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Abstract.  

We propose a method that we call Hyperspectral Interferometry (HSI) to resolve 

the 2 phase unwrapping problem in the analysis of interferograms recorded with a 

narrow-band light source. By using a broad-band light source and hyperspectral imaging 

system, a set of interferograms at different wavenumbers are recorded simultaneously on 

a high resolution image sensor. These are then assembled to form a three-dimensional 

intensity distribution. By Fourier transformation along the wavenumber axis, an absolute 

optical path difference is obtained for each pixel independently of the other pixels in the 

field of view. As a result, interferograms with spatially distinct regions are analysed as 

easily as continuous ones. The approach is illustrated with a HSI system to measure 3-D 

profiles of optically smooth or rough surfaces. Compared to existing profilometers able to 

measure absolute path differences, the single shot nature of the approach provides greater 

immunity from environmental disturbance.  
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1 Introduction 

Interferometry is a well-established optical technique for measuring distances 

between an object and a reference surface to an accuracy of a small fraction of the 

wavelength of light. Although sometimes used in a pointwise or linewise configuration, it 

is at its most powerful when used to provide two-dimensional information. Examples of 

commercial applications include optical component testing, displacement field 

measurement using speckle interferometry, and profilometry of small scale mechanical 

and electronic devices using scanning white light interferometry.  

In its standard forms, interferometry can suffer from some drawbacks related firstly 

to the uniqueness of the measured optical path length data, and secondly to the sensitivity 

of the technique to environmental disturbances. In the current paper we propose a generic 

form of 2-D interferometer based on simultaneous illumination of the sample with light 

of multiple wavelengths, and subsequent separation of the different wavelength bands 

using a hyperspectral imaging system. The multiple wavelength approach solves the 

uniqueness problem, and the simultaneous illumination provides a single shot capability 

that can practically eliminate the influence of environmental disturbance. 

We describe in more detail the problems of conventional single-wavelength 

interferometry in Section 2, before outlining the concept of hyperspectral interferometry 

(HSI) in Section 3. Finally, an example of such a hyperspectral interferometer for 

measuring 3-D surface profiles is described in Section 4.  



2 Some problems with conventional interferometry 

2.1 Uniqueness problem with single-wavelength interferometers 

Consider the general equation for the intensity distribution from a two-beam 

interferometer: 

 010 ),(cos),(),(),,(  yxkzyxIyxIkyxI  (1) 

where x and y are two image plane coordinates, z is the optical path difference between 

object and reference waves, 0 is a phase shift between the waves, k is the wavenumber 

2/ where  is the wavelength, and I0 and I1 are respectively the dc and modulation 

intensities. Provided a narrow band light source such as a laser is used, Eqn. (1) is 

applicable to many different classes of two-beam interferometer (e.g. Michelson, Mach-

Zehnder, Fizeau etc.) with either smooth or speckled wavefronts. 

The usual method of analysing such interferograms is to introduce known phase 

shifts 0. By varying 0 over time and recording a series of interferograms, a set of 

equations can be written down from which the wrapped phase distribution 

 ),( yxkzWw    can be extracted, where W denotes the wrapping operator that wraps a 

given phase value onto the range – to  [1].  The true optical path difference function, 

z(x, y), on the other hand is proportional to the unwrapped phase distribution u: 

kyxyxz u /),(),(   (2) 

 u is related in turn to w as follows: 

),(2),(),( yxyxyx wu   (3) 



where ),( yx  is an integer field variable.  

The process of phase unwrapping, i.e. determining the ),( yx  field, can be trivial 

for the case of optical path differences that vary smoothly with x and y. However, in  

many situations this is not the case. Whenever the spatial phase gradient magnitude 

exceeds a value of  per pixel, there may be no unique solution for ),( yx based on the 

phase data alone and phase unwrapping then becomes impossible. Even when the phase 

field is continuous, the unwrapped phase distribution is uncertain to a constant integral 

multiple of 2. This may be termed the uniqueness problem of conventional 

interferometry at a single wavelength.  

2.2 ‘Finite acquisition time’ problem with phase shifting interferometers 

A second problem is that of the finite acquisition time required to measure the 

several intensity images and perform the phase shift between them. Environmental 

disturbances (vibration, turbulence, etc) can cause large errors in the imposed phase shift 

and hence in the measured phase [2, 3].
 
This second problem can be effectively 

eliminated through the use of spatial (as opposed to temporal) phase shifting techniques 

and pulsed laser illumination, however the uniqueness problem still remains. 

2.3 Multiple-wavelength solutions to the uniqueness problem 

One partial solution to the uniqueness problem outlined in Section 2.1 is to record 

interferograms at two different wavelengths, 1 and 2. Whereas with single wavelength 

interferometry the path difference is unknown to an integral multiple of , with two 

wavelengths the path difference is unknown to an integral multiple of s, the synthetic 

wavelength, given by 

2121 s  (4) 



Although this approach can improve the unambiguous path difference by an order of 

magnitude, at visible wavelengths this still corresponds to a sub-10 m unambiguous 

optical path range. Increasing s by reducing 21   amplifies the phase noise thereby 

increasing the risk of an unwrapping error, and therefore requires more intensity 

measurements to achieve sufficient signal to noise ratio.  The time needed to acquire 

sufficient data points means that such full-field two-wavelength systems are sensitive to 

environmental disturbance. 

Another solution involves the use of tunable laser sources in a technique called 

Wavelength Scanning Interferometry (WSI). A video camera is used to record sequences 

of interferograms at a set of discrete wavelengths [4-6]. The multiple wavelengths 

approach provides significantly better dynamic range than two-wavelength 

interferometry, but the need to record long image sequences again makes the technique 

vulnerable to environmental disturbance. 

A third solution which forms the basis of many existing commercial absolute path 

length measuring instruments is the so-called Scanning White Light Interferometer 

(SWLI) [7-9].
 
In a SWLI, broad-band illumination is used to illuminate the sample. High 

visibility fringes are observed only in those regions of the sample where the optical path 

difference is close to zero. By mechanical scanning of the sample or reference mirror, the 

position of maximum fringe visibility is recorded on a pixel-wise basis allowing a 

complete path-difference map to be produced once all the points within the field of view 

have passed through the zero path difference surface. Once again, in addition to the need 

for expensive mechanical scanning devices, the main drawback is the susceptibility to 

environmental disturbance.  



3 Hyperspectral interferometry 

A new approach to the problem is proposed in this section. Although the term 

hyperspectral interferometry has been used on occasion in the literature, to the best of our 

knowledge all such references involve the use of an interferometer to determine the 

spectral distribution of a scene.  

An image is formed by an interferometer using broad band illumination. Unlike the 

case of a SWLI, this ‘white-light’ interferogram is split optically into its constituent 

interferograms, each formed from a narrow spectral band within the broad spectral 

illumination envelope, by means of a hyperspectral imaging system. The imaging system 

places the narrow band images at discrete locations on a two-dimensional photodetector 

array (see Fig. 1). If the object is optically smooth, fringes are visible as indicated in Fig. 

1 because of the narrow bandwidth of the illumination used for each frame. If the object 

is optically rough, a speckle field is visible rather than interference fringes, because the 

starting phase is random. In either case, the phase at a given pixel changes from one sub-

image to the next by an amount proportional to the z value for that pixel.  

After readout of the array into computer memory, the individual sub-images are 

registered with respect to their x and y coordinates and stacked to form a sampled 

hyperspectral image volume I(xm, yn, kp), in which the third axis specifies the 

wavenumber (see Fig. 2). Subscripts m, n and p take the values m = 0,1,2,...,Nx – 1, n = 

0,1,2,...,Ny – 1, and p = 0,1,2,...,Nk – 1, respectively, where Nx, Ny and Nk are the number 

of sample points along the respective axes. Although not essential, it is convenient for the 

subsequent analysis if the sampled k values are uniformly spaced, with the k step value 

between successive interferograms denoted by k. 

According to Eqn. (1), the measured intensity for given location (xm, yn) then varies 

cosinusoidally with k, with angular frequency z = z0(xm, yn). The frequency can be 



measured by performing a 1-D Fourier transform of the intensity values I(xm, yn, k) with 

respect to k, after subtraction of the mean value, and searching for the peak of the 

transform which is located at z = z0(xm, yn). This process is repeated at all the (xm, yn) 

pixel locations, thereby providing absolute two-dimensional optical path difference 

distributions from the single shot measurement. The additional information provided by 

the k axis allows reliable determination of the absolute path length even though the field 

of view may contain spatially separated regions (e.g., R1 and R2 in Fig. 1), and which 

would therefore be impossible to unwrap correctly from a single narrow band image 

alone. 

Expressing the approach mathematically, we first modify Eqn. (1) by incorporating 

an even function w(k) that may be used to represent the case either of windowing the data 

to reduce spectral leakage, or of a non-uniform illuminating spectrum:  

   )(),(cos),(),(),,( cnmnmnmnm kkwyxkzyxIyxIkyxI  0010  (5) 

kc is the wavenumber of the centre of the spectral band, z0 is the optical path difference at 

z = z0(xm, yn), and the even symmetry assumption implies that )()( kwkw  .  

The Fourier transform of Eqn. (5) may be calculated using the Fourier shift and 

convolution theorems as follows: 
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where the (xm, yn) dependence has been dropped for clarity, where (...) is the Dirac delta 

function, and )(~ zw is the Fourier transform of w(k), and where * represents convolution.   



Equation (6) is shown schematically in Fig. 3 after neglecting the unimportant 

constant phase values )exp( 0i  and )exp( 0zik . A copy of )(~ zw is centred on each of the 

three delta functions at z = 0 (the dc term) and z = ±z0 (the cosine term). As a result of the 

even symmetry assumption, )(~ zw  also possesses even symmetry and so the positions of 

the peaks in )(
~
zI  are also located at z = 0 and z = ±z0. Thus, finding the position of the 

peak in the region z > 0 of the function )(
~
zI provides an unbiased estimator of the optical 

path z = z0, provided the leakage of the signal from the other two peaks can be neglected. 

Reducing leakage from the peak centred on z = 0 is the main reason for removing the dc 

peak as outlined above. 

3.1 Depth range 

The maximum unambiguous depth range is given by the Shannon sampling 

theorem which states that in order to ensure adequate sampling of the I(xm, yn, k) signal, 

the term ),( yxkz in Eqn. (1) should not change by more than  between successive k 

samples. This leads to a maximum allowed z value of z = zM where  

 
k
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Any larger z values will be aliased onto a lower z value thus creating an under-sampling 

artefact. 

The minimum allowed value of z, on the other hand, is z = 0, because the cosine 

function in Eqn. (1) is even. Negative z values can not therefore be distinguished from 

positive ones. We therefore have the allowable path difference range 

 Mzz 0 . (8) 



Figure 4(a) and (b) is a schematic of the sampled I(xm, yn, k) distribution for two z 

values z = 0.23zM and z = 0.65zM for the case Nk = 16 and a total k bandwidth k equal to 

20% of the centre k value. The corresponding Fourier transforms ),,(
~

zyxI nm are shown 

in Figs. 5(a) and (b), respectively.  

3.2 Optical path resolution 

The discrete Fourier transform ),,(
~

zyxI nm  contains Nk/2 positive frequency 

components, with a separation between sample points of 
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The width of the spectral peak (i.e., distance between zero crossing points) is 2z 

for the case of a uniform spectral profile of width kNk . If the spectrum is not uniform 

but rather has a non-constant profile W(k), then the width of the peak is given by the 

width of )(
~
kW . In general we can write the width of the spectral peak as 

 zz  ' . (10) 

where the constant  takes the value 2 for a rectangular window, and 4 for a Hanning 

window, for example. 

The precision with which z may be determined may however be much better than 

the value given by Eqns. (9) and (10). As shown by the vertical dotted lines in Figure 5, 

the Fourier transform can be interpolated to provide sub-pixel resolution, for example by 

zero padding the I(xm, yn, k) vector. An efficient algorithm to find the maximum of a peak 

in the Fourier transform of a one-dimensional signal to sub-pixel precision was proposed 



by Kaufmann et al. [10]. The ultimate factor limiting the accuracy of such an approach is 

the noise in the intensity signal. 

4 Application to 3-D shape measurement 

One application of the proposed approach is for measuring the 3-D profile of small-

scale components. Currently the technique finding most favour in commercial systems is 

SWLI because of its ability to measure discontinuous objects unambiguously, and its 

excellent height resolution. However, the technique suffers from vibration artefacts due 

to the time to perform the scan and requires the use of expensive anti-vibration tables. As 

a result it is in most cases considered to be an off-line quality control tool. The short 

exposure time of the HSI approach proposed here on the other hand provides a potential 

solution to in-line quality control requirements. A previously-described interferometric 

profilometer proposed by Schwider and Zhou [11] also acquires data in a single shot, but 

only provides 1-D information (i.e. profile along a line) rather than the single-shot area 

scan offered by the instrument proposed here. 

Figure 6 shows schematically the surface of a sample which is illuminated and 

observed from above. The results of section 3 can be applied to the current situation by 

noting that the optical path difference is twice the local distance of the sample from the 

surface of zero optical path difference, L. This can be written 

  ),(2 0 yxhhz  , (11) 

where h0 is the known distance from the sample datum surface to the plane of zero optical 

path difference, and h(x, y) is the local sample height measured relative to the datum. 

Measurement of absolute z distributions using HSI thus provides absolute height 



distributions through Eqn. (11), provided the object surface lies within the height 

measurement range, h, given by Eqns. (7) and (11) as:  
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The corresponding expression for depth resolution follows from Eqns. (9) – (11) as  

 hh  ' , (13) 

where 
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4.1 Optical system 

A system to demonstrate the proof of principle of the technique is shown 

schematically in Fig. 7. Light from 2 sources, denoted LS1 and LS2, is combined by a 

fibre coupler, FC.  LS1 is a broadband superluminescent LED (SLED) light source 

(Superlum Diodes Ltd., 840 HP1) with centre wavelength 840 nm, and full width half 

maximum 50 nm. LS2 is a narrowband source (He-Ne laser; wavelength 633 nm) which 

is useful for alignment purposes, but otherwise contributes nothing to the HSI. The output 

from the optical fibre passes first through an etalon, E, is next collimated by lens L1 and 

then enters a Linnik interferometer head comprising beam splitter BS1, lenses L2 and L3, 

and reference mirror RM. The sample S is mounted on a translation stage, TS, to allow 

the region of interest and h0 to be adjusted.  



Light from a single point P on S produces a bundle of parallel rays that enter the 

hyperspectral imaging system that comprises beam splitter BS2, diffraction grating, G, 

and digital camera, C1. The blazed grating is arranged in the Littrow configuration to 

maximize diffraction efficiency. The parallel rays are brought to a focus in the plane of 

the photodetector array of C1. Without E in place, the effect of the grating is to smear the 

image of P along a line on C1. The etalon, which has a specified free spectral range of 0.5 

nm at 840 nm and a finesse > 15, modifies the spectral content of the illuminating beam 

to produce a broadband comb with uniform k spacing, and thus produces instead a set of 

Nk discrete spots. Points near to P on the sample are in turn imaged onto a set of Nk 

neighbouring points on C1. Thus a set of Nk images of the sample are replicated across the 

sensor array of camera C1, with a wavenumber shift of k from one image to the next. 

The second camera, C2, and imaging lens L5, are used to produce a single high-resolution 

broad-band image of the object to assist in alignment of the optical system. Once again, 

C2 and L5 are not an essential part of the HSI system.  

The k value for this etalon is 4.45 × 10
-3

 m
-1

. The depth range for the system is 

given by Eqn. (12) as 353 m. The height resolution can be calculated from Eqns. (13) - 

(14) as 22.8 m, assuming a  value of 2 and Nk = 62.  

The results presented in the following sections were produced from two samples: 

first a planar aluminized glass substrate, and secondly a stepped sample consisting of an 

aluminized microscope glass cover slip mounted on a planar aluminized glass substrate. 

An example of the intensity distribution from C1 for the stepped sample is shown in 

Figure 8, in which 62 sub-images of 11 × 19 pixels each are formed within a horizontal 

band. Three such sub-images are shown magnified as in insert to Fig. 8. The step is 

visible as a vertical discontinuity in the fringe patterns passing approximately through the 

centre of the field of view. The presence of the discontinuity causes a relative shift of the 

fringes with changing k, which is clearly visible in these three sub-images.  



4.2 Data analysis 

4.2.1 Registration of the hyperspectral images 

The full image of the type shown in Fig. 8 is first segmented into the individual 

sub-images which are then assembled to form the hyperspectral image volume I(xm, yn, 

kp), as described in the previous section. In order to perform the segmentation, the pixel 

coordinates of the centre of each sub-image are estimated by a two-step process. First the 

centre coordinates of the 1
st
 and last sub-images are estimated manually from an image in 

which only the reference beam illuminates the sensor. Linear interpolation is used to 

provide initial estimates of the centre coordinates of all the intermediate images. These 

initial estimates are then refined by locally fitting a two-dimensional Gaussian function to 

each sub-image of the reference beam in turn. Registration in this way to the nearest pixel 

is sufficiently accurate for most purposes, although sub-pixel interpolation could be used 

if higher spatial resolution is required.  

4.2.2 Background pedestal removal  

Sample data from a single pixel at the centre of the field of view of the planar sample is 

shown in Fig. 9. Parts (a), (b) and (c) were extracted from three full hyperspectral images, 

each recorded at a different distance from the plane of zero optical path difference. These 

plots may be compared to simulated data as shown in Fig. 4; unlike the simulations, 

however, there is significant variation with k in both the fringe modulation and the dc 

offset due to the non-uniform spectrum of the SLED light source. Removal of the dc 

‘pedestal’ may be achieved by recording separate hyperspectral image volumes of the 

object wave and reference waves, denoted by ),,( kyxIo  and ),,( kyxI r , respectively.  

The sums 
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are the zero-frequency Fourier components of the sampled interference signal and dc 

pedestal, respectively. The  array  ),,(2 pnm kyxI  then has the dc pedestal removed as 

follows: 

   ),,(),,(/),,(),,( 212 pnmrpnmopnmpnm kyxIkyxIsskyxIkyxI   (16) 

The result of applying these equations to the signals from Fig. 9 is shown in Fig. 10. 

4.2.3 Fourier transformation 

Once the mean-free signal  ),,(2 pnm kyxI  has been computed according to Eqn. 

(16), a 1-D fast Fourier transform is applied to each pixel along the k axis. The peak in 

the magnitude of the transform is used as the starting point for the iterative sub-pixel 

peak search algorithm proposed by Kaufmann et al. [10]. This provides the absolute 

optical path length on a pixel-wise basis, from which the height distribution is calculated 

using Eqn. (11).  

4.3 Results 

4.3.1 Planar sample 

Experiments were performed in which the planar sample was moved in steps of 50 

m along the optical axis of the interferometer by means of a precision translation stage. 

At each position a hyperspectral image volume was recorded and analysed using the 



algorithm described in the previous section. The computed height at a pixel at the centre 

of the field of view is plotted as a function of the known location of the sample in Fig. 11. 

The pixel is the same one used to plot Figs. 9-10, and the position of the stage for parts 

(a) – (c) of those figures is shown on Fig. 11. The computed height obeys the expected 

1:1 relationship with imposed location over the height measurement range, h = 353 m.  

Once the object moves outside the range 0 < (h0 – h) <  h, the peak in the spectrum is 

aliased giving rise to an erroneous position estimate. The linear response over the range 0 

< (h0 – h)  <  h is therefore modified outside this range to give a characteristic ‘saw 

tooth’ shaped response curve that is apparent in Fig. 11. 

The measured height distributions of the planar sample at the three locations (a), (b) 

and (c) of Fig. 11 are shown in Fig. 12.  The approximate noise in the measurements was 

estimated by fitting a plane to each of these three surfaces. The root mean square (rms) of 

the residual about the best fit planes was 111, 73 and 119 nm for (a) – (c) respectively, 

with an overall rms residual of 103 nm.  A single outlier was identified in each of (a) and 

(c), and when these points were excluded the rms residual was reduced to 78 and 92 nm, 

respectively, with an overall rms for the three planes of 81 nm. This figure is higher than 

the values of order 1 nm (or less) typically achieved by SWLI. There are several reasons 

for this which may be summarized as follows. Firstly, the bandwidth of the light source 

actually used for the data acquisition was 30 nm which is an order of magnitude lower 

than that typically used in SWLI. Depth resolution scales inversely with bandwidth so 

one can expect a factor of 10× worse performance due to this factor alone. SLEDs with a 

bandwidth of  200 nm are now commercially available which should improve the 

performance significantly. Secondly spatial variations in photodetector sensitivity have 

not been taken into account so far. These variations will introduce apparent noise in the 

measured profiles in the case of hyperspectral interferometry, but not for SWLI, because 

in the latter case the same pixel provides all the data for a given point on the sample. This 



effect could be significantly reduced by appropriate calibration of the image sensor, for 

example by determining the dark current signal and illumination sensitivity on a 

pixelwise basis. 

4.3.2 Stepped sample 

The result of analysing the interferogram of the stepped sample (Fig. 8) is shown in 

Fig. 13. The stepped surface that fell within the illuminated part of the sample is 

reproduced in the computed 3-D profile. The calculated step height of 115 m agrees 

well with the true value of 120 m. 

5 Conclusions 

A new interferometric approach to the problem of determining 2-D absolute optical 

path differences has been proposed in this paper. Unlike current methods, such as 

scanning white light interferometry and wavelength scanning interferometry, the data are 

acquired in a single shot, thereby providing significantly greater immunity from 

environmental disturbance. Proof of principle experiments with a ‘white light’ 

interferometer have demonstrated the applicability of the technique to the single-shot 

measurement of absolute 3-D profiles. An unambiguous depth measurement range of 350 

m and a depth measurement precision of approximately 80 nm (= 1 part in 4,000 of the 

depth range) were achieved with a bandwidth of 30 nm and a centre wavelength of 840 

nm.  
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Figure Captions 

 

Figure 1. Portion of a hyperspectral interferometry image consisting of sub-images of the 

region of interest recorded with different k values. Three representative sub-images are 

shown from a rectangular array of sub-images centred on the black circles.  

Figure 2. Hyperspectral interferometry volume I(x, y, k) formed from the image shown in 

Fig. 1. The dotted line represents the path from which the sampled 1-D signal I(xm,yn,kp)  

(p = 0,1,...,Np – 1) is extracted. 

Figure 3. 1-D Fourier transform )(
~
zI from Eqn. (6). The signal peak of interest is located 

at z = z0. 

Figure 4. Schematic 1-D signal I(xm, yn, k) from Fig. 2 for the two cases z = 0.23zM (top) 

and z = 0.65zM (bottom). Open circles indicate the sampled values k = kp.  

Figure 5. Fourier transform ),,(
~

zyxI nm  of the two 1-D signals I(xm, yn, k) from Fig. 4. 

Open circles indicate the sampled z values, and the vertical dotted lines indicate the 

position of the true z values used to generate the signals in Fig. 4. 

Figure 6. Cross-section through sample with height distribution h = h(x, y). Lines L and D 

are respectively cross-sections through the zero path difference and sample datum 

surfaces.  

Figure 7. Hyperspectral interferometer for single-shot 3-D shape measurement.  

Figure 8. Set of Nk = 62 hyperspectral images of a stepped surface spread across the 

horizontal axis of camera C1. Inset: three of the hyperspectral images within the  central 

white box enlarged by a factor 10×. 

Figure 9. 1-D signal I(xm, yn, kp) from a pixel (xm, yn) close to the centre of the field of 

view for the planar sample at three values (increasing from (a) to (c)) of optical path 

difference.  

Figure 10. 1-D signal from Fig. 9 after removal of the background intensity pedestal.  

Figure 11. Measured position of one point on planar sample verses known sample 

position. Points (a) – (c) correspond to the locations of the data displayed in Figs 9 and 

10. 

Figure 12. Measured surface profile for the planar sample when positioned at the 

locations (a)-(c) of Fig. 11. 

Figure 13. Surface profile of the stepped sample on a 11×19 pixel grid measured using 

the single-shot HSI system. 
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Figure 1. Portion of a hyperspectral interferometry image consisting of sub-images of the 

region of interest recorded with different k values. Three representative sub-images are 

shown from a rectangular array of sub-images centred on the black circles.  
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Figure 2. Hyperspectral interferometry volume I(x, y, k) formed from the image shown in 

Fig. 1. The dotted line represents the path from which the sampled 1-D signal I(xm,yn,kp)  

(p = 0,1,...,Nk – 1) is extracted. 
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Figure 3. 1-D Fourier transform )(
~
zI from Eqn. (6). The signal peak of interest is located 

at z = z0.
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Figure 4. Schematic 1-D signal I(xm, yn, k) from Fig. 2 for the two cases z = 0.23zM (top) 

and z = 0.65zM (bottom). Open circles indicate the sampled values k = kp.  



 

 

 

Figure 5. Fourier transform ),,(
~

zyxI nm  of the two 1-D signals I(xm, yn, k) from Fig. 4. 

Open circles indicate the sampled z values, and the vertical dotted lines indicate the 

position of the true z values used to generate the signals in Fig. 4.



 

 

 

Figure 6. Cross-section through sample with height distribution h = h(x, y). Lines L and D 

are respectively cross-sections through the zero path difference and sample datum 

surfaces.  
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Figure 7. Hyperspectral interferometer for single-shot 3-D shape measurement.  
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Figure 8. Set of Nk = 62 hyperspectral images of a stepped surface spread across the 

horizontal axis of camera C1. Inset: three of the hyperspectral images within the  central 

white box enlarged by a factor 10×. 



 

 

 

Figure 9. 1-D signal I(xm,yn,kp) from a pixel (xm,yn) close to the centre of the field of view 

for the planar sample at three values (increasing from (a) to (c)) of optical path 

difference.  



 

 

 

Figure 10. 1-D signal from Fig. 9 after removal of the background intensity pedestal.  



 

 

 

Figure 11. Measured position of one point on planar sample verses known sample 

position. Points (a) – (c) correspond to the locations of the data displayed in Figs 9 and 

10. 



 

 

 

 

Figure 12. Measured surface profile for the planar sample when positioned at the 

locations (a)-(c) of Fig. 11. 



 

 

 

 

Figure 13. Surface profile of the stepped sample on a 11×19 pixel grid measured using 

the single-shot HSI system. 

 


