
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Genetic algorithms for evolutionary product designGenetic algorithms for evolutionary product design

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© I.J. Graham

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Graham, Ian J.. 2019. “Genetic Algorithms for Evolutionary Product Design”. figshare.
https://hdl.handle.net/2134/6900.

https://lboro.figshare.com/

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Genetic Algorithms for

Evolutionary Product Design

By

Ian J Graham B. Eng. (Hons) DIS

A doctoral thesis submitted in partial fulfilment of the requirements
for the award of Doctor of Philosophy of Loughborough University

September 2002

.A
yy , nýýr. .wv

3"^. "i

Wolfson School of Mechanical -and-Manüfäctüring Engineering
i

Loüghborough, IJniversity ý-"

0 I. J. GRAHAM 2002

CONTAINS DISKETTE

UNABLE TO COPY

CONTACT UNIVERSITY

IF YOU WISH TO SEE

THIS MATERIAL

ABSTRACT

This thesis describes research into the development of a Computer Aided Design

(CAD) tool that uses a Genetic Algorithm (GA) to generate and evolve original

design concepts through human interaction.

CAD technologies are firmly established in the later stages of design, and include

many applications of Evolutionary Algorithms (EAs). The use of EAs as

generative and search tools for conceptual design is less evident in fields other

than abstract art, architecture and styling. This research gains its originality in

aiming to assist designers early in the design process, by creating and evolving

aesthetically interesting forms (objects).

The integration of GA software with a solid modelling system has enabled the

development of a prototype `Evolutionary Form Design' (EFD) system. Objects

are defined using a genetic data structure and constructed from various geometric

primitives and combinations of Boolean operators. The primitives interact in

ways that are not easily predicted, often creating novel shapes that are unlikely to

have been discovered through conventional means. Edge blending further adds to

objects' complexity and visual appeal. Populations of objects are subjected to a

`selective breeding' programme, directed through the user's allocation of scores,

and may also be guided by simple geometric targets. These factors determine

which objects are `fittest' and most likely to parent a new, hopefully improved

generation of objects. The challenge has been to turn the concept into a genuinely

useful tool, ensuring that desirable features are reproduced in subsequent

populations. The key to achieving this is the way objects are recombined during
* .ý.

reproduction. Work has included developing 4 novel routine for grouping the

individual primitives that form objects usi1P; Teamforming algorithm.

Innovative, aesthetically interesting forms can be evolved intuitively and

efficiently, providing inspiration and the initial models for original design

concepts. Examples are given where the system'is used by undergraduates to

generate seating designs, and by the author, to create virtual sculptures and a

range of consumer product concepts.

Keywords: Genetic Algorithms Interactive Evolutionary Design Conceptual Form Aesthetic

To Bonnie, for her love & support

With thanks to:

Mum & Dad, for everything,

My brother, Rob, for something,

Good friends, for welcome distractions,

Keith Case & Bob Wood, for their patience & wisdom,

Wolfson School support staff, for always being there,

British taxpayers & EPSRC, for research funding,

The fern collection, for their calming influence,

Charles Darwin, for an amazing discovery,

&

Evolution, for inspiration & existence.

CONTENTS

Abstract ...
ii

Acknowledgements .. iii

Declaration ...
iv

Contents .. v

List of Figures ... x

CHAPTER ONE - INTRODUCTION 1

1.1 The Need for Evolutionary Product Design ... 1

1.2 Evolution and Genetic Algorithms ... 2

1.3 Product Form .. 3

1.4 Research Scope .. 4

1.5 Aims and Objectives
.. 5

CHAPTER Two - LITERATURE SURVEY 6

2.1 Applications of Evolutionary Algorithms ..
6

Genetic and Evolutionary Computation ...
6

Genetic Algorithms .. 7 ...
Artificial Life ..

8

2.1.1 Engineering Applications ..
9

Component Optimisation .. 11

2.1.2 Applications in form generation, aesthetics and art 12

Artificial Embryogeny ..
12

Bridge Design ... 14

Art ...
15

2.1.3 Creative Evolutionary Design Systems ...
19

Conceptual Design ..
19

A computer model of aesthetic product design ..
20

GADES
...

22

Agency-GP
..

25

V

Further examples of evolutionary design systems ..
28

2.1.4 Conclusions
...

33

2.2 Form and Aesthetics ...
34

Perception ...
34

Form .. 34

2.2.1 Formal Systems ... 36

The Golden Mean System ... 37

Conclusions ... 39

CHAPTER THREE - TECHNOLOGY REVIEW 40

3.1 Genetic Algorithms .. 41

3.2 Representation .. 42

Phenotype .. 42

Genotype ... 45

3.3 Initialisation .. 46

3.4 Fitness Determination
.. 47

Decoding ... 47

Objective Function .. 49

Fitness Function .. 50

3.5 Reproduction .. 51

3.5.1 Parent Selection ... 51

Fertility .. 52

Replacement .. 52

3.5.2 Recombination .. 53

3.5.3 Mutation .. 56

3.6 Specialised GAs ... 57

Multiobjective GAs ...
57

3.7 Conclusions ..
58

V1

CHAPTER FOUR - DEVELOPMENT OF THE EFD SYSTEM 60

System Background ..
60

4.1 Genotype ..
63

Chromosomes ...
65

Summary of the genetic data structure .. 72

4.2 Object Creation .. 73

4.2.1 Sequential Object Creation .. 73

4.2.2 Cohesive Objects ... 76

4.2.3 Post-creation Boolean Operations ... 78

4.3 Teamforming .. 84

4.3.1 Reproduction within Teamforming ... 85

4.3.2 Team Selection .. 91

Tactics ... 91

Grouping Method
.. 91

Tactic Selection ... 95

4.3.3 The Teamforming Genotype ... 96

4.3.4 Conclusions ... 97

4.4 Fitness Calculation
... 99

Objective Function .. 99

Fitness Function .. 99

4.4.1 Multiobjective Balance ... 99

4.4.2 User-supplied Rating ... 101

4.5 Selection and Genetic Operators .. 103

4.5.1 Selection .. 103

4.5.2 Recombination ..
106

4.5.3 Mutation ..
109

4.6 Internal Optimisation ..
III

Fitness Calculation
..

112

vii

4.6.1 Geometric Optimisation Examples ...
112

4.6.2 Conclusions ...
118

4.7 Edge Blending ..
119

4.7.1 Random Blending .. 119

4.7.2 Genetic Blending ... 121

The `Blend' Chromosome ... 121

Simple (Pre-Boolean) Blending .. 121

Whole-object (Post-Boolean) Blending .. 121

4.7.3 Shared Edges ... 126

Order Hierarchy Method ... 126

Mean Value Method ... 126

Alternate Value Method .. 128

4.7.4 Further Work ... 128

4.8 Conclusions .. 129

CHAPTER FIVE - APPLICATIONS OF THE EFD SYSTEM 131

5.1 Seating Design
.. 131

5.1.1 Design Descriptions .. 136

5.1.2 System Assessment and Discussion .. 142

5.2 Animal Sculptures .. 145

5.2.1 Sculpture Descriptions .. 150

Evolution ... 150

Construction .. 154

CHAPTER SIX - CONCLUSIONS 157

6.1 Preamble (realisation of aims) ..
157

Aesthetic appeal and product representation ..
157

Predictability ...
157

Efficiency
..

15 8

Sensitivity
...

159

Usefulness
...

159

viii

6.2 Methods (objectives, originality & contribution to knowledge)
161

Review
.. 161

Geometric Optimisation .. 162

Teamforming .. 162

6.3 Further Work .. 163

6.3.1 Practical improvements to the current EFD system 163

Avoiding Detrimental Boolean Operations .. 163

Improving Cohesive Objects ... 163

Interaction ... 164

Automatic Aesthetic Assessment .. 164

Teamforming .. 164

6.3.2 Increasing Research Scope .. 165

Internal Volumetric Constraints
... 165

Quantification of Aesthetic Properties
.. 168

Teamforming .. 169

6.4 Concluding Points
.. 170

REFERENCES 171
Appendix A- Publications ... i

Appendix B- Detailed Crossover Example .. ii

Appendix C- Product Concept Illustrations .. xi
CD-ROM .. xx

ix

LIST OF FIGURES

2.1.1 Free-form shape representation 13

2.1.2 3D Evolutionary Art 16

2.1.3 2D Evolutionary Art 17

2.1.4 User Interfaces for Interactive Evolutionary Art 18

2.1.5 GADES evolved designs 23

2.1.6 Demonstration images from Agency-GP and GENR8 26

2.1.7 Examples of Evolutionary Architecture 29

2.1.8 Shape Design 28

2.1.9 Examples of Evolutionary Industrial Design 31

2.1.10 Garment Design 30

2.1.11 Novel 3D Geometries 32

2.2.1 A diagram representing the concept of visual unity 35

2.2.2 Mathematical proportion systems 38

3.2.1 Clipped Stretched Cubes 44

3.2.2 Binary Phenotype Example 45

3.4.1 Decoded values used to define an area 47

3.5.1 Single-point complementary crossover 54

3.5.2 Multi-point complementary crossover 54

3.5.3 Whole-segment complimentary crossover 55

3.5.4 Whole-chromosome complimentary crossover 55

3.5.5 Intra-segment complimentary crossover 55

3.5.6 Single-point non-complementary crossover 54

3.5.7 Mutation 0 56

4.0.1 EFD System screenshot 62

4.1.1 Object formed from 1 genotype 64

4.1.2 Object formed from a team of 5 phenotypes 64

4.1.3 The intersect Boolean operator 66

4.1.4 Origin adjustment 68

4.1.5 Angular resolution of creation vector 69

4.1.6 The direction chromosome 70

X

4.1.7 Provision for additional edges 71

4.2.1 Sequential object creation 74

4.2.2 Parts missing from equivalent `cohesive' population 77

4.2.3 Post-creation Boolean operations 79

4.2.4 Equivalent object created using sequential Boolean operations 80

4.2.5 Comparison of the two creation techniques 81

4.2.6 Comparison of normal and cohesive populations 82

4.2.7 The three methods of post-creation Boolean target selection 83

4.3.1 Parents of 'g3tlO-grey' team-members with associated objects 86

4.3.2 2nd gen. object `g2t2-green' containing parents of 'g3tlO-grey' 87

4.3.3 2nd gen. object `g2t6-yellow' containing parents of 'g3tlO-grey' 88

4.3.4 2nd gen. object `g2t5-magenta' containing parents of 'g3tlO-grey' 89

4.3.5 3rd gen. object 'g3tlO-grey' with contributing team-members 90

4.3.6 Teams grouped by size chromosome value 92

4.3.7 Teams grouped by primitive type 93

4.3.8 Teams grouped by Boolean sign 94

4.3.9 Evolution in Teams grouped by size value 98

4.4.1 Fitness values calculated from user ratings 102

4.5.1 Family tree showing the dominance of 2 members 105

4.5.2 Intra-segment non-complimentary crossover 107

4.5.3 Frequency of `unexpected' re-combinations 108

4.6.1 Automatic Geometric Optimisation 113

4.6.2 Automatic optimisation: Generations 1-10 114

4.6.3 Automatic optimisation: Generations 11-20 115

4.6.4 Three further optimisation examples 117

4.7.1 Small, medium and large blend radii 120

4.7.2 Simple (pre-Boolean) blending 122

4.7.3 Whole-object (post-Boolean) blending 123

4.7.4 Comparing equivalent objects with alternative blending methods 124

4.7.5 Edge ownership 125

4.7.6 Edge association methods 127

4.8.1 Ancestral diagram, showing `family history' of g4p8-olive 130

5.1.1 Evolved `Bar Seat' object with 3rd gen. population 132

R1

5.1.2 Evolved `Orange Inflatable' object with 3rd gen. population 133

5.1.3 Evolved `Bond Villain Chair' object with 4`h gen. population 134

5.1.4 Evolved `Bad Taste Sofa' object with 2nd gen. population 135

5.1.5 Modification of evolved object to form sofa arm-rest 137

5.1.6 `Bar Seat' 138

5.1.7 `Orange Inflatable' 139

5.1.8 'Bond Villain Chair' 140

5.1.9 'Bad Taste Sofa' 141

5.2.1 'Cobra' 146

5.2.2 'Parrot Fish' 147

5.2.3 'Pelican' 148

5.2.4 'Ram' 149

5.2.5 Family tree diagram of 'Cobra' sculpture 151

5.2.6 Parents and associated populations of the 'Parrot Fish' sculpture 152

5.2.7 Parents and associated populations of the 'Ram' sculpture 153

5.2.8 'Cobra' object mid-construction, before intersection operation 154

5.2.9 'Cobra' before and after genetic blending 155

5.2.10 'Pelican' before and after genetic blending 155

5.2.11 'Ram' before and after genetic blending 155

5.2.12 Creation of 'Parrot Fish' sculpture 156

5.1.13 'Parrot Fish' before and after genetic blending 156

6.3.1 Demonstration of internal volumetric function 166

6.3.2 Demonstration of internal volumetric function, efficiency aspect 167

X11

CHAPTER ONE - INTRODUCTION

1.1 The Need for Evolutionary Product Design

The inspiration for this research stems from an interest in evolutionary computer

programming; Genetic Algorithms specifically, and in Computer Aided Design;

especially as a concept modelling and development tool for consumer products.

At present, the use of CAD is concentrated around the later stages of design

following on from conceptual design, but there is increasing interest in ways in

which CAD can support earlier design processes.

The initial stages of product design are a rather intangible set of processes,

especially concerning the way original form ideas are conceived. The industrial

designer uses a sketchpad, a practised hand and a selection of pencils and markers,

to externalise the shapes of product concepts. Although a designer will usually

have a vague image of a shape in mind, often finding inspiration in other objects

(man-made or natural), it is very much down to the individual to create pleasing

forms for products by drawing on knowledge, experience and `artistic ability'.

Ideas are formed through a combination of inspiration and mapping out thought

processes on paper. Ideas then evolve through the use of development sketches,

cardboard models, clay forms and other physical media. An analogy with

Darwinian evolution is frequently drawn; referring to the combination of existing

ideas and the process of refinement a design goes through as it is developed.

Existing CAD modelling systems are of limited use during this process, not

allowing a designer to experiment with ideas freely. If CAD is to broaden its role,

then there is a need to assist designers to a greater extent during the conceptual

stages of form design. There is a significant gap in the market for a tool that

actually generates form, and better supports form development. To exploit this

gap, CAD tools should attempt to emulate the methods described above, and can

provide a source of inspiration through a system that evolves forms.

1

1.2 Evolution and Genetic Algorithms

Evolution can be described as the continuous production of new variations with no

particular intent, except some variations will be more successful than others.
Evolutionary biology has shown us that the intricate `designs' found in nature can

arise through gradual, mindless improvement. Computers are incapable of

conscious thought, but, by translating our knowledge of evolution into a computer

program, the core innovative properties of evolution can be achieved and

exploited.

Genetic Algorithms are the most well known and well used evolutionary

computational technique and have been applied to optimisation, problem solving

and simulation, across a range of fields including biology, engineering, computer

science, sociology and finance. They include processes taken from biology, such

as reproduction, parent selection and genetic data structuring, and work by

maintaining populations of members (i. e. solutions to the problem), the fittest

(best) of which are selected to create a new generation.

Usually, after initialisation, a GA is left to run for a number of generations until,

hopefully, a solution emerges. In some applications a human operator is required

to contribute to the assessment of members during the evolution process. This

interactive method is most often used for producing computer art. With the user

as the sole source of evaluation the system is analogous to selective breeding (of

farm animals, garden plants etc.).

2

1.3 Product Form

It is understood that studying form in isolation is not in keeping with effective

design practices, as is evident from the quotation below from `Products as

Representations' [Vihma]:

"In many definitions of design, the use of the word `form' is

avoided so that the outer form, appearance or surface of the

product will not be given too much attention in people's

conceptions of design. The avoidance and understatement of
form' can be seen as anxiety towards a too superficial conception

of design as mere styling"

It is also acknowledged that the design of products should be concurrent, in that

the areas of industrial design (e. g. styling and user interaction) should not be

considered separately, after other aspects of product design have been completed

[Ulrich].

3

1.4 Research Scope

The overall theme of the research discussed here is the integration of evolutionary

techniques with a CAD modelling system, combined with human interaction to

guide the evolution process. It has not been the intention to produce an

`independent' system that runs through a number of generations, with only the

pre-set objective functions for reference, then presenting its solution(s) to the

problem. Nor has it been the intention for the user to be the sole driving force

during `evolution'. A balance has been achieved through the development and
integration of the following concepts:

" Offering the user the chance to rate the objects presented, or explicitly select

which objects are allowed or discarded as parents for the next generation.

" Allowing objects' geometric properties to contribute to their fitness.

" Establishing which GA operators are most appropriate for the application.

" Designing a novel technique to maximise desirable feature propagation and

distribution, thus increasing the efficiency of the evolution process.

The desire to create aesthetically interesting forms has strongly influenced the

focus of this research, and for the software to be considered as a tool, rather than

just an investigation into the above concepts, the created objects should be capable

of representing actual products. The use of surface modelling would seem more

conducive to the complex curved products with which this research is concerned.

Nonetheless, it is felt that a Constructive Solid Geometry approach, with edge

blending, is more suitable for providing greater object variety and a natural

interpretability (as products), whilst maintaining high data efficiency.

This research is primarily concerned with the outside appearance of objects,

concentrating on aesthetic qualities over functional characteristics. There is scope

for the parameterisation of aesthetics qualities, such as cohesiveness,

compactness, proportion and unity, to be investigated. It is also suggested that

mechanical considerations could be included within the system. For example, by

providing functional elements to be integrated within each design.

4

1.5 Aims and Objectives

Aim

To develop an interactive evolutionary CAD tool focusing on the conceptual

phase of product design.

Key issues being:

" Forms should be aesthetically interesting and able to represent products.

" User interactions should have a predictable outcome.

" The evolutionary process should be efficient and sensitive to a designer's input.

" The system has to actually assist designers.

Objectives

1. To review the current state of research and understanding in the fields of

Evolutionary Computation (especially Genetic Algorithms applied to

engineering design and form generation), Computer Aided Design, Design

Methodologies and Aesthetic Theory. To substantiate the demand for a CAD

tool that enables the generation and evolution of product form and to provide

an overview of existing evolutionary design systems.

2. To develop a unique interactive CAD system that utilises evolutionary

techniques and has the ability to represent aesthetically interesting products.

To demonstrate other software capabilities including functional considerations

and aesthetic assessment functions.

3. To develop the novel GA technique of forming `teams' of interacting

individuals to produce the output, subject to a set of evolving interaction rules.

4. To validate the system through informal case studies and by allowing potential

users to create a range of virtual consumer products.

5

CHAPTER Two

LITERATURE SURVEY

2.1 Applications of Evolutionary Algorithms

Genetic and Evolutionary Computation

Evolutionary Algorithms (EAs) are search methods inspired by and based upon

the Darwinian theory of evolution observed in nature - natural selection through

survival of the fittest. The fundamental feature of modern EAs is that they work

with a collection, or population, of solutions concurrently. All of the solutions in

a population are evaluated, with the best solutions then contributing in some way

to forming new solutions. This process is iterated, causing evolution to occur. An

intriguing feature about these methods is that the evolution displayed is not

explicitly programmed, or simulated, but an emergent property of the algorithm,

and very real.

An offshoot of the early work on Artificial Intelligence, the concept of

Evolutionary Computation was realised in the late 1950's [Levy]. John Holland

played a central role in this work, and went on to create Genetic Algorithms

[Hollandl]. There are three other main evolutionary algorithms in use today:

Evolutionary Programming, Evolution Strategies and, more recently, Genetic

Programming. Subjects with close links to, and often used in conjunction with,

Evolutionary Algorithms include Cellular Automata, Neural Networks, Simulated

Annealing, Fuzzy Systems, Immune Networks and Machine Learning. An

astonishing number of refäted and inter-related subjects have developed in recent

years, as is demonstrated in the following list of topics represented at GECCO-

20021.

1 The Genetic and Evolutionary Computation Conference, a recombination of the Seventh Annual
Genetic Programming Conference (GP-2002) and the Eleventh International Conference on
Genetic Algorithms (ICGA-2002), presented by the International Society for Genetic and
Evolutionary Computation (ISGEC)

6

"... genetic algorithms (GA); genetic programming (GP); evolution

strategies (ES); evolutionary programming (EP); evolvable

hardware (EH); evolutionary robotics (ER); real-world

applications (RWA); classifier systems (CS); DNA, molecular and

quantum computing (DNA); artificial life, adaptive behaviour and

agents (AAA); ant colony optimisation (ACO); optimal design of

engineered structures (ODES); methodology, pedagogy, and

philosophy (MPP); evolutionary scheduling and routing (ESR)... "

Genetic Algorithms

Genetic Algorithms were initially developed by John Holland in the early 1970's

[Holland I, Holland2], and popularised by David Goldberg's textbook `Genetic

Algorithms in Search, Optimisation, and Machine Learning', first published in

1989 [Goldberg]. GAs are good for solving problems where the range of

combinations of parameters is so large that it is unfeasible to search exhaustively

[Forrest]. For example, the `problem' of finding `aesthetically satisfying' 3

dimensional shapes for consumer products is infinite, even if it can, to some

degree, be parameterised.

The remainder of this chapter, after briefly acknowledging some interesting

biological applications, concentrates on GA applications in engineering, product

design, aesthetics and interactive art. Genetic Algorithms have also been

successfully applied elsewhere, to the modelling of social, economic and political

systems [Forrest, Goldberg], and financial systems, such as stock market trends

and patterns [Levy]. They are also often employed as theoretical and

experimental tools for investigating the phenomena generated by complex

adaptive systems (adaptive agents), such as ecologies, immune systems,

developing embryos and the brain. Chapter 3 introduces Genetic Algorithms in

more detail.

7

Artificial Life

Genetic Algorithms, being based on evolutionary principles, are firmly established

within the field of Artificial Life (AL). An overview of the fascinating history of

AL is described in the popular science book, 'Artificial Life - The Quest for a

New Creation', by Steven Levy [Levy]. The subject is covered in greater detail by

one of the pioneers in the field, Chris Langton, in his opening essay to the

Proceedings of the First Workshop on Artificial Life, in 1986 [Langton fl. Two

further publications, Artificial Life II and III [Langton2, Langton3] bring together

descriptions of the work at the Santa Fe Institute, over the subsequent 6 year

period.

Reading around this remarkable subject greatly influenced the author's decision to

take a final year undergraduate degree project in Genetic Algorithms [Graham1],

which led to the research described in this thesis. Three examples of particularly

interesting applications of GAs in Artificial Life, taken from the Artificial Life

series mentioned above, include: An artificial ant population which developed

foraging strategies [Collins]; the detailed simulation of food webs [Lindgren]; and

PolyWorld, the simulation of an entire ecosystem, containing autonomous agents

that displayed complex learning capabilities and behavioural patterns through

evolution of a neural network within each agent [Yeager]. Another, slightly

earlier study, which also created an artificial ecology, used a mixed species

population which displayed emergent colonisation patterns dependant on food

availability and interaction between other species [Assad].

S

2.1.1 Engineering Applications

Over the last two decades, a vast number of computer-based tools for engineers

have been developed. In more recent years, there has been a shift in emphasis

towards Artificial Intelligence based methods [Garrett], of which evolutionary

techniques are a major part. One of the most popular evolutionary tools within the

engineering field is the Genetic Algorithm, which is most commonly applied in

the fields of; scheduling, control, route and network planning, layout design,

component optimisation and robotics. Many applications can also be found in

manufacturing systems, material design, integrated circuit design, modelling and

simulation, signal processing and image processing [Dasgupta, Gen, Grierson,

GALESIA95, GALESIA97].

The variety of applications of evolutionary computation techniques in engineering

can be seen through the diversity of papers presented at the Second International

Conference on Genetic Algorithms in Engineering Systems: Innovations and

Applications (GALESIA), held in 1997. Applications include; airfoil design, gas

turbine engine controller design, switched reluctance motor control, ship auto-

pilot control systems, greenhouse climate control, traffic signal timing, hot rolling

of steel strip, vibration data compression, scheduling in cellular manufacturing,

local access network design, resource redistribution in the developing world,

aircraft route planning, transistor-level digital logic synthesis, modelling a

fermentation process, image restoration, recognition of object shapes with

movable parts, missile-target simulation, intelligent user interface design, fire

detection technology and development of walking strategies for an 8-legged robot

[GALESIA97].

Contributors were not restricted to universities and research organisations.

Several large companies presented research such as Rolls Royce, on active

magnetic bearing controllers [Schroder] and BT, on dynamic data searching

[Amin]. The presentations ranged from the introduction of preliminary ideas and

research, to post-application reports on industrially applied case studies.

9

A good example of real world application is the work at Politecnico di Torino

with Bottero SpA, Cuneo, Italy, where a GA has been used for optimising area

loss in flat glass cutting [Corno]. The GA is used to find an efficient cutting

pattern, where the stock glass sheets are typically in the order of 10m2, and

benchmark processes used for evaluation involved cutting specifications of

between 12 and 161 pieces, with between 2 and 35 different sizes of piece. In this

case, the GA has to find an acceptable solution in real time, in the period between

starting the previous job and the loading of the next glass sheet. Other constraints

arise from the cutting technology used, including the need for the cutting pattern

to be composed of a series of end to end cuts, in the horizontal or vertical

direction. There was also the need for the program to run on the PC-based

machine controller. Commercial systems run on separate PCs 'in the office', at

the time of receiving a customer order, and as such are a), under no time

constraints and b), often out of the reach of smaller companies who may not have

these separate facilities. The initial results were very good - comparable, and in

some cases out performing the three commercial systems available. This led to

the immediate installation of the software onto every flat glass-cutting machine

sold by the company.

A number of papers address the different ways problems can be genetically

represented. For example, work described in [Cordon], on designing fuzzy rule-

based systems for surface representation, investigates, amongst other things, the

alternative ways chromosomes are used to encode the solutions. Chromosomes

are either treated as individual fuzzy rules and the entire population represents the

knowledge base, or, alternatively, each chromosome represents an entire

knowledge base. The findings are similar to those on the validity of the

Teamforming technique in the research discussed here, in that each representation

has its own virtues. In the paper, Cordon recommends a third model, an

adaptation of the first `each chromosome is a fuzzy rule' approach, where only the

best individuals are chosen to form the knowledge base - potentially, this idea

could be investigated during further development of the EFD Teamforming

method.

10

Manufacturing Engineering applications of GAs fall into the two general

categories of planning functions, and shape design [Mill]. The more prevalent

manufacturing applications of GAs are systems-based, concerning scheduling,

such as job-shop scheduling [Come], flow-shop scheduling [Gonzalez], assembly

line balancing [Byrne], and production planning [Ono]. Other work in the field

includes object recognition, route and network planning, and robotics [Zalzala].

Applications concerning component optimisation are most relevant to this

research.

Component Optimisation

GA optimisation is often applied to aerodynamic components, in combination

with Computational Fluid Dynamics (CFD) software [Obayashil], often within

turbines, where thermodynamics [Pearce, Wood 1], or other mechanical functions,

such as stress and mass are analysed using Finite Element Analysis (FEA)

software [Smith].

The airfoil design application listed above involves aerodynamic optimisation of

compressor blade shape (A 2D cross section is used), where multi-objective
design seeks high pressure rise, high flow turning angle, and low pressure loss

[Obayashi2]. The airfoil is represented two dimensionally, by 2 B-spline

polygons, involving 21 variables per polygon. Leading and trailing edges, and

one further point, are frozen, in order to maintain correct representation.
Evaluation is carried out using the Numerical Wind Tunnel' at the National

Aerospace Laboratory in Japan. The solutions obtained were better in all three

objectives, than current designs of airfoil.

Other examples of evolutionary component optimisation in the literature include

the optimisation of flywheels, for the maximisation of specific energy density

[Eby], optimisation of vibration and noise response in satellite booms and load

cells [Robinson], and jet engine annulus design optimisation using a voxel-based

representation [Baron], which is discussed later.

1 Parallel vector machine (a dedicated FEA installation on a purpose built super-computer)

11

2.1.2 Applications in form generation, aesthetics and art

The utilisation of evolutionary computing technologies for optimisation is well

established, and has been discussed. There appears to be much less recognition of

the design exploration and search capabilities of EAs [Parmee]. Research into

form generation and aesthetics is generally confined to the visual arts, and will be

summarised shortly. There are, however, some notable exceptions. The work

carried out over the last 10 years by David Wallace, on developing a computer

model of aesthetic product design, is covered in the following section on

evolutionary design systems. Aesthetic issues are strongly represented in civil

engineering, particularly in bridge design and will also be covered briefly. Lastly,

although not directly related to aesthetic design, the work on free-form shape
features discussed below is distinctive, in that it initially considers the surface
form in isolation. Similar work can also be found in the literature [Guo].

Artificial Embryogeny

Recently there has been increased interest in embryogeny, originally summarised
by [Kumar]. Embryogenies, or growth processes, tackle the issues of increasingly

ambitious and complex problems being set for evolutionary systems. They copy
the way nature grows designs, rather than the more conventional direct mapping

of genetic data to the solution.

Naturally, one of the first applications was in free-form shape generation,
investigated at the `Research into Artefacts, Centre for Engineering' (RACE) at

the University of Tokyo. The aim of supporting the designer in the early stages of

the design process is stated in [Taural] - the intention being to develop a

technique that overcomes some of the problems associated with the two principle

representations: Constructive Solid Geometry (CSG) and Boundary

Representation (B-rep). These problems are identified as the loss of design data

during Boolean operations, and the difficulty in preserving features after

combination when using the mathematical data of the surface geometry as the

representation. The shape representation is described in the following chapter.

12

Evolutionary programming techniques allow populations of free-form shapes to
be generated and explored. Genetic recombination creates new shapes through the

combination of pairs of existing shapes. As with all work applying genetic

operators to objects (including the GA application in the EFD research), much

attention is given to the preservation of features when combining shapes. This

careful attention to detail pays off, new shapes clearly exhibiting features of the

two contributing shapes, whilst also displaying a useful degree of variation and

exaggeration. Figure 2.1.1 shows the progressive evolution of shape to a target

(left), and the results of the combination operator (right). As acknowledged in the

paper, there are limitations in the capacity to represent products with this

technique. However, as is evident from the continuing work by the RACE group
(the adaptive-growth 3D representation has been used, more recently, for

configuration design [Taurat]) and through its inspiration to other research

groups, the early work on embryogeny summarised here is a valuable contribution

to the field.

Figure 2.1.1 - Free-form shape representation - Taura

13

Bridge Design

Research surrounding the aesthetic design of bridges is well documented in the

literature. In one case, a Genetic Algorithm is combined with fuzzy reasoning to

develop a decision support system for aesthetic design of arch bridges [Furuta].

Arch type, chord type, rise rate, number of hangers, cross sections and colours of

arch ribs, girders and hangers are all considered. Except for colour, variation is

only between two or three alternatives in each case; i. e. `number of hangers' can

either be `Many' (20), or `Few' (15). Solution bridge designs are presented at the

end of optimisation, after between about 150 and 250 iterations. Three examples

of aesthetic designs are described (but not illustrated). The fuzzy reasoning of

aesthetic functions is established by asking designers to indicate preferences for

design images they are shown. These are structured around the degree of

satisfaction a designer has with a list of `design concepts' such as `stability',

`elegance', `reliability', `uniqueness' and `friendly'. These are then linked with

pairs of adjectives to establish fuzzy if-then rules, i. e. `stable / unstable', `rigid /

flexible', `elegant / unrefined', `strong / weak', `unique / normal', `lively / lonely'.

No indication is given as to any mechanical considerations.

This bridge design system shares some common characteristics with the ideas

presented in this research, particularly the intended further development of the

work to include aesthetic assessment. The lists of `design concepts' and adjective

pairs look like the kind of criteria that would be involved with aesthetic

performance of evolved objects.

ý

14

Art

The applications described previously demonstrate the two distinct methods used

in evolutionary design: Interactive, and non-interactive'. In the domain of

evolutionary art, the interactive method is by far the most popular. In fact, this is

essentially the whole point - the interactive process is enjoyable, partly explaining

the occurrence of so many commercial and web-based systems [Rowbottom, Das].

The most well known products in the field are the combined works of William

Latham of Computer Artworks Ltd. and Prof. Stephen Todd of IBM Research

Labs. `Organic Art' and `Mutator' are both capable of spectacular results and
have been well documented in both academic and popular media [Todd]. The

types of 3D objects produced by the systems are abstract, but very distinctive, and

are characterised by horns, shells, pumpkins, and other mathematical shapes,

`grown' using an artificial embryogeny technique. Because of the way in which

the objects are encoded in chromosomes, they can be manipulated in many
different ways, combined with other objects and mutated. Figure 2.1.2 shows

some examples of Mutator and Organic Art objects, as well as similar work by

Andrew Rowbottom [Rowbottom].

There is a clear relationship between the Mutator work and this research, in that

genetic techniques are used to produce and display 3-dimensional computer

models. Another consideration is that, during an active Mutator session, the user

controls the development of objects. This is the primary approach that the EFD

research uses, with the user making subjective decisions about the appearance of

objects in allocating fitness values. 2D evolutionary art (Figure 2.1.3) follows a

similar approach, the user being presented with an array of objects for appraisal,

that are then subjected to mutation or breeding. Reproduced in Figure 2.1.4 are

examples of two user interfaces [Witbrock, Rowley].

1 Interactive systems depend on the user's input once the evolutionary process has started. In non-
interactive systems, the user can still be involved, by setting up the system beforehand.

15

Evolutionary Art, William Latham

Organic Art, William Latham

Forms, Andrew Rowbottom

Figure 2.1.2 - 3D Evolutionary Art

16

Cellular Automata Art,

Paul Brown

Artificial Evolution for
Computer Graphics,

Karl Sims

,

.t; ý4ýt ' '"
\ý/ ý"; -ý 9ýý'ýýý'

,ýý /1ý
_` ̀.

ýf

R ,-,,.; , ,. ý ýý. +ý. _: xý
ý"ýýýýý

Neuro Evolutionary Art,

Penousal Machado

Visual-Musical Instrument
(snapshot),

Scott Draves

Figure 2.1.3 - 2D Evolutionary Art

17

File Edit View Go Communicator Help
Back Forward Reload Home Search Netscape Print Security

J Bockmad. s S Location http: //www. geneticart. org/cg1-bin/mj 4r1' Whats Related

International Interactive Genetic Art II

Generation 43

When you have /inished sayir h-, w much you like the pictures, press here to VOTE

I1 °I ýý

_ _ý --ý l

Click here for vocir: help and more infnrmaz Ion about this oroiect

Other stuff:

L-j

" Genetic movies.
" Winners gallery
" Inlined gallery (try only if you have a very fast network connection).

Special thanks to: Jtatresearch who are providing the web site. URL:
htto, : ;, geneticart orgSgi-bin/mlweenformil
Form generated: Fri Oct 2 08: 49: 03 1998 EDT. 0 votes collected at that time (new generation every 10 votes).

Intrnrtivn wt O hu imrrlnf+dDrt rmu Mi Wrh itwr intrrfwv O hv tuirMnr! lRrt rmv rrht -I . lohn Mnimt

TAT

I ý ,,, '`ý. '_ _- -- --
1 _'__' _-sa , tý

Quaternion-based Interactive Genetic Art System,

Michael Witbrock, John Mount

, hepes1

, FS FrApeK

x liilmur -1.0
X Llwarum lLO

V ºIINaum. F1Ä

V Wodmur: ý1,0

X Siae: 12e
v Stil {12H

f, rppa hidQN

Q70W y (T00 (4ý IIOQ (eoB (u0I(3S
07035 -0564843 0,3«154) x])1) (00
i(ooffpuu'(loy(mUZY))(sin Ygl)1) 11-77ý

1; 4, m* IBM

Toolkit for Visual Genetic Programming,

Tim Rowley

Figure 2.1.4 - User Interfaces for Interactive Evolutionary Art

18

2.1.3 Creative Evolutionary Design Systems

Conceptual Design

The conceptual phase of design is potentially the most vibrant, dynamic and

creative stage of the overall design process. However, it is also the least

understood [Macmillan]. There is a wide range of research dedicated to

developing systems that promote and support creative and innovative conceptual

design. These systems encompass; cognitive processes, such as work on

developing a framework for visualisation [Dahl]; working environments, as with

research on developing a framework for conceptual design [Macmillan];

communication, such as research studying the language of references used when

describing sources of inspiration [Eckertl]; and CAD tools, such as those that

utilise sketching inputs to facilitate the rapid production of ideas [Tovey].

To design original, useful and appealing products, designers needs to incorporate

imaginative visualisation, and not rely on memory to come up with ideas [Dahl].

This assertion supports the recent initiative of developing systems, such as in the

EFD research, that provide the designer with a multitude of `imaginative' starting

points for a design. It also affirms that these initial concepts need to be combined

with visualisation (the product context, especially the user) if they are to become

successful products.

The perceptual abilities of the brain, enable relatively basic shapes to be

interpreted as types of form we are familiar with [Atick]. Consequently, the use

of simple representations, often utilised by generative systems, is valid in terms of

providing inspiration. Sources of inspiration from existing products play an
important role in the design process [Eckert I]. When using existing products as
inspiration though, it is difficult to avoid the influences of context. Although it is

not possible to escape from designers' interpretations of forms being tainted by

context, generative systems are able to provide virtually context-free inspiration

for product forms.

19

The recent emergence of creative evolutionary design has been well documented

in the academic and popular media [Graham-Rowe]. An informal introduction to

generative and evolutionary design systems is available in the position paper `Ten

Steps to Make a Perfect Creative Evolutionary Design System' [Bentleyl], which

also includes discussion on applicability, and brief descriptions of two of the

systems discussed here. There are numerous examples of creative evolutionary

design systems, some of which are summarised later. Discussed first are three

systems that offer much more than styling exploration, and genuinely belong in

the field of design.

A computer model of aesthetic product design

Research on computer aided integration of engineering and industrial design, has

been reported from 1991 onwards [Wallace 1, Wallace 2]. The goal of the early

work was to develop a design tool to help designers produce preliminary designs

that are correct for their intended market, manufacture, and use. The expert

system developed generates a design concept based upon manufacturing,

ergonomic, aesthetic, and style considerations. User interaction is confined to the

beginning of each of four stages of the process.

The first task is to select elements from a library of standard components and sub-

assemblies (loudspeakers, keypads, microphones, jacks, displays and mechanisms,

e. g. cassette drives). For spatial positioning of external components, four

aesthetic characteristics are considered: stability, rhythm, balance and

organisation. Each external component is positioned on a structure called the

product matrix, and has class, features and characteristics attributes assigned. Six

classes of component are used to position the components correctly: acoustic

components, keypads, switches, jacks, visual displays, and mechanisms. The

features of a component enable a visual representation of the item (e. g. a speaker
is represented by a grill) to be produced. Special characteristics identify the needs

of a component; e. g. a power supply jack is labelled as service whereas a
headphone jack is labelled as interface. This insures that components are

positioned appropriately within the matrix. Finally, a cubic bounding hull is

generated around the entire assembly, ready for the surface design.

20

A prototype is chosen from a surface style library to provide a housing for the

components, compatible with size, shape, and the intended use of the product. A

mapping function preserves the style and manufacturability information encoded
in a prototype. The surface styles are primarily defined by the edge treatments,

i. e. rounded, chamfered etc. The surface detailing stage builds upon the product
housing created in the previous stage, and finally surface applications are applied.
These are limited to colour and graphics, but other surface treatments, such

screening, logos, hot stampings, and textures are suggested.

The impressive aspect of this work is its holistic approach. The system considers

manufacturing capability of designs (by injection moulding), and considers rules

relating to aesthetics and ergonomics during layout design, producing products

that are suitable for their purpose. Obviously the cubic representation restricts

creativity and range application. More importantly perhaps, the system ignores

the refining process often carried out by designers on their initial concepts, since

the system creates just one finished product according to the criteria specified. A

designer may wish for a range of product concepts to chose from, in which case

having to repeat the process, which appears to be quite lengthy. The drawbacks of

this non-interactive process are mentioned in the report however, with the

conclusion that if the system were to be developed for practical use, it would be

essential for the designer to interact more, and modify results.

Recent continuation of this work [Smyth], concentrates on issues of synthesising

`Brand DNA' (product styles adopted by corporations to distinguish brands and

create a common brand identity) through aesthetic product form. The issues

raised above have been addressed by incorporating evolutionary techniques that

are used to generate variations on an archetype supplied by the user. A skeleton

of the desired form, based on existing product geometry, is used to generate a

population of skins (forms), from which the user selects appealing examples for

further evolution. The method lacks genuine creativity, in that established
ideas/designs are used to seed the evolutionary process. However, this process
does have its place in industrial design methodology, and has actually been

applied commercially (the design consultancy company affinnova use a similar

approach, discussed at the end of this section).

21

GADES

The earliest example of creative evolutionary design of products found in the

literature is Peter Bentley's doctoral research into generic evolutionary design,

1993 onwards. This well cited research is introduced in an early conference paper
[Bentley2], fully described in the Ph. D. thesis [Bentley3], and summarised in the

final chapter of the book, "Evolutionary Design by Computers", [Bentley4].

The design system, known as `GADES' (Genetic Algorithm DESign), has

`designed from scratch', objects such as tables, heat sinks and optical prisms

(Figure 2.1.5), and a variety of streamlined designs. The designs are constructed

from `clipped stretched cuboidsI , and, more recently, include a limited capacity

for manufacturing considerations. The GADES system has also recently been

applied to architectural problems - the latest example being a hospital layout

design [Bentley4].

The system operates as follows: Appropriate analytical functions are selected from

a library of evaluation modules, and a Genetic Algorithm is used to generate

populations of candidate designs, which are assessed against these criteria. The

system therefore, once initialised, needs no further prompting from the user, and

presents a selection of optimised designs on completion.

Using the evolution of a table as an example, five evaluation modules are

specified: size, mass, flat upper surface, supportiveness and ̀ unfragmented'. The

system demonstrated consistent evolution of fit table designs, often with

surprising creativity. A variety of different approaches emerged to increase the

stability of the tables, without any specific instructions: Some designs have a very
low centre of mass, some use a wide base, and by enforcing symmetry about two

planes, the traditional four legged approach was ̀ discovered'

1 Introduced overleaf and described in detail in the following chapter

22

--ýý:. - ._ . ý;. -ý., ý-_. -

Tables evolved for size, mass, stability,
supportiveness and flat upper surface

Heatsinks evolved to fit over a CPU, dissipating heat
from the processor by maximising surface area

An example of an evolved optical prism, in this case, a porro prism.
This application uses a ray-tracing module, and demonstrates the use

of 'clipped stretched cuboids' enabling the angled surfaces

Figure 2.1.5 - GADES evolved designs

23

In order to expand the representational capabilities of the system, whilst still

retaining effective manipulation by the GA, a novel low-parameter spatial-

partitioning representation was developed: Cuboids are intersected by a single

plane at any orientation, allowing angled faces to be introduced to the outer

regions of designs.

Rudimentary multi-objective optimisation was used, and developments of certain

aspects of the GA were carried out, tailoring the algorithm to the specific

application. These developments included variable-length chromosomes,

enabling designs to be constructed from variable numbers of blocks (a capability

that would be useful in the EFD research and could be carried out using the

Teamforming technique).

This work is one of only a small number of examples of generic evolutionary

product design found throughout the literature. The most original and outstanding

aspects of the GADES work are its generality and creativity, demonstrating the

ability to evolve various whole designs, rather than simply optimise a variety of

pre-defined existing shapes by evolving individual parameters.

24

Agency-GP

Two software projects emanating from the Emergent Design Group [EDG] are

prominent in the literature, and are of varying significance to this research:

`GENR8: Generative Form Modelling' [Hemberg], is a design tool that generates

surfaces using 3D map L-systems and develops them using evolutionary search.

Agency-GP [O'Reilly] is an architectural design exploration tool, using genetic

programming and software agents. Output from both of these programs is shown

in Figure 2.1.6.

Agency-GP is one of a few examples of genuinely creative evolutionary form

design. Although the context and output styles are unique in each case, there are

prominent similarities between Agency-GP and the EFD research in their

philosophy and representation construction process. As with this research, the

Agency-GP software structure is noteworthy for its integration with a high-end

three-dimensional modelling environment, which allows users to modify the

evolved objects directly using the available modelling utilities.

Representation is through one or more closed NURBS (non-uniform rational b-

spline) curves. These curves are extruded to form surfaces and enclosed 3D

spaces. There is here an exact parallel with the EFD work, in that repeated

genetic data structures (one structure defines one primitive in EFD, or one

NURBS curve in Agency-GP) are used to form whole genotypes'. Variation is

achieved by transformation of these NURBS surfaces (translate, rotate, scale, cut).

The similarities with the EFD work continue in that Boolean operations are then

used - intersect, subtract and unite - to create new and differently shaped spaces.

The ultimate intention is that each space is assigned its own architectural function

(what the space is used for); where surfaces intersect and form new spaces, new

functions would be allocated.

1 Theoretically, here would be a potential application of the EFD Teamforming technique, enabling
the evolution of rules that defined the ̀ intelligent' grouping of spaces

25

Agency-GP

Figure 2.1.6 - Demonstration images from Agency-GP and GENR8

26

The use of a relatively simple physical representation has afforded two significant
developments: An advanced and extremely useful aspect of Agency-GP is the

ability to reintroduce modified individuals (designs) into the population and

continue the evolutionary exploration process. Secondly, it has allowed the

development of an impressive agent based design evaluation scheme.

The assessment of each design is implemented by means of distributed software

agents inhabiting the candidate designs. These agents have the potential to

represent virtually any criterion for evaluation that can be encoded - the user acts

through these agents in influencing the evolution of the designs. This allows for a

modular structure for the integration of multiple fitness criteria. So, unlike the

method often found in interactive evolutionary design (including the EFD

research), the user does not have to evaluate every design, but may interrupt at any

point with direct or indirect intervention. This can either be through the software

agents, or interactively, after viewing the current population. Currently, five

different agents have been created, considering; 1) size of shapes, 2) quantity of

shapes, 3) intersections of shapes, 4) compliance within a user-supplied bounding

box, and 5) the height of the entire structure. More advanced concepts are

suggested, such as the conveyance of general desires ('create a high structure over

there'), specifying quotients, constraints or targets (i. e. space or light

requirements), or the inclusion of issues (i. e. energy efficiency). Methods of

direct interaction include manually changing the actual fitness scores of selected

designs, or by direct manipulation of the actual models, via the interface of the

modelling system.

The framework for the automated fitness capabilities in Agency-GP are at a

significantly advanced stage of development compared to the EFD research. A

hypothetical `equivalent' system dedicated to consumer product design, and

containing similar design evaluation capabilities as Agency-GP, would represent a

remarkable achievement, and an intelligent but ambitious aiming point for

continuation of the EFD research in this area.

27

Further examples of evolutionary design systems

Architecture

Celestino Soddu's work has been widely publicised [Graham-Rowe], and

exhibited internationally. Applications are predominately architectural (Figure

2.1.7), but have branched into design, producing families of chairs, lamps and

coffee-pots [Soddu].

John Frazer, over the past 30 years, has developing a theoretical basis for

architecture using analogies with nature's processes of evolution and

morphogenesis. A variety of evolutionary techniques have been used to

explore architectural concepts (Figure 2.1.7) [Frazer].

In contrast, Orestes Chouchoulas is only two years into research on

architectural Shape Evolution, which combines Shape Grammars and GAs.

An application that evolves apartment building designs (Figure 2.1.8) has been

presented [Chouchoulas].

Figure 2.1.8 - Shape Evolution, Orestes Chouchoulas

28

Evolutionary Architecture, John Frazer

Mk§4

ARGENIA, Celestino Soddu

Figure 2.1.7 - Examples of Evolutionary Architecture

29

Industrial Design

" The design consultancy company affinnova uses interactive evolutionary

techniques to enable clients to explore multiple product concepts. Variation is

achieved by de-constructing designs (provided by clients) into features,

expanding each feature into a range of alternatives, and then creating a

population of new products by re-constructing combinations of these altered

features. The concept is demonstrated through the example of bottled water

packaging (Figure 2.1.9) on the company's website [affinnova].

" Michael Pontecorvo, chief technologist behind Emergent Design, presents

three applications of generative design on the company's website: Chairs

(Figure 2.1.9), packaging design, and virtual cityscapes [Gatarski].

" Mathew Lewis tackles the human form, virtual game environments and artistic

textures (Figure 2.1.9) in demonstrating the versatility of utilising data flow

networks for software, developed as part of research into aesthetic

evolutionary design [Lewis].

" Claudia Eckert and colleagues have developed a generative system for

garment design (Figure 2.1.10) that combines user interaction with an expert

system [Eckert2].

Body Nock Blume

Eams MRS

, Eingillilm

m ýý

Figure 2.1.10 - Garment Design, Claudia Eckert

30

(

Ii
Argenic Design, Celestino Soddu

Li r
im

Emergent Design, Michael Pontecorvo

I' Metavolve, Matthew Lewis

Interactive Design by Evolutionary Algorithms (IDEA")

(c) 2002 Affinnova, Inc. All Rights Reserved.

Figure 2.1.9 - Examples of Evolutionary Industrial Design

31

In similar work to that of the EFD research, Hiroaki Nishino and colleagues have

developed a digital prototyping system for designing novel 3D geometries

[Nishino 1]. The system representation employs the implicit surface method,

allowing a global blend to be applied to the underlying structure of collections of

superquadratic primitives with deformations. This representation allows the

creation of interesting and highly varied populations of smooth, flowing forms,

but is restrictive in applicability, given a tendency for abstract, free-form shapes.

The problem has been addressed through the creation of `roughly modelled

initials' (basic geometric models). These initials are used (with slight variations)

to seed the first population. Fitness allocation is provided solely through

interaction - the user providing scores for the 20 shapes in a population.

Experiments to create a green pepper shape compared the two approaches

[Nishino2]. Results using randomly initialised populations displayed

characteristics of the required shape between the 15"and 25`h generations, and

convergence to an approximation of the shape between the 30th and 50`h

generations. When the roughly modelled initial was used, not surprisingly,

pepper-like shapes were visible from the outset, with convergence to a population

of varied, but realistic pepper-shapes between the 7`h and 10`h generation (Figure

2.1.1 1). In concentrating on the optimisation of shape to a predetermined,

preconceived form, the work has neglected the area of creative design, which it is

clearly capable of addressing.

/
Figure 2.1.11 - Novel 3D Geometries, Hiroaki Nishino

32

2.1.4 Conclusions

1. The majority of relevant examples of evolutionary computation in engineering

in the literature deal with optimisation of specific mechanical components

against physical and measurable properties, such as stress, mass, heat flow,

and aerodynamic resistance. The engineering systems studied are typically

non-generic, being dedicated to particular components in each case, and non-

interactive, relying on objective optimisation criteria. Examples addressing

aesthetics are generally confined to civil engineering.

2. Evolutionary and genetic 3D art demonstrate a variety of ways of producing

interesting shapes, steered by a user. The systems studied carry a certain

`signature' or style in their outputs, prohibiting their use outside the field of

abstract art.

3. Bentley's work on generic evolutionary design is the closest to achieving the

evolution of consumer products. The innovative `clipped stretched cuboid'

representation addresses the representation efficiency and genetic transfer

issues associated with GA optimisation, but neglects aesthetic quality, perhaps

restricting applicability in the field. The advantages of automatic optimisation

of designs are offset by the requirements of the set-up process - new software

modules are needed for any new parameters.

The research described in the following chapters has combined important aspects

of these three fields, producing a user driven evolutionary design system, capable

of internal optimisation, and the creation of interesting, original and useful forms.

The other evolutionary design systems previously addressed in detail', offer

significant insight into ways of developing the EFD research further, particularly

in the areas of automated aesthetic assessment and manufacturing considerations.

1 Wallace, O'Reilly, Nishino

33

2.2 Form and Aesthetics

Perception

Aesthetics is a more of a philosophical science, than a technical one, because

perception depends on comparing images to previously stored images in memory.

The brain, on receipt of information from the eye, compares the stimuli with its

stored experience of similar stimuli patterns. Although there are many varied and

often conflicting theories about aesthetic perception [Vihma], it seems important

to note that the aesthetic properties of a product are not intrinsic, but are formed in

the interpretation of the product when considering the product's function. In this

light, it will be important to bring some functional consideration to the research in

order to make rather less subjective and slightly more objective decisions about

aesthetics.

Form

There are two separate, though strongly related manifestations of form. There is

the internal form of the underlying basic structure, the anatomical embodiment of

form, and there is the external form of the visual shape, the surface, the cosmetic

embodiment of form [Ashford]. There are several well-established components of

form; composition, surface, unity and proportion, these are discussed below.

Composition

The composition or arrangement of the parts of a visual pattern is, with

engineering design, naturally very strongly influenced by the requirements of

mechanical function and structure. However, people do have the capacity to make

subjective comments about works of abstract sculpture, for example.

Surface

Surface describes the external form, or the visible shape. The quality of the

external form is of no less importance than that of internal form, but relies upon

the internal form being right.

34

Visual Unity

Unity and harmony are virtually synonymous and there is clearly some connection

between unification and harmonic relationship, although the former is associated

more with the reflection of visual characteristics and the latter with steps in size.

The link is in the repetition of similar qualities, which can assist identification by

making a properly unified visual arrangement easier to perceive. For example, in

Figure 2.2.1, the left form is weak and visually disruptive, whereas the form on

the right displays visual unity.

Figure 2.2.1 -A diagram representing visual unity
(Based on Fig 4.3 from `The Aesthetics of Engineering Design' [Ashford])

Proportion

Proportion, the relationship of a part to the whole or of one value to another, can

be concerned with what is a suitable ratio within a particular context and also with

several formal systems having a more universal application. The Root Five

Rectangle system is a commonly used guide to proportion, with others including

the Golden Mean system, the Summation Series, compiled by Fibonacci, and the

Archimedian or logarithmic spiral. These are introduced in the following section.

35

2.2.1 Formal Systems

Instead of trying to impose a theoretically ideal aesthetic quality upon a situation,
it is better to integrate it with the situation [Ashford]. In other words, whilst there

are many guidelines and `rules' published and taught in the field of aesthetics and

design, some of which are outlined below, they cannot all be applied to all

products indiscriminately. It is for this reason that, early on in this research, it was

decided to always include a human designer/user as part of the EFD system.

Having said this, it would be interesting and possibly useful, to attempt to

integrate artistic `rules' of form into the software to some degree, and is the reason

for reviewing this area.

Why is proportioning important? Imagine a square with both dimensions equal.

The onlooker will view it as square. If one dimension were to increase slightly, so

that the ratio of the sides remains fairly close to 1, the outcome would be a

rectangle that will consciously or subconsciously unsettle the viewer. The shape

will seem like a square but not exactly square, as if a slight error has been made in

constructing it. Forms with sides of ratios about 1: 13/a, or more, will overcome

this and it will seem pleasant and balanced. The Golden Mean (or Golden Ratio)

has been preferred over any other ratio and has classically been thought of as

giving a perfect balance. It has the value of phi (b):

0-y (145-)=1.618034...

36

The Golden Mean System

A method for designing an object is often needed if the object is to be pleasing

and balanced to the viewer. The method of proportioning objects using different

incarnations of the Golden Mean has been known for many ages and was certainly

known to the ancient Greeks, although it is still a matter of debate as to whether it

was used formally in the construction of the Great Pyramid or the Parthenon.

Figure 2.2.2a shows the construction of a Golden Rectangle by rule and compass

methods, the same method as the ancient Greeks are known to have used. It is a

method of proportioning that is most useful in two-dimensional works and has

been used in many artworks, most famously in Salvador Dali's `The Sacrament of

the Last Supper. ' The three related systems, which were all realised

independently, are linked mathematically, and occurrences can even be found in

nature.

The Golden Mean system also gives rise to the Root-Five Rectangle system

(Figure 2.2.2b), as its lengths (1 and 45) average to the Golden Mean, and shares

the benefits of the Golden Mean system. Any Golden Rectangle is also infinitely

divisible, always retaining its original proportion. Any smaller segments are

harmonically related to the whole. It is for this reason that it remains such a useful

tool. It enables a designer to proportion the bounding surface of an object and then

create many subdivisions within that object whilst still maintaining the balance

overall.

37

I

ý ---4.1------
1. ý1ý ---ý- -- 1

a) The Golden Mean

r
-ý ? , '\ ý , ý. r

;f tt
ý

,
fi

+ i #ti ý l

ýr
/ý .ý r ýý /

, ;

ý ý.
'

ý º
ýý t, !

ý ý....

__ __. _... __.... __ý 2. g36---,., _,. _......, ý..,,

ý

b) The Root Five Rectangle System

c) The Archimedian Spiral

Figure 2.2.2 - Mathematical proportion systems

38

/

A sequence of Golden Rectangles, as seen in Figure 2.2.2c, gives rise to a
logarithmic spiral. Named the Archimedian spiral it is similar to spirals that can

often be seen in nature. The seeds of a sunflower radiate from the centre in

approximations to logarithmic spirals as do the segments around a pineapple, up
from the base. An Archimedian spiral will have the same form however many

iterations it has been through, such as a snail's shell, which always has the same

form whether it is a tiny shell, of a couple of millimetres across, or a large one,

several centimetres across. The numbers of segments in these natural spirals

appear in the Fibonacci sequence, due to the ratios of corresponding Fibonacci

numbers. Adding together consecutive terms to make the following term creates

the Fibonacci sequence: 1,1,2,3 ,5,8,13 , 21 , 34 etc.. Displayed below are

the ratios of corresponding Fibonacci numbers, which converge to phi (1):

12358 13 21
--ý---ý--ý---ý--ý---ý- 112358 13

1.0-> 2.0 -> 1.5--> 1.666... --> 1.6-> 1.625--> 1.615...

Conclusions

Fundamentally, the matter of proportion is associated with an intuitive

consideration of balance and composition, and with the achievement of a sense of

direction in form. Formal methods, such as those discussed, are frequently used

(Yee), but have limited use when creating three-dimensional objects. They may be

used, in the first instances, to design one aspect of an object, however, as soon as

the object is viewed in three dimensions, or the designer wishes to make small

alterations, the formal methods can no longer apply. Therefore the Golden Mean

and Root Five methods can only be used as a preliminary guide to a designer, but

could be usefully incorporated in the research discussed here, during work on

developing aspects of automated aesthetic assessment.

39

CHAPTER THREE

TECHNOLOGY REVIEW

Although there are many ways of tackling problems with large search spaces

(Constraint Modelling, Hill Climbing, Simulated Annealing etc.), only

Evolutionary Algorithms such as the Genetic Algorithm have been applied -

successfully in all areas of automated design (Bentleys, Khatib, Bäck, Forrest,

Gen). Uniquely, EAs are generative, and deal with populations of solutions

concurrently, allowing designers to explore numerous, creative solutions to

widely varying problems. Evolutionary Algorithms are thus most likely to benefit

from an interactive approach. In addition:

" EAs work effectively with complex, ill-bounded, unspecific problems', and

are good, general-purpose problem solvers.

GAs resemble natural evolution more closely than other evolutionary methods,

and share many similar characteristics with the human design process.

" Genetic Algorithms remain the most widely used evolutionary technique.

Since the application outlined presently, is in a relatively new and unexplored area

of research, it is appropriate to focus on a well documented technique that has

been shown, through extensive trails, to be reusable and robust (Goldberg).

1 Where the functional relationships between parameters and objective function values are of
unknown, arbitrary mathematical character

40

3.1 Genetic Algorithms

The Genetic Algorithm is a search procedure closely based upon the mechanics of

natural selection, and as such, various terms from biology are adopted to describe

aspects of the technique. GAs work with a population of solutions, with each

individual (or member) within the population referred to as a phenotype. This

arises from the fact that, uniquely to GAs, each solution is encoded and

manipulated as an artificial chromosome (or chromosomes), referred to as its

genotype. The space defined by the genetic representation is therefore the search

space, with the solution space being defined by the phenotype representation. The

genetic representation is usually made up of strings of 1s and Os, but can be real

coded using lists of parameters, or consist of sequences of instructions.

So for each consecutive generation of solutions, the genotypes are mapped to the

phenotypes to evaluate them according to the task in hand. The evaluation of

phenotypes distinguishes good solutions from bad ones, and can involve complex

computer simulation or modelling of each individual, or simply require a human

operator to intuitively rate each or some of the designs. In either case, it is this

allocation of fitness that guides the GA to evolve improved generations.

The operation of a GA is made up of three phases: Initialisation, fitness

determination, and reproduction. After the initialisation phase, where an initial

random population is created (or sometimes the initial population is seeded with

variations of known good solutions), the fitness determination and reproduction

phases repeat cyclically, the intention being for a solution or pattern to

progressively emerge. During the reproduction stage, selection and genetic

operators act on the population. Selection involves choosing good solutions to be

parents of new solutions. Parents are usually selected in pairs, using ranking,

probabilistic, or tournament methods, based on fitness scores. Genetic operators

are used to carry out recombination and mutation of the parents' genotype,

creating these new and possibly improved offspring. Recombination is usually

achieved through crossover of the parents' chromosomes, while mutation simply

modifies an individual's genotype.

41

3.2 Representation

Phenotype

Product representation defines the subset of the shape space that the GA can

search, and as such will characterise any work on evolutionary shape design, more

than any other factor. The amount of data that needs to be processed by a GA

should be kept to a minimum, to reduce the size of the search space and the

behavioural complexity of the system. This is a well-recognised consideration,

especially when dealing with 3-dimensional objects, and is acknowledged by most

of the referenced examples in the literature.

3D representations vary in their directness to the genotype, ranging from; explicit

definition of every point in a design, as in voxel representation; through partial

definition, such as specifying nodes, from which FE meshes are generated; to

embryogeny models, where designs are grown according to a set of rules, such as

cell division models. The representation selected for the research discussed here -

geometric primitives combined through Boolean operators - lies somewhere in the

middle, in terms of the amount of decoding necessary during the mapping process.

Perhaps the simplest representation conceptually, voxel representation defines

every point within a model explicitly. The grid of voxels can be represented by

one long single-string binary chromosome, although this format of genotype

requires a specific crossover operator to function meaningfully. A voxel-based

shape representation offers a number of potential advantages for shape

optimisation; topology need not be defined, geometric constraints are easily

imposed and theoretically, with adequate resolution, any shape can be

approximated [Baron]. In reality, various techniques have had to be invented to

cope with the problems of voxel representation. For example, the lack of

boundary smoothness and the inclusion of holes in the design can be alleviated

with various smoothing mutation operators. It could be the case that this is an

example of the point made in [Bentley5], that a poor representation will be

disrupted by all standard operators and may require the creation of specially
designed `non-disruptive' operators. Additionally, it is often necessary to

42

initialise the GA with variations of an existing design if successful voxel-based

optimisation is to be achieved. However, its conceptual simplicity, and the

affinity with FE analysis may mean that voxel representation remains in use for

component optimisation applications.

A cell division model, employed in the system for free-form shape representation
introduced in the previous chapter [Taura], takes representation to the other

extreme, in terms of mapping the genotype to the phenotype. Here, a small

number of cells placed on the surface of a sphere, are divided (according to a set

of evolving rules), and spread out on the surface of a sphere. The surface shape is

generated by referring to the cell density: The density of cells at a point (A) on the

surface is converted to a distance, and a point is created at this distance from the

sphere's centre (0) in the direction OA. The points are converted to a tessellated

surface, with resolution dependant on the number of surface points sampled.

There are no specific problems identified with this technique, just the limitations

of applicability mentioned before.

A good example of a compromise between the amount of defining data and

representation potential is the technique employed by Bentley for his GADES

system [Bentley2]. Here, early designs were made up of collections of aligned,

regular cuboids, keeping the amount of data to a minimum, but restricting the

range of useful product definition. Angled faces and edges were introduced by

allowing each cuboid to be intersected by a plane, of any 3D orientation and

relative position, allowing the creation of more complex shapes, but without
dramatically increasing the amount of data required. This `clipped stretched

cubes' representation (Figure 3.2.1) was arrived at through the natural progression
illustrated overleaf.

43

Representation Parameters Summary

1) Cuboid defined by origin 6 parameters: x, v, Unable to define angled

and lengths width, depth, height faces

2) 6-sided polyhedron defined

by corner points

24 parameters: 8xx, y, z Too many parameters

3) 6-sided polyhedron defined 18 parameters: 6x Still too many

by intersecting planes angle I, angle2, distance parameters, `ambiguity'

4) Cuboid with movable side 9 parameters: x, y, z, Combines benefits of I

width, depth, heightl, and 3, but tessellation

height2, height3, problems, and limited to

orientation rectangular base

`Clipped Stretched Cube' 9 parameters: x, v, z, Low number of

width, depth, height, parameters, allows

angle], angle2, distance angled faces and

multiple sided

polyhedra

Figure 3.2.1 - Clipped Stretched Cubes
(Reproduced from Figure 4.4 in [Bentley2])

44

Genotype

One of the defining features of GAs is that populations of solutions are encoded in

a genetic format, the genotype, which is then translated, during a mapping stage,

into the solution, or phenotype. The way the data is stored in the genotype is

analogous to biological DNA, although the strings of data usually employ `0,1'

binary representation rather than the four-letter `A, T, G, C' alphabet of DNA. Bit

strings are often divided into artificial `chromosomes', or `genes', according to

their decoded purpose, and may he further subdivided into segments for each

decoded value (or allele), as in Figure 3.2.2 below.

Chromosome A Chromosome B

I: 1 IiIJ1 I F1 F:, 1 I I; 11 I.. I
0011110100100101110001001101

15 18 5 12 77

Decimal Value

Figure 3.2.2 - Binary Genotype Example

This basic information is `decoded' (in the fitness determination stage) in order to

relate the information to the particular objectives. This `mapping' process was,

until recently, unique to GAs, but is now introduced to other evolutionary

algorithms. During `reproduction', the data is manipulated in this genetic form,

allowing new solutions to be created from members of the current population.

Evolution relies on inheritance with a small degree of variation, ensuring that

most offspring resemble their parents. Therefore, the most important thing

concerning the genetic representation is that genotypes that are close together in

the search space should map onto solutions that are similar to each other in the

solution space. So that a small change in the genotype results in a small

difference in the phenotype.

45

3.3 Initialisation

The first population is created during an initialisation stage, usually by randomly

selecting each bit of a binary chromosome(s) for each individual population

member. So ̀ generation 0' is populated by solutions that have fixed structures

and meaning, but random values. The aim is to create a diverse population of

solutions. By maximising the initial distribution of members, the algorithm has

the best chance of finding potentially fruitful areas of the search space, rather than

homing in on sub-optimal solutions. This is equally important for interactive

evolutionary design, so that a wide selection of different `starting points' is

presented to the user.

If random initialisation is used, the starting population should not have a

significant bearing on the eventual outcome (using an effective GA), but may

affect the time taken for this outcome to emerge [Wood2]. Sometimes the initial

population is constructed from variations of a user-supplied solution, such as in

the 3D Shape Optimisation work [Nishino] outlined in the previous chapter.

The initialisation section is also used to set the control parameters, such as number

of members, number of generations etc., and to read input parameters. When this

stage is complete, the GA moves in to the two-phase evaluation-reproduction

cycle, which is repeated until either a satisfactory solution emerges, the population

converges', or the GA has run for a pre-determined time, or number of

generations.

1 When the genotypes, phenotypes, or fitness values of all individuals are static for a number of
generations.

46

3.4 Fitness Determination

Decoding

A genotype may, for example, contain 2 chromosomes, each split into 2 segments.

If each segment contained 6 bits, then it has the capacity to represent a range of 64

integer values. The pair of such chromosomes could be decoded to describe an

area in a two-dimensional 'search space', containing 644 variations or solution

points. This example is illustrated in Figure 3.4.1 below, where the first

chromosome is used to define the origin (lower left corner), and the second

defines the length and height.

126

Area Search
Space

63

Origin
Search
Space

63 126
origin chromosome

001111010010

15 18

lengths chromosome 18

100001001100

33 12

33

12

15

Genotype Phenotype

Figure 3.4.1 - Decoded values used to define an area

47

An alternative scheme would involve the second chromosome defining an

opposite corner, this would mean that both points are independent, rather than the

first example, where the location of the second corner is dependent on the first.

The first method, where chromosomes define tangible characteristics without an
increase in data, is generally preferable, allowing more progressive changes
during evolution.

If these values are to be interpolated within ranges (rather than used directly) it is

usually necessary to predetermine upper and lower limits, although there are

methods of dynamically re-scaling the search space as the GA progresses, in order

to increase accuracy and efficiency [Wood 1]. Previous work by the author

[Graham l] involved the decoding ranges being defined by a second co-evolving

species, and was later discovered to increase efficiency considerably, in tests

similar to the example given on the previous page.

48

Objective Function

Decoded chromosome data are effectively estimates of the required parameters.

Solutions made up of these individual parameter values are evaluated (often by

external software) through simulation, analysis or calculation, relating the

estimates to ideal values, or the rest of the population. An objective function (S)

is a method of calculating how well a solution fulfils the problem objectives, or

more specifically, how close the individual estimates (A) are to target values (T).

The following equation is generally used to increase the effect of large differences

and convert any negative values to positive:

S= J(A-T)2

Treating a collection of difference values together in this way only works if the

values are of the same order and significance. If this is not the case, then a multi-

objective approach is often necessary, involving more than one fitness function. If

the problem is subjective, relying on interaction with a human evaluator, or if

comparisons with other solutions are the sole route to fitness, often only a fitness

function is required.

49

Fitness Function

A fitness value (or fitness values, for multiobjective problems) describes the

relative 'success' of individual members, compared to the whole population.

Where fitness is derived from an objective function, a simple, but usually quite

adequate method of defining the fitness function (f) is taking the reciprocal of the

objective value. A scaling factor, k, (for multi-objective problems) can be

introduced at this point:

f=
k

k+S

Fitness values are therefore typically real, positive numbers, between 1 and 0,

where 1 represents perfect fitness. Average fitness, and other derived statistical

values, are necessary for subsequent operators, but are often also used to evaluate

how effectively the GA is performing.

50

3.5 Reproduction

3.5.1 Parent Selection

Selecting fitter solutions to parent the next generation is the usual method of

inducing a pressure towards the evolution of fitter populations. The selection of

parents is intended to give fitter members a greater chance of reproducing than the

less fit individuals.

Typically, one of three methods is utilised: Fitness ranking, tournament selection,

or fitness proportionate selection. In fitness ranking methods, the likelihood of

selection is proportional to the position in the ranked list of solutions. In

tournament-based methods, selection is based on the comparison of pairs of

(randomly or otherwise chosen) solutions. Fitness proportion methods, discussed

below, use the solutions' actual fitness values to govern the probability of

selection. The three techniques can range in the amount of randomness afforded,

a balance has to be found which suits the application, maximising average fitness

through the deterministic elements of the technique, while allowing random

elements to keep the search open to potentially valuable solutions.

Roulette wheel selection (the most common fitness proportion method), is very

much probabilistic in operation, resulting in higher variance, which can help to

alleviate premature convergence to sub-optimum solutions [Wood2, Forrest].

Although robust, the high stochastic error associated with roulette wheel selection

is often prohibitive. The basis of the technique is as follows: An analogous

roulette wheel (though with unequal trap sizes) is formed from the fitness values

of the whole population (i. e. a pie chart of all the fitness values). Each solution

therefore has a numerical range associated with it, so that when a random number

is generated, between 0 and the total fitness value, the solution whose range the

value lies within is selected.

51

Thus each solution (e) has a chance of selection equal to that of its fitness (f) as a

function of the total fitness:

P(ei) =f If

More deterministic techniques are often used, especially for complex problems.

Stochastic remainder selection is a common technique, which uses only a small

probabilistic element. With this method, the number of times a solution becomes

a parent is allocated according to the whole part of its normalised fitness value

(the solution's fitness value is divided by the population mean fitness). A small

random element is introduced by using the fractional parts of solutions'

normalised fitness as a probabilistic weighting to select the remaining parents.

Fertility

The fertility of a parent solution is subtly different from its fitness. Where fitness

defines the likelihood of reproduction, fertility defines how many children that

parent can have. Fertility, although inherently incorporated into fitness

proportionate selection, can therefore be treated as a separate method of exerting

selection pressure. EAs will usually have a parameter that limits the number of

children one solution can parent, thus limiting its dominance on the next

generation and alleviating premature convergence [Yu].

Replacement

There is also the option as to whether to replace the entire population with the

next generation of members, or, as is sometimes beneficial, to transfer some of the

fitter members from the previous generation directly into the current population

(elite replacement), simulating the overlapping that usually occurs in nature. A

departure from the sequential approach, used in non-continuous EP, is to create

child solutions until the population size has doubled, and then remove the most

unfit half. More involved variations on this theme, such as life-span (death)

operators, used to prevent immortality if elite replacement is used; and kill

operators, mostly used to enforce constraints, can also be employed [Bentley5].

52

3.5.2 Recombination

The reproduction stage is responsible for the creation of new, possibly better

solutions and is the foundation of all evolutionary algorithms. It is the ability of

new solutions to inherit properties from multiple parent solutions, with some small

but significant changes that enables the evolutionary properties.

At this stage in the GA, genetic information from elected parents is combined in

some way, producing a new generation of members. The recombination of

chromosomes is normally carried out using a variety of crossover operators,

illustrated in the following diagrams. There may be one (Figure 3.5.1), or several

(Figure 3.5.2) crossover points, which can be predetermined, or randomly selected

for individual matings, or for the whole population. It is often desirable, to restrict

crossover to whole segments (Figure 3.5.3), or even whole chromosomes (Figure

3.5.4), in order that differences between parents and offspring remain small.

Intra-segment crossover (Figure 3.5.5) produces greater variation, enabling the

creation of many more new decoded parameters through recombination.

There is also the option of whether to use complementary or non-complimentary

crossover. With complementary crossover, pairs of corresponding chromosomes

are produced using the same crossover point, where the `right half' of one parent's

genes are matched with the `left half' of the other parent's, and vice versa, thus

producing two offspring from each recombination (Figures 3.5.1 - 3.5.5). An

advantage of this technique is that all genetic data from both parents is passed on.

Alternatively, only'half of each chromosome(s) is (are) used to produce a single

offspring, and the remaining portion(s) discarded. The process is then repeated

with another crossover point, with either the same (Figure 3.5.6), or a newly

selected pair of parents. Non-complementary crossover is the method used in

nature, and tends to produce greater diversity [Wood2], by allowing a greater

opportunity for variation than with complementary crossover techniques.

53

ý aý
cz a

Q
ý c
aý
ý (t
0

......

ý
4)
>
O
C,)
C')
O
ý 0

T

0

ý
ý

-c 0

0

0
0
0
0

T

0
T

T

B
ý
r

0

LO
N

9-
ý

ý

Lri ý c
m
ca
a_ ý :3

a)
LL

ý N
>
O
Cl)
U) c
0N

O0 0-

0 111 0E

.. TTU CZ "ýýýýýýýýýý"

Mý_nT

CY)

ýr
cz

LO
W ..

(ý
Cýý

"Týr Q)

T

O
T

T

O

O
T

O

O

0

T

0

T-

r
r

T-

r
rT ni (ü

Týý

Q fl

-
t3 ý0

(I)
Li " r- v

(1) r -1 0 I- ý:
rýi

ý ... t... r. ö .U fl o ý
0

ý
0

9

0 U
CQ

QN
ii

LO

0
T-
0

ý

-c 0 . --,

0

0

ý
0

()
>
0
U)
U)
0
U
A
(z

a)
E
N
Cl

E
0
U
C
0
C

C
O
ý

a)
0) C

i: T)
Qc)
ý
cr)
a)
D
0)

LL

54

[IIIIII1IIIIII

Parent A

001111 010010 0101ý1100 01001101

15

i CE: [E=I--

18

Parent B

1 oioooiioiio 1001; 1 010 1000t110

40 5 12

11111

77 54 9 10 142

111111
001111 110110 0101 1010 10001110 101000 010010 1001 1100 01001101

15 54 5 10 142 40 18 9 12 77

Figure 3.5.3 - Whole-segment complementary crossover

Parent A

. .
001111 010010; 0101 1100 01001101

15 18 5 12 77

ký

Child a

001111 010010 1001 1010 10001110

15 18 9 10 142

Parent B

101000 110110.1001 1010 10001110

40 54 9 10 142

Child ß

III
101000 110110 0101 1100 01001101

40 54 5 12 77

Figure 3.5.4 - Whole-chromosome complementary crossover

iiIIII-4 111111

Parent A

[IIII-lIIII-IIIIIIIIl

0 oai1 1 o1 o: o10 o: 1 0i1 1oEO oaoo1 1 o1

m -® Q m7 Q

Parent B

1 0E1 00011 OEi 101: 00 110 1E0 160001 110

ý= MD- 3- ý
001000 010110 0001 1100 00001110 101111 110010 1101 1010 11001101

8 22 1 12 14 47 50 13 10 205

Figure 3.5.5 - Intra-segment complementary crossover

55

3.5.3 Mutation

Although crossover and recombination are the primary methods of evolution in

GAs (and nature), it is beneficial to introduce the small probability of mutation.

This enables the creation of totally new segments that could not have been created

from re-combinations of available genetic material.

Mutation is most often achieved by inverting single bits within chromosomes

(from I to 0 or vice versa), as in Figure 3.5.7. The probability of any one bit

being affected are typically quite small, ranging from 0.001 to 0.075 in

optimisation problems reviewed [Bentley5, Wood2], but generally rising to

between 0.01 100.11 in artistic applications [Rowbottom, Witbrock].

It can be useful to reduce the likelihood of mutation as generations progress and

converge towards a solution. The mutation probability can be defined as a

function of generation number, or a mutation profile can be tailored to the

application after experimentation, such as the one below, taken from an inverse

optimisation problem [Wood2].

Generation >25 >50 >100

Mutation Probability 0.075 0.050 0.025 0.010

Figure 3.5.7 - Mutation

56

3.6 Specialised GAs

The most common problem to arise when applying GAs is that of premature

convergence, where the population converges on a local, sub-optimal solution, too

soon. This is not such a problem for interactive systems, where the user can

detect the problem and take avoiding action', but may be a sign that the system is

running with less than ideal parameters. A second widely acknowledged

limitation of the simple GA (such as has been described here) is difficulty in

dealing with optimisation of multiple criteria, and is briefly discussed below. The

steady improvement of Genetic Algorithms has been carried out since their first

introduction, to address these and other problems. Consequently, distinct types of

advanced GAs have developed, for example: Distributed GAs and GAs with

niching and speciation have been developed to increase efficiency [Eby]; and GAs

with diploidy and dominance that improve variation and diversity, especially

when tackling functions that vary with time [Smith]. GAs are often combined

with other techniques (Hybrid GAs), or heavily modified to suit specific

problems, such as grouping GAs [Falkenauer].

Multiobjective GAs

Simple GAs can (and are usually left to) work with multiobjective problems by

copabining weighted objective values into one fitness value [Horn]. Frequently,

however, this does not produce the best results, and it is necessary to employ a

Multiobjective GA (MOGA). MOGAs work with more than one fitness value at a

time and use Pareto optimality to define the better solutions. A solution is Pareto

optimal if it is not dominated by any other solutions [Goldberg] (In some cases

this may result in a large number of solutions all being Pareto optimal and

receiving the same fitness score, which may causes problems in itself).

I This circumstance should not be relied upon to relieve the problem while developing an efficient
system - ideally the problem should be addressed through the usual means, i. e. careful selection of
genetic operators and the ̀ tuning' of the operating parameters

57

3.7 Conclusions

Clearly a CAD tool where any number of random forms are presented to the

designer would be of limited use. Firstly these forms should be useful, and

secondly, there needs to be an intuitive method for a designer to guide the process

of form generation according to the task in hand. This method should adapt,

according to the changing thought processes that occur during conceptual design,

which are also triggered by the interaction with form on the screen. These

complex, changing criteria are best addressed through evolutionary computational

techniques, with Genetic Algorithms standing out as the most successful and

appropriate tool in this field.

By imparting some of the qualities of natural evolution (a well known and

reasonably well-understood process) GAs can naturally be adapted for use in

evolutionary design systems. This chapter has introduced the fundamental aspects

of GAs, with some common (and some novel) techniques for their

implementation. For applications such as the research discussed here, the

following points should be considered.

Representation

The 3D representation (phenotype) should be readily described using a genetic

data structure, and data efficient, but not so much so that it is incapable of

effectively defining a suitably wide variety of useful solutions. The genetic

representation should be so defined, that small changes in the genotype (through

genetic operators) result in small differences in the phenotype, allowing

inheritance with a small degree of variation. Given these two conditions,

initialisation should produce a diverse population by assigning random values to

each chromosome.

58

Selection

It is preferable to use some selection operator, rather than the user having the

inconvenience of explicitly selecting every pairing of parents (i. e. 14 in the case of

the EFD research). The main requirement of a selection technique then, is that it

reflects a user's intentions. This suggests a fitness proportionate, deterministic

biased scheme, such as stochastic remainder selection, though programming

practicalities must be considered. The selection technique employed will depend

on the demands of the user at different stages in the process. During the early

stages, where a relatively large number of individuals are usually involved, a

deterministic approach, such as stochastic remainder selection will work well.

However, if the user wants to select just 1 or 2 parents, there are often conflicts

within the selection routine', and the GA may experience difficulties. It is

suggested that the probability-based and consequently more robust roulette wheel

selection technique be used in these circumstances. If fitness-proportional parent

selection is not used, controlling fertility is an effective method of restricting the

dominance of a single individual over following generations

Replacement and Recombination

Whole population replacement would seem the most suitable technique for

interactive systems (which inherently use small populations), offering an entirely

new set of solutions each cycle, although some of the advantages of elite

replacement type operators would be beneficial. Several alternative crossover

techniques exist, offering varying degrees of continuity. Although mutation is

generally the preferred route to producing entirely new values, intra-segment

crossover has the capacity to produce a large number of new decoded values in

offspring (rather than just `shuffling' existing values). It is suggested that intra-

segment crossover is particularly well suited to interactive evolutionary systems,

producing high variation and rapid evolution.

'A problem is often caused by the conflict between the ̀ maximum population fraction' parameter
and the ̀ remove identical parents' function - both useful aspects that should not be bypassed.
Theoretically, these problems could be detected as they happen, and only at this stage are these
functions temporarily ignored

59

CHAPTER FOUR

DEVELOPMENT OF THE EFD SYSTEM

System Background

The Unigraphics (UG) CAD suite includes an Advanced Programming Interface

(API) called UG/Open, providing access to routines within the UG graphics

terminal, file manager, and database. The prototype EFD software, written in the

C programming language, is an internal UG/Open API program and is run as a

user function, from inside a UG session'. A screen shot is shown in Figure 4.0.1.

The EFD software contains a Genetic Algorithm at its core, and as such, produces

evolving populations of solutions. In this case, populations containing 10,12, or

14 product representations, or solid geometric models (herein referred to as

objects) are produced, created from a small number of interacting geometric

primitives. During an interactive EFD session, the user is required to rate, from 0

to 10, each object in the population, providing (or contributing to) each object's

fitness value. Another population is then generated; the fitness scores of the last

generation influencing which objects were selected as parents to create this new

population. A user-interface is provided for this scoring system and the other

user-selectable options, described below - the first four of these options

correspond to sections within this chapter:

Create mode: Normal or Cohesive, the create mode determines at which stage the

geometric primitives interact, during object creation.

GA controls: The maximum number of generations, maximum population
fraction, parent selection technique and mutation profile can be

changed from default values.

Optimisation: If cohesive objects are used, the options available for internal

geometric optimisation (volume, surface area, bounding box size

and dimensions) are listed for selection, in addition to user scoring.

1 'New Session' or 'Teamforming' is selected from the EFD menu

60

Blend mode: 4 options for edge blending exist: Random, simple, whole object or

none. The method selected greatly influences the style of objects.

Session ID: This number allows different starting populations by incrementing

the random number generator 1000 x the `ID' value entered.

Run mode: The software can be run in `User Mode', where some prompts are

given, `Optimisation Mode', where no prompts are given and part-

names are automatically generated (allowing rapid progress for

internal optimising), or 1 of 3 testing and development modes.

Filename: Each population is treated as a new part and therefore requires a

filename (a default filename with population number is generated).

Prompt: Before the population is rated by the user, a `save/continue/quit'

prompt is provided, at which point the CAD menu system can be

accessed without disrupting the EFD session. This enables (e. g.)

individual objects to be rotated and studied in detail by blanking all

other objects.

Populations of objects are displayed in figures throughout the thesis, so a brief

description of some adopted standards may be useful. Each object is created in a

different colour, this is for clarity only - the colour is based on its position on the

screen, and is not an inherited property of the object:

1 Blue 2 Green 3 Cyan 4 Red 5 Magenta

6 Yellow 7 White 8 Olive 9 Pink 10 Grey'

11 Orange 12 Purple 13 Maroon 14 Aquamarine

The objects are created from left to right, in rows of 4 or 5, with second and third

rows beneath, and are usually displayed in isometric or trigonometric views. The

numbering and colour schemes form the basis of the object naming convention:

g2p4-red = generation 2 phenotype 4

g6t8-olive = generation 6 team 8

1 Object 10 is coloured aquamarine, not grey, in populations of less than 14

61

1
ý

f_l
C]

Q
Iý, i

®
®
®

IL

Cý
$ý

I

I. r ý, ®
am-

I S. u
f

113

ý",
ý

w3

ýIý

[LELLELLILA
li

sI ýýýý ýýýýI

S

-I

E

........................
------------- - öÖöEi

ýedc; 1; 1111
ooom. ýýo --------------

62

400

"
wa

11%

It

4

I
I

s ý
ýý

4.1 Genotype

A genetic data structure capable of efficiently describing individual geometric

primitives has been established. Several of these structures are either:

a) Repeated, creating one long genotype describing a complete object (Figure

4.1.1), or,

b) Treated as individual genotypes - the resulting primitives being grouped

together after creation (in `teams") to form complete objects (Figure 4.1.2).

The most common genotype representation, allowing straightforward

recombination and mutation methods, is binary. After due consideration it was

felt there was no need to deviate from this. Positional classification (the position

of a bit in the genotype dictates its function) symbolically divides the data

structure into chromosomes by decoded function. These chromosomes are:

" type - describes the type of geometric primitive created

" origin -a primitive's 3D position within its local spatial constraints

" sign - the Boolean interaction with any interfering solid bodies

" direction - the 3D creation vector (not used for blocks or spheres)

" shape - up to 3 values defining a primitive's relative dimensions

" size -a scaling function applied to the shape values

" blend -a string of data defining blend radii of associated edges

" interact - dictates which of the other primitives can be interacted with

(The blend and interact chromosomes are not included in the figures overleaf)

Each chromosome contains 1 (i. e. type), 3 (i. e. direction) or more (i. e. 4-

interaction) segments, which in turn, contain either 1,2 or 6 bits depending on the

resolution of data required of the decoded value.

'The 'Teamforming' technique is covered in more detail in a later section

63

ý

ý

Al
9

The first 7 chromosomes are converted into decimals between set decoding ranges

and either used as `if/then' switches (as in the case of the type and sign

chromosomes) or supplied directly to the Unigraphics functions for creating the

primitives. There is no subsequent development of the objects (such as in

artificial embryogeny). The 4 single interact segments are treated as `yes/no'

instructions, referring to each of the other 4 primitives, in order.

The balance between variation and detail, and the amount of data, was established

intuitively, and through brief experimentation. For example, orientation is limited

to steps of 45° about each axis by restricting the x, y &. z components of the 3D

vector to values of 1,0 or -1 (requiring only 3 2-bit segments). Implications of

this and other decisions are outlined in the appropriate sections below.

Chromosomes

type

The primitive type can be 1 of 4 basic shapes: block, sphere, cylinder, and cone.

Limiting to 4 types means only 2 binary bits of information are required. The type

chromosome is therefore 1 segment long, this segment being 2 bits long, and

decoded into an integer (0-3) with each number corresponding to a geometric

primitive type. See table overleaf for summary.

sign

The Boolean, or sign operator is needed to dictate how primitives interact with

each other when combining to form an object. There are four ways to introduce

geometric bodies: 3 interactions: unite (union or addition operator), subtract and

intersect (Figure 4.1.3); or no interaction (co-exist or, create). The sign

chromosome is simply a single 2-bit segment. See table overleaf for summary.

65

Primitive block sphere cylinder

Segment

Binary

Integer

Sign

Segment

Binary

Integer

rc r 00
0

I Eýri'1

01
1

create unite

C44t

00
0

01

1

FIT-]

10

2

subtract

WF
10

2

Figure 4.1.3 - The intersect Boolean operator

66

cone

ý*

11

3

intersect

.;
ýr ml,

11

3

origin

The primitive's origin, relative to its local co-ordinate system, requires three

values. Given that an approximate resolution of 1, within a range of between 0-50

and 0-100 was desired, a 6-bit segment length was decided upon, giving a range of

0-63. So the origin chromosome contains three 6-bit long segments.

It is necessary to adjust the origin values for the formation of blocks, cylinders

and cones. Instinctively, a solid's origin should constitutes its centre (of gravity),

as with spheres, and not the CAD system's default requirement for the bottom left

front corner for blocks and the centre of the base for cylinders and cones. This is

simply for consistency, enhancing the inheritance properties.

For example, if a sphere of a certain size mutated into a block in a later

generation, the expectation of continuity would dictate the block should be in the

same place, rather than moved by an amount equal to the radius of the sphere in

the +x +y +z direction (Figure 4.1.4).

direction

Cylinders and cones are created along 3D vectors'. Limiting the angular

resolution to steps of 45° permits a simple vector made up of the values of -1,0,

and 1 (Figure 4.1.5) and provides 26 possible permutations (the null vector 0,0,0

is converted to 0,0,1). 2-bit segments produce 4 output values so it has been

decided to bias the outcome with a double chance of the zero value -a tendency to

align shapes with the individual axis further encouraging visual unity. A direction

segment therefore contains one bit defining the value (0 or 1) and one bit the

polarity, allowing -1, -0, +0 and +1 (Figure 4.1.6 overleaf).

t It is noted that ideally, for perfect consistency, the creation of blocks should be able to use the
direction function.

67

Parent Object Child Object
sphere mutated to block

No Origin Adjustment

type change also causes positional change due
to differing origin standards in CAD system

With Origin Adjustment
adjusted origins = decoded origins -1/2 length values

origin adjustment creates a better result,
consistent with user expectations

Figure 4.1.4 - Origin adjustment

68

I

6ý
Gý2

c' _3 v

4

9 110
7

�112
13

/

11
14l

1 0,0,1
2 0,1,0
3 1,0,0
4 0,0, -1
5 0, -l'0
6 -1,0,0

7 1,1,1
8 1, -1,1
9
10 1, -1,1
11 -1, -1, -1
12
13
14 1, -1, -1

22 23 15 1,1,0
16 1, -l, O 6
17 -1, -l, O
18 -1,1'0

17
19 1,0,1

5 20 1,0, -l

cýl «ý '
24

25 20

21 -1,0, -1
22 -1,0,1
23 0,1,1
24 0,1, -1
25 0, -1, -1
26 0, -1,1

Figure 4.1.5 - Angular resolution of creation vector

69

segment

/Y-L\ polarity value

on
I '

bý.

+

direction chromosome

creation vector -1, +0, +I

Figure 4.1.6 - The direction chromosome

There are two reasons for limiting the angular resolution: Firstly, economy of

data, and secondly for visual simplicity. When analysing the inherited features of

objects, changes can be more easily observed when comparing generations. The

reduction in diversity is sacrificed for increased visual unity.

shape

In defining a primitive's proportions, cylinders need 2 values, cones 3, and blocks

3. Therefore, for spheres and cylinders there are redundant genes. The decoded

values are within the range of 0.01 to I and use 6-bit segments to give a

satisfactory resolution of about 1.5mm when multiplied by the size value.

size

Adding a size chromosome to the genotype allows shapes to retain their

proportions whilst changing just their overall scale. The size chromosome is

decoded to between 10 and 100 and multiplied by the shape data. This gives a

combined range of 1 mm to 100mm for a given dimension. A six-bit segment

again gives sufficient resolution.

70

blend

Various ways of applying blending to an object's edges have been investigated,

and are documented later in this chapter. To accommodate `simple' blending,

where each primitive is dealt with individually, before the next primitive is

introduced, at least 12 segments (arising from the 12 edges in a block) are

required. Having 12 segments per primitive is often not enough to cope with the

increased number of edges often produced with whole object blending', so 6

additional segments have been provided. In Figure 4.1.7, below, two blocks have

been united, creating 6 new edges. In some cases, these new edges can be

associated with one of the contributing primitive's set of blend data, giving rise to

the need to provide at least 18 segments per primitive.

Single block

12 edges

Two united blocks

30 edges

Figure 4.1.7 - Provision for additional edges

2.

5

28

As with the size and shape co-operation, a multiplier segment is included,

dictating the `blendedness' of an object. Another segment is also provided,

dictating the frequency of blends (or how many edges in an object are blended).

interaction

As described in the following section, a chromosome has been included to dictate

which adjoining primitives can be interacted with. Each 1-bit segment

corresponds to one of the four other primitives contained within an object.

The objects are formed (all primitives are introduced, and all Boolean operations are completed)
before blending is applied - further details are given later in the chapter

71

Summary of the genetic data structure

Range Translated as :

I type 0 -3 block, cylinder, cone, sphere
2 origin 0-63 local x, y, z co-ordinates
3 sign 0-3 create, add, subtract, intersect
4 direction 0-1,0-1 31) vector
5 shape 0.01 -Ix, y, z lengths
6 size I- 100 multiplier value, x shape

7 blend I- 100 multiplier range, x radii
1 -5 frequency
1- 32 radii

12
36
12
32
36
16

16
16

18 6

8 interact 0- I switches for other primitives 41

Chromosome Diagram

T 1 1-1 1 ý-LLIJ=

t ELý
LI I III - I-I I UI [III

I
1 -l [I

I-I III

IfHIII
clýý 1.1 1

Q-QJ-Iý

72

4.2 Object Creation

Objects arc constructed from up to five geometric primitives, their ultimate form

depending on how and when the Boolean operations are carried out. The number

of primitives per object can be changed if desired, though using five primitives per

object has been shown to consistently produce good results. The idea of variable

numbers of primitives per object is explored in the next section.

The more attractive and usable objects generally occur when the most (4 or 5)

primitives contribute and a variety of Boolean interactions are used. To reflect
this, several construction techniques have been investigated with the aim of

achieving the most from each set of primitives.

Objects can be 'Normal', where all primitives are created whether they interfere

with existing bodies or not (some objects are made up of several solid bodies) or
'Cohesive' where potentially-unattached primitives are not created (objects

consist of just one solid body). 'Normal' objects will always contain the cohesive

part, but also any of the other primitives that arc not attached to the 'main' solid
body.

4.2.1 Sequential Object Creation

The simplest approach is the method whereby (after the first object is created)

each primitive's Boolean operation is attempted at the same time as its

introduction (calling on just one modelling function in the program). The target
body (where necessary) is, by default, the last active body; i. e. the last created

primitive or last updated body. Although code efficient, the disadvantage of this

method is that primitives arc often wasted: Primitives with interactive (unite,

subtract or intersect) operators arc not created if they do not interfere with the

active body. Figure 4.2.1, overleaf, shows the creation of an object using the

sequential creation technique, alongside its genotype, and is described on the

subsequent page.

73

74

%t0-t

Commentary for Figure 4.2.1 - Sequential object creation:

1 The first primitive, a medium

sized cone, is created

Object consists of 1 body

The first object is always created,

irrespective of the genetic instruction, a

Boolean operation is meaningless at this

stage, there being no body to interact with

2A similarly sized sphere is

united with the cone

Object consists of 1 body

3A large block is created,

engulfing the current body

Object consists of 2 bodies

4A large cylinder is intersected

with the block

Object consists of 2 bodies

5A large sphere is subtracted

from the block-cylinder body

Object consists of 2 bodies

Had this sphere not been interfering with

the existing cone, it would not have been

created - it is this property that is

exploited to create cohesive objects

The create operator allows primitives to

overlap without joining with interfering

bodies - this block forms a second body,

and takes over as the active body

The intersection acts on the active body

(the block) updating it to the intersected

shape seen here. The first body, consisting

of the cone and sphere, remains intact

The subtract operation acts just on the

active body, again leaving the other body

intact and revealing a large portion of the

original sphere

75

4.2.2 Cohesive Objects

Users of the early prototype system expressed the desire for exclusively cohesive

objects. A suggestion was that the existence of fragmented objects significantly

detracted from the overall `look' of the system, giving an `amateurish' appearance

by emphasising the objects' simplistic `collection of primitives' basis. The main

counter to this point was that if the user selected only cohesive objects from early

populations, then subsequent generations would contain predominantly cohesive

objects. Also, that overly constraining early populations stifles diversity and

reduces the potential quality of later objects. As it happens, it has been necessary

to develop a robust method for creating cohesive objects to enable geometric

analysis to perform effectively.

The sequential method described previously is adapted as a simple (but not

particularly efficient) method of creating cohesive objects. Any create operators

are changed to unite, meaning that a new primitive that would not interfere with

the main body (if created) are not introduced. This is a heavy handed but robust

way of ensuring cohesive objects, but results in a lot of unused primitives.

Leaving out a large number of primitives can exclude potentially valuable parts

(Figure 4.2.2), and reduce the visual inheritance of related objects. With

hindsight, a more effective technique would involve an adaptation of the post-

creation Boolean process described presently - isolated primitives being deleted,

after the whole object had been created. The problem of deciding what to do if an

object consists of two separate bodies, each made up of two interacting primitives

could, no doubt, be easily overcome.

76

46

4

irrr

0

0

,ý
Jý

0

ý

w

ý

C
0

:. _.
(ß

Q
O
0-

a) >
N
a)

-r- O
U
ý

a)
N
>
:3
ý
a)
E
0

`

ý

C
"ý

N

E

^ý A

I

N
N

, ü)
LL

77

4.2.3 Post-creation Boolean Operations

The problem of losing potentially useful primitives, associated with the sequential

method can be overcome by creating all five objects first, and then carrying out

each primitive's given Boolean operation with (one, some, or all) intersecting

bodies (according to a selection of available rules). This ensures primitives

generally have more opportunities to interact (Figures 4.2.3 - 4.2.5) and

consequently populations contain more contributing primitives (Figure 4.2.6).

Displaying all primitives also makes it easier to recognise inherited features.

Again, the subtract and intersect operations remove some of this advantage, but

consideration of the options below has produced a greatly improved situation to

that of the sequential technique.

The three techniques developed for determining which primitives are selected as

targets for Boolean operations are as follows (Figure 4.2.7):

All interfering bodies:

Adjacent creation order:

The selected primitive interacts with all interfering

bodies. The simplest option to program, but often

`too' effective, with many objects suffering from

over zealous subtractions and intersections.

A better balanced approach, which doubles the

chances of a successful interaction over the

sequential method, is to consider the two primitives

created directly before and after as potential targets.

Selected targets: As is often the case when dealing with Genetic

Algorithms, the best approach is to allow variability

by including a chromosome within the member's

genotype to control parameters. In this case, each

primitive contains a four bit binary list dictating the

primitives with which it is allowed to interact.

78

1

2

blue - create
magenta - unite
orange - subtract

8

9

a, 1ä6

m, ... >

ý
ý

Figure 4.2.3 - Post-creation boolean operations

79

K14
ý

1

2

3

4

5

C

unable to unite

4

Figure 4.2.4 - Equivalent object created
using sequential boolean operations

80

Figure 4.2.5 - Comparison of the two creation techniques

81

Normal mode

lk

I

C

r

L'

4
ý& Ilk t_

ýý

a

ýtfý

41 ý

0
w

2r
1 1, I& '1

Generation

,A

0 ýýýý ý^

1

2

lk

C
ýý -

Cohesive mode

0

0

0
0

8

t
ý

, qr

4F. 4.0 0*0e
i. -19r ««

V1,

ýo db. `: 4"

0

ýt
1"

r -"

ý

c-

ý

i

` 4k
s

(,
ý

a
(

ý`

3

4ý

l

0

"

ý(

ý ý
P.

(
l.

t'

s .ý 0(1ý R% 0
0

fý

Figure 4.2.6 - Comparison of equivalent normal and
cohesive populations

. fj

`J
14

e

I

9

a

9

0

I

8

41ý

1ýeýý

1*

40

1

82

N
>

c E
.` rn
ý cý

R3

4.3 Teamforming

User interaction necessitates using small populations, so there is a need to

maximise the potential of all of the primitives within the population. There is also

the drive for efficiency - minimising the number of generations or time spent.

An object's fitness is dependent on the grouping, interaction, method, and order of

creation of constituent geometric primitives. A method of more closely

controlling these factors has been devised, first introduced in [Graham2], and

investigated, with the intention of grouping together primitives in a co-operative

and complementary manner.

Using the biological natural selection analogy: If a prey animal has particularly

keen eyesight, but lacks strong legs to escape a predator, then despite its eyesight

it will probably not survive for long. Even if it does survive, its weaker leg

characteristics will probably be passed to its offspring, which would soon be

eaten. In either case, the keen eyesight gene will most likely be lost'. Within the

EFD software, Teamforming can partially overcome this type of problem: When

the designer sees an interesting feature, even combined with less desirable

features, it is possible for that feature to be carried over to the next generation,

without the accompanying weaker features. The strong feature can proliferate

through the population in one reproductive cycle. Of course, the less desirable

features that were part of the highly rated object would also get the same fitness

advantage initially, but, crucially, would not always end up grouped with the

desirable feature since features are formed from individual members, and are

independent during the reproductive phase. The less desirable features could soon

be weeded out. This is like the constituent parts of a creature being able to breed

independently, then reforming to produce a super-creature. Or less implausibly,

like team creation in society, where complementary members are sought to form a

team for a suitable task.

' If this particular animal could find a mate with good legs, and they had plenty of offspring, then
some of the offspring may inherit just the desirable properties from each parent. This requires
conscious mate selection though - something not investigated within in this technique, and large
numbers of offspring - again impractical given the interactive nature of the evaluation technique.

84

Variable size teams

The Teamforming method also offers the potential for variable numbers of

primitives per object within a single population. The perceived benefit of this is

that users could quickly `discover' the optimum number of primitives per object

for their particular application, rather than using the current default value of 5, or

experimenting with a different value at the start of each session.

4.3.1 Reproduction within Teamforming

In the lower half of Figure 4.3.1 is the third-generation object `g3t10-grey. This

object is made up from a team of 5 members (phenotypes) - these team-members

are individual primitives, and are shown above the object. Each member-

primitive has a pair of parents, from generation 2. These are shown in the upper

half of the figure, below the objects that they contributed to. Figures 4.3.2 to

4.3.4 show the 3 objects from generation 2 in the above example, and their

contributing team-members. Some of these members are selected as parents for

object 'g3tlO-grey', shown in Figure 4.2.5. The creation order is dictated by the

order in which the primitives are selected for their team, which is in turn dictated

by the Teamforming tactic employed'.

This technique allows objects to inherit their features from several sources (rather

than the two parents for single genotype objects) - in this example, genetic

material from three objects is combined (through Teamforming) to form the

featured object. Interestingly, it also permits a smaller number of primitives to

parent the contributing members - in this case 8 (whereas usually 10, five

primitives from each parent, contribute). This added flexibility is accessed

through the scoring method - the more objects that are rated, the larger the

available gene-pool is for reproduction, and the more diverse the source of parents

will be for a given object. If just 1 or 2 objects are given relatively high scores,

their features will appear throughout the subsequent population.

1 This example was produced using the 'no-tactic' option, where team-members are simply taken
from the primitive list sequentially

85

3
0

co
N
0)

M
4

d)
L-
=3

11ý
1. ý

86

ýý

0
YQ.

V
4-

ýýb,

ýJ
ý

3 GßýPýý

ý
U)
-0 E
C()
C

ý
ca U)
--ý

U)
ý

I
ý

M
U)

4-
0
U)

a) L-

M Q

0)
"ý

m

U

C
U)
U)

a)
N
N
ý

U)

0
C
0

4- N
^L`
W

^C
W

CD
'D
C

N

M

14
U)

0)

E

87

1 CREpTE

ýJ

Q4 ýý

C40)

40

ý
ýV

N
U)

ý
E
U)
E

E
N
()

ý
U)
L
c3)

ü)
ý O
ý
C
U)
ý
Q

ý

C

ý

C
O
V

ö

U)

(D

U
4)

ý'
O
c
0

: 4- Co
ý

^c
W

rn
'D
C

N

Cl)
Cl)
4

4)

1ý

88

..
0)

N
-Q ý
N

«
-0
Qi

i
O)

0
x-

M

_0) ý
O

(Q ýQ

..,
0

O
U

Il!
Q

OG
v

0

1! ý
rQ
ý
v
ý

89

2 uNITE

ýJ
bý

ýS4

a)
ýü

_0)
U
q)

O

0

^i,

V

W

W
ý

c
N

M

i IT 3

LL

(U

(1) ý.

W
W
ý
U

90

A.)

Ytý

ä ý
~cfl
3

a

LO

ri
tt

a)
:3

ý

4.3.2 Team Selection

Tactics

A number of tactics for grouping primitives together have been developed. These

tactical preferences/drives can be for similarity ('alike' - primitives with similar

characteristics strive to group together), or diversity ('mixed' - primitive diversity

within the object is actively sought).

1. Teamforming according to size chromosome value (Figure 4.3.6)

Teamforming by alike size enables rapid exclusion of small primitives (top) and

convergence to objects of a desired size (bottom), whereas by mixed size, all

objects have a spread of primitives of varying sizes (middle).

2. Teamforming according to primitive type (Figure 4.3.7)

The primitive type tactic enables either a guaranteed mix of primitives (middle,

bottom) or most objects to be based on just one primitive type (top).

3. Teamforming according to Boolean sign (Figure 4.3.8)

Grouping primitives of alike sign has limited use (top, middle), however using a

variety of Boolean operations to generate objects generally produces the best

results, and can be achieved using a mixed sign tactic (bottom).

Grouping Method

The method used to select teams is as follows: All members are ranked according

to the Teamforming tactic, then either taken in blocks of 5 for `alike' grouping, or

allocated to each team in turn for `mixed' grouping. The disadvantage of this

method is that it leads to the rather clinical appearance of the population, as seen

in the figures. An improved method is suggested where, for alike grouping, a

simplified version of roulette wheel parent selection is used. Suitability would be

based on how close individual's values are to the required tactic value (or value of

the `team captain'). For mixed grouping, this technique could be adapted by

basing suitability on the difference a member's selection will have on the team's

overall standard deviation. An additional benefit of this probability-based method

would be the ability to re-shuffle a population by re-selecting teams.

91

irt

,
ZK

r
P. (11 tC0 et «

0F0 ew

0

ý

Normal Objects size tactic - alike

Xt(
r

C'
f r,

010

Normal Objects size tactic - mixed

46

Cohesive Objects size tactic - alike

.t

r %.

4

No Blending

No Blending

Blending

Figure 4.3.6 - Teams grouped by size chromosome value

92

º4

Normal Objects type tactic - alike

ý ýj i
ýý IN'

O> (

ý -- a

46

Normal Objects type tactic - mixed

4r 1. Z.
I'

6irc

1

Orr L-ý
Cohesive Objects type tactic - mixed

Figure 4.3.7 - Teams grouped by primitive type

4

c

No Blending

No Blending

Blending

93

L

rr
4, i

(ii.,
r c c

c_ý
c " '

Normal Objects sign tactic - alike Blending

rr r6

Cohesive Objects sign tactic - alike

S

4(ar
it,

Aopw-

ok
9

No Blending

0f

441

Cohesive Objects sign tactic - mixed No Blending

Figure 4.3.8 - Teams grouped by boolean sign

94

Tactic Selection

As well as the simple method whereby the tactic is established at the beginning of

a session, which has been used here to demonstrate the technique, it is suggested

that it would be interesting and beneficial for the tactic to be dictated by the

population in some way. The following approaches are recommended:

" Dictated by members

Sequential - one team selected at a time
One member selected at random, as the team captain, and it's preferred

tactic used to select four further primitives. The next team captain is

selected from the remaining population. This method would produce

several very fit objects, then progressively weaker objects.

Parallel - all team captains established first

All (14) team captains selected at random, then captains, using their tactic,

take it in turns to select a team member. This method would provide a

better distribution of fitness, but may lack the very fit objects available

through the sequential technique.

The main problem with the above methods would be that the most effective tactic

is not strongly carried over to the next generation. Just one primitive (of five), the

team captain, dictates the tactic, establishing only a 20% positive pressure for

tactic type. There seems to be a good case here for gene modification during

evolution, whereby all team members inherit the tactic from the team captain.

Then if their team is highly rated and the members are selected as parents, the

tactic (that has produced an effective team) is strongly carried through to the next

generation.

" Dictated by population
The whole population is scanned for the most prevalent tactic, which is

then used for that generation. The members keep their tactic gene,

allowing the tactic to change for the next generation if the user were to

select a majority of objects with an alternative certain tactic.

95

4.3.3 The Teamforming Genotype

As described in the earlier section on the genetic data structure, 2-bit segments

(decoded to integer 1,2,3 or 4) control type and sign characteristics. These are

perfectly suitable when using the non-Teamforming, `single phenotype objects'

method. However, when using this genetic structure for team selection, using

these properties (type or sign), the bond between team groups is very weak,

accounting for a total lack of object continuity between generations. This is

because, whatever the specific requirement during team member selection (a

sphere may be sought for example) there are many examples throughout the

population to choose from. It then comes down to a random or arbitrary decision

as to which member is selected.

Continuity is much improved when other Teamforming tactics are employed,

grouping by size for example. Here, it is possible to sort all members according to

this criteria, the data being continuous (real numbers are used). Therefore, when

the instruction to select a body of specific size (or largest/smallest) is given, it is

usually possible to select 1 specific member from the ranked population. The

favourable results achieved, while using tactics based on properties defined by

variable data, led to a change of the type and sign chromosomes: When the

Teamforming technique is utilised, longer 6-bit chromosomes for type and sign

(Boolean operator) are used instead of the two bit segments. These are decoded to

a real number, between 1 and 64. This change has resulted in an improvement in

visual continuity, by restricting the amount of movement between teams of related

members, during the parent selection and reproduction stage.

Equivalent decoded Decoded 6-bit Resulting type Resulting sign

1-bit segment value segment range operator operator

0
1

2

3

1-16 block create

17-32 sphere unite

33-48 cylinder subtract

49-64 cone intersect

96

4.3.4 Conclusions

With evolution-by-objects, where each object is one member of the population
(e. g. of 14), the designer is evaluating the whole object and it is one half of the

whole object's genotype that is carried over to each child in the next generation.
Continuity (the visual links between the generations) is usually displayed between

two parents and their two children. This method of evolution is necessary if a

specific object is being designed. A disadvantage of this method is that it takes a

while for weak objects to be weeded out of the gene pool, meaning that there are

normally more unfit objects than fit ones, at least in early generations. In

addition, weak features of good objects are generally carried through with the

desirable features.

With evolution-by-features, where each object is a team of members (e. g. 1 object

is made up of 5 team members from the population of 70), whilst still giving each

object a rating, the designer is evaluating the features of the objects. This quickly

creates a population of objects with desirable features, but the continuity between

related objects is often lost (Figure 4.3.9).

One of the main problems is that the order of primitive creation is not firmly

maintained within a team. With object based reproduction, the five primitives that

make up each object, being defined by one long genotype, remain in the same

order when reproduction occurs. With Teamforming, or evolution by features, the

team selection process dictates the order of primitive introduction, which is not as

rigidly maintained.

One aspect of Teamforming that has not been developed is the potential for

formation of variable sized teams - this would enable the user to influence, and

thus perhaps discover the optimum number of primitives per object, rather than

relying on the current presumption that five primitives per object is best. This

technique would most suitably be implemented with changing population sizes,
but this is not a particularly difficult development.

97

f

. 0ý

ob

Generation
1

G
to

1

0

(Generation
2

(

ý`

0

i

1
c ýi

Generation
3

W*4

4001ý

ol

C
º

ýI

Figure 4.3.9 - Evolution in Teams grouped by size value

Generation
4

98

4.4 Fitness Calculation

Objective Function

A phenotype's objective value is calculated using the Euclidean normal equation
below, combining the difference values from any geometric analysis selected

and/or the user rating value. The `least squares minimisation' method is

employed, meaning that an objective value of 0 indicates a perfect match with a

target value (e. g. a user-rating score of 10).

M

S =(A ;-
Tj)2

; _1 I
A member's objective value, S, provides a single number that indicates the

difference between it's own geometric and rating parameters, A, and pre-set target

values, T, where M is the number of evaluation parameters employed.

Fitness Function

A member's fitness value is calculated, to between 0 and 1, using the following

equation:

f=
1

1+S
The inclusion of the `1' values is to allow for a scaling factor, useful for multi-

objective problems, but, as discussed below, has been found to be unnecessary at

this stage.

4.4.1 Multiobjective Balance

In this case, sensible handling of the units of geometric analysis negates the need

to set up multi-objective balancing. Using cm, dm2 and dm3, the properties of
length, surface area and volume have similar influence. When geometric analysis
is combined with user-ratings, and realistic target values are specified (generally

values between 5 and 95), a good balance is usually achieved between user-ratings

99

and geometric analysis by generations 3-5. The following table illustrates this -
the example geometric optimisation fitness values were taken from a session

where the geometric target was height = 35.0cm. The table compares the

automatically generated fitness values for a first generation population with the

fifth generation population. To provide a comparative scale, listed to the right of

these fitness values are the user-supplied score values that would have produced

similar fitness.

Member Generation 1 Generation 5

Fitness Equivalent Fitness Equivalent

rating value rating value

1 0.05 0 0.25 7

11 0.13 3 0.52 9

3 0.02 0 0.96 10

4 0.06 0 0.04 0

5 0.05 0 0.53 9

6 0.50 9 0.64 9

7 0.03 0 0.97 10

8 0.05 0 0.54 9

9 0.03 0 0.05 0

10 0.03 0 0.05 0

11 0.08 0 0.03 0

12 0.08 0 0.64 9

13 0.04 0 0.20 6

14 0.07 0 0.05 0

max. 0.50 0.97

mean 0.09 0.39

Reference user-rating values:

rating 0123456789 10

fitness 0.091 0.100 0.111 0.125 0.143 0.167 0.200 0.250 0.333 0.500 1.000

100

This comparison gives an indication of the relative influence of the two evaluation

methods at different stages in the evolution process had geometric analysis and

user-rating been combined.

Generation 1: The mean fitness is low, with only 2 members having fitness values

that compare with typical user scoring values. So at this stage, a

typical spread of user-supplied scores would dominate. This gives

users control at the early stages of evolution - enabling the types of

objects desired to be defined.

Generation 5: A much higher average fitness has been achieved. 9 members have

fitness scores comparable with user scoring values. A generous

spread of user-ratings would have a similar influence to that of the

geometric analysis.

After generation 5, geometric optimisation enables the objects to converge to an

optimal solution rapidly. At this stage, the user could allow the software to take

over, as objects fitness scores tended to 1, ultimately presenting a solution to the

geometric target. Alternatively, the user could continue to influence the direction

of the population, by allocating scores of 10 (equating to a fitness of 1, thus

doubling the combined fitness to 2).

4.4.2 User-supplied Rating

When user supplied rating is the sole evaluation method, two conditions are

exaggerated to increase the usability of the system (Figure 4.4.1): Firstly, a fitness

value of 0.0909... (1/11, produced from a rating of 0) is changed to 0, so that by

giving zero as a rating, the user ensures the object cannot be selected as a parent,

thus entirely removing the object's genotype from the gene pool. Secondly,

fitness values of 1, resulting from a user-supplied score of 10, are doubled to 2.

The full set of values is given in the table overleaf. This simple process was

found to be almost as effective in use and much more reliable than a complex

technique developed to guarantee the selection of an object scoring 10.

101

Rating Objective Fitness

value Value Value

0 10 *0.000

190.100

280.111

370.125

460.143

550.167

640.200

730.250

820.333

910.500

10 0 **2.000

+k

Adjusted from 0.091

Adjusted from 1.000

2.00

1.50

ý 1.00
< ý C
rD

0.50

0.00

Rating Value

LL L
012345 6 7 8 9 10

Figure 4.4.1 - Fitness values calculated from user ratings

102

4.5 Selection and Genetic Operators

A number of established methods exist to carry out the three main processes of:

" Selection

" Recombination

" Mutation

In this application, parent selection is perhaps the least influential operator; the

only criterion being that the method reflects the way in which the user has applied

the scoring system. Of greater importance is the way in which two objects'

genotypes are combined to form a new object (offspring). This is the genetic

operator which dictates, more than any other, the feel and look of the system, and

therefore its usability and usefulness. Mutation is a simple but essential part of

the system, requiring some experimentation to find the best values. Usefully,

mutation probability can be altered mid session, which helps with system

development and during application.

4.5.1 Selection

The small population sizes involved, and interactive fitness allocating technique

meant that it was deemed inappropriate to investigate a large number of advanced

parent selection techniques, or indeed any alternative methods of exerting

evolutionary pressure (fertility or death for example). Similarly, the complexities

of tournament based selection operators were avoided. The typical advantages are

too subtle to be useful and a greater random element than desired would be

introduced.

103

A `fitness ranking' style operator would have been inappropriate since, with this

technique, the actual fitness scores, once the objects have been sorted into fitness

order, are ignored. So given following scores:

Object Score

A

B

C

0

0

0

D 10

E5

F

G

2

I

The detail of the scoring would be lost:

Rank order Rank score Probability

D70.25

E60.21

F50.18

G40.14

A

B

C

1)

2

2

0.07

0.07

0.07

Of the two common fitness proportion techniques, stochastic remainder selection

was the clear choice over roulette wheel selection. It works well with the scoring

technique, giving the user a direct control over the selection, as with the first pie

chart above. A further advantage using a fitness-proportionate method is that it

incorporates the fertility selection method. This allows relatively fit individuals to

parent a controlled but potentially unlimited number of offspring (Figure 4.5.1),

thus dominating the next generations if the user so desires (indicated through

scoring).

104

f-w-1

I ý.

_

i

. ý- -

ý-j

................

r-

T- U) ý

v

... ̂i1

-1

ýý

E
ca LL

ý

ý

ý

105

4.5.2 Recombination

It is important to achieve a balance concerning the continuity of objects through

consecutive generations. If objects look very similar from generation to

generation, the system lacks the required `innovative' characteristic. If objects

display no similarities with those from previous generations, then the system

appears to loose its evolutionary quality, and can become unproductive to use.

In order to maintain the continually innovative qualities of the software, a whole

chromosome or whole segment crossover technique would be inappropriate. With

whole chromosome crossover, the objects in subsequent generations are forced to

draw from the same set of decoded values as the previous population. This places

ever-decreasing limits on the number of local origins, orientations, proportions

and sizes available to draw on. Although on first acquaintance, this trait provides

a reassuring continuity from the user's point of view, ultimately, it does not allow

enough variation. The situation with whole segment crossover is improved, with

objects able to split the 3-part chromosomes, distributing individual origin,

orientation and proportion values separately amongst their offspring. This still

does not allow the continually variable genotypes required for efficient

optimisation or high variability, relying on mutation to produce `new' values.

Intra-segment crossover (Figure 4.5.2) allows the required creation of new

segments, and consequently new decoded values from generation to generation. It

was initially thought that this could pose a problem for the small 2-bit segments

that control primitive type and Boolean operator, producing a lot of `unexpected"

results. But by allowing crossover points to be at the end of segments, it was
found to be ideal, with only I in 12 (8%) of re-combinations deemed `unexpected'

(Figure 4.5.3).

i. e. the crossing of a block and a sphere producing a cone and cylinder

106

I

N
Lri

a)

LL

107

intra-segment crossover

Parent
permutations

00
00
00
00

01

01

01

01

10

10

10

10

11

11

11

11

ME

ME

m

M

w

ME

w

iK

MR

AL

HE

EN

ME

ME

m

IN

Child permutations
Left Central Right

crossover point crossover point crossover point

-m ý

ý

IC

->m --010-p
->m

---º

IC

IC

-*m ->DU
->DU

0

IC

M

ým

0 i 0

0 i 0
0 i 0

0 i I

0 i 1

1 i 0
1 i 0
I i 0

1 i 0

1 i I 1 i I 1 i 1

1 i 1

0 Ei

0 I

0

m
C

0 0

0

0
0

I

5
Ei

rr

A
HE
,E
Lýl
[,]I

1 lc
4

H

0

0

0
0

v

11

ýII

Ul

D 0
0

0
E' 0
u

u

0 i 0

0 i 0

0 i 1

0 i 1

1 i 0

I i 0
1

1

10

NU

1 i I HIi

ý
1 Ii
1 i 1

C 0

m

v

mm

C

11

DIM

mu

m

0 IC

C
ý

UN 8 out of 96 permutations (8.3%) result in a binary number not found in
either parent, producing unexpected primitives or boolean operations

Figure 4.5.3 - Frequency of `unexpected' re-combinations

108

4.5.3 Mutation

The Genetic Algorithm used for this research already contained the capacity for a

pre-set mutation profile. This alters the probability of mutation, depending on the

generation number, and is a useful addition to the evolutionary design system for

the reasons set out in chapter 3. After some experimentation, the mutation profile

below was found to work well with both internal fitness determination, and the

user rating system:

Generation

Mutation probability

5 10 15 25

0.01 0.004 0.002 0.0003

The initial rate of 1% is just on the high side of average, compared to a general
study of mutation probabilities in other applications. The value of 0.01 produces

an average of 2-3 mutations per object (not including blend data), as each object's

genotype contains 260 bits. This maintains the variety in early populations,

alleviating premature convergence when quantitative fitness functions are used

and maximising choice if user ratings are being used. During the middle stages,

the rates drops to 0.004 after 5 generations, giving an average of 1 mutation per

object and 0.002 after 10 generations, giving an average of 7 mutations per

population. The theory being that by this time the population has started to settle

and the recombination of subsequent generations has produced a range of

reasonable objects. During the final stages, the mutation probability drops to just

0.0003, reflecting just 1 mutation per generation.

It is possible to alter the mutation rate during an active session, for example if

useful objects have been created early on in the evolutionary process, the user can

reduce the mutation probability at this time, to avoid over-disrupting future

generations. Conversely, if too many of the objects are looking similar (the user

has reached a `dead end'), by temporarily increasing the mutation rate to a high

value, radical changes can occur when producing objects in the next generation.

A value of 0.5 will effectively shuffle the next generation's genes, creating a

pseudo-random population.

109

There are two ways of altering the mutation probability mid session: By entering

the actual segment probability (as a decimal fraction) or, a more user-friendly

approach, by selecting from a menu:

Mutation level Mutation Mutations

(from menu) probability per object per population
(each bit) (mean) (mean)

Randomise 0.5 130 1820

Very high 0.02 5 70

High 0.01 2.5 35

Medium 0.004 1 14

Low 0.002 0.5 7

Very Low 0.0003 0.07 1

Negligible 0.0001 0.036 0.5

No mutation 000

110

4.6 Internal Optimisation

This research's primary focus is on user-supplied scoring as the criteria by which

objects evolve. As discussed previously, research in the engineering and product

design fields tends to use automated objective functions provided by simulation or

analytical software, to optimise components, such as flywheels, jet turbine blades,

and tables. Measurable properties, such as specific energy density, air resistance

& heat flow, and centre of mass are used evaluate objects, and enable a user to sit

back and watch the objects evolve to fit these specific, quantitative, requirements.

It was felt that this aspect of evolutionary design should be investigated during

this research, its inclusion demonstrating the principle of evolutionary

optimisation and the wider scope of the research. Geometric analysis has been

selected for several reasons: Firstly demonstrating that the software can be applied

to problems like those mentioned above, and secondly to assist the designer if the

form specification includes simple concepts such as volume, size, and stability. A

further intention was to investigate aesthetic concepts (proportion, unity etc.)

analytically, by geometrically evaluating high and low scoring objects and finding

patterns using artificial intelligence techniques.

Gaining values for the geometric properties of objects is a relatively

straightforward process: The CAD system provides a wide range of mass based

geometric analysis including surface area, volume, bounding box, mass, centre of

mass, and moments of inertia. Accessing the information is a case of identifying

the solid body concerned, providing the tolerance data, and calling the appropriate

function. The target values for those properties selected are entered by the user at

the beginning of the session; the evaluation criteria included with the software are:

" bounding box volume
/

" individual x, y and z dimensions

" volume

" surface area

III

In terms of practicality, the first two criteria are very much dependent on

orientation. For example, a thin 85cm long cylinder inclined at 45° to all three

axes (creation vector 1,1,1) has the same bounding box volume and dimensions as

a 50cm cube. However, during operation, due to the adaptive nature of the search,

the most reliable shape at fulfilling the criteria usually prevails (e. g. cuboids for

bounding box and multiple dimension optimisation, spheres for volume, surface

area and single dimension optimisation).

Fitness Calculation

As mentioned in section 4.4, fitness is calculated by summing the squared

differences (comparing a solution's evolved values with the target values). An

even weighting between properties (including user ratings) is achieved by

normalising the differences before summation.

4.6.1 Geometric Optimisation Examples

The first example, shown in detail in Figures 4.6.1 to 4.6.3, and animated on the

CD-ROM, demonstrates optimising to a bounding box of volume O. 1m3. The

software achieves a solution within 10 generations, accurate to 0.5%. The key

stages in this process are described below:

Generation 1 Initial random population

Generation 5 Suitable object type established

Generation 7 Population converging to single blocks

Generation 8 All objects are now blocks except occasional mutations
Generation 11 Very fit object created
Generation 13 Very fit object's genes have proliferated through population

Generation 16 Approximately one mutation per population

Generation 17 Population has converged

Generation 20 All blocks except one measure 31x47x69 = 0.1005m3

112

target: bounding box, volume of 0.1000m3

solution: block, volume of 0.1005m3 (31x47x69cm)

accuracy: (0.1005 - 0.1) - 0.1 = 0.005 = 0.5%

achieved in: 11 generations (population size: 14)

1

cr,

5

object type established

0.6

0.5

0.4

0.3

0.2 ----_

"
19r

_ lk

-0

initial population

a

r

/r

fb'
0

0

" 0" le r

Maximum Fitness

Mean Fitness

0.1

0.0
ý u

11

0

solution found

17

population converged

123456789 10 11 12 13 14 15 16 17 18 19 20
Generation

Figure 4.6.1 - Automatic Geometric Optimisation

I

113

glop',

2

Al
fcr

ý

9

a

9
0

v

410

ft

0

0

38

Mý

"I

ir

ý"ýý i0
"

`

4

I(

-I

t

f

7

fý,
S'ýS

ý

'

ý

I

0r

r

0

f' r'"
.s

5 10

f0 1'
le

01,
r

ar0

40 No
I

9

6

Ft f4

/"
""'

Figure 4.6.2 - Automatic optimisation: Generations 1-10

A
0

ro
I

6

114

11 16

12

0

0

13

I
'

17

18

'

I

/

r

I
I

'

t
a

ý ý"
ff" "

14

I f
6

I

15 20

I I
p

/

I
0

f
f
f

I
I

L

p
p

0

19

I
"

Figure 4.6.3 - Automatic optimisation: Generations 11-20

115

Three further examples are summarised in Figure 4.6.4, and in the table below:

Optimisation Target Solution
ý U
cý
ý.
ý
U
U

Qý

Volume 0.05000m3 0.049986m3 0.028%

Surface area 0.80000m2 0.779974m2 0.033%

Dimensions 20x l Ox5Ocm 20x l Ox5 l cm 0.667%

11 16

9 14

17 25

Generation - The generation in which the solution is first produced

Convergence - The mean fitness reaches (or is very close to) the maximum fitness

Similar tasks have been repeated, with different starting populations, confirming

that these results are typical. The dimensional example exhibits a lower accuracy,

and takes significantly longer to find, and converge to, a solution; this is because it

is optimising to three parameters, rather than the single-objective optimisation of

the other examples.

116

Volume - Target : 0.05m3

((
"(

t

K

generation convergence
11 16

0

solution
0.049986

Surface Area - Target : 0.8m2

ý ý

generation convergence
9 14

I

I

accuracy
0.028%

polo

op ýý ý "

solution
0.79974

Dimensions - Target : 20x l Ox5Ocm

i
<Ir I<< <

II
I

IF

accuracy
0.033%

I
I

generation convergence solution accuracy
17 25 20x10x51 0.667%

Figure 4.6.4 - Three further optimisation examples

I

117

4.6.2 Conclusions

The inclusion of geometric analysis functionality has enabled the Genetic

Algorithm to cycle through a series of generations without the intervention of the

user, akin to more typical evolutionary optimisation. This has enabled

observation of several common traits of genetic algorithms, including premature

convergence. This can, however, tenuously be interpreted as a positive, in that

identifying familiar and expected traits (the small population size of 14, needed

for usability of the user-led rating method is the primary reason for the occasional

premature convergence) confirms predictable operation of the genetic algorithmic

aspect of the programming. It also gives an indication that settings optimised for

an interactive approach are not perfectly suited to automated optimisation against

geometric properties.

1 An automated optimisation of this type would typically use a population of 30 or so

118

4.7 Edge Blending

The union or subtraction of two geometric primitives can produce some

aesthetically interesting results [Grahaml]. Elliptical, parabolic and hyperbolic

curved edges can be produced from these interactions [Anton]. However, it was

felt that by enhancing the objects, through the addition of blending, the needs of

product design could be better fulfilled. Applying random blend radii to edge lists

of complete objects (collections of primitives) produces some highly pleasing

results, showing what can be achieved using edge blending [Graham5]. The

challenge has been in trying to produce blend radii lists from objects' genotypes

and apply them to the objects' edge lists in a consistent and elegant manner, in

order that continuity between generations is maintained.

4.7.1 Random Blending

Random blending of complete objects has been used to establish suitable values

for blend frequency and radii (within the range of object sizes produced). A list of

edges from each body in the population is created, and subjected to blending, with

the probabilities and ranges given below.

Proportion 30% 5% 30% 5% 15% 15%

Radii range 1-2mm 2-5mm 5-10mm 10-25mm 25-50mm 50-100mm

Blending enhances the appearance of objects in three distinct ways (Figure 4.7.1):

Small blend radii (1-2mm) smooth off sharp edges, increasing the realism of

objects. Medium sized blends (5-10mm) round off edges and create fillets where

objects join, creating more rounded and integrated looking objects. Finally, and

most significantly, large blend radii (25-100mm) dramatically alter the shape of

objects, creating more complex curves and producing innovative looking objects

that belay their humble geometric primitive-based origins. Some of the objects

shown in Chapter 5 (the `Pelican' sculpture, and the bar seat and sofa designs)

rely on large blend radii for their defining characteristics.

119

Medium (5-10mm) blends

smooth edges
highlights

Large (25-100mm) blends

ý

L__

Small (1-2mm) blends

i new shapes created

Figure 4.7.1 - Small, medium and large blend radii

120

4.7.2 Genetic Blending

The `Blend' Chromosome

Each primitive's genetic structure has a dedicated blend chromosome, containing

20 segments. The first 2 segments are applied to the other 18 during decoding,

one as a multiplier, affecting the range of radii values, the other as a frequency

control, converting a certain proportion to zero values. The remaining 18

segments are decoded into radii values.

Simple (Pre-Boolean) Blending

To avoid problems of edge identification after the primitives have combined to

form objects, a simple method, which places the priority on evolutionary qualities,

has been devised. The decoded radii values are applied to the primitive edge list

(the first 2 values for cones and cylinders, or all 12 for a block) in the order in

which the solid modeller has numbered the edges. This order remains consistent

while the modeller is dealing with individual primitives. Therefore by applying

edge blends to primitives sequentially, before they interact with each other, good

continuity between generations is achieved.

Although this method has the potential to sometimes produce more complex and

attractive forms than whole-object blending (Figures 4.7.2 - 4.7.4), in general, the

sequential nature of pre-Boolean blending prohibits some of the most interesting

possibilities achievable through whole-object (post-Boolean) blending.

Whole-object (Post-Boolean) Blending

If visible inheritance is to be maintained, it is important to establish a strong link

between the gene associated with an individual primitive, and the primitives that

contribute to features on an object. This is a more complex issue for the blending

of edges than for the previous object creation stages, requiring careful

management.

121

122

_0
N
4-J (p

U
d)
Q)

ý
Q

ý

_0
(1)

a--+
rß
a)
U

-Y U
0
C)

0)
C

a)
a) a--i
C

-0
N

a-1
U
(Z L

a--J

-0
1

U
0
CC)

a)

a) ý

Q
ý

ý
ý

ý

123

ý
N

ýti-; ý
C
N

n
LA
Q)

7: 3
(1)

a-J
U
(1)

O
ý

I

ti

N
L
ý

124

By identifying which features are associated with each edge on each body (within

each object) and comparing them to the five originally created primitives that

make up the object, the ownership of all the edges of an object can be established.

The following example (Figure 4.7.5) demonstrates this, and is also referred to in

the descriptions of the 3 edge association methods.

Figure 4.7.5 - Example of edge ownership

1. block 1 created

feature A created --* body 1 created -> edges 1-12 created

2. block 2 created and united with body 1

feature B created -* body 1 updated -4 edges 13-30 created

" body l =A& B

" body 1 has 30 edges

" edges 1-12-4 A

edges 13-24-4 B

edges 25-30 -* A&B

125

4.7.3 Shared Edges

When new bodies are formed through Boolean interaction, new edges are created

that are associated with multiple primitives. Blend values for edges that are

unaffected, that is to say, edges owned by just one primitive, are taken from the

corresponding chromosome. A number of alternative methods have been devised

to deal with shared edges (Figure 4.7.6).

Order Hierarchy Method

Contributing primitive AB

Edges 1-12 25 - 30 13 - 24

Data is allocated by primitive association in strict creation-order hierarchy, shared

edges receiving no special treatment. So all edges associated with primitive A

take blend radii from primitive A's blend value list (irrespective of whether the

edge is shared by another primitive). Any remaining edges associated with

primitive B use primitive B's values, and so on. This method is straightforward to

implement, but values from early primitives' blend lists are used up quickly (and

sometimes have to be re-used). Many later-created (3`d, 4th or 5`t') primitives'

values are therefore often not used. Consequently the first primitive's influence

becomes dominant, especially in cohesive (non-fragmented) objects.

Mean Value Method

Contributing primitive AB

Edges 1-12 25 - 30 13 - 24 25 - 30

Shared edges use a mean radius calculated from the 2 appropriate values from

each of the two owning primitives' list. Both primitives share equal influence, but

more blend values are used up in the process. More importantly though, large and

small radii are normally lost in the averaging, significantly limiting the range of
interesting shapes produced.

126

order hierarchy method
creation

block A genotype
segments

Q®Q®®Q
type

origin
boolean

orientation
proportions

size

blend data
II segments

IiI

l
edges 1-12

edges
13-24

It'

edges
25-30

blockBgenotype Q®Q®®Q unuou,
creation blend data

segments segments
m= multiplier segment
f= frequency segment

mean value method

block A genotype Q ®Q ®® Q

last 6 values not
used

III

i Th
IIIIIIIIIIIIIIIIIIIIII

AL L
block B genotype Q®Q®®Q

alternate value method
block A genotype

I ý--l

block B genotype ®ý ®®

Figure 4.7.6 - Edge association methods

127

Alternate Value Method

Contributing primitive A B

Edges 1- 12 25,27,29 13 - 24 26,28,30

Shared edges are grouped according to their associated primitives, and composite

blend lists constructed for each group. Values are taken alternately from

contributing blend lists. The most complex option to program, but the most

satisfactory in operation, providing efficient use of blend data, balanced influence

across the primitives and reasonable inheritance properties.

4.7.4 Further Work

Some difficulty is caused by a lack of control over the order of edge numbering

after primitives combine in a Boolean operation, resulting in the reduction in

visual continuity between generations when edge blending is employed. Avoiding

the use of the modeller's default edge list altogether may provide a better overall

solution. Two suggested lines of investigation are using edge location, and edge

length as identification criteria. With the location strategy, the centre point of

each line is calculated, and a ranked list created in order of distance from the

lower front left origin point of each object's local co-ordinate system. Similarly,

the length strategy would list the edges in order of length.

Also noted is the problem of blending edges in sequence: It is possible for edges

in the original edge list to be deleted by previous blend operations, sometimes

causing modelling errors or program crashes. Producing several edge lists, i. e.

one list for each feature, may be possible, and could increase reliability.

128

4.8 Conclusions

A prototype computer aided evolutionary design system has been developed, in

order to explore and realise the aims and objectives of the research. This has

involved the key aspects listed below:

" Establishing an efficient product representation, in terms of genotype (genetic

data structure) and phenotype (3D geometric object).

" Developing effective methods of creating objects through Boolean interaction

of geometric primitives.

" Devising a technique for grouping simple phenotypes (primitives) together to

create complex solutions (objects), according to various tactics.

" Adapting standard fitness and objective functions for use with interactive

evaluation, negating the need for specific multi-objective techniques through

the intelligent treatment of measurement units.

Preliminary research into automatic aesthetic assessment, through fitness

penalties (reducing the fitness of objects with non-attached primitives).

" Investigating the effects of established genetic operators; adopting appropriate

selection and crossover techniques, and establishing effective mutation

profiles.

Incorporating the capacity for automatic optimisation, using the volume, size

and surface area geometric analysis tools from the underlying solid modeller.

" Using edge-blending techniques to increasing the aesthetic potential of

evolved objects without loss of visual inheritance properties.

Figure 4.8.1 demonstrates the inheritance properties achieved early in the research

(before edge blending was introduced). Evolution of objects with blending is

demonstrated in the interactive ancestor diagram contained on the enclosed CD-

ROM, in the detailed recombination example in Appendix B, and during the

following chapter, where two applications of the EFD system are described.

129

a) C
0
C
0

Co
^L`
W

W
ý

00
Q

ü)

6'

vr

. ý.
V

/

U)
c
0
+.
cý
a)'
a)
ý

0
a]
%
0

ý

()

M
U
U)
a)
--,

co
() 14-

C
M

C

0 r)

I

a) >
O
C6
Q

4-
O

0
ý

A
E
(ü

a)
C

0
r N

E
(0

rn m
_0

ý
L

W
U
C

c6

a) L

a)
LL

130

CHAPTER FIVE

APPLICATIONS OF THE EFD SYSTEM

5.1 Seating Design

An informal evaluation of the EFD system has been carried out by 1` year

undergraduates on the department's Product Design and Manufacture course. The

objective was quite straightforward: To use the software for aesthetic concept

generation by evolving forms suitable for consumer products, and then add the

finishing details by hand, using conventional CAD techniques. Seating, as the

general theme, encompasses many potential forms and suitably bridges the fields

of art and design in its balance of the aesthetic and the functional.

After a brief familiarisation and experimentation period, a suitable combination of

operating modes was selected: The cohesive mode was chosen for its ease of use,

complemented by whole-object blending, giving the best selection of interesting

forms'. Very little modification was needed `post-evolution' before assigning

textures and materials and placing the chairs in a suitable setting. The illustrations

displayed over the following pages are the results of this exercise: In the first four,

Figures 5.1.1 to 5.1.4, each evolved object's population is shown above its picture.

The following set of four illustrations (Figures 5.1.6 - 5.1.9), from [Case], show

photo-realistic renderings of the completed seating designs, and also highlight the

changes made to each object.

By not limiting the design brief to one specific type of chair, suitable forms were

quickly created - within several minutes in fact. The four evolved shapes were

taken from generations 2,3, or 4, with two objects taken from each of two

sessions. This makes a total of 12 populations viewed, comprised of 144

individual objects. The scoring technique on this occasion involved giving high

marks to objects with chair-making potential, with some marks also given for

objects that, although not chair-like, contained desirable features or properties.

1 The Teamforming technique had not been developed sufficiently to warrant inclusion at this time

131

0
ý

4
4(

S

(
O

T

Figure 5.1.1 - Evolved 'Bar Seat' object with associated
3rd generation population

132

k 0
ý

f
4 (t

4(0

Only one edge
blended on

evolved object

r

Figure 5.1.2 - Evolved `Orange Inflatable' object with
associated 3rd generation population

133

I N6,.
One cylinder subtracted
from another forming the

seat back

Figure 5.1.3 - Evolved `Bond Villain Chair' object with
associated 4th generation population

134

1 (

4 ``

1

Blending applied to
main block before next
solids are subtracted

Figure 5.1.4 - Evolved `Bad Taste Sofa' object with
associated 2nd generation population

135

5.1.1 Design Descriptions

Bar Seat

Construction: The evolved 3`d generation object is made up of four primitives.

The main body is constructed from a cylinder, with a subtracted

cylinder at 45° creating the lower-half front space and an upright

cone creating the upper hollow. Another cone removes a small

segment at the rear of the base (unseen in pictures). Blending

plays a large part in the appearance of the final object, as can be

seen from the inset image in Figure 5.1.1, where all blending has

been suppressed. Blending of the upper outer edge has a dramatic

effect, creating the upper frontal cut-away as well as rounding the

top. Additional blending has smoothed the edges in the lower

frontal area and created what has been interpreted as a footrest.

Modification: Arm-rest features have been created by removing a cylinder facing

outwards at 45°, forming both the arm-rest scallops and seat-front

detail (highlighted). The upright edges to the sides of the frontal

opening have been created through the subtraction of a single

block. All edges have been rounded, and a textile finish applied

using a wrapped TIFF image (Figure 5.1.6).

Orange Inflatable

Construction: Taken from the same 3`d generation population as the Bar Seat, the

evolved object is formed from just one cone and two spheres, one

subtracted and one united. Just one blend is applied during

evolution - on the base edge of the cone (inset, Figure 5.1.2).

Modification: The three remaining edges are sympathetically blended, creating

the smooth surface transitions. A translucent plastic material with

reflective finish has been applied (Figure 5.1.7).

136

Bond Villain Chair

Construction: The original object was taken from a fourth generation population.

The back section of the object is formed from two cylinders, one

created, and one much larger cylinder subtracted (inset, Figure

5.1.3). A third cylinder is joined at the base, forming the seat, and
finally a large block is subtracted from the lower portion of the

object, creating the flush lower surface. The remaining, rather
intrusive portion of the original created cylinder at the base of the

object has been reduced significantly with blending.

Modification: The only post evolution addition is the chrome base. Routine edge

smoothing and the selection of a black plastic material with a fine

granular texture add to the realism of the chair (Figure 5.1.8).

Bad Taste Sofa

Construction: Of the four chairs, this is the only object created using `simple'

blending: The evolved object is taken from a 2°d generation

population, and is dominated by a single block with large radius
blends forming the main curves (Figure 5.1.4). A second block

and a small cone are then subtracted.

Modification: The addition of two cushions, rounding of all edges and application

of a wrapped textile image add realism (Figure 5.1.9). The left arm
is created by subtracting a small block and applying a blend to the

inner, upper edge, as shown from the sequence of images shown
below in Figure 5.1.5.

Original evolved object Small block subtracted Inner upper edge blended

Figure 5.1.5 - Modifying evolved object to form sofa armrest

137

Figure 5.1.6 - `Bar Seat'

138

Figure 5.1.7 - `Orange Inflatable'

139

Figure 5.1.8 -'Bond Villain Chair'

140

Figure 5.1.9 -'Bad Taste Sofa'

141

5.1.2 System Assessment and Discussion

The following comments were made by the undergraduates after some prompting

and discussion and are shown below more or less as transcribed:

1. "The EFD system is good at producing attractive and usable shapes that I

would not be able to create myself'

This first comment relates to part of the initial aim, `Forms on the screen should

be aesthetically interesting... ', and also to the fourth aim, `The system has to

actually assist the designer', in that forms can be created that many users would

find difficult to produce using conventional conceptual design techniques.

It is particularly difficult to create the best of these kinds of objects using a

conventional CAD interface, from just a few interacting solids and blends. The

distinctive silhouettes, primary lines of form and the flow of surfaces and edges

are often arrived at quite subtly: The envelopes of relative positioning, size and

blend radii, that create a certain aesthetic feature, being remarkably small and

would be hard to establish intuitively or by trial and error.

2. "`Evolutionary' implies a gradual change (which is what is expected) but [it

is] not really what happens. I can see why this [i. e. gradual changing] would
be less creative though"

3. "The parents and offspring do look related if studying them together

afterwards, but this is not always obvious at the time"

Comments 2 and 3 summarise, from a user's point of view, the issue of balancing

`predictability' and ̀ creativity' to produce the greatest degree of usefulness. This

issue is introduced in the aim `User interactions should have a predictable

outcome'.

142

When working with ten to fourteen objects per generation at one time, it is hard to

visualise in detail the objects from previous generations, which contributes to the

feeling of remoteness expressed in these comments. Some interactive

evolutionary design systems overcome this problem by readily displaying the

previous generations in a separate window. One could envisage a similar feature

for this system that allowed the user to view freely the two parents of a selected

object on the screen next to the object. The user could then see the similarities

between parents and offspring - the consequence of their actions - and would thus

feel more connected to and have more confidence in the system.

4. "Objects definitely improve and have more similarities as the generations

progress"

5. "The best results are obtained if you concentrate on just a few similar objects

if designing something specifically"

Re-establishing some confidence in the system, comment 4 confirms the steady

reduction in frequency of ineffective objects, the gradual improvement of objects,

and also that a degree of convergence takes place as generations progress.

Comment 5 follows on from this, relating to the way object scoring methods

usually develop, and that users can naturally develop effective scoring methods

that suit the task or individual user.

6. "Cohesive objects are easier to work with but this mode often creates lots of

small useless objects and less inheritance is seen"

7. "Fragmented [normal] objects show better inheritance since all the shapes

[primitives] are used in each object"

Comments 6 and 7 support the decision to include two methods of object creation,

each mode having its merits: Particularly suited to first-time users, the Cohesive

method presents a clearer picture by not creating unattached primitives'. If

1 and is also required for the geometric analysis function

143

improved visual inheritance is required the `Normal' method can be employed.

These objects will always contain the cohesive part, but also any of the other

primitives that are not attached to the `main' solid body.

8. "Whole object blending produces the best objects, simple blending just rounds

off the edges of basic shapes"

Comment 8 reflects a preference in this case for the advanced `whole-object'

blending method, because of the generally more exciting objects produced. The

fact that this method often masks inheritance is overlooked. The increased

continuity afforded by `simple' blending is complemented by a distinct character

(belittled by the `just rounds off the edges of basic shapes' comment) which may

be preferred by some users for certain product applications.

9. "Objects are easy to take out of the evolution process and work on [other

versions of Unigraphics are opened] but it would be good to carry on evolving

them after changes have been made"

Comment 9 reaffirms the benefits from a users point of view of a CAD

environment, and solid modelling for the product representation, and adds the

commonly documented (but extremely difficult to implement) desire for greater

control over phenotypes during evolution

10. "Geometric optimisation is quite clever but doesn't really help since the
designer can see which objects are better anyway"

Although geometric optimisation was presented to these users as a demonstration,

comment 10 clearly indicates that much work is necessary if the inclusion of

automated fitness functions is to be beneficial to the designer. While seemingly

content in its current capability as an aesthetic concept generator, people who

have used the system have expressed an interest in how this technology could be

developed. These comments may influence the direction of further research and

are discussed in the following chapter.

144

5.2 Animal Sculptures

During the later stages of the research, an invitation was received from the

organisers of the International Congress on Evolutionary Computation (CEC2001,

Seoul, South Korea) to produce a poster exhibit for the Evolutionary Art and

Design competition session [Graham3]. From the literature survey carried out, it

was evident that much of the computer generated evolutionary art being produced

was 2-dimensional in nature (being analogous to painting / fine art in the `real

world'), often generic, abstract, and artificial in appearance. A particular

advantage of the EFD software, being CAD based, is that, by using the materials

and wrapped image textures available, realistic-looking renderings of objects can

be produced. It was evident that there was a chance to produce something

different -3 dimensional in nature - differentiating this work from much of the

evolutionary art that would be exhibited'.

In producing the virtual sculptures, a similar approach was taken to that of the

seating design task: Initial generations were rated for suitability as sculptures, and

as sculpture-like objects proliferated through the populations, the best examples

displaying animal-like properties, were favourably rated. The lack of any

functional criteria made the task especially enjoyable, enabling the focus to

remain purely on the aesthetic. More time was taken with this task, with 10 or so

runs of up to 8 generations assessed before satisfactory objects were produced.

The materials, textures, backgrounds and plinths were added manually, but unlike

the seating design task, no alteration was carried out to the objects' form, as this

would have been an infringement of competition rules (which allowed interactive

fitness rating but not direct manipulation of objects/images). The finished results,

also illustrated in [Case], can be seen over the following pages (Figures 5.2.1 -
5.2.4).

1 The reader may be interested to know the outcome of the competition: the congress delegates

judged the entries, with over 250 votes being cast. Out of the 24 entries, the animal sculptures

exhibit came second, missing out on winning by just 2 points.

145

Figure 5.2.1 -'Cobra'

146

Figure 5.2.2 -'Parrot Fish'

147

Figure 5.2.3 -'Pelican'

148

Figure 5.2.4 -'Ram'

149

5.2.1 Sculpture Descriptions

Evolution

The following diagram (Figure 5.2.5) shows the family tree of the Cobra

sculpture: The development of the main inherited features can be easily seen in

generations 2 and 3 on the far left, and in generations 1,2 and 3 on the far right.

The left-hand side of the `family' contribute the two intersecting cones

configuration, whilst the right side contribute the intersection operator.

Two of the other objects' parents and their corresponding populations can be seen

in the next two figures. In Figure 5.2.6, the olive-coloured parent of the Parrot

Fish object bares a striking resemblance - being constructed in exactly the same

way. The contribution of the yellow parent is not evident since only one of a

possible four primitives are used (the objects being constructed using the cohesive

method).

The visual links between the Ram object and its two parents are less apparent,

with both parents contributing more evenly (Figure 5.2.7). Whether or not one

parent seems dominant over the other is often down to the randomly selected

crossover points during the reproduction stage.

150

�4

ýý

rf

ýý
ý1

\

lti
N

INS

4

E
cß L

rn Co
__0

^
W
W

f--ý

E

1, cý 1-

LO
N
0

a)
:3
cm

LL

151

týcv L
ý

ý a
ý
U
Cl)

ý
U)

IL
ý 0 L
L

ý Co
0

a)
-c 4-,
4-
O
ý
C
O

+.
(ü
M
Q
O
Q

4)
ý (ß
ý
0
N
N
Co

N L

ý
ü) LL

4ý

f

ý lb

w

"

tr

i

v

00

go

-0

(ß
N
ý
a) L

N
I.. L

ý

LO

152

a)
ý
Q

U
U

E
Co

llý

() ý ý
4-
0
Cl)
C
0

ý
N
:3
Cl.
0
Q

_0
a) 4-

O
U)
Cl)
CO

_0
C
(0
N

ý C
a)
N

d

ý
N
Ln

a) L

ý

LL

153

Construction

Cobra Two cones are united (Figure 5.2.8), then intersected with a larger

cylinder. Blending does not alter the form dramatically, but rounds

off most of the edges and corners (Figure 5.2.9).

Figure 5.2.8 - `Cobra' object mid-construction, before final
intersection operation

Pelican Unlike the previous two forms, the `Pelican' relies heavily on
blending to provide its distinctive form (Figure 5.2.10). A sphere

and two similarly sized blocks provide the underlying structure.

Ram The Ram's head is made from two intersecting cylinders, whilst the

body is a single block. Whole-object blending creates the fillets

where the head meets the body, and other curves on the body

(Figure 5.2.11).

Parrot Fish In a similar way to that of the `Cobra' construction, a similarly

sized cone and cylinder are united, then intersected with a larger

primitive - in this case a sphere (Figure 5.2.12). Just one blend is

added, at the transition of the cone and cylinder (Figure 5.2.13).

154

Figure 5.2.9 -'Cobra' before and after genetic blending

Figure 5.2.10 -'Pelican' before and after genetic blending

Figure 5.2.11 -'Ram' before and after genetic blending

155

Figure 5.2.12 - Creation of `Parrot Fish' sculpture
showing the intersecting sphere operation

Figure 5.2.13 -'Parrot Fish' before and after genetic blending

156

CHAPTER SIX - CONCLUSIONS

6.1 Preamble (realisation of aims)

Aesthetic appeal and product representation

Evolved objects created with the EFD software have proved fascinating to many

people, especially those with an interest in form and the sculptural aspects of

aesthetic design. The applications described in the previous chapter have

demonstrated that many of the original aims have been achieved. The aim that the

system should create aesthetically interesting forms (highly placed in the 2001

International CEC Evolutionary Art and Design competition session) that have the

ability to represent realistic products (seating design by undergraduate students)

has been accomplished and independently supported. Appendix C contains

illustrations of product concepts produced by the author, using the system.

Predictability

The second aim, that user interactions should have a predictable outcome, is

perhaps harder to draw conclusions from, since the degree and even the definition

of predictability was hard to express in absolute terms. Comments on the

seemingly haphazard progress of the populations have been tempered with the

general agreement that the broad intent of the user is carried through. The

necessary addition of edge blending, in this context, is the biggest opposition to

achieving strong inheritance properties. When blending is not used, a useful

degree of predictability is generally exhibited - this was demonstrated at an early

stage in the research (presented at NCMR99), and was illustrated in Figure 4.8.1,

reproduced form [Graham4]. When blending is used, the work on edge/genotype

association has preserved reasonable object continuity so that retrospective study

of sequences of parents and offspring reveals similarities, confirming that desired

features are being carried forward and proliferating. The reader is referred back to

Figure 5.2.5, the ancestor diagram of the `Cobra' sculpture, the detailed

recombination example in Appendix B, and invited to view the interactive

ancestor diagram contained on the enclosed CD-ROM.

157

The evolutionary development of form strikes a balance, being neither totally

random nor totally deterministic, and thus creates an innovative, but usable tool.

Considering the need to preserve the innovative nature of the software (compared

with an alternative scenario where changes between immediate generations are

small and outcomes of all object recombination are geometrically apparent) the

spirit of the original aim has been achieved, especially when considered alongside

the further aims.

Efficiency

The aim to make the evolutionary design process efficient has led to the work on

maximising the use of constituent primitives during the object creation stage, and

the development of the Teamforming technique. The marked improvement of the

current capabilities over those of early prototypes is clearly apparent. Although

inheritance could be seen in the early versions of the software, the overall quality

of populations throughout the evolution process was poor, and development was

relatively slow, taking several generations (4 to 5) before many usable objects

were generated. The increase in efficiency has been due, firstly, to the better

overall quality of populations (with a greater proportion of fit objects), and

secondly, to the rapid improvement of quality over a small number of generations,

with usable objects often appearing from the second generation onwards.
Referring to the seating design application outlined in the previous chapter, it only

took between 2 and 4 generations for usable objects to be created. The 4 chairs

were taken from a total of 7 populations, including the two initial random

populations, comprising a total of 84 individual objects viewed (60 of these rated),

giving a `rating to useful' ratio of 15/1.

There are a few problem areas remaining, which, if addressed, could increase

efficiency further. There are two specific areas requiring only modest
development where one could expect to see significant improvements. Firstly

some basic intervention to prevent detrimental Boolean operations, and secondly,

the improvement of the cohesive object creation method. These are briefly

outlined in section 6.3.

158

Efficiency ultimately depends on how specific the users' needs are - whether they

already have a shape in mind, and the limitations the product type places on form

variation. Still, whether utilising the convenience of `cohesive' objects, or the

completeness of `normal' objects, it only takes a few generations (several

minutes) before useful shapes emerge.

Sensitivity

The scoring system adopted is flexible and intuitive, allowing the user to employ

several strategies for object assessment. An effective approach is to keep many

objects involved (allocating similar scores to a large number of objects) early on

in the process, then to concentrate on a few objects (employing more drastic

scoring'). The ability to discard objects (score of 0), and the increased weighting

of a 10/10 score have provided a considerable degree of control to the user. There

is scope for work towards making the system more sensitive to the designer's

input, by allowing explicit control of operators such as parent selection, as with

methods often seen in evolutionary art applications.

Usefulness

The ability of the software to generate a multitude of novel forms provides a

useful addition to existing methods designers draw on when looking for aesthetic

inspiration. The fact that these forms are original, and influenced by the user

through the evolutionary characteristics of the software, and not from a database

of existing aesthetic concepts, further increases its usefulness. Other research in

this field has provided tools for development of established aesthetic concepts,

and there is no reason why this research should not expand along these lines.

1 For example, 2 objects given 10 out of 10,2 objects given 1 out of 10, and the rest 0

159

Currently, when a suitable object or objects are found, it is possible to change the

parent selection technique from stochastic to roulette, which enables the selection

of just two (or even one) objects for continuing exploration. Combining this with
fine-tuning of the mutation rate creates a better environment for development of a

single object. To increase the scope of this research, a development of this two-

stage process can be envisaged: Firstly, a pleasing form is arrived at through the

innovation-biased current software. And secondly, the form is developed from

this single object using a dedicated technique involving subtle, controlled

mutations and less disruptive genetic operators, such as in Evolution Strategies.

160

6.2 Methods (objectives, originality & contribution to knowledge)

Review

The review of the current state of research into evolutionary computation in

engineering and design identifies the most widespread area of application of

genetic algorithms as automated component optimisation (often using FEA

techniques). Examples of interactive evolutionary design are mostly artistically
based, often using repeating geometric patterns and mathematical series. The

most comparable research in terms of philosophy and execution is the Emergent

Design Group's Agency-GP architectural design exploration tool. Also

comparable, in dealing primarily with the design of whole products, is Peter

Bentley's work on the automatic generation and optimisation of generic products

using a GA. The fundamental difference being that evolution is guided solely by

computational analysis in Bentley's system, rather than predominantly utilising

the users aesthetic judgements in this research.

This research gains its originality from the combination of user interaction and

automated fitness determination to provide evolutionary characteristics. The

research has also seen preliminary development and application of a new concept

aimed at maximising the potential of each population: The Teamforming

technique, that, combined with the GA, co-operatively groups together single

phenotypes (primitives) to form more complex solutions (objects).

Also unseen previously, in the field of evolutionary design, is the use of geometric

primitives and Boolean operators combined with edge blending, within a CAD

system, to create original, aesthetically valid, 3D product representations. This

representation is achieved using a small amount of data, and supports application
to a range of products, without the need for additional programming.

161

Geometric Optimisation

The work on geometric optimisation has two clear benefits. It demonstrates that

the integration of automatic fitness functions is readily achievable, and provides

evidence that the GA is working effectively. When the system is running

independently, with just geometric fitness functions employed, it has been

reassuring to see convergence, although sometimes premature, and therefore

successful optimisation, albeit to simple criteria. The limited work on automatic

aesthetic assessment (e. g. fitness scores being penalised if objects are too

fragmented) has not reached the stage where it is beneficial to the design system.

As long as the user views all the objects in a population, they are able to identify

aesthetically weak objects visually, and may as well be the sole aesthetic fitness

provider. A further step would need to be taken if this aesthetic assessment was to

provide benefit to the user.

Teamforming

The principles of the Teamforming method have been demonstrated, in that it can

group similar or dissimilar primitives together (in terms of size, sign or type),

making a more effective use of each population. The original objective was to

enable the population to define the tactic, so that it may evolve to suit the user's

current needs (as in self-adaptation in ES and EP, but applied to the Teamforming

rule, and not mutation). At present though, the tactic is defined by the user at the

beginning of each session, possibly restricting the technique's effectiveness.

Teamforming gives little visual inheritance between whole objects in subsequent

generations, but features of objects are carried across effectively. The team tactic

enables a variety of methods depending on suitability for application. It would

seem that this initial implementation of Teamforming is not as elegant a process

as that of the underlying Genetic Algorithm and as such does not exhibit emergent

properties as was hoped. It is an interesting technique though, and when used

within this research, provides an alternative method of evolution, which can be

thought of as `evolution by features'. The Teamforming method is particularly

useful for designers looking for individual aesthetic features to apply to a variety

of products.

162

6.3 Further Work

6.3.1 Practical improvements to the current EFD system

Avoiding Detrimental Boolean Operations

During object creation, there are two Boolean operations that, if executed as the

last step, render the object useless - these two cases being the intersection of a

small primitive wholly within the current body, or the union (or creation) of a

large primitive that totally encloses the current body. In both cases the final

object is left as a single geometric primitive. This occurrence could usefully be

automatically predicted and avoided.

It should be noted that too much interfering with the fundamental processes of an

evolutionary algorithm can be counterproductive, disrupting the `natural' balance

of the system. In the case of this research, objects having genes that result in

destructive events are discounted by the user, letting evolution take its course.

This process does take some time though, and, currently, discarding the object

could result in the loss of a valuable potential object. Given the limited size of

populations, on balance this addition to the software seems appropriate.

Improving Cohesive Objects

During the use of the software, most users have opted for the cohesive object

creation mode. As previously explained, this mode was created rather

simplistically, as a necessity for automatic geometric analysis. With hindsight, a

more effective technique would use an adaptation of the post-creation Boolean

process described in chapter 4: Isolated primitives could be deleted after the whole

object had been created, rather than not being created at all. This would give
isolated primitives, that were introduced early on (2n 1,3`d, or 4th), a greater chance

to interact. The problem of deciding how to deal with objects consisting of two

separate bodies, each made up of two interacting primitives, can, no doubt, be

overcome.

163

Interaction

For the progression towards an industrially applicable design tool, it is suggested

that the designer should have greater control. This could involve the ability to

explicitly select each pairing of parents, or the ability to maintain an accessible

archive of favourite objects. These examples suggest moving away from the

current, linear path, to a user-led, fluid process. Concerning user-interface design,

the ability to view and rotate individual objects more conveniently, view objects

from previous generations, and the automatic scaling of small objects would give

the user more freedom, and speed up the evolutionary design process.

Automatic Aesthetic Assessment

Current aesthetic assessment is limited to reducing object fragmentation.

Fragmented objects receive a fitness penalty, but no further action is taken. A

further implementation step would be necessary, for automatic aesthetic

assessment to be beneficial. It is suggested that objects with low aesthetic

function values are either discarded (and other objects created in their place) or

measures taken to `improve' the objects (i. e. the size or positioning values of

isolated primitives altered). This was seen as too prescriptive initially, the thought

being that evolution would take its course through the user's fitness assessments.

With further research into aesthetics however, these changes would be necessary.

Teamforming

Future development of the technique in this application may improve the low

object-continuity situation. One possibility is that each member carries a
`preferred' order gene. This would restrict choice during team-member selection,
hopefully reinstating some visual continuity between objects in subsequent

generations. Retaining the `5 primitives per object', and with a population of 70

members creating 14 objects, 14 members would be `first-created' primitives, 14

would be `second-created' primitives and so on. Breeding would be restricted to

members with the same creation order gene, implemented using the multi-species

capability of the GA - each of 5 species being a creation order. It is noted that

this approach would conflict with any work carried out on variable size teams.

164

6.3.2 Increasing Research Scope

While this research is undoubtedly useful for original form generation, future

development could further increase the efficiency of the evolutionary process,

provide additional functional capabilities, and even extend the point at which the

designer takes over from the EFD system in developing the form manually (using

traditional CAD techniques). Two of the original objectives, intended to expand

the capacity of the software in this way, have not been implemented: Brief

descriptions of each follow.

Internal Volumetric Constraints

An idea stated in the objectives, and introduced in [Grahams], but not

implemented is an internal volumetric fitness function. Objects would strive to

incorporate, within their boundaries, simple box models manually created by the

designer, before the start of the evolutionary process. The principals of the

technique are demonstrated in Figures 6.3.1 and 6.3.2, and outlined below:

"Sobject - iVobject-box + Vbox Vboxnobject

" Before the evolutionary process is started, the designer constructs a simple box

model of the internal space required (having volume Vbox)

" During fitness calculation, each evolved object's solid form (having volume

Vobject) is subtracted from the internal box model

" Any volume remaining counts heavily against the object's objective value
(Sobject), penalising the object for not totally enclosing the box model

" In a secondary test, the internal box model is subtracted from the object's form

" The volume remaining also counts against the object's objective value, but to

a much lesser extent, penalising the object for not efficiently enclosing the box

model

The relative importance, r, of these two tests would need to be established through

experimentation (a value of 0.1 is suggested as a starting point).

165

Intersected volume = 1800mm3

1970mm3 1800mm3 = 170mm3

The evolved object does not enclose the box model (the
remaining volume counts against the object's fitness), and
would receive an `enclose' objective function value of 170,

13230mm3 - 1800mm3 = 11430mm3

The `efficiency' objective function value would be 11430, the
volume remaining after subtracting the box model from the
object. This would be less influential than the `enclose'
objective function

Figure 6.3.1 - Demonstration of internal volumetric function

166

ý
O

ý
cA
W
(1)

Co
0

N

(1) (1)

a) ý

M
E
E

O
ti
It
ý

N

11

cf) E
E

C)
I,, -
V-

I

cM E
E

0')
N

-a
:3 ä)
O cl)

O

cNÖ
(ß Cl)

E Qý
X 4) >

ý-ý NÜN
ýýO

N a)
NýON

+ý. O. 5N lf')
Ný ýF L

"IT
QOOýÜN
EM (D ýýö
(u 0x
, a)NE (LD ýý
L-M

cu

Oi
Ü

-C u) +-"-
Cý

-0

ý+ N ca
NýL>

-, UOýC' ý
-0

U
a) ü
O
cn cß +"O

167

U
4)
Q
U)
(ß
ý
U
C
N
U_

a)

. 0- U
C

U

ý a) E
O
>

(ß

The practicalities of programming this concept would involve: Making copies of

the box model, finding the best position of the box model within each object,

carrying out Boolean subtractions with each object and using geometric analysis

to determine the remaining volumes - then returning the objects back to their

previous state. The task of positioning the box model within the designs, is a task

that would be best achieved using another GA, but would, in any case, require a

lot of processing power to achieve the speeds required for usability.

The inclusion of internal size constraints for the incorporation of functional

elements (circuit boards, internal spaces, fixtures and fittings etc.) would take the

research from the existing aesthetic focused tool to a system capable of

application to a wider range of engineering design problems.

Quantification of Aesthetic Properties

As stated in the original objectives of the research, `There is scope for the

parameterisation of aesthetics qualities, such as cohesiveness, compactness,

proportion and unity, to be investigated'. The initial research into Evolutionary

Form Design provides an excellent setting in which to investigate these ideas.

Applying the findings of such investigations would combine naturally with the

current software, following on from the preparatory work on geometric analysis,

and would contribute considerably to the efficiency of a usable design tool.

The interactive nature of the software has necessitated finding a balance between

the optimum time spent studying each population, and the benefits of rapid

progression to the next generation. This balance, combined with the physical

capabilities of the computer screen and viewing method, limits the number of

objects to 12-16 per population. Genetic Algorithms usually operate (more

effectively) with larger populations than this.

By increasing the automated fitness capabilities provided by the system (the work

on aesthetics outlined above), a considerably different method of operation could

be utilised. If the software could learn and thus identify what constituted an

aesthetically valid form, it could select the best objects (say 12 or 16) from a

168

larger population (of around 30) to present to the user. This would perhaps double

the efficiency of the software, drastically reducing the occurrence of unusable

objects. This approach would provide a more rounded, more maintainable and

more holistic route to efficiency than the general approach taken by this research

(the trend towards detail changes and constraints during object creation).

The current software could be used to build up a database of `good' objects,

(limiting construction to just 2 primitives initially), which could then be analysed

for parameters such as the following:

" ratio of sizes of primitives

" ratio of lengths within primitives

" which primitives work well together

" proportion of intersecting volume for each of the 3 Boolean operators

Teamforming

The ideas behind this technique could be applied to other problems where

genotypes are made up of a number of repeated data-structures, and solutions are

made up of collections of the same types of object, e. g.:

" In the case of the research discussed here, 5 identically structured groups of

chromosomes were used in sequence to form the original genotype - solutions are

constructed from 5 geometric primitives.

" In Bentley's GADES system, the genotype is made up of a variable number of
blocks of 9 genes - solutions are constructed from a number of `clipped stretched

cuboids'.

" In the Emergent Design Group's Agency-GP, genotypes are made up of
identically structured genes - scenes are constructed from collections of extruded
NURBS curves.

169

6.4 Concluding Points

" Combining a small number of geometric primitives' using Boolean operations

and applying edge blending, is a suitable technique for creating aesthetically

interesting objects, and is capable of representing a range of products.

" By utilising the solid modelling capabilities of a CAD system, this product

representation enables objects to be defined with a small amount of data,

suitable for application by a Genetic Algorithm.

"A Genetic Algorithm can endow a design tool with usable evolutionary

properties enabling the guiding of a population of objects towards an intended

goal through intuitive interaction, resulting in the improvement of objects over

a modest number of generations.

" Complementing user-supplied fitness with geometric and rudimentary

aesthetic analysis can; increase the quality of populations presented to the

user, confirm the successful optimisation capabilities of the GA, and

demonstrate the potential for mechanical and further aesthetic automation .
" Treating constituent parts of an object (solution) as separate entities during the

reproduction stage, and then combining them to form complete objects

(solutions), in what has been termed a Teamforming stage, can provide a

usable addition to the range of available techniques geared towards increasing

GA efficiency.

15 or less

170

REFERENCES

affinnova One Alewife Center, 4th Floor, Cambridge, MA 02140, USA

www. affinnova. com

Amin Amin S, Fernandez-Villacanas J L, "Dynamic Local Search",

Proceedings of the Second International Conference on Genetic

Algorithms in Engineering Systems: Innovations and Applications

(GALESIA '97), pp 129-132,1997

Anton Anton H, "Calculus with Analytic Geometry, 4th edition", John Wiley &

Sons Inc, 1992

Ashford Ashford F, "The Aesthetics of Engineering Design", Business Books Ltd,

1969

Assad Assad A M, Packard N H, "Emergent Colonisation in an Artificial

Ecology", `Toward A Practice of Autonomous Systems', Proceedings of

the First European Conference on Artificial Life, pp 143-152,1992

Atick Atick J, Griffin P A, Redlich A N, "The Vocabulary of Shape: Principal

Shapes for Probing Perception and Neural Response", Network:

Computation in Neural Systems, 7(1), IOP, 1996

Back Bäck T, "Evolutionary Algorithms in Theory and Practice", Oxford

University Press Inc, 1996

Baron Baron P, Fisher R, Tuson A, Mill F, Sherlock A, "A voxel-based

representation for evolutionary shape optimisation", Artificial Intelligence

for Engineering Design, Analysis and Manufacturing (AIEDAM), 13(3),

pp 145-156,1999

Bentleyl Bentley P J, O'Reilly U M, "Ten Steps to Make a Perfect Creative

Evolutionary Design System", GECCO 2001 Workshop on Non-Routine

Design with Evolutionary Systems

www. cs. usyd. edu. au/-josiah/gecco200l workshop schedule. html

Bentley2 Bentley P J, Wakefield J P, "The Table: An Elustration of Evolutionary

Design using Genetic Algorithms", Proceedings of the First IEE/IEEE

International Conference on Genetic Algorithms in Engineering Systems:

Innovations and Applications (GALESIA '95), pp 412-418,1995

171

Bentley3 Bentley P J, "Generic Evolutionary Design of Solid Objects using a
Genetic Algorithm", PhD thesis, University of Huddersfield, 1996

Bentley4 Bentley P J, "From Coffee Tables to Hospitals: Generic Evolutionary

Design", Evolutionary Design By Computers, Morgan Kaufmann, 1999

Bentleys Bentley P J, "An Introduction to Evolutionary Design by Computers",

Evolutionary Design By Computers, Morgan Kaufmann, 1999

Byrne Byrne M D, Mapfaira H, "Assembly line balancing using genetic

algorithms", 'Advances in Manufacturing Technology XIII', Proceedings

of the Fifteenth National Conference on Manufacturing Research, pp 119-

124,1999

Case Case K, Graham I J, Wood R L, Abdul Karim M S, "CAD Genetic

Algorithms for Evolutionary Form and Function Design", 'Advances in

Manufacturing Technology XVI', Proceedings of the 18th National

Conference on Manufacturing Research, pp 103-107,2002

Chouchoulas Chouchoulas 0, "Shape Evolution: An Algorithmic Method for

Conceptual Architectural Design Combining Shape Grammars and Genetic

Algorithms", Artificial Intelligence in Design 2001, Poster Paper

www. bath. ac. uk/ abpoc/
Collins Collins R J, "Ant Farm: Towards Simulated Evolution", 'Artificial Life

II', Proceedings of the Workshop on Artificial Life February 1990, pp 579-

601,1991

Cordon Cordon 0, Jose del Jesus M, Herrera F, Lozano M, "An Evolutionary

Paradigm for Designing Fuzzy Rule-Based Systems from Examples",

Proceedings of the Second International Conference on Genetic

Algorithms in Engineering Systems: Innovations and Applications

(GALESIA '97), pp 139-144,1997

Come Corne D, Ross P, "Practical Issues and Recent Advances in Job- and
Open-Shop Scheduling", Evolutionary Algorithms in Engineering

Applications, pp 531-546, Springer, 1997

Como Corno F, Prinetto P, Rebaudengo M, Sonza Reorda M, "Optimising

Area Loss in Flat Glass Cutting", Second International Conference on
Genetic Algorithms in Engineering Systems: Innovations and Applications

(GALESIA '97), pp 450-455,1997

172

Dahl Dahl D W, Chattopadhyay A, Gorn G J, "The importance of

visualisation in concept design", Design Studies, 22(1), pp 5-26, Elsevier,

2001

Das Das S, Franguiadakis T, Papka M, DeFanti T, Sandin D, "A Genetic

Programming Application in Virtual Reality", Proceedings of the First

IEEE Conference on Evolutionary Computing (ICEC'94), Vol 1, IEEE

World Congress on Computational Intelligence, pp 480-484,1994

Dasgupta Dasgupta D, Michalewicz Z (Eds), "Evolutionary Algorithms in

Engineering Applications", Springer, 1997

Eby Eby D, Averill R C, Punch III W F, Goodman E D, "Optimal Design of

Flywheels using an Injection Island Genetic Algorithm", Artificial

Intelligence for Engineering Design, Analysis and Manufacturing

(AIEDAM), 13(5), pp 327-340,1999

Eckertl Eckert C, Kelly I, Stacey M, "Interactive generative systems for

conceptual design: A empirical perspective", Artificial Intelligence for

Engineering Design, Analysis and Manufacturing (AIEDAM), 13(4), pp

303-320,1999

Eckert2 Eckert C, Stacey M, "Sources if inspiration: a language of design",

Design Studies, 21(5), pp523-538,2000
EDG Emergent Design Group, Massachusetts Institute of Technology

web. mit. edu/edgsrc/

Falkenauer Falkenauer E, "A Hybrid Grouping Genetic Algorithm for Bin Packing",

Journal of Heuristics, 2(1), pp5-30,1996

Forrest Forrest S, Mayer-Kress G, "Genetic Algorithms, Non-linear Dynamical

Systems, and Models of International Security", Handbook of Genetic

Algorithms, Van Nostrand Reinhold, pp 166-185,1991

Frazer Frazer J, "An Evolutionary Architecture", Architecture Association

Publications, 1995

Furuta Furuta H, Dogaki M, Teteishi K, "Aesthetic design of arched bridges

using genetic algorithms", Proceedings of the Structures Congress, Vol 2,

pp 808-812, ASCE, 1997

GALESIA95 First IEE/IEEE International Conference on Genetic Algorithms in

Engineering Systems: Innovations and Applications (GALESIA '95), lEE

173

Conf Pub No 414,1995
GALES 1A97 Second International Conference on Genetic Algorithms in Engineering

Systems: Innovations and Applications (GALESIA '97), IEE Conf Pub No

446,1997

Garrett Carrel Jr J II, '*Ilse computer-aided engineer: Prospects and risks",

Artcial Intelligence for Engineering Design, Analysis and Manufacturing

(AIEDA, ti1), 12(1), pp 61-63,1998

Gatarski Gatarskl R, Pontecon"o S. "Breed Better Designs: the generative

approach". Designjournalen, 6(1), SVID, 1999

Gen Gen At, Cheng R, "Genetic Algorithms and Engineering Design", John

Wiley & Sons Inc, 1997

Gero Gero J S, Kazakov V A, Schnier T, Genetic Engineering and Design

Problems, Evolutionary Algorithms in Engineering Applications, pp 47-68,

Springer, 1997

Goldberg Goldberg 1) E, "Genetic Algorithms in Search, Optimisation and Machine

Learning", Addison Wesley, 1989

Gonzalez Gonzalez 11. Torres At, Moreno J A, "A hybrid genetic algorithm

approach for the 'no-wait' flow-shop scheduling problem", Proceedings of

the First IEF/IEEE International Conference on Genetic Algorithms in

Engineering Systems: Innovations and Applications (GALESIA '95), pp
59-64,1995

GrahamI Graham I J. "Development of a AMulti-Species Genetic Algorithm", BEng

Final year project report, Loughborough University, 1998
Graham2 Graham I J, Case K. Wood R L, "Evolutionary Form Design: The

application of genetic algorithmic techniques to computer-aided product
design", 'Advances in Manufacturing Technology XIII', Proceedings of the
I5'" National Col ference on Manufacturing Research, pp345-349,1999

Graham3 Graham I J, Case K, Wood R L. "Evolutionary Computer Aided Design"

, 2001 Congress on Evolutionary Computation (CEC 2001), Poster exhibit,

2001
GrahanA Graham I J, Case K, Wood R I., "Genetic Algorithms in Computer

Aided Design". Journal of Materials Processing Technology, 117(1-2), pp

216-221.2001

174

Graham5 Graham I J, Case K, Wood R L, "Genetic Algorithms in Computer

Aided Design", 'Building on Manufacturing Advances of the Nineties,

IMC-17', Proceedings of the 17th Annual Conference of the Irish

Manufacturing Committee, pp 47-53,2000

Graham- Graham-Rowe D, "Designer genes", Blueprint, 186, ETP Ltd.,

Rowe August 2001

Grierson Grierson D E, Prabhat H (Eds), "Emergent Computing Methods in

Engineering Design, Applications of Genetic Algorithms and Neural

Networks", NATO ASI Series, Series F, Vol 149, Springer-Verlag, 1996

Guo Guo B, Menon J, "Local shape control for free-form solids in exact CSG

representation", Computer Aided Design, 28(6/7), pp 483-493,1996

Hemberg Hemberg M, O'Reilly U M, Nordin P, "GENR8: A Design Tool for

Surface Generation", Late breaking paper at GECCO-2001,

www. ai. mit. edu/projects/emer eng tDesignn/ eg nr8/

Hollandl Holland J H, "Genetic Algorithms and the Optimal Allocations of Trials",

SIAM Journal on Computing, 2(2), pp 88-105,1973

Holland2 Holland J H, "Adaptation in Natural and Artificial Systems", University

of Michigan Press, 1975

Horn Horn J, Nafpliotis N, "A Niched Pareto Genetic Algorithm for Multi-

Objective Optimisation", Proceeding of the First IEEE Conference on
Evolutionary Computing, IEEE World Congress on Computational

Intelligence (ICEC '94), Vol 1, pp 82-87,1994

Khatib Khatib W, Fleming P J, "An Introduction to Evolutionary Computing for

Multidisciplinary Optimisation", Proceedings of the Second International

Conference on Genetic Algorithms in Engineering Systems: Innovations

and Applications (GALESIA '97), pp 7-12,1997

Kephart Kephart J 0, "How Topology Affects Population Dynamics", 'Artificial

Life III', Proceedings of the Workshop on Artificial Life February 1992, pp

447-463,1994

Kumar Kumar S, Bentley P J, "Three Ways to Grow Designs: A Comparison of

Embryogenies for an Evolutionary Design Problem", Proceeding of the

Genetic and Evolutionary Computation Conference (GECCO '99), pp35-

43,1999

175

Langton 1 Langton CG (Ed), `Artificial Life', Proceedings of the First Workshop on
Artificial Life, Addison-Wesley, 1988

Langton2 Langton C G, Taylor C, Farmer J D, Rasmussen S (Eds), 'Artificial

Life II', Proceedings of the Workshop on Artificial Life February 1990,

Addison-Wesley, 1991

Langton3 Langton CG (Ed), 'Artificial Life III', Proceedings of the Workshop on
Artificial Life February 1992, Addison-Wesley, 1994

Levy Levy S, "Artificial Life, The Quest for a New Creation", Penguin Books,

1993

Lewis Lewis M, "Aesthetic Evolutionary Design with Data Flow Networks",

Proceeding of the 3rd International Conference on Generative Art, 2000

www. accad. ohio-state. edu/-mlewis/AED/Metavolve/Files/Ra2k. i)d f

Lindgren Lindgren K, Nordahl M, "Artificial Food Webs", 'Artificial Life 111',

Proceedings of the Workshop on Artificial Life February 1992, pp 73-103,

1994

Macmillan Macmillan S, Steele J, Austin S, Kirby P, Spence R, "Development and

verification of a generic framework for conceptual design", Design

Studies, 22(2), ppl69-191,2001

Mill Mill F, Sherlock A, "Biological analogies in manufacturing", Computers

in Industry, 43(2), pp 153-160,2000

Nishinol Nishino H, Takagi H, Utsumiya K, "A Digital Prototyping System for

Designing Novel 3D Geometries", Proceedings of the 6`h International

Conference on Virtual Systems and Multimedia, 2000

Nishino2 Nishino H, Takagi H, Cho S B, Utsumiya K, "A 3D Modelling System

for Creative Design", Proceedings of the 15`h International Conference on
Information Networking (ICOIN-15), pp479-486,2001

O'Reilly O'Reilly U M, Testa P, Greenwold S, Hemberg M, "Agency-GP: Agent-

Based Genetic Programming for Design", Late breaking paper at GECCO-

2001,

www. ai. mit. edu/projects/emer eng tDesign/agency gp/

Obayashil Obayashi S, "Aerodynamic inverse optimisation problems", Genetic

Algorithms in Engineering Systems, IEE, 1997

Obayashi2 Obayashi S, Tsukahara T, Nakamura T, "Cascade Airfoil Design by

176

Multiobjective Genetic Algorithms", Proceedings of the Second

International Conference on Genetic Algorithms in Engineering Systems:

Innovations and Applications (GALESIA '97), pp 24-29,1997

Ono Ono 0, Watanabe G, "Genetic Algorithms for Optimal Cutting",

Evolutionary Algorithms in Engineering Applications, pp 515-530,

Springer, 1997

Parmee Parmee I C, Bonham C R, "Towards the support of innovative

conceptual design through interactive designer/evolutionary computing

strategies", Artificial Intelligence for Engineering Design, Analysis and

Manufacturing (AIEDAM), 14(1), pp 3-16,2000

Pearce Pearce R, Cowley P H, "Use of Fuzzy Logic to overcome Constraint

Problems in Genetic Algorithms", First IEE/IEEE International

Conference on Genetic Algorithms in Engineering Systems: Innovations

and Applications (GALESIA '95), pp 13-17,1995

Robinson Robinson G, El-Beltagy M, Keane A, "Optimisation in Mechanical

Design", Evolutionary Design by Computers, Morgan Kaufmann, pp 147-

165,1999

Rosenman Rosenman M A, "The Generation of Form Using an Evolutionary

Approach", Evolutionary Algorithms in Engineering Applications, pp 69-

85, Springer, 1997

Rowbottom Rowbottom A, "Evolutionary Art and Form", Evolutionary Design by

Computers, Morgan Kaufmann, pp 261-227,1999

Rowley Rowley T, "A Toolkit for Visual Genetic Programming", University of
Minnesota, 1994

http: //www. geom. umn. edu/--trowley/genetic/report/report. html

Schroder Schroder P, Chipperfield A J, Fleming P J, Grum N, "Multi-Objective

Optimisation of Distributed Active Magnetic Bearing Controllers",

Proceedings of the Second International Conference on Genetic

Algorithms in Engineering Systems: Innovations and Applications

(GALESIA `97), pp 13-18,1997

Smith1 Smith R, Warrington S, Mill F, "Shape Representation for

Optimisation", Proceedings of the First IEE/IEEE International

Conference on Genetic Algorithms in Engineering Systems: Innovations

177

and Applications (GALESIA '95), pp 112-117,1995

Smith2 Smith R E, Goldberg D E, "Diploidy and Dominance in Artificial

Genetic Search", Complex Systems, 6(3), pp 251-285,1992
Smyth Smyth S N, Wallace D R, "Towards the Synthesis of Aesthetic Product

Form", Proceedings of the ASME DT Conferences, DETC/DTM-14554,

2000

Soddu Soddu C, "Recognizability of the Idea: the evolutionary process of
Argenia", Proceedings of AISB'99 - Symposium on Artificial Intelligence

and Scientific Creativity, 1999

Taural Taura T, Nagasaka I, Yamagishi A, "Application of evolutionary

programming to shape design", Computer-Aided Design, 30(1), pp 29-35,

1998

Taura2 Taura T, Nagasaka I, Yamagishi A, "Adaptive-growth-type 3D

representation for configuration design", Artificial Intelligence for

Engineering Design, Analysis and Manufacturing (AIEDAM), 13(3), pp

171-184,1999

Todd Todd S, Latham W, "The Mutation and Growth of Art by Computers",

Evolutionary Design by Computers, Morgan Kaufmann, pp 221-250,1999

Tovey Tovey M, Owen J, "Sketching and direct CAD modelling in automotive

design", Design Studies, 21(6), 569-588,2000

Ulrich Ulrich K T, Eppinger S D, "Product Design and Development", McGraw

Hill, 1995

Vihma Vihma S, "Products as Representations. A semiotic and aesthetic study of
design products", Publication series of the University of Art and Design

Helsinki, 1995

Wallacel Wallace D R, Jakiela M J, "A Computer Model of Aesthetic Product

Design: an approach to unify engineering and industrial design", Internal

report, Massachusetts Institute of Technology, 1991

Wallace2 Wallace D R, Jakiela M J, "Automated Product Concept Design:

Unifying Aesthetics and Engineering", Computer Graphics and
Applications, 13(4), pp 66-75,1993

Witbrock Witbrock M, Neil-Reilly, "Evolving Genetic Art", Evolutionary Design

by Computers, Morgan Kaufmann, 1999

178

Woodl Wood R L, "Genetic algorithm behaviour in the solution of an inverse

thermal field problem", Engineering Computations, 13(5), pp 38-56,1996

Wood2 Wood R L, "Genetic Algorithm Based Inverse Analysis", Internal report,

Loughborough University, 1996

Yeager Yeager L, "PolyWorld: Life in a New Context", 'Artificial Life Ill',

Proceedings of the Workshop on Artificial Life February 1992, pp 263-

297,1994

Yee Yee R, "Golden proportion and aesthetic design of long-span bridges",

Transportation Research Record, pp 36-46, National Research Council,

1998

Yu Yu T, Bentley P J, "Methods to Evolve Legal Phenotypes", Proceedings

of the Fifth International Conference on Parallel Problem Solving From

Nature", pp 280-282,1998

Zalzala Zalzala AMS, Fleming PJ (Eds), "Genetic Algorithms in Engineering

Systems", IEE, 1997

179

APPENDIX A- PUBLICATIONS

Journal Papers

Graham, I. J., Case, K. and Wood, R. L., "Genetic Algorithms in Computer

Aided Design" , Journal of Materials Processing , 1171-2, November 2001, pp
216-221, ISSN 0924-0136

Conference Papers

Graham, I. J., Wood, R. L. and Case, K., "Evolutionary Form Design: The

Application of Genetic Algorithmic Techniques to Computer-Aided Product

Design" , `Advances in Manufacturing Technology X111', Proceedings of the 15`h

National Conference on Manufacturing Research, A. N. Bramley, A. R. Mileham,

L. B. Newnes and G. W. Owen (Eds), Professional Engineering Publishing Ltd.,

University of Bath, September 1999, pp 345-349, ISBN 1-86058-227-3

Graham, I. J., Case, K. and Wood, R. L., "Genetic Algorithms in Computer

Aided Design", 'Building on Manufacturing Advances of the Nineties, IMC-17,

Proceedings of the 17th Annual Conference of the Irish Manufacturing Committee

,P Donnellan (Ed), National University of Ireland, Galway, August 2000, pp 47-

53, ISBN 0-9538974-0-0

Case, K., Graham, I. J., Wood, R. L. and Abdul Karim, M. S., "CAD Genetic

Algorithms for Evolutionary Form and Function Design", 'Advances in

Manufacturing Technology XVI', Proceedings of the 18th National Conference on

Manufacturing Research, K. Cheng, D Webb (Eds), Professional Engineering

Publishing Ltd., Leeds Metropolitan University, September 2002, pp 103-107,

ISBN 1-86058-378-4

Other Conference Contributions

Graham, I. J., Case, K. and Wood, R. L., "Evolutionary Computer Aided Design"

Poster Exhibit, 2001 Congress on Evolutionary Computation (CEC 2001),

Seoul, Korea, May 2001

1

APPENDIX B

DETAILED CROSSOVER EXAMPLE

iii. Table of decoded values for Parent and Child pairs

iv. Parents and Child pairs

v. Parent A

vi. Parent B

vii. Child a

viii. Child ß

ix. Generation 4

X. Generation 5

11

W
ý C
ý NW
(X ßr

Q
ý ý aý ý, ý a

ý
ý
C)

M
ýt bA

aý ý
ý
.0

i..
1+.

l
I

to

w
+.
ý. U

L-
C, 1 a'

h

w v o) ý
oý ... ý . ý,

w
wU
ýL
Vý

y

MN It - l-
NM ýO IC

r- in in tn
NMM Itt d

NNN 00 ýý

- . -i . -i Q-

OOO "-- O

1-4 0O-. 4 r"

(74, V) mIt 00 No -4

ý0ý ON o

en 00 If)
't m "ý-+ NM

ö
ti
ö. ý

ti
b -Z -ll 'b -b

VVwýV

ý, ýy :3Vý

4 N -. 4
N \0 \0

W) 00

(14 ý

NN r- ýM

-- ."00

OOO -r O

ýO0 . --4 r.

0% Mm 00 ý
-4 't d'

ý0 cf) ýýo

en 00
It d' dMM

ký

ýi' °
ööö
Q --Z Z

. --+ NM 't tn

ý
ý

s 00

ý ý
ý ý

W 0 ý

ý
0
ä
0

ý
ý
ý
x w

evn.
b -
... s
U

ö
. ti
...
U

b aý ý.
ý
'a

ý
ý U

M
a

ý on

wýw pý Cý U Cý
ý

výzýZ

C03 hh

4 N rl

N ýo vi
kn ýo

NN 00

Vr-1
NNýN

.ý .ý ýO0

OOOýO

O\ NM 00 \1O
-ý It Nt

ýG
M ý--ý ý V) tn

Cf) 00 W) tf)
. -. ý , tt 't
ý

tr) M

ýýýýý
5

ww
w: ý 01 . ý� V
C I. L
VýýVý

4 M r-+ M
N ýo 00

v-i
\O Mýýý

t- N O% 0%
V'1 r+

M

- . -r . -, 00

r+ OO . -ý O

ý0

O> M 00 "0
ý"' ýý

00 ri ýNý

ý It ON
M
C*A M

ýöööý

5 '43 -Z -Z t,

-1 NM le N

iii

"%IF

Parent A

Child a

iv

Parent B

Child 0

Parent A: g4pl-blue

1

T1 (fi w

Parent B: g4p3-cyan

vi

444,

Child a: g5p3-cyan

vii

Iý

or

Child 0: g5p4-red

1

viii

9-, 1
ý

k 10

1ý

ý

ýw

ib

ý

IX

4
I

torr
') sI

144#

A.
40

l! ')
C
O

ý
ß
L
ý

C
ý

0

X

APPENDIX C

PRODUCT CONCEPT ILLUSTRATIONS

xii. First three objects and associated populations

xiii. Yellow Plastic Office Chair

xiv. Brushed Stainless Steel Bottle Opener

xv. Blue Plastic Table Lamp

xvi. Next three objects and associated populations

xvii. Compact Espresso Machine

xviii. Futuristic Mobile Phone Concept

xix. White Ceramic Hand Basin

R1

Pe _
I

Office Chair Object

\W

to

0

I

t

V

Bottle Opener Object

The evolved objects featured in the following
product concept illustrations

xii

Office Chair

X111

ýý

Bottle Opener

XIV

Table Lamp

Fe
94 Ir v. i

(
Espresso Machine Object

0
q

ý/ c

I

4

r
ý

ý
"

Concept Phone Object

It
4

qr
ý "

Hand Basin Object

The evolved objects featured in the following
product concept illustrations

XVI

Espresso Machine

xvii

xviii

ý

co

co
_

xix

CD-ROM

EFD Executables

efd_menu_men

FirstEFD. dll

TeamForming. dll

Figures

LANDSCAPE. ppt

LANDSCAPE B&W. ppt

PORTRAIT. ppt

PORTRAIT B&W. ppt

Parts (Appendix B)

Detai140_004. prt

Detai140_005. prt

Slideshow Galleries

Animal Sculptures - CEC virtual sculptures, Chapter 5

EFD Products - Product concepts, Appendix C

Four Copper Objects - Freeform shape representation

Seating Designs - Seating designs, Chapter 5

Geometric Optimisation

Bounding Box Example, Chapter 4

Interactive Ancestor Diagram

Inheritance properties with blended objects

Thesis

Genetic Algorithms for Evolutionary Product Design

xx

