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Abstract

In this thesis, we construct ARMA model for random periodic processes. We stress on

the mixed periodicity and randomness of the model and redefined the definition of sample

autocovariance function. We prove the asymptotic normality of Yule-Walker estimation

and innovation estimation for coefficients in causal and invertible case. We also prove

the central limit theorem for random periodic processes. Under this and ergodic theorem,

we prove the asymptotic normality of maximum likelihood estimation for non-causal au-

toregressive model for random periodic processes. We simulate ARMA model for random

periodic processes to two examples and compare the results with classical ARMA model.

Keywords: random periodic processes, ARMA model, central limit theorem, asymp-

totic normality, causal case, non-causal case, simulation.
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Introduction

Periodic phenomena appear very often in our daily life such as the temperature cycle,

business cycles, astronomical landscapes etc. People built many different kinds of models

to capture periodic trends in order to help forecasting the future events and guiding social

activities and material production. But real world systems are influenced by many internal

or external fluctuations with uncertainty. The mixture of periodicity and randomness

could be in a complex way and make forecasting much harder, especially when noise is

very large and periodicity is covered up.

So far in time series analysis, the fundamental non-structural method to analyse a

time series is to describe the observations as a path of a stationary process using different

non-structural models to fit the data, e.g. the autoregressive moving average (ARMA)

model. The classical ARMA model was described first in 1951 by Whittle in his thesis

[27], and was popularized by Box and Jenkins in 1970 in [9]. It describes the time series

as a stationary stochastic process which combines linearly with an autoregressive polyno-

mial relating the current data to p past data and a moving average polynomial relating

to history noises of lag q. For non-stationary time series, de-trended and de-seasoned

preprocessing is need. Consider the well-used classical decomposition model of data [12],

X(t, ω) = trend(t) + s(t) + X̃(t, ω), (0.0.1)

which describes the observed data {X(t, ω)} by a linear combination of a trend term, a

noise term X̃(t, ω), which is a stationary process, and sometimes with a seasonal fluctu-

ation component s(t). Then ARMA model is applied to fit the process {X̃(t)}.

However this method to model seasonal fluctuations is quite a limited way due to

the inflexible assumption of seasonal component. Recent work in Franses’ book [21] rec-

ommends that the seasonal fluctuations should be paid more attention in econometric
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studies. One reason is that randomness in seasonal variation can explain more precisely

the behaviour of economic agents, and the other is that in many de-trended time series

the seasonal fluctuations take a dominate position in the remaining variation in the series.

Franses also mentioned that the non-seasonal fluctuations in many quarterly or monthly

observed macroeconomic time series do not appear to be a stationary process over time

and that the dependence between seasonal fluctuations and non-seasonal fluctuations may

well exist in some time series. This suggests the limitation of the classical decomposition

model in the classical time series analysis.

In this thesis, we also provide an example of a sample set simulated by a SDE whose

solution is random periodic path. The drift term and the diffusion term are both periodic

functions of t. The seasonal fluctuations and randomness are mixed together. Here the

decomposition model (0.0.1) is not correct.

To solve the varying volatility problem in many real cases and to improve the model

fitness, many sophisticated models are built based on the ARMA model.

Gladyshev [22] defined a class of stochastic processes called periodically correlated

random processes, whose correlation function satisfies B(s, t) = B(s+ T, t+ T ) for some

fixed number T . Later, some researches constructed periodic ARMA model based on peri-

odically correlated random processes. The PARMA model assumes the coefficients of the

standard ARMA model are varying with the season. There are several papers stated recent

work on PARMA model. For instance, Vecchia studied the maximum likelihood estima-

tion for periodic autoregressive model in [26]. Anderson et al. [4] studied the innovation

algorithm asymptotics for causal PARMA model.

Another commonly used model in financial time series is the autoregressive condition-

ally heteroscedastic (ARCH) model. This is a stationary non-linear model for the data set.

An ARCH(q) model first model the stationary process by an AR(q) model, and describes

the variance of the residual term as a qth autoregressive polynomial relating to the history

squared residuals back to lag q. Engle [17] first proposed this model in 1982, Bollerslev [8]

and Taylor [25] independently generalised Engle’s model in 1986 to make it more realis-

tic, termed as generalized ARCH (GARCH) model. GARCH model describes the variance

of the residual as an ARMA-type process which relates to not only the history squared

residuals but also their variances.
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These models have greatly improved the range of application to real world problems in

time series. However for periodic phenomena, the estimation of randomness and periodic-

ity is still limited and considered separately, for example in GARCH model, it only fits a

periodic function such as Fourier series to the seasonal trend and adds it in the ARMA-

type process of residuals linearly. The stochastic process presented in PARMA model

may combine randomness and periodicity together, but it lacks of specific mathematical

definition and description of random periodicity.

The concept of stationary solutions is the stochastic counterpart corresponding to the

fixed points of deterministic dynamical systems. A fixed point is the simplest equilibrium

and large time limiting set of a deterministic dynamical system. A periodic solution is a

more complicated limiting set. Zhao and Zheng [28] first introduced the pathwise random

periodic paths of random dynamical systems in 2009. Later, Feng, Zhao and Zhou [19],

Feng and Zhao [20] established the concept of random periodicity for semi-flows of random

dynamical systems. In [20], Feng and Zhao studied the periodic measure which describes

random periodicity in the sense of distribution. They proved that the ergodic random

periodic path and periodic measure are ”equivalent” in some sense. They also obtained

for the first time the ergodicity of periodic measure of the transition probability semigroup

of Markovian random dynamical system and proved that random periodic processes satisfy

the strong law of large numbers. This result suggests that the periodic measure gives a

statistical description of random periodic processes in a long run.

As the concept of random periodic processes describes the randomness and periodicity

in the revolution of the stochastic process simultaneously, it inspires us to apply random

periodic process to classical time series analysis to help describing complex periodic phe-

nomena.

The autocovariance of random periodic processes not only depends on the distance

between two times, but also on the time itself. We redefine the sample covariance function

as (2.3.2), which is estimated by averaging a moving window of product of history data.

We stress on the mixed periodicity and randomness in the sample autocovariance. This

definition is different from the one of the PARMA model, which is assumed by statistical

experience.

We prove that the coefficients of the ARMA model for random periodic processes
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are deterministic periodic functions of time t from the periodicity of the autocovariance

function of random periodic processes. This is consistent with the PARMA model.

For causal and invertible case, as the process of the same time point in each period

can be considered as a sequence of stationary process, we obtain the convergence of Yule-

Walker estimators at each time point for random periodic process model by using the idea

in [12] for stationary process. In the proof for the convergence of Innovation estimators,

we follow the steps in [11] and consider the innovation coefficients in a period as a vector.

This idea is also used in [4] for the PARMA model.

For non-causal autoregressive case, we first prove the central limit theorem for random

periodic processes. We then obtain the asymptotic normality of the coefficients for non-

causal autoregressive model for random periodic processes using the ergodic theorem and

the central limit theorem for random periodic processes.

We approach the ARMA model for random periodic processes from the ergodicity

point of view. This is different from PARMA model. It is suggested that we can not only

simulate the sample set, but also estimate periodic measure of data based on relative

theorems of random periodic processes in [20]. We aim to study the method to estimate

periodic measure for real world problem in the future.

In a ARMA(p, q) model, good estimation result can be obtained with relative small

values of p, q. In fact, bigger values than the theoretical ones of p, q will cause overfitting

problem. To specify suitable values for p, q, we follow the criteria for model selection stated

in [12] in this thesis, i.e. AIC, AICc and BIC.

Nowadays, many software programmes such as R, Matlab, Maple etc have correspond-

ing statistical packages which contain functions to realize ARMA model. We programme

the ARMA model for random periodic processes with language R throughout this thesis

and attach the main codes in the Appendix.

In Chapter 1, we introduce the classical ARMA model and some important properties

and theorems which we will use later. Then we introduce the concept of random periodic

processes and properties relevant to this thesis. We also introduce the method to elimi-

nate the trend and seasonal components. In Chapter 2, we construct the ARMA model

for random periodic processes. In Chapter 3, we deduce the asymptotic behaviour of the

coefficients and obtain the algorithm of estimation for causal and invertible ARMA model.
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In Chapter 4, we discuss some properties about non-causal autoregressive model for ran-

dom periodic processes. We hope we will study non-invertible moving-average model for

random periodic processes later. In Chapter 5, we introduce the model criteria and list

the procedure to obtain a suitable model for a time series. Finally we give two simulation

examples in Chapter 5.



Chapter 1

Background

1.1 The Elimination of Trend and Seasonal Compo-

nent

Almost all time series in the real world are non-stationary, which is difficult to simu-

late and study. The main idea of the classical decomposition model (0.0.1) is to separate

a stationary process from the original series. First we note that the classical decompo-

sition model assumes time series is separable to three independent parts. However this

assumption may not be suitable to all observed data. Trend component is defined as a

slowly changing function of time t, which will obviously make time series non-stationary.

Seasonal fluctuations describe the similar pattern cycle to cycle with approximate period

τ , which is also non-stationary.

Two main approaches to eliminate the trend and seasonal components are introduced

in the monograph of Brockwell and Davis [12]. One is to estimate the independent trend

and seasonal parts so that X̃(t) := X(t) − trend(t) − s(t) is stationary. The other one

is to apply differencing operator to the observed data until the differenced observations

resemble a realization of some stationary process.

First we assume the seasonal fluctuations are absent. Without loss of generality, we

assume that the stationary part X̃(t) has mean 0.

Method 1. (Least Squares Estimation) Assume the trend is a second order function

6
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of t,

trend(t) = a0 + a1t+ a2t
2, (1.1.1)

and minimize the residual
∑

t(x(t)− trend(t))2 by choosing appropriate parameters.

This is the most well-used method in many kinds of fitting examples. It requires that

in application the trend is less possible a higher than second order function of t.

Method 2. (Smoothing by Means of Moving Average)

For q ∈ Z, q ≥ 0, assume

(i) trend(t) is approximately linear over [t− q, t+ q],

(ii) the average of the residual is close to 0.

Then the estimate of trend of two-sided moving average is defined as

ˆtrend(t) =
1

2q + 1

q∑
i=−q

x(t+ i),

one-sided moving average is as

ˆtrend(t) = ax(t) + (1− a) ˆtrend(t− 1) =
t−2∑
j=0

a(1− a)jx(t− j) + (1− a)t−1x(1),

for t = 2, · · · , n, and

ˆtrend(1) = x(1).

This kind of estimation uses the corrected term to estimate next term, which will

attenuate the effect of the noise term. We should note that if the trend term is not

linear with time t, the two-sided moving average will automatically not be accurate for

estimation.

If we regard the coefficients in the moving average as weights, then we could obtain

the general equation of moving average estimation method. Define the weighted moving

average trend as,

ˆtrend(t) =
∞∑

j=−∞

ajx(t+ j).

where
∑∞

j=−∞ aj = 1. If we choose the weights carefully, this moving average may describe

high order polynomial-type trend undisortedly.
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Method 3. (Differencing to Generate Stationary Data) Define the differencing

operator 5 as 5X(t) = X(t)−X(t− 1) = (1− B)X(t), where B presents the backward

shift operator BX(t) = X(t−1). The main idea of this method is to apply the differencing

operator 5 on the series repeatedly until the remaining data appears a stationary pattern.

For example, if trend(t) has the form trend(t) =
∑k

j=0 ajt
j in X(t) = trend(t) + X̂(t),

we could apply 5k to the series to obtain 5kX(t) = k!ak +5kX̂(t), a stationary process

with mean k!ak. In general, k only needs to be quite small, frequently 1 or 2.

Generally, these methods all use polynomials to estimate the trend component.

Now we turn to the general decomposition equation X(t) = trend(t) + s(t) + X̂(t)

containing the seasonal fluctuations with period τ . First assume

s(t+ τ) = s(t),
τ∑
j=1

s(t+ j) = 0 for all t ∈ T.

This is a very strong assumption for seasonality. It requires the seasonal fluctuations to

be the same cycle to cycle and the sum of the fluctuations in one period is zero. In other

word this assumption omits the possible randomness in season fluctuations and limits

the randomness of the original time series only in the stationary noise. It is very hard

to realize this condition in the practical condition. Here there is a possibly fundamental

breakthrough for us to improve the classical models. We will discuss it further in later

chapters.

In order to distinguish season and cycle, it is convenient to index the data as xj,k,

where the first index j represents the jth cycle, and the second index k represents the kth

season.

Similar to the methods estimating only trend term, there are methods for both trend

and seasonal components as follows.

Method 4. (Small trend) Assume that there are N cycles of a data sample and the

period of the seasonal component is τ . For some small trend time series, consider the

trend in each cycle as a constant. Then the estimation of trend is

ˆtrend(j) =
1

τ

τ∑
k=1

xj,k,
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since
∑τ

k=1 s(k) = 0. Then the seasonal component could be estimated as

ŝ(k) =
1

N

N∑
j=1

(xj,k − ˆtrend(j)) = ŝ(k ± τ),

and the estimated error term is

x̃j,k = xj,k − ˆtrend(j)− ŝ(k).

Method 5. (Moving Average Estimation) First we use a moving average method

to estimate the trend component for each data. If τ = 2q,

˜trend(t) =
1

τ
(0.5x(t− q) + x(t− q + 1) + . . .+ x(t+ q − 1) + 0.5x(t+ q)),

since
∑τ

k=1 s(k) = 0. If τ = 2q + 1,

˜trend(t) =
1

τ

q∑
k=−q

x(t+ k).

Then we estimate the kth-season component,

wk =
1

N

N∑
j=1

(
xj,k − ˜trend(k + (j − 1)τ)

)
, ŝ(k) = wk −

1

τ

τ∑
i=1

wi.

The deseasonalized data dt = xt−ŝ(t) is supposed to contain only the trend component and

noise term. In the last step we apply the methods introduced before to the deseasonalized

data {dt} to re-estimate the trend component, denoted by ˆtrend(t). Therefore we could get

the estimation for the stationary component

x̂(t) = x(t)− ˆtrend(t)− ŝ(t).

Re-estimation for the trend component could make the influence of seasonal fluctuations

less significant in the first estimation.

Method 6. (Differencing at Lag τ) Since we first assume that s(t+ τ) = s(t), after

applying the differencing operator of lag τ , the differenced data will contain only the trend

and noise part,

5τX(t) = (1−Bτ )X(t) = X(t)−X(t−τ) = (trend(t)− trend(t− τ))+
(
X̂(t)− X̂(t− τ)

)
,

then we apply differencing operator to the deseasonalized data to eliminate trend compo-

nent as introduced before.
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1.2 The Autoregressive Moving Average Model

Definition 1.2.1. (White Noise) A white noise is a process {Z(t)} with zero mean

and autocovariance function

γ(h) =

σ
2 if h = 0

0 if h 6= 0
,

written as {Z(t)} ∼ WN(0, σ2).

Definition 1.2.2. (The ARMA(p, q) Process) The process {X(t), t = 0,±1,±2, · · · }

is said to be an ARMA(p, q) process if {X(t)} is stationary and for each t,

X(t)− φ1X(t− 1)− · · · − φpX(t− p) = Z(t) + θ1Z(t− 1) + · · ·+ θqZ(t− q)

where {Z(t)} ∼ WN(0, σ2).

If {X(t)−µ} is an ARMA(p, q) process, then {X(t)} is an ARMA(p, q) process with mean

µ.

Definition 1.2.3. (Sample Autocovariance Function and Sample autucorrela-

tion of data {x(1), · · · , x(n)}) The sample autocovariance function of data {x(1), · · · , x(n)}

is defined as

γ̂(h) :=
1

n

n−h∑
j=1

(x(j + h)− x̄)(x(j)− x̄), 0 ≤ h ≤ n.

where x̄ is the sample mean of the observed data x̄ = 1
n

∑n
j=1 x(j).

The sample autocorrelation function is defined as

ρ̂(h) :=
γ̂(h)

γ̂(0)
, |h| < n

Another characteristic indicator of ARMA process is the partial autocorrelation func-

tion.

Definition 1.2.4. Denote span{1, X(1)X(2), . . . , X(k)} to be the closed span of the finite

set {1, X(1)X(2), . . . , X(k)} and Pspan{1,X(1),X(2),...,X(k)}x to be the unique projection of x

onto span{1, X(1), X(2), . . . , X(k)} such that for any X(j), j = 1, 2, · · · , k,

〈Pspan{1,X(1),X(2),...,X(k)}x,X(j)〉 = 〈x,X(j)〉.
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The partial autocorrelation function of ARMA process {X(t)} is defined as

α(1) = Corr(X(2), X(1)) = ρ(1)

and

α(k) = Corr(X(k+1)−Pspan{1,X(2),...,X(k)}X(k+1), X(1)−Pspan{1,X(2),··· ,X(k)}X(1)), k ≥ 2

Remark 1.2.5. (i) The autocorrelation function conveys the dependence structure of a

stationary process. α(k) is the correlation of the two residuals obtained after regress-

ing X(k + 1) and X(1) on the intermediate observations X(2), · · · , X(k).

(ii) α(k) only depends on the second order properties of the process.

(iii) If the stationary process has zero mean, then

Pspan{1,X(2),··· ,X(k)}(·) = Pspan{X(2),··· ,X(k)}(·)

(iv) The partial autocorrelation of an AR(p) process vanishes for large lags.

(v) The partial autocorrelation of an MA(q) process is bounded in absolute value by a

geometerically decreasing function.

The partial autocorrelation function of ARMA(p, q) model is a useful tool to prelimi-

nary estimate the range of the value of (p, q) together with the autocorrelation function.

Their plots may appear like the following cases:

i) If the autocorrelation function plot cuts off at nth lag, it is possibly a moving-average

series with q = n.

ii) If the autocorrelation plot goes down gradually without any cut off value but the

partial autocorrelation function drops sharply after nth lag, then it may be an au-

toregressive series with p = n.

iii) If both of them decreases gradually, it indicates that the autoregressive and moving-

average parts may both exist, or we need to check whether the series {X̂(t)} are still

non-stationary.

Specifically, for an AR(1) process, the sample autocorrelation function should have an

exponentially decreasing appearance. However, higher-order autoregressive processes are

often a mixture of exponentially decreasing and damped sinusoidal components.



CHAPTER 1. BACKGROUND 12

1.3 SARIMA and pARMA Models

Definition 1.3.1. (The ARIMA(p, d, q) Process) [12]. If d is a non-negative integer,

then {X(t)} is said to be an ARIMA(p, d, q) process if Y (t) := (1 − B)dX(t) is a causal

ARMA(p, q) process.

The process {X(t)} is stationary if and only if d = 0.

Definition 1.3.2. (The SARIMA(p, d, q)× (P,D,Q)s Process) [12]. If d and D are non-

negative integers, then {X(t)} is said to be a seasonal ARIMA(p, d, q)×(P,D,Q)s process

with period s if the differenced process Y (t) := (1−B)d(1−Bs)DX(t) is a causal ARMA

process,

φ(B)Φ(Bs)Y (t) = θ(B)Θ(Bs)Z(t), {Z(t)} ∼ WN(0, σ2),

where φ(z) = 1−φ1z−· · ·−φpzp, Φ(z) = 1−Φ1z−· · ·−ΦP z
P , θ(z) = 1+θ1z+ · · ·+θqz

q

and Θ(z) = 1 + Θ1z + · · ·+ ΘQz
Q.

Definition 1.3.3. (Periodically Correlated Process) [22]. We shall call a random process

X(t), −∞ < t < ∞, periodically correlated with period T if its correlation function

B(s, t) = MX(s)X(t) exists, is continuous, and for any s and t satisfies the condition

B(s, t) = B(s+ T, t+ T ),

where T is some fixed number.

Many researchers studied periodic ARMA model based on periodically correlated pro-

cess for periodic problems. The models discussed in different papers had slight difference.

Here we stated below the commonly used definition for pARMA model mentioned in [4].

Definition 1.3.4. (PARMAd(p, q) Process). The periodic ARMA process {X̃(t)} with

period d has representation

X(t)−
p∑
j=1

φj(t)X(t− j) = Z(t)−
q∑
j=1

θj(t)Z(t− j),

where X(t) = X̃(t) − µt is causal and invertible and {Z(t)} is a sequence of random

variables with mean zero and standard deviation σt such that {σ−1
t Z(t)} is i.i.d. The

µt := EX̃(t), the parameters φj(t), θj(t) and σt are all periodic functions of t with the

same period d ≥ 1.
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1.4 Random Periodic Path

Definition 1.4.1. Let M be a metric space, B(M) be is Borel σ-field. A measurable

random dynamical system on the measurable space (M,B(M)) over a metric dynamical

system (Ω,F , P, (θs)s∈R) is a mapping :

Φ : R+ × Ω×M →M, (t, ω, x) 7→ Φ(t, ω, x),

with following properties:

(i) Measurability: Φ is (B(R+)⊗F ⊗ B(M),B(M))-measurable.

(ii) Cocycle property: for almost all ω ∈ Ω,

Φ(0, ω) = idM ,

Φ(t+ s, ω) = Φ(t, θsω) ◦ Φ(s, ω) for all s, t ∈ R+.

where θ(t) is a measure preserving and measurably invertible map.

The definition of random periodic path of random dynamical system Φ is give by [20].

Definition 1.4.2. A random periodic path of period τ of the random dynamical system

Φ: R+ × Ω×M → M is an F-measurable map Y : R× Ω→ M such that for almost all

ω ∈ Ω,

Φ(t, θ(s)ω)Y (s, ω) = Y (t+ s, ω), Y (s+ τ, ω) = Y (s, θ(τ)ω), (1.4.1)

for any t ∈ R+, s ∈ R.

It is a stationary path if Y (t, ω) = Y (0, θtω) =: Y0(θtω) for all t ∈ R+, i.e.

Φ(t, ω, Y0(ω)) = Y0(θ0ω), t ∈ R+ a.s.

For a statistical description, we usually do not know the exact expression of the dy-

namical system driving the time series. We only consider the second equation in (1.4.1) as

the definition of random periodic process, while the first part is hidden in the time series

evolution.
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From the definition of random periodic process, we know that the stationary process

can be regarded as a special kind of random periodic processes. The latter describes a

mixed structure of seasonal and random patterns. Can we use random periodic process to

replace stationary process in the analysis of time series to enlarge the scope of applications

and to enhance the accuracy of model estimation? We shall study more properties of the

random periodic process.

Define

P(M) := {ρ : probability measure on (M,B(M))}.

The law of the random periodic paths is defined as

ρs(Γ) = P{ω : Y (s, ω) ∈ Γ},

It is a periodic measure. The definition is given as follows,

Definition 1.4.3. (Periodic Measure) For a Markovian cocycle random dynamical

system Φ, i.e. Φ(t, ω)x is a Markov process, recall that for any Γ ∈ B(M), the transition

probability is defined as

P (t, x,Γ) = P{ω : Φ(t, ω)x ∈ Γ}, t ∈ R+,

and P ∗t : P(M)→ P(M) is defined as: for any measure ρ on B,

(P ∗t ρ)(Γ) =

∫
X

P (t, x,Γ)ρ(dx).

A measure function {ρs}s∈R in P(M) is a periodic measure on (M,B(M)) if

ρτ+s = ρs, P ∗t ρs = ρs+t, t ∈ R+.

If ρs = ρ0 for all s, then ρ0 is an invariant measure, i.e.

P ∗t ρ0 = ρ0, t ∈ R+.

Note that for any fixed s, ρs is an invariant measure of {P (kτ)}k∈Z. Set ρ̄ to be the

average of a periodic measure over one period, i.e. ρ̄ = 1
τ

∫ τ
0
ρsds, then ρ̄ is an invariant

measure with respect to transition probability {P (t)}t≥0.

Set Ls = supp(ρs), then Lτ+s = Ls and for ρs-almost all x ∈ Ls, t ≥ 0,

P (t, x, Ls+t) = 1.



1.4. RANDOM PERIODIC PATH 15

The sets Ls ⊂ X, s ≥ 0 are called Poincaré section. Then for each Ls,

P (kτ, x, Ls) = 1, for any x ∈ Ls.

This means that starting from x ∈ Ls, Φ(kτ, ω)x returns to Ls with probability one.

However, Φ(kτ, ω) does not have a fixed point on Ls. This is in consistent with many

real-life time series, e.g. temperature, which inspires us to establish ARMA model based

on the theory of random periodic processes.



Chapter 2

Construction of ARMA Model for

Random Periodic Processes

2.1 Decomposition Model of Time Series

In this dissertation we only consider T = Z the discrete time case. Consider a time

series {X(t)}t∈Z+ with a set of observation {x(t)}.

Recall that the classical decomposition model of time series is

X(t, ω) = trend(t) + s(t) + X̃(t, ω), (2.1.1)

where

1. trend(t), trend component, is an overall slowly changing function of time t.

2. s(t), seasonal component, is periodic function of time t with known period τ .

3. X̃(t, ω), random noise component, is a weak stationary process.

In some situations, there is seasonal pattern in the irregular component, in which the

classical additive structure is not sufficient. We give a counterexample as follows.

Example 2.1.1.dXt = (−πXt + sin(πt))dt+ (0.1 + 0.3sin(πt))dWt

X0 = 1
. (2.1.2)

16
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The solution of this stochastic differential equation (SDE) is (integral from zero to t)

X(t) = e−πtX(0) +

∫ t

0

e−π(t−s) sin(πs)ds+

∫ t

0

σ(s)e−π(t−s)dWt,

where σ(t) := 0.1 + 0.3 sin(πt), which is a random periodic solution with period 2. We

take 20 equal-time-interval points in each period to construct a discrete data set with

period 20. We produced 20000 points and set the last 18000 as our data set. The first

2000 points is to ensure the path converges to the random periodic solution. The plot of

part of the data set is shown in the Figure 2.1.

Figure 2.1: The plot of a path of a random periodic solution with period 20.

.

We emphasize that the diffusion term of the SDE is also a periodic function of time t,

which implies that the volatility of the data set will change according to the time.

There are many functions in R language to help people analyze a time series. One

method to analyze the additive seasonal component is to use the function stl(). This

function assumes that the time series satisfy the additive model (2.1.1). If a time series

applied by this function satisfies the additive model, then the function will decompose this

times series into seasonal, trend and noise components. We applied this function to our

example. The result is displayed in Figure 2.2. Next we plotted the autocorrelation and
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partial autocorrelation function of de-seasoned data. We observed that the autocorrelation

function decreased gradually, while the partial autocorrelation function dropped sharply

after the first lag, which indicated an AR(1) model for the de-seasoned data.

Figure 2.2: Decomposition of seasonal part

Figure 2.3: The Plot of ACF. Figure 2.4: The Plot of PACF.

After we figured out the de-seasoned data may satisfy an autoregressive equation, we

used Augmented Dickey-Fuller test to test if it is stationary. The procedure of Augmented

Dickey-Fuller test is to detect if there is unit root in the autoregressive model for the sam-

ple which implies the non-stationarity of time series. If the value of Dickey-Fuller statistic
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in this test is smaller than the critical value for the Dickey-Fuller t-distribution, then it

determines that no unit root is present and the sample is stationary. The corresponding

function in R language is adf.test(). The null-hypothesis of the Augmented Dickey-Fuller

test is that the time series is non-stationary. The value of Dickey-Fuller statistic for this

example is −24511, which is smaller than the critical values −3.43 for 1% and −2.86 for

5%. The p-value of the null-hypothesis is smaller than 0.01, which tells us that we should

reject the non-stationary hypothesis.

Figure 2.5: ADF test

Then we applied the function arma(deseasonal cnt, order = c(1,0)) to the de-seasoned

data to obtain the corresponding AR(1) model.

Figure 2.6: AR(1) model for de-seasoned data.
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Figure 2.7: Residuals of AR(1) model.

Figure 2.8: Squared residuals of AR(1) models.
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We checked the residuals and squared residuals of AR(1) in Figures 2.7 and 2.8. The

autocorrelations and partial autocorrelations of residuals are near zero, which indicates

the independency of noise. However, the autocorrelations and partial autocorrelations of

squared residuals show obvious periodic pattern, which indicates sufficient dependency of

time in the volatility of noise.

We then used Shapiro-Wilk normality test to double check whether the residuals sat-

isfy normal distribution. The hypothesis of the test is ”normal distribution”, while the

alternative hypothesis is ”not normal distribution”. We observed that the Shapiro-Wilk

test rejected the ”normal” hypothesis with very small p-value. But if we tested on the

periodic-point sequence of residuals, we observed that the Shapiro-Wilk test accepted that

it satisfies a normal distribution.

Figure 2.9: Shapiro-Wilk normality test of residuals.

This example shows that the standard procedure to analyze a time series by the

classical decomposition model and ARMA model fails to obtain the correct result for a

mixed season and randomness case. Although some more complicated models can combine

with a periodic regression model to fit the squared residuals, it is not as parsimony as to

use a random periodic process to approach the data, and the complexity of model may

rise the risk of error.

The insufficiency of the classical decomposition to figure out the mixed structure of

the seasonal and noise components inspires us to make modification to it.

We attempt to use random periodic process to describe the seasonal and noise com-
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ponents simultaneously. The modified model is as follows:

X(t, ω) = trend(t) + Y (t, ω),

where {Y (t)} is a random periodic process. The properties of random periodic process

are listed below.

Proposition 2.1.2. The random periodic process {Y (t, ω)} of period τ satisfies:

i) E[Y (t)2] <∞.

ii) E[Y (t)] = m(t), m(t) is a deterministic periodic function of time t satisfying m(t +

τ) = m(t).

iii) Define γY (r, s) := cov(Y (r), Y (s)). Then γY (r, s) = γY (r+ τ, s+ τ) for any r, s ∈ Z.

The autocovariance function of random periodic process is periodic function of time

t on both indexes.

Proof. Since θ(t) is measure-preserving,

γY (r + τ, s+ τ)

= E [(Y (r + τ, ω)−m(r + τ)) (Y (s+ τ, ω)−m(s+ τ))]

= E [(Y (r, θ(τ)ω)−m(r)) (Y (s, θ(τ)ω)−m(s))]

= E [(Y (r, ω)−m(r)) (Y (s, ω)−m(s))]

= γY (r, s).

2.2 ARMA Model for Random Periodic Processes

Next we give the definition of the ARMA model for random periodic processes.

Definition 2.2.1 (ARMA Model for Random Periodic Processes). Define the random

periodic process {Y (t)} with period τ to be a ARMA(p, q) process with period τ , if for

each t,

Y (t)−
p∑
i=1

φi(t)Y (t− i) =

q∑
i=0

θi(t)Z(t− i), (2.2.1)
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where {Z(t)} ∼ IID(0, 1) is a sequence of i.i.d. random variables, and for i = 1, · · · , p,

j = 1, · · · , q, the coefficients φi(t) and θj(t) are deterministic functions of time t. In

particular, if q = 0, then it is AR(p) model for random periodic processes, i.e.

Y (t)− φ1(t)Y (t− 1)− · · · − φp(t)Y (t− p) = θ0(t)Z(t). (2.2.2)

If p = 0, it is MA(q) model for random periodic processes, i.e.

Y (t) = θ0(t)Z(t) + θ1(t)Z(t− 1) + · · ·+ θq(t)Z(t− q). (2.2.3)

The periodicity of the coefficients is constructed in the following proposition.

Proposition 2.2.2. The coefficients of AR(p) model and MA model for random periodic

processes are all deterministic periodic functions of time t.

Proof. First consider the AR(p) equation (2.2.2). Multiplying each side of (2.2.2) by Y (k),

k = t−1, · · · , t−p and taking expectations, as Y (k) only depends on {Z(k), Z(k−1), Z(k−

2), · · · }, noting

E[Y (k)Z(t)] = EY (k)EZ(t) = 0,

hence one obtains

Γp(t)φp(t) = γp(t), (2.2.4)

where

Γp(t) =


γ(t− 1, t− 1) γ(t− 1, t− 2) · · · γ(t− 1, t− p)

γ(t− 2, t− 1) γ(t− 2, t− 2) · · · γ(t− 2, t− p)
...

...
. . .

...

γ(t− p, t− 1) γ(t− p, t− 2) · · · γ(t− p, t− p)

 ,

φp(t) = (φ1(t), φ2(t), · · · , φp(t))T ,

and

γp(t) = (γ(t, t− 1), γ(t, t− 2), · · · , γ(t, t− p))T .

Multiplying each side of (2.2.2) by Y (t) and taking expectation, one obtains

θ2
0(t) = γ(t, t)− φ1(t)γ(t, t− 1)− · · · − φp(t)γ(t, t− p)

= γ(t, t)− φp(t) · γp(t).
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Hence the coefficients φp(t) is the solution of the linear system (2.2.4), and θ0(t) is repre-

sented by φp(t) and γp(t). Similarly, consider

Y (t+ τ)− φ1(t+ τ)Y (t− 1 + τ)− · · · − φp(t+ τ)Y (t− p+ τ) = θ0(t+ τ)Z(t+ τ),

the coefficients φp(t+ τ) is the solution of

Γp(t+ τ)φp(t+ τ) = γp(t+ τ), (2.2.5)

where

Γp(t+ τ) =


γ(t+ τ − 1, t+ τ − 1) γ(t+ τ − 1, t+ τ − 2) · · · γ(t+ τ − 1, t+ τ − p)

γ(t+ τ − 2, t+ τ − 1) γ(t+ τ − 2, t+ τ − 2) · · · γ(t+ τ − 2, t+ τ − p)
...

...
. . .

...

γ(t+ τ − p, t+ τ − 1) γ(t+ τ − p, t+ τ − 2) · · · γ(t+ τ − p, t+ τ − p)


= Γp(t),

and

γp(t+ τ) = (γ(t+ τ, t+ τ − 1), γ(t+ τ, t+ τ − 2), · · · , γ(t+ τ, t+ τ − p))T

= γp(t).

Hence

φj(t+ τ) = φj(t), j = 1, 2 · · · , p.

Next we consider the periodic MA(∞) equation. Suppose Y (t) satisfies the following

model,

Y (t) =
∞∑

j=−∞

ψj(t)Z(t− j), t = 0,±1, · · · . (2.2.6)

Multiplying each side of (2.2.3) by Z(t− j) and taking expectations, then

ψj(t) = E[Y (t)Z(t− j)], j ∈ Z.

We build an equivalent pathwise definition of {Z(t)}t∈Z. Define

ω = · · ·Z(−2)Z(−1) : Z(0) : Z(1)Z(2) · · ·

as a sequence. Here

ω(0) = Z(0), ω(n) = Z(n) =: Z(n, ω).
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Define Ω1 to be a set containing all possible ω above,

θω = · · ·Z(−1)Z(0) : Z(1) : Z(2)Z(3) · · · ,

and

θn = θθ · · · θ︸ ︷︷ ︸
n

.

Then it is easy to see that for any n,

Z(n, θω) = (θω)(n) = Z(n+ 1) = Z(n+ 1, ω).

This is also true for Z(n + τ, ω) = Z(n, θ(τ)ω). Therefore Y (t)Z(t− j) is also a random

periodic process with period τ , so we have E[Y (t)Z(t − j)] = E[Y (t + τ)Z(t − j + τ)],

hence ψj(t) = ψj(t+ τ), for any j ∈ Z+.

We also proved the periodicity of coefficients for causal ARMA equation. Recall the

definition of causality.

Definition 2.2.3. (Causality) An ARMA(p, q) model for random periodic processes is

said to be causal if it can be represented as

Y (t) =
∞∑
j=0

ψj(t)Z(t− j), t = 0,±1, · · · . (2.2.7)

Note that the process {Y (t)} is causal if and only if φt(z) := 1− φ1(t)z − φp(t)zp has

roots outside the unit circle by the property of Laurent series.

Proposition 2.2.4. Assume Y (t) is causal and satisfies the equation (2.2.1). The coeffi-

cients φt and θt are deterministic periodic functions of time t.

Proof. Suppose Y (t) is causal and satisfies the equation (2.2.1). Replacing Y (t − i) in

(2.2.1) by

Y (t− i) =
∞∑
j=0

ψj(t− i)Z(t− i− j), i = 1, 2, · · · , p,

and equating the coefficients of Z, we obtain

θ0(t)Z(t) + θ1(t)Z(t− 1) + · · ·+ θq(t)Z(t− q)

=
∞∑
j=0

ψj(t)Z(t− j)− φ1(t)
∞∑
j=0

ψj(t− 1)Z(t− 1− j)− · · · − φp(t)
∞∑
j=0

ψj(t− p)Z(t− p− j),
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and

θ0(t) = ψ0(t),

θ1(t) = ψ1(t)− φ1(t)ψ0(t− 1),

· · · ,

θq(t) = ψq(t)− φ1(t)ψq−1(t− 1)− · · · − φk(t)ψq−k(t− k), where k = max(p, q)

· · · ,

0 = ψk(t)− φ1(t)ψk−1(t− 1)− · · · − φp(t)ψk−p(t− p),

· · · .

Hence the coefficients φ(t) and θ(t) can be calculated by

θ0(t) = ψ0(t)

θj(t) = ψj(t)−
min(j,p)∑
i=1

φi(t)ψj−i(t− i) 0 < j < max(p, q + 1)

0 = ψj(t)−
p∑
i=1

φi(t)ψj−i(t− i) j ≥ max(p, q + 1)

.

(2.2.8)

If q < p, set θj(t) = 0 for j = q + 1, · · · , p. The coefficients φp(t) are calculated from ψ,

and θq(t) are calculated from ψ and φ, hence they are all periodic functions.

Remark 2.2.5. (Comparison between seasonal ARMA model, pARMA model and ARMA

model for random periodic processes).

These three models are all non-structural models which combine autoregressive function

of data process and moving-average function of some noise sequence in one equation.

Seasonal ARMA model admits that the seasonal component is deterministic and is additive

to the random component. It says that after differencing the original data process by τ th

lag, the remaining is stationary. However, the process {Y (t)} considered in pARMA model

and ARMA model for random periodic processes admits more complicated structure of

periodicity and randomness.

The periodicity of coefficients of pARMA model is defined by tuition, while we proved

the periodicity of coefficients of ARMA model for random periodic processes in the above

propositions.
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A time series is a path of some stochastic process. The random periodic processes are

defined pathwisely. [20] and other papers studied many important properties of random

periodic process in pathwise sense recently. These researches built a fundamental theo-

retic basis to help improving some areas of time series analysis. For example, one can

analyze a periodic time series path in the structure of random dynamical system to help

understanding more characters of the corresponding stochastic process.

The periodically correlated process is defined only by its first and second moment, which

show periodicity in the same way as random periodic processes. But that is not necessary to

say that the periodically correlated process is a more general version than random periodic

processes. In the proof of Proposition 2.2.2 we showed that one can obtain that a process

is random periodic by constructing path ω and transformation θ if we know the mean and

covariance functions are periodic and some other conditions.

2.3 Sample Mean and Sample Autocovariance

Recall that the original formula of sample autocovariane for stationary processes is

γ̂(h) :=
1

n− h− 1

n−h∑
i=1

y(i)y(i+ h).

To avoid the sample autocovariance matrix to be singular, people usually use the following

average to calculate the sample covariance in real cases ([12]):

γ̂(h) :=
1

n

n−h∑
i=1

y(i)y(i+ h).

Since the covariance function of random periodic process depends on both the time points

and the distance between two time points, the original formula of sample autocovariane

is not suitable any more. As the process of {Y (t − iτ)}i∈Z is stationary for fixed t, it is

suggested using the average of the fixed time point in every period to represent the sample

mean and sample autocovariance.

In the recent work about periodic ARMA model, people used the following average

formulas to estimate the sample mean and sample autocovariance: suppose there are N

cycles in the sample data set and the period is τ , then the sample mean is estimated by

µ̂(j) =
1

N

N−1∑
i=0

y(j + iτ), j = 1, 2, · · · , τ,
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and the sample autocovariance between jth and kth seasons is estimated by

γ̂(j, k) =
1

N

N−1∑
i=0

(y(j + iτ)− µ̂(j))(y(k + iτ)− µ̂(k))

where j, k = 1, 2, · · · , τ . Although this definition of sample mean and sample autocovari-

ance functions for periodic case show periodicity of the process, but it is deterministic

periodicity of approximation. That is, the same time points in different periods will have

the same behaviour. This omits the small fluctuations between different periods.

For random periodic process, we do not use the above formulas. As the sample mean

and sample autocovariance both depend on the time where the process is, we use a moving-

average term of backward data to estimate them, which will reflect the periodicity as well

as randomness hidden in the revolution of the corresponding random periodic process.

Before we define the sample mean and sample autocovariance, we first give the follow-

ing assumption, which we will discuss again in the next chapter.

Assumption 1. For any discrete random periodic process {Y (t)}t∈Z with mean zero,

assume that for any ε1 > 0 and ε2 > 0 there exists a n0 such that for any t ∈ Z+ and

h ∈ Z+, when n ≥ n0,

P

(∣∣∣∣∣ 1n
n−1∑
k=0

Y (t− kτ)Y (t+ h− kτ)− γ(t, t+ h)

∣∣∣∣∣ < ε1

)
> 1− ε2.

Under this assumption, we define the sample mean and sample autocovariance of

random periodic process.

Definition 2.3.1. (the Sample Mean and Sample Autocovariance)

For a sample of data {y(1), · · · , y(n)}, the sample mean of random periodic processes is

defined as

m̂(t) =
1

w

w−1∑
i=0

y(t− iτ), t = 1 + (w − 1)τ, 2 + (w − 1)τ, · · · , n, (2.3.1)

where {y(t)}t∈Z+ is the observed data and w is the number of cycles we choose to estimate

the sample mean.

The sample autocovariance is defined as

γ̂(t, s) =
1

w

w−1∑
i=0

(y(t− iτ)− m̂(t− iτ)) (y(s− iτ)− m̂(s− iτ)) , (2.3.2)

where s, t = 1 + (w − 1)τ, 2 + (w − 1)τ, · · · , n.
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Example 2.3.2. Continued with the Example 2.1.1, we calculate the sample mean and

sample autocovariance and display the plots in Figures 2.10 and 2.11. We can see that the

plot of sample mean is nearly a deterministic periodic function of time t. And the sample

autocovariance at point t = 15006 tends to converge as w increases.

Figure 2.10: m̂(t) with N = 650. Figure 2.11: γ̂(15006, 15006).

The following 3D plot displays the evolution of γ̂(i, j) for time i, j = 13001, · · · , 13100

when we take w = 650. We can observe that the periodicity is shown as the two indexes

increase simultaneously.
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Figure 2.12: The 3D plot of the sample autocovariance.

.

2.4 Central Limit Theorem

A time series is a path of the corresponding stochastic process. Usually we cannot

obtain enough paths of a stochastic process by repeating experiments to calculate the

statistical qualities such as mean and variance. Under the law of large numbers and central

limit theory one can use time average to approximate the state average. Therefore we have

formulas for sample mean and sample autocovariance. In this section we will deduce the

important fundamental theory for random periodic processes, the central limit theory.

From [20] (Feng-Zhao 2015), under certain conditions, one can construct random pe-

riodic paths from a periodic measure. They also proved the Law of Large Numbers (LLN)
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of the constructed random periodic process.

Condition B. The Markovian cocycle Φ : Z+ × Ω ×M → M has a periodic measure

ρ : Z→ P(M) and for any B ∈ B(M), as k →∞

r(k) :=

∫
M

∣∣∣∣∣ 1

m(F0)

∑
s∈F0

(P (s, y, B)− ρs(B))

∣∣∣∣∣ ρ0(dy)→ 0.

where F0 := [t1, t2] ⊂ [1, τ ], m(F0) is the Lebesgue measure of set F0 and for k =

0, 1, 2, · · · ,

Fk := [t1 + kτ, t2 + kτ ], GN := ∪N−1
k=0 Fk and G∞ := ∪∞k=0Fk.

Theorem 2.4.1. (WLLN) Under Condition B, the random periodic path Y and its law

ρ satisfy WLLN, i.e. as N →∞,

1

m(GN)

∑
t∈GN

IB(Y (t, ω))
P→ 1

m(F0)

∑
t∈F0

ρt(B).

Theorem 2.4.2. (SLLN) Under Condition B, as Z+ 3 T →∞,

1

m([0, T ) ∩G∞)

∑
t∈[0,T )∩G∞

IB(Y (t, ω))→ 1

m(F0)

∑
t∈F0

ρt(B) a.s.

In particular, if Condition B holds for F0 = [1, τ ], then as T →∞,

1

T

T∑
t=1

IB(Y (t, ω))→ ρ̄(B) a.s.

where ρ̄ = 1
τ

∑τ
t=1 ρt.

We introduce two more conditions to help proving the central limit theorem (CLT) of

random periodic path. In the proof we will use the result of CLT for stationary process

in [16] stated as follows.

Theorem 2.4.3. (Central Limit Theorem for Stationary Sequence)

Suppose Xn, n ∈ Z, is an ergodic stationary sequence with EXn = 0 and E|X0|2+δ < ∞.

Let

α(n) = α(F−n, σ(X0)) = sup{|P (A
⋂

B)− P (A)P (B)| : A ∈ F−n, B ∈ σ(X0)},
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where F−n = σ(Xm : m ≤ −n), and suppose
∑∞

n=1 α(n)
δ

2(2+δ) <∞ . Let Sn = X1 + · · ·+

Xn, then
Sn√
n
→ Z,

in distribution as n→∞, where Z ∼ N(0, σ2), and σ2 = EX2
0 + 2

∑∞
n=1 EX0Xn.

Consider a Markovian cocycle random dynamical system Φ on a filtered dynamical

system (Ω,F , P, (θt)t∈Z, (F ts)s<t). Let

P (t, x, B) = P ({ω : Φ(t, ω)x ∈ B}), t ∈ Z+, B ∈ B(M)

be the transition probability of Markovian process Φ(t, ω)x on the Polish space M with

the Borel σ-algebra B(M). Set Ls ⊂M, s ∈ Z+ to be the invariant set of periodic measure

ρs. It is also the Poincaré sections of the transition probability P (t, ·, ·), t ∈ Z+ defined in

[20]. Assume that the random periodic path Y (s) of Φ is adapted. To construct the CLT

for Y , we need the following

Condition A*. For any s ≥ 0, B ⊂ Lt+s, t ≥ 0, the map x 7→ P (t, x, B) is continuous

in x ∈ Ls.

Condition B*. The Markovian transition probability P (t+nτ, x,B) converges weakly to

ρt(B) as n→∞ for any t ≥ 0, any B ∈ B(M) and a.e. x ∈M . And for any continuous

and bounded function f ∈ Cb(M), there exists a δ > 0 and ε > 0 such that∣∣∣∣∫
B

f(y)P (t+ (n− 1)τ, x, dy)−
∫
B

f(y)ρt(dy)

∣∣∣∣ < n−( 4
δ

+2+ε),

for any n ∈ Z+ and t ≥ 0, B ⊂ Lt.

Condition A∗ shows the strong Feller property of Markovian semigroup. For example

in [18], if the solution of an SDE satisfies weakly dissipative condition, then the solution

will be continuous on the initial condition. Condition B∗ shows the weak convergence of

Markovian transition probability to the periodic measure. This is not very hard to achieve

for ergodic random periodic processes. The properties related to these two conditions have

been discussed in detail in [20].

Now we state the central limit theorem of random periodic path as follows.
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Theorem 2.4.4. (Central Limit Theorem of Random Periodic Path)

Assume the semigroup transition probability P (t, x, ·) and periodic measure {ρs}s∈R satisfy

Conditions A∗ and B∗. Also assume EY (n) = 0 for all n ∈ Z+, and E|
∑τ

j=1 Y (j)|2+δ <

∞. Define Sn := Y (1) + · · ·+ Y (n). Then the random periodic path Y satisfies the CLT.

i.e.
Sn√
n
→ Z(τ),

in distribution as n→∞, where Z(τ) ∼ N(0, σ2
τ ), and

σ2
τ =

1

τ

E

[
τ∑
j=1

Y (j)

]2

+ 2
∞∑
n=1

E

[(
τ∑
j=1

Y (j)

)(
τ∑
j=1

Y (j + nτ)

)] .

We will first prove a lemma which is needed in the proof of the CLT.

Lemma 2.4.5. Suppose the assumptions in Theorem 2.4.4 are satisfied. Let 0 ≤ m1 <

m2 ≤ τ , and set X(n, ω) :=
∑m2

j=m1
Y (j + nτ, ω). Assume that E|

∑m2

j=m1
Y (j)|2+δ < ∞.

Then {X(n)}n∈R satisfy Theorem 2.4.3, i.e.∑n
i=1 X(i)√
n

→ Z,

in distribution as n → ∞, where Sn(X) = X(1) + · · · + X(n), Z ∼ N(0, σ2), and σ2 =

EX2(0) + 2
∑∞

n=1 EX(0)X(n).

Proof. For {X(n, ω)}n∈R,ω∈Ω, define

α(n) := sup
A∈G−n−∞,B∈σ(X(0))

|P (X(−n) ∈ A,X(0) ∈ B)− P (X(−n) ∈ A)P (X(0) ∈ B)| ,

where G−n−∞ := σ(X(m),m ≤ −n). First note that

P (X(0) ∈ B)

= P

(
m2∑
j=m1

Y (j) ∈ B

)

=

∫
M

P

(
m2∑

j=m1+1

Y (j) ∈ B−ym1 |Y (m1) = ym1

)
ρm1(dym1)

=

∫
M

∫
M

P

(
m2∑

j=m1+2

Y (j) ∈ B−ym1−ym1+1 |Y (m1) = ym1 , Y (m1 + 1) = ym1+1

)

P (1, ym1 , dym1+1) ρm1(dym1)
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=

∫
M

∫
M

P

(
m2∑

j=m1+2

Y (j) ∈ B−ym1−ym1+1 |Y (m1 + 1) = ym1+1

)

P (1, ym1 , dym1+1) ρm1(dym1), (2.4.1)

where B−y := {x ∈ X : x + y ∈ B} and ρi is the law of Y (i) for i = 1, · · · , τ . The last

equation is because of the Markov property of random periodic process Y . By repeating

the total probability formula and using the transition probability, one can obtain that

P (X(0) ∈ B)

=

∫
M

· · ·
∫
M

P
(
Y (m2) ∈ B−

∑m2−1
j=m1

yj |Y (m2 − 1) = ym2−1

)
· P (1, ym2−2, dym2−1) · · ·P (1, ym1 , dym1+1) ρm1(dym1).

=

∫
X

· · ·
∫
X

P
(

1, ym2−1, B
−

∑m2−1
j=m1

yj
)
P (1, ym2−2, dym2−1) · · ·

· P (1, ym1 , dym1+1) ρm1(dym1),

Now notice that

P (X(−n) ∈ A,X(0) ∈ B)− P (X(−n) ∈ A)P (X(0) ∈ B)

= EIA(X(−n))IB(X(0))− EIA(X(−n))EIB(X(0))

= E [(IA(X(−n))− EIA(X(−n))) (IB(X(0))− EIB(X(0)))]

= E
[
E
[
(IA(X(−n))− EIA(X(−n))) (IB(X(0))− EIB(X(0)))

∣∣∣F−(n−1)
−∞

]]
= E

[
(IA(X(−n))− EIA(X(−n)))E

[
IB(X(0))− EIB(X(0))

∣∣∣F−(n−1)
−∞

]]
. (2.4.2)

Let us consider E
[
IB(X(0))− EIB(X(0))

∣∣∣F−(n−1)
−∞

]
first. Note that

E
[
IB(X(0))− EIB(X(0))

∣∣∣F−(n−1)
−∞

]
= E

[
IB(X(0))

∣∣∣F−(n−1)
−∞

]
− EIB(X(0))

= P (X(0) ∈ B
∣∣∣F−(n−1)
−∞ )− P (X(0) ∈ B).

By using a similar method as (2.4.1), noting that

Y (m1, ω) = Φ(m1 + (n− 1)τ, θ(−(n− 1)τ)ω)Y (−(n− 1)τ, ω),

we have

P (X(0) ∈ B
∣∣∣F−(n−1)
−∞ )
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= P

(
m2∑
j=m1

Y (j) ∈ B
∣∣∣F−(n−1)
−∞

)

=

∫
M

P

(
m2∑

j=m1+1

Y (j) ∈ B−ym1

∣∣∣Y (m1) = ym1 ,F
−(n−1)
−∞

)
P (Y (m1) ∈ dym1

∣∣∣F−(n−1)
−∞ )

· · ·

=

∫
M

· · ·
∫
M

P
(
Y (m2) ∈ B−

∑m2−1
j=m1

yj |Y (m2 − 1) = ym2−1

)
· P (Y (m2 − 1) ∈ dym2−1 |Y (m2 − 2) = ym2−2 ) · · ·

· P (Y (m1 + 1) ∈ dym1+1 |Y (m1) = ym1 )P (Y (m1) ∈ dym1

∣∣∣F−(n−1)
−∞ )

=

∫
M

· · ·
∫
M

P
(

1, ym2−1, B
−

∑m2−1
j=m1

yj
)
P (1, ym2−2, dym2−1) · · ·

· P (1, ym1 , dym1+1)P (m1 + (n− 1)τ, Y (−(n− 1)τ), dym1),

Set

f(ym1) :=

∫
ym1+1

· · ·
∫
ym2−1

P
(

1, ym2−1, B
−

∑m2−1
j=m1

yj
)

P (1, ym2−2, dym2−1) · · ·P (1, ym1 , dym1+1) .

As P (·, ·, ·) is a probability measure, and Condition A∗ holds, f is also a bounded contin-

uous function w.r.t. ym1. Then by (2.4.2) and Condition B∗,

|P (X(−n) ∈ A,X(0) ∈ B)− P (X(−n) ∈ A)P (X(0) ∈ B)|

≤ E
∣∣∣E [IB(X(0))− EIB(X(0))

∣∣∣F−(n−1)
−∞

]∣∣∣
= E

∣∣∣∣∫
M

f(ym1)P (m1 + (n− 1)τ, Y (−(n− 1)τ), dym1)−
∫
M

f(ym1)ρm1(dym1)

∣∣∣∣
=

∫
M

∣∣∣∣∫
M

f(ym1)P (m1 + (n− 1)τ, y, dym1)−
∫
M

f(ym1)ρm1(dym1)

∣∣∣∣
· P (ω : Y (−(n− 1)τ, ω) ∈ dy)

=

∫
M

∣∣∣∣∫
M

f(ym1)P (m1 + (n− 1)τ, y, dym1)−
∫
M

f(ym1)ρm1(dym1)

∣∣∣∣ ρ0(dy)

< n−( 4
δ

+2+ε),

i.e. α(n) < n−( 4
δ

+2+ε). So
∑∞

n=1 α(n)
δ

2(2+δ) < ∞. As {X(u)}∞u=0 is an ergodic stationary

process by the result in [20], Theorem 2.4.3 implies that Sn(X)√
n
→ Z in distribution as

n→∞.
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Now we are ready to prove Theorem 2.4.4.

Proof. Set m = [n
τ
] to be the number of the complete periods of the data up to time t.

Let Xi =
∑τ

j=1 Y (j + iτ), then by lemma 2.4.5,

1√
m

m−1∑
i=0

Xi → Z in distribution as m→∞,

where Z ∼ N(0, σ2) and σ2 = EX2
0 + 2

∑∞
n=1 EX0Xn. Also∑m−1

i=0 Xi√
n

=

√
m√
n

∑m−1
i=0 Xi√
m

−→ Zτ in distribution as n→∞,

where Zτ ∼ N(0, σ
2

τ
). Since∑n

i=1 Y (i)√
n

=

∑m−1
i=0 Xi√
n

+

∑n
i=(m−1)τ+1 Y (i)
√
n

,

and noting that 0 ≤ n− (m− 1)τ − 1 < τ , so

n−
1
2

n∑
i=(m−1)τ+1

Y (i)→ 0

in probability as n→∞. Hence

n−
1
2

n∑
i=1

Y (i)→ Zτ

in distribution as n→∞ as well.



Chapter 3

Casual Case

In this chapter, we followed the idea of stationary process case to prove the convergence

of coefficients for AR(p) model. But for random periodic process case, we fixed time t and

only consider the same time point in each period till −∞ time. This constructed the

corresponding sequence {Y (t − kτ)}k=0,1,··· of t, which can be regarded as stationary.

The convergence of coefficients has similar form with that in stationary case, but the

distribution has periodic variance. We then derived the Durbin-Levinson Algorithm for

random periodic case.

For MA(d) model, we considered innovation representation of Y (t), similarly as sta-

tionary case. We followed the steps in [11] of proving the convergence of the estimated

innovation coefficients b̂j(t) to the real values
ψj(t)

ψ0(t)
. That is, we first proved the conver-

gence of theoretic innovation coefficients bj(t) to the real values, and then proved the

convergence of b̂j(t) to bj(t). In the second step, we learnt the idea from [4] that we took

one period coefficients as a d × τ -vector Bt and proved the convergence of one-period

vector rather that one-time vector in stationary case. The convergence result is similar

with the one in [4]. However, some settings are confusing in the proof of [4], but our results

are derived smoothly by the periodicity of coefficients proved by the property of random

periodic processes in Section 2.2 and the convergence result in the first step.

By the limitation of the window length W in real problem approximation, the rank of

sample covariance matrix ΓN is no larger than W , otherwise ΓN will be singular. To avoid

the singularity, we used truncated innovation presentation of Y (t) to approximate coeffi-

37
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cients ψ. Hence we modified the innovation algorithm to truncated innovation algorithm

in Section 3.4.

3.1 AR(p) Model for Random Periodic Processes

For fixed t ∈ Z+ and h ∈ Z, define

γ∗n(t, t+ h) :=
1

n

n−1∑
k=0

Y (t− kτ)Y (t+ h− kτ). (3.1.1)

The sequence {Y (t− kτ)Y (t + h− kτ)}k∈Z is a stationary process. We then derived the

convergence of γ∗n to γ. The proof is suitable for both causal and non-causal cases.

Assume random periodic process {Y (t)} can be written as a moving average random

periodic process, i.e.

Y (t) =
+∞∑
i=−∞

ψi(t)Z(t− i). (3.1.2)

Then by a similar proof of Proposition 7.3.5 in [12], one obtains that γ∗n(t, t+h) converges

to γ(t, t+ h) =
∑+∞

i=−∞ ψi(t)ψi+h(t+ h) in probability as n→∞.

We will use the following lemmas (Proposition 6.3.5, Proposition 6.3.9 and Proposition

6.3.10 in [12]) in the proof of the convergence of γ.

Lemma 3.1.1. Let Xn, n = 1, 2, . . . be random k-vectors. If Xn → b in distribution as

n→∞ where b is a constant k-vector, then Xn → b in probability as n→∞.

Lemma 3.1.2. Let Xn, n = 1, 2, . . ., and Yn,j, j = 1, 2, . . . ;n = 1, 2, . . ., be random

k-vectors such that

i) Yn,j → Yj in distribution as n→∞ for each j = 1, 2, . . .,

ii) Yj → Y in distribution as j →∞, and

iii) limj→∞ lim supn→∞ P (|Xn − Yn,j| > ε) = 0 for every ε > 0.

Then Xn → Y in distribution as n→∞.

Lemma 3.1.3. (WLLN for Moving Averages) Let {X(t)} be the two-sided moving average

X(t) =
∞∑

i=−∞

ψiZ(t− i),
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where {Z(t)} is i.i.d. with mean µ and
∑∞

i=−∞ |ψi| <∞. Then

1

n

n∑
t=1

X(t)→

(
∞∑

i=−∞

ψi

)
µ

in probability as n→∞.

Proposition 3.1.4. Suppose random periodic process {Y (t)} satisfy (3.1.2), where Z(t) ∼

IID(0, 1). Furthermore, for any t = 1, 2, . . . , τ , and for any h ∈ Z, suppose
∑+∞

i=−∞ |ψi(t)ψi+h(t)| <

∞. Then for any h ∈ Z,

γ∗n(t, t+ h)→ γ(t, t+ h)

in probability as n→∞.

Proof. Note that

γ(t, t+ h)

= EY (t)Y (t+ h)

= E

[(
+∞∑
i=−∞

ψi(t)Z(t− i)

)(
+∞∑
j=−∞

ψj(t+ h)Z(t+ h− j)

)]

= E

[(
+∞∑
i=−∞

ψi(t)Z(t− i)

)(
+∞∑
j=−∞

ψj+h(t+ h)Z(t− j)

)]

= E

[
+∞∑

i,j=−∞

ψi(t)ψj+h(t+ h)Z(t− i)Z(t− j)

]

=
+∞∑
i=−∞

ψi(t)ψi+h(t+ h),

since for i 6= j, E[Z(t− i)Z(t− j)] = 0. For fixed t and h,

γ∗n(t, t+ h)

=
1

n

n−1∑
k=0

Y (t− kτ)Y (t+ h− kτ)

=
1

n

n−1∑
k=0

(
+∞∑
i=−∞

ψi(t− kτ)Z(t− kτ − i)

)(
+∞∑
j=−∞

ψj(t+ h− kτ)Z(t+ h− kτ − j)

)

=
1

n

n−1∑
k=0

(
+∞∑
i=−∞

ψi(t)Z(t− kτ − i)

)(
+∞∑
j=−∞

ψj(t+ h)Z(t+ h− kτ − j)

)
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=
1

n

n−1∑
k=0

(
+∞∑
i=−∞

ψi(t)Z(t− kτ − i)

)(
+∞∑
j=−∞

ψj+h(t+ h)Z(t− kτ − j)

)

=
1

n

n−1∑
k=0

(
+∞∑
i=−∞

ψi(t)ψi+h(t+ h)Z(t− kτ − i)2

)
+ εn,

where

εn :=
1

n

n−1∑
k=0

+∞∑
i=−∞

∑
j 6=i

ψi(t)ψj+h(t+ h)Z(t− kτ − i)Z(t− kτ − j)

=
+∞∑
i=−∞

∑
j 6=i

ψi(t)ψj+h(t+ h)

(
1

n

n−1∑
k=0

Z(t− kτ − i)Z(t− kτ − j)

)
.

As {Z(t)2} are i.i.d. with mean 1 and
∑+∞

i=−∞ |ψi(t)ψi+h(t+ h)| <∞, by lemma 3.1.3,

1

n

n−1∑
k=0

(
+∞∑
i=−∞

ψi(t)ψi+h(t+ h)Z(t− kτ − i)2

)
−→

+∞∑
i=−∞

ψi(t)ψi+h(t+ h)

in probability as n→∞.

Moreover, note that when i 6= j,

Cov(Z(t− i)Z(t− j), Z(t+ h− i)Z(t+ h− j)) =

1, h = 0,

0, h 6= 0.

(3.1.3)

Hence

V ar

(
1

n

n−1∑
k=0

Z(t− kτ − i)Z(t− kτ − j)

)

=
1

n2

n−1∑
k=0

V ar (Z(t− kτ − i)Z(t− kτ − j))

+
n−1∑

k,h=0,k 6=h

Cov(Z(t− kτ − i)Z(t− kτ − j), Z(t− hτ − i)Z(t− hτ − j))

=
1

n2

n−1∑
k=0

1 + 0

=
1

n
→ 0,

as n→∞. Define for each positive integer m,

εmn :=
∑
|i|≤m

∑
|j|≤m,j 6=i

ψi(t)ψj+h(t+ h)

(
1

n

n−1∑
k=0

Z(t− kτ − i)Z(t− kτ − j)

)
.
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By Chebyshev’s inequality, for any σ > 0,

P (|εmn | ≥ σ)

≤ 1

σ2
V ar(εmn )

≤ 1

σ2

∑
|i|≤m

∑
|j|≤m,j 6=i

|ψi(t)ψj+h(t+ h)|2V ar

(
1

n

n−1∑
k=0

Z(t− kτ − i)Z(t− kτ − j)

)
.

Hence εmn → 0 in probability as n→∞. Furthermore,

lim
m→∞

lim sup
n→∞

E|εn − εmn |

≤ lim
m→∞

lim sup
n→∞

∑
|i|>m

∑
|j|>m,j 6=i

+
∑
|i|≤m

∑
|j|>m

+
∑
|i|>m

∑
|j|≤m

 |ψi(t)ψj+h(t+ h)|

E

∣∣∣∣∣ 1n
n−1∑
k=0

Z(t− kτ − 1)Z(t− kτ − 2)

∣∣∣∣∣
= 0.

Thus by lemma 3.1.1 and 3.1.2, εn → 0 in probability as n→∞. Together with the first

part of the proof , we can obtain the final convergence of γ∗n(t, t+ h).

Now let us consider AR(p) model. As φi(t) = φi(t+ τ) for every i = 1, 2, · · · , p, write

the AR(p) equation (2.2.2) in the form of

Yt,n = Xt,nφp(t) + θt0Zt,n,

where

Yt,n := (Y (t), Y (t− τ), · · · , Y (t− (n− 1)τ))T ,

Xt,n :=


Y (t− 1) Y (t− 2) · · · Y (t− p)

Y (t− 1− τ) Y (t− 2− τ) · · · Y (t− p− τ)
...

...
. . .

...

Y (t− 1− (n− 1)τ) Y (t− 2− (n− 1)τ) · · · Y (t− p− (n− 1)τ)

 ,

φp(t) := (φ1(t), φ2(t), · · · , φp(t))T ,

and

Zt,n := (Z(t), Z(t− τ), · · · , Z(t− (n− 1)τ))T .
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Considering that the respective components of Y (t− 1), Y (t− 2), · · · , Y (t− (n− 1)τ) in

Xt,n are independent of the respective components of Zt,n, it is suggested that the linear

regression estimate φnp (t) of φp(t) is defined by

φnp (t) := (XT
t,nXt,n)−1XT

t,nYt,n. (3.1.4)

The (i, j)th-component of 1
n
XT

t,nXt,n is

1

n

n−1∑
k=0

Y (t− i− kτ)Y (t− j − kτ),

and the ith component of 1
n
XT

t,nYt,n is equal to

1

n

n−1∑
k=0

Y (t− kτ)Y (t− i− kτ).

Then by Proposition 3.1.4,
1

n
XT

t,nXt,n → Γp(t) (3.1.5)

in probability and
1

n
XT

t,nYt,n → γp(t) (3.1.6)

in probability as n→∞, where

Γp(t) := (γ(t− i, t− j))i,j=1,··· ,p,

and

γp(t) := (γ(t, t− 1), γ(t, t− 2), · · · , γ(t, t− p))T .

By using a similar method of stationary process shown in [12], in the next proposition

we can prove that for fixed t,
√
n
(
φnp (t)− φp

)
→ Vt in distribution as n → ∞, where

Vt ∼ N(0, θ0(t)2Γ−1
p (t)). We will use the following two lemmas in [12] in the proof.

Lemma 3.1.5. If {Xn} and {Yn} are sequences of random k-vectors such that Xn →X

in probability and Yn → b in distribution as n→∞, where b is constant, then

Xn + Yn →X + b

and

Y T
n Xn → bTX

in distribution as n→∞.
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Lemma 3.1.6. Let {Xn} be a sequence of random k-vector and Σn be the covariance

matrix of Xn. As Σn is symmetric, suppose it can be decomposed as Σn = QnΛnΛnQ
T
n ,

where Λn is a diagonal matrix with square root of eigenvalues of Σn on the diagonal. If

(QnΛn)−1 (Xn − µ) → Z in distribution as n → ∞ where Z ∼ N(0, I) with I to be the

identity matrix, and B is any non-zero m × k matrix such that the matrices BΣnB
T ,

n = 1, 2, · · · , have no zero diagonal elements, then

(BQnΛn)−1 (BXn −Bµ)→ Z

in distribution as n→∞.

Proposition 3.1.7. Assume that random periodic process {Y (t)}t∈Z satisfies AR(p) equa-

tion (2.2.2), where Z(t) ∼ IID(0, 1). For fixed t, define φnp (t) as (3.1.4), then

√
n
(
φnp (t)− φp(t)

)
→ Vt

in distribution as n→∞, where Vt ∼ N(0, θ0(t)2Γ−1
p (t)).

Proof. From the definition of φnp (t),

√
n(φnp (t)− φp(t))

=
√
n
[
(Xn′

t X
n
t )−1XT

t,nYt,n − φp(t)
]

=
√
n
[
(XT

t,nXt,n)−1XT
t,n(Xt,nφp(t) + θ0(t)Zt,n)− φp(t)

]
= nθ0(t)(XT

t,nXt,n)−1(
1√
n
XT

t,nZt,n).

Set Ut := (Y (t− 1)Z(t), Y (t− 2)Z(t), · · · , Y (t− p)Z(t))T , then

1√
n
XT

t,nZt,n =
1√
n

n−1∑
j=0

Ut−jτ .

By the assumption of causality, Y (t) can be represented by Y (t) =
∑+∞

j=0 ψj(t)Z(t − j).

Hence Z(t) is independent of (Y (t − 1), Y (t − 2), · · · , Y (t − p))T . Then {Ut−jτ}j∈Z is a

sequence of stationary process with EUt = 0 and

EUtU
T
t+h =

Γp(t), h = 0,

0p×p, h 6= 0.
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For fixed t, define F tn := σ(Ut+mτ ,m ≤ n). Then for any n ≥ 1,

E[Ut|F t−n] = E[Ut|Ut−nτ ]

= E
[
(Y (t− 1), . . . , Y (t− p))TZ(t) | (Y (t− 1− nτ), · · · , Y (t− p− nτ))TZ(t− nτ)

]
= E[Z(t)]E

[
(Y (t− 1), · · · , Y (t− p))T | (Y (t− 1− nτ), · · · , Y (t− p− nτ))TZ(t− nτ)

]
= 0.

By the central limit theorem of stationary processes,

1√
n
XT

t,nZt,n → St

in distribution as n → ∞, where St ∼ N(0,Γp(t)). Besides, by (3.1.5), n(XT
t,nXt,n)−1 →

Γ−1
p (t) in probability. Hence by Lemma 3.1.5 and 3.1.6, one can obtain the result that

√
n
(
φnp (t)− φp(t)

)
→ Vt,

in distribution as n→∞, where Vt ∼ N(0, θ0(t)2Γ−1
p (t)).

Remark 3.1.8. If we use the weak law of large number of stationary process instead of

the central limit theorem in the proof above, we obtain that φnt − φt → 0 in probability.

The details are as follows.

φnp (t)− φp(t) = nθ0(t)(XT
t,nXt,n)−1(

1

n
XT

t,nZt,n).

By the weal law of large number of stationary process,

1

n
XT

t,nZt,n =
1

n

n−1∑
j=0

Ut−jτ → EUt = 0

in probability as n→∞. Hence φnt → φt in probability as n→∞.

Remark 3.1.9. In real life calculations, in order to avoid taking values at negative time,

we let n go to infinity along with t tending to infinity. That is to say, we can regard n→∞

as t→∞.

With the concern of the previous remark, it is required that we use finite periods

of data to estimate the covariance function within certain error permission in real life

calculations. That is the reason why we assume Assumption 1.
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To ensure the estimation of φ(t) by the finite-periods estimation of covariance has

the same asymptotic normality as the infinite one, i.e. φn(t), we assume the following

assumption:

Assumption 2. For any small positive ε1 and ε2, there exists an m0 such that, for m1 >

m0,

P

(
m
− 1

2
1

∣∣∣∣∣ 1

m1

m1−1∑
k=0

Y (t− kτ)Y (s− kτ)− 1

m0

m0−1∑
k=0

Y (t− kτ)Y (s− kτ)

∣∣∣∣∣ > ε1

)
< 1− ε2,

(3.1.7)

for any t, s ∈ Z+.

This assumption shows the possibility that under certain error permission, one can

use the average of a finite-length window of {Y (t − kτ)Y (s − kτ)}k∈Z to approximate

the average of the whole sequence. Most time series in real problems have finite second

moment. Also, this assumption seems quite reasonable and common in approximation.

Then we can set w = max(n0,m0) to estimate the sample autocovriance function

γ̂(·, ·) in the real world problem. Denote φ̂ as the Yule-Walkers estimator obtained by the

sample autocovariance function γ̂, i.e. φ̂p(t) = (Γ̂tp)
−1γ̂p(t). Then

n−
1
2

(
φ̂p(t)− φnp (t)

)
= n−

1
2 (Γ̂tp)

−1γ̂p(t)− n−
1
2 (XT

t,nXt,n)−1XT
t,nYt,n

= (Γ̂tp)
−1n−

1
2 (γ̂p(t)−

1

n
XT

t,nYt,n) + n−
1
2

[
(Γ̂tp)

−1 − n(XT
t,nXt,n)−1

] 1

n
XT

t,nYt,n.

From Assumption 1 we have γ̂p(t)→ γp(t) and Γ̂tp → Γp(t) in probability. Assumption 2

implies the convergence of n−
1
2 (γ̂p(t) − 1

n
XT

t,nYt,n) to zero in probability as n → ∞. Set

| · | to be the Euclidean norm.

n−
1
2

∣∣∣(Γ̂tp)−1 − n(XT
t,nXt,n)−1

∣∣∣
= n−

1
2

∣∣∣∣(Γ̂tp)−1

(
1

n
XT

t,nXt,n − Γ̂tp

)
n(XT

t,nXt,n)−1

∣∣∣∣
≤ n−

1
2

∣∣∣(Γ̂tp)−1
∣∣∣n− 1

2

∣∣∣∣ 1nXT
t,nXt,n − Γ̂tp

∣∣∣∣ ∣∣n(XT
t,nXt,n)−1

∣∣ .
Assumption 2 implies n−

1
2

∣∣∣ 1
n
XT

t,nXt,n − Γ̂tp

∣∣∣ → 0 in probability as n → ∞. Then by

Γ̂tp → Γp(t) and (3.1.5), we have n−
1
2

∣∣∣(Γ̂tp)−1 − n(XT
t,nXt,n)−1

∣∣∣ → 0 in probability as
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n→∞. As we also have (3.1.6), we conclude that n−
1
2

(
φ̂p(t)− φnp (t)

)
→ 0 in probability

as n→∞. Thus
√
n
(
φ̂p(t)− φp(t)

)
→ Vt in distribution as well.

3.2 Durbin-Levinson Algorithm

For the casual AR(p) model (2.2.2), if we replace the covariance function γ(t, s) in

(2.2.5) by the sample covariance function of {Y (t)} and solve the corresponding linear

system, then the solution φ̂p(t) = (φ̂1(t), φ̂2(t), · · · , φ̂p(t))T is called the Yule-Walker

estimator of φp(t). From the above section, we have obtained the asymptotic behaviour

of φ̂p(t). Moreover, by [12], the Durbin-Levinson algorithm is used to solve the linear

equation system Γnφn = γn recursively without solving the inverse of coefficients matrix.

Hence this algorithm can be used to obtain φ̂p(t).

Suppose we know the history data {y(1), y(2), · · · , y(n)}. We would like to estimate

y(n+ 1) from them.

For spanned linear subspace of {1, Y (1), Y (2), · · · , Y (n)}, we know that

span(1, Y (1), Y (2), · · · , Y (n))

= span(1)⊕ span ((Y (1)− E[Y (1)|span(1)]), (Y (2)− E[Y (2)|span(1)]), · · · ,

(Y (n)− E[Y (n)|span(1)]) ,

where E[Ys|span(1)] = E[Y (s)] =: µs. Without loss of generality, assume for any t,

EY (t) = 0. DefineHn
1 := σ{Y (1), Y (2), · · · , Y (n)}, we take E[Y (n+1)|Hn

1 ] as the one-step

best linear estimator of Y (n+1) with respect to the history data {Y (1), Y (2), · · · , Y (n)}.

In the Durbin-Levinson Algorithm for stationary process, suppose for any n, the one-step

linear estimator of Y (n+ 1) with respect to {Y (1), Y (2), · · · , Y (n)} satisfies

Ŷ (n+ 1) = E[Y (n+ 1)|Hn
1 ] =

n∑
j=1

aj(n+ 1)Y (n+ 1− j),

where the coefficients {aj(n+ 1)} are obtained by solving

E[Ŷ (n+ 1)Y (j)] = E[Y (n+ 1)Y (j)]

for all j = 1, 2, · · · , n. In the Durbin-Levinson Algorithm for stationary process, {aj(n+

1)} are calculated by iteration without calculating the inverse of matrix. We would like

to find the corresponding algorithm for random periodic processes.
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For n > τ , define

Hn
τ+1 := σ(Y (τ + 1), Y (τ + 2), · · · , Y (n)),

and for k = 1, 2, · · · , τ , define
H1 := σ(Y (1)),

Hk := σ

(
Y (k)−

k−1∑
j=1

E[Y (k)|Hj]− E[Y (k)|Hn
τ+1]

)
, k = 2, · · · , τ.

Then

Ŷ (n+ 1) = E[Y (n+ 1)|Hn
1 ] = E[Y (n+ 1)|H1] + · · ·+E[Y (n+ 1)|Hτ ] +E[Y (n+ 1)|Hn

τ+1].

(3.2.1)

Suppose

Ŷ (n+ 1) =
n∑
j=1

aj(n+ 1)Y (n+ 1− j). (3.2.2)

The coefficients are obtained by the property of conditional expectation: for any i =

1, 2, · · · , n,

E[Ŷ (n+ 1)Y (i)] = E[Y (n+ 1)Y (i)]. (3.2.3)

Suppose E[Y (n+ 1)|Hn
τ+1] =

∑n−τ
j=1 α

n+1
j Yn+1−j. By the equation above, the coefficient

αn−τ (n+ 1) := (αn−τ (n+ 1), αn−τ−1(n+ 1), · · · , α1(n+ 1))T

is the solution of the following linear system

γn−τ (n+ 1) = Γn−τ (n+ 1)αn−τ (n+ 1),

where

γn−τ (n+ 1) := (γ(n+ 1, 1 + τ), γ(n+ 1, 2 + τ), · · · , γ(n+ 1, n))T ,

and

Γn−τ (n+ 1) :=


γ(1 + τ, 1 + τ) γ(1 + τ, 2 + τ) · · · γ(1 + τ, n)

γ(2 + τ, 1 + τ) γ(2 + τ, 2 + τ) · · · γ(2 + τ, n)
...

...
. . .

...

γ(n, 1 + τ) γ(n, 2 + τ) · · · γ(n, n)

 .



CHAPTER 3. CASUAL CASE 48

For Ŷ (n+ 1− τ) =
∑n−τ

j=1 aj(n+ 1− τ)Y (n+ 1− τ − j), the coefficients

an−τ (n+ 1− τ) := (an−τ (n+ 1− τ), · · · , a1(n+ 1− τ))T

is the solution of the linear system

γn−τ (n+ 1− τ) = Γn−τ (n+ 1− τ)an−τ (n+ 1− τ),

where

γn−τ (n+ 1− τ) := (γ(n+ 1− τ, 1), γ(n+ 1− τ, 2), · · · , γ(n+ 1− τ, n− τ))T ,

and

Γn−τ (n+ 1− τ) :=


γ(1, 1) γ(1, 2) · · · γ(1, n− τ)

γ(2, 1) γ(2, 2) · · · γ(2, n− τ)
...

...
. . .

...

γ(n− τ, 1) γ(n− τ, 2) · · · γ(n− τ, n− τ)

 .
As the covariance function of random periodic process has the periodic property

γ(t, s) = γ(t+ τ, s+ τ),

we obtain that αn−τ (n+ 1) = an−τ (n+ 1− τ) . Hence

E[Y (n+ 1)|Hn
τ+1] =

n−τ∑
j=1

aj(n+ 1− τ)Y (n+ 1− j).

For each k = 2, · · · , τ , suppose

E[Yn+1|Hk] = αn+1−k(n+ 1)

(
Y (k)−

k−1∑
j=1

E[Y (k)|Hj]− E[Y (k)|Hn
τ+1]

)
,

where

αn+1−k(n+ 1) =
E
[
Y (n+ 1)

(
Y (k)−

∑k−1
j=1 E[Y (k)|Hj]− E[Y (k)|Hn

τ+1]
)]

E
[
Y (k)−

∑τ
j=1 E[Y (k)|Hj]− E[Y (k)|Hn

τ+1]
]2 .

For k = 1, 2, · · · , τ , assume E[Y (k)|Hn
τ+1] =

∑n−τ
j=1 b0,j(n+ 1, k)Y (n+ 1− j), then by the

property of conditional expectation, one can list that for i = 1 + τ, · · · , n,

E[Y (k)Y (i)] = E

[(
n−τ∑
j=1

b0,j(n+ 1, k)Y (n+ 1− j)

)
Y (i)

]
.
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Replace it by the covariance function and rewrite in the matrix form, we have

γn−τ (k) = Γn−τ (n+ 1)b0
n−τ (n+ 1, k),

where

γn−τ (k) := (γ(k, 1 + τ), γ(k, 2 + τ), · · · , γ(k, n))T

and

b0
n−τ (n+ 1, k) := (b0,1+τ (n+ 1, k), b0,2+τ (n+ 1, k), · · · , b0,n(n+ 1, k))T .

By solving this linear system one can obtain the coefficients for the conditional expectation

of Y (k) with respect to Hn
τ+1. For Hi, i = 1, 2, · · · , τ , assume for k = i+ 1, i+ 2, · · · , τ ,

E[Y (k)|Hi] = bi(n+ 1, k)

(
Y (i)−

i−1∑
j=0

E[Y (i)|Hj]

)
,

where

bi(n+ 1, k) =
E
[
Y (k)

(
Y (i)−

∑i−1
j=1 E[Y (i)|Hj]

)]
V ar

(
Y (i)−

∑i−1
j=1 E[Y (i)|Hj]

) .

Then by comparing the coefficients of the two equations (3.2.1) and (3.2.2), we can find

out the formula for the coefficients an+1 in the form of αn+1, βn+1 and an+1−τ .

For n+ 1 = 2, Ŷ (2) = E[Y (2)|Y (1)] = a1(2)Y (1), where a1(2) = γ(1,2)
γ(1,1)

.

For 0 < n < 1 + τ ,

Ŷ (n+ 1) = E[Y (n+ 1)|Hn
1 ] = αn(n+ 1)Y (1) +

n∑
i=2

αn+1−i(n+ 1)

(
Yi −

i−1∑
j=1

E[Y (i)|Hj]

)
,

(3.2.4)

where 
H1 := σ(Y (1)),

Hk := σ

(
Yi −

i−1∑
j=1

E[Y (i)|Hj]

)
, k = 2, · · · , n.

By (3.2.3), αn(n+ 1) = γ(n+1,1)
γ(1,1)

and

αn+1−i(n+ 1) =
E
[
Y (n+ 1)

(
Y (i)−

∑i−1
j=1 E[Y (i)|Hj]

)]
V ar

(
Y (i)−

∑i−1
j=1 E[Y (i)|Hj]

) , i = 2, · · · , n.
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For each i, consider j = 1, · · · , i− 1, if j = 1,

E[Y (i)|Hj] = βn(n+ 1, n+ 1− i)Y (1),

where βn(n+ 1, n+ 1− i) = γ(i,1)
γ(1,1)

; if j = 2, · · · , i− 1, assume

E[Y (i)|Hj] = βn+1−j(n+ 1, n+ 1− i)

(
Y (j)−

j−1∑
k=1

E[Y (j)|Hk]

)
,

then

βn+1−j(n+ 1, n+ 1− i) =
E
[
Y (i)

(
Y (j)−

∑j−1
k=1 E[Y (j)|Hk]

)]
V ar

(
Y (j)−

∑j−1
k=1 E[Y (j)|Hk]

) .

Hence one could compare the two equations of (3.2.2) and (3.2.4) and find out the formula

of coefficients an+1 in the form of αn+1 and βn+1 as well.

3.3 MA Model for Random Periodic Processes

Recall the definition of invertible ARMA process.

Definition 3.3.1. An ARMA process for random periodic processes (2.2.1) is said to be

invertible if there exists a sequence of functions ψ0(t) and {πj(t)} such that
∑∞

j=0 |πj(t)| <

∞ and

ψ0(t)Z(t) =
∞∑
j=0

πj(t)Y (t− j), t ∈ Z+. (3.3.1)

Now let us consider another simple model, moving average model, i.e.

Y (t) =
∞∑
j=0

ψj(t)Z(t− j), t ∈ Z+, (3.3.2)

where {Z(t)} is an i.i.d. sequence of random variables with mean 0 and variance 1, and

the coefficients {ψj(t)}j=0.1,··· are periodic functions of t with the period τ as proved in

Proposition 2.2.2. Suppose that ψt(z) :=
∑∞

j=0 ψj(t)z
j is non-zero for all z ∈ C such that

|z| ≤ 1 and
∑∞

j=0 |ψj(t)| <∞. This means that the MA process is invertible, i.e. it has the

representation (3.3.1), where π0(t) = 1 and πt(z) :=
∑t

j=0 πj(t)z
j = 1

ψt(z)
, |z| ≤ 1 ([12]).

The detail of the relation between the coefficients ψ and π is as follows. Define the shift

operator B such that BjY (t) = Y (t − j) and Bjψi(t) = ψi(t − j) for j = 0,±1,±2, · · · .



3.3. MA MODEL FOR RANDOM PERIODIC PROCESSES 51

Hence the equations (3.3.2) and (3.3.1) can be represented as

ψ0(t)Z(t) =
∞∑
j=0

πj(t)B
j(Y (t)),

and

Y (t) =
∞∑
j=0

ψj(t)B
j(Z(t))

=
∞∑
j=0

ψj(t)B
j

(
1

ψ0(t)

∞∑
i=0

πi(t)Y (t− i)

)

=
∞∑
j=0

ψj(t)

ψ0(t− j)

∞∑
i=0

πi(t− j)Y (t− i− j),

where π0(t) = 1. By comparing the coefficients of two sides, we obtain that

ψ0(t)

ψ0(t)
π0(t) = 1

ψ0(t)

ψ0(t)
π1(t) +

ψ1(t)

ψ0(t− 1)
π0(t− 1) = 0

ψ0(t)

ψ0(t)
π2(t) +

ψ1(t)

ψ0(t− 1)
π1(t− 1) +

ψ2(t)

ψ0(t− 2)
π0(t− 2) = 0

ψ0(t)

ψ0(t)
π3(t) +

ψ1(t)

ψ0(t− 1)
π2(t− 1) +

ψ2(t)

ψ0(t− 2)
π1(t− 2) +

ψ3(t)

ψ0(t− 3)
π0(t− 3) = 0

· · ·

.

(3.3.3)

From the relation above, one can easily conclude that {πi(t)}i=1,2,··· and θ0(t) are periodic

functions of t with period τ as well.

To estimate the coefficients ψ, first we recall the innovation representation of Y (t).

Suppose

Y (t) =
t−1∑
j=0

bj(t)
(
Y (t− j)− E[Y (t− j)|Ht−j−1

1 ]
)
, (3.3.4)

where b0(t) = 1, E[Y (1)|H0
1] = 0 and Ht−1

1 = σ(Y (s) : 0 < s < t), the filtration based on

the past history. The coefficients bj(t), 0 < j < t, t = 1, 2, · · · can be calculated recursively

from the innovation algorithm stated in [12] (Proposition 5.2.2).

Proposition 3.3.2. If {Y (t)} has zero mean and E[Y (i)Y (j)] = κ(i, j), where the matrix

[κ(i, j)]ni,j=1 is non-singular for each n = 1, 2, · · · , then the one-step predictors Ŷ (n +
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1), n ≥ 0, and their mean squared errors vn+1, n ≥ 1, are given by

Ŷ (n+ 1) =


0 n = 0

n∑
k=1

bk(n+ 1)(Y (n+ 1− k)− Ŷ (n+ 1− k)) n ≥ 1
, (3.3.5)

and

v1 = κ(1, 1)

bn(n+ 1) = v−1
1 κ(n+ 1, 1)

bn−k(n+ 1) = v−1
k+1

(
κ(n+ 1, k + 1)−

k−1∑
j=0

bk−j(k + 1)bn−j(n+ 1)vj+1

)
k = 1, · · · , n− 1

vn+1 = κ(n+ 1, n+ 1)−
n−1∑
j=0

bn−j(n+ 1)2vj+1

.

(3.3.6)

If we replace κ(i, j) with the sample covariance function γ̂(i, j), we can obtain the

estimated coefficients b̂ by the innovation algorithm. Next we need to show that b̂ converges

to ψ.

The first step is to figure out the relation between ψ and b. We follow the idea in [11]

for stationary case to prove the convergence of coefficients b in the following lemma for

the random periodic case.

Lemma 3.3.3. Assume that for any t > 1, the coefficients of (3.3.1) satisfy,

√
t
∑
i>t−1

∑
j>t−1

|πi(t)πj(t)| <∞,

then the coefficients of innovation representation (3.3.4) satisfy that, for any k ∈ Z+,

√
t

(
bk(t)−

ψk(t)

ψ0(t− k)

)
→ 0 as t→∞.

Proof. Define the mean-square error

vt := E
[
Y (t)− E[Y (t)|Ht−1

1 ]
]2
.

As E[Y (t)|Ht−1
1 ] is the best linear estimation of Y (t) based on the history

{Y (1), Y (2), · · · , Y (t− 1)},
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and by the representation (3.3.1) we have

Y (t) = −
∞∑
j=1

πj(t)Y (t− j) + ψ0(t)Z(t).

Then we know that −
∑∞

j=1 πj(t)Y (t − j) is the best linear estimation of Y (t) based on

all the history {Y (t− 1), Y (t− 2), Y (t− 3), · · · , Y (−∞)}, hence the mean-squared error

between Y (t) and −
∑∞

j=1 πj(t)Y (t− j) will be less than vt, i.e.

ψ0(t)2 = V ar (ψ0(t)Z(t))

= E

[
Y (t) +

∞∑
j=1

πj(t)Y (t− j)

]2

≤ vt (3.3.7)

On the other hand, the mean-squared error between Y (t) and −
∑t−1

j=1 πj(t)Y (t − j) will

be greater than vt, hence

vt ≤ E

[
Y (t) +

t−1∑
j=1

πj(t)Y (t− j)

]2

= E

[
ψ0(t)Z(t)−

∑
j>t−1

πj(t)Y (t− j)

]2

= E[ψ0(t)Z(t)]2 + E

[∑
j>t−1

πj(t)Y (t− j)

]2

. (3.3.8)

And

E

[∑
j>t−1

πj(t)Y (t− j)

]2

= E[
∑
i>t−1

∑
j>t−1

πi(t)πj(t)Y (t− i)Y (t− j)]

=
∑
i>t−1

∑
j>t−1

πi(t)πj(t)γ(t− i, t− j).

For each k, multiplying on both sides of (3.3.2) by Z(t− k) and taking expectations,

we have

ψk(t) = E[Y (t)Z(t− k)].

Also, multiplying by
(
Y (t− k)− E[Y (t− k)|Ht−k−1

1 ]
)

on both sides of (3.3.4) and taking

expectations, we have

bk(t)vt−k = E
[
Y (t)

[
Y (t− k)− E[Y (t− k)|Ht−k−1

1 ]
]]
.
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Hence ∣∣∣∣bk(t)− ψk(t)

ψ0(t− k)

∣∣∣∣2
=

∣∣∣∣∣E
[
Y (t)

[
Y (t− k)− E[Y (t− k)|Ht−k−1

1 ]
]]

vt−k
− E[Y (t)Z(t− k)]

ψ0(t− k)

∣∣∣∣∣
2

≤ E[Y (t)]2E
[
Y (t− k)− E[Y (t− k)|Ht−k−1

1 ]

vt−k
− Z(t− k)

ψ0(t− k)

]2

= γ(t, t)

(
E
[
Y (t− k)− E[Y (t− k)|Ht−k−1

1 ]
]2

v2
t−k

−
2E
[
Z(t− k)

[
Y (t− k)− E[Y (t− k)|Ht−k−1

1 ]
]]

ψ0(t− k)v(t− k)
+

E[Z(t− k)]2

ψ0(t− k)2

)

= γ(t, t)

(
vt−k
v2
t−k
− 2ψ0(t− k)

ψ0(t− k)vt−k
+

1

ψ0(t− k)2

)
= γ(t, t)

(
ψ0(t− k)−2 − (vt−k)

−1
)

= γ(t, t)
vt−k − ψ0(t− k)2

ψ0(t− k)2vt−k
,

where the first inequality is obtained by the Cauchy-Schwartz inequality. By equations

(3.3.7) and (3.3.8), we obtain∣∣∣∣bk(t)− ψk(t)

ψ0(t− k)

∣∣∣∣2 ≤ γ(t, t)ψ0(t− k)−4E

[ ∑
j>t−k−1

πj(t)Y (t− j)

]2

.

By the assumption that for any t,

√
t
∑
i>t−1

∑
j>t−1

|πi(t)πj(t)| <∞,

one obtain the convergence of

t|bk(t)−
ψk(t)

ψ0(t− k)
|2 → 0 as t→∞,

i.e.
√
t

(
bk(t)−

ψk(t)

ψ0(t− k)

)
= o(1).

In the next proposition, we prove the asymptotic behaviour of the estimated coefficients

b̂. This idea is used in [11] and [4].
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Proposition 3.3.4. Let {Y (t)} be the process defined by (3.3.2). Assume
√
m+ 1

∑
i>m

∑
j>m |πi(m+ 1)πj(m+ 1)| <∞. Then for any 1 < d < m+ 2− τ ,

√
m+ 1

(
B̂m+1 −ψm+1

)
→ N(0,V1)

in distribution as m→∞, where

B̂m+1 := (b̂Tm+1, b̂
T
m, · · · , b̂Tm+2−τ )

T , b̂m+1 = (b̂1(m+ 1), · · · , b̂d(m+ 1))T ,

ψm+1 :=

(
ψ1(m+ 1)

ψ0(m)
, · · · , ψd(m+ 1)

ψ0(m+ 1− d)
, · · · , ψ1(m+ 2− τ)

ψ0(m+ 1− τ)
, · · · , ψd(m+ 2− τ)

ψ0(m+ 2− τ − d)

)T
and

V1 := (I − C)−1diag (Ψτ ,Ψτ−1, · · · ,Ψ1)V diag (Ψτ ,Ψτ−1, · · · ,Ψ1)T
(
(I − C)−1

)T
.

Proof. As E[Y (m+ 1)|Hm
m+1−d] has two representations,

E[Y (m+ 1)|Hm
m+1−d] =

d∑
j=1

aj(m+ 1)Y (m+ 1− j),

and

E[Y (m+ 1)|Hm
m+1−d]

=
d∑
j=1

bj(m+ 1)(Y (m+ 1− j)− Ŷ (m+ 1− j))

=
d∑
j=1

bj(m+ 1)

Y (m+ 1− j)−
min(m−j,d)∑

i=1

ai(m+ 1− j)Y (m+ 1− j − i)


=

d∑
j=1

aj(m+ 1− j)Y (m+ 1− j)

for any integer 1 < d < m+ 2− τ , the coefficients a and b has the relation as

am+1 = Qmbm+1, (3.3.9)

where

am+1 = (a1(m+ 1), a2(m+ 1), · · · , ad(m+ 1))T ,

bm+1 = (b1(m+ 1), b2(m+ 1), · · · , bd(m+ 1))T ,
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and

Qm :=



1 0 · · · 0 0

−a1(m) 1 · · · 0 0

−a2(m) −a1(m− 1) · · · 0 0
...

...
. . .

...
...

−ad−2(m) −ad−3(m− 1) · · · 1 0

−ad−1(m) −ad−2(m− 1) · · · −a1(m− d+ 2) 1


.

Moreover,

E[Y (m+ 1)|Hm
m+1−d]

=
d∑
j=1

aj(m+ 1− j)Y (m+ 1− j)

=
d∑
j=1

aj(m+ 1− j)

(
d∑
i=1

bi(m+ 1− j)(Y (m+ 1− j − i)− Ŷ (m+ 1− j − i))

)

=
d∑
j=1

bj(m+ 1− j)(Y (m+ 1− j)− Ŷ (m+ 1− j)),

the coefficients a and b also satisfy

bm+1 = Rmam+1, (3.3.10)

where

Rm :=



1 0 · · · 0 0

b1(m) 1 · · · 0 0

b2(m) b1(m− 1) · · · 0 0
...

...
. . .

...
...

bd−2(m) bd−3(m− 1) · · · 1 0

bd−1(m) bd−2(m− 1) · · · b1(m− d+ 2) 1


.

By the construction of the estimators â and b̂, there are also âm+1 = Q̂mb̂m+1 and b̂m+1 =

R̂mâm+1.
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Besides, set

Πm =



1 0 · · · 0 0

π1(m) 1 · · · 0 0

π2(m) π1(m− 1) · · · 0 0
...

...
. . .

...
...

πd−2(m) πd−3(m− 1) · · · 1 0

πd−1(m) πd−2(m− 1) · · · π1(m− d+ 2) 1


.

Define

Ψm :=



1 0 · · · 0 0

ψ1(m)
ψ0(m−1)

1 · · · 0 0

ψ2(m)
ψ0(m−2)

ψ1(m−1)
ψ0(m−2)

· · · 0 0
...

...
. . .

...
...

ψd−2(m)

ψ0(m−d+2)

ψd−3(m−1)

ψ0(m−d+2)
· · · 1 0

ψd−1(m)

ψ0(m−d+1)

ψd−2(m−1)

ψ0(m−d+1)
· · · ψ1(m−d+2)

ψ0(m−d+1)
1


,

then by relation (3.3.3), QmΨm = Im, where Im is the d× d identity matrix.

Next we consider parameters in one period simultaneously. Set (d× τ) vectors as

Bm+1 := (bTm+1, b
T
m, · · · , bTm+2−τ )

T ,

and

Am+1 := (aTm+1,a
T
m, · · · ,aTm+2−τ )

T .

Then we have

√
m+ 1

(
B̂m+1 −Bm+1

)
(3.3.11)

=
√
m+ 1diag

(
R̂m+1, R̂m, · · · , R̂m+2−τ

)
Âm+1 −

√
m+ 1diag (Rm+1, Rm, · · · , Rm+2−τ )Am+1

= diag
(
R̂m+1, R̂m, · · · , R̂m+2−τ

)√
m+ 1

(
Âm+1 −Am+1

)
+
√
m+ 1

(
diag

(
R̂m+1, R̂m, · · · , R̂m+2−τ

)
− diag (Rm+1, Rm, · · · , Rm+2−τ )

)
Am+1.

(3.3.12)

Without loss of generality, we assume m+ 1 is multiple times of period. From Section 3.1

we have
√
m+ 1

(
Âm+1 −Am+1

)
→ N(0,V ),
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in distribution as m→∞, where V := diag
(
θ2

0(τ)Γ−1
d (τ), · · · , θ2

0(1)Γ−1
d (1)

)
. Next we will

show that

√
m+ 1

[(
diag

(
R̂m+1, R̂m, · · · , R̂m+2−τ

)
− diag (Rm+1, Rm, · · · , Rm+2−τ )

)
Am+1

− Cm+1

(
B̂m+1 −Bm+1

)]
→ 0,

in probability as m→∞, where Cm+1 =
∑d−1

i=1 Di,m+1P
i(d−1) with

Di,m+1 = diag

 i︷ ︸︸ ︷
0, · · · , 0,

d−i︷ ︸︸ ︷
ai(m+ 1), · · · , ai(m+ 1),

i︷ ︸︸ ︷
0, · · · , 0,

d−i︷ ︸︸ ︷
ai(m), · · · , ai(m),

· · · , 0, · · · , 0︸ ︷︷ ︸
i

, ai(m+ 2− τ), · · · , ai(m+ 2− τ)︸ ︷︷ ︸
d−i

)

 ,

and P to be the orthogonal dτ × dτ cyclic permutation matrix

P :=



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

1 0 0 · · · 0


.

To view this structure more straightly, we consider an example: for τ = 2 and d = 3,

Cm+1 =



0 0 0 0 0 0

0 0 0 a1(m+ 1) 0 0

a2(m+ 1) 0 0 a1(m+ 1) 0 0

0 0 0 0 0 0

a1(m) 0 0 0 0 0

0 a1(m) 0 a2(m) 0 0


.

Then

(
diag

(
R̂m+1, R̂m

)
− diag (Rm+1, Rm)

)
Am+1
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=



0(
b̂1(m)− b1(m)

)
a1(m+ 1)(

b̂2(m)− b2(m)
)
a1(m+ 1) +

(
b̂1(m− 1)− b1(m− 1)

)
a2(m+ 1)

0(
b̂1(m− 1)− b1(m− 1)

)
a1(m)(

b̂2(m− 1)− b2(m− 1)
)
a1(m) +

(
b̂1(m− 2)− b1(m− 2)

)
a2(m)


and

Cm+1

(
B̂m+1 −Bm+1

)

=



0(
b̂1(m)− b1(m)

)
a1(m+ 1)(

b̂2(m)− b2(m)
)
a1(m+ 1) +

(
b̂1(m+ 1)− b1(m+ 1)

)
a2(m+ 1)

0(
b̂1(m+ 1)− b1(m+ 1)

)
a1(m)(

b̂2(m+ 1)− b2(m+ 1)
)
a1(m) +

(
b̂1(m)− b1(m)

)
a2(m)


.

That is to say, it suffices to show that

√
t (bi(t)− bi(t− τ))→ 0 (3.3.13)

and

√
t
(
b̂i(t)− b̂i(t− τ)

)
→ 0 (3.3.14)

in probability as t→∞.

Lemma 3.3.3 and the periodicity of ψi(t−τ)
ψ0(t−τ−i) = ψi(t)

ψ0(t−i) lead to (3.3.13). For (3.3.14), it

suffices to prove
√
t (âi(t+ τ)− âi(t))→ 0 in probability by (3.3.9). By (3.1.4),

√
t (âd(t)− âd(t− τ))

=
√
t(XT

t,nXt,n)−1XT
t,nYt,n −

√
t(XT

t−τ,n−1Xt−τ,n−1)−1XT
t−τ,n−1Yt,n

=
√
t
[
(XT

t,nXt,n)−1 − (XT
t−τ,n−1Xt−τ,n−1)−1

]
XT

t,nYt,n

+ (XT
t−τ,n−1Xt−τ,n−1)−1

√
t
(
XT

t,nYt,n −XT
t−τ,n−1Yt,n

)
,
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where n = d t
τ
e with d·e to be the greatest integer function. The ith component of

√
t
(
XT

t,nYt,n −XT
t−τ,n−1Yt,n

)
is

√
t

n

n−1∑
k=0

Y (t− i− kτ)Y (t− kτ)−
√
t

n− 1

n−2∑
k=0

Y (t− τ − i− kτ)Y (t− τ − kτ)

=

√
t(n− 1)

n(n− 1)

n−1∑
k=0

Y (t− i− kτ)Y (t− kτ)−
√
tn

n(n− 1)

n−1∑
k=1

Y (t− i− kτ)Y (t− kτ)

=

√
t

n
Y (t− i)Y (t)−

√
t

n(n− 1)

n−1∑
k=1

Y (t− i− kτ)Y (t− kτ)

→0

in probability as t→∞ by Proposition 3.1.4. Besides,

√
t
∣∣(XT

t,nXt,n)−1 − (XT
t−τ,n−1Xt−τ,n−1)−1

∣∣
=
√
t
∣∣(XT

t,nXt,n)−1
(
XT

t−τ,n−1Xt−τ,n−1 −XT
t,nXt,n

)
(XT

t−τ,n−1Xt−τ,n−1)−1
∣∣

≤
∣∣(XT

t,nXt,n)−1
∣∣√t ∣∣XT

t−τ,n−1Xt−τ,n−1 −XT
t,nXt,n

∣∣ ∣∣(XT
t−τ,n−1Xt−τ,n−1)−1

∣∣ .
By similar calculation, we can prove that each component of

√
t
(
XT

t−τ,n−1Xt−τ,n−1 −XT
t,nXt,n

)
converges to zero in probability as t→∞, hence

√
t
∣∣(XT

t,nXt,n)−1 − (XT
t−τ,n−1Xt−τ,n−1)−1

∣∣→ 0

in probability. Therefore,
√
t (âd(t)− âd(t− τ))→ 0

in probability as t→∞.

Combing above results, (3.3.11) is equivalent to

√
m+ 1(I − Cm+1)(B̂m+1 −Bm+1)

=
√
m+ 1diag

(
R̂m+1, R̂m, · · · , R̂m+2−τ

)(
Âm+1 −Am+1

)
+ 0p(1).

By Remark 3.1.8, we have

(a1(m+ 1), · · · , ad(m+ 1))T → (−π1(m+ 1), · · · ,−πd(m+ 1))T

in probability as m→∞. Then Cm+1 → C :=
∑d−1

i=1 Π̃i,τP
i(d−1) in probability as m→∞,

where

Π̃i,m+1 = diag

 i︷ ︸︸ ︷
0, · · · , 0,

d−i︷ ︸︸ ︷
−πi(τ), · · · ,−πi(τ),

i︷ ︸︸ ︷
0, · · · , 0,

d−i︷ ︸︸ ︷
−πi(τ − 1), · · · ,−πi(τ − 1),
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· · · , 0, · · · , 0︸ ︷︷ ︸
i

,−πi(1), · · · ,−πi(1)︸ ︷︷ ︸
d−i

)

 .

And by the relation between coefficients a and b in (3.3.9),

diag
(
R̂m+1, R̂m, · · · , R̂m+2−τ

)
→ diag (Ψτ ,Ψτ−1, · · · ,Ψ1)

in probability as m→∞. Consequently, combining with Lemma 3.3.3, we have

√
m+ 1

(
B̂m+1 −ψm+1

)
→ N(0,V1)

in distribution as m→∞, where

ψm+1 :=

(
ψ1(m+ 1)

ψ0(m)
, · · · , ψd(m+ 1)

ψ0(m+ 1− d)
, · · · , ψ1(m+ 2− τ)

ψ0(m+ 1− τ)
, · · · , ψd(m+ 2− τ)

ψ0(m+ 2− τ − d)

)T
and

V1 := (I − C)−1diag (Ψτ ,Ψτ−1, · · · ,Ψ1)V diag (Ψτ ,Ψτ−1, · · · ,Ψ1)T
(
(I − C)−1

)T
.

3.4 Truncated Innovation Algorithm

From the algorithm shown in the previous section, the coefficients b only depend on

the covariance matrix of Y . But as in the real life we usually cannot choose w in the

sample autocovariance function to be large enough, so in the next lemma we will see that

the sample covariance matrix of random periodic process has rank w, which is the number

of previous cycles we use to estimate the sample autocovariance function. If the size of

the sample covariance matrix is greater than w, the matrix will be singular, which will

cause the estimated vt drop to zero. Hence we will use the truncated innovation algorithm

to estimate the coefficients b̂.

Lemma 3.4.1. The rank of the sample covariance matrix of random periodic process is

no greater than w.
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Proof. For N > w, let

Γ̂N :=


γ̂(1, 1) γ̂(1, 2) · · · γ̂(1, N)

γ̂(2, 1) γ̂(2, 2) · · · γ̂(2, N)
...

...
. . .

...

γ̂(N, 1) γ̂(N, 2) · · · γ̂(N,N)

 ,

where γ̂(i, j) = 1
w

∑w−1
k=0 y(i− kτ)y(j − kτ).

Set

PN :=


y(1) y(1− τ) · · · y(1− (w − 1)τ)

y(2) y(2− τ) · · · y(2− (w − 1)τ)
...

...
. . .

...

y(N) y(N − τ) · · · y(N − (w − 1)τ)

 .

Then Γ̂N = 1
w
PNP

T
N . As Rank(PN) ≤ w,

Rank(Γ̂N) ≤ Rank(PN) ≤ w.

In order to use the innovation algorithm to calculate the coefficients b, we use the

truncated innovation representation of Y , in which we only take several periods of history

data to estimate Y instead of using all past information. Then the modified innovation

algorithm is shown as follows.

Proposition 3.4.2. (Truncated Innovation Algorithm) Set Ŷ (n+1) := E[Y (n+1)|Hn+1],

for some positive integer K with Kτ < w, if

Ŷ (n+ 1) =



0 n = 0

n∑
k=1

bk(n+ 1)(Y (n+ 1− k)− Ŷ (n+ 1− k)) 1 ≤ n ≤ Kτ

Kτ∑
k=1

bk(n+ 1)(Y (n+ 1− k)− Ŷ (n+ 1− k)) n > Kτ

, (3.4.1)
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then when n > Kτ , for k = n−Kτ, · · · , n− 1,

bn−k(n+ 1) = v−1
k+1

(
γ(n+ 1, k + 1)−

k−1∑
j=k−Kτ

bk−j(k + 1)bn−j(n+ 1)vj+1

)
k > Kτ

bn−k(n+ 1) = v−1
k+1

(
γ(n+ 1, k + 1)−

k−1∑
j=0

bk−j(k + 1)bn−j(n+ 1)vj+1

)
k ≤ Kτ

vn+1 = κ(n+ 1, n+ 1)−
n−1∑

k=n−Kτ

bn−k(n+ 1)2vk+1

,

(3.4.2)

Proof. When n ≤ Kτ , we use the original algorithm.

When n > Kτ , for each k satisfying n−Kτ ≤ k ≤ n− 1, multiplying Ŷ (n+ 1) with

Y (k + 1)− Ŷ (k + 1) and taking expectations, and by (3.2.3), we have

E
[
Y (n+ 1)

(
Y (k + 1)− Ŷ (k + 1)

)]
= E

[
Ŷ (n+ 1)

(
Y (k + 1)− Ŷ (k + 1)

)]
= bn−k(n+ 1)vk+1.

Hence bn−k(n+ 1), k = n−Kτ, . . . , k ≤ n− 1 are given by

bn−k(n+ 1) = v−1
k+1E

[
Y (n+ 1)

(
Y (k + 1)− Ŷ (k + 1)

)]
.

When k > Kτ ,

bn−k(n+ 1)

= v−1
k+1

(
E[Y (n+ 1)Y (k + 1)]− E[Y (n+ 1)Ŷ (k + 1)]

)
= v−1

k+1

{
κ(n+ 1, k + 1)− E

[
Y (n+ 1)

(
Kτ∑
j=1

bj(k + 1)(Y (k + 1− j)− Ŷ (k + 1− j))

)]}

= v−1
k+1

{
κ(n+ 1, k + 1)−

Kτ∑
j=1

bj(k + 1)E
[
Y (n+ 1)

(
Y (k + 1− j)− Ŷ (k + 1− j)

)]}

= v−1
k+1

{
κ(n+ 1, k + 1)−

k−1∑
j=k−Kτ

bk−j(k + 1)E
[
Y (n+ 1)

(
Y (j + 1)− Ŷ (j + 1)

)]}

= v(k + 1)−1

(
κ(n+ 1, k + 1)−

k−1∑
j=k−Kτ

bk−j(k + 1)bn−j(n+ 1)vj+1

)
.
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When k ≤ Kτ ,

bn−k(n+ 1) = v−1
k+1

(
κ(n+ 1, k + 1)−

k−1∑
j=0

bk−j(k + 1)bn−j(n+ 1)vj+1

)
.

By (3.2.3), E[Ŷ (t)]2 = B[Y (t)Ŷ (t)], hence

E[Y (n+ 1)]2

= E[Ŷ (n+ 1) + Y (n+ 1)− Ŷ (n+ 1)]2

= E[Ŷ (n+ 1)]2 + 2E
[
Ŷ (n+ 1)

(
Y (n+ 1)− Ŷ (n+ 1)

)]
+ E[Y (n+ 1)− Ŷ (n+ 1)]2

= E[Ŷ (n+ 1)]2 + E[Y (n+ 1)− Ŷ (n+ 1)]2.

Besides,

E[Ŷ (n+ 1)]2 = E

[
Kτ∑
j=1

bj(n+ 1)(Y (n+ 1− j)− Ŷ (n+ 1− j))

]2

= E

[
n−1∑

k=n−Kτ

bn−k(n+ 1)(Y (k + 1)− Ŷ (k + 1))

]2

=
n−1∑

k=n−Kτ

bn−k(n+ 1)2vk+1.

Thus,

vn+1 = E[Y (n+ 1)− Ŷ (n+ 1)]2

= E[Y (n+ 1)]2 − E[Ŷ (n+ 1)]2

= κ(n+ 1, n+ 1)−
n−1∑

k=n−Kτ

bn−k(n+ 1)2vk+1.

We will see in examples that the K frequently takes the value 1.



Chapter 4

Non-causal Case

4.1 Background

Recall that a causal autoregressive model of data means that the data can be fully ex-

pressed as a series of history noise. It requires the characteristic function of autoregressive

parameters φ(z) = 1−φ1z−· · ·−φpzp has no root in the unit circle. On the other hand, if

φ(z)’s roots are all in the unit circle, the model is called purely non-causal autoregressive

model, then the data fully depends on future noise. If φ(z) has roots both in and out of

the unit circle, then the data depends not only on history noise, but also the future’s.

This is called mixed non-causal autoregressive model.

Brockwell and Davis stated in [12] that non-casual autoregressive model can be re-

expressed as a causal or purely non-causal autoregressive model driven by a new noise

sequence {Z̃(t)}. For non-Gaussian case {Z̃(t)} is uncorrelated, but not independent with

each other, which will make estimation much harder. However, the autocovariance of

data remains unchanged. Hence the Yule-Walker and innovation algorithms are unable to

distinguish among causal and non-causal cases.

Breidt et al. studied the mixed non-causal case in [10]. Suppose in the following model

φ(B)Xt = Zt, (4.1.1)

the autoregressive polynomial φ(z) has roots both in and out of the unit circle. φ(z) can

be factorized as φ(z) = φ+(z)φ∗(z), where φ+ only has roots out of the unit circle and

φ∗(z) only has roots in the unit circle. That is to say, if we define Ut = φ∗(B)Xt and

65
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Vt = φ+(B)Xt, then Ut is a causal autoregressive process and Vt is a purely non-causal

one. Next they approximated the likelihood function of the parameters and concluded the

asymptotic normality of the maximum likelihood estimation.

Lanne and Saikkonen ([23]) re-expressed the mixed non-causal autoregressive as

ϕ(B−1)φ(B)Xt = Zt, (4.1.2)

where ϕ(z−1) represents the purely non-causal polynomial and φ(z) represents the causal

one. They stated that if the last parameter of ϕ(z−1), i.e. ϕs, is not zero, then there is a

one-to-one correspondence between (4.1.2) and (4.1.1). Besides, they stated that (4.1.2)

containes the overfitting condition of φ and ϕ. The asymptotic normality of the maximum

likelihood estimation of parameters in (4.1.2) were deduced by similar idea as [10].

In the following sections, we construct a very simple version of the mixed non-causal

model for random periodic processes based on (4.1.2). For this we assume that the coeffi-

cients are all constants and the number of coefficients is independent with time t. In the

future we attempt to release this assumption to general case. The asymptotic normality

of the maximum likelihood estimation of parameters will be deduced according to the

idea in [10], but under the central limit theorem and ergodic theorem for random periodic

processes.

4.2 Mixed Non-causal Autoregressive Model for Ran-

dom Periodic Processes

Let {Y (t)}t∈Z be a random periodic process satisfying

ϕ(B−1)φ(B)Y (t) = Z(t), (4.2.1)

where φ(B) = 1 − φ1B − · · · − φrB
r, ϕ(B−1) = 1 − ϕ1B

−1 − · · · − ϕsB
−s and Z(t) is

a sequence of i.i.d. random variables with mean 0 and variance σ2
t . Assume that σt is

deterministic periodic function of time t. Also assume that the polynomials φ(z), ϕ(z)

have their zeros outside the unit circle, so that φ(z) 6= 0 for |z| ≤ 1 and ϕ(z) 6= 0 for

|z| ≤ 1 and φr 6= 0, ϕs 6= 0. Moreover, assume that the probability density function of
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Z(t) is ft(x) := 1
σt
f( x

σt
), where f(x) satisfies the following assumptions ([10]):

A1 :f(x) > 0 for all x.

A2 :f ∈ C2(R).

A3 :f ′ ∈ L1(R) with

∫
f ′(x)dx = 0.

A4 :

∫
xf ′(x)dx = −1.

A5 :

∫
f ′′(x)dx = 0.

A6 :

∫
xf ′′(x)dx = 0.

A7 :

∫
x2f ′′(x)dx = 2.

A8 :

∫
(1 + x2)

(f ′(x))2

f(x)
dx <∞.

Define U(t) = ϕ(B−1)Y (t) and V (t) = φ(B)Y (t). From (4.2.1) and ϕ(B−1)φ(B) =

φ(B)ϕ(B−1), we have φ(B)U(t) = Z(t). Thus U(t) is causal, and so U(t) can be expressed

as

U(t) =
∞∑
i=0

αiZ(t− i), (4.2.2)

with α0 = 1 and αi decay to zero at exponential rate as i→∞. From ϕ(B−1)V (t) = Z(t),

V (t) is purely non-causal, then V (t) can be expresses as

V (t) =
∞∑
j=0

βjZ(t+ j), (4.2.3)

with β0 = 1 and βi decay to zero at exponential rate as i → ∞. The process Y (t) itself

has the two-sided moving average representation

Y (t) =
∞∑

j=−∞

ψjZ(t), (4.2.4)

where ψ(z) := φ(z)−1ϕ(z−1)−1.
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Next we are going to express the joint density function of {Y (t)}. First we have



U(1)
...

U(n− s)

V (n− s+ 1)
...

V (n)


=



Y (1)−
∑s

j=1 ϕjY (1 + j)
...

Y (n− s)−
∑s

j=1 ϕjY (n− s+ j)

Y (n− s+ 1)−
∑r

i=1 φiY (n− s+ 1− i)
...

Y (n)−
∑r

i=1 φiY (n− i)


= An



Y (1)
...

Y (n− s)

Y (n− s+ 1)
...

Y (n)


,

where

An =



1 −ϕ1 · · · 0 0 0 · · · 0 0

0 1 · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

...

0 0 · · · 1 −ϕ1 −ϕ2 · · · −ϕs 0

0 0 · · · 0 1 −ϕ1 · · · −ϕs−1 −ϕs

0 0 · · · −φ2 −φ1 1 · · · 0 0
...

...
...

...
...

. . .
...

...

0 0 · · · an−1,n−s−1 an−1,n−s an−1,n−s+1 · · · 1 0

0 0 · · · an,n−s−1 an,n−s an,n−s+1 · · · −φ1 1



.

The values of aij in the last two rows depend on the values of s and j.

Similarly,



U(1)
...

U(r)

Z(r + 1)
...

Z(n− s)

V (n− s+ 1)
...

V (n)



=



U(1)
...

U(r)

U(r + 1)−
∑r

i=1 φiU(r + 1− i)
...

U(n− s)−
∑r

i=1 φiU(n− s− i)

V (n− s+ 1)

· · ·

V (n)



= Cn



U(1)
...

U(r)

U(r + 1)
...

U(n− s)

V (n− s+ 1)
...

V (n)



,
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where

Cn =



1 · · · 0
...

. . .
...

0 · · · 1

−φr · · · −φ1 1 0 · · · 0 0

0 · · · −φ2 −φ1 1 · · · 0 0
...

. . .
...

...
...

. . .
...

...

0 · · · 0 0 0 · · · 1 0

0 · · · 0 0 0 · · · −φ1 1

1 · · · 0
...

. . .
...

0 · · · 1



.

We can see that Cn are non-singular and det(Cn) = 1. Re-represent An as

An =

A1 A2

A3 A4

 ,
where A1 is a (n−s)× (n−s) upper triangular matrix with det(A1) = 1, and A4 is a s×s

lower triangular matrix with det(A4) = 1. As det(An) = det(A1)det(A4 − A3A
−1
1 A2) = 1,

An is also non-sigular. Hence

Y (1)
...

Y (r)

Y (r + 1)
...

Y (n− s)

Y (n− s+ 1)
...

Y (n)



= (CnAn)−1



U(1)
...

U(r)

Z(r + 1)
...

Z(n− s)

V (n− s+ 1)
...

V (n)



. (4.2.5)

From (4.2.2) and (4.2.3), we know that U(t) is independent of V (t+s), hence (U(1), · · · , U(r))T ,

(Z(r+ 1), · · · , Z(n− s))T and (V (n− s+ 1), · · · , V (n))T are independent. The joint den-

sity function of (U(1), · · · , U(r), Z(r + 1), · · · , Z(n− s), V (n− s+ 1), · · · , V (n))T can be
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expressed as

hU(U(1), · · · , U(r))

(
n−s∏
t=r+1

ft(Z(t))

)
hV (V (n− s+ 1), · · · , V (n)),

where hU and hV signify the joint density functions of U and V respectively. We can see

that the non-stochastic matrices An and Cn are non-singular and det(Cn) = 1. Then the

joint density function of (Y (1), · · · , Y (n))T is expressed as

hU(ϕ(B−1)Y (1), · · · , ϕ(B−1)Y (r))

(
n−s∏
t=r+1

ft(ϕ(B−1)φ(B)Y (t))

)
× hV (φ(B)Y (n− s+ 1), · · · , φ(B)Y (n))det(An)det(Cn).

As det(An) is independent of sample size n, we approximate the log-likelihood function

of parameters θt := (φ1, · · · , φr, ϕ1, · · · , ϕs, σt))T as

Ln(θ) :=
n−s∑
t=r+1

gt(θt), (4.2.6)

where

gt(θt) := logft(Z(t))

= logft(U(t)− φ1U(t− 1)− · · · − φrU(t− r))

= logft(V (t)− ϕ1V (t+ 1)− · · · − ϕsV (t+ r)).

Evaluating the partial derivatives of gt at the true values of parameters and using the

logogram ft for ft(Z(t)), we obtain

∂gt
∂φi

= −U(t− i)f
′
t

ft
, i = 1, · · · , r,

∂gt
∂ϕi

= −V (t+ j)
f
′
t

ft
, j = 1, · · · , s,

and
∂gt
∂σt

= − 1

σt

(
Z(t)

f
′
t (Z(t))

ft(Z(t))
+ 1

)
.

The assumption A4 on f(x) implies

E
[
Z(t)

f
′
t

ft

]
=

∫
x
f
′
t (x)

ft(x)
ft(x)dx =

∫
x

[
1

σt
f

(
x

σt

)]′
dx =

∫
x

σ2
t

f
′
(
x

σt

)
dx = −1.
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Then

E
[
Z(s)

f
′
t

ft

]
=

0, s 6= t,

−1, s = t.

Hence for i = 1, · · · , r and j = 1, · · · , s,

E
[
∂gt
∂φi

]
= 0, E

[
∂gt
∂ϕj

]
= 0, E

[
∂gt
∂σt

]
= 0.

Next we determine the limiting covariance matrix of
(∑n−s

t=r+1
∂gt
∂θ1(t)

, · · · ,
∑n−s

t=r+1
∂gt

∂θr+s+1(t)

)T
.

Define Ĩ :=
∫
R

(f
′
(x))2

f(x)
dx, J̃ :=

∫
R x

2 (f
′
(x))2

f(x)
dx− 1, then

Cov(Z(t− i)f
′
t

ft
, Z(k − j)f

′

k

fk
) =



J̃ , t = k, i = j = 0,

σ2
t−iσ

−2
t Ĩ , t = k, i = j 6= 0,

1, t 6= k, i = t− k, j = k − t,

0, otherwise.

Let γU(·, ·) and γV (·, ·) denote the autocovariance functions of {U(t)} and {V (t)} respec-

tively. Then from the representations of (4.2.2) and (4.2.3), we obtain

Cov(U(t− i)f
′
t

ft
, U(k − j)f

′

k

fk
) =

γU(t− i, t− j)σ−2
t Ĩ , t = k, i, j = 1, · · · , r,

0, t 6= k, i, j = 1, · · · , r.

Cov(V (t+ i)
f
′
t

ft
, V (k + j)

f
′

k

fk
) =

γV (t+ i, t+ j)σ−2
t Ĩ , t = k, i, j = 1, · · · , s,

0, t 6= k, i, j = 1, · · · , s.

Cov(U(t− i)f
′
t

ft
, V (k + j)

f
′

k

fk
)

= Cov(
∞∑
a=0

αaZ(t− i− a)
f
′
t

ft
,
∞∑
b=0

βbZ(k + j + b)
f
′

k

fk
)

=

αt−i−kβt−k−j, t− k ≥ m0, i, j = 1, · · · , r,

0, otherwise.



CHAPTER 4. NON-CAUSAL CASE 72

where m0 := max(i, j), and for any i = 1, · · · , r and j = 1, · · · , s,

Cov(
∂gt
∂σt

,
∂gk
∂φi

) = 0, Cov(
∂gt
∂σt

,
∂gk
∂ϕj

) = 0, for any t, k,

and

Cov(
∂gt
∂σt

,
∂gk
∂σk

) =

σ
−2
t J̃ , t = k,

0, t 6= k.

Also, for any i = 1, · · · , r and j = 1, · · · , s,

1

n− r − s
Cov(

n−s∑
t=r+1

∂gt
∂φi

,

n−s∑
k=r+1

∂gk
∂ϕj

)

=
1

n− r − s

n−s∑
t=r+1

n−s∑
k=r+1

Cov(U(t− i)f
′
t

ft
, V (k + j)

f
′

k

fk
)

=
1

n− r − s

n−m0−s∑
k=r+1

n−s∑
t=k+m0

αt−i−kβt−k−j

=
1

n− r − s

n−m0−s∑
k=r+1

n−s−i−k∑
t=m0−i

αtβt+i−j

As {αi}i∈Z+ and {βj}j∈Z+ decay at exponential rate, hence, as n→∞,

1

n− r − s
Cov(

n−s∑
t=r+1

∂gt
∂φi

,

n−s∑
k=r+1

∂gk
∂ϕj

)→
∞∑

t=m0−i

αtβt+i−j.

Similarly, for i, j = 1, · · · , r, by the periodicity of σt,

1

n− r − s
Cov(

n−s∑
t=r+1

∂gt
∂φi

,
n−s∑
k=r+1

∂gk
∂φj

)

=
1

n− r − s

n−s∑
t=r+1

n−s∑
k=r+1

Cov(U(t− i)f
′
t

ft
, U(k − j)f

′

k

fk
)

→ 1

τ

τ∑
t=1

γU(t− i, t− j)σ−2
t Ĩ ,

as n→∞. For i, j = 1, · · · , s,

1

n− r − s
Cov(

n−s∑
t=r+1

∂gt
∂ϕi

,

n−s∑
k=r+1

∂gk
∂ϕj

)

=
1

n− r − s

n−s∑
t=r+1

n−s∑
k=r+1

Cov(V (t+ i)
f
′
t

ft
, V (k + j)

f
′

k

fk
)



4.2. MIXED NON-CAUSAL AUTOREGRESSIVE MODEL FOR RANDOM
PERIODIC PROCESSES 73

→ 1

τ

τ∑
t=1

γV (t+ i, t+ j)σ−2
t Ĩ ,

as n→∞. And

1

n− r − s
Cov(

n−s∑
t=r+1

∂gt
∂σt

,

n−s∑
k=r+1

∂gk
∂σk

) =
1

n− r − s

n−s∑
t=r+1

σ−2
t J̃ → 1

τ

τ∑
t=1

σ−2
t J̃ .

Combining the preceding results, we conclude that

1

n− r − s
Cov

 n−s∑
t=r+1

∂gt
∂θt

,

(
n−s∑
t=r+1

∂gt
∂θt

)T
→ Σ0,

where

Σ0 =

A0 B0

BT
0 D0

 . (4.2.7)

A0 is a r × r symmetric matrix with (i, j)th-element σij = 1
τ

∑τ
t=1 γU(t− i, t− j)σ−2

t Ĩ for

i, j = 1, · · · , r. B0 is a r × (s+ 1) matrix with (i, j)th-element σij =
∑∞

t=m0−i αtβt+i−j for

i = 1, · · · , r, j = 1, · · · , s and zero otherwise. D0 is a (s+ 1)× (s+ 1) symmetric matrix

with element σij = 1
τ

∑τ
t=1 γV (t+ i, t+ j)σ−2

t Ĩ for i, j = 1, · · · , s, σs+1,s+1 = 1
τ

∑τ
t=1 σ

−2
t J̃

and zero otherwise.

Next we prove the asymptotic behaviour of 1√
n−r−s

∑n−s
t=r+1

∂gt
∂θt

in the following propo-

sition.

Proposition 4.2.1. If the probability density function f(x) satisfies assumptions A1-A8,

and the parameters {α(t)} and {β(k)} are exponential decay, then

1√
n− r − s

n−s∑
t=r+1

∂gt
∂θt
→ N(0,Σ0), (4.2.8)

in distribution, where Σ0 is given in (4.2.7)

Proof. By the Cramér-Wold device, it suffices to prove that for any a ∈ Rr+s+1,

1√
n− r − s

n−s∑
t=r+1

aT
∂gt
∂θt
→ N(0,aTΣ0a),

in distribution as n→∞.
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For a large positive integer m, define Um(t) :=
∑m

a=0 αaZ(t − a), and Vm(t) :=∑m
b=0 βbZ(t+ b). Define

Ym(t) :=

(
−Um(t− 1)

f
′
t

ft
, · · · ,−Um(t− r)f

′
t

ft
,−Vm(t+ 1)

f
′
t

ft
, · · · ,

−Vm(t+ s)
f
′
t

ft
,− 1

σt

(
Z(t)

f
′
t (Z(t))

ft(Z(t))
+ 1

))T
.

Then for fixed m, Um(t) and Vm(t) are still random periodic processes, so as Ym(t).

Define Σ0,m := 1
n−r−sCov

(∑n−s
t=r+1 Ym(t),

(∑n−s
t=r+1 Ym(t)

)T)
. Then Σ0,m → Σ0 as m→

∞. By the central limit theorem for random periodic processes, under the conditions that

{αi}i∈Z+ and {βj}j∈Z+ are exponential decay and there exists a positive δ such that

E[(Z(t))2+δ] <∞, there is

1√
n− r − s

n−s∑
t=r+1

aTYm(t)→ N(0,aTΣ0,ma)

in distribution as n→∞.

Since

lim
m→∞

lim
n→∞

V ar

(
1√

n− r − s

n−s∑
t=r+1

(
aTYm(t)− aT ∂gt

∂θt

))
= 0.

The convergence in (4.2.8) is immediate from Proposition 3.1.2.

4.3 Asymptotic Normality

In this section, we will follow the idea in [10] to prove that there exists a sequence of

solutions, θ̂n, to the likelihood equations,

∂Ln(θ)

∂θj(t)
= 0, t = r + 1, · · · , n− s, j = 1, · · · , r + s+ 1,

where Ln is given in (4.2.6), which is consistent with the true parameter value θ∗ in the

sense of distribution. We represent this result in the following theorem.

Theorem 4.3.1. For the non-causal autoregressive model (4.2.1) for a random periodic

process {Y (t)}, there exists a sequence of solutions, θ̂n, to the likelihood equations (4.2.6)

which satisfy √
n

τ

τ∑
t=1

Σt(θ̂
n
t − θ∗t )→ N(0,Σ0),
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in distribution as n→∞, where θ∗t = (θ∗1(t), · · · , θ∗r+s+1(t))T is the true values of param-

eters at time t and the weight matrix Σt is given in (4.3.2).

Proof. Define h(x) := f
′
(x)

f(x)
. As in [10], we assume that h

′
(x) = h1(x) − h2(x) where h1

and h2 are non-decreasing functions with hi(x) = O(|x|δ) as |x| → ∞, where we have

E|Z(t)|2+δ < ∞. This implies E|Z(t)|j|h′(Z(t))| < ∞ for j = 0, 1, 2. By calculation, we

have

h′(x) =
d

dx

(
f
′
(x)

f(x)

)
=
f
′′
(x)f(x)−

(
f
′
(x)
)2

(f(x))2 ,

f
′
t (x)

ft(x)
= σ−1

t h( x
σt

), d
dx

(
f
′
t (x)

ft(x)

)
= σ−2

t h′( x
σt

) and E
[
h′
(
Z(t)
σt

)]
= −Ĩ.

Expanding Ln(θ) in a neighbourhood of θ∗, we have

1

n− r − s
(Ln(θ)− Ln(θ∗))

=
1

n− r − s

r+s+1∑
i=1

n−s∑
t=r+1

∂Ln(θ∗)

∂θi(t)
(θi(t)− θ∗i (t))

+
1

2(n− r − s)

r+s+1∑
i=1

r+s+1∑
j=1

n−s∑
t=r+1

n−s∑
k=r+1

∂2Ln(θ∗)

∂θi(t)∂θj(k)
(θi(t)− θ∗i (t))(θj(k)− θ∗j (k))

+
1

2(n− r − s)

r+s+1∑
i=1

r+s+1∑
j=1

n−s∑
t=r+1

n−s∑
k=r+1

(
∂2Ln(θ̃)

∂θi(t)∂θj(k)
− ∂2Ln(θ∗)

∂θi(t)∂θj(k)

)

× (θi(t)− θ∗i (t))(θj(k)− θ∗j (k))

= P1 + P2 + P3,

where θ̃ is between θ and θ∗. By the ergodic theorem for random periodic processes in

[20],

P1 =
1

n− r − s

r+s+1∑
i=1

n−s∑
t=r+1

∂gt(θ
∗)

∂θi(t)
(θi(t)− θ∗i (t))

→
r+s+1∑
i=1

1

τ

τ∑
t=1

E
[
∂gt(θ

∗)

∂θi(t)

]
(θi(t)− θ∗i (t)) = 0 a.s.

as n→∞.

Next we consider the second partial derivative term. For i, j = 1, · · · , r,

1

n− r − s

n−s∑
t=r+1

n−s∑
k=r+1

∂2Ln(θ)

∂θi(t)∂θj(k)
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=
1

n− r − s

n−s∑
t=r+1

∂2gt(θ)

∂φi∂φj

=
1

n− r − s

n−s∑
t=r+1

−U(t− i) ∂

∂φj

(
f
′
t (Z(t))

ft(Z(t)

)

=
1

n− r − s

n−s∑
t=r+1

U(t− i)U(t− j)σ−2
t h

′
(
Z(t)

σt

)
.

By ergodic theorem of random periodic processes, at the true value of parameter θ∗,

1

n− r − s

n−s∑
t=r+1

n−s∑
k=r+1

∂2Ln(θ∗)

∂θi(t)∂θj(k)

→ 1

τ

τ∑
t=1

E
[
U∗(t− i)U∗(t− j)(σ∗t )−2h

′
(
Z(t)

σ∗t

)]
= − 1

τ

τ∑
t=1

γU(t− i, t− j)(σ∗t )−2Ĩ a.s.

as n→∞. Similarly, for i, j = 1, · · · , s, we have

1

n− r − s

n−s∑
t=r+1

n−s∑
k=r+1

∂2Ln(θ)

∂θi+r(t)∂θj+r(k)

=
1

n− r − s

n−s∑
t=r+1

∂2gt(θ)

∂ϕi∂ϕj

=
1

n− r − s

n−s∑
t=r+1

V (t+ i)V (t+ j)σ−2
t h

′
(
Z(t)

σt

)

→ − 1

τ

τ∑
t=1

γV (t+ i, t+ j)(σ∗t )
−2Ĩ a.s.

as n→∞.

For i = 1, · · · , r and j = 1, · · · , s,

1

n− r − s

n−s∑
t=r+1

n−s∑
k=r+1

∂2Ln(θ)

∂θi(t)∂θj+r(k)

=
1

n− r − s

n−s∑
t=r+1

∂2gt(θ)

∂φi∂ϕj

=
1

n− r − s

n−s∑
t=r+1

[
−U(t− i) ∂

∂ϕj

(
f
′
t (Z(t))

ft(Z(t))

)
+

n−s∑
t=r+1+i

−f
′
t (Z(t))

ft(Z(t))

∂

∂ϕj
(U(t− i))

]

=
1

n− r − s

[
n−s∑
t=r+1

U(t− i)V (t+ j)σ−2
t h

′
(
Z(t)

σt

)
+

n−s∑
t=r+1+i

Y (t− i+ j)σ−1
t h

(
Z(t)

σt

)]
.



4.3. ASYMPTOTIC NORMALITY 77

As E
[
U(t− i)V (t+ j)h

′
(
Z(t)
σt

)]
= 0 and

E
[
Y (t− i+ j)σ−1

t h

(
Z(t)

σt

)]
= E

[
∞∑

a=−∞

ψaZ(t− i+ j − a)
f
′
t (Z(t))

ft(Z(t))

]
= − ψj−i,

by ergodic theorem, at point θ∗,

1

n− r − s

n−s∑
t=r+1

n−s∑
k=r+1

∂2Ln(θ)

∂θi(t)∂θl+r(k)
→ −1

τ

τ∑
t=1

ψj−i a.s.

as n→∞. Similarly, as n→∞, for i = 1, · · · , s and j = 1, · · · , r,

1

n− r − s

n−s∑
t=r+1

n−s∑
k=r+1

∂2Ln(θ)

∂θi+r(t)∂θj(k)

=
1

n− r − s

n−s∑
t=r+1

∂2gt(θ)

∂ϕi∂φj

=
1

n− r − s

[
n−s∑
t=r+1

Y (t+ i− j)σ−1
t h

(
Z(t)

σt

)
+

n−s∑
t=r+1+i

V (t+ i)U(t− j)σ−2
t h

′
(
Z(t)

σt

)]

→ − 1

τ

τ∑
t=1

ψi−j a.s.

Besides, by calculations, as n→∞, for i = 1, · · · , r,

1

n− r − s

n−s∑
t=r+1

n−s∑
k=r+1

∂2Ln(θ)

∂θi(t)∂σk
=

1

n− r − s

n−s∑
t=r+1

n−s∑
k=r+1

∂2Ln(θ)

∂σt∂θi(k)

=
1

n− r − s

n−s∑
t=r+1

∂2gt(θ)

∂φi∂σt
=

1

n− r − s

n−s∑
t=r+1

∂2gt(θ)

∂σt∂φi

=
1

n− r − s

n−s∑
t=r+1

σ−2
t U(t− i)

[
h

(
Z(t)

σt

)
+
Z(t)

σt
h′
(
Z(t)

σt

)]

→ 1

n− r − s

n−s∑
t=r+1

σ−2
t E

{
U(t− i)

[
h

(
Z(t)

σt

)
+
Z(t)

σt
h′
(
Z(t)

σt

)]}
= 0 a.s.

For i = 1, · · · , s,

1

n− r − s

n−s∑
t=r+1

n−s∑
k=r+1

∂2Ln(θ)

∂θi+r(t)∂σk
=

1

n− r − s

n−s∑
t=r+1

n−s∑
k=r+1

∂2Ln(θ)

∂σt∂θi+r(k)
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=
1

n− r − s

n−s∑
t=r+1

∂2gt(θ)

∂ϕi∂σt
=

1

n− r − s

n−s∑
t=r+1

∂2gt(θ)

∂σt∂ϕi

=
1

n− r − s

n−s∑
t=r+1

σ−2
t V (t+ i)

[
h

(
Z(t)

σt

)
+
Z(t)

σt
h′
(
Z(t)

σt

)]
→ 0 a.s.

And

1

n− r − s

n−s∑
t=r+1

n−s∑
k=r+1

∂2Ln(θ)

∂σt∂σk

=
1

n− r − s

n−s∑
t=r+1

σ−2
t

[
2
Z(t)

σt
h

(
Z(t)

σt

)
+

(
Z(t)

σt

)2

h′
(
Z(t)

σt

)
+ 1

]

→ 1

τ

τ∑
t=1

σ−2
t J̃ a.s.

Combining previous results, we have at the true parameter values θ∗

1

n− r − s
∂2Ln(θ∗)

∂θ∂θ
→ −1

τ

τ∑
t=1

Σt. (4.3.1)

For each t = 1, · · · , τ ,

Σt =

At Bt

BT
t Dt

 . (4.3.2)

At is a r × r symmetric matrix with (i, j)th-element σij = γU(t − i, t − j)(σ∗t )
−2Ĩ for

i, j = 1, · · · , r. Bt is a r×(s+1) matrix with (i, j)th-element σij = ψj−i for i = 1, · · · , r, j =

1, · · · , s. D0 is a (s+1)×(s+1) symmetric matrix with element σij = γV (t+i, t+j)(σ∗t )
−2Ĩ

for i, j = 1, · · · , s, σs+1,s+1 = (σ∗t )
−2J̃ and zero otherwise. Therefore,

P2 → −
1

2τ

τ∑
t=1

(θt − θ∗t )
′Σt (θt − θ∗t ) a.s.

By the same idea in [10] and ergodic theorem for random periodic processes, we can

prove that

lim sup
n→∞

sup
θ∈Qε

1

n− r − s

∣∣∣∣∣
n−s∑
t=r+1

n−s∑
k=r+1

∂2Ln(θ)

∂θi(t)∂θj(k)
− ∂2Ln(θ∗)
∂θi(t)∂θj(k)

∣∣∣∣∣→ 0 a.s. (4.3.3)

as the radius of the neighbourhood of θ∗ satisfies ε→∞ for each i, j = 1, · · · , r + s+ 1.
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Therefore we conclude that for ε small,

sup
θ∈∂Qε

(P1 + P2 + P3) < 0 a.s.

as n → ∞. Hence for large n, Ln(θ) < Ln(θ∗) a.s. There exists a sequence of local

maximum θ̂n to Ln which converge to θ∗ a.s.

To explore the asymptotic behaviour of θ̂n, we expand ∂Ln(θ̂n)
∂θ

at θ∗ as

0 =
1√
n

∂Ln(θ̂n)

∂θ
=

1√
n

n−s∑
t=r+1

∂gt(θ
∗)

∂θt
+

1√
n

∂2Ln(θ̃)

∂θ∂θ

√
n(θ̂n − θ∗).

Since θ̃ → θ∗ a.s. By equation (4.3.3) and ergodic theorem for random periodic processes,

1√
n

∂2Ln(θ̃)

∂θ∂θ
=

1√
n

∂2Ln(θ∗)

∂θ∂θ
+

1√
n

(
∂2Ln(θ̃)

∂θ∂θ
− 1√

n

∂2Ln(θ∗)

∂θ∂θ

)
→ −1

τ

τ∑
t=1

Σt a.s.

Hence by Proposition 4.2.1,

√
n

τ

τ∑
t=1

Σt(θ̂
n
t − θ∗t )→ N(0,Σ0),

in distribution as n→∞.



Chapter 5

Simulation Results

For an observed time series, to fit it with ARMA model for random periodic processes,

our estimation procedure is listed below,

1. Assume Y (t) is causal. Consider the corresponding MA(Kτ) model for random

periodic processes with Kτ < w,

Yt =
Kτ∑
j=0

ψj(t)Z(t− j), t = 1, · · · . (5.0.1)

2. Use truncated innovation algorithm to estimate the coefficients of ψ.

3. By (3.3.3) calculate the coefficients of ψ0(t)Zt =
∑m

j=0 πj(t)Y (t−j), then use history

data to estimate history noise.

4. For each pair of (p, q) satisfying p+ q ≤ Kτ , calculate the coefficients of the corre-

sponding ARMA(p, q) model by (2.2.8).

5. Determine the order of the most suitable model by model criteria.

In the following sections, we will introduce some model criteria to help us determine the

most suitable model.

80
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5.1 One-step Prediction of ARMA(p,q) Model for

Random Periodic Processes

For the ARMA(p, q) process (2.2.1), recall the definition of the transformed process

(cf. [5]),

W (t) =


θ−1

0 (t)Y (t), t = 1, · · · ,m,

θ−1
0 (t)

(
Y (t)−

p∑
i=1

φi(t)Y (t− i)

)
t > m,

(5.1.1)

where m = max(p, q). We will use this transformed process to find the one-step predic-

tion of the corresponding ARMA process. The autocovariance functions γW of W (t) are

calculated as follows: for t ≥ s,

(i) when t ≤ m, γW (t, s) = E[θ−1
0 (t)Y (t)θ−1

0 (s)Y (s)] = θ−1
0 (t)θ−1

0 (s)γY (t, s);

(ii) when t > m and s ≤ m,

γW (t, s) = E

[
θ−1

0 (t)

(
Y (t)−

p∑
i=1

φi(t)Y (t− i)

)
θ−1

0 (s)Y (s)

]

= θ−1
0 (t)θ−1

0 (s)

(
γY (t, s)−

p∑
i=1

φi(t)γY (t− i, s)

)
;

(iii) when s > m and t− q ≤ s,

γW (t, s) = E

[
θ−1

0 (t)

q∑
i=0

θi(t)Z(t− i)θ−1
0 (s)

q∑
j=0

θj(s)Z(s− j)

]

= θ−1
0 (t)θ−1

0 (s)

q∑
i=0

θi(t)

q∑
j=0

θj(s)E[Z(t− i)Z(s− j)]

= θ−1
0 (t)θ−1

0 (s)

s−t+q∑
j=0

θt−s+j(t)θj(s);

(iv) when s > m and t− q > s, γW (t, s) = 0.
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Applying the innovation algorithm in Proposition 3.3.2 to W (t), one obtains the one-step

predictor Ŵ (n+ 1) := E[W (n+ 1)|σ(W (1), · · · ,W (n))] as follows,
Ŵ (n+ 1) =

n∑
j=1

bj(n+ 1)(W (n+ 1− j)− Ŵ (n+ 1− j)) 1 ≤ n < m,

Ŵ (n+ 1) =

q∑
j=1

bj(n+ 1)(W (n+ 1− j)− Ŵ (n+ 1− j)) n ≥ m,

(5.1.2)

where the coefficients bj(t) and rt := E[W (t)− Ŵ (t)] are calculated by using γW .

When n ≥ m, Ŵ (n+1) only depends on the previous q of W (n+1−j)−Ŵ (n+1−j),

the coefficients bj(t) = 0 for j > q. This is because when t − s > q, γW (t, s) = 0. For

example,

bq+2(q + 3) =
γW (q + 2, 1)

v1

= 0

bq+1(q + 3) =
1

v2

(γW (q + 3, 2)− b0(2)bq+2(q + 3)v1) = 0

bq(q + 3) =
1

v3

(γW (q + 3, 3)− b1(3)bq+2(q + 3)v1 − b0(3)bq+1(q + 3)v2) =
γW (q + 3, 3)

v3

· · · · · ·

.

From the construction of W (t), we have

Hn
1 := σ(Y (1), · · · , Y (n)) = σ(W (1), · · · ,W (n)),

hence

Ŵ (t) = E[W (t)|Ht−1
1 ] =


θ−1

0 (t)Ŷ (t), 1 ≤ t ≤ m

θ−1
0 (t)

(
Ŷ (t)−

p∑
i=1

φi(t)Y (t− i)

)
t > m

, (5.1.3)

Moreover, for t > m, we have

W (t)− Ŵ (t)

= θ−1
0 (t)

(
Y (t)−

p∑
i=1

φi(t)Y (t− i)

)
− θ−1

0 (t)

(
Ŷ (t)−

p∑
i=1

φi(t)Y (t− i)

)
= θ−1

0 (t)(Y (t)− Ŷ (t)),
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together with W (t)−Ŵ (t) = θ−1
0 (t)(Y (t)− Ŷ (t)) for t ≤ m. Therefore, substituting Ŵ (t)

into (5.1.2), we obtain the one-step prediction Ŷ (n+ 1) as follows,

Ŷ (n+ 1) =
n∑
j=1

bj(n+ 1)(Y (n+ 1− j)− Ŷ (n+ 1− j)) 1 ≤ n < m,

Ŷ (n+ 1) =

p∑
i=1

φi(n+ 1)Y (n+ 1− i)

+

q∑
j=1

bj(n+ 1)(Y (n+ 1− j)− Ŷ (n+ 1− j)) n ≥ m,

(5.1.4)

and

E[Y (n+ 1)− Ŷ (n+ 1)]2 = θ2
0(n+ 1)E[W (n+ 1)− Ŵ (n+ 1)]2 = θ2

0(n+ 1)rn+1. (5.1.5)

5.2 Order Selection Criteria

In this section we recall the standard AIC, AICc and BIC criteria for model selection.

First we introduce the computation of the likelihood of ARMA(p,q) process. We will use

them to verify our model selection. Examples will be given in the next section.

According to the idea in [12], we assume {Y (t)} is Gaussian process. For Yn :=

(Y (1), · · · , Y (n))T , denote Γn := E[Y T
n Yn], the likelihood is

L = (2π)−
n
2 (det Γn)−

1
2 exp(−1

2
Y T
n Γ−1

n Yn).

The determinant and inverse matrix of Γn can be represented by the parameters b and

v calculated by the innovation algorithm. Set Cn := [bi−j(i)]
n
i,j=1, where define b0(i) = 1

and bi−j(i) = 0 for i < j. Also set Dn := diag(v1, v2, · · · , vn). Then the innovation

representation of Y (t) can be represented as

Ŷn = (Cn − In)(Yn − Ŷn) = Cn(Yn − Ŷn)− Yn + Ŷn.

Then we have Yn = Cn(Yn − Ŷn). Multiplying Yn and taking expectation of both sides,

we have

Γn = E[YnY
T
n ] = CnE[(Yn − Ŷn)(Yn − Ŷn)T ]CT

n = CnDnC
T
n .

Hence

det Γn = (detCn)2(detDn) = v1v2 · · · vn,
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and

Y T
n Γ−1

n Yn

= (Yn − Ŷn)TCT
n (CnDnC

T
n )−1Cn(Yn − Ŷn)

= (Yn − Ŷn)TD−1
n (Yn − Ŷn)

=
n∑
i=1

(Y (i)− Ŷ (i))2

vi
.

Therefore the likelihood function is rewritten as

L = (2π)−
n
2 (v1v2 · · · vn)−

1
2 exp(−

∑n
i=1(Y (i)− Ŷ (i))2

2vi
).

For a pair of (p, q), we calculated the corresponding parameters ψ and θ, then we can use

the innovation algorithm and (5.1.4) to calculate Ŷ . Therefore the likelihood L is regarded

as a function of φ and θ,

L(φ,θ) = (2π)−
n
2 (θ0(1) · · · θ0(n))−1(r1r2 · · · rn)−

1
2 exp

(
−1

2

n∑
i=1

(Y (i)− Ŷ (i))2

θ2
0(i)ri

)
.

(5.2.1)

The log-likelihood function is

lnL(φ,θ) = −n
2
ln(2π)−

n∑
i=1

ln(θ0(i))− 1

2

n∑
i=1

ri −
1

2

n∑
i=1

(Y (i)− Ŷ (i))2

θ2
0(i)ri

.

When computing the likelihood of {Y (t)} by computer, we usually use the log-likelihood

form in order to avoid the divisors being too small to be recognized as zero.

Although {Y (t)} are not i.i.d. and not Gaussian, we can also use the likelihood function

(5.2.1) as a measure of choosing the parameters by maximizing it.

The AIC (Akaike Information Criterion) is first introduced by statistician Hirotugu

Akaike in [1]. It is using the likelihood of model with different parameters to estimate

the relative information loss by such model. The model with the smallest AIC value is

chosen. However, when the sample size is small, there is a tendency that AIC will overfit

the models, that is, it will prefer model with larger parameters. The AICc was developed

with a more strict penalty term for large number of parameters for small sample sizes.

We will see that as the sample size n → ∞, AICc will tend to AIC. The BIC (Bayesian

Information Criterion) is another criterion with larger penalty term. The formulas of these
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three criteria are as follows,

AIC(φ,θ) = 2k − 2 ln(L),

AICc(φ,θ) = AIC +
2k2 + 2k

n− k − 1
,

and

BIC(φ,θ) = ln(n)k − 2 ln(L),

where k is the number of parameters in the model.

5.3 Simulation Procedure

For the ARMA model for random periodic processes, we analyze the asymptotic be-

haviours of the coefficients and give the corresponding optimisation algorithm in the

previous sections. We aim to write it as a computer programme and realize inputting

new data one by one and outputting prediction results as soon as possible, i.e. machine

learning. In the following sections we give two examples of simulation and in the appendix

we give the main functions written in R language which we used in the simulation.

To do simulation with the ARMA model for random periodic processes, inspired by

the idea of machine learning, we set the procedure of estimation in three stages. The

first stage is to estimate w in the sample autocovariance function. This stage will end if

the autocovariance function with respect to w shows convergence tendency. In the second

stage we estimate the coefficients of MA(Kτ) model for random periodic processes based

on the truncated innovation algorithm, we will see that K is chosen to be 1 in most

of the cases. We will use model fit criteria to compare each ARMA(p, q) model with

p + q ≤ Kτ and choose the one with smallest value of model fit criteria. Recall that we

will use MA(Kτ) model to obtain the corresponding AR(m) model and use it to estimate

the history noise by data we have already known. We will test which m is suitable in the

third stage. The procedure is to predict by ARMA(p, q) model we choose in the second

stage with the history noise estimated by AR(m) model and compare the result with the

real data. We choose the m which minimizes the mean-square error between predicted

data and the real one.
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5.4 Example of Temperature

Many business activities and people’s livelihood are influenced greatly by weather,

for example, energy production and consumption, agricultural commodities production,

airline passengers and among others. Even accident deaths may be influenced by ex-

treme weather conditions. Nowadays, people are establishing new type of security called

weather derivatives to help hedging their risks against weather-driven poor performance

of business activities. The payoffs of these instruments may be linked to various weather-

related variables, including heating degree days, cooling degree days, maximum tempera-

ture, minimum temperature, humidity, sunshine and precipitation (rainfall, snow-fall) etc.

(Campbell et al. [14]). The market of weather derivatives grows rapidly in America, and

has great potential in Europe. Weather forecasting is getting more and more crucial to

guiding people’s activities and even to government, like setting disaster prevention budget

such as snow-removal cost.

People are seeking methods to modelling the daily temperature. Temperatures in differ-

ent cities probably need different fitting models. Dornier and Querel [15] proposed a mean-

reverting Ornstein-Uhlenbeck stochastic process to model the daily temperature. Some

extensions of this model type were studied later. Alaton et al. [2] studied the Ornstein-

Uhlenbeck model and observed that the quadratic variation σ2(t) is nearly constant over

each month in the data set. They chose a piecewise constant function to represent the

monthly variation in volatility. However, a statistical test for the normality of the residuals

was not provided. Brody et al. [13] suggested a fractional Brownian motion replacement,

and Benth et al. [6] suggested a Lévy process replacement. They also suggested to use

an autoregressive conditional heteroscedastic (ARCH) dynamics with seasonal and cycle

components to describe the residuals. Also, Campbell et al. [14] studied the non-structural

model to estimate temperature of seven cities in America. They emphasized the capacity

of long-horizon forecasting of the model.

In this thesis we try this mean-reverting stochastic process model described in Benth et

al. [7] to model the daily temperature case and compare the result with that of our periodic

ARMA model. Suppose the mean monthly temperature Tm(t) satisfies a deterministic
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function of time t,

Tm(t) = A+Bt+ Ccos(ωt+ φ). (5.4.1)

As temperature T (t) varies along its mean value, it is modelled by a stochastic process

solution of the following SDE

dT (t) = dTm(t)− [a(T (t)− Tm(t))] dt+ σ(t)dW (t).

The term dTm(t) guarantees that the process really reverts to the mean Tm(t) (Alaton et

al. [2]). The explicit solution is given as

T (t) = Tm(t) + [T (0)− Tm(0)] e−at +

∫ t

0

σ(s)e−a(t−s)dW (s).

Discretizing the equation, we obtain

T (t+ 1)− T (t)

= Tm(t+ 1) + [T (0)− Tm(0)] e−a(t+1) +

∫ t+1

0

σ(s)e−a(t+1−s)dW (s)− {Tm(t)

+ [T (0)− Tm(0)] e−at +

∫ t

0

σ(s)e−a(t−s)dW (s)

}
= [Tm(t+ 1)− Tm(t)]− (1− e−a)e−at [T (0)− Tm(0)]− (1− e−a)

∫ t

0

σ(s)e−a(t−s)dW (s)

+ e−a
∫ t+1

t

σ(s)e−a(t−s)dW (s)

= [Tm(t+ 1)− Tm(t)]− (1− e−a)e−at [T (t)− Tm(t)] + e−a
∫ t+1

t

σ(s)e−a(t−s)dW (s).

Approximating the integral part, we have

e−a
∫ t+1

t

σ(s)e−a(t−s)dW (s) ≈ e−aσ(t)[W (t+ 1)−W (t)].

Let T̃ (t) := T (t)− Tm(t), then we consider the following model

T̃ (t+ 1) = φT̃ (t) + σ̃(t)Z(t), (5.4.2)

where φ := e−a, σ̃(t) := e−aσ(t) and Z(t) ∼ N(0, 1). One can use ARMA(1,0) model to

estimate the coefficient φ first. σ̃(t) can be estimated from the squared residuals.

Daily temperature can be seen as a good example of random periodic process in real

life. If we eliminate the first order trend term A+Bt from the original data, consider the
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average temperature Tm(t) and σ(t) satisfying periodic functions of t, then the solution

T (t) is a random periodic solution of SDE. Later we will see the periodicity of σ(t) by

autocorrelation function of squared residuals of model (5.4.2).

The data set we used in this example is the daily maximum temperature of central

England obtained from Met Office. The range of the data process is 140 years from Jan.

1878 to Dec. 2017 with length 51100 and period 365. We eliminate every 29th Feb from

the sample in leap years. Part of the data is plotted below. Daily CET values are expressed

in tenths of a degree.

Figure 5.1: Central England Temperature.

We use (5.4.1) to estimate the mean of daily maximum temperature. The regression

result we obtained and the plot are displayed below,

Tm(t) = 124.3 + 2.853e−4t− 0.72233cos(
2π

365
t+ 24.8). (5.4.3)

The coefficient of first order term seems to play a crucial role in the process. In average the

temperature of central England will rise around 0.1 ◦C every ten years. Such trend increase

may due to the Greenhouse effect, or development and air pollution which increase the

urban temperature in general.



5.4. EXAMPLE OF TEMPERATURE 89

Figure 5.2: Estimated mean values of daily maximum temperature.

Figure 5.3: De-seasoned values of the daily maximum temperature.
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Figure 5.2 displays the estimated average maximum daily temperature by (5.4.3) in red

curve. It approximately describes the evolution of daily temperature around an average.

Figure 5.3 shows the de-seasoned values of the daily maximum temperature. There is

no obvious trend or non-stationary pattern shown in the figure. Augmented Dickey-Fuller

test rejects the non-stationary hypothesis with p − value = 0.01. Since we will use the

sample from 40151 to 43800 to estimate the coefficients of ARMA(p, q) model for random

periodic processes later, here we only use this slot of time to estimate AR(1) model in

order to keep consistent with ARMA model for random periodic processes with respect

to each quantities. The result is shown below. This gives us the estimated value of φ in

(5.4.2) is 0.7768.

Figure 5.4: AR(1) model of de-seasoned temperature.

Figure 5.5 and 5.6 shows the autocorrelation functions for residuals and squared resid-

uals of AR(1) model. The first several lags of the autocorrelation functions for residuals

is significant beyond the confidence bounds of zero, which shows that a higher-order au-

toregression model may be taken consideration. The autocorrelation functions for squared

residuals displays a slight periodic pattern, which reveals a time dependency in the vari-

ance of the residuals.
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Figure 5.5: Autocorrelation function for resid-

uals.

Figure 5.6: Autocorrelation function for

squared residuals.

We use the following method described in the paper of Benth et al. [7] to estimate

σ̃(t). First we calculate the empirical values of variance by averaging the squared residuals

in each day. This gives us 365 values. Then we use a Fourier series of lag 4, i.e. (5.4.4),

to fit the empirical values. The results is shown in Table 5.1 and Figure 5.7. We observe

that the estimated variance by Fourier series shows slight oscillation, which matches the

appearance of the autocorrelation function of squared residuals. One may consider the

variance to be constant within allowed range of error for simplicity.

σ̃2(t) ≈ C1sin(
2π

365
t) +D1cos(

2π

365
t) + C2sin(

4π

365
t) +D2cos(

4π

365
t) + C3sin(

6π

365
t)

+D3cos(
6π

365
t) + C4sin(

8π

365
t) +D4cos(

8π

365
t) + C. (5.4.4)

Table 5.1: The coefficients of Fourier series.

C C1 C2 C3 C4 D1 D2 D3 D4

388.90 42.10 -57.86 -19.57 49.67 -16.84 41.98 11.59 10.59
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Figure 5.7: Estimated variance of residuals.

Figure 5.8: One-step forecasting result of SDE-AR(1) model.
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We then make forecasting by SDE-AR(1) model (shown in green curve) in Figure 5.8

and compare with the observed data plotted in black curve from time 43801 to 44300. We

use the following formula to calculate the relative error between the real data vector T (t)

and the forecasting vector T̂ (t):

err :=
< |T (t)− T̂ (t)| >

< |T̂ (t)| >
. (5.4.5)

Then the relative error for this model is 3.5994%.

Campbell et al. [14] studied the autoregression model with residuals described by

Fourier series. In some other cases in the early research people gave several ARMA-based

models with residuals described by more complicated models, such as ARCH series or

Lévy process. But further research showed that these complicated residuals model will

add complexity for further price modelling for weather derivatives based on such model.

In this thesis we only compare the ARMA model for random periodic processes with

the classical ARMA model. For specific applications, one can also consider adding more

complicated term in the ARMA model for random periodic processes if necessary.

Now we start to estimate the ARMA model for random periodic processes for this

sample. In order to use random periodic process to describe the data, we first eliminate

the non-periodic trend component by using the least square estimation (1.1.1).

Figure 5.9: LSE of first order. Figure 5.10: LSE of second order.

We ignore the second-order coefficient, but the first-order is crucial to the trend of

process, which is consistent with the result of the estimated mean values of temperature.

After eliminating the trend component, we calculate the sample mean and sample auto-

covariance at different time points in one period to estimate the value of w. One sample

of the results are shown below.
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Figure 5.11: Sample mean of temperature. Figure 5.12: Sample autocorrelation w.r.t. w.

Figure 5.12 shows the plot of γ̂(50001, 50001) with respect to N . We observe that he

sample mean has a cosine pattern but with some small fluctuation and little difference

between different cycles. We also observe that after around 100 the autocovariance func-

tions tend to converge. Hence we set w = 110 for this case. Since the value of period is

far larger than that of w, and the total number of cycles in the sample is less than the

period, we observe that the truncated innovation algorithm is hard to achieve. For this

special case, we use the original innovation algorithm instead. And in order to avoid the

singularity of the sample covariance matrix, we set

γ̂ :=
1

w + t− s

w−1∑
i=0

Y (t− iw)Y (s− iw), t ≥ s,

which makes the large-distant sample autocovariances tend to zero and guarantees the

non-singularity of covariance matrix. We then use sample from 40150 to 43800 in the

innovation algorithm. The plot of mean-squared error vt is shown in Figure 5.13.

We observe that v̂t shows similar pattern with the estimated variance by squared

residuals in SDE-AR(1) model. The average of v̂t described in red curve in Figure 5.14 is

smaller than the estimated variance σ̃2(t) in (5.4.4) in green one, which may be resulted

by the periodic coefficients of autoregression part which matches more suitable to the

sample than the constant coefficients.
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Figure 5.13: Mean-squared error of innovation

algorithm.

Figure 5.14: Average mean-squared error.

Figure 5.15: Autocorrelation function. Figure 5.16: Partial autocorrelation function.

Specifically, for an AR(1) process, the sample autocorrelation function should have an

exponentially decreasing appearance. However, higher-order autoregressive processes are

often a mixture of exponentially decreasing and damped sinusoidal components.

According to the autocorrelation function and the partial autocorrelation function for

the de-trended process with mean eliminated in Figure 5.15 and 5.16, we search AR(p)

model for random periodic processes to fit the sample. By the performance of the autocor-
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relation functions for residuals and squared residuals, we choose AR(1) model for random

periodic processes for this sample.

Figure 5.17: Autocorrelation functions for

residuals.

Figure 5.18: Autocorrelation functions for

squared residuals.

The slightly periodic pattern of autocorrelation functions for squared residuals reveals

the consistent with periodicity of v̂t and θ̂0(t). The autocorrelation function for residuals

shows that a higher-order of autoregression may be taken into consideration. But further

calculation shows that there is not much improvement of adding more terms in the model.

Hence we still choose AR(1) model for random periodic processes for this example:

[T (t)− m̂(t)]− φ1(t) [T (t− 1)− m̂(t− 1)] = θ0(t)Z(t). (5.4.6)

The values of φ1(t) and θ0(t) will not be given in this thesis as the length of the coefficients

matrix is too big.

Figure 5.19 shows one sample of the forecasting result of AR(1) model for random

periodic processes. The relative error between observations and predictions is 2.7425%,

which is a bit smaller than that of SDE-AR(1) model.
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Figure 5.19: One-step forecasting result of AR(1) model for random periodic processes.

For comparisons, we search for suitable ARIMA model for de-trended and de-seasoned

data data tr by function auto.arima in R, which gives us the result shown in Figure 5.20.

The autocorrelation function of residuals for ARIMA(2,0,2) model in Figure 5.22 is

almost within the confidence interval of zero, which is satisfactory. But the autocorrelation

function of squared residuals in Figure 5.21 shows small periodic pattern, which implies

the variance of noise may depend on time.

Although the autocorrelation function and partial autocorrelation function of residuals

give quite satisfactory result, the forecasting given in Figure 5.23 is not more satisfactory,

and the relative error is 5.7639%, which is much bigger than that of the AR(1) model for

random periodic processes. Shapiro-Wilk normality test rejects the normality hypothesis

of residuals with p − value = 1.791e−7 in addition to the autocorrelation function of

squared residuals. That is to say, the residuals are not ” white noise”, which implies that

there is still some information about temperature in the residuals which ARIMA model

fails to figure out.
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Figure 5.20: ARIMA(2,0,2) model. Figure 5.21: Autocorrelation function for

squared residuals.

Figure 5.22: Residuals of ARIMA.
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Figure 5.23: Forecasting result of ARIMA(2,0,2) model.

5.5 Example of SDE

We continue with the example of random periodic solution of SDE. From Figure 2.11

we set w = 650. Hence the first stage of estimation is from 1 to 13000. The length of the

second stage is set to be 4000 after practising several times, i.e. from 13000 to 17000. And

we aim to use the last 1000 data to do the prediction.

We observe that there will be extreme points of mean-square error v̂(t) when K is

chosen too large, for example in Figure 5.24, we take w = 5 and there are several near-

sigular points. We find that in application K usually is 1. In Figure 5.25 we plot v̂(t) after

applying the truncated innovation algorithm with K = 1 and w = 650. One can observe

that v̂(t) shows periodic pattern clearly. We plot v̂(t+ (i−1)×20) and b̂k(t+ (i−1)×20)

for each point t in one periodic, and choose the converged value to determine v(t) and

ψk(t). One example of time 1 is shown in Figure 5.26 and 5.27.
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Figure 5.24: v̂(t) with K=5 and w=650. Figure 5.25: v̂(t) with K=1 and w=650.

Figure 5.26: v̂(1 + (i− 1)× 20). Figure 5.27: b̂1(1 + (i− 1)× 20).

For each pair of (p, q) with p > 0, q > 0, p + q ≤ Kτ , calculate the coefficients of the

ARMA(p, q) model for random periodic processes by ψ̂(t) and then calculate the model

fit criteria. Also calculate them for the MA(20) model for random periodic processes. We

found that the MA(20) model for random periodic processes has the smallest value of

model fit criteria. Hence we use it to do model prediction. For 0 < m ≤ Kτ , calculate

the coefficients of each corresponding AR(m) model for random periodic processes and

use this model to estimate the history noise by history data. To find the proper value for

m, we define Ỹm as the predicted value of the corresponding AR(m) model for random
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periodic processes and choose m∗ which minimises the following error

err(m) :=
1

n

n∑
t=1

(
Y (t)− Ỹm(t)

)2

.

For this example m∗ = 12. We found that not the larger m causes the better prediction

result. One sample of the forecasting result by the MA(20) model for random periodic

processes is given in Figure 5.28. The relative error between the predictions and the

observations is 24.18%. The relative error is quite large since the absolute value of sample

is too small.

Figure 5.28: Forecasting result by periodic MA(20) model.

In comparison we apply auto.arima function in R to simulate the sample by ARIMA

model with season parameter in the function to be TRUE. The auto.arima function

searches through combinations of order parameters and picks the set that optimizes model

fit criteria AIC, AICc, and BIC. The result is shown in Figure 5.29. In Figure 5.30, the

function tsdisplay tests the residuals of the given model and displays the ACF and PACF

plots of the residuals. If the model order parameters and the structure are correctly

specified, there should be no significant autocorrelations of residuals present.
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Figure 5.29: The results of function auto.arima for original data.

Figure 5.30: Test of residuals by ARIMA(2,0,3).

The function auto.arima gives ARIMA(2,0,3) model for this sample. But the auto-

correlation function of residuals shows that there are more parameters expected to add

in. We forecast next 500 data by ARIMA(2,0,3) model and the result is shown in Figure

5.31. The relative error is 37.40%, which is much bigger than that of the MA(20) model

for random periodic processes.
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Figure 5.31: Forecasting result by ARIMA(2,0,3) model.

Next we consider SDE-AR model for this example according to the construction of

the data set. The solution of this SDE is (integral from zero to t)

X(t) = e−πtX(0) +

∫ t

0

e−π(t−s) sin(πs)ds+

∫ t

0

σ(s)e−π(t−s)dWt,

where σ(t) := 0.1 + 0.3 sin(πt). Then

X(t+ 1) = e−πX(t) + e−π
∫ t+1

t

e−π(t−s) sin(πs)ds+ e−π
∫ t+1

t

σ(s)e−π(t−s)dWt.

Set X̃(t) := X(t)−
[

1
2π

(sin(πt)− cos(πt))
]
, and by similar approximation of the integral

of Brownian motion, we have

X̃(t+ 1) ≈ e−πX̃(t) + e−πσ(t)εt, (5.5.1)

where εt ∼ N(0, 1). This approximation of the solution implies us to establish AR(1)

model with periodic-variance noise for the sample data as

[X(t)− s(t)]− φ [X(t− 1)− s(t− 1)] = Z(t), (5.5.2)

where Z(t) ∼ N(0, σ̃(t)).

To estimate the mean value of X(t), we do regression to the sample set to fit the

following function:

ŝ(t) = A sin(
2π

20
t) +B cos(

2π

20
t) + C.
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The regression result is shown in Table 5.2. The plots of estimated mean values and

de-seasoned values of X̃(t) = [X(t)− s(t)] are in Figure 5.32 and 5.33.

Table 5.2: The coefficients of ŝ(t).

A B C

0.158867 - 0.161542 -0.002256

Figure 5.32: Estimated mean values. Figure 5.33: De-seasoned values.

Figure 5.34: The results for SDE-AR(1) model.

Then we use AR(1) model to fit the X̃(t) ranging from 13001 to 17000. Figure 5.34

shows that the estimated value of φ is 0.745, which is close to the real value e−π/10.

The period of the original process is two, but for the sample the period is 20, hence the

frequency is π/10, which is consistent with model (5.5.1) as well.
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Figure 5.35: ACF for residuals. Figure 5.36: ACF for squared residuals.

Figure 5.37: The estimated variance of residuals.
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The autocorrelation function for residuals in Figure 5.35 shows that the residuals may

be regarded as independent with each other, while the autocorrelation function for squared

residuals in Figure 5.36 shows that there is significant time dependence in the variance of

the residuals.

We use the same method stated in example of temperature and plot the estimated

variance in Figure 5.37 with comparison of the mean-squared error v̂t (red curve) calcu-

lated by truncated innovation algorithm and e−π
(
0.1 + 0.3 sin(−2π

20
t+ π

0.95
)
)

(green curve)

in original solution of this SDE. A phase angle π
0.95

is introduced here since the sample

is taken discretely and there may be some offset with respect to the original process.

We observe that the patterns are similar. Since we approximated the integral part of the

solution, the green curve may not be considered as the exact standard of the variance,

but a good contrast.

Then we use SDE-AR(1) model to forecast next 500 data (represented by green curve)

and compare with the observed values (represented by black curve) from 17001 to 17500 in

Figure 5.38. The relative error between the forecasting and the observed values is 22.07%,

which is smaller than the previous two models.

Figure 5.38: Forecasting result by SDR-AR(1) model.

Inspired by the form of the solution, we consider the AR(1) model for random periodic
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processes as follows,

[X(t)− m̂(t)]− φ1(t) [X(t− 1)− m̂(t− 1)] = θ0(t)Z(t), (5.5.3)

where m̂(t) is the sample mean by (2.3.1) and Z(t) ∼ N(0, 1). The values of coefficients

φ̂1(t) is given in Table 5.3. We observed that these values are around the real value e−π/10,

and the volatility of these values is quite large in Figure 5.39. One sample of the forecasting

result of the AR(1) model for random periodic processes is shown in Figure 5.40. The

relative error is 25.36%, which is a little bigger than that of SDE-AR(1) model. It may be

better to set φ̂1(t) to be constant. This example inspires us to study the determination

criterion for periodicity in real world cases.

Table 5.3: The coefficients of periodic AR(1) model.

φ1(1) φ1(2) φ1(3) φ1(4) φ1(5) φ1(6) φ1(7) φ1(8) φ1(9) φ1(10)

0.6815 0.6951 0.6731 0.7322 0.7395 0.7435 0.7040 0.6952 0.7160 0.7320

φ1(11) φ1(12) φ1(13) φ1(14) φ1(15) φ1(16) φ1(17) φ1(18) φ1(19) φ1(20)

0.7166 0.7255 0.7359 0.7577 0.7040 0.7327 0.7237 0.7388 0.7193 0.7059

Figure 5.39: Estimated values of φ̂1(t).
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Figure 5.40: Forecasting result by periodic AR(1) model.



Appendix A

R Language Code

# Ca l cu l a t i n g the covar iance o f data between time t and s wi th s<=t

rCovar iance<−function (data , per iod , t , s ,w){

scov <− 0

temp <− s−(w−1)*per iod

i f ( temp<1) stop ( ”There i sn ’ t enough backward data” )

for ( i in 0 : (w−1)){

scov <− scov+data [ t−i *per iod ] *data [ s−i *per iod ]

}

scov<−temp/ (w−1)

return ( scov )

}

# Truncated Innovat ion a l gor i thm

rInno<−function (data , per iod , s , t ,w,K){

N <− t−s

scov <− array (0 , c (N,N) )

for ( i in 1 :N){

for ( j in 1 : i ){

scov [ i , j ] <− rCovar iance (data , per iod , s+i , s+j ,w)

}

}

dtheta <− array (0 , c (N,N) )

v <− numeric (N)

109
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v [ 1 ] <− scov [ 1 , 1 ]

dtheta [ 1 , 1 ] <− scov [ 2 , 1 ] /v [ 1 ]

v [ 2 ] <− scov [ 2 , 2 ] − dtheta [ 1 , 1 ] ˆ 2*v [ 1 ]

for (n in 2 : (K*per iod ) ){

dtheta [ n+1,n ] <− scov [ n+1 ,1]/v [ 1 ]

for ( k in 1 : ( n−1)){

temp <− 0

for ( j in 0 : ( k−1)){

temp <− temp + dtheta [ k+1,k−j ] *dtheta [ n+1,n−j ] *v [ j +1]

}

dtheta [ n+1,n−k ] <− ( scov [ n+1,k+1]−temp)/v [ k+1]

}

temp <− 0

for ( j in 0 : ( n−1)){

temp <− temp + dtheta [ n+1,n−j ] ˆ2*v [ j +1]

}

v [ n+1] <− scov [ n+1,n+1] − temp

i f ( v [ n+1]==0){

cat ( ”v ( ” , s+n+1,” ) i s ze ro . ” )

break

}

}

for (n in (K*per iod +1):(N−1)){

for ( k in (n−K*per iod ) : ( n−1)){

temp <− 0

i f ( k <= (K*per iod ) ){

for ( j in 0 : ( k−1)){

temp <− temp + dtheta [ k+1,k−j ] *dtheta [ n+1,n−j ] *v [ j +1]

}

dtheta [ n+1,n−k ] <− ( scov [ n+1,k+1]−temp)/v [ k+1]

}

else {

for ( j in (k−K*per iod ) : ( k−1)){
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temp <− temp + dtheta [ k+1,k−j ] *dtheta [ n+1,n−j ] *v [ j +1]

}

dtheta [ n+1,n−k ] <− ( scov [ n+1,k+1]−temp)/v [ k+1]

}

}

temp <− 0

for ( j in (n−K*per iod ) : ( n−1)){

temp <− temp + dtheta [ n+1,n−j ] ˆ2*v [ j +1]

}

v [ n+1] <− scov [ n+1,n+1] − temp

i f ( v [ n+1]==0){

cat ( ”v ( ” , s+n+1,” ) i s ze ro . ” )

break

}

}

r e s u l t<−l i s t ( scov=scov , dtheta=dtheta , v=v)

return ( r e s u l t )

}

# For any (p , q ) such t ha t p+q<=K\ tau , c a l c u l a t i n g phi and t h e t a by p s i

# p , q are not zero , and p+q<=K*per iod

c o e f f parma <− function ( per iod , p ,q ,K, ps i , v ){

phi <− array (0 , c ( per iod , p ) )

theta <− array (0 , c ( per iod ,q ) )

i f (p>=(q+1)){

for ( t in 1 : per iod ){

t1 <− t+K*per iod

A <− array (0 , c (p , p ) )

b <− numeric (p)

i f ( (2*p−1)<=(K*per iod ) ){

for ( i in 1 : p){

b [ i ] <− p s i [ t , p+i −1]

}

}
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else {

for ( i in 1 : (K*per iod+1−p ) ){

b [ i ] <− p s i [ t , p+i −1]

}

}

s <− ( t1−p)%%per iod

i f ( s==0) s <− per iod

A[ 1 , p ] <− v [ s ]

for ( i in 2 : p){

A[ i , p ] <− p s i [ s , i −1]

}

for ( j in 1 : ( p−1)){

s <− ( t1−j )%%per iod

i f ( s==0) s <− per iod

i f ( (K*per iod+j−p+1)>=p){

for ( i in 1 : p){

A[ i , j ] <− p s i [ s , p−1+i−j ]

}

}

else {

for ( i in 1 : (K*per iod+j−p+1)){

A[ i , j ] <− p s i [ s , p−1+i−j ]

}

}

}

i f ( det (A)==0){

cat ( ”The determinant o f ” , t , ” i s ze ro . ” )

break

}

phi [ t , ] <− solve (A)%*%b

t2 <− t−1

i f ( t2==0) t2 <− per iod

theta [ t , 1 ] <− p s i [ t , 1 ] − phi [ t , 1 ] *v [ t2 ]
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i f (q>1){

for ( j in 2 :q){

temp <− p s i [ t , j ]

for ( i in 1 : ( j −1)){

s <− ( t1−i )%%per iod

i f ( s==0) s <− per iod

temp <− temp − phi [ t , i ] *p s i [ s , j−i ]

}

s <− ( t1−j )%%per iod

i f ( s==0) s <− per iod

theta [ t , j ] <− temp − phi [ t , j ] *v [ s ]

}

}

}

}

else i f (p==1){

for ( t in 1 : per iod ){

t1 <− t−1

i f ( t1==0) t1 <− per iod

phi [ t , 1 ] <− p s i [ t ,q+1]/p s i [ t1 ,q ]

theta [ t , 1 ] <− p s i [ t , 1 ] − phi [ t , 1 ] *v [ t1 ]

i f (q>1){

# the t a [ t , 1 ] <− p s i [ t , 1 ] − phi [ t , 1 ] *v [ t1 ]

for ( j in 2 :q){

theta [ t , j ] <− p s i [ t , j ] − phi [ t , 1 ] *p s i [ t1 , j −1]

}

}

}

}

else {

for ( t in 1 : per iod ){

t1 <− t+K*per iod

A <− array (0 , c (p , p ) )
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b <− numeric (p)

for ( i in 1 : p){

b [ i ] <− p s i [ t ,q+i ]

}

for ( j in 1 : p){

s <− ( t1−j )%%per iod

i f ( s==0) s<−per iod

for ( i in 1 : p){

A[ i , j ] <− p s i [ s ,q+i−j ]

}

}

i f ( det (A)==0){

cat ( ”The determinant o f ” , t , ” i s ze ro . ” )

break

}

phi [ t , ] <− solve (A)%*%b

t2 <− t−1

i f ( t2==0) t2 <− per iod

theta [ t , 1 ] <− p s i [ t , 1 ] − phi [ t , 1 ] *v [ t2 ]

for ( j in 2 : p){

temp <− p s i [ t , j ]

for ( i in 1 : ( j −1)){

s <− ( t1−i )%%per iod

i f ( s==0) s <− per iod

temp <− temp − phi [ t , i ] *p s i [ s , j−i ]

}

s <− ( t1−j )%%per iod

i f ( s==0) s <− per iod

theta [ t , j ] <− temp − phi [ t , j ] *v [ s ]

}

i f (q>p){

for ( j in (p+1):q){

temp <− p s i [ t , j ]
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for ( i in 1 : p){

s <− ( t1−i )%%per iod

i f ( s==0) s <− per iod

temp <− temp − phi [ t , i ] *p s i [ s , j−i ]

}

theta [ t , j ] <− temp

}

}

}

}

r e s u l t<−l i s t ( phi=phi , theta=theta )

return ( r e s u l t )

}

# Innovat ion a l gor i thm fo r Wt with p , q not zero .

rInno W<− function (data , per iod , s , t , scov , p ,q , phi , theta , v ){

m <− max(p ,q)

N <− t−s

scov W<− array (0 , c (N,N) )

# Ca lcu l a t e the covar iance o f Wt

for ( i in 1 :m){

I <− ( s+i )%%per iod

i f ( I==0) I <− per iod

for ( j in 1 : i ){

J <− ( s+j )%%per iod

i f ( J==0) J <− per iod

scov W[ i , j ] <− scov [ i , j ] / ( v [ I ] *v [ J ] )

}

}

for ( i in (m+1):N){

I <− ( s+i )%%per iod

i f ( I==0) I <− per iod

for ( j in 1 :m){

J <− ( s+j )%%per iod
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i f ( J==0) J <− per iod

temp <− scov [ i , j ]

for ( k in 1 : p){

temp <− temp − phi [ I , k ] * scov [ i−k , j ]

}

scov W[ i , j ] <− temp/ ( v [ I ] *v [ J ] )

}

for ( j in (m+1): i ){

i f ( j==i ){

temp <− v [ I ] ˆ2

for ( k in 1 :q){

temp <− temp + theta [ I , k ] ˆ2

}

scov W[ i , i ] <− temp/ ( v [ I ] ˆ 2 )

}

else i f ( ( i−j )<q){

J <− ( s+j )%%per iod

i f ( J==0) J <− per iod

temp <− theta [ I , i−j ] *v [ J ]

for ( k in 1 : ( j−i+q ) ){

temp <− temp + theta [ I , i−j+k ] * theta [ J , k ]

}

scov W[ i , j ] <− temp/ ( v [ I ] *v [ J ] )

}

else i f ( ( i−j )==q){

scov W[ i , j ] <− theta [ I ,q ] /v [ I ]

}

}

}

for ( i in 1 : (N−1)){

for ( j in ( i +1):N){

scov W[ i , j ] <− scov W[ j , i ]

}
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}

# ca l c u l a t i n g the c o e f f i c i e n t s b

dtheta <− array (0 , c (N,N) )

v <− numeric (N)

v [ 1 ] <− scov W[ 1 , 1 ]

dtheta [ 2 , 1 ] <− scov W[ 2 , 1 ] /v [ 1 ]

v [ 2 ] <− scov W[ 2 , 2 ] − dtheta [ 2 , 1 ] ˆ 2*v [ 1 ]

i f (m>=2){

for (n in 2 :m){

dtheta [ n+1,n ] <− scov W[ n+1 ,1]/v [ 1 ]

for ( k in 1 : ( n−1)){

temp <− 0

for ( j in 0 : ( k−1)){

temp <− temp + dtheta [ k+1,k−j ] *dtheta [ n+1,n−j ] *v [ j +1]

}

dtheta [ n+1,n−k ] <− ( scov W[ n+1,k+1]−temp)/v [ k+1]

}

temp <− 0

for ( k in 0 : ( n−1)){

temp <− temp + dtheta [ n+1,n−k ]ˆ2*v [ k+1]

}

v [ n+1] <− scov W[ n+1,n+1] − temp

i f ( v [ n+1]==0){

cat ( ”v ( ” , s+n+1,” ) i s ze ro . ” )

break

}

}

for (n in (m+1):(N−1)){

for ( k in (n−q ) : ( n−1)){

temp <− 0

i f (k<=q){

for ( j in 0 : ( k−1)){

temp <− temp + dtheta [ k+1,k−j ] *dtheta [ n+1,n−j ] *v [ j +1]



APPENDIX A. R LANGUAGE CODE 118

}

}

else {

for ( j in (k−q ) : ( k−1)){

temp <− temp + dtheta [ k+1,k−j ] *dtheta [ n+1,n−j ] *v [ j +1]

}

}

dtheta [ n+1,n−k ] <− ( scov W[ n+1,k+1]−temp)/v [ k+1]

}

temp <− 0

for ( k in (n−q ) : ( n−1)){

temp <− temp + dtheta [ n+1,n−k ]ˆ2*v [ k+1]

}

v [ n+1] <− scov W[ n+1,n+1] − temp

i f ( v [ n+1]==0){

cat ( ”v ( ” , s+n+1,” ) i s ze ro . ” )

break

}

}

}

else {

for (n in 2 : (N−1)){

for ( k in (n−q ) : ( n−1)){

temp <− 0

i f (k<=q){

for ( j in 0 : ( k−1)){

temp <− temp + dtheta [ k+1,k−j ] *dtheta [ n+1,n−j ] *v [ j +1]

}

}

else {

for ( j in (k−q ) : ( k−1)){

temp <− temp + dtheta [ k+1,k−j ] *dtheta [ n+1,n−j ] *v [ j +1]

}
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}

dtheta [ n+1,n−k ] <− ( scov W[ n+1,k+1]−temp)/v [ k+1]

}

temp <− 0

for ( k in (n−q ) : ( n−1)){

temp <− temp + dtheta [ n+1,n−k ]ˆ2*v [ k+1]

}

v [ n+1] <− scov W[ n+1,n+1] − temp

i f ( v [ n]==0){

cat ( ”v ( ” , s+n+1,” ) i s ze ro . ” )

break

}

}

}

r e s u l t<−l i s t ( scov W=scov W, dtheta=dtheta , v=v)

return ( r e s u l t )

}

# Function o f c a l c u l a t i n g \ hat {Y} from s+1 to t .

Y pr ed i c t o r <− function (data , per iod , s , t , p , q , phi , theta , v , b){

m <− max(p ,q)

N <− t−s

hat Y <− numeric (N)

i f (m>=2){

for (n in 1 : (m−1)){

S <− ( s+n+1)%%12

i f (S==0) S <− 12

for ( j in 1 : n){

hat Y[ n+1] <− hat Y[ n+1] + b [ S , j ] * (data [ n+1− j ] − hat Y[ n+1− j ] )

}

}

for (n in m: (N−1)){

S <− ( s+n+1)%%12

i f (S==0) S <− 12
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for ( i in 1 : p){

hat Y[ n+1] <− hat Y[ n+1] + phi [ S , i ] *data [ n+1− i ]

}

for ( j in 1 :q){

hat Y[ n+1] <− hat Y[ n+1] + b [ S , j ] * (data [ n+1− j ] − hat Y[ n+1− j ] )

}

}

}

else {

for (n in 1 : (N−1)){

S <− ( s+n+1)%%12

i f (S==0) S <− 12

for ( i in 1 : p){

hat Y[ n+1] <− hat Y[ n+1] + phi [ S , i ] *data [ n+1− i ]

}

for ( j in 1 :q){

hat Y[ n+1] <− hat Y[ n+1] + b [ S , j ] * (data [ n+1− j ] − hat Y[ n+1− j ] )

}

}

}

return (hat Y)

}

# Like l i hood func t i on

log L <− function (data , hat Y, v , r , s , t ){

n <− t−s

L <− −n* log (2*pi )/2 − sum( log ( v ) ) − 0 .5*sum( r )

for ( i in 1 : n){

L <− L−0.5* (data [ s+i ]−hat Y[ i ] ) ˆ 2/ ( v [ i ] ˆ2* r [ i ] )

}

return (L)

}
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