, but requires the construction of normal 

equations (omitted from the time) and the existence of (ATA}-l. 

Clearly the new arrays require more area and time but are more general 

extending easily to solve the Chebyshev (min-max) problem for over-

determined systems. 

Last but not least we considered the assignment problem, a special 

case of the more general transportation (LP) problem, which reduces to 

an integer programming problem and requires a square (nxn) matrix 
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representation. In particular, we implemented the Hungarian algorithm 

which allowed a reduction of cell complexity by using only integer 

add/subtract operations. An orthogonally connected (n+2)*(n+2) wave-

front mesh incorpcrating a Systolic Control Ring (SCR) for generating 

wave fronts and restricting special cells to the periphery of the array 

was produced which required, 

2 2 
2n +(l6+k)n + 8 ~ T ~ lOn + (l6+k)n 

cycles, where a cycle is the cost of add/subtract and control switching 

time, rather than an inner product step. 

We conclude that for table generating methods the number of cells 

is proportional to the tables smallest dimension, and that often 

designs can be optimised (depending on the table construction rule) to 

produce multipass architectures with size independent of the problem 

size. Thus together, with the ideas of templating and unification table 

generating systolic arrays provide the possibility of cheap add-on 

devices to bring parallelism to a sequential machine or off-load 

computation of a parallel host in the form of chip-table generators, 

akin to the standard mathematical tables used heavily before widespread 

numeric computation. 

For the more complex table manipulating problems, the size of 

arrays is proportional to the number of table elements which are held 

or stored throughout the computation. It is acknowledged that the 

Simplex problems can be extremely large making the usefulness of a 

hybrid or hard systolic realisation of these schemes questionable. 

For Simplex problems the idea of decoupling can be applied to produce 

a series of smaller problems which would limit the size of the array, 

and permit a type of iterative/multipass solution to the whole problem. 
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Unfortunately decoupling occurs only in limited cases and the 

decoupled subproblems may still be large. The assignment problem 

by virtue of its simple cell structure and control indicates some 

possibilities in Wafer Scale Integration (WSI) schemes, where a wafer 

API (WAPI) as shown in Fig.(7.8.l) might produce a large array. 

Thus table generating arrays are suited to a hybrid, hard, 

systolic approach, while table manipulating schemes remain (for the 

present) purely soft-systolic in nature. 

FIGURE 7.8.1: Mapping of API onto wafer 



CHAPTER 8 

THE SOLUTION OF CERTAIN PARTIAL DIFFERENTIAL 

EQUATIONS (PDE'S) BY SYSTOLIC MARCHING TECHNIQUES 

"Holism 01" l"eductionism fol" pal"aZZeZism?" 

Definition: Hol-ism (philosophy) 

Tendency in nature to form wholes that are more than 

the sum of the parts by ordered groupings. 

Definition: Reductionism 

Analysis of complex things into simple constituents; 

the view that a system can be fully understood in 

terms of its isolated parts. 
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In this chapter we extend the ideas of table generation, manipulation 

and array unification principles to derive geometric rather than 

algorithmic interpretations of finite difference solutions to P.D.E.'s. 

In particular, we consider the solution of l-D (heat conduction) 

and 2-D (unsteady diffusion) parabolic P.D.E.'s by the asymmetric 

approximations of Saul'ev [64] and the Group Explicit (GE) techniques 

of D.J. Evans and Abdullah [83a,b] to derive a Linear Asymmetric Marching 

Processor (LAMP) array and a unified Group Explicit Parabolic Solver 

(UGEPS) • 

Array compact ion techniques are employed in the form of Hopscotch 

methods (Gourlay [70]) to provide area-efficient alternatives when 

portions of the solution 'table' or region can be omitted, and fast 

arrays where computational rules used to derive basic cells are optimised. 

Finally, we briefly consider the extension of the schemes to a 

group explicit technique for the solution of a hyperbolic equation of 

first order (Sahimi [86]). 

8.1 INTRODUCTION TO ASYMMETRIC AND GROUP EXPLICIT METHODS 

Before discussing the construction of systolic arrays implementing 

the numerical solution of parabolic P.D.E.'s we briefly review the 

finite difference techniques involved with particular attention focus sed 

on the following two problems. Firstly, the l-D parabolic equation for 

the simple heat conduction problem, 

a2
u 

-2- , O~x~l, 
ax 

t~O , (8.1.ll 

and secondly, the 2-D unsteady diffusion equation of the form, 

, O~y~l, (8.1.2) 
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The first solution technique considered is the use of stable asymmetric 

explicit finite difference equations of Saul'ev [64). It is well 

known that generally an explicit type of method results in the simplest 

computational procedures. Since simplicity is usually related to 

computational cost and from a systolic point of view, to simple basic 

cells and low cycle time it is desirable to retain an explicit type of 

approximation procedure. The Saul'ev formulae are chosen in preference 

to others (like the classical implicit and explicit schemes) because of 

their attractive pipelining features and stability characteristics. 

Equation (S.l.l) is one of the most frequently occurring parabolic 

equations and can be approximated by the two-time level finite difference 

approximation below. The range of the variable x is divided into equal 

mesh points o=x <xl< ••• <x 1<X with step size h=l/m and x.=ih. i=O(l)m. ° m- m 1. 

Similarly the range [o.tzl of the variable t is divided as O=tO<tl<"'~_l 

<tk~tz in z equal parts, giving l=tz /Z and t k=kl, k=O(l)z. Finally we 

introduce a set of Dirichlet boundary conditions, 

a) u(O,t) = u(l,t) = ° , O~t~tz 
and initial values, (S .1.3) 

b) u(x,O) = f(x) , O<X<l • 

Next, the approximations for the partial derivatives are chosen as 

follows, 

aUi,k u. k l-u' k 
~ 

1., + 1. + O(h) 
~t 1 

, (S .1.4) 

and, 2 
- au.! k au._! k a u. k 

+ ° (h 2) 1., .!!.( 1.+, 1. ') Cl 2 h ax ax 
ax 

(S.1.5) 

2 
au. ! k aUi_!,k+l a u(x. ! t k+61) 

1.- , ~ 1.- , , O~e::;l 
ax ax - 1 axat 

with, 

using the Mean Value Theorem. 



By substitution into (8.1.1) yields, 

u -u 
i,k+l i,k: au. 1 k 

a ( l.+" 
i h ak 

au 
(l-a) ( i+t ,k 

h ax 
2 

ai a (xi_!,tk+ei) 

h dxat 

au. 
l.-! ,k) + 

ax 

Thus, we can write (8.1.6) as, 

u. k l-u. k 1., + 1., 
= 

i 

+ 

ex -tu -u -u +u ) 
h2 i-l,k+l i,k+l i,k i+l,k 

(l-ex) 
2 (u'_l k-2ui k+u . 1 k)+R. k ' h 1. I I 1.+ t 1., 

2 
where R. k=O(ex/h + h +i) is the error of approximation. 

l., 
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(8.1.6) 

(8.1.7) 

We obtain the final equation with multiplication by h
2 

and neglecting 

the error term h
2
Ri ,k' if h is chosen to be small, as, 

with 

1 
ui,k+l = w+ex [exui_l,k+l+ (l-ex)ui _l ,k+ui+l,k-(2-w-a) ui,k] 

h2 
Wtt 

(8.1.8) 

This formula leads to a number of asymmetric formulae attributed to 

Saul'ev [64]. We are particularly interested in the case when ex=l, which 

produces the equation, 

(8.1.9a) 

and a related equation yields, 

1 
u ... = -.- [u,., ,.,,+u, , ,,-(l-W)u. ,.1 

1.,K+.L l.TW ..1.T..L,hT ....... - .... ,.. !.;It 
(8.1.9b) 

2 
denoting r=i/h and w=l/r we obtain, 

(8.1.lOa) 

(8.1.l0b) 
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and when r=l, the simple equations, 

ui ,k+1 = ![ui _1 ,k+1+ui+1,k1 

ui ,k+1 = ![ui +1 ,k+1+ui_1,k1 • 

(S .1.11a) 

(S .1.11b) 

Alternatively, (S.1.10) in their implicit form represent the computational 

molecules. 

a) 
k+1 

b) 8 '-----+ l+r 

o-----{ 1-r k 

i-1 i H1 i-1 i i+1 

(S .1.12) 

and the solution to (S.l.l) is obtained by applying these molecules to 

an infinite rectangular grid similar to Fig. (2.1a) with boundary initial 

conditions described by (S.1.3). Solutions can be obtained in a number 

of ways: 

(i) Use (S.1.10a) (or (S.1.12b» only proceeding level by level 

using a Left to Right (LR) movement on each level along the 

x-direction in which case the formula becomes explicit. 

(H) Use (S.1.10b) (or (S.1.12a» in the same way as (i) but move 

from Right to Left (RL) on each level and again the formula is 

explicit. 

(iii) Alternate between LR and RL on successive levels. 

(iv) Perform LR and RL (or RL then LR) on the same time level 

producing two results for each mesh point on the level. Take 

the average of the estimates to produce a more accurate result 

due to the cancellation of truncation error terms emanating from 

opposite signs. 

k+1 

k 
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These alternative strategies illustrate the concept of marching, where 

the computational molecules representing the formulae on the grid can 

be considered as marching from point to point along the x-direction 

gradually moving up the time levels. From a numerical viewpoint the 

marching can be formulated as a triangular linear system by numbering 

the points on level k+l from left to right, or vice versa to yield, 

Au(k+l) = (A+C)u(k) , (8.1.13a) 

and, T (k+l) (T) (k) Au =A+Cu, (8.1.l3b) 

where, 

o 

1-=2 1 r+1l 

-ex. w+cx. 1 

A = I C = 

o 1 

w+~ -2 

Next consider the unsteady diffusion equation (or 2-D heat conduction 

problem) (8.1.2), the region to be considered is a rectangular domain 

like Fig. (2.lb) with boundary and initial conditions, 

and 

u(O,y,t) = fl (y,t), u(x,O,t) = f 3 (x,t) 

u(l,y,t) = f 2 (y,t), u(x,l,t) = f 4 (x,t) 

u(x,y,O) = f 5 (X,y) • (8.1.14) 

Asymmetric equations can be described in a similar way to the l-D 

case. Let u, 'k=u(ih,jh,k,O so that the region is square for simplicity, 
~/J, 

the analogous equation to (8.1.7) is, 

u, 'k l-u, , k 1,J, + 1,], 

R. 
= .J!...(u, , -u, -u" +u, ,) 

h2 ~-l,J,k+l i,J,k+l ~,J,k ~+l,J,k 

(l-Il) 
-='--"'2"-- (ui 1 'k-2u , 'k+u , 'k) h - ,J, 1.,), 1.+1,), 

+ 

+..L2 (u, , 1 k l-u, 'k l-u, 'k+u , , 1 k) h 1.,J+, + 1.,), + 1.,J, 1.,)- I 
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(l-S) 
2 (u, , 1 k-2u , , k+u , , 1 k) +R, , k ' h 1.,J+ I 1.,), 1,J- I 1,J, 

+ (8.1.15) 

2 
R, , k=O (ah+Sh+R.+h ), O~a, S~1. 
1,J, . 

where 

By neglecting the Ri,j,k term with some manipulation the formula 

becomes, 

(l-S)u, '+1 k-(4-w-a-S)u, , k+u'+l ' k+ui '-1 k 1.,J I 1.,J, 1. ,J, ,] I 

(8.1.16) 

and with a=S=l 

Ui,j,k+l 
1 = --[u, ,+u -(2-w)u, +u, + 

w+2 ~-l,J,k+l i,j+l,k+l ~,j,k ~+1,j,k 

u, , 1 kl 1.,J- I 
(8.1.17) 

1 and with -cr, we have, 
w 

u . 
i,j,k+l 

1 
= 1+2 [ru'_l ' k+1+ru , '+1 k+1+(1-2r)u, , k+ru , 1 ' k r 1. ,J, 1.,J I 1.,3, 1.+ ,l, 

+ru, , 1 kl 
1.,)- , 

(8.l.l8a) 

Likewise, the following similar equations can be deduced, 

and, 

Ui,j,k+l 
1 

= --[ru, , +ru" +(1-2r)u, +ru, , 
1+2r ~+l,J,k+l ~,J+l,k+l i,J,k ~-l,J,k 

+ru, , 1 kl 1.,J- , 
(8.1.l8b) 

1 
u, , k 1 = -1 2 [ru, 1 j k l+ru, , 1 k 1+(1-2r)u, , k+ru , 1 ' k 1.,J, + + r 1.-" + 1.,)-, + 1.,J, 1.+ IJI 

u, , k 1 1.,J, + 

+ru, , 1 kl 1.,J+ I 
(8.1.l8c) 

1 
= -1 2 [ru, 1 ' k l+ru, , 1 k 1+(1-2r)u, , k+ru , 1 ' k + r 1.+ ,J, + 1.,J-, + 1.,J, 1.- IJ, 

+ru, '+1 kl 
1. , J , 

(8.1.l8d) 

Like the l-D problem the implicit forms of (8.1.18) can be represented 

by computational molecules, viz. 



I . 1 k' 1 1+1.1+1.k+1 .1+ ~. :.:.+.:-__ 

I.J.k+1 

... ___ J' 

, , , 
,1.j+2.k 

1-1.J+1.k I.J+ 1.k 

l.j+1.k+1 

I.J.k+1i----
1+ 1.1.k+ 1 

----J1.1.k 
1-1.J.ki 

1.1-1.k 
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1.1+1.k+1 
1+1.1+ 1.k+ 1 

1+ 1,j+2,k 

1+1.1.k+1 

1+ 1.j+ 1.k 1+2.J+1.k 

1+1.J+1.k+1 

-------{i+1.1.k+1 
I.J.k+1 

(S.1.l9) 

i+1.j.k i+2.j.k 

1+1.j-1.k 

and the solution to equation (S.1.2) under the constraints (S.1.14) can 

be achieved by a variety of techniques: 

(i) Use equation (S.1.1Sa) starting with (i=l,j,.m-l,k=O) moving 

from left to right (LR). 

(ii) Use equation (S.l.lSb) starting at (i-m-l,j=m-l,k=O) moving 

right to 'left (RL). 

(iii) Use equation (S.l.lSc) starting at (i=l, j=l,k=O) moving left 

to right (LR). 

(iv) Use equation (S.1.1Sd) starting at (i·m-l,j=l, k=O) moving 

right to left (RL). 

(v) Alternating schemes are given by: 

(a) Using (i)-(iv) on successive cycles starting again every 

four cycles. 
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(b) Select two formulas e.g. (ii) and (iii) and alternate 

cycling every two time levels. 

(vi) Averaging schemes: Use two schemes on the same level and 

average the results for each grid point to obtain improved 

results. 

These are also marching type algorithms, and for a suitable ordering of 

mesh points we obtain the following linear systems, 

AU(k+l) = BU(k) , (S.I.20a) 

for (S.I.ISa,b) and, 

for 

and 

B = 

T (k+l) T (k) 
Au =Bu , 

(S .1.1Sc ,d) where, 

la 
-b T l a 

A = 

0 

re 
I 

e 

(e-b) T 
c 

0 

0 

b = 

e 
0 

(e-b) 

T 
a 

s 

I 
I 

(S :1.20b) 

y 

-<l y 

, a = l o 

o 
-a 

o 

0 
s 

l{y-4) I l I I 

(I-a) (y-4) I 
0 

c = 

o 
(I-a) 
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1 l 
o 

e = 
y=w+a+S 

L 
o 

1 
2 

such that A and B are square matrices of order (m-l) and a,c of order 

(m-l). Thus, the bandwidth of A and B are m and 2m-l respectively for 

m internal mesh points over the region. 

Now there are many formulations and molecules which can be adopted 

for the solution of P.D.E.'s which are divided into explicit and implicit 

techniques. Explicit methods tend to restrict the time step to small 

values in order to retain numerical stability, while implicit methods 

involve the solution of large linear systems of equations but allow 

greater stepsizes. A small stepsize ~t=k requires a large number of 

time steps implying an enormous amount of computational work to reach 

level t and previously has produced a bias towards implicit rather than 
z 

explicit methods. The asymmetric approximations of Saul'ev are semi-

explicit because they produce an implicit method whose associated linear 

systems (B.l.13) are easily solvable (A is lower triangular). Recently 

Evans & Abdullah [B3a,bl produced a new variation on the use of asymmetric 

equations and introduced the Group Explicit (GE) methods allowing a simple 

explicit method with no upper limit on the stepsize. Their work indicated 

that the method compared favourably with other numerical methods. We 

consider GE methods for our two sample problems (B.l.l) and (B.l.2). 

For the I-D heat conduction problem we combine the molecules of 

(B.l.12) by coupling them in groups of 2 adjacent points along the x-

direction of the grid to produce implicit equations which are easily 
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converted to explicit form. The essential idea being to retain the 

accuracy and large stepsize of the implicit method with the computational 

simplicity of the explicit technique by utilising truncation error 

cancellations and alternating strategies on the gridpoints to produce 

unconditional stability. To achieve this goal we produce a hybrid or 

unified computational molecule of the form, 

k+1 

(8.1.21) 

k 

i-l i i+1 i+2 

D eqn (8 .1.1Ob) o eqn(8.1.10a) 

which can be represented by a 2x2 linear system as, 

rl+r -r ui,k+l l-r 

,-~ 
u. k 1 ~"'-'.' l., 

= 

Ui+l,J+ 

(8.1.22) 

-r l+r ui +1)<f-l 0 rUi +2 ,k L 
or in explicit form, 

fi ,k+1 1 1 
= 

l>-l,k+J 

(1+2r) 

(8.1.23) 
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For the ungrouped (or single) points that could occur near the left 

or right boundary we use the asymmetric formula, 

u = m-l,k+l (1 ) [ru k l+ru 2 k+ (l-r) u 1 kl +r ro, + m-, m- I 

1 (8.1.24) 

for the right boundary and, 

ul,k+l = (l+r) 
1 

(8.1.25) 

for the left boundary, where we assume III eC'Ual interv['.ls. When 

m is even the number of internal points is odd ~.e. (m-l)odd)and produces 

a single ungrouped point, and a variety of GE schemes result. First 

define, 

G (i) = ~l -~ 
~ 

, i=1(1)!(m-2), j=O,l, ••• (8.1.26) 

and put, 
[G (1) 

l I 1 G (2) G (1) 

" " " C 
"-

, 
0 

Gl=1 ' G2 = , 
" " " " 

0 " , 
" "-, G! (m-2) 0 " 

L 
, 

L 1 G!(m-2) 

then, 



Even Number of Intervals 

t t t 
I I 
ungrQup.d 

r-' It roup IIlm-21-r-. point f-
grouP\ 

t ... I-~ f" .- . 

_ .. 
G.E.R. (Group Explicit with Right ungrouped point' method 

I I I I I I I I I r r 

I I I I I I ungrouped 
point ;'It group . Mfm-r iroup --

I- _ ... . 

.. ------ .. 

.. 
G.E.L (Group ExpliCI1 With left ungrouped point) method 

I , ,. I , , , I ' , , 

I 
I i-- I 
I 1-. .. .. . - . . ... - \---.. 1"- .. 
I , 

f-... l- .. -r- ... _. .1--

F= 
_. t= - 1-=. -~ 

-
S.A.G.E. (Single Alternating Group Explicit, method 

I I 1 I I I I I I , 

.-+-+-+-+-+-+-+-+-+-+-+-+-

D.A.G.E. (Double Al1ernating Group Explicit) method 
I , 1 , 1 I , , I , 
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(I+rG
1 

)uk+l • U-rG
2

)u llt ... b1 

bi • (ruo, k'O, ••• ,O,rulD,k+l) 

(l+rG
2
,u k+2 & U-rG1 )uk+l ... b2 

(l+rG~)UI..t-3 • n-~1~'.!k"'2~b2 

U+rG
1,u k+4 • (I-rG2''\.+3+bl 

(8.1.27) 

(8.1.28) 

(8.1.29) 

(B.l.30) 
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and for an odd number of intervals the number of internal points (i.e. 

m-l) is even so at each time level we have either i(m-l) complete groups 

or t(m-3) groups and two ungrouped points, one adjacent to each boundary. 

We then define, 

f 
G (1) 

l G (1) G(2) 

G (2) 
, 

0 , 0 
/\ "- , 
Gl = , G2 = , , , , , , , 

l 
, 
'G! (m-3) 

, 
0 0 

, , 
1 

' t (m-l) 
G 

and produce the following group explicit methods: 

Odd Number of Intervals 

I I 1 }-I I ' , ungrouped ungfouped 
point __ _ - %(m-3)th point --'+.P ., .. p - .- -- ~_I\ .-- f---

.. .. ·--G.E.U. (Group Explicit with Ungrouped ends) method 
I , t I I I I I , I (8.1.31) 

I I I 't , %lm-1Ith 

-- ~-·,"t roup Tm-- -I L J L 
bT • (ru ,,0, ... ,O,ru ,) 
~": m. 

J 1 
G.E.C. (Group Explicit Complete) method 

• • , • .' I I , (8.1.32) 



! - -i--- - -- .. - _ .. -_ .. 

S.A.G.E. ISingle Alternating Group Explicit) method 
I , I I I I , I 1 I 

f- e-- .--- --
-
-

- . -D.A.G.E. {Double Alternating Group Ellphclt, method 
, , , I , I I I I I 

(I+rG1''\+1 • Cl-rGZ)uk+b3 

U+rGZ''\.2· U-rG1)uk+1+b4 

(I,,.$2)'\.) • (I-rG
1
)uk,2,b. 
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(8.1.33) 

(3.1.34) 

The group explicit technique is extended to the 2-D problem (8.1.2) 

by unifying the molecules (8.1.19) to produce a group of 4-points 

(i,j,k), (i+l,j,k), (i,j+l,k), and (i+l,j+l,k) of the form, 

, 
• I 

~ , , , 
" ., 

1.1+2.k 

"'---of··· -,,-------------
i-1.1+1.k ,'1.J+1.k 

i-1.J.k 

, , , 
I.J.k+11---i-------{ 

1.1-1.k 

, , , , , 

l , 

i+1.1-1.k 

1+ 1 .1+2.k 

i+2.j.k 

(8.1.35) 
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approximating (B.l.2) at these points using a finite difference 

formulation produces after some manipulation, 

au = cu ,+bu +gu +du" +bu, , 
i,j,k+l i,],k i-l,j,k i+l,j,k 1+2,],k 1,]-l,k 

+du, ,+eu +fu, +gu, , 
1+1,]-l,k i-l,j+l,k i,]+l,k 1+1,]+l,k 

+du , +eu, +du 
i+2,]+l,k i,]+2,k i+l,j+2,k 

(B.1. 36) 

where the coefficients a-g (defined in Fig.B.l.l) are small degree 

polynomials in r. Similar relations hold for u, , 1 k l' u, 1 j k 1 1,J+ , + 1+ I , + 

and u , , producing a fully explicit result. Like the l-D case, 
i+l,]+l,k+l 

additional explicit relations can be derived for partial groups on the 

edges of the x-y region and corners yielding the equations below. 

TYPE 1: SOUTH BOUNDARY: 

a u = c u, +b u +c u +b u +d u 
1 i,l,k+l 1 1,O,k+l 1 i+l,O,k+l 1 i-l,l,k 1 i+2,l,k 1 i,l,k 

+e tl, +c u +b u 
1 1+1,l,k 1 i,2,k 1 i+l,2,k 

a u = b u +c u. +b u. +c u +e u. 
1 i+Ll,k+l 1 i,O,k+l 1 1+1,O,k+l 1 1-1,l,k 1 i+2,l,k 1 1,l,k 

+d u +b u, +c u 
1 i+l,l,k 1 1,2,k 1 i+l,2,k 

(B.1.37) 

TYPE 2: EAST BOUNDARY: 

a u = c u +b u . +d u +e u 
1 m-l,j,k+l 1 m-2,j,k 1 m-2,j+l,k 1 m-l,j,k 1 m-l,j+l,k 

+c u , +b u +c u +b u , 
1 m-l,]-l,k 1 m-l,j+2,k 1 m,j,k+l 1 m,]+l,k+l 

= b u +c U , +e u +d u , 
1 m-2,j,k 1 m-2,]+l,k 1 m-l,j,k 1 m-l,]+l,k 

+b u , +c U , +b u, +c U , 
1 m-l,]-l,k 1 m-l,]+2,k 1 m,],k+l 1 m,]+l,k+l 

(8.1. 38) 

TYPE 3: NORTH BOUNDARY: 

a u = c u, +b u, +d u +e u 
1 i,m-l,k+l 1 1,m-2,k 1 1+1,m-2,k 1 i,m-l,k 1 i+l,m-l,k 

+c u, +b u +c u, +b u 
1 1-l,m-l,k 1 i+2,m-l,k 1 1,m,k+l 1 i+l,m,k+l 

a u = b u, +c U, +e u +d u 
1 i+l,m-l,k+l 1 1,m-2,k 1 1+l,m-2,k 1 i,m-l,k 1 iTl,m-l,k 

+bu, +c u +b u +cu 
1-l,m-l,k 1 i+2,m-l,k 1 i,m,k+l i+l,m,k+l 

(8.1.39) 
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FIGURE 8.1.1: Molecule for a 4 point group (Type 0) 
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FIGURE S.l.l: (cont.) Boundary 2-point molecules 
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TYPE 4: WEST BOUNDARY 

a u = c u +b u +c u +b u 
1 l,j,k+l 1 O,j,k+l 10,j+l,k+l 1 l,j-l,k I 1,j+2,k 

+d u . +e u +c u +b u . 
1 l,),k 1 1,j+l,k 1 2,j,k 1 2,)+1,k 

a u. = b u. +c u. +b u +c u . 
1 l,)+l,k+l 10,),k+l 10,)+1,k+l 1 l,j-l,k 1 1,)+2,k 

+e u +d u +b u +c u 
1 l,j,k I l,j+l,k I 2,j,k I 2,j+l,k 

(8.1.40) 

TYPE 5: BOTTOM LEFT CORNER 

a u = b u +b u +b u +c u +b u 
2 1,1,k+1 2 O,l,k+l 2 1,0,k+l 2 1,2,k 2 1,I,k 2 2,1,k 

(8.1.41) 

1YPE 6: BOTTOM RIGHT CORNER 

a u = b u -b u +b u +c u 
2 m-l,l,k+l 2 m-I,O,k+l 2 m,l,k+l 2 m-l,2,k 2 m-l,l,k 

+b u 
2 m-2,1,k 

(8.1.42) 

TYPE 7: TOP RIGHT CORNER 

a u = b u +c u +b u + 
2 m-l,m-l,k+l 2 m-2,m-l,k 2 m-l,m-l,k 2 m-l,m-2,k 

b u +b u 
2 m,m-l,k+l 2 m-l,m,k+l 

(8.1.43) 

TYPE 8: TOP LEFT CORNER 

a u = b u +c u +b u +b u 
2 l,m-l,k 2 2,m-l,k 2 l,m-I,k 2 1,m-2,k 2 O,m-l,k+l 

+b u 
2 l,m,k+l 

(8.1.44) 

The computational molecules and coefficients for the above cases are 

given in Fig.(8.l.l). The GE methods follow directly from these molecules 

depending on whether the x-y region is divided into an odd or even number 

of parts in each direction. Fig.(8.l.2) indicates the various schemes 

that can be derived. 
2 

If we use molecules of type ° for the first [!(m-2)] 

groups of 4 points anchored at (l,l,k) and molecules of type 2 at (m-l,j,k) 

j=l(1)m-2, molecule type 7 at (m-l,m-l,k) and type 3 for (i,m-l,k), 

i=I(1)m-2, the GER(x) or Group Explicit with ungrouped right points in 



GELly) GER(x) 

• • • • •• • • • • • • • • • • •• 

OOWNJJ 1/'UP 
• • • • • • • • • • • • • ••••• 

m 

RIGHT 

GEL (x) GER(y) 

FIGURE B.l.2: Shift cycle for four basic GE schemes indicating 
molecule types and groups (m=9). 
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the x-direction results. Similarly Group Explicit with left ungrouped 

point in the x-direction GEL(x} and GER(y}, GEL(y} are derived as shown 

in Fig.(B.l.2}. The GER and GEL schemes are conditionally stable for 

r~l while the introduction of an alternating strategy produces 

unconditionally stable procedures. Once again from Fig.(B.l.2} a 

Single Alternating Group Explicit (SAGE) scheme can be constructed by 

alternating GER(x} and GEL (x) on successive cycles. While a Double 

Alternating Group Explicit (DAGE) scheme is produced by GER(x}, GEL(x}, 

GEL(x}, GER(x}. Similar methods involving y and x,y combinations are 

easily derived. Notice that SAGE schemes correspond to a (Anti-) 

clockwise shift of two places, while a DAGE (x or y) is achieved by two 

clockwise shifts followed by two anti-clockwise shifts around Fig.(B.l.2}. 

Alternation is achieved by a simple cyclic rotation. 
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8.2 ALGORITHMIC VS GEOMETRIC SOLUTION OF P.D.E.'S 

The use of finite difference methods in which a grid of points is 

superimposed over a region to be solved leads naturally to the solution 

of approximations to P.D.E.'s by linear systems. Indeed, a matrix 

representation exhibits (as we have seen), for certain orderings of the 

points, useful Linear Algebra properties such as diagonal dominance, 

positive definiteness, and sparse banded matrix structures. As the 

solution process for a series of time levels is essentially iterative, 

with an application of the explicit or implicit solution procedure 

applied on each iteration, the theory of convergence of iterative matrix 

methods can be applied in an analogous manner to the stability problems 

of finite difference methods. 

A brief survey of systolic arrays indicates that the pre-occupation 

with Linear Algebra and specifically matrix techniques is also prevalent. 

This attitude is understandable in both applications. In the former case 

stability is an important aspect of the applied technique, without a 

matrix notation the theory would be difficult to analyse. The latter is 

justified by the recurrence relations exhibited in matrix formulations 

and the reduction in most cases to a few primitive arithmetic operations, 

permitting parallelism on locally connected basic cells of simple 

structure. Systolic arrays have further captured the imagination by 

creating designs which have area proportional to the bandwidth of the 

matrix considered. However, for problems where the bandwidth is related 

to problem size, the band itself may also be sparse and a source of 

redundant cells. Such cells under special circumstances can be replaced 

by simple delays to compact the design. 

We shall consider systolic arrays for the sample problems under two 



circumstances: 

(i) 

(U) 

when only the final time level t is required 
z 

when each level t k , k=l(l)t
z 

is required, 
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and compare the designs with the intuitive cascaded iteration array (CIA). 

For instance, a single iteration of the l-D problem in (8.1.13) requires 

a tridiagonal array of 3 cells computing (A+C)u(k), and a back substitution 

(k+l) 
array of two cells to produce u as shown in Fig.(8.2.la). Using 

Theorem (3.2.3.1) with p=2 and allowing an extra cycle in the back-

substitutor gives T=2m+4t cycles for computing t levels (see Fig.(8.2.lb)). z z 

• A~ 

~ 

~ 1-0 
~ 

:::!,O 
... 0-2 w·. ,!Ck) 1 H 
... ;:2 

a) cascaded linear iteration array (i-D) case 

1,1(0) A.c 

b) Cascaded Scheme for three levels 

FIGURE 8.2.1 
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Each iteration requires 5 IPS equivalent cells and sandwiched between 

each level are 3 delay registers per ips for synchronising data on 

different levels. It follows that we require a total of 5 tIPS cells z 

and 15 (t -1) registers to reach level t. For the 2-D problem the z z 

bandwidth of A and B are m and 2m-l respectively. Hence each linear 

array requires 3m-l cells, and has latency 2m cycles, yielding T=2m
2

+2mt z 

cycles, (3m-l)t IPS cell equivalents and (t -1) (3m-l) (2m-l) synchronizing 
z z 

delay registers between iterations. Notice that this latter problem has 

internal band sparsity which can allow reductions in hardware. Further-

more if we allow multipass computations with only t <t linear arrays, z z 

hardware can be minimised with, 

r ~~1{2m+4tz} 1-0 case 

T = 

1 
(8.2.1) 

~~ z 2 - 2-D case t
z 

{2m +2mtz } 

These designs based on the matrix or algorithmic expression of the 

asymmetric approximations are intuitive, but we intend to show that they 

are not necessarily the best. For instance, from a theoretical viewpoint 

the parameters w and r indicate that i is restricted by h. This 

restriction often means a large number of levels to achieve good accuracy 

and the above intuitive computational approach although suited to sequential 

machines translates to a systolic design with cells proportional to t • z 

When t >m we may be better with a design where cells are proportional to z 

m, permitting fast computation of many levels. To facilitate this work 

we discard the explicit use of a matrix representation, and base the 

systolic design on the use of computational molecules and templates 

describing primitive operations for constructing successive time-levels. 
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Essentially, we question the algorithmic matrix notation for the 

derivation of systolic arrays in preference to a direct mapping (or 

geometric) approach to the problem. Naturally the designs produce 

systolic marching arrays. Finally to keep our techniques in context 

we remark that the matrix representation is still indispensible for 

theoretical studies of stability but can be neglected for actual 

computation by the systolic array. 

S.3 LINEAR ASYMMETRIC MARCHING PROCESSOR (LAMP) ARRAYS 

The marching processors we develop avoid the 'Linear Algebra' trap 

by considering the mesh points of the solution as elements of tables. 

For the 1-0 case an open ended table is applicable implying table 

generating techniques, whereas the 2-0 problem has a fixed sized table 

indicating a table manipulation approach to design. 

Consider again the 1-0 equation (S.l.l), its initial and boundary 

conditions (S.1.3), and recall the table construction techniques from 

Chapter 7. The order of computation as shown in Fig.(S.3.l} is similar 
t =s z 

~ 

U ' U 0,7.. 1,7 .. .. .. 
~ .. .. 

u ...... u 'u ....... u I 0,6..... 1,6 2,6 3,6 ... ........... ... .... 
u ..... u ........ u...... "" .... 

...... 0,5 ...... 1,S ... 2,5 .... u 3 5'" u4 5 ..... Us 5 
...... .... ..... " ...... '.....' ......... ' ...... 

... u ...... u .......... u ........ u ........... u ...... u ...... u 
0,4... 1,4 2,4 3,4 4,4 5,4 6,4 7,4 ....... .............. ... .......... .... .... ..... ........... ..... ...... ........... ...... ..... 

Uo 3 ...... u1 3 oU2 '3 ...... u 3 3' u4 3' Us 3'" u6- 3 u ...... u ...... u 
.... ~..... ' ..... '..... '..... I '..' 7,3 8,3 9,3 .......... ...... ...... ................. ...................... ... --.. 

0,2 ........ u1 ,2 ...... u2 ,2"'" u 3 ,2 u4 ,2 ....... uS ,2 ...... u6 ,2 u7 ,2 .......... tJS ,2 ...... u~i' ..... ..... ........... ... ..... ...... .. ..... ....... u ..... u..... ..... ...... ...... .... ............ ~ ...... 
o 1 .... 1 1 ... u2 1"'" u 3 1""" u4 1 ....... Us 1 ..... u6 1 u7 1- Us ..... u g 1'" 

, , .... ' .... ' , , , , ,J. , ....... ....... ......... ..... ..... .............. ..................... ....... 
--u _u ___ u...-.-u ___ u ----u ..:.....u .::::......-u ... ...:..-u .... 

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7 ,0 - 8,0 9,0 

----I LR 

values on same - .. _. line are computed in parallel 

FIGURE S.3.l: Computation order for multiple level LR scheme 
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to that in the extrapolation table generation, implying an allocation 

of cells to columns such that cell i computes column i of the regions 

mesh points. Thus a linear array of (m-i) cells will compute all the 

levels to to t
z

' The LR version of the marching array with operation 

snapshots is shown in Fig.(S.3.2) with the basic cell derived from the 

molecule rule (S.1.12b) resulting from (S.l.lOa). 

u· C.+I, 'M 

U 
i, 1\ 

t 1 a _ ....!:.... l-r 
---- con ro, - l+r' 8 = 'i'+r 

IF 
control THEN 

[(i) t1=aui_1,Ml 

t 2=aui +1 ,1( 

t3=aui,~ 

(H) u i , ~=tl+t2+t3 

u =U =t +t +t 
out

l 
out2 1 2 3 

ELSE 
[u =u . 

outl i, ~ 
u =u 

J out2 i, tc' 

} a cells 

} a cells 

(S.3.l) 
the array operation proceeds as follows: 

(i) At startup the cells are loaded with the initial values of 

(S.1.3b) for level to' 

(ii) on the first cycle of operation the leftmost cell receives an 

input from the host corresponding to the left boundary value 

of (S.1.3b) for level t
l

, and an associated control tag bit. 

The cell performs the molecule rule producing the value ul,l 

and overwriting the old result. 

(iii) On the next cycle, the control tag shifts right with the new 

level value triggering cell 2, which accepts the cell 3 output 

to execute the molecule rule and overwrite its stored value. 

Meanwhile cell 1 is idle, waiting for the cell 2 result. 

(iv) Thus, dataflow of the LR array forms an eddy type wavefrDnt 

pattern similar to the odd-even sorter, in Chapter 7, in which 
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:j u1,o ~U2'O ~U3'O ~ u4 ,0 ~ uS,o ~ 
U
O'11 

u1,o W u2,o I GJ Q [;] 
u2 ,Q 

U 

ul,l !lU2,o WU
3'O I Gd Q 

u3 ,o 

WU
2'l 

u2 1 

U
O'21 

ul,l Hu3,o W u4 ,O I [;] 
u2 ,1 4,0 

U u3 1 

I U1 ,2 1
1

'21 U2,l U U3,l H u4 ,o U Us,o I 
U 3 ,1 Us,o 

uO'31 H A ",.ol-~IU2'2 8 U1 ,2 
' U

3
,l U4 ,1 

u6 ,O u2 ,2 

I ul ,3 

U U 

1
1

' 31 U2 ,2 WU3
'2 11 u4 ,1 WUS'l I 

u3,2 5,1 

U
O'1 

u2 3 u4 ,2 

~IU2'3 HU3'2 L-I u4 ,2 
MUS'l ~U6'l u l ,3 

u2 ,3 u4 ,2 

FIGURE 8.3.2: Systolic computation of the LR solution 

odd and even cells are active on alternate cycles. In 

general cell i collects ui_l,k+l from its left, ui+l,k from 

its right, contains ui,k and produces ui,k+l 

Also notice that the first right boundary value is required when the 

tag bit reaches the rightmost cell. Consequently the complete array is 
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controlled by the left boundary input with the form, 

DATA 

TAG BIT 1 o o 1 o 

u 
0,2 

1 o 

u 
0,1 

1 - (8.3.2) 

with cells started and controlled by the tag bit. The cell (8.3.1) is 

a simple intuitive mapping of the computational rule into a cell 

structure requiring 3 multipliers and 2 adders. By combining the ~ 

cells into a single inner product cell we require just two ips equivalents 

and the basic cell cycle time is bounded by 1 ips + 1 add or 1.5 ips 

cycles. It follows that after 3t ips cycles the leftmost LR cell has 
z 

received its last boundary value and computed its t level value. 
z 

Allowing the last control value to march across the array gives the 

upper bound, 
T = 1.Sm + 3t ips cycles , 

c z 
(8.3.3) 

for array computation time, neglecting loading and unloading. If only 

the level t is required, cells can be loaded and unloaded from the 
z 

left and right edges of the array. We need at most 1.S*(m+2) cycles 

to pipeline ~,8 and u. 0 into the cells for loading, and 1.Sm cycles 
~, 

to unload level t. Thus, 
z 

T = 1.Sm+l.S(m+2) + 1.Sm + 3t = 4.Sm + 3t + 3 
s z z 

(8.3.4) 

is the total computation time including input/output. When all the 

levels are required (like the extrapolation tables) an output for each 

cell is added, and loading and unloading is performed in parallel adding 

only 4(1.5) cycles to (8.3.3) yielding, 

T = 1.Sm + 3(t +2) 
p z 

(8.3.5) 

Comparing these timings with the cascaded scheme of (8.2.1) yields the 

speed-up relations, 
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r~~ {2m+4tZ } 

S z = 
p 4.5m+3t +3 

z 

hence for S >1 and t divisible by t 
P z z 

t > { 4.5m+3 }tz z 
2m+t 

(B.3.6) 

z 

for the sequential loading scheme to compute the t level faster than the 
z 

cascaded scheme with t linear arrays. Likewise for the parallel loading 
z 

scheme, 

s = 
p 1.5m+3t +6 

z 
=>t 

z 
(1.5m+6 ) 

> 
(2m+t ) 

z 

t 
z 

(B.3.7) 

In terms of cell count the LR array requires 2(m-l} ips equivalents 

while the cascaded form requires 

5t > 2 (m-l) .. t z z 

5t , hence 
z 
2 > S(m-l} • 

for a cell saving, 

(B.3.B) 

Substituting in (B.3.6) and (B.3.7) for (B.3.B) yields, 

! 
(4 .5m+3) (m-l) 

for (B.3.6) 
(Gm-i) 

t > z 
(1.5m+6) (m-l) 

(6m-l) 
for (B.3.7) 

(B.3.9) 

to produce both cell savings and speed-up using the LR marching array. 

For example, if m=lO ! ".9 = 7.32 
t > 59 (B.3.10) 

z 21x9 
= 3.20 

59 

which is easily satisfied, provided we solve long narrow regions. Where 

the arrays are used repeatedly for different stepsizes h,h/2,h/4, etc. 

the cas cased iterative scheme has a clear advantage as its array size 

is independent of m the number of mesh point columns. The LR array 
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must be redefined with more cells 'to accommodate the extra points. 

Next, observe, that although the molecule rules are asymmetric 

the molecules themselves are simple reflections of each other, hence 

the above array is a unified array for the LR and RL computations. To 

produce an RL scheme simply load the initial values in reverse order 

and interchange the left and right boundary inputs. The control tag is 

still input on the left. 

Finally for the I-D case, consider the problems of alternating 

and averaging LR (RL) sweeps. An array to perform an alternating scheme 

is easy to construct as indicated by Fig.(8.3.3a). The array consists 

of two tiers, each of m-l cells which are modified versions of (8.3.1). 

Operation of the array is simple with each tier representing an LR or 

RL sweep. Initially the top tier is loaded with starting values and 

the bottom tier cleared, the order of loading depending on the type of 

alternation, LR/RL or RL/LR. In the case of LR/RL the top tier starts 

computation like an LR scheme, except that there is only one control 

tag bit set (corresponding to uO,l in (8.3.2)), and molecule rule 

results are stored in the cell immediately below the active cell, on 

the second tier. On leaving the rightmost top tier cell the control bit 

is fed back into the bottom tier which is by now loaded with first tier 

results, and initiates an RL sweep. The bottom tier results are loaded 

back into the top tier and on emerging from the leftmost bottom tier cell, 

the control completes an alternation cycle and can be piped back into 

the top tier, forming a primitive Systolic Control Ring (SCR). 

Notice that only a single cell in the whole array is active on a 

particular cycle, consequently the array can be compacted to a single 

tier of m-l LR-cells modified to accept a triggering tag bit signal 
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from either direction and perform the correct molecule rule. The 

circulating tag bit picks up the correct boundary values as they enter 

and leave the ends of the array. It follows that the total time to 

compute and output t levels is, 
z 

Talt = 1.5(m-l)tz + 4(1.5) (8.3.11) 

Comparing this to the cascaded form we observe that the LR/RL switch 

requires the reversal of the vector u between successive iterations, 

preventing cascading, and forcing t =1, and a time, 
z 

T = (2m+4)t (8.3.12) 
z 

from which a speedup is immediately observed. However, the cascaded 

form requires only a single array of 5 ips cells with greater efficiency 

than the m-I LR- cells required by the LR/RL version. Consequently the 

speed-up does not compensate for the hardware increase. 

An array for averaging LR and RL sweeps on the same time level is 

shown in Fig.(8.3.3b). This time we have three tiers, the top tier 

acts like an LR sweep and the bottom tier like an RL sweep, and are 

operated in parallel. The central tier is a row of independent cells 

which are initially empty, but collect a result from each tier, finds 

the average and returns resulrnto the adjacent top and bottom tier cells. 

As results are calculated left to right in the top tier and right to 

left in the bottom tier, it follows that the central averaging cell 

when m-I is odd and the two central cells when m-I is even compute the 

first average. Thus, the time for an averaging sweep with parallel 

loading is, 
T = 1.5t m + 4(1.5) ) avg z 

(8.3.13) 

allowing an extra cycle for the final averages in the left and rightmost 

cells of the top and bottom tiers to be loaded. Again the low cell 
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o o o o o 

a) Alternating LR/RL or RL/LR array 

-. 

b) Averaging LR/RL array 

FIGURE 8.3.3: Alternating and averaging schemes 

efficiency implies that tiers can be merged, as long as the LR and RL 

controls do not trigger the same cell on the same cycle and the stored 

level values are only overwritten by the averaging cell. A compacted 

two tier design with m-l modified LR cells and m-l averaging cells is 

easily formed. The algorithmic version of the array cannot be cascaded 

yielding tz=l again, but by filling the synchronising neutral elements 

of the matrix and vector inputs in Fig.(8.2.l) with AT,AT+C and reversing 

the ordering of the u
k 

vector, calculations of LR and RL sweeps can be 

interleaved. The real problem, however, is the formation of the average, 

and makes the method impractical, because it must be performed after all 

the RL and LR values are computed. 
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Next, consider the 2-D unsteady diffusion equation (8.1.2) with 

boundary and initial conditions (8.1.14). Again the comparison with the 

cascaded iterative array will be considered, only this time each of the 

t linear array requires 3m-1 cells due to the form of (8.1.20). z 

Although the sparse structure of B in the 2-D case can be used to 

limited effect by replacing full processors with delay cells the band-

width, hence linear iteration arrays, are still proportional to the size 

of the solution region. For this reason we expect better area/time 

trade-offs with marching processors for the 2-D problem. 

NOw, the addition of an extra space dimension introduces a greater 

number of permutations to the variety of starting positions and 

alternating strategies employed. For simplicity, we examine computations 

on a square grid employing the equations (8.1.18). The first step is 

to abandon the matrix organisation of the problem treating the 

discretized x-y plane as a table of values to be modified. The immediate 

2 
consequence of such a tabular approach is a dense table of (m+1) elements 

Qo,a,o . - - - - - -
uO,ID-l,O u1 ,m_l,0 - - -, I 

I I 
I I 
I I 
I I 

I I 
uO,l,O uI,l,a - - -
uo,o,o UI,O,Q - - -

- - -a.-1,1II0 

- - - u.1,"1,0 , 
I 

I 
I 
I 
I 

- - - a._l,l,a 

- - -u 
111-1,0,0 

u.,.,o 
U • 
.,a-l,O , 

I 

I 
I 
I , , 
I 

a.,o,o 

t-o level 

and 111,- (n-1). 

The outer rows and columns corresponding to the boundary values, and 

the embedded (m-l)*(m-l) elements the initial conditions. In an 

analogous manner to the derivation of LR(RL) 1-0 arrays, a 3-D table 

updating wavefront is apparent (Fig.(8.3.4», which maps the computation 

onto a wave front array processor. 
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t 

.~ 
FIGURE S.3.4: 3-D Wave front 

The processor arrangement for (S.l.lSc) is shown in Fig.(S.3.5) 

together with the basic processor cell using 3 ips and an adder, with 

a cycle time of 1 ips + 2 adds. The processor requires (m_l)2 basic 

2 2 
cells or 3(m-l) ips + (m-I) adders, and boundary values are input on 

each boundary of the array in a skewed fashion to match wave front 

progression. It follows thac each wave front requires2(m-l) cell cycles 

or 4(m-l) ips cycles to complete a single pass over the array, and that 

successive wave fronts are separated by a single cell cycle. In Fig.(S.3.5a) 

W
l 

is a computation wave, W
2 

a dummy wave and W3 (the next wave) starts 

computation for the next level. Hence, a close connection between the 

odd-even operation of the 1-0 implementation and the 2-D extension is 

apparent. Thus, to compute t with no intermediate level output, z 

T = 2t +2(m-l) cell cycles or 4t +4(m-l) ips cycles (S.3.14) 
z z 

Compared to o(m
2

) time in (S.2.1) required by the cascaded scheme. 

Recall, however, that the cascaded form uses only t (3m-l) ips cells, z 

ignoring the cost of additional delay registers. Hence approximately 

2 
t z > ~ arrays must be used before the wave front model competes on 

hardware terms. 
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2 i+l .. j,k i,j+l,k 

t 2",SU1 ,j ,k 
(11) u -t +t

2
.t

3 
(overwritin;J u. j k) 

i,j,k+l 1 1, , 

FIGURE 8.3.5: 2-D Wavefront computation 
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REMARK: The timings above omit the 0 (m) time required to load a, a 

and the initial values but as the cascaded array also uses O(m) time 

to synchronise the first iteration, this is not significant. 

Next we reduce the number of processors in the wave front model 

while also coping with the problem of outputting all the intermediate 

time level results. First, notice that like the LR(RL) schemes (8.1.18) 

all have the same molecule structure with different degrees of 

rotation, and so rotating the table data allows any molecule to be 

computed, (e.g. for (8.1.18c) an implicit rotation of 90 0 was used). 

Second, generating output for each level converts the problem from 

compute bound to input/output bound. Whereas the cascaded scheme 

requires only a single output line for each t and no modification to z 

computation time. The wave front processor demands O(m) cycles for 

output between e"ach wave front and at least m-l outputs. It follows that 

only a single wave front can be active on the processor at any instant 

in time, and at most (m-l) cells can be active giving a very poor 

efficiency. Fortunately, a single wave front progression can be simulated 

by a linear array of cells (see Yang & Lee [86]), and such an array of 

2m-3 cells is shown in Fig.(8.3.6). The basic cell implements a universal 

molecule template, 

i,j-l,k+l i-l, j ,k+l 

(8.3.15) 

i+l,j,k i,j+l,k 
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u l ,2,1 

ul,l,l 

u2 ,3,1 Otn'Ptrr 

u2 ,4,O 

u3,4,o 

1 
U l ,2 , 1 

U1 ,3,1 

u2 ,3,o ! 
INPIJI' 

u2 ,4,O 

u 3,4,O 

BASIC CELLS 

FIGURE 8.3.6: Linear asymmetric marching processor (LAMP) array n=4 
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• 

Disable the array here as last value is computed on previous 
cycle 

FIGURE 8.3.6: (cont.) 

for the formulas (8.1.18), the first cell Fig. (8.3.6a) is an intuitive 

mapping, the second Fig. (8.3.6b) an optimised version. For convenience 

and ease of explanation the table element indices are re-numbered to 

give a standard table form, 



u 1,1,1 u 1,2,1 

u 2,1,1 u 2,2,0 

u n-l,l,l 

u n,l,l 
( 
n,2,0 

u 1,3,1 u 1,n ,1 

u 2,n,0 

u n,n,O 

REFORMATTED 
LAMP TABLE 
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Now the operation of the LAMP array is clear. Computation starts in 

the central cell after three synchronising cell cycles (6 ips cycles). 

On the fourth cell cycle the centre cell and its two adjacent neighbours 

contain values which line up to form a molecule. Thus, the central cell 

modifies its value overwri ting the central molecule element with u. . k 1 
1. , 1., + 

The next cycle sees the two adjacent cells become the active centres 

of molecules and perform a table update. It follows that cells work 

on alternate cycles like the l-D case with start-up controls coming 

from the centre cell. In general, when cell w contains a value in the 

a-cell the neighbouring cells w-l and w+l contain kth level values in 

Rl and (k+l)th level values in R2. After n cycles all the cells must 

be activated and the LAMP array computes with efficiency e=! (or 50%) 

the same as the cascaded scheme. Furthermore, we observe that only a ,a 

need to be loaded, and that the length of input data is 2n. Allowing 

3 cycles to load a,a and 3 cycles for start-up on each wave front pass. 

The LAMP array simulates the wavefront processor in 

T = 2t (2n+3)+3 ips cycles, 
z 

(8.3.16) 

and requires at most 2(n-l)-1 LAMP cells or 6(n-l)-3 ips cells, (i.e. 

the bandwidth of the table neglecting the two corner elements never 

modified). Comparing this to the cascaded timing (8.2.1) the LAMP 
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2 
array is significantly faster with O(nt ) rather than O(n t ) ips z z 

cycles, while in terms of cells uses O(n) rather than O(t n) ips 
z 

equivalents. 

The LAMP array can be improved further by using a mixture of 

molecules for the same level. As an illustration we adopt (8.l.l8a-d) 

computing them in parallel to reduce computation time. All the formulas 

have the same truncation error terms so no errors due to differences 

in approximation accuracy should occur. Consider the case when there 

is an even number of internal points in the x-y plane. The tabular 

representation is partitioned into 4 u
ij 

blocks of size !m, e.g. for 

m=6 

• • • '. • • 
• • • , 

, • • • • 1-- - - --
• • • • • • • • • • • • 
• • • • • • • • • • • • 

ull partition u
12 

partition 

• • • • • • • • • • • • 
• • • • • • • • • • • • ------ -- • • • • 

• • • ., 
• • • .1 

• • • 
u2l 

u22 

Each block requires the sharing of points around its boundaries. It 

follows that by sharing (or duplicating) a little data all the blocks 

can be computed in parallel. A single block requires 2(!m)-1=m-l LAMP 

cells or 3(m-l) ips cells, and pipelining the 4 blocks through the array 
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gives a time, 
T = 8t {2(!m)+3}+3 = 8t (m+3)+3 ips cycles, z z (8.3.17) 

which is still a significant improvement over the cascaded scheme but 

uses half the area of the original LAMP array. Computation time can be 

further compressed by observing that a cells idle cycle uses the neutral 

molecule, 

o o 

(8.3.18) 

o o 

producing a zero result (which incidentally explains why no explicit 

control structure is discussed). This neutral molecule can be brought 

into play by interleaving two partitions as shown in Fig.(8.3.7) to 

produce a time, 

T = 4t (m+3)+3 ips cycles, 
z 

comparable to the full LAMP array time (8.3.16), with n=!m. 

(8.3.19) 

REMARK: When the tables' internal points are odd, partitioning requires 

some pOints to be calculated more than once from different directions. 

We then have the problem of deciding which estimate is best, and 

implies some kind of averaging scheme. 

NOW more accurate solutions are obtained if different molecules 

are alternated on different time levels (due to truncation.term 

cancellations). For the l-D case alternation introduced a sequential 

bias to computation making the marching arrays grossly inefficient. In 

the 2-D case problems with alternation disappear. The LAMP array in 

Fig.(8.3.6) is operated in a mUltipass mode with t passes for t levels. 
z z 

Consequently the only problem is rotating the data to fit the correct 
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FIGURE S.3.7: Compressed LAMP array input (n=6) 

molecule on subsequent passes. Suppose the molecules are chosen in a 

strictly clockwise (or anticlockwise) sequence the data re-ordering is 

simplified as the points needed to start the next pass begin to output 

after only (m+4) cell cycles. Further analysis reveals that the current 

level has at most m cycles left to run and so data can be interleaved. 

At the end of the current level the interleaved next level will have 

computed (m-3) cycles. We conclude that every new level can be started 

after a delay of only (m+l) cycles reducing the array operation time to 

or 

T = (t +1) (m+l)+3+3 cell cycles 
z 

T = 2(t +1) (m+l)+12 ips cycles. 
z 

(S.3.20) 

The data pipelining is shown in Fig.(S.3.S). In contrast the cascaded 

scheme is again restricted to t'i producing a good area comparison but 
z 

requires a re-ordering of the solution vector 'on-the-fly' and is not 
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possible. 
.2 

Even if interleaving was possible T=O(tm ) making the LAMP 
z 

scheme superior anyway. 

Finally we remark that like the 1-D scheme averaging cannot be 

implemented by either 2-D arrays, because we must wait for the results 

of two passes over the same level. Although the time for passes can be 

reduced by interleaving, output elements of the passes to be averaged 

are physically separated and must be re-ordered by the host machine to 

produce nearest neighbour relationships. We conclude that marching and 

alternating techniques can be adequately implemented by arrays, averaging 

is not such a good scheme from a systo1ic point of view. 

LAMP 

1 complete 
alternation cycle 

c
2 

..... -------_ cl An alternation cycle consists 
of computing 4 levels starting 
at c

i
' 1=1(1)4 and moving to 

j~(i+llmod4 (clockwise) or 
j=ABS(!-1)mod4 (anticlockwise). 

FIGURE 8.3.8: Alternating of successive levels using the LAMP array 
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8.4 A GENERIC 1-0 GROUP EXPLICIT ARRAY 

The idea behind the application of systolic arrays to asymmetric 

approximations is that they are: 

(i) Computationally simple 

(ii) The rapid evaluation of levels can be used to offset the 

improved accuracy of implicit schemes by reducing ~t and 

evaluating more intermediate levels. 

Essentially we improve on more accurate slower formulas by balancing 

accuracy and computation speed of the systolic array. 

The above arguments assumed that m, the division along the x-

direction remains constant while t varies, making the marching arrays 
z 

attractive. But we can also vary the parameters rand h too. Suppose 

r is fixed, halving the step size h gives, 

r = .i:J:. =>T = ! 
h2 4 

(8.4.1) 

That is, introducing twice as many x-points produces four times as many 

time levels. Thus, when t =n the number of initial points m is doubled 
z 

to 2m producing t =4n levels, requiring a doubling in marching cells 
z 

from m-l to 2(m-l) in the 1-0 case, and 2m-3 to 4m-6 in the 2-0 case. 

The computation time of the marching processors is doubled, but if we 

assume fixed hardware for the cascaded scheme the time is quadrupled. 

Furthermore h=l/m, ~=l/z, by definition, hence, 

r 
2 m

2 
= m /z for r~2 .. z = 2 (8.4.2) 

Hence for practical purposes where most explicit formulas remain stable 

the number of levels t =o(m
2

) making the marching processors extremely 
z 

attractive compared with the cascaded scheme with fixed array size t • 
z 

However if r is varied (which occurs for unconditionally stable 



formulas} with either the number of levels or number of pOints 

increased it follows:-

that with r = ~ reducing 
h 

1 1 R. 
r yields -r = for a>l • 

a a h2 
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Thus fixing h implies that ~ is reduced creating more intermediate 

levels, if ~ is fixed h=lah is increased, requiring smaller arrays· 

hence faster times. This implies that the cascaded scheme loses the 

tradeoff again. Alternatively when r is increased ar=a~ for a>l 

h h 
producing I=a~ (reducing the levels) or h = -- (increasing the points) 

la: 
which favours the cascaded scheme. 

It is clear that to produce further benefits from a geometric 

approach to P.D.E. solution we must select new methods (and hence new 

arrays) which solve at least some of the following problems. 

(i) Modify computation time: 

a} increasing r to reduce the number of levels calculated 

b) admit more parallelism to speed-up the arrays 

c) simplify basic cells 

(ii) Control the output of results easily 

(Hi) Control array size: by attempting to divorce size from both t and m. 
z 

To develop improvements along the lines of (i) and (ii) we consider 

the Group Explicit (GE) techniques. The GE method has a certain appeal 

because it allows unconditional stability in the form of SAGE and DAGE 

schemes, and provides 2x2 decoupled linear systems with weakened 

computational relationships which admit parallelism. From a geometric 

viewpoint the methods provide molecules which can be applied simultaneously 

on the grid, simplifying alternation and averaging schemes. 

From the calculations in (S.1.27), (S.1.2S), (S.1.31) and (S.1.32) 

a simple and intuitive basic GE-cell solving the 2x2 system (Bl.23) 
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GER ARRAY': 

GEL ARRAY: 

GEU ARRAY: 

GEe ARRAY: 

FIGURE 8.4.1: Basic GE array formats 
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using the unified molecule (8.1.21) suggests itself. Ungrouped points 

naturally represent a second type of boundary cell, using (S.1.12a) on 

the right and (S.1.12b) on the left. Using both cells linear arrays 

for GEL, GER, GEU and GEe as shown in Fig.(S.4.l) are obvious, with 

the general dataflow of the form, 

U1_2 ,k. \11,k u1+ 2 ,)( 
t·k 

u1_1 ,k u1+1,k u1+3,k 

u1- 2 ,k+1 u1_1 ,k+1 u1,k+1 u1 ... 1 ,k+1 u1+2 ,k+1 u1+ 3,k+1 

u 1+ 3 le: u1,_3,k u1_1 ,k' u1+1 ,k 
u1 ,k+1 u 1+2 ,k+ 

t=k+l 
u1_2 ,k u1_1 ,k+ u, • 

u 1+1 ,k+1 
u1+ 2 k u1+),k+ 

u1+4 k 

,:~~iU~':::-:l ~,k~+:l...;r:~~l-u~'~'~l~,k~+~l~[u"~~~ u 1
+

3 
,k+1 IU'_2,'+2 u"k+2 u1+ 2 ,k+2 u u t=k+2 

u. k+1 u 1+2,,,+1 u 1+4,k+1 
u1_1 ,k+2 1.. 1+1,k+ 1+3,k.2 
L---J~--i }--t.=.:J 

D)'TAFLDW FOR EDDY WAVEFRON'I' 

which produces a "one time level, one cycle" approach to generating the 

solution region. 

t=2 

FIGURE S.4.2: One time level one cycle table generation 
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From the data flow and GE equations (8.1.23}-(8.1.2S) and the partitioning 

of the unified molecule (8.1.21) into the explicit form, 

r (l+r) 
1+2r 

1-1 

C~~2r 
1-1 

the GE-cell 

1 

)--(r(l-r) 
1+2r 

1 

computation 

t1 = uik-ruik 

t2 = t 1+rui _1 ,k 

t3 = t
2
+rt

2 

t4 = t 3+rP2 

ts = t/IA I =ui , k+1 

} 

r(l-r) 
1+2r 

1+1 

1-r 
2 

1+2r 

1+1 

P1 = 

P2 = 

P3 
= 

P4 = 

1+2 

r (l+r) 
1+2r 

1+2 

ui+l,k -rui +1 ,k 

P1+rui+2,k 

P2+rP2 

P3+rt2 

Ps = P4/IAI=ui+1,k+1 

k+1 

k 

(8.4.3) 

k+1 

k 

(8.4.4) 

where IAI=1+2r, is defined, and the symmetrical cell structure of Fig. 

(8.4.3a) is apparent. Likewise from (8.1.2) boundary cell computation 

is arranged as 

RIGHT BOUNDARY: u -ru 
m-1,k m-1,k 

t2 = t1 +rum_2 ,k 

t3 = t 2+rum,k+1 

1 
u = -- t m-1,k+1 l+r 3 

(8.4:5) 
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FIGURE 8.4.3: GE cells structure 
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LEFT BOUNDARY: tl = ul,k-rul,k 

t z = tl +ruZ,k 

t3 = tZ+ruO,k_l 
1 

u = -- t 
l,k+l l+r 3 

yielding the cell structure Fig.(8.4.3b). 

631 

(8.4.6) 

Observe that only the 

-1 -1 
parameters -r, r, and A must be loaded into GE cells and -r,~(l+r) 

into boundary cells, along with the associated initial values before 

computation begins. Cell operation is trivial when we assume a five 

state control program to select the operands for the accumulating ips 

cell at each step and to circulate the parameter list correctly in each 

cell. Each level is then computed after 5 ips cycles which denotes a 

single GE cycle, and an array requires at most 

T = St + (m-l) + 3 , 
z 

(8.4.7) 

ips cycles to load the parameters, initial conditions (in pipelined 

fashion), and compute t levels. The timing is reduced to St +4 cycles z z 

if parallel loading is adopted. A typical array requires Um-l) 12J GE 

cells and a boundary cell, except for the GEU which uses two boundary 

cells and L<m-l)/ZJ-l GE cells, and the GEC which requires no boundary 

cellsat all. Consequently, as a GE cell ,requires 2 ips cells and a 

trivial switching program a full GE array uses at most m ips cell 

equivalents, giving good area savings over the asymmetric marching 

processor. 

In order to incorporate unconditional stability (with r~l) we 

must use the Alternating Group Explicit (AGE) form of calculation. Using 

the basic GER and GEL components in Fig.(8.4.l) the SAGE and DAGE methods 

of (8.l.Z9) and (8.1.30) can be implemented as shown by Fig.(8.4.4) 



• • • 

• • • 

al SAGE systolic:: array 

r--· 
1 : 

• •• 

• •• 

• • • 

• • • 
I I 

I I I I ' 
I I I I ' L...J '-_l ___ 1 

bl OAGE systolic array 

FIGURE 8.4.4: Alternating Group Explicit schemes 

(similar arrays exist with (8.1.33) and (8.1.34) using GEU and GEC 

arrays). The SAGE scheme uses two tiers, the first a GER array, the 

second a GEL array,. which are connected in a straight forward manner to 

ensure data is shuffled right for the 2nd tier and left for the first 

tier (the lines are bi-directional). Alternating the use of the arrays 

then creates ungrouped points at, the right and left positions respectively 

on alternate GE cell cycles. Thus, tiers accept the boundary values 

associated with even k on the left side, and k odd on the rightside. 

Consequently every alternate boundary value is not required. Finally, 
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the two tiers (like the LR/RL scheme) operate in mutually exclusive 

fashion such that tier 1 produces only the odd time levels, tier 2 only 

the even numbered levels. If we compare this with the asymmetric 

alternating scheme Fig.(S.3.3a) we have improved efficiency because in 

the SAGE scheme all the cells of a single tier operate every alternate 

cycle. However, further improvements are still possible by unifying 

the GER and GEL schemes. This is achieved by merging both arrays and 

using a logical toggle in each cell which selects the type of array 

used. For example, if we set 

{ 0 select tier 1 = GER 
Toggle = 

1 select tier 2 = GEL 

alternating is controlled by Toggle=NOT Toggle performed at the end of 

every cycle. Analysis of the dataflow in the SAGE schemes also indicates 

that different tier calculations can be performed by the same GE-cell 

structure using simple shifts of data right or left. For instance, 

the operation of a 4 cell merged array is, 

U U U 
.- -----1 

l,k+l 3,k+l 5,k+l : u, ,k+l I 
I GER 

u2,k+l U u 6 I 

4,k+l 6,k+l ______ 1 

6 u2,k+l u 4,k+l U 6,k+l SHIFT RIGHT 1 

u1,k+l U 3,k+l U 5,k+l U 7,k+l 
I ------6 I 

u2,k+2 U U GEL I 4,k+2 6,k+2 
I 
I U U U U 
I 1,k+2 3,k+2 5,k+2 7,k+2 - - - ---

u1 ,k,+2 U 3,k+2 U 5,k+2 U 7,k+2 SHIFT LEFT 1 

U U U 6 2,k+2 4,k+2 6,k+2 

where the shuffling of data is achieved by the calculations 

t6 = O+(l*ui_l,k+l) P6 = O+(l*tS) shift right 

}(S.4.S) 
t6 = 0+ (l*pS) P6 = 0+ (1 *ui +2 ,k+l) shift left 
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which add an extra ips cycle to each GE-cell and are implemented by 

adding the constant 1 to the parameter list, and using 

Toggle = 1: shift right 

shift left 

to control the multiplier and operand switching. A significant problem 

is encountered at the array edges where boundary cells must be unified 

with GE-cells, as the boundary computation requires only half the 

hardware. The problem is resolved by using the right portion of the 

GE-cell for the left boundary, and the left half of the cell for a 

right boundary. Inserting a dummy calculation t
3

=O+1*t
3 

in (8.4.S) and 

(8.4.6) ensures that the boundary cell uses as many cycles as an ordinary 

GE-cell. The unused portion of the GE-cell is then loaded with 

appropriate boundary values, and the computation preserved by modifying 

the cell control. For instance, a boundary cell on the left is simulated 

by the GE-computation, 

tl = u PI = ul ,k -rul ,k O,k+l 

t2 = u P2 = Pl+ru2 ,k O,k+l 

t3 = u P3 = O+l*P2 (8.4.9) 
O,k+l 

t4 = uO,k+l P4 = P3+rt2 

ts 
1 

= uO,k+l Ps = --0 
l+r ·4 

(a similar formula is available for the right boundary) • Observe that 

require 
. -1 

in the boundary cells we the parameters -r,r,A, (l+r) , and 1 

with control switched by the toggle from (8.4.8) to (8.4.4) to achieve 

alternation. 

The same approach for SAGE is applied to the DAGE scheme producing 

the intuitive array of Fig. (8.4.4b) • This time we have a four tier 

array arranged as GER, GEL, GEL, GER and the array becomes non-planar by 
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incorporating a feedback loop to wrap tier 4 to tier 1. In addition, 

it is no longer possible to output all result levels directly. Clearly 

the property of mutual exclusive tier operation still applies and some 

compaction is possible. From the DAGE array structure it follows 

immediately that the middle two tiers can be combined by performing two 

GEL steps sequentially, yielding, 

r- -, 
J J , 

, 
• I 
.--~-' 

, , , 
'_J 

• • • 

• • • 

• • • 
, , 
L...J 

FIGURE 8.4.5: Merge of DAGE array 

The new tiers land 2 correspond to a SAGE array which can be merged by 

the preceding SAGE discussion. A single unified array is derived by 

observing that a DAGE scheme is a cycle of the form, 

(i) compute GER for two GE-cycles 

(ii) shift right 

(iii) compute GEL for two GE-cycles 

(iv) shift left 

where the array is started on the second GE-cycle of (i) or (iii) , by 

using a two-bit toggle in the merged SAGE array such that, 
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0 0 GER 

0 1 GER and shift right 
toggle = 

1 0 GEL 

l 1 1 GEL and shift left 

with the shift commands implemented by (8.4.8) and no shift to the left 

side of (8.4.9). 

In a soft-systolic frame these designs are simple to simulate and 

results from OCCAM programs given in the Appendix (where aGE-cell 

cycle is constructed from sequential execution of the control programs) 

are shown in Fig.(8.4.8). However the designs are simple enough to 

indicate a hard/hybrid systolic frame implementation. So far we have 

considered only the simple parabolic form of (8.1.1), a more general 

is given by, 

au -= 
at 

2 
..a....!:!. + 

2 
ax 

g (x,t) , O:;:x:;:l, t?;O , (8.4.10) 

where g(x,t) is a given function which must be calculated by the host 

for all levels before array operation. By analogous reasoning to the 

derivation of (8.1.23), a similar formula incorporating a modified 

function g(x,t) suitably multiplied by terms involving r is produced. 

Modifying the GE-cell (8.4.4) by replacing ts and PS by, 

(8.4.11) 

generalises the unified GE-array (with boundary cells ungraded similarly) • 

It follows that the unified array with control programs of six 

instructions (incorporating shifting for a cell can simulate any of 

the l-D GE methods (8.1.27)-(8.1.34) with an array of at most !m GE-

cells. For a chip based implementation we also have to consider the 

problem of the large host-array interface - requiring m inputs 
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and outputs (2 in and 2 out for each cell) to supply the g(x,t) and 

read the resulting level t values at each GE step. This is achieved 

by buffering data in a similar manner to the adaptive extrapolation 

table generator in Fig.(7.2.9), viz. 

boundary values 

Memory loa 

Pre10ad 
initial va 

Control 

"-

lues 

• 
• 

g(x,t) 

Memory 

t , 

I 
r"'-

~A=: 
• R • 
• R • 
• A • 

y 

~ =: 'Tt . 
11 

boundary value 

FIGURE 8.4.6: GE-array chip scheme 

level 
table 
memory 

'. 

.. Table output 
r 

.. 
~ 
~ 

The 'freeze' command used in the former table generator to evaluate 

more starting values, can be used simply to unload the computed levels 

and refill the g(x,t) memory allowing the computation of any number of 

levels. The time of the generic GE-array is then, 

T = 6t +(t +1) (freeze-time) + m + 3 , z z 
(8.4.12) 

ips cycles, where the freeze-time is the cost of loading/unloading 

memory buffers, m+3 is the cost of loading starting parameters and 

initial values, and t =t /(buffer size). z z 

Finally, we remark that the above arrays are applicable only for 

Dirich1et boundary conditions, where periodic boundary conditions 

prevail the coefficients matrices for (8.1.27)-(8.1.34) will be different. 

For example, if the number of intervals along x is even, the number of 

unknown points is also even, and defining, 
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GEe 

GEU 

GER 

GEL 

FIGURE 8.4 . .7: Various arrays for periodic GE methods 



639 

1 -~ 
G (l) 

I G (2) 0 A "-
A " G
l = "-

"-
"-

"-
"-

0 "-
"-

'- G! (m-2) I 

-1 lJ 

using G in (S.1.26) the GEC and GEU schemes are given by, 

A ~ 
(I+rG2}~+l = (I-rG l ) ~ (S.4 .l3) 

~ "-and (I+rGl}uk +l 
= (I-rG2 ) ~ (S.4.l4) 

respectively. Thus periodic boundary conditions imply asystolic 

ring type structure as shown in Fig.(S.4.7), and by analogous reasoning 

to that above a generic perioC:ic GE-array is easily derived. Finally 

Test Example: 

Initial conditions 

u(x,O} = 4x(1-x}, O~x~l 

boundary conditions 

u(O,t} = u(l,t} = 0, t>-O. 

The exact solution is, 

u(x,t} = 32 

h
3 I 

k=1,3,S •.• 

2 2 
1 -k 7T t 
-e 
k

3 
sin (k1[x) 

Results of the OCCAM program are given below in Fig.(8.4.8}. 
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8.5 A UNIFIED GROUP EXPLICIT PARABOLIC SOLVER (UGEPS) 

Next consider the GE solution to the 2-D equation (8.1.2) defined 

by (8.1.35)-(8.1.44) and the molecules in Fig.(8.1.1). Fig.(8.1.2) 

represents an intuitive mapping of x-y points onto a mesh connected 

processor. Each mesh point representing a processor containing the 

current approximation to that grid point. Initially processing elements 

are loaded with u, , 0 values (with processor i,j receiving u, '0) and 
1,), 1,J, 

after k cycles element i,j holds u, 'k 
1,J, 

The mesh is orthogonally 

connected and for a single scheme like GER(x) the points remained fixed 

in processors throughout the computation. Each processor must be loaded 

with the coefficients of the molecule it computes, and on each GE-cycle 

executes a formula of at most size (8.1.36). Normalising (8.1.36) by 

dividing by a, and loading the resulting coefficients a single ips 

cell computes the most complex molecule in 12 ips, which is the cost of 

producing a complete time level. Thus t time levels of a scheme like z 

GER(x) , GER(y) , GEL(x) or GEL(y) requires T=12t cycles neglecting the 
z 

O(m) time for loading coefficients and initial data. Considering the 

mesh in more detail reveals similar problems to the 2-D asymmetric wave-

front mesh. Firstly, the array performs well only if the final time level 

is to be output as previous levels can be overwritten. Second a molecule 

of type 0 has twelve points associated with it, and it is possible for 

only four of them to be adjacent to the processor requiring them. The 

remaining points located in second nearest neighbour cells. This 

complicates systolic design as each cell in addition to its own calculations 

must route approximations to the correct processor. As a result the 

control of a cell is context sensitive with the (i,j) position determining 

the control sequence. Thus a non-alternating group explicit method requires 
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Reduced Instruction set processors which can be preloaded with a control 

program. Alternating Group Explicit (AGE) schemes are implemented by 

shifting the approximated points in one of four compass directions (N,E, 

S,W) and modifying the control program to execute different types of 

molecule in the required sequence. This requires loading each processor 

with coefficients of all relevant molecules increasing cell memory size, 

which must be offset against the unconditional stability of the AGE 

calculation with larger step sizes. 

An alternative approach to single point, single processor is to 

allocate processors to groups. This immediately reduces the number of 

processors to Lm/2J 2 and alleviates the communication problem as each 

processor contains 4 grid-points with the remaining 8 of 12 points in 

nearest neighbour processors (two each). The processor is now context 

free except for calculations on the boundaries which will be dealt with 

shortly. First, consider a Type 0 processor: its job is to compute the 

four molecules associated with the four points it contains. These 

molecules have the same coefficients but distributed differently, thus 

by sharing values the storage associated with a group is reduced by 75%. 

However this is offset against the increased program size which for a 

single ips cell per group requires 48 ips cycles to compute the 4 type 0 

molecules sequentially. It follows that the processor must contain at 

least 48 instructions for selecting operands and coefficients. The Type 

o cell is the most complex and serves as a cost bound for all molecules. 

Alternating schemes are much simpler to implement with a group 

processor correspondence if we permit simple shifting of points internally 

and externally between processors. For instance, imagine each Type 0 

cell to contain 4 registers holding the values u .. k' ui 1 . k'u. ·+1 k 1,J, :+ ,], 1.,] I 
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and Ui+l,j+l,k. A cycle of shifts corresponding to Fig.(8.l.2) is 

achieved as an anticlockwise rotation of the form, 

Ui+1,j+l,k+ u1+2,j+l,k+ [;J Uh1,j+l,k 

-
ui+1,j,k+l uiT2 , j .k.l GJ g 

I t 

ui +1 ,j+2,k+ ui +2 ,j+2,k+ Ui ,j+2,k.,.3 u1+1 ,j+2,k+3 

• 

ui+1,j+l,)c.+ u1+2 • j +1 ,k+ U i ,j+l,k+) ui+l,J.+l,k+3 

FIGURE 8.5.1: Rotation of parameters on a mesh 

Now as the Type 0 molecule is the most complex, the above cycle is the 

longest possible for an AGE scheme. It follows that there can only be 

a total of four computing sequences to make up the 48 instruction 

program. Similarly, it follows that processors on the periphery of 

the design can only change into 4 types of molecule also demanding 48 

instructions. Thus each processor requires a single ips cell, 15 co

efficient registers (see molecule diagrams), 4 registers for approximations 

and in addition enough memory for the program. This latter scheme 

saves processors and reduces the memory size but still requires a 

program store. 

Now consider the templates of the computational molecules shown 

in Fig.(8.s.2), which are the 2-D representations of molecules in Fig. 

(8.1.1) with the following key: 
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co-efficient z, is mUltiplied with the value at the grid 

point it covers on level k. 

as above but the result of the molecule computation produces 

the value on level k+l at this grid point. 

imaginary point haVing no effect on the computation. 

the co-efficient z is multiplied by the approximate value on 

level k+l. 

Key to 2-D Computational Molecule Templates 

All the molecule types can be represented by a single unified molecule 

structure or template with coefficients determining the type. Further, 

a particular grid point can be computed from one molecule for a single 

level, and by rotation for AGE schemes only four possible template 

instances are used by a particular grid-point. Arranging the resulting 

four sets of coefficients in a cyclic queue implicitly defines the 

control program at each point. Thus, each grid point processor and 

hence each group processor is context free and contains four cyclic 

queues one for each grid-point. Combining the two ideas of a basic 

grid point processor and a group processor a macro-GE cell can be derived 

(see Fig.(8.5.3». A macro-GE cell consists of four basic ips type cells 

one for each grid point, and has the same input/output organisation as 

a group cell. Each basic cell consists of 2 multipliers and 3 adders 

plus registers for th.e approximated grid point and cyclic queues for 

coefficient data (12 registers in each). Hence a macro-cell has 12 

adders and 8 multipliers, 48 coefficient registers and 4 point 

approximation registers but no program store. The operation of the 

basic grid-point cell is easily derived from the templates by dividing 

them into quadrants. Each quadrant is represented by only two coefficients 
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FIGURE 8.5.2: Molecule templates for macro cell register loading 
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FIGURE 8_5.3: Area efficient macro-cell layout 
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and if the point cell contains a point approximation all values are 

nearest neighbour. Now assign the computation such that a point cell 

computes only the portion of the molecule associated with the quadrant 

fitting its position in the macro-cell. Molecule computations require 

the accumulation of all parts of the template which is performed as a 4 

step systolic ring computation around the basic point cells. For 

purposes of illustration evaluating all four Type 0 molecules 

simultaneously, 

G 8 B G 
+ 

8 8 B B 
t t 

6 B B g 
+ 

G B B Q 
~cumulation of molecule terms on systolic ring 

Thus after 4 steps all the molecules have accumulated all their template 

parts. On the fifth step the point approximation registers can be over-

written and the systolic ring values cleared. Fig.(8.5.3b) shows the 

coefficient ordering for the top left point cell, notice the dummy value 

for loading and an additional delay which is used later. The delay 

through a basic point cell is 2 mults + 1 addition = ips + mult, and 

allowing 6 steps per group we require at most 12 ips cycles. Fig. 

(8.5.3c) illustrates an area efficient layout for the macro-cell. 

Now consider the solution of the 2-D problem using this new cell. 
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Fig.(8.5.4) illustrates a linear array of macro cells or a bi-linear 

array of basic cells for m=8, together with additional connections for 

- .-- .. .. --- -, ,..- .......... -., r- - --~ ~-- -r , , I I I I . I I 

I --

__ I 

I I I I 

~~: 
I I 

--)?P I 
, , ____ J - .J L_ _J 

Macro cell 

FIGURE 8.5.4: A four cell (m=8 point) array for approximation of the 
2-D parabolic problem. 
N.B. additional links included for register load/unload 

operations. 

input and output and communication with other cells and are trivial to 

include. Using the array we can compute two lines in the x or y 

direction every 12 ips cycles (including loading time), a new time level 

every !m(12)=6m ips cycles, and t levels in, 
z 

T = 6t m (8.5.1) 
z 

The application of the array resembles the marching principle applied 

by the LAMP array (Fig. (8.3.6» where the processing array is viewed as 

marching systolically up the rows (y-direction) or along columns (x-

direction). A slight problem occurs when different types of molecule 

are encountered during the marching process. For instance, if we 

compute GER(x) initially we load the array with coefficients for 

molecules of Type 0 and 3, and march left to right (columnwise) until 

we reach the last two columns when we must reload the coefficients with 

Types 7 and 2. Likewise with GEL(y) we load initially with Types 4 and 0 



? Maero--cell 

, 

t·l c:J [J [J [J 
t·2 GJ [J [J [J 

t·3 Q D [J [] 

t·4 [J [] 0 [] 

(load parallleters) 
rov 1,2 

rov J,4 

rov 5,6 

(load parameters) 
row 7,8 

Successive IIlacro-cycles (6 bAsie cycles each) for GER(x) 

t-l D [J [J [J load parameters 
~lumn 1,2 

t·2 D [J [J [] column 3,4 

t·3 [J-[J [J ~ column 5,6 

t-4 [J 0 G~ load parameters 
column 7,8 

Successive macro-cycles for GEL{y) 
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FIGURE 8.5.5: Cell typing for row and columnwise systolic marching 
in 2-dimens1ons 
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and march row-wise bottom to top reloading with Types 8 and 3 on the 

last row. Consequently, any of the basic schemes can be computed with 

only two loads which requires only constant time (each cell loaded in 

parallel) hence, 

T = 6t m + c (8.5.2) 
z 

with c>o a constant accounting for loading delays. Alternating schemes 

require no special treatment, and are selected by loading the correct 

cell type coefficients at the start of a pass through the region. 

Throughout the descriptions we have assumed a row-wise march, for 

a column-wise march the templates must be rotated 90· clockwise before 

deriving the loading scheme. 

A program simulating the bi-linear array is given in the Appendix. 

Testing was performed using specially constructed mesh points which test 

cell operation but are not true 2-D problems. In order to run the 

program two files "odds" and "evens" are required. "odds" contains the 

molecule coefficients for loading the bottom tier of the array with 

data corresponding to odd rows of the test grid. Likewise "evens" 

contains coefficients for the top tier cells and even row data. Each 

line of the files has the form, 

c 

) 

size elements 

where c is a control value 

1 load meml } 2 load mem2 
coefficients 

c = 
0 load groups and compute molecules 

6 stop 

An example grid was tested for two cases: 



1. A molecule with constant coefficients 

(testing ring accumulation) 

2. A molecule with different coefficients 

(testing coefficient shifting on grid cells) 

The results are given below. 

TEST EXAMPLE 

Q:,nslder the axs grid 

row 

8 1 1 1 1 1 1 1 1 

7 1 2 2 2 2 2 2 1 

6 1 2 3 3 1 3 2 1 

5 1 2 3 4 4 3 2 1 

4 1 2 3 4 4 1 2 1 

3 1 2 3 1 1 1 2 1 

2 1 2 2 2 2 2 2 1 

1 1 1 1 1 1 1 1 1 

SI .. -Ssize2 4 

TEST 1; Constant coe ffic1ent. 

Each point cell computes the same tetDplate of for'lll 

Thus testin9 the nearest neighbour communication between macro-cells 

and the systollc ring accumulation. 
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TEST 2, Variable coefficient. 

~s51c,n a different molecule to each point cell 1n a macro-cell. Each 

cell computes the molecule associated with its macro-cell position below. 

Givi.ng a coefficient ordering which ensures that meml and mem2 (see program) 

nevfr have the same coefficient simultaneously. Thus ensuring that 

coefficients are loaded and referenced correctly. 
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TE8T 1 

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
o 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
o 1.0 2.0 3.0 3.0 3.0 3.0 2.0 1.0 
o 1.0 2.0 3.0 4.0 4.0 3.0 2.0 1.0 
o 1.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 
o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
o 1.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 
o 1.0 2.0 3.0 4.0 4.0 3.0 2.0 1.0 
o 1.0 2.0 3.0 3.0 3.0 3.0 2.0 1.0 
o 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

'n!ST 2 

1 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 
1 4.0 2.0 4.0 2.0 4.0 2.0 4.0 2.0 
1 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 
1 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 
2 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 
2 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 
2 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 
2 2.0 4.0 2.0 4.0 2.0 4.0 2.0 4.0 
o 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
o 1.0 2.0 3.0 3.0 3.0 3.0 2.0 1.0 
o 1.0 2.0 3.0 4.0 4.0 3.0 2.0 1.0 
o 1.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 
o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 
1 3.0 1.0 3.0 1.0 3.0 1.0 3.0 1.0 
1 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 
1 2.0 4.0 2.0 4.0 2.0 '.0 2.0 4.0 
2 3.0 4.0 3.0 4.0 3.0 4.0 l.O 4.0 
2 4.0 2.0 4.0 2.0 4.0 2.0 4.0 2.0 
2 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 
2 1.0 3.0 1.0 3.0 1.0 3.0 1.0 3.0 
o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
o 1.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 
o 1.0 2.0 3.0 4.0 4.0 3.0 2.0 1.0 
o 1.0 2.0 3.0 3.0 3.0 3.0 2.0 1.0 
o 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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8.6 A FAST ALTERNATING GROUP EXPLICIT (AGE) ARRAY 

It can be shown that the finite difference approximations (8.1.10) 

are unconditionally stable for all r>O (see Saul'ev [64]). Analysis on 

the group explicit methods (Evans & Abdullah [83b]) indicates that 

(8.1.21) is stable for r~l as are the GER, GEL, GEU, GEC schemes, while 

the alternating schemes SAGE and DAGE are unconditionally stable for 

all r>O. So far the designs presented have attempted to improve array 

cell efficiency by adapting the decoupled structure of the GE matrices. 

Observing the above stability properties we can consider a choice 

of grid spacings h=~x, £=~t such that the number of arithmetic operations 

involved in computing the molecules (8.4.3) is reduced. Thus creating 

an accelerated (FAST) AGE scheme with optimised basic cell schemes. 

For the l-D case a useful choice of r=l, reduces (8.1.22) to the system, 

~ -:] ~i'k+l 1 rui-l'~l = 
-1 Li+l'k+~ ti+2'~ 

or in explicit form, 

'" J 1 f ~ ,"H'~ I i,k+l = 
3 

11 J b+2'k Li+l,k+l L 
with the right boundary, 

um-l,k+l = !{um,k+l+um-2,k} , 

and left boundary, 

(8.6.1) 

(8.6.2) 

(8.6.3) 

(8.6.4) 

The various GE schemes are then constructed by substituting r=l in 

(8.1.27)-(8.1.34). It follows that the generic structure of the AGE 

array in Section (8.4) remains unchanged for the FAST AGE except for 

internal arrangements of the basic cell. 
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A new basic GE-cell is shown in Fig.(B.6.1), and must compute 

(B.6.2). Observe that the cell contains registers to hold u, k and 
~, 

ui+l,k values) even though they play no role in the cell computation, 

but are passed to adjacent cells for inclusion in the computation there. 

Ut_I, K 

HEMl 

2 

IPS 

3 

2 

G.E. CELL 

------+ enabled for pre-loading starting values 

FIGURE B.6.1: Fast AGE cell 

c--- ---1 
I I 
I I 

'--'TA': 
I 
I 
I 
I 
I 

HEM 

IPS 

HEM 

LEFT BOUNDARY CELL RIGHT BOUNDARY CELL 

FIGURE B.6.2: Boundary cells 

IPS 
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Also notice that the matrix coefficients can be hardwired into each half 

of the cell, and that results u. 1 k and u. k of the previous step are 
1.+ , ~, 

latched to avoid overwriting of inputs before calculations are completed. 

The multiplier (for fixed point arithmetic at least) can be implemented 

by a simple bit shift operation and hence consumes negligible area. 

Consequently, the half cell requires a single adder and divider (= inner 

product cell) and has a cycle time of a single ipso Comparing this to 

Fig.{S.4.3) indicates that we have a simpler structure requiring no 

control program or coefficient store, and only a single non-planarity. 

The cell time of a single ips is also a significant improvement over 

the 5 ips required previously, and offers an immediate speedup by a 

factor of 5. An extra connection is added to facilitate preloading and 

is enabled by a control value broadcast to the array. For a GER scheme 

the pre-loading consists of two sequences of starting values, 

u l ,u3 ' .•• ,U 1 ,0,0 m- ,0 
entering and moving left + 

u 2 ,u4 , •.. t U -2 0 ,0,0 m I 
entering and moving right ~ 

yielding the timing, 

ips cycles (S.6.S) 

for computing t levels. Adopting the buffered scheme in Fig. (S.4.6) 
z 

requires an extra adder to include the g{x,t) and with the buffer controls, 

Cl c
2 

GE and buffer control 

0 0 Normal cell computation 

0 1 Preload value (shift left and right) 

1 0 Freeze array + output row of memory 

1 1 Freeze array + shift up memory 

where cl=l relates to a stopped array, cl=O to a computing array, 

T = 2t +(t +1) (freeze-time) + im • 
z z 

(S.6.6) 
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yielding a speedup S =3 over (8.4.12) for the general equation (8.4.10). 
p 

Finally for completeness the boundary cells associated with (8.6.3) and 

(8.6.4) are implemented as shown in Fig.(8.6.2) (a method of combining 

GE and boundary cells is discussed shortly). 

Now consider the SAGE method, which requires shifting of data right 

and left to alternate between GER(GEL) and GEL(GER). In the previous 

schemes for general r an extra cycle had to be added to achieve shifting. 

For the FAST AGE the shift can be hardwired, by tracing the input/output 

paths of a cell on successive cycles as shown in Fig.(8.6.3) which 

produce the cell in Fig.(8.6.4). Marked on the cell are switching points 

A and B, which indicate where a switch between data paths implements a 

shift. For instance, the SAGE cell switches have the following 

interpretations, 

A = 

, " 1 

ON act as feedback of latch contents, and 

send ui,k left 

OFF read ui-l,k into left ips arrangement 

ON act as feedback loop for u, 1 k' and send 
~+ , 

ui+l,k right 

OFF read u, 2 k into right ips arrangement 
--- ~+ , 

As A and B are mutually exclusive a l-bit control can implement SAGE 

shifting. 

REMARK: The switches allow erroneous calculations, not part of the 

algorithm, as these values never affect computation they can be ignored 

and allow the above simplified control structure. 

The final task is to develop a generic boundary cell which 

alternates between ordinary GE calculations and the modified asymmetriC 

forms (8.6.3) and (8.6.4). Unfortunately the hardwired nature of the 



LATCH 

1 i 
IPS ~ DIV 

DIV 
~ 

IPS 

J. 
.-- Lj LATCH I 

MODEL 

t-l: Ut, k: 

u1 i-I,k 

Ut, KH 

t, 

u 
1+1, K+l 

u 
1+3, K+1 

GEL GE CHANGES TO GER GE 

1 
IPS ~ 

DIV -t 

J. 
Y LATCH 

MODEL 

ut,1e 
t-l, uti-l, I( 

Ui,tc.+l 

t, 

GER GE CHANGES TO CEL GE 
a) SAGE GE CELL INTERNAL SWITCHING 

LATCH 

T 
DIV 

IPS 

'" '" w 



MODEL: 

t-l: 

1 
IPS 

DIV 

1 

lIPS I 

I*-

G 

I LATCH 

l' 
DIV 

Y IPS 

T 

6 U3 • 1Ci-1 

LEFT BOUNDARY CHANGES FROM 
(;1':1. 1I0tJNf)I\HY '1'0 (j~: CF.r.r. 

bl 

MODEL: 

t-l: 

t. 

LEFT BOUNDARY SAGE CELL INTEHNAL 

SW_l~H}~_~ 

• 

I LATCH I .,. 
I IPS I 

T 

I LATCH I 
1 

IPS 

~ DIV IPS 

H.LATCH 

'-U- ---
I 2,,k'+1 
I 

L U~:!:l_ 
LEM' BOUN CHANGES FROM CER CE 
TO GEL LEFT BOUNDARY CELL 

CELL 



4--

MODEL; 

t-l: 

t, 

.. 

I LA"'" I 
'!" 

I [PS I 

LA"'" 
'f 

8a D[V 

D[V [PS 

-l LA"'" I 

Urn,1C.tl 
RIGHT BOUNDARY CHANNEL FROM GEL 
(;1-: n:I.J, 1'0 m:ll HOUNOAHY CEI.I. 

c) 

L-.. 

RIGHT BOUNDARY SAGE CELL 

INTERNAL SWITCHING 

FIGURE 8.6.3: Cell switching diagrams 

I 
MODEL: 

t-l; 

t, 

'----.1 LA"'" 

1 
IPS 

DIV 

J. 
I LA"'H 
I 

.. 

8 
u 
m-l.k.+l 

Y 

GER BOUNDARY CELL CHANGES TO GEL 
CE Ct:l.L 

LA"'H 

l' 
DIV 

IPS 

T 



""",1 M£>!2 

2 

3 

3 

2 

__ _ links enabled for preloading 

mutually exclusive links for shift left 
and shift right 

FIGURE 8.6.4: SAGE GE cell 

666 

FAST AGE cell means that the unification is not possible and a hybrid 

cell which switches between the two cell types as shown in Fig.(8.6.5) 

must be adopted. 

We conclude that the FAST AGE scheme including the SAGE algorithm 

produce a significant reduction in the complexity of basic cells, 

removing micro-program control and internal coefficient registers, when 

compared with the general algorithms with r>O. The main advantage of 

these arrays is that they are closer to hard-systolic frames than 

previous proposals. While the general arrays allow any value of r, 

we point out that it is often the case that r~4,5 is chosen. consequently 

if the number of intervals in the x-direction is held constant, the FAST 
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AGE must compute an extra 3 or 4 levels for each time level of the 

unconditional scheme. It follows that we can use the FAST AGE speed-up 

to offset the extra levels being calculated. For equation (8.1.1) a 

factor of five speed-up is obtained using the FAST AGE indicating that 

the required extra levels can be accommodated while for equation (8.4.10) 

the speed-up of 3 is less dramatic. An additional problem is the use of 

buffers to control host interface complexity, which implies that the 

FAST scheme requires more freeze time than the unconditionally stable 

arrays. A possible solution to this is to adopt the fractional splitting 

technique with the form, 

SAGE: (I+rGl)uk+
t 

~ (I-rG
2

)u
k 

+ b
l } 

(I+rG 2) uk+ 1 ~ (I-rG
l

) u
k

+
t 

+b
2 or 

(8.6.7) 

SAGE: (I+rGl )uk+l/4 
~ (I-rG

2
) u

k 
+ b

l 
) 

(I+rG2) u
k

+
t 

~ (I-rGl ) uk+l/4 
+ b

2 (8.6.8) 

(I+rGl)~+3/4 ~ (I-rG2)~+t + b
l 

(I+rG2)u
k

+l ~ (I-rGl ) ~+3/4 + b
2 ) 

For 1 and 3 artificial levels respectively, inhibiting the cell buffer 

output for intermediate levels by simply overwriting the cell results 

internally. 

8.7 SYSTOLIC HOPSCOTCH SCHEMES 

Now so far in this chapter we have introduced the concept of 

systolic marching with the relatively complicated asymmetric and group 

explicit molecules. In this section we examine the possibility of 

reducing array computation time by the use of simpler computational 

molecules which possess similar features to the GE methods for parallel 
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evaluation of time levels. We also examine the possibilities of array 

compaction derived from methods which produce only partial solutions to 

the problem. 

Recall the definitions of the classical implicit and explicit 

finite difference formulas used in the definition of (2.5.1.14) and 

(2.5.1.15) for solving (8.1.1) which have the molecule definitions: 

a) explicit 

k+l 

1-2rl-----i k 

i-l i i+l 

(8.7.1) 

b) implicit 

l----I l +2r }-----+ k+l 

k 

i-l i i+l 

-ru'_l k 1+(l+2r)u, k l-ru, 1 k 1 
~ I + 1, + ~+, + 

(8.7.2) 

(8.7.2) is unconditionally stable for all r>O, while (8.7.1) is stable 

only for r~l. It is known that both schemes have truncation error 

2 
Rik =O(t+h ). 



670 

Using the implicit and explicit formulas together in an 

alternating fashion removes the stability problem and implies a hybrid 

molecule of the form, 

k+l 
(8.7.3) 

k 

i-l i i+l i+2 

Compared with the GE molecule (8.1.21). Equation (8.7.3) has three 

unknowns and two defining equations, and produces a 3x3 under-determined 

linear system (in contrast to the 2x2 system (8.1.22». It follows that 

(8.7.3) cannot be easily converted to explicit form and demands that 

the component molecules are evaluated sequentially. Converting (8.7.2) 

to explicit allows (8.7.3) to be expressed algebraically as, 

b) ui+l,k+l 

rui _l ,k+(1-2r)ui ,k+rui+l,k 

= __ 1_ {u +ru +ru } 
1+2r i+l,k i,k+l i+2,k+l 

} (8.7.4) 
a) 

or 

a) u = A u +A u +A u, +E 
i,k+l 1 i-l,k 2 i,k 3 1+1,k i } (8.7.5) 

u = B u +B u +B u +E 
i+l,k+l 1 i+l,k 2 i,k+l 3 i+2,k+l i+l b) 

1 r 
where Al =A3=r, A2=(1-2r), Bl - l +2r , B2=B3-1+2r and Ei,k and Ei+l,k are 

terms involving g(Xi,k) or g(xi+l,k) for the more general form (8.4.10). 

Thus cell computation is derived as follows, 

tl A2U, k+ E, k 
1., 1., 

tl = A3u i+l,k +tl 
1st molecule 

tl = (Al ui_l,k +tl ) = ui,k+l (overwriting u, k) 
1, 

t2 = B1U, 1 k+E , 1 k 1.+, 1.+ I 

t2 = B2Ui ,k+l+t 2 2nd molecule 

t2 = B3
ui+2,k+l +t2 = ui+l,k+l (overwriting u, 1 k) 

1+ , 
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and the array operation is indicated by snapshots in Fig.(8.7.1). 

t 

t 
--If-- - ->'\<--

I 0 
0 --t'f-- --~-

0 0 
0 0 

. --~- --0--
0 

0 0 

1-1 1 

0 1 2 3 4 5 

u 
0,0 

1
st 

st.ep u1 ,1 

-*-- --lp:--, 
I 0 

0 I 

-~- -~-
0 0 
0 0 

--$-- -4--
0 0 

1+1 1+2 

6 7 8 

x 

9 10 

u9 ,1 

Explicit o molecule 

X Implicit 
molecule 

• Unknown 
point 

u10 ,0 

RIGHT MOST 
CELL INACTIVE 

u10 ,1 

RIGHT MOST 
CELL INACTIVE 

u10,2 

FIGURE 8.7.1: Systolic array for alternative explicit/implicit scheme 
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We require 6 ips cycles to overwrite the two points contained by each 

cell the same as an AGE scheme. Notice however that AGE cells require 

two ips cells, the scheme here only one, which halves the hardware 

requirements (to ;m ips cells). The ODD-EVEN cell (Fig.8.7.2) requires 

a single inner product cell with additional switching logic and a cyclic 

queue of six coefficients which can be tagged with control bits to select 

the correct ips input operands. The above technique of alternating 

formulas on the grid is termed the ODD-EVEN hopscotch method, we conclude 

that it is superior to the AGE schemes from a systolic viewpoint. 

Ui,k+ r- -, 
ui +2 ,k+l I I I I I IPS I I 

I I 
L_ --' 

"1_I,.--------..J 

FIGURE 8.7.2: ODD-EVEN hopscotch cell 

* The idea of hopscotch was expanded by Gourlay [70] and works on 

the principle that not all the points in a region need to be calculated. 

* From earlier work by Gordon, "Non-sYTmletria differenae equations", 
J.Soa.Indust.AppZ.Math., 1973. 
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The points omitted are placed in areas where they are easily obtainable 

later from the values already computed. Using this idea a number of 

strategies can be concocted according to the way formulas are applied 

and the number of points omitted. We concentrate on two simple forms, 

the I-point and 2-point hopscotch methods. 

I-point Hopscotch 

Notice that like the FAST AGE for r=! the classical explicit 

formula (8.7.1) simplifies to, 

(8.7.6) 

or generally, 

(8.7.7) 

with D
ik

=2g(x,k). Fig.(8.7.3) illustrates the application of this 

modified molecule to the solution region and the associated array 

snapshots. Clearly the new array cell consists of only a single adder 

and a shifter arrangement (for divide by 2), demands a cycle time of 

approximately! ips cycle, and still covers two grid points. It follows 

that the I-point scheme requires a time, 

T = O.St + m, ips cycles , 
z 

(8.7.8) 

inclUding preloading time, and yields a speed-up over the ODD-EVEN 

scheme of S =6/0.5=12. Like the FAST AGE we have lost the desirable 
p 

property of unconditional stability, but fixing r=! and m, 

! = ~/h2 , with h fixed, 

and (8.7.8) implies that we can compute at most 11 extra intermediate 

levels before the ODD-EVEN scheme competes time-wise. Hence, 

r = l2(!) = (lU)/h2 (8.7;9) max 

implying that the unconditional method must use r>6 to out-perform the 

I-point hopscotch. As r=4,5 is usual we conclude that the simplified 
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FIGURE 8.7.3: Systolic array for I-point hopscotch scheme 
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Ungrouped points (Even number of internal points) 
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FIGURE 8.7.3: (cont.> 
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array is extremely desirable. There is, however, a small problem with 

the l-point scheme which can be explained simply from the snapshots in 

Fig.(8.7.3). When the number of internal points in the x-direction is 

even, all the cells compute all of the time and apart from shifting, 

the distinction between steps disappears. When the number of internal 

points is odd the rightmost cell must be inactive on alternate cycles. 

The shifting of data left and right is useful because it provides a 

natural method of input boundary values, but when the array shifts left 

the right boundary must be input even though it is not used until the 

array shifts right. The difficulty is removed by adding a control tagged 

to the boundary input which disables the cell while loading the boundary 

value - and adds negligible hardware. 

2-Point Hopscotch 

Although the l-point hopscotch is inherently simpler than the AGE 

or even the FAST AGE the value r=! is required rather than r=l to retain 

stability. A relevant question is to ask if the hopscotch can be used 

to reduce hardware in the FAST AGE scheme? The answer is yes, and the 

array uses the so-called 2-point block hopscotch shown in Fig.(8.7.4) , 

(two more starting positions can be derived by interchanging circles 

and crosses on each time level). The immediate consequences of the array 

is the reduction to m/4 cells or !m ips cells compared with !m (or m ips) 

cells used in the FAST AGE, while computation time remains unchanged. 

The communication characteristics are also simplified and if we allow 

bidirectional links the simplified FAST AGE cell of Fig.(8.7.5) is 

apparent. Finally, when we have an ODD number of internal points 

boundary cells must be incorporated into the array, and have a form 
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t 
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FIGURE 8.7.4: ungrouped point 2-point block hopscotch 
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FIGURE 8.7.S: Simplified FAST AGE cell for 2-point block hopscotch 

similar to a l-point hopscotch cell. 

The area efficiency of the hopscotch designs is achieved by omitting 

some calculations and are in a sense incomplete systolic arrays. The 

speed-up associated with the simple and compact design is used to offset 

the cost of extra level computations due to the loss of unconditional 

stability. But suppose we need all the solutions. Notice that not all 

the initial conditions and boundary values are incorporated into a 
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Hopscotch scheme. It follows that for each hopscotch method there are 

a number of starting positions (or loading orderings) for the array. 

If we select two starting positions which if used generate all the points, 

the arrays described can be used in multipass to compute the whole grid. 

Notice however that only speed-up is then halved. Alternatively, we can 

define two separate arrays and operate them in parallel retaining the 

speed-up but doubling the hardware. As hopscotch method reduces 

hardware over the complete schemes this is a particularly attractive 

tradeoff. 

8.8 A HARD-SYSTOLIC HOPSCOTCH SOLVER 

The arrays produced in the previous sections have improved speed 

and reduced cell complexity edging the designs from soft-systolic to 

hybrid and finally hard systolic frames. In this section we propose 

methods for actual VLSI implementation. The simplest formula is the 

l-point hopscotch and attention is focussed on this array. Discussions 

so far have proposed the chip organisation of Fig. (8.4.6) for solving 

(8.4.10) reducing input/output connections by a buffering strategy. The 

buffers are emptied and loaded during an array freeze operation and 

operate in mutually exclusive fashion. Clearly the double buffer method 

is highly inefficient, but is useful for the complex AGE strategies by 

simplifying non-planarity problems at the array buffer interface. For 

the simpler hopscotch schemes it is possible to combine the two buffers 

reducing memory requirements by half, and ensure that the combined 

memory is always full. A 4-cell example of the new array is shown in 

Fig. (8.8.1), the buffer can be interpreted as a collection of horse-shoe 

segments, with one segment allocated to each cell. After buffer loading 
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FIGURE 8.8.1: Example 4-cell arrangement 

the segment of cell i contains the g(ih,t) values in the correct order 

for the computation of k time levels (where k is the buffer segment size). 

As computation progresses 9i(ih,t) values are fed into the cell creating 

holes at the end of the buffer queue which are filled by cell results 

being output. Hence, the buffer'stays full throughout the computation. 

After the last g(ih,t
k

) value has left the segment the array is frozen 

(isolating the new starting values inside the cell) and the inter segment 
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connections are enabled creating a giant shift register. The results 

of k time levels and the g(x,t) of the next k levels are output and 

loaded in pipeline fashion from right to left. Once the lead g(x,t) 

value reaches the leftmost buffer register all results have been output, 

the gr(x,t) are in position and the array is unfrozen. 

In a VLSI design we must decide at the outset the type of the 

final packaged chip. For purposes of illustration, we shall consider a 

64-pin chip and use 28-bit fixed point arithmetic. This allows easy 

specification of bit-parallel computation and implies the following pin 

assignments: 

TOTAL 

28 pins 

28 pins 

VDD 

GND 

CLK 

c
l

,c
2
,c

3 

62 

INPUT 

OUTPUT 

CONTROL 

PINS 

using Fig. (8.8.1) as a basis for the design a floorplan and GND,VDD,CLK 

network arise naturally. We require some random logic to control the 

chip, and adopt a control broadcast strategy (as pipelining is not 

possible). Fig.(8.8.lb) illustrates the I-point hopscotch cell and 

allows the definition of the following controls. 

Freeze = cl A c 2 ' Freeze = cl v c 2 

sh~ = c
2 

(shift left), shr = cl A c
2 

(shift right) 

preload = cl A c
2 

LD = freeze A preload, LD = freeze v preload 

Disable = preloadv c
3 

(for rightmost inactive cell) 

We assume that the reader is familiar with material in Mead & Conway [79) 
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and Ullman [84) and adopt a two phase non-overlapping clock ~l and $2 

(such that ~l A ~2 = false) and generate the signals from a single 

clock input eLK. (Standard circuits are available for this). The basic 

adder block is formed from half adders as shown in Fig.(8.8.3) with the 

divide by two implied by the output connections. The buffer segment cell 

interface is shown in Fig. (8.8.4a) and a complete I-bit slice of the cell 

given in Fig. (8.8.4b) • We consider 2's complement arithmetic so that no 

end around carries are required (which occur with l's complement). The 

cell operation is simply two full adders where Bi=O for (8.1.1) and Bi#O 

for (8.4.10). The feedback from latch to adder is implemented on a bit-by

bit basis avoiding nasty corner turning layouts to run around the adder 

(we go through it). The slice is area efficient as all control lines 

run vertically and data horizontally, except for carries and the adder 

result shift. The two data paths in Fig. (o.8.1b) are compressed, running 

through the adder/shifter and combine with the buffer interface. Notice 

that when the array is in freeze mode no shifting between cells is 

necessary. The starting value is isolated in the latch, it follows that 

the buffer can borrow the intercell connections removing the need for an 

additional path. Fig.(8.8.S) illustrates a complete 4-bit cell with a 

10 stage buffer. Each adder block uses 4-bit slices, in a full design 

we would require 28 slices. This raises the questions 'how many cells 

could we place on a chip?',· 'how many cells will we be satisfied with?' 

Assuming a four cell design covers 2 points in the x-direction, allowing 

8 points per chip, an arbitrarily large solver could be constructed by 

chaining chips together using comb layouts to bound the clock and control 

wire length([Fisher [84). 

NOW, a constant conflict in the design of systolic arrays is the 
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choice of bit serial or bit parallel computation. Bit parallel is the 

best regarding speed, while bit serial reduces pin requirements. In the 

hopscotch schemes the conflict appears in the form of an I/O bottleneck 

caused by data buffering. The buffer allows the array to compute at full 

speed until the buffer is empty, and keeps the number of pins to an 
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acceptable level. However, the freezing of the array while results are 

output and the buffer re-loaded makes the hopscotch pay an increasingly 

heavy price as the number of chained chips increases. We remove the I/O 

bottleneck by considering a bit serial design for the I-point hopscotch 

cell. 

The bit serial cell is shown in Fig.(8.8.6), all the lines are I-bit 

wide and the main switching is illustrated, there are additional control 

Signals which are discussed later but omitted for clarity. The cell 

requires one input for g(x,t) one output for the new time level and four 

connections are introduced to simplify intercell shifting. Register u 

holds the starting value and overwrites its contents with the new result 

which is also sent to the output. The g(x,t) line doubles as the pre

loading connection, at start up time the adders are disabled while u is 

filled (using the st.ld control) from g(x,t). In addition the g(x,t) line 

is used to set a Cell Status Bit (CSB) which is discussed later. 

Suppose that the fixed point numbers have 1-bits, at start of a 

cycle u contains the current level value of cell i with the lowest 

significant bit (lsb) at the bottom and the most significant bit (msb) 

at the top. Computation is achieved as follows: 

(i) The Isb of u loops back to FA2 where it is delayed, at the same 

time the Isb of cell i-I or i+l enters FAl together with the 

correct Dik accUmulating part of (8.7.7). 

(ii) The Isb of FAl result enters FA2 with the delayed Isb of u 

from cell i completing the summation in (8.7.7). 

(iii) After a further £ steps the msb of the sum enters u leaving 

only the divide by 2. 

(iv) The adders carries are cleared and the lowest Significant 
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1 I 
RIGHTOtrr L ______ RIGJ:ITIN 

n~delay 

u 
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0 1 Shift left .h1 FA-l-bit full adder 

1 0 Shift right .hr u-register 

1 1 Load cell status bit CS8 

COln'ROL TABLE 

FIGURE 8.8.6: Bit serial I-pt. hopscotch cell 
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£-1 bits of u are shifted down, with the msb (sign bit) over-

writing itself. Finally, the left/right shift is switched 

ready for the next cell cycle. It follows that a single cell 

cycle requires £+3 bit cycles, where a bit cycle is the delay 

through FAl or FA2. 

Shifting is easily implemented by the monitoring changes in the 

shl (or shr) command and generating the start cycle command using the 

status signal 
old cl r---, 

}----- start.cycle 
-' 

Furthermore by pipelining the start-cycle command through FAl and FA2 the 

adders can be neatly reset. 

A simple 4-bit example is shown in Fig.{8.8.7) where, 

ui,k+l ~ !(Ui_l,k+ui+l,k) + g{x,k) 

~ ([]/~ + 2/2 + 1) ~ 3 

using integer arithmetic for convenience. Note that after £+3~7 cycles 

the u register contains OOl12~3 and at the start of the next cycle is 

divided by 2. Thus, the output results must be multiplied by two to yield 

correct results or alternatively the bit shifted out during the divide 

collected. 

The command table in Fig.{8.8.6) includes the instruction load cell 

status bit (CSB) , it provides a more flexible array. When the l-cell 

cycle l-time level designs are used the number of points along the x-

direction must be chosen to fill the array, otherwise the boundary values 

input to the ends of the array will be out of synchronisation and produce 
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erroneous results. The CSB indicates whether a cell is active or passive 

(i.e. used or not). An active cell will receive initial values and 

compute normally, a passive cell plays no part in calculation and is used 

to filter boundary results through the passive cells. To simplify the 

control it is best to left justify active cells and cause passive cells 

to always shift left. This added flexibility allows any sized problem 

up to and including the capacity of the array constructed to be solved. 

Extra control is required but to prevent the adders from modifying 

boundary values these can all be derived from the CSB. 

In Fig.(8.8.8) the layout of a bit serial array is indicated for a 

FIGURE 8.8.8: Floorplan 

64 pin chip and the following pin allocations, 

3 VDD, GND, CLK 

3 c
l
,c

2
,c

3 
2 left boundary input/output 

2 right boundary input/output 

27 g (x, t) input 

27 result output 
TOTAL 64 pins. 
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A 27 cell chip is feasible - allowing up to 54 grid point columns by 

a single chip. 

Finally, consider the tradeoff between bit serial and bit parallel 

hopscotch arrays - when is the bit serial faster? The bit parallel case 

has a timing tl as follows, 

tl = levels + {!"ieve7s] + l} 
Ibufs~zel 

(Bufsize*cells) (8.8.1) 

because we must: 

(i) Load the buffers with starting values. If Bufsize=number of 

(ii) 

(iii) 

buffer registers in a single segment, because shifting occurs 

right to left, the total loading/unloading time is (Bufsize*cells) 

cycles. 

The results of levels are stored before output, thus ~evels :'='="-j +l 
Bufsize 

is the number of times buffers· must be loaded/unloaded. 

Each level computed requires a single cell cycle. 

For the bit serial case we have, 

t2 = t(levels*word length) (8.8.2) 

where the wordlength is t+3, and one level is produced every t+3 cycles. 

REMARK: The bit parallel cycle time is two additions the bit serial using 

two level pipelining only 1 hence the t in (8.8.2). Next put L=levels, 

B=Bufsize, W=wordlength, C=no. of cells. For bit serial to outperform 

bit parallel, 

t (L*W) ~ L + {r~l + l} (B*C) 

or (L*W) L {r~l + l}B ~ -+ 
2C C 

L*W L L 
2)B 

2C C ::: (- + 
B 

LW 
+ 2B (8.8.3) -(- -1) ::: L 

C 2 
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and fixing the wordlength at W=36 we have after some manipulation 

~(17 _ 1) 
2 C (8.8.4) 

17 
Consequently if c: ~O the bit serial is always better than bit parallel 

and the following table illustrates the effect of C>O 

I~ 2 4 6 8 10 12 14 

2 8 4 2 2 1 1 1 

4 15 7 4 3 2 1 1 

6 30 13 8 5 3 2 1 

8 60 26 15 9 6 4 2 

16 120 52 30 18 12 7 4 

32 240 104 59 36 23 14 7 

64 480 208 118 72 45 27 14 

128 960 416 235 144 90 54 28 

512 1920 832 469 288 180 107 55 

MAXIMUM NUMBER OF BUFFER REGISTERS PER CELL BEFORE BIT SERIAL 

BECOMES BE'I'TER THAN BIT PARALLEL 

8.9 SYSTOLIC GROUP EXPLICIT METHODS FOR HYPERBOLIC EQUATIONS 

16 

1 

1 

1 

1 

1 

2 

4 

8 

16 

It should be clear that the techniques discussed above for parabolic 

equations carry over to other P.D.E.'s like elliptic and hyperbolic 

equations, provided that suitable hybrid molecules can be found. Recent 

developments by Sahimi [86] have extended the Group Explicit (GE) principle 

to simple first order hyperbolic equations, and indicate more flexible 

array deSigns which are briefly outlined below. 

The basic hyperbolic equation we shall consider is of the form, 

au au at + ~ =0, O~x~l , t~o • (8.9.1) 

As before, we consider the solution in the infinite rectangular strip 
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bounded by O~x~l, with finite difference approximations made at the 

intersecting points on a grid superimposed on the region with spacing 

~x=h along the x-axis, and t=~t along the t axis. We shall only briefly 

discuss the derivation of the new GE form for hyperbolic equations, the 

interested reader is referred to Sahimi [86]. 

The hyperbolic form (8.9.1) is expressed as a weighted finite 

difference analogue equation at a particular grid point, say (xi,tj+e)= 

(i~x,(j+e)~t) O~e~l as follows, 

-A[e{(l-w)ui 1 '·1+(2w-l)u, , l-wu
i 

1 ' l}+(l-e){(l-w)u, 1 ,+ + ,JT 1.,J+ - ,J+ 1.+ IJ 

(8.9.2) 

When w=l we produce the equation, 

(l+Ae)u, '+1-A6U, 1 '+1 = (l-A(l-e))uij+A(l-e)u, 1 ' (8.9.3) 1,) 1- ,) 1- ,) 

and with w=O 

At the point ((i-l)~x,(j+6)~t) (8.9.4) becomes, 

Aeui j l+(l-Ae)u, 1 ' 1 = -A(1-6)u, ,+(l+A(l-e))ui 1 ' 
,+ 1.-,J+ 1.J -,J 

(8.9.5) 

coupling equations (8.9.3) and (8.9.5) in groups of two adjacent points 

(i-l,j+l) and (i,j+l), etc., leads to the group explicit form, 

where, 

[ -Ae (l+AeJ 
A 

= (1-A6) Ae 

uj+l = ~~-~,j+~ , u, 
1,)+1 ) 

which in explicit form yields, 

= Bu, 
J 

B 

= 

r(l-e) l-A(l-e

J = 
1+A (I-e) -A (I-e) 

~i-l'~ 
Ui,j J 

(8.9.6) 
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-1 
(8.9.7) u. 1 = A BU

j J+ 

where, 

A-1B 
n1+l) 

-lJ = 

L l (1-;1. ) 

representing the molecule rules, 

a) 

j+1 
1 j+1 

(8.9.8) 

l+l j j 

i-I i i-I i 

and the equations: 

a) Ui - 1 ,j+l = (1+;1.) u
i

_1 , j -luij 
) , 

} b) u = 1U. 1 ,+(1-1 )u'j 
(8.9.9) 

i,j+1 1.- ,J 1. 

Thus, in a similar manner to (8.1.27)-(8.1.34) we can define various GE 

schemes. If there are m points in the region along x including the right 

boundary ungrouped points occuring in the (m-1)th or 1st positions and 

are computed by, 

a) um- 1 ,J'+1 = [(l+l(l-S»u 1 .-l(l-S)u ,-l8u '1)/(1-18) m- ,) m,) m,J+ 

b) U1 ,j+1 = [l(1-8)uO,j+(1-l(1-8»U1,j+18UO,j+1)/(1+18) (8.9.10) 

Next define (m-1)*(m-1) matrices, 

r(~) 1- - - - - - --~ IG(2) 

I ',,- 0 
G = I , 

, G
2 

= , 
1 I "-

o l 1 

I 'G (! (m-2) ) 

~j I 0 
I 
I 

o 
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r 1 
iG (1) 

G (1) G(2) 

" 0 
\ 

0 I 
"- A " I "- G

2 
= \ 

" \ 
"- " I 
" , 

" (1(m-3» 0 , 
G I 0 

-J L L 
'G(Hm-l)j 

with, 

G (i) 
Cl J = 
-1 

and the following schemes can be derived 

m Even: 

There are (m-l) internal points - an odd number requiring boundary 
cells hence we have, 

(i) Group Explicit ungrouped Right point (GER) scheme 

(I+A6G
l

)U
j
+

l 
= (I-A(l-e)Gl)u

j 
+ b

l 
' 

T 
b

l 
= (0,0, ••• ,-A (1-6)u .-A8u . 1) 

m,) m,J+ 

(ii) Group Explicit ungrouped Left point (GEL) scheme 

(iii) Single Alternating Group Explicit (SAGE) scheme 

(iv) 

(I+A6Gl )U
j
+l 

(I+A8G2 )U
j

+2 

Double Alternating Group Explicit (DAGE) scheme 

(I+A6G
l )U

j
+l = (I-A(1-6)G

l
)u

j 
+ b

l 

1 (I+A6G2)U
j
+2 

= (I-A(1-6)G
2

)U
j
+

l 
+ b

2 

(I+A6G2)U
j

+3 
(I-A (1-6)G

2
)U

j
+

2 
+ b

2 )'""" ... 
(I+A6Gl )U

j
+4 

= (I-A( 1-6) Gl ) u
j
+3 

+ b
l 

(8.9.11) 

(8.9.12) 

(8.9.13) 

(8.9.14). 
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pdd Num"'. of fn,,, .. f, 

FIGURE 8.9.1: GE computation for hyperbolic equations 
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[\fen Number 01 Interv.l. 

FIGURE 8.9.1(cont) • 
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m Odd: 

There are (m-I) internal points which this time is even, yielding, 

(i) Group Explicit Ungrouped points (GEU) scheme 

T 
b3 = (A(l-a)uo ,+Aau

o 
'l,o, ••• ,O,-A(l-a)u ,-AaU '1) 

,J ,J+ m,] m,J+ 

(ii) Group Explicit Complete (GEC) 

(Hi) SAGE 

1\ " 

1 
(I+AeGl)U j +l 

= (I-A (l-e)Gl)U
j 

+ b
3 

1\ 1\ j=O(2) ••• 
(I+AeG2 )Uj +2 

= (I-A(1-a1G21u j +l 
) 

(iv) DAGE 
1\ 1\ 

(I+AeGl)Uj +l 
= (I-A(1-e1Gl)uj 

+ b
3 

1\ " (I+AeG2) Uj +2 
= (I-A(1-e)G

2
)uj +l 

1\ 1\ j=O(4) •.• 
(I+AeG2 )Uj +3 

= (I-A(1-e1G
2

)uj +2 
1\ 1\ 

(I+AeGl )U j +4 
= (I-A(1-e)Gl )uj +3 

+ b
3 

) 
(8.9.151 

(8.9.16) 

(8.9.17) 

(8.9.18) 

An example of the group computation ordering is given in Fig.(8.9.1) 

illustrating the independent nature of non-alternating GE schemes, which 

is attractive from a systolic viewpoint. 

First we develop a basic cell for our design, based like the 

parabolic scheme on a single level single cycle implementation using a 

linearly connected array of !(m) GE cells. Clearly (8.9.9) can be 

expressed as, 
u, 1 ' 1 = Ui_l,j + Ar 

1 
1.- ,J+ 

Ui,j+l = U
ij 

+ Ar (8.9.19) 

r = u, 1 ,-U'j 1.-,J 1. ) 

resulting in the simple arrangement of Fig.(8.9.2a), from which a number 
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Ips 

f---- preloadinq links 

a) GER, GEL, GEU, GEe cell 

lPS 

b) SAGE, DAGE cell 

FIGURE 8.9.2: Hyperbolic GE-cell 

of immediate benefits over the parabolic GE-cell are apparent: 

(i) The GE cell requires a single ips cell and two adders 

(rather than two ips used in the parabolic scheme). 

(ii) No control program is required for queueing up the cell 

operands. 

(iii) Only a single register is required to hold coefficient data. 

(iv) No points are borrowed from adjacent GE cells. 
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The cell modifications are due mainly to simplifications in the finite 

difference formula (hyperbolic rather than parabolic) and saves hardware 

and time. For example, the hyperbolic scheme requires only 2 ips cycles 

to compute a group compared with at most 6 ips for the parabolic case 

yielding the immediate speedup S =3. 
P 

REMARK: Remember that these comparisons indicate only the suitability of 

the GE problem to systolic arrays, not the choice of hyperbolic or 

parabolic equations for a problem. 

Thus the hyperbolic GE method seems better suited to systolic 

computation. The amount of area consumed by the hyperbolic cell for data 

routing is also less than that of the parabolic form. Consider the GER, 

GEL, GEU, and GEC schemes for both hyperbolic and parabolic methods. In 

the hyperbolic schemes the individual groups are disjoint, i.e. there are 

no overlapping points in adjacent groups, whereas the parabolic schemes 

computation can only proceed with point sharing. Consequently the 

hyperbolic array requires only single uni-directional connections which 

are activated only in loading (starting values) and unloading results. 

The removal of left and right data shuffling also removes all dataflow 

control yielding a simple and compact cell. 

We still have the problem of boundary cells, and a trivial observation 

of (8.9.10) shows that ungrouped point calculations require more time 

·than full groups. In a parabolic array this degrades performance as 

ungrouped points supply data to adjacent group cells. However the 

independent nature of the hyperbolic scheme, together with the concept 

of an incomplete array suggests an alternative partition of calculations 

between host/array. By assigning the boundary calculations to the host 

machine the GE-array is reduced to a GEC scheme again simplifying the 
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design. In particular: 

(i) The array can be built with a fixed number of cells (on a chip) 

(ii) The rectangular solution strip can be decomposed into k strips 

which fit the array in (i) and computed sequentially by multi

pass. 

(iii) We can linearly connect k chips tc solve the complete problem 

in parallel. 

(iv) If a strip has k'<k groups, unused cells can be padded with 

dummy values, and the independence property ensures adjacent 

(true groups) are not contaminated by invalid computations. 

These advantages are far superior to those for parabolic schemes, which 

force the array to be proportional to the width of the solution strip. 

Indeed the hyperbolic GE schemes produce an array independent of both 

the time levels and number of points along the x-axis spawning a number 

of alternative connection strategies varying speed against area. 

Snapshots of array operation for a buffer GE-array are shown in 

Fig.(8.9.3). We consider the computation of simple hyperbolic schemes 

using a "bag-of" approach. Essentially we suppose a finite number p of 

GEe chips each implementing a k cell array. We examine the computations 

associated with applying a single chip, or a parallel connection of p 

chips using buffered or unbuffered array designs. Apart from the case 

when only the final time level is required (and buffers can be removed) 

buffering implies bit parallel and non-buffering bit serial schemes 

respectively. A k cell chip can compute a strip k groups wide containing 

2k points, a region wider than this uses a number of strips each k cells 

wide. our "bag of" chips must therefore contain at least, 



BUFFER 
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.) GEe array (with starting values) for producing all results 
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u4 5 u6 5 u8 ,S u10 ,5 

cycles of the hyperbolic GEe scheme 

Notice the independence of the computation 

FIGURE 8.9.3: Operating hyperbolic GE array 

p = of 
k 
group~ 
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identical GEe chips, to solve the whole region in parallel. We consider 

the i-chip versus p-chip bag under five cases: 

(i) A GEe array with bUffers 

(ii) A GEe array without buffers 

(iii) A one chip arrangement of (i) and (ii) 
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(iv) A p-chip arrangement of (i) and (ii) 

(v) A single time level approach. 

We further suppose that for the various schemes the number of groups is 

GER } __ 
! (m-I) , 

GEL 
GEU = !(m-3), GEC = Hm-2) 

Buffered GEC: 

a) I-chip sequential (multipass) scheme 

The cost of the array is derived as follows: 

loading A parameter into k cell chip 2k cycles 

loading initial values into k cells 2k cycles 

time to fill buffer with 2b registers b cycles 

The strip is computed to time level t=t by filling the buffer rt/bl times 
z 

and consequently emptying this many times, and the buffer segment of each 

cell uses 2b cycles to empty. Thus, for k cells the time is 2bk for buffer 

load/empty; 

REMARK: Cost unit time is equivalent to two ips cycles, thus ips timings 

are obtained by multiplying by 2 to yield an ips cycle timing. A single 

group strip therefore has a time 

T = (load time) + (number of times buffer empties)* o 
[cost of buffer empty + cost of filling buffer] 

4k + It/b] {2bk+b} 

~ t(2k+l) + 2k(2+b) + b 

Thus for a multipass buffered scheme, 

Tsb ~ p[t(2k+l)+2k(2+b)+b] 

b) p-chip parallel scheme 

There are two ways to connect the p chips in parallel. 

(8.9.20) 

(8.9.21) 
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Case (a): p-chips are chained together creating a multi-chip GEC array. 

This is equivalent to a single chip with kp cells. Thus, 

T = 4kp + rt/bj {2bkp + b} (8.9.22) 
PCB 

follows from (8.9.20). 

Case (b): Each strip is solved in parallel on its own chip isolated 

from the rest yielding, 

T = T ~ t(2k+l)+2k(2+b)+b 
PIS 0 

(8.9.23) 

Unbuffered GEC: 

In this set up we assume enough chip pins to carry the results of 

k cells directly off the chip. 

a) Multipass scheme: 

No buffer loading is required, and starting values can be loaded 

in parallel, hence, 

Tl = (time for loading) + t 

= 2 + t 

Applying a single chip p times gives, 

T = p(2+t) 
sub 

b) Parallel scheme: 

Case (i) 

Case (ii) 

with chips connected serially (sequential loading) 

T ub = 4kp + t pc 

with chips isolated 

(8.9.24) 

(8.9.25) 

(8.9.26) 

Tpiub = 2 + t (8.9.27) 

As noted earlier unbuffered schemes imply bit serial computation. If 

we substitute s cycles for each cycle of a bit parallel scheme where s 

is proportional to the word length (8.9.25)-(8.9.27) are revised to yield, 

T sub = sp(2+t), T ub = s(4kp+t) and T . b = s(2+t). 
pc ~u 
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Single time level: 

In this case no buffers are required for the bit parallel scheme 

and a bit serial scheme uses its output pins only once. By shifting 

results sequentially left or right off the array the computations require 

T2 = (time for load) + (computation for t levels) + (time of unload) 

= 4k + t + 2k = 6k+t 

Hence mUltipass (T
sol

), parallel (T
pcol

) and parallel but independent 

(T . 1) are given by, 
P10 

Tsol = p(t+6k) 

T = t+6pk 
pcol 

T = t+2 
piol 

cycles respectively. 

(8.9.28) 

The isolation of groups computing ~olumns up the solution region 

admits many strategies for interleaving different hyperbolic problems on 

the same hardware. The p-chip 'bag of' is the simplest approach which 

allows p problems to be solved simultaneously with different A parameters 

in each chip - and solving problems with greater than k groups in multi-

pass. A more interesting problem is interleaving on a single chip or 

serially connected group of chips, as indicated by Fig.(8.9.4). A 

straightforward approach is simply to queue problems one behind the other 

in multipass, or along the cells, filling as many cells as possible. 

The problem here is that the last user (problem) has to wait' for other 

problems in front to be filtered through. A more flexible approach 

would be a simple interleaving strategy to give all users a reasonable 

response time. Clearly the time of array operation is computed by 

substituting k=(sum of all groups) in the above timings. 

The hyperbolic scheme is also well suited to fault tolerance as 
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Fig.(8.9.S) demonstrates. For buffered and serial loading schemes there 

is only a single unidirectional line used only in preloading. This 

single line makes re-routing around faulty cells simple, and allows chip 

performance in conjunction with multipass computation to degrade 

gracefully. For a bit serial or unbuffered approach where loading/ 

unloading proceeds in parallel no re-routing is required, and faulty 

cells can simply be discarded. 

Finally we consider the Alternating Group Explicit forms of the 

hyperbolic GE method. Like the parabolic AGE the hyperbolic forms can 

be implemented with linear arrays that shift group data left or right, 

overwriting points in adjacent cells to provide alternation. A simple 

cell for hyperbolic AGE is shown in Fig.(8.9.2b), clearly the alternation 

of GER and GEL schemes provides a patchwork pattern across the region 

(see Fig.(8.9.1)). This re-establishes the group dependency relationships 

demanding that: 

(i) All level t is computed before level t+l can start. 

(ii) Boundary calculations must be included in the array 

(requiring a larger cell cycle time) 

and preventing: 

(i) Interleaving of problems 

(ii) Multipass computation 

The latter 'features an extremely a~tractive. implementation character

istics. A final design must balance the use of flexible, fast, and fault 

tolerant non-alternating GE arrays against the restrictive AGE method 

with unconditional stability (larger stepsizes) hence reduced cells and 

level calculations. We conclude that hyperbolic GE methods offer greater 

opportunities forhard-systolic devices than the corresponding parabolic 

problems. 
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a) QUeueing of multiple problem instances 

b) Interleaving of problems 

FIGURE 8.9.4: Problem interleaving 

a) Faulty cells 

b) Routing around a faulty cell 

FIGURE 8.9.5: Fault tolerance 
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8. 10 SUMMARY 

The main objective of this chapter has been to challenge two basic 

premises currently adopted for solving P.D.E.'s, which can be summarized 

in the form of the following two questions: 

(i) Is the algorithmic or geometric interpretation of an algorithm 

the best approach to solving a P.D.E. in parallel (in particular 

by systolic arrays)? 

(ii) Can a fast, area efficient parallel and conditionally stable 

design outperform slower unconditionally stable alternatives? 

To illustrate the discussion we considered the solution of the l-D (heat 

conduction) and 2-D (unsteady diffusion) parabolic problems, with particular 

emphasis placed on the l-D case due to its simpler form. 

In order to answer the first question we discarded a linear algebraic 

formulation of the P.D.E. problem interpreting the grid points of the 

solution region as a tableau of elements to be generated or modified .. by 

use of computational molecules relating the grid elements. In the case 

of the l-D problem an open ended table was apparent, implying table 

generating techniques (from Chapter 7) were applicable and gave rise to 

three main types of array. 

(i) Non-stationary array: A design using a cascaded linear array based 

on the intuitive iterative algorithmic solution of linear systems, and 

which acted as a benchmark for other l-D designs. The principle attribute 

of the array being the non-stationary movement of successive time-level 

approximation from the same grid column through the array. 

(ii) Column-by-column array: Here column i of grid point approximations 

remained stationary and tied to cell i of the linear array. The problem 

was similar to the generation of an open ended trapezium type table. 
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Basic cells used the asymmetric molecules of Saul'ev [64J, to implement 

a systolic marching technique. 

(iii) Row-by-row array: Again a stationary array with columns 2i-l and 

2i, i=l(l)!(m) tied to cell i of the array. The problem used a rectangular 

table generation pattern producing a single table row (or time level) 

every cell cycle. Basic cells utilised the unified Group Explicit (GE) 

molecule of Evans & Abdullah [83bJ. Similarly for the 2-D case three 

types of design were considered for manipulating the regions grid points. 

(i) A non-stationary array: Another cascaded iteration array derived 

from the algorithmic formulation of an iterative matrix problem derived 

from the 2-D finite difference approximation and used for benchmarking 2-D 

systolic designs. 

(ii) A wavefront processor: Using the 2-D asymmetric approximations and 

occurrring in two forms: 

a) A 2-D mesh with highly efficient pipe lining of wavefronts, and 

useful for fast calculation up to a certain level t with no 
z 

intermediate output. 

b) A 1-0 linear asymmetric marching processor (LAMP) which reduced 

hardware by mUltipass simUlation of a) with each pass a single 

wavefront. This array had the natural capability of outputting 

all intermediate time levels up to and including t • 
z 

(iii) A mesh scheme: which adapted the Group Explicit molecules to 

achieve full parallel operation of processors, and appeared in two forms: 

a) A 2-D mesh of reduced instruction set p+ocessors, evaluating 

a single table update in one cell cycle. 

b) A 1-0 array of macro GE-cells (incorporating a systolic ring) 

and computing molecules according to a generalised molecule 
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template. Table updates were achieved by multipass with one 

update per pass. 

For t levels and m divisions along the x and y-directions the I-D case 
z 

2 
had m-l and the 2-D case (m-I) initial values. The cascaded schemes 

required O(m+t ) ips cycles and O(t ) basic ips cells in the I-D case, 
z z 

2 
and O(m +t ) ips cycles and O(mt ) basic ips cells (neglecting synchronising 

z z 

delay cells) for the 2-D case. In contrast the asymmetric molecule arrays 

required O(m) and o(m
2

) basic ips cells for the 1-0, 2-D (LAMP) and 2-D 

wavefront scheme respectively, and apart from the LAMP array with O(mt ) z 

time had the same order of magnitude in timings. Thus, the algorithmic 

schemes favoured wide regions with few time levels, the geometric forms 

narrow regions with many levels to optimise the array speed/area tradeoff. 

Consequently, by fixing m, for any substantial calculations with a 

significant number of time levels and adopting a geometric approach area 

savings followed immediately. The actual cell savings depended upon the 

number of iteration arrays included in the cascaded array. For a fixed 

:':[:;j(::,:::<:::o:([~]::,::::~) ,::"'::';::':"':.,::':::::."::',:::::: 
that for finite hardware the geometric schemes run faster and seriously 

challenge the intuitive algorithmic arrays. 

Now having established the answer to our first question above the 

next logical step was to produce the 'best' geometric array. For 

purposes of argument we define the 'best' array to be one which: 

1. improves the accuracy of grid point approximations 

(i.e. reduces approximation error) 

2. reduces computation time and array area further. 

1. is controlled by the truncation error terms associated with the finite 
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difference approximation used to model the P.O.E. For instance the 

1 2 2 
asymmetric forms had truncation errors o(at+h +~) and O(ah+Sh+~+h ) for 

the 1-0 and 2-D problems respectively, where h=stepsize in the x-direction 

and ~ the time step, a,S suitably chosen parameters. 2. is dictated by 

the simplicity of the computational molecule and the sizes of t and m. 
z 

Clearly reducing t and m to speedup and compact the arrays requires 
z 

increases in ~ and h which in turn increases the approximation error of 

the asymmetric computations. Likewise reducing h and ~ to provide more 

accurate results increases array time and area. Hence 1. and 2. provided 

conflicting goals. We resolved the problem by alternating the application 

of asymmetric formulas which retained the simple molecule-cell structures 

and improved accuracy because. of truncation error term cancellations 

(due to opPOsite signs). For the 1-0 case alternation had the unfortunate 

effect of sequentialising array computations yielding low processor 

efficiency and making the algorithmic scheme attractive again. To over-

come this difficulty the Group Explicit (GE) methods of Evans & Abdullah 

[83b] were adopted and new arrays developed, using a hybrid molecule 

consisting of unified asymmetric molecules. The loosely coupled structure 

of the GE methods allowed parallel operation of array cells yielding high 

efficiency while retaining truncation term cancellations to maintain 

accuracy, at the expense of a more complex basic cell. Various types of 

array corresponding to positioning of grouped and ungrouped mesh points 

were developed, and alternating Group Explicit (AGE) arrays devised 

implementing an unconditionally stable method. Simple data shuffling 

and cycling operations were then introduced and the principle of cell 

unification applied to derive generic 1-0 and unified 2-D arrays, 

implementing all the GE techniques. The former 1-0 scheme adopted simple 
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left/right data shifts, the 2-D method adopted a universal molecule 

template evaluated by accumulating terms on a systolic ring. As the 1-0 

molecule fitted the 2-D molecule the unified array could also be used to 

simulate the 1-0 computation. 

Next we produced FAST arrays based on restricted choices of t and h, 

2 
with r=i/h , the above asymmetric formulae can be shown to be unconditionally 

stable for r~O. Likewise the simple GE schemes are conditionally stable 

for r~l, and the AGE methods again unconditionally stable. By restricting 

r=l approximating equations and hence molecules are simplified with 

terms disappearing altogether and coefficients involving r becoming 

constant. The FAST AGE array followed naturally, yielding a speedup 

S =6 over the general arrays, from simplifying cell computation. However 
p 

fixing r also fixed the truncation error. Consequently the array speed 

increase was used to offset the larger stepsizes achieveable by the 

general scheme by constructing more accurate approximations to a number 

of intermediate levels. It followed that for r~S the FAST AGE out-

performed the general AGE array. 

Fixed r values, where molecule terms disappeared also gave rise to 

incomplete versions of the P.D.E. solvers, using the hopscotch technique 

(Gourlay [70]), in which only part of the whole solution region was 

produced. Omitted grid-points being placed in positions where they 

could be easily derived from array results. The technique was discussed 

and arrays described for the ODD-EVEN, l-point and 2-point (FAST AGE) 

hopscotch schemes. The ODD-EVEN method produced an unconditionally stable 

array by using a unified 2-point molecule derived from sequential 

application of the classical explicit and implicit formulae. The array 

computed at the same speed as the AGE array but had truncation error of 
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2 
O(~+h ) making it less accurate. The l-point scheme adopted the classical 

explicit molecule (conditionally stable for r~l) with r=l and truncation 

2 
error O(~+h ), and produced a speedup of S =12 over the ODD-EVEN and AGE 

p 

arrays while using only lm inner product cells. The speed-up was again 

interpreted as a method of computing more accurate intermediate levels 

allowing the conditionally stable scheme in some instances to outperform 

the unconditionally stable schemes. The same array compact ion technique 

was then applied to the 2-point or fast AGE scheme also saving half the 

hardware. 

Next the simple form of the l-point hopscotch scheme was exploited 

to derive proposals for a hard-systolic implementation of the parabolic 

solver by bit parallel and bit serial computation strategies using fixed 

point arithmetic. The former scheme required buffering of input and 

output •. The latter scheme producing an area efficient unbuffered cell 

structure - suggesting a FAST chip based design was possible. 

Finally we considered the extension of the method to a simple first 

order hyperbolic equation which exhibited attractive VLSI design features. 

The derived group explicit molecule produced a fully decoupled approach 

to computation where pairs of individual table columns could be evaluated 

independently. This resulted in a decoupled collection of GE cells 

requiring communication only for the loading of initial values. It 

followed that a hyperbolic equation could be solved by multipass on a 

fixed sized architecture (independent of both t and m), and that a 
z 

collection of problems could be solved in parallel by interleaving group 

columns of different instances on the same array. These attributes 

together with a uni-directional loading strategy combined to indicate a 

fault tolerant design which would degrade gracefully as individual cells 

became faulty. 
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We conclude that the geometric approach to solving P.D.E.'s is 

not only suited to soft-systolic frames but produces genuine proposals 

for hard-systolic implementations. 



CHAPTER 9 

TOWARDS A GENERAL SYSTOLIC COMPUTER 

"I couZd have done it in a much more complicated 

way'~ said the Red Queen, immenseZy proud. 

LEWIS CARROLL. 
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The recent trends towards the development of more general systolic 

architectures such as the WARP system (H.T. Kung [84a), wavefront array 

processor (S.Y. Kung [84) and the unified arrays of the previous 

chapters emphasise the importance of developing soft-systolic algorithms 

in the form of micro-programs and generic arrays, for related problems. 

The aim of this chapter is to investigate the compatibility of 

some well known computing structures, by use of simulation techniques 

and virtual machines, to a common architecture. To this end a soft

systolic program simulation system (SSPS) is introduced as a working 

model of a virtual machine (the Instruction Systolic Array (ISA» with 

the power to simulate many hard-systolic, wavefront SIMD and some MIMD 

algorithms. 

The emphasis is not on producing special purpose systolic 

algorithms which require restricted special purpose architectures, but 

executing parallel programs on a fixed underlying architecture 

systolically. Consequently, specially constructed algorithms are 

devised for the virtual machine which map easily onto the real machine 

environment. 

9.1 THE INSTRUCTION SYSTOLIC ARRAY 

In Lang [85) the Instruction Systolic Array (ISA) was proposed as 

a new parallel architecture capable of exploiting VLSI technology. 

Contrasting with conventional systolic arrays, the ISA pumps 

instructions rather than data through a mesh connected array of 

processors. Each processor is capable of executing instructions from 

some instruction set. Consequently, while a systolic array realizes 

only one special algorithm (or a collection of related problems in a 
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generic array}, an ISA can implement a wide range of parallel algorithms 

defined as ISA programs. 

Now, in the MIMD concept of parallelism, all the processors of a 

given array (denoted PA) can execute different instructions. If the 

2 
array consists of n independent processors each containing a control 

2 
store, a PA program can consist of up to n different programs. These 

programs must be distributed over the array before the PA program can 

be executed, in contrast on an ISA the program is executed as it filters 

through the array. Consequently it is easier to execute a.pipelined 

sequence of programs using an ISA than a PA. 

More formally, define a basic model for a parallel computer as a 

2 
mesh-connected array of n identical processors, synchronised by a global 

clock. The processors execute instructions from the same instruction set, 

with the execution time of all instructions bounded by the most complex 

operation. In addition each processor contains some local memory and a 

communication register (CR). 

Fetch 
Instruction i 

read 
data 

An instruction cycle has the form, 

Execute instruction 

compute write 
data 

with communication occurring in mutually exclusive fashion to prevent 

overwriting of the communication register before a processors' nearest 

neighbours have had chance to read it. During the read phase, if a 

processor requires data from one of its nearest neighbours it simply 

takes the data from the relevant CR. Consequently only five processors 

(including the PE containing CR) can read from the same register 

simultaneously. 

Three types of parallel machines which differ only in the way 
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control information reaches processors are now easily defined. 

(i) The Processor Array (PA) 

Where each processor has its own control store (as mentioned above) • 

(ii) The Instruction Broadcast Array (IBA) 

Processors use a simple control unit but no control store. Instructions 

are broadcast to all the cells in the same column, and selector 

information (0,1) is broadcast to processors of a row. If I, is the 
J 

instruction of column j, and Si is the selector of row i processor Pij 

performs operations according to, 

= {Ij iff si=l 

no-op iff s,=O 
1. 

(iii) The Instruction Systolic Array (ISA) 

Identical to the IBA except that instructions and selectors are retimed 

so that they are pumped systolically through the array. Instructions 

moving row-wise north-south, and selectors column-wise west-east, where 

no-op is an operation contained in the instruction set I which does not 

modify the processors memory contents. 

Next, let PA , IBA and ISA be arrays with side n (see Fig.(9.l.l)) 
n n n 

and define the concept of a program on each machine as follows. 

(1) (2) (r) 
A program on a PA : is a sequence p ,p , w • • ,p of nXn matrices 

n 

over I, such that for all i,j~n and t~r the instruction executed by 

(t) 
processor (i,j) at time t is Pij • 

(1) (2) (r) 
A program on an IBA: is a sequence p ,p , ••• ,p of n-tuples 

n 
(1) (r) 

(vectors) over I and a sequence s , ••• ,s of n tuples (vectors) 

over {O,l} such that for 

broadcast to column j and 

all i,j~n and t~r p~t) is the instruction 
J 

(t) 
s, is the selector information broadcast 

1. 

to processors in row i at time t. 
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n 

a) Processor array (PAn' 

Instructions 

n 

b) Instruction broadcase array (IBA) 

Instructions 

n 

c) Instruction Systolic array 

FIGURE 9.1.1: Three models of parallel architectures 



Alternatively processor p(i,j) executes according to, 

p(i, j) = { p;t) iff sit)=l 

NO-OP otherwise 
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(1) (r) 
ISA : is again a sequence p , ••. ,p of n-tuples over 

n 
A program on an 
-------("'"17) (r) 
I and sequences s , ••• ,s of n-tuples over {O,l}. But for i,j~n and 

t~r, p(t) is the row of instructions entering the ith row at t+i-l, 

and s(t) is the column of selector information entering the jth column 

of the ISA at time t+j-l. That is, processor p(i,j) performs as, 
n 

p(i,j) = { 
(t+i-l) iff si(t-j+l) 

Pj 

NO-OP otherwise 

1 

at time t. Finally program execution terminates after the last row of 

instructions p(r) has entered the first row of ISA processors. Thus if 

(r) 
p must filter through to the last row, n-l rows of ne>-ops must be 

appended to the program. 

REMARK: The definitions are easily extended to rectangular grids denoted 

PA ,IBA and ISA with simple modifications to i,j indices, where 
m,n m,n m,n 

m;ln. 

Now denote p as a program on a PA , IBA or ISA then the execution 
n n n 

time of p is equal to the length of the program and denoted by T(p). 

Furthermore if C(k)=(c .. ) is the nXn matrix where c~~)=eR contents of 
L) L) 

processor p(i,j), program p is simulated by a sequence of snapshots 

c~~), k=O(l)r where e(O) is the starting state of the grid and e(r)=e(T(p)) 
L) 

is the final result image. 

Input and output to the grid occurs whenever processors read or 

write to non-existant processors around the mesh boundary. The input 

of a program is then defined as a sequence of 4n-tuples (an n-tuple for 

each boundary) which are read during the execution of p. Likewise the 
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output of p is a sequence of 4n-l tuples output from the boundaries 

during execution ofp. Observe that there can be at most T(p) input, 

and T(p) output (4n-l) tuples. 

TO conclude the descriptions of the machines we define the idea 

of program equivalence. For two programs p and q on PA , IBA , or ISA 
n n n 

we can call programs equivalent if they contain one of the following 

attributes. 

(i) INTERNAL EQUIVALENCE: If for the same initial conditions c(O) , 

CT(p) CT(q) f id " 1" = or entlca lnput sequences. 

(ii) X V f f th " " "1 d" i (0) ETERNAL EQUI ALENCE: I or e same ~n~t~a con ~t ons C , 

the boundary output sequences are equivalent. 

(iii) STRUCTURAL EQUIVALENCE: The intermediate operations of p and q 

can be mapped onto each other. 

Using these definitions Kunde, Lang, Schimmler, Schmeck & Schroder 

[85l have derived bounds on simulating a program on one architecture by 

an equivalent program on another. For completeness we state these 

results as properties characterising program equivalences, in the 

following table. 
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Property 
Program Transformation 

Conunent 
Length p on-t q on Time relation 

i 
I 

T(p)=T(q) Generally 1 - ISA or PA no 
IBAn n speed-up 

n 

2 - PA IBA T(q) ~ (n+l)T(p) 

) 
Worst 

n n 
case 

3 r>O PA IBA T (q) >. (n+l) T (P) IBA 
n n simulation 

4 - IBA ISA T(q)>.3T(p)+ Asymptotic n n 2n-2 
time 

5 r>O IBA ISA T(q) is in 
complexity 

n n fl(T(p)) 
the same 

6 - PA ISA T(q)~(n+2)T(p) 

J 
Bound on n n +2n-2 ISA simulation 

7 r>O PA ISA T(q)~(n+2)T(p) 
of PA 

n n 

8 - ISA IBA T (q) ~ (n+l)T (p) 

I Reverse of n n 2 -n +n 4,5 does 
not hold 

9 r3n ISA IBA T(q)=fl(n)T(p) 
n n 

TABLE 9.1.1: Sununary of program transformations on PA , IBA and ISA 
n n n 

The main result is that an arbitrary program that runs on an nxn 

mesh connected parallel computer in k steps can be transformed into an 

ISA program with O(nk) steps. The basic technique to the proofs is to 

simulate the PA program by the.IBA and then retime the equivalent IBA 

program to produce the ISA version. An intuitive method for simulating 

(t) 
a program p on a PA by a program on the IBA is to simulate every p 

step of p by n steps on the IBA. Generally for the ith step only the 

ith row of the array is selected and the ith row of p(t) broadcast to 

the array. However, if row i reads data from row i-I of the array it 
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is possible that the updated contents of the communication registers 

instead of the old values will be used. Consequently, to preserve 

computation it is necessary to save the contents of the old communication 

register until all a processors neighbours have had a chance to read it. 

The solution is to augment the IBA processors with a register Rand 

flag F, such that results of calculations are placed in R and the Flag 

F set at the end of an instruction cycle. A special copy (C) command 

is introduced which copies R to CR and resets F. (t) Thus p is simulated 

by n+l steps including a copy command at the end of the step to overwrite 

all the communication registers. 

REMARK: As the ISA is simply a re timed IBA, the copy command must also 

be incorporated into ISA programs. 

Fig.(9.1.2) illustrates the control flow for an ISA program • 
.--

0 

0 C 

0 C pll 

0 C p,(2) 0 

C P2
121 0 C 

P1
12 0 C p.11 

0 C P,f1I 

C P2111 

P 111 ,,- l 
, , S,'2 , , Is,'" 

, , 52
121 , , 52

11 

-+ , , $,'21 , , 
S3

C1 

I ' , S.,21\ ' , S4" 

FIGURE 9.1.2: Control flow in an ISA program 

It should be clear programs transformed from PA or IBA are essentially 
n n 

intuitive mappings and that faster more efficient algorithms may be 

derived by dealing with the ISA from the outset. Where special ISA 
n 
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programs prove difficult to design or unwieldly it is comforting to 

know that a straightforward program transformation from an existing 

architecture is available. 

Finally, to conclude this section we consider a simple example of 

k transposing an nXn matrix where n=2 on the ISA (Lang[85). The 
n 

algorithm proceeds iteratively transposing 2jx2j-subarrays j=l(l)k, and 

is defined as follows, for j=l, a 2x2 subarray is transposed by exchanging 

elements in the upper right and lower left corners. This requires 

three steps: 

(i) swap 1st row elements 

(ii) swap 1st col. elements 

(iii) swap 1st row elements (again) 

For j>l, a 2
j

X2 j block array is transposed in 4 steps: 

(i) 
j-l j-l 

transpose the 2 x2 sub-arrays 

(ii) exchange the two upper sub-arrays 

(iii) exchange the two left sub-arrays 

(iv) exchange the two upper sub-arrays. 

Fig. (9.1.3) illustrates the development of an ISA program for transposing 

an ax8 matrix, where, 

read right (left) processors CR value and 

place it in own CR. 

as above except read upper (lower) processors 

c==J : no-op 

Thus ~ ~ are equivalent to swapping processor elements. 

The program is easily generalised to the nxn case. 



• 

ISA prograJI tor exchangln& the two 

upper _x_ subarrays ot an 8x8 array 

ISA program for transposing 

a 2x2 ~lrJx (e~pty instruction 

boxes denote NOPs, empty selector 

boxes denote O's) 

• 
ISA program tor transposing an 8x8 .atrlx 

FIGURE 9.1.3: ISA transpose program 

ISA 

9.2 THE n-SPACE ISA AND MULTI-TASKING OF SOFT-SYSTOLIC PROGRAMS 

726 

If we consider the classification of parallel computers by Flynn 

[72] the PA , IBA and'ISA have to be classed as MIMD machines. This 
n n n 

follows because a number of different instructions can be executed 

simultaneously on different rows and columns hence data streams of the 
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mesh. Furthermore, since the processors in an IBA or ISA do not 
n n 

require central stores they lie closer to SIMD-type architectures than 

MIMD machines. Thus, the ISA represents a type of hybrid machine, 

somewhere between SIMD and full-MIMD. It follows that soft-systolic 

programs and frames can be easily extended via the ISA to link with 

these wide classes of problems, and from this viewpoint it is essential 

to characterise the power of the ISA machine. 

We can define a full SIMD-program on a PA as a sequence of 

instruction matrices which consist only of identical instructions, 

implying that these problems are easier to simulate on the IBA and ISA. 

Hence, 

Theorem 9.2.1a: (Kunde, Lang, Schimmler, Schmeck, Schroder [85]) 

For every full SIMD-program on a PA there is an equivalent program 

on an IBA having the same time complexity. 

Proof: 

(t) 
Each program vector p in the IBA program is a simple repetition 

of the instruction in step t, with all selectors 1. 

Theorem 9.2.lb: (Kunde, Lang, Schimmler, Schmeck [85]) 

For each full SIMD-program p on a PA or IBA there is an equivalent 
n n 

program q on the ISA with T(q)~3T(p)+2n-2. 
n 

Proof: 

The simulation of SIMD-programs on an ISA introduces the same 

problem for arbitrary program simulation, as instructions executed 

simultaneously by neighbouring processors of the PA or IBA will be 

executed consecutively on the ISA. 

in Table (9.1.1) suffices. 

Thus, the IBA ISA transformation 
n n 

Next we can define a PARTIAL SIMD-program on a PA or IBA, where 
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the instruction matrices consist of just two types of instructions, 

a no-op and one from the processor instruction set I. 

Theorem 9.2.2: For every r there is a partial SIMD-program p on a PA 
n 

with T(p}=r such that for any equivalent program q on an IBA , 
n 

T(q}~(n+l}T(p}. 

Proof: 

A partial-SIMD program is a simplified MIMD-program and as such 

requires a full transformation like property 3 of Table (9.l.l), 

yielding the time immediately. 

This implies that partial-SIMD programs cannot be simulated faster 

on an IBA than arbitrary programs. However a subset of partial SIMD
n 

programs can be simulated with the same speed as full SIMD-programs. 

These problems are termed vector-orientated SIMD programs and like the 

partial SIMD programs consist of just two instructions (including the 

no-op). But in addition theno-opoccurs only in complete rows or 

columns of the array. 

Theorem 9.2.3: (Kunde, Lang, Schimmler, Schmeck [85) 

For every vector-oriented SIMD-program on a PA there is an 

equivalent partial SIMD-program on an IBA having the same time 

complexity. 

Proof: 

(t) To transform a PA program step p with an instruction b/no-op 

in it to an equivalent IBA step we set, 

{ b if column j in (t) 
is not a complete no-op column (t) p 

Pj = 
no-op otherwise 

and put, 

{ 1 if row i is not a complete no-op row (t) 
Si 

otherwise 0 
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Ho.1 Control Unit 

Multiple Data Stream 

4) 1-0 organization of SIMO computer 

b) 2-D simple SIHD parallel computer c) Processing element 

FIGURE 9.2.1: Organization of SIMD machines (from Umeo[82) 

Next consider the class of simple-SIMD algorithms, defined in 

Umeo [85a) as ones in which the SIMD processing surface is limited to 

a linear array of processors. The class of simple-SIMD algorithms 

consists of many interesting problems including sorting, image-

processing, and graph algorithms as well as other conventional SIMD 

algorithms. In Umeo [82), Umeo & Sugata [82), Umeo, Morita, Sugata [82) 

and umeo [85a,b) the mapping of simple SIMD and 2-D SIMD algorithms onto 
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systolic arrays has been investigated and characterized, the conclusion 

was that SIMD algorithms can be simulated on systolic arrays without 

much loss of efficiency. The complexity of the systolic array simulation 

is measured by summing the systolic cycles required to load data, 

execute the programs and output the results, and is achieved as follows 

(for a simple SIMD algorithm). 

Theorem 9.2.4: (Umeo (85)) 

For any simple SIMD machine M with time complexity T(n) there 

exists a systolic array A which simulates M in 2T(n)+3n+0(1) steps. 

Proof: 

Without loss of generality we assume that M has n processing 

elements (PE'S) each with a single data register (the method is easily 

extended to more data registers). Let a
i 

be the data preloaded into PE
i 

and It the instruction broadcast to each PE by the SIMD machines control 

unit. Then l~t~T(n) and the array is organised as follows: 

(i) There is a buffer B=l input Bin and 1 output register Bout. 

(ii) A total of n+l systolic cells c
i

' i=O(l)n containing: 

(Ui) 

(iv) 

a) 

b) 

c) 

d) 

an address register R 
a 

working registers R., i=1(1)4 
~ 

a processor to decode and execute It 

auxiliary registers: 

11 to pipeline the data instruction right 

I
2
,I

3 
book-keeping registers, with I3 doubling 

up as the data output register shifting results 

left. 

c acts as a boundary cell 
n 

Data to A is supplied as a joint instruction, data format, 
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y=end of input 

6=spacing dummy input 

Data is input at the rate of 1 symbol per step through Bin' Initially 

B =a, and each instruction is input at the rate of one every two steps. 
in 0 

The cells can be in one of three states loading, computing, or output, 

and the current state is stored in R
4

• The state is controlled by 

signals tagged to symbols moving into the cells. When the terminator 

reaches cell c a reset symbol is propagated left to clear the array 
n 

for a new problem. 

Pb ... UI (t. e+l. e+2 ••••• e ... )1 ":(1) " .0 .n' 1~"'(I) •• 0_11. 

I t tta·· I 
Pb ... (II) , (t. e+l. e+2 ••••• t+" 'IU) ".11 ••• 'I (I). ~T(n) • 

fba .. (lll), (t. \+1. e+2 ..... e+y)( ':(1) .. is .n4-.!~+Y(l) • :: I. 

~D.'. 

Oulpul Oala . 
• 

s.~ .... 

S)/5tollc: Afra)/ 

IzO 

'Tim~ 

Loading 

Oulputling 

FIGURE 9.2.2: Time-space diagram for the systolic simulation of 
simple SIMD machine (Umeo [82]). 
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A primitive mask facility is provided by adding an address field to the 

data. This address is compared with the cell addresses and if equal 

masks out the cell for that cycle. 

We can easily fit the simulation of the systolic array on a single 

column of ISA cells as follows. 

Theorem (9.2.5): Any simple SIMD machine M with time complexity T(n) can 

be simulated by a virtual systolic array A on the ISA in 2T(n)+3n+O(1). 

Proof: 

Map the systolic array A in Theorem (9.2.4) onto a column of ISA 

cells assuming the ISA has an nxn grid. Next set the selectors 

permanently true for each row i=l(l)n and define the systolic array cell 

as a virtual processor. For this we just implement the interpretations 

of It and perform the address comparison, to implement the mask. The 

column structure and data/instruction format is as shown below, the 

instruction P sets the address register of the cell it enters to the 
n 

data input with P (i.e. 1 in cell 1) and the value incremented before 
n 

being passed on. 

Thus each cell has its address register set before any of the real 

instructions reach them. 

From this theorem it is clear that no horizontal data movement 

can occur, and the above result can be extended as follows. 

Theorem (9.2.6): An nxn ISA grid can simulate n simple SIMD machines 

M. with time complexities T.(n) for i=l(l)n in a total time 
1 1 

T=2 max(T.(n»+4n+O(1). 
1 

l~i~n 

Proof: 

Make an ISA program where each instruction column (including data 
n 

loading) represent a separate simple SIMD program. For an ISA grid it 
n 
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SPOOLER 

DATAlN. DATAOUT 

selector 4x4 column of ISA 

1 1 

1 1 

1 1 

1 1 

• •• 
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• • • 

• • • 

VIRTUAL 
SPOOLER 

DATA FORMAT 

Here 

Instructions 

Data 

p 
n 

• set address to datain 
increment data in 
set state dat;.a 

Pn-l-P t '" read data, Po set state instructions 

It tal(l)T(n) Instruction from processor instruction set 

6 '" padding element 

Hi • i=l(l)n address of cell to mask out (address zero disables mask) 

y • terminator. set state output 

FIGURE 9.2.3: Mapping of systolic array to ISA column 
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follows that the time must be bounded by the cost of the longest 

running program plus an extra n cycles to push selector vectors through 

all the columns of the grid before starting each simulated machine. 

It also follows that Umeo's simulation of simple S1MD machines is 

a special case of vector-orientated SIMD programs representing a single 

task (program) systolic simulation theorem. Alternatively the columns 

of no-ops in vector-orientated S1MD programs can be interpreted as 

vacant columns not running a simulation. Thus Theorem (9.2.6) is a 

multiple task (soft) systolic simulation theorem. Consequently the 

results of Umeo [85] can be extended to the multi-tasking of simple 

SIMD soft-systolic simulations to provide a multi-programmed environment 

using the ISA. 

Theorem (9.2.7): (The multi-sequential task systolic simulation theorem). 

Let M,. i=l(l)k be any simple S1MD machines, each with time 
~ 

complexity T, (n) with the same instruction set (or a subsetl then there 
~ 

exists a systolic array A which simulates the M,'s, i=l(l)k in, 
~ 

k 
T = 2 L Ti(n) + 3kn + 0(1) steps. 

i=l 
Proof: 

Simply produce large streams of column data and instructions with 

the form, 

1 1 1 1 
aOal • •• a n_l 11 ° 

1 1; 
12", OI

Tl 
(n) 0 ••• ° 

2 2 2 2 2 
aOal···an_1IloI2°··· 

~ "'---v--J . • ~ 
Ml 2n M2 

000 ••. 0 
k k k k k o ••• k 

aOal 
a

n
_l 11 01

2 
I 

3k(n) 

2n Mk 

Now each ISA column simulates a sequence of pipelined machines. 
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Theorem (9.2.8): (The multi-parallel task systolic simulation theorem) 

Let M
ij

, i=l(l)k, j=l(l)n be any simple SIMD machine, each with 

a time complexity Tij(n) with the same instruction set then the ISA can 

simulate the Mij in a time, 

T= m~ 

Proof: 

k 
(2 I T'j(n» + n(3k+l) + 0(1) 

i=l ~ 

By extension of Theorem (9.2.6). 

Clearly from Theorem (9.2.5) any machine is simulated in 2T(n)+3n+0(1) , 

thus a whole column of k machines requires, 

k 
I [2 T

ij
(n)1+3nk+0(1) = 2 

i=l 

k 
I Ti,(n) + 3nk+O(1) 

i=l J 

for some l~j~n. Allowing n steps to filter selectors through the array 

produces the timing, 

T=m~ 

l~j~n 

k 
(2 I Ti,(n» + n(3k+l) +0(1). 

i=l J 

REMARK: Theorems (9.2.7) and (9.2.8) can be speeded-up by overlapping 

input and output of machines and interleaving two machine sequences so 

as to fill the neutral instruction elements. 

We conclude that the instruction systolic array is at least as 

powerful as SIMD-machines. Infact for many cases where the original 

array machine simulated is of SIMD-type the ISA can simulate it with 

0(1) delays. Clearly if the MIMD program can be re-written as a collection 

of simple SIMD programs we can simulate the MIMD problem using multi-

tasking. This has repercussions for traditional systolic arrays with 

a collection of cell types which can be partitioned to yield SIMD-type 

procedures even though the array should be classed as MIMD (e.g. back-

substitution arrays with two cell types). 
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The ISA as described is capable of simulating only restricted 

forms of the MIMD model which have simple control flow. For more 

complex program traces allowing conditionals and loops whose terminator 

conditions are set by internal loop calculations the ISA encounters 

difficulties. This implies that the SIMD structure of the ISA is too 

restrictive. However, the control information delivered to each 

processor consists of two parts, the instructions propagated down 

columns and selectors propagated along rows. A simple generalisation 

of the control scheme is observed directly. Processor (i,j) can be 

re-defined to execute composite instructions of the form aib
j 

where a
i 

is a prefix arriving along the row i and b
j

< along column j. 

If A and B are two sets of instructions such that IAI=kl and IBI=k2 

and 0 EA, 0 E B denotes AB=no-op then at most (kl-l) (k
2
-l)+1 

instructions can be encoded. An ISA
n

(k
l

,k
2

) represents the modified 

mesh array and ISA
n

(2,k
2

) is clearly the original ISA. The generalised 

scheme gives a better opportunity for implementing MIMD algorithms, 

because we can now implement simple conditionals by using vertical 

instructions as true program branches and horizontal instructions as 

false (else) branches. The increased number of no-op combinations 

providing more flexible masking facilities. By logical extension we 

can create more complex control arrangements, increasing the dimensionality 

of the array, providing further directions in which to pump instructions. 

For example, the 3-space ISA follows naturally by extending the 2-D mesh 

to an orthogonally connected cube. A processor now contains 6 data 

inputs, 6 data outputs, and three instruction input/output connections 

as illustrated overleaf. 
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Control flow occurs in three orthogonal directions, and instructions 

are constructed from three sets Al ,A2 ,A3 with IAl i ;kl IA21 ;k2 and IA31 ;k3 , 

allowing at most kl .k
2

.k
3 

different instructions (including no-ops). 

These three sets could then be used to form composite instructions or 

evaluate conditionals of the form, 

IF CONDl THEN 

{INSTRUCTION SEQUENCE} 

ELSE 

{IF COND2 THEN 

{INSTRUCTION SEQUENCE} 

ELSE 

{INSTRUCTION SEQUENCE} 

} 

- Encoded by Al streams 

- Encoded by A2 streams 

- Encoded by A3 streams 

Allowing more complex MIMD programs to be implemented. 

Generalising the concept produces an n-space ISA with no geometrical 

interpretation, but which produces control flow in n mutually orthogonal 

directions defining instructions sets Ai' 
n 

i;l(l)n of size IAil;ki and 

TTki instructions. Clearly the analysis of control flow for programs 
i=l 
becomes increasingly complex, as does the connection network of processors 
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- limiting the technique severely. The interesting thing about the 3-

space ISA is that it easily reflects the SIMD and MIMD type program 

mappings. For instance, consider any plane of processors of the form 

(i,c,k) where c is a constant, and i,k=l(l}n, choose IAll=IA21=2 to 

produce selectors setting s2 to be a sequence of matrices containing 

only l's - the 2-D ISA
n

(2,k3} is produced. Likewise restricting SI to 

a matrix also full of ones and restricting the processors to (c
l

,c
2

,k) 

where c
l

'c
2

>o are constants produces a simple SIMD simulator (or l-D 

array). 

A plane in the directions (i,j,c) for c>O and i,j=l(l}n and SI 

and s2 full of l's produces the popular PAn model of an MIMD machine. 

The PA program p then consists of a sequence of T(p} matrices extending 
n 

in the k direction and coincides with the program store of normal MIMD 

machines. 

Any other plane (or planes) will simulate an MIMD machine allowing 

the grids to become triangular and rectangular. Notice however that 

the orthogonal nature of the grid requires diagonal processor 

connections to be simulated by passing values through adjacent processors. 

By extending the theorems on multitasking soft-systolic simulation 

it follows trivially that the 3-space ISA can simultaneously: 

(i) 

(ii) 

2 
execute n - simple SIMD programs 

execute n 2-D or full SIMD programs 

(simply put (i,c,k) c>O in Fig. (9.2.4) to produce n planes 

of 2-D ISA machines}. 
n 

Thus from the relationships in Table (9.1.l) n PA programs can also be 

executed in parallel. 

3 
Next consider the case when we have a 3-space PA (a cube of n 
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There can be at most n 
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programs making up the PA program residing in the independent processors 

and which must be distributed through the array before operation begins. 

• (1) (2) (r) 
On execut10n the array program is a sequence p ,p , ••• ,p of 3-D 

arrays over I with processor (i,j,k) performing P~~k) at time t. 
1) 

Theorem (9.2.9): For every program p on the 3-space PA there is an 
n 

equivalent program q on the 3-space 15A requiring, 
n 

T(q)~(n+2)T(p)+3n-2 steps. 

Proof: 

First consider a step p(t) of the 3-space PA program p. This 
n 

1\ 
can be considered as a collection of 2-space PA programs p., i=l(l)n, 

n 1 

with a general program corresponding to the sequence of nxn matrices 

1\ (1) 1\ (2) A (r) . 
Pi 'Pi , ••• ,Pi over I correspcnd1ng to the mesh planes (i,c,k), 

c=l(l)n. Using Table (9.1.1) each of these programs is simulated by 

the 2~space I5A representing the (i,c,k) plane of the 3-space 15A in 
n n 

(n+2)T(~.)~T(q.)~(n+2)T(p.)+2n-2 steps, where ~., i=l(l)n is the 
111 1 

equivalent 2-space I5A program. Now to allow for the skew of the 
n 

second selector inputs 52 successive planes from top to bottom of the 

cube in Fig.(9.2.4) are delayed to retain synchronisation producing 
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a time bound, 
(n+2)T(p)+n~T(q)~(n+2)T(p)+3n-2. 

Theorem (9.2.10): For every program p on the 3-space ISA there exists 
n 

an equivalent program q on the 2-space ISA requiring 
n 

T(q)~n(n+2)T(p)+3n-2 • 

Proof: 

The essential idea behind the proof is to interleave the computation 

of the n 2-space ISA comprising the 3-space ISA on a single 2-space 
n n 

ISA. This is achieved by unifying the cuboid planes as follows. First 
n 

assume each 2-space ISA processor contains a vector CR(j), j=l(l)n of 
n 

registers for book-keeping. A single plane can simulate all the others 

by defining CR(j) in processor (i,k), i,k=l(l)n as the communication 

register of processor (i,j,k) of the 3-space cube. Notice that this 

guarantees that a 2-D ISA can reproduce the communication with a 

processors six nearest neighbours in a 3-D space design. We then simply 

compute the 3-space ISA programs on Theorem (9.2.9) in the order, 
n 

,,(j) I'(j) A(j) I\(j) 
PI ,P2 ,P3 , .•• ,Pn ,j=l(l)r, 

using the copy command to overwrite the correct CR(j) registers. As 

successive planes no-longer compute in parallel the 3-space ISA 
n 

increases to nT(p) in the 2-space ISA and direct substitution into 
n 

Theorem (9.2.9) yields, 

T(q)~n(n+2)T(p)+3n-2 

Finally, to complete the characterisation of the ISA and its 
n 

power to simulate various programs soft-systolically we consider the 

wavefront array processor (S.Y. Kung [84], see Fig.(3.5.2.1». The 

2 
wave front machine is again a 2-D mesh of n processors with nearest 

neighbcur communication, and the order of activation and subsequent 
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computation of processors act like waves propagating across the array. 

For simplicity waves act on the Huygen's principle such that no two 

waves can pass or interfere with each other from the same source and 

prohibits backtracking of waves. S.Y. Kung has noted that the wavefront 

processor is a trade-off between the general purpose dataflow multi-

processors and the dedicated systolic array. This implies that the 

wavefront array processor is related strongly to the ISA. Indeed, the 

input of selectors and instructions forms successive wavefronts across 

the mesh (see Fig.(9.1.2». Furthermore if we suppose composite 

instruction sets Al and B
l

, wavefront processor programs can be 

interpreted as interference of horizontal and vertical component values 

such that a diagonal wave is given by instructions, 

{ a.b. 
~ J 

no-op 

constructive 

destructive 

where a destructive wave is any composite instruction involving a no-op 

instruction. Hence, 

Theorem (9.2.11): For any wavefront array program p with time T(p) 

and r wavefronts there is an equivalent program q on the 2-space ISA 
n 

which requires T(q)~3rT(p)+2n-l. 

Proof: 

Each wavefront processor wave requires 2n-l cell cycles to 

propagate across the· mesh, and is mapped directly into n-tuples of 

instructions and selectors such that each wave front is replaced by three 

wavefronts of ilie form, 

(t) 
I, 

(t+l) (t+2) 
0 

1 
Pj = Pj = c, Pj = 

j=l(l)n 
(t) (t+l) (t+2) 

= 1 s. = s. = s 
J J j 

on the ISA with I the instruction executed by wavefront processor cells. 
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TwO extra wavefronts are added to overwrite the communication registers 

after each instruction wave producing 3rT(p) wavefronts to pass over 

the ISA mesh. The timing follows immediately, with 2n-l additional 

cycles to push the last wave off the mesh. The less than condition 

results from the fact that for some wavefront algorithms the communication 

. . (t+l) (t+2) 
registers can be overwritten directly, dispens1ng with p and p 

instruction n-tuples. 

Notice that the converse argument that all ISA programs can be 
n 

simulated by a wavefront array processor does not apply. This follows 

because in general the wavefront array processor executes only a single 

instruction I, whereas the ISA in general must contain at least three 

types of instruction (I,cPo-op) for partial-SIMD simulations. 

Next consider the ISA simulation of multiple wave fronts in 
n 

different orientations. Intuitively, this corresponds to the embedded 

wave front mesh and systolic control ring arrangement used for rank 

annihilation, assignment, and simplex algorithms in previous chapters. 

The multiple wavefront computation can be envisaged as a series of nxn 

instruction matrices or snapshots as for the general PA program. The 
n 

simulation program for the ISA is then constructed in the same manner 

as for arbitrary programs. It follows that multiple wave front programs 

are simply special cases of partial SIMD algorithms and Theorem (9.2.2) 

can be applied directly. Fig. (9.2.5) ·illustrates a backtracking 

technique for deriving the ISA program form. 
n 
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2n-l 

FIGURE 9.2.5: Simulation of multiple wavefront algorithms 
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FIGURE 9.2.5: Simulation of multiple wavefront algorithms (cont.) 
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9.3 THE SOFT-SYSTOLIC PROGRAM SIMULATION SYSTEM (SSPS) 

The basic design problem for a general systolic array simulator 

is to provide a fixed architecture which is capable of simulating the 

arbitrary graph structure of an array, while also mapping parallel 

processors to achieve parallelism. Throughout this thesis we have 

envisaged systolic arrays as soft-systolic programs written in OCCAM 

with the implicit understanding that OCCAM can be executed effectively 

on transputer networks to provide parallelism. The problem with this 

scheme is that it may be better to write a dedicated transputer based 

version of a method rather than simulate a systolic array version of 

the algorithm. Thus as we accept the idea of programmable arrays the 

effectiveness of the special purpose systolic approach to specific 

algorithms falls off. The essential problem is the emphasis placed on 

data flow which demands a different OCCAM program structure for each 

design. The ISA on the other hand places emphasis on the systolic 

movement of instructions fixing the data communication and processor 

structure, and the chances of producing a fast and economic systolic 

simulator, with an alternative perspective on the meaning of a 'systolic 

computer'. In this section we consider a soft-systolic program simulator 

implemented on the VAX machine running under UNIX, at Loughborough 

University and solve a number of common problems to demonstrate its 

. flexibility. The system can be used to develop special purpose 

algorithms with a regular form and opens up the possibility of a soft

systolic design workstation for development of simple systolic processing 

systems. 

An overview of the system is shown in Fig.(9.3.l), and the main 

sections are briefly reviewed below. 
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FIGURE 9.3.1: Organisation of soft-systolic program simulator 

Program and machine preparation: 

The soft-systolic preparation section comprises of the usual 

operating system facilities for the creation and modification of files 

during the development of new programs and ISA processor elements. We 

allow any concurrent high level language to be used to model the soft-

systolic program. 

RISAL compiler: 

The RISAL compiler is adopted to transform the soft-systolic 

program description into a form suitable for the virtual machine 

(simulating the algorithm) to run. 

Virtual machine: 

The virtual machine consists of three basic sections: 
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a) An ISA network of data and control paths 

b) A set of virtual spoolers for driving the ISA computation 

and opening up the communication bandwidth of the array. 

c) A collection of processing element (PE) descriptions for 

creating specific ISA grids. 

Virtual to real mapping: 

Here we define a library of processor plugs which allow a number 

of virtual processors to be essentially plugged into a single real 

processing element of the underlying architecture. Thus, allowing a 

large virtual grid to be mapped onto a smaller real grid. 

The real architecture: 

For simplicity we assume that this is a square orthogonally 

connected grid of processors such as a transputer network, capable of 

executing any of the virtual PE's and mapping plugs. 

Now clearly the complete design and implementation of the proposed 

system above would occupy a thesis by itself. Consequently, to 

demonstrate the feasibility of the system we concentrate on the virtual 

machine and the RISAL compile~which forms the core of the design. 

To remain consistent with the rest of the thesis and to retain 

the possibility of a straightforward mapping of virtual machine to real 

processor architecture we implemented the ISA in OCCAM. Using the 

powerful system features of Unix coupled with Loughborough OCCAM the 

ISA was easily specified as a two part design consisting of: 

1. PE library files 

2. Grid architecture and virtual spoolers. 

The virtual spoolers played the role of buffers for the ISA array 

interface with higher levels of the system, allowing the bandwidth 



748 

of the input to meet that of the ISA. The grid architecture was a 

simple specification of network connections between processors, the 

PE libraries simply containing cell descriptions which responded to 

ISA instructions with different characteristics. Loughborough OCCAM 

allows the precomputation of library PE's and the grid connection 

network, which could be simply linked when the virtual machine was 

required to run - effectively plugging in the correct PE's. Thus a 

user of the system can develop programs and new PE's with only an 

abstract working knowledge of the ISA grid. 

The virtual grid architecture is shown in Fig.{9.3.2) based on 

the cell structure 

I N<¥ta 
\ NDATA = North input/output 

E " = East " • 
Sin 

(

PE 

Wdata .+--t..,..-".-....,.J 

S • = South • • S out W " = West " • 

) Edata 
selector S = in and out 

I = instruction in and out 

• 
Sdata 

for a 4x4 case. The correct channels can be hooked up by a simple 

computation using the grid PE position of the form, 

PROC lOC{VALUE i,j, VAR r)= 

SEQ 

r:={{{i-l)*{n+l»+j)-l: 

The PE to fit the locations is called as a library routine 

EXTERNAL PROC PE{CHAN wn,we,ws,ww,rn, re, rs, rw, in, is, sw, se )= 

and the library PE section uses the PE definitions 

LIBRARY PROC PE{CHAN wn, we, ws, ww, rn, re, rs, rw, in, is, sw, se )= 

-- code for cell here. 



:g :g :g 
~l r 1 '0 ~l '" '" '" .:: z ~ z 

SELIO) ~ " SELIl) SEL(2) SEL(3) 

AWE (0) 1.1 AWEll) 1.2 AWE(2) 1.3 AWED) 

BWEIO) BWE 1 eWE 2 

- -.:: ~ .:: ;:; ;Q 

'" '" '" ~ .:: .:: z ~ z 
~ " (8) IS) (6) (7) 

2.1 2.2 2.3 

- - - - ;:' ~ ~ ~ ;:: N 

~ ~ ~ .:: .:: 
(10) Ill) (12) 1131 

3.1 3.2 3.3 

;:; ~ ;:; -~ ~ ~ ;:; .. '" '" '" e .:: .:: z ~ iri ~ 

(IS) (16) (17) (18) 

4.1 4.2 •• 3 

• - ~ ;; C; • ~ .:: .:: !2 '" ~ ~ ~ 
~ ~ 

FIGURE 9.3.2: Channel specification for ISA grid 

1 
1.4 

2.4 

3.' 

.. ' 

SEL(4) 

AWE(4) 

[2] a 

(14) 

1191 

INS-Inlltruc tion north aouti 
AWS-'A' 
BNS-'S' 
SEL-selector vest east 
AWE-'A' 
aWE-'B' 



750 

The actual code is given in the Appendix. Included with the ISA grid 

specification is the data and instruction spooler code. The spoolers 

are concurrent processes representing buffers for data and instructions 

input to the boundary cells of the grid. The spoolers also include data 

output and instruction/selector garbage collection for values falling 

off the grid. The interface between the virtual machine and the 

program/PE development section is assumed to be of narrow bandwidth. 

Infact all data and instructions are assumed to be placed in three 

files DATA IN, SELECTOR, INSTRUCT, and output is dumped in DATAOUT to 

represent virtual spool files. The virtual spoolers read these files 

sequentially and convert the input into a parallel form for the ISA. 

Likewise for the ISA output the spooler converts the output back into 

a single stream output sequentially to DATAOUT. The reading of input 

and writing of output data is performed in parallel with ISA execution. 

Clearly this is the place where any bottlenecks are likely to occur 

a) outplo4l: spool b) ;S:r'\fl,.l.l; 

VIRTUAL SPOOLERS (for nz 4l 

especially for large n. The spoolers can also be used to pad out unused 

cells with dummy values, when the ISA program running is smaller than 

the total number of virtual processors. Hence the system with a bounded 

number of processors can simulate smaller networks without difficulty. 
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Next we consider the description of a very general processing 

element which allows the simulation of a wide range of algorithms, 

and also indicates the method of pumping instructions and selectors 

through the array. By changing or reducing instruction definitions a 

range of virtual PE's can be easily developed. The structure of the PE 

is shown in Fig.(9.3.3} and consists of a central processing element 

SELEC'I'ORIN 

'w'DATA 

Instruction NDATA 

El 
U 

LN.BUF 
E 

'l1.J 
J, 

r-• 
B Processor 
U 

c:... 
Bu' 

I 
Il.BUF I I S.BOF 

Instruction SOATA 
out 

Memory Organization 

A R R 
R C C N E 

C 0 0 

I 

-
E 

B 

!.. 

I 

R R 

S • 
0 0 

o 1 2 3 4 5 6 

SELECTOR OUT 

1 J; I L 1; I ___ lL 
A R R R 

R ~ E 
WORKING 

eN • MEMORY 
CO 0 0 

., -
EDATA 

Auxiliary memory for 
temporary variables 

+ data 

msize 

R • result register - holds result of computation until c has been read 

C • c~unicatlon register 

RNO • Register north data input 
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RSO-

RWO • 
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lnrtruction fo~t 

Fe3 

OP 

f • 

Fe2 

PORT 

Fol 

OPDl 

2 decimal digits 

Instruction enable = (1<>0) AND select 

FIGURE 9.3.3: Basic PE 

FOO 

OP02 
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enabled by the selector and any instruction (other than no-op), A 

simple bus connects the port input buffers to memory, which contains 

port value storage registers (RND, RED, RSD, RWD) as well as working 

memory for data and results. R acts as the accumulator and is backed 

up by ACC (a secondary accumulator for complex computations), and C is 

the communication register. The processor embodies all the principles 

of the ISA cell. Communication is achieved by first loading the output 

buffers with C and then reading input and output in parallel. The input 

buffers are then read sequentially to memory to complete the communication 

phase. Various masks can be constructed for input buffers to prevent 

overwriting of old buffers avoiding unnecessary movement of data in the 

memory. The port mask is defined as part of the processor instruction 

which comprises four fields each 2-decimal digits wide, allowing the 

implementation of up to 100 instructions or internal memory addresses. 

The port specification also allows lOO combinations of input/output 

but only 16 have been used. One possible extension is to utilise the 

extra slots to allow multiple communication registers in each cell. 

REMARK: These operations can be implemented more effectively by using 

bit logic and slices but Loughborough OCCAM is restricted in this 

respect. Furthermore, a 2-digit field also allows a wide range of 

Library PE's to be developed. 

Fig.(9.3.4) indicates the operation codes and read masks for our 

trial cell, (a high bit indicates that a value read will be sent to 

memory, a low bit that it is not) • 

The resulting instructions are easily decoded by the OCCAM code 

SEQ j=[O FOR 4] 

SEQ 

fd[j] :=i\100 

i:=i/100 

i=instruction integer 



Processor Operation Code. 

OP CODE CO_1lI' 

00 NULL No operat ion 

01 COPY fobv R to C 

02 ADD R; ~A"B 

Ol SUB R~·A-8 

04 MULT Rz""·B 

oS DIV ',:A/s 

06 MIN Rz"'HIN(A,B) 

07 MAl< R:=M.a.X(A,8) 

08 DATA C,-A 

09 ..,., Mem[rOO) :"A 

8~MEM{FOOl 

Port Controllezl 

N S E N INPl1rS VALID 

0 0 0 0 No valid data 

0 0 0 1 N valid 

0 0 1 0 E valid 

0 0 1 1 N,E valid 

0 1 0 0 S vaUd 

0 1 0 1 S,N valid 

0 1 1 0 S,E valid 

0 1 1 1 StE,N valid 

1 0 0 0 N valid 

1 0 0 1 W,N valid 

1 0 1 0 N,E valid 

1 0 1 1 W,E,N valid 

1 1 0 0 W,S valid 

1 1 0 1 tI,S,N valid 

1 1 1 0 ",S,E valid 

1 1 1 1 ",S,E,N valid 

FIGURE 9.3.4 

and the port mask with port:=fd[2] 

SEQ i= [0 FOR 4] 

SEQ 

P[i] : =PORT\ 2 

PORT:=PORT/2 

The full PE is given in the program appendix. 
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Having defined a general PE definition, some simple test programs 

were developed using a format akin to machine code - making the ISA 
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program difficult to modify or relate to the abstract algorithm. 

Consequently the Replicating Instruction Systolic Array Language (RISAL) 

was devised to provide a very primitive program environment but adequate 

for testing. RISAL accepts instructions in an assembler like form, but 

is fairly permissive about the format of statements, subject of course 

to syntax (the core of which is shown in Fig.(9.3.5)~ RISAL also 

performs a proportion of semantic rules which permit selectors, 

instructions and data to be converted to ISA form by the same program. 

Each instruction, selector or data command can be prefixed by a 

replicating command which generates the following instruction a specified 

number of times. Checks are performed to ensure that enough data, 

instructions, or selector inputs are generated for the correct virtual 

grid size. As a simple example, 

DATA n,03,OO 

reads the north data port and moves the value into the communication 

register for the PE defined previously. 

DATA n,03,OO; DATA n,03,OO; DATA n,03,OO; DATA n,03,OO: 

issues the same command to 4 columns of a 4x4 grid simultaneously and 

is equivalent to the replicated form, 

REP(4) DATA n,03,OO: 

More complex test examples are given below to clarify the syntax 

and usefulness of the REP command for large arrays. 

The structure of a file input to RISAL must identify the following 

properties for the simulation: 

(i) instruction (p), selector (s), or data (d) file. 

(ii) the size of the grid - the instruction and selector values 

can be different for rectangular grids. 



1. RISAL FILE 

2. SETUP 
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(iii) the program length - which provides the OCCAM ISA with a 

primitive shut down facility. 

The choice of p,d, or s directs the RISAL compiler to fix the syntax 

for the particular type of file. The data file is more complex than 

the rest, as it requires the specification of all four boundaries on 

the ISA grid. We could define a single file for each boundary but this 

complicates checking for missing data. Instead we define a single file 

and sequentially buffer boundary input/output to allow input data to be 

more easily matched with the ISA instruction sequence. For large grids 

this method becomes impractical and adding a preprocessor to separate 

data out into temporary files appears to be the best alternative. 

Finally, a special data command NONE is included to mask out a 

complete boundary, e.g. 

n 1.0,1.0,2.0,3.0; 

e 3.0,rep(3) 0.0; 

s rep(4) 0.0; 

none 

inputs (1.0,1.0,2.0,3.0) to the north grid boundary, (3.0,0.0,0.0,0.0) 

and (0.0,0.0,0.0,0.0) to the east and south boundaries respectively with 

west masked out and defaulting to (0.0,0.0,0.0,0.0). 

REMARK: Data must always be read in the order n,e,s,w. RISAL checks 

this, 

ISA programs are produced and executed as follows: 

(i) Develop three files 

Il = instructions 

Sl = selectors 

Dl = data 

(ii) Run RI SAL to check syntax and generate the files 

'Instruct', 'Selector', 'Data in' 
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(iii) All bugs are now semantic errors in the instruction 

flow of the ISA program, 

Compile ISA.occ (virtual grid + spoolers) 
if not 

Compile PEm.occ (m=library element number) 1 
compiled 
already 

Link two programs (plug in PErn) 

(iv) Execute virtual rSA, results placed in file 'dataout' 

It is up to the user to ensure that RISAL places its output in the 

required files and that PEm.occ exists. 

The procedure above is quite simple, and was used successfully to 

produce the following test examples which perform correctly on the 

virtual grid. The first two examples are quite straightforward, the 

second two are more involved. 

EXAMPLE 1: Sorting a list of 4 numbers 

Given 

(i) I 

(ii) 

BIN MAl( MIN MAX 
,I. +: ~+: 4 I I 

NULL 
! 
3 

lUN MAl( 

J, ! 
NULL 

.L 

2 

ISA PROGRAM - Sorting a list of 4 numbers 

(i) Program 

p( 4, 14) 
rep(4) null ,0,0: 
"rep(4) null ,0,0: 
rep{4) null ,0,0: 
rep(4) data n,3,0: 
min e.4,I, max w,6,1; min e,.,1; max w,6,1: 
rep(4} copy ,0,0: 
null ,0,0, min e,4,1; max w,6,1; null ,0,0: 
rep(4) copy ,0,0: 
min e,4,!, max w,6,1; min e,4,1; max w,6,1: 
rep{4) copy ,0,0: 
null ,0,0; mln e,4,!; max w,6,1; null ,0,0: 
rep(4) copy ,0,0: 
rep(4} copy ,0,0: 
rep(4) null ,0,0 
end 

MIN MAl( MIN MAl( 

.l< :It * k 

(Hi) I 3 + 1 I 4 +2 
NULL MIN MAl( NULL 

,J, J. J, * 
(iv) 1 4 

(v) 1 2 3 4 

I 



(H) Data (Hi) Selector 

d(4,14) 
none;none;none;none 
none;none;none;none 
none;none,none;none 
n 4.0,3.0,2.0,1.0, 
none,none,none: 
none;none,none;none: 
none;none,none;none: 
none;none;none;none: 
none;none,none;none: 
none;none;none;none: 
none;none;none;none: 
none;none;none;none: 
none;none;none;none: 
none;none;none;none 
end 

0(4,14) 
l,rep(3)0 
l,rep(3)0 
1, rep( 3)0 
l,rep(3)0 
l,rep(3)0 
1,rep(3}O l 
l,rep(3)0 
1,rep(3)O : 
l,rep(3)0 
l,rep(3)0 
l,rep(3)0 
l,rep(3)0 
l,rep(3)0 
l,rep(3)0 
end 

EXAMPLE 2: 2x2 matrix transpose (see Fig.(9.l.3)) 

(i) Program 

(H) 

p(4,13) 
( load matrix I 
data 0,03,0, rep{3}null n,O,O: 
rep(2)data 0,03,0; rep(2)null n,O,O: 
null n,O,O;data 0,03,0; rep(2) null n,O,O: 
( tranpo.e I 
data 8,04,0; data w,06,O, rep(2) null n,O,O: 
data 0,03,0, rep(3) null 0,0,0: 
data s,05,O, rep(3) null n,O,O: 
data e,04,O;data w,06,OO; rep(2) null n,o,o : 
{ read out } 
data s,05,00; data 5,05,00; rep(2)null n,O,O: 
rep(4) null n,O,o: 
rep(4) null n,O,O: 
rep(4) null n,O,O: 
rep(4) null n,O,O: 
rep(4) null n,O,O 
end 

Data (Hi) 

d(4,13) 
n 6.0,rep(3)0.0; 
none; none; none: 
n 8.0,2.0,rep(2)O.0; 
none; none; none : 
n 0.0,5.0,0.0,0.0 ; 
none; none; none 
none: none; none none 
none;none;none none 
none; none; none none 
none;none;none none 
none; none; none none 
none;none;none none 
none;none;none none 
end 

Selector 

s(4,13) 
l,rep(3)0 : 
rep(2)l, rep(2)0 
1, rep(3)0 : 
1, rep( 3) 0 : 
rep( 4) 0 I 
rep(2)l, rep(2)0 
l,rep(3) 0 : 
rep(4) 0 : 
rep(2) 1, rep(2) 
1, rep( 3) 0 
1, rep(3) 0 : 
1, rep( 3) 0 : 
rep(4) 0 
end 

758 

0: 
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EXAMPLE 3: 4x4 matrix transpose 

This is a more complex transposition problem incorporating the 

use of the 2x2 problem defined earlier. Trace the programs through 

to ensure that, 

1 2 3 4T fl 5 9 13 

5 6 7 8 2 6 10 14 
= 

9 10 11 12 3 7 11 15 

13 14 15 lJ 4 8 12 16 

EXAMPLE 4: 4x4 LU decomposition 

Trace through the program to show that: 

2 3 3 ~ ~ l 4 1 2 

~ 
1 

= 

J 2 2 5 

~.5 
0.2 1 

II 4 1 0.1 -1.107143 

r 3 3 2 l l 
-5 -4 -1 

2.8 -0.8 J 
-1. 785714 

REMARK: If an extra column was used to supply the r.h.s. of a linear 

system the factors can be ignored producing the Gaussian 

Elimination solution. 



p(4,34) 
data 0,3,0; rep(3) null ,0,0: 
rep(2) data n,3,O~ rep(2) null ,0,0: 
rep(3) data n,3,0; nulll ,0,0: 
rep(4) datA n,3,0 : 
null ,0,0, rep(3) data n,3,0: 
rep(2) nul1,0,0; rep(2) data n,3,0: 
rep(3) null ,0,0; data n,3,0: 
rep(4) null ,0,0: 
data e,4,0; data w,6,O; rep(2) null ,0,0: 
data n,3,0; rep(3) nul1,0,0: 
data 8,5,0; nu11,0,0, data e,4,0; data w,6,O: 
data e,4,0; data w,6,O; data n,3,0; null ,0,0: 
rep(2) nu11,O,O; data 5,5,0; null ,0,0: 
data e,4,O, datA w,6,O; datA e,4,0; data w,6,O: 
null ,0,0; data e,4,0; data w,6,O; null ,0,0: 
data e,4,0; data w,6,O; data e,4,0; data w,6,O : 
data n,3,0; data e,4,O;data w,6,O; null ,0,0: 
data 6,5,0; data n,3,0; data 8,4,0; data w,6,O: 
data n,3,0; data 6,5,0; rep(2) null ,0,0: 
data 5,5,0; data n,3,0; rep(2) null ,0,0: 
null ,0,0; data 6,5,0; rep(2) null ,0,0: 
data e,4,0; data w,G,O: rep(2) null ,0,0: 
null ,0,0; data e,4,0; data w,6,O; null ,0,0: 
data e,4,0; data w,6,0; data e,4,0; data w,6,0: 
null ,0,0; data e,4,O; data w,6,0; null ,0,0: 
data 8,5,0; null ,0,0; data e,4,O, data w,6,0: 
rep(2) data 6,5,0; rep(2) null ,0,0: 
rep(3) data 6,5,0; null ,0,0: 
rep(4) data 5,5,0: 
rep(4) data 6.5.0: 
null ,0,0; rep(3} data 8,5,0: 
rep(2) null ,0,0; rep(2} data 6,5,0: 
rep(3) null ,0,0; data 6,5,0: 
rep(4) null ,0,0 
end 

(i) Program 

EXAMPLE 3: 4x4 matrix transpose program 

d(4,34) 
n 13.0,0.0,0.0,0.0; 
none;none;none: 
n 9.0,14.0,0.0,0.0; 
none;none;none: 
n 5.0,10.0,15,0,0.0; 
none;none;none: 
n 1.0,6.0,11.0,16.0; 
none;none;none: 
n 0.0,2.0,1.0,12.0; 
none;none;none: 
n 0.0,0.0,3.0,8.0; 
none;none;none: 
n 0.0,0.0,0.0,4.0; 
none;nonejnone: 
none;none;none;none: 
noneinone;none;none: 
none;none;none;none: 
none;none;none;none: 
nonejnone:nonejnone: 
none;none;nonejnone: 
none;noneinone:none: 
none;none;none;none: 
none;none;none;none: 
none;none;none;none: 
none;none;none:none: 
none;none;none;none; 
none;none,none;none; 
none,none;none;none: 
none;none;none;none: 
none;none;none;none; 
none;none;none;none: 
noneinone;none;none: 
none;none;none;none: 
nonejnonejnone;none: 
none;none;none;none: 
none;none;noneinone; 
none:nonejnone;none: 
noneinone;noneinone: 
nonejnone;none;none: 
nonejnone;none;none: 
noneinone;none;none 
end 

(H) Data 

8(4,34) 
1,0,0,0: 
1,1,0,0: 
1,1,1,0: 
1,1,1,1: 
0,0,0,0: 
0,0,0,0: 
0,0,0,0: 
1, rep(3) ° : 
1, rep(3) 0: 
0,0,1,0: 
rep(3) 1, 0: 
1, rep(3) 0 : 
1,0,1,1: 
rep(3) 1, 0: 
1,1,0,0: 
1,1,0,0: 
0,1,0,0: 
1,1,0,0: 
0,1,1,0: 
rep(4)1: 
rep(3) 1,0: 
rep(4) 1 
1,1,0,0: 
1,1,0,0: 
1,1,0,0: 
rep(4)0: 
rep(4)0: 
rep(3) 1,0: 
1,1,0,0: 
1,0,0,0: 
rep(4) 0: 
rep(4) 0: 
rep(4) 0: 
rep(4) 0 
end 

(Hi) Selector 



{ 4*4 lu decomposition} 
p(4,39) 
{ load matrix} 
data n,3,0; rep(3) null n,O,O 
rep(2) data n,3,0; rep(2) null n,O,O: 
rep(3) data n,3,0; null n,O,O : 
rep(4) data n,3,0: 
( start factorisation) 
mov &,1,7; rep(]) data n,3,0: 
data n,3,0; moy s,1,7; rep(2) data n,3;0: 
diy ,7,3; data n,3,0; moy 5,1,7, data n,3,0: 
copy ,0,0; null ,0,0; data n,3,0; moy s,1,7: 
null ,0,0; data w,6,O, null ,0,0; data n,3,0 
null ,0,0; mult ,3,6; data w,6,O, null ,0,0: 
null ,0,0; sub ,7,0 I mult ,3,6: data w,6,0 
null ,0,0: copy ,0,0; sub ,1,0; mult ,3,6 : 
null ,0,0; moy s,1,1; copy ,0,0; sub ,1,0 : 
null ,0,0; data n,3,0; moy s,1,1: copy ,0,0 
null ,0,0; diy ,7,3; data n,3,0: moy 5,1,7: 
null ,0,0: copy ,0,0; null ,0,0; data n,3,0: 
rep(2) null ,Q,O; data w,6,O; null ,0,0: 
rep(2) null ,0,0; mult ,3,6; data w,6,0~ 
rep(2) null ,0,0; sub ,7,0; mult ,3,6: 
rep(2) null ,0,0; copy ,0,0; lub ,7,0: 
rep(2) null ,0,0; moy B,1,7; copy ,0,0: 
rep(2) null ,0,0; data n,3,0; moy 5,1,1 
rep(2) null ,0,0: diy ,7,3; data n,3,0 
rep(2) null ,0,0; copy ,0,0; null ,0,0 
rep(3) null ,0,0; data w,6,O: 
rep(3) null ,0,0; mult ,3,6: 
rep{3) null ,0,0; sub ,7,0: 
rep(3} null ,0,0; copy ,0,0: 
( read result) 
data 6,5,0 ; rep(3) null· ,0,0: 
rep(2) data 6,5,0; rep(2) nul1,0,0: 
rep(3) data 5,5,0; nul1,0,0: 
rep(4) data 6,5,0: 
rep(4) data 5,S,0: 
rep(4} data 5,S,0: 
null ,0,0; rep(3} data 5,5,0: 
rep(2) null ,0,0; rep(2) data 5,5,0: 
rep(3) null ,0,0: data 6,5,0: 
rep(4) null ,0,0 
end 

(i) Program 

EXAMPLE 4: 4x4 LU decomposition program 

(H) 

0(4,39) 
1, rep(3)0 
rep(2)l, rep(2)0: 
rep(3)!, 0: 
rep( 4)1 : 
rop(4)0 : 
o ,1.,rep(2)0: 
o ,l.,!,O: 
0, rep(3)!: 
0, rep(3)1: 
0, rep(3)1: 
0, rep(3)1: 
0, rep(3)!: 
rep(2) 0, rep(2)1: 
rep(2) 0, rep(2)1: 
rep(2) 0, rep(2)1: 
rep(2) 0, rep(2)!: 
rep(2) 0, rep(2)1: 
rep(2) 0, rep(2)1: 
rep(2) 0, rep(2)1: 
rep(2) 0, rep(2)1: 
rep(3) 0, 1: 
rep(3) 0, 1: 
rep(3) 0, 1: 
rep(3) 0, 1: 
rep(3) 0, 1: 
rep(3) 0, 1: 
rep(3) 0, 1: 
rep(3) 0, 1: 
rep(4) 0: 
rep(4) 0: 
rep(4) 0: 
rep(4) 1: 
rep(3) 1,0: 
rep(2) 1, rep(2) 0 
l,rep(3) 0: 
rep(4) 0: 
rep(4) 0: 
rep(4) 0: 
rep( 4) 0 
end 

Selector 

d(4,39) 
n 3.0, rep(3) 0.0 , 
none; none; none: 
n 2.0, 4.0, 0.0, 0.0 
none; none; none: 
n 4.0, 2.0, 1.0 ,0.0; 
none; none; none 
n 2.0, 1.0, S.O, 2.0; 
none; none; none 
n 0.0, 3.0, 2.0, 1.0; 
none; none: none: 
n 0.0, 0.0, 3.0, 3.0; 
none1 none; none: 
n 0.0, 0.0, 0.0, 2.0; 
none, none, none: 
none;none;none;none: 
none;none;none;none: 
none;noneinone;none: 
none;none:none;none: 
none;none;none;none: 
none;none;none;none: 
none;nonelnone;none: 
none;none;none,none: 
none;none;none,none: 
none;none;none;none: 
none;none;none;none: 
nonelnone,none,none: 
none,none,none;none: 
none;none,none;none: 
none;nonelnone;none: 
noneJnoneJnone;none: 
nonOJnOnelnone;none: 
none,nonelnone;none: 
none;none;none:none: 
none:none;none,none: 
none,none;none;none: 
none;none;none;none: 
none;none;none,none: 
none;none;none;none: 
none;none;none;none: 
none;none;none;none: 
none;none;none;none: 
none;none,none;none: 
nono;none;none;none: 
none:nonelnoneinone : 
none;none;none;none: 
nonel none;none:none 
end 

(Hi) Data 



34 34 
8010300 0 0 0 1 0 0 0 
8010300 8010300 0 0 1 1 0 0 
8010300 8010300 8010300 0 1 1 1 0 
8010300 8010300 8010300 8010300 1 1 1 1 

0 8010300 8010300 8010300 0 0 0 0 
0 0 8010300 aOl0300 0 0 0 0 
0 0 0 aOl0300 0 0 0 0 
0 0 0 0 1 0 0 0 

8020400 80a0600 0 0 1 0 0 0 
8010300 0 0 0 0 0 1 0 
8040500 0 8020400 8080600 1 1 1 0 
8020400 8080600 8010300 0 1 0 0 0 

0 0 8040500 0 1 0 1 1 
8020400 8080600 8020400 80a0600 1 1 1 0 

0 8020400 8060600 0 1 1 0 0 
S020400 S060600 8020400 S080.00 1 1 0 0 
8010300 8020400 8080600 0 0 1 0 0 
8040500 S010300 8020400 80S0.00 1 1 0 0 
8010300 8040500 0 0 0 1 1 0 
a040500 aOl0300 0 0 1 1 1 1 

0 S040500 0 0 1 1 1 0 
a 020400 a080600 0 0 1 1 1 1 

0 8020400 8080600 0 1 1 0 0 
a020400 S080600 8020400 l080600 1 1 0 0 

0 S020400 soa0600 0 1 1 0 0 
8040500 0 a020400 S080600 0 0 0 0 
a040500 8040500 0 0 0 0 0 0 
8040500 8040500 8040500 0 1 1 1 0 
8040500 8040500 8C40500 !040500 1 i 0 0 
S040500 8040500 a 040500 8040500 1 0 0 0 

0 a040500 8040500 8040500 0 0 0 0 
0 0 8040500 S040500 0 0 0 0 
0 0 0 8040500 0 0 0 0 
0 0 0 0 0 0 0 0 

(i) Program (H) Selector 

EXAMPLE 3: Matrix transpose ISA machine code 
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80'0300 '0000 '0000 '0000 , 0 0 0 
80'0300 80'0300 '0000 '0000 , , 0 0 
80'0300 80'0300 80'0300 '0000 , , , 0 
80'03 60'0300 80'0300 80'0300 , , , , 
9040'07 80,0300 80'0300 80'0300 LOAD MATRIX 0 0 I 0 
80'0300 9040'07 0'030 80'0300 0 1 0 0 
5000703 80,0300 9040' 07 0'0300 0 , , 0 
'000000 0 30'0300 9040'07 0 , , , 

0 6080600 0 80'0300 0 , , , 
0 4000)06 I!'Oa0600 0 FIRST PHASE 0 , , , 
0 3000700 4000306 8080600 0 , , , 
0 lOO0700 4000306 0 1 , , 
0 9040107 '000000 3000700 0 ~ 1 , 
0 50'0100 04 107 0 C 1 1 
0 5000701 5010300 9040107 0 0 1 1 
0 1000000 0 8010100 0 0 , 1 
0 0 5080600 0 0 0 , , 
0 0 4000306 6080600 SECOND PHASE 0 0 1 1 
0 0 3000700 4000306 0 0 1 , 
0 0 100 000 3000700 0 0 , , 
0 0 9040'07 '000000 0 0 0 , 
0 0 B010300 04 107 0 0 0 1 
0 0 5000703 aO'0300 0 0 0 , 
0 0 1000000 0 0 0 0 , 
0 0 u '080tOO 0 0 0 , 
0 0 0 4000306 THIRD PI!ASE 0 0 0 1 
0 0 0 3000700 0 0 0 1 

0 0 1000000 0 il 0 , 
8040500 0 0 0 Q 0 0 0 
8040500 604 500 0 0 0 0 0 0 
8040500 e040500 6040500 0 0 0 0 
S040500 8040100 S040~OO 80<0500 1 1 1 , 
8040~00 6040500 B040500 80,0500 , 1 1 0 
8040500 8040100 8040500 8040 soa 1 1 0 0 

0 a040500 8040500 80lwOSOO , 0 0 0 
0 8040500 8040500 FOURTH PHASE 0 0 0 0 
0 0 0 a040500 (OUTPUT RESULT) 0 0 I Q 0 
0 0 0 0 0 0 0 

0 0 0 0 

(i) Program (11) Selector 

EXAMPLE 4: LU-decomposition ISA machine code 
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Although RISAL is very primitive it has been useful in 

illustrating the ISA's capabilities and has suggested Some improvements 

to the design of PE's, the interfacing arrangements such as spooling 

for the virtual grid and a number of additional features to produce a 

more robust version of RISAL itself. 

To allow a wide flexibility in PE development it was observed that 

reading operation definitions from a file (in alphabetical order) 

including operation codes allowed new commands to be enlisted easily 

inside RISAL and permitted the same codes for different operations in 

alternative PE's. We remark that care must be taken in using duplicate 

codes but no real problems were encountered. 

For RI SAL three main constructs suggested themselves and can be 

listed as follows: 

(i) Replicated line instruction (REPL): of the form REPL(count) [Line] 

where the line enclosed by [,] is repeated count times e.g. 

REPL(7) [data n,03,OO; rep(3) null,O,O] 

This appears simple to implement with a stack to maintain nested REP 

operations and storage to hold the full line statement. For large grids 

this may pose a significant problem. 

(ii) Replicated line section (REPS): For example, 

data n,03,OO; REPS (count) [null,o,O; data n,03,OO]; null,O,O: 

which would repeat the section of the line in brackets count times. 

The main difficulty in implementing this statement is keeping track of 

REP nesting and checking that the correct number of instructions is 

generated. 

(iii) Replicated line shift (REPLS): of the form, 

REPLS(count,shift) [line]: 
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Here a specified line is replicated count times and on each replication 

is shifted right or left. 'Shift' places according to the sign of 

the shift. Instructions falling off the end of a line must be neglected 

and spare places filled with a default operation like null. 

Many variations to these basic constructions such as cyclic line 

shifting, shifting of line sections, and conditional line shifting are 

also apparent - but amount only to improving the readability of the 

ISA program. 

Next consider the mapping of the design onto some real underlying 

mesh architecture which preserves operation of the virtual grid. There 

are basically two types of mapping we can consider with 1-1 or many-l 

processor correspondences. 

(i) 1-1 correspondence: 

This is the simplest mapping, in which each PE in the virtual 

grid maps onto a single real processing element (e.g. a transputer) • 

Some modifications to the ISA program are required to ensure only 4 

outgoing and 4 incoming channels. Notice however that the PE is 

designed to allow instructions and selectors to be processed sequentially 

before data communication allowing multiplexing of instructions and data 

on the same channels. 

(ii) MANY-l correspondence: 

For large virtual grids we can consider mapping a number of virtual 

PE's onto a single PE, to reduce the total number of real PE's and 

reduce the actual mesh bandwidth. The many-l mapping is implemented 

by a special virtual PE definition which acts like a plug adapter. 

fixing onto a real PE and essentially simulates a block of virtual 

processors. The structure of a plug is shown in Fig.(9.3.6) , together 
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with nested plug connections. The plug idea solves the spool er problem 

for large meshes by producing virtual fan-in and fanout communication 

trees with heights proportional to the number of recursive plugs 

adopted. The only problem is the reduced efficiency of the real array 

having to simulate all the plugs and virtual PE's. A second solution to 

the many-l mapping is to rewrite the plug definition to accept a modified 

ISA program. Notice that a plug implies some multiplexing of instruction 

and selector information on a single cell input. In Section (9.5) we 

discuss an efficient alternative to virtual plugs. 

9.4 SIMULATION OF ARRAYS WITH BOUNDARY AND SPECIAL PROCESSING ELEMENTS 

The SSPS uses a virtual instruction systolic array to simulate 

SIMD, MIMD and systolic algorithms using RISAL. Linear pipeline 

algorithms are the simplest to implement using only a single ISA row, 

and a range of simple PE's can be developed to provide efficient 

implementations of basic cell operations. Systolic arrays with 

homogeneous cells require the development of a PE with only a single 

instruction. These algorithms extend easily to I-D and 2-D SSPS 

simulations due to their close relation to SIMD algorithms. 

More general systolic algorithms have a few different cells making 

them partial SIMD algorithms, computing multiple instructions on multiple 

data streams but with instructions fixed over time. In this section we 

develop the idea of Dynamic Instruction Modification (DIM) which allows 

a class of systolic algorithms to be simulated in the same time as full 

SIMD ISA programs. As examples, we consider the familiar triangular 

Gaussian Elimination, and hexagonal LU decomposition arrays. 

Before examining these algorithms we consider the simpler problem 
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of simulating linear arrays on the SSPS. For simplicity we consider 

two separate cases: 

(i) arrays with only a single cell type 

(ii) arrays with multiple cell types. 

Single cell types: 

Ths mapping is quite simple. Define the virtual ISA where n is 
n 

the number of cells in the linear array, and develop a library PE to 

accept a single instruction 11 equivalent to that cell type. 

Theorem 9.4.1: If A is a linear array with one cell type and n-cells 

which computes in a time T(n), it can be simulated on the virtual ISA 
n 

in T(n)+n steps. 

~: (By construction of the ISA program) 

Without loss of generality let n~4, then, 

(i) Select a 4x4 ISA grid with PE:cell then the ISA
4 

program below 

simulates A. 

, 
'1 '1 '1 1 

'1 '1 '1 '1 T(n) 

'1 '1 '1 '1 

'1 '1 '1 '1 

1 .0. 1 1 1 1 ci=cell 1-1(1)n. 

o .0. 0000 

o '0' 0000 

o .0. 0000 

T(n) n 

FIGURE 9.4.1: ISA simulation of single cell type I-D arrays 
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(ii) placing selectors in the first row of the grid requires n=4 PE 

cycles. 

(iii) the algorithm requires T(n) array/PE cycles hence T(n) 

instructions and selectors yielding the total time T(n)+n steps. 

During the selector setup period no-ops instructions are pumped into the 

grid. Data can be input from north, west, and east, making the 

simulation sufficiently general for many pipeline problems. The only 

significant drawback being the inefficient use of processors. Later we 

show how to improve efficiency. 

Multiple cell types: 

As a simple example consider the back substitution array 

where two types of cell are required, and prove the following theorem. 

Theorem 9.4.2: If A is a linear systo1ic array of n cells with multiple 

cell types and computation time T(n), it can be simulated on the ISA in 

T(n)+n steps on the ISA. 

Proof: 

Without loss of generality we can consider just two cell types and 

proceeding in a similar manner as for Theorem (9.4.1) to derive the ISA 

program structure 

1 ••• 1 1 

0'0' 00 

0.0. 00 

o _0. 00 

FIGURE 9.4.2: ISA simulation of multiple cell type 1-D arrays 
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yielding the identical timing. 

As before we have a large inefficiency, and we assume that the 

number of input and outputs fit the ISA grid. For more complex examples 

the PE definition must be rewritten to multiplex data on the available 

channels, altering the algorithm time to, 

cT(n) + n = O(T(n» • 

The extension of the proof to many cells is trivial, when each PE is 

capable of executing any of the cell functions. 

For 2-D systolic arrays simulation is split into two types: 

i) arrays with a single cell type 

ii) " " multiple cell types. 

Single cell type 2-D arrays: 

Arrays of this type include problems like matrix multiplication 

and speech recognition (Frison & Quinton [85]), and 'can be easily 

simulated by a natural extension of linear single cell techniques. 

Theorem 9.4.3: A 2-D systolic array using a single cell type can be 

simulated by the ISA grid in T(n)+2n where T(n) is the time of the 
n 

original array. 

Proof: 

Again without loss of generality put n=4, and define a grid with 

a PE implementing three operations, Il=cell operation, Io=the no-op 

instruction, I2=a setup operation. 12 reads data from north to south 

and decides using the associated input data if the cell is to be switched 

on (as opposed to selected), e.g. 

read North A 

IF A=O THEN {change instruction to I } 
1 

ELSE {A=A-l} 

Next we develop the set up phase of a program using Fig.(9.4.3). 
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1, 1, '1 1, 

1, 1, '1 '1 
T(n) 

1, 1, 1, '1 

1, '1 1, 1, 

12;0 12 ,0 1
210 

1
210 

12,1 12 ,1 1211 1211 n 

12,2 1212 1212 1212 
1

213 
1

213 12;3 12;3 

10 10 10 10 

1 •.. 11. •• 11 1 1 1 1 

10 10 10 10 

1 ... 11. .. 11 1 1 1 1 

10 10 10 10 

1 ... 11. .. 11 1 1 1 1 

10 10 '0 10 

1 ... 11. .. 11 1 1 1 1 

~~ ~--------------------~ 
T(n) n 

n 

I
2

;A E 12 with associated data value A 

FIGURE 9.4.3: ISA simulation of single cell type 2-D array 

as follows: 

a) we require n steps to filter selectors and 10 into the array 

b) after a further n steps, all the 12 associated with address data 

get modified to 11 and the array starts computing. 

c) compute normally, Illc now has real data c associated with it 

on the north port. 

Thus the total time is given by T(n)+2n. 

Theorem (9.4.3) allows 2-D Single cell type systolic algorithms 

which do not have a refracted wavefront input format to be setup and 

run on the ISA. This application is particularly useful if a suitable 

dummy input to convert algorithms to the refracted form is not available. 

In addition, Theorem (9.4.3) also illustrates the concept of dynamic 
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instruction modification (DIM) where essentially instructions moving 

through the array systolically can be modified. This idea is essential 

for simulations with multiple cell types. 

Multiple cell type 2-D arrays: 

Like the linear (I-D) arrays multiple cell type 2-D arrays are 

simulated in the same manner as the single cell 2-D arrays except that 

each ISA PE is capable of implementing each cell type. It follows that 

the simulation time is the same, and we consider here just two examples 

to illustrate the technique. 

The first problem we consider is the triangular Gaussian Elimination 

array (of Gentleman & H.T. Kung [81]) which represents a significant 

simulation problem. Notice that if the ISA is to be used, the lower 

triangular part of the grid will be inactive throughout the computation. 

The data values flow from·north to south, the same direction as 

instructions, but the distribution of cell types is far from ideal. 

The different cell types inside each column mean than an instruction 

flow of a standard ISA cannot possibly mimick the operation of the array 

without increasing execution time using an arbitrary PA program 

simulation or modifying dataflow. Here we show that the algorithm can 

be preserved in time, structure, and data flow with only the addition 

of ISA set up time, using DIM. If the array is to be used with high 

throughput i.e. one problem instance after another, the setup time is 

an acceptable overhead. The DIM technique is used this time to set 

the cell type and control the individual cells encountered by entering 

different instruction states as the instructions move through the array. 

To understand the DIM operation we need to recall the virtual ISA 

instruction format, where 4 fields (2 digits wide) were adopted. We 
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construct a new PE in which the op"Code part of the instruction is 

either active or inactive (no-op) making it similar to a selector. 

The opdl and opd2 which normally reference data inside a PE now carry 

data which can be interpreted as true data or an instruction. For this 

simulation the nested DIM instructions have the form: 

'0 '0 '0 
1 0 0 

1 0 0 

0 0 

0 0 

a) Setup 

0 0 ~ 
's 12 '1 

1 1 1 

'0 '0 '0 

1 1 1 

1 1 1 

c) Full row active 

1 
's IS 

1 

e) Third row 

IS 

'0 12 11 11 
0 1 1 

10 '0 10 
0 1 

0 

0 1 

b) Create boundary cell 

~ (0) [a [] 
11 

1 ~ G GJ ~ 
'0 's 's '2 

1 1 1 1 

10 10 
, 

0 
1 1 1 1 

d) Create second row 

f) Complete array 

'1 

10 

~ 
GJ 

11 

1 

'0 
1 

FIGURE 9.4.4: DIM startup procedure for triangularisation array 
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OPD2 = 

r 
5 null cell 

4 shift data north to south 

1 
3 execute cell 

2 select cell type divider 

l 1 select cell type IPS 

1 an execute cell load north input into save 
OPDl = 

1 
registers 

otherwise perform cell operation 

{ 8 read data 

0 null. 
OP = 

we now configure the array on the ISA grid, with instruction 

modifications part of the virtual PE plugged into the grid, with the 

format, 
13 ,1 = DATA NW,l,O 

13 ,0 = DATA NW,O,O 

and data for the matrix to be eliminated tagged to instructions the 

array setup is performed as shown in Fig. (9.4.4) yielding the total 

timing T(n)=3n+(n+2) steps as follows: 

(i) setup =2 steps (as pipelined with computation) 

(ii) elimination = 3n steps 

(iii) readout result = n. 

Notice that the number of steps is the same as for the original 

systolic array during computation. Even the dedicated array must 

include n-steps to output the triangularized matrix. 

The hexagonal LU-decompcsition array represents a similar problem 

requiring only two cell types. However some cells of the same type are 

orientated differently and for purpcses of simulation must be treated 

as different cells. In addition the hex array uses a diagonal link 

which requires special consideration. Fig.(9.4.S) shows the 

correspcndence between hex cells and the grid processors of the ISA. 
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c . 
out 

~e 3: 
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c 
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A 
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out ".n 

.. 
tmPin 'lout 

t1 :west :=south 775 
east:=save1 
south: =save2 

t1 :west:=south 
east:=save1 

bout south:=save2 

Ain t2:cout=cin + (Ain*bin) 

north:=Ain 
savel:=bin 
save2 :=c t ou 

t1 :west:=south 
c east:=save1 
out south:=save2 

bin t2:cout:=cin+(Ain*bin) 

north:=c t 
DU 

savel :=cin 
save2:=ain 

t1 :west:=south 1--. bout east:=savel 

a out b . 
out 

Mapping of hex cells to ISA grid 

TWo cycle computation 

(i) cycle 1 move c
out 

up and left 

(ii) cycle 2 real computation 

! 
a out 

west:=save2 

t
2
:If 

c =0 
in 

A :=1 out 
true· 

4 t:=l/Ci ou n 
north:=cin 
save1:=-1 (bout) 

save2 :=4 t ou 

FIGURE 9.4.5: Cell types for hexagonal LU-decomposition 



The reciprocal cell of the hex array is placed in the top left 

(position 1,1) PE, which automatically defines the layout of the 

other processors. Hex cells rotated by 120· anti-clockwise appear 
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in the first row, and hex cells rotated by 120· clockwise in the first 

column of the ISA. The remaining (n-l)*(n-l) 'normal' cells occupying 

the (n-l)*(n-l) ISA grid consisting of (i,j) i,j=2(1)n ISA rows and 

columns. Diagonal links are simulated by adding an extra cycle to 

each basic computation used solely for data movement. A diagonal 

movement is then achieved by shifting elements north and then west, 

hence the extra cycle. As a result the normal algorithm time 3n+min(p,q) 

for a matrix of bandwidth w=p+q-l is increased to 2(3n+min(p,q)). 

Using the DIM technique all the cells must be setup and started 

simultaneously, requiring 2n steps as illustrated by Fig.(9.4.6). The 

setup time appears extravagant but for repeated use of the array is 

extremely efficient. 

Both the designs were tested using RISAL and the resulting 

programs are given below, the virtual PE definitions appear in the 

program appendix with the ISA. Finally, for a banded matrix the LU 

scheme is easily modified to incorporate more than one null operation 

code to mask out cells above and below the main grid diagonal. 

To conclude this section we return to the inefficient cell usage 

of linear array schemes, where only a few rows of· the ISA grid were 

used. Fig.(9.4.7) illustrates some efficient linear array layouts 

for our 4x4 test grid. It should be clear that cells with different 

orientations of communication but the same cell type can be modelled 

using a DIM setup scheme to improve processor utilisation. Hence we 

have shown that systolic arrays with different cell types can be 
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p(4,17) 
rep(4) null ,0,0 : 
data ,0,2; rep(3) d3ta ,0,1 : 
data n,1,3, rep(3} null ,0,0 : 
data n w,O,3; data n,1,31 rep(2) null ,0,0: 
rep(2) data n w,O,3; data n,1,3; null ,0,0: 
rep(3) data n W,Q,); data n,1,3: 
data 8,0,4; rep(3} data n w,0,3: 
rep(2} data 6,0,4; rep(2) data n w,O,l 
rep(3) data 8,0,4; data n w,O,l: 
rep(4) data 6,0,4: 
rep{4) data &,0,4: 
rep(4) data 6,0,4: 
null ,0,0; rep(3) data 6,0,4 : 
rep(2) null ,0,0; rep(2) data 8,0,4 
rep(3) null ,0,0; data 8,0,4 : 
.rep(4) null ,0,0: 
rep(4) null ,0,0 
end 

RISAL PROGRAMS FOR TRIANGULAR 

AND HEXAGONAL ARRAY USING DIM 

d(4,17) 
noneinonelnone,none 
none;none,none;none 
n 2.0,0.0,0.0,0.0 I 
none,nonernone : 
n 4.0, 3.0, 0.0,0.0 
none,none;none : 
n 2.0, 1.0, 3.0, 0.0; 
noneinon.,none : 
n 3.0, 2.0, 2.0, 2.0; 
none,noneinone : 
n 0.0, 4.0, 5.0, 3.0; 
noneinonelnone : 
n 0.0, 0.0, 1.0, 1.0, 
none,none,none : 
n 0.0, 0.0, 0.0, 2.0; 
none,none,none : 
none;none,none;none 
none;none,none;none 
none;none,none;none 
none;none,nonelnone 
none;none, none; none 
none;none,none;none 
none;nonelnonelnone 
none,none;none,none 
end 

6(4,17) 
1,1,1,1 : 
1,1,1,1 I 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
0,1,1,1 
0,0,1,1 
0,0,0,1 
1,1,1,1 
1,1,1,0 
1,1,0,0 
1,0,0,0 
0,0,0,0 
0,0,0,0 
0,0,0,0 
0,0,0,0 
end 



2. LU-DEC'OMPOSITION 

p(4,39) 
( hex LU I 
data ,0,4; rep(3) null,O,O: 
null,O,O; data,0,2; rep(2} null,O,O: 
rep(2) null,O,O; data ,0,21 null ,0,0: 
rep(3) nu11,0,0; data ,0,2 
{ switch on cella} 
rep(4} data n e s v,3,0 
rep(4) data n e s v,2,O 
rep(4) data n e 8 v,l,O 
rep(4) data n e s w,O,S 
{ start computation } 
rep(4) data n e s v,O,S 
rep(4) data n e w,O,S 
rep(4) data n 8 w,O,S 
rep(4) data n e w,O,S 
rep(4) data ne w,O,S 
rep(4} data n e w,O,S 
rep(4) data n e w,O,S 
rep(4) data n e w,O,S 
rep(4) data n e w,O,S 
rep(4) data n e w,O,S 
rep(4} data n 8 w,O,S 
rep(4) data n e w,O,S 
rep(4} data n e w,O,S 
rep(4} data n e w,O,S 
rep(4) data n e s w,O,S 
rep(4} data n e s w,O,S 
rep(4) data n e a w,O,S 
rep(4) data n e s w,O,S 
rep(4) data n e s w,Q,S 
rep(4) data n e s w,O,S 
rep(4) data n e 6 w,O,S 
rep(4) data n e s w,O,S 
rep(4) data n e s w,O,S 
rep(4) data n e s w,O,S 
rep(4) data n e s w,O,S 
rep(4) data n e s w,O,S 
rep(4) data n e & w,O,S 
rep(4) data n e & w,O,S 
rep(4) data n e s w,O,S 
rep(4) data n e s w,O,S 
rep(4) data n e a w,O,S 
end 

8(4,39) 
1,0,0,0 
1,1,0,0 
1,1,1,0 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
1,1,1,1 
end 

d(4,39) 
none;none;none;none 
none;none;none;none 
none;none;none;none 
none;none;none;none 
none;none;none;none 
none;none;none;none 
none;none;none;none 
none; e 0.0,0.0,0.0,2.0 ; none; none 
none;none;s 0.0,0.0,0.0,0.0; none: 
none;none;none;none : 
none;none;s 0.0,0.0,0.0,4.0; none : 
none; e 0.0,0.0,3.0,0.0; none; none 
none;none;none;none : 
none; e 0.0,0.0,0.0,1.0; none; none 
none;none;s 0.0,0.0,2.0,0.0; none: 
none, e 0.0,3.0,0.0,0.0; none;none : 
none,none;s 0.0,0.0,0.0,2.0; none: 
none; e 0.0,0.0,2.0,0.0; noneinone 
none;none;s 0.0,3.0,0.0,0.0;none : 
none, e 2.0,0.0,0.0,5.0; noneinone 
none;none;s 0.0,0.0,4.0,0.0;none : 
none; e 0.0,3.0,0.0,0.0; none;none 
none;none;s 0.0,0.0,0.0,1.0;none : 
none;e 0.0,0.0,1.0,0.0;none;none: 
none;none;none;none : 
none; e 0.0,0.0,0.0,2.0; none;none 
none;none;none;none 
none;none;none;none 
none;none;none;none 
none;none;none;none 
none;none;none;none 
none;none;none;none 
none;none;none;none 
none;none;none;none 
none;none;none;none 
none;n9ne ;none;none 
none;none;none;none 
none;none;none;none 
none;none;none;none 
end 



(1) SNAKE PIPELINE LAYOUT 
(NO VERTICAL INPtrr) 

(1Ii) CASCADE SYSTOLIC SYSTEMS 
(EG. ITERATIVE TECHNIQUES) 

(11) SYSTOLIC RING 
(EACB CELL TO BE CONNECTED 
EX'I'ERNALL y) 

(1v) SYSTOLIC RING 
(NO £X'TERNAL CELL INPUTS 
OR OUTPUTS) 

wasted processors 

,- - - - , 
I ,linear connected systolic array '- ____ 1 

FIGURE 9.4.7: Configuration of arrays on ISA to 
improve processor utilisation 
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simulated on the ISA more efficiently than SIMPLE and PARTIAL SIMD 

programs. For many problems where communication links map directly 

onto the ISA grid data flow and the number of steps can be preserved. 

The overall computation time of the array is increased when extra steps 

are added to multiplex data for more complex communication patterns. 

Simulations themselves require a setup phase where the systolic array 

is con figured and started on the ISA grid using a Dynamic Instruction 

Modification (DIM) program. DIM allows an instruction inside the ISA 

grid to be modified as it passes through a processor. The modifications 

are predetermined by a virtual processing PE plugged into the ISA grid 

at run time. DIM offers an additional flexibility to the ISA, by 

allowing portions of the grid to be allocated to different arrays which 

can run simultaneously on the grid, or to re con figure the systo1ic array 

'on the fly'. 

9.5 THE LINEAR INSTRUCTION SYSTOLIC ARRAY (LISA) 

We now return to the spoo1er problem of expanding the input and 

condensing the output interface of the ISA. The method of plugs which 

establishes a hierarchical many-1 correspondence between virtual 

processors and the real grid processors produces fan in and fanout 

spoo1er trees and is rather naive. The execution time of simUlation 

will increase as the size of the plug and hence number of virtual PE'S 

that are simulated by a single real processor increases. TO solve 

virtual mapping problem we apply the technique of Yang and Lee [86] 

used to transform a wavefront processor and architecture into a 1-D 

(i.e. linear) array. This mapping was applied only to single wavefront 

algorithms involving no backtracking (i.e. Huygen's principle) such that 



at time cycle i, only the PE's on the diagonal w(i) are activated 

(see Fig.9.s.l). We extend Yang and Lee's technique to multiple 

n 

, , 

, , 

, , 

W" , W" , W" , , 

, , , ,-" , , , , , , , , , , , 

, , , , , , , 

W" , w .• ,. , 

'-----8 

8
',,' ,/' 

, , , , , , , 

" , , , , , , 

~--------------------------------~ 

FIGURE 9.5.1: Wavefront array processor 
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wave front algorithms involving no backtracking using the ISA. This 

forms the basis of a more general mapping technique of ISA programs 
n 

to linear systolic arrays. Clearly the existance of such a mapping 

can be used to simulate plug definitions by linear arrays, hence 

reducing the overall number of virtual and real processors in the 

simulator hopefully minimising simulation time. 

The mapping proceeds in two phases as follows: 

a) convert the wave front processor to an equivalent ISA 

b) k-slow the ISA program mapping the ISA onto a linear array. 

First consider a single wavefront algorithm. At any time t there is at 

most one active wavefront on the wave front processor. The single 
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wavefront algorithm is simply encoded as an ISA program with only one 

instruction triple followed by 2n-l no-op instructions pushing the 

wavefront across the processor mesh. That is, 

(1) 
<Il,Il,···,Il > 

(1) 
<1,1, ••• ,1> P = s = 

p 
(2) 

= <c,e, ... ,e> s 
(2) 

= <1,1, ••• ,1> 

(2+i) 
<0,0, ... ,0> 

(2+i) <1,1, ... ,1>, i=1(1)2n-l. p s 

The progression of the single wavefront pattern is shown at times 

t=1,4,8 for n=4 in Fig.(9.5.2b). Three more inputs are required to 

(3) 
push p off the array and terminate the program under normal ISA rules. 

To apply Yang & Lee's mapping technique the ISA must be converted to a 

slowed or Delayed Wave front Program (DWP). 

The DWP is an ISA program which ensures that only a single wavefront 

is active at t=1,4,8 (Fig. (9.5.2b» • This implies that processors behind 

the wave must execute a no-op instruction or be de-selected for 2n-l 

cycles between each instruction making the DWP extremely large. Next 

we convert the ISA into a Linear Instruction Systolic Array (LISA) by 

defining a new processor structure or LISA cell. Fig. (9.5.2a) 

illustrates the ISA+LISA conversion. For the simulation of an nxn, 

2 
N=n 2-D ISA we use just n-LISA cells connected in a pipeline as shown 

in Fig. (9.5.3) 

Each LISA cell contains 4 bi-directional input/output lines for 

data and a select line passing horizontally through the cell from west 

to east, and an instruction line north to south. It follows that: 

(1) LISA(i) corresponds to the ith row of the original 2-D 

ISA array. 



(a) 

4 x 4 delayed ISA 4-LISA 

Equivalence of (4 x 4l mesh and 4 processor USA 

(b) pm 

/ 

, 

" 
.0'000 
0000 
0000 
0000 

1- 1 

P'H ,-
8000 
'0000 
0000 
0000 

t:;;; , 

• pi'" , pf:)1 • pl2l • pIU 

.121/ .l21' E{ [( , , , , 
'J2fdelo 
/.12(8' 0 0 
/.121/0 0 0 
/ 

1=4 

Multiple wavefront 

000.0 , 
0000 
00/0 0 
.0/000 

,.' t::4 

Single wavefront 

pm ,. 
0000 
0000 
o 0 0 O.P'" , 
0000' 

t = 8 " 

FIGURE 9.5 .2: ISA to LISA mapping 
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I , 
NI NOATA 

NI ,. North Instruction port 

SI '" South Instruction port 

WSEl = West Select port 

ESEL "" East Select port 

FIGURE 9.5.3: Linear instruction systolic array 
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(2) If LISA(i) acts as the (i,j)th ISA processor then LISA(i-l) 

and LISA(i+l) act as the (i-l,j+l)th and (i+l,j-l)th ISA 

processor respectively. 

(3) If LISA(i) acts as the (i,j)th processor of ISA at time t, 

then at time t+l the same processor acts as the (i,j+l)th ISA 

processor. 

(4) Since each ISA cell can communicate in four directions we 

have to consider communication problems in the linear array. 

The north direction is omitted because the processors behind 
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the wave front execute no-ops. Since LISA(i) simulates row i 

of the ISA east and west data is easily obtained. This leaves 

communication south, as LISA(i) acts as (i,j)th ISA processor 

at time t the data moved to LISA(i+l) at time t+l is the data 

required by ISA processor (i+l,j). 

Considering these factors the following cell is produced, 

lnSI ruetion NORTH DATA 

D ATA WEST Bus EAST DATA 

• + -------,...,1-

--1 
CR, CR, CR. 

Control Unit R, R, ~ 
~ 

+ F, F. ~ 
Processor ...- AUX, AUXz AUXn 

Selector ),fI .... fI ------~fI 

SOUTH DATA 

FIGURE 9.5.4: General LISA cell nxn mesh 

Each cell contains sufficient memory for each cell in a row of the ISA 

array, and, 

CRj = communication register of jth cell intlle row 

Rj = computation save register of jth cell in the row 

Fj = flag of jth cell in row indicating overwrite of CR
j 

AUX, = auxiliary memory for storing extra'data and book-keeping. 
J 

It follows that only one section of the memory (CR"R"Fi,AUX,) can be 
~ ~ ~ 

used at a particular time for a single wave front algoritllm, hence bus 

selection of memory is performed by the delay of the selector signal 

pumped through the array. The instruction signal enables the 

communication directions. 
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The resulting LISA array is much more area efficient as only n 
n 

2 
control and processor units are required in contrast to the n used by 

the ISA. Observe that memory requirements remain the same. 
n 

Returning now to the mapping problem it is trivial to see that the 

single wavefront ISA program is simulated by LISA • leaving only the 
n . n 

problem of placing the next wavefront of a DWP onto the array while it 

retains the same values. clearly at time t+l=n+l the wavefront has 

passed the anti-diagonal of ISA PE's consequently LISA(l) of the LISA 
n 

array must be free. So rather than waiting for the current wavefront 

(2) to leave the array altogether we can start the next command p (the 

(3) copy command) after another (n+l) cycles we can enter p etc. 

Now the DWP is produced easily from consideration of the LISA 

dataflow and the instruction/selector paths to produce the format in 

Fig. (9.5.5). 

eg.n = 4 
.=4 

... 0 ... 051"0 ... 051" 

, , , , , 
... 0 ... 051" 0 ... 0 51" : ----, n n, , , 

• , , 
... 0 ... 051210 ... 051'1,' 
--- ---I n n, 

• , , , , 
... 0 ... 0 S~21 0 ... 0 S~II" 

--' n n, 

total input length = rn 
& = dummy input 

FIGURE 9.5.5: 

DWP format for LISA pipeline 
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illustrating that any ISA program can be translated into a DWP for the 

LISA pipeline. Clearly if we have a large mesh size n and a long 

program (r) the DWP becomes very long and simulation slow making the 

method impractical. From a theoretical viewpoint an additional trans-

formation applied to ISA results of Table (9.1.1) produces a timing for 

LISA by substituting nr for r or nT(p) for the length of a program p on 

an ISA. Also observe that the size of a LISA cell is dependent upon n the 
n 

mesh size for defining the amount of simulation storage. 

A flexible and expandable ISA architecture can be constructed by 

using LISA building blocks. Considering the nXn ISA mesh as a matrix 
n 

of PE's we choose a block size k and partition the mesh into kxk blocks 

as follows: 

: , 
, , 

---'---, 
I , 
: 
I 

I 
I 

___ loo_-
I 
I 
I 

, 
I 

k=2 

__ 1 _____ _ , 
I 
I 

I 
I __ ..1 __ 

I 
I 
I 

k=4 
• 

n-8 

Partitioning of block -ISA mesh 

The essential idea being to maximise the block size and minimise area 

by trading the number of additional instructions to the DWP, with the 

size of the LISA pipeline. Notice that the number of vertical LISA 

inputs is independent of the block size while the horizontal (selector) 

lines are related to k, an additional design constraint. In the example 

above choosing k=4 produces an ISA
n 

with four LISA
4 

pipelines simulating 

a N=64 processor mesh. The choice of k=4 is arbitrary, but based on 

restricting the simulation storage of each LISA cell, while removing 3/4 
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of the processor and control units of the original grid. Furthermore we 

would like to retain the possibilities of chip based LISA implementations. 

-r' 
4 

LISA 
CHIP USA chip format 

:r ~ selectors 

'-n--' 4 
I 

t 

LlSA 
CHIP 

LlSA 
CHIP 

LlSA 
CHIP 

LISA 
CHIP 

I I 

t t 

---

---

k "" 4~4 -chipsto implement 
64 - processor ISA 

FIGURE 9.5.6: LISA-based construction of ISA mesh 

For a single LISA pipe we use only one data input and one data output 

line horizontally and vertically. The immediate objection to this policy 

is that perhaps more than one PE will communicate across a block 

boundary at the· same time. Simple analysis shows that at most two ISA 

processors can be active across horizontal or vertical block boundaries 

in the same instance. Furthermore they are always in adjacent rows or 

columns and can be easily resolved ,by an additional delay in the DWP. 

Fig.(9.5.7) illustrates the DWP data movement, and it is trivially 

observed that the maximum delay between instructions is dependent on 

the block size k. Any program on the ISA has an equivalent DWP on the 

block ISA which is at most k times as long as the ISA program, or k-

slowed. (1) (1) (1) (1) 
For example, the instruction p =(Pl ,P2 , •.. ,PS ) is 

partitioned into n/k, k sized components and input into the block 

partition ISA as illustrated by Fig.(9.5.S). 



(il 

(ii) 

pUl 

000 ~ 
oo~D 

o~oo 

~ooo 

0000 
0000 
0000 
0000 

pm 1 st block 

iD 0 0 
ooo~ 

oo~o 

o~oo 

~oDo 

0000 
0000 
0000 

1-chip 

---------DODO 
0000 
0000 
0000 

... 

pm 2nd block 

'000 
DODO 
DODO 
DODO 

.... 

1=4 

.... 

t = S 

N.B. Each 4 x 4 block is a 
single 4 -USA array 

FIGURE 9.5.7: Block - ISA wave fronts 

FIGURE 9.5.8: Instruction input format for block ISA 
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It follows that the LISA design can be used in two roles for our 

simulator, 

(i) As a hardware component to minimise the total number of real 

processors required to simulate the full ISA grid. 

(ii) As a software plug which minimises the additional simulation 

time by running a collection of virtual PE's on a single real 

PE. 

It should be clear that a k=4 block partitioning corresponds to a 2x2 

matrix or LISA
4 

which act as 16-4 plugs. 

9.6 SUMMARY 

In this chapter we have described and characterized the instruction 

systolic array a flexible and powerful parallel architecture, capable of 

simulating full, partial and vector orientated SIMD programs, the wave

front array processor of S.Y. Kung and many dedicated systolic arrays. 

A number of theorems were presented relating program size and complexity 

of MIMD-type mesh machine algorithms and the ISA by a series of program 

transformations. 

Using this flexible architecture as a virtual machine programmed 

in OCCAM we developed a soft-systolic simulator where the emphasis was 

on executing programs systolically rather than systolic movement of data. 

An overall system structure was defined and the virtual machine discussed 

in detail. A primitive assembler/compiler for a speCial language the 

Replicating Instruction systolic Array Language (RISAL) was devised for 

experimentation with the machine. 

Using RISAL a number of simple test examples were constructed 

suggesting extensions to the language and highlighting potential problems 



792 

with the structure of the virtual machine. In particular the difficulty 

of expanding the machines interface from the limited host machine 

bandwidth using a spooler arrangement. 

We indicated that the virtual ISA could be used directly for multi

tasking simulation using vector orientated programs and a systolic array 

simulation (Umeo [85]). For dedicated systolic arrays like the matrix 

triangulariser (Gentleman & H.T. Kung [81]), and the hexagonal LU

decomposition array (Leiserson [81]) where cells consisted of multiple 

types (including single cell type arrays as a special case), the method 

of Dynamic Instruction Modification (DIM) was introduced. A DIM ISA 

program allowed instructions to be modified as they were pumped 

systolically through the grid permitting the setup and stationary 

operation of instructions forming dedicated arrays on the ISA grid. 

The above examples were tested using RISAL programs. 

Finally we considered a further program transformation from ISA 

to a Linear ISA (LISA) a I-D array of processors. The essential idea 

was to minimise hardware by arranging for only one ISA program wavefront 

to be active on the mesh at a time, using a delayed wave front program 

(DWP). The cost of additional delay instruction wave fronts produced 

large simulation programs but was offset by block partitioning of the 

virtual grid. For kXk blocks a k-cell LISA was used to simulate each 

block, and a k-slowed DWP equivalent to an ISA program produced. For 

k=4, 4x4 block partitioning saved 75% of the processors (excluding their 

internal memory) and introduced only a constant delay factor over the 

ISA for program execution. 

To overcome the host/array interface spooling problem and to achieve 

the mapping of large virtual grids to a finite real machine architecture 
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the concept of processor plugs was introduced, using a many-l mapping 

of portions of the ISA to a single PE. The nested use of plugs 

created fanin and fanout spooling trees for distributing instructions 

from a sequential host to the parallel ISA. Unfortunately, for large 

virtual grids simulation time increased as more plugs were introduced 

to simulate portions of the virtual grid. Finally we swapped the plugs 

for the LISA design to produce efficient grid mappings, providing the 

capability to simulate any (reasonably) sized virtual ISA. 

We conclude that the principles discussed briefly here can form 

the basis for a soft-systolic simulator using an orthogonal connected 

mesh of processors. The wide range of algorithms which the ISA can 

simulate make it suitable for a virtual simulating grid, while the use 

of RISAL, DIM and DWP permit the implementation testing of ISA programs 

and dedicated systolic arrays (with regular communication structures). 

Future work would include the implementation of the ISA program on a 

fixed network of transputers (possibly a meiko computing surface) and 

the much needed development of a robust version of RISAL. 



CHAPTER 10 

CONCLUSIONS AND SUGGESTIONS FOR 

FURTHER WORK 

"There is nothing so powerfu~ as an idea whose time has come" 

DORIS GRANT. 
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This thesis has concentrated on the introduction of the soft

systolic paradigm for the development of novel systolic algorithms, 

resulting from the relaxation of constraints imposed on array designers 

by VLSI technology. The algorithms and concepts presented have been 

discussed in a semi-formal manner which partitions neatly into three 

distinct but related parts. In this final chapter, rather than 

enumerating the results, advantages and disadvantages of each design, 

we take the opportunity to stand back from detailed descriptions, and 

characterise the major properties of these parts and the relationships 

between them. 

PART I consisted mainly of survey and background (mathematical) 

material necessary for the ready comprehension of the thesis and provided 

a stock of accepted designs to act as benchmarks for new arrays. In 

addition, the concept of a systolic frame was introduced. Systolic 

frames are intended to lend a semi-formal structure consisting of axioms 

and heuristics to characterise classes of systolic designs and their 

interrelationships. A single algorithm/array is a single element of a 

frame, whose abstract computational capabilities are characterised by 

the axioms and its implementation by technology based heuristics. 

Different elements (designs) of a frame are imagined as different 

arrays/algorithms produced by re-timing, re-placement or synthesis 

operations. A subframe is simply a collection of designs ·over the same 

axioms and heuristics which solve the same problem (and are clearly a 

subset of a more general frame). Closed subframes follow naturally as 

collections of designs for the same problem, such that applying re-timing, 

replacement or synthesis techniques to a particular design produces 

another design in the same subframe. Additional frame types can also 
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be identified such as an anchored subframe (where at least one design 

is formally verified as correct), free or constrained frames (where 

heuristics are omitted or defined respectively), and finally regular 

or irregular frames (where axioms dictate the degree of structure in 

the connection topology). For our purposes we classified systolic frames 

into three main groups, soft-, hybrid- and hard-systolic according to a 

single heuristic 'programmability'. Consequently all the designs 

presented in this thesis are members of constrained frames with definition 

soft, hybrid, or hard prefixed to determine the degree of programming 

required to implement the design; soft-systolic algorithms requiring 

simulation (or total programming), hybrid a mixture of micro-programming 

and special hardware, and hard-systolic implicitly programmed by circuit 

connections. 

Recent trends in the literature towards formal transformational 

approaches to deriving systolic algorithms indicate that the days of ad

hoc design are numbered. From this viewpoint we believe that the formal 

definition of the systolic frame concept will play an increasing role 

in determining classes of systolic algorithms and legal transformations 

between them. In particular relationships between soft, hybrid and 

hard frames must be explored to determine if simulated arrays map easily 

into real implementations. If nothing else this thesis has tested the 

viability of adopting these more flexible (but controlled) attitudes to 

defining new systolic schemes. Adequately defining the frame concept in 

itself is non-trivial and represents a sizeable amount of further 

research into systolic algorithm properties, we have contented ourselves 

with a less formal outline of frames by which investigations could be 

directed. 
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PART 11 concentrated on improvements to linear algebra arrays, 

using a soft-systo1ic frame under 3-D (flexible layout) and optical 

processing (long wire) heuristics. Improvements to existing designs 

as well as new arrays were introduced and theorems about them presented 

which compared favourably with corresponding results for traditional 

architectures of chapter 3. The essential point to observe is that all 

the designs are members of linear algebra subframes with new arrays 

produced in three main ways: 

1. Changing the length of input data streams: by 

a) filling dummy or neutral elements 

(e.g. double pipes, and problem interleaving) 

b) modifying the host/array interface 

(e.g. block partitioning, DZ-pipes (z>O)). 

2. Re-organising the underlying array structure: by 

a) Partitioning the problem or array into loosely coupled or 

decoup1ed subsections which can run sequentia11y or in parallel 

using mu1tipass or mu1ti1ayer configurations. 

b) Modifying internal cell structures to improve array efficiency 

(i.e. multi-layer tree layouts, two-level pipe1ining, b10ck-ips 

arrangements). 

3. Deriving new arrays from new algorithms: 

a) Increasing the parallelism of the solution technique 

(Rank-annihilation, circu1ant system solvers (BATS)). 

b) Incomplete Arrays with minimal area and time providing fast 

approximations to a problem solution which are 'cleaned up' 

outside the array. (Preconditioning preprocessors) • 

1. and 2. correspond to the application of retiming and replacement to 
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existing designs to produce additional members of the subframe. 

Clearly the method is ad-hoc and exhaustive depending on the ability 

to permute data (e.g. QI-methods) or instructions (block partitioning, 

multi-pass etc.) Already there are signs that the rate of improvements 

to existing arrays is declining indicating that designs are settling 

to form a few standard arrangements. We suggest that these 'standard' 

arrays are elements of closed subframes, which by varying heuristics 

we have re-opened. Clearly, the amount of design possible by the sole 

use of techniques 1. and 2. is limited and the frame will eventually 

close again under the new constraints. On the other hand 3. is a more 

systematic approach based on improved algorithms arising from theoretical 

developments, and creates subframe elements directly without recourse 

to 1. and 2. Although once the element is established 1. and 2. can be 

applied to produce additional possibly improved designs. For example, 

this is what occurred with the rank annihilation Toeplitz solver, and 

the BATS array using the Audish & Evans factorisation. In contrast, 

incomplete arrays result from the relaxation of axioms in asystolic 

frame and in particular the requirement that exact solutions (within 

the bounds of rounding errors) are produced by the array. This approach 

immediately circumvents the AT2 (Savage [SI]) lower bound argument on 

area and time of arrays used to determine optimum array designs, producing 

dramatic cell reductions (e.g. >7S%) and decreased computation time. The 

essential feature of an incomplete array is the redistribution of 

computation between host and array, according to some percentage 

weighting. For example, a compacted area efficient and fast array may 

produce an approximation very close to the correct answer, which is then 

refined by the host to produce the exact solution. Thus emphasis is no 
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longer on full array calculation but accelerated accurate approx

imations to a problem, which allows a single array to be adopted for 

a range of problem instances. This is in contrast to a mUltipass 

scheme which satisfies the AT2 bound and reduces area by iterating 

calculations, thus increasing computation time to supply an exact 

answer. We described incomplete schemes mainly for iterative solutions 

to linear systems in the form of preconditioning, where the fixing or 

refining method was clearly defined and supported by theoretical 

arguments. Clearly incomplete techniques should be extended to other 

methods and arrays. We might also conjecture that as the number of 

iterations associated with good preconditioners continues to drop, that 

compacted and fast incomplete arrays may outperform direct (complete) 

designs from the viewpoint of economic viability, where the solution of 

large linear systems is concerned. 

The purpose of PART III of the thesis was twofold, but was chiefly 

about producing generic arrays which trade-off speed vs. power, speed vs. 

area, functionality vs. area, memory tradeoffs and the number of external 

connections. As a secondary issue to produce examples and support 

discussions we considered the use of computational molecules or rules 

for deriving systolic forms using an alternative recurrent formulation 

to that explicit in linear algebra. Indeed, we characterized by means 

of templates,arrays for generating and manipulating tables of elements, 

creating different arrays based on row-by-row or column-by-column and 

combined non-stationary schemes (e.g. QD-array). These can be likened 

to the row, column or diagonal ordering of matrix inputs in traditional 

linear algebra schemes. In the guise of algorithmic vs. geometric 

interpretations of P.D.E. problems we implicitly defined relations 
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between linear algebra arrays and computational rule (or Table) arrays 

and indicated that a wide class of useful new arrays existed. A number 

of new table based designs were discussed, including the more complex 

simplex, revised simplex, and assignment problem which graphically 

illustrated the difficulties of manipulating large tables. This problem 

was not unlike the dense matrix problems encountered with arrays based 

on linear algebra. 

From the viewpoint of systolic frames the emphasis in PART III 

shifted from identifying particular subframe elements and instead 

addressed the relations between collections of similar designs which 

formed similar sub-frames belonging to different global frames. That 

is, the correspondences between designs for the same problems in soft, 

hybrid and hard systolic frames. To meet the demanding tradeoffs above 

two opposing forces are readily observed. In one direction many simple 

hard designs map to a single generic array increasing the programmability 

factor of a design shifting it from hard, through hybrid to soft

systolic subframes. In the other direction restricting the generality 

of a problem constrains the array, mapping it from soft, to hybrid, and 

hard subframes in a one to many transformation increasing the options 

for implementation. We attempted to cancel these two forces by the 

principle of array unification producing a hybrid type device which 

attempted to minimise cell hardware whilst increasing programmability 

using a set of simple control switches. In the Unified Systolic Array 

for Differencing (USAD) we achieved this balance although this was a 

result of the simple structure of the problems selected. A similar 

balance with less success was developed for the systolic marching and 

Alternating Group Explicit (AGE) arrays. Here the optimisation of 
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hardware and increased programmability by use of switches was offset 

by the complexity of the computational rule employed (and its coefficients) 

which complicated cells particularly when alternating was necessary to 

retain stability. When unbalanced the two opposite forces migrate 

designs to one extreme or the other in terms of programmability. For 

generic arrays ultimately all hard, hybrid designs collapse onto a single 

unified array. Such a case is illustrated by the soft-systolic simulator 

in which the highest factor of programmability where arrays are simulated 

by programs executed systolically is achieved. For hard systolic designs 

a generic array maps onto a single well-defined and restricted special 

array. This was illustrated by the mapping of the generic P.D.E. solver 

down to the bit serial Hopscotch scheme. In this case even the solution 

method had to be modified along the way, to achieve a Simple cell form 

with a low programmability factor. The mechanics of these shifts between 

soft, hybrid, and hard frames is further complicated by the collusion of 

improvement methods like problem interleaving and incomplete techniques 

identified in PART II. Indeed the PDE solvers adopted interleaving for 

asymmetric marching, while FAST AGE and HOPSCOTCH arrays used incomplete 

techniques to balance partial table production and approximation 

accuracy against cell area and array speedup. 

To conclude, the lesson to be learnt from these observations is 

that a successful general purpose systolic computer must rely on a 

balance between the two extremes - implying a hybrid-systolic structure 

with limited programmability supported by specialist hardware. This makes 

it promising to investigate new MIMD architectures which incorporate VLSI 

structures into architectural design perhaps orientating them to 

particular problem domains. Based on the work in this thesis such a 
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machine may take the form of a Systolic Control Ring Instruction 

Processor (or SCRIP) machine illustrated by Fig.(IO.I). SCRIP 

incorporates an ISA mesh inside a Systolic Control Ring composed of 
n 

simple controllers and generic linear arrays. Thus the ISA using RISAL 

programs can be adopted for general systolic simulation, the Control 

Ring to implement optimised multiple wave front algorithms (like rank 

annihilation, Assignment problems, etc.) while the boundary arrays 

provide high performance computation of specified problem classes. A 

back plane crossbar is added to allow the flexibility of implementing 

toroidal networks and the independent use of boundary arrays and the 

ISA mesh, thus increasing parallelism and allowing a mUlti-user 

environment. Hence SCRIP is simply a 'bag' of useful arrays on a single 

architecture. The development of SCRIP type machines poses interesting 

and "exciting problems for the future, and presents an attractive alternative 

to the SYS-PACK type machine of Chapter 1. 
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In OCCAM processes are connected to form concurrent systems, each 

process can be regarded as a black box with an internal state which can 

communicate with other processes via point to point communication 

channels. The processes themselves are finite. Each process starts, 

performs a number of actions then terminates. An action may be a set 

of parallel processes to be performed at the same time. As a process 

is itself composed of processes which may themselves be executed in 

parallel a process allows internal con currency which varies with time. 

Processes: 

All processes are constructed from three primitive processes, 

assignment, input and output. 

Assignment: An assignment is indicated by the symbol :=, for example, 

v:=e sets variable v to the value of the expression e and then terminates. 

Input: An input is indicated by the symbol ?, for example, c?x inputs a 

value from a channel c aSSigning it to x and then terminating. 

Output: An output is indicated by the symbol I and cle outputs the 

expression e to channel c, and then terminates. 

A pair of concurrent processes communicate using a one way channel 

connecting the two processes. One process outputs a message to the 

channel, the other process inputs the message from the channel. A 

particular process can be ready to communicate on one or more of its 

channels any time between its start and termination, but a communication 

only takes place when both it and the process sharing one of its 

channels is ready. Where a number of connected processes are ready 

simultaneously communication can occur in parallel. 

Constructs: 

A number of processes can be combined to form a construct which is 
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itself a process and can be used as a component for other constructs. 

Each component process is indented by two spaces from the left hand 

margin indicating which construct it is part of. There are only four 

basic construct types, sequential, parallel, conditional, and alternative. 

SEQ: is the keyword for a sequential construct denoted 

SEQ 
pl 
p2 
p3 

where the component processes Pl,P2,P3, ••• are executed in strict 

sequence with process Pi finishing before Pi +l starts and after Pi - l 

terminates. Sequential constructs are similar to programs written in 

conventional programming languages. 

PAR: is the keyword for a parallel construct of the form 

PM 
pl 
p2 
p3 

and in contrast to SEQ, here all the component processes Pl,P2,P3, •.. are 

executed concurrently. The PAR construct terminates when all the 

component processes have finished. 

IF: is the keyword for a conditional construct with the appearance 

IF 
condition 1 

Pl 
condition 2 

P2 

This means that pl is executed iff condition 1 is true, otherwise p2 

iff condition 2 is true, etc.etc. Notice the strict sequential ordering 

of tests. Only one of the processes P, is executed and the IF construct 
~ 

terminates when the process finishes. 



ALT: is the keyword for the alternative construct 

ALT 
input 1 

PI 
input 2 

P2 
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This construct waits until one of input 1, input 2, input 3, ••• is 

ready. If input 1 is ready first, input 1 is performed and on completion 

PI is executed. Similarly if input i is ready first input i is performed 

and Pi executed. Only one of the inputs is performed and its corresponding 

process executed before the construct terminates. If more than one input 

becomes ready at the same time the one executed is chosen arbitrarily. 

Repetition: 

There is only one explicit construction for repetition denoted by 

WHILE condition 
P 

which repeatedly executes process P until the value of the condition is 

false. Observe that P itself can be a composition of sequential and 

parallel constructs. 

Replication: 

A replicator is used with a constructor to replicate the component 

process a number of times. With SEQ a standard for loop 

SEQ i=[O FOR n) 
P 

is created executing process P sequentially n times. When used with 

PAR an array of concurrent processes with the form 

P~ i=[O FOR n) 
p . 
. ~ 

is created such that n similar processes P ,Pl, ... ,P I are executed o n-

in parallel. Notice that i=O(l)n-1 not n, thus if generally i=[base FOR count) 
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there are base+count-l values i takes starting with i=base. 

Declarations: 

A declaration introduces a new identifier for use in the process 

that follows it, and defines the meaning the identifier will have within 

the process. If the new identifier is the same as one already in use, 

all subsequent occurrences of the identifier in the process will refer 

to the meaning of the most recent declaration. Declarations are of 

four basic types VAR, CHAN, DEF and PROC linked to a following process 

by a colon (:) at the last line of the declaration. The process 

follows on the next line at the same level of indentation as the keyword 

declaration. For example, 

VAR x: 
P 

declares variable x to be used in process P, and 

CHAN C: 
P 

defines a channel C to be used in communication for P. A variable 

vector declaration introduces an identifier to be used as a vector of 

variables, viz. 

VAR list [16]: 
P 

for a vector named list of 16 variables indexed as list[O] ,list[l] , •.• 

list [15]. Likewise a channel vector declaration introduces a new 

identifier as a vector of channels for communicating between concurrent 

processes 

CHAN C[n] : 
P 

DEF associates a name with a constant value, or with a table of 

constant values, e.g. 
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DEF a=l, b=2: 

associating a with 1 and b with 2, using these identifiers within a 

process yields the associated values. 

The PROC declaration introduces an identifier to name the process 

which follows, indented, on the succeeding lines. The process is termed 

the named process and is itself followed by a process in which the named 

process will be used. The named process can have parameters wnich are 

declared with the declaration of the named process and are called formal 

parameters. The named process text will be substituted for all 

occurrences of the process name in subsequent processes, the var and chan 

variables substituted in place of the formal parameters are called 

actual parameters. For example, 

PROC buffer(CHAN in, out) -
WHILE TRUE 

VAR x : 
SEQ 

in?x 
outlx 

CHAN c,cl,c2 : 
PAR 

buffer(cl,c) 
buffer(c,c2) 

declares two buffer processes executed concurrently. buffer is the named 

process with formal channel parameters in and out. In the following 

process C.cl.C2 are actual parameters and on execution the WHILE loop 

will be textual substituted for occurrence of the name buffer and C.Cl.C2 

substituted for in and out respectively. The size of a vector is not 

specified in the formal parameters of a named process and different 

sized vectors may be used as actual parameters on different substitutions. 

In addition to the standard declarations VAR and CHAN, a VALUE parameter 

may also be used, as either an ordinary or vector formal parameters and 

cannot be changed within a process by assignment or input. 
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Finally an identifier which is used but not declared in a named 

process is termed a free identifier. Any free identifier in use when 

a named process substitution takes place must be the same as a variable 

already in use. The free variable then takes on the most recent 

of the variable at the point where the process substitution incarnation 

takes place. 

Program Format: 

In OCCAM indentation from the left hand margin indicates program 

structure. Each process starts on a new line, at an indentation level 

indicated by the following rules. 

Constructs 

The construct keyword (and the optional replicator) occupies the 

first line. Each of the component processes start on a new line and 

are indented by two spaces more than the keyword. 

Conditionals 

The condition expression occupies the first line, and the component 

process starts on the next line indented by two more spaces. 

Alt inputs 

The expression and its associated input occupy the first line and 

the component process starts on the next line indenting two more spaces. 

Declarations 

Each declaration starts on a new line, at the same level of 

indentation as the process it prefixes, the final line of the declaration 

being terminated by a colon. Blank lines can be inserted anywhere and 

are ignored. 

A construct can be broken to occupy more than one line, with line 

breaks occurring after comma, semicolon and before the second operand 
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of an operator (requiring two operands). The continued line must be 

more indented than the first line of the construct. 

Comments: 

Comments are denoted by double hyphen (--) and terminate at the 

end of a line. All characters of a comment are ignored. A comment may 

follow an OCCAM construct on the same line or be on a line by itself 

This summary of OCCAM is taken from INMOS [84,85] and implements 

'proto-OCCAM'. A more sophisticated version OCCAM 2 is now available 

providing Real, Integer, and Boolean types. We remark that the 

programming in this thesis was performed on a VAX machine under UNIX 

using Loughborough OCCAM as implemented by R.P. STALLARD. Appendix 11 

discusses the Loughborough version of OCCAM and particularly its 

extensions of proto-occam to allow real variables and non-standard 

OCCAM features. We point out that the programs listed in Appendix III 

where possible have avoided these non-standard characteristics. 
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Loughborough Occam™ Compiler 
Version 5.0 Documentation 

UNIX is a trademark of A.T. & T. Technologies Incorporated, occam is a trademark of Inmos 
limited 



Help tor running the occam ocmpiler 

A source 'occam' tile (OCCAII aDd INIIOO are tradeno.rks ot the INIIOS group of 
canpanles) must be of the fom ' •• occ', to ocmpUe it to tonn an 'a.out' 
ocmnand tile use the detault options. For example to ocmpUe 'lIIY_f1rat.occ' :_ 

occam lQ)'_firat.occ 

An executable object 'a.out' is produced. As a shortcut you can anlt the 
'.occ' affix and just say 'occam my first'. the canpller w1l1 add on the 
atfi. tor you. -

If a program Is split into several files these can be separately canpUed aDd 
linked together USing the occam canpller and built lit linker. 

Ellch previously canpUed occam program Is specified In the ocmnand line ID 
the form ' •• 0' e.g. ;-

occam maln.occ oumerlcllb.o screenllb.o 

This will canpUe the source of 'mln' aDd Unk It 10 with the pre ccmplled 
Ilbraryoccam files 'numerlellb.occ' 'screeollb.occ'. Tbe -1 option Is used 
to generate new veralons of library fUe objects. 

Various swltcb options are provided, IIIl1nly tor canpUer debugging. Flags 
can either be put separately ('-g -I') or together and ID any order ('-I,' 
'-gl'). Tbe following switches nay be U8!'ful :- ' 

-g : 
occam -g fast.occ 

OlnpUe the oec.am program as before but run the resulting program imnedlately 
(a canplle,load and go option). It flag options are specified that apply to 
the run of the program these will be passed on as in 'oecam -gqc fast'. 

-I : 
occam -I ne" lib 

<hnpUe the program and produce object but do not 1I0k the object tiles 
together to produce an object program. Tbls option la used for buldlng up 
libraries of routines or to cut down the ocmpilatlon time for ocmplllng one 
long program. 

-0 : 

<hnplle the program as normal but place the object program in the fUe 
'savenm' rather than the default 'a.out'. Useful tor saving several 
occam object fUes at the same time. 

-x : 
occam -. old_fashloned.occ 

<hnplle according to the strict IIlIOOS occam specification. wr e.tenslons 
(see file 'occamverslon') currently Include :

Multiple source tUe croos linking. 
Dynamic tea tures. 

-c : 

Variable PAR repllcator counts. 
floating point arl tlwetic. 

a.out -c 

Run the object program with cursor addressable facilities enabled, the 
standard library procedures 'goto ••• y' and 'clear. screen' require these 
tacllities. 

-{): occam -{) error yrone 

<hnplles the tile as nonnal but generates a symbol file as ",,11 (In this 
case It wuld be 'erroryrone.sym'), this Is used by the run-time syst ... to 
inspect the values of variables. 

-q: 
a.out -q 

Run the object program without producing any characters to the screen other 
than those output by the prosram (unless cnu. 0 used). This enables ocean> 
programs to dllllP output that can be processed by other ocoam programs. 

-F and ~ : 
occam -P n\ID.occ 

'-F' Includes the floating point library routines to provide a simple real 
Rllllber arltlwetlc capability. '-M' Includes both the floating point and 
IIIlthenatlcal library routines to provide mathematical library routines. 

-I : 

Thla provides the features ot the IMlOS proto-cccam definition (see 
'occam version') such as STOP and TIME, It should be used "here possible 
as It Ta closer to the occam-2 definition. 



Full list of compiler option flags 

The tull (often cryptic) range of switch options are as follows. Several 
swi tch flags can be given, in any order and either separately or together. 

The mn<m:mic character giving the switch is highlighted by a capital letter. 
They are divided into sections - user defined flags, and systEm defined 

options, which are selected by prefUing with '$'. 

User Flags 

-f 

-g 

-h 
-i 

-1 

-0 

The next flag(s) are systEm flags - switch flag mode. 
Run the program with Cursor addressable options enabled. 
The library routines 'clear.screen' and 'goto.x.y' need this flag set. 
It used for the canpUer must also give the -g option. 
Produce object/run object for Execution tracing. The resulting object 
fUe is then run wlth the '-e' option. This utility Is described 
in'tracerinfo'. 
Force full occam semantic check on use of variables. 
A variable (not vectors though) can not be set within a PAR 
construct it the declaration is outside the PAR. This applies 
equally to procedure calls that change global variables. 
Run the resulting object file if canpilation succeeded. 
The program Goes 1mnediately it is ready to. 
Print out this '''elp' infornation: 
Force an Interrupt 1mnedia tely before start of execution -
imnediately displays the debug help menu. This enables break and 
trace points to be setup prior to anything being executed. 
Q:rnpUe but do not link the occam oource. Needed when using 
multiple occam source Library files. 
Check that every channel Match properly on execution, channels can 
have only one input and one output process during execution. 
Produce an Cbject program with name given by the non-switch 
arglJDent following this swi tch. Enables you to choose an 
object fUe name other than 'a.out'. 
Run the program without outputting sane non oocam program produced 
messages - e.g. 'OXA/d Start Run'. Must give -g option as well 
'q' stands for ~et. Useful when producing output to be piped 
or processed by other programs. 

....., SUppress the Warning messages fran the canpiler - when you have 
seen these warnings once you may find it less irritating to suppress 
thEm on subsequent canpilations - does not affect error reporting 
or any other compiler action. 

-x D:l not penni t any local urr eXtensions in the source text. 
See 'oocinfo' for infornation about these - for example recursion 
and EXl'FllNAL procedure definitions. Useful it moving an occam 
program for use on another oocam canpiler systEm. 

-F Include the standard Floating point library routines. 
Provides routines to read or write floating point routines to 
channels. 

-<l Produce a symbol table file (with dfu '.sym') for use with the 'm' 
option in the dynamic debugger for symbol value examination. 

-I funn1t the use of INMa3 proto-occam version 2. These changes include 
the use of 'TIME' instead of 'NOW', the 'STOP' primitve and the use of 
'Stopping lP' - an alternative without any TRUE conditions will STOP. 

-L Use Long winded load, all the 'C' libraries are added at the last 
nmment rather than using the pre-linked object, this my be useful it 
a user oocam/C library calls a 'C' routine that is not used in the 
occam run time system. See 'libraryhelp' for more info. 

-Id Include the MathEmatical library and floating point routines. 
-0 Produce optimized object. May improve run time by 20$. 
-R Use Randanized scheduling when running the program - the same 

scheduler choices will not be made on sejllrate executions. 
This gives non-detenn1nistic execution and will be slightly slower 
but may be useful occasionally. 

-S D:l not include the Standard I/O routines with the object. This 
library is included by default, there is no reason not to want 
to include it unless you want to devise a totally new one. 

. -T n,e next arglJDent is a Timing definition file built by the· 'timebuild' 
utility to be used in conjuntion with the ,~, option, supplying '-T' 
autamtically selects '-e'. If this option is not selected the executiOl 
timings are taken fran the source library file 'times'. Look at the 
'timerinfo' help file for more details. 

-V The canpiler will nonnally desist reporting errors and warnings after 
the first fifty or SO, with this option all the errors will be 
reported. May produce Very Verbose output. 

-W Give Warning IOOssages about declarations that turn out not to have 
been used at all. This may highl1~ht misspelt declarations or 
existence of no longer used procedures. 

ex> 
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SystEm Flags 

-s 
-a 

-n 

-t 

-v 

-A 

-C 

-0 

-11 
-L 

-11 

-x 

-y 

-z 

SWitch back to expecting 'user' mode flag options. 
This means you can replace -<;%v by -~v%G. 
Enable Analysis of the usage of channels - thls faclllty ls stlll 
under test. 
Oleck the source occam for syntu:: errors, but do Not produce any 
object data fraJI it. 
Print out the program in the fOnD just after it""" Transfonoed. 
Ibt generall t useful as the program has changed so mucb. 
Give Verbose infonnation at each stage when running the compiler -
will print out a /OOre accurate description of the systeo camands 
it is calling and all the files it accesses. 
Also sw! tches on a full print out of the occam link infonnation. 
Produce the object code ('C' or Assembler) in a pemanent fUe 
90 that it can be inspected. 
Pro:luce 'C' rather than assembler output fraa the occam canpller 
then compile and link it. There will be -.0 and -.c containing 
the object and compiler generated 80urce created in the directery; 
The 'C' and assenbler code produced will be similar and there is 
little point in producing 'C' unless te waste time I (as the 'C' 
oanpilation phase takes a long time). If the oanpiler is ported te 
a non-VAX systEm then this option will autanatically be selected. 
SW! tch on variable name and line nunher D.Jnping in the Cl AssaNJler 
'object' fUe 80 that the object can be tied in with the source. 
Undocunented feature under test. 
Produce an occam-'C' interface Library, the two fUes ending '-e.c' and 
'.occ' are 11nked together, the occam can refer directly to the 'C' 
routines. 
Run the compUer showing the stepe it would executa but without 
actually doing anything - like '-R' In the UNIX 'oake' caIIl'and. Useful 
when options start getting complicated. A Ib operation facility. 
Undocunented feature under test. 
n, not apply some Simplifying transfonnations on the program. These 
currently relOOVe constructs with no processes in then and redundant 
~ and PAR headers. These save a snall aJOOuot of spece and time 
at run and canpUe time and there is little point in turning ott 
this option. 
Print out the procedures that have been defined in the link files 
but has not been referenced - detects eXtra procedures defined 
across files but not used. 
Produce the 11nker assembler output in a pennanent file rather than 
in a tenporary fUe on 'Imp'. Enables the output fraJI the Unker 
to be debugged. 
Get the linker te print out all the definitions it is told about. 

Description ot the library routines 

Standard Library 

Provide conmonly used routines te read and write te the keyboard and screen 
chaMels. 'lbe routines are written In 'Cl and occam and use standard C or 
'curses' I/O routines. 111ere ue also general routines tor use to ,pI.use or 
abort a program as well as to use the 'C' randau nunber routines. They are 
available by default te &11 prcg ...... unless the -S canpiler nag is used te 
override their Inclusioo. 

ElmllNAL nlCX: str.te.screen (VALUE s (» : 

Output the string a (a byte array with byte 0 as the length). 
The whole string is guaranteed to be printed in one sequence, two 
concurrent calls to str. to.screen will DOt interleave. 
Fquivalent te the program frag)DOOt :-

PROC str.to.screen (VALUE s (I) • 
~ n • (1 for s (BYrE OJ) 

screen I s (BYTE nl : 

FXI'ERNAL nlCX: n .... te.screen (VALUE n) 

ClItput a D\!Dber to the screen. '!be nunber caD be signed, aDd uses the min1n:A.m 
nunher of characters (no leading spaces). Fquivalent te the 'C' language 
t pr1ntt (''%dot ,n); I statanent. 

EXTfllNAL PROC str. te.chan (CllAN c, VAUJE a (» 
OJtput the string s to a channel 'Cl. 1he call 'str.to.chan (screen,lttred"), 

Is identical to 'str. to. screen erred)'. Useful tor string output to fUes. 

FXI'ERNAL nlCX: nun. te.chan (OIAN c, VALUE n) : 

OJtput aseU string tor the nllDber 'n' to channel 'e'. U.ke 'str.to.c.ha.n' but 
tor nunbers not channels. 

ElmllNAL moo m..m.to.screen.t (VALUE D,d) : 

Output a nlDlber to the", screen in a field of width Id'. It the nunber is too 
btg tor the tield the nU1lber Is written out in tull regardless, tbe routine 
call nun.to.screen.t (D,l) Is equivalent to n1.lll.to.screen (D). 'Ibe routine uses 
the 'Cl language printt torn:at lod where n is the tield width. 

CD 
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ElrnllNAL ffiCC goto.x.y (VAUJE x,y) : 

Use the t curses' .PiCkage to implement a cursor 'goOO' facUity. No error 
checking is mde that the lIX)Ve Is w1 thin the screen area. 'Ibe x-axis la across 
the screen and y-tUl;ls down, co-ordioate (0,0) Is In the top left hand corner ot 
the screeo. 'Ibe first l1De Is used by the run time syst911 to print meSS8.&e8. 

EXTmNAL PRO::: clear. screen : 

Use curgeS to clear the screen,if cursor addressable option Dot used this 
will still try to clear the screen using the eurses "CL" teITOCaJ) defined 
string. 

=ElINAL rnoc ..... tran.kcyboard (VAR n) 

Read a nunber trau the keyboard and assign to variable 'n'. 'Ibe routine Is 
not very oophisticated. It will reed negative ntJDbers (start '-') and ignore 
any leading 'sjllCe' characters. The ntJDber must be tollowed by a non-digit, 
this character Is read by the routine and not avaU .. ble on a subsequent 
'KeyboArd? ch' process. There Is no check that the nunber Is too btg for the 
ntJDber range. It will expect at least one digit otherw1ae it .. 111 give an error 
message. 

EXTUlNAL rnoc nllD.trcm.chaD (OWl e,VAR D) 

Read a ntJDber traD a channel 'c'. It 'c' is the keyboard th1s is equivalent 
to calling 'nlJD.traD.keyboard'. 

EXTUlNAL rnoc abort.program : 

Force the program to abort execution. An explanatory message is printed 80 
that the cause Will be known. 

E>IT»INAL rnoc torce.break : 

Perform the same action as it 'C'l'RL-C' was pressed at the tenninal. The user 
interface routines can then be run under the menu selection facUity provided. 

EXTUlNAL rnoc rand"" (VAUJE d, VAR n) : 

Return a pseudo randOOl ntJDber 10 the range 0 to d-l by using the 'C' 
'randaa ()' tunction in the variable n. 'Ibe vAilJE of d must not be zero. 
n.. sequence ot randan ntJDbers will he modified it the '-R' run opt100 is used. 

EXTUlNAL rnoc init.randan (VAWE D) : 

Initialise the seed tor the randan ntrnber generator tor subsequent calls to 
the procedure 'randau'. Uses the 'Cl language routine 'srandcm ()'. 

EX'l'rnNAL rnoc trace. value (VAUJE n) : 

Print out the integer value ot In' on the screen with the prefix string 
'Trace value: I - tl11s makes debuggtcg a little easier. 

Connect the channel 'io.chan' to a UNIX t11e. '!be procedure must be provided 
with the pithnam8 ot the tUe as a string, and. the access mode ("r" read 
access ,''w'' write access,lIa" append access). SUbsequent input or output 00 
'io.char.' will fetch/put a single character frm/to the Ule. Attempts to input 
past the eDd ot file wUl receive the value -1-

=ElINAL moc close.tUe (OIAN 10.chan) : 

Cease connection of the channel with its currently open tUe. 

EXTUlNAL moc open.pipe (VAWE eooma.nd.name [[ ,access [) ,OIAN io.chan) 

Connect the channel 'io.chan' to a UNIX pipe running CClmand ,c.<lt'Il'l\nd.naroe'. 
'!be procedure must be provided w1 th the UNIX ocmnand name and 'r' to read traa 
it, or 'w' to write to it). Subsequent input or output OD 'io.chan' will 
tetch/Plt a single character iran/to the tUe. Att_ts to inp.lt past the end 
ot tUe will receive the value -1. 

ElCI'ffiNAL moe close.pipe (OIAN 10.chan) : 

Cease connection ot the channel with its currently active ccmnand. 

ElITEMAL moc systen.call (VAWE eamand [), VAR code) : 

Rltecute the UNIX C(J'[JMnd contained In the string 'carmand' and return the 
value iD 'code' '!RUE it the C01Jl'Iand succeeded without error and FAlSE 
otherwise. 

EXTflINAL moc set.timers (VAUJE init.value) : 

Set up the interval timers ITIMm REAL,IT:o.Gl\ VIR'ruAL to the given start 
value. 1hese are used tor tWng seCtions ot coa-e on the VAX. Uses 'setit1mer' 
call. fbte that using 'WAIT' pr1m1Uve w111 reset the timer 00 it can only be 
used tor simple sections ot code. It should also be noted that it times the 
.. hole program and not a single oceam process. 

ElITEMAL rnoc get.real.timer (VAK secs,mcro.secs) : 

Get the current elapsed timer values 1n secoods and mcroseconds. Timers 
count down ... rds and are not especially accurate. Uses 'geUtimer' call. 

ElITEMAL mcx: get.cPl. timer (VAR secs,mcro.secs) : 

Get the current executed cro timer values in secoads and microseconds. Timers 
cxrunt downwards and are not especially accurate. 
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Floating ~lnt Library 

Routines to pertonn floating point input/output. 'lbey are available by 
giving the canpUer flag '-F' when linking an occam program. 

Floating p:>lnt value can be assigned and tran9D1tted via channels just 
l1ke DOnm.l integer values, see the tile 'occamversloo' tor details ~ to the 
language extensions introduced to suppJrt ;thEID. 

Input/OUtput Routlnes 

EICl'ERNAL rnoc fp.nllll. to.screen (VALUE FLOAT f) 

Print out the floating point n\lllber in 'C' language float tonzat ''%6.6t''. If' 
the ntJDber Is too s:aaU or too big the standard 'Cl action will be taken. 

EICl'ERNAL rnoc fp.nllll.to.screen.f (VALUE FLOAT f,VALUE _,d) : 

Print out the floating point mmber 10 'Cl real toroat ''Sw.dtu• It the mrnber 
Is too srall or toO big problEmS will arise. 

El<TERNAL FROC fp.ml1l.to.screen.g (VALUE FLOAT f) : 

Print out the floating point mJ'Dber io 'Cl real tOl"mlLt ''%g''. 'Ibis will use 
the moat appropriate torma.t - e"r.onent form it necessary. 

El<TERNAL rnoc fp.n .... to.chan (OIAII c,VALUE FLOAT f) : 

Write & nunber to a channel. It channel Is 'screen' this Is equivalent to 
'fp.DUII.to.screen' • Useful tor writing data to tiles. 

EXTElINAL FROC fp.nll1l. fran.keyboard (VAR FLOAT f) : 

Read in a floating point nunber. 'lbe nl.lllber Is expected to begin with a digit 
or '.' (indicating 0.), leading spa.ees are ignored. 'Ibe nlJl1ber eDds OD a 
non-<Ilglt and thla character will not be avallable to subeequent reads frau the 
ke)'board channel. '!be following are valid input nunbers follOll'lld by the 
interpreted value for tbe lnput. 

45.35 (45.35) 0.0004 (0.0004) .0 (0.0) 1. (1.0) 124 (124.0) 

EXTElINAL rnoc fp.nllll.fran.chan (ClIAN c,VAR FLOAT f) 

Read a floaUng polnt nlJ1lber fran & channel 'c'. If channel ls keyboard thls 
is equivalent to 'tp.DlID.trau.keyboaJ'd'. 

MathEmltical Routine Library 

Itlthenatical routines tran the UNIX '-lm' library. '1bese are incllded by 
specifying the '-u' flag. 'nley are all in single precisioD eveD though 
double precision 'e' routines are called. 

Return the sine of 'a' in 'res'. Angles are in radians. 

EXTmNAL PROC fp.0081ne (VALUE FLOAT., VAR Fl.Q\T res) : 

Return the cosine of 'a' in 'res', Aogles are in radians. 

EICl'ERNAL PROC fp.are.slne (VALUE FLOAT., VAR FLOAT rea) : 

Return the arc sine of 'a' in 'res'. Angles are in radians. 

EXTmNAL rnoc fp.arc.0061ne (VAllJE FLOAT., VAR FLOAT res) : 

Return the arc coeine Of " 'a' in 'res', Angles are in radians. 

EXTmNAL PROC fp. are. tan (VALUE FLOAT &, VAR Fl.Q\T res) 

Return the arc ta.ogent of 'a' in 'res'. Angles are in radians. 

EX"J'FmW., moc fp.exp (VALUE P11lAT a , VAK n.DA.T res) 

Return e to the power 'a' in 'res', 

EXTmNAL FROC fp.log (VALUE fLOAT., VAR FLOAT res) 

Natural logarithm of 'a' iD 'res', 

EXTmNAL FROC fp.sqrt (VALUE FLOAT ., VAR FLOAT res) 

Square root ot 'a' in 'res'. Returns an occam error it 'a' ls negative. 

(l) 
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'Ibe run time systEm 

As you might hope .men an occam program is executed it will tollow the 
program execution until one ot three things happen. 

1) '!be program tenninates 
2) emIr<: is pressed on the keyboard 
3) An error is detected. 

In the case ot (2) and (3) a debug option will be displayed, this allows you 
to abort the program, ignore the interrupt (continue), and to restart the 
program again. Other options control the '-e' trace output, provide a 'system' 
debug option (which is only really usetu1 to saneone who knows their way 
around the COOIpller), an option to specify which source tUe you want to debug 
and the 'screen animated debug'. 'Ibis later option should be ot JlX)St use and is 
described in detail in the next section. 

Errors cane in two types 'Fatal Errors' and just 'Errors', it is not possible 
(or wise) to continue execution atter the tonner, but the latter my be ignored 
if the S)'IDptan is expected. 

'!be run time display debugger 

'Ibis utility that runs under the run time system enables users to look at the 
status of the processes during execution ot a program. 

'!be utility requires the use of a cursor addressable tendnal. '!be system 
provides selective display ot the source fUe(s) that were canpiled to fonn 
the program together with a column showing the currently existing processes 
OD thooo particular llnes of the source file. 

lihen initially entered by pressing 'C'l'Rlr<;' the program execution ",111 be 
halted, the execution can be restarted in 'stepped JOOde' so that the display 
will be updated every occam scheduler action. 

Breakpoints and trace points can be added at oolected line nunbers. Break 
points cause the debug display to be autanatically entered .men any of 
the process executes any of the source lines OD which a break point is oot. 
Trace points cause temporary entry into the debug display before resun1ng 
nonnal execution after five seconds pause. 

If a file has been canpiled with the '-G' flag then the value of occam 
variables and the status of channels can be printed. Because an occam program 
can have several processes running witll different values to the same 
identifiers (e.g. within PAR n - (0 F(l! 7), 'n' has a difterent value for each 
ooparate process) a single process must be selected as before this tacility can 
be used. When selected a second window ",i thin the debug display is opened and 
the values printed by the program are placed within it. 

Straightforward use of the debug display will nonnally entail running a 
program and pressing CllUrC when a dubiOUS section of code is about to be 
executed and entering the debug display (' z' cannand). 'Ibereafter the connands 
'p' to find the next process, 't' and 'b' might be used to see whereabouts 
the process IS executing. '!be program can then be Single stepped through 
USing the 'r' ccmnand to start execution and's' c<mnand to stop execution. 
Eventually exit ot the debug displayer can be made with the 'x' ccmrand. 

'Ibere are two special markers that are used, '>, on a line indicates the 
currently selected line and '-' the currently selected process. 

'Ibe CQIIIWlds where practical have been made similar to those in UNIX 'vi'. 
(UNIX is a tradenark of A.T. "T.). 

Available commands 

),bving about within the flle 

11>- J,bve torward halt a page ot source text. 
t 1'- Move forward a page ot source text. 
1 U- ),bve backward halt a page of source text. 
tB-Move backward a page of source text. 
:<nunber> - Move to glven line <number> in file. 
k - (or fK) Move down one Hne. 
j - (or tJ) Move up one Une. 
/<string> - Flnd glven <string> in file trom current position. 
n - Find next string occurrence for mtch strlng selected by'/, <XJIIIand. 
P - Find the next process in the tile. 

Trace/Breakpoints 

b - Md breakpoint at currently selected Une. 
t - Md tracepoint at currently selected Une. 
d - Delete the trace/break point at the selected Une. 
c - Delete all the points in the current file. 
C - Delete all the points in all the files. 
P - Print process status ot the currently selected process 
o - Oeselect the current debug occam process. 
S - Select the current debug occam process. 
N - Select next process on the same lIne, if there are several processes that 

are shown as executing on the same line then'S' will mke an arbitrary 
choice, 'N' can be used to override this and step through the processes 
until the one that is desired is selected. 
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Symbol inspection 

m - Select a symbol to display, if no symbols have been selected before then 
the symbol window is opened and the value of the variable or the status of 
a channel. ' 

11 _ Repeat the previous 'm' ocmnand. To find the value of the same variable 
name again. 

Execution control 

a - Abort the run. 
r - Run debug display if a debug process is selected the debug display will 

be re-entered every time that process is run, otherwise the debug display 
will be run each time any process is run. 

> _ Execute in single step mode. Only a single step is executed. 
s - Stop the debug display tran running temp::u"arUy after a 'rt or 'x'· 

u - =ciisPlay step interval (initial step interval is 1), this pennits 
the location of processes to be seen after 'n' steps rather than after 
eacb and every time it is executed. Not jIlrticularly useful. 

x - Exit display debugger, program will proceed DOl'IlIIlly until a trace/break 
point is found or 'fe' is pressed. 

X - Exit to !Min .. menu so that program restart,abort,fUe selection 
or system debug can be done. Used .men you wish to debug a different 
file or to set things going again after setting up breakpoints. 

Iliscellaneous 

? - Print out this help information. 
tU- (or tR) Redraw the current displayed infonnation. 
1 - Buffer keyboard channel input text for the program. 
o - Print overall data about the processes currently executing -

how many are in each process status, stack use and clock t1Jne. 
V - Display the ocC8JD program's current screen output tanporarlly 
v - Invoke the 'view' oannand on the occam source file (this is just like 

'vi' but with read only access to the file - 'lhls can be used to provide 
more powerful string search facilities men debugging. 

Display key 

'lbe collllll'l between the line number and the text is used to display the number 
and status of processes executing on that line. Because of the canpilation 
these may be out by a line or two in some circ\JllStances. Most "'1Quential code 
will be executed as a single block - so a process will not move through a ~ 
block one step at a time necessarily. 

'lbe special symbol 'P' does not represent a process, it indicates that a 
procedure has been called at that point. 'P' therefore represents the 'call 
point' of the procedure. 

'lbe following symbols are used to represent the various process statH :

• - An active process - nay be chosen for execution at any t1Jne. 
a - Process waiting for one or more ALT guards to becane TRUE. 
" - Process waiting for a clock time or for input/output. 
c - Process is waiting for one or more child PAR processes to tenninate. 

In addition break and trace points are indicated in the colllM by giving a 
'T' tor a trace point and 'B' for a break point. 

So a display of :-

316:3* .. : occam, s ? razor 

Indicates that there are three active processes and one process ""iting input 
on Une 316. 

Keyboard and Screen input/output 

Because the debug display routine is fully interactive the screen and 
keyboard data fron the program can not be handled in the same nanner as nonnal. 
Input for the keyboard must be input using the 'i' C01IIlaIld - a .mole line can 
be input and will be buffered up for program input in this ""y. Screen output 
should be displayed as it is produced (but a copy of it will be sent to the 
screen inage that .. ill redlsplayed on exit trom the display debugger) or the 'V' 
cattnand. Strings can have escapes In them Itn' means newline,'*r' carriage 
return and I •• I space. 
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Non standard occam features 

This canpUer to the best of my knowledge (Mr.R,P. Stallard of the ~JB.rtment 
of O::rnputer Studies, Loughoorough University ot Technology, U.K.) i.mplenents 
the 0CCIlID language as defined in the occam progranming manual published by 
I1f,f()S 11m1ted subject to a few restrictions and extensions that are described 
in this fUe. 'Ibese differences are intended to II1lke transfer ot occam prosrams 
tran different iJnpleuentations feasible. 

It is intended to be comPlUble to the ItMlS booklet versIon and the 
PrenUce Hall book defini tion. <:x:X:AU, I~ and Transputer are registered 
tradEfl'l8.rks of the Itf.Kl3: Group of Compulies. 

llUlS proto-occanl language reviSions 

'llle fol1O'1f1ng additional features introduced into INtd('6 occam products eau 
now be selected by the CCItIpller flag optioa '-I'. 

SI'OP prim1 t1 ve. 
TIME channel. 
IP on findIng none of the conditions TRUE S'roPs. 

Restrictions 

These restrIctions are either optional features as described 10 the published 
language definition or compiler restrictions unlikelY to Umlt ordinary use ot 

""""" . 
No configuration section rules. 
'!be operator '»1 uses YAX shift right operator. 
tb prlorit1zed PAR. all lllrallel prooosses have equal priority. 
Ntmber of arguoents to a procedure I1m1 tee! to 255 lJIUtimuD. 
AFl'fll returns a time difference not a boolea.n value. 

Extensions 

PAR repl1cator count and base can be variables 
A variable nu"OOer of processes can be created by replicated. PAR. 

Recursive calls to procedures ,pannitted 
A procedure caD call itself. 

Screen chaMel can be used. by ClX)re than one process 
The special screen channel can be accessed by any nunbar of 

different occam processes. Thls facilltates debugging ot oceam 
programs and is not dllflcul t to implement. 

Wultiple source file compilation 
Procedures and variables can be defined in one tUe and referenced in 

another. 
The definition is preceded by the new keyword I LIBRARY' before 'PRO:

I 

and the definition must be at the outer level of program nesting. 
References to procedures in other files are defined by preceding 

IPROCI by 'EXTrnNAL' and replacing the I.' start of procedure definition 
by ': I to indicate end of definition. 

e.g. 
File nain.occ Pile sub.occ 

EXTERNAL PROC f (value n) 
S"l 

LIBRARY PRCX: t (value n) -
SIQ 

nun. to. screen (0·102) 
str.to.screen ("&.Iter next"): 

t (27) 

'n)e two files can be canpiled by :-

OCCMI nain.ace sub.occ 
occam sub.occ -I 
occMl min.ace sub.o 

to canplle both together 
to oanp1le sub.occ separately 
to lInk in the pre-compl1ed sub.acc file 

j,1I ;).V l.1I1'=' Ila,=, tx.>cu t!xlcnc.h..>d to variables and channels, in the case of 
vectors of variables and channels the size need not be specified but the 
type must be :-

Defining tile :-

LIBRARY CHAN network,C0TJT'6 (56) : 
LIBRARY VAR blot (BYTE 4).spot (42) : 
LIBRARY VAR I1.DAT hyper.bol1c (2(.act1ve (17) 

Referring file :-

EXTEllNAL CllAN network,cCJD1\9 11 : 
EXTERNAL VAR blot (BYTE).spot ().bol1c (FLOAT) 
EX'I'flUW.. VAR FLOAT hyper ,active I J : 

Floatinc point arIthmetic 

1be canpUer penoits the use of floating: point n\Jnbers and arUtroetlc 
operators. The caopl1er uses 32 bit VAX floating point throughout. 

Floating point nlJDbers are declared by following VAR by the new keyword 
float :-

VAA FLOAT x ,y, factor 
YAR mm.ply : 

- Floating point nlDber declaration 
- lbrnal occam variables. 

(Xl 
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Floating p:>int n\.1Tlber constants are supported these rray be in tfoOO forms 
with dec1nal p)iot or with dec1nB.l point and exponent :-

x :- 1.45 
y :- 2.3&-23 + 3.4e+l - Note that the exponent must be given a sign 

'lbe following operators DBy be used on floating point nuobers (both 
operandS DlSt be floating point) 

+ - • I ( > (- >- - <> - (monodic minus) 

x :- 1.3 + (y • factor) 
IF 

• > 67.S 
y :- -3.4 - Note use of rronadlc minus. 

Parameters to procedures must I.lso have type set to VAR Fl.Q\T or 
VALUE FI..Q\T - the act~l pa.rameters must be of the same type. 

mx: SUD (VALUE FlLI\T a II.b II,VAR FU)AT res IJ.VAUJE n) -
PAR 1 - 10 Fa! nl 

res 111 :- a I1I + bill: 
VAR F1.G\T t 1231,8 1451,_ 1321 

BI.IIl (t,s,w,12) 

Floating values may be transn1tted along channels - but there are 
no checks that the sender aDd receiver both expect floating p)int values. 

Input of floating point mmbers can be carriec1 out by calling the 
library routine 'tp.num.trom.keyboard' and output by the routine 
'tp.num.to.screen'. 

Interconverslon of floating p)lnt and integers Is perfonood by the 
asslgrment operator :-

nun :- x - Convert tlOlltlng 'x' to integer 'm.m' 
y :- mID - Cbnvert integer 'mID' to floating 'y' 

Attenpts to use logical and shift operators on floating point nll1lbers 
are flagged as errors. 

00 
W 
111 



APPENDIX III 

SELECTED PROGRAM LISTINGS 



program 1 : 

solution of a linear system: occam coding of systolic array. 

The array encoded solves a linear system prsented as a lower 
triangular n by n band matrix with band width q. Total compu
tation time 2n + q; with an extra cycle to close down the 
system. Unit time is, the cost of execution for an ips cell 

array dependant parameters and communication channels 

def n-4, q-3, total.time - (2*n)+{q+1) : 
var xval[n}, yval[nJ, aval[n*n), bval(nJ 

chan x(q+1), y[q], a[q], b : 

proe celll( chan xin, xout, yin, yout, ain ) -
inner product cell definiton. 

var a[lJ, x(l), y(ll, xsave, ysave : 
seq 

-- startup values 
seq 

xsave :- 0 
ysave :- 0 

-- run the cell 
seq i-( 1 for total.time] 

seq 
par 

-- perform i/o 
.In?.[OI 
yin?y[OI 
oln?o[OI 
xoutlxsave 
youtlysave 

.eg 
-- inner product 
ysove :- y[OI + (x[O[*a[OI) 
xsave :- x(OJ : 

proc ce112( chan xin, xout, yin, bin, ain ) -

solve for x cell. 

var a[l), x[lJ, y[l), b(ll, xsave 
seq 

xsave :- 0 
seg 1-[ 1 for total. time 

seq 
par 

-- perforll 1/0 
xin1x(OI 
yin?y(OI 
bln?b( 0 I 
ain1a[0} 

xoutlxsave 
compute solution 

xsave :- (b[OI I y[OI)+a[OI 

proc sourcea( chan outpt, value mem( I, zl, z2, delayl)

matrix values pumped into systolic array by this 
control mechanism. 

var toggle, dl, d2, delay2 
seq 

-- set starting valuesl 
seq 

toggle :- true 
dl : - 01 
d2 :- z2 
if 

dl > d2 

dummy or real value switch 
delay of data stream. 

delay2 :- delayl + (dl - d2) 
true 

deloy2 :_ delayl + (d2 - dl) 
start pumping 

seg i-[ 1 for total.time 
if 

( 1 <- delay2 ) or ( dl>n ) or ( d2 > n) 
outptlO 

true 
if 

toggle 
seq 

true 

pump in next value, and 
locate next item. 

outptlmem[(((dl-lj*n)+d2)-11 
.eq 

dl :- dl + 1 
d2 : _ d2 + 1 
toggle :- false 

seq 
-- pumpin dummy seperator. 
outpt 1 0 
toggle :- true : 

proc source( chan out, value memout[], delay) -

generic source definiton for b,x,y data streams. 

var toggle, j : 
seq 

-- setup values 
toggle :- true 
j :- 1 
-- pump data until done 
seg i-( 1 for total.time 

0) 
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seg 
if 

(i <- delay) or ( j > n) 
-- pass dummy values 
-- for synchronisation. 
seg 

outlO 
toggle 

seg 

true 

-- send memory value 
outlmemout[j-l] 
seg 

j :- j + 1 
toggle : - false 

seg 
-- send dummy seperator 
outlO 
toggle :- true : 

proc sink( ch an in, var memin(], value delay) -

generic sink : collects garbage values 
and stores results in memory. 

vat toggle, j, tmp 
seg 

-- setup values 
seg 

j :- 1 
toggle :- true 

-- start running 
seq i-I 1 for total.time] 

seg 
--decide on type of data recieved 
-- e.9 garbage or result. 
if 

(i <- delay) or (j > n) 
-- synchronise 
in?tmp 

toggle 
seg 

true 

-- store a result 
-- next vacant area 
in?memin[j-lj 
seg 

j :- j + 1 
toggle :- false 

seg 
-- garbage throwaway 
in?tmp 
toggle :- true : 

peoe system( chan at], xl}, y(l, b, vac xval[J, yval[], avaIl), bval[J ) -

systolic system definition interms of basic ips cell 
and sources. 

par 
par i- ( 1 for q-1 ) 

par 
-- matrix sources and Ips cells 
sourcea(a(i), avaI, 1+1, 1, q-l) 
colll( x(i-1), xli), y(iJ, y(i-1J, a(i) ) 

reciporcal cell 
cel12( x(g), x(O), y(O), b, 0(0) 
-- periphery sources and sinks 
sourcea( a(O), avaI, 1, 1, q-l 
source{ x(q), xval, q-l ) 
source{ b, bval, q-l ) 
source( y(q-l], yval, 0 ) 
sink( x[q-l], xval, (2·q)-l 

proc getdata( var xval [ ], yval ( J, bvall], aval () ) -

primitive routine to read in data from terminal 

var tmp : 
seq 

screenl'l';'s' ,'.n' 
-- read in lower triangular matrix 
seq i-I 1 for nJ 

seq 
screenl'·n','(' 
seg j-( 1 for n) 

seq 
keyboard?tmp 
screenl tmp;'.s' 
ovo1((i-1)·n)+j)-1) :- tmp - '0' 

screenl') , 
screenl'*n';'b';'*n';'*n','(' 
-- clear x,y vectors for startup 
seq i-I 0 for nJ 

seq 
keyboard?tmp 
screenttmp;'·s' 
bval(i] :- tmp - '0' 
yval(i) :- 0 
xvo1(i) :- 0 

screenl')';'*n';'*n' 

proc putdata{ var xval(] ) -

primitive routine to write data to terminal 

seq 
screenl'*n','x','(' 

(» 
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seq 

seq i-I 0 for nJ 
screen!xval(i] + '0' ;'*s' 

screen!' l' : 

main program section 

performs reading and writing of data to Host computer 
in this case the user terminal. 

also creates and starts the system running. 

getdata( xval,yval,bval,aval ) 
system( a, x, y, b, xval, yval, aval, bval ) 
putdata( xval } 

program 2 

Band matrix-vector multiplication 

Systolic array to multiply an n by n band matrix with an 
n component vector. the matrix has bandwidth w-p+q-l. 

problem dependent constants and channels 

def n-4,p-2,q-3, w-(p+q)-l : 
def totaL time - ('2*n)+w : 

var xval(n], yval[n], aval(n*n) 
var delay.a, delay.x, delay.y 

chan x[w+ll, y(w+l), a(wJ : 

proc setup -

setup : calculates the delays of inputs 
entering the array. Although p and q are constants 
if they are modified to create a larger system, 
synchronisation delays change 

var xt,yt : 
seq 

delay.a computes time cycles 
-- that matrix elements wait 
-- until entering the array 
seq 

xt :- p-l 
yt :- q-l 
if 

xt ) yt 
seq 

true 

-- x has longest distance to travel 
delay.x :- 0 
delay.y :- xt - yt 
delay.a :- xt 

seq 
-- y has longest distance to travel 
delay.y :- 0 
delay.x :- yt - xt 
delay.a :- yt : 

proc cell(chan xin,xout, yin,yout, ain ) -

inner product cell 

var a(l),x(l),y(l],xtmp,ytmp 
seq 

-- dummy values for 
-- startup 
seq 

Cl) 
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xtmp :- 0 
ytmp :- 0 
-- run the cell 
seg i-[1 for total.time] 

seq 
par 

1/0 
xln1x[O) 
yln1y[O) 
aln10[O) 
xoutlxtmp 
youtJytmp 

seq 
-- perform inner product 
ytmp:- y[O) + (a[O)*x[O)) 
xtmp :- x[O) : 

proc source(chan out ,value mem[), delay) -

generic source .• 
references area of memory belonging to 
host, and pumps required data placed there into 
systolic array suitably delayed. 

var j,toggle : 
seq 

-- intialisation 
j :- 1 
toggle :- true 
-- while running 
seq i-( 1 for total.time) 

If 
(I <_ delay) or (j>n) 

outlO 
toggle 

seq 

true 

-- fetch memory contents 
-- locate next location 
outlmem[j-l) 
j :- j + 1 
toggle :- false 

.eq 
-- dummy spacers 
outlO 
toggle :- true : 

~roc sink( chan in, var mem[), value delay) _ 

generic sink : 
performs data collection; reading out 
garbage elements wheqre necessary and placing 
valid data back into host memory in correct 
position. 

var j,toggle ,tmp : 
seq 

-- intialisation 
j :_ 1 
toggle :- true 
-- while running 
seq i-(1 for total.time) 

if 
( I <- delay) or (j > n) 

in?tmp 
toggle 

seq 

true 

-- result to host memory 
In1mem[j-l) 
j ,- j + 1 
toggle :- false 

seq 
-- collect garbage result 
in?tmp 
toggle :- true: 

proc sourcea(chan outpt,value mem[ ],zl,z2,delayl )-

alternative source : 
locates ,fetches, and pumps data from band matrix into 
the systolic array. Addressing of host memory is more 
complex as we need extra delays for matrix inputs 

var delay2,toggle,dl,d2 
seq 

-- intlalisation 
s.q 

toggle ;- true 
dl :- zl 
d2 :- z2 
if 

dl > d2 
delay2 :- dl - d2 

true 
delay2 :- d2 - dl 

while running 
seq i-[1 for total.time) 

if 
( I <- (delayl + delay2)) or (dl > n) or (d2 > n) 

-- pad with dummy elements 
-- until data arrives 
outptlO 

true 
If 

toggle - true 
.eq 

fetch data, locate next, pump 

Cl) 
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true 

outptlmem««d1-1)'n)+d2)-1) 
seq 

d1 :- d1 + 1 
d2 :- d2 + 1 
t09gle :- false 

seq 
-- dummy spacer 
t09gle :- true 
outptJO : 

proe alloc.sources.sinksCchan x( J, ylJ, er I, vac avall), yval[ J,xval( J). 

allocation routine : provides the mapping between cells, communication 
channels to host environment and systolic array. 

par 
create matrix inputs 

par i-I 1 for vI 
if 

i <- P 
sourcea( afi-l),avaI, 1, (p-i)+!, delay.a) 

true 
sourcea( a(i-l},aval,(i-p)+l,l, delay.a) 

x-vector and result y-vector 
inputs and outputs 

sourceCy[wJ,yval,delay.y) 
source(x(O],xval,delay.x) 
slnk(y[O),yval,w+delay.y) 
slnk(x(w),xval,w+delay.x) 

)roc getdata( vac xval( J ,aval( I ,yval( ) ) -

very primitive input routine : reads in the data from user 
terminal in.arting it into simulated hoat m.mory, in this ca •• 
simple arrays 
n.b great savings can be made by omitting known zeroes 

in the matrix structure this not pursued for simplicity 
the main aim was to test the array; not an exercise in data 
structuring. 

var tmp : 
seq 

screenl 'h' I 'a'; 'n'; 'd' I '-' ;w+'O';' *s'; 'p'; '-'; 'p+'O';' *s'; 'q'; '-' ;q+'O' l' *n' 
screen I 'b'; 'a'; 'n'; 'd'; '-' iW+' 0' ;' *s'; 'p' ;'-' ;p+'O'; '*s'; 'q'; '-' ;q+'O';' *n' 
screenl'n';'-';n+'O' ;'*0' 
-- read the band matrix 
seq i-(1 for n) 

seq 
screen t ' *n' 1 ' ( , 
seq j-[ 1 for nJ 

seq 
keyboardltmp;'*s' 
aval««i-1)*n)+j)-lJ :- tmp - '0' 

screenl'l' 
screen I ' *n';' x';' *n' i' l' 
-- read x and clear y vectors 
seq i_[ 0 for n] 

seq 
keyboard?tmp 
screen! tmp;' *s' 
xval[iJ :- tmp - '0' 
yval(i) :- 0 

screenl']';'*n' : 

proc putdata( var yval( J) -

another primitive i/o routine this time to 
output data. Note; both input and output deal only 
with single digit values; restrictive but adequate 
for test purposes. 

seq 
screenl'*n'i'y'i'*n'i'[' 
seq i-I 0 for n) 

screenlyval[i)+'O' ;'*s' 
screenl'}' 

main 

allocation and setup of the system; 

seq 
setup 
getdata(xval,aval,yval) 
-- the array 
par 

alloc.sources.sinks(x,y,a,aval,yval,xval) 
par i-Cl for wl 

cell (x ( i -1 ) ,x ( i ) ,y( i ). y( i-1 ) ,. ( i-1 ) ) 
-- computation complete 
putdata(yval) 
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pr09ram 3 

band matrix multiplier 

pr09ram to multiply two n by n band matrices 
usin9 a hex connected systolic array . 

matrices have band widths wl - pI + ql - 1 and w2 - p2 + q2 -1 

problem dependant constants 

let n-4, pl-2, ql-3, wl-(pl+ql)-l 
let p2-3,q2-2, w2- (p2+q2)-1 : 
1ef maxchan • «(wl+1)~(w2+1»~3)+3, w3 • (wl + w2) -1 
lef don -true, doff - false : 

,ar delay.a, delay.b, delay.c, total.time, min, strtc 
,ar a(n~n], b(n*n], c(n*n] 

:han pool ( maxchan] : 

lroc setup( var c[) ) 

setup routine ; calculates delaysof input data for 
synchronisation inside the array ; and total computation 
time. 
also sets some varibles e.9 strtc required to setup the 
connection network. 

var ctime : 
seq 

-- computation time 
seq t-( 1 for n*nJ 

c[ i-l) : - 0 
if 

w1 < w2 
seq 

true 

total.time :- (3*n}+wl 
min :- wl 

seq 
total.tlme :- ( 3*" ) + w2 
min :- w2 

offsets and delays 
strtc :- w2 + 1 
ctime :- ql-l 
if 

if 

ql > p2 
seq 

strtc :_ strtc + (ql - p2) 
ctlme :_ ctime - (ql - p2) 

delays of sources 

(ctime >_ (q2-l» and ( ctime >- (pl - 1» 

seq 
delay.c - 0 
delay.a - ctime - (q2 - I) 
delay.b - ctime - (pl - 1) 

(q2 - 1) > ctime) and (q2 >
seq 

delay.a :- 0 

pl ) 

delay.c :- (q2-1 ) - ctime 
delay.b :- q2 - ql 

(pi - 1) >- ctime ) and ((pl-l) > (q2-1» 
seq 

delay.b :- 0 
delay.c :- (pI - 1) - ctime 
delay. a :- pl - q2 : 

proc allocpool( value x, y, r, var c ) -

seq 

the array is built onto a rectangular grid; with processors 
at intersections; channels are connected by indexin9 
processo,rs by underlyin9 grid points 

c :- (((((x - 1) • (w2 + 1» + y) • 3) + r)-l 

proc cell( chan ain, bin, cin, aout, bout, cout ) -

inner product cell 
( hex in the array) 

var all), bll), c(l), atmp, btmp, ctmp 
seq 

-- intialisation 
seq 

atmp :- 0 
btmp :_ 0 
ctmp :- 0 

-- while running 
seq i-[l tor total. time) 

seg 
par 

I/O 
ain1a(0) 
bin1b[0) 
cin1c(0) 
aoutlatmp 
boutlbtmp 
coutlctmp 

seq 
-- inner product 
ctmp :- c[O) + (a[O)-b[O) 
btmp :- bIOI 
atmp :- a[O) : 

proc source( value mem(], zl, z2, delay, flag, chan outpt ) -
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generic source 
locates, fetches , and pumps data into the array 
for simplicity c is as summed to be a zero array 
at start of computation. 

var toggle, togglel, delay2, dl, d2 
seq 

-- intialisation; and computation 
-- of source delays 
toggle :- true 
togglel :- false 
dl :- zl 
d2 :- z2 
if 

dl > d2 
delay2 :- (dl - d2) 

true 
delay2 :- (d2 - dl) 

if 
flag 

delay2 :- (delay2*2) + delay 
true 

delay2 :- delay2 + delay 
-- while running 
seg i-I 1 for total. time 

if 
(1 <- delay2) or (dl > n) or ( d2 > nJ 

outptlO 
true 

If 
togglel 

seq 
-- sceond dummy value 
outptlO 
toggle :- true 
togglel :- false 

toggle 
seq 

true 

-- fetch , locate next and pump data 
outptlmem((((dl-l)*n)+d2)-lJ 
.eq 

dl :- dl + 1 
d2 :- d2 + 1 
toggle :- false 

seq 
-- first dummy value 
outptlO 
togglel :- true : 

proc sink( var mem[), value zl, z2, delay, flag, extra, chan inpt) • 

generic sinkJ 

almost identical source except that data is 
collected and inserted into memory as results 
garbage values are removed from the array 

var toggle, togglel , delay2, dl, d2 : 
seq 

-- intialisation 
toggle : - true 
togglel :- false 
dl : - zl 
d2 :- z2 
if 

dl > d2 
delay2:- (dl - d2) 

true 
delay2 :- d2 - dl 

if 
flag 

delay2 :- (delay2 * 2) + (delay + extra) 
true 

delay2 :- delay2 + ( delay + extra ) 
-- while running 
seg i-I 1 for total.time 

if 
( 1 <- delay2) or (dl > n) or (d2 > n) 

inpt?any 
true 
if 

togglel 
seq 

-- dummy value 
inpt?any 
t09gle t- true 
togglel :- false 

toggle 
seq 

true 

-- insert result into memory 
inpt?mem((((dl-l)*n)+d2)-lJ 
seq 

dl :_ dl + 1 
d2 :- d2 + 1 
toggle :- false 

seq 
-- dummy value 
inpt?any 
toggle! :- true 

proc allocsources( chan pool[ It value strtc ) -

allocation of sources to 
ends of systolic array 

def xlim - wl + 1, yIim - w2 + 1 
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par 
allocate a(l,j) sources 

par x-I! for wlJ 
var idx : 
seq 

allocpoolex+l, yllm, 0, idx) 
if 

x <- ql 
source( a, ql - (x - 1), 1, delay.a, doff, pool(idx) 

true 
source' a, 1, (x - ql) + 1, delay.a, don, pool[idx]) 

allocate b(i,j) sources 
par y - ( 1 for w2) 

var idx : 
seq 

allocpool(xlim, y+l, 2, Idx) 
if 

y <- p2 
source( b, 1, p2 - (y - 1) , delay.b , doff, pool[ldx) 

true 
source( b, (y - p2) + 1, I. delay.b, don, pool[ldx) 

allocate c{l,j) sources 
par i-I 1 for w3) 

var Idx: 
s.q 

if 
i <- (w2 - 1) 

allocpool{ 1, (w2 - i) + 1, 1, idx ) 
i - w2 

allocpool( 1, 1, 1, idx 
i > w2 

allocpool«l - w2) + 1, 1, 1, idx ) 
if 

(Istrtc - i)+I) > 1 
seq 

source( c, strtc - i, 1, delay.c, don, pool[idx)} 
true 

seq 
source ( c, 1, (i - strtc) + 2, delay.c, don, pool{idx) : 

proc allocsinks( chan pool[), value strtc ) -

allocation of sinks to periphery of array 
almost the same as the source allocations 
and could make one routine but the lack of clarity 
in the latter proved a heavy cost in debu9gin9 

def xlim - wl + 1, ylim - w2 + 1 : 
par 

-- allocate a{i,j) sinks 
par x-I 1 for wl) 

var idx : 
s.q 

allocpool( x+l, 1, 0, idx) 

if 
( x <- ql) 

sink( a, ql-(x-l), 1, delay.a, doff, 0, pool[ldx]) 
true 

sink( a, 1, (x - ql) + 1, delay.a, don, 0, pool[idx) 
allocate b(i,j) sinks 

par y-( 1 for w2) 
var idx : 
seq 

allocpool(l, y+1, 2, idx 
if 

( y <- p2) 
sink( b, 1, p2 -

true 
y - 1), delay.b, doff, 0, pool[idx)} 

sink( b , (y-p2)+I, 1, delay.b, don, 0, pool[idx) 
allocate c(i,j) sinks 

par i-( 1 for w3) 
var idx, tmp 
seq 

if 
i <- Iw1 - 1) 

if 

allocpool( i+l, ylim, 1, idx } 
i - wl 

allocpool( xlim, ylim, 1, idx 
i > wl 

allo~pool( xlim, «w3 - i)+2) 

«( strtc - i) + 1) > 1 
seq 

1, idx ) 

sinke c, strtc - i, 1, delay.c, don, i, pool(idx) 
true 

seq 
if 

i > w2 
tmp :- (w3 - i) + 1 

true 
tmp :- min 

sink( c, 1, (i strtc)+ 2, delay.c, don, tmp, pool[ldx) 

proc alloc.cells(chan pool()

placement of inner product cells 
onto the rectangular grid, and connection with 
sources and immediate neighbours 

par i - ( 2 for wl) 
par j - ( 2 for w2) 

var idl, id2, id3, id4, idS, id6 
seq 

allocpool(i, j, 0, idl ) 
allocpool(i, j, 2, id2 ) 
allocpool(i, j, 1, id3 ) 
allocpool(i, j-1, 0, id4) 
allocpool(i-l, j, 2, idS) 



a11ocpoo1(1-1. j-1. 1. 1d6) 
ce11(poo1(1dll. poo1(1d21. poo1(1d6). poo1(1d4). poo1(1dS). poo1(1d3) ) 

proe getdata( var mem() ) • 

primitive input routine toread single digit postlve 
numbers ; restrictive but good enough for test purposes 

vac tmp : 
.eg 

screenl'·n' 
seq i- I 1 for n ) 

.eg 
screen!' "n';' (' 
seq j-( 1 for nJ 

.eg 
keyboard?tmp 
screen! tmp;' *s' 
mem((((1-1)*n)+j)-1) :- tmp - '0' 

screen!') , 
screenl '*n' : 

peoe putdata( value mem(] ) -

primitive routine to output data 

.eg 

.eg 

seg 1 -I 1 for n ) 
seg 

screenl'*n';'[' 
seg j-I 1 for n) 

screenlmem((i-l)*n)+j)-l) + '0';'.6' 
acreenl')' : 

main routine 

allcates and creates running array 

getdata( a 
getdata( b 
setup( c ) 
par 

allocsources(pool, strtc) 
a11oc.ce11s(poo1) 
allocsinks(pool, strtc) 

putdata( c ) 

program 4. 

Systol!c array performing lu-decompostion of an n*n 
Matrix 

notes: This program is based on a simulation or soft-systolic 
implementation of the Hexagonal array presented by h.t. kung 
and c.e. liserson • 
esssentially the program is the' same as program 3 for 
band matrix multiplicatIon. the inner product step (Ips) cell 
has been made programmable, in the sense that the various 
orientations e.g 120 deg rotations can be selected 

problem dependant constants 

def n-4, pI-2, ql-3, wl-(pl+qI}-l : 
def p2-3.g2-2. w2- (p2+g2)-1 : 
def maxchan - «(wl+l)*(w2+1))*3)+3, w3 - (wl + w2) -1 
def don -true, doff - false 

-- synchronisation and data storage 

var delay.a, delay.b, delay.c, total.time, min, strtc 
var aln*n), b[n*n), cln*n) : 

-- pool of communication channels 

chan pool(maxchan] : 

proc setup( var cl). dl J ) -

routine to perform necessary calculations for 
delay of data on input channels, and the 
spec tication of the array as virtual processors 
on a rectangular processing surface. 

var ctime : 
seg 

-- clear vectors 
seq i-I 1 for n*n) 

seg 
dI1-1) :- 0 
c(i-l) :- 0 

-- computation time 
if 

wl < w2 
seg 

true 

total.time :- (3*n)+wl 
min :- wl 

seg 
total.time :- ( 3*n ) + w2 



min :- w2 
offsets and delays 

strtc :- w2 + 1 
ctime :- ql-l 
if 

if 

ql > p2 
seq 

strtc :- strtc + (ql - p2) 
ctime :- ctime - (ql - p2) 

delays of sources 

Ictime >- Iq2-1)) and ctime >- Ipl - 1)) 
seq 

delay.c :- 0 
delay.a :- ctime - Iq2 - 1) 
delay.b :- ctime - Ip1 - 1) 

Iq2 - 1) >- ctime ) and Iq2 >- pI ) 
seq 

delay. a :- 0 
delay.c :- Iq2-1 ) - ctime 
de1_y.b :- q2 - q1 

Ip1 - 1) >- ctime ) and Ilpl-l) > Iq2-1)) 
seq 

delay.b :- 0 
delay.e ,- Ipl - 1) - ctime 
delay.a :- pI - q2 : 

proc allocpool( value x, y, r, var c ) -

address calculation of pool channel 

seq 
c :- 1IIIIx - 1) , Iw2 + 1)) + y) • 3) + r)-l I 

proc cell( chan ain, bin, cin, aout, bout, cout, value type ) _ 

definition of inner product cell 

the cell is programmable ; the type selects if the cell 
is true ips, rotated by 120 deg clock wise ,anticlockwise 
or reciprocal cell 

var a[l), bill, ell], atmp, btmp, etmp 
seq 

seq 
setup start values 

atmp :- 0 
btmp :- 0 
ctmp :- 0 
if 

type - 3 
seq 

atmp :- -1 
btmp:- 1 

-- while running 
seq i-[l for total.time] 

seq 
-- perform ilo 
par 

ain1a(0) 
bin1b(OJ 
cln1c(OJ 
aoutlatmp 
boutlbtmp 
cout!ctmp 

-- do computation 
-- depending on type of cell 
seq 

if 
Itype - 0) or Itype - 2) 

seq 
ctmp :- c(OJ + I aJOJ'b(OJ 
atmp :- a(OJ 
btmp :- b(OJ 

type - 1 
seq 

ctmp :- c(OJ + I a(OI'b(OI ) 
btmp :- ctmp 
atmp :- a(OI 

type - 3 
seq 

if 
c( 01 - 0 

btmp :- 1 
true 

btmp .- l/c(OI 
atmp :- -1 
ctmp ,- c(OJ 

proc source( value mem[ J, zl, z2, delay, flag, ehan outpt ) -

generic source 
pumps data into the array, zero values except 
where matrix values are to enter 

var toggle, togglel, delay2, dl, d2 : 
seq 

-- set switches 
-- calculate number of 
-- dummy inputs 
toggle :- true 
togglel :- false 
dl :- zl 
d2 :- z2 
if 

dl > d2 
delay2 :- Idl - d2) 

true 



delay2 :- (d2 - dl) 
if 

flag 
delay2 :- (delay2*2) + delay 

true 
delay2 :- delay2 + delay 

-- while running 
seq i-[ 1 for total.time I 
if 

(I <- delay21 or (dl > nl or ( d2 > n) 
-- pad with dummy value 
outptlO 

true 
if 

togglel 
seq 

-- send dummy value 
outptlO 
toggle :- true 
togglel :- false 

toggle 
seq 

true 

-- send data element 
outptlmem((((dl-l)*n)+d2)-ll 
seq 

dl :- dl + 1 
d2 :- d2 + 1 
toggle :- false 

•• q 
-- send dummy value 
outptlO 
togglel :- true : 

proc sink{ var mem[ I, value zl, z2, delay, flag, extra, chan inpt) _ 

generic sink 
opposite of the generic source; collects I and u factors 
I:'esults storing them in the corl:'ect place in host memory 
dummy values and garbage results are disposed of cleanly 

vac toggle, toggle 1 , delay2, dl, d2 : 
seq 

-- set switches 
toggle :- true 
togglel :- false 
dl :_ zl 
d2 ;- .2 
if 

if 

dl > d2 
delay2:- (dl - d2) 

true 
delay2 :- d2 - dl 

flag 
delay2 :- (delay2 - 2) + (delay + extra) 

true 
delay2 :- delay2 + ( delay + extra ) 

-- while running do computation 
seq t-[ 1 for total.time ) 

if 
( i <- delay2) or (dl > n) or (d2 > n) 

-- pad dummy values 
inpt?any 

true 
if 

togglel 
seq 

-- dummy or garbage 
inpt1any 
toggle :- true 
t0991e! :- false 

toggle 
seq 

true 

-- store this value; and 
-- locate next free space 
Inpt?mem(( ((dl-l)*n)+d2)-ll 
seq 

dl : - dl + 1 
d2 :- d2 + 1 
toggle :- false 

seq 
-- dummy or garbage value 
inpt?any 
toggle! :- true 

proe allocsources{ chan pool(}, value strtc ) _ 

assign source processors to grid positions 

def xlim - wl + 1, yIlm - w2 + 1 \ 
par 

-- allocate a(i,j) sources 
par x-(1 for wl) 

val:' idx : 
seq 

allocpool(x+l, ylim, 0, idx) 
if 

x <- ql 
source( 8, ql - (x - I), I, delay.a, doff, pool[idx}) 

true 
source( 8, 1, (x - ql) + 1, delay.a, don, pool(idx}) 

allocate b(i,j) sources 
par y - [ 1 for w2] 

var idx : 
seq 

allocpool(xlim, y+l, 2, idx) 

(Xl .. 
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if 
y <- p2 

source( b, 1, p2 - (y - 1) , delay.b, doff, poollidx) 
true 

source( b, (y - p2) + 1, 1, delay.b, don, pool[ldx) 
allocate c(i,j) sources 

par i-I 1 for w3] 
vac idx 
seq 

if 

if 

i <_ (w2 - 1) 
allocpool( 1, (w2 - i) + 1, 1, idx ) 

i - w2 
allocpool( 1, 1, 1, idx 

i > w2 
allocpool«l - w2) + 1, 1, 1, idx ) 

((strtc - i)+l) > 1 
seq 

source( c, strtc - i, 1, delay.c, don, pool[ldx) 
true 

seq 
source( C r 1, (1 - strtc) + 2, delay.c, don, pool[ldxJ) 

peoe allocsinks( chan pool[]. value strtc ) -

allocate sink processors to grid positions 

def xlim - wl + 1, yllm - w2 + 1 : 
par 

-- allocate a(l,j) sinks 
par x-[ 1 for wlJ 

var idx : 
seq 

allocpool ( x+l, 1, 0, idx) 
if 

( x <- q1) 
sink( a, ql-(x-l), 1, delay.a, doff, 0, pool(ldx) 

true 
sink( a, 1, (x - ql) + 1, delay.a, don, 0, pool(idx) 

allocate b(l,j) sinks 
par y-( 1 for w2) 

var idx : 
seq 

allocpool(l, y+l, 2, idx 
if 

( y <- p2) 
sink( b. 1. p2 - y - 1). de1ay.b. doff. O. poo1(idx) 

true 
sink( b, (y-p2)+1, I, delay.b, don, 0, pool(idx) 

allocate c(i,j) sinks 
par i-( 1 for w3) 

var idx, tmp : 
seq 

if 
i<-(w1-1) 

if 

allocpool( 1+1, yllm, 1, idx ) 
i - wl 

allocpool( xlim, yllm, 1, idx 
1 > wl 

allocpool( xlim, «w3 - 1)+2) 1, idx ) 

« strtc - i) + 1) > 1 
seq 

sink( c, strtc - i, 1, delay.c, don, i, pool[idx) 
true 

seq 
if 

i > w2 
tmp :- (w3 - i) + 1 

true 
tmp :_ min 

sink( c, 1, (i strtc)+ 2, delay.c, don, tmp, pool[idx) 

proc alloc.cells(chan pool(l)-

allocate Ips processors to grid positions 

def xlim - wl + 1, ylim - w2 + 1 
par i - ( 2 for w1) 

par j - ( 2 for w2) 
var idl, id2, id3, id4, idS, id6 
seq 

allocpool(i, j, 0, idl ) 
allocpool(i, j, 2, id2 ) 
allocpool(i, j, 1, id3 ) 
allocpool(l, j-l, 0, Id4) 
allocpool(i-l, j, 2, ldS) 
allocpool(l-l, j-l, 1, Id6) 
if 

(i - x1im ) and ( j - y1im) 
ce11(poo1(id1). poo1(id2). pool(id6). poo1(id4). pool(idS). 

poo1( id3). 3) 
(j - ylim ) 

ce11(pool(id2). poo1(id6). pool(id1). poo1(idS). pool(id3). 
poo1Iid4). 1) 

(i - xlim) 
ce11(pool(id6). poo1(id1). poo1(id2). poo1(id3). poo1(id4). 

pool(idS). 2) 
true 

cell(pool(id1). pool(id2). pool(ld6). pool(id4). pool(idS). 
pool(id3), 0) : 

proc getdata( var mem() ) -

read in the array to be tactored 
primtive routine integer values >0 and <-9 
but adequate for testing_ 



var tmp : 
seg 

screen l' *n' 
seq i- [ ! for n J 

seg 
screenl '*0';' (' 
seg j-[ 1 for nl 

seg 
keyboard?tmp 
screeoltmp;'*s' 
mem[(((I-ll*n)+j)-ll :- tmp - '0' 

screenl' J' 
screen! '*n' : 

proe putdata( value mem[J , value flag) -

write out the factors to the screen 

primitive routine uses only integer values 
but sufficient for testing 

seg 

seg 

seg i -[ 1 for n 1 
seg 

screen!'*n';'(' 
seg j-[ 1 for nl 

seg 
if 

(1 > j) and (flag - 1) 
screenl '0' J ''lis' 

(1 < j) and (flag - 2) 
screen 1 ' 0' I' 'lis' 

( 1 - j) and ( flag - 2) 
screenl'l';'*s' 

true 
screenlmem({«i-1)*n)+j)-1] + 'O';'*s' 

screen!'} , 

main program 

read data; allocate system; run it; write results 

getdata( c ) 
setup( a, b ) 
par 

allocsources(pool, strtc) 
alloc.cells(pool) 
allocsinks(pool, strtc} 

screenl'u';'-' ;'*n' 
putdata( c, 11 
screenl'*n';'l';'-';'*n' 
putdata( c, 2 ) 

program 5. 

systolic array 

notes 

Double pipe implementation of Matrix Vector 
Multiplication algorithm. 

The Array is based on the Soft-Systolic approach 
to simulating systolic arrays. 

problem dependent constants 
def n-S, p-4, q_4, w-(p+q)-l, max.cells - (w/2)+!, total. time - (n+(w/2)+3) 

-- setup and communication variables 
var delay.x, delay.y, no.cells.l, no.cells.2 
var x.vecl n }, a.mem( n*n J, y.vecl n ), null.vecl n ] : 

-- Interface and Floating point Arithmetic Library Routines. 
EXTERNAL proc fp.float( value int, var float) 
EXTERNAL proc fp.add( value f1, f2, var f3 ) 
EXTERNAL proc fp.mult(value f1, f2, var f3 ) 
EXTERNAL proc fp.num.to.screen( value f ) : 
EXTERNAL proc fp.num.from.keyboard(var f) : 
EXTERNAL proc str.to.screen( value sI] ) : 

proe setup -

calculation of synchronisation parameters 
and number of cells in each pipe. 

seg 
if 

if 

if 

if 

(p - (2*(p/2))) _ 0 
delay.x :- (p/2) -1 

true 
delay.x :- p/2 

(q-(2*(g/2)) ) - 0 
delay.y :- (g/2) 

true 
delay.y :- q/2 

(w -(2*(w/2))) -seq 
no.cells.l :-
no.cells.2 :-

true 
seg 

no.cells.l :-
no.cells.2 :-

delay.x > delay.y 
seq 

0 

- 1 

w/2 
w/2 

(w/2) 
w/2 

+ 1 

delay.y :- delay.x - delay.y 
delay.x :- 0 

true 

co .. 
CO 



•• q 
delay.x :_ delay.y - delay. x 
delay.y :- 0 : 

peoe ipa chan xin, yin, xout, yout ,ain ) • 

basic inner product step cell 

vat a(l), x(1), y(l), xtmp, ytmp, tmp 
seq 

-- startup values 
fp.float{O,xtmp) 
fp.float(O,ytmp) 
fp.float(O,a[O) 
fp.float(O,x[O) 
fp.float(O.y[O) 
-- while running do 
seq i -( 1 for total.time] 

seq 
-- 1/0 
par 

x1n1x(0) 
y1n1y[01 
a1n1a(0) 
xoutlxtmp 
youtlytmp 

-- computation 
seq 

fp.mult(x(O],a(O],tmp) 
fp.add(y[O), tmp, ytmp) 
xtmp :_ x[O) : 

proe delay( chan in, out ) -

simple one cycle delay cell 

vat tmp(l], t: 
seq 

fp.float(O,t) 
seg i -(1 for total.time) 

seq 
par 

1n?tmp[ 0) 
out!t 

t :- tmp[O) 

peoe adder ( chan inl, in2, res ) -

two input adder 

var opdl[l), opd2(1). c : 
seq 

fp.float(O,c) 
seq 1 -[1 for total.t1me) 

.eq 
par 

1nl?opdl( 0) 
1n210pd2(0) 
reslc 

fp.add(opdl[O). opd2(0), c) : 

proc store(chan reS, var result{], value delay) -

Collection and storage of Data 

var j , tmp 
seq 

j :- 1 
seq i -[1 for total. time) 

if 
(1 <- delay) or ( j > n) 

seq 
res?tmp 

true 
seq 

res?result(j-l) 
j :- i + 1 : 

peoe source ( value type, mem(], 11, 12, delay, chan out) • 

Gene ri c Sou ree pump data into array 

var dl, d2 , delay2 
seq 

dl :- 11 
d2 : - 12 
delay2 :- delay 
if 

d2 > dl 
delay2 :- (d2 - 1) + delay2 

seq i -[1 for total.time) 
seq 

if 
(dl > n) or (d2 > n) or ( 1 <- delay2 ) 

-- shift 
outlO 

type - 1 
-- Matrix Source 
seq 

outlmem[(((dl-l)·n)+d2)-1) 
dl : - dl + 1 
d2 :- d2 + 1 

type - 2 
-- vector source 
seq 

outlmem[dl-l) 
dl :- dl + 1 : 



proc sink ( chan in ) -
-- garbage signal collector 
seq i _[1 for tota1.time) 

in?any : 

proc alloc.sources( value pipe, size, mem.mat[), ch an a[) ) -

allocation of Sources to grid points in 
Virtual processing space 

vae k, delay: 
seq 

delay :- delay.x 
if 

pipe - 1 
k :- p 

pipe - 2 
k :- p - 1 

-- make enough sources for 
-- all cells in pipe 
par i -( 1 for size) 

var delay2, kl: 
seq 

kl :- k - (2*(i-l)) 
delay2:- del.y + (i - 1) 
if 

kl <- 0 
source( 1, mem.mat, 2-k1, 1, delay2, a[i-1) ) 

true 
source( 1, mem.mat, 1, k1, delay2 , a(i-1) ) : 

proc bandvec ( var mem.mat(), mem.vec(), mem.null(), value size, 
delay.l, delay.2, pipe, chan yout ) -

Abstract definition of the Single pipe band vector array 
recall that two such vectors are required for Double pipe 

chan x[max.cells+l), y[max.cells+l), a(max.cells) : 

par 
pipe 

ips( xIO). yll). xII). yout. '(0) ) 
par i-[ 2 for size -1 ) 

ips( xli-I). yli). xli). yli-l). ali-l) 
-- matrix and vector sources 
alIoc.sources( pipe, Size, mem.mat, a ) 
source{2, mem.vec, 1, 0, delay.x, x(O] } 
source(2, mem.null, 1,0, deIay.y, y(size) ) 
-- collection of garbage falling off the pipe ends 
sink( xlsize) ) : 

)roc getdata( var mat[), vec[), res(), nu11() ) -

-- read matrix and vector data from terminal/Host 

var tmp 
seq 

str.to.screen(".n band matrix multiplier ·n") 
ste.to.screen(".n.n using double systolic pipe .n") 
str.to.screen("*n.nband width w - P + q - 1") 
str.to.screen(".np - ") 
str.to.screenCn·nq - ") 
str.to.screen(".n enter matrix ") 
seq i -( 1 for nJ 

seq 
str.to.screen("·n{") 
seq j -11 for n) 

seq 
fp.num.from.keyboard(tmp) 
str.to.screen("*s") 
fp.num.to.screen(tmp) 
m.tl(((i-l)*n)+j)-l) :- tmp 

str.to.screen(")·n"} 
str.to.screen("*n.n enter vector *n[.6") 
seq i -11 for n) 

seq 
-- clear auxiliary vectors here 
resli-l) :- 0 
nul1Ii-l) :- 0 
fp.num.from.keyboard{tmp) 
str.to.screen("*s") 
fp.num.to.screen(tmp) 
veeli-l) :- tmp 

str.to.screen("J·n") : 

proc putdata{ value vec[) ) -

read out results to Host/Terminal 

seq 
str.to.screen("·n.n·n result vector .n(") 
seq i-Il for n) 

seq 
str.to.screen("*s") 
fp.num.to.screen(vec(i-l) 

str.to.screen{"·sJ·n") : 

main 
chan yout!, yout2, d.yout2, res 

seq 
setup 
getdata( a,mem, x.vec, y.vec, null.vec) 
-- Double pipe 
par 

bandvec( a.mem, x.vec, null.vec, no.cells.l, delay.x, 
delay.y, 1, youtl ) 

ro 
~ o 



bandvec( a.mem, x.vec, null.vec, no.cells.2, delay.x, 
delay.y, 2, yout2 ) 

delay( yout2, d.yout2) 
adder( youtl, d.yout2, res) 
store( res, y.vec,( no.cells.l + 1) + delay.y ) 

putdata( y.vec ) 

program 6. 

systolic Array: for Quadrant Interlocking Iterative (XWZ) scheme 
for the soluiton of Linear Systems. 

Notes: The method is a parallel implementation using a Double pipe Array 
no Over relaxation is used, as we cannot gurantee that every 
instance of the array will be able to use it. 

problem dependent constants 
def n-4, n2-n/2, p-n2, q-n2, w-(p+q)-l, max.cells - (w/2)+1 
def m - 12 ,total. time - (n2+{w/2)+S) : 

-- Vector and Matrix storage 
var delay. x, delay.y, no.cells.I, no.cells.2 : 
var x1[n2), x21n2J, null.vecln2), xcl[n2J, xc2[n2), xc31n2J, xc4[n2) t 
var pll(n2*n2J, pI2(n2*n2], p2![n2*n2J, p22[n2*n2] : 
vat b1(n2). b2(n2) : 

-- Host Interface and Floating point Library routines 
EXTERNAL proc fp.float( value int, var float ) 
EXTERNAL proc fp.add( value £1, f2, var f3 ) 
EXTERNAL proc fp.sub{ value £1, f2, v8r £3 ) 
EXTERNAL proe fp.div( value f1, f2, var f3 } 
EXTERNAL proe fp.mult(value f1, f2, var f3 ) 
EXTERNAL proc fp.num.to.screen( value f } : 
EXTERNAL proc fp.num.from.keyboard(var f) : 
EXTERNAL proc str.to.screen( value s( J ) : 

proe setup -

calculation of synchronisation and 
array pipeline positioning parameters 

.eq 
if 

(p - (2*(p/2))) - 0 
delay •• :- (p/2) -1 

true 
de1ay.x :- p/2 

if 

if 

(q-(2*(q/2))) - 0 
delay.y :- (q/2) - 1 

true 
delay.y :- q/2 

(w -(2*(w/2))) - 0 
.eq 

no.cells.! :- w/2 
no.cel!s.2 :- w/2 

true 
.eq 

no.cells.l :- (w/2) 
no.ce11s.2 :- w/2 

+ 1 . 



if 
delay.x > delay.y 

seq 

true 

delay.y :- delay.x - delay.y 
delay.x :- 0 

seq 
delay.x :- delay.y - delay.x 
delay.y :- 0 : 

peoe ips chan xin, yin, xout, yout ,ain ) -

basic Inner product Cell 

var a(1), x(l), y(l), xtmp, ytmp, tmp 
seq 

-- intialisation 
fp.floatIO,xtmp) 
fp.float(O,ytmp) 
fp.float(O,aIO)) 
fp.float(O,xIO)) 
fp.float(O,yIO)) 
-- while running do 
seq i -I 1 for total.time[ 

seq 
-- 1/0 
par 

xin?xIO) 
yin?y[O) 
ain?aIO) 
xoutlxtmp 
youtlytmp 

-- computation 
•• q 

fp.mult(x{O),a(O),tmp) 
fp.sub(yIO), tmp, ytmp) 
xtmp :- xlO) : 

proc delay( chan in, out ) -

single delay cycle 

var tmp(l), t: 
seq 

fp.float(O,t) 
seq i -(1 for total.time) 

seq 
par 

in?tmpIO) 
outlt 

t :- tmplO) 

proc ddivide{ ch an inl, In2, In3, out!, out2 )_ 

-- Double Division cell 
outl • in1/1n3, out2 - In2/in3 

var tell], el, e2 
seq 

intlalise 
fp.float(O, e1) 
fp.float(O, e2) 
-- while running do 
seg i -( 1 for total. time] 

seq 
-- i/o 
par 

inl?teIO) 
in2?tell) 
i n3?te (2) 
cutlle! 
out21e2 

-- divide by zero test 
if 

te(2) - 0 
-- default result 
par 

el :- 1 
e2 :- 1 

true 
par 

fp.div( teIO), te(2), el ) 
fp.div( tell), te[2), e2 ) 

proe determinant( chan 1nl, In2, in3, 1n4, out!, out2, out3, 
out4, DutS, out6, value type } -

determinant cell : calculates determinant of 2*2 system 
outputs two copies of result and operands 

vac te(4), e(5), tmpl, tmp2 : 
seq 

-- intialise 
seq i -I 0 for 4) 

fp.floatIO, eli) 
fp.float(l, e(4) ) 
-- while running do 
seg i -(I for total. time] 

seq 
-- i/o 
par 

inl?teIO) 
in2?tell) 
in3?tel2 ) 
in4?te(3) 
if 

type - 0 
pass operands' copy result 

<Xl 
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par 
out11eIO) 
out21ell) 
out31e(2) 
out4!e[3J 
out51e(4) 

out61e(4) 
-- computation 
par 

par i -I 0 for 4) 
eli) :- teli) 

fp.mult( teIO). tell). tmp1 
fp.mu1t( te(2). te(3). tmp2 

fp.sub( tmpl, tmp2, e(4) ) : 

peoe adder ( chan in1, In2, in3, 1n4, outl, cut2 ) -

4-input adder: delivers two copies of result 

var tetS], el : 
seq 

fp.f1oat(O.e1) 
seq i -11 for total. time) 

seq 
par 

in1?teIO) 
in2?te(1) 
in3?te(2) 
in4?te(3) 
out11e1 
out2lel 

par 
fp.add(teIO). tell). e1) 
fp.add(teI2). te(3). te(4)) 

fp.add(e!, te[4], e1) : 

peoe store{chan res, var result(), value delay) • 

store result vector 

var j , tmp 
seq 

j :- 1 
seq i -[1 for total. time) 

if 
(i (- delay) or ( j > n2) 

seq 
res?tmp 

true 
seq 

res?resultlj-1) 
j :- j + 1 : 

proc source ( value type, mem[], il, i2, delay, chan out) _ 

Generic Source : pumps data into array 

vac dl, d2 , delay2 
seq 

d1 :- 11 
d2 : - i2 
delay2 :- delay 
-- compute overall de!ay(shlft) 
if 

d2 > d1 
delay2 :- (d2 - 1) + de1ay2 

seq i -(1 for total.time] 
seq 

if 
(dl > n2) or (d2 > n2) or ( i (- delay2 ) 

-- sh! ft 
outlO 

type - 1 
-- Matrix Source 
seq 

outlmeml«(dl-1)*n2)+d2)-1) 
d1 : - d1 + 1 
d2 :- d2 + 1 

type - 2 
-- Vector Source 
seq 

outlmemld1-1) 
d1 :- d1 + 1 : 

prae sink ( chan in ) _ 
-- garbage sIgnal collector 
seq 1 -(1 for total.time) 

1n1any : 

peae alloc.sources( value pipe, size, mem.mat(], chan a(] ) -

allocation of Sources to 9rid points in 
Virtual processinq space 

var k, delay : 
seq 

delay :- delay.x 
if 

pipe - 1 
k :- p 

pipe - 2 
k :- p - 1 

-- make enouqh sources for all 
-- cells of pipe 
par i -I 1 for size) 

var delay2, kl: 
seq 

k1 :- k - (2*(i-1)) 

co 
en 
w 



delay2:- delay + (i - 1) 
if 

kl <- 0 
source( 1, mem.mat, 2-kl, 1, delay2, a(l-11 } 

true 
source( 1, mem.mat, 1, kt, delay2 , a[l-11 ) : 

proc bandvec ( var mem.mat( I, mem.vec[ J, mem.null(), value size, 
delay.I, delay.2, pipe, chan yout ) -

Abstract definition of the single pipe band veetor array 
recall that two such vectors are required for a Double pipe 

chan x[max.cells+l], y[maxocells+lJ, a(max.cells) : 

par 
pipe 

ips( x[OI. y[ll. x[ll. yout. a[OI ) 
if 

size <> 1 
par i-[ 2 for size -1 I 

ips( x[i-1), y[i). xli). y[i-l), a[i-l) 
-- matrix and vector sources 
alloc.sources( pipe, size, mem.mat, a ) 
source(2, mem.vec, 1, 0, delay.x, x(O] ) 
source(2, mem.null, 1,0, delay.y, y(size] ) 
-- collection of garbage falling off the pipe 
slnk{ x(size) ) : 

peoc x2.so1ver{ chan lin[), elnl], xl), out1, out2 ) -

2*2 system solver : By Cramers rule without pivoting 

chan e(181 • dum(101 
par 

determinant( x(O), x(I], x(2), xC3}, e[O), e[lJ, 
e(21. e(31. .[41 •• (17[. 0 

ddivide(.[OI. e(21 •• (41. e(lll. e[121 I 
ddivide(e[ll. e[31. e(171. e[131. e(141 ) 
delay( 1in(11. e(51) 
de1ay( 1in(3). e(6)) 
delay( rin[l). e(8)) 
de1ay( rin[31. e(7)) 
adder(lin[O). 0(5). rin(O). e(81. e(10). e(16) ) 
adder(lin[2). e[61. rin(2). e[71. e[91. e[151 ) 
determinant(e[101. e(lll. e(121. e[91. dum(OI. dum(ll. 

dum[21. dum(31. dum[41. out1. 1 ) 
determinant(e(151. e[131. e(141. e(161. dum(51. dum(61. 

dum[7], dum(S], dum(9), out2, 1 ) 

proc system -

-- Single Iteration of the XWZ-QI scheme 

ch an yout.l[4], yout.r(4), res!, rea2, x[4) 
par 

-- right p11 pipes 
bandvec( pII, xl, bI, no.cells.I, delay.x, delay.y, 1, yout.I(O]) 
bandvec( pII, xl, null.vec, no.cells.2, delay.x, delay.y, 2, yout.lll)) 

-- right p21 pipes 
yout.1( 2)) bandvec( p21, xl. null.vec, no.cells.I, delay.x, delay.y, 1. 

bandvec{ p21, xl. null.vec, no.cells.2, delay.x, delay.y, 2. yout.1(3)) 

-- left p12 pipes 
no.cells.l, delay.y, 1. yout. r[ 0)) bandvec( p12, x2. null.vec, delay.x, 

bandvec( pI2, x2. null. vec, no.cells.2, delay.x, delay.y, 2. yout. r[ 1)) 

-- left p22 pipes 
bandvec( p22, x2, b2, no.cells.I, delay.x, delay.y, 1, yout.r(2) 
bandvec( p22, x2, null.vec, no.cells.I, delay.x, delay.y, 2, yout.rll) 

-- 2*2 system solver 
x2.solver( yout.l, yout.r, x, resl, res2 ) 
source( 2, xcI, 1, 0, no.cells.1 + (delay.y - 1), x(OJ 
source( 2, xc2, 1, 0, no.cells.l + (delay.y - 1), x(l] 
source( 2, xc3, 1, 0, no.cells.l + (delay.y - 1), x(2) 
source( 2, xc4, 1, 0, no.cells.! + (delay.y - 1), x(3) 

-- data collection 
store( resl, xl, (no.cells.l + delay.y) + 2) 
store( res2, x2, (no.cells.l + delay.y) + 2) 

proc getdata( var null() ) -

read in matrix and vector data from terminal/Host 

var tmp 
seq 

str.to.screen("*n xwz- iterative system solver *n") 
ste.to.screen("*n*n using double systolic pipe*n", 
str.to.screen("*n*nband width w - P + q - 1"' 
str.to.screen("*np - H, 
str.to.screen("*nq - H) 
str.to.screen{H*n enter matrix "' 
seq i -( 1 for nl 

seq 
str.to.screen("*n[") 
seq j _(I for nl 

seq 
fp.num.from.keyboard(tmp) 
str.to.screen(H*s") 
fp.num.to.screen(tmp) 
-- construct permuted data matrices 
if 

(i<-n2) and (j<-n2) 



pll««1-1)*n2)+j)-I) :- tmp 
(1)n2) and (j<-n2) 

p21««n-1)*n2)+j)-I) :- tmp 
(1<-n2) and (j>n2) 

pI2«(1-1)*n2)+(n-j)) :- tmp 
(1)n2) and (j>n2) 

p22«(n-1)*n2)+(n-j)) :- tmp 
str.to.screen("]*n") 

intialise starting approximation vector 
and auxiliaries vectors 

seq 1-( 1 for n2) 
var addr : 
seq 

addr :- «(1-1)*n2)+1)-1 
xc2(1-1) :_ pll(addr) 
pll(addr) :- 0 
xc4(1-1) :- p21(addr) 
p2l(addr) :- 0 
xc3(1-1) :- pI2(addr) 
pI2(addr) :- 0 
xcl( i-I) :- p22( addr) 
p22(addr) :- 0 

str.to.screen(tt*n*n enter vector *n(*8") 
seg i -[I for nJ 

seq 
fp.num.from.keyboard(tmp) 
str.to.screen("*s") 
fp.num.to.screen(tmp) 
if 

i <- n2 
bl(i-l) :- tmp 

true 
b2[n-1) :- tmp 

str .to.screen(" )*n intial solution vector. *n(") 
seq 1 -( 1 for n) 

seq 
fp.num.from.keyboard(tmp) 
str.to.screen("*s"' 
fp.num.to.screen(tmp) 
if 

i <- n2 
seq 

null(1-1) :- 0 
xl(i-l) :- tmp 

true 
x2[n-i] :- tmp 

str.to.screen("]*n") : 

proc putdata( value xl(], x21J ) _ 

read out the result vector to the Host /terminal 

seq 
str.to.screen{ftresult vector *n[ft) 

seq i-I 1 for nJ 
seq 

str.to.screen("*s") 
1f 

i > n2 
fp.num.to.screen{x2In-i) 

true 
fp.num.to.screen(xl[i-1J) 

str.to.screen("*s)*n") : 

main 

seq 
setup 
getdata( null.vec ) 

run the system for m iterations 
-- n.b sequential here in real scheme should be 
-- a parallel loop , current execution very slow for 
-- full parallel execution 
seq i -I 1 for m I 

seq 
system 
putdllta{ xl, x2 

co 
V1 
V1 



program 7 

Systolic Array For BATS Pipeline using O(n) cell 

Notes 

( using Pickering's Algorithm. ) 

The Cell described uses (L/FIIFO storage 
operation is controlled by hardwired control bit 
cl ( in chip definition ). The Chip itself is a 
sequential process; it simulates the parallel chip 
design using extra variables, recall each assignment 
in OCCAK can be interpreted as a communication. Using 
this method allows easy termination of the soft-systolic 
pipe, using existing pipeline controls • 

problem dependent constants 
maxsize - upper bound on chip memory 

def maxsize - 50, r - 2 : 
var 0, type: 

-- library routines 
EXTERNAL proc str.to.screen(value" st J ) : 
EXTERNAL proc fp.float(value int, var float) 
EXTERNAL proc fp.num.from.keyboard( var f) 
EXTERNAL proe fp.num.to.screen(value f) 
EXTERNAL proc num.to.screen{value n) 
EXTERNAL proe num.from.keyboard( var n) : 
EXTERNAL proc fp.mult( value fl ,f2, var f3 ) : 
EXTERNAL proe fp.sub( value fl, f2, var £3 ) : 
EXTERNAL proc fp.div( value fl, £2 ,var f3) : 
EXTERNAL proc fp.add( value fl, f2 , var f3) : 

proc chip ( chan in, cntrl, tag. in, out, cntrl.out, tag.out , value cl ) -

Definition of the O(n) BATS Cell : 
1.f.1 and 1.f.2 : L/Fifo stores controlled by cl, and tag 
c.fifo pipelining of control signals 
tag bits associated with data as End Of Data etc 
switch.1 L/F storage and tag control set by cl and tag 
switch.2 : switches cell out of pipeline and forces close-down 
others simulation of parallel communication internal to cell 

var c.fifo[maxsize}, l.f.l[maxsize}, l.f.2[maxsizeJ, tag[maxsizeJ 
var u, v, v2, a, yn, tag.a, tag.c, c.out, c , d : 
var usave, vsave, vsave.2, ysave, csave, asave, un, alpha : 
var running, switch.!, switch.2 
var one : 
seq 

-- switch on 
fp.f1oat(l,one} 
running :- true 
switch.l f- true 
switch.2 :- true 

-- cell 
while running 

seq 
if 

if 

switch.2 
cntrl?csave 

( csave - 6) and switch.2 
-- switch off cell input 
switch.2 :- false 

c.out - 6 
-- close down cell 
running :- false 

-- ilo 
cntrl.outlc.out 
par 

if 

if 

if 

switch.2 
-- input 
par 

in?d 
tag.in?tag.a 

running 
-- output 
par 

outlu 
tag.outltag.c 

forward recursive cell 

csave - 3 
-- clear cell and load alpha 
-- L/F - FIFO 
seq 

alpha :- d 
fp.float(O,vsave) 
vsave.2 :- d 
switch.l :- true 
fp.float(l,asave) 
fp.sub{vsave,asave,asave) 

csave - 2 
-- simple reset 
seq 

true 

fp.float(O,vsave) 
fp.float(l,asave) 
fp.sub(vsave,asave,asave) 

-- normal forward substitution 
seq 

fp.mult(alpha,vsave,vsave) 
fp.6ub(d,vsave,vsave) 
vsave.2 :- vsave 
fp.mult(a,alpha, asave) 
fp.sub(O,asave, asave) 



-- D-cell 
fp.add(one,a,ysave) 
if 

ysave <> 0 
fp.div(Y,ysave,ysave) 

-- backward recursive cell 
if 

c.fifo[n+11 - 3 
-- pass alpha, load u(n) 
seq 

useve :- 1.f.1(n+1) 
un :- yn 

tag[n+11 - 1 
-- pass u(n) unknown result 
usave :- un 

true 
-- normal backward substitution 
seq 

fp.mult(un, 1.f.2(n+lJ, usave) 
fp.sub(l.f.1(n+11, useve, usaye} 

next output control and tag signals 
tag.c :- tag(n+11 
c.out :- c.fifo[n+1J 
-- simulated internal cell communication 
tag[n+11 :- tag[nl 
c.fifo(n+11 :- c.fifo(nl 
1.f.1[n+11 :- 1.f.1(nl 
1.f.2[n+11 :- 1.f.2[nl 
u :- usave 
v :- ysave 
a :- asave 
c :_ csave 
v2 :- vseve. 2 
yn :- ysave 
-- L/F .&torage 
if 

switch.1 
-- FIFO input/ouptut 
-- input enters 1.f.1(0) 
-- output in 1.f.l(n) 
seq 

true 

seq i -[ 0 for nl 
seq 

1.f.1(n-il :- 1.f.1[(n-i)-11 
1.f.2[n-il :- 1.f.2[(n-i)-11 
tag(n-il :- tag[(n-i)-11 

1.f.1(OI :- v2 
1.£.2[01 :- a 
tag(OI :- tag.a 

-- LIFO output 
-- output value is left in 1.f.1[nl 
seq 

1.f.l[nl :- 1.f.1[01 

1.f.2[nl :- 1.f.2[01 
tag[n) :- tag[OI 
seq i -[ 0 for nl 

seq 
1.f.1(11 :- 1.f.1[i+l1 
1.f.2(11 :- 1.f.2[i+l1 
tag[il :- tag[i+11 

control FIFO 
seq i -(0 for n} 

c.fifo[n-II :- c.fifo( (n-i)-11 
c.fifo[OI :- c 

until end of data L/F 's act as FIFO 
-- use tag and cl to choose output mode 
-- LIFO or FIFO 
if 

cl and (tag.a - 1) 
switch.l :- false 

-- Multiplexor swap of tag bits 
If 

(cl - 1) and (tag.c - 21 
tag.c ;- I 

(cl - 1) and (tag.c - 1) 
tag.c :- 2 

proc getdata( chan out, cntrl.out , tag.out) -

Host input routine : 
Reads RHS data and control from Host, automatically 
constructs tag bits aSSOCiated with RHS, and pumps 
signals input Array. 

vat j,tag(maxsizel, d,c, running: 
seq 

running :- true 
while running 

seq 
-- control 
str.to.screen("*ncontrol .") 
num.from.keyboard(c) 
num.to.screen(c} 
if 

c - 6 
-- close down array 
seq 

running :- false 
c - S 

-- size of system and tag setup 
seq 

str.to.screen{".n order of system - .} 
num.from.keyboard{n} 
num.to.screen(n) 
seq k -( 0 for nl 

0> 
lJ1 ..., 



taglk) :- 0 
tag[O) :- 2 
tagln-l) :- 1 

c - 3 
-- reset tag outputs 
seq 

j :- 0 
get RHS value 

str.to.screen("*nd-value - "} 
fp.num.from.keyboard(d) 
fp.num.to.screen(d) 
-- Pump into array 
cntrl. out I c 
if 

running 
par 

outld 
if 

c <> 0 
taq.outlO 

true 
•• q 

tag.outltaglj) 
j :- j + 1 
if 

j - n 
j :- 0 

proc putdata(chan In, cntrl.in, tag. in ) -

Host Output Interface : 
collect array output, seperate control and tag signals 
output the result . 

var c, res, tI, switch, running: 
seq 

running :- true 
while running 

.eq 
-- control 
cntrl. in?c 
if 

c - 6 
-- array has stopped 
seq 

running :-false 
str.to.screen("*nQUIT*n"} 

true 
-- collect result 
par 

in?res 
tag.innl 

output 

if 

if 

switch and running 
seq 

ste.to.screen( "*nresult - ") 
fp.num.to.screen(res) 

use tag bits and setup control to 
remove garbage between pipellned problem 
instances 

c - 3 
switch :- true 

tl - 1 
switch :- false 

-- main 

-- input and output vector are in same order 
seq 

-- choose type of array 
str.to.screen("type of array ") 
num.from.keyboard(type) 
num.to.screen(type) 
if 

type _ 1 
-- single chip/Cell test 
chan cntrl(2], tagI2], datal2] 
par 

getdata(dataIO). cntrlIO). taglO) 
chip(data(O), cntrl(O), tag(O], 

datall), cotrlll), tagll), 1 
putdata(datall).cntrlll). tagll)) 

type • 2 
-- Trl-dlagonal case 
chan cntrl(3), tag(3), datal31 : 
par 

getdata( dataIO). cntrlIO). tag[O) 
chip( dataIO). cntrlIO). tagIO). 

datall). cntrlll). tagll). 1) 
chip( data[l). cntrlll). tagl1J. 

data(2). cntrl(2). tagl2J. 1) 
putdata(dataI2). cntrl(2). tagI2)) 

type - 3 
-- general case with bandwidth - 2r + 1 
chan cntrll(2*r)+l), tag(2*r)+l], data(2*r)+11 
par 

getdata( dataIO). cntrl[O). taglO)) 
par i -( 1 for rl 

var cl 
.eq 

-- set hardwired L/F control 
cl :- 0 
if 

i - r 
cl :- 1 

ro 
'" ro 



ch!p( data(!-l), cntr1(!-1), tag(!-l), 
datal!], cntrl(i], tAq(l), cl ) 

par i -[ 1 for cJ 
vac cl : 
seq 

-- set hardwired control 
cl ;_ 0 
!f 

! - r 
cl :- 1 

ch!p( data«r+!)-l), cntr1( (r+!)-l), tag«r+!)-l) 
data[r+!), cntrl[r+i), taq[r+i], cl 

putdata( data(2*r), cntrl(2*rJ, tag(2*r] ) 

program 8 

Systolic Array Alternative implementation of the BATS pipeline 
using the P-Cyclic a(v) cell. 

Notes In this method we compute the nth unknown of the 
particular factor the cell represents by evaluating 
the vth-order polynomial. 

The internal cell communication is simulated by 
assignment to facilitate 'easy pipeline close-down 

problem dependent constants 
def v - 40, r - 2 : 
vac type : 

-- library routines 
EXTERNAL peoe str.to.screen( value sf] ) : 
EXTERNAL proe num.to.screen{ value n) : 
EXTERNAL peoe num.from.keyboard( var n) : 
EXTERNAL proc fp.num.to.screen( value f) : 
EXTERNAL proc fp.num.from.keyboard( var f ) 
EXTERNAL proc fp.mult(value fl, f2 , var £3 
EXTERNAL proc fp.sub( value f1, £2 , vac f3 ) 
EXTERNAL proc fp.add{ value f1, £2, vac £3 ) : 
EXTERNAL proc fp.div{ value f1, £2, var £3) : 
EXTERNAL proc fp.float(value int, var float) : 

proc chip( chan din2, dinl, control, 
dout2, doutl, control. out ) -

Cell Definition : 
dl.fifo - delay for first n/2 terms of RHS 
d2.fifo - delay for last n/2 terms of RHS 
c.fifo - pipelining of control signals 

var tl, t2, switch, xl, x2, running: 
var dl.fifo(v+1J, d2.fifo[v+l), c.fifo[v+2) : 
var a, alpha[3], xn : 
seq 

-- switch on 
switch :- true 
running :- true 
fp.float(l,alpha(l» 
-- cell 
while running 

seq 
-- perform FIFO operation 
c.f!fo(v+1) :- c.f!fo(v) 
seq ! -(0 for v) 

seq 
c.f!fo(v - !) :- c.f!fo«v - ;)-1) 



!f 

!f 

dl.f!fo(v - !) :
d2.f!fo(v - !) :

input/output 

switch 
control?c.flfo(O] 

dl.f!fo((v - !) - l( 
d2.f!fo((v - !)-l) 

(c.f!fo(O) - 6) and switch 
-- switch of cell inputs 
switch :- false 

c.fifo(v+l) - 6 
-- close down cell 
running :- false 

control.outlc.flfo{v+l) 
par 

if 

!f 
switch 

-- input 
par 

d!nl?dl.f!fo(O) 
d!n2?d2.fifo(0) 

if 
running 

-- output 
par 

doutllxl 
dout21x2 

Pre-FIFO control 

c.f!fo(O) - 1 
-- reset and load alpha 
seq 

fp.sub(O,dl.f!foIO),alpha(O)) 
a :- alpha(O) 
fp.float(l,t2) 
-- intial value of iterative sequence 
fp.d!v(t2,dl.f!fo(0),alpha(2)) 
xn :- 0 

(c.f!fo(O) - 0) or (c.f!fo(O) - 6) 
-- normal computation 
seq 

-- post FIFO control 
if 

c.fifo(v) - 1 
-- pass alpha and setup 

!ps(2) and d-cell 
seq 

xl :- dl.f!folv) 
x2 :- dl.f!folv) 
alpha(l) :- -alpha(O) 

c.fifolv) - 2 
-- load polynomial result 
-- reset polynomial cell 
seq 

true 

fp.mult(alpha(l], xn, tl) 
fp.6Ub(dl.flfo[v),tl, xl) 
x2 :- xn 
fp.float(O,xn) 

-- Ips(2) and O-cell 
seq 

fp.mult(alphatl], xl, tl) 
fp.sub(dl.flfo[v], tI, xl) 
fp.sub(d2.f!fo(vl. x2, tl) 
fp.mult(tl,alpha(2),x2) 

normal polynomial cell computation 
next polynomial term 

fp.mult(a, d2.flfo(O), tl) 
fp.add(tl ,xo, xn) 
-- next power of alpha 
fp.mult(a,alpha[O), a) 
fp.mult(alpha(2],alpha[O],tl) 
-- iterative evalutaion of l/alpha 
-- for stability 
fp.add(t2,tl,tl) 
fp.mult(tl,alpha(2).tl) 
fp.add(alpha(2I,tl,alpha(2)) 
fp.num.to.screen(alpha(2) 

c.f!fo(O) - 2 
-- load first polynomial term 
seq 

xn :- d2.f!fo(0) 

proe getdata( chan dinl, din2, cntrl ) -

Host Input Interface : 
Reads control and Rhs values 

var running, dl, d2, cl, alpha: 
seq 

running :- true 
while running 

seq 
str.to.screen(tI*ncontrol - 11) 
num.from.keyboard(cl} 
num.to.screen{cl) 
if 

cl - 6 
-- close down array 
running :- false 

cl - I 
-- alpha value 
seq 

str.to.screen("*nalpha _M) 
fp.num.from.keyboard(alpha) 
fp.num.to.screen(alpha) 
dl :_ alpha 



d2 :- alpha 
true 

RHS 2-values 
seq 

str.to.screen("*ndl- value - ") 
fp.num.£rom.keyboard(dl) 
fp.num.to.screen(dl) 
str.to.screen("*nd2- value - ") 
fp.num.from.keyboard(d2) 
fp.num.to.screen(d2) 

output 
cntrll cl 
if 

cl <> 6 
par 

dlnlldl 
dln2ld2 

peoe putdata( chan ul, u2, cnte! ) -

Host Output Interface ; 
Collects Array results and outputs solution to 
Host. 

var running, rest, res2, cl : 
seq 

running :- true 
while running 

seq 
cntrl 1cl 
If 

cl - 6 
-- array has stopped 
running :- false 

true 
-- next results 
par 

ul?resl 
u2?res2 

output to Host 
str.to.screen("*n ul-value - ") 
fp.num.to.screen(resl) 
str.to.screen("*n u2-value - ft) 
fp.num.to.screen(res2) 
str.to.screen{"*n"} 

str.to.screen(nbye In} : 

main 
seq 

str.to.screen("*n type of array - ft) 
num.from.keyboard(type) 
num.to.screen(type) 
if 

type - 1 

-- single chip/cell test 
ch an dl(21. d2(21. cntrl(21 
par 

getdata(dl(OI. d2(OI. cntrl(OI 
chlp( d2(OI. dl(OI. cntrl(OI. 

d2(11. dl(ll. cntrl(ll ) 
putdata(dl(ll. d2(11. cntrl(ll 

type • 2 
-- Tri-diagonal case 
chan dl(31. d2(31. cntrl(31 : 
par 

getdata(dl(OI. d2(OI. cntrl(OI 
chlp( d2(OI. dl(OI. cntrl(OI. 

d2(11. dl(ll. cntrl(ll ) 
chlp( dl(ll. d2(11. cntrl(lJ. 

dl(21. d2(21. cntrl(2J J 
putdata(dl(21. d2(21. cntrl(2J 

type - 3 
-- general case with Bandwidth - 2t + 1 
chan dl[(2*r)+l], d2[(2*r)+11, cntrl[(2*r)+1] 
par 

getdata(dl(OJ. d2(OJ. cntrl(OJ J 
par I - ( 1 for r I 

chlp( d2(1-lJ. dl(I-11. cntrl(l-ll. 
d2(1J. dl(ll.cntrl(IJ ) 

par i - [ 1 for r J 
chlp( dl(r+IJ-11. d2(r+I)-11. cntrl(r+IJ-1J. 

dl(r+!)I. d2(r+I)J. cntrl(r+IJJ 
putdata(dl(2*rl. d2(2*rl. cntrl(2*rl ) 



program 9 

Systolic Array: To construct the extrapolation table in 
Romberg's Integration algorithm. 

The basic cell is the REP or Richardson's Extrapolation cell 
which computes the extrapolation values 

Table size 
def n - 5: 

-- library routines 
EXTERNAL Proc str.to.screen(value s[ J) : 
EXTERNAL Proc num.to.screen(value n) : 
EXTERNAL Proc fp.num.to.screen(Value float f): 
EXTERNAL Proe fp.num.from.keyboard(Var float f) 

Proc REP(Chan inl, outl, in2, out2, out3, cntrlin, cntrlout ) _ 

Richardsons extrapolation cell 

var float tl, t2, p.4, p.res, rnew, rold, res 
var switch, running, toggle, c.flfo[4] : 
seq 

-- intialisation 
p.res :- 0.0 
rold .- 0.0 
res :- 0.0 
tl .- 0.0 
t2 .- 1.0 
.eq 1 -(0 for 3 ) 

c.f1fo(l) .- 0 
switch :- true 
running :- true 
toggle :- true 
-- cell 
while running 

seq 
-- control input 
If 

switch 
cntrlln7c.flfo(0) 

-- decide on input/output 
If 

(c.flfo(O) - 6 ) and switch 
-- close input 
switch :- false 

c.fifo(3) - 6 
-- destroy cell 
running :- false 

cntrloutlc.flfo(3) 
-- 1/0 
if 

switch 

if 

par 
inl?rnew 
ln2?p.4 

running 
par 

outl! res 
out2J (p. res) 
-- output to fanin network 
if 

c.f1fo(3) - 1 
seq 

toggle :- false 
out31res 

toggle 
out310 

extrapolation formula 
res :- tl/t2 
tl :- (p.4*rnew)- rold 
t2 .- p.4- 1.0 
rold :- rnew 
p.res :- p.4 * 4.0 
-- shift control fifo 
seq 1 -( 0 for 3) 

c.flfo(3-1) .- c.flfo(3-1)-1) 
if 

c.f1fo(O) - 6 
c.f1fo(O) .- 0 • 

proc fnet(chan gather[], var float vecl J, var k ) _ 

fanin network: primitive routine to collect values 

seq 
par j -(0 for nJ 

-- check all processes 
seq 

if 
j > k 

-- those still to output 
gather(j)7any 

j - k 
var float tmp : 
-- current output 
seq 

gather(k)7tmp 
if 

tmp <> 0.0 
seq 

vec(k) .- tmp 
k :- k + 1 : 

proc getdata( chan outl,out2, cntrl ) _ 



-- read starting values , and pump into 
-- array then close down array systolically 

var float four, vec(n+lJ 
seq 

four :- 4.0 
str.to.screen("*nEnter Romberg Starting values") 
seq i-IO for (n+1)J 

seq 
str.to.screen("*nR(") 
num.to.screen(i) 
str.to.screen("] _M) 
fp.num.from.keyboard(vec(i) 
fp.num.to.screen(vec(iJ) 

str.to.screen("*n*n*n") 
-- start pumping 
seq i-IO for (n+1)J 

par 
if 

i - 0 
cntrlll 

true 
cntr110 

outllveeliJ 
out21four 

close down 
cntrl16 : 

proc putdata( chan inl, in2, fanin(], cotrl ) _ 

collect garbage fallIng off array, and 
call fanin to collect next result and print out 
diagonal entries 

var float vec(n] : 
var running, cl, k 
.eq 

k :- 0 
running :- true 
-- collect results until stopped 
while running 

.eq 
cntrl?cl 
if 

cl - 6 
running :- false 

true 
par 

inl?any 
in2?any 
fnet(fanin, vec, k) 

-- output diagonal approximations. 
str.to.screen("*n*n Diagonal Table Entries") 
seq i -(0 for nl 

seq 

-- main 

str,to.screen("*n") 
fp.num.to.screen{vec{i]) 

-- The Romberg array 
chan Inlln+l), 1n2In+l], fanin[n], cntrl[n+l) 

par 
getdata(in110J, in210J, entrllOJ) 
par i -11 for nJ 

REP(in1Ii-1j, in1liJ, in2Ii-1J, in2liJ, f.ninli-1J, entr1Ii-1j, entr1lij) 
putdata(in2(n], inl(n), fanin, cntrl[n]) 

(Xl 
Cl) 
w 



program 10 

Systolic Array A Systolic Ring implementation of the Romberg 
table construction. 

Ring size and Table size respectively 
def n _ 2, m_ 6 : 

-- library routines 
EXTERNAL Proc str.to.screen(value s[}) : 
EXTERNAL Proc num.to.screen(value nJ t 
EXTERNAL Proc fp.num.to.screen(Value float f): 
EXTERNAL Proc fp.num.from.keyboard(Var float f) 

Proc REP(Chan inl, outl, in2, out2, out3, cntrlin, cntrlout ) -

Modified Extrapolation cell (see report) 

var float tl, t2, p.4, p.res, rnew, rold, res 
var switch, running, toggle, c.fifo(41 : 
seq 

-- intialisation 
p.res :- 0.0 
rold :- 0.0 
res :- 0.0 
tl :- 0.0 
t2 :- 1.0 
seq i -10 for 3 ) 

c.flfoli) :- 0 
switch :- true 
running :- true 
toggle :- false 
-- cell 
while running 

seq 
-- control 1/0 
par 

if 
switch 

cntrlin?c.fifo{OJ 
cntrloutJc.fifo(3) 

-- decide on data I/o 
if 

(c.fifolO) - 6 ) and switch 
switch :- false 

c.flfol3) - 6 
running :- false 

-- switch on fanin output line 
if 

c.fifolO) - 1 
toggle :- true 

-- 1/0 
par 

if 
switch 

par 
inl1rnew 
if 

c.fifolO) - 1 
in21p.4 

if 
running 

par 
ouUl res 
if 

c.fifol3) - 1 
seq 

toggle :- false 
par 

out3lres 
out21p.res 

toggle 
out3! 0 

computation 
res : _ tl/t2 
t1 :_ (p.4*rnew)- rold 
t2 :- p.4- 1.0 
rold :- rnew 
p.res :- p.4 * 4.0 
-- shift control fifo 
seg i -( 0 for 3) 

c.fifoI3-i) :- c.fifoI13-i)-l) 
if 

c.fifolO) - 6 
c.fifolO) :- 0 : 

proc fnet(chan gather[ It var float vec(), vac k,z ) -

Modified fanin simulator. 
Sequentially poll ring cells looking for outputs 
and accept them if non-zero 

Note z - index of diagonal entry next output; 
k - index of next ring cell expected to output diagonal. 

seq j -10 for n) 
seq 

if 
j - k 

var float tmp : 
seq 

9a therlk)?tmp 
if 

tmp <> 0.0 
seq 

vec[z) :- tmp 
z :- z + 1 



k :- k + 1 : 

proe host( chan outl,out2, cotrlin, In1,ln2, £a01n( J, cntrlout ) -

Combined getdata and putdata to act as ring arbiter, to switch 
from Host input to ring input and collect fanin results 

chan link t 
par 

equivalent process to getdata, uses link to 
create switch from Host to rIng input 

var float four, vec[m] ; 
seq 

four :- 4.0 
str.to.screen("*nEnter Romberg Starting values") 
seq i-tO for m) 

seq 
str.to.screen("*nR("} 
num.to.screen(!) 
ste.to.screen("] ."' 
fp.num.from.keyhoard(vec[i]) 
fp.num,to.screen(vec(i) 

str.to.screen("*n*n*n"} 
-- pump host inputs into ring 
seq i-tO for m) 

par 
link I 0 
if 

i - 0 
par 

cntrlinll 
out21four 

true 
cntrllnl0 

outllvec(iJ 
swi teh to rin9 

linkl1 

-- equivalent to putdata, but augmented with 
-- control to wrap around ends of ring 
-- when link - 1 
var float vec(m) : 
var running, switch, cl, k, z, 11, rl, r2 
var cs1, rs2, cs1 
seq 

-- intHaise 
z :- 0 
k :_ 0 
cs1 :- 0 
running :- true 
switch :- false 
-- collect and pump till all values 
-- received 
while running 

seq 
switch? 

if 
not switch 

link?l1 
cntrlout?cl 
-- ring wrap around 
if 

if 

11 - 1 
seq 

first value 
11 :- 0 
switch :- true 
cntrlin!cs1 

switch and {z <- (m-1») 
seq 

-- rest 
cntr1inlcs1 

switch and (11 - 0) 
seq 

-- close down ring 
11 :- 2 
cntrlin!6 

cl - 6 
-- kill this process 
running :- false 

true 
seq 

-- collect garbage and results 
seq 

in17r1 
if 

cl - 1 
1n27r2 

fnet{fanin, vec, k, z) 
-- ring 1/0 
if 

switch and (11 <> 2) 
seq 

out1!rs1 
if 

cs1 - 1 
out2!rs2 

-- re-sync ring data and control 
rsl :- r1 
rs2 :- r2 
csl :- cl 
if 

(cs1 - 1) and (z <- (m-1)) 
k ,- 0 

print results for user, vec - memory in Host 
str.to.screen("·n·" Diagonal Table Entries") 
seq i -(0 for (m-1)) 

'" '" V1 



-- main 

seg 
str.to.screen("*n") 
fp.num.to.screen(vec[i)) 

-- Systolic Ring definition 
chan In1[n+l), In2(n+1J. faninln), cntel[n+!) : 

par 
host(inl[O), 1n2(O). cntrl{O), in1[n). 102(n), fanio, cntrl(n)} 
par i -(1 for nJ 

REP(inl[i-l), In1[lJ, 1n2(1-1J, In2(1), £an1n[1-1), cntrlll-1), cntrl[l] ) 

program 11 

Systolic Array An Array for the Generic Group Explicit 
Methods (GER, GEL. GEe, GEU ) for 
Parabolic Differential Equations. 

Number of groups (cells) and starting values 
def m - 5 • n _ 4 : 
chan ptr : 

-- library routines 
EXTERNAL proc num.to.screen(value n) ~ 
EXTERNAL proc num.from.keyboard(var nJ : 
EXTERNAL proc fp.num.to.screen(value float f) : 
EXTERNAL proc fp.num.£rom.keyboard(var float f) 
EXTERNAL proc str.to.screen( value si]) : 
EXTERNAL proc open,file(value path.namel], access(], chan io.chan) 
EXTERNAL proc close.file(chan io.chan) : 
EXTERNAL proc str.to.chan(chan c, value si]) : 
EXTERNAL proc fp.num.to.chan(chan c, value float f) : 

proc boundary( var float tl, value float a, I, Ul, u2 ) -

Boundary cell computations using Asymmetric 
approximations. 

seg 
tl ,- tl - (r*tl) 
tl ,- tl + (r*u2) 
tl ,- tl + (r*ul) 
tl ,- tl/(a- r ) , 

proc group(var float tl, value float A, r, u, chan linkO, link! ) -

solution fOr half of 2*2 system of 
internal group points. Note communication/parallelism 

var float t3 
seg 

tl :- tl - (r*tl) 
tl :- tl + (r*u) 
par 

l!nkOltl 
linkl?t3 

tl :- tl + (r*tl) 
tl :- tl + (r*t3) 
tl :- tl/a 

proc memory( chan memint), memout, cntrl ) -

Simulation of the memory Buffer 
general case with g{x,t) not.included for 
simplicity 



var float mem[(Z*m)*nJ 
var running, cl : 
.eq 

running :- true 
while running 
-- start memory 

seq 
cntrl?cl 
if 

cl - 6 
running :- false 
-- shut down 

cl - 5 
seq i-[ 1 for nJ 
-- Freeze/Empty Buffer 

seq j-[l for (2*m)) 
memoutlmem[«(i-l)*(2*m))+j)_lJ 

true 
seq 
-- normal array operation 
-- cQllect result 

seq i-[2 for (n-l)) 
par j-[ 1 for (2*m)) 

mem[«(i-Z)*(Z*m))+j)-l) :- mem[«(i-l)*(Z*m))+j)-lJ 
par j-[ 1 for (2*m)) 

memin[j-l)?mem««n-l)*(2*m))+j)_1) 

proc ge( chan inl,outl,in2,Qut2, meml, mem2, cntrl!n, value float vl,v2,r, 
value type ) -

Generic Group Explicit cell 

vac float uO, ul, tl, t2, a : 
var running, cl : 
chan l1nk(2J 
.eq 

-- preload 
tl :- vI 
t2 :- v2 
a :- 1.0 + (2.0*r) 
running :- true 
-- start up 
while running 

seq 
cntrlin?cl 
if 

cl - 6 
-- close down 
running :- false 

cl <> 5 
seq 

-- i/O 
par 

outllt2 

out2!tl 
in11uO 
1021ul 

-- run correct cell 
if 

type - 0 
-- A group 
par 

group(tl,a,r,uO,llnk(O],llnk(l) 
group(t2,a,r,ul,11nk{1),link(O}) 

type - 1 
-- right Boundary 
seq 

t2 :- 0.0 
boundary(tl,a,r,uO,ul) 

type - 2 
-- left boundary 
seq 

tl :- 0.0 
boundary(t2,a,r,uO,ul) 

buffer result 
par 

meml!tl 
mem21 t2 

proc getdata(chan outl, out2, in1, In2, cntrl[J, mem!n ) _ 

Host interface : also generates starting values 
for test Boundary conditions. 

vac float bvalue 
var tmp : 
Beq 

bvalue t- 0.0 
str.to.screen(n~nnext ") 
num.to.screen(n} 
str.to.screen(" values") 
num.from.keyboard(tmp) 
-- rill and output Buffer 
while tmp - 0 

seq 
-- x-O and x-n conditions 
seq i -(1 for nJ 

par 
par j-(O for (m+l)) 

cntrl( j) 10 
inl?any 
in27any 
outllbvalue 
out21bvalue 

Freeze 
par j-(O for (m.l)) 

cntrl[j)IS 
-- File dump of Buffer 
seq i-(l for n) 



seq 
str.to.screen("*n") 
str.to.chan(ptr,"*n") 
seq j-[ I for (2*m)) 

var float res : 
seq 

memin?res 
fp.num.to.screen(res) 
fp.num.to,chan(ptr,res) 
str.to.screen(" ") 
str.to.chan(ptr," ft) 

str.to.chan{ptr,"*n*n*n") 
str.to.screen{"*nnext") 
num.to.screen(n) 
str.to.screen{" values ") 
num.from.keyboard(tmp) 

closedown 
par j-[O for (m+I)) 

cntrl[j)16 

main 

Array channel and memory details 
chan memin[2*m), ullm+l), u2[m+l), cntrl(m+l), mout 
var tp, j : 
var float x,r,h, sv(2*m)+2) 

seq 
get array characteristics from Host 

open.file("result","w",ptr) 
str.to.screen{".n a-ger, 1-gel, 2-geu, 3-gec") 
str.to.screen("*ntype of array - ") 
num.from.keyboard(tp) 
num.to.screen(tp) 
if 

tp - 0 
str.to.chan{ptr,"ger ") 

tp - 1 
str.to.chan(ptr,"gel ") 

tp - 2 
str.to.chan(ptr,"geu "l 

tp - 3 
str.to.chan(ptr,"gec ") 

-- problem parameters 
str.to.screen(".n r - ") 
fp.num.from.keyboard(r} 
fp.num.to.screen(r} 
str.to.chan(ptr," r - ") 
fp.num.to.chan(ptr,r) 
str.to.chan(ptr,"*n*n") 
h :- 0.1 
x :- 0.0 
-- Test Boundary conditions 
seq i-[1 for «2*m)-I)) 

Beq 
x :- x + h 
Bv{i1 :- (4.0*x)*(1.O-x) 

.v[O) :- 0.0 
sv[2*m] :_ 0.0 
-- Shuffle trick for easy specification 

of array inputs 
if 

(tp-O) or (tp-3) 
j :- 1 

(tp-I) or (tp-2) 
j :- 0 

The Generic Array. 

tp forces a creation of a specific 
instance of the an array 

par 
getdata(ul[O), u2(m), u2(O], u1[m], cntrl, mout ) 
memory(memin, rnout, cntrllm) 
par i-( 1 for mJ 

var float tl, t2 
var set : 
Beq 

if 
«tp-O) or (tp-2)) and (!-m) 

set :_ 1 
«tp-I) or (tp-2)) and (i-I) 

set : _ 2 
true 

set :- 0 
tl :- sv[«!-I)*2)+j) 
t2 :- sv[«(!-1)*2)+j)+1) 
ge(ul[i-I). u1[!). u2[!). u2[!-I). memin[(i-l)*2). memin[«!-I)*2)+I) 

cntrl(i-l), tl,t2,r, set) 
close.file(ptr) 

ro 

'" ro 



program 12 

Systolie Array Implementation of the SAGE algorithm for 
Parabolic Equations. 

Group and Boundary value points 
def m - 5 , n _ 4 : 
ehan ptr : 

-- library Routines 
EXTERNAL proc num.to.sereen(value n) : 
EXTERNAL proc num.from.keyboardCvar n) : 
EXTERNAL proe fp.num.to.screen(value float f) : 
EXTERNAL proe fp.num.from.keyboard(var float f) 
EXTERNAL proe str.to.screenC value si]) : 
EXTERNAL proc open.fileCvalue path.name(], accessl], chan io.chan ) 
EXTERNAL proc close.file(chan io.chan) : 
EXTERNAL proc str.to.chan(chan c, value si]) : 
EXTERNAL proc fp.num.to.chan(chan c, value float f): 

peoc boundary( var float tl, value float a, r, ul, u2 ) -
-- Boundary Equations (Asymmetric) 
.eq 

t1 :- t1 - (r*t1) 
tl :- tl + (r*u2) 
tl :- tl + (r*ul) 
tl :- tl/(a-r) : 

proc group(var float tl, value float a, r, u, chan linkO, linkl } _ 
-- Group computation 
var float t3 : 
.eq 

t1 :- t1 - (r*t1) 
tl :- tl + (r*u) 
par 

linkOltl 
link1?t3 

t1 :- t1 + (r*t1) 
t1 :- t1 + (r*t3) 
tl :- tl/a 

proc memory( chan meminl], memout, cntrl ) -
-- memory Buffer 
var float meml(2*m)*n) 
var running, cl : 
seq 

running :_ true 
while running 

.eq 
cntrl?cl 
if 

cl - 6 
running :- false 

cl - 5 
seq i-I 1 for nJ 

seq j-Il for (2*m») 
memoutlmem((i-l)*C2*m»+j)-1) 

true 
seq 

seq 1-[2 for (n-1)) 
par j-I 1 for (2*m») 

mem[ (((1-2)*(2*m))+j)-1) :- mem[(((1-1)*(2*m))+j)-11 
par j-[l for (2*m)1 

memin[j-11?mem[(((n-1)*(2*m))+j)-11 : 

proc ge( chan inl,outl,in2,out2, meml, mem2, cntelin, value float vl,v2,r, 
value type ) -

Generic SAGE cell : Using Toggle to control computation 

var float uO, ul, tl, t2, a, tmp : 
vac running, toggle, cl : 
ch.n link 1 2 1 
seq 

-- peeload 
tl :- vI 
t2 :- v2 
• :- 1.0 + (2.0*r) 
toggle : _ true 
running :_ true 
-- start up 
while running 

seq 
cntrlin?cl 
if 

cl - 6 
-- close down 
running :- false 

cl <> 5 
.eq 

-- select 
if 

GER or GEL 

toggle 
seq 

shift data 
par 

out21 t1, t2 
in2?tmp;ul 
align 

uO :- t1 
tl : - t2 
t2 :- tmp 
-- use correct computation 
If 

type - 1 
seq 

inl?uO 



true 

par 
group(tl,a,r,uO,link[O),llnk[l) 
group(t2,a,r,ul,linkll),link[O) 

type - 0 
par 

qroup(tl,.,r,uO,llnk(O),llnk(l) 
group(t2,a,r,ul,link[l),link[O} 

type - 2 
boundary(tl,a,r,uO,ul 

seq 
-- shift data 
par 

outllt2;t1 
in17tmp;uO 
Align 

ul :- t2 
t2 :- tl 
tl :- tmp 

if 
correct computation 

type - 1 
boundary(t2,a,r.uO,ul 

type • 0 
par 

groupltl,a,r,uO,link(O),link(l} 
group(t2,a,r,ul,link[l],link(O] 

type - 2 
seq 

in27u1 
par 

group(t1,a,r,uO,11nk(O],11nk(1) 
group(t2,a,r,ul,11nk(1),11nk(O) 

-- switch array type 
toggle :- not toggle 
-- buffer data 
par 

memlltl 
mem21t2 

proc getdata(chan outl, out2, inl, 1n2, cntrl[J, memin ). 

Host array Interface and communication 

var float bvalue 
var tmp,to9gle : 
seq 

bvalue :- 0.0 
str.to.screen("*nnext ") 
num.to,screen(n) 
str.to.screen(" values") 
num.from.keyboard(tmp) 
toggle :- true 
while tmp - 0 

vac float junk : 
seq 

seq i -(1 for nJ 
seq 

par j-(O for (m+l)] 
cntrl(j]IO 

-- decide type of Array inputs 
if 

toggle 
par 

true 

in1 ?junk; junk 
outllbvalue 
out210.0;bvalue 

par 
in2?junk;junk 
out21bvalue 
outlIO.O;bva!ue 

switch array type 
toggle :- not toggle 

Freeze/empty buffer 
par j-(O for (m+l)) 

cntrl(j)IS 
-- dump buffer output (file/screen) 
seq i-(1 for nJ 

seq 
str.to.screen("·n") 
str.to.chan(ptr,"*n") 
seq j-( 1 for (2*m)] 

var float res : 
seq 

memin?res 
fp.nurn.to.screen(res) 
fp.num.to.chan(ptr,res) 
str.to.screen(" ") 
str.to.chan(ptr," ") 

unfreeze array 
str.to.chan(ptr,"*n*n*n"} 
str.to.screen("*nnext") 
num.to.screen(n) 
str.to.screen(" values ") 
num.from.keyboard(tmp) 

closedown 
par j-(O for (m+l)] 

cntrl(j]!6 

main 

Array channels 
chan memin[2*m], ul(m+l], u2[m+1J, cntrl[m+ll, mout 
vac float x,r,h, sv(2*m)+21 

seq 
problem setup 

CXl ..., 
o 



open.flle("result","w",ptr) 
str.to.screen(".n r - ") 
fp.num.from.keyboard(r) 
fp.num.to.screen(r) 
str.to.chan(ptr,"S8ge : r - ") 
fp.num.to.chan(ptr,r) 
str.to.chan(ptr,"*n·n") 
h :- 0.1 
x :- 0.0 
-- Test case 
seq i-[l for «2*m)-1») 

seq 
x :- x + h 
sv[i) :- (4.0*x)*(1.0-x) 

sv[ 0) :- 0.0 
sv[2*m) :- 0.0 
-- The array 
par 

getdata(ul(O], u2(m]. u2(0], u1(m], cntrl, mout ) 
memory(memin, mout, cntrl[m) 
par i-(1 for Ill] 

var float t1,t2 
vac set 
seq 

if 
i-m 

set :- 2 
i-1 

set :- 1 
true 

set :- 0 
t1 :- sv[(i-1)*2) 
t2 :- sv[«i-1)*2)+1) 
ge(u1[1-1), ul(1), u2(i), u2(i-1), memin({1-1)*2], memin{«i-1)*2)+1], 

cntrl[i-1), t1,t2,r , set 
close. filet ptr) 

program 13 

Systolic Array 

def m - S , n _ 4 : 
chan ptr : 

-- library routines 

To compute the DAGE method for Parabolic 
Equations. 

EXTERNAL proc num.to.screen(value n) : 
EXTERNAL proc num.from.keyboard(var n) ; 
EXTERNAL proc fp.num.to.screen{value float f) : 
EXTERNAL proe fp.num.from.keyboard(var float f) 
EXTERNAL proe str.to.screen( value 51) : 
EXTERNAL proe open.file(value path,name(), access(), ehan io,chan) 
EXTERNAL proe close.file(ehan io.chan) : 
EXTERNAL proc str.to.chan(chan e, value si) : 
EXTERNAL proe fp.num.to.chan(chan c, value float f) : 

proc boundary( var float t1, value float a , r , u1, u2 ) _ 
-- boundary computation (Asymmetric) 
seq 

t1 :- tl - (r*tl) 
t1 :- tl + (r*u2) 
t1 :- tl + (r*ul) 
tl :- tl/(a-r) : 

proc group(var float t1, value float a, r , U , chan linkO , linkl ) _ 
-- Group computation 
var float t3 
seq 

t1 :- t1 - (r*t1) 
tl :- t1 + (r*u) 
par 

linkOlt1 
link1 ?tJ 

tl :- tl + (r*t1) 
t1 :- t1 + (r*t3) 
tl :- t1/> 

proe memory( chan memin[J, memout, cntrl ) _ 
-- Memory Buffer 
var float mem(2*m)*nJ 
var running, cl : 
seq 

running :- true 
while running 

seq 
cntr11cl 
if 

cl - 6 
running :- false 

cl - 5 
seq i-I 1 for nJ 



seq j-[1 for (2'm)[ 
memoutlmem[«(i-l)*(2*m»+j)_1] 

true 
seq 

seq 1-[2 for (n-1)[ 
par j-[ 1 for (2'111) [ 

mem[((1-2)'(2'm))+j)_1( :_ mem((((1-1)'(2'm))+j)_1( 
par j-[l for (2'111)( 

l1IeI1l1n[j-1(?mem[((n-1)'(2'm))+j)_1( : 

peoe qe( chan inl,outl,in2,out2, meml, mern2, cnte!!n, value float vl,v2,r, 
value type). 

Group Explicit Cell for DAGE computation 
Toggles and steps used to change between GtR and GEL type 
computations. 

vac float uO, ul, tI, t2, a , l[4} : 
vac running, toggle, step, step. no, cl 
chan llnk[2( 
seq 

preload 
t1 :- vI 
t2 :- v2 
a :- 1.0 + (2.0*r) 
-- setup start position 
step. no :- 4 
toggle :- false 
step :- 0 
running :_ true 
-- start 
while running 

seq 
cntrlin?cl 
if 

cl - 6 
-- close down 
running :- false 

cl <> 5 
seq 

-- 1/0 
par 

in1?l[0[,1[1( 
1n2?l[2(,1[3( 
outllt2;tl 
out2ttl;t2 

if 
toggle 

seq 

if 

u1 :- 1[2[ 
uO :- 1[0( 

(step - 0) or (step _ 3) 
-- act as GtR 

seq 

true 

if 

if 

align data 

not toggle 
seq 

uO :- tl 
t1 :- t2 
t2 :- 1(2( 
u1 :- 1(3[ 

select correct 

type - 1 
seq 

uO :- 1[1( 

cell computation 

par 
groupCtl,a,r,uO,link[O),link(l) 
group(t2,a,r,ul,link(l],link{O] 

type - 0 
par 

group(tl,a,r,uO,link(O],llnk[l) 
group(t2,a,r,ul,link(l],1Ink(O] 

type - 2 
bo~ndary(tl,a,r,uO,ul 

act as GEL 
seq 

-- align data 
if 

if 

not toggle 
seq 

ul : - t2 
t2 :- t1 
t1 :- 1(0( 
uO :- 1(1[ 

choose correct computatIon 

type - 1 
boundary(t2,a,r,uO,ul 

type - 0 
par 

group(tl,a,r,uO,llnk[O],llnk(l) 
group{t2,a,r,ul,link(1),llnk(O) 

type - 2 
seq 

u1 :- 1(3[ 
par 

g[oup(tl,a,r,uO,link(O],link(l] 
group(t2,a,r,ul,llnk(l],llnk(O] 

-- next step modulo 4 
step :- (step + 1) \ step.no 
-- set toggles 
if 

«step-2) or (step-O)) 
toggle :- true 



((step-l) or (step-l» 
t099le :- false 

-- output to buffer 
par 

meml! tl 
mem2lt2 

peoe getdata(chan out!, out2, in1, In2, cntel[ J, rnernin )-
Host Interface 

var float bvalue 
var tmp : 
seq 

bvalue :- 0.0 
str.to.screen("*nnext ") 
num.to.screen(n) 
str.to.screen(" values") 
num.from.keyboard(tmp) 
while tmp - 0 

var float junk, junkl 
seq 

seq I -[1 for n) 
seq 

par j-(O for (m+l» 
entrl( j)l 0 

par 
inl?junk;junk 
in2?junkl;junkl 
outllO.O;bvalue 
out210.0;bvalue 

Freeze 
par j-(O for (m+l» 

cntrl(j)15 
-- Dump Buffer (file/screen) 
Beq I-(l for n) 

seq 
str.to.screen("*n") 
str.to.chan(ptr,"*n") 
seq j-( 1 for (2*m» 

var float res : 
seq 

memin?res 
fp.num.to.chan(ptr,res) 
fp.num.to.screen(res) 
str.to.chan(ptr," ") 
str.to.screen(" "I 

str.to.chan(ptr,"*n*n*n") 
str.to.screen("*nnext") 
num.to.screen(n) 
str.to.screen(" values ") 
num.from.keyboard(tmp) 

close down 
par j-(O for (m+l» 

entrl(j)16 : 

-- main 

chan memin(2*m], ul(m+l], u2(m+l), cntrl(m+l], mout 
vac float x,r,h, sv(2*m)+2] 

seq 
setup details 

open.flle{"resultl","w", ptr) 
str.to.screen("*n r - ") 
fp.num.from.keyhoard(r) 
fp.num.to.screen(r) 
str.to.chan(ptr,"dage : r • ") 
fp.num.to.chan(ptr,r) 
str.to.chan(ptr,"*n*n") 
-- test case 
h :- 0.1 
x :- 0.0 
seq 1-[1 for ((2*m)-1» 

seq 
x :- x + h 
sv(i] :- (4.0*x)*(1.O-x) 

sv[O) :- 0.0 
sv[2*m] :- 0.0 
-- The array 
par 

getdata(ul(O], u2[m), u2[O), ul(m), cntel, mout ) 
memory(memin, mout, cntrl(m) 
par 1-( 1 for m) 

vac float tl,t2 
vac set 
seq 

if 
I - m 

set : - 2 
1-1 

set : - 1 
true 

set :- 0 
tl :- sv[(i-l)*2) 
t2 :- sv(((I-l)*2)+1) 
ge(ul(l-l), ul(i), u2(1), u2(I-l), memln((I-l)*2), memln(((I-l)*2)+1), 

cntrl[i-l), tl,t2,r, set) 
close,file(ptr) 

<Xl 
..... 
w 



program 14 

Systolic Array 

NOTES 

To find all the roots of a polynomial 
using the QD algorithm. 
rails for non-distinct roots and indicates 
existance of complex roots. 
With 1 cell is equivalent to Bernoulli's method 
for dominant root 

The basic cell is the QD or Quotient Oifference cell 
which computes the Rhombus rules values 

Table size 
def n - 16: 
chan ptr : 

-- library routines 
EXTERNAL Proc str.to.screen(value s() : 
EXTERNAL Proe num.to.screen(value n) : 
EXTERNAL Proe fp.num.to.sereen(Value float f): 
EXTERNAL Proe fp.num.from.keyboard(Var float f) : 
EXTERNAL Proe open.file(value pathname(), access(),chan io.ehan) 
EXTERNAL Proc close.file(chan io.ehan ): 
EXTERNAL Proe str.to.chan(·chan c, value sl} ) : 
EXTERNAL Proc fp.num.to.chan( ehan e, value float f) 
EXTERNAL Proc num.to.chan(chan c, value n) : 

Proc QD(Chan inl, outl, in2, out2, cntrlin, cntrlout ) -

var float a, b, r(3), s(2), tl71 : 
var switch, running, toggle, c.fi£0(5) 
seq 

-- intialisation 
seq i-[O for 3) 

r[i) :- 0.0 
seq i-[O for 7) 

t[i) :- 1.0 
_(0) :- 0.0 
s[l) :- 0.0 
_eq i -[0 for 5 ) 

c.fifo[i) :- 0 
switch :- true 
running :- true 
-- cell 
while running 

seq 
-- control input 
if 

switch 
cntr1in?c.fifo[O) 

-- decide on input/output 
if 

[c.fifo[O) - 6 1 and switch 

--------------__ 1 

-- close input 
switch :- false 

c.fifo(4) - 6 
-- destroy cell 
running :- false 

cntrlout!c.fifo(4) 
-- i/O 
if 

switch 
par 

inl1a 
in2?b 

if 
running 

par 
outll t[ 6) 
out21_[l) 

qd formula 
,(2) :- ,[1) 
,[1) :- ,(0) 
s[l) :- _(0) 
t[l) :- t[O) 
t(3) :- t(2) 
t[S) :- t(4) 
par 

,(0) :- a 
s[O) :- t[ 3) 
t[O) :- a + b 
t(2) :- t[ 1) -
if 

t(3) - 0.0 
t(4) :- 0.0 

true 

,[ 2) 

t(4) :- r[2I/t[3) 
t(6) :- t[S)*t[3) 

-- shift control fifo 
seq i -[ 0 for 4) 

c.fifo[4-i) :- c.fifo[(4-il-1) 
if 

c.£1fo[O) - 6 
c.f1£o[O) :- 0 : 

proc getdata( chan outl,out2, cntrl ) -

read starting values , and pump into 
array then close down array systolieally 

var float vec2(n), vecl{nJ : 
seq 

str.to.screen("*nEnter Qd Sta,rting values·) 
seq i-[O for n) 

seq 
str.to.screen("*nQO('" 



num.to.screen(i) 
str.to.screen(") _H) 
fp.num.from.keyboard(vec1[i) 
fp.num.to.screen{vec1[i) 
str.to.screen("--") 
fp.num.from.keyboard(vec2Ii) 
fp.num.to.screen(vec2Ii)) 

str.to.screen("*n*n*n") 
-- start pumping 
seq 1-[0 for n] 

par 
cntr111 
outllvec1[i] 
out21vec2[i) 

close down 
cntrll6 ; 

proc putdata( chan inl, in2, cntrl) -

collect 9arbage £all1n9 off array, and 
collects next result and print out 
root and d entries 

var float veel(n], vee2ln] 
var runnin9, cl, k 
seq 

k :- 0 
running :- true 
-- collect results until stopped 
while running 

seq 
cntrl?cl 
!f 

cl - 6 
runnin9 :- false 

cl - I 
seq 

par 
inl?vecl[k] 
in2?vec2[k) 

k :- k + I 
true 

par 
inl?any 
in2?any 

output root approximations. 
str.to.screen("*n*n root Table Entries") 
str.to.chan(ptr,"*n*n root Table Entries") 
seq ! -(0 for nJ 

seq 
str.to.screen{"*n") 
str.to.chan{ptr,"*n") 
fp.num.to.screen{vecl(i) 
fp.num.to.chan(ptr,vecl[i) 

str.to.screen(" ") 
str.to.chan(ptr," ") 
fp.num.to.chan(ptr,vec2[i) 
fp.num.to.screen(vec2[i]) : 

-- main 

-- The QD array 
chan inl(n+l], in2(n+1), cntrl(n+l] 

seq 
open.flle{"proot","w", ptr ) 
str.to.screen("*nQD with pipeline len9th n _H) 
num.to.chan(ptr,n) 
str.to.chan(ptr,"*n*n") 
par 

getdata(!n1rOJ, !n2(OJ, cntrl(O]) 
par i -[1 for n) 

OO(!nl(!-IJ, !n1(lJ, !n2(1-1], !n2(!J, cntrl(l-IJ, cntrl(!]) 
putdata(in2[n), inlln), cntrl(n) 

close.file(ptr) 



program 15 a 

Instruction Systolic Array (ISA) 

Notes implements an orthogonally connected grid of processors 
each processor can be plugged into the system or a group 
of processors can be plugged into the same grid point 
programs and data are read from files and buffered into the array 
Results are read from any of the four boundaries as dictated by the 
program. The grid cannot be closed down systolically the program 
termination is performed by an abort at the end of the user program. 

dimensions of array and interface routines 
OEF n - 4 : 

EXTERNAL proc abort.program : 
EXTERNAL proc open.file(value path.name[], access(), chan io.chan): 
EXTERNAL proc close.file(chan io.chan) 
EXTERNAL proc str.to.chan(chan c, value sf)~ : 
EXTERNAL proc fp.num.to.chan(chan c, value float f) 
EXTERNAL proc fp.num.from.chan{chan c, var float f) 
EXTERNAL proc num.to.chan(chan c, value n ) : 
EXTERNAL proc num.from.chan(chan c, var n) 
EXTERNAL proc str.to.screen(value s( J) : 
EXTERNAL proc fp.num.to.screen(value float f) 
EXTERNAL proc num.to.screen(value n ) : 
EXTERNAL proc fp.num.from.keyboard(var float f) 
EXTERNAL proc num.from.keyboard(var n) : 

-- plug to expand system -each plug point can be an m*m isa grid 

EXTERNAL proc plug(chan wn,we,ws,ww,rn,re,rs,rw, 
in,is,sw,se ) : 

-- plug/processor grid allocation function 

PRDe loc(VALUE i,j, VAR r) -
SEO 

r :- ((i-l)'(n+l»+j)-l 

-- sequential to parallel program bus expander 

PRoe source(CHAN out(], link, VALUE t)-
VAR k,i,j,buffer[n] 
CHAN ptr : 
SEO 

IF 
t - 0 

open.flle("selector","r",ptr) 
TRUE 

open.file("instruct","r",ptr} 
num.from.chan{ptr,k) 
l!nklk 
SEO i-[l for kJ 

SEO 
IF 

i > k 
PAR j-[l for nJ 

VAR t1 : 
SEO 

loc(j,l,tl) 
out(t1)IO 

TRUE 
SEO 

SEO j-(l for nJ 
num.from.chan(ptr,buffer(j-l» 

PAR j-[ 1 for nJ 
VAR tl : 
SEO 

loc(j,l,tl) 
out[t1)!buffer[j-l) 

close.file(ptr) 
str.to.screen("*n source closed") 
linklO 

-- Garbage collector 

PROC sink( CHAN inl), link) -
VAR i,j, k 
SEO 

link ?k 
SEO i-[l for k) 

PAR j -[1 for n) 
VAR tl : 
SEO 

loc(j,n,tl) 
in(tl+l)?any 

str.to.screen{"*nsink closed") 
link?any : 

data bus expander 

PROe data.source( CRAM ans[],bns( ],awe( J,bwe[ ],link ) _ 
DEF n2-2*n,n3-3*n : 
VAR k,i,j,t : 
VAR FLOAT bufferI4*n] : 
CHAN ptr : 
SEO 

open.file("datain","r",ptr) 
num.from.chan(ptr,k) 
linklk 
str.to.screen("*nk - ft) 
num.to.screen(k) 
SEO i-[l for k J 

SEO 
str.to.screen("·ni - ") 
num.to.screen(i) 



SEO i-I 0 for 4) 
IF 

i (- k 
SEO 

num.from.chan(ptr,t) 
IF 

t ( 0 
SEQ z -10 for nJ 

buffer[{j*n)+ z] :- 0.0 
TRUE 

SEO z -( 0 for nJ 
fp.num.from.chan(ptr,buffer[(j*n)+z) 

TRUE 
SEO z-IO for nJ 

buffer(j*n)+z) :_ 0.0 
PAR i-l1 for nJ 

VAR tl.t2 : 
seo 

loc(j,l,tl) 
loc(j,n,t2) 
t2 :- t2 + 1 
PAR 

bnslt1)lbuffer[j-1) 
bwelt2)lbuffer[n+(j-1)J 
aweltlJlbufferln3+(j-1JJ 
anslt2)lbuffer[n2+(j-1)) 

c1ose.fUe(ptr) 
str.to.screenC"·n Data Source closed") 
linklO : 

parallel to sequential bus condenser 

PROC data.sink( CHAN ans[ ),bns( ),awe( ),bwe[J, link) • 
DEr n2-2*n, n3-3*n : 
VAR k,i,j : 
VAR FLOAT buffer(4*n) : 
CHAN ptr : 
SEO 

open.file(-dataout-,"w-,ptr) 
num.from.chan(ptr,k) 
link?k 
SEO i-[1 for k) 

SEO 
PAR j-[l for n) 

VAR tl,t2 : 
SEO 

loc(i.1,tl) 
loc(j,n,t2) 
t2 :- t2 + 1 
PAR 

anslt1)?buffer[j-1) 
awe[t2)?buffer[n+(j-1)) 
bns[t2)?bufferln2+(i-l)) 
bwelt1)?bufferln3+(j-1)) 

----------------------....... 
SEO 

SEO j-10 for 41 
SEO 

str.to.chan(ptr,"*n") 
SEQ z-{O for nJ 

SEO 
fp.num.to.chan(ptr,buffer[(j*n)+z) 
str.to.chan(ptr," "l 

str.to.chan(ptr,"*n", 
close.file(ptr) 
str.to.screen("*n Data sink closed") 
link?any 
abort.program : 

main 
setups and starts the 16a grid 

DEF size - n*(n+1) : 
CHAN ans(size),bns[size), awe(sizel,bwe[size),sel[slze), inslsizeJ 
CHAN linkl3J : 
VAR i, j : 
PAR 

-- The grid 
PAR i-[l for n) 

PAR j-ll for n) 
VAR tl,t2,t3,t4 
SEO 

loc(i.j.tl) 
loc(j,i,t2) 
t3 :-tl+1 
t4 :. t2 + 1 
plug(ans(t2],awe(t3),bns(t4],bwe(tlJ, bns{t2),bwe(t3], 

ans(t4J,awe(tlJ, ins[t2],ins[t4),sel(tl) 8el(t3] ) 
program interface ' 

source(sel,link(O), 0) 
sink(sel,link(O) 

source(ins,link(l],l) 
sink(ins,link[I) 

-- data input/output 
data.source{ans,bns,awe,bwe,link(2]) 
data.sink(ans,bns,awe,bwe,link(2J) 



program 15 b 

single processor plug 

EXTERNAL proc PE(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se) 

LIBRARY PROC plug(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se) _ 
SEO 

PE{wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se) : 

program 15 c 

plug for a grid of processors 

EXTERNAL proc str.to.screen(value s() ) : 
EXTERNAL proc PE(CHAN wn,we,ws,ww, rn,re,rS,rw, in,is,sw,se ) 

PRoe i.o.port(CHAN in,out, VALUE type) _ 
-- plug bus expander 
VAR float tmpl : 
VAR tmp2 
SEO 

IF 
type - 0 

SEO 
in?tmp2 
out! tmp2 

type - 1 
SEO 

in?tmpl 
out! tmpl 

LIBRARY PROe pluq(CHAN wn,we,ws,ww,rn,re,rs,rw, 
in,is,sw,se ) _ 

-- sqr(p.size) to 1 plug 
DEF p.size - 2, size - p.size * (p.size + 1): 
CHAN anslsize), bns(size), awe(size), bwe(sizeJ, sel[size), ins[size) 
SEO 

-- virtual processor grid 
PAR 

PAR i -( 1 for p.size) 
PAR j - I 1 for p •• lz.1 

VAR tl,t2,t3,t4 : 
SEO 

-- plug 
WHILE 

PAR 

tl :- (((i-ll'(p.slze+l»+j)-l 
t2 :- (((j-l)*(p.size+l»+I)-l 
t3 :- tl + 1 
t4 :- t2 + 1 
PEt ans[t2), awe[t3), bns[t4), bwe[tl), bns[t2), bwe(t3], 

anslt41. aweltll. Inslt2J. Inslt41. selltll. sellt31 ) 
spoolers 
true 

SEO j -I 1 for p.sizel 
VAR tl,t2 : 
SEQ 

tl :- (j-l)*(p.size+l) 
t2 :- ((Ij-l)*(p.slze+l»+p.size)-l 
t2 : - t2 + 1 
PAR 

i.o.port(in,ins(tl),O) 
i.o.port(sw,sel[t1),O) 
i.o.port(rn,bns(tl],l) 
i.o.port(re,bwe[t2),1) 



i.o.port(rs,ans(t2],1) 
1.o.port(rw,awe[tl],1) 

SEQ j - [ 1 for p.slze) 
VAR tl,t2 : 
SEQ 

t1 :- (j-1)*(p.slze+1) 
t2 :- «(j-1)*(p.slze+1))+p.slze)-1 
t2 :- t2 + 1 
PAR 

i.o.port(ins[t2],ls,0) 
i.o.port(sel[t2],se,O) 
i.o.port(ans(t1],wn,1) 
i.o.port(awe(t2],we,1) 
i.o.port(bns(t2],ws,1) 
i.o.port(bwe[t1],ww,1) 

program 15 d 

general processor to illustrate the development of a PE for 
the ISA grid, it is placed in the grid by a plug procedure 
which allows the same defintion to implement a grid of processors 
and is control by a Assembler program generated by the risal.p compiler 

LIBRARY PROC PE(CHAN wn,we,ws,ww,rn,re,rs,rw, 
in,ls,sw,se )-

DEF msize - 10: 
VAR FLOAT a,b, mem[msize),c, i.o.buf[4) : 
VAR i,j,s,port,p(4),fd(4),op,old.i,old.s 
VAR running : 
SEQ 

running :- true 
mem[l) :- 0.0 
mem[O) :- 0.0 
old.1 :- 0 
old.s :- 0 
WHILE running 

SEQ 
-- Fetch Instruction 
c :- mem[l) 
PAR 

in?i 
islold.i 
sw?s 
selold.s 
wnlc 
wele 
wslc 
wwlc 
rn?i.o.bufIO) 
re?l.o.buf[l) 
rs?i.o.buf(2] 
rwH.o.buf(3) 

old.s :- s 
old.i :- i 
-- Decode intstruction 
SEQ 

SEQ j -[0 for 4) 
SEQ 

fd) j) :- 1\100 
1 :- 1/100 

port :- fd)2) 
op :- fd(3) 

-- Communication enable 
SEQ 

SEQ i-tO for 4) 
SEQ 

p( I) :- port\2 
port :- port/2 

SEQ i-tO for 4) 
IF 



p( i} - 1 
memfi+3J :- La.buf[i] 

Execute instruction 
a :- mem(fd(l}} 
b :- mem(fd(O}} 
IF 

(6<>0) AND (op <> 0) 
IF 

op - 1 
mem(l) :- mem(O) 

op - 2 
mem(O) :- a + b 

op - 3 
mem(O) :- a - b 

op - 4 
mem(O) :- a • b 

op - 5 
mem(O) :- a / b 

op - 6 
SEQ 

IF 

op - 7 
SEQ 

IF 

op - 8 

a < b 
mem(O) :- a 

TRUE 
mem[O) :- b 

a > b 
mem( 0) :- a 

TRUE 
mem(O) :- b 

mem(l} :- mem(fd(l)) 
op - 9 

mem(fd(O)):- a 

program 15 e 

special processor for the simulation of the gentleman & kung 
gaussian elimination algorithm used in Least squares approximation 

LIBRARY PROe PE(CHAN wn,we,ws,ww,rn,re,rs,rw, 
in,is,sw,se )_ 

OEF msize - 10: 
VAR FLOAT a,b, mem(msize],c, i.o.buf(4] : 
VAR i,j,s,port,p(4),fd[4],op,opdl,opd2,old.i,old.s 
VAR type ,toggle : 
SEQ 

type :- 0 
mem(l} :- 0.0 
mem(O} :- 0.0 
old.l :- 0 
old.s :- 0 
e :- 0.0 
t099le :- false 
WHILE true 

SEQ 
-- Fetch Instruction 
c :- mem(1J 
PAR 

in?1 
iSlold.! 
sw?s 
se!old.s 
wnle 
welmem(4] 
wSlmem(5) 
_le 
rnH .o.buf( 0) 
re?i.o.buf(l) 
rsH.o.buff 2) 
[wH.a.buf(3] 

old.s :- s 
old.l :- i 
-- Decode intstruction 
SEQ 

SEQ j -(0 for 4) 
SEQ 

fd(j) :_ i\lOO 
i :- i/100 

port :- fd(2) 
op :- fd(3) 
opdl :- fd( 1) 
opd2 :- fd(O) 

-- communication enable 
SEQ 

SEQ 1-(0 for 4) 
SEQ 

p( 1) :- port\2 
port : - port/2 

00 
00 o 



IF 

SEQ i-(O for 41 
IF 

p(ll - 1 
mem[i+3] :- i.o.butli] 

Execute instruction 

(s<>O) AND (op <> 0) 
IF 

op - 8 
SEQ 

IF 
opd2 - 3 

SEQ 
IF 

opdl - 1 
SEQ 

old.l :- old.l + 100 
toggle :- true 
mem(7]:- mem(3] 

opdl - 0 
SEQ 

IF 
type - 0 

mem(31 :- mem(31 - (mem(7)*mem(61) 
type - 1 

meml6 I :- mem( 3 l/meml7 I 
IF 

toggle 
SEQ 

old.l :- old.l + 100 
toggle :- false 

memlSI :- mem(31 
co mem(4) :_ mem[6] 

opd2 - 2 
SEQ 

type :- 1 
old.l :- old.! + 3 

opd2 - 1 
SEQ 

old.l :- old.l + 1 
type :- 0 

opd2 - 4 
SEQ 

meml71 :- meml5] 
opd2 - S 

type :- 3 : 

program 15 f 

generic PE for testing ISA grid 

NOTES : specialized processsor for performing LU-Decomposition 
on an hexagonally connected array of kung & leiserson 
which is simulated on an orthogonally connected ISA 

LIBRARY PRQe PE(CHAN wn,we,ws,ww,rn,re,rs,rw, 
In,is,sw,se )-

-- small 10 location memory 
DEF msize - 10: 
VAR FLOAT a,b, mem[msizeJ,Lo.buf14] : 
VAR i,j,s,port,pI4),fd[4],op,opdl,opd2,old.i,old.s 
VAR type ,toggle : 
SEQ 

-- intiallsation 
type :- 0 
memlll :- 0.0 
mem(O] :- 0.0 
old.i :- 0 
old.s :- 0 
toggle :- false 
-- start processor 
WHILE true 

SEQ 
-- Fetch Instruction 
PAR 

in?i 
islold.l 
sw?s 
selold.s 
wnlmem[3) 
welmem{4J 
wSlmem[S) 
wwlmem(6J 
rn?i .o.bufl 01 
re?i.o.buflll 
rs?i.o.buf(21 
rw?i.o.buf[3) 

old.s :- S 
old.i :- i 
-- Decode intstruction 
SEQ 

SEQ j -10 for 41 
SEQ 

fd(j] :- i\lOO 
i :- 1/100 

port :- fdl2) 
op :- fdl31 
opdl :- fdll I 
opd2 :- fd( 0 I 

-- communication enable 
SEQ 

(X) 
(X) 
I-' 



IF 

SEQ i-tO for 4) 
SEQ 

p( i) :- port\2 
port :- port/2 

SEQ i-tO for 4) 
IF 

p( i) - 1 
.em(i+3) :- Lo.buf(!) 

Execute instruction 

(s<>O) AND (op <> 0) 
IF 

op - 8 
SEQ 

IF 
opd2 - 5 

SEQ 
IF 

toggle 
SEQ 

mem! 6] :- mem! 5J 
mem(4) :_ mem(7) 
mem(5) :- mem(8) 

type - 1 
SEQ 

mem[7] :- mem(6) 
mem(8) :- mem!3] 
mem!3] :- mem(4] + (mem(8J*mem[7J) 

type - 2 
SEQ 

mem(7) :- mem(6) 
mem(8) :- mem!3] + (mem(41*mem[7]) 
mem(3) :- mem(4) 

type - 3 
SEQ 

mem(7) :- mem(6) + (mem(3)'mem(4) 
mem(6) :_ mem(3) 
mem!3] :- mem!7] 

type - 4 
SEQ 

IF 
mem(4) - 0.0 

mem(6) :- 0.0 
true 

mem(6) :- 1.0/mem(41 
mem(3) :- mem(4) 
mem(71 :- -1.0 

toggle :- not t09gle 
opd2 - 4 

SEQ 
old.! :- old.! -1 
type :- 4 

opd2 - 3 
type :- 3 

opd2 - 2 
SEQ 

old.! :- old.! - 1 
type :- 2 

opd2 • 1 
type :- 1 

(opd2 - 0) and (opd1 > 0) 
SEQ 

IF 
(opd1 -1 - 0 

old.! :- (old.i - 100) + 5 
true 

old.! :- old.i - 100 : 

ro 
ro 
'" 



program 16 a 

Implementation of Systolic Simplex 

Notes : The systolic array implements a tableau method in which 
basic cells correspond to elements in the Simplex Tableau. 
The array is expressed in top down fashion with three files 
the current files sets up Host interfacing and the basic simplex 
array, the remaining program files define basic cell definitions 
and represent logical partitions of the design into subarrays. 
The program partitioning allows the computation and control of 
indivdual cells to be assessed without recourse to the lengthy 
array setup procedures. 

Problem dependent constants - the tableau dimensions 
DEF dl -6, d2 -4, size.! - (dl+I)*d2, size.2 - (d2+1)*d! 
CHAN linkIS), portl(dl+l)*(d2+l» : 

-- Interfacing routines for input/output 

EXTERNAL peac abort.program : 
EXTERNAL peoe open.file(value path.name[), access[], chan io.chan) 
EXTERNAL proc close.file(chan io.chan) 
EXTERNAL proc fp.num.to.chan(chan c,value float f) : 
EXTERNAL proe num.to.chan(chan c, value n) : 
EXTERNAL proc str.to.chan(ehan c, value s(]) 
EXTERNAL peoe str.to.screen( value s[ J ) : 
EXTERNAL peoc num.to.screen(value n): 
EXTERNAL proc num.from.keyboaed(var n) : 
EXTERNAL peoe fp.num.to.sceeen(value float f) : 
EXTERNAL proe fp.num.to.screen.f(value float f, value w,d): 
EXTERNAL peoe fp.num.from.keyboaed(var float f) 

-- The required basic cells, and some extra procedures to 
-- keep data flowing in Occam 

EXTERNAL proe 

EXTERNAL proc 

EXTERNAL proc 

row.sort(ehan Nin,Sout,Nein,Scout, 
Nout,Sin,Ncout,Scin, 
Eout,Ein,Ecout,Ecin,poet, 

value type, var j ) : 
col.sort(chan Win,Eout,wcin,EcQut, 

Wout,Ein,weout,Ecin, 
Nin,Nout,Ncin,Neout,port, 

value type,j ) : 
dummy.a(chan Nin,Ncin,Nout,Ncout, 

EXTERNAL proe dummy.b(ehan 
Eout,Ein,Eeout,Ecin, link( ),port) 
Eout,Ecout,Ein,Ecin, 
Nin,Nout,Ncin,Neout, link[ ],port) 

EXTERNAL 
EXTERNAL 
EXTERNAL 

proc 
proe 
proc 

EXTERNAL proc 

t.anchor(chan Nout,Nin,Ncin,Ncout) 
r.anchor(ehan Eout,Ein,Ecin,Ecout) : 
x.cell(CHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,Ein, 

VAR cl), c.barl), flagl), 
VAR FLOAT a,b,d ) : 

pivot.row.I(CHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,!in, 

EXTERNAL proc 

EXTERNAL p['oc 

EXTERNAL proe 

EXTERNAL proc 

EXTERNAL proc 

VAR cl), c.bar[], flag[), 
VAR FLOAT a,b,d ): 

h.cell(CHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,Ein, 
VAR cl], c.bar(), flag!), 
VAR FLOAT a,b,d ): 

pivot.col.b(CHAN Nin,Sout,Nout,Sin,win,Eout,Wout,Ein, 
VAR cl), c.bar(), flagl), 
VAR FLOAT a,b,d ) : 

pivot(CHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,Ein, link, 
VAR cl), c.barl) ,flagl)' 
VAR FLOAT a,b,d ) : 

pivot.col.a(CHAN Nin,Sout,Nout,Sin,win,Eout,Wout,Ein, 
VAR cl), c.barl), flagl)' 
VAR FLOAT a,b,d ): 

h.j.cell(CHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,Ein, 
VAR cl), c.bae(), flag[ J, 
VAR FLOAT a,b,d ): 

EXTERNAL proc pivot.row.r(CHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,Ein, 
VAR cl), c.bar(), flagl], 

EXTERNAL proe 
VAR FLOAT a,b,d ): 

mat.celllCHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,Ein, 
VAR cl], c.bar[], flagl], 
VAR FLOAT a,b,d ): 

-- Procedures concerned with setti"ng up the Tableau 

PROC PEt CHAN Nin, Sout, Ncin, Scout, 
Nout,Sin , Ncout,Sein , 
Win ,Eout, Wcin ,Ecout, 
Wout,Ein , Wcout,Ecin , port, 

VALUE p,q,VAR FLOAT a ) -
the basic grid processing element, the eelltype is 
fixed by paSSing the grid pOSition to the PE 

variables : 
flag - defines the state (flagI2]) of computation and 

provides auxilary variables for staggered cell I/o 
c,c.bar - the input and output control values 
test - as for all other procdeures allows the inclUsion 

of s.mix for trace purposes 

VAR running,cI4],c.barI4],flag(3],k,test 
VAR FLOAT b,d 
SEO 

test :- true 
running :- true 
SEO k -10 FOR 3) 

flaglk) :- 0 
SEQ k-IO FOR 4) 

c.bar[k) t- 0 
WHILE running 

SEO 
portla,c(0),cll),cI2),cI3) 
-- control i/o 

ro 
ro 
w 



IF 
test 

PAR 
IF 

IF 

IF 

IF 

c.b.r(3) <> 6 
PAR 

Wcin?c[l) 
Wcoutlc.bar(lj 

c.b.r[Z) <> 6 
PAR 

Scin?c[O) 
Scoutlc.bar[O] 

c.b.r[l) <> 6 
PAR 

Ecin?cl3) 
Ecoutlc.bar(31 

c.barlO) <> 6 
PAR 

Ncin?c[Z) 
Ncoutlc.bar(2) 

-- decide for closedown 
IF 

c.b.r(3) _ 6 
c[ 3) :- 6 

IF 
c.b.r[Z) - 6 

c(2) :- 6 
c.b.r(2) :- c[O) 
-- evaluate new output controls 
-- and if ready to stop 
c.b.r(3) :_ c[l) 
c.b.r[O) :- c(2) 
c.b.r[l) :- c(3) 
test :- [c.b.r(2)-6) AND (c.b.r[3)-6) 
test :- NOT«([[c.b.r[O)-6)AND[c.b.r[l)_6»AND 
running :- test 
IF 
-- select the correct cell 
-- type 

q - 1 
SEQ 

test) ) 

IF 
P < (d2 - 1) 

x.cell(Nin,Sout,Nout,sin,Win,Eout,wout,Ein,c,c.bar,flag,a,b,d) 
p - [dZ - 1) 

q - Z 
SEQ 

pivot.row.l(Nin,Sout,Nout,sin,Win,Eout,wout,Ein, 
c,c.bar,flag,a,b,d} 

p - d2 
h.cell(Nin,Sout,Nout,sin,Win,Eout,wout,Ein,c,c.bar,flag,a,b,d) 

IF 
P - dZ 

pivot.col.b(Nin,Sout,Nout,Sln,Win,Eout,Wout,Ein, 
c,c.bar,flag,a,b,d) 

[p - (dZ -1)) AND (fl.g(Z) <> 4) 
plvot(Nin,Sout,Nout,Sln,Wln,Eout,Wout,Ein, 

link(2),c,c.bar,flag,a,b,d) 
p < [dZ - 1) 

pivot.col.a(Nin,Sout,Nout,Sln,Win,Eout,Wout,Eln, 

q > Z 
SEQ 

IF 

c,c.bar,flag,a,b,d) 

P - dZ 
h.j.cell(Nin,Sout,Nout,Sln,Win,Eout,Wout,Ein, 

c,c.bar,flag,a,b,d) 
p - (dZ - 1) 

pivot.row.r(Nin,Sout,Nout,Sin,Win,Eout,wout,Ein, 
c,c.bar,flag,a,b,d) 

p < [dZ - 1) 
mat.cell(Nin,Sout,Nout,Sin,Wln,Eout,WQut,Ein, 

c,c.bar,flag,a,b,d) : 

proc s.mix(CHAN port( J) _ 

screen mixer for tracing 

provides a series of tableaus one for each 
cell cycle. when s.mix is not used the port channel 
used in other procedures is commented out 

chan fptr : 
var float a: 
var c(4],z,b,running,flag 
seq 

-- output to screen and file "result" 
-- produces a control wavefront or 
-- a record of the updated table 
open.file("result","w",fptr) 
str.to.screen( "*n options") 
str.to.screen("*n1: Table *n2: control wavefront") 
str.to.screen("*n*n Enter option :") 
num.from.keyboard(b) 
num. to. screen( b) 
running :- true 
flag :- 0 
-- for all cycles 
while running 

seq 
z :- 0 
str.to.screen("*nstart cycle*n") 
str.to.chan{fptr,"*nstart cycle *n") 
seq i -[0 for (d1+1).[dZ+1» 

seq 

CD 
CD ... 



if 

z :- z + 1 
port(i)?a,c(0),c(1),c(2),c(3) 
str.to.screen(" ") 
str.to.chan(fptr," ") 
IF 

b - 1 
seq 

fp.num.to.chan(fptr,a) 
fp.num.to.screen.f(a,8,4) 

true 
seq j-[O for 4) 

seq 
num.to.screen(c(j}) 
num.to.chan(fptr,c(j]) 

str.to.screen(" ft) 
str.to.chan(fptr," ") 
if 

if 

z - (d1.1) 
seq 

z :- 0 
str.to.chan(fptr,"*n") 
str.to.screen("*n") 

termination conditions 

c( 0) - 7 
flag :- 1 

c(O) - 8 
flag :- 2 

termination is produced by 
the tableau itself 

flag - 1 
seq 

str.to.screen("*n correct termination") 
str.to.chan(fptr,"*n correct termination") 
running :- false 

flag - 2 
seq 

str.to.screen("*n all pivot contenders invalid") 
str.to.chan(fptr,"*n all pivot contenders invalid") 
running :- false 

-- rather primitive but 
-- effective program stop 
close.file(fptr) 
abort. program : 

PRoe sink(CHAN Eout,Win,Ecout,Wcin, VALUE type) _ 

As with all occam programs for systolic arrays 
we must collect used signals on the array bounadries. 

VAR running, c, flag: 
SEO 

flag :- 1 

running :- true 
the type of cell dictates 

-- the signals it will recieve 
-- inturn dependent upon position in the 
-- array. 
WHILE running 

SEO 
PAR 

Ecout?c 
WcintO 

IF 
c - 6 

running :- false 
(c-1) AND (flag - 1) 

SEQ 
Eout?c 
IF 

type - 0 
flag :- 2 

(c-3) AND (flag - 2) 
SEO 

flag :- 1 : 

PRQe source(CHAN Nin,Nout,Ncin,Ncout,VALUE type) _ 

The source routine also does the job of a sink 
but can also be used for the systolic loading 
of data in the minimum time. This is not 
implement here but is trivial 

VAR running ,c, flag 
SEO 

flag :- 1 
running :- true 
WHILE running 

SEO 
PAR 

NcinlO 
Ncout7c 

IF 
C • 6 

running :- false 
(type-O) AND (c-1) 

SEO 
Nout?any 

type - 1 
IF 

(c-l) AND (flag-l) 
SEO 

Nout?any 
flag :- 2 

(c-3) AND (flag-2) 
flag :- 3 

(c-1) AND (flag-3) 

ro 
ro 

'" 



SEQ 
Nout?any 
flag :- 1 

type - 2 
IF 

(e-l) AND (flag - 1) 
SEQ 

Nout?any 
flag :- 2 

(e-3) AND (flag - 2) 
flag :- 1 : 

Simple 2-0 to 1-0 vector mappings useful 
for locating data elements, PE'S and channels 
in the desi9n 

PRCe loc.r(VALUE i,j, VAR r) • 
SEQ 

r :- (((i-1)*(d1+1))+j)-1 : 

PRoe loc.C(VALUE j,i, VAR r) • 
SEQ 

r :- (((j-1)*(d2+1))+i)-1 

PRCe loc.m(VALUE i,j, VAR r ) • 
SEQ 

r :- (((i-1)*dl)+j)-1 

PROC setup (VAR FLOAT mem( I. VAR eind( I.rlnd( I ) -

Host interface to read the tableau to be used 
also collects the rowand column indices 

VAR tl : 
SEO 

-- constraint and basis matrices 
str.to.screen(".n Enter Tableau.n") 
SEQ i-[l FOR d2J 

SEQ 
SEQ j - [ 1 FOR d11 

SEQ 
loc.m(i,j,tl) 
fp.num.from.keyboard(mem[tl) 
fp.num.to.screen(mem[tl]) 
str.to.screen(ft ft) 

str.to.screen("*n") 
column vectors index 

str.to.screen(".n*nEnter Column Indices") 
SEQ i-tO FOR d1-11 

SEQ 
str.to.screen("*n[") 
num.to.screen(!) 
str.to.screen("] _ft) 
num.from.keyboard(cind(i]} 

num.to.screen(cind[i) 
indexes of unknowns in solution 

str.to.screen("*n*nEnter Row Indices"} 
SEQ i-tO FOR d2-11 

SEQ 
str.to.screen("·n(") 
num.to.screen(i) 
ste.to.screen("] - ") 
num.from.keyboard{rind(i}) 
num.to.screen(rind(lJ) 

str.to.screen("·n") : 

PRQe putdata{VALUE FLOAT mem[], VALUE rind( J) • 

Host output interface 
simply writes final value of objective function(H) 
and unknowns in solution with optimal values 
output to file and screen 

CHAN fptr : 
VAR t1 : 
SEQ 

open.file("ftab","w",fptr) 
str.to.screen("*n results") 
str.to.chan(fptr,"*n results *n") 
SEQ i-I 1 for d21 

SEQ 
str.to.screen("·" [") 
str.to.chan(fptr,"·n [H) 
IF 

i - d2 
SEQ 

TRUE 

str.to.screen("H ") 
str.to.chan(fptr,"H ft) 

SEQ 
num.to.screen(rind(i-1]) 
num.to.chan(fptr,rind(i-1) 

str.to.screen(") - ") 
str.to.chan(fptr,ft) - ft) 
loc.m(i,l,tl) 
fp.num.to.chan(fptr,mem[tl]) 
fp.num.to.screen(mem[tl) 

close.file(fptr) : 

PROC merge(CHAN llnk[l.port) -

The computation can terminate because of 
a) optimal solution 
b) failure to find optimal solution 

also 
c) another iteration 

the control signals to the pivot are merged here 
from row sorting and column sorting 



----------------------.......... 
VAR FLOAT d : 
VAR running. c[3],test 
SEQ 

d ,- 0.0 
e[2J ,- 1 
running :_ true 
test :- true 
-- computation 
WHILE running 

SEQ 

main 

str.to.screen("c") 
portld;e[OJ,e[lJ;e[2J;0 
-- 1/0 
IF 

IF 

test 
PAR 

IF 
(e[OJ <) 6) AND (e[lJ <) 6) 

PAR 
link[OJ?e[OJ 
link[lJ?e[l) 

link[2I1e)2) 
decide pivot signal 

e[ 2) - 6 
SEQ 

test :- false 
running :- false 

(e[O)-l) OR (e[l)-l) 
e[ 2) ,- 1 

(eI0)-6) OR (e[1)-6) 
e[2) ,- 6 

TRUE 
e[ 2) ,- 0 

Specification of the whole Tableau 
channels are for two communication north-south(ns) and east-west{ew) 
procedure call s.mix can be uncommented to produce trace 

CHAN ns.l[size.2], ns.2(size.2], cns.l[size.2], cns.2[size.2] 
CHAN ew.l[size.l], ew.2(size.l], cew.l(size.l], cew.2(size.l] 
VAR FLOAT mem[dl*d2) : 
VAR e.lndex[dl-l), r.lndexld2-11 
SEQ 

setup(mem,c.index,r.index) 
PAR 

-- tableau 
VAR I,j : 
PAR 1- [1 FOR d2) 

PAR j- [1 FOR dl) 

VAR tl,t2,t3,t4,tS,t6 
SEQ 

loc.m(i,j,t5) 
loc.r(i,j,tl) 
loc.r(i.j+l.t6) 
loc.c(j,i,t2) 
t3 :- tl + 1 
t4 :- t2 + 1 
PE( ns.l[t2], ns.l[t4], 

ns.2[t2), ns.2[t4), 
ew.l(tll. ew.l(t3), 
ew.2(t11. ew.2(t31, 
i, j , mem(t51 ) 

merge(llnk,port[d2*(dl+l))) 
-- s.mix(port) 
-- clear boundary channels 
VAR I : 
PAR 1-11 FOR d2) 

VAR tl,type 
SEQ 

type :- 0 
IF 

I - d2 
type :- 1 

loc.r(i,dl+l,tl) 
sink(ew.l[t11, ew.2[t11, 

TOp Boundary Sources 
VAR j : 
PAR j -[1 FOR dl) 

VAR tl, type 
SEQ 

type :- 2 
IF 

j - 1 
type :- 0 

j - 2 
type :- 1 

loe.e(j,I,tl) 

cns.llt21. cns.l[t4], 
cns.2[t2], cns.2(t4], 
cew.l[t11. cew.l[t3]. 
cew.2(t11, cew.2(t3]. port(t6], 

cew.l(tl], cew.2Itl). type) 

source(ns.l(tll, ns.2[tl], cns.1Itl], cns.2[tl],type) 
Row Sorter 

VAR i : 
CHAN ns.3(d2], ns.4[d2], cns.3[d2],cns.4(d2] : 
SEQ 

PAR 
PAR I -[ 1 FOR d2) 

VAR tl,type 
SEQ 

type :- 1 
IF 

I - 1 
type :- 2 

I - (d2-1) 
type :- 0 

loco r( i, 1, tl) 



----------------------.......... 
IF 

i - d2 
dummy.a(ns.3(d2-1],cns.3{d2-1J, 

ns.4[d2-1),cns.4[d2-1), 

TRUE 
ew.l[tl), ew.2Itl], cew.l[tlj, cew.2[tl), link,port(tl]) 

row.sort(ns.3(i-l),ns.3[i],cns.3Ii-l),cns.3[i), 
n8.4[1-1),n8.4[1],cn8.4(1-1),cn6.4(1), 
ew.l[tl]. ew.2(tl), cew.l[tl],cew.2(tl],portltl], 
type,r.index(i-lJ) 

t.anchor(ns.3(O],ns.4(O),cns.3[O],cns.4(O) 
Column sorter 

VAR j : 
CHAN ew.3[d11. ew.4[d11. cew.3[d11. cew.4[d11 : 
SEO 

PAR 
PAR j-[ 1 FOR d1) 

VAR tl, t2, type 
SEO 

type :- 1 
IF 

j - 2 
type :- 0 

j - d1 
type :- 2 

loc.c(j,d2+1,tl) 
loc.r(d2+1,j+l.t2) 
IF 

j - 1 
dummy.b(ew.3(OJ,cew.3(O], 

e",.4[O),ce",.4(0), 

TRUE 
ns.l(tl),ns.2[tl),cns.l(tlJ,cns.2(tlJ, link.port[t2J) 

col.8ort(ew.3[j-2J,ew.3(j-1 1,cew.3(j-2J,cew.3[j_lJ, 
ew.4(j-2J,ew.4[j- 1 l,cew.4(j-21,cew.4(j_l), 
ns.1It11. ns.2[t11. cns.1[t1). cns.2[t11.port[t21. 
type.c.indexlj-21) 

r.anchor(ew.3[dl-l1,ew.4ldl-1 l,cew.3(dl-lJ,cew.4[dl_lJ) 
putdata(mem, r.index) 

program 16 b 

Column and Row sorter cell defintions 

Notes : The systolic Simplex design is split into 
three sub arrays the tableau, column , and row sorters 
here the cells for the latter two are specified 

EXTERNAL peoe str.to.screen(value s[] ) : 

LIBRARY prae col.sort(chan Win,Eout,Wcin,Ecout, 
Wout,Eln,Wcout,Ecln, 
Nin,Nout,Ncin,Ncout,port, 
value type,k ) _ 

Column sorter cell finds the maximum piece 
which will reduce the objective function the most 
also generates a control value which will swap 
columns of the tableau as neccesary to place the vector 
corresponding to the varibale to be introduced into the 
solution into the pivot column of the tableau 

VAR float a,b : 
VAR flag,to9gle,running,left,right,j,i,test 
VAR c.barI31. cl31 : 
SEO 

-- setup 
j :- k 
left :- (type-O) OR (type-1) 
right :- (type-2)OR (type-1) 
flag :- 0 
running :_ true 
test :- true 
toggle I- falae 
SEO j -10 FOR 31 

c.har[i) :- 0 
-- computation 
WHILE running 

SEO 
portla;c(O);cll);c(2);j 
-- i/o 
IF 

IF 

test 
PAR 

NCin?c[OI 
Ecin?c(l) 
Ncoutlc.bar(O] 
Ecout!c.barll) 
IF 

c.ba,[11 <> 6 
PAR 

Wcin?c(2) 
Wcoutlc.bar(2) 

0> 
0> 
0> 



Itype - 0) AND Ic.barll)<>6) 
SEO 

Wautla:j 
c.barll) _ 6 

SEO 
test :- false 
running :- false 

c.barIO) :- 0 
c.bar(l] :- 0 
c.bar(2) :- c[l) 
-- cell computation 
IF 

(flag-D) AND (cIO)-l) 
-- load cell 
SEO 

Nin?a 
toggle :- true 
c.bar[l) :_ 1 
flag :- 1 

flag - 1 
-- sorting 
IF 

c[ 1) - 1 
-- stop 60rting 
SEO 

flag :- 0 
c.bar[O) :- l 

toggle AND left 
SEO 

Ein?b,i 
IF 

(b>a)OR((b-a)AND(i<j)) 
SEO 

Eoutla;j 
a :- b 
j :- I 
c.bar[O) :_ 1 

TRUE 
Eoutlb;i 

(NOT toggle) AND right 
SEO 

Woutla;j 
Win?a,l 
IF 

c(2) - 6 

I <> j 
SEO 

j :- i 
c.barIO) :- 2 

-- closedown cell 
SEO 

c.barIO) - 6 
c.bar(1) - 6 
c.bar(2) - 6 

toggle :- NOT toggle : 

LIBRARY peoe row.sort(chan Nin,sout,Ncln,Scout, 
Nout,Sin,Ncout,Scin, 
Eout,Ein,Ecout,Ecin, port, 
value type, vac j ) _ 

Row sorting cell identifies a minimum pr from 
positive values. Ensures that row of tableau 
corresponding to index of variable ejected from 
solution is pivot row of cells 

VAR FLOAT a,b : 
VAR t0991e,running,top,bottom,flag,i,test 
VAR c.bar[l).c[l) : 
SEO 

setup 
top :- (type-2)OR(type-1) 
bottom :- (type-1)OR(type-0) 
flag :- 0 
running :- true 
test :- true 
toggle :_ false 
SEO 1-[0 FOR l) 

c.barl i) :- 0 
-- computation 
WHILE running 

SEO 
portIa;e( 0) ;e(l) :e(2);j 
-- ilo 
IF 

IF 

test 
PAR 

Ecin?c[O) 
Ncin?c[l) 
ECQutlc.bar(O) 
Ncoutlc.barll) 
IF 

c.bar[l) <> 6 
PAR 

Scin?c(2) 
Scoutlc.bar(2) 

(type -0) AND (c.bar[l) <> 6) 
SEO 

Soutla;j 
c.bar(1) - 6 

SEO 
test :- false 
running :- false 

c.bar[ 0) :- 0 
c.bar[l) :- 0 
c.bar(2) :- ell) 

sorter 
IF 

CD 
CD 
<D 



(flag - 0) AND (c(O)-l) 
SEO 

-- load 
Ein?a 
toggle :- true 
c.bar(l) :- c(O) 
flag :- 1 

flag - 1 
IF 

c(l) - 1 
SEO 

-- stop sort 
flag :- 0 
c.bar(O) :- 3 

toggle AND bottom 
SEO 

Nin?b;i 
IF 

((((b-a)AND(l<j»OR(b<a»OR(a<_O.O» 
SEQ 

Noutla;j 
a :- b 
j :- I 
c.bar(O) :- 1 

TRUE 
Noutlb;i 

(Not toggle) AND top 
SEO 

Soutlaij 
81n1a;i 
IF 

I <> j 
seo 

c.bar(O) :_ 2 

c(2) - 1 
j :- I 

-- new varibale index 
Sin?j 

c(2) - 6 
-- kill cell 
SEO 

c.bar(O) :- 6 
c.bar(l) :- 6 
c.bar(2) :- 6 

toggle :- NOT toggle 

LIBRARY proc dummy.a(chan Nin,Ncln,Nout,Ncout, 
Eout,Ein,Ecout,Ecin, link[ J ,port) _ 

This procedure recives siqn~ls from 
column sorter with dat~ on the index of 
the new variable to be introduced to the 
solution. Also takes data from row sorter 

-- to determine a termination condition which 
-- is sent to pivot cellvia merge 

VAR running, flag, c[7],i,j,jl,k, test: 
VAR FLOAT a,b : 
SEO 

-- setup 
SEO z-( 0 FOR 7) 

c( z) :- 0 
flag :- 0 
running :- true 
test :- true 
-- computation 
WHILE running 

SEO 
porttalc(4];c[O];cll);jl 
-- I/o 
IF 

test 
PAR 

Ecoutlc[S) 
Ecin?c(4) 
Nin?a;i 
IF 

c(3) <> 6 
PAR 

link(3)?c(3)lj 
link(4)!c(6) 
link(0)!c(2) 

Neln?e(O) 
Ncoutlc(l) 

e( 1) :- 0 
e(2) :- 0 
IF 

c( 4) - 1 
Eln?b 

-- book keeping 
IF 

c(5) - 6 
SEO 

running :- false 
test :- false 

c(3) _ 1 
j1 :- j 

(c(O)-l) AND (a>O.O) 
-- new solution 
SEO 

c(2) :- 1 
c(l) :- 1 
flag :- 1 

flag - 1 
-- swap unknowns 
SEO 

Noutljl 

CD 
ID o 



j1 :- 0 
flag :- 0 

(c[OI-l) AND (a(-O.O) 
-- error 
SEQ 

str.to.screen{"*n Termination on Vijn) 
c[l) :- 6 
c[51 :- 6 
c[ 6) :- 6 
c[ 2) :- 6 
c[4) :- 8 

c[ 3) - 6 
SEQ 

e[51 :- 6 
e[11 :- 6 
c[2) :- 6 

LIBRARY proe dummy.b(chan Eout,EcQut,Ein,Ecin, 
Nin,Nout,Ncin,Ncou't, Unk( 1, port) _ 

Similar routine to dummy.a except for 
column sorting_ Decides if optimal soultlon is found 
and terminates tableau. the value 6-closedown 

VAR runninq,c(7), i,j,jl,k,test : 
VAR FLOAT a : 
SEQ 

-- setup 
running:_ true 
test :- true 
SEQ z-[O FOR 7) 

c[z) :- 0 
-- computation 
WHILE running 

SEQ 
portla;c[0);cI1);cI3);j 
-- 1/0 
IF 

test 

cl11 
c(2) 
c(3) 

PAR 
Ncin?c(4) 
Ncoutlc(S] 
IF 

c(6) <> 6 
SEQ 

link(4)?cI61 
linkI3J1c(2);k 
linkl1J1c(3) 

E1n1a;1 
Ecin?c[O) 
Ecoutlcl11 
- 0 o 
- 0 

----------------------......... 
-- book keep! 09 
IF 

cl51 - 6 
SEQ 

running :- false 
test :- false 

(cIO)-l) AND (a>O.O) 
-- best contender found 
SEQ 

k :- i 
cl21 :- 1 
cl31 :- 1 

(cIO)-l) AND (a (-0.0) 
-- optimal soulution 
SEQ 

str.to.screen("*ncorrect termination") 
c( 3) :- 6 
c(2) :- 6 
c( 5 1 :- 6 
c(1) :- 6 
c[ 01 :- 7 

cl61 - 6 
kill the cell 

SEQ 
c(1) :- 6 
c(5) :- 6 

-- additional routines to maintain data flow and 
-- easy specification of the array 

LIBRARY proc t.anchor(chan Sout,Sin,Scout,Scin) _ 
-- associated with row sorter 
VAR running, csavel, csave2 : 
SEQ 

csave2 :- 0 
running :- true 
WHILE running 

SEQ 
PAR 

Scin?csavel 
Scoutlcsave2 

IF 
csavel - 6 

running :_ false 
csave2 :- csavel : 

LIBRARY proc r.anchor(chan Wout,Win,wcin,Wcout) _ 
-- associated with column sorter 
VAR running, csavel, csave2 : 
SEQ 

csave2 :- 0 
running :- true 
WHILE running 

SEQ 

CD 

'" ..... 



PAR 
Wcin?csavel 
wcoutlcsave2 

IF 
csavel - 6 

running :- false 
csave2 :- csavel : 

----------------------......... 
program 16 c 

8asic cell computation defintions: 

--Notes these procedures are the basic cell defintions of the 
array and will not be detailed here see accompanying report 

two auxiliary procedures to swap tableau columns and rows 

PRoe column.swap( CHAN Ein,Eout, Win,Wout, VAR c,flag, VAR FLOAT a) _ 
VAR FLOAT b : 
SEa 

IF 
c - 1 

SEa 
PAR 

Ein?b 
Eoutla 

a :- b 
c - 2 

SEa 
PAR 

Win?b 
Woutla 

a :- b 
c - 3 

SEa 
flag :- 2 

PRDe row.swap{ CRAM Nin,Nout,Sin,Sout, VAR C, flag,vAR FLOAT a) _ 
VAR FLOAT b : 
SEa 

IF 
c - 1 

SEa 
PAR 

Nin?b 
Noutla 

a :- b 
c - 2 

SEa 
PAR 

Sout!a 
Sin?b 

a :- b 
c - 3 

flag :_ 0 

-- The main computational procedures 

LIBRARY peae mat.cell{CHAN Nin,Sout,Nout,Sln,Win,Eout,Wout,Ein, 
VAR cl l,e.bar[], f1agl], VAR FLOAT a,b,d 

SEa ) -



IF 
(f1agI21-0) AND «cI01-1) AND (clll-l)) 

SEQ 
flagl21 :- 1 
PAR 

Sin?b 
Win?d 

a :. a - (b*d) 
floglOI :- 1 

flaglOI - 1 
SEQ 

PAR 
Noutlb 
Eoutld 

flaglOI :- 0 
f1agl21 - 1 . 

column.swap{Eln,Eout,Win,wout,c[O),flagI2],a) 
flagl21 - 2 

flagl21 :- 3 
f1agl21 - 3 

row.swap(Nin,Nout,Sin,Sout, c(1),flag[2),a) : 

LIBRARY PROe h.j.cell(CHAN Nin,sout,Nout,Sin,Win,Eout,Wout,Ein, 
VAR cll,cobarll,flagll,VAR FLOAT .,b,dl -

SEQ 
IF 

(f1ag121 - 0) AND «(cI21-1)AND(cl11-1)) 
SEQ 

fla9121 :_ 1 
PAR 

Nin?b 
Win?d 

o :- 0 - (bOd) 
fl09101 ,- 1 

floglOI - 1 
SEO 

PAR 
Eoutld 
Soutla 

fla9101 :- 0 
flogl21 - 1 

SEQ 
column.swap(Ein,Eout,win,Wout,c(OJ,flag(2],a) 

flogl21 - 2 
flogl21 :- 0 : 

LIBRARY paoe pivot.col.a (CHAN Nin,Sout,Nout,Sin,Win,Eout,WQut,Ein, 
VAR cl J, c.bar[ I, flag[ J, 

SEQ 
IF 

VAR FLOAT a,b,d ) • 

(f1ag121 -0) AND (cI01-1) 
SEQ 

Sin?b 

----------------------.......... 
flaglOI :- 1 
flagl21 :- 1 
cobarl31 :- 1 
cobarl11 :- 1 

flaglOI - 1 
SEQ 

PAR 
Noutlb 
Eoutla 
Wout!a 

a :- 0 
flaglOI :- 0 

flagl21 - 1 
column.swap(Ein,Eout,Wln,wout, c(O),flag[2),a) 

(f10g121 - 2) AND (cI01-1) 
SEQ 

Sin?b 
IF 

o - 0 0 0 
d :- 000 

TRUE 
d :- 000 +(100/a) 

flagl11 ;- 1 
flagl21 :- 3 
cobarl11 ;- 1 

flagl11 - 1 
SEQ 

Noutlb 
woutld 
flogl11 ;- 0 

(flagl21 - 3) 
row.swap{Nin,Nout,Sln,Sout,c(1),flag(2),a) 

LIBRARY PROe pivot.row.l( CHAN Nin,Sout,Nout,Sin,Win,Eout,Wout,Ein, 
VAR cl), c.barl I ,flag[ J, 

SEQ 
IF 

VAR FLOAT a,b,d ) -

(flagI21-0) AND (cI31-1) 
SEQ 

Ein?b 
a :- 0.0 + (a*b) 
flaglOI :- 1 
flagl21 ;- 2 
coborl21 :- 1 
cobarl11 :- 0 
cobarlOI :- 1 

flag I 0 I - 1 
SEQ 

PAR 
Noutla 
SoutJa 

floglOI :- 0 
(f1ag121 - 2) AND (c131 - 1) 

ID 
ID 
W 



SEO 
Ein?b 
d :- 000 + (a-b) 
flagl1J :- 1 
flagl2J :- 3 

flagl1J 
SEO 

Woutld 
flagl1J :- 0 

(flagl2J - 3) 
row.swap(Nln,Nout,Ein,Eout,cll),flag[2),a) 

LIBRARY PROe pivotoco10b( CHAN Nin,Sout,Nout,Sin,Win,Eout,WQut,Ein, 
VAR cl J, c.bar( J, flag( I, 
VAR FLOAT a,b,d ) -

vat zero : 
SEO 

zero :- 0.0 
IF 

(f1agl2J - 0) AND (cI2J-1) 
SEO 

Nin?b 
£1aglOJ :- 1 
£1ag(2J :- 1 
cobarl1J :- 1 
cobarl3J :- 1 

£1aglOJ - 1 
SEO 

£laglOJ :- 0 
PAR 

Wout!a 
Eoutla 
Soutlzero 

a :- 0.0 
flagl2 J - 1 

column.swap{Ein,Eout,Win,Wout,c[O],flag[2J,a} 
(fl.gI2J - 2) 

SEO 
flagl2J :- 0 : 

LIBRARY PROC pivot.row.r(CHAN Nin,sout,Nout,Sin,Win,Eout,Wout,Ein, 
VAR cf), c.bar(], flagf}, 

SEO 
IF 

VAR FLOAT a,b,d ) • 

(f1ag[2) - 0) AND (c[ll -1 ) 
SEO 

Win?b 
• :- 0 0 0 + (a-b) 
cobar[2J :- 1 
cobar[OJ :- 1 
f1ag[2J :- 1 
f1agIO) :- 1 

flaglOJ - 1 

SEO 
PAR 

Noutla 
Sout I a 
Eoutlb 

flaglOJ :- 0 
(flagl2J -1) 

column.swap(Ein,Eout,Wln,wout,c[Oj, flag(2),a) 
flagl2J -2 

flagl2J :- 3 
(£1agl2J - 3) 

row.6wap(Nln,Nout,Sin,Sout,c(1),flag(2],a) 

LIBRARY PRQe x.cell(eHAN Nln,Sout,Nout,Sin,Wln,Eout,Wout,Ein, 
VAR cl], c.barl], flag!), 
VAR FLOAT a,b,d ) _ 

SEO 
IF 

(f1agl2J -0) AND (( cI01-1) AND (cI31-1)) 
SEO 

PAR 
Sin?b 
Ein?d 

a :- a - (b.d) 
flog12J :- 1 
fl.glOI :- 1 
cobarl1J :- 0 

flaglOJ -1 
SEO 

Noutlb 
fl.glOJ :- 0 

flagl2J - 1 
flagl2J :- 2 

(f1agl2J - 21 AND (c131 - 1) 
SEO 

Ein?b 
d :- 0 0 0 + (.-b) 
flagl2J :- 3 
fl.gl1J :- 1 

flag[ 1 J - 1 
SEO 

Woutld 
fl.g[lJ :- 0 

(flag[2J - 3) 
row.5wap(Nin,Nout,Sin,Sout,c[l),flag(2),a) 

LIBRARY PRCe h.cell(CHAN Nin,Sout,Nout,Sln,Win,Eout,Wout,Ein, 
VAR cl], c.bar(], flag(], 

SEO 
IF 

VAR FLOAT a,b,d ) _ 

(c[2J-1) AND (c[3J -1) 
SEO 

PAR 



Nin?b 
Ein?d 

a :- a - (b*d) 
flag[O[ :- 1 

flag[OJ - 1 
SEa 

Woutta 
flag[OJ :- 0 : 

LIBRARY PROe pivot( CHAN Nin, Sout, Nout,Sin, Win,Eout, Wout,Ein,llnk, 
VAR cl J,e.bar(), fla9[], VAR FLOAT a,b,d )-

VAR con: 
SEO 

link?con 
IF 

con - 6 
flog[2) :- 4 

(f1ag[2J-0) AND (con-1) 
SEO 

flag[2J :- 1 
c.bor[O) :- 1 
c.bor[lJ :- 1 
c.bar[21 :- 1 
c.bor[ 3J :- 1 
IF 

a <> 0.0 
a :- 1.0/a 

flag[OJ :- 1 
flag[ 0 J - 1 

SEO 
PAR 

Noutla 
Woutla 
Eoutla 
Soutla 

flag[O) :- 0 
a :- 1.0 

flag[2J - 1 
SEO 

column.swap(Ein,Eout,win,wDut,c[O),flag[2},a} 
(f10g[2J - 2) AND (con-1) 

SEa 
IF 

a - 0.0 
d :- 0.0 

TRUE 
d :- 1.0/. 

c.bar[OJ :- 0 
c.bar[lJ :- 1 
c.bar[2J :- 1 
c.bar[3J :- 0 
flog[2) :- 3 
flag[l) :- 1 

flag[lJ - 1 

------------------.......... .... 
SEa 

PAR 
Noutld 
woutld 

flag[lJ :- 0 
(flag[ 2)-3) 

row.swap(Nin,Nout,Sln,Sout,c(l],flag(2},a) 

(» 

'"' VI 



--------------------............. 
program 17 

Implementation of the Systolic Assignment Problem Iteration(API) 

Notes : The program implements the API orthogonally connected mesh of 
of (n+2).(n+2) incorporating a n*n tableau mesh embedded in 
a Systolic Control Ring (SCR). The array computes the final 
reduced cost matrix from which an answer to the Assignment 
problem can be produced. A trace can be included producing 
Snapshots of computational wavefconts or the reduced cost 
matrix including the row and column weights. The trace can be 
used by commenting out assignments to running inside the cells 
main loops. and including s.mix routine and the port commands 
from each cell. The trace is removed by the reverse procedure. 
All screen output is duplicated in files result for trace and 
ftab with trace off. 

Sorting is by Parallel bubblesort - or ODD-EVEN Trans
position sort which requires O(n} cycle for a list of size 
n to be sorted into ascending or descending order. 

Problem dependent constants - the tableau dimensions 
DEr n - 3, size - (n+2)*(n+1) : 
CHAN port((n+2)*(n+2») : 

-- Interfacing routines for input/output 

EXTERNAL proc abort. program : 
EXTERNAL proe open.file(value path.name[ J, access! J, ch an io.chan) 
EXTERNAL proe elose.file(ehan io.chan) : 
EXTERNAL proe fp.num.to.ehanCehan e,value float f) : 
EXTERNAL proe num.to.ehan(ehan e, value n) : 
EXTERNAL proe str.to.chan(ehan e, value s[ I) 
EXTERNAL proe str.to.sereen( value s[ J ) : 
EXTERNAL proc num.to.sereen(value n): 
EXT~RNAL proe num.from.keyboard(var n) : 
EXTERNAL proe fp.num.to.sereen(value float f) : 
EXTERNAL proe fp.num.to.screen.f(value float f, value w,d): 
EXTERNAL proe fp.num.from.keyhoard(var float f) 

-- cell definitions 

PRCC row.sort(CHAN Nin,Nout, Sout,Sin, Win,wout, port, VAR i ) _ 

Row sorting cell : Filters SCR signals when not in use 
contains the row zero weight, and maintains a 
sorted list of row weights when not activated. 
When activated generates row swap controls for 
the Tableau and swaps weights accordingly. 

VAR running,toggle,test,flag,type : 
VAR c.bar(4),c(4], w[2),nd(4),s(4),weight 
SEQ 

-- setup 
type :- 1 

flag :- 0 
running :- true 
test : - true 
SEQ 1-[0 FOR 4) 

c.bar(l) :- 0 
-- run cell 
WHILE running 

SEQ 
-- input output and trace 
portlweight;i;c[1];c(2];c(O] 
IF 

test 
PAR 

IF 

IF 

c.bar(O) <> 6 
PAR 

Win?c[1);w[O);w[1) 
Woutlc.bar(l)jO;O 
Nln?c[2);nd(0);nd(1) 
Noutlc.bar(2);nd(2);nd(3) 

c.bar(2)<>6 
PAR 

Sin?c(O);s(O);s(l) 
Soutlc.bar{O);s[2)iS[3) 

-- decide on closedown 
IF 

c.bar(2) - 6 
c(2) :- 6 

c.bar(l) :- 0 
c.b.r[O) :- c(2) 
c.bar(2) :- c(O) 
test :- NOT((c.bar(0)-6) AND (c.bar(2)-6» 
-- running :- test 
-- computation 
IF 

(flag -0) AND (c(0)-3) 
SEQ 

-- zero weight during 
-- line drawing 
IF 

type - n 
SEQ 

weight :- 0 
c.bar(l) :- 3 

c.bar[2) :- 3 
flag :- 1 
toggle :- true 

(flag -0) AND ((c(l) - 2) OR (c(1)-4) 
SEQ 

-- modify row weight 
IF 

c(l) - 2 
weight :- weight - 1 



toggle :- true 
flag :- 1 

(flag - 0) AND(c(l) - 1) 
SEC 

-- load row weight 
weight :- w( 0) 
toggle :- true 
flag :- 1 

flag - 1 
-- sort 
IF 

«c(2)-2) OR (c(2)-3)) OR (c(2)-4) 
-- stop sort 
flag :- 0 

toggle AND (weight < nd(O)) 
SEC 

c.bar(l) :- 1 
weight :- nd(O) 
i :- nd(l) 

(NOT toggle) AND (weight> 5(0)) 
SEC 

c.bar[l] :- 2 
weight :- 5(0) 
i :- 5(1) 

c( 0) - 6 
-- kill cell 
c.bar(l) :- 6 

-- set up next i/o 
nd(2) :- weight 
s(2) :- weight 
nd(3) :- i 
s(3) :- i 
-- change sorting state 
toggle :- NOT toggle 

PROC col.sort(CHAN Nin,Nout, Eout,Ein, Win,Wout, port, VAR j ) _ 

Column. sorting cell : Filters seR controls when not sorting 
Maintains list of column weights in sorted 
order when inactive. 
When active gene'rates column swapping controls 
to tableau cells 

VAR flag, toggle, running, test, type : 
VAR c.bar[4),c[4], nd(2),w[4),e(4), weight 
SEC 

-- setup 
type :- j 
running :- true 
test :- true 
SEQ i- (0 FOR 4) 

c.bar( i) :- 0 
toggle :- false 
flag :- 0 

-- cell 
WHILE running 

SEC 
-- input/output and trace 
portlweight;j;c(l);c(2);c(3) 
IF 

test 
PAR 

IF 

IF 

c.bar(3( <> 6 
PAR 

Nin?c(2);nd(O);nd(l) 
Noutlc.bar(2);O;O 
Win?c(l);w(O);w(l) 
Wout!c.bar(1);w(2);w[3) 

c.bar(l) <> 6 
PAR 

Ein?c[3);e[O)i e (1) 
Eoutlc.bar(3);e[2],e(3] 

-- test closedown and set next 
-- cycles control output 
IF 

c.bar(l) -6 
SEC 

c(l) :- 6 
c.bar(l) :- c(3) 
c.bar(2) :- 0 
c.bar(3) :- c(l) 
test :- NOT«c.bar(3)-6) AND (c.bar(l)-6)) 
-- running :- test 
-- compu ta t i on 
IF 

(flag - 0) AND (c(3) - 3) 
SEC 

-- zero weight for line 
-- drawing 
IF 

type - n 
SEC 

c.bar(2) :- 3 
weight :- 0 

c.bar(l) :- 3 
toggle :- false 
flag :- 1 

(flag - 0) AND «(c(2) - 2) OR (c(2)-4)) 
SEQ 

-- modify column weight 
IF 

c(2) - 2 
weight :- weight - 1 

toggle :- false 
flag :- 1 

(flag - 0) AND (c(2) - 1) 



SEQ 
load column weight 

weight :- nd(O) 
toggle :- true 
flag:- 1 

flag - 1 
-- sort 
IF 

(c(l) - l) OR «c(l) - 1) OR (c(l) - 4)) 
-- stop sort 
flag :- 0 

toggle AND (weight> e(O)) 
SEQ 

c.bar( 2) :- 1 
weight ;- e(O) 
j :- e( 1) 

(NOT toggle) AND (weight < w(O)) 
SEQ 

c( 3) - 6 

c.bar(2) :- 2 
weight :- w(O) 
j :- w( 1) 

-- kill cell 
c.b.r(2) :- 6 

c( l) - 2 
c.b.r(2) :- 4 

-- set 1/0 of data 
w(2) :- weight 
e(2) :- weight 
w( l) :- j 
e(l) :- j 
-- change stateof sorting 
toggle :- NOT toggle 

PRoe t.cell( CHAN Nin, Nout, Sout, Sin, 
Win,wout , Eout,Ein • port, VAR Telement ) -

Tableau cell 

VAR runnlng,c(4),c.bar(4),test : 
VAR n(4),e(4],s[4],w(4],11ne.state 
SEQ 

-- setup 
test :- true 
running :- true 
SEQ j-(O FOR 4) 

SEQ 
n(j) :- 0 
e(j) :- 0 
s(j) :- 0 
w(j) :- 0 
c.bar(j) :- 0 

line.state :- 0 

-- run cell 
WHILE running 

SEQ 
portITelement;c(01iC[1)i C(2)i C (3] 
-- control 1/0 
IF 

test 
PAR 

IF 

IF 

IF 

IF 

c.bar(l) <> 6 
PAR 

Win?c(l),w(O),w(l) 
Woutlc.bar[1];w(2];w(3) 

c.bar(2) <> 6 
PAR 

Sin?c(O),s(O),s(l) 
Soutlc.bar(O);s(2),S[3) 

c.bar{l) <> 6 
PAR 

Ein?c(l),e(O),e(l) 
Eoutlc.bar(l),e(2),e(l) 

c.bar(O) <> 6 
PAR 

Nin?c( 2) ,n( 0) ,n( 1 I 
Noutlc.bar(2);n[2);n(3) 

-- decide for closedown 
IF 

c.bar(l) - 6 
c( 1 I :- 6 

rr 
c.bar(21 - 6 

c(21 :- 6 
-- evaluate new output controls 
-- and if ready to stop 
c.bar(21 :- c(OI 
c.bar(ll :- c(ll 
c.bar(OI :- c(2) 
c.bar(ll :- c(31 
test :- NOT««(c.bar(01-6IAND(c.bar(1)-6)1 

AND(c.bar(2)-6))AND(c.bar(ll-6))) 
-- running :- test 
-- computation 
IF 

-- column sorting 
c( 0 I - 1 

SEQ 
Telement :- et01 
line.state :- e(ll 

c(O) - 2 
SEQ 

Telement :- w(O) 



line.state :- wllJ 
generate weight modify control 
and mark line 

(c!O) - 3) OR (c!3) - 3) 
SEQ 

IF 
(Telement - 0) AND «c!3) - 3) AND (line.state - 0)) 

c.bar!O) :- 2 
(Telement - 0) AND ({cIO] - 3) AND (line.state - 0» 

c.barI3] :- 2 
c(3) - 3 

c.bar!O) :- 4 
c!O) - 3 

c.bar(3) :- 4 
line. state :- line.state + 1 

row sorting 
c(3) - 1 

SEQ 
Telement :- n(OJ 
line.state :- n(lJ 

c! 3) - 2 
SEQ 

Telement :- s(O) 
line.state :- s(l) 

output for next cycle 
wl21 :- Te1ement 
wl3l :- line.state 
e[2J :- Telement 
e(3J :- line.state 
n[2) :- Telement 
n[3) :- line. state 
s(2) :- Telement 
s(3) :- line. state 
-- modification of output 
IF 

c(2) - 3 
SEQ 

-- update reduced cost matrix 
IF 

line.state - 0 
Telement :- Telement - w[O) 

line. state - 2 
Telement :- Telement + w[O) 

e(2) :- w!O) 
c!O) - 4 

-- shift minimum left 
IF 

(line.state <) 0) OR «e!O) < Te1ement) AND (eIO) ) 0)) 
w(2) :- e!O) 

TRUE 
wl2l :- Telement 

c11) - 1 
accumulate row weight 

IF 

----------------------.......... 
(line.state - O) AND (Telernent - 0) 

e!21 :- w!OI + 1 
TRUE 

e(2) :- wlO) 
cl 2) - 1 

-- accumulate column weight 
IF 

(line.state - 0) AND (Telement - 0) 
s12) :- nlO) + 1 

TRUE 
s12) :- nlO) 

-- simple trick for 
-- output of line. state and cell data 
IF 

line.state > 0 
Telement :- Telement + (line.state*IOOO) 

PROe controller.l(eHAN sout,Sin. Eout,Ein, port) -
VAR running. test, state : 
VAR c14], c.bar[4],sI2] 
SEQ 

-- setup 
test :- true 
running :- true 
state :- 1 
-- cell 
WHILE running 

SEQ 
portI0;cI0);cl1);cI2);cI3) 
IF 

test 
PAR 

Sin?cIO);sIO) 
Soutlc.bar[O);s[l) 
Eoutlc.bar(3) 
Ein?cI3) 

c.barI3) :- clO) 
-- str.to.screen("c") 
-- seR controls 
IF 

c13) - 6 
SEQ 

test :- false 
-- running :- test 

(state - 1) OR IcIO) - 2) 
SEQ 

c.barIO) :- 3 
c.bar(3) :- 3 
s(l) :- s(O) 
state :- 2 

state - 2 
SEQ 

c.bar(O) :- 0 
c.bar( 3) :- 1 

co 
lO 
lO 



state :- 3 
(otate - 3) AND (c[O)-l) 

SEQ 
c.bar(3) :- 2 

TRUE 
c.bar[ 3] :- 0 

PROC controller.2(CHAN Sout,Sin, Win, wout, port) -
DEF minus.1 - -1 : 
VAR test,running,c.bar(4),c[41 
SEQ 

test :- true 
running :- true 
WHILE running 

SEQ 
-- 1/0 
portI0;c[O];c[l];c[2];c[3] 
IF 

test 
PAR 

IF 

IF 

c.bar[l] <> 6 
PAR 

Sln?cI0],c[2];cI3] 
Soutlc.bar[O};minus.1;O 

c.barIO] <> 6 
PAR 

Woutlc.bar(l) 
Wln?cll] 

teot :- NOT( (c.barll]-6) AND (c.barI0]-6)) 
-- running :- test 
-- filter controls signals recieved 
IF 

c.barI1] - 6 
c.barIO] :- 6 

c[ I] - 2 
c.barIO] :- 2 

c[ I] - 1 
c.barIO] :- 1 

clO] - 6 
c.bar[l] :- 6 

(cIO] - 3) OR (cIO] - 4) 
SEQ 

c.barll] :- 0 
c.barIO] :- clO] 

TRUE 
c.bar[O] :- 0 

PRDe Host.interface{CHAN Sout, Sin, Eout,Ein, Win,Wout, port) -

Host routine : in this design only the seR properties are 
implemented. The routine can be extended for 
Host loading and unloading of results 

--------------------........... 

VAR cl4J, c.bar[4],s[2), test, running 
SEQ 

-- setup 
test :- true 
running :- true 
-- cell 
WHILE running 

SEQ 
-- 1/0 
portIO;c(O);c(1];c(2);c(3) 
IF 

test 
PAR 

IF 

IF 

c.barll] <> 6 
PAR 

Ein?c[3] 
Eoutlc.bar(3) 
Soutlc.bar[O);O;O 
Sln?cIO];oIO];oll] 

c.barI3] <> 6 
PAR 

Wln?cll] 
Woutlc.bar(l) 

test :- NOT«c.bar[l] - 6)AND(c.barI3] - 6)) 
running :- test 

-- pass and filter control 
-- signals 
IF 

c.barll] - 6 
ell] .- 6 

(c(l] - 1) OR (ell] - 3) 
e.barIO] :- ell] 

TRUE 
e.barIO] :- 0 

c.barI3] :- ell] 
c.barll] :- c13] : 

PROC controller.4(CHAN Nin,Nout, Eout,Ein, port) _ 
OEF minus.l - -1 : 
VAR test,running,c[4],c.bar[4), e[2),n : 
SEQ 

-- setup 
test :- true 
running :- true 
-- cell 
WHILE running 

SEQ 
-- 1/0 
portI0;e[O],c[l];cI2];cI3] 
IF 

test 

'" 8 



PAR 
IF 

IF 

c.bar[2J <> 6 
PAR 

Ein?c[31;e[OJ;e[lJ 
Eoutlc.bar(3);minus.l:0 

c,bar( 3 J <> 6 
PAR 

Noutlc.bar(2);minus.l 
Nin?c(2);n 

test :- NOT«c.bar[2J-6)AND(c.bar[3J_6» 
-- running :_ test 
-- filter SCR signals 
IF 

c.bu[21 - 6 
c.bar[3J :- 6 

(c[3J - 3) OR (c[3J - 4) 
SEQ 

TRUE 

c.bar[3J :- c[3J 
c[3J :- 0 

c.bar[3J :- 0 
c.b.r[21 :- c[3J : 

PROC controller.3{CHAN Nin,Nout, Win,Wout, port) • 

controller.3 : line drawing controllers. Keeps count of 
lines drawn , and issues weight clearance 
signals to sorters. 
Issuses API closedown signal. 
Filters some seR controls. 

DEF maxval - 1000 
VAR teat,runnlnq, ~(4J,c.bar(4J,out(4J,a,b,8tate,nlineB I 
SEQ 

-- setup 
nlines :- 0 
running : - true 
test :- true 
state :- 1 
-- cell 
WHILE running 

SEQ 
-- I/O 
portI0;c(0);c[lJ;c[2J;c[3J 
IF 

test 
PAR 

Nin?c(2);a;c[3J 
Noutlc.bar(2);out[O];out(2] 
Win?c[ll;b;c[OI 
Wcutlc.bar[l);out(l];out[3] 

set next data output 

--------------------............ 
out( 0 J :- maxval 
out(lj :- maxval 
out[21 :- c[31 
out[31 :- c[OI 
-- decide if cell dead 
IF 

c.bar[ll - 6 
SEQ 

test :- false 
-- running :- false 

c.bar[ll :- 0 
c.bar[21 :- 0 
-- line drawing control 
IF 

state - 1 
-- wait for row and column 
-- weights to be loaded and 
-- sorted 
SEQ 

c.bar[21 :- 0 
IF 

c[21 - 2 
state :- 2 

TRUE 
c.bar[ll :- c[21 

state _ 2 
SEQ 

-- draw lines 
IF 

nlines _ n 
SEQ 

stop enough lines 
c[ 01 :- 7 

c.bar[ll :- 6 
c.barI2) :- 6 

(a - 0) AND (b - 0) 
SEQ 

-- all zeroes covered and 
-- < n lines. Modify cost 
-- Tableau. 
c.bar[ll :- 2 
c.bar[21 :- 0 
state :- 1 

(b < a) 
SEQ 

-- draw column line 
c.b.r(2) :- 3 
nlines :- nlines + I 
out[OI :- 0 
state :- 3 

(b >- a) 
SEQ 

-- draw row line 
c.bar[ll :- 3 



nlines :- nlines + 1 
outll) :- 0 
state :- 5 

-- delay next control for 
-- synchronisation purposes 
state - 3 

state :- 4 
state - 4 

SEO 
state :- 7 
cobarll) :- 4 

state - 5 
state :- 6 

state - 6 
SEO 

cobarl2) :- 4 
state :- 7 

-- wait for new row and column weights 
-- to be resorted 
(state - 7) AND «cI2)-3) OR (cll) _ 3)) 

state :- 8 
(state - 8) AND IlcI2)-4) OR (cll) - 4)) 

stllte :- 2 : 

PRcC min.shift(CHAN Nin,Nout, Sout,Sin, Eout,Ein, port) -

Min.shift : collects minimum uncovered element in each tableau 
row and pushes overall minimum up to controller.! 

VAR test, running,c( 4) ,c.bar( 4) ,e( 4) ,a,b;d 
SEO 

-- setup 
test :- true 
running :- true 
-- cell 
WHILE running 

SEO 
-- I/o 
portld,b,cI0),cI2),cI3) 
IF 

test 
PAR 

IF 

IF 

cobarl2) <> 6 
PAR 

SoutlcobarI0),eI3) 
Sin?c[ O);a 
Eoutlc.bar[3);e(2);O 
Eln?cI3),eI0),ell) 

cobarl3) <> 6 
PAR 

Nin?cI2),d 
Nouttc.bar(2);b 

-- SCR filtering 
IF 

cobarl2) - 6 
c12) :- 6 

cobarl2) :- c[O) 
cobarlO) :- c12) 
cobarl3) :- c12) 
test :- NOT«cobarI2) -6) AND (cobar[3) -6)) 
-- running :- test 
-- shuffle minimum available 
e13) :- 0 
IF 

c12) - 3 
SEO 

e12) :- d 
e13) :- d 

cl 0) - 1 
SEO 

cobarl3) :- 1 
e12) :- 0 

clO) - 2 
IF 

(a> 0) AND «a < eIO))AND (e[O) >0)) 
SEO 

TRUE 
SEO 

b :- a 
e12) :- 0 

b :- el 0) 
e12) :- 0 

procedures related to the set up and running of the APt 

mapping functions to locate grid elements and channels 

PRDe lOC.p{VALUE i,j, VAR r )-
SEO 

r :- «(I-l)'(n.l)).j)-l 

PRDe loc.d{VALUE i,j, VAR r) -
SEO 

r :- «(i-l)'n).j)-l : 

PROC loc.t(VALUE i,j , VAR r) -
SEO 

r :- «(i-l)'(n.2)).j)-1 : 

-- input output interface routines 
PRoe getdata(VAR mem( J, r.index(J, c.index() -

SEO . 
str.to.screen("*n enter reduced cost matrix·) 
SEO I -11 fOR n) 

SEO 
str.to.screen("lIIn( ") 

\D 
o 
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SEO j -(1 FOR n) 
VAR t1 : 
SEO 

loc.d(I,j,t1) 
num.from.keyboard(mem(tl]) 
num.to.screen(mem(tl)) 
str.to.screen(" ") 

str.to.screen(")") 
r.lndex(I-1) :- 1 
c.lndex(I-1) :- 1 

atr.to.screen("·n·n") 

PROC putdata(VALUE mem[], r.index[], c.index(J) -
CHAN fptr : 
SEO 

open.fl1e("ftab","w",fptr) 
str.to.chan(fptr,"*n solution tableau"} 
str.to.screen("*n solution tableau") 
SEO 1-(1 FOR n) 

SEO 
str.to.chan(fptr,"*n{ "} 
str.to.screen("·n[ ") 
nurn.to.chan(fptr,r.index(i-l) 
num.to.screen(r.index[i-l) 
str.to.chan(fptr,":") 
ste.to.screen(":") 
SEO j _(1 FOR n) 

VAR tl ; 
SEO 

loc.d( 1 ,j, t1) 
nurn.to.chan(fptr,mem(tl) 
num.to.screen(mem[tl) 
str.to.chan(fptr," ") 
str.to.screen(" ") 

str.to.chan(fptr,"J") 
str.to.screen("]") 

str.to.chan(fptr,"*n(") 
str.to.screen("*n[ ") 
SEO 1 -(1 FOR n) 

SEO 
num.to.chan(fptr,c.lndex[I-1)) 
num.to.screen(c.index[i-1J) 
str.to.chan(fptr," ") 
str.to.screen(" 01) 

str.to.chan(fptr,"}*n") 
str.to.screen("J*n") 
close.fl1e(fptr) : 

proc s.mlx(CHAN port() -

screen mixer for tracing 

provides a series of tableaus one for each 
cell cycle. when s.mix is not used the port channel 
used in other procedures is commented out 

chan fptr : 
var a : 
var c(4J,z,b,running,flag 
seq 

open.file("result","w",fptr) 
str.to.screen{"*n options") 
str.to.screen{"*nl: Table *n2: control wavefront") 
str.to.screen("*n*n Enter option :") 
num.from.keyboard(b) 
num.to.screen(b) 
running :- true 
flag :- 0 
-- for all cycles 
while running 

seq 
z :- 0 
str.to.screen("*nstart cycle*n") 
str.to.chan(fptr,"*nstart cycle *n") 
seq i -(0 for (n+2)*(n+2)J 

seq 
z :- z + 1 
port[ i ]?A;C( 0) ;c[ 1 J ;cl 2] ;c( 3) 
str,to.screen(" ") 
str.to.chan(fptr," "l 
IF 

b - 1 
seq 

num.to.chan{fptr,a) 
num.to,screen(a) 

true 
seq j-(O for 4) 

seq 
num.to.screen(c(j) 
num.to.chan(fptr,c(j) 

str.to.screen(" ") 
str.to.chan(fptr," ") 
if 

if 

z - (n+2) 
seq 

z :_ 0 
str.to.chan(fptr,"*n") 
str.to.screen("*n") 

termination conditions 

c(O) - 7 
running :- false 

rather primitive but 
effective program stop 

close.flle(fptr) 
abort.program : 

'" o w 



main 

Specification of the whole Tableau 
channels are for two communication north-south(ns) and east-west{ew) 
procedure call s.mix can be uncommented to produce trace 

CHAN ns.1[61ze), ns.2[size), ew.l[size), 
VAR mem[n*n], c.index[n), r.index[n) 
SEO 

ew.2(sizej : 

getdata(mem,c.1ndex,r.index) 
PAR 

s.mlx(port) 
-- tableau 
VAR i,j : 
PAR 1- (1 FOR (n+2)) 

PAR j- (1 FOR (n+2)) 
VAR tl,t2,t3,t4,tS,t6 
SEO 

loc.pO,j,tl) 
loc.p(j,I,t3) 
loc.t(I,j,tS) 
t2 : - tl - 1 
t4 :- t3 - 1 
IF 

i - 1 
IF 

j - 1 
contro11er.l(ns.l(t3],ns.2[t3],ew.l[tlJ,ew.2(tll,port(tSJ) 

j - (n+2) 
controller.2(ns.l[t3J,na.2[t3J,ew.llt 21,ew.2It2J,portltS) 

TRUE 
Host.interface(ns.l(t3],nS.2(t3],ew.l(tl],ew.2(tl), 

i - (n+2) 
IF 

ew.1(t2),ew.2(t2),port(tS) ) 

TRUE 

j - 1 
controller.4(ns.l(t4J,ns.2(t4J,ew.l( t1 l,ew.2(tlJ,port[tS]) 

j - (n+2) 
controller.3(ns.1(t4),ns.2(t4),ew.1(t2),ew.2(t2),port(tS)) 

TRUE 
col.sort(ns.l[t4J,ns.2[t4],ew.lltl],ew.2(tl], 

ew.1(t2),ew.2(t2),port(tS), c.index(j-2)) 

VAR t6 : 
SEO 

loc.d(i-1,j-1,t6) 
IF 

j - 1 
min.shift(ns.1(t4),ns.2(t4),nS.1(t3),nS.2(t3), 

ew.1(t1),ew.2(t1),port(tS) 
j - (n+2) 

row.sort(ns.1(t4),ns.2(t4),ns.1(t3),ns.2(t3), 
ew.1(t2),ew.2(t2),port(tS), r.lndex(I-2)) 

TRUE 
t.ce11(ns.1(t4],ns.2[t4),ns.l(t3],ns.2(t3],ew.1(t2), 

ew.2(t2),ew.1(t1),ew.2(t1),port(tS),mem(t6)) 
putdata(mem,r.index,c.index) 

'" o ... 



program 18 

A Systolic Rank Annihilation Network 

NOTES : The program implements the Sherman-Morrison Rank Annihilation 
formula for the computation of the inverse of a matrix S, which 
differs from a matrix A of known inverse by only a single row 
column or single element. The array can be used as a building 
block for cascaded matrix schemes for arbitray matrix inversion. 
The array itself consists of three Linearly connected arrays, 

seperated by a 2-D grids of delay elements implementing matrix 
transposition operations. Pipelining occurs within each Linear 
Array and also globally through the whole system. As the directions 
of pipelining are at right angles this is called Orthogonal 
Pipelining. -
The array expects the known inverse and the modification data 

in in two vectors input from a file called stream. 

starting parameters, w-2n-1 the bandwidth of a dense n*n matrix. 

DEF w - 5,pipe.length-2 

-- Interfacing routines for input/output 

EXTERNAL proc fp.num.to.chan(chan c, value float f) 
EXTERNAL proc num.to.chan(chan c, value n) : 
EXTERNAL proc str.to.chan(chan c, value sI)~ : 
EXTERNAL proe fp.num.from.chan(chan c,var float f): 
EXTERNAL proe num.from.chan(chan c,var n) : 
EXTERNAL proc open.file(value path.name{ },access[J,chan io.chan): 
EXT~RNAL proc close.file(chan io.chan) : 
EXTERNAL proc fp.num.to.screen.f(value float f,value w,d) : 
EXTERNAL proe num.to.screen(value n) : 
EXTERNAL proc str.to.screen(value s(l) 

-- include cells to construct Transposition Network 

EXTERNAL proc trans.net(Chan nin(l,sout( ],port) : 
EXTERNAL proc t.cell(chan n,s,win,eout,ein,wout,clk) 
EXT!RNAL proc loc{value i,j, var r) : 

-- include cells for Outer Product array 

EXTERNAL proc m.t.m.b(CHAN Nin[ I.Sout(I.Left[ I.Right[l.portl 
EXTERNAL proc ips.b(CHAN Nin,Sout,win,Eout,Ein,Wout,clk) 
EXTERNAL proe z.cell(CHAN nin,sin,ein,eout,clk) : 
EXTERNAL proe router(CHAN nin,win,wout,clk) 

-- include cells for Update old Inverse 

EXTERNAL proc modifier(CHAN Nin[ I.Sout( I.Left[I.Rlght[ I.port) 
EXTERNAL proc ips.c(CHAN Nin,Sout,Win,Eout,Ein,wout,clk) : 

-- include cells for "matrix vector and transposed matrix vector 

EXTERNAL proc m.t.m.a(CHAN Nin[ l,Sout[ 1,Left( l,Right( l,port) : 
EXTERNAL proc ips(CHAN Nin,Sout,win,Eout,Ein,Wout,clk) : 

PROC rank .a( CHAN north[ I • south[ I .left.l [ I. right.l [ I .left. 3 [ I. right. 3 [ I. port) -

High level definition of the Rank Annihilator 

CHAN link1(wj ,link2(wJ ,link3(w] ,link4(wJ: 
CHAN left.2[21.right.2(21.clk[71 : 
PAR _ 

m.t.m.a(north,linkl,left.l,right.l,clk(O) 
Trans.net(linkl,link2,clk(1) 
m.t.m.b(link2,link3,left.2,right.2,clk[2]) 
z.cell(left.l[11.1eft.3[01.left.2[11.1eft.2[01.clk[31) 
router(right.l[01.right.2[01.right.2[11.clk[41) 
Trans.net(link3,link4,clk[5]) 
modifier(link4,south,left.3,right.3,clk(6}) 
-- local clock distributor 
VAR running : 
SEQ 

running :- TRUE 
WHILE running 

SEQ 
port?running 
PAR i-CO FOR 71 

clk(i) I running 

main 

Themain section calls the Annihilation procedure 
and provides a global Source and Sink routine for 
reading input and outputting the result to the Host. 

CHAN north(w], south[w]: 
CHAN left.l[21.ri9ht.l[21 .left.3(21.right.3[21 
CHAN linkl[wl.link2(wl.link3[wl.link4[wl : 
CHAN clk[pipe.lengthl 
SEQ 

PAR 

rank.a(north,south,left.l,right.l,left.3,right.3,clk[lJ) 

-- Source 

VAR running,n,k,cveclw+2} 
VAR FLOAT veclw+2},zero 
CHAN ptr : 
SEQ 

zero :- 0.0 
running:_ TRUE 
k :- 0 

'" o 
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-- matrix comes from file stream 
open.file("stream","r",ptr) 
num.from.chan(ptr,n) 
WHILE running 

SEQ 
clk(O)?running 
IF 

Sink 

running 
SEQ 

IF 
k - n 

.SEQ 
file empty 

close.file(ptr) 
k:- k+l 
SEQ 1-10 FOR w+21 

SEQ 

k (- n 
SEQ 

veclll :- 0.0 
cvecll} :- 0 

get next input line 
k :- k+l 
SEQ 1-10 FOR w+2) 

SEQ 
fp.num.from.chan(ptr,vec(i) 
num.from.chan(ptr,cvec(i) 

-- send inputs 
PAR 

PAR i-Il FOR wl 
northli-lllveclil;cveclil 

left.llOllveclOI 
right.l(l)lvec(w+l);cvec(w+l) 
right.3(1)lzero;zero 

VAR running,cvec(w+2) 
VAR FLOAT vec[w+21 
CHAN fptr : 
SEQ 

running :- TRUE 
-- results in file result 
open.file("result","w",fptr) 
WHILE running 

SEQ 
-- stop when last 
-- result read 
IF 

cvecl(w+l)/21 - 2 
running :- FALSE 

-- distribute clock 
PAR i-IO FOR pipe.length} 

clkl i II running 

IF 
running 

SEQ 
-- get output 
PAR 

PAR i-Il FOR wJ 
southll-ll?veclll;cveclil 

left.3111?vecI01;cvecI01 
rlght.310l1any 

-- send to Host 
. SEQ 1-10 FOR w+21 

SEQ 
fp.num.to.screen.f(vec(i),lO,3) 
fp.num.to.chan(fptr,vec(i) 
str.to.chan(fptr," ") 

str.to.screen("~n") 
str.to.chan(fptr,"~n") 

close.fllelfptr) 

'" o 
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program l8a 

A simple Linear Array interlevaing of two matrix vector problems 
on the same array.One problem is Au-x and the second (vt)A-(yt), 
where vt andyt are transpose vectors v and y. Both problems use 
the matrix A, which is only input once 

size of the array - Bandwidth of matrix A 

DEFwO-S 

LIBRARY PROC ips(CHAN Nin,Sout,Win,Eout,Ein,Wout,clk)-

-- basic cell :alternates between problems on succesive cycles. 

VAR FLOAT aout,a,tl,t2,outl,out2 
VAR c,cl,c2,c3,running 
SEO 

-- setup 
running :- TRUE 
aout :- 0.0 
outl :- 0.0 
out2 :- 0.0 
-- cell 
WHILE running 

SEO 
clk?running 
IF 

running 
SEO 

-- 1/0 
PAR 

Nin?a;c 
Win?tl 
Ein?t2;cl 
Soutlaout;c2 
Eoutloutl 
woutlout2:c3 

computation 
c2 :- c 
c3 :- cl 
IF 

c - 1 
SEO 

out2 :- t2 + (o*tl) 
out! :- tl 

c - 0 
SEO 

out2:- t2 
outl :- tl + (aout*t2) 

aout:- a: 

LIBRARY PROC m.t.m.a(CHAN Nin(I.Sout(I,Left( I,Right( I,port) _ 

The Linear Array Specification 

CHAN we(wO-ll,ew(wO-11,clk(wOI : 
PAR 

ips(Nin(O),Sout(O),Left[O),we[O),ew[O),Left(l),clk[O) 
PAR i-(l FOR wO-21 

ips(Nin(i),Sout(i),we[i-l),we[il,ew[i),ew(i-l),clk(i) 
ips(Nin(wO-l),Sout(wO-l),we(wO-2),Right[O),Right(1),ew[wO-2),clk(wO-l) 
-- local clock distributer 
VAR running : 
SEO 

running :- TRUE 
WHILE running 

SEO 
port?running 
PAR i-(O FOR wOI 

clk[i)lrunning 

<D o ..., 



program lSb 

Linear Array for computing the Outer Product x(yt) with yt a 
vector which isthe transpose of y 

bandwidth of matrix x(yt). 
DEF w2 - 5 : 

LIBRARY PROC ips.b(CHAN Nin,Sout,Win,Eout,Ein,Wout,clk)-

Basic cell: reads amatrix from north inputs in typical systolic 
format x and y fromleft and right respectively. 
computes xli) • y(j) i,j-l(l)n inserting behind the 
matrix input outputting south. 

VAR FLOAT aout,a,tl,t2,outl,out2 
VAR c,cl,c2,c3,running 
SEQ 

-- setup 
running :- TRUE 
aout :- 0.0 
outl :- 0.0 
out2 :- 0.0 
-- cell 
WHILE running 

SEQ 
clk?running 
IF 

running 
SEQ 

-- i/o 
PAR 

Nin?a;c 
Win?t1 
Ein?t2;cl 
Soutlaout;c2 
Eoutloutl 
Woutlout2;c3 

computation 
c2 :- c 
c3 :- cl 
IF 

c - 1 
SEQ 

aout :- a 
c - 0 

SEQ 
aout :- outl*out2 

outl :- tl 
out2 :- t2 

LIBRARY PROC m.t.m.b(CHAN Nin[ I,Sout[I,Left[ I,Right[J,port) _ 

-- Specification of the array 

CHAN we(w2-11,ew(w2-1],clk(w2J 
PAR 

ips.b(Nin[O[,Sout[OJ,Left[OJ,we[OJ,ew[OJ,Left[lJ,clk[OJJ 
PAR i-[l FOR w2-2J 

ips.b(Nin{i],Sout[i1,we[i-l],we(i],ew[i],ew[i-l],clk[i]) 
ips.b(Nin[w2-1J,Sout[w2-1J,we[w2-2J,Right[OJ,Right[lJ,ew[w2-2I,clk[w2-11) 
-- local clOCk distributer 
VAR running : 
SEQ 

running :- TRUE 
WHILE running 

SEQ 
port?running 
PAR i-[O FOR w21 

clk[iJlrunning 

LIBRARY PROC z.cell(CHAN nin,sout,ein,eout,clk) • 

Scalar cell : Computes x*v inner product of vectors,and 
delays xCi) i-l(l)n to synchronise with 
y(j) j-l(l)n in the outer product array 

VAR FLOAT total,result,x,xout,tl 
VAR c,cl,running : 
SEQ 

-- setup 
running :- TRUE 
total :- 1.0 
xout :- 0.0 
-- cell 
WHILE running 

SEQ 
clk?running 
IF 

running 
SEQ 

-- i/o 
PAR 

nin?x;c 
eout!xout 
ein?tl;cl 
soutlresult 

-- computation 
IF 

c - 1 
SEQ 

total :- total + (x*xout) 
xout :- 0.0 

c - 2 
SEQ 

result :- total + (x*xout) 
total :- 1.0 

'"' o 
ro 



xout :- 0.0 
TRUE 

xout :- X 

LIBRARY PROC router{CHAN nin,win,wout,clk) _ 

-- link cell : simplifies specification details 

VAR FLOAT Y 
VAR running 
SEQ 

-- setup 

of global network,performs no computation. 

y :- 0.0 
running :- TRUE 
-- cell 
WHILE running 

SEQ 
clk?running 
IF 

running 
SEQ 

-- route 
-- data 
PAR 

nin?y 
win?any 

woutly;O : 

Program 18c 

Linear Array for updating a Known inverse to inverse of target 
matrix. Requires input of a scalar z+l from the left, and known 
inverse interleved with x*{yt) outer product. 

Maximum Bandwidth two interleaved matrices 

OEF w3 - 5 

LIBRARY PROC ips.c{CHAN Nin,Sout,win,Eout,Ein,wout,clk)

-- basic cell : Performs divide and subtract 

VAR FLOAT aout,a,tl,t2,outl,out2,tmp 
VAR c(6J,running,flag 
SEQ 

-- setup 
flag :- FALSE 
running :- TRUE 
SEQ i-tO FOR 61 

e( i I :- 0 
aout :- 0.0 
outl :- 0.0 
out2 :- 0.0 
tmp :- 0.0 
-- cell 
WHILE running 

SEQ 
clk?running 
IF 

running 
SEQ 

-- i/O 
PAR 

Nin?a;c[OJ 
Win?tl 
Ein?t2;c(1] 
SoutJaout;c[4J 
EoutJoutl 
woutlout2;c(S) 

-- computation 
e[4J :- e(2J 
e[5J :- e(3J 
e(2J :- e[OJ 
e(3J :- e[ll 
IF 

e( 0 I - 2 
aout :- 0.0 

flag AND (outl <> 0.0) 
-- modify 
SEQ 

\1) 

o 
\1) 



aout :- tmp -(a/outl) 
flag :- FALSE 

(c[OI - 1) 
-- prepare 
SEQ 

aout :- a 
tmp :- a 
flag :- TRUE 

(c[OI - 0) OR (outl - 0.0) 
bout :- 0.0 

outl :- t1 
out2 :- t2 : 

LIBRARY PROe modifier(CHAN Nin[),Sout[ ).Left[),Right[J,port} _ 

-- Specification of the Array 

CHAN we[w3-11,ew[w3-11,clk[w31 
PAR 

ips.c(Nin[OI,Sout[OI,Left[OI,we[OI,ew[OI,Left[ll,clk[OI) 
PAR i-[l FOR w3-21 

ips.c(Nin[il,Sout[il,we[i-11,we[il,ew[il,ew[i-11,clk[iI) 
ips.c(Nin[w3-11,Sout[w3-11,we[w3-21,Right[01,Right[11,ew[w3-21,clk[w3-11) 
-- loeal clock distributer. 
VAR running : 
SEQ 

running :- TRUE 
WHILE running 

SEQ 
port?running 
PAR i -[0 FOR w31 

clk(i)lrunning : 

Program led 

A 2-D array of delay/swap cells for Transposing a matrix with 
bandwidth wl. Each cell is either a simplr delay cell or capable 
of passing and recieving data from the left or right adjacent 
neighbours. 

define number of processors and channels 
D£F wl- 5, size _ wl*(w1+1) 

proc loc.p(value i,j,var r) _ 
-- locate cells 
seq 

r:- «(i-1).w1)+j)-1 

LIBRARY PROe 10c(VALUE i,j, VAR r) _ 
-- locate channels 
SEQ 

r :- «(i-1).(w1+1))+j)-1 

LIBRARY PROe t.cell(VALUE type, CHAN n,s,win,eout,ein,wout,clk ) _ 

-- Basic cell : Type dictates whether right swap or left swap 
cell or just a plain delay cell 

DEF left - 1, right - 0: 
VAR FLOAT tsave,t : 
VAR running,c,cl 
SEQ 

-- setup 
running:- true 
tsave :- 0.0 
-- cell 
WHILE running 

SEQ 
clk?running 
IF 

running 
SEa 

-- I/o 
PAR 

n?t;c 
sltsave;cl 

-- compute 
IF 

type - left 
PAR 

woutlt;c 
win?tsave;cl 

type - right 
PAR 

eout!t;c 
ein?tsave;cl 

\D' .... 
o 



TRUE 
SEO 

cl :- c 
tsave :- t : 

LIBRARY PRoe trans.net(CHAN nln(1, sout(1 ,port) -

-- Define 2-D grid of t.cells 

DEF left-I, right-O, delay-2 : 
CHAN ns{size), ew(size),we(size),clk(wl*wIJ 
SEO 

PAR 
-- Array inteface 
VAR running : 
SEO 

runni ng : - true 
WHILE running 

SEO 
-- local clock 
port?running 
PAR i-tO FOR (wl*wl») 

clk{i)lrunning 
-- i/o interface 
IF 

running 
PAR 

-- input north 
PAR j-Il FOR wlJ 

VAR tl,x,c : 
SEO 

loc(j,l,tl) 
nin(j-l)?xlc 
ns{tl)!x;c 

output south 
PAR j -11 FOR wlJ 

VAR tl,x,c : 
SEO 

loci j ,wl, tl) 
ns{tl+l)?x;c 
sout(j-l)!x;c 

layout cells 
PAR i-Il FOR wlJ 

PAR j-Il FOR wlJ 
VAR tl,t2,t3,t4,t5 : 
VAR even.i,even.j,type 
SEO 

-- locate cell channels 
even.l :- ««I/Z)*Z)-I) - 0) 
even.j :- ««j/Z)*Z)-j) - 0) 
10c(I,j,tl) 
tZ :- tl + 1 
10clj,I,t3) 
t4:-t3+l 

10c.p(I,j,tS) 
-- decide type 
IF 

NOT even.i 
SEQ 

IF 
even.j 

type :
j - wl 

type :
TRUE 

type :-
even. i 

SEO 
IF 

j - 1 

left 

delay 

right 

type :- delay 
NOT even.j 

type :- left 
j - wl 

type :- delay 
TRUE 

type :- right 
create cell 

t.cell(type,ns(t3),ns[t4),we(tl),we(t2),ew(t2),ew(tl],clk(t5]) 



program 19 

Bi-Diagonal Triangular (Toeplitz) Inverter 

Notes : This systolic Array computes the inverse of a triangular 
matrix with constant elements on the diagonals. It expects 
loading controls for loading a parameter corresponding to 
diagonal element and a choice of lower or upper triangular 
inversion.Parameters are loaded sequentially,and the 
resulting inverse is output in standard diagonal format 
for Linear systolic Arrays. A control signal accompanies 
the output matrix for use with other Systolic Designs. 

bandwidth of inverse 
DEF w - 5 : 

-- input/output routines 
EXTERNAL proc fp.num.to.screen(value float f) : 
EXTERNAL proc num.to.screen(value n) 
EXTERNAL proc str.to.screen(value s[]) : 
EXTERNAL proc fp.num.from.keyboard(var float f) 
EXTERNAL proc num.from.keyboard(var n ) 

PROe b.cell(CHAN wln,sout,ein,wout,clk) _ 

Boundary cell 

VAR running,toggle,flag,coutl,cout2,c 
VAR FLOAT y,x,p,a 
SEO 

running :- TRUE 
toggle :- FALSE 
y :- 0.0 
WHILE running 

SEQ 
clk1running 
IF 

running 
SEO 

-- 1/0 
PAR 

win?y 
ein?a;c 
soutlx;cout2 
woutlx;coutl 

cout! :- c 
-- loading and computation 
IF 

c - 2 
x :_ a 

c - 1 
SEO 

load 
p :- a 

coutl :- 0 
flog :- TRUE 
toggle :- TRUE 

(c-O) AND flag 
SEO 

-- start computing 
IF 

(p - 0.0) OR (NOT toggle) 
x :- 0.0 

toggle 
x :- (l.O-y)/p 

toggle :- NOT toggle 
cout2 :- 1 
flag :- FALSE 

c - 0 
SEO 

IF 

simulate systolic 
input 

(p - 0.0) OR (NOT toggle) 
x :- 0.0 

toggle 
x :- (O.O-y)/p 

toggle :- NOT toggle 
cout2 :- 0 : 

PROC i.cell(CHAN win,eout,ein,wout,clk) _ 

inner product cell 

VAR running,toggle,c,cout 
VAR FLOAT y,x,xout,yout,p 
SEQ 

running :- TRUE 
toggle :- rALSE 
yout :- 0.0 
xout :- 0.0 
WHILE running 

SEO 
clk?running 
IF 

running 
SEO 

-- 1/0 
PAR 

IF 

win?y 
ein?x;c 
woutlxout;cout 
eoutlyout 

c - 2 
-- load 
SEO 

p :- x 



cout :- 0 
toggle :- FALSE 

c - 0 
SEO 

-- compute 
IF 

toggle 
yout :- y + (p.x) 

TRUE 
yout :- 0.0 

toggle :- NOT toggle 
xout :- x 
cout :- 0 : 

PROC g.cell(CHAN win,eout,ein,wout,sout,clk) _ 

Generating cell : stores implicit form of inverse 
and generates true inverse in standard systolic diagonals 
format. 

VAR running,coutl,cout2,cout3,cl,c2,on,toggle 
VAR FLOAT r,tmp[3],xout,x,save 
SEO 

-- intialise 
running :_ TRUE 
r :- 0.0 
tmp[O] :- 0.0 
tmp[l] :- 0.0 
coutl :- 0.0 
cout2 :- 0.0 
cout3 :- 0.0 
on :- FALSE 
-- start cell 
WHILE running 

SEO 
clk?runninq 
IF 

running 
SEO 

-- 1/0 
PAR 

win?c2 
ein7x;cl 
eouttcout2 
wouttxout;coutl 
souttr;cout3 

-- book-keeping 
tmp[2] :- tmp[l] 
tmp[l] :- tmp[O] 
tmp[O] :- x 
cout2 - c2 
coutl - cl 
xout - x 
IF 

cl - 3 
SEO 

cell off 
on :- FALSE 
r :- 0.0 
cout3 :- 0.0 

c2 - 2 
SEO 

-- wake cell 
r :- tmp[2] 
toggle :- FALSE 
on :- TRUE 
cout3 :- l.0 

toggle AND on 
SEO 

-- output dummy element 
cout3 :- 1.0 
r :- save 
toggle : - FALSE 

(NOT toggle) AND on 
SEO 

-- output true element 
cout3 :- 0.0 
save :- r 
r :- 0.0 
toggle :- TRUE. 

PROe border.I(CHAN einl,eoutl,ein2,eout2,clk) -

relay cell: keeps data moving in generater 
array, times controls 

VAR cl,c2,coutl,cout2,running 
VAR FLOAT tl,t2,outl 
SEO 

-- intialise 
running :- TRUE 
outl :- 0.0 
cout!:- 0 
cout2 :- 0 
-- start cell 
WHILE running 

SEO 
clk7running 
IF 

running 
SEO 

-- 1/0 
PAR 

ein17tl;cl 
ein27t2;c2 
eoutlloutl 
eout2Jcout2 

-- start inverse output 



IF 
c2 • 1 

SEQ 
str.to.screen{"here") 
cout2 :- 2 

TRUE 
cout2 :- 0 : 

PRoe border.r(CHAN nin,win,wout,clk) -

connector between substitution array 
and generator array, modifies control 
values and identities end of inverse output 

VAR running,c!,c2,CQut 
VAR FLOAT outl,tl 
SEQ 

-- start cell 
running :- TRUE 
WHILE running 

SEQ 
clk?running 
IF 

running 
SEQ 

-- i/o 
PAR 

nin?tl;cl 
win?c2 
woutloutl:cout 

-- move data 
IF 

c2 - 2 
SEQ 

out! :- 0.0 
cout :- 3 

TRUE 
SEQ 

out! :-tl 
cout :- cl 

PROC tri.inv(CHAN south[),input,port) _ 

The Triangular Inverter 

Notes: consists of a substitution array 
and a generating array torthe triangular 
matrix inverse. substitution array is given 
toeplitz parameters andcontrols on input,matrix 
output on south. 

CHAN we[w+l],ew[w+l],clk[w+4],ltS) 
PAR 

-- substitution array 

b.cell(1[0[.1[11.input.l[21.clk[01) 
i.cell(1[31.1[01.1[21.1[41.clk[11) 
-- generating array 
border.l(1[41.1[31.ew[01.we[01.clk[21) 
border.r(1(11.we(wl.ew(wl.clk(3[) 
PAR i-[O FOR wl 

9. ce11 (we(il.we(i+ll.ew(i+l[.ew(i).south(i).clk(i+4)) 
-- interface spooler 
VAR running : 
SEQ 

running :- TRUE 
WHILE running 

SEQ 
port?running 
PAR i-tO FOR w+41 

clk(l}lrunning : 

PROC inverter(CHAN input,southt ),port) -

Full Inverter : consists of two triangular 
inverters and communication 

interface. One inverter produces upper triangular 
inverse the other Lower triangular. Parameters are 
loaded by input channels and split by interface to 
correct inverter. Output is via south channel and 
retains position in full matrix output 

CHAN south.llw),south.rlw],inI2),clk[2) 
PAR 

-- inverters 
tri.inv(south.l.in(O).clk(OI) 
tri.inv(south.r,in(l),clk[l]) 
-- interface 
VAR running,tl,c,cl,c2,x 
VAR FLOAT a : 
SEQ 

running :- TRUE 
WHILE running 

SEQ 
port7runnlng 
PAR i-[O FOR 21 

clk[ i 11 running 
IF 

running 
SEQ 

-- parameters 
input?a;cl;c2 
PAR 

-- upper or lower 
IF 

c2 - 1 
PAR 

in(O)la;cl 



-- main 

in[l)IO.O,O 
TRUE 

PAR 
in[l] la;cl 
inIO)IO.O,O 

distribute input 
PAR i-Il FOR w-l) 

VAR FLOAT x : 
VAR c : 
SEQ 

south.l(iJ?x;c 
south(w-(l+i»)lx;c 

-- collect output 
PAR i-Il FOR w-l) 

VAR FLOAT x : 
VAR c : 
SEQ 

south.rli)?x;c 
south(i+(w-l»)!x;c 

-- merge leading diagonal 
IF 

c2 - 1 
VAR FLOAT x : 
VAR C : 
SEQ 

TRUE 

PAR 
south.l[O)?xlc 
south.r(OJ?tl;cl 

south(w-l]!x;c 

VAR FLOAT x ; 
VAR C : 
SEQ 

PAR 
south.l(O)?tl;cl 
south. cl 0) ?x;c 

south(w-lJ lx;c 

CHAN south[ 2*w] ,elk, in : 
VAR FLOAT pl,vec[(2*w)-l) 
VAR p2,p3,evec(2*w}-11 : 
PAR 

inverter(in,south,elk} 
-- Host Interface 
VAR running : 
SEQ 

running :- TRUE 
WHILE running 

SEQ 
str.to.screen("*n parameters >") 
fp.num.from.keyboard(pl) 
fp.num.to.screen(pl) 
str.to.screen(" ") 

num.from.keyboard(p2) 
num.t~.screen(p2) 
str.to.screen(" ") 

. num.from.keyboard(p3) 
num.to.screen(p3) 
str.to.screen("*n") 
if 

p3 - 6 
running :- FALSE 

clklrunning 
-- collect result and 
-- output 
if 

running 
SEQ 

inlp1 iP2;p3 
PAR i -10 FOR (2'w)-1) 

southli)?vecli),cvecli) 
SEQ i-/O FOR (2'w)-1) 

SEQ 
fp.num.to.screen(vec(i) 
str.to.screen(" H) 

str.to.screen("*n") 
SEQ i-/O FOR (2'w)-1) 

SEQ 
num.to.screen(cvec(i]1 
str.to.sereen(" "} 



program 20 

Bi-linear array for 2-D Group Explicit methods : 

Notes : The systolic Array implements a marching technique 
on a 2-D region R-(x,y).Marching can take place in 
the y-direction (row wise) or in the x-direction 
(column-wise) • 
The Array consist of a linear array of Macro ipa cells 
which contain two tiers of basic point cells. Point cells 
are connected into a systolic ring allowing computation 
of four points (a group) in parallel. Hence minimising 
cycle time. 
The program assummes communication with an external host 
and expects input from two files called "odds" and "evens". 
"odds" provides co-efficients for bottom tier point cells 
and known points in R from odd rows(columns). Likewise 
"evens" supplies co-efficients for top tier cells and even 
row(column) data from R. 

size- number of grid points along marching axis, size2 number of 
macro cells required. port used for tracing and debugging only 

DEF size-S,size2-4 : 
CHAN port[2*size] : 

-- necessary communication procedures for i/o 

EXTERNAL proe fp.num.to.screen.f(value float f,value w,d) 
EXTERNAL proe fp.num.from.keyboard(Var float f) ; 
EXTERNAL proe num.to.screen{value n) : 
EXTERNAL proc num.from.keyboard(var n) 
EXTERNAL proe str.to.screen(value s() 
EXTERNAL proe open.file(VALUE path.name[], access(), CHAN io.chan) 
EXTERNAL proc close.file(CHAN io.chan) : 
EXTERNAL proe num.from.chan(CHAN ptr, VAR n) : 
EXTERNAL proc fp.num.from.chan(CHAN ptr, VAR FLOAT f) : 

PROC point.ips(VALUE pos, CHAN inl,outl,in2;out2,accin,accout,clk,port)_ 

Point ips cell : 
permits loading of grid values, coefficients of molecule 
portions covering the point, and operation of internal 
macro cell ring. Switching is achieved by control c. 

VAR FLOAT meml(6],mem2(6},uvalue,tl,t2,rl,r2,a 
VAR c I running 
SEQ 

-- setup 
r1 :_ 0.0 
r2 :_ 0.0 
uvalue :- 0.0 
running :- TRUE 

-- start cell 
WHILE running 

SEQ 
-- clock and trace 
clk1running 
portlrunning;uvalue 
-- compute 
IF 

running 
SEQ 

-- local I/o 
PAR 

inl1tl 
in21t2;c 
outlluvalue 
out21uvalue 

-- decode command 
IF 

coO 
-- compute molecules 
-- using ring 
SEQ i-tO FOR 51 

SEQ 

col 
SEQ 

PAR 
accin?a 
accoutlrl 

IF 
i-4 

-- result 
SEQ 

uvalue :- a 
TRUE 

SEQ 
-- accumulate 
PAR 

r2 :- (tl+t2)*mem1(il 
r1 :- (uvalue*mem2[i)+a 

rl :-,r1 + r2 

load local coefficients 
SEQ i-[O FOR 51 

mem1[5-il :- mem1((5-i)-11 
meml(OI :- t2 

c-2 
SEQ 

load neighbour co-effs 
SEQ i-tO FOR 51 

mem2[ 5-i I :- mem2[ (5-i )-1 I 
mem2[01 :- t2 

c-3 
SEQ 

load grid-point 
r1 :- 0.0 



PROC macro.ips(CHAN 

uvalue :- t2 : 

n1n.l,nin.2,sin.1,sin.2, 
nout'.1, nout. 2, sout.1, sout. 2, 
ein.1,ein.2,win.l,win.2, 
wout.1,wout.2,eout.1,eout.2, clk,value i ) -

Macro cell defines group of point cells connected 
by a systolic Ring 

CHAN ring[41. clks[41 : 
PAR 

point.ips(O,ein.2,eout.2,sin.1,sout.1,ring[3J,ring[O], 
elks[01.port[(2<1)+slzel) 

point.ips(1,ein.l,eout.l,nin.1,nout.l,ring(O),ring(lJ, 
elks[ll.port[2<11) 

point.ips(2,win.l,wout.l,nin.2,nout.2,ring(lJ,ring(2J, 
elks[21.port[(2<1)+lll 

point.ips(3,win.2,wout.2,sin.2,sout.2,ring[2],ring[31, 
clks[31.port[«2<1)+I)+sizel) 

-- clock distribution process 
VAR running : 
SEQ 

running :- TRUE 
WHILE running 

SEQ 
clk?running 
PAR i-[O FOR 41 

clks[i] I running 

PRoe boundary(CHAN Inl,in2,outl,out2,clk) _ 

neat disposal of comunication on 
ends of at'ray 

VAR running : 
SEQ 

running :- TRUE 
WHILE running 

SEQ 
clk?running 
IF 

running 
PAR 

inl?any 
inn.ny 
outllO.O 
out210.0 

PROC bl.llnear(CHAN nl[ 1 .sl[ 1 .n2[ 1 .s2[ I.elk) _ 

-- An Array of Macro.cells 

CHAN east.llsize2+IJ,east.2(size2+1J,west.l[size2+1J,west.2(size2+1J 
CHAN elks[slze2+21 
SEQ 

PAR 
The array 

PAR i-[O FOR size2J 
VAR 12 : 
SEQ 

i2 :- 2*i 
macro.ips(nl[i2),nl[i2+1),sl[i2),sl[i2+1J, 

n2[ 12 1.n2[12+11.s2[121 •• 2[12+11. 
west.lli),west.2(i),east.l[i+l],east.2(i+lJ, 
west.l(i+l],west.2(i+l],east.l[i],east.2(iJ, elks[!),i) 

boundary{east.l(O],east.2(OJ,west.l(O],west.2[O],clks[s!ze2]) 
boundary(west.l[size2],west.2[size2J,east.l[size2J,east.2[size2], 

elks[slze2+11) 

-- clock distribution process 
VAR running : 
SEQ 

running:_ TRUE 
WHILE running 

SEQ 
elk ?running 
PAR 1-[0 FOR slze2+21 

clks[i] 1 running 

PRoe s.mix(Chan port( J) _ 

screen mixer for er.bugglng 
and trace 

VAR FLOAT P : 
VAR running : 
SEQ 

running :- true 
WHILE running 

SEQ 

-- main 

--prod point cells 
SEQ 1-[0 for 2<slzel 

SEQ 
port(i]?runnlnglP 
fp.num.to.screen.f(p,8,2) 
if 

1 - (.lze-l) 
str.to.screen("*n") 

display contents 
str.to.screen("*n*n") : 



setup and running of the array including 
Host interface. Procedure s.mix is included 
for tracing.To switch off trace remove comments 
on lines below and comment out s.mix, and the port 
communication in point.ips cells. 

The routine belowallows computation of only a single 
level over R.lt assummed that the Host presents a 
modified set of files for subsequent passes using data 
output by the array, and coefficients for altering cell 
molecule types. 

Alternatively a much extended main program can be 
added to modify inputs as output occurs. This is not 

-- presented as a general 2-D problem can involve function 
-- evaluations not supported directly by occam. 

CHAN fptrl,fptr2,north.l[size),north.2(size) 
CHAN south.l(size],south.2[slze),clk : 
PAR 

s.mix(port) 
bi.linear{north.l,south.l,north.2,sauth.2,clk) 
VAR cl,c2,running : 
VAR FLOAT buf.l(size],buf.2(size],sbuf.l(size),sbuf.2(size] 
VAR FLOAT rbuf.l(sizeJ, rbuf.2(sizel 
SEO 

-- open data files 
open.file("odds","r",fptrl) 
open.file{"evens","r",fptr2) 
running :-TRUE 
-- until stopped 
WHILE eunning 

SEO 
-- read controls 
num.from.chan{fptrl,cl) 
num.from.chan(fptr2,c2) 
IF 

(cl-6) AND (c2-6) 
SEO 

TRUE 

-- stop 
running :- FALSE 
clklrunning 

SEO 
-- synchronise cells 
clktrunning 
-- read next input vectors 
SEO i-[O FOR size) 

SEO 
fp.num.from.chan{fptrl,buf.lfiJ) 
fp.num.from.chan(fptr2,buf.2Ii) 

-- process 
IF 

(cl-D) AND (c2-0) 
SEO 

load and compute 

TRUE 

PAR i-(O FOR size) 
PAR 

north.1[illbuf.2[i);3 
north.2[i)?rbuf.l[i) 
south.l[i)lsbuf.l[il;3 
south.2[i)?rbuf.2[i) 

SEO i-(O FOR size) 
fp.num.to.screen.f{rbuf.l(i],8,2) 

str.to.screen{"·n") 
SEO i -(0 FOR size) 

fp.num.ta.screen.f{rbuf.2(i],8,2) 
ste.to.screen{"·n·n") 

clklrunning 
PAR i-[O FOR size) 

PAR 
north.l[i)lbuf.l[i);cl 
north.2[il?rbuf.l[i) 
south.l(i]!sbuf.2(i];c2 
south.2[i]?rbuf.2[i) 

shuffle far easy input to array 
SEQ i-[O FOR size] 

SEO 
sbuf.l[i) ,- buf.l[i) 
sbuf.2[i) ,- buf.2[i) 

load coefficients 
PAR i-[O FOR size) 

PAR 
north.l[i)lbuf.2[i);cl 
north.2[i)?rbuf.2[i) 
south.l[i)lbuf.l[i);c2 
south.2[i)?rbuf.l[i) 

output if no trace 
SEO i-[O FOR s1ze) 

fp.num.to.screen.f(rbuf.l(il,8,2) 
str.to.screen("*n") 
SEO i-[O FOR size) 

fp.num.to.screen.f(rbuf.2[1),8,2) 
str.to.screen("*n·n") 



---------------------
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