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Abstract  
This paper explores the ability of factor models to predict the dynamics of US and UK interest 
rate swap spreads within a linear and a non-linear framework.  We reject linearity for the US 
and UK swap spreads in favour of a regime-switching smooth transition vector autoregressive 
(STVAR) model, where the switching between regimes is controlled by the slope of the US 
term structure of interest rates.  We compare the ability of the STVAR model to predict swap 
spreads with that of a non-linear nearest-neighbours model as well as that of linear AR and 
VAR models.  We find some evidence that the non-linear models predict better than the linear 
ones.  At short horizons, the nearest-neighbours (NN) model predicts better than the STVAR 
model US swap spreads in periods of increasing risk conditions and UK swap spreads in periods 
of decreasing risk conditions. At long horizons, the STVAR model increases its forecasting 
ability over the linear models, whereas the NN model does not outperform the rest of the 
models. 
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1. Introduction 

 

The nature and identity of the risk factors that determine the spreads between the fixed-for-
floating interest rate swaps and the underlying government bond yields have been examined by 
a number of researchers in both univariate and multivariate frameworks.  Sun, Sundaresan and 
Wang (1993), Brown, Harlow and Smith (1994), Minton (1997) and Eom, Subrahmanyam and 
Uno (2001) examined whether factors such as the default-free interest rates and proxies for 
credit risk, liquidity risk and hedging costs can, within a univariate regression framework, 
account for the dynamics of interest rate swap spreads.  Duffie and Singleton (1997) and 
Lekkos and Milas (2001) have extended the analysis of swap spreads to a multivariate vector 
autoregressive (VAR) framework.  Duffie and Singleton (1997) find that default risk is 
significant in affecting longer maturity swap spreads.  Lekkos and Milas (2001) examine the 
ability of factors such as the level, volatility and slope of the zero-coupon government bond 
yield curve, the TED spread (the difference between the 3-month LIBOR and the 3-month T-
bill rate) and the corporate bond spread to describe the term structure of the US and UK swap 
spreads.  They find that the slope of the term structure has a significant countercyclical effect 
across maturities, whereas the TED and corporate spreads play a smaller role and their 
significance varies across maturities.  
 
More recently, Lekkos and Milas (2004) and In (2005) examine in detail the issue of 
international linkages between interest rate swap markets.1  These links can be due to either 
common variations in the business cycles across economies or to coordinated arbitrage and 
hedging activities in the two markets.2  Lekkos and Milas (2004) employ non-linear smooth 
transition vector autoregressive (STVAR) models to show that the slope of the US term 
structure affects significantly swap spread dynamics in the UK.  Similar findings are reported 
by In (2005), who employs multivariate VAR-EGARCH models to show that the slope of the 
US term structure has a significant effect on the Japanese and U.K. swap markets. 
 
Contrary to this plethora of studies on the identity of the factors affecting the dynamics of swap 
spreads, no previous study to our knowledge has attempted to forecast swap spreads out-of-
sample.  Our research uses a number of factors and functional forms, identified by previous 
studies, not to investigate the ability of these models to describe the in-sample behaviour of 
swap spreads, but to explore their out-of-sample forecasting performance.  We adopt an 
international setting, where the term structures of the US and UK interest rate swap  spreads 
depend upon the corporate bond spreads of the two countries, the interest rate differentials 
between the US and UK government bonds and the slopes (10 year rate minus 3-month T-Bill 
rate) of the term structures of the zero-coupon bond yields of the two countries.  The corporate 
bond spreads are used as proxies for credit risk.  The interest rate differentials are used to 
provide evidence of arbitrage trades between the two markets.  The slopes of the term structure 
can be used to test whether the option to default is priced in swap markets; increases in the 
long-term interest rates imply that, during the first stages of the swap contract, the fixed rate 
will be higher than the expected short-term LIBOR. Therefore, the fixed-rate payer will be 

                                                 
1 Lekkos and Milas (2001) have provided some preliminary evidence on the impact of US factors on UK swap 
markets and Eom, Subrahmanyam and Uno (2001) on the links between US and Japanese swap markets. Fehle 
(2000) examines the impact that US swap spreads have on British, German, French, Japanese, Spanish and Dutch 
swap markets. 
2 Lumsdaine and Prasad (1997) show that business cycles in each economy are not independent; instead they are 
affected, in different degrees, by a "world business cycle".  Harvey (1991) finds that the correlation between the 
world and US business cycles is 87%. 
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exposed to the possibility of default of the floating-rate payer during the later stages of the 
contract. This exposure is priced in a higher swap spread.  
 
We assess the ability of these factors to forecast the US and UK interest rate swap spreads using 
both linear and non-linear models.  Our linear specification consists of a VAR model, while the 
non-linear model we employ is a STVAR mode, which is an extension of the linear VAR to a 
regime switching framework, where the transition from one regime to the other occurs in a 
smooth way.  The switching between regimes is controlled by an observed state variable.  This 
feature of the STVAR model, that the transition from one regime to the other is a function of the 
underlying variables, allows us to test the ability of the different economic variables to best 
describe the non-linear dynamics of the term structure swap spreads.3   
 
In order to assess whether the risk factors included and the functional forms assumed have any 
incremental value for forecasting the evolution of interest rate swap spreads, we also include in 
our forecasting horserace two more parsimonious and less structural models, a simple 
autoregressive model (AR) and a non-linear, non-parametric nearest neighbours model (NN).  
Contrary to the other models, which rely on global information in order to predict swap spreads, 
the NN model is a non-parametric local information model that uses a number of nearest 
neighbours to compute a weighted average estimate of swap spreads.4  The added flexibility of 
the NN models to capture the salient features of the data without the restrictions of a particular 
factor structure and functional form will provide a robust challenge to the performance and 
practical applications of the factor models.  Our results indicate that, at short forecasting 
horizons, the flexibility of the atheoretic NN models is an advantage over all factor models and 
the AR specifications.  However, the performance of the NN models decays rather quickly with 
the forecasting horizon.  For longer horizon forecasts the STVAR specification provides the 
best forecasts, while the NN models ranks last. 
 
The structure of the paper is organised as follows.  The next section describes the data. Sections 
3 and 4 discuss the STVAR and NN models, respectively. Section 5 reports the forecasting 
results.  Finally, section 6 concludes. 
 
2. The data 
 
The data set consists of weekly observations from June 1991 to June 2001.  We proxy the slope 
of the term structure of interest rates (denoted by USslope and UKslope, respectively) with the 
difference between the yields of the 10-year default-free zero-coupon bonds and the 3-month T-
Bill rates.  The US and UK zero-coupon yields are provided by the Bank of England.  They are 
estimated by fitting a set of cubic splines to the prices of observed coupon-paying government 
bonds.  The quality of the fit is controlled by a penalty function that restricts the curvature of the 
implied forward rates (see Anderson and Sleath, 1999).  Zero-coupon yields are also used to 
estimate the difference between the 3-year, 7-year and 10-year US and UK interest rates, 
denoted by dif_3, dif_7 and dif_10, respectively.  The US corporate spreads (denoted by 
UScorp) are estimated as the difference between Moody's AAA corporate bond yield index and 
the yields of the 10-year Treasury bonds.  The UK corporate spread (denoted by UKcorp) is 

                                                 
3 Among other studies, Ang and Bekaert (2002), Bekaert, Hodrick and Marshall (2001), Hamilton (1988) and Gray 
(1996) use Hamilton’s (1989) Markov regime switching (MRS) model to explain the dynamics of short and long-
term interest rates. In contrast to STVAR models, MRS models assume that an unobserved Markov state variable 
drives the switching between regimes. 
4 Recent applications of NN models in finance include, e.g., Diebold and Nason (1990), Meese and Rose (1990), 
Gençay (1999), Jaditz and Riddick (2000), and Bajo-Rubio, Sosvilla-Rivero and Fernándes-Rodríguez (2001).  
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estimated as the difference between the corporate bond yield index provided by Datastream and 
the 10-year UK government bond yield.  Finally, the US and UK swap spreads (denoted by 
USsp_i and UKsp_i, respectively, with i = 3, 7 and 10 years) are estimated as the difference 
between the bootstrapped5 zero-coupon swap rates and the corresponding maturity default-free 
zero-coupon rates. 
 
Figure 1 plots the US and UK swap spreads across maturities, whereas Table 1 reports the 
descriptive statistics for the US and UK swap spreads and the relevant risk factors.  In both 
markets, swap spreads increase, on average, with maturity.  Same maturity US and UK swap 
spreads are roughly equal but UK swap spreads are more volatile.  The UK slope is also more 
volatile compared to the US slope.  This can be explained by the fact that UK rates are, on 
average, higher than US rates over the sample period.  Finally, the mean spread between US 
corporate and US treasury yields is 119 basis points and the corresponding UK corporate spread 
is 92 basis points.  Preliminary analysis using Augmented Dickey-Fuller tests suggested that 
although all risk factors are stationary, the swap spreads are only borderline stationary. In line 
with earlier research in the area (e.g., Duffie and Singleton, 1997, and Lekkos and Milas, 2004), 
we proceed by treating the swap spreads as stationary series. 
 
3. The Smooth Transition Vector Autoregressive (STVAR) model 
 
3.1 The theoretical STVAR model 
 
We define a vector of state variables; one for each maturity we examine.  For each maturity, this 
vector contains the relevant swap spreads as well as the US and UK term structure slopes, the 
difference between US and UK interest rates and the US and UK corporate spreads.  We focus 
on the 3-year, 7-year and 10-year maturity swap spreads.  For each of these maturities the 
vector of state variables is given by: 
 

ty  = [USslope, UKslope, dif_i, UScorp, UKcorp, USsp_i, UKsp_i]′   (1) 
 
where i = 3, 7 and 10 years.  The corresponding STVAR model can be specified as: 
 
 
 
 
 
 
 
where yt is the (k x 1) vector defined above, Φ1,j and Φ2,j, j = 1,…, p, are (k x k) matrices, µ1 and 
µ2 are ( 1×k ) vectors, and εt ~ iid (0, Σ).  G(st) is the transition function that controls the regime 
switching dynamics of yt.  The STVAR model is a regime switching model where the transition 
between the two alternative regimes is controlled by the transition function G(.), which is 
continuous and bounded between 0 and 1.  Values of zero identify one regime and values of 
unity identify the alternative and the transition between the two regimes occurs in a smooth 
way, i.e., the model does not allow jumps from one regime to the other.  The regime that occurs 
at any time t is not probabilistic.  Instead, it is determined by the transition variable ts  and the 

                                                 
5 Bootstrapping is a particular methodology for extracting zero-coupon rates from interest rate swaps that trade at 
par.  The transformation of the swap rates from par to zero-coupon is necessary in order for the swap rates to be 
comparable to government bond yields.  For more details on the bootstrapping methodology see Appendix 1. 
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functional form of the transition function )( tsG .  We focus our attention on the ‘logistic’ 
function:  
 
      
 
where σ (st) is the sample standard deviation of st.  Model (3) allows for symmetric adjustment 
to positive and negative deviations of st relative to c. 6 The parameter c is the threshold between 
the two regimes, in the sense that G(st) changes monotonically from 0 to 1 as st increases, and 
takes the value of G(st) = 0.5 at cst = .  The parameter γ determines the smoothness of the 
change in the value of the logistic function and thus the speed of the transition from one regime 
to the other.  When γ → 0, the ‘logistic’ function equals a constant (i.e., 0.5), and when 
γ → + ∞, the transition from G(st) = 0 to G(st) = 1 is almost instantaneous at st = c.   
 
 
3.2 Linearity testing in a STVAR model 
 
Testing for linearity in the STVAR model (2) using the ‘logistic’ transition model (3) is 
equivalent to testing the null hypothesis H0: γ = 0 against the alternative H1: γ > 0.  To do this, 
define  wt = (y1,t-1,…, y1,t-p, y2,t-1,…, y2,t-p,…, yk,t-1,…, yk,t-p)  and assume that the transition 
variable (denoted by st) is known. Following Luukkonen, Saikkonen and Teräsvirta (1988), 
linearity testing equation by equation is based on a first-order Taylor approximation of the 

transition function around γ = 0.  We first estimate ∑
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Denote the estimated residuals by vit.  A Lagrange Multiplier (LM) test can be constructed as: 
LM = T (SSR0 – SSR1) / SSR0, where ∑= 2

0 iteSSR and ∑= 2
1 itvSSR .  Under the null hypothesis 

of linearity the LM statistic is distributed as a χ2(pk).  In small samples, the χ2 test may be 
heavily oversized.  Therefore, it is preferable to use the equivalent F version of the LM test 
statistic, which is given by F = [(SSR0 – SSR1) / pk] / [SSR1 / (T – (2pk + 1))].  It is well known 
that neglected heteroskedasticity may lead to spurious rejection of linearity.  To tackle this 
problem, we use Wooldridge’s (1990, 1991) heteroskedasticity-robust versions of the tests. 
These tests can be used without having to specify the exact form of heteroskedasticity (see 
Granger and Teräsvirta, 1993).  To compute a heteroskedasticity robust version of the LM test 

statistic reported above, we first estimate ∑
=

++=
pk

j
itjtijiit wy

1
0 εββ  and save the estimated 

residuals ite .  We then regress the auxiliary regressors stwjt on wjt and save the residuals rjt.  
Finally, we regress 1 on ite rjt.  The explained sum of squares from this last regression is the 
heteroskedasticity robust LM test statistic. 
 
Both the χ2 and F versions of the LM statistic are equation specific tests for linearity.  To test 
the null hypothesis H0: γ = 0 in all equations simultaneously, we need a system-wide test.  
Following Weise (1999), define Tee tt /0 ∑ ′=Ω  and Tvv tt /1 ∑ ′=Ω  as the estimated variance-
covariance residual matrices from the restricted and unrestricted estimated equations, 

                                                 
6 Leybourne, Sollis and Newbold (1999) consider smooth transition models with asymmetric adjustment. 
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respectively.  Allowing for the standard finite sample LR correction, the log-likelihood system-
wide test statistic is LR = (T – pk){ 10 loglog Ω−Ω }, which, under the null hypothesis of 
linearity is asymptotically distributed as χ2(pk2).   
 
3.3 Empirical STVAR models  
 
3.3.1 Linear VAR models and linearity testing 
 
We begin by estimating a benchmark linear VAR (one for each maturity) over “rolling” fixed-
length windows of data, where the first data window runs from June 1991 until December 1998, 
and each successive data window is constructed by shifting the preceding window ahead by one 
week.7  Bearing in mind that a high-order VAR may cause over-fitting and make it more 
difficult to get converging estimates for the non-linear models, we use p = 2 lags in models (1).  
For each data window, we test for non-linearities and select the best candidate for the transition 
variable ts .   
 
We use all lagged variables in (1) as possible transition candidates st.  To save space, Table 2 
reports (for the first data window from June 1991 to December 1998) equation specific LM tests 
and system-wide LR linearity tests for the different transition variable candidates only in the 
case of the 3-year US and UK swap spread equations. 8  The common approach is to select the 
appropriate transition variable associated with the smallest p-value.  The LM tests identify the 
first lag of the slope of the US term structure of interest rates as the most appropriate transition 
variable.  The LR system tests indicate that all VAR equations react in a non-linear way not 
only to USslopet-1, but also to all other lagged variables in the system.  However, the LR tests 
are less informative than the LM tests as the corresponding p-values are almost always equal to 
zero.  Therefore, we proceed by using USslopet-1 as the transition variable across all equations. 9  
The intuitive reason for this choice is related to the ability of the slope of the term structure to 
predict economic expansions and recessions; in particular, steep slopes tend to precede periods 
of economic expansion, whereas flat or negative slopes tend to indicate recessions (for more 
details see, e.g., the recent survey by Stock and Watson, 2003, and references therein).  Our 
empirical choice is also consistent with the findings of Harvey (1991) who found that the US 
term structure is able to forecast real economic growth in the UK while Ang and Bekaert (2002) 
provided evidence that the US slope Granger-causes the UK term structure.  
 
3.3.2 Estimation of STVAR models and regime identification 
 
As for the linear models, we estimate STVAR models for each “rolling” data window.  In order 
to estimate the STVAR models, we follow Granger and Teräsvirta (1993) and Teräsvirta (1994) 
in scaling the ‘logistic’ function (3) by dividing it by the standard deviation of the transition 
variable σ(st), so that γ becomes a scale-free parameter.  Doing so avoids slow convergence or 
overestimation associated with estimates of γ.  Following from the above scaling, we set γ = 1 
as a starting value and the sample mean of st as a starting value for the threshold c.  At the same 

                                                 
7 After estimating our models for each “rolling” data window, we forecast one and twenty-six weeks ahead as 
discussed in more detail in section 5 below. 
8 Detailed Tables with linearity tests for the remaining US and UK swap maturities are available on request. As for 
the 3-year swap maturities, these select USslopet-1 as the appropriate transition variable. See the discussion below. 
9 Linearity test results for each successive data window are consistent with those reported here in the sense that 
USslopet-1 is chosen as the most appropriate transition variable. 
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time, the estimates of the linear VAR equations for the USsp_i and UKsp_i, (i = 3, 7, and 10) 
provide the starting values for the parameters in the STVAR model (2).  
 
The regime identification of our models is reported in Figure 2, which plots (for the first data 
window from June 1991 to December 1998) the value of the transition function estimated for 
the 3-year swap spreads system over time.  The estimated transition function for the first data 
window is G(USslopet-1; γ, c) = {1 + exp[−10.528(USslopet-1 − 2.837)} /σ(USslopet-1)]}-1.   
 
The periods from June 1991 to December 1991 and from January 1995 to December 1998 are 
classified into the first regime, while the periods from January 1992 to June 1993 and from 
March 1994 to August 1994 are classified into the second regime (the period from July 1993 to 
February 1994 falls into more intermediate regimes). Notice, however, that the economic 
interpretation of the two regimes is not straightforward because they do not always coincide 
with periods of economic expansion and recession.  Recall that the first regime, which 
corresponds to a flat term structure, should identify periods of economic recession, while the 
alternative regime should identify periods of economic expansion. 
 
Our regime classification captures the recession that ended in December 1991 and the 
subsequent recovery of the US economy.  Nevertheless, the years from 1995 to 1998, which are 
classified into the first regime, were periods of significant economic expansion.  This period is 
identified with the first regime because the US slope (see figure 2) started declining by the end 
of 1994 and continued to move downwards between 1995 and 1998, despite the fact that these 
were periods of robust economic growth.  Bearing in mind that the relationship between 
changes in the term structure and subsequent changes in economic activity is probabilistic and 
that our sample does not contain a significant number of changes from expansion to recession 
(and vice versa), we cannot explore further the reasons for this apparent broken link between 
the term structure and economic activity.  That said, the ability of our model to classify 
correctly the recession ending in 1991 is consistent with Estrella, Rodrigues and Schich (2000), 
who find that models using the US slope are stable when predicting recessions but become 
unstable when predicting output growth. 
 
To get a feeling of how the transition function G(USslopet-1; γ, c) for the 3-year swap spreads 
system shifts as the sample is “rolled through”, Figure 3 plots estimates of the parameters γ and 
c over the rolling period from January to December 1999 (that is, the first set of γ and c 
estimates refer to the rolling sample ending in the first week of January 1999, whereas the last 
set of γ and c estimates refer to the rolling sample ending in the last week of December 1999).  
The figure suggests reasonable stability for the estimates of the c parameter and more variability 
for the estimates of the γ parameter. 
 
 
4. Nearest-neighbours (NN) model 
 
Contrary to the STVAR model, which relies on global information to address nonlinearity, the 
NN model is a non-parametric local information model that uses a number of nearest 
neighbours to compute a weighted average estimate of swap spreads. We only give a very brief 
summary of the nearest-neighbours model here; for a detailed discussion see ,e.g., Gençay 
(1999) and Jaditz and Riddick (2000).  In order to estimate yt conditional on its history (yt-

1,…,yt-n), convert the time series process T
tty 1}{ =  into n past history components of the form 

),...,,( 11 +−−= nttt
n
t yyyy .  The idea here is to take the most recent history available and then 
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retrieve the k nearest neighbours by searching over the set of all n histories.  That is, in order to 
estimate yt conditional on the information available at t–1, compute the distance between the 

vector ),...,,( 211 nttt
n
t yyyy −−−− =  and its k nearest neighbours to derive the estimator iti

k

i
y∑

=1
λ , 

where tiλ  are the k nearest-neighbour weights.  These are calculated using the sup norm  

ii
yxmay = . 10  The optimal number of nearest-neighbours is determined by the minimum 

Mean Squared Prediction Error (MSPE) achieved by regressing yt on all possible nearest 
neighbours.  Relying on optimally chosen local information, as opposed to the global 
information used by the rest of the models employed in our paper, may prevent overfitting (see, 
e.g., Gençay, 1999).  It should also be pointed out that the optimal number of nearest-
neighbours changes as we estimate nearest-neighbours models for each “rolling” data window. 
 
5. Forecasting analysis 
 
5.1 Some theoretical issues on forecasting  
 
In order to assess the usefulness of the non-linear models, we carry out our forecasting exercise 
over “rolling” fixed-length windows of data, where the first data window runs from June 1991 
until December 1998, and each successive data window is constructed by shifting the preceding 
window ahead by one week.  Therefore, we re-estimate our models for each data window and 
then produce out-of-sample forecasts for the US and UK swap spreads over h = 1 and h = 26 
weeks ahead.  Generating dynamic out-of-sample forecasts from non-linear models is more 
complicated compared with generating forecasts from linear models as the expected value of a 
non-linear function is different from the function evaluated at the expected value of its 
argument (see, e.g., Granger and Teräsvirta 1993, and Franses and Van Dijk 2000, among 
others).  We tackle this issue by adopting at each step of our forecasting exercise a bootstrap 
method where errors used at step h (h >1) are the average errors obtained from simulating the 
STVAR model at step h one thousand times.  
 
We compute out-of-sample forecasts from STVAR models, univariate NN models, linear VAR 
models and univariate autoregressive (AR) swap spread models.11 Forecasting performance is 
evaluated using the Mean Squared Prediction Error (MSPE) and the Mean Absolute Prediction 
Error (MAPE) criteria.  Further, in order to see whether the non-linear models outperform the 
AR and VAR models, we employ the Diebold and Mariano (1995) test.  This is computed by 
weighting the forecast loss differentials between two competing models equally, where the loss 
differential for observation t is given by dt ≡ [g(eit|t-h) – g(ejt|t-h)], where g (.) is a general function 
of forecast errors (e.g., MSPE or MAPE). The null hypothesis of equal accuracy of the forecasts 
of two competing models can be expressed in terms of their corresponding loss functions, 
E[g(eit|t-h)] = E[g(ejt|t-h)], or equivalently in terms of their loss differential, E[dt] = 0.  Let 

∑
−++

+=

=
11 hPR

hRt
td

P
d  denote the sample mean loss differential over t observations, such that there are P 

out-of-sample point forecasts and R observations have been used for estimation. The Diebold-
Mariano test statistic follows asymptotically the standard normal distribution: 
 
                                                 
10 Alternatively, one can use Euclidean distances. We use the sup norm because it is computationally less intensive.  
Jaditz and Riddick (2000) point out that the sup norm is not worse than the Euclidean one. 
11 We use two lags for all AR swap spread equations except for the USsp_7 and USsp_10 equations, where three 
lags are used; lags are selected based on the Akaike Information Criterion.   
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where N (.) is the normal distribution and )0(ˆ

df  is a consistent estimate of the spectral density 
of the loss differential at frequency 0.   
 
To counteract the tendency of the DM test statistic to reject the null too often when it is true in 
cases where the forecast errors are not bivariate normal, Harvey, Leybourne and Newbold 
(1997) propose a modified Diebold-Mariano test statistic: 
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where DM is the original Diebold and Mariano (1995) test statistic for h-step ahead forecasts 
and t(P – 1) refers to the Student’s t distribution with P – 1 degrees of freedom. 
 
Recently, van Dijk and Franses (2003) argued that the uniform weighting scheme employed by 
the DM and DM* tests may be unsatisfactory for frequently encountered situations in which 
some observations are more important than others. For example, in a swap spread forecasting 
exercise, large positive swap spread observations generally signal periods of increasing risk 
conditions in the economy.  
 
Van Dijk and Franses (2003) modify the test statistic by weighting more heavily the loss 
differentials for observations that are deemed to be of greater substantive interest. In their 

approach, the weighted mean loss differential is given by ∑
−++

+=

ω=
1

)(1 hPR

hRt
ttw dw

P
d , where ωt is the 

information set available at time t. Letting yt be the variable to be forecast, two particular cases 
that van Dijk and Franses (2003) study are: 
 

wLT(ωt) = 1 – Φ(yt),          (6) 
 
where Φ (yt) is the cumulative distribution function of yt, to focus on the left tail of the 
distribution of yt, and: 
 

wRT(ωt) = Φ(yt),          (7) 
 
 
to focus on the right tail of the distribution of yt. A necessary condition for the associated test 
statistic to have an asymptotic standard normal distribution under the null hypothesis of equal 
forecast accuracy is that the weight function w(ωt) be a twice continuously differentiable 
mapping to the [0,1] interval. The weighted DM statistic is computed as: 
 

P
f

dDMW
dw

w

)0(ˆ2π
=−         (8) 
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where )0(d̂wf  is a consistent estimate of the spectral density of the loss differential at frequency 
0. The weighted DM* test statistic is given by: 
 

 DMW
P

hhPhPDMW −⎥
⎦

⎤
⎢
⎣

⎡ −+−+
=−

− 2/11
* )1(21      (9) 

 
Once again following Harvey et al. (1997), van Dijk and Franses (2003) propose using the 
Student's t distribution with P – 1 degrees of freedom to obtain critical values for the W–DM* 
test.  In our forecasting exercise, the Left-tailed W-DM* statistic focuses on the ability of the 
competing models to forecast small swap spread values, which is interpreted as evidence of 
decreasing risk conditions in the economy.  On the other hand, the Right-tailed W-DM* statistic 
focuses on the ability to forecast large spread values, which is interpreted as evidence of periods 
of increasing risk conditions in the economy. 
 
5.2 Empirical results  
 
The results of our forecasting exercise are reported in Tables 3 and 4.  We report the MSPE 
criteria for the different US and UK swap spread models (results using the MAPE criteria led to 
very similar conclusions and are available on request).  The statistical significance of the 
forecasting performance of the non-linear STVAR and NN models relative to the linear VAR 
and AR models is examined using the modified DM*, Left-tailed W-DM* and Right-tailed W-
DM* criteria.  For both Tables 3 and 4, the top entry in [.] contains the p-values for the 
modified DM* statistic against the one-sided alternative that the MSPE of the competing model 
is lower.  The middle entry in [.] contains the p-values for the modified Left-tailed W-DM* 
statistic while the bottom entry in [.] contains the p-values for the modified Right-tailed W-
DM*.   
 
Table 3A reports the forecasting comparison over the short horizon of one week for the US.  
The 1-step ahead forecasts suggest that the NN model produces the lowest MSPE for two of the 
three US swap spread maturities.  In particular, our results suggest forecasting superiority of the 
NN model over the AR, VAR and STVAR models for short and long US swap spread 
maturities (i.e. USsp_3 and USsp_10).  However, the ability of the NN model to predict small 
spread values at the long end (i.e. USsp_10) is not better than that of the VAR model (p-value 
for the Left-tailed W-DM* equals 0.589) or that of the STVAR model (p-value for the Left-
tailed W-DM* equals 0.144).  The STVAR model does not beat the VAR model at any maturity, 
but it outperforms the AR model at the short maturity (i.e., USsp_3).  For the 7-year US swap 
spread, the non-linear NN and STVAR models do not outperform the linear models.  On the 
other hand, for the 7-year US swap spread, the NN model seems to outperform the STVAR 
model in predicting large swap spreads (p-value for the Right-tailed W-DM* equals 0.041). 
 
Table 3B reports the forecasting comparison over the longer horizon of six months. Contrary to 
our findings for the 1-step ahead forecasts, the 26-step ahead forecasts suggest that the STVAR 
model outperforms the VAR model for the short US maturity (i.e., USsp_3); further, the 
STVAR model outperforms the AR model for the long US maturity (i.e., USsp_10). Hence, 
there is evidence that the forecasting superiority of the STVAR model over the AR and VAR 
linear models increases at longer horizons. On the other hand, the forecasting ability of the NN 
model deteriorates over the longer horizon; in fact, the NN model fails to outperform the rest of 
the models. This is not surprising as the NN model is a local-information forecasting technique 
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which is only useful for short-term horizons (see, e.g., Jaditz and Sayers 1998, and Ramsey, 
1996). 
 
Comparison of the 1-step ahead forecasts for the UK (see Table 4A) suggests that the NN 
model produces the lowest MSPE for two of the three UK swap spread maturities.  In statistical 
terms, however, the NN model does not beat the AR model at any maturity.  On the other hand, 
the NN model outperforms the linear VAR model at all maturities.  Further, it outperforms the 
STVAR model at the 3-year and 7-year swap spread maturities.  The NN model predicts small 
swap spread values better than the STVAR model at all maturities.  The STVAR model 
outperforms the VAR model for short and long maturities.  For the medium-to-long maturity 
swap spreads (i.e., the UKsp_7 swap spread), the STVAR model is able to predict better than 
the VAR model only small swap spread values (p-value for the Left-tailed W-DM* equals 
0.004). 
 
Table 4B reports the forecasting comparison over the longer horizon of six months for the UK.  
Contrary to our findings for the 1-step ahead forecasts, the 26-step ahead forecasts suggest that 
the STVAR model outperforms the AR model for both short and long UK maturities (i.e. 
UKsp_3 and UKsp_10). On the other hand, the ability of the STVAR model to predict better 
than the VAR model does not improve (or worsen) over the longer horizon of 26 weeks.  As in 
the US case, the NN model does not outperform any other model over the longer horizon. 
 
Overall, our forecasting exercise for the US and UK swap spreads suggests some forecasting 
superiority of non-linear models over linear ones.  At the short horizon of 1 week, the NN non-
linear model occasionally predicts better than the rest of the non-linear and linear models.  At 
the longer horizon of 26 weeks, the STVAR model increases its forecasting ability over the 
linear models, whereas the NN model does not beat the rest of the models. 
 
Previous studies identified some superiority of the NN relative to other models.  Gençay (1999) 
found that NN models outperform other linear and non-linear models for a number of exchange 
rates, whereas Bajo-Rubio, Sosvilla-Rivero and Fernándes-Rodríguez (2001) found evidence 
that NN models outperform linear models in predicting European interest rates.  On the other 
hand, Teräsvirta, van Dijk and Medeiros (2005) used a number of G7 macroeconomic time 
series to show that STAR models forecast better when compared to linear models.  
 
6. Conclusions 
 
Contrary to the majority of related research, this paper assesses the ability of both domestic and 
international risk factors to forecast, in an out-of-sample framework, the dynamics of the US 
and UK swap spreads.  The forecasting performance of both linear and non-linear factor models 
is compared to the forecasts produced by more parsimonious, less structural models, such as a 
linear autoregressive (AR) model and a non-linear non-parametric nearest neighbourhood (NN) 
model. 
 
As far as the functional form of the factor model is concerned, we reject linearity in favour of a 
regime-switching STVAR model for the US and UK swap spread dynamics and we show that 
the switching between regimes is controlled by the slope of the US term structure of interest 
rates.  The first regime is characterised by a "flat" term structure of US interest rates, while the 
alternative is characterised by an "upward" sloping US term structure.  In economic terms, the 
two regimes do not always coincide with periods of economic expansion and recession.  This 
can be interpreted as evidence of a break in the relationship between US real output growth and 
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the slope of the US term structure. We do not explicitly test for a break but possible reasons 
include the shift in US monetary policy from reactive to proactive as a response to the Asian 
and Russian financial crises and the Long-Term Capital Management (LTCM) collapse in 1998. 
 
Shifting our attention to the forecasting comparisons across models, we find that at short 
forecasting horizons, the flexibility of the atheoretic NN model provides an advantage over all 
factor STVAR and VAR models and the AR specification; the forecasting advantage of the NN 
over the STVAR model is more prominent for US swap spreads in periods of increasing risk 
conditions and for UK swap spreads in periods of decreasing risk conditions.  On the other 
hand, the performance of the NN model decays rather quickly with the forecasting horizon.  For 
longer horizon forecasts the STVAR specification increases its forecasting ability over the rest 
of the linear and non-linear models, while the NN model ranks last.  
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Table 1 
 

Descriptive statistics 
 
 

 Mean Max Min Std. Dev Skewness Kurtosis 
       

USsp_3 0.353 0.958 0.014 0.193 0.779 2.872 
USsp_7 0.433 1.141 0.088 0.237 1.167 3.313 
USsp_10 0.440 1.227 0.093 0.249 1.255 3.792 

       
UKsp_3 0.333 1.010 0.002 0.217 0.634 2.358 
UKsp_7 0.413 1.198 0.002 0.277 0.775 2.306 
UKsp_10 0.466 1.280 0.003 0.302 0.910 2.635 

       
USslope 1.581 4.141 0.690 1.182 0.382 2.139 
UKslope 0.463 3.976 -2.669 1.619 0.196 1.704 

Dif_3 -1.100 0.699 -5.294 1.097 -0.996 3.986 
Dif_7 -0.813 1.087 -3.064 0.965 0.106 1.916 
Dif_10 -0.591 1.323 -2.157 0.991 0.338 1.781 
UScorp  1.196 2.150 0.630 0.346 0.759 2.804 
UKcorp  0.920 2.068 0.015 0.418 0.257 2.422 

 
Notes: The Table reports descriptive statistics for the swap spreads and the risk factors defined in section 2.  The 
sample refers to weekly data from June 1991 to June 2001. 
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Table 2 
 

Linearity tests for: ty  = [USslope, UKslope, dif_3, UScorp, UKcorp, USsp_3, UKsp_3]′  

  
Transition 
variable 

USsp_3 
equation 

UKsp_3 
equation 

System 
test 

USslopet-1 0.001 0.029 0.000 
USslopet-2 0.006 0.039 0.000 
UKslopet-1 0.037 0.497 0.001 
UKslopet-2 0.093 0.585 0.004 
Dif_3t-1 0.173 0.164 0.007 
Dif_3t-2 0.155 0.107 0.006 
UScorpt-1 0.382 0.092 0.000 
UScorpt-2 0.401 0.054 0.002 
UKcorpt-1 0.023 0.105 0.004 
UKcorpt-2 0.030 0.206 0.090 
USsp_3t-1 0.021 0.108 0.010 
USsp_3t-2 0.037 0.266 0.020 
UKsp_3t-1 0.288 0.197 0.030 
Uksp_3t-2 0.334 0.088 0.050 
 
Notes: The Table reports p-values of equation specific 
Lagrange Multiplier F statistics and system-wide LR test 
statistics for the USsp_3 and UKsp_3 equations. These are 
based on Wooldridge’s (1990, 1991) heteroskedasticity-
robust versions of the tests. The null hypothesis is 
linearity. The alternative hypothesis is the STVAR model. 
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Table 3 

 
Mean Squared Prediction Error (MSPE) for the US spreads using modified DM*, Left-tailed W-

DM* and Right-tailed W-DM* 
 

(A) 1-step ahead forecasts 
MSPE p-values in [.] 

STVAR  NN VAR AR  AR vs.  
STVAR  

AR vs.  
NN 

VAR vs. 
STVAR 

VAR vs. NN STVAR vs. 
NN 

         
USsp_3 

         
0.160 0.049 0.135 0.166 [0.001] 

[0.011] 
[0.000] 

[0.000] 
[0.000] 
[0.000] 

[0.999] 
[0.999] 
[0.999] 

[0.000] 
[0.000] 
[0.000] 

[0.000] 
[0.000] 
[0.000] 

         
USsp_7 

         
0.095 0.090 0.089 0.084 [0.997] 

[0.995] 
[0.996] 

[0.893] 
[0.974] 
[0.678] 

[0.935] 
[0.996] 
[0.654] 

[0.566] 
[0.970] 
[0.136] 

[0.118] 
[0.515] 
[0.041] 
 

         
USsp_10 

         
0.105 0.077 0.095 0.085 [1.000] 

[0.996] 
[1.000] 

[0.048] 
[0.010] 
[0.001] 

[0.999] 
[0.990] 
[0.999] 

[0.000] 
[0.589] 
[0.000] 

[0.000] 
[0.144] 
[0.000] 

 
(B) 26-step ahead forecasts 

MSPE p-values in [.] 
STVAR  NN VAR AR  AR vs.  

STVAR  
AR vs.  
NN 

VAR vs. 
STVAR 

VAR vs. NN STVAR vs. 
NN 

         
USsp_3 

         
0.048 0.212 0.069 0.112 [0.000] 

[0.000] 
[0.000] 

[0.999] 
[0.954] 
[0.956] 

[0.028] 
[0.013] 
[0.010] 

[0.916] 
[0.944] 
[0.913] 

[0.999] 
[0.999] 
[0.999] 

         
USsp_7 

         
0.144 0.198 0.074 0.113 [0.583] 

[0.603] 
[0.621] 

[0.936] 
[0.978] 
[0.931] 

[0.945] 
[0.916] 
[0.694] 

[0.999] 
[0.992] 
[0.993] 

[0.921] 
[0.991] 
[0.992] 

         
USsp_10 

         
0.117 0.266 0.086 0.206 [0.000] 

[0.000] 
[0.000] 

[0.982] 
[0.923] 
[0.969] 

[0.910] 
[0.885] 
[0.815] 

[0.999] 
[0.999] 
[0.999] 

[0.999] 
[0.999] 
[0.999] 

Notes: MSPE for rolling window 1-step and 26-step ahead out-of sample forecasts from 1999:1 to 2001:26. The 
top entry in [.] contains the p-values for the modified DM* statistic of Harvey, Leybourne and Newbold (1997) 
against the one-sided alternative that the MSPE of the competing model is lower. The middle entry in [.] contains 
the p-values for the modified Left-tailed W-DM* statistic of van Dijk and Franses (2003). The bottom entry in [.] 
contains the p-values for the modified Right-tailed W-DM* statistic of van Dijk and Franses (2003). 
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Table 4 

Mean Squared Prediction Error (MSPE) for the UK spreads using modified DM*, Left-tailed 
W-DM* and Right-tailed W-DM* 

 
(A) 1-step ahead forecasts 

MSPE p-values in [.] 
STVAR  NN VAR AR AR vs. 

STVAR 
AR vs. 
NN 

VAR vs. 
STVAR 

VAR vs. 
NN 

STVAR vs. 
NN 

         
UKsp_3 

         
0.053 0.049 0.068 0.048 [0.998] 

[0.999] 
[0.878] 
 

[0.752] 
[0.990] 
[0.400] 
 

[0.000] 
[0.000] 
[0.000] 

[0.000] 
[0.000] 
[0.000] 

[0.018] 
[0.021] 
[0.110] 

         
UKsp_7 

         
0.075 0.050 0.070 0.051 [1.000] 

[0.999] 
[0.999] 

[0.421] 
[0.384] 
[0.463] 

[0.376] 
[0.004] 
[0.999] 

[0.000] 
[0.000] 
[0.001] 

[0.000] 
[0.000] 
[0.000] 

         
UKsp_10 

         
0.053 0.052 0.067 0.053 [0.549] 

[0.923] 
[0.225] 

[0.320] 
[0.369] 
[0.305] 
 

[0.000] 
[0.000] 
[0.000] 

[0.000] 
[0.000] 
[0.016] 

[0.362] 
[0.043] 
[0.722] 

 
(B) 26-step ahead forecasts 

MSPE p-values in [.] 
STVAR  NN VAR AR  AR vs.  

STVAR  
AR vs.  
NN 

VAR vs. 
STVAR 

VAR vs. NN STVAR 
vs. NN 

         
UKsp_3 

         
0.016 0.111 0.044 0.022 [0.031] 

[0.000] 
[0.000] 

[0.996] 
[0.991] 
[0.992] 

[0.000] 
[0.000] 
[0.000] 

[0.999] 
[0.789] 
[0.809] 

[0.999] 
[0.999] 
[0.999] 

         
UKsp_7 

         
0.041 0.123 0.038 0.044 [0.344] 

[0.221] 
[0.174] 

[0.999] 
[0.993] 
[0.992] 

[0.531] 
[0.003] 
[0.482] 

[0.993] 
[0.992] 
[0.991] 

[0.999] 
[0.999] 
[0.999] 

         
UKsp_10 

         
0.041 0.141 0.056 0.090 [0.000] 

[0.000] 
[0.000] 

[0.978] 
[0.921] 
[0.901] 

[0.001] 
[0.000] 
[0.000] 

[0.991] 
[0.934] 
[0.931] 

[0.999] 
[0.999] 
[0.999] 

Notes: MSPE for rolling window 1-step and 26-step ahead out-of sample forecasts from 1999:1 to 2001:26. The 
top entry in [.] contains the p-values for the modified DM* statistic of Harvey, Leybourne and Newbold (1997) 
against the one-sided alternative that the MSPE of the competing model is lower. The middle entry in [.] contains 
the p-values for the modified Left-tailed W-DM* statistic of van Dijk and Franses (2003). The bottom entry in [.] 
contains the p-values for the modified Right-tailed W-DM* statistic of van Dijk and Franses (2003). 
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Figure 1: 3, 7, and 10-year US and UK swap spreads 
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Figure 2: Regime classification and the slope of the US term structure of interest rates 
 

             
Notes: 
The figure plots the slope of the US term structure (solid line, right-hand axis, in percent) and 
the transition function for the 3-year swap spreads system (line with blocks, left-hand axis) over 
time.  The transition function is estimated as:  
G(USslopet-1; γ, c) = {1 + exp[−10.528(USslopet-1 − 2.837) /σ(USslopet-1)]}-1.  Values of the 
transition function close to zero identify a period with the first regime while values of the 
transition function close to one identify a period with the second regime. 
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Figure 3: Estimates of the transition function G(USslopet-1; γ, c) parameters for the 3-year swap 
spreads system over the rolling period from January to December 1999 

 
(A) Estimates of the parameter γ over the rolling period from January to December 1999 
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(B) Estimates of the parameter c over the rolling period from January to December 1999 
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Appendix 1:  Bootstrapping swap market data 
 
 
 
The most common type of interest rate swap is the fixed-to-floating par swap.  This is a contract 
between two counterparties to exchange future cash flows or equivalently to exchange interest 
rate risk positions.  One party of the swap, namely the fixed payer, agrees to pay on each 
payment day until the maturity of the swap an amount equal to a fixed interest rate applied on a 
notional principal.  In return, the fixed payer receives from the other counterparty, the floating 
payer, cash flows based on the same notional principal but calculated with respect to a floating 
interest rate, e.g., LIBOR rate.  The payments of these cash flows usually occur either annually 
or semi-annually. 
 
The technique used to infer the prices of zero-coupon bonds from swap rates is called 
bootstrapping and is based on the fact that interest rate swaps are par instruments with zero net 
present value.  In the case of US dollar swaps, where the swap cash flows occur annually, the 
prices of discount bonds implied by the swap market are given by: 
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        (A1) 
 
where ts  is the swap rate, ti ,,2,1 …=  and the accrual factor is ii ,1−α .12 The only problem is that 
swaps are available only for 2, 3, 4, 5, 7 and 10 years of maturity.  Thus a linear interpolation 
has to be used to get an estimate of the missing swap rates. 
 
In the case of sterling swaps, where the swap cash flows occur semi-annually the calculations 
are slightly more complicated.13  If the swaps make semi-annual payments then we have to use 
swap rates every half a year in order to calculate the zero bond prices for the corresponding 
period.  Again a linear interpolation has to be used to get an estimate of the missing swap rates.  
The only swap rate that we are not able to calculate using linear interpolation is the 5.1s  swap 
rate as the one-year swap rate is not available and the corresponding one-year rate available 
from the money market is quoted on a different basis.  As a result an adjustment has to be made: 
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and 5.1s  can be calculated by interpolating between 1s  and 2s . 
 
Finally, the zero bond prices can be calculated using the bootstrap method as in equation (A1) 

                                                 
12  In the case of USD interest rate swaps the accrual factor is defined as 

360

30
,1 =− iiα . 

13  In the case of GBP swap markets, the swap day-count convention is 365 days per year.  Thus the accrual factor 

is defined as 
365

1
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−−
=−

itit
iiα

. 
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but now the index i in the summation is being done semi-annually such that ti ,,5.2,2,5.1,1 …= . 
 
Based on those zero-coupon bond prices we can estimate the implied zero-coupon yields as 14 
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14  The accrual factors now refer to bonds and are defined as 
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