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ABSTRACT 

This thesis describes research into the development of a Computer Aided Design 

(CAD) tool that uses a Genetic Algorithm (GA) to generate and evolve original 

design concepts through human interaction. 

CAD technologies are firmly established in the later stages of design, and include 

many applications of Evolutionary Algorithms (EAs). The use of EAs as 

generative and search tools for conceptual design is less evident in fields other 

than abstract art, architecture and styling. This research gains its originality in 

aiming to assist designers early in the design process, by creating and evolving 

aesthetically interesting forms (objects). 

The integration of GA software with a solid modelling system has enabled the 

development of a prototype `Evolutionary Form Design' (EFD) system. Objects 

are defined using a genetic data structure and constructed from various geometric 

primitives and combinations of Boolean operators. The primitives interact in 

ways that are not easily predicted, often creating novel shapes that are unlikely to 

have been discovered through conventional means. Edge blending further adds to 

objects' complexity and visual appeal. Populations of objects are subjected to a 

`selective breeding' programme, directed through the user's allocation of scores, 

and may also be guided by simple geometric targets. These factors determine 

which objects are `fittest' and most likely to parent a new, hopefully improved 

generation of objects. The challenge has been to turn the concept into a genuinely 

useful tool, ensuring that desirable features are reproduced in subsequent 

populations. The key to achieving this is the way objects are recombined during 
* .ý. 

reproduction. Work has included developing 4 novel routine for grouping the 

individual primitives that form objects usi1P; Teamforming algorithm. 

Innovative, aesthetically interesting forms can be evolved intuitively and 

efficiently, providing inspiration and the initial models for original design 

concepts. Examples are given where the system'is used by undergraduates to 

generate seating designs, and by the author, to create virtual sculptures and a 

range of consumer product concepts. 
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CHAPTER ONE - INTRODUCTION 

1.1 The Need for Evolutionary Product Design 

The inspiration for this research stems from an interest in evolutionary computer 

programming; Genetic Algorithms specifically, and in Computer Aided Design; 

especially as a concept modelling and development tool for consumer products. 

At present, the use of CAD is concentrated around the later stages of design 

following on from conceptual design, but there is increasing interest in ways in 

which CAD can support earlier design processes. 

The initial stages of product design are a rather intangible set of processes, 

especially concerning the way original form ideas are conceived. The industrial 

designer uses a sketchpad, a practised hand and a selection of pencils and markers, 

to externalise the shapes of product concepts. Although a designer will usually 

have a vague image of a shape in mind, often finding inspiration in other objects 

(man-made or natural), it is very much down to the individual to create pleasing 

forms for products by drawing on knowledge, experience and `artistic ability'. 

Ideas are formed through a combination of inspiration and mapping out thought 

processes on paper. Ideas then evolve through the use of development sketches, 

cardboard models, clay forms and other physical media. An analogy with 

Darwinian evolution is frequently drawn; referring to the combination of existing 

ideas and the process of refinement a design goes through as it is developed. 

Existing CAD modelling systems are of limited use during this process, not 

allowing a designer to experiment with ideas freely. If CAD is to broaden its role, 

then there is a need to assist designers to a greater extent during the conceptual 

stages of form design. There is a significant gap in the market for a tool that 

actually generates form, and better supports form development. To exploit this 

gap, CAD tools should attempt to emulate the methods described above, and can 

provide a source of inspiration through a system that evolves forms. 
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1.2 Evolution and Genetic Algorithms 

Evolution can be described as the continuous production of new variations with no 

particular intent, except some variations will be more successful than others. 
Evolutionary biology has shown us that the intricate `designs' found in nature can 

arise through gradual, mindless improvement. Computers are incapable of 

conscious thought, but, by translating our knowledge of evolution into a computer 

program, the core innovative properties of evolution can be achieved and 

exploited. 

Genetic Algorithms are the most well known and well used evolutionary 

computational technique and have been applied to optimisation, problem solving 

and simulation, across a range of fields including biology, engineering, computer 

science, sociology and finance. They include processes taken from biology, such 

as reproduction, parent selection and genetic data structuring, and work by 

maintaining populations of members (i. e. solutions to the problem), the fittest 

(best) of which are selected to create a new generation. 

Usually, after initialisation, a GA is left to run for a number of generations until, 

hopefully, a solution emerges. In some applications a human operator is required 

to contribute to the assessment of members during the evolution process. This 

interactive method is most often used for producing computer art. With the user 

as the sole source of evaluation the system is analogous to selective breeding (of 

farm animals, garden plants etc. ). 

2 



1.3 Product Form 

It is understood that studying form in isolation is not in keeping with effective 

design practices, as is evident from the quotation below from `Products as 

Representations' [Vihma]: 

"In many definitions of design, the use of the word `form' is 

avoided so that the outer form, appearance or surface of the 

product will not be given too much attention in people's 

conceptions of design. The avoidance and understatement of 
form' can be seen as anxiety towards a too superficial conception 

of design as mere styling" 

It is also acknowledged that the design of products should be concurrent, in that 

the areas of industrial design (e. g. styling and user interaction) should not be 

considered separately, after other aspects of product design have been completed 

[Ulrich]. 

3 



1.4 Research Scope 

The overall theme of the research discussed here is the integration of evolutionary 

techniques with a CAD modelling system, combined with human interaction to 

guide the evolution process. It has not been the intention to produce an 

`independent' system that runs through a number of generations, with only the 

pre-set objective functions for reference, then presenting its solution(s) to the 

problem. Nor has it been the intention for the user to be the sole driving force 

during `evolution'. A balance has been achieved through the development and 
integration of the following concepts: 

" Offering the user the chance to rate the objects presented, or explicitly select 

which objects are allowed or discarded as parents for the next generation. 

" Allowing objects' geometric properties to contribute to their fitness. 

" Establishing which GA operators are most appropriate for the application. 

" Designing a novel technique to maximise desirable feature propagation and 

distribution, thus increasing the efficiency of the evolution process. 

The desire to create aesthetically interesting forms has strongly influenced the 

focus of this research, and for the software to be considered as a tool, rather than 

just an investigation into the above concepts, the created objects should be capable 

of representing actual products. The use of surface modelling would seem more 

conducive to the complex curved products with which this research is concerned. 

Nonetheless, it is felt that a Constructive Solid Geometry approach, with edge 

blending, is more suitable for providing greater object variety and a natural 

interpretability (as products), whilst maintaining high data efficiency. 

This research is primarily concerned with the outside appearance of objects, 

concentrating on aesthetic qualities over functional characteristics. There is scope 

for the parameterisation of aesthetics qualities, such as cohesiveness, 

compactness, proportion and unity, to be investigated. It is also suggested that 

mechanical considerations could be included within the system. For example, by 

providing functional elements to be integrated within each design. 

4 



1.5 Aims and Objectives 

Aim 

To develop an interactive evolutionary CAD tool focusing on the conceptual 

phase of product design. 

Key issues being: 

" Forms should be aesthetically interesting and able to represent products. 

" User interactions should have a predictable outcome. 

" The evolutionary process should be efficient and sensitive to a designer's input. 

" The system has to actually assist designers. 

Objectives 

1. To review the current state of research and understanding in the fields of 

Evolutionary Computation (especially Genetic Algorithms applied to 

engineering design and form generation), Computer Aided Design, Design 

Methodologies and Aesthetic Theory. To substantiate the demand for a CAD 

tool that enables the generation and evolution of product form and to provide 

an overview of existing evolutionary design systems. 

2. To develop a unique interactive CAD system that utilises evolutionary 

techniques and has the ability to represent aesthetically interesting products. 

To demonstrate other software capabilities including functional considerations 

and aesthetic assessment functions. 

3. To develop the novel GA technique of forming `teams' of interacting 

individuals to produce the output, subject to a set of evolving interaction rules. 

4. To validate the system through informal case studies and by allowing potential 

users to create a range of virtual consumer products. 

5 



CHAPTER Two 

LITERATURE SURVEY 

2.1 Applications of Evolutionary Algorithms 

Genetic and Evolutionary Computation 

Evolutionary Algorithms (EAs) are search methods inspired by and based upon 

the Darwinian theory of evolution observed in nature - natural selection through 

survival of the fittest. The fundamental feature of modern EAs is that they work 

with a collection, or population, of solutions concurrently. All of the solutions in 

a population are evaluated, with the best solutions then contributing in some way 

to forming new solutions. This process is iterated, causing evolution to occur. An 

intriguing feature about these methods is that the evolution displayed is not 

explicitly programmed, or simulated, but an emergent property of the algorithm, 

and very real. 

An offshoot of the early work on Artificial Intelligence, the concept of 

Evolutionary Computation was realised in the late 1950's [Levy]. John Holland 

played a central role in this work, and went on to create Genetic Algorithms 

[Hollandl]. There are three other main evolutionary algorithms in use today: 

Evolutionary Programming, Evolution Strategies and, more recently, Genetic 

Programming. Subjects with close links to, and often used in conjunction with, 

Evolutionary Algorithms include Cellular Automata, Neural Networks, Simulated 

Annealing, Fuzzy Systems, Immune Networks and Machine Learning. An 

astonishing number of refäted and inter-related subjects have developed in recent 

years, as is demonstrated in the following list of topics represented at GECCO- 

20021. 

1 The Genetic and Evolutionary Computation Conference, a recombination of the Seventh Annual 
Genetic Programming Conference (GP-2002) and the Eleventh International Conference on 
Genetic Algorithms (ICGA-2002), presented by the International Society for Genetic and 
Evolutionary Computation (ISGEC) 
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"... genetic algorithms (GA); genetic programming (GP); evolution 

strategies (ES); evolutionary programming (EP); evolvable 

hardware (EH); evolutionary robotics (ER); real-world 

applications (RWA); classifier systems (CS); DNA, molecular and 

quantum computing (DNA); artificial life, adaptive behaviour and 

agents (AAA); ant colony optimisation (ACO); optimal design of 

engineered structures (ODES); methodology, pedagogy, and 

philosophy (MPP); evolutionary scheduling and routing (ESR)... " 

Genetic Algorithms 

Genetic Algorithms were initially developed by John Holland in the early 1970's 

[Holland I, Holland2], and popularised by David Goldberg's textbook `Genetic 

Algorithms in Search, Optimisation, and Machine Learning', first published in 

1989 [Goldberg]. GAs are good for solving problems where the range of 

combinations of parameters is so large that it is unfeasible to search exhaustively 

[Forrest]. For example, the `problem' of finding `aesthetically satisfying' 3 

dimensional shapes for consumer products is infinite, even if it can, to some 

degree, be parameterised. 

The remainder of this chapter, after briefly acknowledging some interesting 

biological applications, concentrates on GA applications in engineering, product 

design, aesthetics and interactive art. Genetic Algorithms have also been 

successfully applied elsewhere, to the modelling of social, economic and political 

systems [Forrest, Goldberg], and financial systems, such as stock market trends 

and patterns [Levy]. They are also often employed as theoretical and 

experimental tools for investigating the phenomena generated by complex 

adaptive systems (adaptive agents), such as ecologies, immune systems, 

developing embryos and the brain. Chapter 3 introduces Genetic Algorithms in 

more detail. 
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Artificial Life 

Genetic Algorithms, being based on evolutionary principles, are firmly established 

within the field of Artificial Life (AL). An overview of the fascinating history of 

AL is described in the popular science book, 'Artificial Life - The Quest for a 

New Creation', by Steven Levy [Levy]. The subject is covered in greater detail by 

one of the pioneers in the field, Chris Langton, in his opening essay to the 

Proceedings of the First Workshop on Artificial Life, in 1986 [Langton fl. Two 

further publications, Artificial Life II and III [Langton2, Langton3] bring together 

descriptions of the work at the Santa Fe Institute, over the subsequent 6 year 

period. 

Reading around this remarkable subject greatly influenced the author's decision to 

take a final year undergraduate degree project in Genetic Algorithms [Graham1], 

which led to the research described in this thesis. Three examples of particularly 

interesting applications of GAs in Artificial Life, taken from the Artificial Life 

series mentioned above, include: An artificial ant population which developed 

foraging strategies [Collins]; the detailed simulation of food webs [Lindgren]; and 

PolyWorld, the simulation of an entire ecosystem, containing autonomous agents 

that displayed complex learning capabilities and behavioural patterns through 

evolution of a neural network within each agent [Yeager]. Another, slightly 

earlier study, which also created an artificial ecology, used a mixed species 

population which displayed emergent colonisation patterns dependant on food 

availability and interaction between other species [Assad]. 

S 



2.1.1 Engineering Applications 

Over the last two decades, a vast number of computer-based tools for engineers 

have been developed. In more recent years, there has been a shift in emphasis 

towards Artificial Intelligence based methods [Garrett], of which evolutionary 

techniques are a major part. One of the most popular evolutionary tools within the 

engineering field is the Genetic Algorithm, which is most commonly applied in 

the fields of; scheduling, control, route and network planning, layout design, 

component optimisation and robotics. Many applications can also be found in 

manufacturing systems, material design, integrated circuit design, modelling and 

simulation, signal processing and image processing [Dasgupta, Gen, Grierson, 

GALESIA95, GALESIA97]. 

The variety of applications of evolutionary computation techniques in engineering 

can be seen through the diversity of papers presented at the Second International 

Conference on Genetic Algorithms in Engineering Systems: Innovations and 

Applications (GALESIA), held in 1997. Applications include; airfoil design, gas 

turbine engine controller design, switched reluctance motor control, ship auto- 

pilot control systems, greenhouse climate control, traffic signal timing, hot rolling 

of steel strip, vibration data compression, scheduling in cellular manufacturing, 

local access network design, resource redistribution in the developing world, 

aircraft route planning, transistor-level digital logic synthesis, modelling a 

fermentation process, image restoration, recognition of object shapes with 

movable parts, missile-target simulation, intelligent user interface design, fire 

detection technology and development of walking strategies for an 8-legged robot 

[GALESIA97]. 

Contributors were not restricted to universities and research organisations. 

Several large companies presented research such as Rolls Royce, on active 

magnetic bearing controllers [Schroder] and BT, on dynamic data searching 

[Amin]. The presentations ranged from the introduction of preliminary ideas and 

research, to post-application reports on industrially applied case studies. 
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A good example of real world application is the work at Politecnico di Torino 

with Bottero SpA, Cuneo, Italy, where a GA has been used for optimising area 

loss in flat glass cutting [Corno]. The GA is used to find an efficient cutting 

pattern, where the stock glass sheets are typically in the order of 10m2, and 

benchmark processes used for evaluation involved cutting specifications of 

between 12 and 161 pieces, with between 2 and 35 different sizes of piece. In this 

case, the GA has to find an acceptable solution in real time, in the period between 

starting the previous job and the loading of the next glass sheet. Other constraints 

arise from the cutting technology used, including the need for the cutting pattern 

to be composed of a series of end to end cuts, in the horizontal or vertical 

direction. There was also the need for the program to run on the PC-based 

machine controller. Commercial systems run on separate PCs 'in the office', at 

the time of receiving a customer order, and as such are a), under no time 

constraints and b), often out of the reach of smaller companies who may not have 

these separate facilities. The initial results were very good - comparable, and in 

some cases out performing the three commercial systems available. This led to 

the immediate installation of the software onto every flat glass-cutting machine 

sold by the company. 

A number of papers address the different ways problems can be genetically 

represented. For example, work described in [Cordon], on designing fuzzy rule- 

based systems for surface representation, investigates, amongst other things, the 

alternative ways chromosomes are used to encode the solutions. Chromosomes 

are either treated as individual fuzzy rules and the entire population represents the 

knowledge base, or, alternatively, each chromosome represents an entire 

knowledge base. The findings are similar to those on the validity of the 

Teamforming technique in the research discussed here, in that each representation 

has its own virtues. In the paper, Cordon recommends a third model, an 

adaptation of the first `each chromosome is a fuzzy rule' approach, where only the 

best individuals are chosen to form the knowledge base - potentially, this idea 

could be investigated during further development of the EFD Teamforming 

method. 

10 



Manufacturing Engineering applications of GAs fall into the two general 

categories of planning functions, and shape design [Mill]. The more prevalent 

manufacturing applications of GAs are systems-based, concerning scheduling, 

such as job-shop scheduling [Come], flow-shop scheduling [Gonzalez], assembly 

line balancing [Byrne], and production planning [Ono]. Other work in the field 

includes object recognition, route and network planning, and robotics [Zalzala]. 

Applications concerning component optimisation are most relevant to this 

research. 

Component Optimisation 

GA optimisation is often applied to aerodynamic components, in combination 

with Computational Fluid Dynamics (CFD) software [Obayashil], often within 

turbines, where thermodynamics [Pearce, Wood 1], or other mechanical functions, 

such as stress and mass are analysed using Finite Element Analysis (FEA) 

software [Smith]. 

The airfoil design application listed above involves aerodynamic optimisation of 

compressor blade shape (A 2D cross section is used), where multi-objective 
design seeks high pressure rise, high flow turning angle, and low pressure loss 

[Obayashi2]. The airfoil is represented two dimensionally, by 2 B-spline 

polygons, involving 21 variables per polygon. Leading and trailing edges, and 

one further point, are frozen, in order to maintain correct representation. 
Evaluation is carried out using the Numerical Wind Tunnel' at the National 

Aerospace Laboratory in Japan. The solutions obtained were better in all three 

objectives, than current designs of airfoil. 

Other examples of evolutionary component optimisation in the literature include 

the optimisation of flywheels, for the maximisation of specific energy density 

[Eby], optimisation of vibration and noise response in satellite booms and load 

cells [Robinson], and jet engine annulus design optimisation using a voxel-based 

representation [Baron], which is discussed later. 

1 Parallel vector machine (a dedicated FEA installation on a purpose built super-computer) 
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2.1.2 Applications in form generation, aesthetics and art 

The utilisation of evolutionary computing technologies for optimisation is well 

established, and has been discussed. There appears to be much less recognition of 

the design exploration and search capabilities of EAs [Parmee]. Research into 

form generation and aesthetics is generally confined to the visual arts, and will be 

summarised shortly. There are, however, some notable exceptions. The work 

carried out over the last 10 years by David Wallace, on developing a computer 

model of aesthetic product design, is covered in the following section on 

evolutionary design systems. Aesthetic issues are strongly represented in civil 

engineering, particularly in bridge design and will also be covered briefly. Lastly, 

although not directly related to aesthetic design, the work on free-form shape 
features discussed below is distinctive, in that it initially considers the surface 
form in isolation. Similar work can also be found in the literature [Guo]. 

Artificial Embryogeny 

Recently there has been increased interest in embryogeny, originally summarised 
by [Kumar]. Embryogenies, or growth processes, tackle the issues of increasingly 

ambitious and complex problems being set for evolutionary systems. They copy 
the way nature grows designs, rather than the more conventional direct mapping 

of genetic data to the solution. 

Naturally, one of the first applications was in free-form shape generation, 
investigated at the `Research into Artefacts, Centre for Engineering' (RACE) at 

the University of Tokyo. The aim of supporting the designer in the early stages of 

the design process is stated in [Taural] - the intention being to develop a 

technique that overcomes some of the problems associated with the two principle 

representations: Constructive Solid Geometry (CSG) and Boundary 

Representation (B-rep). These problems are identified as the loss of design data 

during Boolean operations, and the difficulty in preserving features after 

combination when using the mathematical data of the surface geometry as the 

representation. The shape representation is described in the following chapter. 
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Evolutionary programming techniques allow populations of free-form shapes to 
be generated and explored. Genetic recombination creates new shapes through the 

combination of pairs of existing shapes. As with all work applying genetic 

operators to objects (including the GA application in the EFD research), much 

attention is given to the preservation of features when combining shapes. This 

careful attention to detail pays off, new shapes clearly exhibiting features of the 

two contributing shapes, whilst also displaying a useful degree of variation and 

exaggeration. Figure 2.1.1 shows the progressive evolution of shape to a target 

(left), and the results of the combination operator (right). As acknowledged in the 

paper, there are limitations in the capacity to represent products with this 

technique. However, as is evident from the continuing work by the RACE group 
(the adaptive-growth 3D representation has been used, more recently, for 

configuration design [Taurat]) and through its inspiration to other research 

groups, the early work on embryogeny summarised here is a valuable contribution 

to the field. 

Figure 2.1.1 - Free-form shape representation - Taura 
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Bridge Design 

Research surrounding the aesthetic design of bridges is well documented in the 

literature. In one case, a Genetic Algorithm is combined with fuzzy reasoning to 

develop a decision support system for aesthetic design of arch bridges [Furuta]. 

Arch type, chord type, rise rate, number of hangers, cross sections and colours of 

arch ribs, girders and hangers are all considered. Except for colour, variation is 

only between two or three alternatives in each case; i. e. `number of hangers' can 

either be `Many' (20), or `Few' (15). Solution bridge designs are presented at the 

end of optimisation, after between about 150 and 250 iterations. Three examples 

of aesthetic designs are described (but not illustrated). The fuzzy reasoning of 

aesthetic functions is established by asking designers to indicate preferences for 

design images they are shown. These are structured around the degree of 

satisfaction a designer has with a list of `design concepts' such as `stability', 

`elegance', `reliability', `uniqueness' and `friendly'. These are then linked with 

pairs of adjectives to establish fuzzy if-then rules, i. e. `stable / unstable', `rigid / 

flexible', `elegant / unrefined', `strong / weak', `unique / normal', `lively / lonely'. 

No indication is given as to any mechanical considerations. 

This bridge design system shares some common characteristics with the ideas 

presented in this research, particularly the intended further development of the 

work to include aesthetic assessment. The lists of `design concepts' and adjective 

pairs look like the kind of criteria that would be involved with aesthetic 

performance of evolved objects. 

ý 
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Art 

The applications described previously demonstrate the two distinct methods used 

in evolutionary design: Interactive, and non-interactive'. In the domain of 

evolutionary art, the interactive method is by far the most popular. In fact, this is 

essentially the whole point - the interactive process is enjoyable, partly explaining 

the occurrence of so many commercial and web-based systems [Rowbottom, Das]. 

The most well known products in the field are the combined works of William 

Latham of Computer Artworks Ltd. and Prof. Stephen Todd of IBM Research 

Labs. `Organic Art' and `Mutator' are both capable of spectacular results and 
have been well documented in both academic and popular media [Todd]. The 

types of 3D objects produced by the systems are abstract, but very distinctive, and 

are characterised by horns, shells, pumpkins, and other mathematical shapes, 

`grown' using an artificial embryogeny technique. Because of the way in which 

the objects are encoded in chromosomes, they can be manipulated in many 
different ways, combined with other objects and mutated. Figure 2.1.2 shows 

some examples of Mutator and Organic Art objects, as well as similar work by 

Andrew Rowbottom [Rowbottom]. 

There is a clear relationship between the Mutator work and this research, in that 

genetic techniques are used to produce and display 3-dimensional computer 

models. Another consideration is that, during an active Mutator session, the user 

controls the development of objects. This is the primary approach that the EFD 

research uses, with the user making subjective decisions about the appearance of 

objects in allocating fitness values. 2D evolutionary art (Figure 2.1.3) follows a 

similar approach, the user being presented with an array of objects for appraisal, 

that are then subjected to mutation or breeding. Reproduced in Figure 2.1.4 are 

examples of two user interfaces [Witbrock, Rowley]. 

1 Interactive systems depend on the user's input once the evolutionary process has started. In non- 
interactive systems, the user can still be involved, by setting up the system beforehand. 
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Evolutionary Art, William Latham 

Organic Art, William Latham 

Forms, Andrew Rowbottom 

Figure 2.1.2 - 3D Evolutionary Art 
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Cellular Automata Art, 

Paul Brown 

Artificial Evolution for 
Computer Graphics, 

Karl Sims 
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Figure 2.1.3 - 2D Evolutionary Art 
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2.1.3 Creative Evolutionary Design Systems 

Conceptual Design 

The conceptual phase of design is potentially the most vibrant, dynamic and 

creative stage of the overall design process. However, it is also the least 

understood [Macmillan]. There is a wide range of research dedicated to 

developing systems that promote and support creative and innovative conceptual 

design. These systems encompass; cognitive processes, such as work on 

developing a framework for visualisation [Dahl]; working environments, as with 

research on developing a framework for conceptual design [Macmillan]; 

communication, such as research studying the language of references used when 

describing sources of inspiration [Eckertl]; and CAD tools, such as those that 

utilise sketching inputs to facilitate the rapid production of ideas [Tovey]. 

To design original, useful and appealing products, designers needs to incorporate 

imaginative visualisation, and not rely on memory to come up with ideas [Dahl]. 

This assertion supports the recent initiative of developing systems, such as in the 

EFD research, that provide the designer with a multitude of `imaginative' starting 

points for a design. It also affirms that these initial concepts need to be combined 

with visualisation (the product context, especially the user) if they are to become 

successful products. 

The perceptual abilities of the brain, enable relatively basic shapes to be 

interpreted as types of form we are familiar with [Atick]. Consequently, the use 

of simple representations, often utilised by generative systems, is valid in terms of 

providing inspiration. Sources of inspiration from existing products play an 
important role in the design process [Eckert I]. When using existing products as 
inspiration though, it is difficult to avoid the influences of context. Although it is 

not possible to escape from designers' interpretations of forms being tainted by 

context, generative systems are able to provide virtually context-free inspiration 

for product forms. 
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The recent emergence of creative evolutionary design has been well documented 

in the academic and popular media [Graham-Rowe]. An informal introduction to 

generative and evolutionary design systems is available in the position paper `Ten 

Steps to Make a Perfect Creative Evolutionary Design System' [Bentleyl], which 

also includes discussion on applicability, and brief descriptions of two of the 

systems discussed here. There are numerous examples of creative evolutionary 

design systems, some of which are summarised later. Discussed first are three 

systems that offer much more than styling exploration, and genuinely belong in 

the field of design. 

A computer model of aesthetic product design 

Research on computer aided integration of engineering and industrial design, has 

been reported from 1991 onwards [Wallace 1, Wallace 2]. The goal of the early 

work was to develop a design tool to help designers produce preliminary designs 

that are correct for their intended market, manufacture, and use. The expert 

system developed generates a design concept based upon manufacturing, 

ergonomic, aesthetic, and style considerations. User interaction is confined to the 

beginning of each of four stages of the process. 

The first task is to select elements from a library of standard components and sub- 

assemblies (loudspeakers, keypads, microphones, jacks, displays and mechanisms, 

e. g. cassette drives). For spatial positioning of external components, four 

aesthetic characteristics are considered: stability, rhythm, balance and 

organisation. Each external component is positioned on a structure called the 

product matrix, and has class, features and characteristics attributes assigned. Six 

classes of component are used to position the components correctly: acoustic 

components, keypads, switches, jacks, visual displays, and mechanisms. The 

features of a component enable a visual representation of the item (e. g. a speaker 
is represented by a grill) to be produced. Special characteristics identify the needs 

of a component; e. g. a power supply jack is labelled as service whereas a 
headphone jack is labelled as interface. This insures that components are 

positioned appropriately within the matrix. Finally, a cubic bounding hull is 

generated around the entire assembly, ready for the surface design. 
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A prototype is chosen from a surface style library to provide a housing for the 

components, compatible with size, shape, and the intended use of the product. A 

mapping function preserves the style and manufacturability information encoded 
in a prototype. The surface styles are primarily defined by the edge treatments, 

i. e. rounded, chamfered etc. The surface detailing stage builds upon the product 
housing created in the previous stage, and finally surface applications are applied. 
These are limited to colour and graphics, but other surface treatments, such 

screening, logos, hot stampings, and textures are suggested. 

The impressive aspect of this work is its holistic approach. The system considers 

manufacturing capability of designs (by injection moulding), and considers rules 

relating to aesthetics and ergonomics during layout design, producing products 

that are suitable for their purpose. Obviously the cubic representation restricts 

creativity and range application. More importantly perhaps, the system ignores 

the refining process often carried out by designers on their initial concepts, since 

the system creates just one finished product according to the criteria specified. A 

designer may wish for a range of product concepts to chose from, in which case 

having to repeat the process, which appears to be quite lengthy. The drawbacks of 

this non-interactive process are mentioned in the report however, with the 

conclusion that if the system were to be developed for practical use, it would be 

essential for the designer to interact more, and modify results. 

Recent continuation of this work [Smyth], concentrates on issues of synthesising 

`Brand DNA' (product styles adopted by corporations to distinguish brands and 

create a common brand identity) through aesthetic product form. The issues 

raised above have been addressed by incorporating evolutionary techniques that 

are used to generate variations on an archetype supplied by the user. A skeleton 

of the desired form, based on existing product geometry, is used to generate a 

population of skins (forms), from which the user selects appealing examples for 

further evolution. The method lacks genuine creativity, in that established 
ideas/designs are used to seed the evolutionary process. However, this process 
does have its place in industrial design methodology, and has actually been 

applied commercially (the design consultancy company affinnova use a similar 

approach, discussed at the end of this section). 
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GADES 

The earliest example of creative evolutionary design of products found in the 

literature is Peter Bentley's doctoral research into generic evolutionary design, 

1993 onwards. This well cited research is introduced in an early conference paper 
[Bentley2], fully described in the Ph. D. thesis [Bentley3], and summarised in the 

final chapter of the book, "Evolutionary Design by Computers", [Bentley4]. 

The design system, known as `GADES' (Genetic Algorithm DESign), has 

`designed from scratch', objects such as tables, heat sinks and optical prisms 

(Figure 2.1.5), and a variety of streamlined designs. The designs are constructed 

from `clipped stretched cuboidsI , and, more recently, include a limited capacity 

for manufacturing considerations. The GADES system has also recently been 

applied to architectural problems - the latest example being a hospital layout 

design [Bentley4]. 

The system operates as follows: Appropriate analytical functions are selected from 

a library of evaluation modules, and a Genetic Algorithm is used to generate 

populations of candidate designs, which are assessed against these criteria. The 

system therefore, once initialised, needs no further prompting from the user, and 

presents a selection of optimised designs on completion. 

Using the evolution of a table as an example, five evaluation modules are 

specified: size, mass, flat upper surface, supportiveness and ̀ unfragmented'. The 

system demonstrated consistent evolution of fit table designs, often with 

surprising creativity. A variety of different approaches emerged to increase the 

stability of the tables, without any specific instructions: Some designs have a very 
low centre of mass, some use a wide base, and by enforcing symmetry about two 

planes, the traditional four legged approach was ̀ discovered' 

1 Introduced overleaf and described in detail in the following chapter 
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Tables evolved for size, mass, stability, 
supportiveness and flat upper surface 

Heatsinks evolved to fit over a CPU, dissipating heat 
from the processor by maximising surface area 

An example of an evolved optical prism, in this case, a porro prism. 
This application uses a ray-tracing module, and demonstrates the use 

of 'clipped stretched cuboids' enabling the angled surfaces 

Figure 2.1.5 - GADES evolved designs 
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In order to expand the representational capabilities of the system, whilst still 

retaining effective manipulation by the GA, a novel low-parameter spatial- 

partitioning representation was developed: Cuboids are intersected by a single 

plane at any orientation, allowing angled faces to be introduced to the outer 

regions of designs. 

Rudimentary multi-objective optimisation was used, and developments of certain 

aspects of the GA were carried out, tailoring the algorithm to the specific 

application. These developments included variable-length chromosomes, 

enabling designs to be constructed from variable numbers of blocks (a capability 

that would be useful in the EFD research and could be carried out using the 

Teamforming technique). 

This work is one of only a small number of examples of generic evolutionary 

product design found throughout the literature. The most original and outstanding 

aspects of the GADES work are its generality and creativity, demonstrating the 

ability to evolve various whole designs, rather than simply optimise a variety of 

pre-defined existing shapes by evolving individual parameters. 
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Agency-GP 

Two software projects emanating from the Emergent Design Group [EDG] are 

prominent in the literature, and are of varying significance to this research: 

`GENR8: Generative Form Modelling' [Hemberg], is a design tool that generates 

surfaces using 3D map L-systems and develops them using evolutionary search. 

Agency-GP [O'Reilly] is an architectural design exploration tool, using genetic 

programming and software agents. Output from both of these programs is shown 

in Figure 2.1.6. 

Agency-GP is one of a few examples of genuinely creative evolutionary form 

design. Although the context and output styles are unique in each case, there are 

prominent similarities between Agency-GP and the EFD research in their 

philosophy and representation construction process. As with this research, the 

Agency-GP software structure is noteworthy for its integration with a high-end 

three-dimensional modelling environment, which allows users to modify the 

evolved objects directly using the available modelling utilities. 

Representation is through one or more closed NURBS (non-uniform rational b- 

spline) curves. These curves are extruded to form surfaces and enclosed 3D 

spaces. There is here an exact parallel with the EFD work, in that repeated 

genetic data structures (one structure defines one primitive in EFD, or one 

NURBS curve in Agency-GP) are used to form whole genotypes'. Variation is 

achieved by transformation of these NURBS surfaces (translate, rotate, scale, cut). 

The similarities with the EFD work continue in that Boolean operations are then 

used - intersect, subtract and unite - to create new and differently shaped spaces. 

The ultimate intention is that each space is assigned its own architectural function 

(what the space is used for); where surfaces intersect and form new spaces, new 

functions would be allocated. 

1 Theoretically, here would be a potential application of the EFD Teamforming technique, enabling 
the evolution of rules that defined the ̀ intelligent' grouping of spaces 
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Agency-GP 

Figure 2.1.6 - Demonstration images from Agency-GP and GENR8 
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The use of a relatively simple physical representation has afforded two significant 
developments: An advanced and extremely useful aspect of Agency-GP is the 

ability to reintroduce modified individuals (designs) into the population and 

continue the evolutionary exploration process. Secondly, it has allowed the 

development of an impressive agent based design evaluation scheme. 

The assessment of each design is implemented by means of distributed software 

agents inhabiting the candidate designs. These agents have the potential to 

represent virtually any criterion for evaluation that can be encoded - the user acts 

through these agents in influencing the evolution of the designs. This allows for a 

modular structure for the integration of multiple fitness criteria. So, unlike the 

method often found in interactive evolutionary design (including the EFD 

research), the user does not have to evaluate every design, but may interrupt at any 

point with direct or indirect intervention. This can either be through the software 

agents, or interactively, after viewing the current population. Currently, five 

different agents have been created, considering; 1) size of shapes, 2) quantity of 

shapes, 3) intersections of shapes, 4) compliance within a user-supplied bounding 

box, and 5) the height of the entire structure. More advanced concepts are 

suggested, such as the conveyance of general desires ('create a high structure over 

there'), specifying quotients, constraints or targets (i. e. space or light 

requirements), or the inclusion of issues (i. e. energy efficiency). Methods of 

direct interaction include manually changing the actual fitness scores of selected 

designs, or by direct manipulation of the actual models, via the interface of the 

modelling system. 

The framework for the automated fitness capabilities in Agency-GP are at a 

significantly advanced stage of development compared to the EFD research. A 

hypothetical `equivalent' system dedicated to consumer product design, and 

containing similar design evaluation capabilities as Agency-GP, would represent a 

remarkable achievement, and an intelligent but ambitious aiming point for 

continuation of the EFD research in this area. 
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Further examples of evolutionary design systems 

Architecture 

Celestino Soddu's work has been widely publicised [Graham-Rowe], and 

exhibited internationally. Applications are predominately architectural (Figure 

2.1.7), but have branched into design, producing families of chairs, lamps and 

coffee-pots [Soddu]. 

John Frazer, over the past 30 years, has developing a theoretical basis for 

architecture using analogies with nature's processes of evolution and 

morphogenesis. A variety of evolutionary techniques have been used to 

explore architectural concepts (Figure 2.1.7) [Frazer]. 

In contrast, Orestes Chouchoulas is only two years into research on 

architectural Shape Evolution, which combines Shape Grammars and GAs. 

An application that evolves apartment building designs (Figure 2.1.8) has been 

presented [Chouchoulas]. 

Figure 2.1.8 - Shape Evolution, Orestes Chouchoulas 
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Evolutionary Architecture, John Frazer 

Mk§4 

ARGENIA, Celestino Soddu 

Figure 2.1.7 - Examples of Evolutionary Architecture 
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Industrial Design 

" The design consultancy company affinnova uses interactive evolutionary 

techniques to enable clients to explore multiple product concepts. Variation is 

achieved by de-constructing designs (provided by clients) into features, 

expanding each feature into a range of alternatives, and then creating a 

population of new products by re-constructing combinations of these altered 

features. The concept is demonstrated through the example of bottled water 

packaging (Figure 2.1.9) on the company's website [affinnova]. 

" Michael Pontecorvo, chief technologist behind Emergent Design, presents 

three applications of generative design on the company's website: Chairs 

(Figure 2.1.9), packaging design, and virtual cityscapes [Gatarski]. 

" Mathew Lewis tackles the human form, virtual game environments and artistic 

textures (Figure 2.1.9) in demonstrating the versatility of utilising data flow 

networks for software, developed as part of research into aesthetic 

evolutionary design [Lewis]. 

" Claudia Eckert and colleagues have developed a generative system for 

garment design (Figure 2.1.10) that combines user interaction with an expert 

system [Eckert2]. 
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Figure 2.1.10 - Garment Design, Claudia Eckert 
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(c) 2002 Affinnova, Inc. All Rights Reserved. 

Figure 2.1.9 - Examples of Evolutionary Industrial Design 
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In similar work to that of the EFD research, Hiroaki Nishino and colleagues have 

developed a digital prototyping system for designing novel 3D geometries 

[Nishino 1 ]. The system representation employs the implicit surface method, 

allowing a global blend to be applied to the underlying structure of collections of 

superquadratic primitives with deformations. This representation allows the 

creation of interesting and highly varied populations of smooth, flowing forms, 

but is restrictive in applicability, given a tendency for abstract, free-form shapes. 

The problem has been addressed through the creation of `roughly modelled 

initials' (basic geometric models). These initials are used (with slight variations) 

to seed the first population. Fitness allocation is provided solely through 

interaction - the user providing scores for the 20 shapes in a population. 

Experiments to create a green pepper shape compared the two approaches 

[Nishino2]. Results using randomly initialised populations displayed 

characteristics of the required shape between the 15"and 25`h generations, and 

convergence to an approximation of the shape between the 30th and 50`h 

generations. When the roughly modelled initial was used, not surprisingly, 

pepper-like shapes were visible from the outset, with convergence to a population 

of varied, but realistic pepper-shapes between the 7`h and 10`h generation (Figure 

2.1.1 1). In concentrating on the optimisation of shape to a predetermined, 

preconceived form, the work has neglected the area of creative design, which it is 

clearly capable of addressing. 

/ 
Figure 2.1.11 - Novel 3D Geometries, Hiroaki Nishino 
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2.1.4 Conclusions 

1. The majority of relevant examples of evolutionary computation in engineering 

in the literature deal with optimisation of specific mechanical components 

against physical and measurable properties, such as stress, mass, heat flow, 

and aerodynamic resistance. The engineering systems studied are typically 

non-generic, being dedicated to particular components in each case, and non- 

interactive, relying on objective optimisation criteria. Examples addressing 

aesthetics are generally confined to civil engineering. 

2. Evolutionary and genetic 3D art demonstrate a variety of ways of producing 

interesting shapes, steered by a user. The systems studied carry a certain 

`signature' or style in their outputs, prohibiting their use outside the field of 

abstract art. 

3. Bentley's work on generic evolutionary design is the closest to achieving the 

evolution of consumer products. The innovative `clipped stretched cuboid' 

representation addresses the representation efficiency and genetic transfer 

issues associated with GA optimisation, but neglects aesthetic quality, perhaps 

restricting applicability in the field. The advantages of automatic optimisation 

of designs are offset by the requirements of the set-up process - new software 

modules are needed for any new parameters. 

The research described in the following chapters has combined important aspects 

of these three fields, producing a user driven evolutionary design system, capable 

of internal optimisation, and the creation of interesting, original and useful forms. 

The other evolutionary design systems previously addressed in detail', offer 

significant insight into ways of developing the EFD research further, particularly 

in the areas of automated aesthetic assessment and manufacturing considerations. 

1 Wallace, O'Reilly, Nishino 
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2.2 Form and Aesthetics 

Perception 

Aesthetics is a more of a philosophical science, than a technical one, because 

perception depends on comparing images to previously stored images in memory. 

The brain, on receipt of information from the eye, compares the stimuli with its 

stored experience of similar stimuli patterns. Although there are many varied and 

often conflicting theories about aesthetic perception [Vihma], it seems important 

to note that the aesthetic properties of a product are not intrinsic, but are formed in 

the interpretation of the product when considering the product's function. In this 

light, it will be important to bring some functional consideration to the research in 

order to make rather less subjective and slightly more objective decisions about 

aesthetics. 

Form 

There are two separate, though strongly related manifestations of form. There is 

the internal form of the underlying basic structure, the anatomical embodiment of 

form, and there is the external form of the visual shape, the surface, the cosmetic 

embodiment of form [Ashford]. There are several well-established components of 

form; composition, surface, unity and proportion, these are discussed below. 

Composition 

The composition or arrangement of the parts of a visual pattern is, with 

engineering design, naturally very strongly influenced by the requirements of 

mechanical function and structure. However, people do have the capacity to make 

subjective comments about works of abstract sculpture, for example. 

Surface 

Surface describes the external form, or the visible shape. The quality of the 

external form is of no less importance than that of internal form, but relies upon 

the internal form being right. 
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Visual Unity 

Unity and harmony are virtually synonymous and there is clearly some connection 

between unification and harmonic relationship, although the former is associated 

more with the reflection of visual characteristics and the latter with steps in size. 

The link is in the repetition of similar qualities, which can assist identification by 

making a properly unified visual arrangement easier to perceive. For example, in 

Figure 2.2.1, the left form is weak and visually disruptive, whereas the form on 

the right displays visual unity. 

Figure 2.2.1 -A diagram representing visual unity 
(Based on Fig 4.3 from `The Aesthetics of Engineering Design' [Ashford]) 

Proportion 

Proportion, the relationship of a part to the whole or of one value to another, can 

be concerned with what is a suitable ratio within a particular context and also with 

several formal systems having a more universal application. The Root Five 

Rectangle system is a commonly used guide to proportion, with others including 

the Golden Mean system, the Summation Series, compiled by Fibonacci, and the 

Archimedian or logarithmic spiral. These are introduced in the following section. 
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2.2.1 Formal Systems 

Instead of trying to impose a theoretically ideal aesthetic quality upon a situation, 
it is better to integrate it with the situation [Ashford]. In other words, whilst there 

are many guidelines and `rules' published and taught in the field of aesthetics and 

design, some of which are outlined below, they cannot all be applied to all 

products indiscriminately. It is for this reason that, early on in this research, it was 

decided to always include a human designer/user as part of the EFD system. 

Having said this, it would be interesting and possibly useful, to attempt to 

integrate artistic `rules' of form into the software to some degree, and is the reason 

for reviewing this area. 

Why is proportioning important? Imagine a square with both dimensions equal. 

The onlooker will view it as square. If one dimension were to increase slightly, so 

that the ratio of the sides remains fairly close to 1, the outcome would be a 

rectangle that will consciously or subconsciously unsettle the viewer. The shape 

will seem like a square but not exactly square, as if a slight error has been made in 

constructing it. Forms with sides of ratios about 1: 13/a, or more, will overcome 

this and it will seem pleasant and balanced. The Golden Mean (or Golden Ratio) 

has been preferred over any other ratio and has classically been thought of as 

giving a perfect balance. It has the value of phi (b): 

0-y (145-)=1.618034... 
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The Golden Mean System 

A method for designing an object is often needed if the object is to be pleasing 

and balanced to the viewer. The method of proportioning objects using different 

incarnations of the Golden Mean has been known for many ages and was certainly 

known to the ancient Greeks, although it is still a matter of debate as to whether it 

was used formally in the construction of the Great Pyramid or the Parthenon. 

Figure 2.2.2a shows the construction of a Golden Rectangle by rule and compass 

methods, the same method as the ancient Greeks are known to have used. It is a 

method of proportioning that is most useful in two-dimensional works and has 

been used in many artworks, most famously in Salvador Dali's `The Sacrament of 

the Last Supper. ' The three related systems, which were all realised 

independently, are linked mathematically, and occurrences can even be found in 

nature. 

The Golden Mean system also gives rise to the Root-Five Rectangle system 

(Figure 2.2.2b), as its lengths (1 and 45) average to the Golden Mean, and shares 

the benefits of the Golden Mean system. Any Golden Rectangle is also infinitely 

divisible, always retaining its original proportion. Any smaller segments are 

harmonically related to the whole. It is for this reason that it remains such a useful 

tool. It enables a designer to proportion the bounding surface of an object and then 

create many subdivisions within that object whilst still maintaining the balance 

overall. 
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b) The Root Five Rectangle System 

c) The Archimedian Spiral 

Figure 2.2.2 - Mathematical proportion systems 
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A sequence of Golden Rectangles, as seen in Figure 2.2.2c, gives rise to a 
logarithmic spiral. Named the Archimedian spiral it is similar to spirals that can 

often be seen in nature. The seeds of a sunflower radiate from the centre in 

approximations to logarithmic spirals as do the segments around a pineapple, up 
from the base. An Archimedian spiral will have the same form however many 

iterations it has been through, such as a snail's shell, which always has the same 

form whether it is a tiny shell, of a couple of millimetres across, or a large one, 

several centimetres across. The numbers of segments in these natural spirals 

appear in the Fibonacci sequence, due to the ratios of corresponding Fibonacci 

numbers. Adding together consecutive terms to make the following term creates 

the Fibonacci sequence: 1,1,2,3 ,5,8,13 , 21 , 34 etc.. Displayed below are 

the ratios of corresponding Fibonacci numbers, which converge to phi (1): 

12358 13 21 
--ý---ý--ý---ý--ý---ý- 112358 13 

1.0-> 2.0 -> 1.5--> 1.666... --> 1.6-> 1.625--> 1.615... 

Conclusions 

Fundamentally, the matter of proportion is associated with an intuitive 

consideration of balance and composition, and with the achievement of a sense of 

direction in form. Formal methods, such as those discussed, are frequently used 

(Yee), but have limited use when creating three-dimensional objects. They may be 

used, in the first instances, to design one aspect of an object, however, as soon as 

the object is viewed in three dimensions, or the designer wishes to make small 

alterations, the formal methods can no longer apply. Therefore the Golden Mean 

and Root Five methods can only be used as a preliminary guide to a designer, but 

could be usefully incorporated in the research discussed here, during work on 

developing aspects of automated aesthetic assessment. 
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CHAPTER THREE 

TECHNOLOGY REVIEW 

Although there are many ways of tackling problems with large search spaces 

(Constraint Modelling, Hill Climbing, Simulated Annealing etc. ), only 

Evolutionary Algorithms such as the Genetic Algorithm have been applied - 

successfully in all areas of automated design (Bentleys, Khatib, Bäck, Forrest, 

Gen). Uniquely, EAs are generative, and deal with populations of solutions 

concurrently, allowing designers to explore numerous, creative solutions to 

widely varying problems. Evolutionary Algorithms are thus most likely to benefit 

from an interactive approach. In addition: 

" EAs work effectively with complex, ill-bounded, unspecific problems', and 

are good, general-purpose problem solvers. 

GAs resemble natural evolution more closely than other evolutionary methods, 

and share many similar characteristics with the human design process. 

" Genetic Algorithms remain the most widely used evolutionary technique. 

Since the application outlined presently, is in a relatively new and unexplored area 

of research, it is appropriate to focus on a well documented technique that has 

been shown, through extensive trails, to be reusable and robust (Goldberg). 

1 Where the functional relationships between parameters and objective function values are of 
unknown, arbitrary mathematical character 
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3.1 Genetic Algorithms 

The Genetic Algorithm is a search procedure closely based upon the mechanics of 

natural selection, and as such, various terms from biology are adopted to describe 

aspects of the technique. GAs work with a population of solutions, with each 

individual (or member) within the population referred to as a phenotype. This 

arises from the fact that, uniquely to GAs, each solution is encoded and 

manipulated as an artificial chromosome (or chromosomes), referred to as its 

genotype. The space defined by the genetic representation is therefore the search 

space, with the solution space being defined by the phenotype representation. The 

genetic representation is usually made up of strings of 1s and Os, but can be real 

coded using lists of parameters, or consist of sequences of instructions. 

So for each consecutive generation of solutions, the genotypes are mapped to the 

phenotypes to evaluate them according to the task in hand. The evaluation of 

phenotypes distinguishes good solutions from bad ones, and can involve complex 

computer simulation or modelling of each individual, or simply require a human 

operator to intuitively rate each or some of the designs. In either case, it is this 

allocation of fitness that guides the GA to evolve improved generations. 

The operation of a GA is made up of three phases: Initialisation, fitness 

determination, and reproduction. After the initialisation phase, where an initial 

random population is created (or sometimes the initial population is seeded with 

variations of known good solutions), the fitness determination and reproduction 

phases repeat cyclically, the intention being for a solution or pattern to 

progressively emerge. During the reproduction stage, selection and genetic 

operators act on the population. Selection involves choosing good solutions to be 

parents of new solutions. Parents are usually selected in pairs, using ranking, 

probabilistic, or tournament methods, based on fitness scores. Genetic operators 

are used to carry out recombination and mutation of the parents' genotype, 

creating these new and possibly improved offspring. Recombination is usually 

achieved through crossover of the parents' chromosomes, while mutation simply 

modifies an individual's genotype. 
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3.2 Representation 

Phenotype 

Product representation defines the subset of the shape space that the GA can 

search, and as such will characterise any work on evolutionary shape design, more 

than any other factor. The amount of data that needs to be processed by a GA 

should be kept to a minimum, to reduce the size of the search space and the 

behavioural complexity of the system. This is a well-recognised consideration, 

especially when dealing with 3-dimensional objects, and is acknowledged by most 

of the referenced examples in the literature. 

3D representations vary in their directness to the genotype, ranging from; explicit 

definition of every point in a design, as in voxel representation; through partial 

definition, such as specifying nodes, from which FE meshes are generated; to 

embryogeny models, where designs are grown according to a set of rules, such as 

cell division models. The representation selected for the research discussed here - 

geometric primitives combined through Boolean operators - lies somewhere in the 

middle, in terms of the amount of decoding necessary during the mapping process. 

Perhaps the simplest representation conceptually, voxel representation defines 

every point within a model explicitly. The grid of voxels can be represented by 

one long single-string binary chromosome, although this format of genotype 

requires a specific crossover operator to function meaningfully. A voxel-based 

shape representation offers a number of potential advantages for shape 

optimisation; topology need not be defined, geometric constraints are easily 

imposed and theoretically, with adequate resolution, any shape can be 

approximated [Baron]. In reality, various techniques have had to be invented to 

cope with the problems of voxel representation. For example, the lack of 

boundary smoothness and the inclusion of holes in the design can be alleviated 

with various smoothing mutation operators. It could be the case that this is an 

example of the point made in [Bentley5], that a poor representation will be 

disrupted by all standard operators and may require the creation of specially 
designed `non-disruptive' operators. Additionally, it is often necessary to 
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initialise the GA with variations of an existing design if successful voxel-based 

optimisation is to be achieved. However, its conceptual simplicity, and the 

affinity with FE analysis may mean that voxel representation remains in use for 

component optimisation applications. 

A cell division model, employed in the system for free-form shape representation 
introduced in the previous chapter [Taura], takes representation to the other 

extreme, in terms of mapping the genotype to the phenotype. Here, a small 

number of cells placed on the surface of a sphere, are divided (according to a set 

of evolving rules), and spread out on the surface of a sphere. The surface shape is 

generated by referring to the cell density: The density of cells at a point (A) on the 

surface is converted to a distance, and a point is created at this distance from the 

sphere's centre (0) in the direction OA. The points are converted to a tessellated 

surface, with resolution dependant on the number of surface points sampled. 

There are no specific problems identified with this technique, just the limitations 

of applicability mentioned before. 

A good example of a compromise between the amount of defining data and 

representation potential is the technique employed by Bentley for his GADES 

system [Bentley2]. Here, early designs were made up of collections of aligned, 

regular cuboids, keeping the amount of data to a minimum, but restricting the 

range of useful product definition. Angled faces and edges were introduced by 

allowing each cuboid to be intersected by a plane, of any 3D orientation and 

relative position, allowing the creation of more complex shapes, but without 
dramatically increasing the amount of data required. This `clipped stretched 

cubes' representation (Figure 3.2.1) was arrived at through the natural progression 
illustrated overleaf. 
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Representation Parameters Summary 

1) Cuboid defined by origin 6 parameters: x, v, Unable to define angled 

and lengths width, depth, height faces 

2) 6-sided polyhedron defined 

by corner points 

24 parameters: 8xx, y, z Too many parameters 

3) 6-sided polyhedron defined 18 parameters: 6x Still too many 

by intersecting planes angle I, angle2, distance parameters, `ambiguity' 

4) Cuboid with movable side 9 parameters: x, y, z, Combines benefits of I 

width, depth, heightl, and 3, but tessellation 

height2, height3, problems, and limited to 

orientation rectangular base 

`Clipped Stretched Cube' 9 parameters: x, v, z, Low number of 

width, depth, height, parameters, allows 

angle], angle2, distance angled faces and 

multiple sided 

polyhedra 

Figure 3.2.1 - Clipped Stretched Cubes 
(Reproduced from Figure 4.4 in [Bentley2]) 
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Genotype 

One of the defining features of GAs is that populations of solutions are encoded in 

a genetic format, the genotype, which is then translated, during a mapping stage, 

into the solution, or phenotype. The way the data is stored in the genotype is 

analogous to biological DNA, although the strings of data usually employ `0,1' 

binary representation rather than the four-letter `A, T, G, C' alphabet of DNA. Bit 

strings are often divided into artificial `chromosomes', or `genes', according to 

their decoded purpose, and may he further subdivided into segments for each 

decoded value (or allele), as in Figure 3.2.2 below. 

Chromosome A Chromosome B 

I: 1 IiIJ1 I F1 F:, 1 I I; 11 I.. I 
0011110100100101110001001101 

15 18 5 12 77 

Decimal Value 

Figure 3.2.2 - Binary Genotype Example 

This basic information is `decoded' (in the fitness determination stage) in order to 

relate the information to the particular objectives. This `mapping' process was, 

until recently, unique to GAs, but is now introduced to other evolutionary 

algorithms. During `reproduction', the data is manipulated in this genetic form, 

allowing new solutions to be created from members of the current population. 

Evolution relies on inheritance with a small degree of variation, ensuring that 

most offspring resemble their parents. Therefore, the most important thing 

concerning the genetic representation is that genotypes that are close together in 

the search space should map onto solutions that are similar to each other in the 

solution space. So that a small change in the genotype results in a small 

difference in the phenotype. 
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3.3 Initialisation 

The first population is created during an initialisation stage, usually by randomly 

selecting each bit of a binary chromosome(s) for each individual population 

member. So ̀ generation 0' is populated by solutions that have fixed structures 

and meaning, but random values. The aim is to create a diverse population of 

solutions. By maximising the initial distribution of members, the algorithm has 

the best chance of finding potentially fruitful areas of the search space, rather than 

homing in on sub-optimal solutions. This is equally important for interactive 

evolutionary design, so that a wide selection of different `starting points' is 

presented to the user. 

If random initialisation is used, the starting population should not have a 

significant bearing on the eventual outcome (using an effective GA), but may 

affect the time taken for this outcome to emerge [Wood2]. Sometimes the initial 

population is constructed from variations of a user-supplied solution, such as in 

the 3D Shape Optimisation work [Nishino] outlined in the previous chapter. 

The initialisation section is also used to set the control parameters, such as number 

of members, number of generations etc., and to read input parameters. When this 

stage is complete, the GA moves in to the two-phase evaluation-reproduction 

cycle, which is repeated until either a satisfactory solution emerges, the population 

converges', or the GA has run for a pre-determined time, or number of 

generations. 

1 When the genotypes, phenotypes, or fitness values of all individuals are static for a number of 
generations. 
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3.4 Fitness Determination 

Decoding 

A genotype may, for example, contain 2 chromosomes, each split into 2 segments. 

If each segment contained 6 bits, then it has the capacity to represent a range of 64 

integer values. The pair of such chromosomes could be decoded to describe an 

area in a two-dimensional 'search space', containing 644 variations or solution 

points. This example is illustrated in Figure 3.4.1 below, where the first 

chromosome is used to define the origin (lower left corner), and the second 

defines the length and height. 

126 

Area Search 
Space 

63 

Origin 
Search 
Space 

63 126 
origin chromosome 

001111010010 

15 18 

lengths chromosome 18 

100001001100 

33 12 

33 

12 

15 

Genotype Phenotype 

Figure 3.4.1 - Decoded values used to define an area 
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An alternative scheme would involve the second chromosome defining an 

opposite corner, this would mean that both points are independent, rather than the 

first example, where the location of the second corner is dependent on the first. 

The first method, where chromosomes define tangible characteristics without an 
increase in data, is generally preferable, allowing more progressive changes 
during evolution. 

If these values are to be interpolated within ranges (rather than used directly) it is 

usually necessary to predetermine upper and lower limits, although there are 

methods of dynamically re-scaling the search space as the GA progresses, in order 

to increase accuracy and efficiency [Wood 1 ]. Previous work by the author 

[Graham l] involved the decoding ranges being defined by a second co-evolving 

species, and was later discovered to increase efficiency considerably, in tests 

similar to the example given on the previous page. 
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Objective Function 

Decoded chromosome data are effectively estimates of the required parameters. 

Solutions made up of these individual parameter values are evaluated (often by 

external software) through simulation, analysis or calculation, relating the 

estimates to ideal values, or the rest of the population. An objective function (S) 

is a method of calculating how well a solution fulfils the problem objectives, or 

more specifically, how close the individual estimates (A) are to target values (T). 

The following equation is generally used to increase the effect of large differences 

and convert any negative values to positive: 

S= J(A-T)2 

Treating a collection of difference values together in this way only works if the 

values are of the same order and significance. If this is not the case, then a multi- 

objective approach is often necessary, involving more than one fitness function. If 

the problem is subjective, relying on interaction with a human evaluator, or if 

comparisons with other solutions are the sole route to fitness, often only a fitness 

function is required. 
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Fitness Function 

A fitness value (or fitness values, for multiobjective problems) describes the 

relative 'success' of individual members, compared to the whole population. 

Where fitness is derived from an objective function, a simple, but usually quite 

adequate method of defining the fitness function (f) is taking the reciprocal of the 

objective value. A scaling factor, k, (for multi-objective problems) can be 

introduced at this point: 

f= 
k 

k+S 

Fitness values are therefore typically real, positive numbers, between 1 and 0, 

where 1 represents perfect fitness. Average fitness, and other derived statistical 

values, are necessary for subsequent operators, but are often also used to evaluate 

how effectively the GA is performing. 
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3.5 Reproduction 

3.5.1 Parent Selection 

Selecting fitter solutions to parent the next generation is the usual method of 

inducing a pressure towards the evolution of fitter populations. The selection of 

parents is intended to give fitter members a greater chance of reproducing than the 

less fit individuals. 

Typically, one of three methods is utilised: Fitness ranking, tournament selection, 

or fitness proportionate selection. In fitness ranking methods, the likelihood of 

selection is proportional to the position in the ranked list of solutions. In 

tournament-based methods, selection is based on the comparison of pairs of 

(randomly or otherwise chosen) solutions. Fitness proportion methods, discussed 

below, use the solutions' actual fitness values to govern the probability of 

selection. The three techniques can range in the amount of randomness afforded, 

a balance has to be found which suits the application, maximising average fitness 

through the deterministic elements of the technique, while allowing random 

elements to keep the search open to potentially valuable solutions. 

Roulette wheel selection (the most common fitness proportion method), is very 

much probabilistic in operation, resulting in higher variance, which can help to 

alleviate premature convergence to sub-optimum solutions [Wood2, Forrest]. 

Although robust, the high stochastic error associated with roulette wheel selection 

is often prohibitive. The basis of the technique is as follows: An analogous 

roulette wheel (though with unequal trap sizes) is formed from the fitness values 

of the whole population (i. e. a pie chart of all the fitness values). Each solution 

therefore has a numerical range associated with it, so that when a random number 

is generated, between 0 and the total fitness value, the solution whose range the 

value lies within is selected. 
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Thus each solution (e) has a chance of selection equal to that of its fitness (f) as a 

function of the total fitness: 

P(ei) =f If 

More deterministic techniques are often used, especially for complex problems. 

Stochastic remainder selection is a common technique, which uses only a small 

probabilistic element. With this method, the number of times a solution becomes 

a parent is allocated according to the whole part of its normalised fitness value 

(the solution's fitness value is divided by the population mean fitness). A small 

random element is introduced by using the fractional parts of solutions' 

normalised fitness as a probabilistic weighting to select the remaining parents. 

Fertility 

The fertility of a parent solution is subtly different from its fitness. Where fitness 

defines the likelihood of reproduction, fertility defines how many children that 

parent can have. Fertility, although inherently incorporated into fitness 

proportionate selection, can therefore be treated as a separate method of exerting 

selection pressure. EAs will usually have a parameter that limits the number of 

children one solution can parent, thus limiting its dominance on the next 

generation and alleviating premature convergence [Yu]. 

Replacement 

There is also the option as to whether to replace the entire population with the 

next generation of members, or, as is sometimes beneficial, to transfer some of the 

fitter members from the previous generation directly into the current population 

(elite replacement), simulating the overlapping that usually occurs in nature. A 

departure from the sequential approach, used in non-continuous EP, is to create 

child solutions until the population size has doubled, and then remove the most 

unfit half. More involved variations on this theme, such as life-span (death) 

operators, used to prevent immortality if elite replacement is used; and kill 

operators, mostly used to enforce constraints, can also be employed [Bentley5]. 
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3.5.2 Recombination 

The reproduction stage is responsible for the creation of new, possibly better 

solutions and is the foundation of all evolutionary algorithms. It is the ability of 

new solutions to inherit properties from multiple parent solutions, with some small 

but significant changes that enables the evolutionary properties. 

At this stage in the GA, genetic information from elected parents is combined in 

some way, producing a new generation of members. The recombination of 

chromosomes is normally carried out using a variety of crossover operators, 

illustrated in the following diagrams. There may be one (Figure 3.5.1), or several 

(Figure 3.5.2) crossover points, which can be predetermined, or randomly selected 

for individual matings, or for the whole population. It is often desirable, to restrict 

crossover to whole segments (Figure 3.5.3), or even whole chromosomes (Figure 

3.5.4), in order that differences between parents and offspring remain small. 

Intra-segment crossover (Figure 3.5.5) produces greater variation, enabling the 

creation of many more new decoded parameters through recombination. 

There is also the option of whether to use complementary or non-complimentary 

crossover. With complementary crossover, pairs of corresponding chromosomes 

are produced using the same crossover point, where the `right half' of one parent's 

genes are matched with the `left half' of the other parent's, and vice versa, thus 

producing two offspring from each recombination (Figures 3.5.1 - 3.5.5). An 

advantage of this technique is that all genetic data from both parents is passed on. 

Alternatively, only'half of each chromosome(s) is (are) used to produce a single 

offspring, and the remaining portion(s) discarded. The process is then repeated 

with another crossover point, with either the same (Figure 3.5.6), or a newly 

selected pair of parents. Non-complementary crossover is the method used in 

nature, and tends to produce greater diversity [Wood2], by allowing a greater 

opportunity for variation than with complementary crossover techniques. 
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[IIIIII1IIIIII 

Parent A 

001111 010010 0101ý1100 01001101 

15 

i CE: [E=I-- 

18 

Parent B 

1 oioooiioiio 1001; 1 010 1000t110 

40 5 12 

11111 

77 54 9 10 142 

111111 
001111 110110 0101 1010 10001110 101000 010010 1001 1100 01001101 

15 54 5 10 142 40 18 9 12 77 

Figure 3.5.3 - Whole-segment complementary crossover 

Parent A 

. . 
001111 010010; 0101 1100 01001101 

15 18 5 12 77 

ký 

Child a 

001111 010010 1001 1010 10001110 

15 18 9 10 142 

Parent B 

101000 110110.1001 1010 10001110 

40 54 9 10 142 

Child ß 

III 
101000 110110 0101 1100 01001101 

40 54 5 12 77 

Figure 3.5.4 - Whole-chromosome complementary crossover 

iiIIII-4 111111 

Parent A 

[IIII-lIIII-IIIIIIIIl 

0 oai1 1 o1 o: o10 o: 1 0i1 1oEO oaoo1 1 o1 

m -® Q m7 Q 

Parent B 

1 0E1 00011 OEi 101: 00 110 1E0 160001 110 

ý= MD- 3- ý 
001000 010110 0001 1100 00001110 101111 110010 1101 1010 11001101 

8 22 1 12 14 47 50 13 10 205 

Figure 3.5.5 - Intra-segment complementary crossover 
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3.5.3 Mutation 

Although crossover and recombination are the primary methods of evolution in 

GAs (and nature), it is beneficial to introduce the small probability of mutation. 

This enables the creation of totally new segments that could not have been created 

from re-combinations of available genetic material. 

Mutation is most often achieved by inverting single bits within chromosomes 

(from I to 0 or vice versa), as in Figure 3.5.7. The probability of any one bit 

being affected are typically quite small, ranging from 0.001 to 0.075 in 

optimisation problems reviewed [Bentley5, Wood2], but generally rising to 

between 0.01 100.11 in artistic applications [Rowbottom, Witbrock]. 

It can be useful to reduce the likelihood of mutation as generations progress and 

converge towards a solution. The mutation probability can be defined as a 

function of generation number, or a mutation profile can be tailored to the 

application after experimentation, such as the one below, taken from an inverse 

optimisation problem [Wood2]. 

Generation >25 >50 >100 

Mutation Probability 0.075 0.050 0.025 0.010 

Figure 3.5.7 - Mutation 
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3.6 Specialised GAs 

The most common problem to arise when applying GAs is that of premature 

convergence, where the population converges on a local, sub-optimal solution, too 

soon. This is not such a problem for interactive systems, where the user can 

detect the problem and take avoiding action', but may be a sign that the system is 

running with less than ideal parameters. A second widely acknowledged 

limitation of the simple GA (such as has been described here) is difficulty in 

dealing with optimisation of multiple criteria, and is briefly discussed below. The 

steady improvement of Genetic Algorithms has been carried out since their first 

introduction, to address these and other problems. Consequently, distinct types of 

advanced GAs have developed, for example: Distributed GAs and GAs with 

niching and speciation have been developed to increase efficiency [Eby]; and GAs 

with diploidy and dominance that improve variation and diversity, especially 

when tackling functions that vary with time [Smith]. GAs are often combined 

with other techniques (Hybrid GAs), or heavily modified to suit specific 

problems, such as grouping GAs [Falkenauer]. 

Multiobjective GAs 

Simple GAs can (and are usually left to) work with multiobjective problems by 

copabining weighted objective values into one fitness value [Horn]. Frequently, 

however, this does not produce the best results, and it is necessary to employ a 

Multiobjective GA (MOGA). MOGAs work with more than one fitness value at a 

time and use Pareto optimality to define the better solutions. A solution is Pareto 

optimal if it is not dominated by any other solutions [Goldberg] (In some cases 

this may result in a large number of solutions all being Pareto optimal and 

receiving the same fitness score, which may causes problems in itself). 

I This circumstance should not be relied upon to relieve the problem while developing an efficient 
system - ideally the problem should be addressed through the usual means, i. e. careful selection of 
genetic operators and the ̀ tuning' of the operating parameters 
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3.7 Conclusions 

Clearly a CAD tool where any number of random forms are presented to the 

designer would be of limited use. Firstly these forms should be useful, and 

secondly, there needs to be an intuitive method for a designer to guide the process 

of form generation according to the task in hand. This method should adapt, 

according to the changing thought processes that occur during conceptual design, 

which are also triggered by the interaction with form on the screen. These 

complex, changing criteria are best addressed through evolutionary computational 

techniques, with Genetic Algorithms standing out as the most successful and 

appropriate tool in this field. 

By imparting some of the qualities of natural evolution (a well known and 

reasonably well-understood process) GAs can naturally be adapted for use in 

evolutionary design systems. This chapter has introduced the fundamental aspects 

of GAs, with some common (and some novel) techniques for their 

implementation. For applications such as the research discussed here, the 

following points should be considered. 

Representation 

The 3D representation (phenotype) should be readily described using a genetic 

data structure, and data efficient, but not so much so that it is incapable of 

effectively defining a suitably wide variety of useful solutions. The genetic 

representation should be so defined, that small changes in the genotype (through 

genetic operators) result in small differences in the phenotype, allowing 

inheritance with a small degree of variation. Given these two conditions, 

initialisation should produce a diverse population by assigning random values to 

each chromosome. 
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Selection 

It is preferable to use some selection operator, rather than the user having the 

inconvenience of explicitly selecting every pairing of parents (i. e. 14 in the case of 

the EFD research). The main requirement of a selection technique then, is that it 

reflects a user's intentions. This suggests a fitness proportionate, deterministic 

biased scheme, such as stochastic remainder selection, though programming 

practicalities must be considered. The selection technique employed will depend 

on the demands of the user at different stages in the process. During the early 

stages, where a relatively large number of individuals are usually involved, a 

deterministic approach, such as stochastic remainder selection will work well. 

However, if the user wants to select just 1 or 2 parents, there are often conflicts 

within the selection routine', and the GA may experience difficulties. It is 

suggested that the probability-based and consequently more robust roulette wheel 

selection technique be used in these circumstances. If fitness-proportional parent 

selection is not used, controlling fertility is an effective method of restricting the 

dominance of a single individual over following generations 

Replacement and Recombination 

Whole population replacement would seem the most suitable technique for 

interactive systems (which inherently use small populations), offering an entirely 

new set of solutions each cycle, although some of the advantages of elite 

replacement type operators would be beneficial. Several alternative crossover 

techniques exist, offering varying degrees of continuity. Although mutation is 

generally the preferred route to producing entirely new values, intra-segment 

crossover has the capacity to produce a large number of new decoded values in 

offspring (rather than just `shuffling' existing values). It is suggested that intra- 

segment crossover is particularly well suited to interactive evolutionary systems, 

producing high variation and rapid evolution. 

'A problem is often caused by the conflict between the ̀ maximum population fraction' parameter 
and the ̀ remove identical parents' function - both useful aspects that should not be bypassed. 
Theoretically, these problems could be detected as they happen, and only at this stage are these 
functions temporarily ignored 
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CHAPTER FOUR 

DEVELOPMENT OF THE EFD SYSTEM 

System Background 

The Unigraphics (UG) CAD suite includes an Advanced Programming Interface 

(API) called UG/Open, providing access to routines within the UG graphics 

terminal, file manager, and database. The prototype EFD software, written in the 

C programming language, is an internal UG/Open API program and is run as a 

user function, from inside a UG session'. A screen shot is shown in Figure 4.0.1. 

The EFD software contains a Genetic Algorithm at its core, and as such, produces 

evolving populations of solutions. In this case, populations containing 10,12, or 

14 product representations, or solid geometric models (herein referred to as 

objects) are produced, created from a small number of interacting geometric 

primitives. During an interactive EFD session, the user is required to rate, from 0 

to 10, each object in the population, providing (or contributing to) each object's 

fitness value. Another population is then generated; the fitness scores of the last 

generation influencing which objects were selected as parents to create this new 

population. A user-interface is provided for this scoring system and the other 

user-selectable options, described below - the first four of these options 

correspond to sections within this chapter: 

Create mode: Normal or Cohesive, the create mode determines at which stage the 

geometric primitives interact, during object creation. 

GA controls: The maximum number of generations, maximum population 
fraction, parent selection technique and mutation profile can be 

changed from default values. 

Optimisation: If cohesive objects are used, the options available for internal 

geometric optimisation (volume, surface area, bounding box size 

and dimensions) are listed for selection, in addition to user scoring. 

1 'New Session' or 'Teamforming' is selected from the EFD menu 
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Blend mode: 4 options for edge blending exist: Random, simple, whole object or 

none. The method selected greatly influences the style of objects. 

Session ID: This number allows different starting populations by incrementing 

the random number generator 1000 x the `ID' value entered. 

Run mode: The software can be run in `User Mode', where some prompts are 

given, `Optimisation Mode', where no prompts are given and part- 

names are automatically generated (allowing rapid progress for 

internal optimising), or 1 of 3 testing and development modes. 

Filename: Each population is treated as a new part and therefore requires a 

filename (a default filename with population number is generated). 

Prompt: Before the population is rated by the user, a `save/continue/quit' 

prompt is provided, at which point the CAD menu system can be 

accessed without disrupting the EFD session. This enables (e. g. ) 

individual objects to be rotated and studied in detail by blanking all 

other objects. 

Populations of objects are displayed in figures throughout the thesis, so a brief 

description of some adopted standards may be useful. Each object is created in a 

different colour, this is for clarity only - the colour is based on its position on the 

screen, and is not an inherited property of the object: 

1 Blue 2 Green 3 Cyan 4 Red 5 Magenta 

6 Yellow 7 White 8 Olive 9 Pink 10 Grey' 

11 Orange 12 Purple 13 Maroon 14 Aquamarine 

The objects are created from left to right, in rows of 4 or 5, with second and third 

rows beneath, and are usually displayed in isometric or trigonometric views. The 

numbering and colour schemes form the basis of the object naming convention: 

g2p4-red = generation 2 phenotype 4 

g6t8-olive = generation 6 team 8 

1 Object 10 is coloured aquamarine, not grey, in populations of less than 14 
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4.1 Genotype 

A genetic data structure capable of efficiently describing individual geometric 

primitives has been established. Several of these structures are either: 

a) Repeated, creating one long genotype describing a complete object (Figure 

4.1.1), or, 

b) Treated as individual genotypes - the resulting primitives being grouped 

together after creation (in `teams") to form complete objects (Figure 4.1.2). 

The most common genotype representation, allowing straightforward 

recombination and mutation methods, is binary. After due consideration it was 

felt there was no need to deviate from this. Positional classification (the position 

of a bit in the genotype dictates its function) symbolically divides the data 

structure into chromosomes by decoded function. These chromosomes are: 

" type - describes the type of geometric primitive created 

" origin -a primitive's 3D position within its local spatial constraints 

" sign - the Boolean interaction with any interfering solid bodies 

" direction - the 3D creation vector (not used for blocks or spheres) 

" shape - up to 3 values defining a primitive's relative dimensions 

" size -a scaling function applied to the shape values 

" blend -a string of data defining blend radii of associated edges 

" interact - dictates which of the other primitives can be interacted with 

(The blend and interact chromosomes are not included in the figures overleaf) 

Each chromosome contains 1 (i. e. type), 3 (i. e. direction) or more (i. e. 4- 

interaction) segments, which in turn, contain either 1,2 or 6 bits depending on the 

resolution of data required of the decoded value. 

'The 'Teamforming' technique is covered in more detail in a later section 
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The first 7 chromosomes are converted into decimals between set decoding ranges 

and either used as `if/then' switches (as in the case of the type and sign 

chromosomes) or supplied directly to the Unigraphics functions for creating the 

primitives. There is no subsequent development of the objects (such as in 

artificial embryogeny). The 4 single interact segments are treated as `yes/no' 

instructions, referring to each of the other 4 primitives, in order. 

The balance between variation and detail, and the amount of data, was established 

intuitively, and through brief experimentation. For example, orientation is limited 

to steps of 45° about each axis by restricting the x, y &. z components of the 3D 

vector to values of 1,0 or -1 (requiring only 3 2-bit segments). Implications of 

this and other decisions are outlined in the appropriate sections below. 

Chromosomes 

type 

The primitive type can be 1 of 4 basic shapes: block, sphere, cylinder, and cone. 

Limiting to 4 types means only 2 binary bits of information are required. The type 

chromosome is therefore 1 segment long, this segment being 2 bits long, and 

decoded into an integer (0-3) with each number corresponding to a geometric 

primitive type. See table overleaf for summary. 

sign 

The Boolean, or sign operator is needed to dictate how primitives interact with 

each other when combining to form an object. There are four ways to introduce 

geometric bodies: 3 interactions: unite (union or addition operator), subtract and 

intersect (Figure 4.1.3); or no interaction (co-exist or, create). The sign 

chromosome is simply a single 2-bit segment. See table overleaf for summary. 
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Primitive block sphere cylinder 

Segment 

Binary 

Integer 

Sign 

Segment 

Binary 

Integer 

rc r 00 
0 

I Eýri'1 

01 
1 

create unite 

C44t 

00 
0 

01 

1 

FIT-] 

10 

2 

subtract 

WF 
10 

2 

Figure 4.1.3 - The intersect Boolean operator 
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origin 

The primitive's origin, relative to its local co-ordinate system, requires three 

values. Given that an approximate resolution of 1, within a range of between 0-50 

and 0-100 was desired, a 6-bit segment length was decided upon, giving a range of 

0-63. So the origin chromosome contains three 6-bit long segments. 

It is necessary to adjust the origin values for the formation of blocks, cylinders 

and cones. Instinctively, a solid's origin should constitutes its centre (of gravity), 

as with spheres, and not the CAD system's default requirement for the bottom left 

front corner for blocks and the centre of the base for cylinders and cones. This is 

simply for consistency, enhancing the inheritance properties. 

For example, if a sphere of a certain size mutated into a block in a later 

generation, the expectation of continuity would dictate the block should be in the 

same place, rather than moved by an amount equal to the radius of the sphere in 

the +x +y +z direction (Figure 4.1.4). 

direction 

Cylinders and cones are created along 3D vectors'. Limiting the angular 

resolution to steps of 45° permits a simple vector made up of the values of -1,0, 

and 1 (Figure 4.1.5) and provides 26 possible permutations (the null vector 0,0,0 

is converted to 0,0,1). 2-bit segments produce 4 output values so it has been 

decided to bias the outcome with a double chance of the zero value -a tendency to 

align shapes with the individual axis further encouraging visual unity. A direction 

segment therefore contains one bit defining the value (0 or 1) and one bit the 

polarity, allowing -1, -0, +0 and +1 (Figure 4.1.6 overleaf). 

t It is noted that ideally, for perfect consistency, the creation of blocks should be able to use the 
direction function. 
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Parent Object Child Object 
sphere mutated to block 

No Origin Adjustment 

type change also causes positional change due 
to differing origin standards in CAD system 

With Origin Adjustment 
adjusted origins = decoded origins -1/2 length values 

origin adjustment creates a better result, 
consistent with user expectations 

Figure 4.1.4 - Origin adjustment 
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12 
13 
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23 0,1,1 
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26 0, -1,1 

Figure 4.1.5 - Angular resolution of creation vector 
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direction chromosome 

creation vector -1, +0, +I 

Figure 4.1.6 - The direction chromosome 

There are two reasons for limiting the angular resolution: Firstly, economy of 

data, and secondly for visual simplicity. When analysing the inherited features of 

objects, changes can be more easily observed when comparing generations. The 

reduction in diversity is sacrificed for increased visual unity. 

shape 

In defining a primitive's proportions, cylinders need 2 values, cones 3, and blocks 

3. Therefore, for spheres and cylinders there are redundant genes. The decoded 

values are within the range of 0.01 to I and use 6-bit segments to give a 

satisfactory resolution of about 1.5mm when multiplied by the size value. 

size 

Adding a size chromosome to the genotype allows shapes to retain their 

proportions whilst changing just their overall scale. The size chromosome is 

decoded to between 10 and 100 and multiplied by the shape data. This gives a 

combined range of 1 mm to 100mm for a given dimension. A six-bit segment 

again gives sufficient resolution. 
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blend 

Various ways of applying blending to an object's edges have been investigated, 

and are documented later in this chapter. To accommodate `simple' blending, 

where each primitive is dealt with individually, before the next primitive is 

introduced, at least 12 segments (arising from the 12 edges in a block) are 

required. Having 12 segments per primitive is often not enough to cope with the 

increased number of edges often produced with whole object blending', so 6 

additional segments have been provided. In Figure 4.1.7, below, two blocks have 

been united, creating 6 new edges. In some cases, these new edges can be 

associated with one of the contributing primitive's set of blend data, giving rise to 

the need to provide at least 18 segments per primitive. 

Single block 

12 edges 

Two united blocks 

30 edges 

Figure 4.1.7 - Provision for additional edges 

2. 

5 

28 

As with the size and shape co-operation, a multiplier segment is included, 

dictating the `blendedness' of an object. Another segment is also provided, 

dictating the frequency of blends (or how many edges in an object are blended). 

interaction 

As described in the following section, a chromosome has been included to dictate 

which adjoining primitives can be interacted with. Each 1-bit segment 

corresponds to one of the four other primitives contained within an object. 

The objects are formed (all primitives are introduced, and all Boolean operations are completed) 
before blending is applied - further details are given later in the chapter 
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Summary of the genetic data structure 

Range Translated as : 

I type 0 -3 block, cylinder, cone, sphere 
2 origin 0-63 local x, y, z co-ordinates 
3 sign 0-3 create, add, subtract, intersect 
4 direction 0-1,0-1 31) vector 
5 shape 0.01 -Ix, y, z lengths 
6 size I- 100 multiplier value, x shape 

7 blend I- 100 multiplier range, x radii 
1 -5 frequency 
1- 32 radii 

12 
36 
12 
32 
36 
16 

16 
16 

18 6 

8 interact 0- I switches for other primitives 41 

Chromosome Diagram 
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4.2 Object Creation 

Objects arc constructed from up to five geometric primitives, their ultimate form 

depending on how and when the Boolean operations are carried out. The number 

of primitives per object can be changed if desired, though using five primitives per 

object has been shown to consistently produce good results. The idea of variable 

numbers of primitives per object is explored in the next section. 

The more attractive and usable objects generally occur when the most (4 or 5) 

primitives contribute and a variety of Boolean interactions are used. To reflect 
this, several construction techniques have been investigated with the aim of 

achieving the most from each set of primitives. 

Objects can be 'Normal', where all primitives are created whether they interfere 

with existing bodies or not (some objects are made up of several solid bodies) or 
'Cohesive' where potentially-unattached primitives are not created (objects 

consist of just one solid body). 'Normal' objects will always contain the cohesive 

part, but also any of the other primitives that arc not attached to the 'main' solid 
body. 

4.2.1 Sequential Object Creation 

The simplest approach is the method whereby (after the first object is created) 

each primitive's Boolean operation is attempted at the same time as its 

introduction (calling on just one modelling function in the program). The target 
body (where necessary) is, by default, the last active body; i. e. the last created 

primitive or last updated body. Although code efficient, the disadvantage of this 

method is that primitives arc often wasted: Primitives with interactive (unite, 

subtract or intersect) operators arc not created if they do not interfere with the 

active body. Figure 4.2.1, overleaf, shows the creation of an object using the 

sequential creation technique, alongside its genotype, and is described on the 

subsequent page. 
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Commentary for Figure 4.2.1 - Sequential object creation: 

1 The first primitive, a medium 

sized cone, is created 

Object consists of 1 body 

The first object is always created, 

irrespective of the genetic instruction, a 

Boolean operation is meaningless at this 

stage, there being no body to interact with 

2A similarly sized sphere is 

united with the cone 

Object consists of 1 body 

3A large block is created, 

engulfing the current body 

Object consists of 2 bodies 

4A large cylinder is intersected 

with the block 

Object consists of 2 bodies 

5A large sphere is subtracted 

from the block-cylinder body 

Object consists of 2 bodies 

Had this sphere not been interfering with 

the existing cone, it would not have been 

created - it is this property that is 

exploited to create cohesive objects 

The create operator allows primitives to 

overlap without joining with interfering 

bodies - this block forms a second body, 

and takes over as the active body 

The intersection acts on the active body 

(the block) updating it to the intersected 

shape seen here. The first body, consisting 

of the cone and sphere, remains intact 

The subtract operation acts just on the 

active body, again leaving the other body 

intact and revealing a large portion of the 

original sphere 
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4.2.2 Cohesive Objects 

Users of the early prototype system expressed the desire for exclusively cohesive 

objects. A suggestion was that the existence of fragmented objects significantly 

detracted from the overall `look' of the system, giving an `amateurish' appearance 

by emphasising the objects' simplistic `collection of primitives' basis. The main 

counter to this point was that if the user selected only cohesive objects from early 

populations, then subsequent generations would contain predominantly cohesive 

objects. Also, that overly constraining early populations stifles diversity and 

reduces the potential quality of later objects. As it happens, it has been necessary 

to develop a robust method for creating cohesive objects to enable geometric 

analysis to perform effectively. 

The sequential method described previously is adapted as a simple (but not 

particularly efficient) method of creating cohesive objects. Any create operators 

are changed to unite, meaning that a new primitive that would not interfere with 

the main body (if created) are not introduced. This is a heavy handed but robust 

way of ensuring cohesive objects, but results in a lot of unused primitives. 

Leaving out a large number of primitives can exclude potentially valuable parts 

(Figure 4.2.2), and reduce the visual inheritance of related objects. With 

hindsight, a more effective technique would involve an adaptation of the post- 

creation Boolean process described presently - isolated primitives being deleted, 

after the whole object had been created. The problem of deciding what to do if an 

object consists of two separate bodies, each made up of two interacting primitives 

could, no doubt, be easily overcome. 
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4.2.3 Post-creation Boolean Operations 

The problem of losing potentially useful primitives, associated with the sequential 

method can be overcome by creating all five objects first, and then carrying out 

each primitive's given Boolean operation with (one, some, or all) intersecting 

bodies (according to a selection of available rules). This ensures primitives 

generally have more opportunities to interact (Figures 4.2.3 - 4.2.5) and 

consequently populations contain more contributing primitives (Figure 4.2.6). 

Displaying all primitives also makes it easier to recognise inherited features. 

Again, the subtract and intersect operations remove some of this advantage, but 

consideration of the options below has produced a greatly improved situation to 

that of the sequential technique. 

The three techniques developed for determining which primitives are selected as 

targets for Boolean operations are as follows (Figure 4.2.7): 

All interfering bodies: 

Adjacent creation order: 

The selected primitive interacts with all interfering 

bodies. The simplest option to program, but often 

`too' effective, with many objects suffering from 

over zealous subtractions and intersections. 

A better balanced approach, which doubles the 

chances of a successful interaction over the 

sequential method, is to consider the two primitives 

created directly before and after as potential targets. 

Selected targets: As is often the case when dealing with Genetic 

Algorithms, the best approach is to allow variability 

by including a chromosome within the member's 

genotype to control parameters. In this case, each 

primitive contains a four bit binary list dictating the 

primitives with which it is allowed to interact. 
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Figure 4.2.3 - Post-creation boolean operations 
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Figure 4.2.4 - Equivalent object created 
using sequential boolean operations 
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Figure 4.2.5 - Comparison of the two creation techniques 
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4.3 Teamforming 

User interaction necessitates using small populations, so there is a need to 

maximise the potential of all of the primitives within the population. There is also 

the drive for efficiency - minimising the number of generations or time spent. 

An object's fitness is dependent on the grouping, interaction, method, and order of 

creation of constituent geometric primitives. A method of more closely 

controlling these factors has been devised, first introduced in [Graham2], and 

investigated, with the intention of grouping together primitives in a co-operative 

and complementary manner. 

Using the biological natural selection analogy: If a prey animal has particularly 

keen eyesight, but lacks strong legs to escape a predator, then despite its eyesight 

it will probably not survive for long. Even if it does survive, its weaker leg 

characteristics will probably be passed to its offspring, which would soon be 

eaten. In either case, the keen eyesight gene will most likely be lost'. Within the 

EFD software, Teamforming can partially overcome this type of problem: When 

the designer sees an interesting feature, even combined with less desirable 

features, it is possible for that feature to be carried over to the next generation, 

without the accompanying weaker features. The strong feature can proliferate 

through the population in one reproductive cycle. Of course, the less desirable 

features that were part of the highly rated object would also get the same fitness 

advantage initially, but, crucially, would not always end up grouped with the 

desirable feature since features are formed from individual members, and are 

independent during the reproductive phase. The less desirable features could soon 

be weeded out. This is like the constituent parts of a creature being able to breed 

independently, then reforming to produce a super-creature. Or less implausibly, 

like team creation in society, where complementary members are sought to form a 

team for a suitable task. 

' If this particular animal could find a mate with good legs, and they had plenty of offspring, then 
some of the offspring may inherit just the desirable properties from each parent. This requires 
conscious mate selection though - something not investigated within in this technique, and large 
numbers of offspring - again impractical given the interactive nature of the evaluation technique. 
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Variable size teams 

The Teamforming method also offers the potential for variable numbers of 

primitives per object within a single population. The perceived benefit of this is 

that users could quickly `discover' the optimum number of primitives per object 

for their particular application, rather than using the current default value of 5, or 

experimenting with a different value at the start of each session. 

4.3.1 Reproduction within Teamforming 

In the lower half of Figure 4.3.1 is the third-generation object `g3t10-grey. This 

object is made up from a team of 5 members (phenotypes) - these team-members 

are individual primitives, and are shown above the object. Each member- 

primitive has a pair of parents, from generation 2. These are shown in the upper 

half of the figure, below the objects that they contributed to. Figures 4.3.2 to 

4.3.4 show the 3 objects from generation 2 in the above example, and their 

contributing team-members. Some of these members are selected as parents for 

object 'g3tlO-grey', shown in Figure 4.2.5. The creation order is dictated by the 

order in which the primitives are selected for their team, which is in turn dictated 

by the Teamforming tactic employed'. 

This technique allows objects to inherit their features from several sources (rather 

than the two parents for single genotype objects) - in this example, genetic 

material from three objects is combined (through Teamforming) to form the 

featured object. Interestingly, it also permits a smaller number of primitives to 

parent the contributing members - in this case 8 (whereas usually 10, five 

primitives from each parent, contribute). This added flexibility is accessed 

through the scoring method - the more objects that are rated, the larger the 

available gene-pool is for reproduction, and the more diverse the source of parents 

will be for a given object. If just 1 or 2 objects are given relatively high scores, 

their features will appear throughout the subsequent population. 

1 This example was produced using the 'no-tactic' option, where team-members are simply taken 
from the primitive list sequentially 
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4.3.2 Team Selection 

Tactics 

A number of tactics for grouping primitives together have been developed. These 

tactical preferences/drives can be for similarity ('alike' - primitives with similar 

characteristics strive to group together), or diversity ('mixed' - primitive diversity 

within the object is actively sought). 

1. Teamforming according to size chromosome value (Figure 4.3.6) 

Teamforming by alike size enables rapid exclusion of small primitives (top) and 

convergence to objects of a desired size (bottom), whereas by mixed size, all 

objects have a spread of primitives of varying sizes (middle). 

2. Teamforming according to primitive type (Figure 4.3.7) 

The primitive type tactic enables either a guaranteed mix of primitives (middle, 

bottom) or most objects to be based on just one primitive type (top). 

3. Teamforming according to Boolean sign (Figure 4.3.8) 

Grouping primitives of alike sign has limited use (top, middle), however using a 

variety of Boolean operations to generate objects generally produces the best 

results, and can be achieved using a mixed sign tactic (bottom). 

Grouping Method 

The method used to select teams is as follows: All members are ranked according 

to the Teamforming tactic, then either taken in blocks of 5 for `alike' grouping, or 

allocated to each team in turn for `mixed' grouping. The disadvantage of this 

method is that it leads to the rather clinical appearance of the population, as seen 

in the figures. An improved method is suggested where, for alike grouping, a 

simplified version of roulette wheel parent selection is used. Suitability would be 

based on how close individual's values are to the required tactic value (or value of 

the `team captain'). For mixed grouping, this technique could be adapted by 

basing suitability on the difference a member's selection will have on the team's 

overall standard deviation. An additional benefit of this probability-based method 

would be the ability to re-shuffle a population by re-selecting teams. 
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Tactic Selection 

As well as the simple method whereby the tactic is established at the beginning of 

a session, which has been used here to demonstrate the technique, it is suggested 

that it would be interesting and beneficial for the tactic to be dictated by the 

population in some way. The following approaches are recommended: 

" Dictated by members 

Sequential - one team selected at a time 
One member selected at random, as the team captain, and it's preferred 

tactic used to select four further primitives. The next team captain is 

selected from the remaining population. This method would produce 

several very fit objects, then progressively weaker objects. 

Parallel - all team captains established first 

All (14) team captains selected at random, then captains, using their tactic, 

take it in turns to select a team member. This method would provide a 

better distribution of fitness, but may lack the very fit objects available 

through the sequential technique. 

The main problem with the above methods would be that the most effective tactic 

is not strongly carried over to the next generation. Just one primitive (of five), the 

team captain, dictates the tactic, establishing only a 20% positive pressure for 

tactic type. There seems to be a good case here for gene modification during 

evolution, whereby all team members inherit the tactic from the team captain. 

Then if their team is highly rated and the members are selected as parents, the 

tactic (that has produced an effective team) is strongly carried through to the next 

generation. 

" Dictated by population 
The whole population is scanned for the most prevalent tactic, which is 

then used for that generation. The members keep their tactic gene, 

allowing the tactic to change for the next generation if the user were to 

select a majority of objects with an alternative certain tactic. 
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4.3.3 The Teamforming Genotype 

As described in the earlier section on the genetic data structure, 2-bit segments 

(decoded to integer 1,2,3 or 4) control type and sign characteristics. These are 

perfectly suitable when using the non-Teamforming, `single phenotype objects' 

method. However, when using this genetic structure for team selection, using 

these properties (type or sign), the bond between team groups is very weak, 

accounting for a total lack of object continuity between generations. This is 

because, whatever the specific requirement during team member selection (a 

sphere may be sought for example) there are many examples throughout the 

population to choose from. It then comes down to a random or arbitrary decision 

as to which member is selected. 

Continuity is much improved when other Teamforming tactics are employed, 

grouping by size for example. Here, it is possible to sort all members according to 

this criteria, the data being continuous (real numbers are used). Therefore, when 

the instruction to select a body of specific size (or largest/smallest) is given, it is 

usually possible to select 1 specific member from the ranked population. The 

favourable results achieved, while using tactics based on properties defined by 

variable data, led to a change of the type and sign chromosomes: When the 

Teamforming technique is utilised, longer 6-bit chromosomes for type and sign 

(Boolean operator) are used instead of the two bit segments. These are decoded to 

a real number, between 1 and 64. This change has resulted in an improvement in 

visual continuity, by restricting the amount of movement between teams of related 

members, during the parent selection and reproduction stage. 

Equivalent decoded Decoded 6-bit Resulting type Resulting sign 

1-bit segment value segment range operator operator 

0 
1 

2 

3 

1-16 block create 

17-32 sphere unite 

33-48 cylinder subtract 

49-64 cone intersect 
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4.3.4 Conclusions 

With evolution-by-objects, where each object is one member of the population 
(e. g. of 14), the designer is evaluating the whole object and it is one half of the 

whole object's genotype that is carried over to each child in the next generation. 
Continuity (the visual links between the generations) is usually displayed between 

two parents and their two children. This method of evolution is necessary if a 

specific object is being designed. A disadvantage of this method is that it takes a 

while for weak objects to be weeded out of the gene pool, meaning that there are 

normally more unfit objects than fit ones, at least in early generations. In 

addition, weak features of good objects are generally carried through with the 

desirable features. 

With evolution-by-features, where each object is a team of members (e. g. 1 object 

is made up of 5 team members from the population of 70), whilst still giving each 

object a rating, the designer is evaluating the features of the objects. This quickly 

creates a population of objects with desirable features, but the continuity between 

related objects is often lost (Figure 4.3.9). 

One of the main problems is that the order of primitive creation is not firmly 

maintained within a team. With object based reproduction, the five primitives that 

make up each object, being defined by one long genotype, remain in the same 

order when reproduction occurs. With Teamforming, or evolution by features, the 

team selection process dictates the order of primitive introduction, which is not as 

rigidly maintained. 

One aspect of Teamforming that has not been developed is the potential for 

formation of variable sized teams - this would enable the user to influence, and 

thus perhaps discover the optimum number of primitives per object, rather than 

relying on the current presumption that five primitives per object is best. This 

technique would most suitably be implemented with changing population sizes, 
but this is not a particularly difficult development. 
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4.4 Fitness Calculation 

Objective Function 

A phenotype's objective value is calculated using the Euclidean normal equation 
below, combining the difference values from any geometric analysis selected 

and/or the user rating value. The `least squares minimisation' method is 

employed, meaning that an objective value of 0 indicates a perfect match with a 

target value (e. g. a user-rating score of 10). 

M 

S =(A ;- 
Tj )2 

; _1 I 
A member's objective value, S, provides a single number that indicates the 

difference between it's own geometric and rating parameters, A, and pre-set target 

values, T, where M is the number of evaluation parameters employed. 

Fitness Function 

A member's fitness value is calculated, to between 0 and 1, using the following 

equation: 

f= 
1 

1+S 
The inclusion of the `1' values is to allow for a scaling factor, useful for multi- 

objective problems, but, as discussed below, has been found to be unnecessary at 

this stage. 

4.4.1 Multiobjective Balance 

In this case, sensible handling of the units of geometric analysis negates the need 

to set up multi-objective balancing. Using cm, dm2 and dm3, the properties of 
length, surface area and volume have similar influence. When geometric analysis 
is combined with user-ratings, and realistic target values are specified (generally 

values between 5 and 95), a good balance is usually achieved between user-ratings 
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and geometric analysis by generations 3-5. The following table illustrates this - 
the example geometric optimisation fitness values were taken from a session 

where the geometric target was height = 35.0cm. The table compares the 

automatically generated fitness values for a first generation population with the 

fifth generation population. To provide a comparative scale, listed to the right of 

these fitness values are the user-supplied score values that would have produced 

similar fitness. 

Member Generation 1 Generation 5 

Fitness Equivalent Fitness Equivalent 

rating value rating value 

1 0.05 0 0.25 7 

11 0.13 3 0.52 9 

3 0.02 0 0.96 10 

4 0.06 0 0.04 0 

5 0.05 0 0.53 9 

6 0.50 9 0.64 9 

7 0.03 0 0.97 10 

8 0.05 0 0.54 9 

9 0.03 0 0.05 0 

10 0.03 0 0.05 0 

11 0.08 0 0.03 0 

12 0.08 0 0.64 9 

13 0.04 0 0.20 6 

14 0.07 0 0.05 0 

max. 0.50 0.97 

mean 0.09 0.39 

Reference user-rating values: 

rating 0123456789 10 

fitness 0.091 0.100 0.111 0.125 0.143 0.167 0.200 0.250 0.333 0.500 1.000 
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This comparison gives an indication of the relative influence of the two evaluation 

methods at different stages in the evolution process had geometric analysis and 

user-rating been combined. 

Generation 1: The mean fitness is low, with only 2 members having fitness values 

that compare with typical user scoring values. So at this stage, a 

typical spread of user-supplied scores would dominate. This gives 

users control at the early stages of evolution - enabling the types of 

objects desired to be defined. 

Generation 5: A much higher average fitness has been achieved. 9 members have 

fitness scores comparable with user scoring values. A generous 

spread of user-ratings would have a similar influence to that of the 

geometric analysis. 

After generation 5, geometric optimisation enables the objects to converge to an 

optimal solution rapidly. At this stage, the user could allow the software to take 

over, as objects fitness scores tended to 1, ultimately presenting a solution to the 

geometric target. Alternatively, the user could continue to influence the direction 

of the population, by allocating scores of 10 (equating to a fitness of 1, thus 

doubling the combined fitness to 2). 

4.4.2 User-supplied Rating 

When user supplied rating is the sole evaluation method, two conditions are 

exaggerated to increase the usability of the system (Figure 4.4.1): Firstly, a fitness 

value of 0.0909... (1/11, produced from a rating of 0) is changed to 0, so that by 

giving zero as a rating, the user ensures the object cannot be selected as a parent, 

thus entirely removing the object's genotype from the gene pool. Secondly, 

fitness values of 1, resulting from a user-supplied score of 10, are doubled to 2. 

The full set of values is given in the table overleaf. This simple process was 

found to be almost as effective in use and much more reliable than a complex 

technique developed to guarantee the selection of an object scoring 10. 
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Rating Objective Fitness 

value Value Value 

0 10 *0.000 

190.100 

280.111 

370.125 

460.143 

550.167 

640.200 

730.250 

820.333 

910.500 

10 0 **2.000 

+k 

Adjusted from 0.091 

Adjusted from 1.000 

2.00 

1.50 

ý 1.00 
< ý C 
rD 

0.50 

0.00 

Rating Value 

LL L 
012345 6 7 8 9 10 

Figure 4.4.1 - Fitness values calculated from user ratings 

102 



4.5 Selection and Genetic Operators 

A number of established methods exist to carry out the three main processes of: 

" Selection 

" Recombination 

" Mutation 

In this application, parent selection is perhaps the least influential operator; the 

only criterion being that the method reflects the way in which the user has applied 

the scoring system. Of greater importance is the way in which two objects' 

genotypes are combined to form a new object (offspring). This is the genetic 

operator which dictates, more than any other, the feel and look of the system, and 

therefore its usability and usefulness. Mutation is a simple but essential part of 

the system, requiring some experimentation to find the best values. Usefully, 

mutation probability can be altered mid session, which helps with system 

development and during application. 

4.5.1 Selection 

The small population sizes involved, and interactive fitness allocating technique 

meant that it was deemed inappropriate to investigate a large number of advanced 

parent selection techniques, or indeed any alternative methods of exerting 

evolutionary pressure (fertility or death for example). Similarly, the complexities 

of tournament based selection operators were avoided. The typical advantages are 

too subtle to be useful and a greater random element than desired would be 

introduced. 
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A `fitness ranking' style operator would have been inappropriate since, with this 

technique, the actual fitness scores, once the objects have been sorted into fitness 

order, are ignored. So given following scores: 

Object Score 

A 

B 

C 

0 

0 

0 

D 10 

E5 

F 

G 

2 

I 

The detail of the scoring would be lost: 

Rank order Rank score Probability 

D70.25 

E60.21 

F50.18 

G40.14 

A 

B 

C 

1) 

2 

2 

0.07 

0.07 

0.07 

Of the two common fitness proportion techniques, stochastic remainder selection 

was the clear choice over roulette wheel selection. It works well with the scoring 

technique, giving the user a direct control over the selection, as with the first pie 

chart above. A further advantage using a fitness-proportionate method is that it 

incorporates the fertility selection method. This allows relatively fit individuals to 

parent a controlled but potentially unlimited number of offspring (Figure 4.5.1), 

thus dominating the next generations if the user so desires (indicated through 

scoring). 
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4.5.2 Recombination 

It is important to achieve a balance concerning the continuity of objects through 

consecutive generations. If objects look very similar from generation to 

generation, the system lacks the required `innovative' characteristic. If objects 

display no similarities with those from previous generations, then the system 

appears to loose its evolutionary quality, and can become unproductive to use. 

In order to maintain the continually innovative qualities of the software, a whole 

chromosome or whole segment crossover technique would be inappropriate. With 

whole chromosome crossover, the objects in subsequent generations are forced to 

draw from the same set of decoded values as the previous population. This places 

ever-decreasing limits on the number of local origins, orientations, proportions 

and sizes available to draw on. Although on first acquaintance, this trait provides 

a reassuring continuity from the user's point of view, ultimately, it does not allow 

enough variation. The situation with whole segment crossover is improved, with 

objects able to split the 3-part chromosomes, distributing individual origin, 

orientation and proportion values separately amongst their offspring. This still 

does not allow the continually variable genotypes required for efficient 

optimisation or high variability, relying on mutation to produce `new' values. 

Intra-segment crossover (Figure 4.5.2) allows the required creation of new 

segments, and consequently new decoded values from generation to generation. It 

was initially thought that this could pose a problem for the small 2-bit segments 

that control primitive type and Boolean operator, producing a lot of `unexpected" 

results. But by allowing crossover points to be at the end of segments, it was 
found to be ideal, with only I in 12 (8%) of re-combinations deemed `unexpected' 

(Figure 4.5.3). 

i. e. the crossing of a block and a sphere producing a cone and cylinder 
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4.5.3 Mutation 

The Genetic Algorithm used for this research already contained the capacity for a 

pre-set mutation profile. This alters the probability of mutation, depending on the 

generation number, and is a useful addition to the evolutionary design system for 

the reasons set out in chapter 3. After some experimentation, the mutation profile 

below was found to work well with both internal fitness determination, and the 

user rating system: 

Generation 

Mutation probability 

5 10 15 25 

0.01 0.004 0.002 0.0003 

The initial rate of 1% is just on the high side of average, compared to a general 
study of mutation probabilities in other applications. The value of 0.01 produces 

an average of 2-3 mutations per object (not including blend data), as each object's 

genotype contains 260 bits. This maintains the variety in early populations, 

alleviating premature convergence when quantitative fitness functions are used 

and maximising choice if user ratings are being used. During the middle stages, 

the rates drops to 0.004 after 5 generations, giving an average of 1 mutation per 

object and 0.002 after 10 generations, giving an average of 7 mutations per 

population. The theory being that by this time the population has started to settle 

and the recombination of subsequent generations has produced a range of 

reasonable objects. During the final stages, the mutation probability drops to just 

0.0003, reflecting just 1 mutation per generation. 

It is possible to alter the mutation rate during an active session, for example if 

useful objects have been created early on in the evolutionary process, the user can 

reduce the mutation probability at this time, to avoid over-disrupting future 

generations. Conversely, if too many of the objects are looking similar (the user 

has reached a `dead end'), by temporarily increasing the mutation rate to a high 

value, radical changes can occur when producing objects in the next generation. 

A value of 0.5 will effectively shuffle the next generation's genes, creating a 

pseudo-random population. 
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There are two ways of altering the mutation probability mid session: By entering 

the actual segment probability (as a decimal fraction) or, a more user-friendly 

approach, by selecting from a menu: 

Mutation level Mutation Mutations 

(from menu) probability per object per population 
(each bit) (mean) (mean) 

Randomise 0.5 130 1820 

Very high 0.02 5 70 

High 0.01 2.5 35 

Medium 0.004 1 14 

Low 0.002 0.5 7 

Very Low 0.0003 0.07 1 

Negligible 0.0001 0.036 0.5 

No mutation 000 
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4.6 Internal Optimisation 

This research's primary focus is on user-supplied scoring as the criteria by which 

objects evolve. As discussed previously, research in the engineering and product 

design fields tends to use automated objective functions provided by simulation or 

analytical software, to optimise components, such as flywheels, jet turbine blades, 

and tables. Measurable properties, such as specific energy density, air resistance 

& heat flow, and centre of mass are used evaluate objects, and enable a user to sit 

back and watch the objects evolve to fit these specific, quantitative, requirements. 

It was felt that this aspect of evolutionary design should be investigated during 

this research, its inclusion demonstrating the principle of evolutionary 

optimisation and the wider scope of the research. Geometric analysis has been 

selected for several reasons: Firstly demonstrating that the software can be applied 

to problems like those mentioned above, and secondly to assist the designer if the 

form specification includes simple concepts such as volume, size, and stability. A 

further intention was to investigate aesthetic concepts (proportion, unity etc. ) 

analytically, by geometrically evaluating high and low scoring objects and finding 

patterns using artificial intelligence techniques. 

Gaining values for the geometric properties of objects is a relatively 

straightforward process: The CAD system provides a wide range of mass based 

geometric analysis including surface area, volume, bounding box, mass, centre of 

mass, and moments of inertia. Accessing the information is a case of identifying 

the solid body concerned, providing the tolerance data, and calling the appropriate 

function. The target values for those properties selected are entered by the user at 

the beginning of the session; the evaluation criteria included with the software are: 

" bounding box volume 
/ 

" individual x, y and z dimensions 

" volume 

" surface area 
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In terms of practicality, the first two criteria are very much dependent on 

orientation. For example, a thin 85cm long cylinder inclined at 45° to all three 

axes (creation vector 1,1,1) has the same bounding box volume and dimensions as 

a 50cm cube. However, during operation, due to the adaptive nature of the search, 

the most reliable shape at fulfilling the criteria usually prevails (e. g. cuboids for 

bounding box and multiple dimension optimisation, spheres for volume, surface 

area and single dimension optimisation). 

Fitness Calculation 

As mentioned in section 4.4, fitness is calculated by summing the squared 

differences (comparing a solution's evolved values with the target values). An 

even weighting between properties (including user ratings) is achieved by 

normalising the differences before summation. 

4.6.1 Geometric Optimisation Examples 

The first example, shown in detail in Figures 4.6.1 to 4.6.3, and animated on the 

CD-ROM, demonstrates optimising to a bounding box of volume O. 1m3. The 

software achieves a solution within 10 generations, accurate to 0.5%. The key 

stages in this process are described below: 

Generation 1 Initial random population 

Generation 5 Suitable object type established 

Generation 7 Population converging to single blocks 

Generation 8 All objects are now blocks except occasional mutations 
Generation 11 Very fit object created 
Generation 13 Very fit object's genes have proliferated through population 

Generation 16 Approximately one mutation per population 

Generation 17 Population has converged 

Generation 20 All blocks except one measure 31x47x69 = 0.1005m3 
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target: bounding box, volume of 0.1000m3 

solution: block, volume of 0.1005m3 (31x47x69cm) 

accuracy: (0.1005 - 0.1) - 0.1 = 0.005 = 0.5% 

achieved in: 11 generations (population size: 14) 

1 

cr, 

5 

object type established 

0.6 

0.5 

0.4 

0.3 

0.2 ----_ 

" 
19r 

_ lk 

-0 

initial population 

a 

r 

/r 

fb' 
0 

0 

" 0" le r 

Maximum Fitness 

Mean Fitness 

0.1 

0.0 
ý u 

11 

0 

solution found 

17 

population converged 

123456789 10 11 12 13 14 15 16 17 18 19 20 
Generation 

Figure 4.6.1 - Automatic Geometric Optimisation 
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Three further examples are summarised in Figure 4.6.4, and in the table below: 

Optimisation Target Solution 
ý U 
cý 
ý. 
ý 
U 
U 

Qý 

Volume 0.05000m3 0.049986m3 0.028% 

Surface area 0.80000m2 0.779974m2 0.033% 

Dimensions 20x l Ox5Ocm 20x l Ox5 l cm 0.667% 

11 16 

9 14 

17 25 

Generation - The generation in which the solution is first produced 

Convergence - The mean fitness reaches (or is very close to) the maximum fitness 

Similar tasks have been repeated, with different starting populations, confirming 

that these results are typical. The dimensional example exhibits a lower accuracy, 

and takes significantly longer to find, and converge to, a solution; this is because it 

is optimising to three parameters, rather than the single-objective optimisation of 

the other examples. 
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4.6.2 Conclusions 

The inclusion of geometric analysis functionality has enabled the Genetic 

Algorithm to cycle through a series of generations without the intervention of the 

user, akin to more typical evolutionary optimisation. This has enabled 

observation of several common traits of genetic algorithms, including premature 

convergence. This can, however, tenuously be interpreted as a positive, in that 

identifying familiar and expected traits (the small population size of 14, needed 

for usability of the user-led rating method is the primary reason for the occasional 

premature convergence) confirms predictable operation of the genetic algorithmic 

aspect of the programming. It also gives an indication that settings optimised for 

an interactive approach are not perfectly suited to automated optimisation against 

geometric properties. 

1 An automated optimisation of this type would typically use a population of 30 or so 
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4.7 Edge Blending 

The union or subtraction of two geometric primitives can produce some 

aesthetically interesting results [Grahaml]. Elliptical, parabolic and hyperbolic 

curved edges can be produced from these interactions [Anton]. However, it was 

felt that by enhancing the objects, through the addition of blending, the needs of 

product design could be better fulfilled. Applying random blend radii to edge lists 

of complete objects (collections of primitives) produces some highly pleasing 

results, showing what can be achieved using edge blending [Graham5]. The 

challenge has been in trying to produce blend radii lists from objects' genotypes 

and apply them to the objects' edge lists in a consistent and elegant manner, in 

order that continuity between generations is maintained. 

4.7.1 Random Blending 

Random blending of complete objects has been used to establish suitable values 

for blend frequency and radii (within the range of object sizes produced). A list of 

edges from each body in the population is created, and subjected to blending, with 

the probabilities and ranges given below. 

Proportion 30% 5% 30% 5% 15% 15% 

Radii range 1-2mm 2-5mm 5-10mm 10-25mm 25-50mm 50-100mm 

Blending enhances the appearance of objects in three distinct ways (Figure 4.7.1): 

Small blend radii (1-2mm) smooth off sharp edges, increasing the realism of 

objects. Medium sized blends (5-10mm) round off edges and create fillets where 

objects join, creating more rounded and integrated looking objects. Finally, and 

most significantly, large blend radii (25-100mm) dramatically alter the shape of 

objects, creating more complex curves and producing innovative looking objects 

that belay their humble geometric primitive-based origins. Some of the objects 

shown in Chapter 5 (the `Pelican' sculpture, and the bar seat and sofa designs) 

rely on large blend radii for their defining characteristics. 
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Medium (5-10mm) blends 

smooth edges 
highlights 

Large (25-100mm) blends 
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L__ 

Small (1-2mm) blends 

i new shapes created 

Figure 4.7.1 - Small, medium and large blend radii 
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4.7.2 Genetic Blending 

The `Blend' Chromosome 

Each primitive's genetic structure has a dedicated blend chromosome, containing 

20 segments. The first 2 segments are applied to the other 18 during decoding, 

one as a multiplier, affecting the range of radii values, the other as a frequency 

control, converting a certain proportion to zero values. The remaining 18 

segments are decoded into radii values. 

Simple (Pre-Boolean) Blending 

To avoid problems of edge identification after the primitives have combined to 

form objects, a simple method, which places the priority on evolutionary qualities, 

has been devised. The decoded radii values are applied to the primitive edge list 

(the first 2 values for cones and cylinders, or all 12 for a block) in the order in 

which the solid modeller has numbered the edges. This order remains consistent 

while the modeller is dealing with individual primitives. Therefore by applying 

edge blends to primitives sequentially, before they interact with each other, good 

continuity between generations is achieved. 

Although this method has the potential to sometimes produce more complex and 

attractive forms than whole-object blending (Figures 4.7.2 - 4.7.4), in general, the 

sequential nature of pre-Boolean blending prohibits some of the most interesting 

possibilities achievable through whole-object (post-Boolean) blending. 

Whole-object (Post-Boolean) Blending 

If visible inheritance is to be maintained, it is important to establish a strong link 

between the gene associated with an individual primitive, and the primitives that 

contribute to features on an object. This is a more complex issue for the blending 

of edges than for the previous object creation stages, requiring careful 

management. 
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By identifying which features are associated with each edge on each body (within 

each object) and comparing them to the five originally created primitives that 

make up the object, the ownership of all the edges of an object can be established. 

The following example (Figure 4.7.5) demonstrates this, and is also referred to in 

the descriptions of the 3 edge association methods. 

Figure 4.7.5 - Example of edge ownership 

1. block 1 created 

feature A created --* body 1 created -> edges 1-12 created 

2. block 2 created and united with body 1 

feature B created -* body 1 updated -4 edges 13-30 created 

" body l =A& B 

" body 1 has 30 edges 

" edges 1-12-4 A 

edges 13-24-4 B 

edges 25-30 -* A&B 
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4.7.3 Shared Edges 

When new bodies are formed through Boolean interaction, new edges are created 

that are associated with multiple primitives. Blend values for edges that are 

unaffected, that is to say, edges owned by just one primitive, are taken from the 

corresponding chromosome. A number of alternative methods have been devised 

to deal with shared edges (Figure 4.7.6). 

Order Hierarchy Method 

Contributing primitive AB 

Edges 1-12 25 - 30 13 - 24 

Data is allocated by primitive association in strict creation-order hierarchy, shared 

edges receiving no special treatment. So all edges associated with primitive A 

take blend radii from primitive A's blend value list (irrespective of whether the 

edge is shared by another primitive). Any remaining edges associated with 

primitive B use primitive B's values, and so on. This method is straightforward to 

implement, but values from early primitives' blend lists are used up quickly (and 

sometimes have to be re-used). Many later-created (3`d, 4th or 5`t') primitives' 

values are therefore often not used. Consequently the first primitive's influence 

becomes dominant, especially in cohesive (non-fragmented) objects. 

Mean Value Method 

Contributing primitive AB 

Edges 1-12 25 - 30 13 - 24 25 - 30 

Shared edges use a mean radius calculated from the 2 appropriate values from 

each of the two owning primitives' list. Both primitives share equal influence, but 

more blend values are used up in the process. More importantly though, large and 

small radii are normally lost in the averaging, significantly limiting the range of 
interesting shapes produced. 
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Figure 4.7.6 - Edge association methods 
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Alternate Value Method 

Contributing primitive A B 

Edges 1- 12 25,27,29 13 - 24 26,28,30 

Shared edges are grouped according to their associated primitives, and composite 

blend lists constructed for each group. Values are taken alternately from 

contributing blend lists. The most complex option to program, but the most 

satisfactory in operation, providing efficient use of blend data, balanced influence 

across the primitives and reasonable inheritance properties. 

4.7.4 Further Work 

Some difficulty is caused by a lack of control over the order of edge numbering 

after primitives combine in a Boolean operation, resulting in the reduction in 

visual continuity between generations when edge blending is employed. Avoiding 

the use of the modeller's default edge list altogether may provide a better overall 

solution. Two suggested lines of investigation are using edge location, and edge 

length as identification criteria. With the location strategy, the centre point of 

each line is calculated, and a ranked list created in order of distance from the 

lower front left origin point of each object's local co-ordinate system. Similarly, 

the length strategy would list the edges in order of length. 

Also noted is the problem of blending edges in sequence: It is possible for edges 

in the original edge list to be deleted by previous blend operations, sometimes 

causing modelling errors or program crashes. Producing several edge lists, i. e. 

one list for each feature, may be possible, and could increase reliability. 
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4.8 Conclusions 

A prototype computer aided evolutionary design system has been developed, in 

order to explore and realise the aims and objectives of the research. This has 

involved the key aspects listed below: 

" Establishing an efficient product representation, in terms of genotype (genetic 

data structure) and phenotype (3D geometric object). 

" Developing effective methods of creating objects through Boolean interaction 

of geometric primitives. 

" Devising a technique for grouping simple phenotypes (primitives) together to 

create complex solutions (objects), according to various tactics. 

" Adapting standard fitness and objective functions for use with interactive 

evaluation, negating the need for specific multi-objective techniques through 

the intelligent treatment of measurement units. 

Preliminary research into automatic aesthetic assessment, through fitness 

penalties (reducing the fitness of objects with non-attached primitives). 

" Investigating the effects of established genetic operators; adopting appropriate 

selection and crossover techniques, and establishing effective mutation 

profiles. 

Incorporating the capacity for automatic optimisation, using the volume, size 

and surface area geometric analysis tools from the underlying solid modeller. 

" Using edge-blending techniques to increasing the aesthetic potential of 

evolved objects without loss of visual inheritance properties. 

Figure 4.8.1 demonstrates the inheritance properties achieved early in the research 

(before edge blending was introduced). Evolution of objects with blending is 

demonstrated in the interactive ancestor diagram contained on the enclosed CD- 

ROM, in the detailed recombination example in Appendix B, and during the 

following chapter, where two applications of the EFD system are described. 
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CHAPTER FIVE 

APPLICATIONS OF THE EFD SYSTEM 

5.1 Seating Design 

An informal evaluation of the EFD system has been carried out by 1` year 

undergraduates on the department's Product Design and Manufacture course. The 

objective was quite straightforward: To use the software for aesthetic concept 

generation by evolving forms suitable for consumer products, and then add the 

finishing details by hand, using conventional CAD techniques. Seating, as the 

general theme, encompasses many potential forms and suitably bridges the fields 

of art and design in its balance of the aesthetic and the functional. 

After a brief familiarisation and experimentation period, a suitable combination of 

operating modes was selected: The cohesive mode was chosen for its ease of use, 

complemented by whole-object blending, giving the best selection of interesting 

forms'. Very little modification was needed `post-evolution' before assigning 

textures and materials and placing the chairs in a suitable setting. The illustrations 

displayed over the following pages are the results of this exercise: In the first four, 

Figures 5.1.1 to 5.1.4, each evolved object's population is shown above its picture. 

The following set of four illustrations (Figures 5.1.6 - 5.1.9), from [Case], show 

photo-realistic renderings of the completed seating designs, and also highlight the 

changes made to each object. 

By not limiting the design brief to one specific type of chair, suitable forms were 

quickly created - within several minutes in fact. The four evolved shapes were 

taken from generations 2,3, or 4, with two objects taken from each of two 

sessions. This makes a total of 12 populations viewed, comprised of 144 

individual objects. The scoring technique on this occasion involved giving high 

marks to objects with chair-making potential, with some marks also given for 

objects that, although not chair-like, contained desirable features or properties. 

1 The Teamforming technique had not been developed sufficiently to warrant inclusion at this time 
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Figure 5.1.1 - Evolved 'Bar Seat' object with associated 
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Figure 5.1.2 - Evolved `Orange Inflatable' object with 
associated 3rd generation population 
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Figure 5.1.3 - Evolved `Bond Villain Chair' object with 
associated 4th generation population 
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Figure 5.1.4 - Evolved `Bad Taste Sofa' object with 
associated 2nd generation population 
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5.1.1 Design Descriptions 

Bar Seat 

Construction: The evolved 3`d generation object is made up of four primitives. 

The main body is constructed from a cylinder, with a subtracted 

cylinder at 45° creating the lower-half front space and an upright 

cone creating the upper hollow. Another cone removes a small 

segment at the rear of the base (unseen in pictures). Blending 

plays a large part in the appearance of the final object, as can be 

seen from the inset image in Figure 5.1.1, where all blending has 

been suppressed. Blending of the upper outer edge has a dramatic 

effect, creating the upper frontal cut-away as well as rounding the 

top. Additional blending has smoothed the edges in the lower 

frontal area and created what has been interpreted as a footrest. 

Modification: Arm-rest features have been created by removing a cylinder facing 

outwards at 45°, forming both the arm-rest scallops and seat-front 

detail (highlighted). The upright edges to the sides of the frontal 

opening have been created through the subtraction of a single 

block. All edges have been rounded, and a textile finish applied 

using a wrapped TIFF image (Figure 5.1.6). 

Orange Inflatable 

Construction: Taken from the same 3`d generation population as the Bar Seat, the 

evolved object is formed from just one cone and two spheres, one 

subtracted and one united. Just one blend is applied during 

evolution - on the base edge of the cone (inset, Figure 5.1.2). 

Modification: The three remaining edges are sympathetically blended, creating 

the smooth surface transitions. A translucent plastic material with 

reflective finish has been applied (Figure 5.1.7). 
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Bond Villain Chair 

Construction: The original object was taken from a fourth generation population. 

The back section of the object is formed from two cylinders, one 

created, and one much larger cylinder subtracted (inset, Figure 

5.1.3). A third cylinder is joined at the base, forming the seat, and 
finally a large block is subtracted from the lower portion of the 

object, creating the flush lower surface. The remaining, rather 
intrusive portion of the original created cylinder at the base of the 

object has been reduced significantly with blending. 

Modification: The only post evolution addition is the chrome base. Routine edge 

smoothing and the selection of a black plastic material with a fine 

granular texture add to the realism of the chair (Figure 5.1.8). 

Bad Taste Sofa 

Construction: Of the four chairs, this is the only object created using `simple' 

blending: The evolved object is taken from a 2°d generation 

population, and is dominated by a single block with large radius 
blends forming the main curves (Figure 5.1.4). A second block 

and a small cone are then subtracted. 

Modification: The addition of two cushions, rounding of all edges and application 

of a wrapped textile image add realism (Figure 5.1.9). The left arm 
is created by subtracting a small block and applying a blend to the 

inner, upper edge, as shown from the sequence of images shown 
below in Figure 5.1.5. 

Original evolved object Small block subtracted Inner upper edge blended 

Figure 5.1.5 - Modifying evolved object to form sofa armrest 
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Figure 5.1.6 - `Bar Seat' 
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Figure 5.1.7 - `Orange Inflatable' 
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Figure 5.1.8 -'Bond Villain Chair' 
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Figure 5.1.9 -'Bad Taste Sofa' 
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5.1.2 System Assessment and Discussion 

The following comments were made by the undergraduates after some prompting 

and discussion and are shown below more or less as transcribed: 

1. "The EFD system is good at producing attractive and usable shapes that I 

would not be able to create myself' 

This first comment relates to part of the initial aim, `Forms on the screen should 

be aesthetically interesting... ', and also to the fourth aim, `The system has to 

actually assist the designer', in that forms can be created that many users would 

find difficult to produce using conventional conceptual design techniques. 

It is particularly difficult to create the best of these kinds of objects using a 

conventional CAD interface, from just a few interacting solids and blends. The 

distinctive silhouettes, primary lines of form and the flow of surfaces and edges 

are often arrived at quite subtly: The envelopes of relative positioning, size and 

blend radii, that create a certain aesthetic feature, being remarkably small and 

would be hard to establish intuitively or by trial and error. 

2. "`Evolutionary' implies a gradual change (which is what is expected) but [it 

is] not really what happens. I can see why this [i. e. gradual changing] would 
be less creative though" 

3. "The parents and offspring do look related if studying them together 

afterwards, but this is not always obvious at the time" 

Comments 2 and 3 summarise, from a user's point of view, the issue of balancing 

`predictability' and ̀ creativity' to produce the greatest degree of usefulness. This 

issue is introduced in the aim `User interactions should have a predictable 

outcome'. 
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When working with ten to fourteen objects per generation at one time, it is hard to 

visualise in detail the objects from previous generations, which contributes to the 

feeling of remoteness expressed in these comments. Some interactive 

evolutionary design systems overcome this problem by readily displaying the 

previous generations in a separate window. One could envisage a similar feature 

for this system that allowed the user to view freely the two parents of a selected 

object on the screen next to the object. The user could then see the similarities 

between parents and offspring - the consequence of their actions - and would thus 

feel more connected to and have more confidence in the system. 

4. "Objects definitely improve and have more similarities as the generations 

progress" 

5. "The best results are obtained if you concentrate on just a few similar objects 

if designing something specifically" 

Re-establishing some confidence in the system, comment 4 confirms the steady 

reduction in frequency of ineffective objects, the gradual improvement of objects, 

and also that a degree of convergence takes place as generations progress. 

Comment 5 follows on from this, relating to the way object scoring methods 

usually develop, and that users can naturally develop effective scoring methods 

that suit the task or individual user. 

6. "Cohesive objects are easier to work with but this mode often creates lots of 

small useless objects and less inheritance is seen" 

7. "Fragmented [normal] objects show better inheritance since all the shapes 

[primitives] are used in each object" 

Comments 6 and 7 support the decision to include two methods of object creation, 

each mode having its merits: Particularly suited to first-time users, the Cohesive 

method presents a clearer picture by not creating unattached primitives'. If 

1 and is also required for the geometric analysis function 

143 



improved visual inheritance is required the `Normal' method can be employed. 

These objects will always contain the cohesive part, but also any of the other 

primitives that are not attached to the `main' solid body. 

8. "Whole object blending produces the best objects, simple blending just rounds 

off the edges of basic shapes" 

Comment 8 reflects a preference in this case for the advanced `whole-object' 

blending method, because of the generally more exciting objects produced. The 

fact that this method often masks inheritance is overlooked. The increased 

continuity afforded by `simple' blending is complemented by a distinct character 

(belittled by the `just rounds off the edges of basic shapes' comment) which may 

be preferred by some users for certain product applications. 

9. "Objects are easy to take out of the evolution process and work on [other 

versions of Unigraphics are opened] but it would be good to carry on evolving 

them after changes have been made" 

Comment 9 reaffirms the benefits from a users point of view of a CAD 

environment, and solid modelling for the product representation, and adds the 

commonly documented (but extremely difficult to implement) desire for greater 

control over phenotypes during evolution 

10. "Geometric optimisation is quite clever but doesn't really help since the 
designer can see which objects are better anyway" 

Although geometric optimisation was presented to these users as a demonstration, 

comment 10 clearly indicates that much work is necessary if the inclusion of 

automated fitness functions is to be beneficial to the designer. While seemingly 

content in its current capability as an aesthetic concept generator, people who 

have used the system have expressed an interest in how this technology could be 

developed. These comments may influence the direction of further research and 

are discussed in the following chapter. 
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5.2 Animal Sculptures 

During the later stages of the research, an invitation was received from the 

organisers of the International Congress on Evolutionary Computation (CEC2001, 

Seoul, South Korea) to produce a poster exhibit for the Evolutionary Art and 

Design competition session [Graham3]. From the literature survey carried out, it 

was evident that much of the computer generated evolutionary art being produced 

was 2-dimensional in nature (being analogous to painting / fine art in the `real 

world'), often generic, abstract, and artificial in appearance. A particular 

advantage of the EFD software, being CAD based, is that, by using the materials 

and wrapped image textures available, realistic-looking renderings of objects can 

be produced. It was evident that there was a chance to produce something 

different -3 dimensional in nature - differentiating this work from much of the 

evolutionary art that would be exhibited'. 

In producing the virtual sculptures, a similar approach was taken to that of the 

seating design task: Initial generations were rated for suitability as sculptures, and 

as sculpture-like objects proliferated through the populations, the best examples 

displaying animal-like properties, were favourably rated. The lack of any 

functional criteria made the task especially enjoyable, enabling the focus to 

remain purely on the aesthetic. More time was taken with this task, with 10 or so 

runs of up to 8 generations assessed before satisfactory objects were produced. 

The materials, textures, backgrounds and plinths were added manually, but unlike 

the seating design task, no alteration was carried out to the objects' form, as this 

would have been an infringement of competition rules (which allowed interactive 

fitness rating but not direct manipulation of objects/images). The finished results, 

also illustrated in [Case], can be seen over the following pages (Figures 5.2.1 - 
5.2.4). 

1 The reader may be interested to know the outcome of the competition: the congress delegates 

judged the entries, with over 250 votes being cast. Out of the 24 entries, the animal sculptures 

exhibit came second, missing out on winning by just 2 points. 
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Figure 5.2.1 -'Cobra' 
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Figure 5.2.2 -'Parrot Fish' 
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Figure 5.2.3 -'Pelican' 
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Figure 5.2.4 -'Ram' 

149 



5.2.1 Sculpture Descriptions 

Evolution 

The following diagram (Figure 5.2.5) shows the family tree of the Cobra 

sculpture: The development of the main inherited features can be easily seen in 

generations 2 and 3 on the far left, and in generations 1,2 and 3 on the far right. 

The left-hand side of the `family' contribute the two intersecting cones 

configuration, whilst the right side contribute the intersection operator. 

Two of the other objects' parents and their corresponding populations can be seen 

in the next two figures. In Figure 5.2.6, the olive-coloured parent of the Parrot 

Fish object bares a striking resemblance - being constructed in exactly the same 

way. The contribution of the yellow parent is not evident since only one of a 

possible four primitives are used (the objects being constructed using the cohesive 

method). 

The visual links between the Ram object and its two parents are less apparent, 

with both parents contributing more evenly (Figure 5.2.7). Whether or not one 

parent seems dominant over the other is often down to the randomly selected 

crossover points during the reproduction stage. 
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Construction 

Cobra Two cones are united (Figure 5.2.8), then intersected with a larger 

cylinder. Blending does not alter the form dramatically, but rounds 

off most of the edges and corners (Figure 5.2.9). 

Figure 5.2.8 - `Cobra' object mid-construction, before final 
intersection operation 

Pelican Unlike the previous two forms, the `Pelican' relies heavily on 
blending to provide its distinctive form (Figure 5.2.10). A sphere 

and two similarly sized blocks provide the underlying structure. 

Ram The Ram's head is made from two intersecting cylinders, whilst the 

body is a single block. Whole-object blending creates the fillets 

where the head meets the body, and other curves on the body 

(Figure 5.2.11). 

Parrot Fish In a similar way to that of the `Cobra' construction, a similarly 

sized cone and cylinder are united, then intersected with a larger 

primitive - in this case a sphere (Figure 5.2.12). Just one blend is 

added, at the transition of the cone and cylinder (Figure 5.2.13). 
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Figure 5.2.9 -'Cobra' before and after genetic blending 

Figure 5.2.10 -'Pelican' before and after genetic blending 

Figure 5.2.11 -'Ram' before and after genetic blending 
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Figure 5.2.12 - Creation of `Parrot Fish' sculpture 
showing the intersecting sphere operation 

Figure 5.2.13 -'Parrot Fish' before and after genetic blending 
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CHAPTER SIX - CONCLUSIONS 

6.1 Preamble (realisation of aims) 

Aesthetic appeal and product representation 

Evolved objects created with the EFD software have proved fascinating to many 

people, especially those with an interest in form and the sculptural aspects of 

aesthetic design. The applications described in the previous chapter have 

demonstrated that many of the original aims have been achieved. The aim that the 

system should create aesthetically interesting forms (highly placed in the 2001 

International CEC Evolutionary Art and Design competition session) that have the 

ability to represent realistic products (seating design by undergraduate students) 

has been accomplished and independently supported. Appendix C contains 

illustrations of product concepts produced by the author, using the system. 

Predictability 

The second aim, that user interactions should have a predictable outcome, is 

perhaps harder to draw conclusions from, since the degree and even the definition 

of predictability was hard to express in absolute terms. Comments on the 

seemingly haphazard progress of the populations have been tempered with the 

general agreement that the broad intent of the user is carried through. The 

necessary addition of edge blending, in this context, is the biggest opposition to 

achieving strong inheritance properties. When blending is not used, a useful 

degree of predictability is generally exhibited - this was demonstrated at an early 

stage in the research (presented at NCMR99), and was illustrated in Figure 4.8.1, 

reproduced form [Graham4]. When blending is used, the work on edge/genotype 

association has preserved reasonable object continuity so that retrospective study 

of sequences of parents and offspring reveals similarities, confirming that desired 

features are being carried forward and proliferating. The reader is referred back to 

Figure 5.2.5, the ancestor diagram of the `Cobra' sculpture, the detailed 

recombination example in Appendix B, and invited to view the interactive 

ancestor diagram contained on the enclosed CD-ROM. 
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The evolutionary development of form strikes a balance, being neither totally 

random nor totally deterministic, and thus creates an innovative, but usable tool. 

Considering the need to preserve the innovative nature of the software (compared 

with an alternative scenario where changes between immediate generations are 

small and outcomes of all object recombination are geometrically apparent) the 

spirit of the original aim has been achieved, especially when considered alongside 

the further aims. 

Efficiency 

The aim to make the evolutionary design process efficient has led to the work on 

maximising the use of constituent primitives during the object creation stage, and 

the development of the Teamforming technique. The marked improvement of the 

current capabilities over those of early prototypes is clearly apparent. Although 

inheritance could be seen in the early versions of the software, the overall quality 

of populations throughout the evolution process was poor, and development was 

relatively slow, taking several generations (4 to 5) before many usable objects 

were generated. The increase in efficiency has been due, firstly, to the better 

overall quality of populations (with a greater proportion of fit objects), and 

secondly, to the rapid improvement of quality over a small number of generations, 

with usable objects often appearing from the second generation onwards. 
Referring to the seating design application outlined in the previous chapter, it only 

took between 2 and 4 generations for usable objects to be created. The 4 chairs 

were taken from a total of 7 populations, including the two initial random 

populations, comprising a total of 84 individual objects viewed (60 of these rated), 

giving a `rating to useful' ratio of 15/1. 

There are a few problem areas remaining, which, if addressed, could increase 

efficiency further. There are two specific areas requiring only modest 
development where one could expect to see significant improvements. Firstly 

some basic intervention to prevent detrimental Boolean operations, and secondly, 

the improvement of the cohesive object creation method. These are briefly 

outlined in section 6.3. 
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Efficiency ultimately depends on how specific the users' needs are - whether they 

already have a shape in mind, and the limitations the product type places on form 

variation. Still, whether utilising the convenience of `cohesive' objects, or the 

completeness of `normal' objects, it only takes a few generations (several 

minutes) before useful shapes emerge. 

Sensitivity 

The scoring system adopted is flexible and intuitive, allowing the user to employ 

several strategies for object assessment. An effective approach is to keep many 

objects involved (allocating similar scores to a large number of objects) early on 

in the process, then to concentrate on a few objects (employing more drastic 

scoring'). The ability to discard objects (score of 0), and the increased weighting 

of a 10/10 score have provided a considerable degree of control to the user. There 

is scope for work towards making the system more sensitive to the designer's 

input, by allowing explicit control of operators such as parent selection, as with 

methods often seen in evolutionary art applications. 

Usefulness 

The ability of the software to generate a multitude of novel forms provides a 

useful addition to existing methods designers draw on when looking for aesthetic 

inspiration. The fact that these forms are original, and influenced by the user 

through the evolutionary characteristics of the software, and not from a database 

of existing aesthetic concepts, further increases its usefulness. Other research in 

this field has provided tools for development of established aesthetic concepts, 

and there is no reason why this research should not expand along these lines. 

1 For example, 2 objects given 10 out of 10,2 objects given 1 out of 10, and the rest 0 
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Currently, when a suitable object or objects are found, it is possible to change the 

parent selection technique from stochastic to roulette, which enables the selection 

of just two (or even one) objects for continuing exploration. Combining this with 
fine-tuning of the mutation rate creates a better environment for development of a 

single object. To increase the scope of this research, a development of this two- 

stage process can be envisaged: Firstly, a pleasing form is arrived at through the 

innovation-biased current software. And secondly, the form is developed from 

this single object using a dedicated technique involving subtle, controlled 

mutations and less disruptive genetic operators, such as in Evolution Strategies. 
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6.2 Methods (objectives, originality & contribution to knowledge) 

Review 

The review of the current state of research into evolutionary computation in 

engineering and design identifies the most widespread area of application of 

genetic algorithms as automated component optimisation (often using FEA 

techniques). Examples of interactive evolutionary design are mostly artistically 
based, often using repeating geometric patterns and mathematical series. The 

most comparable research in terms of philosophy and execution is the Emergent 

Design Group's Agency-GP architectural design exploration tool. Also 

comparable, in dealing primarily with the design of whole products, is Peter 

Bentley's work on the automatic generation and optimisation of generic products 

using a GA. The fundamental difference being that evolution is guided solely by 

computational analysis in Bentley's system, rather than predominantly utilising 

the users aesthetic judgements in this research. 

This research gains its originality from the combination of user interaction and 

automated fitness determination to provide evolutionary characteristics. The 

research has also seen preliminary development and application of a new concept 

aimed at maximising the potential of each population: The Teamforming 

technique, that, combined with the GA, co-operatively groups together single 

phenotypes (primitives) to form more complex solutions (objects). 

Also unseen previously, in the field of evolutionary design, is the use of geometric 

primitives and Boolean operators combined with edge blending, within a CAD 

system, to create original, aesthetically valid, 3D product representations. This 

representation is achieved using a small amount of data, and supports application 
to a range of products, without the need for additional programming. 
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Geometric Optimisation 

The work on geometric optimisation has two clear benefits. It demonstrates that 

the integration of automatic fitness functions is readily achievable, and provides 

evidence that the GA is working effectively. When the system is running 

independently, with just geometric fitness functions employed, it has been 

reassuring to see convergence, although sometimes premature, and therefore 

successful optimisation, albeit to simple criteria. The limited work on automatic 

aesthetic assessment (e. g. fitness scores being penalised if objects are too 

fragmented) has not reached the stage where it is beneficial to the design system. 

As long as the user views all the objects in a population, they are able to identify 

aesthetically weak objects visually, and may as well be the sole aesthetic fitness 

provider. A further step would need to be taken if this aesthetic assessment was to 

provide benefit to the user. 

Teamforming 

The principles of the Teamforming method have been demonstrated, in that it can 

group similar or dissimilar primitives together (in terms of size, sign or type), 

making a more effective use of each population. The original objective was to 

enable the population to define the tactic, so that it may evolve to suit the user's 

current needs (as in self-adaptation in ES and EP, but applied to the Teamforming 

rule, and not mutation). At present though, the tactic is defined by the user at the 

beginning of each session, possibly restricting the technique's effectiveness. 

Teamforming gives little visual inheritance between whole objects in subsequent 

generations, but features of objects are carried across effectively. The team tactic 

enables a variety of methods depending on suitability for application. It would 

seem that this initial implementation of Teamforming is not as elegant a process 

as that of the underlying Genetic Algorithm and as such does not exhibit emergent 

properties as was hoped. It is an interesting technique though, and when used 

within this research, provides an alternative method of evolution, which can be 

thought of as `evolution by features'. The Teamforming method is particularly 

useful for designers looking for individual aesthetic features to apply to a variety 

of products. 
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6.3 Further Work 

6.3.1 Practical improvements to the current EFD system 

Avoiding Detrimental Boolean Operations 

During object creation, there are two Boolean operations that, if executed as the 

last step, render the object useless - these two cases being the intersection of a 

small primitive wholly within the current body, or the union (or creation) of a 

large primitive that totally encloses the current body. In both cases the final 

object is left as a single geometric primitive. This occurrence could usefully be 

automatically predicted and avoided. 

It should be noted that too much interfering with the fundamental processes of an 

evolutionary algorithm can be counterproductive, disrupting the `natural' balance 

of the system. In the case of this research, objects having genes that result in 

destructive events are discounted by the user, letting evolution take its course. 

This process does take some time though, and, currently, discarding the object 

could result in the loss of a valuable potential object. Given the limited size of 

populations, on balance this addition to the software seems appropriate. 

Improving Cohesive Objects 

During the use of the software, most users have opted for the cohesive object 

creation mode. As previously explained, this mode was created rather 

simplistically, as a necessity for automatic geometric analysis. With hindsight, a 

more effective technique would use an adaptation of the post-creation Boolean 

process described in chapter 4: Isolated primitives could be deleted after the whole 

object had been created, rather than not being created at all. This would give 
isolated primitives, that were introduced early on (2n 1,3`d, or 4th), a greater chance 

to interact. The problem of deciding how to deal with objects consisting of two 

separate bodies, each made up of two interacting primitives, can, no doubt, be 

overcome. 
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Interaction 

For the progression towards an industrially applicable design tool, it is suggested 

that the designer should have greater control. This could involve the ability to 

explicitly select each pairing of parents, or the ability to maintain an accessible 

archive of favourite objects. These examples suggest moving away from the 

current, linear path, to a user-led, fluid process. Concerning user-interface design, 

the ability to view and rotate individual objects more conveniently, view objects 

from previous generations, and the automatic scaling of small objects would give 

the user more freedom, and speed up the evolutionary design process. 

Automatic Aesthetic Assessment 

Current aesthetic assessment is limited to reducing object fragmentation. 

Fragmented objects receive a fitness penalty, but no further action is taken. A 

further implementation step would be necessary, for automatic aesthetic 

assessment to be beneficial. It is suggested that objects with low aesthetic 

function values are either discarded (and other objects created in their place) or 

measures taken to `improve' the objects (i. e. the size or positioning values of 

isolated primitives altered). This was seen as too prescriptive initially, the thought 

being that evolution would take its course through the user's fitness assessments. 

With further research into aesthetics however, these changes would be necessary. 

Teamforming 

Future development of the technique in this application may improve the low 

object-continuity situation. One possibility is that each member carries a 
`preferred' order gene. This would restrict choice during team-member selection, 
hopefully reinstating some visual continuity between objects in subsequent 

generations. Retaining the `5 primitives per object', and with a population of 70 

members creating 14 objects, 14 members would be `first-created' primitives, 14 

would be `second-created' primitives and so on. Breeding would be restricted to 

members with the same creation order gene, implemented using the multi-species 

capability of the GA - each of 5 species being a creation order. It is noted that 

this approach would conflict with any work carried out on variable size teams. 
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6.3.2 Increasing Research Scope 

While this research is undoubtedly useful for original form generation, future 

development could further increase the efficiency of the evolutionary process, 

provide additional functional capabilities, and even extend the point at which the 

designer takes over from the EFD system in developing the form manually (using 

traditional CAD techniques). Two of the original objectives, intended to expand 

the capacity of the software in this way, have not been implemented: Brief 

descriptions of each follow. 

Internal Volumetric Constraints 

An idea stated in the objectives, and introduced in [Grahams], but not 

implemented is an internal volumetric fitness function. Objects would strive to 

incorporate, within their boundaries, simple box models manually created by the 

designer, before the start of the evolutionary process. The principals of the 

technique are demonstrated in Figures 6.3.1 and 6.3.2, and outlined below: 

"Sobject - iVobject-box + Vbox Vboxnobject 

" Before the evolutionary process is started, the designer constructs a simple box 

model of the internal space required (having volume Vbox) 

" During fitness calculation, each evolved object's solid form (having volume 

Vobject) is subtracted from the internal box model 

" Any volume remaining counts heavily against the object's objective value 
(Sobject), penalising the object for not totally enclosing the box model 

" In a secondary test, the internal box model is subtracted from the object's form 

" The volume remaining also counts against the object's objective value, but to 

a much lesser extent, penalising the object for not efficiently enclosing the box 

model 

The relative importance, r, of these two tests would need to be established through 

experimentation (a value of 0.1 is suggested as a starting point). 

165 



Intersected volume = 1800mm3 

1970mm3 1800mm3 = 170mm3 

The evolved object does not enclose the box model (the 
remaining volume counts against the object's fitness), and 
would receive an `enclose' objective function value of 170, 

13230mm3 - 1800mm3 = 11430mm3 

The `efficiency' objective function value would be 11430, the 
volume remaining after subtracting the box model from the 
object. This would be less influential than the `enclose' 
objective function 

Figure 6.3.1 - Demonstration of internal volumetric function 
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The practicalities of programming this concept would involve: Making copies of 

the box model, finding the best position of the box model within each object, 

carrying out Boolean subtractions with each object and using geometric analysis 

to determine the remaining volumes - then returning the objects back to their 

previous state. The task of positioning the box model within the designs, is a task 

that would be best achieved using another GA, but would, in any case, require a 

lot of processing power to achieve the speeds required for usability. 

The inclusion of internal size constraints for the incorporation of functional 

elements (circuit boards, internal spaces, fixtures and fittings etc. ) would take the 

research from the existing aesthetic focused tool to a system capable of 

application to a wider range of engineering design problems. 

Quantification of Aesthetic Properties 

As stated in the original objectives of the research, `There is scope for the 

parameterisation of aesthetics qualities, such as cohesiveness, compactness, 

proportion and unity, to be investigated'. The initial research into Evolutionary 

Form Design provides an excellent setting in which to investigate these ideas. 

Applying the findings of such investigations would combine naturally with the 

current software, following on from the preparatory work on geometric analysis, 

and would contribute considerably to the efficiency of a usable design tool. 

The interactive nature of the software has necessitated finding a balance between 

the optimum time spent studying each population, and the benefits of rapid 

progression to the next generation. This balance, combined with the physical 

capabilities of the computer screen and viewing method, limits the number of 

objects to 12-16 per population. Genetic Algorithms usually operate (more 

effectively) with larger populations than this. 

By increasing the automated fitness capabilities provided by the system (the work 

on aesthetics outlined above), a considerably different method of operation could 

be utilised. If the software could learn and thus identify what constituted an 

aesthetically valid form, it could select the best objects (say 12 or 16) from a 
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larger population (of around 30) to present to the user. This would perhaps double 

the efficiency of the software, drastically reducing the occurrence of unusable 

objects. This approach would provide a more rounded, more maintainable and 

more holistic route to efficiency than the general approach taken by this research 

(the trend towards detail changes and constraints during object creation). 

The current software could be used to build up a database of `good' objects, 

(limiting construction to just 2 primitives initially), which could then be analysed 

for parameters such as the following: 

" ratio of sizes of primitives 

" ratio of lengths within primitives 

" which primitives work well together 

" proportion of intersecting volume for each of the 3 Boolean operators 

Teamforming 

The ideas behind this technique could be applied to other problems where 

genotypes are made up of a number of repeated data-structures, and solutions are 

made up of collections of the same types of object, e. g.: 

" In the case of the research discussed here, 5 identically structured groups of 

chromosomes were used in sequence to form the original genotype - solutions are 

constructed from 5 geometric primitives. 

" In Bentley's GADES system, the genotype is made up of a variable number of 
blocks of 9 genes - solutions are constructed from a number of `clipped stretched 

cuboids'. 

" In the Emergent Design Group's Agency-GP, genotypes are made up of 
identically structured genes - scenes are constructed from collections of extruded 
NURBS curves. 
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6.4 Concluding Points 

" Combining a small number of geometric primitives' using Boolean operations 

and applying edge blending, is a suitable technique for creating aesthetically 

interesting objects, and is capable of representing a range of products. 

" By utilising the solid modelling capabilities of a CAD system, this product 

representation enables objects to be defined with a small amount of data, 

suitable for application by a Genetic Algorithm. 

"A Genetic Algorithm can endow a design tool with usable evolutionary 

properties enabling the guiding of a population of objects towards an intended 

goal through intuitive interaction, resulting in the improvement of objects over 

a modest number of generations. 

" Complementing user-supplied fitness with geometric and rudimentary 

aesthetic analysis can; increase the quality of populations presented to the 

user, confirm the successful optimisation capabilities of the GA, and 

demonstrate the potential for mechanical and further aesthetic automation . 
" Treating constituent parts of an object (solution) as separate entities during the 

reproduction stage, and then combining them to form complete objects 

(solutions), in what has been termed a Teamforming stage, can provide a 

usable addition to the range of available techniques geared towards increasing 

GA efficiency. 

15 or less 
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APPENDIX C 

PRODUCT CONCEPT ILLUSTRATIONS 

xii. First three objects and associated populations 
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xvi. Next three objects and associated populations 
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