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ABSTRACT 

Lot-sizing scheduling techniques determine what amount is 

required to meet forecasted demand whilst minimising the 

sum of setup and holding costs. These techniques are not 
adequate to provide an optimal solution to bottleneck 

facility problems which do not meet demands placed on 
them. Thus, it is necessary to analyse how much should be 

produced from each product with bottleneck facilities. 

Therefore a lot-sizing problem with bottleneck(s) under 

rolling schedule environment is the subject of this 

thesis. 

This research proposes a simple heuristic for multi-level 
lot-sizing problems where there is a bottleneck. Previous 

methods to solve this problem have formulated the problem 

as an integer programming problem and solved the problem 

using a Lagrangian relaxation embedded within the branch 

and bound procedure. Then the proposed heuristic is 

extended for multiple bottleneck problems, and finally 

applied to the real life problem. 

In this research it is suggested that items to be 

produced can be grouped into two types and a simple but 

efficient heuristic can be used to determine the 

production quantities required. A program was developed 

to compute production levels and was found to require 

only a small fraction of the computer time required by 

the full integer programming approach and to produce 

solutions of reasonable quality. The heuristic is simple 

to implement. 

Keywords: heuristics, inventory, lot-sizing, scheduling, 

production, bottleneck, linear programming, integer 

programming. 

xi 



CHAPTER 1 

INTRODUCTION 

1.1. Introduction 

The aim of a production planning system is to produce one 
or more products to satisfy demands over the planning 
horizon whilst minimizing the total production costs. To 
be able to detect the optimal solution or near-optimal 

solution for production planning problems it is important 

to correctly specify the structure of the system and the 

characteristics of costs. The most successful system will 

usually be based on a model which gives computationally 
large gains from improvements to the costs or structure 

of the systems. 

Most of the production planning models given in the 

literature are based on satisfying the external demand 

which is known in advance. It is most common to find in 

the literature the capacitated production planning 

problem where demand exceeds the system capacity. This 

instance may appear for different reasons: (1) 

incrementation of demand beyond the capacity of the 

system, (2) shortage of highly skilled operators, (3) 

scarcity of tools needed in one of the production stages. 

Thus, all these situations result in a bottleneck problem 

which does not satisfy the external demand in a 

manufacturing firm or in the market. Even if the firm 

were able to expand the capacity utilisation the new lead 

time required for the additional capacity utilisation 

would be very substantial and therefore the firm would 

not be able to meet the excess demand. 
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Organising the problem requires the simultaneous 
consideration of the different products, as well as the 

external demands on the bottleneck facilities. So, for 
the bottleneck facilities, the firm needs to determine 
how to utilise its resources. The focus will be upon how 

much to produce from the resources in order to minimise 
the total cost for the bottleneck and the non-bottleneck 
items. 

The related carrying and setup costs for each product 
inside or outside the bottleneck facility are also 

considered, in order to minimise the related carrying and 

setup costs subject to bottleneck facility. This is the 

traditional lot-sizing and scheduling problem with 
bottleneck(s). This will let us consider the production 

scheduling and lot-sizing problems on the bottleneck 

facilities. The production scheduling problem is affected 
by the detailed level of inventory carrying costs and 

setup times. The traditional production planning problem 

model considers the setup times, and if they are 

negligible then they are ignored; this is a typical 

linear programming (LP) problem, if not the problem 

becomes an integer programming (IP) problem. These 

problems frequently result in sub-optimal solutions so 

that production on the bottleneck facilities becomes very 

important. 

Recently optimised production technology (OPT) has had 

plenty of attention for the importance of bottleneck 

problems. OPT developed in 1970s as a software package, 

is a quantitative technique whose aim is to maximise 

profits by decreasing carrying inventory and expenses 

arising from bottlenecks. OPT adresses scheduling whilst 

considering the shop floor activities such as 

bottlenecks, lot-sizes, setups. it considers the 

processing times for each item allowing for bottlenecks 

rather than a given quantity of each item allowing for 

2 



bottlenecks. 

thesis. 
The processing time is not a part of this 

However, the topic of this thesis is a heuristic for 

multi-level lot-sizing problems with bottleneck(s) under 
a rolling schedule environment. 

The organisation of this thesis is as follows. 

Chapter 2 reviews the relevant literature of the general 
lot-sizing problem, and then divides the review into: (1) 

the serial lot-sizing problem, and (2) the non-serial 
lot-sizing problem. 

Chapter 3 concentrates on the material requirements 

planning and its deficiencies, and focuses upon the 

integer programming formulation for the multi-level lot- 

sizing problem with a single bottleneck which is adopted 
by Billington et al. [1986]. 

Chapter 4 considers a simple heuristic to solve the 

single bottleneck problem as an alternative to the 

approach of Billington et al. [1986], and extends the 

problem to multiple bottleneck problem cases. In this 

chapter, production items are divided into two types 

which are: (1) bottleneck items, (2) non-bottleneck 
items. For the bottleneck items, a heuristic is 

developed, and used. For the non-bottleneck items, two 

well known heuristics, the Economic Order Quantity and 

the Silver-Meal heuristic, are used. Finally, sensitivity 

analysis is applied to the cost structure. 

Chapter 5 provides further literature review and testing 

for multi-level lot-sizing problems with bottleneck(s) 

under a rolling schedule environment. 
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Chapter 6 discusses the results of chapters 4 and 5, then 

provides a worst case analysis. 

Chapter 7 provides an application of the heuristic to the 

assembly product structure to compare the results of this 

heuristic with the Eftekharzadeh [1988) approach. 

Chapter 8 finishes the thesis with a conclusion and 

suggestions for further research. 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

2.1. Introduction 

This research as mentioned in the previous chapter 

concentrates on multi-level lot-sizing problems with 
bottlenecks under a rolling schedule environment and will 
focus on using a simple heuristic to solve problems. In 

this chapter, the first section explains the general lot- 

sizing problem, then the discussion splits into two 

sections which are serial lot-sizing and non-serial lot- 

sizing problems. The literature related to the rolling 

schedule will be given in chapter 5. Those subtopics 

given above will now be reviewed in detail. 

2.2. The General Lot-Sizing Problem 

The main problem for many firms is to decide how much 

they will produce with limited resources. This is a 

dilemma for the production managers in selecting a 

procedure. The question of 'how much to produce? ' refers 

to a lot-sizing decision which is known as a production 

order quantity. It combines the requirements and the 

production orders in the planning horizon. Lot-Sizing 

rules do not provide the correct period for placing the 

requirements but they determine the order quantities. The 

specific procedure for determining the quantity of orders 

for a part or finished product is given by the lot-sizing 

rules. The objective of these rules is to choose the lot- 

sizes which minimise the total of setup and inventory 

holding costs. A setup cost which is not dependent on the 

order quantity is incurred whenever an order is placed 

5 
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during the planning horizon. Holding costs depict the 
cost of carrying production for some periods and are 
charged in accordance with the ending inventory. The sum 
of these two costs is referred to as the total inventory 

cost or total cost. The relation between these two costs 
is illustrated in Graph 2.2 (adapted from McLaren 
[1977]). 

McLaren [1977] classifies the lot-sizing problems from 
the literature according to (i) the number of levels; 

(ii) the number of end items; (iii) the continuity of 
demand; (iv) the constraint of system capacity; (v) the 

availability of production systems. (i) refers to the 

stages in a manufacturing firm. Some authors use echelon 
terminology to depict this classification. The echelon 
inventory is defined as the whole units which have been 

produced at stage j. That is, cumulative production less 

cumulative requirements at stage j in period t and as a 

result of this inventory, echelon cost is the cost 

charged to each unit of the echelon inventory. (ii) 

refers to the finished items, (iii) refers to the 

inventories which are removed gradually from the system 

through the planning horizon, (iv) refers to whether the 

system capacity is limited or not, and finally (v) refers 

to the type of product structure. He then developed a 

setup cost adjustment procedure for single-level lot- 

sizing problem without capacity constraints. He showed 

that the Wagner-Whitin heuristic using the modified setup 

cost procedure provides the lower costs compared to 

unmodified heuristics. No adjustments were made to the 

holding costs at any stage. 

Figure 2.2 illustrates several different types of product 

structures. By referring to the bill of material in a MRP 

(Material Requirements Planning) environment the number 

of predecessor items needed for successor items is 

established. (These numbers are not depicted in the 

6 
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Figure 2.2., 1,2,3,4 ). 

Collier [1980] discussed the effect of the following lot- 

sizing heuristics; Lot-for-Lot (LfL) which establishes a 
separate lot-size for each period, Economic Order 
Quantity (EOQ) which always orders the economic order 
quantity, Part Period Order Quantity (POQ) which 
calculates the lot-size for the next T* periods, where T* 
is the EOQ divided by average demand and rounded to an 
integer value, Least Total Cost (LTC) which is based on 
the rationale that the sum of setup and inventory cost 
(total cost) for all lot-sizes within the planning 

horizon will be minimised if these costs are nearly equal 

as possible, and Wagner-Whitin (WW) which enumerates all 

possible ordering combinations. He showed the 

effectiveness of the heuristics according to the setup 

and inventory costs, overtime hours or work centre load 

profiles. His results show that the superiority of any 
lot-sizing rules to the others is dependent on 

characteristics such as the cost structure of the system 

Biggs et al. [1980] examined various lot-sizing rules and 

procedures under different parameters, and concluded that 

the Lot-for-Lot (LfL) rule, which satisfies the 

requirements in each period, is generally very attractive 
in comparison to the other heuristics. This is true when 

the Lot-for-Lot rule is applied to systems in which the 

setup costs are very low and inventory costs are very 

high. Although it is very easy to use, because of 

satisfying the demands in each period it is not 

economical. Another lot-sizing rule, fixed order 

quantity, is not economical either because it places 

orders of the same size for each period, and is unusable 

for varying the quantity. 
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Askin and Raghavan [1983] examined three lot-sizing rules 
employed on work centre load variability. Lot-for-Lot 
(LfL), Economic Order Quantity (EOQ) and Silver-Meal 

rules were used to show their effect via simulation. They 
observed that lot-sizing rules increase the workload 
variation which causes production level change costs such 
as overtime, undertime, hiring and firing, and these 

costs have to be incorporated into the economic analysis. 

There are many lot-sizing rules in the literature 

examined by researchers in detail, such as Orlicky 
[1975], Berry [1972], Johnson and Montgomery [1974], 

Monks [1987], and Browne et al. [1988]. Although a number 

of lot-sizing rules have been proposed, there is still 
little guidance for managers to choose the best rules for 

their system. Ramsay [1977] presented a broad 

classification for different lot-sizing techniques. 

Because of the structure of the system, these lot-sizing 

problems could be divided into two categories: serial and 

non-serial systems. The related literature in conjunction 

with these two systems will be given in turn in the 

remaining sections. 

2.2.1 Serial Lot-Sizing Systems 

The basic form of the multi-level lot-sizing problem, 

that is the most simplified form, involves producing one 

product in a multi-level stage uncapacitated production 

process, and is called a serial system. Figure 2.2.1 

shows this production structure. The multi-level 

characteristic is derived from the hierarchical nature of 

the manufacturing process where raw materials are 

processed into components, components into subassemblies, 

and so on until the final product is completed. 
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Zangwill [1966] studied a dynamic programming lot-sizing 

rule for the multi-echelon serial system using 

uncapacitated stages, concave production cost and time 

varying demand. An inventory system may consist of 

several stocking point. In some cases these stocking 

points are organised such that one point acts as a supply 

point for others. This type of operation may be repeated 

at different levels so that a demand point may again 

become a new supply point. This situation is generally 

referred to as a multi-echelon systems. He developed a 

set of extreme point solutions in which the lots make up 

an integer number of periods. The set of all extreme 

points of all basic sets was defined as the dominant set. 

He then showed how to search for the optimal solution 

from the dominant set of production schedules with the 

extreme flow properties. The computation time is large, 

however. 

Love [1972] considers the serial lot-sizing system with 

non-increasing production cost over time and positive 

echelon costs in all stages. He recommended that the lot- 

sizes of a component will be integer multiples of its 

parent's lot-sizes in a serial system, for example, if 

the parent's lot-size is 200, the subparts lot-size could 

be 200,400,600, etc. His approach reduces the number of 

lot-size calculations for the highest level part, and 

then finds the integer multipliers of lot-sizes for the 

components at lower levels. Jensen and Khan [1972] used 

the same integer multipliers concept with non-constant 

demand for serial systems. 

Schwarz and Schrage [1975] examined a different approach 

for serial multi-level lot-sizing problems. They 

developed a myopic system algorithm which determines lot- 

sizes by taking two adjacent levels in the product 

structure at a time. This research assumes that 

production and demand rates are continuous and constant, 

10 
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and the planning horizon is infinite. Thus, once the lot- 

size for a component is determined , it will not change 
any more. The major difficulty with their method is the 

complexity of the structure because it is based on branch 

and bound methodology. 

Lamrecht and Vander Eecken [1978] presented a method to 

solve the serial structure problem with a capacity 

constraint which must apply to the final item. They use 
the Florian and Klein [1971] results to illustrate 

whether there are a finite number of solutions for the 

capacitated problem. Results show that any suitable lot- 

sizing heuristics could be used to test the optimality 
for the predecessor items, and then the same procedure is 

repeated for the end items within the capacitated 

problem. More complex structures and capacity constraints 

on the other items are not included in their research. 

Gabbay [1979] studied a parallel problem shown in Figure 

2.2.2, which consists of a set of serial structures, with 

capacity constraints on every level assuming setup cost 

and time are zero. The results illustrate that the 

algorithm is based on very restrictive assumptions; 

namely, each production item has to consume the same 

production time on each machine to be produced on each 

level. His algorithm does not provide a feasible solution 

for some cases according to the above restricted 

assumptions. 

Zahorik et al. [1979] studied the parallel serial problem 

with constraints on total throughput (bundle constraints) 

assuming production costs are linear, i. e. setup costs 

are zero. They illustrated that the problem is a network 

problem when there are only three periods and when there 

are restrictions on the location of the bundle 

constraints. They used the three period results as the 

basis of their heuristic. 

11 
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Ramsay [1980] studied the capacity constraints at each 
stage in a serial structure. He developed a branch and 
bound procedure based on the Lagrangean relaxation 

method. Results illustrated that the capacity relaxed 
formulation generally results in lower bounds than the 
integer linear programming solution, but the lagrangean 

relaxation method embedded within the branch and bound 

procedure does not give a feasible solution for some 

problems. 

Maxwell and Muckstadt [1985] examined the lot-sizing 

problem with instantaneous production. They formulated 

the problem according to the reorder intervals which are 
the power of two multiples of a basic period rather than 

lot-sizes and proposed a nested schedule as one for 

which, if any stage produced in a given time period, then 

so did the next stage in serial structure. 

Billington et al. [1986] considered capacity constrained 

multi-level parallel scheduling problems, with a 

bottleneck which occurs at the final items. Their 

formulation was based on Billington et al. [1983] except 

that there was one capacity constrained work centre. They 

eliminated inventory by substituting cumulative 

production minus cumulative demand rather than using both 

inventory (Iit) and production (Pit) variables. They 

solved the problem using a branch and bound procedure 

embedded within a Lagrangean relaxation method with a 

simultaneous determination of lot-sizes, lead times, and 

capacity utilisation plans. Although they involve setup 

times in the formulation, they assumed the setup times to 

be zero and the method provided by authors was complex. 

However, their approach is particularly comprehensive and 

it provided the inspiration for much of the work of this 

thesis. The details of this approach will be given in 

chapter 3. 
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Billington et al. [1988] discussed two different classes 
of heuristics. The first class of heuristic, which is 

called period-by-period, was based on the Lambrecht and 
Vanderveken [1979], and the Dixon and Silver [1981] 
heuristics. The second class of heuristic, which is 

called the four-step algorithm, was based on the 

Dogramaci et al. [1981] heuristic. The first class of 
heuristic proceeds on a schedule period by period 

starting with period 1. It determines the production lots 

in each period. In addition to Eisenhut [1975] their 

heuristic takes into account the varying demand and 
feedback capability. The second class of heuristic starts 

with a schedule using the Lot-for-Lot method for each 
item. This heuristic, as opposed to the first one, 

considers the whole period. They compared these two 

classes of heuristic assuming all stages are constrained 

by capacity and all demands are satisfied without 
backlogging. They showed that the Dixon and Silver [1981] 

heuristic was the most efficient heuristic for the 

single-level lot-sizing problem which involves 

determining the production quantities for a single part, 

and also two level serial systems. The reason being that 

it requires higher order polynomial time than the first 

class of heuristic. 

Hum [1988] examined a two product single stage bottleneck 

facility in a serial system under different assumptions 

which are; (i) no bound on demand, (ii) lower bound on 

the demand, (iii) lower and upper bound on demand. The 

basic idea in this research was to generate some insights 

to the integrated mix planning, lot-sizing problem. He 

restricted his research first to the common cycle 

approach in which each product is manufactured once only 

in each cycle, then extended this research to allow for 

multiple stages. 

13 



Maes and Wassenhove [1991] considered capacitated lot- 

sizing problems in a parallel structure under dynamic 
demand conditions. They extended their research [1986] to 

multi-level lot-sizing problems. They investigated 

several conventional cost approaches introduced in 

Blackburn and Millen [1984] and showed that the k-branch 

and bound method is capacity sensitive and performs 
better than the other heuristics. 

2.2.2. Non Serial Lot-Sizing Systems 

In this section two different sets of product structure 
literature will be reviewed. They are: Assembly product 

structure, which may have only one successor and more 
than one predecessors; and general product structure, 

which may have more than one successor and predecessor. 

Figure 2.2.3 and 2.2.4 illustrate these production 

structures. 

Crowston et al. [1972] illustrate the integer multiple 
ideas which are appropriate for the assembly systems 

where each part may have many predecessors but only one 

successor. They recommend three heuristic routines and a 

dynamic programming algorithm to find the integer 

multipliers. They assumed constant demand, that is the 

demand at any period is assumed equal to the average of 

the (assumed) known demands for all periods under 

consideration. Crowston et al. [1973] established that 

optimum lot-size must be an integer multiple of its 

successor items at each stage. They illustrated that the 

time required to solve this problem increases linearly 

with the number of stages and exponentially with the 

number of time periods. Their algorithm is quite complex 

from the point of view of computation and capacity 

constraints are not included. 
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Blackburn and Millen [1979a, 1979b] tested several lot- 

sizing methods without capacity constraints. Blackburn 

and Millen [1982] classified lot-sizing methods into two 

main groups: (i) analytical methods which provide an 

optimal solution to the problem, (ii) heuristic methods 

which provide an optimal or near optimal solution to the 

problem. They then tested some of the existing lot-sizing 

heuristics which yield good cost performance for assembly 

systems. The results illustrate that if the cost 
information is passed from one level to successor level, 

the cost performance could have improved. 

Figure 2.2. Different Product Types 

1. Serial Product Structure: Single product, produced in 
a series of steps. 

5! ºI 4! CI 3! I 2! 1 

Raw Intermediate Final 
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2. Parallel Product Structure: A collection of serial 
structures. 
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3. Assembly Product Structure: A product made by a 
complex assembly process. 

4. General Product Structure: Commonality of components. 

The cost performance is measured by the sum of the 

holding and inventory cost over the planning horizon. 

They tested several cost performance heuristics, but did 

not allow capacity constraints in their research. A later 

paper of Blackburn and Millen [1984] allowed the constant 

capacity constraints at each level to make lot-sizing 

decisions in a Material Requirements Planning (MRP) 

environment. This research is based on McLaren [1977]. 

They formulated the problem to minimise the sum of setup 

and holding costs in the following way (adapted from 

Blackburn and Millen [1984]) 

Minimise ýN 
Sj hjDjnP (j) (kj-1) 

] (P) [+ 
j=1 nj 2 
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N 

Subject to 

nj = kjfl (j) 

nj <_ Vj/Dj 

j= 2,..., N 

j= 1, ..., M 

nj, kj >_ 1 and integer 

Where sj is the setup cost at stage j, hj holding cost at 

stage j and Vj is the system capacity at stage j, Dj is 

the demand per period, p (j) is the single immediate 

successor stage (or parent) of stage j, nj is the order 
interval for stage j where np(1) = 1, kj values are the 

number of orders at stage j. The kj values can be 

determined with different approaches. They are: (i) 

Unmodified Costs (UM), (ii) k-Continuous Constrained 

(kCC), (iii) k-Branch and Bound (kBB), and (iv) k-Branch 

and Bound Percent (kBB%). The first one tackles the 

problem with the actual setup and holding costs not 

attempting to taking into account any relations between 

stages. This approach is only used to make a comparison 

with other revised cost approaches. The kj values in the 

kCC approach are found using differential calculus 

starting with the lowest stages. After finding the kj 

values, the revised costs are calculated and applied to 

the next highest stages. The capacity constraint is 

ignored in this approach. The kj values are calculated 

simultaneously by using branch and bound (kBB) and are 

used to calculate the revised costs in respect to the 

cost results. The capacity constraints are included 

independently for each item in this approach. In the k- 

Branch and Bound % approach, the capacity is included as 

a percentage of total demand. They recommended the 

Wagner-Whitin and k-branch and bound procedure due to 

their superiority to others. This is a complex approach. 

Blackburn and Millen (1985] compared several lot-sizing 

methods combining the four cost modification procedure 
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for single stage lot-sizing problem. They concluded that 
the combination method which is used with the cost 
modification procedures yields better results than the 

unmodified approaches. Their heuristics are only valid 
for one end item problems and the combination of these 

cost performance heuristics with other lot-sizing 

heuristics is quite complex in accordance with the 

computation time. 

Steinberg and Napier [1980] formulated the lot-sizing 

problem as a network problem including commonality in the 

product structure. They assumed all lead times as one 

period. Therefore the results do not guarantee a feasible 

solution because the capacity constraint is not 

significant. They proposed a mixed integer linear 

programming which is applicable for small problems. 

Karni and Roll [1982] propose a heuristic for the 

assembly structure with capacity constraints. This 

heuristic starts with the Wagner-Whitin algorithm which 

is based on searching for a lower bound in conjunction 

with the sum of setup and holding costs for each item 

whilst ignoring the capacity constraint in the first 

stage. Their heuristic secures the feasibility condition 

and improves the feasible solution until no improvement 

can be made. The results are compared with an exact mixed 

integer programming model. This heuristic is, however, 

not applicable for large problems. 

Billington et al. [1983] presented a mathematical 

programming approach to capacity constrained multi-level 

problems. Then they introduced Product Structure 

Compression as a method to reduce the problem size. The 

same problem is solved via a Lagrangean relaxation method 

using the subgradient optimization technique which 

provides lower bounds to the problem posed by Trigeiro et 

al. [1989]. They involved setup time in the formulation 
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and showed that it was difficult to solve the problem 
with large setup costs. 

Bahl and Ritzman [1984] proposed a heuristic procedure 
for multi-item lot-sizing problems with capacity 

constraints. Their heuristic is based on combining the 

Manne's [1958] formulation with the fixed order 
techniques. They allow the regular or overtime to alter 

capacity. Their heuristic only considers T cyclical 

production sequences. When the problem size is increased 

it takes substantial CPU time to solve the problem. 

Afentakis et al. [1984] presented a linear transformation 

of the general mixed integer programming formulation, and 
illustrated that the lot-sizing problem can be 

reformulated using echelon costs. The Lagrangean and 

subgradient optimisation techniques are used to develop 

lower bounds to the optimal solution. These bounds are 

incurred in a special branch and bound procedure. Their 

method is only suitable for the assembly structure. 

Afentakis and Gavish [1986] extended the same problem to 

tackle a complex product structure with multiple end 

items using the same techniques. Their approach can 

generate tight lower bounds for the problems. They did 

not include the capacity constraints in either models. 

Their method is again complex and requires a lot of 

computational time. A later paper by Afentakis [1987] 

proposed a parallel heuristic, which is a generalisation 

of the single-stage Wagner-Whitin algorithm, to optimise 

all stages individually for assembly structure. This 

optimisation is done in the forward fashion. The 

procedure means that the one period problem is solved, 

then the two period problem, and so on until the last 

period is reached. The disadvantage of this heuristic is 

that when the number of periods and stages is increased, 

the solution to the problem becomes more complex because 
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there are 2n-1 alternative plans for each period. 
Afentakis does not allow for the capacity constraints. 

Rosenblatt [1985] compared two replenishment problem 
policies which are: the Fixed Cycle and the Basic Cycle 

policy. The Fixed Cycle policy is solved using a dynamic 

approach to find the fixed intervals in the planning 

period. In this case optimal combinations are found by 

dividing the items into groups and then finding the 

optimal cycle time for each group, whereas the Basic 

Cycle policy uses a heuristic to divide the items into 

only two groups. This approach is usually applied in 

cases where the ordering cost is of the first order 
interaction. Although the Basic Cycle approach is very 

efficient computationally, it is dependent on the data 

set. Hence they did not derive any conclusions. These 

policies have been applied to the case when items have 

dependent demand. 

McClain et al. [1985] propose a Cyclic Schedule, which is 

a repeating production pattern, for the multi-stage 

assembly systems using power-of-two multiples between 

stages. Such a schedule prevents the occurrence of 

bottleneck(s). The cycles are based on Economic Order 

Quantity (EOQ) analysis which is applicable for steady 

demands. 

Thizy and Wassenhove [1985] developed a method based on 

Lagrangean relaxation multipliers to get the lower bounds 

for the multi-item capacitated lot-sizing problem. The 

proposed method is complex and requires substantial 

computer time. 

Fogerty and Barringer [1988] propose a method analogous 

to the Wagner-Whitin and the Baringer and Fogarty [1987] 

heuristics. Capacity constraint is not included in their 

research. They use a tableau approach and include 
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marginal setup costs in the minor ordering costs for each 
product. 

Eftekharzadeh [1988] proposed two new heuristics which 
are: the Selective Enumeration heuristic which is a 
modification of the multi-stage uncapacitated lot-sizing 

procedure; and the Modified Per Period heuristic which is 
the modification of the Lot-for-Lot (LfL) heuristic. The 

results are compared with the mixed integer programming 
solution. His Selective Enumeration heuristic is similar 
to the Karni et al. [1982] and Afentakis [1987] heuristic 

except that he allows for a capacity constraint in stage 
1 and also his heuristic uses the shortest path method 

rather than the Wagner-Whitin algorithm. His algorithm 
takes substantial computational time and hence it is not 

applicable for large problems. More discussion will be 

given in chapter 7 to compare his heuristic to the ones 

which will be proposed in this thesis. 

Atkins and Iyogun [1988] extended the well known Silver- 

Meal heuristic for multi-product dynamic lot-size 

problems. This heuristic provides a lower bound obtained 
from decomposing the problem into single item problems. A 

later paper (Iyogun [1991]) improved the research of 

Atkins and Iyogun using Silver-Meal which combines 

production into lots for several periods as long as 

average cost keeps decreasing for several periods and a 

Part Period Balancing heuristic which minimises the 

absolute differences between the setup and holding cost 

until the next setup. 

McClain et al. [19891 present a decomposition approach to 

solve large scale LP problems for multi-stage production 

scheduling problems with capacity constraints. They did 

not include setup time or setup costs, therefore the 

problem is reasonably easy to solve. They show that the 

decomposition approach is faster than LP. They allow 
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overtime to balance the capacity usage because of excess 
production. 

Maes et al. [1991) developed a few rounding heuristics, 
starting with the LP solution, for the capacitated multi- 
level lot-sizing problem. They reported that although the 
partial branch and bound procedure yields best results in 
comparison to the others, it requires very large CPU 
time. 

Gupta and Keung [1990] reviewed the heuristic literature 
for single-stage and multi-stage lot-sizing problems, 
then they showed the rolling schedule effects in making 
the schedules. They conclude by classifying the existing 
heuristic literature for product structures into (i) 

series, (ii) assembly, (iii) arborescent, (vi) general 
network. Bahl et al. [1987] categorise the current 
literature into single-level and multi-level production 

problems. These categories are restricted by 

unconstrained and constrained production problems. They 

assessed these categories on the basis of the 

computational effort, generalization, optimality, 

simplicity, and testing of the proposed heuristic . On 

the other hand Goyal and Gunesakaran [1990] classified 
the multi-stage production inventory system used into (i) 

the system configuration; (ii) the objectives considered; 
(iii) the techniques used for modelling and solutions as 

criteria to access the model. (i) In the system 

configurations single-product or multi-product problems, 

with single or multiple machines for multi-stage systems, 

were reviewed. (ii) Among the objectives considered 

were: - the determination of the economic production 

quantity and start up and shut down schedules for the 

systems, the estimation of production efficiency, and the 

determination of optimal inventory levels. (iii) In the 

modelling and solution techniques; conventional average 

cost models, linear or integer programming models, 
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queueing models, network models, 

models, models based on branch 

heuristic models and simulation 
Both reviews are very broad. 

2.3. Summary 

dynamic programming, 

and bound methods, 

models were reviewed. 

In this chapter the research and literature review were 

organised according to the type of product structure and 
to the computation time, ie whether a system takes 

substantial computation time or not, using heuristics or 

methods, for capacitated and non-capacitated problems. 

Lot-sizing heuristics were defined whenever they were 

mentioned in the text rather than as sub-sections. 
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CHAPTER 3 

BACKGROUND WORK 

3.1. Introduction 

This chapter will consider in great detail the work 
described in Billington et al. [1986]. As was mentioned 
in the previous chapter this paper provided a very 

comprehensive treatment of the interaction between 

production scheduling and lot-sizing and produced some 
definitive results. The problem formulation used by these 

authors will be discussed in section 3.3, but to 

introduce the area a review of Material Requirements 

Planning (MRP) work will be given first. 

3.2. Material Requirements Planning 

Material Requirements Planning (MRP) is a computerized 
information system which determines the requirements for 

parts and components in multi-level multi-product 

production planning environments. The MRP works according 

to the following logic: it takes a discrete production 

plan for a parent item from the master production system, 

explodes the parent item's requirements into component 

items and raw materials, calculates the net requirements 

subtracting the available inventory from the gross 

requirements, then calculates the lot-sizes for all items 

at each stage, and finally offsets the lead times 

according to their due dates. Hence, the MRP system 

controls both the material control and planning at the 

same time. The main reference for this field is Orlicky 

[19751 
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MRP includes three major categories, which are: (i) 
Master Production Schedules (MPS), which is the input for 
the MRP systems, i. e. to determine the quantity and 
timing for each item to be produced, (ii) Bill of 
Material (BOM) which provides the whole information about 
components and end items within the hierarchical levels, 

which goes into that end product for the MRP, such as 
their sequence, their quantity in each finished item, and 
the work centres to be used to produce the items, (iii) 

Inventory Status File, which is also called the record 
file, which is to provide up-to-date information for each 
item. It involves an identification number, available 

quantity and procurement lead time of each item (see Adam 

and Ebert [1989]). The outputs of the MRP system are the 

order release requirements, order rescheduling, and 

planned orders. According to these outputs, the 

production planner can meet the material requirements 

within the capacity and lead time context. 

Adam and Ebert [1989] classified the intention of MRP 

systems as follows: the reduction of inventory 

requirements, the reduction of production lead times and 

delivery lead times to customers, realistic delivery 

commitments to customers , and finally the incrementation 

of operating efficiency. But it fails when unpredictable 

lead times, work centres with limited capacity, 

unpredictable external demand for parts, defective items 

are involved in the system. MRP systems usually assume 

that there is no capacity constraint (see Zangwill 

[1966], Florian and Klein [1971], Afentakis et al. 

[1984]. Afentakis and Gavish [1986], Blackburn and Millen 

[1979]) so that they proceed according to infinite 

loading where it is assumed any production amount is 

possible on each facility. Infinite loading has been 

studied by many authors such as Wagner and Whitin [1958], 

Silver and Meal [1973], Berry [19721, Fogerty and 

Barringer [1988] and so on. Some systems use finite 
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loading by loading the facility up to capacity. McClain 

et al. [1989] showed how to accomplish finite loading 

using a linear programming approach. They allowed 
overtime to avoid difficulties of the bottleneck but they 
did not include the setup cost and time. 

There are two types of MRP. They are: the regenerative 
and the net change approaches. In the regenerative 
approach, the available plan must be changed whenever 
there is a change in the master production schedule or 
inventory status file (such as revised lead times) . When 
this change occurs, the regenerative approach restarts 
the planning from the beginning of the period. This is 

controlled by short period intervals, often weekly or 

monthly. On the other hand, whenever there is an 

unexpected event the net change approach proceeds only 
for those parts which are affected. The regenerative 

approach is well suited to a stable environment, because 

it is checked more often. Conversely, the net change 

approach could need more computer access, because it is 

controlled by a daily basis or even more frequently. 

Maxwell et al. [1983] pointed out there is no model which 

can solve the entire manufacturing management problem and 

classified the main aspects of the production problem 

which must be dealt with ' (1) manufacturing processes 

with several stages of manufacture, common items, and so 

on, (2) dynamic lead times that depend on the state of 

the system, (3) capacity limitations at multiple 

locations, (4) uncertainty of supply and demand, and (5) 

allowing for setup as well as setup cost. ' They also 

discussed the important aspects of the production 

planning and control process in existing literature, and 

proposed a comprehensive modelling framework. They do not 

propose detailed models, but they illustrate what models 

are required based on assembly product structure. 
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McClelland et al. [1988] discuss the effect of the MRP 
environment and point out that MRP is unsuitable for the 
real life problem in terms of variability of an end item 
demand, production times, production capacities and 
purchasing lead times. They compare the performance of 
production order quantity (POQ) , Lot-for-Lot (LfL) and 
economic order quantity (EOQ) lot-sizing techniques in 
terms of inventory costs and customer services. 

Chae [1988] noted that the available MRP literature does 

not give a definitive recommendation on ' (1) how to 
develop the production schedule, (2) how to preselect 
each item's lot-sizing policy, and (3) how to revise the 

production schedule and material requirements plan, 

recognizing capacity and sequencing constraints' and 

proposed a heuristic lot-sizing/scheduling methodology of 

a multi-stage capacitated production system by using load 

families. The production plan would be more efficient if 

it involves the above recommendations. 

Having explained the deficiencies of the MRP technicrue. 

the integer programming formulation 

which is adopted from Billington et 

given in the next section. 

in MRP environment, 

al. [1986], will be 

3.3. Integer Programming Formulation of Problem 

The work of Billington et al. [1986] provides a 

definitive treatment of types of lot-sizing problems. The 

consideration of these and suggestions for their solution 

will form the major part of this thesis. For the lot- 

sizing problem a bottleneck will be defined as follows. A 

bottleneck is a work centre which converts raw materials 

into finished goods through the use of resources in the 

manufacturing process. Therefore a machine with limited 

capacity, highly skilled or specialised workers, and 

task-specific machines or tools can all be seen to be 
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bottlenecks under this definition. All the resources 

could be classified into a bottleneck. A situation when 
the work centre capacity is not enough to satisfy the 

demands for some periods will be subject of this thesis. 

A general product structure with a bottleneck facility is 

given in Figure 3.1. (from Billington et al. [1986]). 

Although this figure seems to be different from the 

Figure 2.2.4, both figures merely show different 

production steps within examples of general structures. 

Figure 3.1 is more elaborate than Figure 2.2.4. 

II 

Figure 3.1. A General Product Structure with a Bottleneck 

Facility (The Bottleneck facility is shown by the dashed 

lines). 

The numbers in Figure 3.1. illustrate the production 

items and the arrows depict the production steps. Items 

13-18 are purchased items which are used to make 
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intermediate items, e. g. item 13 is used to make item 8, 
item 14 to make item 9,..., item 18 to make item 12. Items 
5-7 are also intermediate items, with items 9 and 15 
being required to make item 5, item 10 to make item 6, 
item 11 and item 12 being required to make item 7. 

Finally items 1 and 2 are end items, which are the final 

products of the process. 

The general product structure, as was illustrated in 

Figure 2.2., can be split into a number of special cases: 
(1) assembly (no commonality), (2) serial (one item, 

multi-stage) (3) parallel (a collection of serial 

structures in which several items must go through the 

same production steps. Each item can be treated 

independently without a limit on resources. ), (4) single- 

stage multi-item. This thesis will concentrate on the 

case of a parallel structure. 

As will be seen from the numbering system in Figure 3.1, 

no item has a higher number than any of its predecessors. 

It is an a priori assumption that items in the bottleneck 

facility do not have predecessors (although this 

assumption can be relaxed for the subsequent heuristic 

approach). It can be seen that batching demands on 

product setups can result in capacity problems and also 

affect predecessor items since the batches are passed 

through as dependent demands. Because capacity 

utilisation varies through time, costs may not be 

constant. 

3.3.1. Assumptions 

The following assumptions provide a number of different 

variations for multi-level lot-sizing problems. 

1. All lead times between stages are assumed to be 

zero, 
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2. Demand for the multiple end items are assumed 
known and at constant known rate per year, 

3. There is no demand for the components at any 
intermediate stages, 

4. Back orders are not allowed, 
5. The number of units coming from bill of material 

required in the production of one unit at the 
immediate successor stage to the other stage is 

assumed to be equal to one, 
6. Each item has only one successor and one 

predecessor, 

7. The unit production costs are assumed constant and 
hence are ignored, 

8. Production must occur in advance of that demand, 
9. Once an item is produced, it remains in inventory 

for the whole planning horizon, i. e. inventory is 

not perishable, 

10. Initial inventory is zero. 

Note: These are also the assumptions used by Billington 

et al. [1986]. Their consequences will be discussed as 

appropriate later in the thesis. 

3.3.2. Notations 

aij = The quantity of product i needed per unit of 

production of product j; aij =0 for all i<j, 

bi = Time needed on the bottleneck facility for the 

production of product i, and bi =0 if there is no 

production on the bottleneck facility, 

capt = Units of time available at the work centre, 

csi = Setup cost for product i (following the assumption 

made by Billington et al. [1986], for consistency, 

the possibility of " carrying over "a setup from 

one period to another is not allowed ). 
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dit = External (independent) demand for product i 
during time t, and there is no demand for the 
intermediate items, 

hi = Holding cost for product i, 

Iit = Final inventory level of product i in period t, 
li = Lead time, which is the unavoidable time from the 

time the order placed until it is available, for 

product i. This could be because of the time taken 
by a vendor to deliver a product, or could be a 
non production lag, 

N= Number of products, 
Pit = Units of i produced in period t, 
Si = Setup time for the work centre for product i. This 

takes the value zero for all items except those 

made on the work centre. This can also include 

processing time which is not related to the size 

of batch as in some heating operations, 
T= Total number of periods, 
Xit = Production indicator; equal to 1 if Pit >0 and 

zero otherwise. 

3.3.3. Mathematical Model 

The aim of this model is to provide the lot-sizes which 

minimise the total inventory and setup cost along the 

planning horizon for all parts in the product structure 

when there is a bottleneck(s). The lot-sizes are 

constrained to meet demand for each period at least. In 

the formulation below inventory is eliminated by 

substituting cumulative production minus cumulative 

demand, and it is derived from a model in Billington et 

al. [1983]. 
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Formulation 

Minimise: 

NT 
Y hi 

i=1 t=1 
(T -t+ 1) Pit + csi Xit 

In this equation, production cost, which decreases 

linearly with time, is included as an inventory cost. The 

objective function in an integer programming problem 

generally includes the labour cost but in our case it is 

ignored because the labour cost is fixed. In general, the 

setup time and setup cost are very critical factors in 

production scheduling problems. When they drop from the 

formulation, the problem becomes a linear programming 

relaxation problem and is easily solved, otherwise 

integer programming may not give the feasible solution 

for some problems and takes substantial CPU time. The 

idea for this objective function is to find a tradeoff 

between the holding and setup cost which minimises the 

total cost. Sequencing to produce items is not included 

in this model. 

Subject to: 

ttt I[ aij 2jn I ý! L din Iio i=1,..., N 

n=1 j=1 n=1 t=1, ... ,T 

This constraint illustrates that available production 

after subtracting the requirements is greater than or 

equal to the external demand by eliminating the inventory 

in the planning horizon. This equation shows that the 

production must be available at least n-li, where li is 

the lead time, time periods before required. The second 
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summation before the inequality illustrates the 
interrelation between the successor and predecessor items 
(sometimes called father-child relations). 

N 
bipit + sixit Iý capt 

i=1 
t=1, ... ,T 

This constraint is the capacity constraint for the 
bottleneck facility. This equation depicts the restricted 
case where the capacity is exceeded by demand for a 
particular item in the current period. 

Xit ={1 
if Pit >0 

0 otherwise 
i=1 , ... ,N 

This constraint shows setup cost and time are applicable 

only if there is a production. The non-negativity 

constraint is illustrated below. 

Pit 2: 0 i=1, 
..., N and t=1, ..., T 

The above formulation is the integer programming 

formulation when there is one capacity constrained work 

centre. 

Billington et al. [1986] present a price-directed 

approach, which is based on Lagrangean relaxation 

embedded within a branch and bound procedure, for the 

multi-level lot-sizing problem with a bottleneck. The 

solution method in their research is the branch and bound 

method with heuristics. They propose two solution phases 

which are dual and primal procedures. They define a 
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subproblem by assigning a fixed value to some Xit values 
at any node in the branch. They solve this problem using 
a Lagrangean heuristic, which relaxes all the capacity 
and all inventory balanced constraints for the production 
lot-sizes and a smoothing method is used to adjust the 

production in a primal phase. They report that this 

procedure yields a schedule which is difficult to obtain 
in a MRP environment. Then their procedure extends the 

primal phase to a dual phase which yields modified setup 

costs and production in each period. The aim of these two 

phases is to discourage production on the bottleneck 

facility and also improve the capability of decision 

making of level-by-level lot-sizing routines. The primal 

phase is repeated with the modified prices, which are 
found in the dual phase, until a good solution is 

reached. Subgradient optimization and a heuristic which 
is based on duality theory are used to force production 

decisions to more closly satisfy the constraints in the 

dual phase. This heuristic which is mentioned in 

Billington et al. [1986] is complex and will not be dealt 

with in this thesis. 

In particular Billington 

the three problem types: 

end-items and restricted 

et al. [1986] concentrated on 

1-end-item, 3-end-item, and 5- 

these items so that they were 

the only ones affected by the bottleneck. In the 

computational testing N has maximum value 25 and T has 

maximum value 12, the values chosen in the work of 

Billington et al. [1986]. 

3.4. Summary 

In this chapter the M RP environment and its deficiencies 

was discussed. The integer programming formulation which 

was adopted by Billington et al. [1986] was also 

illustrated. Finally the derivation of Economic Order 

Quantity from the integer programming formulation to use 
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for the non-bottleneck items in the next chapter will be 

depicted. 

Appendix 

Derivation of EOQ 

Essentially Billington et al. [1986] uses the objective 

of total cost for each product (i). 

Let the total cost for item i be TCi 

TT 
TCi =I csi Xit +Y Pit (T -t+ 1) hi 

t=1 t=1 

Assume that total demand = total supply 

therefore I Pit =I Dit for each i (= D, say) 
tt 

Let Qi be EOQ of product i (use Q from now on) 

D 
Number of setups = 

Q 

DCSi 

therefore total setup cost = 
Q 

QT 

time between setups = 
D 

therefore holding cost 
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QT 2QT 
= QThi +Q (T -) hi +Q (T -) hi + 

DD 

3QT 
Q (T -) hi +... +Q (T - 

D 

(D-Q) T 
) hi 

D 

Q 2Q 3Q D-Q 
= QThi [1 + (1 -)+ (1 -)+ (1 -)+.. + (1- )] 

DDDD 

Q 2Q 3Q D-Q 
= QThi [1 +1+... - ---.. - ( )] 

DDDD 

In this parenthesis there are D/Q terms in the first 

section and (D / Q-1) terms in the second section. The 

second section is an arithmetic progression. As the sum 

of (1 +2+3... + n) is equal to 

n 
S= (2a + (n - 1) d) 

G 

where a is the first term, d is the common difference, 

and n is the number of terms, then the expression in 

parenthesis is 

1D2DQ 
s= ( -1) {+( -2) } 

2QDQD 

1 D 
s= ( -1) 

2 Q 

therefore holding cost 
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D1D 
= QThi [-( -1 

Q2Q 

Total cost of setup and holding = TC 

Dcsi D1D 
_+ QThi [-{- 1}] 

QQ2Q 

Differentiating with respect to Q; 

dTC Dcsi Thi 
_-+ 

dQ Q2 2 

Equating this statement to zero to obtain the minimum 

cost gives: 

* Minimum cost batch size 
2Dcsi 

=Q=V 
Thi 

D 
but the average demand per period is 

T 

therefore Q* 
2dcsi 

=V 
hi 

where d is average demand per period. 
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CHAPTER 4 

A HEURISTIC FOR MULTI-LEVEL LOT-SIZING 
PROBLEMS WITH BOTTLENECK(S) 

4.1. Purpose of Thesis 

The intention of this thesis is to: 

A. Propose and evaluate a simple heuristic for the 

model of section 3.3 (multi-level lot-sizing 

problem with bottleneck) as an alternative to the 

approach of Billington et al. [1986]. This will 

form chapter 4. 

B. To show how the model of section 3.3 can be 

extended to incorporate multiple bottlenecks. This 

will be included in chapter 4. 

C. To show how the model of section 3.3 can be used 

on a rolling schedule environment. This will form 

chapter 5. 

D. Provide the results and discussions of chapters 4 

and 5. This will form chapter 6. 

E. To show how the heuristic can be applied to the 

assembly structure. This will form chapter 7. 

F. Finally, the conclusion and suggestions for future 

work will form chapter 8. 
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4.2. Introduction 

Previous methods to solve the multi-level lot-sizing 

problem where there is a bottleneck have formulated the 

problem as an integer programming problem and solved the 

problem using Lagrangean relaxation embedded within the 
branch and bound procedure. In this chapter, which is 

summarised in Toklu and Wilson [1991], Toklu and Wilson 
[1991] and Toklu and Wilson [1992] (included in Appendix 

E), it is suggested that items to be produced should be 

grouped into two types and a simple but efficient 
heuristic can then be used to determine the production 

quantities required in each case. This will form section 
4.4 but first the problem area will be explained in 

section 4.3. Then this heuristic will be extended in 

section 4.5 for the multiple bottleneck cases, and 

sensitivity analysis will be investigated in section 4.6. 

Finally the conclusion will be given in section 4.7. 

4.3. Problem Area 

The primary aim of production planning models in the 

literature was dependent on satisfying the external 

demands. Lot-sizing problems become more realistic if 

they involve capacity constraints and if they are 

incorporated in multi-level systems. Capacitated lot- 

sizing problems in the literature (see Billington et al. 

[1988]. Florian and Klein [1971], Garey and Johnson 

[1979]) are known to be NP-hard problems which means that 

a given problem cannot be solved in a polynomial time. 

The problem is hard because optimal solution techniques 

are unable to solve the problems within reasonable 

computation times. Garey and Johnson [1979] report '... In 

its broadest sense, the notion of efficiency involves all 

the various computing resources needed for executing an 

algorithm. However, by the most efficient algorithm one 

normally means the fastest. Since time requirements are 
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often a dominant factor determining whether or not a 
particular algorithm is efficient enough to be useful in 

practice... '. As a result of computation difficulties, 
the effort in this chapter is directed to use effective 
heuristic approaches to those capacitated problems. 
Available capacity sometimes may not be enough to meet 
the external demands because of the shortage of tools, 

shortage of skilled operators or more demand than the 

system capacity. Thus, all these instances may cause a 
bottleneck problem which is the most awkward part in the 

manufacturing environment. 

The product structure with a single bottleneck facility 
for the five-end-item problem is illustrated in Figure 
5.3. As will be seen from the product structure there is 

no commonality between items and each predecessor has to 

be the input to one successor stage. This product 

structure is the special case of the general product 

structure and is called a Parallel Product Structure. 

4.4. Simple Heuristic for Multi-Level Lot-Sizing 

Problem with a Bottleneck 

Lot-Sizing in MRP only becomes realistic when features 

such as capacity constraints and the fact that systems 

are multi-level can be incorporated into the model. 

Blackburn and Millen [1982] review and add to 

contributions made to this area. Their work provides for 

simultaneous lot-sizing and capacity requirements 

planning in an MRP framework. However, one of the most 

succesful attempts to tackle the multilevel lot-sizing 

problem with a bottleneck constraint has been by 

Billington et al. [1986]. This chapter will propose a 

simple heuristic approach to solve the problem modelled 

by Billington et al. [1986] and show that if the items 

for production are categorised into 
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(a) end-items, constrained by the bottleneck 

(b) non-end-items, unconstrained 

then two simple procedures can be used independently, one 
for each category of product item, to determine the 

production levels of each product item. The reason for 

this categorisation into two groups will be explained 
later in this section. Solutions will be sub-optimal but 

of adequate quality and are easy to obtain. The method to 

be proposed requires only a fraction of the computation 

required for solution of the integer programming 
formulation of the lot-sizing problem. In addition the 

heuristic is easy to implement and program when compared 

to the Lagrangean heuristic approach of Billington et al. 

[1986] and should require much less computer time and 

have more practical appeal in a realistic setting. 

The heuristic operates by first dividing production items 

into end-items and non-end-items. The reason for this is 

that production of each non-end item is unconstrained and 

so has neither any effect on the production of any other 

non-end-item nor on the production of the product items 

which are constrained by the bottleneck. As demand 

required of all product items is known in advance, the 

production decision for each non-end-item becomes a 

relatively simple one of when to produce in order to 

minimise the contribution to costs (from holding and 

setup costs) of each non-end-item. The fact that demand 

for end-items determines the demand for intermediate 

product items does not invalidate the independence of 

production of each product item as demand for end-items 

is known several periods in advance. The extension to 

dependent product item cases for different product 

structures is an area for further research. The problem 

of determining when to produce end-items is more complex 

as these product items must share the resources of the 

bottleneck. Thus for these product items the production 
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problem is a constrained problem. However, in general 
these product items are in the minority. 

Define Sit as stock of product i at start of period t 

t-1 
then Sit =I( Pin - din 

n=1 

4.4.1 Non-end-items 

For these product items the EOQ and Silver-Meal 

approaches will be used. These approaches were chosen as 

they are comparatively simple to operate and in general 

will produce solutions of good quality. 

4.4.1.1. The Economic Order Quantity Approach (EOQ) 

Let Qi be the EOQ for product item i, based on setup cost 

csi and holding cost hi. Then the following strategies 

are considered: 

(a) Produce Qi 

in the period when 

production were made 

that Sit < dit) 

in period 1 and then next produce Qi 

stocks would become negative if no 

(ie find the next smallest t such 

Let ti be the number of occasions on which product item i 

will be produced. Then 

T 
ti =[E dit / Qi + 0.5 ] 

n=1 

and production is made in any period n whenever Sin < 

din" 

Note that [] is the integer part function. 
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If in any period n 

TT 
Qi ý dit - Sin then set Qi =I dit sin 

t=n t=n 

(b) Let Zi be the quantity of product item i 

produced in period 1. The same quantity is next produced 
whenever stocks would become negative if no production 
were made (ie when Sin < din)" 

T 

Zi= (Edit) /ti 
t=1 

Continue this process through all the periods. 

(c) Produce all product items in period 1. 

Strategies (a), (b), and (c) are evaluated to see which 
leads to the smallest total inventory cost over the N 

periods and then that strategy is chosen. 

4.4.1.2 The Silver-Meal Approach (SM) 

This approach selects the lot-size which covers the 

number of periods to minimise the total cost per period. 

The average total cost function of this heuristic is 

given as: 

Average total Cost = {csi 
T 

+ hi I (t - 1) dit }/t 
t=1 

and chooses the smallest period t whenever the average 

total cost is greater than the immediate previous 

period's cost (ie the average total cost of (t) > the 

average total cost of (t - 1)). Then the lot-size equals; 
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N 

Qi=Idit 
t=1 

where i is the product item's number. This heuristic is 

chosen in this chapter in comparison with the EOQ 

heuristic for the non-end-items because it is very 

effective for varying demand cases. 

4.4.2 End-items 

For these product items a simple heuristic was adopted 

which would adopt a greedy approach to production by 

having few setups, but with heavy utilization of the 

resultant production capacity. In addition, the heuristic 

would operate in a cyclic manner, moving between product 

items or sets of product items in turn to produce 

reasonably smooth production. The approach has broad 

similarities with the work of Mclain and Trigerio [1985] 

except that by excluding setup time and cost they handle 

a problem that is easier to solve. Bahl and Ritzman 

[1984] also adopt a cyclic approach but do so by 

examining permutation schedules. 

The heuristic will be described with reference to three 

cases. 

Case (a) 1-end-item problems 

Produce as much of end-item i as capt will allow in 

period 1, i. e. set Pil = cap,, then next produce product 

item i when stocks would become negative if no production 

were made, i. e. find the next smallest t for which Sit < 

dit. Continue the process of producing in each period t 

which has this property. 
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T 
If Pin would exceed Y, dit for any period n 

t=n 

T 
then set Pin =I dit 

t=n 

Case (b) 3-end-item problems 

A three period cycle is adopted. 

Period 1 Set P21 = d21 " P31 = d31 and P11 = cap, - d21 

-d31 " 

Period 2 Set P32 = d32 , P12 =0 and P22 = cap2 -d32 
provided S12 > d12 
Otherwise set P12 = d12 + d13 - S12, 

P32 = d32 and P22 = cap2 - P12 - P32. 

Period 3 Set P33 = cap3 and 213 = P23 =0 provided S13 > 

d13 and S23 > d23. Otherwise set P13 = d13 - 
S13, P23 = d23 + d24 - S23 and 233 = cap3 - P13 

- P23 " 

Period 4 Set P14 = capo provided S24 > d24 and S34>d34 

Period 5 Set P25 = cap5 provided S15 > d15 and S35>d35 

Period 6 Set P36 = cap6 provided S16 > d16 and S26>d26 . 

Again, if stocks of any product item would become 

negative, produce sufficient of that product item to 

satisfy demand over the next one or more periods until 

that product item moves into the dominant production 

position. The product in the dominant production position 

is the product for which as much as possible should be 
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produced after ensuring stocks of other products do not 
become negative. In the above heuristic product 1 is in 

the dominant production position in period 1, product 2 

is in the dominant production position in period 2 and 

product 3 is in the dominant production position in 

period 3. Whenever the stocks of any product would become 

negative, produce as much of that product item to satisfy 

the demands according to their priority. 

Continue the process in the same cyclic manner for the 

remaining periods. If at any stage stocks of all products 

are sufficient for production to be zero in any period, 

no production is made in that period and the cycle for 

the appropriate product is delayed by one period. 

The priority allocation using simply the order of the 

data as used by Billington et al. [1986] was chosen as a 

basis for the thesis results. Although there is no reason 

to believe that this priority allocation is better than 

any of the alternative priority allocations, there is no 

reason to believe that the results would by changed or 

improved substantially by using an alternative priority 

allocation. Intensive testing of other priority 

allocations was performed using criteria such as 

(a) Largest total demand first 

(b) Most variable demand first . 

Testing revealed only small differences in the results 

compared to the results presented in Tables 4.6.1-4.6.21 

which use simply the order of the data. Total costs were 

neither consistently increased nor decreased by 

considering priority allocations determined by (a) or 

(b). However, a further examination of the performance of 

the alternative priority allocations would provide an 

interesting comparison for further research. 
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Note: on the sample data on which the heuristic was 
tried, despite this data incorporating some highly 

variable demand levels and production capacities, it was 
found that none of the 'otherwise' type conditions listed 

above ever applied. 

Case (c) 5-end-item problems 

In order to keep the heuristic simple, more complex cases 

are now treated more in the style of Case (b). The set of 
5 products is simplified by considering products in just 

two sets rather than as 5 individual products. Here 

products {1,2,3} are considered a set as are {4,5}. The 

reason why the same priority allocation, as used in the 

three-end-item problems, was not applied is that the 

capacity was not enough to satisfy the demands for some 

periods such as structure 3 with 95% capacity utilisation 
in the five-end-item problem (this is a contradiction of 

the "no stockouts" assumptions) . The same alternative 

priority allocations, which were explained in the three- 

end-item problem, were tested intensively in the 

experimental studies, and it was found that there were no 

significant cost differences between any of the other 

priority allocations. 

Let Pit = Pit + P2t + Pat, and P4t - '4t + P5t" Then the 

two period cycle is adopted. 

Period 1 Set P41 = d41 + d51, and P11 = cap, - P41" 

Period 2 Set P12 =0 and P42 = cap2 provided S12 > d12 

Otherwise set P12 = d12 + d13 S42, P42 = cap2 

p12 

Period 3 Set P13 = cap3 provided S43 > d43 

Period 4 Set P44 = capo provided S14 > d14 
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Continue this process in the same procedure for the rest 
of the periods in the same cyclical manner. If stocks are 
sufficient for product in any stage, production will be 

zero i. e. there is no production. 

The two sets are now treated as single products and the 

cyclical approach of case (b), modified to a two-period 

cycle, is followed with the modification that when 
production of a product set can be larger than demand in 

that period, the production quantity is equal for each 

product in the set. 

Beside, the setup cost and the holding cost for the five- 

end-item problem will be taken to be the average of the 

combined items' setup and holding costs. Total inventory 

cost is now the total of individual inventory costs 

arising from the end-items and the non-end items. 

4.5. A Heuristic for a Multi-Level Lot-Sizing Problem 

with Multiple Bottleneck 

The integer programming formulation for the multi-level 

lot-sizing problem was given in section 3.3.3 for the 

single bottleneck cases. The integer programming 

formulation for the multiple bottleneck would be: 

Minimise: 

NT 
Z= L hi 

i=1 t=1 

Subject to: 

(T -t+ 1) Pit + csi Xit I 

ttt II Pi, n-li 
I aij Pjn ]ýI din - Iio i=1, 

... ,N 
n=1 j=1 n=1 t=1, ... ,T 
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N 
bit pit + sil Xit Iý capt t=1,..., T 

i=1 1=1, ... ,M 

xit ={ 
1 

0 

if Pit >0 

otherwise 
i=1 , ... ,N 

Pit ý0 i=1, 
..., N and t=1, ..., T 

where bil is the time required on the bottleneck facility 

1 for the production of product item i, and sil is the 

setup time for the work centre 1 for product item i. The 

rest of the notations are the same as explained in 

chapter 3. 

The objective of the integer programming problem was to 

minimise the total cost whilst producing one or more 

product (s) to satisfy demand (s) over the planning 

periods. 

13 10 741 

14 11 852 

15 12 963 

Raw Intermediate Final 
Materials Items Items 

Figure 4.4. A parallel product structure with multiple 

bottleneck facilities (the bottlenecks are shown by the 

dashed lines). 
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The product structure for the three-end-item problem when 

there are multiple bottleneck facilities is depicted in 

Figure 4.4. Three parallel production lines are 

illustrated horizontally and these end on the product 

items, 1,2,3, and also the five stages are depicted 

vertically in Figure 4.4. 

As was mentioned earlier, the bottleneck could arise when 

the work centre capacity is less than requirements. It is 

assumed that there are bottlenecks, which cause 

difficulty in satisfying the requirements in some 

periods. In Figure 4.4 the bottlenecks lie in the centre 

column and right hand column. The proposed heuristic for 

the end-items which are constrained is the same as 

explained in section 4.4, and the heuristic for the 

constrained non-end-items is as follows (and is the same 

as that discussed in section 4.4): 

Period 1 Set P81 = d81 ' P91 = d91 and P71 = cap, - d81 

-d91" 

Period 2 Set P92 = d92 , P72 =0 and P82 = cap2 -d92 

provided S72 > d72 

Otherwise set P72 = d72 + d73 - S72, 

P92 = d92 and P82 = cap2 - P72 - P92. 

Period 3 Set P93 = cap3 and P73 = 283 =0 provided S73 > 

d73 and S83 > d83. Otherwise set P73 = d73 - 

S73, P83 = d83 + d84 - S83 and P93 = cap3 - P73 

- 283 

Period 4 Set P74 = capo provided S84 > d84 and S94>d94 

Period 5 Set P85 = caps provided S75 > d75 and S95>d95 . 

Period 6 Set P96 = cap6 provided S76 > d76 and S86>d86 
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Whenever stocks of any product item would become 

negative, then produce as much of that product item for 
the next one or more periods to satisfy the demands. 

Different alternative priority allocations were tried to 
test the heuristic in the experimental studies, but the 

above heuristic using the chosen dominant production 

positions (see section 4.4.2, case (b)) were applied. 

For the unconstrained non-end-item problems, the EOQ and 
Silver-Meal approaches are applied. The total cost is the 

sum of the individual costs. 

The proposed heuristic for the one- and five-end-item 

problems with multiple bottlenecks was the same as was 

explained in section 4.4 for the end-item(s) . It is used 
for the constrained non-end-items with only one 
difference, the numbers are changed. For example for the 

one-end-item problem, production of product item 1 is 

replaced by production of product item 3 where the second 

bottleneck is located. Similarly for the five-end-item 

problem, production of product items 1,2,3,4,5 is 

replaced by production of product items 11,12,13,14, 

15. 

4.6. Sensitivity Analysis 

In this section, sensitivity analysis is explained in an 

example problem for the one-end-item problem. The data 

used in Billington et al. [1986] was the demands for 12 

periods (33,43,36,46,46,42,38,41,44,40,35,46), 

holding costs (0.5,0.1,0.5,0.1,1.0), and setup cost 

(300,200,200,500,400) for the different product 

items. The same data is used to solve the problem by 

reducing the setup and holding costs by 20% and 40% 

respectively. The results are illustrated in Table 4.6. 
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Plossl and Obec [1967], and McClain and Thomas [1980] 

reported that 'adjusting all Q* (Economic Order Quantity) 

values upward until n (number of orders) drops to its 

original value of 23.5 per year for the sample implies 

82.1 orders per year, which is 3.49 times larger than the 
desired value of 23.5. ' McClain and Thomas [1980] showed 
that by multiplying all Q* (Economic Order Quantity) by 
3.49 in their data set, a reduction of around 50% in the 

total cost would be achieved with no change in the annual 

ordering load, simply by ordering in proportion to the 

EOQ. This calculation was dependent on the data sets. 
Once the data set is changed, it is difficult to get the 

same reduction. In this section reductions by 20% and 
40%, respectively in the original holding and setup costs 

were considered rather than changing the order quantity. 

The results in Table 4.6 showed that any reduction or 
increase in the original setup and holding costs, using 

either the Economic Order Quantity or the Silver-Meal 

approaches for the unconstrained product items with the 

proposed heuristic for the constrained (bottleneck) 

product items, give rise to a proportional 

reduction/increase in the total cost. 

Because of the assumptions in the lot-sizing heuristics 

of uncertainty in demands, varying demands, varying costs 

and unpredictable demands, it is worthwhile studying the 

robustness property of the heuristic over the planning 

horizon. 
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Table 4.6. Sensitivity analysis for one-end-item problem 

Item Projected total cost Projected total cost 
Us ing EOQ Using Silver-Meal 

original 20% re. 40% re. original 20% re. 40% re. 

1 3520.0 2816.0 2112.0 3520.0 2816.0 2112.0 
2 788.0 630.4 472.8 937.4 749.9 562.4 
3 2558.0 2046.4 1534.8 2546.0 2036.8 1527.6 
4 1088.0 870.4 652.8 1088.0 870.4 652.8 
5 5116.0 4092.8 3069.6 5092.0 4073.6 3055.2 

4.7. Summary and Conclusion 

The integer programming formulation for single- and 

multiple bottleneck problems was solved by means of 

software MGG [1987] and SCICONIC [1986] (discussed in 

Appendix A), and the heuristic approach programmed in 

Fortran 77 (included in Appendix C) as an alternative to 

the integer programming. The data of Billington et al. 
[1986] was used to test these problems. The heuristic and 
integer programming results for multi-level lot-sizing 

problems with a bottleneck are illustrated in Tables 

4.6.1-4.6.9 as well as the results of the reduction of 

the original costs by 20% and 40% respectively. In 

conjunction with these results the graphs are given in 

Graph 4.6.1-4.6.9. These graphs are organised to compare 

the results according to the linear programming (LP), 

integer programming solution (IP), heuristic solution for 

the constrained product items with the Economic Order 

Quantity (H1) and Silver-Meal (H2) approaches for the 

unconstrained product items. In these graphs 50%, 75%, 

and 95% of capacity utilisation are illustrated on the 

horizontal axis, and current values, CPU time and 

optimality are depicted on the vertical axis. In 
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addition, the results in Tables 4.6.10-4.6.12 show the 
total costs when each of holding costs and setup costs 
are reduced by 20% in turn. Different capacity 
utilisations such as 60% and 80%, were used to test the 
heuristic and the results are shown in Tables 4.6.13- 
4.6.18. The results in Tables 4.6.19-4.6.21 show the 

multiple bottleneck problem with the integer programming 

solution and the heuristic solutions. The graphs for the 

multiple bottleneck solutions are illustrated in Graph 
4.6.10-4.6.12. On the horizontal axis, numbers are used 
to show the utilisation. Number 1, on the horizontal 

axis, shows the 50% utilisation in product item 1 and 25% 

in product item 3 for the one-end-item problems. The 

number 2 depicts 75% and 50% utilisation according to the 

bottleneck 1 and 2 which are located at product items 1 

and 3. Finally the number 3 illustrates the bottleneck 

utilisation of 95% and 75% in relation with the product 
items 1 and 3 respectively in the one-end-item problem 

product structure. In each table, linear programming 

solutions (LP) are given in the third column, integer 

programming solutions (IP) using the branch and bound 

procedure are given in the fourth column, and the 

heuristic solution for the constrained product items with 

the Economic Order Quantity (EOQ) and the Silver-Meal 

approaches for the unconstrained product items are given 

in the fifth and sixth columns respectively. 

According to the results, the heuristic produced a lower 

cost than the integer programming solutions. The main 

contribution in this thesis is to show that the required 

computer times of the heuristic to solve the problems 

takes a few seconds (all less than or equal to 3.31 CPU 

seconds). The results illustrated that only a small 

amount of computer time is required to solve the problems 

by means of the heuristic. The results also showed that 

reducing the original cost by 20% and 40% decreased the 

total costs by that percentage, but it did not yield the 
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same reduction when each of the original holding and 

setup costs were reduced by 20%. The multiple bottleneck 

results imply that the heuristic is favourable, in the 

same way as for the single bottleneck problem. The 

results show that the proposed heuristic yields better 

results than integer programming, especially in the five- 

end-item problems, where they are very close to the 

linear programming solutions. The reason will be 

explained in chapter 6. 

As a result, a simple heuristic for the bottleneck multi- 

level lot-sizing problem has been developed, which 

provides quick and easy solutions for the problem and is 

sufficiently simple to be used even without a computer 

routine. More discussion will be given in chapter 6. 
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Table 4.6.1. One End Item Problem with Structure One 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 10869 15441 13070 13183 
50% Iterations 144 3332 - - Util. CPU Time 0.80 127.98 1.20 1.20 

Optimality* 1.000 1.420 1.202 1.212 

Current Value 10869 16010 13977 14090 
75% Iterations 151 1684 - - 
Util. CPU Time 0.84 135.58 1.21 1.21 

Optimality* 1.000 1.472 1.285 1.296 

Current Value 10898 16044 14814 14927 
95% Iterations 148 2393 - - 
Util. CPU Time 0.78 105.15 1.22 1.22 

Optimality* 1.000 1.472 1.359 1.369 

* The proportion is calculated as Current Value/LP 
Current Value 

Table 4.6.1. Continued 

LP IP Heuristic Solution** 
Sol. ** Sol. ** EOQ Silver-Meal 

Current Value 8695 12352 10456 10546 
50% Iterations 144 3332 - - 
Util. CPU Time 0.78 129.36 1.20 1.20 

Optimality* 1.000 1.420 1.202 1.212 

Current Value 8695 12808 11182 11272 
75% Iterations 151 1684 - - 
Util. CPU Time 0.88 134.18 1.21 1.21 

Optimality* 1.000 1.472 1.285 1.296 

Current Value 8718 12835 11851 11941 
95% Iterations 148 2393 - - 
Util. CPU Time 0.86 102.76 1.22 1.22 

Optimality* 1.000 1.472 1.359 1.369 

* The proportion is calculated as Current Value LP 
Current Value 

** Calculated for a 20% reduction in the Original Costs 
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Table 4.6.1. Continued 

LP IP Heuristic Solution*** 
Sol. *** Sol. *** EOQ Silver-Meal 

50% 
Util. 

Current Value 
Iterations 
CPU Time 
Optimality* 

6521 
144 
0.76 
1.000 

9264 
3332 
127.18 
1.420 

7842 
- 
1.21 
1.202 

7910 
- 
1.21 
1.212 

Current Value 6521 9606 8386 8454 
75% Iterations 151 1684 - - 
Util. CPU Time 0.76 130.68 1.21 1.21 

Optimality* 1.000 1.472 1.285 1.296 

Current Value 6538 9626 8888 8956 
95% Iterations 148 2393 - - 
Util. CPU Time 0.90 101.02 1.22 1.22 

Optimality* 1.000 1.472 1.359 1.369 

* The proportion is calculated as Current Value LP 
Current Value 

*** Calculated for a 40% reduction in the Original Costs 

Table 4.6.2. One End Item Problem with Structure Two 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 30036 36235 35785 34749 
50% Iteration 144 1713 - - 
Util. CPU Time 0.80 60.36 3.10 3.10 

Optimality* 1.000 1.206 1.191 1.156 

Current Value 30036 38110 37293 36257 
75% Iterations 154 2420 - - 
Util. CPU Time 0.88 78.92 3.11 3.11 

Optimality* 1.000 1.268 1.241 1.207 

Current Value 30331 38498 38700 37664 
95% Iterations 150 1828 - - 
Util. CPU Time 0.84 78.92 3.11 3.11 

Optimality* 1.000 1.269 1.275 1.241 

* The proportion is calculated as Current Value LP 
Current Value 
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Table 4.6.2. Continued 

LP IP Heuristic Solution ** 
Sol. ** Sol. ** EOQ Silver-Meal 

Current Value 24029 28988 28628 27799 
50% Iterations 144 1713 - - 
Util. CPU Time 0.86 60.45 3.10 3.10 

Optimality* 1.000 1.206 1.191 1.156 

Current Value 24029 30488 29834 29005 
75% Iterations 154 2420 - - 
Util. CPU Time 0.90 79.66 3.11 3.11 

Optimality* 1.000 1.268 1.241 1.207 

Current Value 24265 30798 30960 30131 
95% Iterations 150 1828 - - 
Util. CPU Time 0.80 60.74 3.11 3.11 

Optimality* 1.000 1.269 1.275 1.241 

* The proportion is calculated as Current Value LP 
Current Value 

** Calculated for a 20% reduction in the Original Costs 

Table 4.6.2. Continued 

LP IP Heuristic Solution*** 
Sol. *** Sol. *** EOQ Silver-Meal 

Current Value 18021 21741 21471 20849 
50% Iterations 144 1713 -- 
Util. CPU Time 0.84 60.36 3.10 3.10 

Optimality* 1.000 1.206 1.191 1.156 

Current Value 18021 22866 22375 21754 
75% Iterations 154 1796 -- 
Util. CPU Time 0.98 79.41 3.11 3.11 

Optimality* 1.000 1.268 1.241 1.207 

Current Value 18198 23099 23220 22598 
95% Iterations 150 1828 -- 
Util. CPU Time 0.90 60.20 3.11 3.11 

Optimality* 1.000 1.269 1.275 1.241 

* The proportion is calculated as Current Value/LP 
Current Value 

*** Calculated for a 40% reduction in the Original Costs 
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Table 4.6.3. One End Item Problem with Structure Three 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 18787 26102 23716 22987 
50% Iterations 150 2338 - - Util. CPU Time 0.94 77.23 3.12 3.12 

Optimality* 1.000 1.389 1.262 1.223 

Current Value 18863 26434 24596 23867 
75% Iterations 147 1832 - - 
Util. CPU Time 0.76 50.52 3.12 3.12 

Optimality* 1.000 1.401 1.303 1.265 

Current Value 19375 27378 25502 24773 
95% Iterations 141 2258 - - 
Util. CPU Time 0.84 65.65 3.13 3.13 

Optimality* 1.000 1.413 1.316 1.278 

* The proportion is calculated as Current Value/LP 
Current Value 

Table 4.6.3. Continued 

LP IP Heuristic Solution** 
Sol. ** Sol. ** EOQ Silver-Meal 

Current Value 15030 20882 18972 18389 
50% Iterations 150 2338 -- 
Util. CPU Time 0.86 77.92 3.12 3.12 

Optimality* 1.000 1.389 1.262 1.223 

Current value 15090 21147 19677 19093 
75% Iterations 147 1832 -- 
Util. CPU Time 0.78 50.59 3.13 3.13 

Optimality* 1.000 1.401 1.303 1.265 

Current Value 15500 21902 20401 19818 
95% Iterations 141 2558 -- 
Util. CPU Time 0.78 66.98 3.13 3.13 

Optimality* 1.000 1.413 1.316 1.278 

* The proportion is calculated as Current Value LP 
Current Value 

** Calculated for a 20% reduction in the Original Costs 
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Table 4.6.3. Continued 

LP IP Heuristic Solution*** 
Sol. *** Sol. *** EOQ Silver-Meal 

Current Value 11272 15661 14229 13792 
50% Iterations 150 2338 -- 
Util. CPU Time 0.88 77.45 3.12 3.12 

Optimality* 1.000 1.389 1.262 1.223 

Current Value 11318 15860 14757 14320 
75% Iterations 147 1832 -- 
Util. CPU Time 0.86 50.85 3.13 3.13 

Optimality* 1.000 1.401 1.303 1.265 

Current Value 11625 16426 15301 14863 
95% Iterations 141 2258 -- 
Util. CPU Time 0.78 65.95 3.13 3.13 

Optimality* 1.000 1.413 1.316 1.278 

* The proportion is calculated as Current Value LP 
Current Value 

*** Calculated for a 40% reduction in the Original Costs 

Table 4.6.4. Three End Item Problem with Structure One 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 73623 92083 87156 84962 
50% Iterations 430 1503 -- 
Util. CPU Time 5.78 359.12 3.28 3.28 

Optimality* 1.000 1.250 1.183 1.154 

Current Value 73623 93072 87649 85455 
75% Iterations 445 1807 -- 
Util. CPU Time 5.62 344.77 3.29 3.29 

Optimality* 1.000 1.264 1.190 1.160 

Current Value 73902 94043 91859 89665 
95% Iterations 460 769 -- 
Util. CPU Time 6.06 340.84 3.30 3.30 

Optimality* 1.000 1.272 1.242 1.213 

* The proportion is calculated as Current Value/LP 
Current Value 
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Table 4.6.4. Continued 

LP IP Heuristic Solution** 
Sol. ** Sol. ** EOQ Silver-Meal 

Current Value 58898 73666 69725 67970 
50% Iterations 430 1503 -- 
Util. CPU Time 5.69 368.22 3.28 3.28 

Optimality* 1.000 1.250 1.183 1.154 

Current Value 58898 74458 70119 68364 
75% Iterations 445 1807 -- 
Util. CPU Time 5.56 341.39 3.29 3.29 

Optimality* 1.000 1.264 1.190 1.160 

Current Value 59121 75234 73487 71732 
95% Iterations 460 769 -- 
Util. CPU Time 6.06 351.54 3.30 3.30 

Optimality* 1.000 1.272 1.242 1.213 

* The proportion is calculated as Current Value LP 
Current Value 

** Calculated for a 20% reduction in the Original Costs 

Table 4.6.4. Continued 

LP IP Heuristic Solution*** 
Sol. *** Sol. *** EOQ Silver-Meal 

Current Value 44174 55249 52294 50977 
50% Iterations 430 1503 -- 
Util. CPU Time 5.28 319.18 3.29 3.29 

Optimality* 1.000 1.250 1.183 1.154 

Current Value 44174 55843 52589 51273 
75% Iterations 445 1807 -- 
Util. CPU Time 5.67 353.58 3.29 3.29 

Optimality* 1.000 1.264 1.190 1.160 

Current Value 44341 56426 55115 53799 
95% Iterations 460 769 -- 
Util. CPU Time 6.20 332.94 3.30 3.30 

Optimality* 1.000 1.272 1.242 1.213 

* The proportion is calculated as Current Value LP 
Current Value 

*** Calculated for a 40% reduction in the Original Costs 
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Table 4.6.5. Three End Item Problem with Structure Two 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 78353 97496 99336 96098 
50% Iterations 427 1039 - - 
Util. CPU Time 5.22 312.01 3.14 3.14 

Optimality* 1.000 1.244 1.267 1.226 

Current Value 78367 98608 100086 96848 
75% Iterations 435 663 - - 
Util. CPU Time 5.78 325.9 3.15 3.15 

Optimality* 1.000 1.258 1.277 1.235 

Current Value 79163 102507 102629 99391 
95% Iterations 438 3625 - - 
Util. CPU Time 5.96 423.32 3.16 3.16 

Optimality* 1.000 1.294 1.296 1.255 

* The proportion is calculated as Current Value LP 
Current Value 

Table 4.6.5. Continued 

LP IP Heuristic Solution** 
Sol. ** Sol. ** EOQ Silver-Meal 

Current Value 62683 77997 79469 76879 
50% Iterations 427 1037 -- 
Util. CPU Time 5.34 342.8 3.15 3.15 

Optimality* 1.000 1.244 1.267 1.226 

Current Value 62694 78886 80069 77478 
75% Iterations 435 663 -- 
Util. CPU Time 5.84 338.8 3.15 3.15 

Optimality* 1.000 1.258 1.277 1.235 

Current Value 63330 82006 82103 79513 
95% Iterations 435 3610 -- 
Util. CPU Time 5.80 412.42 3.16 3.16 

Optimality* 1.000 1.294 1.296 1.255 

* The proportion is calculated as Current Value LP 
Current Value 

** Calculated for a 20% reduction in the Original Costs 
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Table 4.6.5. Continued 

LP IP Heuristic Solution*** 
Sol. *** Sol. *** EOQ Silver-Meal 

Current Value 47012 58498 59602 57695 
50% Iterations 427 1037 -- 
Util. CPU Time 5.70 374.2 3.15 3.15 

Optimality* 1.000 1.244 1.267 1.226 

Current Value 47020 59165 60051 58109 
75% Iterations 435 663 -- 
Util. CPU Time 5.86 377.98 3.16 3.16 

Optimality* 1.000 1.258 1.277 1.235 

Current Value 47498 61462 61577 59635 
95% Iterations 435 4188 -- 
Util. CPU Time 6.02 443.72 3.16 3.16 

Optimality* 1.000 1.294 1.296 1.255 

* The proportion is calculated as Current Value/LP 
Current Value 

*** Calculated for a 40% reduction in the Original Costs 

Table 4.6.6. Three End Item Problem with Structure Three 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 58424 75478 69989 68776 
50% Iterations 393 835 - - 
Util. CPU Time 5.14 359.00 3.16 3.16 

Optimality* 1.000 1.291 1.197 1.177 

Current Value 59061 74549 69465 68252 
75% Iterations 431 2238 - - 
Util. CPU Time 5.74 375.3 3.18 3.18 

Optimality* 1.000 1.262 1.176 1.155 

Current Value 61973 75723 69958 68745 
95% Iterations 433 1713 - - 
Util. CPU Time 5.78 458.51 3.18 3.18 

Optimality* 1.000 1.221 1.128 1.109 

* The proportion is calculated as Current Value LP 
Current Value 
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Table 4.6.6. Continued 

LP IP Heuristic Solution** 
Sol. ** Sol. ** EOQ Silver-Meal 

Current Value 46739 60382 55991 55020 
50% Iterations 393 835 -- 
Util. CPU Time 4.98 279.5 3.17 3.17 

Optimality* 1.000 1.291 1.197 1.177 

Current Value 47249 59639 55572 54601 
75% Iterations 431 2238 -- 
Util. CPU Time 5.76 370.48 3.18 3.18 

Optimality* 1.000 1.262 1.176 1.155 

Current Value 49579 60579 55966 54996 
95% Iterations 433 1705 -- 
Util. CPU Time 5.64 454.35 3.18 3.18 

Optimality* 1.000 1.221 1.128 1.109 

* The proportion is calculated as Current Value LP 
Current Value 

** Calculated for a 20% reduction in the Original Costs 

Table 4.6.6. Continued 

LP IP Heuristic Solution*** 
Sol. *** Sol. *** EOQ Silver-Meal 

Current Value 35054 45287 41993 41265 
50% Iterations 393 835 -- 
Util. CPU Time 5.00 265.0 3.17 3.17 

Optimality* 1.000 1.291 1.197 1.177 

Current Value 35436 44729 41679 40951 
75% Iterations 431 2238 -- 
Util. CPU Time 5.58 384.72 3.18 3.18 

Optimality* 1.000 1.262 1.176 1.155 

Current Value 37184 45434 41975 41247 
95% Iterations 433 1716 -- 
Util. CPU Time 5.92 448.23 3.18 3.18 

Optimality* 1.000 1.221 1.128 1.109 

* The proportion is calculated as Current Value LP 
Current Value 

*** Calculated for a 40% reduction in the Original Costs 
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Table 4.6.7. Five End Item Problem with Structure One 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 128948 158390 136935 133173 
50% Iterations 699 2797 -- 
Util. CPU Time 14.50 675.85 1.07 1.07 

Optimality* 1.000 1.228 1.061 1.032 

Current Value 128948 159198 136838 133076 
75% Iterations 721 2864 -- 
Util. CPU Time 14.19 592.60 1.08 1.08 

Optimality* 1.000 1.234 1.061 1.032 

Current Value 129108 162936 137141 133379 
95% Iterations 774 3825 -- 
Util. CPU Time 16.28 684.9 1.09 1.09 

Optimality* 1.000 1.262 1.062 1.033 

* The proportion is calculated as Current Value/LP 
Current Value 

Table 4.6.7. Continued 

LP IP Heuristic Solution** 
Sol. ** Sol. ** EOQ Silver-Meal 

Current Value 103158 126712 109548 106538 
50% Iterations 699 3156 -- 
Util. CPU Time 14.02 665.00 1.08 1.08 

Optimality* 1.000 1.228 1.061 1.032 

Current Value 103158 127358 109470 106460 
75% Iterations 721 3486 -- 
Util. CPU Time 14.16 573.24 1.08 1.08 

Optimality* 1.000 1.234 1.061 1.032 

Current Value 
95% Iterations 
Util. CPU Time 

Optimality* 

103286 130348 109713 
774 3825 - 
15.92 681.7 1.09 
1.000 1.262 1.062 

106703 

1.09 
1.033 

* The proportion is calculated as Current Value/LP 
Current Value 

** Calculated for a 20% reduction in the Original Costs 
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Table 4.6.7. Continued 

LP IP Heuristic Solution*** 
Sol. *** Sol. *** EOQ Silver-Meal 

Current Value 77369 95034 82161 79904 
50% Iterations 699 3156 -- 
Util. CPU Time 14.18 612.14 1.08 1.08 

Optimality* 1.000 1.228 1.061 1.032 

Current Value 77369 95518 82102 79845 
75% Iterations 721 3486 -- 
Util. CPU Time 14.10 566.78 1.09 1.09 

Optimality* 1.000 1.234 1.061 1.032 

Current Value 77465 97761 82284 80027 
95% Iterations 774 3825 -- 
Util. CPU Time 15.72 680.54 1.09 1.09 

Optimality* 1.000 1.262 1.062 1.033 

* The proportion is calculated as Current Value LP 
Current Value 

*** Calculated for a 40% reduction in the Original Costs 

Table 4.6.8. Five End Item Problem with Structure Two 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 107807 131277 108211 107889 
50% Iterations 697 2610 - - 
Util. CPU Time 13.69 596.20 2.35 2.35 

Optimality* 1.000 1.217 1.003 1.000- 

Current Value 107889 134606 108853 107889 
75% Iterations 685 1216 - - 
Util. CPU Time 13.97 751.6 2.36 2.36 

Optimality* 1.000 1.247 1.008 1.000- 

Current Value 109141 134673 111845 109141 
95% Iterations 694 3526 - - 
Util. CPU Time 15.12 665.65 2.36 2.36 

Optimality* 1.000 1.233 1.024 1.000- 

* The proportion is calculated as Current Value/LP 
Current Value 
Taking into account the rounding error 
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Table 4.6.8. Continued 

LP IP Heuristic Solution** 
Sol. ** Sol. ** EOQ Silver-Meal 

Current Value 86246 105022 86569 86246 
50% Iterations 697 2610 - - 
Util. CPU Time 14.06 612.9 2.35 2.35 

Optimality* 1.000 1.217 1.003 1.000-- 

Current Value 86311 107684 87082 86311 
75% Iterations 685 1216 - - 
Util. CPU Time 14.30 732.5 2.36 2.36 

Optimality* 1.000 1.247 1.008 1.000- 

Current Value 87313 107657 89476 87313 
95% Iterations 694 4445 - - 
Util. CPU Time 15.33 639.77 2.37 2.37 

Optimality* 1.000 1.233 1.024 1.000N 

* The proportion is calculated as Current Value/LP 
Current Value 

** Calculated for a 20% reduction in the Original Costs 
Taking into account the rounding error 

Table 4.6.8. Continued 
LP 
Sol. *** 

IP Heuristic Solution*** 
Sol. *** EOQ Silver-Meal 

Current value 64684 78766 64926 64684 
50% Iterations 697 2610 -- 
Util. CPU Time 14.03 638.30 2.35 2.35 

Optimality* 1.000 1.217 1.003 1.000- 

Current Value 64733 80763 65311 64733 
75% Iterations 685 1216 -- 
Util. CPU Time 13.52 663.72 2.36 2.36 

Optimality* 1.000 1.247 1.008 1.000- 

Current Value 65484 80742 67107 65484 
95% Iterations 699 3526 -- 
Util. CPU Time 20.50 620.52 2.37 2.37 

Optimality* 1.000 1.233 1.024 1.000- 

* The proportion is calculated as Current Value LP 
Current Value 

*** Calculated for a 40% reduction in the Original Costs 
Taking into account the rounding error 
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Table 4.6.9. Five End Item Problem with Structure Three 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 95601 120031 100383 95774 
50% Iterations 676 3294 - - 
Util. CPU Time 12.66 478.9 1.23 1.23 

Optimality* 1.000 1.255 1.050 1.001 

Current Value 96722 122075 100403 96722 
75% Iterations 496 1287 - - 
Util. CPU Time 14.02 621.28 1.24 1.24 

Optimality* 1.000 1.262 1.038 1.000- 

Current Value 99591 125047 101426 99591 
95% Iterations 729 3239 - - 
Util. CPU Time 15.56 672.26 1.25 1.25 

Optimality* 1.000 1.255 1.018 1.000- 

* The proportion is calculated as Current Value LP 
Current Value 
Taking into account the rounding error 

Table 4.6.9. Continued 

LP IP Heuristic Solution** 
Sol. ** Sol. ** EOQ Silver-Meal 

Current Value 76481 96025 80306 76619 
50% Iterations 736 3295 -- 
Util. CPU Time 14.04 523.52 1.24 1.24 

Optimality* 1.000 1.255 1.050 1.001 

Current Value 77377 97660 80322 77377 
75% Iterations 713 1298 -- 
Util. CPU Time 14.02 620.02 1.24 1.24 

Optimality* 1.000 1.262 1.038 1.000- 

Current Value 79673 100037 81140 79673 
95% Iterations 751 3223 -- 
Util. CPU Time 16.34 648.19 1.25 1.25 

Optimality* 1.000 1.255 1.018 1.000- 

* The proportion is calculated as Current Value LP 
Current Value 

** Calculated for a 20% reduction in the Original Costs 
Taking into account the rounding error 
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Table 4.6.9. Continued 

LP IP Heuristic Solution*** 
Sol. *** Sol. *** EOQ Silver-Meal 

Current Value 57361 72019 60229 57361 
50% Iterations 713 3230 -- 
Util. CPU Time 13.94 508.58 1.24 1.24 

Optimality* 1.000 1.255 1.050 1.001 

Current Value 58033 73245 60242 57476 
75% Iterations 702 1292 -- 
Util. CPU Time 13.52 615.05 1.24 1.24 

Optimality* 1.000 1.262 1.038 1.000- 

Current Value 59754 75028 60855 58090 
95% Iterations 750 3270 -- 
Util. CPU Time 15.50 643.85 1.25 1.25 

Optimality* 1.000 1.255 1.018 1.000- 

* The proportion is calculated as Current Value LP 
Current Value 

*** Calculated for a 40% reduction in the Original Costs 
Taking into account the rounding error 
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Table 4.6.10. One End Item Problem with Structure One 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 10869 15441 13070 13183 
50% Iterations 144 3332 - - 
Util. CPU Time 0.80 127.98 1.20 1.20 

Optimality* 1.000 1.420 1.202 1.212 

Current Value 10869 16010 13977 14090 
75% Iterations 151 1684 - - 
Util. CPU Time 0.84 135.58 1.21 1.21 

Optimality* 1.000 1.472 1.285 1.296 

Current Value 10898 16044 14814 14927 
95% Iterations 148 2393 - - 
Util. CPU Time 0.78 105.15 1.22 1.22 

Optimality* 1.000 1.472 1.359 1.369 

* The Proportion is calculated as Current Value LP 
Current Value 

Table 4.6.10. Continued 

LP IP Heuristic Solution** 
Sol. ** Sol. ** EOQ Silver-Meal 

Current Value 9483 13820 11316 11785 
50% Iterations 145 1107 -- 
Util. CPU Time 0.76 117.32 1.20 1.20 

Optimality* 1.000 1.457 1.193 1.242 

Current Value 9483 14268 12222 12691 
75% Iterations 150 1101 -- 
Util. CPU Time 0.86 25.48 1.21 1.21 

Optimality* 1.000 1.504 1.288 1.338 

Current Value 9506 15234 13071 13540 
95% Iterations 148 2815 -- 
Util. CPU Time 0.80 111.66 1.22 1.22 

Optimality* 1.000 1.602 1.374 1.424 

* The Proportion is calculated as Current Value LP 
Current Value 

** Calculated for a 20% Reduction in the Original 
Holding costs 
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Table 4.6.10. Continued 

LP IP Heuristic Solution*** 
Sol. *** Sol. *** EOQ Silver-Meal 

50% 
Util. 

Current value 
Iterations 
CPU Time 
Optimality* 

10081 
143 
0.80 
1.000 

13981 
2868 
93.69 
1.386 

12688 
- 
1.20 
1.258 

12202 
- 
1.20 
1.210 

Current Value 10081 14268 13416 12929 
75% Iterations 149 1101 - - 
Util. CPU Time 0.84 25.48 1.21 1.21 

Optimality* 1.000 1.415 1.330 1.282 

Current Value 10110 14687 14072 13586 
95% Iterations 147 2971 - - 
Util. CPU Time 0.86 132.08 1.22 1.22 

Optimality* 1.000 1.452 1.391 1.343 

* The Proportion is calculated as Current Value LP 
Current Value 

*** Calculated for a 20% Reduction in the Original Setup 
costs 

Table 4.6.11. Three End Item Problem with Structure Two 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 78353 97496 99336 96098 
50% Iterations 427 1039 - - 
Util. CPU Time 5.22 312.01 3.14 3.14 

Optimality* 1.000 1.244 1.267 1.226 

Current Value 78367 98608 100086 96848 
75% Iterations 435 663 - - 
Util. CPU Time 5.78 325.9 3.15 3.15 

Optimality* 1.000 1.258 1.277 1.235 

Current Value 79163 102507 102629 99391 
95% Iterations 438 3625 - - 
Util. CPU Time 5.96 423.32 3.16 3.16 

Optimality* 1.000 1.294 1.296 1.255 

* The Proportion is calculated as Current Value LP 
Current Value 
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Table 4.6.11. Continued 

LP IP Heuristic Solution** 
Sol. ** Sol. ** EOQ Silver-Meal 

Current Value 65458 82120 82729 80274 
50% Iterations 405 597 -- 
Util. CPU Time 5.74 322.47 3.15 3.15 

Optimality* 1.000 1.254 1.263 1.226 

Current Value 65469 84162 83709 81254 
75% Iterations 436 681 -- 
Util. CPU Time 6.24 360.38 3.15 3.15 

Optimality* 1.000 1.285 1.278 1.241 

Current Value 66105 85396 86543 84088 
95% Iterations 438 2557 -- 
Util. CPU Time 5.96 371.80 3.16 3.16 

Optimality* 1.000 1.291 1.309 1.272 

* The Proportion is calculated as Current Value LP 
Current Value 

** Calculated for a 20% Reduction in the Original 
Holding costs 

Table 4.6.11. Continued 
LP IP Heuristic Solution*** 
Sol. *** Sol. *** EOQ Silver-Meal 

Current Value 75578 92643 95359 91966 
50% Iterations 415 1462 -- 
Util. CPU Time 5.46 328.91 3.15 3.15 

Optimality* 1.000 1.225 1.261 1.216 

Current Value 75592 93509 95729 92336 
75% Iterations 420 1132 -- 
Util. CPU Time 5.32 366.46 3.15 3.15 

Optimality* 1.000 1.237 1.266 1.221 

Current Value 76388 94994 97472 94079 
95% Iterations 429 1072 -- 
Util. CPU Time 5.98 356.54 3.16 3.16 

Optimality* 1.000 1.243 1.276 1.231 

* The Proportion is calculated as Current Value/LP 
Current Value 

*** Calculated for a 20% Reduction in the Original Setup 
costs 
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Table 4.6.12. Five End Item Problem with Structure Three 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 95601 120031 100383 95774 
50% Iterations 676 3294 -- 
Util. CPU Time 12.66 478.9 1.23 1.23 

Optimality* 1.000 1.255 1.050 1.001 

Current Value 96722 122075 100403 96722 
75% Iterations 729 1287 -- 
Util. CPU Time 14.02 621.28 1.24 1.24 

Optimality* 1.000 1.262 1.038 1.000- 

Current Value 99591 125047 101426 99591 
95% Iterations 729 3239 -- 
Util. CPU Time 15.56 672.26 1.25 1.25 

Optimality* 1.000 1.255 1.018 1.000-- 

* The Proportion is calculated as Current Value LP 
Current Value 
Taking into account the rounding error 

Table 4.6.12. Continued 
LP 
Sol. ** 

IP Heuristic Solution** 
Sol. ** EOQ Silver-Meal 

Current Value 81567 104444 83373 81567 
50% Iterations 696 1213 -- 
Util. CPU Time 13.61 639.54 1.21 1.21 

Optimality* 1.000 1.280 1.022 1.000'- 

Current Value 82463 107717 83696 82463 
75% Iterations 698 1164 -- 
Util. CPU Time 13.80 401.8 1.24 1.24 

Optimality* 1.000 1.306 1.014 1.000- 

Current Value 84758 108854 84974 84758 
95% Iterations 733 1808 -- 
Util. CPU Time 14.68 747.40 1.25 1.25 

Optimality* 1.000 1.284 1.002 1.000- 

* The Proportion is calculated as Current Value/LP 
Current Value 

** Calculated for a 20% Reduction in the Original 
Holding costs 
Taking into account the rounding error 
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Table 4.6.12. Continued 

LP IP Heuristic Solution*** 
Sol. *** Sol. *** EOQ Silver-Meal 

Current Value 90516 110948 97949 92544 
50% Iterations 659 1103 -- 
Util. CPU Time 13.48 613.94 1.21 1.21 

Optimality* 1.000 1.225 1.082 1.022 

Current Value 91636 114129 97663 92258 
75% Iterations 704 1530 -- 
Util. CPU Time 13.80 521.00 1.24 1.24 

Optimality* 1.000 1.245 1.065 1.006 

Current Value 94506 115501 98225 94506 
95% Iterations 760 2073 -- 
Util. CPU Time 15.10 587.96 1.25 1.25 

Optimality* 1.000 1.222 1.039 1.000- 

* The Proportion is calculated as Current Value LP 
Current Value 

*** Calculated for a 20% Reduction in the Original Setup 
costs 
Taking into account the rounding error 
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Table 4.6.13. One End Item Problem with Structure One 

LP 
Sol. 

IP 
Sol. 

Heuristic 
EOQ 

Solution 
Silver-Meal 

Current Value 10869 15852 13173 13826 
60% Iterations 150 1459 - - 
Util. CPU Time 0.82 54.70 1.02 1.02 

Optimality* 1.000 1.458 1.261 1.272 

Current Value 10869 16396 14277 14390 
80% Iterations 149 1370 - - 
Util. CPU Time 7.36 51.22 1.02 1.02 

Optimality* 1.000 1.508 1.313 1.323 

* The Proportion is calculated as Current Value LP 
Current Value 

Table 4.6.14. One End Item Problem with Structure Three 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 18787 26469 24313 23584 
60% Iterations 154 843 -- 
Util. CPU Time 1.02 159.4 0.90 0.90 

Optimality* 1.000 1.408 1.294 1.255 

Current Value 19035 26210 24891 24164 
80% Iterations 149 2935 -- 
Util. CPU Time 1.06 189.00 0.90 0.90 

Optimality* 1.000 1.376 1.307 1.269 

* The Proportion is calculated as Current Value LP 
Current Value 
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Table 4.6.15. Three End Item Problem with Structure One 

LP 
Sol. 

IP 
Sol. 

Heuristic 
EOQ 

Solution 
Silver-Meal 

Current Value 73623 92215 88048 85854 
60% Iterations 471 1281 - - 
Util. CPU Time 7.36 168.60 1.49 1.49 

Optimality* 1.000 1.252 1.195 1.166 

Current Value 73625 92777 88841 86647 
80% Iterations 477 2137 - - 
Util. CPU Time 8.10 218.33 1.49 1.49 

Optimality* 1.000 1.260 1.206 1.176 

* The Proportion is calculated as Current Value LP 
Current Value 

Table 4.6.16. Three End Item Problem with Structure Three 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 58564 75675 69747 68534 
60% Iterations 431 689 -- 
Util. CPU Time 6.46 453.54 0.44 0.44 

Optimality* 1.000 1.292 1.190 1.170 

Current Value 59773 76037 69974 68761 
80% Iterations 423 762 -- 
Util. CPU Time 6.96 674.78 0.45 0.45 

Optimality* 1.000 1.272 1.170 1.150 

* The Proportion is calculated as Current Value LP 
Current Value 
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Table 4.6.17. Five End Item Problem with Structure One 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 128948 158884 136895 133134 
60% Iterations 717 1035 -- 
Util. CPU Time 18.16 305.32 2.30 2.30 

Optimality* 1.000 1.232 1.061 1.032 

Current Value 128948 159982 136771 133009 
80% Iterations 745 2431 -- 
Util. CPU Time 20.44 410.38 2.30 2.30 

Optimality* 1.000 1.240 1.060 1.031 

* The Proportion is calculated as Current Value LP 
Current Value 

Table 4.6.18. Five End Item Problem with Structure Three 

LP 
Sol. 

IP 
Sol. 

Heuristic 
EOQ 

Solution 
Silver-Meal 

Current Value 95645 121630 100167 95645 
60% Iterations 800 1284 - - 
Util. CPU Time 16.80 723.88 2.31 2.31 

Optimality* 1.000 1.271 1.047 1.000- 

Current Value 97715 124207 100106 97715 
80% Iterations 702 1341 - - 
Util. CPU Time 16.06 887.08 3.31 3.31 

Optimality* 1.000 1.271 1.024 1.000- 

* The Proportion is calculated as Current Value LP 
Current Value 
Taking into account the rounding error 
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Table 4.6.19. One End Item Problem with Structure One 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 10869 15446 13076 13201 
50%+ Iterations 145 3012 -- 
25%. CPU Time 0.84 97.77 1.02 1.02 
Util. Optimality* 1.000 1.421 1.202 1.214 

Current Value 10869 17256 14339 14464 
75%+ Iterations 152 3675 -- 
50% CPU Time 0.90 103.58 1.02 1.02 
Util. Optimality* 1.000 1.587 1.319 1.330 

Current Value 10898 18069 15783 15908 
95%+ Iterations 159 1530 -- 
75% CPU Time 1.02 113.02 1.03 1.03 
Util. Optimality* 1.000 1.658 1.448 1.459 

* The proportion is calculated as Current Value/LP 
Current Value 

Table 4.6.20. Three End Item Problem with Structure Two 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

50%+ 
25%. 
Util. 

Current Value 
Iterations 
CPU Time 
Optimality* 

78353 
426 
5.80 
1.000 

97496 
1036 
286.26 
1.244 

106574 
- 
1.49 
1.360 

104578 
- 
1.49 
1.334 

Current Value 78367 99467 101822 99826 
75%+ Iterations 479 2864 - - 
50% CPU Time 6.54 309.88 1.49 1.49 
Util. Optimality* 1.000 1.269 1.299 1.273 

Current Value 79163 103072 103801 101805 
95%+ Iterations 452 1105 - - 
75% CPU Time 6.54 348.11 1.49 1.49 
Util. Optimality* 1.000 1.302 1.311 1.286 

* The Proportion is calculated as Current Value LP 
Current Value 
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Table 4.6.21. Five End Item Problem with Structure Three 

LP IP Heuristic Solution 
Sol. Sol. EOQ Silver-Meal 

Current Value 128948 158390 141841 138676 
50%+ Iterations 726 2821 - - 
25%. CPU Time 16.52 548.03 2.04 2.04 
Util. Optimality* 1.000 1.228 1.099 1.075 

Current Value 128948 160849 138281 135116 
75%+ Iterations 775 1678 - - 
50% CPU Time 17.82 566.47 2.04 2.04 
Util. Optimality* 1.000 1.247 1.072 1.047 

Current Value 129108 169130 138913 135748 
95% Iterations 783 3101 - - 
75% CPU Time 18.62 679.64 2.04 2.04 
Util. Optimality 1.000 1.309 1.075 1.051 

* The Proportion is calculated as Current Value LP 
Current Value 
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Graph 4.6.1. One End Item Problem with Structure 1 
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Graph 4.6.2. One End Item Problem with Structure 1 
(20% Reduction in the Original Costs) 
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Graph 4.6.3. One End Item Problem with Structure 1 
(40% Reduction in the Original Costs) 
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Graph 4.6.4. Three End Item Problem with Structure 1 
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Graph 4.6.5. Three End Item Problem with Structure 1 
(20% Reduction in the original costs) 
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Graph 4.6.6. Three End Item Problem with Structure 1 
(40% Reduction in the Original Costs) 
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Graph 4.6.7-Five End Item Problem with Structure 1 
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Graph 4.6.8. Five End Item Problem with Structure 1 
(20% Reduction in the Original Costs) 
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Graph 4.6.9. Five End Item Problem with Structure 1 
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Graph 4.6.10. One End Item Problem with Structure 1 
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Graph 4.6.11. Three End Item Problem with Structure2 
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Graph 4.6.12. Five End Item Problem with Structure 3 
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CHAPTER 5 

AN ANALYSIS OF MULTI-LEVEL LOT-SIZING PROBLEMS 
WITH BOTTLENECK UNDER A ROLLING SCHEDULE 

ENVIRONMENT 

5.1. Introduction 

Much research into multi-level lot-sizing has 

concentrated on fixed horizon problems, ignoring more 

realistic conditions (such as adding new demands into the 

planning period). The aim of this chapter is to 

illustrate that the heuristic, which was developed 

earlier in chapter 4, is applicable to the multi-level 

lot-sizing problem with a bottleneck under a rolling 

schedule environment. In this chapter, as was mentioned 

in chapter 2, the literature survey for the rolling 

schedule environment will be given in section 2, then the 

problem structure will be given in section 3, afterwards 

the simple heuristic for the problem with a rolling 

schedule will be given, and then an example problem will 

be analysed in section 7, and the final section will 

provide some conclusions. 

5.2. Literature Survey for Rolling Schedule Environment 

Lot-Sizing heuristics in the literature provide an 

optimal solution to lot-sizing problems under restricted 

assumptions in manufacturing firms, because most existing 

approaches assume that the fixed horizon for demand will 

remain the same without changes in the schedule. A fixed 

planning horizon will be used and each level will be 

treated independently. Although much progress has been 

made recently in multi-level lot-sizing problems, there 
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is still a gap between the problem faced by practitioners 

and models analysed by researchers. For instance, the 

problem of how lot-sizing decision rules would be used in 

real life problems has not been answered. To answer this 

question, a rolling schedule idea was developed in the 

past. The rolling schedule works according to the 

following process: a given multi-period problem is solved 

and the first decision is implemented. Then, the new 

information is appended to the planning horizon and the 

problem is solved again. This is repeated frequently. 

Thus, the rolling schedule is defined as a production 

plan for multi-period problems. However, in a rolling 

schedule environment, the addition of new information at 

the end of planning horizon may result in earlier 

decisions being altered or deleted and new orders added. 

This instability is referred to as nervousness in planned 

orders. 

Carlson et al. [1979] were concerned with changed costs 

which occured when the production plan was changed to 

involve setups which had not been planned previously. 

They defined two sets of indices to decide whether there 

is a change in cost or not. These indices were: A(x) = {k 

I xk = 01, and B (x) =fkI xk >0}. According to these 

indices, they defined the new setup cost as follows: 

sk + Vk for kEA(x) 
Wk 

Sk for kE B (x) 

and including these new costs in the objective function 

gave: 
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NN 
C=I hk Ik+1 +I Wk S (Xk) 

k=1 k=1 

where 

(xk) {1 
if xk >0 

8_ 
0 otherwise 

In this equation, xk is production at period k, sk is the 

setup cost at period k, vk is the change cost for adding 

a new setup, 5(xk) shows production indicator. They used 
the Wagner-Whitin algorithm to show how to reduce the 

nervousness. 

Kropp and Carlson [1984] extended the Carlson et al. 
[1979] model by including a cancelled setup cost from 

setup to no setup situations. It means that the cancelled 

setup cost was involved in the model when the production 

of a particular period was greater than zero. They 

illustrated this by an index, B, where B= {k I xk >0}. 

They generalised the solution procedure which did not 

have any restriction on the change cost or setup cost. 

They defined the variable M as the first period where a 

setup was planned by M= min (k I xk > 0) .J was defined as 

the first period where net demand was positive after 

subtracting the initial inventory, where J= min(k I dk > 

0) . If there was no net demand in periods, then the 

optimal solution to the problem was found to be xk=0. 

They assume that the first setup in the plan will happen 

no later than period J, because they do not allow 

backorders. They defined the indices L= min(J, M-1), then 

the indices: 

C (x) ={k I k<_ L and xk = 0} 

D(x)={k Ik> L and xk = 01 
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The objective of their research was to minimise the 
following objective function using the Wagner-Whitin lot- 

sizing heuristic: 

NN 
Total Cost =I hk Ik+l +I Zk S (xk) +E uk 

k=1 k=1 kEb (x) 

subject to 

sk - Uk for kEB (x) 
zk ={ sk + vk for kEC (x) 

sk for kED (x) 

where uk is the cancelled setup cost. 

Both Carlson et al. [1979] and Kropp and Carlson [1984] 

in their research used the Wagner-Whitin heuristic with 
the above formulations to reduce nervousness when applied 
to single-level lot-sizing problems without capacity 

considerations. The Wagner-Whitin heuristic illustrates 

more nervousness if it is compared with other heuristics 

such as the Silver-Meal, because the Wagner-Whitin 

heuristic is more horizon sensitive. 

Baker and Peterson [1979] proposed an analytical 

structure for evaluating the cost performance of rolling 

schedules with quadratic cost functions. They focused on 

finding the relationship between the planning horizon and 

the cost performance efficiency which is the proportion 

of the cost of rolling schedules to that of an optimal 

solution. Their results illustrated that increasing the 

planning horizon results in improvements in performance 

but decreases returns. They also showed that the most 

important factor in their research was the cost structure 

which affects performance, but fluctuation and 

uncertainties in demand was a secondary factor. 
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Chand [1982] analysed the modified Wagner-Whitin 

algorithm and compared this algorithm with the Wagner- 
Whitin algorithm and Silver-Meal algorithm. He also 
proved that more information for the future periods is 

advantageous as the results of Baker [1979] showed. He 
illustrated that the modified Wagner-Whitin algorithm 

yields better cost performance than the others for the 

conditions of the single-level lot-sizing problem and 

unconstrained capacity. 

Blackburn and Millen [1980] analysed the cost performance 

of rolling schedules using some of the well known 

heuristics such as Silver-Meal, Wagner-Whitin and the 

modified Silver-Meal. Under restricted assumptions such 

as a lumpy demand situation, the modified Silver-Meal 

heuristic performed better than the Silver-Meal or 
Wagner-Whitin heuristics for a short period horizon, but 

in a long planning horizon the modified Silver-Meal 

heuristic was not applicable due to lumpy demand. They 

showed that the Silver-Meal heuristic was superior to the 

Wagner-Whitin heuristic for long term horizons. The 

reason was that the Wagner-Whitin heuristic is horizon 

sensitive. The problems considered were single-level 

assembly systems and uncapacitated problems. Their later 

paper (Blackburn and Millen [1982]) exhibited a cost 

performance comparison between different lot-sizing 

techniques for the assembly systems under rolling 

schedules. They illustrated again that the Silver-Meal 

heuristic yields lower cost than the Wagner-Whitin 

heuristic and also required less computational time. 

As Carlson et al. [1979] noted 'There is a feeling that 

although the optimality of the solution provided by the 

Wagner-Whitin algorithm is valuable, its price is too 

high: that price being the cost of changing plans. Many 

managers would rather live with non-optimal but stable 

plans. ' Although many authors claim that their methods 
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produce an optimal solution in production scheduling, 
these are all subject to subobtimisation because they 

solve only the problems under certain assumptions. 

The objective of this chapter is to illustrate that the 

heuristic, which was developed in chapter 4, for multi- 
level lot-sizing problems with a bottleneck is applicable 
to the rolling schedule environment for a parallel 

structure, which is a special case of MRP. This chapter 

also will compare the effect of the EOQ and Silver-Meal 

approaches under the rolling schedule environment. This 

comparison will be made by using the heuristic under 

conditions of normally distributed simulated demands. 

5.3. Problem Structure 

A capacity problem in the manufacturing firm occurs in 

different ways such as (1) incrementation of demand 

beyond the capacity system; (2) shortage of highly 

skilled operators; (3) scarcity of tools needed in any of 

the production stages. These situations result in a 

bottleneck problem which does not satisfy the external 

demand. A bottleneck is defined as a work centre which 

converts raw materials into finished items through the 

use of resources in the manufacturing environment. This 

chapter will concentrate on how much to produce from the 

limited resources, in which the capacity is not enough to 

satisfy the demands, for a rolling schedule. 

The five stage product structure with a bottleneck 

problem illustrated in Figure 5.3 was used as the test 

bed for the heuristics. The five stages are illustrated 

vertically. The product structure, called a parallel 

structure in this chapter, is such that the assembly 

systems require each part (predecessor) to be the input 

to one successor stage. The five parallel production 

lines are illustrated horizontally and these end on the 
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product items, 1,2,3,4,5. These five-end-items are 

constrained by the bottleneck. In this product structure 

there is no commonality between stages as was assumed by 

Billington et al. [1986]. 

In section 5.7, the forecast window is stated as the 

future time periods in which demands are known. In the 

worked example, initially a problem which consists of 

demands in periods 1,..., 6 was solved and the first 

decision for periods 1 to 3 was implemented. Then the 

procedure was rolled forward for the forecast window, 

periods 4 to 9. 

For the results in Tables 5.8.1-5.8.9, the problem was 

solved for 96 time periods. Again, initially the problem 

was solved for periods 1 to 6 and the first decision for 

periods 1 to 3 was implemented. Then the procedure was 

repeatedly rolled forward for forecast windows from 

period k+3 to k+8 for k=1,4,7,..., 88. 

21 16 - po 11 6 1 

22 17 12 7 21 
; << 

23 18 13 8 3; 

24 19 14 9 4 

25 20 15 10 -jo 5 
H 

Raw Intermedi ate Final 
Materials Items Items 

Fig. 5.3. Five End Item Structure (the bottleneck is shown 

by dashed lines). 
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5.4. Assumptions 

1. All lead times between stages are assumed to be 

zero, 

2. Items which are produced by a firm are assumed 
independent, 

3. Demand levels for the end items are known at a 

constant rate per year. In addition, there is no 
demand for the components at any intermediate 

stages. The number of predecessor components 

required at any intermediate stage is assumed to 

be equal to one. Again this follows the style of 

Billington et al. [1986] 

5.5. Data Sets 

A set of data was generated using a Normal Distribution 

to test the heuristic for a multi-level lot-sizing 

problem with a bottleneck(s) under the rolling schedule 

environment. 

In the experimental studies three different cost 

structures, three demand streams and three capacity 

levels were used to generate the data using NAG 

subroutines [1990] on a Hewlett Packard system. For 

structure 1 of one-end-item problems, the average holding 

cost was set to 0.44 and the average setup cost was set 

to 400. For structures 2 and 3 the corresponding values 

were set to 1.00,340 and 0.64,420. Three demand streams 

were generated to give a low, medium and high coefficient 

of variation (Cv). Cv is calculated by dividing the 

standard deviation by the mean demand. Further details on 

the coefficient of variation will be given in chapter 6. 

The level of the coefficient of variation will be 

referred to as a structure. For example, a low 

coefficient of variation (CV = 0.1057) will be referred 

to as structure 1, a medium coefficient of variation (Cv 
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= 0.1862) will be referred to as structure 2, and a high 

coefficient of variation (CV = 0.3464) will be referred 
to as structure 3 for the one-end-item problem. The 
details of the other data sets are included in Appendix 
B. The capacity level is set after the demands are 
determined such that the total demand is divided by the 

product of the percentage of utilisation (which varies 
from 25% to 95%) and the number of time periods. All 

these data are in the style of Billington et al. [1986]. 

To aid explanation, the solution to a small problem is 

illustrated in the example section. 

5.6. Simple Heuristic for the Problem with Rolling 
Schedule 

The heuristic starts by first dividing the product items 

into end-items and non-end-items. Because each non-end- 
item's production is unconstrained, and non-end-items or 

end-items with bottleneck are constrained by the 

bottleneck so that they do not affect the production of 

other items. A succesful development in the solution of 

the multi-level lot-sizing problem was reported in 

chapter 4. In our example problem the bottleneck is 

always limited to effectively the end-items. This does 

not mean that no bottleneck could occur in other product 

item(s). The heuristic illustrates that two simple 

procedures can be used independently to find the 

production levels if the production items group into (a) 

items constrained by the bottleneck; and (b) items which 

are unconstrained. 

5.6.1. Non-End-Items with Bottleneck 

If the demand for end-items is known in advance, it does 

not invalidate the independence of the production of 

intermediate or raw material items. These capacitated 

product items must share the resources of the bottleneck 
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so that the determination of when to produce end-items is 

more complex. Because of this reason the production 
problem is a constrained problem. To deal with this kind 

of problem a simple heuristic was adopted that would 
adopt a greedy approach to production with heavy 

utilisation of production capacity. In addition, the 
heuristic operates in a cyclic manner, moving the product 
items in turn, to produce reasonably smooth production. 
In chapter 4, this heuristic is shown in detail. Two 

cases will be given to demonstrate the heuristic and one 

case will be examined with an example problem in the next 

section showing the cylical manner. 

Case (a) 3-end-item problem 

Using the heuristic which is developed in chapter 4 the 

approach is to produce as much of product item 1 in the 

first period as is equal to the bottleneck's capacity 
less the demand for product items 2 and 3 that would 

satisfy their demand for several periods. In period 2, 

assuming there is a sufficient stock for product item 1, 

produce as much of product item 2 as is equal to the 

bottleneck's capacity less the demand for product item 3. 

In period 3, assuming the stocks of product items 1 and 2 

are enough to satisfy demands, produce as much of product 

item 3 as is equal to the bottleneck's capacity and so 

on. (See also case (b) in section 4.4.2). 

Whenever any of the stock levels of product item would 
become negative, that particular product item is produced 

again until the production of that product item becomes 

dominant over the next one or more periods. 

The priority allocation chos4 

results in this thesis, wa: 

al. [1986]. No particular 

suggested by the data itself, 

en as the basis for the 

3 used by Billington et 

priority allocation was 

and alternative priority 
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allocations to that above, which were tested intensively 

on the basis of the following criteria (i) largest total 

demand first, and (ii) most variable demand first, did 

not change the results significantly. It has therefore 

been assumed that choosing an alternative priority 

allocation, to the one chosen in this thesis would not 

make a significant difference to the results. However, 

the comparisons of the alternative priority allocations 

would be an interesting topic for further research. 

Case (b) 5-end-item problem 

For this problem, in order to keep the heuristic simple, 

product items are grouped in such a way as to keep 

identical items together eg product items (1,2,3) and 

(4,5) respectively. These two sets of product are now 

treated as single products and a three period cycle (in 

case a) was modified to a two period cycle. This grouping 

into two sets was chosen, rather than other alternative 

sets, in order to satisfy the two criteria which are 

explained in chapter 4 (case (b)). 

The total cost is now the sum of the individual combined 

inventory and setup costs for the end-items-and non-end- 

items. 

5.7. An Example 

A small One-End-Item problem will now be considered. 

the problem five holding costs (0.5,0.1,0.5,0.1,1.0) 

five setup costs (300,200,200,500,400), and also 

period demands (38,43,37,42,33,42) were used. 

solutions are shown for the end item and component$ 

turn: 

In 

and 

six 

The 

in 
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5.7.1. Rolling schedule on bottleneck items 

The heuristic was to produce as much of product item i as 

is equal to the bottleneck capacity utilisation, in order 

that there will be more than enough for several periods. 

Let the bottleneck be located such that it affects the 

end item, the heuristic which will be used is that Pit = 

capt where Pit is the units of production item i in 

period t, and capt is the bottleneck capacity 

utilisation, which is 50% in this case, at work centre at 

time t, then produce up to Sit < dit where Sit is stock 

of product item i in period t and dit is the demand for 

product item i during period t. So from the above demand 

patterns the capacity utilisation capt = 79 was found. So 

the original schedule will be: 

Period 1 2 3 4 5 6 
Demand 38 43 37 42 33 42 
Pit 79 79 0 77 0 0 

The optimal solution to this problem is P11 = 79,212 = 

79, P14 = 77, and the rest of the periods for product 

item 1 are zero. It is assumed that there is a set of 

demands at the end of period 3, such that d14 = 42, d15 = 

33, d16 = 42, d17 = 40, d18 = 48, d19 = 38. These demands 

will lead to the new set of results. 

Period 4 5 6 7 8 9 
Demand 42 33 42 40 48 38 
Pit 81 0 0 81 41 0 

As this schedule illustrates, the original plan has 

changed. Production was 77 in period 4, but appending the 

new set of demands at the end of period 3 in the planning 

horizon results in 81 instead of the original 77. For 

the calculation of the total cost for these problems for 

the bottleneck facility, it is necessary to bear in mind 

91 



that the revised total cost now includes the original 
cost up to the beginning of the new schedule. 

The objective function to calculate the total cost is 
adopted from Billington et al. [1986] and from now on 
whenever the total cost is mentioned, it will refer to 
this equation which is illustrated below. 

T 
TC =E hi* (T -t+ 1) *Pit + csi*Xit 

t=1 

The total cost for the original plan is 1420, and the 
total cost for the revised schedule is 2340. 

5.7.2. Rolling schedule on non-bottleneck items 

Two well known approaches to cope with relatively varying 
demand will be used on the non-bottleneck product items. 

They are EOQ and Silver-Meal approaches. 

The application of the classic EOQ approach is very 
difficult for real life problems. Because of that the 

assumptions are relaxed to get closer to the real 

circumstances; ie, different holding and setup costs for 

different items, demands for the production items are 

relatively deterministic but changes during the time 

horizon. This is the condition of MRP application. 

5.7.2.1. The Economic Order Quantity Approach (EOQ) 

Consider product item 3 which is useful for demonstrating 

the application of the EOQ approach. The same demands 

will be used for product item 3, because only one 

predecessor item is required to produce the successor 

item in the product structure. The EOQ is 177, which is 
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less than the total demand, so that there are three 

alternatives that will apply. 

Alternative a: Produce Qi which is the Economic Order 
Quantity for product item i, based on setup cost csi and 
holding cost hi, in period 1 for one or more period to 

satisfy the demand for product item i. Before the stock 
drops below zero, produce another Qi for another period 
or periods. Continue this process tr times where 

T 
tr=1 I dit / Qj + 0.99] which is 2 times. The value of 

t=l 

0.99 is included here in order to round up to the next 
integer above. 

Period 1 2 3 4 5 6 
Demand 38 43 37 42 33 42 
Pit 177 0 0 0 58 0 

The total cost for alternative a is 989. 

Alternative b; Produce Zr items in period 1 and then next 

produce Zr when stocks would become negative which means 

that no production is made (i. e. Sing din) 

T 
Zr =E dit / tr which is 118 or 117. 

t=1 

So the schedule will be 

Period 1 2 3 4 5 6 
Demand 38 43 37 42 33 42 
Pit 118 0 0 117 0 0 

The total cost for alternative b is 930. 

Alternative c; Produce all demands in period 1 

Periods 1 2 3 4 5 6 
Demand 38 43 37 42 33 42 
Pit 235 0 0 0 0 0 
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The total cost for alternative c is 905. 

To start rolling forward, the minimum scheduled cost 
which is given in alternative c is chosen. Assume that 

some future demand has been received in period 4, the 

schedule is changed as below. Then Piff is 126. 

Period 4 5 6 7 8 9 
Demand 42 33 42 40 48 38 
Pit 0 0 0 126 0 0 

Then the total cost of rolling forward is 1294. 

5.7.2.2. The Silver-Meal Approach 

In this section, one of the well known heuristics, the 

Silver-Meal [1973], will be examined for comparison with 
the EOQ approach for the non-bottleneck items. This 

heuristic selects the lot-sizes in order to minimise the 

total cost over the planning horizon under the varying 
demand conditions. The heuristic, which was explained in 

chapter 4, was: 

Let T equal the number of periods, 

Average Cost (AC) = 

or 

Setup Cost + Total Holding Cost 

T 

csi +[ (1-1) *dil + (2-1) *di2 +... + (T-1) *dit] [hit] 
AC = 

T 

Note that there is no inventory carrying cost during the 

first period so that dil drops from the formulation. When 

the total cost for a particular period is less than the 

succeeding one, the production period (T) is found and 

the quantity of the lot-size is the sum of the demands, 
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which is the Qit = dil + dig +... + dit during the period 
T. This process continues through all periods. For the 

same problem, using the Silver-Meal heuristic, according 
to the procedure above, the schedule will be; 

Period 1 2 3 4 5 6 
Demands 38 43 37 42 33 42 
Pit 193 0 0 0 0 42 

Total cost for the original plan is 1000. 

If the plan is rolled forward to ninth period, the plan 

will be 

Period 4 5 6 7 8 9 
Demand 42 33 42 40 48 38 
Pit 0 0 168 0 0 0 

Total cost for the new plan is 1315. 

As will be seen from the solution of the original problem 

the new schedule costs are generally increased under the 

rolling schedule environment. In this case in the 

original schedule, production was 42 in period 6 but 

according to the new demand production should be 168 in 

period 6. For another product item, the procedure will be 

the same. 

5.8. The Results of Rolling Schedule 

A program was written in Fortran 77 for the multi-level 

lot-sizing problem under the rolling schedule when there 

was a bottleneck(s). Normally distributed random numbers 

were generated using a NAG subroutine (included in 

Appendix D). 

It was assumed that there was either one bottleneck which 

occurred in the final product item(s), or two bottlenecks 

which occurred, in the final product item(s), and the 
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intermediate product item(s) respectively (i. e. the final 

product item 1 and intermediate product item 3 for the 

one-end-item problems). Then, the heuristic was applied 
to the constrained (bottleneck) product items while the 
EOQ and Silver-Meal were employed on the unconstrained 
(non bottleneck) product items for the rolling schedule. 

The results with different capacity utilisations are 
illustrated in Tables 5.8.1-5.8.9. In each table, the 
total cost of the problems using EOQ and Silver-Meal for 

the unconstrained product items with the heuristic for 

the constrained product items are illustrated. The second 

and third columns refer to problems without a rolling 

schedule and the fourth and fifth columns refer to 

problems with a rolling schedule. The multiple bottleneck 

results are shown in the first row, and single bottleneck 

cases with different work centre utilisation, i. e. 50% 

and 75%, are illustrated in the second and third rows, 

respectively. The same results as presented in the Tables 

are also presented in Graphs 5.8.1-5.8.9. In each graph, 

the number 1 refers to the multiple bottleneck cases 

(where the bottlenecks occurred in the final product item 

with 75% capacity utilisation and the intermediate 

product item with 50% capacity utilisation). Likewise, 

the numbers 2 and 3 refer to single bottleneck cases 

where the bottlenecks always occurred at the final 

product items with 50% and 75% utilisation. The total 

costs are shown on the vertical axis. Furthermore, the 

legends H1, H2 refer to the total cost of problems using 

EOQ and Silver-Meal for the unconstrained product items 

and the heuristic for the constrained product items 

without rolling schedule while the legends H3, H4 refer 

to the solution using EOQ and Silver-Meal for the 

unconstrained product items and the heuristic for the 

constrained product items with rolling schedule, 

respectively. According to the results, the total cost is 

increased when appending new demands in the planning 
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horizon. The results also illustrate that the heuristic 

with Silver-Meal is better than the heuristic with EOQ 

because Silver-Meal performs well with varying demand. 

More discussion will be given in chapter 6. 

5.9. Conclusion 

It was shown that the dynamic problem can be handled 

using the heuristic, which was developed in chapter 4, 

for constrained product items and two well known 

approaches (EOQ and Silver-Meal) for the unconstrained 

product items to make stable plans. 
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Table 5.8.1. One End Item Problem with Structure One 

Heuristic Solution 
Without Rolling Schedule With Rolling Schedule 
EOQ Silver-Meal EOQ Silver-Meal 

50%+ 
75% 177047 158000 236019 235485 
Util. 

50% 
Util. 159790 132834 207368 206567 

75% 
Util. 177121 150165 228002 227201 

Table 5.8.2. One End Item Problem with Structure Two 

Heuristic Solution 
Without Rolling Schedule With Rolling Schedule 
EOQ Silver-Meal EOQ Silver-Meal 

50%+ 
75% 
Util. 

313810 292097 450704 438278 

50% 
Util. 285904 250619 424394 399542 

75% 
Util. 315850 280566 459203 434351 
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Table 5.8.3. One End Item Problem with Structure Three 

Heuristic Solution 
Without Rolling Schedule With Rolling Schedule 
EOQ Silver-Meal EOQ Silver-Meal 

50%+ 
75% 322818 263433 443883 406937 
Util. 

50% 
Util. 262283 201299 363994 327048 

75% 
Util. 280650 219667 385354 348408 

Table 5.8.4. Three End Item Problem with Structure One 

Heuristic Solution 
Without Rolling Schedule With Rolling Schedule 
EOQ Silver-Meal EOQ Silver-Meal 

50%+ 
75% 1065813 937737 1330438 1286940 
Util. 

50% 
Util. 1042958 859223 1376117 1309539 

75% 1070519 886784 1396423 1329845 
Util. 
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Table 5.8.5. Three End Item Problem with Structure Two 

Heuristic Solution 
Without Rolling Schedule With Rolling Schedule 
EOQ Silver-Meal EOQ Silver-Meal 

50%+ 
75% 1442978 1275779 1832941 1750423 
Util. 

50% 
Util. 1424898 1184607 1882821 1800479 

75% 
Util. 1436365 1196073 1892480 1810137 

Table 5.8.6. Three End Item Problem with Structure Three 

Heuristic Solution 
Without Rolling Schedule With Rolling Schedule 
EOQ. Silver-Meal EOQ Silver-Meal 

50%+ 
75% 1020687 910895 1289637 1203334 
Util. 

50% 
Util. 959582 808717 1291359 1203364 

75% 
Util. 968396 817531 1295945 1207950 
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Table 5.8.7. Five End Item Problem with Structure One 

Heuristic Solution 
Without Rolling Schedule With Rolling Schedule 
EOQ Silver-Meal EOQ Silver-Meal 

50%+ 
75% 1196459 1053393 1581905 1564095 
Util. 

50% 
Util. 1149856 982858 1541031 1516214 

75% 
Util. 1141588 974590 1554452 1529695 

Table 5.8.8. Five End Item Problem with Structure Two 

Heuristic Solution 
Without Rolling Schedule With Rolling Schedule 
EOQ Silver-Meal EOQ Silver-Meal 

50%+ 
75% 1102177 968298 1478366 1441051 
Util. 

50% 
Util. 1047246 876317 1440604 1391606 

75% 
Util. 1062284 891355 1467602 1418604 
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Graph 5.8.4. Three End Item Problem with Structure 1 
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Graph 5.8.5. Three End Item Problem with Structure 2 
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Graph 5.8.6. Three End Item Problem with Structure 3 
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Graph 5.8.8. Five End Item Problem with Structure 2 
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CHAPTER 6 

RESULTS AND DISCUSSIONS 

6.1. Introduction 

Chapter 4 proposed a simple 
level lot-sizing problem when 

also illustrated that if 

categorized into: 

heuristic to solve multi- 
there is a bottleneck. It 

the product items are 

(1) end-items, constrained by the bottleneck 

(2) non-end-items, unconstrained 

then simple procedures can be used independently to 

determine the production quantities required. A heuristic 

was developed to solve the constrained product items. The 

EOQ and Silver-Meal approaches were employed on the 

unconstrained product items. The above procedures were 

also applied to the multiple bottleneck case in chapter 4 

and to the rolling schedule problem in chapter 5. The 

procedures assumed that all the product items would be 

treated independently so that they could not affect each 

other's production. These procedures may be applied to 

the dependent product item cases but that is a project 

for further research. The results and discussions of 

multi-level lot-sizing problem with bottleneck(s) will be 

given first (section 6.2) followed by the results of the 

rolling schedule problem (section 6.3) . The worst case 

analysis of the heuristic will be given in section 6.4. 

Finally the conclusion will be provided in section 6.5. 
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6.2. The Results and Discussions of Multi-Level Lot- 

Sizing Problem with Bottleneck(s) 

The integer programming formulation solved by using the 

software MGG [1987] and SCICONIC [1986], and the 

heuristic approach of chapter 4, coded in Fortran 77, 

were compared on sets of data obtained from Billington 

[1983] and also discussed in Billington et al. [1986]. In 

the experimental studies three different cost structures, 

three demand streams and three capacity levels were used. 

The three cost structures are detailed in Billington 

[1983]. Essentially for each structure the holding costs 

and the setup costs are set to different levels such that 

for structure 1 the average of the holding costs is 0.92 

and the average for the setup costs is 360. For 

structures 2 and 3 the corresponding values are 1.31,360 

and 0.79,380 for holding cost and setup cost, 

respectively. The three demand streams are generated to 

give a low, medium and high coefficient of variation, Cv, 

which is defined as the demand standard deviation divided 

by mean demand. That is 

n 

i=1 
Cv = 

(di - di) 2 

n-1 

n di 

i=1 n 

In another words the coefficient of variation or Cv is 

the demand standard deviation expressed as a proportion 

of mean demand. A low coefficient of variation, Cv = 

0.1144, a medium coefficient of variation, Cv = 0.1926, 

and a high coefficient of variation Cv = 0.3955 for the 

three-end-item problem were used in Billington et al. 

[1986]. From now on the levels of the coefficient of 

variation will be referred to as structure 1, structure 
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2, and structure 3. The coefficients of variation for 
one- and five-end-item problems can be seen in Appendix 
B. Capacity is set after demands are determined such that 
the total demand is divided by the product of the 
percentage of utilisation (low (50%), medium (75%), high 
(95%)) and the number of time periods. 

The results of the experiments for the single bottleneck 

problem, with the original costs and a reduction of the 

original costs by 20% and 40% in turn, are illustrated in 
Tables 4.6.1-4.6.9 (81 problems were investigated in 

all) . The same results in those tables are also presented 
in Graphs 4.6.1-4.6.9. In addition, the results of 20% 

reduction in each of the original holding and setup cost 

are depicted in Tables 4.6.10-4.6.12 (27 problems were 
investigated). Different capacity utilisations were 
investigated, such as 60% and 80%, to show how the 

heuristic worked for those cases and the results of 12 

problems are depicted in Tables 4.6.13-4.6.18. 

The results of the multiple bottleneck cases are shown in 

Tables 4.6.19-4.6.21. The same results are also 
illustrated in Graphs 4.6.10-4.6.12. 

In each table, the details of the linear programming (LP) 

solution relative to the integer programming (IP) 

formulation are given in the third column. Details of the 

integer programming branch and bound approach are given 

in the fourth column. Details of the heuristic solution 

for the constrained product items with the EOQ and 

Silver-Meal for the unconstrained product items are given 

in the fifth and sixth columns respectively for different 

capacity utilisation. 

In each graph (Graphs 4.6.1-4.6.9) the linear programming 

solution (LP), the integer programming solution (IP), and 

the heuristic solution for the constrained product items 
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with either Economic Order Quantity (H1), or the Silver- 
Meal approaches (H2) for the unconstrained product items 

are depicted in the legends. The current values, the CPU 
time and the level of optimality are illustrated on the 

vertical axis while the capacity utilisations (set at 
50%, 75%, or 95%) are depicted on the horizontal axis. In 

addition in Graphs 4.6.10-4.6.12, the numbers on the 
horizontal axis refer to multiple bottleneck cases where 
the bottlenecks occurred in the final item(s) and 
intermediate item(s). The utilisations which applied to 
the multiple bottleneck cases were 50% and 25%, 75% and 
50%, 95% and 75% of capacity utilisation at the final 

product item(s) and intermediate product item(s) 

respectively. 

The branching process by which the integer programming 

solutions were obtained was the standard default of the 

SCICONIC software which comprises an approach to choose 

sub-problems which minimise the percentage error in the 

degradation of the objective function. The "dynamic 

presolve" option of SCICONIC was also used which aids 
branching exploration by tightening bounds where 

possible. The IP and heuristic solutions are compared to 

the LP optimum to give some indication of the quality of 

the solutions as the LP optimum provides a lower bound to 

the solution to the problem. In all cases the IP solution 

is not a proven optimal solution and the branch and bound 

process had to be cut off, before optimality could be 

proved. The cut off occurred once a large amount of 

computer time had elapsed and further effort appeared 

unproductive. Computation was stopped after approximately 

3000 branch and bound nodes had been explored. The reason 

for this was that although a number of problems were run 

over 10000 or more branch and bound nodes, it was found 

that no better solution was obtained than in the first 

2000-3000 nodes, so 3000 nodes was taken as a convenient 

stopping point. CPU times quoted are for the time (in 
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seconds) taken on a Hewlett Packard 9000 to reach the 

given solution. A number of features are evident from the 

results quoted in the tables. 

1. The heuristic approach is rapid, taking a few 

seconds of CPU time. 

2. In all but a few cases (such as 95% utilisation for 

structure 2 in one-end-item problems, and structure 
2 for three-end-item problems) the solutions using 
the heuristic for the constrained product items with 

Economic Order Quantity for the unconstrained 

product items are better than the IP solutions. The 

solutions using the heuristic for the constrained 

product items with Silver-Meal for the unconstrained 

product items are better than the IP solutions for 

all cases except for structure 2 for the three-end- 

item problems with multiple bottlenecks. Also using 

the heuristic for constrained product items with the 

Silver-Meal approach for unconstrained product items 

provides a better solution than using the heuristic 

for constrained product items with the Economic 

Order Quantity approach for the unconstrained 

product items except for structure 1 for the one- 

end-item problem. The reason is that the Silver-Meal 

approach yields better results with varying demand. 

(see for example Monks [1987]). 

3. The heuristic solution for the constrained product 

items with the EOQ and Silver-Meal approaches for 

the unconstrained product items yields the same 

optimality when the original setup and holding costs 

were reduced by 20% and 40% in turn (see Tables 

4.6.1-4.6.9), but it does not give the same 

reduction when each of the original holding and 

setup costs were reduced by 20% (see Tables 4.6.10- 

4.6.12). 
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For the five-end-item problems the heuristic seems to 

work particularly well, in the sense that the solutions 

are very close to the lower bound value and sometimes the 

same as the lower bound for structure 2 and structure 3. 
However, this may only mean that the lower bounds are 
tighter for these problems. These tighter lower bounds 

may arise because more realistic values of the effect of 

setup costs (which are unrealistically reduced in the LP 

relaxation of the IP formulation) are likely to arise 

when there are more types of product items being produced 
in the bottleneck and so there are more fractions of the 

true setup cost to add together. 

For the few cases in three-end-item problems (structure 

2) and one-end-item problems (95% utilisation for 

structure 2) where the heuristic does not work well it 

may be that rather more setups than necesary are being 

used when the setup cost is above average. 

The IP solutions obtained were not optimal, but it should 

be noted that the work of Billington et al. [19861 was 

also unable to make comparison of its Lagrangean 

solutions with optimal solutions. 

The LP solution (LP) is a lower bound on total cost. The 

optimal IP solution (IP *) 
, if known, would be larger than 

the LP solution because the LP solution involves 

fractions. 

The heuristic solution is a solution which is not 

guaranteed to be optimal, but is integer feasible. 

Ordinarily it would be expected to discover the hierarchy 

Lp < Ip * <_ Heuristic solution 
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However, in the use of the problems tested in this 
thesis, the optimal IP solution is not known and the best 

IP solution obtained by branch and bound method may be 

substantially poorer than the optimal because production 

scheduling problems are so hard for the branch and bound 

method to solve. Thus in the results described it was 

generally found the hierarchy was 

LP <_ Heuristic Solution <_ IP 

where IP is the best (non-optimal) solution found by 

branch and bound method. Thus, in fact, the heuristic 

generally gives a better integer solution than the IP 

solution and if it could have been easily inserted into 

the SCICONIC code it could have improved the branch and 

bound search. All solution approaches solve the same 

formulation of the problem (given in chapters 3 and 4). 

It is impossible to compare precisely the heuristic 

approach of chapter 4 with that of Billington et al. 

[1986] as we do not have access to their program. It was 

felt that once rapid solution times for the heuristic 

approach were obtained (all less than 3.31 CPU seconds) 

and such high quality solutions were obtained for the 

five-end-item problems that it was not appropriate to 

program the Lagrangean approach. What was of interest was 

to find a simpler approach. It is likely that their 

method produces good quality solutions but the code is 

complex and unlikely to operate as rapidly as the few 

seconds required by the heuristic in this thesis. The 

approach is sufficiently flexible to provide quick 

solutions for a variety of extensions of the basic 

problem and the approach is appropriate for quick 

reworking of schedules whenever changes occur in demand 

streams or breakdowns occur. 
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6.3. The Results and Discussions of Rolling Schedule for 
Multi-Level Lot-Sizing Problem with Bottleneck(s) 

The heuristic for the constrained product item(s) with 
the EOQ and Silver-Meal approaches for the unconstrained 
product items for the rolling schedule was coded in 

Fortran 77, and three demand streams were generated using 
NAG Subroutines [1990] for the Normal Distribution on a 
Hewlett Packard. As in the previous section, three 
different cost structures, three demand streams and three 

capacity levels were employed. The average holding and 

setup costs were set to different levels as follows: For 

structure 1, the average holding cost is 0.92 and the 

average setup cost is 360. For structure 2, the average 
holding cost is 1.31 and the average setup cost is 360. 

For structure 3, the corresponding values are 0.79 and 
380 for the average holding and setup costs. 

Three demand streams for the three-end-item problems were 

generated to give a low (Cv = 0.1144), a medium (Cv = 
0.1926), and a high (Cv = 0.3955) coefficient of 

variation for each of ninety-six period demand data. The 

C. is the standard deviation as a proportion of mean 

demand. Capacity is set after demands are determined such 

that the total demand is divided by the product of the 

percentage of utilisation and the number of time periods. 

The capacity utilisations varied from 25% to 95% in the 

experimental studies. 

The results for the rolling schedule are shown in Tables 

5.8.1-5.8.9 with different capacity utilisation (27 

problems were investigated) In each table, the total 

cost of the ninety-six period problem using the heuristic 

for the constrained item(s) with the EOQ and Silver-Meal 

approaches for the unconstrained items are shown. The 

second and third columns refer to problems without a 
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rolling schedule and the fourth and fifth columns refer 
to problems with a rolling schedule. 

Graphs 5.8.1-5.8.9 are presented in the same way as the 

results above. In each graph, the number 1 on the 
horizontal axis refers to the multiple bottleneck cases. 
It is assumed that those bottlenecks occurred in the 
final product item(s) with 50% capacity utilisation and 
the intermediate product item(s) with 50% capacity 

utilisation. Further, the numbers 2 and 3 on the 
horizontal axis refer to single bottleneck cases which 

occurred at the final product item(s) with 50% and 75% 

utilisation, respectively. In addition, the legends H1, 

H2 refer to the total cost without the rolling schedule, 

and H3, H4 refer to the total cost with the rolling 

schedule. 

The fixed planning period is used to solve different 

problems in chapter 4, ignoring the more realistic 

conditions dealt with by dynamic studies in chapter 5. 

In the experimental studies, such as in Blackburn et 

al. [1982], four to ninety-six forecast windows and a six 

period rolling schedule horizon were used. The heuristic 

for the constrained product items and the EOQ and Silver- 

Meal approaches for the unconstrained product items were 

used to solve the problems using the rolling schedule. 

The rolling schedules were formed as follows: First, the 

problem for 1 to N is solved, but only the first 

decision, for the periods 1 to k, was implemented. The 

process was repeated for periods k+3, k+6,..., k+N, 

continuing until the production decision was made in all 

of the ninety-six periods. Although the changes after 

every 3 periods are examined in this thesis, the program 

which is reported in Appendix C can provide the changes 

after each time period. 
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The results in Tables 5.8.1-5.8.9 illustrate that 
increasing the planning horizon results in extra costs, 
however more information is generated in the planning 
period which can make stable plans. The results also show 
that the Silver-Meal approach performed better than the 
EOQ. The reason is because the Silver-Meal approach 
allows for more stocks at the beginning of the new 
periods which are subsequently beneficial. 

6.4. Worst Case Analysis of Heuristics 

In the literature it is very difficult to solve the 

capacitated lot-sizing problems with exact techniques 

such as linear programming or integer programming, 
because these problems take substantial computer time. 

These problems are known as NP-hard problems as was 

mentioned briefly in chapter 4. They are hard problems 
because optimal techniques are unable to solve the 

problems in a reasonable amount of computer time. Because 

of these difficulties attention turned to heuristics 

which find approximate solutions for those problems. 

Heuristics can solve difficult problems satisfactorily, 

see for example Fisher [1980], Garey and Johnson [1979], 

Iyogun [1991]. In this thesis the computation time took a 

maximum of 3.31 seconds, on the other hand integer 

programming solutions took a maximum of 887.08 seconds to 

solve the same problem. When heuristics are applied to 

difficult problems, we have to answer the question "How 

good are the heuristics? " The worst case analysis can 

help to answer this question. The worst case analysis is 

defined as a maximum deviation from the optimality which 

can happen if a heuristic is applied to the problem sets. 

The aim of this analysis is to predict the heuristic 

performance so that the heuristic performance should be 

viewed as complementary instead of competitive as 

explained in Fisher [1980]. According to the definition, 

the heuristic performance can be found using the 
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following equation which is again to be found in Fisher 
[1980] : 

ZH (I) <_ rZ (I) 

where ZH (I) is the heuristic solution for the problem I, 

Z (I) is the optimal solution for the problem I, and r is 

the heuristic performance. The best heuristic is the 

smallest ratio for a given problem . That is, 

ZH (I) =rZ (I) 

This heuristic performance refers to optimality in the 

experimental cases in Tables 4.6.1-4.6.21. In that case 

the best heuristic performance is involved in structure 2 

and 3 for the five-end-item problem (r = optimality =1 

in Tables 4.6.8,4.6.9,4.6.12,4.6.18), and the worst 

case performance among all problems was the structure 2 

for the three-end-item problem in the experiment (r= 

optimality = 1.360 in Table 4.6.20). The reason for the 

poor performance of the heuristic was explained in 

section 6.2. 

In this section, the worst case analysis 

terms of setup cost and holding cost. 

developed in chapter 4, works well when t 

high and the holding cost is low, so the 

"what is the worst case for this data? ", 

question two opposing heuristics will 

briefly: 

is explained in 

The heuristic, 

he setup cost is 

question arises 

To answer this 

be introduced 

1. The heuristic, developed in chapter 4, which aimed 

to produce as much as possible for each product item 

for a period or several periods within a system with 

a bottleneck. 
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2. The opposite to heuristic 1, which is to, produce as 
little as required within each period for each 
product item. 

Let TC1 and TC2 denol 

heuristics above. As 

approach there is no 

tradeoff point between 

as follows: 

.e total cost in relation to the 

will be seen from the second 
holding cost in these cases. The 

setup and holding costs would be 

TC1 = TC2 

Si S1 (pit) + hi it = Si S2 (Pit) 

then hi = (Si S2 (pit) Si S1 (pit)) I Iit 

where S1 (Pit), and S2 (Pit) are the production indicators 

according to the heuristics, h1, Si, Iit are the holding 

cost, setup cost and inventory level for product item i 

during period t respectively. A small example is given 

below: 

Table 6.4. A Cost Analysis 

Setup Holding The Ratio of Costs 
Cost Cost (Setup / Holding) 

500.0 0.5 1000.0 

450.0 1.0 450.0 

400.0 1.5 266.7 

350.0 2.0 175.0 

300.0 5.3 56.5 

200.0 7.0 28.6 

150.0 10.0 15.0 

100.0 20.0 5.0 

Total 
Cost 1 

1556.5 

1463.0 

1369.5 

1276.0 

1500.0 

1391.0 

1580.0 

2560.0 

Total 
Cost 2 

2500.0 

2250.0 

2000.0 

1750.0 

1500.0 

1000.0 

750.0 

500.0 

The tradeoff point between the setup cost and the holding 

cost is hi = 0.017 Si according to the example above. It 

means that the heuristic developed in chapter 4 works 
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well when the setup cost is greater than or equal to 56.5 
times the holding cost in this case. The relations 
between the setup cost and holding costs can be found 
using the above formulation. The relation between these 
two costs is ilustrated in Graph 6.4. 

3000 
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0 
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Graph 6.4. The Relation Between Setup and Holding Costs. 

6.5. Summary and Conclusion 

In this chapter first the results of single and multiple 
bottleneck problem cases were discussed. The results 

showed that the heuristic worked well for the five-end- 

item problem. This was because the solutions were so 

close to the lower bound value (LP). It meant that the 

lower bounds were tighter for those problems. The reason 

why the heuristic did not work well for a few cases, such 

as structure 2 with 95% capacity utilisation in one-end- 

item problem and structure 2 in three-end-item problem, 

may be that rather more setups than necessary were being 

used when setup cost was above average. 
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Then, the results of chapter 5 

period problem were investigated 

the rolling schedule environment. 

when the uncertainties increased, 

The results also illustrated 

approach is better than the El 

demands. 

was discussed. The 96 

to show the effect of 
The results showed that 

total cost increased. 

that the Silver-Meal 

)Q because of varying 

Finally, the worst case analysis considered how good the 

heuristic was. The analysis was done in respect of setup 

cost and holding cost. The idea was to find the relations 
between those two costs to minimise the total cost. For 

that reason a very simple example was given and the 

result showed that the heuristic performed well when the 

setup cost was greater than or equal to 56.5 times of 

holding cost according to the data above. This was the 

tradeoff point between those costs for that example 

problem. On the other hand when this proportion 

increased, the solution became worse. 

In conclusion, the heuristic provides a quick and easy 

solution for the problems and is sufficiently simple to 

be used even without a computer routine. 
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CHAPTER 7 

A COMPARISON FOR THE ASSEMBLY SYSTEM 

7.1. Introduction 

The results of chapters 4 and 5, and also the worst case 
analysis were discussed in the previous chapter. This 

chapter first shows, as was mentioned in chapter 2, the 

application of the heuristic of Eftekharzadeh [1988] to 
the assembly system in order to compare it to the 
heuristic of this thesis (section 7.2). Section 7.3 then 

provides a sensitivity analysis while comparing the setup 

and holding cost. Finally some conclusions are drawn in 

section 7.4. 

7.2. A Comparison for Assembly Systems 

In this section, the heuristic of Eftekharzadeh [1988] is 

compared to the heuristic of this thesis for the assembly 

product structure, where each part may have only one 

successor but many predecessors. This heuristic was 

chosen for particular consideration because it 

represented a new development that related well to the 

work of this thesis. The product structure is illustrated 

in Figure 7.1. 

Eftekharzadeh [1988] in fact proposed two heuristics: 

which are: (1) Selective Enumeration; and (2) Modified 

Per Period heuristics for multi-stage lot-sizing assembly 

systems. The Modified Per Period heuristic, which is an 

extension of the multi-stage uncapacitated procedure, can 

117 



achieve the feasible schedule by shifting the production 
from the period with insufficient capacity to the 
immediate left. In this chapter, the Selective 

Enumeration procedure will be explained in detail because 

the results of the two heuristics by Eftekharzadeh are 

essentially the same. The Selective Enumeration heuristic 
is the conversion of the uncapacitated multi-stage lot- 

sizing heuristic of Afentakis [1987] to a capacitated 
lot-sizing heuristic. This heuristic starts to solve the 

problem by using the shortest path procedure for the t 

period problem by augmenting the solution to the (T-1) 

period problem according to the forward fashion and 

selects the plan of minimum cost for each period and puts 
it in ascending order. That is, the one period problem is 

solved first, then the two period problem, then the three 

period problem and so on for each stage. In conjunction 

with the heuristic there are 2t-1 schedules at each 

period t for each stage and these schedules should 

satisfy two conditions. Firstly the capacity condition, 

which requires that available capacity must not be less 

than the requirements, and secondly the system condition 

which requires that the cumulative production at the end 

of period should be at least equal to cumulative 

production for its successor stage A(i) for any two 

adjacent stages. The schedule which provides the minimum 

cost is selected so that the selected plan remains 

feasible for the whole system. On the other hand some of 

the plan at any period t might be infeasible. Such plans 

that have the infeasible parts must be deleted from the 

network. This heuristic when compared to our heuristic is 

quite similiar to the Afentakis [1987], and Karni and 

Roll [1982] except that Karni and Roll [1982] starts the 

planning with the Wagner-Whitin solution for each item, 

and Afentakis [1987] uses uncapacitated lot-sizing 

procedure. 
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A 

Some changes to the Eftekharzadeh approach were found to 
be necessary to handle certain situations which were 

apparently overlooked in the steps of the heuristic 

(these include simplifications also). 

The steps of the above heuristic are as follows: 

Step 1. Create a network for each stage i (i = 1, ... , N) 

with all the possible q period problems (q = 1,..., t). 

Calculate the costs for each q period problem using the 

shortest path procedure and put them in ascending order 

for each t-period problem (t 
_< T-1). These costs are 

calculated by the following formula: 

NT 
Min II{ csi*S(Pit) + hi*Iit} 

i=1 t=1 

The notation is the same as before. 

Step 2. Check the feasiblity for each period at any 

stage with reference to the capacity and system 

conditions starting with the first period. The capacity 

condition is: 

N 
[bi*Pit] <_ Capt 

i=1 

In each period, the possible schedules which provide the 

minimum cost are combined to create the final schedules. 

If there is any infeasible schedule at any period, then 

that plan(s) is deleted from the network, and the next 

lowest cost plan replaces the deleted schedule. This will 

be explained in detail later in the chapter. The bi value 

is the time needed to produce one unit of product i in 

the above formulation and this is set to 1. 
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Step 3. Generate the N (i) =t+2- ti schedules for the 
T period problem, where N (i) is the number of stages and 
ti is the last production period in the plan V(i, t). The 

alternative plans, k, are constructed by adopting the 

plan computed by the heuristic from period 1 through ti + 
k-2. Then the kth schedule W(i, k) is: 

W (i, k) _ {V (i, ti +k- 2) , Rir, 01' 01 k=1, .., N (i) 
r=ti+k-1 

and the related cost is calculated by using the above 

cost function. 

Step 4. Consider all possible schedules which yield the 

minimum cost, and check whether the schedules satisfy the 

system and capacity conditions. If it is true, then stop. 

If it is not, then go to step 3. 

The data used for this method is depicted in Table 7.1 

and Table 7.2 respectively, and also the assembly product 

structure in Figure 7.1 (adopted from Eftekharzadeh 

[1988]) 

Table 7.1. Data for a 5-period problem. 

Setup 
Stage Successor Predecessor Cost 

iA (i) B (i) Si 

Echelon 
Holding Cost 

ei 

1-2,3 10 1.0 
21- 20 1.0 
31-81.0 

The echelon holding cost in Table 7.1., explained in 

chapter 2, is the cost charged to each unit of the 

echelon inventory which is all units in the system at 

stage j and its successors. It is calculated according to 

the following formula 
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ei = hi -I hj 
jEC(i) 

where C(i) is the set of immediate predecessors of 
product item i. 

Table 7.2. Demand and capacity for a 5-period problem. 

Period 
Period Demand Capacity 

18 39 
2 15 39 
34 39 
48 39 
5 12 39 

According to Table 7.1, the product structure becomes: 

Figure 7.1. The three stage assembly systems. 

Eftekharzadeh [1988] started to solve the problem for the 

q (q = 1, ... , t) period problem for stages 1,2 and 3 to 

determine the production schedules. The schedules are 

created according to the forward fashion, that is, first 

the one period problem is solved, then the two period 

problem, and so on. The schedules and costs for the first 

four periods are illustrated in Table 7.3. The costs are 

the sums of the setup costs and echelon holding costs. 

For example the cost of 24 in period 3 for stage i 

consists of two setup costs (20) plus the echelon holding 

costs for four units in period 2. 
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Table 7.3. Schedules and costs for the 4-period problem. 
Stage Period 
i 1 2 3 4 
1 ( 8) [10] ( 8,15) [20] ( 8,19,0) [24] ( 8,19,0,8) [ 34] 
2 ( 8) [20] (23,0) [35] (27,0,0) [43] ( 8,27f Of 0) [ 601 
3 ( 8) [ 8] ( 8,15) [16] ( 8,19,0) [20] ( 8,19,0,8) [ 28] 

(24) [38] (39,30) [71] (43,38,0) [87] (24,65,0,16) [122] 

For step 2 the feasibility is checked (using the formula 
in step 2) . As will be seen from Table 7.3 there are two 

infeasible schedules which come from the combined 

schedules for the 3 and 4 period problems. They are 43 in 

period 1 for the 3 period problem, and 65 in period 2 for 

the 4 period problem, therefore the schedule for which 

the maximum is produced in that particular period for 

product item i must be deleted from the network; e. g. 

product item 2 in the above Table 7.3, which is 27 in 

period 1 for the 3 period problem, and the schedule that 

gives the next minimum cost will be appended to the 

network. If there is the same maximum quantity for 

different product items, then the schedule which will be 

deleted from the network is arbitrary. The new schedule 

is illustrated in Table 7.4. 

Table 7.4. Schedules and costs for the 4-period problem. 

Stage Period 

i 1 2 3 4 
1( 8) [10] ( 8,15) [20] ( 8,15,4) [ 30] ( 8,15,4,8) [ 40] 
2( 8) [20] (23,0) [35] (23,0,4) [ 55] (23,0,12,0) [ 63] 
3( 8) [ 8] ( 8,15) [16] ( 8,19,0) [ 20] ( 8,19,0,8) [ 28] 

(24) [38] (39,30) [71] (39,34,8) [105] (39,34,16,16) [131] 

The feasible schedule is found in step 2, hence the 

schedule for the next period will be generated. For this 

reason, the alternative plan is calculated for each stage 

in step 3 in the following way. 
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N(i) =t+2- ti i=1, 
..., 3 

N (1) =4+2-4=2, N (2) =4+2-3=3 and 
N (3) = 4+ 2- 4= 2 

the alternative plan is as follows; 

w(1,1) ={V (l, 4+1 - 2), 20, 0) = {8,15,4,20, O} 
W(1,2) ={ V(1,4 +2 - 2), 12) = {8,15,4,8,12}, etc. 

The final schedule, which satisfies the system and 
capacity conditions, is: 

Table 7.5. Final solution for the 5-period problem. 
Stage Period 

i1 2 3 4 5 
1(8, 15, 4, 8, 12) [ 50] 
2 (23, 0, 12, 0, 12) [ 83] 
3(8, 19, 0, 8, 12) [ 36] 

(39, 34, 16, 16, 36) [169] 

The feasible schedule for the 5-period problem at each 

stage is illustrated in the parentheses above, and the 

total cost associated with this plan is 169. 

Conversely, the heuristic of this thesis was to produce 

as much of product item 1 as possible and produce product 

items 2 and 3 as required in period 1, then produce as 

much of product item 2 (provided Slt > dit) as possible 

and produce product item 3 as required in period 2, and 

finally produce as much of product item 3 as possible 

(provided Slt > dit, S2t > d2t) in period 3 and continue 

the same process for the rest of the periods. The details 

of the heuristic for the three-end-item problem were 

illustrated in chapter 4. The final plan using the 

heuristic of this thesis is: 
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Table 7.6. Solution using proposed heuristic. 
Stage Period 

i1 2 3 4 5 
1 (23, 0, 24, 0, 0) [ 67.0] 
2(8, 24, 0, 15, 0) [ 86.0] 
3(8, 15, 4, 20, 0) [ 44.0] 

(39, 39, 28, 35, 0) [197.0] 

The total cost in conjunction with the heuristic of this 
thesis is 197.0. This cost is greater than the cost 
obtained using Eftekharzadeh's heuristic and reflects the 
fact that the heuristic proposed in this thesis adopts a 

greedy approach to production by having few setups. 

7.3. Sensivity Analysis of the Heuristics 

A small example problem was illustrated in the previous 

section to show the relation between the two heuristics. 

According to the results, the Eftekharzadeh [1988] 

heuristic performed better than the heuristic of this 

thesis. This one result does not reflect the overall 

performance of his heuristic and the data structure was 

explored further to decide which heuristic is better 

under what circumstances. For that reason, the setup and 

holding costs were changed according to the following 

logic and the results are illustrated in Table 7.7. 

Both heuristics, as will be seen from the final 

schedules, produce plans which are not determined by the 

costs, but are determined by the demand structure. In the 

following table different setup and holding costs were 

used with the same proportions in the given data. That 

is, cs1 = 1.25*cs3, cs2 = 2.5*cs3, and the same holding 

costs for each stage will be used to calculate the total 

costs in the following table. In Table 7.7, H1 refers to 

the heuristic of this thesis, and H2 refers to the total 

cost of Eftekharzadeh's heuristic. 
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Table 7.7. Total costs under different cost assumptions 

Setup Holding Setup Holding 
Cost Cost H1 H2 Cost Cost H1 H2 

3 1 127.0 80.3 8 0.1 120.5 144.7 

4 1 141.0 98.0 8 0.2 129.0 147.4 

5 1 155.0 115.8 8 0.3 137.5 150.1 

6 1 169.0 133.5 8 0.4 146.0 152.8 

7 1 183.0 151.3 8 0.5 154.5 155.5 

8 1 197.0 169.0 8 0.6 163.0 158.2 

9 1 211.0 186.7 8 0.7 171.5 160.9 

10 1 225.0 204.5 8 0.8 180.0 163.6 

11 1 239.0 222.3 8 0.9 188.5 166.3 

12 1 253.0 240.0 8 1.0 197.0 169.0 

13 1 267.0 257.8 8 1.1 205.5 171.7 

14 1 281.0 275.5 8 1.2 214.0 174.4 

15 1 295.0 293.3 8 1.3 222.5 177.1 

16 1 309.0 311.0 8 1.4 231.0 179.8 

17 1 323.0 328.8 8 1.5 239.5 182.5 

18 1 337.0 346.5 8 1.6 248.0 185.2 

19 1 351.0 364.3 8 1.7 256.5 187.9 

20 1 365.0 382.0 8 1.8 265.0 190.6 

In Table 7.7, the total costs in the third and fourth 

columns are calculated while the holding cost is held 

constant as before and the setup costs were allowed to 

vary. In addition, the setup cost was fixed at the same 

value while the holding costs varied. The results of the 

total costs of these changes are illustrated in the 

seventh and eight columns. The total cost of the 

heuristic of this thesis works well if the setup cost is 
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greater than or equal to the 16 times of the holding cost 
according to the above Table. 

7.4. Conclusion 

In summary: Eftekharzadeh's heuristic appears to works 
well if: 

setup cost is low 
holding cost is high (Setup cost/Holding cost <_ 16) 

conversely, the heuristic developed in this thesis 

appears to works well if; 

setup cost is high 

holding cost is low (Setup cost/Holding cost >_ 16) 

Furthermore, the size of the problem can also determine 

which heuristic is best. Eftekharzadeh stated that 

reporting results by '... Generating all possible 

schedules (optimal solution or complete enumeration) is 

not practical for large problems. This would require 

substantial CPU time. ' On the other hand the heuristic 

developed in this thesis works according to very simple 

rules, and therefore handles large problems in a short 

time (see Tables 4.6.1-4.6.21). Therefore the size of the 

problem is not important for the heuristic developed in 

this thesis, because it requires very simple principles. 

In addition, the heuristic of this thesis may be improved 

by shifting the production lots to left or right if 

possible as suggested by Karni and Roll [1982], Afentakis 

[1987]. This is one possible area for further research. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE RESEARCH 

8.1. Introduction 

This thesis concentrated on using heuristics for the 

constrained product items with the EOQ and Silver-Meal 

approaches for the unconstrained product items for the 

multi-level lot-sizing problems when there is a 
bottleneck(s). Then, they are employed to the rolling 

schedule environment. It is illustrated that none of the 

optimal techniques are able to solve those problems. 

This chapter will first summarise the research which was 

explained throughout the thesis, and finally some 
directions of future research will be provided. 

8.2. Conclusions 

A simple heuristic for the bottleneck multi-level lot- 

sizing problem has been developed. The following results 

are quoted from the experimental testing. 

1. A heuristic for the multi-level lot-sizing problem 

was designed by grouping product items into (a) end- 

items, (b) non-end-items and two simple procedures were 

used independently. The reason for this categorisation is 

that production of each non-end-item outside the 

bottleneck is unconstrained and so has neither any affect 

on the production of any other non-end-item outside the 

bottleneck nor on the production of the items which are 

constrained by the bottleneck. The results illustrated 

that the heuristic solution for the constrained product 
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items with the EOQ and Silver-Meal approaches for the 
unconstrained product items were generally better than 
the integer programming solution of the Billington et al. 
[1986] model. It provided a great improvement in respect 
of the computational time and required only a small 
fraction of computer time required by the full integer 

programming approach. This heuristic was very easy to 
implement even without a computer routine. Thus simple 
operational procedures can be derived from the heuristic 

rules. 

2. The heuristic for the constrained product items and 
the EOQ and Silver-Meal approaches for the unconstrained 

product items were applied to the rolling schedule 

situations to make stable plans in the case of uncertain 
demand cases. For this reason 96 period problems were 
investigated and the results showed that the total cost 
increased when the schedule involved the future demands. 

3. The results of the heuristic solution for the 

constrained product items with the Silver-Meal approach 

for the unconstrained product items were better than the 

integer programming solution in all cases but the 

heuristic for the constrained product items with the EOQ 

approach for the unconstrained product items did not 

provide the same quality for a few cases (structure 2 for 

three-end-item problem, and structure 2 for one-end-item 

problem with 95% utilisation). The reason was that more 

setups were being used than necessary when the setup cost 

was above average. 

4. The heuristic was applied to the assembly product 

structure to make some comparison between the heuristic 

of this thesis and Eftekharzadeh's heuristic. The results 

illustrated that the heuristic of this thesis performed 

well when the setup cost was greater than or equal to the 
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16 times of the holding cost according to the data given 
in section 7.3. 

8.3. Recommendations for the Future Research 

There are a number of extensions to this work that would 
provide interesting research topics. These include the 
following: 

(i) The heuristic of this thesis may be used within a 
Genetic Algorithm which is a random search formed by 

taking any of the population (of solutions) randomly. 
This population could be any of the grouping for the 

five-end-item problems such as the production items (1, 

2,3), (4,5). Then, a new population may be regenerated 

according to its fitness values. This regeneration 

continues as many times as desired until the minimum cost 
is reached. Solutions are normally represented in binary 

vector form to allow the genetic approach to operate. 

This would be possible when decisions as to production of 

a product in a given period are made (see Goldberg 

[1989]). 

(ii) Simulated annealing may be applied to the multi- 

item lot-sizing problem when there is a bottleneck(s). 

The production items group (1,2,3) , (4,5) for five- 

end-item problems can be employed to generate the 

productions subject to demands and stocks for each group 

randomly in each period. This generation may be dependent 

on two rules: (1) if the stock is greater than demand, no 

production is proceeded, (2) if the stock is less than 

demand, the generation of production could be any number 

of the utilisation less the stock for each item. Then the 

total cost is calculated after generating all possible 

schedules. Total costs are calculated according to those 

schedules. If the value of the current objective function 

is less than (in case of minimisation problem) the 
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previous one, accept the solution. Otherwise accept the 
solution with a probability P= e-d/T, where d is the 
increase in the objective function value, and T is the 
control mechanism (called temperature) which decreases 
monotonically with each successive iteration. This 
mechanism is defined in Reeves [1991], Kirkpatrick et al. 
[1983] and Osman and Potts [1989] in the following form: 

Ti = Ti-, / (1 +g T1_1) 

where g is the constant which is defined as the 
temperature falls from some initial value of To to a 
final value of Tf in f iteration. This is calculated 
using the following formula: 

4- (To - Tf) / ((f - 1) T0 Tf) 

(iii) Tabu Search may be used for the same problem. 
To apply the Tabu search, an initial solution is 

required. This initial solution may be the total cost of 
the production group (1,2,3), (4,5) for five-end-item 

problems. Then it may search a neighbourhood of that 

solution for a better one by moving up and down except 

for a certain prohibited or 'tabu' set. This prohibited 

set may be subject to the integer programming solution or 

capacity condition. If the new solution is better than 

the initial one, it is dropped from the schedule and 

continues to search other alternatives. The stopping 

point for this approach may be the linear programming 

solution or some percentage of it (see Reeves [1991]). 

In conclusion it can be seen that as the solution of many 

production scheduling problem is NP hard, the development 

of new heuristic methods to solve such problems continues 

whenever any promising general heuristic approach can be 

applied to these problems. 
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Model in MGG on SCICONIC 
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OPTIONS OLDFORMAT 
NOTATION 
SUFFICES 

I IMAX 25 
K KMAX 25 
T TMAX 12 
L LMAX 12 

VARIABLES 
P (I, T) ' *IITT' 
X (I, T) ' *IITT' 

BOUND BV 
EXTERNAL VALUES 

H(I) F5.2 
A (K, I) F5.1 
D (I, T) F5.1 
01(1) F5.1 
B(I) F5.1 
S(I) F5.1 
CS(I) F6.1 
CAP (T) F7.1 
LA (K) 15 

PROBLEM 
MINIMISE 
*TCOST '*****' 

SUM(I, T)AO1*P (I, T)+SUM(I, T)BO1*X(I, T) 
SUBJECT TO 
*CPRD ' ****KKLL' NOT IF (L. LE. LA(K) ) 

SUM (I, T) A02 *P (I, T) . GE. B02 
*CAP '***TT' 

SUM (I) B03*P (I, T) +SUM (I) B04*X (I, T) . LE. B05 
*LIM '***IITT' 

P (Ir T) -B06*X(I, T) . LE. 0.0 
ELEMENTS 

B01=CS(I) 
B03=B(I) 
B04=S(I) 
B05=CAP (T) 
A01=H(I)*(TMAX-T+1) 
A02=Z02 () 
B02=Z03 () 
B06=199.0 

FUNCTIONS 
FUNCTION Z02() 
Z02=0.0 
IF (T. GT. L) RETURN 
IF (I . GT. K) RETURN 
IF (I . EQ. K) GOTO100 
Z02=-A(K, I) 
RETURN 

100 N=L-LA(K) 
IF (T . GT . N) RETURN 
Z02=1.0 
RETURN 
END 
FUNCTION Z03() 
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Z03=-OI (K) 
DO 100 N=1, L 

100 Z03=Z03+D (K, N) 
RETURN 
END 

ENDATA 
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i 

Sample Run Stream 

1. Sciconic 

2. Infile='Matrix. d' 

3. Convert 

4. Setup 

5. Primal 

6. Global 

7. Prints 

8. Stop 

1. This is the macro command to start the software. 
2. This identifies the file which MGG has produced. 
3,4. These set the problem up and organi se the matrix. 

5. This solves the linear programming (LP) problem. 

6. This solves the integer programming (IP) problem. 

7. This prints out results. 
8. This ends the software. 
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APPENDIX B 

Data 
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One End Item Bottleneck Problem 

Randomly Generated Cost Sets 

Cost Set 1: Cost Set 2: Cost Set 3: 

i hi Si hi Si hi Si 

1 0.5 300 0.5 500 0.1 300 
2 0.1 200 0.5 400 2.0 500 
3 0.5 200 2.0 400 0.1 500 
4 0.1 500 1.0 200 1.0 300 
5 1.0 400 1.0 200 1.0 500 

All bi = 1.0 for the item made on the work centre. 
All aij = 1.0 for all predecessor rel ations shown below: 

5 4 32 1 
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One End Item Bottleneck Problem 

Randomly Generated Demand Stream 

Low Coefficient of Variation, C. = 0.1057 

Period 

i123456789 10 
1 33 43 36 46 46 42 38 41 44 40 

Medium Coefficient of Variation Cv = 0.1862 

Period 

i123456789 10 
1 54 47 80 63 45 76 74 55 54 58 

High Coefficient of Variation CV = 0.3464 

11 12 
35 46 

11 12 
76 58 

Period 

i123456789 10 11 12 

1 17 31 58 51 64 42 44 18 48 41 58 32 
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Three End Item Bottleneck Problem 

Randomly Generated Cost Sets 

Cost Set 1: Cost Set 2: Cost Set 3: 
i hi Si hi Si hi Si 
1 0.5 500 2.0 500 0.5 400 
2 0.5 400 2.0 300 1.0 300 
3 1.0 300 0.1 300 2.0 300 
4 0.1 200 2.0 400 0.1 300 
5 1.0 400 2.0 500 1.0 500 
6 0.1 500 1.0 400 0.1 200 
7 2.0 300 2.0 400 2.0 500 
8 1.0 300 2.0 200 0.5 500 
9 2.0 300 2.0 500 0.1 300 
10 0.5 500 0.1 300 1.0 300 
11 2.0 400 1.0 200 0.1 400 
12 0.1 400 0.5 300 0.5 500 
13 1.0 200 1.0 300 1.0 500 
14 1.0 200 1.0 500 1.0 300 
15 1.0 500 1.0 300 1.0 400 

All bi = 1.0 for the item made on the work c entre. 
All aij = 1.0 for all predecessor rela tions shown below: 

13 1 110 Iý7 I- 14 I- 11 

14 1 11 Eý8I 15 Iý2 

15 1- 12 1ý9 ---I 6 1---ý 3 

149 



Three End Item Bottleneck Problem 

Randomly Gener ated Demand Stream 

Low Coefficient of Variation, C. = 0.1144 

Period 
i 1 2 34 5 6 7 8 9 10 11 12 
1 41 59 69 47 41 73 65 44 63 52 79 55 
2 56 55 54 65 76 72 42 70 76 50 45 74 
3 28 35 29 51 40 44 42 45 52 38 49 40 

Medium Coef ficient of Variation Cv =0 . 1926 

Period 

i 1 2 34 5 6 7 8 9 10 11 12 
1 23 33 49 32 13 34 50 50 09 23 25 21 
2 56 50 24 35 77 35 42 72 50 71 41 25 
3 35 35 31 77 54 17 83 41 60 53 44 76 

High Coeffi cient of Variation C. = 0.3 955 

Period 

i 1 2 34 5 6 7 8 9 10 11 12 
1 00 07 21 01 41 65 47 54 00 63 43 62 

2 00 117 126 93 55 105 08 12 6 82 45 18 93 
3 25 00 14 17 29 56 105 99 96 42 58 00 
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Five End Item Bottleneck Problem 

Randomly Generated Cost Sets 

Cost Set 1: Cost Set 2: Cost Set 3: 
i hi Si hi Si hi Si 
1 0.1 200 1.0 200 0.1 200 
2 0.5 500 0.5 300 0.1 500 
3 2.0 200 0.1 200 0.1 400 
4 2.0 300 0.5 300 2.0 400 
5 1.0 300 0.1 400 2.0 400 
6 2.0 300 2.0 500 2.0 500 
7 0.5 300 0.5 200 1.0 200 
8 1.0 500 2.0 300 0.1 500 
9 1.0 500 0.1 300 0.5 500 
10 2.0 200 1.0 400 1.0 200 
11 0.1 400 2.0 500 0.1 200 
12 0.1 400 1.0 200 1.0 400 
13 0.1 300 2.0 200 0.1 500 
14 2.0 300 0.1 500 2.0 300 
15 0.1 500 0.1 500 0.1 400 
16 1.0 400 2.0 300 0.5 200 
17 2.0 500 0.5 500 0.1 300 
18 2.0 500 0.1 500 2.0 400 
19 0.1 500 2.0 200 0.5 200 
20 1.0 300 0.1 300 1.0 200 
21 1.0 200 1.0 400 1.0 400 
22 1.0 300 1.0 300 1.0 400 
23 1.0 500 1.0 400 1.0 400 
24 1.0 200 1.0 500 1.0 500 
25 1.0 400 1.0 200 1.0 500 

All bi = 1.0 for the item made on the work centre. 
All aij = 1.0 for all predecessor relations shown below: 
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Five End Item Bottleneck Problem 

Randomly Generated Demand Stream 

Low Coeffic ient of Variation, CV = 0.07 90 

Period 

i 1 2 3 4 5 6 7 8 9 10 11 12 
1 29 64 59 46 82 86 74 36 36 59 86 54 
2 38 47 52 37 44 25 52 34 27 37 34 50 
3 51 27 35 30 43 55 55 60 50 43 48 29 
4 33 42 44 77 43 31 53 33 53 51 71 48 
5 74 84 67 89 56 46 55 73 59 74 42 75 

Medium Coef ficient of Variation Cv = 0. 2125 

Period 

i 1 2 3 4 5 6 7 8 9 10 11 12 
1 43 04 93 111 12 70 04 113 72 122 35 105 
2 13 60 14 46 22 46 33 39 47 54 33 09 
3 58 33 61 00 67 71 77 00 50 76 112 00 
4 20 65 13 33 13 81 06 53 42 57 66 00 
c I? R '7 Q 19 9; a 100 14 83 01 22 28 01 33 

High Coefficient of Variation Cv = 0.4282 

Period 

i 1 2 3 4 5 6 7 8 9 10 11 12 
1 27 110 00 00 151 139 72 41 10 31 87 102 
2 76 15 50 36 00 19 24 00 40 92 83 114 
3 11 07 21 97 87 87 00 82 105 00 79 23 
4 12 00 02 93 22 78 29 00 00 118 109 02 
5 70 00 00 100 79 62 46 00 10 36 00 18 
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APPENDIX C 

Heuristic Program on Fortran 77 
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c This program calculates the total cost for multi 
c level lot-sizing problem with bottleneck(s) 
c 

program bottleneck 
c 
c 

integer t, blkstart, blkend 
character*14 filename, namel, cname2 

c 
c 

dimension prod (25,5,96) , stock (25,5,96) , aver (5,3) 
1, hi (25) , cs (25) , itl (96) ,d (5,96) , ibp (25) , sumh (25) 
2, suml (2 5) , sumn (2 5) , sums (2 5) , dem (5,9 6) ,c (2 5) ,h (2 5) 
3, dema (5,96) , cap (25) , stockt (25,5,96) , stock2 (25,5,96) 
4, iutd (25) , stock3 (25,5,96) , scost (25,5,96) 
5, prodl (25,5,96) , stock4 (25,5,96) , prod2 (25,5,96) 
6, sumsil (25) 

C 

C 

data (iutd (i) , i=1,25) /25*0/ 
c 
c 

print*, 'blksize=, blkjump=, periods=' 
read*, blksize, blkjump, periods 
print*, 'give the first sub-program name please' 

c 
c 
c Now reading the first sub-program name. If the 
c first sub-program name which is ' namel ' is equal 
c to 'roll', calculation is done using rolling 
c schedule. Otherwise it is done without rolling 
c schedule for period 1 to 96. 
c 
c 

read*, name1 
c 
c 

print*, 'give the second sub-program name please' 
c 
c 
c now reading the second sub- program name. If the 
c second sub-program name is 'silver', calculation 
c is executed using silver meal technique. Otherwise 
c it is executed using economic order quantity from 

c period 1 to 96. 
c 
c 

read* , cname2 
print *, 'give data file name please' 

c 
c 
c now reading data from files 
c 

C 

154 



read *, filename 
open (unit=7, file=filename, status='old' ) 
open (unit=9, file="output") 
write (9,169) 

C 

C 

C 

C 

C 

C 
C 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

1 

C 
C 

C 

C 

C 

C 

C 

C 

2 

'ibottle' is the number of bottleneck', and 
'ibp(j)' is the position of the bottleneck, 'd' is 
the demand, 'aver'is the total or average demandin 
accordance with the index, 'hi' is the holding 
cost, 'cs' is the setup cost, 'prod' is the amount 
of production, 'stock' is the amount of the 
available stock, 'cap' is the capacity which is 
used, 'icho' is the number of end items, 'iutd' is 
the capacity utilisation, 'kbt' is the number of 
bottleneck(s), 'lk' is the number of end item(s)for 
five-end item problems, 'k' is the number of 
item(s) for one or three end item problems 

Now reading the end items, bottleneck and capacity 
utilisation. 

read*, icho, ibottle 
do 1 j=l, ibottle 

write (9,94 ) 
read *, ibp (j) , cap (j) 

continue 
read (7,, *) (d (i, j) , j=1, PERIODS) 
read (7, *) (cs (i) , i=1,5*icho) 
read (7, *) (hi (i) , i=1,5*icho) 

NOW STARTING THE CALCULATIONS 

i=1, icho) 

BLOCKSTART IS EQUAL TO BLOCK LOOP 

total=0.0 
do 7 blkstart=l, periods, blkjump 

blkend=blkstart+blksize-1 
if (blkend. gt . periods) goto 999 

do 2 i=l, icho 
do 2 j=1,3 

aver (i, j) =0.0 
continue 
sum=0.0 
do 4 j=l, icho 

do 3 t=blkstart, blkend 
do 111 lk=1,25 

stock (lk, j, t) =0.0 
stockl (lk, j, t) =0 .0 
stock2 (lk, j, t) =0.0 
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stock3 (lk, j, t) =0.0 
prod (lk, j,, t) =0 .0 
scost (lk, j, t) =0 .0 
prodl (1k, j,, t) =0.0 
stock4 (1k, j,, t) =0. o 

111 prod2 (lk, j, t) =0 .0 dem(j, t)=0.0 
dema (j , t) =0.0 
aver(j, 1)=aver(j, 1)+d(j, t) 

3 continue 
aver (j, 2) =int (aver (j, 1) /blksize+0 

. 5) 
sum=sum+aver (j , 1) 

4 continue 
sumt=0.0 
kbt=1 
icstep=l 
if (i cho . eq . l) then 

i1=1 
i2=5 

elseif (icho. eq. 3)then 
i1=1 
i2=13 

elseif (icho . eq. 5) then 
il=1 
i2=21 
icstep=3 

endif 
do 41 lk=il, i2, icho 

do 8 ich=l, icho, icstep 
k=lk+ich-1 
if (k . eq . ibp (kbt)) then 

iutd (1k) =int (sum/ (cap (kbt) *blksize) 
1+0.99) 

write (9,93) cap (kbt) , iutd (lk) 
write (9,99) ( (aver (i, j) , j=1,2) , i=1, 

licho) , sum 
if (icho-3) 15,20,30 

c 
c 
c 'ANAL' IS THE MAIN PROGRAM FOR ONE END ITEM 

PROBLEM 
C 

C 

15 call anal (iutd, d, prod, stock, aver, blkstart, blkend, 
l ich, lk, k, namel) 

write (9,961) ((prod(lk, i, j) , i=1, icho) , 
1, j=blkstart, blkend) 

write (9,110) ((stock (lk, i, j) , i=1, icho) , 
lj=blkstart, blkend) 

110 format ('stock', 1 (2x, f9.0) ) 
961 format ('production' ,1 (2x, f9 . 0) ) 

go to 40 
C 

C 
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c 'ANAL1' IS THE MAIN PROGRAM FOR THREE END ITEM 
c PROBLEM 

c 
20 call anall (iutd, d, prod, stock, aver, blkstart, blkend 

1, ich, lk, k, name 1) 
write (9,98) ((prod (lk, i, j) , i=1, icho) , j=blkstart 

1, blkend) 
write (9,97) ((stock (lk, i, j) , i=1, icho) , j=blkstart 

1, blkend) 
go to 40 

C 

C 

c 'ANAL2' IS THE MAIN PROGRAM FOR FIVE END ITEM PROBLEM 
c 
c 
30 call anal2 (kbt, iutd, d, prod, stock, aver, blkstart 

1, blkend, dem, lk, k, name 1) 
write (9,130) ((prod(lk, i, j) , i=1, icho) , j=blkstart 

1, blkend) 
write (9,140) ((stock (lk, i, j) , i=1, icho) , j=blkstart 

1, blkend) 
140 format ('stock' ,5 (2x, f9.0) ) 
130 format ('production' ,5 (2x, f9 . 0) ) 

endif 
C 

C 

40 if(cname2. ne. 'silver')then 
c 
c 
c now calling the subroutine cost for non-end-items 
c for non-bottleneck item(s) using the eoq technique 
c 
c 

call cost (kbt, k, prod, stock, aver, d, hi, cs, ich 
1, ibottle, ibp, sumc, t, icho, blkstart, blkend, blksize 
2, sumh, suml, sumn, sums, dem, c, h, dema, lk, stockl, stock2 
3, stock3, namel ) 

sumt=sumt+sumc 
total=total+sumc 

C 

C 

else 
c 
c 
c now calling the subroutine costs for non end-items 
c for non-bottleneck item(s) using silver-meal 

c technique 
c 

call costs (kbt, k, prod, stock, aver, d, hi, cs, ich 

1, ibottle, ibp, sumc, t, icho, blkstart, blkend, blksize 
2, sumh, dem, c, h, dema, lk, stockl, stock2, stock3, scost 
3, prodl, stock4, prod2, sumsil, namel) 

surrt=surrt+sumc 
total=total+sumc 
endif 
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8 continue 
41 write (9,95) k, sumt 

write Or 100) total 
100 format (2x, 'total=' , f19.2) 
93 format(' capacity utilization=', f7.5,5x, 'capacity 

1ý , _- , a. 5) 
94 format(' give position of bottleneck & capacity') 
95 format (i4,2x, 'cost=' , f17 . 1,3x) 
169 format('please give no of end items & no of 

ibottlenecks') 
97 format ('stock' r3 (2x, f9 . 0) ) 
98 format ('production, 3 (2x, f9 . 0) ) 
99 format (13f6.1) 
7 continue 
999 stop 

end 
C 

C 

c STARTS OF SUBROUTINE ANAL 
c FUNCTIONS: TO CALCULATE THE PRODUCTION AND STOCKS 
c FOR ONE-END ITEM PROBLEM FOR BOTTLENECK(S) 
c PARAMETERS: IUTD, D, PROD, STOCK, BLKSTART, BLKEND, LK, K 
c 
c 

subroutine anal (iutd, d, prod, stock, aver, blkstart 
1, blkend, ich, lk, k, namel ) 

c 
c 

integer blkstart, blkend 
dimension iutd (25) ,d (5,96) , prod (25,5,96) 

1, stock (25,5,96) , aver (5,3) 
c 
c 

idif=O 
averl=aver (1,1) 
if(blkstart. eq. 1. or. namel. ne. 'roll')then 

stock (lk, l, blkstart-1) =0 .0 
endif 
idif=idif+stock (lk, l, blkstart-1) 
do 5 j=blkstart, blkend 

if (stock (1k, 1, j-1) . lt. d(1, j)) go to 6 

stock (lk, 1, j) =stock (lk, 1, j-1) -d(1, j) 

prod (lk, 1, j) =0 
go to 5 

6 if ((averl-idif) . gt . 
iutd (lk)) then 

prod (1k, 1, j) =iutd (lk) 
stock (1k, 1, j) =prod (lk, 1, j) -d (1, j) 

1+stock (lk, 1, j-1) 
idif=idif+prod (lk, 1, J) 

else 
prod (lk, 1, j) =averl-idif 
stock (1k, 1, j) =prod (lk, 1, j) -d (1, j) 

l+stock (1k, 1, j-1) 
idif=idif+prod (lk, 1, j) 

endif 
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5 continue 
return 
end 

c 
c 
c START OF SUBROUTINE ANAL1 
c FUNCTIONS: TO CALCULATE THE PRODUCTION AND STOCKS 
c FOR THREE-END END ITEMS PROBLEM FOR BOTTLENECK(S) 
c PARAMETERS: IUTD, D, PROD, STOCK, LK, K, PERIODS 

c 
c 

subroutine anall(iutd, d, prod, stock, aver, blkstart 
1, blkend, ich, lk, k, namel ) 

integer blkstart, blkend 
dimension iutd (25) ,d (5,96) , prod (25,5,96) 

1, stock (25,5,9 6) , aver (5,3) 
idifl=0 
idif2=0 
idif3=0 
averl=aver (1,1) 
aver2=aver (2,1) 
aver3=aver (3,1) 
if(blkstart. eq. l. or. namel. ne. 'roll')then 

stock (lk, l, blkstart-1) =0 .0 
stock (1k, 2, blkstart-1) =0.0 
stock (lk, 3, blkstart-1) =0 .0 

endif 
idifl=idifl+stock (lk, l, blkstart-1) 
idif2=idif2+stock(1k, 2, blkstart-1) 
idif3=idif3+stock (lk, 3, blkstart-1) 
do 6 j=blkstart, blkend 

if(stock (lk, 1, j-1) . ge. d(l, j)) go to 13 
if (stock (1k,, 2, j-1) . ge. d(2, j)) go to 7 

if (stock (lk, 3, j-1) . ge. d(3, j)) go to 56 
iprod=averl+aver2+aver3-idifl-idif2-idif3 
iprodl=averl-idifl+d (2, j) -stock (lk, 2, j-1 

1) +d (3, j) -stock (lk, 3, j-1) 
if (iprod. gt . iutd (lk) . and. iprodl . gt 

l. iutd (lk)) then 
prod (lk, 3, j) =d (3, j) -stock (lk, 3, j-1) 

stock (lk, 3, j) =0 .0 
prod (lk, 2, j) =d (2, j) -stock (lk, 2, j-1) 

stock (1k, 2, j) =0 .0 
prod (lk, 1, j) =iutd (lk) -prod (lk, 2, j) - 

lprod (lk, 3, j) 
stock (lk, 1, j) =prod (lk, 1, j) -d (1, j) 

1+stock (lk, 1, j-1) 
elseif (iprod . lt . 

iutd (lk)) then 

prod (lk, 3, j) =aver3-idif3 
stock (1k, 3, j) =prod (lk, 3, j) -d (3, j) 

l+stock (lk, 3, j -1) 
prod (lk, 2, j) =aver2-idif2 
stock (lk, 2r j) =prod (lk, 2, j) -d(2, j) 

l+stock (lk, 2, j-1) 
prod (lk, 1, j) =averl-idifl 
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stock (lk, 1, j) =prod (lk, 1, j) -d (1, j) 
1+stock (lk, 1, j-1) 

elseif (iprodl 
. le . iutd (lk)) then 

prod (lk, 3, j) =d(3, j) -stock (1k, 3, j-1) 
stock (lk, 3, j) =0 .0 
prod (1k, 2, j)=d(2, j) -stock (1k, 2, j-1) 
stock (lk, 2, j) =0 .0 
prod (lk, 1, j) =averl-idifl 
stock (1k, 1, j) =prod (lk, 1, j) -d (1, j) 

1+stock (lk, 1, j -1) 
endif 

idif2=idif2+prod(1k, 2, j) 
idif3=idif3+prod (lk, 3, j) 
idifl=idifl+prod (lk, 1, j) 
go to 6 

7 stock (lk, 2, j) =stock (1k, 2, j-1) -d (2, j) 
prod (lk, 2, j) =0.0 

8 if (stock (lk, 3, j-1) . ge. d(3, j) ) go to 9 
iprod=averl-idifl+aver3-idif3 
if (iprod. gt . iutd (lk)) go to 55 

if ((aver3-idif3) . ge. iutd(lk) )then 
prod (1k, 3, j)=d(3, j) -stock (1k, 3, j-1) 
stock (lk, 3, j) =prod (lk, 3, j) -d (3, j) 

1+stock (1k, 3, j-1) 
else 

prod (lk, 3, j) =aver3-idif3 
stock (lk, 3, j) =prod (lk, 3, j) -d (3, j) 

1+stock (1k, 3, j-1) 
endif 
idif3=idif3+prod (1k, 3, j) 
go to 58 

9 stock (lk, 3, j) =stock (lk, 3, j -1) -d (3, j) 
prod (lk, 3, j) =0 .0 10 if ((averl-idifl) . ge. iutd (lk)) then 
prod (lk, 1, j) =iutd (lk) 
stock (lk, 1, j) =prod (lk, 1, j) -d (1, j) 

1+stock (lk, 1, j-1) 
else 

prod (lk, 1, j) =averl-idifl 
stock (lk, 1, j) =prod (lk, 1, j) -d (1, j) 

1+stock (lk, 1, j-1) 
endif 
idifl=idifl+prod(lk, 1, j) 
go to 6 

58 iprod=averl-idifl-prod (lk, 2, j) -prod (lk, 3, j) 
if (iprod . ge . iutd (lk)) then 

prod (lk, 1, j) =iutd (lk) -prod (lk, 2, j) - 
lprod (lk, 3, j) 

stock (lk, 1, j) =prod (lk, 1, j) -d (1, j) 
1+stock (lk, 1, j-1) 

else 
prod (lk, 1, j) =averl-idif 1 
stock (1k, 1, j) =prod (1k, 1, j) -d (1, j) 

1+stock (lk, 1, j-1) 

endif 
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idifl=idifl+prod (lk, 1, j) 
go to 6 

56 stock (lk, 3, j) =stock (lk, 3, j-1) -d(3, j) 
prod (lk, 3, j) =0 .0 iprod=averl-idifl+aver2-idif2 
iprodl=averl-idifl+d (2, j) -stock (lk, 2, j-1 ) 
if (iprod . gt . iutd (lk) . and . iprodl 

. gt 
l. iutd (lk)) then 

prod (lk, 2, j) =d (2, j) -stock (lk, 2, j-1) 
stock (lk, 2, j) =0.0 
prod (lk, 1, j) =iutd (lk) -prod (lk, 2, j) 
stock (1k, 1, j) =prod (lk, 1, j) -d (1, j) 

1+stock (lk, 1, j-1) 
elseif (iprod. le . iutd (lk)) then 

prod (1k, 2, j) =aver2-idif2 
stock (lk, 2, j) =prod (lk, 2, j) -d (2, j) 

1+stock (lk, 2, j-1) 
prod (lk, 1, j) =avert-idif1 
stock (lk, 1, j) =prod (lk, 1, j) -d (1, j) 

1+stock (lk, 1, j -1) 
elseif (iprodl . le . iutd (lk)) then 

prod (lk, 2, j) =d (2, j) -stock (lk, 2, j-1) 
stock (lk, 2, j) =0 .0 
prod (lk, 1, j) =avert-idif1 
stock (1k, 1, j) =prod (lk, 1, j) -d (1, j) 

1+stock (lk, 1, j-1) 
endif 
idif2=idif2+prod (lk, 2, j) 
idifl=idifl+prod(lk, 1, j) 
go to 6 

13 stock (lk, 1, j) =stock (lk, 1, j-1) -d (1, j) 
prod (lk, 1, j) =0 .0 
if (stock (lk, 2, j-1) . ge. d(2, j) ) go to 16 

if (stock (lk, 3, j-1) . ge. d(3, j) ) go to 14 
iprod=aver2-idif2+aver3-idif3 
if (iprod. gt . iutd (lk)) go to 50 

if( (aver3-idif3) . ge. iutd (lk)) then 
prod (lk, 3, j) =d (3, j) -stock (1k, 3, j-1) 

stock (lk, 3, j) =stock (lk, 3, j -1) 
1+prod(1k, 3, j) -d(3, j) 

else 
prod (lk, 3, j) =aver3-idit3 
stock (lk, 3, j) =prod (lk, 3, j) -d (3, j) 

1+stock (1k, 3, j-1) 
endif 
idif3=idif3+prod (lk, 3, j) 

go to 15 
14 stock (lk, 3, j) =stock (lk, 3, j -1) -d (3, j) 

prod (lk, 3, j) =0.0 
15 if ((aver2-idif2) . ge . 

iutd (lk)) then 
prod (lk, 2, j) =iutd (lk) -prod (lk, 3, j) 

stock (lk, 2, j) =prod (lk, 2, j) -d (2, j) 
l+stock (1k, 2, j-1) 

else 
prod (lk, 2, j) =aver2-idif2 
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stock (lk, 2, j) =prod (lk, 2, j) -d (2, j) 
1+stock (lk, 2, j-1) 

endif 
idif2=idif2+prod (lk, 2, j) 
go to 6 

16 stock (lk, 2, j) =stock (lk, 2, j-1) -d(2,. j) 
prod (1k, 2, j)=0.0 
if (stock (lk, 3, j-1) 

. ge. d(3, j) ) go to 17 
if( (aver3-idif3) 

. ge. iutd (lk)) then 
prod (1k, 3, j) =iutd (1k) 
stock (lk, 3, j) =prod (lk, 3, j) -d (3, j) 

1+stock (1k, 3, j-1) 
else 

prod (lk, 3, j) =aver3-idif3 
stock (1k, 3, j) =prod (lk, 3, j) -d (3, j) 

1+stock (1k, 3, j-1) 
endif 
idif3=idif3+prod(lk, 3, j) 
go to 6 

50 prod (lk, 3, j) =d (3, j) -stock (lk, 3, j-1) 
stock (1k, 3, j) =prod (lk, 3, j) -d (3, j) 

1+stock (lk, 3, j-1) 
idif3=idif3+prod (lk, 3, j) 
if ((aver2-idif2+prod (lk, 3, j) 

1) . ge. iutd (lk)) then 
prod (1k, 2, j) =iutd (1k) -prod (1k, 3, j) 
stock (lk, 2, j) =prod (lk, 2, j) -d (2, j) 

1+stock (1k, 2, j -1) 
else 

prod (lk, 2, j) =aver2-idif2 
stock (lk, 2, j) =prod (lk, 2, j) -d (2, j) 

1+stock (1k, 2, j-1) 
endif 
idif2=prod (lk, 2, j) +idif2 
go to 6 

52 prod (lk, 2, j) =iutd (lk) -d (3, j) 
stock (lk, 2, j) =prod (lk, 2, j) -d (2, j) 

1+stock (lk, 2, j-1) 
idif2=idif2+prod (lk, 2, j) 
go to 6 

55 prod (lk, 3, j) =d (3, j) -stock (lk, 3, j-1) 
stock (lk, 3, j) =prod (lk, 3, j) -d (3, j) 

1+stock (lk, 3, j -1) 
idif3=idif3+prod (lk, 3, j) 
iprod=averl-idifl+prod (lk, 2, j) +prod (lk, 3, j) 
if (iprod. gt. iutd (lk) ) then 

prod (lk, 1, j) =iutd (lk) -prod (lk, 3, j) - 
lprod (lk, 2, j) 

stock (lk, 1, j) =prod (lk, 1, j) -d (1, j) 
1+stock (lk, 1, j-1) 

else 
prod (lk, 1, j) =averl-idifl 
stock (1k, 1, j) =prod (lk, 1, j) -d (1, j) 

l+stock (1k, 1, j-1) 
endif 
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idif 1=prod (1k, 1, j) +idif 1 
go to 6 

17 stock (1k, 3, j) =stock (lk, 3, j-1) -d (3, j) 
prod (1k, 3, j) =0.0 

6 continue 
return 
end 

c 
C 

c START OF SUBROUTINE ANAL2 
c FUNCTIONS: TO CALCULATE THE PRODUCTION AND STOCKS 
c FOR FIVE-END ITEMS PROBLEM FOR BOTTLENECK(S) 

c 
c 

subroutine anal2 (kbt, iutd, d, prod, stock, aver 
1, blkstart, blkend, dem, 1k, k, namel ) 

integer blkstart, blkend 
dimension iutd (25) ,d (5,96) , prod (25,5,96) 

1, stock (25,5,96) , aver (5,3) , dem (5,96) 
do 11 j=blkstart, blkend 

sum=0.0 
dem (l , j) =0 .0 dem (4 , j) =0 .0 do 13 i=1,3 

sum=sum+d (i, j) 
13 continue 

dem (1, j) =sum+dem (1, j) 
sum=0 
do 14 i=4,5 

sum=sum+d (i ,j) 
14 continue 
11 dem (4, j) =sum+dem (4 , j) 

idifl=0 
idif2=0 
averl=aver (1,1) +aver (2,1) +aver (3,1) 

aver2=aver(4,1)+aver(5,1) 
if(blkstart. eq. 1. or. namel. ne. 'roll')then 

stock (1k, 1, blkstart-1) =0.0 
stock (1k, 4, blkstart-1) =0 .0 

endif 
idifl=idifl+stock (lk, l, blkstart-1) 
idif2=idif2+stock (lk, 4, blkstart-1) 
do 6 j=blkstart, blkend 

if(stock(lk, 1, j-1). ge. dem(l, j)) go to 20 
if (stock (lk, 4, j-1) . ge. dem (4, j)) go to 21 

iprod=averl+aver2 
if ((iprod-idifl-idif2) . gt . iutd (lk)) then 

prod (lk, 4, j) =dem (4, j) -stock (lk, 4, j-1) 

stock (lk, 4, j) =0 
prod (lk, 1, j) =iutd (lk) -prod (lk, 4, j) 

stock (lk, 1, j) =prod (lk, 1, j) -dem (1, j) 

1+stock (lk, 1, j -1) 
else 

prod (lk, 4, j) =aver2-idif2 
stock (1k, 4, j) =prod (lk, 4, j) -dem (4 , j) 
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1+stock (lk, 4, j -1) 
prod (lk, 1, j) =averl-idif 1 
stock (1k, 1, j) =prod (1k, 1, j) -dem (1, j) 

1+stock (lk, 1, j-1) 
endif 

idifl=idifl+prod(lk, 1, j) 
idif2=idif2+prod (lk, 4, j) 
go to 6 

21 stock (1k, 4, j) =stock (lk, 4, j-1) -dem (4, j) 
prod (lk, 4, j) =0 
if( (averl-idifl) 

. gt . iutd (lk)) then 
prod (lk, 1, j) =iutd (lk) 
stock (lk, 1, j) =prod (lk, 1, j) -dem (1, j) 

1+stock (lk, 1, j-1) 
else 

prod (lk, 1, j) =averl-idif1 
stock (lk, 1, j) =prod (lk, 1, j) -dem (1, j) 

1+stock (lk, 1, j-1) 
endif 
idif 1=idif l+prod (lk, 1, j) 
go to 6 

20 stock (lk, 1, j) =stock (lk, 1, j-1) -dem (l, j) 
prod (lk, 1, j) =0 
if (stock (lk, 4, j-1) . ge. dem(4, j) ) go to 35 

if ((aver2-idif2) . gt . iutd (lk)) then 
prod (lk, 4, j) =iutd (lk) 
stock (lk, 4, j) =prod (lk, 4, j) -dem (4, j) 

1+stock (lk, 4, j-1) 
else 

prod (lk, 4, j) =aver2-idif2 
stock (lk, 4, j) =prod (lk, 4, j) -dem (4 , j) 

1+stock (1k, 4, j-1) 
endif 
idif2=idif2+prod (lk, 4, j) 
go to 6 

35 stock (1k, 4, j) =stock (lk, 4, j -1) -dem (4 , j) 

prod (lk, 4, j) =0 
6 continue 

if (kbt. gt . 1) goto 8 
do 37 j=1,2 

if (j. eq. 2)then 
j1=4 
j2=5 

else 
jl=j 
j2=j+2 

endif 
sum=0.0 
sumt=0.0 
sumtl=0.0 
suml=0.0 
do 36 i=jl, j2 

sum=sum+aver (i, 2) 
sumt=sumt+aver (i, 1) 

36 continue 
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aver (j 1,2) =sum 
aver (i 1,, 1) =sumt 

37 continue 
8 return 

end 
C 

C 

c START OF SUBROUTINE COST 
c FUNCTIONS : TO CALCULATE THE COST (S) FOR NON-END 
c ITEM(S) PROBLEM USING ECONOMIC ORDER QUANTITY 
c 
c 

C 

C 

C 

C 

C 

C 

10 

11 

104 
1 

3 

subroutine cost (kbt, k, prod, stock, aver, d, hi, cs 
1, ich, ibottle, ibp, sumc, t, icho, blkstart, blkend 
2, blksize, sumh, suml, sumn, sums, dem, c, h, dema, lk, stockl 
3, stock2, stock3, namel ) 

integer blkstart, blkend 
dimension prod (25,5,96) , stock (25,5,96) , aver (5,3) 

1, hi(25), cs(25), itl(96), d(5,96), ibp(25), sump(25) 
2, suml(25), sump(25), Sums (25), dem (5,96), c(25), h(25) 
3, dema (5,96) , cap (25) , stockt (25,5,96) , stockt (25,5,96) 
4, iutd (25) , stock3 (25,5,96) 

NOW STARTING THE CALCULATION OF HOLDING AND SETUP 
COST (S) FOR FIVE-END ITEM PROBLEMS. 

if(kbt. gt. 1. or. icho. lt. 5. or. k. gt. 3)goto 1 
do 104 n=1,21,5 

sum=0.0 
suml=0.0 
do 10 i=n, n+2 

sum=cs (i) +sum 
suml=hi (i) +suml 

continue 
c(n)=sum/3.0 
h(n)=suml/3.0 
i=n+3 
sum=0.0 
suml=0.0 
do 11 j=i, i+1 

sum=sum+cs (j ) 
suml=hi (j) +suml 

continue 
c(i)=sum/2.0 

h(i) =suml /2.0 
t=blkend 
jflag=0 
if (i cho . ne . 5) go to 6 
do 5 n=1,21,5 

do 3 i=n, n+2 
if(ibp(kbt) . ne. i) 

ibp (kbt) =n 
continue 

goto 3 
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5 
c 
c 
c 

C 

C 

6 

C 

C 

C 
C 

C 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

continue 

NOW CALLING THE COST SUBROUTINE FOR THE 
BOTTLENECK (S) ITEMS FOR ONE-END ITEM PROBLEM(S) 

if (i cho . eq .l . and . ibp (kbt) . eq . k) then 
call bottle (kbt, k, prod, hi, cs, ibp, sumc, t, icho 

1, blkstart, blkend, sump, c, h, lk, namel ) 
jflag=l 
kbt=kbt+1 

elseif 

NOW CALLING THE COST SUBROUTINE FOR THE 
BOTTLENECK (S) ITEMS FOR THREE-END ITEM PROBLEM(S) 

1(icho. eq. 3. and. ibp(kbt). eq. k. or. icho. eq. 3. and. 
2ibp(kbt)+1. eq. k. or. ibp(kbt)+2. eq. k. and. icho. 
3eq. 3)then 

call bottle (kbt, k, prod, hi, cs, ibp, sumc, t, icho 
1, blkstart, blkend, sumh, c, h, lk, namel ) 

jflag=l 
if (ich. eq. 3) kbt=kbt+l 

elseif 

NOW CALLING THE COST SUBROUTINE FOR THE 
BOTTLENECK (S) ITEMS FOR FIVE-END ITEM PROBLEM(S). 

1 (icho. eq. 5. and. ibp(kbt) . eq. k. or. ibp(kbt) . eq. k-3. 
2and. icho. eq. 5)then 

call bottle (kbt, k, prod, hi, cs, ibp, sumc, t, icho 
1, blkstart, blkend, sumh, c, h, lk, namel ) 

NOW STARTING THE DEMAND CALCULATION FOR FIVE-END 
ITEM PROBLEMS. 

if (ich. eq. 4) kbt=kbt+1 
jflag=l 

endif 
if (jflag. eq. 1) go to 19 

do 91 j=blkstart, blkend 
sum=0.0 
dema (1, j) =0 .0 
dema(4, j)=0.0 
do 92 i=1,3 

sum=sum+d (i ,j) 
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92 continue 
dema (1, j) =sum+dema (1, j) 
sum=0.0 
do 93 i=4,5 

sum=sum+d (i, j) 
93 continue 

dema (4, j) =sum+dema (4, j) 
91 continue 

if (icho . eq. 5) then 
eoq=int (sqrt (2 . 0*aver (ich, 2) *c (k) /h (k) ) +0.5) 

else 
eoq=int (sgrt (2 . 0*aver (ich, 2) *cs (k) /hi (k)) +0 . 5) 

endif 
intvl=aver (ich, 1) /eoq+0.999 
ord=int (aver (ich, 1) / intvl ) 

C 

C 

c ALL DEMANDS ARE PRODUCED IN PERIOD 1 TO CALCULATE 
c THE COST2 

c 
c 

idifl=0 
ico=0 
averl=aver (ich, 1) 
if(icho. eq. 5. and. blkstart. eq. 1)then 

stockl (1k, ich, blkstart-1) =0.0 
elseif(icho. ne. 5. and. blkstart. eq. 1)then 

stocks (k, ich, blkstart-1) =0 .0 
elseif(icho. eq. 5. and. blkstart. gt. 1)then 

idifl=idifl+stockl (lk, ich, blkstart-1) 
else 

idif 1=idif l+stockl (k, ich, blkstart-1) 
c print*, ' stockl (' , k, ich, blkstart- 
c 1, ') =' , stockl (k, ich, blkstart-1) 

endif 
do 80 j=blkstart, blkend 

if (icho. eq. 5) then 
if (stockl (lk, ich, j-1) . ge. dema (ich, j)) go to 81 

ico=ico+1 
itl (ico) =j 
if ((averl-idifl) . lt. aver (ich, 1)) go to 400 

stockl (lk, ich, j) =aver (ich, 1) +stockl (lk 
1, ich, j-1) -dema (ich, j) 

idifl=averl-stockl (lk, ich, j-1) +idifl 
else 
if (stockl (k, ich, j-1) . ge. d (ich, j)) go to 81 

ico=ico+1 
itl (ico) =j 
if ((averl-idifl) . lt. aver (ich, 1)) go to 400 

stockl (k, ich, j) =aver (ich, 1) +stockl (k 
1, ich, j-1) -d(ich, j) 

idifl=averl-stockl (k, ich, j-1) +idif1 
endif 
go to 80 

400 if (icho. eq. 5)then 
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idifl=averl-idif1 
stockl (lk, ich, j) =idifl-dema (ich, j) 

1+stockl (1k, ich, j-1) 
else 

idifl=averl-idifl 
stocks (k, ich, j) =idifl-d (ich, j) 

1+stockl (k, ich, j-1) 
endif 
go to 80 

81 if (icho . eq . 5) then 
stockl (lk, ich, j) =stockl (lk, ich, j -1) - ldema (ich, j) 

else 
stockl (k, ich, j) =stockl (k, ich, j-1) - ld (ich, j) 

endif 
80 continue 

sum=0.0 
do 83 i=1, ico 

sum=sum+idifl* (t-itl (i) +1) 
83 continue 

if (icho . eq . 5) then 
cost2=c (k) *ico+h (k) *sum 

else 
cost2=cs (k) *ico+hi (k) *sum 

endif 
if (aver (ich, 1) . lt. eoq) go to 90 

idifl=0 
averl=aver (ich, 1) 
ico=0 
if(icho. eq. 5. and. blkstart. eq. 1)then 

stock2 (lk, ich, blkstart-1) =0 .0 
elseif(icho. ne. 5. and. blkstart. eq. 1)then 

stock2 (k, ich, blkstart-1) =0 .0 
elseif(icho. eq. 5. and. blkstart. gt. 1)then 

idifl=idifl+stock2 (lk, ich, blkstart-1) 
else 

idifl=idifl+stock2 (k, ich, blkstart-1) 
endif 
do 40 j=blkstart, blkend 

if(icho. eq. 5)then 
if (stock2 (lk, ich, j-1) . ge. dema (ich, j) ) 

lgo to 20 
else 

if (stock2 (k, ich, j-1) . ge. d(ich, j)) go to 20 
endif 
ico=ico+1 
itl (ico) =j 
if (ico. gt. intvl-1)go to 21 

if ((averl-idifl) . lt. eoq) go to 21 
if (icho . eq . 5) then 

stock2 (lk, ich, j) =stock2 (lk, ich, j -1) +eoq- 
l dema (ich, j) 

else 
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ld(ich, j) 
stock2 (k, ich, j) =stock2 (k, ich, j -1) +eoq- 

endi f 
idifl=idifl+eoq 
go to 40 

21 ordl=aver (ich, 1) -idifl 
if (icho. eq. 5) then 

stock2 (lk, ich, j) =stock2 (lk, ich, j -1) +ordl - 
l dema (i ch, j) 

else 
stock2 (k, ich, j) =stock2 (k, ich, j -1) +ordl- 

ld (ich, j) 
endif 
idifl=idifl+ordl 
go to 40 

20 if(icho. eq. 5)then 
stock2 (1k, ich, j) =stock2 (1k, ich, j -1) - 

ldema (ich, j) 
else 

stock2 (k, ich, j) =stock2 (k, ich, j -1) -d (ich, j) 
endif 

40 continue 
sum=0.0 
if (ico. eq. 1) go to 24 

do 23 j=l, ico-1 
sum=eoq* (t-itl (j) +1) +sum 

23 continue 
sum=sum+ordl* (t-itl (ico) +1) 

c 
c 
c EOQ IS USED TO FIND THE COST3 
c 
c 

if (icho . eq. 5) then 
costa=c (k) *ico+h (k) *sum 

else 
cost3=cs (k) *ico+hi (k) *sum 

endif 
go to 25 

24 sum=0.0 
do 50 j=l, ico 

sum=eoq* (t-itl (j) +1) +sum 
50 continue 

if (icho . eq. 5) then 
cost3=c (k) *ico+h (k) *sum 

else 
costa=cs (k) *ico+hi (k) *sum 

endif 
25 ord=int(ord) 

npl=aver (ich, 1) -intvl*ord 
np0=intvl-npl 
iflag=0 
idifl=0 
averl=aver (ich, 1) 
ico=0 
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ord2=0 
if(icho. eq. 5. and. blkstart. eq. 1)then 

stock3 (lk, ich, blkstart-1) =0 .0 
elseif(icho. ne. 5. and. blkstart. eq. 1)then 

stock3 (k, ich, blkstart-1) =0.0 
elseif(icho. eq. 5. and. blkstart. gt. 1)then 

idif 1=idif l+stock3 (lk, ich, blkstart-1) 
else 

idifl=idifl+stock3 (k, ich, blkstart-1) 
endif 
do 26 j=blkstart, blkend 

if (icho. eq. 5) then 
if (stock3 (lk, ich, j-1) . ge. dema (ich, j) ) 

lgo to 27 
else 

if (stock3 (k, ich, j-1) . ge. d(ich, j)) go to 27 
endif 
ico=ico+1 
itl (ico) =j 
if(iflag. eq. 1) go to 281 

if (ico. le. np0) go to 28 
iflag=1 

281 if ((averl-idifl) . le . ord) go to 258 
ordl=ord+1 
if (icho . eq . 5) then 

stock3 (lk, ich, j) =ordl+stock3 (lk, ich, j -1) - 
ldema (ich, j) 

else 
stock3 (k, ich, j) =ordl+stock3 (k, ich, j-1) - 

ld (ich, j) 
endif 
idifl=idifl+ordl 
go to 26 

28 if ((averl-idifl) . le. ord) go to 258 
if (icho. eq. 5)then 

stock3 (lk, ich, j) =ord+stock3 (lk, ich, j -1) - 
idema (ich, j) 

else 
stock3 (k, ich, j) =ord+stock3 (k, ich, j-1) - 

ld (ich, j) 
endif 
idifl=idifl+ord 
go to 26 

258 ord2=averl-idifl 
if (icho. eq. 5)then 

stock3 (lk, ich, j) =ord2 -dema (ich, j) 
1+stock3 (lk, ich, j-1) 

else 
stock3 (k, ich, j) =ord2-d (ich, j) 

1+stock3 (k, ich, j-1) 
endif 
idifl=idifl+ord2 
go to 26 

27 if(icho. eq. 5)then 
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stock3 (1k, ich, j) =stock3 (1k, ich, j-1) - ldema (ich, j) 
else 

stock3 (k, ich, j) =stock3 (k, ich, j -1) -d (ich, j) 
endif 

26 continue 
sum=0.0 
if (ico. eq. 1) go to 62 

if (ord2. gt. 0) go to 67 
do 29 i=1, npO 

sum=sum+ord* (t-itl (i) +1) 
29 continue 

if (npl . lt . 1) go to 31 
do 30 i=np0+l, npl+np0 

sum=ordl* (t-itl (i) +1) +sum 
30 continue 
c 
C 

c ORDL IS USED TO FIND THE COST4 
c 
c 
31 if (icho. eq. 5) then 

cost4=c (k) * (npl+np0) +h (k) *sum 
else 

cost4=cs (k) * (npl+npO) +hi (k) *sum 
endif 
go to 173 

67 sum=0.0 
do 68 i=l, ico-1 

sum=sum+ord* (t-itl (i) +1) 
68 continue 

sum=sum+ord2* (t-itl (ico) +1) 
if (icho. eq. 5)then 

cost4=c (k) *ico+h (k) *sum 
else 

cost4=cs (k) *ico+hi (k) *sum 
endif 
go to 173 

62 lflag=O 
do 63 i=l, ico 

sum=sum+ord* (t-itl (i) +1) 
63 continue 

if(icho. eq. 5)then 
cost4=c (k) +h (k) *sum 

else 
cost4=cs (k) +hi (K) *sum 

endif 
go to 173 

90 sflag=0.0 
if (namel . ne. 'roll') go to 118 

do 95 i=blkstart, blkend 
if (i cho . eq . 5) then 

stock2 (lk, ich, i) =stockl (lk, ich, i) 

stock3 (lk, ich, i) =stockl (lk, ich, i) 

cost3=cost2 
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cost4=cost2 
else 

stock2 (k, ich, i) =stockl (k, ich, i) 
stock3 (k, ich, i) =stockl (k, ich, i) 
cost3=cost2 
cost4=cost2 

endif 
95 continue 

go to 173 
118 cost3=cost2 

cost4=cost2 
173 sumY=min(cost2, cost3, cost4) 

if (namel . ne . 'roll') go to 7 
C 

C 

c NOW STARTING THE COST CALCULATION OF THE THREE 
c PERIOD FOR FUTURE USAGE FOR ROLLING SCHEDULE 

c 
c 

if(cost3. lt. cost2. or. cost4. lt. cost2) go to 51 
if (blkstart . eq . 1) then 

sumhold=0.0 
else 

sumhold=suml (k) 
endif 
sumc=sumy+sumhold 
ico=0 
idif 1=0 
averl=aver (ich, 1) 
if(icho. eq. 5. and. blkstart. eq. 1)then 

stockl (lk, ich, blkstart-1) =0 .0 
elseif(icho. ne. 5. and. blkstart. eq. 1)then 

stockt (k, ich, blkstart-1) =0 .0 
elseif(icho. eq. 5. and. blkstart. gt. 1)then 

idif 1=idif l+stockl (lk, ich, blkstart-1) 

else 
idifl=idifl+stockl (k, ich, blkstart-1) 

endif 
do 35 j=blkstart, blkstart+2 

if (icho . eq. 5) then 
if (stockl (lk, ich, j -1) . ge . dema (ich, j) ) 

lgo to 36 
ico=ico+1 
itl (ico) =j 
if ((averl-idifl) . lt. aver (ich, 1)) go to 263 

stockl (lk, ich, j) =averl-idif 1 
1+stockl (lk, ich, j -1) -dema (ich, j) 

idifl=averl-stockl (lk, ich, j-1) +idifl 

else 
if (stockl (k, ich, j-1) . ge. d(ich, j) ) 

igo to 36 
ico=ico+1 
itl (ico) =j 
if ((averl-idifl) 

igo to 263 
. lt . aver (ich, l) ) 
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stockt (k, ich, j) =averl -idif 1 
1+stockl (k, ich, j -1) -d (ich, j) 

idifl=averl-stockl (k, ich, j-1) +idifl 
endif 
go to 35 

263 if(icho. eq. 5)then 
stockl (lk, ich, j) =averl -idif l -dema (ich, j) 

1+stockl (1k, ich, j-1) 
else 

stockl (k, ich, j) =averl-idifl-d (ich, j) 
1+stockl (k, ich, j-1) 

endif 
idifl=averl-idif1 
go to 35 

36 if (icho. eq. 5) then 
stockl (1k, ich, j) =stockl (1k, ich, j-1) - idema (ich, j) 

else 
stockl (k, ich, j) =stockl (k, ich, j -1) - ld (ich, j) 

endif 
35 continue 

if (ico. lt. l) go to 45 
do 37 i=l, ico 

if (icho. eq. 5) then 
suml (k) =c (k) *ico+h (k) * (t-itl (ico) +1) *IDIF1 
sumn (k) =suml (k) 
sums (k) =suml (k) 

else 
suml (k) =cs (k) *ico+hi (k) * (t-itl (ico) +1) *IDIF1 
sumn(k)=suml(k) 
sums (k) =suml (k) 

endif 
37 continue 

go to 7 
45 suml (k) =0 .0 

sumn (k) =0 .0 
sums(k)=0.0 
go to 7 

51 if(cost3. gt. cost4) go to 8 
if (blkstart . eq . 1) then 

sumhold=0.0 
else 

sumhold=sumn (k) 
endif 
sumc=sumy+sumhold 
ico=0 
idifl=O 
averl=aver (ich, 1) 
if(icho. eq. 5. and. blkstart. eq. 1)then 

stock2 (lk, ich, blkstart-1) =0 .0 
elseif(icho. ne. 5. and. blkstart. eq. 1)then 

stock2 (k, ich, blkstart-1) =0 .0 
elseif(icho. eq. 5. and. blkstart. gt. 1)then 
idifl=idifl+stock2(1k, ich, blkstart-1) 
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else 
idifl=idifl+stock2 (k, ich, blkstart-1) 

endif 
do 9 j=blkstart, blkstart+2 

if (icho . eq. 5) then 
if (stock2 (lk, ich, j -1) . ge . dema (ich, j) ) 

lgo to 56 
else 

if (stock2 (k, ich, j-1) . ge. d(ich, j)) go to 56 
endif 
ico=ico+l 
itl (ico) =j 
if (ico. gt. (intvl-1)) go to 55 

if ((averl-idifl) 
. lt. eoq) go to 55 

if (icho. eq. 5)then 
stock2 (1k, ich, j) =stock2 (1k, ich, j-1) +eoq- 

ldema (ich, j) 
else 

stock2 (k, ich, j) =stock2 (k, ich, j -1) +eoq- 
ld(ich, j) 

endif 
idifl=idifl+eoq 
go to 9 

55 ordl=aver (ich, 1) -IDIF1 
if(icho. eq. 5)then 

stock2 (lk, ich, j) =stock2 (lk, ich, j-1) +ordl- 
idema (ich, j) 

else 
stock2 (k, ich, j) =stock2 (k, ich, j-1) +ordl- 

ld (ich, j) 
endif 
idifl=idifl+ordl 
go to 9 

56 if (i cho . eq . 5) then 
stock2 (lk, ich, j) =stock2 (lk, ich, j -1) - 

idema (ich, j) 
else 

stock2 (k, ich, j) =stock2 (k, ich, j -1) -d (ich, j) 

endif 
9 continue 

suma=0.0 
if (ico. lt. 1) go to 47 

do 13 j=l, ico 
suma=eoq* (t-itl (j) +1) +suma 

13 continue 
if (icho . eq . 5) then 

sumn (k) =c (k) *ico+h (k) *suma 
suml (k) =sumn (k) 
sums(k)=sumn(k) 

else 
sumn (k) =cs (k) *ico+hi (k) *suma 
suml (k) =sumn (k) 
sums (k) =sumn (k) 

endif 
go to 7 
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47 suml (k) =0 .0 
sump(k)=0.0 
sums (k) =0 .0 
go to 7 

8 if(cost4. gt. cost3. or. cost4. gt. cost2) go to 7 
if (blkstart. eq. 1) then 

sumhold=0.0 
else 

sumhold=sums (k) 
endif 
sumc=sumy+sumhold 
ico=0 
ord=int (ord) 
npl=aver (ich, 1) -intvl*ord 
npO=intvl-npl 
idifl=0 
averl=aver (ich, 1) 
iflag=0 
if(icho. eq. 5. and. blkstart. eq. 1)then 

stock3 (lk, ich, blkstart-1) =0 .0 
elseif(icho. ne. 5. and. blkstart. eq. 1)then 

stock3 (k, ich, blkstart-1) =0 .0 
elseif(icho. eq. 5. and. blkstart. gt. 1)then 

idifl=idifl+stock3 (lk, ich, blkstart-1) 
else 

idifl=idifl+stock3 (k, ich, blkstart-1) 
endif 
do 133 j=blkstart, blkstart+2 

if (icho. eq. 5) then 
if (stock3 (lk, ich, j-1) . ge. dema (ich, j) ) 

lgo to 134 
else 

if (stock3 (k, ich, j-1) . ge. d(ich, j) ) 
lgo to 134 

endif 
ico=ico+1 
if (iflag. eq. l) go to 282 

if (ico . le . np0) go to 135 
iflag=1 

282 if ((averl-idifl) . lt . ord) go to 267 

ordl=ord+1 
itl (ico) =j 
if (icho . eq . 5) then 

stock3 (lk, ich, j) =ordl+stock3 (lk 
1, ich, j-1) -dema (ich, j) 

else 
stock3 (k, ich, j) =ordl+stock3 (k, ich, j- 

11)-dich, j) 
endif 
idifl=idifl+ordl 
go to 133 

135 if ((averl-idifl) . lt . ord) go to 267 
if (icho . eq . 5) then 

stock3 (lk, ich, j) =ord+stock3 (lk, ich, j- 
11) -dema (ich, j) 
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else 

ld(ich, j) 
stock3 (k, ich, j) =ord+stock3 (k, ich, j -1) - 

endi f 
itl (ico) =j 
idifl=idifl+ord 
go to 133 

267 ord2=averl-idifl 
if (icho. eq. 5)then 

stock3 (lk, ich, j) =ord2-dema (ich, j) 
1+stock3 (lk, ich, j-1) 

else 
stock3 (k, ich, j) =ord2-d (ich, j) 

1+stock3 (k, ich, j-1) 
endif 
idifl=idifl+ord2 
go to 133 

134 if(icho. eq. 5)then 
stock3 (lk, ich, j) =stock3 (lk, ich, j -1) - 

idema (ich, j) 
else 

stock3 (k, ich, j) =stock3 (k, ich, j -1) - 
ld (ich, j) 

endif 
133 continue 

sum=0.0 
if (ico. lt . 1) go to 138 

if (ico. eq. l) go to 137 
do 139 i=l, ico-1 

sum=sum+ord* (t-itl (i) +l) 
139 continue 

if (ico . le . np0) go to 141 
if (ord2. gt. 0) then 

sum=sum+ord2* (t-itl (ico) +l) 
else 

sum=sum+ordl* (t-itl (ico) +1) 
endif 
go to 142 

141 sum=sum+ord* (t-itl (ico) +1) 
142 if (icho . eq. 5) then 

sums (k) =c (k) *ico+h (k) *sum 
suml (k) =sums (k) 
sumn (k) =sums (k) 

else 
sums(k)=cs(k)*ico+hi(k)*sum 
suml (k) =sums (k) 
sump (k) =sums (k) 

endif 
go to 7 

137 if(icho. eq. 5)then 
sums (k) =c (k) *ico+h (k) *ord* (t-itl (ico) +1) 
suml (k) =sums (k) 
sump(k)=sums(k) 

else 
sums (k) =cs (k) *ico+hi (k) *ord* (t-itl (ico) +1) 
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suml (k) =sums (k) 
sumn(k)=sums (k) 

endif 
go to 7 

138 suml (k) =0 .0 
sumn (k) =0 .0 
sums(k)=0.0 

7 if (namel . ne. 'roll') go to 106 
do 111 i=blkstart, blkstart+2 

if(cost3. lt. cost2. or. cost4.1t. cost2)go to 48 
if (icho . eq . 5) then 

stock2 (lk, ich, i) =stockl (lk, ich, i) 
stock3 (lk, ich, i) =stockl (lk, ich, i) 

else 
stock2 (k, ich, i) =stockl (k, ich, i) 
stock3 (k, ich, i) =stockl (k, ich, i) 

endif 
go to 111 

48 if (costa . gt . cost4 . or . cost3 . gt . cost2) go to 49 
if (icho . eq . 5) then 

stockl (lk, ich, i) =stock2 (lk, ich, i) 
stock3 (lk, ich, i) =stock2 (lk, ich, i) 

else 
stockl (k, ich, i) =stock2 (k, ich, i) 
stock3 (k, ich, i) =stockt (k, ich, i) 

endif 
go to 111 

49 if(cost4. gt. cost3. or. cost4. gt. cost2)go to 111 
if (icho. eq. 5)then 

stockl (lk, ich, i) =stock3 (lk, ich, i) 
stock2 (lk, ich, i) =stock3 (lk, ich, i) 

else 
stockl (k, ich, i) =stock3 (k, ich, i) 
stock2 (k, ich, i) =stock3 (k, ich, i) 

endif 
111 continue 

go to 77 
106 yflag=0.0 

do 107 i=blkstart, blkstart+2 
if (i cho . eq . 5) then 

stockt (lk, ich, i) =0 .0 
stock2 (lk, ich, i) =0 .0 
stock3 (lk, ich, i) =0 .0 

else 
stockl (k, ich, i) =O. 0 
stockt (k, ich, i) =O. 0 
stock3 (k, ich, i) =0 .0 

endif 
107 continue 

suml (k) =0 .0 
sumn(k)=0.0 
sums (k) =0 .0 
sumc=sumy 

77 write (9,101) k, cost2, cost3, cost4, sumy, suml (k) 
1, sumn (k) , sums (k) 
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101 format (i4,8f8.1) 
19 return 

end 
c 
c 
c START OF SUBROUTINE COSTS 
c FUNCTIONS: TO CALCULATE THE COSTS FOR NON- 
c BOTTLENECK ITEM(S) USING SILVER MEAL TECNIQUE 
c PARAMETERS : KBT, K, PROD, STOCK, AVER, D, HI, CS, IBOTTLE, 
c IBP, SUMC, T, ICHO, BLKSTART, BLKEND, BLKSIZE, SUMH, SUML, 
c SUMN, SUMS, DEM, C, H, DEMA, LK, STOCKI, STOCK2, STOCK3, 
c SCOST, PRODI, STOCK4, PROD2, SUMSIL 
c 
c 

subroutine costs (kbt, k, prod, stock, aver, d, hi, cs 
1, ich, ibottle, ibp, sumc, t, icho, blkstart, blkend 
2, blksize, sumh, dem, c, h, dema, lk, stockl, stock2, stock3, 
3scost, prodl, stock4, prod2, sumsil, namel) 

integer blkstart, blkend 
dimension prod (25,5,96) , stock (25,5,96) , aver (5,3) 

1, hi (25) , cs (25) , itl (96) ,d (5,96) , ibp (25) , sumh (25) 
2, dem (5,96) ,c (25) ,h (25) , dema (5,96) , stockl (25,5,96) 
3, stock2 (25,5,96) , stock3 (25,5,96) , scost (25,5,96) 
4, prodl (25,5,96) , stock4 (25,5,96) , prod2 (25,5,96) 
5, sumsil (25) 

if(kbt. gt. 1. or. icho. lt. 5. or. k. gt. 3)go to45 
do 42 n=1,21,5 

sum=0.0 
suml=0.0 
do 43 i=n, n+2 

sum=c s (i) +sum 
suml=hi (i) +suml 

43 continue 
c(n)=sum/3.0 
h(n) =suml/3 .0 
i=n+3 
sum=0.0 
suml=0.0 
do 61 j=i, i+l 

sum=sum+cs (j ) 
suml=suml+hi (j ) 

61 continue 
c(i)=sum/2.0 
h(i) =suml /2 .0 

42 continue 
45 t=blkend 

j flag=0 
if (i cho . ne . 5) go to 6 

do 5 n=1,21,5 
do 3 i=n, n+2 

if (ibp(kbt) . ne. i)go to 3 
ibp (kbt) =n 

3 continue 
5 continue 
c 
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C 

c NOW CALLING THE SUBROUTINE BOTTLE FOR THE 
c BOTTLENECK(S) FOR ONE-END ITEM PROBLEM FOR 
c BOTTLENECK (S) ITEM(S) 
c 
C 

6if (i cho . eq .1. and . ibp (kbt) . eq . k) then 
call bottle (kbt, k, prod, hi, cs, ibp, sumc, t, icho 

1, blkstart, blkend, sumh, c, h, lk, namel ) 
jflag=l 
kbt=kbt+1 

elseif 
C 

C 

c NOW CALLING THE SUBROUTINE BOTTLE FOR THE 
c BOTTLENECK(S) FOR THREE-END ITEM PROBLEM(S) FOR 
c BOTTLENECK (S) ITEM(S) 

c 
c 

1(icho. eq. 3. and. ibp(kbt). eq. k. or. icho. eq. 3. 
2 and . ibp (kbt) +1. eq .k. or . ibp (kbt) +2 . eq. k. and . icho 
3. eq. 3)then 

call bottle (kbt, k, prod, hi, cs, ibp, sumc, t, icho 
1, blkstart, blkend, sumh, c, h, lk, namel ) 

jflag=l 
if (ich. eq. 3) kbt=kbt+l 

elseif 
C 

C 

c NOW CALLING THE SUBROUTINE BOTTLE FOR THE 

c BOTTLENECK (S) FOR FIVE-END ITEM PROBLEM (S) FOR 

c BOTTLENECK (S) ITEM(S) 

c 
c 

1 (icho . eq .5. and . ibp (kbt) . eq .k. or . ibp (kbt ) 
2. eq. k-3. and. icho. eq. 5)then 

call bottle(kbt, k, prod, hi, cs, ibp, sumc, t, icho 
1, blkstart, blkend, sumh, c, h, lk, namel) 

if (ich. eq. 4) kbt=kbt+1 
jflag=l 

endif 
C 

C 

c NOW STARTING THE DEMAND CALCULATION FOR FIVE-END 

c ITEM PROBLEM 
c 
c 

if (jflag. eq. 1) go to 19 
do 91 j=blkstart, blkend 

sum=0.0 
dema (1, j) =0 .0 
dema (4 , j) =0 .0 
do 92 i=1,3 

92 sum=sum+d (i, j) 
dema (1, j) =sum+dema (1, j) 
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sum=0.0 
do 93 i=4,5 

93 sum=sum+d (i, j) 
91 dema (4 , j) =sum+dema (4 , j) 

ik=O 
is=1 
sum=0.0 
it=0 
do 20 j=blkstart, blkend 

if (icho. eq. 5) then 
if (stock4 (lk, ich, j-1) 

. ge. dema (ich, j) ) 
igo to 24 

it=it+l 
is=ic+1 
sum=sum+ (ic-1) *h (k) *dema (ich, j) 
scost (1k, ich, it) =sum/ic 
if (scost (1k, ich, it) . gt. scost (lk, ich, it-1) ) 

igo to 30 
prodl (1k, ich, j) =prodl (1k, ich, j -1) 

1+dema (ich, j) 
prod2 (1k, ich, blkstart+ik) =prodl (1k, ich 

1, j) 
else 

if (stock4 (k, ich, j-1) . ge. d(ich, j) ) 
lgo to 24 

it=it+1 
is=ic+1 
sum=sum+ (ic-1) *hi (k) *d (ich, j) 
scost (k, ich, it) =sum/ic 
if (scost (k, ich, it) . gt . scost (k, ich 

1, it-i)) go to 30 
prodl (k, ich, j) =prodl (k, ich, j-i) 

1+d (ich, j) 
prod2 (k, ich, blkstart+ik) =prodl (k 

1, ich, j) 
endif 
go to 20 

24 if (i cho . eq . 5) then 
stock4 (lk, ich, j) =stock4 (lk, ich, j -1) - 

idema (ich, j) 
it=it+1 
ik=ik+1 
is=0 
sum=c (k) 
scost (lk, ich, it) =sum 

else 
stock4 (k, ich, j) =stock4 (k, ich, j -1) -d (ich, j) 
it=it+1 
ik=ik+1 
is=0 
sum=cs (k) 
scost (k, ich, it) =sum 

endif 
20 continue 
30 it=blkstart+ik 
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is=1 
if (j . gt . blkend) go to 51 

if (j . ge . blkend) ik=0 
if (i cho . eq . 5) then 

prodl (lk, ich, j) =dema (ich, j) 
prod2 (lk, ich, j) =prodl (lk, ich, j) 
sum=c(k) 
scost (1k, ich, it) =sum 

else 
prodl (k, ich, j) =d (ich, j) 
prod2 (k, ich, j) =prodl (k, ich, j) 
sum=cs (k) 
scost (k, ich, it) =sum 

endif 
1=0 
n=j+l 
do 25 m=n, blkend 

if(icho. eq. 5)then 
if (stock4 (lk, ich, m-1) . ge . dema (ich, m) ) 

igo to 27 
it=it+1 
is=ic+1 
sum=sum+ (ic-1) *h (k) *dema (ich, m) 
scost (lk, ich, it) =sum/ is 

if (scost (lk, ich, it) . gt . scost (lk 
1, ich, it-1) )go to 50 

1=1+1 
prodl (lk, ich, m-1) =prodl (lk, ich 

1, m-1) +dema (ich, m) 
prod2 (lk, ich, m-1) =prodl (lk, ich 

1, m-1) 
else 

if (stock4 (k, ich, m-1) . ge. d(ich 
1, m)) goto 27 

it=it+1 
is=ic+1 
sum=sum+ (ic-1) *hi (k) *d (ich, m) 
scost (k, ich, it) =sum/ic 

if (scost (k, ich, it) . gt. 
iscost (k, ich, it-1)) goto 50 

1=1+1 
prodl (k, ich, m-1) =prodl (k 

1, ich, m-1) +d (ich, m) 
prod2 (k, ich, m-1) =prodl (k 

1, ich, m-1) 
endif 
go to 25 

27 if (m. gt. blkend) go to 51 
if (icho. eq. 5)then 

stock4 (lk, ich, m) =stock4 (lk, i ch, m-1) 
1-dema (ich, m) 

1=1+1 
it=it+1 
is=1 
sum=c(k) 
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scost (1k, ich, m) =sum 
else 

ld(ich, m) 
stock4 (k, ich, m) =stock4 (k, ich, m-1) - 

1=1+1 
it=it+l 
is=1 
sum=cs (k) 
scost (k, ich, m) =sum 

endif 
go to 25 

50 if (m. gt . blkend) go to 51 
1=0 
it=blkstart+ik 
is=1 
if (icho . eq. 5) then 

prodl (lk, ich, m) =dema (ich, m) 
prod2 (1k, ich, m) =prodl (1k, ich, m) 
sum=c (k) 
scost (lk, ich, it) =sum 

else 
prodl (k, ich, m) =d (ich, m) 
prod2 (k, ich, m) =prodl (k, ich, m) 
sum=cs (k) 
scost (k, ich, it) =sum 

endif 
25 continue 
51 t=blkend 

sum=0.0 
ico=0 
ssil=0.0 
do 46 j=blkstart, blkend 

if (icho. eq. 5) go to 47 
if (prod2 (k, ich, j) . gt .0.0) then 

ico=ico+1 
sum=sum+hi (k) * (t-j+l) *prod2 (k, ich, j) 
stock4 (k, ich, j) =prod2 (k, ich, j) +stock4 (k 

1, ich, j-1) -d (ich, j) 
else 

stock4 (k, ich, j) =prod2 (k, ich, j) +stock4 (k 
1, ich, j-1) -d (ich, j) 

52 endif 
go to 46 

47 if (prod2 (1k, ich, j) . gt .0.0) then 
sum=sum+h (k) * (t-j+l) *prod2 (lk, ich, j) 
ico=ico+1 
stock4 (lk, ich, j) =prod2 (lk, ich, j) +stock4 (lk 

1, ich, j) -dema (ich, j) 
else 

stock4 (lk, ich, j) =prod2 (lk, ich, j) +stock4 (lk 
1, ich, j-1) -dema (ich, j) 

53 endif 
46 continue 

if (icho. eq. 5) then 
sumy=c (k) *ico+sum 
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else 
sumy=cs (k) *ico+sum 

endif 
if (namel 

. ne . 'roll') then 
sumsil (k) =0 .0 
sumc=sumy 
go to 44 

endif 
if (blkstart. eq. 1) then 

sumhold=0.0 
else 

sumhold=sumsil (k) 
endif 
sumc=sumy+sumhold 
icol=O 
do 31 j=blkstart, blkstart+2 

if (icho. eq. 5) then 
if (prod2 (1k, ich, j) 

. le. 0.0) go to 32 
icol=icol+l 
ssil=ssil+h (k) * (t-j+l) *prod2 (lk, ich, 

else 
if (prod2 (k, ich, j) . le. 0.0) go to 32 

icol=icol+l 
ssil=ssil+hi (k) * (t-j+l) *prod2 (k, ich, 

32 endif 
31 continue 

if(icho. eq. 5)then 
sumsil (k) =icol*c (k) +ssil 

else 
sumsil (k) =icol*cs (k) +ssil 

endif 
44 write (9,103) k, sumy, sumc, sumsil (k) 
103 format (i4,5x, 3f13 . 2) 
19 return 

end 
C 

C 

7) 

7) 

c START OF SUBROUTINE BOTTLE 
C FUNCTIONS: TO CALCULATE THE COSTS FOR BOTTLENECK 
c ITEM (S) 
c PARAMETERS : KBT, K, PROD, HI, CS, IBP, SUMC, T, ICHO, SUMH, 
c C, H, LK, PERIODS 

c 
c 

subroutine bottle (kbt, k, prod, hi, cs, ibp, sumc, t 
1, icho, blkstart, blkend, sumh, c, h, lk, namel) 

integer blkstart, blkend 
dimension prod (25,5,96) , hi (25) , cs (25) , ibp (25) 

1, sumh (25) ,c (25) ,h (25) 
ip=O 
if (icho. eq. 3) then 

ik=k/icho 
nk=k-ik*icho 
if (nk. eq. 0) nk=3 

elseif (icho. eq. l)then 
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nk=1 
else 

ik=k/icho 
nk= (k-ik*icho) 
if (nk. eq. 0) nk=4 

endif 
sum=0.0 
suma=0.0 
do 1 j=blkstart, blkend 

if (icho. eq. 5) goto 21 
if (prod (lk, nk, j) 

. gt .0.0) then 
ip=ip+1 
sum=sum+hi (k) * (t-j+l) *prod(lk, nk, j) 

endif 
go to 1 

21 if (prod (lk, nk, j) . gt .0.0) then 
ip=ip+1 
sum=sum+h (k) * (t-j+1) *prod (lk, nk, j) 

endif 
1 continue 

if (icho. eq. 5) then 
costl=sum+ip*c (k) 

else 
costl=sum+ip*cs (k) 

endif 
if (namel . ne .' roll') then 

sumh (k) =0 .0 
sumc=cost1 
go to 6 

endif 
if (blkstart . eq. l) then 

sumhold=0.0 
else 

sumhold=sumh (k) 
endif 
sumc=costl+sumhold 
ip=0 
do 20 j=blkstart, blkstart+2 

if (icho. eq. 5) go to 22 
if (prod (lk, nk, j) . gt. 0.0) then 

ip=ip+1 
suma=suma+hi (k) * (t-j+1) *prod (lk, nk, j) 

endif 
go to 20 

22 if (prod (lk, nk, j) . gt. 0.0) then 
ip=ip+1 
suma=suma+h (k) * (t-j+l) *prod (lk, nk, j) 

endif 
20 continue 

if (icho. lt . 5) then 
costa=suma+ip*cs(k) 

else 
costa=suma+ip*c (k) 

endif 
sumh (k) =costa 
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6 write (9,10) k, cost l, sumc, sumh (k) 
10 format(' position of bottleneck =', i4, f13.1 

1, f8.0, f8.0) 
return 
end 
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APPENDIX D 

NAG Subroutine Program 
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c This program is to show the uniform distribution 
c real*8 x 

integer i 
c double precision g05caf 

external g05caf 
c external g05cbf 

external g05ccf 
write (6,120) 

c call g05cbf (0 ) 
call g05ccf (0 ) 
do 20 i=1,20 

x=g05caf(92) 
write (6,121) x 

20 continue 
120 format (4 (lx/) , 31h g05caf example program 

lresults/ix) 
121 format (lx, f10.4) 

stop 
end 
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INT. J. PROD. RES., 1992, VOL. 30, NO. 4,787-798 

A heuristic for multi-level lot-sizing problems with a bottleneck 

B. TOKLUt and J. M. WILSON 

A simple heuristic is proposed for multi-level lot-sizing problems where there is a bottleneck. Previous methods to solve this problem have formulated the problem as 
an integer programming problem and solved the problem using a Lagrangian 
relaxation embedded within the branch and bound procedure. In this paper we 
suggest that items to be produced can be grouped into two types and a simple but 
efficient heuristic can be used to determine the production quantities required. A 
program was developed to compute production levels and was found to require 
only a small fraction of the computer time required by the full integer programming 
approach, and to produce solutions of reasonable quality. The heuristic is simple to 
implement. 

1. Introduction 
Lot-sizing in MRP only becomes realistic when features such as capacity 

constraints and the fact that systems are multilevel can be incorporated into the model. 
Blackburn and Millen (1982) review and add to contributions made to this area. Their 
work provides for simultaneous lot-sizing and capacity requirements planning in an 
MRP framework. However, one of the most successful attempts to tackle the multi- 
level lot-sizing problem with a bottleneck constraint has been by Billington et al. (1986). 
This paper will propose a simple heuristic approach to solve the problem modelled by 
Billington et al. (1986), and show that if the items for production are categorized into 

(a) end-items, constrained by the bottleneck, and 
(b) non-end-items, unconstrained, 

then two simple procedures can be used independently, one for each category of item, to 
determine the production levels of each item. The reason for this categorization into 
two groups will be explained in section 3. Solutions will be sub-optimal, but of adequate 
quality, and are easy to obtain. The method to be proposed requires only a fraction of 
the computation required for solution of the integer programming formulation of the 
lot-sizing problem. In addition, the heuristic is easy to implement and program when 
compared with the Lagrangian heuristic approach of Billington et al. (1986), and 
should require much less computer time and have more practical appeal in a realistic 
setting. 

In the next section the model developed by Billington et al. (1986) will be presented 
and the heuristic approach will be developed in the third section. 
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T Business School, Loughborough University of Technology, Loughborough. Leicestershire 
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0020-7543192 $3.00 ccl 1992 Taylor & Francis Ltd. 
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2. Integer programming formulation of problem 
For the lot-sizing problem a bottleneck will be defined as follows: a bottleneck is a 

work centre which converts raw materials into finished goods through the use of 
resources in the manufacturing process. Therefore a machine with limited capacity, 
highly skilled or specialized workers, and task-specific machines or tools can all be seen 
to be bottlenecks under this definition. All the resources could be classified into a 
bottleneck. Setup cost and time will be very important for all work stations, especially 
the bottleneck facility, and capacity limitations, which can result from either bottleneck 
capacity being greater than demand in the planning horizon or demand being exceeded 
by capacity from time to time. A general product structure with a bottleneck facility is 
given in Fig. 1 (from Billington et al. 1986). 

The general product structure can be split into a number of special cases: (1) 
assembly (no commonality), (2) serial (one item, multi-stage) (3) parallel (a collection of 
serial structures which has a bottleneck in one of the stages), (4) single stage multi-item. 
This paper will concentrate on the case of a parallel structure. 

As will be seen from the numbering system in Fig. 1, no item has a higher number 
than any of its predecessors. It is an a priori assumption that items in the bottleneck 
facility do not have predecessors (although this assumption can be relaxed for the 
subsequent heuristic approach). It can be seen that batching demands on product 
setups can result in capacity problems, and also affects predecessor items since the 
batches are passed through as dependent demands. Because capacity utilization vanes 
through time, costs may not be constant. 

Assumptions 
1. All lead times between stages are assumed to be zero. 
2. Demand for the multiple end items are assumed known and at constant known 

rate per year. 
3. There is no demand for the components at any intermediate stages. 
4. Back orders are not allowed. 
5. The number of units coming from bill of material required in the production of 

one unit at the immediate successor stage to the other stage is assumed to be 

equal to one. 
6. The unit production costs are assumed constant and hence are ignored. 
7. Production must occur in advance of that demand. 

f'1 

13->1 8, 

14 -> 19 

15 

-ý1 16---> 10; --ý6 3 

17 01 11, --> 7 -> 4 -4 2 

18- >'12; 

purchased intermediate end 
items items items 

Figure 1. A general product structure with a bottleneck facility (the bottleneck facility is shown 
by the dashed lined. 
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Notation 
a1 the quantity of product i needed per unit production of product j: ai j=0 for 

all i<j 
bi time needed on the bottleneck facility for the production of product i 

cap; available capacity of the work centre at time t 
cs; setup cost for product i (following the assumption made by Billington et al. 

(1986), for consistency, the possibility of `carrying over' a setup from one 
period to another is not allowed) 

d« external (independent) demand for product i during time t 
hi holding cost for product i 
I final inventory level of product i in period t 
Li lead time, which is the unavoidable time from the time the order is placed 

until it is available, for product i. This could be because of the time taken by a 
vendor to deliver a product, or could be a non-production lag 

N number of products 
Pit units of i produced in period t 
Si setup time for the work centre for product i. This takes the value zero for all 

items except those made on the work centre. This can also include processing 
time which is not related to the size of batch as in some heating operations 

T total number of periods 
Xi, production indicator; equal to 1 if Pi, >0 and zero otherwise 

In the information below, inventory is eliminated by substituting cumulative 
production minus cumulative demand, and it is derived from a model in Billington et al. 
(1986). 

Formulation 
Minimize: 

NT 

Z [hi(T-t+ 1)Pi, +csiXit] (1) 
t=1 c=1 

Subject to: 
[P1_L, 

-y ai j Pjn din - lio i=1.... , .Vt=1..... T (2) 
n=1 j=1 1 

N 

[bi Pi, +siXit] <cap, t= 1...., T (3) 
i=1 

Xir_ 
1 if P11>O 

i= 1...., N 4) 
0 otherwise 

Pit ?0 i= 1...... V t= 1..... T (5) 

This is the formulation using integer programming when there is one capacity- 
constrained work centre. 

In this formulation, constraint (2) illustrates that available production after 
subtracting the requirements is greater than or equal to external demand by 

eliminating the inventory in the planning horizon. Constraint (3) is the capacity 
constraint for the bottleneck facility, and (4) shows setup cost and time are appiicable 
only if there is production. 
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In particular, Billington et al. (1986) concentrated on the three problem types 1-end 
item, 3-end items, and 5-end items and restricted these items so that they were the only 
ones affected by the bottleneck. In the computational testing N has maximum value 25 
and T has maximum value 12, the values chosen in the work of Billington et al. (1986). 

3. Simple heuristic for solution 
The heuristic operates by first dividing production items into end-items and non- 

end-items. The reason for this is that production of each non-end item is unconstrained 
and so has neither any effect on the production of any other non-end-item nor on the 
production of the items which are constrained by the bottleneck. As demand required 
for all items is known in advance, the production decision for each non-end-item 
becomes a relatively simple one of when to produce in order to minimize the 
contribution to costs (from holding and setup costs) of each non-end-item. The fact that 
demand for end-items determines the demand for intermediate items does not 
invalidate the independence of production of each item as demand for end-items is 
known several periods in advance. The problem of determining when to produce end- 
items is more complex as these items must share the resources of the bottleneck. Thus 
for these items the production problem is a constrained problem. However, in general 
these items are in the minority. 

Define Si, as stock of product i at start of period t, then 
t-1 

Sit = 
F, Pin 

- 
din 

n=1 

3.1. Non-end-items 
For these items an EOQ approach will be used. This approach was chosen as it is 

comparatively simple to operate and in general will produce solutions of good quality. 
Where demand levels are likely to be variable, an approach such as the Silver-Meal 
(1973) heuristic may be appropriate and is the subject for future investigation. Let Q; be 

the EOQ for item i, based on setup cost cs; and holding cost h;. Then the following 

strategies are considered: 

(a) Produce Q. in period 1 and then next produce Qi in the period when stocks 
would become negative if no production were made (i. e. find the next smallest t such 
that S;, < d«). 

Let t; be the number of occasions on which item i will be produced. Then 

T 

t1= L4 /Qi+0.5 
It= 

1 

and production is made in any period n whenever Si, <d1 . 
Note that [] is the integer 

part function. 
If in any period n 

T 

Lei%7d- 
Sin 

r=n 

then set 
T 

0; = v 
t=n 
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(b) Let Z, be the quantity of item i produced in period I. The same quantity is next 
produced whenever stocks would become negative if no production were made I i. e. 
when Si,, < di,, ) 

T 

Zi = 
(, 

E d« t1 

Continue this process through all the periods. 
(c) Produce all items in period 1. 

Strategies (a), (b) and (c) are evaluated to see which leads to the smaller total 
inventory cost over the N periods and then that strategy is chosen. 

3.2. End-items 
For these items a simple heuristic was adopted which would adopt a greedy 

approach to production by having few setups, but with heavy utilization of the 
resultant production capacity. In addition, the heuristic would operate in a cyclic 
manner, moving between items or sets of items in turn to produce reasonably smooth 
production. The approach has broad similarities with the work of McLain and Trigeiro 
(1985) except that by excluding setup time and cost they handle a problem that is easier 
to solve. Bahl and Ritzman (1984) also adopt a cyclic approach but do so by examining 
permutation schedules. 

The heuristic will be described with reference to three cases. 

Case (a). 1-end-item problems 
Produce as much of end-item i as cap, will allow in period 1, i. e. set P; 1=cap1, then 

next produce i when stocks would become negative if no production were made, i. e. find 
the next smallest t for which Si, < d1,. Continue the process of producing in each period t 
which has this property. 

T 
If P;,, would exceed d;, for any period n 

T 

then set Pi,, _> dit 
t=n 

Case (b). 3-end-item problems 
A three period cycle is adopted. 

Period 1 Set P21= d 21, P31= d31 and P,, =cap1-d21 - d31. 
Period 2 Set P32 =d32, P12 =0 and P12 =rap, -d32 provided S12 > dl ,. 

Otherwise set P 12 =dl 2+d 13 - 512, P32= d 31 and 
P, 2=caP2-P12-P32. 

Period 3 Set P33=caP3 and P13=P, 3=0 provided S13>d13 and S_, 3>d_, 3. 
Otherwise set P13=d13-S13, P, 3=d, 3+d, 4-S13 and 
P33=caP3 

- 
P13 

-P23" 

Period 4 Set P14= capo provided S,, > d,, and S34 > d34. 
Period 5 Set P, 5=cap, provided S, 5>d, , and S35 > d15 - 
Period 6 Set P36 = cap6 provided S 16 > d16 and S, 6>d, 6. 
Again, if stocks of any product would become negative, produce sufficient of that 

product to satisfy demand over the next one or more periods until that product moves 
into the dominant production position. 
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Continue the process in the same cyclic manner for the remaining periods. If at 
any stage stocks of all products are sufficient for production to be zero in any period, no 
production is made in that period and the cycle for the appropriate product is delayed 
by one period. 

Note. On the sample data on which the heuristic was tried, despite this data 
incorporating some highly variable demand levels and production capacities, it was 
found that none of the `otherwise' type conditions listed above ever applied. 

Case (c). 5-end-item problems 
In order to keep the heuristic simple, more complex cases are now treated more in 

the style of case (b). The set of 5 products is simplified by considering products in just 
two sets rather than as 5 individual products. Here products { 1,2,31 are considered a 
set as are {4,5}. This division was made purely for simplicity. 

The two sets are now treated as single products and the cyclical approach of case (c), 
modified to a two-period cycle, is followed with the modification that when production 
of a product set can be larger than demand in that period, the production quantity is 
equal for each product in the set. 

Total inventory cost is now the total of individual inventory costs arising from the 
end-items and the non-end-items. 

4. Computational experience 
The integer programming formulation solved by using the software MGG (1987) 

and SCICONIC (1986), and the heuristic approach of section 3, coded in Fortran, were 
compared on sets of data obtained from Billington (1983) and also discussed in 
Billington et al. (1986). In the experimental studies three different cost structures, three 
demand streams and three capacity levels were used. The three cost structures are 
detailed in Billington (1983). Essentially, for each structure the holding costs and the 
setup costs are set to different levels such that for structure 1 the average of the holding 
costs is 0.44 and the average for the setup costs is 400. For structures 2 and 3 the 
corresponding figures are 1.00,340 and 0.64,420 for holding cost and setup cost, 
respectively. The three demand streams are generated to give low (50%, medium (75%) 
and high (95%) demand. The results of the experiments are in Tables 1-9 and 27 

problems were investigated. In each table, details of the linear programming (LP) 
solution to the integer programming (IP) formulation are given in the third column, 
details of the integer programming branch and bound approach are given in the fourth 

column, and of the heuristic solution in the right-hand column. The branching process 
by which the integer programming solutions were obtained was the standard default of 
the SCICONIC software which comprises an approach to choose subproblems which 
minimize the percentage error in the degradation of the objective function. The 
`dynamic presolve' option of SCICONIC was also used, which aids branching 

exploration by tightening bounds where possible. The IP and heuristic solutions are 
compared to the LP optimum to give some indication of the quality of the solutions as 
the LP optimum provides a lower bound to the solution of the problem. In all cases the 
IP solution is not a proven optimal solution and the branch and bound process had to 
be cut off (before optimality could be proved) once a large amount of computer time 
had elapsed and further effort appeared unproductive. Computation was stopped after 
approximately 400 branch and bound nodes had been explored. The reason for this was 
that, although a number of problems were run 5000 or more branch and bound nodes, 
it was found that no better solution was obtained after that obtained in the first 100-300 
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LP IP Heuristic 
solution solution solution 

50"/ utilization Current value 10869 15511 13072 
Iterations 158 440 - 
CPU time 1.03 56.36 1.34 
Optimality* - 0.70 0-83 

75% utilization Current value 10869 16610 13982 
Iterations 163 373 - 
CPU time 1.10 59.17 1.34 
Optimality - 0.65 0.77 

95% utilization Current value 10899 17314 14827 
Iterations 178 260 - 
CPU time 1.19 69.24 1.34 
Optimality - 0.63 0-74 

" The percentage of LP solution. 
Table 1. One-end-item problem with cost structure 1. 

LP IP Heunstic 

solution solution solution 

50% utilization Current value 30036 37085 35789 
Iterations 175 757 - 
CPU turne 1.15 52.86 3.32 
Optimality* - 0.81 0.84 

75% utilization Current value 30036 38373 37373 
Iterations 176 1019 - 
CPU time 1.40 65.04 3.32 
Optimality - 0.78 0.80 

95% utilization Current value 30031 39035 38720 
Iterations 171 572 - 
CPU time 1.20 39.68 } 322 
Optimality - 0.77 0.74 

* The percentage of LP solution. 

Table 2. One-end-item problem with cost structure 2. 
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LP IP Heuristic 
solution solution solution 

50% utilization Current value 18787 24777 23716 
Iterations 171 872 - CPU time 1.17 47.57 4.14 
Optimality* - 0-76 0.79 

75% utilization Current value 
Iterations 
CPU time 
Optimality 

18863 26770 
167 1182 

1.18 58.24 
- 0-70 

24596 

4.14 

0-77 
95% utilization Current value 19375 27684 25505 

Iterations 168 365 - 
CPU time 1.12 55.04 4.14 
Optimality - 0-70 0-76 

" The percentage of LP solution. 
Table 3. One-end-item problem with cost structure 3. 

LP IP Heuristic 
solution solution solution 

50°0 utilization Current value 73623 91291 88097 
Iterations 519 1194 - 
CPU time 6.78 180.13 5.04 
Optimality* - 0.81 0.84 

75% utilization Current value 73623 93900 87991 
Iterations 517 860 - 
CPU time 7.15 217.39 5.04 
Optimality - 0.78 0.84 

95°ö utilization Current value 73951 95611 91925 
Iterations 511 869 - 
CPU time 7.29 206.22 5.04 
Optimality - 0.77 0.80 

* The percentage of LP solution. 

Table 4. Three-end-item problem with cost structure I. 
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LP IP Heuristic 
solution solution solution 

50'/ utilization Current value 78962 98882 101095 
Iterations 507 711 - 
CPU time 6.89 143.84 6.11 
Optimality* - 0.79 0.78 

75% utilization Current value 78976 99501 101217 
Iterations 480 1196 - 
CPU time 6.83 155.70 6.11 
Optimality - 0.79 0.78 

95% utilization Current value 79772 102966 102877 
Iterations 507 1349 - 
CPU time 7.80 186.75 6.11 
Optimality - 0.77 0.78 

'The percentage of LP solution. 

Table 5. Three-end-item problem with cost structure 2. 

LP 
solution 

IP 
solution 

Heuristic 
solution 

50% utilization Current value 58424 75418 72346 
Iterations 514 1136 - 
CPU time 6.61 181.64 6.54 
Optimality' - 0-77 0.81 

75% utilization Current value 59061 72219 71670 
Iterations 487 1042 - 
CPU time 6.28 174.74 6.54 
Optimality - 0-81 0-82 

95% utilization Current value 62103 78455 71815 
Iterations 497 924 - 
CPU time 6.49 183.98 6.54 
Optimality - 0.79 0.86 

* The percentage of LP solution. 

Table 6. Three-end-item problem with cost structure 3. 
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LP IP Heuristic 
solution solution solution 

50'% utilization Current value 128948 159486 138185 
Iterations 997 1874 - 
CPU time 20.06 328.18 6.54 
Optimality* - 0.81 0.93 

75% utilization Current value 128948 163464 137706 
Iterations 932 1420 - 
CPU time 19.92 396.08 6.54 
Optimality - 0.79 0.94 

95% utilization Current value 129030 175342 137612 
Iterations 949 1805 - 
CPU time 20.61 356.86 6.54 
Optimality - 0.74 0.94 

* The percentage of LP solution. 
Table 7. Five-end-item problem with cost structure 

LP IP Heuristic 

solution solution solution 

50% utilization Current value 107807 131881 108674 
Iterations 952 1318 - 
CPU time 18.73 396.75 8.16 
Optimality* - 0.82 0.99 

75% utilization Current value 107856 135130 109484 
Iterations 943 1709 - 
CPU time 19.30 397.21 8.16 
Optimality - 0.80 0.99 

95% utilization Current value 108703 143170 112093 
Iterations 912 2098 - 
CPU time 19.29 416.76 8.16 
Optimality - 0.76 097 

The percentage of LP solution. 

Table 8. Five-end-item problem with cost structure 2. 
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LP 
solution 

IP 
solution 

Heuristic 
solution 

50% utilization Current value 95601 120514 102001 
Iterations 1001 1340 - CPU time 19.75 388.49 8.56 
Optimality* - 0.78 0-94 

75% utilization Current value 96159 122071 101352 
Iterations 970 2332 - CPU time 19.43 411.54 8.56 
Optimality - 0.79 0.95 

95% utilization Current value 97624 127091 101440 
Iterations 1000 2219 - 
CPU time 22.95 526.00 8.56 
Optimality - 0.70 0.96 

* The percentage of LP solution. 
Table 9. Five-end-item problem with cost structure 3. 

nodes, so 400 nodes was taken as a convenient stopping point. CPU times quoted are 
for the time (in seconds) taken on a Hewlett Packard 9000 to reach the given solution. A 
number of features are evident from the results quoted in the tables. 

(1) The heuristic approach is rapid, taking only a few seconds of CPU time. 
(2) In all but three cases (those in Table 5) the heuristic solutions are better than the 

IP solutions. 

For 5-end-item problems the heuristic seems to work particularly well, in the sense that 
the solutions are close to the lower bound value. However, this may only mean that the 
lower bounds are tighter for these problems. These tighter lower bounds may arise 
because more realistic values of the effect of setup costs (which are unrealistically 
reduced in the LP relaxation of the IP formulation) are likely to arise when there are 
more types of items being produced in the bottleneck and so more fractions of the true 
setup cost to add together. 

For the three cases where the heuristic does not work well it may be that rather 
more setups than necessary are being used when setup cost is above average. 

The IP solutions obtained were not optimal, but it should be noted that the work of 
Billington et al. (1986) was also unable to make comparison of its Lagrangean solutions 
with optimal solutions, except in a few restricted cases. 

It is impossible to compare precisely the heuristic approach of this paper with that 

of Billington et al. (1986) as we do not have access to their program. It was felt that once 

rapid solution times for the heuristic approach were obtained (all less than 8.56 CPU 

seconds) and such high quality solutions were obtained for the 5-end-item problems 
that it was not appropriate to program the Lagrangean approach. What was of interest 

was to find a simpler approach. It is likely that their method produces good qualit' 

solutions but the code is complex and unlikely to operate as rapidly as the few seconds 

required here. In addition, the heuristic of this paper is essentially a 'back of an 

envelope' approach organized into a computer program. which should have appeal to 

the engineer responsible for scheduling because the approach works on a few simple 

principles which can still be used when the assumptions made in the original model are 



798 Multi-level lot-sizing problems with bottlenecks 

relaxed to accommodate more realistic operating conditions. The approach is 
sufficiently flexible to provide quick solutions for a variety of extensions of the basic 
problem and the approach is appropriate for quick reworking of schedules whenever 
changes occur in demand streams or breakdowns occur. 

5. Summary 
A simple heuristic for the bottleneck multi-level lot-sizing problem has been 

developed. The heuristic provides quick and easy solutions for the problem and is 
sufficiently simple to be used even without a computer routine. 

Acknowledgment 
The authors would like to thank Professor P. J. Billington for making data 

available to us and for providing encouragement and advice. They are indebted to 
anonymous referees for helpful suggestions and pointing out some references of 
interest. In addition, they would like to thank Gazi University, Turkey for financial 
support given to the first author. 

References 
BAHL, H. C., and RITz u N, L. P., 1984, A cyclical scheduling for lot sizing with capacity 

constraints. International Journal of Production Research, 22,791-800. 
BILLINGTON, P. J., 1983, Multi-level lot-sizing with a bottleneck work center. Ph. D. Dissertation, 

Cornell University. 
BILLINGTON, P. J., BLACKBURN, J. D., MAEs, J., MILLEN, R. A., and VAN WASSENHovE, L. W., 1988, 

Multi-product scheduling in multi-stage serial systems. In A. Chikan and M. C. Lovell 
(eds), The Economics of Inventory Management (Amsterdam: Elsevier Science). 

BILLINGTON, P. J., MCLAIN, J. 0., and THOMAS, L. J., 1986, Heuristics for multi-level lot-sizing 
with a bottleneck. Management Science, 32,989-1006. 

BLACKBURN, J. D., and MILLEN, R. A., 1982, Improved heuristics for multi-stage requirements 
planning systems. Management Science, 28,44-56. 

MCLAIN, J. 0., and TRIGIERO, W. W., 1985, Cyclic assembly schedules. HE Transactions, 17,346- 
353. 

MGG USER GUIDE, 1987, SD-Scicon, Milton Keynes, England. 
SCICONIC USER GUIDE, 1986, SD-Scicon, Milton Keynes, England. 
SILVER, E. A., and MEAL, H. C., 1973, A heuristic for selecting lot size quantities for the case of a 

deterministic time-varying demand rate and discrete opportunities for replenishment. 
Production and Inventory Management, 14,64-74. 



A Heuristic for Multilevel Lot-Sizing 
Problems with Multiple Bottleneck 

by 

B. Toklu and J. M. Wilson 

Pa per 1991: 14 

LOUGHBOROUGH UNIVERSITY 
MANAGEMENT RESEARCH SERIES 

PAPER NUMBER 1991: 14 

THIS PAPER IS CIRCULATED FOR DISCUSSION PURPOSES AND ITS 
CONTENTS SHOULD BE CONSIDERED PRELIMINARY AND CONFIDENTIAL. 

N() REFERENCE TO MATERIAL CONTAINED HEREIN MAY BE MADE 
WITHOUT THE CONSENT OF THE AUTHORS. 



Abstract 

A simple heuristic is proposed for multilevel lot-sizing 

problems where there are multiple bottlenecks. Previous 

methods to solve this problem with one bottleneck have 

formulated the problem as an integer programming problem 

and solved the problem using a Lagrangian relaxation 

embedded within the branch and bound procedure. Other 

approaches have used simple heuristics. 

In this paper we suggest that items to be produced can be 

grouped into two types and a simple but efficient 

heuristic can be used to determine the production 

quantities required. A program was developed to compute 

production levels and was found to require only a small 

fraction of the computer time required by the full 

integer programming approach and to produce solutions of 

reasonable quality. The heuristic is simple to implement. 

Keywords: heuristics, inventory, lot-sizing 
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1. INTRODUCTION 

Models for lot-size problems in MRP only become realistic 

when features such as capacity constraints and the fact 

that systems are multilevel can be incorporated. 

Blackburn and Millen ( 1982 ) reviews and adds to 

contributions made to this area. Their work provides for 

simultaneous lot-sizing and capacity requirements 

planning in an MRP framework. However, one of the most 

succesful attempts to tackle the multilevel lot-sizing 

problem with a bottleneck constraint has been by Toklu 

and Wilson ( 1991 ). This paper will extend their 

previous heuristic approach to solve the multiple 

bottleneck problem and show that if the items for 

production are categorised into 

(a) items constrained by the bottleneck 

(b) items which are unconstrained 

then two simple procedures can be used independently, one 

for each category of item, to determine the production 

levels of each item. The reason for this categorisation 

into two groups will be explained in section 3. Solutions 

will be sub-optimal but of adequate quality and are easy 

to obtain. The method to be proposed requires only a 

fraction of the computation required for solution of the 

integer programming formulation of the lot-sizing 
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problem. In addition the heuristic is easy to implement 

and program when compared to to the Lagrangian heuristic 

approach used in Billington et al. ( 1986 ) and modified 

to handle another bottleneck facility. The approach of 

this paper should require much less computer time and 

have more practical appeal in a realistic setting. 

In the next section the model developed by Billington et 

al. ( 1986 ) will be extended to include multiple 

bottlenecks and the heuristic approach will be developed 

in the third section. 

2. INTEGER PROGRAMMING FORMULATION OF PROBLEM 

For the lot-sizing problem a bottleneck will be defined 

as follows. A bottleneck is a work centre which converts 

raw materials into finished goods through the use of 

resources in the manufacturing process. Therefore a 

machine with limited capacity, highly skilled or 

specialised workers, and task-specific machines or tools 

can all be seen to be bottlenecks under this definition. 

All the resources could be classified into a bottleneck. 

Set up cost and time will be very important for all work 

stations, especially the bottleneck facility and capacity 

limitations, which can result from either bottleneck 

capacity being greater than demand in the planning 

horizon or demand being exceeded by capacity from time 
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time. A general product structure with a bottleneck 

facility is given in Figure 1( from Billington et al. 

1986 )). 

---. 

__1 

Figure 1. A General Product Structure with multiple 

Bottleneck Facility ( The Bottleneck facilities are shown 

by the dashed lines ) 

The General product structure can be split into a number 

of special cases: (1) assembly ( no commonality ), (2 

) serial ( one item, multi - stage )(3) parallel (a 

collection of serial structures which has a bottleneck in 

one of the stages ), (4) single stage multi-item. This 

paper will concentrate on the case of a parallel 

structure with multiple bottlenecks. 

4 

purchased intermadiate end 
items items items 
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As will be seen from the numbering system in Figure 1, no 

item has a higher number than any of its prodecessors. It 

is an a priori assumption that items in the bottleneck 

facility do not have predecessors ( altough this 

assumption can be relaxed for the subsequent heuristic 

approach). It can be seen that batching demands on 

product setups can result in capacity problems and also 

affects predecessor items since the batches are passed 

through as dependent demands. Because capacity 

utilisation varies through time, costs may not be 

constant. 

Assumptions 

1. All lead times between stages are assumed to be 

zero, 

2. Demand for the multiple end items are assumed known 

and at constant known rate per year, 

3. There is no demand for the components at any 

intermediate stages, 

4. Back orders are not allowed, 

5. The number of units coming from bill of material 

required in the production of one unit at the 

immediate successor stage to the other stage is 

assumed to be equal to one, 

6. The unit production costs are assumed constant and 

hence are ignored, 
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7. Production must occur in advance of that demand. 

Notation 

aij = The quantity of product i needed per unit 

production of product j; ai j=0 for all i<j, 

bil = Time needed on the bottleneck facility 1 for the 

production of product i, 

capt = Available capacity of the work centre at time t, 

csi = Setup cost for product i( following the 

assumption made by Billington et al. ( 1986 ), for 

consistency, the possibility of " carrying over " 

a setup from one period to another is not 

allowed), 

dit = External ( independent ) demand for product i 

during time t, 

hi = Holding cost for product i, 

Iit = Final inventory level of product i in period t, 

Li = Lead time, which is the unavoidable time from the 

time the order placed until it is available, for 

product i. This could be because of the time taken 

by a vendor to deliver a product, or could be a 

non-production lag, 

N= Number of products, 

Pit = Units of i produced in period t, 

Sit = Setup time for the work centre 1 for product i. 

This takes the value zero for all items except 

those made on the work centre. This can also 
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include processing time which is not related to 

the size of batch as in some heating operations, 

T= Total number of periods, 

M= The number of bottlenecks, 

Xit = Production indicator; equal to 1 if Pit >0 and 

zero otherwise. 

In this information below inventory is eliminated by 

substituting cumulative production minus cumulative 

demand, and it is derived from a model in Billington et 

al. (1986 ). 

Formulation 

Minimise: 

NT 
Z= EE[ hi ( T-t+l ) Pit + cs iXit (1) 

i=1 t=1 

Subject to: 

ttt 
E[ P1, n-li - Y. alj Pjn ]? E din -Ilo 

n=1 j=1 n=1 t=1, ... ,T (2) 

N 
bilPit + si1Xit ]ý capt 

i=1 

1 if Pit > 
Xit ={ 

0 otherwise 

Pit ý0 i=1, 
..., N and t=1, ..., 

T (5) 

This is the formulation using Integer Programming when 

there are multiple capacity constrained work centres. 

t=1, ... ,T (3) 
1=1, ..., M 

i=1, ,N (4) 
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In this formulation, constraint (2 ) illustrates that 

available production after subtracting the requirements 

is greater than or equal to the external demand by 

eliminating the inventory in the planning horizon. 

Constraint (3) is the capacity constraint for the 

bottleneck facilities, and (4) shows setup cost and 

time are applicable only if there is production. 

In their previous paper Toklu and Wilson ( 1991 ) 

concentrated on the three problem types: 1-end item, 3- 

end items, and 5-end items and restricted these items so 

that they were the only ones affected by the single 

bottleneck. In the computational testing N had maximum 

value 25 and T had maximum value 12, the values chosen in 

the work of Billington et al. ( 1986 ) 

3. SIMPLE HEURISTIC FOR MULTIPLE BOTTLENECK 

Ali items which are produced by a manufacturing firm are 

assumed independent from each other. So the proposed 

heuristic operates by first dividing production items 

into end-items and non-end-items. The reason for this is 

that production of each non-end item is unconstrained and 

so has neither any effect on the production of any other 

non-end-item nor on the production of the items which are 

constrained by the bottleneck. In what follows it will be 

assumed that there are just two bottlenecks. The second 

bottleneck occurs in either non-end-items or end-items in 
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the product structure. In our case one bottleneck will 

always be taken to appear in the end-items and the second 

one could be any other intermediate or raw material 

stage. The program, written in Fortran 77, which will 

subsequently be discussed, was designed to handle cases 

irrespective of where the bottlenecks occur. As demand 

required of all items is known in advance, the production 

decision for each no-end-item becomes a relatively simple 

one of when to produce in order to minimise the 

contribution to costs ( holding and setup costs ) of each 

non-end-item. 

Non-End-Items outside Bottleneck 

The fact that demand for end-items determines the demand 

for intermediate items does not invalidate the 

independence of the production of each item as demand for 

end-items is known several periods in advance. The 

problem of determining when to produce end-items is more 

complex as these items must share the resources of the 

bottleneck. Thus for these items the production problem 

is a constrained problem. However, in general these items 

are in the minority. 

Define Sit as stock of product i at start of period t 

t-1 
then Sit =1 Pin din 

n=1 
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For these items an EOQ approach will be used. This 

approach was chosen as it is comparatively simple to 

operate and in general will produce solutions of good 

quality. Where demand levels are likely to be variable, 

an approach such as the Silver-Meal ( 1973 ) heuristic 

may be appropriate and is the subject for future 

investigation. 

Let Qi be the EOQ for item i, based on setup cost csi and 

holding cost hi. Then the following strategies are 

considered: 

(a) Produce Qi in period 1 and then next produce Qi 

in the period when stocks would become negative if no 

production were made ( i. e. find the next smallest t such 

that Sit < dit ) 

Let ti be the number of occasions on which item i will be 

produced. Then 

t-1 
ti =[E dit / Q1 + 0.5 

n=1 

and production is made in any period n whenever Sin 

din 

Note that [ ] is the integer part function. 
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If in any period n 

TT 
Qi ýI dit - Sin then set Qi =E dit - Sin 

t=n t=n 

(b) Let Zi be the quantity of item i produced in 

period 1. The same quantity is next produced whenever 

stocks would become negative if no production were made 

( ie when Sin < din ). 

T 
Zi =(E dit ) /ti 

t=l 

Continue this process through all the periods. 

(c) Produce all items in period 1. 

Strategies (a) , (b), and (c) are evaluated to see which 

leads to the smaller total inventory cost over the N 

periods and then that strategy is chosen. 

Non-End-Items with Bottleneck 

Assuming that the second bottleneck has been located in 

3rd item in 1-end-item problem. We have now got one 

bottleneck in the intermediate level in the 1-end-item 

problem for example. To deal with this kind of problem, 

we note that the non-bottleneck items have been explained 

for different kinds of end-item problems. Now the 

bottleneck items in the non-end items will be explained 
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For these items a simple heuristic was adopted which 

would adopt a greedy approach to production by having few 

setups, but with heavy utilisation of the resultant 

production capacity. In addition, the heuristic would 

operate in a cylic manner moving between items or sets of 

items in turn to produce reasonably smooth production. 

The approach has broad similarities with the work of 

Mclain and Trigerio ( 1985 ) except that by excluding 

setup time and cost they handle a problem that is easier 

to solve. Bahl and Ritzman (1984 ) also adopt a cyclic 

approach but do so by examining permutation schedules. 

The heuristic will be described with reference to three 

cases. 

Case (a) 1-end-item problems 

Assuming that one of the bottleneck has been located in 

the 3rd item in the product structure, the heuristic is 

that which poduces as much of non- end-item i as capt 

will allow in period 1 i. e. set Pil = cap,, then next 

produce i when stocks would become negative if no 

production were made, i. e. find the next smallest t for 

which Sit < dit. 

Continue the process of producing in each period t which 

has this property. 

T 
If Pin would exceed r dit for any period n 

t=n 

12 



7 

then set pin 
T 
Y- dit 

t =n 

Case (b) 3-end-item problems 

The bottleneck is located in the 7th, say, item (s) in the 

product structure and according to the heuristic, the 

first priority is in the first item in the structure, 

then the second item and so on. 

A three period cycle is adopted. 

Period 1 Set P21 d21 ' P31 = d31 and P11 = cap, - d21 

d31 

Period 2 Set P32 = d32 , P12 =0 and P22 = cap2 -d32 

provided S12 > d12 

Otherwise set P12 = d12 + d13 - S12, 

232 = d32 and P22 = cap2 - P12 - P32. 

Period 3 Set P33 = cap3 and P13 = P23 =0 provided S13 > 

d13 and S23 > d23. 

Otherwise set P13 = d13 513, 

P23 = d23 + d24 - S23 and P33 = cap3 - P13 - 

P23 ' 

Period 4 Set P14 = capo provided S24 > d24 and S34 > 

d34' 

Period 5 Set P25 = caps provided S15 > d15 and S35 > 

d35 

Period 6 Set P36 = cap6 provided S16 > d16 and S26 > 

d26. 
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Again if stocks of any product would become negative 

produce sufficient of that product to satisfy demand over 

the next one or more periods until that product moves 

into the dominant production position. 

Continue the process in the same cyclic manner for the 

remaining periods. If at any stage stocks of all products 

are sufficient for production to be zero in any period, 

no production is made in that period and the cycle for 

the appropriate product is delayed by one period. 

Note: on the sample data on which the heuristic was tried 

despite this data incorporating some highly variable 

demand levels and production capacities, it was found 

that none of the " otherwise " type conditions listed 

above ever applied. 

Case (c) 5-end-item problems 

The bottleneck is located in the 11th item(s), say, in 

the product structure. In order to keep the heuristic 

simple, more complex cases are now treated more in the 

style of Case (b). The set of 5 products is simplified 

by considering products in just two sets rather than as 5 

individual products. Here products { 1,2,3 } are 

considered a set as are { 4,5 }. This division was made 

purely for simplicity. 
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The two sets are now treated as single products and the 

cyclical approach of case (c), modified to a two-period 

cycle, is followed with the modification that when 

production of a product set can be larger than demand in 

that period, the production quantity is equal for each 

product in the set. 

Total inventory cost is now the total of individual 

inventory costs arising from the end-items and the non- 

end items. 

4. End Items with Bottleneck 

We have assumed that there is always a bottleneck in the 

end items. To solve this problem, the same rule which was 

used to explain non-end items problem with bottleneck is 

used with one difference . 
instead of item (s) 7th, 1st 

item(s) will be used in the three end-item problem, in 

the one end-item problem item 1 will be the bottleneck 

instead of item 3, and finally in the five end item 

problem item(s) 1st will be used instead of 11th item(s) 

which is grouped in the same way as previously. 

5. COMPUTATIONAL EXPERIENCE 

The integer programming formulation solved by using the 

software MGG ( 1987 ) and SCICONIC ( 1986 ), and he 

heuristic approach, coded in Fortran77, of Section 3 were 
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compared on sets of data obtained from Billington ( 1983 

) and also discussed in Billington et al. ( 1986 ) but 

modified to incorporate two bottlenecks, in the 

experimental studies three different cost structures, 

three demand streams and three capacity levels were used. 

The three cost structures are detailed in Billington 

(1983 ). Essentially for each structure the holding costs 

and the setup costs are set to different levels such that 

for structure 1 the average of the holding costs is 0.44 

and the average for the setup costs is 400. For 

structures 2 and 3 the corresponding figures are 1.00, 

340 and 0.64,420 for holding cost and setup cost, 

respectively. The three demand streams are generated to 

give low ( 50% ), medium ( 75% ) and high ( 95% ) demand. 

The results of the experiments are in Tables 1-3 and 9 

problems were investigated. In each table, details of the 

linear programming ( LP ) solution to the integer 

programming ( IP ) formulation are given in the third 

column, details of the integer programming branch and 

bound approach are given in the fourth column, and of the 

heuristic solution in the right hand column. The 

branching process by which the integer programming 

solutions were obtained was the standard default of the 

SCICONIC software which comprises an approach to choose 

subproblems which minimise the percentage error in the 

degradation of the objective function. The " dynamic 

presolve " option of SCICONIC was also used which aids 
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branching exploration by tightening bounds where 

possible. The IP and heuristic solutions are compared to 

the LP optimum to give some indication of the quality of 

the solutions as the LP optimum provides a lower bound to 

the solution to the problem. In all cases the IP solution 

is not a proven optimal solution and the branch and bound 

process had to be cut off, before optimality could be 

proved, once a large amount of computer time elapsed and 

further effort appeared unproductive. Computation was 

stopped after approximately 400 branch and bound nodes 

had been explored. The reason for this was that although 

a number of problems were run 5000 or more branch and 

bound nodes, it was found that no better solution was 

obtained in the first 100 - 300 nodes, so 400 nodes was 

taken as a convenient stopping point. CPU time quoted are 

for the time ( in seconds ) taken on a Hewlett Packard 

9000 to reach the given solution. A number of features 

are evident from the results quoted in the tables. 

1 The heuristic approach is rapid taking a few seconds 

of CPU time 

2. In all but one case ( those in Table 2) the 

heuristic solutions are better than the IP 

solutions. 

For 5 end-item problem the heuristic seems to work 

particularly well, in the sense that the solutions are 
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close to the lower bound value. However, this may only 

mean that the lower bounds are tighter for these 

problems. These tighter lower bounds may arise because 

more realistic values of the effect of setup costs ( 

which are unrealistically reduced in the LP relaxation of 

the IP formulation ) are likely to arise when there are 

more types of items being produced in the bottleneck and 

so more fractions of the true setup cost to add together. 

For the three cases where the heuristic does not work 

well it may be that rather more setups than necesary are 

being used when setup cost is above average. 

It was felt that once rapid solution times for the 

heuristic approach were obtained ( all less than 20.32 

CPU seconds ) and such high quality solutions were 

obtained for the 5 end-item problems that it was not 

appropriate to program the Lagrangean approach. What was 

of interest was to find a simpler approach. It is likely 

that their method produces good quality solutions but the 

code is complex and unlikely to operate as rapidly as the 

few seconds required here. In addition, the heuristic of 

this paper is essentially a "back of an envelope" 

approach organised into a computer program, which should 

have appeal to the engineer responsible for scheduling 

because the approach works on a few simple principles 

which can still be used when the assumptions made in the 

original model are relaxed to accomodate more realistic 

operating conditions. The approach is sufficiently 
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flexible to provide quick solutions for a variety or 

extensions of the basic problem and the approach is 

appropriate for quick reworking of schedules whenever 

changes occur in demand streams or breakdowns occur. 

5. SUMMARY 

A Simple heuristic for the multiple bottleneck multi - 

level lot-sizing problem has been developed. The 

heuristic provides quick and easy solutions for the 

problem and is sufficiently simple to be used even 

without a computer routine. 
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Table 1. One End Item Problem with Cost Structure 1 

LP IP Heuristic 
Solution Solution Solution 

Current Value 10869.0 15525.7 13082.0 
50% and Iterations 152 388 - 20% util. CPU Time 0.94 16.74 2.14 

Optimality* - '0.70 0.83 

Current Value 18869.0 17274.8 14346.5 
75% and Iterations 152 667 - 
50% util. CPU Time 0.92 23.52 2.14 

Optimality - 0.62 0.75 

Current Value 10898.0 18822.2 15801.5 
95% and Iterations 159 1013 - 
75% util. CPU Time 0.94 24.88 2.14 

Optimality - 0.57 0.68 

* The Percentage of LP Solution 

Table 2. Three End Item Problem with Cost Structure 1 

LP IP Heuristic 
Solution Solution Solution 

Current Value 73623.4 92583.3 102003.9 
50% and Iterations 424 764 - 
25% util. CPU Time 5.36 58.44 13.23 

Optimality - 0.79 0.72 

Current Value 74066.4 92695.1 92639.4 
75% and Iterations 453 1224 - 
50% util. CPU Time 6.04 63.74 13.23 

Optimality - 0.79 0.79 

Current Value 73902.2 97701.0 94046.9 

95% and Iterations 471 878 - 
75% util. CPU Time 6.50 76.52 13.23 

Optimality - 0.75 0.78 

* The Percentage of LP Solutions 
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Table 3. Five End Item Problem with Cost Structure 2 

LP IP Heuristic 
Solution Solution Solution 

Current Value 107807.6 131497.9 115402.5 
50% and Iterations 698 989 - 
25% util. CPU Time 14.62 116.56 20.32 

Optimality* - 0.81 0.93 

Current Value 107889.5 134606.0 111821.5 
75% and Iterations 600 1250 - 
50% CPU Time 14.26 125.88 20.32 

Optimality - 0.80 0.93 

Current Value 109095.4 134942.0 114784.3 
95% and Iterations 749 1601 - 
75% util. CPU Time 16.18 133.92 20.32 

Optimality - 0.81 0.93 

* The Percentage of LP Solution 
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AN ANALYSIS OF MULTIPLE BOTTLENECK PROBLEMS IN MULTILEVEL LOT- 

SIZING PROBLEMS 

by 

Bilal Toklu and JM Wilson 

A Number of heuristic models have been proposed to determine 

the lot-sizing techniques for multilevel lot-sizing problems 

with a bottleneck in order to meet the forecast requirements 

so far. One of these models involves the use of integer 

programming using lagrangian relaxation embedded within the 

branch and bound procedure with one bottleneck. Our previous 

research to solve the multilevel lot-sizing problem involved 

the use of a hueristic model rather than the above complex 

technique. 

In this paper we have extended our previous heuristic model to 

focus upon more than one bottleneck problem. We also compared 

the economic order quantity technique ( EOQ ) with the 

modified Silver Meal technique for non-bottleneck items in 

multilevel lot- sizing problems, then these results were 

compared with the integer programming solution. The results 

have demonstrated that the extended heuristic model is simple 

to implement and it requires a small fraction of the computer 

time normally required by the full integer programming 

approach; the extended heuristic also produces reasonable 

quality of solutions. The results have also demonstrated that 

there is no superiority between EOQ and modified Silver Meal 

techniques for solving this problem. 


