
CHAPTER TWO

Data Preparation

Chapter 2: Data Preparation

2.1 Introduction

Data preparation for the IRA-WDS program involves two major steps:

- 1. The creation of appropriate shape files: these are GIS files that contain the spatial information on all objects considered by the IRA-WDS program; and
- 2. Input of additional model data: these files contain specific characteristics of the objects generated in the shape files.

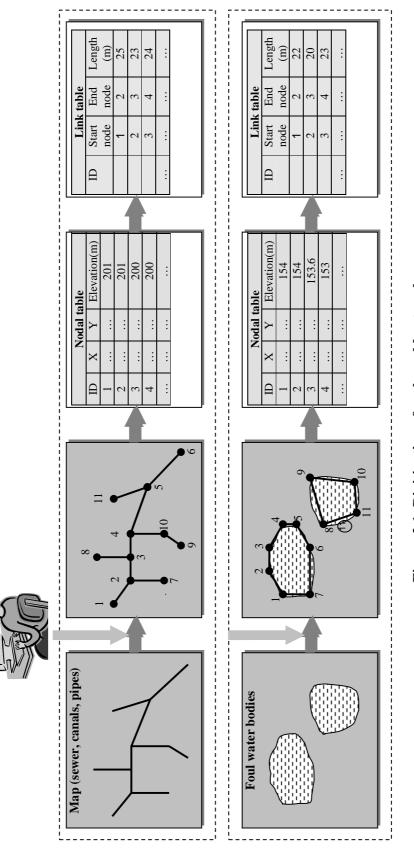
2.2 Creating shape files

The first step in using IRA-WDS is to create a series of **shape files** (for ArcView). These shape files contain spatial information on the various objects considered by IRA-WDS. These include: pollution sources, water distribution systems, base maps (that is, infrastructure and contour maps) and environmental maps (for example, soil type, groundwater and so on). The shape files are generated by digitizing maps containing the various objects (pollution sources, water distribution systems, base maps etc.); see Figures 2.1 and 2.2, below. Shape files can be divided into two categories:

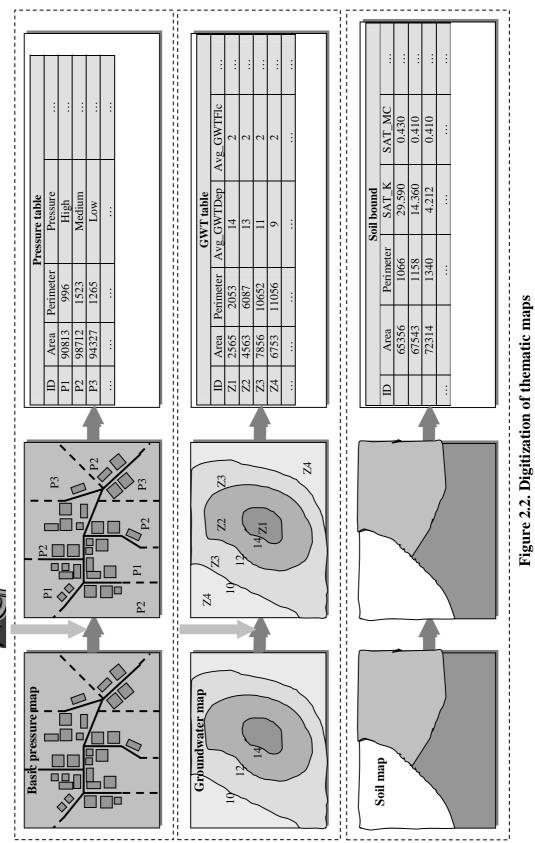
- Thematic layers: base maps and environmental maps; and
- Network databases: pollution sources and water distribution systems.

As mentioned above, pollution sources and water distribution pipes are all represented as networks within IRA-WDS. For the purposes of modelling, the geometry of the networks has to be expressed as a network consisting of links and nodes. The links and nodes act as a framework on which all other kinds of relevant information are hung. The shape files so generated contain the following information:

- Nodal shape files: *Node id, x-coord, y-coord* and *Elevation*; and
- Link shape files: *Link id, Start node, End node* and *Length*.


The shape files required for IRA-WDS are as follows:

- Sewer node and link shape files;
- Canal node and link shape files;
- Foul surface water body node and link shape files; and
- Water distribution node and link shape files.


Note that in the user's working directory, each shape file generated will have five separate files associated with it with the following extensions: *.*shp*, *.*shr*, *.*sbx*, *.*spn* and *.*dbf*. For example, a sewer node shape file will have five associated files.

Among these five files, the most important ones are the '**shp**' and '**dbf**' files:

- The 'shp' files are uploaded through the GIS interface to run the program; and
- The 'dbf' files contain all the attribute data for nodes and links. These files are expanded during the data preparation stage (described in Section 2.3), to include specific characteristics of the nodes and links.

Output

On completion of this step (creating shape-files) a number of shape files will have been created. These may include:

Thematic Layers

- Base maps:
 - ➢ Infrastructure − Line and Polygon shape files
 - ➤ Contour Line shape files
- Environmental maps:
 - Soil Polygon shape files
 - Groundwater *Polygon shape files*
 - Pressure Polygon shape files

Network databases

- Sewer Node and Link shape files
- Canal Node and Link shape files
- Foul water body *Node and Link shape files*
- Water distribution Node and Link shape files

2.3 Input of additional model data

2.3.1 Enclosed Excel spreadsheet (DataInput.xls)

In this section, details of how to add additional node and link data to the shape files are presented. To assist in this, an Excel file has been included with IRA-WDS (DataInput.xls) that contains a template. Figure 2.3, below, shows example worksheets from the Excel file.

The first thing for the user to do is to copy this Excel file into his or her working directory and rename it as appropriate (for example, the project name). The Excel spread sheet contains several worksheets to assist with data entry.

The first worksheet labelled 'General Description' gives an overview of all the other worksheets and provides information on data requirements for those other worksheets (see Figure 2.3). Hyperlinks are provided in this worksheet to help navigate between the other worksheets.

In addition to the General Description worksheet, there are 12 other worksheets (see the tabs at the bottom of the worksheet shown in Figure 2.3). In each of these 12 worksheets, attribute data for the various objects are added by the user. On completion of these worksheets, the data contained in them are then transferred to the objects' respective shape files (details of how this is done is given in Section 2.4).

Note that this Excel spreadsheet has several columns in each worksheet, where the data have already been generated and stored in the shape files (in the file with extension dbf). These data mainly relate to the spatial location of the objects, but also include information related to elevation and lengths of links.

Therefore the authors suggest that the data from the shape files (dbf) are copied and pasted into the appropriate worksheet of the Excel file.

3	6888	<u>0.</u> ♥ % ₪ (ii √	• C4 + 🝓	$\Sigma f_{*} \stackrel{\mathbb{A}}{\underset{\mathbb{Z}}{\downarrow}} \stackrel{\mathbb{Z}}{\underset{\mathbb{A}}{\downarrow}}$	📶 100% • 🕐 🔹 Arial • 10 • 🖪	Ι∐≣		3 9 (F	- 🔊	• <u>A</u> •
•	🖌 🖕 Security 🖉	3××⊻∞.									
	A1 💌	 No of ther 									
	A	В	С	D	E	F	G	Н		J	K
	No of themes	Maximum	9								
		Minimum	4								
}	Themes			ribution Pipe		(Required)					
				ribution Node	<u>Theme</u>	(Required)					
5			Sewer Pipe			(Required)					
6			Sewer Nod			(Required)					
7			i <u>Canal Link</u>			(Optional)					
8			Canal Nod			(Optional)					
9				r body link th		(Optional)					
10				r body node t	<u>heme</u>	(Optional)					
11			Soil theme			(Optional)					
39		Field Name	Unit		Field Precision						
40		ID		Integer	_	Node ID					
41	2	X_CORRD	Meters	Float	3	X-Coordinate					
42		Y_COORD	Meters	Float	3	Y-Coordinate					
43		Z_COORD	Meters	Float	3	Z-Coordinate					
44	5	BURYDEPTH	Meters	Float	3	Bury depth					
45		ELEVATION	Meters	Float	3	Surface Elevation					
46											
47	Canal Link	(Optional)									
48		Field Name	Unit		Field Precision						
49		ID		Integer		Link ID					
50		STARTNODE		Integer		Start Node ID					
51	3	ENDNODE		Integer	-	End Node ID					
52		LENGTH	Meters	Float	3	Length of Canal					
53		LINED	Yes/No	Character		Lined or Unlined					
54	6	CROSS_SECT		Character		Type of Cross Section for eg., Rectangular, Trapezoidal					
55		TOPWIDTH	Meters	Float	3	Topwith of Cross section					-
56		BOTWIDTH	Meters	Float	3	Bottom Width of Cross section					-
57	9	DEPTH	Meters	Float	3	Depth of Cross Section					
58		SEEP_RATE	Meter/day	Float	3	Seepage rate from Canal					
59		100 11 10									-
60		(Optional)		D . T		D. 1.4					-
61	Sr. No.	Field Name	Unit		Field Precision						
62		ID .		Integer		Node ID					-
63		X_CORRD	Meters	Float	3	X-Coordinate					-
64		Y_COORD	Meters	Float	3	Y-Coordinate					
65		Z_COORD	Meters	Float	3	Z-Coordinate					
66		ELEVATION	Meters	Float	3	Surface Elevation Canal Link / Canal Node / Waterbody Link / Waterbody Node					

Figure 2.3. Enclosed Excel file DataInput.xls

2.3.2 Contaminant Ingress Model

The data required for the Contaminant Ingress Model are as follows:

- Pollutant sources;
- Water distribution pipes; and
- Environmental data (soil type and so on).

2.3.2.1 Pollutant sources

IRA-WDS considers the following pollutant sources: sewers/drains, canals and ponds/ditches. As described earlier, the spatial information about the pollution sources is contained in the generated shape files. This section provides details on how additional attribute data are added.

Figure 2.4, below, shows the relevant worksheet for pollutant sources from the enclosed Excel file.

47	Canal Link ((Optional)					
48		Field Name	Unit	Data Type	Field Precision	Description	
49	1	D		Integer		Link ID	
50	2 8	STARTNODE		Integer		Start Node ID	
51	3 E	ENDNODE		Integer		End Node ID	
52	4 L	LENGTH	Meters	Float	3	Length of Canal	
53	5 l	LINED	Yes/No	Character		Lined or Unlined	
54	6 (CROSS_SECT		Character		Type of Cross Section for eg., Rectangular, Trapezoidal	
55	7 1	TOPWIDTH	Meters	Float	3	Topwith of Cross section	
56	8 E	BOTWIDTH	Meters	Float	3	Bottom Width of Cross section	
57	9 [DEPTH	Meters	Float	3	Depth of Cross Section	
58	10 \$	SEEP_RATE	Meter/day	Float	3	Seepage rate from Canal	
59							
60	Canal Node ((Optional)					
61	Sr. No. I	Field Name	Unit	Data Type	Field Precision	Description	
62	1	D		Integer		Node ID Pollution Source Data Tabs	
63		K_CORRD	Meters	Float	3	X-Coordinate	
64	3	Y_COORD	Meters	Float	3	Y-Coordinate	
65	4 2	Z_COORD	Meters	Float	3	Z-Coordinate	
66		ELEVATION	Meters	Float		Surface Elevation	
1474	► ► General Desc	iption / Water P	ipe / Water I	Vode K Sewer	Pipe / Sewer Node	Canal Link / Canal Node / Waterbody Link / Waterbody Node X Soil / 4	
	ect destination and p			_			

Figure 2.4. Worksheet for pollutant sources

At this stage:

- The Excel spreadsheet should have been saved in the user's working directory; and
- The shaded columns shown in Figures 2.5 and Figure 2.6 should be filled from the data in the dbf shape files (see Section 2.4).

	t Excel - Data req														_ 8
	it View Insert Fo														<u>_ 8</u>
	1886.7	× الله ال		• Ci + 🍓 Σ 🤅	🖗 ŽI XI 🛄 10	0% • [3	Arial ?		▼ 10	• B /	<u>n</u> ≣ ∰	三 三 南	99 (F	🛄 + 🕗 +	<u>A</u> •
🕨 👝 Sei	curity 🖄 🛠	e s	-												
E1		LENGT													
A	B	C I	D	E F	G	Н		J	K		М	N	0	Р	Q ·
		DNODE		LENGTH MATERI						-					<u> </u>
2 11	503	504	900.000000	0.997 RCC	0.002										
3 12	486	503	900.000000		0.002										
4 13	524	525	900.000000	2.459 RCC	0.002										
5 14	504	524	900.000000	29.441 RCC	0.002										
6 15	525	541	900.000000	26.172 RCC	0.002										
7 16	541	545	900.000000	7.485 RCC	0.002										
8 17	545	565	900.000000		0.002										
9 18	565	570	900.000000		0.002										
10 19	608	618	900.000000		0.002										
11 20	618	622	900.000000	11.037 RCC	0.002										
12 21	622	625	900.000000	6.212 RCC	0.002										
13 22	625	635	900.000000		0.002										
14 23	635	644	900.000000		0.002										
15 24	644	645	900.000000	2.525 RCC	0.002										
16 25	645	649	900.000000		0.002										
17 26	649	655	900.000000	6.865 RCC	0.002										
18 27	655	661	900.000000	9.120 RCC	0.002										
19 101	434	486	200.000000		0.002										
20 102	432	448	200.000000		0.002										
21 103	534	606	200.000000		0.002										
22 104	530	534	200.000000		0.002										
23 105	530	509	200.000000	18.050 SWP	0.002										
24 106	574	530	200.000000	32.914 SWP	0.002										
25 107	473	534	200.000000	51.029 SWP	0.002										
26 108	473	460	200.000000	37.761 SWP	0.002										
27 109	460	450	200.000000	26.204 SWP	0.002										
28 110	450	445	200.000000	23.875 SWP	0.002										
29 111	450	485	200.000000	29.427 SWP	0.002										
30 112	445	399	200.000000	35.854 SWP	0.002										
31 113	493	473	200.000000	43.577 SWP	0.002										
32 114	493	507	400.000000	31.504 SWP	0.002										
33 115	507	516	400.000000	13.101 SWP	0.002										
34 116	533	550	400.000000		0.002										
35 117	550	573	400.000000		0.002										
36 118	573	609	500.000000		0.002										
37 119	609	636	500.000000	21.234 RCC	0.002										
38 120	636	651	500.000000	21.402 RCC	0.002										
121	651	637	400.000000		0.002										
				Node Sewer Pipe		alitali / c	and Made ()	Unknown d	at / 00 -	da a alex Ata al	10-11-1		I	1	
					Coewer Noue & Can	arcink _A C	anannoue (1	vacerbouy L	and V water						►
elect dest	ination and press	ENTER I	or choose Pas	te							Sum=1883	73.620		NUM	

Figure 2.5. Link data entry for sewer

The next stage is for the user to complete the remaining fields on the worksheets (that is, the unshaded columns of the tables in Figures 2.5 and 2.6). Tables 2.1 and 2.2, below, give details of the additional attributes required for link data and node data respectively for the sewer.

	soft Excel - Data re Edit <u>V</u> iew Insert															_ 8 >
					Σ <i>f</i> ≈ A I Z I	100	% • ?	≫ Arial		• 10 •	B I	u≣≣	= B 9	€	- @ - <u>A</u>	
		°⊾ ø.														-
F'		= ELEVATI	ION													
A		С	D	E	F	G	Н		.l	K		M	N	0	Р	-
		COORD		BURYDEPTH	ELEVATION	-					_			-		
	13323.932000 4			2.00	20.200001											
	13317.545000 4			1.80	20.190001											
4 293	8 13311.616000 4	323.376000	18.320001	1.80	20.120001											
5 294	13299.661000 4	322.115000	18.450000	1.70	20.150000											
6 300	13340.474000 4	317.265000	18.459999	1.90	20.359999											
7 312	2 13374.868000 4	309.980000	18.639999	1.80	20.439999											
8 327	13292.297000 4	295.322000	18.860001	1.50	20.360001											
9 328	3 13447.460000 4	294.630000	18.020000	2.00	20.020000											
10 341	13311.906000 4	282.414000	18.870002	1.80	20.670002											
	3 13520.606000 4			1.80	20.200001											
12 345	5 13364.874000 4	276.078000	19.150006	1.80	20.950006											
13 348	3 13363.594000 4	271.734000	19.150006	1.80	20.950006											
14 350	13557.620000 4	270.723000	19.230008	2.10	21.330008											
5 351	13223.673000 4	268.724000	18.940004	1.50	20.440004											
6 353	3 13336.528000 4	267.478000	19.339999	1.80	21.139999											
7 355	3 13399.932000 4	263.904000	18.710005	2.00	20.710005											
8 359	13400.493000 4	263.783000	18.719999	2.00	20.719999											
9 365	5 13360.849000 4	260.602000	19.430004	1.50	20.930004											
20 366	6 13241.790000 4	260.068000	18.990002	1.50	20.490002											
1 367	13610.263000 4	258.909000	17.999999	2.20	20.199999											
2 369	13609.968000 4	257.524000	18.050001	2.15	20.200001											
3 370	13305.747000 4	257.515000	18.900003	1.80	20.700003											
24 371	13305.591000 4	256.897000	18.900003	1.80	20.700003											
25 374	13440.306000 4	254.082000	19.310002	2.10	21.410002											
	5 13514.818000 4			2.00	21.620003											
27 378	3 13190.842000 4	249.279000	18.970005	1.60	20.570005											
28 380	13475.860000 4	247.351000	19.550001	1.90	21.450001											
29 384	13330.106000 4	244.451000	19.010001	1.80	20.810001											
30 385	5 13201.506000 4	243.253000	19.190001	1.60	20.790001											
390	13512.935000 4	241.995000	19.980003	2.00	21.980003											
32 399	13300.016000 4	234.863000	18.829999	1.80	20.629999											
3 400	13549.377000 4	233.656000	20.710004	1.80	22.510004											
34 405	5 13510.831000 4	229.054000	19.920000	2.00	21.920000											
35 409	3 13231.340000 4	226.397000	19.500006	1.60	21.100006											
6 413	3 13602.268000 4	221.318000	23.290015	2.10	25.390015											
7 414	13175.817000 4	221.035000	19.720007	1.50	21.220007											
8 420	13470.802000 4	215.746000	19.840000	1.90	21.740000											
	3 13600.590000 4			2.10	25.550001											
	I 400 40 004 000 A ▶ \ General Descipt	tion / Water	An oconon Pine / Wata	r Node / Sewer Di		de / Capal	link / Cana	Node / Wa	erhody Link	/ Waterbod	ly Node / <	ioil / I∢I				IIIIII
					po goenei no	ac A cono	cance A cono		or body ciril	,			500	NU		
elect c	lestination and pre	ess en l'ER or	uniouse Pas	ste							j pi	ım=2204856	0.082	NU NU	M	

Figure 2.6. Node data entry for sewer

Table 2.1. Sewer link data for Contaminant Ingress Model								
Field name	Unit	Description						
SEWER_DIA	mm	Sewer diameter						
SEEP_RATE	Metre/day	Seepage rate from sewer pipe						

Tab	Table 2.2. Sewer node data for Contaminant Ingress Model							
Field name	Unit	Description						
BURYDEPTH	Metres	Buried depth of node						

2.3.2.2 Water distribution system

In addition to pollutant sources, IRA-WDS requires additional attribute data for the water distribution system. As described earlier, the spatial information about the water distribution system (WDS) is contained in the shape files generated earlier. In this section, details are given on how additional attribute data are added.

Figure 2.7, below, shows the relevant worksheet from the enclosed Excel file for the water distribution system. At this stage, the shaded columns shown in Figure 2.7 should have been filled from the data in the dbf shape files (see Section 2.4).

The next stage is for the user to complete the remaining fields on the worksheets (the unshaded columns of the table in Figure 2.7). For details, see Table 2.3.

Table 2.3. WDS node data for Contaminant Ingress Model									
Field name	Unit	Description							
BURYDEPTH	Metres	Bury depth							
Z- Coordinate	Metres	Surface elevation							

s] i	jie <u>E</u> dit ⊻iew	Insert Forma	it <u>T</u> oo	ils <u>D</u> ata <u>W</u> in	dow <u>H</u> elp												_ 8
ב	¥ 🛛 🔒	a 🖏 🖗	X 🖻) i 🖪 🝼 🔤	ດ•ຕ- 🍓	$\Sigma f_{*} \stackrel{\mathbb{A}}{\underset{\mathbb{Z}}{\downarrow}} \stackrel{\mathbb{Z}}{\underset{\mathbb{A}}{\downarrow}}$	↓ ∭ 10	0% • ?	≱ Arial		▼ 10	• B /	Ū ≣ ∰		9 💷		<u>A</u> -
►	• Security	白父区	0	•													
_	F1 •	- E	LEVA	TION													
	A E		:	D	E	F	G	Н		J	K	L	M	N	0	Р	G
T)	D X COF	RD Y CO	ORD	Z COORD	BURYDEPTH	ELEVATION				-							
	631 13269.	16797 4389.3			1.700000	20.400003											
	632 13270.	47363 4389.6	65967	18.720004	1.700000	20.420004											
	643 13321.	44238 4384.3	75781	18.520001	1.700000	20.220001											
	660 13259.	09668 4370.4	46045	18.620002	1.700000	20.320002											
	696 13312.	62012 4336.3	76563	18.410001	1.700000	20.110001											
	713 13310.	14160 4323.3	28516	18.429999	1.700000	20.129999											
	719 13232.	79980 4319.0	07568	18.519999	1.700000	20.219999											
	728 13374.	45703 4309.4	14971	18.740001	1.700000	20.440001											
ī	732 13223.	68652 4304.3	34082	18.470000	1.700000	20.170000											
	734 13222.	39160 4303.0	02197	18.470000	1.700000	20.170000											
2	739 13411.	48828 4301.4	18340	18.450001	1.500000	19.950001											
	740 13240.	89746 4298.3	76318	18.520001	1.700000	20.220001											
	747 13472.	19531 4288.3	30273	18.980009	1.500000	20.480009											
1	753 13311.	42773 4282.5	53174	19.160002	1.500000	20.660002											
	758 13519.	72949 4277.9	98242	18.900001	1.300000	20.200001											
	760 13338.	45508 4276.8	31152	19.750000	1.500000	21.250000											
	765 13363.	68066 4272.0	02393	19.450006	1.500000	20.950006											
T I	769 13556.	93750 4269.8	33838	20.040000	1.300000	21.340000											
ī	777 13400.	15918 4263.1	7334	19.220005	1.500000	20.720005											
	780 13360.	23828 4259.3	75342	19.430000	1.500000	20.930000											
1	781 13179.	65039 4259.4	19023	18.660001	1.700000	20.360001											
1	785 13176.	87988 4257.3	25635	18.670001	1.700000	20.370001											
1	786 13177.	10059 4257.0	04150	18.670001	1.700000	20.370001											
1	788 13610.	07910 4256.9	94189	18.909999	1.300000	20.209999											
1	789 13440.	01074 4254.3	6416	19.900002	1.500000	21.400002											
1	800 13193.	69824 4247.	54199	18.940003	1.700000	20.640003											
1	801 13475.	86035 4246.8	36523	19.950001	1.500000	21.450001											
T	806 13511.	87598 4241.6	57773	20.670003	1.300000	21.970003											
1		38184 4241.			1.300000	21.980003											
1		42285 4238.3			1.700000	20.639999											
		52734 4236.9			1.700000	20.660000										-	-
		28613 4233.9			1.300000	22.510004										-	-
		39551 4233.6			1.300000	22.510004										-	-
		20898 4231.9			1.700000	20.840004										-	-
1		21289 4230.0			1.700000	21.120001											1
T.		71875 4222.0			1.300000	25.370005											1
T		94434 4220.1			1.700000	21.260002										-	-
1		08105 4216.0			1.300000	21.730000										-	-
	000 40500	ral Desciption	eeco.	DA 200002	1 200000	25,500000						-		-		+	-

Figure 2.7. Node data entry for water distribution system

2.3.2.3 Environmental factors

In addition to the pollutant sources and water distribution system, IRA-WDS requires information on soil characteristics. Shape files have already been constructed for soil data, groundwater and pressure zones. In this section, details on are given how additional attribute data are added.

Figure 2.8, below, shows the relevant worksheet from the enclosed Excel file for soil characteristics. At this stage, the shaded columns shown in Figure 2.8 should have already been filled from the data in the dbf shape files (see Section 2.4).

The next stage is for the user to complete the remaining fields on the worksheets (the unshaded columns of the table in Figure 2.8). For details, see Table 2.4.

	Table 2.4. Soil data for Contaminant Ingress Model								
Field name	Unit	Description							
SAT_K	cm/hr	Saturated hydraulic conductivity							
SAT_MC		Saturated moisture content							
INI_MC		Initial moisture content							
BULK_DEN	gm/cm ³	Bulk density							
КОС		Soil organic carbon coefficient							
AIR_ENTRY	ст	Air entry head							
PORESIZE		Pore size index							
DIFF_COEFF	cm^2/day	Diffusion coefficient							
SOIL_FOC		Soil fraction of organic content							
LIQ_DECAY	per hr	Liquid phase decay							
CHAR_COEFF		Soil characteristic curve coefficient							

					ress Model ata <u>W</u> indow	Help		-									_ 8 _ 8
							i Σ f≈ ≜	↓ Z↓ (ADL 1	00% • ?	Arial	•	10 - B /	′⊻≣≣≣		9 (†		
			*⊻							- J.							
A1		- -	= SC														
A		В	С	D	E	F	G	Н		J	K	L	M	Ν	0	Р	Q
SOIL		AT_K S 9.590		INI_MC 0.047		KOC 1.000	AIR_ENTRY 7.020	PORESIZE 1.670	DIFF_COEFF 1.000	SOIL_FOC 0.007	LIQ_DECAY 1.000	25000.000	CHAR_COEFF 0.078				
		4.360	0.430	0.047		2.000	9.580	1.270	2.000			15000.000	1.023				
		4.212		0.064	1.500		17.700	0.892	3.000			7000.000	1.230				
	4	1.163	0.390	0.101		4.000	26.200	0.479	4.000	0.002	4.000	2000.000	1.560				
_																	
-																	
-																	
																	_
-																	
1																	
-																	
1																	
-																	
1 (∖ Ger	neral Desc	iption 🖌	Water Pip	e 🖌 Water No	de / Se	wer Pipe / Sew	er Node 🖌 Ca	inal Link <u>/</u> Canal	Node / Wate	erbody Link 🔏 V	Vaterbody Node	Soil /				- -
ady													Sum=10			NUM	

Figure	2.8.	Soil	data	entrv
I Igui v		D'UII	uuuu	unuj

2.3.3 Pipe Condition Assessment Model

Data requirements for the Pipe Condition Assessment Model are related to the factors that affect the condition of the pipe. A description of these various factors and how they are represented in the model can be found in Chapter 3, below.

It should be noted that this model requires some data in the form of fuzzy (qualitative) numbers (such as link joint type, surface type, traffic load and so on) and others as crisp (quantitative) numbers (such as link material, diameter, length and so on). Therefore the data in the form of fuzzy numbers will require the user to input fuzzy membership functions. Table 3.1 in Chapter 3 of Book 3 shows which data is fuzzy and which is crisp.

Figure 2.9, below, shows the relevant worksheet from the enclosed Excel file for the Pipe Condition Assessment Model. At this stage, the shaded columns shown in Figure 2.9 should have already been filled from the data in the dbf shape files (see Section 2.4) and during data preparation for the Contaminant Ingress Model. The next stage is for the user to complete the remaining fields on the worksheets (the unshaded columns in Figure 2.9 and Table 2.5).

Tabl	Table 2.5. WDS link data for Pipe Condition Assessment Model								
Field name	Unit	Description							
STRJOINT		Joint method at start node							
ENDJOINT		Joint method at end node							
MATERIAL		Material type							
TRAFFIC		Traffic load							
SURFACE		Surface type							
INTPROT		Internal protection							
EXTPROT		External protection							
BEDCOND		Bedding condition							
WORKMANS		Workmanship							
DIAMETER	mm	Diameter of pipe							
INSTYEAR	уууу	Installation year							
LENGTH	Metres	Length of pipe							
STRDEPTH	Metres	Start node bury depth							
ENDDEPTH	Metres	End node bury depth							
NOCONNEC		No. of pipes joined with diameter less than minimum considered							
BREAKAGE	Per year	No. of breaks per year							
LEAKAGE	lps	Leakage rate							
VALVES		No. of valves							
DURATION	Hrs/day	Duration of water supply per day							
NOOPER	Per day	No. of times water supplied per day							

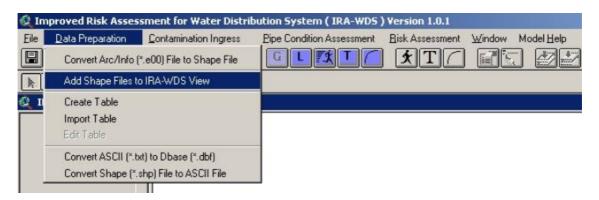
1 r	2 R A	∂ b , ♥	X 🖻 I	B 🛷 🖸	• Ci + @	$\Sigma f_{\ast} \stackrel{\text{A}}{=}$	2 (In	100% 👻 🖣	?) * Ar	ial	▼ 10	• B <i>I</i> U	EEE		=	ð - <u>A</u> -
					1 105	, ,~ 21	AV BLB		** *]···			212		<u> </u>		
•	 Security 															
	01	_	ENGTH	-	_	-	-									
	A	B	С	D	E	F	G	H	IN TERROT	J	K	L	M	N	0	P
ŀ												WORKMANS				
	689	631			Very Good		Normal		Medium	Bad	Very Bad	Very Good	500 500	1955	1.312	1.70
	703 722	632 660		Bad Bad	Bad Bad	AC RCC	Normal	Grassed	Medium		Very Good	Bad Bad	500	1955 1955	51.204	1.70 1.70
	762	643		Bad Medium		AC	Normal Normal	Grassed Grassed	Medium	Very Good Very Good			400	1955	21.792 48.796	1.70
	762	696		Medium	Medium Medium	AC	Normal	Grassed Grassed	Medium Medium	Very Good		Medium Medium	400	1955	46.796	1.70
ł	786	719		Medium	Medium	RCC	Normal	Grassed	Medium	Very Good		Medium	500	1955	57.723	1.70
ł	796	713		Medium	Medium	AC		Grassed	Medium	Very Good		Medium	400	1955	65.787	1.70
ł	800	732		Medium	Medium	RCC	Quite	Grassed	Medium	Very Good		Medium	500	1955	17.325	1.70
	803	734		Medium	Medium	RCC	Quite	Grassed	Medium	Very Good		Medium	500	1955	17.325	1.70
ł	808	734		Medium	Medium	AC			Medium	Bad	Good	Good	400	1955	37.878	1.50
ł	809	740		Medium	Medium	RCC	Quite	Grassed	Medium	Very Good		Medium	500	1955	18.990	1.30
ł	818	739		Medium	Medium	AC		Very Hard		Bad	Good	Good	400	1970	62.121	1.50
ł	824	753		Medium	Medium	RCC	Quite	Grassed	Medium	Very Good		Medium	200	1955	72.374	1.30
ł	830	747		Medium	Medium	AC		Very Hard		Bad	Good	Very Good	400	1970	48.642	1.30
	831	760		Medium	Medium	RCC	Quite	Very Hard		Bad	Bad	Medium	200	1955	27.626	1.50
	836	765		Medium	Medium	AC		Very Hard		Bad	Good	Medium	400	1985	38.946	1.50
ł	837	765		Medium	Medium	RCC	Quite	Very Hard		Bad	Bad	Medium	200	1985	25.676	1.50
	842	758		Medium	Medium	AC		Very Hard		Bad	Good	Very Good	400	1970	38.089	1.30
t	852	777		Medium	Medium	RCC		Very Hard		Bad	Bad	Medium	200	1970	37.537	1.50
ł	855	780		Medium	Medium	AC		Very Hard		Bad	Bad	Medium	200	1985	12,744	1.50
1	856	781		Medium	Medium	U1	Very Quite		Bad	Very Good		Medium	500	1955	61.007	1.70
1	861	785		Medium	Medium	U1	Very Quite		Bad	Very Good		Medium	200	1985	3.559	1.70
t	862	786		Medium	Medium	U1	Very Quite		Bad	Very Good		Medium	200	1985	0.308	1.70
t	865	769		Bad	Bad	AC		Very Hard		Bad	Good	Very Good	400	1970	54.684	1.30
l	866	789		Medium	Medium	RCC		Very Hard		Bad	Bad	Good	200	1970	40.729	1.50
t	879	800	786	Bad	Bad	U1	Very Quite		Bad	Very Good	Bad	Medium	200	1985	19.124	1.70
1	880	789		Medium	Medium	RCC		Very Hard		Bad	Bad	Good	200	1970	36.710	1.50
1	883	801		Medium	Medium	RCC		Very Hard		Bad	Bad	Very Good	200	1970	36.387	1.30
	884	807	758	Medium	Medium	RCC	Normal	Very Hard	Medium	Bad	Good	Very Good	400	1970	37.144	1.30
1	885	806	807	Medium	Medium	RCC		Very Hard		Bad	Bad	Very Good	200	1970	0.517	1.30
1	892	814	785	Bad	Bad	U1	Very Quite		Bad	Very Good	Bad	Medium	200	1985	30.132	1.70
1	893	815	814	Bad	Bad	U1	Very Quite		Bad	Very Good		Medium	200	1985	3.216	1.70
	898	807		Medium	Medium	RCC	Quite	Very Hard	Medium	Bad	Bad	Very Good	200	1970	37.693	1.30
	899	821	822	Medium	Medium	RCC	Quite	Very Hard	Medium	Bad	Bad	Very Good	200	1970	1.133	1.30
I	900	823	815	Bad	Bad	U1	Very Quite	Grassed	Bad	Very Good	Bad	Medium	200	1985	11.459	1.70
	905	827	800	Bad	Bad	U1	Very Quit	Grassed	Bad	Very Good	Bad	Medium	200	1985	35.159	1.70
	914	834		Bad	Bad	AC	Quite	Very Hard	Medium	Bad	Good	Very Good	400	1970	35.883	1.30
	915	822	834	Bad	Bad	RCC	Quite	Very Hard		Bad	Bad	Very Good	200	1970	52.624	1.30
1	017 NIX C	ral Description	\uncer:		ide / Soil Data	a / Groundwa	1 / m	Corgonal	Deal	him Care	(g	NAL JULI	200	1005	20 402	4.70

Figure 2.9. Water distribution pipe condition assessment data

2.4 Creating a dbf

At this stage, all data for the model have been completed and entered into the Excel spreadsheet provided. This Excel file should have been stored in the working directory for the project.

The next step is for the user to link the data in the Excel spreadsheet with the relevant shape files. In order to achieve this, each worksheet from the Excel spreadsheet must be saved as a dbf file with a filename identical to the relevant shape file.


For example, to create the link data shape file for a water distribution system:

- 1. If the name of the shape file is 'waterpipe.shp'
- 2. In the Excel spreadsheet select the 'WDSlink' worksheet
- 3. While this worksheet is active, do the following:
 - File Save As: 'waterpipe.dbf' (this name is the same as the shape file)
 - Make sure the file is saved to the working directory (that contains the shape files)
 - Note: the original 'waterpipe.dbf' file will be overwritten with the new dbf file. Therefore, make sure all the information in the original dbf file has been copied to the new one.

2.5 Add shape files to GIS

The next step is for the user to add the necessary shape files to IRA-WDS, so that the data can be viewed and used by the three models (the Contamination Ingress Model, Pipe Condition Assessment Model and Risk Assessment Model). This can be done by

clicking on the Tool icon which is just below the 'Data Preparation' menu or by clicking on the 'Data Preparation' menu and then clicking on the submenu 'Add Shape Files to IRA-WDS View', as shown in the screen below:

This opens the 'Add Theme' form, as shown below:

🍳 Add Theme		2
Directory: c:\avirawds\sampled	lata	ОК
 gwt.shp pressure.shp sewertesthode.shp sewertesttheme.shp soilbound.shp wdstesthode.shp wdstesttheme.shp 	i c:\ i avirawds i sampledata	Cancel Cancel Cancel Cancel Libraries
Data Source Types:	Drives:	
Feature Data Source] [c:	•

After the user selects the shape files to be added to the IRA-WDS View, he/she can click on the 'OK' button, which will load the shape files to the IRA-WDS View, and corresponding dbf files in the Table GUI of the ArcView.