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Abstract

The work of the original Committee is described in Appendix 2 of Ball’s book. This time
the Committee is supplemented by distinguished guests attending as observers and new
committee members intent on gaining a thorough understanding of freedom and
constraint.

Led by Mr Duality, the newcomers find that the route to the answers to their problems
uncovers a beautiful symmetry in kinestatics. The Law twins, Circuit and Cutset, explain
the principles involved; the Coordinates twins, Motion and Action, quantify the
problems; and Miss Topology and Miss Matrix perform mathematical magic to devise
simple equations for both kinematics and statics of identical form. Mr Virtual Power then
repeats their work using his methods to obtain two more dual equations. Mr Querulous
remains as sceptical as ever, until the very end.

The new committee members are asked to provide an example. They choose one that is
topologically complex but geometrically trivial as befits a gathering that has no need for
lessons in screw theory.


Name



The Chairman welcomed the original members of the committee: Messrs Anharmonic,
Cartesian, Commonsense, Helix, One-to-One and Querulous. He commented that they
did not look a day older than when they attended the previous meeting. He also spoke
warmly of the achievements of four scholars who had been invited as observers at this
meeting: Mr Synthetic Geometry, Mr Freedom, Mr Exceptional Mobility and Mr Seven
R. Spatial. Knowing them to be talkative, indeed argumentative, gentlemen with an
enthusiasm for screw theory, he urged them to show restraint on this occasion while
others had their say.

The Chairman reminded the gathering that, at the end of the previous meeting in
Manchester, one member showed how the theory of screws could be applied to any
mechanical system whatsoever and had introduced the concept of a screw-chain. “Today
we shall return to that theme.”

“We shall consider any collection of rigid bodies some or all pairs of which are directly
coupled together. We shall refer to them collectively as coupling networks. Although
there is a variety of direct couplings we shall restrict attention to those that involve
contact at a point, along a line, or over surface, between areas of the surfaces of the two
bodies sometimes called kinematic pairs. In the absence of all other couplings each direct
coupling would allow some relative motion of the two bodies they couple but this
freedom might be wholly or partially destroyed by the existence of the other couplings. If
some excess freedom remains we call these coupling networks kinematic chains. For
kinematic chains we shall aim to find what relative motions are possible for every pair of
bodies. There are also some coupling networks within which actions can be locked in as
a consequence of the closure of direct couplings. For these we shall seek the actions that
can be transmitted by every direct coupling in conditions of equilibrium.”

Mr Commonsense opened the discussion by stating that the first objective could be to
find the nett degree of freedom F)y for the kinematic chain as a whole. This is the number
of variables required to describe all motions when all couplings are in place, he
explained. “The nett degree of freedom f; of two bodies i and j, allowed by the kinematic
chain, has been referred to by Mr Freedom as their connectivity. The degree of freedom
Ji can be less than or equal to Fly, but never greater, so finding Fy would make a useful
start.”

Committee members were aware of formulae that existed to find Fy by means of a count
of the number of bodies and of the constraints imposed by couplings. They examined



several kinematic chains. Although in many instances these formulae worked
satisfactorily, for some kinematic chains they failed. Mr Anharmonic said that the
reasons for failure could be blamed on special geometric circumstances. He said,
“Formulae involving terms that are simply counts of bodies, freedoms and constraints are
never universally applicable”. To help them make progress it was resolved that new
members should supplement the committee. The Chairman proposed that the meeting
should be adjourned to enable him to find others to join them. This received unanimous
approval. It was resolved that they would reconvene the following morning.

On resumption the next day the Chairman announced that Mr Duality had kindly agreed
to join them on condition that he could bring some of his friends with him. The Chairman
then invited Mr Duality to reopen the discussion and introduce those who had
accompanied him.

Mr Duality began by acknowledging the help they had received from the observers
present through the contributions they had made to screw theory. We have benefited
especially from the classification of special screw systems provided by Mr Synthetic
Geometry and the insights provided by Mr Freedom, in particular, those he demonstrates
with his superb illustrations. Mr Duality expressed only one reservation. It was that
whereas these authors have a remarkable facility for spatial awareness the majority does
not share this skill. With other pressures on mathematics syllabi, for example, set theory
and Boolean Algebra, geometry has suffered. Mr Anharmonic observed that even for the
older generation it was the wrong geometry anyway. They needed line geometry, if not
screw geometry, and did not get it. Mr Duality expressed the wish to make things easier
for the younger generation by using concepts that they were more familiar with.

Mr Duality also acknowledged the advice they had received from Mr Seven R. Spatial.
They had to admit that they had not given the learned works of that gentleman the
detailed attention that they no doubt deserved. However, he felt sure that the author
would understand that their relevance to today's discussion was tenuous. He also spoke
of the helpful discussions that had taken place with Mr Exceptional Mobility. In
particular an example provided by that gentlemen had proved to be of great value. Mr
Duality added that no doubt throughout the day opportunities would arise to speak of the
contributions these visitors had made.



Turning then to the problem under discussion Mr Duality thanked the Chairman for the
briefing he had received on progress so far. He was reminded of a remark made by Mr
Freedom to a short course for mechanism engineers in 1968. “We kinematicians may feel
like second-class citizens because, whilst a subject like thermodynamics has laws to give
it respectability, kinematics apparently does not.” Mr Duality said that there were laws
that govern kinematics but they were rarely called laws. “To explain one of them, I
would like you to welcome Mr Circuit Law.” Mr Duality ended by explaining that there
were two sets of twins who had accompanied him and that Mr Circuit Law was one of
twins.

Mr Circuit Law told the gathering that he and his twin brother Mr Cutset Law had been
around for even longer than some of the original committee members. “However, we
have been so closely associated with electrical circuits since Dr Kirchhoff brought us into
the world that our roles in other areas had often been overlooked. The usual form of my
law is that the potential differences between a close sequence of points of different
electrical potential sum to zero. The same is true of the relative motions of a closed
sequence of bodies. One interesting point, he added, is that the law is true for potential
differences regardless of whether the points are electrically connected or not. Likewise,
the bodies in motion need not be coupled.”

A committee member interrupted to say that the concept that Mr Circuit Law spoke of
was well known and formed the basis of so-called loop equations. Mr Circuit Law
agreed. He went on, “Loop equations come in many forms. Often they are written in
terms of motions relative to a frame. We shall use relative motions of directly coupled
bodies, both of which can be in motion relative to earth. Furthermore we aim to
formulate and solve a sufficient number of circuit equations simultaneously.”

Mr Anharmonic asked what exactly was being meant by motion. Mr Circuit Law replied
that although this could mean infinitesimal displacement, the concept Sir Robert Ball had
used, he would divide all such quantities by an infinitesimal interval of time to provide
the first time derivative of displacement. He explained that the distinction is unimportant
but ‘motion’ was briefer than the expression ‘infinitesimal displacement’.

Mr Helix wanted to know why twist rate about a screw was not the appropriate term. Mr
Circuit Law assured him that indeed it could be but, because pitch was most often in
practice either zero or infinite, the term twist rate would be confined to cases where the
pitch was neither zero nor infinite. Motion would be the brief generic term he would use
for the first time derivative of any displacement.



Mr Cutset Law added that what his twin brother had said about potential difference and
motion was also true, using his law, for electrical current and action. Mr Anharmonic,
becoming more irascible, responded, “And what do you mean by action then?”” “Action
is the generic term I shall use for force, torque and their combination, the wrench”,
replied Mr Cutset Law. “It is the dual of motion. There are precedents”, he continued.
“Newton began his third law using the Latin word actioni, the dative singular of the third
declension noun actio. He could have used vi, the dative of vis meaning force, indeed he
did so in his second law, but chose action in his third law. Perhaps he anticipated the later
contributions of Euler and Poinsot. Incidentally, Mr Freedom also uses the term action.”
Mr Anharmonic sat down, flushed and muttering to himself, wishing that he had held his
tongue.

Mr Querulous observed that whilst electrical current and potential difference were simple
concepts requiring only one quantity, motion and action were far from simple. He added
that to use the laws, motion and action would need to be quantified, a task that he
believed was beyond the capabilities of the Law twins. Mr Duality responded by stating
that coordinates can be used based on Ball's screw coordinates, themselves adaptations of
Pliicker's line coordinates. He explained that, using lower case for unit screw coordinates,
these were:

Lmnp.q.r,
when written in axis formation.

Mr Duality then invited Mr Motion Coordinates, one of the Coordinates twins, to
elaborate. Mr Motion Coordinates began by explaining that he had replaced these
dimensionless screw coordinates by identical unit motion coordinates:

AAAAAA

He added that for motion that was not translational velocity these six unit coordinates
could be multiplied by angular velocity magnitude y to give

AAAAAA

“These motion coordinates are the three components of angular velocity followed by
those of the velocity of the point at the global origin. For translational velocity the first
three coordinates are absent and the multiplier is the velocity magnitude. We shall use
the symbol i for generalised velocity magnitude, regardless of whether it is angular
velocity or translational velocity.”



“And where can this global origin be?”” inquired Mr Commonsense. “Anywhere”, replied
Mr Motion Coordinates. “However, our task can be made far easier by choosing the
origin location and frame axes carefully. For example consideration should be given to
any symmetry that exists. Also, there are obvious advantages in locating the origin on an
axis characteristic of at least one coupling and choosing frame axes parallel to the
directions characteristic of as many couplings as possible.” Mr Cartesian, who had
anticipated having no part to play in the proceedings after the treatment he received at the
last meeting, suddenly started to pay attention.

Mr Action Coordinates added that by transposing the first three and the last three unit
screw coordinates they become expressed in ray formation as:

p*, q*, r*; I, m,n.
He then explained that, like his twin brother, he had replaced these unit screw
coordinates by identical unit action co-ordinates,

A A A A A

RS T:U,V.W.

Mr Action Coordinates continued to speak. “For action that is not torque the unit action

co-ordinates can be multiplied by force magnitude ¥ to provide the action coordinates:
RS, T, UV, W

These are the three components of moment at the origin followed by components of

force. For pure torque, or if you prefer, a couple, the last three coordinates are absent and

the multiplier is torque magnitude.”

The twins both expressed their gratitude to Mr Seven R. Spatial for drawing their
attention to the distinction between ray and axis formation.

Mr Querulous wanted to know what purpose was served by introducing yet more sets of
symbols. Mr Duality responded by saying that the reciprocity condition could thereby be
expressed as:

rR+sS+(T+uU+ vV +wW=0,
with or without caps, and in this form it was easily remembered. Several of the old guard
had been nodding off but mention of the word reciprocity caused them to renew their
attention. “Furthermore”, Mr Duality continued, “Now we can dispense with those
wretched asterisks.”

“And the symbol p becomes available to be used for the pitch of a screw rather than />,
interjected Mr Helix. Mr Freedom smiled but Mr Synthetic Geometry did not. Forgetting



that he had been asked to remain silent, Mr Synthetic Geometry attempted to catch the
chairman's attention in order to raise an objection. The Chairman forestalled him by
addressing the meeting.

“Gentlemen, no, sorry ladies, ladies and gentlemen. We can be pleased with the progress
so far but let us engage in one task at a time. I should like to hear again from Mr Cutset
Law but can we please focus first on the kinematics problem. We have yet to employ the
ideas of Mr Circuit Law.” The Chairman then asked Mr Circuit Law to explain his law in
more detail.

Mr Circuit Law responded. “For some kinematic chains we need be concerned with only
d motion coordinates, a number less than six. The number d is the minimal order of the
motion system to which all relevant motions belong. There is an obvious simplification if
the geometry permits a lower value than six to be used. For example, d can be three for a

so-called planar kinematic chain: only the unit motion coordinates 7;2 and v are required.

When no other coupling is present the motions allowed by a direct coupling are linear
combinations of f independent motions spanning an f~-system of motions, a subsystem of
the d-system. This number, £, is the gross degree of freedom of the direct coupling and
the sum Xf = F, for all of the e direct couplings, could be called the gross degree of
freedom of the kinematic chain. Each of the f motions of a direct coupling can be
quantified by one unknown generalised magnitude and d known unit motion coordinates.
These d unit motion coordinates are known from the type, orientation and location of the
coupling. For each of the d motion components, the components quantifying the motions
allowed by couplings belonging to a closed circuit sum to zero. For / independent circuits
there are therefore d/ equations that can be written that impose conditions on the F
unknown magnitudes.”

The committee then spent some time trying to create a single matrix equation, but
without success. It was agreed nem con that a working party should be set up comprising
Mr Circuit Law, Ms Topology and Miss Matrix to find out how this could be done. Mr
One-to-One abstained on the grounds that “It was not women’s work”. Ms Topology said
something about his remark not being PC. Mr One-to-One heard her but did not
understand so chose to say no more.

After an adjournment the working party returned. Ms Topology rose to reopen the
discussion. She smiled at the august gathering, and told them that the working party had
found a way forward. She explained that they had found it helpful to start by producing



the coupling graph G¢ of the kinematic chain. “In G¢ each of the n nodes represents a
body and the e edges connecting pairs of nodes represent direct couplings between those
bodies. G¢ needs to be a directed graph with every edge assigned a positive sense
indicated by an arrow. We have decided that all bodies and their corresponding nodes
should be labelled by number and that, because the directions of edges were arbitrary
decisions, it might prove convenient to ascribe the positive sense of an edge from the
terminal node of lower number towards the node of higher number.” Ms Topology
continued by explaining that it was necessary to select a tree of G¢. “A tree of a graph is
a connected subgraph of that graph that contains all nodes of the graph but no circuits.”
She went on to say that a graph could have several possible trees, the choice being an
arbitrary one. “The edges of G¢ retained in the tree are called branches and the edges that
are omitted are called chords. For every chord of G there is a corresponding circuit of
G and a positive sense needs to be ascribed to each circuit. It will be found convenient
to choose the positive sense for the circuit that corresponds to the positive sense of its
corresponding chord.”

Miss Matrix then made a contribution. She explained that the circuit matrix [B];. of G¢
can represent the circuits. She asked the committee to take note of the subscripts of all
matrices that are used because they were so very revealing. “The subscripts indicate the
number of rows and columns respectively. In [B];,, / is the number of loops or circuits
and e is the number of edges. Each element b;; of [B];. is 0, +1, or -1: b; is zero if circuit
i does not include edge j; +1 if the positive sense of circuit i is in the same direction as
the positive sense of the edge j that it includes; and -1 if those positive senses are
opposed.”

Ms Topology took over again. “Next, G¢ is modified to create the motion graph Gy. An
edge of G¢ that represents a direct coupling of freedom f'is replaced in Gy, by fedges. If f
is equal or greater than two these edges are arranged in series and are interspersed by (f -
1) new dummy nodes. These dummy nodes have no significance other than to terminate
the (- 1) internal pairs of the f'edges in series. These nodes are additional to the » nodes
of Gy, reproduced from G, that represent bodies.”

“Each of the f'edges of G, that replace one edge of G¢ represents a single motion.
Together these f motions must span the f-system of motions allowed by the direct
coupling represented by the edge of G that the f'edges of Gy, replace. The total number
of edges of Gy, 1s then F. The chosen tree of G¢ can be used as a basis for the tree of Gy,.
Thereby all edges of Gy, replacing branches of G- become branches of Gy,. Also, any one
of a set of edges of G, replacing a chord of G¢ can be a chord of G, and the remaining



members of the set of edges become branches of Gy, Thus /, the number of chords and
circuits in G, remains the same in G, The positive senses of the edges and circuits of
Gy can be the same as those assigned to the edges and circuits of G that they replace.”

Mr Circuit Law spoke next. “We must be quite clear about what Ms Topology means by
the f-system of motions of a direct coupling. This is the system of motions that the bodies
coupled by the direct coupling can enjoy if they are not also indirectly coupled. To use
an electrical analogy this is an open circuit condition with only the two bodies and their
direct coupling present. Except for some trivial kinematic chains for which our
investigations are not required, two directly coupled bodies are also coupled by an
indirect coupling provided by other bodies and direct couplings. This indirect coupling
imposes further restrictions on the motions of which the directly coupled bodies are
capable. Thus, the degree of freedom f of directly coupled bodies i and j may be reduced
to f; by the other couplings in a kinematic chain. We shall aim to find f;; for every direct
coupling and the fj-system of motions, a subsystem of the f~system.”

Miss Matrix added that G, also has a circuit matrix [By];# “We use the internal
subscript M, signifying motion, to distinguish this matrix from the circuit matrix [B];, of
the coupling graph G¢. Notice that F, the number of edges in G;,, may be greater than e,
the number of edges in G¢; but it could not be less than e.”

Miss Matrix asked Mr Motion Coordinates whether he would mind if she described
another matrix that was needed as this one contained unit motion coordinates. Mr Motion

Coordinates agreed. She continued, “This is the unit motion matrix [MD L  for direct
couplings. To distinguish it from other matrices the internal subscript D provides a

reminder that it is for motion allowed by direct couplings only. As Mr Circuit Law has
explained it is not the motions of directly coupled bodies when the constraints imposed

by all couplings of the kinematic chain are considered. Each column of [MD L #contains

the d unit motion coordinates corresponding to the single motion represented by an edge
of Gy, where d is the minimal order of the screw system to which all F motions belong.

Assembling l1\7[ b L

theory. It is the essential geometric heart of the problem that cannot be avoided.”

- can be the difficult part for anyone not conversant with screw

“The next step is to combine these two matrices [I\A/IDL) - and [Bm]; 7", continued Miss
Matrix. “There are / circuits and d components and the circuit law requires that for each



circuit each of the components sum to zero thereby providing d/ equations. From the
circuit matrix [Bwm]; r extract / diagonal matrices [Bi]zr, i = 1,2,...,/, where the diagonal
elements in [Bj]z r, are the elements of row i of [By];r.”” Miss Matrix then asked for a
piece of paper, which was quickly supplied. She wrote on it what she said the working
party had decided to call the network unit motion matrix.

__MD_d,F [BI]F,F_

[MN]dZ,F = 'MD'd’i[BZ]F’F

My | (B Jur

Mr Circuit Law thanked the ladies for their valuable contributions and explained that it
had been agreed that he should have the honour of presenting his law in its final form. “It
is that

[MNLI,F [W]F,l = [O]d/,l >
where [i/] .+, 18 a vector of unknown motion magnitudes, angular or translational

velocity. The dI conditions on the ' unknowns means that those unknowns can be
expressed in terms of Fy of them, where F)y is the nett degree of freedom they were
seeking. Fy has also been called the degree of mobility in the past but we no longer use
the term because mobility also means the complex velocity response to a unit force.”

The committee took a long while to assimilate what they had heard. Several of them
spent some of that time studying examples to test the effectiveness of the equation. Mr
One-to-One took no part in this. Having in his youth divested himself of the axioms of
both Euclidean and affine geometry in seeking the relatively rarefied abstractions of
projective geometry, Mr One-to-One was preoccupied in marvelling how Ms Topology
had discarded even those last vestiges of shape, including his beloved anharmonic ratio,
to leave only connectedness.

Mr Commonsense was the first to speak. He observed that for several of the examples
that they had studied one or more of the d/ equations were redundant. Miss Matrix agreed
but, before she could continue, Mr Duality intervened to save his colleague possible
embarrassment. He said, “Where there are redundant equations it is because the
kinematic chain is overconstrained. The cause might be that we have used a larger value
for d than was necessary. This will happen for example if we analyse a planar kinematic

chain using a d value of six. If we find the rank m of [M then the nett degree of

N lar

10
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constraint Cy, in other words the degree of overconstraint, is (d/ - m). This number of
rows can be removed from [MN ] 1 to leave [MN ]m, . and Mr Circuit Law's equation
then becomes:

0 17 )

Now at last we do have a formula for Fly, specifically Fy = F - m. Perhaps Miss Matrix
would like to explain how she would set about solving this equation.”

Miss Matrix responded. “To obtain a solution it is necessary to identify a suitable set of
Fy primary variables from among the /' unknowns in [l//] -1 - In practice, this will usually

be simple; for example, whenever the actuators of a manipulator are known. If suitable
primary variables are not self-evident, trial and error may be required. Once a suitable set

of Fyy primary variables have been identified the vector [y ] F.1 can be partitioned into a

vector [l//]mJ of m secondary variables and a vector [l//] F my Of Fy = (F - m) primary
variables. The columns of IMN Jm - must also be rearranged and partitioned into

corresponding submatrices [MN Jm ,, and lMNJ in the same manner.”

m, ' —m

Miss Matrix then took another sheet of paper and began to write the rearranged form of
the equation.

[‘//]m,l

L 1 N O s B4 1)
[‘// ]F—m,l

lMN Jm)m [l//]mJ = —lMN Jm)p_m [‘//]F—m,l ,
[‘// ]m,l = _[MN];:,)H [MN]m,F—m [W]F—mJ :

Mr Circuit Law took over again. “This equation results in the secondary variables of
[t//]m’1 being expressed in terms of the F)y primary variables of [l//]F_mgl. The vector of

motion magnitudes [l//]F’l can now be reconstructed from the vector [l//]mﬂl of secondary
variables and the vector [l,//]pm’l of Fy primary variables. Before the solution of the
equation was found [l//]F’l had F' different elements. Now those F' elements are either

zero or are expressed in terms of the Fy primary variables.”
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“A new motion matrix [M],r can now be created by multiplying each column of
[M DL » by the corresponding element of [l//] r.1- Whereas [Mp]y r is the motion matrix

for direct couplings expressed in terms of /' variables, the gross degree of freedom of the
kinematic chain, the new matrix [M], r is expressed in terms of Fy variables, the nett
degree of freedom of the kinematic chain. Each of the F' columns of [M],;  have either
zero elements or elements that are functions of one of the Fy primary variables.”

“Both [Mp],r and [M],r can be contracted to [Mp]s. and [M];.. This is done by adding
the sets of f columns of [Mp],» and [M], r representing the motions associated with each
direct coupling of gross freedom f. Consider one of the e edges of G¢ representing the
direct coupling of freedom f between bodies i and j. The column of [Mp];.
corresponding to this direct coupling contains the coordinates of the f~system of motions
allowed by that direct coupling disregarding the remainder of the kinematic chain.”

“Now contrast matrix [Mp];. with the new matrix [M],. in which the internal subscript
D is absent. The column of [M],. corresponding to the same direct coupling that we have
just considered contains the d components that could all be zero. In this event all motion
of j relative to i is inhibited. This is an unlikely event in a kinematic chain. Alternatively
the column will have d components that represent the f;-system of motions of bodies i
and j allowed by the compound coupling provided by the whole kinematic chain. This
number fj; is the number of primary variables in which these d components are expressed.
Because additional constraints are imposed f; < f'and, because there are Fyy primary
variables, it follows that f;; < Fiy. The number f; can be said to be the nett degree of
freedom of the compound coupling between i and j provided by the kinematic chain or,
to use Mr Freedom’s expression, the connectivity of i and j.”

“There will usually be pairs of bodies of a kinematic chain that are not directly coupled.
To find the motion system of order f;; for two indirectly coupled bodies 7 and j, select any
path of Gy, leading from node i to node j. Taking note of the positive sense given to the
edges of that path, we need only sum each of the d components for those edges. The d
components of this sum are the components of the f;-system of motions the indirect
coupling allows. These components are also expressed in terms of f;; of the Fy primary
variables, where fj; is the nett degree of freedom of the indirect coupling.”

Mr Cutset Law then turned to the Chairman and said; “Now that this problem has been
solved may I speak?” “You said earlier that you hoped to hear from me again. I just need
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a little time with the ladies to prepare something similar on statics.” Mr Cartesian,
anxious to escape for an early lunch, sensed some reluctance in the Chairman. “Do we
really need to hear about statics? It has all been done before. After all statics is easy.” Mr
Cutset Law snapped back, “If I knew as much about statics as Mr Cartesian knows about
statics [ would think it was easy too™.

“Gentlemen, gentlemen, please”, the Chairman said. “Yes Mr Cutset Law, you quote me
correctly, but please make your presentation as brief as you can.”

After a short interlude for discussions Mr Cutset Law began. “We have been examining
closed overconstrained coupling networks. We will call them overconstrained chains
because we hope to demonstrate that they are dual to kinematic chains. We have also
considered machines and simply stiff structures that can be converted into
overconstrained chains by internalising external actions. A mechanism is a kinematic
chain with two or more ports. A port is a pair of the bodies of the kinematic chain that are
designed to be coupled by active couplings external to the mechanism when it is
incorporated in a machine. Actuators and loads provide these active couplings, internal to
the machine. Equivalent passive couplings can replace these active couplings to create an
overconstrained network. Likewise, a weight supported by a simply stiff structure is
usually regarded as an external action on the structure. By including the earth as a
member of the extended closed system the weight becomes an internal gravitational
coupling between the structural member carrying the weight and earth. A gravitational
coupling is an active coupling that can also be replaced by an equivalent passive coupling
to create an overconstrained chain.”

“For some overconstrained chains we need be concerned with only d action coordinates,
a number less than six. This number d is the minimal order of the action system to which
all actions belong that are of interest to us. The actions that could be transmitted by a
direct coupling when that direct coupling is the only coupling bridging a gap in what
otherwise would be a rigid ring are linear combinations of ¢ independent actions
spanning a c-system of actions. This number, c, is the gross degree of constraint of the
coupling and the sum Xc¢ = C, for all of the e direct couplings, could be called the gross
degree of constraint of the overconstrained chain. Each of the ¢ actions of a direct
coupling can be quantified by one unknown magnitude and d known unit action
coordinates. These d unit action coordinates are known from the type, orientation and
location of the coupling. In an overconstrained chain there will be other direct couplings
that, together with each direct coupling, belong to a set, a cutset, the removal of which
would create two disconnected networks. For each of the d action components, the



components quantifying the actions allowed by couplings belonging to a cutset, sum to

zero. For k independent cutsets there are therefore dk equations that can be written that

impose conditions on the C unknown magnitudes. I would like Ms Topology to explain
to you how these dk equations can be assembled.”

Before Ms Topology could speak Mr Commonsense asked for, and was given,
permission to ask a question.

“Your name has been puzzling me. I thought you would be Mr Node Law. Why Cutset
and not Node?”

Mr Cutset Law replied, “many do call me Mr Node Law. I said that the removal of a
cutset of couplings leads to two subnetworks. If one of the subnetworks comprises a
single body then node law would be appropriate. But that would be a special case and an
unnecessary restriction on what we can do. In elementary statics a common technique is
to separate a network into free body diagrams. However the expression free body
diagram is a misnomer in the sense that the best strategy sometimes can be to isolate a
group of two or more bodies.”

Mr Commonsense had not quite finished. “The cutset reminds me of a strategy in
elementary structural analysis called The Method of Sections whereby a cut is made
through several members. Why does that require cutting members while you cut
couplings?”

Mr Cutset answered again. “For a truss the members are all binary links with two
couplings. All actions are forces along those slender members so the forces are the same
as those transmitted by the couplings. Generally, in machinery for example, actions are
not always forces and the bodies are not all binary ones. Cuts must be made through
couplings.”

Ms Topology then spoke of the coupling graph of the overconstrained chain. “Like the
kinematic chain we produce the coupling graph G¢ of the overconstrained chain, assign
positive senses to its e edges, and select a tree. Instead of the chords and circuits of this
tree, we identify its k& branches and corresponding k cutsets. Each cutset is then given a
positive sense that corresponds to the positive sense given to the only branch the cutset
traverses.”

14
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Miss Matrix added her contribution. “These cutsets can be represented in the cutset
matrix [Q]k.. Each element g;; of [Q]«. 1s 0, +1, or -1: g, is zero if cutset i does not
include edge j; +1 if the positive sense of cutset i is in the same direction as the positive
sense of the edge j that it includes; and -1 if those positive senses are opposed.”

Ms Topology continued. “Next, G¢ is modified to create the action graph G4. An edge of
G that represents a direct coupling of constraint c is replaced in G4 by ¢ edges. If ¢ is
equal or greater than two these edges are arranged in parallel, that is to say they share the
same terminal nodes. Each of the ¢ edges of G, that replace one edge of G¢ represents a
single action. Together, these ¢ actions must span the c-system of actions that can be
transmitted by the direct coupling represented by the edge of G¢ that the ¢ edges of G4
replace. The total number of edges of G is then C, where C can be said to be the gross
degree of constraint of the overconstrained chain. The chosen tree of G can be used as a
basis for a tree of G4. Thereby all edges of G4 replacing a chord of G become chords of
G 4. Also, any one of a set of edges of G, replacing a branch of G¢ can be a branch of G4
and the remaining members of the set of edges become chords of G4. Thus £, the number
of branches and cutsets in G¢, remains the same in G4. The positive senses of the edges
and cutsets of G4 can be the same as those assigned to the edges and cutsets of G that
they replace.”

Mr Cutset Law asked to intervene. “My brother has made clear what is meant by the f-
system of motions of a direct coupling of a kinematic chain. I must do the same for the c-
system of actions of an overconstrained chain. This c-system of actions contains all the
actions that a direct coupling can transmit if the coupled bodies are also integral with one
another. By making the bodies integral a closed circuit is created broken only by the
direct coupling itself. Using an electrical analogy again, this is the short circuit condition.
Overconstrained chains must contain circuits. Two directly coupled bodies are thereby
also coupled by an indirect coupling provided by other bodies and direct couplings.
However, this indirect coupling may not be rigid. It therefore may be incapable of
transmitting all the actions of the c-system of actions of the direct coupling. Thus the
actions that can be transmitted by a direct coupling within an overconstrained chain
belong to an action system that is the subsystem of the characteristic c-system of that
coupling. We aim to show how this action subsystem can be found for every direct
coupling of an overconstrained chain.”

Miss Matrix returned to the subject of matrices. “The cutset matrix [Qa]s,c of G is
needed. Note the internal subscript A of [Qa]xc . It indicates that it is derived from the
action graph to distinguish it from the cutset matrix [Q]s. of the coupling graph G.. We
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need also the unit action matrix lA D L ¢ for direct couplings, in which each column

contains the d unit action coordinates of the single action represented by an edge of G4.
From [Qa]xc we find the diagonal matrices [Qilcc, i = 1,2.. ...k as we did for the circuit
matrix of the motion graph of a kinematic chain.” Taking another sheet of paper Miss
Matrix then wrote the network unit action matrix

.AD.d,C [Ql]c,c |
. A Q
sl | Hobel@ske
__AD_ .C [Qk]QC_dk,C

Mr Cutset Law now provided his equation. “The cutset law can be expressed as:

lANJJk,(? [LP](?,I = [O]dk,l >

where [\W]c is the vector of unknown action magnitudes being either force or torque. If
the rank a of [AN ¢
kinematic chain with a nett degree of freedom Fiy = dk - a. In this event we can remove

F) equations to create
I_AN L,(r [\P](,‘,l = [O]a,l .

Thus the nett degree of constraint, Cy = C - a. This has sometimes been called the degree
of overconstraint or redundancy, but we prefer to use the latter term solely for unwanted
equations. This equation can be solved in the same way that Miss Matrix solved the
motion equation. We can then assemble the matrix [A];. in the same way as [M],., and,
from the columns of [A],., find the components of the action subsystem for each of the e
direct couplings. These action subsystems contain all actions that the direct couplings can
transmit when all the freedoms of other couplings are present. As mentioned earlier, the
order of each subsystem for a direct coupling is less than or equal to the degree of
constraint ¢ of that coupling. The order of each action subsystem is also equal to or less
than Cy.”

is less than dk it is because the overconstrained chain is also a

“Chairman, please, I must speak”, pleaded Mr Commonsense. “I cannot go on listening
to all this. Is Mr Cutset Law seriously suggesting that statical analysis can be performed
on statically indeterminate structures? That would be the non-sequitur of all time.” Mr
Duality had feared that this point might be raised. Indeed, he had been having misgivings
himself about the use of the word statics. He quickly hit on a plan. It was to stall and
placate and then to throw Mr Cutset Law in at the deep end, temporarily, just to give
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himself time to think. He began, “Mr Chairman, we have all benefited from the
contributions Mr Commonsense has made. The strong feelings he has expressed deserve,
indeed require, an adequate response. Perhaps Mr Cutset Law would like the opportunity
to provide the explanation.” Mr Cutset Law then spoke. “The brief answer is that the
term statical indeterminacy is itself flawed because, as I have shown, it is possible to find
relationships between the unknowns. When my brother spoke of kinematics Mr
Commonsense raised no objections despite the fact that we spoke of kinematic chains
such as manipulators having a nett degree of freedom F)y or, if we may use a new
expression dual with statical indeterminacy, having kinematic indeterminacy.”

Mr Duality was impressed by the way Mr Cutset Law was handling himself, but then,
suddenly he exploded. “Of course, how silly of me. It's quite obvious. Why didn't I think
of that before? Yes...” He was interrupted by the Chairman. “Ladies and gentlemen the
meeting is in danger of getting out of hand. Would members please address the Chair in
future when they want to speak.” “Mr Chairman”, replied Mr Duality, “my apologies.”
“The reason for my outburst is that I have just had an insight that had previously eluded
me. [ have always presumed that statics is the dual of first order kinematics, the topic that
Mr Circuit Law introduced. But this is not true; at least it is not true of statics in the sense
that we usually understand that term. Statics requires a statically determinate system on
which external actions act. What Mr Cutset Law has been talking about requires a self-
contained overconstrained system in which all actions that exist are internal. Kinematic
chains are self-contained systems and their dual must be also. Known external actions we
speak of in statics must be converted to known internal actions in the self-contained
system. Mr Cutset Law said that the expression statically indeterminate is flawed. 1
understand what he means but I disagree that it is flawed in the context of statics. The
truth that has just dawned on me is that Mr Cutset Law has not been talking about statics
at all. His analysis provides relationships between actions that exists in statically
indeterminate networks.”

Mr Duality continued, “You will not be surprised to learn that I like to find dual pairs of
terms and, if one does not exist, [ am prepared to create a neologism. For example, that
overfreedom is the dual of overconstraint. I like Mr Cutset Law's use of the expression
kinematic indeterminacy because it is dual to statical indeterminacy. The French have a
pair of terms hypostatique (underconstraint) and Ayperstatique (overconstraint) but I
would hesitate to call them dual. The danger with these is the implication that a system
must be one or the other. I think they are used in the theory of structures, wherein
underconstraint is of course quite unacceptable, rather than in the theory of machines.
But kinematic chains can have both excess freedom and excess constraint, overfreedom



18

and overconstraint if you like. I prefer these terms to underconstraint and overconstraint
which, when they both exist in a kinematic chain, seem inappropriate. Finally, and then I
promise to shut up, I prefer the expression kinematic network to kinematic chain, but the
latter now has a long history. Again to emphasise duality I suggest overconstrained
chains rather than overconstrained networks, the expression Mr Cutset Law has been
using.”

Mr Commonsense, now calmer, asked the Chairman if he could put a supplementary
question. This was agreed. “I want to ask about actions that exist in overconstrained
structures and machines that are not attributable to active couplings. I mean actions that
can arise from manufacturing error, from differential expansion as a consequence of
temperature gradients, or from materials that have different coefficients of expansion.
Can the analysis provided by Mr Cutset Law be helpful in order to measure these?”

Mr Cutset Law addressed the Chair before replying. “Mr Duality spoke earlier of
manipulators. My twin brother’s analysis enables us to recognise special pairs of bodies
of a manipulator namely those pairs that can be coupled by active couplings. Dually,
there are special bodies in an overconstrained chain that can be identified from my
analysis. Suppose we have an overconstrained chain with a nett degree of constraint Cl.
It is possible to select Cy of the bodies of the system on which to aftix judiciously
located strain gauges. From the strains measured before and after assembly, or before and
after temperature change, it is possible to find the actions existing in those bodies
attributable to those causes. With this information my method enables us to find the
corresponding actions transmitted by all direct couplings.”

The Chairman decided that it was an appropriate time to adjourn for lunch, much to the
relief of Mr Cartesian. Before doing so he spotted another newcomer who had remained
silent.

“And who are you?”

“Mr Virtual Power”, was the reply.

“Don't you mean Virtual Work?”

“My friend Mr Virtual Work would have come if we had been talking about infinitesimal
displacements but, because first time derivatives are being used, [ am here instead.”
“And I suppose you have something to say as well”, said the Chairman.

“Indeed I do”, responded Mr Virtual Power.

“And do you also have a twin?”

“No, I can do the job of two myself.”

“No modesty then. Well, you may speak after lunch.”
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When they returned from lunch Mr Virtual Power began his presentation. “I want to tell
you about another dual pair of methods that achieve the same results as those provided
by the Law twins. I call these internal virtual power methods. I shall start where this
morning's session finished by finding relationships between actions and then later turn to
relationships between motions. I have chosen to present my findings in this order because
the concepts regarding actions that I shall use will be more familiar to you. Like Mr
Cutset Law I shall be concerned with what Mr Duality has called overconstrained chains.
Also, as Mr Cutset Law as explained, we can find actions resulting from external active
couplings by internalised them and replacing them with equivalent passive couplings.”

“First, I want you to consider a strip of steel. Please ignore its weight; alternatively think
of the strip having zero mass. We do not want to be concerned here with irrelevant
gravitational couplings. Imagine now that the strip is heated up until it becomes ductile.
Two people each grasp an end of the strip with tongs and then bend, stretch, twist and
generally distort the strip. They then bring the edges at the ends of the strip together still
exerting actions on those ends. A third person now welds the two edges together to create
a distorted ring. The shape could be that of a M6bius strip. The ring is then left to cool.
Locked into the ring is a circuit action. I call it a circuit action because, if it were possible
to measure stresses in any cross-section of the ring that has been created, it would be
found that the resultant action is identical, and is a wrench on a screw. The ISA of the
wrench will have a fixed location with respect to the ring. Incidentally, I can confidently
use the term wrench here because it would be most extraordinary if the pitch of the screw
happened to be either exactly zero or exactly infinite. However, I shall continue to use
the term action as the others have done. We know nothing about this circuit action locked
into the ring; it could be any one among the actions that belong to the 6-system of all
actions.”

“The expression circuit action may be new to you but Maxwell introduced the concept of
circuit currents in electrical networks long ago. The circuit action is analogous. Because
there are always fewer circuits than edges in a graph information about electrical currents
flowing in conductors is more concisely expressed by circuit currents than edge currents.
Likewise, circuit actions provide the same information as coupling actions, but do so
more concisely.”
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“The two flanges of a hinge are then bolted to the strip now formed into a ring. The
countersunk holes in the flanges of the hinge are used as guides for a drill so that, when
the bolts are inserted and nuts tightened, no change takes place in the circuit action. Now
think of a global frame of reference; most conveniently for our purposes with the origin
on the axis of the hinge and with the z-axis coinciding with the axis of that hinge. The
following action coordinates represent the 6-system to which the circuit action belongs:

R, S, T, UV, W),
all of which are unknown. Next, the original ring is carefully cut between the flanges of
the hinge, but without disturbing the hinge or its flanges. The ring remains a single
integral body but is now hinged to itself. We must expect a small rotation of the hinge to
take place when this cut is made. We must expect also the circuit action to be affected by
this cut because the hinge, which must now transmit the circuit action, is incapable of
transmitting torque 7 parallel to the z-axis. The circuit action now is one that belongs to a
S-system of actions characterised by the action coordinates

R, S; UV, W).

This is now the ring with a break bridged by a direct coupling that Mr Cutset Law spoke
about.”

“Another way of arriving at this conclusion is to examine the unit motions that can
normally be permitted by the hinge. There is only one such motion; the unit motion
coordinates that can represent it are

0,0,7:0,0,0),
the 1-system representing a unit angular velocity about the z-axis. Once any torque 7'
about the z-axis has been relieved as a consequence of the cut no further motion can take
place about the z-axis. However, we can describe the capability of the hinge to allow

rotation as a virtual motion and 7 as the virtual unit motion coordinate. The circuit action
cannot expend power on unit virtual motions and so the reciprocity condition can be
evoked. For this coupling

(0,0,7:0,0,0). (R, S, T U, V, ") =0.
This condition places no restrictions on R, S, U, V, or W but does require that 7= 0.”

“Another hinge, hinge number two, is bolted elsewhere to the ring. Because of the
distortion of the ring the axes of the hinges are skew to one another. Again the material
of the ring is cut without disturbing the hinge and again a small rotation of this second
hinge is likely. A second condition now applies to the circuit action. This time the single
virtual unit motion cannot be so easily expressed because it must be written with respect
to the global frame we have chosen. The new unit motion coordinates could be written
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first with respect to a frame local to hinge number two, and then transformed. This is the
difficult geometric part of the problem that cannot be avoided. A consequence of this
second condition is that the circuit action is confined to one that belongs to a 4-system of
actions. Subsequently, each new hinge and cut that is introduced reduces the order of the
action system to which the circuit action belongs by one. When five hinges transmit the
circuit action there is only one circuit action it could be, that is the one reciprocal to the
motion screws of zero pitch of those five hinges. A sixth hinge and cut results in a
statically determinate structure and no circuit action; a seventh hinge and cut introduces
excess freedom.”

“I want to turn now to the general case where the overconstrained chain has /
independent circuits. Mr Circuit Law as stated that there is a total of ' motions
associated with direct couplings of a kinematic chain. For an overconstrained chain some
or all of these F' motions might be virtual motions. Each of the f known unit motions of a
direct coupling of an overconstrained chain has a zero scalar product with the unknown
circuit actions of the circuits to which the direct coupling belongs. There are therefore a
total of F" equations that impose conditions on the d/ unknown circuit action
components.”

“To create a single matrix equation I need to produce the coupling graph G¢ and label all
edges. Select a tree thereby identifying the / chords and the corresponding / circuits.
Label the circuits with the same letter as the corresponding chords. Also, give all edges a
positive sense and assign a positive sense to the circuits that corresponds with the
positive sense given to their associated chords. For each circuit d circuit action
coordinates can represent the unknown circuit action system where, in general, d is six as
we have seen. For / circuits there are therefore a total of d/ unknown circuit action co-
ordinates. All chords of G¢ and possibly some branches belong to only one circuit. Other
branches belong to two circuits. The action transmitted by couplings represented in G¢
by branches belonging to two circuits is the resultant of the two circuit actions.
Furthermore, all actions that these couplings are capable of transmitting belong to the
action system that is the union of the two circuit action systems.”

“I do not need to keep you much longer on this problem because we can now assemble
the necessary reciprocity equation. It is necessary to assemble the d/ unknown action
coordinates in an action vector [A}] 1. We must now multiply each of these circuit action
coordinates by the unit virtual motion coordinates of the couplings that are represented
by edges that belong to the same circuit as the circuit actions. To do this we need the
motion graph Gy, of the overconstrained chain.”
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Mr Commonsense interrupted. “Chairman, did I hear Mr Virtual Power correctly? How
can an overconstrained chain have a motion graph?” “Yes, the motion graph”, replied Mr
Virtual Power. “If the overconstraint chain is a structure rather than a kinematic chain
then the motions are virtual motions not real ones. The graph could then be called a
virtual motion graph. For an overconstrained kinematic chain only some of the motions
are virtual as I shall explain in a moment.” Mr Commonsense did not seem convinced but
let Mr Virtual Power continue.

“All we need to do now is to assemble the network unit motion matrix [MNL in the

1,k

way explained by Miss Matrix, and then transpose it to give ll\A/[; JF) 4 - To assemble the

equation the circuit action coordinates in the vector [Ay] 1 are premultiplied by [I\A/[{I ] F

to give

lM;JP',dI [Al]d/,l :[O]F,l .

Remember that the overconstrained chain could be a kinematic chain of nett freedom Fy
if our purpose is to study the actions arising from the overconstraint present. In that event

the rank m of IMT J

N | 4 Will be less than F because F'= Fy + m, as we saw earlier. If so,

Fy redundant rows can be removed from lM;J to leave ll\A/[lfI Jm, . - Now the only unit

v odl

. . . . . ST . . .
motions recorded in the unit network motion matrix lMN J are virtual unit motions.

m,dl
Furthermore, for an overconstrained structure ' = m so that there are no real motions and
no redundant rows, the motion graph can be called a virtual motion graph in its entirety.

The number d/ of columns of IM; Jm, y
dl - m, is the nett degree of constraint. So, the solution expresses all d/ unknowns in terms

of Cy primary ones.” A gesture from Mr Commonsense indicated that he was satisfied
now with the explanation.

exceeds m, the number of rows. This excess, Cy =

Mr Virtual Power continued. “Please note that from this equation we find the
components of circuit action systems, not those of couplings, except for the couplings
represented by chords of G¢. To obtain the components for all couplings the dl
components of [Aj]4 1, now expressed in terms of Cy primary variables, must be
reassembled first in matrix form as [Ay],;. This matrix can then be postmultiplied by
[B];. the circuit matrix of G, to give

[Alge = [Adlas [Blye
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where [A],. provides a column of d components for each of the e couplings. This is the
same matrix as the one produced by Mr Cutset Law.”

“Thank you, Mr Virtual Power. That has been very interesting”, said the Chairman.

“I don’t suppose he can use internal virtual power for kinematics though”, muttered Mr
One-to-One.

“Oh yes I can”, replied Mr Virtual Power.

“Can you do it quickly? It will soon be time for tea and biscuits”, the Chairman
responded.

Mr Virtual Power began. “Like Mr Circuit Law’s contribution this work concerns
kinematics chains that also can be overconstrained. For a kinematic chain there is a total
of C actions. Each of the ¢ known unit actions of a direct coupling of a kinematic chain
has a zero scalar product with the unknown cutset motions of the cutsets to which the
direct coupling belongs. For all C unit actions there are therefore C equations that impose
conditions on the dk unknown circuit motion components. To obtain a single matrix
equation I need to draw the coupling graph G again, identifying a tree and...”

The Chairman interrupted. “Yes, I think we know all that, label, assigned positive senses,
and so on. Please move on quickly.”

“For each branch there is a unique cutset”, Mr Virtual Power continued. “Produce a
vector [M, | 41 Of the motion coordinates for each of the k cutsets. When d = 6, these

motion coordinates are {r, s, t; u, v, w}. A cutset motion is identical to the motion
allowed by the coupling represented by the branch corresponding to the cutset. Now

produce the action graph G, and from it produce the network unit action matrix [AN Lk g

. . . . T 09
as Miss Matrix did, and then its transpose lANJC, g

Mr Commonsense could not restrain himself. “The action graph of a kinematic chain? |
can see it coming. You are going to tell us these are virtual actions aren't you?”

Mr Virtual Power responded. “Yes, at least some of them are, and why not? There can be
some real actions if the kinematic chain is also an overconstrained chain. But the other
actions, like the virtual motions I spoke of in my analysis of overconstrained chains, are
virtual actions that do virtual work on the cutset motions.”
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“Please, no more questions or interruptions”, said the Chairman. “Please carry on Mr
Virtual Power.”

Mr Virtual Power continued, “Now the reciprocity equation becomes
AT
lAN J(?,dk [Mk ]dk,l = [0](7,1 .
If there is overconstraint the rank a of IAIE JC 4 Will be less than C, the number of rows,

by Cy = C - a, the nett degree of constraint. The equation then becomes:

lA;Ja,dk [Mk]dk,l = [O]a,l .
We have now eliminated any real actions that could exist and what remain are virtual
actions. The number of columns of IAIE Ja i €xceeds the rank a by Fiy = dk - a. Thus the

dk unknown cutset motion components can be expressed in terms of Fy primary ones. To
obtain the motions that all directly coupled bodies are capable of, we now reassemble
vector [Mk ] i1 @s matrix [My]gx and postmultiply it by [Q]x., the cutset matrix of G, to

give:
[M]ye = [MiJak [Qlkes

where [M],. contains a column of d components for each of the e couplings. This
provides the same results as Mr Circuit Law’s method.”

“Do you take sugar Miss Matrix?” The Chairman had spent the previous few minutes
shuffling teacups to committee members. Without acknowledging the shake of her head
the Chairman's glanced around at the others who had been speaking. “While we have a
break could you prepare an example illustrating all four methods we have heard
described?”” Without waiting for an answer he passed a pad of paper to Mr Duality. “Here
is some more paper.” Mr Duality and his friends took their teacups to a vacant table and
were soon engaged in animated discussion.

When the cups and saucers had been removed Mr Duality addressed the meeting. “We
are aware that those gathered here today are conversant with the geometry of our subject,
but some may be less familiar with the topological aspects of networks. For this reason
we have chosen as an example one that is topologically complex but geometrically
simple. The example is one that will be readily understood and no doubt you will have
seen examples of a similar kind before. It has the merit that our results can be easily



checked. The example is that of a 2-stage epicyclic gear train shown in sectional view
like this which we have labelled Figure 1.” Mr Duality passed round the first drawing.
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Fig. 1: A section through a two-stage epicyclic gear train

Fig. 2: A skeleton diagram representing the epicyclic gear of Fig. 1, with bodies and
couplings labelled

25



26

“For our purposes much of the information in this drawing is unnecessary. We can
replace it by the skeletal representation shown in this second figure that we have called
Figure 2. In Figure 2 we have labelled all bodies by numbers and all couplings by lower
case letters. We also show two of the axes of the global frame we have chosen.”

“Our objective is to find relationships between motions in this mechanism and to find
relationships between actions that are attributable to active couplings. Notice that I use
the term mechanism rather than kinematic chain. This is because ports have been
identified that are to be coupled with active couplings. One port comprises members
numbered zero and one; the other comprises members zero and four.”

Mr Cutset Law then intervened. “What Mr Duality has said about active couplings must
be emphasised. As we have explained, our methods allow us to analyse actions
attributable to overconstraint. Epicyclic gear trains are greatly overconstrained and our
methods could be used to find relationships between actions attributable to those
overconstraints. However, for the part of the problem that concerns actions this is not the
task we have set ourselves. Instead, it is a task that could be achieved by conventional
methods of statics. We will remove or ignore the existing overconstraints and then
introduce new overconstraint arising from active couplings that are not shown in Figures
1 and 2. If we do not remove the existing overconstraints we shall be analysing actions
caused by both the active couplings and the existing overconstraints. This would be an
unnecessary complication, and can be avoided. Some of the existing overconstraint is
removed by dispensing with all but one of the planets in each planet set. There still
remains some overconstraint that is easily recognised; we only need to think of the
implications if one of the planets is oversized. This overconstraint is ignored. Think of
the planets being perfectly made to size.”

“Mr Cutset Law has made an important point”, continued Mr Duality. “To make our task
easier we make three more assumptions.”

“Firstly, we shall assume that the pressure angles of all gear wheels are zero. This is
never true; it is an assumption made temporarily to avoid a proliferation of notation.
Later we shall show how the results are easily adjusted to take account of the true
pressure angle.”

“Secondly, we shall assume that the gear train is 100% efficient. This is invalid because
of friction but the small errors can be corrected using experimental data.”
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“Thirdly and lastly, we shall assume that the lines of action of all forces lie in the plane z
= 0. This is untrue in practice because of the offset in the z direction of planet numbered
three. Torque parallel with the y-axis that these offsets cause is ignored but could be
measured later should we want to do so.”

Mr Motion Coordinates then explained that the only motions were angular velocities with
axes of rotation parallel with the z-axis in the plane x = 0. “Collectively these motions
belong to a second special 2-system of motions. Thus the appropriate value of d is two,
and the only motion coordinates required are {t; u}.”

Mr Action Coordinates added that a consequence of the assumptions explained by Mr
Duality was that the actions attributable to active couplings were torques parallel to the z-
axis and forces with lines of action parallel to the x-axis in the plane z = 0. “Collectively
these actions also belong to a second special 2-system of actions but not the same system,
geometrically, as the motion system. Therefore we can use d = 2 also for action analysis
and all actions can be quantified using two action coordinates; {7, U}.”

Mr Duality spoke again. “In what follows we intend to use two columns on the paper you
provided to present figures, matrices and equations side by side. The intention is to
emphasise the dual nature of the problems.” He then invited Ms Topology to provide the
coupling graphs.

Fig. 3: The coupling graph G¢ of the mechanism with circuits and the coupling
graph G of the overconstrained chain with cutsets.
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Ms Topology began by saying that Figure 3 shows the two coupling graphs G¢. “On the
left G¢ is for the mechanism and, on the right, G¢ for the overconstrained chain. The two
graphs appear to be identical but | have drawn separate graphs to avoid any confusion that
could result by having both circuits and cutsets shown on the same graph. For both graphs
the six nodes are numbered with the labels given to the bodies they represent and the nine
edges are labelled with letters assigned to the couplings they represent. Heavier lines
show the selected tree and an arrow on each edge indicates its positive sense. The
difference between the two graphs concerns edges / and i. For the mechanism, the edges
h and i represent bearings coaxial with the z-axis. For the overconstrained chain there are
also two active couplings. One couples bodies 0 and 1, the other couples bodies 0 and 4.
So, for the overconstrained chain, edges / and i each represent a bearing and an active
coupling in parallel with one another.”

Mr Cutset Law then contributed again. “I have said that active couplings can be replaced
by equivalent passive couplings. Imagine a hole being drilled through the frame 0 and
shaft 1, and then a pin being inserted to prevent the relative rotation of those bodies. By
doing that alone a simply stiff structure is created. Now imagine someone grasping the
output shaft 4 and twisting the shaft slightly relative to the frame. This is possible owing
to the elasticity of the parts. Thereby a torque is transmitted between the frame and shaft
4. While still exerting this torque a colleague drills another hole, this time through
members 0 and 4 and inserts another pin. Shaft 4 is then released leaving actions locked
into the system. The network is now an overconstrained chain and the only internal
actions that can be sustained our present. The actions transmitted by couplings are no
different, except in scale, from those they would experience in normal operation that are
attributable to active couplings. Torque ratios and force ratios are unaffected by the
substitution of these passive couplings.”

Ms Topology continued. “For the mechanism each of the four circuits in left hand graph
of Fig. 1 is identified by a circle that is labelled by the letter corresponding to the only
chord belonging to the circuit. The arrows on the arcs indicate the positive sense of the
circuits. For the overconstrained chain, each of the five cutsets is identified by a chain-
dotted line that is labelled by the letter corresponding to the only branch belonging to the
cutset. Arrows piercing these chain-dotted lines indicate the positive sense of the
cutsets.”

Miss Matrix then provided the circuit and cutset matrices of the coupling graphs.
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[B]ie = [B]4o = [Qlie = [Qls59 =
1-100 0 0 =100 110100000
0-111 0 1 0O00O0 001 -1000-10
0010-10 110 000 01001 14
0000-1-1001 000-1010 0 1

100 0001-10

She explained that, in both matrices, the nine columns from left to right correspond to
edges a-j of G¢ in alphabetic order. She went on to say that, from top to bottom, the
four rows of [B]s9 corresponded to circuits ordered a, d, A, i; and the five rows of
[Q]s.9 corresponded to cutsets ordered b, ¢, d, f, g.

Ms Topology then drew the motion and action graphs. She labelled this Figure 4.
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Fig. 4: The motion graph G, of the mechanism and the action graph G4 of the
overconstrained chain.

“The first thing you will notice is my use of colour. I have used green edges in Gy, as a
reminder that each edge represents a motion. The red edges in G represent actions. The
colours also provide a distinction with the corresponding coupling graphs G¢. Apart from
colour, G¢ and Gy, for the mechanism are identical. This exceptional circumstance arises
because we are concerned with a motion system of order two. In this 2-space the freedom
fof every direct coupling is one. Thus a single motion represents the motion system of
every coupling. Also, with two exceptions, the action system for each coupling is
represented by a single action. The exceptions are couplings /# and i where each are
represented in G4 by two edges in parallel. If we have need to, we can refer to these
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edges as i1, h2, il and i2. Let A1 represent the active coupling or the torque transmitted
by the pin and 42 the bearing force: likewise for il and i2.”

Miss Matrix then provided the circuit and cutset matrices of these graphs.

The circuit matrix [Bm];r of Gasis [Bm]so = | The cutset matrix [Qa]ic of G4 1S [Qals. 7 =
1 -1.00 0 O —-100 1 101 00 0:0 0:0 0

o -111 0 1 0 00O 0 01 -10 0 0{-1-1{0 0

o 010 -1 0 1 10 0 00 01 0 01 1i!1 1
O 0 00 -1 -1 0 01 00 0O-101 0:0 01 1

1 0000 O 1:=1-1:0 0

“You will note that whereas [By]., o is the same as [B],9; [Qals ;7 differs from [Q]s. |
have used column separators in [Qa]s ;s to draw attention to the two identical columns
needed for the actions of couplings / and i. For an example wherein the motion and
action system was of order greater than two I would expect more identical columns to be
present.”

The Coordinates brothers then collaborated to provide the direct coupling motion and
action matrices and the vectors of magnitude. Mr Motion Coordinates explained that
they would use the symbols a, b, ¢, f for the distances from the z-axis to the pitch
points of the gear contacts at couplings labelled with those letters. Also he said that
the symbols d and e would be used for the distances from the z-axis to the axes of
bearings d and e. “In general, an angular velocity ¢ about an axis parallel to the z-axis
and distant y from that axis causes a velocity u at the origin O directed along the x-
axis where,

u =yt
The two motion coordinates {t; u} are therefore {¢; yt}. Thus the magnitude of the
motion is the angular velocity ¢ and the unit motion coordinates are {1; y}.”

Mr Action Coordinates then added that in general, a force U with a line of action
parallel to the x-axis and distant y from that axis caused a moment 7" at the origin O
directed along the z-axis where,

T=-yU
“The two action coordinates {7, U} are therefore {-yU, U}. Thus the magnitude of the
action is the force U and the unit action coordinates are {-y; 1}.”
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The Coordinates brothers then wrote the direct coupling unit motion and action

matrices and associated vectors.

O N

111111111
abcde f000f

and the vector of generalised motion

magnitudes, [W]r1 = [W]o1 = .
{tatptotato trtgty ;).

[Au)c = [A0] -

[—a—b—c—d—e—fOlOlO}
1 1 1 1 1 1 101017
and the vector of generalised action
magnitudes, [V]c; = [Y]iia =

{U, Uy U Uy U, U Uy Ty Uy T; Uy’

Mr Action Coordinates drew attention to the mix of torques 7 and forces U in the vector
[W]i1.1. “It is for this reason we refer to them as generalised action variables.”

Mr Commonsense, as alert as ever, asked whether velocity u could be used equally well,
instead of angular velocity ¢, for the first six generalised action magnitudes of [ ]9 ;.
Also, he asked whether torque 7' could be used instead of force U as elements in [\];;
for the actions represented by each of the edges a to f. Mr Action Coordinates responded
by saying that these choices could indeed be made. “However, the consequence is
fractional terms in the unit motion and action matrices. This is something we chose to

avoid.”

Miss Matrix then wrote down the network unit motion and unit action matrices.

2
Z
\b

Il

2
Z
—

|

[
—_—

1-1000 0 —-100
a-b000_ 0 000
0-11170717000
0O-bcd O f 000
00710 S1T0TTTT0
0.0 c0—-e 0 000
0000-1-100T1
00 00-e—f 000]

lANJdk,C - lANLo,n =
-a-b 0 -d 0 0 00 00O
0 0 —¢cd 0 0 0-1000
0.0 1 -1.0.000-100
0O 0 0 0 —e 0 O1 010
0 0 0d 0-£000T10
-a 0 0 0 0 0 0-1000
1 0 0 0 0 01O0-100

“I have used row separators to make it easy to identify the four circuits and five cutsets.
Please note that the ranks m and a of the left-hand and right-hand matrices respectively
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are the same as the numbers of rows in those matrices. This is because there is no
overconstraint remaining in the mechanism and no excess freedom in the overconstrained
chain. If you will be so kind as to give us a minute we shall provide the solutions.” Miss
Matrix then became engrossed in a flurry of activity.”

After a few seconds the Chairman's curiosity got the better of him. “What is that on your
lap Miss Matrix?”’

“A laptop.”

“Can I sit on it?” interjected Mr One-to-One with a leer in her direction.

“Behave yourself, One-to-One. Really, at your age”, snapped back the Chairman.

Ms Topology whispered to Miss Matrix, “I had been wondering how he acquired the
name One-to-One. Now | think I know.”

The Chairman turned again to Miss Matrix. “No, not your lap top. I mean what is it you
are resting on your lap?” Miss Matrix, recognising the misunderstanding, laughed. “Oh I
see. That is my laptop computer. It’s a portable PC.”

“That is called PC but I am not apparently. How odd.” Mr One-to-One had not forgotten
Ms Topology’s earlier remark.

“And now it is producing the results”, announced Miss Matrix. “I shall write them down.
I won't go into the computational details, but just write down these matrices and then
explain them.”

(1/ 1) [M" o= (1/ 1) [M"Jo2 = (1/ Ty) [A"]ea= (1/ Tp) [A"]o2 =
[ 4bde /(a —b)A  4abde /(a —b)A | ! —1/a
4ade /(a—b)A 4abde /(a —b)A bla -1/a
2aef I(f —c)A 2acef I(f —c)A —bla  blac
4abe(a—b)A 4abde /(a—b)A ~2d/a  2/a

2acf I(f —c)A 2acef I(f —c¢)A 2be/ac —2b/ac

’ bf/lac —b/ac
2ace/(c— f)A 2acef /(c— f)A fO (b—c)/ ac
—4aie/A 8 1 (b-2c)/ac
acl A 0 | —A/ac (b+2c)/ac

where A = ac + be + bf. where 4 = ac + bc + bf.
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“I have transposed the matrices only in order to find enough room to present them side
by side. For the mechanism all quantities are divided by ¢, the input angular velocity; so
that column one contains angular velocity ratios and column two contains velocity /
angular velocity ratios that have the dimensions of length. For the overconstrained
chain...”

Mr Querulous stopped her. “Just a moment, Miss Matrix. What you have just done must
have involved the inversion of 8x8 and 10x10 matrices. How long did that take you?”
“Since the Chairman asked me about my laptop”, she replied.

Eyebrows rose, jaws dropped, mouths fell open.

When Mr Querulous had recovered sufficiently he continued. “But that is barely a
minute. And that’s not all. These are not matrices with only numerical elements. They
also contain symbols.” “I know”, Miss Matrix continued. “It still amazes me. It only
requires some mathematics software on a CD that is provided with a book costing £30.”

“Software, CD, I don't understand”, said the Chairman.

Mr Circuit Law, anxious to press on, ignored this conversation. He said, “Please note that
we can use the geometric identities, 2d = a + b and 2e = ¢ + f, to eliminate d and e from
the terms in these matrices. Then, for the non- dimensional angular velocity ratios in the
left hand column of the motion matrix we can replace distances a, b, ¢ and f by the
numbers of teeth on gears. These are the teeth on sun gear 1, the annulus of 2, the sun
gear of 2, and the annulus of 4, respectively. We cannot make this substitution for
elements of the second column because they have dimensions of length.”

The Chairman, temporarily bewildered by the pace of this interchange, remembered his
responsibilities. “Miss Matrix, my apologies, you were interrupted when about to talk
about the actions in the right hand matrix.”

“I was only going to say”, said Miss Matrix, “that, in the matrix on the right, the rows
contain the two components of the actions transmitted by direct couplings, both terms
being divided by 7. Rows again correspond to edges of G¢ in the order a - i. Column
one provides moments about the z-axis or, in the absence of force, torques parallel to the
z-axis. Column two provides force parallel to the x-axis.
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Mr Cutset Law added that for the torque ratios in the left-hand column of the matrix of
actions lengths can be replaced by numbers of teeth in the way his brother had explained.
“If we are interested in the force/torque ratios of the right-hand column, having
dimensions that are the inverse of length, we must remember that a zero pressure angle
has been assumed. To obtain the correct results these expressions must be divided by cos
¢, where ¢ is the pressure angle.”

“I have just two more observations to make, Mr Chairman, and I shall be brief”, said Mr
Duality. “The first is that the output/input angular velocity ratio /¢, found in the first
column and ninth row of left hand matrix is ac/4, and the output/input torque ratio 7/7}
found in the first column and tenth row of right hand matrix is -A/ac. The nett power
entering the system, 7,7, + t,1; must be zero if there is 100% efficiency, which is
something we assumed. The entries in the matrices confirm this.”

“My second point is that I do not think there is any interest here in the motions of
indirectly coupled bodies, despite that being one of the original objectives of our
investigation. Clearly, for all such pairs i and j, f; = 1. If we should want the velocity of
the output shaft 4 relative to the input shaft 1 for example, one of only two pairs of
indirectly coupled bodies, then we can take any path of G¢, from node 1 to node 4, and
add the corresponding rows of [M']s,, changing signs wherever the path traverses an
edge in the direction opposite to its positive sense. The answer is that the two
components, when divided by #,, are {-b(c + f)/4; 0}, describing an angular velocity about
the z-axis of course.”

The Chairman thanked all the speakers for their contributions. He then turned to Mr
Virtual Power. “My guess is that you will want to say something.”

“Yes please, Chairman.”

“Very well then, but again [ must ask you to be as brief as possible. Dinnertime is
approaching. Will you want help from the others?”

Ms Topology silently mouthed the reply from Mr Virtual Power in perfect synchronism.
“No thank you. I can do it all myself.” Mr Virtual Power then began his presentation. “I
shall not repeat the coupling graphs but I must provide the virtual action graph G, of the
mechanism with cutsets shown and the virtual motion graph G, of the overconstrained
chain with the circuits shown. These I shall call Figure 5.”
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Fig. 5: The virtual action graph G4 of the mechanism and the virtual motion graph
Gy of the overconstrained chain.

“The virtual action graph G, for the mechanism, drawn on the left of Figure 5, has five
cutsets and nine edges. Thus £ =5 and the gross degree of constraint C = 9. The nine
edges are two less than the number in the action graph of the overconstrained chain that
Mr Cutset Law needed. Remember that those two extra edges represented the torque
provided by active couplings or the pin equivalent. They are absent in G for the
mechanism. The consequences are that, for the mechanism, the cutset matrix [Qa]s.c is

[Qals.9; the unit action matrix [A D ] 18 [A D]z o > and the network unit action matrix
[AN Lk o 1s [AN]lO o- These matrices can be obtained by deleting the eighth and tenth

columns of [Qals.11, [A ]211 and [AN]lO 1 » the cutset, unit action and unit network action

matrices respectively of the overconstrained chain used by Mr Cutset Law.”

“The virtual motion graph G, for the overconstrained chain, drawn on the right of Figure
5, requires some explanation. As we have seen, couplings / and i for the overconstrained
chain are ¢ = 2 couplings. They are also /= 0 couplings of the kind Mr Duality has called
rigid. In other words, kinematically, they don't exist. Members numbered zero, one and
four can be regarded as integral with one another where virtual motion is concerned.
Thus, in Gy, for the overconstrained chain, edges / and i of G are removed and the
nodes 0, 1 and 4 coalesce to the single node I have labelled 014. The tree comprises only
three branches but there are four chords and four circuits as before. The chords are not
the same as the chords of G but I have used the same labels for the four circuits as those



of used previously by Mr Circuit Law. Because the motion graph G, for the
overconstrained chain has four circuits and seven edges it follows that / = 4, and gross
degree of virtual freedom F'= 7. The consequences are that the circuit matrix [Bw]; r is

[Bm]4.7 for the overconstrained chain; the unit motion matrix [I\A/[DL’ 5 1s [1\7[])]2’7 ; and the

unit network motion matrix [MN Ll 5 1s [MN ]8 , - These matrices can be obtained by

deleting the eighth and ninth columns of [Bm]a.9, [M D]2,9 and [MN o -the circuit, unit

motion and unit network motion matrices respectively, used by Mr Circuit Law for the

mechanism.”

“We need the transpose of the network unit action and motion matrices.” He then wrote

down these matrices.

l;L,dk:l ;L,m: [M;JP',LZI:[M;JIS_
-—al 0 0 0000 —a 1 1 a 00 0 0 0 O
-b1.0 0 000O0 O O -1-b-1-60 0 0 O
0 0O-c1 000O0 O O 0 01 ¢ 1 ¢ 0 O
-dld-100d-10 0 0 01 4 0 0 0 0.
000 0-100 0 O 0 0 0 0 —-1-e-1-e¢
000 0 00-1 00 0O 01 f£ 0 0 -1-f
000 0 00O0O0O O 1 10 0 0 1 0 0 0
000 -10100 0 -1 B -
000 0 0101 0 1

He followed this by writing down the vectors of cutset motions and circuit actions.

[Mia1 = [MiJio1 = .
{tb, Up, Lo, Ue, Lo, Ue, t_ﬁ uy, tgy ug} .

[Al]a1 = [Ad]s1 =
(T, Uy Ta Uy Ty, Uy T, U

“Let me remind you of the equations in their general form and then the form they take for

this example.”

l‘&; J(,dk [Mk]dk,l :[O]C,l becomes
|.A;J9,10 [Mk]lo,l = [0]9,1 .

[M;JF,dI [Al]d/,l :[O]F,l becomes
lM:JJLS [Al]s,l = [0]7,1-
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“Of course, if | had the laptop Miss Matrix has been using I could solve these equations.”

“So you cannot do it all on your own after all”, Miss Matrix responded sarcastically.
“You would like my help?”

“Yes please.”
Miss Matrix then went to work. She soon found a snag. “For the kinematics problem I

find I cannot use the input angular velocity #;, as the primary variable as I did for Mr
Circuit Law; [ am going to use /., instead.” She then wrote down the results.

(/e mi, = s i, - a/ry [AT], =7 [AT],=
2de(f —c)/cf (a—b) 2bde( f —c)/cf (a—Db) 1 —1/a
efc e —-2d/a  2/a
ol © ' 1 (b-20)/ac |’
2de(c— )] act 0 — Afac (b+2c¢)/ac
where A=ac+bc+bf as in previous results.

“I have arranged the results in matrix form because [ know this is the form in which Mr
Virtual Power needs them to have for the last stage of his analysis.”

“Thank you Miss Matrix.” Mr Virtual Power did not want Miss Matrix to continue to be
the centre of attention now that the result he needed was available. “The rows of the
matrix on the left provide the components of cutset motions divided by the angular
velocity 7,. The first column contains angular velocities divided by ¢, and the second
column contains velocities at the origin divided by #.. Rows in descending order
correspond to cutsets in the order: b, ¢, e, f, and g.”

“In the matrix on the right, the rows are the components of circuit actions divided by
input torque 7. The first column contains moments or torques divided by 7} and the
second column contains forces divided by 7. Rows in descending order correspond to
circuits in the order: a, d, A, and i.”

Mr Commonsense then spoke. “I have a question for Mr Virtual Power. It is a pity that
Miss Matrix was unable to use input angular velocity as the primary variable in motion
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analysis. Why was this not possible? After all she was able to use input torque as the
primary variable for the action analysis.”

“It is a consequence of our choice of tree”, replied Mr Virtual Power. “To keep things
simple we chose the same tree for both problems. Our choice means that edge 4 is a
chord of G¢ which corresponds to circuit 4. Although in G, for the overconstrained
chain edge / is absent we retain the circuit labelled 4 and the circuit action for this circuit
is the action transmitted by coupling 2. However, with this choice of tree, edge 4 in G4
for the mechanism is a chord whereas it needs to be a branch of the tree if #, is to be used
as the primary variable. There are several other trees of G4 we could have used wherein
edge A is a branch. Ideally we should have chosen different trees for the two different
tasks. However, I shall soon be able to show that our choice of tree was not the disaster it
may appear to be.”

“To convert the results to coupling motions and actions we now use my last equations.”
Mr Virtual Power then wrote these equations.

[M]ae = [Milak [Qlke, [Alae = [Ailas [Blse,
which, for this problem becomes which, for this problem becomes
[M]2,0 = [Mi]2,5 [Q]5.9- [Al29 = [Ai]2.4 [Blayo.
The solution [M],9 when transposed and | The solution [A],9, when transposed and
divided by ¢, is divided by 77, is
(1/,) Mo = (U/Ty) [Ao2 =
[2bde(f - c)/acf (a—b) 2bde(f —c)/cf(a—b)] (1 ~1/a |
2de(f —c)[cf(a—b) 2bde(f —c)/cf(a—b) b/a ~1/a
efc e —2131 / /a bz//ac
2be(f —c)/ef(a—b) 2bde(f —c)/cf(a=b)|, dhel e — b1
1 e bf lac —blac |’
—e/f —e 0 (b—c)/ac
2de(c — f)]acf 0 1 (b-2c)/ac
(f( ; 0)/% gc}cf 8 |~ A4/ac (b+2¢)/ac]
—-C
where A = ac + bc + bf where 4 = ac + bc + bf.

“First consider the matrix on the left hand side. The rows of the matrix contain the two
components, divided by 7., of the motions of pairs of directly coupled bodies. These pairs
of bodies are those that are represented in G¢ by the pairs of nodes that are both incident
with the same edge. Rows, in descending order, correspond to edges of G¢ in alphabetic
order a - i. When this matrix is divided by
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thlt,=(f-c)4/2acf,
the element in the first column and eighth row, the result is identical to the final matrix in
the left-hand column of Mr Circuit Law’s result where all motions are a ratio of #;, the
input angular velocity. So, not having ¢, available as the primary variable is not a
disaster; the matter is easily remedied The matrix on the right is identical with the matrix
provided by Mr Cutset Law.”

A telephone rang. The Chairman looked startled. “What’s that?”

“It's my mobile”, said Mr Virtual Power putting it to his ear.

“Mobile? What is a mobile?”” The Chairman asked.

“My mobile phone: it's a One-2-One.”

“A call for me?” Mr One-to-One looked astonished.

Ms Topology whispered to Mr Virtual Power, “Tell him it’s his wife.”

Ignoring her, Mr Virtual Power told the Chairman that it was a message to say that
dinner was ready.

“Very well then, no time for questions now but we shall have a summing-up and final
questions after dinner.”

When the gathering had reassembled after dinner the Chairman called on Mr Duality to
provide a summary of what he thought had been achieved during the day.

Mr Duality began. “A long term objective of those of us invited here today by the
Chairman has been to gain a thorough understanding of freedom and constraint. We now
feel we have achieved this. The route we found to attain this objective has required us
also to meet your objectives.”

“We can represent the coupling networks we have studied by a Venn diagram.” Mr
Duality then sketched Figure 6.
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Overconstrained
kinematic chains

Kinematically
designed KCs

Overconstrained
structures

Fy>0

FN:O CN:O

Fig. 6 Closed passive coupling networks

“By passive couplings we mean couplings such as kinematic pairs in contrast to active
couplings that export or import power. The set is divided into two by the line from
bottom left to top right separating kinematic chains with a positive nett degree of
freedom F)y from structures with a zero value for Fy. The set is also divided into two by a
line from top left to bottom right separating overconstrained chains that have a positive
nett degree of constraint Cy from coupling networks with a zero value for Cy. These two
lines divide the set into four subsets that are labelled in Figure 6. Please note that there is
no such thing as negative freedom or negative constraint.”

“We have derived two matrix equations for kinematic chains enabling the ' unknown
motion components to be expressed in terms of Fy of them. One equation is an
adaptation of Kirchhoff's circulation law, the second is an internal virtual power
equation. The number of rows and columns of the matrices provide two formulae for Fy
of general applicability.”
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“Also, we have derived two matrix equations for overconstrained chains enabling the C
unknown action components to be expressed in terms of Cy of them. One equation is an
adaptation of Kirchhoff's node law, the second uses an internal virtual power equation.
The number of rows and columns of the matrices provide two formulae for Cy of general
applicability.”

“For overconstrained kinematic chains, the subset represented at the top of Figure 6, all
four methods can be used but some redundant equations will exist unless the chain is
modified beforehand to one that belongs to an adjacent subset. For structures and
machines that incorporate active couplings external to a simply stiff structure or
mechanism, the active couplings can be replaced by equivalent passive couplings to
create an overconstrained chain. We have provided an example of a machine wherein
such replacements are made.”

After thanking Mr Duality the Chairman asked the original committee members to think
of one question each that they would like to ask. “To give you time to think I shall ask
the first question myself.” He turned towards the others. “Do any of you have any
research proposals that might interest a Ph. D. candidate?”

Mr Circuit Law was anxious to say something before his twin brother who he had always
felt was an attention seeker. “I have a proposal, Mr Chairman. I think those present today
may have a greater interest in overfreedom than in overconstraint so this concerns
kinematics. A short title for the research might be: A Unified Approach to Inverse
Kinematics.”

“Please imagine a manipulator with Fy degrees of freedom. It can be a series, parallel or
hybrid manipulator; it does not matter. Now imagine an additional virtual coupling
between the frame and the end-effector. This virtual coupling is an indirect coupling
between these bodies. It comprises a serial chain of Fiy couplings each allowing one
degree of freedom and (Fy - 1) intermediate bodies. The important thing is that this
additional coupling does not impose any further restraint on the end-effector.”

“For a six degree of freedom manipulator these direct couplings can be three prismatic
(P) kinematic pairs and three revolute (R) pairs. The direction of each of the P pairs can
be parallel with a different axis of the global frame. Also, the rotation axes of each of the
R pairs will be parallel with a different axis.” Mr Cartesian, having dozed off, was now
wide awake. “The introduction of this extra virtual coupling introduces an additional
circuit”, continued Mr Circuit Law. “However, that is a small price to pay because it
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enables us to conduct inverse kinematic analysis in the same manner as direct kinematic
analysis. This additional circuit is of least significance for a parallel manipulator because
it will have several circuits without the additional one.”

“You may remember my saying that, when selecting primary variables, we have some
freedom of choice. The difference between direct and inverse kinematics for the
modified manipulator is solely in the choice of primary variables. For direct kinematics
the primary variables are the magnitudes of motions of the Fy directly coupled pairs of
bodies that are the ports for actuators. For inverse kinematics the primary variables are
the magnitudes of the motions of the F)y pairs of directly coupled bodies in the virtual
indirect coupling. The researcher’s task could be to compare the procedures we have
explained today with existing methods of inverse kinematics to see if there are
advantages.”

Mr Helix volunteered the second question. “It seems to me that in achieving your aim of
finding the freedom of pairs of bodies you have stumbled across new ways of looking at
coupling networks. I am wondering if you have a name in mind for these dual studies. Is
dual mechanics appropriate?”’

Mr Duality responded. “I am not going to quibble with Mr Helix's use of the word
‘stumbled’. You cannot stumble by standing still. It has been more like research in the
arts rather than the sciences; finding analogies, patterns and connections with other
disciplines. A valuable guide has been that when the mathematics becomes elegant it is
usually correct. We think this is true of the symmetry of duality. As for a name I think
‘dual mechanics’ is inappropriate because mechanics is too broad a term. We are
concerned here with a limited part of mechanics. We have had discussions on the choice
of name with Mr Seven R Spatial. We have rejected kinetostatics on the grounds that it is
understood to mean the study of actions arising from acceleration. We prefer kinestatics.”

Mr Anharmonic spoke next. “You stated clearly that the kinematics was confined to first
derivative kinematics. Do you agree that it is important to stress that everything you have
said is only instantaneously valid? For a mechanism or machine in motion all these
calculations must be repeated for every configuration it moves to for which answers are
required. You do not provide an analysis that produces the geometric constants that are
needed for the direct coupling unit motion and action matrices.”

Miss Matrix chose to reply. “That is quite correct. The example of the gear train we
provided is not typical in this respect. The geometry of a gear train does not change
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following a finite displacement. For other coupling networks wherein the geometry does
change with displacement, what would be nice would be to set up the network unit
matrices for one configuration and then premultiply them with a matrix that is an
operator for a finite displacement.”

Mr Querulous then spoke. “I am interested in how the thought processes that went into
these studies all started.” Mr Circuit Law looked around and recognised everyone was
expecting him to speak. “As I have been involved longer than anyone else here I shall
attempt an answer to your question. The investigation started in 1964 when a Lecturer in
Machine Theory together with his colleague Robert Macmillan, introduced a discussion
on ‘The Teaching of Kinematics’ at the headquarters of the Institution of Mechanical
Engineers in London. Robert Macmillan had previously written about the freedom of
linkages. During the subsequent discussion one member of the audience stated that,
whatever was taught, it was vital that freedom and constraint featured in it. How to teach
freedom and constraint became an important theme. It was necessary first to thoroughly
understand freedom and constraint and this has taken a surprisingly long time.”

“Why?” asked Mr Querulous.

“There are several reasons. There were no guaranteed landmarks for research students to
aim for. It was important to seek research funding but obtaining an understanding of
something that was thought to be already understood did not appeal to funding bodies. So
this activity we have been talking about has had to be confined to spare time available
between teaching and other funded research obligations. A labour of love if you like.
There was much to study even after I had been recruited: the immense output of Gabriel
Kron for one. How he would have enjoyed it here today. Furthermore, we entered, or
were led into, several blind alleys. There are structural engineers who use the nodes of
graphs to represent couplings instead of bodies. Also, there are electrical engineers who
insist that it is motion not action that is analogous to electrical current. Mr Bond Graph is
a persistent offender in this regard. He wanted to be here today but we just had to say

2

no.

Mr Duality thought that Mr Cutset Law was being too gloomy. “But it was not all bad
news. Remember the two circuit spatial kinematic chain that Mr Exceptional Mobility
proposed as an example. By good fortune it happened to be an overconstrained chain as
well. Indirectly that led to my involvement, and your brother's.”
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“Why is this Lecturer in Machine Theory not here with you today?” continued Mr
Querulous.

“He couldn't be could he?” replied Mr Circuit Law. “Unlike all of us here, he is a mere
mortal like Sir Robert Ball was. We are figments of his imagination just as you were of
Sir Robert Ball. We cannot have mortals at a meeting like this. What we can achieve in a
day takes them years.”

Mr Commonsense asked the next question. “You provide two methods for motion
analysis and two methods for action analysis. Can you tell us which of the two you
believe to be the superior method for both tasks?”

Mr Virtual Power volunteered to reply. “This is the sort of good question one has come
to expect from Mr Commonsense. It is difficult to generalise. Usually, the most difficult

part is assembling the matrices [M D ]a, » and [A D LC This difficulty is not apparent from

the example we chose because the geometry of that example is exceptionally simple with
d being only two. A measure of difficulty could be the number of elements in the
matrices, dF and dC respectively. One of the most common couplings is the bearing, the
revolute kinematic pair, or its indirect counterpart the rolling contract bearing. In general,
that is to say when d = 6, these couplings have gross degrees of freedom and constraint f
=1 and ¢ = 5. My personal view is that, if these couplings predominate, assembling

[MD » will generally be easier than assembling AD |, o - Consequently, my guess is

that Mr Circuit Law's method will generally be the easier one for motion analysis and my
internal virtual power method the easier one for action analysis. The fact that we often
speak of virtual motions but rarely, if ever, of virtual actions might be evidence of this.”

Mr One-to-One wanted to know what everyone would do next. “If you were just starting
your research careers equipped with what you now know what new areas would you
investigate?”

Ms Topology said that she might tackle dynamics. “I ought to have mentioned that Graph
Theory is used in dynamics, notably by Jens Wittenburg in Germany, Gordon Andrews
in Canada and Josef Wdjnarowski in Poland. Of course the aims of those gentlemen
differ from ours. For example, Wittenburg needs a base to body matrix in which to
assemble inertia terms. I would seek to integrate our different approaches.”
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Mr Cutset Law interrupted. “Can I just say that if we include couplings that we might
call inertial couplings or D'Alembert couplings there is another law: you cannot have an
action without a circuit. This then takes into account the free fall problem: Newton's
apple and the earth had two couplings; one gravitational, the second inertial. Together
they formed a circuit.” His twin brother was furious. “You used the word circuit. That
should make it my law” “It could have been if you had said it first”, was the response. Mr
Circuit Law glowered.

Mr Cutset Law continued by providing his own wish list. “I should like to invert the
structural problem. Instead of asking what action arises from a given overconstrained
chain I would ask what overconstrained chain is required to create a required action. I
would like to study conformational and pharmaceutical chemistry. What shapes are
required by viruses and drugs to attach themselves to cells?”

The Coordinates twins, unlike the Law twins, thought alike and displayed no envy or
malice towards one another. Mr Motion Coordinates was quite happy when his brother
offered to give their joint opinions. “We would have preferred you to have been given an
example of a machine with structural overconstraint rather than the one chosen that can
be solved by statics. Unfortunately we were outvoted. We believe that the speaker in
1964 would be aware that constraint, or rather overconstraint, is a more important topic
than freedom. Finding the nett degree of freedom is a fascinating theoretical problem.
However, the nett degree of freedom of a kinematic chain is never a great mystery in
practice; models can be made, or simulated, and the true nature of freedom readily
reveals itself. Essentially this is because whilst freedom can be seen, overconstraint is
hidden. Ignorance of the existence of overconstraint can lead to premature fatigue failure
in machines caused by alternating stresses of unknown amplitude. Furthermore these
unknown stresses are additional to stresses caused by known actions that are themselves
often alternating. We hear a lot about fatigue and stress raisers. But if there is no stress to
raise, or it is known, then the problem is lessened. Kinematic design, in other words
design with an absence of overconstraint, works well in lightly loaded instruments. In
machines that transmit substantial power overconstraint is commonplace in order to
maintain sufficient stiffness for vibration frequencies to be well above cycle frequencies.
For such machines it is important that engineers are aware of the benefits of judiciously
located compliance to limit stresses arising from overconstraint. Michael French gets the
balance right between kinematic and elastic design. His chapters on that subject are most
valuable. We would wish to draw attention to overconstraint, its dangers, and the
remedies available.”
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Mr Duality said he wanted to continue to spread the message about duality. “Can you
imagine a University Department of Electrical Engineering advertising for two posts; one
for a teacher of Electrical Circuit Theory (electrical currents) and another for a teacher of
Electrical Circuit Theory (potential differences)? Yet often statics and kinematics are
taught using separate textbooks and very often by different teachers. You will not be
surprised to learn that I find that odd. Finally, may I just add that what I like about the
work we have been talking about, and that of our hero Sir Robert Ball, is its timelessness.
Whatever we and he have said that is true has always been true and will always remain
so.”

The Chairman spoke. “I think that must end our discussion. It is time to go home now
before Mrs One-to-One telephones to ask where her husband is.”

Mr Helix had one more thing to say. “There have been many different symbols, vectors
and matrices mentioned. Could we be provided with a notation?” “And a bibliography?”
added Mr Cartesian.

The Chairman explained that there was insufficient time but suggested that these could
be sent to him. This was agreed. The Chairman then closed the meeting. "Thank you
everyone. | hope we all meet again in the year 2100, no doubt with more new faces. I
wonder what they will bring with them? A laptop indeed!”

NOTATION

a the rank of the network unit action matrix lAN J i

c the degree of constraint (d.o.c.) of a direct coupling and normally subscripted by
the label of that coupling; the order of the minimal action system to which all
actions under consideration belong that can be transmitted by a direct coupling
when those directly coupled bodies are fully constrained by one or more other
couplings

C  the gross d.o.c of a coupling network equal to the sum Zc of the d.o.c of all direct
1

couplings of a coupling network and the number of edges of its action graph G4



Cy
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the nett d.o.c of the coupling network, equal to (C - a) and (d/ - m); the number of
primary variables needed to provide the magnitudes of all actions when those
actions are limited by the freedoms allowed by all the couplings

(1 £d £ 6), the order of the minimal action or motion system that spans the action
or motion systems of order ¢ or f that are characteristic of all direct couplings of a
coupling network

the number of couplings in a coupling network and the number of edges of its
coupling graph G¢

the gross degree of freedom (d.o.f.) of a direct coupling and normally subscripted
by the label of that coupling; the order of the minimal motion system to which all
motions under consideration belong that are allowed by a direct coupling when
those directly coupled bodies are otherwise unconstrained

the nett d.o.f. of bodies i and j; the order of the minimal motion system to which all
motions under consideration of bodies i and j belong when these motions are
limited by constraints imposed by couplings of the coupling network to which the
bodies belong; for directly coupled bodies, f; < 7, where f1is the gross d.o.f. of that
direct coupling

the gross d.o.f. of a coupling network and the number of edges of its motion graph
Gy equal to the sum Z f of the gross d.o.f of all direct couplings of the coupling
1

network

the nett d.o.f of the coupling network, equal to (¥ - m) and (dk - a); the number of
primary variables needed to provide the magnitudes of all motions when those
motions are limited by the constraints imposed by all the couplings

Ge, G4, Gy the coupling, action and motion graphs of a coupling network

]

k

indices

the number of cutsets of graphs G¢ and G4



[ the number of circuits (loops) of graphs G¢ and Gy,
m  the rank of the network unit motion matrix [MN L/, P

n the number of bodies in a coupling network and the number of nodes of graphs G¢
and Gy

w  the magnitude of a motion; a generalised coefficient that can be angular velocity or
translational velocity

Y  magnitude of an action; a generalised coefficient that can be force or torque

Coordinates
{L, M,N; P, Q, R} line coordinates, and...
{l,m,n; p,q,r} ... unit line coordinates, in axis formation
{P,O,R;, L, M, N} line coordinates, and...
{p,q,r; I, m, n} ... unit line coordinates, in ray formation
% % * .
{L,M,N; P ,QO ,R } screw coordinates, and. ..
* % % ) . i . .
{Lmn;p ,q .r} ... unit screw coordinates', in axis formation
k * % .
{P.,0O ,R ;L M N} screw coordinates, and...

* * % . . o .
{p .q .r ;l,mn} ... unit screw coordinates®, in ray formation
{r,s, t; u, v, w} motion coordinates, and...

(P8, 00,9, W ... unit motion coordinates’
{R,S,T; U, V, W} action coordinates, and...
{1%, S, T ; U , 17, W } ... unit action coordinates*

" Unit screw coordinates in axis formation and unit motion coordinates are identical

* Unit screw coordinates in ray formation and unit action coordinates are identical
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Vectors
[Adla
[Ailm,1
[Adlarm1
(M1
Ml
[Milaka1
[Flea
[Fla
[Flea
[k
[Wlm,1

[l//]F-m,l
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dl components of all circuit actions' that can be partitioned into vectors of ...
... m secondary circuit action components, and ...
... Cy = (dk - m) primary circuit action components
dk components of all cutset motions* that can be partitioned into vectors of ...
... a secondary cutset motion components, and ...

... Fx = (dk - a) primary cutset motion components

C generalised action magnitudes that can be partitioned into vectors of ...
... a secondary action magnitudes, and ...

... (C - a) primary action magnitudes

F generalised motion magnitudes that can be partitioned into vectors of ...
... m secondary motion magnitudes, and ...

... (F - m) primary motion magnitudes

" Vector [A 1 ] ;7 1 and matrix [Al ] ,, contain identical elements, the vector in a single column in circuit

order

* Vector [Mk ] i1 and matrix [Mk ] ,x contain identical elements, the vector in a single column in cutset

order
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[A]d’(; , [ALF the action, and unit action, matrices of a coupling network; each column

of [A]d)(, provides the same d components of action as those of the
corresponding column of [A}] sc (see below) with the important

difference that within [A]d’(; those components are subject to further

restrictions by the freedom permitted by the indirect coupling created by
other couplings of the coupling network

[A] e a condensed version of [A]M in which columns of [A]d,C representing the
actions that can be transmitted by a direct coupling are added thereby
providing in a single column the componentsof the system of actions for
each of the direct couplings

[AD ] Pr [ADL c the action, and unit action, matrices of the direct couplings of a
coupling network; each column of [AD] , c contains the d components of
an action chosen as one of ¢ actions that span the c-system of actions that
can be transmitted by a direct coupling when the coupled bodies are made
integral by another rigid coupling

_AN | P network unit action matrix of a coupling network,...

_A Nl ... with redundant rows removed, and partitioned into submatrices of...

_AN L, . ... secondary and ...

_AN L ca ... primary coefficients

[A,] " matrix of the d components of / circuit actions’

circuit matrix of G¢



[Bil

Byl -

], ).,
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i=1,2,...,1, diagonal matrices with diagonal elements corresponding to
row i of [BM],F

circuit matrix of Gy,

the motion, and unit motion, matrices of a coupling network; each
column of [M]d’ 7 provides the same d components of motion as those of
the corresponding column of [MD] , » (see below) with the important

difference that within [M]dﬂ » the components are subject to further

restrictions by the constraints imposed by the indirect coupling created by
other couplings of the coupling network

a condensed version of [M] ;. 1n which columns of [M]d’ representing

the motions that can be permitted by a direct coupling are added thereby
providing in a single column the coordinates of the system of motions for
each of the direct couplings

[MD] 0 [I\A/[DL’ ” the motion, and unit motion, matrices of the direct couplings of a

Jar i

Im, F

Im,F-m

coupling network; each column of [MD] 45> contains the d components of

a motion chosen as one of f motions that span the f-system of motions that
can be permitted by a direct coupling when indirect couplings are ignored.

network unit motion matrix of a coupling network...
... with redundant rows removed, and partitioned into submatrices of...
... secondary and ...

... primary coefficients
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[Mk ]d,k matrix of the d components of k cutset motions*
[Ql;. cutset matrix of G¢
[Qilc.c i=1,2, ..., k, diagonal matrices with diagonal elements corresponding to

row i of [ A]k,c

[Q, ]k c cutset matrix of G4
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