

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

A Heuristic for Multi-Level Lot-Sizing Problems
with Bottlenecks under a Rolling Schedule

Environment.

by

Bilal Toklu

B. Sc., M. Sc.

i
A Doctoral Thesis

Submitted in partial fulfilment of the requirements for

the award of Doctor of Philosophy

February 1993

Supervisor: Senior Lecturer John M. Wilson B. Sc., M. Sc.

DPhil

© by Bilal Toklu, 1993

N, -

I would like to

thanks to Senior L

my supervisor and

for consultation.

suggestions on

appreciated in the

ACKNOWLEDGMENT

express my sincere appreciation and

ecturer John M. Wilson who has acted as

who made himself available constantly

His help, patience, comments, and

various topics have been greatly

preparation of this thesis.

I would also like to thank my research panel under the

directorship of Professor Geoff Gregory and Professor

Malcolm King and panelist Senior Lecturer David Johnson.

They made significant suggestions and criticism during

research progress.

I would like to thank Professor P. J. Billington for

making data available to us and providing encouragement

and advice, and also the referees of the International

Journal of Production Research for their valuable

comments and criticism.

I would also like to thank Dr Paul D. Mizen, Mrs Janet

Stevenson, and Mr. David W. Lamb for checking my work and

providing encouragement.

My thanks also go to Dr Abdul Rahman Khan, Dr Mohammed A.

Rahin for their help and advice about computer

programming.

I would also like to acknowledge to my employers "Gazi

University of Turkey" for their financial support during

the period of this research. This has made it possible

for me to pursue my Ph. D studies here at Loughborough

University.

ii

Finally, I would like to thank my parents for their

continuous and endless support throughout my education. I

would have not reached this stage without their patience

and encouragement.

iii

I

TABLES OF CONTENTS

LIST OF TABLES .. vii
LIST OF FIGURES ix

LIST OF GRAPHS .. x
ABSTRACT .. xi

CHAPTER 1. INTRODUCTION

1.1. Introduction.. 1

CHAPTER 2. REVIEW OF THE LITERATURE

2.1. Introduction 5

2.2. The General Lot-Sizing Problem 5

2.2.1. Serial Lot-Sizing Systems 9

2.2.2. Non Serial Lot-Sizing Systems 14

2.3. Summary 23

CHAPTER 3. BACKGROUND WORK

3.1. Introduction 24

3.2. Material Requirements Planning 24

3.3. Integer Programming Formulation of

Problem 27

3.3.1. Assumptions 29

3.3.2. Notations
30

3.3.3. Mathematical Model
31

3.4. Summary
34

Appendix 35

7

iv

q19

CHAPTER 4. A HEURISTIC FOR MULTI-LEVEL LOT-SIZING

PROBLEMS WITH BOTTLENECK (S)

4.1. Purpose of Thesis 38

4.2. Introduction 39

4.3. Problem Area 39
4.4. Simple Heuristic for Multi-Level

Lot-Sizing Problem with a Bottleneck 40

4.4.1. Non-End-Items 42

4.4.1.1. The Economic Order Quantity

Approach (EOQ) 42

4.4.1.2. The Silver-Meal Approach (SM) 43

4.4.2. End-Items 44

4.5. A Heuristic for a Multi-Level Lot-Sizing

Problem with Multiple Bottleneck 48

4.6. Sensitivity Analysis 51

4.7. Summary and Conclusion 53

CHAPTER 5. AN ANALYSIS OF MULTI-LEVEL LOT-SIZING

PROBLEMS WITH BOTTLENECK UNDER A ROLLING

SCHEDULE ENVIRONMENT

5.1. Introduction 80

5.2. Literature Survey for Rolling Schedule

Environment 80

5.3. Problem Structure 85

5.4. Assumptions
87

5.5 Data Sets
87

5.6. Simple Heuristic for the Problem with

Rolling Schedule
88

5.6.1. Non-End-Items with Bottleneck
88

5.7. An Example
90

5.7.1. Rolling Schedule on Bottleneck Items 91

5.7.2. Rolling Schedule on Non-Bottleneck Items92

5.7.2.1. The Economic Order Quantity Approach.... 92

5.7.2.2. The Silver-Meal Approach 94

5.8. The Results of Rolling Schedule 95

V

N_

5.9. Conclusion 97

CHAPTER 6. RESULTS AND DISCUSSIONS

6.1. Introduction 103

6.2. The Results and Discussions of Multi-Level

Lot-Sizing Problem with Bottleneck(s) ... 104

6.3. The Results and Discussions of Rolling

Schedule for Multi-Level Lot-Sizing

Problem with Bottleneck(s) 110

6.4. Worst Case Analysis of Heuristics 112

6.5. Summary and Conclusion 115

CHAPTER 7. A COMPARISON FOR THE ASSEMBLY SYSTEM

7.1. Introduction 117

7.2. A Comparison for Assembly Systems....... 117

7.3. Sensitivity Analysis of the Heuristics-. 124

7.4. Conclusion 126

CHAPTER 8 CONCLUSIONS AND FUTURE RESEARCH

8.1. Introduction
127

8.2. Conclusions
127

8.3. Recommendations for the Future Research. 129

REFERENCES........ "
131

Appendix A. Model in MGG on SCICONIC
142

Appendix B. Data
146

Appendix C. Heuristic Program on Fortran 77 153

Appendix D. NAG Subroutine Program
186

Appendix E. Reprint of Published Papers
188

vi

LIST OF TABLES

Table
4.6. Sensitivity Analysis for One-End-Item Problem53
4.6.1. One End Item Problem with Structure One 56
4.6.2. One End Item Problem with Structure Two 57
4.6.3. One End Item Problem with Structure Three 59

4.6.4. Three End Item Problem with Structure One.... 60
4.6.5. Three End Item Problem with Structure Two.... 62

4.6.6. Three End Item Problem with Structure Three.. 63
4.6.7. Five End Item Problem with Structure One..... 65
4.6.8. Five End Item Problem with Structure Two 66
4.6.9. Five End Item Problem with Structure Three... 68

4.6.10. One End Item Problem with Structure One 70

4.6.11. Three End Item Problem with Structure Two.... 71

4.6.12. Five End Item Problem with Structure Three... 73

4.6.13. One End Item Problem with Structure One...... 75

4.6.14. One End Item Problem with Structure Three.... 75

4.6.15. Three End Item Problem with Structure One.... 76

4.6.16. Three End Item Problem with Structure Three.. 76

4.6.17. Five End Item Problem with Structure One..... 77

4.6.18. Five End Item Problem with Structure Three... 77

4.6.19. One End Item Problem with Structure One...... 78

4.6.20. Three End Item Problem with Structure Two.... 78

4.6.21. Five End Item Problem with Structure Three... 79

5.8.1. One End Item Problem with Structure One...... 98

5.8.2. One End Item Problem with Structure Two...... 98

5.8.3. One End Item Problem with Structure Three.... 99

5.8.4. Three End Item Problem with Structure one.... 99

5.8.5. Three End Item Problem with Structure Two.... 100

5.8.6. Three End Item Problem with Structure Three.. 100

5.8.7. Five End Item Problem with Structure One 101

5.8.8. Five End Item Problem with Structure Two..... 101

5.8.9. Five End Item Problem with Structure Three... 102

6.4. A Cost Analysis 114

7.1. Data for a 5-period problem 120

vii

7.2. Demand and capacity for a 5-period problem... 121

7.3. Schedules and costs for the 4-period problem. 122

7.4. Schedules and costs for the 4-period problem. 122

7.5. Final solution for the 5-period problem 123

7.6. Solution using proposed heuristic 124

7.7. Total Cost under Different Cost Assumptions.. 125

ýl

viii

11 -

LIST OF FIGURES

Figure

2.2. Different Product Types 15

3.1. A General Product Product Structure with a

Bottleneck Facility 28

4.4. A Parallel Product Structure with Multiple

Bottleneck Facilities 49

5.3. Five End I tem structure
86

7.1. The three stage assembly systems 121

ix

IN k

LIST OF GRAPHS

Graph

2.2. Total Cost versus Lot-Size 7

The following graphs are on pages 79-80

4.6.1. One End Item Problem with Structure 1

4.6.2. One End Item Problem with Structure 1

4.6.3. One End Item Problem with Structure 1

4.6.4. Three End Item Problem with Structure 1

4.6.5. Three End Item Problem with Structure 1

4.6.6. Three End Item Problem with Structure 1

4.6.7. Five End Item Problem with Structure 1

4.6.8. Five End Item Problem with Structure 1

4.6.9. Five End Item Problem with Structure 1

4.6.10. One End Item Problem with Structure 1

4.6.11. Three End Item Problem with Structure 2

4.6.12. Five End Item Problem with Structure 3

The following graphs are on pages 102-103

5.8.1. One End Item Problem with Structure 1

5.8.2. One End Item Problem with Structure 2

5.8.3. One End Item Problem with Structure 3

5.8.4. Three End Item Problem with Structure 1

5.8.5. Three End Item Problem with Structure 2

5.8.6. Three End Item Problem with Structure 3

5.8.7. Five End Item Problem with Structure 1

5.8.8. Five End Item Problem with Structure 2

5.8.9. Five End Item Problem with Structure 3

6.4. The Relation Between Setup and Holding Costs115

X

5-

ABSTRACT

Lot-sizing scheduling techniques determine what amount is

required to meet forecasted demand whilst minimising the

sum of setup and holding costs. These techniques are not
adequate to provide an optimal solution to bottleneck

facility problems which do not meet demands placed on
them. Thus, it is necessary to analyse how much should be

produced from each product with bottleneck facilities.

Therefore a lot-sizing problem with bottleneck(s) under

rolling schedule environment is the subject of this

thesis.

This research proposes a simple heuristic for multi-level
lot-sizing problems where there is a bottleneck. Previous

methods to solve this problem have formulated the problem

as an integer programming problem and solved the problem

using a Lagrangian relaxation embedded within the branch

and bound procedure. Then the proposed heuristic is

extended for multiple bottleneck problems, and finally

applied to the real life problem.

In this research it is suggested that items to be

produced can be grouped into two types and a simple but

efficient heuristic can be used to determine the

production quantities required. A program was developed

to compute production levels and was found to require

only a small fraction of the computer time required by

the full integer programming approach and to produce

solutions of reasonable quality. The heuristic is simple

to implement.

Keywords: heuristics, inventory, lot-sizing, scheduling,

production, bottleneck, linear programming, integer

programming.

xi

CHAPTER 1

INTRODUCTION

1.1. Introduction

The aim of a production planning system is to produce one
or more products to satisfy demands over the planning
horizon whilst minimizing the total production costs. To
be able to detect the optimal solution or near-optimal

solution for production planning problems it is important

to correctly specify the structure of the system and the

characteristics of costs. The most successful system will

usually be based on a model which gives computationally
large gains from improvements to the costs or structure

of the systems.

Most of the production planning models given in the

literature are based on satisfying the external demand

which is known in advance. It is most common to find in

the literature the capacitated production planning

problem where demand exceeds the system capacity. This

instance may appear for different reasons: (1)

incrementation of demand beyond the capacity of the

system, (2) shortage of highly skilled operators, (3)

scarcity of tools needed in one of the production stages.

Thus, all these situations result in a bottleneck problem

which does not satisfy the external demand in a

manufacturing firm or in the market. Even if the firm

were able to expand the capacity utilisation the new lead

time required for the additional capacity utilisation

would be very substantial and therefore the firm would

not be able to meet the excess demand.

1

Organising the problem requires the simultaneous
consideration of the different products, as well as the

external demands on the bottleneck facilities. So, for
the bottleneck facilities, the firm needs to determine
how to utilise its resources. The focus will be upon how

much to produce from the resources in order to minimise
the total cost for the bottleneck and the non-bottleneck
items.

The related carrying and setup costs for each product
inside or outside the bottleneck facility are also

considered, in order to minimise the related carrying and

setup costs subject to bottleneck facility. This is the

traditional lot-sizing and scheduling problem with
bottleneck(s). This will let us consider the production

scheduling and lot-sizing problems on the bottleneck

facilities. The production scheduling problem is affected
by the detailed level of inventory carrying costs and

setup times. The traditional production planning problem

model considers the setup times, and if they are

negligible then they are ignored; this is a typical

linear programming (LP) problem, if not the problem

becomes an integer programming (IP) problem. These

problems frequently result in sub-optimal solutions so

that production on the bottleneck facilities becomes very

important.

Recently optimised production technology (OPT) has had

plenty of attention for the importance of bottleneck

problems. OPT developed in 1970s as a software package,

is a quantitative technique whose aim is to maximise

profits by decreasing carrying inventory and expenses

arising from bottlenecks. OPT adresses scheduling whilst

considering the shop floor activities such as

bottlenecks, lot-sizes, setups. it considers the

processing times for each item allowing for bottlenecks

rather than a given quantity of each item allowing for

2

bottlenecks.

thesis.
The processing time is not a part of this

However, the topic of this thesis is a heuristic for

multi-level lot-sizing problems with bottleneck(s) under
a rolling schedule environment.

The organisation of this thesis is as follows.

Chapter 2 reviews the relevant literature of the general
lot-sizing problem, and then divides the review into: (1)

the serial lot-sizing problem, and (2) the non-serial
lot-sizing problem.

Chapter 3 concentrates on the material requirements

planning and its deficiencies, and focuses upon the

integer programming formulation for the multi-level lot-

sizing problem with a single bottleneck which is adopted
by Billington et al. [1986].

Chapter 4 considers a simple heuristic to solve the

single bottleneck problem as an alternative to the

approach of Billington et al. [1986], and extends the

problem to multiple bottleneck problem cases. In this

chapter, production items are divided into two types

which are: (1) bottleneck items, (2) non-bottleneck
items. For the bottleneck items, a heuristic is

developed, and used. For the non-bottleneck items, two

well known heuristics, the Economic Order Quantity and

the Silver-Meal heuristic, are used. Finally, sensitivity

analysis is applied to the cost structure.

Chapter 5 provides further literature review and testing

for multi-level lot-sizing problems with bottleneck(s)

under a rolling schedule environment.

3

Chapter 6 discusses the results of chapters 4 and 5, then

provides a worst case analysis.

Chapter 7 provides an application of the heuristic to the

assembly product structure to compare the results of this

heuristic with the Eftekharzadeh [1988) approach.

Chapter 8 finishes the thesis with a conclusion and

suggestions for further research.

4

CHAPTER 2

REVIEW OF THE LITERATURE

2.1. Introduction

This research as mentioned in the previous chapter

concentrates on multi-level lot-sizing problems with
bottlenecks under a rolling schedule environment and will
focus on using a simple heuristic to solve problems. In

this chapter, the first section explains the general lot-

sizing problem, then the discussion splits into two

sections which are serial lot-sizing and non-serial lot-

sizing problems. The literature related to the rolling

schedule will be given in chapter 5. Those subtopics

given above will now be reviewed in detail.

2.2. The General Lot-Sizing Problem

The main problem for many firms is to decide how much

they will produce with limited resources. This is a

dilemma for the production managers in selecting a

procedure. The question of 'how much to produce? ' refers

to a lot-sizing decision which is known as a production

order quantity. It combines the requirements and the

production orders in the planning horizon. Lot-Sizing

rules do not provide the correct period for placing the

requirements but they determine the order quantities. The

specific procedure for determining the quantity of orders

for a part or finished product is given by the lot-sizing

rules. The objective of these rules is to choose the lot-

sizes which minimise the total of setup and inventory

holding costs. A setup cost which is not dependent on the

order quantity is incurred whenever an order is placed

5

N

during the planning horizon. Holding costs depict the
cost of carrying production for some periods and are
charged in accordance with the ending inventory. The sum
of these two costs is referred to as the total inventory

cost or total cost. The relation between these two costs
is illustrated in Graph 2.2 (adapted from McLaren
[1977]).

McLaren [1977] classifies the lot-sizing problems from
the literature according to (i) the number of levels;

(ii) the number of end items; (iii) the continuity of
demand; (iv) the constraint of system capacity; (v) the

availability of production systems. (i) refers to the

stages in a manufacturing firm. Some authors use echelon
terminology to depict this classification. The echelon
inventory is defined as the whole units which have been

produced at stage j. That is, cumulative production less

cumulative requirements at stage j in period t and as a

result of this inventory, echelon cost is the cost

charged to each unit of the echelon inventory. (ii)

refers to the finished items, (iii) refers to the

inventories which are removed gradually from the system

through the planning horizon, (iv) refers to whether the

system capacity is limited or not, and finally (v) refers

to the type of product structure. He then developed a

setup cost adjustment procedure for single-level lot-

sizing problem without capacity constraints. He showed

that the Wagner-Whitin heuristic using the modified setup

cost procedure provides the lower costs compared to

unmodified heuristics. No adjustments were made to the

holding costs at any stage.

Figure 2.2 illustrates several different types of product

structures. By referring to the bill of material in a MRP

(Material Requirements Planning) environment the number

of predecessor items needed for successor items is

established. (These numbers are not depicted in the

6

C
V

O
Z

Graph

LOT SIZE
2.2. Total Cost versus Lot-Size.

7

Figure 2.2., 1,2,3,4).

Collier [1980] discussed the effect of the following lot-

sizing heuristics; Lot-for-Lot (LfL) which establishes a
separate lot-size for each period, Economic Order
Quantity (EOQ) which always orders the economic order
quantity, Part Period Order Quantity (POQ) which
calculates the lot-size for the next T* periods, where T*
is the EOQ divided by average demand and rounded to an
integer value, Least Total Cost (LTC) which is based on
the rationale that the sum of setup and inventory cost
(total cost) for all lot-sizes within the planning

horizon will be minimised if these costs are nearly equal

as possible, and Wagner-Whitin (WW) which enumerates all

possible ordering combinations. He showed the

effectiveness of the heuristics according to the setup

and inventory costs, overtime hours or work centre load

profiles. His results show that the superiority of any
lot-sizing rules to the others is dependent on

characteristics such as the cost structure of the system

Biggs et al. [1980] examined various lot-sizing rules and

procedures under different parameters, and concluded that

the Lot-for-Lot (LfL) rule, which satisfies the

requirements in each period, is generally very attractive
in comparison to the other heuristics. This is true when

the Lot-for-Lot rule is applied to systems in which the

setup costs are very low and inventory costs are very

high. Although it is very easy to use, because of

satisfying the demands in each period it is not

economical. Another lot-sizing rule, fixed order

quantity, is not economical either because it places

orders of the same size for each period, and is unusable

for varying the quantity.

8

N

Askin and Raghavan [1983] examined three lot-sizing rules
employed on work centre load variability. Lot-for-Lot
(LfL), Economic Order Quantity (EOQ) and Silver-Meal

rules were used to show their effect via simulation. They
observed that lot-sizing rules increase the workload
variation which causes production level change costs such
as overtime, undertime, hiring and firing, and these

costs have to be incorporated into the economic analysis.

There are many lot-sizing rules in the literature

examined by researchers in detail, such as Orlicky
[1975], Berry [1972], Johnson and Montgomery [1974],

Monks [1987], and Browne et al. [1988]. Although a number

of lot-sizing rules have been proposed, there is still
little guidance for managers to choose the best rules for

their system. Ramsay [1977] presented a broad

classification for different lot-sizing techniques.

Because of the structure of the system, these lot-sizing

problems could be divided into two categories: serial and

non-serial systems. The related literature in conjunction

with these two systems will be given in turn in the

remaining sections.

2.2.1 Serial Lot-Sizing Systems

The basic form of the multi-level lot-sizing problem,

that is the most simplified form, involves producing one

product in a multi-level stage uncapacitated production

process, and is called a serial system. Figure 2.2.1

shows this production structure. The multi-level

characteristic is derived from the hierarchical nature of

the manufacturing process where raw materials are

processed into components, components into subassemblies,

and so on until the final product is completed.

9

Zangwill [1966] studied a dynamic programming lot-sizing

rule for the multi-echelon serial system using

uncapacitated stages, concave production cost and time

varying demand. An inventory system may consist of

several stocking point. In some cases these stocking

points are organised such that one point acts as a supply

point for others. This type of operation may be repeated

at different levels so that a demand point may again

become a new supply point. This situation is generally

referred to as a multi-echelon systems. He developed a

set of extreme point solutions in which the lots make up

an integer number of periods. The set of all extreme

points of all basic sets was defined as the dominant set.

He then showed how to search for the optimal solution

from the dominant set of production schedules with the

extreme flow properties. The computation time is large,

however.

Love [1972] considers the serial lot-sizing system with

non-increasing production cost over time and positive

echelon costs in all stages. He recommended that the lot-

sizes of a component will be integer multiples of its

parent's lot-sizes in a serial system, for example, if

the parent's lot-size is 200, the subparts lot-size could

be 200,400,600, etc. His approach reduces the number of

lot-size calculations for the highest level part, and

then finds the integer multipliers of lot-sizes for the

components at lower levels. Jensen and Khan [1972] used

the same integer multipliers concept with non-constant

demand for serial systems.

Schwarz and Schrage [1975] examined a different approach

for serial multi-level lot-sizing problems. They

developed a myopic system algorithm which determines lot-

sizes by taking two adjacent levels in the product

structure at a time. This research assumes that

production and demand rates are continuous and constant,

10

N: -

and the planning horizon is infinite. Thus, once the lot-

size for a component is determined , it will not change
any more. The major difficulty with their method is the

complexity of the structure because it is based on branch

and bound methodology.

Lamrecht and Vander Eecken [1978] presented a method to

solve the serial structure problem with a capacity

constraint which must apply to the final item. They use
the Florian and Klein [1971] results to illustrate

whether there are a finite number of solutions for the

capacitated problem. Results show that any suitable lot-

sizing heuristics could be used to test the optimality
for the predecessor items, and then the same procedure is

repeated for the end items within the capacitated

problem. More complex structures and capacity constraints

on the other items are not included in their research.

Gabbay [1979] studied a parallel problem shown in Figure

2.2.2, which consists of a set of serial structures, with

capacity constraints on every level assuming setup cost

and time are zero. The results illustrate that the

algorithm is based on very restrictive assumptions;

namely, each production item has to consume the same

production time on each machine to be produced on each

level. His algorithm does not provide a feasible solution

for some cases according to the above restricted

assumptions.

Zahorik et al. [1979] studied the parallel serial problem

with constraints on total throughput (bundle constraints)

assuming production costs are linear, i. e. setup costs

are zero. They illustrated that the problem is a network

problem when there are only three periods and when there

are restrictions on the location of the bundle

constraints. They used the three period results as the

basis of their heuristic.

11

N

Ramsay [1980] studied the capacity constraints at each
stage in a serial structure. He developed a branch and
bound procedure based on the Lagrangean relaxation

method. Results illustrated that the capacity relaxed
formulation generally results in lower bounds than the
integer linear programming solution, but the lagrangean

relaxation method embedded within the branch and bound

procedure does not give a feasible solution for some

problems.

Maxwell and Muckstadt [1985] examined the lot-sizing

problem with instantaneous production. They formulated

the problem according to the reorder intervals which are
the power of two multiples of a basic period rather than

lot-sizes and proposed a nested schedule as one for

which, if any stage produced in a given time period, then

so did the next stage in serial structure.

Billington et al. [1986] considered capacity constrained

multi-level parallel scheduling problems, with a

bottleneck which occurs at the final items. Their

formulation was based on Billington et al. [1983] except

that there was one capacity constrained work centre. They

eliminated inventory by substituting cumulative

production minus cumulative demand rather than using both

inventory (Iit) and production (Pit) variables. They

solved the problem using a branch and bound procedure

embedded within a Lagrangean relaxation method with a

simultaneous determination of lot-sizes, lead times, and

capacity utilisation plans. Although they involve setup

times in the formulation, they assumed the setup times to

be zero and the method provided by authors was complex.

However, their approach is particularly comprehensive and

it provided the inspiration for much of the work of this

thesis. The details of this approach will be given in

chapter 3.

12

x

Billington et al. [1988] discussed two different classes
of heuristics. The first class of heuristic, which is

called period-by-period, was based on the Lambrecht and
Vanderveken [1979], and the Dixon and Silver [1981]
heuristics. The second class of heuristic, which is

called the four-step algorithm, was based on the

Dogramaci et al. [1981] heuristic. The first class of
heuristic proceeds on a schedule period by period

starting with period 1. It determines the production lots

in each period. In addition to Eisenhut [1975] their

heuristic takes into account the varying demand and
feedback capability. The second class of heuristic starts

with a schedule using the Lot-for-Lot method for each
item. This heuristic, as opposed to the first one,

considers the whole period. They compared these two

classes of heuristic assuming all stages are constrained

by capacity and all demands are satisfied without
backlogging. They showed that the Dixon and Silver [1981]

heuristic was the most efficient heuristic for the

single-level lot-sizing problem which involves

determining the production quantities for a single part,

and also two level serial systems. The reason being that

it requires higher order polynomial time than the first

class of heuristic.

Hum [1988] examined a two product single stage bottleneck

facility in a serial system under different assumptions

which are; (i) no bound on demand, (ii) lower bound on

the demand, (iii) lower and upper bound on demand. The

basic idea in this research was to generate some insights

to the integrated mix planning, lot-sizing problem. He

restricted his research first to the common cycle

approach in which each product is manufactured once only

in each cycle, then extended this research to allow for

multiple stages.

13

Maes and Wassenhove [1991] considered capacitated lot-

sizing problems in a parallel structure under dynamic
demand conditions. They extended their research [1986] to

multi-level lot-sizing problems. They investigated

several conventional cost approaches introduced in

Blackburn and Millen [1984] and showed that the k-branch

and bound method is capacity sensitive and performs
better than the other heuristics.

2.2.2. Non Serial Lot-Sizing Systems

In this section two different sets of product structure
literature will be reviewed. They are: Assembly product

structure, which may have only one successor and more
than one predecessors; and general product structure,

which may have more than one successor and predecessor.

Figure 2.2.3 and 2.2.4 illustrate these production

structures.

Crowston et al. [1972] illustrate the integer multiple
ideas which are appropriate for the assembly systems

where each part may have many predecessors but only one

successor. They recommend three heuristic routines and a

dynamic programming algorithm to find the integer

multipliers. They assumed constant demand, that is the

demand at any period is assumed equal to the average of

the (assumed) known demands for all periods under

consideration. Crowston et al. [1973] established that

optimum lot-size must be an integer multiple of its

successor items at each stage. They illustrated that the

time required to solve this problem increases linearly

with the number of stages and exponentially with the

number of time periods. Their algorithm is quite complex

from the point of view of computation and capacity

constraints are not included.

14

Blackburn and Millen [1979a, 1979b] tested several lot-

sizing methods without capacity constraints. Blackburn

and Millen [1982] classified lot-sizing methods into two

main groups: (i) analytical methods which provide an

optimal solution to the problem, (ii) heuristic methods

which provide an optimal or near optimal solution to the

problem. They then tested some of the existing lot-sizing

heuristics which yield good cost performance for assembly

systems. The results illustrate that if the cost
information is passed from one level to successor level,

the cost performance could have improved.

Figure 2.2. Different Product Types

1. Serial Product Structure: Single product, produced in
a series of steps.

5! ºI 4! CI 3! I 2! 1

Raw Intermediate Final
Materials Items Items

2. Parallel Product Structure: A collection of serial
structures.

15

Raw Intermediate Final
Materials Items Items

3. Assembly Product Structure: A product made by a
complex assembly process.

4. General Product Structure: Commonality of components.

The cost performance is measured by the sum of the

holding and inventory cost over the planning horizon.

They tested several cost performance heuristics, but did

not allow capacity constraints in their research. A later

paper of Blackburn and Millen [1984] allowed the constant

capacity constraints at each level to make lot-sizing

decisions in a Material Requirements Planning (MRP)

environment. This research is based on McLaren [1977].

They formulated the problem to minimise the sum of setup

and holding costs in the following way (adapted from

Blackburn and Millen [1984])

Minimise ýN
Sj hjDjnP (j) (kj-1)

] (P) [+
j=1 nj 2

16

Raw Intermediate Final
Materials Items Items

Raw Intermediate Final
Materials Items Items

N

Subject to

nj = kjfl (j)

nj <_ Vj/Dj

j= 2,..., N

j= 1, ..., M

nj, kj >_ 1 and integer

Where sj is the setup cost at stage j, hj holding cost at

stage j and Vj is the system capacity at stage j, Dj is

the demand per period, p (j) is the single immediate

successor stage (or parent) of stage j, nj is the order
interval for stage j where np(1) = 1, kj values are the

number of orders at stage j. The kj values can be

determined with different approaches. They are: (i)

Unmodified Costs (UM), (ii) k-Continuous Constrained

(kCC), (iii) k-Branch and Bound (kBB), and (iv) k-Branch

and Bound Percent (kBB%). The first one tackles the

problem with the actual setup and holding costs not

attempting to taking into account any relations between

stages. This approach is only used to make a comparison

with other revised cost approaches. The kj values in the

kCC approach are found using differential calculus

starting with the lowest stages. After finding the kj

values, the revised costs are calculated and applied to

the next highest stages. The capacity constraint is

ignored in this approach. The kj values are calculated

simultaneously by using branch and bound (kBB) and are

used to calculate the revised costs in respect to the

cost results. The capacity constraints are included

independently for each item in this approach. In the k-

Branch and Bound % approach, the capacity is included as

a percentage of total demand. They recommended the

Wagner-Whitin and k-branch and bound procedure due to

their superiority to others. This is a complex approach.

Blackburn and Millen (1985] compared several lot-sizing

methods combining the four cost modification procedure

17

for single stage lot-sizing problem. They concluded that
the combination method which is used with the cost
modification procedures yields better results than the

unmodified approaches. Their heuristics are only valid
for one end item problems and the combination of these

cost performance heuristics with other lot-sizing

heuristics is quite complex in accordance with the

computation time.

Steinberg and Napier [1980] formulated the lot-sizing

problem as a network problem including commonality in the

product structure. They assumed all lead times as one

period. Therefore the results do not guarantee a feasible

solution because the capacity constraint is not

significant. They proposed a mixed integer linear

programming which is applicable for small problems.

Karni and Roll [1982] propose a heuristic for the

assembly structure with capacity constraints. This

heuristic starts with the Wagner-Whitin algorithm which

is based on searching for a lower bound in conjunction

with the sum of setup and holding costs for each item

whilst ignoring the capacity constraint in the first

stage. Their heuristic secures the feasibility condition

and improves the feasible solution until no improvement

can be made. The results are compared with an exact mixed

integer programming model. This heuristic is, however,

not applicable for large problems.

Billington et al. [1983] presented a mathematical

programming approach to capacity constrained multi-level

problems. Then they introduced Product Structure

Compression as a method to reduce the problem size. The

same problem is solved via a Lagrangean relaxation method

using the subgradient optimization technique which

provides lower bounds to the problem posed by Trigeiro et

al. [1989]. They involved setup time in the formulation

18

and showed that it was difficult to solve the problem
with large setup costs.

Bahl and Ritzman [1984] proposed a heuristic procedure
for multi-item lot-sizing problems with capacity

constraints. Their heuristic is based on combining the

Manne's [1958] formulation with the fixed order
techniques. They allow the regular or overtime to alter

capacity. Their heuristic only considers T cyclical

production sequences. When the problem size is increased

it takes substantial CPU time to solve the problem.

Afentakis et al. [1984] presented a linear transformation

of the general mixed integer programming formulation, and
illustrated that the lot-sizing problem can be

reformulated using echelon costs. The Lagrangean and

subgradient optimisation techniques are used to develop

lower bounds to the optimal solution. These bounds are

incurred in a special branch and bound procedure. Their

method is only suitable for the assembly structure.

Afentakis and Gavish [1986] extended the same problem to

tackle a complex product structure with multiple end

items using the same techniques. Their approach can

generate tight lower bounds for the problems. They did

not include the capacity constraints in either models.

Their method is again complex and requires a lot of

computational time. A later paper by Afentakis [1987]

proposed a parallel heuristic, which is a generalisation

of the single-stage Wagner-Whitin algorithm, to optimise

all stages individually for assembly structure. This

optimisation is done in the forward fashion. The

procedure means that the one period problem is solved,

then the two period problem, and so on until the last

period is reached. The disadvantage of this heuristic is

that when the number of periods and stages is increased,

the solution to the problem becomes more complex because

19

there are 2n-1 alternative plans for each period.
Afentakis does not allow for the capacity constraints.

Rosenblatt [1985] compared two replenishment problem
policies which are: the Fixed Cycle and the Basic Cycle

policy. The Fixed Cycle policy is solved using a dynamic

approach to find the fixed intervals in the planning

period. In this case optimal combinations are found by

dividing the items into groups and then finding the

optimal cycle time for each group, whereas the Basic

Cycle policy uses a heuristic to divide the items into

only two groups. This approach is usually applied in

cases where the ordering cost is of the first order
interaction. Although the Basic Cycle approach is very

efficient computationally, it is dependent on the data

set. Hence they did not derive any conclusions. These

policies have been applied to the case when items have

dependent demand.

McClain et al. [1985] propose a Cyclic Schedule, which is

a repeating production pattern, for the multi-stage

assembly systems using power-of-two multiples between

stages. Such a schedule prevents the occurrence of

bottleneck(s). The cycles are based on Economic Order

Quantity (EOQ) analysis which is applicable for steady

demands.

Thizy and Wassenhove [1985] developed a method based on

Lagrangean relaxation multipliers to get the lower bounds

for the multi-item capacitated lot-sizing problem. The

proposed method is complex and requires substantial

computer time.

Fogerty and Barringer [1988] propose a method analogous

to the Wagner-Whitin and the Baringer and Fogarty [1987]

heuristics. Capacity constraint is not included in their

research. They use a tableau approach and include

20

marginal setup costs in the minor ordering costs for each
product.

Eftekharzadeh [1988] proposed two new heuristics which
are: the Selective Enumeration heuristic which is a
modification of the multi-stage uncapacitated lot-sizing

procedure; and the Modified Per Period heuristic which is
the modification of the Lot-for-Lot (LfL) heuristic. The

results are compared with the mixed integer programming
solution. His Selective Enumeration heuristic is similar
to the Karni et al. [1982] and Afentakis [1987] heuristic

except that he allows for a capacity constraint in stage
1 and also his heuristic uses the shortest path method

rather than the Wagner-Whitin algorithm. His algorithm
takes substantial computational time and hence it is not

applicable for large problems. More discussion will be

given in chapter 7 to compare his heuristic to the ones

which will be proposed in this thesis.

Atkins and Iyogun [1988] extended the well known Silver-

Meal heuristic for multi-product dynamic lot-size

problems. This heuristic provides a lower bound obtained
from decomposing the problem into single item problems. A

later paper (Iyogun [1991]) improved the research of

Atkins and Iyogun using Silver-Meal which combines

production into lots for several periods as long as

average cost keeps decreasing for several periods and a

Part Period Balancing heuristic which minimises the

absolute differences between the setup and holding cost

until the next setup.

McClain et al. [19891 present a decomposition approach to

solve large scale LP problems for multi-stage production

scheduling problems with capacity constraints. They did

not include setup time or setup costs, therefore the

problem is reasonably easy to solve. They show that the

decomposition approach is faster than LP. They allow

21

overtime to balance the capacity usage because of excess
production.

Maes et al. [1991) developed a few rounding heuristics,
starting with the LP solution, for the capacitated multi-
level lot-sizing problem. They reported that although the
partial branch and bound procedure yields best results in
comparison to the others, it requires very large CPU
time.

Gupta and Keung [1990] reviewed the heuristic literature
for single-stage and multi-stage lot-sizing problems,
then they showed the rolling schedule effects in making
the schedules. They conclude by classifying the existing
heuristic literature for product structures into (i)

series, (ii) assembly, (iii) arborescent, (vi) general
network. Bahl et al. [1987] categorise the current
literature into single-level and multi-level production

problems. These categories are restricted by

unconstrained and constrained production problems. They

assessed these categories on the basis of the

computational effort, generalization, optimality,

simplicity, and testing of the proposed heuristic . On

the other hand Goyal and Gunesakaran [1990] classified
the multi-stage production inventory system used into (i)

the system configuration; (ii) the objectives considered;
(iii) the techniques used for modelling and solutions as

criteria to access the model. (i) In the system

configurations single-product or multi-product problems,

with single or multiple machines for multi-stage systems,

were reviewed. (ii) Among the objectives considered

were: - the determination of the economic production

quantity and start up and shut down schedules for the

systems, the estimation of production efficiency, and the

determination of optimal inventory levels. (iii) In the

modelling and solution techniques; conventional average

cost models, linear or integer programming models,

22

queueing models, network models,

models, models based on branch

heuristic models and simulation
Both reviews are very broad.

2.3. Summary

dynamic programming,

and bound methods,

models were reviewed.

In this chapter the research and literature review were

organised according to the type of product structure and
to the computation time, ie whether a system takes

substantial computation time or not, using heuristics or

methods, for capacitated and non-capacitated problems.

Lot-sizing heuristics were defined whenever they were

mentioned in the text rather than as sub-sections.

23

CHAPTER 3

BACKGROUND WORK

3.1. Introduction

This chapter will consider in great detail the work
described in Billington et al. [1986]. As was mentioned
in the previous chapter this paper provided a very

comprehensive treatment of the interaction between

production scheduling and lot-sizing and produced some
definitive results. The problem formulation used by these

authors will be discussed in section 3.3, but to

introduce the area a review of Material Requirements

Planning (MRP) work will be given first.

3.2. Material Requirements Planning

Material Requirements Planning (MRP) is a computerized
information system which determines the requirements for

parts and components in multi-level multi-product

production planning environments. The MRP works according

to the following logic: it takes a discrete production

plan for a parent item from the master production system,

explodes the parent item's requirements into component

items and raw materials, calculates the net requirements

subtracting the available inventory from the gross

requirements, then calculates the lot-sizes for all items

at each stage, and finally offsets the lead times

according to their due dates. Hence, the MRP system

controls both the material control and planning at the

same time. The main reference for this field is Orlicky

[19751

24

MRP includes three major categories, which are: (i)
Master Production Schedules (MPS), which is the input for
the MRP systems, i. e. to determine the quantity and
timing for each item to be produced, (ii) Bill of
Material (BOM) which provides the whole information about
components and end items within the hierarchical levels,

which goes into that end product for the MRP, such as
their sequence, their quantity in each finished item, and
the work centres to be used to produce the items, (iii)

Inventory Status File, which is also called the record
file, which is to provide up-to-date information for each
item. It involves an identification number, available

quantity and procurement lead time of each item (see Adam

and Ebert [1989]). The outputs of the MRP system are the

order release requirements, order rescheduling, and

planned orders. According to these outputs, the

production planner can meet the material requirements

within the capacity and lead time context.

Adam and Ebert [1989] classified the intention of MRP

systems as follows: the reduction of inventory

requirements, the reduction of production lead times and

delivery lead times to customers, realistic delivery

commitments to customers , and finally the incrementation

of operating efficiency. But it fails when unpredictable

lead times, work centres with limited capacity,

unpredictable external demand for parts, defective items

are involved in the system. MRP systems usually assume

that there is no capacity constraint (see Zangwill

[1966], Florian and Klein [1971], Afentakis et al.

[1984]. Afentakis and Gavish [1986], Blackburn and Millen

[1979]) so that they proceed according to infinite

loading where it is assumed any production amount is

possible on each facility. Infinite loading has been

studied by many authors such as Wagner and Whitin [1958],

Silver and Meal [1973], Berry [19721, Fogerty and

Barringer [1988] and so on. Some systems use finite

25

loading by loading the facility up to capacity. McClain

et al. [1989] showed how to accomplish finite loading

using a linear programming approach. They allowed
overtime to avoid difficulties of the bottleneck but they
did not include the setup cost and time.

There are two types of MRP. They are: the regenerative
and the net change approaches. In the regenerative
approach, the available plan must be changed whenever
there is a change in the master production schedule or
inventory status file (such as revised lead times) . When
this change occurs, the regenerative approach restarts
the planning from the beginning of the period. This is

controlled by short period intervals, often weekly or

monthly. On the other hand, whenever there is an

unexpected event the net change approach proceeds only
for those parts which are affected. The regenerative

approach is well suited to a stable environment, because

it is checked more often. Conversely, the net change

approach could need more computer access, because it is

controlled by a daily basis or even more frequently.

Maxwell et al. [1983] pointed out there is no model which

can solve the entire manufacturing management problem and

classified the main aspects of the production problem

which must be dealt with ' (1) manufacturing processes

with several stages of manufacture, common items, and so

on, (2) dynamic lead times that depend on the state of

the system, (3) capacity limitations at multiple

locations, (4) uncertainty of supply and demand, and (5)

allowing for setup as well as setup cost. ' They also

discussed the important aspects of the production

planning and control process in existing literature, and

proposed a comprehensive modelling framework. They do not

propose detailed models, but they illustrate what models

are required based on assembly product structure.

26

McClelland et al. [1988] discuss the effect of the MRP
environment and point out that MRP is unsuitable for the
real life problem in terms of variability of an end item
demand, production times, production capacities and
purchasing lead times. They compare the performance of
production order quantity (POQ) , Lot-for-Lot (LfL) and
economic order quantity (EOQ) lot-sizing techniques in
terms of inventory costs and customer services.

Chae [1988] noted that the available MRP literature does

not give a definitive recommendation on ' (1) how to
develop the production schedule, (2) how to preselect
each item's lot-sizing policy, and (3) how to revise the

production schedule and material requirements plan,

recognizing capacity and sequencing constraints' and

proposed a heuristic lot-sizing/scheduling methodology of

a multi-stage capacitated production system by using load

families. The production plan would be more efficient if

it involves the above recommendations.

Having explained the deficiencies of the MRP technicrue.

the integer programming formulation

which is adopted from Billington et

given in the next section.

in MRP environment,

al. [1986], will be

3.3. Integer Programming Formulation of Problem

The work of Billington et al. [1986] provides a

definitive treatment of types of lot-sizing problems. The

consideration of these and suggestions for their solution

will form the major part of this thesis. For the lot-

sizing problem a bottleneck will be defined as follows. A

bottleneck is a work centre which converts raw materials

into finished goods through the use of resources in the

manufacturing process. Therefore a machine with limited

capacity, highly skilled or specialised workers, and

task-specific machines or tools can all be seen to be

27

bottlenecks under this definition. All the resources

could be classified into a bottleneck. A situation when
the work centre capacity is not enough to satisfy the

demands for some periods will be subject of this thesis.

A general product structure with a bottleneck facility is

given in Figure 3.1. (from Billington et al. [1986]).

Although this figure seems to be different from the

Figure 2.2.4, both figures merely show different

production steps within examples of general structures.

Figure 3.1 is more elaborate than Figure 2.2.4.

II

Figure 3.1. A General Product Structure with a Bottleneck

Facility (The Bottleneck facility is shown by the dashed

lines).

The numbers in Figure 3.1. illustrate the production

items and the arrows depict the production steps. Items

13-18 are purchased items which are used to make

28

1_1

Purchased Intermediate End
Items Items items

intermediate items, e. g. item 13 is used to make item 8,
item 14 to make item 9,..., item 18 to make item 12. Items
5-7 are also intermediate items, with items 9 and 15
being required to make item 5, item 10 to make item 6,
item 11 and item 12 being required to make item 7.

Finally items 1 and 2 are end items, which are the final

products of the process.

The general product structure, as was illustrated in

Figure 2.2., can be split into a number of special cases:
(1) assembly (no commonality), (2) serial (one item,

multi-stage) (3) parallel (a collection of serial

structures in which several items must go through the

same production steps. Each item can be treated

independently without a limit on resources.), (4) single-

stage multi-item. This thesis will concentrate on the

case of a parallel structure.

As will be seen from the numbering system in Figure 3.1,

no item has a higher number than any of its predecessors.

It is an a priori assumption that items in the bottleneck

facility do not have predecessors (although this

assumption can be relaxed for the subsequent heuristic

approach). It can be seen that batching demands on

product setups can result in capacity problems and also

affect predecessor items since the batches are passed

through as dependent demands. Because capacity

utilisation varies through time, costs may not be

constant.

3.3.1. Assumptions

The following assumptions provide a number of different

variations for multi-level lot-sizing problems.

1. All lead times between stages are assumed to be

zero,

29

2. Demand for the multiple end items are assumed
known and at constant known rate per year,

3. There is no demand for the components at any
intermediate stages,

4. Back orders are not allowed,
5. The number of units coming from bill of material

required in the production of one unit at the
immediate successor stage to the other stage is

assumed to be equal to one,
6. Each item has only one successor and one

predecessor,

7. The unit production costs are assumed constant and
hence are ignored,

8. Production must occur in advance of that demand,
9. Once an item is produced, it remains in inventory

for the whole planning horizon, i. e. inventory is

not perishable,

10. Initial inventory is zero.

Note: These are also the assumptions used by Billington

et al. [1986]. Their consequences will be discussed as

appropriate later in the thesis.

3.3.2. Notations

aij = The quantity of product i needed per unit of

production of product j; aij =0 for all i<j,

bi = Time needed on the bottleneck facility for the

production of product i, and bi =0 if there is no

production on the bottleneck facility,

capt = Units of time available at the work centre,

csi = Setup cost for product i (following the assumption

made by Billington et al. [1986], for consistency,

the possibility of " carrying over "a setup from

one period to another is not allowed).

30

dit = External (independent) demand for product i
during time t, and there is no demand for the
intermediate items,

hi = Holding cost for product i,

Iit = Final inventory level of product i in period t,
li = Lead time, which is the unavoidable time from the

time the order placed until it is available, for

product i. This could be because of the time taken
by a vendor to deliver a product, or could be a
non production lag,

N= Number of products,
Pit = Units of i produced in period t,
Si = Setup time for the work centre for product i. This

takes the value zero for all items except those

made on the work centre. This can also include

processing time which is not related to the size

of batch as in some heating operations,
T= Total number of periods,
Xit = Production indicator; equal to 1 if Pit >0 and

zero otherwise.

3.3.3. Mathematical Model

The aim of this model is to provide the lot-sizes which

minimise the total inventory and setup cost along the

planning horizon for all parts in the product structure

when there is a bottleneck(s). The lot-sizes are

constrained to meet demand for each period at least. In

the formulation below inventory is eliminated by

substituting cumulative production minus cumulative

demand, and it is derived from a model in Billington et

al. [1983].

31

Formulation

Minimise:

NT
Y hi

i=1 t=1
(T -t+ 1) Pit + csi Xit

In this equation, production cost, which decreases

linearly with time, is included as an inventory cost. The

objective function in an integer programming problem

generally includes the labour cost but in our case it is

ignored because the labour cost is fixed. In general, the

setup time and setup cost are very critical factors in

production scheduling problems. When they drop from the

formulation, the problem becomes a linear programming

relaxation problem and is easily solved, otherwise

integer programming may not give the feasible solution

for some problems and takes substantial CPU time. The

idea for this objective function is to find a tradeoff

between the holding and setup cost which minimises the

total cost. Sequencing to produce items is not included

in this model.

Subject to:

ttt I[aij 2jn I ý! L din Iio i=1,..., N

n=1 j=1 n=1 t=1, ... ,T

This constraint illustrates that available production

after subtracting the requirements is greater than or

equal to the external demand by eliminating the inventory

in the planning horizon. This equation shows that the

production must be available at least n-li, where li is

the lead time, time periods before required. The second

32

summation before the inequality illustrates the
interrelation between the successor and predecessor items
(sometimes called father-child relations).

N
bipit + sixit Iý capt

i=1
t=1, ... ,T

This constraint is the capacity constraint for the
bottleneck facility. This equation depicts the restricted
case where the capacity is exceeded by demand for a
particular item in the current period.

Xit ={1
if Pit >0

0 otherwise
i=1 , ... ,N

This constraint shows setup cost and time are applicable

only if there is a production. The non-negativity

constraint is illustrated below.

Pit 2: 0 i=1,
..., N and t=1, ..., T

The above formulation is the integer programming

formulation when there is one capacity constrained work

centre.

Billington et al. [1986] present a price-directed

approach, which is based on Lagrangean relaxation

embedded within a branch and bound procedure, for the

multi-level lot-sizing problem with a bottleneck. The

solution method in their research is the branch and bound

method with heuristics. They propose two solution phases

which are dual and primal procedures. They define a

33

subproblem by assigning a fixed value to some Xit values
at any node in the branch. They solve this problem using
a Lagrangean heuristic, which relaxes all the capacity
and all inventory balanced constraints for the production
lot-sizes and a smoothing method is used to adjust the

production in a primal phase. They report that this

procedure yields a schedule which is difficult to obtain
in a MRP environment. Then their procedure extends the

primal phase to a dual phase which yields modified setup

costs and production in each period. The aim of these two

phases is to discourage production on the bottleneck

facility and also improve the capability of decision

making of level-by-level lot-sizing routines. The primal

phase is repeated with the modified prices, which are
found in the dual phase, until a good solution is

reached. Subgradient optimization and a heuristic which
is based on duality theory are used to force production

decisions to more closly satisfy the constraints in the

dual phase. This heuristic which is mentioned in

Billington et al. [1986] is complex and will not be dealt

with in this thesis.

In particular Billington

the three problem types:

end-items and restricted

et al. [1986] concentrated on

1-end-item, 3-end-item, and 5-

these items so that they were

the only ones affected by the bottleneck. In the

computational testing N has maximum value 25 and T has

maximum value 12, the values chosen in the work of

Billington et al. [1986].

3.4. Summary

In this chapter the M RP environment and its deficiencies

was discussed. The integer programming formulation which

was adopted by Billington et al. [1986] was also

illustrated. Finally the derivation of Economic Order

Quantity from the integer programming formulation to use

34

for the non-bottleneck items in the next chapter will be

depicted.

Appendix

Derivation of EOQ

Essentially Billington et al. [1986] uses the objective

of total cost for each product (i).

Let the total cost for item i be TCi

TT
TCi =I csi Xit +Y Pit (T -t+ 1) hi

t=1 t=1

Assume that total demand = total supply

therefore I Pit =I Dit for each i (= D, say)
tt

Let Qi be EOQ of product i (use Q from now on)

D
Number of setups =

Q

DCSi

therefore total setup cost =
Q

QT

time between setups =
D

therefore holding cost

35

QT 2QT
= QThi +Q (T -) hi +Q (T -) hi +

DD

3QT
Q (T -) hi +... +Q (T -

D

(D-Q) T
) hi

D

Q 2Q 3Q D-Q
= QThi [1 + (1 -)+ (1 -)+ (1 -)+.. + (1-)]

DDDD

Q 2Q 3Q D-Q
= QThi [1 +1+... - ---.. - ()]

DDDD

In this parenthesis there are D/Q terms in the first

section and (D / Q-1) terms in the second section. The

second section is an arithmetic progression. As the sum

of (1 +2+3... + n) is equal to

n
S= (2a + (n - 1) d)

G

where a is the first term, d is the common difference,

and n is the number of terms, then the expression in

parenthesis is

1D2DQ
s= (-1) {+(-2) }

2QDQD

1 D
s= (-1)

2 Q

therefore holding cost

36

D1D
= QThi [-(-1

Q2Q

Total cost of setup and holding = TC

Dcsi D1D
_+ QThi [-{- 1}]

QQ2Q

Differentiating with respect to Q;

dTC Dcsi Thi
_-+

dQ Q2 2

Equating this statement to zero to obtain the minimum

cost gives:

* Minimum cost batch size
2Dcsi

=Q=V
Thi

D
but the average demand per period is

T

therefore Q*
2dcsi

=V
hi

where d is average demand per period.

37

CHAPTER 4

A HEURISTIC FOR MULTI-LEVEL LOT-SIZING
PROBLEMS WITH BOTTLENECK(S)

4.1. Purpose of Thesis

The intention of this thesis is to:

A. Propose and evaluate a simple heuristic for the

model of section 3.3 (multi-level lot-sizing

problem with bottleneck) as an alternative to the

approach of Billington et al. [1986]. This will

form chapter 4.

B. To show how the model of section 3.3 can be

extended to incorporate multiple bottlenecks. This

will be included in chapter 4.

C. To show how the model of section 3.3 can be used

on a rolling schedule environment. This will form

chapter 5.

D. Provide the results and discussions of chapters 4

and 5. This will form chapter 6.

E. To show how the heuristic can be applied to the

assembly structure. This will form chapter 7.

F. Finally, the conclusion and suggestions for future

work will form chapter 8.

38

4.2. Introduction

Previous methods to solve the multi-level lot-sizing

problem where there is a bottleneck have formulated the

problem as an integer programming problem and solved the

problem using Lagrangean relaxation embedded within the
branch and bound procedure. In this chapter, which is

summarised in Toklu and Wilson [1991], Toklu and Wilson
[1991] and Toklu and Wilson [1992] (included in Appendix

E), it is suggested that items to be produced should be

grouped into two types and a simple but efficient
heuristic can then be used to determine the production

quantities required in each case. This will form section
4.4 but first the problem area will be explained in

section 4.3. Then this heuristic will be extended in

section 4.5 for the multiple bottleneck cases, and

sensitivity analysis will be investigated in section 4.6.

Finally the conclusion will be given in section 4.7.

4.3. Problem Area

The primary aim of production planning models in the

literature was dependent on satisfying the external

demands. Lot-sizing problems become more realistic if

they involve capacity constraints and if they are

incorporated in multi-level systems. Capacitated lot-

sizing problems in the literature (see Billington et al.

[1988]. Florian and Klein [1971], Garey and Johnson

[1979]) are known to be NP-hard problems which means that

a given problem cannot be solved in a polynomial time.

The problem is hard because optimal solution techniques

are unable to solve the problems within reasonable

computation times. Garey and Johnson [1979] report '... In

its broadest sense, the notion of efficiency involves all

the various computing resources needed for executing an

algorithm. However, by the most efficient algorithm one

normally means the fastest. Since time requirements are

39

often a dominant factor determining whether or not a
particular algorithm is efficient enough to be useful in

practice... '. As a result of computation difficulties,
the effort in this chapter is directed to use effective
heuristic approaches to those capacitated problems.
Available capacity sometimes may not be enough to meet
the external demands because of the shortage of tools,

shortage of skilled operators or more demand than the

system capacity. Thus, all these instances may cause a
bottleneck problem which is the most awkward part in the

manufacturing environment.

The product structure with a single bottleneck facility
for the five-end-item problem is illustrated in Figure
5.3. As will be seen from the product structure there is

no commonality between items and each predecessor has to

be the input to one successor stage. This product

structure is the special case of the general product

structure and is called a Parallel Product Structure.

4.4. Simple Heuristic for Multi-Level Lot-Sizing

Problem with a Bottleneck

Lot-Sizing in MRP only becomes realistic when features

such as capacity constraints and the fact that systems

are multi-level can be incorporated into the model.

Blackburn and Millen [1982] review and add to

contributions made to this area. Their work provides for

simultaneous lot-sizing and capacity requirements

planning in an MRP framework. However, one of the most

succesful attempts to tackle the multilevel lot-sizing

problem with a bottleneck constraint has been by

Billington et al. [1986]. This chapter will propose a

simple heuristic approach to solve the problem modelled

by Billington et al. [1986] and show that if the items

for production are categorised into

40

(a) end-items, constrained by the bottleneck

(b) non-end-items, unconstrained

then two simple procedures can be used independently, one
for each category of product item, to determine the

production levels of each product item. The reason for

this categorisation into two groups will be explained
later in this section. Solutions will be sub-optimal but

of adequate quality and are easy to obtain. The method to

be proposed requires only a fraction of the computation

required for solution of the integer programming
formulation of the lot-sizing problem. In addition the

heuristic is easy to implement and program when compared

to the Lagrangean heuristic approach of Billington et al.

[1986] and should require much less computer time and

have more practical appeal in a realistic setting.

The heuristic operates by first dividing production items

into end-items and non-end-items. The reason for this is

that production of each non-end item is unconstrained and

so has neither any effect on the production of any other

non-end-item nor on the production of the product items

which are constrained by the bottleneck. As demand

required of all product items is known in advance, the

production decision for each non-end-item becomes a

relatively simple one of when to produce in order to

minimise the contribution to costs (from holding and

setup costs) of each non-end-item. The fact that demand

for end-items determines the demand for intermediate

product items does not invalidate the independence of

production of each product item as demand for end-items

is known several periods in advance. The extension to

dependent product item cases for different product

structures is an area for further research. The problem

of determining when to produce end-items is more complex

as these product items must share the resources of the

bottleneck. Thus for these product items the production

41

problem is a constrained problem. However, in general
these product items are in the minority.

Define Sit as stock of product i at start of period t

t-1
then Sit =I(Pin - din

n=1

4.4.1 Non-end-items

For these product items the EOQ and Silver-Meal

approaches will be used. These approaches were chosen as

they are comparatively simple to operate and in general

will produce solutions of good quality.

4.4.1.1. The Economic Order Quantity Approach (EOQ)

Let Qi be the EOQ for product item i, based on setup cost

csi and holding cost hi. Then the following strategies

are considered:

(a) Produce Qi

in the period when

production were made

that Sit < dit)

in period 1 and then next produce Qi

stocks would become negative if no

(ie find the next smallest t such

Let ti be the number of occasions on which product item i

will be produced. Then

T
ti =[E dit / Qi + 0.5]

n=1

and production is made in any period n whenever Sin <

din"

Note that [] is the integer part function.

42

If in any period n

TT
Qi ý dit - Sin then set Qi =I dit sin

t=n t=n

(b) Let Zi be the quantity of product item i

produced in period 1. The same quantity is next produced
whenever stocks would become negative if no production
were made (ie when Sin < din)"

T

Zi= (Edit) /ti
t=1

Continue this process through all the periods.

(c) Produce all product items in period 1.

Strategies (a), (b), and (c) are evaluated to see which
leads to the smallest total inventory cost over the N

periods and then that strategy is chosen.

4.4.1.2 The Silver-Meal Approach (SM)

This approach selects the lot-size which covers the

number of periods to minimise the total cost per period.

The average total cost function of this heuristic is

given as:

Average total Cost = {csi
T

+ hi I (t - 1) dit }/t
t=1

and chooses the smallest period t whenever the average

total cost is greater than the immediate previous

period's cost (ie the average total cost of (t) > the

average total cost of (t - 1)). Then the lot-size equals;

43

N

Qi=Idit
t=1

where i is the product item's number. This heuristic is

chosen in this chapter in comparison with the EOQ

heuristic for the non-end-items because it is very

effective for varying demand cases.

4.4.2 End-items

For these product items a simple heuristic was adopted

which would adopt a greedy approach to production by

having few setups, but with heavy utilization of the

resultant production capacity. In addition, the heuristic

would operate in a cyclic manner, moving between product

items or sets of product items in turn to produce

reasonably smooth production. The approach has broad

similarities with the work of Mclain and Trigerio [1985]

except that by excluding setup time and cost they handle

a problem that is easier to solve. Bahl and Ritzman

[1984] also adopt a cyclic approach but do so by

examining permutation schedules.

The heuristic will be described with reference to three

cases.

Case (a) 1-end-item problems

Produce as much of end-item i as capt will allow in

period 1, i. e. set Pil = cap,, then next produce product

item i when stocks would become negative if no production

were made, i. e. find the next smallest t for which Sit <

dit. Continue the process of producing in each period t

which has this property.

44

T
If Pin would exceed Y, dit for any period n

t=n

T
then set Pin =I dit

t=n

Case (b) 3-end-item problems

A three period cycle is adopted.

Period 1 Set P21 = d21 " P31 = d31 and P11 = cap, - d21

-d31 "

Period 2 Set P32 = d32 , P12 =0 and P22 = cap2 -d32
provided S12 > d12
Otherwise set P12 = d12 + d13 - S12,

P32 = d32 and P22 = cap2 - P12 - P32.

Period 3 Set P33 = cap3 and 213 = P23 =0 provided S13 >

d13 and S23 > d23. Otherwise set P13 = d13 -
S13, P23 = d23 + d24 - S23 and 233 = cap3 - P13

- P23 "

Period 4 Set P14 = capo provided S24 > d24 and S34>d34

Period 5 Set P25 = cap5 provided S15 > d15 and S35>d35

Period 6 Set P36 = cap6 provided S16 > d16 and S26>d26 .

Again, if stocks of any product item would become

negative, produce sufficient of that product item to

satisfy demand over the next one or more periods until

that product item moves into the dominant production

position. The product in the dominant production position

is the product for which as much as possible should be

45

produced after ensuring stocks of other products do not
become negative. In the above heuristic product 1 is in

the dominant production position in period 1, product 2

is in the dominant production position in period 2 and

product 3 is in the dominant production position in

period 3. Whenever the stocks of any product would become

negative, produce as much of that product item to satisfy

the demands according to their priority.

Continue the process in the same cyclic manner for the

remaining periods. If at any stage stocks of all products

are sufficient for production to be zero in any period,

no production is made in that period and the cycle for

the appropriate product is delayed by one period.

The priority allocation using simply the order of the

data as used by Billington et al. [1986] was chosen as a

basis for the thesis results. Although there is no reason

to believe that this priority allocation is better than

any of the alternative priority allocations, there is no

reason to believe that the results would by changed or

improved substantially by using an alternative priority

allocation. Intensive testing of other priority

allocations was performed using criteria such as

(a) Largest total demand first

(b) Most variable demand first .

Testing revealed only small differences in the results

compared to the results presented in Tables 4.6.1-4.6.21

which use simply the order of the data. Total costs were

neither consistently increased nor decreased by

considering priority allocations determined by (a) or

(b). However, a further examination of the performance of

the alternative priority allocations would provide an

interesting comparison for further research.

46

Note: on the sample data on which the heuristic was
tried, despite this data incorporating some highly

variable demand levels and production capacities, it was
found that none of the 'otherwise' type conditions listed

above ever applied.

Case (c) 5-end-item problems

In order to keep the heuristic simple, more complex cases

are now treated more in the style of Case (b). The set of
5 products is simplified by considering products in just

two sets rather than as 5 individual products. Here

products {1,2,3} are considered a set as are {4,5}. The

reason why the same priority allocation, as used in the

three-end-item problems, was not applied is that the

capacity was not enough to satisfy the demands for some

periods such as structure 3 with 95% capacity utilisation
in the five-end-item problem (this is a contradiction of

the "no stockouts" assumptions) . The same alternative

priority allocations, which were explained in the three-

end-item problem, were tested intensively in the

experimental studies, and it was found that there were no

significant cost differences between any of the other

priority allocations.

Let Pit = Pit + P2t + Pat, and P4t - '4t + P5t" Then the

two period cycle is adopted.

Period 1 Set P41 = d41 + d51, and P11 = cap, - P41"

Period 2 Set P12 =0 and P42 = cap2 provided S12 > d12

Otherwise set P12 = d12 + d13 S42, P42 = cap2

p12

Period 3 Set P13 = cap3 provided S43 > d43

Period 4 Set P44 = capo provided S14 > d14

47

Continue this process in the same procedure for the rest
of the periods in the same cyclical manner. If stocks are
sufficient for product in any stage, production will be

zero i. e. there is no production.

The two sets are now treated as single products and the

cyclical approach of case (b), modified to a two-period

cycle, is followed with the modification that when
production of a product set can be larger than demand in

that period, the production quantity is equal for each

product in the set.

Beside, the setup cost and the holding cost for the five-

end-item problem will be taken to be the average of the

combined items' setup and holding costs. Total inventory

cost is now the total of individual inventory costs

arising from the end-items and the non-end items.

4.5. A Heuristic for a Multi-Level Lot-Sizing Problem

with Multiple Bottleneck

The integer programming formulation for the multi-level

lot-sizing problem was given in section 3.3.3 for the

single bottleneck cases. The integer programming

formulation for the multiple bottleneck would be:

Minimise:

NT
Z= L hi

i=1 t=1

Subject to:

(T -t+ 1) Pit + csi Xit I

ttt II Pi, n-li
I aij Pjn]ýI din - Iio i=1,

... ,N
n=1 j=1 n=1 t=1, ... ,T

48

N
bit pit + sil Xit Iý capt t=1,..., T

i=1 1=1, ... ,M

xit ={
1

0

if Pit >0

otherwise
i=1 , ... ,N

Pit ý0 i=1,
..., N and t=1, ..., T

where bil is the time required on the bottleneck facility

1 for the production of product item i, and sil is the

setup time for the work centre 1 for product item i. The

rest of the notations are the same as explained in

chapter 3.

The objective of the integer programming problem was to

minimise the total cost whilst producing one or more

product (s) to satisfy demand (s) over the planning

periods.

13 10 741

14 11 852

15 12 963

Raw Intermediate Final
Materials Items Items

Figure 4.4. A parallel product structure with multiple

bottleneck facilities (the bottlenecks are shown by the

dashed lines).

49

The product structure for the three-end-item problem when

there are multiple bottleneck facilities is depicted in

Figure 4.4. Three parallel production lines are

illustrated horizontally and these end on the product

items, 1,2,3, and also the five stages are depicted

vertically in Figure 4.4.

As was mentioned earlier, the bottleneck could arise when

the work centre capacity is less than requirements. It is

assumed that there are bottlenecks, which cause

difficulty in satisfying the requirements in some

periods. In Figure 4.4 the bottlenecks lie in the centre

column and right hand column. The proposed heuristic for

the end-items which are constrained is the same as

explained in section 4.4, and the heuristic for the

constrained non-end-items is as follows (and is the same

as that discussed in section 4.4):

Period 1 Set P81 = d81 ' P91 = d91 and P71 = cap, - d81

-d91"

Period 2 Set P92 = d92 , P72 =0 and P82 = cap2 -d92

provided S72 > d72

Otherwise set P72 = d72 + d73 - S72,

P92 = d92 and P82 = cap2 - P72 - P92.

Period 3 Set P93 = cap3 and P73 = 283 =0 provided S73 >

d73 and S83 > d83. Otherwise set P73 = d73 -

S73, P83 = d83 + d84 - S83 and P93 = cap3 - P73

- 283

Period 4 Set P74 = capo provided S84 > d84 and S94>d94

Period 5 Set P85 = caps provided S75 > d75 and S95>d95 .

Period 6 Set P96 = cap6 provided S76 > d76 and S86>d86

50

Whenever stocks of any product item would become

negative, then produce as much of that product item for
the next one or more periods to satisfy the demands.

Different alternative priority allocations were tried to
test the heuristic in the experimental studies, but the

above heuristic using the chosen dominant production

positions (see section 4.4.2, case (b)) were applied.

For the unconstrained non-end-item problems, the EOQ and
Silver-Meal approaches are applied. The total cost is the

sum of the individual costs.

The proposed heuristic for the one- and five-end-item

problems with multiple bottlenecks was the same as was

explained in section 4.4 for the end-item(s) . It is used
for the constrained non-end-items with only one
difference, the numbers are changed. For example for the

one-end-item problem, production of product item 1 is

replaced by production of product item 3 where the second

bottleneck is located. Similarly for the five-end-item

problem, production of product items 1,2,3,4,5 is

replaced by production of product items 11,12,13,14,

15.

4.6. Sensitivity Analysis

In this section, sensitivity analysis is explained in an

example problem for the one-end-item problem. The data

used in Billington et al. [1986] was the demands for 12

periods (33,43,36,46,46,42,38,41,44,40,35,46),

holding costs (0.5,0.1,0.5,0.1,1.0), and setup cost

(300,200,200,500,400) for the different product

items. The same data is used to solve the problem by

reducing the setup and holding costs by 20% and 40%

respectively. The results are illustrated in Table 4.6.

51

Plossl and Obec [1967], and McClain and Thomas [1980]

reported that 'adjusting all Q* (Economic Order Quantity)

values upward until n (number of orders) drops to its

original value of 23.5 per year for the sample implies

82.1 orders per year, which is 3.49 times larger than the
desired value of 23.5. ' McClain and Thomas [1980] showed
that by multiplying all Q* (Economic Order Quantity) by
3.49 in their data set, a reduction of around 50% in the

total cost would be achieved with no change in the annual

ordering load, simply by ordering in proportion to the

EOQ. This calculation was dependent on the data sets.
Once the data set is changed, it is difficult to get the

same reduction. In this section reductions by 20% and
40%, respectively in the original holding and setup costs

were considered rather than changing the order quantity.

The results in Table 4.6 showed that any reduction or
increase in the original setup and holding costs, using

either the Economic Order Quantity or the Silver-Meal

approaches for the unconstrained product items with the

proposed heuristic for the constrained (bottleneck)

product items, give rise to a proportional

reduction/increase in the total cost.

Because of the assumptions in the lot-sizing heuristics

of uncertainty in demands, varying demands, varying costs

and unpredictable demands, it is worthwhile studying the

robustness property of the heuristic over the planning

horizon.

52

1

Table 4.6. Sensitivity analysis for one-end-item problem

Item Projected total cost Projected total cost
Us ing EOQ Using Silver-Meal

original 20% re. 40% re. original 20% re. 40% re.

1 3520.0 2816.0 2112.0 3520.0 2816.0 2112.0
2 788.0 630.4 472.8 937.4 749.9 562.4
3 2558.0 2046.4 1534.8 2546.0 2036.8 1527.6
4 1088.0 870.4 652.8 1088.0 870.4 652.8
5 5116.0 4092.8 3069.6 5092.0 4073.6 3055.2

4.7. Summary and Conclusion

The integer programming formulation for single- and

multiple bottleneck problems was solved by means of

software MGG [1987] and SCICONIC [1986] (discussed in

Appendix A), and the heuristic approach programmed in

Fortran 77 (included in Appendix C) as an alternative to

the integer programming. The data of Billington et al.
[1986] was used to test these problems. The heuristic and
integer programming results for multi-level lot-sizing

problems with a bottleneck are illustrated in Tables

4.6.1-4.6.9 as well as the results of the reduction of

the original costs by 20% and 40% respectively. In

conjunction with these results the graphs are given in

Graph 4.6.1-4.6.9. These graphs are organised to compare

the results according to the linear programming (LP),

integer programming solution (IP), heuristic solution for

the constrained product items with the Economic Order

Quantity (H1) and Silver-Meal (H2) approaches for the

unconstrained product items. In these graphs 50%, 75%,

and 95% of capacity utilisation are illustrated on the

horizontal axis, and current values, CPU time and

optimality are depicted on the vertical axis. In

53

addition, the results in Tables 4.6.10-4.6.12 show the
total costs when each of holding costs and setup costs
are reduced by 20% in turn. Different capacity
utilisations such as 60% and 80%, were used to test the
heuristic and the results are shown in Tables 4.6.13-
4.6.18. The results in Tables 4.6.19-4.6.21 show the

multiple bottleneck problem with the integer programming

solution and the heuristic solutions. The graphs for the

multiple bottleneck solutions are illustrated in Graph
4.6.10-4.6.12. On the horizontal axis, numbers are used
to show the utilisation. Number 1, on the horizontal

axis, shows the 50% utilisation in product item 1 and 25%

in product item 3 for the one-end-item problems. The

number 2 depicts 75% and 50% utilisation according to the

bottleneck 1 and 2 which are located at product items 1

and 3. Finally the number 3 illustrates the bottleneck

utilisation of 95% and 75% in relation with the product
items 1 and 3 respectively in the one-end-item problem

product structure. In each table, linear programming

solutions (LP) are given in the third column, integer

programming solutions (IP) using the branch and bound

procedure are given in the fourth column, and the

heuristic solution for the constrained product items with

the Economic Order Quantity (EOQ) and the Silver-Meal

approaches for the unconstrained product items are given

in the fifth and sixth columns respectively.

According to the results, the heuristic produced a lower

cost than the integer programming solutions. The main

contribution in this thesis is to show that the required

computer times of the heuristic to solve the problems

takes a few seconds (all less than or equal to 3.31 CPU

seconds). The results illustrated that only a small

amount of computer time is required to solve the problems

by means of the heuristic. The results also showed that

reducing the original cost by 20% and 40% decreased the

total costs by that percentage, but it did not yield the

54

same reduction when each of the original holding and

setup costs were reduced by 20%. The multiple bottleneck

results imply that the heuristic is favourable, in the

same way as for the single bottleneck problem. The

results show that the proposed heuristic yields better

results than integer programming, especially in the five-

end-item problems, where they are very close to the

linear programming solutions. The reason will be

explained in chapter 6.

As a result, a simple heuristic for the bottleneck multi-

level lot-sizing problem has been developed, which

provides quick and easy solutions for the problem and is

sufficiently simple to be used even without a computer

routine. More discussion will be given in chapter 6.

55

Table 4.6.1. One End Item Problem with Structure One

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 10869 15441 13070 13183
50% Iterations 144 3332 - - Util. CPU Time 0.80 127.98 1.20 1.20

Optimality* 1.000 1.420 1.202 1.212

Current Value 10869 16010 13977 14090
75% Iterations 151 1684 - -
Util. CPU Time 0.84 135.58 1.21 1.21

Optimality* 1.000 1.472 1.285 1.296

Current Value 10898 16044 14814 14927
95% Iterations 148 2393 - -
Util. CPU Time 0.78 105.15 1.22 1.22

Optimality* 1.000 1.472 1.359 1.369

* The proportion is calculated as Current Value/LP
Current Value

Table 4.6.1. Continued

LP IP Heuristic Solution**
Sol. ** Sol. ** EOQ Silver-Meal

Current Value 8695 12352 10456 10546
50% Iterations 144 3332 - -
Util. CPU Time 0.78 129.36 1.20 1.20

Optimality* 1.000 1.420 1.202 1.212

Current Value 8695 12808 11182 11272
75% Iterations 151 1684 - -
Util. CPU Time 0.88 134.18 1.21 1.21

Optimality* 1.000 1.472 1.285 1.296

Current Value 8718 12835 11851 11941
95% Iterations 148 2393 - -
Util. CPU Time 0.86 102.76 1.22 1.22

Optimality* 1.000 1.472 1.359 1.369

* The proportion is calculated as Current Value LP
Current Value

** Calculated for a 20% reduction in the Original Costs

56

Table 4.6.1. Continued

LP IP Heuristic Solution***
Sol. *** Sol. *** EOQ Silver-Meal

50%
Util.

Current Value
Iterations
CPU Time
Optimality*

6521
144
0.76
1.000

9264
3332
127.18
1.420

7842
-
1.21
1.202

7910
-
1.21
1.212

Current Value 6521 9606 8386 8454
75% Iterations 151 1684 - -
Util. CPU Time 0.76 130.68 1.21 1.21

Optimality* 1.000 1.472 1.285 1.296

Current Value 6538 9626 8888 8956
95% Iterations 148 2393 - -
Util. CPU Time 0.90 101.02 1.22 1.22

Optimality* 1.000 1.472 1.359 1.369

* The proportion is calculated as Current Value LP
Current Value

*** Calculated for a 40% reduction in the Original Costs

Table 4.6.2. One End Item Problem with Structure Two

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 30036 36235 35785 34749
50% Iteration 144 1713 - -
Util. CPU Time 0.80 60.36 3.10 3.10

Optimality* 1.000 1.206 1.191 1.156

Current Value 30036 38110 37293 36257
75% Iterations 154 2420 - -
Util. CPU Time 0.88 78.92 3.11 3.11

Optimality* 1.000 1.268 1.241 1.207

Current Value 30331 38498 38700 37664
95% Iterations 150 1828 - -
Util. CPU Time 0.84 78.92 3.11 3.11

Optimality* 1.000 1.269 1.275 1.241

* The proportion is calculated as Current Value LP
Current Value

57

Table 4.6.2. Continued

LP IP Heuristic Solution **
Sol. ** Sol. ** EOQ Silver-Meal

Current Value 24029 28988 28628 27799
50% Iterations 144 1713 - -
Util. CPU Time 0.86 60.45 3.10 3.10

Optimality* 1.000 1.206 1.191 1.156

Current Value 24029 30488 29834 29005
75% Iterations 154 2420 - -
Util. CPU Time 0.90 79.66 3.11 3.11

Optimality* 1.000 1.268 1.241 1.207

Current Value 24265 30798 30960 30131
95% Iterations 150 1828 - -
Util. CPU Time 0.80 60.74 3.11 3.11

Optimality* 1.000 1.269 1.275 1.241

* The proportion is calculated as Current Value LP
Current Value

** Calculated for a 20% reduction in the Original Costs

Table 4.6.2. Continued

LP IP Heuristic Solution***
Sol. *** Sol. *** EOQ Silver-Meal

Current Value 18021 21741 21471 20849
50% Iterations 144 1713 --
Util. CPU Time 0.84 60.36 3.10 3.10

Optimality* 1.000 1.206 1.191 1.156

Current Value 18021 22866 22375 21754
75% Iterations 154 1796 --
Util. CPU Time 0.98 79.41 3.11 3.11

Optimality* 1.000 1.268 1.241 1.207

Current Value 18198 23099 23220 22598
95% Iterations 150 1828 --
Util. CPU Time 0.90 60.20 3.11 3.11

Optimality* 1.000 1.269 1.275 1.241

* The proportion is calculated as Current Value/LP
Current Value

*** Calculated for a 40% reduction in the Original Costs

58

Table 4.6.3. One End Item Problem with Structure Three

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 18787 26102 23716 22987
50% Iterations 150 2338 - - Util. CPU Time 0.94 77.23 3.12 3.12

Optimality* 1.000 1.389 1.262 1.223

Current Value 18863 26434 24596 23867
75% Iterations 147 1832 - -
Util. CPU Time 0.76 50.52 3.12 3.12

Optimality* 1.000 1.401 1.303 1.265

Current Value 19375 27378 25502 24773
95% Iterations 141 2258 - -
Util. CPU Time 0.84 65.65 3.13 3.13

Optimality* 1.000 1.413 1.316 1.278

* The proportion is calculated as Current Value/LP
Current Value

Table 4.6.3. Continued

LP IP Heuristic Solution**
Sol. ** Sol. ** EOQ Silver-Meal

Current Value 15030 20882 18972 18389
50% Iterations 150 2338 --
Util. CPU Time 0.86 77.92 3.12 3.12

Optimality* 1.000 1.389 1.262 1.223

Current value 15090 21147 19677 19093
75% Iterations 147 1832 --
Util. CPU Time 0.78 50.59 3.13 3.13

Optimality* 1.000 1.401 1.303 1.265

Current Value 15500 21902 20401 19818
95% Iterations 141 2558 --
Util. CPU Time 0.78 66.98 3.13 3.13

Optimality* 1.000 1.413 1.316 1.278

* The proportion is calculated as Current Value LP
Current Value

** Calculated for a 20% reduction in the Original Costs

59

Table 4.6.3. Continued

LP IP Heuristic Solution***
Sol. *** Sol. *** EOQ Silver-Meal

Current Value 11272 15661 14229 13792
50% Iterations 150 2338 --
Util. CPU Time 0.88 77.45 3.12 3.12

Optimality* 1.000 1.389 1.262 1.223

Current Value 11318 15860 14757 14320
75% Iterations 147 1832 --
Util. CPU Time 0.86 50.85 3.13 3.13

Optimality* 1.000 1.401 1.303 1.265

Current Value 11625 16426 15301 14863
95% Iterations 141 2258 --
Util. CPU Time 0.78 65.95 3.13 3.13

Optimality* 1.000 1.413 1.316 1.278

* The proportion is calculated as Current Value LP
Current Value

*** Calculated for a 40% reduction in the Original Costs

Table 4.6.4. Three End Item Problem with Structure One

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 73623 92083 87156 84962
50% Iterations 430 1503 --
Util. CPU Time 5.78 359.12 3.28 3.28

Optimality* 1.000 1.250 1.183 1.154

Current Value 73623 93072 87649 85455
75% Iterations 445 1807 --
Util. CPU Time 5.62 344.77 3.29 3.29

Optimality* 1.000 1.264 1.190 1.160

Current Value 73902 94043 91859 89665
95% Iterations 460 769 --
Util. CPU Time 6.06 340.84 3.30 3.30

Optimality* 1.000 1.272 1.242 1.213

* The proportion is calculated as Current Value/LP
Current Value

60

Table 4.6.4. Continued

LP IP Heuristic Solution**
Sol. ** Sol. ** EOQ Silver-Meal

Current Value 58898 73666 69725 67970
50% Iterations 430 1503 --
Util. CPU Time 5.69 368.22 3.28 3.28

Optimality* 1.000 1.250 1.183 1.154

Current Value 58898 74458 70119 68364
75% Iterations 445 1807 --
Util. CPU Time 5.56 341.39 3.29 3.29

Optimality* 1.000 1.264 1.190 1.160

Current Value 59121 75234 73487 71732
95% Iterations 460 769 --
Util. CPU Time 6.06 351.54 3.30 3.30

Optimality* 1.000 1.272 1.242 1.213

* The proportion is calculated as Current Value LP
Current Value

** Calculated for a 20% reduction in the Original Costs

Table 4.6.4. Continued

LP IP Heuristic Solution***
Sol. *** Sol. *** EOQ Silver-Meal

Current Value 44174 55249 52294 50977
50% Iterations 430 1503 --
Util. CPU Time 5.28 319.18 3.29 3.29

Optimality* 1.000 1.250 1.183 1.154

Current Value 44174 55843 52589 51273
75% Iterations 445 1807 --
Util. CPU Time 5.67 353.58 3.29 3.29

Optimality* 1.000 1.264 1.190 1.160

Current Value 44341 56426 55115 53799
95% Iterations 460 769 --
Util. CPU Time 6.20 332.94 3.30 3.30

Optimality* 1.000 1.272 1.242 1.213

* The proportion is calculated as Current Value LP
Current Value

*** Calculated for a 40% reduction in the Original Costs

61

Table 4.6.5. Three End Item Problem with Structure Two

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 78353 97496 99336 96098
50% Iterations 427 1039 - -
Util. CPU Time 5.22 312.01 3.14 3.14

Optimality* 1.000 1.244 1.267 1.226

Current Value 78367 98608 100086 96848
75% Iterations 435 663 - -
Util. CPU Time 5.78 325.9 3.15 3.15

Optimality* 1.000 1.258 1.277 1.235

Current Value 79163 102507 102629 99391
95% Iterations 438 3625 - -
Util. CPU Time 5.96 423.32 3.16 3.16

Optimality* 1.000 1.294 1.296 1.255

* The proportion is calculated as Current Value LP
Current Value

Table 4.6.5. Continued

LP IP Heuristic Solution**
Sol. ** Sol. ** EOQ Silver-Meal

Current Value 62683 77997 79469 76879
50% Iterations 427 1037 --
Util. CPU Time 5.34 342.8 3.15 3.15

Optimality* 1.000 1.244 1.267 1.226

Current Value 62694 78886 80069 77478
75% Iterations 435 663 --
Util. CPU Time 5.84 338.8 3.15 3.15

Optimality* 1.000 1.258 1.277 1.235

Current Value 63330 82006 82103 79513
95% Iterations 435 3610 --
Util. CPU Time 5.80 412.42 3.16 3.16

Optimality* 1.000 1.294 1.296 1.255

* The proportion is calculated as Current Value LP
Current Value

** Calculated for a 20% reduction in the Original Costs

62

Table 4.6.5. Continued

LP IP Heuristic Solution***
Sol. *** Sol. *** EOQ Silver-Meal

Current Value 47012 58498 59602 57695
50% Iterations 427 1037 --
Util. CPU Time 5.70 374.2 3.15 3.15

Optimality* 1.000 1.244 1.267 1.226

Current Value 47020 59165 60051 58109
75% Iterations 435 663 --
Util. CPU Time 5.86 377.98 3.16 3.16

Optimality* 1.000 1.258 1.277 1.235

Current Value 47498 61462 61577 59635
95% Iterations 435 4188 --
Util. CPU Time 6.02 443.72 3.16 3.16

Optimality* 1.000 1.294 1.296 1.255

* The proportion is calculated as Current Value/LP
Current Value

*** Calculated for a 40% reduction in the Original Costs

Table 4.6.6. Three End Item Problem with Structure Three

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 58424 75478 69989 68776
50% Iterations 393 835 - -
Util. CPU Time 5.14 359.00 3.16 3.16

Optimality* 1.000 1.291 1.197 1.177

Current Value 59061 74549 69465 68252
75% Iterations 431 2238 - -
Util. CPU Time 5.74 375.3 3.18 3.18

Optimality* 1.000 1.262 1.176 1.155

Current Value 61973 75723 69958 68745
95% Iterations 433 1713 - -
Util. CPU Time 5.78 458.51 3.18 3.18

Optimality* 1.000 1.221 1.128 1.109

* The proportion is calculated as Current Value LP
Current Value

63

Table 4.6.6. Continued

LP IP Heuristic Solution**
Sol. ** Sol. ** EOQ Silver-Meal

Current Value 46739 60382 55991 55020
50% Iterations 393 835 --
Util. CPU Time 4.98 279.5 3.17 3.17

Optimality* 1.000 1.291 1.197 1.177

Current Value 47249 59639 55572 54601
75% Iterations 431 2238 --
Util. CPU Time 5.76 370.48 3.18 3.18

Optimality* 1.000 1.262 1.176 1.155

Current Value 49579 60579 55966 54996
95% Iterations 433 1705 --
Util. CPU Time 5.64 454.35 3.18 3.18

Optimality* 1.000 1.221 1.128 1.109

* The proportion is calculated as Current Value LP
Current Value

** Calculated for a 20% reduction in the Original Costs

Table 4.6.6. Continued

LP IP Heuristic Solution***
Sol. *** Sol. *** EOQ Silver-Meal

Current Value 35054 45287 41993 41265
50% Iterations 393 835 --
Util. CPU Time 5.00 265.0 3.17 3.17

Optimality* 1.000 1.291 1.197 1.177

Current Value 35436 44729 41679 40951
75% Iterations 431 2238 --
Util. CPU Time 5.58 384.72 3.18 3.18

Optimality* 1.000 1.262 1.176 1.155

Current Value 37184 45434 41975 41247
95% Iterations 433 1716 --
Util. CPU Time 5.92 448.23 3.18 3.18

Optimality* 1.000 1.221 1.128 1.109

* The proportion is calculated as Current Value LP
Current Value

*** Calculated for a 40% reduction in the Original Costs

64

Table 4.6.7. Five End Item Problem with Structure One

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 128948 158390 136935 133173
50% Iterations 699 2797 --
Util. CPU Time 14.50 675.85 1.07 1.07

Optimality* 1.000 1.228 1.061 1.032

Current Value 128948 159198 136838 133076
75% Iterations 721 2864 --
Util. CPU Time 14.19 592.60 1.08 1.08

Optimality* 1.000 1.234 1.061 1.032

Current Value 129108 162936 137141 133379
95% Iterations 774 3825 --
Util. CPU Time 16.28 684.9 1.09 1.09

Optimality* 1.000 1.262 1.062 1.033

* The proportion is calculated as Current Value/LP
Current Value

Table 4.6.7. Continued

LP IP Heuristic Solution**
Sol. ** Sol. ** EOQ Silver-Meal

Current Value 103158 126712 109548 106538
50% Iterations 699 3156 --
Util. CPU Time 14.02 665.00 1.08 1.08

Optimality* 1.000 1.228 1.061 1.032

Current Value 103158 127358 109470 106460
75% Iterations 721 3486 --
Util. CPU Time 14.16 573.24 1.08 1.08

Optimality* 1.000 1.234 1.061 1.032

Current Value
95% Iterations
Util. CPU Time

Optimality*

103286 130348 109713
774 3825 -
15.92 681.7 1.09
1.000 1.262 1.062

106703

1.09
1.033

* The proportion is calculated as Current Value/LP
Current Value

** Calculated for a 20% reduction in the Original Costs

65

Table 4.6.7. Continued

LP IP Heuristic Solution***
Sol. *** Sol. *** EOQ Silver-Meal

Current Value 77369 95034 82161 79904
50% Iterations 699 3156 --
Util. CPU Time 14.18 612.14 1.08 1.08

Optimality* 1.000 1.228 1.061 1.032

Current Value 77369 95518 82102 79845
75% Iterations 721 3486 --
Util. CPU Time 14.10 566.78 1.09 1.09

Optimality* 1.000 1.234 1.061 1.032

Current Value 77465 97761 82284 80027
95% Iterations 774 3825 --
Util. CPU Time 15.72 680.54 1.09 1.09

Optimality* 1.000 1.262 1.062 1.033

* The proportion is calculated as Current Value LP
Current Value

*** Calculated for a 40% reduction in the Original Costs

Table 4.6.8. Five End Item Problem with Structure Two

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 107807 131277 108211 107889
50% Iterations 697 2610 - -
Util. CPU Time 13.69 596.20 2.35 2.35

Optimality* 1.000 1.217 1.003 1.000-

Current Value 107889 134606 108853 107889
75% Iterations 685 1216 - -
Util. CPU Time 13.97 751.6 2.36 2.36

Optimality* 1.000 1.247 1.008 1.000-

Current Value 109141 134673 111845 109141
95% Iterations 694 3526 - -
Util. CPU Time 15.12 665.65 2.36 2.36

Optimality* 1.000 1.233 1.024 1.000-

* The proportion is calculated as Current Value/LP
Current Value
Taking into account the rounding error

66

Table 4.6.8. Continued

LP IP Heuristic Solution**
Sol. ** Sol. ** EOQ Silver-Meal

Current Value 86246 105022 86569 86246
50% Iterations 697 2610 - -
Util. CPU Time 14.06 612.9 2.35 2.35

Optimality* 1.000 1.217 1.003 1.000--

Current Value 86311 107684 87082 86311
75% Iterations 685 1216 - -
Util. CPU Time 14.30 732.5 2.36 2.36

Optimality* 1.000 1.247 1.008 1.000-

Current Value 87313 107657 89476 87313
95% Iterations 694 4445 - -
Util. CPU Time 15.33 639.77 2.37 2.37

Optimality* 1.000 1.233 1.024 1.000N

* The proportion is calculated as Current Value/LP
Current Value

** Calculated for a 20% reduction in the Original Costs
Taking into account the rounding error

Table 4.6.8. Continued
LP
Sol. ***

IP Heuristic Solution***
Sol. *** EOQ Silver-Meal

Current value 64684 78766 64926 64684
50% Iterations 697 2610 --
Util. CPU Time 14.03 638.30 2.35 2.35

Optimality* 1.000 1.217 1.003 1.000-

Current Value 64733 80763 65311 64733
75% Iterations 685 1216 --
Util. CPU Time 13.52 663.72 2.36 2.36

Optimality* 1.000 1.247 1.008 1.000-

Current Value 65484 80742 67107 65484
95% Iterations 699 3526 --
Util. CPU Time 20.50 620.52 2.37 2.37

Optimality* 1.000 1.233 1.024 1.000-

* The proportion is calculated as Current Value LP
Current Value

*** Calculated for a 40% reduction in the Original Costs
Taking into account the rounding error

67

Table 4.6.9. Five End Item Problem with Structure Three

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 95601 120031 100383 95774
50% Iterations 676 3294 - -
Util. CPU Time 12.66 478.9 1.23 1.23

Optimality* 1.000 1.255 1.050 1.001

Current Value 96722 122075 100403 96722
75% Iterations 496 1287 - -
Util. CPU Time 14.02 621.28 1.24 1.24

Optimality* 1.000 1.262 1.038 1.000-

Current Value 99591 125047 101426 99591
95% Iterations 729 3239 - -
Util. CPU Time 15.56 672.26 1.25 1.25

Optimality* 1.000 1.255 1.018 1.000-

* The proportion is calculated as Current Value LP
Current Value
Taking into account the rounding error

Table 4.6.9. Continued

LP IP Heuristic Solution**
Sol. ** Sol. ** EOQ Silver-Meal

Current Value 76481 96025 80306 76619
50% Iterations 736 3295 --
Util. CPU Time 14.04 523.52 1.24 1.24

Optimality* 1.000 1.255 1.050 1.001

Current Value 77377 97660 80322 77377
75% Iterations 713 1298 --
Util. CPU Time 14.02 620.02 1.24 1.24

Optimality* 1.000 1.262 1.038 1.000-

Current Value 79673 100037 81140 79673
95% Iterations 751 3223 --
Util. CPU Time 16.34 648.19 1.25 1.25

Optimality* 1.000 1.255 1.018 1.000-

* The proportion is calculated as Current Value LP
Current Value

** Calculated for a 20% reduction in the Original Costs
Taking into account the rounding error

68

Table 4.6.9. Continued

LP IP Heuristic Solution***
Sol. *** Sol. *** EOQ Silver-Meal

Current Value 57361 72019 60229 57361
50% Iterations 713 3230 --
Util. CPU Time 13.94 508.58 1.24 1.24

Optimality* 1.000 1.255 1.050 1.001

Current Value 58033 73245 60242 57476
75% Iterations 702 1292 --
Util. CPU Time 13.52 615.05 1.24 1.24

Optimality* 1.000 1.262 1.038 1.000-

Current Value 59754 75028 60855 58090
95% Iterations 750 3270 --
Util. CPU Time 15.50 643.85 1.25 1.25

Optimality* 1.000 1.255 1.018 1.000-

* The proportion is calculated as Current Value LP
Current Value

*** Calculated for a 40% reduction in the Original Costs
Taking into account the rounding error

69

Table 4.6.10. One End Item Problem with Structure One

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 10869 15441 13070 13183
50% Iterations 144 3332 - -
Util. CPU Time 0.80 127.98 1.20 1.20

Optimality* 1.000 1.420 1.202 1.212

Current Value 10869 16010 13977 14090
75% Iterations 151 1684 - -
Util. CPU Time 0.84 135.58 1.21 1.21

Optimality* 1.000 1.472 1.285 1.296

Current Value 10898 16044 14814 14927
95% Iterations 148 2393 - -
Util. CPU Time 0.78 105.15 1.22 1.22

Optimality* 1.000 1.472 1.359 1.369

* The Proportion is calculated as Current Value LP
Current Value

Table 4.6.10. Continued

LP IP Heuristic Solution**
Sol. ** Sol. ** EOQ Silver-Meal

Current Value 9483 13820 11316 11785
50% Iterations 145 1107 --
Util. CPU Time 0.76 117.32 1.20 1.20

Optimality* 1.000 1.457 1.193 1.242

Current Value 9483 14268 12222 12691
75% Iterations 150 1101 --
Util. CPU Time 0.86 25.48 1.21 1.21

Optimality* 1.000 1.504 1.288 1.338

Current Value 9506 15234 13071 13540
95% Iterations 148 2815 --
Util. CPU Time 0.80 111.66 1.22 1.22

Optimality* 1.000 1.602 1.374 1.424

* The Proportion is calculated as Current Value LP
Current Value

** Calculated for a 20% Reduction in the Original
Holding costs

70

Table 4.6.10. Continued

LP IP Heuristic Solution***
Sol. *** Sol. *** EOQ Silver-Meal

50%
Util.

Current value
Iterations
CPU Time
Optimality*

10081
143
0.80
1.000

13981
2868
93.69
1.386

12688
-
1.20
1.258

12202
-
1.20
1.210

Current Value 10081 14268 13416 12929
75% Iterations 149 1101 - -
Util. CPU Time 0.84 25.48 1.21 1.21

Optimality* 1.000 1.415 1.330 1.282

Current Value 10110 14687 14072 13586
95% Iterations 147 2971 - -
Util. CPU Time 0.86 132.08 1.22 1.22

Optimality* 1.000 1.452 1.391 1.343

* The Proportion is calculated as Current Value LP
Current Value

*** Calculated for a 20% Reduction in the Original Setup
costs

Table 4.6.11. Three End Item Problem with Structure Two

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 78353 97496 99336 96098
50% Iterations 427 1039 - -
Util. CPU Time 5.22 312.01 3.14 3.14

Optimality* 1.000 1.244 1.267 1.226

Current Value 78367 98608 100086 96848
75% Iterations 435 663 - -
Util. CPU Time 5.78 325.9 3.15 3.15

Optimality* 1.000 1.258 1.277 1.235

Current Value 79163 102507 102629 99391
95% Iterations 438 3625 - -
Util. CPU Time 5.96 423.32 3.16 3.16

Optimality* 1.000 1.294 1.296 1.255

* The Proportion is calculated as Current Value LP
Current Value

71

Table 4.6.11. Continued

LP IP Heuristic Solution**
Sol. ** Sol. ** EOQ Silver-Meal

Current Value 65458 82120 82729 80274
50% Iterations 405 597 --
Util. CPU Time 5.74 322.47 3.15 3.15

Optimality* 1.000 1.254 1.263 1.226

Current Value 65469 84162 83709 81254
75% Iterations 436 681 --
Util. CPU Time 6.24 360.38 3.15 3.15

Optimality* 1.000 1.285 1.278 1.241

Current Value 66105 85396 86543 84088
95% Iterations 438 2557 --
Util. CPU Time 5.96 371.80 3.16 3.16

Optimality* 1.000 1.291 1.309 1.272

* The Proportion is calculated as Current Value LP
Current Value

** Calculated for a 20% Reduction in the Original
Holding costs

Table 4.6.11. Continued
LP IP Heuristic Solution***
Sol. *** Sol. *** EOQ Silver-Meal

Current Value 75578 92643 95359 91966
50% Iterations 415 1462 --
Util. CPU Time 5.46 328.91 3.15 3.15

Optimality* 1.000 1.225 1.261 1.216

Current Value 75592 93509 95729 92336
75% Iterations 420 1132 --
Util. CPU Time 5.32 366.46 3.15 3.15

Optimality* 1.000 1.237 1.266 1.221

Current Value 76388 94994 97472 94079
95% Iterations 429 1072 --
Util. CPU Time 5.98 356.54 3.16 3.16

Optimality* 1.000 1.243 1.276 1.231

* The Proportion is calculated as Current Value/LP
Current Value

*** Calculated for a 20% Reduction in the Original Setup
costs

72

Table 4.6.12. Five End Item Problem with Structure Three

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 95601 120031 100383 95774
50% Iterations 676 3294 --
Util. CPU Time 12.66 478.9 1.23 1.23

Optimality* 1.000 1.255 1.050 1.001

Current Value 96722 122075 100403 96722
75% Iterations 729 1287 --
Util. CPU Time 14.02 621.28 1.24 1.24

Optimality* 1.000 1.262 1.038 1.000-

Current Value 99591 125047 101426 99591
95% Iterations 729 3239 --
Util. CPU Time 15.56 672.26 1.25 1.25

Optimality* 1.000 1.255 1.018 1.000--

* The Proportion is calculated as Current Value LP
Current Value
Taking into account the rounding error

Table 4.6.12. Continued
LP
Sol. **

IP Heuristic Solution**
Sol. ** EOQ Silver-Meal

Current Value 81567 104444 83373 81567
50% Iterations 696 1213 --
Util. CPU Time 13.61 639.54 1.21 1.21

Optimality* 1.000 1.280 1.022 1.000'-

Current Value 82463 107717 83696 82463
75% Iterations 698 1164 --
Util. CPU Time 13.80 401.8 1.24 1.24

Optimality* 1.000 1.306 1.014 1.000-

Current Value 84758 108854 84974 84758
95% Iterations 733 1808 --
Util. CPU Time 14.68 747.40 1.25 1.25

Optimality* 1.000 1.284 1.002 1.000-

* The Proportion is calculated as Current Value/LP
Current Value

** Calculated for a 20% Reduction in the Original
Holding costs
Taking into account the rounding error

73

Table 4.6.12. Continued

LP IP Heuristic Solution***
Sol. *** Sol. *** EOQ Silver-Meal

Current Value 90516 110948 97949 92544
50% Iterations 659 1103 --
Util. CPU Time 13.48 613.94 1.21 1.21

Optimality* 1.000 1.225 1.082 1.022

Current Value 91636 114129 97663 92258
75% Iterations 704 1530 --
Util. CPU Time 13.80 521.00 1.24 1.24

Optimality* 1.000 1.245 1.065 1.006

Current Value 94506 115501 98225 94506
95% Iterations 760 2073 --
Util. CPU Time 15.10 587.96 1.25 1.25

Optimality* 1.000 1.222 1.039 1.000-

* The Proportion is calculated as Current Value LP
Current Value

*** Calculated for a 20% Reduction in the Original Setup
costs
Taking into account the rounding error

74

Table 4.6.13. One End Item Problem with Structure One

LP
Sol.

IP
Sol.

Heuristic
EOQ

Solution
Silver-Meal

Current Value 10869 15852 13173 13826
60% Iterations 150 1459 - -
Util. CPU Time 0.82 54.70 1.02 1.02

Optimality* 1.000 1.458 1.261 1.272

Current Value 10869 16396 14277 14390
80% Iterations 149 1370 - -
Util. CPU Time 7.36 51.22 1.02 1.02

Optimality* 1.000 1.508 1.313 1.323

* The Proportion is calculated as Current Value LP
Current Value

Table 4.6.14. One End Item Problem with Structure Three

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 18787 26469 24313 23584
60% Iterations 154 843 --
Util. CPU Time 1.02 159.4 0.90 0.90

Optimality* 1.000 1.408 1.294 1.255

Current Value 19035 26210 24891 24164
80% Iterations 149 2935 --
Util. CPU Time 1.06 189.00 0.90 0.90

Optimality* 1.000 1.376 1.307 1.269

* The Proportion is calculated as Current Value LP
Current Value

75

Table 4.6.15. Three End Item Problem with Structure One

LP
Sol.

IP
Sol.

Heuristic
EOQ

Solution
Silver-Meal

Current Value 73623 92215 88048 85854
60% Iterations 471 1281 - -
Util. CPU Time 7.36 168.60 1.49 1.49

Optimality* 1.000 1.252 1.195 1.166

Current Value 73625 92777 88841 86647
80% Iterations 477 2137 - -
Util. CPU Time 8.10 218.33 1.49 1.49

Optimality* 1.000 1.260 1.206 1.176

* The Proportion is calculated as Current Value LP
Current Value

Table 4.6.16. Three End Item Problem with Structure Three

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 58564 75675 69747 68534
60% Iterations 431 689 --
Util. CPU Time 6.46 453.54 0.44 0.44

Optimality* 1.000 1.292 1.190 1.170

Current Value 59773 76037 69974 68761
80% Iterations 423 762 --
Util. CPU Time 6.96 674.78 0.45 0.45

Optimality* 1.000 1.272 1.170 1.150

* The Proportion is calculated as Current Value LP
Current Value

76

Table 4.6.17. Five End Item Problem with Structure One

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 128948 158884 136895 133134
60% Iterations 717 1035 --
Util. CPU Time 18.16 305.32 2.30 2.30

Optimality* 1.000 1.232 1.061 1.032

Current Value 128948 159982 136771 133009
80% Iterations 745 2431 --
Util. CPU Time 20.44 410.38 2.30 2.30

Optimality* 1.000 1.240 1.060 1.031

* The Proportion is calculated as Current Value LP
Current Value

Table 4.6.18. Five End Item Problem with Structure Three

LP
Sol.

IP
Sol.

Heuristic
EOQ

Solution
Silver-Meal

Current Value 95645 121630 100167 95645
60% Iterations 800 1284 - -
Util. CPU Time 16.80 723.88 2.31 2.31

Optimality* 1.000 1.271 1.047 1.000-

Current Value 97715 124207 100106 97715
80% Iterations 702 1341 - -
Util. CPU Time 16.06 887.08 3.31 3.31

Optimality* 1.000 1.271 1.024 1.000-

* The Proportion is calculated as Current Value LP
Current Value
Taking into account the rounding error

77

Table 4.6.19. One End Item Problem with Structure One

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 10869 15446 13076 13201
50%+ Iterations 145 3012 --
25%. CPU Time 0.84 97.77 1.02 1.02
Util. Optimality* 1.000 1.421 1.202 1.214

Current Value 10869 17256 14339 14464
75%+ Iterations 152 3675 --
50% CPU Time 0.90 103.58 1.02 1.02
Util. Optimality* 1.000 1.587 1.319 1.330

Current Value 10898 18069 15783 15908
95%+ Iterations 159 1530 --
75% CPU Time 1.02 113.02 1.03 1.03
Util. Optimality* 1.000 1.658 1.448 1.459

* The proportion is calculated as Current Value/LP
Current Value

Table 4.6.20. Three End Item Problem with Structure Two

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

50%+
25%.
Util.

Current Value
Iterations
CPU Time
Optimality*

78353
426
5.80
1.000

97496
1036
286.26
1.244

106574
-
1.49
1.360

104578
-
1.49
1.334

Current Value 78367 99467 101822 99826
75%+ Iterations 479 2864 - -
50% CPU Time 6.54 309.88 1.49 1.49
Util. Optimality* 1.000 1.269 1.299 1.273

Current Value 79163 103072 103801 101805
95%+ Iterations 452 1105 - -
75% CPU Time 6.54 348.11 1.49 1.49
Util. Optimality* 1.000 1.302 1.311 1.286

* The Proportion is calculated as Current Value LP
Current Value

78

Table 4.6.21. Five End Item Problem with Structure Three

LP IP Heuristic Solution
Sol. Sol. EOQ Silver-Meal

Current Value 128948 158390 141841 138676
50%+ Iterations 726 2821 - -
25%. CPU Time 16.52 548.03 2.04 2.04
Util. Optimality* 1.000 1.228 1.099 1.075

Current Value 128948 160849 138281 135116
75%+ Iterations 775 1678 - -
50% CPU Time 17.82 566.47 2.04 2.04
Util. Optimality* 1.000 1.247 1.072 1.047

Current Value 129108 169130 138913 135748
95% Iterations 783 3101 - -
75% CPU Time 18.62 679.64 2.04 2.04
Util. Optimality 1.000 1.309 1.075 1.051

* The Proportion is calculated as Current Value LP
Current Value

79

Graph 4.6.1. One End Item Problem with Structure 1
17000

16000

, 115000-
to

14000 P

ä 13000 -ý- Hi

12000 -°ý H2

v 110001 0 13 0

N
U
w
N

v

w E
.r
H

a U

0

8

50 60 70 80 90 100
Utilisation %

6

4

2

50 60 70 80
Utilisation %

90 100

2.0-

1.8-

1.6

1.4
E

1.2-

1.0- I
04
0

0- LP

-f'- IP

ý'- H1

-ý' H2

0-1-
40

--o-- LP

-ý- (IP) /20

-ý- H1 (or H2)

50 60 70 80 90 100
Utilisation %

Graph 4.6.2. One End Item Problem with Structure 1
(20% Reduction in the Original Costs)

13000

12000

Id
11000

4J 41 10000-
$4
w
v 9000

50 60 70 80
Utilisation %

N
U

w

U

", "4

H
ro

. rf 41
a
0

8

LP

-"e- IP

s Hi
.' H2

90 100

6

4

2

2.0

1.8

0-1-
40 50 60 70 80

Utilisation %

-- LP

(IP) /20

-ý- H1, (or H2)

90 100

1.6-

1 .41.2

1.0

0

-ý LP

IP

ý- Hl

ý- H2

50 60 70 80 90 100

Utilisation %

Graph 4.6.3. One End Item Problem with Structure 1
(40% Reduction in the Original Costs)

10000

9000

-ý"- LP

8000 Zp

H1

14 ý'- H2
14 7000
U

13

()
_

50 60 70 80 90 100
Utilisation %

8

N
U

N

E
H

D
a U

4)

r-1
b
Ei

., i
43
a 0

6

4

2

0 -t-
40

2.0

1.8

1.6

50 60 70 80
Utilisation %

LP

IP

ý- Hl

ý- H2

LP

(IP) /20

----a- Hl (or H2)

90 100

1.4

1.2

1.0

0 50 60 -7 10 80 90 100
Utilisation %

Graph 4.6.4. Three End Item Problem with Structure 1

100000

to 90000-
la LP

-"ý- IP

-ý'- Hi

s4 80000 H2
I1
U

50 60 70 80 90 100
Utilisation %

20

15

0 10
. ri

5
U

0
4 0

2.0

1.8

1.6

1.4 b
E

1.2
a
0

1.0

-13 - LP

4 (IP) /20

M' HI (or H2)

0

50 60 70 80
Utilisation %

90 100

- LP

Ip

ý- Hi

ý- H2

50 60 70 80 90 100

Utilisation %

Graph 4.6.5. Three End Item Problem with Structure 1
(20% Reduction in the original costs)

80000

w
r-I
m 7000C

60000

U

LP

-ý- I2

-"a- Hi

-ý"' H2

50 60 70 80
Utilisation %

20

N U 15
4)
N

10-
E-4

5-
04 U

0- -
4 0

2.0

4J
. rl
r-1
b
5

4)

a
0

1.8

1.6

50 60 70 80
Utilisation %

LP

IP

Hl

'ý'- H2

90 100

1.4

1.2

1.0

0

90 100

-o-- LP

-ý- (IP) /20

'ý- H1 (or H2)

50 60 70 80 90 100
Utilisation %

Graph 4.6.6. Three End Item Problem with Structure 1
(40% Reduction in the Original Costs)

60000

0 55000
ro l LP

50000 ý- Ip
ý'- Hi

N -ý' H2
45000

U

50 60 70 80 90 100
Utilisation %

20

N 15 U
1)
N

10

D5
a U

0-
40

2.0

1.8

41 1.6
. r4

1.4

1.2 ä0

1.0

0

50 60 70 80
Utilisation %

50 60 10 80

Utilisation %

-0- LP

(IP) /20

-ý- Hl (or H2)

yU lUU

-"o-- LP

-+"- IP

ý- Hl

'ý- H2

90 100

Graph 4.6.7-Five End Item Problem with Structure 1
170000

160000

150000

q 140000
w

130000

0

40

01
C) 30
4)

4)
ä 20

10

0-t-
40

>t

r-1
1b
E

a
0

2.0

1.8

1.6

1.4

1.2

1.0

0

a- LP

(IP) /20

-ý- H1 (or H2)

LP

t Ip

-s - H1

ý- H2

50 60 70 80
Utilisation %

90 100

50 60 70 80
Utilisation %

90 100

LP

IP

ý- Hi

-ý- H2

50 60 70 80 90

Utilisation %
100

Graph 4.6.8. Five End Item Problem with Structure 1
(20% Reduction in the Original Costs)

140000

130000
0

120000 ä4 Ip
-e- xi

" -4 H2 "
110000

50 60 70 80 90 100
Utilisation %

a V
I
a v
"
a

H

a U

41
. 14
r-I

Id 8
., 4
41 a
0

40

LP

(IP) /20

H1 (or H2)

30

20

10

0t
40

2.0

1.8

50 60 70 80
Utilisation %

JU 1uu

LP

1.4 -ý- IP

-ý- Hi
1.2 -ý H2

1.0

50 60 70 80 90 100
Utilization %

Graph 4.6.9. Five End Item Problem with Structure 1

100000
(40% Reduction in the Original Costs)

m

r-1
90000

0
w

80000 14
0
U

40

50 60 70 80
Utilisation %

N
U
dl
0)

a
EH

J
A4 U

4J
"d
r4

a

0

0

LP

-" 4 IP

ý- Hl

"ý' H2

90 100

30

20

10

0-
40 50 60 70 80

Utilisation %

--¢- LP

(IP) /20

ý- H1'(or H2)

90 100

2.0-

1.8-

1.6-

1.4

1.2-

I. o

-¢- LP

Ip

-ý- Hl

H2

50 60 70 80 90 100
Utilisation %

Graph 4.6.10. One End Item Problem with Structure 1

20000

18000-

16000-

41
14000

w
12000

El m

123

Utilisation %

y
U

y

R
. 14
H

D

U

8

6

LP

IP

Hl

-d'- H2

4

4

2

o-
0

2.0

1.8

+' 1.6
. rl

1.4 E
", A
ä 1.2
0

1.0

0

123

Utilisation %

ýý

123
Utilisation %

-"1- LP

- (IP) /20

U- H1 (or H2)

4

- El- - LP

-"f'"- IP

'-' - H1

ý' H2

4

Graph 4.6.11. Three End Item Problem with Structure2

11000C

4)
10000c

9000C

w
14 8000C
U

1234
Utilisation %

20

01

15

a)

10
E

D5
U

41
., I
r-i
rd
0
. rq 41

a
0

0-
0

2.0

1.8

1.6

1.4

1.2

1.0

0

123
Utilisation %

123
Utilisation %

-- LP

Ip

ý- Hi

-ý- H2

ý- LP

(IP) /20

-ý H1 (or H2)

4

LP

Ip

-"'s- H1
ý- H2

4

Graph 4.6.12. Five End Item Problem with Structure 3

170000

160000
0
0

150000

140000

N
N
x130000

0

40

30

20

10
U

2.0

1.8

1.6

H
to 1.4

1.2
O

1.0

0

ort
0 123

Utilisation %

LP

IP

H1

- H2

-0-- LP

(IP) /20

9- H1. (or H2)

4

-0 - LP

-ý- IP

Hl

ý- H2

1234
Utilisation %

1234
Utilisation %

1ý Aý7

CHAPTER 5

AN ANALYSIS OF MULTI-LEVEL LOT-SIZING PROBLEMS
WITH BOTTLENECK UNDER A ROLLING SCHEDULE

ENVIRONMENT

5.1. Introduction

Much research into multi-level lot-sizing has

concentrated on fixed horizon problems, ignoring more

realistic conditions (such as adding new demands into the

planning period). The aim of this chapter is to

illustrate that the heuristic, which was developed

earlier in chapter 4, is applicable to the multi-level

lot-sizing problem with a bottleneck under a rolling

schedule environment. In this chapter, as was mentioned

in chapter 2, the literature survey for the rolling

schedule environment will be given in section 2, then the

problem structure will be given in section 3, afterwards

the simple heuristic for the problem with a rolling

schedule will be given, and then an example problem will

be analysed in section 7, and the final section will

provide some conclusions.

5.2. Literature Survey for Rolling Schedule Environment

Lot-Sizing heuristics in the literature provide an

optimal solution to lot-sizing problems under restricted

assumptions in manufacturing firms, because most existing

approaches assume that the fixed horizon for demand will

remain the same without changes in the schedule. A fixed

planning horizon will be used and each level will be

treated independently. Although much progress has been

made recently in multi-level lot-sizing problems, there

80

1ý A007

is still a gap between the problem faced by practitioners

and models analysed by researchers. For instance, the

problem of how lot-sizing decision rules would be used in

real life problems has not been answered. To answer this

question, a rolling schedule idea was developed in the

past. The rolling schedule works according to the

following process: a given multi-period problem is solved

and the first decision is implemented. Then, the new

information is appended to the planning horizon and the

problem is solved again. This is repeated frequently.

Thus, the rolling schedule is defined as a production

plan for multi-period problems. However, in a rolling

schedule environment, the addition of new information at

the end of planning horizon may result in earlier

decisions being altered or deleted and new orders added.

This instability is referred to as nervousness in planned

orders.

Carlson et al. [1979] were concerned with changed costs

which occured when the production plan was changed to

involve setups which had not been planned previously.

They defined two sets of indices to decide whether there

is a change in cost or not. These indices were: A(x) = {k

I xk = 01, and B (x) =fkI xk >0}. According to these

indices, they defined the new setup cost as follows:

sk + Vk for kEA(x)
Wk

Sk for kE B (x)

and including these new costs in the objective function

gave:

81

1ý M7

NN
C=I hk Ik+1 +I Wk S (Xk)

k=1 k=1

where

(xk) {1
if xk >0

8_
0 otherwise

In this equation, xk is production at period k, sk is the

setup cost at period k, vk is the change cost for adding

a new setup, 5(xk) shows production indicator. They used
the Wagner-Whitin algorithm to show how to reduce the

nervousness.

Kropp and Carlson [1984] extended the Carlson et al.
[1979] model by including a cancelled setup cost from

setup to no setup situations. It means that the cancelled

setup cost was involved in the model when the production

of a particular period was greater than zero. They

illustrated this by an index, B, where B= {k I xk >0}.

They generalised the solution procedure which did not

have any restriction on the change cost or setup cost.

They defined the variable M as the first period where a

setup was planned by M= min (k I xk > 0) .J was defined as

the first period where net demand was positive after

subtracting the initial inventory, where J= min(k I dk >

0) . If there was no net demand in periods, then the

optimal solution to the problem was found to be xk=0.

They assume that the first setup in the plan will happen

no later than period J, because they do not allow

backorders. They defined the indices L= min(J, M-1), then

the indices:

C (x) ={k I k<_ L and xk = 0}

D(x)={k Ik> L and xk = 01

82

The objective of their research was to minimise the
following objective function using the Wagner-Whitin lot-

sizing heuristic:

NN
Total Cost =I hk Ik+l +I Zk S (xk) +E uk

k=1 k=1 kEb (x)

subject to

sk - Uk for kEB (x)
zk ={ sk + vk for kEC (x)

sk for kED (x)

where uk is the cancelled setup cost.

Both Carlson et al. [1979] and Kropp and Carlson [1984]

in their research used the Wagner-Whitin heuristic with
the above formulations to reduce nervousness when applied
to single-level lot-sizing problems without capacity

considerations. The Wagner-Whitin heuristic illustrates

more nervousness if it is compared with other heuristics

such as the Silver-Meal, because the Wagner-Whitin

heuristic is more horizon sensitive.

Baker and Peterson [1979] proposed an analytical

structure for evaluating the cost performance of rolling

schedules with quadratic cost functions. They focused on

finding the relationship between the planning horizon and

the cost performance efficiency which is the proportion

of the cost of rolling schedules to that of an optimal

solution. Their results illustrated that increasing the

planning horizon results in improvements in performance

but decreases returns. They also showed that the most

important factor in their research was the cost structure

which affects performance, but fluctuation and

uncertainties in demand was a secondary factor.

83

`Pý 27

Chand [1982] analysed the modified Wagner-Whitin

algorithm and compared this algorithm with the Wagner-
Whitin algorithm and Silver-Meal algorithm. He also
proved that more information for the future periods is

advantageous as the results of Baker [1979] showed. He
illustrated that the modified Wagner-Whitin algorithm

yields better cost performance than the others for the

conditions of the single-level lot-sizing problem and

unconstrained capacity.

Blackburn and Millen [1980] analysed the cost performance

of rolling schedules using some of the well known

heuristics such as Silver-Meal, Wagner-Whitin and the

modified Silver-Meal. Under restricted assumptions such

as a lumpy demand situation, the modified Silver-Meal

heuristic performed better than the Silver-Meal or
Wagner-Whitin heuristics for a short period horizon, but

in a long planning horizon the modified Silver-Meal

heuristic was not applicable due to lumpy demand. They

showed that the Silver-Meal heuristic was superior to the

Wagner-Whitin heuristic for long term horizons. The

reason was that the Wagner-Whitin heuristic is horizon

sensitive. The problems considered were single-level

assembly systems and uncapacitated problems. Their later

paper (Blackburn and Millen [1982]) exhibited a cost

performance comparison between different lot-sizing

techniques for the assembly systems under rolling

schedules. They illustrated again that the Silver-Meal

heuristic yields lower cost than the Wagner-Whitin

heuristic and also required less computational time.

As Carlson et al. [1979] noted 'There is a feeling that

although the optimality of the solution provided by the

Wagner-Whitin algorithm is valuable, its price is too

high: that price being the cost of changing plans. Many

managers would rather live with non-optimal but stable

plans. ' Although many authors claim that their methods

84

ý AE7

produce an optimal solution in production scheduling,
these are all subject to subobtimisation because they

solve only the problems under certain assumptions.

The objective of this chapter is to illustrate that the

heuristic, which was developed in chapter 4, for multi-
level lot-sizing problems with a bottleneck is applicable
to the rolling schedule environment for a parallel

structure, which is a special case of MRP. This chapter

also will compare the effect of the EOQ and Silver-Meal

approaches under the rolling schedule environment. This

comparison will be made by using the heuristic under

conditions of normally distributed simulated demands.

5.3. Problem Structure

A capacity problem in the manufacturing firm occurs in

different ways such as (1) incrementation of demand

beyond the capacity system; (2) shortage of highly

skilled operators; (3) scarcity of tools needed in any of

the production stages. These situations result in a

bottleneck problem which does not satisfy the external

demand. A bottleneck is defined as a work centre which

converts raw materials into finished items through the

use of resources in the manufacturing environment. This

chapter will concentrate on how much to produce from the

limited resources, in which the capacity is not enough to

satisfy the demands, for a rolling schedule.

The five stage product structure with a bottleneck

problem illustrated in Figure 5.3 was used as the test

bed for the heuristics. The five stages are illustrated

vertically. The product structure, called a parallel

structure in this chapter, is such that the assembly

systems require each part (predecessor) to be the input

to one successor stage. The five parallel production

lines are illustrated horizontally and these end on the

85

product items, 1,2,3,4,5. These five-end-items are

constrained by the bottleneck. In this product structure

there is no commonality between stages as was assumed by

Billington et al. [1986].

In section 5.7, the forecast window is stated as the

future time periods in which demands are known. In the

worked example, initially a problem which consists of

demands in periods 1,..., 6 was solved and the first

decision for periods 1 to 3 was implemented. Then the

procedure was rolled forward for the forecast window,

periods 4 to 9.

For the results in Tables 5.8.1-5.8.9, the problem was

solved for 96 time periods. Again, initially the problem

was solved for periods 1 to 6 and the first decision for

periods 1 to 3 was implemented. Then the procedure was

repeatedly rolled forward for forecast windows from

period k+3 to k+8 for k=1,4,7,..., 88.

21 16 - po 11 6 1

22 17 12 7 21
; <<

23 18 13 8 3;

24 19 14 9 4

25 20 15 10 -jo 5
H

Raw Intermedi ate Final
Materials Items Items

Fig. 5.3. Five End Item Structure (the bottleneck is shown

by dashed lines).

86

5.4. Assumptions

1. All lead times between stages are assumed to be

zero,

2. Items which are produced by a firm are assumed
independent,

3. Demand levels for the end items are known at a

constant rate per year. In addition, there is no
demand for the components at any intermediate

stages. The number of predecessor components

required at any intermediate stage is assumed to

be equal to one. Again this follows the style of

Billington et al. [1986]

5.5. Data Sets

A set of data was generated using a Normal Distribution

to test the heuristic for a multi-level lot-sizing

problem with a bottleneck(s) under the rolling schedule

environment.

In the experimental studies three different cost

structures, three demand streams and three capacity

levels were used to generate the data using NAG

subroutines [1990] on a Hewlett Packard system. For

structure 1 of one-end-item problems, the average holding

cost was set to 0.44 and the average setup cost was set

to 400. For structures 2 and 3 the corresponding values

were set to 1.00,340 and 0.64,420. Three demand streams

were generated to give a low, medium and high coefficient

of variation (Cv). Cv is calculated by dividing the

standard deviation by the mean demand. Further details on

the coefficient of variation will be given in chapter 6.

The level of the coefficient of variation will be

referred to as a structure. For example, a low

coefficient of variation (CV = 0.1057) will be referred

to as structure 1, a medium coefficient of variation (Cv

87

= 0.1862) will be referred to as structure 2, and a high

coefficient of variation (CV = 0.3464) will be referred
to as structure 3 for the one-end-item problem. The
details of the other data sets are included in Appendix
B. The capacity level is set after the demands are
determined such that the total demand is divided by the

product of the percentage of utilisation (which varies
from 25% to 95%) and the number of time periods. All

these data are in the style of Billington et al. [1986].

To aid explanation, the solution to a small problem is

illustrated in the example section.

5.6. Simple Heuristic for the Problem with Rolling
Schedule

The heuristic starts by first dividing the product items

into end-items and non-end-items. Because each non-end-
item's production is unconstrained, and non-end-items or

end-items with bottleneck are constrained by the

bottleneck so that they do not affect the production of

other items. A succesful development in the solution of

the multi-level lot-sizing problem was reported in

chapter 4. In our example problem the bottleneck is

always limited to effectively the end-items. This does

not mean that no bottleneck could occur in other product

item(s). The heuristic illustrates that two simple

procedures can be used independently to find the

production levels if the production items group into (a)

items constrained by the bottleneck; and (b) items which

are unconstrained.

5.6.1. Non-End-Items with Bottleneck

If the demand for end-items is known in advance, it does

not invalidate the independence of the production of

intermediate or raw material items. These capacitated

product items must share the resources of the bottleneck

88

'01'

so that the determination of when to produce end-items is

more complex. Because of this reason the production
problem is a constrained problem. To deal with this kind

of problem a simple heuristic was adopted that would
adopt a greedy approach to production with heavy

utilisation of production capacity. In addition, the
heuristic operates in a cyclic manner, moving the product
items in turn, to produce reasonably smooth production.
In chapter 4, this heuristic is shown in detail. Two

cases will be given to demonstrate the heuristic and one

case will be examined with an example problem in the next

section showing the cylical manner.

Case (a) 3-end-item problem

Using the heuristic which is developed in chapter 4 the

approach is to produce as much of product item 1 in the

first period as is equal to the bottleneck's capacity
less the demand for product items 2 and 3 that would

satisfy their demand for several periods. In period 2,

assuming there is a sufficient stock for product item 1,

produce as much of product item 2 as is equal to the

bottleneck's capacity less the demand for product item 3.

In period 3, assuming the stocks of product items 1 and 2

are enough to satisfy demands, produce as much of product

item 3 as is equal to the bottleneck's capacity and so

on. (See also case (b) in section 4.4.2).

Whenever any of the stock levels of product item would
become negative, that particular product item is produced

again until the production of that product item becomes

dominant over the next one or more periods.

The priority allocation chos4

results in this thesis, wa:

al. [1986]. No particular

suggested by the data itself,

en as the basis for the

3 used by Billington et

priority allocation was

and alternative priority

89

allocations to that above, which were tested intensively

on the basis of the following criteria (i) largest total

demand first, and (ii) most variable demand first, did

not change the results significantly. It has therefore

been assumed that choosing an alternative priority

allocation, to the one chosen in this thesis would not

make a significant difference to the results. However,

the comparisons of the alternative priority allocations

would be an interesting topic for further research.

Case (b) 5-end-item problem

For this problem, in order to keep the heuristic simple,

product items are grouped in such a way as to keep

identical items together eg product items (1,2,3) and

(4,5) respectively. These two sets of product are now

treated as single products and a three period cycle (in

case a) was modified to a two period cycle. This grouping

into two sets was chosen, rather than other alternative

sets, in order to satisfy the two criteria which are

explained in chapter 4 (case (b)).

The total cost is now the sum of the individual combined

inventory and setup costs for the end-items-and non-end-

items.

5.7. An Example

A small One-End-Item problem will now be considered.

the problem five holding costs (0.5,0.1,0.5,0.1,1.0)

five setup costs (300,200,200,500,400), and also

period demands (38,43,37,42,33,42) were used.

solutions are shown for the end item and component$

turn:

In

and

six

The

in

90

5.7.1. Rolling schedule on bottleneck items

The heuristic was to produce as much of product item i as

is equal to the bottleneck capacity utilisation, in order

that there will be more than enough for several periods.

Let the bottleneck be located such that it affects the

end item, the heuristic which will be used is that Pit =

capt where Pit is the units of production item i in

period t, and capt is the bottleneck capacity

utilisation, which is 50% in this case, at work centre at

time t, then produce up to Sit < dit where Sit is stock

of product item i in period t and dit is the demand for

product item i during period t. So from the above demand

patterns the capacity utilisation capt = 79 was found. So

the original schedule will be:

Period 1 2 3 4 5 6
Demand 38 43 37 42 33 42
Pit 79 79 0 77 0 0

The optimal solution to this problem is P11 = 79,212 =

79, P14 = 77, and the rest of the periods for product

item 1 are zero. It is assumed that there is a set of

demands at the end of period 3, such that d14 = 42, d15 =

33, d16 = 42, d17 = 40, d18 = 48, d19 = 38. These demands

will lead to the new set of results.

Period 4 5 6 7 8 9
Demand 42 33 42 40 48 38
Pit 81 0 0 81 41 0

As this schedule illustrates, the original plan has

changed. Production was 77 in period 4, but appending the

new set of demands at the end of period 3 in the planning

horizon results in 81 instead of the original 77. For

the calculation of the total cost for these problems for

the bottleneck facility, it is necessary to bear in mind

91

that the revised total cost now includes the original
cost up to the beginning of the new schedule.

The objective function to calculate the total cost is
adopted from Billington et al. [1986] and from now on
whenever the total cost is mentioned, it will refer to
this equation which is illustrated below.

T
TC =E hi* (T -t+ 1) *Pit + csi*Xit

t=1

The total cost for the original plan is 1420, and the
total cost for the revised schedule is 2340.

5.7.2. Rolling schedule on non-bottleneck items

Two well known approaches to cope with relatively varying
demand will be used on the non-bottleneck product items.

They are EOQ and Silver-Meal approaches.

The application of the classic EOQ approach is very
difficult for real life problems. Because of that the

assumptions are relaxed to get closer to the real

circumstances; ie, different holding and setup costs for

different items, demands for the production items are

relatively deterministic but changes during the time

horizon. This is the condition of MRP application.

5.7.2.1. The Economic Order Quantity Approach (EOQ)

Consider product item 3 which is useful for demonstrating

the application of the EOQ approach. The same demands

will be used for product item 3, because only one

predecessor item is required to produce the successor

item in the product structure. The EOQ is 177, which is

92

less than the total demand, so that there are three

alternatives that will apply.

Alternative a: Produce Qi which is the Economic Order
Quantity for product item i, based on setup cost csi and
holding cost hi, in period 1 for one or more period to

satisfy the demand for product item i. Before the stock
drops below zero, produce another Qi for another period
or periods. Continue this process tr times where

T
tr=1 I dit / Qj + 0.99] which is 2 times. The value of

t=l

0.99 is included here in order to round up to the next
integer above.

Period 1 2 3 4 5 6
Demand 38 43 37 42 33 42
Pit 177 0 0 0 58 0

The total cost for alternative a is 989.

Alternative b; Produce Zr items in period 1 and then next

produce Zr when stocks would become negative which means

that no production is made (i. e. Sing din)

T
Zr =E dit / tr which is 118 or 117.

t=1

So the schedule will be

Period 1 2 3 4 5 6
Demand 38 43 37 42 33 42
Pit 118 0 0 117 0 0

The total cost for alternative b is 930.

Alternative c; Produce all demands in period 1

Periods 1 2 3 4 5 6
Demand 38 43 37 42 33 42
Pit 235 0 0 0 0 0

93

`qlwý 107

The total cost for alternative c is 905.

To start rolling forward, the minimum scheduled cost
which is given in alternative c is chosen. Assume that

some future demand has been received in period 4, the

schedule is changed as below. Then Piff is 126.

Period 4 5 6 7 8 9
Demand 42 33 42 40 48 38
Pit 0 0 0 126 0 0

Then the total cost of rolling forward is 1294.

5.7.2.2. The Silver-Meal Approach

In this section, one of the well known heuristics, the

Silver-Meal [1973], will be examined for comparison with
the EOQ approach for the non-bottleneck items. This

heuristic selects the lot-sizes in order to minimise the

total cost over the planning horizon under the varying
demand conditions. The heuristic, which was explained in

chapter 4, was:

Let T equal the number of periods,

Average Cost (AC) =

or

Setup Cost + Total Holding Cost

T

csi +[(1-1) *dil + (2-1) *di2 +... + (T-1) *dit] [hit]
AC =

T

Note that there is no inventory carrying cost during the

first period so that dil drops from the formulation. When

the total cost for a particular period is less than the

succeeding one, the production period (T) is found and

the quantity of the lot-size is the sum of the demands,

94

which is the Qit = dil + dig +... + dit during the period
T. This process continues through all periods. For the

same problem, using the Silver-Meal heuristic, according
to the procedure above, the schedule will be;

Period 1 2 3 4 5 6
Demands 38 43 37 42 33 42
Pit 193 0 0 0 0 42

Total cost for the original plan is 1000.

If the plan is rolled forward to ninth period, the plan

will be

Period 4 5 6 7 8 9
Demand 42 33 42 40 48 38
Pit 0 0 168 0 0 0

Total cost for the new plan is 1315.

As will be seen from the solution of the original problem

the new schedule costs are generally increased under the

rolling schedule environment. In this case in the

original schedule, production was 42 in period 6 but

according to the new demand production should be 168 in

period 6. For another product item, the procedure will be

the same.

5.8. The Results of Rolling Schedule

A program was written in Fortran 77 for the multi-level

lot-sizing problem under the rolling schedule when there

was a bottleneck(s). Normally distributed random numbers

were generated using a NAG subroutine (included in

Appendix D).

It was assumed that there was either one bottleneck which

occurred in the final product item(s), or two bottlenecks

which occurred, in the final product item(s), and the

95

"Ro'

intermediate product item(s) respectively (i. e. the final

product item 1 and intermediate product item 3 for the

one-end-item problems). Then, the heuristic was applied
to the constrained (bottleneck) product items while the
EOQ and Silver-Meal were employed on the unconstrained
(non bottleneck) product items for the rolling schedule.

The results with different capacity utilisations are
illustrated in Tables 5.8.1-5.8.9. In each table, the
total cost of the problems using EOQ and Silver-Meal for

the unconstrained product items with the heuristic for

the constrained product items are illustrated. The second

and third columns refer to problems without a rolling

schedule and the fourth and fifth columns refer to

problems with a rolling schedule. The multiple bottleneck

results are shown in the first row, and single bottleneck

cases with different work centre utilisation, i. e. 50%

and 75%, are illustrated in the second and third rows,

respectively. The same results as presented in the Tables

are also presented in Graphs 5.8.1-5.8.9. In each graph,

the number 1 refers to the multiple bottleneck cases

(where the bottlenecks occurred in the final product item

with 75% capacity utilisation and the intermediate

product item with 50% capacity utilisation). Likewise,

the numbers 2 and 3 refer to single bottleneck cases

where the bottlenecks always occurred at the final

product items with 50% and 75% utilisation. The total

costs are shown on the vertical axis. Furthermore, the

legends H1, H2 refer to the total cost of problems using

EOQ and Silver-Meal for the unconstrained product items

and the heuristic for the constrained product items

without rolling schedule while the legends H3, H4 refer

to the solution using EOQ and Silver-Meal for the

unconstrained product items and the heuristic for the

constrained product items with rolling schedule,

respectively. According to the results, the total cost is

increased when appending new demands in the planning

96

horizon. The results also illustrate that the heuristic

with Silver-Meal is better than the heuristic with EOQ

because Silver-Meal performs well with varying demand.

More discussion will be given in chapter 6.

5.9. Conclusion

It was shown that the dynamic problem can be handled

using the heuristic, which was developed in chapter 4,

for constrained product items and two well known

approaches (EOQ and Silver-Meal) for the unconstrained

product items to make stable plans.

97

Table 5.8.1. One End Item Problem with Structure One

Heuristic Solution
Without Rolling Schedule With Rolling Schedule
EOQ Silver-Meal EOQ Silver-Meal

50%+
75% 177047 158000 236019 235485
Util.

50%
Util. 159790 132834 207368 206567

75%
Util. 177121 150165 228002 227201

Table 5.8.2. One End Item Problem with Structure Two

Heuristic Solution
Without Rolling Schedule With Rolling Schedule
EOQ Silver-Meal EOQ Silver-Meal

50%+
75%
Util.

313810 292097 450704 438278

50%
Util. 285904 250619 424394 399542

75%
Util. 315850 280566 459203 434351

98

Table 5.8.3. One End Item Problem with Structure Three

Heuristic Solution
Without Rolling Schedule With Rolling Schedule
EOQ Silver-Meal EOQ Silver-Meal

50%+
75% 322818 263433 443883 406937
Util.

50%
Util. 262283 201299 363994 327048

75%
Util. 280650 219667 385354 348408

Table 5.8.4. Three End Item Problem with Structure One

Heuristic Solution
Without Rolling Schedule With Rolling Schedule
EOQ Silver-Meal EOQ Silver-Meal

50%+
75% 1065813 937737 1330438 1286940
Util.

50%
Util. 1042958 859223 1376117 1309539

75% 1070519 886784 1396423 1329845
Util.

99

Table 5.8.5. Three End Item Problem with Structure Two

Heuristic Solution
Without Rolling Schedule With Rolling Schedule
EOQ Silver-Meal EOQ Silver-Meal

50%+
75% 1442978 1275779 1832941 1750423
Util.

50%
Util. 1424898 1184607 1882821 1800479

75%
Util. 1436365 1196073 1892480 1810137

Table 5.8.6. Three End Item Problem with Structure Three

Heuristic Solution
Without Rolling Schedule With Rolling Schedule
EOQ. Silver-Meal EOQ Silver-Meal

50%+
75% 1020687 910895 1289637 1203334
Util.

50%
Util. 959582 808717 1291359 1203364

75%
Util. 968396 817531 1295945 1207950

100

Table 5.8.7. Five End Item Problem with Structure One

Heuristic Solution
Without Rolling Schedule With Rolling Schedule
EOQ Silver-Meal EOQ Silver-Meal

50%+
75% 1196459 1053393 1581905 1564095
Util.

50%
Util. 1149856 982858 1541031 1516214

75%
Util. 1141588 974590 1554452 1529695

Table 5.8.8. Five End Item Problem with Structure Two

Heuristic Solution
Without Rolling Schedule With Rolling Schedule
EOQ Silver-Meal EOQ Silver-Meal

50%+
75% 1102177 968298 1478366 1441051
Util.

50%
Util. 1047246 876317 1440604 1391606

75%
Util. 1062284 891355 1467602 1418604

101

Graph 5.8.1.

240T-

O
O
O
v

4J
A
0
U

P4
a
41 0 E

0

Graph 5.8.2.

500

O
O
O

400
43
b
O
U

300

40 0

-, 0- H1

B2

-ý- H3

-ý- H4

ß
1234
Utilisation %

Graph 5.8.3. One End Item Problem with Structure 3

500

o
0
0

400'

0 U

a
0
H

220

200

180

160

140

30C

0

One End Item Problem with Structure 1

-ý- H2

a3
H4

1234
Utilisation %

One End Item Problem with Structure 2

1234
Utilisation %

---E3- H1

H2

H3

'-9, - H4

Graph 5.8.7.

1600 T

O
°0 140(

41
ö 12C(

100(
0
E

1234
Utilisation %

Graph 5.8.8. Five End Item Problem with Structure 2

1600

O

1400

40
0 1200
U

Five End Item Problem with Structure 1

-i- Hl

H2

H3

-ý' H4

ý- 81

H2

83

84
r-1
fe 1000
0
E

O,

123
Utilisation %

4

Graph 5.8.9.

1400 T

ö 1300
0
° 1200

. &1 1100
a
v 1000

b 900
43 0 800

Five End Item Problem with Structure 3

0- Hi

H2

-ý- H3

-4 H4

1234
Utilisation %

Graph 5.8.4. Three End Item Problem with Structure 1

1400

o 1300 0- 0
0
`ý 1200
43
ö 1100
U

1000

0 900

-e- Hi

HZ

-ý- H3

ýý' a4

1234
Utilisation %

Graph 5.8.5. Three End Item Problem with Structure 2

200C

° 180c

160C

0
1400

ö 1200
H

--e- H1

H2

-ý- H3

0 1234
Utilisation %

Graph 5.8.6. Three End Item Problem with Structure 3

130

o° 120
0

110

0
v 100(

41 901
0 E

v

ý- H1

H2

H3

-0- H4

1234
Utilisation %

Graph 5.8.7.

1600 1

O

1401

43

120(
cI

r4

0 looi 41
0
E

v

"me- Hl

H2

-ý--- H3
ý- H4

1234
Utilisation %

Graph 5.8.8. Five End Item Problem with Structure 2

1600

O

1400

4J
0 1200
V

1000
41
0
E

D

Graph 5.8.9.

1400 T-

ö 1300
0
° 1200

.0 1100
a
v 1000

r+ 900
a
41 800

Five End Item Problem with Structure 1

123
Utilisation %

ý- 81

-y- H2

--9- H3

-f- H4

4

Five End Item Problem with Structure 3

a- Hl

--ý-- H2
H3

-ý- H4

01v
1234
Utilisation %

CHAPTER 6

RESULTS AND DISCUSSIONS

6.1. Introduction

Chapter 4 proposed a simple
level lot-sizing problem when

also illustrated that if

categorized into:

heuristic to solve multi-
there is a bottleneck. It

the product items are

(1) end-items, constrained by the bottleneck

(2) non-end-items, unconstrained

then simple procedures can be used independently to

determine the production quantities required. A heuristic

was developed to solve the constrained product items. The

EOQ and Silver-Meal approaches were employed on the

unconstrained product items. The above procedures were

also applied to the multiple bottleneck case in chapter 4

and to the rolling schedule problem in chapter 5. The

procedures assumed that all the product items would be

treated independently so that they could not affect each

other's production. These procedures may be applied to

the dependent product item cases but that is a project

for further research. The results and discussions of

multi-level lot-sizing problem with bottleneck(s) will be

given first (section 6.2) followed by the results of the

rolling schedule problem (section 6.3) . The worst case

analysis of the heuristic will be given in section 6.4.

Finally the conclusion will be provided in section 6.5.

103

6.2. The Results and Discussions of Multi-Level Lot-

Sizing Problem with Bottleneck(s)

The integer programming formulation solved by using the

software MGG [1987] and SCICONIC [1986], and the

heuristic approach of chapter 4, coded in Fortran 77,

were compared on sets of data obtained from Billington

[1983] and also discussed in Billington et al. [1986]. In

the experimental studies three different cost structures,

three demand streams and three capacity levels were used.

The three cost structures are detailed in Billington

[1983]. Essentially for each structure the holding costs

and the setup costs are set to different levels such that

for structure 1 the average of the holding costs is 0.92

and the average for the setup costs is 360. For

structures 2 and 3 the corresponding values are 1.31,360

and 0.79,380 for holding cost and setup cost,

respectively. The three demand streams are generated to

give a low, medium and high coefficient of variation, Cv,

which is defined as the demand standard deviation divided

by mean demand. That is

n

i=1
Cv =

(di - di) 2

n-1

n di

i=1 n

In another words the coefficient of variation or Cv is

the demand standard deviation expressed as a proportion

of mean demand. A low coefficient of variation, Cv =

0.1144, a medium coefficient of variation, Cv = 0.1926,

and a high coefficient of variation Cv = 0.3955 for the

three-end-item problem were used in Billington et al.

[1986]. From now on the levels of the coefficient of

variation will be referred to as structure 1, structure

104

2, and structure 3. The coefficients of variation for
one- and five-end-item problems can be seen in Appendix
B. Capacity is set after demands are determined such that
the total demand is divided by the product of the
percentage of utilisation (low (50%), medium (75%), high
(95%)) and the number of time periods.

The results of the experiments for the single bottleneck

problem, with the original costs and a reduction of the

original costs by 20% and 40% in turn, are illustrated in
Tables 4.6.1-4.6.9 (81 problems were investigated in

all) . The same results in those tables are also presented
in Graphs 4.6.1-4.6.9. In addition, the results of 20%

reduction in each of the original holding and setup cost

are depicted in Tables 4.6.10-4.6.12 (27 problems were
investigated). Different capacity utilisations were
investigated, such as 60% and 80%, to show how the

heuristic worked for those cases and the results of 12

problems are depicted in Tables 4.6.13-4.6.18.

The results of the multiple bottleneck cases are shown in

Tables 4.6.19-4.6.21. The same results are also
illustrated in Graphs 4.6.10-4.6.12.

In each table, the details of the linear programming (LP)

solution relative to the integer programming (IP)

formulation are given in the third column. Details of the

integer programming branch and bound approach are given

in the fourth column. Details of the heuristic solution

for the constrained product items with the EOQ and

Silver-Meal for the unconstrained product items are given

in the fifth and sixth columns respectively for different

capacity utilisation.

In each graph (Graphs 4.6.1-4.6.9) the linear programming

solution (LP), the integer programming solution (IP), and

the heuristic solution for the constrained product items

105

with either Economic Order Quantity (H1), or the Silver-
Meal approaches (H2) for the unconstrained product items

are depicted in the legends. The current values, the CPU
time and the level of optimality are illustrated on the

vertical axis while the capacity utilisations (set at
50%, 75%, or 95%) are depicted on the horizontal axis. In

addition in Graphs 4.6.10-4.6.12, the numbers on the
horizontal axis refer to multiple bottleneck cases where
the bottlenecks occurred in the final item(s) and
intermediate item(s). The utilisations which applied to
the multiple bottleneck cases were 50% and 25%, 75% and
50%, 95% and 75% of capacity utilisation at the final

product item(s) and intermediate product item(s)

respectively.

The branching process by which the integer programming

solutions were obtained was the standard default of the

SCICONIC software which comprises an approach to choose

sub-problems which minimise the percentage error in the

degradation of the objective function. The "dynamic

presolve" option of SCICONIC was also used which aids
branching exploration by tightening bounds where

possible. The IP and heuristic solutions are compared to

the LP optimum to give some indication of the quality of

the solutions as the LP optimum provides a lower bound to

the solution to the problem. In all cases the IP solution

is not a proven optimal solution and the branch and bound

process had to be cut off, before optimality could be

proved. The cut off occurred once a large amount of

computer time had elapsed and further effort appeared

unproductive. Computation was stopped after approximately

3000 branch and bound nodes had been explored. The reason

for this was that although a number of problems were run

over 10000 or more branch and bound nodes, it was found

that no better solution was obtained than in the first

2000-3000 nodes, so 3000 nodes was taken as a convenient

stopping point. CPU times quoted are for the time (in

106

seconds) taken on a Hewlett Packard 9000 to reach the

given solution. A number of features are evident from the

results quoted in the tables.

1. The heuristic approach is rapid, taking a few

seconds of CPU time.

2. In all but a few cases (such as 95% utilisation for

structure 2 in one-end-item problems, and structure
2 for three-end-item problems) the solutions using
the heuristic for the constrained product items with

Economic Order Quantity for the unconstrained

product items are better than the IP solutions. The

solutions using the heuristic for the constrained

product items with Silver-Meal for the unconstrained

product items are better than the IP solutions for

all cases except for structure 2 for the three-end-

item problems with multiple bottlenecks. Also using

the heuristic for constrained product items with the

Silver-Meal approach for unconstrained product items

provides a better solution than using the heuristic

for constrained product items with the Economic

Order Quantity approach for the unconstrained

product items except for structure 1 for the one-

end-item problem. The reason is that the Silver-Meal

approach yields better results with varying demand.

(see for example Monks [1987]).

3. The heuristic solution for the constrained product

items with the EOQ and Silver-Meal approaches for

the unconstrained product items yields the same

optimality when the original setup and holding costs

were reduced by 20% and 40% in turn (see Tables

4.6.1-4.6.9), but it does not give the same

reduction when each of the original holding and

setup costs were reduced by 20% (see Tables 4.6.10-

4.6.12).

107

For the five-end-item problems the heuristic seems to

work particularly well, in the sense that the solutions

are very close to the lower bound value and sometimes the

same as the lower bound for structure 2 and structure 3.
However, this may only mean that the lower bounds are
tighter for these problems. These tighter lower bounds

may arise because more realistic values of the effect of

setup costs (which are unrealistically reduced in the LP

relaxation of the IP formulation) are likely to arise

when there are more types of product items being produced
in the bottleneck and so there are more fractions of the

true setup cost to add together.

For the few cases in three-end-item problems (structure

2) and one-end-item problems (95% utilisation for

structure 2) where the heuristic does not work well it

may be that rather more setups than necesary are being

used when the setup cost is above average.

The IP solutions obtained were not optimal, but it should

be noted that the work of Billington et al. [19861 was

also unable to make comparison of its Lagrangean

solutions with optimal solutions.

The LP solution (LP) is a lower bound on total cost. The

optimal IP solution (IP *)
, if known, would be larger than

the LP solution because the LP solution involves

fractions.

The heuristic solution is a solution which is not

guaranteed to be optimal, but is integer feasible.

Ordinarily it would be expected to discover the hierarchy

Lp < Ip * <_ Heuristic solution

108

However, in the use of the problems tested in this
thesis, the optimal IP solution is not known and the best

IP solution obtained by branch and bound method may be

substantially poorer than the optimal because production

scheduling problems are so hard for the branch and bound

method to solve. Thus in the results described it was

generally found the hierarchy was

LP <_ Heuristic Solution <_ IP

where IP is the best (non-optimal) solution found by

branch and bound method. Thus, in fact, the heuristic

generally gives a better integer solution than the IP

solution and if it could have been easily inserted into

the SCICONIC code it could have improved the branch and

bound search. All solution approaches solve the same

formulation of the problem (given in chapters 3 and 4).

It is impossible to compare precisely the heuristic

approach of chapter 4 with that of Billington et al.

[1986] as we do not have access to their program. It was

felt that once rapid solution times for the heuristic

approach were obtained (all less than 3.31 CPU seconds)

and such high quality solutions were obtained for the

five-end-item problems that it was not appropriate to

program the Lagrangean approach. What was of interest was

to find a simpler approach. It is likely that their

method produces good quality solutions but the code is

complex and unlikely to operate as rapidly as the few

seconds required by the heuristic in this thesis. The

approach is sufficiently flexible to provide quick

solutions for a variety of extensions of the basic

problem and the approach is appropriate for quick

reworking of schedules whenever changes occur in demand

streams or breakdowns occur.

109

6.3. The Results and Discussions of Rolling Schedule for
Multi-Level Lot-Sizing Problem with Bottleneck(s)

The heuristic for the constrained product item(s) with
the EOQ and Silver-Meal approaches for the unconstrained
product items for the rolling schedule was coded in

Fortran 77, and three demand streams were generated using
NAG Subroutines [1990] for the Normal Distribution on a
Hewlett Packard. As in the previous section, three
different cost structures, three demand streams and three

capacity levels were employed. The average holding and

setup costs were set to different levels as follows: For

structure 1, the average holding cost is 0.92 and the

average setup cost is 360. For structure 2, the average
holding cost is 1.31 and the average setup cost is 360.

For structure 3, the corresponding values are 0.79 and
380 for the average holding and setup costs.

Three demand streams for the three-end-item problems were

generated to give a low (Cv = 0.1144), a medium (Cv =
0.1926), and a high (Cv = 0.3955) coefficient of

variation for each of ninety-six period demand data. The

C. is the standard deviation as a proportion of mean

demand. Capacity is set after demands are determined such

that the total demand is divided by the product of the

percentage of utilisation and the number of time periods.

The capacity utilisations varied from 25% to 95% in the

experimental studies.

The results for the rolling schedule are shown in Tables

5.8.1-5.8.9 with different capacity utilisation (27

problems were investigated) In each table, the total

cost of the ninety-six period problem using the heuristic

for the constrained item(s) with the EOQ and Silver-Meal

approaches for the unconstrained items are shown. The

second and third columns refer to problems without a

110

rolling schedule and the fourth and fifth columns refer
to problems with a rolling schedule.

Graphs 5.8.1-5.8.9 are presented in the same way as the

results above. In each graph, the number 1 on the
horizontal axis refers to the multiple bottleneck cases.
It is assumed that those bottlenecks occurred in the
final product item(s) with 50% capacity utilisation and
the intermediate product item(s) with 50% capacity

utilisation. Further, the numbers 2 and 3 on the
horizontal axis refer to single bottleneck cases which

occurred at the final product item(s) with 50% and 75%

utilisation, respectively. In addition, the legends H1,

H2 refer to the total cost without the rolling schedule,

and H3, H4 refer to the total cost with the rolling

schedule.

The fixed planning period is used to solve different

problems in chapter 4, ignoring the more realistic

conditions dealt with by dynamic studies in chapter 5.

In the experimental studies, such as in Blackburn et

al. [1982], four to ninety-six forecast windows and a six

period rolling schedule horizon were used. The heuristic

for the constrained product items and the EOQ and Silver-

Meal approaches for the unconstrained product items were

used to solve the problems using the rolling schedule.

The rolling schedules were formed as follows: First, the

problem for 1 to N is solved, but only the first

decision, for the periods 1 to k, was implemented. The

process was repeated for periods k+3, k+6,..., k+N,

continuing until the production decision was made in all

of the ninety-six periods. Although the changes after

every 3 periods are examined in this thesis, the program

which is reported in Appendix C can provide the changes

after each time period.

111

The results in Tables 5.8.1-5.8.9 illustrate that
increasing the planning horizon results in extra costs,
however more information is generated in the planning
period which can make stable plans. The results also show
that the Silver-Meal approach performed better than the
EOQ. The reason is because the Silver-Meal approach
allows for more stocks at the beginning of the new
periods which are subsequently beneficial.

6.4. Worst Case Analysis of Heuristics

In the literature it is very difficult to solve the

capacitated lot-sizing problems with exact techniques

such as linear programming or integer programming,
because these problems take substantial computer time.

These problems are known as NP-hard problems as was

mentioned briefly in chapter 4. They are hard problems
because optimal techniques are unable to solve the

problems in a reasonable amount of computer time. Because

of these difficulties attention turned to heuristics

which find approximate solutions for those problems.

Heuristics can solve difficult problems satisfactorily,

see for example Fisher [1980], Garey and Johnson [1979],

Iyogun [1991]. In this thesis the computation time took a

maximum of 3.31 seconds, on the other hand integer

programming solutions took a maximum of 887.08 seconds to

solve the same problem. When heuristics are applied to

difficult problems, we have to answer the question "How

good are the heuristics? " The worst case analysis can

help to answer this question. The worst case analysis is

defined as a maximum deviation from the optimality which

can happen if a heuristic is applied to the problem sets.

The aim of this analysis is to predict the heuristic

performance so that the heuristic performance should be

viewed as complementary instead of competitive as

explained in Fisher [1980]. According to the definition,

the heuristic performance can be found using the

112

following equation which is again to be found in Fisher
[1980] :

ZH (I) <_ rZ (I)

where ZH (I) is the heuristic solution for the problem I,

Z (I) is the optimal solution for the problem I, and r is

the heuristic performance. The best heuristic is the

smallest ratio for a given problem . That is,

ZH (I) =rZ (I)

This heuristic performance refers to optimality in the

experimental cases in Tables 4.6.1-4.6.21. In that case

the best heuristic performance is involved in structure 2

and 3 for the five-end-item problem (r = optimality =1

in Tables 4.6.8,4.6.9,4.6.12,4.6.18), and the worst

case performance among all problems was the structure 2

for the three-end-item problem in the experiment (r=

optimality = 1.360 in Table 4.6.20). The reason for the

poor performance of the heuristic was explained in

section 6.2.

In this section, the worst case analysis

terms of setup cost and holding cost.

developed in chapter 4, works well when t

high and the holding cost is low, so the

"what is the worst case for this data? ",

question two opposing heuristics will

briefly:

is explained in

The heuristic,

he setup cost is

question arises

To answer this

be introduced

1. The heuristic, developed in chapter 4, which aimed

to produce as much as possible for each product item

for a period or several periods within a system with

a bottleneck.

113

2. The opposite to heuristic 1, which is to, produce as
little as required within each period for each
product item.

Let TC1 and TC2 denol

heuristics above. As

approach there is no

tradeoff point between

as follows:

.e total cost in relation to the

will be seen from the second
holding cost in these cases. The

setup and holding costs would be

TC1 = TC2

Si S1 (pit) + hi it = Si S2 (Pit)

then hi = (Si S2 (pit) Si S1 (pit)) I Iit

where S1 (Pit), and S2 (Pit) are the production indicators

according to the heuristics, h1, Si, Iit are the holding

cost, setup cost and inventory level for product item i

during period t respectively. A small example is given

below:

Table 6.4. A Cost Analysis

Setup Holding The Ratio of Costs
Cost Cost (Setup / Holding)

500.0 0.5 1000.0

450.0 1.0 450.0

400.0 1.5 266.7

350.0 2.0 175.0

300.0 5.3 56.5

200.0 7.0 28.6

150.0 10.0 15.0

100.0 20.0 5.0

Total
Cost 1

1556.5

1463.0

1369.5

1276.0

1500.0

1391.0

1580.0

2560.0

Total
Cost 2

2500.0

2250.0

2000.0

1750.0

1500.0

1000.0

750.0

500.0

The tradeoff point between the setup cost and the holding

cost is hi = 0.017 Si according to the example above. It

means that the heuristic developed in chapter 4 works

114

well when the setup cost is greater than or equal to 56.5
times the holding cost in this case. The relations
between the setup cost and holding costs can be found
using the above formulation. The relation between these
two costs is ilustrated in Graph 6.4.

3000

2500
41
0 2000
U

1500

0 1000
H

500

0

-ý- Total Cost 1

-ý'- Total Cost 2

0 200 400 600 800 1000 1200
The Ratio of Cost

Graph 6.4. The Relation Between Setup and Holding Costs.

6.5. Summary and Conclusion

In this chapter first the results of single and multiple
bottleneck problem cases were discussed. The results

showed that the heuristic worked well for the five-end-

item problem. This was because the solutions were so

close to the lower bound value (LP). It meant that the

lower bounds were tighter for those problems. The reason

why the heuristic did not work well for a few cases, such

as structure 2 with 95% capacity utilisation in one-end-

item problem and structure 2 in three-end-item problem,

may be that rather more setups than necessary were being

used when setup cost was above average.

115

Then, the results of chapter 5

period problem were investigated

the rolling schedule environment.

when the uncertainties increased,

The results also illustrated

approach is better than the El

demands.

was discussed. The 96

to show the effect of
The results showed that

total cost increased.

that the Silver-Meal

)Q because of varying

Finally, the worst case analysis considered how good the

heuristic was. The analysis was done in respect of setup

cost and holding cost. The idea was to find the relations
between those two costs to minimise the total cost. For

that reason a very simple example was given and the

result showed that the heuristic performed well when the

setup cost was greater than or equal to 56.5 times of

holding cost according to the data above. This was the

tradeoff point between those costs for that example

problem. On the other hand when this proportion

increased, the solution became worse.

In conclusion, the heuristic provides a quick and easy

solution for the problems and is sufficiently simple to

be used even without a computer routine.

116

CHAPTER 7

A COMPARISON FOR THE ASSEMBLY SYSTEM

7.1. Introduction

The results of chapters 4 and 5, and also the worst case
analysis were discussed in the previous chapter. This

chapter first shows, as was mentioned in chapter 2, the

application of the heuristic of Eftekharzadeh [1988] to
the assembly system in order to compare it to the
heuristic of this thesis (section 7.2). Section 7.3 then

provides a sensitivity analysis while comparing the setup

and holding cost. Finally some conclusions are drawn in

section 7.4.

7.2. A Comparison for Assembly Systems

In this section, the heuristic of Eftekharzadeh [1988] is

compared to the heuristic of this thesis for the assembly

product structure, where each part may have only one

successor but many predecessors. This heuristic was

chosen for particular consideration because it

represented a new development that related well to the

work of this thesis. The product structure is illustrated

in Figure 7.1.

Eftekharzadeh [1988] in fact proposed two heuristics:

which are: (1) Selective Enumeration; and (2) Modified

Per Period heuristics for multi-stage lot-sizing assembly

systems. The Modified Per Period heuristic, which is an

extension of the multi-stage uncapacitated procedure, can

117

achieve the feasible schedule by shifting the production
from the period with insufficient capacity to the
immediate left. In this chapter, the Selective

Enumeration procedure will be explained in detail because

the results of the two heuristics by Eftekharzadeh are

essentially the same. The Selective Enumeration heuristic
is the conversion of the uncapacitated multi-stage lot-

sizing heuristic of Afentakis [1987] to a capacitated
lot-sizing heuristic. This heuristic starts to solve the

problem by using the shortest path procedure for the t

period problem by augmenting the solution to the (T-1)

period problem according to the forward fashion and

selects the plan of minimum cost for each period and puts
it in ascending order. That is, the one period problem is

solved first, then the two period problem, then the three

period problem and so on for each stage. In conjunction

with the heuristic there are 2t-1 schedules at each

period t for each stage and these schedules should

satisfy two conditions. Firstly the capacity condition,

which requires that available capacity must not be less

than the requirements, and secondly the system condition

which requires that the cumulative production at the end

of period should be at least equal to cumulative

production for its successor stage A(i) for any two

adjacent stages. The schedule which provides the minimum

cost is selected so that the selected plan remains

feasible for the whole system. On the other hand some of

the plan at any period t might be infeasible. Such plans

that have the infeasible parts must be deleted from the

network. This heuristic when compared to our heuristic is

quite similiar to the Afentakis [1987], and Karni and

Roll [1982] except that Karni and Roll [1982] starts the

planning with the Wagner-Whitin solution for each item,

and Afentakis [1987] uses uncapacitated lot-sizing

procedure.

118

A

Some changes to the Eftekharzadeh approach were found to
be necessary to handle certain situations which were

apparently overlooked in the steps of the heuristic

(these include simplifications also).

The steps of the above heuristic are as follows:

Step 1. Create a network for each stage i (i = 1, ... , N)

with all the possible q period problems (q = 1,..., t).

Calculate the costs for each q period problem using the

shortest path procedure and put them in ascending order

for each t-period problem (t
_< T-1). These costs are

calculated by the following formula:

NT
Min II{ csi*S(Pit) + hi*Iit}

i=1 t=1

The notation is the same as before.

Step 2. Check the feasiblity for each period at any

stage with reference to the capacity and system

conditions starting with the first period. The capacity

condition is:

N
[bi*Pit] <_ Capt

i=1

In each period, the possible schedules which provide the

minimum cost are combined to create the final schedules.

If there is any infeasible schedule at any period, then

that plan(s) is deleted from the network, and the next

lowest cost plan replaces the deleted schedule. This will

be explained in detail later in the chapter. The bi value

is the time needed to produce one unit of product i in

the above formulation and this is set to 1.

119

Step 3. Generate the N (i) =t+2- ti schedules for the
T period problem, where N (i) is the number of stages and
ti is the last production period in the plan V(i, t). The

alternative plans, k, are constructed by adopting the

plan computed by the heuristic from period 1 through ti +
k-2. Then the kth schedule W(i, k) is:

W (i, k) _ {V (i, ti +k- 2) , Rir, 01' 01 k=1, .., N (i)
r=ti+k-1

and the related cost is calculated by using the above

cost function.

Step 4. Consider all possible schedules which yield the

minimum cost, and check whether the schedules satisfy the

system and capacity conditions. If it is true, then stop.

If it is not, then go to step 3.

The data used for this method is depicted in Table 7.1

and Table 7.2 respectively, and also the assembly product

structure in Figure 7.1 (adopted from Eftekharzadeh

[1988])

Table 7.1. Data for a 5-period problem.

Setup
Stage Successor Predecessor Cost

iA (i) B (i) Si

Echelon
Holding Cost

ei

1-2,3 10 1.0
21- 20 1.0
31-81.0

The echelon holding cost in Table 7.1., explained in

chapter 2, is the cost charged to each unit of the

echelon inventory which is all units in the system at

stage j and its successors. It is calculated according to

the following formula

120

ei = hi -I hj
jEC(i)

where C(i) is the set of immediate predecessors of
product item i.

Table 7.2. Demand and capacity for a 5-period problem.

Period
Period Demand Capacity

18 39
2 15 39
34 39
48 39
5 12 39

According to Table 7.1, the product structure becomes:

Figure 7.1. The three stage assembly systems.

Eftekharzadeh [1988] started to solve the problem for the

q (q = 1, ... , t) period problem for stages 1,2 and 3 to

determine the production schedules. The schedules are

created according to the forward fashion, that is, first

the one period problem is solved, then the two period

problem, and so on. The schedules and costs for the first

four periods are illustrated in Table 7.3. The costs are

the sums of the setup costs and echelon holding costs.

For example the cost of 24 in period 3 for stage i

consists of two setup costs (20) plus the echelon holding

costs for four units in period 2.

121

Table 7.3. Schedules and costs for the 4-period problem.
Stage Period
i 1 2 3 4
1 (8) [10] (8,15) [20] (8,19,0) [24] (8,19,0,8) [34]
2 (8) [20] (23,0) [35] (27,0,0) [43] (8,27f Of 0) [601
3 (8) [8] (8,15) [16] (8,19,0) [20] (8,19,0,8) [28]

(24) [38] (39,30) [71] (43,38,0) [87] (24,65,0,16) [122]

For step 2 the feasibility is checked (using the formula
in step 2) . As will be seen from Table 7.3 there are two

infeasible schedules which come from the combined

schedules for the 3 and 4 period problems. They are 43 in

period 1 for the 3 period problem, and 65 in period 2 for

the 4 period problem, therefore the schedule for which

the maximum is produced in that particular period for

product item i must be deleted from the network; e. g.

product item 2 in the above Table 7.3, which is 27 in

period 1 for the 3 period problem, and the schedule that

gives the next minimum cost will be appended to the

network. If there is the same maximum quantity for

different product items, then the schedule which will be

deleted from the network is arbitrary. The new schedule

is illustrated in Table 7.4.

Table 7.4. Schedules and costs for the 4-period problem.

Stage Period

i 1 2 3 4
1(8) [10] (8,15) [20] (8,15,4) [30] (8,15,4,8) [40]
2(8) [20] (23,0) [35] (23,0,4) [55] (23,0,12,0) [63]
3(8) [8] (8,15) [16] (8,19,0) [20] (8,19,0,8) [28]

(24) [38] (39,30) [71] (39,34,8) [105] (39,34,16,16) [131]

The feasible schedule is found in step 2, hence the

schedule for the next period will be generated. For this

reason, the alternative plan is calculated for each stage

in step 3 in the following way.

122

N(i) =t+2- ti i=1,
..., 3

N (1) =4+2-4=2, N (2) =4+2-3=3 and
N (3) = 4+ 2- 4= 2

the alternative plan is as follows;

w(1,1) ={V (l, 4+1 - 2), 20, 0) = {8,15,4,20, O}
W(1,2) ={ V(1,4 +2 - 2), 12) = {8,15,4,8,12}, etc.

The final schedule, which satisfies the system and
capacity conditions, is:

Table 7.5. Final solution for the 5-period problem.
Stage Period

i1 2 3 4 5
1(8, 15, 4, 8, 12) [50]
2 (23, 0, 12, 0, 12) [83]
3(8, 19, 0, 8, 12) [36]

(39, 34, 16, 16, 36) [169]

The feasible schedule for the 5-period problem at each

stage is illustrated in the parentheses above, and the

total cost associated with this plan is 169.

Conversely, the heuristic of this thesis was to produce

as much of product item 1 as possible and produce product

items 2 and 3 as required in period 1, then produce as

much of product item 2 (provided Slt > dit) as possible

and produce product item 3 as required in period 2, and

finally produce as much of product item 3 as possible

(provided Slt > dit, S2t > d2t) in period 3 and continue

the same process for the rest of the periods. The details

of the heuristic for the three-end-item problem were

illustrated in chapter 4. The final plan using the

heuristic of this thesis is:

123

Table 7.6. Solution using proposed heuristic.
Stage Period

i1 2 3 4 5
1 (23, 0, 24, 0, 0) [67.0]
2(8, 24, 0, 15, 0) [86.0]
3(8, 15, 4, 20, 0) [44.0]

(39, 39, 28, 35, 0) [197.0]

The total cost in conjunction with the heuristic of this
thesis is 197.0. This cost is greater than the cost
obtained using Eftekharzadeh's heuristic and reflects the
fact that the heuristic proposed in this thesis adopts a

greedy approach to production by having few setups.

7.3. Sensivity Analysis of the Heuristics

A small example problem was illustrated in the previous

section to show the relation between the two heuristics.

According to the results, the Eftekharzadeh [1988]

heuristic performed better than the heuristic of this

thesis. This one result does not reflect the overall

performance of his heuristic and the data structure was

explored further to decide which heuristic is better

under what circumstances. For that reason, the setup and

holding costs were changed according to the following

logic and the results are illustrated in Table 7.7.

Both heuristics, as will be seen from the final

schedules, produce plans which are not determined by the

costs, but are determined by the demand structure. In the

following table different setup and holding costs were

used with the same proportions in the given data. That

is, cs1 = 1.25*cs3, cs2 = 2.5*cs3, and the same holding

costs for each stage will be used to calculate the total

costs in the following table. In Table 7.7, H1 refers to

the heuristic of this thesis, and H2 refers to the total

cost of Eftekharzadeh's heuristic.

124

Table 7.7. Total costs under different cost assumptions

Setup Holding Setup Holding
Cost Cost H1 H2 Cost Cost H1 H2

3 1 127.0 80.3 8 0.1 120.5 144.7

4 1 141.0 98.0 8 0.2 129.0 147.4

5 1 155.0 115.8 8 0.3 137.5 150.1

6 1 169.0 133.5 8 0.4 146.0 152.8

7 1 183.0 151.3 8 0.5 154.5 155.5

8 1 197.0 169.0 8 0.6 163.0 158.2

9 1 211.0 186.7 8 0.7 171.5 160.9

10 1 225.0 204.5 8 0.8 180.0 163.6

11 1 239.0 222.3 8 0.9 188.5 166.3

12 1 253.0 240.0 8 1.0 197.0 169.0

13 1 267.0 257.8 8 1.1 205.5 171.7

14 1 281.0 275.5 8 1.2 214.0 174.4

15 1 295.0 293.3 8 1.3 222.5 177.1

16 1 309.0 311.0 8 1.4 231.0 179.8

17 1 323.0 328.8 8 1.5 239.5 182.5

18 1 337.0 346.5 8 1.6 248.0 185.2

19 1 351.0 364.3 8 1.7 256.5 187.9

20 1 365.0 382.0 8 1.8 265.0 190.6

In Table 7.7, the total costs in the third and fourth

columns are calculated while the holding cost is held

constant as before and the setup costs were allowed to

vary. In addition, the setup cost was fixed at the same

value while the holding costs varied. The results of the

total costs of these changes are illustrated in the

seventh and eight columns. The total cost of the

heuristic of this thesis works well if the setup cost is

125

greater than or equal to the 16 times of the holding cost
according to the above Table.

7.4. Conclusion

In summary: Eftekharzadeh's heuristic appears to works
well if:

setup cost is low
holding cost is high (Setup cost/Holding cost <_ 16)

conversely, the heuristic developed in this thesis

appears to works well if;

setup cost is high

holding cost is low (Setup cost/Holding cost >_ 16)

Furthermore, the size of the problem can also determine

which heuristic is best. Eftekharzadeh stated that

reporting results by '... Generating all possible

schedules (optimal solution or complete enumeration) is

not practical for large problems. This would require

substantial CPU time. ' On the other hand the heuristic

developed in this thesis works according to very simple

rules, and therefore handles large problems in a short

time (see Tables 4.6.1-4.6.21). Therefore the size of the

problem is not important for the heuristic developed in

this thesis, because it requires very simple principles.

In addition, the heuristic of this thesis may be improved

by shifting the production lots to left or right if

possible as suggested by Karni and Roll [1982], Afentakis

[1987]. This is one possible area for further research.

126

CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH

8.1. Introduction

This thesis concentrated on using heuristics for the

constrained product items with the EOQ and Silver-Meal

approaches for the unconstrained product items for the

multi-level lot-sizing problems when there is a
bottleneck(s). Then, they are employed to the rolling

schedule environment. It is illustrated that none of the

optimal techniques are able to solve those problems.

This chapter will first summarise the research which was

explained throughout the thesis, and finally some
directions of future research will be provided.

8.2. Conclusions

A simple heuristic for the bottleneck multi-level lot-

sizing problem has been developed. The following results

are quoted from the experimental testing.

1. A heuristic for the multi-level lot-sizing problem

was designed by grouping product items into (a) end-

items, (b) non-end-items and two simple procedures were

used independently. The reason for this categorisation is

that production of each non-end-item outside the

bottleneck is unconstrained and so has neither any affect

on the production of any other non-end-item outside the

bottleneck nor on the production of the items which are

constrained by the bottleneck. The results illustrated

that the heuristic solution for the constrained product

127

items with the EOQ and Silver-Meal approaches for the
unconstrained product items were generally better than
the integer programming solution of the Billington et al.
[1986] model. It provided a great improvement in respect
of the computational time and required only a small
fraction of computer time required by the full integer

programming approach. This heuristic was very easy to
implement even without a computer routine. Thus simple
operational procedures can be derived from the heuristic

rules.

2. The heuristic for the constrained product items and
the EOQ and Silver-Meal approaches for the unconstrained

product items were applied to the rolling schedule

situations to make stable plans in the case of uncertain
demand cases. For this reason 96 period problems were
investigated and the results showed that the total cost
increased when the schedule involved the future demands.

3. The results of the heuristic solution for the

constrained product items with the Silver-Meal approach

for the unconstrained product items were better than the

integer programming solution in all cases but the

heuristic for the constrained product items with the EOQ

approach for the unconstrained product items did not

provide the same quality for a few cases (structure 2 for

three-end-item problem, and structure 2 for one-end-item

problem with 95% utilisation). The reason was that more

setups were being used than necessary when the setup cost

was above average.

4. The heuristic was applied to the assembly product

structure to make some comparison between the heuristic

of this thesis and Eftekharzadeh's heuristic. The results

illustrated that the heuristic of this thesis performed

well when the setup cost was greater than or equal to the

128

16 times of the holding cost according to the data given
in section 7.3.

8.3. Recommendations for the Future Research

There are a number of extensions to this work that would
provide interesting research topics. These include the
following:

(i) The heuristic of this thesis may be used within a
Genetic Algorithm which is a random search formed by

taking any of the population (of solutions) randomly.
This population could be any of the grouping for the

five-end-item problems such as the production items (1,

2,3), (4,5). Then, a new population may be regenerated

according to its fitness values. This regeneration

continues as many times as desired until the minimum cost
is reached. Solutions are normally represented in binary

vector form to allow the genetic approach to operate.

This would be possible when decisions as to production of

a product in a given period are made (see Goldberg

[1989]).

(ii) Simulated annealing may be applied to the multi-

item lot-sizing problem when there is a bottleneck(s).

The production items group (1,2,3) , (4,5) for five-

end-item problems can be employed to generate the

productions subject to demands and stocks for each group

randomly in each period. This generation may be dependent

on two rules: (1) if the stock is greater than demand, no

production is proceeded, (2) if the stock is less than

demand, the generation of production could be any number

of the utilisation less the stock for each item. Then the

total cost is calculated after generating all possible

schedules. Total costs are calculated according to those

schedules. If the value of the current objective function

is less than (in case of minimisation problem) the

129

previous one, accept the solution. Otherwise accept the
solution with a probability P= e-d/T, where d is the
increase in the objective function value, and T is the
control mechanism (called temperature) which decreases
monotonically with each successive iteration. This
mechanism is defined in Reeves [1991], Kirkpatrick et al.
[1983] and Osman and Potts [1989] in the following form:

Ti = Ti-, / (1 +g T1_1)

where g is the constant which is defined as the
temperature falls from some initial value of To to a
final value of Tf in f iteration. This is calculated
using the following formula:

4- (To - Tf) / ((f - 1) T0 Tf)

(iii) Tabu Search may be used for the same problem.
To apply the Tabu search, an initial solution is

required. This initial solution may be the total cost of
the production group (1,2,3), (4,5) for five-end-item

problems. Then it may search a neighbourhood of that

solution for a better one by moving up and down except

for a certain prohibited or 'tabu' set. This prohibited

set may be subject to the integer programming solution or

capacity condition. If the new solution is better than

the initial one, it is dropped from the schedule and

continues to search other alternatives. The stopping

point for this approach may be the linear programming

solution or some percentage of it (see Reeves [1991]).

In conclusion it can be seen that as the solution of many

production scheduling problem is NP hard, the development

of new heuristic methods to solve such problems continues

whenever any promising general heuristic approach can be

applied to these problems.

130

REFERENCES

Adam, E. E. Jr. and Ebert, R. J. E., [1989], Production and

Operations Management, Concepts, Models and Behavior,

Fourth edition, Prentice-Hall.

Afentakis, P., Gavish, B. and Karmarkar, U., [1984],

'Computationally Efficient Optimal Solutions to the

Lot-Sizing Problem in Multistage Assembly Systems, '

Management Science, 30(2), pp222-239.

Afentakis, P. and Gavish, B., [1986], 'Optimal Lot-Sizing

Algorithms for Complex Product Structures, '

Operations Research, 34(2). pp237-249.

Afentakis, P., [1987], 'A Parallel Heuristic Algorithm

for Lot-Sizing in Multistage Production Systems, 'IIE

Transactions, 19(1)r pp34-42.

Askin, R. G. and Rahavan, M., [1983], 'The Effect of Lot-

Sizing on Workload Variablity, ' Journal of Operations

Management, 4 (1) , pp53-71.

Atkins, D. R. and Iyogun, P. O., [1988], 'A Heuristic with

Lower Bound Performance Guarantee for the Multi

Product Dynamic Lot-Size Problem, ' IIE Transactions,

20(4)r pp369-373.

Bahl, H. C. and Ritzman, L. P.,

Scheduling Heuristic for Lot

Constraints, ' International

Research, 22(5)r pp791-800.

[1984], 'A Cyclical

Sizing with Capacity

Journal of Production

131

Bahl, H. C., Ritzman, L. P. and Gupta, J. N. D., [1987],
'Determining Lot Sizes and Resource Requirements: A

Review, ' Operations Research, 35 (3) , pp329-344.

Baker, K. R. and Peterson, D. W., [1979], 'An Analytical
Framework for Evaluating Rolling Schedules, '
Management Science, 25(4), pp341-351.

Baringer, R. L. and Fogarty, D. W., [1987], 'Joint Order
Release Decisions under Dependent Demand, ' Production

and Inventory Management, First Quarter, pp55-61.

Berry, W. L., [1972], 'Lot Sizing Procedures for
Requirements Planning Systems: A Framework for
Analysis, ' Production and Inventory Management,

Second Quarter, pp19-34.

Biggs, J. R., Hahn, C. K. and Pinto, P. A., [1980],

'Performance of Lot-Sizing Rules in an MRP System

with Different Operating Conditions, ' Academy of

Management Review, 5(l), pp89-96.

Billington, P. J., McClain, J. O. and Thomas, L. J., [1983),

'Mathematical Programming Approaches to Capacity-

Constrained MRP Systems: Review, Formulation and

Problem Reduction, ' Management Science, 29(10),

ppll26-1141.

Billington, P. J., [1983], 'Multi-Level Lot-Sizing with a

Bottleneck Work Center, Ph. D. Dissertation, Cornell

University.

Billington, P. J., McClain, J. O., and Thomas, L. J.,

[1986], 'Heuristic for Multilevel Lot-Sizing with a

Bottleneck, ' Management Science, 32(8), pp989-1006.

132

Billington, P. J., Blackburn, J. D., Maes, J., Millen, R. A.
and Wassenhove, L. W. V., [1988], 'Multi-Product Scheduling

in Multi-Stage Serial Systems, ' In A. Chikan and M.
C. Lovell (eds), The Economics of Inventory
Management, Elsevier Science, Amsterdam.

Blackburn, J. D. and Millen, R. A., [1979], 'Selecting a
Lot-Sizing Technique for a Single-Level Assembly
Process: Part I-Analytical Results' Production and
Inventory Management, Third Quarter, pp42-52.

Blackburn, J. D. and Millen, R. A., [1979], 'Selecting a
Lot-Sizing Technique for a Single-Level Assembly
Process: Part II-Emprical Results' Production and
Inventory Management, Fourth Quarter, pp41-52.

Blackburn, J. D. and Millen, R. A., [1980], 'Heuristic Lot-

Sizing Performance in a Rolling-Schedule

Environment, ' Decision Sciences, 11(4), pp691-701.

Blackburn, J. D. and Millen, R. A., [1982], 'The Impact of
Rolling Schedule in a Multi-Level MRP Systems,

Journal of Operations Management, 2(2), pp125-135.

Blackburn, J. D. and Millen, R. A., [1982], 'Improved

Heuristics for Multi-Stage Requirements Planning

Systems, ' Management Science, 28 (1) , pp44-56.

Blackburn, J. D. and Millen, R. A., [1984], 'Simultaneous

Lot-Sizing and Capacity Planning in Multi-Stage

Assembly Processes, ' European Journal of Operational

Research, 16(1), pp84-93.

Browne J., Harhen, J. and Shivnan, J., [1988], Production

Management Systems A CIM Perspective, Addison-Wesley

Publishers Ltd., Cornwall, Great Britain.

133

Brown, R. G., [1967] , Decision Rules for Inventory
Mana gement, Holt, Reinhart and Winston, New York.

Chae, W. S., [1988], 'A Heuristic Lot-Sizing/Scheduling

Methodology of a Multi-Stage Capacitated Production

System by Using Load Families, ' PhD Thesis, The

University of Wisconsin-Meddison.

Carlson, R. C., Jucker, J. V. and Kropp D. H., [1979], 'Less

Nervous MRP Systems: A Dynamic Economic Lot-Sizing

Approach, ' Management Science, 25(8), pp754 -7 61 .

Chand, S. [1982], 'A Note on Dynamic Lot Sizing in a

Rolling-Horizon Environment, ' Decision Sciences,

13(l), pp113-119.

Collier, D. A., [1980], 'A Comparison of MRP Lot-Sizing

Methods Considering Capacity Change Costs, ' Journal

of Operations Management, 1 (1) , pp23-29.

Crowston, W. B., Wagner, M. H. and Henshaw, A., [1972], 'A

Comparison of Exact and Heuristic Routines for Lot-

Size Determination in Multi-Stage Assembly Systems, '

IIE Transactions, 4(4), pp313-317.

Crowston, W. B., Wagner, M. H. and Williams, J. F., [1973],

'Economic Lot Size Determination in Multi-stage

Assembly Systems, ' Management Science, 19(5), pp517-

527.

Dixon, P. S. and Silver, E. A., [1981], 'A Heuristic

Solution Procedure for Multi-Item Single Level,

Limited Capacity, Lot Sizing Problem, ' Journal of

Operations Management, 2 (1) , pp23-29.

Dogramaci, A., Panaylotopoulos, J. E. and Adam, N. R.,

[1981], 'The Dynamic Lot Sizing Problem for Multiple

134

Items under Limited Capacity, ' AIIE Transactions,
13(4), pp294-303.

Eisenhut, P. S., [1975], 'A Dynamic Lot Sizing Algorithm

with Capacity Constraints,, ' AIIE Transactions, 7 (2) ,
pp170-176.

Eftekharzadeh, R. S. M., [1988], 'Multi-Stage Capacitated
Lot-Sizing for Assembly Structure Manufacturing
Systems: Two New Heuristics, ' Working Paper, St.
John's University, Department of Quantitative
Analysis, New York, USA.

Fisher, M. L., [1980], 'Worst-Case Analysis of Heuristic
Algorithm, ' Management Science, 26(1), pp 1-17.

Florian, M. and Klein, M., [1971], 'Deterministic

Production Planning with Concave Costs and Capacity

Constraints, ' Management Science, 18(1), pp 12-20.

Fogarty, D. W. and Barringer, R. L., [1988], 'Joint Order

Release Decisions Under Dependent Demand, ' In A.

Chikan and M. C. Lovell (eds) The Economics of

Inventory Management, Elsevier Science, Amsterdam.

Gabbay, H., [1979], ' Multi-Stage Production Planning, '

Management Science, 25(11), pp1138-1148.

Garey, M. R. and Johnson, D. S., [1979], Computers and

Intractability, A Guide to the Theory of NP-

Completeness, W. H. Freeman and Company, San

Francisco.

Goldberg, D. E., [1989], Genetic Algorithms in Search,

Optimisation and Machine Learning, The University of

Alabama, Addison-Wesley Publishing Company Inc.,

Canada.

135

Gorham, T., [1970], 'Dynamic Order Quantities, '
Production and Inventory Management, First Quarter,
pp75-81.

Goyal, S. K. and Gunasekaran, A., [1990], 'Invited
Reviews, Multi-Stage Production-Inventory Systems, '
European Journal of Operational Research, 46, ppl-20.

Gupta, Y. P. and Keung, Y., [1990], 'A Review of Multi-
Stage Lot-Sizing Models, ' International Journal of
Production and Management, 10(9), pp57-73.

Hum, S. H., [1988], 'Integrated Production-Mixed Planning,
Lotsizing and Scheduling of Bottleneck Facilities, '
PhD, University of Calafornia, Los Angales.

Iyogun, P., [1991], 'Heuristic Methods for the Multi-

Product Dynamic Lot Size Problem, ' Journal of
Operational Research , 42(10), pp889-894.

Jensen, P. A. and Khan, H. A., [1972], 'Scheduling in a
Multi-Stage Production System with Setup and
Inventory Costs, ' AIIE Transactions, 4(3), pp126-133 .

Johnson, L. A., and Montgomery, D. C., [1974], Operations

Research in Production Planning, Scheduling and

Inventory Control, John Wiley and Sons, New York.

Karni, R. and Roll, Y., [1982], 'A Heuristic Algorithm

for the Multi-Item Lot-Sizing Problem with Capacity

Constraints. ' IIE Transactions, 14(4). pp249-256.

Kirkpatrick, S., Jelatt, C. D. and Vecchi, M. P., [19831,

'Optimisation by Simulated Annealing, ' Science,

220 (4598) , pp671-679.

136

Kropp, D. H. and Carlson R. C., [1984], 'A Lot-Sizing

Algorithm for Reducing Nervousness in M RP Systems, '

Management Science, 30(2). pp240-244.

Lambrecht, M. R. and Vander Eecken, J., [1978], 'A

Facilities in Series Capacity Constrained Dynamic

Lot-Size Model, ' European Journal of Operational

Research, 2 (2) , pp42-49.

Lambrecht, M. R. and Vanderveken, H., [1979], 'Heuristic

Procedure for the Single Operation, Multi-Item

Loading Problem, ' AIIE Transactions, 11(4), pp 319-

326.

Love, S. F., [1972], 'A Facilities in Series Inventory

Model with Nested Schedules, ' Management Science,

18(5), pp327-338.

Maes, J. and Wassenhove, L. N. V., [1986], 'A Simple

Heuristic for the Multi-Item Single Level Capacitated

Lot Sizing Problem, ' Operations Research Letters,

4 (6) , pp265-273.

Maes, J., McClain, J. O. and Wassenhove, L. N. V., [1991],

'Multilevel Capacitated Lot Sizing Complexity and LP-

Based Heuristics, ' European Journal of Operational

Research, 57(2), pp131-148.

Maes, J. and Wassenhove, L. N. V., [1991], 'Capacitated

Dynamic Lot Sizing Heuristics for Serial Systems, '

International Journal of Production Research, 29(6),

ppl235-1249.

Manne, A. S., [1958], 'Programming of Economic Lot Sizes, '

Management Science, 4 (2) , pp115-135.

137

Maxwell, W. L., Muckstadt, J. A., Thomas, L. J. and
VanderEecken, J., [1983], 'A Modelling Framework for

Planning and Control of Production in Discrete Parts
Manufacturing and Assembly Systems, ' Interfaces,
13 (6), pp92-104.

Maxwell, W. L. and Muckstadt, J. A., [1985], 'Establishing
Consistent and Realistic Reorder Interval in
Production-Distribution Systems, ' Operations
Research, 33(6)r pp1316-1341.

McCelland, M. K., Southard, M. H. and Wagner, H. M., [1988],

'Inventory and Lot-Size Strategies in an MRP

Environment
,' In A. Chikan and M. C. Lovell, (eds) ,

The Economics of Inventory Management, Elsevier

Science Publishers B. V., Netherlands.

McClain, J. O. and Trigeiro, W. W., [1985], 'Cyclic

Assembly Schedules, ' IIE Transactions, 17(4), pp346-
353.

McClain, J. O. and Thomas, L. J., [1980], Operations

Management, Production of Goods and Services,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

McClain, J. O., Thomas, L. J. and Weiss, E. N., [1989],

'Efficient Solutions A Linear Programming Model for

Production Scheduling with Capacity Constraints and

No Initial Stock, ' IIE Transactions, 21 (2) , pp144-

152.

McLaren, B. T., [1977], 'A Study of Multiple Level Lot

Sizing Procedures for Material Requirements Planning

Systems, ' PhD Thesis, Purdue University.

MGG User Guide,

England.

[1987], SD-Scicon, Milton Keynes,

138

A

Monks, J. G., [1987],

Problems, Third

Series, America.

Osman, I. H. and Potts,

for Permutation

pp551-557.

Operations Management, Theory and

Edition, McGraw-Hill, Management

C. N., [1989], 'Simulated Annealing

Flow-Shop Scheduling, ' OMEGA, 17,

Orlicky, J., [1975], Material Requirements Planning, The

New Way of Life in Production and Inventory

Management, McGraw-Hill, New York.

Plossl, G. W.

Inventory,

Jersey.

and Obec, W. W., [1975], Production

Prentice-Hall, Inc., Englewood Cliffs, New

Ramsay, T. E. Jr., [1980], 'Integer Programming Approaches

to Capacitated Concave Cost Production Planning

Problems, ' Ph. D Dissertatic Georgia Institute of

Technology.

Reeves, C., [1991], 'An Introduction to Genetic

Algorithms, ' First O. R. Conference, Univeristy of

Salford.

Rosenblatt, M. J., [1985], 'Fixed Cycle, Basic Cycle and

EOQ Approaches to the Multi-Item Single-Supplier

System, ' International Journal of Production

Research, 23(6), pp1131-1139.

Sciconic User Guide, [1986], SD-Scicon, Milton Keynes,

England.

Schwarz, L. B. and Schrage, L., [1975], 'Optimal and

System Myopic Policies for Multi-Echelon Production-

and

139

Inventory Assembly Systems, ' Management Science,

21(11), pp1285-1294 .

Silver, E. A. and Meal, H. C., [1973], 'A Heuristic for

Selecting Lot Size Quantities for Deterministic Time-

Varying Demand Rate and Discrete Opportunities for

Replenishment, ' Production and Inventory Management,

14 (2) , pp64-74.

Steinberg, E. and Napier, H. A., [1980], 'Optimal Multi-

Level Lot Sizing for Requirements Planning Systems, '

Management Science, 26(12), pp1258-1271.

Taha, H. A. and Skeith, R. W., [1970], 'The Economic Lot

Sizes in Multi-Stage Production Systems, ' AIIE

Transactions, 2(2), pp157-162 .

The Numerical Algorithms Group Limited, [1990] NAG

Fortran Library Manual, Mark 14, Oxford.

Toklu, B. and Wilson, J. M., [1991], 'A Heuristic for

Multilevel Lot-Sizing Problems with Multiple

Bottleneck, Loughborough University Management

Research Series, Paper 1991: 14.

Toklu, B. and Wilson, J. M., [1991], 'An Analysis of

Multiple Bottleneck Problems in Multilevel Lot-Sizing

Problems, ' Operational Research Society Young

Researcher's Conference, University of Salford.

Toklu, B. and Wilson, J. M., [1992], 'A Heuristic for

Multi-Level Lot-Sizing Problems with a Bottleneck, '

International Journal of Production Research, 30(4),

pp787-798.

140

Wagner, H. and Whitin, T., [1959], 'Dynamic Version of
the Economic Lot Size Model, ' Management Science, 5,

pp89-96.

Zahorik, A., Thomas, J. and Triegeiro, W. W., [1984],

'Network Programming Models for Production Scheduling

in Multi-Stage, Multi-Item Capacitated System, '

Management Science, 30(3), pp308-325.

Zangwill, W. I., [1969], 'A Backlogging Model and a Multi-

Echelon Model of a Dynamic Economic Lot Size

Production System-A Network Approach, ' Management

Science, 15(9), pp506-527.

141

APPENDIX A

Model in MGG on SCICONIC

142

OPTIONS OLDFORMAT
NOTATION
SUFFICES

I IMAX 25
K KMAX 25
T TMAX 12
L LMAX 12

VARIABLES
P (I, T) ' *IITT'
X (I, T) ' *IITT'

BOUND BV
EXTERNAL VALUES

H(I) F5.2
A (K, I) F5.1
D (I, T) F5.1
01(1) F5.1
B(I) F5.1
S(I) F5.1
CS(I) F6.1
CAP (T) F7.1
LA (K) 15

PROBLEM
MINIMISE
*TCOST '*****'

SUM(I, T)AO1*P (I, T)+SUM(I, T)BO1*X(I, T)
SUBJECT TO
*CPRD ' ****KKLL' NOT IF (L. LE. LA(K))

SUM (I, T) A02 *P (I, T) . GE. B02
*CAP '***TT'

SUM (I) B03*P (I, T) +SUM (I) B04*X (I, T) . LE. B05
*LIM '***IITT'

P (Ir T) -B06*X(I, T) . LE. 0.0
ELEMENTS

B01=CS(I)
B03=B(I)
B04=S(I)
B05=CAP (T)
A01=H(I)*(TMAX-T+1)
A02=Z02 ()
B02=Z03 ()
B06=199.0

FUNCTIONS
FUNCTION Z02()
Z02=0.0
IF (T. GT. L) RETURN
IF (I . GT. K) RETURN
IF (I . EQ. K) GOTO100
Z02=-A(K, I)
RETURN

100 N=L-LA(K)
IF (T . GT . N) RETURN
Z02=1.0
RETURN
END
FUNCTION Z03()

143

Z03=-OI (K)
DO 100 N=1, L

100 Z03=Z03+D (K, N)
RETURN
END

ENDATA

144

i

Sample Run Stream

1. Sciconic

2. Infile='Matrix. d'

3. Convert

4. Setup

5. Primal

6. Global

7. Prints

8. Stop

1. This is the macro command to start the software.
2. This identifies the file which MGG has produced.
3,4. These set the problem up and organi se the matrix.

5. This solves the linear programming (LP) problem.

6. This solves the integer programming (IP) problem.

7. This prints out results.
8. This ends the software.

145

APPENDIX B

Data

146

One End Item Bottleneck Problem

Randomly Generated Cost Sets

Cost Set 1: Cost Set 2: Cost Set 3:

i hi Si hi Si hi Si

1 0.5 300 0.5 500 0.1 300
2 0.1 200 0.5 400 2.0 500
3 0.5 200 2.0 400 0.1 500
4 0.1 500 1.0 200 1.0 300
5 1.0 400 1.0 200 1.0 500

All bi = 1.0 for the item made on the work centre.
All aij = 1.0 for all predecessor rel ations shown below:

5 4 32 1

147

One End Item Bottleneck Problem

Randomly Generated Demand Stream

Low Coefficient of Variation, C. = 0.1057

Period

i123456789 10
1 33 43 36 46 46 42 38 41 44 40

Medium Coefficient of Variation Cv = 0.1862

Period

i123456789 10
1 54 47 80 63 45 76 74 55 54 58

High Coefficient of Variation CV = 0.3464

11 12
35 46

11 12
76 58

Period

i123456789 10 11 12

1 17 31 58 51 64 42 44 18 48 41 58 32

148

Three End Item Bottleneck Problem

Randomly Generated Cost Sets

Cost Set 1: Cost Set 2: Cost Set 3:
i hi Si hi Si hi Si
1 0.5 500 2.0 500 0.5 400
2 0.5 400 2.0 300 1.0 300
3 1.0 300 0.1 300 2.0 300
4 0.1 200 2.0 400 0.1 300
5 1.0 400 2.0 500 1.0 500
6 0.1 500 1.0 400 0.1 200
7 2.0 300 2.0 400 2.0 500
8 1.0 300 2.0 200 0.5 500
9 2.0 300 2.0 500 0.1 300
10 0.5 500 0.1 300 1.0 300
11 2.0 400 1.0 200 0.1 400
12 0.1 400 0.5 300 0.5 500
13 1.0 200 1.0 300 1.0 500
14 1.0 200 1.0 500 1.0 300
15 1.0 500 1.0 300 1.0 400

All bi = 1.0 for the item made on the work c entre.
All aij = 1.0 for all predecessor rela tions shown below:

13 1 110 Iý7 I- 14 I- 11

14 1 11 Eý8I 15 Iý2

15 1- 12 1ý9 ---I 6 1---ý 3

149

Three End Item Bottleneck Problem

Randomly Gener ated Demand Stream

Low Coefficient of Variation, C. = 0.1144

Period
i 1 2 34 5 6 7 8 9 10 11 12
1 41 59 69 47 41 73 65 44 63 52 79 55
2 56 55 54 65 76 72 42 70 76 50 45 74
3 28 35 29 51 40 44 42 45 52 38 49 40

Medium Coef ficient of Variation Cv =0 . 1926

Period

i 1 2 34 5 6 7 8 9 10 11 12
1 23 33 49 32 13 34 50 50 09 23 25 21
2 56 50 24 35 77 35 42 72 50 71 41 25
3 35 35 31 77 54 17 83 41 60 53 44 76

High Coeffi cient of Variation C. = 0.3 955

Period

i 1 2 34 5 6 7 8 9 10 11 12
1 00 07 21 01 41 65 47 54 00 63 43 62

2 00 117 126 93 55 105 08 12 6 82 45 18 93
3 25 00 14 17 29 56 105 99 96 42 58 00

150

Five End Item Bottleneck Problem

Randomly Generated Cost Sets

Cost Set 1: Cost Set 2: Cost Set 3:
i hi Si hi Si hi Si
1 0.1 200 1.0 200 0.1 200
2 0.5 500 0.5 300 0.1 500
3 2.0 200 0.1 200 0.1 400
4 2.0 300 0.5 300 2.0 400
5 1.0 300 0.1 400 2.0 400
6 2.0 300 2.0 500 2.0 500
7 0.5 300 0.5 200 1.0 200
8 1.0 500 2.0 300 0.1 500
9 1.0 500 0.1 300 0.5 500
10 2.0 200 1.0 400 1.0 200
11 0.1 400 2.0 500 0.1 200
12 0.1 400 1.0 200 1.0 400
13 0.1 300 2.0 200 0.1 500
14 2.0 300 0.1 500 2.0 300
15 0.1 500 0.1 500 0.1 400
16 1.0 400 2.0 300 0.5 200
17 2.0 500 0.5 500 0.1 300
18 2.0 500 0.1 500 2.0 400
19 0.1 500 2.0 200 0.5 200
20 1.0 300 0.1 300 1.0 200
21 1.0 200 1.0 400 1.0 400
22 1.0 300 1.0 300 1.0 400
23 1.0 500 1.0 400 1.0 400
24 1.0 200 1.0 500 1.0 500
25 1.0 400 1.0 200 1.0 500

All bi = 1.0 for the item made on the work centre.
All aij = 1.0 for all predecessor relations shown below:

151

ýr ý-

Five End Item Bottleneck Problem

Randomly Generated Demand Stream

Low Coeffic ient of Variation, CV = 0.07 90

Period

i 1 2 3 4 5 6 7 8 9 10 11 12
1 29 64 59 46 82 86 74 36 36 59 86 54
2 38 47 52 37 44 25 52 34 27 37 34 50
3 51 27 35 30 43 55 55 60 50 43 48 29
4 33 42 44 77 43 31 53 33 53 51 71 48
5 74 84 67 89 56 46 55 73 59 74 42 75

Medium Coef ficient of Variation Cv = 0. 2125

Period

i 1 2 3 4 5 6 7 8 9 10 11 12
1 43 04 93 111 12 70 04 113 72 122 35 105
2 13 60 14 46 22 46 33 39 47 54 33 09
3 58 33 61 00 67 71 77 00 50 76 112 00
4 20 65 13 33 13 81 06 53 42 57 66 00
c I? R '7 Q 19 9; a 100 14 83 01 22 28 01 33

High Coefficient of Variation Cv = 0.4282

Period

i 1 2 3 4 5 6 7 8 9 10 11 12
1 27 110 00 00 151 139 72 41 10 31 87 102
2 76 15 50 36 00 19 24 00 40 92 83 114
3 11 07 21 97 87 87 00 82 105 00 79 23
4 12 00 02 93 22 78 29 00 00 118 109 02
5 70 00 00 100 79 62 46 00 10 36 00 18

152

APPENDIX C

Heuristic Program on Fortran 77

153

c This program calculates the total cost for multi
c level lot-sizing problem with bottleneck(s)
c

program bottleneck
c
c

integer t, blkstart, blkend
character*14 filename, namel, cname2

c
c

dimension prod (25,5,96) , stock (25,5,96) , aver (5,3)
1, hi (25) , cs (25) , itl (96) ,d (5,96) , ibp (25) , sumh (25)
2, suml (2 5) , sumn (2 5) , sums (2 5) , dem (5,9 6) ,c (2 5) ,h (2 5)
3, dema (5,96) , cap (25) , stockt (25,5,96) , stock2 (25,5,96)
4, iutd (25) , stock3 (25,5,96) , scost (25,5,96)
5, prodl (25,5,96) , stock4 (25,5,96) , prod2 (25,5,96)
6, sumsil (25)

C

C

data (iutd (i) , i=1,25) /25*0/
c
c

print*, 'blksize=, blkjump=, periods='
read*, blksize, blkjump, periods
print*, 'give the first sub-program name please'

c
c
c Now reading the first sub-program name. If the
c first sub-program name which is ' namel ' is equal
c to 'roll', calculation is done using rolling
c schedule. Otherwise it is done without rolling
c schedule for period 1 to 96.
c
c

read*, name1
c
c

print*, 'give the second sub-program name please'
c
c
c now reading the second sub- program name. If the
c second sub-program name is 'silver', calculation
c is executed using silver meal technique. Otherwise
c it is executed using economic order quantity from

c period 1 to 96.
c
c

read* , cname2
print *, 'give data file name please'

c
c
c now reading data from files
c

C

154

read *, filename
open (unit=7, file=filename, status='old')
open (unit=9, file="output")
write (9,169)

C

C

C

C

C

C
C
C

C

C

C

C

C

C

C

C

C

C

C

C

1

C
C

C

C

C

C

C

C

2

'ibottle' is the number of bottleneck', and
'ibp(j)' is the position of the bottleneck, 'd' is
the demand, 'aver'is the total or average demandin
accordance with the index, 'hi' is the holding
cost, 'cs' is the setup cost, 'prod' is the amount
of production, 'stock' is the amount of the
available stock, 'cap' is the capacity which is
used, 'icho' is the number of end items, 'iutd' is
the capacity utilisation, 'kbt' is the number of
bottleneck(s), 'lk' is the number of end item(s)for
five-end item problems, 'k' is the number of
item(s) for one or three end item problems

Now reading the end items, bottleneck and capacity
utilisation.

read*, icho, ibottle
do 1 j=l, ibottle

write (9,94)
read *, ibp (j) , cap (j)

continue
read (7,, *) (d (i, j) , j=1, PERIODS)
read (7, *) (cs (i) , i=1,5*icho)
read (7, *) (hi (i) , i=1,5*icho)

NOW STARTING THE CALCULATIONS

i=1, icho)

BLOCKSTART IS EQUAL TO BLOCK LOOP

total=0.0
do 7 blkstart=l, periods, blkjump

blkend=blkstart+blksize-1
if (blkend. gt . periods) goto 999

do 2 i=l, icho
do 2 j=1,3

aver (i, j) =0.0
continue
sum=0.0
do 4 j=l, icho

do 3 t=blkstart, blkend
do 111 lk=1,25

stock (lk, j, t) =0.0
stockl (lk, j, t) =0 .0
stock2 (lk, j, t) =0.0

155

stock3 (lk, j, t) =0.0
prod (lk, j,, t) =0 .0
scost (lk, j, t) =0 .0
prodl (1k, j,, t) =0.0
stock4 (1k, j,, t) =0. o

111 prod2 (lk, j, t) =0 .0 dem(j, t)=0.0
dema (j , t) =0.0
aver(j, 1)=aver(j, 1)+d(j, t)

3 continue
aver (j, 2) =int (aver (j, 1) /blksize+0

. 5)
sum=sum+aver (j , 1)

4 continue
sumt=0.0
kbt=1
icstep=l
if (i cho . eq . l) then

i1=1
i2=5

elseif (icho. eq. 3)then
i1=1
i2=13

elseif (icho . eq. 5) then
il=1
i2=21
icstep=3

endif
do 41 lk=il, i2, icho

do 8 ich=l, icho, icstep
k=lk+ich-1
if (k . eq . ibp (kbt)) then

iutd (1k) =int (sum/ (cap (kbt) *blksize)
1+0.99)

write (9,93) cap (kbt) , iutd (lk)
write (9,99) ((aver (i, j) , j=1,2) , i=1,

licho) , sum
if (icho-3) 15,20,30

c
c
c 'ANAL' IS THE MAIN PROGRAM FOR ONE END ITEM

PROBLEM
C

C

15 call anal (iutd, d, prod, stock, aver, blkstart, blkend,
l ich, lk, k, namel)

write (9,961) ((prod(lk, i, j) , i=1, icho) ,
1, j=blkstart, blkend)

write (9,110) ((stock (lk, i, j) , i=1, icho) ,
lj=blkstart, blkend)

110 format ('stock', 1 (2x, f9.0))
961 format ('production' ,1 (2x, f9 . 0))

go to 40
C

C

156

c 'ANAL1' IS THE MAIN PROGRAM FOR THREE END ITEM
c PROBLEM

c
20 call anall (iutd, d, prod, stock, aver, blkstart, blkend

1, ich, lk, k, name 1)
write (9,98) ((prod (lk, i, j) , i=1, icho) , j=blkstart

1, blkend)
write (9,97) ((stock (lk, i, j) , i=1, icho) , j=blkstart

1, blkend)
go to 40

C

C

c 'ANAL2' IS THE MAIN PROGRAM FOR FIVE END ITEM PROBLEM
c
c
30 call anal2 (kbt, iutd, d, prod, stock, aver, blkstart

1, blkend, dem, lk, k, name 1)
write (9,130) ((prod(lk, i, j) , i=1, icho) , j=blkstart

1, blkend)
write (9,140) ((stock (lk, i, j) , i=1, icho) , j=blkstart

1, blkend)
140 format ('stock' ,5 (2x, f9.0))
130 format ('production' ,5 (2x, f9 . 0))

endif
C

C

40 if(cname2. ne. 'silver')then
c
c
c now calling the subroutine cost for non-end-items
c for non-bottleneck item(s) using the eoq technique
c
c

call cost (kbt, k, prod, stock, aver, d, hi, cs, ich
1, ibottle, ibp, sumc, t, icho, blkstart, blkend, blksize
2, sumh, suml, sumn, sums, dem, c, h, dema, lk, stockl, stock2
3, stock3, namel)

sumt=sumt+sumc
total=total+sumc

C

C

else
c
c
c now calling the subroutine costs for non end-items
c for non-bottleneck item(s) using silver-meal

c technique
c

call costs (kbt, k, prod, stock, aver, d, hi, cs, ich

1, ibottle, ibp, sumc, t, icho, blkstart, blkend, blksize
2, sumh, dem, c, h, dema, lk, stockl, stock2, stock3, scost
3, prodl, stock4, prod2, sumsil, namel)

surrt=surrt+sumc
total=total+sumc
endif

157

8 continue
41 write (9,95) k, sumt

write Or 100) total
100 format (2x, 'total=' , f19.2)
93 format(' capacity utilization=', f7.5,5x, 'capacity

1ý , _- , a. 5)
94 format(' give position of bottleneck & capacity')
95 format (i4,2x, 'cost=' , f17 . 1,3x)
169 format('please give no of end items & no of

ibottlenecks')
97 format ('stock' r3 (2x, f9 . 0))
98 format ('production, 3 (2x, f9 . 0))
99 format (13f6.1)
7 continue
999 stop

end
C

C

c STARTS OF SUBROUTINE ANAL
c FUNCTIONS: TO CALCULATE THE PRODUCTION AND STOCKS
c FOR ONE-END ITEM PROBLEM FOR BOTTLENECK(S)
c PARAMETERS: IUTD, D, PROD, STOCK, BLKSTART, BLKEND, LK, K
c
c

subroutine anal (iutd, d, prod, stock, aver, blkstart
1, blkend, ich, lk, k, namel)

c
c

integer blkstart, blkend
dimension iutd (25) ,d (5,96) , prod (25,5,96)

1, stock (25,5,96) , aver (5,3)
c
c

idif=O
averl=aver (1,1)
if(blkstart. eq. 1. or. namel. ne. 'roll')then

stock (lk, l, blkstart-1) =0 .0
endif
idif=idif+stock (lk, l, blkstart-1)
do 5 j=blkstart, blkend

if (stock (1k, 1, j-1) . lt. d(1, j)) go to 6

stock (lk, 1, j) =stock (lk, 1, j-1) -d(1, j)

prod (lk, 1, j) =0
go to 5

6 if ((averl-idif) . gt .
iutd (lk)) then

prod (1k, 1, j) =iutd (lk)
stock (1k, 1, j) =prod (lk, 1, j) -d (1, j)

1+stock (lk, 1, j-1)
idif=idif+prod (lk, 1, J)

else
prod (lk, 1, j) =averl-idif
stock (1k, 1, j) =prod (lk, 1, j) -d (1, j)

l+stock (1k, 1, j-1)
idif=idif+prod (lk, 1, j)

endif

158

5 continue
return
end

c
c
c START OF SUBROUTINE ANAL1
c FUNCTIONS: TO CALCULATE THE PRODUCTION AND STOCKS
c FOR THREE-END END ITEMS PROBLEM FOR BOTTLENECK(S)
c PARAMETERS: IUTD, D, PROD, STOCK, LK, K, PERIODS

c
c

subroutine anall(iutd, d, prod, stock, aver, blkstart
1, blkend, ich, lk, k, namel)

integer blkstart, blkend
dimension iutd (25) ,d (5,96) , prod (25,5,96)

1, stock (25,5,9 6) , aver (5,3)
idifl=0
idif2=0
idif3=0
averl=aver (1,1)
aver2=aver (2,1)
aver3=aver (3,1)
if(blkstart. eq. l. or. namel. ne. 'roll')then

stock (lk, l, blkstart-1) =0 .0
stock (1k, 2, blkstart-1) =0.0
stock (lk, 3, blkstart-1) =0 .0

endif
idifl=idifl+stock (lk, l, blkstart-1)
idif2=idif2+stock(1k, 2, blkstart-1)
idif3=idif3+stock (lk, 3, blkstart-1)
do 6 j=blkstart, blkend

if(stock (lk, 1, j-1) . ge. d(l, j)) go to 13
if (stock (1k,, 2, j-1) . ge. d(2, j)) go to 7

if (stock (lk, 3, j-1) . ge. d(3, j)) go to 56
iprod=averl+aver2+aver3-idifl-idif2-idif3
iprodl=averl-idifl+d (2, j) -stock (lk, 2, j-1

1) +d (3, j) -stock (lk, 3, j-1)
if (iprod. gt . iutd (lk) . and. iprodl . gt

l. iutd (lk)) then
prod (lk, 3, j) =d (3, j) -stock (lk, 3, j-1)

stock (lk, 3, j) =0 .0
prod (lk, 2, j) =d (2, j) -stock (lk, 2, j-1)

stock (1k, 2, j) =0 .0
prod (lk, 1, j) =iutd (lk) -prod (lk, 2, j) -

lprod (lk, 3, j)
stock (lk, 1, j) =prod (lk, 1, j) -d (1, j)

1+stock (lk, 1, j-1)
elseif (iprod . lt .

iutd (lk)) then

prod (lk, 3, j) =aver3-idif3
stock (1k, 3, j) =prod (lk, 3, j) -d (3, j)

l+stock (lk, 3, j -1)
prod (lk, 2, j) =aver2-idif2
stock (lk, 2r j) =prod (lk, 2, j) -d(2, j)

l+stock (lk, 2, j-1)
prod (lk, 1, j) =averl-idifl

159

stock (lk, 1, j) =prod (lk, 1, j) -d (1, j)
1+stock (lk, 1, j-1)

elseif (iprodl
. le . iutd (lk)) then

prod (lk, 3, j) =d(3, j) -stock (1k, 3, j-1)
stock (lk, 3, j) =0 .0
prod (1k, 2, j)=d(2, j) -stock (1k, 2, j-1)
stock (lk, 2, j) =0 .0
prod (lk, 1, j) =averl-idifl
stock (1k, 1, j) =prod (lk, 1, j) -d (1, j)

1+stock (lk, 1, j -1)
endif

idif2=idif2+prod(1k, 2, j)
idif3=idif3+prod (lk, 3, j)
idifl=idifl+prod (lk, 1, j)
go to 6

7 stock (lk, 2, j) =stock (1k, 2, j-1) -d (2, j)
prod (lk, 2, j) =0.0

8 if (stock (lk, 3, j-1) . ge. d(3, j)) go to 9
iprod=averl-idifl+aver3-idif3
if (iprod. gt . iutd (lk)) go to 55

if ((aver3-idif3) . ge. iutd(lk))then
prod (1k, 3, j)=d(3, j) -stock (1k, 3, j-1)
stock (lk, 3, j) =prod (lk, 3, j) -d (3, j)

1+stock (1k, 3, j-1)
else

prod (lk, 3, j) =aver3-idif3
stock (lk, 3, j) =prod (lk, 3, j) -d (3, j)

1+stock (1k, 3, j-1)
endif
idif3=idif3+prod (1k, 3, j)
go to 58

9 stock (lk, 3, j) =stock (lk, 3, j -1) -d (3, j)
prod (lk, 3, j) =0 .0 10 if ((averl-idifl) . ge. iutd (lk)) then
prod (lk, 1, j) =iutd (lk)
stock (lk, 1, j) =prod (lk, 1, j) -d (1, j)

1+stock (lk, 1, j-1)
else

prod (lk, 1, j) =averl-idifl
stock (lk, 1, j) =prod (lk, 1, j) -d (1, j)

1+stock (lk, 1, j-1)
endif
idifl=idifl+prod(lk, 1, j)
go to 6

58 iprod=averl-idifl-prod (lk, 2, j) -prod (lk, 3, j)
if (iprod . ge . iutd (lk)) then

prod (lk, 1, j) =iutd (lk) -prod (lk, 2, j) -
lprod (lk, 3, j)

stock (lk, 1, j) =prod (lk, 1, j) -d (1, j)
1+stock (lk, 1, j-1)

else
prod (lk, 1, j) =averl-idif 1
stock (1k, 1, j) =prod (1k, 1, j) -d (1, j)

1+stock (lk, 1, j-1)

endif

160

idifl=idifl+prod (lk, 1, j)
go to 6

56 stock (lk, 3, j) =stock (lk, 3, j-1) -d(3, j)
prod (lk, 3, j) =0 .0 iprod=averl-idifl+aver2-idif2
iprodl=averl-idifl+d (2, j) -stock (lk, 2, j-1)
if (iprod . gt . iutd (lk) . and . iprodl

. gt
l. iutd (lk)) then

prod (lk, 2, j) =d (2, j) -stock (lk, 2, j-1)
stock (lk, 2, j) =0.0
prod (lk, 1, j) =iutd (lk) -prod (lk, 2, j)
stock (1k, 1, j) =prod (lk, 1, j) -d (1, j)

1+stock (lk, 1, j-1)
elseif (iprod. le . iutd (lk)) then

prod (1k, 2, j) =aver2-idif2
stock (lk, 2, j) =prod (lk, 2, j) -d (2, j)

1+stock (lk, 2, j-1)
prod (lk, 1, j) =avert-idif1
stock (lk, 1, j) =prod (lk, 1, j) -d (1, j)

1+stock (lk, 1, j -1)
elseif (iprodl . le . iutd (lk)) then

prod (lk, 2, j) =d (2, j) -stock (lk, 2, j-1)
stock (lk, 2, j) =0 .0
prod (lk, 1, j) =avert-idif1
stock (1k, 1, j) =prod (lk, 1, j) -d (1, j)

1+stock (lk, 1, j-1)
endif
idif2=idif2+prod (lk, 2, j)
idifl=idifl+prod(lk, 1, j)
go to 6

13 stock (lk, 1, j) =stock (lk, 1, j-1) -d (1, j)
prod (lk, 1, j) =0 .0
if (stock (lk, 2, j-1) . ge. d(2, j)) go to 16

if (stock (lk, 3, j-1) . ge. d(3, j)) go to 14
iprod=aver2-idif2+aver3-idif3
if (iprod. gt . iutd (lk)) go to 50

if((aver3-idif3) . ge. iutd (lk)) then
prod (lk, 3, j) =d (3, j) -stock (1k, 3, j-1)

stock (lk, 3, j) =stock (lk, 3, j -1)
1+prod(1k, 3, j) -d(3, j)

else
prod (lk, 3, j) =aver3-idit3
stock (lk, 3, j) =prod (lk, 3, j) -d (3, j)

1+stock (1k, 3, j-1)
endif
idif3=idif3+prod (lk, 3, j)

go to 15
14 stock (lk, 3, j) =stock (lk, 3, j -1) -d (3, j)

prod (lk, 3, j) =0.0
15 if ((aver2-idif2) . ge .

iutd (lk)) then
prod (lk, 2, j) =iutd (lk) -prod (lk, 3, j)

stock (lk, 2, j) =prod (lk, 2, j) -d (2, j)
l+stock (1k, 2, j-1)

else
prod (lk, 2, j) =aver2-idif2

161

stock (lk, 2, j) =prod (lk, 2, j) -d (2, j)
1+stock (lk, 2, j-1)

endif
idif2=idif2+prod (lk, 2, j)
go to 6

16 stock (lk, 2, j) =stock (lk, 2, j-1) -d(2,. j)
prod (1k, 2, j)=0.0
if (stock (lk, 3, j-1)

. ge. d(3, j)) go to 17
if((aver3-idif3)

. ge. iutd (lk)) then
prod (1k, 3, j) =iutd (1k)
stock (lk, 3, j) =prod (lk, 3, j) -d (3, j)

1+stock (1k, 3, j-1)
else

prod (lk, 3, j) =aver3-idif3
stock (1k, 3, j) =prod (lk, 3, j) -d (3, j)

1+stock (1k, 3, j-1)
endif
idif3=idif3+prod(lk, 3, j)
go to 6

50 prod (lk, 3, j) =d (3, j) -stock (lk, 3, j-1)
stock (1k, 3, j) =prod (lk, 3, j) -d (3, j)

1+stock (lk, 3, j-1)
idif3=idif3+prod (lk, 3, j)
if ((aver2-idif2+prod (lk, 3, j)

1) . ge. iutd (lk)) then
prod (1k, 2, j) =iutd (1k) -prod (1k, 3, j)
stock (lk, 2, j) =prod (lk, 2, j) -d (2, j)

1+stock (1k, 2, j -1)
else

prod (lk, 2, j) =aver2-idif2
stock (lk, 2, j) =prod (lk, 2, j) -d (2, j)

1+stock (1k, 2, j-1)
endif
idif2=prod (lk, 2, j) +idif2
go to 6

52 prod (lk, 2, j) =iutd (lk) -d (3, j)
stock (lk, 2, j) =prod (lk, 2, j) -d (2, j)

1+stock (lk, 2, j-1)
idif2=idif2+prod (lk, 2, j)
go to 6

55 prod (lk, 3, j) =d (3, j) -stock (lk, 3, j-1)
stock (lk, 3, j) =prod (lk, 3, j) -d (3, j)

1+stock (lk, 3, j -1)
idif3=idif3+prod (lk, 3, j)
iprod=averl-idifl+prod (lk, 2, j) +prod (lk, 3, j)
if (iprod. gt. iutd (lk)) then

prod (lk, 1, j) =iutd (lk) -prod (lk, 3, j) -
lprod (lk, 2, j)

stock (lk, 1, j) =prod (lk, 1, j) -d (1, j)
1+stock (lk, 1, j-1)

else
prod (lk, 1, j) =averl-idifl
stock (1k, 1, j) =prod (lk, 1, j) -d (1, j)

l+stock (1k, 1, j-1)
endif

162

idif 1=prod (1k, 1, j) +idif 1
go to 6

17 stock (1k, 3, j) =stock (lk, 3, j-1) -d (3, j)
prod (1k, 3, j) =0.0

6 continue
return
end

c
C

c START OF SUBROUTINE ANAL2
c FUNCTIONS: TO CALCULATE THE PRODUCTION AND STOCKS
c FOR FIVE-END ITEMS PROBLEM FOR BOTTLENECK(S)

c
c

subroutine anal2 (kbt, iutd, d, prod, stock, aver
1, blkstart, blkend, dem, 1k, k, namel)

integer blkstart, blkend
dimension iutd (25) ,d (5,96) , prod (25,5,96)

1, stock (25,5,96) , aver (5,3) , dem (5,96)
do 11 j=blkstart, blkend

sum=0.0
dem (l , j) =0 .0 dem (4 , j) =0 .0 do 13 i=1,3

sum=sum+d (i, j)
13 continue

dem (1, j) =sum+dem (1, j)
sum=0
do 14 i=4,5

sum=sum+d (i ,j)
14 continue
11 dem (4, j) =sum+dem (4 , j)

idifl=0
idif2=0
averl=aver (1,1) +aver (2,1) +aver (3,1)

aver2=aver(4,1)+aver(5,1)
if(blkstart. eq. 1. or. namel. ne. 'roll')then

stock (1k, 1, blkstart-1) =0.0
stock (1k, 4, blkstart-1) =0 .0

endif
idifl=idifl+stock (lk, l, blkstart-1)
idif2=idif2+stock (lk, 4, blkstart-1)
do 6 j=blkstart, blkend

if(stock(lk, 1, j-1). ge. dem(l, j)) go to 20
if (stock (lk, 4, j-1) . ge. dem (4, j)) go to 21

iprod=averl+aver2
if ((iprod-idifl-idif2) . gt . iutd (lk)) then

prod (lk, 4, j) =dem (4, j) -stock (lk, 4, j-1)

stock (lk, 4, j) =0
prod (lk, 1, j) =iutd (lk) -prod (lk, 4, j)

stock (lk, 1, j) =prod (lk, 1, j) -dem (1, j)

1+stock (lk, 1, j -1)
else

prod (lk, 4, j) =aver2-idif2
stock (1k, 4, j) =prod (lk, 4, j) -dem (4 , j)

163

1+stock (lk, 4, j -1)
prod (lk, 1, j) =averl-idif 1
stock (1k, 1, j) =prod (1k, 1, j) -dem (1, j)

1+stock (lk, 1, j-1)
endif

idifl=idifl+prod(lk, 1, j)
idif2=idif2+prod (lk, 4, j)
go to 6

21 stock (1k, 4, j) =stock (lk, 4, j-1) -dem (4, j)
prod (lk, 4, j) =0
if((averl-idifl)

. gt . iutd (lk)) then
prod (lk, 1, j) =iutd (lk)
stock (lk, 1, j) =prod (lk, 1, j) -dem (1, j)

1+stock (lk, 1, j-1)
else

prod (lk, 1, j) =averl-idif1
stock (lk, 1, j) =prod (lk, 1, j) -dem (1, j)

1+stock (lk, 1, j-1)
endif
idif 1=idif l+prod (lk, 1, j)
go to 6

20 stock (lk, 1, j) =stock (lk, 1, j-1) -dem (l, j)
prod (lk, 1, j) =0
if (stock (lk, 4, j-1) . ge. dem(4, j)) go to 35

if ((aver2-idif2) . gt . iutd (lk)) then
prod (lk, 4, j) =iutd (lk)
stock (lk, 4, j) =prod (lk, 4, j) -dem (4, j)

1+stock (lk, 4, j-1)
else

prod (lk, 4, j) =aver2-idif2
stock (lk, 4, j) =prod (lk, 4, j) -dem (4 , j)

1+stock (1k, 4, j-1)
endif
idif2=idif2+prod (lk, 4, j)
go to 6

35 stock (1k, 4, j) =stock (lk, 4, j -1) -dem (4 , j)

prod (lk, 4, j) =0
6 continue

if (kbt. gt . 1) goto 8
do 37 j=1,2

if (j. eq. 2)then
j1=4
j2=5

else
jl=j
j2=j+2

endif
sum=0.0
sumt=0.0
sumtl=0.0
suml=0.0
do 36 i=jl, j2

sum=sum+aver (i, 2)
sumt=sumt+aver (i, 1)

36 continue

164

aver (j 1,2) =sum
aver (i 1,, 1) =sumt

37 continue
8 return

end
C

C

c START OF SUBROUTINE COST
c FUNCTIONS : TO CALCULATE THE COST (S) FOR NON-END
c ITEM(S) PROBLEM USING ECONOMIC ORDER QUANTITY
c
c

C

C

C

C

C

C

10

11

104
1

3

subroutine cost (kbt, k, prod, stock, aver, d, hi, cs
1, ich, ibottle, ibp, sumc, t, icho, blkstart, blkend
2, blksize, sumh, suml, sumn, sums, dem, c, h, dema, lk, stockl
3, stock2, stock3, namel)

integer blkstart, blkend
dimension prod (25,5,96) , stock (25,5,96) , aver (5,3)

1, hi(25), cs(25), itl(96), d(5,96), ibp(25), sump(25)
2, suml(25), sump(25), Sums (25), dem (5,96), c(25), h(25)
3, dema (5,96) , cap (25) , stockt (25,5,96) , stockt (25,5,96)
4, iutd (25) , stock3 (25,5,96)

NOW STARTING THE CALCULATION OF HOLDING AND SETUP
COST (S) FOR FIVE-END ITEM PROBLEMS.

if(kbt. gt. 1. or. icho. lt. 5. or. k. gt. 3)goto 1
do 104 n=1,21,5

sum=0.0
suml=0.0
do 10 i=n, n+2

sum=cs (i) +sum
suml=hi (i) +suml

continue
c(n)=sum/3.0
h(n)=suml/3.0
i=n+3
sum=0.0
suml=0.0
do 11 j=i, i+1

sum=sum+cs (j)
suml=hi (j) +suml

continue
c(i)=sum/2.0

h(i) =suml /2.0
t=blkend
jflag=0
if (i cho . ne . 5) go to 6
do 5 n=1,21,5

do 3 i=n, n+2
if(ibp(kbt) . ne. i)

ibp (kbt) =n
continue

goto 3

165

5
c
c
c

C

C

6

C

C

C
C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

continue

NOW CALLING THE COST SUBROUTINE FOR THE
BOTTLENECK (S) ITEMS FOR ONE-END ITEM PROBLEM(S)

if (i cho . eq .l . and . ibp (kbt) . eq . k) then
call bottle (kbt, k, prod, hi, cs, ibp, sumc, t, icho

1, blkstart, blkend, sump, c, h, lk, namel)
jflag=l
kbt=kbt+1

elseif

NOW CALLING THE COST SUBROUTINE FOR THE
BOTTLENECK (S) ITEMS FOR THREE-END ITEM PROBLEM(S)

1(icho. eq. 3. and. ibp(kbt). eq. k. or. icho. eq. 3. and.
2ibp(kbt)+1. eq. k. or. ibp(kbt)+2. eq. k. and. icho.
3eq. 3)then

call bottle (kbt, k, prod, hi, cs, ibp, sumc, t, icho
1, blkstart, blkend, sumh, c, h, lk, namel)

jflag=l
if (ich. eq. 3) kbt=kbt+l

elseif

NOW CALLING THE COST SUBROUTINE FOR THE
BOTTLENECK (S) ITEMS FOR FIVE-END ITEM PROBLEM(S).

1 (icho. eq. 5. and. ibp(kbt) . eq. k. or. ibp(kbt) . eq. k-3.
2and. icho. eq. 5)then

call bottle (kbt, k, prod, hi, cs, ibp, sumc, t, icho
1, blkstart, blkend, sumh, c, h, lk, namel)

NOW STARTING THE DEMAND CALCULATION FOR FIVE-END
ITEM PROBLEMS.

if (ich. eq. 4) kbt=kbt+1
jflag=l

endif
if (jflag. eq. 1) go to 19

do 91 j=blkstart, blkend
sum=0.0
dema (1, j) =0 .0
dema(4, j)=0.0
do 92 i=1,3

sum=sum+d (i ,j)

166

92 continue
dema (1, j) =sum+dema (1, j)
sum=0.0
do 93 i=4,5

sum=sum+d (i, j)
93 continue

dema (4, j) =sum+dema (4, j)
91 continue

if (icho . eq. 5) then
eoq=int (sqrt (2 . 0*aver (ich, 2) *c (k) /h (k)) +0.5)

else
eoq=int (sgrt (2 . 0*aver (ich, 2) *cs (k) /hi (k)) +0 . 5)

endif
intvl=aver (ich, 1) /eoq+0.999
ord=int (aver (ich, 1) / intvl)

C

C

c ALL DEMANDS ARE PRODUCED IN PERIOD 1 TO CALCULATE
c THE COST2

c
c

idifl=0
ico=0
averl=aver (ich, 1)
if(icho. eq. 5. and. blkstart. eq. 1)then

stockl (1k, ich, blkstart-1) =0.0
elseif(icho. ne. 5. and. blkstart. eq. 1)then

stocks (k, ich, blkstart-1) =0 .0
elseif(icho. eq. 5. and. blkstart. gt. 1)then

idifl=idifl+stockl (lk, ich, blkstart-1)
else

idif 1=idif l+stockl (k, ich, blkstart-1)
c print*, ' stockl (' , k, ich, blkstart-
c 1, ') =' , stockl (k, ich, blkstart-1)

endif
do 80 j=blkstart, blkend

if (icho. eq. 5) then
if (stockl (lk, ich, j-1) . ge. dema (ich, j)) go to 81

ico=ico+1
itl (ico) =j
if ((averl-idifl) . lt. aver (ich, 1)) go to 400

stockl (lk, ich, j) =aver (ich, 1) +stockl (lk
1, ich, j-1) -dema (ich, j)

idifl=averl-stockl (lk, ich, j-1) +idifl
else
if (stockl (k, ich, j-1) . ge. d (ich, j)) go to 81

ico=ico+1
itl (ico) =j
if ((averl-idifl) . lt. aver (ich, 1)) go to 400

stockl (k, ich, j) =aver (ich, 1) +stockl (k
1, ich, j-1) -d(ich, j)

idifl=averl-stockl (k, ich, j-1) +idif1
endif
go to 80

400 if (icho. eq. 5)then

167

idifl=averl-idif1
stockl (lk, ich, j) =idifl-dema (ich, j)

1+stockl (1k, ich, j-1)
else

idifl=averl-idifl
stocks (k, ich, j) =idifl-d (ich, j)

1+stockl (k, ich, j-1)
endif
go to 80

81 if (icho . eq . 5) then
stockl (lk, ich, j) =stockl (lk, ich, j -1) - ldema (ich, j)

else
stockl (k, ich, j) =stockl (k, ich, j-1) - ld (ich, j)

endif
80 continue

sum=0.0
do 83 i=1, ico

sum=sum+idifl* (t-itl (i) +1)
83 continue

if (icho . eq . 5) then
cost2=c (k) *ico+h (k) *sum

else
cost2=cs (k) *ico+hi (k) *sum

endif
if (aver (ich, 1) . lt. eoq) go to 90

idifl=0
averl=aver (ich, 1)
ico=0
if(icho. eq. 5. and. blkstart. eq. 1)then

stock2 (lk, ich, blkstart-1) =0 .0
elseif(icho. ne. 5. and. blkstart. eq. 1)then

stock2 (k, ich, blkstart-1) =0 .0
elseif(icho. eq. 5. and. blkstart. gt. 1)then

idifl=idifl+stock2 (lk, ich, blkstart-1)
else

idifl=idifl+stock2 (k, ich, blkstart-1)
endif
do 40 j=blkstart, blkend

if(icho. eq. 5)then
if (stock2 (lk, ich, j-1) . ge. dema (ich, j))

lgo to 20
else

if (stock2 (k, ich, j-1) . ge. d(ich, j)) go to 20
endif
ico=ico+1
itl (ico) =j
if (ico. gt. intvl-1)go to 21

if ((averl-idifl) . lt. eoq) go to 21
if (icho . eq . 5) then

stock2 (lk, ich, j) =stock2 (lk, ich, j -1) +eoq-
l dema (ich, j)

else

168

ld(ich, j)
stock2 (k, ich, j) =stock2 (k, ich, j -1) +eoq-

endi f
idifl=idifl+eoq
go to 40

21 ordl=aver (ich, 1) -idifl
if (icho. eq. 5) then

stock2 (lk, ich, j) =stock2 (lk, ich, j -1) +ordl -
l dema (i ch, j)

else
stock2 (k, ich, j) =stock2 (k, ich, j -1) +ordl-

ld (ich, j)
endif
idifl=idifl+ordl
go to 40

20 if(icho. eq. 5)then
stock2 (1k, ich, j) =stock2 (1k, ich, j -1) -

ldema (ich, j)
else

stock2 (k, ich, j) =stock2 (k, ich, j -1) -d (ich, j)
endif

40 continue
sum=0.0
if (ico. eq. 1) go to 24

do 23 j=l, ico-1
sum=eoq* (t-itl (j) +1) +sum

23 continue
sum=sum+ordl* (t-itl (ico) +1)

c
c
c EOQ IS USED TO FIND THE COST3
c
c

if (icho . eq. 5) then
costa=c (k) *ico+h (k) *sum

else
cost3=cs (k) *ico+hi (k) *sum

endif
go to 25

24 sum=0.0
do 50 j=l, ico

sum=eoq* (t-itl (j) +1) +sum
50 continue

if (icho . eq. 5) then
cost3=c (k) *ico+h (k) *sum

else
costa=cs (k) *ico+hi (k) *sum

endif
25 ord=int(ord)

npl=aver (ich, 1) -intvl*ord
np0=intvl-npl
iflag=0
idifl=0
averl=aver (ich, 1)
ico=0

169

ord2=0
if(icho. eq. 5. and. blkstart. eq. 1)then

stock3 (lk, ich, blkstart-1) =0 .0
elseif(icho. ne. 5. and. blkstart. eq. 1)then

stock3 (k, ich, blkstart-1) =0.0
elseif(icho. eq. 5. and. blkstart. gt. 1)then

idif 1=idif l+stock3 (lk, ich, blkstart-1)
else

idifl=idifl+stock3 (k, ich, blkstart-1)
endif
do 26 j=blkstart, blkend

if (icho. eq. 5) then
if (stock3 (lk, ich, j-1) . ge. dema (ich, j))

lgo to 27
else

if (stock3 (k, ich, j-1) . ge. d(ich, j)) go to 27
endif
ico=ico+1
itl (ico) =j
if(iflag. eq. 1) go to 281

if (ico. le. np0) go to 28
iflag=1

281 if ((averl-idifl) . le . ord) go to 258
ordl=ord+1
if (icho . eq . 5) then

stock3 (lk, ich, j) =ordl+stock3 (lk, ich, j -1) -
ldema (ich, j)

else
stock3 (k, ich, j) =ordl+stock3 (k, ich, j-1) -

ld (ich, j)
endif
idifl=idifl+ordl
go to 26

28 if ((averl-idifl) . le. ord) go to 258
if (icho. eq. 5)then

stock3 (lk, ich, j) =ord+stock3 (lk, ich, j -1) -
idema (ich, j)

else
stock3 (k, ich, j) =ord+stock3 (k, ich, j-1) -

ld (ich, j)
endif
idifl=idifl+ord
go to 26

258 ord2=averl-idifl
if (icho. eq. 5)then

stock3 (lk, ich, j) =ord2 -dema (ich, j)
1+stock3 (lk, ich, j-1)

else
stock3 (k, ich, j) =ord2-d (ich, j)

1+stock3 (k, ich, j-1)
endif
idifl=idifl+ord2
go to 26

27 if(icho. eq. 5)then

170

stock3 (1k, ich, j) =stock3 (1k, ich, j-1) - ldema (ich, j)
else

stock3 (k, ich, j) =stock3 (k, ich, j -1) -d (ich, j)
endif

26 continue
sum=0.0
if (ico. eq. 1) go to 62

if (ord2. gt. 0) go to 67
do 29 i=1, npO

sum=sum+ord* (t-itl (i) +1)
29 continue

if (npl . lt . 1) go to 31
do 30 i=np0+l, npl+np0

sum=ordl* (t-itl (i) +1) +sum
30 continue
c
C

c ORDL IS USED TO FIND THE COST4
c
c
31 if (icho. eq. 5) then

cost4=c (k) * (npl+np0) +h (k) *sum
else

cost4=cs (k) * (npl+npO) +hi (k) *sum
endif
go to 173

67 sum=0.0
do 68 i=l, ico-1

sum=sum+ord* (t-itl (i) +1)
68 continue

sum=sum+ord2* (t-itl (ico) +1)
if (icho. eq. 5)then

cost4=c (k) *ico+h (k) *sum
else

cost4=cs (k) *ico+hi (k) *sum
endif
go to 173

62 lflag=O
do 63 i=l, ico

sum=sum+ord* (t-itl (i) +1)
63 continue

if(icho. eq. 5)then
cost4=c (k) +h (k) *sum

else
cost4=cs (k) +hi (K) *sum

endif
go to 173

90 sflag=0.0
if (namel . ne. 'roll') go to 118

do 95 i=blkstart, blkend
if (i cho . eq . 5) then

stock2 (lk, ich, i) =stockl (lk, ich, i)

stock3 (lk, ich, i) =stockl (lk, ich, i)

cost3=cost2

171

cost4=cost2
else

stock2 (k, ich, i) =stockl (k, ich, i)
stock3 (k, ich, i) =stockl (k, ich, i)
cost3=cost2
cost4=cost2

endif
95 continue

go to 173
118 cost3=cost2

cost4=cost2
173 sumY=min(cost2, cost3, cost4)

if (namel . ne . 'roll') go to 7
C

C

c NOW STARTING THE COST CALCULATION OF THE THREE
c PERIOD FOR FUTURE USAGE FOR ROLLING SCHEDULE

c
c

if(cost3. lt. cost2. or. cost4. lt. cost2) go to 51
if (blkstart . eq . 1) then

sumhold=0.0
else

sumhold=suml (k)
endif
sumc=sumy+sumhold
ico=0
idif 1=0
averl=aver (ich, 1)
if(icho. eq. 5. and. blkstart. eq. 1)then

stockl (lk, ich, blkstart-1) =0 .0
elseif(icho. ne. 5. and. blkstart. eq. 1)then

stockt (k, ich, blkstart-1) =0 .0
elseif(icho. eq. 5. and. blkstart. gt. 1)then

idif 1=idif l+stockl (lk, ich, blkstart-1)

else
idifl=idifl+stockl (k, ich, blkstart-1)

endif
do 35 j=blkstart, blkstart+2

if (icho . eq. 5) then
if (stockl (lk, ich, j -1) . ge . dema (ich, j))

lgo to 36
ico=ico+1
itl (ico) =j
if ((averl-idifl) . lt. aver (ich, 1)) go to 263

stockl (lk, ich, j) =averl-idif 1
1+stockl (lk, ich, j -1) -dema (ich, j)

idifl=averl-stockl (lk, ich, j-1) +idifl

else
if (stockl (k, ich, j-1) . ge. d(ich, j))

igo to 36
ico=ico+1
itl (ico) =j
if ((averl-idifl)

igo to 263
. lt . aver (ich, l))

172

stockt (k, ich, j) =averl -idif 1
1+stockl (k, ich, j -1) -d (ich, j)

idifl=averl-stockl (k, ich, j-1) +idifl
endif
go to 35

263 if(icho. eq. 5)then
stockl (lk, ich, j) =averl -idif l -dema (ich, j)

1+stockl (1k, ich, j-1)
else

stockl (k, ich, j) =averl-idifl-d (ich, j)
1+stockl (k, ich, j-1)

endif
idifl=averl-idif1
go to 35

36 if (icho. eq. 5) then
stockl (1k, ich, j) =stockl (1k, ich, j-1) - idema (ich, j)

else
stockl (k, ich, j) =stockl (k, ich, j -1) - ld (ich, j)

endif
35 continue

if (ico. lt. l) go to 45
do 37 i=l, ico

if (icho. eq. 5) then
suml (k) =c (k) *ico+h (k) * (t-itl (ico) +1) *IDIF1
sumn (k) =suml (k)
sums (k) =suml (k)

else
suml (k) =cs (k) *ico+hi (k) * (t-itl (ico) +1) *IDIF1
sumn(k)=suml(k)
sums (k) =suml (k)

endif
37 continue

go to 7
45 suml (k) =0 .0

sumn (k) =0 .0
sums(k)=0.0
go to 7

51 if(cost3. gt. cost4) go to 8
if (blkstart . eq . 1) then

sumhold=0.0
else

sumhold=sumn (k)
endif
sumc=sumy+sumhold
ico=0
idifl=O
averl=aver (ich, 1)
if(icho. eq. 5. and. blkstart. eq. 1)then

stock2 (lk, ich, blkstart-1) =0 .0
elseif(icho. ne. 5. and. blkstart. eq. 1)then

stock2 (k, ich, blkstart-1) =0 .0
elseif(icho. eq. 5. and. blkstart. gt. 1)then
idifl=idifl+stock2(1k, ich, blkstart-1)

173

else
idifl=idifl+stock2 (k, ich, blkstart-1)

endif
do 9 j=blkstart, blkstart+2

if (icho . eq. 5) then
if (stock2 (lk, ich, j -1) . ge . dema (ich, j))

lgo to 56
else

if (stock2 (k, ich, j-1) . ge. d(ich, j)) go to 56
endif
ico=ico+l
itl (ico) =j
if (ico. gt. (intvl-1)) go to 55

if ((averl-idifl)
. lt. eoq) go to 55

if (icho. eq. 5)then
stock2 (1k, ich, j) =stock2 (1k, ich, j-1) +eoq-

ldema (ich, j)
else

stock2 (k, ich, j) =stock2 (k, ich, j -1) +eoq-
ld(ich, j)

endif
idifl=idifl+eoq
go to 9

55 ordl=aver (ich, 1) -IDIF1
if(icho. eq. 5)then

stock2 (lk, ich, j) =stock2 (lk, ich, j-1) +ordl-
idema (ich, j)

else
stock2 (k, ich, j) =stock2 (k, ich, j-1) +ordl-

ld (ich, j)
endif
idifl=idifl+ordl
go to 9

56 if (i cho . eq . 5) then
stock2 (lk, ich, j) =stock2 (lk, ich, j -1) -

idema (ich, j)
else

stock2 (k, ich, j) =stock2 (k, ich, j -1) -d (ich, j)

endif
9 continue

suma=0.0
if (ico. lt. 1) go to 47

do 13 j=l, ico
suma=eoq* (t-itl (j) +1) +suma

13 continue
if (icho . eq . 5) then

sumn (k) =c (k) *ico+h (k) *suma
suml (k) =sumn (k)
sums(k)=sumn(k)

else
sumn (k) =cs (k) *ico+hi (k) *suma
suml (k) =sumn (k)
sums (k) =sumn (k)

endif
go to 7

174

47 suml (k) =0 .0
sump(k)=0.0
sums (k) =0 .0
go to 7

8 if(cost4. gt. cost3. or. cost4. gt. cost2) go to 7
if (blkstart. eq. 1) then

sumhold=0.0
else

sumhold=sums (k)
endif
sumc=sumy+sumhold
ico=0
ord=int (ord)
npl=aver (ich, 1) -intvl*ord
npO=intvl-npl
idifl=0
averl=aver (ich, 1)
iflag=0
if(icho. eq. 5. and. blkstart. eq. 1)then

stock3 (lk, ich, blkstart-1) =0 .0
elseif(icho. ne. 5. and. blkstart. eq. 1)then

stock3 (k, ich, blkstart-1) =0 .0
elseif(icho. eq. 5. and. blkstart. gt. 1)then

idifl=idifl+stock3 (lk, ich, blkstart-1)
else

idifl=idifl+stock3 (k, ich, blkstart-1)
endif
do 133 j=blkstart, blkstart+2

if (icho. eq. 5) then
if (stock3 (lk, ich, j-1) . ge. dema (ich, j))

lgo to 134
else

if (stock3 (k, ich, j-1) . ge. d(ich, j))
lgo to 134

endif
ico=ico+1
if (iflag. eq. l) go to 282

if (ico . le . np0) go to 135
iflag=1

282 if ((averl-idifl) . lt . ord) go to 267

ordl=ord+1
itl (ico) =j
if (icho . eq . 5) then

stock3 (lk, ich, j) =ordl+stock3 (lk
1, ich, j-1) -dema (ich, j)

else
stock3 (k, ich, j) =ordl+stock3 (k, ich, j-

11)-dich, j)
endif
idifl=idifl+ordl
go to 133

135 if ((averl-idifl) . lt . ord) go to 267
if (icho . eq . 5) then

stock3 (lk, ich, j) =ord+stock3 (lk, ich, j-
11) -dema (ich, j)

175

else

ld(ich, j)
stock3 (k, ich, j) =ord+stock3 (k, ich, j -1) -

endi f
itl (ico) =j
idifl=idifl+ord
go to 133

267 ord2=averl-idifl
if (icho. eq. 5)then

stock3 (lk, ich, j) =ord2-dema (ich, j)
1+stock3 (lk, ich, j-1)

else
stock3 (k, ich, j) =ord2-d (ich, j)

1+stock3 (k, ich, j-1)
endif
idifl=idifl+ord2
go to 133

134 if(icho. eq. 5)then
stock3 (lk, ich, j) =stock3 (lk, ich, j -1) -

idema (ich, j)
else

stock3 (k, ich, j) =stock3 (k, ich, j -1) -
ld (ich, j)

endif
133 continue

sum=0.0
if (ico. lt . 1) go to 138

if (ico. eq. l) go to 137
do 139 i=l, ico-1

sum=sum+ord* (t-itl (i) +l)
139 continue

if (ico . le . np0) go to 141
if (ord2. gt. 0) then

sum=sum+ord2* (t-itl (ico) +l)
else

sum=sum+ordl* (t-itl (ico) +1)
endif
go to 142

141 sum=sum+ord* (t-itl (ico) +1)
142 if (icho . eq. 5) then

sums (k) =c (k) *ico+h (k) *sum
suml (k) =sums (k)
sumn (k) =sums (k)

else
sums(k)=cs(k)*ico+hi(k)*sum
suml (k) =sums (k)
sump (k) =sums (k)

endif
go to 7

137 if(icho. eq. 5)then
sums (k) =c (k) *ico+h (k) *ord* (t-itl (ico) +1)
suml (k) =sums (k)
sump(k)=sums(k)

else
sums (k) =cs (k) *ico+hi (k) *ord* (t-itl (ico) +1)

176

suml (k) =sums (k)
sumn(k)=sums (k)

endif
go to 7

138 suml (k) =0 .0
sumn (k) =0 .0
sums(k)=0.0

7 if (namel . ne. 'roll') go to 106
do 111 i=blkstart, blkstart+2

if(cost3. lt. cost2. or. cost4.1t. cost2)go to 48
if (icho . eq . 5) then

stock2 (lk, ich, i) =stockl (lk, ich, i)
stock3 (lk, ich, i) =stockl (lk, ich, i)

else
stock2 (k, ich, i) =stockl (k, ich, i)
stock3 (k, ich, i) =stockl (k, ich, i)

endif
go to 111

48 if (costa . gt . cost4 . or . cost3 . gt . cost2) go to 49
if (icho . eq . 5) then

stockl (lk, ich, i) =stock2 (lk, ich, i)
stock3 (lk, ich, i) =stock2 (lk, ich, i)

else
stockl (k, ich, i) =stock2 (k, ich, i)
stock3 (k, ich, i) =stockt (k, ich, i)

endif
go to 111

49 if(cost4. gt. cost3. or. cost4. gt. cost2)go to 111
if (icho. eq. 5)then

stockl (lk, ich, i) =stock3 (lk, ich, i)
stock2 (lk, ich, i) =stock3 (lk, ich, i)

else
stockl (k, ich, i) =stock3 (k, ich, i)
stock2 (k, ich, i) =stock3 (k, ich, i)

endif
111 continue

go to 77
106 yflag=0.0

do 107 i=blkstart, blkstart+2
if (i cho . eq . 5) then

stockt (lk, ich, i) =0 .0
stock2 (lk, ich, i) =0 .0
stock3 (lk, ich, i) =0 .0

else
stockl (k, ich, i) =O. 0
stockt (k, ich, i) =O. 0
stock3 (k, ich, i) =0 .0

endif
107 continue

suml (k) =0 .0
sumn(k)=0.0
sums (k) =0 .0
sumc=sumy

77 write (9,101) k, cost2, cost3, cost4, sumy, suml (k)
1, sumn (k) , sums (k)

177

101 format (i4,8f8.1)
19 return

end
c
c
c START OF SUBROUTINE COSTS
c FUNCTIONS: TO CALCULATE THE COSTS FOR NON-
c BOTTLENECK ITEM(S) USING SILVER MEAL TECNIQUE
c PARAMETERS : KBT, K, PROD, STOCK, AVER, D, HI, CS, IBOTTLE,
c IBP, SUMC, T, ICHO, BLKSTART, BLKEND, BLKSIZE, SUMH, SUML,
c SUMN, SUMS, DEM, C, H, DEMA, LK, STOCKI, STOCK2, STOCK3,
c SCOST, PRODI, STOCK4, PROD2, SUMSIL
c
c

subroutine costs (kbt, k, prod, stock, aver, d, hi, cs
1, ich, ibottle, ibp, sumc, t, icho, blkstart, blkend
2, blksize, sumh, dem, c, h, dema, lk, stockl, stock2, stock3,
3scost, prodl, stock4, prod2, sumsil, namel)

integer blkstart, blkend
dimension prod (25,5,96) , stock (25,5,96) , aver (5,3)

1, hi (25) , cs (25) , itl (96) ,d (5,96) , ibp (25) , sumh (25)
2, dem (5,96) ,c (25) ,h (25) , dema (5,96) , stockl (25,5,96)
3, stock2 (25,5,96) , stock3 (25,5,96) , scost (25,5,96)
4, prodl (25,5,96) , stock4 (25,5,96) , prod2 (25,5,96)
5, sumsil (25)

if(kbt. gt. 1. or. icho. lt. 5. or. k. gt. 3)go to45
do 42 n=1,21,5

sum=0.0
suml=0.0
do 43 i=n, n+2

sum=c s (i) +sum
suml=hi (i) +suml

43 continue
c(n)=sum/3.0
h(n) =suml/3 .0
i=n+3
sum=0.0
suml=0.0
do 61 j=i, i+l

sum=sum+cs (j)
suml=suml+hi (j)

61 continue
c(i)=sum/2.0
h(i) =suml /2 .0

42 continue
45 t=blkend

j flag=0
if (i cho . ne . 5) go to 6

do 5 n=1,21,5
do 3 i=n, n+2

if (ibp(kbt) . ne. i)go to 3
ibp (kbt) =n

3 continue
5 continue
c

178

C

c NOW CALLING THE SUBROUTINE BOTTLE FOR THE
c BOTTLENECK(S) FOR ONE-END ITEM PROBLEM FOR
c BOTTLENECK (S) ITEM(S)
c
C

6if (i cho . eq .1. and . ibp (kbt) . eq . k) then
call bottle (kbt, k, prod, hi, cs, ibp, sumc, t, icho

1, blkstart, blkend, sumh, c, h, lk, namel)
jflag=l
kbt=kbt+1

elseif
C

C

c NOW CALLING THE SUBROUTINE BOTTLE FOR THE
c BOTTLENECK(S) FOR THREE-END ITEM PROBLEM(S) FOR
c BOTTLENECK (S) ITEM(S)

c
c

1(icho. eq. 3. and. ibp(kbt). eq. k. or. icho. eq. 3.
2 and . ibp (kbt) +1. eq .k. or . ibp (kbt) +2 . eq. k. and . icho
3. eq. 3)then

call bottle (kbt, k, prod, hi, cs, ibp, sumc, t, icho
1, blkstart, blkend, sumh, c, h, lk, namel)

jflag=l
if (ich. eq. 3) kbt=kbt+l

elseif
C

C

c NOW CALLING THE SUBROUTINE BOTTLE FOR THE

c BOTTLENECK (S) FOR FIVE-END ITEM PROBLEM (S) FOR

c BOTTLENECK (S) ITEM(S)

c
c

1 (icho . eq .5. and . ibp (kbt) . eq .k. or . ibp (kbt)
2. eq. k-3. and. icho. eq. 5)then

call bottle(kbt, k, prod, hi, cs, ibp, sumc, t, icho
1, blkstart, blkend, sumh, c, h, lk, namel)

if (ich. eq. 4) kbt=kbt+1
jflag=l

endif
C

C

c NOW STARTING THE DEMAND CALCULATION FOR FIVE-END

c ITEM PROBLEM
c
c

if (jflag. eq. 1) go to 19
do 91 j=blkstart, blkend

sum=0.0
dema (1, j) =0 .0
dema (4 , j) =0 .0
do 92 i=1,3

92 sum=sum+d (i, j)
dema (1, j) =sum+dema (1, j)

179

sum=0.0
do 93 i=4,5

93 sum=sum+d (i, j)
91 dema (4 , j) =sum+dema (4 , j)

ik=O
is=1
sum=0.0
it=0
do 20 j=blkstart, blkend

if (icho. eq. 5) then
if (stock4 (lk, ich, j-1)

. ge. dema (ich, j))
igo to 24

it=it+l
is=ic+1
sum=sum+ (ic-1) *h (k) *dema (ich, j)
scost (1k, ich, it) =sum/ic
if (scost (1k, ich, it) . gt. scost (lk, ich, it-1))

igo to 30
prodl (1k, ich, j) =prodl (1k, ich, j -1)

1+dema (ich, j)
prod2 (1k, ich, blkstart+ik) =prodl (1k, ich

1, j)
else

if (stock4 (k, ich, j-1) . ge. d(ich, j))
lgo to 24

it=it+1
is=ic+1
sum=sum+ (ic-1) *hi (k) *d (ich, j)
scost (k, ich, it) =sum/ic
if (scost (k, ich, it) . gt . scost (k, ich

1, it-i)) go to 30
prodl (k, ich, j) =prodl (k, ich, j-i)

1+d (ich, j)
prod2 (k, ich, blkstart+ik) =prodl (k

1, ich, j)
endif
go to 20

24 if (i cho . eq . 5) then
stock4 (lk, ich, j) =stock4 (lk, ich, j -1) -

idema (ich, j)
it=it+1
ik=ik+1
is=0
sum=c (k)
scost (lk, ich, it) =sum

else
stock4 (k, ich, j) =stock4 (k, ich, j -1) -d (ich, j)
it=it+1
ik=ik+1
is=0
sum=cs (k)
scost (k, ich, it) =sum

endif
20 continue
30 it=blkstart+ik

180

is=1
if (j . gt . blkend) go to 51

if (j . ge . blkend) ik=0
if (i cho . eq . 5) then

prodl (lk, ich, j) =dema (ich, j)
prod2 (lk, ich, j) =prodl (lk, ich, j)
sum=c(k)
scost (1k, ich, it) =sum

else
prodl (k, ich, j) =d (ich, j)
prod2 (k, ich, j) =prodl (k, ich, j)
sum=cs (k)
scost (k, ich, it) =sum

endif
1=0
n=j+l
do 25 m=n, blkend

if(icho. eq. 5)then
if (stock4 (lk, ich, m-1) . ge . dema (ich, m))

igo to 27
it=it+1
is=ic+1
sum=sum+ (ic-1) *h (k) *dema (ich, m)
scost (lk, ich, it) =sum/ is

if (scost (lk, ich, it) . gt . scost (lk
1, ich, it-1))go to 50

1=1+1
prodl (lk, ich, m-1) =prodl (lk, ich

1, m-1) +dema (ich, m)
prod2 (lk, ich, m-1) =prodl (lk, ich

1, m-1)
else

if (stock4 (k, ich, m-1) . ge. d(ich
1, m)) goto 27

it=it+1
is=ic+1
sum=sum+ (ic-1) *hi (k) *d (ich, m)
scost (k, ich, it) =sum/ic

if (scost (k, ich, it) . gt.
iscost (k, ich, it-1)) goto 50

1=1+1
prodl (k, ich, m-1) =prodl (k

1, ich, m-1) +d (ich, m)
prod2 (k, ich, m-1) =prodl (k

1, ich, m-1)
endif
go to 25

27 if (m. gt. blkend) go to 51
if (icho. eq. 5)then

stock4 (lk, ich, m) =stock4 (lk, i ch, m-1)
1-dema (ich, m)

1=1+1
it=it+1
is=1
sum=c(k)

181

scost (1k, ich, m) =sum
else

ld(ich, m)
stock4 (k, ich, m) =stock4 (k, ich, m-1) -

1=1+1
it=it+l
is=1
sum=cs (k)
scost (k, ich, m) =sum

endif
go to 25

50 if (m. gt . blkend) go to 51
1=0
it=blkstart+ik
is=1
if (icho . eq. 5) then

prodl (lk, ich, m) =dema (ich, m)
prod2 (1k, ich, m) =prodl (1k, ich, m)
sum=c (k)
scost (lk, ich, it) =sum

else
prodl (k, ich, m) =d (ich, m)
prod2 (k, ich, m) =prodl (k, ich, m)
sum=cs (k)
scost (k, ich, it) =sum

endif
25 continue
51 t=blkend

sum=0.0
ico=0
ssil=0.0
do 46 j=blkstart, blkend

if (icho. eq. 5) go to 47
if (prod2 (k, ich, j) . gt .0.0) then

ico=ico+1
sum=sum+hi (k) * (t-j+l) *prod2 (k, ich, j)
stock4 (k, ich, j) =prod2 (k, ich, j) +stock4 (k

1, ich, j-1) -d (ich, j)
else

stock4 (k, ich, j) =prod2 (k, ich, j) +stock4 (k
1, ich, j-1) -d (ich, j)

52 endif
go to 46

47 if (prod2 (1k, ich, j) . gt .0.0) then
sum=sum+h (k) * (t-j+l) *prod2 (lk, ich, j)
ico=ico+1
stock4 (lk, ich, j) =prod2 (lk, ich, j) +stock4 (lk

1, ich, j) -dema (ich, j)
else

stock4 (lk, ich, j) =prod2 (lk, ich, j) +stock4 (lk
1, ich, j-1) -dema (ich, j)

53 endif
46 continue

if (icho. eq. 5) then
sumy=c (k) *ico+sum

182

else
sumy=cs (k) *ico+sum

endif
if (namel

. ne . 'roll') then
sumsil (k) =0 .0
sumc=sumy
go to 44

endif
if (blkstart. eq. 1) then

sumhold=0.0
else

sumhold=sumsil (k)
endif
sumc=sumy+sumhold
icol=O
do 31 j=blkstart, blkstart+2

if (icho. eq. 5) then
if (prod2 (1k, ich, j)

. le. 0.0) go to 32
icol=icol+l
ssil=ssil+h (k) * (t-j+l) *prod2 (lk, ich,

else
if (prod2 (k, ich, j) . le. 0.0) go to 32

icol=icol+l
ssil=ssil+hi (k) * (t-j+l) *prod2 (k, ich,

32 endif
31 continue

if(icho. eq. 5)then
sumsil (k) =icol*c (k) +ssil

else
sumsil (k) =icol*cs (k) +ssil

endif
44 write (9,103) k, sumy, sumc, sumsil (k)
103 format (i4,5x, 3f13 . 2)
19 return

end
C

C

7)

7)

c START OF SUBROUTINE BOTTLE
C FUNCTIONS: TO CALCULATE THE COSTS FOR BOTTLENECK
c ITEM (S)
c PARAMETERS : KBT, K, PROD, HI, CS, IBP, SUMC, T, ICHO, SUMH,
c C, H, LK, PERIODS

c
c

subroutine bottle (kbt, k, prod, hi, cs, ibp, sumc, t
1, icho, blkstart, blkend, sumh, c, h, lk, namel)

integer blkstart, blkend
dimension prod (25,5,96) , hi (25) , cs (25) , ibp (25)

1, sumh (25) ,c (25) ,h (25)
ip=O
if (icho. eq. 3) then

ik=k/icho
nk=k-ik*icho
if (nk. eq. 0) nk=3

elseif (icho. eq. l)then

183

nk=1
else

ik=k/icho
nk= (k-ik*icho)
if (nk. eq. 0) nk=4

endif
sum=0.0
suma=0.0
do 1 j=blkstart, blkend

if (icho. eq. 5) goto 21
if (prod (lk, nk, j)

. gt .0.0) then
ip=ip+1
sum=sum+hi (k) * (t-j+l) *prod(lk, nk, j)

endif
go to 1

21 if (prod (lk, nk, j) . gt .0.0) then
ip=ip+1
sum=sum+h (k) * (t-j+1) *prod (lk, nk, j)

endif
1 continue

if (icho. eq. 5) then
costl=sum+ip*c (k)

else
costl=sum+ip*cs (k)

endif
if (namel . ne .' roll') then

sumh (k) =0 .0
sumc=cost1
go to 6

endif
if (blkstart . eq. l) then

sumhold=0.0
else

sumhold=sumh (k)
endif
sumc=costl+sumhold
ip=0
do 20 j=blkstart, blkstart+2

if (icho. eq. 5) go to 22
if (prod (lk, nk, j) . gt. 0.0) then

ip=ip+1
suma=suma+hi (k) * (t-j+1) *prod (lk, nk, j)

endif
go to 20

22 if (prod (lk, nk, j) . gt. 0.0) then
ip=ip+1
suma=suma+h (k) * (t-j+l) *prod (lk, nk, j)

endif
20 continue

if (icho. lt . 5) then
costa=suma+ip*cs(k)

else
costa=suma+ip*c (k)

endif
sumh (k) =costa

184

6 write (9,10) k, cost l, sumc, sumh (k)
10 format(' position of bottleneck =', i4, f13.1

1, f8.0, f8.0)
return
end

185

APPENDIX D

NAG Subroutine Program

186

c This program is to show the uniform distribution
c real*8 x

integer i
c double precision g05caf

external g05caf
c external g05cbf

external g05ccf
write (6,120)

c call g05cbf (0)
call g05ccf (0)
do 20 i=1,20

x=g05caf(92)
write (6,121) x

20 continue
120 format (4 (lx/) , 31h g05caf example program

lresults/ix)
121 format (lx, f10.4)

stop
end

187

APPENDIX E
Reprint of Published Papers

188

INT. J. PROD. RES., 1992, VOL. 30, NO. 4,787-798

A heuristic for multi-level lot-sizing problems with a bottleneck

B. TOKLUt and J. M. WILSON

A simple heuristic is proposed for multi-level lot-sizing problems where there is a bottleneck. Previous methods to solve this problem have formulated the problem as
an integer programming problem and solved the problem using a Lagrangian
relaxation embedded within the branch and bound procedure. In this paper we
suggest that items to be produced can be grouped into two types and a simple but
efficient heuristic can be used to determine the production quantities required. A
program was developed to compute production levels and was found to require
only a small fraction of the computer time required by the full integer programming
approach, and to produce solutions of reasonable quality. The heuristic is simple to
implement.

1. Introduction
Lot-sizing in MRP only becomes realistic when features such as capacity

constraints and the fact that systems are multilevel can be incorporated into the model.
Blackburn and Millen (1982) review and add to contributions made to this area. Their
work provides for simultaneous lot-sizing and capacity requirements planning in an
MRP framework. However, one of the most successful attempts to tackle the multi-
level lot-sizing problem with a bottleneck constraint has been by Billington et al. (1986).
This paper will propose a simple heuristic approach to solve the problem modelled by
Billington et al. (1986), and show that if the items for production are categorized into

(a) end-items, constrained by the bottleneck, and
(b) non-end-items, unconstrained,

then two simple procedures can be used independently, one for each category of item, to
determine the production levels of each item. The reason for this categorization into
two groups will be explained in section 3. Solutions will be sub-optimal, but of adequate
quality, and are easy to obtain. The method to be proposed requires only a fraction of
the computation required for solution of the integer programming formulation of the
lot-sizing problem. In addition, the heuristic is easy to implement and program when
compared with the Lagrangian heuristic approach of Billington et al. (1986), and
should require much less computer time and have more practical appeal in a realistic
setting.

In the next section the model developed by Billington et al. (1986) will be presented
and the heuristic approach will be developed in the third section.

Revision received June 1991.
T Business School, Loughborough University of Technology, Loughborough. Leicestershire

LEII 3TU, UK.

0020-7543192 $3.00 ccl 1992 Taylor & Francis Ltd.

i I-`

788 B. Toklu and J. M. Wilson

2. Integer programming formulation of problem
For the lot-sizing problem a bottleneck will be defined as follows: a bottleneck is a

work centre which converts raw materials into finished goods through the use of
resources in the manufacturing process. Therefore a machine with limited capacity,
highly skilled or specialized workers, and task-specific machines or tools can all be seen
to be bottlenecks under this definition. All the resources could be classified into a
bottleneck. Setup cost and time will be very important for all work stations, especially
the bottleneck facility, and capacity limitations, which can result from either bottleneck
capacity being greater than demand in the planning horizon or demand being exceeded
by capacity from time to time. A general product structure with a bottleneck facility is
given in Fig. 1 (from Billington et al. 1986).

The general product structure can be split into a number of special cases: (1)
assembly (no commonality), (2) serial (one item, multi-stage) (3) parallel (a collection of
serial structures which has a bottleneck in one of the stages), (4) single stage multi-item.
This paper will concentrate on the case of a parallel structure.

As will be seen from the numbering system in Fig. 1, no item has a higher number
than any of its predecessors. It is an a priori assumption that items in the bottleneck
facility do not have predecessors (although this assumption can be relaxed for the
subsequent heuristic approach). It can be seen that batching demands on product
setups can result in capacity problems, and also affects predecessor items since the
batches are passed through as dependent demands. Because capacity utilization vanes
through time, costs may not be constant.

Assumptions
1. All lead times between stages are assumed to be zero.
2. Demand for the multiple end items are assumed known and at constant known

rate per year.
3. There is no demand for the components at any intermediate stages.
4. Back orders are not allowed.
5. The number of units coming from bill of material required in the production of

one unit at the immediate successor stage to the other stage is assumed to be

equal to one.
6. The unit production costs are assumed constant and hence are ignored.
7. Production must occur in advance of that demand.

f'1

13->1 8,

14 -> 19

15

-ý1 16---> 10; --ý6 3

17 01 11, --> 7 -> 4 -4 2

18- >'12;

purchased intermediate end
items items items

Figure 1. A general product structure with a bottleneck facility (the bottleneck facility is shown
by the dashed lined.

Multi-level lot-sizing problems with bottlenecks 789

Notation
a1 the quantity of product i needed per unit production of product j: ai j=0 for

all i<j
bi time needed on the bottleneck facility for the production of product i

cap; available capacity of the work centre at time t
cs; setup cost for product i (following the assumption made by Billington et al.

(1986), for consistency, the possibility of `carrying over' a setup from one
period to another is not allowed)

d« external (independent) demand for product i during time t
hi holding cost for product i
I final inventory level of product i in period t
Li lead time, which is the unavoidable time from the time the order is placed

until it is available, for product i. This could be because of the time taken by a
vendor to deliver a product, or could be a non-production lag

N number of products
Pit units of i produced in period t
Si setup time for the work centre for product i. This takes the value zero for all

items except those made on the work centre. This can also include processing
time which is not related to the size of batch as in some heating operations

T total number of periods
Xi, production indicator; equal to 1 if Pi, >0 and zero otherwise

In the information below, inventory is eliminated by substituting cumulative
production minus cumulative demand, and it is derived from a model in Billington et al.
(1986).

Formulation
Minimize:

NT

Z [hi(T-t+ 1)Pi, +csiXit] (1)
t=1 c=1

Subject to:
[P1_L,

-y ai j Pjn din - lio i=1.... , .Vt=1..... T (2)
n=1 j=1 1

N

[bi Pi, +siXit] <cap, t= 1...., T (3)
i=1

Xir_
1 if P11>O

i= 1...., N 4)
0 otherwise

Pit ?0 i= 1...... V t= 1..... T (5)

This is the formulation using integer programming when there is one capacity-
constrained work centre.

In this formulation, constraint (2) illustrates that available production after
subtracting the requirements is greater than or equal to external demand by

eliminating the inventory in the planning horizon. Constraint (3) is the capacity
constraint for the bottleneck facility, and (4) shows setup cost and time are appiicable
only if there is production.

790 B. Toklu and J. M. Wilson

In particular, Billington et al. (1986) concentrated on the three problem types 1-end
item, 3-end items, and 5-end items and restricted these items so that they were the only
ones affected by the bottleneck. In the computational testing N has maximum value 25
and T has maximum value 12, the values chosen in the work of Billington et al. (1986).

3. Simple heuristic for solution
The heuristic operates by first dividing production items into end-items and non-

end-items. The reason for this is that production of each non-end item is unconstrained
and so has neither any effect on the production of any other non-end-item nor on the
production of the items which are constrained by the bottleneck. As demand required
for all items is known in advance, the production decision for each non-end-item
becomes a relatively simple one of when to produce in order to minimize the
contribution to costs (from holding and setup costs) of each non-end-item. The fact that
demand for end-items determines the demand for intermediate items does not
invalidate the independence of production of each item as demand for end-items is
known several periods in advance. The problem of determining when to produce end-
items is more complex as these items must share the resources of the bottleneck. Thus
for these items the production problem is a constrained problem. However, in general
these items are in the minority.

Define Si, as stock of product i at start of period t, then
t-1

Sit =
F, Pin

-
din

n=1

3.1. Non-end-items
For these items an EOQ approach will be used. This approach was chosen as it is

comparatively simple to operate and in general will produce solutions of good quality.
Where demand levels are likely to be variable, an approach such as the Silver-Meal
(1973) heuristic may be appropriate and is the subject for future investigation. Let Q; be

the EOQ for item i, based on setup cost cs; and holding cost h;. Then the following

strategies are considered:

(a) Produce Q. in period 1 and then next produce Qi in the period when stocks
would become negative if no production were made (i. e. find the next smallest t such
that S;, < d«).

Let t; be the number of occasions on which item i will be produced. Then

T

t1= L4 /Qi+0.5
It=

1

and production is made in any period n whenever Si, <d1 .
Note that [] is the integer

part function.
If in any period n

T

Lei%7d-
Sin

r=n

then set
T

0; = v
t=n

Multi-level lot-sizing problems with bottlenecks 791

(b) Let Z, be the quantity of item i produced in period I. The same quantity is next
produced whenever stocks would become negative if no production were made I i. e.
when Si,, < di,,)

T

Zi =
(,

E d« t1

Continue this process through all the periods.
(c) Produce all items in period 1.

Strategies (a), (b) and (c) are evaluated to see which leads to the smaller total
inventory cost over the N periods and then that strategy is chosen.

3.2. End-items
For these items a simple heuristic was adopted which would adopt a greedy

approach to production by having few setups, but with heavy utilization of the
resultant production capacity. In addition, the heuristic would operate in a cyclic
manner, moving between items or sets of items in turn to produce reasonably smooth
production. The approach has broad similarities with the work of McLain and Trigeiro
(1985) except that by excluding setup time and cost they handle a problem that is easier
to solve. Bahl and Ritzman (1984) also adopt a cyclic approach but do so by examining
permutation schedules.

The heuristic will be described with reference to three cases.

Case (a). 1-end-item problems
Produce as much of end-item i as cap, will allow in period 1, i. e. set P; 1=cap1, then

next produce i when stocks would become negative if no production were made, i. e. find
the next smallest t for which Si, < d1,. Continue the process of producing in each period t
which has this property.

T
If P;,, would exceed d;, for any period n

T

then set Pi,, _> dit
t=n

Case (b). 3-end-item problems
A three period cycle is adopted.

Period 1 Set P21= d 21, P31= d31 and P,, =cap1-d21 - d31.
Period 2 Set P32 =d32, P12 =0 and P12 =rap, -d32 provided S12 > dl ,.

Otherwise set P 12 =dl 2+d 13 - 512, P32= d 31 and
P, 2=caP2-P12-P32.

Period 3 Set P33=caP3 and P13=P, 3=0 provided S13>d13 and S_, 3>d_, 3.
Otherwise set P13=d13-S13, P, 3=d, 3+d, 4-S13 and
P33=caP3

-
P13

-P23"

Period 4 Set P14= capo provided S,, > d,, and S34 > d34.
Period 5 Set P, 5=cap, provided S, 5>d, , and S35 > d15 -
Period 6 Set P36 = cap6 provided S 16 > d16 and S, 6>d, 6.
Again, if stocks of any product would become negative, produce sufficient of that

product to satisfy demand over the next one or more periods until that product moves
into the dominant production position.

792 B. Toklu and J. M. Wilson

Continue the process in the same cyclic manner for the remaining periods. If at
any stage stocks of all products are sufficient for production to be zero in any period, no
production is made in that period and the cycle for the appropriate product is delayed
by one period.

Note. On the sample data on which the heuristic was tried, despite this data
incorporating some highly variable demand levels and production capacities, it was
found that none of the `otherwise' type conditions listed above ever applied.

Case (c). 5-end-item problems
In order to keep the heuristic simple, more complex cases are now treated more in

the style of case (b). The set of 5 products is simplified by considering products in just
two sets rather than as 5 individual products. Here products { 1,2,31 are considered a
set as are {4,5}. This division was made purely for simplicity.

The two sets are now treated as single products and the cyclical approach of case (c),
modified to a two-period cycle, is followed with the modification that when production
of a product set can be larger than demand in that period, the production quantity is
equal for each product in the set.

Total inventory cost is now the total of individual inventory costs arising from the
end-items and the non-end-items.

4. Computational experience
The integer programming formulation solved by using the software MGG (1987)

and SCICONIC (1986), and the heuristic approach of section 3, coded in Fortran, were
compared on sets of data obtained from Billington (1983) and also discussed in
Billington et al. (1986). In the experimental studies three different cost structures, three
demand streams and three capacity levels were used. The three cost structures are
detailed in Billington (1983). Essentially, for each structure the holding costs and the
setup costs are set to different levels such that for structure 1 the average of the holding
costs is 0.44 and the average for the setup costs is 400. For structures 2 and 3 the
corresponding figures are 1.00,340 and 0.64,420 for holding cost and setup cost,
respectively. The three demand streams are generated to give low (50%, medium (75%)
and high (95%) demand. The results of the experiments are in Tables 1-9 and 27

problems were investigated. In each table, details of the linear programming (LP)
solution to the integer programming (IP) formulation are given in the third column,
details of the integer programming branch and bound approach are given in the fourth

column, and of the heuristic solution in the right-hand column. The branching process
by which the integer programming solutions were obtained was the standard default of
the SCICONIC software which comprises an approach to choose subproblems which
minimize the percentage error in the degradation of the objective function. The
`dynamic presolve' option of SCICONIC was also used, which aids branching

exploration by tightening bounds where possible. The IP and heuristic solutions are
compared to the LP optimum to give some indication of the quality of the solutions as
the LP optimum provides a lower bound to the solution of the problem. In all cases the
IP solution is not a proven optimal solution and the branch and bound process had to
be cut off (before optimality could be proved) once a large amount of computer time
had elapsed and further effort appeared unproductive. Computation was stopped after
approximately 400 branch and bound nodes had been explored. The reason for this was
that, although a number of problems were run 5000 or more branch and bound nodes,
it was found that no better solution was obtained after that obtained in the first 100-300

Multi-level lot-sizing problems with bottlenecks 793

LP IP Heuristic
solution solution solution

50"/ utilization Current value 10869 15511 13072
Iterations 158 440 -
CPU time 1.03 56.36 1.34
Optimality* - 0.70 0-83

75% utilization Current value 10869 16610 13982
Iterations 163 373 -
CPU time 1.10 59.17 1.34
Optimality - 0.65 0.77

95% utilization Current value 10899 17314 14827
Iterations 178 260 -
CPU time 1.19 69.24 1.34
Optimality - 0.63 0-74

" The percentage of LP solution.
Table 1. One-end-item problem with cost structure 1.

LP IP Heunstic

solution solution solution

50% utilization Current value 30036 37085 35789
Iterations 175 757 -
CPU turne 1.15 52.86 3.32
Optimality* - 0.81 0.84

75% utilization Current value 30036 38373 37373
Iterations 176 1019 -
CPU time 1.40 65.04 3.32
Optimality - 0.78 0.80

95% utilization Current value 30031 39035 38720
Iterations 171 572 -
CPU time 1.20 39.68 } 322
Optimality - 0.77 0.74

* The percentage of LP solution.

Table 2. One-end-item problem with cost structure 2.

794 B. Toklu and J. M. Wilson

LP IP Heuristic
solution solution solution

50% utilization Current value 18787 24777 23716
Iterations 171 872 - CPU time 1.17 47.57 4.14
Optimality* - 0-76 0.79

75% utilization Current value
Iterations
CPU time
Optimality

18863 26770
167 1182

1.18 58.24
- 0-70

24596

4.14

0-77
95% utilization Current value 19375 27684 25505

Iterations 168 365 -
CPU time 1.12 55.04 4.14
Optimality - 0-70 0-76

" The percentage of LP solution.
Table 3. One-end-item problem with cost structure 3.

LP IP Heuristic
solution solution solution

50°0 utilization Current value 73623 91291 88097
Iterations 519 1194 -
CPU time 6.78 180.13 5.04
Optimality* - 0.81 0.84

75% utilization Current value 73623 93900 87991
Iterations 517 860 -
CPU time 7.15 217.39 5.04
Optimality - 0.78 0.84

95°ö utilization Current value 73951 95611 91925
Iterations 511 869 -
CPU time 7.29 206.22 5.04
Optimality - 0.77 0.80

* The percentage of LP solution.

Table 4. Three-end-item problem with cost structure I.

Multi-level lot-sizing problems with bottlenecks 795

LP IP Heuristic
solution solution solution

50'/ utilization Current value 78962 98882 101095
Iterations 507 711 -
CPU time 6.89 143.84 6.11
Optimality* - 0.79 0.78

75% utilization Current value 78976 99501 101217
Iterations 480 1196 -
CPU time 6.83 155.70 6.11
Optimality - 0.79 0.78

95% utilization Current value 79772 102966 102877
Iterations 507 1349 -
CPU time 7.80 186.75 6.11
Optimality - 0.77 0.78

'The percentage of LP solution.

Table 5. Three-end-item problem with cost structure 2.

LP
solution

IP
solution

Heuristic
solution

50% utilization Current value 58424 75418 72346
Iterations 514 1136 -
CPU time 6.61 181.64 6.54
Optimality' - 0-77 0.81

75% utilization Current value 59061 72219 71670
Iterations 487 1042 -
CPU time 6.28 174.74 6.54
Optimality - 0-81 0-82

95% utilization Current value 62103 78455 71815
Iterations 497 924 -
CPU time 6.49 183.98 6.54
Optimality - 0.79 0.86

* The percentage of LP solution.

Table 6. Three-end-item problem with cost structure 3.

796 B. Toklu and J. M. Wilson

LP IP Heuristic
solution solution solution

50'% utilization Current value 128948 159486 138185
Iterations 997 1874 -
CPU time 20.06 328.18 6.54
Optimality* - 0.81 0.93

75% utilization Current value 128948 163464 137706
Iterations 932 1420 -
CPU time 19.92 396.08 6.54
Optimality - 0.79 0.94

95% utilization Current value 129030 175342 137612
Iterations 949 1805 -
CPU time 20.61 356.86 6.54
Optimality - 0.74 0.94

* The percentage of LP solution.
Table 7. Five-end-item problem with cost structure

LP IP Heuristic

solution solution solution

50% utilization Current value 107807 131881 108674
Iterations 952 1318 -
CPU time 18.73 396.75 8.16
Optimality* - 0.82 0.99

75% utilization Current value 107856 135130 109484
Iterations 943 1709 -
CPU time 19.30 397.21 8.16
Optimality - 0.80 0.99

95% utilization Current value 108703 143170 112093
Iterations 912 2098 -
CPU time 19.29 416.76 8.16
Optimality - 0.76 097

The percentage of LP solution.

Table 8. Five-end-item problem with cost structure 2.

-

Multi-level lot-sizing problems with bottlenecks 797

LP
solution

IP
solution

Heuristic
solution

50% utilization Current value 95601 120514 102001
Iterations 1001 1340 - CPU time 19.75 388.49 8.56
Optimality* - 0.78 0-94

75% utilization Current value 96159 122071 101352
Iterations 970 2332 - CPU time 19.43 411.54 8.56
Optimality - 0.79 0.95

95% utilization Current value 97624 127091 101440
Iterations 1000 2219 -
CPU time 22.95 526.00 8.56
Optimality - 0.70 0.96

* The percentage of LP solution.
Table 9. Five-end-item problem with cost structure 3.

nodes, so 400 nodes was taken as a convenient stopping point. CPU times quoted are
for the time (in seconds) taken on a Hewlett Packard 9000 to reach the given solution. A
number of features are evident from the results quoted in the tables.

(1) The heuristic approach is rapid, taking only a few seconds of CPU time.
(2) In all but three cases (those in Table 5) the heuristic solutions are better than the

IP solutions.

For 5-end-item problems the heuristic seems to work particularly well, in the sense that
the solutions are close to the lower bound value. However, this may only mean that the
lower bounds are tighter for these problems. These tighter lower bounds may arise
because more realistic values of the effect of setup costs (which are unrealistically
reduced in the LP relaxation of the IP formulation) are likely to arise when there are
more types of items being produced in the bottleneck and so more fractions of the true
setup cost to add together.

For the three cases where the heuristic does not work well it may be that rather
more setups than necessary are being used when setup cost is above average.

The IP solutions obtained were not optimal, but it should be noted that the work of
Billington et al. (1986) was also unable to make comparison of its Lagrangean solutions
with optimal solutions, except in a few restricted cases.

It is impossible to compare precisely the heuristic approach of this paper with that

of Billington et al. (1986) as we do not have access to their program. It was felt that once

rapid solution times for the heuristic approach were obtained (all less than 8.56 CPU

seconds) and such high quality solutions were obtained for the 5-end-item problems
that it was not appropriate to program the Lagrangean approach. What was of interest

was to find a simpler approach. It is likely that their method produces good qualit'

solutions but the code is complex and unlikely to operate as rapidly as the few seconds

required here. In addition, the heuristic of this paper is essentially a 'back of an

envelope' approach organized into a computer program. which should have appeal to

the engineer responsible for scheduling because the approach works on a few simple

principles which can still be used when the assumptions made in the original model are

798 Multi-level lot-sizing problems with bottlenecks

relaxed to accommodate more realistic operating conditions. The approach is
sufficiently flexible to provide quick solutions for a variety of extensions of the basic
problem and the approach is appropriate for quick reworking of schedules whenever
changes occur in demand streams or breakdowns occur.

5. Summary
A simple heuristic for the bottleneck multi-level lot-sizing problem has been

developed. The heuristic provides quick and easy solutions for the problem and is
sufficiently simple to be used even without a computer routine.

Acknowledgment
The authors would like to thank Professor P. J. Billington for making data

available to us and for providing encouragement and advice. They are indebted to
anonymous referees for helpful suggestions and pointing out some references of
interest. In addition, they would like to thank Gazi University, Turkey for financial
support given to the first author.

References
BAHL, H. C., and RITz u N, L. P., 1984, A cyclical scheduling for lot sizing with capacity

constraints. International Journal of Production Research, 22,791-800.
BILLINGTON, P. J., 1983, Multi-level lot-sizing with a bottleneck work center. Ph. D. Dissertation,

Cornell University.
BILLINGTON, P. J., BLACKBURN, J. D., MAEs, J., MILLEN, R. A., and VAN WASSENHovE, L. W., 1988,

Multi-product scheduling in multi-stage serial systems. In A. Chikan and M. C. Lovell
(eds), The Economics of Inventory Management (Amsterdam: Elsevier Science).

BILLINGTON, P. J., MCLAIN, J. 0., and THOMAS, L. J., 1986, Heuristics for multi-level lot-sizing
with a bottleneck. Management Science, 32,989-1006.

BLACKBURN, J. D., and MILLEN, R. A., 1982, Improved heuristics for multi-stage requirements
planning systems. Management Science, 28,44-56.

MCLAIN, J. 0., and TRIGIERO, W. W., 1985, Cyclic assembly schedules. HE Transactions, 17,346-
353.

MGG USER GUIDE, 1987, SD-Scicon, Milton Keynes, England.
SCICONIC USER GUIDE, 1986, SD-Scicon, Milton Keynes, England.
SILVER, E. A., and MEAL, H. C., 1973, A heuristic for selecting lot size quantities for the case of a

deterministic time-varying demand rate and discrete opportunities for replenishment.
Production and Inventory Management, 14,64-74.

A Heuristic for Multilevel Lot-Sizing
Problems with Multiple Bottleneck

by

B. Toklu and J. M. Wilson

Pa per 1991: 14

LOUGHBOROUGH UNIVERSITY
MANAGEMENT RESEARCH SERIES

PAPER NUMBER 1991: 14

THIS PAPER IS CIRCULATED FOR DISCUSSION PURPOSES AND ITS
CONTENTS SHOULD BE CONSIDERED PRELIMINARY AND CONFIDENTIAL.

N() REFERENCE TO MATERIAL CONTAINED HEREIN MAY BE MADE
WITHOUT THE CONSENT OF THE AUTHORS.

Abstract

A simple heuristic is proposed for multilevel lot-sizing

problems where there are multiple bottlenecks. Previous

methods to solve this problem with one bottleneck have

formulated the problem as an integer programming problem

and solved the problem using a Lagrangian relaxation

embedded within the branch and bound procedure. Other

approaches have used simple heuristics.

In this paper we suggest that items to be produced can be

grouped into two types and a simple but efficient

heuristic can be used to determine the production

quantities required. A program was developed to compute

production levels and was found to require only a small

fraction of the computer time required by the full

integer programming approach and to produce solutions of

reasonable quality. The heuristic is simple to implement.

Keywords: heuristics, inventory, lot-sizing

1

-

1. INTRODUCTION

Models for lot-size problems in MRP only become realistic

when features such as capacity constraints and the fact

that systems are multilevel can be incorporated.

Blackburn and Millen (1982) reviews and adds to

contributions made to this area. Their work provides for

simultaneous lot-sizing and capacity requirements

planning in an MRP framework. However, one of the most

succesful attempts to tackle the multilevel lot-sizing

problem with a bottleneck constraint has been by Toklu

and Wilson (1991). This paper will extend their

previous heuristic approach to solve the multiple

bottleneck problem and show that if the items for

production are categorised into

(a) items constrained by the bottleneck

(b) items which are unconstrained

then two simple procedures can be used independently, one

for each category of item, to determine the production

levels of each item. The reason for this categorisation

into two groups will be explained in section 3. Solutions

will be sub-optimal but of adequate quality and are easy

to obtain. The method to be proposed requires only a

fraction of the computation required for solution of the

integer programming formulation of the lot-sizing

2

problem. In addition the heuristic is easy to implement

and program when compared to to the Lagrangian heuristic

approach used in Billington et al. (1986) and modified

to handle another bottleneck facility. The approach of

this paper should require much less computer time and

have more practical appeal in a realistic setting.

In the next section the model developed by Billington et

al. (1986) will be extended to include multiple

bottlenecks and the heuristic approach will be developed

in the third section.

2. INTEGER PROGRAMMING FORMULATION OF PROBLEM

For the lot-sizing problem a bottleneck will be defined

as follows. A bottleneck is a work centre which converts

raw materials into finished goods through the use of

resources in the manufacturing process. Therefore a

machine with limited capacity, highly skilled or

specialised workers, and task-specific machines or tools

can all be seen to be bottlenecks under this definition.

All the resources could be classified into a bottleneck.

Set up cost and time will be very important for all work

stations, especially the bottleneck facility and capacity

limitations, which can result from either bottleneck

capacity being greater than demand in the planning

horizon or demand being exceeded by capacity from time

3

time. A general product structure with a bottleneck

facility is given in Figure 1(from Billington et al.

1986)).

---.

__1

Figure 1. A General Product Structure with multiple

Bottleneck Facility (The Bottleneck facilities are shown

by the dashed lines)

The General product structure can be split into a number

of special cases: (1) assembly (no commonality), (2

) serial (one item, multi - stage)(3) parallel (a

collection of serial structures which has a bottleneck in

one of the stages), (4) single stage multi-item. This

paper will concentrate on the case of a parallel

structure with multiple bottlenecks.

4

purchased intermadiate end
items items items

-

As will be seen from the numbering system in Figure 1, no

item has a higher number than any of its prodecessors. It

is an a priori assumption that items in the bottleneck

facility do not have predecessors (altough this

assumption can be relaxed for the subsequent heuristic

approach). It can be seen that batching demands on

product setups can result in capacity problems and also

affects predecessor items since the batches are passed

through as dependent demands. Because capacity

utilisation varies through time, costs may not be

constant.

Assumptions

1. All lead times between stages are assumed to be

zero,

2. Demand for the multiple end items are assumed known

and at constant known rate per year,

3. There is no demand for the components at any

intermediate stages,

4. Back orders are not allowed,

5. The number of units coming from bill of material

required in the production of one unit at the

immediate successor stage to the other stage is

assumed to be equal to one,

6. The unit production costs are assumed constant and

hence are ignored,

5

7. Production must occur in advance of that demand.

Notation

aij = The quantity of product i needed per unit

production of product j; ai j=0 for all i<j,

bil = Time needed on the bottleneck facility 1 for the

production of product i,

capt = Available capacity of the work centre at time t,

csi = Setup cost for product i(following the

assumption made by Billington et al. (1986), for

consistency, the possibility of " carrying over "

a setup from one period to another is not

allowed),

dit = External (independent) demand for product i

during time t,

hi = Holding cost for product i,

Iit = Final inventory level of product i in period t,

Li = Lead time, which is the unavoidable time from the

time the order placed until it is available, for

product i. This could be because of the time taken

by a vendor to deliver a product, or could be a

non-production lag,

N= Number of products,

Pit = Units of i produced in period t,

Sit = Setup time for the work centre 1 for product i.

This takes the value zero for all items except

those made on the work centre. This can also

6

-

include processing time which is not related to

the size of batch as in some heating operations,

T= Total number of periods,

M= The number of bottlenecks,

Xit = Production indicator; equal to 1 if Pit >0 and

zero otherwise.

In this information below inventory is eliminated by

substituting cumulative production minus cumulative

demand, and it is derived from a model in Billington et

al. (1986).

Formulation

Minimise:

NT
Z= EE[hi (T-t+l) Pit + cs iXit (1)

i=1 t=1

Subject to:

ttt
E[P1, n-li - Y. alj Pjn]? E din -Ilo

n=1 j=1 n=1 t=1, ... ,T (2)

N
bilPit + si1Xit]ý capt

i=1

1 if Pit >
Xit ={

0 otherwise

Pit ý0 i=1,
..., N and t=1, ...,

T (5)

This is the formulation using Integer Programming when

there are multiple capacity constrained work centres.

t=1, ... ,T (3)
1=1, ..., M

i=1, ,N (4)

7

In this formulation, constraint (2) illustrates that

available production after subtracting the requirements

is greater than or equal to the external demand by

eliminating the inventory in the planning horizon.

Constraint (3) is the capacity constraint for the

bottleneck facilities, and (4) shows setup cost and

time are applicable only if there is production.

In their previous paper Toklu and Wilson (1991)

concentrated on the three problem types: 1-end item, 3-

end items, and 5-end items and restricted these items so

that they were the only ones affected by the single

bottleneck. In the computational testing N had maximum

value 25 and T had maximum value 12, the values chosen in

the work of Billington et al. (1986)

3. SIMPLE HEURISTIC FOR MULTIPLE BOTTLENECK

Ali items which are produced by a manufacturing firm are

assumed independent from each other. So the proposed

heuristic operates by first dividing production items

into end-items and non-end-items. The reason for this is

that production of each non-end item is unconstrained and

so has neither any effect on the production of any other

non-end-item nor on the production of the items which are

constrained by the bottleneck. In what follows it will be

assumed that there are just two bottlenecks. The second

bottleneck occurs in either non-end-items or end-items in

8

the product structure. In our case one bottleneck will

always be taken to appear in the end-items and the second

one could be any other intermediate or raw material

stage. The program, written in Fortran 77, which will

subsequently be discussed, was designed to handle cases

irrespective of where the bottlenecks occur. As demand

required of all items is known in advance, the production

decision for each no-end-item becomes a relatively simple

one of when to produce in order to minimise the

contribution to costs (holding and setup costs) of each

non-end-item.

Non-End-Items outside Bottleneck

The fact that demand for end-items determines the demand

for intermediate items does not invalidate the

independence of the production of each item as demand for

end-items is known several periods in advance. The

problem of determining when to produce end-items is more

complex as these items must share the resources of the

bottleneck. Thus for these items the production problem

is a constrained problem. However, in general these items

are in the minority.

Define Sit as stock of product i at start of period t

t-1
then Sit =1 Pin din

n=1

9

-

For these items an EOQ approach will be used. This

approach was chosen as it is comparatively simple to

operate and in general will produce solutions of good

quality. Where demand levels are likely to be variable,

an approach such as the Silver-Meal (1973) heuristic

may be appropriate and is the subject for future

investigation.

Let Qi be the EOQ for item i, based on setup cost csi and

holding cost hi. Then the following strategies are

considered:

(a) Produce Qi in period 1 and then next produce Qi

in the period when stocks would become negative if no

production were made (i. e. find the next smallest t such

that Sit < dit)

Let ti be the number of occasions on which item i will be

produced. Then

t-1
ti =[E dit / Q1 + 0.5

n=1

and production is made in any period n whenever Sin

din

Note that [] is the integer part function.

10

If in any period n

TT
Qi ýI dit - Sin then set Qi =E dit - Sin

t=n t=n

(b) Let Zi be the quantity of item i produced in

period 1. The same quantity is next produced whenever

stocks would become negative if no production were made

(ie when Sin < din).

T
Zi =(E dit) /ti

t=l

Continue this process through all the periods.

(c) Produce all items in period 1.

Strategies (a) , (b), and (c) are evaluated to see which

leads to the smaller total inventory cost over the N

periods and then that strategy is chosen.

Non-End-Items with Bottleneck

Assuming that the second bottleneck has been located in

3rd item in 1-end-item problem. We have now got one

bottleneck in the intermediate level in the 1-end-item

problem for example. To deal with this kind of problem,

we note that the non-bottleneck items have been explained

for different kinds of end-item problems. Now the

bottleneck items in the non-end items will be explained

11

For these items a simple heuristic was adopted which

would adopt a greedy approach to production by having few

setups, but with heavy utilisation of the resultant

production capacity. In addition, the heuristic would

operate in a cylic manner moving between items or sets of

items in turn to produce reasonably smooth production.

The approach has broad similarities with the work of

Mclain and Trigerio (1985) except that by excluding

setup time and cost they handle a problem that is easier

to solve. Bahl and Ritzman (1984) also adopt a cyclic

approach but do so by examining permutation schedules.

The heuristic will be described with reference to three

cases.

Case (a) 1-end-item problems

Assuming that one of the bottleneck has been located in

the 3rd item in the product structure, the heuristic is

that which poduces as much of non- end-item i as capt

will allow in period 1 i. e. set Pil = cap,, then next

produce i when stocks would become negative if no

production were made, i. e. find the next smallest t for

which Sit < dit.

Continue the process of producing in each period t which

has this property.

T
If Pin would exceed r dit for any period n

t=n

12

7

then set pin
T
Y- dit

t =n

Case (b) 3-end-item problems

The bottleneck is located in the 7th, say, item (s) in the

product structure and according to the heuristic, the

first priority is in the first item in the structure,

then the second item and so on.

A three period cycle is adopted.

Period 1 Set P21 d21 ' P31 = d31 and P11 = cap, - d21

d31

Period 2 Set P32 = d32 , P12 =0 and P22 = cap2 -d32

provided S12 > d12

Otherwise set P12 = d12 + d13 - S12,

232 = d32 and P22 = cap2 - P12 - P32.

Period 3 Set P33 = cap3 and P13 = P23 =0 provided S13 >

d13 and S23 > d23.

Otherwise set P13 = d13 513,

P23 = d23 + d24 - S23 and P33 = cap3 - P13 -

P23 '

Period 4 Set P14 = capo provided S24 > d24 and S34 >

d34'

Period 5 Set P25 = caps provided S15 > d15 and S35 >

d35

Period 6 Set P36 = cap6 provided S16 > d16 and S26 >

d26.

13

Again if stocks of any product would become negative

produce sufficient of that product to satisfy demand over

the next one or more periods until that product moves

into the dominant production position.

Continue the process in the same cyclic manner for the

remaining periods. If at any stage stocks of all products

are sufficient for production to be zero in any period,

no production is made in that period and the cycle for

the appropriate product is delayed by one period.

Note: on the sample data on which the heuristic was tried

despite this data incorporating some highly variable

demand levels and production capacities, it was found

that none of the " otherwise " type conditions listed

above ever applied.

Case (c) 5-end-item problems

The bottleneck is located in the 11th item(s), say, in

the product structure. In order to keep the heuristic

simple, more complex cases are now treated more in the

style of Case (b). The set of 5 products is simplified

by considering products in just two sets rather than as 5

individual products. Here products { 1,2,3 } are

considered a set as are { 4,5 }. This division was made

purely for simplicity.

14

The two sets are now treated as single products and the

cyclical approach of case (c), modified to a two-period

cycle, is followed with the modification that when

production of a product set can be larger than demand in

that period, the production quantity is equal for each

product in the set.

Total inventory cost is now the total of individual

inventory costs arising from the end-items and the non-

end items.

4. End Items with Bottleneck

We have assumed that there is always a bottleneck in the

end items. To solve this problem, the same rule which was

used to explain non-end items problem with bottleneck is

used with one difference .
instead of item (s) 7th, 1st

item(s) will be used in the three end-item problem, in

the one end-item problem item 1 will be the bottleneck

instead of item 3, and finally in the five end item

problem item(s) 1st will be used instead of 11th item(s)

which is grouped in the same way as previously.

5. COMPUTATIONAL EXPERIENCE

The integer programming formulation solved by using the

software MGG (1987) and SCICONIC (1986), and he

heuristic approach, coded in Fortran77, of Section 3 were

15

compared on sets of data obtained from Billington (1983

) and also discussed in Billington et al. (1986) but

modified to incorporate two bottlenecks, in the

experimental studies three different cost structures,

three demand streams and three capacity levels were used.

The three cost structures are detailed in Billington

(1983). Essentially for each structure the holding costs

and the setup costs are set to different levels such that

for structure 1 the average of the holding costs is 0.44

and the average for the setup costs is 400. For

structures 2 and 3 the corresponding figures are 1.00,

340 and 0.64,420 for holding cost and setup cost,

respectively. The three demand streams are generated to

give low (50%), medium (75%) and high (95%) demand.

The results of the experiments are in Tables 1-3 and 9

problems were investigated. In each table, details of the

linear programming (LP) solution to the integer

programming (IP) formulation are given in the third

column, details of the integer programming branch and

bound approach are given in the fourth column, and of the

heuristic solution in the right hand column. The

branching process by which the integer programming

solutions were obtained was the standard default of the

SCICONIC software which comprises an approach to choose

subproblems which minimise the percentage error in the

degradation of the objective function. The " dynamic

presolve " option of SCICONIC was also used which aids

16

branching exploration by tightening bounds where

possible. The IP and heuristic solutions are compared to

the LP optimum to give some indication of the quality of

the solutions as the LP optimum provides a lower bound to

the solution to the problem. In all cases the IP solution

is not a proven optimal solution and the branch and bound

process had to be cut off, before optimality could be

proved, once a large amount of computer time elapsed and

further effort appeared unproductive. Computation was

stopped after approximately 400 branch and bound nodes

had been explored. The reason for this was that although

a number of problems were run 5000 or more branch and

bound nodes, it was found that no better solution was

obtained in the first 100 - 300 nodes, so 400 nodes was

taken as a convenient stopping point. CPU time quoted are

for the time (in seconds) taken on a Hewlett Packard

9000 to reach the given solution. A number of features

are evident from the results quoted in the tables.

1 The heuristic approach is rapid taking a few seconds

of CPU time

2. In all but one case (those in Table 2) the

heuristic solutions are better than the IP

solutions.

For 5 end-item problem the heuristic seems to work

particularly well, in the sense that the solutions are

17

close to the lower bound value. However, this may only

mean that the lower bounds are tighter for these

problems. These tighter lower bounds may arise because

more realistic values of the effect of setup costs (

which are unrealistically reduced in the LP relaxation of

the IP formulation) are likely to arise when there are

more types of items being produced in the bottleneck and

so more fractions of the true setup cost to add together.

For the three cases where the heuristic does not work

well it may be that rather more setups than necesary are

being used when setup cost is above average.

It was felt that once rapid solution times for the

heuristic approach were obtained (all less than 20.32

CPU seconds) and such high quality solutions were

obtained for the 5 end-item problems that it was not

appropriate to program the Lagrangean approach. What was

of interest was to find a simpler approach. It is likely

that their method produces good quality solutions but the

code is complex and unlikely to operate as rapidly as the

few seconds required here. In addition, the heuristic of

this paper is essentially a "back of an envelope"

approach organised into a computer program, which should

have appeal to the engineer responsible for scheduling

because the approach works on a few simple principles

which can still be used when the assumptions made in the

original model are relaxed to accomodate more realistic

operating conditions. The approach is sufficiently

18

flexible to provide quick solutions for a variety or

extensions of the basic problem and the approach is

appropriate for quick reworking of schedules whenever

changes occur in demand streams or breakdowns occur.

5. SUMMARY

A Simple heuristic for the multiple bottleneck multi -

level lot-sizing problem has been developed. The

heuristic provides quick and easy solutions for the

problem and is sufficiently simple to be used even

without a computer routine.

Acknowledgement

The authors would like to thank Professor PJ Billington

for making data available to us and for providing

encouragement and advice. In addition, they would like to

thank Gazi University, Turkey for financial support of

the first author.

19

Table 1. One End Item Problem with Cost Structure 1

LP IP Heuristic
Solution Solution Solution

Current Value 10869.0 15525.7 13082.0
50% and Iterations 152 388 - 20% util. CPU Time 0.94 16.74 2.14

Optimality* - '0.70 0.83

Current Value 18869.0 17274.8 14346.5
75% and Iterations 152 667 -
50% util. CPU Time 0.92 23.52 2.14

Optimality - 0.62 0.75

Current Value 10898.0 18822.2 15801.5
95% and Iterations 159 1013 -
75% util. CPU Time 0.94 24.88 2.14

Optimality - 0.57 0.68

* The Percentage of LP Solution

Table 2. Three End Item Problem with Cost Structure 1

LP IP Heuristic
Solution Solution Solution

Current Value 73623.4 92583.3 102003.9
50% and Iterations 424 764 -
25% util. CPU Time 5.36 58.44 13.23

Optimality - 0.79 0.72

Current Value 74066.4 92695.1 92639.4
75% and Iterations 453 1224 -
50% util. CPU Time 6.04 63.74 13.23

Optimality - 0.79 0.79

Current Value 73902.2 97701.0 94046.9

95% and Iterations 471 878 -
75% util. CPU Time 6.50 76.52 13.23

Optimality - 0.75 0.78

* The Percentage of LP Solutions

20

Table 3. Five End Item Problem with Cost Structure 2

LP IP Heuristic
Solution Solution Solution

Current Value 107807.6 131497.9 115402.5
50% and Iterations 698 989 -
25% util. CPU Time 14.62 116.56 20.32

Optimality* - 0.81 0.93

Current Value 107889.5 134606.0 111821.5
75% and Iterations 600 1250 -
50% CPU Time 14.26 125.88 20.32

Optimality - 0.80 0.93

Current Value 109095.4 134942.0 114784.3
95% and Iterations 749 1601 -
75% util. CPU Time 16.18 133.92 20.32

Optimality - 0.81 0.93

* The Percentage of LP Solution

21

REFERENCES

Bahl, H. C. and Ritzman, L. P., 1984, A cyclical

scheduling for lot sizing with capacity constraints.

International Journal of Production Research, 22,791-800.

Billington, P. J., 1983, Multi-Level lot-sizing with a

bottleneck work center. Ph. d Dissertation, Cornell

University.

Billington, P. J., Blackburn, J. D., Maes, J., Millen, R.

A. and Van Wassenhove, L. W., 1988, Multi-product

scheduling in multi-stage se rial systems. In Chikan, A.

and Lovell, M. C. (eds), The Economics of Inventory

Management, Elsevier Science, Amsterdam.

Billington, P. J., McLain, J. 0. and Thomas, L. J. f 1986,

Heuristics for multi-level lot-sizing with a bottleneck.

Management Science, 32,989-1006.

Blackburn, J. D. and Millen, R. A., 1982, Improved

heuristics for multi-stage requirements planning ystems.

Management Science, 28,44-56.

McLain, J. 0. and Trigiero, W. W., 1985, Cylic assembly

schedules, IIE Transactions, 17,346-353.

22

MGG User Guide, 1987, SD-Scicon, Milton Keynes, England.

Sciconic User Guide, 1986, SD-Scicon, Milton Keynes,

England.

Silver, E. A. and Meal, H. C., 1973, A heuristic for

selecting lot size quantities for the case of a

deterministic time-varying demand rate and discrete

opportunities for replenisment, Production and Inventory

Management, 14,64-74.

Toklu, B and Wilson J. M.,

multilevel lot-sizing problems

International Journal of

forthcoming.

1991, A heuristic for

with a bottleneck,

Production Research,

23

LOUGHBOROUGH UNIVERSITY

MANAGEMENT RESEARCH SERIES

1991

No. Title Authors s) & Date

1991/

1. Quantifying Message Appeals: A M. A. P. Davies
Decision Support System for (Jan)
Advertising Strategy

2. The Best of British: a Peer J. Saunders, M. Brown
Evaluation of Britain's Leading and S. Laverick
Companies (Apr)

3. Developing an Expert Support G. Phythian and M. King
System for Tender Enquiry (Apr)
Evaluation: a Case Study.

4. Validating an Expert Support G. Phythian and M. King
System for Tender Enquiry (Apr)
Evaluation: a Case Study

5. Measures of Success for Paul Finlay,
Management Support Systems (May)

6. Human Jobs and Computer D. Buchanan
Interfaces. Figure-ground (May)
Reversal in Systems
Development and
Implementation from HCI to OSI

P. Ahmed and M. Rafiq
7. Implementing Competitive (May)

Strategy: a People Centred
Approach

8. Research in Concert: an Len Tiu Wright
Evaluation of Publicity (May)

9. Marketing Education or Richard Speed

Marketing Research?: Alternative (May)
Metaphorical Models of the
Doctoral Research Process.

. -%uthort s) & Date

10. Validity of Decision support Paul Finlay and John
Systems: Simplifiying and Wilson
Operationalising the Approach. (June)

11. The UK Consumer Market

12. Student Accommodation and Its
Influence on Student Choice

13. A Survey of Employee
Receptivity to Total Quality and
its Implications for Training and
Programme Achievement

14. A Heuristic for Multi Level Lot-
Sizing Problems with Multiple
Bottleneck

John Saunders and Jim
Saker
(July)

Mark Davies, Diane
Preston and John Wilson
(July)

E. Kowalski and P.
Walley
(Aug)

B. Toklu and J. Wilson
(Aug)

LOUGHBOROUGH UNIVERSITY

MANAGEMENT RESEARCH SERIES

1990

No. Title Author(s) & Date

1990/

1 Export Controls and Foreign
Availability: The Case of Numerical
Control

2 Computer Aided Design,
Manufacture and Production
Management in the Soviet Union

3 An Evaluation of the Technique of
Data Envelopment Analysis in the
Measurement of the Relative
Efficiencies of University Libraries

4 Marketing, Strategy & Performance
in the Retail Financial Services
Industry: Some Empirical Findings

5 Entry Deterrence Through Entrant
Mutual Awareness

6 In Search of a Lost Lag: The Quest
for a Nest

7 Product Replacement Strategies:
Occurrences and Coincidences

8 American and Japanese HQ Views of
their UK Marketing Operations

9 Competition in Global Markets: A
Case Study of American and
Japanese Competition for the British
Market

M. R. Hill
(January)

M. R. Hill
(January)

B. V. Johnson
A. F. Macdougall
J. M. Wilson
(May)

Richard Speed &
Gareth Smith
(May)

Tim James
(May)

P. S. H. Leeflang,
G. M. Mijatovich &
John Saunders
(May)

John Saunders &
David Jobber
(May)

Len Wright, John
Saunders & Peter Doyle
(May)

Peter Doyle, John
Saunders & Veronica
Wong
(May)

No. Title Author(s) & Date

10 Appraising Commercial Mohamed Kameshki &
Development Projects: Normative, John Saunders
Descriptive, Investigative and (May)
Prescriptive Views

11 The Price, Promotion and Quality Tim James & John
Decision within Not-For-Profit Saunders
Organisations (June)

12 Are Asians Taking Over British Mohammed Rafiq
Retailing? (June)

13 Ethnicity and Enterprise: Muslim and Mohammed Rafiq
Non-Muslim owned Asian (June)
Businesses in Bradford

14 Experiments with Expert Systems in Malcolm King &
Management Education Lawrence McAulay

(July)

15 Analyses of Alternative Models in Malcolm. King
Simple Bidding Situations (July)

16 Property Performance Measurement Paul Finlay & Steven
Tyler
(July)

17 Retail Financial Services Richard Speed & Gareth
Segmentation: Time for New Tricks Smith
from Old Dogs? (July)

18 Recruitment Mode as a Factor David Buchanan
Affecting Informant Response in (July)
Organizational Research

19 Vulnerability and Agenda: Context David Buchanan

and Process in Project Management (November)

20 Performance Measurement by Expert Richard Speed and Gareth

Assessment in the UK Retail Smith
(December) Financial Services Industry

21 Evaluation Techniques Examined Alison Smith and John

and Assessed: a Review of the Piper
(December) Literature of Aids to Education

_s.

AN ANALYSIS OF MULTIPLE BOTTLENECK PROBLEMS IN MULTILEVEL LOT-

SIZING PROBLEMS

by

Bilal Toklu and JM Wilson

A Number of heuristic models have been proposed to determine

the lot-sizing techniques for multilevel lot-sizing problems

with a bottleneck in order to meet the forecast requirements

so far. One of these models involves the use of integer

programming using lagrangian relaxation embedded within the

branch and bound procedure with one bottleneck. Our previous

research to solve the multilevel lot-sizing problem involved

the use of a hueristic model rather than the above complex

technique.

In this paper we have extended our previous heuristic model to

focus upon more than one bottleneck problem. We also compared

the economic order quantity technique (EOQ) with the

modified Silver Meal technique for non-bottleneck items in

multilevel lot- sizing problems, then these results were

compared with the integer programming solution. The results

have demonstrated that the extended heuristic model is simple

to implement and it requires a small fraction of the computer

time normally required by the full integer programming

approach; the extended heuristic also produces reasonable

quality of solutions. The results have also demonstrated that

there is no superiority between EOQ and modified Silver Meal

techniques for solving this problem.

