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Abstract: 
There is an ongoing debate among transport planners and safety policy makers as to whether 
there is any association between the level of traffic congestion and road safety. One can 
expect that the increased level of traffic congestion aids road safety and this is because 
average traffic speed is relatively low in a congested condition relative to an un-congested 
condition which may result in less severe crashes. The relationship between congestion and 
safety may not be so straightforward however as there are a number of other factors such as, 
traffic flow, driver characteristics, road geometry and vehicle design affecting crash severity. 
Previous studies have employed count data models (either Poisson or negative binomials and 
their extensions) while developing a relationship between the frequency of traffic crashes and 
traffic flow or density (as a proxy for traffic congestion). The use of aggregated crash counts 
at a road segment level or at an area level with the proxy for congestion may obscure the 
actual relationship.  The objective of this study is to explore the relationship between the 
severity of road crashes and the level of traffic congestion using disaggregated crash records 
and a measure of traffic congestion while controlling for other contributory factors. Ordered 
response models such as ordered logit models, heterogeneous choice models and generalised 
ordered logit (partially constrained) models suitable for both ordinal dependent variables and 
disaggregate crash data are used. Data on crashes, traffic characteristics (e.g., congestion, 
flow, speed) and road geometry (e.g., curvature and gradient) were collected from the M25 
London orbital motorway between 2003 and 2006.  

Our results suggest that the level of traffic congestion does not affect the severity of 
road crashes on the M25 motorway. The impact of traffic flow on the severity of crashes 
however shows an interesting result. All other factors included in the models also provide 
results consistent with existing studies.  

 
Keywords: Traffic congestion, traffic flow, crash severity, ordered response models, M25 
motorway 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 

3 

INTRODUCTION 
 
Two major factors in promoting economic productivity of a healthier economy are enhanced 
mobility and improved safety. There is an ongoing debate among transport planners and safety 
policy makers on the issue as to whether there is any association between mobility and road 
safety. Previous research suggests that the increased level of traffic congestion (less mobility) 
improves road safety (Shafer and Rietveld, 1997). This is because average traffic speed is 
relatively low in a congested condition in contrast to an un-congested condition which may 
lead to less severe traffic crashes. However, this may increase the occurrence of traffic 
conflicts often resulting more slight injury crashes. The increased level of traffic congestion 
reduces mobility which results in an economic loss to society. On the other hand, it is more 
likely that the level of crash severity would increase if a transport network is not congested. 
This suggests that the total external costs of crashes may be high in an un-congested condition 
relative to a congested condition and as such it can be thought that traffic congestion aids road 
safety but decreases economic productivity.  

This poses a potential dilemma for transport policy makers: on the one hand wanting 
to reduce congestion but this may lead to more severe traffic crashes increasing the total 
external cost of congestion. In other words, the benefit of reducing congestion might be off-
set by more severe crashes (Noland and Quddus, 2005). It is, therefore, important to 
understand the association between traffic congestion and road safety so that effective policy 
can be implemented to address both congestion and road safety. 

The relationship between traffic congestion and road safety, especially crash severity 
may not be so straightforward as there are other factors affecting the severity of a crash. This 
includes other traffic characteristics (e.g., traffic flow and traffic speed), driver characteristics 
(e.g., seat-belt usage, age, experience, gender and alcohol consumption), vehicle conditions 
and road geometry (e.g., gradient, curvature, road width). To take all of these factors into 
account, researchers have employed various statistical models to develop a relationship 
between crashes and their contributing factors such as traffic characteristics, driver behaviour, 
vehicle design and road infrastructure. Some of the studies are discussed below. 

In order to estimate the external cost caused by road crashes, Peirson et al. (1998) 
proposed that it is necessary to investigate the relationship between road accidents and traffic 
flow and found that crash frequency increases (either proportionally or at one and a quarter) if 
traffic flow increases. Research undertaken by Dickerson et al. (2000) investigated the 
relationship between the frequency of road crashes and traffic flow with the aim of estimating 
the change in the external cost of crashes caused by additional traffic flow. Different road 
types and geographical areas were considered and they found that a strong negative crash 
externality was associated with high traffic flows.  

Ivan et al. (2000) investigated single and multi-vehicle highway crash rates and their 
relationship with traffic density while controlling for land use, time of day and light 
conditions. Temporal effects were also considered. For single-vehicle crashes, they found a 
negative-exponential relationship with the density (volume/capacity ratio), meaning that the 
crash rate is highest at a low volume/capacity ratio, but this is not fully consistent with the 
study by Lord et al. (2005) who conducted the analysis on the relationship among crash, 
density (vehicles per km per lane) and v/c ratio. They found that with v/c ratio increasing, 
fatal and single-vehicle crashes decreases at some point, and crash rates follows a U-shape 
relationship. Basically, all these studies suggested a positive relationship between flow and 
frequency of traffic crashes.  

Some studies looked at this issue further by investigating hourly traffic flow and crash 
rates. For example, Martin (2002) investigated the relationship between crash incidence and 
traffic flow on French motorways, finding that crash rates are the highest in light traffic 



  
 

4 

compared to heavy traffic, especially on 3-lane motorways. There is no significant difference 
between daytime and night-time crashes. However, if crash severity is considered, night-time 
and light-traffic hourly crashes are much worse. Therefore, the author concluded that light 
traffic (low traffic flow) is a safety problem both in terms of crash rates and severity. Many 
things however could affect road safety during night-time such as lighting and as such needs 
further research. Hiselius (2004), on the other hand, showed the importance of the 
consideration of traffic flows, i.e., the crash rate would be different depending on whether the 
traffic flows is homogeneous or not.   

It is noticeable that most of the previous studies examined aggregated crash counts 
(either at a road segment level or at an area level) in developing a relationship among crashes, 
traffic characteristics and other contributing factors.  Moreover, various proxies were used to 
represent traffic congestion such as traffic flow and density.  

Therefore, the primary aim of this study is to investigate the association between the 
severity (slight, serious and fatal) of individual crashes and the level of traffic congestion 
measured by total delay. Other contributory factors such as traffic flow, traffic speed, crash 
characteristics (e.g., a single-vehicle or a multiple-vehicle crash, number of casualties per 
crash, etc.), weather conditions, light conditions, road surface conditions and road geometry 
(e.g., gradient and curvature) are also considered while developing the relationship. It should 
be noted that no attempt is made to estimate the actual probability of a specific accident 
occurring. Statistical models suitable for both disaggregated crash data and ordered dependent 
variable (such as slight, serious and fatal) are used.  

The paper is organised as follows. The next section provides a discussion of the 
statistical models used in the study . This is followed by a description of the data used in the 
analysis. The estimation results along with a discussion on the findings are then presented. 
The paper ends with conclusions, limitations and future research directions.  

 
 

ORDERED RESPONSE MODELS (ORM) 
 

The severity of a traffic crash can be expressed by the seriousness of the crash classified as 
slight, serious and fatal. It is explicitly clear that the dependent variable is categorical and 
ordered in nature in which a slight injury crash can be coded as 1, a serious injury accident 
can be coded as 2 and a fatal injury accident can be coded as 3.  It should be noted that when a 
dependent variable is both categorical and ordinal, the distances between categories are 
unknown. When such an ordinal variable appears on the left-hand side of a statistical model, 
it is obvious that ordinary least-squares (OLS) estimation suffers from many shortcomings 
(see Long, 1997 for details). In order to deal with an ordered categorical variable, the use of 
an ordered logit (an OLOGIT) or ordered probit (an OPROBIT) model is more appropriate 
(Long 1997; Greene 2000; Gujrati 2003). These models are conditional as it assumed that an 
accident has already occurred and the factors affecting the accidents are known. However, a 
recent study byYamamoto et al. (2008) suggested that traditional ‘unordered’ models may 
provide unbiased estimate of the parameters, especially in the case for missing data such as 
under-reporting. Readers are also referred to a number of existing studies that recommend to 
explore alternative models (Milton et al., 2008; Eluru et al., 2008, Anastasopoulos et al., 
2008).  

Therefore, in order to investigate the impact of traffic congestion on the severity of 
road crashes, the concept of ‘ordered’ models is retained and the selected model is an 
OLOGIT model and its various extensions. Although, the OPROBIT model is also suitable 
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for an ordered categorical variable, the OLOGIT model is selected1 because both logit and 
probit formulations provide very similar results.  

Assuming that the severity of a road crash is an ordered discrete variable with j  
categories (slight, serious and fatal), an OLOGIT model (in terms of probability) can be 
written as (Long, 1997): 
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where iX is a (k1) vector of observed non-random explanatory variables; β is a (k1) vector 

of unknown parameters to be estimated; m is the number of categories of the ordinal 
dependent variable.  The parameters of the model ( β ) and the cut-points ( 1  and 2 ) are 
estimated by the method of maximum likelihood (Long, 1997). In equation (1), it is assumed 
that the effects of explanatory variables on the level of severity are assumed to be fixed across 
observations. However, this may not be true as the effect of a explanatory variable may vary 
across observations. To overcome this problem, a number of recent studies have suggested to 
employ random parameters models (e.g., Anastasopoulos and Mannering, 2009; McFadden 
and Train, 2009; Ben-Akiva et al., 2002).  

One of the primary assumptions of an OLOGIT (and an OPROBIT) models is that the 
error variances are homoskedastic. In the context of ordinary least squares (OLS), a violation 
of this assumption (i.e., heteroskedasticity) does not bias the estimates, rather it either inflates 
or underestimates the standard errors. Heteroskedasticity, however, is more problematic in the 
case for models dealing with categorical dependent variables such as logit or probit and their 
ordered variants. If variances of the error term are non-constant, not only the standard errors 
are incorrect, but also the parameters are biased and inconsistent (Keele and Park, 2006 ).  In 
order to deal with unequal error variances, Williams (2006a) suggests the use of a 
heterogeneous choice model (HCM) which can be written as: 
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in which    ii Zln  where iZ  is the vector of explanatory variables (either dummy or 

continuous variables) that effect the error variance ( i ) . Z  could either be a subset of X  or 

a set of new variables not included in X . 
Another important assumption associated with an OLOGIT (and an OPROBIT) 

regression is that the relationship between each pair of outcome groups is the same. In the 
literature, this is known as the proportional odds assumption or the parallel regression 
assumption (see Long, 1997 for details).. If the proportional odds assumption is not valid, one 
needs different models to describe the relationship between each pair of outcome groups. 

                                                 
1 The logit model is preferred to the probit. The logit model assumes that the disturbances are Weibull 

distributed (Gumbel extreme value type I), whereas the probit model assumes that the disturbances are 
multivariate normally distributed 
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Therefore, it is essential to test the proportional odds assumption after estimating an OLOGIT 
model.  

The Brant test (Brant, 1990) could be employ to test the above assumption. A 
significant test statistic provides evidence that the proportional odds assumption is violated. If 
this is the case, then the use of the OLOGIT model may lead to incorrect, incomplete or 
misleading results (Fu, 1998).  

A solution is then to employ a generalised ordered logit (GOLOGIT) model which 
does not impose the constraints of parallel regressions (Fu, 1998). The unconstrained 
GOLOGIT model can be rewritten as: 
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An issue with this GOLOGIT model is that it estimates far more parameters than is 

really necessary (Williams, 2006b). For instance, if a dependent variable has 4 categories and 
there are 10 independent variables, the GOLOGIT model estimates a total of 30 coefficients. 
This sometimes makes it difficult to interpret the results.  

Williams (2006b) then proposes a partially constrained GOLOGOT model known as a 
partial proportional odds model in which only a subset of coefficients are constrained across 
values of j and therefore, is less restrictive than a GOLOGIT. In a recent study, Wang and 
Abdel-Aty (2008) employed this model to investigate the left-turn crash injury severity at 
intersections. This model can be rewritten as: 
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in which the coefficients associated with a subset of independent variables 2X  are the same 

across values of j  and the coefficients related to other independent variables ( 1X ) differ 
across values of j .   

Eluru et al. (2008) considered a mixed GOLOGIT model for examining pedestrian and 
bicyclist injury severity level in traffic crashes but could not find any statistically significant 
unobserved heterogeneity effects on the latent injury risk propensity and the cut-points and 
therefore, used a GOLOGIT model. 

This research examines whether there is any association between the severity of road 
crashes and the level of traffic congestion employing three ordered response models: (1) an 
OLOGIT (2) a HCM and (3) a PC – GOLOGIT.    

 
 
 
 
DATA 

 
In order to examine the association between the level of traffic congestion and the crash 
severity, the UK M25 motorway has been chosen as a case study. The M25 motorway is a 
188 km (each direction) London orbital motorway which almost completely encircles 
London.  There are two primary reasons for selecting the M25: (1) this motorway is 
considered as one of the busiest (about 200,000 vehicles a day in 2003) motorways in Europe 
and, therefore, there is sufficient spatio-temporal variation in congestion conditions which 
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allow us to develop statistical models that relate traffic congestion and crash severity. (2) data 
on traffic characteristics (e.g., traffic congestion, traffic speed, traffic flow) and road geometry 
(e.g., radius of road curvature, gradient, number of lanes) are available to us for the M25 
motorway from 2003 to 2006. However, one of the disadvantages (from a purely research 
perspective) of using the M25 as a case study is that the number of fatal and serious crashes 
on the M25 is quite low - there were 23 people killed and 116 seriously injured on the M25 in 
2006. In order to tackle this problem, statistical models that can look into individual crash 
records are used and crash data for multiple years (2003 to 2006) are considered.  

STATS19 UK road crash data from 2003 and 2006 were obtained from the UK data 
archive (UKDA2). STATS19 data have three data files: (1) crash data (2) vehicle data and (3) 
casualty data. A unique crash reference number allows one to integrate these three data files.  
The vehicle data file contains information regarding driver age and gender. Although driver 
age and gender affects the severity of a crash, such data cannot be used while analysing 
multiple-vehicle crashes3 as there is no information as to whether which driver is at-fault (or 
not-at-fault) for the crash.  

Traffic characteristics data such as traffic congestion, traffic speed (km/h) and traffic 
flow (vehicles/h) were obtained from the UK Highways Agency (UKHA4). These data were 
available from 2003 to 2006 for a total of 72 segments of the M25 (both directions) at 15-
minute intervals. Traffic congestion at each of these segments is measured by the total delay 
(minutes) encountered by all vehicles travelling on that segment. In order to take into account 
the lengths of the segments, the total delay is averaged over a 10-km stretch of the motorway. 
Since each segment starts and also terminates at a junction, it is reasonable to assume that 
delays, traffic speed and traffic flow are the same on different locations of the segment.  

Road geometry data such as the radius of road curvature (m) and gradient or vertical 
grade (%) were also obtained from the UKHA.  Since a series of curvatures and gradients 
were available for a segment, the minimum radius of curvature and the maximum gradient 
were considered. Data on the number of lanes were also obtained from the UKHA. 

Since STATS19 data have the easting and northing coordinates of a crash location, it 
is possible to identify the motorway segment (out of the 72 segments) on which the crash 
occurred. Since both crash location data and digital motorway segment data contained errors 
and the two directions (clockwise and anti-clockwise) of the M25 motorway are treated 
separately, a matching technique considering the direction(s) of the vehicle(s) just before the 
crash relative to the direction of the motorway segment (either clockwise or anti-clockwise) 
and the distance from the crash location to the segment was used to match the crash location 
onto the correct motorway segment (see Wang et al., 2009 for details).   

In order to integrate STATS19 data with the traffic data, a common variable between 
these datasets was used. There was only one common variable between them which was the 
time epoch as the time of the crash (for the STATS19 data) and the time at which the traffic 
data were measured (for the UKHA data) were known. Therefore, it was possible to 
determine the level of congestion, the average traffic speed and traffic flow for each crash 
record. In order to avoid the impact of the crash itself on the traffic variables, a 30-minute 
time lag was considered. For instance, if a crash happened at 15:00 then traffic data measured 
at 14:30 were used when these two datasets were combined.  

A total of 3,998 crashes occurred on the M25 motorway between 2003 and 2006. Of 
which 1.28% were fatal crashes, 8.83% were serious injury crashes and 89.89% were slight 
injury crashes.  Table 1 shows summary statistics of the variables that will be considered in 
the models.   

                                                 
2 http://www.data-archive.ac.uk/ 
3 About 85% of the M25 motorway crashes are multiple-vehicle crashes 
4 http://www.highways.gov.uk/ 
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Table 1 is about here 
 

The combined dataset shows that the average total delay (over all 72 motorway 
segments) at which fatal crashes occurred is 4 minutes. This increases to 8 minutes for the 
case of serious injury crashes and 9.6 minutes for the case of slight injury crashes. This 
suggests that there may be a relationship between total delay and the severity of crashes. This 
is also true for traffic flow as the mean traffic flow at which fatal crashes happened on the 
M25 is 2131 veh/h. This increases to 3345 veh/h for the case of serious injury crashes and 
3911 veh/h for the case of slight injury crashes suggesting that there is an association between 
traffic flow and the severity of crashes. The average traffic speed at which fatal crashes 
occurred is 93km/h. This decreases to 86km/h for the case of serious injuries and 84.5km/h 
for the case of slight injury crashes.  

The M25 motorway has a variable number of lanes with a minimum two-lane and a 
maximum six-lane (in each direction). According to data from the UKHA, the motorway has 
three-lane for most of its length (66.8%) and four-lane for 24.9% of its length. There are a few 
short stretches which are two-lane (2.4%), five-lane (4.2%) and six-lane (1.7%). It might be 
interesting to see whether road width (number of lanes) has any impact on the level of crash 
severity.  

The details of other explanatory variables can be found in Table 1.  
 

VARIABLES SELECTION AND RESULTS 
 
Before estimating any models using the data, a multicollinearity test among the explanatory 
variables was carried out suggesting that fine and raining weather conditions were highly 
correlated (correlation coefficient: 0.7) with dry and wet road surface conditions and as 
expected, traffic congestion was found to be highly and negatively correlated (correlation 
coefficient: -0.8) with average traffic speed. Since our interest is to examine the association 
between traffic congestion and the severity of road crashes, average traffic speed was taken 
out from the set of explanatory variables along with weather conditions. Surprisingly, posted 
speed limit was found to be un-correlated with average traffic speed. This may be due to the 
fact that average speed varies with the level of traffic congestion. When a road is congested, 
the average speed is much lower than the posted speed limit; whereas motorists would drive 
faster than the speed limit if a road is not congested. This may also be the results of motorist's 
perception and psychology, highway hypnosis (see Wertheim, 1978; Cerezuela et al., 2004) 
and risk compensation (Assum et al., 1999; Dulisse, 1997; Winston et al., 2006). Another 
interesting observation was that time of the day (i.e., peak and off-peak periods) was not 
correlated with traffic congestion as one would expect that traffic congestion is normally high 
during the peak hours.   

The set of un-correlated explanatory variables was used to estimate different ordered 
response models such as OLOGIT, HCM, GOLOGIT and PC-GOLOGIT. The results are 
presented in Table 2. The variable – speed limit was found to be statistically insignificant in 
all models and in addition, a log-likelihood ratio (LR) test also confirmed that the inclusion of 
this variable did not improve the model goodness-of-fit. Therefore, this variable was dropped 
from all models.  

Table 2 shows that the likelihood ratio (LR) Chi-square is higher in the HCM 
compared with the OLOGIT model. The difference in the LR Chi-squares between these two 
models was found to be statistically significant (p-value<0.01) suggesting that the results of 
the HCM are much better than those of the OLOGIT model. As noticed, the explanatory 
variables of the HCM were divided into two classes: (1) the variables affecting the ordinal 
categorical choice (i.e., fatal, serious and slight injury crashes) and (2) the variables affecting 
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variances of the error term known as the determinants of variability in the error term across 
observations. It was expected that all explanatory variables had an impact on the level of 
crash severity. The set of variables for the error variance equation was identified by a 
stepwise selection method employing a LR test5. The test suggested that crash category by 
vehicle type (either a single-vehicle crash or a multi-vehicle crash) and casualties per crash 
are the statistically significant variables for the inclusion in the variance equation. This was 
also confirmed by the HCM estimation results in which both variables were found to be 
statistically significant in the error variance equation. Therefore, it is reasonable to believe 
that crash category and casualties per crash could be a potential source of heteroskedasticity 
while analysing the severity of crashes.  

In addition to the fixed-parameter ordered logit model, the random- parameter ordered 
logit model was also estimated. It was found that the random effects were statistically 
insignificant. The mixed multinomial logit model in which certain parameters were assumed 
to be ‘random’ was also estimated. Once again, the standard deviations of random parameters 
were found to be statistically insignificant.  

The Brant test (Brant, 1990) was carried out to see whether the proportional odds 
assumption was violated for the data used in the analysis. A significant test statistic provided 
evidence that the assumption has been violated. A user-written STATA routine ologit2 
(developed by William (2006)) was used to identify the variables which did not meet the 
proportional odds assumption. It was found that two explanatory variables (log of traffic flow 
and number of vehicles involved in the crash) did not meet the assumption and therefore, their 
coefficients differed across different thresholds suggesting that the OLOGIT model is a mis-
specified model and GOLOGIT or PC-GOLOGOT models should be used.  

 
Table 2 is about here 

 
Table 2 shows that the coefficients of all explanatory variables are different across 

thresholds for the GOLOGIT model whereas only the coefficients of log of traffic flow and 
number of vehicles involved in the crash were different across thresholds for the PC-
GOLOGIT model. Although the value of the likelihood ratio (LR) Chi square is higher in the 
GOLOGIT model relative to the PC-GOLOGIT model, the difference is not statistically 
significant as the value in the GOLOGIT model is only 10.5 units more for 13 degrees of 
freedom (p-value=0.65). This suggests that the model goodness-of-fit is better in the PC-
GOLOGIT model compared to the GOLOGIT model. In terms of both log-likelihood at 
convergence and LR Chi square, there is no difference between HCM and PC-GOLOGIT 
models (see Tables 2 and 3). However, HCM handles the effect of heteroskedasticity and PC-
GOLOGIT addresses the violation of proportional odds assumption. Since the results from 
these two models are quite similar in terms of signs and the set of statistically significant 
variables, the PC-GOLOGIT model will be used to interpret the effects of the explanatory 
variables on the crash severity. 

 
Table 3 is about here 

 
Using these estimated coefficients and cut points, the probabilities of three different 

outcomes (slight, serious and fatal) for the given values of explanatory variables were 
obtained. From these estimated probabilities, factors that are more likely to reduce the 
probability of a particular level of severity were identified. Table 3 shows the marginal effects 

                                                 
5 By using a user-written STATA routine known as oglm by Williams (2006a)  
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for the probabilities of different outcomes with respect to the statistically significant 
independent variables. The interpretation of each of the explanatory variables is given below. 

 
Traffic congestion: As discussed previously, traffic congestion at the time of a crash 

is measured as the total delay encountered by all vehicles travelling on a segment (averaged 
over a 10km-stretch) where the crash occurred. It was hypothesized that the level of traffic 
congestion has an impact on the severity of the crash outcome. More specifically, when a 
crash happens on a road segment with a high level of traffic congestion, one would expect 
that the severity of the crash would be relatively low resulting in a slight injury crash and 
vice-versa. However, our data from the M25 motorway do not support this hypothesis and this 
is the case for all ordered response models estimated in this study.  

 
Figure 1 is about here 

 
 
Other measurements of traffic congestion such as a congestion index based on actual 

and free flow travel time proposed by Taylor et al. (1999) was used but also found to be 
statistically insignificant in all models. One would expect that total delay representing the 
level of traffic congestion may be correlated with the time of the day variable (an indicator 
variable for peak period) and therefore, this finding may be incorrect. This was not the case 
however as we found that there is no correlation (correlation coefficient: 0.2) between these 
two variables for the data we analysed. Figure 1 shows the observed hourly delay (averaged 
over the four years) just before the crashes happened. It is noticeable that the pattern of delay 
is different for weekends and weekdays. During the weekdays, the total delay is high at peak 
periods but this is not the case for the total delay during the weekends. However, all ordered 
response models were also estimated when the dummy variable for the peak period was being 
dropped. Nevertheless, the level of traffic congestion was still found to be statistically 
insignificant. Another possible reason would be the inclusion of traffic flow in the models as 
one would expect that higher traffic flow (per lane per hour) would be correlated with total 
delay. Although this was not the case, all models were estimated with the exclusion of total 
flow variable. The sign of the coefficient was found to be the expected negative sign but again 
statistically insignificant in all models. In addition, the LR test did not support the exclusion 
of total flow variable from the set of explanatory variables.  

Models were also estimated by other different combinations of explanatory variables 
but total delay was consistently found to be statistically insignificant.  

 
Traffic flow: This variable was found to be one of the important variables in 

explaining the severity of a road crash since the exclusion of this variable significantly 
increased (about 25 units) the log-likelihood at convergence. Not surprisingly, this variable 
was found to be statistically significant at the 95% confidence level in all models. As 
discussed, the Brant test suggested that traffic flow influences the cut-off points (thresholds) 
and, therefore, the impact of this variable on the level of crash severity differed across 
different thresholds. In general, it was found that if traffic flow increases then the level of 
crash severity decreases meaning that a road segment with high traffic flow would result in 
less severe crashes, if all else remain constant. It is noticeable that the value of the coefficient 
is significantly different (about 70%) between the thresholds. It was found to be more 
negative in the threshold that divides serious injury and fatal crashes suggesting that it is more 
likely that higher values on traffic flow increase the likelihood of being a slight injury crash. 
The impact of traffic flow on the severity of crashes is not uniform across different crash 
categories and this type of effect could not be found from an OLOGIT model. 
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Figure 2 is about here 

 
It is also of interest to estimate the probability of a specific crash occurring (i.e., slight, 

serious and fatal) for a given value of traffic flow. Figure 2 shows how the predicted 
probabilities of different categories of crashes change with the change in the traffic flow. 
These probabilities were obtained from the results of the PC-GOLOGIT model. For an 
average traffic flow (3843 veh/h) on a three-lane stretch of the M25 during weekends, 
daylight, off-peak periods and at dry weather conditions, the estimated probabilities of 
different categories of a crash involving a single-vehicle in 2003 are as follows: 

 
8.0)Pr( Slight , 17.0)Pr( Serious and 03.0)Pr( Fatal  

 
Table 3 shows the marginal effects of the probabilities of a specific crash occurring for 

changes in the explanatory variables. For instance, the marginal effect for the probability of a 
slight injury crash occurring with respect to traffic flow (veh/h) is positive and the value is 
0.0403, i.e.:  

 

0403.0
)(

)Pr(





wTrafficFlo

Slighty
 

 
The marginal effect for the probability of a serious injury crash occurring with respect 

to traffic flow (veh/h) is negative and the value is -0.0343, i.e.: 
 

0343.0
)(

)Pr(
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The marginal effect for the probability of a fatal crash occurring with respect to traffic 

flow (veh/h) is negative and the value is -0.006, i.e.: 
 

006.0
)(

)Pr(





wTrafficFlo

Fataly
 

 
Number of vehicles involved in the crash: Road traffic crash data (2003-2006) from 

the M25 suggest that single-vehicle crashes were more severe than multi-vehicle crashes. For 
instance, 3.4% single-vehicle crashes were fatal crashes compared to only 0.9% in the case for 
multi-vehicle crashes. This is also true for the case of serious injury crashes in which 14% of 
single-vehicle crashes were serious injury crashes and on the other hand, 8% of multi-vehicle 
crashes were serious injury crashes. Therefore, it was expected that the models used in this 
study should be able to pick up such effects.  

The dummy variable used to represent a single-vehicle crash was found to be 
positively associated with the severity of crashes meaning that a single-vehicle crash is likely 
to result in a more severe crash compared with a multi-vehicle crash, if all else are held 
constant. As discussed, this variable did not meet the proportional odds assumption and 
therefore, the coefficient value differs across thresholds. For the first threshold, the value is 
0.66 and for the second threshold, this increases to 1.19 suggesting that the effect of a crash 
involving a single-vehicle on the severity was not uniform. A crash involving a single-vehicle 
on the M25 is more likely to result in a more severe crash relative to a crash involving 
multiple-vehicle.  
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The marginal effects of probabilities of a specific crash occurring for a change from a 
multi-vehicle crash to a single-vehicle crash are shown in Table 3. When the dummy variable 
(representing whether a crash is a single-vehicle crash) changes from 0 (a multi-vehicle crash) 
to 1 (a single-vehicle crash), the predicted probability of outcome: “slight injury” changes by 
-0.064, “serious injury” changes by 0.05 and “fatality” changes by 0.014, holding all other 
variables at their means. This finding also confirms that a single-vehicle crash is more likely 
to result in a higher level of severity on M25.  Figure 3 shows observed and predicted 
probabilities of serious and slight injury categories for both single-vehicle and multi-vehicle 
crashes. Both actual and predicted probabilities are quite similar indicating that a good 
measure of fit for the model.  
 

Figure 3 is about here 
 

 
Road surface conditions: Two types of road surface conditions (at the instant of a 

crash) are considered: (1) dry and (2) wet. An indicator variable was used to characterise them 
in the models where 0 means dry road surface conditions and 1 means wet road surface 
conditions. This indicator variable was highly and positively correlated (correlation 
coefficient = 0.7) with weather conditions (specifically with “raining”) suggesting that wet 
surface conditions are mostly due to the result of raining weather conditions. Our results 
suggest that wet road surface conditions reduce the level of M25 crash severity compared 
with dry surface conditions. This finding is consistent with other studies (e.g., Quddus et al., 
2002; Duncan et al., 1998; Shankar and Mannering, 1996). Quddus et al. (2002) argued that 
this is likely to be an effect of reduced speed levels.  

All models were also estimated with weather conditions categorised as fine, raining, 
snowing and others (while the indicator variable for road surface conditions was being 
dropped). The results (not shown here for brevity) also suggest that “raining” weather 
conditions reduce the level of M25 crash severity compared with “fine” weather conditions 
whilst “snowing” and “others” weather conditions were not statistically significant.   

 
Number of lanes: As discussed, the number of lanes within the M25 varies from two- 

to six-lane in each direction. STATS19 UK road crash data (2003 to 2006) suggest that 71% 
of all serious injury crashes and 67% of all fatal crashes happened on the three-lane stretches 
of the motorway. In order to see whether the variability in lanes has an impact on the level of 
crash severity, a categorical variable with three categories was used in the models. The 
categories were: (1) three-lane (or less) (2) four-lane (3) five- lane (or higher) and the second 
category was taken as a reference case. The results suggest that the level of crash severity on 
the stretches with three-lane (or less) was statistically and significantly different than that of 
on the stretches with four-lane. There was no difference in the crash severity between 
stretches with four-lane and stretches with five-lane (or higher) given that all other variables 
included in the models were held constant.   

Crashes on the stretches of M25 with three-lane appear to increase crash severity 
levels. This is also reflected in the signs of the marginal effects of this categorical variable 
(three-lane, five-lane where four-lane is taken as a reference) on the probabilities of different 
injury crashes (see Table 3). The sign is negative for the marginal effect of the probability of a 
slight injury crash and positive for marginal effects of the probabilities of a serious injury 
crash or a fatal crash.  

 
Time trend: Both a time trend variable representing the month in which the crash 

occurred and a categorical variable representing the crashes that occurred in different years 
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were tested and the results were found to be very similar.  Therefore, models only with a 
categorical variable are shown for brevity. This categorical variable has four categories such 
as year 2003, year 2004, year 2005 and year 2006. The first category was used as a reference 
case. It can be seen that the coefficients for 2004, 2005 and 2006 are negative suggesting that 
there is a downward trend in injury severity6. Some factors (not included in the models) that 
vary over time are leading to this trend.  The signs of the marginal effects of probabilities for 
either a serious or a fatal crash occurring are also negative for 2004, 2005 and 2006 (see Table 
3). This finding is consistent with other studies that used STATS19 data (e.g., Noland and 
Quddus, 2004).  

 
Number of casualties per crash: About 65% of the crashes occurred on the M25 

between 2003 and 2006 had a single casualty, 22% of the crashes had two casualties, 7% of 
the crashes had three casualties and 3% of the crashes had four casualties. The average 
number of casualties per crash is 1.55. A slight injury crash with a single casualty and a slight 
injury crash with multiple casualties were taken as an identical dependent variable in our 
models. This might be a problem given that a slight injury crash with multiple casualties is 
considered to be more severe than a slight injury crash with a single casualty. In order to 
control for such effects, a continuous variable representing the number of casualties per crash 
was used in the models. The results suggest that the level of severity increases with the 
increase in the number of casualties per crash. Figure 4 shows how the predicted probabilities 
of different categories of crashes change with the change in the number of casualties per 
crash.  
 

Figure 4 is about here 
 

Other factors: Other factors that had an effect on the severity of road crashes were 
found to be the radius of road curvature, day of the week and light conditions.  However, all 
of these variables were statistically significant only at the 90% confidence level. If the radius 
of road curvature of a road segment increases then the severity of a crash that occurred in that 
segment also increases suggesting that crashes on a straighter road segment (relatively high 
radius of curvature) were more severe than a curved road segment (relatively low radius of 
curvature). Although one would think that this is a surprising result, existing studies (Haynes 
et al., 2007 and Wang et al., 2008) while examining the frequency of killed and seriously 
injured (KSI) crashes at the area-wide level also found that curved roads are safer than 
straighter roads. Milton and Mannering (1998) also found that sharp horizontal curves tend to 
decrease accident frequency.  While comparing with a disaggregated crash data, this result is 
inconsistent with the finding of Quddus et al (2002) that reported that bends in the road 
appear to result in more severe injuries while investigating the severity of road crashes in an 
urban area. Since the characteristics of road configuration between an urban area and a 
motorway (M25 in our case) is quite different, a dissimilar result can be expected.  

Looking at day of the week effects (weekdays = 1 and weekend = 0), more severe 
crashes are predicted during weekdays. However, this finding is not consistent with the 
finding of Gray et al. (2008) who found that crashes in Great Britain are more severe on 
Fridays, Saturdays and Sundays (relative to Mondays).  In order to investigate this, a 
categorical variable of seven categories representing seven days of the week was also 
examined (the results are not shown for brevity).  However, less severe crashes are predicted 
on Sundays, Tuesdays, Fridays and Saturdays (relative to Mondays). This again suggests that 

                                                 
6 The coefficient for 2006 is statistically significant at only 80% confidence level 



  
 

14 

day of the week effects on the crash severity between motorways and other types of roadways 
may be different.  

The variable light conditions (darkness=1, daylight=0) allows us to investigate the 
effect of the level of light on the injury severity. Less severe injury crashes are predicted 
during darkness. This finding is also not consistent with that of Gray et al. (2008) while 
analysing the crash severity in London.  

 
 
 
CONCLUSIONS  

 
Disaggregated crash data from the M25 motorway have been used to investigate the 
association between the severity of road crash and the level of traffic congestion. This has 
been done while controlling for other contributory factors such as traffic characteristics (e.g., 
traffic flow), road geometry (e.g., curvature and gradient) and crash characteristics (e.g., 
single-vehicle or multi-vehicle). Statistical models such as ordered logit models, 
heterogeneous choice models and partially constrained generalised ordered logit (PC-
GOLOGIT) models suitable for an ordered response variable have been employed. Our 
results suggest that ordered logit models are not appropriate for the data we analysed. Both 
heterogeneous choice models and partially constrained generalised ordered logit models have 
fitted the data equally. The results are also consistent between these two models. Our results 
suggest that that the level of traffic congestion (measured by total delay or congestion index) 
does not affect the severity of road crashes on the M25 motorway. However, the impact of 
traffic flow on the severity of crashes shows an interesting result. While previous studies 
show a positive association between the frequency of traffic crashes and traffic flow, our 
disaggregated analysis suggests that increased traffic flow reduces the severity of crashes. The 
PC - GOLOGIT model has also been used to estimate the change in the relative probability of 
three different levels of severity of a crash for given values of explanatory variables. 

The factors that result in less severe crashes have been found to be traffic flow, radius 
of road curvature, darkness light conditions, wet road surface conditions and time trend. The 
factors resulting in high severe crashes have been found to be three-lane stretches of the 
motorway, single-vehicle crash and weekdays. The gradient of road segment and time of the 
day have found to be insignificant.  

One of the limitations of this study is that traffic flow and speed values were assigned 
to crashes based on segment measurements. However, segments would not necessarily have 
uniform conditions over 10km length if queues are present.  

There are a number of ways to extend the analysis used in this study. It would be 
interesting to analyse single-vehicle crashes separately as there is clear evidence that crashes 
involving a single-vehicle are more severe than those involving multiple-vehicle.  In such an 
analysis, the effects of driver age and gender on the severity of a crash can also be estimated. 
Another possible extension would be to consider crashes that occurred on different types of 
roads such as motorways, A roads, B roads and minor roads.   
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Table 1: Summary statistics of variables included in the models 
Variables Mean Std. Dev. Min Max

The level of crash severity* 1.113807 0.3555267 1 3

Level of traffic congestion (minutes) 9.4295 19.7400 0 448.33

Traffic flow in vehicles/h 3838.84 1730.82 0 8251

Average traffic speed (km/h) 84.7135 22.1328 5.1 136.08

Radius of road curvature in m 755.22 237.72 24.96 1815.26

Gradient (%) 3.3171 0.9986 0.7 6.1

Number of casualties per crash 1.5515 1.0055 1 17

Speed limit (km/h) 110.3 10.1100 32.2 (20mph) 112.6 (70mph)

Categorical or dummy variables

Number of lanes

Three-lane (or less)

Four-lane

Five-lane (or more)

Time of the day

Day of the week

Light conditions

Weather conditions

Fine

Raining

Snowing

Others (Fog/mist)

Road surface conditions

Number of vehicles involved 

Year of the crash

Year 2003

Year 2004

Year 2005

Year 2006

*1=Slight (count=3594), 2=Serious (count=353), 3=Fatal (count=51)

1=Year 2004 (count=1067), 0=otherwise (count=2931)

1=Year 2005 (count=1039), 0=otherwise (count=2959)

1=Year 2004 (count=936), 0=otherwise (count=3062)

1=wet road surface (count=1072, dry road surface=2926)

1=single-vehicle (count=528), 0=multi-vehicle(3470)

1=Three-lane or less (count= 2420), 0=otherwise (count=1578)

1=Four-lane (count=1218), 0=otherwise (count=2780)

1=Five-lane or more (count=360), 0=otherwise (count=3638)

1=peak (count=1574), 0=off-peak (count=2424)

1=Year 2003 (count=956), 0=otherwise (count=3042)

1=Fine (count=3313), 0=otherwise (count=685)

1=Raining (count=547), 0=otherwise (count=3451)

1=Snowing (count=13), 0=otherwise (count=3985)

1=others (count=125), 0=otherwise (count=3873)

1=weekdays (count=3137), 0=weekends (count=861)

1=darkness (count=1328), 0=daylight (count=2670)

Description
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Table 2: Model estimation results for OLOGIT, HCM, GOLOGIT and PC- GOLOGIT 
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OLOGIT HCM

Level of traffic congestion (minutes) -0.0005 -0.0000 -0.0005 -0.0110 -0.0006 - -
ln(Traffic flow in veh/hr) -0.5342*** -0.7124*** -0.510*** -0.771*** - -0.509*** -0.869***
ln(Radius of curvature in m) 0.2317* 0.2644* 0.228* -0.0981* 0.225* - -
Gradient (%) 0.0520 0.0664 0.0519 0.0495 0.0514 - -
Number of lanes: three lanes or less 0.45933*** 0.5269*** 0.469*** -0.1180 0.461*** - -
                         five lanes or higher 0.3302 0.3999 0.3300 0.1950 0.3250 - -
Time of the day: peak -0.0668 -0.0225 -0.0672 -0.3610 -0.0714 - -
Day of the week:weekdays 0.2071* 0.3228* 0.202* -0.0226* 0.2* - -
Lighting conditions: darkness -0.2074* -0.2907* -0.211* 0.336 -0.202* - -
Road surface conditions: wet -0.3798*** -0.4593*** -0.375*** -0.4420 -0.377*** - -
Number of vehicles involved: single 0.6712*** -0.2835 0.661*** 0.975*** - 0.658*** 1.199***
Number of casualties 0.3141*** 0.2819*** 0.308*** 0.388*** 0.312*** - -
Year 2004 -0.3959*** -0.4407*** -0.392** -0.7710 -0.395*** - -
Year 2005 -0.3207*** -0.3414* -0.323** -0.3610 -0.323** - -
Year 2006 -0.1848 -0.2547 -0.1970 0.1910 -0.1880 - -
Constant - - -0.4670 1.5710 -0.4530 - -

Number of vehicles involved: single - 0.4630*** - - - - -

Number of casualties - 0.0646*** - - - - -

cut-point1 0.3064** -0.5852** - - - - -
cut-point2 2.5968*** 2.3400*** - - - - -
Observations 3837 3837
Log-likelihood at convergence -1306.55 -1299.21
Likelihood Ratio (LR) Chi-Square 155.7 170.4
Degrees of freedom (dof) 15 17
McFadden pseudo Rho-square 0.096 0.099

*** p<0.01, ** p<0.05, * p<=0.1

Severity of road crashes

Coef Coef

Factors 
affecting the 
ordinal 
categorical 
choice (X )

180.20 169.68

GOLOGIT PC-GOLOGIT

Threshold 
between slight 

and serious injury 
crashes   (y>1)

Threshold 
between serious 

and fatal 
crashes  (y>2)

Coefficients 
not varying 
by threshold 

Threshold 
between slight 

and serious 
injury crashes   

(y>1)

Threshold 
between 

serious and 
fatal crashes  

(y>2)

Statistics

Factors 
affecting the 
error 
variance

3837 3837
-1294.29 -1300.03

0.09 0.10
30 17
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Table 3: Marginal effects 
Marginal 

Effects
Explanatory variables OLOGIT HCM PC-GOLOGIT

ln(Traffic flow in veh/hr) 0.0422** 0.0484** 0.0403**
ln(Radius of curvature in m) -0.0183* -0.0180* -0.0178* 
Number of lanes: three lanes or less -0.0352** -0.0347** -0.0353**
Day of the week:weekdays -0.0156* -0.0206** -0.0151* 
Lighting conditions: darkness 0.0159* 0.0191* 0.0156* 
Road surface conditions:wet 0.0280** 0.0291** 0.0278**
Number of vehicles involved:single -0.0652** -0.0745** -0.0638**
Number of casualties -0.0248** -0.0313** -0.0247**
Year 2004 0.0291** 0.0280** 0.0291**
Year 2005 0.0238** 0.0219** 0.0239**
Year 2006 0.0140 0.0165* 0.0143
ln(Traffic flow in veh/hr) -0.0372** -0.0437** -0.0343**
ln(Radius of curvature in m) 0.0161* 0.0162* 0.0161
Number of lanes: three lanes or less 0.0310** 0.0313** 0.0321**
Day of the week:weekdays 0.0138* 0.0186** 0.0137* 
Lighting conditions: darkness -0.0141* -0.0173* -0.0142* 
Road surface conditions: wet -0.0247** -0.0263** -0.0253**
Number of vehicles involved: single 0.0570** 0.0474** 0.0496**
Number of casualties 0.0219** 0.0269** 0.0192
Year 2004 -0.0257** -0.0253** -0.0265**
Year 2005 -0.0210** -0.0198** -0.0218**
Year 2006 -0.0124 -0.0149* -0.0130
ln(Traffic flow in veh/hr) -0.00502** -0.00476** -0.006**
ln(Radius of curvature in m) 0.00218* 0.00177* 0.0016
Number of lanes: three lanes or less 0.00417** 0.00340** 0.00322**
Day of the week:weekdays 0.0018* 0.002* 0.0014* 
Lighting conditions: darkness -0.00189* -0.00187* -0.00142* 
Road surface conditions: wet -0.00330** -0.00283** -0.00252**
Number of vehicles involved: single 0.00817** 0.0271** 0.0141**
Number of casualties 0.0029** 0.0043** 0.0021
Year 2004 -0.00343** -0.00272** -0.00264**
Year 2005 -0.00280** -0.00213* -0.00217**
Year 2006 -0.0017 -0.0016 -0.0013
Observations 3837 3837 3837

Slight 
injury 

crashes

Serious 
injury 

crashes

Fatal 
crashes

** p<0.05, * p<0.1  
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Figure 1: Average hourly delay (in minutes) just before the crashes happened on M25 

(2003 – 2006) 
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Figure 2: The predicted probabilities of different categories of road crashes for  
different values of traffic flow on a 3-lane road (using the PC- GOLOGIT model) 
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Figure 3: Actual vs predicted probabilities for the dummy variable representing 
whether a crash is a single-vehicle crash (all other vehicles at their means) 
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Figure 4: Predicted probabilities for number of casualties per crash (on a three-

lane stretch of M25) 
 


