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Summary

Energy conversion from ocean waves is one of the core themes of the energy global

challenge research for the sustainability of the planet. New trends of wave energy

technologies attempt to explore new paths and intend to bring new answers to the

problem of the competitiveness of the produced energy for conventional devices.

This thesis provides the reader with mathematical models of wave-structure inter-

actions applied to novel concepts of wave energy converters: a flexible piezoelectric

wave energy harvester and a floater blanket wave energy converter. In chapter 1 I

present an overview of the field of wave energy, a brief history and descriptions of

working principles and technologies of wave energy conversion along with a num-

ber of classification schemes. Classical systems as well as new trends in the form of

flexible or deformable converters and hybrid systems are presented. In chapter 2 I

define the hydrodynamic problem which provides the basis of the linearised wave

theory used to derive the mathematical models in this thesis. In chapter 3 I apply

the theory of elastic plates to develop a distributed-parameter model for bimorph

piezoelectric plates which yields electro-mechanical equations for a piezoelectric

wave energy converter. Then, the electro-mechanical problem will be coupled to

the hydrodynamic problem in chapter 4, in which we also present numerical results

of the power output of two possible real configurations of piezoelectric wave energy

converters. In chapter 5 I investigate the radiation properties of a novel floater

blanket wave energy converter whose numerical analysis is presented in chapter 6.

Finally concluding remarks and future research directions are presented in chapter

7.
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Chapter 1

Introduction

Renewable energy sources, such as hydro, wind, solar, biomass and ocean energy

forms such as wave, tidal, currents, thermal and salinity driven systems can help to

overcome environmental issues, depletion of fossil fuels, security of supply and job

creation [35]. The environmental issues relate to local effects such as pollution but

also to global effects such as climate change, due to the production of CO2, which

is related to energy generation from fossil fuels [2]. The depletion of fossil fuels

was already highlighted in publications in the 1950s [21] and it is well established

that fossil fuels are finite and that the time horizon before they are depleted are

counted in 10’ths, maybe 100’ths, of years. Thus, it is also obvious that the current

level of energy consumption, which is mainly based on fossil fuels, cannot continue

unless alternative sources are developed. And here the renewable energy sources

are the most obvious answers, as these resources are regenerative and do not

deplete over time [28]. But even if reasonable amounts of fossil fuels are currently

available, the uneven distribution of the resource around the globe is giving rise

to conflicts. It can only be expected that this tendency will be worsened as the

fossil resources are getting more and more depleted. Thus, for most nations it is of

great interest to decrease their dependency on fuel supply from other countries to

maintain their sovereignty and political stability. As an answer to that, renewable

energy sources are very diverse and to a much larger extent scattered and well

distributed around the globe, when looking at the renewable energy resource as a

whole. In the current market, energy from the less mature technologies utilising

renewable energy sources is generally not cost competitive, but relies on political

1



CHAPTER 1. INTRODUCTION 2

support. However, it can be expected that this situation will turn in the near

future due to both the expected (and experienced) increase in cost of fossil fuels

and the reduction of cost of the technologies utilising renewable energy sources,

due to further research, development and economics of scale [35]. Biomass, wind,

solar, hydropower and geothermal are currently used at commercial scale around

the world, while progress in the commercialisation of ocean energy is pretty slow

because the technology for exploitation of ocean energy sources is still mostly

under development and there are a number of challenges standing between the

sector’s current status and the aim of commercial utilisation [15].

Nevertheless, there is a great potential of renewable energy that is stored in

oceans. In fact, oceans cover more than 70% of Earth’s surface and act as the

largest solar collectors capturing thermal energy from the sun. In addition, the

gravitational pull of the moon drives tides and winds generate ocean waves. Ocean

energy sources have a number of important advantages that include abundance,

availability, high load factor, low environmental impact and source predictabil-

ity [15], therefore it has the potential to play a significant role in the future world

energy system. In Europe, under the right conditions for both technological de-

velopment and project deployment, 100 GW of ocean energy capacity could be

installed by 2050, feeding around 350 TWh of power to the grid. The poten-

tial contribution of ocean energy is estimated to be of around 10% of EU power

demand by 2050, [18].

Continuous waves contain huge energy potential [28]. The wind blowing over

the surface of the ocean creates waves, which can travel thousands of miles with

virtually no loss of energy. A wave carries both kinetic and gravitational potential

energy. The total energy of a wave depends roughly on two factors: its height

and its period. The power carried by a wave is proportional to the square of its

height and to its period and is usually given in Watt per metre of incident wave

front [14, 28]. Fig. 1.1 by Gunn & Stock-Williams, shows a world map of wave

energy resource with an average order of magnitude of few tens of kW/m which

is mainly located in the north of the northern hemisphere and in the south of the

southern hemisphere. The global ocean wave energy resource may be evaluated

by integrating the mean wave power on all coasts of the world. Thus, in [19], it
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is estimated at 18500 TWh per year, or a mean power of about 2.1 TW = 2,100

GW, [6]. This could cover only a fraction of the world’s energy needs, therefore

ocean wave energy cannot be a single solution to the global challenge of energy

source decarbonisation. Nevertheless, for certain coastal territories, it can appear

as a very significant resource, [6].

Figure 1.1: Map of worldwide wave resource. The figure is taken from [19].

1.1 Ocean wave energy: brief history

The history of wave energy is rich and diverse. The oldest patent for a wave

energy converter (WEC) dates back to the year 1799 and describes the working

principle to extract wave energy from wave-activated bodies [6]. History does not

say if a device was built, anyway first recorded attempts to develop wave energy

harvesters took place in the 1800s, when, in California, the Wave-Power Air-

Compressing Company was created to commercialise a Wave motor. The device

consisted of an oscillating water column which allowed sea water to be pumped

and then used to moisten roads in order to avoid dust clouds, see Fig. 1.2 [6, 35].

Another example of early prototypes to harvest wave energy, is the hydraulic ram

developed by Coyne in France, in 1926. The device was destroyed by a storm.
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Figure 1.2: Postcard of the Armstrong brothers’ Wave motor. It functioned from 1898

to 1910 in Santa Cruz, CA. [35].

By the end of the 1950s, all the main principles of wave energy conversion

(overtopping devices, oscillating water columns, heaving buoys and OWSCs) had

already been identified [6]. Different solutions were proposed and improved year

by year but none of them seemed likely to be the basis for a valid industrial

system, according to economic studies of the devices. For example, a summary of

studies carried out on an overtopping device yielded the conclusion that the price

of energy was 10 times greater than other energy sources at the time [6]. However,

despite the interest in the field was not continuous over time, a large number of

wave energy converters have been deployed and tested over significant periods of

time, electric energy has been produced and a great number of activities were

carried out in a number of countries around the world, with most efforts seen in

the coastal European countries. Among them, over the past decade the UK has

put enormous efforts into the development of marine renewable energies, including

wave energy, and must today be seen as the world leader in the field [35].

In the next section, we describe some of the most popular wave energy devices.

The technical descriptions are based on reference [6].
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1.2 Categorisation of wave energy converters

There is a large number of different ideas and concepts for how to utilise the

wave energy resource. However, wave technologies can be classified into a lim-

ited number of families. In literature there are three different ways of WEC’s

categorisations: distance to the coast (Fig. 1.3 ), ratio between their general di-

mensions and the wavelength of waves as well as on the relationship between their

orientation and the direction of propagation (Fig. 1.4 ), working principles (Fig.

1.5).

Figure 1.3: Classification of wave energy converters with regard to the distance to the

coast [6].

Fig. 1.3 shows a classification of WEC’s according to their location - onshore,

nearshore and offshore. Onshore devices are rigidly installed on the coast such as

oscillating water columns and overtopping devices, see further explanation below.

Near shore devices are situated at water depths where the available waves are

influenced by the water depth, and most often their working principle exploits

the seabed as a fixed point. And thus, at last, offshore WECs will generally be

floating and can operate in very deep waters (even more than 100 m) [6, 35].

WECs can also be categorised using the terms terminator when considering

systems facing waves and with dimensions greater than or equal to the order of

magnitude of the wavelength; attenuator which have large horizontal extensions

orthogonal to the direction of wave propagation; finally, when the device is small

compared to the waves, it is known as a point absorber [14], see again Fig. 1.4.
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Figure 1.4: Schematic showing scale and orientation of a terminator, attenuator and

point absorber [6].

A third classification of wave energy devices is based on their working prin-

ciples. Within this approach, WECs are grouped into three main families: os-

cillating water columns (OWCs), wave-activated bodies (WAB) and overtopping

devices (ODs) as shown in Fig 1.5. Below we explain the different working prin-

ciples with some examples of the main devices. Let us start with the oscillating

water column wave energy converter. It consists mainly of a chamber partially

filled with water and presenting an internal water surface. This chamber commu-

nicates both with the ocean, through a submarine opening, and with the outside

air, through a opening in the upper part where an air turbine is placed. When

waves enter the chamber, they raise the average water level. The air in the upper

part of the cavity is compressed and then escapes through the orifice. When waves

recede, the average level in the chamber decreases. This creates a depression in the

upper part of the chamber, so that the external air is sucked inwards. The inner

free surface therefore behaves like a liquid piston, oscillating up and down, which

gives the name to the device. At the orifice, an alternative air flow is converted

into electricity through an air turbine [6, 35]. An example of an archetype of an

oscillator water column is the OWC Pico power plant in the Azores (Fig. 1.6).
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Figure 1.5: Classification of wave energy converters based on their working principle [6].

(a) Schematics and working principle. (b) In action in a normal Autumn day.

Figure 1.6: The OWC Pico power plant [4], built in 1995 - 1998. The power plant

worked for only a short period in October 1999, then was put on standby until

2004. From 2006 the Pico plant was used as a demonstrator and research pilot,

with the objective of improving its reliability. In 2010, the plant produced 45

MWh for an operating time of approximately 1,400 h. In 2016, it produced 39

MWh. Nowadays its structure has become weakened and the decision has been

made to decommission it [6].

Overtopping devices work exploiting the runup generated from breaking waves
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to fill a reservoir located above the sea level. Kinetic wave energy is thus converted

into gravity potential energy. The difference in water level between the tank and

the average sea level is transformed into electrical energy by means of low-head

turbines. The Wave Dragon is an archetype of a slack moored WEC which utilises

the overtopping principle. The structure consists of a floating platform with an

integrated reservoir and a ramp (Fig. 1.7). The waves overtop the ramp and fill

the reservoir where the water is temporarily stored before it is led back to the

sea via hydro turbines generating power to the grid. Other overtopping devices

may be fixed to the sea bed acting as a combination of a WEC and a breakwater,

as the Sea Slot-cone Generator (SSG) (Fig. 1.8). The latter consists of several

reservoirs placed on top of each other above the mean water level in which the

water of incoming waves is stored temporary.

Figure 1.7: The 1:4.5 scale Wave Dragon prototype that was deployed in Denmark.

Two large curved reflectors intend to focus waves into a narrowing channel to increase

wave heights and thus overtopping volume. The width of the prototype was 57 m. At

full scale, the size of the machine was thus 300 m for a total displacement of 33,000

tons [35].
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Figure 1.8: Lateral section of a three-levels SSG device with multi-stage turbine [26].

Wave-activated bodies represent a very large family of WECs. However, all of

them are characterised by the same basic working principle: one or more floats

are set in motion by waves. The relative motion between the floats and the

sea bed (bottom-fixed wave energy converters), or between the floats themselves

(self-referenced wave energy converters), is transformed into electrical power by

a conversion system. This system is referred to as power take-off (PTO) [6]. In

the framework of this thesis, we give just a number of examples to distinguish

between wave energy converters using the heaving buoy principle and those using

the oscillating wave surge converter (OWSC) principle.

1.2.1 Wave energy converters primarily based on vertical

motion (heave)

In the context of naval architecture, the vertical motion is called heave. A heaving

buoy is usually symmetric about a vertical axis. It floats on the surface of the

water and is connected to a fixed mooring point at the bottom of the sea with

a cable. The conversion system that transforms the kinetic energy of the buoy

into electrical energy (i.e. the power take-off) is placed between the cable and

the mooring system, or between the cable and the buoy. The power take-off is

often a direct-drive linear electrical generator. For example, this is the case of the

Seabased wave energy converter (Fig. 1.9) of which several prototypes are being
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demonstrated in Sweden [6]. Alternatively, the power take-off can be in the form

of a hydraulic cylinder. This is the solution that was chosen for the CETO wave

energy converter (Fig. 1.10), of which three 240-kW prototypes have been tested

in Australia. The CETO differs from the archetype of the heaving buoy due to

the fact that the buoy is not floating but submerged.

(a) Artist impression of the Seabased

power plant [5].
(b) Seabased at the Maren test site off the

Island of Runde, Norway.

Figure 1.9: Seabased wave energy converter developed in Sweden since 2002. Its

working principle is based on vertical motion (heave) and it installed in shallow

waters. The diameter of the buoys is of the order of 5 m [5,6].

Figure 1.10: Carnegie’s CETO. A submerged tether moored point absorber [1].
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Figure 1.11: The prototype of the PB40 converter by Ocean Power Technologies in

October 2010 in Hawaii [6].
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Both CETO and Seabased WECs operate in shallow water therefore is eco-

nomically feasible to use the seabed as a fixed point. To reduce manufacturing

costs, in deep waters, wave energy converters must be self-referenced. The Amer-

ican PowerBuoy wave energy converters (Fig. 1.11), the Irish WEC Wavebob and

the Spanish WEC W1 are examples of self-referenced heaving buoys. Still in deep

water, articulated-float wave energy converters, such as the Cockerell Raft or the

SeaPower Platform technologies (Fig. 1.12), could be classified into the category

of arrays of heaving buoys [6]. In fact, despite in most scenarios the motions that

are exploited are often relative rotation motions and the geometrical configuration

significantly differs from the archetype of the heaving buoy, these wave energy con-

verters essentially consist of large-sized horizontal floats exposed to vertical forces,

thus the motion of the centre of gravity is, at first order, also vertical. However,

there is still a significant difference between arrays of heaving buoys and heav-

ing buoys. These latter are known as omnidirectional i.e. they are indifferent to

the direction of the waves, while wave energy converters with articulated floats

perform better when they are aligned with the direction of propagation of waves

(unidirectional) [6].

Figure 1.12: The 1/4-scale SeaPower Platform prototype in Ireland [6].

Another well-known example of a wave energy converter similar in its working

principle to an array of heaving buoys is the Pelamis (Fig. 1.13). It is a floating

device, made up of five tube sections linked by universal joints which allow flexing
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in two directions. The WEC floats semi-submerged on the surface of the water

and inherently faces into the direction of the waves, kept in place by a mooring

system. As waves pass down the length of the machine and the sections bend in

the water, the movement is converted into electricity via hydraulic power take-off

systems housed inside each joint of the machine tubes, and power is transmitted

to shore using standard subsea cables and equipment [35].

Figure 1.13: The Pelamis P2 operating in Scotland in 2012 [6].

1.2.2 Wave energy converters primarily based on

horizontal motion (surge)

Horizontal flow velocities associated with waves are of the same order as vertical

velocities, or even greater in shallow waters. Therefore, it is possible to absorb

wave energy explointing a horizontal principle of operation. In the context of naval

architecture, the horizontal motion is referred to as surge. Wave energy converters

that are part of this family operate based on the OWSC principle. They can

be either fixed or floating depending on whether they are mounted on a fixed or

floating reference as explained below. A famous example illustrating this principle

was the Oyster wave energy converter developed by the company Aquamarine

Power (Fig. 1.14). It is moored to the seafloor and has the form of a vertical flap.

The wave action makes the flap oscillate back and forth (pitch). For all bottom-

fixed wave energy converters, it should be noted that the variation of the mean

water level due to tidal range can be disadvantageous for production. Designing

a floating system is one way to avoid this difficulty. This is then referred to as

floating OWSC. An example of this class of wave energy converters is the Langlee

WEC. In the same family, we can include also Salter’s Duck, WEPTOS WEC
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(Fig. 1.15), ISWEC, Azura wave and others, which can be seen as variations on

the principle of the OWSC making use of thick flaps or floats [6].

Figure 1.14: Artist view of an array of Aquamarine Power Oyster OWSC.

Figure 1.15: WEPTOS wave energy converter is made up of a structure consisting of

two adjustable V-shaped arms. Wave energy absorbers of the Salter’s Duck type are

mounted on each arm [6].
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1.3 Research gap

Wave energy converters implementing flexible or deformable structures and hybrid

multi-energy or multipurpose systems seem to be part of a new trends in the ocean

wave energy sector [6]. Innovative concepts intend to explore new paths in order

to bring new answers to the issue of energy costs.

Flexible WECs employ materials or deformable structures instead of rigid bod-

ies for wave energy harvesting. The concept has been already addressed in 2006

in the United Kingdom by Francis Farley who conceived the Anaconda which

consists of a long elastic tube filled with water, submerged under the free surface

and aligned in the direction of incoming waves. The waves, the elastic structure

and the water inside the tube interact to create a bulge wave that propagates

along the tube. The hydrodynamic performance of the Anaconda was probably

something that prompted the developers of the S3 WEC, whose main difference

with the Anaconda was the power take-off system: instead of a turbine, for the S3,

the energy conversion was made through rings of electro-active polymers (EAPs)

evenly distributed along the tube. The S3 was, to our knowledge, the first wave

energy converter to implement EAPs [6]. Other smart materials could be used for

ocean engineering applications, among them we restrict our attention to piezoelec-

tric materials which are still at a developing stage, see 1.4.1. In the view of the

above, in the first part of this thesis, we propose a novel wave energy converter for

low power applications making use of sleek design (i.e. flexible plate) and smart

material (i.e. piezoelectric material).

On the other hand, at the beginning of this section, we mentioned hybrid multi-

energy or multipurpose systems which can have a significant value with respect

to the minimisation of usage conflicts and visual impact. In fact hybrid systems

designate systems in which multiple functions are grouped on a single platform.

The idea is that the pooling of functions makes it possible to divide the cost of

the infrastructure [6]. Examples of hybrid systems involve combination of wind

power and wave energy converters such as P80 wind-wave energy converter (Fig.

1.16), but also energy production through the harvesting of wave energy and the

protection of the coastline or a harbour basin such as the U-OWC (REWEC3)

breakwater designed in Italy, for the harbour of Civitavecchia.
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Figure 1.16: Artist view of the P80 wind-wave energy converter [6].

Considering the benefit that the ocean energy sector can get from the devel-

opment of hybrid systems, in the second part of this thesis, we investigate the

hydrodynamic behaviour of a floater blanket wave energy converter (FBWEC)

which consists of a blanket made of a grid of interconnected floater elements. This

device can be easily integrated in a multi-energy hybrid platform such as Ocean

Grazer, a novel conceptual energy collection platform, projected to harvest renew-

able energy from sea waves combining wind, wave and energy storage on site, see

1.4.2.

1.4 In this thesis

1.4.1 Piezoelectric harvesters

Piezoelectric materials are attractive because of their ability to generate an electric

potential when deformed due to vibrations (sensor effect). Conversely, they de-

form when subjected to an externally applied electric voltage (actuator effect) [32].

Since early 2000, an amount of energy generators and harvesters by using piezo-

electric effects, such as piezoelectric coupled cantilevers, shells, cymbals and stacks,
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with various designs of electrical circuits have been developed and many research

works were conducted on optimising designs of piezoelectric coupled structures for

more effective energy harvesting. These devices aimed to achieve practical port-

able micro-electromechanical systems via collecting energy of human activities,

such as men’s working and the bikes’ motions. Recently, many research stud-

ies were conducted on piezoelectric energy harvesting from ambient vibrations by

natural energies such as solar, wind, and ocean-wave energy [49].

Piezoelectric wave energy converters (PWECs) are an innovative concept of

electromechanical ocean energy converters for low-power applications such as LEDs,

wireless routers, PCs, ocean buoys and sensors. The working principle of a piezo-

electric WEC is to harvest electrical energy from flexible deformations and vi-

brations induced by waves. Despite being less powerful than other WECs (the

estimated power potential of a typical PWEC is in the order of watts to kilo-

watts [17, 40]), PWECs are environment-friendly, reliable, low-cost and have no

limitation of shape and size. Therefore, they can also be buoy-mounted, employed

to increase wave damping around offshore oil platforms and integrated into a sys-

tem in combination with wind turbine farms and other wave energy harvesters.

Also they have no moving parts, thus do not require frequent maintenance. Novel

PWECs include cantilevered beams [17, 49, 50] and piezoelectric buoys [48], see

Fig. 1.17.
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Figure 1.17: Energy harvesting buoy structure attached by piezoelectric coupled can-

tilevers floating on the ocean surface [48].

So far, such devices have been studied with rather simplified mathematical

models, in which the effect of the piezoelectric layers on the dynamic response

of the system was neglected. The bending force resulting from the action of the

waves on the structure was plugged separately into the electric circuit equations to

estimate the voltage on the piezoelectric layers. With that simplified approach, the

hydro-electromechanical problem was in fact uncoupled into two separate wave-

structure and electric problems. Such an approximate analysis is useful to obtain

a preliminary estimate of the extracted power, but cannot be trusted to provide

accurate results. Indeed, in reality the dynamics of waves, structural elasticity

and piezoelectricity are inherently coupled in a PWEC, and so the development of

a coupled hydro-electromechanical model is fundamental to provide an accurate

analysis of the system [40]. In the framework of this thesis, our aim is to analyse

mathematically a new fully coupled boundary-value problem based on the complex

interactions between wave action, the flexible device and the piezoelectric effect.

We consider possible practical configurations, such as a double-clamped plate, or

a plate fixed at a vertical wall (e.g. a breakwater). These configurations repro-

duce possible real applications of piezoelectric WECs, where a superimposition of

incident, radiated and reflected wave components interact dynamically with the
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converter [51]. Results of this study have been published in a journal paper by

Renzi [40] and in a conference paper by Buriani and Renzi [11].

1.4.2 Floater Blanket Wave Energy Converter

The University of Groningen is developing the Ocean Grazer, a novel ocean energy

collection and storage device, designed to extract and store multiple forms of

ocean energy. It is a massive platform housing various renewable energy generator

modules including wave, wind and solar that will be deployed in deep ocean waters.

Its core technology is a novel wave energy harvesting and storage device termed

the multi-pump, multi-piston power take-off system. It comprises a grid of hinged

floater elements (a floater blanket), with each floater being connected to a piston-

type hydraulic pumping system (a multi-piston pump), see Fig 1.18. The Ocean

Grazer structure itself will be made of concrete, protecting the system against

ocean water and wind, while its massiveness will ensure stability even in the

most extreme weather conditions. Similar to an iceberg, the core part of the

Ocean Grazer structure will be situated well below the ocean surface such that

the influence of ocean waves is minimised and the survivability of the structure is

increased [3]. Loughborough University is now part of an international consortium

that already includes Groningen University, Imperial College London and several

industrial partners.
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Figure 1.18: The grid of interconnected floater elements designed by the University of

Groningen with each floater being connected to a multi-piston power take-off system [3].

Taking inspiration from the above concept, our aim is to develop a mathem-

atical model of a floater blanket wave energy converter (FBWEC) which could be

integrated by Ocean Grazer. In particular we want to analyse the wave-structure

interaction problem for a specific configuration in which the blanket is floating on

the ocean surface in correspondence of an ocean step.

1.4.3 Methodology

In this subsection we present a concise overview of the methodology that will be

used to derive two separate mathematical models: the first is a coupled hydro-

electromechanical model of a piezoelectric wave energy harvester, the second con-

cerns a hydrodynamic analysis of a floater blanket wave energy converter.

PWEC

1. Derive a linearised potential-flow model for the ocean surface waves (chapter

2).

2. Derive a distributed-parameter model for the piezoelectric plate (chapter 3).

3. Develop a new fully coupled hydro-electromechanical boundary-value prob-

lem (chapter 4).
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4. Solve the problem by using the method of matching potentials and appro-

priate conditions at the physical boundaries of the system (chapter 4).

5. Identify numerical solutions of the coupled system and determine all the

quantities of engineering interest (spatial displacement of the flexible plate,

spatial component of the free-surface elevation and average electric power in

the output system per unit width) (chapter 4).

6. Compare the power generated by two practical configurations of PWECs,

such as a doubled-clamped plate and a plate fixed at a breakwater (chapter

4).

FBWEC

Due to the complexity of the problem here we focus our analysis on the vertical

radiation by one floater in a two-dimensional configuration.

1. Decompose the frequency-domain problem in the diffraction and radiation

problems (chapter 5).

2. Derive and solve the radiation problem using the matching of potentials and

a method based on the integral equations (chapter 5).

3. Derive expressions for all the amplitude coefficients and useful identities to

build up a well-posed boundary-value radiation problem (chapter 5).

4. Identify an appropriate integral equation and apply a regularisation method,

so that the equation can be solved adopting a Galerkin approach (chapter

5).

5. Implement a Matlab code to identify the behaviour of radiated-wave amp-

litudes when the body executes only one mode of oscillation (chapter 6).

6. Explore other mathematical approaches and physical considerations to de-

scribe the system (appendices B, D).



Chapter 2

Wave motion

This chapter is an introduction to the dynamics of ocean surface waves according

to a linear theory, which will form the basis of the mathematical models developed

in this thesis. We first derive the basic equations of fluid motion considering time

scales such that compressibility, surface tension and earth rotation are of little

importance. Notions of propagating waves are presented assuming the vertical

stratification of sea water to be small enough with the depth of interest. The case

of inviscid fluid and irrotational flow is considered. Finally, we solve a boundary-

value problem of linearised equations considering the properties of simple harmonic

progressive waves on constant depth. Letters in bold denote vectors. Variables

with primes denote physical quantities.

2.1 Governing equations

The gravity-wave motion problem is adequately described by mass and momentum

conservation laws and by appropriate boundary conditions.

The law of conservation of mass can be written as [10]

0 =
dM ′

dt′
=

d

dt′

∫∫∫
V ′
ρ dV ′, (2.1)

where M ′(x′, t′) is the fluid mass, ρ(x′, t′) the density, V ′(t′) a material volume

containing the same moving fluid particles (there are no mass sources or sinks)

and x′ = (x′, y′, z′) with the z′-axis pointing vertically upward. Now, by using

the kinematic transport theorem: d
dt′

∫∫∫
V ′
G′ dV ′ =

∫∫∫
V ′

∂G′

∂t′
dV ′ +

∫∫
S′
G′v′ ·

22
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n′ dS ′, where G′(x′, t′) is some fluid property per unit volume, S ′(t′) is the surface

which bounds V ′(t′), v′(x′, t′) is the velocity vector (u′, v′, w′) and n′ is the normal

velocity of a point on S ′, we get

0 =
d

dt′

∫∫∫
V ′
ρ dV ′ =

∫∫∫
V ′

∂ρ

∂t′
dV ′ +

∫∫
S′
ρv′ · n′ dS ′ (2.2)

=

∫∫∫
V ′

(
∂ρ

∂t′
+∇ · (ρv′)

)
dV ′.

In the latter identity we applied the divergence theorem. Because V ′ is arbit-

rary the integrand must vanish identically:

∂ρ

∂t′
+∇ · (ρv′) = 0. (2.3)

This is the differential form of mass conservation law, valid at any point inside

the fluid. As an alternate form we may write

∂ρ

∂t′
+ v′ · ∇ρ+ ρ∇ · v′ = dρ

dt′
+ ρ∇ · v′ = 0. (2.4)

For the special case of an incompressible but non homogeneous fluid:

dρ

dt′
=
∂ρ

∂t′
+ v′ · ∇ρ = 0. (2.5)

It follows that

∇ · v′ = 0, (2.6)

which is also known as the continuity equation. If the incompressible fluid

is also homogeneous, then (2.6) holds and ρ = constant replaces (2.5). Also if

we consider an inviscid irrotational flow, the velocity v′ can be expressed as the

gradient of a scalar potential Φ′, i.e. v′ = ∇Φ′. Continuity equation (2.6) requires

that the potential satisfies Laplace’s equation

∇2Φ′ = 0. (2.7)
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The law of conservation of momentum can be written as

d

dt′

∫∫∫
V ′
ρv′ dV ′ =

∫∫∫
V ′
ρf ′ dV ′ +

∫∫
S′

t′ dS ′, (2.8)

where f ′(x′, t′) and t′(x′,n′, t′) are respectively resulting volume and surface

forces on the fluid. Physically, the preceding equation means that the time vari-

ation of momentum is caused by the resultant of all external forces (volume and

surface forces) which act on the fluid volume. In particular, for gravity-wave

problems, we assume f ′ = g, where g is the gravitational acceleration. Also let

us consider the case in which (2.8) satisfies the constitutive relation for a newto-

nian fluid and Stokes’s axioms [10], then we can rewrite (2.8) as the Navier-Stokes

equation:

(
∂

∂t′
+ v′ · ∇

)
v′ = −∇

(
P ′

ρ′
+ gz′

)
+ ν ′∇2v′, (2.9)

where P ′(x′, t′) is the total pressure and ν ′ the constant kinematic viscosity.

By using the vector identity v′ · ∇v′ = ∇v′2

2
− v′ × (∇ × v′), the irrotational

condition (∇ × v′ = 0) and by assuming the fluid to be inviscid (ν ′ = 0), the

Navier-Stokes equation leads to

−P
′

ρ
= gz′ +

1

2
|∇Φ′|2 +

∂Φ′

∂t′
+ C ′(t), (2.10)

where C ′(t) is an arbitrary function of t′ and can usually be omitted by redefin-

ing Φ′ without affecting the velocity field. Equation (2.10) is called the Bernoulli

equation which can be used to find the pressure field, if the velocity potential

is known. Physically, the total pressure P ′ is the sum of hydrostatic and hy-

drodynamic contributions expressed respectively by gz′ and 1
2
|∇Φ′|2 + ∂Φ′

∂t′
on the

right-hand side of (2.10).

2.2 Boundary conditions

In a wide variety of gravity-wave problems, two types of boundaries are of en-

gineering interest: the water-air interface known also as the free surface and the

wetted surface of an impenetrable stationary solid which can be for example the
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sea bottom, see Fig. 2.1.

h′

z′

x′

undisturbed water level z′ = 0  y′

ζ′ (x′, y′, t′)

Figure 2.1: Geometry of the fluid domain.

The fluid is assumed to move only tangentially along these two boundaries [27].

Let the instantaneous equation of the boundary be

F ′(x′, t′) = z′ − ζ ′(x′, y′, t′) = 0, (2.11)

where ζ ′ identifies the free surface, see again Fig. 2.1. and let the velocity

of a geometrical point x′ on it be q′. After a short time dt′, the free surface is

described by

F ′(x′ + q′dt′, t′ + dt′) = 0 = F ′(x′, t′) +
∂F ′

∂t′
+ q′ · ∇F ′ +O(dt′2).

In view of equation (2.11) and neglecting second-order contributions,

∂F ′

∂t′
+ q′ · ∇F ′ = 0.

The assumption of tangential motion requires q′ ·∇F ′ = v′ ·∇F ′ which implies

that
∂F ′

∂t′
+ v′ · ∇F ′ = 0 on z′ = ζ ′, (2.12)

or, equivalently,

∂ζ ′

∂t′
+
∂Φ′

∂x′
∂ζ ′

∂x′
+
∂Φ′

∂y′
∂ζ ′

∂y′
− ∂Φ′

∂z′
= 0 on z′ = ζ ′. (2.13)
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Equation (2.12) or (2.13) is the kinematic boundary condition on the free

surface. In the special case where the boundary is the sea bottom located at

a depth h′(x′, y′), we can consider it as a wetted surface of a stationary solid,

therefore equation (2.11) becomes z′ + h′(x′, y′) = 0 and ∂h′

∂t′
= 0. Then, the

kinematic boundary condition on the sea bottom is

∂Φ′

∂n′
= 0 on z′ = −h′. (2.14)

Since both Φ′ and ζ ′ are unknown, let us derive an additional boundary con-

dition concerning forces. For the topics of interest of this thesis, the wavelength

is so long that surface tension is unimportant [27]. If we apply (2.10) on the free

surface, we have

−P
′
a

ρ
= gζ ′ +

1

2
|∇Φ′|2 +

∂Φ′

∂t′
on z′ = ζ ′, (2.15)

where we considered the pressure just beneath the free surface equal the at-

mospheric pressure P ′a above. Equation (2.15) represents a dynamical boundary

condition on the free surface.

2.3 Linearised approximation for

small-amplitude waves

Let us use physical scales of motion as in [27] to characterise the wave problem. In

particular, we introduce dimensionless variables and denote them without primes,

therefore we have


Φ′

x′, y′, z′, h′

t′

ζ ′

 =


A′ω′λ′ Φ/2π

λ′(x, y, z, h)/2π

t/ω′

A′ζ

 , (2.16)

where λ′, ω′ and A′ are the typical values of wavelength, frequency and free-

surface amplitude respectively. Now we substitute the dimensionless variables into
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equations (2.7), (2.13), (2.14) and (2.15), to get:

∇2Φ = 0 on h < z < εζ, (2.17)

∂ζ

∂t
+ ε

(
∂Φ

∂x

∂ζ

∂x
+
∂Φ

∂y

∂ζ

∂y

)
− ∂Φ

∂z
= 0 on z = εζ, (2.18)

∂Φ

∂n
= 0 on z = −h, (2.19)

∂Φ

∂t
+ ε

1

2
|∇Φ|2 +

2πg

ω2λ
ζ = −Pa on z = εζ, (2.20)

where ε = 2πA′/λ′ is the wave slope and the sea bottom is assumed to be

horizontal. The scales are supposed to reflect the physics properly, so the norm-

alised variables and their derivatives must all be of order unity, that means that

the relative importance of each term is entirely indicated by the dimensionless

coefficient in front. Let us consider now the following conditions:

• Small-amplitude waves: ε � 1.

• Unknown free surface differs by an amount of O(ε) from the horizontal plane

z = 0.

In this situation we obtain a completely linearised approximate problem for

small-amplitude waves. Returning to physical variables, we have

∇2Φ′ = 0, −h′ < z′ < 0, (2.21)

∂Φ′

∂z′
= 0, z′ = −h′, (2.22)

∂ζ ′

∂t′
=
∂Φ′

∂z′
, z′ = 0, (2.23)

∂Φ′

∂t′
+ gζ ′ = −P

′
a

ρ
, z′ = 0. (2.24)
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Furthermore, equations (2.23) and (2.24) may be combined to give

∂2Φ′

∂t′2
+ g

∂Φ′

∂z′
= − 1

ρ′
∂P ′a
∂t′

, z′ = 0. (2.25)

2.4 Progressive water waves on constant depth

Due to the linearity of the problem and considering a simple harmonic motion

with frequency ω′, see [27], we can separate the time factor e−iω
′t′ as follows:

ζ ′(x′, y′, t′) = η′(x′, y′)

Φ′(x′, y′, z′, t′) = φ(x′, y′, z′)

v′(x′, y′, z′, t′)→ v′(x′, y′, z′)

P ′(x′, y′, z′, t′) + ρ′g′z′ = p′(x′, y′, z′)


e−iω

′t′ ,

where i is the imaginary unit (−1)1/2. Now the linearised governing equations

(2.21) - (2.24) can be simplified to

∇′2φ′ = 0, −h′ < z′ < 0, (2.26)

∂φ′

∂z′
= 0, z′ = −h′, (2.27)

∂φ′

∂z′
+ iω′η′ = 0, z′ = 0, (2.28)

gη′ − iω′φ′ = −p
′
a

ρ′
, z′ = 0. (2.29)

Here we consider two-dimensional propagation along x, so the solution will not

depend on y. The boundary-value problem (2.26)-(2.29) can be solved in terms

of the spatial potential φ′. First we use the method of separation of variables

in equation (2.26), so that φ′(x′, z′) = X ′(x′)Z ′(z′) and equation (2.26) becomes

∇′2φ′ = φ′xx + φ′zz = X ′xxZ
′ + Z ′zzX

′. Solving the separated equations we obtain

X ′(x′) = aeikx
′
+be−ikx

′
and Z ′(z′) = α cosh[k(z′+h′)]+β sinh[k(z′+h′)], where k
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is the wavenumber, a, b, α, β are amplitude coefficients to be determined. Then,

φ′(x′, z′) = (aeikx
′
+ be−ikx

′
){α cosh[k(z′ + h′)] + β sinh[k(z′ + h′)]}. (2.30)

In the latter we can simplify be−ikx
′

because physically we consider only in-

coming waves propagating in one direction (x′ > 0). The boundary condition on

the sea bottom, (2.27) yields β = 0, so that

φ′(x′, z′) = a cosh[k(z′ + h′)]eikx
′
, (2.31)

where the coefficient α has been embedded in a. Let us seek a two-dimensional

solution which represent a progressive wave without direct atmospheric forces,

that is, p′a = 0 and η = Aeikx
′
. Substitution of the latter expression for φ′ (2.31)

in the dynamic boundary condition on the free surface (2.29) yields

a = −igA
′

ω′
1

cosh(kh′)
, (2.32)

therefore

φ′(x′, z′) = −igA
′

ω

cosh[k(z′ + h′)]

cosh(kh′)
eikx

′
. (2.33)

Thus we derived the expression for the spatial potential φ′(x′, z′) which de-

scribes the motion of progressive water waves on constant depth. Finally we

require that this expression must satisfy the kinematic boundary condition on

the free-surface (2.28), from which we obtain the following well-known dispersion

relation:

ω′2 = gk tanh(kh′). (2.34)

The latter equation relates the wavenumber k to the (given) frequency ω of

the incident waves.



Chapter 3

Modelling of piezoelectric plates

The term piezoelectric harvester is defined in this thesis as the generator device

undergoing vibrations due to a specific form of excitation which in this case, is

induced by the wave motion. As stated by Williams and Yates [47], the three

basic vibration-to-electric energy conversion mechanisms are the electromagnetic,

electrostatic and piezoelectric transductions. Among them, piezoelectric mater-

ials in energy harvesting are characterised by large power densities (defined as

power output divided by the device volume for a given input) and ease of ap-

plication. Also, unlike electrostatic energy harvesting, usable voltage outputs in

piezoelectric devices can be obtained directly from the constitutive behaviour of

the piezoelectric material itself which eliminates the requirement of an external

voltage input. As another advantage, unlike electromagnetic devices, piezoelectric

ones can be fabricated both in macro-scale and micro-scale due to well-established

fabrication techniques [13, 17, 23]. All these characteristics align perfectly with

the evolution of low-power-consuming electronics and the need to provide wireless

solutions to sensing problems. The goal of this technology is to provide remote

sources of electric power and/or to recharge storage devices, such as batteries and

capacitors.

Piezoelectricity is a form of coupling between the mechanical and the electrical

behaviours of ceramics and crystals belonging to certain classes. These materi-

als exhibit the piezoelectric effect, which can be divided into two phenomena

known as the direct and the inverse piezoelectric effects. When a piezoelectric

material is mechanically strained, electric polarization that is proportional to the

30
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applied strain is produced. This is called the direct piezoelectric effect. When the

same material is subjected to an electric polarization, it becomes strained and the

amount of strain is proportional to the polarization field. This is called the inverse

(or converse) piezoelectric effect, [17].

To develop a mathematical model for a piezoelectric energy harvester, first we

need to consider the behaviour of the structure to analyse which in this thesis is

assumed to be a thin plate (i.e. Kirchhoff plate). The object of this chapter is to

develop a model for piezoelectric plates which will be coupled with the potential-

flow model for ocean surface waves (see chapter 4) to investigate the power output

of piezoelectric WECs. Let us start our review considering an isotropic body made

of homogeneous and elastic material. This simplifies the reality of the object to

analyse since in this case, all the properties are the same throughout the body and

in all directions. Also, under isothermal conditions, the body recovers its original

form completely upon removal of the forces causing deformation, and there is a

one-to-one relationship between the state of stress and the state of strain. First we

study the kinematics of the body in order to define strain-displacement equations.

We analyse the constitutive equations, which describe the constitutive behaviour

of the body and the relations between stresses and strains. Then, we use the

classical theory of plates or Kirchhoff plate theory and in particular we consider

the cylindrical bending of plate strips, [38]. After that, we add the influence of an

electric field in order to derive the constitutive behaviour of piezoelectric plates.

Finally, we select a bimorph configuration in which piezoelectric layers are bonded

at both faces of a flexible substrate and we derive a paired system which consists

of a coupled mechanical equation and an electrical circuit equation [17].

3.1 Theory and analysis of elastic plates

Given a generic displacement field u(x, y, z), the deformation of a body can be

measured in terms of the Green-Lagrange strain tensor

G =
1

2

(
∇u + (∇u)T +∇u · (∇u)T

)
. (3.1)

If the displacement gradients are so small, |uij| � 1, then (3.1) reduces to the
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infinitesimal strain tensor

ε =
1

2

(
∇u +∇uT

)
, (3.2)

or, equivalently,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.3)

Now, let us consider an isotropic plate made of a homogeneous and elastic

material. A plate is a structural element with planform dimensions that are larger

compared to its thickness and is subjected to loads that cause bending deformation

in addition to stretching. Because of the smallness of thickness dimension, it is

often not necessary to model them using 3D elasticity equations, therefore simple

2D plate theories can be developed. Under deformation, the plate is subjected to

a stress state and we assume that transverse stresses are negligible, so that the

constitutive relations between strains and stresses under a plane stress state can

be written as follows, see [38]:


ε11

ε22

ε12

 =

∣∣∣∣∣∣∣∣∣
1
E

−νp
E

0

−νp
E

1
E

0

0 0 1
G

∣∣∣∣∣∣∣∣∣


σ11

σ22

σ12

 , (3.4)

or, equivalently,


σ11

σ22

σ12

 =

∣∣∣∣∣∣∣∣∣
E

1−ν2p
νpE

1−ν2p
0

νpE

1−ν2p
E

1−ν2p
0

0 0 G

∣∣∣∣∣∣∣∣∣


ε11

ε22

ε12

 , (3.5)

where we use the notation x = 1, y = 2, z = 3 to define material directions

and νp is the Poisson’s ration, E is the Young’s modulus, G = E
2(1+νp)

is the shear

modulus and σij are the stress components. Note that σij can be interpreted as

the jth component of the force per unit area in the current configuration acting

on a surface segment whose outward normal at x is in the ith direction.
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3.1.1 Kirchhoff plates

According to the two-dimensional mathematical model proposed by Kirchhoff the-

ory, we assume the following three points, see Fig. 3.1:

(i) Straight lines perpendicular to the mid-surface z = 0 before deformation

remain straight after deformation.

(ii) Transverse normal are inextensible.

(iii) Transverse normal remains perpendicular to the middle surface after deform-

ation.

Figure 3.1: Undeformed and deformed geometries of an edge of a plate under the

Kirchhoff assumptions, see [38].

Hence the displacement field for time-dependent deformations
u(x, y, z, t) = u0(x, y, z, t)− z ∂w

∂x

v(x, y, z, t) = v0(x, y, z, t)− z ∂w
∂y

,

w(x, y, z, t) = w0(x, y, z, t)

(3.6)
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where u0, v0, w0 denote the displacement of a point on the mid-surface z = 0.

Using the strain tensor components given by equation (3.3) and the displacement

field (3.6) we have



εxx = ∂u
∂x

= ∂u0
∂x
− z ∂2w

∂x2

εyy = ∂v
∂y

= ∂v0
∂y
− z ∂2w

∂y2
,

εxy = 1
2

(
∂u
∂y

+ ∂v
∂x

)
= 1

2

(
∂u0
∂x

)
− z ∂2w

∂xy

εxz = εyz = εzz = 0

(3.7)

which represent linearised strains as a sum of membrane and flexural strains,

respectively first and second term of the right-hand side of equations (3.7). Next

we introduce thickness-integrated forces (Nxx, Nyy, Nxy) and moments (Mxx, Myy,

Mxy), known as stress resultants:


Nxx

Nyy

Nxy

 =

∫
h/2

−h/2


σxx

σyy

σxy

 dz,


Mxx

Myy

Mxy

 =

∫
h/2

−h/2


σxx

σyy

σxy

 z dz. (3.8)

Note that since the transverse strains are identically zero, see (3.7), then the

transverse stresses do not enter the formulation, but they are present to keep the

body in equilibrium, [38].

The governing equation of motion is derived using the principle of virtual

displacements and can be simplified in the flexural mode as

∂2Mxx

∂x2
+
∂2Myy

∂y2
+
∂2Mxy

∂x∂y
+ q = I0

∂2w

∂t2
, (3.9)

where q(x, y) is the distributed transverse load and I0 =
∫ h/2
−h/2 ρ dz is the 0-th

order mass moment of inertia (i.e. surface mass).

3.1.2 Analysis of plate strips

Let us now consider the cylindrical bending of a plate strip, where the plate is very

long along the y axis and has a finite length ∆x along the x axis. The transverse
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load q is assumed to be uniform along y, i.e. q = q(x, t). This implies that the

rectangular plate can be treated as one-dimensional problem and the derivatives

with respect to y are zero for all the quantities. Then, the equation of motion

becomes
∂2Mxx

∂x2
− I0

∂2w

∂t2
= −q. (3.10)

Now, using equations (3.8), (3.5) and (3.7) in this order, we have

Mxx =

∫ h/2

−h/2
σxxz dz =

E

1− ν2

∫ h/2

−h/2
εxxz dz =

E

1− ν2

∫ h/2

−h/2
−∂

2w

∂x2
z2 dz

= − E

1− ν2

∂2w

∂x2

[
z3

3

]h/2
−h/2

= − Eh3

12(1− ν2)

∂2w

∂x2
= −D∂

2w

∂x2
, (3.11)

whereD = Eh3

12(1−ν2)
is the bending stiffness coefficient. Also we assumed ∂u0

∂x
= 0

because it represents membrane strains while we are considering just the flexural

mode. Then equation (3.10) becomes

D
∂4w

∂x4
+ I0

∂2w

∂t2
= q, (3.12)

which is the equation of motion for a plate strip subject to a cylindrical bend-

ing.

3.2 Theory of piezoelectric materials

In general, poled piezoelectric materials are transversely isotropic and here we

define the plane of isotropy as the 12-plane (or the xy-plane) to be in agree-

ment with the IEEE Standard on Piezoelectricity [34]. The piezoelectric material

therefore exhibits symmetry about the 3-axis (or the z-axis), which is the pol-

ing axis of the material. The field variables are not only the stress components

(σij) and strain components (εij), but we need to consider also the influence of

the electric field components(Ek) and the electric displacement components (Dk).

The constitutive relations can be given using the tensorial representation of the

strain-electric displacement form [17]:

εij = sijklσkl + dkijEk (3.13)
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and

Di = diklσkl + εTikEk, (3.14)

where sijkl are the elastic compliances at constant electric field, dkij are the

piezoelectric constants and εTik are the permittivity constants at constant stress.

Equations (3.13) and (3.14) can be given in matrix form as

 ε

D

 =

∣∣∣∣∣∣ s dt

d εT

∣∣∣∣∣∣
 σ

E

 , (3.15)

where the superscript t stands for the transpose. Since the piezoelectric har-

vester to be modelled in this thesis is assumed to behave as a thin plate (i.e.

Kirchoff plate) due to two-dimensional strain fluctuations, the normal stress in

the thickness direction and the respective transverse shear components are negli-

gible. The constitutive relations become


ε11

ε22

ε12

D3

 =

∣∣∣∣∣∣∣∣∣∣∣∣

s11 s12 0 d31

s12 s22 0 d31

0 0 s33 0

d31 d31 0 εT

∣∣∣∣∣∣∣∣∣∣∣∣


σ11

σ22

σ12

E3

 , (3.16)

where s11 = s22 = 1/E, s12 = −ν/E and s33 = 1/G. The stress-electric

displacement form of the reduced constitutive becomes
σ11

σ22

σ12

D3

 =

∣∣∣∣∣∣∣∣∣∣∣∣

c11 c12 0 −e31

c12 c22 0 −e31

0 0 c33 0

e31 e31 0 εS

∣∣∣∣∣∣∣∣∣∣∣∣


ε11

ε22

ε12

E3

 , (3.17)

where cij the elastic constants at constant electric field, e31 is an alternative

form of piezoelectric constant and εS is a permittivity constant at constant stress.
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In particular we have:

∣∣∣∣∣∣∣∣∣∣∣∣

c11 c12 0 −e31

c12 c22 0 −e31

0 0 c33 0

e31 e31 0 εS

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

s11 s12 0 0

s12 s22 0 0

0 0 s33 0

−d31 −d31 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

−1 ∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 −d31

0 1 0 −d31

0 0 1 0

0 0 0 εT

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.18)

Here, the reduced elastic, piezoelectric and permittivity constants are

c11 =
s11

(s11 + s12)(s11 − s12)
=

E

1− ν2
, (3.19)

c22 =
s22

(s11 + s12)(s11 − s12)
=

E

1− ν2
, (3.20)

c12 =
−s12

(s11 + s12)(s11 − s12)
=

νE

1− ν2
, (3.21)

c33 =
1

s33

= G, (3.22)

e31 =
d31

s11 + s12

=
Ed31

1− ν
, (3.23)

εS = εT − 2d2
31

s11 + s12

= εT − 2Ed2
31

1− ν
. (3.24)

In the case of strip plates (∂/∂y = 0), the constitutive relations reduce to

σXX =
E

1− ν2
εXX −

Ed31

1− ν
E3 (3.25)

and

D3 =
Ed31

1− ν
εXX + εSE3. (3.26)
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3.3 Distributed-parameter modelling for

bimorph piezoelectric plates

Following the analysis of elastic plates in section 3.1, we are now ready to apply the

above theories to piezoelectric plates, in which we need to consider the influence

of the electric displacement D and the electric field E. We derive a distributed-

parameter model for the governing equations of the piezoelectric plate respect to

the local reference system on the plate (X ′, Y ′, Z ′). We consider that the flexible

plate width in the transverse Y ′ direction is much greater than its length L′ along

the X ′ axis. Hence, the deformations of the plate will be modelled as purely two-

dimensional, i.e. ∂/∂Y ′ = 0, see [40]. Variables with primes denote again physical

quantities.

In particular, let us assume a bimorph configuration of the piezoelectric ma-

terial, in which piezoelectric layers are made of discrete piezoelectric patches, each

of length dX ′ � L′. These are connected in series and bonded at both faces of

the flexible substrate, see [16, 17] with reversed polarities in the Z ′ direction, as

shown in Fig. 3.2. Electrodes of negligible thickness cover the top and the bottom

faces of each piezoelectric layer and ensure that a potential difference is established

across them.

We model the converter as a uniform composite plate based on the Kirchhoff

plate theory [38]. The following assumptions are made:

• Small deformations.

• Linear elastic behaviour of the structure.

• Isotropic material.

• Homogeneous piezoelectric layers characterised by thickness d′p, Young’s

modulus E ′p (in N m−2) and Poisson’s ratio ν ′p.

• Homogeneous substrate characterised by thickness d′0, Young’s modulus E ′0

and Poisson’s ratio ν ′0.

Since the system is homogeneous, the vertical displacement W ′(X ′, t′), the stresses

σ′ij(X
′, Z ′, t′), with i, j = X ′, Y ′, Z ′, the strains ε′ij(X

′, Z ′, t′) and the voltage
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Figure 3.2: Geometry of the piezoelectric plate and detail of the bimorph configuration

for an element of length dX ′. The bold vertical arrows indicate the poling direction

of the piezoelectric layers (from negative to positive pole). Electrodes of negligible

thickness cover both faces of each piezoelectric patch. Each pair of piezoelectric patches

are shunted with an external resistance 1/Γ′, thus powering a resistive circuit, see [40].

V ′(X ′, t′) are continuous along the plate. From now on, primes will be dropped

for simplicity in this section.

Let us examine the effect of a vertical surface load q̃(X, t) (in N m−2) on a plate

element of unit width and length dX � L. Considering a cylindrical bending, the

motion of the plate element in the local coordinate system of Fig. 3.2 is described

by

∂2MXX

∂X2
− Ib

∂2W

∂t2
= −q̃, (3.27)

see section 3.1.2, where

MXX =

∫ d0/2+dp

−d0/2−dp
σXXZ dZ (3.28)

is the bending moment per unit width (in N) and

Ib =

∫ −d0/2
−d0/2−dp

ρp dZ +

∫ d0/2

−d0/2
ρ0 dZ +

∫ d0/2+dp

d0/2

ρp dZ = 2ρpdp + ρ0d0 (3.29)
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is the surface density of the bimorph (in Kg m−2). In (3.29), ρp is the density of

the piezoelectric layers and ρ0 is the density of the substrate, while the constitutive

linear elastic relations are given by:

σXX =
E0

1− ν2
0

εXX (3.30)

for the substrate and

σXX =
Ep

1− ν2
p

εXX −
Epd31

1− νp
E3, (3.31)

D3 =
Epd31

1− νp
εXX + εSE3 (3.32)

for the patches. In (3.31) and (3.32), we coupled the 1-, 2- and 3-axes of piezo-

electricity with the X-, Y -, Z-directions of the material, respectively; E3(X, t) is

the vertical component of the electric field E (in V m−1); D3(X, t) is the vertical

component of the electric displacement D (in C m−2); εS is the permittivity of the

piezoceramic at constant strain (in F m−1); d31 is the piezoelectric strain constant

(in m V−1), see [17,40]. Note that the sign of d31 depends on the poling direction of

the piezoceramic layers with respect to the orientation of the local Z axis i.e. neg-

ative for the upper layer and positive for the lower one (see again Fig. 3.2). Also,

because the electrodes are aligned along the horizontal X-direction, the electric

field and electric displacement are both aligned along the vertical Z-direction.

We consider that the expression for the linearised strain εXX in absence of

axial deformations is given by:

εXX = −Z∂
2W

∂X2
, (3.33)

see (3.7). Therefore if we substitute equations (3.30), (3.31) and (3.33) in

(3.28) and integrate over the thickness of the plate, we get:

MXX = −B∂
2W

∂X2
− Ep |d31|

1− νp
E3dp(d0 + dp), (3.34)
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where

B =
E0d

3
0

12(1− ν2
0)

+
2Epdp

(1− ν2
p)

(
d2

0

4
+
d0dp

2
+
d2
p

3

)
(3.35)

is the flexural rigidity of the bimorph.

Let us consider the electrical term proportional to E3. A positive bending of

the plate ( + 	 ) generates negative (compression) strains in the upper piezoelectric

layer and positive (tension) strains in the lower piezoelectric layer, see [22]. Due to

the opposite poling of the two layers, the orientation of the electric displacement

vector is the same in both layers. Now let us evaluate the voltage across the

plate. Because the piezoelectric layers are connected in series (see again Fig.

3.2), the voltage across the electrodes of each piezoceramic layer is the same.

For the bottom layer, Vb =
∫ −

+
E · dX = −E3dp, so that the total voltage is

V (X, t) = 2Vb = −2E3dp, see [40]. Substituting the latter into (3.34) we get the

coupled electromechanical equation:

MXX = −B∂
2W

∂X2
+ θV, (3.36)

where

θ =
Ep |d31|
1− νp

d0 + dp
2

(3.37)

is a piezoelectric coupling factor (in N V−1 or, equally, in C m−1).

To describe the power take-off (PTO) mechanism of the converter, we couple

the electromechanical equation (3.36) with the electrical circuit equations following

a common practice in modelling vibration-based energy harvesters, see [17,40]. We

consider a resistive electrical load R for each unit element dX of the plate across

which the instantaneous electric field, displacement and voltage, are assumed to be

uniform. Hence each piezoelectric layer behaves as a parallel-plate capacitor [42].

The electrical load R is connected to the internal capacitance of the piezoelectric

pair, see again Fig. 3.2. The electric charge Θ(X, t) generated in each piezoelectric

layer is estimated using the Gauss law, see [40,42],

Θ =

∮
S

D · n dS, (3.38)
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where D is the electric displacement over a surface S of unit width and outward

normal n(X,Z) enclosing an electrode.

Let us first consider the bottom piezoelectric layer. It is a parallel-plate capa-

citor in which D is oriented along the 3-axis as shown schematically in Fig. 3.3.

Note that the only contribution to the integrand in (3.38) come from D3, since

the scalar product between perpendicular versors is null. The bottom piezoelectric

patch has length dX and unit width, hence the patch area is A = 1dX. Therefore

equation (3.38) becomes

Θ =

∫
dX

D3i3 · i3dX =

∫
dX

D3dX. (3.39)

Now we differentiate (3.39) over the elementary area dX, we substitute in the

second piezoelectric relation (3.32) and we use E3 = −Vb/dp, to get

Q =
Ep |d31|
1− νp

εXX − CbVb. (3.40)

In the latter, Q(X, t) = dΘ/dX is the charge per unit area of the piezoelec-

tric layer and Cb = εS/(2dp) is the electrical surface capacitance of the bottom

layer (in F m−2), see [40, 42]. Substituting εXX = −Z∂2W/∂X2 into (3.40) and

integrating along Z over any of the piezoelectric patches, we obtain the desired

electromechanical equation

Q = −θ∂
2W

∂X2
− CbVb. (3.41)

A similar equation can be obtained for the top layer. For the series connection,

the circuit is equivalent to a single-capacitor circuit of total surface capacitance

C = (2/Cb)
−1 = εS/2dp and total voltage V = 2Vb provided both piezoelectric

layers have the same properties. Hence, (3.41) becomes:

Q = −θ∂
2W

∂X2
− CV, (3.42)

which is the electrical circuit equation. Now note that to close our system we

need one last equation, as we have four unknowns (Q, V,W,MXX), but only three

equations, which are (3.27), (3.36) and (3.42), see [40]. Ohm’s resistive law gives
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3-axis

1-axis
2-axis

𝓲1- 𝓲1

𝓲3bottom piezoelectric patch 

- 𝓲2

𝓲2

D3

Figure 3.3: As a result of the Gauss law, the electric charge Θ(X, t) developed in each

piezoelectric layer is given by the integral of the electric displacement D over a surface

S enclosing an electrode, which can be written as Θ =
∮
S D · n dS where n(X,Z) is

the outward normal. First we consider the bottom piezoelectric patch of length dX and

unit width, so that the patch area is A = dX (in yellow). D is oriented along the 3-axis,

therefore Θ =
∫
AD3dA.

∂Θ/∂t = ΓV , where Γ = 1/R is the conductance and R is the resistive load of the

circuit (in S−1). Differentiating Ohm’s law over the elementary area dS, in which

V is constant, we get
∂Q

∂t
= GV, (3.43)

where G = dΓ/dX is the surface conductance (in S m−2). Therefore the dy-

namics of the bimorph plate is governed by the electromechanical equations (3.27),

(3.36), (3.42) and (3.43), see [40]. Similar systems are derived by [16] and [8]. Also,

our plate is immersed in water waves, so the dynamic surface load q̃ of (3.27) is

precisely the pressure forcing applied by the wave field on the plate. Hence,

the electro-mechanical (EM) equations need to be coupled with a hydrodynamic

(HD) system, which is derived in the next chapter. After deriving the coupled

hydro-electromechanical system, we will consider two possible real applications

of piezoelectric harvesters, such as a double-clamped plate, or a plate fixed at a

vertical wall (e.g. a breakwater). We will analyse complex interactions between

flexible devices, piezoelectric effect and the superimposition of incident, radiated
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and reflected wave components. We will determine new analytical expressions for

the hydro-electromechanical dispersion relation and the velocity potentials, pre-

dict the power output of both systems and analyse the effect of the vertical wall,

see chapter 4.



Chapter 4

Coupling EM and HD problems

In chapters 2 and 3 I obtained governing differential equations characterising a

propagating ocean surface wave problem and a flexible piezoelectric plate problem

respectively. These two problems (hydrodynamic and the electro-mechanical) can

now be coupled in order to derive a novel hydro-electromechanical model for a

piezoelectric WEC. In particular, I investigate the interaction of linear water waves

with a flexible piezoelectric plate. I consider two possible practical configurations,

i.e. a plate fixed at a vertical wall (e.g. a breakwater) and a double-clamped

plate. Fig. 4.1 shows schematically both the configurations subjects of this study.

As is usual in structural dynamics [38], I introduce a local reference system on

the plates, with (X ′, Y ′, Z ′) = (x′,−y′,−z′ − d′), so that the local Z ′ axis points

downwards. As in section 3.3, I model deformations of the flexible plates as purely

two-dimensional, i.e. ∂/∂Y ′ = 0.

Breakwater

L'

Incident wave

d'

h'

z'

x'y'

Z'

X'

Y'

undisturbed water level zꞌ = 0  

PWEC

Incident wave

d'

h'
Z'

z'

x'

2L'

y'

X'

Y'

PWEC

Figure 4.1: Geometry of two piezoelectric wave energy harvester systems in physical

variables. A PWEC moored on a breakwater (left-hand side) and a PWEC clamped at

both ends to rigid support systems in the ocean (right-end side).

45
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On the left-hand side, the PWEC is a flexible plate clamped to a rigid support

system in the ocean at (x′, z′) = (−L′, d′) and moored on a caisson breakwater at

(x′, z′) = (0, d′), while on the right-hand side, the piezoelectric wave energy con-

verter (PWEC) is clamped at both ends at (x′, z′) = (±L′,−d′). Note the different

position of the global coordinate system (x′, y′, z′) within the two configurations

and the different length of the flexible plates along the X ′ axis, i.e. L′ for the

converter moored on the breakwater, 2L′ for the other one. These configurations

reproduce possible real applications of piezoelectric WECs, where a superimposi-

tion of incident, radiated and reflected wave components interact dynamically with

the converter [51]. The interaction of such components affects the energy yield of

the device, which attains maximum power when the flexible plate resonates with

the wave system [40]. Previous studies on piezoelectric WECs considered rather

simplified mathematical models, in which the hydro-electromechanical problem is

uncoupled into two separate wave-structure and electric problems. This approach

yields a preliminary estimate of the extracted power, but does not give sufficient

consideration to the real situation in which the dynamics of waves, structural

elasticity and piezoelectricity are inherently coupled in a PWEC. Therefore, the de-

velopment of a coupled hydro-electromechanical model is fundamental to provide

an accurate analysis of the system. Mathematically, I analyse a new fully coupled

boundary-value problem based on the complex interactions between wave action,

the flexible device and the piezoelectric effect. The solution is derived within the

framework of a linearised potential flow theory (chapter 2) by using the method

of matching potentials and coupling the hydro electro-mechanical problem with

the matching conditions at the common boundaries [40]. I derive analytical ex-

pressions for the hydro-electromechanical dispersion relation and potentials. The

piezoelectric plate dynamics and predicted power output of the system are ob-

tained using numerical models for both the configurations. Finally, I analyse both

mathematical models through convergence tests.
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4.1 Flexible piezoelectric wave energy

harvester moored on a breakwater

In this section I derive a boundary-value problem for a flexible piezoelectric har-

vester moored on a breakwater coupling the EM and the HD problems. To find

the analytical solution, I follow [7, 29, 40] and split the fluid domain into three

different areas using the matching conditions at the common boundaries of the

three domains. This yields analytical expressions for the hydro-electromechanical

dispersion relation and the velocity potentials for each of the three regions. After

that, I come to the numerical part of this study, determining both the roots of

the hydro-electromechanical dispersion relation with a two-dimensional Newton-

Raphson method of tolerance ε = 10−9, see [37,40] and the numerical values of the

amplitude coefficients of the potentials. Hence, I solve numerically the boundary-

value problem for the piezoelectric wave energy harvester moored on a breakwater

and I identify quantities of engineering interest such as the spatial component of

the free-surface elevation, the spatial displacement of the plate and the electric

power available in the output system per unit width. Finally I select a typical

plate configuration and I determine the solutions of the hydro-electromecanical

dispersion relation and the behaviour of the extracted power with respect to the

period of the incident waves.

4.1.1 Analytical solution of the coupled system

Referring to Fig. 4.2, define a global coordinate system (x′, y′, z′), with the z′-axis

pointing upwards from the undisturbed water level z′ = 0 and a local reference

system on the plate (X ′, Y ′, Z ′) with the local Z ′ axis points downwards. The

x′-axis is directed along the direction of propagation of incoming surface waves of

amplitude A′ and angular frequency ω′. The bottom of the ocean is located at a

constant depth z′ = −h′ and the piezoelectric converter is clamped to a rigid sup-

port system in the ocean at (x′, z′) = (−L′, d′) and moored on a caisson breakwater

at (x′, z′) = (0, d′). Variables with primes denote again physical quantities.
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Incident wave

d'

h'

z'

x'

Breakwater

L'

undisturbed water level zꞌ = 0  

Piezoelectric Wave Energy Converter

y'

Z'

X'

Y'

Figure 4.2: Geometry of the system in physical variables.

I aim to couple the model equations of the plate (electro-mechanical problem)

with those of the surface waves (hydrodynamic problem). I substitute the electro-

mechanical equations (3.36) and (3.42) into the equation of motion (3.27), I replace

the surface load q̃′ with the pressure forcing of the waves

q̃′(X ′, t′) = P ′(X ′,−d′ + δ′, t′)− P ′(X ′,−d′ + δ′, t′) = P ′+ − P ′−, δ → 0 (4.1)

and I rewrite the result in the global reference system (x′, y′, z′), obtaining the

coupled hydro-electromechanical equation

(
B′ +

θ′2

C ′

)
∂4W ′

∂x′4
− I ′0

∂2W ′

∂t′2
+
θ′

C ′
∂2Q′

∂x′2
= ∆P ′. (4.2)

In the latter, W ′ is defined positive upwards and ∆P ′(x′, t′) = P ′− − P ′+ is the

pressure jump across the plate in the z′ direction. Using the linearised Bernoulli

equation, see [27], I can assume ∆P ′ = −ρ(∂∆Φ′)/∂t′, where ∆Φ′ is the jump of

the spatial potential Φ′ across the plate along the z′ direction. I also rewrite (3.42)

and (3.43) in the global reference system to get

Q′ = θ′
∂2W ′

∂x′2
+ C ′V ′ (4.3)

and

∂Q′

∂t
= −GV ′. (4.4)
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Let me introduce the following non-dimensional variables, see [40]:

(x′, y′, z′, h′, d′) = L′(x, y, z, h, d), t′ =

√
L′

g
t, Φ′ =

√
gL′A′Φ, W ′ = A′W,

Q′ = A′
√
gI ′0C

′

L′
, V ′ = A′

√
gI ′0
L′C ′

V, (4.5)

so that I can obtain the non-dimensional form of our equations. The coupled

hydro-elecromechanical equation of motion (4.2) becomes

β(1 + α2)
∂4W

∂x4
+
∂2W

∂t2
− α

√
β
∂2Q

∂x2
= −r∂∆Φ

∂t
, (4.6)

where α = θ′/
√
B′C ′ is a non-dimensional piezoelectric coupling parameter,

β = B′/(L′3gI ′0) is a non-dimensional stiffness and r = ρL′/I ′0 is a surface density

ratio. Analogously, the electromechanical equation (4.3) and the circuit equation

(4.4) become, respectively,

Q− V − α
√
β
∂2W

∂x2
= 0 (4.7)

and

ξ
∂Q

∂t
= −V, (4.8)

where ξ = C ′/G′
√
g/L′ is the non-dimensional resistive term.

Non-dimensionalisation of the hydrodynamic equations (2.21), (2.22) and (2.25)

according to (4.5) yields, respectively,

∇2Φ = 0 (4.9)

for the Laplace equation in the fluid domain,

∂Φ

∂z
= 0 (4.10)

for the no-flux condition at the sea bottom and

∂2Φ

∂t2
+
∂Φ

∂z
= 0 (4.11)
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for the kinematic-dynamic boundary condition on the free surface. Also, look-

ing at the configuration shown in Fig. 4.2, I can add further boundary conditions

to the governing differential equations of the EM-HD problem that we are consid-

ering in this section. Since the plate is clamped at both ends, I have

W ′(−L, t) = W (0, t) =
∂W ′(x′, t′)

∂x′

∣∣∣∣
x′=−L′

=
∂W ′(x′, t′)

∂x′

∣∣∣∣
x′=0

= 0, (4.12)

where I already used the global reference system. The boundary condition for

the breakwater is

∂Φ′

∂x′
= 0, x′ = 0. (4.13)

Finally, Φ′ needs to satisfy a kinematic condition on the surface of the plate.

Let λ′ be the characteristic wavelength of the incident waves. Assume that such

a wavelength is comparable to the total length of the device, λ′/(2L′) = O(1).

Because the total thickness of the plate is much smaller than λ′, I can apply the

thin-plate hypothesis and consider the thickness of the plate to be immaterial in

solving the potential-flow problem, see [40,41]. This yields the kinematic condition

on the plate

∂W ′

∂t′
=
∂Φ′

∂z′
, −L′ < x′ < 0, z′ = −d′ ± δ, δ → 0. (4.14)

Non-dimensionalisation of equations (4.12)-(4.14) according to (4.5) yields, re-

spectively,

W (−1, t) = W (0, t) =
∂W (x, t)

∂x

∣∣∣∣
x=−1

=
∂W (x, t)

∂x

∣∣∣∣
x=0

= 0, (4.15)

∂Φ

∂x
= 0 x = 0 (4.16)

and

∂W

∂t
=
∂Φ

∂z
− 1 < x < 0, z = −d± δ, δ → 0. (4.17)

As in (2.4), I assume that the wave forcing is harmonic with frequency ω, so I
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can factorise out the time variable by introducing the spatial variables

[Φ(x, z, t), P (x, z, t),W (x, t), Q(x, t), V (x, t)] = <{[φ(x, z), p(x, z), w(x),

q(x), v(x)]e−iωt}. (4.18)

In the following, the real part operator < will be omitted for the sake of brevity

and subscripts denote differentiation with respect to the relevant variable. Now

I substitute (4.18) in the hydrodynamic equations (4.9)-(4.11), into the electro-

mechanical equations (4.6)-(4.8), into the kinematic conditions at the ends of the

plate (4.15) and into the kinematic condition on the breakwater (4.16). Finally,

I substitute (4.18) into the kinematic condition on the plate (4.17) which relates

Φ and W , therefore, coupling equations together, I obtain the following hydro-

electromechanical boundary-value problem in terms of the spatial potential φ only:

∇2φ = 0, in the fluid domain, (4.19)

φz − ω2φ = 0, z = 0, (4.20)

φz = 0, z = −h, (4.21)

β

(
1 +

α2ωξ

i+ ωξ

)
φxxxxz − ω2φz = ω2r∆φ, −1 < x < 0, z = −d± δ, δ → 0,

(4.22)

φz = φxz = 0, x = −1, z = −d± δ, δ → 0,

x = 0, z = −d± δ, δ → 0, (4.23)

φx = 0, x = 0, −h < z < 0. (4.24)

Expressions (4.19)-(4.21) are the hydrodynamic equations, (4.22) is the dy-
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namic boundary condition on the plate, (4.23) are the kinematic boundary con-

ditions at the ends of the plate and (4.24) is the boundary condition for the

breakwater. If I consider the short-circuit limit ξ → 0, the fifth derivative of

the velocity potential in (4.22) is multiplied only by the non-dimensional stiffness

β, then the boundary-value problem is equivalent to that of a submerged elastic

plate without power extraction [29, 40, 45]. In fact in (4.22), the complex coeffi-

cient α2ωξ/(i + ωξ) is a dissipative term which models the extraction of energy

from the system.

The system (4.19)-(4.24) will be solved with the method of matching potentials

and appropriate conditions at each of the physical boundaries of the system, see

[7, 27, 29, 40]. As shown in Fig. 4.3, I split the fluid domain into three different

areas.

d

h

z

x

x = -1 x = 0

1

3

2

Figure 4.3: Domain decomposition used to solve the boundary-value problem.

The matching conditions at the common boundaries of the three domains are

φ2z = φ3z, x ∈ (−1, 0), z = −d, (4.25)

φ1 = φ2, φ1x = φ2x, x = −1 z ∈ (−d, 0), (4.26)

φ1 = φ3, φ1x = φ3x x = −1 z ∈ (−h,−d), (4.27)
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where the φi denote the potential φ in each area i = 1, 2, 3. I also require that

the scattered potential in the open ocean area 1 is outgoing in the far field [27].

I shall now solve the boundary-value problem separately in each region and then

match the potentials via (4.25)-(4.27).

Region 1

In region 1 the potential φ1(x, z) must satisfy equations (4.19) - (4.21). Applying

the separation of variables rule to (4.19), I get φ1(x, z) = X(x)Z(z). Now I use the

conditions (4.20) and (4.21) and I obtain φ1(x, z) = (a0e
ikx + b0e

−ikx) cosh[k(z +

h)]. Note that the eigenvalue condition for the wave number k is the well-known

dispersion relation ω2 = k tanh(kh), see Chapter 2. There is a pair of real roots ±k

which correspond to the same normalised eigenfunction, hence only the positive

real root needs to be considered. In addition, there are also imaginary eigenvalues

k = iκ corresponding to the real solutions of ω2 = −κ tan(κh). The last admits

infinite number of discrete roots κ = ±kn. Again it is only necessary to consider

positive kn, see [27]. Consequently we can use the expression φ1(x, z) = (a0e
ikx +

b0e
−ikx) cosh[k(z+h)]+

∑+∞
n=1(ane

knx+bne
−knx) cos[kn(z+h)]. Now, bn = 0 because

|X(x)| is limited. Then we can say that in region 1 the solution of the system is the

superimposition of incident (right-going) wave, radiated and reflected (left-going)

waves and evanescent waves and it is expressed by

φ1(x, z) = −2i

ω

cosh[k(z + h)]

cosh(kh)
cos(kx) +

∞∑
n=0

Rne
−iκnxcnZn(z), (4.28)

where the Rn are unknown complex coefficients. The Zn are the orthonormal

functions:

Zn(z) =
√

2 cosh[κn(z + h)]/(h+ ω−2 sinh2(κnh))1/2, (4.29)

which satisfy
∫ 0

−h ZnZmdz = δnm, where δnm is the Kronecker delta, see [27]

and [40] and the cn are complex constants: cn = (h+ ω−2 sinh2(κnh))1/2/
√

2.
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Region 2 and 3

Both φ2 and φ3 must satisfy equations (4.19) and (4.22)-(4.24) and the vertical

continuity condition (4.25), in addition φ2 must satisfy the surface condition

(4.44) while φ3 must satisfy the bottom boundary condition (4.21). First I apply

again the separations of variables to the Laplace equation choosing φ(2,3)(x, z) =

ϕ(2,3)(x)ψ(2,3)(z) and I solve simultaneity both systems in regions 2 and 3. Now

the vertical continuity condition (4.25) reduces to

∂ψ2(z)

∂z

∣∣∣∣
z=−d

=
∂ψ3(z)

∂z

∣∣∣∣
z=−d

. (4.30)

The latter is a reasonable physical hypothesis since ψ(2,3)(z) transfer the ve-

locity along the z-direction. The solution of the problem in terms of the spatial

potential φ2 and φ3 is

φ2,3(x, z) =
∞∑

n=−2

(Ane
iσnx +Bne

−iσnx)ψ(2,3)
n , (4.31)

where theAn andBn are unknown complex coefficients, ψ
(2)
n (z) = [σn cosh(σnz)+

ω2 sinh(σnz)] sinh[σn(h−d)] and ψ
(3)
n (z) = [ω2 cosh(σnd)−σn sinh(σnd)] cosh[σn(z+

h)] are the vertical eigenfunctions of the regions 2 and 3, respectively, the σn

are horizontal wave numbers which can be determined by substituting (4.31)

into the boundary condition on the plate (4.22). This yields a novel hydro-

electromechanical dispersion relation, see [40]:

F (σn) =

[
β

(
1 +

α2ωξ

i+ ωξ

)
σ4
n − ω2

]
[ω2σn cosh(σnd)− σ2

n sinh(σnd)]

× tanh[σn(h− d)]− ω2r{ω2 cosh(σnd)− σn sinh(σnd)

+ [ω2 sinh(σnd)− σn cosh(σnd)] tanh[σn(h− d)]} = 0, (4.32)

which is an even complex function of σn and admits an infinite number of

complex solutions ±σn. I determine the roots of the hydro-electromechanical dis-

persion relation for a typical system configuration with a two-dimensional Newton-

Raphson method of tolerance ε = 10−9, see [40].
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The choice to start the series in (4.31) from -2 is only practical and does not

affect the solution. Expressions (4.31) is the superimposition of damped waves in

the plate region, see [40]. The complex coefficients Rn, An and Bn in (4.28) and

(4.31) are obtained by solving numerically the matching conditions (4.25)-(4.27)

in combination with the clamping conditions on the plate (4.23) and (4.24), see

next section.

4.1.2 Numerical solution of the coupled system

Following the procedure in [40], substitute the solutions φ2 and φ3 (4.31) into the

physical condition on breakwater (4.24). Then, multiply both equations by Zm(z),

m = 0, 1, ..., integrate them along z over the respective domains and finally sum

the results to obtain

N∑
n=−2

σn(An −Bn)bmn = 0, m = 0, 1, 2, ..., N, (4.33)

where bmn =
∫ 0

−d ψ
(2)
n (z)Zm(z)dz+

∫ −d
−h ψ

(3)
n (z)Zm(z)dz is a complex coefficient.

In (4.33), the orthogonality of the vertical modes Zm has been exploited and the

sum has been truncated to a finite value n = N for numerical evaluation. Now I

use the same procedure to match the fluxes substituting the solution φ1 (4.28), φ2

and φ3 (4.31) into the first conditions of both (4.26) and (4.27) and we obtain

Rm =

[
2ia

ω
cos(k)δ0me

−iκm +
N∑

n=−2

(Ane
−i(σn+κm) +Bne

i(σn−κm))bmn

]
1

cm
, (4.34)

where cm is the same as cn in (4.28), a = [h+ω−2 sinh2(kh)]1/2/
√

2 cosh(kh) and

m = 0, 1, 2, ..., N . Using once again the same procedure for the second conditions

of both (4.26) and (4.27), I get

2ik

ω
a sin(k)δ0m − iκmRmcme

iκm =
N∑

n=−2

iσn(Ane
−iσn +Bne

iσn)bmn, (4.35)

with m = 0, 1, 2, ..., N . Now I substitute the expression for Rm (4.34) in (4.35).
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This yields

2ia

ω
δ0m[ik sin(k)− κm cos(k)] =

N∑
n=−2

bmn[Ane
−iσn(σn + κm)−Bne

iσn(σn − κm)],

(4.36)

with m = 0, 1, 2, ..., N . Finally, from the kinematic boundary conditions at the

end of the plate (4.23), I obtain

N∑
n=−2

(An +Bn)fn = 0, (4.37)

N∑
n=−2

(Ane
−iσn +Bne

iσn)fn = 0, (4.38)

N∑
n=−2

σn(An −Bn)fn = 0, (4.39)

N∑
n=−2

σn(Ane
−iσn −Bne

iσn)fn = 0, (4.40)

where

fn = [ω2 cosh(σnd)− σn sinh(σnd)]σn sinh[σn(h− d)], (4.41)

with m = 0, 1, 2, ..., N . Expressions (4.33), (4.36) and (4.37)-(4.40) are 2N + 6

equations in 2(N + 3) unknowns, therefore the system can be solved numerically

for the An and Bn with a suitable choice of N . (Details of the numerical conver-

gence of the system are given in section 4.3). This has been implemented in a

Matlab code, see appendix A, that allows me to identify the numerical solutions

of the system and to determine all the quantities of engineering interest i.e. the

spatial displacement of the flexible plate, the spatial component of the free-surface

elevation in the regions 1 and 2 and finally the average electric power in the output

system per unit width, as follows.
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Spatial displacement of the flexible plate

The spatial displacement of the plate can be evaluated using the kinematic con-

dition on the plate (4.14). I use dimensionless variables (2.16), I factor time out

as in (4.18) and I substitute the expression for the potential (4.31). This yields

w(x) =
i

ω

N∑
n=−2

(Ane
iσnx +Bne

−iσnx)fn, (4.42)

where the sum has been truncated to a finite value n = N for numerical

evaluation.

Spatial component of the free-surface elevation in regions 1 and 2

Defining the free-surface elevation as in (2.11) and using the dimensionless vari-

ables (2.16), we write ζt = Φz|z=0, see [27]. Then I factor time out by defining

ζ(x, t) = <{η(x)e−iωt}. Hence

ηi(x) =
i

ω
φiz(x, z)|z=0, i = 1, 2 (4.43)

is the spatial component of the free-surface elevation in the region i = 1, 2, [40].

Substituting the relevant forms for the potentials (4.28) and (4.31) in (4.43), I

obtain respectively

η1(x) =
2

ω2
k tanh(kh) cos(kx) +

i

ω

N∑
n=0

Rne
−iκnxκn sinh(κnh) (4.44)

and

η2(x) =
i

ω

N∑
n=−2

(Ane
iσnx +Bne

−iσnx)ω2σn sinh[σn(h− d)]. (4.45)

Power output of the system

The electric power obtainable from the output system per unit width, in physical

variable, is

P ′ = −V ′∂Q
′

∂t′
, (4.46)
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see [31, 40]. Using the non-dimensionalisation (4.5) in equation (4.46) and

substituting the circuit equation (4.8) we obtain

P ′ = A′gI ′b
L′

ξ

√
g

L′

(
∂Q

∂t

)2

=

(
A′g

L′

)2

I ′b
C ′

G′

(
∂Q

∂t

)2

. (4.47)

Now let me integrate over the length of the device and over the period T ′ =

2π/ω′, so that I obtain the average electric power in the output system per unit

width, in physical variables

P ′ =
∫ 0

−L′

[
1

T ′

√
L′

g

∫ T ′

0

(
A′g

L′

)2

I ′b
C ′

G′

(
∂Q

∂t

)2√
g

L′
dt′

]
dx′

L′
, (4.48)

which can be written as

P ′ = (A′g)2

L′
I ′b
C ′

G′
P , (4.49)

in W m−1 where

P =

∫ 0

−1

[
1

T

∫ T

0

(
∂Q

∂t

)2

dt

]
dx (4.50)

is the non-dimensional average power extracted by the device per unit width

over a cycle. Note that this results can be reproduced only if the design of the

converter is such that voltage cancellations do not occur along the plate, [17, 40].

Finally I can evaluate the non-dimensional average power per unit width of the

device, substituting equations (4.7) and (4.8) in (4.50) and factor time out with

(4.18) as follows

P =

∫ 0

−1

[
1

T

∫ T

0

<
{
−iωαwxx
γ(1− iωξ)

e−iωt
}
<
{
−iωαwxx
γ(1− iωξ)

e−iωt
}

dt

]
dx. (4.51)

The latter can be written as

P =
ω2

2

∫ 0

−1

∣∣∣∣ αwxx
γ(1− iωξ)

∣∣∣∣2 dx, (4.52)

where we exploited the property 1/T
∫ T

0
<{Ae−iωt}<{Be−iωt} dt = 1/2<{AB∗}.
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4.1.3 Results

I select a typical plate configuration to analyse the roots of the hydro-electro-

mechanical dispersion relation (4.32) and the dynamics of wave power extraction.

Referring to Fig. 4.2, the length of the plate is L′ = 10 m, the water depth is h′ =

10 m and the submergence of the plate is d′ = 2 m. In addition I assume that the

amplitude of the ocean surface waves is A′ = 1 m and the bimorph piezoelectric

plate is characterised by: silicone rubber layer (substrate) of thickness d′0 = 0.01

m, polyvinylidene fluoride (PVDF) piezoelectric layers of thickness d′p = 1.1×10−4

m. Typical values of the system coefficients for commercial silicone rubber and

PVDF are shown in the following Tab. 4.1, see e.g. [16,17,40,44].

Table 4.1: Silicone rubber and PVDF coefficients for a PWEC moored on a caisson

breakwater.

Stiffness Piezoelectric coupling parameter Resistive term
β α ξ

3.8× 10−4 0.24 1

Roots of the hydro-electromechanical dispersion relation

A two-dimensional Newton-Raphson method of tolerance ε = 10−9 has been

used for finding successively better approximations to the roots of the hydro-

electromechanical dispersion relation (4.32) as in [11]. The location of the first 18

eigenvalues of (4.32) is shown in Fig. 4.4 and their numerical values are reported

in Tab. 4.2. In this example the period of the incident wave is T ′= 5 s.

The dispersion relation obtained from Hassan and Meylan, [29] for a submerged

elastic plate coincides with the hydro-electromechanical equation (4.32) in the

short-circuit limit ξ → 0. Within this limit, (4.32) admits two complex eigenvalues,

say σ−2 and σ−1, two positive real eigenvalues, say σ0 and σ1 and an infinite number

of positive imaginary eigenvalues σn, n = 2, 3, ... for typical plate parameters [29].

As shown in Fig. 4.4, the location of the roots of the hydro-electromechanical

dispersion relation changed with respect to what was found by Hassan & Meylan.

This is due to the presence of the piezoelectric term proportional to ξ in (4.32).

In fact, as reported in Tab. 4.2, there are no real roots, no imaginary roots,
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an infinite number of complex solutions σn, n = 2, 3, ... shifted into the first

quadrant of the complex plane with respect to the short-circuit scenario, therefore

the real part is much smaller than the imaginary part (see again Tab. 4.2). These

modes physically describe evanescent waves, [27]. Physically, the real part of the

wavenumber is related to the propagating part of the perturbation, while the

imaginary part corresponds to the damping rate. As for the submerged elastic

plate, there are still two roots in the complex plane, which we name σ−2 and σ−1,

following [7, 29,40].

Figure 4.4: Location of the first 18 eigenvalues of the hydro-electromechanical dispersion

relation F (σn) = 0 in the complex σn plane. The solid blue lines correspond to the

contours <{F} = 0 , while the dashed red lines identify the contours ={F} = 0.

These roots correspond to heavily damped oscillatory modes, as discussed by

Behera and Sahoo [7]. Finally, the numerical values of σ0 and σ1 are characterised

by a small imaginary part which is associated to weakly damped progressive waves.
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Table 4.2: Numerical values of the complex eigenvalues σn, solutions of the dispersion

relation (4.32) represented in Fig. 4.4.

Eigenvalue Numerical Value Behaviour in the plate region
σ−2 6.9100 -20.1783i Oscillatory heavily damped
σ−1 0.0018 +46.9518i Oscillatory heavily damped
σ0 1.2990 + 0.0000i Long-crested weakly damped
σ1 21.4641 + 0.1346i Short-crested weakly damped
σ2 0.0000 + 2.7537i Evanescent
σ3 0.0001 + 6.0981i Evanescent
σ4 0.0009 + 9.3220i Evanescent
σ5 0.0013 +12.5121i Evanescent
σ6 0.0000 +15.6379i Evanescent
σ7 0.0073 +19.1035i Evanescent
σ8 6.6720 +20.2396i Evanescent
σ9 0.0125 +23.1556i Evanescent
σ10 0.0081 +27.2714i Evanescent
σ11 0.0165 +30.7592i Evanescent
σ12 0.0002 +31.3891i Evanescent
σ13 0.0015 +35.2935i Evanescent
σ14 0.0010 +39.2397i Evanescent
σ15 0.0006 +43.1779i Evanescent

Note from Tab. 4.2 that <{σ1} � <{σ0} which means that σ0 and σ1 correspond,

respectively, to long- and short-crested waves. This does not happen in the flexible-

plate case of Hassan & Meylan [29] and in the porous plate case of [7], where the

two wavenumbers are comparable. Therefore, the occurrence of a coupled system

of short- and long-crested weakly damped progressive waves that propagate in the

plate region is a characteristic of the submerged piezoelectric plate.

Power output of the system

In subsection 4.1.2 I derived a linearised theory to predict the power output of

the system. Let me now investigate the effect of the incident wave period on

the generated power. The plot of Fig. 4.5 shows the behaviour of the average

extracted power (4.49) with respect to the period of the incident waves, for the

bimorph piezoelectric plate moored on a breakwater studied in this section. The

hydro-electromechanical behaviour of the device causes sharp resonant peaks in

the generated power. Considering the first 18 vibrational modes of flexural waves

on the plate, we identify the existence of 3 resonant periods in the interval [4-9] s
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at which the extracted power is significant. In particular, the maximum peak of

about 8.01 kW/m occurs at T ′= 5.2 s, as shown in Fig. 4.5. Note that this value

is about two orders of magnitude greater than the power output of piezoelectric

beams predicted by simplified uncoupled models [48–50].
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Figure 4.5: Wave power generated by a bimorph piezoelectric plate WECs moored on

a caisson breakwater versus the period of the incident wave. The submergence is d′ = 2

m in a water depth h′ = 10 m. β = 3.8× 10−4, α = 0.24 and ξ = 1. The first 18 modes

have been considered.

The beneficial effect of using a vertical wall to maximise the power output of

a wave energy device was already demonstrated in [43] and in [30] for an oscillat-

ing wave energy converter. Therefore in the following section I consider a PWEC

which is clamped at both ends to rigid support systems in the ocean, and compare

it to the breakwater-PWEC system. I will show that the power output is maxim-

ised in the breakwater case, in accordance with the early results for the oscillating

WEC. In addition, moorings for wave energy converters have been identified as

a major component of the cost for such systems, see [20]. On the other hand,

breakwaters are a form of erosion control, don’t interfere with the local water
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flows and if damage does occur to breakwaters, the maintenance to replace them

is very affordable. Therefore the use of a caisson breakwater as mooring system

for a PWEC is a smart idea resulting in a reduction in infrastructure costs.

4.2 Flexible piezoelectric wave energy

harvester clamped at both ends to rigid

support systems in the ocean

The configuration of the PWEC proposed in this section has been analysed by

Renzi in [40]. Here we report the basic elements of the theory for the sake of

comparison with the breakwater case. As shown in Fig. 4.6 the piezoelectric

converter is a flexible plate clamped at both ends to rigid support systems in

the ocean. As mentioned at the beginning of chapter 4, initially we define two

coordinate systems, one global (x′, y′, z′) and one local on the plate (X ′, Y ′, Z ′)

such that (X ′, Y ′, Z ′) = (x′,−y′,−z′ − d′). Again, we model deformations of the

flexible plates as purely two-dimensional, i.e. ∂/∂Y ′ = 0 because we assume that

the flexible plate width in the transverse direction Y ′ is much greater than its

length 2L′ along the X ′ axis.

Incident wave

d'

h'
Z'

z'

x'

2L'

y'

X'

Y'

PWEC

Figure 4.6: Geometry of a double-clamped PWEC in physical variables.

The governing equations of the coupled hydro-electromechanical system are

obtained by using a distributed-parameter approach for the piezoelectric plate
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(see section 3.3) and a potential-flow theory for the waves (see chapter 2). Since

the geometry of the system is different with respect to the PWEC moored on

a caisson breakwater, see again Fig. 4.6, we need to take into account different

boundary conditions. Hence, the clamping conditions at both ends of the plate

(4.12) become

W ′(±L, t) =
∂W ′(x′, t′)

∂x′

∣∣∣∣
x′=±L′

= 0 (4.53)

and the kinematic condition on the surface of the plate (4.14) turns into

∂W ′

∂t′
=
∂Φ′

∂z′
, |x′| ≤ L′, z′ = −d′ ± δ, δ → 0. (4.54)

Also, in the previous configuration we had the boundary condition for the

breakwater ∂Φ′/∂x′ = 0 in x′ = 0, which clearly does not occur in this case.

Non-dimensionalisation of equations (4.53) and (4.54) according to (4.5) yields,

respectively,

W (±1, t) =
∂W (x, t)

∂x

∣∣∣∣
x=±1

= 0 (4.55)

and

∂W

∂t
=
∂Φ

∂z
|x| ≤ 1, z = −d± δ, δ → 0. (4.56)

To obtain the hydro-electromechanical boundary-value problem in terms of the

spatial potential φ only, we factor out the time variable assuming that the wave

forcing is harmonic with frequency ω, so that equation (4.18) can be exploited.

Then we substitute (4.18) in the hydrodynamic equations (4.9)-(4.11), into the

electro-mechanical equations (4.6)-(4.8) and into the kinematic conditions at the

ends of the plate (4.55). Finally, we substitute (4.18) into the kinematic condition

on the surface of the plate (4.56) which relates Φ and W . Now we couple equations

together. This yields

∇2φ = 0, in the fluid domain, (4.57)
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φz − ω2φ = 0, z = 0, (4.58)

φz = 0, z = −h, (4.59)

β

(
1 +

α2ωξ

i+ ωξ

)
φxxxxz − ω2φz = ω2r∆φ, |x| ≤ 1, z = −d± δ, δ → 0, (4.60)

φz = φxz = 0, x = ±1, z = −d± δ, δ → 0, (4.61)

where subscripts denote differentiation with respect to the relevant variable.

The above system (4.57)-(4.61) will be solved with the method of matching poten-

tials and appropriate conditions at each of the physical boundaries of the system,

see [7, 27, 29, 40]. Fig. 4.7 shows the fluid domain decomposition in four differ-

ent areas. The following matching conditions at the common boundaries of the

four domains will be add to the boundary-value problem (4.57)-(4.61) to find the

solution:

φ2z = φ3z, |x| ≤ 1, z = −d, (4.62)

φ1 = φ2, φ1x = φ2x, x = −1 z ∈ (−d, 0), (4.63)

φ1 = φ3, φ1x = φ3x, x = −1 z ∈ (−h,−d), (4.64)

φ2 = φ4, φ2x = φ4x, x = 1 z ∈ (−d, 0), (4.65)

φ3 = φ4, φ3x = φ4x, x = 1 z ∈ (−h,−d). (4.66)

As final condition, we require that the scattered potential in the open ocean

areas 1 and 4 is outgoing in the far field [27,40]. We shall now solve the boundary-
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value problem separately in each region and then match the potentials via (4.62)-

(4.66).

d

h

z

x

x = -1 x = 1

1

3

2

4

Figure 4.7: Domain decomposition used to solve the boundary-value problem of a

double-clamped PWEC.

Regions 1 and 4

In regions 1 and 4 the boundary-value problems for φ1(x, z) and φ4(x, z), respect-

ively, reduce to (4.57) - (4.59). In particular if we apply the separation of variables

rule to (4.19) and we use the boundary conditions (4.58) and (4.59), we can have

a solution for φ(x, z) as product of a function of x and a function of z. Physically,

the difference between region 1 and region 4 is the nature of the wave components

which describe the situation. Hence, for example, a function of x, which we name

X(x) can be written as the superimposition of

a0e
ikx︸ ︷︷ ︸

incident wave

, R0e
−ikx︸ ︷︷ ︸

reflected (left-going) wave

, ane
−knx︸ ︷︷ ︸

exponentially growing wave

, Rne
knx︸ ︷︷ ︸

evanescent wave

(4.67)

in region 1 and

T0e
ikx︸ ︷︷ ︸

transmitted (right-going) wave

, Tne
−knx︸ ︷︷ ︸

evanescent wave

, bne
knx︸ ︷︷ ︸

exponentially growing wave

(4.68)
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in region 4, where a0, an, R0, Rn, bn, T0, Tn are unknown complex coefficients.

Also, for physical reasons we need to exclude from the solutions ane
−knx and bne

knx

because they are not limited in their domains. On the other end we can choose

functions of z same as (4.29), hence the expressions for the spatial potentials in

region 1 and 4 are respectively

φ1(x, z) = − i
ω

cosh[k(z + h)]

cosh(kh)
eikx +

∞∑
n=0

Rne
−iκnxZn(z), (4.69)

where we used equations (2.32) and (2.33) to express a0, see [27] and

φ4(x, z) =
∞∑
n=0

Tne
−iκnxZn(z), (4.70)

where κ0 = k and κn = ikn are the solutions of the dispersion relations ω2 =

k tanh(kh) and ω2 = −kn tan(knh) respectively.

Regions 2 and 3

Both φ2 and φ3 must satisfy the Laplace equation (4.57), the condition on the

plate (4.60) and the vertical continuity condition (4.62), in addition φ2 must sat-

isfy the surface condition (4.58) while φ3 must satisfy the bottom boundary con-

dition (4.59). We solve simultaneously both systems in regions 2 and 3 and we

obtain the same expressions for the spatial potentials φ2,3(x, z) and the hydro-

electromechanical dispersion relation that we derived for the PWEC moored on a

breakwater, see equations (4.31) and (4.32).

Amplitude coefficients Rn, Tn, An and Bn

Having derived the analytical solution of the boundary-value problem for a PWEC

double-clamped to rigid support systems in the ocean coupling EM and HD prob-

lems, now we follow the procedure in 4.1.2 to find the numerical values of the

complex coefficients Rn, Tn, An and Bn, [40]. This will be obtained by solving

numerically the matching conditions (4.62)-(4.66). First, we match the potentials

substituting the solutions φ1 (4.69), φ2 and φ3 (4.31) into the first conditions of

both (4.63) and (4.64). Then, multiply both equations by Zm(z), m = 0, 1, ..., in-

tegrate them along z over the respective domains and finally sum the results [40].
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This yields

Rm =

[
i

ω
δ0mce

−i(k+κm) +
N∑

n=−2

(Ane
−i(σn+κm) +Bne

i(σn−κm))bmn

]
, (4.71)

where c = [h + ω−2 sinh2(kh)]/
√

2 cosh(kh), δ0m is the Kronecker delta and

bmn =
∫ 0

−d ψ
(2)
n (z)Zm(z)dz +

∫ −d
−h ψ

(3)
n (z)Zm(z)dz is a complex coefficient. Now we

match the fluxes (second conditions of both (4.63) and (4.64)) using the same

procedure. This yields

k

ω
δ0mce

−ik − iκmRme
iκm =

N∑
n=−2

iσn(Ane
−iσn −Bne

iσn)bmn, (4.72)

with m = 0, 1, 2, ..., N . Now we substitute the expression for Rm (4.71) in

(4.72) to get

− i
ω

(k + κm)δ0mce
−ik =

N∑
n=−2

[Ane
−iσn(σn + κm)−Bne

iσn(σn − κm)]bmn, (4.73)

m = 0, 1, 2, ..., N . With the same procedure, we match fluxes and potentials

at the common boundary between regions 2 and 4, 3 and 4 (first and second

conditions of equations (4.65) and (4.66)) to obtain

Tm =
N∑

n=−2

[Ane
i(σn−κm) +Bne

−i(σn+κm)]bmn, (4.74)

with m = 0, 1, 2, ..., N and

N∑
n=−2

[Ane
iσn(σn − κm)−Bne

−iσn(σn + κm)]bmn = 0, (4.75)

with m = 0, 1, 2, ..., N . Looking at equations (4.71), (4.73)-(4.75), note that

once the An and Bn are determined, the Rn and Tn can be found using (4.71)

and (4.74), respectively. To obtain numerical values of the An and Bn we can

use expressions (4.73) and (4.75), but at this point we have 2(N + 1) equations in

2(N+3) unknows, therefore we need four additional equations to close the system.

These are provided by the clamping conditions on the plate (4.61) which we have
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not used yet, [40]. Substituting either φ2 or φ3 into (4.61), we get

N∑
n=−2

(Ane
−iσn +Bne

iσn)fn = 0, (4.76)

N∑
n=−2

(Ane
iσn +Bne

−iσn)fn = 0, (4.77)

N∑
n=−2

(Anσne
−iσn −Bnσne

iσn)fn = 0, (4.78)

N∑
n=−2

(Anσne
iσn −Bnσne

−iσn)fn = 0, (4.79)

[40], where fn is given in (4.41). The system (4.73), (4.75)-(4.79) can now be

solved numerically with a suitable choice of N. The numerical solution and all the

quantities of engineering interest have been obtained implementing a Matlab code.

In the framework of this thesis, we are interested, for example, in comparing the

result of the average power extracted (4.49) from both the PWEC configurations

described. Therefore we select a typical plate configuration for the piezoelectric

wave energy harvester clamped at both ends to rigid support systems in the ocean.

Referring to figure 4.6, the length of the plate is 2L′ = 20 m, the water depth is h′

= 10 m and the submergence of the plate is d′ = 2 m. In addition we assume that

the amplitude of the ocean surface waves is A′ = 1 m and the bimorph piezoelectric

plate is characterised by: silicone rubber layer (substrate) of thickness d′0 = 0.01

m, polyvinylidene fluoride (PVDF) piezoelectric layers of thickness d′p = 1.1×10−4

m, [40]. Typical values of the system coefficients for commercial silicone rubber

and PVDF are shown in the following Tab. 4.3, see e.g. [16, 17,40,44].

Table 4.3: Silicone rubber and PVDF coefficients for a PWEC clamped at both ends

to rigid support systems in the ocean.

Stiffness Piezoelectric coupling parameter Resistive term
β α ξ

3.8× 10−4 0.21 1

To predict the power generated from the double-clamped PWEC above, we use

the linearised theory derived in the subsection 4.1.2. Hence, the average extracted
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power per unit width is expressed by equation (4.49), whose behaviour is shown

in Fig. 4.8 with respect to the period of the incident waves. Although capture

width ratio (CRW) has been used widely to assess the performance of wave energy

devices, it is not a physically meaningful indicator for a 2D device of infinite length

such as the one considered in this work. As already seen before for the case of

the PWEC moored on a vertical wall, the hydro-electromechanical behaviour of

the device causes sharp resonant peaks in the generated power. Here we consider

13 vibrational modes (because of a faster level of convergence of this model with

respect to the one of the PWEC moored on a breakwater) and we identify the

existence of 4 resonant periods in the interval [4-9] s with a maximum peak of

about 4.4 kW/m at T ′ ' 5.4 s. Note that this value is about half the power

output of a half-length (L′= 10 m) bimorph piezoelectric plate WEC moored on

a caisson breakwater, see again Fig. 4.5. Hence, the effect of the breakwater on

the power output of the system is extremely beneficial, as it allows one to extract

roughly twice the amount of energy, but using half the material, of a system

without breakwater.
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Figure 4.8: Wave power generated by a bimorph piezoelectric plate WECs clamped at

both ends to rigid support systems in the ocean versus the period of the incident wave.

The submergence is d′ = 2 m in a water depth h′ = 10 m. β = 3.8 × 10−4, α = 0.21

and ξ = 1. The first 13 modes have been considered.

4.3 Convergence tests

Here, I provide some considerations on the numerical solution of the linear system

of equations (4.33), (4.36), (4.37)-(4.40) which describe the hydro-electromechanical

model for the PWEC moored on a breakwater analysed in section 4.1. The nu-

merical solution has been obtained by truncating the series expansions up to a

suitable number of terms, N . To determine an appropriate value for N in our nu-

merical calculations, I performed a convergence test by analysing the influence of

N on the power output of the system P (4.49). To assess convergence I calculated

the relative error at the nth numerical iteration as

εn =
|Pn+1 − Pn|

max{|Pn+1|, |Pn|}
. (4.80)

The major convergence problems occur around the resonant periods of the

device, at which the power output is significant, as shown in Fig. 4.9. The plot
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shows the behaviour of the power output of the system for two different values of

N versus the period of the incident wave.
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Figure 4.9: Behaviour of the average extracted power by the device versus the period

of the incident waves considering two different values of N . There is a visible good

convergence in the power output far from the resonant peaks between N = 9 and

N = 15. On the other end, convergence tests need to be carried on around the resonant

periods of the device.

Note that there is practically no visible difference between the cases N = 9

and N = 15 far from the peaks. In fact the maximum error εN in the interval

[6− 7] s is of the order of O(10−2) and this trend is maintained for any values of

N between 9 and 16. However, to select a suitable value of N , the convergence

around the peaks needs to be further investigated.

Fig. 4.10 shows the relative error of the wave power generated around the

maximum resonant peak at the 15th numerical iteration ( i.e. ε15 = |P16 −

P15|/max{|P16|, |P15|}) versus the period of the incident wave. The average error

in the interval [5 − 6] s is of the order of O(10−2). The latter is accurate enough

for graphical purposes in all cases considered here. Hence N = 15 provides an

adequate level of convergence. That corresponds to considering up to 18 flexural

modes on the plate, n = −2,−1, ..., 15.
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Figure 4.10: Relative error ε15 of the output power generated around the maximum

resonant peak by a bimorph PWEC moored on a caisson breakwater versus the period

of the incident wave. N = 15 and N = 16 have been considered for a convergence test.

The average error in the interval [5− 6] s is of the order of O(10−2).

4.3.1 Approach to a parametric analysis: water depth

Another example of convergence test has been undertaken at the beginning of a

parametric analysis whose purpose was to find the optimal device configuration.

In particular, first, I wanted to investigate the behaviour of the power output of

the system, mooring the PWEC on a caisson breakwater at different water depths,

d′. Since the resonant periods of the device are the most delicate areas in terms of

convergence analysis, numerically, I solved the linear system (4.33), (4.36), (4.37)-

(4.40) around the maximum peak of the extracted power. Hence, I selected the

periods of the incident wave in the interval [5 − 6] s and compared the power

behaviour obtained in subsection 4.1.3 with the power extracted from a PWEC

characterised by the same geometry but a lower mooring depth. Fig. 4.11 shows

the wave power generated around the maximum resonant peak by two flexible

piezoelectric energy harvesters moored on a caisson breakwater at different water
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depths, d′ = 2 m and d′ = 4 m.

Figure 4.11: Wave power generated around the maximum resonant peak by two bi-

morph piezoelectric plate WECs moored on a caisson breakwater versus the period of

the incident wave. The length of the plates is L′ = 10 m and the water depth is h′ =

10 m. The green line identifies the PWEC moored at d′ = 2 m (the first 18 modes have

been considered), while the violet line corresponds to the same PWEC moored at d′ = 4

m (the first 19 modes have been considered). Note that comparing the power generated

at both the maximum peaks, we observe a significant drop of the performance of the

device.

As expected, there is a significant drop of the performance of the device when

the mooring depth increases because of the reduction of the amplitude of the

progressive waves travelling along the plate. The violet curve has been obtained

by truncating the series expansions of the linear system (4.33), (4.36), (4.37)-(4.40)

up to N = 16 because, as shown in Fig. 4.12, the convergence test denotes an

accurate agreement between the cases N = 16 and N = 17 with a maximum error

of 2%. In the plot there is practically no visible difference between the two curves,

so that N = 16 provides an adequate level of convergence. That corresponds to

considering up to 19 flexural modes on the plate, n = −2,−1, ..., 16, see again Fig.

4.11.
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Figure 4.12: Detail of the wave power generated around the maximum resonant peak by

a bimorph PWEC moored on a caisson breakwater at a water depth d′ = 4 m versus the

period of the incident wave. N = 16 and N = 17 have been considered for a convergence

test. The maximum error in the interval [5− 6] s is of the order of O(10−2).

Despite these preliminary good results, I need to point out some difficulties in

finding a correct solution for the linear system of equations (4.33), (4.36), (4.37)-

(4.40) in the case of d′ = 4 m. In particular, I am dealing with a quasi-singular mat-

rix which generates a badly conditioned problem and loss of numerical precision.

This means that if I change the initial data, even by a tiny bit, I obtain very dif-

ferent results. Hence, the eigenvalues σn, solutions of the hydro-electromechanical

dispersion relation F (σn) = 0, see (4.32), sometimes correspond to totally wrong

values that cannot be accepted. This happens mainly because the method I used

to solve equation (4.32), i.e. a two-dimensional Newton-Raphson method, on one

side allows to easily obtain all the quantities of engineering interest and clearly

demonstrate the feasibility of the device, but on the other hand, it is based on the

function F (σn), its derivative F ′(σn) and an initial guess (a grid points). First of

all, the expression for F (σn) include multiplications between hyperbolic sines (or

cosines) (very big terms), and negative exponentials (very small terms) which is
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not easy to compute numerically to a high order of precision with Matlab. But

above all, the initial grid has a fundamental role in terms of both grid dimensions

and grid spacing. The grid I am concerned with is in the complex σn plane already

seen in Fig. 4.4. Every time I run the Matlab code to obtain the eigenvalues σn,

I need to specify an initial input to the code that consists of giving dimensions

and spacing of a suitable sub-domain in complex plane, both along the horizontal

and the vertical directions. Tab. 4.4 shows an example of how the initial grid

can badly affect the convergence of the numerical solutions of the system (4.33),

(4.36), (4.37)-(4.40). Case 1 and case 2 are obtained changing the grid dimension

and the spacing along the vertical axes ={σn}. In particular setting a maximum

value of ={σn} = 30 with a spacing of 100, yields numerical eigenvalues reported

in case 1, while changing the maximum value of ={σn} to 51 with a spacing of

300, yields numerical eigenvalues reported in case 2, see second and third column

of Tab 4.4, respectively. As a result of a dense grid, solutions of the dispersion

relation (4.32) which are close to each other, converge on the same eigenvalues,

therefore I obtain repeated eigenvalues (which are subsequently discarded by the

Matlab code in order to proceed with the analysis). This happens for both sets

of data, but in case 2, the grid is bigger and denser. In this case I get more ei-

genvalues (all values of case 1 plus new ones), therefore the power output of the

system is different, i.e. about 9.7 kW/m against 17.1 kW/m obtained in case 1.

The first 24 and 33 flexural plate modes have been considered respectively in case

1 and 2. Note that, despite considering high modes (N > 16), the convergence of

the results is still very slow and the power output of the system keeps changing

considerably.

In addition to this analysis, mathematically, I used the method of matching

potentials as in [7,29,40]. Hassan, Meylan [29] and Renzi [40] already pointed out

that the eigenfunction-matching method does not have an optimal convergence

because of the square-root singularity at the plate edge [25]. In fact, even in

the case of d′ = 2 m, I noted pretty slow convergence rates. An improvement of

the method used to solve the dispersion relation (4.32) could be to use numerical

optimisation methods. I have tried to use Matlab Optimization Toolbox but

with unsatisfactory results. Also, the eigenvalues σn could be calculated still
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Table 4.4: Numerical values of the complex eigenvalues σn obtained solving the dis-

persion relation (4.32) with different grid dimension and spacing along the vertical axes

={σn}. Parameters are: A′ = 1 m, T ′ = 4 s, d′ = 4 m, α = 0.24, β = 3.8× 10−4, ξ = 1.

Grid characteristic are as follows. Case 1: Max ={σn} = 30, grid spacing along ={σn}
= 100. Case 2: Max ={σn} = 51, grid spacing along ={σn} = 300.

Eigenvalue Numerical Value - case 1 Numerical Value - case 2
σ−2 7.8388 -23.8984i 7.8388 -23.8984i
σ−1 0.5694 -20.1779i 0.5694 -20.1779i
σ0 0.5694 -20.1779i 0.5694 -20.1779i
σ1 1.6049 -19.3985i 0.5694 -20.1779i
σ2 1.6049 -19.3985i 1.6049 -19.3985i
σ3 1.6049 -19.3985i 1.6049 -19.3985i
σ4 1.6049 -19.3985i 1.6049 -19.3985i
σ5 2.5479 + 0.0000i 1.6049 -19.3985i
σ6 25.1957 + 0.1412i 1.6049 -19.3985i
σ7 0.0000 + 2.3110i 2.5479 + 0.0000i
σ8 0.0000 + 5.8779i 25.1957 + 0.1412i
σ9 0.0002 + 9.1574i 0.0000 + 2.3110i
σ10 0.0014 +12.4018i 0.0000 + 5.8779i
σ11 0.0000 +15.5490i 0.0002 + 9.1574i
σ12 0.0139 +19.1648i 0.0014 +12.4018i
σ13 1.5773 +19.3884i 0.0000 +15.5490i
σ14 1.5773 +19.3884i 0.0139 +19.1648i
σ15 1.5773 +19.3884i 1.5773 +19.3884i
σ16 1.5773 +19.3884i 1.5773 +19.3884i
σ17 1.5773 +19.3884i 1.5773 +19.3884i
σ18 0.6098 +20.1940i 1.5773 +19.3884i
σ19 0.0092 +22.1838i 1.5773 +19.3884i
σ20 7.5728 +23.9848i 0.6098 +20.1940i
σ21 0.0104 +25.6324i 0.0092 +22.1838i
σ22 7.5728 +23.9848i
σ23 0.0104 +25.6324i
σ24 0.0214 +30.5280i
σ25 0.0003 +31.3487i
σ26 0.0040 +36.5173i
σ27 0.0039 +38.9709i
σ28 0.0018 +41.8241i
σ29 0.0022 +46.9228i
σ30 0.0004 +47.0998i

using a Newton-Raphson method but with an analitical approach to derive the

Jacobian matrix instead of a numerical one. Another possibility is to change model

completely in favour of a different approach based on the so-called ”dry modes”

of the system, for which there is no need to solve the dispersion relation [33].
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However, to the best of my knowledge, to date there is no available application

of the method to coupled piezo-electric problems. Finally, the convergence issues

related to the singularity at the tip could be overcome by developing a new model

based on integral equations as shown in the next section for the FBWEC.



Chapter 5

Floater Blanket Wave Energy

Converter

In this section, I analyse a novel wave-structure interaction problem whose macro

structure is similar to a flexible carpet which I name Floater Blanket (FB). The

common feature with the flexible piezoelectric devices of sections 4.1 and 4.2 is the

overall shape of a plate, in the sense that the thickness in the vertical direction of

both FB and P devices is much smaller than their dimensions (length and width)

in the other two directions. However the PWEC is a flexible plate characterised

by a bimorph configuration of the piezoelectric material, in which piezoelectric

patches are attached on both sides of an elastic substrate. In addition the power

take-off (PTO) system is in the piezoelectric material itself because of its ability

to generate an electric potential when deformed due to vibrations (sensor effect).

On the other hand, the floater blanket wave energy converter (FBWEC) consists

of a grid of interconnected floater elements with each floater being connected to a

piston-type hydraulic pumping system (a multi-piston pump) as shown in Fig. 5.1.

Each single element works similarly to a point-absorber which absorbs wave energy

through its vertical movements at the water surface. The relative motion between

the wave-activated float on the sea surface and a support structure activates a

PTO system. Also the FB device floats on the free surface while both the PWECs

studied in this thesis are clamped at a certain water depth d′, see agin Fig. 4.1. The

movement of a single hinged floater affects inevitably the behaviour of the whole

system generating a complex wave-structure interaction problem. Therefore, in the

79



CHAPTER 5. FLOATER BLANKET WAVE ENERGY CONVERTER 80

framework of this thesis, I derive and solve the radiation problem for a single row

of interconnected floater elements of a FBWEC, considering a two-dimensional

analysis as the first step to approach the hydrodynamic characterisation of the

whole floater blanket. This will form the basis for the study of a 3D case.

Figure 5.1: The floater blanket designed by the University of Groningen as part of the

Ocean Grazer massive platform, [3].

A wave train incident upon a floating structure will set the structure in motion

to produce a radiated field and also will be scattered to produce a diffracted wave

field [25, 27]. By linear superposition, the velocity potential may be decomposed

into two parts as

Φ′ = Φ′R + Φ′D. (5.1)

The potential Φ′R is the solution of the radiation problem in which the structure

is forced to oscillate in the absence of an incident wave, see following section. The

potential Φ′D is the solution of the diffraction problem in which the structure is

held fixed in incident waves and it may be further decomposed as

Φ′D = Φ′I + Φ′S, (5.2)

where Φ′I represents the incident wave train and Φ′S the scattered waves. In

the framework of this thesis, I analyse wave-structure interactions solving the
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radiation problem and leaving details of the diffraction problem in appendix D for

further research developments.

Let me consider the vertical movement of a single generic floater element,

which I name m, hence the two-dimensional geometry of the system is as shown

in Fig. 5.2. I limit the analysis to two-dimensional effects. Referring to Fig. 5.2,

I define a two-dimensional coordinate system (x′, z′), in which the z′-axis points

upwards from the undisturbed water level z′ = 0. The x′-axis is directed along

the direction of propagation of incoming waves of amplitude A′ and frequency ω′.

Variables with primes denote again physical quantities. The bottom of the ocean

is located at a constant depth z′ = −h′ and the device is floating on the free

surface in correspondence of an ocean step characterised by a height of c′, while a′

is the submergence of the device. Moreover, without loss of generality, I assume

that the first and the last floaters are fixed. For example, they could represent

mooring points of the system.

This chapter presents a two-dimensional analytical model derived for the FB-

WEC of Fig. 5.2 and it is organised as follows. First I decompose the frequency-

domain problem in the radiation and diffraction potentials problems. I derive and

solve the radiation problem in the internal region by splitting the fluid domain

in three different areas and using the matching conditions at the common bound-

aries of the three domains (section 5.1). Then, I derive and solve the radiation

problem in the external regions by using a solution method based on the integral

equations (section 5.2). Hence, I apply the law of conservation of mass flow rate in

the fluid volume in the internal region to obtain the continuity equation (section

5.4) so that I have a well-posed boundary-value radiation problem (section 5.5),

whose numerical solutions are identified developing suitable Matlab programs, see

chapter 6.

In appendix B I derive an alternative approach based on a suitable Bessho-

Newman relation obtained applying Green’s theorem to the radiation and diffrac-

tion problems. This method can be used in substitution of the continuity equation

and considerations on symmetry arguments derived in section 5.4. However, this

implies the analysis and solution of the diffraction problem (appendix D), which

inevitably makes the solution procedure more onerous.
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Figure 5.2: Geometry of the FBWEC system in physical variables.

5.1 Radiation: internal

Let me consider the vertical movement of the element m in the z′ direction as

schematically shown in Fig. 5.3. In the following, the subscript m denotes the

dependance from the movement of the m element. From now on primes will be

dropped for simplicity in the whole chapter.

The dynamic of the system, which consists of ocean surface waves and floater

blanket is described according to the theory developed in chapter 2. Due to

linearity, I expand the potential as
∑M

m=1 VmΦm, where Vm is the unknown vertical

velocity of the m-th element, and Φm is the relevant potential. I solve the radiation

problem in the internal region by splitting the fluid domain in three different areas

and applying the matching conditions at the common boundaries of the three

domains. Note that the method applied here, i.e. matching potentials has been

used also to derive the boundary-value problem for both the piezoelectric WECs

and the slow convergence rate due to the plate edge has been already pointed

out, see 4.3. Nevertheless, in this case, I deal with a ’smooth’ fluid domain since

there are no edges or tips in the internal region, therefore the matching potentials

method represents a good choice to derive a well-posed boundary-value problem

to describe the radiation of the FBWEC system in the internal region.
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Figure 5.3: Geometry of the FBWEC system with emphasis on the internal region

(yellow) which corresponds to the fluid domain below the floating device and above

ocean step. Moreover, the internal region is split in three subareas regarding the position

of the m-th floater.

5.1.1 Governing equations

In the following subsection I make a list of the governing partial differential equa-

tions for the problem described in Fig. 5.3:

∇2Φ(1,2,3)
m = 0, 0 < x < L, −h+ c ≤ z ≤ −a, (5.3)

Φ(1,2,3)
mz = 0, 0 < x < L, z = −h+ c, (5.4)

Φ(1)
mz = 0, x0 < x < xm−1, z = −a, (5.5)

Φ(2)
mz = 1, xm−1 < x < xm, z = −a, (5.6)

Φ(3)
mz = 0, xm < x < L, z = −a, (5.7)

where Φ
(i)
m is the potential in region i = 1, 2, 3.
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5.1.2 Expressions for the internal potentials

The wave forcing is harmonic with frequency ω, so I use (4.18) to factor out the

time variation: Φ
(1,2,3)
m = <{φ(1,2,3)

m (x, z)e−iωt}. To find solutions in terms of the

spatial potential φm(x, z), I consider φm(x, z) = X(x)Z(z) so that

∇2φm = φmxx + φmzz = XxxZ + ZzzX,

(separation of variables). Now, solving the separated equations, I obtain

X(x) = Ame
ikx +Bme

−ikx

and

Z(z) = am cosh[k(z + h− c)] + bm sinh[k(z + h− c)],

hence φ
(1)
m is expressed by

φ(1)
m (x, z) = (Ame

ikx+Bme
−ikx)[am cosh k(z+h− c)] + bm sinh k(z+h− c)], (5.8)

where Am, Bm, am and bm are integration constants. I use equation (5.4) and

I obtain bm = 0, then (5.5) gives me a condition on k, when x0 ≤ x ≤ xm−1:

k sinh[k(h− a− c)] = 0. (5.9)

The latter admits a real solution for k if and only if k = 0. To find possible

complex solutions, I analyse the equation (5.9) in the complex plane. Substitute

k = ik̃ to get

ik̃ sinh[ik̃(h− a− c)] = 0, (5.10)

from which I obtain our condition on k̃:

k̃p =
pπ

h− a− c
, p = 1, 2, 3... (5.11)
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Therefore,

φ(1)
m (x, z) = A0mx+B0m +

+∞∑
p=1

(Apme
−k̃px +Bpme

k̃px) cos[k̃p(z + h− c)], (5.12)

with x0 ≤ x ≤ xm−1. Following the same procedure for the problem described

by the equations (5.3), (5.4) and (5.7), I obtain

φ(3)
m (x, z) = C0m(x− L) +D0m +

+∞∑
p=1

(Cpme
−k̃p(x−L) +Dpme

k̃p(x−L))

cos[k̃p(z + h− c)], xm ≤ x ≤ L. (5.13)

Now, let me turn to region 2. Since (5.6) is a non-homogeneous partial dif-

ferential equation, to get an expression for the spatial velocity φm in region 2, I

follow the method used by Linton and McIver, see [25]. I assume that φ
(2)
m can be

written as the sum of homogeneous and particular solutions, i.e. φ
(2)
m = φ

(2)
mh+φ

(2)

m .

I can find the expression for φ
(2)
mh as I did for regions 1 and 3:

φ
(2)
mh(x, z) = E0mx+ F0m +

+∞∑
p=1

(Epme
−k̃px + Fpme

k̃px) cos[k̃p(z + h− c)]. (5.14)

To obtain the expression for the particular solution φ
(2)

m I use the equation for

a straight line connecting two points (φ
(2)

mz = 0, z = −h+c) and (φ
(2)

mz = 1, z = −a)

which come directly from equations (5.4) and (5.6). Fig. 5.4 may help to figure

out the schematic situation.
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z = 0

z 

Φ"#

_
-h + c

- a

1 (2)

Figure 5.4: Schematic sketch used to get an expression for the particular solution φ
(2)
m

in the region 2. Graphic expression for a straight line given the following two points:

(φ
(2)
mz = 0, z = −h+ c) and (φ

(2)
mz = 1, z = −a).

This gives

φ
(2)

mz =
z + h− c
h− a− c

.

Integrating φ
(2)

mz along z and using equation (5.3), I get

φ
(2)

m (x, z) =
(z + h− c)2 − (x− xm−1)(x− xm)

2(h− a− c)
, (5.15)

so that the full solution in region 2 is

φ(2)
m (x, z) = E0mx+ F0m +

+∞∑
p=1

(Epme
−k̃px + Fpme

k̃px) cos[k̃p(z + h− c)]

+
(z + h− c)2 − (x− xm−1)(x− xm)

2(h− a− c)
, xm−1 ≤ xm. (5.16)

5.1.3 Amplitude coefficients

Having obtained the expressions for φ
(1)
m , φ

(2)
m and φ

(3)
m , see respectively (5.12),

(5.13) and (5.16), I am now in a position to express the amplitude coefficients

Apm, Bpm, Cpm and Dpm in terms of Epm and Fpm and A0m, B0m, C0m and D0m in

terms of E0m and F0m and A0m, B0m, C0m and D0m in terms of E0m and F0m by

using the following matching conditions at the common boundaries of the three
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internal domains:

φ(1)
m = φ(2)

m , φ(1)
mx = φ(2)

mx, x = xm−1, z ∈ (−h+ c, −a), (5.17)

φ(2)
m = φ(3)

m , φ(2)
mx = φ(3)

mx, x = xm, z ∈ (−h+ c, −a), (5.18)

where the φ
(i)
m denote the potential φ in each area i = 1, 2, 3 when the m-

th element of the FBWEC moves along the z-direction with unit velocity. First,

substitute the solutions φ
(1)
m (5.12) and φ

(2)
m (5.16) into the first condition of (5.17).

Then, multiply by cos[k̃q(z + h − c)] with q = 1, 2, ..., integrate along z between

z = −h+ c and z = −a to obtain

Apme
−k̃pxm−1 +Bpme

k̃pxm−1 = Epme
−k̃pxm−1 + Fpme

k̃pxm−1 +
2(−1)p

k̃2
p(h− a− c)

. (5.19)

In the latter, the orthogonality of the cosines has been exploited and p =

1, 2, .... Using the same procedure, from the second condition of (5.17) and from

(5.18) I obtain, respectively,

Apme
−k̃pxm−1 −Bpme

k̃pxm−1 = Epme
−k̃pxm−1 − Fpmek̃pxm−1 , (5.20)

Cpme
−k̃p(xm−L) +Dpme

k̃p(xm−L) = Epme
−k̃pxm + Fpme

k̃pxm +
2(−1)p

k̃2
p(h− a− c)

(5.21)

and

Cpme
−k̃p(xm−L) −Dpme

k̃p(xm−L) = Epme
−k̃pxm − Fpmek̃pxm . (5.22)

Hence I can solve the system of equations (5.19)-(5.22) to obtain

Apm = Epm +
(−1)pek̃pxm−1

k̃2
p(h− a− c)

, (5.23)
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Bpm = Fpm +
(−1)pe−k̃pxm−1

k̃2
p(h− a− c)

, (5.24)

Cpm = Epme
−k̃pL +

(−1)pek̃p(xm−L)

k̃2
p(h− a− c)

(5.25)

and

Dpm = Fpme
k̃pL +

(−1)pe−k̃p(xm−L)

k̃2
p(h− a− c)

, (5.26)

with p = 1, 2, .... To obtain the expressions of A0m, B0m, C0m and D0m in

terms of E0m and F0m, I repeat the procedure above but this time I multiply by

cos[k̃q(z + h− c)] with q = 0. Hence, the second condition of (5.17) yields

A0m = E0m +
xm − xm−1

2(h− a− c)
, (5.27)

while from the first condition of (5.17) I obtain

B0m = F0m + xm−1(E0m − A0m) +
h− a− c

6
. (5.28)

Finally, C0m and D0m are given from the second and first conditions of (5.18)

respectively:

C0m = E0m +
xm−1 − xm

2(h− a− c)
(5.29)

and

D0m = F0m + E0mxm − C0m(xm − L) +
h− a− c

6
. (5.30)

These equations match the potential below the moving body m with the po-

tentials below the static bodies in the inner region. Now I need to link the inner

wave field with the outer wave field at the common boundaries and this will give

me a system of integral equations, see section 5.2.
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5.2 Radiation: external

I solve the radiation problem in the external regions left (L) and right (R), defining

respectively the problem at the interface x = 0 and the problem at the interface

x = L and using a solution method based on the integral equations. This procedure

is mathematically more onerous respect to the potentials matching method but

allows to avoid singularity issues which would definitely occur both at the edges

of the floater blanket and at the corners of the ocean step.

5.2.1 Left region (L)

1 m2 M… …

z

x

h

L

c

a

h - a - cLeft region x = 0

B

A

Figure 5.5: Left region and interface x = 0.

Let φLm be the spatial potential in the left region, x < 0. Looking at Fig. 5.5,

let me define the problem at the interface x = 0 as follow:

∂φLm
∂x

= 0, x = 0−, z ∈ (−h, −h+ c), z ∈ (−a, 0), (5.31)

φLm = φ(1)
m , x = 0−, z ∈ (−h+ c, −a), (5.32)

∂φLm
∂x

=
∂φ

(1)
m

∂x
, x = 0, z ∈ (−h+ c, −a) (5.33)
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and

|∇φLm| = O(r−1/3) on A and B, see again Fig. 5.5, (5.34)

where r is the distance from an edge. Using the method in [24], let me now

define

∂φLm
∂x

(0−, z)
.
= fLm(z), z ∈ (−h, 0). (5.35)

Then (5.31) becomes

fLm(z) = 0, z ∈ (−h, −h+ c), z ∈ (−a, 0) (5.36)

and (5.33) gives

fLm(z) =
∂φ

(1)
m

∂x

∣∣∣∣
x=0

, z ∈ (−h+ c, −a). (5.37)

Also, due to the edge condition described by (5.34), I must have the require-

ment that

fLm = O(|z + h− c|−1/3), z → −h+ c (5.38)

and

fLm = O(|z + a|−1/3), z → −a. (5.39)

Now, the spatial velocity potential in the left region φLm(x, z) is expressed by

the usual form

φLm(x, z) = a0mZ0(z)e−ikx +
+∞∑
p=1

apmZp(z)ekpx, x ∈ (−∞, 0−), z ∈ (−h, 0),

(5.40)

where the Zp(z) are the orthonormal functions:

Zp(z) =

√
2 cosh[κp(z + h)]

(h+ g/ω2 sinh2(κph))1/2
, p = 0, 1, 2, ...
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In the latter, κ0 = k and κp = ikp with p = 1, 2, .. solve the dispersion rela-

tions ω2 = gk tanh(kh) and ω2 = −gkp tan(kph), respectively. The a0m and apm

are unknown coefficients. The Zp(z) satisfy
∫ 0

−h ZpZq dz = δpq, where δpq is the

Kronecker delta, see [27] and [40]. Hence substituting (5.40) in (5.35), multiplying

by Zq(z), q = 0, 1, 2..., and integrating along z, I obtain

−ika0m =

∫ −a
−h+c

fLm(z)Z0(z) dz (5.41)

and

apmkp =

∫ −a
−h+c

fLm(z)Zp(z) dz. (5.42)

In (5.41) and (5.42), condition (5.36) has been used and the orthogonality of

the vertical modes Zq has been exploited. Using the same method, conditions

(5.32) and (5.37) yield respectively

Apm +Bpm =
2

h− a− c
[a0m=0p +

+∞∑
q=1

aqm=qp] (5.43)

and

Bpm − Apm =
2

k̃p(h− a− c)

∫ −a
−h+c

fLm(z) cos[k̃p(z + h− c)] dz, (5.44)

where I exploited again the orthogonality of cosines. In (5.43),

=0p =

∫ −a
−h+c

Z0(z) cos[k̃p(z + h− c)] dz (5.45)

and

=qp =

∫ −a
−h+c

Zq(z) cos[k̃p(z + h− c)] dz. (5.46)

Finally, the integral equations for the left region can be obtained by substitut-



CHAPTER 5. FLOATER BLANKET WAVE ENERGY CONVERTER 92

ing (5.12) and (5.40) in (5.33). This yields

−ika0mZ0(z)+
+∞∑
p=1

apmZp(z) = A0m+
+∞∑
p=1

k̃p(Bpm−Apm) cos[k̃p(z+h−c)]. (5.47)

The amplitude coefficient A0m can be determined by substituting (5.40) into

(5.37) and integrating (5.37) along z between z = −h+ c and z = −a:

A0m =
1

h− a− c

∫ −a
−h+c

fLm(z) dz. (5.48)

Now I substitute (5.42), (5.44) and (5.48) in (5.47) and I get the integral

equation:

∫ −a
−h+c

FLm(u)M(u, z) du = Z0(z), (5.49)

where FLm(u) = −fLm(u)/ika0m and M(u, z) is real and symmetric in u and

z and is expressed by

M(u, z) =
1

h− a− c

[
2

+∞∑
p=1

cos[k̃p(u+ h− c)] cos[k̃p(z + h− c)] + 1

]

−
+∞∑
p=1

Zp(u)Zp(z). (5.50)

Solving (5.49) with respect to fLm will allow me to determine the coefficients

a0m and apm from (5.41) and (5.42), respectively. Then Apm and Bpm will be

obtained from (5.43) and (5.44), respectively. Finally the coefficient B0m in (5.12)

is obtained by integrating (5.32) along z between z = −h+ c and z = −a:

B0m =
1

h− a− c

[
a0m

∫ −a
−h+c

Z0(z) dz +
+∞∑
p=1

apm

∫ −a
−h+c

Zp(z) dz

]
. (5.51)
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5.2.2 Right region (R)

As I did for the left region, I now obtain the integral relation for the right region,

see Fig. 5.6.

1 m2 M… …

z

x

h

L

c

a

h - a - c Right regionx = L

D

C

Figure 5.6: Right region and interface x = L.

The problem at the interface x = L is

∂φRm
∂x

= 0, x = L+, z ∈ (−h, −h+ c), z ∈ (−a, 0), (5.52)

φRm = φ(3)
m , x = L, z ∈ (−h+ c, −a), (5.53)

∂φRm
∂x

=
∂φ

(3)
m

∂x
, x = L, z ∈ (−h+ c, −a) (5.54)

and

|∇φRm| = O(r−1/3) on C and D, see again Fig.5.6. (5.55)

Following the procedure in section 5.2.1, let me now define

∂φRm
∂x

(L+, z)
.
= fRm(z), z ∈ (−h, 0). (5.56)
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Then (5.52) gives

fRm(z) = 0, z ∈ (−h, −h+ c), z ∈ (−a, 0) (5.57)

and (5.53) gives

fRm(z) =
∂φ

(3)
m

∂x

∣∣∣∣
x=L

, z ∈ (−h+ c, −a). (5.58)

Also, due to the edge condition described by (5.55), I must have the require-

ment that

fRm = O(|z + h− c|−1/3), z → −h+ c (5.59)

and

fRm = O(|z + a|−1/3), z → −a. (5.60)

Now, the spatial velocity potential in the right region φRm(x, z) is expressed

by

φRm(x, z) = b0mZ0(z)eik(x−L) +
+∞∑
p=1

bpmZp(z)e−kp(x−L), x ∈ (L+, +∞),

z ∈ (−h, 0).

(5.61)

Hence substituting (5.61) in (5.56), multiplying by Zq(z) and integrating along

z, I obtain

ikb0m =

∫ −a
−h+c

fRm(z)Z0(z) dz (5.62)

and

−bpmkp =

∫ −a
−h+c

fRm(z)Zp(z) dz. (5.63)

In (5.62) and (5.63), condition (5.57) has been used and the orthogonality of
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the vertical modes Zq has been exploited. Now the condition (5.53) and (5.58)

yield respectively

Cpm +Dpm =
2

h− a− c
[b0m=0p +

+∞∑
q=1

bqm=qp] (5.64)

and

Dpm − Cpm =
2

k̃p(h− a− c)

∫ −a
−h+c

fRm(z) cos[k̃p(z + h− c)] dz. (5.65)

Finally the integral equations for the right region is

∫ −a
−h+c

FRm(u)M(u, z) du = Z0(z), (5.66)

which is the analogous of the equation (5.49). In (5.66), FRm(u) = fRm(u)/ikb0m.

Solving (5.66) with respect to fRm will allow me to determine the coefficients b0m

and bpm from (5.62) and (5.63), respectively. Then Cpm and Dpm will be obtained

from (5.64) and (5.65), respectively. Finally C0m and D0m in (5.13) can be ob-

tained integrating respectively (5.58) and (5.53) along z between z = −h+ c and

z = −a, which gives:

C0m =
1

h− a− c

∫ −a
−h+c

fRm(z) dz, (5.67)

D0m =
1

h− a− c

[
b0m

∫ −a
−h+c

Z0(z) dz +
+∞∑
p=1

bpm

∫ −a
−h+c

Zp(z) dz

]
. (5.68)

5.3 Useful identities

By inspection, equations (5.49) and (5.66) yield the following:

∫ −a
−h+c

[FLm(u)− FRm(u)]M(u, z) du = 0, ∀z ∈ [−h+ c, −a], (5.69)
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so that

FLm(u) = FRm(u) = Fm(u). (5.70)

The latter yields

f
(u)
Lm

a0m

+
f

(u)
Rm

b0m

= 0, u ∈ (−h+ c, −a) (5.71)

and

f
(u)
Rm

b0m

− f
(u)
Lm

a0m

= 2Fm(u). (5.72)

In addition, equations (5.42), (5.43) and (5.64) can be combined to get

Apm +Bpm

a0m

=
Cpm +Dpm

b0m

(5.73)

or similarly

Apm +Bpm

fLm(u)
= −Cpm +Dpm

fRm(u)
. (5.74)

Analogously, equations (5.44) and (5.65) can be combined to get

Apm −Bpm

a0m

=
Dpm − Cpm

b0m

(5.75)

and

Apm −Bpm

fLm(u)
=
Cpm −Dpm

fRm(u)
, (5.76)

so that I can obtain

Apm
a0m

=
Dpm

b0m

and
Bpm

a0m

=
Cpm
b0m

. (5.77)

Therefore, if I solve the problem in the left region for Apm and Bpm, I also

have the solution of the problem in the right region for Cpm and Dpm. Note

that the full solution of the problem, given by (5.49) and (5.66), respectively, still

depends on the unknown constants a0m and b0m. These can be determined by

using the continuity equation and symmetry arguments, as shown in the following
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section, in which I use the law of conservation of mass flow rate in the internal

region to get the continuity equation. In addition, in appendix B, I derive an

alternative relation between a0m and b0m based on the solution of both radiation

and diffraction problems which yields a novel Bessho-Newman relation for the

floater blanket.

5.4 Continuity equation

Let me consider that the vertical displacement of the floaterm along the z direction

is Xm as shown in Fig. 5.7.

1 m2 M… …

z

x

internal region

Xm
z = - a 

z = - h + c  

left (L) right (R)

Figure 5.7: Xm is the vertical displacement of the floater m along the z direction.

Considering the incoming (left) and outcoming (right) mass flow rates, I derive the

continuity equation in the internal region (yellow).

Hence the law of conservation of mass flow rate in the internal region can be

written as

QML −QMR = ρ
∂V

∂t
, (5.78)

where QML and QMR are the incoming (left) and outcoming (right) mass flow

rates, respectively and V is the fluid volume in the internal region, [10]. In fact

I define the mass flow rate as the mass of water that passes through any cross

sectional area per unit of time, so that in this case, the left-hand side of equation
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(5.78), becomes

QML −QMR =

∫ −a
−h+c

ρ

[
∂φL
∂x
− ∂φR

∂x

]
dz =

∫ −a
−h+c

ρ[fLm − fRm] dz, (5.79)

where I exploited definitions (5.35) and (5.56). The right-hand side of equation

(5.78) can be rewritten as

ρ
∂V

∂t
= ρ(xm − xm−1)

∂Xm

∂t
, (5.80)

see again Fig. 5.7. Finally equation (5.78) yields

∫ −a
−h+c

[fLm − fRm] dz = xm − xm−1, (5.81)

where I assumed that the floater moves along the z direction with unit ver-

tical velocity, i.e. ∂Xm/∂t = 1. In addition, equation (5.81) depends on a0m

and b0m because, as stated in subsections 5.2.1 and 5.2.2 respectively, fLm(u) =

−ikFLm(u)a0m and fRm(u) = ikFRm(u)b0m. Also, exploiting the identity (5.70),

the continuity equation (5.81) becomes

∫ −a
−h+c

Fm(z) dz = − xm − xm−1

ik(a0m + b0m)
. (5.82)

The latter gives a relation between the amplitude coefficients a0m and b0m.

5.4.1 Symmetry and antisymmetry

I can observe that in the case of identical floaters, the effect generated from the

vertical motion of a generic single element of the FBWEC which moves along

the z-direction with vertical velocity V is the same effect generated by the sum

of the vertical movements of two single elements of the device characterised by

vertical velocity V/2 plus the movements of two other elements with opposite

vertical velocities V/2 and −V/2 (see Fig. 5.8). Therefore I can describe the

motion of a generic element of the FBWEC as superimposition of symmetric and

antisymmetric problems. This allows me to reduce the complexity of the problem.
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= +

V V/2 V/2 V/2

V/2

Figure 5.8: Superimposition of effects in terms of velocity.

In fact, if I introduce a new coordinate system with x = x′′ + L/2, (see Fig.

5.9) and I consider now the symmetric case, then in the outer region φLm(−x′′) =

φRm(x′′), x′′ > 0.

x

L

Incident wave 

x''

z z

L/2

Figure 5.9: New coordinate system with x = x′′ + L/2 (see magenta arrows).

Asymptotically, (5.40) ad (5.61) give, respectively,

φLm(−x′′) ∼ a0mZ0(z)eik(x′′−L/2), x′′ →∞ (5.83)

and

φRm(x′′) ∼ b0mZ0(z)eik(x′′−L/2), x′′ →∞. (5.84)

Equating (5.83) and (5.84), I obtain that in the symmetric case a0m = b0m.

Similarly, considering the antisymmetric case φLm(−x′′) = −φRm(x′′) I get a0m =

−b0m.
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5.5 Summary of equations and unknowns of

the radiation problem

Here I present a summary of equations and unknowns which describe the radiation

problem for a single element of the FBWEC which moves along the z-direction

with unit velocity:

∫ −a
−h+c

Fm(u)M(u, z) du = Z0(z), (5.85)

Fm(u) =
fRm
b0m

= −fLm
a0m

, (5.86)

A0m =
1

h− a− c

∫ −a
−h+c

fLm(z) dz, (5.87)

B0m =
1

h− a− c

[
a0m

∫ −a
−h+c

Z0(z) dz +
+∞∑
p=1

apm

∫ −a
−h+c

Zp(z) dz

]
, (5.88)

C0m =
1

h− a− c

∫ −a
−h+c

fRm(z) dz, (5.89)

D0m = F0m + E0mxm − C0m(xm − L) +
h− a− c

6
, (5.90)

E0m = A0m −
xm − xm−1

2(h− a− c)
, (5.91)

F0m = B0m − xm−1(E0m − A0m)− h− a− c
6

, (5.92)

Apm = Epm +
(−1)pek̃pxm−1

k̃2
p(h− a− c)

, p = 1, 2, ...., (5.93)

Bpm = Fpm +
(−1)pe−k̃pxm−1

k̃2
p(h− a− c)

, p = 1, 2, ...., (5.94)
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Cpm = Epme
−k̃pL +

(−1)pek̃p(xm−L)

k̃2
p(h− a− c)

, p = 1, 2, ...., (5.95)

Dpm = Fpme
k̃pL +

(−1)pe−k̃p(xm−L)

k̃2
p(h− a− c)

, p = 1, 2, ....., (5.96)

Bpm − Apm =
2

k̃p(h− a− c)

∫ −a
−h+c

fLm(z) cos[k̃p(z + h− c)] dz, (5.97)

Dpm − Cpm =
2

k̃p(h− a− c)

∫ −a
−h+c

fRm(z) cos[k̃p(z + h− c)] dz, (5.98)

Apm
a0m

=
Dpm

b0m

and
Bpm

a0m

=
Cpm
b0m

, (5.99)

∫ −a
−h+c

Fm(z) dz = − xm − xm−1

ik(a0m + b0m)
, (5.100)

a0m = b0m symmetry or a0m = −b0m antisymmetry, (5.101)

apmkp =

∫ −a
−h+c

fLm(z)Zp(z) dz, (5.102)

−bpmkp =

∫ −a
−h+c

fRm(z)Zp(z) dz. (5.103)

5.6 Solution procedure of the radiation

problem

Once Fm is determined from the integral equation (5.85), a0m and b0m can be

found by using (5.101) for the symmetric and antisymmetric part, respectively

and the continuity equation (5.100). Then the apm and bpm can be found with

(5.86), (5.102) and (5.103) respectively. Now Apm, Bpm, Cpm, Dpm, Epm and Fpm

can be determined by solving the system (5.93)-(5.99). Finally the system (5.87)-

(5.92) yields expressions for the amplitude coefficients A0m, B0m, C0m, D0m, E0m
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and F0m, respectively so that the potentials φLm, φ
(i)
m , i = 1, 2, 3 and φRm are fully

determined. Note that (5.41), (5.43), (5.62), (5.64) and (5.68) have not been used

yet. They will be employed to check the accuracy of the numerical solution of the

integral equations.

5.6.1 Solution of the integral equation

Exploiting the identity (5.70), our integral equation reduces to

∫ −a
−h+c

Fm(u)M(u, z) du = Z0(z), (5.104)

which is a Fredholm integral equation of the first kind and belongs to the class

of ill-posed problems, i.e. admits a solution which is unstable with respect to

small variations in the right-hand side Z0(z) of the integral equation, [36]. This

instability of solutions of integral equations of the first kind causes great difficulties

when using such equations for practical purposes, since small errors in input data

may cause large variations of a solution. For this reason regularisation methods

have been developed to rewrite Fredholm equations of the first kind as Fredholm

equations of the second kind which can be solved by using finite element methods,

whence the solution exists and is unique, [36]. Following the Lavrentiev regu-

larisation method, along with equation (5.104) I consider the regularised integral

equation

εFm(u) +

∫ −a
−h+c

Fm(u)M(u, z) du = Z0(z), (5.105)

where ε > 0 is the regularisation parameter. On taking a sufficiently small ε, I

find a solution Fmε(u) of equation (5.105) and substitute this solution in equation

(5.104), thus obtaining

∫ −a
−h+c

Fmε(u)M(u, z) du = Z0ε(z). (5.106)

If the function Z0ε(z) thus obtained differs only slightly from Z0(z), that is,

||Z0(z)− Z0ε(z)|| ≤ δ, (5.107)
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where δ is a prescribed small positive number, then the solution Fmε(u) is

regarded as a sufficiently good approximate solution of equation (5.104). The

parameter δ defines the error of the initial data provided that the right-hand side

of equation (5.104) is defined. For the case of which, for a given ε, condition (5.107)

fails, I must choose another value of the regularisation parameter and repeat the

above procedure.

The integral equation (5.105) is of the second kind and can be solved adopting

a Galerkin approach in order to convert a continuous operator problem (integral

equation) into a discrete problem, see [24]. The functions Fm(u) are approximated

as

Fm(u) ≈ Fm(u), u ∈ (−h+ c, −a), (5.108)

where Fm(u) have multi-term Galerkin expansions in terms of suitable basis

functions pn(u) and unknown constants αmn:

Fm(u) =
N∑
n=0

αmnpn(u). (5.109)

Therefore if I substitute (5.109) in (5.105) using the approximation (5.108), I

obtain

ε
N∑
n=0

αmnpn(u) +

∫ −a
−h+c

N∑
n=0

αmnpn(u)M(u, z) du = Z0(z). (5.110)

Now I multiply (5.110) by appropriate pq(z) and integrate over the interval

(−h+ c; −a) to get the linear systems

N∑
n=0

αmnKnq = Hq, n, q = 0, 1, 2, ...., N, (5.111)

where

Knq =

∫ −a
−h+c

εpn(u)pq(z) dz +

∫ −a
−h+c

∫ −a
−h+c

pn(u)pq(z)M(u, z) du dz,

n, q = 0, 1, 2, ...., N (5.112)
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and

Hq =

∫ −a
−h+c

Z0(z)pq(z) dz, q = 0, 1, 2, ...., N. (5.113)

The integrals (5.112) and (5.113) can be evaluated explicitly choosing suitable

basis functions whose details are described in appendix C, and the constants αmn

are obtained by solving the linear equations (5.111).



Chapter 6

FBWEC: numerical example

The analytical boundary-value radiation problem (5.85)-(5.103) is now well-posed

and can be solved for different configurations. For the sake of example, in this

chapter I present numerical results of a symmetrical configuration of the FBWEC.

The system is characterised by a geometrical symmetry respect to the vertical axis

passing through the centre of the m-th floater element which is moving up and

down along the z direction. In this case, the internal potential in the region 2 is

expressed by

φ(2)
m (x, z) =

+∞∑
p=1

(Epme
−k̃px + Fpme

k̃px) cos[k̃p(z + h− c)]

+
(z + h− c)2 − (x− xm−1)(x− xm)

2(h− a− c)
, xm−1 ≤ xm. (6.1)

In fact, compared with expression (5.16), E0m must be 0, otherwise φ
(2)
m (x, z)

would be composed of a linear term which is definitely not symmetric respect to

the vertical axis passing through the centre of the m-th element. In addition, F0m

is a constant that can be chosen to be nil because it does not affect the velocity

field. Note that the contribute of F0m needs to be considered in any study which

involves the pressure field. The symmetry arguments determine a simplification

on the radiation problem, therefore, the unknown constants a0m and b0m can be

determined by using the matching conditions (5.17) and (5.18) when p = 0 to

obtain novel expressions for A0m, B0m, C0m and D0m and then, by combining the

105
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latter with the relations already obtained in section 5.2, as shown in section 6.1.

6.1 Radiation problem for a symmetric case

Following the procedure used in subsection 5.1.3, first I substitute the expressions

for φ
(1)
m (5.12) and φ

(2)
m (6.1) into the first condition of (5.17). Then, multiply by

cos[k̃q(z + h − c)], with q = 0 and integrate along z between z = −h + c and

z = −a. This yields

B0m =
h− a− c

6
− A0mxm−1. (6.2)

Using the same procedure, from the second condition of (5.17) I obtain

A0m =
xm − xm−1

2(h− a− c)
, (6.3)

while the first and second conditions of (5.18) give, respectively,

D0m =
h− a− c

6
− C0m(xm − L) (6.4)

and

C0m =
xm−1 − xm

2(h− a− c)
. (6.5)

Note that these expressions verify (5.27), (5.28), (5.29) and (5.30) respectively

when E0m = F0m = 0. Now I compare (6.3) with (5.48) to obtain the following

expression for a0m:

a0m =
xm−1 − xm

2ik
∫ −a
−h+c

FLm(z) dz
, (6.6)

where FLm(z) = FRm(z) = Fm(z), see identity (5.70), and will be determined

by solving the integral equation
∫ −a
−h+c

Fm(u)M(u, z) du = Z0(z) as reported in

subsection 5.6.1. Similarly, substituting (6.5) in (5.67), I get

b0m =
xm−1 − xm

2ik
∫ −a
−h+c

FRm(z) dz
, (6.7)
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hence, a0m = b0m, see (6.6), (6.7) and (5.70). Finally substituting (6.3) in (6.2)

and (6.5) in (6.4) yields respectively

B0m =
(h− a− c)2 − 3xm−1(xm − xm−1)

6(h− a− c)
(6.8)

and

D0m =
(h− a− c)2 + 3(xm − L)(xm − xm−1)

6(h− a− c)
. (6.9)

Now, the fact that a0m = b0m allows me to simplify the radiation problem

(5.85)-(5.103) which can be rearranged as follows:

a0m = b0m =
xm−1 − xm

2ik
∫ −a
−h+c

Fm(z) dz
, (6.10)

∫ −a
−h+c

Fm(u)M(u, z) du = Z0(z), (6.11)

Fm(u) =
fRm
b0m

= −fLm
a0m

, fRm = −fLm, (6.12)

apm = bpm =
1

kp

∫ −a
−h+c

fLm(z)Zp(z) dz, (6.13)

A0m =
xm − xm−1

2(h− a− c)
, (6.14)

B0m =
(h− a− c)2 − 3xm−1(xm − xm−1)

6(h− a− c)
, (6.15)

C0m =
xm−1 − xm

2(h− a− c)
, (6.16)

D0m =
(h− a− c)2 + 3(xm − L)(xm − xm−1)

6(h− a− c)
, (6.17)

E0m = F0m = 0, (6.18)
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Apm = Epm +
(−1)pek̃pxm−1

k̃2
p(h− a− c)

, p = 1, 2, ...., (6.19)

Bpm = Fpm +
(−1)pe−k̃pxm−1

k̃2
p(h− a− c)

, p = 1, 2, ...., (6.20)

Cpm = Bpm and Dpm = Apm, (6.21)

Bpm − Apm =
2

k̃p(h− a− c)

∫ −a
−h+c

fLm(z) cos[k̃p(z + h− c)] dz, (6.22)

Dpm − Cpm =
2

k̃p(h− a− c)

∫ −a
−h+c

fRm(z) cos[k̃p(z + h− c)] dz. (6.23)

6.2 Numerical results: radiation by a 2D

floater blanket

In this section, I solve numerically the system (6.10)-(6.23) by means of suitable

Matlab codes which allow me to obtain a numerical evaluation of the integrals

defined in subsection 5.6.1 and, hence, the characterisation of the waves radiated

by a 2-dimensional FBWEC. This has been done by choosing the basis functions

pn(z) as in appendix C, by considering the Lavrentiev regularisation to solve the

integral equations, see again subsection 5.6.1 and by applying a multi-scale method

for solving linear systems as in [46]. I select specific configurations, so that the

geometry of the floater blanket system is known and can be included in a Matlab

code as input data. In particular, all the numerical simulations carried out in this

chapter, are based on symmetric FBWECs composed of three floater elements;

also, the first and the third bodies are fixed to rigid support structures in the

ocean, while the middle floater is moving vertically along the z direction, see Fig.

6.1.

Regarding the numerical analysis, I choose a maximum order of the multi-term

Galerkin expansion to be equal to 7, see equation (5.109), a Lavrentiev regular-

isation parameter ε = 0.00001, see equation (5.105) and a numerical tolerance of
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Figure 6.1: Geometry of the FBWEC system used for numerical simulations. Validation

of the mathematical model and the parametric behaviour of system have been addressed

for a device composed of 3 elements. Element 1 an 3 represent fixed mooring structures

and do not move.

1 × 10−6. The dispersion relation has been solved by using the iterative method

proposed by Chamberlain & Porter in [12], which yields a wavenumber vector com-

posed of propagating and evanescent components which represent the eigenmodes

of the problem. These are finally used to find solutions of the regularised linear

system matrix for each frequency with a multi-scale method, see [46]. Below,

I present numerical results in which radiated wave amplitudes have been calcu-

lated when the central floater executes only one mode of oscillation, i.e. vertical

movement along the z-axis.

With the amplitude of the potential thus found, the corresponding amplitude

of the wave height may be inferred from the linearised Bernoulli equation, see

chapter 2. Hence, let me define the normalised far field amplitude of the radiated

wave as follows

Arz = ω

∣∣∣∣− iω

g
a0m

√
2 cosh(kh)√

h+ g/ω2 sinh2(kh)

∣∣∣∣. (6.24)

Then, I can plot the latter versus the non-dimensional wavenumber ka. In the

following two subsections, I present a validation of our results with those obtained

by Black, Mei and Bray in 1971 with a different mathematical method (subsection

6.2.1) and a parametric behaviour of the system (subsection 6.2.2), respectively.
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6.2.1 Results validation

To the best of our knowledge, no studies on the propagation of radiated wave from

a 2-dimensional body with the same geometry of the floater blanket proposed in

this thesis, have beed addressed yet. However, in 1971 Black et al. solved a

semi-numerical radiation problem for a horizontal rectangular cylinder floating on

the free surface and oscillating up and down along the z direction without shelf

(c = 0) [9]. Unlike ours, the mathematical method used by Black et al. is based

on the application of Schwinger’s variational formulation for the far field and the

Rayleigh-Ritz procedure, see [9] for further details. Also, note that in [9], the

authors considered one single body, while our floater blanket is composed of three

elements. Hence, to simulate their analysis and to maintain a symmetric geometry,

I selected particular configurations of the three floaters in which the first and the

third elements are much shorter than the middle one along the x-axis. Geometric

details are reported in Tab. 6.1 and Fig. 6.2.

Table 6.1: Geometry of two floater blankets oscillating vertically on the free surface.

The water depth is h = 20 m and I assume this value to be constant in the whole fluid

domain, therefore I consider the shelf height c = 0 m. X is the coordinate vector of the

floaters position along the x-axis; a is the blanket draft, see Fig. 6.2.

FBWEC magenta FBWEC blue
L (m) 60 20
a (m) 10 10

L/2a (-) 3 1
X (m) [0 0.5 59.5 60] [0 0.1 19.9 20]

Length I and III floaters (m) 0.5 0.1

Figure 6.2: Schematic representation of the FBWEC systems related to Tab. 6.1.

By using a different mathematical method based on the integral equations, I
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obtained an excellent agreement with the numerical results presented by Black et

al. in [9] as shown in Fig. 6.3, where I plotted the normalised far field amplitude of

the radiated wave Arz(k) versus the non-dimensional wavenumber ka in the same

interval chosen by Black et al., see Fig 6.4, where ka used in this thesis corresponds

to kH used in [9]. The maximum regularisation error of this numerical evaluation

is 3.697567× 10−4.

Figure 6.3: Normalised radiated-wave amplitude (Arz) due to vertical oscillation of

the central floater of Fig. 6.1 versus the non-dimensional wavenumber ka. Excellent

agreement with previous results obtained by Black, Mei and Bray [9].

Figure 6.4: Radiated wave amplitude (magnitude and phase) due to vertical body

oscillation for a horizontal rectangular cylinder in free surface. The figure is taken

from [9].

6.2.2 Parametric analysis

Having validating our model with previous results, I am now in the position to

determine the parametric behaviour of the system. This analysis plays a key role

for a better understanding of the characterisation of the radiated waves by a 2-
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dimensional floater blanket. In particular, in this subsection I present numerical

results of the far-field amplitude of the radiated waves in relation to a wide range of

frequencies. First, let me investigate the influence of the shelf height c. Numerical

results for six values of c are shown in Fig. 6.5. The effect of the ocean step is seen

to be more visible when 0.7 < ka < 3; on the contrary there is practically no visible

difference between the six curves when ka < 0.7 which for fixed a correspond to

longer waves, or lower frequencies. For very short waves (ka > 3), it seems that

the effect of the ocean step is not remarkable, infact the six curves are close to

overlap. In addition, note that the effect of increasing the height of the ocean step

c is to slightly shift the radiated-wave amplitude peaks towards higher frequencies

(ka ↑).

Figure 6.5: Normalised radiated-wave amplitude due to the oscillation of the middle

floater of a FBWEC composed of 3 elements. The six curves represent the same device

floating on the free surface in correspondence of an ocean step characterised by different

height. In particular c varies between 0 m and 5 m. The geometry of the system is:

L = 60 m, a = 10 m, h = 20 m. The first and third floaters are 0.5 m long and fixed to

rigid support systems in the ocean.
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Fig. 6.6 illustrates numerical results obtained from four 60 m long devices

characterised by floaters of different lengths. Again, the first and third elements

are fixed to rigid support systems in the ocean and have the same length along the

x-axis in order to maintain a geometrical symmetry respect to the vertical axis

passing through the centre of the second floater which is moving up and down along

the z direction. As expected, a reduction of the size of the oscillating body, results

in a decrease of the amplitude of the radiated wave due to less volume involved in

the movement, see section 5.4 for further details on the law of conservation of mass

flow rate. The length of the floaters are summarised in Tab. 6.2. The maximum

regularisation error for this study is 4.715135× 10−4.

Figure 6.6: Influence of the length of the middle floater on the radiated-wave amplitude

by 2D FBWECs composed of 3 elements. The geometry of the system is: L = 60 m,

a = 10 m, h = 20 m, c = 3 m.

To conclude the parametric analysis for the numerical example presented in

this chapter, I investigate the behaviour of the amplitude of the far-field radiated

waves maintaining constant the ratio b/L (Fig. 6.7) and h/c (Fig. 6.8), where b
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Table 6.2: Lengths of the I, II and III floater elements of the four FBWECs identified

in Fig. 6.6 by the green, magenta, purple and light blue curves, respectively.

Line colour Length I and III floaters Length II floater
m m

case 1 Green 0.5 59
case 2 Magenta 5 50
case 3 Purple 10 40
case 4 Light blue 20 20

indicates the length of the middle floater. From Fig. 6.7 it can be seen that the

amplitude of the radiated wave depends mainly on the dimensions of the device.

In fact, if I fix the geometry of the ocean environment (h, a and c) and the ratio

between the length of the whole floater blanket and the length of the oscillating

body, bigger is the size of the FB and higher is the amplitude of the radiated wave.
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Figure 6.7: Each of the FBWECs represented in this plot is composed of three floaters

which have the same dimension along the x-axis. The ratio between the length of

the middle floater b and the whole length of the device L is fixed equal to 1/3. The

geometry of the system is: h = 20 m, a = 10 m, c = 2 m. Maximum regularisation error

is 4.302827× 10−4.

Finally, I analyse the influence of the ratio h/c on the radiated wave. Hence,

let me choose a 60 m long floater blanket composed of three elements of equal

dimensions (20 m each). The draft of the blanket a is fixed at 10 m, while the

water depth h and the shelf height c can vary, but their ratio is kept constant

(h/c = 5). Data in Fig. 6.8, suggest that the effect of the ratio h/c is more

important for higher frequencies (ka > 0.4); in fact the curves are practically

overlapping when ka < 0.4 (longer waves, or lower frequencies). In addition,

when the height of the water column below the blanket increases, the amplitude

of the radiated waves decrease, the corresponding curve become less sharp and the

peaks are slightly shifted towards lower frequencies. The maximum error of this

numerical study is of the order of O(10−4).
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Figure 6.8: Effect of the simultaneous variation of water depth and shelf height on the

amplitude of the radiated waves by a 60 m long 2D floater blanket WEC. Four numerical

simulations have been carried out varying h and c, but keeping their ration constant

and equal to 5. The device is made of three floaters of equal length (20 m each) and the

blanket daft is 10 m.



Chapter 7

Concluding remarks

The purpose of this thesis was to provide the reader with mathematical tech-

niques that can be used to develop semi-analytical models in order to analyse

wave-structure interaction problems with application to wave energy conversion.

In line with both the new trends of devices that I have referred to in section 1.3 and

the energy global challenge research theme discussed in chapter 1, I proposed to

investigate the hydrodynamic behaviour of two novel WECs: a flexible piezoelec-

tric wave energy converter (PWEC) and a floater blanket wave energy converter

(FBWEC).

The PWEC is characterised by sleek design and makes use of a smart material,

in fact it consists of a bimorph piezoelectric plate, in which piezoelectric patches

are connected in series and bonded at both faces of a flexible substrate with re-

versed polarities. This configuration allows the device to transform the elastic

motion of the plate (induced by incident ocean surface waves) into useful electri-

city by means of the piezoelectric effect. Two PWEC systems has been considered

and compared in this thesis: a PWEC moored on a vertical wall (i.e. a caisson

breakwater) characterised by a plate length of 10 m and a 20 m long PWEC

not moored on a caisson breakwater. A fully coupled hydro-electromechanical

model has been derived for two piezoelectric wave energy harvesters by using

a semi-analytical approach. We coupled a distributed-parameter model of the

piezoelectric system with a potential-flow model of the water waves obtaining a

novel hydro-electromechanical dispersion relation whose roots have been determ-

ined numerically in the complex wavenumber plane. We showed that the effect

117
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of the piezoelectric coupling in the hydro-elastic domain generates a system of

weakly damped progressive waves travelling along the plate and we identified the

presence of sharp resonant periods of the device, at which the power output is

significant. The extracted energy can be easily used for low-power applications

such as supplying LEDs, wireless routers, computers, sensors, etc. In addition,

comparing the power generated by the two devices, I noted that the presence of

the breakwater improves significantly the performance of the converter. The ex-

tracted power is roughly 4 times greater that the one of the same device which is

not moored on the vertical wall. This allows one to produce more electric power

minimising the manufacturing costs of the device. Note that the maximum power

output of the PWEC (8 kW/m for the PWEC moored on the breakwater) is much

smaller than the power output of existing WECs. For example, the nominal power

output of the Oyster is 800 kW for a 26 m wide device, [39]. Therefore, PWECs

cannot replace more traditional converters, rather they can be used in addition to

them, to supply low-power applications such as LEDs, wireless routers, buoys and

sensors. Coupled to traditional devices, PWECs offer the advantage of being low

maintenance (the power is generated directly on the device without the need of

an additional PTO mechanism) and versatile (they can be employed to increase

wave damping around offshore oil platforms and near shore breakwaters).

Also, the mathematical model has been developed making several simplifying

assumptions. Both the influence of the breakwater in section 4.1 and the clamped

structures in section 4.2 has been neglected, even if in reality these might induce

wave breaking, which could be analysed with computational fluid dynamics (CFD)

software. Also the analysis was performed in the framework of a linearised theory

for both the plate deformation and the wave motion. Close to resonance, the

displacements of the plate might become significant and a non-linear analysis

should be carried out to refine the power output predictions, [40]. In fact close to

resonance, viscosity cannot be neglected, hence the hypotesis of potential flow is

not valid anymore. In this case alternative methods must be used such as visco-

potential flow theory or computational fluid dynamics (CFD), [27]. If there are

significant displacements of the plate, the effect of viscosity and the associated

turbulence, determine a reduction of power peaks because part of the energy is
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dissipated and therefore cannot be harvested by the converter.

Finally I modelled deformations of the flexible plate as purely two-dimensional,

hence the case of obliquely incident waves has not been considered. To verify the

importance of three-dimensional effects, a full numerical model based on a finite-

element approximation of the boundary-value problem should be derived, which,

on the other hand cannot provide a valuable physical insights into the problem as

the semi-analytical approach I used in the framework of this thesis.

The FBWEC is a novel floating wave energy converter which can be easily

integrated in hybrid multi-energy platforms. In this thesis I reduced the com-

plexity of the core technology of the device with the aim to investigate its hydro-

mechanical behaviour performing the analysis in a two-dimensional space and

considering the controlled vertical movement of a single floater. I derived ana-

lytically the radiation problem for a single row of interconnected floaters and I

obtained a numerical characterisation of the radiated wave amplitudes. The goal

of this study was to implement mathematical techniques to approach a 2D wave-

interaction problem for a novel WEC in order to create the basis for a complex

3D analysis of the system. Mathematically, I derived a semi-analytical model for

a FBWEC by using solution method based on the combination of both matching

potentials and integral equations. In particular, due to the configuration of the

system which is characterised by a floating blanket on the free surface in corres-

pondence of a ocean step, I split the fluid domain in internal and external regions

and I solved the radiation problems related to these two areas, respectively.

The fluid domain below the floating device and above the ocean step is regular

and uniform (no tip singularities), therefore the method of matching potentials is

still a valid way to address the problem and yields a valuable physical insights.

On the contrary, singularity issues definitely occur both at the edges of the floater

blanket and at the corners of the ocean step, hence I derived the governing equa-

tions of the radiation problem in the external regions by using a method based

on the integral equations. Thus, I obtained two integral equations, on both left

and right of the device respectively, and I combined them by means of useful

mathematical identities. The resulting relation was a Fredholm integral equation

of the first kind (ill-posed problem i.e. it admits an unstable solution with re-
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spect to small variations in the right-hand side of the equation), therefore I used

the Lavrentiev regularisation method to obtain an integral equation of the second

kind [36] which I solved adopting a Galerkin approach [24].

Numerical simulations have been generated for symmetric devices by means

of suitable Matlab codes showing an excellent agreement with previous results

obtained with different mathematical methods, see [9]. In addition I identified the

behaviour of the far-field amplitude of the radiated wave by a 2D floater blanket

through a parametrical analysis in order to find optimal device configurations

related both to the geometry of the converter and to the ocean environment. In

particular I investigated the influence of the ocean shelf, the length of the floaters,

the ratio between the length of the oscillating body and the overall length of the

blanket and finally the ratio between the water depth and the height of the ocean

step. Note that the obtained results offer a valuable physical insight into the

problem even if I made simplifying assumptions. In fact I neglected the influence

of the supporting structure and mooring lines of the the first and last floating

bodies on the wave field. Also I assumed no-mass elements and I ignored the

effect of the hinges used to connect the floaters.

Once the radiation problem has been solved, I must even solve the diffraction

problem (discussed in appendix D). This will allow me to derive the equations of

motion for all the floater elements which will form a system of linear equations to

calculate the power output of the system. I suggest to approach this procedure

directly in a 3D case for the following reasons: first, because I want to examine

complex interactions between floaters in possible real configurations which obvi-

ously require the consideration of all three dimensions; also it would be interesting

to show the existence of trapped modes which represent free oscillations with fi-

nite energy of the fluid surrounding the structure and this is of relevant interest

in a 3D system; finally, mathematically, I would solve 3D integral equations by

using a Fourier-Galerkin expansion method, which basically involves the solution

of two separated problems i.e. one along the x-axis, the other one along the y-axis

adopting a Galerkin approach and a Fourier approach, respectively. Note that

along the x direction I expect the identical 2D problem already solved in chapter

5 due to the same dynamic of the system. Therefore, this will form the starting
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point to address the 3D analysis of a floater blanket wave energy converter in a

future research project.

7.1 Future research directions

Taking inspiration from the results we achieved during the past three years of

doctoral experience, I suggest the following future research directions for both the

piezoelectric and the floater blanket wave energy converters:

PWEC

• Find optimal device configuration determining the parametric behaviour of

the system. In subsection 4.3.1 I approached a parametric analysis with

regard to different water depth d′. Other parameters (e.g. α, β, ξ, ω,

h, r, etc.) could be considered in a large extent of the parametric space,

therefore genetic algorithms seem a good alternative to map the parametric

behaviour of the system and identify areas of high-quality solutions in the

space of parameters.

• Develop a full numerical model based on a finite-element approximation of

the boundary-value problem. This will allow me to easily extend the analysis

to handle arbitrary geometrical shapes of the plate in three dimensions.

FBWEC

• Combine solutions of radiation and diffraction problems to obtain a system

of linear equations describing the motion of each floater directly in 3D.

• Calculate the power output of the system and all the quantities of engineering

interest (e. g. spatial displacement of the blanket, spatial component of the

free-surface elevation)

• Identify and investigate the existence of trapped modes and the benefits on

the power output of the system.

• Derive and solve semi-analytical problems considering the vertical movement

of the first and the last element of a single row of the floater elements.
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• Combine the movement of two (or more) floater elements and analyse the

overall behaviour of the system in order to complete the hydro-mechanical

characterisation of the device.
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Note that in the framework of this thesis, variables with primes denote physical

quantities. In appendices B and D primes are dropped for simplicity. Also I assume

that the wave forcing is harmonic with frequency ω, therefore I factorise out the

time variable as in subsection 5.1.2.



Appendix A

Matlab codes

Here I provide some details on the Matlab codes used to identify the numerical

solutions and to determine all the quantities of engineering interest for a piezo-

electric wave energy harvester moored on a breakwater.

1 %% PIEZODISP − Dispe r s i on r e l a t i o n f o r p i e z o e l e c t r i c p l a t e s

in waves

2 % Numerical s o l u t i o n with Newton−Raphson method

3

4 %% INPUT

5

6

7 % Input data

8 prompt1 = { ’Wave per iod T ( s ) ’ , ’Wave amplitude A (m) ’ , ’

Water depth h (m) ’ } ;

9 name1 = ’ I n s e r t wave data ’ ;

10 numlines = 1 ;

11 de fau l tanswer1 = { ’ 5 ’ , ’ 1 ’ , ’ 10 ’ } ;

12

13 prompt2 = { ’ P late submergence d (m) ’ , ’ P late l entgh L (m) ’ , ’

Subst rate Young Modulus E 0 (N/mˆ2) ’ , ’ Subst rate Poisson

r a t i o \nu 0 ’ , . . .

14 ’ Subst rate t h i c k n e s s d 0 (m) ’ , ’ Subst rate dens i ty \ rho 0

( kg/mˆ3) ’ } ;

125
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15 name2 = ’ I n s e r t p l a t e data ’ ;

16 de fau l tanswer2 = { ’ 2 ’ , ’ 10 ’ , ’ 3 . 2 e6 ’ , ’ 0 .48 ’ , ’ 1e−2 ’ , ’ 1250 ’ } ;

17

18 prompt3 = { ’Young Modulus E p (N/mˆ2) ’ , ’ Poisson r a t i o \nu 0

’ , ’ Patch t h i c k n e s s d p (m) ’ , . . .

19 ’ Patch dens i ty \ rho p ( kg/mˆ3) ’ , ’ Piezo constant d {31}

( Coul/N) ’ , ’ Re l a t i v e p e r m i t t i v i t y \ e p s i l o n r ’ , ’

Conductance G (S mˆ{−2}) ’ } ;

20 name3 = ’ I n s e r t patch data ’ ;

21 de fau l tanswer3 = { ’ 8 . 3 e9 ’ , ’ 0 .18 ’ , ’ 110e−6 ’ , ’ 1780 ’ , ’ 22e−12 ’ , ’

10 ’ , ’ 3 .9856 e−7 ’ } ;

22

23 prompt4 = { ’Max i t e r a t i o n s ’ , ’ Tolerance ’ } ;

24 name4 = ’ I n s e r t numerica l a n a l y s i s data ’ ;

25 de fau l tanswer4 = { ’ 200 ’ , ’ 1e−9 ’ } ;

26

27

28 % Phys i ca l q u a n t i t i e s

29 Tp = st r2doub l e ( answer1 {1}) ; % Wave per iod

30 Ap = st r2doub l e ( answer1 {2}) ; % Wave amplitude

31 hp = st r2doub l e ( answer1 {3}) ; % Water depth

32

33 dp = st r2doub l e ( answer2 {1}) ; % Plate submergence

34 Lp = st r2doub l e ( answer2 {2}) ; % Plate l ength

35 E0p = st r2doub l e ( answer2 {3}) ; % Substrate Young ’ s

modulus

36 nu0 = st r2doub l e ( answer2 {4}) ; % Substrate Poisson

’ s r a t i o

37 d0p = st r2doub l e ( answer2 {5}) ; % Substrate

t h i c k n e s s

38 r0p = st r2doub l e ( answer2 {6}) ; % Substrate dens i ty

39
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40 Epp = st r2doub l e ( answer3 {1}) ; % Patch Young ’ s

modulus

41 nup = st r2doub l e ( answer3 {2}) ; % Patch Poisson ’ s

r a t i o

42 dpp = st r2doub l e ( answer3 {3}) ; % Patch t h i c k n e s s

43 rpp = st r2doub l e ( answer3 {4}) ; % Patch dens i ty

44 d31 = st r2doub l e ( answer3 {5}) ; % P i e z o e l e c t r i c

constant

45 epr = st r2doub l e ( answer3 {6}) ; % Re la t i v e

Pe rm i t t i v i t y

46 Gp = st r2doub l e ( answer3 {7}) ; % Conductance

47

48 Nit = st r2doub l e ( answer4 {1}) ; % Max i t e r a t i o n s

49 t o l = s t r2doub l e ( answer4 {2}) ; % Tolerance

50

51 % Phys i ca l cons tant s

52 rho = 1030 ; % Water dens i ty ( kg/mˆ3)

53 g = 9 . 8 0 7 ; % Gravity acc (m/ s ˆ2)

54 ep0 = 8.8541878176 e−12; % Vacuum permitt (F/m)

55

56 eps = epr∗ep0 ; % Permi t t i v i t y (F/m)

57

58 e31 = d31∗Epp/(1−nup) ; % Piezo constant (C/mˆ2)

59

60 mup = (2∗ rpp∗dpp+r0p∗d0p ) ; % Sur f dens i ty (Kg/mˆ2)

61

62 Bp = (E0p∗ d0p ˆ3) /(12∗(1−nu0 ˆ2) ) . . .

63 +2∗ (Epp∗dpp) /(1−nupˆ2) . . .

64 ∗( d0pˆ2/4+ d0p∗dpp/2+ dppˆ2/3) ;% Flexura l r i g (N∗m)

65

66 Kip = e31∗ ( d0p+dpp) /2 ; % Piezo coup c o e f f (C/m)

67
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68 Cp = eps /(2∗dpp) ; % Capacitance (F/mˆ2)

69

70 % Nondimensional parameters

71 a l = Kip/ s q r t (Bp∗Cp) ;

72 be = Bp/(Lpˆ3∗mup∗g ) ;

73 ga = s q r t ( g∗Lpˆ3∗mup/Bp) ;

74 r = rho∗Lp/mup;

75 x i = Cp/Gp∗ s q r t ( g/Lp) ;

76

77 % Nondimensional v a r i a b l e s

78 h = hp/Lp ; % Water depth

79 d = dp/Lp ; % Plate submergence

80 T = s q r t ( g/Lp)∗ Tp; % Wave per iod

81 om = 2∗ pi /T; % Wave f requency

82

83 %% NUMERICAL SOLUTION

84

85 di sp ( ’−−− Numerical Analys i s−−− ’ )

86

87 % Dispe r s i on r e l a t i o n and d e r i v a t i v e s

88

89 f = (@(x , y ) r e a l ( ( ( be∗(1+ a l ˆ2)−a l ˆ2/( gaˆ2∗(1−1 i ∗om∗ x i ) ) )

. ∗ ( x+1 i ∗y ) .ˆ4−omˆ2) . ∗ . . .

90 (omˆ2 .∗ ( x+1 i ∗y ) .∗ cosh ( ( x+1 i ∗y )∗d)−(x+1 i ∗y ) . ˆ 2 . ∗ s inh ( ( x

+1 i ∗y )∗d) ) .∗ tanh ( ( x+1 i ∗y ) ∗(h−d) ) + . . .

91 −omˆ2∗ r ∗(omˆ2 .∗ cosh ( ( x+1 i ∗y )∗d)−(x+1 i ∗y ) .∗ s inh ( ( x+1 i ∗y )

∗d) + . . .

92 −((x+1 i ∗y ) .∗ cosh ( ( x+1 i ∗y )∗d)−omˆ2.∗ s inh ( ( x+1 i ∗y )∗d) ) .∗

tanh ( ( x+1 i ∗y ) ∗(h−d) ) ) ) ) ;

93

94 dfdx = (@(x , y ) 4∗ r e a l ( tanh ( ( d − h) ∗(x + y∗1 i ) ) ∗( be ∗( a l ˆ2 +

1) + a l ˆ 2 / . . .



APPENDIX A. MATLAB CODES 129

95 ( gaˆ2∗(− 1 + om∗ x i ∗1 i ) ) ) ∗( s inh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i )

ˆ2 − . . .

96 omˆ2∗ cosh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ˆ3) −

r e a l ( tanh ( ( d − h) ∗ . . .

97 ( x + y∗1 i ) ) ∗ ( ( be ∗( a l ˆ2 + 1) + a l ˆ2/( gaˆ2∗(− 1 + om∗ x i ∗1

i ) ) ) ∗(x + y∗1 i ) ˆ4 − omˆ2) . . .

98 ∗(omˆ2∗ cosh (d∗(x + y∗1 i ) ) − s inh (d∗(x + y∗1 i ) ) ∗(2∗x + y

∗2 i ) − d ∗ . . .

99 cosh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ˆ2 + d∗omˆ2∗ s inh (d∗(x + y

∗1 i ) ) ∗(x + y∗1 i ) ) ) − . . .

100 r e a l ( ( ( be ∗( a l ˆ2 + 1) + a l ˆ2/( gaˆ2∗(− 1 + om∗ x i ∗1 i ) ) ) ∗(x

+ y∗1 i ) ˆ4 − omˆ2) ∗ . . .

101 ( s inh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ˆ2 − omˆ2∗ cosh (d∗(x + y∗1

i ) ) ∗(x + y∗1 i ) ) ∗ . . .

102 (d − h) ∗( tanh ( ( d − h) ∗(x + y∗1 i ) ) ˆ2 − 1) ) − r e a l (omˆ2∗ r

∗(− s inh (d∗(x + y∗1 i ) ) + . . .

103 tanh ( ( d − h) ∗(x + y∗1 i ) )∗(− d∗ cosh (d∗(x + y∗1 i ) )∗omˆ2 +

cosh (d∗(x + y∗1 i ) ) + . . .

104 d∗ s inh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ) + ( s inh (d∗(x + y∗1 i ) )∗

omˆ2 − cosh (d∗(x + y∗1 i ) ) ∗ . . .

105 ( x + y∗1 i ) ) ∗(d − h) ∗( tanh ( ( d − h) ∗(x + y∗1 i ) ) ˆ2 − 1) −

d∗ cosh (d∗(x + y∗1 i ) ) ∗ . . .

106 ( x + y∗1 i ) + d∗omˆ2∗ s inh (d∗(x + y∗1 i ) ) ) ) ) ;

107

108 dfdy = (@(x , y ) r e a l ( tanh ( ( d − h) ∗(x + y∗1 i ) ) ∗( be ∗( a l ˆ2 + 1)

+ a l ˆ2/( ga ˆ 2 ∗ . . .

109 (− 1 + om∗ x i ∗1 i ) ) ) ∗( s inh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ˆ2 −

omˆ2∗ cosh (d∗(x + y∗1 i ) ) ∗ . . .

110 ( x + y∗1 i ) ) ∗(x + y∗1 i ) ˆ3∗4 i ) − r e a l ( tanh ( ( d − h) ∗(x + y

∗1 i ) ) ∗ ( ( be ∗( a l ˆ2 + 1) + . . .

111 a l ˆ2/( gaˆ2∗(− 1 + om∗ x i ∗1 i ) ) ) ∗(x + y∗1 i ) ˆ4 − omˆ2) ∗(om

ˆ2∗ cosh (d∗(x + y∗1 i ) ) ∗ . . .
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112 1 i − s inh (d∗(x + y∗1 i ) ) ∗(x∗2 i − 2∗y ) − d∗ cosh (d∗(x + y

∗1 i ) ) ∗(x + y∗1 i ) ˆ2∗1 i + . . .

113 d∗omˆ2∗ s inh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ∗1 i ) ) − r e a l (omˆ2∗ r

∗(− s inh (d∗(x + y∗1 i ) ) ∗ . . .

114 1 i + tanh ( ( d − h) ∗(x + y∗1 i ) )∗(− d∗ cosh (d∗(x + y∗1 i ) )∗

omˆ2∗1 i + . . .

115 cosh (d∗(x + y∗1 i ) ) ∗1 i + d∗ s inh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i )

∗1 i ) − . . .

116 d∗ cosh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ∗1 i + ( s inh (d∗(x + y∗1 i )

)∗omˆ2 − . . .

117 cosh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ) ∗( tanh ( ( d − h) ∗(x + y∗1 i )

) ˆ2 − 1) ∗ . . .

118 (d∗1 i − h∗1 i ) + d∗omˆ2∗ s inh (d∗(x + y∗1 i ) ) ∗1 i ) ) − r e a l

( ( ( be ∗( a l ˆ2 + 1) + . . .

119 a l ˆ2/( gaˆ2∗(− 1 + om∗ x i ∗1 i ) ) ) ∗(x + y∗1 i ) ˆ4 − omˆ2) ∗(

s inh (d∗(x + y∗1 i ) ) ∗ . . .

120 ( x + y∗1 i ) ˆ2 − omˆ2∗ cosh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ) ∗(

tanh ( ( d − h) ∗ . . .

121 ( x + y∗1 i ) ) ˆ2 − 1) ∗(d∗1 i − h∗1 i ) ) ) ;

122

123 gg = (@(x , y ) imag ( ( ( be∗(1+ a l ˆ2)−a l ˆ2/( gaˆ2∗(1−1 i ∗om∗ x i ) ) )

. ∗ ( x+1 i ∗y ) .ˆ4−omˆ2) . ∗ . . .

124 (omˆ2∗(x+1 i ∗y ) .∗ cosh ( ( x+1 i ∗y )∗d)−(x+1 i ∗y ) . ˆ 2 . ∗ s inh ( ( x+1

i ∗y )∗d) ) .∗ tanh ( ( x+1 i ∗y ) ∗(h−d) ) + . . .

125 −omˆ2∗ r ∗(omˆ2 .∗ cosh ( ( x+1 i ∗y )∗d)−(x+1 i ∗y ) .∗ s inh ( ( x+1 i ∗y )

∗d) + . . .

126 −((x+1 i ∗y ) .∗ cosh ( ( x+1 i ∗y )∗d)−omˆ2.∗ s inh ( ( x+1 i ∗y )∗d) ) .∗

tanh ( ( x+1 i ∗y ) ∗(h−d) ) ) ) ) ;

127

128 dgdx = (@(x , y ) 4∗ imag ( tanh ( ( d − h) ∗(x + y∗1 i ) ) ∗( be ∗( a l ˆ2 +

1) + a l ˆ 2 / . . .
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129 ( gaˆ2∗(− 1 + om∗ x i ∗1 i ) ) ) ∗( s inh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i )

ˆ2 − omˆ 2 ∗ . . .

130 cosh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ˆ3) − imag (

tanh ( ( d − h) ∗(x + y∗1 i ) ) ∗ . . .

131 ( ( be ∗( a l ˆ2 + 1) + a l ˆ2/( gaˆ2∗(− 1 + om∗ x i ∗1 i ) ) ) ∗(x + y

∗1 i ) ˆ4 − omˆ2) ∗ . . .

132 (omˆ2∗ cosh (d∗(x + y∗1 i ) ) − s inh (d∗(x + y∗1 i ) ) ∗(2∗x + y

∗2 i ) − d∗ cosh (d ∗ . . .

133 ( x + y∗1 i ) ) ∗(x + y∗1 i ) ˆ2 + d∗omˆ2∗ s inh (d∗(x + y∗1 i ) ) ∗(x

+ y∗1 i ) ) ) − . . .

134 imag ( ( ( be ∗( a l ˆ2 + 1) + a l ˆ2/( gaˆ2∗(− 1 + om∗ x i ∗1 i ) ) ) ∗(x

+ y∗1 i ) ˆ4 − omˆ2) ∗ . . .

135 ( s inh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ˆ2 − omˆ2∗ cosh (d∗(x + y∗1

i ) ) ∗(x + y∗1 i ) ) ∗ . . .

136 (d − h) ∗( tanh ( ( d − h) ∗(x + y∗1 i ) ) ˆ2 − 1) ) − imag (omˆ2∗ r

∗(− s inh (d∗(x + y∗1 i ) ) + . . .

137 tanh ( ( d − h) ∗(x + y∗1 i ) )∗(− d∗ cosh (d∗(x + y∗1 i ) )∗omˆ2 +

cosh (d∗(x + y∗1 i ) ) + . . .

138 d∗ s inh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ) + ( s inh (d∗(x + y∗1 i ) )∗

omˆ2 − . . .

139 cosh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ) ∗(d − h) ∗( tanh ( ( d − h) ∗(x

+ y∗1 i ) ) ˆ2 − 1) − . . .

140 d∗ cosh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) + d∗omˆ2∗ s inh (d∗(x + y

∗1 i ) ) ) ) ) ;

141

142 dgdy = (@(x , y ) imag ( tanh ( ( d − h) ∗(x + y∗1 i ) ) ∗( be ∗( a l ˆ2 + 1)

+ a l ˆ 2 / . . .

143 ( gaˆ2∗(− 1 + om∗ x i ∗1 i ) ) ) ∗( s inh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i )

ˆ2 − omˆ 2 ∗ . . .

144 cosh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ˆ3∗4 i ) − imag (

tanh ( ( d − h) ∗ . . .



APPENDIX A. MATLAB CODES 132

145 ( x + y∗1 i ) ) ∗ ( ( be ∗( a l ˆ2 + 1) + a l ˆ2/( gaˆ2∗(− 1 + om∗ x i ∗1

i ) ) ) ∗(x + y∗1 i ) ˆ4 − . . .

146 omˆ2) ∗(omˆ2∗ cosh (d∗(x + y∗1 i ) ) ∗1 i − s inh (d∗(x + y∗1 i ) )

∗(x∗2 i − 2∗y ) − . . .

147 d∗ cosh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ˆ2∗1 i + d∗omˆ2∗ s inh (d∗(x

+ y∗1 i ) ) ∗ . . .

148 ( x + y∗1 i ) ∗1 i ) ) − imag (omˆ2∗ r∗(− s inh (d∗(x + y∗1 i ) ) ∗1 i

+ tanh ( ( d − h) ∗ . . .

149 ( x + y∗1 i ) )∗(− d∗ cosh (d∗(x + y∗1 i ) )∗omˆ2∗1 i + cosh (d∗(x

+ y∗1 i ) ) ∗1 i + . . .

150 d∗ s inh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ∗1 i ) − d∗ cosh (d∗(x + y∗1

i ) ) ∗(x + y∗1 i ) ∗1 i + . . .

151 ( s inh (d∗(x + y∗1 i ) )∗omˆ2 − cosh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i

) ) ∗( tanh ( ( d − h) ∗ . . .

152 ( x + y∗1 i ) ) ˆ2 − 1) ∗(d∗1 i − h∗1 i ) + d∗omˆ2∗ s inh (d∗(x + y

∗1 i ) ) ∗1 i ) ) − . . .

153 imag ( ( ( be ∗( a l ˆ2 + 1) + a l ˆ2/( gaˆ2∗(− 1 + om∗ x i ∗1 i ) ) ) ∗(x

+ y∗1 i ) ˆ4 − omˆ2) ∗ . . .

154 ( s inh (d∗(x + y∗1 i ) ) ∗(x + y∗1 i ) ˆ2 − omˆ2∗ cosh (d∗(x + y∗1

i ) ) ∗(x + y∗1 i ) ) ∗ . . .

155 ( tanh ( ( d − h) ∗(x + y∗1 i ) ) ˆ2 − 1) ∗(d∗1 i − h∗1 i ) ) ) ;

156

157

158 %% OUTPUT

159

160 % Parameters

161 di sp ( ’ ’ )

162 di sp ( ’−−− Input Parameters −−− ’ )

163 di sp ( [ ’Wave amplitude (m) = ’ , num2str (Ap) ] ) ;

164 di sp ( [ ’Wave per iod ( s ) = ’ , num2str (Tp) ] ) ;

165 di sp ( [ ’ Water depth (m) = ’ , num2str (hp) ] ) ;

166 di sp ( ’ ’ )
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167 di sp ( [ ’ P late submergence (m) = ’ , num2str (dp) ] ) ;

168 di sp ( [ ’ P late l ength (m) = ’ , num2str (Lp) ] ) ;

169 di sp ( [ ’ Subst rate Young ’ ’ s Modulus (N/mˆ2) = ’ , num2str (E0p)

] ) ;

170 di sp ( [ ’ Subst rate Poisson ’ ’ s r a t i o = ’ , num2str ( nu0 ) ] ) ;

171 di sp ( [ ’ Subst rate t h i c k n e s s (m) = ’ , num2str ( d0p ) ] ) ;

172 di sp ( [ ’ Subst rate dens i ty ( kg/mˆ3) = ’ , num2str ( r0p ) ] ) ;

173 di sp ( ’ ’ )

174 di sp ( [ ’ Patch Young ’ ’ s Modulus (N/mˆ2) = ’ , num2str (Epp) ] ) ;

175 di sp ( [ ’ Patch Poisson ’ ’ s r a t i o = ’ , num2str (nup ) ] ) ;

176 di sp ( [ ’ Patch t h i c k n e s s (m) = ’ , num2str (dpp ) ] ) ;

177 di sp ( [ ’ Patch dens i ty ( kg/mˆ3) = ’ , num2str ( rpp ) ] ) ;

178 di sp ( [ ’ P i e z o e l e c t r i c constant ( Coul/N) = ’ , num2str ( d31 ) ] ) ;

179 di sp ( [ ’ Re l a t i v e p e r m i t t i v i t y = ’ , num2str ( epr ) ] ) ;

180 di sp ( [ ’ Conductance (S/mˆ2) = ’ , num2str (Gp) ] ) ;

181 di sp ( ’ ’ )

182 di sp ( ’−−− Constants −−− ’ )

183 di sp ( [ ’ Pe rm i t t i v i t y (F/m) = ’ , num2str ( eps ) ] ) ;

184 di sp ( [ ’ P i e z o e l e c t r i c constant e31 ( Coul/mˆ2) = ’ , num2str (

e31 ) ] ) ;

185 di sp ( [ ’ Sur face dens i ty ( kg/mˆ2) = ’ , num2str (mup) ] ) ;

186 di sp ( [ ’ F l exura l r i g i d i t y (N∗m) = ’ , num2str (Bp) ] ) ;

187 di sp ( [ ’ P i e z o e l . coup l ing c o e f f . ( Coul/m) = ’ , num2str ( Kip ) ] )

;

188 di sp ( [ ’ Capacitance (F/mˆ2) = ’ , num2str (Cp) ] ) ;

189 di sp ( ’ ’ )

1 %% PIEZOPOWER − Wave power e x t r a c t i o n from p i e z o e l e c t r i c

f l e x i b l e p l a t e

2 % Numerical s o l u t i o n with matching p o t e n t i a l s

3

4 %% INPUT

5 % Input parameters & d i s p e r s i o n r e l a t i o n
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6 run PIEZODISP fede .m

7

8 %% NUMERICAL SOLUTION

9 di sp ( ’ ’ )

10 di sp ( ’−−− PIEZOPOWER −−− ’ )

11 di sp ( ’ ’ )

12 di sp ( ’−−− Numerical system −−− ’ )

13 % I n i t i a l i s e va lue s

14

15 N = length (Sn)−3;

16 % Dispe r s i on r e l a t i o n f o r outer r e g i o n s

17

18 % Propagating mode n=0

19 k = f z e r o (@( x ) omˆ2−x∗ tanh ( x∗h) , om. ˆ 2 ) ;

20 i f max( abs (om.ˆ2 − k .∗ tanh ( k .∗h) ) ) > t o l

21 di sp ( ’ Warning : D i spe r s i on r e l a t i o n not so lved f o r n

= 0 ! ! ! ’ )

22 end

23

24 % Evanescent modes n > 0

25 km = ze ro s (1 ,N) ;

26 f o r m = 1 : 1 :N

27 km(m) = f z e r o (@( x ) omˆ2 ∗h/x + tan ( x ) , m∗pi−t o l ) ;

28 end

29

30 km = km/h ;

31

32 i f max( abs (omˆ2 + km.∗ tan (km.∗h) ) ) > t o l

33 di sp ( ’ Warning : D i spe r s i on r e l a t i o n not so lved f o r n

>0 ! ! ! ’ )

34 end

35
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36 Km = [ k 1 i ∗km ] . ’ ;

37

38 % − Bui ld ing l i n e a r system −

39

40 % I n i t i a l i s e

41 M1 = ze ro s (N+1,N+3) ;

42 M2 = M1;

43 M3 = M2;

44 M4 = M3;

45

46 M5 = ze ro s (1 ,N+3) ;

47 M6 = M5;

48 M7 = M6;

49 M8 = M7;

50 M9 = M8;

51 M10 = M9;

52 M11 = M10 ;

53 M12 = M11 ;

54

55 a = (h+omˆ(−2) ∗( s inh ( k∗h) ) ˆ2) ˆ(1/2) / . . .

56 (2ˆ(1/2) ∗ cosh ( k∗h) ) ;

57

58 bmn = ze ro s (N+1,N+3) ;

59

60 % F i r s t N+1 rows

61 f o r m = 1 : 1 :N+1

62 f o r n = 1 : 1 :N+3

63

64 bmn(m, n) = (2ˆ(1/2) ∗omˆ2∗ s inh (Sn(n) ∗(d − h) ) ∗(Sn(n)

∗ . . .

65 ( cosh (h∗Km(m) ) − cosh (Km(m) ∗(d − h) )∗ cosh (d∗Sn(

n) ) ) + . . .
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66 s inh (Km(m) ∗(d − h) )∗Km(m)∗ s inh (d∗Sn(n) ) ) ) / ( ( h

+ . . .

67 s inh (h∗Km(m) ) ˆ2/omˆ2) ˆ(1/2) ∗(Km(m) ˆ2 − Sn(n) ˆ2)

) − . . .

68 (2ˆ(1/2) ∗( cosh (d∗Sn(n) )∗omˆ2 − Sn(n)∗ s inh (d∗Sn(

n) ) ) ∗ . . .

69 ( cosh (Sn(n) ∗(d − h) )∗ s inh (Km(m) ∗(d − h) )∗Km(m)

− . . .

70 cosh (Km(m) ∗(d − h) )∗ s inh (Sn(n) ∗(d − h) )∗Sn(n) ) )

/ . . .

71 ( ( h + s inh (h∗Km(m) ) ˆ2/omˆ2) ˆ(1/2) ∗(Km(m) ˆ2 − Sn

(n) ˆ2) ) − . . .

72 (2ˆ(1/2) ∗ s inh (Sn(n) ∗(d − h) )∗Sn(n) ∗(Km(m) ∗( s inh

(h∗Km(m) ) + . . .

73 s inh (Km(m) ∗(d − h) )∗ cosh (d∗Sn(n) ) ) − cosh (Km(m)

∗(d − h) ) ∗ . . .

74 Sn(n)∗ s inh (d∗Sn(n) ) ) ) / ( ( h + s inh (h∗Km(m) ) ˆ2/om

ˆ2) ˆ(1/2) ∗ . . .

75 (Km(m) ˆ2 − Sn(n) ˆ2) ) ;

76

77

78 M1(m, n) = exp(−1 i ∗Sn(n) )∗ (Sn (n) + Km(m) )∗ bmn(m, n)

;

79 M2(m, n) = −exp (1 i ∗Sn(n) )∗ (Sn (n) − Km(m) )∗ bmn(m, n)

;

80 M3(m, n) = Sn(n)∗ bmn(m, n) ;

81 M4(m, n) = −Sn(n)∗ bmn(m, n) ;

82 end

83 end

84

85 % Last 4 rows

86 f o r n = 1 : 1 :N+3
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87

88 % 4th l a s t

89 M5(n) = (omˆ2∗ cosh (Sn(n)∗d)− Sn(n)∗ s inh (Sn(n)∗d) ) ∗ . . .

90 Sn(n)∗ s inh (Sn(n) ∗(h−d) ) ;

91 M6(n) = (omˆ2∗ cosh (Sn(n)∗d)− Sn(n)∗ s inh (Sn(n)∗d) ) ∗ . . .

92 Sn(n)∗ s inh (Sn(n) ∗(h−d) ) ;

93

94 % 3rd l a s t

95 M7(n) = exp(−1 i ∗Sn(n) )∗ (omˆ2∗ cosh (Sn(n)∗d)− Sn(n)∗

s inh (Sn(n)∗d) ) ∗ . . .

96 Sn(n)∗ s inh (Sn(n) ∗(h−d) ) ;

97 M8(n) = exp (1 i ∗Sn(n) )∗ (omˆ2∗ cosh (Sn(n)∗d)− Sn(n)∗ s inh

(Sn(n)∗d) ) ∗ . . .

98 Sn(n)∗ s inh (Sn(n) ∗(h−d) ) ;

99

100 % 2nd l a s t

101 M9(n) = Sn(n) ∗(omˆ2∗ cosh (Sn(n)∗d)− Sn(n)∗ s inh (Sn(n)∗d)

) ∗ . . .

102 Sn(n)∗ s inh (Sn(n) ∗(h−d) ) ;

103 M10(n) = −Sn(n) ∗(omˆ2∗ cosh (Sn(n)∗d)− Sn(n)∗ s inh (Sn(n)∗

d) ) ∗ . . .

104 Sn(n)∗ s inh (Sn(n) ∗(h−d) ) ;

105

106 % l a s t

107 M11(n) = Sn(n)∗exp(−1 i ∗Sn(n) )∗ (omˆ2∗ cosh (Sn(n)∗d)− Sn

(n)∗ s inh (Sn(n)∗d) ) ∗ . . .

108 Sn(n)∗ s inh (Sn(n) ∗(h−d) ) ;

109 M12(n) = −Sn(n)∗exp (1 i ∗Sn(n) )∗ (omˆ2∗ cosh (Sn(n)∗d)− Sn

(n)∗ s inh (Sn(n)∗d) ) ∗ . . .

110 Sn(n)∗ s inh (Sn(n) ∗(h−d) ) ;

111 end

112
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113 % Ful l matrix

114 M = [M1 M2; M3 M4; M5 M6; M7 M8; M9 M10 ; M11 M12 ] ;

115

116 % Known term vecto r

117 B = ze ro s (2∗N+6 ,1) ;

118 B(1) = 2∗a∗1 i /om∗ (1 i ∗k∗ s i n ( k ) − Km(1) ∗ cos ( k ) ) ;

119

120 % Regu lar i s ed matrix

121 MR = zero s (2∗N+6,2∗N+6) ;

122 f o r m = 1 : 1 : ( 2 ∗N+6)

123 f o r n = 1 : 1 : ( 2 ∗N+6)

124 MR(m, n) = M(m, n) /max(M(m, : ) ) ;

125 end

126 end

127

128 % Regu lar i s ed k . t . vec to r

129 BR = B/max(M( 1 , : ) ) ;

130

131 % So lut i on

132 X = l i n s o l v e (MR,BR) ;

133

134 % Plate c o e f f i c i e n t s

135 An = X( 1 :N+3) ;

136 Bn = X(N+4:(2∗N+6) ) ;

137

138 % Error check

139 e r s = max( abs (M∗X−B) ) ;

140 di sp ( [ ’ Numerical system so lved with max e r r o r : ’ , num2str (

e r s ) ] ) ;

141

142 c l e a r X

143
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144 % − RT C o e f f i c i e n t s −

145

146 % I n i t i a l i s e

147 Rm = ze ro s (N+1 ,1) ;

148

149 au1 = ze ro s (N+1,N+3) ;

150 cm = Rm;

151

152

153 f o r m =1:1:N+1

154 cm(m) = (h+omˆ(−2) ∗( s inh (Km(m)∗h) ) ˆ2) ˆ(1/2) / s q r t (2 ) ;

155 f o r n = 1 : 1 :N+3

156 au1 (m, n) = ( An(n)∗ exp(−1 i ∗(Sn(n)+Km(m) ) ) + . . .

157 Bn(n)∗ exp (1 i ∗(Sn(n)−Km(m) ) ) )∗bmn(m, n) ;

158 end

159

160 Rm(m) = (2∗1 i ∗a/om∗ cos ( k )∗ kroneckerDel ta (sym (0) , sym(m

−1) ) ∗ . . .

161 exp(−1 i ∗Km(m) )+ sum( au1 (m, : ) ) ) /cm(m) ;

162 end

163

164 c l e a r au1 au2

165

166 % − Wave f i e l d −

167

168 prompt7 = { ’Min x ’ ’ ’ , ’Max x ’ ’ ’ , ’ Spacing along x ’ ’ ’ } ;

169 name7 = ’ I n s e r t wave f i e l d data ’ ;

170 de fau l tanswer7 = { ’−100 ’ , ’ 100 ’ , ’ 0 .025 ’ } ;

171 answer7 = inputd lg ( prompt7 , name7 , numlines , de fau ltanswer7 ,

opt ions ) ;

172

173 xpmin = str2num ( answer7 {1}) ;
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174 xpmax = str2num ( answer7 {2}) ;

175 dx = str2num ( answer7 {3}) ;

176

177 Xp = xpmin : dx : xpmax ;

178

179 X = Xp/Lp ;

180

181 X1 = X(X <= −1) ;

182 X2 = X(X >= −1 & X <= 0) ;

183

184

185 % Free−s u r f a c e e l e v a t i o n

186

187 au1 = ze ro s (N+1, l ength (X1) ) ;

188 au2 = ze ro s (N+3, l ength (X2) ) ;

189

190 eta1 = ze ro s (1 , l ength (X1) ) ;

191 eta2 = ze ro s (1 , l ength (X2) ) ;

192

193

194 % D1

195 f o r j = 1 : 1 : l ength (X1)

196 f o r m = 1 : 1 :N+1

197 au1 (m, j ) = Rm(m)∗exp(−1 i ∗Km(m)∗X1( j ) )∗Km(m)∗ s inh (Km(m)∗

h) ;

198 end

199 eta1 ( j ) = 2/omˆ2∗k∗ tanh ( k∗h)∗ cos ( k∗X1( j ) )+ 1 i /om∗ sum(

au1 ( : , j ) ) ;

200 end

201

202 % D2

203 f o r j = 1 : 1 : l ength (X2)
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204 f o r n = 1 : 1 :N+3

205 au2 (n , j ) = (An(n)∗exp (1 i ∗Sn(n)∗X2( j ) )+ Bn(n) ∗ . . .

206 exp(−1 i ∗Sn(n)∗X2( j ) ) )∗omˆ2∗Sn(n)∗ s inh (Sn(n)∗ (h

−d) ) ;

207 end

208 eta2 ( j ) = 1 i /om∗ sum( au2 ( : , j ) ) ;

209 end

210

211

212 % Plate d isp lacement

213 w = ze ro s (1 , l ength (X2) ) ;

214 aup = ze ro s (N+3, l ength (X2) ) ;

215

216 f o r j = 1 : 1 : l ength (X2)

217 f o r n = 1 : 1 :N+3

218 aup (n , j ) = (An(n)∗exp (1 i ∗Sn(n)∗X2( j ) )+ Bn(n) ∗ . . .

219 exp(−1 i ∗Sn(n)∗X2( j ) ) )∗ ( omˆ2∗ cosh (Sn(n)∗d) + . . .

220 −Sn(n)∗ s inh (Sn(n)∗d) ) ∗Sn(n)∗ s inh (Sn(n)∗ (h−d

) ) ;

221 end

222 w( j ) = 1 i /om∗ sum( aup ( : , j ) ) ;

223 end

224

225 c l e a r aup

226

227 % Power

228

229 wxx = ze ro s (1 , l ength (X2) ) ;

230 aup = ze ro s (N+3, l ength (X2) ) ;

231

232 f o r j = 1 : 1 : l ength (X2)

233 f o r n = 1 : 1 :N+3
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234 aup (n , j ) = (−Sn(n) ˆ2∗An(n)∗exp (1 i ∗Sn(n)∗X2( j ) )−Sn(n

) ˆ2∗Bn(n) ∗ . . .

235 exp(−1 i ∗Sn(n)∗X2( j ) ) )∗ ( omˆ2∗ cosh (Sn(n)∗d) + . . .

236 −Sn(n)∗ s inh (Sn(n)∗d) ) ∗Sn(n)∗ s inh (Sn(n)∗ (h−d

) ) ;

237 end

238 wxx( j ) = 1 i /om∗ sum( aup ( : , j ) ) ;

239 end

240

241 P = omˆ2/2∗ t rapz (X2 , ( abs ( a l ∗wxx/( ga∗ (1−1 i ∗om∗ x i ) ) ) ) . ˆ2 ) ;

242

243 % Dimensional v a r i a b l e s

244

245 % Coordinates

246 X1p = X1∗Lp ;

247 X2p = X2∗Lp ;

248 %X4p = X4∗Lp ;

249

250 % Free−s u r f a c e e l e v a t i o n

251 Z1p = r e a l ( eta1 )∗Ap;

252 Z2p = r e a l ( eta2 )∗Ap;

253

254 % Plate d isp lacement

255 Wp = r e a l (w)∗Ap;

256

257 % Extracted power

258 Pp = (Ap∗g ) ˆ2/Lp∗ mup∗Cp/Gp∗ P;

259

260 di sp ( ’ ’ )

261 di sp ( ’−−− Power output −−− ’ )

262 di sp ( [ ’ Extracted power (W/m) = ’ , num2str (Pp) ] ) ;

263 di sp ( [ ’ Power dens i ty (W/mˆ2) = ’ , num2str (Pp/(2∗Lp) ) ] ) ;
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264 di sp ( ’ ’ )

265

266 % Plot s

267 f i g u r e

268 p lo t (X1p , Z1p , X2p , Z2p )

269 hold on

270 p lo t (X2p,−dp+Wp)

271 a x i s equal



Appendix B

Bessho-Newman relation

Using the expressions for φLm(x, z) ans φRm(x, z) derived respectively in sections

5.2.1 and 5.2.2 and looking at Fig. B.1, let the bounding surface ∂Ω be divided

into the free surface SF , the bottom B0, the body SB ∪BB and a vertical circular

cylinder S∞ with an arbitrary large radius. Note that in two dimensions, I consider

S±∞ be two vertical lines at x ∼ ±∞.

m

z

x

Incident wave 

SB
SF

B0 S∞+

BB

S∞-

BB
SF

Figure B.1: Two-dimensional representation of the bounding surfaces of the FBWEC

system as sum of the free surface SF , the bottom B0, the body SB ∪BB and a vertical

circular cylinder S∞ with an arbitrary large radius.

The radiation problem (superscript R) for the system shown in Fig. B.1 is

defined by

∇2φRm = 0 in Ω, (B.1)

ω2φRm − gφRmz = 0 in SF , (B.2)

144
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∂φRm
∂n

= 0 in B0 ∪BB (B.3)

and

∂φRm
∂n

= 1 in SB. (B.4)

This yields the following asymptotic expressions for the radiation potentials:

φRm ∼ a0me
−ikxZ0(z), x ∼ −∞ (B.5)

and

φRm ∼ b0me
ik(x−L)Z0(z), x ∼ ∞. (B.6)

Similarly I can write the diffraction problem related to Fig. B.1:

∇2(φI + φS) = 0 in Ω, (B.7)

ω2(φI + φS)− g(φI + φS)z = 0 in SF , (B.8)

∂(φI + φS)

∂n
= 0 in SB ∪BB (B.9)

and

∂(φI + φS)

∂n
= 0 in B0, (B.10)

where φI+φS = φD is the diffraction potential expressed as sum of the incident

potential φI and the scattering potential φS. Solving the diffraction problem I

obtain the asymptotic expressions (see [27]):

φI + φS = −igAI
ω

(
cosh[k(z + h)]

cosh(kh)
eikx +RZ0(z)e−ikx

)
, x ∼ −∞ (B.11)
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and

φI + φS = −igAI
ω

TZ0(z)eikx, x ∼ ∞, (B.12)

where R and T are respectively the reflection and transmission coefficients and

AI is the amplitude of the incident wave. To obtain the Bessho-Newman relation

for this problem, I shall apply Green’s theorem to the radiation and diffraction

problems set out above. For two twice-differentiable functions f and g, Green’s

theorem is

∫ ∫ ∫
Ω

(f∇2g − g∇2f) dΩ =

∫ ∫
∂Ω

(
f
∂g

∂n
− g∂f

∂n

)
dS, (B.13)

where Ω is a closed volume, ∂Ω its boundary and n a unit normal to ∂Ω and

outward from Ω, (see [27]). Let me choose f = φR − φR∗ and g = φI + φS where

the ·∗ indicates the complex conjugate. Green’s theorem becomes

∫ ∫ ∫
Ω

[(φR − φR∗)∇2(φI + φS)− (φI + φS)∇2(φR − φR∗)] dΩ =∫ ∫
S−∞∪S+∞∪SF∪SB∪B0∪BB

[
(φR − φR∗)∂(φI + φS)

∂n
− (φI + φS)

∂(φR − φR∗)
∂n

]
dS.

(B.14)

Using equation (B.1), its complex conjugate and (B.7), I get

∫ ∫
S−∞∪S+∞

[
(φR − φR∗)∂(φI + φS)

∂n
− (φI + φS)

∂(φR − φR∗)
∂n

]
dS

+

∫ ∫
SF

[
(φR − φR∗)∂(φI + φS)

∂n
− (φI + φS)

∂(φR − φR∗)
∂n

]
dS

+

∫ ∫
SB

[
(φR − φR∗)∂(φI + φS)

∂n
− (φI + φS)

∂(φR − φR∗)
∂n

]
dS

+

∫ ∫
B0∪BB

[
(φR − φR∗)∂(φI + φS)

∂n
− (φI + φS)

∂(φR − φR∗)
∂n

]
dS = 0. (B.15)

Using conditions (B.2-B.4) and (B.8-B.10), I obtain
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∫ ∫
S−∞

[
(φR − φR∗)∂(φI + φS)

∂n
− (φI + φS)

∂(φR − φR∗)
∂n

]
dS

+

∫ ∫
S+∞

[
(φR − φR∗)∂(φI + φS)

∂n
− (φI + φS)

∂(φR − φR∗)
∂n

]
dS = 0. (B.16)

Now I substitute the expressions for the radiation potentials φR, its complex

conjugate and the diffraction potential (φI + φS) at x ∼ ±∞. Note that on ±∞,

∂/∂n = ±∂/∂x. Doing that I obtain the two-dimension Bessho-Newman relation

that relates the unknown coefficients a0m and b0m,

[h+ g/ω2 sinh2(kh)]1/2√
2 cosh(kh)

a0m +Ra∗0m + Tb∗0m = 0. (B.17)



Appendix C

The basis functions

Following the method in [24], I choose the basis functions pn(z) such that they

satisfy the physical requirement near the corner points A, B, C and D (see again

Figg. 5.5 and 5.6). The edge conditions already stated in sections 5.2.1 and 5.2.2,

tell me that the horizontal velocity of the fluid near the edge points has a cubic-root

singularity. Also I seek functions such that the final forms of expressions occurring

in the analysis become as simple as possible. Having said that, suitable basis

functions for our problem can be chosen in terms of ultraspherical Gegenbauer

polynomials C
1/6
n (z) with weight function (1 − z2)(−1/3). They are characterised

by the results

∫ 1

−1

(1− z2)(−1/3)C1/6
n (z) dz =

0, for n > 0

6
√
πΓ( 2

3
)

Γ( 1
6

)
, for n = 0

. (C.1)

In order to use the previous results I need to rewrite the integrals in equation

(5.111) using ultraspherical Gegenbauer polynomials and changing variables to

integrate in the interval [−1, 1]. Therefore pn(u) and and pq(z) with u, z ∈ [−h+

c,−a] in (5.112) and (5.113) become respectively pn(v) and pq(w) with v, w ∈

[−1, 1] where

pn(v) = (1− v2)(−1/3)C1/6
n (v), (C.2)

v =
2u+ h+ a− c
h− a− c

and w =
2z + h+ a− c
h− a− c

. (C.3)

148



APPENDIX C. THE BASIS FUNCTIONS 149

Finally I can rewrite our approximated equation (5.111) as

N∑
n=0

αmn

∫ 1

−1

∫ 1

−1

(1− v2)−1/3C1/6
n (v)(1− w2)−1/3C1/6

n (w)

M
(
v(h− a− c)− h− a+ c

2
,
w(h− a− c)− h− a+ c

2

)(
h− a− c

2

)2

dv dw =∫ 1

−1

Z0

(
w(h− a− c)− h− a+ c

2

)
(1− w2)−1/3C1/6

n (w)

(
h− a− c

2

)
dw,

(C.4)

which can now be solved for the αmn.
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Diffraction

In the following chapter I formulate and solve the diffraction problem described in

Fig. D.1. The FBWEC is now considered as a whole block and an incident wave

is directed as the x-axis, see again Fig. D.1. Splitting the domain in three regions,

let me define φDL , φS and φDR respectively spatial potential in region 1 (left), 2

(central), 3 (right) for the diffraction problem.

1 m2 M… …

z

x

h

L

c

a

h - a - c1
x = 0

B

A

x = L

D

C

2 3

Incident wave 

Figure D.1: Geometry of the FBWEC for the diffraction problem. Numbers 1, 2 and

3 denote respectively left, central and right regions in which I split the fluid domain to

solve the problem.

In region 1 I have:

∇2φDL = 0, in the fluid domain, (D.1)

150
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φDLz −
ω2

g
φDL = 0, z = 0, (D.2)

φDLz = 0, z = −h, (D.3)

φDL is outgoing, (D.4)

which yields

φDL (x, z) =
igAI
ω

cosh[k(z + h)]

cosh(kh)
eikx − igAI

ω
RZ0(z)e−ikx +

+∞∑
p=1

RpZp(z)ekpx, (D.5)

where R = R0. Equations valid in the central region are

∇2φS = 0, in the fluid domain, (D.6)

and

φSz = 0, z = −a, z = −h+ c. (D.7)

Following the same procedure used in section 5.1.2, I obtain

φSm(x, z) = G0x+H0 +
+∞∑
p=1

(Gpe
−k̃px +Hpe

k̃px) cos[k̃p(z + h− c)]. (D.8)

Finally, in region 3,

∇2φRL = 0, in the fluid domain, (D.9)

φDRz −
ω2

g
φDR = 0, z = 0, (D.10)

φDRz = 0, z = −h, (D.11)
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φDR is outgoing, (D.12)

which yields

φDR(x, z) = −igAI
ω

TZ0e
ik(x−L) +

+∞∑
p=1

TpZp(z)e−kp(x−L), (D.13)

where T
.
= T0e

ikL. As I did in sections 5.2.1 and 5.2.2, I define the problem at

the interface x = 0 and x = L and I use a solution method based on the integral

equations.

D.1 Interface x = 0

Looking again at Fig. D.1, at x = 0 I have:

∂φDL
∂x

= 0, x = 0−, z ∈ (−h, −h+ c), z ∈ (−a, 0), (D.14)

φDL = φS, x = 0−, z ∈ (−h+ c, −a), (D.15)

∂φDL
∂x

=
∂φS

∂x
, x = 0, z ∈ (−h+ c, −a) (D.16)

and

|∇φDL | = O(r−1/3) on A and B, see again Fig. D.1. (D.17)

Using the method in [24], let me now define

∂φDL
∂x

(0−, z)
.
= gL(z), z ∈ (−h, 0). (D.18)

Then (D.14) becomes

gL(z) = 0, z ∈ (−h, −h+ c), z ∈ (−a, 0) (D.19)
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and (D.16) gives

gL(z) =
∂φS

∂x

∣∣∣∣
x=0

, z ∈ (−h+ c, −a). (D.20)

Also, due to the edge condition described by (D.17), I must have the require-

ment that

gL = O(|z + h− c|−1/3), z → −h+ c (D.21)

and

gL = O(|z + a|−1/3), z → −a. (D.22)

Substituting (D.5) in the definition (D.18) and rearranging, I get

kgAI
ω

Z0(z)

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]
+

+∞∑
p=1

kpRpZ(z)p = gL(z). (D.23)

Hence let me multiply by Z0(z), and integrate along z, to obtain

kgAI
ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]
=

∫ −a
−h+c

gL(z)Z0(z) dz. (D.24)

In the latter, condition (D.19) has been used and the orthogonality of the

vertical modes Z0 has been exploited. In addition, multiplying (D.23) by Zq(z),

q = 0, 1, 2... and integrating along z, yields

kpRp =

∫ −a
−h+c

gL(z)Zp(z) dz. (D.25)

Using the same method, conditions (D.15) and (D.20) yield respectively

Gp +Hp =
2

h− a− c

{
−igAI
ω
=0p

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
+R

]
+

+∞∑
q=1

Rq=qp

}
(D.26)
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and

Hp −Gp =
2

k̃p(h− a− c)

∫ −a
−h+c

gL(z) cos[k̃p(z + h− c)] dz, (D.27)

where I exploited the orthogonality of cosines. In (D.26),

=0p =

∫ −a
−h+c

Z0(z) cos[k̃p(z + h− c)] dz

and

=qp =

∫ −a
−h+c

Zq(z) cos[k̃p(z + h− c)] dz.

Finally, the integral equations at the interface x = 0 can be obtained by

substituting (D.5) and (D.8) in (D.16). This yields

∫ −a
−h+c

gL(u)

{
2

h− a− c

+∞∑
p=1

cos[k̃p(u+ h− c)] cos[k̃p(z + h− c)]

−
+∞∑
p=1

Zp(u)Zp(z)

}
du+G0 = Z0(z)

gkAI
ω

{
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

}
. (D.28)

The amplitude coefficient G0 can be determined by substituting (D.8) into

(D.20) and integrating along z between z = −h+ c and z = −a:

G0 =
1

h− a− c

∫ −a
−h+c

gL(z) dz. (D.29)

Now I substitute (D.29) in (D.28) and I get the integral equation:

∫ −a
−h+c

GL(u)M(u, z) du = Z0(z), (D.30)

where

GL(u) =
gL(u)

gkAI

ω

{
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

} (D.31)

and M(u, z) is real and symmetric in u and z and is expressed by (5.50).
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D.2 Interface x = L

At the interface x = L I have a similar problem to solve:

∂φDR
∂x

= 0, x = L+, z ∈ (−h, −h+ c), z ∈ (−a, 0), (D.32)

φDR = φS, x = L+, z ∈ (−h+ c, −a), (D.33)

∂φDR
∂x

=
∂φS

∂x
, x = L, z ∈ (−h+ c, −a) (D.34)

and

|∇φDR | = O(r−1/3) on C and D, see again Fig. D.1. (D.35)

Using again the method in [24], let me now define

∂φDR
∂x

(L+, z)
.
= gR(z), z ∈ (−h, 0). (D.36)

Then (D.32) becomes

gR(z) = 0, z ∈ (−h, −h+ c) or z ∈ (−a, 0) (D.37)

and (D.34) gives

gR(z) =
∂φS

∂x

∣∣∣∣
x=0

, z ∈ (−h+ c, −a). (D.38)

Also, due to the edge condition described by (D.35), I must have the require-

ment that

gR = O(|z + h− c|−1/3), z → −h+ c (D.39)

and

gR = O(|z + a|−1/3), z → −a. (D.40)
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The integral equation at the interface x = L is obtained following exactly the

same procedure that I used at interface x = 0 as follows. Substituting (D.13) in

the definition (D.36) and rearranging, I get

kgAI
ω

TZ0(z)−
+∞∑
p=1

kpTpZ(z)p = gR(z). (D.41)

Hence let me multiply by Z0(z), and integrate along z, to obtain

kgAI
ω

T =

∫ −a
−h+c

gR(z)Z0(z) dz. (D.42)

In the latter, condition (D.37) has been used and the orthogonality of the

vertical modes Z0 has been exploited. In addition, multiplying (D.41) by Zq(z),

q = 0, 1, 2... and integrating along z, yields

−kpRp =

∫ −a
−h+c

gL(z)Zp(z) dz. (D.43)

Using the same method, conditions (D.33) and (D.38) yield respectively

Gpe
−k̃pL +Hpe

k̃pL =
2

h− a− c

[
−igAI
ω

T=0p +
+∞∑
q=1

Tq=qp

]
(D.44)

and

Hpe
k̃pL −Gpe

−k̃pL =
2

k̃p(h− a− c)

∫ −a
−h+c

gR(z) cos[k̃p(z + h− c)] dz, (D.45)

where I exploited the orthogonality of cosines. In (D.44),

=0p =

∫ −a
−h+c

Z0(z) cos[k̃p(z + h− c)] dz

and

=qp =

∫ −a
−h+c

Zq(z) cos[k̃p(z + h− c)] dz.

Finally, the integral equations at the interface x = L can be obtained by

substituting (D.13) and (D.8) in (D.34). This yields
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∫ −a
−h+c

gR(u)

{
2

h− a− c

+∞∑
p=1

cos[k̃p(u+ h− c)] cos[k̃p(z + h− c)]

−
+∞∑
p=1

Zp(u)Zp(z)

}
du+G0 = Z0(z)T

gkAI
ω

. (D.46)

The amplitude coefficient G0 can be determined by substituting (D.8) into

(D.38) and integrating along z between z = −h+ c and z = −a:

G0 =
1

h− a− c

∫ −a
−h+c

gR(z) dz. (D.47)

Now I substitute (D.47) in (D.46) and I get the integral equation:

∫ −a
−h+c

GR(u)M(u, z) du = Z0(z), (D.48)

where

GR(u) =
gR(u)
gkAIT
ω

(D.49)

and M(u, z) is real and symmetric in u and z and is expressed by (5.50).

Note that in section D.1, I found G0 using (D.38), therefore this yields a relation

between gL(z) and gR(z) as below.

∫ −a
−h+c

GL(u)M(u, z) du = Z0(z) =

∫ −a
−h+c

GR(u)M(u, z) du, (D.50)

which can be written as

∫ −a
−h+c

[GL(u)−GR(u)]M(u, z) du = 0. (D.51)

The latter implies that GL(u) = GR(u), therefore

gL(u)

gkAI

ω

{
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

} =
gR(u)
gkAIT
ω

. (D.52)
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Also, I have

1

h− a− c

∫ −a
−h+c

gL(z) dz = G0 =
1

h− a− c

∫ −a
−h+c

gR(z) dz, (D.53)

from which I obtain

∫ −a
−h+c

gL(z) dz =

∫ −a
−h+c

gR(z) dz. (D.54)

Now let me integrate (D.52) along z between z = −h+ c and z = −a to get a

relation between transmission T and reflection R coefficients:

T =
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R. (D.55)

In the latter, condition (D.54) has been used. Now I can conclude that (D.52)

and (D.54) imply that

gL(z) = gR(z). (D.56)

D.3 Summary of equations and unknowns of

the diffraction problem

Here I present a summary of equations and unknowns which describe the diffrac-

tion problem of Fig. D.1:

kgAI
ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]
=

∫ −a
−h+c

gL(z)Z0(z) dz, (D.57)

kpRp =

∫ −a
−h+c

gL(z)Zp(z) dz, (D.58)

Gp +Hp =
2

h− a− c

{
−igAI
ω
=0p

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
+R

]
+

+∞∑
q=1

Rq=qp

}
,

(D.59)
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Hp −Gp =
2

k̃p(h− a− c)

∫ −a
−h+c

gL(z) cos[k̃p(z + h− c)] dz, (D.60)

G0 =
1

h− a− c

∫ −a
−h+c

gL(z) dz, (D.61)

∫ −a
−h+c

GL(u)M(u, z) du = Z0(z), (D.62)

GL(u) =
gL(u)

gkAI

ω

{
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

} , (D.63)

kgAI
ω

T =

∫ −a
−h+c

gR(z)Z0(z) dz, (D.64)

−kpRp =

∫ −a
−h+c

gL(z)Zp(z) dz, (D.65)

Gpe
−k̃pL +Hpe

k̃pL =
2

h− a− c

[
−igAI
ω

T=0p +
+∞∑
q=1

Tq=qp

]
, (D.66)

Hpe
k̃pL −Gpe

−k̃pL =
2

k̃p(h− a− c)

∫ −a
−h+c

gR(z) cos[k̃p(z + h− c)] dz, (D.67)

∫ −a
−h+c

GR(u)M(u, z) du = Z0(z), (D.68)

GR(u) =
gR(u)
gkAIT
ω

, (D.69)

T =
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R, (D.70)

gL(z) = gR(z). (D.71)



APPENDIX D. DIFFRACTION 160

D.4 Reflection coefficient

Once GL is determined from the integral equation (D.62), gL can be found by

using (D.63) which yields

gL = GL(u)
gkAI
ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]
. (D.72)

Substituting the latter in (D.60) I obtain

Hp −Gp =
2

k̃p(h− a− c)

∫ −a
−h+c

GL(z)
gkAI
ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]
cos[k̃p(z + h− c)] dz. (D.73)

Now I sum (D.73) and (D.59) to obtain an expression for Hp:

Hp =
1

h− a− c

{
1

k̃p

∫ −a
−h+c

GL(z)
gkAI
ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]

cos[k̃p(z + h− c)] dz +
+∞∑
p=1

Rp=pq −
igAI
ω
=0p

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
+R

]}
.

(D.74)

In order to rewrite the latter as function of the only unknown R, I use (D.58)

and (D.72) to get an expression for Rp:

Rp =
1

kp

∫ −a
−h+c

GL(z)
gkAI
ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]
Zp(z) dz, (D.75)

therefore
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Hp =
1

h− a− c

{
1

k̃p

∫ −a
−h+c

GL(z)
gkAI
ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]

cos[k̃p(z + h− c)] dz +
+∞∑
p=1

1

kp

∫ −a
−h+c

GL(z)
gkAI
ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]

Zp(z)=qp dz − igAI
ω
=0p

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
+R

]}
.

(D.76)

Note that gR(z) = gL(z) = GL(u)gkAI

ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]
and if I substi-

tute this in (D.67), I obtain

Hpe
k̃pL −Gpe

−k̃pL =
2

k̃p(h− a− c)

∫ −a
−h+c

GL(u)
gkAI
ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]
cos[k̃p(z + h− c)] dz,

(D.77)

which I can sum to (D.66) to get another expression for Hp:

Hp =
1

ek̃pL(h− a− c)

{
1

k̃p

∫ −a
−h+c

GL(z)
gkAI
ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]

cos[k̃p(z + h− c)] dz +
+∞∑
p=1

Tp=pq −
igAI
ω
=0pT

}
. (D.78)

Now, (D.71), (D.58) and (D.65) imply that Rp = −Tp, therefore,
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Hp =
1

ek̃pL(h− a− c)

{
1

k̃p

∫ −a
−h+c

GL(z)
gkAI
ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]

cos[k̃p(z + h− c)] dz −
+∞∑
p=1

1

kp

∫ −a
−h+c

GL(z)
gkAI
ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]

Zp(z)=pq dz − igAI
ω
=0p

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]}
.

(D.79)

In the latter I used (D.70) and (D.75). Finally I obtained two expressions for

Hp, (D.76) and (D.79), which can be matched to obtain the reflection coefficient

R as below:

1

h− a− c

{
1

k̃p

∫ −a
−h+c

GL(z)
gkAI
ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]
cos[k̃p(z + h− c)] dz+

+∞∑
p=1

1

kp

∫ −a
−h+c

GL(z)
gkAI
ω

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]
Zp(z)=qp dz − igAI

ω
=0p[

[h+ g
ω2 sinh2(kh)]1/2
√

2 cosh(kh)
+R

]}
=

1

ek̃pL(h− a− c)

{
1

k̃p

∫ −a
−h+c

GL(z)
gkAI
ω[

[h+ g
ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]
cos[k̃p(z + h− c)] dz −

+∞∑
p=1

1

kp

∫ −a
−h+c

GL(z)
gkAI
ω[

[h+ g
ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]
Zp(z)=pq dz − igAI

ω
=0p

[
[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)
−R

]}
,

(D.80)

which I can be simplified to
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(
1− 1

ek̃pL

)
k

k̃p

[h+ g
ω2 sinh2(kh)]1/2
√

2 cosh(kh)

∫ −a
−h+c

GL(z) cos[k̃p(z + h− c)] dz−(
1− 1

ek̃pL

)
k

k̃p
R

∫ −a
−h+c

GL(z) cos[k̃p(z + h− c)] dz +

(
1 +

1

ek̃pL

)
k

[h+ g
ω2 sinh2(kh)]1/2
√

2 cosh(kh)

+∞∑
p=1

=pq
kp

∫ −a
−h+c

GL(z)Zp(z) dz −
(

1 +
1

ek̃pL

)
kR

+∞∑
p=1

=pq
kp

∫ −a
−h+c

GL(z)Zp(z) dz − 2i=0pR = 0 (D.81)

and finally I can obtain the following expression for R:

R =

[h+ g

ω2 sinh2(kh)]1/2
√

2 cosh(kh)

{(
1− 1

ek̃pL

)
k
k̃p

∫ −a
−h+c

GL(z) cos[k̃p(z + h− c)] dz+(
1− 1

ek̃pL

)
k
k̃p

∫ −a
−h+c

GL(z) cos[k̃p(z + h− c)] dz +
(

1 + 1

ek̃pL

)
k(

1 + 1

ek̃pL

)
k
∑+∞

p=1
=pq

kp

∫ −a
−h+c

GL(z)Zp(z) dz

}
∑+∞

p=1
=pq

kp

∫ −a
−h+c

GL(z)Zp(z) dz + 2i=0p

. (D.82)
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