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Thesis summary 
 

Epigenetics is a rapidly developing field of study which investigates chemical 

modifications to the genome, independent of the DNA sequence, which regulate gene 

expression profiles. The most commonly studied epigenetic modification, DNA 

methylation, has been demonstrated to be influenced by lifestyle factors including diet 

and exercise. The modulation of DNA methylation by lifestyle factors is one potential 

mechanism for the reduction in disease risk induced by a healthy lifestyle. This thesis 

aimed to identify the impact of exercise on DNA methylation and mRNA expression 

and determine whether fatty acid supplementation may modulate this response. 

 
Custom assays were developed and validated (Chapter 4) to assess the DNA 

methylation of peroxisome proliferative activated receptor gamma coactivator 1 alpha 

(PPARGC1A), interleukin 6 (IL6) and tumor necrosis factor alpha (TNF) at specific 

cytosine bases in genomic locations previously identified to be biologically relevant. 

Assays to investigate the mRNA expression of PPARGC1A, IL6, TNF and the DNA 

methyltransferases (DNMT) were validated to ensure accurate results.  

 

In Chapter 5, DNMT mRNA expression decreased following an acute bout of exercise 

to volitional fatigue; whereas, no changes in DNA methylation were identified as a 

result of exercise or supplementation of omega-3 polyunsaturated fatty acids (n-3 

PUFAs). However, an interaction was determined between exercise and n-3 PUFA 

supplementation for the DNA methylation of a single IL6 CpG site. Following exercise, 

decreased DNA methylation and increased mRNA expression of IL6 was detected 

after n-3 PUFA supplementation compared to the trial before supplementation. IL6 

methylation was correlated to the n-3 PUFA content in whole blood following 

supplementation suggesting increased n-3 PUFA content following supplementation 

may prime the cells for future exercise stimuli. 

 

Chapter 6 sought to investigate whether acute exercise of an increased duration 

would modulate DNA methylation profiles and adopted a double-blind randomised 

repeated measures design to try and confirm the interaction between exercise and n-

3 PUFA supplementation. Following a one-hour cycling bout, consisting of 45 mins 

cycling at 70% of V̇O2 followed by a 15 min time trial, we determined global 
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hypomethylation, a reduction in PPARGC1A DNA methylation and increased mRNA 

expression of PPARGC1A. These methylation changes were associated with a similar 

reduction in DNMT expression as reported in Chapter 5. In line with the positive 

correlations between whole blood n-3 PUFA content in the previous chapter, an 

increase in IL6 methylation was determined following n-3 PUFA supplementation 

compared to the impact of supplementation with extra virgin olive oil; however, this 

relationship was not further modulated by exercise.  

 

The focus of Chapter 7 was the impact of acute resistance exercise on DNA 

methylation profiles and whether resistance training and fatty acid supplementation 

could modulate the epigenetic response. Acute resistance exercise was sufficient to 

increase DNA methylation of PPARGC1A and IL6, and decrease TNF DNA 

methylation in both leukocytes and skeletal muscle. However, neither resistance 

training nor fatty acid supplementation modulated this response. The magnitude of 

modulated DNA methylation of the cytokines IL6 and TNF was greater in skeletal 

muscle than it was in leukocytes and the mRNA expression of these cytokines 

increased as a result of acute resistance exercise in skeletal muscle but not leukocytes 

suggesting tissue-specificity in the inflammatory response to exercise. The resistance 

exercise-induced methylation of an alternative promoter of the PPARGC1A, shown for 

the first time, suggests changes in DNA methylation may be critical for exercise-

induced expression of transcript variants. In accordance with the impact of aerobic 

exercise (Chapters 5 and 6), resistance exercise was sufficient to reduce the mRNA 

expression of DNMT3a and DNMT3b. 

 

The data in this thesis indicates acute exercise can alter DNA methylation profiles; 

whereas, fatty acid supplementation has a limited impact on DNA methylation. Aerobic 

and resistance exercise was sufficient to alter DNA methylation in leukocytes; 

however, a more extensive response was determined in skeletal muscle following 

resistance exercise. Acute exercise, independent of mode, was sufficient to reduce 

the mRNA expression of DNMTs; whereas, resistance exercise training did not alter 

DNA methylation or mRNA expression of candidate genes. Despite the novel findings 

presented in this thesis, a number of fundamental questions remain to fully understand 

the epigenetic response to exercise and nutritional interventions before they can be 

used to target the aberrant methylation profiles.  
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1.0 General Introduction 
For many years it was hoped that the sequencing of the human genome would identify 

the unknown cause of various complex diseases. Despite being one of the most 

notable advances in genetics, for every question the sequence of the genome 

answers, more questions arise. One of the critical questions that the human genome 

project failed to answer is how genetically identical individuals can present vastly 

different phenotypes. The rapidly expanding field of epigenetics may explain the 

process from the exposure to risk factors to the development of diseases. Epigenetics 

focusses on the impact of lifestyle (environmental stimuli) on chemical modifications 

to DNA which impact the expression of genes and subsequently impact human health. 

This section provides an overview of genetic and epigenetic factors and how they can 

influence mRNA expression. 

 

1.1 Genetics 
Deoxyribonucleic acid (DNA) is the basic building block of life and consists of 

nucleotides (a phosphate molecule, a sugar molecule and one of four nitrogenous 

bases). Hydrogen bonds form between complement nitrogenous bases (adenine 

binds to thymine, and guanine binds to cytosine) on opposing strands to create a 

double helix structure (Watson and Crick 1953). The completion of the human genome 

project identified the genome to consist of ~3 billion nucleotides at a total length of ~2 

metres; therefore, the genome is required to be packaged into chromatin structures to 

fit inside the nucleus (Annunziato 2008). DNA wraps tightly around histone proteins to 

form a nucleosome which is further condensed to form chromatin fibres and eventually 

chromosomes (Olins and Olins 2003).  

 

The human genome encodes ~21000 protein-coding genes which undergo 

transcription into messenger RNA (mRNA) and is exported out of the nucleus where 

it can be translated into protein (Figure 1.1; Clancey and Brown 2008). Only ~1% of 

the human genome encodes protein-coding genes. Initially, the remaining proportion 

of the genome was considered ‘junk DNA’ because it was thought to be non-functional 

(Ohno 1972). The Encyclopedia of DNA Elements (ENCODE) project changed this 

view, indicating that a significant proportion (some estimates of up to 80%) of the ‘junk’ 

DNA is functional (Encode Consortium 2012). These non-coding DNA regions control 
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the expression of protein-coding genes via regulatory elements including non-coding 

RNA and regulatory regions, such as promoters, enhancers and silencers (Encode 

Consortium 2012; Maston, Evans, and Green 2006).  

 

 

Figure 1.1- The transcription of DNA into mRNA followed by the translation into protein. 

 

The sequence of any two human genomes are 99.9% identical; the variation in the 

remaining 0.1% produces the phenotypic differences between individuals (Kruglyak 

and Nickerson 2001; Shastry 2009). The most common type of sequence variant, a 

single nucleotide polymorphism (SNP), occurs when one nucleotide is substituted with 

another (Brookes 1999; Kruglyak and Nickerson 2001). SNPs occur throughout the 

genome in protein-coding exons, non-coding intronic regions of genes and intergenic 

sequences and can influence the susceptibility towards a range of diseases among 

other phenotypes (Brookes 1999; Shastry 2009). Exonic SNPs can exert substantial 

phenotypic consequences by physically impacting the biochemical properties and 

stability of proteins. SNPs located in introns and intergenic sequences do not alter the 

amino acid sequence of proteins; however, they can impact gene function via the 

disruption of regulatory elements and modifying splicing patterns (Baralle and Baralle 

2005; Shastry 2009). 
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The sequence of the genome is important in determining phenotypes; however, gene-

environment interactions also influence phenotypes (Ottman 1996). Twin studies have 

shown that genetically identical monozygotic twins can be phenotypically diverse. 

Phenotypic differences between monozygotic twins can range from minor 

anthropometric differences to susceptibility and development of disease (Fraga et al. 

2005; Wong, Gottesman, and Petronis 2005). Discordance between identical 

genotypes and phenotypes indicates that a further layer of genomic regulation, which 

can be modified by the environment, exists. 

 

 

1.2 Epigenetics  
First coined by Conrad Waddington in 1942 (Waddington 2012), epigenetics translates 

to ‘above genetics’ and examines chemical modifications to DNA independent of 

changes to the genomic sequence (Kanherkar, Bhatia-Dey, and Csoka 2014). Every 

cell within an organism contains the same genetic code; however, during development 

the epigenome functions to create unique gene expression patterns in different cell 

types and create phenotypically diverse cells (Rivera and Ren 2013). Recent research 

has shown the epigenome is modified in response to both internal (intracellular and 

extracellular) and external environmental stimuli (Figure 1.2; Grazioli et al. 2017; 

Kanherkar et al. 2014; Martin and Fry 2018). While modifications to the epigenome 

are required for normal healthy physiology and to adapt to a changing environment, 

dysregulation of epigenetic processes can lead to the development of disease (Baylin 

and Jones 2016; Egger et al. 2004; Grazioli et al. 2017). The three main epigenetic 

mechanisms, histone modifications, non-coding RNAs and DNA methylation, are 

outlined below. 
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Figure 1.2 - Examples of stimuli which can lead to epigenetic modifications. 

1.2.1 Histone modifications 
The negatively charged phosphate backbone of DNA tightly binds around a complex 

of positively charged histone proteins (two of each histone proteins H2A, H2b, H3 and 

H4) to form a nucleosome (McGhee and Felsenfeld 1980). Histone proteins contain 

an exposed N-terminal tail that can undergo reversible post-translational modification 

(PTM) to make chromatin more or less accessible to RNA polymerase and 

transcriptional machinery (Dong and Weng 2013). The impact of PTMs on 

transcriptional activity depends on the type of modification (the most commonly 

studied histone PTMs are acetylation and methylation) and which amino acid residues 

of the histone tails are affected (Alaskhar Alhamwe et al. 2018). 

 

First reported in 1964, the acetylation of lysine residues on histone tails is a process 

which can prevent the transcription of DNA (Allfrey, Faulkner, and Mirsky 1964). The 

addition of an acetyl group by histone acetyltransferases neutralises the charge of 

lysine making the interaction between the histones and DNA weaker. The weaker 

interaction between histones and DNA is associated with a more transcriptionally 

active chromatin state (Alaskhar Alhamwe et al. 2018). Conversely, the removal of an 

acetyl group, by histone deacetylases, restores the positive charge and increases the 

attraction between histones and DNA leading to transcriptionally inactive chromatin 

(Alaskhar Alhamwe et al. 2018; Dong and Weng 2013).  
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Unlike acetylation, the methylation of amino acid residues does not influence the ionic 

charge of histones (Alaskhar Alhamwe et al. 2018). The addition of methyl groups 

influences the transcriptional state of chromatin through the recruitment of other 

effector proteins (Taverna et al. 2007). Methylation occurs on either arginine residues, 

which can be mono- or di-methylated; or lysine residues, which can be mono-, di- or 

tri-methylated (Jiang, Agrawal, and Boosani 2018). Histone methylation can either 

result in increased or decreased transcriptional activity dependent on the specific 

residue that is affected. For example, tri-methylation of the lysine residue at position 4 

on H3 (H3K4me3) is associated with gene transcription, whereas, tri-methylation of 

the lysine at position 27 of H3 (H3K27me3) is associated with gene silencing (Alaskhar 

Alhamwe et al. 2018). 

 

1.2.2 Non-coding RNAs 
As previously mentioned, less than 1% of the genome encodes for functional proteins. 

There are thousands of transcripts termed non-coding RNA (ncRNA) which despite 

not being translated into proteins function in an epigenetic capacity to regulate 

transcriptional processes (Peschansky and Wahlestedt 2014). There are many 

different subcategories of ncRNAs which are generally divided into two categories, 

short ncRNA and long ncRNA. 

 

While there are several different classes of short ncRNA, the most commonly studied 

are microRNA (miRNA). MiRNAs, first discovered in 1993 (Lee, Feinbaum, and 

Ambros 1993), are ~22 nucleotides in length and function to alter the translation of 

mRNA into protein. In humans, over 2000 miRNAs have been identified (Hammond 

2015). The ability of a single miRNA to target several genomic sequences allows the 

majority of genes to be regulated by miRNAs (Zhang and Wang 2017). Typically 

miRNAs bind to the 3’ untranslated region of mRNA in the cytoplasm, via base pair 

complementarity, marking the transcript for degradation and subsequently repression 

expression (Peschansky and Wahlestedt 2014). Recent evidence has identified the 

presence of miRNA in the nucleus of cells (Roberts 2014) and when bound to 

enhancers miRNA can induce transcriptional activation by inducing histone 

modifications (Xiao et al. 2017).  
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Long ncRNAs, defined as ncRNA 200 bp or longer, are the least studied ncRNA (Frías-

Lasserre and Villagra 2017). Despite the lack of research on the function of long 

ncRNA, over 15,000 long ncRNA genes have been identified (Morlando and Fatica 

2018). Long ncRNAs are involved in guiding epigenetic regulators (acetyltransferases, 

methyltransferases, etc.) to specific genomic locations and controlling chromatin 

folding to allow communication between enhancers and promoters (Frías-Lasserre 

and Villagra 2017; Morlando and Fatica 2018). One of the most commonly studied 

long ncRNA Xist functions to inactivate one of the X chromosomes in females (Frías-

Lasserre and Villagra 2017). Xist transcripts coat the X chromosome, marking it to be 

silenced, and initiates histone modifications associated with transcriptionally inactive 

chromatin including acetylation and increased H3K27me3 (Ponting, Oliver, and Reik 

2009). 

 

1.2.3 DNA methylation 
DNA methylation involves the transfer of a methyl group from the methyl donor S-

adenosylmethionine (SAM) to the 5th carbon of a cytosine in a reaction catalysed by 

DNA methyltransferases (DNMTs) to form 5-methylcytosine (5mC; Figure 1.3) (Moore, 

Le, and Fan 2013). Methylation usually occurs at CpG dinucleotides (a cytosine 

followed by guanine); however, CpG dinucleotides only occur at 20% of the expected 

frequency, and ~80% of these CpG sites are methylated (Ehrlich et al. 1982) indicating 

some selection pressure on these nucleotides. Despite an underrepresentation of CpG 

sites, there are regions within the genome with dense clusters of unmethylated CpG 

dinucleotides which are referred to as CpG islands (Gardiner-Garden and Frommer 

1987). These CpG islands overlap with the promoter region of ~60-70% of human 

genes (Saxonov, Berg, and Brutlag 2006) and function to restrict gene expression 

(Illingworth and Bird 2009). 
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Figure 1.3 - The DNA methylation process. DNMTs catalyse the addition of a methyl group from the 
methyl donor S-adenosylmethionine (SAM), which is converted into S-
adenosylhomocysteine (SAH), onto a cytosine forming 5-methylcytosine (5mC). 

 

DNA methylation was first demonstrated to influence gene regulation in the 1980s 

(Compere and Palmiter 1981). In promoter sequences, and the first exon (Brenet et 

al. 2011), DNA methylation is negatively associated with gene expression (Jones 

2012). The presence of methyl groups (i.e. methylated DNA) co-attracts methyl-

binding-proteins (MBP), which blocks transcription factors and RNA polymerase 

binding to the region surrounding the transcription start site (TSS) inducing an inactive 

chromatin state (Figure 1.4) (Bird and Wolffe 1999; Bogdanović and Veenstra 2009). 

While strong evidence exists for the impact of promoter methylation, the association 

between gene body methylation and gene expression is not as clear. Methylation of 

gene body CpG sites typically does not induce transcriptional silencing, suggesting 

that CpG methylation blocks transcription initiation but not transcription elongation 

(Jones 2012). Previously a  positive correlation has been reported between gene body 

methylation and gene expression (Aran et al. 2011), whereas, gene body methylation 

has also been suggested as a mechanism controlling exon splicing (Figure 1.4) 

(Chodavarapu et al. 2010; Shukla et al. 2011).  
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Figure 1.4 - The impact of different methylation states on gene transcription. Red circles indicate 
methylated CpG dinucleotides; Clear circles indicate unmethylated CpG dinucleotides. A) 
Lack of methylation in promoter or gene body leads to the transcription of full-length mRNA 
transcripts. B) Methylated promoter leads to the binding of methyl-binding proteins (MBP) 
blocking access to the transcription start site (TSS) preventing transcription. C) 
Unmethylated promoter leads the initiation of transcription; however, gene body 
methylation leads to alternative splicing and the formation of a shorter transcript. 
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1.2.3.1 DNA methyltransferases 

The DNMT family of enzymes, consisting of DNMT1, DNMT3A and DNMT3B, regulate 

the DNA methylation process (Moore et al. 2013). DNMT1, the most abundant DNMT 

in adult humans, is known as the maintenance DNMT and preferentially targets 

hemimethylated sequences to maintain methylation during DNA replication (Pradhan 

et al. 1999). DNMT3a and DNMT3b are required for de novo methylation and have 

equal affinity for hemimethylated and non-methylated DNA allowing them to methylate 

previously unmethylated sequences (Okano et al. 1999). Despite the classification as 

maintenance and de novo DNMTs, there is a degree of functional overlap between the 

DNMTs (Chen et al. 2003). DNMT3L, a third member of the DNMT3 exists; however, 

it lacks the ability to methylate DNA. Despite a lack of methylase activity, DNMT3L can 

increase the activity of DNMT3a and DNMT3b by increasing their ability to bind to the 

methyl donor SAM (Kareta et al. 2006). The expression of miRNAs have been 

demonstrated to be a key regulator of DNMT mRNA expression indicating further 

overlap between epigenetic mechanisms (Duursma et al. 2008; Fabbri et al. 2007; 

Garzon et al. 2009; Xu et al. 2017). 

 

1.2.3.2 DNA demethylation 

Passive DNA demethylation can occur through the inhibition of DNMT enzymes which 

induces hypomethylation by preventing the maintenance of methylation following cell 

replication (Chen et al. 2003). The lack of an enzyme capable of directly cleaving 

methyl groups off DNA indicates that other mechanisms must control the active DNA 

demethylation process (Jones 2012). The most commonly studied mechanism of 

active demethylation is via the ten-eleven translocation methylcytosine dioxygenase 

(TET) family of enzymes which can oxidise 5mC into 5-hydroxymethylcytosine 

(5hmC). TET can further oxidise 5-hmC into 5-formylcytosine and then 5-

carboxycytosine. Thymine DNA glycosylase can then cleave the by-products of TET 

oxidation off DNA via the base-excision repair pathway to form cytosine (Figure 1.5) 

(Moore et al. 2013). DNMTs have been implicated as having a potential role in the 

active demethylation process. In oxidative conditions, DNMTs can switch from being 

DNA methylases to converting 5-hmC into cytosine (Chen, Wang, and Shen 2012), 

whereas in the presence of high intracellular calcium concentrations, DNMTs can 

convert 5mC into cytosine (Chen, Wang, and Shen 2013). 
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Figure 1.5 – Active DNA demethylation cycle. Modifications between steps are shown in red. DNMT, 
DNA methyltransferase; TET, Ten-eleven translocation methylcytosine dioxygenase; 
TDG, Thymine DNA glycosylase; 5mC, 5-methylcytosine; 5hmC, 5-
hydroxymethylcytosine; 5fC, 5-formylcytosine; 5caC, 5-carboxycytosine.  
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2.1 Introduction 
As described in Chapter 1, there are overlapping functions between the different 

epigenetic modifications to regulate mRNA expression of the underlying genomic 

sequence. Each of these epigenetic modifications are critical during development 

(Rivera and Ren 2013) and throughout life in response to both internal and external 

stimuli and are essential for normal healthy physiology and to adapt to a changing 

environment (Alegría-Torres, Baccarelli, and Bollati 2011; Grazioli et al. 2017; 

Kanherkar et al. 2014; Martin and Fry 2018). While the optimal approach would be to 

investigate each of the epigenetic modifications (histone modifications, non-coding 

RNAs and DNA methylation) to gain an insight on the overall epigenetic impact, this 

approach is not always feasible because of the high analysis costs associated with 

epigenetic analysis. Studies typically focus on one of the epigenetic modifications, 

most commonly DNA methylation, to investigate the epigenetic consequence of 

environmental stimuli on health. The dysregulation of the methylome has been 

associated with the development of diseases including global hypomethylation and 

various forms of cancer (Friso et al. 2013), ischemic heart disease and stroke 

(Baccarelli et al. 2010); whereas, global hypermethylation is associated with type 2 

diabetes (Simar et al. 2014).  

 

The plasticity of the epigenome is highlighted by the influence of various environmental 

stimuli on alterations of DNA methylation. An emerging area of research is the impact 

of lifestyle interventions on the methylome. The term lifestyle is used to describe the 

usual way of life of an individual and includes a range of different factors including, but 

not limited to, exercise, diet, smoking status and sleeping patterns (Alegría-Torres et 

al. 2011). These lifestyle factors are intertwined with health and have been the subject 

of intense research, partly motivated by increasing rates of chronic diseases in 

industrialised societies. While the sequence of the genome is critical determining 

health, there is the potential for these lifestyle factors to induce significant remodelling 

of the methylome (Alegría-Torres et al. 2011; Choi and Friso 2010; Grazioli et al. 

2017). The focus of this thesis was the association between lifestyle interventions 

(exercise interventions and fatty acid (FA) supplementation) and DNA methylation. 

The following section reviews the current understanding of the impact of exercise 

interventions, and supplementation of dietary fatty acids on DNA methylation.  
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2.2 Exercise 
Physical inactivity is among the top 10 risk factors for all diseases and is reported to 

be responsible for 9% of all deaths worldwide (Lee et al. 2012). The American College 

of Sports Medicine recommends that most adults (18–65 years) engage not only in 

moderate-intensity aerobic training (≥30 min.d−1 on ≥5 d.wk.−1 for a total of 

≥150 min.wk.−1) but also resistance exercise for each of the major muscle groups 

(Garber et al. 2011). Several studies have reported that both aerobic and resistance 

exercise can improve risk factors related to different diseases (Ceci et al. 2014) and 

reduce the incidence of lifestyle diseases including cardiovascular disease, type 2 

diabetes and chronic obstructive pulmonary disease (COPD) (Mador et al. 2004; 

Matelot et al. 2016; Sigal et al. 2007). Although the benefits of exercise are well 

reported, a third of the world’s population fails to achieve the prescribed exercise 

recommendations (World health organisation 2010).  

 

The mechanisms underlying the exercise-induced health benefits remain to be fully 

elucidated. One suggested mechanism is via the extensive transcriptional changes 

induced by both acute exercise and exercise training for the adaptation process to 

occur (Coffey and Hawley 2007; Egan and Zierath 2013; Gjevestad et al. 2017; 

Gjevestad, Holven, and Ulven 2015; Zierath and Hawley 2004). It is thought that 

exercise-induced alterations to the epigenome are a contributing factor underlying this 

change in mRNA expression as a result of exercise. Over the past decade, an 

increasing number of studies have investigated the impact of different exercise 

interventions on DNA methylation and the subsequent impact of transcriptional control 

in a range of different tissues including leukocytes, skeletal muscle and adipose tissue. 

The following section covers the impact of aerobic and resistance exercise 

interventions on DNA methylation patterns. Articles were included in this review if they 

investigated the interaction between DNA methylation and either acute exercise or 

exercise training in humans.  

 

  



 15 

2.2.1 Aerobic Training studies 
The majority of exercise studies have investigated the impact of aerobic exercise on 

the DNA methylation. Studies investigating the impact of global DNA methylation have 

so far failed to determine any change in global DNA methylation following training 

(Duggan et al. 2014; King-Himmelreich et al. 2016; Lindholm et al. 2015). A 

methodological flaw with global methylation techniques is the limited conclusions 

which can be made because it only provides an overview of the directionality of the 

changes and not an indication of the individual CpG sites which are changing (Lisanti 

et al. 2013). Therefore, although these global studies may have determined that there 

is no net change in methylation; it cannot be determined that the methylome has not 

undergone extensive remodelling resulting in no absolute change in methylation. 

While some of the studies have also used either gene-specific (King-Himmelreich et 

al. 2016) or genome-wide association (EWAS) (Lindholm et al. 2015) investigation of 

methylation of gain insight of the impact on actual CpG sites, others have not (Duggan 

et al. 2014). 

 

In support of the limitation of global analysis, the genome-wide investigation of three-

months of aerobic exercise training in one leg by Lindholm et al., (2015) mentioned 

above identified altered DNA methylation of 4,919 CpG sites (839 > 5%) in skeletal 

muscle suggesting extensive remodelling of the genome. The function of pathways 

regulated were identified to be involved with muscle structure, function, and 

bioenergetics, suggesting that epigenetic changes are at least associated with 

adaptation within the muscle. Two other EWAS of aerobic training have been 

conducted in skeletal muscle and have indicated a hypomethylation response induced 

by exercise training (Nitert et al. 2012; Rowlands et al. 2014). In a cohort of obese 

Polynesians with type 2 diabetes (n = 18) the impact of aerobic exercise training was 

investigated in half of the participants and determined a net hypomethylation with 

pathway analysis of the significant sites that were differentially methylated indicating 

functions in metabolism; cardiovascular development and function; and hematological 

system development and function (Rowlands et al. 2014).  

 

In individuals with family history of diabetes, a six-month training intervention 

consisting of predominately aerobic based exercises (three times per week for one 
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hour), induced differential methylation of 134 genes (Nitert et al. 2012). The majority 

of the genes were hypomethylated with only 19 genes becoming hypermethylated. 

The hypomethylated genes included RUNX1 and MEF2A, which are key transcription 

factors involved in exercise training adaptation (McGee et al. 2006), and PPARGC1A 

which encodes for peroxisome proliferator-activated receptor gamma, co-activator 

alpha (PGC-1α) and considered to be the master regulator of mitochondrial biogenesis 

(Ventura-Clapier, Garnier, and Veksler 2008). Interestingly a separate analysis of 

adipose tissue from the same cohort detected a global hypermethylation response and 

modulated methylation of 17,975 CpG sites in 7,663 genes (Rönn et al. 2013). The 

extensive hypermethylation indicated that the methylome of adipose tissue is 

remodelled following exercise training; however, the response is opposite to skeletal 

muscle (hypomethylation vs hypermethylation). These data provide strong evidence 

of the tissue-specific DNA methylation response which can occur. 

 

Aerobic exercise training has also been demonstrated to alter the methylation profile 

in blood leukocytes (Denham, O’Brien, Marques, et al. 2015; Zhang et al. 2015). A 

four-week exercise training intervention in previously untrained healthy males (n = 26) 

was sufficient to alter the methylation (between 0.1% to 62.8%) in ~200,00 CpG sites. 

Overall the response favoured a hypomethylation response with over 120,000 sites 

decreasing in methylation. Interestingly the methylation of UNG, which is involved in 

base-excision repair during demethylation, and various miRNA genes were increased 

following exercise. These data provide a suggested pathway for multiple epigenetic 

modifications working together to elicit exercise adaptions. Six-months of regular low-

intensity exercise has also been demonstrated to be sufficient to induce an altered 

methylation profile in leukocytes of elderly individuals (Zhang et al. 2015). Following 

the exercise training, 40 genes were differentially methylated in the exercise group 

compared to the control group. Within this study, they also used a gene-specific 

approach to confirm the findings of hypermethylation of NFκB2, which is known as the 

master gene of inflammation (Tak and Firestein 2001). The same exercise intervention 

as reported by Zhang et al. (2015) has previously been demonstrated to induce 

hypermethylation of the ASC gene, which is a mediator of inflammatory signalling 

(Nakajima et al. 2010). Interestingly the methylation of the gene was determined to be 

decreased in an older control group compared to a younger group suggesting exercise 

may help to recover the age-associated decline in ASC gene methylation (Nakajima 
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et al. 2010). Taken together, these data indicate that that long-term exercise may 

suppress the expression of cytokines through increased DNA methylation of genes, 

including NFκB2, related to inflammatory processes (Nakajima et al. 2010; Zhang et 

al. 2015).  

 

Aside from the inflammatory response, the other main pathway identified to be 

regulated by exercise interventions in EWAS were metabolism and mitochondrial 

biogenesis. Gene-specific analysis have investigated the impact of genes related to 

these processes. Physical inactivity, although not an exercise intervention, in the form 

of nine days of bed rest has been reported to be sufficient to induce significant 

hypermethylation of the PPARGC1A promoter in the skeletal muscle of a cohort of 

young healthy participants (n = 20)(Alibegovic et al. 2010), the opposite to the 

previously reported hypomethylation reported following exercise training (Nitert et al. 

2012). After completing the period of bed rest, participants then completed a four week 

aerobic training period which was insufficient to fully return PPARGC1A methylation 

to baseline values (Alibegovic et al. 2010). These data indicate the full relationship 

PPARGC1A methylation has with exercise (or a lack of exercise) and that even short 

durations of physical inactivity can cause relatively persistent modifications to the 

methylome. 

 

 In the study by King-Himmelreich et al. (2016) discussed above, the exercise 

intervention was insufficient to alter global DNA methylation in leukocytes; however, 

when a gene-specific approach was used the methylation of a single CpG site in the 

AMPKa2 gene promoter was hypermethylated. AMPK is known as a critical molecular 

sensor and is activated by elevated by increases in the AMP/ATP ratio as a 

mechanism to maintain energy homeostasis (Witczak, Sharoff, and Goodyear 2008), 

although well characterised in skeletal muscle in response to exercise the regulation 

in leukocytes is poorly studied (Quentin et al. 2011); therefore, the function of the 

hypermethylated AMPKa2 promoter in leukocytes is unknown.  
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2.2.2 Acute bouts of aerobic exercise 
The previous aerobic training studies demonstrate that regular exercise provides a 

sufficient stimulus to exert significant changes to the methylome and alter mRNA 

expression patterns, potentially one of the mechanisms controlling the exercise-

induced adaptation process. The impact of acute aerobic exercise on DNA methylation 

is only starting to be elucidated. 

 

The genome-wide influence of exercise on DNA methylation in leukocytes was 

analysed in a cohort of endurance trained males (n = 8) (Robson-Ansley et al. 2014). 

The exercise bout consisted of a 120-minute treadmill run at 60% of vV̇O2max 

interspersed with sprints at 90% of vV̇O2max for the last 30 seconds of every 10 

minutes, followed by a 5 km time trial and has previously been demonstrated to 

transiently induce elevated IL-6 (Walshe et al. 2010). No significant changes in 

methylation were detected following exercise suggesting a limited impact of acute 

exercise on leukocyte methylome; however, the DNA methylation of 11 genes was 

significantly correlated to the exercise-induced increase in plasma IL-6 concentration 

immediately post-exercise. The majority of the genes identified were involved in 

immune activities, including IRAK3 which is a key inhibitor of inflammation associated 

with metabolic syndrome and obesity. 

 

Interestingly in a cohort of COPD patients (n = 10), a single training session of 

concurrent exercise was sufficient to decrease global methylation levels in plasma (da 

Silva et al. 2017). However, following eight weeks of training (3 sessions per week), 

there was no impact following a further acute bout of exercise. The decrease in 

methylation following a single bout in untrained individuals may occur as a process for 

the adaptation to the exercise bout whereas, consistent with the findings of Robson-

Ansley et al. (2014), the lack of hypomethylation following eight-weeks of training 

suggests that acute exercise is not sufficient to alter the methylome of trained 

participants. The lack of response in trained individuals may be explained if the 

exercise-induced adaptations associated with the bout exercise have occurred; 

therefore, the methylation response may be maintained and not responsive to future 

bouts of exercise. 
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Alternatively, the inconsistent findings between pre- and post-training acute exercise 

in the study by da Silva et al., (2017) could be explained by a methodological flaw in 

the selection of plasma samples as the source of DNA for analysis. Increased cell-free 

DNA has been reported following exercise and muscle tissue is likely to be the source 

of increased DNA because of exercise-induced muscle damage (Atamaniuk et al. 

2004), however, the muscle adapts to the exercise stimulus and is thereafter less 

susceptible to damage following subsequent bouts of the same exercise (Peake, 

Nosaka, and Suzuki 2005). Therefore, the lack of results following training may be 

explained if different tissues are contributing to the pool of cell-free DNA because of 

differences in methylation between tissue types.  

 

In support of the training status based response, DNA hypomethylation was 

determined in a cohort of sedentary individuals following an acute bout of exercise to 

volitional fatigue (Barrès et al. 2012). The analysis was furthered by the investigation 

of promoter methylation, and mRNA expression of genes related to mitochondrial 

function and fuel usage in a cohort of sedentary males (n = 8). Barres and colleagues 

(2012), identified an exercise-intensity dependent hypomethylation of PPARGC1A, 

TFAM, PPARδ, MEF2A and PDK4 following high- (80% V̇O2peak), but not, low-intensity 

(40% V̇O2peak) energy-expenditure matched exercise. The decreases in methylation 

were identified alongside an increase in the mRNA expression of PPARGC1A, TFAM, 

PPARδ and PDK4; however, no change in mRNA expression of MEF2A was identified 

despite a hypomethylation response. Previously exercise intensity has been identified 

as the critical limiting factor in PGC-1α activation within skeletal muscle (Egan et al. 

2010); however, these results were the first to demonstrate a role of methylation in 

regulating the exercise-induced increase in key signals for increased mitochondrial 

biogenesis.  

 

The findings of exercise-induced DNA methylation of PPARGC1A are of particular 

interest because of its role as a master regulator of mitochondrial biogenesis (Ventura-

Clapier et al. 2008). Further investigation of the exercise-induced epigenetic activation 

of PPARGC1A was performed in a recent study in healthy males (n – 11) who 

exercised on a cycle ergometer at 50% of V̇O2max until they expended 650 kcal 

(Bajpeyi et al. 2017). Skeletal muscle nucleosome occupancy surrounding the CpG 

site -260 bp from the TSS of PPARGC1A was reduced and mRNA expression 
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increased (Bajpeyi et al. 2017). Further when the cohort was divided into high and low 

responses based on the hypomethylation of the -260 CpG site, those with the largest 

hypomethylation response (high responders) displayed a significant increase in 

PPARGC1A mRNA expression. These results provide strong evidence for the 

functional role of PPARGC1A methylation in controlling the post-exercise response of 

PPARGC1A mRNA expression, a key molecular adaptation for mitochondrial 

biogenesis. 

 

Acute exercise (120 min steady state exercise at ~50% of V̇O2peak) in a cohort of 

trained cyclists (n = 7) has also been investigated for effect on skeletal muscle 

methylation for genes related to mitochondrial biogenesis and fuel utilisation (Lane et 

al. 2015). Methylation of COX411 and FABP3 increased four hours post exercise 

independent of nutritional status (both fasted – carbohydrate depleted - and fed – 

normal -conditions), whereas, PPARδ only increased in methylation in the fasted trial. 

Although the impact of methylation changes on mRNA were unclear, these data 

indicate that acute exercise in trained individuals induced a hypermethylation 

response. When considering these three candidate gene studies together, the limited 

impact in trained compared to untrained individuals suggests that training status may 

be an important factor in determining the methylation response to acute aerobic 

exercise (Bajpeyi et al. 2017; Barrès et al. 2012; Lane et al. 2015). 

 

These acute exercise studies indicated that exercise is sufficient to induce global 

hypomethylation in untrained individuals (Barrès et al. 2012; da Silva et al. 2017); 

however, there are genome-wide epigenetic consequences in exercise-trained 

individuals (Robson-Ansley et al. 2014; da Silva et al. 2017). Potentially the lack of 

extensive reprogramming of the methylome in trained individuals is because the 

exercise-induced adaptation process has already occurred and the exercise stimuli 

was insufficient to further alter methylation profiles (Robson-Ansley et al. 2014). 

Studies utilizing a candidate gene approach have focused on the methylation of genes 

related to mitochondrial biogenesis and fuel utilisation and demonstrated a 

hypomethylation response in skeletal muscle (Bajpeyi et al. 2017; Barrès et al. 2012; 

Lane et al. 2015); however, there is a lack of investigation in other tissues, including 

leukocytes. 
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2.2.3 Resistance exercise studies. 
Compared to the number of studies which have assessed the impact of aerobic 

exercise on DNA methylation, a lack of literature exists on the impact of resistance 

exercise (Denham et al. 2016; Dimauro et al. 2016; Rowlands et al. 2014; Seaborne 

et al. 2018). The first study to investigate the impact of resistance exercise, examined 

the impact of a 16-week resistance training protocol on genome-wide DNA methylation 

profiles from skeletal muscle of Polynesian adults (n = 9) with type 2 diabetes 

(Rowlands et al. 2014). The resistance training protocol was sufficient to induce a 

global hypomethylation response; however, aerobic training elicited a greater degree 

of hypomethylation, potentially suggesting that the genome is less responsive to 

resistance training compared to aerobic training. Investigation of the molecular 

pathways affected indicates that networks related to cellular assembly and 

organisation, cellular development, tissue morphology, and cardiovascular system 

were the most affected by resistance exercise. In support of the resistance-exercise-

induced hypomethylation reported by Rowlands et al., (2014), a 12-week explosive-

type resistance training protocol in a cohort of elderly individuals (70 – 75 yrs; n = 10) 

was sufficient to induce an 18% decrease in global leukocyte methylation (Dimauro et 

al. 2016); however, the ELISA based detection utilised prevents the identification of 

the CpG sites which are affected.  

 

A second study investigating the impact of resistance training on leukocyte methylation 

identified large-scale remodelling of the methylome following an eight-week resistance 

training protocol (3 sessions per week of 3 sets, 8-12 reps) in a cohort of healthy 

participants (n = 8) (Denham et al. 2016). In total altered DNA methylation (0.1 – 

27.2%) was identified in ~57,000 CpG sites with ~28,000 displaying hypermethylation 

and ~29,000 displaying hypomethylation providing more evidence that resistance 

exercise favours a hypomethylation response of the genome (the actual overall 

change in methylation is unknown). Various biological pathways were identified to be 

differentially methylated including type 2 diabetes, calcium signalling, axon guidance, 

and differentially methylated growth factors which are known to be critical for the 

anabolic impacts on skeletal muscle including insulin, insulin growth factor 1 receptor 

and growth hormone-releasing hormone (GHRH). Interestingly the mRNA expression 

of GHRH was also increase following the resistance training. Nonetheless, these data 
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suggest a role of resistance training in remodelling the leukocyte methylome. Despite 

the widespread remodelling of the methylome following resistance exercise it must be 

acknowledged that a previous study by the same authors identified a greater number 

of CpG sites increased in methylation and by a greater magnitude following aerobic 

training than resistance exercise (Denham, O’Brien, Marques, et al. 2015) which is 

consistent with the findings in skeletal muscle (Rowlands et al. 2014). 

 

The final study to have investigated the impact of resistance exercise is the most 

extensive to date (Seaborne et al. 2018). Seaborne et al., (2018) investigated the 

impact of an acute bout of resistance exercise, resistance loading, unloading and 

subsequent reloading on the skeletal muscle methylome in a cohort of previously 

untrained participants (n = 8). A similar number of CpG sites ~17,000 were 

differentially regulated across the acute, loading and unloading periods; however, 

following reloading a large increase in the number of differentially methylated CpG 

sites was identified (~27,000). Interestingly an overall hypomethylation response was 

detected at all time points with a similar number of sites becoming hypermethylated in 

all conditions (~8,000). The PI3K/AKT pathway, critical for growth and protein 

synthesis, was significantly enriched in all comparisons. Further analysis identified 18 

CpG sites which displayed an almost identical change in methylation across all 

experimental conditions indicating an important role for these sites in acute and 

chronic adaptation to exercise. Despite a shortage of literature investigating the impact 

of resistance exercise on DNA methylation, remodelling of the epigenome is 

suggested by all of these studies, especially for genes related to skeletal muscle 

growth, typically resulting in a greater hypomethylation compared to hypermethylation; 

however, the magnitude of the response is smaller following resistance exercise 

compared to aerobic exercise (Denham et al. 2016; Rowlands et al. 2014).  
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2.2.4 Summary of DNA methylation response to exercise 
Taken together the literature above clearly demonstrates that both acute and chronic, 

aerobic and resistance exercise is sufficient to modify the DNA methylome. Exercise, 

regardless of mode; intensity and duration, causes both hypomethylation and 

hypermethylation of specific CpG sites; however, hypomethylation is more frequently 

reported. One of the most commonly studied targets, PAPRGC1A, is hypomethylated 

following acute aerobic exercise and aerobic exercise training; however, it is unknown 

whether resistance exercise would alter PPARGC1A methylation. Despite no literature 

surrounding the methylation of PPARGC1A following resistance exercise, mRNA 

expression studies have shown resistance exercise can induce significant expression 

of PPARGC1A from an alternative promoter (Ruas et al. 2012; Silvennoinen et al. 

2015). These data suggest a potential epigenetic response which should be 

investigated in future studies. 

 

2.3 Nutrition 
Nutrition is one lifestyle factor which influences health throughout life.  

The Developmental Origins of Health and Disease hypothesis explains how 

abnormalities within the developmental environment impacts the epigenome and can 

transition into metabolic disease later in life (Gluckman and Hanson 2004). Maternal 

stress, birth weight and foetal malnutrition can all impact upon the developmental 

environment, and subsequently induce modifications to the epigenome which can 

endure throughout the lifespan and some are passed onto future generations. The 

consumption of certain nutrients and bioactive foods have been demonstrated to alter 

epigenetic profiles and subsequently alter gene expression and improve health. The 

majority of studies have focussed nutrients involved in the one-carbon metabolism 

cycle, such as folate, methionine, betaine and other B-vitamins, because of the critical 

role of one-carbon metabolism in the synthesis of SAM, which is the methyl donor for 

DNA methylation (Anderson, Sant, and Dolinoy 2012). Aside from these critical 

nutrients for one-carbon metabolism, other nutritional factors such as dietary FA 

intake, particularly omega-3 polyunsaturated fatty acids (n-3 PUFAs), can alter DNA 

methylation patterns.  
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The following section covers what FAs are, the dietary sources, the health implications 

and finally summarise what is currently known of the impact of FA consumption on 

DNA methylation. Articles were included in this review if they investigated the 

interaction between DNA methylation and PUFA in humans.  

 

2.3.1 Fatty acid background 

2.3.1.1 Fatty acid structure and nomenclature 

Fatty acids (FAs) are naturally occurring dietary components which have essential 

roles in metabolism, cell signalling, structure and function (Calder 2011; Rustan and 

Drevon 2005). All FAs consist of a hydrocarbon chain (most commonly an even 

number of carbons between 12-22) with a methyl group (CH3) at one end and a 

carboxyl group (COOH) at the other (Figure 2.1). The length and structure of the 

hydrocarbon chain results in the classification of FA based on different functional 

properties. FAs with no double bonds between carbon molecules in the hydrocarbon 

chain (i.e. saturated with hydrogen) are termed Saturated FAs (SFA), whereas, the 

inclusion of double bonds leads to the classification as an unsaturated FA. 

Unsaturated FAs can further be separated into Monounsaturated FAs (MUFA) when 

only one double bond exists, and Polyunsaturated FAs (PUFA) when more than one 

double bond is present (Ratnayake and Galli 2009). 

 

Figure 2.1 – Chemical structure of commonly studied fatty acids.  
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FAs are typically called by their common (or trivial) name, which is typically derived 

from the compound from which the FA was first identified. Although commonly used 

these names do not indicate the structure of the FA, therefore, systematic names and 

a shorthand notation was developed. The systematic name for FA is determined by 

the number of carbons and double bonds (also the orientation) in the hydrocarbon 

chain (Table 2.1). The location of double bonds is indicated by the carbon number it 

occurs at (counted from the carboxyl group). While this system works well for SFAs 

and MUFAs, it becomes complicated for PUFAs. Subsequently, a shorthand notation 

for FAs has become increasingly used. The notation identifies the number of carbons, 

the number of double bonds and the location of the first double bond counted from the 

methyl group. The location of the double bond from the methyl group is referred to as 

the omega number (indicated by n-X). The most common positions for these double 

bonds are n-3, n-6 and n-9 (Ratnayake and Galli 2009).  

 

Table 2.1 - Examples of the common nomenclature of commonly studied fatty acids 

Common name Systematic name Class 
Shorthand 
notation 

Palmitic acid Hexadecanoic acid SFA 16:0 

Oleic acid Cis-9-Octadecenoic acid MUFA 18:1n-9 

Arachidonic acid (AA) 
All cis 5, 8, 11, 14-

Eicosatetraenoic acid 
n-6 PUFA 20:4n-6 

Eicosapentaenoic acid 

(EPA) 

All cis 5, 8, 11, 14, 17-

Eicosapentaenoic acid 
n-3 PUFA 20:5n-3 

Docosahexaenoic acid 

(DHA) 

All cis 4, 7, 10, 13, 16, 19-

Docosahexaenoic acid 
n-3 PUFA 22:5n-3 

 

2.3.1.2 Dietary requirement and sources of FAs 

In the early 1900’s, dietary fat was only thought of as a source of calories and not 

considered to be important for normal physiology. Seminal work by Burr and Burr 

changed this view when they demonstrated diets lacking FAs caused a deficiency 

syndrome in rats which frequently lead to death; however, the inclusion of a few drops 



 26 

of lard into the diet was sufficient for the rats to recover (Burr and Burr 1929). A further 

study by the same authors demonstrated the inclusion of the PUFAs linoleic acid (LA; 

18:2n-6) alpha-linolenic acid (ALA; 18:3n-3) was sufficient for the animals to return to 

health, whereas, the addition of SFAs to the diet had no impact on the animal’s 

condition (Burr and Burr 1930). 

 

Unlike many of the biologically important FAs which can be synthesised within the 

body; LA and ALA cannot be synthesised and must be gained from an individual’s diet. 

The requirement for the dietary intake of these essential FAs is caused by the absence 

of the enzymes (D12- and D15-desaturase) which are required to desaturate FAs at 

the n-6 and n-3 position in mammals (Calder 2004). Fortunately, LA is the most 

abundant PUFA within the human diet and is found in a range of vegetable oils 

including sunflower, corn and soybean. ALA is less common within the human diet 

(~10% of the amount of LA) and is commonly found in walnuts and both linseed and 

canola oil (Russo 2009) 

 

Despite an inability to synthesise LA and ALA, humans do possess the ability to 

metabolise these FAs into longer chain derivatives. LA can be metabolised into 

arachidonic acid (AA; 20:4n-6), whereas, ALA can be converted into eicosapentaenoic 

acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in a series of 

elongation and desaturation steps (Figure 2.2). The same enzymes (Δ-5 and Δ-6 

desaturases, and elongase 2 and 5) are used for the synthesis of longer chain n-3 and 

n-6 fatty acids. The desaturation by Δ-5 and Δ-6 desaturases are the key rate-limiting 

steps in the pathways leading to competition between n-3 and n-6 metabolism 

(Hyekyung P Cho, Nakamura, and Clarke 1999; Hyekyung P. Cho, Nakamura, and 

Clarke 1999). A higher affinity exists between the desaturase enzymes and n-3 PUFAs 

leading to the suppression of n-6 PUFA metabolism (Simopoulos 2006).  

 

Although humans can synthesise long-chain PUFAs, the conversion process is poor, 

and the primary source of these PUFAs come from the diet (Plourde and Cunnane 

2007). The main dietary sources of EPA and DHA come from oily fish and fish oil 

supplements; whereas, AA is found in meat, eggs and dairy products (Kaur, Chugh, 

and Gupta 2014). The original human diet was thought to contain an equal ratio of n-
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6 to n-3 PUFAs; however, the present-day western diet is thought to contain a ratio 

around 20:1(Calder 2011; Simopoulos 2006). The increase in n-6 PUFA content of the 

diet is associated with a more pro-inflammatory state and increased risk of disease 

(Calder 2012). 

 

 

Figure 2.2 - Figure adapted from Glaser, Heinrich and Koletzko (2010). Omega 3 and Omega 6 
Polyunsaturated Fatty Acid metabolism. The Δ6-desaturase and Δ5-desaturase enzymes 
are encoded by the fatty acid desaturase 1 (FADS1) and fatty acid desaturase 2 (FADS2) 
genes. Eicosanoids and Docosanoids are key mediators and regulators of inflammation. 
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2.3.2 PUFA associations with disease 
Populations with diets high in n-3 PUFAs have been demonstrated to have a lower 

incidence of chronic disease (Simopoulos 1999). Cross-sectional epidemiology 

research has suggested that a high serum concentration of EPA was associated with 

a lower prevalence of CAD and improvements of triglyceride metabolism and HDL 

metabolism, and systemic inflammation (Tani et al. 2015). For example, the 

Mediterranean diet, which is high in MUFAs and PUFAs but low in SFA, is associated 

with positive health consequences including reductions in risk factors for 

cardiovascular disease (Estruch et al. 2018).  

 

Studies supplementing n-3 PUFAs have sought to investigate if the dietary n-6/n-3 

ratio has an impact upon disease manifestation and inflammation in humans. An 

increased ratio is associated with obesity (Simopoulos 2016), whereas, studies have 

reported that n-3 PUFAs have a beneficial effect on cardiovascular disease and 

chronic heart disease, but n-6 PUFA intake did not influence this relationship (Fontes 

et al. 2015; Mozaffarian et al. 2005). Evidence that the n-3 PUFAs, EPA and DHA, can 

modulate inflammation has come primarily come from in vitro work (Trebble et al. 

2003; Verlengia et al. 2004), and animal models (Olson et al. 2013; Richard et al. 

2016; Yaqoob and Calder 1995). The association in human studies is weaker because 

of the more complex environmental factors which need to be controlled (Itariu et al. 

2012; Tartibian, Maleki, and Abbasi 2011). 

 

While several mechanisms of action for the anti-inflammatory impact and protective 

health benefits of n-3 PUFA supplementation have been reported they remain to be 

fully elucidated (Calder 2015). Evidence suggests that n-3 PUFAs may exert health 

consequences via an extensive alteration to the transcriptome (Bouwens et al. 2009; 

Rudkowska et al. 2013; Rundblad et al. 2018); however, they may also occur as a 

result of altered epigenetic modifications, including DNA methylation. 

  



 29 

2.3.3 PUFAs and DNA methylation  

2.3.3.1 Cross-sectional studies 

The concentrations of the n-3 PUFA EPA and n-6 PUFA AA in whole blood have been 

demonstrated to be positively associated with global DNA methylation in a cohort of 

lactating infants (n = 49) and a cohort adult male (n = 12) (de la Rocha et al. 2016). 

These data indicate that increased whole blood PUFA content is associated with 

increased global DNA methylation, whereas, global hypomethylation is associated 

genomic instability (Chen et al. 1998; Li et al. 2012) and cancer (Ehrlich 2009), 

suggesting potential health benefits. The nature of global DNA methylation prevents 

the identification of the specific regions of the genome which are associated with EPA 

and AA content. 

 

EWAS have identified the specific genomic locations which associate with FA intake 

(Voisin et al. 2014) and red blood cell FA content (Aslibekyan et al. 2014). In a cohort 

of Yup’ik individuals with red blood cell n-3 PUFA content in either the top (n = 92) or 

bottom (n = 93) three deciles, DNA methylation was demonstrated to be significantly 

different at 21 CpG sites (Aslibekyan et al. 2014). These sites were related to genes 

associated with inflammation and oxidative stress suggesting an epigenetic role of n-

3 PUFAs in these processes. Interestingly, positive associations were determined for 

the majority of these CpG sites (17/21) indicating potential global hypermethylation 

similar to previously reported results (de la Rocha et al. 2016).  

 

In a cohort of Greek pre-adolescents (n = 69) estimated dietary intake of FA classes 

(PUFA, MUFA and SFA) from food frequency questionnaires were investigated for 

association with DNA methylation (Voisin et al. 2014). A total of 299 unique CpG sites 

were associated with PUFA/SFA, MUFA/SFA or total unsaturated FA/SFA intakes and 

96 of these CpG sites were common to at least two groups. While no significant 

pathways were identified for MUFA intake, 34 pathways were enriched for PUFA 

intake including a group of pathways related to adipogenesis and another related to 

leptin and IL6. Total unsaturated FA intake enriched five pathways including a group 

related to NFκB. Unlike the previous two studies, the direction of association for the 

majority of CpG was negative, which would suggest potential global hypomethylation 

with consumption of unsaturated FAs. Potentially the difference in the direction of 
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association may be explained by the use of estimated intake of FAs compared to the 

FA content of biologically relevant tissues which directly impact the cell environment. 

It has been demonstrated that there are gender differences in metabolism and storage 

of n-3 PUFAs (Burdge, Jones, and Wootton 2002; Burdge and Wootton 2002; Lohner 

et al. 2013); therefore, FA intake may not accurately reflect biologically accessible FAs 

which would be responsible for altering DNA methylation patterns. 

 

The endogenous metabolism of the PUFAs ALA and LA into the longer chain n-6 and 

n-3 PUFAs occurs through various elongation and desaturation stages (Figure 2.2). 

The desaturation occurs by enzymes encoded by the FADS1 and FADS2 genes and 

have been demonstrated to be the rate-limiting stages in the metabolic pathway 

(Hyekyung P Cho et al. 1999; Hyekyung P. Cho et al. 1999). Genetic polymorphisms 

in these genes have been demonstrated to alter the PUFA profile within the body 

(Chilton et al. 2014; Glaser et al. 2010). Two separate cross-sectional studies have 

investigated the association between FA profiles and DNA methylation levels of these 

critical genes for FA metabolism (Cui et al. 2016; Rahbar et al. 2018). In the first study, 

an inverse relationship was detected between DNA methylation of a CpG site between 

the proximal promoters of FADS1 and FADS2 and the AA content of prostate tumours. 

Further negative associations with other FA ratios which indicate the efficiency of n-6 

biosynthesis and desaturation by FADS1 were also detected (Cui et al. 2016). In two 

distinct cohorts of healthy adults, leukocyte and CD4+ cell DNA methylation of the 

FADS2 promoter was negatively associated with circulating levels of Dihomo-g-

linolenic acid (DGLA); whereas, a positive association was detected between FADS2 

promoter methylation and the DGLA / AA ratio which indicative of the efficiency of 

desaturation by FADS1 (Rahbar et al. 2018). Despite differences in the direction of the 

associations, which may be explained by the different disease states of the cohorts, 

these studies suggest FA profiles may alter the DNA methylation of FADS genes and 

control the efficiency in which individuals convert LA into AA which may alter 

inflammatory processes. 

 

Associations between inflammatory cytokines have been investigated in two cross-

sectional candidate gene studies (Hermsdorff et al. 2013; Ma et al. 2016). These 

candidate gene studies support the findings of the previous EWAS by demonstrating 
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that DNA methylation of genes related to inflammatory processes may be altered by 

PUFA intake (Hermsdorff et al. 2013; Voisin et al. 2014) and red blood cell n-3 PUFA 

content (Aslibekyan et al. 2014; Ma et al. 2016). In a large cohort of 848 individuals, 

negative correlations were determined between red blood cell n-3 PUFA content and 

both IL6 methylation and IL-6 protein concentrations (Ma et al. 2016). In a cohort of 

adult males (n = 40), dietary n-6 PUFA intake was determined to be one of the critical 

factors in determining the DNA methylation of the inflammatory cytokine TNF 

(Hermsdorff et al. 2013). TNF DNA methylation was negatively associated with n-6 but 

not n-3 PUFA intake. Hermsdorff and colleagues (2013) also report a negative 

association between TNF DNA methylation and circulating protein concentrations of 

TNF-a, suggesting that dietary intake of n-6 PUFAs may regulate systemic 

inflammatory patterns. 

 

While the cross-sectional studies above indicate a potential epigenetic role of PUFA 

supplementation, particularly for genes associated with inflammation and metabolism, 

these studies are limited by their observational design and need to be followed up with 

controlled supplementation studies to determine whether PUFA supplementation is 

sufficient to alter DNA methylation and influence metabolic and inflammatory 

phenotypes. 

 

2.3.3.2 Gestational and infant supplementation  

The plasticity of the epigenome alters throughout the lifespan of an organism. During 

gestation, there is a period of global demethylation, followed by a remethylation phase 

which is critical for cell differentiation during development (Hackett and Surani 2013). 

Throughout gestation, the fetal epigenome is susceptible to the maternal uterine 

environment including exposure to smoking, famine and toxins which can alter the 

DNA methylation profile (Odom and Taylor 2010) of the infant. One of the critical 

maternal exposures has been demonstrated to be material nutrition which has led to 

the investigation of the impact of maternal PUFA supplementation on DNA methylation 

patterns in the offspring. 

 

The impact of maternal n-3 PUFA supplementation on global DNA methylation, using 

LINE-1 methylation as a surrogate measure, has been investigated in two separate 
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studies (van Dijk et al. 2016; Lee et al. 2013). The first study supplemented mothers 

from 18-22 weeks gestation until birth with either 0.4 g/d of DHA (n = 131) or olive oil 

placebo (n = 130) and assessed DNA methylation in cord blood. No difference in LINE-

1 DNA methylation was detected in the overall cohort; however, an increase in LINE-

1 methylation was detected in mothers who smoked and were supplemented with DHA 

compared with those who smoked in the control group (Lee et al. 2013). Previously 

LINE-1 DNA methylation has been demonstrated to be significantly reduced in 

individuals who smoke (Searles Nielsen et al. 2012), and lower LINE-1 DNA 

methylation is associated with cancer (Ehrlich 2009). The interaction between smoking 

status and supplementation highlights the complex relationship between DNA 

methylation and the environment and suggests a potential protective mechanism of 

maternal DHA supplementation to negate the epigenetic impact of adverse health 

exposures. The second study to investigate the impact of maternal supplementation 

of n-3 PUFA on LINE-1 methylation, supplemented mothers from 20 weeks’ gestation 

until birth with either 1.5 g/d of n-3 PUFA (n = 517) or vegetable oil (n = 474) and 

assessed DNA methylation in dried blood spots collected from the children at birth and 

5 years old (van Dijk et al. 2016). No difference in LINE-1 methylation was detected 

either at birth of 5 years of age. 

 

While LINE-1 methylation has been demonstrated to be a good surrogate measure of 

global DNA methylation (Lisanti et al. 2013), it does not indicate the epigenetic 

consequence at a gene-specific level. Van Dijk and colleagues (2016), conducted an 

EWAS in a subset of samples (n = 369) to identify differentially methylated regions 

(DMRs) caused by n-3 PUFA and control supplementation. In the subset analysis, a 

small impact of supplementation was detected with 21 DMRs identified at birth for 

genes related to immune function, brain function and cell membranes. The only other 

investigation of maternal n-3 PUFA supplementation on genome-wide methylation 

failed to detect any DMRs between those supplemented with 3.7 g/d of n-3 PUFA or 

placebo from 20 weeks of gestation to birth following the adjustment for multiple testing 

(Amarasekera et al. 2014). Similarly, the supplementation of nine-month-old infants 

with 1.6 g/d of n-3 PUFAs or 3.1 g/d of placebo (sunflower oil) for nine months failed 

to determine any DMRs following the adjustment for multiple testing (Lind et al. 2015).  
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The difference in results between these three EWAS may be explained by different 

sample sizes. A larger sample size was used in the study by Van Dijk et al. (2016) (n 

= 369) which detected a small impact of supplementation on DNA methylation 

compared to the studies by Amarasekera et al., (2014)(n = 70) and Lind et al., (2015)(n 

= 12). Therefore, a large sample size may be required to detect a difference in 

methylation because of the stringent adjustment for multiple testing used when using 

an EWAS design. The study by Lee and colleagues (2013) described above, utilised 

a candidate gene approach to examine the impact of maternal n-3 PUFA 

supplementation on methylation of inflammatory cytokines. No difference in candidate 

gene DNA methylation (IFNg, TNF, IL13, GATA3, STAT3, IL10 and FOXP3) was 

detected between supplement groups. 

 

Unlike the cross-sectional studies above which provided consistent associations 

between PUFAs and DNA methylation of CpG sites related to inflammation 

(Aslibekyan et al. 2014; Ma et al. 2016; Voisin et al. 2014) and metabolism (Voisin et 

al. 2014), there is limited evidence of altered DNA methylation induced by maternal / 

infant supplementation of n-3 PUFAs. Potentially the lack of association following 

supplementation may be explained by the selection of healthy, disease-free children. 

Potentially supplementation of PUFAs in adults, who will have encountered more 

inflammatory stimuli, will be associated with modulated DNA methylation. 

 

2.3.3.3 Adult supplementation studies 

Unlike maternal supplementation studies (van Dijk et al. 2016; Lee et al. 2013), the 

supplementation of Alzheimer’s disease patients with n-3 PUFA is sufficient to alter 

LINE-1 DNA methylation (Karimi et al. 2017). Six months of n-3 PUFA (1.7 g DHA and 

0.6 g EPA) supplementation reduced LINE-1 DNA methylation by ~1%, whereas, no 

change in LINE-1 methylation was detected in the patients supplemented with an 

isocaloric placebo oil (1 g corn oil, including 0.6 g linoleic acid) (Karimi et al. 2017). 

The change in methylation following supplementation was negatively associated 

plasma EPA in the overall cohort (both n-3 PUFA and placebo supplemented 

individuals), whereas, plasma DHA was positively associated with LINE-1 methylation 

only in the individuals supplemented with n-3 PUFA.  
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Although LINE-1 hypomethylation is typically associated with adverse health 

outcomes, including genomic instability (Chen et al. 1998; Li et al. 2012) and cancer 

(Ehrlich 2009), the reduction in LINE-1 methylation in Alzheimer’s patients may 

indicate a positive health outcome. LINE-1 DNA methylation in Alzheimer’s patients is 

increased compared to healthy controls (Di Francesco et al. 2015); therefore, the 

reduction in methylation following n-3 PUFA supplementation may act to restore DNA 

methylation to the normal level detected in healthy individuals. The global nature of 

the study by Karimi et al. (2017), prevents the identification of the regions of the 

genome with modulated DNA methylation. In a subset of individuals, the n-3 PUFA 

supplementation was demonstrated to alter the expression of genes related to 

inflammation (Vedin et al. 2008); however, it is unknown if altered DNA methylation at 

these regions is responsible for the changes in gene expression. Further EWAS and 

candidate gene studies are required to identify the DMR following n-3 PUFA 

supplementation. 

 

Overfeeding healthy adults with SFA (n = 17) or n-6 PUFA (n = 14) by 750 kcal/d for 

7-weeks was sufficient to induce a genome-wide net increase in methylation. The 

genes affected were associated with metabolism (i.e. PPARGC1A) and inflammatory 

processes (i.e. TNF and IL6), particularly following n-6 PUFA overfeeding suggesting 

that FA overfeeding may alter these processes (Perfilyev et al. 2017). The increase in 

the number of genes affected by n-6 PUFA supplementation (1797 genes) compared 

to the SFA supplementation (125 genes) with limited overlap (n = 47) in genes, 

indicates a greater epigenetic role for n-6 PUFAs potentially explaining the metabolic 

differences that are induced by these two classes of FA (Rosqvist et al. 2014). 

 

The supplementation of overweight and obese adults (n = 36) with 3 g/d of n-3 PUFA 

for six weeks was sufficient to alter the leukocyte DNA methylation of 308 CpG sites 

(Tremblay et al. 2017). Similar to the effect seen with n-6 PUFA overfeeding (Perfilyev 

et al. 2017), the majority of CpG sites (93%) increased in DNA methylation and 

pathway analysis have indicated that the genes affected are related to inflammatory 

and metabolic processes (Tremblay et al. 2017). The results of these two EWAS 

studies are in agreement with cross-sectional data suggesting that the dietary 

consumption of PUFAs increases the DNA methylation of genes associated with 
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inflammatory response and metabolism (Aslibekyan et al. 2014; de la Rocha et al. 

2016) 

 

The supplementation of kidney disease patients (n = 29) with 3.5 g/d of n-3 PUFA or 

4 g/d of olive oil for 12 weeks induced gender specific alterations to DNA methylation 

of CpG sites in FADS1 and ELOVL5 but not FADS2 or ELOVL2. A second cohort of 

healthy young adults (n = 20) supplemented with 2 g/d of n-3 PUFAs for 12 weeks 

was also used in the study, and similar results were found. The gender-specific 

regulation of these CpG sites suggests an epigenetic role for the gender differences 

in the storage and metabolism of n-3 PUFAs previously described (Burdge et al. 2002; 

Burdge and Wootton 2002; Lohner et al. 2013). These results highlight the careful 

considerations which are required when conducting FA analysis to ensure gender 

differences do not confound results. 

 

A further candidate gene study investigated the impact of n-3 PUFA supplementation 

in the presence of calorie restriction on the DNA methylation of genes (CD36, FFAR3, 

CD14, PDK4, and FADS1) which have previously been demonstrated to be 

downregulated in PBMCs following n-3 PUFA supplementation. Young overweight 

women were assigned to either the fish oil (>1.3 g/d of n-3 PUFAs) or control (<0.26 

g/d of n-3 PUFAs) group for an eight-week period while following a diet plan designed 

to induce a calorie restriction of 30% (Amaral et al. 2014). A limited impact of n-3 PUFA 

supplementation on DNA methylation was detected with the main methylation impact 

being detected as a result of the energy restricted diet. After adjusting for baseline 

body mass, the methylation of the CD36 promoter was significantly reduced by the 

low-calorie diet, and this reduction was attenuated by ω-3 PUFA supplementation; 

however, no other impact of n-3 PUFA supplementation was detected. Potentially the 

stimulus of the energy-restricted diet was large enough to outweigh the epigenetic 

impact of n-3 PUFA supplementation. These data highlight the difficulty in selecting 

candidate genes for DNA methylation analysis because transcriptional regulation of 

genes involves a wide array of different processes especially when multiple 

interventions are combined. The study carried out by Amaral et al. (2014) included an 

additional confounding factor because the participants were asked not to consume 

seafood and to follow a detailed diet plan during the intervention period to minimise 

variability. The study population consisted of Spanish females, and the Spanish diet 
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is high in shellfish/fish, on average 88.6g/person/day are consumed (Varela-Moreiras 

et al. 2013), and therefore the researchers may have simply replaced the habitual n-3 

PUFA. Taken together these adult supplementation studies suggest a clear impact of 

n-3 PUFA supplementation on DNA methylation, particularly for genes involved in the 

inflammatory response and metabolism.  

 

2.3.4 Summary of DNA methylation response to FAs 

The literature reviewed here highlights the varied nature of the studies used to 

investigate the impact of FA supplementation on DNA methylation. There is limited 

evidence of a strong epigenetic response from gestational and infant supplementation 

studies, however, cross-sectional and adult supplementation studies have suggested 

a robust epigenetic impact of FA supplementation on genes related to inflammation 

and metabolism. It remains to be identified whether n-3 PUFA supplementation may 

resolve inflammation following environmental stimuli, for example, exercise 

interventions, through the modification of DNA methylation.  
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2.4 Impact of n-3 PUFA supplementation on exercise 
To our knowledge, no study has investigated whether the exercise induced 

methylation response can be modulated by n-3 PUFA supplementation; however, 

there is a wealth of data which has investigated the impact of n-3 PUFA 

supplementation on measures of exercise performance and the molecular processes 

which are regulated by both aerobic and resistance exercise.  

 

The supplementation of the diet with n-3 PUFAs has been demonstrated with an anti-

inflammatory phenotype and reduce the levels of inflammatory cytokines (Calder 

2015; Tartibian et al. 2011; Vedin et al. 2008, 2012), partially as a result of altered 

DNA methylation (Aslibekyan et al. 2014; Ma et al. 2016). Studies investigating the 

impact of n-3 PUFAs on exercise phenotypes typically investigate the impact on 

exercise-induced inflammation; however, the results are equivocal. Some studies 

have detected reductions in inflammation post-exercise with FA supplementation 

(Marques et al. 2015; Mickleborough et al. 2015), whereas, others have reported no 

change in inflammation (Martorell et al. 2014; Nieman et al. 2009). The literature has 

also shown that n-3 PUFA supplementation reduces oxygen consumption (Kawabata 

et al. 2014; Peoples et al. 2008), heart rate (Peoples et al. 2008) and perceived 

exertion (Kawabata et al. 2014) during aerobic exercise suggesting n-3 PUFA 

supplementation may impact physiological variables. 

 

A common finding of both acute exercise and exercise training studies is the 

hypomethylation PPARGC1A and subsequently, increase the mRNA expression 

following exercise as a mechanism to induce mitochondrial biogenesis (Barrès et al. 

2012; Nitert et al. 2012). Evidence also exists for the ability of n-3 PUFA 

supplementation to increase the expression of PPARGC1A (Hancock et al. 2008; 

Rundblad et al. 2018) and increase mitochondrial biogenesis (Laiglesia et al. 2016; 

Turner et al. 2007). These data suggest that n-3 PUFAs may increase exercise 

performance by upregulating mitochondrial biogenesis; however, no studies to date 

have investigated whether this occurs via hypomethylation of the gene promoter. 

 

Supplementation of n-3 PUFAs has also been demonstrated to sensitise skeletal 

muscle to the anabolic stimuli of resistance exercise and protein ingestion (Philpott, 
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Witard, and Galloway 2018; Tachtsis, Camera, and Lacham-Kaplan 2018). An 

anabolic role for n-3 PUFAs is suggested by increases in force production following n-

3 PUFA supplementation compared to a control supplementation of corn oil (Smith et 

al. 2015) and a training only group (Rodacki et al. 2012). Another important role for n-

3 PUFAs and skeletal muscle growth is the ability to reduce systemic levels of 

inflammation which have been demonstrated to reduce the regenerative capacity of 

muscle. The administration of TNF-α on cells has been demonstrated to 

hypermethylate MyoD and reduce markers of differentiation (Sharples et al. 2016). A 

potential epigenetic consequence for the anabolic role of n-3 PUFAs is highlighted by 

the administration of EPA to skeletal muscle cells can increase the expression of 

PPARGC1A (Tachtsis et al. 2018) and dampen the effects of TNF-α (Saini et al. 2017), 

resulting in improved expression of MyoD and Myogenin indicating increased skeletal 

muscle differentiation (Saini et al. 2017). The hypermethylation of MyoD following the 

administration of TNF-a, suggests a potential mechanism of n-3 PUFAs to reverse 

epigenetic changes associated with inflammation in skeletal muscle. 

 

As has been demonstrated above both exercise and n-3 PUFA supplementation have 

epigenetic consequences through modulated DNA methylation. The pathways 

regulated by these interventions are similar indicating there may be some overlap in 

the health benefits of exercise and n-3 PUFA supplementation. To date, there is a lack 

of studies investigating the modulation of DNA methylation induced by exercise and 

the supplementation of n-3 PUFAs to determine whether the interventions have any 

combined impact increasing the epigenetic response.  
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2.5 Thesis aims 
The primary aims of this thesis were to: 

 

1. Identify the impact of different acute exercise stimuli (aerobic and resistance) 

on global and gene-specific methylation. 

 

2. Ascertain whether the impact of acute exercise can further be modulated by the 

supplementation of dietary fatty acids.  

 

3. Determine whether the expression of DNMT enzymes are associated with the 

modulation of DNA methylation in an attempt to identify a potential underlying 

mechanism. 

 

4. Determine whether modulated DNA methylation as a result of the previously 

mentioned interventions is associated with physiological markers. 
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Chapter 3 - General methods 
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3.0 General methods 
This chapter describes the experimental procedures which have been utilised 

throughout the thesis. The experimental protocol for each study has been approved 

by the Loughborough University Ethics Human Participants sub-committee and 

performed in accordance with the Declaration of Helsinki (1975).  

 

3.1 Participants 
Before participation, participants were provided with a participant information sheet 

explaining the purpose, protocols and requirements of the study. Following a verbal 

explanation and the opportunity to ask any questions about the study, informed 

consent (Appendix B) was obtained from all participants. Participants also completed 

a health screen (Appendix C) and a physical activity questionnaire (Appendix D) to 

ensure suitability to complete the study. All participants were healthy, non-smoking 

males with no history of metabolic or cardiovascular disease. In the six months prior 

to the study, participants had no history of n-3 PUFA, anti-oxidant or anti-inflammatory 

supplementation and habitually consumed less than two portions of oily fish per week. 

 

3.2 Pre-trial measures 

3.2.1 Anthropometry 
Height was measured, using a stadiometer, to the nearest 0.1 cm with shoes and 

socks removed. Body mass was assessed, using digital scales, to the nearest 0.1 kg 

following the removal of shoes and any excess clothing. Body mass index was 

calculated using the following equation: body mass (kg) / height (m)2. 

 

3.2.2 Pre-trial standardisation 
Participants recorded dietary intake (food and drink; Appendix E) during the 24-hours 

prior to the first trial for each experimental study. For the resistance exercise study 

(Chapter 7) participants were also required to record dietary intake throughout the trial 

until the 48-hour post-exercise time point. These diet and physical activity patterns 

were then repeated for all subsequent trials. Alcohol consumption and exercise was 

not permitted for the 24-hours preceding and during the pre-trial period. On the 

morning of experimental trials, participants arrived at the laboratory after a minimum 
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of a 10 hr fast (only water permitted). The same time of day was used for each trial to 

minimise diurnal variation. Participants were requested to maintain their habitual diet 

and physical activity patterns between trials. 

 

3.3 Collection of biological samples 
After selection of a vein in the antecubital fossa region, blood samples were obtained 

by either venepuncture (Chapter 5) or intravenous cannula (Chapters 6 & 7). The 

cannula was flushed, between sample collections (every 30 min) and after each 

sample, with saline (0.9% sodium chloride) to prevent blockages forming. Blood was 

collected into either K2EDTA coated vacutainers (BD, USA), silica coated vacutainers 

(BD, USA) or Tempus Blood RNA tubes (Applied Biosystems, USA). 

 

 Blood collected into K2EDTA vacutainers was aliquoted for DNA extraction (Chapters 

5-7), RNA extraction (Chapter 7), peripheral blood mononuclear cell (PBMC) 

extraction (Chapter 6) and whole blood cell counts using the COULTER® Ac·T™ 5diff 

(Beckman Coulter, USA; Chapters 5 & 6) or the Yumizen H500 (Horiba Medical, 

Japan; Chapter 7). In chapters 5 & 6, blood was collected into Tempus Blood RNA 

tubes (Applied Biosystems, USA) for RNA extraction. Blood collected into silica coated 

vacutainers was allowed to clot for 20 min at room temperature before being 

centrifuged at 2800 rpm for 15 min at 4 oC. The layer of serum was collected and 

stored at -80˚C prior to analysis of inflammatory cytokines (Chapters 6 & 7), protein 

carbonyls (Chapter 6) and markers of muscle damage (Chapter 7).  

 

3.4 Processing and analysis of biological samples 

3.4.1 DNA extraction and bisulfite conversion 
For chapters 5 & 6, genomic DNA (gDNA) was extracted from 2 mL of whole blood 

using the QIAamp DNA Blood Midi kit (Qiagen, Germany) according to the 

manufacturer’s instructions (Appendix Fi). Extracted gDNA was aliquoted and stored 

at -20 oC until required for further analysis. Bisulfite conversion of gDNA samples 

(maximum 2μg) was performed using the EpiTect Fast Bisulfite Conversion Kit 

(Qiagen, Germany) according to the manufacturer’s instructions (Appendix Gi). 
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Bisulfite-converted DNA (bcDNA) was stored at -20 oC until required for further 

analysis.  

 

For samples collected in the resistance exercise study (Chapter 7), DNA was extracted 

from 200 µL of whole blood using the ReliaPrep gDNA Blood Miniprep System 

according to the manufacturer’s instructions (Promega, USA; Appendix Fii) for 

assessment of global DNA methylation. DNA extraction and bisulfite conversion of 

both whole blood and skeletal muscle was performed using the EpiTect Fast LyseAll 

Bisulfite Kit (Qiagen. Germany) according to the manufacturer’s instructions (Appendix 

Gii) and stored at 20 oC until required for further analysis. DNA yield (ng/µL) and purity 

(absorbance ratio A260/A280) were determined using a Nanodrop 2000 

(ThermoScientific, USA). The mean (± standard deviation) DNA concentration and 

purity are described in the method for individual experimental chapters. 

 

3.4.2 Luminometric Methylation Assay (LUMA) 
The Luminometric Methylation Assay (LUMA) was used as a marker of global DNA 

methylation as previously described (Karimi et al. 2006), with minor adjustments. Two 

mastermixes were set up per sample, one containing FastDigest HpaII and the other 

FastDigest MspI (Thermo Scientific, USA). Table 3.1 lists the volume of each reagent 

used for the mastermixes. The master mix was then added to 200 ng of gDNA and 

incubated for 20 min at 37˚C. 

Table 3.1 – Volumes of reagents used to create the mastermixes for the Luminometric Methylation 
Assay (LUMA). Two mastermixes were created per sample, one containing HpaII and the 
other MspI. 

Reagent Volume per sample (µL) 
HpaII / MspI 0.25 µL 

EcoRI 0.25 µL 

Reaction Buffer 1 µL 

Water 3.5 µL 

Total 5 µL 
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Following incubation, 13 µL of each reaction were mixed with annealing buffer and 

added to a separate well of a PyroMark Q24 plate and analysed using a PyroMark 

Q24 MDx system (Qiagen, Germany) with the following dispensation order: ACTCGA. 

The volumes of reagents added to the Q24 cartridge are indicated below (Table 3.2). 

Peak heights were exported, and methylation percentage was calculated using the 

following formula: 

 

Methylation = (1 - (HpaII peak 2 / HpaII peak 1) / (MspI peak 2 / MspI peak 1)) x 100. 

 

Table 3.2 - Volumes of reagents added to the chambers of the PyroMark Q24 cartridge for the 
Luminometric Methylation Assay (LUMA) 

Chamber Volume of reagent 
A 30 μL dATPαS and 30 μL nuclease-free water 

C 30 μL dCTP and 30 μL dGTP 

G 60 μL nuclease-free water 

T 30 μL dTTP and 30 μL nuclease-free water 

E 80 μL Enzyme 

S 80 μL Substrate 

 

 

3.4.3 Gene-specific Pyrosequencing  
Polymerase chain reaction (PCR) of bisulfite-converted DNA (bcDNA) samples was 

performed using the PyroMark PCR Kit (Qiagen, Germany) according to the 

manufacturer’s instructions. The mastermix recipe (Table 3.3) and PCR cycling 

conditions are indicated below (Table 3.4). PCR products were analysed by gel 

electrophoresis on a 2 % agarose gel with SYBRsafe (Invitrogen, USA) and visualised 

by ultraviolet trans-illuminator (BioRad, USA) to confirm the generation of a single 

high-quality PCR product and no contamination in negative control samples. The 

absence of PCR amplification of a non-bisulfite converted DNA sample confirmed the 

specificity of each assay for bisulfite-converted DNA.  
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DNA methylation was assessed using a PyroMark Q48 Autoprep system (Qiagen, 

Germany) using PyroMark Q48 Advanced CpG Reagents (Qiagen, Germany) 

according to the manufacturer’s instructions. Custom PyroMark CpG assays were 

designed to assess DNA methylation at specific CpG sites. Genomic location, primer 

sequences and the sequence to analyse for the assays are presented in experimental 

chapters, and details on assay validation are provided in Chapter 4 (Method 

Development). The nucleotide dispensation order was generated by entering the 

sequence to analyse into the PyroMark Q48 Autoprep software version 2.4.2 (Qiagen, 

Germany). A non-CpG cytosine was included in the nucleotide dispensation order next 

to a bisulfite-converted thymine to detect incomplete bisulfite conversion. The 

methylation at each CpG site was determined using the PyroMark Q48 Autoprep 

software set in CpG mode. The mean methylation of all CpG sites within the target 

region was determined using the methylation at the individual CpG sites. 

 

Table 3.3 - Volume of reagents (per sample) used to create a PCR mastermix for pyrosequencing 
assays. 

Reagent 
Volume per 

sample 
PyroMark PCR Mastermix 12.5 μL 

CoralLoad concentrate 2.5 μL 

PyroMark custom assay PCR primer 2.5 μL 

ddH2O 6.5 μL 

bcDNA 1 μL 

Total 25 μL 
 

Table 3.4 - PCR cycling conditions utilised for pyrosequencing assays. 

Stage Time Temperature Cycling 
Initial activation 15 min 95oC N/A 

Denaturation 30 s 95oC 
x45 

cycles 
Annealing 30 s 56oC 

Extension 30 s 72oC 

Final extension 10 min 72oC N/A 
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3.4.4 Correction for blood cell heterogeneity 
Within a tissue, the most important factor in determining DNA methylation is the 

composition of cell types. Changing populations of white blood cells (WBC) in whole 

blood between time points may confound the assessment of DNA methylation. Whole 

blood cell counts were used to adjust DNA methylation, to account for different cell 

populations between time points, using a regression-based approach (Jones et al. 

2017). In brief, a linear regression was fitted to the DNA methylation with the 

populations of WBC (neutrophils, lymphocytes, monocytes, eosinophils and 

basophils) entered as additive variables. The residuals of the observed DNA 

methylation value and the predicted methylation from the linear regression were 

extracted and added to the mean methylation of the dataset. This adjustment 

decorrelates the methylation percentage from each of the WBC populations to remove 

the impact of different quantities of WBC populations on DNA methylation to allow 

comparison of DNA methylation between time points.  

 

3.4.5 RNA extraction and cDNA conversion 
In chapters 5 & 6, RNA was isolated from whole blood collected in Tempus Blood RNA 

tubes using the Tempus Spin RNA Isolation Kit (Applied Biosystems, USA) according 

to the manufacturer’s instructions (Appendix Hi). In Chapter 7, RNA was extracted 

from skeletal muscle and whole blood using TRI Reagent (Sigma-Aldrich, USA) and 

TriZol LS (Invitrogen, USA) respectively, according to manufacturer’s instructions 

(Appendix Hii). RNA yield (ng/µL) and purity (absorbance ratio A260/A280) were 

determined using a Nanodrop 2000 (ThermoScientific, USA). The optimal absorbance 

ratio is ~2.0, the mean (± standard deviation) ratio are described in the method for 

individual experimental chapters. 

 

A maximum of 2 μg of RNA was reverse transcribed into complementary DNA (cDNA) 

using the High-Capacity Reverse Transcription Kit (Applied Biosystems, USA) and 

diluted to a concentration of 5 ng/µL in deionised water. The mastermix reagents 

(Table 3.5) and cycling conditions (Table 3.6) used for the cDNA synthesis are 

displayed below. 
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Table 3.5 - Volume of reagents used to create the mastermix for cDNA synthesis. 

Reagent 
Volume per 

sample 
RT Buffer 2.0 μL 

dNTP Mix (100 mM) 0.8 μL 

Random Primers 2.0 μL 

MultiScribe Reverse Transcriptase 1.0 μL 

RNase Inhibitor 1.0 μL 

Nuclease-free water 3.2 μL 

Total 10.0 μL 

 

Table 3.6 - PCR cycling conditions utilised for cDNA synthesis 

Stage Time Temperature 
1 10 min 25 oC 

2 120 min 37 oC 

3 5 min 85 oC 

 

3.4.6 mRNA expression 
A Viia7 Real-Time PCR system (Applied Biosystems, USA) was used for analysis of 

mRNA expression. Each reaction contained 5 µL of PrecisionPlus Sybr Green Master 

Mix (PrimerDesign, UK), 0.5 µL of forward and reverse primer (10 μM) and 4 µL of 

cDNA (normalised to 5 ng/μL). Primer sequences for mRNA expression assays are 

presented experimental chapters, and details on assay validation are detailed in 

Chapter 4 (Method development). All samples were run in duplicate using a Viia7 

Real-Time PCR system (Applied Biosystems, USA) using the following cycling 

conditions: initial denaturation at 95 oC for 2 min, followed by 40 cycles of 95 oC for 15 

s and 60 oC for 60 s. A melt curve was then run from 60 oC to 95 oC at a rate of 0.05 
oC/s. Melt curves were visually inspected for a single peak indicating the generation 

of a single product.  
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Relative mRNA expression was performed by quantitative PCR (qPCR) for each gene 

of interest, normalised to the expression of the reference gene GAPDH using the 2-

(DDCt) method (Livak and Schmittgen 2001). The following equation was used to 

determine mRNA expression: 

Relative quantification = 2-(DCt Sample) – (DCt Control); where DCt = Ct of target gene - Ct of 

reference gene. The pooled group mean of the pre-exercise sample of the initial trial 

was used as the control. The mean Ct value (± standard deviation) of GAPDH value 

across all participants and experimental conditions is described in individual 

experimental chapters.  

 

3.5 Statistical analysis 
All statistical analysis was performed using IBM SPSS Statistics software version 23 

(SPSS; IBM, USA). The data distribution was assessed for normality by Shapiro-Wilk's 

test (p > 0.05). Repeated measures Analysis of Variance (RM-ANOVA) or t-tests 

(where appropriate) were used to determine the impact of exercise and FA 

supplementation on DNA methylation, mRNA expression and physiological variables. 

When Mauchly’s assumption of sphericity was violated, degrees of freedom were 

corrected using Greenhouse-Geisser estimates of sphericity. Where significant effects 

were observed, the Bonferroni correction was used to control the familywise error rate. 

Data sets were determined to be significantly different when p < 0.05. Analysis of DNA 

methylation data was conducted following the correction for cell heterogeneity (section 

3.4.4). Analysis of relative mRNA expression was performed on log-transformed fold 

change data and presented as back-transformed mean with confidence intervals (CI). 

Unless stated otherwise, data are presented as mean ± 95% CI. 

 

Spearman’s Rho correlation analysis was used to assess the relationship between 

DNA methylation values, mRNA expression values and physiological markers. 

Moderate (>0.5) and large (> 0.7) correlation coefficients were considered to be of 

interest; however, only correlations with a p-value < 0.05 were deemed statistically 

significant. 
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Chapter 4 Method development - 
Selection and laboratory 

standardisation of DNA methylation 
and mRNA expression methods. 
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4.1 Introduction 

4.1.1 Selection of DNA methylation methods 
In general, DNA methylation methods can be divided into three broad categories: 

global DNA methylation, genome-wide methylation and site-specific methylation. The 

selection of which method used to analyse methylation is dependent on a range of 

different factors including the aim of the study, the quantity of DNA, available 

equipment and the cost involved. This section reviews some of the different methods 

which can be used to detect DNA methylation to select the methods which will be 

utilised throughout this thesis. 

 

4.1.1.1 Global DNA methylation methods 

Global DNA methylation can be used to gain insight into the impact of an intervention 

on DNA methylation patterns. Global based methods do not allow the investigation of 

specific biological pathways; however, altered global DNA methylation has been 

associated with several disease states including various forms of cancer (Gao et al. 

2014; Joyce et al. 2016), rheumatoid arthritis (Liu et al. 2011) and cardiovascular 

disease (Kim et al. 2010). Aside from disease models, global methylation has also 

been used to determine the impact of lifestyle interventions including exercise (see 

section 2.2) and nutrition (see section 2.3). 

 

The gold-standard method for the highly sensitive determination of global methylation 

is using high-performance liquid chromatography (HPLC; Kuo et al. 1980). Although 

the gold-standard method, HPLC requires the use of specialist equipment and large 

quantities of DNA making it an impractical option to be used in the present thesis. 

Another highly sensitive method to determine global methylation is using liquid 

chromatography coupled with tandem mass spectrometry (LC-MS/MS; Song et al. 

2005). Unlike HPLC, LC-MS/MS only requires a small quantity of DNA to determine 

methylation; however, the requirement of specialist equipment prevented the use of 

this method. Unlike HPLC and LC-MS/MS, the use of enzyme-linked immunosorbent 

assay (ELISA) based DNA methylation detection does not require any specialist 

equipment to determine global DNA methylation (Kurdyukov and Bullock 2016). 

Despite the lack of specialist equipment required, So et al. (2014) report ELISA based 

detection may only be suitable when identifying large variations in global DNA 
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methylation because of high assay variability; therefore, the use of ELISA for the may 

lack the sensitivity to determine small changes in methylation which are expected in 

this thesis. 

 

After ruling out the use of the methods above, the remaining options to determine 

global DNA methylation are via the methylation of the LINE-1 sequences or LUMA as 

surrogates of global DNA methylation. LINE-1 sequences comprise ~17% of the 

human genome and hypomethylation of LINE-1 sequences have previously been 

associated with cancer (Gao et al. 2014). LINE-1 DNA methylation is strongly 

correlated with the gold-standard global methylation technique HPLC suggesting it is 

a good estimate for global DNA methylation (Lisanti et al. 2013). Initially 

pyrosequencing of LINE-1 elements was selected as the method to determine global 

methylation; however, the commercially available LINE-1 pyrosequencing failed the 

validation procedure because of low peak heights (Appendix I).  

 

The lack of a functioning LINE-1 assay meant LUMA was selected as the method to 

determine global DNA methylation in this thesis. LUMA quantifies the methylation of 

internal CpG sites within CCGG sequences throughout the genome (Karimi et al. 

2006). In total, CCGG sequences account for ~8% of the total CpG sites throughout 

the human genome (Fazzari and Greally 2004). These CpG sites occur in both 

repetitive element and protein coding regions (Fazzari and Greally 2004), whereas, 

LINE-1 sequences are only situated in nongenic regions. To perform LUMA, DNA is 

digested in two reactions; one incubated with the methylation-sensitive enzyme HpaII 

and the other with MspI which digests regardless of methylation status. EcoRI is added 

to each reaction to control for the input quantity of DNA. The digested reactions are 

pyrosequenced, and the overhangs filled by nucleotides producing light. DNA 

methylation is then determined by the HpaII / MspI ratio (Karimi et al. 2006).  

 

4.1.1.2 Gene-specific DNA methylation methods 

The gene-specific determination of DNA methylation can be divided into two general 

categories, genome-wide methods and candidate-gene focussed approaches. 

Genome-wide based detection methods are useful for the determination of 

differentially methylated regions of the genome at single-base resolution; however, 
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these methods are highly expensive and require the use of specialist equipment which 

was not available for this thesis. Candidate-gene based approaches allow the 

determination of methylation at specific CpG sites using PCR to amplify the region of 

interest; however, DNA needs to be processed (bisulfite converted) before PCR 

amplification because methylation is not maintained during PCR. 

 

4.1.1.2.1 Bisulfite conversion of DNA for methylation analysis 
The bisulfite conversion of DNA involves the chemical modification of cytosine into 

uracil via a 3-step process of sulfonation, deamination and desulfonation (Figure 4.1). 

Bisulfite conversion does not alter methylated DNA, therefore, creating sequence 

differences between methylation and unmethylated DNA (Table 4.1; Hernández et al. 

2013; Delaney, Garg, and Yung 2015). During PCR uracil pairs with adenine in the 

first cycle, then in the remaining cycles adenine will bind with thymine; therefore, the 

uracil bases are amplified as thymine, whereas, methylated cytosines remain as 

cytosine (Table 4.1). The proportion of cytosine/thymine can then be used to 

determine DNA methylation percentage (Hernández et al. 2013). 

 

 

Figure 4.1 - Stages involved in the bisulfite conversion process. 

Several PCR-based methods have been developed to determine DNA methylation 

including methylation-specific PCR (Herman et al. 1996), COBRA (Xiong and Laird 

1997), MethyLight (Eads et al. 2000), and methylation-sensitive high-resolution melt 

(Wojdacz and Dobrovic 2007). The drawback of many of these PCR based techniques 

is they can only determine the overall methylation of a PCR product (i.e. they do not 

allow the investigation of methylation of individual CpG site). Sequencing of PCR 

products can be used to determine the methylation status of individual CpG sites within 

the PCR product (Kurdyukov and Bullock 2016). The limitation of sequencing-based 

methods is the access to a DNA sequencer; however, within our laboratory, we have 
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access to a pyrosequencer which can be used to determine the methylation 

percentage of individual CpG sites within a PCR product. 

 

Table 4.1 - Bisulfite conversion induce sequence differences between methylated and unmethylated 
DNA. 

 Unmethylated DNA Methylated DNA 

Original Sequence T-G-A-C-C-G-A-C-G-C T-G-A-C-mC-G-A-mC-G-C 

Bisulfite converted sequence T-G-A-U-U-G-A-U-G-U T-G-A-U-mC-G-A-mC-G-U 

PCR product T-G-A-T- T-G-A-T-G-T T-G-A-T - C -G-A- C -G-T 

 

4.1.1.2.2 Pyrosequencing based DNA methylation detection 
Pyrosequencing is one of the most commonly used methods to determine DNA 

methylation accurately at specific CpG sites. Originally pyrosequencing was 

developed to identify SNPs; however, after bisulfite conversion, pyrosequencing can 

be used to determine the ratio of the bisulfite-converted C/T SNP (Delaney et al. 2015; 

Tost, Dunker, and Gut 2003) 

 

Following bisulfite conversion, DNA undergoes PCR with one of the primers labelled 

with biotin. The biotin labelled PCR product then binds to streptavidin-coated beads 

and DNA is denatured creating single-stranded DNA. The unlabelled DNA strand is 

washed away, leaving the labelled strand free to be sequenced. A sequencing primer 

is then introduced, and nucleotides are dispensed in a specific order to be incorporated 

by DNA polymerase (Harrington et al. 2013). The incorporation of nucleotides releases 

pyrophosphatase which can be converted into light by an enzyme cascade (Figure 

4.2). The amount of light produced is proportional to the amount of pyrophosphatase 

generated and therefore the number of nucleotides incorporated (Delaney et al. 2015; 

Harrington et al. 2013; Tost and Gut 2007). DNA methylation can be quantified by the 

amount of light produced by the incorporation of cytosine (methylated DNA) compared 

to thymine (unmethylated bisulfite-converted cytosine). 
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Figure 4.2 – Pyrosequencing enzyme cascade. Biotin labelled primer binds to streptavidin-coated 
beads, DNA is then denatured, and the sequencing primer binds to the labelled DNA 
strand. Nucleotides are then dispensed and incorporated into the sequenced DNA strand 
releasing PPi. PPi is then converted into ATP in a reaction using the substrate APS 
catalysed by the enzyme Sulfurylase. ATP in the presence of the substrate luciferin is then 
converted into oxyluciferin and light by the enzyme luciferase. The amount of light 
produced is proportional to the number of nucleotides incorporated. Any unincorporated 
nucleotide is degraded by apyrase before the dispensation of the next nucleotide. dNTP, 
nucleotides; PPi, pyrophosphate; APS, adenosine phosphosulfate; ATP, adenosine 
triphosphate. 

 

4.1.2 Characterisation of DNA methylation and mRNA expression assays 
Throughout this thesis, the impact of exercise and n-3 PUFA supplementation on DNA 

methylation and mRNA expression is examined. The global DNA methylation analysis 

in this thesis utilises LUMA which is a well-established method; however, gene-specific 

DNA methylation is investigated using custom pyrosequencing assays. It is essential 

to validate these custom-assays to ensure they accurately determine the DNA 

methylation of the CpG they have been designed to evaluate. 

 

When using custom-designed pyrosequencing assays to detect DNA methylation, the 

specificity and efficiency of assays must be determined to ensure accurate and precise 

quantification (Delaney et al. 2015). The first stage in assay validation is to confirm the 
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amplification of a single PCR amplicon free of primer dimer and artefacts which can 

inhibit pyrosequencing (Noehammer et al. 2014). The amplification of non-bisulfite 

converted DNA during PCR causes inaccurate quantification of DNA methylation 

because of an overrepresentation of cytosines (Izzi, Binder, and Michels 2014); 

therefore, it is essential to confirm the PCR amplification of bcDNA and absence of 

gDNA amplification. 

 

After the quality of the PCR product has been confirmed, it is essential to validate the 

efficiency of the PCR reaction is not altered by sequence differences created by the 

bisulfite conversion process (Hernández et al. 2013). The differing cytosine content 

may create PCR bias towards the amplification of either methylated or unmethylated 

template DNA potentially leading to the overestimation or masking of DNA methylation 

(Warnecke et al. 1997). The presence of PCR bias can be determined by performing 

pyrosequencing with standards of a known DNA methylation content (Delaney et al. 

2015; Warnecke et al. 1997).  

 

The functional consequence of altered DNA methylation is evaluated via the 

measurement of mRNA expression (Jones 2012). The reverse transcription of RNA to 

cDNA followed by qPCR (RT-qPCR) is one of the most commonly used and sensitive 

methods for the detection of mRNA expression. Reactions are quantified by the point 

in which the fluorescence is detected above the baseline, termed cycle threshold (Ct). 

The amount of fluorescence detected is proportional to the quantity of PCR product. 

A lower Ct value indicates the generation of more template; therefore, relative 

quantification of one sample to another can be performed by comparing Ct values. To 

account for differences in the input cDNA between samples the quantity of target 

mRNA of each target is normalised to the quantity of a stably expressed reference 

(Valasek and Repa 2005). 

 

The amplification efficiency of an assay is critical for accurate quantification (Wong 

and Medrano 2005). The optimal efficiency of 100% indicates the doubling of cDNA 

with each cycle during the linear phase of qPCR (Svec et al. 2015). When using the 

comparative Ct (2-(DDCt)) method for relative quantification, small deviations from 

optimal efficiency are tolerable as long as the efficiencies between the target and 
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reference are approximately equal (Livak and Schmittgen 2001). Amplification 

efficiency and assay linearity can be estimated by the creation of a standard curve 

using the serial dilution of a cDNA sample (Bustin and Huggett 2017; Kuang et al. 

2018).  

 

The specificity of an mRNA expression assay for the desired template is also critical 

for accurate quantification. When using DNA binding dyes, including SYBR Green-

based detection, the generation of any double-stranded DNA produces fluorescence 

(Wong and Medrano 2005). Melt curves can determine assay specificity by detecting 

the loss in fluorescence caused by the disassociation of DNA strands with increasing 

temperature (Kuang et al. 2018). The generation of a single peak on a melt curve 

indicates the amplification of a distinct PCR product (Ririe, Rasmussen, and Wittwer 

1997). 

 

Non-validated DNA methylation and mRNA expression assays can cause inaccurate 

results; therefore, it is essential to confirm assay specificity and linearity before using 

the assays to quantify DNA methylation or mRNA expression. The performance of the 

assays used to determine DNA methylation, and mRNA expression are evaluated in 

this chapter to ensure accurate quantification. 
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4.2 Methods 

4.2.1 Pyromark CpG methylation assays 

4.2.1.1 Design of CpG Methylation assays 

Promoter and first exon sequences for genes of interest were investigated for CpG 

sites using the UCSC genome browser and existing literature. Once target regions 

were identified, the FASTA DNA sequence for each target gene was downloaded from 

Ensembl (National Centre for Biotechnology Information (NCBI) build 38) and imported 

into the PyroMark Assay Design software 2.0 (Qiagen, Germany). The target region 

of each gene was selected and the Pyromark Assay Design software designed assays 

(PCR and sequencing primer sets) and scored the quality of the assays out of 100. 

The assay with the highest score was selected, and the primer sequences were then 

checked for sequence similarity against other gDNA sequences using Primer-BLAST 

(Ye et al. 2012) and bcDNA sequences using BiSearch (Tusnady et al., 2005). The 

genomic location, primer sequences (PCR and sequencing) and sequence to analyse 

for the pyrosequencing assays used throughout this thesis are presented in Table 4.2. 

Appendix J contains full details of pyrosequencing assays including sequence, assay 

design report, nucleotide dispensation order and example pyrograms. 

 

4.2.1.2 Validation of CpG Methylation assays 

The EpiTect PCR control DNA set (Qiagen, Germany) was used to create standards 

of bcDNA of known methylation percentages (0%, 12.5%, 25%, 50%, 75%, 87.5%, 

100%). Standards for each pyrosequencing assay underwent PCR, gel 

electrophoresis and pyrosequencing as previously described (section 3.4.3). Gel 

electrophoresis images were visually inspected to confirm the specificity of the PCR 

(Figure 4.4). Pyrograms generated during pyrosequencing were inspected and data 

extracted to determine the methylation percentage of the standards (Figure 4.3; 

Appendix J). Standard curves were generated between the observed and expected 

DNA methylation to check the assays for PCR bias.  
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Table 4.2 – Details of pyrosequencing assays used to determine DNA methylation throughout this thesis. Genomic location identified using Genome Reference 
Consortium Human Build 38. CpG sites are indicated in the sequence to analyse by Y. TSS, transcription start site; bp, base pair. 

Assay ID 
[Genomic location] Primer Sequence No. of CpG sites 

(distance from TSS; bp) 

IL6 
[chr7:22726051 - 

22726198] 

Forward: 5'-GGGAAGAGGGTTTTTGAATTAG-3' 
6 

(-1099, -1096, -1094, 
-1069, -1061 & -1057) 

Reverse: 5'-biotin-CTCCCTCTCCCTATAAATCTTAATTTAA-3' 
Sequencing: 5'-TTGAATTAGTTTGATTTAATAAGAA-3' 
Sequence to 

analyse: 
ATTTTTGGGTGTYGAYGYGGAAGTAGATTTAGAGTTTAGAGTYG 
TGTTTGYGTTYGTAGTTTTTTTTTAGTTTTTTTTGATTT 

TNF  
[chr6:31575730 - 

31575816] 

Forward: 5'-GGAAAGGATATTATGAGTATTGAAAGTATG-3' 

4 
(+197, +202, +214 & +222) 

Reverse: 5'-biotin-CTAAAACCCCCCTATCTTCTTAAA-3' 
Sequencing: 5'-ATTATGAGTATTGAAAGTATGAT-3' 
Sequence to 

analyse: 
TYGGGAYGTGGAGTTGGTYGAGGAGGYGTTTTTTAAGAAGATA 
GGGGGGTTT 

PPARGC1A 
[chr4:23890308 - 

23890372] 

Forward: 5'-TGTAGGGGATTTTGGTTATTATATGGT-3' 

1 
(-260) 

Reverse: 5'-biotin-ACCAACTTTAAATACCACAAACTCTA-3' 
Sequencing: 5'-GGTTATTATATGGTTAGGGT-3' 
Sequence to 

analyse: 
TTYGTTTAGAGTTTGTGGTATTTAAAGTT 

PPARGC1A ALT 
[chr4: 23904183 - 

23904315] 

Forward: 5'-AAGGGAATTATTTGTTTTAATTGTTGATG-3' 

3 
(-182, -131 & -127) 

Reverse: 5'-biotin-AACACAAATCTAAAACCCAATCT-3' 
Sequencing: 5'-GTTGATGTTAGAGAGTTTT-3' 
Sequence to 

analyse: 
TTYGAGATATAGGGTTGTTGGAAAGTATATGATATTGTATATA 
TTTGTTTTTAYGTTYGTATTTGGTTAA GATTGGGTTT TAGAT 
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100% methylated bcDNA

0% methylated bcDNA

Non-bcDNA

A

B

C

Figure 4.3 - Example pyrograms 
for the IL6 pyrosequencing 
assay showing (A) 100% 
methylated standard, (B) 0% 
methylated standard and (C) 
Non-bisulfite converted DNA. 
CpG sites are indicated by the 
greyed-out bar. The 
percentages in the boxes above 
indicate the determined 
methylation percentage. The 
colour of the box indicates the 
quality control result (Blue = 
pass; Red = fail). The orange bar 
indicates the position of the 
bisulfite conversion quality 
control to check for sequencing 
of non-bisulfite converted 
unmethylated cytosines. 
Pyrograms for the other assays 
displayed in Appendix J. 
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4.2.2 mRNA expression assays 

4.2.2.1 Design of mRNA expression assays 

Previously published primer sets were used for the determination of mRNA expression 

(Table 4.3). Assays with primers situated at exon junctions or spanning introns were 

selected, except for the total PPARGC1A primer pair, to prevent the amplification of 

unwanted gDNA in samples. Both primers for total PPARGC1A are situated in the 

same exon to ensure all transcripts were assessed. Primer sequences were input to 

Primer-BLAST (Ye et al. 2012) to check the specificity of the assay for a single 

genomic location. Appendix K contains the full sequence of each assay indicating the 

genomic location.  

 

4.2.2.2 Validation of mRNA expression assays 

The efficiency of each mRNA expression assay was determined using standard curves 

generated from a 2-fold serial dilution of a cDNA sample using the conditions outlined 

in section 3.4.6.  

 

The efficiency (E) was calculated using the formula: 

E = ((10(-1/slope)) – 1) x 100, where the slope is the gradient of the linear regression 

fitted to the standard curve. Melt curves for each assay were generated according to 

the conditions outlined in section 3.4.6 to check the specificity of the qPCR for the 

amplification of a single amplicon. 
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Table 4.3 - Primer sequences for the mRNA expression assays used in this thesis 

Assay ID Accession No. Primer Sequence Amplicon 
length Reference 

GAPDH NM_001289745.2 
Forward: 5'- GCCTCAAGATCATCAGCAATGCCT-3' 

104 
(Korah et al. 

2012) Reverse: 5'- TGTGGTCATGAGTCCTTCCACGAT-3' 

IL6 NM_000600.4 
Forward: 5'-GCAGAAAAAGGCAAAGAATC-3' 

178 
(Campanelli et 

al. 2016) Reverse: 5'-CTACATTTGCCGAAGAGC-3' 

TNF  NM_000594.3 
Forward: 5'-AGGCAGTCAGATCATCTTC-3' 

142 
(Campanelli et 

al. 2016) Reverse: 5'- TTATCTCTCAGCTCCACG-3' 

Total 

PPARGC1A 
NM_001330751.1 

Forward: 5'-CAGCCTCTTTGCCCAGATCTT-3' 
101 

(Popov et al. 

2015) Reverse: 5'-TCACTGCACCACTTGAGTCCAC-3' 

PPARGC1A 

Exon 1a 
NM_013261.4 

Forward: 5'-ATGGAGTGACATCGAGTGTGCT-3' 
127 

(Silvennoinen 

et al. 2015) Reverse: 5'-GAGTCCACCCAGAAAGCTGT-3' 

PPARGC1A 

Exon 1b 
XM_011513766.1 

Forward: 5'-CTATGGATTCAATTTTGAAATGTGC-3' 
153 

(Silvennoinen 

et al. 2015) Reverse: 5'-CTGATTGGTCACTGCACCAC-3' 

DNMT1 NM_001130823.2 
Forward: 5'-TACCTGGACGACCCTGACCTC-3' 

103 
(Wu et al. 

2007) Reverse: 5'-CGTTGGCATCAAAGATGGACA-3' 

DNMT3a NM_175629.2 
Forward: 5'-TATTGATGAGCGCACAAGAGAGC-3' 

111 
(Wu et al. 

2007) Reverse: 5'-GGGTGTTCCAGGGTAACATTGAG-3' 

DNMT3b NM_006892.3 
Forward: 5'-GGCAAGTTCTCCGAGGTCTCTG-3' 

113 
(Wu et al. 

2007) Reverse: 5'-TGGTACATGGCTTTTCGATAGGA-3' 
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4.3 Results 

4.3.1 PyroMark CpG assays 
Primer sequences were checked for specificity using Primer-BLAST and BiSearch, 

and the generation of a single high-quality template was confirmed using gel 

electrophoresis (Figure 4.4). For each bcDNA standard, a single band was detected 

indicating PCR product free of artefacts and primer dimer formation which may 

interfere with pyrosequencing. The absence of amplification of the gDNA sample 

displayed by the lack of a band in gel electrophoresis (Figure 4.4) and a lack of 

sequencing on the pyrogram (Figure 4.3C) indicates the specificity of the reaction for 

bcDNA. A no template control was also electrophoresed to check for contamination 

with bcDNA, which would impact the determination of methylation percentage. 

 

 

Figure 4.4 - Example gel electrophoresis image of PyroMark assay PCR product. Left hand lane = 
100bp ladder; lanes 1-8 = standards (indicated below lane ID). PCR generated a single 
product for each of the bcDNA standards; however, no amplification occurred in the gDNA 
or NTC. gDNA = genomic DNA; NTC = no template control; bcDNA = bisulfite-converted 
DNA. 

 

Standard curves, for each pyrosequencing assay, were generated between expected 

methylation of the bcDNA standards and the mean methylation observed across CpG 

sites (Figure 4.5; see Appendix L for standard curves of individual CpG sites). A 

proportional increase in DNA methylation was detected with each standard, and a 

linear regression was fitted with a high coefficient of determination (R2> 0.99) for each 

assay (Figure 4.5). The linearity of these assays across different methylation 

percentages indicates the absence of PCR bias. 

 

100% 0% gDNA NTC75% 50% 25% 12.5% bcDNA

1 2 3 4 5 6 7 8 9
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Figure 4.5 - Standard curves generated between the expected methylation of bcDNA standards and 
the mean observed methylation. Points indicate the mean methylation of the CpG sites of 
the (A) IL6, (B) TNF , (C) PPARGC1A CAN and (D) PPARGC1A ALT PyroMark assays. 
Red dashed line indicates the linear regression curve. The equation of the line and 
coefficient of determination (R2) are located in the bottom right corner of each graph. 

 

4.3.2 mRNA expression assays 
Primer-BLAST indicated that only a single amplicon would be generated for each of 

the primer sets. The specificity of the assays for a single amplicon was confirmed by 

the generation of a single peak on melt curves (Figure 4.6, individual melt curves for 

each assay are located in Appendix M).  

 



 64 

 

Figure 4.6 - Example SYBR Green melt curve for GAPDH primers. Melt curve analysis performed to 
determine the specificity of each qPCR primer set. The generation of a distinct peak 
indicates the amplification of a single genomic region. 

 

PCR efficiency was determined from the slope of standards curve generated by 

plotting the cycle threshold against the log concentration of the 2-fold diluted samples 

(Figure 4.7). A linear regression was fitted to each standard curve, and the gradient of 

the slope was used to determine the efficiency of each mRNA expression assay. 

Efficiency estimates ranged between 95 and 105 % indicating highly efficient 

amplification of template in each assay. The efficiency of the reference gene GAPDH 

was 98.1% and the efficiencies of each gene of interest was within 10% (Figure 4.7; 

pooled gene of interest efficiency = 98.0% ± 3.27). A high coefficient of determination 

(R2 > 0.99) was detected for the linear regression for each assay indicating linearity of 

amplification with increasing quantities of cDNA (Figure 4.7).  
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Figure 4.7 - Validation of 

mRNA expression assays 

for (A) GAPDH, (B) IL6, (C) 

TNF , (D) Total PPARGC1A, 

(E) PPARGC1A Exon 1a, 

(F) PPARGC1A Exon 1b, 

(G) DNMT1, (H) DNMT3a 

and (I) DNMT3b. Red 

dashed line indicates linear 

regression curve between 

the log quantity of cDNA 

added to each reaction and 

the cycle threshold. 

Equation of the line, assay 

efficiency (E) and coefficient 

of determination (R
2
) 

indicated in the top right of 

each graph. 
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4.4 Interpretation 
This chapter describes the validation of the assays used throughout this thesis for the 

determination of DNA methylation and mRNA expression. The accuracy and precision 

of DNA methylation, assessed by pyrosequencing, and mRNA expression, via RT-

qPCR, relies on the specificity and efficiency of the assays used. Gel electrophoresis 

confirmed the specific amplification of the desired region of bcDNA and standard 

curves confirmed the absence of PCR bias. Melt curves confirmed the specific 

amplification of the desired template of mRNA and the linear and efficient amplification 

was confirmed using standard curves. 

 

The generation of high-quality PCR product which is free of primer dimer and artefacts 

is one of the critical factors influencing accurate quantification (Noehammer et al. 

2014). Each of the bcDNA standards produced a single band following gel 

electrophoresis (Figure 4.4) indicating a successful, high-quality PCR. The production 

of any off-target amplicons during PCR or remaining unincorporated primer following 

PCR can cause competitive binding between desired and undesired product and 

subsequently impact the determination of DNA methylation (Delaney et al. 2015).  

 

Electrophoresis of PCR product also confirms the specificity of the pyrosequencing 

assays for bcDNA and the absence of amplification of gDNA (Figure 4.4). Amplification 

of non-converted DNA in the samples will falsely increase the detected DNA 

methylation because the non-methylated cytosines will remain as cytosine and be 

identified as 5mC during pyrosequencing (Genereux et al. 2009). The inclusion of a 

bisulfite conversion control in the dispensation order (Figure 4.3) provides a second 

quality control to ensure that contamination of samples with unconverted DNA does 

not impact the quantification of methylation (Tost and Gut 2007). The confirmation of 

assays which only amplify bcDNA and produce a single high-quality band of DNA 

following PCR confirm the specificity of the assays for the desired region. 

 

The performance of each pyrosequencing assay was assessed for linear amplification 

of bcDNA of increasing methylation percentage to identify PCR bias caused by 

bisulfite conversion induced sequence differences between methylated and 

unmethylated DNA. PCR bias typically favours the amplification of unmethylated DNA 
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sequences leading to the underestimation of methylation (Wojdacz, Hansen, and 

Dobrovic 2008). At lowly methylated CpG sites, PCR bias can prevent the amplification 

of methylated DNA preventing the determination of any methylation. In the present 

study, assay performance was assessed using mixtures of commercially available 

unmethylated and methylated DNA to examine the relationship between input and 

observed methylation percentage.  

 

The detected methylation was lower than the expected input methylation percentage 

for each of the standards other than the 0% methylated standard. Lower than expected 

DNA methylation percentage has previously been suggested to be caused by the 

incomplete methylation of control DNA by SssI methyltransferase (Murphy, Huang, 

and Hoyo 2012). Regardless of the lower than expected DNA methylation percentage, 

a linear increase in DNA methylation was detected with each of the assays. The high 

coefficient of determination (R2 > 0.99) of the linear regression fitted to the standard 

curve of each assay indicates the absence of PCR bias (Figure 4.4). 

 

The mRNA expression assays used in this thesis were selected from published 

sources (Campanelli et al. 2016; Korah et al. 2012; Popov et al. 2015; Silvennoinen et 

al. 2015; Wu et al. 2007) and should already have been validated for the determination 

of mRNA expression. The validation of the assays still had to be performed prior to 

their use in this thesis to determine mRNA expression for the target genes because 

assay performance is reliant on the experimental conditions used (Bustin and Huggett 

2017). The RNA quality (Vermeulen et al. 2011) and both the reagents (Tesena et al. 

2017) and thermocycler (Lu et al. 2010) used can all influence assay performance. 

 

For the mRNA expression analysis in this thesis, assays have been selected with 

primers situated at exon junctions or spanning introns were selected to prevent any 

problems with DNA contamination. DNA contamination would not impact assays with 

primers situated at exon junctions because the inclusion of introns (present in DNA 

but not cDNA) removes primer binding sites from DNA sequences. Primers spanning 

introns would produce a PCR product if contaminated with DNA; however, a longer 

product would be produced because of the inclusion of the intron sequence which 

could be detected via melt curve analysis (Kuang et al. 2018; Wong and Medrano 

2005). Primer-BLAST reports indicating the amplification of a single mRNA template 
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and the generation of a single melt peak for each assay indicate the assays to be used 

for mRNA analysis in the subsequent chapters are specific for the target region. 

 

Melt curves were generated to ensure the specific amplification of a distinct product 

during qPCR (Figure 4.6). Similar to gel electrophoresis, which was used to confirm 

the specific high-quality amplification of the pyrosequencing methylation assays, melt 

curves can identify the generation of different sized PCR products. Unlike gel 

electrophoresis, melt curve analysis is also able to detect the generation of sequences 

with different GC percentages (Kuang et al. 2018; Ririe et al. 1997). A sequence with 

a GC percentage of 100% would produce a melt peak ~41 ºC greater than a sequence 

of the same length comprising of AT nucleotides. While short sequences (~40 bp 

which is indicative of primer dimer) would produce a melt peak ~12 ºC lower than a 

sequence of 1000 bp of similar GC percentage (Ririe et al. 1997).  

 

The efficiency and linearity of PCR amplification are critical determinants of accurate 

quantification of mRNA expression. The slope and goodness of fit of the linear 

regression between decreasing Ct values with increasing input quantities of cDNA can 

be used to calculate reaction efficiency (Bustin and Huggett 2017; Wong and Medrano 

2005). Efficiency estimates between 95–105 % and a linear standard curve indicated 

by an R2 >0.99 indicate an optimised assay (Bustin and Huggett 2017). The high 

coefficient of determination indicates the goodness of fit of the linear regression; an 

R2 > 0.99 signifies that 99% of the variation in fluorescence is explained by the 

increasing quantity of cDNA in the reaction. Each of the assays described above meet 

these validation criteria; therefore, can be used to investigate mRNA expression in the 

subsequent chapters of this thesis.  
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4.5 Conclusion 
In conclusion, it is essential to validate the performance of assays to determine DNA 

methylation and mRNA expression to ensure precise and accurate quantification. 

Based on the criteria discussed above, each of the assays used in this thesis has 

successfully been validated against the methods to be utilised throughout this thesis. 

The successful validation of assay performance ensures that any change in DNA 

methylation or mRNA expression using these assays are the result of the interventions 

used and not the result of a poorly functioning assay. The next step is to use these 

assays to determine the impact of lifestyle interventions on DNA methylation and 

mRNA expression in the subsequent chapters of this thesis. 
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Chapter 5 - The impact of a bout of 
exercise to volitional fatigue and 
supplementation of n-3 PUFA on 

global and gene-specific DNA 
methylation. 
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5.1 Introduction 
Several studies have demonstrated that exercise training interventions can modify the 

DNA methylome both at a global and gene-specific level (Denham et al. 2016; 

Denham, O’Brien, Harvey, et al. 2015; Denham, O’Brien, Marques, et al. 2015; 

Dimauro et al. 2016; Nitert et al. 2012; Rönn et al. 2013; Rowlands et al. 2014; 

Seaborne et al. 2018); however, less is known of the response of the DNA methylome 

to acute bouts of exercise. Acute exercise has been demonstrated to induce global 

hypomethylation in skeletal muscle (Barrès et al. 2012; Seaborne et al. 2018) and cell-

free DNA located in plasma (da Silva et al. 2017); however, the global impact of acute 

exercise is unknown in leukocytes. The majority of the research surrounding the gene-

specific response to acute exercise has focussed on the regulation of mitochondrial 

biogenesis (Bajpeyi et al. 2017; Barrès et al. 2012; Lane et al. 2015). The PPARGC1A 

gene, which encodes peroxisome proliferator-activated receptor gamma, co-activator 

alpha (PGC-1α) is considered to be the master regulator of mitochondrial biogenesis 

(Ventura-Clapier et al. 2008). Epigenetic studies have associated a CpG site -260 

bases from the promoter of PPARCG1A with the regulation of mRNA expression. In 

skeletal muscle, exercise can demethylate the PPARGC1A -260 CpG site which has 

been shown to concurrently upregulate PPARGC1A mRNA expression (Bajpeyi et al. 

2017; Barrès et al. 2012). PPARGC1A mRNA expression has also been demonstrated 

to be upregulated following acute exercise in leukocytes (Busquets-Cortés et al. 2017; 

Ferrer et al. 2009; Yakeu et al. 2010); however, it is unknown whether the methylation 

status of the -260 CpG site is critical in the regulation of mRNA expression in 

leukocytes. 

 

The only previous study to investigate the impact of DNA methylation in leukocytes 

following acute exercise failed to identify any alteration in genome-wide DNA 

methylation following two-hours running on a treadmill interspersed with sprints every 

10 min (Robson-Ansley et al. 2014). Despite no change in DNA methylation following 

exercise, incubating PBMCs with plasma taken from individuals who completed the 

same exercise protocol reduced the nuclear concentration of DNMT3b (Horsburgh et 

al. 2015). Reduced nuclear concentrations are likely the result of decreased mRNA 

expression which has previously been reported (Denham et al. 2016; Laye and 
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Pedersen 2010); however, it remains to be identified whether exercise-induced altered 

DNMT mRNA expression is sufficient to modulate DNA methylation patterns.  

 

Although no change in leukocyte DNA methylation has been demonstrated following 

exercise, the exercise-induced increase in IL-6 concentrations displayed significant 

correlations with DNA methylation levels suggesting an epigenetic role for circulating 

lL-6 concentrations post-exercise (Robson-Ansley et al. 2014). The epigenetic role of 

IL-6 concentrations may be explained by the modulation of DNMT expression and 

DNA methylation patterns (Angelini et al. 2017; Foran et al. 2010; Hodge et al. 2001; 

Horsburgh et al. 2015). Despite the impact of IL-6 protein concentrations on DNA 

methylation, there is a sparsity of research on the DNA methylation of the IL6 gene; 

however, leukocyte DNA methylation of IL6 has previously associated with 

Rheumatoid Arthritis (Nile et al. 2008) and obesity (Na et al. 2015) indicating a role for 

IL6 DNA methylation in the inflammatory response. Despite increased circulating 

levels of inflammatory cytokines post-exercise (Gjevestad et al. 2015; Gleeson et al. 

2011), the impact of acute exercise on the DNA methylation of genes encoding 

inflammatory cytokines remains unknown. 

 

Aside from exercise, other lifestyle interventions have been demonstrated to alter DNA 

methylation patterns (Alegría-Torres et al. 2011). Supplementation of the diet with n-

3 PUFAs has been demonstrated to increase the content of n-3 PUFAs in whole blood 

(McGlory et al. 2014) and reduce levels of inflammation (Calder 2015; Rosignoli et al. 

2013) and alter epigenome-wide DNA methylation (Amaral et al., 2014; Hoile et al., 

2014; Karimi et al., 2017; Tremblay et al., 2017). Pathway analysis has demonstrated 

that inflammation and immune response are among the top regulated pathways 

(Tremblay et al. 2017). Gene-specific analysis has demonstrated a significant 

relationship between erythrocyte n-3 PUFA content and both IL6 DNA methylation and 

IL-6 protein concentrations (Ma et al. 2016). The impact of n-3 PUFA supplementation 

on exercise-induced inflammation is inconclusive with some studies have reporting 

reductions in inflammation post-exercise with supplementation (Marques et al. 2015; 

Mickleborough et al. 2015), whereas, others have reported no change in inflammation 

(Martorell et al. 2014; Nieman et al. 2009). It remains to be identified whether the 

supplementation of n-3 PUFAs can modulate exercise-induced modification of DNA 

methylation patterns. 
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Aim  

The primary aim of this chapter is to investigate the influence of a single bout of 

exercise on leukocytes DNA methylation and identify whether the response can be 

altered by the supplementation of n-3 PUFAs.  

 

Objectives 

1. Determine the impact of acute exercise and n-3 PUFA supplementation on 

global DNA methylation and mRNA expression of DNMT enzymes.  

2. Identify any changes in DNA methylation or mRNA expression of PPARGC1A 

and IL6 as a result of acute exercise or n-3 PUFA supplementation. 

3. Determine if altered FA content of whole blood is associated with DNA 

methylation. 

 

  



 74 

5.2 Methods 
The experimental procedures for this study were approved by the Loughborough 

University Ethics Human Participants sub-committee (Study ID: R14-P185). 

 

5.2.1 Participants 
Ten healthy male participants were recruited into the study according to section 3.1. 

Participant characteristics are presented in Table 5.1.  
 

Table 5.1- Participant characteristics 

Variable Mean ± SD (n = 10) 

Age (yrs) 20.93 ± 1.06 

Body Mass (kg) 75.30 ± 8.77 

Height (m) 1.78 ± 0.07 

BMI (kg·m-2) 23.58 ± 1.74 

V̇O2peak (mL∙kg∙min-1) 57.19 ± 7.97 

 

5.2.2 Study overview 

The study consisted of a familiarisation session and two experimental trials. Each 

experimental trial was completed before (Before n-3PUFA) and after (After n-3PUFA) 

a two-week supplementation of n-3 PUFA (Figure 5.1A). 

 

5.2.2.1 Familiarisation 

Participants underwent anthropometric assessment for height and body mass (section 

3.2.1). Peak oxygen uptake (V̇O2peak) was determined using a graded exercise test on 

a Lode Excalibur Sport electromagnetically braked ergometer (Lode B.V, Groningen, 

Netherlands). The exercise test began with an initial warm-up period of 4-min cycling 

at 100 W. Workload then increased to 130 W and increased by 35 W every 4-min until 

volitional fatigue was achieved (decrease in the self-selected cadence of 20 revs∙min-

1). Heart rate, Rating of Perceived Exertion (RPE; Borg 1982) and expired air were 



 75 

collected in the final minute of each stage and when the participant perceived they 

only had one-minute remaining. Verbal encouragement was provided throughout the 

test. 

 

Figure 5.1 - Schematic representation of (A) study outline and (B) trial day. Blood sampling performed 
at (I) Pre-ex, (II) Post-ex and (III) Post-ex+1hr in both the Before n-3PUFA and After n-
3PUFA trials. Fam., familiarisation session; Before n-3PUFA, Before n-3 PUFA 
supplementation trial; After n-3PUFA, After n-3 PUFA supplementation trial; Pre-ex, pre-
exercise; Post-ex, immediately post-exercise; Post-ex+1hr, 1-hour post-exercise. 

 

5.2.2.2 Experimental trials  

Pre-trial standardisation of diet and exercise was performed according to section 3.2.2. 

Figure 5.1B provides a schematic representation of the trial day. On arrival to the 

laboratory, baseline measures were recorded (section 3.2.1) and participants rested 

in a seated position for 10 minutes prior to the collection of a baseline (Pre-ex) venous 

blood sample. Participants then completed the exercise bout consisting of a V̇O2peak 

test (Figure 5.1B) using identical conditions as the familiarisation session. Further 

venous blood samples were collected immediately (maximum 2 minutes) following the 

cessation of exercise (Post-ex) and one-hour post-exercise (Post-ex+1hr). 

Participants remained within the laboratory in a seated position (Figure 5.1B; Rest) 

between the Post-ex and Post-ex+1hr blood samples. 
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Supplementation

week -1 week 0 week 1 week 2
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5.2.2.3 Supplementation 
The n-3 PUFA supplement (Holland and Barrett, UK) was provided to participants in 

capsule form. Participants were instructed to consume six capsules per day providing 

5.7g of n-3 PUFA (4.08g of EPA and 1.62g of DHA) and 0.01g per day of α-Tocopherol. 

The n-3 PUFA dose was chosen based on previous findings showing that the dose 

was sufficient to induce changes in the FA profile of human blood (McGlory et al. 2014; 

Metherel et al. 2009). Capsule counts were used to determine the compliance of 

supplementation and confirmed using whole blood FA profiles. 

 

5.2.3 Analytical procedures 

5.2.3.1 Blood sampling 

Venous blood samples were collected via venepuncture (section 3.3) at Pre-ex, Post-

ex and Post-Ex+1hr during each trial for the assessment of DNA methylation, mRNA 

expression, whole blood cell counts and determination of the FA composition of whole 

blood. 

 

5.2.3.2 DNA methylation  

Genomic DNA was extracted from whole blood (section 3.4.1). The concentration of 

isolated gDNA was 177.87 (± 71.31) ng/uL with an A260/A280 ratio of 1.91 (± 0.01). 

Global DNA methylation was assessed using LUMA (section 3.4.2).  

 

For determination of gene-specific DNA methylation, DNA was bisulfite-converted 

(section 3.4.1) and underwent PCR using the PyroMark PCR kit. DNA methylation 

percentage was determined via pyrosequencing (section 3.4.3). The assays used to 

determine DNA methylation are presented in Table 4.2 (PPARGC1A and IL6). 

 

5.2.3.4 Analysis of mRNA expression 

RNA was extracted from whole blood. The concentration of isolated RNA was 134.10 

(± 57.69) ng/uL and an A260/A280 ratio of 2.09 (± 0.01). RNA was then cDNA converted 

(section 3.4.5), and relative mRNA expression was performed using the 2-(DDCt) method 

(Livak and Schmittgen 2001) using GAPDH as the reference gene (section 3.4.6). 

Primer sequences for the assays used to determine mRNA expression of the genes 

of interest are displayed in Table 4.3 (GAPDH, Total PPARGC1A, IL6, DNMT1, 
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DNMT3a and DNMT3b). The mean Ct value of GAPDH across all participants and 

experimental conditions was 16.839 (±0.45) with a low variation of 2.68%. 

 

5.2.3.5 Fatty acid composition of whole blood 

Fatty acid methyl esters (FAME) were prepared via incubating 100 μL of whole blood 

with 3.4 mL of 50 µg/mL BHT-methanol, 200μL of acetyl chloride and 100 μL of 10 

µg/mL of heptadecanoic acid (to act as an internal standard) at 70°C for 60 minutes. 

The reaction was cooled, and 5 mL of 6% (K2CO3) was added to stop and neutralise 

the reaction. The sample was washed by adding 1.5 mL of hexane and centrifuged at 

2500 RPM for 10 minutes. The top layer of hexane was removed, and the washing 

step was repeated. Both hexane layers were combined and evaporated until dry using 

nitrogen gas. When dry, the sample was reconstituted in 100 µL of hexane and frozen 

at -20ºC until further analysis. 

The sample analysis involved the use of an Agilent Technologies 7820A GC system 

(Agilent Technologies, USA) fitted to an Agilent Technologies 5977B MSD sporting a 

single quadrupole mass analyser (Agilent Technologies, USA) and a non-polar DB-

5ms (30m x 0.25mm internal diameter x 0.25µm film thickness) column (Agilent 

Technologies, USA). A 1 µL sample was injected on the GC-MS with the oven 

temperature program set at an initial temperature of 130ºC and then increased from 

130ºC to 208ºC at a rate of 6ºC/min. The temperature was programmed to increase 

at a rate of 2 ºC/min to 225ºC where it was held for 10 min followed by a final ramp of 

25 oC/min to 300 oC and held for a final minute (total analysis time = 35.5 min). The 

injector temperature was set at 230ºC with a splitless flow of 100 mL/min at 1 minute. 

Helium was used as carrier gas with a constant flow rate of 1.5 mL/min. The MSD 

transfer line was set at 230ºC, the ion source temperature was set at 230ºC and the 

MS Quad was set at 150oC. FAMEs were characterised using electron ionisation (EI) 

in full scan mode (m/z 40 - 400) at a scan rate of 5.9 scans/second. The individual 

FAMEs were identified by comparing to the retention times of a Supelco 37 Mix FAME 

standard (Sigma-Aldrich, USA) which can be used to identify complex mixtures of 

saturated, monounsaturated and polyunsaturated complemented with the MS NIST 

library. Mass Hunter Qualitative Analysis Navigator (Agilent Technologies, USA) and 

MS Quantitative Analysis software (Agilent Technologies, USA) were used in the 
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qualification and quantitation of the FAMEs present respectfully. The results were 

expressed as the relative percentages of the total identified FA. 

5.2.4 Statistical Analysis 
Statistical analysis was performed according to section 3.5. The change in the FA 

composition of whole blood was detected using paired t-tests (Before n-3PUFA vs 

After n-3PUFA). DNA methylation and mRNA expression values were analysed using 

a 2 (trial) x 3 (time) RM-ANOVA. Spearman’s Rho correlation analysis was used to 

assess the relationship between DNA methylation and whole blood FA profiles 

according to section 3.5. All data presented as mean ± 95% CI unless otherwise 

stated. 
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5.3 Results 

5.3.1 Whole blood fatty acid composition 

Whole blood FA profiles are presented in Table 5.2. Following n-3 PUFA 

supplementation, the total percentage of the n-3 PUFAs EPA, DHA and DPA 

increased (Figure 5.2); however, there was no change in the percentage of ALA (p > 

0.05; Figure 5.2E). Alongside the increased percentage of n-3 PUFAs, the relative 

percentage of n-6 PUFA (p = 0.040) reduced (Table 5.2). The opposing impact of n-3 

PUFA supplementation on the relative percentage of n-3 and n-6 PUFAs caused a 

reduction in the n-6 PUFA / n-3 PUFA ratio (Figure 5.2B). 

 

Table 5.2 – Pre-ex whole blood fatty acid profiles. Values indicate mean percentage of total fatty acids 
within whole blood ± 95% confidence intervals. Significant change in composition of whole 
blood indicated by * (p < 0.05) or # (p < 0.01). 

Common Name 
Shorthand 
Notation 

Before n-3PUFA After n-3PUFA 

Myristic acid 14:0 1.29 ± 0.34 0.92 ± 0.23 
Pentadecanoic acid 15:0 0.26 ± 0.04 0.22 ± 0.04 

Palmitic acid 16:0 25.75 ± 1.27 23.55 ± 1.37 
Stearic acid 18:0 8.1 ± 0.79 7.7 ± 0.45 
Behenic acid 22:0 0.18 ± 0.04 0.19 ± 0.02 

Lignoceric acid 24:0 0.5 ± 0.07 0.48 ± 0.09 
Total Saturated 36.08 ± 1.67 33.06 ± 1.77# 

    

Palmitoleic acid 16:1 n-7 0.69 ± 0.24 0.44 ± 0.13 
Oleic acid 18:1 n-9 9.53 ± 1.11 8.08 ± 1.03 

Total Monounsaturated 10.22 ± 1.35 8.51 ± 1.16* 
    

Linoleic acid (LA) 18:2 n-6 28.23 ± 1.28 27.09 ± 1.55 
Gamma-linoleic acid 18:3 n-6 0.4 ± 0.1 0.26 ± 0.07 

Arachidonic acid (AA) 20:4 n-6 14.15 ± 1.27 13.64 ± 0.78 
Adrenic acid 22:4 n-6 1.58 ± 0.22 1.46 ± 0.14 

Total n-6 PUFA 44.36 ± 1.54 42.45 ± 1.68* 
    

Alpha-linolenic acid (ALA) 18:3 n-3 1.34 ± 0.54 1.38 ± 0.67 
Eicosapentaenoic acid (EPA) 20:5 n-3 1.67 ± 0.47 6.36 ± 0.83 
Docosapentaenoic acid (DPA) 22:5 n-3 1.6 ± 0.24 2.31 ± 0.3 
Docosahexaenoic acid (DHA) 22:6 n-3 4.73 ± 1.05 5.93 ± 0.96 

Total n-3 PUFA 9.35 ± 1.31 15.97 ± 1.17# 
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Figure 5.2 - Whole blood fatty acid profile for (A) total n-3 polyunsaturated fatty acid (PUFA), (B) n-6 
PUFA / n-3 PUFA ratio, (C) total eicosapentaenoic acid (EPA), (D) total docosahexaenoic 
acid (DHA), (E) total alpha-Linolenic acid (ALA) and (F) total docosapentaenoic acid (DPA) 
expressed as percentage of total fatty acids. Data presented as mean ± 95% confidence 
intervals. Grey circles indicate individual data points. * p < 0.05; # p < 0.01. 
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5.3.2 Global DNA methylation and DNMT mRNA expression 
There was no impact of exercise or n-3 PUFA supplementation on global DNA 

methylation (Figure 5.3A); however, a significant reduction in DNMT mRNA 

expression was detected following exercise. Post-ex DNMT3a mRNA expression was 

reduced (p < 0.001) and returned to Pre-ex values by Post-ex+1hr (p > 0.05; Figure 

5.3C), whereas, DNMT1 (p = 0.004; Figure 5.3B) and DNMT3b (p = 0.036; Figure 

5.3D) were significantly reduced at Post-ex+1hr.  

 

 

Figure 5.3 - Effect of exercise and n-3 PUFA supplementation on (A) global DNA methylation and the 
mRNA expression of (B) DNMT1, (C) DNMT3a and (D) and DNMT3b. Significant impact 
of time indicated by * (p <0.05) or # (p <0.01). 
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5.3.3 Gene-specific DNA methylation and mRNA expression 

5.3.3.1 PPARGC1A 

Neither exercise or supplementation altered PPARGC1A DNA methylation (Figure 

5.4A). A main effect was detected for time with PPARGC1A mRNA expression (p = 

0.027) indicating an increase in PPARGC1A expression with exercise; however, this 

failed to remain significant following correction for multiple comparisons, and only a 

trend existed for increased mRNA expression Post-ex+1hr (p = 0.058) compared to 

Pre-ex (Figure 5.4B). 

 

 

Figure 5.4 - Effect of exercise and supplementation on (A) the DNA methylation of a single CpG site -
260 bases from the TSS of the PPARGC1A promoter and (B) mRNA expression of 
PPARGC1A. Significant impact of time indicated by * (p <0.05) or # (p <0.01). 
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was detected for increased IL6 mRNA expression (p = 0.077) Post-ex which became 

significant at Post-ex+1hr (p < 0.001; Figure 5.5B) in the After n-3PUFA trial compared 
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uncorrelated to IL6 mRNA expression (p > 0.05). 
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Figure 5.5 - Effect of exercise and supplementation on (A) the DNA methylation of a single CpG site -
1096 bases (CpG2) from the TSS of the IL6 promoter and (B) mRNA expression of IL6. A 
significant interaction between supplementation and time indicated by § (p < 0.01). 
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supplementation. 
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Figure 5.6 – Spearman’s Rho between after n-3PUFA supplementation DNA methylation and fatty acid 
class (percentage of total fatty acids). Blue indicates a negative correlation; red indicates 
a positive correlation and black indicates correlation coefficients between -0.5 and 0.5 (see 
key). *p < 0.05, # p < 0.01. 
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5.3.5 Association between DNA methylation and exercise performance  
No correlations were identified between global DNA methylation and measures of 

exercise performance either before or after the supplementation of n-3 PUFAs (p > 

0.05; Figure 5.7). A significant positive correlation was identified between Post-ex+1hr 

PPARGC1A DNA methylation and V̇O2peak before n-3 PUFA supplementation (p = 

0.038; Figure 5.7); however, this association disappeared following n-3 PUFA 

supplementation (Figure 5.7). Post-ex DNA methylation of IL6 CpG 2 was negatively 

correlated to V̇O2peak both before and after n-3PUFA supplementation (p < 0.05; Figure 

5.7); whereas, Post-ex+1hr significant negative correlations between exercise 

performance and DNA methylation of IL6 CpG2 were detected only after n-3 PUFA 

supplementation (p < 0.05; Figure 5.7). None of the other IL6 CpG sites investigated 

(or the mean methylation) were associated with exercise performance (p > 0.05).  

 

 

Figure 5.7 - Spearman’s Rho between post-exercise DNA methylation and measures of exercise 
performance. Blue indicates a negative correlation; red indicates a positive correlation and 
black indicates correlation coefficients between -0.5 and 0.5. Peak power, peak power 
achieved during exercise test; V̇O2peak, peak oxygen uptake. *p < 0.05, # p < 0.01. 

DNA Methylation
Global PPARGC1A IL6 CpG2 IL6 CpG Avg

Marker

Po
st

-e
x

Po
st

-e
x+

1h
r

Po
st

-e
x

Po
st

-e
x+

1h
r

Po
st

-e
x

Po
st

-e
x+

1h
r

Po
st

-e
x

Po
st

-e
x+

1h
r

B
ef

or
e 

   
 

n-
3P

U
FA

Peak 
power -0.06 -0.38 -0.07 0.547 -0.58 0.067 -0.57 0.237

V̇O2peak -0.06 -0.06 -0.503 0.648* -0.612* 0.285 -0.38 0.345

A
fte

r  
  

n-
3P

U
FA

Peak 
power 0.153 0.178 -0.411 -0.1 -0.39 -0.681* -0.07 -0.12

V̇O2peak 0.152 0.588 -0.600 -0.15 -0.612* -0.842# -0.14 -0.39

‹

DNA Methylation
Global PPARGC1A IL6 CpG2 IL6 CpG Avg

Marker Po
st

-e
x

Po
st

-e
x+

1h
r

Po
st

-e
x

Po
st

-e
x+

1h
r

Po
st

-e
x

Po
st

-e
x+

1h
r

Po
st

-e
x

Po
st

-e
x+

1h
r

B
ef

or
e 

  
n-

3P
U

FA

Peak 
power -0.06 -0.38 -0.07 0.547 -0.58 0.067 -0.57 0.237

V̇O2peak -0.06 -0.06 -0.5 0.648* -0.612* 0.285 -0.38 0.345

A
fte

r  
   

  
n-

3P
U

FA

Peak 
power 0.153 0.178 -0.41 -0.1 -0.39 -0.681* -0.07 -0.12

V̇O2peak 0.152 0.588 -0.6 -0.15 -0.612* -0.842# -0.14 -0.39

‹ Correlation coefficient key: 
-0.7 -0.5 0 0.5 0.7 

 



 86 

 

5.4 Discussion 
This chapter aimed to investigate the impact of a single bout of exercise to volitional 

fatigue before and after a 2-week supplementation of n-3 PUFAs on global and gene-

specific DNA methylation and mRNA expression. Global DNA methylation was 

unchanged following exercise and supplementation; however, DNMT mRNA 

expression was reduced following exercise suggesting a potential role for exercise 

altering DNA methylation. The supplementation of n-3 PUFAs did not alter the DNA 

methylation of IL6; however, significant correlations were detected between IL6 DNA 

methylation and the proportion of n-3 PUFAs and the n-6 / n-3 PUFA ratio of whole 

blood. Although neither exercise or n-3 PUFA supplementation altered DNA 

methylation, an interaction was detected between exercise and supplementation for 

IL6 DNA methylation and mRNA expression. Immediately post-exercise, the DNA 

methylation of a single site of IL6 was significantly reduced following n-3 PUFA 

supplementation compared with pre-supplementation. Although not significant a trend 

for increased IL6 mRNA expression was detected at the same time point and this 

association became significant 1 hr post-exercise.  

 

The lack of association between acute exercise and global DNA methylation in the 

present study is contrary to previous reports suggesting that an acute bout of exercise 

is sufficient to reduce global methylation (Barrès et al. 2012; da Silva et al. 2017). A 

similar exercise protocol to volitional fatigue reduced global DNA in the skeletal muscle 

of sedentary adults (n = 14) (Barrès et al. 2012), whereas, 90-min of treadmill walking 

reduced methylation in the plasma of chronic obstructive pulmonary disease (COPD) 

patients (n = 13) (da Silva et al. 2017). The only previous study to investigate the 

impact of acute exercise in leukocytes failed to detect altered genome-wide DNA 

methylation (Robson-Ansley et al. 2014). These results suggest a potential tissue-

specificity between skeletal muscle and leukocytes for the response of DNA 

methylation to acute exercise. A tissue-specific response to exercise training has been 

demonstrated by the alteration of different molecular pathways in skeletal muscle 

(Nitert et al. 2012) and adipose tissue (Rönn et al. 2013) of the same individuals 

following a six-month exercise training intervention.  
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Alternatively, the differences in global methylation between studies may be explained 

by the exercise capacity of the participants. The V̇O2peak of the participants in the 

present study is similar to the V̇O2max reported by Robson-Ansley et al.,(2014) (57 vs 

53 mL∙kg∙min-1); whereas, lower exercise capacities are reported in the cohort of 

sedentary individuals (42 mL∙kg∙min-1) and estimated in the COPD patients (16 

mL∙kg∙min-1; estimated using the equation reported by Ross et al. (2010) using the 6-

minute walk distance) (Barrès et al. 2012; da Silva et al. 2017). The impact of baseline 

fitness on the DNA methylation response to exercise is unknown; however, global 

hypomethylation is consistently reported with exercise training indicating that regular 

exercise reduces global methylation (Denham, O’Brien, Marques, et al. 2015; Dimauro 

et al. 2016; Nitert et al. 2012; Rowlands et al. 2014; Seaborne et al. 2018). The V̇O2peak 

of the participants in the current study indicates a high level of fitness (within the top 

quartile (Kaminsky, Arena, and Myers 2015)); therefore, the hypomethylation induced 

by exercise training may have already occurred making the exercise stimulus 

insufficient to stimulate further hypomethylation.  

 

In the present study, the supplementation of n-3 PUFAs did not alter global DNA 

methylation. Although there is little evidence on the impact of n-3 PUFA 

supplementation on global DNA methylation, a significant reduction in LINE-1 

methylation has been reported following a 6-month n-3 PUFA supplementation in 

Alzheimer’s patients (Karimi et al. 2017). LINE-1 methylation is reported to be 

increased in Alzheimer’s patients compared to healthy controls (Di Francesco et al. 

2015); therefore, the supplementation of n-3 PUFA in these individuals may act to 

restore global DNA methylation to the normal level detected in healthy individuals 

explaining the lack of association within the present cohort of healthy individuals. Aside 

from the participants, the use of different surrogate measures of global methylation 

(LUMA vs LINE-1) prevents the direct comparison between studies, two separate 

studies have indicated that the methylation estimates provided by LINE-1 and LUMA 

are poorly correlated (Lisanti et al. 2013; Wu et al. 2011), indicating that changes in 

methylation detected by one method may not be detectable when using the other. 

 

Despite a lack of change in global DNA methylation following exercise and n-3 PUFA 

supplementation in the present study, it cannot be concluded that the interventions did 

not have a significant impact on the methylome. Exercise-training EWAS have 
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reported differential methylation across thousands of CpG sites; while some studies 

report a large proportion of CpG sites display reduced methylation (Denham, O’Brien, 

Marques, et al. 2015; Nitert et al. 2012; Rowlands et al. 2014; Seaborne et al. 2018), 

others reported similar numbers of CpG sites increasing and decreasing in DNA 

methylation (Denham et al. 2016; Lindholm et al. 2015). When the directionality of 

global methylation changes was investigated using LUMA, one study detected no 

significant change in the average methylation post-training compared to pre-training 

despite differential DNA methylation being detected in ~4000 CpG sites (Lindholm et 

al. 2015). These data indicate the importance of examining gene-specific DNA 

methylation alongside measures of global DNA methylation to examine the impact of 

interventions. 

 

The DNMT enzymes are known to play a vital role in controlling DNA methylation, in 

the present study we examined the mRNA expression of DNMT1, DNMT3a and 

DNMT3b to examine whether exercise and n-3 PUFA supplementation were sufficient 

to alter the expression. Exercise, but not the supplementation of n-3 PUFAs, was 

sufficient to alter the mRNA expression of each of the DNMTs. Previously, only the 

mRNA expression of DNMT3b has been demonstrated to be altered following acute 

exercise (Laye and Pedersen 2010) or a training intervention (Denham et al. 2016). 

The only other association between DNMTs and exercise in humans reported 

decreased nuclear concentrations of DNMT3b in PBMCs incubated with exercise 

conditioned plasma (Horsburgh et al. 2015). Although these studies suggest that the 

altered expression/concentration of DNMT3b may modify DNA methylation, there is a 

lack of evidence to support this conclusion. Aside from exercise, disease studies have 

reported positive relationships between the mRNA expression of DNMTs and DNA 

methylation (Jaiswal et al. 2015; Kobayashi et al. 2011). Therefore, despite no change 

in global DNA methylation in the present study, the decreased mRNA expression of 

DNMTs suggests that an acute bout of exercise may alter the DNA methylation in 

leukocytes. 

 

In the present study, we did not detect altered DNA methylation or mRNA expression 

of PPARGC1A following either acute exercise or n-3 PUFA supplementation. 

Previously, within skeletal muscle, exercise has been sufficient to decrease the DNA 

methylation of same CpG site of the PPARGC1A promoter (Bajpeyi et al. 2017; Barrès 
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et al. 2012; Nitert et al. 2012), whereas high fat overfeeding studies have been 

associated with increased PPARGC1A DNA methylation in both skeletal muscle and 

adipose tissue (Gillberg et al. 2014; Perfilyev et al. 2017). There is a lack of previous 

literature on the impact of lifestyle interventions on the methylation status of the -260 

CpG site of the PPARGC1A promoter; therefore, it is unknown whether the CpG site 

regulates PPARGC1A mRNA expression in leukocytes or if the interventions used in 

the present study were insufficient to alter the methylation. 

 

Although no change in PPARGC1A methylation was identified following acute exercise 

in the present study, a positive correlation was identified between Post-ex+1hr 

PPARGC1A and the V̇O2peak during the exercise test. These results potentially suggest 

that individuals with higher fitness do not undergo a hypomethylation response 

following acute exercise because the exercise bout provided an insufficient stimuli to 

induce adaption. The only previous study to investigate the association between 

PPARGC1A methylation and measures of fitness failed to find an association between 

the amount of moderate-vigorous physical activity (mins/day) and leukocyte DNA 

methylation at a region further upstream (-841 to -515 bp) of the PPARGC1A promoter 

(Clarke-Harris et al. 2014). The lack of clarity between the studies may result from the 

use of a different region of the PPARGC1A promoter in the study by Clarke-Harris 

(2014), which has not previously associated with exercise.  

 

The inflammatory response to a bout of exercise has been demonstrated to be critical 

in altering DNA methylation in leukocytes, Robson-Ansley et al., (2014) reported 

significant associations between plasma IL-6 concentrations and DNA methylation of 

53 CpG sites. Exercise-induced increased PPARGC1A mRNA expression in 

leukocytes has been suggested to induce an anti-inflammatory phenotype (Busquets-

Cortés et al. 2017; Yakeu et al. 2010) and alter the anti-oxidant defence in leukocytes 

(Ferrer et al. 2009). The lack of increase in PPARGC1A mRNA expression following 

exercise in the current study suggests the exercise may have been insufficient to alter 

the anti-inflammatory and anti-oxidant defence, and subsequently DNA methylation. 

 

In the present study, no assessment of circulating IL-6 concentration was determined; 

however, the impact of exercise and n-3 PUFA supplementation on IL6 DNA 

methylation and mRNA expression was investigated. A region ~1000 bp upstream of 
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the TSS of the IL6 promoter spanning six CpG sites (-1099 to -1057) was selected to 

examine DNA methylation because this region regulates IL6 mRNA expression (Nile 

et al. 2008) and associates with both obesity (Na et al. 2015), and rheumatoid arthritis 

(Nile et al. 2008). Following n-3 PUFA supplementation, significant positive 

correlations were detected between IL6 DNA methylation and whole blood n-3 PUFA 

content and the n-6 PUFA / n-3 PUFA ratio (Figure 5.6); however, this association did 

not result in altered DNA methylation. A significant negative relationship has previously 

been reported between the duration of n-3 PUFA supplementation and IL-6 

concentrations (Li et al. 2014), potentially indicating the supplementation duration 

used in the present study may be insufficient to alter DNA methylation and mRNA 

expression.  

 

The only previous report of the impact of n-3 PUFA supplementation on IL6 DNA 

methylation detected an opposing relationship between n-3 PUFA content and IL6 

DNA methylation. Ma et al., (2016) detected higher erythrocyte n-3 PUFA content was 

associated with decreased IL6 DNA methylation for a single CpG site in the region of 

the IL6 promoter closer to the TSS. Although a positive correlation was also detected 

between n-3 PUFA content and IL-6 protein concentrations, the observational nature 

of the study prevents the conclusion that the mechanism via which n-3 PUFAs alter 

IL6 protein concentrations is IL6 DNA methylation. The opposing relationship between 

n-3 PUFA content and IL6 DNA methylation may be explained by the use of different 

cell populations (erythrocytes vs whole blood) for the determination of fatty acid 

content and the use of CpG sites in different regions of the IL6 promoter.  

 

In the present work, immediately post-exercise the DNA methylation of a single IL6 

CpG site (CpG 2) was detected to be significantly lower following n-3 PUFA 

supplementation compared to the trial before n-3 PUFA supplementation. In 

accordance with these findings, the present work identified negative correlations 

between DNA methylation of the same IL6 CpG site and both peak power and V̇O2peak 

during the exercise, with the strongest correlations following supplementation of n-3 

PUFAs. Alongside reduced DNA methylation a trend existed for increased mRNA 

expression existed immediately post-exercise following n-3 PUFA supplementation 

which became significant one-hour post-exercise.  
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Although the results appear to suggest that the supplementation of n-3 PUFAs 

increase the level of inflammation following an acute bout of exercise, this may not be 

true. Although exercise training is known to reduce systemic IL-6 concentrations 

(Christiansen et al. 2010; Kim 2014; Oberbach et al. 2008), increased IL6 mRNA 

expression has been in reported leukocytes of highly trained athletes compared to 

lowly individuals and sedentary controls (Capomaccio et al. 2011). Unlike other 

inflammatory cytokines, IL6 is known to possess pleiotropic roles within the 

inflammatory response (Scheller et al. 2011). Chronic expression of IL6 or increased 

IL-6 in response to infection is associated with increased expression of pro-

inflammatory cytokines (Petersen and Pedersen 2006), whereas, the transient-

exercise-induced elevations in IL-6 has been demonstrated to possess anti-

inflammatory roles via the expression of IL-1ra and IL-10 (Steensberg et al. 2003) and 

the inhibition of TNF (Gleeson et al. 2011; Petersen and Pedersen 2006). Therefore, 

the increased mRNA expression induced by altered DNA methylation of IL6 as a result 

of n-3 PUFA supplementation and exercise may result in an anti-inflammatory 

response; however, these results need to be supported by future work examining the 

impact of exercise and n-3 PUFAs on the regulation of pro-inflammatory cytokines. 

 

5.5 Conclusion 
Despite reduced mRNA expression of the DMNT enzymes following exercise, there 

was no impact of exercise on global or gene-specific DNA methylation. Potentially a 

measure of DNMT enzyme activity may explain the lack of agreement between mRNA 

expression and DNA methylation. The supplementation of n-3 PUFAs altered the 

composition of FAs in whole blood and significantly correlated with IL6 DNA 

methylation; however, the absence of inflammatory cytokine protein concentrations 

prevents detecting the impact of supplementation on inflammation. A relationship 

between exercise and supplementation was detected for IL6 DNA methylation and 

mRNA expression suggesting a potential anti-inflammatory role for exercise-induced 

expression. Further work is needed to confirm the results in this chapter. Although 

mRNA expression has been used to determine the impact of modified DNA 

methylation, the inclusion of phenotypes related to exercise performance and 

inflammation would allow the functional significance of changes in DNA methylation to 

be determined.   
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6.1 Introduction 
In chapter 5, a lack of association between an acute bout of exercise to volitional 

fatigue and both global and gene-specific (PPARGC1A and IL6) DNA methylation was 

detected. Whereas following the supplementation of n-3 PUFAs, exercise was 

sufficient to reduce the DNA methylation of a single CpG site of IL6 and increase the 

mRNA expression. Seminal work by Barres et al., (2012) determined that the bout of 

exercise to volitional fatigue was sufficient to alter global methylation patterns, 

whereas, a candidate gene approach determined a high but not low intensity bout of 

exercise altered DNA methylation of genes associated with mitochondrial biogenesis. 

In this chapter, we sought to determine whether the lack of modulated DNA 

methylation in the previous chapter was the result of an insufficient exercise stimulus. 

 

Environmental stimuli, including exercise and dietary interventions, can modify the 

DNA methylome at a global and gene-specific level (Alegría-Torres et al. 2011). 

Exercise training studies have demonstrated hypomethylation of the genome following 

exercise in both skeletal muscle (Nitert et al. 2012; Rowlands et al. 2014; Seaborne et 

al. 2018) and blood leukocytes (Denham et al. 2016; Denham, O’Brien, Marques, et 

al. 2015; Dimauro et al. 2016). Within skeletal muscle, acute exercise has been 

demonstrated to induce hypomethylation (Bajpeyi et al. 2017; Barrès et al. 2012; 

Seaborne et al. 2018); however, the only investigation of DNA methylation in 

leukocytes following acute exercise failed to detect any changes in DNA methylation 

(Robson-Ansley et al. 2014). Despite the scarcity of literature surrounding the impact 

of acute exercise on DNA methylation in leukocytes, an epigenetic consequence is 

suggested by the remodelling of the leukocyte transcriptome following acute exercise 

(Büttner et al. 2007; Connolly et al. 2004; Gjevestad et al. 2015).  

 

Acute exercise is associated with adjustments in the expression of genes involved in 

a variety of cellular processes, including immune response, mitochondrial biogenesis, 

metabolism and muscle remodelling (Booth, Chakravarthy, and Spangenburg 2002; 

Egan and Zierath 2013; Gjevestad et al. 2015). The PPARGC1A gene, which encodes 

for PGC-1α, is known as the master regulator of mitochondrial biogenesis and plays 

an important role in aerobic training adaptation (Ventura-Clapier et al. 2008). In 

immune cells, PPARGC1A is associated with anti-inflammatory (Thomas et al. 2012; 
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Yakeu et al. 2010) and anti-oxidant defence (Ferrer et al. 2009); however, the impact 

of exercise-induced inflammation and oxidative stress on PPARGC1A DNA 

methylation is unknown. Epigenetic studies have linked a CpG site -260 bases from 

the promoter of PPARCG1A with the regulation of mRNA expression. In skeletal 

muscle, exercise can demethylate the PPARGC1A -260 CpG site which has been 

shown to concurrently upregulate PPARGC1A mRNA expression (Bajpeyi et al. 2017; 

Barrès et al. 2012). Although well characterised in skeletal muscle, the regulation of 

PPARGC1A expression in other cells and tissues, including immune cells is poorly 

understood (Busquets-Cortés et al. 2017).  

 

Exercise of sufficient intensity and duration can cause tissue injury and lead to a 

systemic inflammatory response (Gjevestad et al. 2015; Gleeson et al. 2011). 

Increased circulating levels of the inflammatory cytokines IL-6 and TNF-α are strongly 

correlated with the progression of sarcopenia and measures of physical performance 

(Cesari et al. 2004; Visser et al. 2002). Acute exercise can also increase the production 

of reactive oxygen species, in both skeletal muscle and immune cells (Powers, Nelson, 

and Hudson 2011), potentially leading to the development of oxidative stress and 

damage to lipids, proteins and DNA (He et al. 2016). Increases in markers of oxidative 

stress and circulating levels of inflammatory cytokines, such as IL-6 and TNF-α , have 

been shown to alter the expression of DNMTs (Angelini et al. 2017; Braconi, Huang, 

and Patel 2010; Foran et al. 2010; Hodge et al. 2001; Horsburgh et al. 2015) and 

influence DNA methylation patterns (Robson-Ansley et al. 2014; Sharples et al. 2016). 

DNA methylation of inflammatory cytokines have been associated with various 

inflammatory diseases including IL6 with Rheumatoid Arthritis (Nile et al. 2008) and 

obesity (Na et al. 2015); TNF DNA methylation with type 2 diabetes (Zhang et al. 2017) 

and Alzheimer's disease (Kaut et al. 2014). Despite increased circulating levels of 

inflammatory cytokines post-exercise (Gjevestad et al. 2015; Gleeson et al. 2011), the 

impact of exercise on the DNA methylation of genes encoding inflammatory cytokines 

such as IL6 and TNF remains unknown. 

 

There is the potential for the dietary supplementation of FAs to prevent exercise-

induced inflammation via the modulation of DNA methylation. Supplementation of FAs, 

including n-3 PUFAs and extra virgin olive oil (EVOO), are consumed to reduce levels 

of inflammation (Calder 2015; Rosignoli et al. 2013); however, the impact of these 
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supplements on exercise-induced inflammation is equivocal. Some studies have 

detected reductions in inflammation post-exercise with FA supplementation (Marques 

et al. 2015; Mickleborough et al. 2015), whereas, others have reported no change in 

inflammation (Martorell et al. 2014; Nieman et al. 2009). An emerging mechanism for 

the anti-inflammatory impact of FA supplementation is via epigenetic modifications 

(Ma et al. 2016; Saini et al. 2017; Tartibian et al. 2011; Tremblay et al. 2017). The 

supplementation of the diet with krill oil, high in n-3 PUFAs, has been demonstrated to 

reduce PPARGC1A mRNA expression and the change in mRNA expression was 

negatively correlated to the change in plasma n-3 PUFAs (Rundblad et al. 2018). Total 

n-3 PUFA content is negatively correlated to both IL6 DNA methylation and IL-6 

protein concentration (Ma et al. 2016). EVOO is a commonly used control in exercise 

studies to assess the impact of n-3 PUFA; however, the supplementation of EVOO 

has also been reported to modify the DNA methylation of genes associated with 

inflammation (Arpón et al. 2017). It remains to be identified whether the 

supplementation of FAs have an epigenetic impact on exercise-induced inflammation.  

 

Aim  

The primary aim of this chapter is to investigate the impact of acute exercise and FA 

supplementation on leukocyte DNA methylation and mRNA expression. We also 

investigated whether these relationships impacted physiological variables related to 

exercise performance, inflammation and oxidative stress.  

 

Objectives 

1. Assess whether an acute bout of exercise and FA is sufficient to alter global 

DNA methylation and mRNA expression of DNMT enzymes.  

2. Determine any changes in gene-specific methylation (PPARGC1A, IL6 and 

TNF) and subsequently mRNA expression as a result of exercise and FA 

supplementation. 

3. Identify any association between physiological variables and modulated DNA 

methylation.  
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6.2 Methods  
The experimental procedures for this study were approved by the Loughborough 

University Ethics Human Participants sub-committee (Study ID: R14-P72). 

 

6.2.1 Participants 
Ten healthy male trained cyclists were recruited into the study according to section 

3.1. Complete data set were available for eight participants whose characteristics are 

described in Table 6.1.  

 

Table 6.1 - Participant characteristics. V̇O2max , maximum aerobic uptake; Wmax, maximal aerobic 
power 

Variable Mean ± SD (n = 8) 

Age (yrs) 39.50 ± 5.90 

Body Mass (kg) 73.04 ± 8.31 

Height (m) 1.74 ± 0.84 

BMI (kg·m-2) 24.07 ± 2.46 

V̇O2max (mL∙kg∙min-1) 53.88 ± 5.24 

Wmax (W) 321.63 ± 28.15 

 

6.2.2 Study overview 
The study consisted of a familiarisation session and four experimental trials. 

Experimental trials were completed before and after a four-week supplementation of 

n-3 PUFA and EVOO (Before n-3 PUFA, After n-3PUFA, Before EVOO and After 

EVOO) in a double-blind, randomised, repeated measures design. A four-week 

washout was included between each supplementation period (Figure 6.1A).  
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Figure 6.1 – Schematic representation of (A) the study outline and (B) trial day. n-3 PUFA, omega-3 
polyunsaturated fatty acid; EVOO, extra virgin olive oil; Wmax, maximal aerobic power; 
TT, time trial. 

 

6.2.2.1 Familiarisation 

Participants underwent anthropometric assessment for height, body mass (section 

3.2.1) and eight-skinfold measurements according to the International Society for the 

Advancement of Kinanthropometry (ISAK) prior to the start of the study. Maximal 

aerobic power (Wmax) and maximal oxygen uptake (V̇O2max) were determined using 

a graded exercise test on a Lode Excalibur Sport ergometer (Lode B.V, Netherlands). 

The exercise test began with a warm-up period of 5-min cycling at 100 W. Workload 

then increased by 50 W every 3-min until volitional fatigue (decrease in the self-

selected cadence of 20 revs∙min-1). Expired air was collected in the final minute of 

each stage to allow V̇O2max determination using primary and secondary criteria 

(Howley, Bassett, and Welch 1995). Wmax was calculated using the formula: 

Wmax = Workload ÷ [(t/180) x 50] 

Where t is the time in seconds completed in the final stage. Following the completion 

of the incremental cycling test, participants received a 10-minute rest before 

completing a 15-minute time-trial (TT) familiarisation.  
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6.2.2.2 Experimental trials  

Pre-trial standardisation of diet and exercise was performed according to section 3.2.2. 

Figure 6.1B provides a schematic representation of the trial day. On arrival to the 

laboratory, baseline measures were recorded (section 3.2.1) and an intravenous 

catheter was inserted for the collection of blood samples (section 3.3). Following the 

collection of a baseline blood sample (Pre-ex), participants completed the exercise 

bout consisting of 45-minutes cycling at 70% Wmax, followed by a 15-minute TT 

(Jeukendrup et al. 1996). The electromagnetically braked ergometer was set in 

hyperbolic mode for the initial 45-minutes cycling at 70% Wmax to ensure that work 

rate was constant and independent of cadence. Upon completion of the 45-minutes of 

steady state cycling, the ergometer was changed linear mode for the 15-minute TT, 

where the work rate is dependent on the pedalling rate, allowing the participants to 

maximise power output by maintaining a high cadence. The linear factor was selected 

using the following formula: 

W = L x (RPM)2  

Where RPM is the pedalling rate from the V̇O2max test. Verbal encouragement and 

feedback on elapsed time were provided throughout the TT; however, no feedback on 

power output, heart rate or cadence were provided. The total work done and mean 

power throughout the 15-min TT were calculated and used a measure of performance. 

Upon completion of the exercise bout a further blood sample was collected (Post-ex). 

 

6.2.2.3 Supplementation 

Both n-3 PUFA (Holland and Barrett, UK) and EVOO (Puritan’s Pride, USA) 

supplements were provided in capsule form. Participants were instructed to take six 

capsules per day providing 5.7g of n-3 PUFA (4.08g of EPA and 1.62g of DHA) and 

0.01g per day of α-Tocopherol or 6 g per day of EVOO. The n-3 PUFA dose was 

chosen based on previous findings showing the dose was sufficient to induce changes 

in the FA profile of human blood (McGlory et al. 2014; Metherel et al. 2009). Returned 

capsules were counted to determine the compliance of supplementation. 
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6.2.3 Analytical Procedures 

6.2.3.1 Blood sampling 

Venous blood samples were collected (section 3.3) for the assessment of DNA 

methylation, mRNA expression and both IL-6 and carbonyl protein concentrations via 

an intravenous catheter (section 3.3) at Pre-ex and Post-ex in each of the four trials 

(Before n-3PUFA, After n-3PUFA, Before EVOO and After EVOO).  

 

6.2.3.2 DNA methylation 

Genomic DNA was extracted from whole blood (section 3.4.1). The concentration of 

isolated gDNA was 183.50 (± 54.48) ng/uL and an A260/A280 ratio of 1.90 (± 0.02). 

Global DNA methylation was assessed using LUMA (section 3.4.2). For determination 

of gene-specific DNA methylation, DNA was bisulfite-converted (section 3.4.1) and 

underwent PCR using the PyroMark PCR kit. DNA methylation percentage was 

determined via pyrosequencing (section 3.4.3). The assays used to determine DNA 

methylation are presented in Table 4.2 (PPARGC1A, IL6 and TNF). 

 

6.2.3.3 Analysis of mRNA expression 

RNA was extracted from whole blood. The concentration of isolated RNA was 120.32 

(± 41.02) ng/uL and an A260/A280 ratio of 2.09 (± 0.02). RNA was then cDNA converted 

(section 3.4.5), and relative mRNA expression was performed using the 2-(DDCt) method 

(Livak and Schmittgen 2001) using GAPDH as the reference gene (section 3.4.6). 

Primer sequences for the assays used to determine mRNA expression of the genes 

of interest are displayed in Table 4.3 (GAPDH, Total PPARGC1A, IL6, TNF, DNMT1, 

DNMT3a and DNMT3b). The mean Ct value of GAPDH across all participants and 

experimental conditions was 17.134 ( ±0.41) with a low variation of 2.40%. 

 

6.2.3.4 IL-6 

Serum IL-6 concentration was determined Pre-ex and Post-ex for each of the four 

trials using the high sensitivity enzyme immunoassay kits (R & D Systems, USA). 

Haematocrit and haemoglobin values were used to ascertain plasma volume changes 

that were used to adjust serum IL-6 concentrations (Dill and Costill 1974). 
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6.2.3.5 Protein Carbonyls (PC) 

PBMCs, isolated from whole blood by density gradient centrifugation using Ficoll-

Paque Premium (GE healthcare, USA) according to the manufacturer’s instructions, 

and serum (section 3.3) were assessed by an in-house ELISA (Buss et al. 1997; Carty 

et al. 2000). Serum samples, PBMC lysates and standards were diluted in coating 

buffer (50mM sodium carbonate, pH = 9.2) to a concentration of 0.05mg/mL using the 

bicinchoninic assay method. Protein carbonyls groups were derivatised with 2, 4-

dinitrophenylhydrazine (1mM, in 2M HCl) and incubated with monoclonal mouse anti-

DNP antibody (Sigma Aldrich, UK) and rat anti-mouse IgE, conjugated to HRP (AbD 

Serotec, UK). Well absorbance was measured at 490nm and the PC concentration 

determined by using absorbance values of known PC standards made in our 

laboratory (1.28-5.20 nmol/mg protein). PC concentration in PBMCs were adjusted for 

changes in protein concentration and cell number (Beckman Coulter, UK) induced by 

acute exercise. 

 

6.2.4 Statistical Analysis 

Statistical analysis was performed according to section 3.5. DNA methylation, mRNA 

expression values and physiological variables related to exercise performance, 

inflammation and oxidative stress were analysed using a 2 (supplement) x 2 (trial) x 2 

(time) RM-ANOVA. The impact of exercise is presented using the absolute values 

(mean of all trials for each time point), whereas, the impact of supplementation of FAs 

is presented as the relative change (D) between before and after supplementation 

trials (after supplementation – before supplementation). Values represented as mean 

± 95% CI. 

 

Spearman’s Rho correlation analysis was used to assess the relationship between 

DNA methylation and mRNA expression and physiological markers related to exercise 

performance, inflammation and oxidative stress. Moderate (>0.5) correlation 

coefficients were considered to be of interest; however, only large (> 0.7) correlation 

coefficients were deemed statistically significant. All data presented as mean ± 95% 

CI unless otherwise stated. 
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6.3 Results 

6.3.1 Physiological responses - Exercise performance, inflammation and 

oxidative stress 
Supplementation of FAs did not alter the work done (D n-3PUFA = 7.9 kJ, D EVOO = 

-9.6 kJ; p = 0.06) or mean power (D n-3PUFA = -0.25W, D EVOO = -10.96 W; p = 

0.101) during the TT. There was a significant increase in serum IL-6 in response to 

exercise (Pre-ex: 0.63 ± 0.24 pg/mL, Post-ex: 3.78 ± 0.55 pg/mL; p < 0.001); however, 

the supplementation of FAs had no impact on IL6 protein concentrations (p > 0.05). 

Decreased PBMC PC was detected following exercise (Pre-ex: 2.15 ± 0.20, Post-ex: 

1.26 ± 0.17; p < 0.001), whereas, exercise had no impact on the serum PC 

concentration (p > 0.05). Supplementation of FAs had no impact on serum or PBMC 

PC concentrations (p > 0.05). 

 

6.3.2 Global cytosine methylation and DNMT mRNA expression  

One-hour of cycling reduced global methylation, assessed by LUMA (Figure 6.2A; Pre-

ex: 79.2%; Post-ex: 78.7%, p = 0.008), and the mRNA expression of both DNMT3a 

(Figure 6.2C; p = 0.018) and DNMT3b (Figure 6.2D; p = 0.046). Supplementation of 

FAs did not alter global methylation (Before n-3PUFA: 79.05%, After n-3PUFA: 

78.82%, Before EVOO: 79.12%, After EVOO: 79.11%; Figure 6.3A; p > 0.05) or mRNA 

expression of DNMT3a or DNMT3b (Figure 6.3; p > 0.05). While DNMT1 mRNA 

expression was unaffected by exercise, a significant interaction was identified between 

supplement and trial (p = 0.048; Figure 6.3B) indicating differential effects on mRNA 

expression with the two supplements. No correlation was detected between global 

DNA methylation values and DNMT mRNA expression. 
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Figure 6.2 – Effect of exercise on (A) global DNA methylation and mRNA expression of (B) DNMT1, 
(C) DNMT3a and (D) DNMT3b. Data presented as the mean value of all trials for each 
time point. * p <0.05, # p <0.01 
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Figure 6.3 -The impact of supplementation of n-3 PUFA and EVOO on (A) global DNA methylation and 
mRNA expression of (B)DNMT1, (C)DNMT3a and (D)DNMT3b. Data presented as the 
relative change (D) between before and after supplementation trials for each supplement. 
n-3 PUFA, n-3 polyunsaturated fatty acid; EVOO, extra virgin olive oil. * p <0.05. 
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Figure 6.4 - Effect of exercise on (A) DNA methylation of CpG-260 and (B) mRNA expression of 
PPARGC1A. Data presented as the mean value of all trials for each time point. # p < 0.01  

6.3.3.2 IL6 

Despite an increase in IL-6 protein concentrations following exercise, there was no 

change in IL6 DNA methylation (p > 0.05) or mRNA expression (p > 0.05) following 

exercise. A significant interaction was detected between supplement and trial for 

CpG3 (-1094) indicating increased DNA methylation following n-3 PUFA and 

decreased methylation following EVOO (Before n-3PUFA: 92.90%, After n-3PUFA: 

93.32%, Before EVOO: 93.49%, After EVOO: 93.02%; Figure 6.5A; p = 0.038). A 

similar, non-significant (p = 0.080) trend was detected for IL6 mRNA expression 

following supplementation (Figure 6.5B). A significant correlation was detected 

between the mean IL6 methylation across all CpG sites and DNMT3b mRNA 

expression (Figure 6.6, p = 0.007). 

 

Figure 6.5 - The impact of n-3 PUFA and EVOO supplementation on (A) IL6 CpG3 DNA methylation 
and (B) IL6 mRNA expression. Data presented as the change (D) between before and after 
supplementation trials. n-3 PUFA, n-3 polyunsaturated fatty acid; EVOO, extra virgin olive 
oil. * p <0.05. 
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6.3.3.3 TNF  

Neither exercise or the supplementation of FAs altered TNF DNA methylation or 

mRNA expression. Trends were identified between 3 TNF CpG sites and differential 

methylation following supplementation (CpG2 p = 0.069; CpG3 p = 0.098; CpG4 p = 

0.067; CpGmean p = 0.077). TNF DNA methylation was negatively correlated with 

TNF mRNA expression (Figure 6.6; p = 0.007). Moderate, however, non-significant 

correlations were detected between both IL6 and DNMT3a mRNA expression, and 

TNF DNA methylation (Figure 6.6). 
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Figure 6.6 – Spearman’s Rho correlation coefficients between mean DNA methylation values and gene 
expression values across all conditions (supplement, time and trial). The mean of all CpG 
sites assessed for each gene has been used to provide an overall view of the region of 
interest. Blue indicates a negative correlation; red indicates a positive correlation and black 
indicates correlation coefficients between -0.5 and 0.5. * p < 0.05, # p < 0.01 
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6.3.4 Associations between DNA methylation and post-exercise 

physiological markers  
Figure 6.7 demonstrates the association between post-exercise DNA methylation and 

physiological markers related to exercise, oxidative stress and inflammation. Prior to 

FA supplementation, both PPARGC1A and TNF methylation post-exercise are 

significantly correlated with Time Trial (TT) performance (Figure 6.7, p < 0.05). 

Following the supplementation of n-3 PUFA and EVOO, correlations between TT 

performance and both PPARGC1A and TNF DNA methylation are weakened and no 

longer significant (Figure 6.7). A negative correlation was detected between PBMC 

PC concentration, an intracellular measure of oxidative stress, and both global and 

PPARGC1A methylation prior to supplementation of FAs; however, no association 

was detected following n-3 PUFA supplementation (Figure 6.7). The concentration of 

PC in serum, a systemic measure of oxidative stress, was uncorrelated with DNA 

methylation at baseline; however, following EVOO supplementation significant 

correlations existed between serum PCs and both PPARGC1A and TNF DNA 

methylation (Figure 6.7). The only significant correlation between DNA methylation 

and serum IL-6 concentration was a negative correlation with global DNA methylation 

following n-3 PUFA supplementation (Figure 6.7). 
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Figure 6.7 – Spearman’s Rho between post-exercise DNA methylation and physiological markers 
related to exercise performance, oxidative stress and inflammation. The mean of all CpG 
sites assessed for each gene has been used to provide an overall view of the region of 
interest. Blue indicates a negative correlation; red indicates a positive correlation and black 
indicates correlation coefficients between -0.5 and 0.5. n-3 PUFA, omega-3 
polyunsaturated fatty acid; EVOO, extra virgin olive oil; TT, Time trial; PC, protein carbonyl. 
*p < 0.05, # p < 0.01. 
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6.4 Discussion 
A single bout of aerobic exercise and supplementation of FAs can modulate leukocyte 

DNA methylation and mRNA expression patterns. A one-hour cycling bout decreased 

global and PPARGC1A DNA methylation and mRNA expression of DNMT3a, 

DNMT3b and PPARGC1A. The supplementation of FAs induced differential effects on 

the DNA methylation of a CpG site in the promoter region of IL6; n-3 PUFA increased 

methylation, whereas, EVOO supplementation decreased methylation. The same 

result was identified for mRNA expression of DNMT1 and trends existed for 3 CpG 

sites in the promoter region TNF . Significant correlations were identified between 

global DNA methylation; PPARGC1A, IL6 and TNF DNA methylation post-exercise; 

and physiological markers related to exercise performance, inflammation and 

oxidative stress indicating that the epigenetic modifications have functional effects.  

 

For the first time we report, global hypomethylation in leukocytes following an acute 

bout of exercise. The only previous study to investigate the impact of acute exercise 

in blood cells failed to detect any change in DNA methylation following correction for 

multiple testing (Robson-Ansley et al. 2014). Whereas, the results of the present study 

are in accordance with previous reports of a net hypomethylation following acute bouts 

of exercise in plasma (da Silva et al. 2017), skeletal muscle (Barrès et al. 2012; 

Seaborne et al. 2018) and chronic exercise training studies (Denham et al. 2016; 

Denham, O’Brien, Marques, et al. 2015; Dimauro et al. 2016; Nitert et al. 2012; 

Rowlands et al. 2014; Seaborne et al. 2018). Other studies have failed to detect any 

change in global DNA methylation (King-Himmelreich et al. 2016; Lindholm et al. 

2015); however, this can be explained by a similar number of CpG sites increasing 

and decreasing in DNA methylation (Lindholm et al. 2015). It has also been 

demonstrated that exercise-induced hypomethylation is retained during periods of 

detraining, allowing it to become further hypomethylated following further training 

(Seaborne et al. 2018). These data suggest that both acute and chronic exercise is 

sufficient to alter DNA methylation patterns typically resulting in hypomethylation. 

 

In the present study, a 4-week supplementation of FAs did not influence global DNA 

methylation. In contrast, a 6-month supplementation of n-3 PUFA decreased LINE-1 

DNA methylation, a surrogate for global DNA methylation, in Alzheimer’s patients 
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(Karimi et al. 2017). However, LINE-1 methylation is increased in Alzheimer’s patients 

compared to healthy controls (Di Francesco et al. 2015); therefore, the 

supplementation of n-3 PUFA in these individuals may act to restore global DNA 

methylation to the normal level detected in healthy individuals. The use of different 

surrogate measures of global methylation (LUMA vs LINE-1) prevents the direct 

comparison between studies because of the different region which these assays 

investigate. Two separate studies have indicated that the methylation estimates 

provided by LINE-1 and LUMA are poorly correlated (Lisanti et al. 2013; Wu et al. 

2011).  

 

For the first time, post-exercise decreased methylation and concurrent increased 

mRNA expression of PPARGC1A following a bout of aerobic exercise have been 

detected in leukocytes. The results from the present study match previous reports of 

aerobic exercise-induced hypomethylation in skeletal muscle (Bajpeyi et al. 2017; 

Barrès et al. 2012; Nitert et al. 2012) potentially indicating a systemic impact of 

exercise on PPARGC1A DNA methylation. The mRNA expression profile of skeletal 

muscle and PBMCs are highly associated following an 8-week supplementation of n-

3 PUFAs (Rudkowska et al. 2011). Although we do not find any association with 

PPARGC1A methylation / mRNA expression and n-3 PUFA supplementation in the 

present study, the hypomethylation detected in the present study is consistent with the 

impact of exercise in skeletal muscle providing further evidence for blood-derived 

expression profiles to be used as a surrogate for skeletal muscle.  

 

The only previous report of PPARGC1A methylation from leukocytes failed to detect 

an association with physical activity (Clarke-Harris et al. 2014). The lack of previous 

association could be the result of the investigation of different CpG sites in the 

promoter region of PPARGC1A. Alternatively, the discordance in these results could 

reflect the heterogeneity in the methylation pattern of immune cells (Jones et al. 2017). 

Exercise increases the number of circulating leukocytes; therefore, changes in 

methylation may be the result of different proportions of leukocytes rather than a 

change in DNA methylation patterns (Jaffe and Irizarry 2014). The present study has 

adjusted DNA methylation values to account for the number of leukocytes 

(lymphocytes, neutrophils, monocytes, basophils and eosinophils) (Jones et al. 2017), 

whereas, previous reports have failed to account for this critical variable.  
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The positive correlation between leukocyte PPARGC1A methylation and exercise 

performance indicates that increased DNA methylation may provide a performance 

advantage. PPARGC1A is thought to upregulate mitochondrial biogenesis in 

monocytes to induce a shift towards an anti-inflammatory phenotype (Thomas et al. 

2012; Yakeu et al. 2010) and antioxidant defence in lymphocytes (Ferrer et al. 2009). 

Although we did not find an association with IL-6 protein concentration, a negative 

association was detected between PPARGC1A DNA methylation and PC 

concentration indicating potential epigenetic control of the antioxidant role of 

PPARGC1A. There is limited literature comparing mitochondrial function in leukocytes 

and skeletal muscle following exercise; however, the association between gait speed 

and mitochondrial function in both skeletal muscle tissue and PBMCs provides a 

conserved mechanism between mitochondrial function in skeletal muscle and blood-

derived mitochondria (Tyrrell et al. 2015). Further evidence of a conserved mechanism 

is suggested with genes related to mitochondrial structure and function found to be co-

expressed in skeletal muscle and neutrophils following aerobic exercise (Broadbent et 

al. 2017). Future studies are required to detect if the same phenotypic associations 

exist in skeletal muscle as detected in leukocytes in the present study. 

 

Aerobic exercise did not alter the DNA methylation or mRNA expression of either IL6 

or TNF. The epigenetic impact of exercise on inflammatory cytokines is relatively 

unknown; however, several studies have indicated a role for cytokine DNA methylation 

in inflammatory disease (Kaut et al. 2014; Na et al. 2015; Nile et al. 2008; Zhang et al. 

2017). Although no association between TNF DNA methylation and mRNA expression 

was detected in the present study, n-3 PUFAs have previously been demonstrated to 

reverse the epigenetic changes observed with inflammation in skeletal muscle cells. 

The administration of TNF induced hypermethylation and decreased mRNA 

expression of MyoD (Sharples et al. 2016), whereas the supplementation of EPA 

dampens the impact of TNF in muscle and restores MyoD mRNA expression (Saini et 

al. 2017). Despite an increase in the circulating protein concentration of IL-6 in the 

present study, the exercise bout may not increase TNF-α protein concentration and 

subsequently induce an inflammatory response sufficient to modify DNA methylation 

patterns of inflammatory cytokines. TNF hypermethylation is reported in elderly 

individuals who maintained or increased their energy expenditure by 500 kcal/wk over 
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an 8-year period (Shaw et al. 2014). The same TNF CpG sites as the present study 

have previously been shown to negatively associate with mRNA expression, plasma 

concentrations and measures of adiposity (Hermsdorff et al. 2013; Marques-Rocha et 

al. 2016). In the present study, a significant negative correlation was detected between 

TNF DNA methylation post-exercise and BMI, exercise performance and TNF mRNA 

expression. These data suggest an acute bout of exercise may not regulate TNF DNA 

methylation; however, the long-term benefits of regular exercise, such as reduced 

adiposity, may subsequently increase TNF DNA methylation levels and as a result, 

reduce TNF mRNA expression and the chronic low-grade inflammation levels 

associated with increased adiposity. 

 

Previously decreased methylation in a region ~600 bp upstream of the IL6 promoter 

has been associated with increased erythrocyte n-3 PUFA concentrations and mRNA 

expression (Ma et al. 2016). In the present study, the supplementation of EVOO and 

n-3 PUFA had contrasting effects on a single CpG (-1094) of IL6 (increased 

methylation following n-3 PUFA and decreased methylation with EVOO). The region 

~1,000 bp from upstream of was investigated in the present study because of previous 

associations between DNA methylation and both inflammatory diseases (Na et al. 

2015; Nile et al. 2008) and mRNA expression (Nile et al. 2008). Conflicting results 

between studies may indicate that distinct regions of the promoter regulate IL6 

expression differently. Supplementation of n-3 PUFA and OO have been shown to 

induce differential methylation of ELOVL and FADS genes which are responsible for 

the metabolism of FAs (Hoile et al., 2014). The differential DNA methylation of these 

enzymes indicates the potential for n-3 PUFAs to switch towards the production of less 

inflammatory eicosanoids. Although the DNA methylation of FADS and ELOVL genes 

have not been measured in the present study, a switch towards n-3 PUFA derived 

eicosanoid production, such as 3-series rather than 2-series prostaglandins, has been 

shown to reduce cytokine expression (Calder 2015) which is potentially indicated by 

the increased DNA methylation of IL6 following n-3 PUFA, but not EVOO, 

supplementation. 

 

The impact of exercise and FA supplementation on DNMT mRNA expression was 

investigated to identify whether changes in DNMT mRNA expression could be a 

potential mechanism underlying modulated DNA methylation. DNMT1 mRNA 
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expression was modulated by FA supplementation, whereas, exercise reduced the 

expression of both DNMT3a and DNMT3b. This is the first demonstration of reduced 

expression of DNMT3a following acute exercise, whereas, the reduction in DNMT3b 

expression has previously been reported (Horsburgh et al. 2015; Laye and Pedersen 

2010). The inclusion of DNA methylation assessment in the present study allows the 

confirmation that following a single bout of aerobic exercise DNMT expression is 

decreased alongside decreases in global and gene-specific DNA methylation. The 

only previous report of a concurrent assessment of exercise-induced DNMT 

expression and DNA methylation was following an 8-week resistance training program 

(Denham et al. 2016). The genome-wide method of methylation does not identify a net 

increase or decrease in global methylation; therefore, further studies are required to 

identify whether the modulation of DNMT3b causes hypomethylation or if it is essential 

in both hyper- and hypomethylation. 

 

The present study detects opposing effects of n-3 PUFA and EVOO supplementation 

on DNMT1 mRNA expression. There is a paucity of literature surrounding the impact 

the FA supplementation and DNMT expression in humans; whereas, animal models 

have associated supplementation of alpha-linolenic acid, an n-3 PUFA, with changes 

in DNMT mRNA expression (Niculescu, Lupu, and Craciunescu 2013, 2014). 

Interestingly, similar to the present study, no change in global DNA methylation was 

detected alongside modulated DNMT1 expression (Niculescu et al. 2014). A change 

in global DNA methylation potentially would not be expected with increased in DNMT1 

mRNA expression because DNMT1 functions to maintain DNA methylation. The 

impact of EVOO on DNMT expression is unknown; however, EVOO contains phenolic 

compounds, including decarboxymethyl oleuropein aglycone (Montaño et al. 2016), 

which reduce DNMT activity via competitive inhibition (Corominas-Faja et al. 2018). 

The absence of a measure of DNMT activity is a limitation of the present study; 

however, parallel changes in DNMT mRNA expression and activity have previously 

been reported (Casillas et al. 2003). A measure of activity could potentially explain the 

lack of association between altered DNMT mRNA expression and modulated DNA 

methylation following supplementation which should be considered in future studies.  
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The use of a homogenous population of trained cyclists in the present study potentially 

limits the generalisability of the results to other populations. Trained male cyclists were 

selected as the population for the present study because they are the most familiar 

with the exercise stimuli and we would expect this to reflect in the smallest epigenetic 

response. Previously it has been demonstrated a single bout of exercise was sufficient 

to reduce global DNA methylation in plasma of COPD patients; however, following a 

training intervention the exercise bout was no longer sufficient to reduce global DNA 

methylation (da Silva et al. 2017). Exercise training has previously been demonstrated 

to alter DNA methylation patterns differently depending on family history of diabetes 

(Nitert et al. 2012). Future studies should compare the impact of exercise in trained 

athletes and sedentary individuals or a disease cohort to determine whether exercise-

induced alterations to the DNA methylome are contributors to health and disease in 

diverse populations.  
 
6.5 Conclusion 
In conclusion, the present study highlights the impact of an acute bout of aerobic 

exercise and the supplementation of FAs on DNA methylation and mRNA expression 

in leukocytes of trained male cyclists. Alterations in the epigenetic control of these 

genes are associated with physiological markers related to exercise performance and 

inflammation / oxidative stress; however, a more extensive study is required to confirm 

these associations. The observational nature of the present study prevents the 

identification of the underlying mechanisms controlling altered DNA methylation 

following exercise and FA supplementation; therefore, future mechanistic studies are 

required to identify such mechanisms. Here we suggest that modulation of DNMT 

mRNA expression may be one such mechanism for future research; however, future 

studies should also consider the activity and not just the mRNA expressin of DNMTs. 

Future studies should also compare multiple tissue types to examine whether exercise 

and supplementation of FAs have systemic effects on DNA methylation.  
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Chapter 7 The impact acute and 
chronic resistance exercise and 

fatty acid supplementation on global 
and gene-specific DNA methylation 
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7.1 Introduction 
In the previous two chapters, we have used leukocytes to investigate the impact of an 

acute bout of aerobic exercise and n-3 PUFA supplementation on DNA methylation. 

In Chapter 5 we failed to determine any change in DNA methylation; however, the 

alternative exercise stimuli provided (change in intensity and duration) in Chapter 6 

induced significant reductions in global DNA methylation and PPARGC1A DNA 

methylation indicating that the response to exercise is dependent on the type of 

exercise performed. In the present chapter, we sought to elucidate the impact of acute 

resistance exercise on DNA methylation to compare the response to an alternative 

mode of exercise for which limited literature exists and determine whether a chronic 

training period alters the acute DNA methylation response to exercise.  

 

While, exercise training is known to reduce systemic inflammation (Beavers, Brinkley, 

and Nicklas 2010; Flynn, McFarlin, and Markofski 2007; Gleeson et al. 2011), the 

relationship with acute resistance exercise is more complicated. Acute resistance 

exercise, particularly in individuals who are unaccustomed to the stimulus, causes 

local muscle damage to the working muscles. Peak muscle damage occurs during 

eccentric contractions when force is applied to the muscle during the lengthening 

phase disrupting individual sarcomeres (Peake et al. 2005; Proske and Morgan 2001). 

Exercise-induced muscle damage is characterised by increased circulating 

concentrations of intramuscular proteins, including Creatine kinase (CK), Lactate 

dehydrogenase (LDH) and Myoglobin (Mb); and cytokines, including IL-6 and TNF-α 

(Brancaccio, Lippi, and Maffulli 2010; Clarkson and Hubal 2002). The response to this 

muscle damage stimuli is the infiltration of leukocytes into the damaged muscle which 

further attracts macrophages to remove damaged fibres and leads to the release of 

various growth factors which regulate satellite cell proliferation differentiation (Tidball 

2005).  

 

The majority of literature investigating the impact of exercise on DNA methylation has 

focussed on the impact of aerobic training (Nitert et al., 2012; Rönn et al., 2013; 

Rowlands et al., 2014; Denham, et al., 2015; Denham et al., 2015; Lindholm et al., 

2015; King-Himmelreich et al., 2016) and acute bouts of aerobic exercise (Barrès et 

al. 2012; Lane et al. 2015; Robson-Ansley et al. 2014; da Silva et al. 2017); whereas, 
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limited literature exists epigenetic consequence of acute (Seaborne et al. 2018) and 

chronic (Denham et al. 2016; Rowlands et al. 2014; Seaborne et al. 2018) resistance 

exercise. Only one study has compared the impact of both modes of exercise. 

Rowlands et al. (2014) determined the methylome response to these exercise stimuli 

regulated different molecular pathways (Rowlands et al. 2014). The mode-specific 

regulation of the methylome is potentially expected considering aerobic and resistance 

exercise elicit vastly different adaptations (Coffey and Hawley 2017). Aerobic exercise 

results in mitochondrial biogenesis and fast to slow fibre type transformation (Hawley 

2002; Zierath and Hawley 2004); whereas, resistance exercise stimulates the 

synthesis of myofibrillar proteins inducing muscle hypertrophy (Damas et al. 2015). 

The molecular mechanisms controlling the adaption to the different modes of exercise 

remains to be fully elucidated. 

 

Although the adaptations to aerobic and resistance exercise are diverse, some key 

molecular signals are witnessed following both modes of exercise. PGC-1α is one of 

the critical signalling molecules to aerobic exercise and is associated with increased 

mitochondrial biogenesis (Ventura-Clapier et al. 2008). Previous studies have 

focussed on the impact of aerobic exercise on the DNA methylation of PPARGC1A 

and other genes related to mitochondrial biogenesis (Alibegovic et al. 2010; Bajpeyi 

et al. 2017; Barrès et al. 2012; Lund et al. 2017). Increased mRNA expression of 

PPARGC1A following resistance exercise is reported (Ruas et al. 2012; Silvennoinen 

et al. 2015); however the impact of resistance exercise on PPARGC1A DNA 

methylation is unknown. Aerobic and resistance exercise results in the expression of 

different isoforms of PPARGC1A (Popov et al. 2015; Ruas et al. 2012; Silvennoinen 

et al. 2015). Aerobic exercise increases the expression from exon 1a via the canonical 

promoter; whereas, the expression following resistance exercise occurs primarily from 

the alternative promoter (PPARGC1A ALT), situated ~14 kb upstream, known as exon 

1b derived PPARGC1A (Ruas et al. 2012; Silvennoinen et al. 2015). Increased 

expression of exon 1b PPARGC1A is associated with a hypertrophic response by 

modulating the expression of insulin-like growth factor-1 and myostatin (Ruas et al. 

2012). The mechanisms controlling the exercise mode-specific isoform of PPARGC1A 

remains to be elucidated. DNA methylation has been demonstrated to control 

promoter usage (Dyrvig et al. 2017), potentially suggesting DNA methylation of these 
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two promoter regions may explain the exercise-induced differential expression of 

PPARGC1A. 

 

Increased expression of PGC-1α is thought to be an adaption to regular exercise which 

has an anti-inflammatory consequence (Eisele et al. 2015; Handschin and Spiegelman 

2008; Schnyder and Handschin 2015). PGC-1α reduces the activity of the nuclear 

factor κB, which is known as the master regulator of pro-inflammatory gene expression 

including the cytokines IL-6 and TNF-α (Eisele et al. 2013). Conversely, sedentary 

behaviour and gene ablation of PGC-1α is associated with a systemic inflammatory 

response including increased expression of IL-6 and TNF-α (Handschin and 

Spiegelman 2008). Elevated systemic levels of inflammation are associated with 

skeletal muscle atrophy and various myopathies (Muñoz-Cánoves et al. 2013; Reid 

and Li 2001; Sharples, Al-Shanti, and Stewart 2010), potentially via the 

hypermethylation of MyoD (Sharples et al. 2016). Conversely, the acute local 

expression of IL-6 and TNF-α is thought to be essential for the repair, regeneration 

and hypertrophy following muscle-damaging exercise (Chen, Jin, and Li 2007; Li 2013; 

Muñoz-Cánoves et al. 2013). It has been demonstrated that resistance exercise is 

sufficient to alter the mRNA expression of both IL6 and TNF in skeletal muscle, but 

not blood (Gjevestad et al. 2017) indicating transcriptional changes are potentially a 

mechanism controlling the local production of cytokines; however, a lack of literature 

exists on the DNA methylation of these critical cytokines in response to muscle-

damaging exercise.  

 

The supplementation of the diet with n-3 PUFAs has been demonstrated with an anti-

inflammatory phenotype and reduce the levels of inflammatory cytokines (Calder 

2015; Tartibian et al. 2011; Vedin et al. 2008, 2012), partially as a result of altered 

DNA methylation (Aslibekyan et al. 2014; Ma et al. 2016). Supplementation of n-3 

PUFAs has also been demonstrated to sensitise skeletal muscle to the anabolic stimuli 

of resistance exercise and protein ingestion (Philpott et al. 2018; Tachtsis et al. 2018). 

An anabolic role for n-3 PUFAs is suggested by increases in force production following 

n-3 PUFA supplementation compared to a control supplementation of corn oil (Smith 

et al. 2015) and a training only group (Rodacki et al. 2012). A potential epigenetic 

consequence for the anabolic role of n-3 PUFAs is highlighted by the administration 

of EPA to skeletal muscle cells can increase the expression of PPARGC1A (Tachtsis 
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et al. 2018) and dampen the effects of TNF-α (Saini et al. 2017), resulting in improved 

expression of MyoD and Myogenin indicating increased skeletal muscle differentiation 

(Saini et al. 2017). Considering the previously discussed impact of TNF on 

hypermethylation of MyoD, this suggests a potential mechanism of n-3 PUFAs to 

reverse epigenetic changes associated with inflammation in skeletal muscle. 

 

Aim 

 

The primary aim of this chapter is to investigate the impact of acute resistance exercise 

on DNA methylation in leukocytes and skeletal muscle from individuals unaccustomed 

to resistance exercise. Further, we sought to elucidate whether the FA 

supplementation or resistance training can modulate acute exercise response. 

 

Objectives 

1. Assess whether resistance exercise and FA is sufficient to alter global DNA 

methylation and mRNA expression of DNMT enzymes.  

2. Determine any changes in gene-specific methylation (PPARGC1A, IL6 and 

TNF) and subsequently mRNA expression as a result of exercise and FA 

supplementation in both skeletal muscle and leukocytes. 

3. Determine whether physiological variables of exercise performance, 

inflammation and markers of muscle damage are associated with DNA 

methylation.  

4. Compare the methylation profiles of leukocytes and skeletal muscle in response 

to exercise to determine the potential of a tissue specific response. 
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7.2 Methods 
The experimental procedures for this study were approved by the Loughborough 

University Ethics Human Participants sub-committee (Study ID: R15-P124). 

 

7.2.1 Participants 
Sixteen healthy male participants were recruited to the study according to section 3.1. 

Eight of the participants only completed the acute phase of the study (Trial A to Trial 

B) and were not included in the data in this thesis. Participants were excluded if they 

had undertaken resistance training or n-3 PUFA supplementation in the six months 

before the start of the study or had a previous history of lower limb injuries which may 

be exacerbated by the eccentric contractions involved in the study.  

 

7.2.2 Study overview 
The study consisted of a familiarisation and three experimental trials. The first two 

trials (Trial A and Trial B) were separated by a three-week double-blind 

supplementation of either n-3 PUFA or EVOO. Between Trials B and C, participants 

completed an eight-week eccentric training program of the knee extensors while 

continuing FA supplementation (Figure 7.1A).  

 

7.2.2.1 Familiarisation 

Participants attended a familiarisation session where they underwent anthropometric 

assessment for height and body mass (section 3.2.1). The Humac Norm dynamometer 

(CSMI, USA) was then positioned to fit the participant, ensuring the rotational axis of 

the lever arm was in alignment with the lateral epicondyle of the femur and a hip angle 

of 85°. The lever arm pad was secured proximal to the malleolus, and participants 

were secured using stabilising straps to minimise compensatory trunk and thigh 

movements during testing. Dynamometer settings were recorded to ensure that 

participants were seated the same during each trial. Participants were then 

familiarised to the exercise protocols contained within the experimental trials including 

the performance test (section 7.2.2.3) and muscle damage protocol (section 7.2.2.4) 

 

. 
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Figure 7.1 – Schematic representation of (A) study outline and (B) trial day. Roman numerals indicate timepoints where blood samples were collected; however, 
only time points in black were analysed as part of this thesis. The collection of blood and skeletal muscle tissue, and the collection of VAS data 
indicated by X. Following completion of performance test 3, participants were free to leave the laboratory and returned 30min before performance 
test 4 (48hr post-MD). MD, muscle-damaging exercise; Perf., Performance test; VAS, visual analogue scale. 
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7.2.2.2 Experimental trials  

Figure 7.1B provides a schematic representation of the experimental trials. For each 

experimental trial, participants reported to the laboratory at the same time of the 

morning in a fasted and rested state following completion of pre-trial standardisation 

of diet and exercise (section 3.2.2). On arrival to the laboratory, an intravenous 

catheter was inserted for the collection of blood samples (section 3.3). Following the 

collection of baseline biological samples (muscle and blood; section 7.2.3.1) and 

baseline measures were performed (section 3.2.1), participants completed a 

performance test (section 7.2.2.3) followed by the muscle damage protocol (section 

7.2.2.4). Further performance tests were completed immediately post-exercise (Post-

ex), 3hr post-exercise (Post-ex+3hr) and 48hr post-exercise (Post-ex+48hr; Figure 

7.1B). The intravenous cannula was removed after completion of the performance test 

3hr post muscle-damaging exercise and participants were free to leave the laboratory. 

Participants returned to the laboratory 30 min before the Post-ex+48hr performance 

test to allow collection of blood samples via venepuncture (section 3.3).  

 

7.2.2.3 Performance test 

Before each performance test participants were asked to indicate the level of muscle 

soreness using a visual analogue scale (VAS). When seated, participants were asked 

to extend both legs fully and indicate their perceived level of pain by drawing a single 

vertical line on a 100mm line ranging from ‘No pain’ (0mm) to ‘Worst possible pain’ 

(100mm). Participants then completed a five-minute warm-up on a cycle ergometer 

(Lode B.V, Netherlands) at 75 W. Warm-up was not performed for the performance 

test immediately post muscle-damaging exercise. 

 

Participants then completed countermovement jumps (CMJ) using a Quattro-Jump 

9290AD force platform (Kistler, Switzerland). Three CMJs were competed, with one 

min recovery between jumps, and the peak height was recorded. If the peak height 

was achieved on the final jump, another jump was performed (up to a maximum of 

five). 

 

Participants then performed bilateral maximal voluntary contractions (MVC) of the 

knee extensors and flexors using a Humac Norm isokinetic dynamometer (CSMI, 
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USA). Once positioned on the dynamometer, participants performed isometric MVCs 

of the knee extensors, followed by concentric and eccentric isokinetic MVCs of the 

knee extensors and flexors. Before each set of MVCs, a warm-up of submaximal 

contractions (2 x 50%, 1 x 75% and 1 x 90% of perceived MVC) was performed. Thirty 

seconds rest were provided between submaximal efforts. 

 

For evaluation of isometric torque, three 3s isometric contractions of the knee 

extensors were performed at 75° of knee flexion (0° = dynamometer lever arm is 

parallel to the ground). Both concentric and eccentric torque of the knee extensors 

and flexors was assessed using isokinetic contractions at an angular velocity of 60°/s 

and a range of motion between 10° and 90° of knee flexion. Verbal encouragement 

and visual feedback (torque output) were provided for each MVC. A rest period of 60s 

was provided between each MVC. The highest peak torque obtained during the MVCs 

were recorded and used for analysis.  

 

7.2.2.4 Eccentric muscle damage protocol 

The eccentric muscle damage protocol was performed on the Humac Norm isokinetic 

dynamometer. The protocol consisted of 20 sets of bilateral maximal voluntary 

isokinetic eccentric contractions of the knee extensors at an angular velocity of 60°/s 

using a range of motion between 10 to 90°. Each set consisted of 10 repetitions and 

was separated by a one-minute rest period. The participants began with their leg at 

the start position (10°) and were asked to maximally contract the knee extensors 

throughout the entire range of motion. Once the lever arm reached 90°, participants 

were asked to relax their leg and allow the lever arm to return to the start position 

(avoiding concentric contraction of the knee extensors). Verbal encouragement and 

visual feedback (torque output and work done) were given throughout the muscle 

damage protocol. The total work completed during the muscle damage protocol was 

used for analysis. 

 

7.2.2.3 Supplementation 

Participants were assigned to either double-blind n-3 PUFA or EVOO supplementation 

on the basis of age, body mass and preliminary force measurements during Trial A. 

Both n-3 PUFA (Norwegian Pure-3 AS, Norway) and EVOO supplements were 
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provided in capsule form following the completion of Trial A. Participants were 

instructed to consume six capsules per day providing 5.1g of n-3 PUFA (3.0g of EPA, 

1.2g of DHA and 0.9g of DPA and other n-3 PUFAs) or 6g of EVOO per day for the 

entirety of the study (11 weeks). The dose was chosen based on previous findings 

showing a similar dose was sufficient to induce changes to the FA profile of both blood 

and skeletal muscle (McGlory et al. 2014). Returned capsules were counted to 

determine the compliance of supplementation. 

 

7.2.2.4 Eccentric training 

In the eight-week period between Trial B and Trial C (Figure 7.1), participants 

completed an eccentric isokinetic training programme of the knee extensors. Two 

training sessions were performed per week (14 sessions in total) with a minimum of 

three days between training sessions. The first training session was completed three 

days following the end of Trial B, and the last training session was performed three 

days prior to Trial C. The protocol for the eccentric training programme was the same 

as the eccentric muscle damage protocol, however the number of sets performed in 

each session increased throughout the training programme (Table 7.1). The peak 

force and mean work done per set were recorded in each training session and used 

for analysis. 

Table 7.1 - Eccentric training programme 

Training session 

number 

Number of sets 

performed 

1 – 2 3 

3 – 6 4 

7 – 10 5 

11 – 14 6 
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7.2.3 Analytical Procedures 

7.2.3.1 Collection of biological tissues  

Venous blood samples were collected Pre-ex, Post-ex, Post-ex+1hr, Post-ex+3hr and 

Post-ex+3hr (Figure 7.1) in each of the three trials (Trial A, Trial B and Trial C). Venous 

blood was collected (section 3.3) and processed (section 3.4.1) for analysis of DNA 

methylation, mRNA expression, markers of muscle damage and inflammatory 

cytokines. 

 

Alongside the collection of blood samples, muscle biopsies were obtained at Pre-ex, 

Post-ex and Post-ex+3hr (Figure 7.1) for 6 of the 8 participants. Muscle biopsies were 

obtained from the lateral portion of the vastus lateralis. The site was cleaned before 

an incision into the skin and fascia was made under local anaesthetic (1% Lidocaine). 

A Bergström biopsy needle with suction was inserted into the incision to extract 

skeletal muscle tissue. Muscle samples were blotted dry, and any visible fat or 

connective tissue was removed. Following collection, muscle samples were divided 

before being snap-frozen in liquid nitrogen and stored at -80˚C prior to DNA and RNA 

extraction (section 3.4.1).  

 

7.2.3.2 Analysis of DNA methylation 

Genomic DNA was extracted from whole blood (section 3.4.1). The concentration of 

isolated gDNA was 87.5 (± 33.70) ng/uL and an A260/280 ratio of 1.89 (± 0.02). LUMA 

was performed to determine global DNA methylation (section 3.4.2). For determination 

of gene-specific DNA methylation, DNA was extracted and bisulfite-converted from 

whole blood and skeletal muscle using the EPITect Fast LyseAll Bisulfite kit (section 

3.4.1). Bisulfite-converted DNA underwent PCR using the Pyromark PCR kit (section 

3.4.3). DNA methylation percentage was then determined via pyrosequencing (section 

3.4.3). The assays used to determine DNA methylation are presented in Table 4.2 

(PPARGC1A, PPARGC1A ALT, IL6 and TNF). 

 

7.2.3.3 Analysis of mRNA expression 

RNA was extracted from whole blood using TRIzol LS and skeletal muscle using TRI 

Reagent (section 3.4.5). The concentration of RNA isolated from whole blood was 

55.36 (± 16.60) ng/uL and an A260/A280 ratio of 1.97 (± 0.05), whereas, the 
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concentration of RNA isolated from skeletal muscle was 403.34 (± 151.99) ng/uL and 

an A260/A280 ratio of 2.04 (± 0.03).  

 

RNA was then cDNA converted (section 3.4.5), and relative mRNA expression was 

performed using the 2-(DDCt) method (Livak and Schmittgen 2001) using GAPDH as the 

reference gene (section 3.4.6). Primer sequences for the assays used to determine 

mRNA expression of the genes of interest are displayed in Table 4.3 (GAPDH, 

PPARGC1A Total, PPARGC1A Exon1a, PPARGC1A Exon 1b, IL6, DNMT1, DNMT3a 

and DNMT3b). The mean Ct value for GAPDH (reference gene) was consistent across 

all participants and experimental conditions in whole blood (17.31 ± 0.725) and 

skeletal muscle (12.89 ± 0.475) with a low variation of 4.18% and 3.681% respectively. 

 

7.2.3.4 Cytokine analysis 

Serum isolated from whole blood collected into silica coated vacutainers (section 3.3) 

at time points Pre-ex, Post-ex, Post-ex+3hr and Post-ex+48hr in each trial. The serum 

was then used to determine the circulating levels of IL-6 and TNF-α using BD™ 

Cytometric Bead Array Enhanced Sensitivity Flex Sets (BD Bioscience, UK) on a flow 

cytometry platform (BD AccuriTM C6 Flow Cytometer, BD Bioscience, UK). All serum 

samples were diluted 1:3 with CBA buffer. All samples for a participant were performed 

within a single run to minimise run-to-run variation. Haematocrit and haemoglobin 

values were used to ascertain plasma volume changes that were used to adjust serum 

IL-6 and TNF-α concentrations (Dill and Costill 1974). 

 

7.2.3.5 Markers of muscle damage 

ABX pentra assays (Horiba Medical, Japan) were used to determine serum 

concentrations of creatine kinase (CK), lactate dehydrogenase (LDH) and myoglobin 

(Mb) using a Pentra C400 analyser (Horiba Medical, Japan) at the time points Pre-ex, 

Post-ex, Post-ex+3hr and Post-ex+48hr in each trial. All samples for a participant were 

performed within a single run to minimise run-to-run variation. Haematocrit and 

haemoglobin values were used to ascertain plasma volume changes that were used 

to adjust serum CK, LDH and Mb concentrations (Dill and Costill 1974).
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7.2.4 Statistical Analysis 
Statistical analysis was performed according to section 3.5. Differences between the 

supplementation groups for physiological variables (anthropometrics, measures of 

muscle strength, and DNA methylation) at baseline (Trial A Pre-ex) were investigated 

using t-tests. DNA methylation, mRNA expression values and physiological variables 

related to exercise performance, inflammation and muscle damage were analysed 

using a 3-way between (Supplement) x within (Trial) x within (Time) RM-ANOVA. The 

work done during the muscle damage protocol and the change in performance during 

the training programme was analysed using a 2-way between (Supplement) x within 

(Trial / Session) RM-ANOVA.  

 

Spearman’s Rho correlation analysis was used to assess the relationship between 

DNA methylation and mRNA expression, and physiological markers related to 

exercise performance, inflammation and muscle damage. Moderate (>0.5) correlation 

coefficients were considered to be of interest; however, only large (> 0.7) correlation 

coefficients were deemed statistically significant. All data presented as mean ± 95% 

CI unless otherwise stated. 
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7.3 Results 

7.3.1 Baseline measurements 
Participant characteristics are presented in Table 7.2. No differences between the 

groups were detected for baseline (Trial A, Pre-ex) anthropometric or exercise 

performance measures (p > 0.05; Table 7.2). Baseline DNA methylation values were 

compared between supplement groups, and no differences were detected for global, 

PPARGC1A, PPARGC1A ALT or TNF DNA methylation (p > 0.05; Table 7.3. 

Leukocyte DNA methylation of 3 CpG sites in the IL6 promoter were significantly 

higher in the EVOO group (p < 0.05; Table 7.3). A non-significant trend for increased 

serum IL-6 concentrations in the EVOO group was also identified at baseline (Trial A, 

Pre-ex). The levels of DNA methylation were significantly different between tissues; 

DNA methylation was significantly higher in leukocytes for each CpG site of 

PPARGC1A, PPARGC1A ALT and IL6; whereas, the DNA methylation of TNF was 

increased in skeletal muscle (p < 0.01; Table 7.3). 

 

Table 7.2- Participant characteristics of the overall cohort and the n-3 PUFA and EVOO supplement 
group. Differences between groups for anthropometric and exercise performance 
measures assessed using paired T-tests. Values are means ± standard deviation 

Variable 
Overall 
(n = 8) 

n-3 PUFA 
(n = 4) 

EVOO 
(n = 4) 

p-value 

Anthropometrics     

Age (yrs) 27.98 ± 7.19 30.21 ± 10.31 25.75 ± 0.91 0.601 

Height (cm) 177.76 ± 4.92 176.05 ± 5.04 179.48 ± 4.83 0.321 

Body mass (kg) 83.15 ± 17.33 80.25 ± 18.74 86.05 ± 18.09 0.962 

BMI (kg·m-2) 26.19 ± 4.54 25.71 ± 4.64 26.67 ± 5.09 0.731 

Exercise performance     

Peak isometric torque (Nm) 251.38 ± 49.19 234 ± 60.27 268.75 ± 34.76 0.421 

Peak concentric torque (Nm) 204.44 ± 47.4 197.25 ± 66.13 211.63 ± 27.05 0.725 

Peak eccentric torque (Nm) 271.69 ± 59.92 248.38 ± 56.54 295 ± 61.09 0.441 

CMJ jump height (cm) 39.43 ± 9.86 37.68 ± 4.25 41.18 ± 14.16 0.653 
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Table 7.3 - Methylation of skeletal muscle and leukocytes at baseline (Trial A, Pre-ex) in the whole 
cohort and the each supplement group. § indicates a difference (p < 0.01) in methylation 
between skeletal muscle and leukocytes overall. p-value <0.05 indicates a difference 
between supplement groups. n-3 PUFA, omega-3 polyunsaturated fatty acid; EVOO, extra 
virgin olive oil. Data presented as mean ± SD 

CpG Site Overall n-3 PUFA EVOO p-value 
Global methylation     
LUMA Leukocytes 80.05 ± 0.42 79.95 ± 0.61 80.15 ± 0.17 0.550 
PPARGC1A     

CpG1 Skeletal Muscle 3.55 ± 0.96 3.99 ± 1.09 3.12 ± 0.84 0.335 
Blood 8.53 ± 2.77§ 7.39 ± 0.41 9.68 ± 3.77 0.272 

PPARGC1A ALT     

CpG1 Skeletal Muscle 16.82 ± 3.49 17.71 ± 2.72 15.93 ± 4.25 0.574 
Blood 62.31 ± 3.43§ 61.95 ± 3.7 62.66 ± 3.66 0.796 

CpG2 Skeletal Muscle 5.12 ± 2.47 5.55 ± 2.92 4.68 ± 2.01 0.694 
Blood 62.70 ± 1.78§ 62.35 ± 2.44 63.05 ± 1.05 0.618 

CpG3 Skeletal Muscle 7.35 ± 3.61 7.55 ± 3.54 7.15 ± 3.68 0.897 
Blood 78.82 ± 1.71§ 79.11 ± 1.94 78.53 ± 1.67 0.671 

CpG Mean Skeletal Muscle 9.76 ± 3.17 10.27 ± 3.03 9.25 ± 3.31 0.715 
Blood 67.94 ± 1.71§ 67.8 ± 2.06 68.08 ± 1.60 0.839 

IL6     

CpG1 Skeletal Muscle 72.41 ± 6.93 73.92 ± 4.27 70.9 ± 9.58 0.644 
Blood 91.10 ± 1.92§ 89.66 ± 0.51 92.53 ± 1.69 0.018* 

CpG2 Skeletal Muscle 76.87 ± 4.46 77.91 ± 2.91 75.82 ± 6.00 0.615 
Blood 91.12 ± 1.19§ 90.32 ± 1.03 91.93 ± 0.72 0.043* 

CpG3 Skeletal Muscle 82.94 ± 3.97 84.82 ± 1.26 81.06 ± 6.68 0.392 
Blood 91.17 ± 3.09§ 90.01 ± 4.31 92.32 ± 0.46 0.327 

CpG4 Skeletal Muscle 66.08 ± 5.03 68.57 ± 2.97 63.58 ± 7.09 0.323 
Blood 88.89 ± 1.95§ 89.09 ± 2.74 88.7 ± 1.12 0.804 

CpG5 Skeletal Muscle 72.23 ± 4.025 73.27 ± 2.18 71.18 ± 5.87 0.593 
Blood 82.01 ± 3.58§ 79.52 ± 3.61 84.5 ± 0.59 0.034* 

CpG6 Skeletal Muscle 74.09 ± 5.38 75.13 ± 2.89 73.04 ± 7.87 0.689 
Blood 88.99 ± 2.3§ 87.87 ± 1.8 90.1 ± 2.4 0.187 

CpG Mean Skeletal Muscle 74.10 ± 4.14 75.61 ± 1.34 72.6 ± 6.94 0.502 
Blood 88.87 ± 1.42§ 87.74 ± 0.94 90.01 ± 0.65 0.007# 

TNF      

CpG1 Skeletal Muscle 30.82 ± 5.11 32.22 ± 5.49 29.42 ± 4.73 0.541 
Blood 13.17 ± 2.70§ 11.88 ± 2.23 14.46 ± 2.76 0.197 

CpG2 Skeletal Muscle 25.03 ± 3.88 25.49 ± 3.93 24.58 ± 3.83 0.789 
Blood 10.53 ± 2.5§ 9.36 ± 1.65 11.70 ± 2.87 0.207 

CpG3 Skeletal Muscle 30.41 ± 3.17 31.07 ± 3.41 29.75 ± 2.93 0.638 
Blood 12.62 ± 3.42§ 10.71 ± 3.64 14.53 ± 2.06 0.118 

CpG4 Skeletal Muscle 50.87 ± 5.64 51.3 ± 6.39 50.43 ± 4.88 0.860 
Blood 14.65 ± 3.31§ 13.17 ± 3.42 16.13 ± 2.84 0.231 

CpG Mean 
Skeletal Muscle 34.28 ± 4.38 35.02 ± 4.8 33.54 ± 3.96 0.703 
Blood 12.74 ± 2.58§ 11.28 ± 2.14 14.2 ± 2.29 0.111 
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7.3.2 Physiological responses - Exercise performance, inflammation and 

muscle damage 

7.3.2.1 Exercise performance 

FA supplementation did not alter the total work done during the muscle damage 

protocol (Trial A vs Trial B; p > 0.05; Figure 7.2A); however, eccentric training 

increased the work done during the muscle damage protocol (p < 0.01). Similarly, 

increased mean work done per set during the training period was detected regardless 

of n-3 PUFA or EVOO supplementation (Session 14 vs Session 1; p < 0.05; Figure 

7.2B). 

 

Figure 7.2 - Impact of fatty acid supplementation and eccentric training on (A) Total work completed 
during muscle damage protocol during Trial A, Trial B and Trial C, and (B) Mean work 
completed per set Pre-training (first training session) and Post-training (final training 
session). n-3 PUFA, omega-3 polyunsaturated fatty acids; EVOO, extra virgin olive oil. 
*indicates p < 0.05, #indicates p < 0.01 between time points. 

 

No impact of FA supplementation was detected for measures of exercise performance 

during the performance tests (p > 0.05). A main effect of Time was identified 

independent of Supplement and Trial indicating a reduction in CMJ height Post-ex 

which remained significant until Post-ex+48hr (p < 0.05; Figure 7.3A). Isometric peak 

torque reduced Post-ex, and Post-ex+3hr compared to Pre-ex (p < 0.01; Figure 7.3B). 

The isometric peak torque values were higher in Trial C (Post-training) compared to 

Trial A indicating the eccentric training increased peak force (p = 0.027; Figure 7.3B). 

Significant interactions were identified between trial and time for the eccentric and 

concentric force of the knee extensors (p < 0.05). Peak force for both eccentric and 
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in peak force was attenuated during Trial C compared to Trial A and Trial B (p < 0.01; 

Figure 7.3C & 7.3D). 

 

Figure 7.3 – Impact of exercise on exercise performance; (A) Countermovement jump height, (B) 
Isometric peak torque, (C) eccentric and (D) concentric peak torque of the knee extensors. 
*indicates significantly different from Pre-ex; # indicates significantly different from Post-
ex; † indicates significantly different from Post-ex+3hr. ¥ indicates a difference between Trial 
A and Trial C; § indicates a difference between Trial B and Trial C. 

 

7.3.2.2 Markers of inflammation and muscle damage 

A main effect of time identified a significant increase in serum IL-6 concentration Post-

ex and Post-ex+3hr (p < 0.05; Figure 7.4A); whereas, circulating TNF-α concentrations 

were unaffected by exercise (Figure 7.4B). Neither FA supplementation or exercise 

training altered IL-6 or TNF-α concentrations (p>0.05).  
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Figure 7.4 -Serum concentrations of cytokines (A) Interleukin-6 (IL-6) and (B) TNF-a *indicates 
significantly different from Pre-ex. 

 

The serum concentration of the muscle damage markers CK (p = 0.026) and MB (p = 

0.002) were increased following exercise. Compared to the Pre-ex values a significant 

increase in CK and MB was detected Post-ex and Post-ex+3hr (p < 0.05; Figure 7.5). 

The circulating concentrations of LDH remained unchanged by exercise (p > 0.05; 

Figure 7.5B). FA supplementation and eccentric training did not alter the serum 

concentrations of the markers of muscle damage (p > 0.05); however, non-significant 

trends for a main effect of trial were detected for CK (p = 0.052) and MB (p = 0.087), 

suggesting a potential reduction in protein concentrations with repeated bouts of 

exercise.  
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Figure 7.5 -Serum concentration of markers muscle damage markers (A) Creatine kinase, (B) Lactate 
dehydrogenase and (C) Myoglobin. *indicates significantly different from Pre-ex.  
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7.3.2 Global cytosine methylation and DNMT mRNA expression  
While FA supplementation group did not alter global DNA methylation, an interaction 

between trial and time was identified for global DNA methylation (p = 0.004). Pairwise 

comparisons indicate global methylation in each trial was significantly different at Post-

ex+3hr (p < 0.032; Figure 7.6).  

 

 

Figure 7.6 - Effect of exercise on global DNA methylation. € indicates a difference between Trial A and 
Trial B; ¥ indicates a difference between Trial A and C; § indicates a difference between 
Trial B and C. 
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significant decrease in DNMT3a mRNA expression was detected Post-ex+3hr 

compared to both Pre-ex and Post-ex time points (p < 0.006; Figure 7.7C). A delayed 

response was also detected in leukocytes with increased mRNA expression Post-

ex+48h compared to Post-ex (p = 0.037; Figure 7.7D). An immediate decrease in 
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remained significant until the Post-ex+3hr time point in both tissues (p < 0.05; Figure 

7.7). Despite no change in global methylation, significant positive correlations were 

determined between Post-ex and Post-ex+3hr global methylation and the mRNA 

expression of both DNMT3a and DNMT3b (p < 0.05; Figure 7.13). 

 

 

Figure 7.7 - Effect of exercise on the mRNA expression of (A&B) DNMT1, (C&D) DNMT3a and (E&F) 
DNMT3b in skeletal muscle (left-hand column) and leukocytes (right-hand column). 
*indicates significantly different from Pre-ex; # indicates significantly different from Post-
ex. 
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7.3.3 Gene-specific DNA Methylation and mRNA expression 
The supplementation of FA did not alter the DNA methylation or mRNA expression of 

PPARGC1A, IL6 or TNF in either skeletal muscle or leukocytes (p > 0.05); therefore, 

the supplement groups were combined to examine the impact of exercise on DNA 

methylation and mRNA expression.  

 

7.3.3.1 PPARGC1A 

The methylation at the individual CpG sites for the PPARGC1A and PPARGC1A ALT 

assays are presented in Table 7.4, whereas the impact of exercise within each trial on 

the mean methylation across all CpG sites is presented in Figure 7.8.  

 

A significant increase in PPARGC1A DNA methylation was detected Post-ex in 

skeletal muscle (p = 0.022), which returned back to Pre-ex values by Post-ex+3hr (p 

> 0.05; Figure 7.8A). A main effect of time was also identified for PPARGC1A 

methylation in leukocytes; however, no significant pairwise comparisons were 

detected following Bonferroni correction (p > 0.05; Table 7.4). Increased DNA 

methylation of PPARGC1A ALT was detected in both skeletal muscle and leukocytes 

following exercise (p <0.05; Figure 7.8). In skeletal muscle, an immediate increase in 

DNA methylation was determined Post-ex for each CpG site (p < 0.05), which did not 

fully return to baseline values by Post-ex+3hr (Table 7.4). A delayed response was 

detected for PPARGC1A ALT in leukocytes, which became significant at Post-ex+3hr 

for 2 of the CpG sites (-182 & -127) and the mean methylation across all CpG sites 

(Table 7.4).  
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Figure 7.8 - Effect of exercise on DNA methylation of the mean methylation of the CpG sites analysed 
by the (A&B) PPARGC1A and (C&D) PPARGC1A ALT assays in skeletal muscle (left-
hand column) and leukocytes (right-hand column). *indicates significantly different from 
Pre-ex; # indicates significantly different from Post-ex; † indicates significantly different 
from Post-ex+3hr. 
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remained elevated compared to Pre-ex (p < 0.01; Figure 7.9). Total PPARGC1A 

mRNA expression was unaltered by exercise in leukocytes (p > 0.05; Figure 7.9D).  

 

Figure 7.9 – Impact of exercise on promotor specific PPARGC1A mRNA expression in skeletal muscle 
(A-C) and leukocytes (D). *indicates significantly different from Pre-ex; # indicates 
significantly different from Post-ex. 

No significant associations were identified between PPARGC1A DNA methylation and 
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(Figure 7.13; p > 0.05). Post-ex+1hr mRNA expression of DNMT3b in leukocytes was 

positively correlated with Post-ex and Post-ex+3hr PPARGC1A methylation (p < 0.05; 

Figure 7.13). In skeletal muscle, IL6 mRNA expression was negatively correlated with 

PPARGC1A ALT methylation (p < 0.05; Figure 7.12); whereas, PPARGC1A 

methylation in leukocytes was positively correlated with IL6 mRNA expression (p < 

0.05; Figure 7.13) indicating a role of IL6 mRNA expression in DNA methylation of 

both PPARGC1A promoters.  

Pre
-ex

Post
-e

x

Post
-e

x+
3h

r
0.0

0.5

1.0

1.5

2.0

2.5

P
P

A
R

G
C

1A
 E

xo
n 

1a
 m

R
N

A
 e

xp
re

ss
io

n

Pre
-ex

Post
-e

x

Post
-e

x+
3h

r
0

2

4

6

8

10

To
ta

l P
P

A
R

G
C

1A
 m

R
N

A
 e

xp
re

ss
io

n 

Pre
-ex

Post
-e

x

Post
-e

x+
3h

r
0

200

400

600

P
P

A
R

G
C

1A
 E

xo
n 

1b
 m

R
N

A
 e

xp
re

ss
io

n

Pre
-ex

Post
-e

x

Post
-e

x+
1h

r

Post
-e

x+
3h

r

Post-
ex

+4
8h

r
0

1

2

3

4
To

ta
l P

P
A

R
G

C
1A

 m
R

N
A

 e
xp

re
ss

io
n 

A B

C D

Trial A Trial B Trial C

*

* *
*

*,#

#



 138 

Table 7.4 - DNA methylation of the PPARGC1A and PPARGC1A ALT assays. Data presented as the mean of all three trials ± standard deviation. Values not 
sharing a letter (a,b,c) are significantly different for simple interactions of time (p<0.05) after Bonferroni correction for multiple testing.  

CpG site Tissue Pre-Ex Post-ex Post-ex+1hr Post-ex+3hr Post-ex+48hr Main effect 
p-value 

PPARGC1A 
CpG1: -260 

Skeletal 
muscle 3.62 ± 0.74a 4.49 ± 1.16b N.D. 3.69 ± 0.80a N.D. 0.003 

Leukocytes 8.95 ± 2.15 8.48 ± 1.83 7.53 ± 1.73 8.05 ± 2.04 8.39 ± 1.78 0.041 
PPARGC1A 

ALT 
CpG1: -182 

Skeletal 
muscle 16.55 ± 2.82a 28.24 ± 8.76b N.D. 19.24 ± 3.06ab N.D. 0.001 

Leukocytes 62.45 ± 2.61a 63.11 ± 3.25a 64.86 ± 2.3ab 66.03 ± 1.83b 62.28 ± 2.63a 0.001 
PPARGC1A 

ALT 
CpG2: -131 

Skeletal 
muscle 6.01 ± 2.35a 20.29 ± 9.23b N.D. 8.21 ± 2.31c N.D. 0.001 

Leukocytes 62.79 ± 1.5 63.16 ± 1.68 63.28 ± 1.22 63.59 ± 1.47 63.07 ± 1.38 0.294 
PPARGC1A 

ALT 
CpG3: -127 

Skeletal 
muscle 8.48 ± 3.26a 25.98 ± 11.23b N.D. 11.18 ± 2.84c N.D. 0.001 

Leukocytes 78.62 ± 1.48a 79.85 ± 1.99a 80.69 ± 1.84ab 81.18 ± 1.46b 79.1 ± 1.87ab 0.009 
PPARGC1A 

ALT 
CpG: Mean 

Skeletal 
muscle 10.35 ± 2.71a 24.84 ± 9.69b N.D. 12.88 ± 2.62c N.D. 0.001 

Leukocytes 67.95 ± 1.54a 68.71 ± 2.06ab 69.61 ± 1.57ab 70.26 ± 1.43b 68.15 ± 1.69a 0.001 
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7.3.3.2 IL6 

The mean methylation across all conditions at the individual CpG sites for the IL6 

assay are presented in Table 7.5, whereas the impact of exercise within each trial on 

the mean methylation across all CpG sites are presented in Figure 7.10.  

 

A main effect of time was detected for DNA methylation each of the IL6 CpG sites and 

IL6 mRNA expression in skeletal muscle (p < 0.025; Table 7.5). A transient increase 

in IL6 methylation was detected Post-ex at each CpG which returned toward Pre-ex 

values by Post-ex+3hr (p < 0.05; Table 7.5). Similarly, in skeletal muscle an immediate 

increase in IL6 mRNA expression Post-ex was identified; however, mRNA expression 

returned to Pre-ex expression levels by Post-ex+3hr (p < 0.01; Figure 7.10C). No 

correlations were determined between the mean methylation across all CpG sites and 

mRNA expression of IL6 or the DNMT enzymes (p > 0.05; Figure 7.12). 

 

Within leukocytes, a main effect of time was detected for methylation of two CpG sites 

(CpG2: -1096 & CpG4: -1069; p < 0.05; Table 7.5). At CpG2 a delayed increase in 

methylation was detected Post-ex+3hr, which returned to baseline values by Post-

ex+48hr (p < 0.05; Table 7.5). A similar non-significant trend (p = 0.051) was 

determined for the methylation across all IL6 CpG sites analysed, with peak 

methylation occurring Post-ex+3hr (Table 7.5). Unlike in skeletal muscle, an 

immediate decrease in methylation was determined Post-ex at IL6 CpG4 in leukocytes 

indicating differential response between skeletal muscle and leukocytes (p < 0.05; 

Table 7.5). IL6 mRNA expression in leukocytes was unaltered by exercise and no 

consistent correlations were determined between IL6 DNA methylation and mRNA 

expression were identified (Figure 7.13). 
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Figure 7.10 - Impact of exercise on mean IL6 DNA methylation across all CpG sites (A & B) and mRNA 
expression (C & D) in skeletal muscle (left-hand column) and leukocytes (right-hand 
column). *indicates significantly different from Pre-ex; # indicates significantly different 
from Post-ex. 
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Table 7.5 - DNA methylation of IL6. Data presented as the mean of all trials ± standard deviation. Values not sharing a letter (a,b,c) are significantly different 
for simple interactions of time (p<0.05) after Bonferroni correction for multiple testing.  

CpG site Tissue Pre-Ex Post-ex Post-ex+1hr Post-ex+3hr Post-ex+48hr Main effect  
p-value 

IL6 
CpG1: -1099 

Skeletal 
muscle 73.06 ± 4.33a 77.96 ± 5.68b N.D. 76.06 ± 3.48ab N.D. 0.009 

Leukocytes 90.81 ± 1.57 90.53 ± 1.05 91.12 ± 1.35 91.6 ± 1.22 90.57 ± 1.54 0.308 

IL6 
CpG2: -1096 

Skeletal 
muscle 77.40 ± 3.14a 81.01 ± 3.87b N.D. 79.04 ± 3.08c N.D. 0.001 

Leukocytes 90.56 ± 1.21a 91.14 ± 1.16ab 91.25 ± 1.09ab 91.76 ± 0.81b 90.67 ± 0.76a 0.029 

IL6 
CpG3: -1094 

Skeletal 
muscle 82.61 ± 3.28a 84.87 ± 3.28b N.D. 83.44 ± 2.86a N.D. 0.025 

Leukocytes 90.96 ± 2.17 91.1 ± 2.18 91.06 ± 2.54 91.79 ± 1.86 90.76 ± 1.99 0.098 

IL6 
CpG4: -1069 

Skeletal 
muscle 66.13 ± 3.74a 70.78 ± 5.24b N.D. 67.31 ± 3.84a N.D. 0.002 

Leukocytes 88.88 ± 1.66a 87.52 ± 1.90b 88.28 ± 1.47ab 89.23 ± 1.23ab 88.36 ± 1.34ab 0.016 

IL6 
CpG5: -1061 

Skeletal 
muscle 72.41 ± 2.87a 74.88 ± 3.38b N.D. 73.83 ± 3.42c N.D. 0.001 

Leukocytes 81.52 ± 2.98 80.91 ± 2.51 81.54 ± 1.98 81.91 ± 2.27 81.27 ± 2.82 0.166 

IL6 
CpG6: -1057 

Skeletal 
muscle 74.46 ± 3.74a 77.55 ± 4.23b N.D. 75.93 ± 3.86a N.D. 0.001 

Leukocytes 87.94 ± 2.17 88.43 ± 1.59 87.64 ± 1.43 87.91 ± 1.36 87.71 ± 2.10 0.595 

IL6 
CpG: Mean 

Skeletal 
muscle 74.34 ± 3.28a 77.84 ± 4.12b N.D. 75.93 ± 3.31a N.D. 0.001 

Leukocytes 88.44 ± 1.35 88.27 ± 1.16 88.48 ± 1.05 89.03 ± 0.89 88.22 ± 1.07 0.051 
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7.3.3.3 TNF  

The methylation values at the individual CpG sites for the TNF assay are presented in 

Table 7.6, whereas the impact of exercise within each trial on the mean methylation 

across all CpG sites are presented in Figure 7.11.  

 

Reduced Post-ex TNF methylation was detected, in skeletal muscle, for two CpG 

(CpG3: +214 & CpG4: +222) sites and the mean methylation of all CpG sites (p > 0.05; 

Table 7.6, Figure 7.11A). Non-significant trends for a main effect of time were also 

identified for the remaining CpG sites (CpG1: p = 0.084; CpG2: p = 0.055). A 

simultaneous increase of TNF mRNA expression was also determined Post-ex in 

skeletal muscle (p = 0.027; Figure 7.11C). No associations were determined between 

the mean methylation across all TNF CpG sites analysed and TNF mRNA expression 

(p > 0.05; Figure 7.12); however, Post-ex+3hr TNF methylation was negatively 

correlated with Post-ex DNMT3a mRNA expression (p < 0.01; Figure 7.12). 

 

A delayed reduction in TNF DNA methylation was determined in leukocytes with 

reduced methylation at Post-ex+3hr for three CpG sites (CpG2-4: p < 0.05; non-

significant trend identified for CpG1: p = 0.057) and the mean methylation across the 

whole region analysed (p < 0.05; Table 7.6, Figure 7.11B). Exercise did not alter 

leukocyte TNF mRNA expression (p > 0.05; Figure 7.11D) and no association between 

TNF methylation and mRNA expression were identified (p > 0.05; Figure 7.13) 

however, positive correlations were determined between Post-ex+1hr DNMT3b mRNA 

expression and both Post-ex and Post-ex+3hr TNF methylation (p < 0.05; Figure 7.13). 
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Figure 7.11 - Impact of exercise on mean TNF DNA methylation across all CpG sites (A & B) and 
mRNA expression (C & D) in skeletal muscle (left-hand column) and leukocytes (right-
hand column). *indicates significantly different from Pre-ex; # indicates significantly 
different from Post-ex; † indicates significantly different from Post-ex+3hr. 

 

 

Pre
-ex

Post
-e

x

Post
-e

x+
3h

r
20

25

30

35

40

45
TN

F 
m

ea
n 

m
et

hy
la

tio
n 

(%
)

Skeletal muscle

Pre
-ex

Post
-e

x

Post
-e

x+
1h

r

Post
-e

x+
3h

r

Post-
ex

+4
8h

r
8

10

12

14

16

18

TN
F 

m
ea

n 
m

et
hy

la
tio

n 
(%

)

Leukocytes

Pre
-ex

Post
-e

x

Post-
ex

+4
3h

r
0.0

0.5

1.0

1.5

2.0

2.5

TN
F 

m
R

N
A

 e
xp

re
ss

io
n

Pre
-ex

Post
-e

x

Post
-e

x+
1h

r

Post
-e

x+
3h

r

Post-
ex

+4
8h

r
0.0

0.5

1.0

1.5

2.0

TN
F 

m
R

N
A

 e
xp

re
ss

io
n

Trial A Trial B Trial C

*
†

* *,#

*

A

C

B

D



 144 

Table 7.6 - DNA methylation of TNF. Data presented as the mean of all trials ± standard deviation. Values not sharing a letter (a,b,c) are significantly different 
for simple interactions of time (p<0.05) after Bonferroni correction for multiple testing.  

CpG site Tissue Pre-Ex Post-ex Post-ex+1hr Post-ex+3hr Post-ex+48hr 
Main effect 

p-value 

TNF  

CpG1: +197 

Skeletal 

muscle 
29.63 ± 3.04 26.21 ± 3.98 N.D. 29.17 ± 3.32 N.D. 0.084 

Leukocytes 13.77 ± 1.55 13.01 ± 2.05 12.06 ± 1.81 12.17 ± 2.03 13.45 ± 1.97 0.057 

TNF  

CpG2: +202 

Skeletal 

muscle 
24.32 ± 2.70 20.82 ± 3.40 N.D. 23.35 ± 2.83 N.D. 0.055 

Leukocytes 11.2 ± 1.61a 10.86 ± 1.66ab 10.04 ± 1.96ab 10.01 ± 1.75b 11.09 ± 1.57ab 0.048 

TNF  

CpG3: +214 

Skeletal 

muscle 
29.09 ± 2.59a 25.37 ± 4.03b N.D. 27.87 ± 3.09ab N.D. 0.044 

Leukocytes 12.97 ± 1.82a 12.43 ± 2.00ab 11.67 ± 2.23ab 11.58 ± 1.93b 12.7 ± 1.99ab 0.02 

TNF  

CpG4: +222 

Skeletal 

muscle 
50.53 ± 3.95a 42.7 ± 6.51b N.D. 48.37 ± 5.09ab N.D. 0.012 

Leukocytes 15.60 ± 1.76a 13.97 ± 2.05ab 12.6 ± 2.00ab 12.78 ± 1.66b 15.41 ± 2.23a 0.001 

TNF  

CpG: Mean 

Skeletal 

muscle 
33.39 ± 2.97a 28.77 ± 4.4b N.D. 32.19 ± 3.53ab N.D. 0.031 

Leukocytes 13.38 ± 1.42a 12.57 ± 1.71ab 11.59 ± 1.77ab 11.63 ± 1.65b 13.16 ± 1.72a 0.004 
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Figure 7.12 – Spearman’s Rho correlation coefficients between mean skeletal muscle DNA methylation 
and mRNA expression values across all trials (Trial A-C). Blue indicates a negative 
correlation; red indicates a positive correlation and black indicates correlation coefficients 
between -0.5 and 0.5. *p < 0.05, # p < 0.01.  
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Figure 7.13 - Spearman’s Rho correlation coefficients between mean leukocyte DNA methylation and mRNA expression values across all trials (Trial A-C). Blue indicates 
a negative correlation; red indicates a positive correlation and black indicates correlation coefficients between -0.5 and 0.5. *p < 0.05, # p < 0.01.  
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7.3.4 Associations between skeletal muscle and leukocyte DNA 

methylation  

 
Significant positive correlations were identified between PPARGC1A DNA methylation 

within skeletal muscle and leukocytes (p < 0.05; Figure 7.14); however, no significant 

positive associations were identified between skeletal muscle and leukocytes for the 

other assays (PPARGC1A ALT, IL6 and TNF, p > 0.05; Figure 7.14). Although no 

positive correlations were identified for the PPARGC1A ALT, IL6 or TNF assays, 

significant negative correlations between skeletal muscle and leukocytes were 

identified for each of these assays; however, the negative correlations between the 

tissues are not consistent across the various time points suggesting a high degree of 

tissue specificity for these assays (Figure 7.14). 

 

 

Figure 7.14 - Spearman’s Rho correlation coefficients of mean DNA methylation of all CpG sites 

analysed within skeletal muscle and blood leukocytes for each assay. Blue indicates a 

negative correlation; red indicates a positive correlation and black indicates correlation 

coefficients between -0.5 and 0.5. *p < 0.05, # p < 0.01.  
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7.3.5 Associations between DNA methylation and post-exercise 

physiological markers  

 

Figure 7.15 demonstrates the association between mean methylation across all CpG 

sites for each assay and physiological markers related to exercise performance, 

inflammation and muscle damage. A large number of significant associations have 

been determined and are not commented upon in detail; however, the section below 

describes the consistent significant associations identified. 

 

7.3.5.1 Exercise performance 

Exercise performance was not significantly associated with global, PPARGC1A or 

PPARGC1A DNA methylation (p > 0.05; Figure 7.15); however, significant correlations 

were identified between exercise performance and TNF DNA methylation in skeletal 

muscle. Strong positive correlations were identified between CMJ height and post-

exercise TNF methylation (r > 0.8, p < 0.05; Figure 7.15) whereas, significant negative 

correlations were identified between the TNF methylation post-ex+3hr and force 

produced during isometric, eccentric and concentric contractions of the knee 

extensors (r < -0.8, p < 0.05; Figure 7.15). Within leukocytes, positive associations 

were determined between post-ex IL6 DNA methylation and knee extensor force 

production during the performance tests; however, this association only reached 

statistical significance for isometric force production post-ex+48hr (r = 0.881, p < 0.01; 

Figure 7.15).   

 

7.3.5.2 Inflammatory cytokines 

No significant associations were identified between circulating IL-6 concentrations and 

IL6 DNA methylation in either blood leukocytes or skeletal muscle (p > 0.05). Within 

skeletal muscle a significant positive correlation was identified between IL-6 

concentrations and PPARGC1A ALT methylation Post-ex+3hr (r = 0.829, p < 0.05; 

Figure 7.15); whereas, circulating IL-6 concentrations Post-ex+3hr were negatively 

associated with the Post-ex+48hr DNA methylation of PPARGC1A and TNF in 

leukocytes (r = -0.714, p < 0.05; Figure 7.15).  
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Significant negative correlations were identified between Post-ex TNF-α and skeletal 

muscle PPATGC1A, PPARGC1A ALT and IL6 (r < -0.8, p < 0.05; Figure 7.15); 

however, no significant associations were identified with skeletal muscle TNF 

methylation or the leukocyte DNA methylation for any of the assays (p > 0.05; Figure 

7.15). 

 

7.3.5.3 Muscle damage markers 

Neither global nor IL6 methylation were significantly associated with markers of 

muscle damage (p > 0.05), whereas, significant correlations were identified between 

markers of muscle damage and DNA methylation of PPARGC1A, PPARGC1A ALT 

and TNF (p < 0.05). Within leukocytes, negative correlations were identified for 

between the DNA methylation of these  assays and the circulating concentrations of 

myoglobin and CK (r < -0.714, p < 0.05; Figure 7.15); whereas, within skeletal muscle 

only DNA methylation of PPARGC1A ALT was associated with muscle damage 

markers (r = 0.886, p < 0.05; Figure 7.15).  
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Figure 7.15 - Spearman’s Rho correlation coefficients between post-exercise DNA methylation and physiological markers related to exercise 
performance, inflammation and muscle damage. The mean of all CpG sites assessed for each assay has been used to provide an overall 
view of the region of interest. Blue indicates a negative correlation; red indicates a positive correlation and black indicates correlation 
coefficients between -0.5 and 0.5. *p < 0.05, # p < 0.01.  
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7.4 Discussion  
This chapter aimed to investigate the impact of acute resistance exercise on DNA 

methylation in leukocytes and skeletal muscle from individuals unaccustomed to 

resistance exercise. Further, we sought to determine whether FA supplementation or 

resistance training could modulate the acute response. Acute resistance exercise did 

not alter global DNA methylation in leukocytes; however, modulated gene-specific 

DNA methylation (PPARGC1A, IL6 and TNF) was detected in both skeletal muscle 

and leukocytes. Acute resistance exercise also reduces the mRNA expression of 

DNMT3a and DNMT3b in both tissues. Neither the supplementation of FAs or eight-

weeks of resistance training were sufficient to alter the impact of acute resistance 

exercise on DNA methylation. Significant correlations were determined between Post-

ex PPARGC1A, IL6 and TNF DNA methylation; and physiological markers related to 

exercise performance, inflammation and markers of muscle damage indicating 

potential functional consequences of the alterations to DNA methylation.  
 
The lack of global hypomethylation in leukocytes following an acute bout of resistance 

exercise in the present study was an unexpected finding based on a previous report 

of genome-wide remodelling of the methylome with a preference towards 

hypomethylation (~10,000 sites decreases compared to ~7,500 sites increasing 

methylation) in skeletal muscle following acute resistance exercise (Seaborne et al. 

2018). The lack of hypomethylation in the present study could be explained if the 

resistance exercise was insufficient to alter DNA methylation; however, a decrease in 

performance and an increase in markers of muscle damage and inflammatory 

cytokines were detected as a result of the resistance exercise suggesting the exercise 

was sufficient to alter inflammatory pathways and induce muscle damage.  

 

A tissue-specific response between skeletal muscle and leukocytes could explain the 

surprising findings in the current study. A tissue-specific response to resistance 

training between leukocytes and skeletal muscle is suggested in the literature. The 

same number of CpG sites in leukocytes become hypomethylated as hypermethylated 

(~28,000) following resistance exercise (Denham et al. 2016); whereas, resistance 

training causes an increased number of sites to undergo hypomethylation in skeletal 

muscle (Rowlands et al. 2014; Seaborne et al. 2018). The tissue-specific response of 
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methylation following exercise is supported by the alteration of methylation in different 

molecular pathways in skeletal muscle (Nitert et al. 2012) and adipose tissue (Rönn 

et al. 2013) from the same individuals following a six-month aerobic training 

intervention.  

 

The lack of assessment of skeletal muscle global methylation in the present study, 

because of a small yield of skeletal muscle from the biopsy procedure, prevents the 

conclusion of a tissue-specific global methylation response to acute resistance 

exercise. Despite no measure of global DNA methylation in skeletal muscle within the 

present study, the mRNA expression of the DNMT enzymes was assessed in both 

skeletal muscle and leukocytes. In skeletal muscle, decreased mRNA expression of 

DNMT3a and DNMT3b was identified following exercise; whereas, only DNMT3b was 

reduced in leukocytes. Global leukocyte methylation was positively correlated to the 

mRNA expression of DNMT3a and DNMT3b suggesting the expression of these 

enzymes may be critical in determining methylation. Indeed, altered mRNA expression 

has previously been associated with modulation of DNA methylation (Jaiswal et al. 

2015; Kobayashi et al. 2011); therefore, hypomethylation in skeletal muscle may occur 

as a result of a tissue-specific modulation of DNMT enzymes. In support of this theory, 

Denham et al., (2016) identified reduced mRNA expression of DNMT3b but not 

DNMT3a following resistance training. These results suggest the lack of leukocyte 

global hypomethylation induced by resistance exercise in the present study may be 

explained by a similar number of CpG sites increasing and decreasing in methylation. 

 

For the first time, we have investigated the impact of resistance exercise on the 

methylation and mRNA expression of both promoter regions of PPARGC1A. Acute 

aerobic exercise studies have demonstrated an exercise-induced hypomethylation of 

a single CpG site -260 upstream of the canonical PPARGC1A promoter and a 

concurrent increase in PPARGC1A mRNA expression (Bajpeyi et al. 2017; Barrès et 

al. 2012; Nitert et al. 2012); however a lack of literature exists on the impact of 

resistance exercise on the methylation of PPARGC1A. In contrast to the response of 

acute aerobic exercise, we identified hypermethylation of the PPARGC1A canonical 

promoter (CpG -260) in skeletal muscle following resistance exercise. Despite strong 

positive correlations between PPARGC1A methylation in skeletal muscle and 

leukocytes, we failed to detect any change in DNA methylation in leukocytes post-
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exercise following the correction for multiple testing. The hypermethylation determined 

in the present study indicates that exercise induces mode specific changes to 

PPARGC1A. Gene expression studies have previously reported an exercise mode-

specific expression pattern of the PPARGC1A isoforms from the specific promoters 

(Ruas et al. 2012; Silvennoinen et al. 2015), suggesting a potential epigenetic role in 

the transcriptional control of these isoforms.  

 

Based on the typical relationship between methylation and mRNA expression we 

expected the PPARGC1A ALT to become hypomethylated following exercise as a 

mechanism to increase the mRNA expression of Exon 1b derived PPARGC1A 

reported in previous studies (Ruas et al. 2012; Silvennoinen et al. 2015). In the present 

study, we identified significant hypermethylation of PPARGC1A ALT in both skeletal 

muscle and leukocytes following acute resistance exercise. Despite hypermethylation 

of the PPARGC1A alternative promoter, we identified a substantial increase in Exon 

1b derived mRNA expression in skeletal muscle. The relationship identified between 

promoter methylation and mRNA expression of PPARGC1A ALT is the opposite to the 

normal reported relationship; however, a recent study examining DNA methylation in 

tumour samples indicate that ~30% of CpG sites downstream of the TSS are positively 

associated with mRNA expression (Spainhour et al. 2019). There is a sparsity of 

literature investigating the impact of exercise on the methylation status of PPARGC1A 

ALT. The only previous study to investigate the impact of exercise on the methylation 

of PPARGC1A ALT failed to determine any modulation of methylation at either of the 

PPARGC1A promoters in mice one-hour following an acute bout of aerobic exercise 

(Lochmann et al. 2015). It is difficult to compare the results of the present study with 

this report because of key methodological differences including the species, exercise-

mode and timepoint following exercise.  

 

Positive associations were identified between muscle damage markers and 

PPARGC1A ALT methylation post-exercise in skeletal muscle, suggesting that 

exercise-induced muscle damage may be required to alter the methylation of 

PPARGC1A ALT. The muscle damage response in the study by Lochmann et al., 

(2015) is not reported; however, eccentric exercise is demonstrated to induce greatest 

muscle damage which potentially explains the lack of association between aerobic 

exercise and PPARGC1A ALT methylation in the previous study. Negative correlations 
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were also identified between both PPARGC1A promoters and the post-exercise 

circulating concentrations of TNF-α. These data support the previous associations 

between increased PPARGC1A mRNA expression and a reduction in the systemic 

levels of inflammatory cytokines (Handschin and Spiegelman 2008). Future work is 

required to confirm the relationship between methylation of these CpG sites within 

PPARGC1A ALT, the isoform-specific expression of PPARGC1A and the 

physiological consequence of these relationships.  

 

For the first time, acute exercise is demonstrated to be sufficient to induce a tissue-

specific IL6 DNA methylation response. Immediately post an acute bout of resistance 

exercise the methylation of all IL6 CpG sites analysed displayed significant 

hypermethylation, and by Post-ex+3hr the methylation values had decreased or 

returned to Pre-exercise level. Increased mRNA expression of IL6 was also detected 

Post-ex, as previously mentioned the opposite relationship would be expected 

between methylation and mRNA expression; however, in line with the results of the 

current study a positive association has previously been reported between a single 

CpG site (-666) closer to the TSS of the IL6 promoter and IL6 mRNA expression (Ma 

et al. 2016). The impact of resistance exercise on leukocyte IL6 methylation is not as 

clear. There was no impact of exercise on the mean methylation of all CpG sites; 

however, a single CpG site (CpG4: -1069) decreased in methylation Post-ex, whereas, 

Post-ex+3hr a different CpG increased in methylation (CpG2: -1096). The small 

changes in leukocyte methylation were insufficient to alter IL6 mRNA expression in 

the present study. The tissue-specific modulation of IL6 methylation and subsequently 

mRNA expression in the present study suggests that altered DNA methylation may be 

responsible for the increased production of IL-6 in exercising skeletal muscle 

(Pedersen and Febbraio 2008; Steensberg et al. 2000). It has been suggested the 

increased skeletal muscle production of IL6 may induce an anti-inflammatory response 

by increasing the expression of IL-1ra and IL-10 (Steensberg et al. 2003) and inhibiting 

TNF-α production (Gleeson et al. 2011; Petersen and Pedersen 2006). In support of 

the anti-inflammatory role of muscle produced IL-6, we identified a negative correlation 

between skeletal muscle IL6 methylation and circulating concentrations of TNF-α. 

 

While the acute bout of exercise in the present study hypermethylated PPARGC1A 

and IL6, hypomethylation of the first exon of TNF was detected in both skeletal muscle 
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and leukocytes. Alongside the hypomethylation of TNF, we detected an increase of 

TNF mRNA expression in skeletal muscle and correlations with exercise performance; 

whereas, no change in TNF mRNA expression or associations with exercise 

performance were identified in leukocytes. Previously, TNF has been reported to be 

hypermethylated in leukocytes from elderly individuals who maintained or increased 

their energy expenditure by 500 kcal/wk over an eight-year period (Shaw et al. 2014). 

These data suggest differential regulation of TNF by acute resistance exercise and 

long-term physical activity. Potentially the acute decrease in TNF methylation and 

increase in mRNA expression following resistance exercise could be involved in the 

adaptive response to muscle-damaging exercise via activation of satellite cells and 

increased expression of the myogenic differentiation factors MyoD and Myogenin 

(Chen et al. 2007; Li 2013).  

 

Conversely, the increase in TNF methylation following long-term physical activity may 

function to reduce the systemic levels of inflammation associated with disease states 

and skeletal muscle atrophy (Sharples et al. 2010). In support of these results, 

administration of TNF-α to muscle cells reduces the regenerative capacity (Sharples 

et al. 2016). The exposure of mouse C2C12 cell to an early dose of TNF-α has also 

been demonstrated to alter MyoD promoter hypermethylation and reduced 

differentiation and increased atrophy when cells are exposed to a later dose of TNF-

α, compared to cells which only encounter a later dose of TNF-α. In support of a role 

of TNF methylation in the hypertrophic response, we identified significant correlations 

between TNF methylation and isometric, concentric and eccentric force produced by 

the knee extensors. These data provide strong evidence for an epigenetic role for TNF 

in controlling skeletal muscle mass which is regulated by stimulus provided by acute 

and chronic exercise. 

 

While acute resistance exercise altered DNA methylation patterns in the present study, 

we did not identify any impact of exercise training or FA supplementation on DNA 

methylation. Reductions in systemic levels of inflammation have been reported 

following exercise training (Beavers et al. 2010; Flynn et al. 2007; Gleeson et al. 2011) 

and FA supplementation (Calder 2015; Rosignoli et al. 2013; Yarla, Polito, and Peluso 

2017). Including the methylation of a single CpG site further downstream of the IL6 

gene associated with the n-3 PUFA content in blood (Ma et al. 2016) and 



 156 

administration of EPA was sufficient to dampen the impact of TNF administration on 

MyoD mRNA expression (Saini et al. 2017). These data suggest the CpG sites 

investigated in the present study may regulate the acute local inflammatory response 

and not the chronic systemic inflammatory response. Alternatively, because the 

participants were young and healthy, there may not have been a systemic 

inflammatory response to be resolved. Repetition of the present study in a cohort of 

older adults with chronic inflammation or within an inflammatory disease population 

will allow the determination if the selected CpG sites are only involved in the acute 

response or whether the lack of association is due to the selection of young and 

healthy participants.  

 

The time course of the acute resistance exercise-induced changes in DNA methylation 

has not previously been reported. The only previous study to investigate the impact of 

acute resistance exercise on DNA methylation quantified methylation pre- and 30 min 

post-exercise (Seaborne et al. 2018). The inclusion of a further time point in the 

present study (Post-ex+3hr) allows the determination that the methylation response to 

acute resistance exercise is a transient event, similar to the previously reported 

association following aerobic exercise (Barrès et al. 2012). Interestingly, there is a lack 

of literature on exercise-induced changes to DNA methylation in leukocytes. The only 

previous report of acute exercise in leukocytes failed to identify any significant CpG 

sites immediately post or 24-hours post-exercise (Robson-Ansley et al. 2014). In the 

present study, altered DNA methylation only occurred immediately following exercise 

for one CpG site in IL6, the majority of CpG sites displayed a delayed response and 

altered DNA methylation at Post-ex+3hr. These data suggest the lack of modulated 

DNA methylation detected in the study by Robson-Ansley and colleagues (2014) may 

be explained the selection of sampling time points. Future work is required to 

accurately determine the time course of methylation changes following acute exercise. 

 

An important consideration for the skeletal muscle DNA methylation detected in the 

present study, and any studies investigating the impact of muscle-damaging exercise 

on DNA methylation within skeletal muscle, is the infiltration of leukocytes into skeletal 

muscle following muscle damage and the potential impact it may have on DNA 

methylation profiles. There is contrasting evidence of the time course of leukocyte 

infiltration, while some studies report no infiltration during the initial 3 hours post-



 157 

exercise (the time course of the present study) (MacIntyre et al. 1996; Mahoney et al. 

2008; Raastad et al. 2015), others have reported leukocyte infiltration into skeletal as 

soon as 30 min post-exercise (Paulsen et al. 2010). The infiltration of leukocytes into 

skeletal muscle following exercise will lead to the inclusion of leukocyte genetic 

material into the Post-ex DNA samples which could impact the determination of DNA 

methylation. In the present study, significant differences in the methylation profile of 

leukocytes and skeletal muscle for each gene was detected at baseline (Trial A, Pre-

ex; Table 7.3); therefore, if leukocyte infiltration has occurred, it could be the causal 

factor for the change in DNA methylation following exercise in the present study. 

Future studies should consider the potential impact of leukocyte infiltration and assess 

the expression of markers unique to leukocytes to confirm the absence of their 

contribution to the genetic material used for analysis. 
 

7.5 Conclusion 
In conclusion, acute resistance exercise was sufficient to alter DNA methylation of 

PPARGC1A, IL6 and TNF in both skeletal muscle and leukocytes; however, 

differences in the direction of the methylation response between these two tissues 

suggests a tissue-specific response. A tissue-specific response is further 

demonstrated by the lack of positive correlations, with the exception of PPARGC1A, 

between the DNA methylation within skeletal muscle and leukocytes. The tissue-

specific response between skeletal muscle and leukocytes is an important finding 

because leukocyte methylation is commonly used as a surrogate for other tissues. 

Neither exercise training or FA supplementation was sufficient to alter either gene-

specific or global DNA methylation. The lack of alteration of DNA methylation as a 

result of exercise training for any of the genes analysed in the present study suggests 

that these methylation changes occur independently of training status; however, this 

may be due to the selection of a young cohort of healthy males with a lack of chronic 

inflammation. Repetition of this study in a cohort of individuals suffering from 

inflammatory diseases would allow the determination if the lack of association of 

training and supplementation is because of the selection of healthy participants in the 

current study.   
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Chapter 8 General discussion 
 

  



 159 

 

8.1 Overview and thesis aims 
A wealth of literature has researched the impact of genetic polymorphisms, mainly 

SNPs, with exercise and health; whereas, the impact of exercise on epigenetic 

modifications, which possess a critical role in transcriptional control and may be the 

key to understanding the adaption process and potential health benefits to exercise 

and FA supplementation, are only beginning to be elucidated. This thesis aimed to: 

 

1. Identify the impact of different acute exercise stimuli (aerobic and resistance) 

on global and gene-specific methylation. 

 

2. Investigate whether the impact of acute exercise can further be modulated by 

the supplementation of dietary fatty acids.  

 

3. Determine whether the expression of DNMT enzymes are associated with the 

modulation of DNA methylation in an attempt to identify a potential underlying 

mechanism. 

 

4. Establish whether modulated DNA methylation as a result of the previously 

mentioned interventions is associated with physiological markers. 

 

8.2 Summary of the research 
The use of different exercise bouts in the different chapters of this thesis allowed the 

comparison of the impact of different exercise stimuli on DNA methylation. While an 

acute bout of exercise to volitional fatigue was insufficient to alter DNA methylation 

(Chapter 5), significant alterations in methylation were detected following a one-hour 

cycling bout (Global and PPARGC1A; Chapter 6), and an acute bout of resistance 

exercise (PPARGC1A, IL6 and TNF ; Chapter 7). A period of eight weeks of resistance 

exercise did not alter global or gene-specific DNA methylation and the response to an 

acute bout of exercise following the training period was not different to the response 

before training (Chapter 7).  
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FA supplementation alone did not alter either global or gene-specific DNA methylation 

in the present thesis (Chapters 5 - 7). In Chapter 5, an interaction between n-3 PUFA 

supplementation and a modulated DNA methylation response following exercise was 

identified for a single IL6 CpG site. Interestingly following supplementation, the n-3 

PUFAs content of whole blood associated with methylation of the same IL6 CpG site 

suggesting the modulation of fatty acid content may alter DNA methylation following 

an exercise stimulus. The exercise stimulus in Chapters 6 and 7 was not further 

modulated by FA supplementation.  

 

All three exercise stimuli were sufficient to reduce DNMT3a and 3b mRNA expression 

(Chapters 5 - 7); however, DNMT1 mRNA expression was only reduced following an 

acute bout of exercise to volitional fatigue (Chapter 5). The reduction in all three 

DNMTs following exercise in Chapter 5, without a change in global or gene-specific 

DNA methylation (PPARGC1A and IL6), questions the functional consequence of 

altered DNMT mRNA expression. Differential mRNA expression of DNMT1 was 

detected in following n-3 PUFAs and EVOO supplementation in Chapter 6; however, 

FA supplementation did not associate with DNMT expression in Chapter 5 or 7. While 

mRNA expression has previously been associated with global methylation levels 

(Jaiswal et al. 2015; Kobayashi et al. 2011), potentially DNMT enzyme activity would 

provide a better measure to investigate associations with DNA methylation. 

 

8.3 Global DNA methylation 
Global DNA methylation was determined in blood leukocytes in all three experimental 

chapters (Chapters 5 - 7) in the current thesis. Previously significant hypomethylation 

of the genome is reported in skeletal muscle following an acute bout of exercise 

(Barrès et al. 2012; Seaborne et al. 2018) and exercise training interventions (Nitert et 

al. 2012; Rowlands et al. 2014; Seaborne et al. 2018), whereas in leukocytes the 

results are mixed with some studies reporting no change in global methylation 

(Denham et al. 2016; King-Himmelreich et al. 2016; Robson-Ansley et al. 2014) and 

others report significant hypomethylation (Denham, O’Brien, Marques, et al. 2015; 

Dimauro et al. 2016) following exercise. The results obtained within the present thesis 

match the lack of consistency in the literature surrounding the impact of different 

exercise interventions on global methylation with one study indicating reduced global 
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methylation following acute exercise (Chapter 6); whereas the other two studies 

(Chapters 5 and 7) failed to identify an association between exercise and global DNA 

methylation. The use of different bouts of exercise (altered mode, intensity and 

duration) induced different physiological demands and therefore are likely to regulate 

different molecular pathways potentially explaining the lack of clarity in overall impact 

on global DNA methylation because of different CpG sites undergoing hyper- and 

hypomethylation.  

 

The supplementation of FAs did not alter the global DNA methylation in the present 

thesis (Chapters 5 – 7). The literature surrounding the global impact of FA 

supplementation is unclear, with a study reporting decreased LINE-1 methylation 

following n-3 PUFA supplementation in Alzheimer’s patients (Karimi et al. 2017), 

whereas, the supplementation of n-3 PUFAs in overweight and obese adults altered 

the DNA methylation at 306 CpG sites with 93% of them displaying hypermethylation 

(Tremblay et al. 2017). Potentially the use of diseased populations in the previous 

literature explains the inconsistencies detected. LINE-1 methylation is reported to be 

increased in Alzheimer’s patients compared to healthy controls (Di Francesco et al. 

2015); therefore, the supplementation of n-3 PUFA in these Alzheimer’s patients may 

act to restore global DNA methylation to the normal level detected in healthy 

individuals explaining the lack of association the present thesis which used healthy 

individuals.  

 

8.4 Gene-specific methylation 
The exercise stimulus in Chapter 5 was insufficient to alter the DNA methylation of 

PPARGC1A in leukocytes; whereas the acute bouts of aerobic exercise in Chapter 6 

decreased the methylation of PPARGC1A. These results are in agreement with the 

impact of aerobic exercise in skeletal muscle (Barrès et al. 2012; Nitert et al. 2012). In 

both Chapter 5 and Chapter 6 PPARGC1A methylation was positively correlated with 

measures of exercise performance, suggesting the methylation response to exercise 

may be dependent on an individual’s aerobic fitness, indicating a potential molecular 

mechanism for exercise-induced adaptation. When the methylation status of 

PPARGC1A was investigated following resistance exercise (Chapter 7), we identified 

significant hypermethylation of the -260 CpG site. These results suggest that the 
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regulation of methylation of the same CpG site can be influenced by exercise mode. 

It was expected that the increased methylation of the canonical promoter would result 

in hypomethylation of the alternative promoter as a mechanism controlling the 

transcription of alternative isoforms of PPARGC1A which have been reported in gene 

expression studies (Ruas et al. 2012; Silvennoinen et al. 2015). Despite finding the 

expected increased mRNA expression, hypermethylation of the PPARGC1A ALT was 

identified; however, unlike Chapters 5 and 6 no correlation was identified between 

PPARGC1A DNA methylation and exercise performance. To our knowledge, no 

previous literature exists on investigating the impact of these CpG sites on mRNA 

expression. 

 

Aerobic exercise alone did not alter the methylation of IL6 in the present thesis 

(Chapters 5 and 6); however, we did identify a significant impact of resistance 

exercise (Chapter 7). A complicated relationship was identified in leukocytes with one 

CpG site (-1096) increasing and another CpG site (-1069) decreasing in methylation; 

however, these changes in methylation did not result in altered mRNA expression. 

Conversely, in skeletal muscle, all six CpG sites analysed increased in methylation 

following resistance exercise; with a simultaneous increase in mRNA expression. The 

minimal impact of exercise on IL6 DNA methylation in leukocytes regardless of 

exercise mode supports the tissue-specific methylation response detected in Chapter 

7. Although there is a lack of other studies investigating the impact of exercise on IL6 

DNA methylation, the gene expression of IL6 has been reported to increase in skeletal 

muscle but not leukocytes following acute exercise (Gjevestad et al. 2017) which is in 

agreement with the results detected in this thesis. 

 

We investigated the impact of aerobic (Chapter 6) and resistance exercise (Chapter 

7) on the DNA methylation of 4 CpG sites in the first exon of TNF. In both chapters we 

detected significant correlations between TNF methylation and exercise performance; 

however, only acute resistance exercise (Chapter 7) was sufficient to reduce the 

methylation of these CpG sites in both skeletal muscle and leukocytes. The only 

previous association with TNF methylation with exercise demonstrated that 

maintenance or increasing long-term (eight-year period) physical activity in elderly 

participants is sufficient to increase leukocyte methylation of TNF. It is likely that the 

differences in the reported impact of exercise on TNF methylation are caused by the 
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difference between acute local and chronic systemic TNF-α expression. We speculate 

that following acute resistance exercise TNF is hypomethylation as a mechanism to 

increase the local concentration in skeletal as part of the adaptive response to muscle 

damage; whereas, the hypermethylation of TNF following long-term physical activity 

likely functions as a mechanism to reduce the systemic levels of inflammation which 

are associated with adverse health outcomes. Data from the present thesis (Chapter 

6) and a previous report by Hermsdorff et al., (2013) identify negative relationships 

between TNF methylation and measures of adiposity. Taken together the long-term 

benefits of regular exercise, such as reduced adiposity, may subsequently increase 

TNF DNA methylation levels and as a result, reduce TNF mRNA expression and the 

chronic low-grade inflammation levels associated with increased adiposity; whereas, 

the hypomethylation and subsequent increased mRNA expression of TNF following 

resistance exercise may stimulate skeletal muscle repair. 

 

8.5 DNMT mRNA expression  
The mRNA expression of the DNMT enzymes was investigated in each experimental 

chapter in an attempt to investigate potential mechanisms controlling the DNA 

methylation response. In each experiment chapter, we identified a reduction in DNMT 

mRNA expression as a result of exercise, and in Chapter 6 the supplementation of 

FAs was sufficient to alter DNMT1 mRNA expression. While exercise and FA 

supplementation may directly influence DNMT expression, these interventions may 

modulate DNMT expression by intermediary mechanisms. The expression of several 

miRNAs, including miRNA-29 -130 and -148, are associated with: DNMT expression 

(Duursma et al. 2008; Fabbri et al. 2007; Garzon et al. 2009; Xu et al. 2017), exercise 

(Silva et al. 2017) and FA supplementation (Chakraborty et al. 2017; D’Amore et al. 

2016; Roessler et al. 2017). IL-6 protein levels have been reported to regulate DNMT 

expression (Foran et al. 2010; Hodge et al. 2001; Horsburgh et al. 2015) via the 

modulation of miRNA (Braconi et al. 2010). Future work should investigate the impact 

of these interventions on the activity of DNMTs and TETs to determine whether 

modulation of these critical enzymes following exercise and FA supplementation is 

sufficient to alter DNA methylation. 
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8.6 Selection of tissue for analysis 
While the DNA sequence is identical across all cells within an individual, the same is 

not true regarding epigenetic signatures, each tissue and potentially each cell contains 

a unique methylation profile (Roadmap Epigenomics Consortium et al. 2015). The 

selection of target tissue for analysis is one of the most important considerations when 

conducting epigenetic research. Biologically interesting tissues for epigenetic analysis 

following environmental stimuli are sometimes not practically or ethically feasible, 

which leads to the selection of an alternative tissue as a surrogate from which the 

methylation status within the target tissue can be postulated. Circulating blood cells 

are a commonly selected surrogate tissue because the collection of blood is a 

minimally invasive procedure and since blood cells circulate throughout the body, it 

comes into contact with various organ and biological systems; therefore, it is thought 

to be a good systemic marker of methylation profiles (Jin and Liu 2018).  

 

The two most commonly used tissues to investigate DNA methylation following 

exercise are skeletal muscle and blood leukocytes; whereas, the impact of FAs on 

DNA methylation has almost exclusively been investigated in blood-derived cells. In 

each of the experimental chapters (Chapters 4 – 7) of this thesis, we selected to use 

blood leukocytes as the tissue for analysis of DNA methylation. Circulating blood 

comprises a group of heterogeneous cell types, which is a problem because the 

individual cell types contain specific methylation profiles which has the potential to 

confound measurement of DNA methylation (Adalsteinsson et al. 2012). Potentially a 

change in methylation may be detected or missed because the interventions resulted 

in a change in the proportion of blood cell types. Exercise has been demonstrated to 

alter the leukocyte cell populations (Natale et al. 2003); therefore, it is essential to 

account for tissue composition to ensure accurate determination of the impact of 

exercise on DNA methylation. A strength of the present thesis is the inclusion of blood 

cell counts for each sample collected which enabled a statistical correction (according 

to Jones et al. 2017) to be applied to the methylation value based on the quantity of 

leukocytes (lymphocytes, neutrophils, monocytes, basophils and eosinophils) present 

in the sample at the particular time point. While the cell counts obtained to allow the 

adjusted for the main groups of leukocytes, subgroups exist which contain distinct 
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methylome, for example, B and T cells (Reinius et al. 2012) which have not been 

accounted for in this thesis.  

 

In Chapter 7 we also collected skeletal muscle tissue to identify any tissue-specific 

responses. No previous study has investigated the differences in methylation between 

these two tissues. Differences between the two tissues were identified at baseline and 

in response to exercise highlighting the importance of carefully selecting the target 

tissue for analysis. Association analysis of the methylation of the assays in skeletal 

muscle and leukocytes indicated positive correlations existed for PPARGC1A; 

whereas, no correlation or negative correlations existed for PPARGC1A ALT, IL6 and 

TNF suggesting a tissue specific response for these assays. Interestingly, even when 

the same direction of methylation change was determined in Chapter 7, the time 

course of methylation changes in response to acute exercise was different between 

the tissues. Decreased TNF methylation was determined immediately post-exercise 

in skeletal muscle; whereas, in leukocytes the response was delayed until three-hours 

post-exercise. Interestingly, the time course of this change is in line with the reported 

infiltration of leukocytes into skeletal (MacIntyre et al. 1996; Mahoney et al. 2008; 

Raastad et al. 2015). Previous work in mice has demonstrated the time course of 

neutrophil infiltration into skeletal mirrors the neutrophil-related chemokine signalling 

response (Nicholas et al. 2015). These data potentially suggest an epigenetic signal 

in leukocytes promotes the infiltration into skeletal muscle; however, future studies are 

required to elucidate the relationship. 

 

8.7 Limitations and future directions  
While interesting findings were determined in this thesis, the research described is not 

without its limitations. A common theme amongst intervention studies is the use of a 

small sample size of the cohort used for investigation. The largest sample size used 

in the present study was ten participants; however, this is in accordance with previous 

literature investigating the impact of exercise on DNA methylation patterns (Denham 

et al. 2016; Denham, O’Brien, Marques, et al. 2015; Robson-Ansley et al. 2014; 

Rowlands et al. 2014; Seaborne et al. 2018; da Silva et al. 2017). Whereas, studies 

investigating the impact of FA supplementation have typically used larger sample sizes 

to identify an impact of FA supplementation (Aslibekyan et al. 2014; Karimi et al. 2017; 
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Ma et al. 2016; Voisin et al. 2014). Low sample size in human research study reduces 

statistical power and increases the likelihood that a statistically significant finding 

represents a false positive result (Dumas-Mallet et al. 2017). The samples sizes used 

for the research within the present thesis were selected based on the previous 

exercise studies detected significant changes in DNA methylation, alongside, difficulty 

in recruiting participants and consideration of analysis costs. Potentially the lack of 

consistent findings of altered DNA methylation following FA supplementation is the 

result of underpowered research.  

 

The selection of analysis methods for the determination of DNA methylation in the 

present study are not without limitations. Firstly, while LUMA is a commonly used 

surrogate for global DNA methylation, on correlation was identified between LUMA 

and the gold-standard method for assessing global methylation HPLC (Lisanti et al. 

2013). Further an issue with all global methylation methods is that when no difference 

between time points is identified (Chapter 5 and 7), it does not mean that there is no 

epigenetic consequence of the intervention because the same number of CpG sites 

may increase and decrease in methylation resulting in a lack of difference in global 

methylation (Lindholm et al. 2015). The gene-specific DNA methylation analysis using 

pyrosequencing also has limitations. Firstly, we are limited to determining the levels of 

methylation in a small number of CpG sites within each of the genes of interest. In 

total, we assessed the DNA methylation of 14 CpG sites (only 7 CpG sites in Chapter 

5) out of the ~28 million CpG sites in the genome (Luo, Lu, and Xie 2014). Other 

analysis methods (i.e. EWAS) allow the investigation of thousands of CpG sites 

throughout the genome and allow the identification of common molecular pathways 

which are affected by interventions. However, EWAS studies are not without 

limitations including multiple testing, the generation of artefactual data and the need 

for complicated normalisation (Dedeurwaerder et al. 2014). Another limitation of 

pyrosequencing is the inability to distinguish between 5mC and 5hmC; however, this 

is a flaw of all bisulfite bases assessments of DNA methylation. Discriminating 

between 5mC and 5hmC can be important because these two modifications have 

been suggested to have opposite effects chemically and biologically 

 

The work contained within this thesis elucidated a number of interesting findings within 

the field of ‘exercise-epigenetics’; however, as this is a relatively recent domain a 
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number of fundamental questions remain to be answered before we understand the 

multifaceted roles epigenetic modifications have on adaptation to exercise and the 

modification of the diet with bioactive molecules such as FAs. For example, decreases 

in DNA methylation is likely to increase transcription; however, the functional 

consequence of the modulation of mRNA expression is going to be dependent on the 

underlying genetic sequence and other epigenetic modifications, including miRNA 

expression and histone modifications. To gain a full insight into the transcriptional 

control, all of these genetic and epigenetic factors should be considered. Although not 

included in the present thesis, mRNA expression of TET enzymes and measures of 

DNMT and TET activity would help to elucidate the mechanisms which induce 

alterations to DNA methylation patterns following lifestyle interventions. Determination 

of the precise mechanisms would assist in designing therapeutic and non-therapeutic 

to improve health in at-risk populations. 

 

One of the most important areas which need to be investigated is the time course of 

changes to DNA methylation following acute exercise. In Chapter 7 we identified a 

clear tissue-specific response to the time course of changes to DNA methylation in 

response to acute exercise; an immediate modulation of DNA methylation was 

detected in skeletal muscle, whereas, a delayed alteration in methylation at three-

hours post-exercise was identified in leukocytes. A number of acute exercise studies 

have only investigated methylation pre and at a single time point post-exercise 

(Bajpeyi et al. 2017; Seaborne et al. 2018; da Silva et al. 2017); whereas, inconsistent 

time points have been used in other studies (Barrès et al. 2012; Lane et al. 2015; 

Robson-Ansley et al. 2014). Differences in results between studies may be explained 

by the selection of different time points for determination of methylation.  

 

 The present research used healthy, disease-free, physically active participants and 

determined modulated DNA methylation following acute exercise. It would be 

interesting to determine what impact these interventions had in phenotypically diverse 

individuals; such as, sedentary individuals, inflammatory disease patients and 

individuals with chronically elevated systemic levels of inflammation. 
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8.8 Final conclusions 
This thesis identified novel findings for the role of exercise interventions and FA 

supplementation on DNA methylation and mRNA expression. We identified that the 

different exercise interventions utilised in this thesis altered DNA methylation 

differently. Despite the differences in methylation we identified a consistent decrease 

in the mRNA expression which we suggest may be a mechanism to alter DNA 

methylation following exercise; however future mechanistic studies are required to 

confirm these associations. There was a limited impact of FA supplementation on DNA 

methylation patterns despite finding that IL6 methylation was positively associated with 

whole blood n-3 PUFA content following supplementation. Potentially the use of a 

small number of participants who were healthy and physically active may explain the 

lack of association with FA supplementation. Future work should replicate the research 

in a larger cohort of individuals who suffer from inflammatory disease or chronic 

systemic inflammation to identify whether FA supplementation may modulate DNA 

methylation to reduce levels of inflammation in these participants.   
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Appendix B – Example informed consent form 

 
[Insert study title]. 
INFORMED CONSENT FORM 
(to be completed after Participant Information Sheet has been read) 
 
The purpose and details of this study have been explained to me. I 
understand that this study is designed to further scientific knowledge and 
that all procedures have been approved by the Loughborough University 
Ethics Approvals (Human Participants) Sub-Committee. 
 

 
 
Yes o 

 
 
No o 

I have read and understood the information sheet and this consent form. 
 

Yes o No o 

I have had an opportunity to ask questions about my participation. 
 

Yes o No o 

I understand that I am under no obligation to take part in the study. 
 

Yes o No o 

I understand that I have the right to withdraw from this study at any stage 
for any reason, and that I will not be required to explain my reasons for 
withdrawing. 
 

 
Yes o 

 
No o 

I understand that all the information I provide will be treated in strict 
confidence and will be kept anonymous and confidential to the researchers 
unless (under the statutory obligations of the agencies which the 
researchers are working with), it is judged that confidentiality will have to 
be breached for the safety of the participant or others.  
 

 
 
Yes o 
 

 
 
No o 

I agree to participate in this study. 
 

Yes o No o 

I agree that the bodily samples taken during this study can be stored for 
future research. 

Yes o No o 

If No to above, I confirm that the bodily samples taken during this 
study can only be used for this study and should be disposed of after 
5 years. 

 
Yes o 

 
No o 

 
Your name 
 
 

________________________________ 

Your signature 
 

________________________________ 

 
Signature of investigator 
 

 
________________________________ 

 
Date 

 
________________________________ 
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Appendix C – Health Screen Questionnaire 
 

 
Participant ID ...............……. 
 
Health Screen Questionnaire for Study Volunteers 
 
As a volunteer participating in a research study, it is important that you are currently 
in good health and have had no significant medical problems in the past. This is (i) to 
ensure your own continuing well-being and (ii) to avoid the possibility of individual 
health issues confounding study outcomes. 
 
If you have a blood-borne virus, or think that you may have one, please do not take 
part in this research.  
 
Please complete this brief questionnaire to confirm your fitness to participate: 
 
1. At present, do you have any health problem for which you are: 

(a) on medication, prescribed or otherwise ......  Yes  No  

(b) attending your general practitioner .............  Yes  No  

(c) on a hospital waiting list ..............................  Yes  No  

 
2. In the past two years, have you had any illness or injury which required you to: 

(a) consult your GP ..........................................  Yes  No  

(b) attend a hospital outpatient department ......  Yes  No  

(c) be admitted to hospital  ...............................  Yes  No  

 
3. Have you ever had any of the following: 

(a) Convulsions/epilepsy  .................................  Yes  No  

(b) Asthma  .......................................................  Yes  No  

(c) Eczema  ......................................................  Yes  No  

(d) Diabetes  .....................................................  Yes  No  

(e) A blood disorder  .........................................  Yes  No  

(f) Head injury  .................................................  Yes  No  
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(g) Digestive problems  ....................................  Yes  No  

(h) Heart problems/chest pains 
.…………………… 

Yes  No  

(i) Problems with muscles, bones or joints  .....  Yes  No  

(j) Disturbance of balance/coordination  ..........  Yes  No  

(k) Numbness in hands or feet  ........................  Yes  No  

(l) Disturbance of vision  ..................................  Yes  No  

(m) Ear/hearing problems  .................................  Yes  No  

(n) Thyroid problems  .......................................  Yes  No  

(o) Kidney or liver problems  ............................  Yes  No  

(p) Problems with blood pressure  ....................  Yes  No  

 
 
If YES to any question, please describe briefly if you wish (eg to confirm problem 
was/is short-lived, insignificant or well controlled.) 
 
.......................................................................................................................................
................ 
 
4. Smoking, physical activity and family history 
 

(a) Are you a current or recent (within the last 
six months) smoker? 

Yes  No  

(b) Are you physically active (30 minutes of 
moderate intensity, physical activity on at 
least 3 days each week for at least 3 
months)?  

Yes  No  

(c) Has any, otherwise healthy, member of your 
family under the age of 35 died suddenly 
during or soon after exercise? 

Yes  No  

 
5. Allergy Information 

(a) Are you allergic to any food products? Yes  No  

(b) Are you allergic to any medicines? Yes  No  

(c) Are you allergic to plasters? Yes  No  

(d)  Are you allergic to latex? Yes  No  
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If YES to any of the above, please provide additional information on the allergy 
 
…………………………………………………………………………………………………………………… 
 
6. Are you currently involved in any other research studies at the University or 

elsewhere? 

 Yes  No  

 
If yes, please provide details.  
 
……………………………………………………………………………………………… 

 
 
7. Please provide contact details of a suitable person for us to contact in the 

event of any incident or emergency. 
 

Name: 
……………………………………………………………………………………………… 
 
 
Telephone Number: 
……………………………………………………………………………………………… 
 
 Work  Home  Mobile  
 
Relationship to 
Participant:………………………………………………………………………………… 
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Appendix D – Physical Activity Questionnaire 
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Appendix E – Dietary record  
 

Dietary record sheet  
Please fill out the food and drink as you consume it, include everything even water. 

Every individual food should have its own row. Please include as much information 

about the portion size, weights (please try to weigh all food), preparation method and 

brand as you can. 

 

Time Meal Food / 

Drink 

Brand Preparation Amount 

E.g. 9.00 Breakfast Bread Hovis Toasted 2 slices 

  Butter Lurpack Refrigerated 10g 
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Appendix F – DNA Extraction protocols 

 

i QIAamp DNA Blood Midi Protocol 

1) Pipet 200 μL QIAGEN Protease into the bottom of a 15 mL centrifuge tube.  
2) Add 2 mL blood and mix briefly. 
3) Add 2.4 mL Buffer AL, and mix thoroughly by inverting the tube 15 times, 

followed by additional vigorous shaking for at least 1 min. 
4) Incubate at 70°C for 10 min.  
5) Add 2 mL ethanol (96–100%) to the sample, and mix by inverting the tube 10 

times, followed by additional vigorous shaking.  
6) Carefully transfer one half of the solution from step 5 onto the QIAamp Midi 

column placed in a 15 mL centrifuge tube, taking care not to moisten the rim. 
Close the cap and centrifuge at 1850 x g for 3 min. 

Note: If the solution has not completely passed through the membrane, centrifuge 

again at a slightly higher speed.  

7) Remove the QIAamp Midi column, discard the filtrate, and place the QIAamp 
Midi column back into the 15 mL centrifuge tube. Load the remainder of the 
solution from step 5 onto the QIAamp Midi column. Close the cap and 
centrifuge again at 1850 x g for 3 min.  

8) Remove the QIAamp Midi column, discard the filtrate, and place the QIAamp 
Midi column back into the 15 mL centrifuge tube.  

9) Carefully, without moistening the rim, add 2 mL Buffer AW1 to the QIAamp 
Midi column. Close the cap and centrifuge at 4500 x g for 1 min.  

Note: Do not discard the flow-through at this stage. Continue directly with step 10.  

10) Carefully, without moistening the rim, add 2 mL Buffer AW2 to the QIAamp 
Midi column. Close the cap and centrifuge at 4500 x g for 15 min.  

11) Place the QIAamp Midi column in a clean 15 mL centrifuge tube , and discard 
the collection tube containing the filtrate.  

12) Pipet 300 μL Buffer AE directly onto the membrane of the QIAamp Midi 
column and close the cap. Incubate at room temperature for 5 min, and 
centrifuge at 4500 x g for 2 min.  

13) Reload the eluate (300 μL) containing the DNA onto the membrane of the 
QIAamp Midi column. Close the cap and incubate at room temperature for 5 
min. Centrifuge at 4500 x g for 2 min.  

14) Discard the QIAamp Midi column, and save eluate. 
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ii ReliaPrep Blood gDNA Miniprep System  

1) Ensure blood sample is fully thawed and mix the sample for 10 minutes on a 
rotisserie shaker at room temperature. 

2) Add 20μL of Proteinase K into a 1.5mL microcentrifuge tube.  
3) Add 200μL of blood to the tube and briefly mix.  
4) Add 200μL of Cell Lysis Buffer to the tube. Mix by vortexing for at least 10 

seconds.  
5) Incubate at 56°C for 10 minutes.  
6) Add 250μL of Binding Buffer to the tube and mix by vortexing for 10 seconds 

with a vortex mixer.  
Note: The lysate should be dark green at this point. 

7) Add the contents of the tube to a ReliaPrep Binding Column and place it in a 
microcentrifuge.  

8) Centrifuge for 1 minute at maximum speed. Check the binding column to 
make sure the lysate has completely passed through the membrane. If lysate 
is still visible on top of the membrane, centrifuge the column for another 
minute.  

9) Remove the collection tube and discard the flowthrough.  
10) Place the binding column into a fresh collection tube. Add 500μL of Column 

Wash Solution to the column, and centrifuge for 3 minutes at maximum 
speed. Discard the flowthrough.  

Note: If any of the wash solution remains on the membrane, centrifuge the column 

for another minute.  

11) Repeat Step 11 twice for a total of three washes.  
12) Place the column in a clean 1.5mL microcentrifuge tube.  
13) Add 50μL of Nuclease-Free Water to the column. Centrifuge for 1 minute at 

maximum speed.  
14) Discard the ReliaPrep Binding Column and save eluate. 
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Appendix G – Bisulfite Conversion protocol 
 

i EpiTect Fast Bisulfite protocol 

 

Part 1 - Bisulfite conversion protocol 
 

1) Prepare the bisulfite reactions in 200 μL PCR tubes. Add each component in 
the order listed in the table below.  

 
Reagent Volume per sample 

DNA* 20 

Bisulfite solution 85 

DNA protect buffer 35 

Total 140 
 

*Maximum of 2 μg of DNA to be added used nuclease free water for remaining volume 
 

2) Close the PCR tubes and mix the bisulfite reactions thoroughly. 
Note: DNA Protect Buffer should turn from green to blue  

3) Perform the bisulfite DNA conversion using the following cycling conditions 
 

Stage Time Temperature 

Denaturation 5 min 95oC 

Incubation 20 min 60oC 

Denaturation 5 min 95oC 

Incubation 20 min 60oC 

Hold Indefinite 20oC 

 

 

Part 2 - Cleanup of bisulfite-converted DNA  
 

1) Briefly centrifuge the PCR tubes containing the bisulfite reactions, and then 
transfer the complete bisulfite reactions to clean 1.5 mL microcentrifuge tubes.  

Note: Transfer of precipitates in the solution will not affect the performance or yield of 

the reaction.  

2) Add 310 μL freshly prepared Buffer BL to each sample. Mix the solutions by 
vortexing and then centrifuge briefly.  

3) Add 250 μL ethanol (96–100%) to each sample. Mix the solutions by pulse 
vortexing for 15 s, and centrifuge briefly to remove the drops from inside the lid.  

4) Transfer the entire mixture from each tube from into the corresponding MinElute 
DNA spin column.  
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5) Centrifuge the spin columns at maximum speed for 1 min. Discard the flow-
through, and place the spin columns back into the collection tubes.  

6) Add 500 μL Buffer BW to each spin column, and centrifuge at maximum speed 
for 1 min. Discard the flow-through, and place the spin columns back into the 
collection tubes.  

7) Add 500 μL Buffer BD to each spin column, and incubate for 15 min at room 
temperature 

Note: If there are precipitates in Buffer BD, avoid transferring them to the spin 

columns.  

8) Centrifuge the spin columns at maximum speed for 1 min. Discard the flow-
through, and place the spin columns back into the collection tubes.  

9) Add 500 μL Buffer BW to each spin column and centrifuge at maximum speed 
for 1 min. Discard the flow-through and place the spin columns back into the 
collection tubes.  

10) Repeat the previous step 
11) Add 250 µL ethanol (96–100%) to each spin column and centrifuge at maximum 

speed for 1 min.  
12) Place the spin columns into new 2 mL collection tubes, and centrifuge the spin 

columns at maximum speed for 1 min to remove any residual liquid.  
13) Place the spin columns with open lids into a clean 1.5 mL microcentrifuge tube 

and incubate the columns for 5 min at 60°C in a heating block.  
14) Place the spin columns into clean 1.5 mL microcentrifuge tubes. Add 15 μL 

Buffer EB (elution buffer) directly onto the center of each spin-column 
membrane and close the lids gently.  

15) Incubate the spin columns at room temperature for 1 min.  
16) Centrifuge for 1 min at 15,000 x g to elute the DNA.  
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ii EpiTect LyseAll Lysis Protocol 

 

Part 1a - Whole blood 

1) Dilute 20 μL of whole blood sample with 380 μL Buffer EL 
2) Incubate at room temperature for 15 min. Invert tubes during incubation.  
3) Centrifuge at maximum speed for 5 min.  
4) Discard supernatant and add an additional 125 μL Buffer EL.  
5) Centrifuge at maximum speed for 1 min.  
6) Resuspend pellet in 10 μL PBS and transfer into 8-well strips.  
7) Add 10 μL distilled water, 15 μL Lysis Buffer FTB, and 5 μL proteinase K. 
8) Continue with Part 2. 

 
Part 1b - Skeletal muscle samples  

1) Place the tissue (max 100 μg) into a 8-well strips. 
2) Add 20 μL distilled water to the tissue sample  
3) Add 15 μL Lysis Buffer FTB and 5 μL proteinase K. 
4) Continue with Part 2. 

 
Part 2 

1) Vortex and briefly centrifuge the samples.  
2) Incubate samples for 30 min at 56°C.  
3) Proceed with EpiTect Fast Bisulfite protocol (Appendix Gi) 
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Appendix H – RNA extraction protocols 
 

i Tempus Spin RNA Isolation protocol 

 

Part 1 – Isolate RNA 

1) Remove the cap from the TempusTM Blood RNA Tube, then pour the contents 
into a clean 50-mL conical tube.  

2) Add 3 mL of 1✕ PBS into the conical tube. 
3) Vortex the tube vigorously (at maximum vortex speed) for 30 seconds.  
4) Centrifuge the tube at 4°C at 3,000 × g for 30 minutes. 
5) Carefully pour off the supernatant. Ensuring that you do not dislodge the RNA 

pellet.  
6) Leave the conical tube inverted on absorbent paper for 1 to 2 minutes.  
7) Blot the remaining drops of liquid off the rim of the conical tube with clean 

absorbent paper.  
8) Add 400 μL of RNA Purification Resuspension Solution into the conical tube, 

then vortex briefly to resuspend the RNA pellet.  
 

Part 2 – RNA purification 

1) Pre-wet the filtration membrane by adding 100 μL of RNA Purification Wash 
Solution 1 into the purification filter.  

2) Add ~400 μL of the resuspended RNA into the purification filter, then 
centrifuge for 30 seconds at 16,000 × g.  

3) Remove the purification filter, discard the liquid waste collected in the waste 
tube, then re-insert the purification filter into the waste tube.  

4) Add 500 μL of RNA Purification Wash Solution 1 into the purification filter, 
then centrifuge for 30 seconds at 16,000 × g.  

5) Remove the purification filter, discard the liquid waste and re-insert the 
purification filter into the waste tube.  

6) Add 500 μL of RNA Purification Wash Solution 2 into the purification filter, 
then centrifuge for 30 seconds at 16,000 × g.  

7) Remove the purification filter, discard the liquid waste and re-insert the 
purification filter into the waste tube.  

8) Repeat the RNA Purification Wash Solution 2 wash step  
9) Centrifuge for 30 seconds at 16,000 × g to dry the membrane. 
10) Transfer the purification filter to a new, labelled collection tube. 
11) Add 100 μL Nucleic Acid Purification Elution Solution and incubate for 2 

minutes at 70°C, then centrifuge for 30 seconds at 16,000 × g.  
12) Add ~100 μL of the collected RNA eluate back into the purification filter, then 

centrifuge for 2 minutes at 16,000–18,000 × g. No incubation. 
13) Transfer 90 μL of the RNA eluate to a new labelled collection tube.  
14) Replace the cap on the new collection tube, then store the RNA at −20°C, or 

−80°C for long-term storage.  
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ii TRIzol LS / TRI Reagent protocol 

 
Part 1 a – Whole blood samples 

1) Add 0.75mL of TRIzol LS to 0.25mL of whole blood. 
2) Homogenize by aspiration with pipette. 

 
Part 1b – Skeletal muscle samples 

1) Add 1mL of TRI Reagent into a 2mL tube containing skeletal muscle tissue.  
2) Homogenize using TissueLyser II (Qiagen, Germany) and 5mm Stainless 

steel beads (Qiagen, Germany). 
 

Part 2 

1) Transfer homogenized samples into fresh 1.5mL microcentrifuge tubes. 
2) Add 200 ul of chloroform, vortex thoroughly to mix and incubate at room 

temperature for 15 minutes. 
3) Centrifuge at 12,000xg at 4oC for 15 minutes. 
4) Transfer the clear aqueous phase into fresh tubes. Be careful to not touch 

the white layer. 
5) Add 0.5mL Propanol to aqueous phase – should see a precipitate band. 
6) Invert the tubes and incubate for 10 minutes. 
7) Centrifuge at 12,000xg at 4oC for 10 minutes. 
8) Remove supernatant leaving the pellet. 
9) Add 1mL of 75% ethanol. 
10) Vortex to disrupt the pellet (gentle to flick of pellet). 
11) Centrifuge at 7,500xg at 4oC for 5 minutes. 
12) Remove supernatant (Do not disrupt the pellet). 
13) Leave to dry for 10-20 minutes (Do not dry completely). Pellet is white when 

enthaol and clear when dry. 
14) Re-suspend in 20-50uL EDTA storage solution. 
15) Heat sample for 10 minutes at 55-60oC. 
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Appendix I – Failed validation of LINE-1 assay 
 

See below example pyrograms for the commercially available LINE-1 pyrosequencing 

assay. Top pyrogram displays result for unmethylated control sample, bottom 

pyrogram displays result for fully methylated control sample. 

 

The software marked both samples as failed (methylation estimation in red) based on 

the peak height value obtained being lower than the cut off value of 10 RLU (typical 

values for peak heights when adding a single base are ~50 RLU). Even though the 

assay mark samples as failed, an estimate of methylation is provided. The mean 

methylation percentage of the three CpG sites of the LINE-1 assay in the unmethylated 

sample was 48%; whereas, the mean methylation of the fully methylated sample was 

56%. The lack of range (only 8%) between the fully methylated and unmethylated 

samples provides more evidence that the assay cannot be used for the accurate 

determination of methylation. 
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Appendix J – Pyrosequencing assay sequences and example 

pyrograms 
 

Shown below are the key details about each of the self-designed pyrosequencing 

assays used in this thesis. Details include 1) original (non-bisulfite converted) genomic 

sequence indicating the location of TSS, first exon and the CpG sites analysed; 2) 

assay design report detailing the primer sequences, assay design score, sequence to 

analyse, bisulfite-converted sequence with marked primers and dispensation order; 

and 3) an example pyrogram for the assay for a fully methylated control sample. 

 

Key for below assays: 

 

Genomic sequence: TSS indicated by turquoise highlighted sequence; First exon 

indicated by light green highlighted sequence; CpG sites analysed by the assay are 

highlighted in blue with orange text; Non-analysed CpG sites highlighted in yellow with 

red text. 

 

Sequences to analyse / sequence with marked primers: bases in orange 

indicates bisulfite converted cytosine resulting in thymine in the PCR amplified 

sequence. A Y in the nucleotide sequence indicates a variable position (cytosine or 

thymine). 

 

Dispensation order: TC nucleotides in blue indicates a variable position for 

methylation determination. Cytosine marked in orange indicates the inclusion of a 

control dispensation to identify contamination with non-bisulfite converted DNA. Both 

of these features are also marked on the example pyrograms. 
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Assay: PPARGC1A 

 

NCBI Reference Sequence: NC_000004.12 CHR 4: 23891077-23888904 GRCh38.p7 

Primary Assembly 

 

 

Sequence 1kb upstream of TSS 

AAGCTCAGGAATTGAATATTTCTGCTAATAGTGTGTTGGTATTTTTCCCTCAGTT
CACAGACATTCTTGATTTCAAAACGCAAACTACACAACCCAGGGCACTAGGGTT
GGAATTCAATGTTTATTCAAAAAGGCACCCTAAGGCAGTTAGGGAGGAAACGCT
ACATGTATGAAAAATAGGAGCCGGGAATCAAAGCTGATCTGAGCAGAGCAGCA
GCGACTGTATTTACTAACACTTGTTTTCTGGGAGCCTATGAGAGAAATGGAAAT
AATTAGAAGGAAGCTGAAAGGATGGGGTTTTGTGGCTTGTTCTCCTTATATGGA
GCAAAGAAAACTGCAGCAACTCTTCGGGAGCTGGTATTCCCTACTGCCATGGG
GGCAGCCGAATTCTGGGTGGAGGAGTTTGTTTATACCTTAACACATACAGGCTA
TTTTGTTGATTAAACAAGCAAAAAAAAAAAAAAAAAAAAAAAAAGCCCCGTTTGC
GCTTTCAAACACTCCCTCAATGAGAAAATGTCTCATAAAAATGCATCATGTGATA
AGCTCTTGCTTTAGTCCCAAACTGAGCTTGAGTCCACTTGGAGATCTTAGAATTA
AAGAGTTCTTAGGGAATACACGTTTTAGCTAAGAATATAGTTACTCTGTCATGAA
ACAGGGAGCTTTGCCACTTGCTTGTTTTGGAAGGAAAATAAATTAAAAAAAGATT
GCAGGGGATTTTGGTTATTATATGGCCAGGGCTCCGTTTAGAGTCTGTGGCATT
CAAAGCTGGCTTTAATCACAGCATGATGCTTGAAGCCTCCAAAAGTCTAAGTGT
TTCCTTTCTTTCTTTCTTTTCTTTTTCTTTCTTTTTTTTTTTTTTTAAAGCGTTACTT
CACTGAAGCAGAGGGCTGCCTTTGAGTGACGTCACGAGTTAGAGCAGCAAGCT
GCACAGGGGAAGGGAGGCTGGGTGAGTGACAGCCCAGCCTACTTTTTAATAGC
TTTGTCATGTGACTGGGGACTGTAGTAAGACAGGTGCCTTCAGTTCACTCTCAG
TAAGGGGCTGGTTGCCTGCATGAGTGTGTGCTCTGTGTCACTGTGGATTGGAG
TTGAAAAAGCTTGACTGGCGTCATTCAGGAGCTGGATGGCGTGGGACATGTGC
AACCAGGACTCTGAGTCTGTATGGAGTGACATCGAG 
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100% methylated bcDNA

0% methylated bcDNA

Non-bcDNA
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Assay: PPARGC1A ALT 

 

NCBI Reference Sequence: NC_000004.12 CHR 4: 23891077-23888904 GRCh38.p7 

Primary Assembly 

 
 
Sequence 1kb upstream of TSS 

AGTCGAAAAGAACTCCGAGTGTTTTTTGAGAAGGGTTGACCTCCTTTCAT
GCCACTTACTGTGAATTAAAGCTGCGAGGGAGAACTAGTTTGGGCATGTGGTA
CAGCACTTAGCGCCACCGCTGCCAGGGAACAAGATTTGTGTTTCTAAGGAGAT
ACAACAAAAAGGAGAATGCTTTAAGAGCCAGCGGCTGTCAGAGTGTAAAAGTAT
CTATGTTCAGAAAGGGAAATAGAAGCTGAATTAAGTAATTTTATACACACGTTAT
GGGGTGCCCTTCTGTGAGTAATTCTTAAATTCAAAAGCAAATAGTTGTGACCAC
AAAGGGCTTAGTACATCTCAGCTGATTTTAGCTCTCAGACTCAAACTGGATATG
ATTGGTATTGACCTGCTCTGTGCATGTGATTTTAAGATGGTCTGACTCTTGTCTG
TCATTCTGTTGGGTTATATTAATAACAGGGGACAAAGGGTGAAATAATCCAGTAA
AGTTTTGAGCAGCCACTTGACAACGTATTCCAAATAAATGAGAGGAGGAAAACC
CTAGCTCTACCAACTGGGGCCATAAAACAGAGTCTTCTACACTCTCTTTAATGTC
AATATTAACCAGTTTGCAAATGTTCAGTCAGTTATGGGCATGGATGGATGTCCT
GAATGGGTTCCCGGGATAAAGTGTCATCATAGGACAGAAATCACAGGGAGAGT
GCACCAAGGAAAAATTACAGTACTGCTATATTTACTTAGTGCCTCTGAACTAGG
GTTTTATTTTCCACGGGTTGGAAAGGGAACCACCTGTCTCAATTGCTGATGTCA
GAGAGCTCCCTCGAGACACAGGGCTGCTGGAAAGCACATGATACTGTACATAT
TTGCTCTTACGTTCGTATCTGGCTAAGATTGGGTTTCAGATTTGTGCCCTATTGT
GGAGTTCATTTAGTAGTGACTCTGAGATGCCCTCCCACGTCACCATGCCCTTGT
GAATTAAAAAGTGGCCTGCCGAAGCCCTTGTTGTGAGTGTTCCCTCATCTCATG
ATACCAGTATTTGCACTGCAGTAAAATGAATGACACACATGTTGGGGTTATCATC
TATGGATTCAATTTTGAAA 
 



 215 

 

 

100% methylated bcDNA

0% methylated bcDNA

Non-bcDNA
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Assay: IL6 

 

NCBI Reference Sequence: NC_000004.12 CHR 7: 22725700-27227281 GRCh38.p7 

Primary Assembly 

 

 

Sequence 1.5kb upstream of TSS 

CGCGGCAGAGGACCACCGTCTCTGTTTAGACAATCGGTGAAGAATGGATGACC
TCACTTTCCCCAACAGGCGGGTCCTGAAATGTTATGCACGAAACAAAACTTGAG
TAAATGCCCAACAGAGGTCACTGTTTTATCGATCTTGAAGAGATCTCTTCTTAGC
AAAGCAAAGAAACCGATTGTGAAGGTAACACCATGTTTGGTAAATAAGTGTTTT
GGTGTTGTGCAAGGGTCTGGTTTCAGCCTGAAGCCATCTCAGAGCTGTCTGGG
TCTCTGGAGACTGGAGGGACAACCTAGTCTAGAGCCCATTTGCATGAGACCAA
GGATCCTCCTGCAAGAGACACCATCCTGAGGGAAGAGGGCTTCTGAACCAGCT
TGACCCAATAAGAAATTCTTGGGTGCCGACGCGGAAGCAGATTCAGAGCCTAG
AGCCGTGCCTGCGTCCGTAGTTTCCTTCTAGCTTCTTTTGATTTCAAATCAAGAC
TTACAGGGAGAGGGAGCGATAAACACAAACTCTGCAAGATGCCACAAGGTCCT
CCTTTGACATCCCCAACAAAGAGGTGAGTAGTATTCTCCCCCTTTCTGCCCTGA
ACCAAGTGGGCTTCAGTAATTTCAGGGCTCCAGGAGACCTGGGGCCCATGCAG
GTGCCCCAGTGAAACAGTGGTGAAGAGACTCAGTGGCAATGGGGAGAGCACT
GGCAGCACAAGGCAAACCTCTGGCACAGAGAGCAAAGTCCTCACTGGGAGGAT
TCCCAAGGGGTCACTTGGGAGAGGGCAGGGCAGCAGCCAACCTCCTCTAAGT
GGGCTGAAGCAGGTGAAGAAAGTGGCAGAAGCCACGCGGTGGCAAAAAGGAG
TCACACACTCCACCTGGAGACGCCTTGAAGTAACTGCACGAAATTTGAGGATG
GCCAGGCAGTTCTACAACAGCCGCTCACAGGGAGAGCCAGAACACAGAAGAAC
TCAGATGACTGGTAGTATTACCTTCTTCATAATCCCAGGCTTGGGGGGCTGCGA
TGGAGTCAGAGGAAACTCAGTTCAGAACATCTTTGGTTTTTACAAATACAAATTA
ACTGGAACGCTAAATTCTAGCCTGTTAATCTGGTCACTGAAAAAAAATTTTTTTTT
TTTCAAAAAACATAGCTTTAGCTTATTTTTTTTCTCTTTGTAAAACTTCGTGCATG
ACTTCAGCTTTACTCTTTGTCAAGACATGCCAAAGTGCTGAGTCACTAATAAAAG
AAAAAAAGAAAGTAAAGGAAGAGTGGTTCTGCTTCTTAGCGCTAGCCTCAATGA
CGACCTAAGCTGCACTTTTCCCCCTAGTTGTGTCTTGCCATGCTAAAGGACGTC
ACATTGCACAATCTTAATAAGGTTTCCAATCAGCCCCACCCGCTCTGGCCCCAC
CCTCACCCTCCAACAAAGATTTATCAAATGTGGGATTTTCCCATGAGTCTCAATA
TTAGAGTCTCAACCCCCAATAAATATAGGACTGGAGATGTCTGAGGCTCATTCT
GCCCTCGAGCCCACCGGGAACGAAAGAGAAGCTCTATCTCCCCTCCAGGAGC
CCAGCTATGAACTCCTTCTCCACAA  
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100% methylated bcDNA

0% methylated bcDNA

Non-bcDNA



 218 

 

Assay: TNF  
 

NCBI Reference Sequence: NC_000004.12 CHR 6: 31575067 - 31576441 

GRCh38.p7 Primary Assembly 

 

 

Sequence 0.5kb upstream of TSS and downstream on Exon 1 

CAGGCCTCAGGACTCAACACAGCTTTTCCCTCCAACCCCGTTTTCTCTCCCTCA
AGGACTCAGCTTTCTGAAGCCCCTCCCAGTTCTAGTTCTATCTTTTTCCTGCATC
CTGTCTGGAAGTTAGAAGGAAACAGACCACAGACCTGGTCCCCAAAAGAAATG
GAGGCAATAGGTTTTGAGGGGCATGGGGACGGGGTTCAGCCTCCAGGGTCCT
ACACACAAATCAGTCAGTGGCCCAGAAGACCCCCCTCGGAATCGGAGCAGGGA
GGATGGGGAGTGTGAGGGGTATCCTTGATGCTTGTGTGTCCCCAACTTTCCAA
ATCCCCGCCCCCGCGATGGAGAAGAAACCGAGACAGAAGGTGCAGGGCCCAC
TACCGCTTCCTCCAGATGAGCTCATGGGTTTCTCCACCAAGGAAGTTTTCCGCT
GGTTGAATGATTCTTTCCCCGCCCTCCTCTCGCCCCAGGGACATATAAAGGCA
GTTGTTGGCACACCCAGCCAGCAGACGCTCCCTCAGCAAGGACAGCAGAGGA
CCAGCTAAGAGGGAGAGAAGCAACTACAGACCCCCCCTGAAAACAACCCTCAG
ACGCCACATCCCCTGACAAGCTGCCAGGCAGGTTCTCTTCCTCTCACATACTGA
CCCACGGCTCCACCCTCTCTCCCCTGGAAAGGACACCATGAGCACTGAAAGCA
TGATCCGGGACGTGGAGCTGGCCGAGGAGGCGCTCCCCAAGAAGACAGGGG
GGCCCCAGGGCTCCAGGCGGTGCTTGTTCCTCAGCCTCTTCTCCTTCCTGATC
GTGGCAGGCGCCACCACGCTCTTCTGCCTGCTGCACTTTGGAGTGATCGGCCC
CCAGAGGGAAGAGGTGAGTGCCTGGCCAGCCTTCATCCACTCTCCCACCCAAG
GGGAAATGGAGACGCAAGAGAGGGAGAGAGATGGGATGGGTGAAAGATGTGC
GCTGATAGGGAGGGATGGAGAGAAAAAAACGTGGAGAAAGACGGGGATGCAG
AAAGAGATGTGGCAAGAGATGGGGAAGAGAGAGAGAGAAAGATGGAGAGACA
GGATGTCTGGCACATGGAAGGTGCTCACTAAGTGTGTATGGAGTGAATGAATG
AATGAATGAATGAACAAGCAGATATATAAATAAGATATGGAGACAGATGTGGGG
TGTGAGAAGAGAGATGGGGGAAGAAACAAGTGATATGAATAAAGATGGTGAGA
CAGAAAGAGCGGGAAATATGACAGCTAAGGAGAGAGATGGGGGAGATAAGGA
GAGAAGAAGATAGGGTGTCTGGCACACAGAAGACACTCAGGGAAAGAGCTGTT
GAATGCCTGGAAGGTGAATACACAGATGAATGGAGAGAGAAAACCAGACACCT 
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100% methylated bcDNA

0% methylated bcDNA

Non-bcDNA
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Appendix K – Sequences for mRNA expression assays  
 
Total PPARGC1A  
 
Primers 
For:  CAGCCTCTTTGCCCAGATCTT 
Rev: TCACTGCACCACTTGAGTCCAC 
 
Sequence 
>NM_001330751.1 Homo sapiens PPARG coactivator 1 alpha (PPARGC1A), 
transcript variant 1, mRNA 
https://www.ncbi.nlm.nih.gov/nuccore/NM_001330751.1?report=fasta 
 
TCCTCCTGGGAAACCCCTTCCAACCAGGTTTTTTGCGAAAATCAGTGAACTAAT
ATTGGTAAAATTGGAGCCCCATGGATGAAGGGTACTTTTCTGCCCCTGGACTGC
CCTGGCTGCTGCTTTGGTAAAAGCTTGCAAGGAGAGAGAGTAACAGCCGCTGG
CGAATCCAGTTTGTGCAAGCAGCATCAGCA{ATGGATGAGACCTCCCCAAGGCT
GGAAGAAGACTGGAAAAAAGTACTTCAGCGAGAAGCAGGCTGGCAG[TGTGCT
GCTCTGGTTGGTGAAGACCAGCCTCTTTGCCCAGATCTTCCTGAACTTGATCTT
TCTGAACTAGATGTGAACGACTTGGATACAGACAGCTTTCTGGGTGGACTCAAG
TGGTGCAGTGACCAATCAGAAATAATATCCAATCAGTACAACAATGAGCCTTCA
AACATATTTGAG]AAGATAGATGAAGAGAATGAGGCAAACTTGCTAGCAGTCCT
CACAGAGACACTAGACAGTCTCCCTGTGGATGAAGACGGATTGCCCTCATTTGA
TGCGCTGACAGATGGAGACGTGACCACTGACAATGAGGCTAGTCCTTCCTCCA
TGCCTGACGGCACCCCTCCACCCCAGGAGGCAGAAGAGCCGTCTCTACTTAAG
AAGCTCTTACTGGCACCAGCCAACACTCAGCTAAGTTATAATGAATGCAGTGGT
………………………………………………………………………………………………….
TTGCGCAGGTCAAACGAAACTGACTTTGAGCTGTACTTTTGTGGACGCAAGCAA
TTTTTCAAGTCTAACTATGCAGACCTAGATTCAAACTCAGATGACTTTGACCCTG
CTTCCACCAAGAGCAAGTATGACTCTCTGGATTTTGATAGTTTACTGAAAGAAG
CTCAGAGAAGCTTGCGCAGGTAA}CATGTTCCCTAGCTGAGGATGACAGAGGG
ATGGCGAATACCTCATGGGACAGCGCGTCCTTCCCTAAAGACTATTGCAAGTCA
………………………………………………………………………………………………….
ATTCTAAATTTGTACCTATGTGACAGACATTTTCAATAATGTGAACTGCTGATTTG
ATGGAGCTACTTTAAGATTTGTAGGTGAAAGTGTAATACTGTTGGTTGAACTATG
CTGAAGAGGGAAAGTGAGCGATTAGTTGAGCCCTTGCCGGGCCTTTTTTCCAC
CTGCCAATTCTACATGTATTGTTGTGGTTTTATTCATTGTATGAAAATTCCTGTGA
TTTTTTTTAAATGTGCAGTACACATCAGCCTCACTGAGCTAATAAAGGGAAACGA
ATGTTTCAAATCTAAAAAAAAAAAAAAAAAA 
 
 
Key 
Amplicon length: 101 
Exons: Sequence between [ ] 
CDS: Sequence between { } 
Identified using: https://www.ncbi.nlm.nih.gov/nuccore/NM_001330751.1?&feature=CDS  
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PPARGC1A Exon 1a 
 
Primers 
For:  ATGGAGTGACATCGAGTGTGCT 
Rev: GAGTCCACCCAGAAAGCTGT 
 
Sequence 
>NM_013261.4 Homo sapiens PPARG coactivator 1 alpha (PPARGC1A), transcript 
variant 2, mRNA 
https://www.ncbi.nlm.nih.gov/nuccore/NM_013261.4?report=fasta 
 
[TAGTAAGACAGGTGCCTTCAGTTCACTCTCAGTAAGGGGCTGGTTGCCTGCAT
GAGTGTGTGCTCTGTGTCACTGTGGATTGGAGTTGAAAAAGCTTGACTGGCGT
CATTCAGGAGCTGG{ATGGCGTGGGACATGTGCAACCAGGACTCTGAGTCTGT
ATGGAGTGACATCGAG][TGTGCTGCTCTGGTTGGTGAAGACCAGCCTCTTTGC
CCAGATCTTCCTGAACTTGATCTTTCTGAACTAGATGTGAACGACTTGGATACA
GACAGCTTTCTGGGTGGACTCAAGTGGTGCAGTGACCAATCAGAAATAATATCC
AATCAGTACAACAATGAGCCTTCAAACATATTTGAG]AAGATAGATGAAGAGAAT
GAGGCAAACTTGCTAGCAGTCCTCACAGAGACACTAGACAGTCTCCCTGTGGA
TGAAGACGGATTGCCCTCATTTGATGCGCTGACAGATGGAGACGTGACCACTG
ACAATGAGGCTAGTCCTTCCTCCATGCCTGACGGCACCCCTCCACCCCAGGAG
GCAGAAGAGCCGTCTCTACTTAAGAAGCTCTTACTGGCACCAGCCAACACTCA
GCTAAGTTATAATGAATGCAGTGGTCTCAGTACCCAGAACCATGCAAATCACAA
TCACAGGATCAGAACAAACCCTGCAATTGTTAAGACTGAGAATTCATGGAGCAA
TAAAGCGAAGAGTATTTGTCAACAGCAAAAGCCACAAAGACGTCCCTGCTCGGA
………………………………………………………………………………………………….
CTGCGGGATGATGGAGACAGCTATGGTTTCATTACCTACCGTTATACCTGTGAT
GCTTTTGCTGCTCTTGAAAATGGATACACTTTGCGCAGGTCAAACGAAACTGAC
TTTGAGCTGTACTTTTGTGGACGCAAGCAATTTTTCAAGTCTAACTATGCAGACC
TAGATTCAAACTCAGATGACTTTGACCCTGCTTCCACCAAGAGCAAGTATGACT
CTCTGGATTTTGATAGTTTACTGAAAGAAGCTCAGAGAAGCTTGCGCAGGTAA}
CATGTTCCCTAGCTGAGGATGACAGAGGGATGGCGAATACCTCATGGGACAGC
GCGTCCTTCCCTAAAGACTATTGCAAGTCATACTTAGGAATTTCTCCTACTTTAC
ACTCTCTGTACAAAAACAAAACAAAACAACAACAATACAACAAGAACAACAACAA
…………………………………………………………………………………………………
ATAGCCATGTACTATAATGTGATGATTCTAAATTTGTACCTATGTGACAGACATT
TTCAATAATGTGAACTGCTGATTTGATGGAGCTACTTTAAGATTTGTAGGTGAAA
GTGTAATACTGTTGGTTGAACTATGCTGAAGAGGGAAAGTGAGCGATTAGTTGA
GCCCTTGCCGGGCCTTTTTTCCACCTGCCAATTCTACATGTATTGTTGTGGTTTT
ATTCATTGTATGAAAATTCCTGTGATTTTTTTTAAATGTGCAGTACACATCAGCCT
CACTGAGCTAATAAAGGGAAACGAATGTTTCAAATCTAAAAAAAAAAAAAAAAAA 
 
 
Key 
Amplicon length: 127 
Exons: Sequence between [ ] 
CDS: Sequence between { } 
Identified using: https://www.ncbi.nlm.nih.gov/nuccore/NM_013261.4?&feature=CDS 
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PPARGC1A Exon 1b 
 
Primers 
For:  CTATGGATTCAATTTTGAAATGTGC 
Rev: CTGATTGGTCACTGCACCAC 
 
Sequence 
>XM_011513766.1 PREDICTED: Homo sapiens PPARG coactivator 1 alpha 
(PPARGC1A), transcript variant X5, mRNA 
https://www.ncbi.nlm.nih.gov/nuccore/XM_011513766.1?report=fasta 
 
[GTGAGTGTTCCCTCATCTCATGATACCAGTATTTGCACTGCAGTAAAATGAATG
ACACAC{ATGTTGGGGTTATCATCTATGGATTCAATTTTGAAA][TGTGCTGCTCT
GGTTGGTGAAGACCAGCCTCTTTGCCCAGATCTTCCTGAACTTGATCTTTCTGA
ACTAGATGTGAACGACTTGGATACAGACAGCTTTCTGGGTGGACTCAAGTGGT
GCAGTGACCAATCAGAAATAATATCCAATCAGTACAACAATGAGCCTTCAAACAT
ATTTGAGGTCCTGGAAGCACAGCCCAGCAGATGACTCACCTCTGGATGGAATC
AACACACAAAGCAGATAAAAAGCTGAACATTAAAGACCACATTGTTAAAGCAGA
GAGCCAAATTGTTCCTCCACCATTCCCTATCCCAGACTTCACATCTAACAAG]AA
GATAGATGAAGAGAATGAGGCAAACTTGCTAGCAGTCCTCACAGAGACACTAG
ACAGTCTCCCTGTGGATGAAGACGGATTGCCCTCATTTGATGCGCTGACAGAT
GGAGACGTGACCACTGACAATGAGGCTAGTCCTTCCTCCATGCCTGACGGCAC
CCCTCCACCCCAGGAGGCAGAAGAGCCGTCTCTACTTAAGAAGCTCTTACTGG
CACCAGCCAACACTCAGCTAAGTTATAATGAATGCAGTGGTCTCAGTACCCAGA
………………………………………………………………………………………………….
TAACTATGCAGACCTAGATTCAAACTCAGATGACTTTGACCCTGCTTCCACCAA
GAGCAAGTATGACTCTCTGGATTTTGATAGTTTACTGAAAGAAGCTCAGAGAAG
CTTGCGCAGGTAA}CATGTTCCCTAGCTGAGGATGACAGAGGGATGGCGAATA
CCTCATGGGACAGCGCGTCCTTCCCTAAAGACTATTGCAAGTCATACTTAGGAA
TTTCTCCTACTTTACACTCTCTGTACAAAAACAAAACAAAACAACAACAATACAA
CAAATGGCAGCAGTTCCATGAAGACACGCTTAAAACCTAGAACTTCAAAATGTT
CGTATTCTATTCAAAAGGAAATATATATATATATATATATATATATATATATATATA
…………………………………………………………………………………………………
GCCAATTCTACATGTATTGTTGTGGTTTTATTCATTGTATGAAAATTCCTGTGATT
TTTTTTAAATGTGCAGTACACATCAGCCTCACTGAGCTAATAAAGGGAAACGAAT
GTTTCAAATCTA 
 
 
Key 
Amplicon length: 153 
Exons: Sequence between [ ] 
CDS: Sequence between { } 
Identified using: Manually created because the sequence is only predicted on NCBI. 
Used amino acid sequence of MLGLSSMDSILK to identify the exon 1b and the known 
second exon as per the other two PPARGC1A assays (above). 
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IL6 
 
Primers 
For:  GCAGAAAAAGGCAAAGAATC 
Rev: CTACATTTGCCGAAGAGC 
 
Sequence 
>NM_000600.4 Homo sapiens interleukin 6 (IL6), transcript variant 1, mRNA 
https://www.ncbi.nlm.nih.gov/nuccore/NM_000600.4?report=fasta 
 
GTCTCAATATTAGAGTCTCAACCCCCAATAAATATAGGACTGGAGATGTCTGAG
GCTCATTCTGCCCTCGAGCCCACCGGGAACGAAAGAGAAGCTCTATCTCCCCT
CCAGGAGCCCAGCT{ATGAACTCCTTCTCCACAAGCGCCTTCGGTCCAGTTGC
CTTCTCCCTGGGGCTGCTCCTGGTGTTGCCTGCTGCCTTCCCTGCCCCAGTAC
CCCCAGGAGAAGATTCCAAAGATGTAGCCGCCCCACACAGACAGCCACTCACC
TCTTCAGAACGAATTGACAAACAAATTCGGTACATCCTCGACGGCATCTCAGCC
CTGAGAAAGGAGACATGTAACAAGAGTAACATGTGTGAAAGCAGCAAAGAGGC
ACTGGCAGAAAACAACCTGAACCTTCCAAAGATGGCTGAAAAAGATGGATGCTT
CCAATCTGGATTCAATGAG[GAGACTTGCCTGGTGAAAATCATCACTGGTCTTTT
GGAGTTTGAGGTATACCTAGAGTACCTCCAGAACAGATTTGAGAGTAGTGAGGA
ACAAGCCAGAGCTGTGCAGATGAGTACAAAAGTCCTGATCCAGTTCCTGCAGA
AAAAG][GCAAAGAATCTAGATGCAATAACCACCCCTGACCCAACCACAAATGC
CAGCCTGCTGACGAAGCTGCAGGCACAGAACCAGTGGCTGCAGGACATGACA
ACTCATCTCATTCTGCGCAGCTTTAAGGAGTTCCTGCAGTCCAGCCTGAGGGCT
CTTCGGCAAATGTAG}CATGGGCACCTCAGATTGTTGTTGTTAATGGGCATTCC
TTCTTCTGGTCAGAAACCTGTCCACTGGGCACAGAACTTATGTTGTTCTCTATG
GAGAACTAAAAGTATGAGCGTTAGGACACTATTTTAATTATTTTTAATTTATTAAT
ATTTAAATATGTGAAGCTGAGTTAATTTATGTAAGTCATATTTATATTTTTAAGAA
GTACCACTTGAAACATTTTATGTATTAGTTTTGAAATAATAATGGAAAGTGGCTAT
GCAGTTTGAATATCCTTTGTTTCAGAGCCAGATCATTTCTTGGAAAGTGTAGGCT
TACCTCAAATAAATGGCTAACTTATACATATTTTTAAAGAAATATTTATATTGTATT
TATATAATGTATAAATGGTTTTTATACCAATAAATGGCATTTTAAAAAATTCAGCA
A]AAAAAAAA 
 
Key 
Amplicon length: 178 
Exons: Sequence between [ ] 
CDS: Sequence between { } 
Identified using: https://www.ncbi.nlm.nih.gov/nuccore/NM_000600.4?&feature=CDS 
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TNF 
 
Primers 
For:  AGGCAGTCAGATCATCTTC 
Rev: TTATCTCTCAGCTCCACG 
 
Sequence 
>NM_000594.3 Homo sapiens tumor necrosis factor (TNF), mRNA 
https://www.ncbi.nlm.nih.gov/nuccore/NM_000594.3?report=fasta 
 
AACTACAGACCCCCCCTGAAAACAACCCTCAGACGCCACATCCCCTGACAAGC
TGCCAGGCAGGTTCTCTTCCTCTCACATACTGACCCACGGCTCCACCCTCTCTC
CCCTGGAAAGGACACC{ATGAGCACTGAAAGCATGATCCGGGACGTGGAGCTG
GCCGAGGAGGCGCTCCCCAAGAAGACAGGGGGGCCCCAGGGCTCCAGGCGG
TGCTTGTTCCTCAGCCTCTTCTCCTTCCTGATCGTGGCAGGCGCCACCACGCTC
TTCTGCCTGCTGCACTTTGGAGTGATCGGCCCCCAGAGGGAAGAG[TTCCCCA
GGGACCTCTCTCTAATCAGCCCTCTGGCCCAGGCAGTCA][GATCATCTTCTCG
AACCCCGAGTGACAAGCCTGTAGCCCATGTTGTAG][CAAACCCTCAAGCTGAG
GGGCAGCTCCAGTGGCTGAACCGCCGGGCCAATGCCCTCCTGGCCAATGGCG
TGGAGCTGAGAGATAACCAGCTGGTGGTGCCATCAGAGGGCCTGTACCTCATC
TACTCCCAGGTCCTCTTCAAGGGCCAAGGCTGCCCCTCCACCCATGTGCTCCT
CACCCACACCATCAGCCGCATCGCCGTCTCCTACCAGACCAAGGTCAACCTCC
TCTCTGCCATCAAGAGCCCCTGCCAGAGGGAGACCCCAGAGGGGGCTGAGGC
CAAGCCCTGGTATGAGCCCATCTATCTGGGAGGGGTCTTCCAGCTGGAGAAGG
GTGACCGACTCAGCGCTGAGATCAATCGGCCCGACTATCTCGACTTTGCCGAG
TCTGGGCAGGTCTACTTTGGGATCATTGCCCTGTGA}GGAGGACGAACATCCAA
CCTTCCCAAACGCCTCCCCTGCCCCAATCCCTTTATTACCCCCTCCTTCAGACA
CCCTCAACCTCTTCTGGCTCAAAAAGAGAATTGGGGGCTTAGGGTCGGAACCC
AAGCTTAGAACTTTAAGCAACAAGACCACCACTTCGAAACCTGGGATTCAGGAA
TGTGTGGCCTGCACAGTGAAGTGCTGGCAACCACTAAGAATTCAAACTGGGGC
CTCCAGAACTCACTGGGGCCTACAGCTTTGATCCCTGACATCTGGAATCTGGA
GACCAGGGAGCCTTTGGTTCTGGCCAGAATGCTGCAGGACTTGAGAAGACCTC
ACCTAGAAATTGACACAAGTGGACCTTAGGCCTTCCTCTCTCCAGATGTTTCCA
GACTTCCTTGAGACACGGAGCCCAGCCCTCCCCATGGAGCCAGCTCCCTCTAT
TTATGTTTGCACTTGTGATTATTTATTATTTATTTATTATTTATTTATTTACAGATG
AATGTATTTATTTGGGAGACCGGGGTATCCTGGGGGACCCAATGTAGGAGCTG
CCTTGGCTCAGACATGTTTTCCGTGAAAACGGAGCTGAACAATAGGCTGTTCCC
ATGTAGCCCCCTGGCCTCTGTGCCTTCTTTTGATTATGTTTTTTAAAATATTTATC
TGATTAAGTTGTCTAAACAATGCTGATTTGGTGACCAACTGTCACTCATTGCTGA
GCCTCTGCTCCCCAGGGGAGTTGTGTCTGTAATCGCCCTACTATTCAGTGGCG
AGAAATAAAGTTTGCTTAGAAA]AGAAAAAAAAAAAAA 
 
Key 
Amplicon length: 142 
Exons: Sequence between [ ] 
CDS: Sequence between { } 
Identified using: https://www.ncbi.nlm.nih.gov/nuccore/NM_000594.3?&feature=CDS  
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DNMT1 
 
Primers 
For:  TACCTGGACGACCCTGACCTC 
Rev: CGTTGGCATCAAAGATGGACA 
 
Sequence 
>NM_001130823.2 Homo sapiens DNA methyltransferase 1 (DNMT1), transcript 
variant 1, mRNA 
https://www.ncbi.nlm.nih.gov/nuccore/NM_001130823.2?report=fasta 
 
TCCGCGTGGGGGGGGTGTGTGCCCGCCTTGCGCATGCGTGTTCCCTGGGCAT
GGCCGGCTCCGTTCCATCCTTCTGCACAGGGTATCGCCTCTCTCCGTTTGGTA
CATCCCCTCCTCCCCCACGCCCGGACTGGGGTGGTAGACGCCGCCTCCGCTC
ATCGCCCCTCCCCATCGGTTTCCGCGCGAAAAGCCGGGGCGCCTGCGCTGCC
GCCGCCGCGTCTGCTGAAGCCTCCGAG{ATGCCGGCGCGTACCGCCCCAGCC
CGGGTGCCCACACTGGCCGTCCCGGCCATCTCGCTGCCCGACGATGTCCGCA
GGCGGCTCAAAGATTTGGAAAGAGACAGCTTAACAGAAAAGGAATGTGTGAAG
………………………………………………………………………………………………….
AGATGGAGACGAGAAAGATGAGAAGAAGCACAGAAGTCAACCCAAAGATCTAG
CTGCCAAACGGAGGCCCGAAGAAAAAGAACCTGAAAAAGTAAATCCACAGATTT
CTGATGAAAAAGACGAGGATGAAAAGGAGGAGAAGAGACGCAAAACGACCCCC
AAAGAACCAACGGAGAAAAAAATGGCTCGCGCCAAAACAGTCATGAACTCCAA
G[ACCCACCCTCCCAAGTGCATTCAGTGCGGGCAGTACCTGGACGACCCTGAC
CTCAAATATGGGCAGCACCCACCAGACGCG][GTGGATGAGCCACAGATGCTG
ACAAATGAGAAGCTGTCCATCTTTGATGCCAACGAGTCTGGCTTTGAGAGTTAT
GAGGCGCTTCCCCAGCACAAACTGACCTGCTTCAG]TGTGTACTGTAAGCACG
GTCACCTGTGTCCCATCGACACCGGCCTCATCGAGAAGAATATCGAACTCTTCT
TTTCTGGTTCAGCAAAACCAATCTATGATGATGACCCATCTCTTGAAGGTGGTG
TTAATGGCAAAAATCTTGGCCCCATAAATGAATGGTGGATCACTGGCTTTGATG
…………………………………………………………………………………………………
GCCACCGCCCCTGGCCAAAGCCATTGGCTTGGAGATCAAGCTTTGTATGTTGG
CCAAAGCCCGAGAGAGTGCCTCAGCTAAAATAAAGGAGGAGGAAGCTGCTAAG
GACTAG}TTCTGCCCTCCCGTCACCCCTGTTTCTGGCACCAGGAATCCCCAACA
TGCACTGATGTTGTGTTTTTAACATGTCAATCTGTCCGTTCACATGTGTGGTACA
TGGTGTTTGTGGCCTTGGCTGACATGAAGCTGTTGTGTGAGGTTCGCTTATCAA
CTAATGATTTAGTGATCAAATTGTGCAGTACTTTGTGCATTCTGGATTTTAAAAG
TTTTTTATTATGCATTATATCAAATCTACCACTGTATGAGTGGAAATTAAGACTTT
ATGTAGTTTTTATATGTTGTAATATTTCTTCAAATAAATCTCTCCTATAAACCACC
AAAAAAAAAAAA 
 
Key 
Amplicon length: 103 
Exons: Sequence between [ ] 
CDS: Sequence between { } 
Identified using: 
https://www.ncbi.nlm.nih.gov/nuccore/NM_001130823.2?&feature=CDS 
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DNMT3a 
 
Primers 
For:  TATTGATGAGCGCACAAGAGAGC 
Rev: GGGTGTTCCAGGGTAACATTGAG 
 
Sequence 
>NM_175629.2 Homo sapiens DNA methyltransferase 3 alpha (DNMT3A), transcript 
variant 1, mRNA 
https://www.ncbi.nlm.nih.gov/nuccore/NM_175629.2?report=fasta 
 
GCAGTGGGCTCTGGCGGAGGTCGGGAGAACTGCAGGGCGAAGGCCGCCGGG
GGCTCCGCGGGCTGCGGGGGGAGGCACTTGACACCGGCCCGGGGAGAGGAG
GGGCCGCTGTCCCTGCGGCCAGTGCTGGATGCGGGGACCCAGCGCAGAAGC
AGCGCCAGGTGGAGCCATCGAAGCCCCCACCCACAGGCTGACAGAGGCACCG
TTCACCAGAGGGCTCAACACCGGGATCTATGTTTAAGTTTTAACTCTCGCCTCC
AAAGACCACGATAATTCCTTCCCCAAAGCCCAGCAGCCCCCCAGCCCCGCGCA
GCCCCAGCCTGCCTCCCGGCGCCCAG{ATGCCCGCCATGCCCTCCAGCGGCC
CCGGGGACACCAGCAGCTCTGCTGCGGAGCGGGAGGAGGACCGAAAGGACG
………………………………………………………………………………………………….
GATGAGAGTGACACTGCCAAGGCCGTGGAGGTGCAGAACAAGCCCATGATTGA
ATGGGCCCTGGGGGGCTTCCAGCCTTCTGGCCCTAAGGGCCTGGAGCCACCA
GAAG[AAGAGAAGAATCCCTACAAAGAAGTGTACACGGACATGTGGGTGGAAC
CTGAGGCAGCTGCCTACGCACCACCTCCACCAGCCAAAAAGCCCCGGAAGAG
CACAGCGGAGAAGCCCAAGGTCAAGGAGATTATTGATGAGCGCACAAGAG][A
GCGGCTGGTGTACGAGGTGCGGCAGAAGTGCCGGAACATTGAGG][ACATCTG
CATCTCCTGTGGGAGCCTCAATGTTACCCTGGAACACCCCCTCTTCGTTGGAG
GAATGTGCCAAAACTGCAAG]AACTGCTTTCTGGAGTGTGCGTACCAGTACGAC
GACGACGGCTACCAGTCCTACTGCACCATCTGCTGTGGGGGCCGTGAGGTGC
TCATGTGCGGAAACAACAACTGCTGCAGGTGCTTTTGCGTGGAGTGTGTGGAC
………………………………………………………………………………………………….
CCTCTTCGCTCCGCTGAAGGAGTATTTTGCGTGTGTGTAA}GGGACATGGGGG
CAAACTGAGGTAGCGACACAAAGTTAAACAAACAAACAAAAAACACAAAACATA
ATAAAACACCAAGAACATGAGGATGGAGAGAAGTATCAGCACCCAGAAGAGAA
AAAGGAATTTAAAACAAAAACCACAGAGGCGGAAATACCGGAGGGCTTTGCCTT
GCGAAAAGGGTTGGACATCATCTCCTGATTTTTCAATGTTATTCTTCAGTCCTAT
TTAAAAACAAAACCAAGCTCCCTTCCCTTCCTCCCCCTTCCCTTTTTTTTCGGTC
AGACCTTTTATTTTCTACTCTTTTCAGAGGGGTTTTCTGTTTGTTTGGGTTTTGTT
TCTTGCTGTGACTGAAACAAGAAGGTTATTGCAGCAAAAATCAGTAACAAAAAAT
AGTAACAATACCTTGCAGAGGAAAGGTGGGAGAGAGGAAAAAAGGAAATTCTAT
AGAAATCTATATATTGGGTTGTTTTTTTTTTTGTTTTTTGTTTTTTTTTTTTGGGTT 
 
Key 
Amplicon length: 111 
Exons: Sequence between [ ] 
CDS: Sequence between { } 
Identified using: https://www.ncbi.nlm.nih.gov/nuccore/NM_175629.2?&feature=CDS 



 227 

DNMT3b 
 
Primers 
For:  GGCAAGTTCTCCGAGGTCTCTG 
Rev: TGGTACATGGCTTTTCGATAGGA 
 
Sequence 
>NM_006892.3 Homo sapiens DNA methyltransferase 3 beta (DNMT3B), transcript 
variant 1, mRNA 
https://www.ncbi.nlm.nih.gov/nuccore/NM_006892.3?report=fasta 
 
ACCCACTCCCGCTGCCCCGTCCGGCCCGCGCCGCTTCCTCGCAGCAGCTGCT
CCCGGCTCCGCGGCCGCAGCCCGCGTGGACGCTCCGAGCGCCCCCCGACGG
ACGGGACCGGCTCCCTGGCGGTCGGGCGAGCGGGCGGCAACGCTGCCCGGC
CGGCAGCGCTGGGGTTAAGTGGCCCAAGTAAACCTAGCTCGGCGATCGGCGC
CGGAGATTCGCGAGCCCAGCGCCCTGCACGGCCGCCAGCCGGCCTCCCGCC
AGCCAGCCCCGACCCGCGGCTCCGCCGCCCAGCCGCGCCCCAGCCAGCCCT
GCGGCAGGAAAGC{ATGAAGGGAGACACCAGGCATCTCAATGGAGAGGAGGA
CGCCGGCGGGAGGGAAGACTCGATCCTCGTCAACGGGGCCTGCAGCGACCAG
………………………………………………………………………………………………….
CGCCCGCCTAGCCCAGGACAGCCAGCAGGGGGGCATGGAGTCCCCGCAGGT
GGAGGCAGACAGTGGAGATGGAGACAGTTCAGAGTATCAGGATGGGAAGGAG
TTT[GGAATAGGGGACCTCGTGTGGGGAAAGATCAAGGGCTTCTCCTGGTGGC
CCGCCATGGTGGTGTCTTGGAAGGCCACCTCCAAGCGACAGGCTATGTCTGGC
ATGCGGTGGGTCCAGTGGTTTGGCGATGGCAAGTTCTCCGAG][GTCTCTGCA
GACAAACTGGTGGCACTGGGGCTGTTCAGCCAGCACTTTAATTTGGCCACCTT
CAATAAGCTCGTCTCCTATCGAAAAGCCATGTACCATGCTCTGGAG]AAAGCTA
GGGTGCGAGCTGGCAAGACCTTCCCCAGCAGCCCTGGAGACTCATTGGAGGA
CCAGCTGAAGCCCATGTTGGAGTGGGCCCACGGGGGCTTCAAGCCCACTGGG
ATCGAGGGCCTCAAACCCAACAACACGCAACCAGTGGTTAATAAGTCGAAGGT
GCGTCGTGCAGGCAGTAGGAAATTAGAATCAAGGAAATACGAGAACAAGACTC
GAAGACGCACAGCTGACGACTCAGCCACCTCTGACTACTGCCCCGCACCCAAG
CGCCTCAAGACAAATTGCTATAACAACGGCAAAGACCGAGGGGATGAAGATCA
………………………………………………………………………………………………….
GTGCCCGCCAGAAGCTGCTGGGAAGGTCCTGGAGCGTGCCTGTCATCCGACA
CCTCTTCGCCCCTCTGAAGGACTACTTTGCATGTGAATAG}TTCCAGCCAGGCC
CCAAGCCCACTGGGGTGTGTGGCAGAGCCAGGACCCAGGAGGTGTGATTCCT
GAAGGCATCCCCAGGCCCTGCTCTTCCTCAGCTGTGTGGGTCATACCGTGTAC
CTCAGTTCCCTCTTGCTCAGTGGGGGCAGAGCCACCTGACTCTTGCAGGGGTA 
 
Key 
Amplicon length: 113 
Exons: Sequence between [ ] 
CDS: Sequence between { } 
Identified using: https://www.ncbi.nlm.nih.gov/nuccore/NM_006892.3?&feature=CDS 
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GAPDH 
 
Primers 
For:  GCCTCAAGATCATCAGCAATGCCT 
Rev: TGTGGTCATGAGTCCTTCCACGAT 
 
Sequence 
>NM_001289745.2 Homo sapiens glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH), transcript variant 3, mRNA 
https://www.ncbi.nlm.nih.gov/nuccore/NM_001289745.2?report=fasta 
 
GCTCTCTGCTCCTCCTGTTCGACAGTCAGCCGCATCTTCTTTTGCGTCGCCAGG
TGAAGACGGGCGGAGAGAAACCCGGGAGGCTAGGGACGGCCTGAAGGCGGC
AGGGGCGGGCGCAGGCCGGATGTGTTCGCGCCGCTGCGGGCCGAGCCACAT
CGCTCAGACACC{ATGGGGAAGGTGAAGGTCGGAGTCAACGGATTTGGTCGTA
TTGGGCGCCTGGTCACCAGGGCTGCTTTTAACTCTGGTAAAGTGGATATTGTTG
CCATCAATGACCCCTTCATTGACCTCAACTACATGGTTTACATGTTCCAATATGA
TTCCACCCATGGCAAATTCCATGGCACCGTCAAGGCTGAGAACGGGAAGCTTG
TCATCAATGGAAATCCCATCACCATCTTCCAGGAGCGAGATCCCTCCAAAATCA
AGTGGGGCGATGCTGGCGCTGAGTACGTCGTGGAGTCCACTGGCGTCTTCAC
CACCATGGAGAAGGCTGGG[GCTCATTTGCAGGGGGGAGCCAAAAGGGTCATC
ATCTCTGCCCCCTCTGCTGATGCCCCCATGTTCGTCATGGGTGTGAACCATGA
GAAGTATGACAACAGCCTCAAGATCATCAG][CAATGCCTCCTGCACCACCAAC
TGCTTAGCACCCCTGGCCAAGGTCATCCATGACAACTTTGGTATCGTGGAAGG
ACTCATG][ACCACAGTCCATGCCATCACTGCCACCCAGAAGACTGTGGATGGC
CCCTCCGGGAAACTGTGGCGTGATGGCCGCGGGGCTCTCCAGAACATCATCC
CTGCCTCTACTGGCGCTGCCAAGGCTGTGGGCAAGGTCATCCCTGAGCTGAAC
GGGAAGCTCACTGGCATGGCCTTCCGTGTCCCCACTGCCAACGTGTCAGTGGT
GGACCTGACCTGCCGTCTAGAAAAACCTGCCAAATATGATGACATCAAGAAGGT
GGTGAAGCAGGCGTCGGAGGGCCCCCTCAAGGGCATCCTGGGCTACACTGAG
CACCAGGTGGTCTCCTCTGACTTCAACAGCGACACCCACTCCTCCACCTTTGAC
GCTGGGGCTGGCATTGCCCTCAACGACCACTTTGTCAAGCTCATTTCCTG]GTA
TGACAACGAATTTGGCTACAGCAACAGGGTGGTGGACCTCATGGCCCACATGG
CCTCCAAGGAGTAA}GACCCCTGGACCACCAGCCCCAGCAAGAGCACAAGAGG
AAGAGAGAGACCCTCACTGCTGGGGAGTCCCTGCCACACTCAGTCCCCCACCA
CACTGAATCTCCCCTCCTCACAGTTGCCATGTAGACCCCTTGAAGAGGGGAGG
GGCCTAGGGAGCCGCACCTTGTCATGTACCATCAATAAAGTACCCTGTGCTCAA
CCAGTTAAAAAAAAAAAAAAAAAAAAA 
 
Key 
Amplicon length: 104 
Exons: Sequence between [ ] 
CDS: Sequence between { } 
Identified using: 
https://www.ncbi.nlm.nih.gov/nuccore/NM_001289745.2?&feature=CDS#feature_NM
-001289745.2_exon_0 
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Appendix L – Standard curves for individual CpG sites  
 
Shown below are the standard curves produced between the expected input 

methylation and the observed methylation percentage for the validation of the 

individual CpG sites for the PPARGC1A ALT, IL6 and TNF assays used in the present 

thesis. Specific site analysed can be identified by the title of the individual figure (Name 

of assay followed by CpG site distance from the TSS). 

Figure 1:PPARGC1A ALT CpG sites: 
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Figure 2: IL6 CpG sites 
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Figure 3: TNF CpG sites 
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Appendix M – qPCR melt curves for mRNA expression 
 

Example melt curves produced for each of the mRNA expression assays used in this 

thesis. The generation of a single peak indicates that each of the assays specifically 

amplifies a single transcript. 
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