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Abstract

A finite volume, shock-capturing scheme is used to solve the shallow water equations on un-

structured triangular meshes. The conditions are characterised by: slow flow velocities (up to

1 ms−1), long time scale (around 10 days), and large domains (50-100 km across). Systematic

verification is carried out by comparing numerical with analytical results, and by comparing

parameter variation in the numerical scheme with perturbation analysis, and good agreement is

found. It is the first time a shock-capturing scheme has been applied to slow flows in Moreton

Bay.

The scheme is used to simulate transport of a pollutant in Moreton Bay, to the east of

the city of Brisbane, Australia. Tidal effects are simulated using a sinusoidal time-dependent

boundary condition. An advection equation is solved to model the path of a contaminant that

is released in the bay, and the effect of tide and wind on the contaminant is studied. Calibration

is done by comparing numerical results with measurements made at a study site in Moreton

Bay.

It is found that variation in the wind speed and bed friction coefficients changes the solution

in the way predicted by the asymptotics. These results vary according to the shape of the

bathymetry of the domain: in shallower areas, flow is more subject to shear and hence changes

in wind speed or bed friction had a greater effect in adding energy to the system.

The results also show that the time-dependent boundary condition reproduces the tidal

effects that are found on the Queensland coast, i.e. semi-diurnal with amplitude of about 1

metre, to a reasonable degree. It is also found that the simulated path of a pollutant agrees

with field measurements. The computer model means different wind speeds and directions can

be tested which allows management decisions to be made about which conditions have the least

damaging effect on the area.
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CHAPTER 1

Introduction

Mathematical modelling is an attempt to simulate the real world. The mathematical model

provides insight into a problem where observed data are incomplete, field studies are impractical

or costly, or predictions based on particular parameters are required. The successful model will

fit the existing observed data, but will also be able to extrapolate beyond situations originally

described. It has applications in many areas including economics, financial markets, biology,

physics, engineering, and environmental sciences.

One form a model can take is a set of one or more partial differential equations (PDEs).

In this thesis we consider the two-dimensional shallow water equations (2D SWEs), a well-

known hyperbolic system to which analytical solutions are usually only available under certain

restrictive assumptions. In the past, modellers could take either an analytical or theoretical

approach or an experimental one. The former is limited by the power of known analytical

techniques, and even a simple system may have no analytical solutions. On the other hand

the experimental approach can be costly, requires expertise in using specialist instruments, and

may not scale up reliably to full size. As a result, numerical techniques have become more

popular as increased computing power means parameter values can be easily adjusted, complex

geometries can be handled, and complex systems can be treated in a reasonable computing

time.

The solutions that a numerical scheme produces must be realistic and physically relevant,

despite any simplifications of physical reality in the design of the code. There are generally two
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ways of ensuring that the system meets the design criteria:

• Simulations are compared with analytical results. Although analytical results may require

a high degree of simplification, they provide a means of testing that the code satisfies the

specified demands. This stage is known as validation. It is the degree to which the

simulation is an accurate model of the real world – we built the right model.

• Model parameters are adjusted so that the simulated most closely matches the observed.

This is known as calibration or verification. We determine that the model matches the

developer’s descriptions and specifications, or in this case, the physical reality – we built

the model right (see for example Labrosse et al. (2007)).

Successful validation and calibration means the model can be applied to other domains and the

results will be reliable and accurate. The processes connect the physical and mathematical (or,

real and numerical) worlds by ensuring that one matches the other.

1.1 Motivation

The city of Brisbane and much of the surrounding area acts as a source of agricultural and

industrial pollutant to the Brisbane river, either during periods of rainfall in which rain washes

pesticides and fertilisers off the land and into the river system, or by direct discharge of industrial

effluent into the river. The Brisbane river then discharges into Moreton Bay, lying to the east of

the city. Ideally, the pollutant is then washed out to the open sea, but Moreton Bay is partially

enclosed, meaning it is possible that the pollutant remains in the Bay for some time.

Management of catchment-derived inputs of pollutants is essential to mitigate against detri-

mental effects on the Moreton Bay ecosystem (Hodge et al. (2005)). Moreton Bay is home

to a large number of plant, fish, bird and mammal species. Increased levels of nitrogen and

phosphorous in the water due to human activity threatens these species’ habitats. Excess nutri-

ents in waterways can stimulate the growth of algae to nuisance proportions, diminishing light

availability to benthic species (healthywaterways.org).

In Queensland, it has been recognised that there is a need to mitigate the risk of catchment-

derived inputs of nutrients, sediments and toxicants detrimentally affecting the integrity of the

2



1.2 Aims and objectives

iconic Great Barrier Reef and Moreton Bay ecosystems (Hodge et al. (2005)). A number of state

and charitable organisations such as the State Environmental Protection Agency, the Pumices-

tone Region Catchment Coordination Association, the Australian Marine Conservation Society

provide funding for and carry out research into monitoring and assessing geology, hydrology,

sediment character and land use patterns.

While monitoring programmes can be valuable, a model that predicts water quality or

the transport of a pollutant provides insight into the likely outcomes of various management

practices. A particle-tracking model, as used by Periáñez (2004), or an advective model as

used in this thesis, is useful as a predictive tool that can be used to assess contamination under

different management or meteorological conditions. Many simulations can be made easily by

changing parameter values and repeating tests under different conditions.

The shallow water equations (SWEs) have been used to describe mathematically the flow

in any area where depth of water is sufficiently small with respect to the horizontal length. It

is a classical model based on the Navier-Stokes equations under the assumption of hydrostatic

pressure. The few analytical solutions to these equations that exist are useful for code validation.

We use a shock-capturing numerical scheme based on the finite volume method (FVM), with

an unstructured, triangular grid that has been designed using an object-oriented approach in

Java known as Riemann2D . It is the first time to our knowledge that a shock-capturing scheme

has been applied to Moreton Bay for slow flows, which is important as the scheme is inherently

mass-conserving.

1.2 Aims and objectives

A shock-capturing shallow water solver known as Riemann2D has been developed by Jha (2006)

and others. It is tested under various wind and tide conditions for long problem times (around

10 days) and slow flows, over varying bathymetry.

The main aims of this thesis are:

• to develop a range of perturbation results for low Froude number with corresponding

solutions for each order
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• to systematically validate the Riemann2D code across a range of flow conditions, and

against steady flows in idealised circular- and elliptical-shaped domains

• to show that the numerical code produces the correct physical behaviour in modelling the

effects of bed friction, wind speed and Coriolis effect

• to extend the code by including time-dependent boundary conditions for Riemann2D and

show that it displays the correct behaviour in two idealised domains (a square and a

circular basin)

• to apply Riemann2D to simulate the flow of water and contaminants in a real bay, in

particular Moreton Bay on the central east coast of Australia.

1.3 Thesis structure

Chapter 2 contains a literature review of the field. Since this thesis is multi-disciplinary, this

chapter aims to provide an outline of the most important and relevant aspects of the three areas

of applied mathematics, environmental engineering, and computer science. Some field studies

of Moreton Bay are also cited.

Chapter 3 covers some classical analytical techniques for treating nonlinear hyperbolic PDEs,

such as linearisation, and finding Riemann invariants. Asymptotic analysis is carried out and

solutions given for the case of low Froude number (low velocity) flows, in the cases with and

without source terms. These results allow for verification of results in later chapters. The

asymptotic solution for stratified shallow water flow is also given.

Chapter 4 describes the design of a general finite volume scheme in 2D, and provides detail

about the structure and functionality of Riemann2D . The flexibility of a finite volume formula-

tion in dealing with irregular boundaries is demonstrated. Riemann2D itself is written using an

object-oriented approach in the Java programming language and some of the properties of this

language are described. We introduce the design of the time-dependent boundary condition,

and the treatment of modelling a passive pollutant, as well as some of the other aspects of

Riemann2D such as data reconstruction, limiters and source terms.
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Chapters 5 and 6 use two simple two-dimensional domains as case studies of Riemann2D ’s

ability to solve the shallow water equations accurately and reliably. In Chapter 5, parameter

values are varied and the numerical solutions are compared with the asymptotic results from

Chapter 3, and shown to demonstrate expected behaviour. Two known analytical solutions

are reproduced numerically as part of the validation stage, and good agreement is found. In

Chapter 6 the time-dependent boundary condition is tested on the two simple 2D domains and

found to reproduce the expected results. The effect of wind on the path of a passive pollutant

in the fluid is measured to compare the relative effects of bathymetry, Coriolis force and tide.

In Chapter 7, the Riemann2D model is applied to Moreton Bay. In particular we are

interested in the circulation and distribution of a pollutant during several tidal cycles within

the Bay. The main source of pollution is the Brisbane river (Wallbrink (2004)), which discharges

into the northern end of the Bay. The presence of wind and tidal forcing is shown to have a

strong effect on the transport of the pollutant.

Finally, Chapter 8 presents the conclusions and summarises the research carried out in this

thesis, as well as proposing potential future research directions.
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CHAPTER 2

Literature review

This chapter provides background to the work of this thesis, in outlining the main areas of

study. The first section introduces the SWEs and how these form the model to be solved.

The second section is an overview of numerical methods: this field has a vast literature so this

section aims to provide a brief explanation of what methods are available and to justify our

choice of method. The third section is a review of examples where a shallow water numerical

scheme has been applied to a real bay and includes examples of pollutant transport models. The

fourth section discusses Moreton Bay, some of the ecological challenges facing it and some of the

studies done on it. In the fifth section, the basic principles of Object Oriented Programming

(OOP) are introduced with some examples of how OOP has been used to model shallow water

flow.

2.1 Shallow water equations

Shallow water is defined in the mathematical sense as having a depth that is at most one tenth

of the width of the domain it occupies. In our model, Moreton Bay has a planform area of

1 200 km2 and an average depth of 10-20 m, which means the aspect ratio is small and the

shallow water equations are valid. Under the assumption of hydrostatic pressure, the Navier-

Stokes equations can be shown to reduce to the shallow water equations, which can be used to

describe the flows in such domains.
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Consider the physical configuration of the problem to be as follows. In a bay of sea water (i.e.

incompressible, homogeneous fluid at constant temperature 1), take the (x, y) horizontal plane

as being parallel to the surface of the still water, and the depth of the water at a given point

as h = h(x, y, t) > 0. We denote depth-averaged velocity in the x-direction as u = u(x, y, t)

and the depth-averaged velocity in the y-direction as v = v(x, y, t). While the plane {z = 0}

can be chosen arbitrarily, it is usually positioned at mean sea level. Measuring down from this

plane, the (fixed) bottom of the harbour is at depth z = −b(x, y). The equation z = −b(x, y)

is the equation for the bottom surface, also known as the bottom topography or bathymetry, the

depth of which is usually assumed to vary with x and y, and in the case of an erodible bed, b

varies in time as well. Consider a perturbation in the water’s surface of amplitude η(x, y, t). So

z = η(x, y, t) is the instantaneous position of the actual water surface measured from the plane

{z = 0}, and the total depth of the water in general is h = η − b (see Figure 2.1).

The governing equations of the motion of water in a shallow bay are usually taken to be the

shallow water equations:

∂h

∂t
+
∂(hu)
∂x

+
∂(hv)
∂y

= s1 (2.1a)

∂(hu)
∂t

+
∂(hu2 + gh2/2)

∂x
+
∂(huv)
∂y

= s2 (2.1b)

∂(hv)
∂t

+
∂(huv)
∂x

+
∂(hv2 + gh2/2)

∂y
= s3, (2.1c)

where g represents acceleration due to gravity, positive measured in the z < 0 direction, and

(s1, s2, s3) are the source terms as given below.

The first equation represents conservation of water mass, and the second and third represent

conservation of momentum in the x- and y-directions respectively. The shallow water model

suppresses any vertical motion. The derivation of this model is carried out in detail in Ap-

pendix A, and can also be found in the classical texts (see for example Stoker (1957), Whitham

(1974) or Ockendon et al. (1999)).

The equations above can be written in vector form as

qt + Fx + Gy = s, (2.2)

1. Temperature is not considered to play any role at all in the flow of this water.
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2.1 Shallow water equations

Figure 2.1: Schematic to show geometry of a generic bay. The irregular bed of the bay (shaded

grey) is described by the equation z = −b (where b is assumed at least continuously differen-

tiable), the total depth of the water is h = η− b, and the level of still water (mean sea level) is

at z = 0. The y-axis is coming out of the page.

where

q =

 h
hu
hv

 , F =

 hu
hu2 + gh2/2

huv

 , G =

 hv
huv

hv2 + gh2/2

 , s =

 0
−ghbx
−ghby

 ,
and where the subscripts t, x, y denote differentiation with respect to that variable. In vector

form, the unknown is q = [h, hu, hv]T (the vector of conserved variables), and Fx, Gy are the

divergence of the x, y flux vectors respectively. The right hand side vector of source terms,

s, contains the effect of bottom topography. Other source terms may be included such as the

effects of wind stress, bed friction and Coriolis force and these are discussed in the next section.

Equation (2.2) is written in conserved form, but can alternatively be written in terms of the

non-conserved variables (h, u, v) as

ht +∇ · (hu) = 0 (2.3a)

ut + (u · ∇)u + g∇h = ŝ, (2.3b)
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where ŝ is the vector containing the second two terms of s. Note that the preferred choice

for formulating a numerical scheme is the conserved form given by (2.2), because it means the

scheme is inherently conservative as physically meaningful quantities are used throughout.

2.1.1 Source terms

The terms in the right hand vector of (2.2) represent the effect of the shape of the bottom of

the bay on the flow and is the most common choice for the source terms. There are however

other forces that affect the flow in the bay, including bed friction, Coriolis force and wind stress.

The vector of the right hand side can be generalised to include these forces through

(s2, s3) = −gh∇b− ghSf + fhk ∧ u + τ, (2.4)

where Sf = (Sfx, Sfy) represents horizontal bed friction, f is the Coriolis parameter, and

τ = (τx, τy) represents horizontal wind stress on the surface of the water.

A source or sink such as rainfall, river discharge, outflow, or evaporation is modelled by the

inclusion of a non-zero term on the right hand side of (2.1a). In this work however, we always

consider that s1 = 0.

Bed friction is modelled by

Sf = cfu|u|,

where cf = n2h−4/3 is the bed friction coefficient, and n is Manning’s roughness coefficient,

or simply ‘Manning’s n’. Typical values of n are 0.01 m−1/3s for a general bed of sand or

small stones (Chow (1959), Baines (1974), and Fowler (1997)), and for very rough surfaces

such as a floodplain of forest or heavy brush, may be no higher than about 0.1 m−1/3s.

Alternatively, Chézy’s coefficient C may be employed, so that cf = h−1C−2, where C

has a typical value of 37-40 m1/2s−1 (Liang et al. (2006), Borthwick et al. (2001a)). The

Chézy form has the advantage over the Manning’s form as there is then no singularity in

(2.4) as the depth of the water, h, tends to zero.

Coriolis force is force exerted on a body when it moves in a rotating reference frame. Large

atmospheric bodies such as clouds do not move directly from areas of high to low pressure,
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but because the Earth is rotating, are pulled to the east (northern hemisphere) or west

(southern hemisphere). The expression for Coriolis force is

fhk ∧ u = (0, −fhv, fhu),

where f = 2Ω sinϕ (in units of s−1) is the Coriolis parameter, Ω the angular velocity of

the Earth, ϕ the latitude. The latitude of Moreton Bay is 27◦S, so the Coriolis parameter,

f , in this case is −6.6× 10−5 s−1.

Wind The effect on the water’s movement, that the wind over the surface has, is complex to

model accurately due to its variation in z. Etling et al. (1985) consider a mixing-length

approach to model the surface wind stress, with results similar to the previously published

analytical solutions. On the other hand, Baines (1974) uses a constant expression for the

wind to show that the wave-induced drag coefficient reaches a maximum when wind speed

is 2
√
gh. In this thesis, as was done by Jha (2006), we make a simplifying assumption

that forcing due to wind can be approximated by the expression

τ = (τx, τy) = (cww2 cosα, cww2 sinα),

where cw is the wind friction coefficient (assumed constant), w is the wind speed, and

α is the angle of the direction of the wind with respect to the x-axis. The size of cw is

taken to be O(10−3) (as has been done by Trenberth et al. (1989), Yu and O’Brien (1991),

and Butman (1978)), and the wind speed w may typically vary between 1 and 10 ms−1.

Mete Uz et al. (2002) note that when wind speed is greater than 10 ms−1, larger waves

are generated, which increases the drag coefficient, hence the assumption of a constant

wind friction becomes invalid. As typical values in Moreton Bay are generally less than

10 ms−1, a constant drag coefficient is a valid approximation.

2.1.2 Shallow water equations in a circular domain

A special case where analytical solutions to the SWEs are available is when the domain is

axisymmetric and the flow is steady, and therefore independent of time. Solutions to some

other special cases of shallow water in circular coordinates are studied in the following papers.
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Numerical solutions to several problems in a dish-shaped basin of 192 m diameter and 1 m

maximum depth are given by Borthwick et al. (2001a) and Borthwick et al. (2001b). In one of

these tests, wind of 10 ms−1 is simulated until steady-state is achieved. Their calculations are

made on quadtree grids (square elements), and the solution shows two areas of circulation, which

is in good agreement with the analytical solution for the same problem studied by Kranenburg

(1992). This test is reproduced in this thesis in Chapter 5, using unstructured grids (triangular

elements), but results are very similar.

Slim and Huppert (2004) use the phase plane method to investigate the existence of similarity

solutions to the shallow water equations in two concentric cylinders filled with stationary fluids

of different densities. As the inner cylinder is removed, gravity currents propagate inwards.

Unique solutions are found for non-negative, finite Froude numbers under the assumption of

regularity of height and velocity.

A cylindrical hydraulic jump occurs when a jet of water is directed vertically downwards onto

a flat plane and creates a circular hydraulic jump. Bohr et al. (1993) show that the assumption

of a viscous force in the fluid is necessary to describe the hydraulic jump, and derive a scaling

relation for the radius of the hydraulic jump. Ray and Bhattacharjee (2005) use the same

equations as Bohr et al. (1993) (i.e. SWEs in cylindrical coordinates with viscosity) and carry

out a linear stability analysis on the time-dependent equations and give a condition on the

Froude number for the jump to be able to form.

2.2 Numerical schemes

Numerical methods for PDEs has an extensive literature, helped by the relatively recent devel-

opment of computers. Some of the earliest contributions come from Courant et al. (1928), von

Neumann and Richtmeyer (1950), Courant, Isaacson and Reeves (1952) and Godunov (1959),

although finding solutions via discretisation goes back to Euler (1707-1783) and his method for

solving ODEs (Ordinary Differential Equations).

There is a choice of methods for approximating the solutions to partial differential equations;

three very well-established methods are now described:
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Finite element method (FEM) The advantage of this method is that it can easily be ap-

plied to domains with irregular boundaries.

The FEM is usually used for structural and mechanical problems because such problems

can be approximated quite well with fewer cells. On the other hand, fluid problems tend to

need much higher numbers of cells to obtain a good approximation, and so other methods

are preferable.

Finite difference method (FDM) This method is widely used because of its simplicity in

implementing. Shocks can be captured effectively via a flux limiter. However, it is un-

suitable for problems with irregular boundaries.

The FEM and FDM differ in that the first makes an approximation to the solution, and

the second is an approximation to the differential equation.

Finite volume method (FVM) This method has become popular as it has the simplicity

of the FDM in programming, it is more efficient than the FEM, and is better-suited to

2D problems. Since it is naturally mass-conserving, it is particularly favoured in hydro-

dynamic modelling for systems of conservation laws. As it does not require a coordinate

transformation when applied to unstructured meshes, it is useful for modelling natural

domains with irregular boundaries.

The FVM is similar to FDM in that it makes calculations based on values at a point, but

different in that the value used is the average value over the element (volume). The FVM

uses the integral form of the equation.

A fuller description of all three methods can be found in Hirsch (1984), and very detailed

information on implementing FVM across a range of problems can be found in LeVeque (2003).

Two further methods are sometimes used for solving PDEs. One is the spectral method,

which approximates the solution on the whole domain using a high-order Chebyshev polynomial

(in contrast, the finite element method approximates the solution as a series of overlapping

low-order polynomials). It performs best when the geometry of the problem is smooth (Boyd

(2000)), and is therefore unsuitable for shock-capturing methods. The other is the method of

lines, or the method of characteristics, where the system is discretised in all but one variable,
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reducing it to a system of ordinary differential equations and solutions are found along these

lines numerically by using an explicit or implicit solver. See for example Ockendon et al. (1999).

Riemann2D was developed for short time problems, so it was important to use a shock-

capturing scheme. It was intended for use on real domains and was required to fit easily to

irregular boundaries. Hence the FVM was the most appropriate.

2.2.1 Properties of hyperbolic problems

PDEs can be classified according to their eigenvalues as either hyperbolic, parabolic, or elliptic.

The SWEs have real and distinct eigenvalues (for h > 0), meaning the system is hyperbolic.

Hyperbolic systems have two significant properties that a successful numerical scheme should

reproduce: one is that they have an inherent direction of signal propagation; the other is that

they can admit discontinuous solutions. The propagation of information can be represented by

characteristic curves (or just characteristics). Where these characteristics intersect corresponds

to a shock in the system. A shock can be due to a discontinuity in the initial data (the Riemann

problem, see below), or it can develop even when the initial data is smooth.

2.2.2 The Riemann problem

The Riemann problem is a hyperbolic PDE together with piecewise constant initial data having

a single discontinuity, which is written mathematically as

qt + f(q)x = 0

q(0, x) =

{
qL if x > 0
qR if x < 0,

for the vector of state variables q, and a flux function f . It is possible to devise a numerical

scheme by imposing a grid on the domain of calculation and assuming the state value in each

cell or element in the grid is constant, so that wherever two cells meet there is a local Riemann

problem. Such a scheme is called a Godunov-type Riemann solver. A Godunov scheme solves

a Riemann problem exactly (Glaister (1990)). Each pair of cells is defined as being to the left

(subscript L) or the right (subscript R) of the discontinuity. The state values of these cells are

known as the left state (qL) and right state (qR).
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This is the problem from which Riemann2D gets its name. It treats a problem by considering

pairwise elements and solving across the interface.

2.2.3 Numerical schemes for hyperbolic problems

One of the most influential researchers in the field of numerical methods is Godunov. His

famous theorem of 1959 states that a linear monotone scheme is at most first-order accurate. A

monotone scheme is either only increasing or only decreasing and thus it does not generate any

new maximum points or minimum points (extrema). It does not permit spurious oscillations.

Some of the most popular schemes developed in the 1970s and 1980s are described by

Hirsch (1984) in the following way. (Most references of the next three subsections can be found

in Hirsch’s book, p128.)

Centred schemes

Space-centred schemes were among the earlier developments in the context of numerical meth-

ods. These include the first-order accurate Lax-Freidrichs scheme (1954), the second-order

Lax-Wendroff (1960) and the two-step methods of Richtmeyer and Morton (1967) and Mac-

Cormack (1996). The Lax-Wendroff method is known to suffer badly from spurious oscillations.

Upwind schemes

Upwind schemes for the shallow water equations have been used with good results by Bermúdez

and Vázquez (1994), Bermúdez et al. (1998), Yoon and Kang (2004), and Vázquez-Cendón

(1999), among others. In fact, an upwind scheme is preferable to a centred one in order to

ensure stability and the correct propagation velocity (Bermúdez and Vázquez (1994), Vázquez-

Cendón (1999)).

Riemann2D uses an upwind method that is part of the Godunov class of solvers. Godunov’s

original solver of 1959 is a first-order scheme based on the exact solution to the Riemann prob-

lem. Van Leer (1979) increased the accuracy to second-order by adding a limiter. Approximate

solvers (approximate solutions to the Riemann problem) have been proposed by Roe (1981),

Engquist and Osher (1980) and Harten, Lax, Van Leer (1983). In all these methods a Riemann

problem is solved, so they are sometimes known as Riemann solvers. In particular, the work of
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Roe (1981), due to its stability and accuracy, is used in the design of the numerical scheme of

this thesis, and is discussed further in the next section.

High-resolution schemes

High-resolution schemes aim to achieve second- or higher-order spatial accuracy in regions of

smooth flows. They model areas of shocks or discontinuities better than a first-order scheme

and significantly reduce spurious oscillations. Central schemes were made high-resolution in

the eighties by Davis (1984), Roe (1985) and Yee (1985,1987). High-resolution schemes that

are upwinded include those of Van Leer (1974), Van Leer (1979), Harten (1983), (1984) and

Osher (1984).

Since, according to Godunov’s theorem, monotonicity is required in order to ensure that no

new extrema are generated in a linear scheme, a nonlinear term can be introduced to make

the scheme second-order accurate. von Neumann and Richtmeyer (1950) proposed adding a

numerical ‘anti-diffusive flux’ or ‘artificial viscosity’ in order to prevent the spurious oscillations

that could occur 1. Adding a term that damps oscillations does not mean the scheme can be

said to be high-resolution, as it does not prevent the oscillations from being generated (Hirsch

(1984), p127).

Boris and Book (1973) were the first to add a term that ‘limits’ the flux 2. Depending on

the gradient of the solution in a cell, the limiter acts more (on a steep gradient) or less (on a

shallower one) meaning that oscillations are prevented around very high gradients, while still

maintaining accuracy in regions of small slope. Many limiters have since been developed. These

include the superbee limiter due to Roe (Sweby (1984)), Van Leer’s limiter, Chakravarthy and

Osher’s limiter, and the MLG (maximum limited gradient) limiter due to Batten et al. (1996)

(which has been shown to reduce to the superbee limiter in 1D, see Jha (2006) and references

therein). A detailed description and comparison of some of the most popular limiters is given by

Sweby (1984), which is also summarised in Section 4.1.4. See also Jha (2006). For most of the

1. These methods were developed for finite difference schemes.

2. The work of Boris and Book (1973) was carried out for finite difference methods. Their algorithm “employs

no adjustable artificial viscosity of the von Neumann type”, but instead acts in an antidiffusive manner to correct

any undershoots or overshoots.
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numerical tests in this thesis, the MLG limiter is used as it is the most effective at preventing

numerical smearing.

Godunov’s theorem on monotonicity was generalised in a paper by Harten (1983), in which

a general condition was given for a nonlinear scheme to not generate unphysical oscillations as

being total variation nonincreasing (TVNI). A scheme is said to be TVNI if is satisfies

TV (qn+1) 6 TV (qn),

where TV (q) =
∞∑
j−∞
|qj+1 − qj |,

where the superscript n denotes the nth time step and the subscript j denotes the jth cell

(space). The more commonly-used form is total variation diminishing (TVD) (where the 6

is replaced with <). The condition guarantees a maximum principle on the discrete solution

and that mass and other physically relevant data may not become unbounded (Batten et al.

(1996)). The exact solution to a hyperbolic problem is TVD and thus any numerical scheme

that hopes to approximate the solution should also have this property. A TVD scheme must

also satisfy the entropy condition if it is to select a physical solution (Yee et al. (1985)). The

condition on entropy is that it must always remain constant or increase, never decrease, and

that it is not conserved over shocks.

2.2.4 Roe’s scheme

Roe (1981) was one of the first to propose solving an approximate problem exactly instead of the

exact problem approximately. Because of the success of this approach it has become one of the

most popular methods to use, especially in problems involving complicated geometry (Namin

et al. (2004)), and is thus an obvious choice for the Riemann2D code. Roe’s approximation

must satisfy the U -property (uniform property), defined by Roe as the following. For a system

qt+Fx = 0, which can be written as qt+Aqx = 0 for A = ∂F/∂q, we define an approximation

matrix Ã that satisfies

i) Ã is a linear mapping from q to F,

ii) Ã(qL,qR)→ Ã(q) as qL → qR → q,

iii) Ã(qL,qR) · (qL − qR) = FL − FR for all qL, qR,

17



CHAPTER 2. LITERATURE REVIEW

iv) the eigenvalues of Ã are all linearly independent,

where subscripts L and R denote left and right states, respectively. It is a relatively easy task

to find an Ã that satisfies properties i), ii) and iv), but to satisfy iii) is most difficult. However,

for the 1D SWEs, Ã can be found (e.g. Glaister (1988a)) by replacing the state variables with

the so-called Roe averages, given as√
h̃ =

√
hL +

√
hR

ũ =
(hu)L/

√
hL + (hu)R/

√
hR√

h̃
.

These have also been given for the 2D shallow water equations in, for example Namin et al.

(2004) and Bradford and Sanders (2002).

2.2.5 Splitting

When formulating a numerical scheme, one approach is to perform a ‘splitting’ of the flux term,

whereby the flux term is divided in two, dealt with numerically, then the result recomposed at

the end of the calculation.

For a system of conservation laws such as

qt + f(q)x = 0,

where q is the vector of state variables, and f(q)x is the flux function, discretisation allows us

to write

Qn+1
i = Qni −

∆t
∆x

(
Fni+1/2 − F

n
i−1/2

)
,

for some numerical flux F and where Qn+1
i is the solution calculated at the next timestep at a

point in space i and at time n+ 1. The flux F is defined as a function F of left (Qi) and right

(Qi+1) states. We could, for example, define F via

Qni−1/2 = F(Qni−1, Q
n
i+1) =

1
2
(
f(Qni−1) + f(Qni )

)
.

But it turns out that this is unstable in general. A more stable scheme due to Lax-Friedrichs

is obtained by performing the splitting as

F(Qni−1, Q
n
i+1) =

1
2
(
f(Qni−1) + f(Qni )

)
− ∆x

2∆t
(Qni −Qni−1).

18



2.2 Numerical schemes

Or alternatively due to Richtmeyer

F
n+1/2
i−1/2 = f(Qn+1/2

i−1/2 )

where Q
n+1/2
i−1/2 =

1
2
(
Qni−1 +Qni

)
− ∆t

2∆x
(
f(Qni )− f(Qni−1)

)
.

There are many ways of splitting the numerical function and the best choice depends on the

problem to be tested.

2.2.6 Structured and unstructured meshes

The irregularity of the shape of the boundary of a natural domain means that the choice of

mesh becomes an important consideration. A structured quadrilateral mesh (i.e. based on a

Cartesian grid) applied to such a domain may lead to difficulties in fitting the elements at the

boundaries, and is thus not always chosen for natural domains. Nevertheless, good results have

been found with quadrilateral meshes by working on either, or both, of two principles:

a) that the mesh is fine at the boundary

b) that the cells are aligned to fit the boundary, for example in a problem with a circular

domain, cells are aligned radially.

The 2D shallow water equations are solved on a bifurcated channel with a quadrilateral

mesh (based on principle (b)) by Wang et al. (2003), and good agreement is reported with

experimental data. Borthwick et al. (2001a) and Borthwick et al. (2001b) use quadtree meshes

based on principle (a) in a circular basin, and find good agreement with previously published

results. Feng et al. (2006) and Lin et al. (2003) solve the 2D circular dam break problem. Lin

et al. (2003) also use cells that are radially aligned, while Feng et al. (2006) use a Cartesian

grid. Results are shown to be stable in both cases.

Whereas structured meshes are based on the intersection of parallel lines, an unstructured

mesh is not. In this thesis we use unstructured triangular meshes, as they are well-suited to

problems where flexibility in fitting to irregular domains is desirable. Namin et al. (2004) use

both “cell-centred” and “mesh vertex” approaches for unstructured triangular meshes and find

reliable results in both cases, the difference being that the cell-centred mesh takes 2
√

2 times

longer than the vertex mesh as it has more computational points. Brufau and Garcia-Navarro

19



CHAPTER 2. LITERATURE REVIEW

(2000) and Yoon and Kang (2004) use unstructured meshes and an FVM to simulate a dam

break. The former paper applies the model to a channel with a constriction, and the numerical

solutions show good agreement with experimental results. It is found that some more work

is required on the choice of boundary conditions for this model, although a very fine mesh is

found to reduce these problems. The latter shows how the connectivity – the number of cells

meeting at one node – of the mesh can affect the stability of the solution. Bermúdez et al.

(1998) also use an unstructured mesh, which they test on a partial dam break problem and

find to be reliable. Anastasiou and Chan (1997) use Roe’s solver on unstructured meshes for

a partial dam break, a circular dam break, flow over a step, and jet-forced flow in a circular

reservoir, and very good agreement is found with previously published results.

2.3 Shallow water applications

Numerical schemes have been used to model the shallow water equations with applications to

bays, lakes and harbours. Below is a selection of papers describing such schemes. The schemes

cited are based on finite volume methods applied to unstructured triangular meshes, unless

stated otherwise.

The Bay of Fundy near New Brunswick/Nova Scotia/Maine, North America, has been the

subject of several studies. It is of particular interest because of its extreme tidal range – about

17 metres on average and arguably the largest in the world. The area of the Bay is 16 000 km2

and is generally less than 200 m deep at any point. Heaps and Greenberg (1974) use a finite

difference scheme to solve the shallow water equations and to describe the M2 tidal behaviour 1

in the Bay. Amplitudes and phases at the boundary are determined by observed field data and

the simulation is made over nine tidal cycles. The study was motivated by the proposal to build

barriers for electric power generators in order to calculate the tidal power and to optimise the

barrier schemes. The authors also provide a simplified analytical model based on the SWEs

that agrees with the numerical results.

Heaps and Jones (1976) were also concerned with the construction of cross-channel barriers

in the Bay of Fundy, and used results from a numerical tidal model to predict the phase and

1. The M2 notation is used to describe the (dominant) effects of the Moon on the tide. It is a practical way

to simulate the complex force of the tide using a simple sine function.
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amplitude of the M2 tides. The poor comparison with observed M2 data, the authors say, is

due to the coarseness of the grid used in their model.

Rasmussen and Badr (1979) were some of the first to validate the results from a numerical

model for which measured field data were used as boundary conditions. They use a mathe-

matical model developed by the Water Resource Branch, Ontario Ministry of the Environment,

applied to Hamilton Harbour, Ontario, which is approximately 7 km long and 3 km wide (it is

not stated what type of model this is). The major features of the flow in Hamilton Harbour are

found to be reasonably well modelled, while the more detailed features are not as well repro-

duced. The authors suggested that it is likely that with a smaller time step and a finer mesh a

better description of these detailed features would be produced, but since computer power was

limited at that time, this would have been at an unacceptable computing cost.

Bermúdez et al. (1998) develop a first-order accurate upwind scheme with flux splitting and

test it on a partial dam break and the authors report good agreement with published results.

The model is then applied to tidal flows in the Pontevedra ria, Galicia, Spain (15 km long,

5-10 m deep) with slip boundary conditions on the coastal boundary and specified h at the

ocean boundary. The numerical results show that velocities in the ria resulting from the tidal

flow are between 0.004− 0.15 ms−1.

Zhou et al. (2001) use a Surface Gradient Method (SGM) which is comprised of a Godunov-

type solver with a predictor-corrector method and a quadrilateral mesh. Results for a tidal wave

over an irregular bed, steady flow over a bump, quasi-steady flow (all 1D problems, 1.5 km, 24 m

and 1 m long, respectively) and flow through a constricted channel (2D problem) are compared

with analytical solutions and excellent agreement is found.

Lin et al. (2003) modify the well-known MacCormack scheme with flux-splitting to estimate

the numerical flux. The splitting means the eigenvalues of the Jacobian matrix are not required

hence programming the scheme is simpler. Four types of splitting are tested on four tests: a

1D dam break, an oblique hydraulic jump, a partial dam break and a circular dam break. All

schemes perform well, but the ‘Liou-Steffen’ splitting performs best, and is chosen to reproduce

a lab experiment of a dam-break with a sloped, partially dry bed, for which good agreement is

reported.
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Gómez-Valdés et al. (2003) use a finite difference model to investigate the residual tidal

currents in the Ensenada de la Paz, Mexico, a bay of about 8 km square. Their results are

calibrated with observed surface elevation and currents from that bay, and good agreement is

found.

Wang et al. (2003) apply their finite-volume TVD scheme, using structured quadrilateral

meshes, to a partial dam break, to a circular dam break with flat bed and no bed friction,

and finally to a dam break in two channels – one trifurcated, one bifurcated. For the first

two tests, good agreement is reported with other published results. In the case of the channels,

general flow patterns are considered reasonable but no laboratory data were available for specific

comparisons to be made, so the authors suggest further study is required.

Yoon and Kang (2004) test their Harten-Lax-vanLeer approximate Riemann solver on an

oblique hydraulic jump problem with different limiters and types of grid (well-connected and

distorted) and show their choice of limiter exhibits smaller oscillations than the superbee and

minmod limiters even on a distorted grid. A dry-bed dam break problem is tested and results

compared to published experimental results, showing reasonable agreement in flow depth and

arrival time of the wavefront. They then apply the model to the Malpasset dam in France,

which failed in 1959, meaning that data are available for surface elevation and velocity at

various points down the valley. Predicted results are very close to the measured data of 1959.

Feng et al. (2006) combine the fourth-order central weighted essentially non-oscillatory

(CWENO) reconstructions with a central-upwind scheme. They use structured meshes to test

their scheme on 1D and 2D problems with varying bottom topography and a 2D circular dam

break problem on a domain of 20 m square. Comparison with exact results shows that these

methods have high resolution, non-oscillatory behaviour and robustness.

Castro et al. (2006) present a one- and two-layer shallow water model, and use it, with an

unstructured triangular mesh, to compare with analytical solutions and laboratory experiments.

Then the model is used to simulate a lock-exchange experiment in the 5 km long Strait of

Gibraltar. Numerical results are in good agreement with the hypothetical steady state proposed

by Farmer and Armi (1988). The same authors, in a subsequent paper (Castro et al. (2007)),

apply a two-layer shallow water model to the Strait of Gibraltar to simulate the tide at the two

open ends based on observed tidal data. Once again, results show good agreement with Farmer
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and Armi (1988), and also with experimental measurements for the steady-state simulation.

For the tide simulation, agreement with measurements is found to be quite good; in particular

the travelling bores are found to be well simulated.

Wetting and drying

The following papers are all concerned with modelling the phenomenon of wetting and drying,

which is a particular consideration when modelling tidal flows.

Bradford and Sanders (2002) develop a model using a predictor-corrector technique, with

Roe’s scheme, to evaluate the flux. It deals with wetting and drying of cells by setting velocities

in a cell to zero if the depth of water in that cell becomes smaller than a specified tolerance (in

frictionless problems, the tolerance is 1 × 10−4 m). The model is tested on a frictionless dam

break, 120 m long, with a sloping bed and dry bed ahead of the dam, and on an upcoming wave

around a conical island on a 24 × 24 m domain. The results compare well with experimental

results and previously published results.

Namin et al. (2004) use the results of experiments on a 20 km-long 2D dam break with vary-

ing bed slopes and alternately wet and dry beds downstream of the dam. Detailed comparisons

are made between measured (experimental) and predicted (numerical) values, and reliable pre-

dictions from their model based on Roe’s Riemann solver are reported. The model is applied,

with some modification to the flux in areas of rapidly-varying topography, to the Ribble Estu-

ary, northwest England, which is about 15 km long. The boundary conditions are set using data

from the Proudman Oceanographic Laboratory’s Irish Sea model. Due to the large tidal range

in this estuary, there are large areas subject to wetting and drying, which the model copes well

with, and typical flow velocities are found to be of 0 − 5 ms−1 with a maximum of 12 ms−1.

This is in contrast to the magnitudes found by Bermúdez et al. (1998) (0.004−0.15 ms−1), and

can be explained by the fact that water flows much faster over shallow bathymetry.

Greenberg et al. (2005) use a three-dimensional wave model and a finite element scheme to

simulate flooding and drying of cells by reducing the proportion of the column that is ‘active’

when water depth is below 10 m (water depth varies from 0 to 45 m, length 51 km square). The

model is applied to the Quoddy region near the Bay of Fundy, New Brunswick and incorporates
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an approximate tidal force. It is found to have good results when compared with available

observational data, and the results demonstrate good quantitative behaviour.

Liang et al. (2006) present three improvements to an existing numerical code, which tests

show produce either the same or better results than the original. Their new finite difference

model is used on a quadrilateral mesh to simulate the tidal flow in Poole harbour, a natural

coastal basin about 10 km long, in Dorset, UK. A wind of 3 ms−1 is blown across the surface and

the tidal data fed in are based on measurements at the harbour mouth. Close agreement is found

with the water level, and although the velocity is less exact, it still gives reasonable agreement.

This is attributed to the highly irregular topography in the harbour and local conditions such

as wind speed, bed roughness and the accuracy of the field measuring equipment.

Liang and Borthwick (2009) use a quadtree mesh and a Godunov-type solver and test their

scheme on 1D and 2D flow over a hump (domains of 25 m and 2 × 1 m), 2D flow over three

humps (30 × 10 m), and sloshing in a vessel with parabolic bottom (5 km radius, 10 m deep).

Results compare well with analytical solutions or previously published numerical predictions.

2.3.1 Pollutant transport

Pollutants may come from an agricultural source, e.g. fertilisers or pesticides, which run off the

land via rainfall, and enter the water system by a river or stream. Alternatively, they may have

their source in a factory or manufacturing plant, where chemicals used in processing are flushed

into the rivers without first being treated. Effective management of these pollutants is essential

to evaluating coastal action plans (Hodge et al. (2005)). Moreton Bay’s ecosystem supports rare

wildlife such as the giant turtle and the dugong, whose habitat of seagrass is already threatened

with the degradation of water quality and urban development (Haynes (2001)).

The following papers demonstrate how effectively wind is at transporting contaminant, water

particles, or even eroded bed particles.

Neill et al. (2008) use the Proudman Oceanographic Laboratory Coastal Ocean Modelling

System and a longshore sediment transport model to provide insight into the mechanisms

associated with the erosion of dunes and beach levels (bed evolution) of Tremadoc Bay in

northwest Wales. The model incorporates wave, tidal, longshore transport, total transport and

bed level change modules with the aim of determining how effectively it could reproduce the
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bulk flow features that were observed. Results of the long-duration simulations including the

effect of high-frequency wind effects agree well with the beach profile data over six-month time

periods for the seven years of measurements between 1997 and 2005.

The erosion in Massachusetts Bay, in northeast USA, is due mainly to bottom stress due to

surface waves, according to Butman et al. (2008). This is because the prevailing northeasterly

wind creates long waves, which have a strong effect on the bottom. A metric is proposed to

rank storms according to their duration and bottom stress magnitude, using observed data from

1990-2006 and it is found that over the 17-year study period, Massachusetts Bay suffered 151

storms, and the three most severe of these were so-called northeasters.

Liang et al. (2009) simulate the effect of wind blowing across the surface of a 2 km long lake,

located in northeastern New Brunswick, Canada. The flow field resulting from the numerical

model is decomposed and stored using Singular Value Decomposition (SVD) to reduce the

quantity of data stored. Then particle trajectories are obtained by numerical integration of the

advection equations using a Runge-Kutta algorithm with the velocity field reconstructed from

a few dominant SVD modes. Under a northeasterly wind, one gyre is produced, while under

a northwesterly, there are two. This is due to the geometry of the lake, which is longer in the

NE-SW plane than it is wide. The particle paths are seen to be moved roughly in the paths

of these gyres over a simulation time of around 10 hours. The authors judge that the model

provides a potentially useful tool for investigating transport processes in shallow ecosystems,

such as algal blooms in shallow lakes or reservoirs.

In the model used in this thesis, we assume that the presence of dissolved pollutants does not

significantly affect the flow of the water, i.e. that they are a passive element in the system. In

this simple model, we add the following advective equation to the usual shallow water equations

to model concentration

∂(hci)
∂t

+
∂(huci)
∂x

+
∂(hvci)
∂y

= 0,

where ci denotes the ith class of concentration, which could be either pesticide or fertiliser con-

centration or even suspended sediment. The above equation models the conservative transport

of contaminants only – chemical reactions are all ignored. With this model, pollutants entering

a bay may be traced to see how long they stay in the bay and what path they take.
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Lin and Falconer (1997) and Benkhaldoun et al. (2007) use the advection-diffusion equation

to model contaminant transport by modifying the right hand side to include both turbulent

dispersion effects and the presence of contaminant sources or sinks as

(hc)t + (huc)x + (hvc)y = ∇ · (hD∇c) + hQ, (2.5)

where c is the concentration, D is an empirical diffusion matrix, given by Lin and Falconer

(1997) as

Dxx =
(klu2 + ktv

2)h
√
g

C
√
u2 + v2

+Dw, Dyy =
(ktu2 + klv

2)h
√
g

C
√
u2 + v2

+Dw

Dxy = Dyx =
(kl − kt)huv

√
g

C
√
u2 + v2

,

where kl is the longitudinal dispersion coefficient, kt is the turbulent diffusion coefficient, C is

the Chézy friction number, Dw is the wind-induced dispersion coefficient, and Q is the pollutant

source or sink, which is taken to be zero.

Lin and Falconer (1997) use the ULTIMATE QUICKEST scheme with rectangular, body-

fitted grids on which to solve the augmented system, and the model is applied to the Humber

Estuary, UK, to trace a pollutant released at low tide. The model is verified for two test

cases for which analytical solutions exist, and it is found that both versions of the model give

stable results that compare well to the analytical solutions. Benkhaldoun et al. (2007) use

a non-homogeneous Riemann solver with the advection-diffusion equation (2.5) above, with

a predictor-corrector method on unstructured adaptive triangular grids, and with boundary

conditions enforced by setting values at the boundary, finding reliable and realistic results for

two-dimensional dam break flow over a step in a 12 × 1 m domain. A test for contaminant

is carried out on a 9 × 9 km mesh and the concentration of contaminant is found to be very

well preserved, also comparing well with other published results. The tests are repeated with

the minmod and the VanAlbada limiters, and it is shown that the results with the minmod

limiter exhibit more numerical diffusion. Both Benkhaldoun et al. (2007) and Periáñez (2004)

apply their shallow water model to pollutant transport in the Strait of Gibraltar. In particular,

Periáñez (2004) solves the usual 2D shallow water equations with an explicit finite difference

scheme, then includes the effects of the tide after a stable solution is achieved. The streamlines

are plotted, and it is seen that a westerly wind moves a pollutant released out of the Strait
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faster than an easterly, because the westerly winds are on average stronger than the easterly.

This agrees in principle with Butman et al. (2008), Neill et al. (2008) and You (2005b), who find

from measurements made in Massachusetts Bay, Tremadoc Bay and Moreton Bay, respectively,

that higher wind speed corresponds to higher levels of transport.

Kachiashvili et al. (2007) use a finite difference approximation to solve a one-, two- and

three-dimensional convection-diffusion equation, where the polluting substances are nitrite and

phosphite, and apply the model to two river systems in Georgia that flow into the Black Sea,

estimating the effect of agricultural practices on the pollution in the rivers, and finding good

agreement with measured values of pollutants in the rivers.

2.4 Brisbane and Moreton Bay

Brisbane is the state capital of Queensland and is located in the southeast region of the state

(see Figure 2.2). It has a population of just over a million people that grew at 1.6% in the

period September 2006 - September 2007, a rate just above the national Australian population

growth of 1.5%, according to the Australian Bureau of Statistics. More than a million people

are expected to move to the Brisbane area over the next 25 years (Olley et al. (2006)). The

climate there is humid and subtropical, with an average temperature of 20◦C in June and 29◦C

in January, and a maximum of 43.2◦C (recorded in January 1940 1) and minimum of −0.1◦C

in July 2007 (Bureau of Meteorology).

Water is a major issue in Australia, and in this section we consider some of the most

important aspects to the supply and maintenance of the water system.

2.4.1 Erosion

Water quality is directly influenced by erosion, not only from the point of view of particles

themselves that enter the water system, but that pollutants bind to eroded particles and are

therefore more likely to remain a threat to the surrounding environment (Dunn et al. (2007)).

Erosion is a significant problem in Australia and so although this thesis is more concerned with

1. www.nationmaster.com/encyclopedia/Brisbane
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Figure 2.2: Map of Moreton Bay and Queensland. Courtesy of epa.qld.gov.au. The city of

Brisbane is located on the southeast coast and Moreton Bay is to the east of the city.

pollutant transport than erosion, we take a detour here into the issues surrounding increased

levels of sediment.

Extensive removal of trees (only 26% of the original vegetation remains in the catchment

area of Moreton Bay, Wallbrink (2004), Bolton (1981)) since Western colonisation in the 1800s

has led to the degradation of the soil, as tree-roots that previously acted to hold soil together

have been now removed. Gully erosion is now extensive and is especially significant on granitic

soils (Wallbrink (2004)).
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2.4.2 Drought

Average rainfall in Australia is 420 mm per year, 1 although this varies greatly from year to

year and from region to region (Chanson (1998)).

In periods of drought, 2 agricultural industry suffers from reduced crop output and cattle

and sheep fail to thrive, which can lead to a rise in inflation and resulting economic concerns

(Heathcote (1974)). Restrictions are placed on industries and individuals as to water use, and

dry land combined with heavy farming or high winds can lead to dust storms.

Figure 2.3 comes from the Australian Government’s Bureau of Meteorology website and

shows the areas of the continent that have been affected by drought since 1864. As the figure

below the maps shows, severe droughts have been experienced as frequently as every four years

or as far apart as 38. Some last for several years, others only a few months. Every region in

Australia is at risk from drought.

Drought can lead to a decrease in water quality as a result of reduced dilution of contami-

nants entering the water system.

2.4.3 Moreton Bay

Moreton Bay itself lies to the east of Brisbane and is approximately 90 km long and 30 km wide,

with a planform area of about 1 200 km2. It is between on average 6 and 10 m deep, increasing

to around 30 m at the ocean entrance. It is enclosed on the east by two large, sandy islands:

Moreton Island and North Stradbroke Island. The Bay is open to the ocean at the northern

section (an inlet of about 15 km across), and between the two Islands (a smaller gap known

as the Southern Passage of about 1.6 km You (2005b)). Five main rivers feed it, the largest

of which is the Brisbane river, and there are many minor rivers besides the five main ones

(Wallbrink (2004)).

1. For comparison, rainfall in the UK averages around 1 000 mm per year, comprising 800 mm for England,

1 300 mm for Wales, 1 400 mm for Scotland and 1 000 mm for Northern Ireland. Source: Met Office; Centre for

Ecology and Hydrology, Wallingford.

2. Drought is defined by the Bureau of Meteorology by considering the rainfall of the past three months and

comparing with the average rainfall rates. If the figure lies in the 10th percentile, it is considered a drought

period. However, rainfall is only one measure of drought, and the responsibility of the State Government to

declare a drought must take account of factors other than rainfall.
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Management schemes to obtain, preserve, and re-use water are being planned. The Queens-

land Water Commission 1 have investigated possible sites for desalination plants in Southeast

Queensland. This follows the desalination plant that opened in Perth in 2006, and which

provides Perth with 17% of its drinking water requirements 2.

One of the most important studies currently being done on Moreton Bay is the RWQM1

(Receiving Water Quality Model) due to Shanahan (2001). It proposes a model that can be

applied to any bay, although it is data from Morton Bay that are being used. The model consid-

ers chemical changes in the water to determine its quality. Bacterial decomposition of organic

carbon requires oxygen, which impacts directly on the water, and the effect of factors such as

settling rates of particles, the decay of dissolved matter, presence of phosphorous and algae

are all considered. The study addresses the implementation of applications such as stormwater

overflows, non-point-source and pathological pollution events, and catchment planning, cou-

pling the hydrodynamic properties of the water with the quality of the water. It employs a

two-dimensional finite element method that is still under development and improvement.

The above study forms part of a guide published by Moreton Bay Waterways and Catch-

ments Partnership with the support of the Australian government (Howes (2006)). The guide

is intended to be used as a Decision Support System (DSS) and explains the components of the

system, which also includes an Environmental Management Support System and the Southeast

Queensland Regional Water Quality Management Strategy.

There have been few attempts to apply a mathematical model of pollutant transport pro-

cesses to Moreton Bay. Nevertheless the Bay is a popular study area, and some of the studies

that have provided interesting results are summarised below.

Wallbrink (2004) measures fine sediment (< 10µm diameter) in the Brisbane and Logan

rivers and finds that the sediment is likely to remain for 0-9 years and 0-21 years, respectively,

with a mean of 5 years. The sediment is mainly derived from eroded subsoil and cultivated

lands, so the author suggests that conservation works should initially focus on stabilisation of

gully and channel networks.

1. www.qwc.qld.gov.au/Desalination+site+studies

2. The Water Corporation at www.watercorporation.com.au/D/desalination.cfm
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Measuring the bed roughness of a sea bed is often difficult and inaccurate. Usually, the bed

roughness is estimated by fitting measured current profiles to a logarithmic distribution. You

(2005a) proposes a new way to estimate seabed roughness in Moreton Bay. Data from three

study sites are used in a simple method based on mean flow velocities measured at two levels

near the sea bed. It is found that in the two sites where tidal currents were strong, the seabed

roughness could be accurately estimated, but estimations are less accurate where tidal currents

are weaker.

You (2005b) conducts a study on fine sediment resuspension in Moreton Bay and finds that

the main cause of resuspension is storm wind-waves, and not the tidal current or penetrated

ocean swell, because of the relative shallowness of the water at the study site. Measurements

of water depth, current speed and sediment resuspension are taken at one site over a period of

three weeks and from these measurements an estimation of critical wave bed shear stress for

sediment resuspension is given.

Hodge et al. (2005) use a portable underway water quality monitoring system to measure

salinity and turbidity in the Brisbane and Daintree rivers during wet and dry periods (Daintree

river is also on the Queensland coastline, north of Cairns). During both dry and wet periods,

the Brisbane river shows a clear decrease in salinity as distance from the river mouth increases.

At the same time, turbidity generally increases with distance, although in the dry period the

increase is quite gradual and spikes in turbidity are small. In contrast, during the wet period

the spikes of high levels of turbidity are high and apparently irregularly spaced. This turbidity

is caused by particles being entrained by the rainfall that run over the land and into the river.

Dunn et al. (2007) measure distribution of nutrients (carried by the sediment) in Coombabah

Lake, in the south of Moreton Bay, by sampling surface and subsurface sediments in November

2004 and again twelve months later to observe any changes that occurred in sediment concen-

trations. The effect of urban development in the surrounding area is not found to have an

obvious impact on the accumulation of nutrients in the Lake, but the authors recommend that

long-term sampling be carried out in order to better assess the importance of urbanisation to

changes in the Lake.

An area in northern Moreton Bay known as Pumicestone Passage is the subject of study for

Larsen (2007). Field measurements are taken for a number of points in this passage for surface
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elevation and flow velocity that are then used to calibrate simulations made with the modelling

software SMS and RMA2. Results are found to give better correlation with field data in the

southern part of the passage than the northern, which is attributed to inadequate bathymetric

information and the large amount of wetting and drying that occurs in this area. It is found

that areas of higher bed friction reduce the tidal response, so that the tidal range is smaller

than expected in these areas.

Field data, even if it is localised, is nevertheless valuable to a numerical model for the

purposes of validation. The benefit of a mathematical model is to enable a greater understanding

of the whole of the domain of study. It is also less costly than a field study, and not subject to

weather conditions, quality of equipment, or human error. But it would be meaningless without

field data to compare results.

2.5 Object Orientation and Java

Riemann2D has been written using an object-oriented (OO) approach. As such, it incorporates

several important object-oriented principles, including encapsulation, abstraction, polymorphism

and inheritance (see for example, Dietel (2005), Rajsbaum and Viso (2005) or Liu et al. (1996),

among many others). These are not the only aspects that separate languages such as Java

from procedural languages such as C and FORTRAN, but they are perhaps the ones that most

distinguish the two branches.

OOP (object-oriented programming), as pointed out by Rajsbaum and Viso (2005) is a

particular way of thinking, different from the procedural languages. It assigns properties and

values to an object, and specifies ways in which objects may interact with each other. It is

often said to try to more closely model the real world. For example, an object myDog may have

properties (attributes) of tail, fur, ears and have methods (behaviours) bark, fetch and so

on. It may interact with another object, stick via the method fetch. The idea of abstraction

may be illustrated by noting that the object myDog is an instance of the conceptual class of

dog. If my dog is a poodle, then poodle is a subclass of dog (poodle inherits all the attributes

and behaviours of dog) and myDog is an instance of the poodle class.
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Java is the OO language that Riemann2D has been written in. Released in 1995 by Sun

Microsystems, Java has become the world’s most widely-used object-oriented programming

language (Dietel (2005)). One of Java’s main advantages is its portability: it is portable to

virtually all computing platforms because of the way it is compiled. This, and its efficiency and

versatility, means it is the language of choice for many web applications and ideal for developing

code as part of a team that is generic and easily extensible.

Because of its nature and the many internet applications that are written in Java, a large

amount of information on OOP and Java can be found on websites such as

• www.java.com

• www.java.sun.com

• ootips.org

• www.eclipse.org

This last is the website for a Java IDE (Integrated Development Environment), Eclipse, that is

used for all the simulations in this thesis. Eclipse is an open source environment that is freely

downloadable and easy to use. More information is given in Appendix D.

2.5.1 Object Orientation for flows in bays

In the field of water quality modelling, object-oriented programming lends itself well to DSSs,

since their aim is to model the interaction of complex actors such as tourism, agriculture,

biological processes and so on. An actor in a system may be represented quite naturally as an

object in a program. This project may be viewed as the mathematical class of a larger project

for modelling the many processes that occur in a natural shallow water bay.

Many of the papers that use OO modelling applied to a bay are inter-disciplinary. OO

lends itself very well to allowing discrete entities to interact effectively, which is necessary in a

situation where there are many influences, both natural and man-made.

Spanou and Chen (2000) develop a model for the analysis of point-source pollution. The

object-oriented approach means river networks can be represented, water quality assessed, low-

flow curves estimated, river flows estimated, point-source effluents studied, and pollution control
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schemes optimised. The model is validated with data from South Nation River catchment in

Canada and the Upper Mersey River catchment in the UK, where good agreement is found.

Ludwig et al. (2003) emphasise the importance of an inter-disciplinary approach to water

quality modelling. They establish a platform-independent structure of computational methods

and interfaces to enable understanding between members of the project team, using UML

(Unified Modelling Language) diagrams (see Dietel (2005)). The aim is the application to a

catchment area of about 76 000 km2 of the Danube river, Germany/Austria, but development

of the model is still underway.

Newham et al. (2004) consider a dam and its catchment of an area of 985 km2 in New South

Wales, Australia, and build a model that incorporates hydrologic, sediment, nutrient, manage-

ment and economic submodels. The aim of the model is to enable the evaluation of different

land management practices in terms of the nutrient and sediment delivery to the dam and the

subsequent water quality. The model satisfies the specified criteria: simulation of hydrologic

processes; identification of stream reaches; simulation of the impact of future management deci-

sions; sensitivity to climate variation; and ability to incorporate socio-economic information on

costs of remediation. These are deemed the minimum necessary to provide reasonable results,

although the authors conclude more testing is needed to reach firmer conclusions.

Elshorbagy and Ormsbee (2006) also develop an OO model that allows different management

scenarios to be simulated, as well as their respective effects on particle transport. The model

is applied to a case study: a water catchment area of southeast Kentucky, USA, which is poor

in data. As new data become available, therefore, OO allows for their easy incorporation into

the code.

Becker and Jiang (2007) calculate flux-based contaminant transport in a GIS (geographic

information system) environment by combining particle-tracking and first-passage-time mod-

elling to yield a streamline-based interpretation of transport. The object-oriented approach is

particularly suitable for storing this kind of data. The model is applied to the Lizzie Research

Site, North Carolina, in which the total nitrogen loading to surface waters via ground-water

transport is calculated in response to the spreading on the (land) surface of feedlot waste. The

measurements agree with predictions, but the authors point out that this could be coincidental

due to the high level of heterogeneity of the domain of calculation.
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Martinez et al. (2008) extend an existing hydrologic model that is written in procedural

language in an object-oriented way using Java. The extensions included the representation of

the water-table, the effects of (plant and soil) evapotranspiration on a shallow water-table, and

the influence of time-varying surface water levels. The model is validated by comparing model

predictions with measurements from two experimental sites in southeastern USA.

2.6 Summary

This chapter has provided an introduction to the different aspects of the subject of modelling

natural flows using analytical, numerical and management techniques.

We have defined the mathematical problem that will be solved, including what form the

source terms will take. We have briefly mentioned the special case of shallow water in circular

domains.

Different types of numerical schemes have been described: the advantage of the FVM in nat-

urally conserving mass and the unstructured triangular mesh’s ability in dealing with the irregu-

lar boundaries of a two-dimensional natural domain justify their use in the Riemann2D package.

Applications of the SWEs to natural bays and lakes using numerical schemes have been

presented. Many of the test domains are smaller than the ones used in this thesis. Some use

tidal data as boundary conditions. All tests are verified by comparison with either experimental

data, field measurements, or analytical solutions. In particular, FVM schemes on unstructured

grids with a limiter show good agreement on domains up to 20 km across.

Several simulations of pollutant transport have been given. Many used an advection equation

to model the pollutant as passive, which is the approach we will take. The most important

result from this section is that all the models and measurements find that wind is the most

effective mechanism in transportation, either of sediment or of pollutant.

Some issues surrounding the importance of water to Brisbane have been discussed. Although

the work in this thesis is not about the supply of water to Brisbane, the literature highlights

the importance of any type of water modelling because water is such a valuable and scarce

resource in that part of the world. A number of field studies have been carried out in Moreton

Bay. Some of these measurements will be used to calibrate results in later chapters.
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Finally, we have given a brief outline of object orientation and Java as this is the language

used to write Riemann2D . Many studies of water modelling that use the OO approach are

interdisciplinary and allow for different management practices to be modelled, as well as the

physical and biological effects.
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Figure 2.3: Reproduced from the Australian Government’s Bureau of meteorology website

www.bom.gov.au/climate/drought/livedrought.shtml. Maps and figures showing areas of

Australia affected by drought.
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CHAPTER 3

Mathematical properties

The shallow water equations are a well-known system of nonlinear, hyperbolic PDEs, that

describe the advective flow in the horizontal plane, where vertical motion can be neglected. The

shallow water equations can be derived from the Navier-Stokes equations by depth integration

under the assumption that the vertical length scale is much smaller than the horizontal and can

thus be ignored. They are a classical system with a large amount of literature, both analytical

and numerical.

The first part of this chapter concerns classical analysis, including eigenvalues, Riemann

invariants, the Riemann problem and the idea of weak solutions. In the second part, asymptotic

analysis is carried out for the particular case when the problem time is large and the flow velocity

is small. The relative importance of source terms is studied. The asymptotic solutions given

here not only provide insight into the behaviour of the system but allow for verification of

results in later chapters.

3.1 Classical analysis

First the definitions of some terms used in this chapter are given.
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Hyperbolicity

Hyperbolic problems are distinguished from elliptic or parabolic problems by the following

properties: the eigenvalues are real and distinct and there is an inherent directional property of

the solutions. The solutions are wave-like in nature (this is also true of parabolic PDEs), and

in particular a system of m equations should give rise to m distinct waves (LeVeque (2003)). A

matrix associated with the hyperbolic problem is sometimes diagonalisable, and this property

may allow the system to be decoupled and hence solved more simply.

The shallow water equations are hyperbolic provided h > 0. When the depth of water

becomes vanishingly small, the regime is then elliptic. (The transition of a system from the

hyperbolic to the elliptic domain has been studied by Milewski et al. (2004) and LeVeque

(2003).)

Linearity

Definition For a PDE of the form

a(x, y, u)
∂u

∂x
+ b(x, y, u)

∂u

∂y
= κ(x, y, u), (3.1)

we say that (3.1) is linear if a and b are independent of u, and κ can be written as a linear

function of u, for example κ(x, y, u) = α(x, y)u + β(x, y) for some constants α, β. If κ cannot

be written like this, we say (3.1) is semilinear. In the case where a, b and κ all depend on u

(but, importantly, not on the derivatives of u), we say (3.1) is quasilinear (see, for example

Ockendon et al. (1999)). The shallow water equations are therefore quasilinear.

Conservation form

Definition A system of PDEs in the form

∂S

∂t
+
∂P

∂x
+
∂Q

∂y
= R, (3.2)

for some vectors S, P , Q and R all functions of h, u and v (or other relevant variables), is said

to be in conservation form.

This means the variables all appear in their conserved form, so that the quantities are

advected with the flow and mass is naturally conserved. When the FVM formulation is used

40



3.1 Classical analysis

(see Chapter 4), it is essential that the equations are in this form, in order to accurately model

the propagation of shocks, should they arise in the flow.

If an equation in conservation form can be written

∂q
∂t

+
∂f(q)
∂x

+
∂g(q)
∂y

= 0,

it is said to be an advection equation for q. If the flux function f(q) is linear, the solution is often

easy to obtain, and information is advected along with the flow. However, if f is a nonlinear

vector function of q, the solution is able to evolve with time in much more complicated ways.

The information propagates as a function of the solution, and so it is possible that discontinuous

solutions develop over time even if initial data is smooth (LeVeque (2003)).

3.1.1 Eigenvalues

Recall the shallow water equations (2.2) from Chapter 2 in conservation form

∂q
∂t

+
∂F
∂x

+
∂G
∂y

= s,

where

q =

q1

q2

q3

 =

 hhu
hv

 , F =

 q2

q2
2/q1 + gq2

1/2
q2q3/q1

 , G =

 q3

q2q3/q1

q3/q1 + gq2
1/2

 , s =

 0
−gq1bx
−gq1by

 . (3.3)

The vector q = [h, hu, hv]T is the vector of conserved variables.

Note, if the non-conserved variables, [h, u, v]T, are used, the system takes the form (2.3).

To calculate the eigenvalues of the shallow water equations, define the Jacobian matrix of

differentiated coefficients of F(q) = [f1, f2, f3]T as F′(q) = (∂fi/∂qj) for i, j = 1, 2, 3:

F′(q) =


∂f1

∂q1

∂f1

∂q2

∂f1

∂q3
∂f2

∂q1

∂f2

∂q2

∂f2

∂q3
∂f3

∂q1

∂f3

∂q2

∂f3

∂q3

 ,

and an equivalent expression for G′, then (3.3) in matrix form is

qt + F′(q)
∂q
∂x

+ G′(q)
∂q
∂y

= s, (3.4)
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where

F′(q) =

 0 1 0
gq1 − q2

2/q
2
1 2q2/q1 0

−q2q3/q1 q3/q1 q2/q1

 , G′(q) =

 0 0 1
−q2q3/q1 q3/q1 q2/q1

gq1 − q2
3/q

2
1 0 2q3/q1

 .
Because this system has two spatial dimensions, the waves (solutions) move in some arbitrary

direction given by the unit normal vector n = (nx, ny). Following, for example, Brufau and

Garcia-Navarro (2000) or LeVeque (2003), the eigenvalues of the entire system are found by

solving |nxF′ + nyG′ − λiI| = 0, for i = 1, 2, 3, which yields

λ1 = nxq2/q1 + nyq3/q1 −
√
gq1, λ2 = nxq2/q1 + nyq3/q1, λ3 = nxq2/q1 + nyq3/q1 +

√
gq1,

or reverting to the original variables and using n · u = (nx, ny) · (u, v)

λ1 = n · u− c, λ2 = n · u, λ3 = n · u + c, (3.5)

where c =
√
gh is the wavespeed. Since these are real and distinct for h > 0, the system is

hyperbolic.

Froude number

The eigenvalues take the form of a convective velocity minus/plus a phase velocity. Dividing

convective by phase yields a Froude number for each x- and y-direction:

u2

gh
= Fr2

(x), and
v2

gh
= Fr2

(y). (3.6)

The Froude number may be thought of as a relation of inertia to gravitational forces: the

top term being related to kinetic energy, the bottom to potential energy. Flows with Froude

numbers less than one are said to be subcritical, and flows with Froude number greater than

one are said to be supercritical. Examples of supercritical flows include a sonic boom, a dam

break, or a bore; flow velocity is high compared to the characteristic flow depth. In this thesis,

we are considering slow flows where inertia is small and gravity dominates, thus we expect the

Froude number to be small.

3.1.2 Riemann invariants

The existence of Riemann invariants is unusual for a PDE, but the SWEs is one system for

which these invariants do exist. As a result, the system can be written in its characteristic
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form, as has been done by Alcrudo and Benkhaldoun (2001), Karelsky and Petrosyan (2006)

and Li and Chen (2006), among many others. In their characteristic form, the equations may

decouple to an integrable form and so an analytical solution could be found.

Definition If it is possible to write a PDE in the form

dR

dτ
= 0,

for some function R(τ) with parameter τ along a curve C(τ), then we say that R is Riemann invariant

along C(τ) for that PDE. Therefore, if a PDE can be arranged into the form

lTi A
du
dτ

= lTi s, (3.7)

(where lTi is a left eigenvector of A, the flux matrix, λi the eigenvalue that is the slope dy/dx

of C, τ is a parameter and s is the vector of the right hand side) and it is possible to integrate

this, then this is equivalent to finding such an R.

Given initial data for the problem, e.g. q(x, y, 0) = q0(x, y) along an initial data curve,

Riemann invariants may be evaluated along this curve. But since each of these Riemann

invariants is conserved along its respective characteristic, this is equivalent to knowing Riemann

invariants for a range of x and t. This in turn is equivalent to knowing the solution q(x, y, t)

in the domain of definition from the initial data. Because the Riemann invariants are weakly

coupled to the eigenvalues, the characteristics are not necessarily straight lines (Tabak (2007)).

The system (3.3) may or may not have explicit analytical solutions, depending on the

geometry of the bay, the initial data, and the source terms.

Although the existence of Riemann invariants means there is a better chance of finding an

analytical solution, it is by no means a guarantee. Indeed, analytical solutions usually cannot

be found if the system contains a shock. However, (see Ockendon et al. (1999)) if initial or

boundary data is given, such that one Riemann invariant is constant everywhere and not just

on characteristics, it may be possible to integrate and obtain a solution.

More information on Riemann invariants can be found in the Appendix B and also in

Ockendon et al. (1999).
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Riemann invariants for the 2D shallow water equations

Consider the shallow water system given in (3.4)

∂q
∂t

+ F′
∂q
∂x

+ G′
∂q
∂y

= s, (3.8)

where

q =

 hhu
hv

 , F′ =

 0 1 0
gh− u2 2u 0
−uv v u

 , G′ =

 0 0 1
−uv v u

gh− v2 0 2v

 , s =

 0
−ghbx
−ghby

 .
Define as before the unit normal vector n = (nx, ny). Then (3.8) is written

∂q
∂t

+ (nxF′ + nyG′)
∂q
∂n

= s,

where ∂q/∂n is defined via

n · ∂q
∂n

=
∂q
∂x

+
∂q
∂y

= ∇ · q.

The eigenvalues of this system are given in (3.5). The left eigenvectors for (3.8) are the lTi that

satisfy

lTi (nxF′ + nyG′) = lTi λi, (3.9)

which are

λ1 = n · u− c λ2 = n · u λ3 = n · u + c

l1 =
[
−n · u− c nx ny

]
l2 =

[
nyu− nxv −ny nx

]
l3 =

[
−n · u + c nx ny

]
.

Applying these in the formula for Riemann invariants (3.7):

i) λ1,3 = n · u± c Left-multiply the system (3.8) by lT1,3. After rearranging, the Riemann in-

variants for the 1- and 3-families are found to be

n · u + n · gt(by, bx)± 2c = const = R1,3.

Thus n · u + n · gt(by, bx) ± 2c is constant along characteristics C1,3 where (dy/dx)1,3 =

λ1,3 = n · u± c respectively.
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ii) λ2 = n · u Left-multiply the system (3.8) by lT2 , and again rearrange to find the Riemann

invariant for the 2-family

n · (v + gbyt, −u− gbxt) = const = R2.

Thus n · (v+gbyt, −u−gbxt) is constant along characteristic C2 = (dy/dx)2 = λ2 = n ·u.

It is well known that the Riemann invariants for the one-dimensional shallow water equations in

a channel with a horizontal bottom are u±2
√
gh (see, for example Ockendon et al. (1999)). The

above results match with the classical theory: in the case of non-varying bottom topography,

i.e. bx = by = 0, the Riemann invariants are R1,3 = n · u± 2
√
gh along λ1,3 = n · u±

√
gh and

R2 = n · (v, −u) = n−1 · u along λ2 = n · u (where n−1 = (ny, −nx)).

In his book, LeVeque (2003) employs a method for finding the Riemann invariants that uses

the right eigenvectors. The resulting invariants are identical to those of the left eigenvectors

except for a change of sign. This change of sign can be explained by the fact that the left and

right eigenvectors are perpendicular. Since the right Riemann invariants point in a different

direction from the left, the sign is necessarily different.

The Riemann invariants of the left and right eigenvectors are displayed in Table 3.1 for easy

comparison.

left right

1-family (1, 1) · (n · u, 2c) (n, −n) · (n · u, 2c)

2-family (1, 0) · (n−1 · u, 1) (n, n−1) · (n−1 · u, 1)

3-family (1, 1) · (n · u, −2c) (n, −n) · (n · u, −2c)

Table 3.1: Table showing relationship between Riemann invariants for left and right eigenvec-

tors.
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3.1.3 The Riemann problem

The Riemann problem, as noted in Section 2.2.2, is a hyperbolic problem together with some

initial data that is discontinuous at a point in space, i.e.

qt + f(q)x = 0

q(0, x) =

{
qL if x > 0,
qR if x < 0.

(3.10)

Depending on the nature of f , solutions of the system (3.10) may be obtained. If the function f

is linear, we expect the discontinuity to propagate at a speed that is an eigenvalue of f . In this

case, the solution can be found explicitly (LeVeque (2003)). If on the other hand f is nonlinear,

more work is required to find a solution.

Physically, the Riemann problem can be interpreted as describing a readily-observed phe-

nomenon: the Severn bore 1, the supersonic boom of an aeroplane flying past, a dam break, or

the effect of a kitchen tap being turned on fast, are all examples of a shock that is described

by (3.10). Because of the wide range of problems that this system can be applied to, it is a

very well-researched area (see Roe (1981), Glaister (1988a), Glaister (1988b), Bermúdez and

Vázquez (1994) for numerical schemes for gas dynamics and the SWEs, Alcrudo and Benkhal-

doun (2001), Karelsky and Petrosyan (2006), Li and Chen (2006) for theoretical analysis of the

Riemann problem of the shallow water equations with an irregular bottom topography, and

some classical texts include Whitham (1974), Toro (1999), Ockendon et al. (1999)).

The Riemann problem is the basis for a large class of numerical schemes that are essentially

a series of local Riemann problems, which are known as exact (e.g. due to Godunov) or approx-

imate Riemann solvers (perhaps most famously due to Roe (1981)). Some others due to van

Leer (1977), Osher and Solomon (1982) and Harten (1983) have been developed by Jha (2006)

in the context of Riemann2D .

1. Running from Ceredigion in Wales to the Severn estuary and the Bristol Channel, the river Severn runs

through Powys, Shropshire, Worcestershire and Gloucestershire. It is the longest river in Britain, at 354 km,

and when the tide in the Bristol Channel comes in, the effect is to create a discontinuity in the surface of the

water that travels upstream as far as Gloucester. The visible bores (ones in which total depth is greater than 4.5

metres) happen around 50 times a year, and are greatest in the spring. See the Environment Agency’s website

www.environment-agency.gov.uk/regions/midlands/434823/?lang= e for more details
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A discontinuity at a point in 1D is a discontinuity on a line in 2D. Thus to formulate the

Riemann problem in two dimensions, we consider the state variable q(0, x, y) to have the value

qL to one side of the line and qR to the other. The definition of the line of discontinuity is

given in Sections 4.1.2 and 4.1.4.

3.1.4 Rankine–Hugoniot conditions and weak solutions

The idea of weak solutions was first proposed by Jean Leray in 1934 (Borel et al. (2000)). A

weak solution to a PDE is a solution that satisfies the PDE in some specified sense, but for

which derivatives do not in general exist. A PDE that admits discontinuities in its solution can

still be formulated in a rigourous way, which is useful when dealing with a Riemann problem

(Ockendon et al. (1999)).

Consider a volume, V , bounded by two curves Γ, across which the solution is discontinuous,

and another arbitrary curve γ. Suppose the PDE in its conservation form is

∂P

∂t
+
∂Q

∂x
+
∂R

∂y
= S. (3.11)

Multiplying (3.11) by a test function 2, ψ, and using the chain rule we have

ψ
∂P

∂t
+ ψ

∂Q

∂x
+ ψ

∂R

∂y
= ψS

⇒ ∂

∂t
(ψP ) +

∂

∂x
(ψQ) +

∂

∂y
(ψR) = P

∂ψ

∂t
+Q

∂ψ

∂x
+

∂

∂y
(ψR) + ψS.

Define the divergence to be over time and space, i.e.

∇ · =
∂

∂t
+

∂

∂x
+

∂

∂y
,

and let the vector P = (P, Q, R). Now integrate over the region V ,∫∫∫
V

∇ · (ψP) dV =
∫∫∫

V

P
∂ψ

∂t
+Q

∂ψ

∂x
+R

∂ψ

∂y
+ ψS dV.

Apply the divergence theorem, and since ψ is arbitrary, it can be chosen so that it vanishes on

the arbitrary curve γ∫
Γ

ψP · n ds =
∫∫∫

V

P
∂ψ

∂t
+Q

∂ψ

∂x
+R

∂ψ

∂y
+ ψS dV, (3.12)

2. Stakgold (1979) gives the following definition: “A test function ψ(x) = ψ(x1, . . . , xn) on Rn is a function

which is infinitely differentiable on Rn and vanishes outside some bounded region”. Test functions are often

used in physics and engineering to allow the treatment of equations that admit weak solutions.
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Figure 3.1: Shallow water with a discontinuity of depth moving at speed u∗.

where s is a parameterisation of the curve Γ. Now P , Q and R represent solutions of (3.11),

but their derivatives do not appear in (3.12). Although a solution satisfying (3.11) also satisfies

(3.12), it is possible that there are solutions that satisfy (3.12) but whose derivatives do not

exist, hence they fail to satisfy (3.11).

Since many applied problems do not admit sufficiently smooth solutions, it is sometimes

necessary to work with the weak formulation of the problem (3.12). Solving the Riemann prob-

lem means treating the state variables as initially constant in each region, and as discontinuous

across the interface of these regions. Thus the weak formulation will be the formulation to use.

Rankine-Hugoniot conditions

The Rankine–Hugoniot conditions are a tool that determines one unknown of the system, when

all but one of the variables are known.

Consider a 1D section of shallow water with a discontinuity moving with speed u∗ that has

water depth h− in x < u∗t and h+ in x > u∗t such that h− > h+, as shown in Figure 3.1. The

water behind the discontinuity is moving with speed u− and ahead it is stationary, so u+ = 0.

The mass crosses the shock from the left at a rate h−(u− − u∗) and leaves it on the right at a

rate h+(u+ − u∗). Since mass must be conserved across the shock, we have

[h(u− u∗)]+− = 0,

where [·]+− denotes the change from the left side (−) to the right (+) (see Ockendon and

48



3.1 Classical analysis

Ockendon (2004)). By Newton’s second law, force equals rate of change of momentum thus

[h(u− u∗)2 + 1
2gh

2]+− = 0.

Note that energy is not conserved across the shock. Since energy cannot be created, it can only

be dissipated across the shock, which is equivalent to saying that the water depth increases as

the shock passes. Now we solve the Rankine–Hugoniot conditions to determine u∗

h−(u− − u∗) = −h+u
∗

h−(u− − u∗)2 + 1
2gh

2
− = h+u

∗2 + 1
2gh

2
+.

Using the condition that mass is conserved allows u− to be eliminated,

h+

h−
(h+ − h−)u∗2 = 1

2g(h2
+ − h2

−)

thus u∗ is determined

u∗ = ±

√
gh+(h− + h+)

2h−
,

where we choose the root that gives u∗ > 0 so that h− > h+ (i.e. to satisfy the energy condition).

3.1.5 Energy

We have taken the conservation of mass and momentum of the system as our basic principles.

We now consider the consequence of these assumptions on the conservation, or otherwise, of

energy. Because there are three unknowns, h, u, v, and three equations, we do not expect any

extra constraint on the unknowns, since the system might then become unsolvable.

Note that only mechanical energy, and not thermal, is considered here.

The energy of the system is the sum of kinetic and potential energies, thus energy, E, is

E =
∫
A

1
2
ρh(u · u) + ρ

1
2
gh2 dA, (3.13)

for some area A. Now consider its time derivative, using equations (2.3) to substitute for ht,
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ut:

dE
dt

= ρ

∫
A

1
2

(u · u)ht + (u · ut)h+ ghht dA,

= −ρ
∫
A

(
1
2

(u · u) + gh

)
(u · ∇h+ h∇ · u) + u · h ((u · ∇)u + g∇h− ŝ) dA,

= −ρ
∫
A

∇ ·
((

1
2

(u · u) + gh

)
uh
)

dA+ ρ

∫
V

u · hŝ dA, (3.14)

= −ρ
∫
∂A

(
1
2

(u · u) + gh

)
���

�:0
uh · n dS + ρ

∫
A

u · hŝ dA. (3.15)

By applying the divergence theorem at (3.14) and using the fact that there is no water flux (in

3.15) on the boundary, i.e. that hu · n = 0 on ∂A, we have shown that energy is added to the

system only through ŝ, the right hand side terms that include inflows, outflows, bed friction,

wind stress and other source terms. That is, the work done by the right hand side force terms

in (2.3b) increases or decreases the energy of the system. If there is tidal inflow on a part of

the boundary, then hu ·n equals the water influx, and this also changes the energy. This result

provides insight into what to expect from the numerical simulations. The amount of energy

added to the system depends only on the boundary conditions and the source terms.

3.2 Asymptotics

Asymptotic analysis is a way of investigating the limiting behaviour of a system. First the size

of each term is determined by nondimensionalisation then smaller terms are neglected to obtain

a simplified system that can be solved. Then progressively smaller terms are brought back in to

increase the accuracy of the solution. As the number of smaller terms added tends to infinity,

the solution tends to the exact solution. For practical purposes, three orders of magnitude is

considered acceptable.

3.2.1 Nondimensionalisation

In nondimensionalisation, each variable is transformed to a unit variable and a relevant coeffi-

cient. The choice of the coefficient for each variable is almost never obvious. It requires more

intuition than pure science, hence is often called an art (Fowler (1997)). A successful choice

yields one (or more) nondimensional parameter about which to expand the variables and hence

approximate a solution.
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We perform the nondimensionalisation by writing h = Dh̃, where D is the size of the variable

and h̃ is the nondimensional form of the variable. Let b scale in the same way, that is b = Db̃.

Further, let u, v scale with U (ms−1), x, y scale with L (m), and t with LU−1 (s). We have

h = Dh̃, u = Uũ, v = Uṽ, t = LU−1t̃, x = Lx̃, y = Lỹ, b = Db̃. (3.16)

We consider a bay in which the depth of the water in the bay is D = O(10) m. From

the literature review in Chapter 2, we take the velocity of the water to be small, so that

U = O(10−1) ms−1, and we have the usual gravitational constant g = O(10) ms−2. The Froude

number (recall (3.6)) is therefore Fr2 = O(10−4).

Assume the bay has typical length L = O(105) m and since U = O(10−1) ms−1, the timescale

of the problem is O(104) s, or about 3 hours.

Substituting the variables (3.16) into (2.1) and dropping the tildes immediately, the nondi-

mensional form is

∂h

∂t
+
∂(hu)
∂x

+
∂(hv)
∂y

= 0 (3.17a)

Fr2

(
∂(hu)
∂t

+
∂(hu2)
∂x

+
∂(huv)
∂y

)
+ h

∂h

∂x
= −h ∂b

∂x
(3.17b)

Fr2

(
∂(hv)
∂t

+
∂(huv)
∂x

+
∂(hv2)
∂y

)
+ h

∂h

∂y
= −h ∂b

∂y
. (3.17c)

The nondimensional parameter of this system is the Froude number

Fr2 =
U2

gD
,

which multiplies the advective terms. Since it is small this means the water depth is principally

determined by the right hand side i.e. by the bathymetry of the domain. Notice that the

conservation of mass equation is already in nondimensional form.

We denote by ε the small parameter and write ε2 = Fr = O(10−2) and expand the variables

in terms of the small parameter ε as

h = h0 + εh1 + ε2h2 + ε3h3 + O(ε4)

p = p0 + εp1 + ε2p2 + ε3p3 + O(ε4)

q = q0 + εq1 + ε2q2 + ε3q3 + O(ε4).
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Let the vector of flux variables 1 be p = (p, q) = (uh, vh). Using vector notation, the mass

equation (3.17a) becomes

ε0 (h0t +∇ · p0) + ε (h1t +∇ · p1) + ε2 (h2t +∇ · p2) + ε3 (h3t +∇ · p3) + O(ε4) = 0, (3.18)

and the momentum equations ((3.17b)-(3.17c)) are

ε0 (h0∇(h0 + b)) + ε (h0∇h1 + h1∇(h0 + b)) + ε2 (∇(h0h2) + h1∇h1 + h2∇b)

+ ε3 (∇(h0h3) +∇(h1h2) + h3∇b) + O(ε4) = 0. (3.19)

3.2.2 Boundary conditions

Consider a domain D that is bounded by ∂D1 ∪ ∂D2, where ∂D1 represents the ‘wall’ of the

bay, and ∂D2 represents the ocean boundary of the bay. Let there be zero normal flux on the

wall, ∂D1, thus

p(x, y, t) · n = 0 for x, y ∈ ∂D1. (3.20)

We also have, on the ∂D1 boundary

h(x, y, t) · n = 0 for x, y ∈ ∂D1. (3.21)

Flux through the ocean boundary, ∂D2, is specified: the water level is governed by the level of

the still water plus the effect of the tide, so

h(x, y, t) = −b(x, y) + εφ1(t) for x, y ∈ ∂D2, (3.22)

where φ1(t) is a term representing the effect of the tide, which depends only on time, not on

x or y (in Chapter 7 there is more discussion on the choice of φ1(t)). The flux across this

boundary is

p · n = p0 · n + ε (u0h1 + u1h0) · n + ε2 (u0h2 + p1 + u2h0) · n

+ ε3 (u0h3 + u1h2 + u2h1 + u3h0) · n + . . .

1. For notational purposes, to avoid the over-use of subscripts, we use (p, q) = (uh, vh) rather than the more

conventional (q2, q3) = (uh, vh) in this section.
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= k0(x, y, t) + εk1(x, y, t) + ε2k2(x, y, t) + . . . , for x, y ∈ ∂D2 and for all t, (3.23)

where k is a flux function. Consider the flux functions k0, k1, k2, k3. On the ocean boundary at

leading order, h0(x, y, t) = −b(x, y) thus k0 = −u0b. At order O(ε), the water depth is φ1(t), so

k1 = −u1b+u0φ1. At O(ε2), assuming u2, v2 and h2 are all zero on ∂D2, we have k2 = u1φ1(t).

Assuming u3, v3 and h3 are all zero on ∂D2, we have k3 = 0.

Leading order

The leading order momentum equation (3.19) is

h0∇(h0 + b) = 0

for h0 6= 0 ∇(h0 + b) = 0

⇒ h0 = −b(x, y) + φ0(t).

But by condition (3.22) at ∂D2, we have φ0 = 0 thus h0 = −b(x, y).

Use this result in the equation for mass (3.18): since h0 is not a function of t, the first term

is zero, leaving

∇ · p0 = 0.

Let (p0, q0) = ∇A0 for some function A0 = A0(x, y, t), so that ∇2A0 = 0, which is Laplace’s

equation. Note that condition (3.20) can be written equivalently as ∇A · n = 0, or ∂A/∂n = 0

on ∂D1. On ∂D2 we have ∂A0/∂n = k0 (3.23).

Use the maximum principle for Laplace’s equation. A0 is a function of x and y, and is

harmonic in the domain D. The boundary conditions are Neumann, i.e. p0 · n = 0 on ∂D1,

i.e. ∇A0 · n = ∂A0/∂n = 0 on ∂D1. The Hopf maximum principle says that the outward

pointing normal derivative is strictly positive for non-constant functions. But A0 does not have

a strictly positive normal derivative (it is zero), so that A0 must be constant. Hence we have

that ∇A0 = (p0, q0) = 0, i.e. that at leading order, flux is zero.

Order ε

The momentum equation (3.19) at O(ε) is

h0∇h1 + h1∇(h0 + b) = 0,
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but since ∇(h0 + b) = 0 and for h0 6= 0,

∇h1 = 0.

Thus h1 depends only on t. From the boundary condition (3.22) on ∂D2, we have h1(x, y, t) =

φ1(t) everywhere.

The mass equation (3.18) gives ∇ · p1 = −φ1t. Defining (p1, q1) = ∇A1 for some function

A1(x, y, t), we have

∇2A1 = −φ1t,

with
∂A1

∂n
= 0 on ∂D1, and

∂A1

∂n
= k1(x, y) on ∂D2.

Since φ1(t) 6= 0, this equation is Poisson’s equation with Neumann boundary conditions from

(3.20) and (3.23). It can be solved by constructing a Green’s function, G(x, ξ) that satisfies

i) ∇2G(x, ξ) = −δ(x− ξ) for x ∈ D,

ii)
∂G

∂n
= 0 on ∂D1 and

∂G

∂n
= 0 on ∂D2.

Using Green’s second identity we obtain

A1(x) =
∫
D

G(x, ξ)h1t(x, ξ) dV +
∫
∂D2

G(x, ξ)k1(x) dS,

where k1 = −b+ φ1 on ∂D2 by (3.23). Therefore we can write

p1 = ∇
(∫

D

Gh1t dV +
∫
∂D2

Gk1 dS
)
,

where k1 = −u1b+ u0φ1, but since u0 = 0, we have k1 = −u1b.

Order ε2

The momentum equation (3.19) at O(ε2) is

h0∇h2 + h1∇h1 + h2∇(h0 + b) = 0.

But since ∇(h0 + b) = 0, and ∇h1 = 0, we are left with (provided h0 6= 0)

∇h2 = 0.
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Thus h2 depends only on t. But the boundary condition (3.22) states h2 = 0 on ∂D2, i.e. for

all t, so that h2(x, y, t) = 0.

Now from the equation of mass (3.18) at O(ε2),

∇ · p2 = 0.

Letting, as before, p2 = ∇A2 for some function A2(x, y, t), we have Laplace’s equation with

∂A2/∂n = 0 on ∂D1 from (3.20) and ∂A2/∂n = k2(x, y) on ∂D2 from (3.23). Again, look for a

Green’s function G2 that satisfies

i) ∇2G2(x, ξ) = −δ(x− ξ) for x ∈ D,

ii)
∂G2

∂n
= 0 on ∂D1 and

∂G2

∂n
= 0 on ∂D2.

But since this Green’s function satisfies the same conditions as G above, we let G2 = G. Then

Green’s second identity gives

A2(x) =
∫
∂D2

k2(x)G(x, ξ) dS,

⇒ p2 = ∇
(∫

∂D2

Gk2 dS
)
,

where k2 = u1φ1(t).

Order ε3

The momentum equation (3.19) at O(ε3) is

∇(h0h3) +∇(h1h2) + h3∇b = 0.

But since it was shown that ∇(h0 + b) = 0, that both ∇h1 and ∇h2 are zero, we are left with

(provided h0 6= 0)

∇h3 = 0.

Thus h3 depends only on t. But the boundary condition (3.22) states h3 = 0 on ∂D2, i.e. for

all t, so that h3(x, y, t) = 0.

We find the same equation for the equation of mass (3.18) as at O(ε2),

∇ · p3 = 0.
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Following the same method, and letting p3 = ∇A3 for some function A3(x, y, t), we find

A3(x) =
∫
∂D2

k3(x)G(x, ξ) dS,

⇒ p3 = ∇
(∫

∂D2

Gk3 dS
)
,

where G is a Green’s function that satisfies the properties stated above and where k3 = 0, so

that A3 = 0, and hence p3 = 0.

3.2.3 Asymptotic solution

Each order of magnitude calculated adds to the accuracy of the solution, so at order ε3 the

solution is third order accurate. The solution is

h(x, y, t) = −b(x, y) + εφ1(t) + O(ε4) (3.24)

p = (p, q) = ε∇
(∫

D

Gh1t dV +
∫
∂D2

Gk1 dS
)

+ ε2∇
∫
∂D2

Gk2 dS + O(ε4), (3.25)

where k1 = −u1b, k2 = u1φ1, and G is the Green’s function described above. A Green’s

function for a circular domain is constructed in Appendix C.1.

The solution indicates that the depth of the water is determined in the main part by the

still water level and by the imposed boundary condition, i.e. by the force of the tide. Only at

O(ε4) or smaller do we see the effect of the advective terms on the water depth.

Figure 3.2 shows the surface elevation for the case of no source terms up to O(ε3), with

b = −10, φ1(t) = sin (2πt/T ), where T = 24 hours.

3.2.4 Source terms

Equation (2.4) is the modification to the right hand side of the SWEs that models bed friction,

Coriolis, and wind friction. Recall

s =

 qs
−gh ∂b∂x − ghSfx + fhv + cww

2τx
−gh ∂b∂y − ghSfy − fhu+ cww

2τy

 , (3.26)

with

Sf =
[
Sfx
Sfy

]
=
[
cfu|u|
cfv|u|

]
, τ =

[
τx
τy

]
=
[
cosα
sinα

]
.
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Figure 3.2: Order O(ε3)-accurate solution to the time evolution of surface elevation measured

at an arbitrary point in the bay. The bathymetry is assumed flat (b = −10) and sinusoidal tidal

effects (φ1(t) = sin(2πt/24), time in units of hours) are imposed at the boundary ∂D2 from

time t = 0 . . . 24 hours.

In the mass equation, qs represents the source/sink discharge per unit area (rainfall, evapo-

ration), which is taken to be zero here. In the momentum equations, Sf represents the bed

friction, with cf a bed friction coefficient, f is the Coriolis parameter, and τ represents wind.

Now the mass equation is unchanged and the momentum equations become

Fr2

(
∂(hu)
∂t

+
∂(hu2)
∂x

+
∂(huv)
∂y

)
+ h

∂h

∂x
= −h ∂b

∂x
−Bfu|u|+

Fr2

Ro
hv + W cosα

Fr2

(
∂(hv)
∂t

+
∂(huv)
∂x

+
∂(hv2)
∂y

)
+ h

∂h

∂y
= −h ∂b

∂y
−Bfv|u| −

Fr2

Ro
hu+ W sinα,

where Fr, the Froude number, Ro, the Rossby number, Bf and W are all dimensionless param-

eters which we discuss below.

Dimensions

Let us consider each source term in turn.

The bed friction coefficient, cf , is written using Manning’s n as cf = n2h−4/3. We take

n = O(10−2) m−1/3s in line with Chow (1959), Baines (1974) and Fowler (1997). The

dimensionless bed friction parameter is

Bf = n2LD−7/3U2 = O(10−10/3) ≈ O(10−3).
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The Coriolis parameter represents the turning of the Earth, and is f = 2Ω sinϕ, where Ω

is angular velocity of the Earth, ϕ is the latitude of the domain. In the case of Moreton

Bay, ϕ = 27◦S so f = −6.6 × 10−5 = O(10−5) s−1, negative in the southern hemisphere.

Here any variation in latitude is neglected: the β-plane approximation is taken, and f is

assumed constant (Pedlosky (2003)). Furthermore, the nondimensional Rossby number,

Ro =
U

2Ω sinϕL
=

U

fL
= O(10−1)

is small, so the Coriolis force is significant.

In the equations above, the size of the Coriolis term is therefore

Fr2

Ro
= O(10−3).

The wind term contains cw the wind friction coefficient, w the wind velocity, and α the

direction of the wind with respect to the x-axis. The wind friction coefficient can be

taken to be cw = O(10−3) (as done by Butman (1978), Trenberth et al. (1989), or Yu and

O’Brien (1991)). We use Moreton Bay as a typical example: according to the Australian

Government Bureau of Meteorology’s website 1, the wind velocity may vary from 1.1

to 8.3 ms−1, with an average of about 2.8 ms−1. Thus we nondimensionalise with the

dimensional value W such that w = Ww̃ and W = O(1) ms−1. The valid range for α is

(0◦, 360◦).

The nondimensional wind term is now

W =
cwW

2L

gD2
= O(10−1).

Letting ε = 10−1 as before, we write the system (3.17) with this particular choice (3.26) of

source vector as

∂h

∂t
+
∂(hu)
∂x

+
∂(hv)
∂y

= 0 (3.28a)

ε4

(
∂(hu)
∂t

+
∂(hu2)
∂x

+
∂(huv)
∂y

)
+ h

∂h

∂x
= −h ∂b

∂x
− ε3h−1/3u|u|+ ε3hv + ε cosα (3.28b)

ε4

(
∂(hv)
∂t

+
∂(huv)
∂x

+
∂(hv2)
∂y

)
+ h

∂h

∂y
= −h ∂b

∂y
− ε3h−1/3v|u| − ε3hu+ ε sinα. (3.28c)

1. www.bom.gov.au/climate/averages/tables/cw 040842.shtml
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Leading order

The system with source terms is identical to that without at leading order, so the solutions are

h0 = −b(x, y)

p0 = 0.

Order ε

At order ε the momentum equations (3.28b) and (3.28c) in vector notation are

h0∇h1 + h1∇(h0 + b) = τ,

where τ = [cosα, sinα]. But ∇(h0 + b) = 0, thus

h0∇h1 = τ.

Take the divergence of both sides to obtain

∇2h1 = ∇ ·
(
τ

h0

)
,

and since the boundary conditions are ∂h1/∂n = 0 on ∂D1 (3.21) and h1 = φ1 on ∂D2 (3.22),

means solving Poisson’s equation with mixed boundary conditions, and h1 can be expressed in

terms of a Green’s function H by defining

i) ∇2H(x, ξ) = −δ(x− ξ) for x ∈ D,

ii)
∂H

∂n
= 0 on ∂D1 and H = 0 on ∂D2.

Then by Green’s second identity we obtain

h1 = −
∫
D

H∇ ·
(
τ

h0

)
dV +

∫
∂D2

φ1
∂H

∂n
dS.

The mass equation (3.28a) at O(ε) is

∇ · p1 = −h1t.

As before, define p1 = ∇A1 and construct a Green’s function, G, so that we obtain

p1 = ∇
(∫

D

Gh1t dV +
∫
∂D2

Gk1 dS
)
,

where k1 = −u1b, and G is a Green’s function.
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Order ε2

The momentum equation at O(ε2) is

h0∇h2 + h1∇h1 + h2∇(h0 + b) = 0.

But since ∇(h0 + b) = 0 and ∇h1 = τ/h0, we have

∇h2 = −h1τ

h2
0

∇2h2 = ∇ ·
(
−h1τ

h2
0

)
.

And using Green’s functions as above,

h2 =
∫
D

H∇ ·
(
h1τ

h2
0

)
dV,

where H is the Green’s function with mixed boundary conditions. From the equation for mass

(3.28a) at O(ε), we have

p2 = ∇
(∫

D

Gh2t dV +
∫
∂D2

Gk2 dS
)
,

where G and H are Green’s functions, and k2 = u1φ1.

Order ε3

At order ε3, the momentum equations (3.28b) and (3.28c) are

h0∇h3 + h1∇h2 + h2∇h1 + h3∇(h0 + b) = −h−1/3
0 u0|u0|+ h0k ∧ u0,

but since ∇h1 = τ/h0, and ∇h2 = −h1τ/h
2
0, the equation reduces to

∇h3 = − τ

h3
0

(
h0h2 − h2

1

)
.

Using Green’s identities as before, both h3 and p3 can be solved as

h3 =
∫
D

H∇ · ψ3 dV,

p3 = ∇
(∫

D

Gh3t dV +
∫
∂D2

Gk3 dS
)
.

where G and H are Green’s functions and

ψ3 = − τ

h3
0

(
h0h2 − h2

1

)
, k3 = 0.
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Putting this information together, we have the asymptotic solutions up to O(ε3)

h = −b(x, y)− ε
(∫

D

H∇ ·
(
τ

h0

)
dV −

∫
∂D2

φ1
∂H

∂n
dS
)

+ ε2

∫
D

H∇ ·
(
h1τ

h2
0

)
dV

+ ε3

∫
D

H∇ · ψ3 dV + O(ε4), (3.29)

p = (p, q) = ε∇
(∫

D

h1tGdV +
∫
∂D2

Gk1 dS
)

+ ε2

(∫
D

h2tGdV +
∫
∂D2

Gk2 dS
)

+ ε3

(∫
D

Gh3t dV
)

+ O(ε4), (3.30)

where G and H are Green’s functions that satisfy Neumann and mixed boundary conditions,

respectively and

k1 = −u1b, k2 = u1φ1, and ψ3 = − τ

h3
0

(
h0h2 − h2

1

)
.

The effect of adding source terms of this size is evident at order ε and below. These effects are

due to the wind alone: Coriolis and bed friction appear at O(ε4) or below.

3.2.5 The importance of source terms

The inclusion of extra source terms in (3.28) results in corrections to the asymptotic solution to

terms of order ε and below. We now use different values of firstly wind speed and secondly bed

roughness in order to see their effects on the solutions. This provides insight into the behaviour

of the source terms on the flow.

Effect of wind speed

Now consider the case when wind speed W = 0.3 ms−1 so that W 2 = O(10−1) and W = O(ε2).

The boundary conditions are unchanged.

The leading order and order ε momentum and mass equations are unchanged, thus

h0 = −b, h1 = φ1

p0 = 0, p1 = ∇
(∫

D

Gh1t dV +
∫
∂D2

Gk1 dS
)
.
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At order ε2 the momentum equations (3.28b) and (3.28c) are

h0∇h2 + h1∇h1 + h2∇(h0 + b) = τ

⇒ ∇h2 =
τ

h0

(∇·) ⇒ ∇2h2 = ∇ ·
(
τ

h0

)
.

Then look for a Green’s function, H, and using the same method as before we have

h2 = −
∫
D

H∇ ·
(
τ

h0

)
dV +

∫
∂D2

Hk2 dS,

where k2 = u1φ1. The order ε2 equation for mass (3.28a) is

∇ · p2 = −h2t,

which leads to

p3 = ∇
(∫

D

Gh2t dV +
∫
∂D2

Gk2 dS
)
.

At order ε3, the momentum equation is

h0∇h3 + h1∇h2 + h3∇(h0 + b) = −h−1/3
0 u0|u0|+ h0k ∧ u0.

But since u0 = 0 we obtain ∇h3 = −h1τ/h
2
0. Taking the divergence of both sides and con-

structing a Green’s function, H with mixed boundary conditions, we obtain

h3 =
∫
D

H∇ · ψ3 dV,

where H is a Green’s function and

ψ3 = −h1τ

h2
0

.

Since h3t 6= 0, the equation of mass (3.28a) gives ∇p3 = −h3t and by previous methods we

have

p3 = ∇
(∫

D

Gh3t dV
)
,

where G is a Green’s function.

This decrease in the wind term by one order leads to the following solution

h = −b+ εφ1 − ε2

(∫
D

H∇ ·
(
τ

h0

)
dV −

∫
∂D2

Hk2 dS
)

+ ε3

∫
D

H∇ · ψ3 dV + O(ε4),
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p = (p, q) = ε

(∫
D

Gh1t dV +
∫
∂D2

Gk1 dS
)

+ ε2∇
(∫

D

Gh2t dV +
∫
∂D2

Gk2 dS
)

+ ε3∇
(∫

D

Gh3t dV
)

+ O(ε4)

where G and H are the usual Green’s functions and

k1 = −u1b, k2 = u1φ1, and ψ3 = −h1τ

h2
0

.

This shows that wind effects now appear at order ε2, i.e. O(1) wind is responsible for effects

of O(ε) and O(ε) wind is responsible for effects at O(ε2).

Effect of bed roughness

This time, we assume W = 1 and the bed friction term is now O(ε2), which corresponds to

changing n2 = 10−4 to n2 = 10−3 (the bed becoming rougher). The equations are unchanged

up to order ε3, where the bed friction terms appear, but since u0 = 0, the equations reduce to

those with source terms and hence the solution is unchanged from (3.29) and (3.30).

This shows that increasing the value of Manning’s n from n2 = O(ε4) to n2 = O(ε3) results

in corrections to the solution at O(ε4) or smaller.

3.2.6 Asymptotic summary

These results are valid for the assumptions we have made, i.e. for the particular geometry,

boundary conditions, and time scales of this bay, and are quite similar to the results of Vázquez-

Cendón (1999), who performs asymptotic analysis for the shallow water equations on a similar

geometry.

In Chapter 5, Riemann2D is run for different magnitudes of the source terms for some

idealised bays. These tests allow us to verify, using the above knowledge, that Riemann2D is

able to produce realistic and physically relevant results.

3.2.7 Stratified shallow water

The shallow water equations are an approximate model that tell us information about the global

behaviour of the system. We may choose to refine our model, as we did by adding source terms,
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or alternatively by considering that the water consists of two layers of unmixed, interacting

fluids.

Density-stratified, unmixed fluids can be found in places where one fluid flows into another,

as in the case of the Strait of Gibraltar where the (saltier, denser) Mediterranean Sea flows under

the (less salty and less dense) Atlantic Sea (as has been studied by Lane-Serff and Woodward

(2001), Farmer and Armi (1988)). An alternative motivation is to model the different forces

acting on different parts of the water, so that the fluid at the surface is subject to the force of

the wind more than to the roughness of the bed, and vice versa for fluid near the bed.

Dimensional and asymptotic analysis of the stratified flow problem can be found in Ap-

pendix C.2. We summarise the results here. Let the variables in the upper fluid be (h, p, q)

with density ρ1, and in the lower fluid (H, P, Q) and the density ρ2. The density ratio is defined

to be ρ1/ρ2 = γ. The depth of still water in the upper layer is −b∗, a constant, and in the lower

layer −b+b∗ = −b(x, y)+b∗. Then the asymptotic solution, based on the nondimensionalisation

of (C.5) and with boundary conditions analogous to those of the previous section, is

h = −b∗ + ε2φ2(t) + O(ε4)

H = −b+ b∗ + εφ1(t) + O(ε4)

p = ε∇
∫
∂D3

Gk1 dS + ε2∇
(∫

D

Gh2t dV +
∫
∂D3

Gk2 dS
)

+ O(ε4)

P = ε∇
∫
D

GH1t dV + ε2∇
∫
∂D2

GK2 dS + O(ε4).

It can be seen how similar these solutions are to the single-layer solutions, as we would expect

from the similarity of the boundary conditions. A more physically representative solution may

be obtained by adjusting the relative importance of the bed friction and wind terms for each

layer.

It would be interesting to develop the numerical aspect of this problem and evaluate the

benefits of such a model, but it is beyond the scope of this thesis.
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3.3 Summary

In this chapter we aimed to show the capabilities and the limitations of analysis for the shallow

water equations. The main points of this chapter have been

• Introduction of some classical ideas about hyperbolic systems and the shallow water equa-

tions, calculation of eigenvalues and Riemann invariants for the two-dimensional system,

and definition of weak solutions. In particular, the eigenvalues and the idea of weak solu-

tions are central to the design of a numerical scheme.

• Nondimensionalisation of the shallow water equations with source terms to show the rel-

ative importance of each term. Presentation of asymptotic solutions, in the case of no

source terms and non-varying bathymetry to show the dependence on bathymetry and tide

of the water depth.

• Variation of the size of the wind speed and bed friction terms. Decreasing wind speed from

w2 = O(1) to w2 = O(ε) reduced wind effects from O(ε) to O(ε2). Increasing the size of

the bed friction term so that n2 = O(ε4) changed to n2 = O(ε3) had no noticeable effects

above O(ε4).

• Asymptotic analysis of the stratified system of SWEs. This approach may lead to more

physically realistic results as it treats the top layer as being subject to different forces from

the bottom.

The most important part is the asymptotic study of the source terms, as this will be used

to compare with numerical results from Riemann2D in later chapters.

The next chapter looks at the design of a numerical scheme for a hyperbolic problem to

understand how Riemann2D is built.
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CHAPTER 4

Numerical schemes

Riemann2D is a shock-capturing, object-oriented numerical solver designed for the shallow

water equations in two spatial dimensions, which uses an FVM and unstructured triangular

meshes. It was written in Java by Jha (2006) and others, originally for short-time problems

such as the dam break problem. This thesis is concerned with using the Riemann2D project

on much larger (both spatial and temporal) problems, where flows are generally slower.

In this chapter a clear explanation is given of how a PDE or a system of PDEs is formulated

into an FVM scheme, which is based on standard textbook explanations. The use of limiters

to ensure that spurious oscillations do not arise and to prevent solutions being numerically

‘diffused’ is discussed. An outline of the main properties of object-oriented languages (such as

Java) is given, and we discuss in some detail the structure of the Riemann2D packages.

A newly-implemented time-dependent boundary condition to reproduce the behaviour of a

tide has been added to the shallow water package and is described in this chapter. Finally, it

is shown how the advection equation that is used to model contaminant transport is used in

Riemann2D .

4.1 Numerical schemes

A numerical scheme provides an approximate solution to a single equation or a system of

equations with the associated boundary conditions. It is a powerful way of solving equations
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under flow conditions that are extremely unlikely to yield explicit analytical solutions.

In this section we show how a general one- or multi-dimensional hyperbolic system is for-

mulated into a finite volume scheme. We also consider requirements on the scheme that ensure

accuracy and some ways to ensure a scheme achieves this via the addition of a limiter. This

chapter provides an overview of the FVM and its implementation in Riemann2D .

4.1.1 Finite volume formulation: 1D

Consider a general homogeneous 1D hyperbolic system of PDEs such as

qt + f(q)x = 0. (4.1)

The problem is formulated into a finite volume method in the following way, as described by

LeVeque (2003). Consider a space divided into cells or elements Ωi of length ∆x = xi+1/2 −

xi−1/2, as shown in Figure 4.1. For simplicity the cells are assumed equal in length. Define an

average flux across a cell as

Qn
i ≈

1
∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx. (4.2)

This is the finite volume that gives the method its name. Then the integral form of (4.1) is

d
dt

∫
Ωi

q(x, t) dx = F (q(xi−1/2, t))− F (q(xi+1/2, t)).

This is the semi-discrete algorithm: to obtain the fully explicit time-marching algorithm, inte-

grate over one timestep from tn to tn+1∫
Ωi

q(x, tn+1) dx−
∫

Ωi

q(x, tn) dx =
∫ tn+1

tn

F (q(xi−1/2, t))− F (q(xi+1/2, t)) dt.

Rearranging, dividing by ∆x, and making use of (4.2) we see that (4.1) can be written

Qn+1
i = Qn

i −
∆t
∆x

(
Fni+1/2 − F

n
i−1/2

)
,

where the intercell flux Fi−1/2 is a function of its left and right states, i.e. Fi−1/2 = F(Qi−1, Qi)

for some function F to be defined.

This is the fully explicit time-marching finite volume formulation that can be used to provide

an approximate numerical solution. The choice of the flux function F is discussed in the following

section (recall also Section 2.2.5).
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Figure 4.1: One-dimensional grid on which the problem may be solved. Reproduced from

LeVeque (2003). Note that although the arrows of the fluxes are depicted pointing to the right,

the flux is not necessarily in that direction.

Roe’s scheme

A possible choice of the intercell flux function is

Fi−1/2 =
1
2
(
Fni−1 + Fni

)
− 1

2
|Rn

i−1/2|
(
qni − qni−1

)
,

where R is some matrix to be defined. This is the form that Roe’s solver uses.

Roe (1981) had the seminal idea to solve an approximate problem in which the flux vector

did not depend on the varying solution, but on a (locally constant) approximation to it.

Roe’s idea was to replace the Jacobian matrix of variables with a matrix of constants that are

local approximations to the variables. These approximations are averages of the left and right

states of the data. The new matrix must also satisfy some properties – collectively known as

property U – in order for the scheme to be uniformly valid across discontinuities (conservative,

hyperbolic), as set out in Section 2.2.4.

For the 1D shallow water equations in the form

qt + F (q)x = 0, ⇔ qt +Aqx = 0,
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where A = ∂F/∂q is the Jacobian matrix of the flux vector F . Then the Roe averages can

easily be shown to be (see for example Glaister (1988a))

√
h̃ =

√
hL +

√
hR (4.3)

ũ =
(hu)L/

√
hL + (hu)R/

√
hR√

h̃
. (4.4)

This means that the matrix (of variables) A, can be replaced with the matrix (of constants) Ã,

where

Ã =
[

0 1
gh̃− ũ2 2ũ

]
.

Thus for a 1D nonlinear hyperbolic scheme the flux function is written as

Fi−1/2 =
1
2

[
ÃQi−1 + ÃQi −

m∑
p=1

|λ̃p|ai−1/2,pr̃p

]
, (4.5)

where λ̃p is the pth eigenvalue of Ã, ai−1/2 is the wavestrength measured at i− 1/2, and r̃p is

the pth eigenvector corresponding to the pth eigenvalue of Ã.

The wavestrength is determined by the definition (Roe (1981))

∆Q = Qi −Qi−1 =
m∑
p=1

ai−1/2,prp. (4.6)

Hence for the shallow water equations, the wavestrengths are given by

ai−1/2 =

 ((ũ+ c̃)(hRi−1/2 − h
L
i−1/2)− ((hu)Ri−1/2 − (hu)Li−1/2)

)
/2c̃(

−(ũ− c̃)(hRi−1/2 − h
L
i−1/2) + ((hu)Ri−1/2 − (hu)Li−1/2)

)
/2c̃

 ,
where c̃ =

√
g(eta− bedElevation), eta = 1

2 (hRi−1/2 + hLi−1/2), bedElevation = 1
2 (bRi−1/2 +

bLi−1/2), and the tildes denote the Roe average (visualisation of left and right state values is

given in Figure 4.2).

Finally we obtain Roe’s method for the 1D shallow water equations

Qn+1
i = Qn

i −
∆t

2∆x

(
Ã(Qn

i+1 + Qn
i−1) +

m∑
p=1

|λ̃np |(ani+1/2,p − a
n
i−1/2,p)r̃

n
p

)
. (4.7)

The first term of the right hand side is known for each element, the terms in brackets are

calculated for each element, then the left hand side is updated accordingly.

70



4.1 Numerical schemes

4.1.2 Multidimensional finite volume formulation

We wish to extend the FVM to higher dimensions. Consider a two-dimensional scheme of the

form

qt + F (q)x +G(q)y = 0 (4.8)

such as the shallow water equations. Consider also a Cartesian grid in the (x, y) plane. The

x-axis is divided into N blocks, and for convenience we define ∆x = xi+1/2− xi−1/2. Similarly,

the y-axis is divided into M blocks, and we define the length ∆y = yj+1/2 − yj−1/2. The grid

is time-stepped over in steps of size ∆t.

Consider the homogeneous, hyperbolic, two-dimensional system (4.8). We wish to arrange

the system into a scheme resembling Roe’s 1D scheme (4.7), which we do following Namin et al.

(2004) or Brufau and Garcia-Navarro (2000).

The usual one-dimensional flux average for FVM is

Qn
i ≈

1
∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx.

If working with a structured (rectangular) mesh, this is extended to a two-dimensional control

volume in a natural way

Qn
i,j ≈

1
∆x∆y

∫ yi+1/2

yi−1/2

∫ xi+1/2

xi−1/2

q(x, y, tn) dxdy.

However, a different formulation is required for the unstructured triangular meshes used here.

To see clearly where each term comes from, start from (4.8), and consider a cell of arbitrary

volume Ω, over which q is conserved. Integrate over this volume to obtain∫∫
Ω

qt +∇ · F dxdy = 0

⇒ ∂

∂t

∫∫
Ω

q dxdy +
∫∫

Ω

∇ · F dxdy = 0,

where F = (F, G) the vector of flux vectors. If q is sufficiently smooth, we may use the

divergence theorem to obtain

∂

∂t

∫∫
Ω

q dxdy +
∫
∂Ω

n · F ds = 0,
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where s is an arclength parametrisation of ∂Ω, n = (nx, ny) is the unit outward-pointing vector

out of ∂Ω, and now F = F(s). Now integrate from tn to tn+1 and divide by the cell area, |Ω|,

so

1
|Ω|

∫∫
Ω

q(x, y, tn+1) dxdy − 1
|Ω|

∫∫
Ω

q(x, y, tn) dx dy +
1
|Ω|

∫ tn+1

tn

∫
∂Ω

n · F dsdt = 0. (4.9)

As LeVeque (2003) points out, in the 1D formulation, we are looking for a scheme of the form

Qn+1
i = Qn

i −
∆t
∆x

(
Fni+1/2 − F

n
i−1/2

)
.

This suggests we re-write (4.9) by defining

Qn
ij ≈

1
|Ω|

∫∫
Ω

q(x, y, tn) dxdy,

the 2D approximation to q over volume Ω, and

F̆nk ≈
1

∆t

∫ tn+1

tn

(
1
lk

∫
sidek

n · F
)

dt, (4.10)

the fluxes through each side of the cell Ω. Here lk is the length of side k. This allows us to

write

Qn+1
ij = Qn

ij −
∆t
|Ω|

N∑
k=1

lkF̆nk , (4.11)

which is the 2D equivalent to the 1D Roe solver (4.7), and for a triangular mesh, N = 3. (The

above applies to a system of dimension p by extending in the obvious way.) The first term of the

right hand side is known, the second is calculated for each cell and the left hand side is updated

accordingly for each timestep. The detail of the implementation of this in Riemann2D is given

in later sections.

The expression F̆nk is determined by using the expression for the intercell flux function (4.5)

in the integral (4.10) for each of the sides of the triangular element.

The advantage of the FVM formulation is that it can be applied to a mesh composed of

any type of polygon, and in any dimension. The elements do not need to be arranged in a

structured way, and therefore is an ideal choice for a problem on an arbitrary domain.
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Roe’s solver

Roe’s solver in 2D is exactly analogous to the 1D solver: replacing the flux matrices of variables

F and G with approximate matrices of constants F̃ and G̃, defined via the Roe averages for

the state variables on the left and right sides of each side of the element. Thus we find the

eigenvalues, eigenvectors and wave speeds of the approximate matrix

nxF̃ + nyG̃ =

 0 nx ny
(gh̃− ũ2)nx − ũṽny 2ũnx + ṽny ũny
(gh̃− ṽ2)ny − ũṽnx ṽnx ũnx + 2ṽny

 ,
where tilde denotes the usual Roe averages√

h̃ =
√
hL +

√
hR

ũ =
(hu)L/

√
hL + (hu)R/

√
hR√

h̃
ṽ =

(hv)L/
√
hL + (hv)R/

√
hR√

h̃
,

as given in Namin et al. (2004) and Brufau and Garcia-Navarro (2000), for example.

4.1.3 Accuracy and stability

A successful numerical scheme should approximate the solution without smearing sharp regions

or introducing spurious oscillations. It should approximate the solution increasingly accurately

as the number of grid cells is increased, with the property that the numerical solution tends

to the actual solution as the grid size tends to zero. These requirements can be formalised by

stating that a numerical scheme should have the following properties:

Consistency The discrete operator (on finite differences) converges towards the continuous

operator (on partial derivatives) as the grid is refined, i.e. as ∆t, ∆x→ 0.

Stability ‘Noise’ from initial conditions or other, does not grow.

Convergence The numerical solution converges towards the real solution as ∆t, ∆x→ 0.

For a finite difference scheme, we use Lax’s equivalence theorem, which states that for

linear problems, a necessary and sufficient condition for convergence is that the method is both

consistent and stable (see for example Versteeg and Malalasekera (1995)). This is a useful

theorem, since consistency and stability are easier to prove than convergence. However, since

we are using finite volumes, we must look more closely at the above conditions.
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Stability criteria

Since the solution to a hyperbolic problem is a series of interacting waves, we must ensure that

the computational grid is such that the time step ∆t is small enough that the wave does not

have time to exit the other side of the element of width ∆x (Font (2003)). This leads us to the

following important condition.

The Courant-Friedrichs-Lewy (Courant et al. (1928)) condition (or CFL condition) states

that the numerical domain of dependence must contain the physical domain of dependence.

Definition The number |c|∆t/∆x is known as the the Courant number, where c is the wavespeed,

which for the shallow water equations is given by c =
√
gh. It is a necessary condition for the

stability of a scheme. Thus satisfying

|c|∆t
∆x

< 1

is a requirement for a scheme to be successful.

For the two-dimensional case, Jha (2006) has derived a formula that generalises the CFL

criterion for triangular meshes. It uses the wavespeed, c, the length of one of the sides of the

triangular element, l, and the area of the triangle A, or that of an adjacent triangle Ai:

∆t
2

max
i=1,2,3

(
cili

min(A,Ai)

)
6 1.

Details of how this is used in the present numerical scheme is given later in this chapter.

Numerical order of accuracy

Consider the scalar advection equation qt + Fqx = 0 for some scalar F . Let the operator Hk

be a method such as Lax-Friedrichs or Beam-Warming, so for example the Lax-Friedrichs Hk

is (LeVeque (1990))

Hk(Qn; j) =
1
2

(Qnj−1 +Qnj+1)− ∆t
2∆x

(Qnj+1 −Qnj−1),

where k = ∆t the size of the timestep, and Qnj is the approximate solution to q at time t = n

and point x = j.
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Definition The truncation error is defined to be

Lk(x, t) =
1

∆t
[q(x, t+ ∆t)−Hk(q(·, t);x)] ,

where k = ∆t is the size of the timestep.

Thus the truncation error for the Lax-Friedrichs scheme is

Lk(x, t) =
1

∆t

[
q(x, t+ ∆t)− 1

2
(q(x−∆x, t) + q(x+ ∆x, t))

]
+

1
2∆x

F (q(x+ ∆x, t)− q(x−∆x, t)) .

Taylor expanding q this becomes

Lk(x, t) = qt + Fqx +
1
2

(
∆tqtt −

∆x2

∆t
qxx

)
+ O(∆x2)

=
1
2

∆t
(
F 2 − ∆x2

∆t2
I

)
qxx + O(∆x2).

Note that as ∆x→ 0, the truncation error tends to O(∆t) so the scheme is first-order accurate.

In general we may say that a scheme has pth order of accuracy if the truncation error, Lk,

can be written

|Lk| 6 C∆xp

for some constant C, and where p is the largest such number. See for example LeVeque (1990).

It is known (Jha (2006)) that Roe’s scheme is first-order accurate, but is made high-

resolution by the addition of a limiter.

The C-property

Bermúdez and Vázquez (1994) give a conservation property that the scheme must satisfy if it

is to conserve the quantities of the state variables.

Definition A numerical scheme is said to satisfy the C-property if it solves exactly the steady-

state problem.

Definition A numerical scheme is said to satisfy the approximate C-property if it solves the

steady-state problem to an accuracy of (∆x)2, where ∆x is the size of the computational grid.

Roe’s scheme for SWEs with no bed friction is known to satisfy the exact C-property

(Vázquez-Cendón (1999)). This property will be demonstrated for Riemann2D in Chapter 5.
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Figure 4.2: Comparison of the data reconstruction techniques of Godunov (left) with MUSCL

(right). The Godunov method approximates the data in each cell with a piecewise constant

value. MUSCL-type schemes use a linear approximation. Left and right states (qL and qR,

respectively) are also shown.

4.1.4 Data reconstruction

A Godunov-type scheme takes the state values in each cell and replaces them with piecewise

constant values (Hirsch (1984)), thus defining a series of local Riemann problems, and a first-

order accurate reconstruction.

An extension to Godunov-type schemes that are used in this project are MUSCL-type

schemes (Monotonic Upstream-centred Schemes for Conservation Laws, due to van Leer (Hirsch

(1984), p494)). This means that the data are replaced with piecewise linear values. The two

different approaches are represented in Figure 4.2. For a 2D (triangular mesh) problem, a plane

must be fitted to replace the data, based on the state values in the three neighbouring triangles

(i.e. triangle 123 in Figure 4.3).

The piecewise linear values of the MUSCL approach must be determined by some method.

In this project, we use Roe’s method, as described earlier. Other methods that might be used
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Figure 4.3: Naming convention for the limiting procedure as defined for a triangular control

volume (left) and a piecewise constant reconstruction of the solution (right). Reproduced from

Hubbard (1999).

include those of Harten, Lax, and van Leer, (the HLL and HLLC schemes, ‘C’ standing for

‘contact’), and Shu-Osher. These have been used by Jha (2006) in his thesis in the context of

Riemann2D .

Limiters

Although it is second-order accurate, the MUSCL approach can fail to accurately capture

shocks or contact discontinuities when the gradient of the slope is too large, as this can introduce

undershoots or overshoots in the numerical solution. The remedy for this is to limit the gradient

of the slope by the addition of a nonlinear term, so that the solution is limited or not, depending

how steep the gradient of the slope is. This idea of limiters was proposed by Boris and Book

(1973) and van Leer (Hirsch (1984), p127).

Consider a triangular element of centre 0. Its three adjacent triangular elements have their

centres at 1, 2, and 3 (see Figure 4.3). The gradient of the slope of the triangle ∆123 will be

limited if it is too steep, i.e. the state variable will be re-written as

q′ = q + Φ(r,L),

where Φ is the chosen limiter, r is a vector from the centre of the triangle, and L is the gradient

of ∆123. Some limiters available for use with Riemann2D are described below.
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Superbee/minmod This limiter is due to Roe. It uses the gradient of triangle ∆123, and is

defined as

Φsuperbee/minmod = min(Φj),

where

Φj = min {max[min(βrj , 1),min(rj , β)]}

where 1 6 β 6 2 and for each component of the vector r, rj , we have

rj =


(qmax

0 − q0)/(qj − q0) if qj − q0 > 0
(qmin

0 − q0)/(qj − q0) if qj − q0 < 0
1 if qj − q0 = 0

where

qmin
0 = min(q0, qneighbour), qmax

0 = max(q0, qneighbour),

and where the notation uneighbour indicates the state variable in elements 1, 2 or 3. The

case β = 1 corresponds to the minmod limiter, β = 2 to the superbee limiter.

Extended van Leer Let the gradients S1, S2, S3 represent the gradients of triangles ∆103,

∆203 and ∆302 respectively. Then a limiter based on van Leer’s limiter of 1974 is defined

as

ΦEVL = 0.8
S1 · |S2| · |S3|+ |S1| · S2 · |S3|+ |S1| · |S2| · S3

|S1| · |S2|+ |S2| · |S3|+ |S1| · |S3|
.

MLG This stands for Maximum Limited Gradient, and was developed by Batten et al. (1996).

It has been shown to reduce to the superbee limiter of Roe in one dimension.

First calculate the gradient of each of the four triangles in Figure 4.3, so that

Φ0 = ΦLCD(∆123), Φ1 = ΦLCD(∆120)

Φ2 = ΦLCD(∆103), Φ3 = ΦLCD(∆023),

where the function ΦLCD is the Limited Central Difference limiter so that ΦLCD =

(minαj)∇(∆123), where αj is a scalar and ∇ is the unlimited gradient operator (see

Batten et al. (1996) and Jha (2006)). Then set ΦMLG = Φi such that

|Φi| = max
06j63

|Φj |.
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Sweby (1984) notes that in the tests he performs on van Leer’s limiter, the minmod and

superbee limiters of Roe, and Chakravarthy and Osher’s limiter, the superbee limiter is very

accurate, though has a tendency to over-compress, meaning initially smooth data can become

squarish. Meanwhile, the limiter of van Leer “exhibits results nearly as good as Roe’s whilst

being more reliable” (Sweby (1984)).

The idea of the rank of a limiter was introduced by Jha (2006). The rank of a limiter

depends on the number of triangles whose gradients are used by that limiter. Thus a scheme

that uses no limiter is said to have a zero rank limiter, rank one limiters include the superbee

and minmod limiters of Roe, and the limited central difference (LCD) limiter. A rank three

limiter is for example the Extended van Leer, and the maximum limited gradient (MLG) limiter

is rank four. There is an inverse correlation between the rank of a limiter and the amount of

numerical diffusion, thus we expect the MLG limiter to best preserve the true solution.

4.1.5 Mesh generation

Control volumes in this project all have information centred at the element, rather than at

the nodes. This means the control volume is the element itself: if a node-centred program is

used, a volume must be created around each node, which is more computationally expensive

and thus undesirable. The advantage in using an element-centred program is that it contains

more computational points than a node-centred program. Thus it can be said that the element-

centred program gives more information (Namin et al. (2004)).

A node-centred scheme more correctly conserves mass. This is because flux through the

elements’ sides is exactly calculated with a node-centred scheme, but is based on a linear plane

approximation in an element-centred scheme. Thus the amount of fluid passing from one cell

to the next is automatically exact with a node-centred scheme. However, since in this project

we are dealing with slow flows, we may expect that any loss due to this type of averaging will

be negligible.

The size of the elements in the mesh determines the timestep that should be used, if the

Courant number is to be respected. If the elements are large, the timestep may also be large,

but not so much so that information entering the cell at one side may pass to the other side

before the timestep is updated.
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It is possible to use a structured grid as the basis of the calculations (e.g. Borthwick et al.

(2001b), Borthwick et al. (2001a), Geller (2003)). A structured mesh has the advantage of being

easily generated – no specialised software is required. On the other hand, it is not well-suited

to irregular boundaries, so an unstructured mesh is a more suitable choice.

Argus ONE R© meshmaker was used to generate all the meshes in this thesis.

4.2 Object Orientation

The term ‘object oriented programming’ (OOP) was first used by Alan Kay in around 1967

(Kay (2003)) when the concept was first being developed. Today, Kay says that “OOP to me

means only messaging, local retention and protection and hiding of state-processes, and extreme

late binding of all things”. In other words, the state of an object is kept locally in the object,

not elsewhere.

An object-oriented (OO) language like Java or C++ allows or encourages the use of OO prin-

ciples. The characteristic components of an object oriented program (also OOP) are classes,

methods and objects. A class is a collection of methods and fields (methods and fields can

be thought of as functions and variables, respectively). An object is an instance of a class: it

is the concrete where a class is the theoretical or abstract.

There are at least four important programming techniques associated with OOP that make

it particularly powerful.

Inheritance In OOP, a class can be ‘subclassed’, or made more specialised. 1 The subclass

inherits all the properties – fields and methods – of the superclass from which it is created.

Crucially, it is able to override the superclass to make its methods more relevant.

Encapsulation Although often confused with information hiding, encapsulation is in fact a

way of enabling information hiding. Encapsulating is bundling the data with the methods

operating on those data. In this way it is possible to shield client classes from the internal

workings of a class. 2 In procedural languages, encapsulation is not possible. OOP on the

other hand allows data and methods to be grouped so that data and the methods that

1. ‘Subclass’ is the syntax of Java and Smalltalk. In C++ the term ‘derived class’ is used.

2. www.javaworld.com/javaworld/jw-05-2001/jw-0518-encapsulation.html
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act on them are in the same class. Information hiding is a design principle that prevents

data from being changed by client classes, which might lead to spurious results. It also

means that the superclass may change its private data without affecting the way a client

accesses it.

Abstraction A powerful aspect of OOP is the use of abstract classes, which means that the

class is independent of concrete implementations. An instance of an (abstract) class is a

(concrete) object.

Polymorphism This refers to the ability of one method to act on different types of ar-

gument. For example, a method CalculatePay() might take as its argument either

salariedEmployee, or hourlyPaidEmployee. Although both types of employee have

data such as name, bank details, etc. , the method CalculatePay() operates in different

ways: for salariedEmployee, the method gets the annual salary, divides by 12, and re-

turns the answer; for hourlyPaidEmployee, the method gets the number of hours worked

and the hourly pay, multiplies the two, and returns the result.

The two main advantages of using object-oriented programming is that it allows complex

code to be written, and more importantly, this code is easily extensible. In the case of the

Riemann2D project, there exists a Generic package that contains all the properties that are

necessary to solve a general hyperbolic PDE. The ShallowWater package is specific to the

shallow water equations, and inherits all the properties of the Generic package. It would

be possible to write a package called GasDynamics, for example (see Figure 4.4), that solves

Euler’s equations for gas dynamics (another hyperbolic set of PDEs), and makes no reference

to ShallowWater, but does inherit all the properties of Generic.

Historically, the most common language for mathematical problems to be solved in has been

FORTRAN. This language is suited to such tasks as it matches the mathematician’s approach

in carrying out one step at a time. Object orientation has tried to replace this relatively narrow

approach to programming, which only allows one problem to be solved by one code, by giving

objects properties and then making the objects work together. The danger is that information

can become hidden, and in a complex code may become overlooked, especially by a part of

a programming team unaware of its presence. Thus a change made by one part of the team
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may cause unwanted effects or apparently inexplicable errors. It is therefore most important

that there is communication between team members. One way this can be facilitated is via a

repository, where team members submit their code to once they are happy with a change they

have made. Other team members then access the new updated version and can implement the

changes so that each member of the team is always using the latest version.

4.2.1 The importance of Java

The power of Java is in its portability: Java is a ‘write once, run anywhere’ language, because

it is written and compiled on one machine, with the code complied to an intermediate language,

Java bytecode. When a user wants to run this code on their own computer, the bytecode is

run on a Virtual Machine (VM). This means that Java is a ‘safe’ language, with aspects like

memory allocation being taken care of away from the control of the programmer. It is also a

strongly typed language, meaning anything in the code must be a type, e.g. int, double, string

and so on. This has two implications – it prevents a programmer from writing code that may

contain a memory leak, 1 but it also removes a certain amount of power from the programmer

in writing code. Java is a high level language, so it looks more like English than machine code.

This makes it quicker to learn and more intuitive to use than a lower-level language.

4.3 Object oriented Riemann2D

In the rest of this chapter, variables and expressions used in a mathematical or analytical

context are written in the traditional way: h, u, v, η and so on. Those referring to anything

done by Riemann2D are written in typewriter text to make them easily distinguishable.

4.3.1 Overview of Riemann2D

The structure of the Riemann2D project is represented in Figures 4.4 and 4.5. At the top

in Figure 4.4 is the package containing the superclasses, Generic. At the next level are the

ShallowWater and Limiters packages, and the (hypothetical) GasDynamics package. These

packages inherit everything from Generic, and override or add as required. Limiters may be

1. A memory leak can occur when memory is allocated to a program then not freed when it is no longer

needed.
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Figure 4.4: Representation of the structure of Riemann2D . The top package, Generic, is the

superclass from which other subclasses inherit. The ShallowWater package contains classes

needed for solving the shallow water equations, and inherits the generic properties of element,

node etc. from Generic, adding to them or overriding them as required. The Limiters pack-

age inherits properties from Generic. It is not linked to ShallowWater in the sense that it

can be used with another package, e.g. GasDynamics, but it is available for ShallowWater to

use. RiemannSolver contains subclasses of ShallowWater because it uses the eigenvalues and

eigenvectors of the shallow water equations in its calculations.

called by ShallowWater, or by a class from another package that has the Generic classes as

its superclass, e.g. GasDynamics in Figure 4.4. The RiemannSolver package is specific to the

ShallowWater package, and cannot be used by another, e.g. GasDynamics.

The Riemann2D project requires a domain to be input in the form of a meshfile. The

domain is first divided into a triangular grid using specialised software, then exported as a

meshfile. The average flux over each of the elements of the grid is then calculated, which is

(the equivalent to) the control volume of (4.2). The user/programmer specifies a meshfile for

the program to read. An example of an input meshfile for a 2D domain is shown in Figure 4.6.

The information is arranged in a way that allows parameter values to be read by the program.

Each element has state variables 1 associated with it, i.e. q = [h, hu hv, (hc)]T, as well as a

1. For the basic shallow water equations there are three state variables, for shallow water with a concentration
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Figure 4.5: Alternative representation of the structure of Riemann2D . The package Generic

is a level one package, containing all the superclasses. The ShallowWater package is a level

two package, and contains classes needed for solving the shallow water equations; it inherits

the generic properties of element, node etc. from Generic, adding to them or overriding them

as required. The Limiters package is also level two, and inherits properties from Generic.

RiemannSolver is level three and contains the subclass of ShallowWater because it uses the

eigenvalues and eigenvectors of the shallow water equations in its calculations.

parameter which is usually b, bed elevation. The first line contains the information [number of

nodes] [number of node parameters] [number of elements] [number of state variables] [number

of element parameters]. The next two lines contain information about the size of the domain.

The lines beginning N describe the node number and the coordinates of the node. The lines

beginning E describe the element number, the three node numbers that belong to that element,

and the depth of that element measured from some fixed datum level. The lines beginning S

describe the boundary conditions. More explanation on boundary conditions is given later in

this chapter.

A meshfile such as the one in Figure 4.6 is small and may be generated by the user/programmer

equation with one class of concentration there are four.
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Figure 4.6: Typical 2D node-centred input meshfile. The first line reads “no. of nodes, no. of

node parameters, no. of elements, no. of state variables, no. of element parameters”. Lines two

and three give information about the dimensions of the domain and the number of divisions

there. Lines beginning N contain “node number, x-coordinate, y-coordinate, bedElevation”.

Lines beginning E contain “element number, the three nodes that make up the triangle, eta,

u, v”. Finally, lines beginning S represent boundary sides: the side number, the boundary

condition type, eta, u, v. For boundary sides that are left unspecified, the default condition is

applied.

‘by hand’ by choosing suitable numbers, but for larger meshes we use the software Argus ONE R©

meshmaker, which automatically numbers the elements and nodes correctly. When the mesh

is read in, Riemann2D then links elements together by checking which elements are adjacent.

If an element is on the boundary of the domain, one or two of its neighbouring elements may

be ghost elements. Ghost elements are elements created for convenience, and lie outside of the

domain. At the interface of every pair of elements the Riemann problem is solved, thus a ghost

element allows the problem to be solved on the boundary of the domain.

Once the mesh is constructed, a new instance of the class Solver is called. Solver calls

solve outer, and within this, solve inner is called, which in turn calls mesh.execute().

For each timestep, the mesh.execute method is called. This is described in the diagram in

Figure 4.7.

Within the execute loop, leftState and rightState define the left and right states of each

element (see Figure 4.2) and calculate the slope of the bed elevation (or ∇b), respectively. The

method applySource() provides modifications to the state variables from calculations based
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Figure 4.7: Methods that are called when Riemann2D is run with the shallow water model.

on the right hand side of (3.28) in the previous chapter.

solveRiemannProblem() allows the user/programmer to choose which solver to use. In

this work we always choose Roe’s solver. The Riemann problem is solved at each timestep on

each of the three sides of every element for a particular choice of solver, then the maximum

wavespeed is calculated and the Courant number is updated based on this wavespeed.

4.3.2 More detail on Riemann2D

The notation used in this section is as follows. The dependent variables of the problem are

(h, hu, hv) = (state[0], state[1], state[2]). (The vector q is expressed in Riemann2D as

state; the ith element of the vector q is chosen by writing state[i].) The independent

variables are x, y, t. Triangular control volumes (elements) are traversed in an anticlockwise

manner with sides numbered as in Figure 4.8.

The primitive variables are initialised locally from the state variables as h=state[0]-bedElevation,

u=state[1]/h and v=state[2]/h for non-zero h. Then the source terms are applied based on
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the following equations:

source[0] = excessRainfallRate

source[1] = coriolis factor*v - kinematicBedStress[0] +

windStress factor*cos(windDirection) - g*h*surfaceSlope[0]

source[2] = -coriolis factor*u - kinematicBedStress[1] +

windStress factor*sin(windDirection) - g*h*surfaceSlope[1],

where coriolis factor is f , so the first term is Coriolis force, the second

kinematicBedStress[0]=n*n*g*h−1/3*
√
u*u+v*v*u,

kinematicBedStress[1]=n*n*g*h−1/3*
√
u*u+v*v*v,

is force due to bed friction (n is Manning’s n), and the third

windStress factor = windStressCoefficient*windSpeed*windSpeed*rhoAir/rhoWater

is the force due to wind speed. The term surfaceSlope in source[1] and source[2] represents

the b derivative, and is calculated by fitting a slope to the side of the element.

The method roeApproximateRiemannSolver() is where the mathematical concepts of Sec-

tion 4.1 are used. We look at each stage of this method and compare it with Section 4.1.

If hL, hR – the left and right water depths, respectively – are smaller than the bed elevation,

the program resets them to be bL,R+minDepth, where minDepth is small and specified by the

programmer. This prevents problems with vanishing water depth and friction terms becoming

too large. The Roe averages used by Riemann2D are (compare with (4.3))

√
hR =

√
ηR − bR,

√
hL =

√
ηL − bL,

√
~h =
√
hR +

√
hL,

~u =
(hu)L/

√
hL + (hu)R/

√
hR√

~h
, ~v =

(hv)L/
√
hL + (hv)R/

√
hR√

~h
.
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Figure 4.8: Example element, showing numbering of nodes and sides. Note that side i is

opposite node i, and the sides and nodes are numbered in an anti-clockwise manner, starting

from one. (Reproduced from Jha (2006).)

Jumps from left to right states are defined as

∆h = hR − hL, ∆hu = (hu)R − (hu)L, ∆hv = (hv)R − (hv)L,

∆hun = ∆hu∗nx + ∆hv∗ny, ∆hvn = −∆hv∗nx + ∆hu∗ny

un = u∗nx + v∗ny, vn = −v∗nx + u∗ny.

Furthermore, define

eta = (hR + hL)/2, bedElevation = (bR + bL)/2, c =
√
g(eta-bedElevation).

The wavespeeds, as a function of the jumps, are

a[i] =

a[0]a[1]
a[2]

 =

 ((~u + c)∆h− ∆hun)
vn∗∆hvn

(−(~u− c)∆h + ∆hun)

 .
Then the eigenvectors and eigenvalues are defined by the program as

wave[i][j] =

 1 0 1
~u− c∗nx −ny ~u + c∗nx
~v− c∗ny nx ~v + c∗ny

 . s[i] =

s[0]s[1]
s[2]

 =

|un− c|
|un|
|un + c|

 .
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Thus the term corresponding to the Q-scheme term (Qi −Qi+1) (4.6) is defined

fluxDifference[i]=

a[0]s[0]wave[0][0] + a[1]s[1]wave[0][1] + a[2]s[2]wave[0][2]
a[0]s[0]wave[1][0] + a[1]s[1]wave[1][1] + a[2]s[2]wave[1][2]
a[0]s[0]wave[1][0] + a[1]s[1]wave[1][1] + a[2]s[2]wave[1][2]

 .
The method calcNumericalFluxFunction() is called, which performs

flux[i] = (rightFlux[i] + leftFlux[i]− fluxDifference[i])/2∗length.

This is equivalent to the 2D Roe flux of (4.10)

F̆nk ≈
1

∆t

∫ tn+1

tn

(
1
lk

∫
sidek

n · F
)

dt.

This is the outline of the functions of roeApproximateRiemannSolver(). The next compu-

tational step returns to the mesh.execute() method, where it remains to update the Courant

number and the state values. For each element of the mesh, two important calculations are

made

sumFlux =
2∑

j=0

unitFactor[j]∗side[j].flux[i],

state0[i] = state[i] + dt∗(source− sumFlux/area). (4.12)

It is equivalent to the right hand side of (3.28) in Chapter 3. It can clearly be seen that sumFlux

is equivalent to
∑
k lkF̆k, and that (4.11)

Qn+1
ij = Qn

ij −
∆t
|Ω|

N∑
k=1

lkF̆nk

is equivalent to (4.12). This method is performed for every pair of elements of the mesh, and

repeated for every timestep.

4.3.3 Boundary conditions

Boundary conditions can be the same for all sides of the boundary, in which case the type of

condition may be specified in the program as default type (reflective or transmissive types). If

boundary conditions are different in different parts of the boundary domain, or if special values

are required, these must be specified in the meshfile.

There are four original types of boundary condition in Riemann2D : state type (S), trans-

missive type (T), reflective type (R) and flux type (F). The reflective type is a subset of flux
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type and the transmissive type is a subset of state type. The first pair (R, F) specify a value

(flux) for the state variables at the side. For R, this value is zero, for F it is some user-specified

value. No Riemann problem is solved, since the value at the side is known. The values used for

the flux type are specified in the meshfile, and thus is not available as a default type condition.

Reflective type on the other hand, may be used as default.

The other two types (T, S) require a Riemann problem to be solved. Transmissive type

sets the state variables of the ghost cell to be equal to those of the interior cell, and solves

the Riemann problem across the interface. It is “a numerical attempt to produce boundaries

that allow the passage of waves without any reflection” (Jha (2006)), and sets Qghost element =

Qboundary element. State type sets the state variables of the ghost cell to be equal to some user-

specified values, and solves across the interface. The transmissive type is available as a default

condition.

The four types are summarised in Table 4.1.

F S

state at side = values state in ghost = values

5 Riemann problem 3 Riemann problem

R T

state at side = 0 state in ghost = state in interior

5 Riemann problem 3 Riemann problem

Table 4.1: The four original types of boundary condition for this project.

New implementation of time-dependent boundary condition in Riemann2D

A time-dependent condition has been added to Riemann2D to simulate the tidal forcing felt by

a natural bay, equivalent to condition (3.22). In this ‘periodic’ type (P) of boundary condition,

state[0] has a state type boundary condition that is updated at each timestep, and the other

state variables have reflective type. For the boundary condition on state[0] the ghost cell is

element[0].state[0] = amp ∗ Math.cos(freq ∗ (Solver.time− phase)),
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where the coefficients should be chosen to represent the physical reality. This condition is

applied every timestep and a Riemann problem is solved across the boundary. The other state

variables are updated according to the transmissive boundary condition.

This boundary condition is applied to some idealised bays in Chapter 6, and to a real bay

in Chapter 7.

4.3.4 Contaminants

Contaminant transport is modelled in Riemann2D with a simple advection equation, following

Benkhaldoun et al. (2007), Periáñez (2004), and Lin and Falconer (1997) (neglecting diffusion).

For each extra class of contaminant, the following equation is solved

(hci)t + (huci)x + (hvci)y = 0,

where ci represents the concentration of the ith class. In this thesis we consider only one class

of contaminant, which we denote c. Where there is ambiguity, we denote wavespeed c =
√
gh.

This equation is added to the system and solved by Riemann2D in the following way:

• increase the number of columns for the elements in the meshfile and increase the number

of state variables by one;

• assign initial values of concentration to the required elements;

• Riemann2D solves the equation in the same way as the equation for mass, with the

unknown variable state[3]= hc rather than state[0]= η.

The boundary condition for state[3] should be chosen so as to be physically relevant. For

example, for a continuous release of a contaminant, the boundary condition would need to be

set at each timestep in the same way as for state[0]. Chapters 6 and 7 make use of this

equation to trace the path of a pollutant in a bay.

This thesis proposes a generic model for pollutant transport – we are not considering a

specific pollutant. Thus we used a nominal value of 0.3 kg m−3. Other values that have been

used are: 0.1 mg l−1 (Periáñez (2004)), 0.05-3.78 mg l−1 (Kachiashvili et al. (2007)), 100 units

(Lin and Falconer (1997)), and 10 units (Benkhaldoun et al. (2007)). The first two papers had

measurements of particular substances that caused harm in the bay of interest, and the second
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two used values that demonstrated the effectiveness of their scheme, so the values were nominal.

This provides ample justification for our choice of 0.3 kg m−3, as we are not measuring a specific

pollutant, we merely aim to demonstrate the general fate of the pollutant.

4.3.5 Wetting and drying cells

When a domain has sloping sides at a boundary, where the slope is shallow and therefore subject

to flooding then drying, this provides a numerical challenge. When the water depth goes to

zero, as we have already seen, the shallow water equations loose their hyperbolic property,

but even if h remains nonzero but gets sufficiently small, Riemann2D can encounter difficulties

when dividing by this small number, leading to numerical instability and unphysical results.

To fix this problem, a value of the minDepth parameter is set in the program, so that

whenever a cell has a water depth less than this, it is set to be the value of minDepth. This

effectively covers the dry cells with a small layer of water, that is nevertheless large enough to

prevent numerical instabilities developing.

A recent version of Riemann2D follows the same approach as Liang et al. (2006) and Namin

et al. (2004) (Chapter 2) in ‘freezing’ the flux out of an element found to have zero depth,

then re-introducing it once the depth has increased. This development has been too recent to

include any results from it here, but it will be a valuable function to be able to model flooding

and drying, especially when the applications are to real bays where in practice this occurs.

4.4 Summary

The most important things covered in this chapter are

• Demonstration of the formulation of a general hyperbolic PDE for the FVM in one and

two dimensions. In two dimensions, the divergence rule is applied, meaning the scheme

is suitable for calculations on domains of arbitrary geometry as studied here.

• Description of data reconstruction using the MUSCL approach, and how the order of

accuracy can be improved by the addition of a limiter. Some of the limiters that form

part of Riemann2D were presented. The advantage of using an unstructured mesh is in
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its easy application to irregular boundaries, and an element-centred mesh provides more

information.

• The power of object orientation is its extensibility. Some other of its useful properties

such as encapsulation, inheritance and polymorphism were also described.

• Detail of the structure of Riemann2D – the generic superclasses can be used to solve any

type of hyperbolic equation, while the shallow water subclasses contain information specific

to that system, including source terms, eigenvalues and wavespeeds.

• Implementation of a time-dependent boundary condition to Riemann2D that can be used

to mimic the tidal forcing of the ocean.

• Description of the treatment of a passive pollutant, using a purely advective equation.

This chapter gives a clear idea about how Riemann2D works and details the advantages of

using an OO language. In the next chapter we test the code on some simple problems to check

that it is performing well and giving realistic results.
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CHAPTER 5

Testing Riemann2D

This chapter forms the validation stage of the code testing in which we determine the degree

to which the simulation is an accurate model of the real world. In the first part we use two

different test domains and vary the size of the bed friction and wind terms in order to measure

the importance of these parameters to the flow. Results are compared with the asymptotic

analysis of Chapter 3. In the second part, we use two analytical solutions to the 2D SWEs to

demonstrate the benefit of using a limiter and to determine the accuracy of Riemann2D .

The two domains used in this chapter are:

• a square of constant depth – this is the simplest 2D domain and that which most closely

matches the assumptions of the asymptotic solution, and in which we expect the flow to

be quasi-1D and influences of bed friction to be negligible because of the relatively large

and uniform h

• a circular basin – this is simple in that it is axisymmetric, but has vanishingly small

depths at the edge which allows the problems associated with modelling bed friction to

be verified. It is also the domain on which we find the analytical solutions that enable us

to demonstrate the code’s accuracy.

All tests in this chapter are for subcritical flows with typical velocity of around 0.1 ms−1 or

less and long time (three hours or more); tests for high-speed flows and short time using

Riemann2D have been made by Jha (2006).
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Figure 5.1: Mesh of 2326 elements of a square domain of 100 km square and uniform depth of

10 m.

The software Argus ONE R© meshmaker is used to generate all of the test meshes of this

thesis. One of the square meshes used in this chapter is shown in Figure 5.1. The mesh is

exported from Argus to a meshfile, which can then be read by Riemann2D .

5.1 Square domain

The first series of tests were carried out on a square domain with a side length of 100 km and

a constant depth of 10 m. Three mesh densities with ratio approximately 10 were used: 234

elements, 2326 elements (shown in Figure 5.1) and 23192 elements.

5.1.1 Effect of different wind speeds

The effect of different wind speeds was tested by simulating wind blowing across the surface

of the bay in a westerly direction for three hours at three different wind speeds. Although the

wind direction was westerly, results should be invariant whether wind is northerly, southerly

or easterly. The fine mesh (23192 elements) was used, with a fixed timestep of dt = 1 s, the

minimum depth parameter, minDepth = 1× 10−6 m, the wind friction coefficient 1× 10−3 and
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the three wind speeds were 20, 2 and 0.2 ms−1. The Met Office website 1 gives details of the

Beaufort wind force scale: 20 ms−1 is classified as a fresh gale (scale 8), 2 ms−1 is a light breeze

(scale 2) and 0.2 ms−1 is calm conditions (scale 0), so these values represent a realistic range,

as well as differing by an order of magnitude one from the next. The Manning’s n and Coriolis

parameter were zero to allow only wind effects to be seen. The tests were stopped after a

simulation time of three hours. The time taken to run the simulations was around 60 minutes

for each of the three runs.

Recall the expression for energy from (3.13),

E =
∫
A

1
2
ρh|u|2 +

1
2
ρgh2 dA, (5.1)

where A is the area of the domain. From this it is calculated that the total initial, steady-

state (potential) energy of this system is 4.905 × 1015 J, or E0 = 4.905 × 105 J per unit area,

which is in exact agreement with Riemann2D . Table 5.1 shows the energy added to the system

per unit area (composed of kinetic energy ∆KE and potential energy ∆PE) calculated by

Riemann2D for each of the tested wind speeds, from which we see that the energy added is

much smaller compared to E0. Both kinetic and potential energy vary with wind speed and we

see that ∆KE � ∆PE because of the small effect of bed friction.

In Chapter 3 it was shown that a change in wind speed of one order leads to a change in

the solution of two orders. Table 5.1 shows that p̃ varies by two orders for a change in wind

speed of one order, thus agreeing with the analysis.

Effect of refining the mesh

The above test was repeated with the same wind speeds using the medium and the coarse

meshes. Table 5.2 gives information about the Courant numbers for these runs.

It can be seen that the Courant number increases by a factor of about three for an increase

in mesh density of one order. This is expected, for, as the CFL condition states, as ∆x→ 0, the

timestep must also be refined to prevent the Courant number going above one and numerical

instabilities developing. Thus as the mesh is refined, the Courant number increases if other

factors remain unchanged.

1. The Beaufort scale can be found on the Met Office website at

www.metoffice.gov.uk/weather/marine/guide/beaufortscale.html
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∆E = ∆KE + ∆PE ∆E/E0 p̃ = avg(h
√
u2 + v2)

wind speed (J = kg m2s−2) (m2s−1)

w = 20 4.730× 10 + 3.565× 103 7.364× 10−3 8.426× 10−1

w = 2 4.822× 10−3 + 3.544× 10−1 7.323× 10−7 9.300× 10−3

w = 0.2 4.822× 10−7 + 3.544× 10−5 7.323× 10−11 9.586× 10−5

Table 5.1: Energies and velocity calculated by Riemann2D for different values of wind speed

w at time t = 3 hours. The first column shows added calculated energy per unit area, made of

kinetic energy + potential energy. The second shows energy added as a proportion of original

energy. The third column shows the average fluxes.

Courant number

wind speed 234 2326 23192

w = 20 0.0017 0.0054 0.0169

w = 2 0.0016 0.0050 0.0160

w = 0.2 0.0016 0.0050 0.0160

Table 5.2: Courant number for three wind speeds w = 20, w = 2 and w = 0.2 ms−1, on meshes

of three different densities of 234, 2326, and 23192 elements.

We see that the Courant number is small and therefore satisfies the CFL condition. This is

the case for all numerical tests in this thesis, and is necessary to ensure stability.

Demonstration of the C-property

The test was run again with zero initial velocity and no forcing at the boundary. The wind

speed, Manning’s n and Coriolis parameters were all zero, and the solution was updated at each

timestep. As there is no force acting on the domain, we expect the initial velocity and surface

elevation to be maintained at the end of the three-hour simulation. Indeed, if the scheme does

maintain this, it is said to satisfy the C-property. It was found that the zero solution after three

hours was exactly maintained, which agrees with Vázquez-Cendón (1999).
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∆E = ∆KE + ∆PE ∆E/E0 p̃ = avg(h
√
u2 + v2)

Manning’s n (J = kg m2s−2) (m2s−1)

n = 0.01 4.812× 10−3 + 3.540× 10−1 7.315× 10−7 9.575× 10−3

n = 0.045 4.610× 10−3 + 3.474× 10−1 7.177× 10−7 9.371× 10−3

n = 0.1 3.828× 10−3 + 3.230× 10−1 6.663× 10−7 8.536× 10−3

Table 5.3: Energies and velocity calculated by Riemann2D for different values of Manning’s n

at time t = 3 hours. The first column shows added calculated energy per unit area, made of

kinetic energy + potential energy. The second shows energy added as a proportion of original

energy. The third column shows the average fluxes.

5.1.2 Effect of varying bed friction

Three tests were done to determine the effect of Manning’s n, or bed friction. The finest

mesh was used (23192 elements) with a wind speed of 2 ms−1 imposed in a westerly direction,

minDepth = 1×10−6 m, a fixed timestep dt = 1 s, and the values of Manning’s n used were 0.1,

0.045 and 0.01 m−1/3s. According to Chow (1959), n = 0.01 corresponds to brass or smooth

metal, n = 0.045 to weeds and rocks, and n = 0.1 to dense brush, so these values are all in a

physically realistic range. Coriolis was zero so as not to affect the flow behaviour. The time

taken to run the simulation was around 65 minutes. The energy added per unit area, the rate

of added energy, and average velocity are shown in Table 5.3.

A higher value of Manning’s n leads to more energy being dissipated via a rougher bed and

flows are slower. As shown in Chapter 3, even at its maximum realistic value (n2 = O(ε3) 1),

the presence of Manning’s n in the equation leads to effects that are visible only at O(ε4) or

smaller. Table 5.3 shows a variation in the fourth decimal place for the value of n2 changing

from O(ε4) to O(ε3), agreeing with what was shown in Chapter 3.

Because such a simple domain is used here, it allows these tests to show very clearly how

varying parameters such as wind speed, mesh density and bed friction, leads to realistic changes

in the solution, and the changes are almost exactly whole orders of magnitude.

1. Although we considered n2 = O(ε2), this would never occur in the circumstances we are studying here

i.e. slow, everyday flows. Such a high value would only be seen in a flood situation when water flows over land

populated with trees. The value of n2 = O(ε2) is nevertheless useful for theoretical or demonstrative purposes.
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Figure 5.2: Mesh of 2484 elements of a circular domain of 45 km radius and maximum depth

of 10 m.

5.2 Parameter variations in a circular basin

The tests that were carried out for the square were repeated for the circular basin; in other

words, variation of parameter values of the wind speed and Manning’s n. The circular basin-like

domain had a bottom topography described by

b = b0

(
1− x2 + y2

r2
0

)
,

where b0 is the maximum bed elevation, and r0 is the radius. The domain is partly inspired

from Port Phillip bay, Melbourne, as it is roughly circular, so we take for the dimensions of

the circular basin-like domain that the radius of the bay is r0 = 4.5× 104 m, with a maximum

depth b0 = −10 m (negative in the z-direction).

A mesh of 21996 elements was used: a mesh with one tenth that number (2484 elements)

is shown in Figure 5.2 as the denser mesh would not allow the triangular elements to be seen

easily.
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Because of the larger scope for instability due to the vanishing depth of the bathymetry, the

value of minDepth was set to be 1×10−2 m. This larger value ensures no numerical instabilities

develop in the flow due to the vanishingly small water depth.

Due to varying bathymetry, the numerical results that follow are quite different from the

simple square domain that has flat bathymetry. When comparing tests for the two domains,

notice that the flow velocities or the energy do not vary by complete orders of magnitude for

each corresponding variation in wind speed in the case of the basin, as does happen for the

square.

For all tests, the code was run for a simulation time of three hours, which took around 58

minutes, and the Courant number was around 0.0195.

5.2.1 Effect of different wind speeds

The effect of different wind speeds was tested by simulating wind blowing across the surface of

the bay in a westerly direction for three hours, once at a wind speed 12 ms−1, once for 1.2 ms−1

and once for 0.12 ms−1. These lower wind speeds are chosen to prevent numerical instabilities

from forming in areas where a stronger wind leaves a very shallow depth of water (it was also

necessary to set the value of minDepth = 0.2 m for the case of w = 12 ms−1). The timestep

was fixed at dt = 1 s, the wind friction coefficient was 1× 10−3, and Manning’s n and Coriolis

were zero.

The total initial (potential) energy was calculated to be 1.0394×1015 J, or E0 = 1.643×105 J

per unit area, which is almost exactly what Riemann2D found (1.0382×1015 J), the differences

being due to the way the boundary of the circle is approximated by straight sections.

Table 5.4 shows that average flux varies by between one and three orders for a variation in

wind speed of one order. From the analysis of Chapter 3, we would expect it to vary by two

orders, so the shape of this domain, which is what distinguishes this test from the equivalent

test on the square domain, is responsible for this deviation.

From the information in Table 5.4 we see that average velocity is slightly higher than for

the square. The energy gained by the circle is greater than the energy gained for the square,

even with the lower wind speed. This is mostly due to kinetic energy, which here contributes

as much as potential energy, because of the areas of shallower water that are more subject to
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∆E = ∆KE + ∆PE ∆E/E0 p̃ = avg(h
√
u2 + v2)

wind speed (J = kg m2s−2) (m2s−1)

w = 12 0.937× 103 + 1.904× 103 1.729× 10−2 1.879× 101

w = 1.2 2.209× 10−1 + 1.676× 10−1 2.365× 10−6 2.048× 10−2

w = 0.12 2.235× 10−5 + 5.425× 10−6 1.691× 10−10 2.050× 10−4

Table 5.4: Energies and flow velocities calculated by Riemann2D for different values of w at

time t = 3 hours. The first column shows total calculated energy per unit area made up of

added energy + added potential energy, the second column shows energy added as a proportion

of original energy, and the third shows the average fluxes.

friction. The rate of energy added, ∆E/E0, is only a little lower than the square, despite the

wind speed being nearly half. This shows the varying bathymetry is much more susceptible to

energy effects. We also see that ∆E � E0, which agrees with what was found in Chapter 3.

5.2.2 Effect of varying bed friction

A test was done to investigate the effect of varying bed friction. The value of Manning’s n was

varied in tests for n = 0.1, n = 0.045 and n = 0.01 m−1/3s for a simulation time of three hours.

The wind speed was 1.2 ms−1, the fixed timestep was dt = 1 s and the wind friction coefficient

1× 10−3.

Table 5.5 shows that the average flux for the circular basin is almost three orders higher in

the circle than in the square basin, despite wind speed being lower. This shows that inaccuracies

in bathymetric data may lead to spurious velocities when making simulations of a ‘real’ bay

of arbitrary bathymetry, which contains areas of very shallow water, since flow velocities are

sensitive to variations in bathymetry, .

Table 5.5 also shows that by altering n2 from O(ε4) to O(ε3) results in a small correction

in the fourth decimal place to the velocity. This agrees with what was shown in the analysis of

Chapter 3, that even at its maximum value, Manning’s n affects the flow only at low orders.
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∆E = ∆KE + ∆PE ∆E/E0 p̃ = avg(h
√
u2 + v2)

Manning’s n (J = kg m2s−2) (m2s−1)

n = 0.01 8.083× 10−2 + 1.885× 10−1 1.639× 10−6 1.816× 10−2

n = 0.045 2.624× 10−2 + 1.907× 10−1 1.320× 10−6 1.334× 10−2

n = 0.1 1.065× 10−2 + 1.732× 10−1 1.121× 10−6 0.919× 10−2

Table 5.5: Energies and velocity calculated by Riemann2D for different values of Manning’s n

at time t = 3 hours. The first column shows added calculated energy per unit area, made of

kinetic energy + potential energy. The second shows energy added as a proportion of original

energy. The third column shows the average fluxes.

5.3 Axisymmetric, steady-state solutions

Two important analytical results are available for flow in a circular basin-like domain, and

we study both in this section. The analytical results are then compared to simulations in

Riemann2D as part of the validation process that provides the confidence in the numerical

results.

5.3.1 Shallow water equations in a circular basin

One of the few analytical results available from the shallow water equations for slow flows is

that of rotating steady-state flow in a circular basin. As such it can be used to give comparisons

with numerical results, which is useful for validation of Riemann2D .

Consider a circular, basin-like domain where the bathymetry is described in cylindrical polar

coordinates by

b = b0

(
1− r2

r2
0

)
, (5.2)

where b0 is the maximum depth, r is the radial coordinate, r0 is the radius of the domain, the

level of still water is z = 0 and in the region z > 0 the sides of the domain are vertical, as

shown in Figure 5.3.

We take r0 = 4.5 × 104 m, and b0 = −10 m, as before. We denote by h the total depth of

the water so h+ b is the perturbation from still water, the radial velocity is ṙ = u and the axial
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Figure 5.3: Visualisation of domain considered in this problem – the cross-section of a circular

basin of radius r0 = 4.5× 104 m, and maximum depth b0 = −10 m.

is rθ̇ = v. The gravitational constant is g, as usual.

The full (r, θ)-version of shallow water equations in cylindrical polars can be derived from

the depth-averaged Navier-Stokes equations (see Whitham (1974), Acheson (1990), Hafez and

Dimanlig (1996)). They are

∂h

∂t
+

1
r

∂(rhu)
∂r

+
1
r

∂(hv)
∂θ

= 0 (5.3a)

∂u

∂t
+ u

∂u

∂r
+
v

r

∂u

∂θ
− v2

r
+ g

∂h

∂r
= −g ∂b

∂r
(5.3b)

∂v

∂t
+ u

∂v

∂r
+
v

r

∂u

∂θ
+
uv

r
+
g

r

∂h

∂θ
= −g

r

∂b

∂θ
, (5.3c)

where we neglect bed friction, wind stress and Coriolis. Here, h = h(r, θ) is the depth of water,

u = u(r, θ) is the radial velocity, v = v(r, θ) is the axial velocity. The right hand side represents

bedslope, since −b (given by (5.2)) is the depth of the domain from a fixed reference level.

We assume the water to be spinning in the domain in a steady way, with no outward

movement, i.e. u = 0, and a constant angular velocity, i.e. θ̇ = κ so that v = κr for some

constant κ. The solution h is therefore independent of θ. Under these assumptions the system
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5.3 Axisymmetric, steady-state solutions

(5.3) reduces to

−κ2r + g
∂h

∂r
= −g ∂b

∂r
,

the first and third equations being satisfied trivially. Integrating, we obtain the equation for

the water profile as

h = −b+
∫
κ2r

g
dr +B, (5.4)

for some constant B that can be taken to be zero without loss of generality. In the case where κ

is a constant, the velocity profile and the streamlines coincide. This also implies that vorticity

(ω = ∇∧ ṙ = 2θ̇) is constant.

We require that conservation of mass is satisfied: the volume of fluid must be the same when

the fluid is spinning as when it is still.

The volume of water under the curve described by equation (5.4) is equal to the volume

under the curve describing still water, h = −b. Thus conservation of mass means∫ r0

0

−b+
κ2r2

2g
+Adr =

∫ r0

0

−bdr,

which determines the constant A as

A = −κ
2r2

0

6g
.

Hence the equation of the free surface in radial coordinates is the parabola

h = −b+
κ2

2g

(
r2 − r2

0

3

)
, (5.5)

and in Cartesian coordinates this is

h = −b0
(

1− x2 + y2

r2
0

)
+
κ2

2g

(
x2 + y2 − r2

0

2

)
.

Since physically, we must have h > 0, this puts a constraint on the rate at which the water

is spinning: the level of water is at its lowest at r = 0, so (5.5) implies κ <
√
−6b0g/r2

0 (recall

that b0 < 0). Thus the slower the water is spinning round, the larger the radius that admits

valid solutions.

Based on the dimensions being used, we require that the velocity v < 5.39r × 10−4 ms−1

for the validity of the analytic solution to hold. The surface elevation for the cases with

κ = 1.5× 10−4 s−1 and κ = 3× 10−4 s−1 are shown in Figures 5.7 and 5.8, respectively.
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These analytical results are compared with the numerical results later to test how well

Riemann2D deals with solid body rotation.

5.3.2 Shallow water in an elliptical basin

In the second part to this problem we consider that the boundary of the domain is perturbed to

be an ellipse. Instead of solving the shallow water equations as in the previous section, we use

Bernoulli’s principle for an ideal fluid and conservation of mass, and make use of the fact that,

for a steady state problem, the streamlines and the velocity profile coincide. The advantage

with this approach is that we use Cartesian coordinates for the majority of the calculation.

The equation for an ellipse is (x
α

)2

+
(
y

β

)2

= 1,

where we choose α = r0(1 + δ), β = r0(1 − δ), r0 is the radius, and δ > 0. Note that when

α = β, this equation reduces to that of a circle.

We denote by h the total depth of water, b the bathymetry of the domain from a fixed

reference point (thus h + b is the perturbation from still water), u = ẋ the velocity in the

x-direction, v = ẏ the velocity in the y-direction. The equation for the bathymetry of the

elliptical basin is

b = −b0

(
1−

(x
α

)2

+
(
y

β

)2
)

in the region z < 0, and the sides of the domain are vertical in the region z > 0.

Streamlines follow the shape of the boundary i.e. they are all concentric ellipses. Therefore

the streamlines ψ are described by

ψ =
Q(r0)
r0

[(x
α

)2

+
(
y

β

)2
]
,

for some discharge function Q(r0) to be determined. We also have that, in an ideal fluid,

u =
∂ψ

∂y
, v = −∂ψ

∂x

thus

u =
2y
r0β2

Q(r0), v = − 2x
r0α2

Q(r0). (5.6)
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5.3 Axisymmetric, steady-state solutions

To determine Q we must take a brief detour into polar coordinates. In elliptic polars, x =

αr cos θ, y = βr sin θ. We assume no outward velocity, so ṙ = 0, and constant angular velocity,

so θ̇ = κ for some constant κ. Therefore

(u, v) = (−αrκ sin θ, βrκ cos θ) . (5.7)

Equations (5.6) and (5.7) together imply Q(r0) = 1
2αβr0κ. Now

u2 = u2 + v2 = α2β2κ2

(
x2

α4
+
y2

β4

)
.

We wish to determine h, so we make use of Bernoulli’s principle, which says that for an

ideal fluid

h+ b− u2

2g
= A

along streamlines, for some constant A. The principle of conservation of mass determines the

unknown A. We require ∫
u2

2g
+A dxdy = 0,

which means

⇒ A = −κ
2

8g
(α2 + β2).

Thus the free surface is given by

h = −b+
κ2

2g

(
β2

α2
x2 +

α2

β2
y2 −

(
α2 + β2

4

))
. (5.8)

Note that when α = β = r0, (5.8) becomes the same solution as for a circular domain, (5.5).

Plots in Figures 5.9-5.10 show the surface elevation given by (5.8) in the x- (top) and y-

(bottom) planes. The radius shown is r0 = 4.5 × 104 m, δ = 0.1, and the angular velocities

are with κ = 1.5 × 10−4 and κ = 3 × 10−4. These analytical results are compared with the

numerical solution from Riemann2D in the next section.

5.3.3 Numerical results

A test for solid body rotation was carried out to compare with the analytical results (5.5) and

(5.8) given above. The domains used were a circular basin of 610 elements (bathymetry given
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by (5.9)) and an elliptical basin of 606 elements (bathymetry given by (5.10)). The meshes used

are shown in Figure 5.4.

The bathymetry of the circular basin was b, given by

b = b0

(
1− r2

r2
0

)
, (5.9)

with b0 = −10 m, r0 = 45 km and the surface profile was set as

η =
κ2

2g

(
x2 + y2 − r2

0

2

)
, with u = κy, v = −κx,

for κ = 1.5× 10−4, κ = 3× 10−4. For the elliptical basin, the bathymetry was

b = −b0

(
1−

(x
α

)2

+
(
y

β

)2
)
, (5.10)

where α = r0(1 + δ), β = r0(1 − δ), r0 is the radius, and δ = 0.1 and the surface profile was

fixed as

η =
κ2

2g

(
β2

α2
x2 +

α2

β2
y2 −

(
α2 + β2

4

))
, with u =

α

β
κy, v = −β

α
κx,

with κ = 1.5× 10−4, κ = 3× 10−4. The surface profiles were set initially in the meshfile, then

Riemann2D was run for a simulation time of one hour, updating only the surface elevation at

each timestep (i.e. not the velocities) in order to test how well the surface is preserved under

rotation at a fixed speed. The boundary condition type was reflective. Two values of angular

velocity were tested with κ being κ = 1.5 × 10−4 and κ = 3 × 10−4. The timestep used was

fixed with dt = 10 s, the roughness coefficient used was Manning’s n = 0.03 m−1/3s, the value

of minDepth was 1 × 10−6 m and the Courant number was around 0.0028. The tests were

performed once with no limiter and once again with the MLG limiter. Tests with no limiter

took around 15 seconds to run, those with the MLG limiter took around 28 seconds. Results

for the circle are shown in Figures 5.7 and 5.8. Results for the ellipse are shown in Figures 5.9

and 5.10.

It was shown by Jha (2006) that tests carried out with the MLG limiter suffered much less

numerical diffusion than no limiter or even the limiters such as minmod, superbee, LCD or the

extended Van Leer (see Figure 5.6, which although gives results from a different type of test,

shows clearly how effective the MLG limiter is at preventing numerical diffusion). Numerical
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5.3 Axisymmetric, steady-state solutions

Figure 5.4: Meshes used for solid-body rotation tests. Left shows the circular domain of 610

elements, right shows ellipse of 606 elements.

results where no limiter was used (Figures 5.7, top and 5.8 top, Figures 5.9 first and third and

5.10 first and third) show poor agreement with analytical solutions, and are badly smeared.

The same tests using the MLG limiter clearly have much better agreement with the analytical

results.

Figure 5.6a) suggests that at least 2000 elements should ideally be used to fully capture the

effect of rotation, supporting the knowledge that a finer mesh displays less numerical diffusion

than a coarser one. Nevertheless, our meshes of approximately 600 elements show very clearly

the effect of a good limiter, and this is because these tests are considerably less demanding than

the tests done by Jha (2006).

This is a very valuable test that demonstrates how well Riemann2D reproduces an analytical

solution. The very close results provide confidence in Riemann2D and the improvement in the

results by using a limiter means that in the simulations in the rest of this thesis will always use

the MLG limiter.
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CHAPTER 5. TESTING RIEMANN2D

Figure 5.5: Plot of root mean square to number of elements. As the number of elements is

increased, the error reduces. The linear equation that approximates the results is also shown

(dotted line).

5.3.4 Convergence of Riemann2D

This analytical solution allows us to test the convergence of Riemann2D . As the mesh of

calculation is refined, we expect the numerical solution to approach the analytical. To this end,

the test using the circular domain, with the MLG limiter and κ = 3 × 10−4 was repeated on

meshes of 410 elements and 224 elements. The average differences between the simulated and

the actual solution are found by taking the root mean square.

This error can be approximated by the linear equation

RMS =
no. elements
−600

+ 1.2

(see Figure 5.5). So as the number of elements in the computational mesh increases, the value

of the error decreases. We have satisfied the convergence, the C property, and since the CFL

condition is also always satisfied, we can use Riemann2D with confidence.
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5.3 Axisymmetric, steady-state solutions

Figure 5.6: Graph to show effectiveness of different limiters. Reproduced from Jha (2006). The

test carried out was a rotation of a concentration of initial value 1. After one rotation, the

concentration is shown here (Figure (a)) for no limiter and the five limiters minmod, superbee,

LCD, Extended Van Leer and MLG. Ideally, the concentration has value one after one rotation.

It can be seen that the MLG limiter performs best. Figure (b) shows that as the area of the

elements in the mesh increases, results are smeared even with a good limiter. This is related to

the CFL condition for convergence.
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Figure 5.7: Effect of solid body rotation on a spherical dish. Results were obtained from running

Riemann2D for a time of one hour on a mesh of 610 elements. Analytical results are shown

(solid line), numerical results are shown as circles. Top figure shows results with no limiter, and

the numerical diffusion is clearly visible. Bottom figure shows results with the MLG limiter,

showing much closer agreement.
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5.3 Axisymmetric, steady-state solutions

Figure 5.8: Effect of solid body rotation on a spherical dish. Results were obtained from running

Riemann2D for a time of one hour on a mesh of 610 elements. Analytical results are shown

(solid line), numerical results are shown as circles. Top figure shows results with no limiter, and

the numerical diffusion is clearly visible. Bottom figure shows results with the MLG limiter,

showing much closer agreement.
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Figure 5.9: Effect of solid body rotation in an elliptical dish. Angular velocity was with

κ = 1.5 × 10−4. Solid line shows analytical solution, dots show numerical solution. The

top two figures (x-plane, y-plane) show results with no limiter, where smearing of the results

is visible. The bottom two figures (x-plane, y-plane) show results with the MLG limiter, and

results are much closer to the analytical.
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5.3 Axisymmetric, steady-state solutions

Figure 5.10: Effect of solid body rotation in an elliptical dish. Angular velocity was with

κ = 3× 10−4. Solid line shows analytical solution, dots show numerical solution. The top two

figures (x-plane, y-plane) show results with no limiter, where smearing of the results is visible.

The bottom two figures (x-plane, y-plane) show results with the MLG limiter, and results are

much closer to the analytical.
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5.4 Steady-state wind in a circular basin

A test was carried out to attempt to reproduce the numerical results of Borthwick et al. (2001a)

and Borthwick et al. (2001b) and the analytical results of Kranenburg (1992). In this test, a

circular basin defined by (5.2), but this time with radius r0 = 192 metres and a maximum

depth at the centre of b0 = −1 metre. Wind of speed 10 ms−1 with a wind friction coefficient of

2×10−3 was blown over the initially flat surface in a westerly direction until a steady state was

achieved (one hour). The Courant number was around 0.27 and the timestep was fixed at dt

= 1 s. Figure 5.11 (top) shows the mesh used with 623 elements and Figure 5.11 (bottom) shows

the steady-state velocity field. The results are, visually, virtually identical to those published

by Borthwick et al. (2001a) and Borthwick et al. (2001b), showing two areas of recirculation,

with velocity vectors pointing in the direction of the wind at the edge, and in the opposite

direction in the centre. This velocity profile occurs because shallower water is more subject to

the shear effect from the wind, and hence flows in the same direction. Since mass is conserved in

the domain, there must be some recirculation, and this happens in the region where the wind’s

shearing effect is lowest, at the centre. The ‘clustering’ of arrows in the numerical results is due

to the smaller elements that Argus generated at the top (north) that can be seen in the top

figure.
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5.4 Steady-state wind in a circular basin

Figure 5.11: Steady-state problem of wind of 10 ms−1 on circle of 192 m radius, maximum depth

1 m and 623 elements. The results show two areas of recirculation, which is in good qualitative

agreement with results of Borthwick et al. (2001a) and Borthwick et al. (2001b)
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5.5 Summary

In this chapter we have

• Carried out tests on square and circular basin domains in which parameter values for

source terms were varied. The different sizes of source terms were seen to affect the

solution in the expected way, based on the work from previous chapters.

• Demonstrated that both increasing wind speed and decreasing bed friction have more effect

in adding energy to the circular basin than to the square. This is due to the shallower

areas in the circular basin that are more subject to friction and wind shear, generating

more kinetic energy.

• Demonstrated convergence of the scheme: that the simulated result approaches the analyt-

ical as the mesh is refined.

• Tested solid body rotation in shallow circular and elliptical basins and shown that results

match well with the analytical results. This test also demonstrated the importance of

limiters for such flows.

• Simulated wind blowing over a shallow circular basin, and used a published numerical result

(Borthwick et al. (2001a) and Borthwick et al. (2001b)) and a well-known analytical result

(Kranenburg (1992)) against the Riemann2D code, finding excellent agreement.

This chapter has shown that the model we are using produces the correct physical behaviour,

and that Riemann2D is accurate.

In the next chapter the same domains are used to validate the time-dependent (periodic)

boundary condition that is intended to replicate the tide. The combined effects of wind and

tides on the flow pattern and on the path of a contaminant that is released into the bay will be

studied.
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Tidal simulation and pollutant

transport

In this chapter we use the square and the circular basin domains of the previous chapter to

test the time-dependent boundary condition described in Chapter 4 and the effect it has on a

passive pollutant.

The periodic boundary condition is intended to simulate tidal conditions. It has parameters

(amplitude, mean, frequency) that can be chosen to most closely resemble the tide in question.

Since we are considering generic models in this chapter, we choose these parameters to be based

on average typical values. So for periodic boundaries, the state value η in the ghost cell was

set as

ηghost = m+ a sin(ft+ ϕ). (6.1)

The mean, m and the phase, ϕ can be taken as zero without loss of generality; for the amplitude,

a, we choose 1.25 m, as the tidal range for Moreton Bay is 0.9 m to 1.99 m at spring and neap

tides respectively (see Chapter 7, Figure 7.3); and the frequency, f = 2π/T where T = 24 hours

as this corresponds to a semi-diurnal tide, not only more common in the world, but the only

type of tide seen on the eastern Australian coast. The boundary conditions for hu, hv were

reflective (fluxes are zero on the boundary), meaning no Riemann problem is solved for these

variables at the boundary.
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6.1 Time-dependent boundary conditions (square)

The square domain of side 100 km and constant depth 10 m was used to test the tide-like

time-dependent boundary condition with medium-density mesh of 2326 elements, periodic-type

boundary conditions on the south side, and reflective-type boundary conditions on the other

three sides.

The test was run for a simulation time of 10 days before recording any data to allow phe-

nomena related to the initial steady state to be completely dissipated. The fixed timestep was

of size dt = 1 s, Manning’s n = 0.03 m−1/3s, and minDepth was 1 × 10−6 m. In all tests for

the square, the Courant number was around 0.005, and the simulations took around 9 hours

30 minutes to run.

6.1.1 Comparing Coriolis force

To demonstrate the effect of Coriolis force, the test was run once with the Coriolis parameter

taking the value zero (Figure 6.2), and once with Coriolis parameter being −6.6 × 10−5 s−1

(Figure 6.3a)-c)), corresponding to a latitude of 27◦S, the latitude of Moreton Bay. The arrows

in the plots are scaled by a factor of 3, with the average u and v velocities given in Tables 6.1

and 6.2 for the cases without and with Coriolis, respectively. From these tables, we see that the

velocity in the y-direction (ṽ values) are largely similar in both cases. The ũ values, however,

are at least an order of magnitude smaller in the case without Coriolis. This agrees with the

quasi-1D flow profile in Figure 6.2 and the clockwise flow seen in Figures 6.3a)-c).

Without Coriolis force, the flow is quasi-1D (Figure 6.2). In the southern hemisphere, (see

Figures 6.3a)-c)), flow is pulled faster on the west so that water flowing into the bay (at 3,

15 hours and at 12, 24 hours) flows clockwise and water flowing out (at 6, 18 hours) flows

anti-clockwise. At mid ebb (6, 18 hours) and mid flood tides (12, 24 hours), there is one area

of clockwise flow and one of anti-clockwise because of the time it takes for the tide to influence

the water in the bay.

The periodic nature of the boundary condition can be verified by noticing the similarity of

average velocities in Table 6.2 at pairs 3 and 15 hours (high tide), 6 and 18 hours (mid ebb),

and 12 and 24 hours (mid flood).
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time (hours) time (hours)

+ 10 days (ū, v̄) ms−1 + 10 days (ū, v̄) ms−1

3 −2.71× 10−5, 0.5537 15 −1.07× 10−5, 0.5538

6 -0.0003, 0.0073 18 -0.0002, 0.0071

12 0.0003, -0.1057 24 0.0003, -0.1057

Table 6.1: Average (mean) velocities in the u and v directions relating to Figure 6.2 (no

Coriolis). Note the similarity of plots and average velocities at pairs 3 and 15 hours (high tide),

6 and 18 hours (mid ebb), and 12 and 24 hours (mid flood), demonstrating the periodic nature

of the boundary condition.

time (hours) time (hours)

+ 10 days (ū, v̄) ms−1 + 10 days (ū, v̄) ms−1

3 -0.0540, 0.5433 15 -0.0539, 0.5433

6 -0.0011, 0.0019 18 -0.0012, 0.0019

12 0.0127, -0.0978 24 0.0128, -0.0977

Table 6.2: Average (mean) velocities in the u and v directions relating to Figures 6.3a)-c) (with

Coriolis).

6.1.2 Surface elevation and wind

The same simulation was made twice more, once imposing a westerly wind of 5 ms−1, and once

a southerly wind of 5 ms−1. The problem set-up was otherwise unchanged. A wind speed of

5 ms−1 corresponds to a gentle breeze, or 3 on the Beaufort wind scale, which according to the

Australian Bureau of Meteorology, is a typical magnitude for Moreton Bay.

The contour plots of the surface elevation and the velocity profiles are given in Figures 6.4a)-

c) (westerly wind) and 6.5a)-c) (southerly wind). Compare with plots with no wind in Fig-

ures 6.3a)-c). The lack of symmetry in the surface elevation is due to the Coriolis force.

The westerly wind results in a largely unchanged velocity profile. The surface elevation

is altered only very little: the water is slightly deeper at mid ebb (6, 18 hours) and slightly

shallower at mid flood (12, 24 hours). This is because the wind has a small effect in preventing
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the water flowing in or out of the bay.

The southerly wind has a slightly larger effect on the surface elevation contours, pushing

the water further into the bay so that the northern part of the bay is slightly deeper than in

the case with no wind. In particular, at high tides (3, 15 hours) we see deeper elevation on the

west side so that the southerly wind is amplifying the effect of Coriolis. At mid flood tides (12,

24 hours) the elevation is deeper on the east side, as most of the flow is still directed outwards,

and hence flowing anti-clockwise so the wind pushes the water to the east side.

These two tests demonstrate quite clearly how wind can affect the surface elevation of the

water in this domain, but tidal effects are still dominant and Coriolis remains visible.

6.1.3 Effect of wind direction on pollutants

We consider a pollutant to be a passive tracer that does not affect the flow. As mentioned in

Chapter 4, the following equation is solved by Riemann2D to model the advection of a pollutant

(hc)t + (huc)x + (hvc)y = 0,

where c represents the concentration (Periáñez (2004) and Benkhaldoun et al. (2007)). The

initial concentration in the central four elements on the south side of the bay was set to have a

nominal value of 0.3 kg m−3, and all other elements had initial value zero. To simulate a fixed

concentration, the boundary condition on hc at the tidal boundary was

hcghost = −0.3b,

with b = −10 m, and this was updated at each timestep.

Passive tracer

Scatter plots of the concentration of a passive tracer are shown in Figures 6.6 a)-c). The empty

circles indicate elements with a concentration, c, of 0.01 < c < 0.1 kg m−3 and the filled circles

indicate elements where the concentration is c > 0.1 kg m−3. The contaminant reaches at most

20 km from its origin. At 24 hours it is still slightly affected by the moving tide, suggesting it

has not quite reached a steady state. Indeed, Figure 6.1 shows that the concentration in the

ten elements nearest the point of contaminant release does not fit a simple sine function, which

explains why the contaminant profile at 3 hours is different from the later times.
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Figure 6.1: Plot of the contaminant in the ten elements nearest to the point of contaminant

release. The element numbers correspond to the elements nearest the boundary where pollutant

was released. The pattern does not fit a simple sine function, which explains why 3 hours and

15 hours in Figures 6.1 have different profiles.

The effect of Coriolis force is evident from the slight asymmetry in the profile (Figures 6.6a)-

c)). Faster flow on the west side means contaminant is pulled in that direction.

Passive tracer with wind

This test was repeated once with a westerly wind of speed 2 ms−1 but the effect on the movement

of the contaminant was found to be indistinguishable from the results with no wind.

Scatter plots of the concentration with westerly wind, 5 ms−1, are given in Figures 6.7a)-c).

The area of higher concentration does not change significantly but the area of lower concentra-

tion is spread out to the east.

Figures 6.8a)-c) show the scatter plots for southerly wind of 5 ms−1. There is almost no

difference in the distribution of the pollutant as for the case with no wind. This is because the

wind is in the same direction as the tide, so the wind is unable to counteract the tidal effects

in the way a westerly wind could.
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Figure 6.2: Surface elevation contours and velocity profile with no Coriolis force and tidal

boundary conditions on a square domain of 2326 elements (3, 6 hours). The flow is quasi-1D,

the only force being that of the tide.
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Figure 6.3: a) Surface elevation contours and velocity profile with Coriolis force and tidal

boundary conditions on a square domain of 2326 elements (3, 6 hours).
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Figure 6.3: b) Surface elevation contours and velocity profile with Coriolis force and tidal

boundary conditions on a square domain of 2326 elements (12, 15 hours).
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Figure 6.3: c) Surface elevation contours and velocity profile with Coriolis force and tidal

boundary conditions on a square domain of 2326 elements (18, 24 hours).

127



CHAPTER 6. TIDAL SIMULATION AND POLLUTANT TRANSPORT

Figure 6.4: a) Surface elevation contours and velocity profile for periodic boundary conditions,

westerly wind 5 ms−1 on a square domain of 2326 elements (3, 6 hours).
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Figure 6.4: b) Surface elevation contours and velocity profile for periodic boundary conditions,

westerly wind 5 ms−1 on a square domain of 2326 elements (12, 15 hours).
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Figure 6.4: c) Surface elevation contours and velocity profile for periodic boundary conditions,

westerly wind 5 ms−1 on a square domain of 2326 elements (18, 24 hours).
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Figure 6.5: a) Surface elevation contours and velocity profile for periodic boundary conditions

and southerly wind of 5 ms−1 on a square domain of 2326 elements (3, 6 hours).
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Figure 6.5: b) Surface elevation contours and velocity profile for periodic boundary conditions

and southerly wind of 5 ms−1 on a square domain of 2326 elements (12, 15 hours).
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Figure 6.5: c) Surface elevation contours and velocity profile for periodic boundary conditions

and southerly wind of 5 ms−1 on a square domain of 2326 elements (18, 24 hours).
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Figure 6.6: a) Scatter of concentration for periodic boundary conditions on a square domain of

2326 elements (3, 6 hours).
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6.1 Time-dependent boundary conditions (square)

Figure 6.6: b) Scatter of concentration for periodic boundary conditions on a square domain of

2326 elements (12, 15 hours).
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Figure 6.6: c) Scatter of concentration for periodic boundary conditions on a square domain of

2326 elements (18, 24 hours).
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6.1 Time-dependent boundary conditions (square)

Figure 6.7: a) Scatter of concentration for periodic boundary conditions and westerly wind of

5 ms−1 on a square domain of 2326 elements (3, 6 hours).
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Figure 6.7: b) Scatter of concentration for periodic boundary conditions and westerly wind of

5 ms−1 on a square domain of 2326 elements (12, 15 hours).
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6.1 Time-dependent boundary conditions (square)

Figure 6.7: c) Scatter of concentration for periodic boundary conditions and westerly wind of

5 ms−1 on a square domain of 2326 elements (18, 24 hours).
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Figure 6.8: a) Scatter of concentration for periodic boundary conditions and southerly wind of

5 ms−1 on a square domain of 2326 elements (3, 6 hours).
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6.1 Time-dependent boundary conditions (square)

Figure 6.8: b) Scatter of concentration for periodic boundary conditions and southerly wind of

5 ms−1 on a square domain of 2326 elements (12, 15 hours).
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Figure 6.8: c) Scatter of concentration for periodic boundary conditions and southerly wind of

5 ms−1 on a square domain of 2326 elements (18, 24 hours).
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6.2 Time-dependent boundary conditions (circular basin)

Figure 6.9: Satellite image of Port Phillip bay, Melbourne. (From NASA’s globe software, via

commons.wikimedia.org/wiki/Image:Port Phillip Bay.png.) The narrow entrance to the

Port can be seen in the southwest part. The city of Melbourne is on the northeast side of the

bay.

6.2 Time-dependent boundary conditions (circular basin)

The shape of Port Phillip bay in Melbourne is approximately circular, about 90 km across and

10 m deep at its deepest point, with one single narrow inlet at the south west (see Figure 6.9).

During mid tides, very strong currents are generated in this narrow passage. According to

Black et al. (1993), velocities can reach 3 ms−1 in the bay’s entrance.

In this section we use the circular basin-like domain from Chapter 5 with the same type of

ocean boundary as that of Port Phillip bay, i.e. a narrow gap on the south side for water to

enter and leave with the tide. The domain was modified to make it more realistic, by creating

deeper bathymetry near the ocean boundary so that the entrance was around a metre deep.

The domain used was a circular basin of mesh density of 2484 elements, radius r0 = 45 km,

maximum depth b0 = −10 m (see (5.9)). A small gap of six elements on the south edge of

the domain was chosen to represent the ocean boundary of the bay. Here boundary conditions

were set as periodic to represent the tidal effects, in the same way as for the square. All
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CHAPTER 6. TIDAL SIMULATION AND POLLUTANT TRANSPORT

the other boundary conditions were reflective. The test was run for a simulation time of 10

days before any data were recorded, as before, with fixed timestep of size dt = 1 s, Manning’s

n = 0.03 m−1/3s (Larsen (2007), Anderson (2002)), and minDepth 1×10−2 m. The larger value

for minimum depth is to ensure no instabilities develop in the flow as h → 0. The Courant

number was around 0.006, and the total time taken for the runs was about 10 hours 30 minutes

for all the circular basin tests.

6.2.1 Comparing Coriolis force

The effect that Coriolis force has on the symmetry of the flow can be seen in surface elevation

and velocity profiles given in Figures 6.10 (no Coriolis) and 6.11a)-c) (with Coriolis parameter

−8.7 × 10−5 s−1, corresponding to 37◦S, the latitude of Melbourne), which show the direction

and magnitude of the flow, scaled by a factor of 4, with average values given in Table 6.3.

Without Coriolis it is clear from the velocity vectors and the contour lines that the surface

elevation and flow are symmetric; the anti-clockwise spin of outflowing water can be seen at 6

hours with Coriolis. Arrows at 3 hours show that the flow is directed west with Coriolis force,

and this means deeper water on the west of the bay.

The periodic nature of the boundary condition can, again, be verified by noticing the simi-

larity of both plots and average velocities at pairs 3 and 15 hours, 6 and 18 hours, and 12 and

24 hours (Table 6.3 and Figures 6.11a)-c)).

Note the very high velocities at high tides (3, 15 hours) near the ocean boundary. This is

due to the very shallow water here, of about one metre, and agrees with what is known about

Port Phillip tides (Black et al. (1993)). Because the volume at the ocean boundary is relatively

small, the flow is forced through faster.

Although the effect of Coriolis force can be clearly seen, it is not as strong as in the case of

the square bay. This is because areas of high friction (shallow bathymetry) and the fast flow at

the ocean boundary are as important as the Coriolis force, which is not the case for the square

bay where bed friction effects are small.
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6.2 Time-dependent boundary conditions (circular basin)

time (hours) time (hours)

+ 10 days (ū, v̄) + 10 days (ū, v̄)

3 -0.0225, 0.0328 15 -0.0227, 0.0329

6 0.0253, 0.0056 18 0.0256, 0.0051

12 0.0200, -0.0064 24 0.0203, -0.0067

Table 6.3: Average velocities in the u and v directions relating to Figures 6.11a)-c). The pairs

(3, 15), (6, 18), and (12, 24) hours have identical velocities correct to the third decimal place.

6.2.2 Surface elevation and wind

In two further tests, wind of 5 ms−1 was imposed. In the first case, the wind direction was

westerly, in the second, southerly, to compare with the results from the square.

Results of the surface elevation and velocity profile with wind are shown in Figures 6.12a)-

c) (westerly wind) and 6.13a)-c) (southerly wind). Compare with the plots with no wind

in Figures 6.11a)-c). The velocity profiles show a reproduction of the analytical result from

Chapter 5, where wind generates two rotating gyres. In these cases, the effects of

• tide can be seen as the gyres vary in intensity throughout the tidal cycle,

• Coriolis can be seen as the divide between the two gyres is neither as straight or exactly

in the x or y plane as it was in the test of Chapter 5.

The surface elevation is very much affected by the wind for the circular basin, unlike for the

square, where flow is quasi-1D. Larsen (2007) found that areas of higher bed friction limit tidal

effects. So because of the basin’s varying bathymetry, the strength of influence of the wind

becomes more important than that of the tide.

These tests show that flow in the circular basin is more susceptible to the force of wind than

flow in the square. This is because there are areas of shallow water that are more subject to

shear stress from the wind and they therefore have a greater impact on the pattern of flow.
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6.2.3 Effect of wind direction on pollutants

The central four elements of the ocean boundary were also given initial concentration of nominal

value 0.3 kg m−3. The boundary condition for this contaminant was set as before so that at

each timestep the relevant ghost elements were set to be hcghost = −0.3b, and updated at each

timestep.

Passive tracer

Figures 6.14a)-c) show scatter plots for a contaminant released at the entrance to the bay. The

empty points indicate elements with a concentration, c, of 0.01 < c < 0.05 kg m−3 and the filled

points represent elements with c > 0.05 kg m−3.

The surface elevation profiles in Figures 6.11a)-c) show the pattern of flow as fan-like, and

the contaminant follows this pattern. We also note that flow in the east of the domain is slower

and surface elevation lower due to Coriolis, which means that contaminant is not spread out

so quickly in the east. It appears to have reached a steady state as its position or pattern does

not change significantly over the 24 hour period shown.

Passive tracer with wind

The same simulation was run twice more, once with a westerly wind and once with a southerly

wind, of strength 5 ms−1. Results of the tracer are shown in Figures 6.15a)-c) (westerly wind)

and 6.16a)-c) (southerly wind).

Under the westerly wind, the contaminant follows the path of the more southerly gyre but

only occupies the eastern part of the bay due to the wind pushing it to that side.

In the case of southerly wind, contaminant spreads out to both sides of the ocean boundary

where there are areas of high flow velocity. Contaminant spreads slightly more to the east

than the west; this is accounted for by Figure 6.13a)-c) which shows the surface elevation to be

slightly higher on the east side.

In both cases, the contaminant stays in an area subject to high shear, and is easily moved

by the wind. The distribution is more striking than in the case of a square, as the effect of

shear is no longer uniform throughout the domain.
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6.2 Time-dependent boundary conditions (circular basin)

Figure 6.10: Surface elevation contours and velocity profile for periodic boundary conditions

with no Coriolis force on a circular domain of 2484 elements (3, 6 hours). The flow is symmetric.
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Figure 6.11: a) Surface elevation contours and velocity profile for periodic boundary conditions

with Coriolis force on a circular domain of 2484 elements (3, 6 hours).
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6.2 Time-dependent boundary conditions (circular basin)

Figure 6.11: b) Surface elevation contours and velocity profile for periodic boundary conditions

with Coriolis force on a circular domain of 2484 elements (12, 15 hours).
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Figure 6.11: c) Surface elevation contours and velocity profile for periodic boundary conditions

with Coriolis force on a circular domain of 2484 elements (18, 24 hours).
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6.2 Time-dependent boundary conditions (circular basin)

Figure 6.12: a) Surface elevation contours and velocity profile for periodic boundary conditions

and a westerly wind of 5 ms−1 on a circular domain of 2484 elements (3, 6 hours).
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Figure 6.12: b) Surface elevation contours and velocity profile for periodic boundary conditions

and a westerly wind of 5 ms−1 on a circular domain of 2484 elements (12, 15 hours).
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6.2 Time-dependent boundary conditions (circular basin)

Figure 6.12: c) Surface elevation contours and velocity profile for periodic boundary conditions

and a westerly wind of 5 ms−1 on a circular domain of 2484 elements (18, 24 hours).
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Figure 6.13: a) Surface elevation contours and velocity profile for periodic boundary conditions

and a southerly wind of 5 ms−1 on a circular domain of 2484 elements (3, 6 hours).
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6.2 Time-dependent boundary conditions (circular basin)

Figure 6.13: b) Surface elevation contours and velocity profile for periodic boundary conditions

and a southerly wind of 5ms−1 on a circular domain of 2484 elements (12, 15 hours).
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Figure 6.13: c) Surface elevation contours and velocity profile for periodic boundary conditions

and a southerly wind of 5 ms−1 on a circular domain of 2484 elements (18, 24 hours).
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6.2 Time-dependent boundary conditions (circular basin)

Figure 6.14: a) Scatter of concentration for periodic boundary conditions on a circular domain

of 2484 elements (3, 6 hours).
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Figure 6.14: b) Scatter of concentration for periodic boundary conditions on a circular domain

of 2484 elements (12, 15 hours).
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6.2 Time-dependent boundary conditions (circular basin)

Figure 6.14: c) Scatter of concentration for periodic boundary conditions on a circular domain

of 2484 elements (18, 24 hours).
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Figure 6.15: a) Scatter of concentration for periodic boundary conditions and a westerly wind

of 5 ms−1 on a circular domain of 2484 elements (3, 6 hours).
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6.2 Time-dependent boundary conditions (circular basin)

Figure 6.15: b) Scatter of concentration for periodic boundary conditions and a westerly wind

of 5 ms−1 on a circular domain of 2484 elements (12, 15 hours).
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Figure 6.15: c) Scatter of concentration for periodic boundary conditions and a westerly wind

of 5 ms−1 on a circular domain of 2484 elements (18, 24 hours).
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6.2 Time-dependent boundary conditions (circular basin)

Figure 6.16: a) Scatter of concentration for periodic boundary conditions and a southerly wind

of 5 ms−1 on a circular domain of 2484 elements (3, 6 hours).
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Figure 6.16: b) Scatter of concentration for periodic boundary conditions and a southerly wind

of 5 ms−1 on a circular domain of 2484 elements (12, 15 hours).
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6.2 Time-dependent boundary conditions (circular basin)

Figure 6.16: c) Scatter of concentration for periodic boundary conditions and a southerly wind

of 5 ms−1 on a circular domain of 2484 elements (18, 24 hours).
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6.3 Summary

The focus of this chapter has been on calibration in a qualitative sense. As we were testing

generic domains, no field data were available, and to perform experiments was beyond the scope

of this study. However, all the results demonstrate a good match with what we expect, and a

general agreement was found with the simplified asymptotic result in Chapter 3 that the effect

of the tidal boundary condition appears at O(ε).

The main points in this chapter are:

• The newly-implemented tidal boundary condition was found to give the correct behaviour.

• Coriolis force was shown to be important in influencing the flow for a domain of this size,

especially in the case of the square where bedslope effects are negligible. In the case of the

circular basin, the two areas of recirculation predicted in Chapter 5 were reproduced, and

showed the influence of the Coriolis force.

• The wind was found to affect flow velocity and surface elevation in the circular basin much

more than in the square, which is explained by the result from Larsen (2007) that areas

of higher bed friction limit tidal effects.

• The wind was shown to affect the transport of contaminant. In the square, the direction

of the wind determined the extent of this influence because the tide was relatively strong

due to the small bed friction. On the other hand, the wind altered the contaminant profile

in the circular basin much more because the area the contaminant occupies is much more

subject to shear and tidal effects are weaker.

• Average velocities were generally slower in the circle because of the shallow areas of higher

friction where more energy is dissipated.

We are now in a strong position to apply this model to a ‘real’ domain, i.e. using bathymetric

data of Moreton Bay to simulate the flows in this bay.
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Application to Moreton Bay

Bays are subject to many stresses, including aquacultural (e.g. oyster farming), fisheries, recre-

ation, sewage inputs and marine transport (Greenberg et al. (2005)). In particular Moreton

Bay is a popular tourist destination, and is home to various wildlife such as sea turtles and

dugong. On the other hand, it is a source of sand for building materials so it is periodically

dredged, and as the city of Brisbane continues to expand, leading to greater industrial and

agricultural activity, there is an increased likelihood of pollutants entering the Bay.

In this chapter Riemann2D is used to simulate flows in Moreton Bay, using a tidal forcing

condition at the ocean boundary. Results are calibrated with field measurements. The advection

of a contaminant released at the Brisbane river mouth is studied according to the tidal forcing

and different wind speeds to evaluate the effects of these forces on transporting the contaminant.

7.1 Moreton Bay

Moreton Bay is located to the east of Brisbane in Southeast Queensland. It is around 90 km

from north to south, and has a maximum width of 30 km. There are two large sandy islands to

the east of the Bay, Moreton Island and North Stradbroke Island, as well as South Stradbroke

Island to the southeast, which means that the Bay is partially enclosed. To the north of the

Bay there is an outlet to the ocean of about 14.5 km across and there is another small outlet

(about 1.6 km, You (2005b)) between Moreton and North Stradbroke islands, known as southern
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passage. Most of the water in the Bay is between 10 and 20 metres deep. Moreton Bay is fed

by five rivers, the largest of which is Brisbane river. The other four are Caboolture river in the

north, Pine river to the north of Brisbane, and the Logan and Coomera rivers running into the

south of the Bay (see map in Figure 7.1).

The Brisbane river is a major source of polluted water. As well as being the largest of

Moreton Bay’s rivers, the Brisbane river also has a large, well-populated catchment area, which

means it has greater potential than others for delivering unwanted pollutants (Olley et al.

(2006)). Since the area of Moreton Bay is of great ecological significance (as explained by Dunn

et al. (2007), Haynes (2001), Hodge et al. (2005)), it is important to be able to predict the fate

of a pollutant, in order for well-informed management decisions to be made for the protection

of the environment.

7.2 Domain of calculation

A set of data on the bed elevation of Moreton Bay was provided by Chris Matthews at Griffith

University, Brisbane. The area is shown in a satellite image in Figure 7.1, and Figure 7.2

shows the data plotted using Argus, with colour corresponding to elevation, and the mesh

superimposed. The islands in the southern part of the Bay are excluded from the domain of

calculation and are shown as hashed areas in Figure 7.2.

7.2.1 Mesh generation

Figure 7.2 shows the mesh of 2359 elements on which all the tests in this chapter have been

made. Argus ONE R© meshmaker is used to import the data describing the bathymetry of

Moreton Bay. The meshfile is made by drawing around the edge of the land and around the

islands, then automatically generating a triangular mesh that fits around the irregular edge

of the Bay. The total area of the mesh according to Argus is approximately 1 180 km2, which

agrees with You (2005b) (1 130 km2) and the smallest element has an area of 0.04 km2, the

largest 0.8 km2 and an average size of about 0.5 km2.
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7.2 Domain of calculation

Figure 7.1: Plan view of Moreton Bay with some locations marked. Courtesy of Google maps.
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Figure 7.2: Mesh used for calculations of the following tests. Orange/red colours represent land

above sea level, blue/green/yellow areas show the land with negative elevation, i.e. below sea

level. Islands are shown with solid boundaries and hashed shading. Mesh is composed of 2359

triangular elements, and was generated using Argus meshmaker.
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7.2 Domain of calculation

Point in harbour AHD Mean sea level (Mean sea level)-(AHD)

Pinkenba (mouth of Brisbane River) 1.24 1.27 +0.03

Nudgee Beach and Crib Island 1.31 1.19 -0.22

Woody Point 1.23 1.15 -0.08

Beachmere 1.26 1.21 -0.05

Bongaree 1.10 1.05 -0.05

Toorbul 1.10 1.13 +0.03

Dunwich 1.30 1.22 -0.08

Russell Island 1.39 1.33 -0.06

Redland Bay 1.35 1.41 +0.06

Manly 1.29 1.27 -0.02

Table 7.1: Table showing data of Australian height datum (AHD) and mean sea level (metres)

for a number of places around Moreton Bay. Reproduced from the Official Tide Tables of

Australia.

7.2.2 Australian Height Datum

The data that were sent from Griffith University take the plane z = 0 at what is known as the

Australian Height Datum (AHD). The bed elevation therefore has negative values, and anything

above AHD (positive values) is taken to be land, being either the islands or the mainland. The

AHD is based on mean sea levels taken in 1966-68 at thirty points around Australia. In 1971 it

was adopted by the National Mapping Council as “the datum to which all vertical control for

mapping is to be referred” 1. Today the AHD is generally lower than the mean sea level due to

rising sea levels, although may be locally greater because of sedimentation, human development

or continental drift (ICSM (2006)). A copy of the Official Tide Tables and Boating Safety Guide

2007 2 for harbours around Australia gives the AHD and the present mean sea level for a number

of points around the Bay, a sample of which is reproduced in Table 7.1. The corresponding

locations are shown in Figure 7.1.

It can be seen from Table 7.1 that the average AHD is 1.26 m and the average mean sea

1. www.ga.gov.au/geodesy/datums/ahd.jsp

2. Copyright Commonwealth of Australia 2005
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Figure 7.3: Tide heights of Moreton Bay for January 2007, measured at Brisbane river mouth.

Produced using data from National Tidal Centre, Bureau of Meteorology, Commonwealth of

Australia.

level is 1.22 m. Despite the inhomogeneities of the surface level in this model we assume the

level is constant, which is a valid approximation for the level of accuracy required.

7.2.3 Tides of Moreton Bay

Figure 7.3 shows the surface elevation in Moreton Bay, measured at Brisbane river mouth,

during the period 1-31 January 2007. The time between high tide and low tide is approximately

six hours so the tide is semidiurnal. It can be seen in this graph that on 4 January and on 20

January there was a new moon; these points correspond to periods of the highest high tides and

the lowest low tides (a spring tide, just after full and new moons). Around 11 and 26 January,

the moon was midway through its cycle, and these periods have the lowest high tides and the

highest low tides (neap tides).

The average low tide from the data in Figure 7.3 is 0.54 m, and the average high tide is

1.99 m. Thus the average range is 1.45 m, which varies between 0.8 m and 2.3 m.
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7.3 Calibration of Riemann2D

7.3 Calibration of Riemann2D

The tidal current and tide level (surface elevation) have been measured by You (2005b) in the

most northwest embayment of Moreton Bay where Caboolture river discharges, marked on the

map as Deception Bay. These measurements are used to calibrate results from Riemann2D .

7.3.1 Calibration of tidal currents

The field measurements made by You (2005b) are reproduced in Figure 7.4. A curve of best

fit was made to fit with the data (11-19 March). The best fit curves are made by using the

functions

η = −0.1 + 0.7 sin(πt/6.6 + 7.5), (7.1)

|u| =
√
u2 + v2 = 0.56 + 0.26 sin(π(t− 4.5)/2.95) + 0.15 cos(πt/5.5),

for the surface elevation and the tidal current, respectively (time in units of hours). Note that

these measurements are likely to have been affected by the wind, although wind speeds were

not noted, and we have no way of knowing how much the wind affected the flow velocity. So

they must be considered as specific, not general data. Nevertheless, they provide a reasonable

basis for modelling. You (2005b) mentions that there was a storm on 26 March, which produced

large current speeds, so we avoided using measurements from near this date.

The calibration tests were done using the Moreton Bay mesh of 2359 elements, with min-

Depth 1 × 10−1 m, Coriolis −6.6 × 10−5, Manning’s n = 0.03 m−1/3s, and a fixed timestep of

dt = 0.25 s. Tide-like boundary conditions were set at the ocean boundary so that the surface

elevation is set in the ghost cell as in (7.1) and the flux was prescribed by setting

hughost = (0.56 + 0.26 sin(π(t− 4.5)/2.95) + 0.15 cos(πt/5.5))h/
√

2, (7.2a)

hvghost = (0.56 + 0.26 sin(π(t− 4.5)/2.95) + 0.15 cos(πt/5.5))h/
√

2, (7.2b)

For comparison, a second test was made where the flux boundary conditions were reflective,

as was done in Chapter 6. In both cases, the Courant number was around 0.013, and the

simulation was run for 9 days, which took around 31 hours and 30 minutes.
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The results near initial time are influenced by the fact that flow was initially still. The

simulation was run for eight days before any data were recorded to remove any phenomena that

may be related to the water’s initial state.

The surface elevation and tidal current from these simulations are plotted in Figures 7.5

(prescribed flux) and 7.6 (reflective flux), and show good agreement with the measurements

of You (2005b). The good agreement with reflective boundary conditions suggests the results

from the previous chapter are realistic, even though we were not able to calibrate results for

those cases.

Both prescribed and reflective flux boundary conditions demonstrate good agreement with

surface elevation. The behaviour of the tidal current is more difficult to capture than the surface

elevation. In the literature, Castro et al. (2004) has studied the 1D SWE for two fluid layers

in a channel applied to the Strait of Gibraltar. Tidal forcing is applied to the steady-state

solution that is obtained. The model is forced at the open boundaries with the four main

tidal components using a cosine function that is interpolated to give a best fit. The maximum

differences between simulated and observed elevation do not exceed 3 cm (5%) for the M2 and

S2 components and the phase for M2 was correct to two decimal places. Abdennadher and

Boukthir (2006) use the ROMS (Regional Ocean Modelling System), which is a free-surface

oceanic model that includes temperature and salinity to model the area between the Tunisian

Shelf and the Strait of Sicily. The four open boundaries are forced with a cosine function that

include the five major tidal components. The results obtained show that the M2 component

is within 2 cm for the amplitude, or 5%, and 14◦ for the phase of the observed measurements.

This compares favourably with other results for the same area, and the otherwise slightly poor

agreement is thought to be due to uncertainties in the bathymetric data. Liang et al. (2006)

attribute their poor agreement between the velocity in the numerical results to the areas of

irregular topography.

On the whole, the results with reflective flux on the boundary are slightly better, so these

will be used in future tests. The magnitudes are slightly lower because no wind was modelled,

as noted above.
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Figure 7.4: Tide current and level measured by You (2005b) between 11th and 19th March (192

hours) and best fit curves to these measurements that will be used as boundary conditions. Note

that current speed is given by |u| =
√
u2 + v2.

7.3.2 Tidal and river effects on surface elevation

The test was repeated with a discharge from the Brisbane river. This was simulated by setting

the element at the mouth of the river to have elevation 0.1 m at every time step, which cor-

responds to outflow during the dry season, according to Eyre et al. (1998) and Hossain et al.

(2004). Figures 7.7a)-f) show the surface elevation and velocity profile from this test, with

Coriolis, velocity vectors scaled by 0.05. The times shown correspond to high tide, mid-ebb

and mid-flood tide times according to Figure 7.5.

The Coriolis effect can be seen in the northern part of the Bay, where flow is being pulled in

a clockwise direction. Flow in the southern part of the Bay is interrupted by the islands there,

where water is subject to high shear and quite high velocities can be generated. The argument
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Figure 7.5: Using tide current and level measured by You (2005b) as boundary conditions in

Riemann2D on a mesh of 2359 elements of Moreton Bay. Data plotted are those of the study

site in Deception bay.

for the omission of a tidal boundary condition at the southern passage is strengthened by the

results of Larsen (2007), who notes that tidal effects are weakened in areas of high bed friction.

7.4 Effect of tide on pollutants

A contaminant was released at seven and a half days at the mouth of the Brisbane river,

with initial (nominal) value 0.3 kg m−3. The value updated at every timestep so that the

boundary condition at this cell was hcghost = 0.3 kg m−3 × 9.14 m. It was found that releasing

the contaminant at 7 and a half days was necessary to ensure all transients resulting from the
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Figure 7.6: Using measurements of You (2005b) as boundary conditions for surface elevation

and a reflective flux condition in Riemann2D on a mesh of 2359 elements of Moreton Bay. Data

plotted are those of the study site in Deception bay.

initial conditions were no longer affecting the solution.

7.4.1 Contaminant release at Brisbane river

Figures 7.8a)-c) show the path of the contaminant during the 24 hours after 8 days. They show

that the contaminant spreads northwest from the source as it discharges from the river mouth,

into the area known as Bramble bay, because of the direction of velocity vectors (see Figures 7.7)

due to the local geometry and the pull of the Coriolis force in the clockwise direction.
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Figure 7.7: a) Surface elevation and velocity plots for periodic boundary conditions on a domain

of Moreton Bay (8 days and 0.5 hours, high tide).
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Figure 7.7: b) Surface elevation and velocity plots for periodic boundary conditions on a domain

of Moreton Bay (8 days and 3 hours, mid-ebb).
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Figure 7.7: c) Surface elevation and velocity plots for periodic boundary conditions on a domain

of Moreton Bay (8 days and 10.5 hours, mid-flood).
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Figure 7.7: d) Surface elevation and velocity plots for periodic boundary conditions on a domain

of Moreton Bay (8 days and 13 hours 50 minutes, high tide).
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Figure 7.7: e) Surface elevation and velocity plots for periodic boundary conditions on a domain

of Moreton Bay (8 days and 16 hours, mid-ebb).
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Figure 7.7: f) Surface elevation and velocity plots for periodic boundary conditions on a domain

of Moreton Bay (8 days and 23.5 hours, mid-flood).
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Figure 7.8: a) Scatter plots of contaminant concentration with periodic ocean boundary condi-

tions on a domain of Moreton Bay (0.5, 3 hours).
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Figure 7.8: b) Scatter plots of contaminant concentration with periodic ocean boundary con-

ditions on a domain of Moreton Bay (10.5, 13.8 hours).
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Figure 7.8: c) Scatter plots of contaminant concentration with periodic ocean boundary condi-

tions on a domain of Moreton Bay (16, 23.5 hours).
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7.4.2 Effect of wind on pollutants

It has been shown by Whitmore and DeLacy (2004), Costanzo et al. (2005), Costanzo et al.

(2001) that Bramble bay, the area north of the Brisbane river, has higher levels of pollution

than elsewhere in Moreton Bay. Costanzo et al. (2001) introduce the method of using the stable

isotopes of nitrogen and outline how the method can be used. This technique was then used

(Costanzo et al. (2005)) to investigate the transport paths of nutrients by mapping where the

stable isotopes travel. Measurements taken in the whole of the western part of Moreton Bay

during four years show the mouth of the Brisbane river and Bramble bay to have the highest

concentration of δ15N isotopes (reproduced in Figure 7.9). In a publication for Brisbane City

Council, Whitmore and DeLacy (2004) outline the importance of taking care of the environment

in order to preserve tourism in the region, which is Australia’s largest employment sector. The

authors state that (page 51) Bramble bay “displays some of the poorest water quality in Moreton

Bay”, which is attributed to the high levels of nutrient-rich water flow from the Brisbane river,

delivered via the particular topography surrounding Bramble bay. The Healthy Waterways

water monitoring organisation in Australia published a report card of water quality in Moreton

Bay in 2009 1, in which it awarded Bramble bay the worst possible mark of any part of the Bay,

an F. The overall mark given for the whole Bay is a B, which corresponds to good quality.

The effect of wind on the path of a contaminant was tested by repeating the previous test

with a value of minDepth = 0.5 m under the following different wind configurations:

• The average speed and direction from January to September is 3 ms−1, in the southeast-

erly, southerly, or southwesterly directions

• From October to December, the wind direction is arbitrary and storms are more frequent.

We choose a speed of 7 ms−1 under northerly and easterly directions.

This information comes from the Australian Bureau of Meteorology 2 and is summarised by the

wind roses in Figure 7.10. The wind speeds are 35-year averages taken between 1951 and 1986

and the wind directions are based on observations between 1950 and 2000.

1. www.health-e-waterways.org/reportcard/2009/Moreton%20Bay

2. Wind roses can be found at www.bom.gov.au/climate/averages/wind/selection map.shtml and average

wind speeds can be found at www.bom.gov.au/climate/averages/
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Figures 7.11 to 7.15 show the results of these simulations and are plotted so that elements

with concentration c > 0.05 are filled circles and elements with concentration 0.001 < c < 0.05

are empty circles. Elements with concentration less than 0.001 kg m−3 are not shown. The

figure shown is at the second high tide after 8 days for the following tests. The figures for

earlier times can be found on the CD at the back of this thesis.

Figures 7.11, 7.12 and 7.13 show a contaminant released under the conditions of a 3 ms−1

southeasterly, southwesterly and southerly wind, respectively. The contaminant appears to be

very little affected by the wind, advancing towards Bramble bay only slightly more than with no

wind. The discharge from Brisbane river has a greater effect than the wind because the water

depth here is relatively deep (around 10 m) and uniform. There is little difference between the

three wind directions, although the southeasterly seems to push the contaminant further into

Bramble bay.

Figure 7.14 shows a contaminant released under the conditions of a 7 ms−1 northerly wind.

Even under this relatively strong wind, the spread of contaminant is not very different from

the conditions with no wind, although it does travel more to the south and west of the point

of release because of the direction of flow.

Figure 7.15 shows a contaminant released under the conditions of a 7 ms−1 easterly wind.

The contaminant is prevented from spreading so far west as in the other cases. This is partly

due to the strength of the wind but also because the water is shallower in Bramble bay, resulting

in a higher level of transport due to the wind shear.

The results show that it is clear that both the wind and the Brisbane river have a strong effect

on the movement of a pollutant in this Bay. It is shown that the contaminant is moved towards

Bramble bay under any wind direction, in agreement with field measurements (Costanzo et al.

(2005)). Where the bathymetry is shallow, the effect of wind is greater, which agrees with the

findings of Chapter 6 and Butman et al. (2008), Neill et al. (2008) and You (2005b).
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7.4 Effect of tide on pollutants

Figure 7.9: Spatial distribution of deployed macroalgal δ15N values in February (a) 1998; (b)

2001; (c) 2002 and (d) 2003. Macroalgae (Catenella nipae, Rhodophyte) was deployed at

approx. 100 sites (yellow solid circles) in Moreton Bay, Australia. Reproduced from Costanzo

et al. (2005).
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Figure 7.10: Wind roses (speed and direction) for summer (a), autumn (b), winter (c) and

spring (d) in Moreton Bay. Reproduced from the Bureau of Meteorology, Australia.
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Figure 7.11: Scatter plots of contaminant with tidal ocean boundary conditions and a south-

easterly wind of 3 ms−1 (23.5 hours).
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Figure 7.12: Scatter plots of contaminant with tidal ocean boundary conditions and a south-

westerly wind of 3 ms−1 (23.5 hours).
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Figure 7.13: Scatter plots of contaminant with tidal ocean boundary conditions and a southerly

wind of 3 ms−1 (23.5 hours).

193



CHAPTER 7. APPLICATION TO MORETON BAY

Figure 7.14: Scatter plots of contaminant with tidal ocean boundary conditions and a northerly

wind of 7 ms−1 (23.5 hours).
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Figure 7.15: Scatter plots of contaminant with tidal ocean boundary conditions and an easterly

wind of 7 ms−1 (23.5 hours).
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7.5 Summary

In this chapter we have

• Discussed the importance of monitoring the amount of pollution that enters Moreton Bay

from the Brisbane river and the potential threat of pollution on the ecosystem there.

• Used field data to derive an approximate function of surface elevations and flow current

to reproduce tidal forces in Moreton Bay. Riemann2D reproduces these functions well

under both prescribed and reflective flux conditions. This provides confidence in previous

simulations where reflective flux was used due to lack of field data.

• Shown that the direction of the prevailing wind has little effect on the path of the contam-

inant in areas of deeper water because the discharge from the Brisbane river is stronger.

• Demonstrated that with an easterly wind, because contaminant is moved into shallower

water, it spreads over a larger area. This agrees with work from Butman et al. (2008),

You (2005b) and Costanzo et al. (2005).

Results and tests from Chapters 5 and 6 mean we can interpret these results with confidence.

We know that Riemann2D can represent physically realistic and numerically stable results for

simple (flat or axisymmetric bathymetry) domains. We have been able to understand local

elevation and current speed in Moreton Bay thanks to field data from You (2005b), with which

our results match well. Thus Riemann2D has demonstrated a promising capability for the

realistic modelling of two-dimensional flows within harbours and bays of varying bathymetry.
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CHAPTER 8

Conclusions

8.1 Summary

We have modelled flows in the shallow water in two test domains and in the environment of

Moreton Bay, Australia. To do this we have used the classical shallow water, or St Venant, equa-

tions and a numerical shock-capturing FVM scheme written in an object-oriented programming

language.

Some of the main results have been

• A newly-implemented time-dependent boundary condition has been found to effectively

reproduce tidal forces (Chapters 4 and 7).

• Areas of larger bedslope were shown to produce more kinetic energy and less predictable

flow velocities (Chapter 6).

• The path of a pollutant has been found to be much more strongly influenced by the wind

than by the tide in domains where bed friction is important. The result is still true,

although less strong, for small bedslope gradient. It is carried further in areas of higher

bed friction (Chapter 6).

• Systematic testing of Riemann2D has shown it to be able to reproduce known analytical

results (Chapter 5). We have also shown that Riemann2D converges and from Vázquez-
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Cendón (1999) we know the scheme is first order accurate (higher accuracy is achieved

with the MLG limiter). The C-property has also been established.

• Moreton Bay tidal simulations results have been successfully calibrated (Chapter 7).

• Simulations of pollutant transport in Moreton Bay have been shown to agree well with

field observations (Chapter 7).

8.1.1 FVM and Java

Riemann2D was adapted and extended for this thesis. The implementation of a time-dependent

boundary condition allowed the successful simulation of tides. The boundary condition was

tested on some idealised domains, and demonstrated the correct behaviour, being periodic in

nature and having realistic tidal range. Using a curve of best fit based on measurements from

Moreton Bay as the boundary condition, simulation of flow in the Bay was found to give good

agreement.

Riemann2D ’s shock-capturing abilities were not exploited in this thesis. Instead it has

been demonstrated that the code that was originally developed for small domains and fast

flows also gives valid results for a large domain with slow flows and can effectively model

pollutant transport over long time.

8.1.2 Analysis

The analysis of Chapter 3 demonstrated some of the basic properties of hyperbolic, shallow

water equations to help understand the nature of the system. The results of the asymptotic

analysis are part of the validation process.

Asymptotics

The asymptotic analysis that was carried out suggested that on a domain of constant depth of

10 m, to two orders of magnitude, the surface elevation is modelled by the depth of still water

plus one tenth of the tidal component, i.e. h = −b+ εφ(t) + O(ε2). This provided insight into

what to expect from the numerical simulations of this domain.

198



8.1 Summary

Source terms

Asymptotic analysis of the source terms showed that increasing wind speed by one order led to

changes in the solution of two orders. The wind term was the largest source term we considered

and had the largest effect on the solution. Increasing the bed friction term so that Manning’s

n is almost as large as physically probable led to corrections at O(ε4) or smaller. In a domain

of constant depth, the bed friction term adds very little to the flow.

These results were used to compare with the numerical results.

8.1.3 Model validation

Systematic validation has shown Riemann2D to reproduce the correct behaviour.

Riemann2D was validated using idealised bays: a square with flat bottom topography of

side length 100 km, depth 10 m; and a circular basin of 45 km radius and maximum depth 10 m.

The size of the source terms was varied to compare with asymptotics and some analytical results

were reproduced.

Parameter variation for a square

In Chapter 5 it was seen that for an increase of one order of magnitude of wind speed there

was a corresponding increase in the average flux by two orders of magnitude. The stronger

the wind, the more energy is transferred to the water in the form of flow velocity. This agreed

exactly with the asymptotic results from Chapter 3.

It was found that with an increase in the bed friction coefficient, the energy gained by the

system decreased. Flow velocities were lower, as a higher roughness coefficient means energy

is dissipated and not maintained in the flow. The results showed a change in the flux in the

fourth decimal place, agreeing with the asymptotics.

Parameter variation for a circular basin

Results for the square case study showed changes that were whole orders of magnitudes, because

of its uniform bathymetry. For the circular basin, however, it was found that both increasing

wind speed and decreasing the bed friction coefficient have more effect in adding energy to the

system (than for the case of the square). This was due to the vanishing bathymetry found in
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the circular basin, as shallower regions are more subject to friction effects, which results in the

generation of more kinetic energy. The changes in the average flux did not agree exactly with

the asymptotics, but were consistent and followed the expected pattern, changing the solution

by between one and three orders of magnitude.

Analytical results for a circular basin

Riemann2D was used to simulate solid-body rotation in the circular basin-like domain to com-

pare with the analytical results of that problem. Without a numerical limiter, Riemann2D showed

fairly poor agreement and there was visible smearing of the solution at the boundary of the

domain. The tests were repeated using the MLG limiter and numerical solutions matched the

exact solution very well, even for a low mesh density. Riemann2D could therefore be expected

to preserve the correct solution, and the MLG limiter would be used in all further tests.

The solid-body rotation tests were repeated on meshes of three different densities, and by

considering the root mean square value of the analytical solution from the simulated one, we

saw that the computed solution approached the analytical as the mesh was refined, i.e. the

scheme converged.

A steady-state wind blowing over a smaller circular basin was reproduced using Riemann2D and

showed excellent agreement with the numerical results of Borthwick et al. (2001a) and Borth-

wick et al. (2001b) and the analytical prediction of Kranenburg (1992). This test was repeated

on the larger domain in Chapter 6 and the same flow profile was reproduced.

8.1.4 Time-dependent boundary condition

The same two idealised bays, a square and a circular basin, were used to test the time-dependent

boundary condition and to see the effect on the transport of a pollutant of wind and tide

(Chapter 6).

Tide

The periodic nature of the tidal boundary condition was seen in the similarity of surface ele-

vation and velocity profiles at 6-hour intervals. This corresponds to a semi-diurnal tide, as is

found on the Queensland coast. The tidal range was seen to be 0.9 m in the square, a typical
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value for that coastline. The range was smaller for the circular basin, which is attributed to the

relatively narrow and shallow ocean boundary through which a limited volume can flow. An

approximation of the tide was made by using just the M2 component, which nevertheless gave

realistic results.

The simulations were all made for at least 10 days to ensure that any effects from the initial

steady-state were removed. All the tests produced the correct behaviour.

Coriolis force

It was found that Coriolis force was strong enough to disrupt the otherwise symmetric nature

of the flow, even though it did not appear in the first three terms of the asymptotic solution so

is small. Its effect was weaker in the circular basin, as bed friction effects are stronger here.

In the circular basin with wind, the two gyres of recirculation found in Chapter 5 were

recreated. The difference was due to the Coriolis force that meant the dividing line between

the two gyres was no longer straight, but twisted due to the spin of the Earth.

Pollutant transport

It was found that tidal forcing alone does not greatly affect the transport of a pollutant in areas

where bed slope is zero. Wind was found to be much more important, especially in the case of

the circle where the shearing effects from the wind, combined with shallower bathymetry, led

to higher levels of transport. This agrees with Butman et al. (2008), Neill et al. (2008) and You

(2005b). In particular, areas of high bed friction correspond to the areas where the pollutant

is carried to. Pollutant was influenced by Coriolis to the extent that it is carried with the flow

which is itself affected by Coriolis.

8.1.5 Moreton Bay

Riemann2D showed good agreement with measurements when those (best fit for) tide heights

and tidal currents measured by You (2005b) were used as boundary conditions on the More-

ton Bay domain (Chapter 7). The simulation where the flux boundary condition was set as

transmissive was also shown to be realistic. Although the present function gave very good

agreement, it was taken from data measured about 20 km from the ocean boundary, and it
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would be preferable to use data that were collected from the ocean boundary itself. It is not

known what wind speeds or directions were present during the measurements, nor what effect

they would have on the flow. More precise measurements could improve the present results,

which are already good, and which are as accurate as those in the literature.

Simulations on the Moreton Bay domain with no wind, the average wind speed and three

different directions, and a moderate breeze in two different directions were carried out. It was

found that the contaminant released at the mouth of the Brisbane river was transported towards

Bramble bay, to the northwest of the river. This agrees with the literature, that this is the most

polluted part of Moreton Bay. The wind had only a little effect on the path of the contaminant.

Under a moderate breeze in the easterly direction, contaminant was moved furthest towards

Bramble bay, whereas the northerly wind tended to take the contaminant more to the south

of the Brisbane river and since this part of the Bay had deeper bathymetry, contaminant was

contained in a smaller area.

We have made no attempt to conclude what level of contaminant would be harmful to the

environment of Moreton Bay. The results we have obtained are general, and can be used to

predict the qualitative behaviour of a contaminant release. The initial concentration value of

0.3 kg m−3 was chosen as a purely illustrative value.

Flow in the southern part of the Bay could not be considered to be realistic due to the large

number of islands there. The boundary conditions on the islands were reflective and meant flow

velocities could be artificially high. Realistically they should be allowed to flood and dry. No

tidal condition was set on the southern passage but since this is an area of high friction, tidal

effects would be limited (Larsen (2007)) and some preliminary tests have suggested this would

lead to numerical instabilities.

8.2 Further work

It is valuable to have a mathematical model as a way of understanding the main processes that

affect water flow in a bay. A more sophisticated and interdisciplinary model could be developed

that includes management strategies by taking advantage of the object-oriented structure of

the Riemann2D code.
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8.2.1 Boundary conditions

Data for tidal currents and heights measured at the ocean boundary would allow a more accurate

model for the boundary conditions. Although a sine curve fitted to observed data gave good

results, it would be ideal to modify the code so that measured data may be read from a file.

8.2.2 Time-dependent wind

The speed of the wind that is measured in a real bay is not constant over several days, or even

over several hours. In the case of Moreton Bay, the wind speed is consistently higher at 3pm

than at 9am. Although there is currently no way to model this in Riemann2D , it is certainly

an area that needs to be improved in order to obtain a more realistic simulation.

8.2.3 Islands

There are a number of islands in the southern part of Moreton Bay, that in this model had

reflective boundary conditions. Ideally, the islands would be allowed to flood and dry as the

tide comes in and goes out. A new version of Riemann2D is designed to allow flooding and

drying, although there has not been time to test and use the new version in this thesis. It

would be interesting to do this, and allow flow in the southern part of the Bay to be treated

more realistically.

8.2.4 Delta region

At the southern end of Moreton Bay there is a large number of small rivers and tributaries,

forming a delta region. In the numerical simulations we have put reflective boundaries on this

end, but, as in the case of the islands, it would be preferable to represent the fact that water

flows in and out of this region. We might also improve the model of Brisbane river discharging

water into the Bay by making it vary in time.

A more realistic localised model of Brisbane river would also be useful for modelling the

path of a pollutant under a north wind, as at the moment it is unclear whether it flows back

into the Brisbane river or not.
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8.2.5 Contaminant diffusion

The advective concentration equation could be made into an advection-diffusion equation by

the modification of the right hand side with relevant diffusion coefficients. Data are needed

to estimate these coefficients, and if this were available, would provide improved accuracy in

predicting the fate of a pollutant.

8.2.6 Stratified model

The assumption of averaging over the vertical axis and assuming motion only in the horizontal

plane is arguably unrealistic. In reality, the effect of bed friction on the bottom of the bed

causes the water to flow in a different way from the surface water that is more strongly subject

to the effects of wind. Thus a column of water does not behave in a uniform way, even though

this is a fair assumption for a mathematical model. It is possible to use the full 3D Navier-

Stokes equations, but as a simpler approach, we could assume a stratified model separated by

a viscous boundary, with the lower layer subject to bed friction and the upper layer affected

more by the wind. Some analysis to this problem was given in Chapter 3.

8.2.7 Erosion model

A 2D erosion model based on the (1D) work of Cao et al. (2004) has been developed for

Riemann2D . Early tests show good agreement with the 1D results on a two-dimensional dam-

break problem, although the results for slow flows and natural boundaries are less realistic

(more erosion happening in deeper parts of the bay than shallower). If the erosion extension

can be improved, it will provide valuable insight into the areas of Moreton Bay that are most

subject to sediment transport. In practice, this will be a complex task as different areas of

Moreton Bay are composed of different types of sediment: there is a large sandy area in the

central-northern part, while areas to the south have finer clay or silt which is sticky and not

easily entrained. Thus a realistic sediment transport module would need to be able to handle

a distribution of sediment size classes rather than a typical single representative size class.

204



8.3 Conclusions

8.3 Conclusions

Riemann2D has been systematically validated on idealised domains and for various flow con-

ditions and has shown consistent and reliable results. The domains it has been tested on are

much larger than those it was designed for. The problem modelling times have also been much

longer. The code exhibits the correct behaviour and shows good agreement with analytical

results. The tide-like boundary condition has been applied in the model of flow in a real bay

and results calibrate well with field measurements.

Modelling the path of a contaminant in Moreton Bay has successfully highlighted Bramble

bay as being at the greatest risk of pollution, and more so under a moderate (or stronger)

easterly wind. This information could be used in management decisions in how to protect the

environment of Moreton Bay.
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APPENDIX A

Derivation of the model

We consider a large harbour of shallow water, of typical dimensions 100km across, and 10m

deep. At one end of the harbour there is a tide (via a connection with the ocean or sea) that

changes the level of the water in the harbour by a small proportion – typically 1-2 metres

over a 12 hour period. At first we consider the one dimensional model, where all variables are

functions of horizontal distance x and time t, and then later the two dimensional.

Let the geometry of the problem be as described by Figure 2.1 in Section 2.1.

A.1 Mass conservation: derivation

The classical shallow water equations (SWEs) can be derived in a number of ways: from taking

the three-dimensional Euler equations and making a hydrostatic approximation; from first

principles by considering a block of fluid as it travels horizontally around within the domain;

or by considering the forces acting on a block of fluid with sides of infinitely small width. In all

cases the SWEs represent that mass and momentum of the fluid are conserved.

Conservation of mass (Euler)

This derivation is the classical Eulerian approach, which involves studying a block of particles

as it moves from a fixed reference point.
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Consider the height of the water in a horizontal cross-section from x to x+ δx measured at

mean sea level. The height is denoted h = h(x, t) so we can write an expression for the area of

the cross-section, by integrating from x to x+ δx, as∫ x+δx

x

h(x̂, t) dx̂ = volume of water under h(x, t) between x and x+ δx per unit width.

The rate at which this volume changes over time is

d
dt

∫ x+δx

x

h(x̂, t) dx̂, (A.1)

which has dimensions [m2 s−1] per unit width. This expression, when there are no sources,

represents the net amounts of fluid flowing past (x, x + δx) per unit time. But the product

u(x, t)h(x, t) (the x-flux per unit width) also represents the amount of water flowing past the

point x. So (A.1) is equal to the change in the flux between x and x+ δx. More formally,

d
dt

∫ x+δx

x

h(x, t) dx = u(x, t)h(x, t)− u(x+ δx, t)h(x+ δx, t)

=: −u(x̂, t)h(x̂, t)
∣∣∣∣x+δx

x

.

Assuming that the functions u(x, t), h(x, t) are smooth (i.e. continuously differentiable, and

do not model jumps or shocks in the system) we can change the order of integration and

differentiation by Leibniz’ rule on the left hand side, and rewrite the right hand side as an

integral, to get ∫ x+δx

x

∂

∂t
(h(x̂, t)) dx̂+

∫ x+δx

x

∂

∂x̂
(u(x̂, t)h(x̂, t)) dx̂ = 0

⇒ ∂h

∂t
+
∂ (uh)
∂x

= 0.

This is the equation for conservation of mass in one spatial dimension. It can be extended to

2D by considering the same situation in the y-plane, where the flux is v(x, y, t)h(x, y, t). Then

the rate of change of the volume of water over time (A.1) in two spatial dimensions is

d
dt

∫ x+δx

x

∫ y+δy

y

h(x̂, ŷ, t) dx̂dŷ,

which is related to flux in the following way:∫ x+δx

x

∫ y+δy

y

∂

∂t
h(x̂, ŷ, t) dx̂dŷ +

∫ x+δx

x

∫ y+δy

y

∂

∂x̂
(u(x̂, y, t)h(x̂, y, t)) dx̂dŷ+∫ x+δx

x

∫ y+δy

y

∂

∂ŷ
(v(x, ŷ, t)h(x, ŷ, t)) dx̂dŷ = 0.
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A.1 Mass conservation: derivation

On taking the limits as δx→ 0 and δy → 0 (again, for the integrand continuous), we arrive at

∂h

∂t
+
∂(uh)
∂x

+
∂(vh)
∂y

= 0.

In designing a computer program this idea is an important one to keep in mind: the equation

will be discretised before it can be solved numerically, which means breaking down the domain

into smaller pieces where the problem is solved and then ‘stitched’ back together. These pieces

could be based on (x, y), (x + δx, y), (x, y + δy), (x + δx, y + δy) and the numerical method

thought of as approximating the integrals.

Conservation of mass (The transport theorem)

A more sophisticated derivation makes use of the transport theorem, which is as follows: let an

area A(t) containing the same fluid particles as it moves around, with the horizontal velocity

vector u(x, y, t)

D

Dt

∫∫
A(t)

F (x, t) dV =
∫∫

A(t)

DF

Dt
+ F∇ · u dV,

for some function F (x, t), where the material derivative

D

Dt
=

∂

∂t
+ u · ∇,

and the vector u = [u, v]T is the velocity of the fluid.

The aim is to write down an equation which describes the fact that mass of fluid is conserved.

Let the volume domain A(t) be a column of water perpendicular to the (x, y) plane, of height h

and small cross-sectional area ∂A(t) at time t, which evolves to ∂A(t+ δt) at time t+ δt. The

column of water is moving with the flow, so in this sense the derivation can be considered to

be following a Lagrangian co-ordinate system. We require that the water mass of the column

is conserved, which is equivalent to saying that the rate at which the mass changes is zero: rate of change of mass in column

that moves with the flow

 =
D

Dt

∫∫
A(t)

ρhdxdy = 0, (A.2)

where ρ is density of the substance.

Using the above transport theorem, (A.2) can be written

D

Dt

∫∫
A(t)

ρhdA =
∫∫
A(t)

∂

∂t
(ρh) dA+

∫∫
A(t)

∇ · (ρhu) dA = 0.
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Using the divergence theorem, we can write the above as∫∫
A(t)

∂(ρh)
∂t

dA+
∮
∂A

ρhu · n dS = 0.

Assuming continuity of the integrand, and that A(t) is arbitrary, we can say that

∂(ρh)
∂t

+∇ · (ρhu) = 0

⇒ ∂(ρh)
∂t

+
∂(ρhu)
∂x

+
∂(ρhv)
∂y

= 0,

and as ρ is a constant it can be eliminated to give

∂h

∂t
+
∂(hu)
∂x

+
∂(hv)
∂y

= 0,

as required.

A.2 Conservation of momentum derivation

Momentum: x -direction

Consider a block of water of width δx in the x-direction by width δy in the y-direction, and

height h(x, y, t). Fluid enters or leaves at velocity u(x, y, t) in the x-direction, and v(x, y, t) in

the y-direction, as shown in Figure A.1.

To derive the equation for conservation of momentum, we start with Newton’s law of motion,

F = ma, where F is the sum of all forces, m is mass, and a is acceleration of the block of water.

Now consider what forces the control volume in Figure A.1 is subject to

i) Change in momentum. Momentum = p = mass×velocity, so let mass of the control

volume be ρ(u(x, y, t) + v(x, y, t))h(x, y, t)δt, and let velocity be u(x, y, t), then change in

momentum, per unit of time δt is

δp

δt
=
∫ x+δx

x

∂

∂x̂
(ρu2(x̂, ŷ, t)h(x̂, ŷ, t)) dx̂+

∫ y+δy

y

∂

∂ŷ
(ρu(x̂, ŷ, t)v(x̂, ŷ, t)h(x̂, ŷ, t)) dŷ.

(A.3)

ii) Force due to the free surface of the water. This is related to the potential energy

of the wave. The potential energy of the wave is mgη = ρh∗δxg(h+ b), where m = ρh∗δx

is mass, g is force due to gravity, h∗ = 1
2 (h(x, y, t) + h(x+ δx, y, t)) is the average height,
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A.2 Conservation of momentum derivation

Figure A.1: A block of fluid showing the velocities and heights on the faces and edges of a

typical control volume over the square (x, x+ δx)× (y, y + δy).

and η = h+ b is the wave amplitude. Now, the change in energy over the control volume

is due to changes in η, in other words, it is

δ(PE) = ρgh∗δx{(h(x+ δx, y, t) + b(x+ δx, y))− (h(x, y, t) + b(x, y))}

= ρgh∗δx{(h(x+ δx, y, t)− h(x, y, t)) + (b(x+ δx, y)− b(x, y))}.

So the force due to the free surface of the water is change in energy per change in distance

δ(PE)
δx

=
∫ x+δx

x

ρgh∗
∂

∂x̂
(h(x̂, y, t) + b(x̂, y)) dx̂. (A.4)

iii) The RHS of Newton’s equation. Total mass of the volume is ρδxh(x, y, t), and

acceleration is the derivative w.r.t. time of u(x, y, t). The RHS expression is therefore

δ(ma)
δx

=
d
dt

∫ x+δx

x

ρh(x̂, y, t)u(x̂, y, t) dx̂ =
∫ x+δx

x

∂

∂t
(ρu(x̂, y, t)h(x̂, y, t)) dx̂. (A.5)

Combining the integrals (A.3), (A.4) and (A.5), dividing by ρ, and taking the limit as δx→ 0,

we arrive at the equation of (A.6b)

∂(hu)
∂t

+
∂(u2h+ gh2/2)

∂x
+
∂(huv)
∂y

= −gh ∂b
∂x
.
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Momentum: y-direction

The derivation for the y-component uses the same arguments, except that we now interchange

x with y and u with v. Alternatively, rotate the (x, y) axis by π/2. Note that in performing

this rotation of axes, the new y axis will be pointing in the opposite direction from the direction

of the original y axis, but since v was measured as positive in the original y axis-direction, we

change the sign of both y and v so the equation remains invariant.

Making the same analysis as for the x-direction equation, we find the third governing equa-

tion, as stated in (A.6c):

∂(hv)
∂t

+
∂(huv)
∂x

+
∂(hv2 + gh2/2)

∂y
= −gh ∂b

∂y
.

A.3 The governing equations

We have shown from first principles how mass and momentum are conserved in shallow water,

hence derived the shallow water equations. In conservation form, the shallow water equations

are

∂h

∂t
+
∂(hu)
∂x

+
∂(hv)
∂y

= 0; (A.6a)

∂(hu)
∂t

+
∂(hu2 + gh2/2)

∂x
+
∂(huv)
∂y

= −gh ∂b
∂x

; (A.6b)

∂(hv)
∂t

+
∂(huv)
∂x

+
∂(hv2 + gh2/2)

∂y
= −gh ∂b

∂y
. (A.6c)

Because we can write these equations in vector form as

∂

∂t

 h
hu
hv

+
∂

∂x

 hu
hu2 + g 1

2h
huv

+
∂

∂y

 hv
huv

hv2 + g 1
2h

 = s,

we call this a conservation form for the PDEs, and the conservation variables are (h, hu, hv) =

(q1, q2, q3). Alternatively, we may write the above in non-conserved variables (h, u, v) in vector

form as

ht + u · ∇h+ h∇ · u = 0, (A.7a)

ut + (u · ∇)u + g∇h = ŝ, (A.7b)

where subscripts denote partial differentiation with respect to that variable and the vector ŝ is

the vector of source terms in the momentum equations.
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Mathematical analysis

B.1 Riemann invariants

Consider a general n× n system of the form

A
∂u
∂x

+B
∂u
∂y

= c, (B.1)

together with initial data u = u0(s), x = x0(s), y = y0(s) for some parameter s1 6 s 6 s2.

From the boundary data, u̇0 = ẋ0ux+ ẏ0uy (a dot ˙ represents differentiation w.r.t. s, subscripts

represent differentiation w.r.t. variables x or y). The partial derivatives of the system (B.1) are

uniquely defined provided

∣∣∣∣ A B
Iẋ0 Iẏ0

∣∣∣∣ 6= 0

⇒ |B − λiA| 6= 0, where ẏ0 = λiẋ0.

Characteristic curves are defined to be curves on which solutions for ux, uy of (B.1) and the

initial data may not be uniquely found, that is |B − λiA| = 0, where dy/dx = λi.

Our PDE (B.1) is said to be hyperbolic when there are real and distinct eigenvalues. The

system (B.1) has a unique left eigenvector lTi associated with each eigenvalue such that

lTi (B − λiA) = 0T, i.e. lTi B = λilTi A.
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Left multiplication of (B.1) by the ith eigenvector yields

lTi

(
A
∂u
∂x

+B
∂u
∂y

)
= lTi c

lTi A
(
∂u
∂x

+ λi
∂u
∂y

)
= lTi c.

Now consider differentiation alng a characteristic curve C(τ). By the chain rule u̇ = ẋiux +
ẏiuy = ẋi(ux + λiuy), where a dot signifies differentiation w.r.t. τ , thus

lTi A
(
∂u
∂x

+
dy
dx

∂u
∂y

)
= lTi cẋ

lTi Au̇ = lTi cẋ.

What the above manipulation tells us is the following: if it is possible to arrange the PDE to

the form, along the curve C(τ)

dR

dτ
=

dx
dτ

dR

dx
= 0,

for some function R, then we say that R is a Riemann invariant 1 for this curve C(τ). Therefore,

if

lTi A
du
dτ

= lTi c (B.2)

can be integrated along such a curve C(τ), this is equivalent to finding such an R.

B.1.1 Linearisation

Linearisation is a standard technique used to approximate a system in a small neighbourhood,

so that more complicated parts can be ignored. In this section we consider a wave of very small

amplitude. Then the equations yield the well-known wave equation, which has solutions that

are valid for small disturbances in the surface of the water.

We assume that there is no current in the water, but that there are waves of small amplitude

(size h0, about 5% of the depth of the water), so that

u(x, y, t) = U + u0(x, y, t) where U = 0, u0 = O(ε) for ε� 1,

v(x, y, t) = V + v0(x, y, t) where V = 0, v0 = O(ε) for ε� 1,

h(x, y, t) = H + h0(x, y, t) where H = −b, h0 = η = O(ε).

1. Equivalently, if dR/dx = c for some constant c, we may write d(R− cx)/dx = 0 then R− cx is a Riemann

invariant.
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The shallow water equations in vector calculus notation, with u = (u, v), are

ht + u · ∇h+ h∇ · u = 0, (B.3a)

ut + u · ∇u + g∇h = −g∇b. (B.3b)

Substitute the linearised form in to (B.3), noting that Ht = 0, and neglecting the nonlinear

advection terms u0 · ∇(·), to obtain

h0t + (H + h0)∇ · u0 = 0, (B.4a)

u0t + g∇(H + h0) = g∇H. (B.4b)

Differentiate (B.4a) with respect to t, to obtain h0tt = −h0t∇ · u0 − (H + h0)∇ · u0t. Then use

the fact that u0t = −g∇h0 to obtain h0tt = −h0t∇·u0 + g(H +h0)∇2h0. Neglecting quadratic

terms h0t∇ · u0 and h0∇2h0, we arrive at the wave equation

h0tt = gH∇2h0.

Suppose the initial data for the 1D problem is given as u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), then

we obtain d’Alembert’s formula for the one dimensional wave equation, with c =
√
gH,

u(x, t) =
1
2

[ϕ(x− ct) + ϕ(x+ ct)] +
1
2c

∫ x+ct

x−ct
ψ(ξ) dξ.

Hence we have shown that, for a wave of small amplitude with respect to the depth of the

water, the wave follows the model of the well-known wave equation.
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APPENDIX C

Asymptotic analysis

C.1 Green’s functions for a circular domain

We use the method of images to construct a Green’s function for a circular domain. The domain

D is defined by D = {r 6 r0 : 0 6 r 6 r0}, with ∂D2, the inlet/outlet, at (r0 cos θ, r0 sin θ) such

that θ ∈ (−β, β) for some small value of β, and ∂D1 the rest of the boundary. The Green’s

function G must satisfy

i) ∇2G(x, ξ) = −δ(x− ξ) for (r, θ) ∈ D,

ii) ∂G/∂n = 0 for (r, θ) ∈ ∂D1 ∪ ∂D2,

i.e. it has Neumann boundary conditions.

Let x = (r, θ) ∈ D, ξ = (ρ, θ̂) ∈ D be points inside D, and ξ∗ = (ρ∗, θ̂∗) /∈ D be such that

ξ∗ = ξ/|ξ∗| so that it is outside the domain. Then define distances R2 and R∗2 as

R2 = |x− ξ|2 = r2 + ρ2 − 2rρ cos(θ − θ̂),

R∗2 = |x− ξ∗|2 = r2 +
1
ρ2
− 2

r

ρ
cos(θ − θ̂).

The Green’s function that satisfies ∇2G = −δ in D and ∂G/∂n = 0 in ∂D1 ∪ ∂D2 is

∂G(x, ξ)
∂n

= − 1
2π

ln
(
R∗

R

)
= − 1

4π
ln


(
r2 + 1

ρ2 − 2r 1
ρ cos(θ − θ̂)

)
r2 + ρ2 − 2rρ cos(θ − θ̂)

 . (C.1)
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Thus for the flux of the shallow water system with source terms we have

p = (p, q) = ε∇ψ1 + ε2∇ψ2 + O(ε4),

where ∇ is the usual grad in polar coordinates ∇ψ = ∂ψ
∂r er + ∂ψ

∂θ eθ, and the flux functions are

ψ1 =
∫
D

Gh1t dV +
∫
∂D2

Gk1 dS = sin(t)
∫ 1

r=0

∫ 2π

θ=0

Grdrdθ +
∫ 3π/2+β

3π/2−β
Gk1 dθ

ψ2 =
∫
∂D2

Gk2 dS =
∫ 3π/2+β

3π/2−β
Gk2 dθ

with

k1 = −u1b, k2 = u1φ1.

For the surface elevation for the shallow water equations with source terms we have

h = −b+ εφ1 + O(ε4)

where b represents the bottom slope and φ1 represents the forcing of the tide.

C.2 Stratified shallow water

The water in a bay may become stratified through temperature or density. Variations in

temperature are likely to be negligible in shallow water, but may be seen in a deep lake, sea or

in a dam.

Stratification of the fluid via density differences in a bay of shallow water may occur in a

number of natural ways – through melting icesheets in spring, through freshwater rivers entering

saltier oceans, through tidal exchanges between seas. This mechanism is likely to result in a

stably stratified fluid with no vertical mixing. An unstably stratified fluid can occur when there

is instability even without flow, for example in bays with a high evaporation rate such as the

Mediterranean Sea.

The stratified shallow water problem is mathematically interesting from the point of view

that the system no longer has easily-obtainable eigenvalues. For this reason, Riemann invariants

cannot be found as easily as in the single layer case, and so analytical solutions are more elusive
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Figure C.1: Schematic of geometry of a bay of stratified water.

even in simple cases e.g. when there are no shocks. Baines (1995) gives a comprehensive

mathematical treatment including waves in two-layer fluids and flow over irregular (2D and

3D) topography.

In this section we consider a domain where fluid is horizontally stratified due to differences

in density.

C.2.1 Analysis

Let the geometry of the bay be as shown in Figure C.1. The depth of the upper layer is denoted

h, with velocities u, v in the x- and y-directions respectively (the flux vector p = (hu, hv)),

and the density of the upper layer is denoted ρ1. In the upper layer, let the depth be denoted

by H, the x- and y-velocities by U and V (the flux vector by P = (HU, HV )), and the density

by ρ2.

219



APPENDIX C. ASYMPTOTIC ANALYSIS

The governing equations are

ht +∇ · p = 0, (C.2a)

Ht +∇ ·P = 0, (C.2b)

pt +∇ ·
(

p2

h

)
+
(
∂

∂y
,
∂

∂x

)(pq
h

)
+ gh∇(h+H) = −gh∇b, (C.2c)

Pt +∇ ·
(

P2

H

)
+
(
∂

∂y
,
∂

∂x

)(
PQ

H

)
+ gH∇(γh+H) = −gH∇b, (C.2d)

where γ = ρ1/ρ2. Making the assumption that γ ≈ 1 is known as the Boussinesq approximation.

Eigenvalues in two dimensions

The eigenvalues of this system are not easily determined analytically. However, it is interesting

to see how far it is possible to take the analysis, to see how far similarities go between the

stratified and unstratified systems. To determine the eigenvalues of (C.2), write the system in

matrix form as follows

qt +Aqx +Bqy = s, (C.3)

where

q =


h
H
hu
HU
hv
HV

 , A =


0 0 1 0 0 0
0 0 0 1 0 0

gh− u2 gh 2u 0 0 0
γgH gH − U2 0 2U 0 0
−uv 0 v 0 u 0

0 −UV 0 V 0 U

 ,

B =


0 0 0 0 1 0
0 0 0 0 0 1
−uv 0 v 0 u 0

0 −UV 0 V 0 U
gh− v2 gh 0 0 2v 0
γgH gH − V 2 0 0 0 2V

 , s =


0
0

ghbx
gHbx
ghby
gHby

 .

Choose a normal vector n = (nx, ny) such that n2
x + n2

y = 1, and calculate the eigenvectors

λi for i = 1, 2, . . . , 6 of nxA+ nyB such that |(nxA+ nyB)− λi| = 0

(λi − (nxu+ nyv))(λi − (nxU + nyV ))
4∑
k=0

akλ
k
i = 0 (C.4)
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where the ak are

a4 = 1

a3 = −4 (nxū+ ny v̄)

a2 = 4(nxū+ ny v̄)2 + 2(nxu+ nyv)(nxU + nyV )− g(h+H)

a1 = −4 (nxū+ ny v̄) (nxu+ nyv)(nxU + nyV ) + 2g(h+H)(nxû+ ny v̂)

a0 = (nxu+ nyv)2(nxU + nyV )2 − gh(nxU + nyV )− gH(nxu+ nyv)− g2(1− γ)hH

= −(1− γ)g2hH(1−G2),

and ū = 1
2 (u+ U), v̄ = 1

2 (v + V ), û = 1
(h+H) (hU +Hu), v̂ = 1

(h+H) (hV +Hv), and where the

composite Froude number (Lawrence (1981), and Armi (1986)) is

G2 =
(nxu+ nyv)2

g(1− γ)h
+

(nxU + nyV )2

g(1− γ)H
+

(nxu+ nyv)2(nxU + nyV )2

g2(1− γ)hH
.

It can be seen how these coefficients make (C.4) reduce to the eigenvalues for the unstratified

system when variables in the top and bottom layers are equal.

Two of the roots of (C.4) are λi = n · u, n ·U, and the remaining four are found by solving

the quartic polynomial
∑4
k=0 akλ

k
i = 0. Since this quartic has in general no analytic solutions,

we look at some methods for approximating the eigenvalues.

Operator splitting Salmon (2002) has treated the 1D stratified shallow water equations by

‘splitting’ the flux matrix to be a sum of one containing advective terms, and the other

corresponding to a linearisation about a steady state. We extend the idea to two spatial

dimensions by writing (C.3) as

qt + (A1 +A2)qx + (B1 +B2)qy = s,
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with

nxA1 + nyB1 =


n · u 0 0 0 0 0

0 n · U 0 0 0 0
0 0 n · u 0 0 0
0 0 0 n · U 0 0
0 0 0 0 n · u 0
0 0 0 0 0 n · U

 ,

nxA2 + nyB2 =


0 0 0 0 nxg nxg
0 0 0 0 nxγg nxg
0 0 0 0 nyg nyg
0 0 0 0 nyγg nyg
nxh 0 nyh 0 0 0

0 nxH 0 nyH 0 0


The eigenvalues of nxA1 + nyB1 are easily seen to be n · u and n · U, which are real,

but not necessarily distinct. The eigenvalues of nxA2 + nyB2 are the λi that satisfy

|(nxA2 + nyB2)− λi| = 0, so that

λ2
i = 0

λ2
i =

1
2
g
(
h+H(n2

x + γn2
y)
)
± 1

2
g

√(
h+H(n2

x + γn2
y)
)2 − 4hH(1− γ)(n2

x − n2
y),

which agrees with the result for the one-dimensional case from Salmon (2002), where

λ2 = 1
2g(h+H)± 1

2g
√

(h+H)2 − 4hH(1− γ).

Assume u = U , v = V Under the assumption that the velocities in the upper and lower layers

were equal, Lawrence (1981) gave exact solutions to the one-dimensional system. Using

that idea, putting u = U and v = V in (C.4), we obtain the eigenvalues for the corre-

sponding 2D system

λ±E = 1
2 ū±

√√√√ 1
2g(h+H)

(
1 +

√
1− 4(1− γ)hH

(h+H)2

)

λ±I = 1
2 ū±

√√√√ 1
2g(h+H)

(
1−

√
1− 4(1− γ)hH

(h+H)2

)
,

where ū =
(

1
2 (u+ U), 1

2 (v + V )
)
. The two eigenvalues λ±E correspond to external (free-

surface) wave motions, and the λ±I correspond to internal (interfacial) wave motions

(Lawrence (1981)).
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Riemann2D A numerical method for calculating the eigenvalues is needed if Riemann2D is to

be extended to include a stratified model. Muñoz-Ruiz et al. (2000) have used a Newton-

Raphson method to numerically solve for the eigenvalues, which could be programmed into

a new extension for Riemann2D . A library exists called JAMA (Java Matrix package),

developed by Cleve Moler 1 and available to download freely. This package is imported into

the required classes in Riemann2D and all its functionality – such as finding eigenvalues,

eigenvectors, decomposing a matrix etc – are available to the programmer. This is in fact

a good demonstration of the advantages of OOP – it can be very easy to develop packages

in Java that fit in with existing code to extend its usability.

C.2.2 Asymptotic analysis for stratified flow

Nondimensionalisation

We work with the assumption that the order of magnitude of the velocities are the same in

each layer, and each layer is the same order of magnitude in depth. In the same way as for the

unstratified model, i.e. using the nondimensional variables

h,H = Dh̃, H̃, u, U = U∗ũ, Ũ , v, V = U∗ṽ, Ṽ , t = T t̃,

x = U∗T x̃, y = U∗T ỹ, b = Db̃, (C.5)

we find a Froude number Fr2 = gD/U∗, where U∗ is a typical size of the velocities u, v, U and

V . Then we exploit the smallness of the Froude number to allow asymptotic analysis to be

carried out.

The nondimensionalised, two-dimensional shallow water equations with no source terms are

ht +∇ · p = 0 (C.6a)

Ht +∇ ·P = 0 (C.6b)

ε4

(
pt +∇ ·

(
p2

h

)
+
(
∂

∂y
,
∂

∂x

)(pq
h

))
+ h∇(h+H) = −h∇b (C.6c)

ε4

(
Pt +∇ ·

(
P2

H

)
+
(
∂

∂y
,
∂

∂x

)(
PQ

H

))
+H∇(γh+H) = −H∇b. (C.6d)

1. http://math.nist.gov/javanumerics/jama/
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Boundary conditions

Let the domain D have boundary ∂D = ∂D1∪∂D2∪∂D3 where ∂D1 represents the wall of the

bay, ∂D2 is the ocean boundary, and ∂D3 is the river boundary. We assume no flow through

the wall of the bay so that

p · n = 0 and P · n = 0 for x, y ∈ ∂D1. (C.7)

At the ocean boundary, seawater enters the bay, and since it is more dense than the freshwater,

it sits underneath. Assume the seawater enters in a tidal fashion, and that the tide alters the

water-level by an amount O(ε). Assume that flux is specified across this boundary the depth

of the lower layer of water is

H(x, y, t) = −b(x, y) + b∗ + εΦ1(t), (C.8a)

P(x, y, t) · n = K(x, y, t) = K0(x, y, t) + εK1(x, y, t) + . . . (C.8b)

p(x, y, t) · n = 0 for x, y,∈ ∂D2 (C.8c)

where Φ1(t) is some function that represents the periodic nature of the tide, and K(x, y, t) =

K0 +εK1 + . . . is a flux function in which we have K0 = −U0(b− b∗), K1 = U1(b− b∗) +U0Φ1,

K2 = U1Φ1, and K3 = 0, according to (3.23).

At the river mouth, the amount of water being contributed to the bay is assumed to be

smaller than the amount brought by the ocean.

h(x, y, t) = −b∗ + ε2φ2 (C.9a)

p(x, y, t) · n = k(x, y, t) = k0 + εk1 + . . . (C.9b)

P(x, y, t) · n = 0 for x, y,∈ ∂D3, (C.9c)

where φ2 is a function of time that represents the inflow/outflow of water and that is not

necessarily periodic, and k(x, y, t) = k0 + εk1 + . . . is a flux function with k0 = −u0b∗, k1 =

−u1b∗, k2 = u0φ2 − u2b∗, and k3 = 0.

Let h = h0 + εh1 + . . ., u = u0 + εu1 + . . . and expand system (C.6) in terms of ε. Group

terms in orders of ε and consider each in turn.
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Leading order

The momentum equations (C.6c) and (C.6d) are

h0∇(h0 +H0 + b) = 0, and H0∇(γh0 +H0 + b) = 0.

For h0 6= 0, H0 6= 0, we have

h0 +H0 + b = φ0(t), and γh0 +H0 + b = Φ0(t).

The boundary conditions on h (C.9a) and H (C.8a) say that at leading order h0 = −b∗ and

H0 = −b+ b∗ on both ∂D2 and ∂D3. This implies φ0 = 0 and Φ0 = (1− γ)b∗, so we must have

h0 = −b∗, H0 = −b+ b∗ everywhere.

From the equations for mass (C.6a) and (C.6b) we have

∇ · p0 = −h0t, and ∇ ·P0 = −H0t,

then define p0 = ∇A0, P0 = ∇B0, so

∇2A0 = 0, and ∇2B0 = 0,

with boundary conditions

∂A0

∂n
= 0 on ∂D1, ∂D2,

∂A0

∂n
= k0 on ∂D3, and

∂B0

∂n
= 0 on ∂D1, ∂D3,

∂B0

∂n
= K0 on ∂D2.

But by the Hopf maximum principle, as explained in Chapter 3, we have that flux is zero in

upper and lower layers, i.e.

p0 = (p0, q0) = 0, and P0 = (P0, Q0) = 0.

Order ε

Since ∇(h0 +H0 + b) = 0 = ∇(γh0 +H0 + b), the momentum equations (C.6c) and (C.6d) at

order ε are

h0∇(h1 +H1) = 0, and H0∇(γh1 +H1) = 0.
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For h0 6= 0, H0 6= 0,

h1 +H1 = φ1(t), and γh1 +H1 = Φ1(t)

for some unknown functions φ1 and Φ1. At the ocean boundary ∂D2, h1 = 0 and H1 = Φ1(t),

where Φ1(t) is a known function. Hence h1 = 0 and H1 = Φ1(t) everywhere.

From the equations for conservation of mass (C.6a) and (C.6b),

∇ · p1 = −h1t, and ∇ ·P1 = −H1t

∇2A1 = 0, and ∇2B1 = −∂Φ1

∂t
,

where p1 = ∇A1, P1 = ∇B1, with boundary conditions

∂A1

∂n
= 0 on ∂D1, ∂D2,

∂A1

∂n
= k1 on ∂D3 and

∂B1

∂n
= 0 on ∂D1, ∂D3,

∂B1

∂n
= K1 on ∂D2.

These can be solved by looking for a Green’s function, G, as before that satisfies

i) ∇2G = −δ(x, ξ) on D

ii) ∂G/∂n = 0 on ∂D.

Using Green’s second identity,

A1(x) =
∫
∂D3

G(x, ξ)k1 dS, and B1(x) =
∫
D

G(x, ξ)H1t dV +
∫
∂D2

G(x, ξ)K1 dS.

Order ε2

Since ∇(h0 + H0 + b) = 0 = ∇(γh0 + H0 + b) and h0 = −b∗, h1 = 0 we have the momentum

equations (C.6c) and (C.6d) at O(ε2)

h0∇(h2 +H2) = 0, and H0∇(γh2 +H2) = 0.

Then for h0 6= 0, H0 6= 0, we obtain

h2 +H2 = φ2(t), and γh2 +H2 = Φ2(t).
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At the river inlet ∂D3, the boundary conditions (C.9a) are h2 = φ2(t), H2 = 0. Thus h2 =

φ2 = Φ2/γ. Now from conservation of mass (C.6a) and (C.6b)

∇2A2 = −h2t, and ∇2B2 = 0,

where ∇A2 = (p2, q2), ∇B2 = (P2, Q2). Together with boundary conditions ∂A2/∂n = 0 on

∂D1 ∪ ∂D2 and ∂A2/∂n = k2 on ∂D3 and ∂B2/∂n = 0 on ∂D1 ∪ ∂D2 ∪ ∂D3, we use Green’s

identities to obtain

A2 =
∫
D

Gh2t dV +
∫
∂D3

Gk2 dS, and B2 =
∫
∂D2

K2GdS.

Order ε3

The equations of momentum (C.6c) and (C.6d) at O(ε3) reduce to

h0∇(h3 +H3) = 0, and H0∇(γh3 +H3) = 0.

For h0 = 0 = H0, we can write

∇(h3 +H3) = 0, and ∇(γh3 +H3) = 0

h3 +H3 = φ3 and γh3 +H3 = Φ3.

The boundary conditions on h3, H3 are h3 = 0 = H3 on ∂D, i.e. on all of the boundary.

Therefore h3 = 0, H3 = 0 everywhere.

Now from the equations for conservation of mass (C.6a) and (C.6b) we find that

∇2A3 = 0, and ∇2B3 = 0.

Solve these equations by looking for a Green’s function G3 and using boundary conditions

∂A3/∂n = 0 on ∂D and ∂B3/∂n = 0 on ∂D, so we obtain

A3 =
∫
∂D3

k3GdV, and B3 =
∫
∂D2

K3GdV.

But since k3 = 0 = K3, we have

p3 = 0, and P3 = 0.
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Solution up to order ε3

In total, the solution up to order ε3 is the following

h = −b∗ + ε2φ2(t) + O(ε4)

H = −b+ b∗ + εφ1(t) + O(ε4)

p = ε∇
∫
∂D3

Gk1 dS + ε2∇
(∫

D

Gh2t dV +
∫
∂D3

Gk2 dS
)

+ O(ε4)

P = ε∇
∫
D

GH1t dV + ε2∇
∫
∂D2

GK2 dS + O(ε4).

It can be seen how similar these solutions are to the single-layer solutions.
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Eclipse

Eclipse is an IDE (integrated development system) that has versions available for Java, C++

and C. It is free to download from the internet from www.eclipse.org. The alternative to using

an IDE is using a text editor like Notepad or Gedit and saving the file with a .java extension

and running the code at the command line. Eclipse has many features that makes programming

much easier than this option.

Auto-complete allows you to fill in the word you started typing with valid options. This

reduces the risk of writing code that will not compile.

Error highlighting underlines any code that will not compile with a red line and a red cross

in the margin, so that the errors can be easily located and resolved before compiling the

code.

Field linking highlights all instances of a chosen field within the open class, making it easy

to locate a variable that might be dealt with differently in another part of the class and

so reducing conflicts.

Debug mode allows breakpoints to be set and goes through the code sequentially. This allows

you to see what parts of the code are not being reached. When the mouse is held over a

variable during debug, a box is displayed that contains the information of that variable

at that time.
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History view means you can compare the current version of the class with another version

that is automatically saved by Eclipse. The differences are highlighted and there is a

restore button that automatically takes the current version back to the programmer’s

selected version. This saves time and is more accurate than trying to remember what was

written and compiled well a few days ago and restore it by memory.

Team repository allows members of the team to submit new improved code and check out

new versions of the code that other team members have submitted. It is a way of commu-

nicating, which is essential when a group of two or more people are working on a relatively

complex piece of code.

Eclipse is user-friendly and has many advantages. There are many help pages on the internet

and Eclipse itself has some useful ‘getting started’ tutorials. There are other IDEs in use such

as JBuilder and NetBeans, more information on which can be found on the world wide web.
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