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We consider the spontaneous creation of a dc voltage across a strongly coupled semiconductor
superlattice subjected to THz radiation. We show that the dc voltage may be approximately pro-
portional either to an integer or to a half- integer multiple of the frequency of the applied ac field,
depending on the ratio of the characteristic scattering rates of conducting electrons. For the case of
an ac field frequency less than the characteristic scattering rates, we demonstrate the generation of
an unquantized dc voltage.

PACS numbers: 73.21.Cd; 72.20.Ht; 05.45.-a; 72.30.+q

The theoretical analysis of nonlinear transport properties of semiconductor superlattices (SSLs) irradiated by a high-
frequency electric field started in the mid 1970’s [1]. Recent progress in creating powerful sources of THz radiation, the
development of a coupling technique [2,3], and improvement in the fabrication technology of microstructures leading
to very high carrier mobility [4], stimulated many new theoretical works on the problem. Recent interest in THz-field
driven SSLs has focused on such strongly nonlinear effects as multistability [5], short pulse generation [6], chaos [7–9],
and spontaneous generation of a dc voltage in a purely ac-driven SSL [10–13]. In this paper we address the last effect.

Two distinct mechanisms are known for the spontaneous generation of a dc bias in purely ac-driven SSLs [10,11,13].
Both of these nonlinear mechanisms work in SSLs with a high mobility and a relatively high level of doping, when the
effects of a self-consistent electric field generated by an electron’s motion become sufficient. The first mechanism arises
if the ac field frequency, ω, is much greater than the plasma frequency, ωpl, and is related [10,13] to an instability caused
by absolute negative conductivity in the ac-driven SSL [14]. The effect has been attributed [10] to the phenomena
of dynamical localization of electrons [15] and miniband collapse in a collisionless SSL [16]. It was reported that the
generated dc bias is such that the “induced Bloch frequency” ωB = eaEdc/h̄ (Edc is the spontaneously generated dc
electric field and a is the SSL period) is approximately equal to the ac field frequency ω [10,13,17].

The second mechanism is responsible for dc bias generation when the ac field frequency is near the plasma resonance,
ω ≃ ωpl; it arises for a smaller ac field strength than is required in the previous situation [11]. The instability
responsible for the dc bias generation in SSLs with strong enough electron scattering also results in chaotic motion
in the case of small scattering rates or for a collisionless SSL [7,11]. The creation of a dc bias may be qualitatively
explained [12] and classified [13] using the semiclassical theory of wave-mixing in SSLs [18].

In this paper we re-examine the problem of spontaneous dc voltage generation in an SSL subjected to a THz
electric field. We show that, depending on the relative values of the scattering rates and the ac field frequency, a
variety of different dc voltage states can exist – namely, both integer and half-integer quantized states, for which the
induced Bloch frequency is approximately an integer or half-integer multiple of the ac field frequency, and completely
unquantized states. In particular, if the electron velocity relaxation rate, γv, is sufficiently different from the electron
energy relaxation rate, γε, and ω >

∼ γv, we find integer states with ωB ≈ nω (n = ±1,±2, . . .); while for γv = γε,
the states are close to the half-integer states ωB ≈ nω/2. In contrast, in the case of low frequency driving or high
damping, ω < (γv, γε), the dc voltage states are unquantized. We first reported the integer states in our previous
papers [11], and a recent work claimed that the spontaneously generated bias should be a fractional state [13].

We study electron transport trough a single miniband, spatially homogeneous SSL with period a and miniband
width ∆, which is subjected to an ac electric field E(t) = E0 cosωt along the SSL axis. For the tight-binding energy-
quasimomentum dispersion relation ε(k) = (∆/2) [1 − cos(ka)] (k is the electron wave vector along the axis of SSL),
the dynamics of electrons is described by the superlattice balance equations [10,11,13]
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v̇ = uw − γvv,

ẇ = −uv − γε(w − weq), (1)

u̇ = ω2

plv − αu + Iext(t),

where v = m0V a/h̄, w = (ε − ∆/2)(∆/2)−1 and weq are a scaled electron velocity, a scaled electron energy, and an
equilibrium value of scaled electron energy, respectively, and m0 = (2h̄2)/(∆a2) is the effective mass at the bottom of
miniband. The scaled variables v(t) and w(t) are proportional to the variables V (t) and ε(t), which are the electron
velocity and energy averaged over the time-dependent distribution function satisfying the Boltzmann equation. The
lower (upper) edge of the miniband corresponds to w = −1 (w = +1), and the value of weq is a function of the lattice
temperature. The variable u(t) is related to the electric field inside the SSL E(t) as u = eaE/h̄. In deriving Eqs.
(1), we assumed that the electrical properties of an SSL of total length l and cross-section S can be modeled by an
equivalent high-quality circuit which consists of a capacitor C = (ǫ0S)/(4πl) (ǫ0 is the average dielectric constant for
the SSL) driven by an ac current of the form Iext = −ωsω sin ωt, ωs = eE0a/h̄, in our scaled units. The degree of

nonlinearity in Eqs. (1) is controlled by the value of miniband plasma frequency, ωpl =
(

4πe2N/m0ǫ0
)1/2

, which is a
function of the electron doping density N , while the parameter α determines the quality of the circuit (α ≪ ωpl).

The relaxation processes for miniband electrons are characterized by an average energy scattering rate, γε, as well
as by an average velocity scattering rate, γv = γε + γel, where γel is an average rate of elastic collisions [3,10]. The
scattering rates, γv and γε, can have different values depending on the material, the doping density, the temperature,
etc. In particular, for microstructures with modulation doping [19], the ionized impurities are spatially separated
from electrons, which greatly reduces the elastic scattering rate γel so that γv ≈ γε. In contrast, for many vertical
SSLs operating at room temperature, the scattering rate for electron velocity is about of order of magnitude greater
than the characteristic scattering rate of electron energy, γv/γε ≈ 10 [3,10].

We solve the nonlinear balance Eqs. (1) numerically for the initial conditions v(0) = 0, w(0) = weq = −1, with the
circuit damping rate α/ωpl = 0.01, and for two typical sets of relaxation constants: (i) γv/γε = 10, γε/ωpl = 0.01,
and (ii) γv/γε = 1, γε/ωpl = 0.1. After removing the transients, we calculate the time-average value 〈u〉, which gives
the value of the Bloch frequency determined by the spontaneously generated dc bias Edc: ωB ≡ eaEdc/h̄ = 〈u〉. Figs.
1 and 2 present the results of computations of 〈u〉 for 201 value of ωs equally distributed in the range 0 ≤ ωs ≤ 2ωpl

for each driving frequency.
For the first set of relaxation rates and for ω > 2γv, plateaus of integer-quantized states are clearly observable:

ωB ≈ nω, with n = ±1, 2, 3, 4 in Fig.1. However, at low frequencies, ω < 2γv, the width of the n = 1 plateau is
comparable to its spacing from the n = 0 plateau. The dependence of the induced Bloch frequency 〈u〉 on the ac
field frequency ω for the second set of damping parameters is presented in Fig.2. Here, qualitative differences from
Fig. 1 appear, including 1) the existence of half-integer states, specifically states with n ≈ ±1/2, and 2) the nonzero
width of the n = 0 plateau. Naively, one can expect the width of a plateau to be equal to the scattering rate, 0.1ωpl

in this case. As a result, we have plotted the lines n ± 0.1ωpl/ω for n = 0,±1,±2,±3,−4,−5 in Fig.2. We found
that, indeed, most points for a given plateau lie in the region demarcated by the two lines with same n. In contrast
to Fig. 1, there are states with 〈u〉/ω < 0.1, but 〈u〉 6= 0. Also, some points fall very near the line 〈u〉 = ±0.5ω. As
an example we refer to the solution of Eqs. (1) for ω/ωpl = 0.6 and ωs/ωpl = 0.6 (other parameters are same as in
Fig.2), which in the phase space corresponds to a symmetry-broken limit cycle1 with 〈u〉 = 0.289ωpl. Note also that
in some limiting cases and for γv = γε, the existence of half-integer states can be proved analytically [20].

The wider plateaus of Fig.2, compared to Fig.1, may be explained by the larger scattering rates. In order to under-
stand the transition from quantized to unquantized dc bias states as the scattering rates increase while maintaining
γv ≫ γε, we present in Fig.3 the dependence of 〈u〉on ω for strong damping. As is evident from this figure, the strong
damping destroys all quantized states; dc bias generation only persists for some unquantized states.

While the detailed mechanism of unquantized dc bias generation remains unclear, we offer the following qualitative
explanation of the underlying physics: when the electron scattering rates are sufficiently small and the amplitude of
the ac field is large enough, the SSL spontaneously creates a Wannier-Stark ladder with the spacing, ωB, that makes
multiphoton absorption of ac field most effective, i.e. ωB ≈ nω. However, for larger damping, only a small bias can be
generated in the SSL, hence the spacing of the Wannier-Stark ladder states is less than the ac field frequency except
for very low frequencies ω <

∼ γ. In this case, the broadening of the self-organized ladder levels is quite comparable

1 This is a limit cycle whose projection on the v − u plane is not symmetric about the origin, in contrast to a symmetric limit
cycle (see [11]).
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with their spacing; therefore it is practically impossible to achieve quantized values of the voltage.
We have performed a systematic study of the positions and widths of different plateaus and of the unquantized

states for many values of the driving amplitude and frequency and several different initial conditions at different
damping levels [21]; the results are in a qualitative agreement with situation described above. We now make several
remarks on the results of this search. First at all, we didn’t see any indication of the noninteger (fractional) dc states
for γv 6= γε. However, for γv = γε, the 1/2-dc-states are quite common. Moreover, for weak enough damping, we
additionally saw a few dc states which are very close to fractional states of the form n/m with n being an integer
and m always being an even integer. Such kind of dc states are formed by the symmetry-broken limit cycles with a
high even period. As examples, we refer to 3/2-states formed by period-12 and period-24 limit cycles, as well as to
the 7/6-state formed by a period-12 limit cycle; both occur for γv = γε = 0.05ωpl and α/ωpl = 0.01. We should note,
however, that for weak damping, chaotic behavior is quite typical [7,11] and that both the stable limit cycles and the
asymmetric chaotic attractors, which are responsible for the generation of stable quantized dc voltage states in the
SSL, occupy only a small amount of parameter space of the system [21,20].

In summary, we have showed that a semiconductor superlattice irradiated by a high-frequency electric field can
spontaneously generate a dc bias, which can be quantized in approximately integer or fractional ratios of the driving
frequency, or completely unquantized. In this respect, the described effect in semiconductor superlattices is no less
rich than its counterpart in Josephson junctions subjected to a microwave field, where the exactly integer and the
exactly fractional dc voltage states (“phase-locked states”) are known [22].
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FIG. 1. The dependence of spontaneously generated dc bias 〈u〉/ω on ac frequency ω, scaled to the miniband plasma
frequency ωpl, and for γv = 0.1ωpl, γε = α = 0.01ωpl.
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FIG. 2. Same as in Fig.1, but for γv = γε = 0.1ωpl, α = 0.01ωpl.
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FIG. 3. Same as in Figs.1 and 2, but for strong damping: γv = ωpl, γε = 0.1ωpl, α = 0.03ωpl.
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