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Abstract 

A continuum model of plasticity, Mesoscopic Field Dislocation Mechanics (MFDM), is used 

to study the interplay between grain size and grain orientation on the mechanical response of 

multicrystalline thin films undergoing plane strain tension. It is shown that the grain size 

dependence in the case of multicrystals is controlled by those grains which are relatively 

more susceptible to plastic deformation. This effect is captured to some extent by 

conventional crystal plasticity theory; however, the explicit incorporation of polar 

dislocations in the MFDM model significantly enhances the overall mechanical response as 

demonstrated in the paper. 

 

1. Introduction 

Over the past decade, with the advent of advanced integrated circuits and magnetic disks, 

there has been a substantial thrust to reduce the size of many of these electromechanical 

systems to the micron and sub-micron scale by fabricating components out of thin film 

materials. It is well known that these exceedingly small components experience large stresses 

during their lifetime which leads to excessive deformation and fracture. Thus, a thorough 

understanding of the mechanical properties of thin films and their deformation mechanisms is 

essential for successful design and development of small scaled components and systems. At 

this scale of component resolution, the geometrical dimensions are comparable in size to the 

material microstructural features which heavily influence the material behavior. Therefore, 

experiments capable of accurately characterizing the influence of the underlying 

microstructure on the mechanical properties are critical in our understanding of the 

underlying principles that drive the mechanics of small scaled components.  

 

Several pioneering studies have experimentally identified the existence of size effects on 

plasticity of micron-sized polycrystalline metals under non-uniform straining, i.e. in the 

presence of plastic strain gradients induced by the test conditions, such as, nanoindentation 
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[1], beam deflection [2] and torsion [3]. In the recent past, size effects in free-standing 

polycrystalline FCC thin films under nominally homogeneous axial deformation have been 

investigated by Espinosa and co-workers [4] by membrane deflection experiment. The yield 

stress of the films is observed to increase with decreasing film thickness and width. These 

effects were observed when there were only about two grains along the thickness of the gold 

samples used. However, the varying average grain size with film thickness complicates the 

interpretation of the observed size effect. More recently, experimental results on thin films of 

Copper show a strong Bauschinger effect in unloading which is also size dependent, with 

thinner films having a high reverse plastic strain as compared to thicker films [5].  

 

From a modeling perspective, classical plasticity theories which have no explicit 

characterization of the underlying dislocations in the material cannot predict size dependence 

in this regime. The generally accepted size limit for accurate description of plasticity by the 

classical theory is systems with dimensions larger than 100 m . At the other end of the 

spectrum, molecular mechanics can accurately describe material behavior but are severely 

limited by the computational limit of simulating individual atoms. The maximum size 

regimes which are computationally viable are systems with dimensions smaller than 0.5 m  

[6,7]. A continuum framework of dislocation mechanics based plasticity theory, namely, 

Mesoscopic Field Dislocation Mechanics (MFDM), has been proposed by Acharya and Roy 

[8]. In this theory, mesoscopic plasticity is modeled as an extension of conventional 

plasticity, which accounts for the effects of dislocation stresses as well as their spatio-

temporal evolution in a physically meaningful averaged sense. Numerical results obtained 

from a finite element implementation of MFDM are in good qualitative agreement with 

experimental observations and some of the key physically relevant problems has been 

successfully solved and documented [9,10,11]. Motivated by the experimental observations 

[4,5], the effect of surface passivation, grain orientation, grain boundary constraints, and film 

thickness on the mechanical response of multicrystalline thin films is studied using MFDM in 

[12]. In this study, individual grains constituting the thin film are assumed to be of equal 

sizes. However, in reality, the grain size distribution in any thin film is seldom homogeneous. 

In this paper, we consider grains of different sizes in a multicrystalline film undergoing plane 

strain tension and analyze the effect of the interplay between grain size distribution and grain 

orientation on the loading and unloading characteristics of the thin films.  
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The paper is organized as follows: a brief self contained description of the governing 

equations of MFDM is presented in Section 2. Section 3 comprises the problem setup 

followed by results and associated discussions. The paper ends with some concluding 

remarks in Section 4.  

 

2. Theory 

Mesoscopic field dislocation mechanics is a framework appropriate for meso length scales 

(less than100 m ) where the system of PDEs is obtained by averaging the equations of fine 

scale FDM [13]. These equations contain undetermined averages that must be modeled 

constitutively much in the spirit of Large Eddy Simulations (LES) of turbulence. For the 

convenience of the reader, the essential equations of MFDM are summarized below.  

The equations prescribing the elastic incompatibility are 

 

 on .

curl

div

B

 





0

n 0

 (1) 

Here,   is the incompatible part of the elastic distortion tensor e
U , n  is the unit normal on 

the boundary of the body B  and   is the dislocation density tensor. The compatible part of 

e
U  is given by ( )grad u z , where u  is the total displacement field and z  obeys the 

relation, 

 .
p

div grad div z V L  (2) 

V , the averaged dislocation velocity vector, and p
L  need to be specified constitutively. 

Roughly speaking p
L  has the physical meaning of representing that part of the total plastic 

strain rate not represented by the slipping produced by the averaged dislocation density. The 

value of z  is prescribed at an arbitrarily chosen point of the body and in our case assumed to 

vanish without loss of generality. The (symmetric) stress tensor T  satisfies 

 
: ( ( ) )

 

grad

div

T C u z χ

T 0
 (3) 

where, C  is the possibly anisotropic fourth order tensor of linear elastic moduli. Standard 

traction/displacement boundary conditions are to be used with the above equation. Finally the 

temporal evolution of the dislocation density tensor field is prescribed as 

 ,curl S s  (4) 
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where s  is the dislocation nucleation rate tensor to be specified constitutively and S , the 

macroscopic slipping distortion, is defined as 

 : .
p

S V L  (5) 

The least restrictive boundary condition on (4) would be to impose α V n  on inflow points 

of the boundary (where 0V n ), with a specification of p
L n  on the entire boundary. 

 

The constitutive choices of the elastic moduli C  and the slipping distortion (5) introduce 

quantities that we model phenomenologically to complete the model. Simple choices 

motivated by conventional plasticity and the thermodynamics of MFDM are, 

 

0 0
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where, sym  implies the symmetric part of , 
0


m  and 

0


n  are the unstretched unit slip 

direction and normal, respectively, d  is the direction of the polar dislocation velocity, 
  

represents the magnitudes of SD slipping rate on the slip system   and v  is the averaged 

velocity of polar dislocations. The motivation behind using the symmetric part in (6) is 

explained in detail in Puri et al. [12]. A power law is used for 
 , 
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where, 
 is the resolved shear stress on slip system  , 

  (scalar for each  ) is the back 

stress corresponding to the individual slip system  , m  is the rate-sensitivity of the material, 

g  is the strength of the material, and 
0


  is a reference strain rate on the slip system  . The 

expression of back stress evolution is,  

 
   
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   p
0
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0


= m

0

  n
0

  (8) 

where, L  is the hardening coefficient and c  is the recovery coefficient. The resolved shear 

stress 
  is,  

 
  

  m

0

 Tn
0

  (9) 

The direction of polar dislocation velocity, d  is, 
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The expression for v  is assumed to be 
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where   is the shear modulus, b  the Burgers vector magnitude, 
slip

n  is the total number of 

slip systems and 1 3  a material parameter. The strength of the material is assumed to 

evolve according to,  
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where 
s

g  is the saturation stress, 
0

g  is the yield stress, and 
0

  is the Stage II hardening rate. 

0
k  is an extra parameter in the MFDM model that needs to be fitted experimentally. The 

boundary conditions, initial conditions and details of the numerical implementation of the 

equations using the Finite Element Method are described in [9,12,13].  

 

3. Results and Discussion 

An unpassivated multicrystalline thin film with fully penetrable grain boundaries and 

different grain sizes (lateral dimension), is considered. Two specific grain geometries are 

modeled and are shown in Figure 1. Film 1 consists of 4 grains of equal dimensions. In film 

2, the number of grains is the same as in film 1 but with different lateral dimensions. For both 

films, the grain thickness equals the overall film thickness ( 0.35h m ). The chosen 

dimensions of the thin film are motivated from the physical experiments carried out by Xiang 

and Vlassak [5]. All samples are initially unstressed and dislocation free. In order to critically 

assess the effect of individual grain orientation on the overall deformation characteristics of 

the considered films, three different sets of grain orientations are considered:  

(a) Orientation Set 1: the misorientation between adjacent grains is 3-5 degrees about the 
3

x -

axis,  
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(b) Orientation Set 2: misorientation between adjacent grains is 20-30 degrees about the 
3

x -

axis, and  

(c) Orientation Set 3: misorientation between adjacent grains is assumed to be the same as 

Orientation Set 2 however the sequence of grain misorientation is varied.  

 

The Euler angles corresponding to different orientation sets are tabulated in Table 1. Material 

parameters representative of Copper are used for all the numerical experiments conducted 

except for 
0

k , L  and c , for which we make the choice of  
0

20.0k , L = 100 µm, 100c  

motivated by Puri et al. [12]. The other material parameters used are  
  b  2.510

4
m ,  

0.03,m  210 M Pa ,
s

g  
0

50  M Pa,g  and 
0

205 M Pa . The reference strain rate is 

-1

0
1 sec .  Isotropic elastic constants of the material are 110 GPa,E  0.34,  where E 

is the Young’s modulus and ν is the Poisson’s ratio. 

 

A regular mesh of 16 14 1  elements in 
1 2 3
, ,x x x  directions is used to discretize the chosen 

film geometry. Figure 1 is a schematic sketch of the film samples modeled. Boundary 

conditions are applied in order to simulate a plain strain tension deformation mode in the film 

body as follows:  

u1 = 0 at x1 = 0 

u2 = 0 at x2 = 0 

u3 = 0 at x3 = w 

where, w is the width of the specimen in the 
3

x  direction.  The surfaces at 
1

0x  and 

1
4x d  are traction free in the 

2 3
,x x  directions. The surface at 

2
0x  is traction free in the 

1 3
,x x  directions and the surface at 

2
x h  is traction free in the 

1 2 3
, ,x x x  directions. The 

surface at x3 = w is traction free in the 
1 2
,x x directions. Displacements corresponding to plane 

strain tension are prescribed through the kinematic boundary condition, 

 u1(x1, x2, x3, t) = 4d t (13) 

on the nodes of the surface at 
1

4x d . Here, 4 d  is the edge length of the specimen in 

1
x direction,   is an applied tensile strain rate of -1

1 sec , and t  is time. All degrees of 

freedom on the surface at 
3

0x  are set to be equal to the value of corresponding degrees of 

freedom on the surface at x3 = w. All components of the polar dislocation density ( ) on the 
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left external face at 
1

0x  are set to be equal to the components of corresponding nodes on 

the right face at 
1

4x d . This implies that the flow of dislocations on the right face is equal 

and opposite to that on the left face 

 
 


L
 

R
 (14) 

In the plots and rest of the text, volume average of T  in the 11 direction is denoted by   

with the “-” sign representing a compressive stress and “+” sign representing a tensile stress.  

 

3.1 Orientation Set 1 

In this section we study the consequence of a low misorientation angle in adjacent grains of 

the thin film for the two representative grain size distributions chosen. Displacement 

corresponding to an engineering tensile strain of 0.675% is imposed on the film sample 

during the loading step. Subsequently, the film is unloaded to a net imposed strain of 0%. 

 

The overall average stress-strain response for different sets of grain geometries is shown in 

Figure 2. It is observed that there is no significant effect of the variation of the lateral grain 

size on the mechanical response of the films considered in both conventional plasticity and 

MFDM. However the MFDM analysis clearly demonstrates a noticeable harder response in 

loading. This observation comes as no surprise as conventional plasticity with no explicit 

characterization of dislocations is unable to account for the excess dislocation distributions 

which MFDM has been shown to account for accurately [9,12].  

 

The lack of any noticeable distinction between the response of considered individual film 

configurations is due to the low misorientation angle between individual grains which leads 

to the overall thin film to closely represent a single crystal orientation irrespective of lateral 

grain size distribution. During the unloading step, unlike the MFDM framework classical 

plasticity formulation predicts no Bauschinger effect (Figure 2).  

 

3.2 Orientation Set 2 

The misorientation angle between the individual grains of the thin films studied is now 

increased to 20-30 degrees (Table 1). The stress-strain plot corresponding to this orientation 

set is shown in Figure 3. It is observed that films 1 and 2 demonstrate a distinct difference 

with respect to the overall stress-strain response in the classical plasticity framework. This is 

to be expected as classical plasticity accounts for the specific slip plane orientations which 
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allow plastic flow to occur. The nominal response of the film is purely an effect of the 

deformation response of individual grain orientation in the film cases studied. In MFDM this 

difference is noticeably amplified.  

 

MFDM demonstrates a strong Bauschinger effect during unloading in both the film 

configurations (Figure 3). This is due to the accumulation of polar dislocations along grains 

boundaries as the misorientation between adjacent grains is high in this orientation set. This 

feature is discussed in detail in Puri et al. [12].  

 

3.3 Orientation Set 3 

So far, we have studied the effect of an inhomogeneity in the grain size distribution on the 

mechanical response of a multicrystal. It may be argued from the numerical experiments 

discussed above that between the two film configurations studied the stress-strain response is 

critical only in the cases with high misorientation between adjacent grains. Additionally, film 

2 demonstrated a softer response in loading and a relatively small Bauschinger effect when 

compared to film 1 in the context of Orientation Set 2. Performing a dimensional analysis of 

  in the context of MFDM, we find that, 

  0 0

0 0

0

, , , , , , , , , ,
s

g g b s
E H m k

E E E H H

 
    


                                (15) 

where, 
0

  is the magnitude of the initial polar dislocation density field, s is a representative 

measure of distribution of grain size, H is the external dimension of the body and   is a 

dimensionless function of the arguments shown. In the above expression, /s H  introduces a 

dependence of the average response on the grain size distribution. However, the nature of 

dependence is not clear from the dimensional analysis. The motivation behind orientation set 

3 is to understand this interplay between grain orientation and grain size in the case of a 

multicrystal with high misorientation between adjacent grains.  

 

In terms of grain geometry, two grains in film 2 is larger and two smaller in comparison to 

film 1. It is evident from Figure 4(a) and (c), that plastic deformation is dominant in grain 2 

in films 1 and 2, respectively in orientation set 2. The softening response is due to the fact 

that the grain with dominant plasticity is larger in volume in film 2. To prove this hypothesis, 

we study a test case in which the grain orientation of grain 1 and 2, and grain 3 and 4 is 

swapped as mentioned in Table 1. Figure 5 demonstrates the stress-strain plot of the swapped 
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grain case using MFDM model. It is observed that in this case, film 2 shows a stronger 

response in comparison to film 1. Additionally, a higher Bauschinger effect is also observed 

in film 2. This is entirely due to the fact that the grain with dominant plasticity has become 

smaller in this case. 

 

4 Concluding Remarks 

A numerical implementation of MFDM has been used to demonstrate the influence of grain 

orientation and grain size on the overall macroscopic response of thin films. In an 

unconstrained film with no passivation layer and no constraints on plastic flow through grain 

boundaries, there is a strong effect of the interaction between slip plane orientation and grain 

size on the plastic deformation. The exact nature of plastic flow across grain boundaries plays 

a critical role in the overall mechanical response of thin films, coupled with the orientation of 

individual grains in the body. Our continuum framework allows for the accurate modeling of 

grain boundaries with a physical mechanism for modeling dislocation induced plasticity in 

crystalline materials. The critical interplay between the grain boundary constraints and the 

grain orientation has been mentioned briefly in [12] and will be reported in detail for 

specimens with dimensions of tens of microns and large number of grains in the near future. 
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Figure 1. Grain geometry of films 1 and 2.  

 

 

 

 

 

Table 1. Euler angles of four grains in diffferent orientation sets (in degrees) 

Orientation Set Grain 1 Grain 2 Grain 3 Grain 4 

1 (5,0,0) (2,0,0) (4,0,0) (7,0,0) 

2 (25,0,0) (4,0,0) (40,0,0) (15,0,0) 

3 (4,0,0) (25,0,0) (15,0,0) (40,0,0) 
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Figure 2. Stress-strain behavior of thin films for the orientation set 1 (CCP = Conventional 

Crystal Plasticity ) 
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Figure 3. Stress-strain behavior of thin films for the orientation set 2 (CCP = Conventional 

Crystal Plasticity ) 
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Figure 4. Field plot of    at 0.15% applied strain; (a) Film 1 with orientation set 2, (b) Film 

1 with orientation set 3, (c) Film 2 with orientation set 2, and (d) Film 2 with orientation set 

3. 
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Figure 5. Stress-strain behavior of thin films for the orientation set 3.  

 


