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Abstract 

A Wavelength Scanning Interferometry (WSI) system is proposed that provides displacement 

fields inside the volume of semi-transparent scattering materials with high spatial resolution and 

three-dimensional displacement sensitivity. This effectively extends Digital Speckle Pattern 

Interferometry into three dimensions. The sample is illuminated by three non-coplanar 

collimated beams around the observation direction. Sequences of two-dimensional 

interferograms are recorded whilst tuning the laser frequency at a constant rate. Different optical 

paths along each illumination direction ensure that the signals corresponding to each sensitivity 

vector do not overlap in the frequency domain. All the information required to reconstruct the 

location and the 3-D displacement vector of scattering points within the material is thus recorded 

simultaneously. A controlled validation experiment is performed, which confirms the ability of 

the technique to provide three dimensional displacement distributions inside semi-transparent 

scattering materials. 

 

Keywords: wavelength scanning interferometry, frequency scanning interferometry, depth-

resolved measurements, identification techniques, phase tomography, displacement tomography, 
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1. Introduction 

Experimental mechanics is currently contemplating tremendous opportunities of further 

advancements thanks to a combination of powerful computational techniques and also full-field 

non-contact methods to measure displacement and strain fields in a wide variety of materials. 

Identification techniques, aimed to evaluate material mechanical properties given known loads 

and measured displacement or strain fields, are bound to benefit from increased data availability 

(both in density and dimensionality) and efficient inversion methods such as Finite Element 

Updating (FEU) and the Virtual Fields Method (VFM) [1-3]. They work at their best when 

provided with dense and multicomponent experimental displacement (or strain) data, i.e. when 

all orthogonal components of displacements (or all components of the strain tensor) are known at 

points closely spaced ‘within’ the volume of the material under study. Although a very 

challenging requirement, an increasing number of techniques are emerging to provide such data.  

Techniques such as neutron diffraction and x-ray diffraction can provide 3-D strain fields in 

crystalline materials effectively measuring changes in the lattice parameter, but require long 

acquisition times for each measured point and rely on spatial scanning [4,5]. Digital volume 

correlation (DVC) [6,7] has gained popularity over the last few years for volumetric strain and 

displacement measurements. It effectively extends digital image correlation (DIC) and particle 

image velocimetry (PIV) [8], used from the early 1980’ to measure surface displacements and 

fluid flow. DVC has been used on data volumes acquired with a diverse range of techniques to 

evaluate 3-D deformation fields in a variety of materials, and some examples include: X-ray 

computed tomography (CT) of bones, sugar packs and silicon rubber phantoms [9-11]; scattered 

light imaging using sheet illumination in polymer phantoms [12]; ultrasound imaging of breast 

tumors [13]; confocal microscopic imaging of agarose gel phantoms [14]; Optical coherence 
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tomography (OCT) (also known as OCT elastography when combined with DIC or DVC) using 

2-D cross correlation speckle tracking to compute deformation of gelatine scattering models, 

muscle tissue and skin [15]. In all these cases, spatial features which are part of the material 

microstructure are tracked to sub-pixel accuracy. Magnetic resonance imaging (MRI) has also 

been used to evaluate 3-D deformation inside bones and tendons [16,17] in conjunction with 2-D 

DIC. An alternative method based on high-resolution 3-D MRI volumes and a surface 

registration algorithm based on finite element optimization was used to evaluate the growth of 

cortical surfaces during the folding of cerebral cortex of human and animal brains [18]. Also, 3-

D bulk displacements measured by stimulated echo MRI were used in conjuction with VFM  to 

reconstruct the stiffness ratio between an inclusion and its surrounding medium in a phantom 

[19].   

Tomographic photoelasticity relies on the retardation between different polarization components 

as light propagates through a transparent material that shows transient birefringence when 

loaded. It requires careful experimental measurements and inversion algorithms to retrieve all the 

components of the stress tensor [20]. Polarisation sensitive OCT also relies on the photoelastic 

effect to measure strains but it also provides depth-resolved distributions of birefringence, optical 

axis orientation and phase retardation due to tissue fibre orientation [21]. It is effectively a type 

of reflection mode photoelasticity that uses scattered light, with the ability to image structures 

and features within the volume of scattering materials. It provides the difference between the in-

plane principal strain components. 

A family of optical techniques has recently emerged, all of which can be considered as a type of 

phase-contrast OCT [22], also related to Doppler OCT [23]. They have the ability to measure 

displacement fields inside the volume of scattering materials without requiring birefringence, as 
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opposed to PSOCT or tomographic photoelasticity, and with interferometric sensitivity. These 

techniques include: 1) Wavelength scanning interferometry (WSI), which relies on a tunable 

laser. WSI systems with out-of-plane sensitivity were proposed to measure depth resolved 

displacements of a stack of optically smooth glass air interfaces [24] and also of scattering 

surfaces [25]; 2) Tilt scanning interferometry (TSI), in which a temporal sequence of 

monochromatic speckle interferograms is recorded while the illumination beam is tilted at a 

constant rate, was shown to provide 3-D displacement fields with one in-plane and out-of-plane 

sensitivity within an epoxy beam [26]; 3) Phase contrast spectral OCT (PC-SOCT) is based on a 

broadband source and spectral detection. A system was proposed to measure out-of-plane 

displacements in cross sections of porcine corneas due to changes in intra-ocular pressure [27] 

and also one in-plane and the out-of-plane components in cross sections of a polymer phantom 

[28]. Notice that in neither of these instances were all the components of the displacement field 

measured within the material volume. It is interesting to note that WSI, TSI and PC-SOCT can 

all be described in a common mathematical framework, as linear filters in 3-D space [29].  

In this paper we describe a method to measure a 3-D displacement field within a semitransparent 

scattering material using WSI. All the components of the displacement vector are obtained in 

each voxel of the data volume. This is achieved by simultaneously measuring the interference 

signal produced for different illumination directions during a wavelength scan. These are 

separated in the frequency domain by adjusting the optical path difference between the 

illumination and reference beams, thus introducing different carrier frequencies to the 

interference signal for different illumination direction. In Section 2 the Optical setup is 

described. In Section 3 we describe the principle of WSI, the new approach based on frequency 

multiplexing, and the main elements of the mathematical framework for WSI. In Section 4, data 
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acquired for a reference opaque surface is used to evaluate the sensitivity vectors of the 

interferometer, rather than establishing them from approximate illumination and observation 

directions measured from the setup. The relationship between measured phase and calculated 

displacements is thus established in a convenient reference system. In Section 5 we present 

experimental results of the 3-D distribution of the displacement field within a test sample that 

has undergone known rigid body in-plane rotation and out-of-plane tilt. All the components of 

the displacement vector at each voxel of the data volume are measured and compared to the 

nominal values of rotation and tilt introduced in the experiment via two rotation and tilt stages. 

Finally, in Section 6 we present a discussion on potential applications, sources of error and 

opportunities for further refinement and we derive some conclusions. 

 

2. Optical setup   

Fig. 1 shows a top view of the optical setup. The light source consists in a tunable laser, TL, 

(TSL-510 Type A, Santec Ltd.) which can scan the wavelength from 1260 to1360 nm in steps as 

small as 0.011 nm. This corresponds to a frequency scan from 237.9305 to 220.4356 THz with a 

0.002 THz frequency step. The laser is connected via a single mode optical fibre (SMF) to a 24 

fibre optic splitter (Shenzhen gigalight, planar ligthwave circuit (PLC), wavelength range 1260-

1650 nm, SMF) that divides power equally between the four output channels into SMF fibres 

(the second input channel is not used). One output channel, OFR, feeds the reference arm of the 

interferometer whilst the other three, OF1, OF2 and OF3, provide three illumination beams. These 

are collimated by near-infrared double achromats L1, L2 and L3 and arranged so that they 

illuminate the sample, S, from three non-co-planar directions. The beams subtend zenith angles 

1, 2 and 3 to the optical axis of the imaging system formed by lenses L6 and L7 and are 
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arranged symmetrically around it with azimuth angles ξ1, ξ2 and ξ3 as shown in the insert in Fig. 

1. Upon scattering on sample S, reference and object beams are combined with a 45:55 pellicle 

beam splitter (PBS) and detected with a near-infrared InGaAs photodetector array (SU640SDV-

1.7RT/RS170, Goodrich Corporation, 640512 pixels, 14 bit). Lenses L6 and L7 form a ‘4f ’ 

double telecentric imaging system. An aperture stop (AS) serves to control telecentricity, speckle 

size and throughput. In the reference beam, a pinhole, PH, is used as a spatial filter and also to 

control the intensity ratio between reference and object beams.  

A critical detail in this setup is the way in which the optical path lengths are adjusted for the 

reference and object beams. The reference beam optical path is adjusted with a delay line, while 

those of the object beams are adjusted by positioning collimating lenses L1, L2 and L3 at slightly 

different distances from the sample. If we consider a sphere centred at the intersection between 

the sample surface and the optical axis of the imaging system, then the optical centre of L1 lies 

within the sphere, of L2 on the sphere surface and of L3 outside it. If we assume equal optical 

paths within the optical fibres OF1, OF2 and OF3 then the distances from the collimating lenses to 

the sphere determine their relative optical path differences, which are used to separate 

information from different sensitivity directions in the frequency domain. This is described in 

detail in the next Section. The setup described above is effectively a Mach-Zehnder 

interferometer with multiple illumination directions that are frequency multiplexed by offsetting 

their optical path delays. 

 

3. Full-sensitivity phase-contrast Wavelength Scanning Interferometry  

3.1 Working Principle  
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Consider a plate made of a semi-transparent scattering material that is illuminated and observed 

using the interferometer shown in Fig. 1. The observation direction is defined as the z-axis. The 

plate’s surface is imaged on the photodetector array with magnification M=1. The z-component 

of points represented by position vectors rs and r measures the distance between the reference 

wavefront and the surface and a point within the material, respectively. A detailed ray diagram is 

shown in Fig. 2(a) for one illumination beam on the plane of incidence. A point with coordinates 

r=(x, y, z) in the material is imaged onto a pixel with indices (m, n) of the photodetector array. px, 

py are defined respectively as the pitch between pixels along the n and m axes on the 

photodetector array so that x=npx and y=mpy. The optical path difference between light from the 

p-th illumination beam scattered at point (x, y, z) within the material and the reference wave can 

be written as 

 sosoepepppp nnnzyx rer-rer-rer-rer-re  0'1000 )]()([)]()([),,(  (1) 

n0 and n1 are the refractive indexes of the surrounding medium (air in this case) and the material, 

respectively. ep, ep’ and eo=(0,0,-1) are unit vectors along the p-th illumination direction within 

the surrounding medium, the illumination direction within the material, and the observation 

direction, respectively. r, r0, re, rs and rp are respectively the position vectors of points (x, y, z) 

within the material, imaged onto pixel (m, n); (x0, y0, z0) which is imaged onto pixel (0, 0); (xe, ye, 

ze) where light reaching point r in the material is refracted at the surface; (xs, ys, zs) on the 

material’s surface which is also imaged onto pixel (m, n); and finally of (xp, yp, zp) which locates 

a point on the illumination wavefront propagating with direction ep that reaches the object at r0. 

The triangle with re-r0 as the hypotenuse is a right triangle, and all incoming vectors are parallel. 

The first term on the RHS of Eqn. (1) represents the optical path from a point on the illumination 

wavefront, rp, to point re, where light enters the material. The second term represents the optical 
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path due to propagation within the material upon refraction, from point re to r and back to the 

surface at rs. Finally, the last term represents the optical path from the object surface at rs to the 

reference beam’s zero delay wavefront at z=0.  

The relationship between rs and re in a general case is governed by refraction at re by  

 
)tan( 'pses r-rr-r 
 (2) 

and the Snell’s law in vector form: 

 
)()( '10 pp nn eNeN 
 (3) 

where p and p’ are the incidence and refracted angles of the p-th beam, N is a unit vector 

normal to the surface, (0, 0, 1) here, and ep’ is a unit vector pointing along the refracted beam.
 

This vector representation is convenient when dealing with non-coplanar illumination and 

observation directions, especially at the data processing stage. In the following analysis, we will 

consider the case of a flat sample that lies perpendicular to the observation direction to eliminate 

extra terms that would appear due to refraction at the surface. The general case is described in 

Section 2.3.1.4 in [30]. 

It is convenient to model the object as a set of Ns discrete thin scattering layers parallel to its 

surface. The intensity due to the interference of the three object wavefronts and the reference 

wavefront can be written as 
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A0 represents the amplitude of the reference wavefront. Apj (p=1, 2, 3; j=1, 2, … Ns) is the 

amplitude of the wavefront scattered at the j-th slice when illuminated by the p-th beam. pj is the 

phase difference between light scattered at the j-th slice when illuminated by the p-th beam and 

the reference beam. The spatial indices m and n take the values m = 0, 1, 2, …, Nm‒1; n = 0, 1, 2, 
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…, Nn‒1 and t is a non-dimensional time defined as the true time divided by the camera 

interframe time. Expanding Eqn. (4) and dropping the (m, n, t) dependence in all the amplitude 

and phase variables for clarity gives 
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The right hand side of Eqn. (5) consists of four terms. The first two correspond to a slowly 

varying function of time due to both the envelope of the tunable laser power spectrum and to the 

wavelength dependence of the scattered amplitude. Term 3 represents interference between the 

light from the j-th and the light from the k-th layers corresponding to either the same or different 

illumination beams indicated by indexes p and q, and together with Term 2 are referred to as the 

autocorrelation terms (AC). Term 4 represents the interference between the scattered light from 

the j-th slice when illuminated by the p-th beam and the reference beam, and is referred to as the 

cross correlation term (CC). This latter term contains the information about the microstructure of 

the sample. 

The phase p changes with time according to 

 ),()(),(),,( nmtknmtnm pjsjpj  , (6) 

where k(t) is the wavenumber 2t, and sj is a phase shift that may arise at zero nominal path 

difference due to, for instance, a phase change on reflection or due to the microscopically 

random arrangements of scatterers contributing to the amplitude at pixel (m, n) at the j-th slice, 

i.e. the phase that leads to speckle noise. pj represents the optical path difference given in Eqn. 

(1) due to the p-th beam and for the j-th slice, which lies at a depth z=z0+(j-½)z below the 
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sample’s surface, z being the layer thickness. WSI involves changing k with time over a total 

range k while an image sequence is recorded. In the ideal case of a linear variation of k with t, 

 ktktk c )(    (7) 

Where kc is the central wavenumber, k is the interframe wavenumber increment and t ranges 

from –k/2k to +k/2k. Substitution of Eqn. (7) into Eqn. (6) leads to 

 tnmknmknmtnm pjpjcsjpj ),(),(),(),,(   , (8) 

The linear variation of pj with t leads to temporal frequencies (units of “cycles per frame”) 

  2/),(),( nmknmf pjpj  , (9) 

that is, frequencies proportional to the optical path difference between light from the p-th beam 

scattered at the j-th layer and the reference wavefront. It is convenient to define an alternative 

frequency in units of “cycles per scan duration” 

 2/),(),(ˆ nmkNfnmf pjtpjpj   , (10) 

Thus, measuring frequencies fpj or pjf
ˆ in a pixel wise basis provides a measure of pj(m, n), 

which can be used to locate the coordinates of scatterers on the surface and the bulk of the 

sample. Moreover, if two scans are performed before and after a deformation of the sample, then 

provided sj remains the same between scans, the phase changes pj(m, n, 0) provide a direct 

measure of the change in optical path lengths  pj(m, n) due to the deformation.  

Both the position and phase change of surface scatterers can be evaluated by a time-frequency 

analysis. The Fourier transform of the interference intensity signal I(m, n, t) in Eqn. (5) can be 

written as an infinite sum over an integer index that locates identical spectra Nt samples apart in 

the frequency domain. The goal of the measurement is to reconstruct the amplitude Apj (m, n) 

and the phase pj(m, n) 3-D distributions of the scattered light field from each of the Ns scattering 
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layers. If no aliasing is present, then the Fourier transform of the intensity in Eqn. (4) may be 

written as  
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where * represents convolution, )ˆ(
~

fW  is the Fourier transform of W(t), a continuous window 

function that represents the finite sampling duration and the envelope of the laser power 

spectrum. The first term between curly brackets in Eqn. (11) represents the DC term due to the 

reference and scattered wavefronts. The second, known as the cross-correlation term, represents 

the interference between the reference and all three illumination beams scattered at all layers 

within the sample and is given by the superposition of Dirac deltas  that fall within bands in the 

frequency domain between frequencies 1
ˆ

pf  and pNsf
ˆ which are, according to Eqn. (10), 

proportional to the optical paths p1 and pNs corresponding to the first and last layers. The phase 

at the origin of each of these frequency components is given by 0pj= pj(m, n, 0). The third term, 

known as autocorrelation, represents the interference between pairs of scattering layers 

corresponding to either the same illumination beam or different ones.  It is represented by Dirac 

deltas at frequencies )ˆˆ( qkpj ff   . In order for all the cross correlation frequency bands to be 

fully separated in the frequency domain and avoid overlap with the autocorrelation terms, the 

carrier frequencies pjf
ˆ  and )ˆˆ( qkpj ff    must be carefully set. This is done by adjusting the 

optical paths pj by moving the collimating lenses L1, L2 and L3, which will shift the wavefront 
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represented in Eqn. (1) by position vector rp. The second term in Eqn. (1) thus adjusts a ‘piston’ 

term in the optical path difference pj and is characteristic of each illumination beam. 

 

3.2 Range and resolution of the optical path difference measurement

 
The maximum unambiguous range that the optical path difference may take is given by the 

Shannon sampling theorem, which states that in order to ensure adequate sampling of the I(m, n, 

t) signal, the phase difference pj should not change by more than π between successive t values, 

i.e. 2 samples per cycle. This leads to a maximum allowed optical path difference 

 
k

M



 . (12) 

The resolution to which the optical path length may be measured can be characterized by the 

width of the peaks in the Fourier domain, given by the width of )ˆ(
~

fW . A usual resolution 

criterion is a frequency difference between two neighbouring peaks of at least twice the distance 

from their centres to their first zero. For the case of normal observation with a telecentric system 

as the one illustrated in Fig. 2, the width of the spectral peak and hence the optical path 

resolution can be written as 

 
kNt




2
 , (13) 

in the case of a scattering point in air, and 

 
kNn tp 




)2/cos( '1

 , (14) 

in the case of scattering points within a medium of refractive index n1. We are assuming a plane 

air/medium interface at which refraction occurs,  p’ is the refracted angle and the constant   

takes the value 2 for a rectangular window and 4 for a Hanning window, for example 
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4. Image reconstruction performance 

A flat scattering surface (sandblasted Aluminium plate) was first studied using the interferometer 

shown in Fig. 1. The purpose of this was to assess the performance of the laser and the NIR 

camera in terms of the linearity of the wavenumber scan k(t) and the intensity noise, which 

ultimately determine the width of the peak that represents the surface in the Fourier transform 

)ˆ(
~

fI , i.e. the optical path resolution This is presented in Section 4.1.  

Furthermore, it turns out that the scattering surface appears tilted due to the oblique illumination 

beams that introduce a linear spatial variation of the optical path difference in Eqn. (1), which in 

the case of a scattering surface reduces to 

 ])()([),,( 000 rer-rer-re  opppp nzyx
,
 (15) 

with r the position vector of point (x, y, z) now representing a point on the surface - see Fig. 2(b). 

As the orientation of these tilted planes in the frequency domain is directly related to the 

orientation of the illumination beams, they can be conveniently used to calculate the illumination 

unit vectors ep shown in Fig. 1 and therefore the sensitivity vectors that link measured phase 

changes to actual 3-D displacement fields. This is described in Sections 4.2 and 4.3. 

 

4.1 Depth range and depth resolution 

A sequence of 8748 frames was recorded during a laser frequency scan from v1= 237.9305 THz 

to v2= 220.4356 THz (v=c/=ck/2, with c the speed of light in vacuum). Each frame was 6464 

pixels, encoding the intensity I(m, n, t) in 14 bits. The field of view was ultimately limited by the 

random access memory available for data processing, but 512640 pixels (rows, columns) 

images can be acquired with the NIR camera. Fourier transformation of the recorded 3-D 

intensity distribution is performed on a pixel wise basis along the t-axis, leading to a spectrum 
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that is directly related to the position of the surface along the observation direction at coordinates 

x=npx, y=mpy. The tunable laser delivers a nearly constant power during the whole scan, which 

translates in a good level of signal modulation. Fig. 3(a) shows the intensity for a pixel at the 

centre, plotted against frame number, i.e. I(32, 32, t). The mean value of the intensity signal was 

subtracted to eliminate the dominant DC peak at fp=0. Also, the intensity signal was multiplied 

by a Hanning window ]}/)2/(2cos[1{5.0)( tt NNttW   , ‒Nt /2 ≤ t ≤ +Nt /2 to reduce 

spectral leakage between the otherwise prominent secondary lobes of a rectangular window

)ˆ(
~

fW .The Fourier transform of the signal in Fig. 3(a) is shown in Fig. 3(b) in the positive 

frequency axis and reveals six peaks. The frequency axis was converted to optical path 

difference by using Eqn. (10) and by noting that the optical path p. Peaks are labelled according 

to which pair of beams interfere; for instance, “01” indicates interference between the reference 

beam and object beam 1 and “23” indicates interference between object beams 2 and 3 (see insert 

in Fig.1). Notice in Fig. 3(b) how peaks “01”, “02”, “03” are fully separated. This separation is 

adjusted by moving lenses L1, L2 and L3 towards or away from the sample so that the peaks do 

not overlap with the cross interference ones and no aliasing is introduced. Fig. 3(c) shows peak 

“01” in more detail. It has a width of ~0.06 mm, which compares well with the expected value of 

0.068 mm from Eqn. (13). 

When this computation is done for every pixel and the cross interference between the object 

beams are neglected, an instance of the surface emerges for each object beam within the so-

called ‘reconstruction volume’ in the ‘direct’, i.e. (x, y, z), space. As mentioned before, the 

surface appears with different tilts for each illumination direction. Fig. 4 shows a slice through 

the reconstructed volume parallel to the yz plane for x=32. The three lines to the left correspond 

to the cross interference between the object beams. The three on the right correspond to the 
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interference between the object beams and the reference beam, and thus represent the object as 

reconstructed for each illumination direction. 

 

4.2 Evaluation of illumination and sensitivity vectors. 

The tilt of the reconstructed surface is uniquely related to the illumination directions. This allows 

us to use them to calculate the orientation of the illumination beams ep. Fig. 5(a) shows the 

planes of best fit for all surface reconstructions “01”, “02” and “03”. The normal to 

reconstruction “01”, calculated from the coefficients of the plane of best fit, is shown in Fig.  

5(b). It is convenient to denote the normal vector to the p-th reconstructed surface by np, and 

express it in terms of p and p, the zenith and azimuth angles that np subtends from the 

observation axis and the x-axis, respectively. It can be shown that: 

 )cos,sinsin,cos(sin pppppp n
,
 (16) 

or equivalently: 

 )ˆ(cos 1

pp nk    (17) 
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are unit vectors along the x, y and z axes, respectively.  

From Fig. 2(b) it follows that the optical path difference between points r0 and r is 

rr=n0ep(rr0)=n0|rr0|sinp, with p the zenith angle of ep to the observation direction. 

If n0=1 then the optical path difference represents geometrical distance, i.e. z=|rr0|sinp. As 

the surface normal vector np subtends an angle p to the z-axis (Eqn. (16)), then  

 p

p

p 


 sin
sin

tan
0

0







rr

rr
 (19) 



16 
 

Similarly, it can be shown that the azimuth of the normal vector, p, is simply related to the 

azimuth of corresponding illumination vector, ξp, by 

 

   pp  (20) 

Therefore, once the normal vectors np have been obtained for all surface reconstructions via 

plane fitting, the angles p and p are obtained from Eqns. (17) and (18) and finally the 

illumination direction ep is determined using Eqns. (19) and (20) as 

 )cos,sinsin,cos(sin pppppp e  (21) 

The sensitivity vectors of the system can now be evaluated directly using Eqn. (21) and the 

observation vector eo = (0, 0, -1) –see Fig. 2:  

 )cos1 ,sinsin ,cos(sin
2

)(
2

ppppp

c

op

c

p 







 eeS

,
 (22) 

or, in matrix form: 

 
























33333

22222

11111

cos1sinsincossin

cos1sinsincossin

cos1sinsincossin
2











c

S
,
 (23) 

The sensitivity and observation vectors, as evaluated from the reference surface reconstructions 

using Eqns. (16)-(22) are shown in the Fig. 5(c). 

 

4.3. Three dimensional displacement distribution 

The technique presented in this paper has been designed to measure all displacement components 

in the full volume of scattering materials with interferometric sensitivity. This is done by 

measuring changes in the 3-D phase distributions between two separate scans before and after 
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loading or moving the sample. By using three illumination directions it is possible to 

simultaneously evaluate the phase change at every point within the reconstructed volume. The 

relationship between the measured phase change and the displacement field can be expressed in 

matrix form by 

 rSΦ   (24) 

where u, v, and w represent the displacements along the x, y and z axes, respectively, r= (u, v, 

w)
T
 and  = (1, 2, 3)

T
 (

T
 indicates transposed). Finally, the 3-D distribution of the 

displacement vector within the sample is thus obtained through inversion of the sensitivity 

matrix as 

 ΦSr
1  (25) 

This operation has to be performed in a voxel by voxel basis in the reconstructed volume. 

 

4.4. Volume registration 

In order to solve Eqn. (25) for each voxel in the reconstructed volume, the reconstructions 

associated to different illumination beams, i.e. peaks “01”, “02” and “03”, need to be 

‘registered’. Registration is the process by which corresponding voxels in each reconstructed 

volume are brought to the same position in a common coordinate system. This usually involves a 

mathematical transformation that may include a combination of translation, rotation and shear in 

most cases.  In this paper, registration requires the subtraction of the carrier frequency for each 

illumination direction described by the first term between squares brackets in Eqn. (15). 

Moreover, subtraction of the position dependent optical path difference described in the second 

term between square brackets in Equation (15), )( 0r-re p , is also required. Fortunately, this is a 
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simple task once the normal vectors np have been estimated, and can be done efficiently through 

a simple geometric transformation.  

 

5. 3-D full-sensitivity displacement measurements  

In this Section, we present experimental results on the measurement of a three dimensional 

displacement field within the bulk of an epoxy resin block seeded with scattering particles 

(titanium oxide, 1m average diameter) much smaller than the size of the volume point spread 

function (PSF) of the WSI system (25 µm laterally and 68 µm axially). The particles/resin 

volume fraction was ~3×10
-3

, which results in ~100 particles per PSF. If particles were sparse as 

required by particle image velocimetry, there would be regions in the volume that would not 

contribute any signal and thus no displacement information could be retrieved. On the other 

hand, a high volume fraction would result in multiple scattering, which increases the noise floor 

and reduces the depth resolution of the system (the point spread function broadens in the axial 

direction). This is because of the extended optical path due to multiple scattering events, which 

effectively de-localises the scattering centres.  

The displacement field consists of in-plane rotation on the xy-plane (see Fig. 1) and out-of-plane 

tilt about the x-axis, which were introduced with a rotation and a kinematic stage, respectively. 

These controlled displacements are easy to implement and provide a benchmark to validate the 

full field measurements obtained with the WSI system.  Fig. 7 shows ‘y’ cross sections of the 

registered reconstructed volumes of the sample, “01”, “02” and “03”, corresponding to each of 

the illumination beams. The top row shows the magnitude of the Fourier transform, whilst the 

bottom row shows the wrapped phase difference volumes 1, 2 and 3 obtained after rotating 

and tilting the sample (phase values between – and ).  A cubic kernel of 7×7×7 voxels was 
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used on the terms sin() and cos() before the atan function evaluation, to reduce speckle 

noise. The phase volumes were then unwrapped with a 3-D path following algorithm that 

prevents the unwrapping path to go through phase singularity loops [31, 32]. Finally, the 3-D 

displacement field components u, v and w were calculated for each voxel using Eqn. (25). The 

presence of some unwrapping errors in the 1, 2 and 3 phase volumes meant that only 

16×35×71 (m, n, p) voxels were obtainedwithout unwrapping errors, corresponding to a 

volumetric field of view of ~0.9mm×0.4mm×0.9mm (x, y, z). Fig. 8 shows cross sections of the 

measured average 3-D displacement field corresponding to the epoxy sample under in-plane 

rotation and out of plane tilt. From top to bottom, the rows indicate the displacement components 

u, v and w along the x, y and z axes, respectively. From left to right, the columns show sections 

of the data volume on planes y, x and xy. Notice the gradient in the u and v displacement 

fields, as expected for an in-plane rotation around the observation direction, and the gradient of 

displacement w at the bottom right, which corresponds to out-of-plane tilt. In order to compare 

the measured displacements with the known ones introduced with the rotation and tilt stages, the 

u(x, y), v(x, y) and w(x, y) displacements shown in Fig. 8 were averaged along the x, y and x axes, 

respectively, to reduce noise. In all cases an excellent agreement was observed between the 

‘measured’ and ‘reference’ displacements –see Fig. 9. The root mean squared deviation between 

the theoretical and measured displacements u(x, y, z), v(x, y, z) and w(x, y, z) were, respectively, 

0.14µm, 0.20µm and 32.5nm. 

Assuming no memory constraints during image acquisition, the current WSI interferometer can 

generate a raw data volume of approximately 512×640×Nt (rows, columns, frames). The 

maximum number of frames Nt is given by the ratio of the laser frequency tuning range to the 

minimum frequency step: Nt/=17.495THz/0.0002THz~87,000 frames. After re-
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registration, the size of the ‘displacement’ volumes u, v and w is reduced to ~512×640×Nt/24 due 

to the data processing required in the Fourier domain. The factor 1/24 arises from the fact that ½ 

of the frequency axis (negative frequencies) is neglected, another ½ is lost to the autocorrelation 

terms, then ⅓ of the remaining bandwidth is used for each sensitivity vector and finally ~½ of 

that range is effectively used to accommodate the object thickness due to the tilt in the frequency 

space. Thus, the reconstructed displacement volumes would contain ~512×640×3600 voxels. If a 

7×7×7 convolution kernel is used to reduce spatial noise then the displacement volumes would 

provide ~70×90×520 independent measurements. The maximum ‘effective’ depth range can be 

estimated from Equation (12) by considering k=4.19m
-1

 and an extra factor of 1/12 (½ already 

taken into account by discarding negative frequencies) as M_eff=M/12~62mm (6.2mm in the 

current setup as only 8748 frames were recorded, as explained in Section 4.1). This is assuming 

that multiple scattering and absorption do not set a lower limit. 

 

6. Conclusion 

We described a method based on wavelength scanning interferometry to measure 3-D 

displacement fields within scattering materials. It provides 3-D reconstructions of the material 

microstructure and also depth-resolved phase information that is used to evaluate all the 

components of the displacement vector at each voxel of the data volume, effectively extending 

full-sensitivity Digital Speckle Pattern Interferometry into three dimensions. The ability to 

measure the complete set of displacement components within the volume of the sample opens 

exciting opportunities in experimental mechanics, for instance the identification of constitutive 

parameters in anisotropic or multi-material samples. This is usually done by finite element model 

updating, or alternatively using the virtual fields method, two powerful inversion techniques that 
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require full field displacement or strain fields. Some issues that need to be investigated include 

the effects that material dispersion, birefringence, optical absorption, multiple scattering and 

surface refraction may have in the measured displacements and strains. Moreover, phase 

singularities can be so abundant and complex in a 3-D volume that robust 3-D phase unwrapping 

algorithms are required to expand the measurement volume. This technique can be viewed as 

frequency multiplexed OCT in which each channel carries information for a specific 

displacement sensitivity. 
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Figure captions 

 

Figure 1 WSI set-up showing the tunable laser (TL), 24 PLC splitter, InGaAs detector, pellicle 

beamsplitter (PBS), absorber plate (AP), pinhole (PH), aperture stop (AS), sample (S), lenses 

(L1-L7), optical fibres (OF1, OF2, OF3, OFR) and personal computer (PC). 

Figure 2 Generalized optical path diagram for WSI with multiple illumination directions for a 

weakly scattering material (a) and an opaque surface (b). 

Figure 3 Intensity signal recorded at one pixel during a WSI scan, when an opaque flat surface is 

imaged under 3-beam illumination (a); its corresponding Fourier transform, showing cross 

correlation terms “01”, “02” and “03” and autocorrelation terms “12”, “13” and “23” (b); peak 

01 in more detail (c). 

Figure 4 y cross-section of the magnitude of the Fourier transform volume obtained when a flat 

opaque surface is reconstructed, shown in reverse contrast for clarity. Lines corresponding to the 

auto correlation terms “12”, “23” and “13” and the cross correlation terms “01”, “02” and “03” 

are clearly visible. Their tilt is a consequence of the oblique illumination. 

Figure 5 Planes of best fit obtained for reconstructions “01”, “02” and “03” for a reference flat 

surface (a); Plane of best fit for reconstruction “01” showing its normal vector (b); and 

sensitivity and observation vectors, as evaluated from the reference surface reconstructions using 

Eqns. (16)-(22) (c). 

Figure 6  

Figure 7 Cross-sections of magnitude and the wrapped phase volumes of a weakly scattering 

sample that has undergone simultaneous in-plane rotation and out-of-plane tilt (phase values 

between – and ). 
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Figure 8 Cross sections of the measured 3-D displacement field corresponding to a sample under 

in-plane rotation and out of plane tilt. The rows indicate the displacement components u, v and w 

along the x, y and z axes, respectively. The columns show sections of the data volume on planes 

y, x and xy. Displacements units: m.  

Figure 9 ‘Measured’ (bold line) and ‘reference’ (dotted line) average displacement profiles 

obtained for simultaneous in-plane rotation and out-of-plane tilt of the sample. 
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